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(i) 

RE SUM E 

The work reported in this thesis is the result of 

author's attempt to investigate and obtain an understanding 

of the collisions of charged particles with atomic and 

molecular systems. 

The first part of the thesis is concerned with the 

scattering of electrons by atoms using quantal methods. Also 

collisions between atomic and molecular systems resulting 

in either excitation or ionization have been investigated 

quantum mechanically. In the second part of the thesis, a 

classical approach has been followed for the study of 
4 

inelastic collisions of electrons with atoms and ions. 

The first chapter gives a review of the various quantal 

and classical theories of scattering, and the experimental 

data. In the second chapter we make use of the Glauber theory 

to study the electron—lithium elastic and inelastic scattering. 

It is observed that the Glauber theory gives a better 

• agreement with the data than any other theory. 

The third chapter is devoted to the elastic scattering 

of lithium in the Born approximation. The effectsof the -

polarisation of the target atom due to the incident electron, 

and exchange have been included. it is found that the 

polarised Born approximation gives much better results than 

^- 	 ati_i~. U~JI'ii (AE:piUAJ_I l tt '"(jil. 

In the fourth chapter we h=ive used the form factor 



description of the target and the Born approximation to 

calculate the electron loss from hydrogen atoms passing 

through H2, N2, and n2  and the electronic excitation of 

hydrogen atom colliding with Li, Na and K atoms. For the 

molecular targets a proper allowance is made for the phase 

difference between the scattered waves emanating from the 

two constituent atoms. The effect of the vibrational 

motion is also considered. It is noted that the cross-

sections after the inclusion of the phase factor agree 

closely with the experiment. 

In the fifth chapter the classical binary encounter 

model has been used to calculate the excitation cross- 

sections of the alkali atoms and the ionization cross- 

sections for Be,Mg and Ca atoms. A quantal momentum distri-

bution function has been used for the bound electrons of the 

target. 

In the sixth chapter the proton impact excitation of 

Li, Na and Cs has been studied using the Born approximation. 

The c1 issical theory for the proton impact ionization of 

atoms hs been extended to the case of excitation. It is 

found that there is a considerable difference between the 

results obtained using the classical and quantal approximations. 

In the seventh chapter the classical theory is used to 

calculate the electron impact ionization and excitation of 

a number of ions. The classical theory for ionization has. 

boon exten.f- ed to exci ati n. Rate coefficients for excitation 



and ionization ;)f lithium like ions. have also been 

calculated. Th; results f:;r thy: inelastic collision of 

electrons with ion suggest that the predictions of the 

clry.ssical theory are almost as good as those of the Coulomb—

Born approximation, at moderate and high energies.. The 

thr.,shnld behaviour is hoxvever very different. In the 

classical calculation it is found that the use of a quantal 

momentum distribution of the bound electrnnsyield s best 

results compared to the other distribution functions. 

In the eighth chapter the classical theory is used to 

calculate the dissociation and the ionization of the 

hydrngen molecular ion. It is found that the Coulomb—field 

of the ion causes an increase in the dissociation and 

ionization cross—section of the H molecule. 
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CHAPTER 1 

INTRODUCTION 

The scattering is an important. tool in the 

investigation of the atomic and molecular structure since 

the ,microscopic nature of atoms evade direct observation. 

A. knowledge of cross-sections for elastic and inelastic 

collisions of charged particles with atomic and molecular 

targets is very important in many physical phenomenon. 

Information about these cross-sections and the associated 

reaction rates is needed in the fields of plasma physics, 

in the study of stellar atmospheres and the solar corona, 

electrical discharges in gases, study of the gaseous nebulae 

and the passage of shock waves through gases. The cross-

sections-of a number of elements such as Na, Ca, K, K+, -Ca+  

etc. are of importance in determining the ionization 
equilibrium, and hence the cherrn .cal abundances in the 

interstellar space. The cross sections of oxygen and 

nitrogen and their ions are. required to identify the 

constituents which lead to the formation of ionised layers 

in the earth's upper atmosphere: The cross-sections of 

highly ionised iron and nickel are important in discussing 

the physical conditions in solar corona and the absorption 

cross-section of H-  is important in determining the stellar. 

opacity. In the field of plasma diagnostics one often 

needs the cross-section data in determining the temper tune 

and population densities of a non-local thermodynamic 
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plasma, in the calculation of the impurity radiation to 

be expected in high temperature plasma - and in the deter-

mination of particle energies by means of life-time 

measurements. 

A good deal of experimental and theoretical work 

has been devoted in recent years to the study of the 

inelastic collison cross"sectionsof atoms and ions by 

electron impact (1-10). At the present-time although it is 

possible in many cases to obtain estimates of cross—sections, 

accurate calculations - are still uncertain and a great deal 

of investigation remains to be done. 

Theoretically in principle it is possible to describe 

adequately, for most purposes, the complete physical system 

through the application of the •non-relativistic Schrodinger 

equation. An exact solution is only possible,  for a two body 

problem such as electron hydrogen scattering. The addition 

of just one more electron into the physical system camplicate s 

the problem . so much so that no exact solution is known to date 

for any physical three . body problem. This .limitation 

necessitates that all atomic scattering calculations use 

some approximate methods. There are a number of such 

approximate quantal methods and the most common and simple 

of them are the Born approximation and the .undistorted 

Hartree-Fockmethod.(2). With the advent of high, speed computers, 

it has now been possible to predict the cross.-sections 

more accurately through the use of the .close coupling 

method and the perturbed Hartree-Fock method (11.14 ). The 
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labour involved in these calculations is fairly large. A 

new direction to the calculation of the chargedparticle-

atom collison cross-section was recently given by 

Franco (15 ). This method is based on the diffraction._theory 

of Glauber(16). The method predicts as accurate cross-

sectionsas the close coupling method and involves less 

arduous computational work. 

In the low energy regime though the theory is well 

established, the technical difficulties associated with 

the complete quantum mechanical solution are huge. Therefore, 

it is useful to simplify the atomic system conceptually 

and to develop mathematical approximation. This state of. 

affairs has led to and encouraged, the appearance of semi-

classical, classical and empirical methods(6,7 ). The 

classical approach provides a reasonably accurate estimate 

of cross-section in a simple fashion. On the experimental 

side considerable work has been done on the study of the 

electron impact ionization and excitation of atoms and ions 

(10, l?-23), however the experimental data are far from 

exhaustive. Many species remain to be investigated and 

there is very  little experimental work on the excitation of 

positive ions. 

1.1 Review of scattering._ theories 

(a) Excitation 

(i) The atomic eigenfunctic;n expansion method 

one of the most important methods in the quantum 

theory of scattering from atomic systems is the eigenfunctic n 
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expansion technique. One expands the wavefunction for the 

system, scattering particle plus target atom, in the 

complete set of unperturbed atomic eigenfunctions Sn  

tlJ(r1, r2 ) = A E On (r1) 	(r2) 	 •• (1.1) 
n 

where A is an antisymmetrizing operator, r1  represents all 

the coordinates of the atom and r2  the coordinate of the 

scattering particle. This expansion gives the exact wave-

function for the problem and involves summation over all 

discrete, as well as integration over the continuum states 

On  (r1) of the atom. In practice 0n  are the best available 

atomic wavefunctions and one takes only a few terms in the 

expansion in order to be able to solve the problem 

numerically. 

The eigenfunction expansion method, in principle, 

requires retention of all the terms in the summation which 

leads to an infynito set of integrodiEferontial equations. 

This infinite set must in practice be truncated at some 

finite number. Only a small number of terms are included. 

This leads to somewhat inaccurate predictions. However, 

in the study of inelastic collisons, it is found that 

mainly the atomic levels directly affected by the process 

are important. 

The Schrodinger equation for the total system is 

(H - E) 1 IJ(r1,r2 ) = 0 	 .. (1.2) 

where E is the total energy f the system and H is the 
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total Hamiltonian H'= HA+K+V , K is the kinetic energy 

operator of the scattering particle and V is the total 

interaction potential between this and the atomic nucleus 
and electrons, HA is the Hamiltonian of the atom. 

Combining Egns. (l.1) and (1.2 ) and with the help 

of the Schrodinger equation for the atom only, one obtains 

an infinite set of 'coupled integrodifferential equations 

for the wave functions of the scattering electron 

[ 	JXn (r2 ) = 2 E , (V nn' - wnn , )Xn , (r2) n 

Kn is the wave number of the scattered particle and 

Vnn , and !^!nn 1 are, the interaction potential and the 

exchange operator defined by 

Vnn r ( 2 ) _ 	0n(rl ) V(rl ,r2) On t (rl ) aril 

and 	 r * 
i(r2 ) Xn r(r2 ) _ 	n (r "~ 	 l )EH(rl ,r2') - E~Xn ~{r1 )drl~Sn (r2 

respectively. .. (1.4 ) 

If the incoming electron impinges upon a neutral 

atom in state 1, the asymptotic behaviour takes the form 

(r2 ) ----> exp(iK r )a In + r 1 exp(iK r2 )fIn (e,Ø ) 	.. (1.5 ) n 	r2-'CO 	12 	2 	n  

2 
1/2 

Here K = [2m(E-En )/1i~ 	and f ln (©,P) is the scattering 

amplitude for the scattering angle 8,0 with respect to the 

direction of the incident beam. En is the eigenenergy 
of the nth state of the atom. In terms of the scattering 
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amplitude the cross-section is given by 

Ql~n = kn 	Ii0ce,)I2  sine do do  
I 

The above formalism is exact within the framework of 

nonrelativistic quantum theory. If we truncate the chain 

of the infinite set of coupled integrodifferential equations 

in order to obtain a practical solution, the effects of 

long rangedistortion to the target are ignored. However, the 

close-range effects like exchange and correlation are 

included. 

(ii) Partial wave analysis 

In order to solve the system of equations (1.3 ) 

accurately it is necessary to use a partial wave treatment. 

We solve the differential equation for each value of the 

total angular momentum and of the total spin. 

Let nLMSM5 denote the quantum numbers of the atomic 

state and K, msms of the incoming electron. The total 

angular momentum L = L + ~( and the total spin T n S = S + S. 

For each value of the total angular momentum (LT ) 

and the total spin (T), the wavefunction .Xn (r2 ) of the 

colliding electron are solution of a set of coupled equations 

2 + K2 	F (r2 )= 2 E V r- W ~~~ J F r (r2 ) dr 	n 	r2 	~i 	 _.~ 	~-  

where 	stands for all the quantum numbers, nLS/. 
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The cross-section is now related to the asymptotic 

forms of the radial functions F given in terms of the R 
or S matrix. The -transmission matrix T 	9 

T - 1 - S - - 21R 1- iR 

The total cross-section for a transition between two 
states is given by 

[aLS - a.' L' S' 	-2 - (2- S ~2 L+1) 2 E 	(2 ST+l) (2 LT+1 G2  
nL 	 ,~X' LIST 

xI< aLRLTST jT1a'L','LTST > 12 .. (1.8) 

a denotes the configuration i.e. all the other quantum 

numbers needed for a unique specification of the state. 

(iii)- Close-coupling approximation 

In the close-coupling approximation the expansion in 
(1.1) is truncated after retaining a few atomic states. 

This leads to a finite set of integrodifferential equations 

which are solved numerically. In the calculation of excitation 
cross-section it will be necessary to retain the lowest few 
bound states above the upper level involved in the transition. 

Good results are expected from the close-  coupling method 

if the coupling to the states which are neglected is weak. 

This is the case in the elastic scattering of alkali atoms 

in which the coupling with the resonance state is very 
strong compared to coupling with the other excited states. 
In inelastic scattering this is the case when a few levels, 



close in energy are strongly coupled together and are 
very weakly coupled to other distant levels which are 

neglected. The close-coupling approximation has been quite 

successful in predicting resonances but less successful 

for treating the excitation process showing a lack of 

convergence with respect to the addition of more atomic 

states into the trial wave function expansion.The way to 

improve the convergence in close-coupling methods has been 

discussed by Burke(24) and Smith (25 ). At low energies the 

close-coupling method suffers from certain defects. The 

polarisation potential is not properly included due to the 
neglect of coupling with the higher states and with the 

continuum. Further the interaction between the atomic and 

the colliding electron is not described properly at short 

distances. The method can be improved by considering the 

polarisibilities of the initial and final states. 

(iv) Born approximation 

From the previous discussion it is obvious that the 

inclusion of a large number of the partial cross-sections 

in the close-coupling method greatly enhances greatly ciu,ar~ces the computat-
ional lnhour. Simpler methods like the Born approximation have 

therefore been quite popular. When the incident energy is 

large compared to the interaction energy, the wavefunction solut.-

ion of oqn. (1.3) may be approximated by -a plane wave. 

The cross-section is proportional to 
2 

< (~Jn jvjtin > > 	 .. (1.9) 



.. 

where trn = ØF, Jn , _ On' Fn' ; F and Fn , are plane 

waves, in cases of collisions with positive ions F and 

Fn t are replaced by Coulomb waves because we have to 

consider the effect of the Coulomb field of the ion. 

The Born approximation can be used at energies higher than 

three to four times the inelastic threshold and a good 

agreement with experiment is obtained at energies ten 

times the threshold energy. The Born approximation is 

more valid for inelastic scattering since the close 

collisions are less important in this case. The higher 

order Born approximations can be obtained by expanding the 

scattering amplitude in powers of the interaction. The 

second Born approximation does not improve much the 

results at low energies. When the momentum transfer in 

the vicinity of the target is not small compared to 

the incident momentum,the Born cries does not converge fast. 

At low eneroi es the cl~etron spends more time near the 

target, hence the distortion, exchange and coupling effects 

become important. Certain i .~rovements in the Born approxima- 

tion have been made by us and they are discussed in detail 

in Chapter 3. 

(v) Vainshtcin, Presriyakov and Sobelman approximation 

Vainshtein et al. (26,2?) have given a method in 

which the repulsion between the atomic electron and, the 

incoming electron is taken into account explicitly but 

the interaction of the incoming electron and the atomic 

core is approximated. They express the total wavefunction 
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in the form 

.. (1.10) 

where X31  is the wavefunction of the initial state of the 
hydrogen atom and g describes the mutual repulsion 

between the atomic and incident electrons. 

In the ;chrodinger equation the interaction e2/r2  
2 	 1 -• 	- 	1 .. 

is. replaced by e /R where R 	 (r1+r2 ) and O = 2( r2-r1 ). 

This results in the equation 

y 1 L e+2 K-) + 2  - - J. g(R) = 0 	.. (1.11) 
 

This equation describes the scattering of two free electrons 
by each other and the motion of their centre of mass in 

the electrostatic field of the proton.g(L ) is expressed 

as 

= N exp 	 F(i;.' ,.l', + 	1 

• x F(-iv ,1, 

-K R-iKl .R) 

iK1P- i K1  • p ) 

with V = 	and N = r (1-i'd ) r (1+i J) 

.. (1.12) 

Since -e2/r2  gives no contribution to the scattering 

amplitude for collisional excitation in the Born approxima-

tion Vainshtein et al'. neglected it in their approximation. 

They express the scattering amplitude, after applying a 

peaking approximation, in the form 

2met  f (K) = - 	A I(I-n) 	 .. (1.13) 
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where A is a dimensionless quantity given by 

A = L 	 F(iL' ,1; iK1r - i.Kir) 

	

-' 	-1 (2iK- r) 
with 	 x F(-iv ,l; iK,

1 
 r-iK1. r) x r e 	d 

K 	 (1.14 ) K-K1   
The equation (1.13) becomes equivalent to Born approximation 

if A is taken to be unity. 

The terms neglected in (l.11) produce divergences 

in the limit K1'0. Vainshtein et al. have shown that these 
divergences can be removed if v is redefined as 

= tK1  + 

 

1/2  ' )-1  

Crothers and McCarroll(28) have introduced a 

modification in the approach of Vainshtein et al. which 

leads to a correct evaluation of A. 

(vi) Glauber approximation 

In both the approximations discussed above i.e. the 

Born approximation and the approximation of Vainshtein et al. 

the interaction of the incident electron with the proton 

is considered negligible. In the first Born approximation 

for inelastic collisons, its contribution in fact vanishes. 

To overcome this drawback Franco(15) recently made,  use of 

the Glauber approximation (16) (which was earlier used in 

the problem of high energy and nuclear physics) to the • 

atomic scattering problem. The virtue of the Glauber 

diffraction approximation is that for inelastic scattering 
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it explicitly takes into account the interaction of the 

incident particle with the proton, whereas in the other 

approximations, the contribution of this interaction 

vanishes or has been neglected. In atomic collisions, the 

Glauber approximation can be used for both elastic and. 

inelastic collisions. Its application so far has been 

confined to simple systems. Franco(15,29) employed the 

Glauber approximation to the study of the elastic scatter-

ing of electrons from the hydrogen and the helium atoms. 

In these calculations for the total elastic scattering 

cross-sections as well as for the angular distribution, 

the Glauber theory agreed surprisingly well with experiment 

even at comparatively low energies (<—l0O ev) where the 

Glauber` s formulation is expected to break down. This 

theory was applied to inelastic scattering of hydrogen 

by Tai et al. (30), Ghosh et al. (31) and Bhadra and 

Ghosh(32). Thece celcul ,ti ^s have sizown that Glauber 

theory predicts fairly accurately Ue cross-section for 

excitation in hydrogen in the range of energy from 30 to 

200 ev. In fact in this region no other theory competes 

with the Glauber theory. We (33,34 )h-,vva recently 

extended the Glauber approximation to the study of 

electron-alkali atom elastic and inelastic scattering 

and have found that in such cases of heavier atomic 

target systems also the predictions of Glauber theory are 

quite satisfactory. 

A 
V 
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(b) Ionization 

(vii) Quantal approximations 

From a theoretical point of view the problem of the 

ionization of an atom or a molecule is much more difficult 

than the corresponding excitation problem. The difficulty 

lies in finding the asymptotic fields in which the ejected 

and the - scattered electrons move. The two electrons move 

away after the ionizing collision. After the collision the 

target is no longer a bound system (as in the case of 
excitation problem) and the fields in which the two electrons 

move are not simple. 

Let_ K and K' denote respectively the momenta of the 

ejected and scattered electrons, with locations specified 

by r and r'. The asymptotic ch&•rges that each electron 

would see if they are treated independently are denoted by 

Z and Z' respectively. 

The amplitudes of scattering are defined through the 

asymptotic forms of the wavefunctions. The main difference 

between the ionization and the excitation lies in the fact 

that for ionization the asymptotic forms are taken for two 

electrons (locations specified by r and r') while for 

excitation only one electron is going away. This complicates 

the problem. 

Peterkop(35) and Rudge and Seaton (36) have developed 

the asymptotic form as an expansion. Subject to boundary 

conditions which define a collison event being satisfied, 
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the coefficient of the leading term in the expansion is 

the scattering amplitude. Integral expressions for this 

were obtained by Peterkop and Rudge and Seaton. Denoting by  
(r r+ Y the exact wavbfunction of the system before the 

collision, which has the appropriate asymptotic form, the 

scattering amplitude is given by 

= -(2~)-5/2 ei~ (r~ r') (H-E) 0(z,-K, r) 

• ,_ 	' . 	 O(z' ,-K' , r' )drdr' 	.. (1.15) 

where H is the Hamiltonian of the system, E its total energy 

b a phase factor and the O'are the Cou]o.mb wavefunction 

corresponding to charges Z and V. Since the two electrons 

moving away after the collision are indistinguishable, the 

probability that the ejected- electron has momentum K and 

the scattering electron momentum K' is the same' as that for 

scattering with K and ejection with K t . It follows therefore 

that the direct amplitude f (K,K') and the exchange amplitude 

g(<' ,K) must be equal. g(K;K ) = f(K,K') if a correct choice 

of phase is made for the wavefunction. 

'Attemptsto evaluate (1.15) were .made' using quantal 

approximations,such as Born I and Born 2, approximations.! In 

these approximations the wavefunction of the whole system 

before the collision is written' as a product of a plane 

wave describing the colliding, electron with' the wavefunction 

of the bound electron. The charges Z and Z' are taken as 

1 and 0 respectively. The cross-section Q' is givCn by 

rS" (Born a) =( K of i E-.Td KK'd( 1 K2 )dK dK' ~ f B (3 K,K') 2 ~  
where K is the initial momentum of the colliding electron and 

0 



15 is the ionization energy of the atom. 
A better approximation known as Born b. approximation 

results when the upper limit is taken as (E-U)/2. Born a 

and Born b are presently the best available approximations 

for ionization processes. For the case of ions the Coulomb-

Born approximation is used for both ionization and 

excitation. Excitation of positive ions has been recently 

discussed in detail by Burgess et al. (37 ). 

(viii) Classical approximations 

In the above we have seen that one has to resort 

to approximations as the exact quantum mechanical study 

of a collision problem leads to great computational 

difficulties. The gain in accuracy in the use of quantum 

theory is lost to some extent in making' the quantal 

approximation. Further for a complex atomic or molecular 

system the task of solving the quantum mechanical 

scattering equation leads to great analytical and computa-

tional difficulties. Alternative approaches are therefore 

sought to evaluate the cross-sections in a simple way. 

It is often easier to understand the atomic collision 

process using classical mechanics instead of quantum 
mechanics. Gryzinski(38939) and- Stabler(40) have shown 

that for a large range of electron scattering problems, 
fair accuracy may be achieved by classical calculations. 

Compared with the quant~.l calculations, 	the cross -sections 

obtained from the classical calculations have the 
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practical advantage that they have' simple analytic form 

and may be evaluated easily and rapidly. 

In the classical approach the collision between 

the electron and the atom is treated as a binary electron-

electron encounter. The transfer of energy from the 

incident to the bound electron during a collision is 

computed as if the two electrons were free. The energy 

transfer must be large compared to the binding energy of 

the atomic electron. The method is therefore more suited 

for ionizing collisions. However, for excitation also 

approximate rc! :11lt can be obtained. 

The .earliest application. of the classical mechanics 

to the inelastic scattering of electron' by atoms-  was made 

by Thomson(41) by assuming the atomic electrons to be 

initially at rest. Clearly at low impact energies, the 

neglect of the motion of atomic electrnn is an inadequate-

approximation. Consequently. a more refined classical 

theory was introduced by Gryzinski(38,39) making allowance 

for the velocity of atomic electron. Gryzinski's theory is 

A based on the work of Chandr-a seknar=(-t2 ) and u Williamson  

and Chandrasekhar(43) on stellar collisoh and gave 

surprisingly good agreement with available experimental 

results. Unfortunately the data of the day was not the 

best and several approximations introduced in attempting 

to simplify integrations were not physical-ly acceptable. 

However, Gryzinski's work focussed attention on classical 
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methods which were ,later on developed by Stabler(40), 

Burgess(44), Vriens(45 ),and Kingston (46 ). The main drawback 

of the classical theories is that they predict a E21 decay 

of the cross-section at high energies which is a 

more rapid fall than that predicted by quantum theory: 

E21kn E. In order to obtain a correct high energy behaviour 

Burgess(44) has tried to combine the binary encounter theory 

with the impact parameter method. He uses classical approach 

at low energies and semiclassical impact parameter method 

at high energies. 

For treating the electron positive ion inelastic 

collisions, Thomas and Garcia (47) have recently extended 

the classical theory of neutral atoms to incorporate the 

focussing effect of the long range Coulomb field of the 

ion. Burgess(44) has tried to introduce a semi-empirical 

additional factor to account for the focussing effect. 

We have made an extensive study (in the second part 

of this thesis) of the inelastic collisions of charged 

particles with atomic and molecular systems using classical 

theories. The ~'+ effect of various velocity distribution , ef fect 

 of the bound electrons of the target on the 

cross-sections has also been investigated. The advantages 

and disadvantages of the classical theories in specific 

processes have been discussed in detail' there(Chapters 5-8). 



1.2 Review of experimental data 

Considerable, experimental work has been done in 

recent years to study the ionization and excitation of atoms 

and ions due to impact of electrons. The fast developments 

in theory have stimulated a search for new ways to measure 

cross-sections for a variety of atomic collision processes. 

A number of review articles have recently been published 

in which the details of the experimental measurements 

have been thoroughly analysed (ln,l7-19,48). The' most power-

ful and promising experimental method involves the study 

of products firmed when well defined beams. of charged 

particles collide-Crossed modulated beam techniques have 

been used since 1958 f-)r cross-section measurements on 

unstable targets. Most of these experiments have involved 

the intersection of a mechanically modulated thermal beam 

of neutral atoms with a dc beam of .electrons of variable 

energy_ This approach is quite satisfactory for neutral 

targets but difficulties appear where both beams are 

chargecL. Dw' der and co-workers have recently developed a 

technique that appears to obviate these difficulties(19). 

Their application of this technique . to the study of toniza- 

tion of He4  ions by electrons was the first successful 

beam experiment with two species of charged particles. 	In 

this new method they intersect a fast well collimated beam 

of He' ion's with an electron beam of -variable energy 

ard then resolve 	the ion beam with respect to its charged 
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State after it passes through the intersection region. 

The success of this technique lies in the simultaneous 

modulation of both the ion and the electron beams and the 

ability to vary the relative phase of the modulation. 

This technique has been used by Dolder and co-workers 

to study the ionization of He+, Li+, Ne+, N+, K+, Mg+  

and Ba ions by electron , impact. Latypov et al.(49) and 

Kupriyanov et al. (50) have measured the ionization cross-

section of ions of inert gas atoms and mercury atoms. 

Lineberger et al. (51) and Hooper et al. (52) have also 

measured the cross-sections for the ionization of Li+, 

Na+  and K+  ions. The experiments of Latypov et al.(49) 

are less accurate than the other experiments. 

The experimental studies involving the measurement 

of excitation cross-sections are more difficult than those 

of ionization because of the greater difficulty of 

accurately measuring the bignal associated with the 

excitation process. The resonance radiation from most ions 

lies deep in the ultraviolet where the measurements become 

difficult. Due to this reason very few experiments have 

so far been reported on the excitation of positive inns. 

Dance et al. (53) have measured the excitation of -He+  to 

the 2s state by electron impact. The experiment of  Dance et al. 

is probably the most difficult and elaborate crossed beam 

experiment yet performed. Recently Bacon and Hooper(54) 

hr,.ve used another method to measure the resonant excitation 

of Bat. In this method the collimated electron and ion 
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beams collide and light emitted is detected by a photo-

multiplier. The major difficulty in this approach was the 

separation of the required signal from the background. 

Details about, the methods used in the measurement 

of cross-sectionsfor the excitation and ionization of 

atoms and the compiled data for species studied are given 

by Kieffer and Dunn(ln) and Moiseiwitsch'and Smith (9 ). 

The crossed beam technique has also been used by Dunn 

and Vanzyl(55) and Dance et al. (56) for the determination 

of dissociation cross-section of H2+ molecular ion by 

electron impact. 

The major difficulty encountered in these crossed 

charged beam experiments results from space charge inter-

actions between the two beams. The energetic target ion 

beam invariably produces a background current at the 

detector due to its interaction with the residual gas. 

Deflection of this beam by the space charge field of the 

electrons _rnay cause a change in the background current, 

that is indistinguishable from the true signal current. This 

effect is generally _investigated by looking for variation 

beam enercry or of the measured cross-section with ior-z bcU~,. ~...._  

looking for signal current below the threshold for the 

electron-ion reaction. These crossed beam experiments are 

now being complemented by techniques whereby ions are 

spatially confined by a multipole trap or by electron 

soecc charge and are then subjected to electron bombardment. 
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In the measurement of cross-section for a particular 

process one important factor which affects the magnitude 

of the cross-section is the initial state of the excitation 

of the ion. This is still more important for the study 

of ions because they are often formed by electron impacts 

which may simultaneously populate excited states. It has 

been shown by Latypov et al. (49) during the measurements 

on inert gas ion systems, that if the ion source conditions 

were changed the measured cross-section varied by about 

300 7. due to the variation in the proportion of metastable 
ions in the target beam. The problems of initial 

excitation are even more serious for molecular ions because 

these may have vibrational as well as electronic excitations. 
Another source of electronic excitation arises from autoioniza- 

tion states(i.e.inner shell olectrnnicexcitaticn)with lifetimes 

greater than about 10-6  sec. Autoionization occurs in many 

atoms and ions. Although various methods have been suggested 

to combat the above difficulties but still a great deal 

of development of sources of unexcited ions needs to be 

done. In some experiments on ions like the highly charged 

ions of astrophysical importance, it will nearly be 

impossible to obtain a parent beam which will be free 

from metastable excitation. In such experiments, therefore, 

it would be necessary to determine the proportion of 

metastable state and from the knowledge of such states the 

cress-section for ionization from metastable states could 

be detccrmined.. 
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Due to the difficulties mentioned above the 

experimental data on cross-sections are available only 

for simple atomic and molecular systems and the cross-

sections e for inelastic collisions of electrons with a number 

of ions and atoms of astrophysical importance remain to 

be investigated. Further, there is very little experimental 
work on the proton impact excitation and ionization of 

ions. In atoms also the proton impact measurements .have been 

done only for a few systems. Thus, we see that there is 

a real need for more experimental work. 

1.3 Outline of thepresent work 

.The work reported in this thesis is the result of 

. author's attempt to investigate and obtain an understanding 

of the collisions of charged particles with atomic and 

molecular systems. For the target atoms both elastic and 

inelastic scattering and for target ions only . inelastic 

scattering have been studied. The first part of the thesis 

is concerned with the scattering of electrons by atoms 

using quantal approximations and in the second part a 

classical approach has been followed for the study of 

collisionswith atoms and ions. Collisions between atomic 

and molecular systems resulting in either excitation or 

electron loss from the incident atom have also been 

investigated quantum mechanically. 

The second chapter is devoted to the elastic and 
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inelastic scattering of lithium atom by electron impact 

using the Glauber approximation. The advantages of the 

Glauber theory over the other theories have been indicated 

in the light of the experimental data. The third chapter 

concerns the elastic scattering of lithium atom in the 

Born approximation. The effect of the polarisation of the 

target atom due to the incident electron has been considered 

and the exchange effects are also included. The fourth 

chapter deals with the application of Born approximation 

to the atom-atom and the atom-molecule collisions. The 

electron loss from the incident hydrogen atoms colliding 

with molecular targets has been considered. The excitation 

~f hydrogen atom to several states during collisions with 
alkali atom targets is also studied. The use of the form 

factors and their modification for molecular targets has 

been discussed. The vibrational motion of the molecule 

is also considered. 

The remaining chapters deal with the applications 

of the classical theory. In the fifth chapter the 

electron impact excitation and ionization of several 

atoms have been discussed. The sixth chapter deals 

with the proton impact excitation of alkali atoms. In 

this chapter both the quantal (Born approximation) and the 

classical approach have been followed to evaluate the 

excitation cross-section. The seventh chapter gives a 

det filed study of the ionization and excitation of ions. 
The effect of the Coulomb field 0f the ion and the effect 
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of increasing the charge of the ion on the cross-sections 

have been discussed. The reaction rates for the ionization 

and the excitation processes have also been calculated 

and compared with the existing calculations and data for rate 

coefficients. The last chapter eighth gives the application 

of the classical theory to the study of the dissociation 

and ionization of the hydrogen molecular ion. 'The effect 

of the Coulomb field of the ion has been considered here 

also. It has been concluded that the Couloinb field of the 

ion causes an increase of the ionization and dissociation 

cross-section of the H2 molecular ion. 

