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RESUNE

The work reported in this thesis is the result of
the author's attempts to investigate the nature of
electron states in disordered ailoys. In particular, the
interest was in alloys of the noble metals. It was clear

that two aspects of the problem must be explored.

1) The choice of the one-electron potential aﬁd;
2) The scheme for determining eigenvalues. Both these
choices must be such that for the corresponding pure host,
they give an adequate description of the band structure.
The first part of the thesis is therefore concerned
“witn an energy-band calculation of silver and its change
with different choices of the crystal potential. The
2nd chapter is devoted to an exposition of one of the methods
of energy band calculation of metals, namely the Green's
function method of Korringa, Kohn and Rostoker (also called
the KKR method), and its comparison with other methods.
The reasons for the choice of the KKR method for this
investigation are also indicated. The 3rd chapter gives
details of methods of constructing the crystal vpotentials
and some other details relevant to the calculation., The
IVth chapter deals with the application of the metioed to
calculate the energy bands in silver and presents the

conclusions regarding the choice of a crystal notential.



The remaining chapters deal with an exten31on of
these ideas to tae aisordered alloy problem. In the
Vth chapter we discuss what we call 'Virtual Crystal xlodels!',
and though these dif’er slightly in the actual approximations,
they are 211 characterised by assuming an infinite life
time for the eigenstates., There is thus a unigue energy-
wavevector B(X) relationship and the effect of alloying is
assugied simply to alter this from that of the host.
However, one knows that in o disordered alloy, we cannot
speak of an E(k) relationship. Rather, we musf formulate
in terms of‘densitiesvsuch as P(E,k) and this does not
have a O-function peak but is brdadened. Such a treatment,
based on g multiple scattering description is.carried out
in the subsequent chapters. An attempt is made to evaluate
the T matrix for the assembly of scatterers and to find the
spectral function.f(E,Ej from it, The T matrix of the .
system is expressed as an infinite series in the t-matrices
of the individual atoms and the vnroblem is to sum it and
average it over all configurations. For the caée of a
perfect lattice the series 1is geometric and it is found
that F(E,_lg) is non zero only vhen B and k satisfy a certain
relationship, which is exactly the equation for the KKR method,
discussed in Chapter II. In chapter VI we sum the series for
the disordered case, under the gedmetric’ ap,roxingtion, and
present the results for disordered B-brass. 5&n alternative
mltiple scattering descriptioﬁ is the coherent potential

model, which postulates an effective potential at each site, a
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INTRODUCTION

A knowledge of the electronic spectra is fundamental
to an understanding of the physical properties of materials.
For the case of perfectly periodic solids, the nature of
the electronic spectra is well understood. The basic
mathematical formal isms had been known for a long time
and one has an adequate general prescription for determining
the energy bands, and wave functions in perfect lattices.
With the availagbility of high speed and large memory
electronic computers and standardized programs, such
calculations have become a routine procedure in some
laboratories.1 Energy band calculations became more
sophisticated with the development of experimental techniques
such as the de Haas van Alphen effect, (dHvA) which give
direct information about the topology of the Fermi surface.

Disordered systems have attracted much attention
in the last decade - alloys, liquid metals, crystals with
impurities and even long molecular chngins may be regarded
as such systems. Our understanding of disordered systems
is still far from complete. There are experimental as well
as theoretical difficulties. In disordered systems, the
short mean free path renders the observation of such (dHvA)
oscillations difficult. Attempts have been made, however,
to apply dHvA to dilute alloys, by using high magnetic

fields and sensitive measurement technigues to overcome the
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amplitude reduction caused by impurity scattering. The
effect requires that we7> 1, where w, = eH/m*c is the
cyclotron frequency and 7 is the lifetime of an electron
in an orbit, between scattering events. It is clear therefore
that with increasing impurity concentration, higher magnetic
fields will be required and the method becomes in"appropriate
for non-dilute alloys. Recourse has therefore to be taken
to measurements of other properties, not so directly related
to the Fermi surface, and hence, the interpretatiqn of the
results is not always unambiguous. In recent years more
and more experimental data related to electronic states
in disordered systems is becoming available and this has
stimulated a great deal of theoretical work, and the interest
in the field is rapidly increasing. Before proceeding further
with the theories, we mention here some of the different
types of measurements made to study electron states in
disordered alloys, and refer to the original papers or review
articles for details.

