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The work reported in this thesis is the result of
author's attempt to investigate and obtain an understanding
of the conllisions of charged particles with atomic and

molecular systems.

The first pa?t of the thesis is concerned with the
scattering of eléctrons by atﬁms using quantal metheods. Also
‘ cdllisions.between atomic and molecular systems resulting
in either excitatinn or ionization have been investigated
guantum mechanically. Tn the second part of the thesis, a
classical approach has been followed for the study of

A . .
inelastic collisions of electrons with atems and ions.

The first chapter gives a review of the various quantal
and classical theories of scattering, and the experimental
daté. in the second chapter we make use nf the Glauber theory
to study the electran-lithium elastic and ineiastic scattering.
It is observed that the Glauber theory gives a better | |

agreement with the data than any other theory.

4

The third chapter is devoted tm.the elastic scattering
of lithium in the Born approximation. The effectsof the-
polarisatinn of the target atom due to'the incident electron,
and exchange have been included. It is found that the

pnlarised Born approximation givés much better results than
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In the fourth chapter we have used the form factor



(ii)

.description »f the target and fhé Born approximatiﬁn to
calculate tha electron leoss from hydrogen atoms passing
through Hgs Noy and Op and the electronic excitation of
hydrogen atom colliding with Li, Na and K atoms. For the
molecular targets a proper allowance is made for the phase
difference between the scattered waves éménating from the
twn constituent atoms. The effect of the vibrational
mntion is also considered. It is noted that the cross-
sections after the inclusion of the phase factor agree

closely with the experiment.

In the fifth chapter the classical binary encounter
maodel has been used to calculate the excitation cross-
sections of the alkali atoms and the innization cross-
sections for Be,Mg and Ca atoms. A guantal momentum distri-
bution function has been used for the bound electrons of the

target.

In the sixth chapter the proton impact-excitation of
Li, Na and Cs has been studied using the Born approximation.
The ¢classical theory for the proton impact ionization of
atoﬁs has been extended to the case of excitation. It ig
found that there is a considerable difference between the

results nbtained using the classical and quantal approximatisns.

In the seventh chapter the classical theory is used to
calculate the electron impact ionization and excitation of
a number ~nf iagns. The classical theory for ionizatinn has

bern extencted tn excitaticrn. Bate coefficients for excitation



(1ii)

and lonization of lithium'like ions,haVe alsn been-
calculated. Th: results for the inélasfic bollision of
electrons with ion suggest that the predictions of the
classical theory are almost as good as those of the Coulomb-
Born approximation, at moderate and high energiés.,Thé
threshnld behaviour is however very different. In the
classical'caICUIation it is found that the use of a quantal
X .

momentum distributinn of the bound electronsyields best

results compared te the ~ther distribution functions.

In the eighth chapter the claséicalméﬁeory is uéedfto‘
calculate the dissnociation and the ionization of the
hydrmgenlmolecular'ion. It is feund that the Coulomb-field
of the ion causes an increase in the dissociation>and

: - +
ionizatinn cross—sectinn of the Hy molecule.



10.

11.

12.

13.

15.

List of Publications on Atamic and
Molecular cellisions

Electron impact innization crnss—section of ions.
Phys. Rev. 184,242(1969).

Dissocistien and innization of the hydrogen molecular
ion by electron impact.
Phys.Rev.Al, 1404 (1970).

Excitation of alkali atmms by electron impact.
) J.Chem.Phys.50,2980(1969 ).

Cross—~sections and reaction rates for electron impact
ionization »of lithium and sodiumlike ions.
Astrophys.J. 165,425 (1971).

Proton impact excitation nf alkali atoms.
Phys.Lett. 35A; 139(1971).

Electron impact ionizatioh of singly and doubly charged

ions. Int. J.Mass Spectrom.Ilnsn Phys.4,483(1970)

Excitation of lithium by electron impact using Glauber
theory. Phys. Rev.(in press).

Elastic scattering of electrons by lithium atom using
Glauber theory. J.Phys.B. (in press).

Electron impact excitation ~f positive ions: Cross-
sectinns and reaction rates. ' -
Int.J.Mass Spectrom.Ion Phys.(in press).

Electron lnss from hydragen atoms incident on molecular
hydreogen , nitrogen and oxygen.
Phys. Lett.%in press).

Elastic scattering of electr~n from lithium.
J. Phys. Snc. Japan (communicated).

Electron loss in Atem-Molecule Collisions.
J.Phys.B (communicated).

' : _ 4
Eloctron impact excitation of Be+9 Mg+ and Ca .
Phys. Rev. Al, 337(1970).

Excitati~n of He by praton impact.
. X T 7/
. Thys. Rev. A3, 16866{(1971).

Impact innizeti~n of Na, K, Rb and Cs by electrsan. and
preton impucts. J.Thys.B2,155(1969).



16. Electron impact ianizatinn and excitatinn of atoms
with twn outer shell eclectrons.

J. Phys. R, 878(1969).

17. Electron imprct excitation of lithium.
3 Phys. Rov. (in press).

18. Excitation of hydrogen atom by proton impact using
the Glauber theory.
Phys. Lett. (1n press).

19. Elastic and inelastic scattering of electrons from
: sodium atom using Glauber approximatinn.
J.Chem.FPhys. (communicated).

20. Electran loss from helium atoms passing through inert
gases and molecular hydrogen, nitrogen and oxygen.
J.Chem. Phys. (communicated)

In first twelve papers,the formulation as well as the
calculatinns were done mainly by the author. The
contributions due to c¢ther co—-authors were marglnal

in the form of discussionsonly. In the remaining papers
the rle of the author was subsidiary.

Other publications

21. An achromatic filter fnr the near 1nfrared region.
Ind.J.Pure and Appl.Phys.8, 581(1968)

22. Triple layer infrared filter.
Ind. J.Pure and Appl.Phys.5,240(1967).

23. Suitability of magnesium fluoride, crynlite and fluorite
as antireflectinn materials for infrared.
Ind. J.Technnloagy,5,30(1967).

24. Neutral Beam Splitters. '
Ind. J.Fure and Appl. Phys.4, 394(1966)

25. A mononchromator photometer for the near infrared region

0.7 # to 1.2 .
" Def.Sci.J. z 132 (19686).

26. Near infrared filter,for the reginn 0.7 u to 1.2 wm.

27. Achromatisatian of thin films.
Froc. Ind.Sc. Cong. 8,(1981).



Chapter
1 INTRODUCTION s
1.1 Review of scattering theories con -
(a) Excitationn cen
(b) Ionization Cees
1.2 Review of experimental data coo
1.3 Outline nf the present work o
2 ELASTIC AND INELASTIC SCATTERING OF

CONTENTS

LITHIUM USING GLAUBER APPROXIMATION .o
2.1 Scattering of electrons by hydrogen

atom , oo
2.2 Scattering of electrons by helium

atom : ces
2.3,Scatterin§ of electrons from lithium

atom e
2.4 Elastic scattering o coa-
2.5 Inelastic scattering ce
2.6 Results and discussions  eee

(a) Elastic scattering cross—sections ...

(b) Inelastic 2s-2p cross—sections cee
2.7 Conclusions coe

ELASTIC SCATTERING OF LITHIUM USING
POLARISED BORN APPROXIMATION oo

3.1 Scattering of electrons from

hydrogen atom. oo

3.2 Scattering of electrons from

helium atom .o

3.3 Scattering of electrons from the

lithium atom vos
3.4 Evaluatinn of ﬁl and the polarisation

potential <o
3.5 Resuits and. discussinans e
3.6 Conclusinns <o

26
32

35
36
40
44
44
45

48

52-72
53

56

62

66
67
69



Chapter_ ‘ | page

4

ELECTRON LOSS AND EXCITATION IN ATOM-MOLECULE

AND ATOM-ATOM COQLLISIONS PO ¥3-96
(a) Electron loss cos "3
4,) Theory of electron loss in atom-

molecule c¢coliisions ' ces 76

4.2 Cross~sections for electron loss
from H atoms incident on Hz, N2 and

0o molecules .o 82
(b) Excitation | .o 85
4.3 Theory for atom-atom excitatinn . ' 87

4.4 Cross~sections for the excitation of
H atom in collision with Li,Na, and

K atoms. cae . 90
INELASTIC COLLISIONS OF ELECTRONS WITH ATOMS g97-123
5.1 Classical impulse approximation oo 98
5.2 Exact classical model of Stabler oo 101
5.3 Velocity distribution functions Ceee 105
5.4 Formulae in dimensinnless variables ... 108
5.5 Cross—sections for electron impact

excitation of Li, Na, K, Rb, and Cs .. 109
5.6 The exchange classical approximation ... 114
5.7 Cross~sectinns for electron impact

ionization nf Be, Mg and Ca atoms ces 119
PROTON IMPACT EXCITATION OF ALKALI ATOMS ... 124-137
6.1 Quantal calculations based on the

Born approximation cee 127
6.2 Extension of the classical thepry to

proton impact excitation of atoms coe 129
6.3 Results and discussions e 133
INELASTIC COLLISIONS OF ELECTRONS WITH IONS 138-170
7.1 Theory for ionization of ions oo 140
7.2 Cross~sections for the ionization of

ions e 145

(1) MgT,Ra", 5r" and NT ions . 145

(ii) Iogi nf alkali metal atoms
(LiT, Nat, K+, Rh*, and Cst) e 148



Chapter

(iii) Ions of inert gas atoms
B s . ot
(Ne yAr ,Kr', and Xe')

(iv) Lithium like ions (BeII, BIII,
CIV, NV,* OVI, FVII and NeVIII)

7.3 Theary for excitation of ions

7.4 Cross~sectinons for the excitation of
lithiumlike ions (BeII, CIV, NV, QVI
and NeVIII)

« 7.5 Rate coefficients for ionization and
excitation

(i) Ionlzat{on rate ceefficients
(ii) Excitatinn rate coefficients
7.8 Conclusions

8 DISSOCIATLON AND IONIZATION OQOF H
MOLECULAR ION

8.1 Expressions for the cross-sectinns
8.2 Results and discussioans
(i) Dissociation cross—sectinmns
(ii) Ionizatinn cross—sections
8.3 Conclusion

EP ILOGUE
REFERENCES

v e

L

L4

-

Page

149

150
152

156

158
159
160
182

171-183
175
178

8’
181
181
184-186
187-195



CHAPTER 1

INTRODUCTTION:

The scaftering'is an important tool in the
investigation of the atomic and molecular structure since
the microscopic nature of atoms evade direct observation.
A'knowledée of cross-sections for elastic and inelastic
collisions of charged particles with atomic and molecular
targets is very important in many physical phenomenon;
Information about these cross—sections and the associated
reaction rates is needed in the fields of plasma physics,
in the study of stellar atmospheres and the solar corona,
electrical discharges in gases, study of the gaseous nebﬁlae
and the passage of shock waves through gases. The cross-
sectionsof a number of elements such as Na, Ca, K, K", cat
etc. ‘are of importance in determining the innization
equilibfiuﬁ, and‘hence the chemiczl abundances in the
inﬁerstellar space. The cross sections of oxygen and
nitrogen and their ions are required to identify the
constituents which lead to the formation of ionised la?ers
in the earth's upper atmosphere. The cross—sections of
highly ionised iroh and nickel are important in discussing
~the physical conditions in solar corona ahd the absorption
cross—-section of H is important in determining the stellér
opacity. In the field’of plasma diagnostics one.often
ﬁeeds the cross-sectinn data in determining the témperatch

and population densities of a non-local thefmodynamic
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.plasma, in the calculation of the impurity-radiation to
be expected in hlgh temperature plasma and in the deter~
mination of partlcle energies by means nf life-time

measurements.

A gnod deal of experimental_ahd theofétical wnrk
‘has been devoted in recent yeahsptorthe study of the
inelastic colliSOn‘cross4SeC£ionso£ atoms and ions by |
electron impact (1-10). At the present.time although it is
possible in many cases to“obtain-estlmatesrof“cfogs-séctions,
accurate calculaiions‘aré stillTuncertain and a great deal

of investigation remains to be done.

Theoretlcally 1n pr1nc1ple it is p0551ble to describe
adequately, for most purposes, the complete physlcal system
through  the appllcatlcn of the non—relat1v1stlc Schrodinger
equation. An exact solution is only posslble for a two bady
“l.problem such as electron hydrogen scatterlng. The addlﬁ}on
of just one more electron into the physical;system complicates
the problem so much so that no exact solution'iS“khowu to‘date
for any phy51cal three body problem. ThlS l1m1tation
necessitates that all atomic scatterlng calculations u;p
some approx1mate methods. There are a number of 5uch
approxlmate quantal methods and the most common: and slmple”
of them are the Born approx1matlon and the undlstorted y
Hartree"Fcckmethod(Z) With the advent of high speed - computers,
it has now been- pOSSlble to predict the cross-sectlons |
more accurately through the use of the .close. coupllng o

method and the perturbed Hartree-Fock method (11~14). The
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labour involvedlin these calculations is fairly large. A
new directinn to the calculation of the chargedparticle-
atnm collison cross—section was recently given by
Franco(15). This method is based on the diffraction theory
of Glauber(l16). The method predicts as accurate croésé
sectionsas the close coupling method and involves less

arduous computational work.

In the low energy regime though the theory is well
established, the technical difficulties assnciated with

the complete quantum mechanical solution are huge. Therefore,

it is useful to simplify the atomic system conceétually

and to develop mathematical approximation. This state of .
affairs has led to and encouraged, the appearance of semi-
classical, classical and empirical methods(6,7). The
classical aﬁproach provides a reasonably accurate éstimate
of cross—section in a simple fashion. On the experimental
side considerable work has been done on the study of the
electron impact ionization and excitation of atoms and ions
(10, 17-23), however the experimental data are far froﬁ
exhaustive. Many speﬁies remain to be investigated and
there is very,littie experimental work on the excitation of
positive ions. |

1.1 Review of scattering thegries

(a) Excitation

(i) The atomic eigenfuncticn expansinn methéd

One of the most important methnds in the quantum

thaeory of scattering from atomic systemé is the eigenfunctisn
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expansion technique. One expands the wavefunction for the
system, scattering particle plus target atom, in the

complete set of unperturbed atomic eigenfunctions Qn

B(rs o) = AT g Grp) X () . o (11)
n .

=P

where A is an antisymmetrizing operator, ry repreéesents all
the coordinates of the atom and rg the coordinate of the
scattering-particle. This gxpansion gives the exact wave-
function for the problem and involves summation over all
discrete, as well as integration over the continuum states
.@n(?l) of the atom. In practice @ are the best available
atomic wavefunctions and one takes only a few terms in the
expansion inAorder to be able to solve the problem

numerically.

The eigenfunction expansion method, in principle,
requires retention of all the terms in the summation which

f integrodifferential equations.

leads to an infinite sa? o
This infinite set must in practice be truncated at some
finite number. Only a small number of terms are included.
This leads to somewhat inaccurate predictions. However,
in the study of iﬁelastic collisons, it is found that

mainly the atomic levels directly affected by the process

are important.

The Schrodinger equation for the total system is
(H - E) lb(?]_’?’g) = 0 oo (1.2)

where E is the total energy of the system and H is the
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total Hamiltonian H = HytK+V , K is the kinetic energy
operator of the scattering particle and V is the total
interaction potential between this and the atomic nucleus

and electrons, Hp is the Hamiltonian of the atom.
Combining Eqgns.(1.1) and (1.2 ) and with the help

of the Schrodinger equation for the atom only, one obtains

an infinite set of coupled integrodifferential equétions

for the wave functions of the scattering electron

n' = Wnn:))(n'(;z) .o (]_‘.3‘)

[@2«3 :}xn(?g) =22 (v,

Kn is the wave number of the scattered particle and

V__+ and

an are the interaction potential and the

W '
nn
exchange operator defined by

Vot (To) = ¢;(;l) V(rysrg) ﬁp'(rl) dfi
and ‘ . _
- —_ ¥ > —_ - — - —
& .4
respectively. (1.4)

If the incoming electron impinges upon a neutral

atom in state 1, the asymptotic behaviour takes the form

H

A R W -1 .
X (ry) ;gf;,exp(lKrrg)oln + ry” exp(iK rp)fy (6,¢) .. (1.5)

1/2
Here K = [%m(E—en)/héj and fy (0,@) is the scattering

amplitude for the scattering angle 6,8 with respect to the

directinn of the incident beam. €, is the elgenenergy

of the nth state of the atom. In terms of the scattering



amplitude the cross-section is given by

k
Q. = E? JJ ,fln(e,g)'z sine de d@ ' .. (1.6)

The above formalism is exact. within the framework of
nonrelativistic quantum theory. If we truncate the chain
of the infinite set of coupled integrodifferential equations
in order to obtain a practical solution, the effects of
longrangedistortion tn the target are ignored. However, the
close~range effects like exchange‘and correlation are

included.

(1ii) Partial wave analysis

In order to snlve the system of equations(1.3)
accurately it is necessary to use a partial wave treatment.
We solve the differential equation for each value of the

total angular momentum and of the total spin.

Let nLMSNE denote the quantum numbers of the atomic
state and Kymsms of the incoming electron. The total

— -

angular momentum ET =L + 1 and the total spin §T = S + S

. =T
For each value of the total angular momentum (L")
. ’ ’ . _’T (IR} - > i ant \
and the total spin (5°J, the wavefunction X%(rz) of the

colliding electron are solution of a set of coupled equations

2 £(£s1) | -
) 2 _ _
[i;z + Kn B 'l"2 ] Fy( r's ) = 2 i)’ E/mjv NEJV") P-L"' (T‘2 z |
. 1.7

where ¢ stands for all the guantum numbers, nLSf.
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The cross—section is now related to the asymptotic

forms of the radial functions F given in terms of the R

or Smatrix. The transmission matrix T ¢
T: — =—2"'i£.{"—
1 S 1-1iR

The total crass—section for a transition between two

states is given by

; | 1 1 T T
QloLs - a'L'si1_= Kg ES1Y LD & (25" +1)(2L +1)

by
nlL gitsT

-

x|< argL’s' [TarnpectsT > 2 L0 (1.s)

a denotes the configuration i.e. all the other quantum

numbers needed for 2 unique specification of the state.

(iii) Close~coupling approximation

In the close-coupling approximation the expansion in
(1.1) is truncated after retaining a few atomic states.
This leads to a finite set of integrodifferential equations
which are solved numerically. In the calculation of excitation
cross-section it will be necessary to retain the lowest few
bound ;tates above the up@er level involved in the transition.
Good results are expected from the close-coupling method
if the coupling to the states which are heglected is weak.
This is the case in the elastic scattering of alkali atoms‘
in which the coupling with the resonance state is very
strong compared tn cnupling with the nther excited states.

In inelastic scattering this 1s the case when a few levels,
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close in energy are strongly coupled together and are

very weakly coupled to other distant levels which are
neglected. The close-coupling approximatior has been quite
successful in predicting resonances but less successf&l
for treating the excitation process showing a lack of
cdnvergence with respect to the addition of more atomic
states into the trial wave function'expansion-The way to
improve the convergence in close-coupling methods has been
discussed by Burke(24) and Smith(é5).>At low energies the
close-coupling method suffers from certain defects. The
polarisati§n potential is not properly included due to the
neglect of coupling with the higher~states and with the
continuum. Further the interaction between the atomic and
the colliding electron is not described properly at short
distances. The methed can be improved by considering the

polarisibilities of the initial and final states.

-

(iv) Born approximation

From the previous discussion it is obvious that the
inclusion of a large number of the partial cross—sections
in the  close~coupling method grecatly entiances the computat-
ional labour.Simplef methods like the Born approximation have
therefore been quite popular. When the incident energy is
large compared to the interaction energy, the wavefunction sclut-
ion of eqn. (1.3) may be approximated by -a plane wave.

The cross—section is proportional tn

<ot viv, > ] | e (1.9)
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where wn = B.F, wn‘ =@ 1 Foes Fn-and F 1+ are plane

waves. In cases of collisions with positive ions Pn and

Pn' are replaced by Coulomb waves because we have to
consider the effect of the Coulomb field of the ion.

The Born approximation can be used at energies higher than
three to four times the inelastic threshold and a gdod
agreement with experimeht is nbtained at energies ten

times the threshold energy. Tﬁe Born approximation is

more valid for inelastic scattering since the close
collisions are less important in this case. The higher

order Born appfoximations can be obtained by expanding the .
scattering amplitude in powers of the interaction. The

second Born approximation dnes not improve much the -
results at low energies. "hen the momenfum transfer in

the vicinity of the target is not small compared to

the incident momentum,the Born series does not converge fast.
At low energles *the clectren spends more time near the
target, hence the distortion, excﬂange and coupling effects
become important. Certain irmorovements in the Born approxima-
tion have been made by us and they are discussed in detail

in Chapter 3.

(v) Vainshtein, Presnyakov and Sobelman approximation

Vainshtein et al. (26,27 ) have given a méthod in
which the repulsion between the atémic electron and the
~incoming electron is taken into account explicitly but
the interaction of the incoming electron and the atomic

core is approximatec. They express the total wavefunction



in the form
T‘b(?‘ly‘;'z) = Qsl(rl) 9(?‘1,?‘2) . (l.lO)

where @, is the wavefunction of the initial state of the
hydrogen atom and g describes the mutual repulsion

between the atomic and incident electroné.

In the Schrodinger equation the interaction 82/;2
is replaced by 92/§ where R = %(;l+;2) and 5 = %(;2~;1)-
This results in the equation'

2 2 o
i_ (v B+ +2K2) +§-— - E—-]' g(Ryp) =0 . .. (1.11)
e , -

—\

—

This equatlon describes the scattering of hmofree electrons

by each other and the motion of their centre of mass in

the electrostatic field of the proton.g(§9g) is expressed

as ,
g(ﬁsg) = N exp'{iﬁi(§+5)} v F(iv,1; iKlR—iil.ﬁ)'
x F(=1v , 1y iKlp—i‘Kl.gS) .. (1.12)
with ¥ =K1 and N = (11w )7 (140 ) .+
Since =-e /r:j gives no contribution to the scattering

amplitude for ColllSlonal excitation in the Born approxima-
tion Vainshtein et al. néglected it in their approximation;
They express the séatfering amplitude, after applying a
peaking approximation, in the form

2me9

(K) = = ~==— A I(l-n) .. (1.13)

{1
h“K

+h
N
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where A is a dimensionless quantity given by

2‘ -—
A= N“K""J F(iv,1; i¥r - iKjr)
T _ L
with x F(=1V,15 iK;r-iK.7) x p~1a(BiKp) -
K=Ky=Kq .o (1.14)

' The equation (1.13) becomes equivalent to Born approximation

if A is taken to be unity.

The terms neglected in (1.11) produce divergences
in the limit Kl*O. Vainshtein et al. have shown that these
divergences can be removed if VvV is redefined as

. 1/2 -1

Crothers and McCarroll(28) have introduced a
modification in the approach of Vainshtein et al. which

leads to a correct evaluation of A.

(vi) Glauber approximation

In both the approximations discussed above i.e. the
Born approximation and the approximation of Vainshteinet al.
the interaction of the incident electron with the proton
is considered negligible. In the first Born approximation
for inelastic collisons, its contribution in fact vanishes.
To overtome this drawback Franco(l5) recently made use of
the Glauber approximation(16) (which was earlier used in
the problem of high energy and nuclear physics) to the
atomic scattering problem. The virtue of the Glauber

diffraction approximatinn is that for inelastic scattering
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it explicitly takgs into account the interaction of the
incident particle with the proton, whereas in the other
approximations; the contributinn of this interaction
vanishes or has been neglected. in atomic collisions, the
Glaubér approximation can be used for both elastic and.
inelastic collisions. Its application so far has been
confined to simple systems. Franco(15,29) employed the
Glauber approximation to the study of the elastic scatter—
ing of electrons from.the hydrogen and the helium atoms.
In these calculations_for the total elastic scattering
cross—sections a's well as for the angular distribution,
the Glauber theory agreed surprisingly well with experiment
even at comparatively low energies (<»100 ev) where the.
Glauber's formulation is expected to break down. This
theéry was applied te inelastic scattering of hydrogen

by Tai et al.(30), Ghosh et al.(31) and Bhadra and
Ghosh(32). Thece calculatisns hove chown that Glauber
theory predicts fairly accurately the cross-section for
excitation in hydrogen in the range of energy from 30 to
200 ev. In fact in this region no other thesry competes
with the Glauber theary. We (33,34 )hive recently

extended the Glauber approximation to fhé sfudy of
electron—aikali atom elastic and inelastic scattering
and have found that in such cases of heavier atomic

target systems also the predictions of Glauber theory are

guite satisfactory.
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(b) Ionization

(vii) Quantal approximations

From a theoretical point of view the problem of the
ionization of an atom or a molecule is much more dlfflcult
than the corresponding exc1tatlon problem. The difficulty
~lies in finding the asymptotic fields in which the ejected
and the -scattered electrqnsﬁmve. The two electrons move
away aftér the ionizing colliéion. Aftér the collision the
target is no longer a bound system tas in the case of
excitation problem) and the fields in which the two electrons

move are not simple.

Let R andfk' denote respectively the momenta of the
ejected and scaftered electrons, with locations specified
by T and r'. The asymptotic charges that each electron
would see if they are treated indépendently are denoted by

Z and Z' respectively.

The amplitudes of scattering are defined through the
asymptotic forms of the wavefunctions. The main aifference
between the ionization and the excitation lies in the fact
that for ionization the a;ymptotic forms are taken for two
electrons (locations speéified’by r and ') while for
excitation only one electron i§ going away. This complicates

the problem.
Peterkop(35) and Rudge and Seaton (36) have developed

the asymptotic form as an expansion. Subject to boundary

conditions which define a collison event being satisfied,

.
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the coefficient of the leading term in the expansion is
the scattering amplitude. Integr;l expressions for. this
were obtained by Peterkop and Rudge and Seaton. Denoting by
‘w(; ?'){the ekacp wavgfunction’of tﬁe'sys{em before the
col%isioﬁ, which has the appfopripte asymptotic form, the

scattering amplitude is given by

£(K,K") = ~(2x)7%/" eidjw<;,;'> (H-E) p(2,-K, ) ‘
| c o gz, R TOdRR L. (1.15)

;Mere H is the Hamiltonian of the;éfgtém, E its total energy
D a phase factor and the ¢'are'the Cou]om§«wavefuhction
corresponding to charges Z and Z'. SinCL the two eiectrons
mov1ng away after the tollision are 1ndlst1nguishable, the
probability that the eJected-electr;n has.momentum K and
the scattering electron momentum K: is the same as that for

scattering with K and ejection with. R‘ It follows therefore
that the direct amplitude f(K K') and the exchange amplltude

g(K' K) must be équal. g(K,K ) = f(K K') if a correct choice

of phase is made for the wavefunctlon

‘Attemptsto evaluate (1.15) were .made using gquantal
approx1matlons,such as Born 1 and Born 2 approximations.' In
these approxlmatlons the wavefunctlon of the whole system

>

before the collision is wrltten as a product of a plane

‘¢

wave describing the collldlng electron with the anefunCtlon
of the bound electrcn. The charges Z and 2' arée taken as
1 and O respectivel&. The CTOSS“SeCtL”n Q is given by

5 (Born a) =(m<o)'*f KK'd (5 K® )ak ak’ ’fB(K,K')I .. (1.18)

Jo; -
where K is the initial momentum of the colliding electron and
5 :
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U-is the ionization energy of the atom.
A better approximation known as Born b. approximation

results when the upper limit is taken as (E-U)/2. Born a
and Born b ére presently the best available approximations
for icnization processes. For the case of ions the Coulomb~
Born approximation is used for both ionization and
excitation. Excitation of positive ions has been recently

discussed in detail by Burgess et al.(37).

(viii) Classical approximations

In the above we have seen that one has to resort
to'épprokimations as the exact guantum mechanical study -
of 5 collision problem leads to great computational
difficulties. The gain in accuracy in the use of quantum
theory is lost to some extént in making'the'quantal
_approximation. Further for a pomplex atomic or molecular
system the task of solving the quantum mechanical
scattering equatioﬁ leads to great analytical and computa-
tional difficulties. Alternative approaches are therefore
sought to evaluate the cross-sections in a simple way.

It is often easier to understand the atomic collision
pProcess uéing classical mechanics instead of quantum
mechanics. Gryzinski(38,39) and- Stabler(40) have shown
that for a large range cof electron scattering problems,
fair accuracy may be achieved by classical calculatinns.
Compared with'thé quantal calculations, the cross—sectinns

nbtained from the classical calculations have the
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practical advantage that they have simplé analytic form

and may be evaluated easily and rapidly.

In the classical approach the collision between
the electron and the atom 1is treétéd as a binary electron-
electron encounter. The transfer of energy from the
incident to the bound electron during a collision is
‘computed as if the two electrons were free. The energy
transfer must be large compared to the binding energy of'
the atomic electron. The method is therefore more suited4
for ionizing collisions. waever; for éxcitation also

approximate rccults can be obtained.

The .earliest applicatibn.of the ‘classical mechanics
to the iﬁelastic scattering of:electron'by atoms was made
by Thomson(4l).by assuming the atomic electrons to be
initially at fest. Clearly at low impact energies, the
neglect of the matian of atomic electron is an inadequate-
approximation. Consequently.a more refined classical
theory was introduced by Gryzinski(58,39) making allowance

for the velocity of atomic electron. Gryzinski's theory is

(42

N

based on the work of Chandrasekhar and Williamson

and Chandfasekhar(éB) oh stellar collison and gave
s;rprisingly good agreemenf with available experimental
results. Unfortunately the data of fhe day was not the
best and several approximations introduced in attempting

to simplify integrations were not physically acceptable.

' ) N - -
However, Gryzinski's work focussed attention on classical
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methods which were later on developed by Stabler(40),
Burgess(44), Vriens(45),and Kingston(46). The main drawback
of the classical theories is that they predict a_E§l decay
of the cross—-section at high energieé which is a
more rapid fall than that predicted by quantum theory:
Eél/n E. In order tn obtain a correct high energy behaviour
Burgess(44 ) has tried to combire the binary encounter theory
with thé impact parameter @ethod. He uses classical approach
at low}energieé and semiclassical impact parameter method

at high energies.