In the classical calculations the effect of changing 

the velocity distribution of the bound electrons of the 

target atom has been discussed. Several types of distribution 

functions like hydrogenic, E-function and quantal distribution 

have been used. The quantal momentum distribution function 

has been found to yield best results. 
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CHAPTER 2 

ELAS'T' IC AND INELASTIC SCATTERING OF LITHIUM 

USING GLAUBER APPROXIMATION 

The Glauber approximation (16) has been used extensively 

in the past for estimating the scattering 'amplitudes in many 

problems of particle and nuclear physics. In particular 

its application to scattering by deutrons is extensive(57 l58 ). 

The Glauber approximation is essentially a diffraction 

approximation wherein it is assumed that the incident plane 

wave, sweeps virtually undeviated through the region of 

interaction and emerges suffering only a position—dependent 

change in phase and amplitude. This assumption will be more 

valid at higher energies as at low energies the wave is 

expected to remain in the region of interaction potential 

for a longer time. The Glauber approximation differs from 

the eikonal approximation which applies to scattering by a 

fixed potential in that it includes a number of other 

dy'••~-•mica approximations. Further, it also differs from namical 1 1 CJ1 l 111 v im+ 	i-~ 

the impulse approximation as it explicitly treats the 

effect of double collisions i..e. collisions in which the 

incident particle interacts with both target nucleons. 

Franco (15) was the first to introduce the Glauber 

theory tc. the electron atom collision problem. He first 

considered the case of elastic scattering of hydrogen atom 

by electron is pact. The results of Franco's calculations 
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for the angular distribution as well as for the total scattering 

cross-sections agreed very well with the experiment. Later 

on Tai et al. (30), Ghosh et al. (31 ), and Bhadra and Ghosh(32) 

examined the utility of the Glauber theory to the inelastic 

scattering of atomic hydrogen with electrons. They also 

observed •a surprisingly good agreement with experiment. 

The main reason for the success of the Glauber theory can 

be ascribed t. that it takes account of the interaction of 

the incident electron with both the target electron and 

protons whereas in most of the other approximations used in 

the study of excitation processes like the Born approximation, 

the interaction between the incident electron and the target 

proton produces identically zero scattering, or it is assumed 

to produce negligible scattering as in the case of impulse 

approximation of Vainshtein et al. (26). 

The Glauber approximation is applicable for high 

energies and is also expected to be more useful in the 

intermediate energy domain for which the Born approximation 

is inaccurate and the phase-shift analyses are too complicated. 

v 

2.1 Scatterin  of electrons by hydro en atom 

Considering the target proton to be very •heavy one 

can neglect the effect of exchange on scattering. The 
contribution of exchange will be small for energies beyond 

100 ev, where the Glauber theory is more valid. 

Let the origin of coordinates be placed at the proton 
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and let b represent the •impact parameter vector relative 

to the origin. Let r and r' denote respectively- the 

position vectors of the target and incident electrons. 

Let hKi and hKf be respectively the momentum vectors of 

the incident electron before and after the .collision. The 

momentum transfer vector is q = Ki 	Kf 

Let the z axis (also the polar axis) be along K1. 

If s is the projection of r on to the x,y plane (planeof 

impact -parameters) one can write r = s + z and r' _ b +,: , 

where the impact parameter vector b lies in the xy plane 

and is perpendicular from the origin to the incident particle's 

initial trajectory. The distances and angles are shown in 

fig. 2.1.  

The scattering amplitudes Ffi(q) for collisions in 

which the target atom undergoes a transition from an 

initial state i with wavefunction Oi to a final state f 

with wavefunction of and the incident particle imparts a 

momentum hq to the target, is given for the case of 

hydrogen atom by  

iK 	.-►. r .-' "'\ ,-,c~-' 	(--• b) 2 • - 	, Ff i (q) =  	flrl I ~b,r i ;o. r i e 	d _,'•v.   

where the two dimensional - integral over impact parameter 

vector is over a plane perpendicular to the direction of 

the incident beam. The function r (b, r) itself -depends upon 

an integral, along the direction of the incident beam, of 

the instantaneous potential V between the incident particle 

.n.d th target. Since the potential between the incident 
particle and the target protons w,-All not be neglected and sir, :I 
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is not a linear function of V, the theory explicitly treats 

the effect of. the presence of nucleus. The function r 

may be expressed as, 

	

c(b ~ r) - L -- e xf 	p~ 
	
V(;,;!  )d 

► t i Ze2 +°° Z 

	

1 - e xp 	
oo ; 
(-- - -~-_ - 	)d 	.. (2.2) 

~2v •,. 	"  i 	r 	~ r- r 

where Ze is the charge of the incident particle and vi 

its velocity. Writing r = s + z and r' = b + 4 , rtakes 

the form 

-' ~' 	p i2e2 	2  r (b, r) = 1 	

[+00 

21/2exp - --_' 

	

1-e xp _ 	2 /n [~ b- s / b1 	 .. (2.3) 

The differential cross-section is given by 

_ Ki IFfi(g)I2 	 .. (2.4) 

The total cress- section is 

	

= 	K£ I Ffi(a ) I2 sine de d 	.. (2.5) 
i 

where e and 	are the spherical coordinates specifying the 

direction of Kf relative to Ki. Kf is given by the conservation 

relation 

2 	2 2 2 Kf + F;f _ 22 K1 + Ei 	
.. (2 .6 ) 
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where €i and E f are the energies of initial and final 
states. Using q2 = Ki + K - 2K1Kf coso the total cross-
section is given by 

K1+K f 	 2 
2  (2 ,2 q dq ~ 
KI Ki- K f 

For the case of elastic scattering Kf = Ki and the total 

elastic scattering cross-section is 
K. 1 

= °'2 q dqFii (q)~ 2 . 	 .. (2.8) 
K. 
i o 

Further for elastic scattering of hydrogen 

-r a 
Of = Oi = (na3 )-1/2 e 0 

where ao is the first Bohr radius. Putting these wave-

functions in (2.1) and carrying out the integration, Franco 

obtains the following expression for the elastic scattering 
amplitude, 	n/2 
F ii(q) = 2iKiao d0 sin30' cos8'Csin2 0, - 2 (aoq)2cos2o 

0 
-4 

x ~sin20' + 4 (aoq )2 cos 

x  1 - (I co s2o l / co s0')"" J co s20'I F (2 + in, l+ tin; 

1; sin2 28') 

with n = e2/v1 
(2.10) 

In the calculation of the elastic scattering by 

hydrogen atom Franco finds that the total integrated cross-

sections )re identical for energies beyond 100 eV with the 
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first Born approximation (FBA) and below 100 eV, the Glauber 

cross—sections are considerably higher than the FBA. The 

agreement with experiment for energies upto 100 eV was 

good even though the theory - is not really valid in this 

region. Itwas,however,noted that at low energies the 

Glauber cross—sections were. very much higher than the FBA. 

This large increase in cross—section at low energies can 

be understood as follows. 

If we expand r (b, r) in powers of n, the first 

nonvanishing term is linear in n and• is identical to FBA. 

The retention of linear terms is valid only at large v i• 

Thus we can infer that the Glauber prediction for Ffi (q ) 

must be the same as those 0f FBA at high energies. The 

second term in the expansion of r yields a purely imaginary 

contribution to the amplitude. It is noted by Franco that 

the angular distribution resulting from the inclusion of 

the second term are considerably higher than that of FBA 
2 2 dcr 

for small angle scattering. The quantity (1—v1/c )a,~ 
behaves as (2n~Snq)2 for small q. This is the result of 

the basic approximation 
in Glauber theory that. during the 

passage of incident particle through the field, the target 

particles remain frozen or the collision time is much 
shorter than the period of the target electron. This 
assumption is not valid for large impact parameters. The 

Glauber approximation for hydrogen according to Franco 

must hc> most satisfactory in the region (a0q)2>> (4 Ka). 

Despit, this restriction, in a certain range of momentum 
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transfers,the scatterngamplitude contains a logarithmic 

dependence on q thereby significantly increasing the 

intensities for small q compared to FBA. 

The Glauber theory which was quite successful in 

predicting tho elastic scattering of hydrogen atom was' 

applied by Tai et al. (30) to the study of inelastic 

scattering of hydrogen also., 

Putting the wavefunctions 0., for the final states 

in. equation (2.1) Tai et al. obtain the amplitudes_ Ffi(q) 
for the transition is-2s, is-2p, is-3s and is-3p in the 

hydrogen atom. The same was extended for the is-3d transition 

by Bhadra and Ghosh(32). The representative amplitudes for 
s-s, and s-p transitions in hydrogen are 

2101Ki j 	do' sin3e' co se' 
3 2 	 (sin2g' 	2 2 5 + 	gcos o 1 ) 

x -2sin4o' + 96 g2cos20 `singe' - S8 q cos o' M .  

(2.11) 

212K• 	iØ 	.d©' Cos2e'sin4 e l (sin2e t _ q g2cr, s20' ) 
F15_2 = p+l (sin26' + 	g2Cos20' )5 

.. (2.12) 

with 	 r 2 

M = 1-(2-)1(cose' )-2 in 	dos (l-Y cos~Ss ) In and 
,7 	n 

in N = (cosp )-2 in 	d9s cos 	 (1- Y cos 0s 	Y = sin 28 

'o 	 .. (2.13) 
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For all these transitions it has been noted that 

the Glauber cross-sections agree very well with experiment. 

All the other theories like the FBA, Vainshtein et al. 

approximation, close-coupling and distorted wave approximations 
• tend t,-, be very close to each other for energies beyond 100 eV. 

For E < 100 eV; the Glauber approximation tends to be 

significantly lower than the other theoretical calculations 

.excepting the Vainshtein et al. approximation which is not 
well founded. This feature in inelastic processes is in 

contrast to the elastic scattering process where the Glauber 

cross-section at lower energies is significantly higher 

than the FBA and other calculations. The differential cross-

section for elastic and inelastic scattering decreases 

monotonically with increasing scattering angle e. At large 
angles,e > `''' 400, the Glauber inelastic differential cross-

sections are significantly higher than the FBA whereas in 

elastic scattering at large angles the FBA and Glauber 
approximations were indistinguishable. In the elastic scatter-

ing at angles between 0 and 40 the Glauber approximation 

always exceeded the FBA. The difference increases for small 

angles. It has been noted by Tai et al. that the predictions. 

of the Glauber differential cross-sections are almost as 

successful as the Glauber total cross-sections. 

2.2 Scatter.~ng. of electr. ons by helium _at.om 

c llowing the success of Glauber theory for the 

nydro.gen atom, Franco(29) extended it to the study of 
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el stic scattering of electrons from the helium atom. 

if rl and r2 denote the position vectors of the target 
electrons, the amplitude for scattering of a particle of 

momentum hKi by helium atom is given by 

Ff1(q) 	2~ 	f(rl ,r2)1 (b9r1,r2) of Crl ,r2 ) e 	d b dr1dr2 

(2.14) 
whe 'e 	 +°° 

-► 	-► 	1 (b, r19 r2 ) = 1 - ex[(-i 2 ze / hv) 	(2 r' t r' - .rl -. 
.- Ir'- r2 I_l)d~, 

Writing rl = sl + zl and r2 = s2 	z2 where sl and s2 are 

the pro j ectic.n s of rl and r2 respectively on to, the plane 

of impact parameter, we get 

1K. 	 _ 	_ 	-2inZ 
rf1(q) = 2 

 -J 
J0 (gb) of(r1,r2) L1 	- s1Hb-s21 / b2 

(rl , r2 ) bdb d zld z2d2S id2' 2 
(2.15) 

For the case r_,fr elastic scattering Of = 

The ground state wavefuncti on of the helium atom is 

given by 
--2 7 r 	I- X12 	 Z1r1/ao 	~.1/a0j I . Z1r2l`,c 	-2Z1r2/ e1 

1 E-'  
c~  f{ 

TZ 
U 
	 .. (2.16) 

with N = 1.484, Z1 = 1.456 and c = 0.6. 

Using the above wave functinn and carrying out the 

the integration in (2. 1), Franco . obtains for the scattering 

amplitude of the helium atom, 
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ii/2 .t/z 00 

F ; (q) = (16N~t 1K1 / a6 ) 	 J ( raose)A(e, B(r 
0 `o o 

7 C r sin 5e cos@ sin 	COS Cos~0 dr de do 
(2.17) 

where 	 •1-- Zin 
-Zin 	-1+Zin. 	 2 

A( e,) = 1-(4 tan2e sinØ cos) 	(xy) 	(x2-1)(y2-1)J 

x F.(2 - 2 Zin, 1- 2 Zin; 1; x 2 )F(2 - 2Zin,1+ 2 Zin;1;y-2 ) 

.. (2.18) 

B(r,e,o) = [K1(2z1rine cosO)+ 2cK1(3Z1ra(sin8 cnsO) 

+c2 Kl (4 Z1 ra-sine co sO) K1 (2 Z1 r~sine sink) 

+ 2cK1 (3Z1r ine sinO)+ c2 K1 (4Z1r o ine sin~S) 

(2.19) 

with . x = csc 2e csc 	(1 - sin20 cos20) and 

y = csc 2e sec 0 (1. - sin2e sin20) 

The three dimensional integral in equation (2.17) 

was evaluated numerically by Franco. The differential and 

total cross-sections were calculated using equations (2.4) 

and (2.8). 

The calculations of Franco for the elastic scattering 

from the helium atom using the Glauber approximation reveal 

that the shapes of differential cross-section agree well with 

the measurements whereas,at all energies the shapes obtained 

by FBA are poor. It is also shown that the predictions of 

the Glauber theory and the Born theory for the helium 

atom slowly a.opre'ach each other as the incident energy 
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is increased. 

The remarkable success of the Glauber theory in 

predicting accurately the electron atom collision cross-

section for simple atomic systems like hydrogen and helium 

tempted us to investigate its applicability to more complex 

atomic systems like alkali atoms. In the next section we 

discuss our findings for elastic and inelastic scattering 

of electrons from the lithium atom. 

2.3 Scattering of electrons from lithium atom 

As seen in Sections 2.1 and 2.2, the application of 

the Glauber theory requires an evaluation of a ...five dimensional 

integral for the hydrogen atom and an eight dimensional integral 

for the heliun atom. In general, if no approximations are 

made about the atomic target system, the study of scattering 

by a Z electron atom leads to the evaluation of a (3Z+2) 

dimensional integral. This will require that in the case of 

lithium with Z = 3, one has to evaluate an eleven dimensional 

integral to get the exact scattering amplitude for either the 

elastic or the inelastic scattering. 

The evaluation of an eleven dimensional.  integral 

becomes very difficult and therefore one has to think of 

some approximz.tion where one could represent the target atom 

suitably and at the same time not lose much accuracy in the 

evaluation of the scattering amplitude. One such assumption 

is t,-,. treat the lithium atom effectively as one electron 

system. The core is assumed to he frozen i.e. the effect 
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of the core electrons has been ignored and only the inter-

acti-)n with the active el:ctron and a nucleus of charge 

unity is considered. The frozen core approximation is not 

expected t lead to a large error in the calculation of 

the cross-section as in most of the other quantal calculations 

it has been seen (59) that the contribution of the core is 

negligible. Under such an approximation for lithium,we 

have to evaluate a five dimensirnal integral for scattering 

amplitude instead of the eleven dimensional integral 

required in the exact treatment. 

2.4 Elastic scattering 

The scattering amplitude for the elastic scattering 

from the lithium atom is similar to that for the hydrogen 

atom and is given by equ-,ticn (2.1). 

For the case of the lithium atom the interaction 

potential is 

= Ze2 ( 1-- - -'--~- 	) 	 .. (2.20) r' 	jr - r, J 

c 	 1 	f where r refers c -: rs t the po itir~ n vector 	the valence  electron ~, 

r)f the lithium atom. 

The ground state wavefunctinn of the lithium atom 

can be written in an analytic form, 

() - 	(r) YRm (e 	) 	 .. (2.21) 

with 
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_ Z A• exp(-Y•r) +E A. r exp(-4,. r) 	.. (2.22) 
n 	i=1 	 i=3 ~.  

and Ai = c I N. 

The coefficients ci and ~; j are tabulated by Clementi(60) 

and N1 are normalization factors given by 
i 

	

_1/2 	n+ 2 
Ni = ((2n) !) 	(24,3 ) 

Using this form of wavefunction, the scattering amplitude 

for elastic scattering of lithium is given by 
_ 	1K. 	2 	 6 	 2 

F25_25()   = 	 1 	i
q 	-- 	1 	E Aexp(-.. r) + E A. r exp(-y• r) 

(b -- s) 	tin °' i q . b 
x 1. - ( - 

	

	) 	e 	(bdb dOb ) 
b 

x (sds dosdz)  

(2.23) 
where 

	

	 1/2 
q.b =, qb cr;s(Ob q -0 ) and lb --l =Eb2±s2-2hs cos(O5-Ø6) 

 

2 	2 1 2 Also we h -eve , r = (s + z ) / . E xprc s sic n (2.23) can be 

rewritten as 

F11 (a,) = 11+_T_ 7+I3 . 	 .. (2.24) 

where  
1K. 3 	-.r iq. b 

Il = ~t 	B j e 	e 	(bdb d~fb )(sdsdz) M 	.. (2.25) 
j=1 . 

with Bl = Al , B2 = A, X33 = 2A1A2 , ~.l = 2 1 and 	= 2 

?~3 = (Sl + &2 

1K. 8 	r 	-xj r yg, 
12 _ _ ~- 	Z Bj 	r e 	E~ 	(bd bd Ob ) (sd s d z) M 	.. (2.26) 

=1 
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with Bl = 2A1A3 , BN = 2A1A4 , 83 = 2A1A5 , B4 = 2A1A6 , 85 = 2A2A3 
B6 = 2A2A4 , B7 = 2 A2A5 , B8 = 2A2A6 

X1 = ,1+L3' A2 	+ 4• ).3 = t,Z + 	 , 	= Cl + 	, 

5 	2 '3' 1`6 = 42 + 44' a"? = 42 ± ,5, ag = 4 2 + 6 

and 	iK. 10 	2 -x. r iq. b 
13 - 4--3 L 	B . r e 	e 	(bdbdQ b )(sds dz) M 

j=1 	V 	 (2.27) 

with 
B1 = A , 	B2 = AA , B3 = A5 , B4 = A6 , B5 = 2A3A4 , 	B6 = 2A3 A5 , 
B7 = 2A3A6 , 	I8 - 2A4A5 , B9 = 2A4A6 , B10 _ 2A5A6 

Al = 2. 	3, 	a,2 = 24, 	)3 = 2~5 , 	?4 = 2 46, } 
=,3 + 4 

A6 >J7 	= 	, 3 	+ r-,6 , ag = y 4 +5 	 9̀ - 	4 + 	6 
X10 = 	5 +46. 

In the above equation 
2n 

M = EbY )in x 2it 
	drns(1 - Y cos 0s)" 	.. (2.28) 

0 2bs 
and Y = b2 +—s2 

The integration over b is from 0 to °° , z is taken normal 
to the plane of impact parameters. Performing the integration 

in equations (2.25) - (2.27) over gib anu z we get 
00 	CO 

iKi 	
3 B.

J 

j db j j 
= 	

~1  
dg s2 b K1 

(2, s)J 
0 

(qb) M 	~. (2.29) 
1 2n = ~i  i 

o 0 
00 	M 

iK. 8 	 3 "Kl(xs) 	_ 
I2 - ---

'it  ~ 	Z B~ 	db 	ds s bJ~ 	_ + K0 (xjsJJ0 (gb)M 
t 

J
.,~ o 	0 	 J 	

.. (2.30) 
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and  00  00 

	

1 K . 10 	 IC3 (~ • s) 	3 
I3 = 2~ E 	B. 	db 	ds s

4 
bE 	4 

 

J=1  ~ 
0 	0 	 x Jo (gb) M 

.. (2.31) 
Ky (where :-: may be 0,t,2,... )is the modified 

Bessel function of the third kind and Jo is the Bessel 

function of the first kind. 

The integrals I1, I2, 13 can be further reduced by 

transforming to polar coordinates in the plane of impact 

parameter, with the help of the relation s = R sin e' and 

b =B cos A' • This transformation makes Y and s/bY 

independent of R. 

Carrying out the integration over R we get 
r/2 2 3 	B~ 	cos 9 , I 	q 	2 	-4 

I1 - 16 iKi >  --- (1 + 2 cot e ) 
sin e 	A~ 

	

0 	 2 
x (1 - 	cot26') M do' 

2 	j 	.. (2.32) 
8 	, 

12 = 16 1K1 Z 6 s 	~(l+ q cot 20 )-5 

J^ 1 ~j 	 j 	l7 q2 	2q4 
x (5 - -- 2- cot e'+   - 4 c otg `)Md8'. 

'4 
.. (2.33) 

and 	 T,/2 	 2 
10B 	cos 8' 	a 

13 - 16 iK 	, - 	 '(1 + 2 cot2®' )-6 

	

j ^ l Xi J 	n e  

	

0 	
26q2 

x (5- -- -cot26 '+ 94 cot46')Md A' 

J 
.. (2.4) 

Mi is now given by 
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in 

dos(1 - sin 28' cos 0
5
) 	.. (2.35) 

2-n 

M = (1 - I- ( co 	)N in 

0 

We have evaluated -this integral over 0s numerically. 
One can also evaluate this analytically with the help of 
the following relation (2.37) . It has been shown by 
Tai et al. (3n) that the two procedures give identical results. 

'Alrit in g 

1-sin 2A' cos his = L~ cos 28 (I sec 2e' 1- tan 2e' Icos s )~ 
(2.36) 

and using the integral representation for the Legendre 
polynomials (61) which are also expressible (62) in terms 

of hypergeometric functions, one gets 
2i 

1 I 	in 	tin+1 
d(1-sin 2e'cos Ø) 	_ Icon 2e' I 	2F1(!in+ 2,2in+1; 

0 l;sin228') 

.. (2.37) 
The elastic scattering amplitude is obtained with 

the help of equation (2.24). The differential cross-section 
do- 

for elastic scattering is d7l= IFii (q) I2 and the total 

integrated cross-section is obtained by using equation (2.8). 

2.5 Inelastic scattering 

We have also calculated the 2s-2p excitation of 

lithium due to electron impact using the frozen core 

approximation in Glauber theory. 
The ground state wavefunction for lithium is given 

by equation (2.21) and the 2p excited state wavefunction 
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of Gailitis as given by Stone(59) is 

-tr 
R21 (r) = A r e 	 .. (2.7) 

with A = 0.22805 and ;= 0.5227. 

The excitation cross-section to the 2p state is a sum of 

cross-section for excitation to each of the magnetic 

substates (m = 0, ±i). Let the direction of Ki be the axis 

of quantisation for the atomic wavefunction. The scattering 

amplitude for excitation to m = 0 and m = +1 states is given 

by 
A 	3 	- T,l. r 	6 	2 - Xi r 

F25_9 (  q) 	2~ 	4-̂  	L 1Ajr  e 	+ > Air e 	cos 8s o  

j-s 2in  
1- (- b-"'°) 	0 q b (bdbdOb ) (sd sdØ sd z ) 

-- 	 .. (2.38) 

where z = r cos 6 s 

1K. 	 -Xir 	6 	2 --hir 	 s 
F2s-2p (q) _= 2n 	8~ AL E Aire 	+ E A.r e 	sin e s 

i=4 
rb-si 2in  

x L1- ( --b—) 	e 	(bdbd b ) (sd sdc d z ) 
.. (2.39) 

The first integral vanishes since it is integrated 
for z = - °° to + 00 and the integrand is an odd function of z. 
This result is a consequence of the Glauber theory assumption 
that q is perpendicular to Ki• In the first Born approximation 

one does not take q perpendicular to Ki, and therefore the 
2s - 2p C m p ) amplitude is not identically zero. 

As seen from equation (2.21) the 2s-2p+1 amplitudes 
arc also not identical but diffE r by a phase factore s. 
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The scattering amplitude for 2s-2p(m=l) state can be 

written as 

F2 s-2 
l
(q) = Ii + 12 	 .. (2.40) 

where  
i.K.A 	2 	-f i r 1 I = --- ---) ~- E A 3 r c 	sin @ s 
8 ~ 	i1 

x (bdbdOb )(sdsd~Ssdz) .. (2.41) 

6 	2 --~l r 	+ids - 	f s~ in 	 •
b 

12 _ 
iK

tAo 2
3

sin 8s e 	l-(b b2 ) 	ei 
8 TH 	i-3 

x (bdbd9b ) (sd sdOsd z) .. (2a42) 
with xi =,+ ~,i 

Using the equation q. b = qb cos b-Oq ) and carrying out the 

integration over 0b and z, we get 

_ 
- 

1K. A 	2  
° 	~e q E 	A.  i  

r 

d sdbb s3 K (A. s )J 	(qb) ( 	)1n N 	.. z 	1 	b 
(2.43) 

'2 
iK. A 	

ei~ q
.Z A . d sdb b s j J 1(qb) 	Ko (,.l s) +  

2  Xis 
(2.44 .) 

where 2 it 

N - .. des cos 	s(1-Y cos 1n  ~s) 	 .. (2.45) 

0 

The integrals in the above, equations can be reduced by 

transforming to the polar coordinates in the b, s plane 

with the help of relations s = R sin 8' 	and b = R cos o'. 

Such a procedure leads to 
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q e 
iK. 	gA316 x2 	2 A. 

II = 	1 	.__..,— E 	d6' sin 	cos20' 
n 	 i=I hz 
2  0 2 

q x (sin?8'- 	cos 2e')(sin2e'+ e'+ -5 (cos e' )-2in N 
hi 	hi 

i9i 4 	T~,/2 (2.46 ) 
iKiq e q A. 3}' x 2 	6 A. 	4 f 	2 _ .- -.--~ 	r 	 -~ 	d 8 sin @ cos 6 ' 

it i=3 Xi 
24 

0  12 2 
x (singe' + q cos2g' )-6. (7 sin4e'- - - cos28 `sin2e'+ p4 cos 9' 

hi 	 hi. 	 X1 
x (cose' )-2 in N 

.. (2.47) 

The integral in (2.25) can be either evaluated 

numerically or evaluated analytically by expressing it in 

terms of a hypergeometric function (30). 
It  

do,s cos ~f s (i-Y cos 0s)in - inTE y(1y
2 )1n+ 2 2F1(21n+1,!in+ 2,  

2;Y2 ) 
.. (2.48) 

2 The quantity IF 1(cc) ( for 2s-2p_1 state is the 

same as for in = 1 state. 

The differential cross-section for excitation is given by 

~3 (2s-2q) = K IF(2s-2p ; )V 	 .. (2.49) 
i 

The total cross-section for excitation to the 2p state 

is given by 
d ,,r 

Cr xc = 	dSL --- (2s-2.pm;q) • 	 .. (2.50) 
m J 	dSL 

Using the fact that q = Ki - Kf one finds that 
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Ki+Kf 
4  

crexc(2s - 2p) = 2q dq IF(2s-2p+1; q) J2 in (rat) 
Ki

Kf is determined by using equation (2.6). 

2.6 Results and discussion 

(a) Elastic scattering cross--sections, 

The integrated elastic scattering cross-sections are 

calculated as a function of the incident energy of the 

electron with the help of equations (2.24) and (2.8). 

Fig. 1 	compares the Glauber results with a number of 

other theoretical calculations and the experimental data. 
Curvesl and 4 show the present calculations based on 

the Glauber and the first Born approximations, respectively, 

curve 2, -thd close coupling caic,ulat;ic~ns --(63 ), curve 3 

the polarised orbital (64) calculations. The experimental. 

data of Pere:l et al. (65) are shown by curve 5. These 

measurements are available only up to 10 eV. It is seen 

that all the methods (except the polarised orbital method 
of Garrett for which the calculations at high energies 

are not available) give the same cross-sections for 
incident electron energies beyond 80 eV. At low energies 

(less than 5 eV) the cross-sectionscalculated from the 
Glauber theory are significantly higher than the FBA and 

even though the present theory is not valid in this low 

energy region it gives better agreement with the experi-

ment compared to FBA. At 1 eV the magnitude of the 
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measured cross-section is higher by about 30 '/. than 

those calculated in the Glauber theory whereas the 

measured cross section is higher by about 75'/. than 

calculated in the FBA. For low energies, however, the 

exchange effects will be important and it is not yet clear 

how one can incorporate exchange effects in Glauber theory. 

Unfortunately no data are available for high energy range 

where the Glauber. theory is more valid. Garrett's calcula-

tions(64) using polarised orbital method (which includes 

both the effects of exchange and polarisation) gives a very 

good agreement with the experiment in the energy range, 

in which the data are available. 

(b) Inelastic 2s-2p cross-sections 

The integrated inelastic cross-section for the 

excitation of 2p state of lithium from the Glauber theory 

_.~ 	is calculated using equation (2.51). In Fig.2 we compare 

the results of the present calculations of cr2s-2p(Ei) 
with the other theoretical calculations and the experi-

mental data. We have plotted the calculations of Vainshtein 

et al. (26) for 	s-2p excitation based on the Born 

approximation with coupling (curve 1), results of a close-

coupling calculations (curve 2) by Burke and Taylor(63) 

and our results for the Glauber approximation (curve 3). 

The experimental data of Hughes and Hendrickson(66) 

are shown by dashed lines (curve 4-). 

It is Sc-; n that the Glauber results are in* fair 
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agreement with the close-coupling calculations of Burke 

and Taylor and they ad re e with experiment within a 

factor of 1.5 everywhere. We note that below 10 eV the 

predictions from Glauber approximation tend to lie below 

the other theoretical estimates. The Born calculation of 

Vainshtein et al. does not merge with the Glauber 

calculation even after 30 eV; in fact it is lower than 

the Glauber results in this energy region. This result 

seems to be an exception as in general the FBA results 

are either always higher than the Glauber theory results 

or merge with it. The reason for this discrepancy is 

that different bound stste wavefunctions are used in the 

present Glauber calculation and the Vainshtein et al. 

calculation based on FBA. Further Vainshtein et al. also 

accounted for the coupling of intermediate states in the 

Born calculation. To study the high energy behaviour,we 

calculated the direct excitation cross-section in the 

FBA u sing the same bound state wavefunctions (equations 

2.21 and 2.3'?) as used in our Glauber approximation 

calculations. The results are shown in Fig.2.3(Curve 5)• 

We note that the Glauber cross-sections remain lower 

than the Born cross-sections upto 30 eV and the two 

curves merge beyond energies about 20 times the threshold. 

Vainshtein et al. (26) have also calculated the 

excitation cross-sections using their model. Their 

calculations are shown in Fig. 2.3 (curve 6). It is seen 

that. th agreement of their calculations with experiment 
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is very good. In their model they make explicit allowance 

for the important effect of repulsion between the atomic 

and incident electrons in the wavefunction characterizing 

the collision. They express the total wavefunction in the 

form given by equation (1.10) and then substitute it in 

the Schrodinger equation. However, in arriving at the 

final expression and in the evaluation of cross-section 

they make many approximations which rest on very uncertain 

theoretical foundations. They make physically untenable 

mathematical simplifications for the purpose of evaluating 

the integrals. With these it seems impossible to assess 

properly the validity of the method of Vainshtein et al. 