A phenonenon whose observation is not restricted
by the requirement of long electron relaxation times is
that of magnetorésistance. Berlincourt et al.3 have made
pulsed magnetic field studies of the magnetoresistivities
of Ti - Mn and Cu - Mn alloys. There has been considerable
investigation of the optical properties of alloys, both in a5
the visible and soft-X-ray region. There are two conference ’
reports which deal with these electromagnetic probes. The
interpretation of the data is mnot straightforward. It is

not possible to attribute the absorptivity peaks only to



'direct' transitions, for even in the case of pure

metals, it has been argued that indirect transitions are
important. In the case of X-ray spectra many body effects
play an important role. Extensive observations of the
optical absorption in noble metals alloys have been réported
by Rayne and his cdllaborators6 and these are used

frequently to compare the results of theoretical calculations,
They have also carried out measurements for specific heat
(which is related to the density of states at the Fermi
energy) for a number of alloy systems. Another optical .
method, which has been applied to the study of noble metal
alloys by Stern, McGroddy et al. is the ?olar reflection
Faraday effect.7 The experiment consists in measuring the
rotation of surface polarized_light on the metal (or alloy)
with a magnetic field applied perpendicular to the surface.
Th;s method has been applied to Ag - Aw alloys to observe
their absorption spectrum in the visible and ultraviolet
region,

When positrons annihilate in a solid, the gamma-rays
emitted are not exactly anticolinear and their angle is
determined by the motion of the electrons in the solid
where the annihilation takes piace. Since for most of the
metals, detailed investigations of the Fermi surface are
available, this is not of much interest. Because the
techniques of measﬁring electron momentum by positron
annihilation do not require specimens of high purity or

long mean free paths, they are more useful for examining



- the Fermi surface and electron structure of disordered
alloys. Several alloy systems have been investigated by
this method, some examples, being Cugzdu, NigMn, LiMg and
Cu-a1.%?
The existence of Kohn anomalies in phonon dispersion
curves measured by X-ray and neutron scattering is well
known and can yield information about the Fermi surface.
Mosslo has shown in a recent work, that similar anomalies
occur in the local order diffuse scattering of X-rays and
neuatrons. The detectabilify of the anomaly depends upon
the curvature of the Fermi surface and its diffuseness at
the particular temperature, If the mean free path becomes
too small, the singularity will be smeared out. These
ideas were applied to existing data on CusAa and B-Cuin
alloys to make dqualitative conjectures about the Fermi
surface. Though Moss's interpretation of the existing data
is interesting, the method is not of general applicability,
and the interpretation of the data not entirely unambiguous.
A novel method for deriving information about the
Fermi sufface topology and the electronic density of states
was proposed by Higgins and Kaehn.11 It consists in tha
precise measurement of the superconductivity transition

. . T
temperature Tc and its pressure derivative ddg . The

results of the measurements are interpreted within the
BOS framework ® and it is seen that dTc/dp is essentially
proportional to the energy-derivative of the electronic

density of states, and therefore refilects strong structure



at values of EF near the van Hove singularities in the
density of states.

Thus, being equipped with a good understanding of
the perfe?t lattice and with the large amount of data
available from experiments, it was natural to enquire, what
nappens to the electron states, when the periodicity of the
lattice is destroyed by introducing substitutionally a
large numbgr of atoms of a different kind. This is the
subject matter of this thesis. Ope faces enormous difficulties
in building up a rigorous theory of such systems and
approximations have to be made, The great simplification
resulting from the Bloch theorem in the case of the perfect
laftice problem is not there in'a disordered system. Apart
from the intrinsic theoretical interest, the presence
of disorder leads sometimes to interesting physical effects
which may be of technological importance. A well known
example is the Ovshinsky effect® in amorphous materials.
Another example, which is more directly related tc the
work reported in this thesis concerns alkali-noble metal
alloys. Li, Cs, Ag and Au are all metals, but when one
makes the alloys LiAg and Csdu, one finds that LiAg still
retains a metallic character, while CsAu behaves like an
extringsic semiconductor.