For treating the electron positive ion inelastic
collisions, Thomas and Garcia(47) have recently extended
the classical theory of neutral atoms te incorporate the
focussing effect of the long range Coulomb field of the
ion. Burgess(44) has tried to introduce a semi-empirical

additional factor to account for the focussing effect.

We have made an extensive study(in the second part
of this fhesis) of the inelastic collisions of charged
particles with atomic and molecular systems using classical
theories. The effeoct of.various velocity distributinn
functinns of the bound electrons of the target on the
cross—sections has alsc been investigated. The advantages
and disadvantages of the classical theories in specific

processes have been discussed in detail there(Chapters 5-8).
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1:2 Review of experimental data

- Considerable. experimental work has ‘been done in
recent years tc study the ionization and excitation 6f atoms
and ions due to impact of electrons. The fast devéiopmenté
in theory have stimulated a search for new ways to measure

cross-sectioné for a variety of atomic collision processes. .

A numbérkof~review articles have recently been published |
| in which the details of the experiﬁental meaéurements
have been thorogghly-analysed(lO,l?—lQ,éB), The most powér-
ful and promising experimental method involves the study
of products formed when well defined géams-of charged
particles collide.CrossédnﬁdUlated beém techniques have
been used since 1958'fqr cross—section measurements on
unstable targets. Most of these experiments have involved
the intersection of a mechanically moddlatéd thermal beam
sf neutral atoms w?fh a dc beam of electrons of variable
energy. This approach is quite satisfactory for neutral
targets but difficulties appear wﬁefe both beams are
charge!u. D->der and co—workers have recently developed a
technique that appears to obviate these difficulties(19).
Their application of.this techniquelto the study of ioniza=
tion of He' ions by electrons was the first successful
beam experiméﬁt with two spec}es of charged particieé. In
this new method they intersect a fast well collimated beam
nf He+ ions with an electreon beam of -variable energy

L

ard then resslve the ion beam with respect to its charged
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State.after it passes through the intersection region.
The success of this technique lies in the simultaneous
modulation of both the ion and the electron beams and the
ability to vary the relative phase of the modulation.
This technique has been used by Dolder and co-workers

to study the ionization of He™, Li+, Ne™, N+, K+, Mg+

and Ba® ions by electron_impact.-Latypov et al.(49) and
Kupriyanov et al.(50) have measured the ionization cross-
section of ions of inert'gas atoms and mercury atoms.
Lineberger et al.(51) and Hooper et al.(52) have also
measured the cross-sections for the ionization of LiT,
N§+ and K ions. The experiments of Latypov et al.(49)

are less accurate than the other experiments.

The experimental studies involving the measurement -
of excitation cross-sections are more difficult than those
of ignization because of the greater difficulty of
accurately measuring the signal associated with the
excitation process. The resonance racdiation from most inns
lies deep in the ultraviolet where the measurements become
difficult. Due to this reason very few experiments have
so far been reported an the excitation of positive inns.

Dance et al.(53) have measured the excitation of He' to

the 2s state by electron impact. The experiment of Dance et al.
is probably the most difficult and elaborate‘crossed beam
experiment ?et perfarmed. Recently Bacon and Hooper (54 )

have used another method tb measure the resonant excitation

of Ba+. In this methnd the callimated electron and ian
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beams collide and light emitted is detected by a photo-
multiplier. The major difficulty in this approach was the

separation of the required signal from the background.

Details ébout_the methods used in the measurement
of cross-sectionsfor the excitation and ionization of
atoms and the compiled data fof, species studiéd are given
by Kieffer and Dunn(l0) and Moiseiwitschand Smith(9).

The crossed beam technique ﬁas alSO been used by Dunn
and Vanzyl(55) and Dance et al.(56) for the determination
of dissociation cross—section of Hg molecular ion by

electron impact.

. The major difficulty encountered in these crossed
chargedlbeam experiments results from space charge inter-
actions between the two beams. The energetic target ion
beam invariably produces a background current at the
detector due.to its interaction with the residual gas.
Deflection of this beam by the space charge field of the
electrons .may cause a change in the background current,
that is indistinguishable from the true signal current. This
effect is generally_investigated by lobking for variation
of the measured cross-section with ion geam eneragy or
looking for signal éurrgnt below the, threshold for the
eleétron—ion reaction. These crossed beam'experiments are
nbw being complemented by techniques whereby ions are
spatially confined by a multipole trap or by electron

swace charge and are then subjected to electron bombardment.
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In the Feasurement of croés-section for a particular

process one important factor which affects the magpitude

of the cross—-section is the initial state of the excitation

of the ioh. This is still more important for the study

of ions because they are often formed by electron impacts

which may simultaneously populate excited states. It has

been shown by Latypov et al.(49) during the measurements

on inert gas ion systems,; that if the ion source conditions

were changed the measured cross—section varied\byAabout

300 /. due to the variation in the proportion Qf metastable

ions in the target beam. The problems of initial

excitation are even more serious for molecular ions because

these may have vibrational as well as electronic éxcitations.

Another source of electronic excitation arises frombautoioniza~

tion states(i.e.inner shell electranicexcitation)with lifetimes

greater than about 10—6 sec. Autoionization occurs in many

atoms and ions. Although varinus methods have been suggested

to combat the above difficulties but still a great deal

of development of scurces of unexcited ions needs to be

done. In some experiments on ions like’the highly charged

ions of astrophvsical importance, it will nearly be

impossible to obtain 2 parent beam which will be free

from metastable excitation. In such experiments, therefore,

it would be necessary to determine the proportion of

metastable state and frpm the knowledge nf such states the

cross—section for ionization from metastable states could

be determined.



Due to the difficulties mentioned above the
experimental data on cross-sections are available only
for simple atomic and molecular systems and the cross-
sections for inelastic éollisions of electrons with a number
of ions and atoms of astfophysical importance remain to
be investigated. Further, there is very little experimental
work on the proton impact excitation and ioniéation of
ions. In atoms also the proton impact measurements.have been
done only for a few s?stemé. Thus, we see that there is
a real need for more expé?imentai work.

B ‘'

1.3 Qutline of the present work

.The work reported in fhis thesig is ihe result of
_author}s attempt to investigate and obtain an understanding
of the collisions of charged par;icles with}atomic and
molecular systems. For the ﬁarget atoms both elastic and
inelastic scattering and fo% target ionslonly,ineiastic
scattering have been studied. The first part éf the thesis
is concerned with the scattering of eléctrons by atoms
using quantal approximations and in the sécond part a
classical approach has been followed for the study of
collisionswith atoms and ions. Colli;ions between atomic
and molecular systems resulting in either excitation or
‘electron loss from the iﬁcident atom have also been

investigated quantum mechanically.

 The’second chapter is devoted to the elastic and
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inelastic scattering of lithium atom by electron impact
using the Glauber approximation. The'advantages of the
Glauber theory over the other theories have been indicated
in the light of the experimental data. The third chapter
concerns the elastic scattering of lithium atom invthe
Born approximation. The effect of the polarisation of the
target atom due to the incident electron has been considered
and the exchange effects are also included. The fourth |
chapter deals with the application of Born approximation
tc the atom-atom and the atom-molecule collisions. fhe
electron loss from the incident hydrogen atoms colliding
with molecular targets has beén.considered. The.excitation
'of hydrogen atom to several states during collisions with
alkali atom targets is also studied. The use of the form
factors and their mndification for molecular targets has
been discussed. The vibratinnal motion of the molecule

is also considered.

The remaining-chapters deal with the applicatinns
of the classical theory. In the fifth chapter the
_electron impact excitation and ionization of several
atoms have been discussed. The sixth chapter deals
with the proton impact excitation of alkali atoms. In
this chapter both the quantal (Born approximation) and the
classical approach have been followed to evaluate the
excitatinn cross-section. The seventh chapter gives a
detailed study of the ionizatien and excitation of ions.

The effect of the Coulomb field ~f the ion and the effect
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of increasing the charge of the ion on the cross~sections
have been discussed. The reaction rates for the ionization
and the excitation prncesseé have also been calculated

and compared with the existing calculations and data for rate
'Coefficients.'The last chapter eighth gives the application
nf the classical theory to the study of the dissociatien

and ionization of the hydrogen molecular ion.'The effect

of the Coulomb field of the ion has been considered here
also. It has been concluded that the Coulomb field of the

ion causes an increase of the ionizatioh and dissociation

. + .
cross—sectinn of the H2 molecular 4on.

In the classical'caxcula§ions the effect of changing
the velocity distribution of the bound electrons of the
target atom has been d;scussed. Several types of distribution
functions like hyergenic, é6-function and quantal distribution
have been used. The guantal momentum distribution functinn

has been found to yield best results.
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CHAPTER 2

*

ELASTIC AND INELASTIC SCATTERING OF LITHIUM
USING GLAUBER APPROXIMAT ION

The Glauber approximation(l6) has been used extensively
in the past for‘estimating the scattering amplitudes in many
problems of particle and nuclear physics. In particular “
its application to scattering by deutrons is extensive(57,58).
The Glauber approximation is essentially a diffraction '
| approximation wherein it is assumed that the incident plane
wave. sweeps virtually undeviated through the region of
interactian and emerges suffering only a position—dependént
change in phase and amplitude. This assumption'will be more
valid at higher energies as at low energies the wave is
expected to remain in the region of interaction potential
for a longer time. The Glauber a@proximation differs from
" the eikonal approximatioh which applies to scattering by a
fixed potential in that it includes a number of other
dynamical approximatinns. Further, it also differs from
the impulse approximation as it explicitly treats the
cffect of dnuble eollisions i.e. collisions in which the

incident particle interacts with both target nucleons.

France (15) was the first to introduce the Glauber
thecory to the electron atom collision_problem. He first
considered the case of clastic scattering of hydrogen atom

by electreon impact. The results of Franco's calculations

L
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for the angular distribution as well as fcor the totdl scattering
cross—sections agreed very wéll,with the experiment. Later

on Tai et al.(30), Ghosh et al.{(31); and Bhadra and Ghosh(32)

examined the utility of the Glauber theory to the inelastic
scattering of atomic hydrogen‘with electrons. They also
observedsa surprisingly good agreement with experiment.

The main reason for the success of the Glauber theory can

be ascribed t~ that it takes account of the interaction of
the incident electron with both the target electron and
protons whereas in most of the other approximations used in
the study of exc1tat1nn processes like the Born approximation,
the interaction between the incident electron and the target
proton producés identically zero scattering, or it is assumed
to produce negligible scaptering as in the case of impulse

approximation of Vainshtein et al.(26).

f%e Glauber approximatinn is applicable for high
energles and 1is also expected to be more useful in the
intermediate energy domain for which the Born approximation
is inaccurate and the phasg-shift analyses are too complicated.

v

2.1 Scatterlngrof electrons by hydrogen atom

L

Cnnslderlng the target prqton to be very-heavy one
can neglect the effect of exchange on scatterlng.‘The
contributinn of e%ghange will be small for enérgies beyond

100 ¢V, wbere~thé Glauber thenry is more valid.

» - ’ . :
Lot the origin »f cocrdinates be placed at the proton



-27_

and let b represent the -impact parameter vector relative

to the origin. Let T .and ' denote respectively'fhe

. /V
position vectors of the target and incident electrons.

Let hﬁi and hRf be respeétively the momentum vectors of

the incident électron before and after the collision. The

-

momentum transfer vector is q = Ky - K¢ .

Let the z axis (also the polar ax1s) be along K..

If S is the projection of r on to the x,y plane (planeof

—

impact parameters) one can write r= s + z and r' =Db +5,

fi

-

where the impact parameter vector b lies in the xy plane
and is perpendicular from the origin to the incident particle's
initial trajectory. The distances and angles are shown in

- fig. 2.1.

The scattering amplitudes Ffi(a) for collisions in
which the target atom undergees a transition from an
initial state i with wavefunction @; to a final state f
with wavefunction @ and the incident particle imparts a
- momentum ha to the target, is given for the case of
hydrogen atom by

i R, -, >y Mg b) 2 - 1 '
Fflkq) . J Belr) 1 (oyr <) e bdy (2.1)

{7
\TI

\'Sl

A

where the two dimensional- integral over impact parameter
vector is oﬁer a ﬁlane perpendicular to the direction of _
the incident beam. The function | (b,T) itself depends upon
- an integral, along the direction of the incident béam,'of
the instantaneous potential V between the incident particle

and the target.Since the potential between the incident
particle and the target protons will not be neglected and sins:|
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is not a linear function of V, the theory explicitly treats

the effect of the presence of nucleus. The functinn T

‘may be expressed as,

+OO

FGF) = L el g} vGFNay
. i oo -
izez'h-l_oo 1 .‘ 1 ’
=1 - exp|- j 3= = To——)dE .. (2.2)
Vi oo p! | -7 |

where Ze is the charge of the incident particle and ;i
its velocity. Writing r=s+zand ' =b +-é’, r-takes

the form
+OO

-1/2 . -
{(b2+ £°) 5 ‘(b-—s)2+(i;-z)2:l 1/2}0‘{\ |

= l—exp[— %\gf‘-lz-ngn[lg-g| / kﬂ] e (2.3)

e B
N iZe
[ (b,r) = l-expl- g;;

The differential cross-section is given by

der (42 ) K -2
d s i

The total cross—section is

~ ..

e -~ 12
T |Fe;(@)]° sine de d7 .. (2.5)

where 6 and @ are the spherical coordinates specifying the

direction of Kf relative to Ei‘ K¢ is given by the conservation:

relation

2 2
2 . _ R 2 .. (2.6
5= K¢ + €7 = 5y Ki + €4 (. )
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where €3 @nd g¢ are the energies of initial and final
states. Using q2 = K% + K? - 2K Kg coso the total Cross—

section is given by

0 Kl+K R
=] aa @[ - e

For the case of elastic scattering Ky = K; and the total
elastic scattering cross—-section is

Ki .
o]

A}

'-;‘.

Further for elastic scattering of hydrogen

-r/a,

fe = 9y = (na2)"H/% o .o (2.9)
where a is the first Bohr radius. Putting these wave-

functions in (2.1) and carrying out the integration, Franco

obtains the following expression for the elastic scattering
amplitude, /2 '

. . 2 2
Fii(q) = 21Kia%J de 51n59' cose[}ln g' - —(aoq) cos é]
o)
2 —4
X r;ln o'+ m(a q) cos éﬂ

1

l-q ' ! D3 m | 1 ‘
e L% - (lcosRe| / cose)”"'lcosRe'|Fl5 + 51n,1+ 1n,

, Sln 26')] b

.. (2.10)

with n = ez/hvi

In the calculation of the elastic scattering by
hydrogen atom Franco finds ﬁhat the total integrated cross-

sectinns are identical for energies beyond 100 eV with the
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first Born approximation (FBA) and below 100 eV, the Glauber
cross-sections are considerabiy ﬂigher than the FBA. The
agreement with experiment for energies upto 100 eV was

good even though the theory-is not really valid in this
region. Itwasﬁmméver,noted that at low energies the

Glauber cross—sectinns wers very much higher than the FBA.

-

This large increase in cross-section at low energies can

be understood as follows.

If we expand | (P,r) in powers of n, the first
nonvanishing term is linear in n and. is identical to FBA.
The retentinn of linear terms is valid only at large vl.
Thus we can infer that the Glauber prediction for Fg; (q)
nust be the same as those of FBA at high encrgies. The
second term in the expansion of f— yields a puréiy imaginary
contribution to the émplitude. It is noted by Franco that
the angular distribution resulting from the inclusion of
the secnnd term are considerably higher than that of FBA
for small angle scattering. The quantity (1~v7 /c )
behaves aS(Znagnq) for small g. This is the result of
the basic approximation in Glauber theory that. during the
~ passage of incident particle through the field, the target
particles remain frozen or the collision time is much
shorter than the perind of the target electron. This
assumption is not valid fnr large impact parameters. The
Glauber approximation for hydrngen according to France
must be mnst satisfactary in the region (an)2>>(3 Kaz)

Despityu this restriction, in a certain range of momentum
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transfers,the scatteringamplitude contains a logarithmic
dependence on g thereby significantly increasing the

intensities for small q compared to FBA.

The Glauber theory which was quite successful in
predicting the elastic scattering of hydrogen atom was:
applied by Tai et al.(30) tn the study of inelastic

scattering of hydrogen also..

Putting the wavefunctions @c for the final states
in equation (2.1) Tai et al. obtain the amplitudes F, (q)
for the transition ls-2s, 1ls-2p, ls-3s and ls—Bb in the
hydrogen atom. The same was extended for the ls-3d transition
'by.&dadra and Ghosh(32). The représentative amplitudes foar

s—-syand s-p transitions in hydrongen are

/2
ZlOiKi j de'! ginse'cose'

W e ot

F =
ls-2s 36V2

. 2 é- 2 2 "] 5
5 (sin“g!' + 5 o cos”e )
el 4 - 2 .
X 1=2sin ' + 25 qzcosze'singe' - 128 qécoé49' M
9 81 .
TC/Z ¢ . (2011) .
/
2 .
zlqu 'i¢~r de'’ cos”e'sinée'(51nze'— % qZCnsze') §
F e I I = N
ls~2pil 3°n i (sin®g' + % qz'osze')5
- | .. (2.12)
with R |
- —03 i
M= 1-(2mn) Licnspt) 2in J‘ dﬁs(l-Y Cosﬁs) " and
T 0 '
N = (cosg') 2N AP cos @ (1= Y cos g )", ¥ = sin 20"

0 .. (2.13)
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For all these transitinns it has been noted that
the Glauber creoss-secticns agree very well with experiment.
All the other thenries like the FBA, Vainshtein et al.
approximation, close-coupling and distorted wave approximatisnns
tend t~ be very close to each other for energies beyend 100 eV.
_For E; < 100 eV, the Glauber approximation tends to be
significantly lower than the other theoretical calculatinns
.excepting the Vainshtein et al; approximation which is nnt
well founded. This feature in inelastic processes is in
contrast tn the elastic scattering process wheré the Glauber
cross—section at lower energies is significantly higher
than the FBA and other calculations. The differential cross-
section for elastic and inelastic scattering decreases
monotﬁnically with increasing scattering angle 6. At large
angles,p > 4bo,the Glauber inelastic differential crnss-
sectians ‘are significantly higher than the FBA whereas in
elastic scattering at large anglcs the FBA and Glauber
approximations were indistinguishable. In the ‘elastic scatter—
ing at angles between O and 402 the Glauber apprbximation
always exceeded the FEA. The difference increases for small
angles. It has been noted by Tai et al. that the predictions
.hof the'élaubér differential cross—-sections are almost as

successful as the Glauber total cross—sections.
2 .2 Scattering of electrons by helium atom

Fsllowing the success of Glauber theory for the

hysrogen atom, Francn(R9) extended it tn the study »f
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elastic scattering of electrons from the helium atom.

1f ?1 and ?2'denote the position vectors of the target
electrons, the amplitude for scattering of a particle of
momentum hKi by helium atom is given by

™~

ik, |

. X, — - - > —_ .-—-» — s - -
Fei(q) = 5;1 Periarg) [ (b, rysry) @, (rysry) da-b)y2y, drydrg
. - : ' .. (2.14)
whete 400

r“(ga;ls;g) =1 - expL(—iZe2 / hvi)J (2?7¥4?'~ ;l|~l
— OO __I;Q__ ;2 l"l)d\é)]
Writing ?l = ;1 -+ ;l and ;2 = 22 + ;2 w’here';l and 22 are
the projecticns of ;l and ?2 respectively on to the plane
nf impact parameter, we get
- iK, -2inZ
— v i _ * -~ . - - - - 2
Fes () = 5;—{ I, (ab) ¢f(rl,rz)[; - (Jb - sl]lb—szl / b7) ]
" - = 2 2
@. (ry,r5)bdb dz;dzod"s d" s
.. (2.15)

For the case of elastic scattering g = ¢;.

The grnund'state wavefunction of the helium atom is

given by |
- , - 277 /3 o7 -
doo ey = [ PR/ TSR/ TR R
i l [ - 3‘)!‘— JL J

. .. (2.16)
with N = 1.484, Zl = 1.456 and ¢ = 0.6.

Using the above wave functinn and carrying out the
the integration in (2.1),France nbtains for the scattering

amplitude of the helium atem,
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where | 1_ Zin

- 2i - i | 2
A(o,9) 1-(4 tanze singd cos@) .ln(xy) l+21n[(x2-l)(y2-l):l

H

X F_(%*% Zin, l*‘lé Zin; 1; x—Z)F(%--%Zin,l+-% Zin;l;y-z)
| | .. (2.18)
-1 . ‘ -1, '
B(ry6,0) = [%1(2er§%1ne cosq )+ 2cK1(321r%§1ne cos)
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. . 2 2
with  x = csc 20 csc # (1 - sin"8 cos"@) and

y = csc 20 sec ¢ (1 - sin®g singﬂ)

The three dimensional integral in equation (2.17)
was evaluated numerically by Franco. The differential and
total cross—sections were éélculated using equatinns (2.4)
and (2.8).

The calculations of Franco for the elastic scattering
from the helium atom using the Glauber approximatinonreveal
that the shapes'of dif ferential cross-section agree well with
the measﬁreﬁeﬁts whereas,at all energies the shapes obtained
by FBA are poor. It is also shown that the predictioﬁs of
the Glauber theory and the Born theory for the helium

atom siowly aoproach each o~theér as the incident energy
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is increased.

The remarkable success of the Glauber theory in
predicting acc‘%ately the electron atom collision cross-—
sectinsn forvsimple atomic systeﬁs like hydrogen and helium
tempted us to investigate its applicability to more complex
atdmic systems like alkali atoms. In the next section we

discuss our findings far elastic and inelastic scattering

of electrons from the lithium atom.

2.3 Scattering of electrons from lithium atom

As seen in Sectidns 2.1 and 2.2, the applicatibn pf
the Glauber theory requifes an evaluaticn of a five dimensibnal
integral fonr the hydrogén atdm and an eight dimensinnal integral
for the helius: atom. In general, if no approximatinns are
made about the atomic target systemg the study of scattering‘
by a Z electroﬁ atnm leads tn the evaluation of a (32Z+2) .
‘ dimensional‘integral; This will require that in the case of
lithium with Z = 3, d6ne has to evaluate an eleven dimensinnal
integral t~ get the exact scattering amplitude for either the

2
o

eri zg-

ct

elastic or the inelastic scat

- The evaluatidn of an eleven dimensional integral
becnomes very cifficult and therefore one has to think of
some approximation whereone could represent the target atom
suitably and at the same time not lose much accuracy in the
evaluatinn of the scattering amplitude. One such assgmption
is t~ treat the lithium atom effectively as one electron

system. The core is assumed tn be frozen i.e. the effect
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of the conre electrons has been ignored and only the intef—
actinn with the activetelectron and a nucleus of charge

unity is considered. The frozen core approximation is not
expected tn lead to a large error in the calculation of

the cross—section as in most of the other gquantal calculations
it has been seen (59) that the contributinn of the core is
negligible. Under such an approximation for lithium,we

have to evaluate a five dimensinnal integral for scattering
amplitude instead of the eleven dimensinnal integral

required in the exact treatment.

2.& Elastic scattering

The scattering amplitude for the elastic scattering
from the lithium atom is similar to that for the hydrogen

atom and is given by equ=tion (2.1).

For the caée of the 1ithium atom the interaction

potential is

V(r,r') = Zez( %T - -t

r Ir

p—_—
where r refers te the positinn vector of the valence electran
nf the lithium atom.

The ground state wavefunction of the lithium atom
can be written in an analytic form,

¢nﬁ(;) = Rnx(r> Ykm(e,¢) | | .. (2.21)

with
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exp(-g;r) + 2 A, r exp(-&;r) .. (2.22)
1=

I

Rnx('?") i

.

A
i=1

The coefficients c¢; and &.s

i

are tabulated by Clementi(60)

and N; are normalization facters given by

~1/2 “*%
Ni = [_((21'1)!) /(251) | ]

Usihg this form of wavefunctinn, the scattering‘amplitude

for elastic scattering of lithium-is given by

Lok [ e ) 6 42
Fyonclq) = Frallly [:iél Ajexp(-Z;r) + 153 Agr exp(mcir{]

XE_(IQ—EH)mmfiQE

e (bdb dgy )
b
x (sds dgf dz)

.. (2.23)
/2

where o o o 1
a-b = qb cos(@,-@ ) and 5 ~ sl =[§ +s”-2hs cos(¢5“¢bi] |

2 .
Also we have, r = (s~ # 22)1/2. Expressicn (2.23) can be

rewritten as

Fii(q> - Il+12+139 LI 3 (2.24‘)
where -
I, = 1= il Byl e e (bdb dg,_ ) (sdsdz) M .. (2.25)

: 2 2 o .

N T (El +E;2)
lKi 8 r “A3T

. 14.% |
Iy = 7= iil djj roe e~ 4P (babdg, ) (sdsdz) M .. (2.26)
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with

=gy Ng =g tEy- M= &) + s N = &)t &g

=%o T&31 N =& Thar M =52 5y 2g =& +&g

.b )
. e (bdbdf, ) (sds dz) M
=1 v .. (2.27)

"

i

I 7
L O

2 2 2
By = Agr B = 2AzA,, By = 2AA,

= Zhghgr Bg = A5, Bg = EALAg Big = RAgAg |
=283 20 =28, N = 2850 N = REgr N5 =85 vy,
=Gz t¥50 M =&y vEg N =&y tEpr N TEg *tEg

i}
o
o]

v}

f

K¢
jes)

(€]

1
o

In the above equation

M

and Y

no

L

!

{: - ( >l”l %—;C-J dp (1 - Y cos ¢S)in .. (2.28)
0 ‘ |

2bs
B bz +52.

The integration over b is from O to « , z is taken normal

to the plane of impact parameters. Performing the integration

in equations (2.25) - (2.27) over ) and z we get
iK, 3 F [ ° .
I, === I B.l db | ds s"b K (a;8)7 (ab) M .. (2.29)
&0 j=1 J 17 0
0 o

. ~

iK, 8 (A38) , =
I, === % B, db ossb Kl 3—-—-+Ko(>\js'>_]Jo(qb)M

au]
o
A

}.—J
[¥]
v

s 5 | .. (2.30)
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and o -
ik, 10 K’Z)()\‘ s) 3
= "‘"-'-—l . 4 — -]
Iy = 5= jil B, J db [: ds s b[: -—ZJ—_~ + Kl(h <)
° ° x Jo(qb) M
.. (2.31)

Ky, (where = may be 0,1,2,... )is the modified
Bessel function of the third kind and J_ is the Bessel
function of the first kind. |

The integrals I;» I, I; can be further reduced by
transforming to polar coordinates in the plane of impact
parameter, with the help of the relation s = R sin @' and
b =R cos 8'. This transformation makes Y and s/bY

independent of R.

Carrying out the integration over R we get

/2
3 Bj cos 6 1 q 't2 ')_4
I = 16 iK. 2z —— —""'—'3““‘\ + —5— CO 0
1 : * j=1 Aj ] sin“6 A?
o] o ) >
x (1 - ;ﬁ cot“e’') M de’
o TR 5 .. (2.32)
8 D 2 -5
I, = 16 iK; 51 kﬁ gggg- U&-"T cot”e)
3 _
°. 17q o, 24 4 ,
x (6 - —%= cot”e'+ =3 cot'BgMdef
23 N
‘ | .. (2.33)
and 10 B ¥ ﬂ/g o' 2
. cos q _
I = 16 iK- % "% (l + "'"2" Cotze') 6
3 1 . O
=1 N5 . sin“o s
R 3 o2
x (5= -‘E"Cot B+ —= Ly cot?e Mde'
23 B
j.
.. (2.34)

M is now given by
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o .
_ _ .l_. —.l-_...._.,_ Z1n _ . . in
M= (1 o ( s 6') d¢s<l sin 20' cos ¢s) .. (2.35)
o
We have evaluated this integral over ¢S numerically.
One can also evaluate this analytically with the help of
the following relation (2.37). It has been shown by
Tai et al.(30) that the two procedures give identical results.
Writing

-

1-sin 26'cos . = chos 20' | (|sec 20'|-1tan 20'|cos QS{]

.. (2.38)
and using the integral representation for the Legend;e
polynomials (61) which are also expressible (62) in terms

‘of hypergeometric functions, one gets

21
in 2in+1l
1 s _ ' F, (i; 11l .
5 f dﬂs(l sin 28'cos ¢s) = lcos 290 l 2 1(21n+ %,21n+1,
o ‘ 1;sin“29")
.. (2.37)

The élastic scattering amplitude is obtained with
the help of equation (2.24). The differential cross-section
do -2
for elastic scattering is Jp» = IFii(q)l and the total

integrated cross—-section is obtained by using equation (2.8).

2.5 Inelastic scattering

We have also calculated the 2s-2p excitation of
1ithium due to electron impact using the frozen core
approximation in Glauber theory.
| The ground state wavefunction for lithium is given

by equation (2.21) and the 2p excited state wavefunction
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of Gailitis as given by Stone(59) is

-y

el

Rgp{r) =Are = .. (2.37)

The excitation cross—section to the 2p state is a sum of
cross—section for excitation to each of the magnetic
substates (m = 0, +1). Let the direction of Ei be the axis
of quantisaiion for the atomic wavefunction. The scattering
amplitude for excitation to m = O and m = +1 states is given

by , . :

L. iK VB A [ 3 TNT6 a2 TNT

- - AT e L A,

Fzs_gpo(q) = 37 e iilAlr e v e cos 6,

|b-si 2in’ T
X [—( ) e 9" P (bdbd@, ) (sdsdgf dz)
‘ - ’ e (2«38)

where z = r cos es

- 2 i . ++/'g
F. (q) = L ; e A[:Z A.re T+ £ A.r% .151n 0
“ S-—g p_’i’l 21[ i 871: i= 1 o i=4 1 : S
- |b-<| 2in ia.g
x [1-(==2=) " | & tbabag, ) (sasap az)
) o (2.39)

The first integral vanishes since it is integrated
for z = - tg + and the integrand is an odd function of =z.
This result is a consequence of the Glauber theory assumption
that a is perpehdicular to Ri' In the first Born approximation
‘one does not take a pekpendicular to Ri’ and therefore the

2¢ - 2p ( m = 0 ) amplitude is not identically zero.

As seen from equation (2.21) the 2s-2p_, amplitgges
S <ig
s

: . s
are also not identical but differ by a phase facter e .