The good agreement of their calculation with experiment 

in the entire energy range, can therefore not be 

considered unquestionable. Thus, we can say that the 

inelastic scattering of lithium by electron impact can 

be -fairly accurately described by the Glauber theory. 

The only other theory which predicts these inelastic 

cross-sections and gives reasonable agreement with the 

experiment is the close-coupling theory of Burke and 

Taylor(63 ). 

The inclusion of the exchange effect and the 

complete description of lithium i.e including the effect 

of the core also, may further improve the predictions of 

the Glauber theory for alkali atoms. 

`. e h.-ve also recently applied (67), the Glauher 



theory with the frozen core approximation to the study 

of the elastic and inelastic scattering of electrons. 

from the sodium atom. The agreement with experiment is 

found to be very good. Further in proton—hydrogen 

excitations also we have fund(6B) that the Glauber 

theory predicts the cross—sections fairly accurately. 

2.7 Conclusions 

From the results for the lithium atom which we 
have discussed in the previous section (2.6), 	and for 
sodium atom(67) it is legitimate to conclude' that the 

Glauber theory. predicts fairly accurately the cross—

sections for the elastic and the inelastic scattering in 

the case of complex atoms like lithium and sodium.. A more 

rigorous treatment which includes the effect of the core 

electrons also is expected to bring the Glauber results 

still nearer t(; experimental data. Franco (69) has recently 

suggested _V m :thod, in which the (3Z + 2) dimensional 

integral occurring in the Glauber theory for the scattering 

of charged particles by Z—electron atoms, is reduced to 
a rosi n+ of this the a one—dimensional integral. As a , ~ ~~.~... 

amplitudes for the elastic and inelastic scattering of 

charged particles by arbitrary atoms may be calculated 

with relative ease. For the case of the hydrogen and the 

helium atoms it has already been shown by Franco(l) 
and Tai et al. (30) that the, Glauber results are nearly 

the best comp~,ed to all the ocher theoretical calculations. 
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The added advantage of the Glauber theory is the ease 

with which the computation can be handled under this 

approximation compared to the rather cumbersome and time 

consuming close-coupling calculations and. the polarised-

orbital calculations. 

The only assumption in the Glauber theory is that 

the phase distortion of the wavefunction is approximated 

via integration along a straight line, which supposedly 

represents the undeviated path of the incident electron. 

This is how one arrives at the formula of r. For wide 

angle scattering,Glauber,  himself notes that a poor 

approximation results from supposing that the electron 

path is always parallel to Ki. A better approximation 

results from the assumption that the electron's undeviated 

straight line path effectively is parallel to(Ki+K f  ). 

This is evidently a crude correction for some of the 

bending of the particle, paths that takes place within the 

region of potential. At high energies, however, where the 

contribution to the total excitation cross-section comes 

almost entirely from forward scattering, there will be 

essentially no difference in choosing the z axis either 

along Ki or along T (Ki+K f) .. But at small angles and 
moderate to low energies the failure of assumption q.Ki=O 

can not be overcome by using  (Ki+K f) as the z axis. It 

is possible that this failure of the fundamental assumption 

.K,=n near 0 = no is responsible for the rapid fall of 

the ;.,; >ss-s ctio o below the ex criment for energies 
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less than 10 eV. At such low energies the approximation 

of the incident trajectory by a straight line path breaks 

down ind introduces an error in the Glauber approximation. 

The effect of it is.,most likely, to result in an under-

estimation of cross—section when we use equation (2.1). 

~ pz 'At .~. 	
} 
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Figure Captions 

Fig. 2.1 Projection of the collision on the x,y plane. 
The direction of the initial velocity of the 
incident electron coincides with positive z 

direction. The vectors b,z, and q lie in the 
x-y plane and have azimuth angles 0b , ~Ss and 
91 respectively from positive x direction. 

Fig. 2.2 Elastic scattering of electrons from lithium 
atom using Glauber theory. 

Present calculations: - 	using Glauber 
approximation, curve, 1, --- - 	using first 
Born approximation, curve 4; - 	..------ close 
coupling calculations of Burke and Taylor(63), 
curve 2; 	-.. 	Garrett's polarised orbital 
calculations (64), curve 3; — — — -•- Experimental 
dats of Parel et al . (65 ), curve 5. 

Fig. 2.3 Electron impact excitation of lithium using 
Glauber theory. 

Present calculations. 	 . using---~- - 	Glauber 
theory, curve 3 , - 	using first Born 
approximations curve 5; 	.. 	Close _coupling 
calculations of Burke and Taylor (63), curve 2; 
Calculations of V,ainshtein et al. (26 ): - 	-- 
using Born approximation with coupling, curve 1 

-• --- using their model, curve 65 - - — 
Experimental data of Hughes and Hendrickson(66), 
curve 4. 
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CHAPTER 3 

ELASTIC SCATTERING OF LITHIUM USING 
POLARISED BORN APPROXIMATION 

The elastic scattering of electrons by a simple 

system like the hydrogen atom has been studied most 

extensively both theoretically and experimentally (3 ). 

The theoretical methods used are, the Born approximation, 

the partial wave theory, the close-coupling and the 

variational methods etc. The relative merits of the various 

methods and the agreement achieved with experimental data 

have been discussed by Burke and Smith (ll ). They remark 

that the most famous of all the collision theory approxima-

tion is the Born approximation. The Born approximation 

assumes a weak coupling between pair of states. In 

calculating the transition probabilities, the initial and 

final wavefunction can bo •approximated by plane waves. In 

general;  this approximation is not valid . at low energies 

where the scattered particle spends an appreciable time 

near the atom. At low energies more sophisticated approxima-

tions allowing for the distortion, both of the atom and 

of the scattered wave function.? are required. However, 

under certain circumstances, the Born approximation may be 

used at these energies with accuracy, e. g.. for transitions 

involving high angular momentum states of the scattered 

particle. 
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T,Je shall first describe briefly how, the effects 

of polarisation have been included in the elastic scattering 

of the hydrogen and the helium atom and then discuss in 

section (3.3) the case of alkali atoms where we have included 

the effects of polarisation in the Born approximation to 

study the electron lithium elastic - scattering. 

3.1 Scattering of electrons from hydrogen atom 

For the electron hydrogen scattering the wave-

function TIJ(r19 r2 ) of the system of two electrons moving 

in the field of proton satisfies the wave equation 

2 	2 	2 	2 n 

L 
- 2 m ( 	+ IV? 2) .- M - e-- + :-- - E 1J (rl , r2 ) = 0 

rl r2 rl2 

.. (3.1) 
The above equation is solved by expanding 0 in terms 

of the orthogonal and normalised set of eigenfunctions 

n(rl) 

di(r1,r2 ) = S Fm (r 2 ) 9n (rl ) 
m 

As described in article (1.1) section (1), a set 

of coupled equations results on substituting (3.2) in (3.1). 

Considering the hydrogen atom in the ground state 

and neglecting exchange effects, the scattering amplitude 
for elastic scattering in the first Born approximation is 

given by 

f(  e) = -- '( ~) j exp(iK (n~,-n).rp) Vo0 (r2 )dr2 	.. (3.3) 
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where 

2

J 

*- 
 2 

V00(r2 ) _ 	 (rI )( e_ - e ) y?f(r1)dr1 	 .. (3.4) 
r12 r2 

and n.no = cose. K and K~ are the wave vectors of the 
incident and scattered electrons and no and n are the unit 
vectors in the direction of incident and scattered electrons. 

`',then exchange is included, the total wavefunction in 
symmetrised form is 

_ 1 J(1'1,r2 ) ± (r2 ~r1 ) .. (3.5) 

and the Born Oppenheimer scattering amplitude is given - by 

	

F (8 ) = -(4 t)-1 m 	exp 1(K -K }. r j 	(-r )U (r , r ) (r ) 

	

2 	o n 	2 f n 1 2 1 2c 1 h 	.. 
drldr_2 

	

 
2m 	1 	 _.  e x p 1K .r1 - K .r2 1n (rl ) Ul (r1, r2 ) 

~i~(r2 )dr1dr2. 
.. 

Here the first term represents the direct scattering 

amplitude and the second term the exchange scattering 

amplitude.To evaluate the exchange scattering amplitude, 

certF,iiri approximation schemes have been putforth and the 

most elegant and useful of them is the Ochkur approximation(7O). 

Denoting the exchange scattering amplitude by 
2m e2 

g (e ) = -(4-q) 	 ~-1 -~-p 	exp i.(k a . r1 Kn - . r2 ) 	o * (r1 ) (r 12 
-1-r1 ̀1 ) 

'JJ n  

0o (r2 )drldr2 
• . (3.7) 
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Ochkur expanded the exchange scattering amplitude 
in powers of K 1 and retained only the leading terms which 
behave as 1/K2 

Td* !"I e use 
c

-, 
d 

(4  r2)-1• = (2Y3 j ex i
~ 	q 

J  ~q 

and knowing that the main contribution to gn comes from 
q K0 ,we have, to the lowest order in Kol j 

2m e2 
y 

gn (e, ) _ - 2 	eXp(iK.r2 ) On(r2 ) Oo (r2 )dr2 
h K 0 (3.9) 

with K = Ko - p,  where we have used the approximate 

relation (r12 )-1 = 42 ô' rl-r2 ). The Dirac delta function 
K2  

8(r) has been expressed as 

5(r) _ (2Tc)-3 	exp(iq . 

The need for introducing polarisation in the study 

of the electron-atom scattering was first stressed by 

Temkin(12) and the method given by him for inclusion of 

the polarisation is known as the polarised-orbital 

approximation. The polarisation essentially arises because 

of the fact that an electron situated at a distance r2 
from the nucleus of an atom induces a dipole moment in the 

atom which gives rise to an induced dipole potential Vp(r2 ) 
behaving like -a/ r2 for large r2 where a. is the polarisi-

bility of the target atom. The polarised orbital method 

employs ,. trial wavefunction of the form 
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. (rl , r2) = Fo ( r2 ) 	j~o (rl ) + pol (rl, r2 ) 

+ F0 (r1) f9j, (r2 ) + Tpol (r29r3 ) 	.. (3.10) 

where 

	

i 	 m+l 	rm 1 
- o (r l } E 

 m+1 

	

m=1 r2 	(m+l) + ao m 	Pm (cos H) ) 
(3.11) 

This method was used by Temkin and Lamkin to study the 

elastic scat"tering'of the hydrogen atom. They made allowance 

for the dipole term only as given by. 

2 
pol (ri r2 ) ` -E(rl,r2 ) o (r1) 2 ( 	+. aor1 )P1(cos(H) ) 

r2 	 .. (3.12) 

whe re 	E (r1, r2 ) = 1 ; if r2 > rl 

	

= C ; if r2 < ri 	 .. (3.13 ) 

using these wavefunctionsTemkin and Lamkin solved the 

scattering equation and got a good agreement with the 

experimental results. 

3.2 Scatterinq of electrons from helium atom 

LaBahn and Callaway (71,'72) have extended the 

polarised orbital method to investigate the elastic scatter-

ing of electrons from the helium atom. In their approach 
the induced distortion in the atom due to the incident 
electron is considered in the adiabatic approximation 

and is written as 'a perturbation expansion in 
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the interaction between the incident and the atomic 

electron. This expansion has been shown to contain terms 

describing the adiabatic polarisation interaction and 

in addition, dynamical corrections to this are 

required when the incident electron possesses a finite 

velocity. In the adiabatic approximation, the mutual 

distortion interaction is calculated by assuming the atom 

to be perturbed by the electric field of a stationary 

external charge. This approximation thereby assumes that 

the atomic electron distribution can readjust instantaneously 

for each position of the incident electron: For low incident 

energies, the collision time is long compared to ch'aracter-

istic atomic periods and the atomic wavefunctionscan 

readily adjust to the perturbing influence of the incident 

electron. Good results are therefore obtained under this 

approximation so long as the average velocity of the 

atomic electron greatly exceeds that of the scattering 

electron. Though the electron starts at infinity with 

negligible velocity, it is accelerated by the attractive 

polarization interaction. This effect leads to a velocity 

dependent interaction. 

LaBahn and Callaway(72) have found that this 

velocity dependent interaction is repulsive and acts as 

a correction for the fact that when the velocity of the 

incident electron is not negligible the atomic electron 

distribution can not completely follow its motion. It is 

shown by them that at large R this interaction falls off 



asymptotically as R~6 and this is less important than the 

polarisation potential. For small R 2 it is, however, of 
the same order of magnitude as the polarisation potential. 

The scattering equation for the helium atom was solved 

both in the adiabatic exchange approximation (which 

considers only the adiabatic polarisation interaction) and 

in the dynamical exchange approximation (in which the 

dynamical corrections alongwith the adiabatic polarisation 
interaction are taken into consideration). The phase shifts 

obtained were used to calculate the total electron-helium 

elastic scattering cross-section. It was found that the 

agreement with experiment was very good at low energies 

with the adiabatic exchange approximation but better at 

high energies with the dynamical exchange approximation. 

In both the cases,the agreement with data is much superior 

at low energies compared to those calculations which 

neglect the effect of induced distortion. Callaway et al. ('73 ) 

later on gave an extended polarisation potential which 

in addition to .the above two effects includes the third 

order effects in the polarisation potential. 

The improvement of results with experiment, by the 

inclusion of polarisation in simple systems like hydrogen 

and helium, leads to the obvious question as to how far 

the polarisation will effect the cross-section in alkali 

atoms. In alkali atoms,.the exchange interaction between 

the incident electron and the atomic electron, and the 

distortion of the atomic system by the electric field 
x 
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will be both very important since the valence electron 

is very loosely bound. The cross-section will therefore 

be sensitive to the accuracy of the polarisation potential. 

Stone (59) and Stone and Reitz (r4) have studied 

the elastic scattering of electrons from the lithium and 

cesium atnms,respectively. They have used the adiabatic 

approximation. The effect of exchange is also considered. 

The polarisation potential is determined by assuming the 

atomic wavefunctinn of the form given by perturbation 

theory. The coefficient , giving the coupling to higher 

states is chosen 2however,by minimising the energy of the 

atom. This procedure is valid when the interaction is 

large and reduces to the perturbation theory result 

when the interaction is small. Stone(59) has shown that 

this approach gives results which Are of comparable 

accuracy to the close-coupling approximation. 

Karule (?5) and Marriott and Rotenberg(76) have 

carried out the close-coupling calculations of the 

elastic scattering of electrons -from the lithium atom in 

which they included the 2s and 2p states of lithium. 

Burke and Taylor(63) have extended these close-coupling 

calculations to include higher energies and have predicted 

resonances at the low energies. 

Garrett (64) used a polarised orbital method to 

calculate the elastic scattering in the ground state of 

the lithium atom an_'.• the sodium atom. The electron 
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exchange is also included through the use of the adiabatic 

exchange approximation. The calculated cross-section 

shows a very good agreement with the data in low energy 

range. It is ,however,. noted by Burke and Taylor that 

Garrett's approach which neglects all inelastic effects 

may not be satisfactory. 

All the above methods predict the cross-section 

fairly satisfactorily at low energies but the labour 

involved in computation is very heavy. Recently, several 

attempts have been made to study the elastic and inelastic 

scattering from atoms within the framework of simple Born 

approximation but including the effects of exchange and 

polarisation in it. Khare ('?7) and Khare and Shobha(78,79 ) 

have calculated the differential cross-section for the 

elastic scattering of the helium by electron impact using 

Born approximation and have accounted for the polarisation 

of the helium by adding to the static potential a polarisa-

tion potential of the form given by Callaway et al. (73 ). 

Lloyd and McDowell (8n) have used the polarised Born 

approximation to study the excitation to the 2s-and 2p 

state of hydrogen. They have also followed the approach 

of Callaway et al. in calculating polarisation effects. 

Lloyd and McDowell used two types of approximations. In 

one of the approximations they have taken the polarisation 

of the atom in terms of the change in the wavefunction 

` the target atom due to incident electron whereas 
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in  the other type of approximation the effects of distortion 

and polarisation are included in the scattered electron 

wavefunction. In both of these approximations the important 

effect of polarisation. to the first order has been included 

which leads to an improvement over the first Born approxima-

tion as exhibited by their 'calculations. We have used (Si) 

the polarised Born approximation to study the inelastic 

2s-2p excitation of lithium by electron impact. In the 

following we shall describe how we have used the polarised 

Born approximation to predict the elastic scattering cross—

section of Li. The effect of the polarisation of the target 

is included using the method suggested by Stone (59). 

In this approach we neglect the effect of the polarisa-

tion on the wavefunctionsof the scattered particle -and 

consider the distortion of the atomic wavefuriction only. 

Incorporating both these distortions will render the 

calculations very difficult. Exchange with valence electrons 

is included via the use of Ochkur approximation (70). The 

effect of the polarisation and the exchange interaction 

with the core is neglected because of the large binding 

energies of core electrons relative to the valence electron. 

The core wavefunctions are hardly affected by such inter-

actions.. It is observed in section 3.5 that the inclusion 

of polarisation and exchange in the Born approximation 

improves the agreement with the measured values of the 

cror.s S3ctinn. 



-62- 

3.3 Scattering of electrons from the lithium atom 

The perturbed ground state wavefunction of the atom 

due to the incident electron can be expressed as 

O(rl) = 0o(rl) + E'Pn(r2) n(rl) 
n 

where the summation is over the complete set of atomic 

wavefunctions. For the case of alkali atoms the major 
contribution to the polarisibility arises due to the coupling 
to the first excited state and therefore it is suffidient to 
express 0 1  as 

00(rl) = 0o(rl) = 0o(r1) + 01(r2),O1(r1) 	.. (3.15) 

The tntal wavefunction of the system under adiabatic 

approximation is 

= 0(rl) F(r2) 	 .. (3.16) 

with no exchange and 

T4' (rl , r2) _ Ø'(r1  ) F (r2) + 0, (r2) F (rl) 	.. (3.1?) 

with exchange. 

Using (3.15))  the total wavefunction when no exchange is 

considered becomes, 

= L oc, 	(r2) 01(rc,rl)JFCr2) 	.. (3.18) 

where rl  and r2  denote the positiin coordinates of 

the valence and incident electron s, and rc  represents the 

coordinate of . core electrons. Flo  (rc, r) and 01  (rc, rl  ) 
are the atomic ground and excited state wavefunctions. 

1(r2) is the coefficient giving coupling t.o higher states 
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and F(r2 ) is the scattered electron wavefunction. If we 

include the valence electron exchange also the total wave—
function becomes 

= 100 Cr," c 
r 	+ (r2)01(rc 9rl )JF(r2 ) 

± 	o (rc ,r.2 ) + i~l(rl-)P1(rc9r2 )~F(r1 	..  

The wavefunction in (3.19) can be simplified;if we 

neglect exchange in the polarisation. term, to 

= [00 (-rc 3rl ) + 0r2 ).Ol (rc, rl ) F(r2 ) ± 90 (r , r2)F(ri) 
(3.20) 

In the above equation . (3.20) 	we have not chosen a properly 

symmetrised wavefunction since, we, have ignored the exchange 

effects in the distortion term. Exchange has been introduced 

as if the atom was not polarised, while polarisation is 

included as if exchange did not take place. This is done 

mainly for simplifying the calculat nns, but this simplifica-

tion should not introduce significant errors in the result. 

The error involved is less since the. polarisation of the 

wavefunction is small at distances below 3a0 where exchange 

is most important. 

The atomic wavefunctions can be expressed as 

o (ri ~rc ) = Uc (rc ) U2s(rl ) 
-. 

	 _ 

Z (rl rc ) = Uc (rc ) U2 p (rl ) 	 .. (.2i) 

where U25 and U2n are the wavefunctions of the 2s and 

2n stags of the -lithium atom and Uc(rc ) are the core 



wavefunctions. We have used the analytic ground state 
wavefunctions for lithium as given by equation (2.21) 
and the 2p excited state wavefunctions of Gailitis as 
given by equation (2.37). 

The elastic scattering amplitude Fii is given by 
iK~ . Ir  

Fii = < 0o (r1, rc ) e o 1 (v( ' 	> 	.. (3.22) 

2  2 
where V = (- 	+ -- ----~; ) , and K and K' are the 

r2 	1 r1 — r2 1 
momentum vectors for the incident and the scattered 
electrons and K - K -K' K. 

0 0 

Substituting the wavefunction (3.20) in the equation 
(3.22 ), we get 

+
-+

_ 	iii . r 	f _ _ 
 

4 
 < O0 (ri , rc ) e o 1 I V I (0o (rl , rc )+~( r2 )oi (rl , rc ))F(r2, 

± 00 (rc , r2 )F(r1)} > 

.. (3.23) 

In the Born approximation? we can write 

F(r) = e 

Using this in (3.23 ),we can write the scattering amplitude 

in the polarised Born approximation (effect of polarisation 

has bec>.n included in the, wavefunction) as 

Fii = I1 + 12 ± I3 

where 
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iK. r2 	~. -, 	-4 _. e 

0r,(rl,rc ) V Oo (rl,rc )drldr2 	.. (3.24) 

iK.r2 
2 — 4it j e 	P(r2) 00 (rl , rc ) gl (rl ,rc )drldr2 	.. (3.25) 

Z 	~x 	i K ; . r2 K~ . rl 	 -  .4 -4 	 -+ 13 	4 ~t 	o (rc , r2 ) e 	 V (r2 . rl ) fno (rC ri )d rid r2 

.. (3.26 ) 
We can write the first two integrals in the simple 

form with the help of equation (1.4) 

I _ 	iK.r2 V 
1 	4~ 	e 	oo(r2) dr2 	 .. (3.27) 

• 

i K. r. 
12 — 4m 	e 	2 . Vp (r2) d r2 	 .. (3.2$) 

whore 
Vp (r2 ) = Fl( r2) V  I r2) 	 .. (3.29) 

The integral I3 can be reduced to a simple integral with 
the help of Ochkur approximation 	 V 

1 	iK. r2 
13 = K2 	e 	9(r2 ) 90 (r2 ) dr2 	 .. (3.30) 

0 

The total cross—section for the elastic scattering is 
9V 2 	~..o 

2 	 F .(K)I2+3IF .(K)I2 KdK 	(•n a2 ) K2 4j ii 	ii 	 o 
o o 	— 	 .. (3.31) 

where + and -- signs refer to the singlet and triplet states' • 
0f the total system. 
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3.4 Evaluation of iand the polarisation potential 

The coupling coefficient Plis evaluated by minimising 

the energy of the atom i.e. 

c~ 

 

E / a pl= 0 	 .. (3.32) 

(Oo + 	1-) is chosen as a trial wavefunction. 

The energy EA is given by 
< S?S + p'il 1 H A+V 19 +S?f > EA _ ..... 	~.~..__._ 	 .. (3.33 
< 910+ ~~~Sl10 	~~1 > 

Here HA is the Hamiltonian of the atom and V is the inter- 

action potential between the incident electron and the 

atom. The total energy is given by 

E = (1 + 	a+P2E1+Voo+PlV11+2 plUol 	.. (.4) 

If now 	aE / opl is set equal to zero~one finds 

where 

V 1__ __ _ 	_.~..,~......._.....~ 
= `" (El-Eo+Vll-Voo 

2  2 
Vii (r2) = < ,O i, -- +  	' 	ii 

> 
1~2 	,-1-1-2 , 

.. (3.35) 

.. (3.36) 

Explicit expressions for V00 and Vo1 evaluated from 

the above equation are 
r2 

2Z 4 
V o o (r2) _ '" r2 	r2- 

0 

21 r2 
+-- 2 ,~ 

00 

Pl s dr + 4 	P ls r dr 
r2 

=
2 
	dr 

r? 
.. (3.37) 
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J

r 
2 1 i2 	2 	 1 	s V° 1(r2) = 	r 	P2 s P2 p rdr + 	

r2 
~3 r2 	P2 sP2 p r - d r 

2 o  
 

(3.38) 
Vll can also be expressed similarly. 

P1s,P2s and P2p are the rad•ia,1 wavefunctions of is; 2s +and 

2p states respectively. 	•• 	 . 

The polarisation potential v(r)is given by equation (3.29). 

If the bombarding electron is far from the atom the 

coefficient pi(r2 ) could also be evaluated Using perturbation 

theory as : , 

_E- ._)  
1 0 

At large r,' VP = -a/r4 where a is the polarisibility of 

the atom..  

3.5 Results and discussion 

Equation (3.31) has been used to calculate the total 

cross-section for the elastic scattering of electrons 

from the lithium atom with and without the polarisation 

potential. The equations (3.3?), (3.38) and(3.29) have been 

used to calculate V00' and VP, For large values of r, VP 

has been replaced by-a/r (a of lithium atom = 165.3 a). 

Figure (3.1) shows the plot of the total elastic 

scattering cross-section 02s-25(E for the scattering of 

electrons cif energies ulptr 200' eV from the lithium at -'m. 

Curve (1.) shows nur calculations using the polarised Born 



approximation, Curve (2); our calculations using the 

simple Born approximation, Curve (3 ), the close coupling 

calculations of Burke and Taylor, Curve (4 ), the. 

polarised orbital calculations - of Garrett. The experimental 

data of Perel et al.are also shown. It is seen from the 

figure that the close-coupling calculations and our first. 

Born approximation calculations give quite low values 

of cross-sections compared to the other theoretical 

calculations and the experimental data.. These two calcula--

tic.ns give almost identical values for energies beyond 

10 eV and in the low energy region (< 10 eV) the results 

from the close-coupling calculations tend -to lie higher, 

than the Born calculations. The inclusion of polarisation 

and exchange in the Born approximation has a drastic 

effect on the - cross--section and, as we observed from 

curve (1 ), the 	polarised Born approximation cross= 

section is much higher compared to .the: first Born 

approximation cross-section. I.t is also noted that in the 

intermediate energy range from about 3 eV to 10 eV the 

agreement between the polarised Born calculation and the 

experimental data is very good. Near 3 eV the experimental 

data are within 20'/. -of the, present calculations and as 

the energy increases the agreement becomes still better, 

till at 10 eV the present calculations are within 14'/. 

of the data. In the range of energy 4 to 10 eV Garrett's 
polr.-~.rised orbital calculations yield a higher value of 

cr.:;ss section compared to the experimental data and the 



polarised Born calculation. In the low energy region 

(< 3 eV) our calculations are within a factor of two 

compared with the experimental data." The agreement gets 

worse for very low energies (Q.25 eV). This is expected 

also as the Born approximation will not hold good for very 

low energies. We find that in the low energy region 

Garrett ' s polarised orbital calculations predict the cross—

sections very well and probably they give the best values 

so far in this energy region. For high energies where the 

present approximation is expected to be valid and yield 

better results, there are no experimental data. The data 

of Perel et al. are upto 10 eV only. Another feature which 

we notice from the figure is that at very high energies 

of the order of 100 eV the curves (1 and 2) showing the 

calculations of the polarised Born approximation and the 

Born approximation tend to merge with each other and also 

with the close—coupling calculations. This is expected and 

is obvious also because at high energies the effect of both 

polarisation and exchange will be very small. We also 

notice that the shape of the curve obtained from the 

polarised Born approximation exhibits reasonably well 

the trend of the experimental data. 

3.6 Conclusions 

In conclusion we can say that the present method 

which uses the adiabatic model and the Born approximation 

predict the elastic scattering cross—section in fair 
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agreement with experiment. It i s an improvement over the 

first Born approximation in that it takes some effect of 

coupling to higher states. The method is capable of 

describing scattering from more complicated atomic systems.. 
The cross--sections are very sensitive to the form of the 

polarisation potential. In the present analysis, only 

coupling to the first excited 2p state is considered, as 

it accounts for most of the long range polarisibility of 

the atom. Minor improvements are possible if the coupling 

to the higher s,p and d states are taken. At closer radii., 

the contribution of these states will become more important 

although at all important radii the first excited p state 

will remain a s the most perturbing .state. At still closer 

radii (< 1 a0) where the perturbing effect of the higher 

excited states may be more, the contribution from static 

potential is much -larger compared to the polarisation 

potential.. Hence,it -s reasonable to express the perturbed . 

wavefunction as given by equation (3.15) instead of 

equation (3.14). The contribution of core polarisation will 

be very small. 

• A better estimate of the cross—section can be 

obtained if in addition to the... adiabatic exchange effects 

some dynamical exchange effects as proposed by LaBahn 

and Callaway ('72) are taken into account in the polarisation 

potential. Further since the Born approximation is expected 

to bre-k down at very low energies, a modification can 

be clone es proposed by Ganas et al. (82) and applied to the 
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helium atom in which they project out the lower partial 

wave components (, = 0,1, 2) f rc'm the closed form 

expressions for the Born elastic scattering amplitude 

and replace them by components from the exact scattering 

amplitude obtained from either experiment or from the 

detailed solutions of the many electron systems. The 

amplitudes from the higher partial waves being calculated 

from the Born approximation. It has been shown by Ganes et al. 

that such modified Born approximation technique, although 

quite advantageous, becomes impractical in situations 

where many partial waves undergo large phase shifts. 
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Figure cations 
Fig. 3.1 Elastic scattering of electrons from lithium 

atom using polarised Born approximation. 

Present calculations: —~°-- using polarised 
Born approximation ,curve 1, ---- + • • ------
using Born approximation, curve 2.; --- •• --
close coupling calculations of Burke and 
Taylor (63), curve 3 ; ---- 	Garrett's(64) 
polarised orbital calculations, curve 4 ; 6 
Experimental data of Perel et al. (65 ). 
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CHAPTER 4 

ELECTRON LOSS AND EXCITATION IN ATOM- 

MOLECULE AND ATOM-ATOM COLLISIONS 

(a) Electron loss 

Inelastic collisons between atoms and atoms and 

between atoms and molecules are widely used in the study 

of excitation and ionization in meteor trails and other 

atmospheric phenomena. A projectile system IA*  may suffer 

an inelastic colli'son with a target system B in the 

following ways. 

A + B -' A + e± B (E) 	 .., (4.1) 

A + B --' A*  + B (E) 	..(4.2) 

where E represents the totality of all possible final 

states of the target, and A* represents an excited. state 

of the projectile atom. The reaction (4.1) describes a 

process in which the projectile loses an electron and in 

reaction (4-.2) the projectile gets excited to a specific 

state in collision with the target system. In both the 

processes it is possible that the target may be left in 

any of the final states. For these direct inelastic processes, 

the first Born approximation (83) has only been applied to 

a few cross-section calculations (84-8.6) in simple systems, 

because the accurate evaluation cif the required matrix 



elements becomes prohibitive for many electron atoms. 

The infinity ref final states (E) involved in the 

calculations of the cross—sections in the Born approxima-

tion make the computations extremely difficult. Attempts 

have therefore been made to represent the projectile and 

• the target systems by simple structures.Green' (37 ) 

suggested the use of experimentally determined generalised 

oscillator strengths to describe the projectile and target 

atom excitation, and the use of elastic and inelastic 

form factors of the target in electron atom collision 

ha.s been suggested by Mott and Massey (2). 	Dmitriev and 

Nikolaev (88) have extended the use of these form factors 

to atom—atom collisions. Dmitriev and Nikolaev have 

calculated the electron loss cross— sections involving 

few electron systems using a simpler theory, known as the 

free collision approximation, which gives results identical 

to the Born approximation at high energies. In the free 

collision approximation Dmitriev and Nikolaev neglect 

resonance effects, i.e. the case of electron loss in long 

range collisions with small' change in the momentum of 

the colliding particles are ignored. The contribution 

of such collisions to electron loss cross—sections 

becomesnegligible at high velocities. In the free collision 

model they have assumed that an electron moving with the 

same velocity as the projectile nucleus is removed if 

during elastic or inelastic collision with the target 

system, it receives enough momentum transfer to increase 
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its energy above the ionization potential of the projectile 

system. The free electron-target atom scattering is then 

treated in the Born approximation. For considering the 

inelastic processes of the target the closure approxima-

tion is used. 