The work reported in this thesis is the reault of
the author's attempts to investigate the nature of electron

states in disordered alloys. Our interest was in alloys

of the noble metals, It was clear that two aspects of



the problem must be explored:

1) The choice of the one-electron potential and
2) The scheme for determining eigenvalues. Both these
choices must be such that for the pure host, it gives an
adequate description of the band structure. For this
reason and because the theories of alloys, discussed here
are based on é multiple scattering framework, we discuss
in the beginning of the thesis a theory for energy bands
in periodic lattices and apply it to see the dependence of
the energyAbands‘on the choice of crystal potentials
for silver.

The .2nd:* chépter is devoted to an exposition
of the Green's function method of Korringa, Kohn and
 Rostoker (also called the KKR method),15 for energy band
calculations of metals, and its compariéon with other
methods. The chief feature of the KKR method which renders
it more suitable for this investigation is the separation
of the structurel and potential parts of the problem., Other
advantages of the KKR method are also mentioned. The
3rd chapter discusées some prevalent methods for constructing
crystal potentials and presents some relevant details.
The 4th chapter deals with the application of the method
to calculate the energy bands in silver and presents
conclusions regarding choice of crystal potential.
The remaining chapters deal with the study of

electronic states in disordered alloys. In the 5th chapter

we discuss, what we call 'virtual crystal models', and



though the models we discuss differ slightly in details
they are all characterized by assuming an infinite
lifetime for the eigenstates. There is thus a unique
energy wave-vector E(k) relationship, and the effect of
alloying is assumed to only alter this from that of the
host, However, one knows that k is no longer a good
quantum number in a disordered system and it is no longer
arpropriate to speak in terms of an E(k) relationship.
Rather we must formulate in terms of spectral functions

P (E,k)
2
f(Ey_}E) = ?1 S(E—En) l %H(E)I

where f%(gj is the i vh Fourier component of the eigenfunc-
tion.¢n} and E, is the corresponding eigenvalue. This
function is no longer the d-function characteristic

for the pericdic lattice, bﬁt is broadened. Multiple
scagttering theoryl6 is used to evaluate the T matrix

for the assembly of scatterers and to find the spectral
function F(E;g) from it., The T matrix is expressed as

an infinite series in the t-matrices of the individual atoms
and the probiem is to sum it and average it over all
configurations. For the case of a perfect lattice the
series is geometric and it is found that ¢ (E,k) is non-
zero only wheﬁ E and k satisfy a certain relationship,
which is exactly the equation for the KKR method. In
Chapter 6, we sum the series for the disordered alloy

case, under the geometric approximation, with explicit



introduction of short range order.' The me thod ié applied
to disordered B8-brass. The above mentidned geometric
'approximation, in the absence of short-range order reduées
to the averaged t matrix approximation, which ccnsists

in placing at each site of the alloy lattice, an effective’
potential, such that its t-matrix is equal to the average
of the t matrices of the constituents. Later investigations
by Soven showed that the use of the averaged t-matrix
approximation leads to a spurious band gapv both for model
one-dimensCional and 3-dimensianal alloys. The coherent-
potential model, which seems to be best of the single site
app;oximations overcomes this difficulty. Soven and
Velicky et al. have developed the coherent potential
approximation (CPA) and applied it to several models. They
view a given scatterer as embedded in an effective medium
fose choice is made self consistently. The Physical
condition corresponding to this choice is simply that the
scatterer embedded inthis effective medium should produce
no further scattering on the ave age. The final self-
consistent equations can be solved exactly to give the
effective potential, only for very gspecial cases.
Applications to real systems therefore involve some further
apprgximations. These are discussed in_Chapter 7, and

results of agtual computations are presented for Cu-iZn

and Cu-Al.



The applications to real systems are usually to
alloys of noble metals, the copper-zinc alloy (brass),
being one of them. A brief description of the phase
diagram and the definitions and nomenclatures of the

different phases is therefore given here.