’ "42f

The scattering amplitude for 2s-2p(m=1) state can be
written as

where ) 5 ¢ l |

1K.A 13 -\ T —1 b—s 21in Y
I, = —2—iz~ £ A, re = sin 0 e’ - *‘"‘“ iq-b
1 a 2 Ji2 . i

y i=1
X (bdbdﬁb)(sdsd¢ dz) .. (2.41)

iK.A |3 6 —x T -i@ B—# s
I, = ——d—i= I A rFe 1 gin 0. e Sl1-( >2l§] 1qu
2 8n2 iR 523 5 s -

x (bdbag ) (sdsd@ dz) .. (2.42)

- >

Using the equation g.b = gb cos(Qb-¢q) and c¢arrying out the

integration over @ and z, we get

1( A . [
I, = : éelgq 5 A.ldsdbbs® Ky (>\ s)J (qb)( $HIN N .. (2.43)
1 2'1 J R . i
151 J
KA L i 6 | . r ()\ s)"'} in
o e | EDUN i K (nys)+ ( ) ‘N
I, = —5% \éz'e B desdb bs Jl(qb)l_o(\l ) |
.. (2. 44)
where o
. in '
N o= dff, cos @ (1-Y cos g.) .. (2.45)

C

The integrals in the above equationscan be reduced by

transforming to the polar coordinates in the b, s plane

with the help of relations s

= R sin 6' and b= R cos o'

Such a procedure leads to
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. ig 4 . /2
iKig e TA3/6 x2° 2 A, . 4 2
Il = by -5 dg' sin"8'cos"g!
, T i=1 }‘i
q2 ° q2
o , _ o
x {(sin~o '~ — cosze')(sin26’+ __§,c0529,) (cos gt) =in
W Ns
1 . 1 ’
. .. (2.486)
ig 4 n/2 (
. iKig e "9a3V6 x2° 6 A, |
I, = i s _%m de‘sih4e'cosze’
i T i=3 }.i .
2 ‘ Io) 2 4
- 129 q
X (sinze' + -5 Cosze') §(7 sin®g’- 3 °°526'51n29’+ A
x(coée')_gln N
. (2.47)

The integral in (2.25) can be either evaluated
numerically or evaluated analytically by expressing it in

terms of a hypergeometric function (30).
T : .1
(I R P 2,"" 2
| 47, cos ¢s(l—Y cos ¢s) = = 3inn Y (1-Y") .
o ' . 23Y%)
| .. (2.48)
The guantity lFfi(a)(z for Bs~2p_l state is the
same as for m = 1 state.

The differential cross—section for excitation is given iy

9

Q.

)

Ke o
o . Tt . [+ . 3

The total cross—section for excitation to the Z2p state

is given hy

d -
= Y et 2 tad' 3 . PR 2050
T e ; dsu d5l< s ?pmsq) ( )

Using the fact that q = K, ~ K one finds that

N

cos

zFl(%in+19%in+ %;

9I
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. Ki+Kf
( _zf__ ' s P 2
PN 2s - Rp) = Kz' g dq F(2s—2pila Q>, 1n (nao)
i K$~Kf

K¢ 1is determined by using equation (2.6).

2.8 Results and discussion

(a) Elastic scattering cross-sections

The integrated elastic scattering cross—sections are
calculated as a function of éhe incident energy of the
electron with the help of equations (2.24) and (2.8).

Fig. 1 compares the Glaubér results with a number of
nther theoretical calculatisns and the experimental data.
Curvesl and 4 show the presént calculations based on

the Glauber and the first Born approximations respectively,
curve 2, the close coupling calculations -(63), curve 3
the POlariéed'orbital(64) calculations. The experimental
data of Perél et al.(65) are shown by curve 5. These
measurements are available only upto 10 eV. It is seen
that all the mathods (except the polarised orbital method
of Garrett for which the calculations at high energies.
are not available) give the same cross—sections for.
incident electron energies beyond 80 eV. At low energies
(less than 5 eV) the cross—sectionscalculated from the
Glauber theory are significantly higher than the FBA and
even though ﬁheApresent theory is not valid in this low
energy region it gives better agreement with the experi-

ment compared te FBA. At 1 eV the magnitude of the
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measured cross—section is higher by about 30 °A than

those calculated in the Glauber theory whereas the
measured cross section is higher by ébout 75°'/. than
calculated in the FBA. For low energies, however, the
e&change effects will be important and it is not yet clear
how one can incorporate exchahge effects in Glauber theorv.
Unfortunately no data are available for high energy range
where the Glauber. theory is more valid. Garrett's calcula-
tions(64) using polarised orbital method (which includes
both the effects of exchange and polarisation)gives a very
good agreement with the experiment in the energy range

in which the data are available.

(b) Inelastic 2s-2p cross—sections

The integrated inelastic cross—section for the
exéitation of 2p state of lithium from the Glauber thenry
is calculated using equation (2.51). In Fig.2 we compare
the results of the present calcﬁlations of Gés—Zp(Ei)
with the other theoretical calculations and the experi-
mental data. We have plotted the calculations of Vainshtéin

et al.(26) fof o excitation based on the Born

s—2p
approximation with coupling (curve 1), results of a close-
coupling calculations (curve 2) by Burke and Taylor(63)

and our results for‘the Glauber approximation (curve 3).

‘The experimental data of Hugheé and Hendrickson(66)

are shown by dashed lines (curve 4).

It is seen that the Glauber results are in fair



agreement with the close-coupling calculations of Burke
and Taylor and they agree with experiment within a
factor qf 1.5 everywhere.‘We note that below 10 eV the.
predictions from Glauber approximation tend to lie below
the other theoretical estiﬁates. The Born calculation of
Vainshtein et al. does not merge with the Glauber
calculation even after 30 eV; in fact it is lower than
the Glauber rcsults in this energy réginn. This result
seems to be an exception as in general the FBA results
are either always higher than the Glauber -theory results
or merge with it. The reason for this discrepancy is
that différent bound state wavéfunctions are used in the
present Glauber calculation and the Vainshtein et al.
calculation based on FBA. Further Vainshtein et al. also
accounted for the coupling of intermediate states in the
Born calculation._To study the high energy behaviour,we
calculated the direct éxcitation cross—sectien in the
FBA using the séme-bound state wavefunctions (equations
2.21 and 2.37) as used in our Glauber approximation
calculations. The results are shown in Fig.E.S(curve 5).
We note that the Glauber cross—sections remain lower .
than the Born cross~séctions upto 30 eV and the two

curves merge beyond energies about 20 times the threshold.

Vainshtein et al.(26) have alspo calculated the
excitation cross-sections using their model. Their
calculations are shown in Fig. 2.3(curve 6). It is seen

that the agreement of their calculations with experiment
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~is very good. In their model they make explicif allowance
for the important effect of repulsion between the atomic
and incident electrons ih tﬁe wavefunction characterizing
the collision. They express the total wavefunction in the
form given by equation (1.10) and then substitute it in
the Schrodinger equation. However, in arriving at the
final expression and in the evaluation of cross—secticn
they make many approximations Whiéh rest on very uncertain
theoretical foundations. They make physically untenable |
mathematical $implificati§ns for the purpose of evaluating
the intégrals. With these it seems impossible to assess
properly the validity of the method of Vainshtein et‘al.
The gond agreement of theif calculation with experiment

in the entire energy range, can therefore not be
considered unquestionable. Thus, we can say that thé
inelastic scattering of lithium by electron impact can

be fairly accurately described by the Glauber théor§;

The only other theory which predicts these inelastic
cross-sections and gives reasonable agreement with the
experiment is the close-ccoupling theory of Burke and

Taylor(63).

The inclusion nf the exchange-effect and the
complete description of lithium i.e. including the effect
of the core alsc, may further improve the predictions of

the Glauber theory for alkali atoms.

‘e have alss recently applied (87), the Glauber
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theory with the frozen core approximation to the study
of the elastic and inelastic scattering of electrons
from the sodium atom. The agreement with expériment is
found to be very good. Further.in proton-hydrogen
excitations also we have found(68) that the Glauber

theory predicts the cross-sections fairly accurately.

2.7 Conclusions

Ffom the results for the lithium atom which we
have discussed in the previous section (2.6), and for
sodium atom(67) it is legitimate to conclude’ that the
Glauber theory. predicts fairly aqcufatély the cross-
sections for the elastic and the inelastic scattering in
the case of complex atoms like lithium‘and sodium. A more
rigorous treatment which includes the effect of the core
electrons also is expected to bring the Glauber results
still nearer +io experimental:data.'Fraan(69) has recently
suggested 2 methad, in which the (SZ + 2) dimensional
integral nccurring in the Glauber théo}v for the!éééiiering
of charged particles by Z~electron atoms, 1is reduced to
a one-dimensional integral. As a result of this the
amplitudes for the elastic¢ and inelastic scattering of
charged particles by arbitrary atoms may be calculated
with relative ease. For the case of the hydrogen and the
helium atoms it has already been shown by Franco(15)
and Tai et al.(30) that the.Glauber results are nearly

the best compered to all the other thesretical calculations.
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The added advantage of the Glauber theory is the ease
with which the computation can be handled under this
approximation cohpared to the rather cumbersgme and time
consuming close-coupling calculations and the polafised4

ofbital calculations.

The only assumption in the Glauber theory is that
the phase distortion of the wavefunction is approximated
via integratioh along a straight line, which supposedly
represents the undeviated path of the incident electron.
This is how one arrives at the formula of r’. For wide
angle scattering,Glauber himself notes that a poor.
approximation results from supposing that the electron
path is always parallel to Ri' A better approximation
results from the assumption that the electron's undeviated
straight line path effectively is parallel to %(Ei+2f)'
This is evidently a crude correction for some of the
pending of the particle paths that takes place within the
region of potential. At high energles, however, where the
contributisn to the total excitation cross—section comes
almQSt'entirely from forward scattering, there will be
essentially no difference in choosing the z axis either
along Qi'or along %(Ri+§f)-.8ut at.small angles and

‘moderate tn low energiessthe failure of assumptinn E;Ei=0
can not be overcome by using %(Ei+zf) as the z axis. It

is possible that this failure of the fundamental assumption
a.iqu near 6 = 0°is responsible for the rapid fall of

the crnss—sictinn below the experiment for energles
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leés than 10 eV. At such low energies the approximatien
of the incident tréjectory by a2 straight line path breaks
down and introduces an error in the Glauber approximation.
The effect of it is,most likely, to result in an under-

estimation of cross—section when we use equation (2.1).




§igure Captions

Fig. 2.1 Projection of the cnllision on the x,vy plane.

Fig. 2.2

Fig. 2.3

The direction of the initial velocity of the
incident electron coincides with positive 2z

direction. The vectors b,z, and g lie in the
x—Y plane and have azimuth anglés pb, @ and

s
¢q respectively from positive x direction.

Elastic scattéring of electrons from lithium
atom using Glauber theory.

Present calculations: ———— using Glauber
approximation, curve,l, — -—— using first
‘Born approximation, curve 4; »w— Close
coupling calculations of Burke and Tayler(63),
curve 23 svs w— Garrett's pnlarised orbital

calculations (64),Acurve 3; — — — — Experimental
dat2 of Parel et al.(65), curve 5. |

Electren impact excitation of lithium using
Glauber theory.

Present calculations. —+——— using Glauber
theorys curve 3 ,—— ... —~— using first Born
approximations; curve 53 ——.. —— Close coupling
calculations of Burke and Taylor (83), curve 2;
Calculations of Vainshtein et al.(26):—— . —
using Born approximatién with coupling, curve 1
——-+.+—— using their model, curve 63 = = - -
Experimental data of Hughes and Hendrickson(66),

curve 4.
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CHAPTER 3

ELASTIC SCATTERING OF LITHIUM USING
POLARISED BORN APPROXIMAT ION

The elastic scattering of electrens by a simple
system like the hydrogen atom has been studied most
extensively both thenretically and experimentally(3).

The theoretical methods used are, the Born approximatinn,
the partial wave thebry, the close~coupling and the
variational methods etc. The relative merits of the various
methods and the agreement achieved with experimental data
have been discussed by Burke and Smith(1ll). They remark
that the most famous of all the collision thecry approkima—
tibn is the Born approximation. The Born approximation
assumes a weak coupling between pair of states. In
calculating the transition prebabilities, the initial and
final wavefunctién can ba-rapproximated by plane waves. In
generéljthis approximation 1is not-vélidAat low energies
whére the scattered particle spends an appreciable time
near the atom. At low energies more sophisticated approxima-
tions allowing'for the distortion, both of the atom and

of the scattered wave function,are required. However,

under certain circumstances,the Born approximation may be
used at these enefgies with accuracy, e.g.,for transiéions
involving high angular momentum states of the scattered

particle.
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Je shall first describe briefly how, the effects
of polarisation have been included in the elastic scattering
of the hydrogen and the helium atem and then discuss in
section (3.3) the case of alkali atoms where we have included
the effects of polarisation in the Born approximation to

study the electron lithium élastiC'scattefing.

3.1 Scattering of electrons from hydrogen atom

For the electron hydrogen scattering the wave-
function $(;l,?2) of the system of two electrons moving

in the field of proton satisfies the wave equation

h2 : 92 92 e2

, 2 2, & & e oy
i . . ) LN (Bol)
The above equation is solved by expanding i} in terms

of the orthogonal and normalised set of eigenfunctions

‘an(?l):

by Te) = 8 F(p) 2, () e

As described in article (1.1) section (i), a set

of coupled equations results on substituting (3.2) in (3.1).

Considering the hydrogen atom in the ground state
and neglecting exchange effects, the scattering amplitude
for elastic scattering in the first Born approximation is

given by
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where
2 '2 '

v o(;z) = J.ﬂ (r ) (=~ *'—”) ? (r )dr .. (3.4)
"12 T'a

—

and n.n, = cose. K and Kn are the wave vectors of the

incident and scattered electrons and ;o and n are the unit

vectors in the direction of incident and scattered electrons.

hen exchange is included, the total wavefunction in

symmetrised form is

* : - - -
U (7T, = U T) 2 (e .. (3.5)

and the Born Oppenheimer scattering amplitude is given by

+ - |
- ‘. { - — — * e — -
F (o) = ~(am)) % JJ oxp |$R R )T, | o v, Gy Ty )0, Gy
‘,“ dr'ldr:2
< yv-1 2m_ R L
+(am) 2 é exp |iK .r 10V (rysre)
g (ry)dr,dr,.
.. (3.6)

Here the first term represents the direct scattering
amplitude and the éecond term the exchange scattering

amplitude.Té evaluate the exchange scattering amplitude,
certain approximation schemes have been putforth and the

most elegant and useful of them is the Ochkur approximation(70).

Denoting the exchange scattering amplitude by |

2 [ N
. _ 2m e . - . - ¥ —»_. -»..l
n(0:9) = ~(am)"? —;g—~\JJ exp 128, 7R, T 91 G (A7)

@, (rg)dridry .
(3.7)
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Ochkur expanded the exchange scattering amplitude
in powers of K;l and retained only the leading terms which
. 1,2
behave as “/K .

Ya¥

He use
r

(4m rig) o= (27) J exp 1q.(rl~r2);q§ .. (3.8)
and knowing that the main contribution to 9, comes from

qx K -we have. to the lowest order in K;l:

2 .
m - s »* - —_
9 (0:8) = - 5 J exp(ikeTy) g1 (Fy) g, (7 )dTy

R K
°© .. (3.9)

o

-

.with K = K.O - K where we have used the approximate

relation (;12) = ig 6(?1—;2). The Dirac delta function
° A

&(r) has been expressed as

B

5(r) = (21)7° | exp(ig . r)dg -

The need for introducing polarisation in the study
of the electron-atom scattering was first stressed by
Temkin(12) and the method given by him for inclusion of
the polarisation is known as the polarised-orbital
approximation. The polarisation essentially arises because
of the fact that an eiectron situated at a distance ro
from the nucleus of an atom induces a.dipole moment in the
atom which gives rise to an induced dipole poténtial vp(rg)
behaving like -o/ ﬁg for large ry where o is the polarisi-

bility of the target atom. The volarised orbital method

employs » trial wavefunction of the form
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+
v (;1’;2) = Fo(;z) {:¢o(;i) * wpol(;l’;z)}

3 B {7,G) v Ugy G P . (3.10)
where | ‘ - L f?+l m
L‘JPO'J.(T'l’rZ)V\ - go(rl) mEl ol { (1) * % El—} Pm(cos{fD)
2

.. (3.11)

This method was used by Temkin and Lamkin to study the
elastic scat'tering of the hydrogen\atOm. They made allowance

for the dipole term onlyas given by:

2
1 T ‘
Wpol(rl,rz) = ~6(rl,r2) ¢O(rl) ;g ( §l + aorl)Pl(cosﬂﬂ )
| 2 . .o (3.12)
where G(T‘l,rg) = 1 )if ro > rl

uéingthese wavefunctiongTemkin and Lamkin solved the
scattering equation and got a good agreement with the

experimental results.

3.2 Scattering of electrons from helium atom

LaBahn and Callaway(71,72) have extended the
polarised orbital method to investigate the elastic scatter-

ing of eléctrons.from the helium atom. In their approach
the induced distortion in the atom due to the incident
electron is considered in the adiabatic approximation

and is written as a perturbation expansion in
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the interaction'between the incident and the atomic
electron. This expansion has been shown to contain terms
describing the adiabatic polarisation interaction and

in addition,dynamical corrections to this are

required when the incident electron possesses a finite
velocity. In the adiabatic approximatinn, the mutual‘
distortion interaction is calculated by assuming the atom
te be perturbed by the electric field nf a stationary
external charge. This approximatinn thereby assumes that

the atomic electrnan distribution can readjust instantaneously
for each positinn of the incident electron. For low incident
énergies,the collision time is long compared to character-
istic atomic periods and the atomic wavefunctionscan

readily adjust td the perturbing influence of the incident
electron. Good results are therefore obtained under this
approximation so long as the average velocity of the

atomic electron greatly exceeds that of the scattering
electron. Though the electrén starts at infinity with
negligible velocity, it is accelerated by the attractive
polarization interaction. This cffect leads to a velocity

dependent interaction.

LaBahn and Callaway(72 ) have found that this
velocity dependent interaction is repulsive and acts as
a correction for the fact that when the velocity of the
‘incident electron is not negligible the atomic electron
distribution can not completely follow its motion. It is

shown by them that at large R this interaction falls nff
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asymptotically as R-G and this is less important than the
polarisation potential. For small R, it is, however, of

the same order of magnitude as the polarisatisn potentials
The scattering equation for the helium atom was 551Ved

both in the adiabatic exchange approximation (which
considers nnly the adiabatic pnlarisation interaction) and
in the dynamical exchange apbroximation (in which the
dynamical corrections alongwith the adiabatic polarisatinn
interaction are taken inton consideratioh). The phase shifts
obtained were used to calculate the total elecfron~helium
elastic scattering cross—sectinn. It was found that the
agreement with experiment was very good at low energies
with the adiabatic exchange approximation but better at
high energies with the dynamical exchange approximatinn.

In both the cases,the agreement with data is much superior
at low energies compared tn those Ealculations which
négleCt the effect of induced distortinn. Callaway et al.(73)
later on gave an extended polarisation. potential which

'in addition to.the above two effects includes the third

order effects in the polarisaticn potential.

The improvement of results with experiment, by the
inclusiﬂn of polarisation in simple systems like hydrogen
and helium, leads to the obvious question as to how far
the:polarisation will effect the cross—section in alkali
atoms. In alkalil atomslfhe exchange interaction between
the incident elecfron and the atomic electrcn, and the

‘distortisn of the atomic system by the electric field

*
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will be both very important since the valence electron
is very lonsely bound. The cross~section will therefore

be sensitive tc the accuracy of the pnlarisation potential.

Stone (59 ) and Stone and Reitz (74) have studied
the elastic scattering of clectrons from the lithium and
cesium atoms;respectively. They have used the adiabatic
approximation. The effect of exchange is also considered.
The polarisation potential is determined by assuming the
atomic wavefunctinn of the form given by perturbation
-theory. The coefficient giving the coupling to higher
states is chosen.,however,by minimising the energy of the
atom. This procedure is valid when the interaction is
large and réduces tn tﬁe perturbation theory result
when the interaction is small. Stone(59) has shown that
this approach gives results which are of comparable

accuracy teo the close-coupling approximation.

Karule(75) and Marriott and Rotenberg(76) have
carried out the close~-coupling calculations of the
elastic scattering of electrons from the lithium atom in
which they included the 2s and 2p states of lithium. -
Burke and Taylor(63) have extended these close-coupling
calculatinns to include higher energies and have predicted

resonances at the low energies.

Garrett(64) used a ponlarised orbital method to
calculate the elastic scattering in the ground state of

the lithium atom and the sodium atom. The electron
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exchange is also included througﬁ the use of the adiabatic
exchange approximation. The calculated cross—section

shows & very good agreement with.the data in low energy
range. It is,however,noted by Burke and Taylor that
Garrett's approach which‘neglécts ali.inelastic effects

may not be satisfactory.

All the above methods predict the cross—section
fairly satisfactorily at low energies but the labour
involved in Computa'tion\is very heavy. Recently, several
attempts have been made to study the elastic and inelastic
scattering from atoms within the framework of simple Born
approximation but including the effects of exchange and
polarisation in it. Khare(?7) and Khare and Shobha(78,79)
have calculated the differential cross—section for the
elastic scattering nf the helium by'electron impact using
Born approximation and have accounted for the polarisatinn
of the helium by adding to the static potential a polarisa-
tion pbtential of the form given by Callaway et al.(73).
Lloyd and McDowell (80) have used the polarised Born
approximation to study the excitation to the Rs-—and 2p
state of hydrogen. They have also followed the approach
of Caliaway et al. in calculating polarisation effects.
Linyd and McDowell used two types of approximations. In
one of the approximations they have taken the polarisation
af the atom in terms of the change in the wavefunction

“ the target atom due to incident electron whereas
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in the other type of approximation the effects of distortion
and polarisation ére included in the scattered electron
wavefunction. In both of these approximatidns the imbortant
effect of polarisation to the first order has been included
which leads to an improvement over the first Born approxima-
tion as exhibited by their calculations.We have used (81)
the polarised Born approxiﬁation to study the inelastic
26-2p excitation of lithium by electron impact. In the
following we shall describe how we have used the polarised
Born approximation to predict the elastic scattering cross-
section of Li. The effect of the polarisation of the target

is included using the method suggested by Stone (59).

In this’approaph we neglect the effect of the polarisa-
tion on the wavefunctions of the scattered particle -and
consider the distortion of the atomic wavefumction only.
Incorporating both these distortions will render the 4
calculations very difficult. Exchange with valence electrons
is included via the use of Ochkur approximation (70). The
effect of the polarisation and the exchange interaction
with the core is neglected because of the large binding
energies of core electrons relative to the valence electron.
The core wavefunctions are hardly affected by such inter-
actions. It is observed in section 3.5 that the inclusion
"of polarisation and exchange in the Born approximation
improves the agreement with the measured values of the

crocs sectione.
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3¢3 Scattering of electrons from the lithium atom

The perturbed ground state wavefunction of the atom

due to the incident electron can be expressed as
' - _ — 1.n -
¢o(rl) = @ (ry) + ﬁ Prlrg) @ (r)) .. (3.14)

where the summation is over the complete set of atomic

wavefunctions. For the case of alkali atoms the major
contribution to the polarisibility arises due to the coupling
to the first excited state and therefore it is sufficient to
express g as |

g (¥) = g (ry) = @, (ry) + By (ry)8, () .. (3.15)
The tnatal wavefunctiom of the system under adiabatic

approximation is

w(;]_,—;g) :Q’C')(;l) F(?‘g) .. (3.16)
with no exchange and

1k — - _ — — ' — Py '

J(rorg) = #(r)) Flrg) + B (rg)EGr) .. (3.17)
with exchange.

Using (5.15))the total wavefunction when nn exchange is

considered becomes,

b

It

[0, G T+ ) G |EGy) . (3.18)

where ry and ry denote the positisn coordinates of

the valence and incident electrons,and r. represents the
coordinate of core electrons. @ (roory) and @y (resry)
are the atomic ground and excited state wavefunctinns.

5#r2> is the coefficient giving coupling tn higher states
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and P(;Z) is the scattered electron wavefunction. If we
include the valence electron exchange also,the total wave-

functinn becomes
X
b= (g, G ty) + Bl )g oo 7 F Gy
5 [0, Gortp) + 4lr 0 Gl [FG) o (5219)

The wavefunction in (3.19) can be simplified,if we

neglect exchange in the polarisation. term, to

i = f:szfo(?c,?l) + Blrg) g (res ?lﬂ F(rg) + @ (r ,T5)E(r)
| . .. (3.20)

In the above equation (3.20) we have not chgsen a praperly.
symmetrised wavefunction since we haQe ignored the exchange
effects in the distortion term. Exchange has been intreduced
as if the atom was not polarised, while polarisation is
included as if exchange did not take placé. This is done
mainly for simplifying the calculatinns, but this simplifica-
tion should not intrnduce significant errors in the result.
The error involved isrless since the polarisation of the.

wavefunction is small at distances below 3ao where exchange

is most important.

The atomic wavefunctions can be expressed as

Qo(rl,l“c) = UC(T.C) Uzs(rl)

By (P10 Fe) = Ue(Fe) U (7)) .. (3.21)

where U25 and U20 are the wavefunctinns of the 2; and

2p states of the -lithium atom and Uc(rc) are the core
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wavefunctions. We have used the analytic ground state
wavefunctions for lithium-as given by equation (2.21)
and the 2p excited state wavefunctions of Gailitis as
given by equation (2.37).

The elastic scattering amplitude Fi' is given by

i
iK', 7 ¥
_ - - 0 l
Fi3 = < B, (rps 7 ) e vl ¢ > .. (3.22)
2 2 . -
where V = (= == 4 == -—=) , and K_ and Kg are the

momentum vectors for the incident and the scattered

—b-—o-—vl
electrons and K -_Ko Ko'

Substituting the wavefunction (3.26) in the equation
(3.22),we get

-

+ : . :
- lK'o]‘
_ .*l'-.... — - o l — - ~ - - e -,
Fap=a5 € B (rpsr ) e [v] {(Q!O(rl,rc)+q(r2)¢l(rl,rc))F(r2
+ ;ao‘(?c,?z)xs(?l)} >
.. (3.23)
In the Born approximation,we can write

" iKo.r
F(r) = ¢

Using this in (3.23),we can write the scattering amplitude
in the polarised Born approximation (effect of polarisation

has been included in the wavefunction) as

where
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-

l_ lK.TZ

[
i

>

3

N

I _ L_ li{o T'2

J
U e . ARERLF)
I3 :’ZEEJ 7‘0(%”'2) e 7 ?

L TS - - - -> -
e ﬁo(rl,rc) v ¢O(rl,rc)drldrz . .. (3.24)
4% e ' ﬁ(rz) ¢O(rl’rc) ﬂl(rl,;c)d;ld;z .o (3-25)

‘ v(;29;l> po(;C’;l)d;ld;z

e (3.26)

‘We can write the first two integrals in the simple

form with the help of equation (1.4)

] iK.?
- 1. 2 -
Il - 4n e -Voo(rz) drz LR (3.27)
" iK.T
_ L 2 >
12 = 4ﬁ e -vp(rz) drz » - e (3.2$)
whei*e i
— s 3 )
Vp(rg) = gérg) fol(rz) . (3.29)

The integral I3 can be reduced to a simple integral with
the help of Ochkur approximation
l | iﬁ';z *>* - -

J e Q’é‘.(rz) Q!o(r'2) dry .. (3.30)

The total cross—section for the elastic scattering is

. 2K »
o (o]
¢ == J' é—PFZi(K)IZ+3|F;i(K)|2:‘KdK (n ai)
SN — .. (3.31)

where + and = signs refer tn the simglet and trip}et states

of the total system.
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3.4 Evaluation of P1and the polarisation potential

The counling coefficient P1is evaluated by minimising

the energy of the'atom iece.
8 Ey/ 8p= 0 . ee (3.32)

(¢O + %?l) is chosen as a trial wavefunctionn.

The energy E, is given by
<@+ BEy E{A+VI¢Q+§¢1 >
< ¢o+ %¢l|¢o+%¢l >

Ep = .o (3.33)
Here H, is the Hamiltonian of the atom and V is the inter-
action potenfial between the incident electron and the

atom. The total energy is given b?

"~2 —l /2 o) =

E=(1+6) Eo+;alEl+voo+plvll+2p1vol] .o (3.34)
1f now oE / 0py 1is set equal tn zero yone finds

B \ :

—,l',.—--u — - BT~ Ol g . & (3036)

1-8% (Ey~Eg+Vi1Veo
where

i 2 2 -
= 3 — e T ——— . > .o .
Vij(r‘z) = < P STt TETTE 2 (3.36)
‘2 lll 12|

Explicit expressions for Vooand‘vol evaluated from

the above eqguation are
rg
2Z 4

o8] .
2 1 4.
3 e ——— 1 v— d
\/Oo(]"2> = To + To 4{ plS dr + 4 j PlS " T

2 frz 2 -2 1 :
g — w?fh%? Fo - dr .. (3.37)
r, '

2 Jo g
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rs -
v ( ) 2 1 J; * 2 _ f 1
ol 2 VE .2 2s 2p . 2 25 2p 2
. 5 T2, LE . T .

. K .. (3.38)

3

Vll can also be expressed similarly.
pls’st and P2p are the Tadial yavefunctions of ls; 25tahd

2p states respectively. e

»

) ;\"“." B ' L2
The polarisatinn potential Vp(réﬁfis‘given by equation (3.29).

If the bombarding electron is far from the atom the

cocfficient ﬁxrz) could also be evaluated Using'perturbation

theory as s
! L4

N ' N

KRV .
o v ._.Q.l. P - ¢ :
p‘ = = - - ne . ! .o (3-39‘)
. (E{-E_) . :
At large ry Vp = ~a/r4 where o« is the polaris%bility of

the atom.

3.5 Results and discussion

Equation (3.31) has been used to calculate the total
cross—section for the elastic scattering of electrons
from the lithium atom with and without the polarisaticn
potential. The equations (3.37), (3.38)and(3.29) have been
" and Vp‘ For large values of r, V

used to calculate Voo P

has been replaced by—oc/r‘4 (a¢ of lithium atom = 165.3 af).