Dmitriev and Nikolaev have used the above approach 

to calculate the electron loss cross-section from hydrogen 

atom and hydrogenic ions in passing through simple atomic 

targets. Victor (89) extended the calculations to heavier 

target systems. Using the same approach he studied the 

electron loss from hydrogen atoms in passing through 

atomic helium, nitrogen and argon. At high energies the 

agreement with the data was found to be good. Levy (90) 

has also calculated the electron loss cross-section from 

hydrogen atom incident on He, Ne, Ar, Kr, C, N and 0 over 

a range of incident energy from 1 KeV to 100 KeV, using 

the first Born approximation (without the assumption of , a 

free electron model for the projectile) and the closure 

approximation. Levy has used the calculated generalised 

oscillator strengths to describe the projectile and the 

elastic and inelastic form factors to describe the target 

system. 

While comparing their results for electron loss from 

the hydrogen atoms passing through H, N and 0 target atoms 

with experimental data both Victor and Levy divide by 

a factor of two the experimentally determined cross-sect."n^ 
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for H2, N2  and 02  molecules. ,This procedure is incorrect. 

We have calculated the electron lass cross—section 

from hydrogen atom incident on H2, N2  and 02  molecules, 

and shown that these cross—sections are not just twice 

the cross—sections for electron loss from atomic H, N, 

end 0. In our calculptinns for electron loss, we have 

followed the simpler approach of Dmitriev and Niknlaev (88). 

In sectirn 4.1 we describe the theory and the results for 

electron loss cross sections are discussed in secti-n 4.20 

In part (b) of this Chapter we study the processes of the 

type given by equation (4.2 ), where we have calculated the 

excitation of hydrogen atom to different states in passing 

through lithium, sodium and potas u i atoms. 

4.1 Theor of electron 1Q_  sin atom—molecule collison_s 

Let K denote the initial momentum vector of the 

incident electron and Kf  be the momentum of the scattered 

• electron. The momentum transfer vector is given by 

K = Kf  —K0. The velocity of the incident electron is assumed 

to be identical with the relative velocity of the heavy 

bodies. During the collision two possibilities exist, one 

in which the target system after collision is left in the 

ground state (elastic scattering) and the other when 

the target system is left in any of the excited states 

(inelastic scattering). The differential cross—section 

in the Born approximation for a spherically symmetric 
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atom with Z electrons, is 

d 1 = 2 K 3 jZ F(K)+2dK 	 .. (4.3) 
f< 
0 

when the target atom is left in its ground state after 

the collision. F(K) is the elastic form factor of the 

target atom (of atomic number z) and is given by the 

ground state expectation value 

F(K) = E < exp(iK.r~) > 	 .. (4.4) 
j=l 

Fo.r the inelastic process when the target is 

left in any of the final states, the closure property 

of the target eigenfunctions can be used to evaluate 

the sum of cross-section for processes which either excite 

or ionize the target system. In the Born approximation, 

this is given by 
8~c 

dr'ine1 = ( 2 3~") L Sin (K) dK 	 .. (4 .5) 
K K 
0 

where Sin (K) is the incoherent scattering factor of the 

target atom, given by 

Sin (K) =( 	E 	< exp riK. (r j-rk ) 	> -I F(K) I 2 ) L 
.. (4.6) 

The total electron loss cross-section is given by 

	

K2 (i) 	K4 (i) 
n 

= 	(J  
dcel + 	dcrine1 

	

1=1 Kl W 	K3 (i ) 
.. (4.7) 



n denotes th number of electrons in the projectile 

system, and a sum is taken over all such electronsof 

the projectile. The limits of integratinn are determined 

by the kinematics and have been given by Dmitriev and 

Nikolaev. They are for elastic scattering contribution 

K1(i) = (211)1/2 and K2 (i) = 2Ko 	.. (4.8) 

The lower limit of the inelastic scattering 

contribution is given by the larger of the two quantities 

(2 i )1/2 and Ko ~1 — (1-2 AE/K )1/2] 	.. (4.9 ) 

The second quantity in eqn. (4.9) gives the minimum 

momentum transfer required to transfer an excitation 

energy aE to the target. Dmitriev and Nikolaev recommend 

the use cif the first ionization potential of the target 

for L1E except for negative ion projectile systems, and 
the upper limit is assumed to be K4 (i) = K~ since at 

high energies the maximum momentum transfer is governed 

by the amount of momentum transfer available in electron—

electron scattering (2 ). Ti is the energy in atomic units 

required to remove the ith electron from the projectile. 
The integrands for the clastic and inelastic contributions 

decrease rapidly for large K. For large incident energies, 

the upper limit ko is replaced by —, so that the cross—

section in this high regic:,n of energy becomes 



-79.- 

8t n 	dK 
I Z — F(K) I2  + zs (K 

1=1 	
) 

K2 _l 	 in 
n 	(21i  )1/2 

The equations (4.3) and (4.5) for the elastic  

and inelastic scattering are true if the target is an 

atomic system. When the target is a diatomic molecule, 

equations (4.3) and (4.5) will not necessarily get 

doubled. For molecules, the phase difference between the 

scattered waves emanating from the two atoms has to be 

considered (91) in calculating the total cross—section. 

The scattering of electrons from diatomic molecules has 

been described in a recent review by Chandra and Joshi(92 ). 

Khare and Moise.iw:7 tsc.h (93) studied the elastic and 

inelastic scattering of H2  molecule by electron impact 

in the Born approximation, under the separated atom 

approximation. The individ.'..zai, atoms in the molecule are 

treated as independent scattering centres and the scattering 

amplitude is obtained by adding the amplitudes for 

scattering by the individual atoms with proper allowance 

for the phase difference. Averaging over all the molecular 

orientations, Khare and Moiseiwitsch (93) have shown that 

for large value of the interatomic separation of the 

molecule ( 	), the differential cross—section for the 

elastic scattering of electrons from_the H2  molecule in the 

Born approximation is given by 



1(K) = 2( 1 +- K 	) (f(K)12 	 .. (4.10) 

where If (K) f 2 is the differential cross—section for the 

elastic scattering by a free hydrogen atom. The factor 
sin KR 

(1 + °~-°KR 	) is known as the phase factor and it accounts 

for the phase difference between the waves from the 

two hydrogen atoms. For the case of inelastic scattering 
sin KR the phase factor will be (91,93): (I — 	KR --•-•). Khare 

and Moisejwitsch have computed- the cross—sections by 
considering the molecule, in the separated—atom approxim-

ation as well as in the exact case. They have found that 

the amplitudes in the separated—atom limiting case do 

not depart from the exact case by more than 4Y. . As a 

consequence it is reasonable to assume that the separated—

atom approximation is a satisfactory approximation. 

We have used this sepQrated atom approximation 

to calculate the electron—loss cross—section for 

molecular targets. 

The differential cross—section for the electron 

loss in the Born apprexi„c, - r—, after averaging over all 

the molecular orientations is given by 

~~ el = : 2 	F (I Z F(K) 12 )(1+ S-- 
KR 

dK 	.. (4.11) 
K K - 

n 
Here we assume that the target is left in the ground state 

•after° the collision. F(K) is the coherent scattering 

factr,r of the, constituent atoms of the target molecule. 
to~jtc~ 

c WRAL L APP UNAW-W iy o,r 
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For large values of K the vibrational damping of the , 

molecule will become important. flien we consider the 

effect of vibration the phase factor (1 + SKR  
equation (4.11) will be replaced by exp(—

K 2 ,'2 2/ ) 	KR 
o 	KR 

where ~'2 denotes the mean square amplitude of the 
molecular vibrations. 

If the target molecule is left in any of the 

excited states the differential cross—section for 

electron loss for the inel~.,stic process will be given by 

16m 

~lo~i lel 	 jC2 K3 	z Sin (K)) (1 — 	KRK ~ dK .. (4.12) 

Sin (K) is the incoherent scattering factor of the 

constituent atoms of the molecule. The calculations of 
eqn. (4.12) with molec3?1ar wavefunctinns show that the 

phase (1 — 	) overemphasizes the actual situation. 

The term (1 — sin K° R ) is the correct phase for individual 

optically allowed transition but the term is largely lost 

in the process of summing over all possible states. It 

would be therefore more realistic to - replace this term by 
unity i.e. (1 — s 	R) 	I.

KR 

We have used equations (4.11), (4-. 12) and (4 .7) 

to calculate the electron loss cross—section from hydrogen 

atom and helium atoms incident on H22 N2 and 02 molecules 

(94,95). We discuss in section 4.2 the results for electron 

In ss in the H t<'m impact on H2 , N and 09 molecules. 
N 	N 



The spherically averaged Hartree—Fock, coherent scattering 

factors are taken from X--ray tables (96) and the 

inc.-;herent factors are taken_ from the calculationsof 

Crrarner and Mann (97). 

4.2 Cross-sections for electron loss from H atoms 
incident on H2,.1\10  and 02  mo  ecu. es. 

The present results for the electron loss from H  

atoms of energies upto 108  eV incident on H2, N2  and 02  

molecules are shown in fig. 4.1 along with, other theoretical 

calculations and the experimental data. Also a comparison is 

made between the results obtained using and without using 

the phase factor. 

We find that in each case the inclusion of the phase 

factor with proper allowance for the vibrational motion 

reduces the total electron loss cross—section . This 

reduction is quite. sufficient for the 02  and N2  molecules,, 

and is less important for the H2  molecule. For the 

hydrogen atoms incident on the H2  molecules we notice 

that the calculated cross—sections are quite close to the 

experimental values of ,,Vittkower et al. (98 ) even though the 

present theory does not remain valid at low energies. The 

classical calculations of Bates et al.(1C2)for hydrogen 

(multiplied by a factor of. 2 for comparison with the 

results for the H2  molecule) yield a higher value of the 

cross—section in this region. For higher energies also 

the classical calculations tend to be higher than the 



present calculations. No data are available for comparison 

in the high en~.r°gy range. Batcs et al. from a study of 
the H-H and H-He electron loss collisions have pointed 
out that the classical approximation gives poor results 
for low atomic number toarget systems. This poor agreement 
arises due to an expected error in the classical calculation 

of the elastic crntribution to cross-section. Detailed 

examination by Bates et al. has revealed that the classical 
impulse approximation overestimates the elastic contribution 
to electron loss cross-section by a factor of 2 to 3 in. 

the 100 keV to 1000 KeV energy range. The classical 
description of elastic scattering of electrons by light 

atoms is therefore inadequate. 

For H atoms incident on the N2 and the 02 molecules, 

the inclusion of phase factor makes the theoretical 

calculation agree with the experimental data. Beyond the 

incident energy of about 200 KeV the agreement is very 

close and for energies less than 200 KeV the calculated 

cross-sections lie within a factor of three of the 

experimental data. At lower energies the deviation is not 

surprising because the theory does not remain valid. in this 

region of energy`. The classical calculations of Bates et al. 

for the N2 target molecule give better agreement with the 

experimental data in the low energy region. 

From a comparative study of the three molecules it 

is r.td t.lA: t f'— r the lower Z target systems, the free 

coll3_son approximation predicts fairly good results 



even in the intermediate and the low energy region. As 

Z increases the disagreement at low and moderate energies 

increases rapidly. This is also noticed in the calculations 

of Victor for atomic targets. In his results the discrepacny 

at low energies with experiment is maximum in the case of 

argon target atoms compared to the nitrogen and the 

helium targets. The use of the Hartree-Fock approximation 

for the form factor and specially the incoherent scattering 

factor, where matrix elements of a two electron operator 

are needed, can be responsible for much of the disagreement 

in the nitrogen and oxygen target systems. The 7effect 
of the molecular binding may also be significant. In the 

high energy range, the free collision approximation is quite 

successful in predicting accurately the cross-section. The 

classical theory of Bates et ai. is more suited for heavier 

target systems. We therefore see that in atom-molecule 

collisions the inclusion of phas factcr improves the 

agreement between theory .,,nd experiment and for a molecular 

target one should not simply double the cross—sections 

for the corresponding atomic targets. 

The use o 1 separated atom approximation in the study 

of electron loss cross-section in atom-molecule collision 

is quite satisfactory. The effectiveness of the separated 

atom approximation depends on two conditions, (i) the 

individual atom maintains its atomic field i.e. the 

distortion in the atomic field due to the valence forces 

is negligible end (ii) the multiple scattering of the 



incident electron inside the molecule does not take 

place. Both these requirements are well satisfied for 

incident electron velocities at which the Born approxi-

mation to the scattering amplitude is valid. The free 

collision approximation of Dmitriev and Nikolaev (88) 

which is also valid for high energies, can therefore 

be suitably combined with the separated—atom approximation 

to treat the electron loss in an atom—molecule collision. 

'pie have also seen (95) that the above theory is 

satisfactory for helium atoms incident on molecular 

targets at high incident energies. Therefore, the theory 

can be used to obtain electron loss cross—section from 

still heavier projectile systems, but measurements with 

such heavy projectiles have not been made. For heavier 

target atomic or molecular systems an improvement in the 

present theory at low energies could be obtained if 

dr- 1  is replaced by its partial wave value because the 

partial wave elastic cross—sections are significantly 

smaller than the Born values. 

(b) Excitation  

In this section we study processes of the type 

given by equation (4.2)9  in which the projectile atom, gets 

excited to any of its discrete states in collision with 

the target atom. Levy (90) has used the Born wave 

apprnximation to study the exci_tatin 'f the hydrogen atom 



to is-2s and is-2p states in passing through the various 

targets like He, Ne, Ar and Kr. Subsequently Levy (103) 

also studied the excitation of helium atom in passing 

through H, He, Ne, Ar and Kr. In these papers Levy has 

also compared the difference in cross—sections when the 

complete summation over the target final states is 

performed exactly by the use of analytic generalised 

oscillator strengths and approximately by the use of the 

closure relationship. He has shown a disagreement between 

the two methods of summation and has pointed out that 

this disagreement may be particularly large when the 

target has a much lower excitation energy than the 

projectile. An alternative method used in the study of the 

atom—atom excitation is the impact parameter approximation. 

The impact parameter approach requires the calculation 

ref time—dependent matrix elements involving integrals 

over the electronic wavefunctions of the projectile 

and the target. Flannery and Levy (104) have developed a 

genera L analytic method for ev aluating these matrix 

elements, which they employed in the H—H excitation      cross—

section  calculations (105,lCI6 ). Extension of this 

technique to more complicated systems is cumbersome and 

tedious. A method of evaluating these time dependent 

matrix elements using generalised oscillator strengths 

and the form factors has been suggested by Levy (x-07) and 

h-s beon used for the H—He inel-stic collisions. From this 

0 



study Levy has shown that the first Born-wave calculations 

are in better agreement with the experimental measure-

ments than the distorted Born approximation, two 

state and f:>ur state impact parameter calculations. At 

low incident velocities, however, the inclusion of 

distortion decreases all cross-sections below the first. 

Born approximation values. 

In view of the considerable success , of the Levy's 

method using first Born wave approximation and the 

description of the projectile by the generalised 

oscillator strengths and the target by the coherent and 

incoherent form factors, we have extended it to the study 

of the inelastic cross-section f hydrogen atoms in . 

passing through the alkali atoms. Several transitions in 

hydrogen have been studied by us. The hydrogen atom has 

been chosen as the projectile because the generalised 

oscillator strengths for the various discrete transitions 

are readily available (84.) in analytic form. In 

section 4.3 we first discuss briefly the theory of Levy 

and the results are discussed in Section 4.4. 

4.3 Theory for  atom-atom  excitation 

Let us consider an inelastic collision between two 

atoms,. a projectile atom A with ZA  electronsand the 

target atom B with ZB  electrons ,both initially in their 

ground. states and acquiring a state n and n' respec+ive..1y 



after the collision with a possibility of n' being 

equal to 0 a lso. Tho first Born wave cross-section for 

a transfer of momentum q to the target atom from the 

projectile h--,ving initial and final wave vectors as 

Ki and Kf respectively is given by (90) 
gmax 	2Tc 

4 r- (0,0-n,n') = v2 
	

q 	d q 	dOIzoln Eq) I 2 
2 qm in B x 1Io,n t (q)-bo,nt  2 

.. (4.13) 
where, 

gmin = Ki-Kf, gmax = Ki+Kf , Ki = Myi I 

1 /2 
Kf = K - 2M (En + gB r - EA - EB ) 	 .. (4•14) 

and ,, 

 ± 	r
_ 	S(r ) (r )ezq ~ r~i dr 	.. (4.15 

M is reduced massy 	Vi initial velocity of relative 

motion, 6o and cB are the ground state energies and En 

and En, the excited state energies of the atoms A and B. 

rS = r5l , rS2 ... , rSi is a vector from the nucleus of 

an atom S to its ith electron and ti n is the electronic 

wavefunction for an atom S in state n. 

The generalised oscillator strengths are 

f S (0-n1q) = 2(E - E )I' ,~(q)12 / q2 	.. (4.16) 



The total excitatic n cross—section is obtained 

by summing wcr. hl1 possible final states of the target. 
For this we have to consider the cases when the target 

is left in the ground state after the collision and another 
when the target is excited or ionized after the coliisinn. 

The elastic cross—section is given by 
2 gmax 	2n 

met (O, n) = 4'B 	q_3 dq cio ~ IA n( 
 

_q) 2 FB(q)-1 12 

v 	 ' 
2 	gmin 	0 

and the inelastic cross—section is 

'.mel(o,n) _ 	r (o90—n,n' ) 
n ~o 

max 2t 

= 42B 	q 3dq 	d~'i 

v~ 	gmin 	o 
Iofn (q)I SB (g) 

.. (4.18) 

where the elastic form factor F(q) and the incoherent 

factor S(q) are 

F ( q ) _ 	 . [JI;BI2 e i Bi di'B B ZB 1 

and 

S( ) = 1-~ 	B 	rI j B (r) 2 iq• (rB~ - rBk) 	 2 
B q 	2B 	_ 1 o B 	e 	 drB ~ ZBFB ( g ) 

 

(4.19) 

The equation (4.19) is derived using closure and 

the approximation that gmin and qm .1x can be replaced by 

t' eir -,vc r,-~.ge v .1i,;_ 	emir, and cmax for all n'. 



The total excitation cross-section to a state n of 

the projectile is now given by 

d- (o,n) _ "el(o,n) + oinel(osn) 	 .. (4.20) 

For hydrogen, equation (4.15) has been evaluated by 

Bates and Griffing (84) with the results 

2 

115•-P. s (q) 	= 21'7 q4 // (4 q2+9)6 

2  

its°2 p (a) ~ = 2 
15 x3 q2 

/ 

/ 
/ (4q2-+-9)6 

2 

I15-3s(q) ~ 	28x37(27g2+16)2g4%(9q2+16)8 	.. (4.21) 2 

I
15

-3p(q) ~ ^ 211x36 (27g2+16 )2q2// (9q2+16 )8 

2 	17 "7 '. / 	28 I15-3d(a) ( = 2 x3 q / (9q +16) 

','•Ie have used equation (4.20) to calculate the excitation 

of hydrogen to the five discrete states (2s,2p,3s,3p and 

3d) from the ground state , in collision with lithium, 

sodium and pc~tasium target atoms. The tabulated Hartree-

Fock form factors are used. To calculate the average 

andn 	we used an average excitation energy cB 
q ;n 	 Amax' 	 av 
equal to the ionization potential of the target in place 

of c() in equation (4.14). 

4.4 Cross-sect-ionskQr the excitat on~of H atom__in 
ckilision with Li, Na and K atoms 

F guresX4..2-4.4) s ,c w our results for the excitation 

cr'~s-scction of H to 2s, 2p, 3s, 3p and 3d states (curves 

1--L respectivFly) in c , llision with Li., Na and K respect .vely 
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for incident energies upto 1000 KeV. No experimental 

data are available to comT are with the present calculations. 

Theoretically also only one calculation has been reported 

for lithium target atom by Cheshire and Kyle (108 ). 

In fig. (4.2) for the excitation of hydrogen by 

lithium atom we have shown the excitation cross—sections 

to the individual states (2s, 2p, 3s, 3p and 3d) as well 

as the total excitation crop=--sections to the n = 2 and 

n = 3 levels (curves 6 and 7 respectively) . Also shown 

are the results of Cheshire and Kyle for the total 

excitation cross—sections of hydrogen for n = 	and 

n = 3 levels (curves 8 and 9 respectively). We notice 

that there is a large difference between the present 

calculations and the calculations of Cheshire and Kyle 

tf)r oxcitati.on to the n = 2 level 9  for incident energies 

upto 100 KeV. For en,., rgie s beyond 100 KeV the two 

calculations agree within a factor of two. The agreement 

is however much better for the total excitation cross—

sections of hydrogen to the n = 3 state. Beyond 10 KeV 

there is almost a perfect agreement between the two 

.calculations. The calculations of Cheshire and Kyle were 

based on the first Born approximation and they used the 

closure approximation to sum over all the final states 

of the target atom.. However, in the evaluation of the 

integrals for elastic and inelastic contribution to the 

cross--sect'_on they did not make use of the form factor 
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description of the target atom, but use the method 

analogous to th,t described by ;:Way (109). Further 

Cheshire and Kyle have used the self-consistent field 

whwavefunctions of Clementi( 60 ) for Li and h ve pointed 

out that use of a simple hydrogenic wavefunction for 

Li(2s) with an effective charge Z = (1.6)1/2  increases 

the cross-sections by 20/. . Therefore the main discrepancy 

between these two calculations may be due to the use of 

the Hartree-Fock coherent and incoherent scattering 

factors for the lithium target in the present calculations. 

In the absence of experimental data it is difficult to 

assess the merit of the two methods but from a previous 

study (90) it has been concluded that the form factor 

description of the target predicts the results for excitation 

cross-sections which are in very good agreement with the 

experimental data. 

An important feature which is noted in all the 

transitions is the presence of double peaks or shoulders 

in the cross-sections. The double peaks are quite 

predominant for is-2p and is-3d excitations, where the 

second peak overshoots the first one. For the is-2s, 

is-3s and is-3p transitions the second peaks are much 

flatter and spread over a wide region of ene rgy. The 

presence of double peaks and shoulders in the cross-

sections are due to the double excitations. Such double 

peaks have also been observed . in the calculations of 
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excitation cross—sections in H—He and He—He calculations 

by Levy (90,103) and the origin of these due to the 

double excitation has also been convincingly demonstrated 

by Bates and Griffing in their calculations (84). The 

cross—sections for the double excitations in the hydrogen—

alkali atom—collisions will be dominated by the resonant 

excitations in the alkali target systems. It is apparent 

that whereas single transitions predominate at low imp=act 

energies, double transitions predominate at higher impact 

energies. 

Another interesting feature which is observed in 

these calculations is that for all the transitions the 

cross—sections level off after about 20 KeV of incident 

energy. This can be attributed to the onset of significant 

contributions to the cross—section from the inelastic 

term (excitation or ionization of target) . In this region 

the contribution from the elastic term will be lesser. 

This feature is also observed in the experimental data 

for targets like heliuni(T1O)'.. 	_ 

In figures .3 and 4.4 for excitation of hydrogen 

in collision with Na and K targets, the general features 

are similar to that of the Li target. In all these cases  

we find that for a particular target the magnitude of 

cross sections for the is-2p dipolar transitions is the 

largest and for the quadrupole transition it is the 

least. The fall of cross—sections in all the five 
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transitions is quite rapid for energies beyond about 

20 Key. Double peaks are observed for all the targets 

and the magnitude of is-2p excitation cross—section is 

the largest for H—K collisions. The dip in the cross—

section is observed between 6-8 KeV of incident energy. 

In the above calculations we have used the ioniza-
t ion potential of the target (IB ) for EBv  in order to 
calculate gmin  and  gmax. This is plausible since the 

optical oscillator strength is almost evenly divided 

between ionization and excitation. Levy (90) has suggested 

the use of the logarithmic mean energy (which is used in 

Bethe's theory for stopping power (111))as an average 

excitation energy. However, this energy EBethe  is weighted 

tow'rds the continuum and tends to underestimate o'inel 

in the interciiedi`)te velocity region. Since in the alkali 

targets, the target excitations are expected to play 

an important role, the use of a correct EBv  is desirable. 

Levy has suggested that if accurate excitation cross—

sections are experimentally available in the energy 

region where the levelling of the excitation cross—section 

occurs, the target parameter EB, can be determined empiri- 
u 

cally by fitting the theoretically calculated total 

cross—sections with the measured values. Further the 

average energy does not depend on the projectile and 

therefore the semiempirical calculations of 6Bv  may be 

useful for a wide range of processes. 
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In conclusion , we can say that the form factor 

description of the target provides a simple approach 

to the calculation of atom—atom inelastic collision 

cross—sections in the Born approximation. At low energies, 

the Born approximation can, however, be improved by the 

inclusion of distortion and coupling. The present 

results are expected to be accurate at high energies.The 

need for an experimental investigation of the above excit-

ations is obvious. 
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Figure captions 

Fig. 4.1 	Electron loss from H atoms incident on H2 , N 
and 02 molecule. 

Present calculations -- with phase factor, ----- without 
phase factor; 	,, 	x , calculations of Bates et 	al. 
(102); Experimental d~ ta: 	H2 molecule, Wittkower et 	al. (98 ); 
N2 molecule, 	Allison 	(99 );IDBerkner et al. (100), C'1 Smythe 
and Toevs (101 ); 	02 molecule fit, 	Allison (99). 

Note: The upper scale in this figure refers to 02 molecule. 

Fig. 4.2 	Excitation of H (11S-n1L) in collision with 
lithium atom. 

Present calcula'- ions: -.- ls-2s,cutrve 1; is-2p, curve 2; 
-..--1 s-3 s, Cu rve 3; - 	l s-3 p, curve 4; -----1 s-3 d, curve 5; 
---- total excitation to n=2 state, curve 6; 	,..._„_,; total 
excitation to n=3 state, curve- 7; calculations of Cheshire and 
Kyle (.108): 	for excitation to n=2 state, curve 8; 
----• -- for excitation to n = 3 state`, curve 9. 

Fig. 4.3 	Excitation of H(11S-n1L) in collision with 
• sodium atom. 

Explanation of curves 1-5 remains the same as in fig. 4.2. 

Fiq.4.4 	Excitation ,;f H (115-;,1L) in collision with 
po to sium atom. 

Explanation of curves 1-5 remains the same as in fig. 4.2. 



101+1  

N 	 I•l- 02 

E  A  ~ 

w -17 

v) 

I 	 ~ 	 ~ 
~ 	 J 

\H• r' 

1 
 
0 

 

106 	 io7 	10 
ENERGY OF INCIDENT H MOM (eV) 

I` IG.4.1 Flectron loss from H atom in pc:,ssinq through H2,N2 and 02 



	

Cpl 	 CL 

	

Li 	 j) 

"7 

/ .. 2/ 	// // 

s 	 • 



F- 

T 

L.d 
L 	 a U LL 

(/W) 'VOID.D.jS SSO 



NI tf•1 

(~U3) NOf flJ`J SSOUJ 

L
_, 

U 

T 
-S. 

• ~ ) Cr 

Uy n 

r  `t 

WE 
0 

Z 

s 
(3 

C 

ti 

li 

NI 
N 

X 
LI) 



_97- 

CHAPTER5 

INELASTIC COLLISIONS OF ELECTRONS ,IITH ATOMS 

The classic'l binary encounter theory assumes that in 

the collision of electron with atom , the energy transfer 

from an incident try a bound electron is equal to the 

energy transfer between two free particles. It is also 

assumed that during the period of significant interaction 

between these two electrons, the other electrons and the 

nucleus play no role. An essential condition for this to 

hold is that the collision time should be short compared 

to the orbiting time of the electron. This condition will 

be satisfied for collisionswhich involve large energy 

transfers. Thomson (41) was the first to use the binary 

encounter theory for calculating cross—sections for the 

inelastic electron—atom collisions by considering the 

Coulomb scattering of the incident electron by an atomic 

electron at rest. For ionization he obtains the cross- 

2 U E2  

where N is the effective number of electrons in the atom, U 

is the ionization energy of the atom and E2  is the kinetic 

energy of the incident electron. The neglect of the motion 



of the bound electron is certainly not justified at 

low or intermediate incident energies. Gryz nski. (38 ) 

greatly improved Thomson's theory by allowing for the 

motion of the bound electron: He first derived classical 

relations for the Coulomb collision of two moving 

particles. His calculations were based on the results 

of Chandrasekhar(42) 	for collision of gravitational 

masses. We shall briefly discuss Gryzinski's theory. 

5.1 Classical impulse approximation 

Let the bound and the incident electrons be distin-

guished by 1 and 2 and let their velocities and energies 

be vl , v2 and El and E2 respectively. Denoting the angle 
between the velocity vectors v1 and v2 by e, Gryzinski(38) 

shows that the cross-section for a collision between two 

electrons in which an energy transfer of L\E takes place 

is given by 
dmax 2 2, 	2 f(p) 	v v sin 2B 2 T 1...2 	..~4 _ x (..r.1 AE — - E2 + E1 )de 

~E  V 
Amin 	 .. (5.2) 

where V is the initial relative velocity of the two 

electrons given by 

ll~ 	v1 + v2 - 2vlv2 cos9 	 .. (5.3 ) 

and f (s) represents the relative angular distribution 

function betw=-. an vE:~ctr; ~s vl and v2. In the case of an 



i 

isotropic distribution of velocities of the atomic 
electron we have 

f(e) = (sin6)V/v2 	 .. (5.4 ) 

The range of integration over angle 8 is determined by 

the conservation of energy and momentum. It leads to 

_ + 1 

COs  ~ax 9 ~:in if lx4 < 1 

if.IxI> 1 

wh ere x = 	 1-L\E/E1) (i+~E/E2) 1/2 

.. (5.5 ) 

.. (5.6) 

For evaluating equation (5.3) Gryzinski makes •a simplifying 

approximation of replacing the true relative speed of 
-> 

the two electrons V = Iv1-v2 I by its average value (vl+v2 )1/2 . 
Carrying out the integrations ever e in equation (5.2) with 

the above approximation, Gryzinski obtains 

	

_ 2 iT e4 	~~ 	v2 	3/2 	E 	4 El E 2 _.~.2 -4 ,. 2 	 2 ) 	; i - E 	+. ~' E I if L\E ,< E2-E1 

	

mlv2 tE 	v2 + vl 	2 
.. (5.'7) 

4E 21E E 

2 	2 _ 
/n 

LE  
x (1 +i)(,I-- EE } 	if LE >,E2-El 

°• 	 .. (5.8) 
The total cross-section for a collision in which the 

incident electron loses energy greater than U is Q(U) where 
F.2 

Q(U)= 	cr(LE)d(E) 	 ... (5.9) 

2n e4 . 	i 	v2 3 /2 2 _ m v2 	'i 2 -.--- v+ 

1 2 
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Similarly the cross-section for an encounter with loss 

of energy in the interval U1 < t-E -,< U2 is 
U2 

Q(U2,U1) = 	o" (ICE) d(LE) 	 .. (5.10) 
U1 

Denoting the velocity distribution of electrons in 

the jth electron shell of an atom by f(  v1) and the 

ionization potential by Uj , the electron ionization cross-

section for an atom is 
00 

Z 	f j (vl )Q (Uj )dvl 	 .. (5.11) 
~ o 

Gryzinski initi_tlly assumed a d-function velocity 

distribution for the atomic electron f(  v1) = Nj8 Ev l-(2Uj )1 21 

where N• is the number of electrons in the j,th electronic 

shell. Using this distribution the cross-section for 

ionization fro:ii the jth shell of an atom is given by 

N J E 	3/2 5 2Uj 
Qion 	UjE2 ( E2+Uj ) 

Nj 4-r2 E2--U 3/2 
U~ E2 3 	(  

if 2U. < E2 .. (s.12) 

if 2UJ >, E0 .. (3.13) 

Gryzinski comp.+red his calculation with a wide range of 

experiments and obtained startingly good agreement. In 

Gryzinski' s theory the agreement with experiment is 

misleadingly exaggerated because of certain inessential 

approximation in the integration as pointed out by 
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Ochkur and Petrunkin ( 112 ) and Stabler (40). Stabler 

points out that a subsidiary approximation made by 

Gryzinski in averaging over the initial angular distribution 

is responsible for the fact that his cross—sections are 

in better agreement with experiment. This approximation 

though it improves the results, enters in an arbitrary 

fashion which removes much of the self consistency of the 

calculations e.g. the cross—sections do not behave 

properly under time—reversal. 