Primary and Secondary Alloys:

When a small amount of a metal B dissolves in
a metal A, the resulting alloy has the same crystal
structure as A, and is formed by B atoms replacingAA atoms
in the lattice. Such a substitutional alloy is called a
primary alloy. Interstitial alloys are also possible when
one atom is very much smaller than the other., The smaller
atom, usually hydrogen, boron, carbon or nitrogen does
not displace a metal atom from its lattice, but fits
into the spaces which exist in the original structure.
For some pairs of metals, which have the same crystal
structure, the primary alloy may exist for all concentra~
tions, examples being Audg, CuPt and Niln. |
When the metals ha&e different crystal structures,
it is impossible for a primary solid solution to extend
over the whole of the concentration range. For some
concentrations, either the alloy must consist of a
mixture of two primary solid solutions, or ellse an
alloy must be formed whose crystal structure differs from
those of the parent metals. Such alloys are called

secondary or intermediate solid solutions.
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As example, we show in Fig.1l1the phase diagram
for the copper-zinc alloy system and introduce some
nomenclature, which is prevalent in the literature and
used in this thesis. When zinc is added to copper, the
first or g-rhase is face-centred cubic and is a primary
solution of zinc in copper; it persists upto 35] of zinc.
Between the limits of 35)and 46] of zinc, a two-phase
region, corresponding to the q-B brasses occurs, while
for concentrations between 46J and 49) the alloys are
body centred cubic and are known as the B-brasses.

The p-phase undergoes an order-disorder transition at

a temperature of about 54000 below which we have an
ordered Biphase of CsCl structure. At.higher zinc
concentrations we have a cubic 7JY-phase, an hexagonal
€-phase with an axial ratio in the neighborhood of 1.56
and a hexagonal ™ -phase with an axial ratio near 1.8.

The ") -phase, like the g-phase is a primary solid solution,
but of copper in zinc, while the f- 'Xand €-phases are

secondary solutions.
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CHAPTER 1II

The Green's Function Method for Energy Bands in Periodic
Lattices!' R

To determine the energy band structure of a perfect
crystal, one has to solve a one-electron Schrddinger
equation, with a suitably determined periodic potential

V(r). The equation to be solved is

[-V '+ V() -2] %@ =0 (2.1)
where V(r) = V(z +1). (2.2)

We look for propagating solutions (Bloch functions) of the

form

Pz +1) = exp (ik.D $(2),  (2.3)

where X is the crystal momentum vector, and 1 is any
translation vector of the lattice., We introduce a Greenfs

function defined by

(V4 2) 6 (x, &) = oz - £). (2.4)

With the help of Bg.(2.4), the Schrodinger equation (2.1)

may be rewritten as an integral equation

Y(r) = f ez, ) V(") P ar (2.5)

where +the integral is over the unit cell of volume 7.
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From this stage, one can proceed in two ways, using either
a variational principle or otherwise. Both these approaches
were discussed by Kohn and Rostoker in their origingl
paper.15 The variational method starts with constructing

a functional A such that Eq.(2.5) is obtained from the

condition
sN\=10 . ) (2.8)

It is seen that the following functiondsatisfies this

condition
A= 1oz ¢t v [~ Sole DT el (2.7
Thas, if $(r) is the exact solution of (2.1) or (2;5), then
/\(*P(bz;), k, E) =0, (2.8)

On the other hand, if we have a trial function of the

form
(@) =YD +eX@ ,
where € is a small parameter, then
NY (D), k Eg) ='¥" ar (Y (»)+ ex(z)” V(z) (¢ () +ex(z))
- [ [ ag az'( W(x)+X(@)" V() Gz, V(2 (¥ (D+ ex(D)
g 7 = - |

=Ja Wo) v [HD - 6(x,2) V(D) ¥() az']

+ef arxX(m o [Y@ - [ G(r 2 (D) ¢ (@) ar ]
+ € f ar’v(H X () [H2) - f G(r £) V(p) ¢ (r) az]
Jﬁf) V(r) X (z) dr —j'le(r) v(r) e(z,z) V(r)x(r)dr ¢
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Since the correct %{g) satisfies (2.8), we are left ﬁith

/\(‘ﬁsk yBy) =0 (82)
and hence

Ey - E = 0(e?), (2.9)

This is an important result showing that the error in

the energy is of the second order of the error in the
wavefunction, This is one of the advantages of the KKR

me thod, that one can get fairly good energy values with a

‘ smail number of trial wave functions. Having set up

the variational principle we use the Rayleigh Ritz technigque,

and choose a trial wave function of the form
L(r) = ¥ c. d(x
\P*,( ) g C3 ‘)5‘(_)

in Eq.(2.7) for A.