Figure (3.1) shows the plot of the total elastic

scattering cross—sectinn dés_zs(ﬁg for the scattering nof
electrons of energies upte 200" ¢V from the lithium atem.

Curve (1) shews our calculatiens using the pnlarised Born
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approximation, Curve (2), our calculations using the

simple Born approximation, Curve (3), the close coupling
calculations of Burke and Taylor, Curve (4), the

polarised orbital calculations of Garrett. The experimental
data of Perel et al.are also shown. It is seen from. the
figure that the close-coupling calculations and our first. ..
Born-apprdximation calculationgﬁgive guite low values

of cross-sections compa}ed tn the other theoretical
calculations and the experimental data. These two calcula- .
tions give almost identical values for energies beyond _
10 eV and in the low energy region (< 10 eV) the results
froem the close-coupling calculations tend to lie higher .
than the Born calculations. The inclusion of polarisation
and exchange in the Born approximation has a drastic -
effect on the cross-section and,as we observed from

curve (l); the polarised  Born approximation Cross=
section is mu ch higher compared to the first Born
approximation cross-sectisn. It is also noted that in the
intermediate energy,raﬁge from about 3 eV to 10 eV the
agreement between the polarised Born calculation and the
experimental data is very good. Near 3 eV the experimental
data are within 20% of the present calculations and as

the energy increases the agreement becomes still better,
till at 10 eV the present calculations are within 10%.

nf the data. In the range of energy 4 to 10 eV Garrettfs
polarised orbital calculations yield a higher value of

cress section compared to the experimental data and the
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polariséd Born calculation. In the low energy region

(< 3 eV) our calculations are within a factor of two
compared with the éxperimental data.” The agreement gets
‘worse for very low energies (~0.25 eV). This is expected
aléo as the Born approximation will not hold good for vefy
low energies. We find that in the low energy région |
Garrett's polarised orbital calculations predict the cros;~
sections very well and probably they give the best values
so far in this energy region. For high energies where the
present approximation is expected to be valid and yield
better results, there are no experimental data. The data
5f Perel et al. are upto 10 eV only. Another feature which
we notice from the figure is that at very high energies

of the order of 100 eV the curves (1 and 2) showing the
calculations of the polarised Born appfoximation and the
Born approximation tend to merge with each other and also
with the close-coupling calculations. This is expected and
is obvious also because at high energies the effect of bnth
polarisation and exchange will be very small. We alss
notice that the shape of the curve obtained from the
polérised Born approximation exhibits reasonably well

the trend of the experimental data.

3.8 Conclusions

In cnanclusion we can say that the present method
which uses the adiabatic model and the Born approximation

predict the elastic scattering cross—sectinn in fair
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agreement with experiment. It is.an im@rovemen{ over the.
first Born approximéiion in that it takes some effect of
coupling to higher states. The method is éapable of |
describing sgaﬁtering from more complicated étbmic systems.
The cross—sections are very sensitive:to ihe form of the
polarisation potential. In the present anaiysis;'only
coupling to the first excited 2p state iékcoﬁsidéfed, as

it accounts for most of the long range ﬁolarisibflity of
the atom. Minor improvements are possible if the coupling
to the higher s,p and d states are taken. At closer radii,
the contribution of these states will bepomé more important
although at all importabt radii the firs% excited p state
Will reﬁain as the most perturbing state. At still closer
radii (< 1 a ) where the perturbing effect of the higher
excited states may be more, the contribution from static
potential is much larger compared to the polarisatisn
potential. Hence,it;is;reasonabie to:ekpress the perturbed .
wavefunction as given by equation (3415) instead of
equation (3.14). The contribution of é&fe polarisation will

be very small.

A better estimate of the cross—section can be
obtainéd if in additinn to the adiabatic exchange effects
‘some dynamical exchange effects as proposed by LaBahn
and Callaway (72) are taken into account in the polarisation
potential. Further since the Born approximation is expected
to bresk down at very low energies, a modificatinn can

be dnne as praposed by Ganas et al.(82) and applied to the .
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helium atom in'which they project out the lower partial

wave components ({ = 0,1,2) from the closed form

expressions for the Born elastic scattering amplitude

and replace them by components from the exact scattering
amplitude obtained from either experimenf or from the
detailed solutions of the mény electron systems. The
amplitudes from the higher‘partial waves being calculated
from the Born approximation. It has begn shown by Ganas et al.
that such modified Born approximation technique, although
quite advantagebus, becomes impractical in situations

where many partial waves undergo large phase shifts.
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Figure captions

Fig. 3.1 Elastic scattering nf electrons from 1ithium
atom using polarised Born approximation.

Present calculations: using polarised

Born approximationscurve 1,

Voo
using Born approximation, curve 2 § ~—— ¢+
close coupling calculations ﬁf Burke and
Taylor (63), curve 3 ; —— . —— Garrett's(64)
polarised orbital calculations, curve 4 ; o)
Experimental data of Perel et al.i(65). *
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CHAPTER 4

ELECTRON LOSS AND EXCITATION IN ATOM-
MOLECULE AND ATOM-ATOM COLLISIONS

(é) Electron loss

Inelastic collisnns between atoms and atoms and
between atoms and mnlecules are widely used in the study
of excitation and innizaticn in meteor trails and other
atmospheric phenomena. A projectile system 'A' may suffer
an inelastic collison with a target systeﬁ B in the

following ways.

A+B-A" +e+B (£) | ' eo (4.1)
A+B-A +B(2) .. (4.2)

where Z represents the totality of all possible final

states of the target, and A* represents an excited state

of the projectile atom. The reaction (4.1) describes a
process in which the projectile loses an electron and in
reaction (4.2) the projectile gets excited to a specific

state in collision with the target sysﬁem. In both the
processes it is possible that the target‘may be left in

any of the final states. For these direct inelastic processes,
the first Born approximation (83) has only been applied to

a few cross-section calculations (84-86) in simple systems,

because the accurate evaluaticn of the required matrix
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elements becomes prohibitive for many electron atoms.

The infinity of final stafes (£) involved in the

. calculations of the cross—sections in the Born approxima-
tion make the computations extremely diff{cult. Attempts
have therefore been made to represent the projectile and
the target systems by simple structures.Green (37)
suggested the use of éxperimentally determined generalised
oscillator strengths to describe the projectile and target
atom excitation, and the use of elastic and inelastic

form factors of the target in electron atom collision

has been suggested by Mott and Massey (2). Dmitriev and
Nikolaev (88) have extended the use of these form factors
to atom-atom cnllisions. Dmitriev and Nikolaev have
calculated the electron loss cfcss—sections involving

few electron systems using a simpler £heory, known as the
frec collision approximation, ‘which gives results idenﬁical
to the Born approximaticn at high encergies. In the free
collision approximation Dmitriev and ﬁikolaev neglect
resonance effects, i.e. the case of electron loss in long
range collisions with small change in the momentum nf

the colliding particles are ignored. The contributiocn

of éuch collisions tn electron loss cross~sections
becomesnegligible at high velocities. -In the fre? dollisimn
model they have assumed that an électrOn moving with’ the
“same velncity as the projectile nucleus is removed if
during elastic or inelastic collision with the target

system, it receives enough momentum transfer to increase
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its energy above the ionization potential of the projectile
system. The free electron-target atom scattering is then
treated in the Born approximation. For considering the

inelastic procesées of the target the closure approxima-

tion is used.

Dmitriev and Nikolaev have used the above approach
tovcalculate the electron loss cross—section from hydrogen
atom and hydrogenic ions in passing through simple atomic
targets. Victor (89) extended the calculations to heavier
target systems. Using the same approach he studied the
electron loss from hydrogen atoms in passing through
atomic helium, nitrogen and argon. At high energies the
agreement with the data was found to be good. Levy (90)
has also calculated the electron loss cross-section from
hydrogen atom incident on He, Ne, Af, Kr, C, N and O gver
a range of incident energy from 1 KeV to 100 KeV, using
the first Born approximation (without the assumption of.a
freé electron model for the projectile) and the closure
approximatinn. Levy has used the calculated generalised

ctile and the

O

nscillator strengths to describe the proj
elastic and inelastic form factors to describe the target

system.

While comparing their results for electron loss from
the hydrogen atoms passing through H, N and O target atoms
with experimental data both Victer and Levy divide by

a factar of two the experimentally determined cross—sectinnc
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for Hgy, No and Oy mnlecules. This procedure is incorrect.
We have calculated the clectran lnss crass—section

from hydrogen atom incicent on Hz, N2 and 02 mclecules,
and shpwn that these cross=sections are not Just twice

the crross—sections for electron loss from atomic H,N,

and 0. In our calculatinns for electron loass, we have
followed the simpler approach »f Dmitriev and Nikalaev (88).
In sectinrn 4.1 we describe the thenry and the results for
electron loss cross sections are discussed in sectinn 4.2,
In part (b) of this Chapter we study the processes of the
type given by equation (4.2), where we have calculated the
excitatinn of hydrogen atom tn different states in passing

through lithium, sodium and potasium atoms.

4.1 Theory of electron loss in atom—molecule collisons

-

Let K.O denote the initial momentum vector of the
incident electron and Ef be the momentum of the scattered
electran. The momentum transfer vector is given by
K = Rf_?h' The velocity of the incident electron is assumed
tn be identical with the relative velocity sf the heavy
bndies. During the cellision twe possibilities exist, one
in which the target system after collision is left in the
ground state (elastic scattéring) and the other when
the target system 1s left in ‘any of the excited states

(inelastic scattering). The differential crnss—section

in the Born approximatinn for a spherically symmetric
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atom with Z eléctrons, is

_ 81 3|9 2
dogy = " K| z-F(K) |*dK .. (4.3)
(e}

when the target atom is left in its ground state after
tbe collision. F(K) is the elastic form factor of the
target atom (of atomic number Z) and is given by the

ground state éxpectation value

A -
F(K) = £ < exp(iK.rj) > oo (4.4)

j=1
For the inelastic process when the target is

left in any of the final states, the closure property

of the target eigenfunctions can be used to evalﬁate

the'suﬁ of cross—section for processes which either excite

or ionize the tafget system. In the Born approximationn,

this is given by ’

o . - 8m N N ]

doghe1 = (R-é-mlzgm/z S;, (K) dK | .. (4.5)

where S; (K) is the incoherent scattering factor of the

target atom, given by

A . . - T
sin(K) =";n< g < exp[%K.(rj-rk?J > -IF(K)|2 )

z j9k;l . '
.. (4.6)
The total electron loss cross-section is given by
Kg (1) K, (1)
; | ) (a.7)
ol = iil( ’ dG’el + dO"inel “ o -

Kl(i) K?)(i)
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n denotes the number of electrons in the projectile
system, and a sum is taken over all such electronsof

the projectile. The limits of integratinn are determined
by the kinematics and have been given by Dmitriev and

Nikolaev. They are for elastic scattering contribution
y L ropal/2 N
Ky (1) = (R1)7" and K (1) = 2K .. (4.8)

The lower limit of the inelastic scattering

¢contribution is given by the larger of the two quantities
(21012 and Kofl - (l—2AE/K§)l/é] o (2.9)

The second quantity in egn. (4.9) gives the minimum
momentum tranéfer'required tn transfer an excitatioen
energy AE to the tafget. Dmitriev and Nikolaev recommehd
the use of the first icnization potential of the target
for ODOE except for negative ion projectile systems, and
the upper limit is assumed te be Ké(i) = KO since at

high energies the maximum momentum transfer is governe&

by the amount of momentum transfer available in electron-
electron scattering (2). I; is the energy in atomic units
required to remove the ith electron from the projectile.
The integrands for the elastic-and‘inelastic contributinns
decrease rapidly for large K. Fer large incident energies;
the upper limit k_ is replaced by «, so thét the cross~

section in this high regicn »~f energy becomes
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il [ dK[l F(O)IZ + 25, (K)
_ o 7z - F(K) % + 25. (K
o K2 i=1 1/0 23 in

| o (211)/

The equations (4.3) and (4.5) for the elastic
and inelastic scaﬁtering are true if the target is an
atomic system. Whéh the target is a diatomic molecule,
equations (4.3) and (4.5) will not necessarily get
doubled. For molecules, the phase difference befween the
scattered waves emanating from the twn atoms has to be
considered (91) in calculating the total cross-settinn.
The scattering of electrons from diatomic molecules has
been described in a recent review by Chandra and Joshi(92).
Khare and Moiseiwitsch(93) studied the elastic and |
inelastic scattering of Hy molecule by electron impact
in the Born approximation, under the separated atom
approxiﬁation. The indivicdual atoms in the molecule are
treated as independent scattering centres and the scattering
amplitude is obtained by adding the amplitudes for
scattering by the individuél atoms with proper allowance
for the phase difference. Averaging over all the molecul;r
nrrientations, Khare and Moiseiwitsch (93) have shown that
for large value of the intcratomic separation of the
molecule (R - =), the differential cross~section for the
elastic scattering of electrons frém,the Ho, molecule in the

Bern approximation is given by
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I(K) = 2( 1 +S3BKE ) je(i) |2 .. (4.10)

where ff(K)[% is the differential c¢cross—-section for the

elastic scattering by a free hydrogen atom. The factor
sin KR ! :
(1 + =*§§—-) is known as the phase factor and it accounts

for the phase difference between the waves from the

two hydrogen atoms. Foar the éase of inelastic scatteringl
the phase factor will be (91,93): (1 - §i£§5£m). Khare
and Moiseiwitsch have computed the cross-sections by
considering the molecule in the separated-atom approxim=-
aticn as well as in the exact case. They have found that
the amplitudes in the separated-atom limiting case do
not cdepart from the exact case by more than 4%. . As a

consequence it is reasonable tn assume that the separatec-

atom approximation is a satisfactory approximation.

YWle have used this separated atom approximation
to calculate the electron—loss cross—section for

molecular targets.

The differential cross—-section for the electron
loss in the Born appreximation after averaging over all

the molecular orientatinns is given by

e

| 16 in KR |
dozy = E§—%[(|Z~F(K)|2)(l+ f%—-—ﬂ dK .o (4.11)
@]

Here we assume that the target is left in the ground state
.after the collision. F(K) is the coherent scéttering

factor of the ceonstituent atoms of the target molecule.
10 7o &\
CEARAL UBRARY INIVERSITY OF ROOPYTS,
ROORKEE.
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For large values of K the vibrational damping of the
mnlecule will become important. “hen we cnnsider the
effect of vibration the phase factor (1 + 5K%~ﬁ— ) in
equation (4.11) will be replaced by exp(-f2KZ/2) SHOKE
where Xz denotes the mean square aﬁplitude of the

molecular vibrations.

If the target molecule is left in any of the
excited states the differential cross~sectinn for

electron loss for the inelastic process will be given by

dog o1 = r(-~;< F( Z S, (K))(l - -iiKﬂ—RﬁB-)]AK .. (£.12)

Sln(k) is the incoherent scattering factor of the
constituent atoms of the molecule. The calculations of
egn. (4.12 ) with moleclar wavefunctions show that the

phase (1 - §$%ﬁ5R ) overemphasizes the actual situation.
K

The term (1 - ééQR R) is the correct phase for individual
optically allowed transition but the term is largely lost
in the process of summing over all possible states. It

would be therefore more realistic tn 'replace this term by

unity i.e. (1 - 5;3—5—)"‘1

o have used equations (4.11), (4.12) and (4.7)
to calculate the electron loss cross—section from hydrogen
atom and helium atbms incident on Hy, Ny and Oy molecules
(94,95). We discuss in section 4.2 the results f6r electron

lass in the H ~tsom impact on Hoy No 2nd 0Oy molecules.

o
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The spherically averaged Hartree-Fock, coherent scattering
factors are taken from X-ray tables (96) and the
inCGherent factors are taken from the calculationsof

Cramer and Mann (97).

4.2 Cross—sections for electron loss from H atoms
1nc1deﬁt on Hg,Noand 02 moleCules.

The present results for the electron loss from H
atoms of energies upto 108 eV incident on Hgy No and Oy
molecules are shown in fig. 4.1 along with other theoretical
calculatinns and the experirental data. Also a comparison ié
made between the results obtained using and without using

the phése factor.

Wle find that in each case the inclusion of the phase
factor with proper allowance frr the vibrational motion
reducesvthe total electron loss cross—section . This
reduction is quite sufficient for the 0o and Ng molecules,
and is less important for the H; molecule. For the
hydrogen atoms incident on the Hg molecules we notice
that the calculated cross-sectinns are quite close tn the
experimental values of Wittkower et al.(98) even though the
present theory does not remain valid at low enefgies. The
classical calculatinns of Bates et al.(102)for hydrogen
(multiplied by a factor of 2 fof comparison with the
results for the Ho molecule) yield a higher value of the
cross¥section in this region. For higher energiles also

the classical calculaticns tend to be higher than the
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present calculations. No data are available for comparisan
in the high ene'gy range. Bates et al. from-a study of

the H-H and H-He electron loss collisinns have pointed

out that the classical approximation gives pcor results

frr low atomic number toarge£ systems. This'poor agreement
arises ddé to an expected error in the classical calculation
nf the elastic.cnntribution tn cross—section. Detailed
examination by Bates et al. has revealed that the classical
impulse approximation overestimates the elastic COnfribution
to electrnn loss cross—-section by a factor of 2 to 3 in

the 100 KeV to 1000 KeV energy range. The classical
description of elastic scattering of electrons by light

atoms is therefore inadecuate.

For H atoms incident on the Ny and the Oy molecules,
the inclusinn of phase factor makes the theoretical
calcul;tion agreeé with the experimental data. Beyond the
incident enefgy of abnut 200 KeV the agreement 1is vefy
close and fnr energies less than 200 KeV the calculated
cross—cections lie within a factor of three of the
experimental data. At lower energies the deviation is'nct
surprising becauée the theory dees not remain Valid.in this
region of energy. The classical calculatiogs of Bates et al.

for the Np target molecule give better agreement with the
experimental data in the low eAérgy reginn. | |

From a compafative study of the three molecules it
is noted that far the lower Z target systems, the free

cnllisen aporeximation predicts fairly gond results



-84~

even in the intermediate and the low energy region. As

Z increases the disagreement‘at low and moderate energies
increases rapidly. This is aiso noticed in the calculations
of Victor for atomic targets. In his results the discrepacny
at low energies with experiment is maximum in the case of
argon target atoms coﬁpared tn the nitrogen and the

helium targets. The use of the Hartree-Fock approximation
for the form factor and specially the incoherent scattering
factor, where matrix elements of a two electron operator
are needed, can be responsible for much of-the diségreement
in the nitrogen and oxygen target systems. The.effect

nf the molecular binding may alsc be significant. In the
high energy rapge,the free collision approximation is quite
successful in predicting accurately the cross-sectinn. The
classical theory of Bates et al. is more suited for heavier
target systems. We therefore see that in atom-molecule
cellisions the inclusion of phase facter improves the
agreement between theory znd experiment and for a molecular
targét one should not simply double the crnss-sections

for the corresponding atomic targets.

The use of separated afom approximation in the study
of electron loss cross—section in atom-mnlecule collisinn
is quife satisfactbry. The effectiveness nf the separated
atom approximation depends on twn conditinns, (i) the
individual atom maintains its atomic field i.e. the
distartion in the atemic field due to the valence forces

is negligible and (ii) the multiple scattering of the
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~incident electron inside the molecule does not take
place. Both these requirements are well satisfied for
incident electron velocities at which the Born approxi-
mation tn the scattering amplitude is valid. The free
collision'approximation of Dmitriev and Niknlaev (88)
which is also vzlid for high energies, can therefore

be suitably combined with the separated-atom approximation
to treat the electron loss iﬁ an atom-molecule collision.
“le have also seen (95) that the above theory is
satisfactory for helium atoms incident on molecular
targets at high incident energies. Therefﬁre, the theory
can be used to obtain electron loss cross—section from
still heavier projectile systems, but measurements with
such heavy projectiles have not been made. For heavier
target atomic or molecular systems an improvement in the
present theory at low energies could be obtained if

degq is replaced by ifs partial wave value because the
partial wave elastic cross—sections are significantly

smaller than the Born values.

(b) EXCiﬁationm

In this section we study processes nf the type
given by equation (4.2), in which the projectile atom gets
excite& £o any of its discrete states in collisimp with
the target atom. Levy(90) has used the Born wave

approximation ta study the excitati-n ~f the hydrogen atom
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to 1s-2s and ls—ép states in passing through the varinus
targets like He, Ne, Ar and Kr. Subsequently Levy (103)
also studied the excitation of helium atom in passing
through H, He, Ne, Ar and Kr. In these papers Levy has
also compared the difference in cross~sec§ions when the
complete summatinn nver the target final states is
performed exactly by the use of analytic generalised
oscillator strengths and approximately by the use of the
closure relationship. He has shown a disagreement between
the two methods of summation and has pointed out that
lfhis disagreement may be particularly large when the
target has a much lower excitation energy than the
projectile. An alternative method used in the study of the
atom—atom excitation is the impact parameter approximation.
| The impact parameter approach requires the calculationn

nf time-dependent matrix elements involving.integrals

over the electronic wavefunctions of tbe projectile

and the target. Flannery and Levy (104) heve developed a

general analytic method for evaluating these matrix

0
=
U

elements, which they employed in the H-H excitation
section calculations (105,106). Extension of this
technicue to more complicated systems is cumberseme and
tedious. A method of evaluating these time dependent
matrix elements using generalised oscillatnor strengths
and the form factors has been suggested by Levy(107) and

hnas beon used far the H-He inel-=stic ¢onllisiocns. From this
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study Levy has shown that the first Born-wave calculatinns
are in better égreement with the experimental measure-
ments than the distorted Born approximation, twon

state and four state impact pzrameter calculations. At

low incident velecities, however, the inclusion of
distortinn decreases all cross-sections below the first.

Borin approximation values.

In view of the considerable success of the Levy's
method using first Born wave approximation and the
description of the projectile by the generalised
nscillator strengths and tﬁe target by the cocherent and
incoherent form factors, we have extenaed it to the s£udy
of the inelastic cross—section of hydrogen atoms in
passing through the alkali atoms. Seversl transitions in-
hydrogen have been studied by us.. The hydrogen atom has
been chosen as the projectile because the generélised
CSCillator strengths for the varinus discrete transitinns
are readily available (84) in analytic form. In
seétiﬁn 4.3 we first discuss briefly the theory of Levy

and the results are discussed in Sectinn 4.4.

4.3 Theory for atom—atom excitation

Let us consider an inelastic collision between two
atoms,. @ projectile atom A with Z, electronsand the

target atom B with Zp electrons,both initially in their

graund states and acguiring a state n and n' respectively
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after the collisinn with a possibility of n' being
equal to O also. The first Born wave cross—section for
a transfer of momentum a to the target atom from the
projectile hsving initial and final wave vectors as

K; and K¢ respectively is given by (90)

i
‘?max 27
4 -3 A~y 2
o (0,0-n,n"') = =5 a9 ° dq dmlo,n(q)l
V2 d.. 4 0
e 1B (@-zs. P
X o,n' q —ZBbo,n’
.. (4.13)
where,
Ipin = K47Ker g, = KyjtRey Ky = Mvy
~ 5 1/2
2 A B A B
Ke = !}\l - 2M(€n + €y T € - eo)j! .. (4.12)
and Z -
- S s i 'r .
5 -y *S, = S Tsi - '
Ig,n(q) = ifl [- wo (rs)wn(rs)e drs:] .. (4.15)
M is reduced masss v. initial velocity nf relative

1

motion, eé and ef are the ground state energies and gﬁ

B : . . :
and g the excited state energies of the atoms A and B.
rs = Tgys Tgp -+ » Tgy 1S a vector from the nucleus of
an atom S to its ith electron and wg‘is the electronic

wavefunction for an atom S in state n.

The generalised oscillator strengths are

q - 3 { -
£ (0-nlq) ='2(62 - 8§>|I§,n(q>|2 / q2 .. (4.16)
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The totsl excitaticn cross—-section is pbtained
by summingawvvhail poscsible final states of the target.
For this we have to consider the cases when the target
is left in the ground state after the coilision and another

when the target is excited nr ionized after the cellisian.

The elastic cross—section is given by

42% Imax A .
2
. _ B -3 A - -
Gél(O,n) =% g © dg| ¢ Io’n(q)‘ &FB(Q) 1‘
' 2 9Ynin o e. (4.17)
and the inelastic ¢rnss-sectinn is
Tinel(o’n) = % O'"(O90"'nan')
n'#o
ma x 2T
4 Z © | 2
_ m'_!_B- _3 ' A — ‘ -
= V? j‘ _ q “dqg J dp Ir),n(q) SB(q)
i 9min o .. (4.18)

where the elastic form factor Fg(q) and the incoherent

factar Splq) are

4z B~ 112 iq.rns 47
B i=1
and
l wZB r -_ B o g - 2
: — = 312 ige(rn. = roL) o
Spla) = Z % 1 4\wo(r5)‘ o Bj Bk d?B’1ZBFB(q)‘-1
| ° o (4‘.19)

The equation (4.19) is derived using closure and

the approximation that'qmin and Opax €20 be replaced by

and ¢« . far all n'.

thod aveTrage alues o
telr average values g ma

M
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The total excitation cross—section to a state n of
the projectile is now given by

Al

s (o,n) = Wjﬂo,n)%- (osn) ..(4.20)

9inel

For hydrogen, equation (4.15) has been evaluated by"

Bates and Griffing (84 ) with the results

2
17 4 / 2 \6
Liggsla)| =27 a / (4q+9)
2
15_,2 2 2 6
118_2p(q) = 277x3%q // (497+9)
I, ~-3s(q) - - 28587 (277 +16)% % f(9 P +16)° |
1s a’ry = < q// < .. (a.21)
2
1Ils~3p(q) = 2llx36(27q2+l6) q // (9F +16)°
‘I .~3d( ) ; = 217437 /(9 “i16)°
ls q - q / ‘

P
Je have used equation (4.20) to calculate the excitatinn
of hydrogen to the five discrete states (25,2ps3s,3p and
'3d) from the ground stéte ; in collision with lithium,
sndium and potasium target atoms. The tabulated Hartree-
Fack form factors are used. To calculate the average |
aH , and qmax we used an average excitation energy egv
equal te the icnizatinn potential of the target in place
'of e&(B) in equation (4.14).

4.4 Cross~sections for the excitation of H atom_in
¢c~Allision with Li, Na and K atoms

T a1

Tioures 14.2-4.4) staw our results for the excitatinn
crnss—scction of H to 2s, 2p, 35, 3p and 3d states (curves

1~5 respectively) in ccllision with Li, Na and K respectively



for incident energies upte 1000 KeV. No experimental
data are available to compare with the present calculations.
Theoretically also only one calculation has been reported

for lithium target atom by Cheshire and Kyle 108 ).

In fig.(4.2) for the excitation of hydrogen by
lithium atom we have shown fhe excitation cross—~sections
to the individual states (25, 2p, 3s, 3p and 3d) as well "
as the total excitation cross—-sections to the n = 2 and
n =3 levels (curves 6 and 7 respectively). Also shown
are the results of Cheshire and Kyle for the total
excitation cross—-sections of hydrogen for n = 3 and
n =3 levels (curves 8 and 9 respectively). We notice
that there is a large difference between the present
calculations and the calculations of Cheshife and Kyle.
for 0xcita£ion to the n = 2 level, for ilncident energies
upto 100 KeV. For en:rgies beyond 100 KeV the two
calculations agree within a factor of two. The agreement
is however much better for the total excitation cross-
sections of hydrogen to the n = 3 state. Beyond 10 KeV
there is a2lmost a perfect agreement between the two
.calculations. The calculations of Cheshire and Kyle were
based on the first Born approximation and they used the
closure approximation to sum over all the final states
of the target atom. However, in the evaluation of the
integrals for elastic and inelastic contribution tm the

cross—section they did not make use of the form factor



description of the target atom, but use the method
analogous to that described by‘MaY (109). Further

Cheéhire and Kyle have used the self—cohsistent field
wavefunctions of Clementi( 60 ) for Li and have pointed
out that use of a simple hydrogenic wavefunction for

Li(2s) with an effective charge Z = (1.6)L/2 ihcreases

the cross-sections by 20°/4 . Therefore the main discrepancy
between these two calculations may be due to the use of

the Hartree-Fock coherent and incoherent scattering

factors for the lithium target in the present calculations.
In the absence of experimental data it is difficult to
assess the merit of the two methods but from a previous
study (90) it has been concluded that the form factor
description of the target predicts the results for excitation
cross—sections which are in very good agreement with the

experimental data.

An important feature which is noted in all the
transitions is the presence of double peaks or shoulders
ih the cross—sections. The double peaks are guite
predominant for ls-2p and 1ls-3d excitations, where the
‘seCOnd peak overshoots the first one. For tBe ls-2s,
l1s=3s and 1s-3p transitions the second peaks are much
flatter and spread over a wide region of energy.The
presence of double peaks and shoulders in the cross-
sections are due to the double excitations. Such double

peaks have alsc been observed.in the calculations of
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excitation cross~sections in H-He and He-He calculations
by Levy (90,103) and the origin of these due to the

double excitation has also been convincingly demonstrated
by Bates and Griffing in their calculations (84). The
cross—sections for the double excitations in the hydrogen-
alkali atom-collisions will be dominated by the resonant
excitations in the alkali target systems. It is apparent
that>whereas single transitions predominate at low impact
enefgies, double transitions predominate at hicgher impact

energies.

Another interesting feature which is observed in
these éalEQlations is that for all the transitions the
cross—sections level off after aboutléo KeV of incident
energy. This can be attributed to the onset of significant
contributions to the cross—section from the inelastic
term {(excitation or ionization of target). In this region
fhé contribution from the elastic term will be lesser.
This feature is also observed in the experimental data

for targets like helium(10). -

In figures 4.3 and 4.4 for excitation of hydrogen
ih collision with Na an& K targets, the general features
are similar to that of the Li target. In all these cases
we find that for a particular target the magnitude of
cCross sectiohs for the 1ls-2p dipolar transitions is the
largest and for the guadrupsle transition it is the

least. The fall of cross—-sections in all the five
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transitions is quite rapid for energies beyond about
20 KeV. Double peaks =re observed for all the targets
and the magnitude.of ls~2p excitation cross-section is
the largest for H-K collisions. The dip in the cross-

section is observed betwzcen 6-8 KeV of incident energy.