Stabler derived in a very simple and clear manner 

the analytical cross—sections for excitation and ionization 

of atoms using the exact classical impulse approximation. 

Stabler's approximation is particularly elegant and 

he obtains these cross sections in a direct way, without 

the use of the centre of mass coordinates (as used by 

Ochkur and Petrunkin (112). NTcar the threshold and at 

high energies the Stabler's cross—sections are found to 

be almost identical with the Gryzinski's cross—sections 

but lie above them t intermediate energies. The formulae 

for excitation and ionization obtained by Stabler are 

mathematically more accurate. 

5.2 Exact classical model of Stabler 

Stabler's model for classical impulse approximation 

for the electron—atom collision consists in neglecting 

all terms in the Hamiltonian except the kinetic energies 
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of the target and incident electrons and the interaction 

between these electrons e2 /r12 . The cross-section for 

an energy transfer between LtiE and ZSE + d(LE) is given 
by 

d-  	_  
V dZL~E~ _ 1 v2-v l ).n~ J P(s) oEE(S~d2 S 	.. (5.14) 

where, P(S) is the probability for a 
collision at a separation of the velocities vectors in 

configuration space of S. The integration is over a plane 

in configuration space whose normal is n . Choosing the 

plane of integration in configuration-spice as the one 
normal to v2' and carrying out the integrations, Stabler 

obtains 

do- (vl,v2 ) - 4TH e4 	( El - E2 	2E1E2sin2e 
d L1E7 - m2 V 1 LSE I 	GE 	± L~E2 

1/2 

	

if 12LE + E2 - El ( 	(E2-E1 )2+4E1E2sin2o~ 

= n 	otherwise 
	 .. (5.15 ) 

This result is essentially identical to. the Gryzinski's 

result _ For -`nn isotropic velocity distribution for 

either particle 

V do (v1v2) — f 	va v1, 	2n sine de d7E 	4 n 	dZZE 	 .. (5.16 ) 

The integration over angles is confined to the region in 

which the conditi-,n (5.15) holds. Performing the integration 
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in eqn. (5.16) exactly, Stabler gets 

V drr' (vl~v2) 	n e 4 	f E _ 2 	4 _ 	1 2 
1+ 
	(5.17) d ( 	

__  d(E) 	I cE 12 ( m E E2 	3 LSE 	.. 
~. 2 

where E = IE1, E2 , E1 E2 	is the smallest of the four 
incoming and outgoing energies. 

Equation (5.17) gives the exact cross-section for 
binary Coulomb collisions. Gryzinski_ obtained only an 
E+pproxLmate form by replacing V = (v2 +v2 )1/2, bef o re 
integration over e. 

The ionization cross-section is obtained by 
integrting (5.17) in the limits -U > LSE > - E2, which 
upon integration becomes 

2m e4 (E2--U)3/2 
Q10 (  E2 ) = 3L Lr2_ ~EJ/ 

2 	1 
Tc e 	2E1+3U 	3 1 = 3E2 U2 E2_E1 9 

for U ~ E2 ,< E1+U 

E2>,E1+U 	.. (5.16) 

For excitation the integrations are carried out in the 
limit U < - LE < UU+1 where U and Un+l are the relative 

energies for the levels n and n+l. The excitation cross—

section to a state n becomes, 

2'c e4 (E2-Un )3/2 
~e xc 	3 E El/2 ----- - 	

, U •,< E2 '`< Un+1 
21 	n 

4 2i 	
~' ( F̀  - Li )3/'2 	(E2 	)3/2 

~_"' 	2 n 	2 _n___---  
21 ;J ..._.. 

	_ 	2
~I 
LU

n+1 ~ E1+Un ;5E 	 Jn 	Un+1 
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2-z e 	2E +3U 	3 	(E — U 	)3/2 
_ —.m.....~ _ _ ~. ,i1._ _ ~. _

_
__ _ 2 __n± _r_ . 

	

3E2 	2U2 	2 (E2—E1) 	E1'2 	Un+t 

E1 + U 	E2 < E1 + Un+I 
4 

	

2 e 	1 	1 U  _ U )E 
1 

	U ) + 	E2 >/ E 1 + Un+l 

	

2 	n 	n +1 	n 	n+1 

.. (5.19) 
The classical excitation cross—sections depend 

only on the initial and final energies and not on the 

angular momenta of electrons. It gives cross—sections for 

excitation of definite energy intervals in place of 

discrete energy levels. The procedure is to 'take interval 

equal to the separation of levels. Stabler has shown that 

the classical excitation and ionization cross—sections 

are accurate to within a factor of about two in the energy 

range between two and ten times the threshold. The merit 

of the classical theory is that it provides the ana-

lytical expressions, which also allow for differences 

in binding energies for inelastic electron—atom collisions. 

Kingston (46) carried out a detailed study of the 

electron impact ionization of the hydrogen atom using 

the Gryzinskistheory and concluded that disagreement 

exists between the quantal calculation and the 

exact classical calculations at large impact energies. 

This is due t the fact that the Born cross—sections fall 

as Xn EVE2 while the classical cross—sections fall as 

l/E2 for large values of E2. At high energies the classical 

cross—sections have an incorrect form. This is essentially 
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due to the fact that the distant collisions are not 

treated properly, in th-it the transition probability 

falls to zero at large impact parameters, whereas the 

proper quantal transition probability is exponentially 

decreasing. At high energies this exponential tail 

dominates and le8ds to E21~(n E2 term. 

5.3 Velocity distributi,-n fupctioris 

In order to obtain a logarithmic decrease. in the 

ionization cross—section Gryzinski(39) assumed that the 

atomic electron had a continuous velocity distribution. 

He introduced an empirical distribution function whose 

form was so chosen that _;ri averaging over this distribution a 

logarithmic term would be obtained. Explicitly he 

assumes a velocity distribution of atomic electron as 

f (v l )dv1 = 	 .. (5.20) 

with v equal to the average velocity. Although the above 

distribution function gives a logarithmic behaviour 

of cross section at high energies but the   ~._ 	~ yam. ~, :~ n~u ~+ 	a.tiG       

multiplying it is in general incorrect. The above distri-

bution function is most unrealistic and can not be 

justified theoretically. It yields an infinite mean kinetic 

energy. It is completely at variance with any quantal 

velocity distribution e.g. it disagrees with the exact 

quantum mechanical distribution function for the hydrogen 
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atom which h~~s the form(113) 
C) 

	

f (vl )dvl = TE2 ( 	4-dv1. 	 .. (5.21) 
v+l ) 

It was first suggested by Sta'bler(40) that improve-

ments in classical impulse approximation are possible by 

choosing a quantal momentum distribution function for the 

electrons of the target atom which is obtained from the 

Fourier transform of the wavefunctions of the target electron. 

This distribution is used in our calculations also. 

The quantal velocity distribution of a bound 

electron is derived by using the Hartree-F.ock wavefunctions, 

and some properties of the spherical harmonics. The . one 

electron Hartree-Fock orbital ; nRm(r) is written. as, 

On~im(r) = Onim (r-,e r,0r ) _ (z c Ri )Y,em (e r ,c r ) 	.. (5.22) 

and the wavefunction in momentum space (X) is 

1 -- -~ 	__ 	-~ 	X. r -' 
= 	3 2 	'On m(r) e

i 	d 	 .. (.23) 
(2q) 

1"3ritin g 
00 k k e X. r= 47E E 	E 	i J ii(Xr) Yr, (A .Q )Y~, (a 

X= o m= -,~ c 	,cm X., X xm 	r,, ,:r ' 

where j~, is the spherical Bessel function, and using the 

property of spherical harmonics 

.L  
rn,l 

L ,em' m' do d (co s6) = bmm di/„ 	.. 

t 	(Y) reduces to n,(m 

n 

0 
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Co 

]. 	 2 
n~(X) _ -°.-~ 3/2 	(L 	

j
c..)4m i  j (Xr) Y (8 i 	)r dr 

1
m 

(2) 	 ~m X X 
o 	 .. (5.25) 

The velocity distribution function in the nf( shell is 

_ ~ °..  m _ 	( X) 	(X) 	 .. (5.2 s )( X) 	+1 	n,r 	nkm2R  

Now 

/ +1 

m- 
y 	

2 
m(81,01)YXm(e2,o2) 

=---- +1 Ycosa) 	.. (5.27) 
4 'T 

where a is the angle between the directions (e1,91) and 

(e2,~?f2), hence 
CO 

~ 	(1) 	J (E ciR i ) j (Xr)r2dr 	.. (5.28) 
Pn~( (2rt)3 4~ 

TO 

2 
'-̀ (EciR.) j~(Xr)r2dr~ 	 .. (5.29 ) 2.z 

The momentum distribution function becomes, 

f(x)dx~ x2 Pn (x)dx  

Catlow and McDowell (114) have studied the electron and 

proton ionization of He, Li, 0 and N, using the classical 

theory with a quantal velocity distribution. These calculations 

show that the classical theory can predict the cross-sections 

accurately for low and moderate energies. 

In order to assess the accuracy of these classical 

methods to more complex system we have calculated the 

inelastic electron alkali-atom cross-sections and have studied 

bc, :'h theexcit',.tion and the ionization (115, 116). 



In our calculations we have used expressions for the 

cross-sections due to Stabler which are mathematica - 

lly more accurate and have used the quantal momentum 

distribution for the atomic electrons. We observe that 

our results for alkali atoms are in a fairly good 

agreement with the data. 

5.4 FP Id1a.ii 	s? c iE ~...X~'..?1~S 

Introducing dimensionless variables 

2 	2 
s2 = v2 , t2 = v1 - ; °.°,~ ±-1 = r2 and --a = m2 	.. (5.31) v2 	U 	U 

0 	 0 

and U = v2 0 

the cross-section for excitation of an atom to a level 

n from the ground state is given by 

(s,n) = N 	f(t) Q(s,t,n) UV2dt 	( a2 ) .. (5.32) 

and the cross-section for the ionization of an atom is 
1 00 

cr' (s) = N 	f(t) Q(s,t) UV2 dt 	( a2 ) .. (5.33) 
`o 

T_1 and T T 	arc the 	
1 tiv 	•.t t n 	n+l ", 	`e relative e exc.LLa L.1c,n erie rgies of the 

levels n and n+l. The expressions (5.18) and (5.19) can be 
rewritten as 

U 2 Q (s, t) - - 2 ~ -( 	2 	1 < s2 .< t2 + 1 
3s 

~ 
	

s
2- 2 	s2 >. 2+i .. (5.34 ) 
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and 
2 	 (s2-r2  )3/2 	(s2 - r2 )3/2 U 	 -  

3s2t 	4, 	4 m 	 r 
2 	22 

if 1<  
2 r 	r 

8 

35 	ri 	r  
2 	2 

if 	2  >, 1 + t2 	.. (5.35) 
r 	r 

The distribution function (5.30) becomes. 

	

f (t) = 4 Tc t2  U 	(t ul/2  ) 	 .. (5.36) 

Using equations (5..32)-(5.36), we have calculated the 

ionization and the excitation cross-sections of alkali 

atoms. We shall discuss in section 5.5 ^ur results fcr the 

exc itat _on cross-section. 

5.5 cross-s;cti ons for electron impact excitation of 
Li, Na, K;  Rb and Cs. 

In Figures 5.1 to 5.5 we display our results for 

the 2s-2p, 3s-3p, 4s--4p, .5s-5p and 6s-6p excitation of 

Li, Na, K, Rb and Cs for incident electron energies upto 

about 50 eV. respectively. 

For Li we find that the present calculations 

(curve 1) are quite close to the experimental data (curve 4) 

of Hughes and Hendrickson (66) at low energies but dis- 

agrc appreciably with these data at moderate and high 
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energies. However, in this moderate energy range our 

calculations agree better =t2vith the data of Zapesochnyi and 

Aleksskhin (ii?). The calculations based on Vainshtein 

et al. model (curve 3) give good agreement with the data 

of I-Ughes and Hendrickson, but as noted in Chapter 2, 

much reliance cannot be placed on these calculations. 

The Born approximation (curve 2) yields a very high value 

of cross—section at low and moderate energies compar<>d to 

the experin-, ental data. The calculations (curve 5) of 

McCavert and Rudge (118) using regional trial functions 

also give very high cross—sections. The two experimental 

results differ markedly and it becomes difficult to say 

which method gives more accurate cross—section. 

In Fig.5.2 for Na we observe that our results (curve 1) 

agree better with the experimental data of Zapesochnyi and 

Aleksskhin(117) in the entire energy range than with 

the data (curve 9) of Haft (119) as normalised to the 

measurements of Christonh (120) by, Bates et al. (121). In 

this case also there is a wide difference between the two 

experiments. Seaton's calculations (122) based on impact 

parameter method (curve 3) and the modified Bethe approxi-

mation (curve 4) give almost identical results which lie 

above the experimental data in the whole energy range. 

All the calculations based on the Born approximation 

(26,118, and 123) shown by curves 2,5 and 6, respectively 

yield very high cross—sections at low energies but at 

energies r, f about 20 times the threshold the Born cross— 
sections ire quite close to the experimental data. of 



Haft(119). At low energies the close coupling calculations 

of Barnes et al , (124) and the !rnp pct parameter calculations 

of Seaton (122) show a reasonably goad agreement with the 

data. Our calculations tend to lie below all other 

theoretical calculations. 

• In Fig. (5.3) for K we note that our calculations 

(curve 1) at low energies are quite near the experimental 

data (curve 5) of Zapesochnyi and Shimon (125), but the 

fall in cross-section is very rapid compared with the 

slow decrease of the experimental cross-section. The shape 

of the experimental curve does not agr-e with any of the 

theoretical curve. The Born calculations (curves 2 and 3 ) 

of Vainshtein et al. and McCavert and Rudge are quite 

close to each other but higher than the experimental data. 

For Rb (Fig.5.4) the present calculations (curve 1) 

at low energies are higher than the experimental data 

(curve 4) but at moderate= and high energies they tend to 

lie about 40/. lower than the data. The shape of the 

classical curves at low and moderate energies is identical 

to that of the Born approximation (curve 2) a feature which 

seems to be common for all alkali atoTUs. The high energy 

behaviour is of course di'l ferent. 

For Cs we note that our calculations (curve -1 ) agree 

very well with the data (curve 6) of Nolan and Phelps(126 ) 

in the available energy range. The shape of the curve 

also agrees with the Nolan and Phelps curve. The calcula-

tions (curve 2) of Sheldon and Dugan(127) based on 
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Gryzinski's method with a d-function distribution for 

the atomic electron are sicnificantl,T lower than the 

present calculations and the experimental data of 

Nolan and, Phelps. Beyond 10 eV the present calculations 

merge with the Sheldon and Dugan calculations. The data 

(curve ?) of 2._ pes,  c`ri ivi. and Shimon (125) lie much above the 

present calculation and also disagree markedly with the 

data of Nolan and Phelps. The calculations (curve 3) of 

1-a sen (128) based on modified Bethe approximation are 

within 20'/. of experimental data of Zapesochnyi and 

Shimon whdreas the calculations of Vainshtein et al. 

using Born approximation (curve 4) and using their model 

(curve 5) disagree with either of the experimental data. 

In all the alkali atoms a common feature obs-

erved is that the cross-section first rises rapidly 

near the thr<:shold, attains a peak' value and then 

declines suddenly. Due to the rapid fall-off with electron 

energy of the classical approximation cross-sections, 

they are necessarily smaller than the Born approximation 

cross-sections athigh energies. In the other theoretical 

calculations and in the experimental data we notice a 

flatter maxima and the cross-section after attaining a 

peak value decreases very slowly at higher energies, in 

cnntrp st tr the classical calculations. Except for the 

data of Nn.1an and Phelps where a sudden decline is 

.Dbsevod 9  none :cif the other data demonstrate this feature. 

The classical cross-sections at high energies (greater 
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than about 20 times the threshold) decrease monotonically 

following a l/E2dependence whereas the quantal calculations 

give a 1 log E2type of behaviour at high energies. 
E2 

From the above study of the excitation of alkali 

atoms by the electron impact we can conclude that the 

results based on the classical method are only qualitative. 

However, they are more reasonable than the calculations 

based on Gryzinski's model. The use of quantal momentum 

distribution for the bound electron is more justified 

than either the 8-function or the exponential distribution 

which is tailored to give a correct high energy behaviour. 

The general disagreement of the present classical calcula-

tion with experiment is also due to the fact that 

classically the excitation process is defined with a 

lesser degree of confidence, because the energy transfers 

are small and it becomes difficult to correlate the 

classical energy continuum to the various quantised 

angular momentum final states. Classically one defines 
only energy interval and the excitation f•,,r these intervals 

is calculated. No account of spin etc. is taken. Recently 

Flannery (129) ha!e tried to improve the classical theory 
for studying the excitation processes. 

Further we also see that none of the theoretical 

calculations (except probably the calculations based on 

close coupling and Glauber approximation, shown in 

fig. 2.3 for lithium) for any of the alkali atoms give 

a satisfactory agreement with the experiment. They give 
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cross-sections which are in general much higher than 

the experimental values. The shape of the 'quantal 

cross-sections also (except for high energies) does 

not agree with the data . 	In all the cases the quantal.' 

calculations based on the model of Vainshtein et al are 

closest to the experiments:_ but these calculations could, 

not be relied because of certain unjustified mathematical 

simplifications(as discussed in Chapters 1 and 2) in the 

evaluation of cross-section$, although these include the 
important effect of repulsion between the electrons in the 

wavefunction. 

The amount of experimental information for these 

transitions is meagre and conflicting. The datas by various 

workers differ widely with each other at all energies. 

Under these limitations it becomes difficult to assess 

the accuracy of the various theoretical methods. The 

classical calculations for excitation of atomsare reasonably 

good where rough estimate of cross-sections are required 

in a quick simple analytical way. For ionization of 

alkali atoms by electron impact the classical calculations 

are more accurate and valid and satisfactory agreement 

with experiment is noted (116 ). 

5.6 The exchar~je classical approximation 

Burgess(44) tried to improve the classical theory 

by tre: ting distant collisions with the impact parameter 
method, the close cnllisi,)s classically and including the 
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exchange effects. In this way he obtained a correct 

threshold and high energy behaviour for targets. 

For the close-collisions he assumed that the 

incident electron with initial kinetic energy E2  gains 

a kinetic energy IN and simultaneously loses the same 

amount of potential energy before it interacts with the 

atomic electron, which is assumed to be bound with this 

energy W. In this symmetrical model both electrons are in 

the same potential field during the interaction. Burgess, 

used quantuum mechanics to treat the collision between 

identical particles. The exchange and the interference 

effects are included. The initial and final states are 

treated classically, in terms of an orbiting electrr n 

with definite initial and final kinetic energy, the 

change in kinetic energy being rel"ted to the angle of 

scattering. Burgess combined the above 'binary encounter 

theory with the impact -parameter method for ,distant 

encounters. In the derivation of an expression for the 

cross-section Burgess made the unrealistic assumption that 

the collision cross-section is invariant for transforma-

tion from the centre of mass to the laboratory coorrtinates, 

which is . incorrect., In reality only the collision rate 

is invariant. 

Vriens(45) obtained the cross-section formulae for the 

symmetrical collision model, which are simpler and give 

better agreement with experiment as compared to the 

Burgess formulae. 
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The cross-section formulae are calculated using 

the symmetrical and the antisymmetrical wavefunctions 

If the corresponding cross-sections are cs" + and 	, then 
the total cross-section is (- _ . ct- + + 4 c' 

'Mott and Massey (2) have expressed the scattering 

cross-section a- (8,O) in terms of the scattering angle 6 
and the energy transfer LSE. Since 8 and LSE are dependent 

on coordinate transformation Vriens has expressed the 

cress-section as a. function of momentum transfer P. For 

one collision 6P is same in all coordinate systems moving 

with respect to each other with a constant velocity. 

Following this change of variable and including the effect 
of the exchange of electrons, the differential cross-

section 

 

 for the momentum transfer 6P and simultaneously an 

energy transfer LSE is given by (45) 

4m2e 	1 	1 	20 
°L.E,LAP~1f d(LP)d(E) _ --'-', 1/2 _ 4 + .- 4 .~ A.~2 2 d(LAP)d(LSE) , E2 p1X 	C.P 	L_S 	OP Lis 

• • (s.3?) 

where the first, second and third terms are the direct, 
exchancje - and interference terms respectively, 

= cos (- 	-- ,fin S) 	 .. (s.36) p2-pl 

2' Pl ; 1'2, pi are the initial and final momenta of the 

incident particle and th,- tomic electron respectively and 
p = (gym t )1~2 where P is the Rydberg energy. 
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The energy and momentum transfers are 

dP =p2-p2 = pl-pj 

AE = E9-E2 = E'-El 	 .. (.39) 

LS p2-pl 

X is defined as 

X = -cs2 + 2 (1p1.L'P)(p2.QP)cos; +  
.. (5.40 ) 

with co sg = p2 • pl • 	' 

Assuming f (0) = 1 sin9f and then integrating over 9S 

we get 

+ 
	d(ISP)d(6E) = 	o ~' E, AP (91)1 sing dj d(\P)d(L\E) .. (5.4J) LS 	2 

Next integrating 1E t 	d(P)d(E)  first over DP between L`, L1~' 
the limits determined by the law of conservation of momentum 

for two electrf-)ns given by 

pj-pl •< LP < p{+pl 	p2-p2 .< DP ,< p2+p 	.. (5.42) 

and then integrating over nE between the limits U to E2 

for ionization and Ur to Un _1 _l for excitation, the following 

cross— section formulae are obtained. 
4 me 

(5.42) ) Qion E + E2+U ( U 	E2 	3 1 ( - E )- Ems^- .. (5.42 
2 

and 

Qe xc = Qd + Qe + Qint 	 • • (s.4-) 

where for E2 > 'Jn+l 



-118- 
4 

d 

	

E1+E2+T1} 

ite
[ 

n 	n +1 

e 
Qex-(E1 + E2+U) (E2+U-Un+1 ) 	(E2+U-U) + 3 ( (E2+U-U 1 )2 

1 
- 	) ..  

(E2+U-Un )2 

-it e4 	1 	(E,+U-Un )Jn+l - 
Q int- (E1+E2+U E2+U)  

Qd' Qex and Qint are the direct, exchange and interference 

cross-sections respectively. \Jriens(45) has shown that 

for E2<Un+l the upper limit of integration in excitation 

process should be replaced by E2 instead of Un+l , i.e. 

in the above expressions forQd 9 ex and Qint:Un+l 
is replaced by E2. 

With the help of equation (5.31) we express the 

equations (5.43) and (5.44) in terms of the dimensionless 

variables 

	

e4 	 2 
U2 (s,t) 	2 .~. (1_.)+ 3t2 (1- ~)-~n r._,_.2,~~

J (s +t +l) 	s 	S 	L (s +1) 

.. (5.48) 
and 

4 
U2Q(s, t, n) = 

S2 2~ 	(2 - 	)+ 2.21 - 4 )+ ( 	2 ^ 
2 (s+t+~)—m 	r 	m 	r 	(s+l--r) (s+l 

	

2 	1 	1 
....., 

+ 3 	{ (s2+1r2 )2 	(s2+1-2 )2 

(s. +1-m )r2 _,e -- 	 .. (5.4 9 (s'-+I) xnR. (s2+1-r )m2 
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We have used the equations (5.48) and (5.49) along 

with a quantal momentum distribution function for the 

bound electrons (eqn.(5.36)) to study the inelastic 

scattering of atoms with two outer electrons. In section 

5.7 we discuss our results for the ionization of Be,Mg 

and Ca by electron impact. 

5.7 Cross—sections for electron impact 
ionization of BL, Pr g and Ca atoms. 

Figure 5.6 displays the various calculationsfor Be. 

Also shown are the experimental points at 75 eV of 

Chupka et al• (132) and Theard and Hildenbrand(133). In 

the low energy region close to the maximum value of cross—

section our calculations (curve 1) are within 25. of the 

quantal calculations (cu r.•es 2 and 3) of -  Peach(13O). Beyond 

50 eV our calculations are very close to those of Peach 

using Ochkur approximation (curve 3), and merge with them 

at energies beyond 80 eV. Our calculations also agree 

well with the experimental data of Chupka et al. at 75 eV, 

but disagree with the data of Theard and h_`_ldenbr=od (133 )at 

same energy. The calculations of McF rland(l31) based 

on the Grp/zinski's theory (curve 4) merge with the present 

calculations for energies beyond 260 eV, and in the lower 

energy range they are about 207. higher. 

Figure 5.7 displays the electron impact ionization 

cross--section of Mg for incident electron energies upto 

500 eV. It is observed that the present calculations (curve 1) 
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in the low energy region are in good agreement with 

the calculations of Peach(130) using Born exchange approxi-

mation (curve 3) and are within a factor of two with the 

calculations of Peach using nchkur approximation (curve 4). 

At moderate and high energies there is a large discrepancy 

between the present calculations and the quantal calculations. 

At low energies also the shape of the curves tend to be 

different. The fall of the quantal cross-s3ctions 

beyond the peak value is very rapid compared to the slower 

rate of fall for the classical cross-sections. The classical 

calculation (curve 2) of McFarland based on the Gryzinski 

model and with an exponential velocity distribution of the 

bound electron appears to be in better- agreement with the 

quantal calculations in the intermediate energy range. 

But these calculations cannot be relied on as they are 

based on an inexact classical formula and use an incorrect 

velocity distribution• There is no experimental data 

to compare with 	the various theoretical calculations. 

Figure 5.8 shows our results_ for Ca. Curve 1 is the 

plot of the experimental data of McFarland (131) and 

curve 2 shows our calculations. ',Ve see that the values 

of cross-sections in the present calculations are much 

lower than the experimental data. They are within a factor 

of 3 everywhere. McF1rland has pointed out that the 

experimental work does not exist from which one can 

normalise to provide a separation for the various degrees 
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of ionization of an atom. A fraction of the cross—section 

is due to the production of multiply charged ions. This 

may occur through the ejection of two or more electrons 

at certain incident electron energies. Therefore in 

his calculation based on the classical Gryzinski model 

(curve 3) McFarland' compares the total single ionization 

cross—section added to twice the cross—section for double 

ionization, with the experiment. A good agreement is then 

found. Since our calculations do not include the contri-

bution from the double ionization it yields a poor agreement 

with the data. The shape of our curve is however very much 

similar to the experimental curve. 

From the above study of the ionization of the 

atoms with two outer electron atoms, we can say that the 

classical theory which includes quantal features like 

exchange and interference, is capable of predicting the 

ionization cross—sections fairly satisfactorily. Little 

work based on quantum mechanical methods has been reported 

for these species and experimental data for single 

ionization in these systems are also meagre. The main 

advantage of these classical cal ct1at-ons vvor the iu unta 

calculations 

 

 is that one can obtain a fairly accurate 

estimate of cross sections of such complex atomic systems 

in a simple way. 
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Figure captions 

Fig.5.1 	Electron impact excitation of Li (2-s-2p). 

- 	Present calculations, curve 1; calculations of 
Vainshtein et a1. (26): 	•x_ using Born approximation, 
curve 2; ---••   --~-~ using their model, curve 3; 	... -_ _.. 
calculations of McCavert and Rudge(118), curve 5; Experimental 
data: ..... Haft(119), curve 4; Zapesochnyi and Aleksskhin 
(ii?), • 

Fig. 5.2 Electron impact excitation of Na (3 s-3p ) 
----Present calculations, curve 1; calculations of Vainshtein 
et al.: -._...__ Using Born approximation, curve 2,.--_.. 
using their model, curve 7; ---....- - calculation of 
ililliamson(123), curve 61— ... 	calculatioh of Mcravert 
and Rudge, curve 5; calculations of Seaton(l22):—A_using 
modified Bethe approximation, curve 4.,---`'--- using impact 
parameter method, curve 3; -.--- 	close coupling calculation-s, 
(124), curve 8; Experimental data: • • . • . Haft(119), curve 9; 
••4 Zapesochnyi and Aleksskhin. 

Fig. 5.3 Electron impact exc i.t~tir'n of K(4 s-4 p) . 
------ Present calculations, curve 1; calculations of Vainshtein 
et al.: —•--- using Byrn apprrximation, curve 2;---• • 	using 
their model, curve 4; - 	•.._._.._- calculatirn of McCavert and 
Rudge, curve 3; ..... 'Experimental data, Zape sochnyi and 
Cl-+4v 	.(,cr, \ 	0r -v /, curve J. 

Fig. 5.4 	Electron impact excitation of Rb(5s-5p). 
----°° Present calculations, curve 1; calculations of Vainshtein 
et al.: ---•— using Born approximation, curve2, 	•- - 'u8ing 
their model, curve 3; • • • • • Experimental data Zapesochnyi 
and Shimon , 	curve 4. 
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Fig.5.5 	Electron impact excitation of Cs(6s-6p). 
----°--- Present calculatir,^s, curve 1; calculations of 
Vainshtein et - al.: ---• 	using Born approximation, curve 4,. 
----• •--°- using their model, curve 5; -'--• • •--'^ calculation of 
Hansen (128 ), curve 3; --- -....-- calculation of Sheldon and 
Dugan(127), curve 2; Experimental data. ---- Nolan and Phelps 
(126); curve 6, • ..... • • Zapesochnyi and Shimon , 	curve?. 

Fig.5.6 	Electron impact ionization of Be. 