If we define /\'.()' as

Ay L% 7w 4 @ ez 3;:4;) Y@ o) VEdDax oz
| - (2.10)
then

Ci* /\13 Cj . (2.11)

n
A=z
b

i

J=0
The conditions

o0Ndcy = 0 for i = 0,1,.4.....10
then give the lihear equations

n
t N,.c.=o0 i=0,leu...n
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and a solution exists only if
Det | [N |] = 0. (2.12)

These equations represent a formal solution to the problem,
but the practicability depends upon whether the elements

/\ij can be evaluated with a reasonable effort. In general,
this is a formidable task requiring first'the calculation
of the Green's function:for various k andvE and then the
evaluation of the 6-dimensional integrals, which have to

be performed over the complicated atomic polyhedron. A
'great simplification can be achieved if one confines

oneself to ‘muffithin' potentials V(g) with the following

form

V() = V(r) r £ Tpt
(2.13)

That is V(g) is spherically symmetric within a'muffin-tin'
sphere of radius Trnt and constant outside. We then shift

the zero of energy to Vo so that V(z) = 0 for r > Toge

Because of the spherical symmetry of the potential
within the muffin-tin sphere, the trial function can be
chosen to be of the form

“
'»(u_ Lo
™

N3 ‘ 1 ' 1 A
b {. Y (r) =1n=1:.x g i Cim Rl(r) Y1, (_:E) (2.14)

within the spheres. Here Rj(r) is a radial wave function

satisfying the radial differeantial equation

[(-2/x%) a/ar(x®a/ar) + 1(141) /2% +v(x)-E)Rq(2) = O,
(2.15)
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for the same value of E used in constructing G(ngg. The
functions Yf“\(ﬁ‘) are linear combinations of spherical
harmonics chosen to transform according to the irreducible
representations of the symmetry group of the wave vector Xk

and they are normalized real, and mutually orthogonal.
en i .
ofchOf Sine de Y(x) 7@”,(2") = 899/ Sppse (2.16)

To desl properly with the singularities of G, we
must use a limiting procedure in evaluating A. The
integration over r’is done within a sphere of radius rpy -~ €
and the r integration over a sphere of radius Ipty - 2€.

~ Here € is a small number which tends to zero. Thus

/\::’lim /\G

€ = o0
where

A =1 ax¢lo vo (Yo -far 6(z,DWD $(B]. (2.17)
‘ r<rﬁt26 f(rmt_e

, ,
Using Bq.(2.1) satisfied by ¥(zr) and (2.4) vy G(r,r) and
then transforming the volume integrals into surface

integrals, we have

W(r) - J ar 6(z,) V() ()

rzrmt-e
“\(x) - J ez’ e(z,D) (T4B) ¢ (x)

= - Jase(e,) L ¢ () e & ex,m)].

,J
e m .t—e
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Substituting into Bq.(2.17) and noting that

S dar L/)(r) V<r) 6(z,x) = f ar (ViE)%Tz)G(z,_ﬁ)
r(rmt-ZE: r(rmt—Ze

= f ds[___lu./.g_r‘)_ G(r, r) - y/(r)—-- G(Es.r_l')].

sl t—2€

We then find that

= [dS‘ . Jas’ Ea L/’(r) ‘P(r)ai[[q,(r) a G(r, k) -a(r, r)a /({/(r)_

| TErp4-R€ rérp =€

(2.18)

Fd . /
The Green's function G(r,r) can be expanded for r<rlrp; as

4 _]_....]_I C . : . ’
G{r,r) =% % [1 By o't i (%x) iy (KII')"I-KéllI 6nmi;]l(7<r)nl(xr)_-]

X Y10 ) Yy ( T | (2.19)
where jq and nq aré the spherical Bessel end Neumann
functions.