In the above calculations we have.used the ioniza-
tion'potential.qf the target (IB) for BSV in order to
calculate amin and amax' This is plausible since the
optical oscillator strength is almost evenly divided
between ionization and excitatinn. Levy (90) has suggested
the use of the logarithmic mean energy (which is used in
Bethe's theory for stopping power (111))as an average
excitation energy. However, this energy egethe is weighted
towards the continuum and tends to underestimate S nel
in the intermediate velocity region. Since in the alkali
target59 the target excitations are expected to play |
an imponrtant rnle, the use of a2 correct egv is desirable.
Levy has suggested that if accurate excitation cross—
sections are experimentally available in the energy
region where the levelling of'the excitation cross—section
occurs, the target parameter egv can be determined empiri-
cally by fitting the theoretically calculated total
cross—sections with the measured &alues. Further the
average energy does not depend on‘the projectile and
therefore the semiempirical calculations of egv may be

useful for a wide range of processes.
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In conclusion 4 we can say that the form factor
description of the target provides a simplé approach
to the calculation of atom-atom inelastic collision
cross—sections in the Born approximation. At low energies,
the Born approximation can, however, be'improved by the
inclusion of distortion and coupling. The present
results are expected to be accurate at high energies.The
need for an experihental investigation of the above excit-

ations is obvious.
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Flgure captions

Fig. 4.1 Electron loss from H atoms 1nc1dent on Hoy, Ny
and Ogp moleculed. '

Present'calculdtlons ———m== with phase factor, =——-- without

phase factory wmm... calculations of Bates et al.

(102); Experimental data: Hy molecule,'é Wittkower et al. (98),
Ng molecule, é Allison (99)-EEbrkner et al.(100), 2 Smythe
and Toevs (101); Oy molecule Q, Allison (99).

Note: The upper scale in this figure refers to Q0 molecule.

Fig. 4.2 ° Excitation of H(11S-nlL) in collision with
lithium atom.
Present calcula*ions: ———=ls-2s,curve ls; ls-2p, curve 2;

—————e] S=3 S éurve 3) ———=ls=3p, curve 4; ——15-3d, curve 53

~-—-—= total excitation t» n=2 state, curve'6; cmen s o ¢ . LOtal
excitation to n=3 state, curve 7; calculations of Cheshire and
Kyle (108): cmmmsee for excitation to n=2 state,curve 8;

——t teme for excitation to n = 3 stat%, curve 9,
. . . 13

Fig. 4.3  Excitation of H(11s-nlL) in collision with ~ .
. sodium atom. :

Explanation of cufves_l—5 remains the same as in fig. 4.2.

P

T
il

Fig.4.4 Execitatian ~f H(1 ) in colliision with

potasium atom.
Explanation of curves 1-5 remains the same as in fig. 4.2.

&
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GHAPTER o

e e

INELASTIC COLLISIONS OF ELECTRONS WITH ATOMS

The classical binary encounter tﬁeory assumes that in
the collision of electron with atom , the energy trénsfer
from an incidenf t~ a bound electron is equal tn the
énergy transfer between two free particles. It is also
assumed that during the period of significant interactinn
between these twe electrons, the other electrons and the
nucleus play no role. An essential condition for this to
hold is that the collision time should be short compared
to the arbiting time of the electron. This condition will
be satisfied for collisionswhich involve large energy
transfers. Thomson (41) was the first tn use the binary
encounter theory for calculating cross—sectinns far the
inelastic electrmn-atom collisions by conéidering the
Coulomb scattering of the incident electron by an atomic
electron at rest. For ionization he obtains the cross-

- e e
DL LLOIll

' = Ez U E2 . . | , .o .

where N is the effective number of electrons in the atom, U
is the ionization ernergy of the atom and Eo is the kinetic

energy nf the incident electran. The neglect of the motinn
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of the bound electrnn is certainly not justified at

low or intermediate incident energies. Gryzinski (38)
greatly improved Thomson's theory by allowing f@r'the
moticn of the bound electrons He first derived classical
relations for the Coulomb collision of two moving
particles. His calculations were based on the results

of Chandrasekhar(42) for canllision nf gravitational

masses. We shall briefly discuss Gryzinski's theory.

5.1 Classical impulse approximatinn

Let the bound and the incident electrons be distin-
guishéd by 1 and 2 and let their velocities and energies
be vysy vg and E; and Ey respectively. Denoting the anglé
between the velocity vectérs ;l and 32 by 6, Gryzinski(38)
shows that the cross—section for a collision between two
electrons in which an energy transfer.of AE takes place
is given by

9. .
- ma 2

* f(g) v2v2 sin™p

_ 1 e 1l 2 -
o1 o2 y x RN E, + El)de
“Onin .. (5.2)

where V is the initial relative velocity nf the two

AE

electrons given by

Vé = vi + vg - Zvlvz cCosH ‘ .. (5.3)

and f(g) represents the relative angular distributinn

-— —
functinn betwseon vectors vy and Vo o In the case of an
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isotreopic distribution of velncities of the atomic

electron we have
f(e) = (sinplV/v, .. (5.4)

The range nf integration over angle 9 is determined by

the conservation of energy and momentum. It leads to

=+ x if x| <1
= +1 if x|l >1

| —1/2
where x = {}1-&E/El)(l+AE/E2%- : .. (5.6)

€O Brax ain
?: o o (505)

[}

For evaluating equation (5.3) Gryzinski makes -a simplifying
approximation of replacing the true relative speed 6f
the two electrons V = lCl—Czl by its average value (v§+v§)l/2.
Carrying out the integrations nver ¢ in equation (5.2)/with

the above approximationsGryzinski obtains

4 2
21 e v 3/2 E E
o = 5} "( 2 2 > ) rl - ":‘L_ + é‘ 7]%-_] if OE \< E E
,»’_E V2 AEQ 2 + VH i I‘_z S — ] 2 l
Vo & Vo 1 (5.7)
. * 5.
om ot 1 ( vg 3/2 [1(1 4E, +2L\E E, )1
o mem - s ity ——— — T Paa— e — -+ v —
2 2E° vE 4 S 5 L5 Ee  Ep
M- V. 2 1
1Ve /o

h]
- AE /=
)~ LE . . -
X [}l + ElXL Eo{} if LE YEg-E,
: .. (5.8)
The total cross—section for a collisian in which the

incident electrsn leosss energy greater than U 1is Q(U) where
E
2

tal

Q(U)= o~ (LAE)A (DE) eee (5.9)
(U ’
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Similarly the cross-section for an encounter with loss
of energy in the interval U; < 2E ( Uy is

.1U2

QUg,U;) = J o (E) d(2E) .. (5.10)

Uy

Denoting the velocity distribution of electrons in
the jth electron shell of an atom by fj(vl) and the

ionization potential by Ujs the electron ionization cross-

section for an atom is

- = §J £, (vq)QUU; dv, .. (5.11)
. |

Gryzinski initially assumed a &-function velocity

distributian for the atomic electron fj(vl) = NB&[}l-(zUj)l/éW

where Nj is the number of electrons in the jth electrnanic

shell. Using this distribution the cross—section for
ionization frou the jth shell of an atom is given by

N E 3 /2 2U4 '

J.. 2 5) J .

R S - 2 SR if 2U, € E, .. (5.12

Ny 4V2 E,~Us 3/2

o3 ( =2 _d ) i

= e : ) if 2U, 2 E, .. (3.13)
UjEg 3 EpU; 3 2

Gryzinski compzred his éalculation with a wide range of
experiments and obtained ﬁtartingiy good agreement. In
 Gryzinski's theory the agreement with experiment is
misleadingly exaggerated because of certain inessential

approximation in the integration as pointed out by
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Ochkur and Petrunkin ( 112 ) and Stabler (40). Stabler
poinfs nut that a subsidiary approximation made by

Gryzinski in averaging over the initial angular distribution
is responsible for the fact that his cross-sections are

in better agreement with experiment. This approximation
though'it improves the results, enters iQ an arbitrary
fashion which removes much of the self consistency of the
calculations e.g. the cross—sections do not behave

properly under time-reversal.

Stabler derived in a very simple and clear manner
the analytical cross—Sections.for excitation and ionizatinn
of atoms using the exact classical impulse approximation.
Stabler's approximation is particularly elegant and
he obtains these cross seétions in a direct way, without
the use of the centre of mass cnordinates (as used by
Ochkur and Petrunkin (112). Near the threshold and at
high energies the Stébler's cross=sections are found to
be almosf identical with the Gryzinski's cross—sections
but lie above them at intermediate energies. The formulae
for excitation and ionization nbtained by Stabler are

mathematically more mceurate.

5.2 Exact classical model of Stabler

Stabler's model for classical impulse approximation
for the electron-atom collision consists in neglecting

all terms in “he Hamiltonian except the kinetic energies
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of the target and inci&ent-electrons and the interaction
between these electrons ez/rlz- The cross—section for
an energy transfer between AE and AE + d(AE) is given

by

do- : . . ' :
Vo gwEy = |Gy )eh) JP(S) o [22(8)]a?3 -+ (5.1e)
where, P(8) is the probability for a
collision at a separation of the velocities vectors in
configuration space of S.- The integration is over a plane
in configuration space whose normal is % . Choosing the

plane of integration in configuration-space as the one

normal to 329 and carrying out the integrations, Stabler

obtains
- bad 4 2E id 2
do- (viyvy)  4m e ( Ey - B | lgzsuue)
d (AE) m=V* | AE | LE N

: 1/2
if |2AE + E. - E Fd ?(E -E )2+4E Eosi 2 /
1 ’ = 2 1‘ 27F1 1Egsin ©

= 0  otherwise .- (5.15)

This result is essentially identical to the Gryzinski's

result . Feor“an isatropic velocity distribution for

8T D e

either particle

do= (vvo) -] vdolv,,v,) '
1’27 _ _1 A | .
J(RE) T 7w J JTREy— 2nosine de .. (5.16)

The integration over angles is confined to the reginn in

which the conditisn (5.15) holds. Performing the integration
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in egn.(5.16) exactly, Stabler gets

V de~ (Vlyvg) e 94 2 €

- 1/2 4 .
d (LE) IVSIE ( " ElEZ) []-*'3 TZéﬁ’J .o (5.17)

Sl
-

where g = _fl’ Eo» Ei’ Eé] is the smallest of the four

ee

incoming and outgoing energies.

Equation (5.17) gives the exact cross-section for
binary Coulomb collisions. Gryzinski obtained only an
appreoximate form by replacing V = (v?-fvg)l/z,before

integration over 9.

The ionization cross—section is obtained by
integrating (5.17) in the limits -U > AE > - Eoy which

upon integration becomes

on &% (E2~U)3/?

Qion(Eg) = - 178 for UK E; & Ej+U
2 1
v e [ 2E,+8U 3 . | )
= - TETCE Es7E{+U .. (5.18

For excitation the integrations are carried out in the

limit Un < - AE < Un+l where Un and Un 1 are the relative .

-+
energies for the levels n and n+l. The excitation cross—

section to a state n becomes,

2'75 94 (E2_U]’1 )3/2 \
, U xS By € U

Q. .. =
exc ~ zp pl/e UR n+l
271 n
A— .. . : . =
e oF ey - U PR (Bpmu PR
T ap e/ | u® O | S B EL
271 - n n+l - '
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- 3 /2
_ 25 ot [ZEl:zU s ) (Ep = U_,;) / ]
T 3E _ 1/2 2 ’
2 2 N 2(52 El) El Un+l
, El + Un*g Ez‘g El + Un+1
21 e 1l 1 '
= (e - NG )+§]'E'>/E + U
3Eg Uy Un+l Uy ~ Uin 2 y Eo 1 n+l

' LY (5.19)
The classical excitation cross-—sections depend

only on the initial and final energies and not on the
angular momenta of electrons. It gives cross—sections for
excitation of definite energy intervals in place of
discrete energy levels. The procedure is to take interval
equal to the separation of levels. Stabler has shown that
the classical excitation and ionization cross-—sections
arevaccurate to within a factor of about two in the energy
range between t@o and ten times the threshold. The merit
of the classical theory is that it provides the ana-
‘lytical expressinns, which also allow for differences

in binding energies for inelastic electron-atom collisions.

Kingston (46) carried out a detailed study of the
electron impact ibnization-of the hydrogen atom using
the Gryzinskistheory and concluded that disagreement
exists between the quantal calculation and the
exact classicsl caiculations at large impact energies.
This 1s due to the fact that the Born cross~sectlons fall
as fn E%/Ez while the classical cross-sections fall as
1/E; for large values of Eg. Al high energies the classical

cross—-sections have an incorrect form. This 1s essentially
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due to the fact that the distant collisions are not
treated properly, in that the +transition probability
falls to zero at large impact parameters, whereas the
proper quantal transition probability is exponentially
decreasing. At high energies this exponential tail

dominates and leads to E;ifn E, term.

53 Velocity distribution functions

In order teo obtain a legarithmic decrease. in the
ionization cross-section Gryzinski(39) assumed that the
atomic electron had a continuous velocity distributionn.

He introduced an empirical distribution function whose
form was so chosen that ;n_averaging over this distributicn
logarithmic  term would be obtained. Explicitly he“

assumes 2 velot¢ity distribution of atomic electron as
‘ R ds 3. -(-r/vl

with v equal to the average velocity. Although the above

distribution function gives a logarithmic behaviour

L L2 a2
11104

4]
(e

of crass section at high energics but the coe
multiplying it is in general incorrect. The above distri-
bution function is most unrealistic and can not be
justified theoretically.It yields an infinite mean kinetic
energy. It is completely at variance with any quantal

velocity distribution e.g. it disagrees with the exact

guantum mechanical distribution function faor the hydrogen
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atom which has the form(113)

.. (5.21)

It was first suggested by Stabler(40) that improve-
ments in classical impulse approximation are possible by
choosing a quantal momentum distribution function for the
electrons of theAtarget atom which is obtained from the
~ Fourier transform of the wavefunctions of the target electron.

This distribution is used in our calculations also. .

The quantal velocity distribution of a bound
electron is derived by using the Hartree-Fock wavefunctions,
and some properties of the spherical harmonics. The one

electron Hartree-Fock orbital ﬂnxm(?) is written as,

Ao (7)) =@, (reo @) = (S c. BROIY, (6.,0.) .. (5.22)
nfm nfm r’’r i i Ve e
and the wavefunction in momentum space (X) is
b () = s | B, (F) o1%T GF | (5.23)
nfm T (24)3/% nfm ° :
Writing
ii'; ; 4T (E Zk i G,Xr) Y, (6ue@)Y, (6 ..ot )
e s oyt ) Ve B )

where jf is the spherical Bessel function, and using the

property of spherical harmonics
2m 1

|

A 0 ‘“’l

H*

YXmkamu dQ .d(COSG) = (Smmuf)xxg .. (5.24)

$nXm (X) reduces to
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<o

J (z ciRi)4n ik jX(Xr) Ykm(exy¢x)r2dr
0 .. (5.25)

The velocity distribution function in the nf shell is

e X =573 z_;ﬁnlm(i) U g X | .. (5.26)

m=
Now
g » 2L + 1
mz_“k,ykm(el’gl)Ykm(ez’gg.) =-Z::—__ Pk(cosa) | .. (6.27)

where a is the angle between the directions,(el,¢l) and

(92,¢2), hence

o ‘ 2
o = (47)? PQ(1> J (2 c;Rs) jX(Xr)rzdr .. (5.28)
2
= z
271: } j ( C. R ) JY(XY')T' dr .. (5.29)
The momentum distribution function becnmes,
F(X)dX = sz 9 (x)dx : ..(5.30)

Catlow and McDowell (114) have studied the electron and

proton ionization of He, Li, O and N, using the classical
theory with a quantal velocity distribution. These calculations
show that the classiecal theory can predict the cross—~sections

accurately for low and moderate energies.

In order to assess the accuracy of these classical
methods to more complex system we have calculated the
inelastic electron slkali~atom cross—sections and have studied

both theexcitation and the ionization (115,118).
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~

In our balculations we have used expressions for the
cross—sections due to Stabler which are mathematica -
1ly more accurate and have used the quantal momentum
distribution for the atomic electrons.We observe that
our results for alkali atoms are in a fairly gond

agreement with the data.

5.4 Formulae in_dimensionless variables

Introducing dimensionless variables

2 2 U

\% \ U o
s° = —%— , t° = —lg— H “ﬁgiﬂ = r° and —5 = m° .. (5.31)
A v '
o o o
and U= v,

the cross-section for excitation of an atom to a level

n from the ground state is given by

N oo

o-(sn) = N | £(t) als,t,n) U2t (x 22) .. (5.32)
I |

and the cross—section for the ionization of an atom is

o (s) = N J £(t) as,t) U2 at (na®) L. (5.33)
T o

j=de

U and U arc t
n n+l _

levels n and n+l. The expressions (5.18) and (5.19) can be

T ve excitation energles of the

~
i1

rewritten as

8 (2 .\3/2
2(Stl) - 1< 32\<t

i

IJ%Q(s,t)

3s v
' 3
3s (s"-t%)
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~and :
3/2 2 _ 2,3/2
2 ) (s - v°)
U“Q(s, tyn) = 35 (...._..,..._.ﬁ__ -
: s ti_ 4 4
' m r
' 2 .2, 2
if 1 55 g =20
< 2
r r
° . 1 2 3
3s m r = o r
2 2
if 55 > 1 + 35 .. (65.35)
r r
The distribution function (5.30) becomes.
£(t) = an 2 U p (¢ U/E) .. (5.36)

nf
Using equations (5.32)-(5.26), we have calculated the
ionization and the excitation cross?sections of alkali
atoms. e shall discuss'in section 5.5 ~ur results fer the
excitation cross—section.

5.5 Cross-scctionns for electron impact excitation of

TR - g . W, R ;‘

Li, Na, K, Rb ana Cs.

Vo e amn

In Figures 5.1 to 5.5 we display our results for
the 2s-2p, SSQSp, 4s-4p, 5s-Bp and 6s~-6p excitation of
Li,Na, K, Bb and Cs for incident electron energies upto

about 50 eV. respectively.

For Li we find that the present calculations
(curve 1) are quite close to the experimental data (curve 4)
nf Hughes and Hendrickson (68) at low enqrgies but dis~

agree appreciably with these data at moderate and high
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energies. However, in this moderate energy range our
calculations agree better with the data of Zapesochnyi and
Aleksskhin (117). The calculations based on Vainshtein

et al. model (curve 3) give good agreement with the data
of Hughes and Hendrickson, but as noted in Chapter 2,
much reliance cannot be placed on these calculations.

The Born approximation (curve 2) yields a very high value
of cross—section‘at low and moderate energies compared to
the experimental data. The calculations (curve 5) of
McCavert and Rudge (118) using regional trial functions
also give very high cross—sections. The two experimental
results differ markedly and it becomes difficult to say

which method gives more accurate cross~section.

In Fig.5.2 for Na we observe that our results (curve 1)
agree better with the experimental data of Zapesochnyi and
Aleksskhin(117) in the entire energy range than with
the data (curve 9) of Haft (119) as normalised to the
measurements of Christeph (1205 by Bates et al.(121). In
this case also there is a wide difference between the two
experiments. Seaton's calculations (122) based on impact
parameter method (curve‘B) and the modified Bethe approxi-
mation (curve 4) give almost identiéal results which lie
above the experimental data in the whole energy range.

All the calculations based on the Born approximation
(26,118, and 123) shown by curves 2,5 and 6, respectively
vield very high cross—sections at iow energies but at

energies ~f about 20 times the threshold the Born cross-
sections are cuite close to the experimental data. of
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Haft(119). At low energies the close coupling calculations
of Barnes et al.(12¢) and the impact parameter calculations
of Seaton (122) show & reasonably goad agreement with the
data. Our calculations tend to lie below all other

theoretical calculations.’

.In Fig.(5.3) for K we note that our calculations
(curve 1) at low energies are quite near the experimental
data (curve 5)‘of Zapesochnyi and Shimen (125), but the
fall in cross-section is very rapid compared with the
slow decrease of the experimental cross-section. The shape
of the experimental curve does not agr-e with any of the
theoretical curve. The Born calculations (curves 2 and 3)
of Vainshtein et al. and McCavert and Rudge are quite

close to each other but higher.than the experimental data.

For Rb (Fig.5.4) the present‘calculations (curve 1)
at low energieé are higher thaé the experimental data
(curve 4) but at moderate and high energies they tend to
lie about 40°/ lower than the data. The shape of the
classical curve at low and moderate energies is identical
to thaf of the Born approximation (curve 2) a feature which
seems to be common for all alkali atoms. The high energy

behaviour is of course diiferent.

For Cs we note that our calculations (curve 1) agree
very ‘well with the data (curve 6) of Nolan and Phelps(126)
in the available energy range. The shape of the curve
alsep agrees with the Nolan and Phelps curve. The calcula-

tions (curve 2) of Shelden and Dugan(l??) based nan
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Gryzinski's method with a $-function distribution for
the atomic electron are significantly lower than the
present calcuiations and the experimental data of

Nolan and Phelps. Beyond 10 eV the present calculations
merge with the Sheldon ahd Dugan célculations- The data
(curve 7) of Z.pzsochnyi and Shimon (125) lie much above the
present calculation and also disagree markedly with the
data of Nolan and Phélps. The calculations (curve 3) of
He~esen (128) based on modified Bethe approximation are
within 207, »f experimental data of Zapesochnyi and
Shimon whé&reas the calculations of Vainshtein et al.
using Born approximation (curve 4) and using their model

"(curve 5) disagree with either of the experimental data.

In all the alkali atoms a common feature obs=
ervaed is thzt the cross-section first rises rapidly
near the threshold, attains a peak- value and then
dzclines suddenly. Due to the rapid fall-nff with electron
energy of the ciassi;al approximation cross—sections,
they are_necessarily smaller than the Born approximation
cross—sections at high energiés. In the other theoretical

PU |

culations and in the experimental data we notice a

0
M
’.._l

flatter maxima and'the cross—section after attaining a
peak Qalue decreases very slowly at higher energies, in
cantrast to the classical calculations. Except for the
data of Nalan and Phelps where a sudden decline is
abserved, none of the other data demonstrate this feature.

The classical cross—sections at high energies (greater
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than about 20 times the threshold) decrease monotonically

following a 1/Ecdependence whereas the quantal calculations

give a % log Eotype of behavieur at high energies.
2

»From the above studf of the excitation of alkali
atoms by the electron impact we can conclude that the
results based on the classical method are only qualitative.
Howe&er, they are more reasonable than the calculations
based on Gryzinski's model. The use of guantal momentum
distribution for the bound electron is more justified
than either the 6-function or the exponential distribution
which is tailored to give a corréct high energy behaviour.
The general disagreement of the present classical calcula-
tion with experimeﬁt is also due tn the fact that
classically the excitéti&n process is defined with a
lesser degreé of confidence, because the energy transfers
are small and it hecomes difficult to correlate the
classical energy continuum to the various quantised

angular momentum final states. Classically one defines

only energy interval and the excitation fnr these intervals
is calculated. No account of spin etc. is taken. Recently
Flannery (129) has tried to imprave the classical theory

for studying the excitation processes.

| Further we also sée that none of the theoretical
calcuiations (except probably the calculatipns based on
close coupling ahd Glauber approximation, shown in
fig. 2.3 for lithium) for any of the alkali atoms give

a satisfactory agreement with the experiment. They give:
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cross—-sections which are in general much higher than

the experimental values. The shape of the ‘quantal.
cross-sections also (except for high energies) does

net agree with the data . In all the cases the quantal!
calculations based on the model of Vainshtein et al are
closest to the experiments, but these éalculations could,
not be relied because of certain unjustified hathematical
simplifications(as discussed in Chapters 1l and 2) in the
evaluation of cross—seciion$,although these include the
important effect of repulsion between the electrons in the

‘wavefunctinn.

The amount #f experimental information for these
transitions is meagre and conflicting. The datas by various
workers differ widely with each other at all energies.

Under these limitations it becomes difficult to assess

the accuracy of the various theoretical methods. The
'ciassioal calculations for excitation of atomsare reasonably
good where rough estimate of cross—-sections are required
in a quick simple analytical way. For ionization of
alkali}atoms by electron impact the classiczl calculations
are more accurate and valid and satisfactpry agreement

with experiment is noted(116).

5.6 The exchange classical approximation

Burgess(44) tried to improve the classical theory
by tresting distant collisions with the impact parameter

method, the close cnllisions classically and including the
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exchange effects. In this way he obtained a correct

threshold and high eﬁergy behaviour for targets.l

For the close-collisions he assumed that the
incident electron with initiél kinetic energy Es; gains
a kinefic energy W and simultanecusly loses the same
amount of potentizl energy before it interacts with the
atomic electron, which is assumed to be bound with this
energy W. In this symmetricél model both electroné are in
the same potential field during the interaction. Burgess,
used quantuum mechanics to treat the cnllision between
identical particles. The exchange and the interference
effecté are included. The initial and final states are
treated classically, in terms of an orbiting electran
with definite initial and final kinetic energy, the
change in kinetic enefgy being relaoted tn the angle ~f
écétﬁering. Burgess combined fhé'above"binary endoUnter
theory with the impact -parameter methed for.distant
encounters. In the derivation of én expressinn for the
cross—section Burgess made the unrealistic assumption that
the collision cross—section is invarianf for transforma-
tion from the centre of mass tn the laborétory coordinates,
which is incorrect. In reality only the collision rate

is invariant.

Vriens(45) obtained the crnss—sectinn farmulae for the
symmetrical collision model, which are simpler and give
better agreement with experiment as compared to the

Burgess farmulae.
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The cross—section formulae are calculated using

the symmetrical and the antisymmetrical wavefunctions

. . + -
If the correspcnding cross~sections are & and 6 , then

1 + 3 -

the total cross~section is o= T o + T o .

Mott and Massey(2) have expressed the scattering
cross-sectinn cﬁ(e,g) in terms of the scattering angle o
and the energy transfer AE. Since o and AE are dependent
on cnordinate transformation Vriens has expressed the
crass—section as a function of momentum transfer AP. Far
one collision AP is same in all coordinate systems moving
with respect to each other with a constant velocity.
Following this change of variable and including the effect
of the exchange ~f electrons, the differential éross—‘

section for the mnmentum transfer AP and;éimultaneously an

energy transfer AE is given by (45)

(8P ) (BE) e = L2 (&P)d (AE)
LE, AP, () Egplxl/z AP4 AS4 AP2A82

.. (5.37)

where the first, second and third terms are the direct,

exchange "and interference terms respectively,
- " zp .
# = cos (=—@=— fn %g) .. (5.38)

Per P1; po, p{ are the initial and final momenta of the
incident pérticle and tha atomic electron respectively and

P, = (2m R)1/2 where R is the Rydberg energy.
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The energy and momentum transfers are

AP = po=pg = p;-Py

AE = Eo-E} = EI-E .. (5.39)
2752 17 "1

AS = pg"‘pi

X is defined as

" A n n N A , N
X = —cos"@ + 2(p)-6P) (By.AP)cosp + 1-(p,.AP)2=(py.0P)?
) .. (5.40)
with cosf = PPy
Assuming f(g) = % sing and then integrating over @

we get

-

- ~ Tt -
wZEgAPd(AP)d(AE)'= [:j; OZE,AP(g)% sing d?}d(AP)d(AE) .. (5.4)

Next Integrating e APd(AP)d(AE) first nver AP between
E, AP
the limits determined by the law of conservatinon of mamentum

for twn electrans given by

bl

pi=Py € LP L pi+py 5 Po-pd < AF K potpg .. (5.42)

and then integrating over OE between the limits U to Eg

for ionization and U, to Vn+1 for excitatinn, the following

crass—section formulae are obtained.
4 .
n e An Eo /U
Qion = E] 7 Eo+U ( %_ h %m) + %El(L~ - Lg )- E +Ef{] .- (5.42)
1+ EerU 2 e 2
and .

where for Ez > Un+l_
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4
T e . 2E 1
1 1)
NULE N SUSTUE. VT
d TE1+52+U) LUy T U 3R R
n n+1
r et T 1 1 2El( I
Q. Yy T * 2
ex (B, + E2+U) (E2+U ~U +l) (E2+U-Un) 3 (52+U—Un+l)
1 -
- 2 e o (5046)
(E2+U;Un) _
4 = . ~
. . T e 1 n (E2+U_Uh)dn+l . (5.47)
int™ (E{+E5+U) (Eg+U) Un(Esz‘Un+17__

Qq Q

o x and Qint are the direct, exchange and interference

cross—-sections respectively. Vriens(45) has shown that
for E2<Un+l the upper 1limit of integration in excitation
process should be replaced by Eg instead of Un+l y i.e.
in the above expressions for Qys Q. and Q ., U .4
ig re@laced by Es.

With the help of equation (6.31) we express the

equations (5.43) and (5.44) in terms af the dimensionless

variables

4 -
U%als, t) = = [(1- ks )+ —tz(l— J»—) - fn -——i———J

s”+t"+1) (s +1)
.. (5.48)
and
T 94 ' 1
UZQ(S,tsn) = 2-.;,..__._. I—(l"" - 1 )’*‘ tz(l L") ( L
(s +t +1) r m r (s +1-r ) (s +1-m
2 1 1
+ 2% ( : -

(%+1-p)%  (s%41-p" )

. > .
; , 5(52+l—m“)r2 :
- w.L.ém-—— Xn e 2 2 2} . o (5049)

(s7+1) - (8% +1-r" )n”. _
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We have used the equations (5.48) and (5.49) along

with a guantal momentum distribution function for the
bound electrons {eqn.(5.36)) to study the inelastic
‘seattering of atoms with two suter electrons. In section
5.7 we discuss our results for the ionization of Be,Mg
“and Ca by electron impact.