Present calculations, curve 1; calculationsof Peach (130):' 

-`--• ••~-°° using Born exchange approximation, curve 2,---'•' - 
using Ochkur approximation, curve 3, 	•---•• calculation 
of McFarland(131); Experimental' data: G Theard and Hildenbrand 
(133); 	Chupka et al. (132 ). 

Fig.5.7 	Electron impact ionization of Mg. 

Present calculation, curve 1; calculation of Pegch: 
---°• ----. using Born exchange approxi:Iation, curve 3,----• • •---- 
using Ochkur approximation, curve 4; °°--•--- calculation of 
McFarland, curve 4. 

Fig. 5.8 	Electron impact ionization of Ca. 

---°° Present calculation, curve 2; ---•--- calculation of 
McFarland,curve 3; ----- Experimental data of McF,,rland,curve 1. 
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CHAPTER 6 

PROTON IMPACT EXCITATION OF ALKALI ATOMS 

Inelastic collisions of electron with atoms have 

been widely investigated both quantum mechanically and 

classically, whereas comparatively less work has been reported 

for the inelastic collision of atoms by proton impact. 

Also,the experimental information for the proton atom 

collisions is less compared to the electron-atom collisions. 

Most of the calculations for the proton-impact excitation 

of atoms have been confined to the simple systems like 

hydrogen and helium. Quantum mechanical calculations for 

transitions to different excited states in hydrogen and 

helium h,.ve been based on Born approximation (134-136), 

coupled-state approximation (137) and the impact parameter 

method (13B,13911). Experiments for the excitation of helium 

by proton impact have been performed mostly by Thomas 

and Bent (140), VandenBos et al. (141) and Park and 
(142) 

Schowengordt4 Little attention has so far br'en given to 

the excitation of more complex atoms-:e. g. ; the alkali atoms 

by proton impact either theoretically or experimen'Caily.  . 

Seaton(122) was the first to carry out a partial wave 

analysis for the 3s-3p transition in Na using the Bethe 

approximation. ail and Skinner(143) have used the impact 

K?c,̂ra121E: i,F r 71F t  j;;;. for the 3s-"3p excitation of Na in t'Jhich 

they h ve accounted for the effects of distorti')n and 
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coupling between 3P0 and 3P+1 states. Also included in 

their- calculation is the correction introduced due to the 

contribution from the back-•coupling,i.e., from the p-~q-•p-~q 

sequence. Bell and Skinner point out that in the excitation 

of Na by protons, 3s-3p transition is influenced by the 

3s-3p- 3s-3p sequ,>nce. However, the existence of sequences, 

enabling the final state to be reached indirectly through 

intermediate states does not necessarily make the cross-

section greater than it would otherwise be. Because of 

the interference the cross-section may be diminished. In 

general the tendency of the sequences is to strengthen weak 

transitions and t:-- weaken strcr.g transitions. 

In their calculation for Na, Bell and Skinner have 

used the wavefunction for the ground and excited states of 

Na as given by Fock and Petrashen(144). Since the cross-

sections are very sensitive to the choice of the wave-

function for the initial and final states, we have redone 

the calculation of Na using more accurate wavefunctions and 

in the framework of Born approximation. We have also 

performed the calculations for some other alkali atoms 

lithium   and cesium. Accurate wavefunctions for the like  	u~.~. 

ground and excited states of these alkali atoms are now 

available. For lithium the wavefunctions for the ground 

state and excited state are given by equations (2.21) 	and 

(2.37). For sodium and cesium the u,iavefunctions are given 

by .-: gus (145) yi d Stone (3.46 ),respectively. We have used 

those wavefunctions to calculate the proton impact 4 
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excitation cross-section for the 2s-2p, 3s-3p and 6s-6p 
transitions in Li, Na and Cs using the first Born approxi-

mation (147). Since not much theoretical or experimental 

information is available for the above transitions,we have 

also calculated for comparison the cross-sections for the 

above transitions on the basis of the classical binary 

encounter approximation. 

The classical approximation for the proton impact 

ionization of atoms has been used by Vriens(148), Gryzinski 

(39) and Garcia et al. (149 ). The expressions for the 

differential cross-sections obtained by Gryzinski contained 

certain approxi.mations.Gerjuoy(150) has derived an exact 

expression for the differential cross-section and his results 

have been used by Garcia et al. (149) to calculate the 

ionization cross-section of atoms. Vriens(148) has derived 

the expressions for differential cross-section in a different 

way by using the momentum transfer and the velocity of the 

incident particles as variables. However, Vriens's, formula 

was derived under the assumption that the proton mass was very 

large compared to the electron mass. In this limit, 

Gerjuoy's formula also reduces to Vriens's formula: We 
0 

therefore refer to this as the Gerjuoy-Vrien.s  formula for 

proton . impact ionization. We have extended the Gerjuoy-

Vriens formula for ionization to the case of excitation of 

atoms by proton impact (151). These formulae can be used 

for a quality :,ive comparison of the excitation cross- 

section obtained from a quantal calculation. In s,:ction 6.1 
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we describe the quantal theory based on the Born approxima-

tion for evaluating the excitation cross-section of alkali 

atoms and in section 6.2 we discuss the classical theory. 

In section 6.3 we discuss the results for Li, Na and Cs 

atoms. 

6.1 Quantal calculations based on the Born approximation 

The collision cross-section for excitation of an 

atom from an initial state p to a final state q by proton 

impact is given by (83 ). 

1  max 
cr" (p,q) = N 2°`" 	INI2 K dK 	.. (.1) 

27th v 
Imin 

where K = Kp-Kq denotes the change of momentum and the 

matrix N is 

N = 	$*V i qd ?- 
 J 

V is the interaction potential. i.~p and IITq are the wavefunctinns 

of the total system in the initial and the final states;. 

K =Mv/h and K 
q 

_Mv/h whereto is the reduced mass 
p  p  

of the colliding system, vp and vq 3C the relat'i,ve veloci-

ties ties of motion when the atom is in the state p or q respect-

vely . The nave functions 1p and "+IIq are expressed as 

T,IJ p 	= 9!p (rl 	rc ) e xp (i K. R) and 

a = 0 q (rl ,rc ) exp(i 	Kq .R) 	 .. 

R is the position vector of the incident proton relative 
to the nucleus -)f the target atom. This interaction potential 
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V can be written as 

2 zb _.b _ 
) 

e ( 	
'R — r ' 	IR— r l ~ 	Z 	c 

.. (6.4 ) 

where Zbe is the charge of the incident particle and Zae 

is the nuclear charge of the target atom. Analogous to 

equation (3.2) the atomic wavefunctions can be expressed as 

9f p (rl ~ rc ) = u(r0 ) u(r1) 

Q~g(rl lrc ) = u( 0 ) Uq (rl ) .. (6.5) 

Up (r1) and Uq (rl ) are the ground and excited state wave—

functions of the target atom. 

In the present analysis,,we treat the alkali atoms as 

essentially one electron systems. The core is assumed to 

be inactive and frozen. The valence electron is supposed to 

move arcund the nucleus of charge unity. This assumption 

will not lead to any significant error as it has been seen 

earlier in the case of electron alkali atom collisions that 

the contribution of the core is almost negligible. With such 

an assumptionthe excitation cro ss--section becomes 
_  K 

max 

I I(p, q) 12 K 3dK 	(,2a2) 	.. (6.6) 
s 	'K .  min 

with 

I (pa q) _ I Un(r1) Uq(rl) eiKr 1 drl 	 .. (.7) 

S = 	m v /I. 
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LE(p,q) 	m LE(p,q} 
. .  Km in = Ko- 	K q _ 2 S'° 1 + 4 M s2 

and 	Kmax (=Kp+Kq ) is large enough to be taken as infinity. 

~E (p, q) is the thrz shnld energy in units of 'H' the ioniza-

tion potential of hydrogen. 

We have used Eq. (6.6) to evaluate the cross-section 

for the excitation of Li, Na and Cs atoms. The integrals 

occurring in equations (6.6) and (6.7) have been evaluated 

numerically. The results are presented in section 6.3. 

6.2 Extension of the classical theory to the 
proton impact excitation of atoms 

In the binary encounter collision model, the excitation 

cross-section from the ground state to a state n of an atom 

due to an incident charged particle of kinetic energy E2 

is given by 
L~r,fl 

ccxc 	Z Ni < 	,E(v2,vli )d (L.E) > 	if E2>Un+l 

Un 	 .. 
~ E1 

rrexc ` L Ni < 	CIE(v2,vli )d(tE) > 	if Un<E2<Un+l 
i 	L~ n 	 .. (6.10) 

where GCE is the cross-section for the each---j-1e of energy E. 

The proton atom collision cross-section 	E d(E) for a 

maximum energy transfer LSE is given by (148), 
4 	2 2 

d (tsE) _ 2~'~. 	( "~2 + m- ?) d(LE) 	 ,. (6. 1_t m v2 	L\.E 	3tE 
if LSE < 2m v2(v9-v11) 
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~ e4 
(cr,E )B d(QE) = 4v2- 2(vi-v1i )3 d(&E) 

• 2 li 

if 2mv2 (v2-vli ) 4t.E<2mv2 (v2+vli ) 
.. (6.i2) 

d(DE) = 0 	if LSE >, 2mv2 (v2+v11 ) 

where v t is the final velocity of the atomic electron 
determined by 

-. m(vi2 - vii ) _ LE 	 ..,. (6,14) 

In the calculation of the total cross-section for 

the proton impact excitation to a state n, equations (6.11) 

to (6.13) have to be integrated over the energy and the 

range of energy integral is determined by the conditions 

put forth in equations (6.9) and (6.10) . This leads to the 

following expressions for the excitation cross-section, 

when E2 > Un+l 	we have  

2mv2 (v2-vl ) 
Q= 	 (crcE )A d(LE) 

n 

F Un +l 
(cr )A d(E) 

Un 

Un+l 
Qi= (CT- ) d(E) 

U n 

if Uri ,< 2mv2 (v2-vli ),<Un+l 

.. (6.15) 

If 	 2 2 l i , 	-n+l 
.. (6.16) 

if 2mv2 (v2-v11 )`< p£2mv2 (v2+v1i ), 
(6.17) 

For the case when Un -S E2 << Un+t 

2mv2 (v2-vli ) 	 4mv2 (v2+v1i ) 

= 

	

	 (c~~ E )A d(E) + 	 (a°GE)B d(E) 
uT 2mv2 v2 -v r1 	 ~  

if Un \< 2mv2 (v2-v1 i ) .. (6.18) 
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2mv2 (v2 +v.L i ) 

Q = 

	

	 {°CE)8 d(LtE) 	if 2rnv2(v2`v.ii )<U2mv2(v2+vli ), 
U 

.. (6. i9 ) 

Q= 0 
	 if Un >, 2mv2 (v2+vli) .. (6.20) 

The integrals in the above equations are evaluated. 

Here we express the results in terms of the dimensionless 

variables which are defined by equation (5.31 ). 

The, cross-section are 

when E2>Un+1 

4  1 	2 t2 

4 - 	( 

1 	t2 + ___  
s2Im2 	3m 	- 4s(s -t) - 24s2(s-t)2) 

if m2 4s(s-t).<r2 	.. (6.21) 

3 4  
s U m 	r

2 	
m 	r 

if 4s(s=t) >, r2 	.. 
2 	2 

	(6.22) 
4 

	

— 3t 2 +t3 )( 	- l ) ± z( lz _ ~) 
s2U2 	 m 	r 	m 	r 

1 - 	-  
+ 3t 	4 	4 r 	 m 

if 4s(s-t) \< m2 < 4s(s+t).. (6.23) 

and when U. < E2 ;< Un+1 
2 	1 

Q= 4 (1 + 2t2 — -- 	) 
s U2 m 	3m4 	4 (s2-t2 ) 

if m2 ,< 4s(s-t) 	.. (6.24) 

4 	1 	1 	1 	3 	2 2 3/2] 
Q V 	+ ..._ + ,.~ ~. 2 s +t' - (m +t ) 

	

U at (+t) 	2m 	3m t 
2 

if L s (s— t) '< m < 4 s ( s+t) .. (6 . 2 15 ) 
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Q = 0 	 if m2 >~ 4 s (s+t) 	.. (6.26) 
• In the abnve equations Q is expressed in units 

2 of Tuao - The expressions (6.21-6.26) are then averaged over 

the velocity distribution of the bound electron of the 

target 'tom. Any type of distribution function can be used. 

Taking a 6-function velocity distribution for the bound 

electron given by 

f(v1 ) = S1vl-(2U)1~2 i 	 .. (6.27) 

and using eau-tion (5.32), we get the following expressions 

for the excitation cross-sections, 

when E2 > Un+1 

r 2 .~ 24, 	 e_...._..... 	_ _.~.s..2 
exc 	i s U Lr;, 	3m 	4 s (s-1) 	24s (s-1) 

if m2 	4 s (s-1) < r2 	.. (6.28) 

4 i 	s u -am 	r 	m 	r 
if 4s(s-1) >, r2 	' .. (6.29) 

 Ni 	2 ~.r —(2S1)(- _ 	,) + 2 (2 — 2 

(r2+ 	(m+1)3/2 -~ 

if 4 s(s-1) 	m2 \< 4s(s+1) 

and when Un ,< E2 ,< Un±1 

- i i s2U2 m2 	3m - 4 (s2 1 ) 
if. m2 \< 4s(s-1) 	.. (6.31) 
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4 
Ni 22E8+1)  + 

	+ _1 	2s3+1- (m2+1)3/2  

	

i 	s U 	 2m 	3m 
if 4s(s-1) <. m2.< 4s(s+l) 	.. (6.32) 

	

= 0 	 if m2  > 4 s (s+l) 	.. (6.33) 

The equations (6.28) to (6.33) represent the formulae 

in closed form for computing the excitation by protons 

under the classical impulse approximation as advocated by 

Gryzinski. These formulae are very useful since they are 

simple in nature and can be readily evaluated. These are 

applicable to any atomic system. For qualitative predictions 

of excitation cross-sectionsthe=`se can be justifiably used. 

One can also use a quantal velocity distribution for the 

bound electron along with equations (6.22) to (6.27). In 

such a case the final cross-sections have to be evaluated 

numerically. 

'1e have used eauations (6.28) to (6.33) in our 

calculations for the excitation cross-section of the 

alkali atoms by proton impact. In the next section we 

compare our calculations based on Born approximation and 

the classical impulse approximation with other available 

theoretical calculations. 

6.3 Results and discussions 

Figure 6.1 shows 	plot of the 2s-2p excitation 

cross--section of lithium, atom by protons of energies 

uptc Ebout 1000 ?", V. Curves 1 and 2 are our calculations 
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based on the Born approximation and the classical approxi-

mation. No other theoretical calculation or experimental 

data for this transition are available. For the sake of 

comparison we have plotted (curve 3) the Born cross-sections (9) 

for electron impact excitation of lithium at equal impact 

velocities of the electron and proton. It is observed 

that there is a fairly good agreement between the present 

calculations and the Born calculations for electron impact 

in the range of energy beyond the threshold. After a certain 

value of energy the two curves merge. The classical calcula-

tions also give good agreement with the Born calculations 

for energies beyond the threshold.At high energies, however, 

there is disagreement between the classical and quantal 

calculations. This is because the fall of cross-section in 

the quantal calculation is like E2Ikn E2 whereas in the 

classical caicu1 at!.ons as Ell . 

Figure (6.2) shows our calculations along with other 

theoretical calculations for the excitation cross-section 

of the 3s-3p transition in Na. Curves I and 2 are the 

present calculations based on the Born and the classical 

approximations respectively. We see that the calculations of 

Bell and Skinner (l43) using the Born approximation (curve 3) 

differ with our Born calculations in the region of energies 

from near the thr.:shold to about 200 key. This discrepancy 

in the two Born 	 i duo to the different ch ice 

of the w :vc=:f ct ons~f the ground and excited states. The 
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wave functions used by Bell and Skinner were those of 

Fock and Petrashen (144: ) whereas we have used the more 

recent and accurate wavefunctions of Bagus(145 ). Our 

calculations based on the Born approximation are therefore 

expected to be more reliable as compared to the calculations 

of Bell and Skinner. The results of calculation of Bell 

and Skinner using the impact parameter method,(curve 4);  

a nd also taking into account the effects of the distortion, 

the rotation-coupling and the back coupling, are quite 

close to the present calculations beyond the threshold 

region. In this low energy range the impact parameter 

calculations yield a lower value of the cross-section 

compared to our calculations. The classical calculations 

differ widely from the present calculations at high. 

energies. In the high energy region there is a, good agree-

ment between the, present calculat Lons and the Born calculat-

ions (curve 5) for electron impact excitation of .Na at 

equal impact velocities (9). 

Figure 6.3 shows the 6s-6p excitation cross-section 

of Cs. The present Born approximation calculations (curve 1) 

and the Born calculations for electron impact at equal 

impact velocities (9) agree well. The classical calculation n 

differs much with the quantal calculation , the difference 

increasing at higher energies' ('-' 100 KeV). In general for 

all the alkali atoms studied the classical cross-sections 

are lower than cJ e quantal cross-sections. Further in 

the classical calculations for proton impact the onset of 
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1/B2  behaviour occurs much sooner after the maximum. 

than in the case of electrons. 

Since no experimental data are available, it is difficult 

to draw conclusions about the accuracy of either of the 

methods. From the comparative study of Na cross-sections, 

however,it appears that the Born approximation gives a 

better estimate of the cross-sections The choice of the 

wavefunction is also important as it considerably affects 

the cross-sections at low energies. Improvements in the 

quantal method used by us are nn ssible if some effects of 

coupling to higher states are included. Also in a more 

exact trc-atment,the effect of the core electrons should be 

included. 
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FLure ca tions 

Fi9.6.1 	Proton impact excitation of Li(2s-2p)- 
Present calculations: 	using Born approximation, curve 1, 
--R-•---- using classical theory, curve 2; ---- electron 
excitation cross-'sections (9) at equal impact velocities, 
curve 3. 

Fig. 6.2 	Proton impact excitation of Na (3 s-3p ). 
Present calculations: --- 	Using Born approximation, curve 1> 
---•°--°- using classical theory, curve 2; calculations of Bell 
and Skinner(143 ): ----•--~ using Born approximation, curve 3, 
--~--• • -° using impact parameter method, curve 4; ---- electron 
excitation cross-sections (9) at equal impact velocities, 
curve 5. 

Fig.6.3 	Proton impact excitation' of Cs(6s-6p). 
Explanation remains the same as in fig.6.1. 
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CHAPTER 7 

INELASTIC COLLISIONS OF ELECTRONS WITH IONS 

The classical binary encounter approximation gives 

a reasonable description of the phenomenon of inelastic 

collision of electron with atoms as seen in the previous 

chapters (5 ?nd 6). It is more reliable for the ionization 

process where it provides a simple framework for estimat-

ing the cross-sections which turn out to be quite 

satisfactory at higher energies and are within a factor 

of 2 everywhere. The gre -.,test advantage of the classical 

approximation is in the study of multi-electron atoms and 

, diatomic molecules (152) where even the simple Born approxi-

mation becomes unwieldy. The numerical integrations 

involve' in quantal calculations become very heavy. Not 

much effort was devoted initially to the study of the 

inelastic scattering of electrons from ions. For ions, 

complications arise because of the residual field of the 

ion, Malik and Trefftz (153), Burgess (154) and Hill (155 ) 

used the,  Born approximation and Schwartz and Zirin (156 ) 

the distorted wave approximation to calculate the electron 

impact ionization. Recently Moores and Nussbaumer(157) 

have used the Coulomb-Born approximation, in which the 

Coulomb field of the ion is considered, to calculate the 

ionization cross-section of L1+  and Mg+. Various workers 

Omdivar(158), Economides and McDowell(159), Kim and 
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Innkuti(160) and Bell and Kingston(161) have used either 

the Born or Beth; approximations for the ionization of 

He+  and Li+. Experimental data for the ionization of a 

number of ions, and excitation in few species are now 

available. 

For heavy ions the quantal calculations become very 

unwieldy. For calculating the ionization cross—section of 

positive ions in the classical binary encounter approximation, 

Burgess(44) introduced an outside factor F to account for 

the focussing effect of the long—range Coulomb field of 

the ion. The factor F is given by F = (1 + Ze2/E2r) 

where r is the initial mean radius of the atom or ion, 2' is 

the initial charge of the ion and E2  is the incident energy 

of the electron. This should only be viewed as a_ semi—

empirical factor. Lotz(162) has attempted, to express the 

functional dependence of the ionization cross—section on the 

incident electron energy by an empirical formula which is 

valid for a large number of atoms and ions. 

Both the 'above approaches are either semiempirical 

or purely empiric,-,1, A systematic 'approach to modify the 

classical theory for the ionization of ions was first made 

by Thomas and Garcia (4?). They have considered the effects 

of the residual ion field on the cross—section within the 

framework of binary encounter approximation. The Coulomb 

field of the ion distorts the linear path of the incident 

electron. The curvature of the path of the electron results 
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in a magnification of the cross—section for the ionization 

of ions as compared to the neutral atoms. 

For assessing the accuracy of the classical theory 

for ions.,we have. extended it to the study of wide variety 

of inelastic processes (163-168). From this study we have 

concluded thatt the classical model for the study of 

inelastic collisions with ions is as reliable as the 

Coulomb—Born approximation. In section 7.1 we describe 

the classical theory of the ionization of ions. In section 

7.2 we make use of this theory for the study of the ioniza-

tion of a number of ions by taking different velocity 

distributionsof the bound electron. In section 7.3 we give 

the extension of the theory to excitation process 	and 

the results for excitation of lithium like ions are 

discussed in section 7.4. In section 7..5 we give the rate 

coefficients for the excitation and ionization of lithium 

like ions. 

7.1 Theory for ionization of ions 

:re consider the impact of an electron of kinetic 

energy E2 on a fixed nr;s,'_ ive ion of net charge Z'. The 

incident electron undergoes a binary collision with the 

bound electron of energy U, at a distance r, from the nucleus 

and results in an energy transfer L`.E >, U. The kinetic energy 

of the incident electron at the collision radius .~ is 

E' - E2  + 	}, E2 	 .. (7.1) 2 	c  
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The total cross—section for the energy exchange collision 

is given by (47) 

1 r:2 
CIr ' (E2 , E2, U) _ < 	° Ef (v2, v1 )d (LE) > av 	• . (7.2) 

U 

Since b-)th the ebctrons lie in the positive energy 
state- after collision, the upper limit of the integral 

remains E2. If - a assumoo that o-- ' determines an average 

off axis distance fi from the relation cr ` _ qP2 (Fig.?.1), 

	

the parameters 	and e then determine the trajectory of the 

incident electron in the presence of the asymptotic charge Z', 
prior to the binary collision. This trajectory specifies 

the initial impact parameter b for the incident electron. 

The total cross—section for the ionization is then or= nb2. 

The collision radius z=, depends on the distance of the bound 

electron from the nucleus r, and the electron—electron 

separation b such that the energy exchange LE >/ U can occur. 

Averaging over relative orientatio,nsyield 

~- F3r2 + b2 if rA > b 

	

_ rA+s~ _ 	A 

	

av 	2 2 -- 	
i 	

.. ('7.3 
b13b +r. 	f. rA < b 

For an energy exchange >, U, a is given by 

s = 1 -----v4 	-1)1/2 +l] 	 .. (7.4) 
(E7 U) - 	1 , 

The energy y i , now given by J 1 



-142-- 

3 V r E2+ ~y~.  _ 	if rA > 6 

2 	 .. (7.5) 
3Z'6 E2+ Q-..:2 2 	if rA < d 
rA +3 S 

with rA - 2. Using the equation for the trajectory 
S 

of the electron, the impact parameter b, for the incident 

electron to intercept the collision sphere at an angle 

sine =, is given by 
1/2 1  

b = 	 + [e 2 
+ 	2 2)l/2j 	() 

2 

The total ionization cr':_•ss—section becomes 

E = E'F 	 .. (7.7) 

where 

	

( Z' )2 	' 1 /2 	/2 2 
4 F _ 	fi.++ ? c_Z' ~--. _ -----.~.° 	' 	°1 

r 	 (p~ -P )2 _ 

E = U20- ! 	'U 2g-', p2 = E2/U 
and 	2 Z' (Z' ±l) 	if  p + 

p2 - U 	 •• 	- 
3Z'C. 	 Z'+l < e +.—_-------- if 2 

3L2+(Z 2 - ) 

with L` =([1(P2l)l/2  
2 

The factor F represents the effect of magn if ic'Eation of the 

cross—suction lue to the curvature of the electron's path 
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in the residual field of the inn. Tr, evaluate E':Thomas 
and Garcia have used the exact. expressions given by 
Gerjuoy (.150) fer cr of f (v2, v1) in the condition U~E2-<E2 

and taking EI fixed but arbitrary. The crass-section under 

different c-n-ditinns becn-lrnes 
E2 

' (E , E1, U) = 	iv2,v1 )d ( E) 	if U<E2<E2-E14E2 

' E2-E1 	 E2 
iii d(CE) + 	fri (v2,vZ )d(L\E) 

U 	 E2-E1 E2 	 if U<E2-E1<E2<E2 

U 	 if E'2-E1,<U<E2-<E2 

where (Y7, In) 

- 23 (V2) 
(
E )2` (1-E )3/2(y2  

and 

I 	ii (V2,` 1 )d (CE) = 
 

2 

Using (7.11) we can write 

_ 	 if  
2 

• 3 	- 	2 	(1202 ) 3 /2 t = 3 pl +3-- 	T l/2 	,2 ------- 

3 /2 if ' ' 

= 2 L 	)3/2_ ( 	) .....~  
1 	

f -1,<p1 
3 p 1/2 	2 2 ~ 	 ~ 

ve' ing ~1̀   (s;2, P, 2 ) ;nif r the speed distr huti~n r f 

.. (7.11) 
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bound electrons, we get. 
00 

.. 	(7.13) 

with t2=p1, and f (t) gives the momentum distribution 

function for the bound electrons. Thomas and Garcia 

used, a hydrogenic velocity distribution for the bound 

electrons (Eqn.5.21) and obtained an analytic expression 

for E'. 

'le have used equation (7.13) to evaluate 2'. For f(t), 

in addition to the hydrogenic distribution, we have used in 

some cases the quantal and S-function velocity distribution 

functions. For 	S-function velocity distribution the cross- 

section Z' is obtained in an analytic form 

= 	2' (1- ? )+(i-   1 )1 i if l,< 2- p2 2 2 	k_ 3 02 	~2 

3 	2(_ 2 )3/2 p'  
= 	p 1 < X32 - I 

(-1) 	P2 

3p 	+ 	 (7.14 ) 

For a quantal momentum distribution of bound electrons 

the integral in equation (7.13) is evaluated 'numerically. 

E' thus obtained is combined with equation (7.7) to yield Z. 

The total cross-section ° for the ionization of an ion is 

the s ,ni over1._11_ bound electrons and is given by 
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~i n ~ 

 

um J S 
 0 	over ove4 n iUi2 E 	2P2 i ) j 	 .. (7.15) 
i 

7.2 Cr ss— sectinns for the ionization of ions 
(i) is c+, Ba+, Sr and t\J ion s 

In Fig.7.2 for Mg, we find that our calculations 

at abr.Iut 	200 eV of incident electron energy are within 

a factor of 2 of the experimental data(168) and the agreement 

is better at higher energies. Beyond 400 eV there is very 

little difference between our calculations and the experim- 

ental data. At lower energies (less than 200 eV) our calcula-

tions differ widely from the experimental data. In this 

region the calculation of Moores and Nussbaumer(157) 

gives •a better agreement with the experiment. They have 

pointed out that it is essential to allow for inner shell 

ionization to -obtain the observed behaviour of cross—

section above 68 eV. '1e have also noted this feature in our 

calculations, that beyond this region a sizable contribution 

com=es from th 2p shell and a small contribution from the 

2s shell. Moores and Nussbaaaumer have also stressed that the 

contribution from autoionization will be important. The 

autoionization process involves the excitation of an 

inner shell into a quasibound state with energy in excess 

of the ionization energy, which may subsequently decay by 

making radiationless transitionsinto the continuum. Bely 

(169) has predicted that for sodium like ions autoionization 

should lead td substantial jumps in the cross—section at 

autoioniz~ltion thresholds. Moores and Nussbaumer, find a 
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jump at 57 eV in Mg+  and attribute this to the transition 

ls22s22p63s — 1s22s2  2p53s 3p - 1s22s2  2p6+ e 

The,find that autoionization leads to a small amount of 

structure below the inner shell threshold and autoionization 

increases the cross—section by about 207.  above this thres-

hold. However, the total autoionization contribution 

estimated by Moores and Nussbaumer is much smaller than that 

estimated by Bely. Since we have not included the effects 

of autoionization in our calculations we do not find any 

structure in our results. The experimental data ;however,. 

d0 not show any structure. It is seen that at energies for 

which inner shell ionization and autoionization become 

important, the calculation of Moores and Nussbaumer over-

estimates the cross—section.The shape of the curve using 

classical theory and with the quantal distribution for atomic 

electron, agrees with the shape of the experimental curve. 

Also at moderate and high energies the magnitude of the 

cross—sections obtained by using various velocity distributions 

differs very little. 

In Fig. 7.3 for Ba+  we have shown the contribution to 

ionization cross—section from the different shells. The 

contribution from the inner electrons in the 5p shell is 

much more than from the outer 6s electron, whereas the 

contributions from the 5s and 4d shells are less. Due to 

this dominant contribution of 5p shell, a sudden rise in the 
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cross-section is obtained as soon as the energy of the  

incident electron reaches the threshold for the ionization 

from the 5p shell. A sudden and abrupt rise in the cross-

section by a factor of 3 is also observed in the recent 

measurements of Peart and Dolder (170) at an electron 

energy of 18 V. This rise has been attributed by Peart 

and Dolder to the onset of inner shell excitation leading 

to autoionization. In the low energy rt~gion our results 

compare well with the data and in the high energy region 

the devi==tion from the experimental results is within a 

factor of two. The fall of the experimental cross-section 

beyond the peak value is quite rapid. This is also 

exhibited by the present calculations. The shape of the 

theoretical curve agrees well with the experiment. We have 

shown the low energy behaviour more explicitly in the same 

figure. The rise at 18 eV is shown more clearly there. 

For Sr+ (Fig.7.4 ),we find that a large contribution 

to the cross-section comes from the inner p shell (4p) 

simil,,.r to the case of Ba+. In the total cross-section 

we observe a slight structure at the threshold for 

ionization, from the 4p shell. No experimental data is 

available to compare with the present calculations. 

For w (Fig•?.8b) our calculations using 8 function 

distribution merge with the calculation of Thomas and 

Garcia beyond 30.0 eV of incident energy. The agreement with 

the experimental data in this region is also very good. 



+ + + 	 + I... Ions of alkali metal atoms (Li.  ,Na, 	Na, K , Rb and Cs ) 

Figure 7.5 shows our results for the ionization 

cross-section of Li ion.It is seen that at low energies our 

calculations using both the 6-function (curve 1) and the 

quantal distribution (cruve 2) yield a high value of the 

cross-section. In this range and upto about 350 eV the 

Coulomb-Born calculations (curve 4) of Moores and Nussbaumer 

(157) and the Born calculations (curve 5) of Economides and 

McDowell (159) using length formulation give good agreement 

with the data. Beyond 4.00 eV our calculations using 6-

function distribution agree better with the experiment 

compared to the Coulomb-Horn 	calculations. We notice 

that out of all the three classical calculations (curves 1, 

2, and 3) based on the three- velocity distribution functions, 

the calculation with the quantal momentum distribution. 

agrees best in shape with the experimental data, although 

not that well, if we consider the magnitude. The Born 

approximation calculations of Economides and McDowell give 

nearly identical results than the other calculations above 

about 500 eV indicating that the effect of the Coulomb field 

of the ion becomes less important at these energies. 