, .
Substituting for G(r,r) and $¥(r) from (2.19) angd
(2.14) into (2.,18) we arrive at

+*
A =l§ 111211: Cim /\lm 1w’ C1w’

where

/\ /) =ER]_(I') ’ Jl(xr)] Blm li}l" [R]_(r) ’ jl(KI')]
im 1m ,
+K 644/ Gmm' [Rl(r) , nl(xr)] . (2.20)

The brackets [F,G] denote expressions of the form

[®(r),6(r)] = [F(x) ig_%l_ - G(z) %ﬁ]
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x=EY2 irm>o0
= 1(-B)Y® ¢ meon
Phe solution of the problem is therefore

Det |[Aq, 7/ 11 =0

which may be rewritten as

/
B oy -~ mby

1m gt P Sy 8y | =0 (2.21)

Or in terms of the phase shifts T‘l of the potential V(r) as

| By, 7o +xcot"ihéll/ 0ol =0 (2.22)

The phase shifts “Ll are defined by

. !
cotm = 1T Malba
Ll ./ 1,
1~ 1

and completely determine thescattering from the potential
V(r). The potential makes its influence felf only

through these phase snifts.
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Non-Varigtional Derivation of +the Secular Eguation:

We start with Eq.(2.5)
Y(o) = J &(z,p) V() PD ar
- [z, (vh B Y@ ar’
= /L &z,z) V‘Z%é) ~ (L) v’g(z-:,.r’:)'] dr.l_

+ feld 8(z,-p) az'

or using Green's theorem as a surface integral
'y 0 / oD / ;7
S {G(E,E)g;,(f(?) - Y(r) 357 e(r,r)}as’= 0

Substituting as above from Egs. (2.19) and (2.18) for G(g,éD
and Y(r) we arrive at the same equations (2.21) and (2.22).

Yet another derivation of this secular equation
was given by Beebyl® and elsborated by Ziman™ but that will
be discussed later (Chapter,6). Eq.(2.22) is the fundamental
secular equation of the KKR method and is an implicit
equation for the E(k) relationship. t

This is a convenient point to evaluate the KKRme thod
for its uéefulness and consider its relationships with the
other well-known methods for energy-band calculations, €.g.
the tight binding method, the orthogonalised plane wave
(OPW) and pseudopotential methods, the cellular method, and
the augmented Plane wave (APW) method. These methods have,

‘ 18-21
been discussed in several texts.
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The tight-binding method is suitable for core
states or localized electrons, such asrsay, the d-bands
in the transition metals. The pseudopotential is most
suitable for the other extreme - the nearly free el.ctron
energy bands such as in the alkali metals. The AFW and
the KKR methods, resulted as developments of the ceilular
method. In these methods, the difficulty of satisfying the
periodic boundsry conditions on the boundary of the unit
cell is removed as the boundary conditions are built into
the formulastion. Before going further into the rel=tion~
ships between the APW and the KKR methods, we say a
few words about the OPW method.

The OPW method requires the electrons in the crystal
to be separated into two categories - core electrons and
itiinerant electfons, and such a categorisation is not
easy in the case of transition and noble - metals. The
electrons in partially filled d-shells do not fall
naturally into either category. However, for those systems,
where this is possible the OPH method has an advantage
over the APW and thé KKR method because there is no
implicit dependence of the matrix elements on the energy.
I+ is therefore much faster (in compﬁter time), than the
APW gnd the KKR methods, because in these methods, it is
necessary to examine the secular determinant as a
function of the energy to find its zero,.hence the

eigenvalues. The APW and the KKR methods do not require
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this separation of the electrons into core and itinerant
electrons. The other disadvantage of the OPW¥ method is
that it is more difficult to apﬁly to crystals containing
heavy elements with moré core states, because the plane
wave has to be orthogonalised to more core states,
Besides, the core states in the OFW method are to be
taken as the eigenfunctions of the crystai potential and
these are not the same as atomic states.

Both the APW and the KKR methods are based on the
muffin~-tin model for the crystal potential. The unit
cell is di#ided into two regions by non-overlapping
spheres, centred on each lattice site. 'Inside_the spheres,
the potential is spherically symmetric, and outside it
is a congtant. This is a fair approximation in most
cases, but may be a poor representation in case of group
IV diamond~lattice semiconductors, where there is a
directional bonding.