5.7 Cross~sections for electron impact
ionization nf Be, Mg and Ca atoms.

Figure 5.6 displays the various calculationsfor Be.
Also shown are the experimental points at 75 eV of
Chupka et al.(132) and Theard and Hildenbrand(133). In
the low energy region close to the maximum value of cross-
section our calculations (curve 1) are within 25°%. of the
quantal calculations (curves 2 and 3) of Peach(30). Beyond
50 eV our calculations'are very close to those of Peach
using Ochkur approximation (curvéﬂﬁ), and merge with them
at energiles beyond BO eV. Our calculations also agree
well with the experimental data of Chupka et al. at 75 eV,
but disagree with the data of Theard and Hildenbrand (133)at
same energy.VThe calculations of McFarland{(131) based
-‘on the Gryzinski's theory (curve 4) merge with the present
calculations for energies beyond 260 eV, and in the lower

“energy range they are about 20/. higher.

Figure 5.7 displays the electron impact ionizatisn
cross—section of Mg for incident electron energies upte

500 eV. It is observed that the present calculations (curve 1)
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in the low energy region are in good agreement with

the calculations of Peach{130) using Born exchange approxi-
mation (curve 3) and are within a factor of two with the
calculations of Peach using Ochkur appfoximation (curve 4).
At moderate and high energies there is a large discrepancy
between the present calculations and the'quantal calculations.
At low energies also the shape of the curves tend to be
different. The fall of the quantal cross—s:ctions

beyond the peak valué is very rapid compared to the slower
rate of fall for the classical e¢ross-sections. The classical
calculation (curve 2) of McFarland based on the Gryzinski
model and with an exponential velocity distribution of the.
bound electron appears to be in better agreement with tﬁe
guantal calculations in the intermediate energy range}

But these calculations cannot be relied on as they are
based on an inexact classical formula and use an incorrect
velocity distribution. There is no experimental data

to compare with the various theoretical calculations.

Figure 5.8 shows our results for Ca. Curve 1 is the
plot of the experimeﬁtal data of McFarland (131) and
curve 2 shows our calculations. We see that the values
of cross—sectionsin the present calculations are much
,lowér than the experimental'data. They are within a factor
of 3 everywhere. McF=rland has pointed out that the
experimental wofk does not exist from which one can

normalise tn provide a sepzration for the various degrees



-121-
of ionization of an atom. A fraction of the cross—section
is due to the production of multiply charged ions. This
may occur through the ejection of two or more electrons
at certain incident electron énergies- Therefore in
his calculation based on the cléssical Gryzinéki model
(curve 3) McFarland compares the total single ionizatian
cross-éection added t~ twice the cross—section for double
isnization, with the experiment. A good agreement is then
found. Since ocur calculations do not include the contri--
bution from the double ionization it yields a poor agreement
with the data. The shape of our curve is however very much
similar to the experimental curve.

From the above study of the ienization of the
atoms with two outer electron atoms, we can say that the
classical theory which includes quantal features like
exchange and interference, is capable of predicting the |
ionization cross-sections fairly satisfactorily. Little
work based on quanfum mechanical methods has been reported
for these species and experimental data for single
ionization in these systems are also meagre. The main
advantage of these classical calculationsover the guantal
calculations is that one can obtain a fairly accurate .
estimate of cross sections of such complex atomic systems

in a simple way.
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Figure captions

Fig.5.1 Electrsn impact excitation of Li (2e«-2p).

——— Present calculations, curve lj; calculations of
Vainshtein et 3l. (26): ~—m+¢wm_ using Born approximation,

Curve 23 ==—ee-= using their model, cUrvVe 3} ... e
calculations of McCavert and Rudge(118), curve 5; Experimental
data:?e-~-~~ Haft(119), curve 4, Zapesonchnyi and Aleksskhin
(117), » . |

Fig. 5.2 Electron impact excitation of Na(3s-3p)

————=Present calculatinns, curve 13 calculations of Vainshtein
et al.! w——.—w Using Born approximation, curve 2;—m—. . o—
using their model, curve 73 ———«.¢.emm calculation of

Williamson(123), curve 6geme s+« mm calculatioh of Mclavert

and Rudge, curve 53 calculatinns of Seatan(122):——A__using
modified Bethe approximation, curve 4,——— % -—— Using impact
parameter method, curve 33 ———@ —— Close coupling calculations,
(124), curve 83 Experimental data: ««... Haft(119), curve 93

®e9® Zapesnchnyi and Aleksskhin. '

Fig. 5.3 Electron impact excitation of K(4s-4p).

————= Present calculatinns, curve 1lj calculaticns of Vainshtein

et al.: ~——eem— using Brrn apprnximatinn, curve £;———+.—— using
their mndel, curve &; . e calculatinn of McCavert and

ph

Rudge; curve 3§ «.... Experimental data,Zapesnchnyi and

oz = = s ~
sy CUI'VE Qe

Fig. 5.4  Electrnn impact excitatinn ~f Rb(5s-5p).

—=——= Present calculatinns, curve l; calculations nf Vainshtein .
et al.?! wm—e— using Born approximatinn, curve2,——-.—-usging
their model, curve 3; ++++*+ Experimental data Zapesnchnyi

and ShimAn curve 4. )
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Fig.5.5 Electron impact excitation of Cs(6s-6p)-

Present calculatirns, curve 13 calculations of
Vainshtein et al.! ———*—— using Born approximation, curve 4,

—— & e using their medel, curve 53 —=—+-++— calculatinn of
Hansen(128), curve 3; sees calculatinn of Sheldoan and

Dugan(127), curve 2; Experimental datat: --—- Nolan and Phelps
(126); curve 6, =+e+++eses Zapesochnyi and Shimon , curve”.

Fig.5.6 Electroan impact innization of Be.

Present calculatinns, curve 1l; calculationsof Peach (130):

———+ s+~ using Born exchange approximatinn, curve 2,===—+" =
using Ochkur approximation, curve 3, ——+—= calculatinn

of McFarland(131); Experimental datat & Theard and Hildenbrand
(133 ) = Chupka et al.(132).

Fig.5.7 Electr-n impact ionization of Mg.

—

Present calculation, curve 1l; calculation of Peach:

——+ +mmmme USing Born exchange approximatinn, curve 3, ce
using Ochkur approximatirn, curve 43 ~——+——— calculation of

McFarland, curve 4.

Fig. 5.8 Electron impact innization of Ca.

————— Pposecnt calculation, curve 23 =———-—— calculation of
McFarland,curve 33 —=-—-~ Experimental data of McFzrland,curve 1.
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CHAPTER 6

PROTON IMPACT EXCITATION OF ALKALI ATOMS

Inelastic collisions of electron with atoms have
been widely investigafed bofh guantum mechanically and
classﬁcally, whereas comparatively less work has been reported
far the inelastic collision of atoms by proton impact.
Also the experimental inforﬁetion for the proton atom
collisions is less compared to the electron—atom collisiors.
Most of the calculations for the proton-impact excitation
of stoms have been confined te the simple systems like
hydrogen and heiium. Quantum mechanical calculations for
transitions tn different excited states in hydfﬁgen and
helium have been based on Born approximation (134-136),
coupled-state approximation (137) and the impact parameter
method (138,139). Experiments for the excitation of helium
by proton impzct have been performed mostly by Thomas
and Bent (léO),syandenBos et al.(141) and Park and
Schowengerdté(£?ille attention has so far been given to
the excitation of more complox atoms.e.g.,the alkali atoms
by proton impact either theoretically or.experimentally.
Seaton(122) was the first to carry out a partial wave
analysis for the 3s-3p transition in Na using the Bethe
approximation. Bell and Skinner(143) have used the impact
parameter methos for the 3s-3p excitation of Na in which

they It ve accounted far the effects of distortinn and
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~

coupling between BPO and 3P+l states. Also inclu§ed in
their calculation is the correction introduced due to the
contribution fromﬁthe backmcoupling;i.e.?from the p~q~p—q
sequence. Bell and Skinner.point out that in thé excitation
of Na byvprotonsg 3s~3p transitionﬁis influenced by the
35—3p*55—3p sequance. However, the existence of sequences;
enabling the final state to be reached indirectly through
intermediate states,does not necessarily make the éross~
section greater than it would otherwise be. Because of

the interference the cross~section may be diminished. In
general the tendency of the sequences is to strengthen weék

transitions and t- weaken streng transitions.

In their calculation for Na, Bell and Skinner have
used the wavefunction for'the ground and excited stafeé»of
Na as given by Fock and Petrashen(l44). Since the cross—
sectinns are very sensitive to the choice of the wévee
function fof the initial and final states, we have redone
the calculation of Na using more accurate wavefunctions and
in the framework of Born aporoximation. We have also
performed the calculations for some other alkali atoms
liké lithium and cesium. Accurate wavefunctions for the
ground and excited states of these alkall atoms are now
available. For lithium the wavefunctions for the ground
state and excited state are given by equations (2.21) and
(2.37). For sodium and cesium the wavefunctions are given

by Bagus (145) and Stone (146 ),respectively. e have used

thess wavefunctions tn calculate the proton impact
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excitation cross—section for the 25—2p; 3s-3p and 6s-6p
transitions in Li, Na and Cs using the first Born approxi-
mation (147). Since not much theoretical or experimental
information is available for the above transitions,we have
also calculated for compariSOn the cross-sections for the
above transitions on the basis of the classical binary

encounter approximation.

The classical approximation for the proton imbact
isnization of atoms has been uéed by Vriens(148), Gryzinski
(39) aﬁd Garcia =2t al.(149). The expressions for the
_differential crosg—sections nbtained by Gryzinski contained
certain approximatiéns;Gerjuoy(150) has derived an exact
expression for the differential cross—section and his results
have been used by Garcia et al.(149) to calculate the |
ionization cross-section of atoms. Vriens(148) has derived
the expressions for differential cross—section in a different
way by using the momentum transfer and the velocity of the
incident particles as variablés. However, Vriens%:formula.
was derived under the assumption that the proton mass was very
large compared to the electron mass. In this limit,

Gerjuoy's formula also reduces to Vriens's formula. e
therefore,refer to this as the Gerjuoy-Vrieng formula for
proton impact ionization. We have extended the Gerjuoy-
Vriens formula for ionization to the case of excitation of
stoms by preton impéét (151). These formulae can be used
for a qualitstive comparison of the excitatinn cross-

section obtained from a quantal calculation. In szction 6.1
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we describe the quantal theory based on the Born approxima-
tion for eveluating the excitation cross-section of alkali
atoms and in secticn 6.2 we discuss the classical theory.
In section 6.3 we discuss the results for Li, Na and Cs

atomse.

6.1 Quantal calculatinns based on the Born approximation

The collision cross—section for excitation of an
‘atom from an initial state p to a final state g by proton

impact is given by (83).

K
max

-

—

INI® R 3k .. (6.1)

P ' Knin
where K = Ep—ﬁq denotes the change of momentum and the

matrix N is

; * -
N = * wpv wqda | .. (6.2)

V is the interaction potential. $p and wq are the wavefunctinns

of the total system in the initial and the final states;

Ep = M Vp/h and Kq =M vq/h where M is the reduced mass
of the colliding system; Vi and vq arc the relative veloci~

ties of motion when the atom is in the state p or g respect-

ively. The wavefunctions ¢p and $ are expressed as

a
bp = ¢p(rl,rc) exp (i Kp-R) and
¥

q

i

A, (77 exp(i R -F) o (8.3)

—

B is +thz position vector of the incident proton relative
tn the nucleus »f the target atem. The interaction potential
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V can be written as

Z_Z YA Z
V = ez( “EZb - -~>b-> - %—Ln.“) s (6‘4)
§ Te-ryl lEr |

where Zy e is the charge of the incident particle and Ze
is the nuclear charge of the target atom. Analogous ton

equation (3.2) the atomic wavefunctions can be expressed as

pr(;la;:c) = UC(;C) Up(;l)

It

qu(‘fl,?C) Ue(re) U (ry) .. (6.5)

Up(?l) and Uq(;l) are the ground and excited state wave-

functions of the target atom.

In the present analysis,we treat the alkali atoms as
essentiall? one electron systems. The core is assumed to
be inactive and frozen. The valence electrnn is supposed to
move arcund the nucleus of charge unity. This assumption
will not lead to any significant error as it has been seen
earlier in the cese of electron alkali atom collisions that
the contribution of the core is almost negligible. With such

-~ ™

an assumptiasn;the excitation cross—-section becomes

3 2 [ e . .
o = 50 | I(p, a) | K72aK (na”) .. (6.8)
S K
min
with
I(pyg) = J Up(rlfuq(rl) o Ty d?l .. (8.7)

[$2]

]
N
=5

< -
N

—
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AE(p, q) [ m AE(pyq)
L o+ s .. (6.8)

4M s
and Kmax(=Kp+Kq) is large enough to be taken as infinity.
BE(py,qg) is the threshold energy in units of Iy, the ioniza-

tion potential of hydrogen.

le have used Eq. (6.6) to evaluate the cross-section
for the excitation of Li, Na and Cs atoms. The integrals
occurring in equations (6.6) and (6.7) have been evaluated

numerically. The results are presented in section 6.3.

6.2 Extension of the classical theory to the

proton impact excitation of atoms

" In the binary encounter collision model, the excitation
cross—~section from the ground state to a state n of an atom

due te an incident charged particle of kinetic energy Eo

- 1is given by U
n+l
Texc = ? N; < opp(voyvy ;) (2E) > if E>U o
Yn .. (6.9)
o~ E l
Toxe = ; N; < T GBE(VZ’Vli>d(AE) > if Uh<E2<Un+l
1 N U
n . .. (6.10)

hange of energy AE.

()
u

where o is the cross—section for the ex
The proton atom collision cross—section GZE d(AE) for a

maximum energy transfer AE is given by (148),

Vi 2
271 e

(o) (AE) ( 1 il vl*) d(2E)
o5 - d{AE) = + =
AEZA o Vg AEz 5&53 , .. (6.11)

1f LB < Bmovplvgmvyg) T
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(me)o d(BE) = ot 4 3-Ai( v, )3 b (AE)
CAE’B T 5k 3 [*VeT BVW1TVi4
vzvl.AE
l ' .
if 2mv2(v2~vli) $£E$2mv2(v2+vli),r ‘
.. (6.12)
(opglg d(BE) = 0O Lf AE > 2mvp (vpvy,) .. (6.13)

where v; is the final velocity of the atomic electron

determined by

2 2
S m(Vl Vli)

= AE .. (6,14)
In the calculation of the total cross—section for

the proton impact excitation to a state n, equations (6.11)

to (6.13) have to be integrated over the energy and the

range of energy integral is determined by the conditions

put forth in equations (6.9) and (6.10). This leads to the

following expressions for the excitation cross—section,

when E5 > Un+l we have
"‘2mv2(v2—vli)
Q= (GZE)A d(AE) if U, < 2mv2(v2~vli)$Uh+l J
" U | .. (6.15)
Un+l ) o ] . X
Q = U (GZE) d (2E ) it amvz\vz—vli, > Un+1 -
n .. (6.18)
[ Un+l . ‘ ‘
Q = U (OZE B d(LE) if 2mv2(vz—vli)SUhQ2mv2(v2+vli)2
. n . oo (6017)
For the case when U, § Eg << Unil
2mv2(v2-vli) ZmVZ(V2+Vli)
Q = (opp )y d(LE) + (opg)p 2(2E)
Jrr . _
Yo 2mv2(v2 Vli)

if U & Brvg(vo-v,;) .. (6.18) »

1i
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~2mv2(v2+vli)

Q = (opg)p d(2E)  if 2mv2(v2~vli)$Uh$'vaz(v2+vli),
Un .. (6.19)
Q= 0 if U, > 2mv2(v2+vli) .. (6.20)

The integrals in the above equations are evaluated.
Here we express the results in terms of the dimensionless

variables which are defined by equation (5.31).
The cross—section are

when E2>Un+l

| 1 o 4% 1 2 |
Q = “5 (=5 + - - -
52U2 mz Sm4 4s(s-t) 2452(s—t)2
Pf mogas(s=t )<re .. (6.21)
S B N X s N _l__ﬂ
= "ETo | T 5 = 7 Z
s U7 =m m r- - )
if 4s(s=t) > r .. (6.22)
4
- lw( 2.L5)/ RS 1 ) . i( 1 l_)
= e S T \ = el i s s
2% | Bt Z T 2T T T
L L[ (PP ()P ]]
2t 2 4

if 4s(s—t) & m° € £s(s+t).. (6.23)

and when U, < Eo & U

n+1
(:; l
4 (L, 2% -)
Q = = ‘ ( + - N
5262 ;2 ) B 4(92—t2)
if m° < 4s(s-t) ! .. (6.24)
4: l l l ' L4 -
Q = ¢ + = +'WWMﬁ{é55+tO-(m2+t2)5/21 )
S 9o\ o R 4 |
s“U” 8t(s+t) 2m 3m - .

if 4s(s-t) ¢ m?é 4s{s+t) .. (6.25)
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Q=0 if mz > 45(s+t) ' .. (6.26)

. In%the above equations Q is expressed in units
of nai. %he expressinons (6.21-6.26) are then averaged over .
the velocity distribution of the bound electron 5% the
target atom. Any type of distribution function can be used.
Taking a &-function velocity distribution for the bound

electron given by

£(v,) = 5[jvl-(2U)1/2:] L. (6.27)

and using equ=tion (5.32), we get the following expressinns
for the excitation cross—-sections,

when Eg > Un+l

: 4L 2 1 o]
- 1 L :
P U N ]
exc 4 1 szUNﬂ*m2 3mt  2s(s~1) 2452(5—1)2,
| if m° < 4s(s-1) < r° .. (6.28)
s o A [“ _l_ .20 .
=Ny Ep| by -y s (g L)
1 s U ~1n r m i r
if 4s(s-1) > r° > L. (6.29)
oy | ReSady - Le bds - L
i “US S om r m r
% 2
2 3/2 (o412
Lo ) )/ 7 ) (8.:
+ 5( r4 m4: )_J .. \V-SO)

2

if 4s(s-1) < m” & 4s(s+l)

and when U € E5 < U

n n+1
> 2 L o]
PP
i s“U° b 3m 4(s"=1)

if m° & 4s{s-1) .. (6.31)

g
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4 .
. [ 1 Y e, L {255+1—(m2+1)5/2}}
; 1 SEUZ 8(s+l) 2m2 5m4- i ]
if 4s(s-1) ¢ mgS 4s(s+l) .. (6.32)
= 0 if m2 > 4s(s+1) ' .. (6.33)

The eqguations (6.28) to (6.33) represent the formulae
in ¢closed form for computing the excitation by protons
“under the classical impulse approximation as advocated by
Gryzinski. These formulae are very useful since they are

simple in nature and can be readily evaluated. These are

applicable to any atomic system. For qualitative prédictinns

of excitation cross—sectionsthesecan be justifiably used.
One can alsn use a quantal velocity distribution for the
bound electron along with equations (6.22) to (6.27). In
sucﬁ a case the final cross—sections have to be evaluated

numerically.

Wle have usec ecuations (6.28) to (6.33) in our
calculations for the excitation cross-section of the
alkali atoms by proton impact. In the next section we

tions based on Born approximation and

-]
Q)

compare our calcu
the classical impulse approximation with other available

theoretical calculations.

6.3 Results and discussions

Figure 6.1 shows a plot of the 2s-2p excitatinen
cross—-sectinn of lithium. atom by protons of enesrgies

upta ghout 1000 KeV. Curves 1 and 2 are our calculations
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based on the Born approximation and the classical approxi-
mation. No other theoretical calculation or experimental
data for this transition are available. For the sake of
comparison we have plotted (curve 3) the Born cross—sections (9)
for electron impact excitation of lithium at equal impact
velocities of the électron and proton. It is observed

that there is a fairly good agreement between the présent
calculations and the Born calculations for electron impact
in the range of energy beyond the threshold. After a certain
value of energy the twn curves merge. The classical calcula-
tions also give good agreement with the Born calculations
.for energies beyond the threshenld.At high energies however,
there is disagreement between the classical and quantal
calculations. This is because the fall of cross-section in
the quantal calculatinn is like Eglfn E; whereas in the

classical calculations as E;l.

Figure (6.2) shows our calculatinns along with other
theoretical calculations for the excitatinn cross—section
of the 3s5-3p transition in Na. Curves 1 and 2 are the
present calculsticns based on the Born and the classical
approximations respectively. We see that the calculations nf
Bell and Skinner (143) using the Born approximation (curve 3)
differ with our Born calculations in the region of energies
from near the throshold to about 200 Kev, This discrepancy
in the twn Born cnlculatinns is due to the different cheice

nf the wavefunctions~f the ground and excited states. The
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wave functions used by Bell and Skinner were those of

Fock and Petrashen (144).whereas we have used the more
recent and accurate wavefunctians of Bagus(145). Our
calculations based on the Born approximation are therefore
expected to be more reliable as compared to the calculations
of Bell and-Skinner. The results of calculation bf Bell

and Skinner using the impact parameter method,(curve 4),

and . also taking into account the effects of the distortion,
the rotation-coupling and the back coupling,are quite

close to the present calculatinns beynnd the threshold
region. In this low energy range the impapt paramefer.
calculations yield a lower value of the cfoss?séction
compared to our calculafions. The classiéél:calcg%ations
differ widely from the present calculations at hlgh |
energies, In the high energy region there is‘é,goﬁdsagree—
ment between the present calculations and the Born calculat~
ions (curve 5) for electron impact excitatinn of Na at

equal impact velocities (9).

Figure 6.3 shows the 6s-6p excitation cross—section
of Cs._Theﬁpfesent Born approkimation calculations (curve 1)
and the Born Céltulétidns fbr eléctfon impéét at equal
impact velocitiés (é) agree well. The classical calculatiod
differs much with the quantal calculation , the difference
inc?eaéihg at higher enérgies'(VTlOO'Kev). In genéral for
all the aikali'atoms studied the classicai cross-séciions
are lower than the quantal cross—sectisns. Further in

the classical calculatinns for proton impact the onset of
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1/E5 behaviour occurs much sconer after the maximnum.

than in the casc of electrons.

Since no experimental data are available, it is difficult
to draw conclusions about the accuracy of either of the
methods. From the comparative study of Na cross—sectinns,

however,;it appears that the Born approximation gives a

better estimate of the cross—sections.The choice of the
wavefunction is also important as it considerably affects
the cross—-sections at low energies. Improvements in the
quantal method used by us 2re vnssible if some effects of
coupling to higher states are included. Also in a more
exact treatmént,the effect of the core electrnons should be

included.
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Figure captions

Fig.6.1] Proton impact excitation of Li(2s-2p).

Present calculations: —= using Born approximatinn,curve 1,

——rem== Using classical theory, curve 23 ---- electron
excitatinn cross-'sections (9) at equal impact velocities,
curve 5.

Fig. 6.2 Proton impact excitation of Na(3s-3p).

Using Born approximation, curve 1,

Present calculations: —
———+=—— using classical theory, curve 2; calculations of Bell

and Skinner(l143): ———:+:—— using Born approximation,curve 3,

= teeme ysing impact parameter method, curve 43 —~== electron
excitation cross-sectinons (9) at equal impact velocities,

curve 5.

Fig.6.3 Proton impact excitatinn of Cs(6s-6p).

Explanation remains the same as in fig.6.1.
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INELASTIC COLLISIONS QF ELECTRONS WITH IONS

*

The classical binary encounter approximation gives
a reascnable description of the phenomennn of inelastic
¢nllision of electron with atoms as seen in the previous
bhapters (5 and 6). It is more reliable for the ionizatinnA
process where it provides a simple framewnrk for estimat-
ing the cross-sectinns which turn out to be quite
satisfactgry at higher energies and are within a factor
of 2 everywhere. The greatest advéntage of the classical
approximation is in the study of multi-electran atoms and
,diatomic mnlecules (152 ) where even the simple Born approxi-
mation becomes unwieldy. The numerical integrations |
involved in quantal Calculations become very heavy. Not
much effort was devoted initially to the study of the
inelastic scattering of electrons from ions. For ions,
compiications arise because of the residual field of the
isn, Malik and Trefftz (153), Burgess(154) and Hill (155)
used the Born approximation and Schwartz and Zirin(156)
the distorted wave approximatinon to calculate the electron
impact ionization. Recently Moores and Nussbaumer (157 )
have used the Coulomb~Born approximation, in which the
Coulomb field of the ion is considered, tn calculate the
imnizatinnAgross—seEtion nt Li7 and Mg+. Various workers

Omdivar(158), EZconmmides and McDowell(159), Kim and
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Innkuti(lGO) and Bell and Kingstnn(161) have used either
the Borm or Betﬁe approximations fer the ionization of
He' and Li%. Experimental data for the ionization of a
number of ions, and excitation in few species are now

available.

For heavy ions the quantal calculatinns become very
unwieldy. For calculating the ionization cross-section of
positive ions in the classical binary encounter approxiﬁation,
Burgess(44) introduced an outside factor F to account for
the focussing effect of the long;range Coulomb field of
the ion. The factor F is given by F = (1 + Zéz/Ez?)A
where r is the initial mean radius of fhe atom or ion, Z is
the initial charge of the ion and Es is the incidént energy
of the electron. This should only be viewed as a_ semi-
empirical factor. Lotz(162) has attempted to express the
functional dependence nf the imnization cross—section on the
incident electron.enefgy by an empirical formula which is

valid for a large number of atoms and ions.

Both the above approaches are either semiempirical

nr purely empiric2l. A systematic approach tm modify the

m

classical theory for the ionization of ions was first made
by Thomas and Garcia (a7). They have considered the effects
of the residual ion field on the crposs—section within the
frameWOrk of binary eﬁcounter approximation. The Coulmmb
field nf the ion distorts the l%near path of the incident

electron. The curvaeture of the path of the electron results
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in 2 magnification of the cross-section for the ionization

nf ions as compired to the neutral atoms.

For assessing the accuracyiqf the classical theory
for ionsﬁwe-have.extended it tn the study of wide variety
of inelastic processes (163~168). From this study we have
cancluded that the classical model for the study of
inelastié collisions with ions is as reliable as the
- Coulomb=Born approximation. In section 7.1 we describe
the classical theory of the ionization of ions. In sectinr
7.2 we make use of this theory for the study of the inniza-
tion of a number of ions by taking different velocity
distributionsof the bound electron. In section 7.3 we give
tﬁe extension of the thenry to excitatinn process and
the results for excitation of lithium like ions afe
discussed in sectién 7.4 . In section 7.5 we give @he rate
coéfficients for the excitation and ionization of lithium

like ions.

7.1 Theary for icnization of ions

“le consider the impact of an electron of kinetic

ot

energy Eo an a fixed pAsitive inn of net charge Z'. Th

fa)
\vrda g <

incident electron undergnes a binary collision with the
bound electron of energy U, at a distance £ from the nucleus
and results in an energy transfer 2E 2 U. The kinetic energy

of the incident elcctreon at the collision radius g is
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The total cross-section for the energy exchange collisinn

is given by (47)

Eg
_ eff
o' (Eg, Eg,U) = < oFp

U

(vé,vl)d(éE) >av .o (7.2)

Since bnth the e¢loctrens lie in the positive energy

etat-s after collision, the upper limit of the integral

remains Ese If ve assume that o' determines an average

»ff axis distance o from the relation o-' = n@z (Fig.7.1),
the parametersg,;wﬁ © then determine the trajectory of the
incident electron in the presence of the asymptotic charge Z’,
pricer tn the binary cnllision. This trajectory specifies
the initial impact parameter b for the incident electron.
The total cross—sectién for the innizatinn is then o= nbg.
The collisinn radius & depends nn the distance of the bound
electron fram the nucleus rA and the electron-electran
separation 5 such that the energy exchange 2E 2 U can occur.
Averaginé over relative orientationsyield |

] \2‘]. S
N -_SrA + & ) if ry &

.. (7.3)
] 2 2 . .
o +tp if ra < b

T'A+6l =

For an energy exchange 2 U, & is given by

S 1/2
8 (F—-U) L(U ~1) +1] oo (7.4)

The eneragy is now glven by
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32Z'r

A . o
E e if r, > 8
2 1
5?? +62 A ‘
EZ = £
2 SZ‘ . ® o (7.5)
o)
Eg+ == if r, <93
2 2 A
rA+36

v .
with r, = Z%%L. Using the ecuation for the trajectory

of the electron, the impact parameter b, for the incident
electren to intercept the cnllision sphere at an angle
_ L |

sing = s 1s given by

L1/2
Ie + fo A CElCe 92>1/2)_] e (7.6)

The total inmnizatisn criss—section becomes

S = Z'F e (7.7)
where ' 5
L [LLh, ez (z' )2 21 11/2 Sj1/2
F =& {1+]1+ e ); ,
4 -P (- T
. - 2 2 2 pp . i
L o= U20‘ ’ Z'=U2049 Mz = EZ/U )
and . § z' (2'+1) e Zlil 5 4
E! o T3 ) 1 S |
a2 =(z' +1) +£
Po =7 = 4 .. (7.8
3210 7' 4]
* ijz + lf 2+ < A
4 .
507+ (% %’L)g
: A 2 |

The factor F represents the effect nf magnification of the

crnss—-soction cue to the curvature of the electron's path
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in the residual field o~f the ion. Te evaluate &', Thamas

and Garcia have used the exact expressinrns given by

Gerjucy (150) fer _eff(vg, Vl) in the crndition U4E2<Ez
and teking E; fixed but arbitrary. The CPPSS“SeCtlﬁn under

different cAnditi~ns becrmes

. ’E
2 .
t o | — o~ : '
~ '(E}, E;,U) = <15 (vdsvy )d(AE) if USE,<E}-E <E]
T Eg-Ey Ego
= i d(2E) + ni(vé,vl)d(AE) \
JUu EJ-E,
» R 3 L. o
E, if USES-E;<Eg<E]
= _ rr-l(Vé,Vl)d(AE)
Ju If B'p=E)CUCEpCEY
where ' . (7.10)
- DE . v . P _
) ‘ o 2me2y 12 LE 43 -
[ ci(Vé,Vl)d(AE) = 3(V ) (1) ((l ) ( ) }
T T 10 Fet U B
and ' | ' '
SRR (T \
[ 7341 (Vos V)@ (LE) = E {5 (LE)” 2 (om)" j» .. (7.11,
Using (7.11) we can write
T
T e e e 1] |
n(?éppl‘avpz} = 'EZI 3 Sl(l".ag)*’(l '62_)}9 » if Osélgﬁz_pz
r
- . o
= -7-\" b L ~
3P2 1 (92 pl) Bi/z pg |
5 if Py—Pa<P < Ps-
i (Ba=Bo )° -
' P 3 2 2 2 o3
= &5 1 7117?{( 1-1)2/2 B }#f 2-1¢hy
U< Ps
1 . (7.12)

Ly S ! 4 8 FNUT s Y 4 1 1 3 9 ~
Averdglng ,Zicn(pg,Pl,Bz) over the speed distributien ~f
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baund electrnns, we get

. oo

L' (BysBo) = 2 on(Pests By )f (£)dt .. (733)
Ja ,
with tzzﬁl, and f(t) gives the momentum distribution
functicn fmr‘the bound electrons. Themas and Garcia
used a hydrngenic velncity distribution for the bound
electrans (Eqn.5.21) and rbtained an analytic expressinn

for 2°t.