Figure 7.6 shows the results for Nam and K+. We 

find that beyond 200 eV for both the ions, there is little 

difference between• our c ilculations and the calculations 

n f Thomas and Garcia, b=ased on 6-function and hyc+rogeni.c 

di~tributi ns r;.:sp:: dive y. For K our calculations are 

within a factor of 2 everywhere of the experimental data 
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and still better beyond 200 eV. For Nat, the agreement 

with the experimental data is not good  for energies upto 

400 eV. Above 400 eV our calculations are within 2n1. of 

the experimental data. 

Figure ?.7 shows the results for the ionization cross—

sections of Rb+  and Cs}  neglecting inner shells, using both 

the hydrogenic and i= function velocity distribution. 

No experimental and theoretical data on impact ionization 

cross—sections Pre available for these ions. 

(iii) Irons of inert gas  atoms 

Figure 7.8(a) Shows our results for Ne+. Our calcula-

tit,ns using a— function distribution merge with the calcula-

tions of Thomas and Garcia beyond 150 eV of incident energy. 

The agreement with experimental data is good for energies 

above 300 eV but at low energies our calculations are higher 

by a factor of two compared with the data. 

For Ar+  (Fig.? .9) we find a good agreement between 

our calculations and the experimental point at the peak 

value obtained by Latypov et a1.(49) In this ion the 

average cross—section obtained using Drawin (174) and 

Gryzinski (39) formulae yield a lower velue.For Kr+, and 

Xe+  (Figures 7.9 and 7.10) the peak—values of cross—sections 

measured by Latypov et al. are much higher than the value 

calculated by us. This discrepancy may be due to the method 

of f;-rm ttc,n of _inns in the experiments. In the experiments 
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of Latypov et al. the ion beam is first formed by the 

impact of electrons on neutral atoms. In the ionization 

of neutral atoms by electrons whose energy is above a 

definite minimum value, a fraction of ions are formed in 

metastable excited states. Under the impact of incident 

electrons, ionization takes pl~k.ce for ions both in the 

ground state and in the metastable excited states. It is 

for this reason (since the cross-section will add up for 

ionization from ions existing in ground state and those 

existing in metastable states )'that the measurements of 

Latypov et al.give high value for the total cross-section. 

The metastable states of the various ions are reported by 

Hagstrum (175) and others (176,177). For example for Xe+ 

the metastable states 4 D7/2 4 F~, 	4 Fg/2 and 2F712 are 

involved in the process of ionization. The agreement between 

the present calculations and the experimental data for 

Ar suggests that there is only a small probability for the 

formation of the excited Ar+ ions in the ion beams. More 

experimental_• data are needed t,-, understand the behaviour 

of cross-sections at different energies for these ions.Also 

there exist no quantal calculations for comparison with the 

present calculations. 

(iv) Lithium lik;1 ions (Bell, BIII,. CIV, NW, 
OVI, FVII Ana NeVIII 

The calculations of the ionization cross-section of 

all those lit"~~ium like; inns •\rith <_o. hydrogonic velocity 
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distribution are shown in Figures 7.11 and 7.12. It is 

observed that tha magnitude of the cross—section goes on 

decreasing system~tica.11y as the charge of the ion increase=s. 

Also the •peaks of the cross—sectionsbecome flatter with 

thr-= increasing charge. There is very little contribution 

to the cross—section from the ionization of the electrons 

from the inner shells. NJ theoretical or experimental data is 

available tncomiawith the present results and test their 

accuracy. However, we have seen that the reaction rates 

obtained on the basis of these cross—sections agree well 

with the re=cti.-;n rates obtained by Lotz (162). 

From the study of the various ionization curves, 

it is observed that the calculated cross—sections, using 

different velocity distribution functions, show similar 

behaviour at high energies. The ionization cross—sections 

based on hydrogenic and 6--function velocity distribution 

for =! particular ion become equal beyond a certain value 

of impact energy. It is also noted that the Hartree—Fock 

velocity distribution corresponds more closely in shape 

to the xperi_menl_.a1 value  compnrcu  with oth er  Cu .LStrlbUZlr!nS 

for the cases we have investigated. Since the various 

velocity distributions gave identical results we have 

made use of the hydrogenic distribution in most of our 

c-lculations for the ionization cross—sections. 
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7.3 Theory for excitation of ions 

From the previous discussion we find that the 
classical model for the ionization of ions proposed by 

Thorns and Garcia has been quite successful in predicting 

accurately the ionization cross-section of ions. Recently 

we have extended this model to the problem of the excitation 

of ions and applied to Be+, Mg and Ca ions (167). 

Quatnum mechanically, calc~ilations using the Coulomb-Born 

and the close coupling approximations have been made for 

the excitation of few ions (178-182). Bely and co-workers(183) 

made a, systematic study of the excitation cross-section 

of the lithium-like ions corresponding to the allowed 

transition and also calculated the cross-sections for reso-

nant transition in few sodium like ions, using the Coulomb-

Born approximation. Burke et. al. (184-) calculated the excit- 

ation cross-section of lithium like ions under various 

approximations such as Coulomb-Born, the close-coupling 

and the strong-coupling approximations. They used the 

Hartree-F'nck wavefunctions 	Davis and Morin (,85) 
have estimated the electron exci+ • _ 	excitation cross-sections for 
same NV multiplets by using a weak-coupling semiclassical 

impact theory. It is seen -from these two types of calcula-

tions (classical and quantal) that the threshold behaviour 

differs considerably. The quantum mechanical calculations 

give a non-zero value of the excitation cross-section 

at thF-- threshold whereas the, classical calculations yield a 
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vanishing value of the cross—section at the threshold. 

We first discuss_ the classical theory for the excitation 

of ions and then discuss its application to the lithium 

like system and compare our results with other calculations. 

In the binary encounter model, the significant 

interaction is the energy exchange between the incident 

charged particle and an tomic electron. The excitation 

cross—section from the ground state to a state n of any 

atom due to an incident electron under classical impulse 

approximation is given by equations (6.9) and (6.1o). 

In the case of ions of effective charge Z', Thomas 

and Garcia assume that the binary collision takes place 

at a distance from the nucleus which results in an energy 

transfer L.E. If ionization energy is U', then for ionization 

LE >,U, whereas for excitation Un  < 	Thy: total 

cross—section for the energy exchange collision is 

Un+l  

`7-exc(E2 , '-fin ) _ < 	U 	c \ ff (v2,v1)d(LE) > 	if E2 > Un+l  
n E l 
1  eff Vl )d(LSE) > 	if Un<EI<Un1, U  	, y n  

.. (v..6) 
Following an approach analogous to that of Thomas and 

Garcia, the expressions for the total excitation cross—

section E from the ground state to the state n of the ion 

is given by equations (7.?) to (7.9) with G now redefined 

for th.:o case o r exCitati o:on as 
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(02—m2 )rl ( 	 )1/2+ 1 	 .. (7.17) 
in 

for the case of excitation -, when EZ > 	Un+l'"' in 
equation (7.7) is given by 

m2 ) = , L 3(lg 4) 
 2 m r m r 

if 0 ~ pl , 32_ x2 

	

n 2P1+3m2 	3 	2(p2_r2 )3/2 

3 	 1) -;7-; 

if 	_r2 < pl < p2—m2 

'-r2 )3/2 
.3 p2 p i/2 	m4 	r4 

if P2—m2 ,< P 	.. (7.18). 

For the case• Un `< E2 "< Un+l the expression for E' is 

TC 	 2 2p i3m 	3 _. 1 	_.~.._. — (C~' `
1 P ) ) 2  

2 	23/2 

3p2 I 	m 

if 0 	< p' _ m2 
1  ~ 

•i i P2 -' [" `< P I 

The cross—section after averaging over the velocity 

distribution of the bound electron is given by 
1 00 

2 xc (P2'm = 
0 

E' (P2,t,m2 )f(t)dt .. (7.20) 

Choosing a hydroogenic velocity distribution for f (t), the 
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integration in (7.20) when E2 > Un+l yields, 

 32 f
( ' _m2 1/2 3 m2 +2 	2+3 m2 

EexctP2,m2)=2 t  2 2 2 	( g 4 	2 24 (c-m ) 	m 	3 (c-m ) m 
8P~-2 (c-m2 )-3 (c-m2 )m2 	(P2-r2 )1/2 - 	~~- 

12 (c-m2 )2m4 	2r2 ( 	r2 )2 

	

(2-r2) 2 	2+3m2 
.__ -.... ... _ 2 2+ ~) 

± --_ 	 _tan (32 -m2 )12  / 

2+3 r2 	1 , 2)1/2  3p21/2 	r 021/2+(P2-m2 )1/2 
- — 	tan- (P2 - r  	- ---4 gn m ( 	 2 ,1 + 	) 1 6r4 	 p2 / (N 2-r2 )12 / 

3 ' 	c { 2-r2 )Z/2 { ,2 -m2 )1/2 	02-c + 	 - 

(c-m 
2 ~~~ mac"(~.~ ... 	2

) 
3 ) 24 	

+ 
~  

2 	(c-r ) 	 2 	4c 
(F2-r2 )1/2 	(2"m2 )1/2 	

(5 	
i-c 	_ 

x 	(c-r2 ) 	- (c-m2 )2 _) + 16 OIc 	8c2 + 2c3 
(" r2 )1/2 	(i2-m2 )1/2 	5 	 2-c 	_ .~.,_..~.~._...~ _ 	_......-...,e. 	.~ ; . - +... + ._.1. + 1- ) 

x ( (c - r2) 	(c-m2) 	)- (16 12 c 	8 c2 	2c 	c 

x Itan-1(p2-m2 )1/2-tan-1 (R2-r2 )1/2] 	 (7.21) 

where c =2 + 1. The corresponding expression for the case 

	

when Un < E2 < Un+l is obtained by replacing r2 with 	in 

the above equation. 

With a s-function distribution, when E2 > Un+l , the 

expression for zexc becomes, 

' (P ,m2 ) = 	(~, 
-E2 

+ I2 ) + 11 	if 1 y<i2-r2 
2 m 	r 	m 	r 

_ 	_.. 	- 	 _ - ....a.- 	_._..._..e.., 
m- 	( 2_ 1) 	r 

if 	-r2 -< 1 < 2-m2 
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2'E 	(P2 m2 )3/2 	(i~2 - r2)3"'2 	2 - 3 	
m 

---~ - --- r 	,if  X32-m <1 
2 .. (7.22) 

and when U  

2+3m2 	3 
Eexc (~'2, m2) _ --- 4~ - --- 	, if 1<<1~2-m2 .. (7.22) 

33 	m 	(P2 -1 ) 

2 i - (p2-m )3/2 .G _._..-_._. 9 	i f p2 -m2 \< 1 .. (7.23) 
3 k~2 	m 

The total cross-section 	is obtained by substituting 

zexc(,m2) in equation (7.7). We have calculated exc 

for lithium like ions using both the hydrogenic and 

8-function distribution functionsfor the bound electrons 

of the ions, but the results obtained were very similar. 

We therefore discuss below the results with the hydrogenic 

distribution. The energies of the excited states of the 

various ions were taken from the tables of Wiese et al. (186 ) 
and Moore (187). 

7.4 Cross-sections for the excitation 
of lithium like ions 

Figures 7.13 to 7.20 show the excitation cross-

sections for the transitions (2-;,s, 2 s-np and 2s-nd) in 

Be II and C IV, (2s-ns, 2s-np) in N V, 0 VI and Ne VIII 

respectively. 

As expected the resonant dipole transition, in each 

ion has the l=2rgost cross-sectir:n, compared to the other 
transitions. Further the cross-sections for the quadrupole 

transitions (2s-3c', and 2s-4d) are always higher than the 
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cross-sections for the nonresonant dipole transitions• 

(2s-3p, 2s-4p), and the monopole transitions (2s-3s, 2s-4s). 

Also the cross-sections for the monopole transitions 

(2s-3s, 2s-4s) are higher than the cross-sections for the 

non-resonant dipole transitions (2s-3p, 2s-4p). For an 

ion -the cross-section for the dipole transition 2s-4p is 

the lowest. The magnitude of the cross-section at all 

energies for each transition is found to decrease as the 

charge of the ion increases. We have also compared in the 

figures our results for these lithiumlike ions with the 

calculations of Bely(183) based on the Coulomb-Born 

approximation and with the close-coupling calculations 

of Burke et al. (184 ). For all the ions there is a large 

difference between the present calculations and the quantal 

calculations in the energy range close to the threshold. 

This is due to the fact that at the threshold, the cross-

section for the ions calculated classically gives a vanishing 

value whereas the cross-section calculated using quantal 

approximations givesa finite value. Beyond the threshold 

our results for all the transitionsin BeII are in good 

agreement with the results of Bely . For 2s-3s transition 

in N V the present calculation agrees within a factor of 

two with the Coulomb-Born calculation for energies beyond 

the threshold. For the 2s-3p transiton,the discrepancy 

with the Coulomb-Born calculation is large. The 2s-3p 

transition in N V has been the subject of thorough investigatir 

by Burke et al. (184), using various approximations. They have 

s 
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observed that the results of their Coulomb-Born calculations 

differ considerably fr-m the close-coupling calculations 

in the region close to the threshold. 

7.5 Rite coefficients for excitation and ionization 

The rate coefficient for a collision between the 

incident electrons and.the target electrons of the ions 

is given by < v c3 (v2) > where v denotes the velocity of 

the incident electrons and cr (v2 ) the collision cross-section 

at that velocity. For the case of ionization the rate 

coefficient is defined as 

00  

v2-r(v2)f(v2) dv2 	.. (7.23) 

-vi  

where vi  denotes the velocity of the incident electron 

corresponding t-. the reset of the ionization of the 

target electron and f (v2) denotes the distribution function 

of the velocities of the impinging electrons. lon(v2) is 

the cross-section for the ionization of the ion. Similarly 

the rate coefficient for excitation is 

•'e xc r 	v2 "e xc (v2) f (v2) dv2 
- vn  

where vn  is the, velocity of the incident electron 

corresponding to the onset of excitation of the target 

electrons and oxc(va) is the cross-section for. the 
J 

exci-tntinri of the .iOn. We have assumed a Maxwellian 
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distribution for the velocity of the incident electrons 

f(v2)dv2  = 4v2 —l/2(I)-3/2 e
—mv/2 KT 

 
2 

dv2 	.. 	(7.25) 

Here K is the.  Boltzman constant, T the absolute temperature 

and m the mass of the incident electron. Writing E2= 7 mv2, 

the ionization and excitation rates are given by 

E 	—E2/KT 
S ion 	lion (E2 ) ( KT  )3/2 	e 2 	dE2  .. (7.26) 

	

Ui 	 (mrt ) 

and 	 CO  

3/2  E2 	
— E KT 

Sexc — 	e 2 	dE2  .. (7.27) 

	

Un 	 (mTL) 

Equations (7.26) and (7.27) have been used by us 

(165, 166) to calculate the ionization and excitation rate 

coefficients of the lithium like ions. 

(i) Ionization rate coefficients 

The rate coefficients for ionization of different 

ions are given in tables 1 and 2 for kinetic temperatures 

T upto 9000 eV (°, 108  ''K). It is seen that at lower 

temperatures the ionization rates increase. rapidly with 

temperature. Beyond 100 eV there is a gradual variation 

with temperature and after 1000 eV the reaction rates 

are almost constant. Very few theoretical calculations have 

been performed for the calculation of ionization reaction 

rates of the lithiumlike ions. Lotz (162) has also.calculated 

the ionization reaction rates for the,  lithium like inns 

3 s well .s for other syster«s ref ions. Lotz has expressed the 
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functional dependence of the cross-section versus electron 

energy by an empirical formula. The cross section 

predicted by the use of Lotz'sformula fitted very well with 

the experimental data in the entire energy range. The 

earlier empirical formula of Drawin does not predict the 

correct threshold behaviour. Among the various empirical 

approaches (Elwert(188), Knorr(189), Drawin(174)),Lotz's 

formula is the best tndaate. Lotz also used a Maxwellian 

distribution to calculate the reaction rates. As seen 

from the tables, our results for the ionization reaction 

rates of the lithium like ions compare well with the 

corresponding rates given by Lotz. Recently Kunze(190) 

has deduced the collisional ionization rates in the electron 

temperature range 100-260 eV for some lithium-like ions; 

C IV, N V, and 0 VI, from the time history of spectral lines 

emitted by these inns in a hot plasma. He also estimated the 

collisional ionization rates with the help of a semi-

empirical formula. Kunze has shown that within the range 

of experimental accuracy, the measurements are in good 

agreement with the semi-empirical calculations and the 

predicted rte coefficients of Lotz. Since our calculations 

are also in g-nod agreement with the calculations of Lotz, 

the agreement of our calculations with the measurements 

will also be good. 

(ii) Excitation rate coefficients 

The excitation rate coefficients for different inns 

and various transitions in an inn are given in tables 3-6. 
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Here also we find that the excitation rate increases 

rapidly with t per.-, ture for tomporatures upto.. about 

200 eV and then increases slowly acquiring a constant 
I 

value near 1000 eV. Kunze and Johnston (191) have recently 

reported measurements of excitation reaction rates for 

some lithium like inns (N V, 0 VI and Ne VIII) at few 

temperatures. In figures (7.21) to (7.23) we compare our 

r suits with the data. We find that our calculations 

of excitation reactirn rates for the dipole transitions 

(2s-3p, 2s-4p) in N V are within a factor of three of the 

experimental data. For monopole transitions (2s-3s) in 

N V and Ne VIII the agreement with the data is very good. 
7 

However for 0 VI the measured value (3 x 10-10  cm3  sec 

at 260 eV) of 2-3g  excitation reaction rate differs . by 

a large factor from our calculated value. Kunze and 

Johnston have pointed out that their measurements for 0 VI 11  

are not very accurate. Boland et al. (192) have measured 

the reaction rates for excitation in five transitions in 

N V at 2fl eV. We find that. our results for 2s-3s,  2s-3p 

and 2s-4p excitation rates at 20 eV compare well with the 

experimental values of Boland et al. 

For the resonant dipole transitions, we find that our 

calculations are much higher than the experimentally 

measured values in N V, 0 VI, and No VIII.This may be 

due trr the fact that for the resonance dipole transitions 

the energy transfers ?-,einc_; small, the classical calculations 

tend to he less accurate. 
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The collision rate coefficients for excitation and 

ionization are very sensitive to the form of the velocity 

distribution in the energetic tail. Differences between 

a Druyvesteyn and Maxwellian distributions have been 

discussed by Drawin(193 ). 	 • 

7.6 Conclusions 

From the detailed study of the inelastic collision 

cross—sections for a number of ions)  it becomes evident 

that the classical binary encounter approximation as 

modified by Thomas and Garcia and extended by us, is as 

reliable for ions as for neutral :atoms.In accuracy it can 

he compared to the Born approximation. The results obtained 

by using this model agree well with experiment and are 

everywhere within a factor of 2. The model is specially 

suitable for calculating the ionization of complex systems 

where the quantal calculations h - come difficult. For 

increasing value of the ch=arge of the ion (7' ),the general 

features obtained by this model are similar to those 

predicted by Burgess and Budge (194) who used a quantum 

mechanical approximation. The curvature of the incident 

electron beam produced by the residual field of the ion 

increases for greater Z', but the mean distance of the bound 

electron from the nucleus decreases. These two effects. 

compensate each other, thereby giving a limiting value to 

the reduced cross—section curve for increasing Z. The 

Z`denondence of the creas-F',ectinn is therefore reduced to 1/U 
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For the case of excitation the limitations of the 

cl?ssical theory of ions are the same as for the neutral 

otoms.The results obtained by it are only qualitative. 

However we have seen (167) that the results for Ca+, Mg+ 

and Be+  agree everywhere within a factor of two with the 

quantal calculations except near the threshold. The 

significant difference between the classical and quantal 

approaches for ions is that the classical theory gives a 

vanishing crass--section at thresholdywhereas the quantal 

calculations predict a large value of the cross—section at 

the threshold. As pointed out by Stabler the excitation 

process is defined with loss confidence in the classical 

theory as compared to the ionization process. 
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Table 1 

Ionization Rate Coefficients of Lithium like Inns Ccni sec i) 
(Be II, B III, C IV and N V) 

Be_.II ~BIII  I  C- IU_._._.__._. -- ---  
T (eV)Present 

lCalcn. 
Letz' s 

, 
Present 

( 
Lptz' s 

I 
Present Lotz' s Present Lotz t s 

Calcn. Calcn. Calcn. Calcn. Calcn.  I Calcn. 0-lcn. 

 

1.0  7.4 E-17 9.6 E-17 6.1 E-26 7.1 E-2615.1 E-38 6.9 E-38 1.0 E-53  0. 

	

1.4 	2.0 E-14 2.0 E-14 4.0 E-21 4.2 E-21 ! 8.9 E-30 8.2 E-30 1.3 E-40 	0. 

	

2.0 	1.3 E-12 1.2 E-12 1.7 E-1? 1.7 E-17 9.4 E-24 9.8 E-24 2.2 5-31 -2. 9 E-31 

 

7.8  2.3 E-11 1.8 E-11 4.8 E-15 4.3 E-15 1.2 E-19 1.2 E-19 3.5 E-25 3.3 E-25 

	

.0 	2.1 E-10 1.4 E-10 3.5 E-13 2.9 E-13 1.6 E-16 1.4 E-16 1.6 E-20 1.4 E-20 

	

.0 	7.4 E-10 3.9 E-10 3.0 E-12 2.1 E-12 4.7 E-15 3.8 E-15 2.6 E-18 2.1 E-18 

	

.0 	2.5 E-09 1.2 E-09 3.0 E-11 2.1 E-•11 2.2 E-13 1.7 E-13 8.5 E-16 6.6 E-16 

	

.0 	6.7 6-092.9 E-09 1.9 E-10 1.2 E-10 4.4 E-12 3.2 E-12 6.9 E-14 5.1 E-14 

	

.0 	1.4 E-08 5.3 E-09 7.4 E-10 4.0 E-10 3.5 E-11 2.3 E-11 1.4 E-12 .5 E-13 

 

3.0  4.1 E-08 1.1 E-08 4.6 E-09 1.9 E-09.5.7 E-10 2.8 E-10 7.2 E-11 .1 E-11 

	

~.0 	7.2 E-08 1.6 E-08 1.4 E- 08 3.8 E-09 2.7 E-09 9.1 E-10 5.7 E-10 2.3 E-10 

 

J0.0  9.7 E-08  -  2.6 E-08  -  6.6 E-09  -  1.9 E-09  - 

100.0 1.2 E-07 2.0 E-08 4.0 E-08 6.0 E--09 1.1 E-08 2.0 E-09 3.6 E-09 7.0 E-10 
200.0 1.3 E-07 2.1 E-08 5.5 E•..08 7.5 E--09 1.3 E-08 2.9 E-09 6.4 E-09 1.3 E-09 
500.0 1.3 E-07 2.0 E-08 7.0 E-0818.1 E-09 2.5 E-08 3.6 E-09 1.0 E-08 1.8 E-09 
1000.0 1.4 E-07 1.8 E-08 8.2 E-08  7.8 E-09 3.2 E-08 3.7 E-09 1.4 E-08 2.0 E-09 

 

5000.0 1.4 E-07 - -  8.6 E-08  -  3.5 E-O8  -  1.6 E-08  - 

9000. 0 f 1.4 E-07 	- 	8.86-08 	- 	3.6 E-08 	- 	1.8 E-08 - 	- 
, 

''E-11=10-n 



0. 

0. 
5.1 E-51 

2.8 E-39 

1.5 E-30 

1.9 E-26 
9.6 E-22 

3.4 E-18 
8.11E -16 
8.6 E-13 

1 2.6 E-1.1 
1.7 E-10 
4.1.. E-10 
1.'_ E-9 
2.2 E-9 
3.'7 E-9 
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Table 2 

Ionization rate coefficients of lithium like ionsccm3$e~') 
( 0 VI, F VII and L;e VIII) 

Temper- --- 0 VT.- F VII  	Me VIII 
ature Present  ` Lotz's  Present  Lotz'sPresent  Lotz's 
(eV) 	calculatiorlcalculation c lculatin calculation~celculation calculation 

-  5.0 E-9 

5.7 E-9 

1.0 

1.4 
2.0 

2.8 
4.0 
5.0 

7.0 

10.0 
14 .0 
28.0 

50.0 
80.0 

100.0 
200.0 

500.0 

1000.0 

5000.0 

9000.0  

1  0. 4  1  0. 

 

3.3E-55 t  0. 

	

12.1 E-40 	- 
1.0 E-31 !.1.02 E-31 
3.6 E-25 '3.19 E-25 

4-2 '. E-22 13.51 E-22 
. 	J 1..4 E-18 f ,1.09 E-18 
6.5 E-16 4.74 E-16 
4.0 E-14 12.82 E-14 
X8.3 E-12 X5.13 E-12 
11.2 E-10 5.46 E-11 

5.5 E-10 - i 
11.2 E-9 12.6 E-10 
12.6 E-9 15.91 E-10 

14.5 E-9 9.93 E-10 
(6.8 E-9 1.17 E-09 

9.2 E-9 

0. 0. 

0. 0. 

0. - 

0. y 6.5 E-48 
0. 1.2 E-36 
0. 2.3 E-31 
0. i 	2.5 	E-25 

2.44 E-18 
5.59 E-16 

5.52 E-13 
1.25 E-11 

9.78 E-11 

2.87 E-10 

5.69 E-10 

1 7.19 E-10 

7.62 E-10 

9.1 E-21 
1.0 E-17 
7.5 E-14 
5.1 E-12 
4.9 E-11 

1.4 E-10 
4.6 E-10 

1.2 E-9 

2.2 E-9 

3.0 E-9 

3.6 E-9 

0. 

0. 
0. 

0. 

0. 

0. 
0. 

6.66 E-21 
7.18 E-18 
4.93 E-14 
2.64 E-12 

3.62 E-11 

1.42 E-10 
3.93 E-10 

4.60 E-10 
5.33 E-10 

4̀  E - n = 10- n 
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Table 3 

Excitation Rate coeff c-U-nt of Be 11. (cm3sec-1) 

2s-4s 	2s--3p 	2s-4p 1 215-3d 
	2s-4d 

10.0 7.3 E-10 7.3 E-10 1.5 E-10 #  6.1 E-9 1.6 E-9 

14.0 1.7 E-9 	{ 1.7 E-9 3.5 E-10 1.4 E-8 3.7 E-9 
20.0 2.8 E-9 	i 2.8 E-9 5.9 E-10 2.3 E-8 6.1 E-9 
28.0 3.9 E-9 	13.8 E-9 8.1 E-ln 3.1 E-8 	; 8.5 E-9 
70.0 4.5 E-9 4.4 E-9 9.4 E-10 3.6 E-8 9.8 E-9 

150.0 4.8 E--9 4.6 E-9 9.9 E-10  3.8 E-8 1.0 E-8 
200.0 5,0 E-9 4.8 E-9 1.0 E-9 3.9 E-8 l.1 E-8 

500.0 5.0 E-9 4.9 E-9  1.0 E-9 3.9 E-8 f 	1.1 E-8 
1000.0 5.0 E-9 4.9 E-9 1.1 E-9 4.0 E-8 1.1 E-8 

5000.0 1  5.1 E-9 4.9 E-9 1.1 E-9 4.0 E-8 1.1 E-8 

9000.0 5.1 E-9 4.9 E-9 1.1 E-9 4.0 E-8 1.1 E-8 

Table 4 
Excit Linn Rate COeffica_ent of C IV (cm3sec) 

T 2S--2p 2s-3s 2s-4s 2s-5 

10.0 j 	7.8 E-8  5.3 E-i1 3.4 E-12 11.1 E-11 
14.0 1.8 E-.°7 1.8 E-10 i 1.5 E-11 13.8 E-11 
20,0 3.1 E-7 4.5 E-10 4.8 E-11 ~ 9.9 E-11 
28.0 ( 	4.7 E-7 8.9 E-1011..1 E-i0 112.0 E-10 
70.0 6.2 E-7 1.6 E-9 2.3 E-10 13.7 E-1C 

150.0 I 	7.3 E-7 2.1 E-9 13.2 E-•10 15.0 E-10 
290.0 8.1 E-7. ! 	2.5 E-9 3.9 E-10 6.0 E-10 

5000.0 8.4 E-? ! 	2.6 E-9 4.2 E-10 6.3 E-10 
1000.0 8.'7 E-7 2.7 E-9 14.3 E-10 16.5 E-10 

5000.0  8.7 E-7 2.7 E-9 14.3 E-10 16.5 E-1C 
9000.0 8.7 E-7 (2.? E-9 i 4.4 E-10 6.5 E-10 

E-n = 10-1~ 

4 2 s-3d 	2 s-4d 

1..1 E-1C 1.3 E-11 
4.1 E-10 6.0 E- .11 
1.1 E-9  1.9 E-1 

2.3 E-9 	4.4 E-1n 
4.2 E-9 	9.5 E-10 
5.7 E-9 	1.4 E-9 
6.9 E-9  1.7 E-9 

7.3 E-9  1.8 E-9 

7.5 E-9 	1.8 E-9 
7.5 E-9 	1.8 E-9 
7.5 E-9 i 1.8 E-9 
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Table 5 

Excit,tion Rate coefficient of N V(cm3 sec-1 ) 

T (eV) 	I 2s-2p 	I 2s-3 

7.0 E-13 
4.6 E-12 
1.8 E-11 
4.7 E-11 

1.3 E-10 
2.2 E-10 
2.9 E-10 

3.3 E-10 

3.6 E-10 

3.7 E-10 

3.7 E-10 

10.0 4.2 E-8 
14.0 j 	1.1 E-7 
20.0  1.9 E-7 

28.0 3.0 E-7 

70.0 4.3 E-? 
150.0 5.4 E-7 
200.0 6.3 E-7 
500.0 I 	6.7 E-7 
1000.0 7.1 E-7 

5000.0 7.2 E-7 
9000.0 0 	7.2 E-7 

2 s-4 p 

3.5 E-14 
3.2 E-13 
1.7 E-12 

( 5.4 E-12 
2.0 E-11 

3.6 E-11 
4.9 E-]_1 
5.6 E-1.1- 
5.8 E-11 

5.9 E-11 
5.9 E-11  

2s-3s 

3.5 E-12 
2.1 E-11 

7.6 E-11 

1.9 E-10 

5.0 E-10 
8.1 E-10 

1.1 E-9 

1.2 E-9 
1.4 E-9 
1.4 E-9 
1.4 E-9 

0 

Table 6 

Excitc.tion Rate coefficient of 0 VI and Me VIII (cm ̀' 	-? sec 

1 _VS __.__ -~ 	---._. __ ..--- Ne VIII --__..__.... _... 	----------- 
( 	) T eV  J

... 
2 s-3 s  -,_ ~2 s_2 	

1 . -2 s-3 p ~ 
s-3  

10.0 2.5 E_8* j 	2.4; E-11 2.7 E-8 (6.0 E-17 3.1 E-16 
14.0 6.6 E-8 ( 	2.5 E-10 5.6 E-8 13.1 E-15 	i 1.4 E-14 
20.0 1.3 E-7 ;  1.4 E-9 9.7 E-8 i6.3 E-14  2.5 E-13 

28..0 2.0 E•-? 5.0 E-9 1.5 E-7 14.9 E-13 	k 1.8 E-12 
70.0 3.2 E-7 1.9 E-8 2.3 E-? 7.7 E-12 2.5 E-11 

150.0 4.2 E-? 3.7 E-8 3.2 E-7 2.4 E-11 7.8 E-11 
200.o 5.2 E-7 5.4 E-8 4.0 E-7 4.3 E-11 1.4 E-10 
500.0 5.6 E-? 6.4 E-8 4.5 E-7 5.9 E-11 1.8 E-10 

1000.0 6.1 E-7 6.8 E-8 4.8 E-? 165.8 E-11 2.4 E-10 
5000.0 6.2 E-? j 	6.9 E-8 4.8 E-? 6.9 E-11 2.6 E -- ?. 
9000.0 6.2 E-7 6.9 E-8 I 	4.8 8-7 1'7.0 E-11 	I 2.6 E-1n 

E-n = 10-n 



Figure _ captions _ 

Fig. 7.1 Geo=metry for electron-positive ion collision. 