‘e have used equation (7.13) to evaluate Z£'. For f(t),
in addition to the hydrogenic dlstrlbutlon, we have used in
some cases the quantal and &é=function veloc1ty dlstrlbutlon
functions. For a &~funection velocity distribution the cross-

section Z' is obtained in an analytic form

N . . m,z l . p, rr
2'(P2,b2) = iflwg(l- %§)+(l~ Egi] if l$§é—92
l‘"tz_ o P2
. ol o \B/2
T L 3 2 (Bg~Bo ) /] £ BI-Poc1¢Bl-1
= 737 |0~ - 1 -
3% (B2-1) b5 2 reRThR
- 2 (a1 )32 (pe8,03/2 /2 |ig pr-aqu.
35‘5 I"z < / 2 f 2

.. (7.14)
For a quantal momentum distribution of bound electrons

the integral in equation (7.13) is evaluated numerically.

£' thus abtained is combined with equation (7.7) to yield £.
The total cross—segtion ¢ for the ionization of an ion is

the sum overall hotind electrons and is given by
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_2 Ll A ‘Q
Sion © over{ ngts - * (pZi’pzi)J -+ (7.15)

7.2 Cross—sectinng for the isnization of ions

. ..+ + + N
(i) ¥g yBa ,Sr and N ions

In Fig.7.2 for Mg+, we find that our calculations
at abrut 200 eV of incident electron energy are within.
a factor of 2 of the experimental data(168) and the agreement
is better at higher energies. Beyond 400 eV there is very
little difference between our calculatinns and the experim-
ental data. At lower energies (less than 200 eV) our calcula-
tions differ widely from the experimental data. In this
region the calculatinn of Moores and Nussbaumer (157 )
gives a better agreement with the experiment. Theylhave
pointed out that it is essential to allow for inner shell
ionization to obtain the observed behaviour of cross—
section above 68 eV. le have also noted this feature in our
calculations, that beyond this region a sizable contribution
comes from the 2p shell and a small contribution from the
2s shell. Moores and Nussbaumer have also stressed that the
contribution from auteoionization will be impoftant. The
autolonization process involves the excitation of an
inner shell into a quasibound state with energy in excess
of the ignization energy, which may subsequently decay by
making radiationless transitionsinto the continuum. Bely
(169) has predicted that for sodium like ions autoionization
shauld lead to substantial jumps in the crass—section at

autoionizqtidn threshnlds., Moores anc Nussbaumer find a
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jump at 57 eV in Mg' and attribute this to the transition

2

1522322p635 - 15225 2p535 3p ~ 152252 2p6+ e

They find that autoionization leads to a small amount of
»structure below the inner shell threshold'and autoionization
increases the cross-section by about 20°/ above this thres-
_hold. However, the total autoionization contribution
estimated py Moorés and Nussbaumer is much smaller thaﬁ that
estimated by Bely. Since we have not included the effects

of autoionization in our calculations we do not find any
structure in our results. The experimental data however,

do not show any structure. It is seen that at energies for
which inner shell ionization and autoionization become
important, the calculation of Moores and Nussbaumer over-
estimates the cross—-section.The shape of the curve using
classical theory and_with the guantal distribution for atomic
electron, agrees with the shape of the experimental curve.
Also at moderate and high energies the magnitude of fhe
cross—sections obtained by using various velocity distributions

differs very little.

In Fig. 7.3 for _Ba+ we have shown the contribution to
ionization cross—-section from the different shells. The
contribution from the inner electrons in the 5§ shell is
much more than from the outer 6¢ electron, whereas the
contributions from the 5s and 4d shells are less. Due to

thie dominant contribution ~f 5p shell, a sudden rise in the
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cross—section is obtained as soon as the energy of the
incident electron reaches the threshold for the ionization
from the 5p shell. A sudden and abrupt rise in the cross-
section by a factor of 3 is also observed in the recent
measurements of Peart and Dolder (170) at an electron
energy of 18 eV. This rise has been attributed by Peart
and Dolder to the onset of inner shell excitation leading
to autoionization. In the low energy region our results
compare well with the data and in the high energy region
the deviation from the experimental results is within a
factor of two. The fall of the experimental cross-section
beyond the peak value is quite rapid. This is also
exhibited by the present.calculations. The shape of the
theoretical curve agrees well with the experiment. We have
shown the low energy behaviour more explicitly in the same

figure. The rise at 18 eV is shown more clearly there.

For Sr’ (Fig.7.4 ),we find that a large contribution
to the cross-section comes from the inner p shell (4p)
similar te the case of Ba'. In the total cress-section
we observe a slight structure at the threshold for
ionization from the 4p shell. No experimental dat; is

available to compare with the present calculations.

For N (Fig.7.8b) our calculations using & function
distribution mergé with the calculation of Thomas and
Garcia beyond 370 eV of incident energy. The agreement with

the experimental data in this region is also very good.
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(1i) Tons of alkali metal atoms (Li',Na*,K',Bb* and cs’)

" Figure 7.5 shows éur results for the ionization
cross—seétion of Lf&oh.lt is seen that at low energies our
calculations using both the §—function (curve 1) and the
quantal distripution (cruve 2) yield a high value of the
cross—section; In this range‘and upto about 350 eV the
Coulomb~Born calculations.(curve 4) of Moores and Nussbaumer
(157) and the Born calculations (curve 5) of Economides and
Mchwell (159) using length formulation give good agreement
with the data. Beyond 400 eV our calculations using &+
function distribution agree better with the experiment
compared tn the Coulomb-Born calculations. We notice
that out of all the three classical calculations (curves 1,
2, and 3) based on the three velocity distribution functions,
the calculation with the quantal momentum distribution
agrees best.in shape with the experimental data, although
not that well, if we consider the magnitude. The Born
approximation calculations of Economides and McDowell give
nearly idéntical results than the other calculations above
about 500 eV indicating that the effect of the Coulomb field

of the ion becomes less impoartant at these energies.

Figure 7-64shows the results for Na® and K'. We
find that beyond 200 eV for boath the ions, there is little
difference between. our caLculations and the calculations
~f Thomas and Garcia, based on d-function and hydrogenic
distributinns rispectively. For K" our calculations are

within a facter of 2 everywhere of the experimental data
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and still better beyond 200 eV. For Na+, the agreement
with the experimentzl datz is not good for enmergies upto
400 eV. Above 400 eV our calculations are within 204 of

the experimental data.

Figure 7.7 shows the results for the ionization cross-
sections of Rb+ and Cs' naglecting inner shells, using both
the hydrogénic and &~ function velocity distribution.

No experimental and theoretical data on impact ionization

cross—sectinns »re available for these ions.

(iii) Ions of inert gas atoms

Figure 7.8(a) shows our results for Net. Our calcula-
tions using d-function distribution merge with the calcula-
tions of Thomas and Garcia beyond 150 eV of incident ehergy.-
The agreement with experimental data is good for energies
above 300 eV but at low energies our calcu;ations are higher.

by a factor of two compardd with the data.

For Ar’ (Fig.7.9) we find a good‘agreement between
our calculations and the experimental point at the peak
value obtained by Latypov et al.(49). In this ion the
average cross—section obtained using Drawin (174 ) and
Gryzinski (39) formulae yield a lower value.For Kr+, and
Xe ™ (Figures 7.9 and 7.10) the peak-values of cross-sections
‘measured by Latypov et al. are much higher than the value
calculated by us. This discrepancy may be due to the method

of farmetion of ions in the experiments. In the experiments
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of Latypov et al. the ion beam is first formed by thé
impact of electrons on neutral atoms. In the ionization
nf neutral atoms by electrons whose'energy is above a
definite minimum value, a fraction of inns are formed in
metastable excited states. Under the impact of incident
electrons, icnization takes place for ions both in the
ground state and in the metastable excited states. It is
for this reason (since the cross-section will add up for
ionizatinn from ions existing in ground state and those
existing in metastable states) that the measurements of
Latypov et al .give high value for the total cross—sectinn.
The metastable states nf the various ions are reported by

Hagstrum (175) and nthers (176,177). For example for Xe”

4
&

the metastable states “Dy os “Fy o, “Fg o and “F, o are
inveolved in the process of inonization. The agreement between
the present calculations and the experimental data for

Art suggests that there is oniy_a small prnbability for the

~ K s + ’ - - » -
farmation of the excited Ar inpns in the isn beams. More

experimental. data are needed tn understand the behaviour

se lons.Also

T

nf cross~sections at different energies for th
there exist no guantal calculations for comparison with the

present calculatinons.

(iV)'Liﬁhium like ions (BeII, BIII, CIV, NV,
OVI, FVII and NeVIII)

The calculations of the imnizatinn crnass—sectinn nf

all thcse 1ithium like inns -vith o hydrogenic velocity
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distribution are shown in Figures 7.11 and 7.12. It is
nbserved that th: magnitudzs nf the cross—section goes on
decreasing systematically as the charge of the lon increases.
Also the-peaks of the cross-sectionsbecome flatter with

the increasing chargé. There is very little éontributinn

to the cross—sectinn from the innization of the electrons
from the inner shellé. No theoretical'or experimental data ig
avallable th comyamzwith the present results and test their
accuracy. However, we have seen that the ;eaction rates

abtained on the basis nf these cross-sectinns agree well

with the re=ctisn rates obtained by Lotz (162).

From the study of the various ionization curves,
it is observed that the calculated cross—-sections, using
different velocity distribution functions, show similar
behaviour at high energies. The ionization cross-sectinns
based on hydrogenic and §~function velocity distribution
for » particular inn become ecqual beyond a certain value
of impoct energy. It is alsn noted that the Hartree-Fock
velociﬁy distribution corresponds more closely in shape

with other distributions

(o}
T

to the experimental value compare
for the cases we have investigatéd. Since the various
veigcity distributinns gave identical results we have
made use of the hydrogenic distribution in most of our

c”lculatinns for the inonization cross-~sections.

/
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7.3 Theory for excitation of icns

From the previpus diséussion we find that the
classical model for the ionization of inns proposed by
Thomas and Garcia has been quite successful in predicting
accufately the ionization cross—section of ions. Recently
we have extended this model to the problem of the excitation
~f ions and applied tn Be', Mg+ and Ca’ ions (167).
Quatnum_mechanically, calcilations using the Coulomb-Born
and the close coupling approximations have been made for
the excitation of few ions (178-182). Bely and co-workers{(183)
made a systematic studv of the excitation cross—section
of the lithium—like ions correspénding tc the allowed
transition and 2lso calculated the cross—sections for reso-
nant transition in few sﬁdium like 1ions, using the Coulomb-
Born approximation. Burke et.al.(184) calculated the excit-
aticn cross-section of lithium like ioAs under various
approximations such as Coulomb-~Born, the close-coupling
and the strong-coupling approximations. They used the
Hartree-Fack wavefunctions . Davis and Morin (185)

have estimated the electron excitation

-}

Q
o

ss~sections for

(¢}

same NV multiplets by using a weak-coupling semiclassical

impact theory. It is seen from these two types of calcula-
tions (classical and quantal) that the threshnld behaviour
differs considerably. The guantum mechanical calculations

give a non-zero value of the excitation cross—sectinn

at the threshold whereas the classical calculations yield a
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vanishing value of the cross-section at the threshold.
We first discuse the classical thecry for the excitation
of ions and then discuss its application to the lithium

like system and compare our results with other calculatinns.

In the binary encounter model, the significant
\interaction is the energy exchange between the incident
charged particle and an atomic electron. The excitation
cross~sectinon from the ground state to a state n of any

atom due to an incident electron under classical impulse

approximation is given by equations (6.2) and (6.10).

In fhe case of ions of effective charge Z', Thomas
and Garcia assume that the binary collision takes place
at a distancez; from the nucleus which rssults 1n an energy
transfer LE. If ionization energy is U, then for ionizatien
AE > U, whereas for excitation'Un £ LE K Un+l' The total

cross—section for the energy exchange cnllision is

(U

'(EM, U ) = < nl ety v ya(rE) > ifE! > U
Texc 2?2 “n’ = . OAE 2V | i ) n+1
J E?
L eff,,, . .
= < 5 ThE (v, Vl)d(L\E) > if Up<EZRU_,
R ¢
.. (7.16)

Following an approach analogous to thai of Thomas and
Garcia, the expressions for the total excitation cross-
secticn £ from the ground state to the state n of the ion
is given by equations (7.7) tn (7.9) with & now redefined

-

far the case of excitation as
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2\=-1|, B 1/2
A = (Bomm™) [Z n%n - 1) / + é] .. (7.17)
m
for the case of excitation; when E} > Un+1,2’ in

equation (7.7) is given by

—

' ~ 2 T 2 . 1
)3 (52', Py1sm ) A": 'B"zi'[g#l(lz - LZf) + ("‘g - 7):}

m r m

~3

if 0.¢ By € BA-r7

™ 2ﬁ1+3m2 -3 2(5§-r2)3/2 )
= a 4 7 T T2 4
383 m (Bi-B,)  B/°
an (py-m)°/? '(5é~r2)5/2)
—Bﬁéﬁﬁ/g I A
, | . L
For the case U, X Eé < U ,, the expression for ' is
~ 2
- m o EBptom 6 : . 2
z'(ﬁé’Pr£5=?3ﬁ'( 7 - T ) if 0K ﬁl“ pé - m
: 2 m (pz_Pl) _ K
= - ( 4 ) if ‘Pé - m < P'l

The cross—-section after averaging over the velocity ;

distributinn of the bound electron is given by

zéxc(ﬁé’mz) =J E'(ﬁéat9m2)f(t)dt .. (7.20)
' o

Chansing a hydrogenic velocity distribution for £(t), the
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integration in (7.20) when EJ > U 41 Yields,

n
~ g 2 '
(o o) 2 { (82-n")1/% sna2 243 m°
y M = FT ) -
exc 2 oP 1 2(c—m2) 8m* 3(c~m2)2m4
8852 (c-m° )=3 (c-m® )m” (ﬁz'—rz)l/z( .
- . + -
12 (c-m= )2m 2% (c-r2) (emrf)*
2 2
(2-r°) 2 2 +3m
+ ~—r i 3§%§-) + = tan 1(6'--m )L/%
4r°(c=-r") 16m* ,
2 a1/2 6 1/2 ., /- 2 1/2
]_61‘4: 2 04 11/2 /_;' 2)1/2
s (gy-r2)t/% (@z'—mzﬂ/z Pz'-c
* 3P| _BErs R 23 )+(87 e )
PC " (cmr?) (c-m~) 2¢  4ac
2y 2 1/2 - X1
(Bo-r 2y1/2 (B-m~) ple-c ]
X 5D - & 52 ) + (%g é%c b S + 3)
(c=1r7) / (c~m )é /o F1 8¢ 2¢
- 211/2 o 1 cp
(Br-r~) (g2-m”) SAE
x £ 5 - £ -5 ‘)—(%E —BT—— + 5“2 + —l— + lz)
(¢ - r7) . (c-m”) 2 C 8¢ 2¢° ¢
x Ean'l(ﬁémz)l/g-tan‘l(ﬁé—rz)Vzﬂ} e (7.21)

t

where ¢ = ﬁé + 1. The corresponding expressinn for the case
2 . .
when U, < ES < Un+l is obtained by replacing r” with ﬁé in

the above equation.

With a 8-function distribution,; when Eé > Uﬁ+l’ the

expression for Lexc bec~rmes,
zl(sc’m2> - Em(Lu - l—) + l_) + l‘ if 1 < 5'“?2
2 : pz 2 2
m r s
‘ 3
} _ﬂwf“ﬂ_ 208 - %) J
3630- m  (By-1)
2 2 . L2 Ay 2
. if‘éé-r < 1L ﬁé-m'
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2m [(62'-m2)3/2 (g - r°)3/%
-0

- - B ],if Ba-m><1
m r
.. (7.22)

and when U, € E§ < U,

. o 243m 3 o
2t (Bym®) = B - , if B=m® .. (7.22)
2 4 3t 2
(ﬁz—l)

exc 3RS m
on |- (Sé-m?)g/z ., 2
382 m . '

The tot cross- i
otal 0 ss=sectinn Te xc

. 2
(] 43 § '3 . .
Zexc(pg,m ) in equatinn (7.7). We have calculated Og e

is nbtained by substituting

for lithium like ions wusing both the hydrogenic and
5-functisn distributinn functinnsfor the bound electrons

of the ions,but the results nbtained were very similar.

We therefore discuss below the results with the hydfogenic
distribution. The energies‘ofAthe excited states of the
various_ioﬁs were taken from the tables §f Wiese et al.(186)

and Moore (187).

7.4 Crosn-sections for the excitation
of lithium like inns

S C

- Figures 7.13 to 7.20 show the excitation cross-
sections for the trancitions (2s-ns, 2s-np and Z2s-nd) in
Be II and C IV, (2s-ns, 2s~np) in N V, O VI and Ne VIII

respectively.

As expected the resonant dipole transition, in each
inn has the largest crnss—-sectirn, compz2red to the other
transitimns. Further the cross—sections for the quadrupnle

transitinns (2e-3d and 2s-4d) are always higher than the
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crnss—sections for the nonresonant dipole transitions-
(25-3p, 25-46), and the monopole transitions (2s-3s, 2s-4s).
Also the cross—sections for the monopole_transitions‘
(2s-3s, 2s-4s) are higher than the cross-sections for the
non-resnnant dipole transitions (2s-3p, 2s-4p). For an

ion the cross-section for the dipole transition 2s-4p is
the lowest. The magnitude of the cross-section at all
energies for each transition is found to decrease as the
charge of the ion increases. We have also compared in the
figures our results far these lithiumlike ions with the
calculations of Bely(183) based on the Coulomb-Born
approximatisn and with the close-coupling calculations

of Burke et al.(184). For all the ions there is a'large
difference between thelpresent calculations and the quantal
calculations in the energy range close to the threshnld.
This is due to the fact that at the threshnld, the cross-
section for the ions calculated classically gives a vanishing
value whereas the crnss—sectinn calculated using quantal
approximatinns givesa finite value. Beynnd the threshnld
nur results for all the transitiqnsin BeIl are in gond
agreement with the results of Bely . For 2s-3s transitinn
in NV the present calculaticn agrees within a\factor of
two with the Coulomb-Born calculation for eneréies beynnd
the threshold. For the 2s-3p transiton,the discrepancy

with the Coulomb-Born calculation is large. The 2s-3p
transition in N V has been the subject of thorough investigatir

by Burke et al.(184), using verinus approximaticns. They have
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nbserved that the results of their Coulrmb=Born calculations
differ considerably from the close-coupling calculations

in the region close to the threshold.

7.5 Rate coefficients for excitation and inonization

The rate coefficient for a collisinn between the
incident electrons énd.the target electrons of the ions
is given by < v c‘(%g > where v denotes the velocity of
the incident electrons and G‘(Vz) the ¢onllision cross—section
at that vélncity. For the case nf innization the rate

coecfficient is defined as
Sian=l  VeTian (Ve lflvy) dvg | .. (7.23)

ion

‘Vi

where vy denntzs the velocity nf the incident electrnn

corresponding t~ the nnset ~f the isnizatiaon of the
target electron and f(w) denotes the distribution function

of the velocities of the impinging electrons. cion(vz) is

the cross-section for the ionization of the ion. Similarly

the rate coefficient for excitation is

Sexc = J Vz.déxc(VZ}f(vz)-dvg ' eo (7.24)
Vi . :

where v, is the velocity of the incident electron

n #

corresponding‘to tﬁeionSet of excitation of the target

electrons end o= (vo) is the cross—section for the
=< exc R -

excitatinn of the isn. We have assumed a Maxwellian
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distribution for the velocity of the incident electrons
2
- - -mvos /2KT
f(v2)dv2 = avy 7 VEEKL)TS/R o TR dvy .. (7.25)

Here K is the Boltzman constant, T the absolute temperature

<L 2
and m the mass of the incident electron. Writing Eo= % MV »

’

the ionizatinn and excitation rates are given by

” E -E,, /KT
2 _\3/2 __2 2
Sion = J;l 03 o0 (E2) (F) / ?;;3T7§ e »dEz - (7.26)
and - ,
: ~Eq /KT
Se o = J; oo (Eg) (Bx )3/% - '”T7§ e 0 aE, .. (7.27)
n

Equations (7.26) and (7.27) have been used by us
(165,166) to calculate the ionization and excitatinn rate

cnefficients of the lithium like ions.

(1) Ionization rate coefficients

The rate coefficients for ilonization of different
inns are given in tables 1 and 2 for kinetic températures
T upto 9000 eV (~~10° °K). It is seen that at lower
temperatures the ionization rates increase. rapidly with
temperature. Beycend 100 eV there is a gradual variation
with temperature and after 1000 eV the reaction rates
are almost constant. Very few theoretical calculations have
been perfarmed for the calculétion of innization reaction
rates of the lithiumlike ions. Lotz (162) has also.calculated
the ionization reasction rates for the lithium like iens

as well as for other systems of ions. Lotz has expressed the
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functinonal depéndence of the cross—sectinn versus electrnn
energy by an empirical farmula. The cross sectidn

predicted by the use of Lotzsformula fitted very well with
the experimental data in the entire energy range. The
earlier empirical formula of Drawin dges notprédict the .
cnrrect threshold behaviour. Among the various empirical
approaches (Elwert(188), Knorr(189), Drawin(174)),Lotz's :
formula is the best tndate. Lotz also used a Maxwellian
distribution to calculate the reaction  rates. As seen

from the tables our results for the ionization reactinn
rates of the lithium like ions compare well with the
corresponding rates given by Lotz. Recently Kunze (190)

has deduced the collisinnal ionization rates in the electron
temperature range l100-260 eV for snme lithium-1like ions;

C IV, NV, and 0 VI, from the time history of spectral lines
emitted by these ieons in a hot plasma. He also estimated the
collisional ionizatinn rates with the help of a semi-
empirical formula. Kunze has shown that withiﬁ_the range

of experimental accuracy, the measurements are in gnod
agreement with the semi-empirical calculatinns and the
predicted rate coefficients of Lotz. Since cur calculzatians
are alsn in gnod agreement with the calculations of Lotz,
the agreement of our calculations with the measurements

will also be good.

(ii) Excitation rate coefficients

The excitatimsn rate coefficients for different inns
/

and varinus transitiens in an inn are given in tables 3-6.
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"Here alsr we find that the excitatinn rate increases
rapidl? with teﬂpefmture for temperatures upte about

200 eV and then incrggses slowly acquiring a constant

value near 1000 eV; Kunze and Johnston (191) have recently
reported measurements of excitation reaction rates for

same lithium like ions (N vV, O VI and Ne VIII) at few
temperatures. In figﬁres (7.21) to (7.23) we compare sur
results with the data. We_find that our calculations

of excitation reactimn rates for the dipnle transitions
(25-3p, 2s~4p) in NV are within a factor of three of the
experimental data. For monopele transitions (2s-3s) in .

N V énd Ne VIII the agrecment with the data is very goed.
However for O VI the measured value (3 x 10710 em? sec”t
at 260 eV) of 25—35'excitatioh reaction rate differs. by
a large factor from our calculated value. Kunze and
Johnston have pointed nut that their measurements for O VI
are not very accurate. Boland et al.(192) have measured
the reactinn rates for éxcitation in five transitions.in

N Vat 20 eV. We find that our results for 2s-3s, 2s-3p

and 2s-4p excitation rates at 20 eV compare well with the

experimental values of Boland et al.,

For the resonant dipole fransitions, we find that our
calculations are much higher than the experimentally
measured values in N V, O VI, and Ne VIII,This may be

due tr the fact that for the resconance dipole transitions

the energy transfers heing small, the classical calculatinns

tend t~ be less accurate.

f
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The cnllision rate coefficients for excitation and
ionization are very sensitive to the form ~f the velocify
distributinn in the energetic tail. Differences between
a Druyvesteyn and Maxwellian distributinns have been

discussed by Drawin(193). ¢

7.6 Conclusions

Fram the detailed study.mf the inelastic collision
cross;sections for a number of ions,it becomes evident
that the classical binary encounter aprroximation as
modified by Thomas and Garcia and extended by us,is as
reliable for ions as far neutral atoms.In acguracy it can
he compared tn the Bern approximation. The results nbtained
by using this model agree well with experiment and are
everywhere within a factor of 2. The model is specially
sulitable for calculating the innization of complex systems
where the quantal calculatinns brcome difficult. Far
increasing value of the éharge of the ion (Z'),the general
features obtained by this model are similar to those
predicted by Burgess and Rudge (194 ) who used a quantum
mechanical approximatinn. The curvature nf the incident
electron beam produced by the residual field of the ion
increases for greater Z', but the mean distanee of the bound
electron from the nucleus decreases. These two effects
compensate each other, thereby giving a limiting value tn
the reduced craoss-section curve for ihcreasing Z! The

Z'derendence «f the cross—-sectinn is therefore reduced tn l/U2-
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For the case of excitation the limitations of the
classical theorv of ions are the same as for the neutral
atoms.The recsults obtained by it are only qualitative.
However we have scen (167) that the results for Ca', Mg+
and Be+ agree everywhere within a factof of two with the
guantal calculations except near thé threshnld. The
significant difference between the classical and quantal
approaches forionsis that the classical theory givesAa
vanishing crass—section at thresholdjwhereas the quantal
calculatinns predict a large value of the cross—section at
the/threshgld. As pointed out by Stabler the exci{ation
process is defined with less cnnfidence in the classical

theory as compared to the ionization process.



Table

1

~164~

' el s s -1
Ionizatinn Rate Coefficients of Lithium like Ionstm3sec )
(Be II, B IlI C IV and N V)

T (eV)

(PO S——

A

- e - e R I e B

3,

.
,0.0
100.0
200.0
BOO. O
1000.0
5000.0
9000.0

Be II

4.1

Present
Calcen.

7.4
2.0
1.3
243
2.1
7.4
2.5
6.7
1.4

E-14
E-12
E-11
E-10
E-10
E-09

E-08
E-08
E-08
E-Q7
E-0Q7
E-07
E-Q7
E-Q7
E-07

7.2
9.7
1.2
1.3
143
1.4
1.4

104‘

L.
E-17

E-09-
E-08

Calea,

Calcn:

BITL |
Present

Lotz's
Calcn.

_Present

Lofi}s

9.6 E-17
2.0 E-14
1.2 E-12
1.8 E-11
1.4 E-10
3.9 E-10
1.2 E-09
2.9 E-09
5.3 E-09
1.1 E-08
1.6 E-08

2.0 E-08
2.1 E-08
2.0 E-08
1.8 E-08

* E-n - 10

-n

6.1
4.0
1.7
4,8
3.0
3.0
3.0
1.9
74

4 A

.5
1.4
2.6
4.0
5.5
7.0
8.2
8.6
8.8

a

E~26
E-21
E-17
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E-10
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E-08
E-08
E-(08
E-(08
E-08
E-08
E-08
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<= 0~ O
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E-08
E-08
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5.1
6.9
9.4
1.2
1.6
4.7
2.2
4.4
3.9

2.7
6.6
1.1
1.8
2.5

3.5
3.6

Calen.

6.9 E-38
8.2 E-30
9.8 E-24
1.2 E-19
1.4 E-16
3.8 E-15
1.7 E-13
3.2 E-12
2.3 E-11
2.8 E-10
9.1 E-10
2.0 E~-09
2.9 E-09

13.6 E-09

3.7 E-Q9

—

E~-0B

{6.9

1.6
1.8

LNV

1.0
1.3 E-40
36D
1.6
2.6
8.5

E-25
E-20
E-18
E~-16
E-14
E-12
E-11
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1.4
7.2
5.7
1.9
3.6
6.4
1.0
1.4

E-09
E-08
E-08
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.3 E-25
4 E-20
.1 E-18
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.3 E-10
7.0 E-10
ll.B E-09
1.8 E-09
2.0 E-09

D s O O > DN = O3

—

i
i




-165-

Table 2

- -1
Ionizatinn rate coefficients of lithium like idns(cmﬁsec )
( 0 VI, F VII and Ne VIII) ’

Temper=L . . o Vvl

R NJFM Fvii Ne VIIT
ature |Present Lotz's Present Lotz's Present | Lotz's
(eV) calculationcalculationicalculatianicalculation|calculatiopnicalculation

| ¥ ', o ; ‘ | |

1.0 o. 0. o o 0. 0.

1.4 3.3E-85 | O 0. o 0. 0.

2.0 |2.1 E-40 - |5.1E-51 ' o. ;- .

2.8 1.0 E-31 11.02 E=31 | 2.8 E-39 0. 6.5 E-48 0.

4.0 (3.6 E-25 |3.19 E-25 | 1.5 E-30 |  O. 1.2 E-36 o.

5.0 2.2 E-22 (3,51 E-22 | 1.9 E-26 ' O 2.5 E-31 0.

7.0 - ‘l.4 E-18 [1.09 E-18 | 9.6 E-22 | Q. 2.5 E-25 0.
10.0 6.5 E-16 :4.74 E-16 |3.4 E-18 22.44 E-18] 9.1 E-21 | 6.66 E-21

14.0 4.0 E-14¢ 2,82 E-14 8.0 E-16 [5.59 E-16[ 1.0 E-17 | 7.18 E-18

28.0 18,3 E-12 (5.13 E-12 8.6 E-13 |5.52 E-13| 7.5 E-14 | 4.93 E-14
50.0 1.2 E-10 [5.46 E-11 2.6 E-11 |1.25 E-11| 5.1 E-12 | 2.64 E-12
80.0 5.5 E-10 - 1.7 E-10 - 4.9 E-11 -
100.0  |1.2 E-9 2.6 E-10 4.1 E-10 | 9.78 E-11| 1.4 E-10 | 3.62 E-11
200.0 [2.6 E-9  |5.91 E=10 1.1 E-9 |2.87 E-10| 4.6 E-10 | 1.42 E-10
500.0 |4.5 E-9  19.93 E-10 !2.% E-9 |5.69 E-10| 1.2 E~9 | 3.93 E-10
1000.0 6.8 E-9  (1.17 E=09 5.7 E-9  |7.19 E-10| 2.2 E-9 | 4.60 E-10
5000.0  |8.3 E-9 - 5.0 E-9  |7.62 E-10! 3.0 E-9 | 5.33 E-10
9000.0 9.2 E-9 | - 5.7 E-9 - 3.6 E-9 -

s E-p=10"
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Table 3
Excitation Rate coefficien*t of Be I}.(Cmgsec—l)
T 264 s | 2g-3 2 g4 2e-3d 2 54
(eV) | P s=4p s
10,0 | 7.3 E-10 | 7.3 E=10 | 1.5 E-10 | 6.1 E=9 | 1.6 E-9
4.0 1.7 E-9 1.7 E-9 3.6 E-10 | 1.4 E-8 3.7 E-9
20.0 2.8 E-9 2.8 E-9 5.9 E-10 | 2.3 E-8 6.1 E-9
28.0 3.9 E-9 3.8 E=9 | 8.1 E-10 | 3.1 E-8 8.5 E-9
70.0 4.5 E-9 4.4 E-9 9.4 E-10 | 3.6 E-8 9.8 E-9
150.0 4.8 E-9 | 4.6 E-9 9.9 E-10 | 3.8 E-8 1.0 E-8
200.0 5.0 E-9 4.8 E-9 1.0 E-9 3.9 E-8 1.1 E-8
500.0 5.0 E-9 4.9 E=9 1.0 E-9 3.9 E-8 1.1 E-8
1000.0 5.0 E-9 4.9 E=9 | 1.1 E-9 4.0 E-8 1.1 E-8
5000.0 5.1 E~9 4.9 E=9 11,1 E-9 4.0 E-8 1.1 E-8
9000.0 5.1 E-9 4.9 E~9 1.1 E-9 4.0 E-8 | 1.1 E-8

Table 4

Excitation Rate Coefficient nf C IV (cmSsec™!)
(ZV) [_28"29 Rs=3s Zs~4s “ 2s=dp 2 s~3d ‘ 2s-44d
10.0 | 7.8 E-8 | 5.3 E-11[3.4 E-12 |1.1 E-11 | 1.1 E-1C! 1.3 E~11
4.0 | 1.8 E-7 | 1.8 E-10/1.5 E=11 |5.8 E~11 | 4.1 E-10 6.0 E-11
20.0 | 3.1 BE=7 | 4.5 E-10j4.8 E-11 9.9 E~11 | 1.1 E-9 | 1.9 E-10
28.0 | 4.7 E-7 | 8.9 E-10|1.1 E~10 |2.0 E-10 | 2.3 E-9 | 4.4 E-10
70,0 | 6.2 E~7 ! 1.6 E-9 i2.3 E-10 3.7 E-10 | 4.2 E-9 | 9.5 E-10
150.0 | 7.3 E=7 | 2.1 E-9 [3.2 E-10 5.0 E-10 | 5.7 E-9 | 1.4 E-9
200.0 | 8.1 E=7. | 2.5 E-9 |3.9 E-10 (6.0 E-10 | 6.9 E=9 | 1.7 E-9
500.0 | 8.4 E-7 | 2.6 E-9 |4.2 E-10 6.3 E-10 | 7.3 E-9 | 1.8 E-9
1000.0  |'8.7 E-7 | 2.7 E=9 |4.3 E-10 |6.5 E~10 | 7.5 E-9 | 1.8 E-9
5000.0 | 8.7 E-7 | 2.7 E-9 |4.3 E-10 6.5 E-10 | 7.5 E-9 | 1.8 E-9
9000.0 | 8.7 E=7 2.7 E-9 |4.4 E-10 6.5 E-10 | 7.5 E-9 | 1.8 E-9
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E-n = 10

Table 5
Excitation Rate coefficient of N V(cmgsec_l)
T (eV) l 2s=-2p ’ 28=3p | 2s=4p {. Rs=3s
| :
10.0 4.2 E-8 7.0 E-13 | 3.5 E-l4 3.5 E-12
14.0 1.1 E=7 4.6 E-12 3.2 E-13 2.1 E-11
20.0 1.9 E=7" | 1.8 E-11 1.7 E-12 7.6 E-11
28.0 3.0 E=7 | 4.7 E-11 5.4 E-12 1.9 E-10
70.0 4.3 E-7 1.3 E-10 2.0 E-11 5,0 E-10
150.0 5.4 E-7 2.2 E-10 | 3.6 E-11 ;8.1 E-10
200.0 6.3 E=7 | 2.9 E-10 | 4.9 E-11 1.1 E-9
500.0 | 6.7 E-% 3.3 E-10 5.6 E-11 1.2 E=9
1000.0 | 7.1 E-7 5.6 E=10 | 5.8 E-11 1.4 E-9
5000.0 | 7.2 E=7 | 3.7 E-10 | 5.9 E-1l 1.4 E-9
9000.0 7.2 E-7 3.7 E=10 ' 5.9 E-11 1.4 E-9
o ] .
Tarle 6
Excitation Bate coefficient of 0 VI and Ne VIII (CmBSGC_“>
_ y_ovi Ne VIII | o
T (eV) ] | 25-2p | 2¢-35 ! 2s5-2p ”Tﬂés—Sp | 2s-35
10.0 | 2.5 E-8" | 2.4 E-11 | 2.7 E-8 (6.0 E-17 | 3.1 E-16
14.0 6.6 E-8 2.5 E-10 | 5.6 E-8 |3.1 E~15 1.4 E-14
20.0 1.3 E-7 1.4 E-9 9.7 E-8 6.3 E~14 2.5 E-13
28,0 2.0 E-7 5.0 E-9 1.5 E=7 |4.9 E-13 1.8 E-12
70.0 3.2 E-7 1.9 -8 2.3 E-7 |7.7 E-12 2.5 E-11
150.0 4.2 E-7 3.7 E-8 3.2 E-7 [2.4 E-11 7.8 E-11
200.0 5.2 E-7 5.4 E-8 4.0 E=7 {4.3 E-11 1.4 E-10
500.0 |'5.6 E~7 6.4 E-8 4.5 E~7 |5.9 E-11 1.8 E-10
1000.0 6.1 E-7 6.8 E-8 4.8 E-7 |6.8 E-11 2.4 E-10
5000.0 6.2 E-7 6.9 E-8 4.8 E=7 6.9 E-11 2.6 E~17)
9000.0 6.2 E-7 6.9 E-8 4.8 E-7 |7.0 E-11 2.6 E-10
' |
;
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Figure captipons

Fig. 7.1 Geometry for elcctron-positive ion collision.

Fige 7.2 Electron impact ionization of Mg+

with §~function distri-

Present calculationgi—
butiony =——+— with quantal distribution, ——¢+—
with hydrogenic distribution; e«..++ Coulomb-Born
calculations (157); o Experimental data, Martin
et al. (169),

Fig. 7.3 Electron impact ionization of Ba'.

Present calculations with hydrogenic velocity
distribution. ~=— total ionization cross=sectinng
contribution from: ——=-- 6s shell, =-~=e=—— 5p shell,
~—~sso— 5g shell, =———+e— 4d chell; @ Experimental
data of Peart and Dolder (170).

Fige 7.4 Electren impact ionization of st
Present calculations with hydroéenic velocity distr-

ibuticn. total ionization cross—section;
Contributions from: ——-——-— 5s shell, ——e<—4p shell,
s 4s shell, ==—ee=—— 3d shell.

.. . .+

Fig. 7.5 Electron impact ionization of Li ..
Present calculatirns: - with &-function distri-
buticn, curve 1l,; =——+-—— with quantal distribution,

curve 23 =—-se——= calculation of Thomas and Garcia,
curve B3 =m—-s o= Chulomb=-Born calculatinns (157),
«ssew=— Born calculations (159),curve 5;

curve 43
Experimental datas®Lineberger et al. (51), 8 Wareing
and Dolder (171).

_ . .. . + +

Fig. 7.6 Electron impact ionization of Na- and K,
mmeems Present calculation with 8-function distributioi,
““““““ Calculatinn of Thomas and Garcia, Experimentz:

datas(a) for KF @ Hooper et al.(52), ® Harrison et al.
(172); (b) for Na e Lineberger et al.(51),® Peart and
Doldar (173).
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Fig. 7.7 Electron impact ionization of Bb' and Cs .

Present calculations: - with &-function

distribution, =-——=-- with hydrogenic distribution.

Fige 7.8 Electron impact ionization of Ne® and NT.

Present calculation with &-functiondistributions
~m~—ee calculation of Thomas and Garcia§ Experi-
mental data:Harrison et al.(172). ®

Fig, 7.9 Electron impact ionization of ar" and Kr'.
& Average value using the formula of Drawin and
Gryzinski( 49 ); ® data of Latypov et al.(49 ).
(a) for Kr': —— ionization cross-section from the
4p shell, (b) for Artie——— total ioriization cross-
section; Contribution froms =----- 3p shell, and
——t— 335 shell. '

Fig. 7.10 Electron impact ionization of Xe .
A Average value using the formula of Drawin and
Gryzinski; % data of Latypov et al.j «m=——— ioniza-
tion cross-section from the 5p shell.

Fig.7.11 Electron impact ionization of BelI, B III, CIV
and N V. '

e present calculations.

Fig. 7.12 Electron impact ionization of O VI, F VII and Ne VIII.
———— present calculations.

Fig. 7.13 Electron impact excitation of Be II(2s-3s,2s-3d
and 2s-4d).

Present calculations} calculations of Bely
(183): & 2s-3d3® 25-3s; o Zs-4d.

Fig. 7.14 Electron impact excitation of Be II (2s-3p, 2s-4s
and 2s-4p). .

————= Bpesent calculationsy Calculations nf Belv:
b Rs-ds; A Rge-3ps MZs-4p.
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Electron impact excitation of C IV(2s-2p,Zs—3p,2§r4p)’
Present calculationss Burke et alld184)
calculation: ¢ 2s—2p.

Electron impact excitation of C IV(2s-3s, 2s-4s,
2s5-3d and 2s~4d). |

—

Present calculations.

Electron impact excitation of N V(2s-3s and 2s-4p).

- Present calculations; Bely's calculations:
T 2s-4p; ® 2s5-3s.

Electron impact excitation of N V (2s&-2p and 2s-3p).

A Present calculations; Bely's calculatinns:
B 2s5=3p; e 25~2p.

Electron impact excitation of O VI. (25-2p, 23—33
and 2s-3p).

—— Presgent calculations. Burke et al.'s calcul-
ations: e 2s-2p.

Electron impact excitation of Ne VIII (2s-2p,

2s=35, and 2s-3p).

Present calculations; Bely's ealchlations:
® 25-3sy A 25-3p; © 25~2p. . '

Excitation reaction rate for NV (2s~5$, 2s5~%p and
2s-4p tran51tlons)

Present calculationss Data of Kunze and
Johnston (191): Z 2s~4p % % 2 s=3p} é 2s-3s3; Data c1
Boland et -al. (192) é 2s=4ps J 2s-3s. v

Excitation reaction rate for O VI(2s-3p) and
Ne VIII (2s~3s and 2s=3p)

_ Present calculations; Data of Kunze and
Johnstons é 2s5-3s3 ; Rs=3p.

Exoltatlon reaction rate for 25—2p transition in
NV, 0 VI and Ne VIII,

—— Present calculations; Data of Kunze and
Johnsten: é Ne VIII3 é 0 VI; % NV3 Data nf Bnlanc
et al. bN V.
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CHAPTER 8

DISSOCIATION AND IONIZATION OF Hj MOLECULAR ION

The 1nelastlc scatterlno of electrons by molecules’
is mcre compllc ted comp red tn the a%oms in that the
internal degrees of freedom of the moleculesmust also be
taken into con51deratlon whlle studylng the collision cross-
section. Theoretlcally most of the calculatlons for the
lnelastlc scatterlng of molecules are based on the Born
approx1matlon. In the range of 1nc1dent energies where the
Born app roxlmatlon is expected to be valld the experimental
cross—sectlons which resolve rotatlonal effects on electronic
transitionsare not yet available and those which resolve
the vibratinnal structure are very fare. Therefore, generclly
the specific vibrational and fctationél excitations can be.

“ignored while considering a given electronic process.

As tce cross—section fdf the excitation,by electron
impact of 2 vibratinnal sface.of diatomic molecule in a
f ixed electronic state is vc}y small(195), it becomes obvious
ntf th 1t

cie ljlc ’ul b‘]’ an im 1 g "O Charge

-

that the dissoci ‘tl'“
must occur predominantly through an alteration of the
electronic state fram nne which gives nuclear binding to the
‘ane which gives nuclear repulsion. The Hg mclecule is the
simplest of all the molecules and consequently “the theory

At ite structure has recelved extensive attention. Bates

et al.(198) h-v. determined the electrnnic energies for a
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number of excited states in H;- Several excited states

of Hg possess minima and perhaps bound vibrational
states. However, the important internuclear éeparationsﬁ‘,
are such that the transitions to these excited states are
expected to go to the repulsive part of the potential
curve. The combination nf circumstance§ which may lead to
a stable but clectronically exciied Hg are not quite

common. The electrenic transitinns given below will always

nearly result in dissociation.

e + Hg (lso-g) ~ Hg (2pou) +e - H+ H +e
+ + * ot
e + Hy (lssg) ~ Hy(Rpmu, 2sc~g, 3dng, . 3domg «e«)+e = H +H +e

e + Hg(lsc'g) - Hrtiee . - ... (8.1)

However, transitions te the 2pmu state at internuclear
separation greater than 6;5 a, may result in a bound
molecule. But it is printed out by Dunn and Vanzyl(55) that
less than 1.5°% of all transitions at 500 eV energy can
Aresélt in a bound 2pmu molecule. The 3ds g state is also

bound but it radiates rapidly to the 2po-u repulsive state.

Dissociation of Hg molccule by electron impact has
been considered by various workers. Kerner(195) calculated
the dissaciatinn cross—secticn using the Barn approximation
and approximate wavefunctions for Hg were taken. Ivash(197)
included exchange and the Born-Oppenheimer approximation
was usced te mbtain the rosults far bnth post and prior

inter~ctirrs. Tho validity cf the Frank-Tondan principle

-
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.

was assumed throughout. The cross-sections were élso
averaged over all mnlecular orientatinns. Alsmiller(198)
carried out thes calculations in the Born approximation
using exact two centre wavefunctions, the Frank-Condon
principle,and a classical average over all molecular
lorientatimns.Go@d agreement was found in Alsmiller's
calculatinns and Ivash's calculatinns using LCAO wave-
function in the entire energy range. Callaway and Chow(199)
have alsn computed the excitaticn cross~section for the
lorwest eléctrnnic excited state of Hg- The calculatinn
employs the Baorn appraximation and includes exchange
effects according t~ the procédure developed by Bell and
Moiseiwitsch(9)s They have frund that the inclusion of
exchange produces nnly a sms1ll increase in the cross-section
near threshnld.Further, Pcck(200) has predicted a strrng

variaticn of cross—sectisn with internuclear separation in

the molecule forthe lso-g-<po—u transitinn.

All the abcve calculatinmns are based ~n the Born
approximatinn and are somewhat unreliable at low energies.
Alsosthese are unsatisfactory in that they include only the

contribution t~ the disseacistinn from the first excited

state in the case nf electrons and the first and the secnnd
excited states in the case nf protens. In fact, all the
final electrnnic states must contribute t» the total cross-
sectirns, In order to include-this,Peek(ZOO) has used a

clrsure argumont which mnkes passiblce an estimate of
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contributions of all the final stétes.tﬁ the cross-section.
Alsmiller(198) has also used the classical method of
Gryzinski to calculate the dissoclation and ionization

of Hg by both electrons and protons impact. The classical
theory is expected to give more reliable results at low
energies compared t» Born approximation which becomes
inaccurate in the low energy region. In the Gryzinski
approximation, the dissociation cross—section includes the
contribution from all excited states including the ionized
state,;and thusit removes one of the méjor drawbacks of
earlier theories which c¢onsider only the first excited

state. Alsmiller found appreciable difference between his

calculations and the Born calculations.

All the calculations mentioned above,based on either
classical or quantal methodsare unsatisfactory in that they
do not include the long-range Coulomb interaction between:

the electron and the molecular ion.

'In our calculations (201) based on classical -
thenry for the ionization and dissociation of the Hg
mnlecular ion,we have for the first time included the
effect of the Coulomb field on the cnllision cross—section.
The classical binary encounter thcory for atoms was recently
extended teo the case nf the ionization of ions by Thomas
and Garcia (47) in which the effects of the Coulomb-field
are considered explicitly. Here_we have used the approach‘

~Af Thomas and Garcia t- calculate the dissoclation and
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ionizatinn cross-sectinn of H;- We‘have used a quantal
velocity distributinn as well as the 8-function velscity
distribution for the bbund electron in the molecular ion
in the ground state. In sectinn 8.1 we discuss the theory
and in section 8.2 the re¢sults.

’

8.1 Expressionsfor the cross-sectinns

The cross—sectinn for the ionization of an ion of
net charge Z' by an incident electron is given by eqme(7.7)
Representing this in terms of velncity, the cross—sectian

by an incident electran of velocity Vo becomes:

B
where .
o=zl o4 (\1+ng{-§%’,&1~*
i 2T weE
: , V? % V2 Vz
y A1/2) \1/27%
_‘(g_l!__)z_ L ) ,
w__ 2 T N
' - ~vh-ve
and .. (8.2)
Lt = Jm Z{On(vé,vlyvgﬂ)f(vl)dvl .. (8.3)
23 on is given by (for the case of elcctran 1mpgct)
lon = L E Vi - 80) L 2u(- B )], it oeBeng®a?
if)n - l 4. X vz b AN l\ 2 2
Vo 2 -
2m 5 : 2U S (V'Z 2>3/2
= 2[V1+3U(1-— '_'-‘"""'*' ) ( ) =
l - l
Sve v'¥ g

>

. 2, 2
~ 1t Vé ~Vo XS Vl$v2 -2U
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=—-——2-—[(v _ZU)3/2 (gu)z 2 2)3/2], if vz'z-zugvf

3v2 vy Vo

, .. (8.4)

Using the above expressions, we can calculate the

‘dissocisatinan and 1nnlzat1 n of. H2 molecule. The molecular
protons are considered tm be fixed force centres and a
classical average over all monlecular orientations is
performed. Since the excited state of the Hg molecule 1is
unstabley, the excitation nf the moleoule'essentially leads
to dissociation. Hence, the.dissociation crass—sectinn is
identified with the total crnss—section for exciting all
4states‘of the molecule including the ionized states. This
excitation cross-section is obtained by replacing the
?onizatinn energy U by U;, the energy of the first excited
state iﬁ (8.2) for the ionization cross—-section. For the case

of dissociaticon by c¢lectron impact Z' is then given by

t t t s ol 4
Ldissoc. = L Zion (Vevyrve,Up)flvyddvy 1f B2y

= 0 otherwise' .. (8.5)

1mn(V°’V1’V2’U ) is nbtained by replacing U by Up in

equatinn (8.?). The icnization and dlssociatlon cCross—

sectinn far Hg are therefore given by.the same expressions,eqn.
(8.2),with the difference that for the case nf dissociation

U is replaced by U, everywhere. For defining the ionization

~nf the H2 melecule;the vertical ionizatinn energy 29.9 eV is

used.

The velocity distributicrn functicn f(Vl) is ecbtained
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by using the LCAO wavefunction (202) for H;- This wave~

function ¢ is written as
U = N(U,+Uy) S . | .. (8.8)

N is the normalisatizn constant and Ua and Uy are given

by hydrogenic wavefunctions

meny

U, = V23/‘ ~e—2ré‘ s 'Ubf=jVZ§/n e .. (8.7)

with Z = 1.228, r, and r, are the coordinatés'ofAthe electron

with respect to the molecular protons. The normalisation V

constant N is given by

e 1 .
“2(1 + s) ’

- O _— :
N S = (1+ZR+31- 2‘“82) e ZR_

where R is the ‘equilibrium séparafion between the-molecuiar
protons. The density distribution funétion P(Vl) is-obtained
by the Fourier transform of tﬁe molccular wavefuhctions.
The Fourier transform of the LCAQAwavefunctidh;(S.G),of
H; moleéule is given by | | -

Colv,.r o
- ?§;SE7§ J e T P(r)ar

(o
AQY

N

1

'Putting the value of w'ahd carrying cut the integration,

we get

PG = 2N cos(y: B) py(vy)
“with . 25/25/2

Pnivi) = 57 5T
(Vl+Z )
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Since the molecule can have any orientation, the density
distributi~n function is chtained by averaging @ (vl)ﬂ(vl)
nver all molecular orientations,i.e., over all angles of R.

Therefore we find

P(vl) = 2N2¢§(vl)[1+sin vy R //Vlé]
- /
The quantal momentum distribution for the electron in

the«ﬂ; ion therefore becames
f(vl)dvl = 87 N“ fﬁﬁ(vl)[§+sin VlR.//Vlé]dvlf'

 In addition tn this quantal distribution of the bound
electron, we have also used a &-function velocity distribution
in order tn find how sen51t1ve the results are to the

chango in the velocity distribution function.

8.2 Results anA discussions

(i) Disspciatisnn cross—sections

Figure 8.1 shows the results for tﬁe electron impact
dissociation cross-section of Hg in the ground vibrational
state. It is seon froﬁ the figure that the inclusion of
the ionic field in our classical calcuiations (curves 1 and 2)
causes 2 considerable change in the cross-section compaféd
to the gimple classical calculaficn of Alsmiller (curve 3).
The difference is more marked in the low energy region
where the cross-sections are increased by a factb? nf 1.5
whenwausé a quantal‘diétribution (curve 2)jand the cross-

s2ctirns using a &-=function distribution curve(l ) are
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“increased by a factor 2. For higher energies, the

difference becomes lesser as at these energies the

effect of the Coulomb field of the ion will be smaller.

We also find that at high energies the quantal and &~
functicn distribution give identical results. The quantal
célculations of Ivash using the Born approximation and

LCAO wave functions give good agreement with our calculations
when exchange is not included (curve 4 ). Ivash's calculation,
however, ignores the effect of the ionic field. Purthér it
is noticed that Ivash's calculations with exchange

(curve 5) show a sudden rise in the cross—éection near
threshold. This large increzse in the cross—seéfion is
contradictory to the observation by Callaway and‘ChOW;that.
exchange produces a small increase in the excitation cross-
section of H; near the threshold. This discrepancy may

be due %o the _method of incl&ding exchange. Ivash has used
the Born-Oppenheimer approximation whereas Callaway and Chow
have used the method of Bell énd Moiseiwitsch (9) to include
exchange. For the case of atoms.it is well known that the
Born-Oppenheimer approximation gives incorrect results

at energies near the threshold whereas the first grder
exchange approximation given by Bell and Moiseiwitsch gives

‘reasonable results.

Experimentally, the dissociation cross~sections have
been reported by Dunn and Vanzyl1(55) and Dance et al.(56).
It is difficult tn compare our results with the data since

we have carried out the calculations for the electronic
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excitation of Hg in the ground vibratiénal state. In the
experiment of Dunn and Vanzyl,H; ions are formed by
bombarding Hy gas by high energy electrons. In this process
Hg ions may be formed which may‘exist in all-vibrational‘
stétes. The measurements of Dunn and Vanzyl and Dance et al.
of the dissociation cross—sections are for the'comboéite'hw
cross—sections which take into consideration all the vibrat-
ional states of the H; molecule before collision. Theoreti-
cally, Peck (200) has made extensive calculations for disseci-

. + . . .
ation of H2 using Born approximation

He has predicted a different cross—section from each
vibrational level. The in@ernuclear distance R is different
for different vibrational states and there is a variation
of cross-sections for different internuclear separé%ions.
Using a closure approximation,Peek has estimated the
contribution to cross;secfion from all final states. He
gives the values of d‘(zpc“u): d'(zpﬁu), and o~ (Z") where
o (") is the c¢ross-section for transition to all states
besides o (2po~u). On the basis of the calculations of Peek,
Dunn and Vanzyl have estimated the contribution to the
dissociation cross—section from the ground vibrational state.
This is shown by curve 6. Our results (curves 1 and 2)
agﬁee well with this cﬁrve in the entire energy range. In
the low energy region,the agreemeﬁt is still better.
Compared tn the other calculations, our calculations are the
nearest tn theAann and Vanzyl's results. The célculations

carried by Peek, and Dunn and Vanzyl do not-dmeclude the
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effects of the charge of the ion.

o

(ii) Ipnization cross—sections

Figure 8.2 gives the ionization cross-sectionsof
Hg i'on. The present calculations show anlincréase of
the.ionization cross—~section compared to the Alsmiller's
calculations. (curve 3). For low energies the increase of
the cross-section with the use of a §-function distribution
(curve 1) is nearly two times as compared to about 25°%.
inecrease in the'case of quantalAvelocity distribution
function (curve 2). At high'energies the fall of iohization
cross—-section is similar for all.the three calculatiﬁns
shown and follow a 1/Eodependence in accordance with the

classical theory.

It is worth mentioning here that for the case of
proton ihbéct on Hg,the corrections in the cfoss~section
due te the ionic field are very small. We have performed
the calculatiohs for the .proton impact ionizatidn and
dissociation of H; considering both the effects of (i)
nuclear repulsion on the motion of the proton, and(iﬂﬁthe

reduction of the kinetic energy of the proton due to its

ct

motion in the repulsive field. For both ioniza
nciation, we found that there was a little change in the

cross—sections compared t~ the Alsmiller's calculation for
protoan impact.

Canclusion

In conclusion,we can say that the inclusion of the

Coulomb field in the classical cnlculations causes an

ion and digs-~
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increase in the dissociation and ionization ¢ross-section

by electron impact. The classical.éaiculations predict .

the ionization and dissociatinn:crosé~seqtion of Hg quite
accurately. The inclusion of exchange is expected tn imprbve '
the results further at lower energies. It has so far been

not possible to include exchange in the classical calculatierns
for ions though  such an effect has been included in fhe
classical Calcuiation for atoms (45), Further for a proper
comparison nf the results with the experiment a more

complepg classical calculation which accounts for tHefsum
over all the vibratinnal states is desirable. For the

quantal calculations, the use of the Bofn apﬁroximation for
H; is inadequate as it ignores the charge of the target ion.
The Coulomb-Born aprroximation will be mnre justifiable.
However, at higher energles where the effect of the Couloamb
field'oﬁ‘fhe ion is small, the use of plane waves instead

of Coulomb waves for the scattering electron is reasonable.
The effecﬁ’&f the internal degrees of freedom on the cross-

sectinn has not bheen studied SYStematically so far.
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Figure_ captions

Fig. 8.1

Fig. 8.2

. . . + : .
Dissnciation of Hy molecular ion by electron

impact.

Present calculations: =———— with &=functinn

 distribution, curve l, —=e¢+=— with guantal distribu-

Linn,curve 23 === Alsmiller's (198) calculatinn,
curve 3; Ivash's calculations: ==+ +==— without
exchange, curve4; —+.++—= with exchange, curve 5; .
-——— Dunn and Vanzyl's (55) calculation, curve 6.

. . . . + .
Electron impact ionization of H2 molecular inn.

Present calculation:— with 8-function distri-

bution, curve 1, =——=—se==— with qgquantal distribution,

curve 2 =——a—==— Alsmiller's calculation.
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EPILOGUE

The theories of the elastic and inelastic collisions
of atoms and ions by charged particle impact are still far
from satisfactory. The Glauber theory seems to be the best
amongst those discussed here.»Numerical estimates of the |
elastic and inelastic cross-sectionsfor iithium and sodium
by electron impact based on Glaubef theory have proved
their superiority over other quantal and classical methods.
But,still,applications of the Glauber theory to these
problems are in the initial stages and its further success
will depend upon how accuratel? it predicts crdss—sectiohs
for other systems and other processes, e.g.,it is not vet -
clear how the effect of distortion of the target system due
to the incident charged particle and the exchange between
the incident and the target electron could be included in
the Glauber theory. Further the extension of the Glauber
theory to processes like ionization and eléctron capture
is still not considered. Also it is still far from obvious
how the scattering from a many electron atom can be reduced
to a readily computable form without subsidiary error
introduced in simplifying the expressions in the theory for

such systems.

The inclusion of effects of polarisation in the Born
arproxination leads ton a substantial improvement of resul#®s

compared tn the ordinary Born approximation. A further
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improvement in the Born approximation és suggested by

Ganas et al.(82) will be to project out the first few

_partial waves (£=0,1,2) from the expressions of the Forn
elastic scattering amplitude and replacing these by the exact‘
scattering amplitude components obtained frnm expefiment,

‘or detailed solution of many electron system. This will

make the Born approximation more valid at low energies;

The classical theories have been found to be suitable
for the estimate of the ionization cross—section of atoms

and ions in a simple way. They have been found to predict the

ionization cross-sectinn as accurately as the quantal theories,
and at the same time reduce drastically the compufation
effort. The use of the classical theories to the excitation
process is less justified because the final aﬁoular
monentum states can not be treated correcty by cla551cal
theorles. However, the classical theory can be used to

" obtain a qualitatlve estimate of the exc1tatlon Cross—
sections in a simplé manner. There are also difficulties

in using classical theofieé for elastic scatterihg studies
as obserfed by Bates et al.(102) in.their calculations of
electron loss;cro§s~seétion} In classical thgories,thé
effects of exchange have not 'so far been included in the
studies of the ionization and excitation of ions by
electron impact whereas this has been done in the classical
theory of "inelastic 504tter1ng from atoms. Even the quantal

thenrics for the 1on17at¢on and excitation of ions are
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still far from satisfactory. There are wide discrepanéieé
between theories and eXperiméhts in the low and intermediate
energy regions. Little attention has so far been devofed

to the inclusion of polérisation effects in inelastice

scattering of atoms and ions in a charged particle impact.
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