Fig. 7.2 Electron impact ionization of Mg 

Present calculations:--- 	with d-function distri- 
bution, 	with quantal distribution, ---~• •-°--° 
with hydrogenic distribution; • • • • • . Coulomb-Born 
calculations (157); 	Experimental data, Martin 
et al. (169), 

Fig. 7.3 Electron impact ionization of Bat. 
Present calculations with hydrogenic velocity 
distribution. -- total ionization cross-section; 
contribution from: ----- 6s shell, 	5p shell, 
---~• • •°°-- 5s shell, —• •---° 4d shell; 	Experimental 
data of Peart and Dolder (170). 

Fig. 7.4 Electrrn impact ionization of Sr 
Present calculations with hydrogenic velocity distr- 
ibution. -----°- total ionization cross-section; 
Contributions from: -------Ss shell, 	4p shell, 
- 	• • • ---- 

 
4s shell, ----- • •  	3d shell. 

Fig. 7.5 Electron impact ionization of Li+. 
Present calculati# ns: -- With 6-function distri- 
buticn, curve 1, ---• 	with quantal distribution, 
curve 2; --'•-- calculation of Thomas and Garcia, 
curve 3; 	• • •— Coulomb-Born calculations (157), 
curve 4; ---••••— Born calculations (159 ),curve 5; 
Experimental data: Lineberger et al. (51 ), 	Wareing 
and Dolder (171). 

Fig. 7.6 Electron impact ionization of Nab and K+• 
°°-- 	Present calculation with 5-function distributin,, 
------ Calculation of Thomas and Garcia, Experiments =:. 
data: (a) for K+ go Hooper et al.. (52 ), a Harrison et al. 
(172); (b) for Na+ o Lineberger et al. (51 ), & Peart an 
Dn l .3 rn (173). 
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Fig. '7.7 Electron impact ionization of Rb and Cs+. 
Present calcul-~tions: ---- with 6-function 
distribution, ----- with hydrogenic distribution. 

Fig. '7.8 Electron impact ionization of Ne+ and N. 
------ Present calculation with 6-f unctiondi.stribution; 
--------- calculation of Thomas and Garcia; Experi- 
mental data:Harrison et al. (172 ). l 

Fig. 7.9 Electron impact ionization of Ar+ and Kr+. 
A Average value using the formula of Drawin and 
Gryzinski( 49 ); rm data of Latypov et al. (49 ). 
(a) for Kr+: 	ionization cross-section from the 
4p shell, (b) for Art:--- total ionization cross-
section; Contribution from# ------ 3p shell, and 
-- • -°-- 

 
3s shell. 

Fig. '7.10 Electron impact ionization of Xe. 
l Average value using the formula of Drawin and 
Gryzi'nski; 	data of Latypov et al.; ------ ioniza- 
tion cross-section from the 5p shell. 

Fig.7.11 Electron impact ionization of BeII, B III, CIV 
and N V. 	 ' 
--- - present calculations. 

Fig. '7.12 Electron impact ionization of 0 VI, F VII and Ne VIII. 
------- present calculations. 

Fig. '7.13 Electron impact excitation of Be II(2s-3s,2s-3d 
and 2s-4d). 

--°r Present calculations; calculations of Bely 
(183): ]' 2s-3d;,V 2s-3s;  ® 2g-4d. 

Fig, '7.14 Electron impact excitation of Be II (2 s-3p, 2-4s  
and 2s-4p). 

Present calculations; Calculations of Behr; 
2s-4s; A 2s--3p; 2s-4p. 
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Fig. 7.15 Electron impact excitation of C IV(2s-2p,2s-3p,2s--4p) , 
---Present calculations; Burke et al!4184 ) 
calculation: C 2 s-2p. 

Fig. 7.16 Electron impact excitation of C IV(2s-3s, 2s-4s, 
2s-3d and 2-4d ). 
-~- --~ Present calculations. 

Fig. 7.17 Electron impact excitation of N V(25-3s and 2s-4p).  
-°°- Present calculations; Bely's calculations: 
;fit 2 s-4 p; t 2s-3s. 

Fig. 7.18 Electron impact excitation of N V (2s-2p and 2s-3p). 
--- - Present calculations; Bely's calculations: 
i 2s-3p; 0 2S--2p. 

Fig. 7.19 Electron impact excitation of 0 VI. (2s-2p, 2s-3s  
and 2 s-3p).  
--- ° Present calculations. Burke et al.'s calcul- 
ations: 0 2 s-2p. 

Fig. 7.20 Electron impact excitation of Ne VIII (2$-2p, 
2s-3s, and 2s-3p). 

Present calculations; Bely's calculations: 
It 

 
2s-3s;  k 2s-3p; o 2 s-2p. 

Fig. 7.21 Excitation reaction rate for N V (2s-3s, 2s-jp and 
2s-4p transitions). 

Present c-alculations; Data of Kunze and 
Johnston (191): . 2 s-4p ; 	2s-3p; ~ 2s-3s; Data ci 
Boland et a.l. (192 ): . 2s-4p; 	2s-3s. 

Fig. 7.22 Excitation reaction rate for 0 VI (2 s-3p) and 
Ne VIII (2s-3s and 2s-3p) 
- 	Present calculations; Data of Kunze and 
Johnston; ~ 2s-3s; C 2s-3p. 

Fig. 7.23. Excitation reaction rate for 2s-2p transition in 
N V, 0 VI and Ne VIII. 

Present calculations; Data of Kunze and 
Johnston: 	Ne VIII; ` 0 VI 	NV; Data or Boiand 
et al. 4N V. 

1 





I 

I 

N 

L 
0 

}0 > +~ 0 

> 

L 
O W IC) 

 

U 
• O 
• CL E 

L. 

V 
tL 
L, 

1 	1 O 

( 0D) NO1IDJS SSOHHI, 

0 



(NQ 

' C  

U 
w  cn 

	\S\\, 

	

\\\\ 

	 ` T0ThL  

I! 	5s 
• 

a 	200 	
_ 	boo 	• 80o 
ENERGY (eV) 

r IG.7.3 Electron impact ionization of Ba ion. 



• C) 

c1  

n hi 

A 
c 
0 

U n. W 

rw 

L 

cell, ti0117.dS SSOjJ 



U 

F 

LIM 

N 

0 

Lfl 

L 
LL 



N 	cc 	"7 	lD 	'4 	(N 
O 	C) 	C:5 	C 5 	CJ 

(~Dll) NOIY) ; 	S,:--') 	D 

7  -, 

0 

x 

k 

C 
c 

+0 

U 
U 

T 

/I 
/  LJ 

0 

N 

0 

0 

NJ 

1-i 

w 

L 





I 

C- 
0 

0 

+ I 
z 

Ii 

øP 

I' 
l 
1 

'° > o t Ha 
i IM — tom II f z 

Ii 
W a 

i i 
w C- 

II o 

II 
/ • - 0 

/ N 0 

{ U 
e 0 

E 

s -10 0 
f 

~ 

UJ ~ 

VJ 

LU 

co 

O 	n O 

(DID NOIl1.3S SSOHD 

L 	1 	1 -- 	-  

C O O 0 C? 0 



r 
(961;c ) 

A 

(.N  

1 
Kr 

H 

z H 
O_ 

~ 0.0 U. 
w 
V) ' 1.8T - 
(/I f  •W\  

1.2--A 	\ 

n•rh I 	 --~ --~ TOTAL 

o.o0 	
200 	400 

	
600 	800 

ENERGY (eV) 
+  + 

FIG.7.9 ELECTRON IN'T'ACT )0N11ATION OF Ar AND Kr IONS• 



r 
	 'P 

ILD 

	

ii 

X 	 ~01 

l 	 f 

I 	a, 	 "a) a, 
X 

ui 

~ 	 I 	C 
U 

H 	/ 

I 	 ~ 	 U 
Cl 

o 
f 	~I 

N c 	 w 

i 	C7 
m 

aD 	 C7 
• O  Q  ~'  U  

(ZD I) NOIIJ S SSOHD 



- -i1 

O 

1.1I 

i r 

1 

, 

L__ 

O 

O~ o 1 	iQ 
1 

-} 

L i O 

L) 

C) I 

4 1 

•i -- - <H: 
CJ O 

(~ 	 ll) NOIi) 1r; SO~~~ 



T1 

[I  
iL .L 	 C 	 a 

-,c.  

ii 1 

O d 
O . 
6 C) 

C, 

- 

"J 

U 

U 

v c 
Z 

• f 	 O 	Q 
IO U N 

CJ 

k  r~ 

U 	O 	o 

(~Df) NO LD 	SSOd) 



r~ r 1'! 

~rt i 

!i 

lf i Cj 

r ~ r~ 

II 	I 

C~ ry 

Q 

U 
t ~ 

t X 
C1 

U 

(~ f ~`; 	` 1 11)) V J.. -) .. 	~- JOèD 



'i 

® 

' 

/ 	i 

■ 

_- 	L 	I 
a 	0 	°o q 
a 

1 

Cl  

~t f 
C 1 

1 	I 

L 
O 

A • 

0 

Lli 
l0 

C 

U 
~ U X 

f u 

C 
O 

V 

c ~+ 

I C 

U 	t 

U 
L1. 

( ~Df) NOU1.J'-3S SSOHD 





v 

r~ R; 
ir 

a 	1 	I 

L / ji/ 
 

L i 1 	i 	 _________ 
a 	a a n 8 8 H C) 

( 	 ) 'MILD) IS SSU~iD 

' 

- 

C~ 
c 

R 
in 

-j 

;< 

-4 [: U 

~ 

- 

K~ 

> L) 
o ' 

uJ 

U~ G a / 
w v 

U 
i X 

N 

U 
U 
Cl 
F 

U 
• 

U 

W 

LO 

1 ~ 

ICS L LO a 

0 

a' 
0 



r 

ul NH 
i 

(Nj Ln i 	 O 

z 

l 
j ~v0 

w 

I / ~ z 

io 
~N r-- 

i 

I 	C7 ._ 
e 

_ 

~~1 CT) 	ON ~~N - 00 

0 n 
a 

O 0 
O 

U 	o0 
O  60° 0 

0 
O 

CJ 
n 

'D11) N011 »S SSOdD 

C 

z 
9- 
0 

C 
0 

U 

U 

U 
a 
E 

0 

A 

LL 





0 
10 

Ic Hc° 

Oo. 
cr 
14i r 
Lu 

IC 
x 

_Jo 
I 	 1L0 

L). 

LL 

H 	 LIJ 

a 

o• 	 - 

Cm (N 	 0 
C) 	0 
c5 

0 C? 	0 
00 C? Q 

0 0 
ODJI) NOIIJS SSOEID 



0 
a 
E 

IO co 

O 
Cj 0 

c 
0 
L 

V 
Q) 

L1J 

R 

LL 
O 	(N 	O O Cm 
O C~ 0 0 C  N 
OQ 0 0  c 
O0 6 6  O 

( Dit) NOI 1 J S S SOH ) 

o 0 
0 



r  t T 
1 

~ 

Cr 

as 

W 

_ \ 
() c 

H- T_ 	4 I... 	_ 4. W Q 

- W 

-rte 
O 

X 

1 W 
! 
1 i t 	r. 

i 

TJ 

1 0 
('~  

(pasE WT) INJiD JJOD J1V E NOI1d±DX3 



Ne E 

2s-3P 

/ 

/ 

1 -11~ 

1 o2 
f ; .E CTRCN TrMPERATURr (e V) 

I(a. 2rxc tat ~; n re~rjct,on rote for N VE and Cpl ions. 





-171-- 

CHAPTER 8 

DISSOCIATION AND IONIZATION OF H, MOLECULAR ION 

The inelastic scattering of electrons by molecules 

is more complicated compared to the atoms in that the 

internal degrees of freedom of the molecu.alesmust also be 

taken into consideration while studying the collision cross- 

section. Theoretically most of the calculations for the 

inelastic'.scattering of molecules are based on the Born 

approximation. In the range of incident energies where the 

Born approximation is expected to be valid, the experimental 

cross-sections which resolve rotational effects on electronic 

transitions are not yet available and those which resolve 

the vibrational structure are very rare. Therefore, generally 

the specific vibrational and rotational excitations can be 

ignored while considering a given electronic process.. 

As the cross-section for the excitation, by electron 

impact of a vibrational state of diatomic molecule in a 

fixed electronic state is very small(195 ), it becomes obvious 

• f mot, molecule her an impinging charge that the Uls5ociat-ion !?i the iTivs c~ u~.. 	impinging --- , 

must occur predominantly through an alteration of the 

electronic state from one which gives nuclear binding to the 

one which gives, nuclear repulsion. The H2 molecule is the 

simplest of all the molecules and consequently "the theory 

o its structure has received extensive attention. B-:tes 

et al. (196) 	determined the electronic energies for a 
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number of excited states in H. Several excited states 

of H 	possess minima and perhaps bound vibrational 

states. However, the important internuclear separations,R, 

are such that the transitions to these excited states are 

expected to go to the repulsive part of the potential 

curve. The combination of circumstances which may lead to 

a stable but electronically excited H are not quite 

common. The electronic transitions given below will always 

nearly result in dissociation. 

e +Hr (lsc-g)'' H (2peru) +e 	H+H+ +e 

e + H (lsus- g) 	2(2 pnu, 2sir-g, 3dng, .3d(rg ...)+e 	H +H++e 

e + H2 (l s o- g) --, H++H++2 e 	 ..1 (8.1) 

However, transitions to the 2prtu state at internuclear 

sep=aration greater than 6.3 an may result in a bound 

molecule. But it is pninted nut by Dunn and Vanzyl(55) that 

less than 1.5'/. of all transitions at 500 eV energy can 

result in a bound 2ptu molecule. The 3dc~ g state is also 

bound but it radiates rapidly to the 2 p(r u repulsive state. 

Dissociation of H2 mole:cule by electron impact has 

been considered by various workers. Kerner(195) calculated 

the dissoci^.tian cross-section using the Born approximation 

and approximate wavefuncticns for H were taken. Ivash (197 ) 

included exchange and the Born-Oppenheimer approximation 

was used t- r'.htain the rosults -~ r both past and prior 

inter ctic n s. Tha validity of the Frank-,"%nndon principle 
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was assumed throughout. Tht: cross-sections were also 

averaged over all molecular orientations. Alsmiller(198) 

carried out thr calculations in the Born appro imatinn 

using exact two centre wavefunctions, the Frank-Condon 

principle, and a classical average over all molecular 

orientations.Go_od agreement was found in Aismiller's 

calculations and wash's calculations using LCAO wave-

function in the entire energy range. Callaway and Chow(199) 

have alsn computed the excitation cross-section for the 

lowest electronic excited state of H. The calculation 

employs the Born approximation and includes exchange 

effects according to the procedure developed by Bell and 

Moisaawitsch(9)e. They have found that the inclusion of 

exchange produces only a small increase in the cross-section 

near threshold. Further, Peek(200) has predicted a strong 

variation of cross-section with internucl ,ar' separation in 

the molecule forthe I so- g-2po u transition. 

All the above calculations are based on the Born 

approximation and are somewhat unreliable at low energies. 

Also,these are unsatisfactory in that they include only the 

contribution t the c is socieetinn from the first excited 

state in the case -,f electrons and the first and the second 

excited states in the c.,.se of protons. In fact, all the 

final electronic states must contribute to the total crnss-

secti ons► In order to include this, Peek(200) has used a 

do sure argum."'nt which makes possible an estimate of 
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contributions of all the final states to the cross-section. 

Alsmiller(198) has also used the classical method of 

Gryzinski to calculate -the dissociation and ionization 

of H by both electrons and protons impact. The classical 

theory is expected to give more reliable results at low 

energies compared to Born approximation which becomes 

inaccurate in the low energy region. In the Gryzinski 

approximation, the dissociation cross-section includes the 

contribution from all excited states including the ionized 

state y and thu s it removes one of the major drawbacks of 

earlier theories which consider  only the first excited 

state. Alsmiller found appreciable difference between his 

calculations and the Born calculations. 

All the calculations mentioned above, b=ased on either 

classical or quantal method,are unsatisfactory in that they 

do not include the long-range Coulomb interaction between 

the electron and the molecular ion. 

In our calculations (201) based on classical 

theory for the ionization and dissociation of the H2 

molecular ion, we have for the first time included the 

effect of the Coulomb field on the cnlli5.on cross-section. 

The classical binary encounter theory for atoms  was recently 

extended to the case of the ionization of ions by Thomas 

and Garcia (4?) 	in which the effects of the Coulomb-field 

are considered explicitly. Here we have used the approach 

Thomas and Garcia t-> calculate the dissociation and 
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ionization cross-section of H. We have used a quantal 

velocity distribution as well as the S-function velocity 

distribution for the bound electron in the molecular ion 
in the ground state. 	In section 8.1 we discuss the theory 
and in section 8.2 the results. 

8.1 Expre ssions f. or the cross-sections 

The cross-section for the ionization of an ion of 

net charge Z' by an incident electron is given by eqn. (7.7 ) 

Representing this in terms of velocity, the cross-section 
by an incident electron of velocity v2 becomes: 

E 

U where 

	

_ 	1 + (i+ _. ._ 2rU f _2Z'U 2 

v2 L V2 V2 

2- ~ r l/2 	l/212 
,9. 2 	T ~ ~ 2 v2  

and 	 (8.2) 
00 

E t = j Z ©n (v2,v1,v2)f (vl )dvl 	 .. (8.3 ) 

'- 	 fF 	r ~~-rr.n impact) L~ C~n J-S given by (for the case of ~1l v  

2 
•' 	2 v2 (1  4 ) + 2U(1- U )J, if Q,<v2<v ,2-v2 ton ,2 3 1 	4 	2 	2 2 

	

V2 	V2 	v2 	- 

~ 	2 

	

2n 	2 	2U 	2U 2 (v
22 -v )3/2 2 

_ 	~v1+3U(1- ;7c (2) 
1 v2 	1 

2 	 f V-V2 \< v~<v2-2 U 
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_ 	2n 	(v,2-2U)3/2 - (2U) 2 (v'2-v2 )3/2 	'2- 	2 ,C 	 if v2 2 U<vl 
3v2 V1 	 v2 

.. (8.4) 

Using the above expressions, we can calculate the 
d issoci,ttinn and ionization cf. H2 molecule. The molecular 

protons are considered tr-; be fixed force centres and a 

classical average over all molecular orientations is 

performed. Since the excited state: of the H molecule is 

unstable, the excitation of the molecule essentially leads 

to dissociation. Hence, the dissociation cross-section is 

identified with the total cross-section for exciting all 
states of the molecule including the ionized states. This 

excitation cross-section is obtained by replacing the 
ionization energy U by U1 , 	the energy of the first excited 

state in (8.2) 	for the ionization cross-section. For the case 

of dissociation by electron impact Z' is then given by 

dissoc. j Ion CD 
(v21,v1, v2 , Ul )f (v1)dv1 if Ei>Ul 

 

= 0 otherwise 

 

~1 n (v29 vl ,v2J ) is obtained by replacing U by U1 in 

equation (8.4). The ionization and dissociation cross- 

section for H are therefore given by the same expressinns,egn. 

(8,2 ),with the difference that for the case of dissociation 

U is replaced by Ul everywhere. For defining the ionization 

f the H molecule; the vertical ionization energy 29.9 eV is 

u secl. 

The ve ! c,citv distribution function f(v1) is obtained 
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by using the LCAO wavefunction '(202) for H. This wave- 
function iii 	is written as 

= N (Ua+Ub) 	 (8.6 ) 

N is the normalisati.,n constant and Ua and Ub are given 

by hydrogenic wavefunctions 

-Zr 	 -Zr 
Ua .= 	e a , Ub=~Z3/i. e b 	.. (8.7) 

with Z = 1.228, ra and rb are the coordinates of the electron 

with respect to the molecular protons. The normalisation 

constant N is given by 

N2 -~)~~ s 	S = (1+ZR+ . Z R2 ) e- ZR 

where R is the equilibrium separation between the molecular 

protons. The density distribution function e(vi) is obtained 

by the Fourier transform of the molecular wavefunctions. 

The Fourier transform of the LCAOwavefunction , (8.6 ), of 

H molecule is given by 

(v )- 
 

	 e 1 	$(r)dr 
1 	(2)/ J 

Putting the value of J and carrying out the integration, 

we get 

(vl) = 2N cos (j. 2) 9N(vl 

with 	 n5/2.~5/2 
(vl) 	2tc (v2+Z2 )2 

1 
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Since the molecule can have any orientation, the density 

distributi~,n function is obtained by averaging  
over all molecular orientations,i.e., over 811 angles of R. 
Therefore we find 

e(v1) = 2N2 (vl ) +sin v1R /v1R 

The quantal momentum distribution for the electron in 
the •I- ion therefore becomes 

f (vl )dvl = 8 J2 2 2 (vl ) r+sin v1R /v1Rdv1. 

In addition to, this quantal distribution of the bound 

electron, we have also used a 5-function velocity distribution 

in order to find how sensitive the results are to the 

change in the velocity distribution function. 

8.2 Results and discussions 
(i) Dissociation crass-sections 

Figure 8.1 sh0ws the results for the electron impact 

dissociation cross-section of H2+ 	in the ground vibrational 

state. It is seen from the figure that the inclusion of 

the ionic field in our classic l calculations (curves 1 and 2) 
causes a considerable change in the cross-section compared 

to the simple classical calculation of Alsmiller (curve 3). 

The difference is more marked in the low energy region 

where the cross-sections are increased by a factor of 1.5 

whenm' use a quantal distribution (curve 2 ); and the cross-

s c=c _ .ns using :.:i 8-function distribution cu e(1 ) are 
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increased by a factor 2. For higher 'energies the 

difference becomes lesser as at these energies the 

effect of the Coulomb field of the ion will be smaller. 

We also find that at high energies the quantal and 6--

function distribution give identical results. The quantal 

calculations of Ivash using the Born approximation and 

LCAO wave functions give good agreement with our calculations 

when exchange is not included (curve 4 ).- Ivash ' s calculation-, 

however, ignores the effect of the ionic field. Further it 

is noticed that Ivash's calculations with exchange 

(curve 5) show a sudden rise in the cross-section near 

threshold. This large increase in the cross-section is 

contradictory to the observation by Callaway and Chow., that, 

exchange produces a small increase in the excitation cross-

section of H2 near the threshold. This discrepancy may 

be due to the _method of including exchange. Ivash has used 

the Born-Oppenheimer approximation whereas Callaway and Chow 

have used the method of Bell and Moiseiwitsch (9) to include 

exchange. For the case of atoms,it is well known that the 

Born-Oppenheimer approximation gives incorrect results 

at energies near the threshold whereas the first order 

exchange approximation given by Bell and Moiseiwitsch gives 

reasonable results. 

Experimentally, the dissociation cross-sections have 

been reported by Dunn and Vanzyl (55) and Dance et al. (56 ). 

It is difficult to compare our results with the data since 

we have carried out the calculations for the electronic 



excitation of H in the ground vibrational state. In the 

experi~ient of Dunn and Vanzyl, H2 ions are formed by 
bombarding H2 gas by high energy electrons. In this process 

H ions may be formed which may exist in all vibrational 

states. The measurements of Dunn and Vanzyl and Dance et al. 
of . .the dissociation cross-sections are for the composite 

cross-sections which take into consideration all the vibrat-

ional states of the H molecule before collision. Theoreti-

cally, Peek(200) has made extensive calculations for dissoci-
ation of H2 using Born approximation 

He has predicted a different cross-section from each 

vibrational level. The internuclear distance R is different 

for different vibrational states and there is a variation 

of cross-sections for different internuclear separations. 

Using a closure approximation, Peek has estimated the 

contribution to cross-section from all final states. He 

gives the values of d- (2py-u ), o- (2pitu ), and 0 (E ") where 

o-- (s") is the cross-section for transition to all states 
besides o- (2peru ). On the basis of the calculations of Peek, 

Dunn and Vanzyl have estimated the contribution to the 

dissociation cross-section from the ground vibrational state. 

This is shown by curve 6. Our results (curves 1 and 2 ) 

agree well with this curve in the entire energy range. In 

the low energy region,the agreement is still better. 

Compared to the other calculations 9 our calculations are the 

nearest to the Dunn and Vanzyl's results. The calculations 

carried by Peek, and Dunn and Vanzyl do. not•--A'r elude the 
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effects of the charge of the ion. 

(ii) Ionization cross-sections 
Figure 8.2 gives the ionization cross-sectionsof 

H ion. The present calculations show an increase of 

the ionization cross-section compared to the Alsmiller's 

calculations. (curve 3). For low energies the increase of 

the cross-section with the use of a 5-function distribution 

(curve 1)' is nearly two times as compared to about 25'/. 

increase in the case of quantal velocity distribution 

function (curve 2). At high energies the fall of ionization 

cross-section is similar for all the three calculations 

shown and follow a 1/E2dependence in accordance with the 

classical theory. 

It is worth mentioning here that for the case of 

proton impact on H2,the corrections in the cross-section. 

due .tr. the ionic field are very small. We have performed 

the calculations for the _proton impact ionization and 

dissociation of H2 considering both the effects of (i) 

nuclear repulsion on the motion of the proton, and (ii).. the 

reduction of the kinetic energy of the proton due to its 

motion in the repulsive field. For both -  ionization and diss-

ociation, we found that there was a little change in the 

cross-sections compared tr the Alsmiller's calculation for 
proton impact. 
Qnlu  n 

In conclusion,we can say that the inclusion of the 

Coulomb field in the classical c lculations causes an 
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increase in the dissociation and ionization cross—section 

by electron impact. The classical calculations predict 

the ionization• and dissociation cross—section of H quite 

accurately. The inclusion of exchange is expected to improve 

the results further at lower energies. It has so far been 

not possible to include exchange in the classical calculations 

for ions though such an effect has been included in the 

classical calculation for atoms (45). Further for a proper 

comparison of the results with the experiment a more 

complete classical calculation which accounts for the sum 

over ell. the•vibrational states is desirable. For the 

quantal calculations, the use of the Born approximation for 

H2  is inadequate as it ignores the charge of the target ion'. 

The Coulomb—Born approximation will be more justifiable. 

However, at higher energies where th.e effect of the Coulomb 

f geld of the ion is small, the use of plane waves instead 

of Coulomb waves for the scattering electron is reasonable. 

The effect of the inter.nai. degrees of freedom on the cross—

section has not been studied systematically so far. 
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• 	Figure_„c ai~_n_ 

• Fig. 8.1 	Dissociotion of H2 molecular in by electron 

impact. 

Present calculations: °° 	with a-function 

distribution, curve 1, —• •--- with quantal distribu- 
t on, curve 2; 	Alsm-iller's (198) calculation, 
curve 3; Ivash's calculations: ---°• • • 	without 
exchange, curve4; --••••— with exchange, curve 5; 
---- Dunn and Vanzyl's (55) calculation, curve 6. 

Fig. 8.2 	Electron impact ionization of H2 molecular ion. 

Present calculation:°---°°- with 6-function distri- 
butlon, curve 1, °--• • 	with quantal distribution, 
curve 2; 	Alsmiller's calculation. 
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EPILOGUE 

The theories of the elastic and inelastic collisions 

of atoms and ions by ch_:rged particle impact are still far 

from satisfactory. The Glauber theory seems to be the best 

amongst those discussed here. Numerical estimates of the 

elastic and inelastic cross—sectionsfor lithium and sodium 

by electron impact based on Glauber theory have proved 

their superiority over other quantal and classical methods. 

But, still,applications of the Glauber theory to these 

problems are in the initial stages and its further success 

will depend upon how accurately it predicts cross—sections 

for other systems and other processes, e.g.,it is not yet 

clear how the effect of distortion of the target system due 

to the incident charged particle and the exchange between 

the incident and the target electron could be included in 

the Glauber theory. Further the extension of the Glauber 

theory to processes like ionization and electron capture 

is still not considered. Also it is still far from obvious 
.i _n atom clan be reduced how the scattering from a many electron a4v,i~ .,.,.. ,.,., 	~,...,~.,~,.. 

to a readily computable form without subsidiary error 

introduced in simplifying the expressions in the theory for 

such systems. 

The inclusion of effects of polarisation in the Born 

arorox~.natlon loads to a sub stanti ' improvement of resu:l Is 

compared to the ordinary Born approximation. A further 

k 
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improvement in the Born approximation as suggested by 
Ganas et al. (82) will be to project out the first few 

parti-,.l waves (/=O,1,2) from the expressions of the Eorn 

elastic scattering amplitude and replacing these by the exact 
scattering amplitude components obtained from experiment, 
or detailed solution of many electron system. This will 

make the Born approximation more valid at low energies. 

The classical theories have been found to be suitable 
for the estimate of the ionization cross-section of atoms 

and ions in a simple way. They have been found to predict the 

ionization cross-section as accurately as the quantal theories, 

and at the same time reduce drastically the computation 
effort. The use of the classical theories to the excitation 

process is less justified because the final angular 
momentum states can not be treated correcty by classical 

theories. However, the classical theory can be used to 

obtain a qualitative estimate of the excitation cross-

sections in a simple manner. There are also difficulties 

in using classical theories for elastic scattering studies 

as observed by Bates et al. (102) in their calculations of 
electron loss. cross-section. In classical theories,the 
effects of exchange have not so far been included in the 
studies of the ionization and excitation of ions by 
electron impact whereas this has been done in the classical 
thonry of - inel~!.stic scattering from atoms. Even the quantal 
theor.'%.c:s for the, ionization and excitation of ions are 
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still far from satisfactory. There are wide discrepancies 

between theories -nd experiments in the low and intermediate 

energy regions. Little attention has so far been devoted 

to the inclusion of polarisation effects in inelastic 

scattering o.f atoms and ions in a charged particle Impact. 
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