By intercomparison of the results of APW and the
KKR methods for coprer with the same potential, it has
been established that they give identical results.gg’gs
There have been attempts to prove a formal equivalence
between the two methods., +The efforts of Ziman,17 Slater?4
i;loyd25 and Johnson26 have resulted in an understanding
of the differences between them and to put them into a

common basis within the framework of the pseudopotential

method, Slater triéd to transform the Ziman form of the
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KKR method, to a form very similar to the APW form,
but it could not be transformed exactly into the APW
formulation,

Both the APW and the KKR methods involve a summation
over atomic orbitals (1m) inside the spherical region and
a summation over reciprécal lattice vectors. In the APW
method, the coefficients in the atomic orbital expansion
are specified, and those in the reciprocal lattice vector
expansion are determined variaticnally. The size of the
secular determinant is equal to the number of reciprocél
lattice vectors included, and this is 20-40 in most cases.
The number of terms in the atomic expansion is usually
about 12. On the other hand, in the KKR method, the
reciprocal kattice expansion is carried out formallj,
and the atomic orbital coefficients are determined
variationally. The size of the secular determinant
is now (lpgy + 1)% , where lpax 1S the maximum value of
1 included in the summation in Eg.{(2.14). In practice it
is found that 1 = 2,3 is adequate. A plausible explanation
for the faét that 1.= 2,3 is adequate will be givenvin
Chapter 6, in connection with another derivation of the
KKR method. The Size of the secular determinant in the
KKR method is thus smaller than that in the APW method and
it therefore requires less computer time to evaluate.
Another advantage of the KKR methbd stems from the structure

of the secular equation (2.22). The coefficients Blm I&!
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which occur there, are dependent on the energy, the crystal
structure and the wave vector of the electron state, but
not the muffin-tin potential. The calculation of these
is elaborated in an Appendix Al. The potential makes
its influence felt only through the phase shifts ?Ll.
If the structure dependence is tabulated once and for
all via the coefficients By, 147> Then the KKXR method is
very convenient for studying the effect of changes in the
crystal potential upon the band structure. Such a program
has been carried out by the author, with a view to find
a suitable crystal potential for noble metals, and this
work is reported in the following Chapters 3 and 4.

We may add here that the OPW, APW and KKR methods

s 27=-29
have all been generalized to the relativistic case.

It is estimated that relativistic effects become signifi—
cant in metals with atomic number%greater than 55, and

for 2 > 71, they should not be ignored.
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CHAPTER III

Crystal Potentials in Energy Band Calculations:

Our problem is to find the energy eigenstates for
conduction electrons moving in a perfect lattice. Obviously,
the problem must be tregated in some kind of a self-consistent
field approximation. Someliow, we must set up a potential
in which an individual elecfron moves, representing not
only the action on this electron of the nuclei but of some
sort of average of the effect of the other electrons,
Having set up this poténtial, we must solve the Schrodinger
Equation of an individual electron in such a periodic ‘
potential, by one of the methods discussed in Chapter II.
When we have done this, we should determine the resulting
charge distribution, assuming that the lowest states are
occupied while those above certain energy (the Fermi energy)
are empty. We use fhe resulting charge distribution to
compute the potential and carry out iterations of this
procedure until the resulting potential 1is identical with
the one with which we started.

In the work reported here, a self-consistent
calculation has hot been performed., Rather, the aim has
been to look for a potentizl, which with only one part
of fhis,cycle~will give a reasonable description of the
energy bagds; Because of the variational principle in the

KKR method, the energies are given to a sreter accuracy
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than the wave functions, the successive cycles are more
expensive in computer time. Another reason for not
undertaking a self-consistent calculation was the fact that
this work had been motivated to lead to the choice of an
apprroprigte starting potential for the coastituents, in

the alloy problem. As will be discussed later in this
thesis, the prevalent theories for electron states in
disordered alloys involve fairly drastic approximations,
and it was therefore thought that the additional effort of
performing a.self-consistent calculation for the pure metal
case, was not worthwhile. ‘

One of the simplest choice for V(r) would be to

take it to be the same as the atomic potential within the
muf fin-tin sphere and cut it off outside. For the atomic
rotential, Gaspar and IvanecskoSO' have suzgested phenomeno-
.1ogically; simple analytical forms or one could use the
results of a self-consistent Hartree-Fock-Slater calculation
of the type performed by Herman and Skillman.31 We will
return to these only later when discussing the results

for energy bands of silver obtained with such a potential.

It is ciear that the potential experienced by an

itinerant eleétron within the lattice is not quite the

same as that felt by an electron in an atom. Tnus, one
method of constructing the crystal potential regards it

as o sum of several individual contributions of the core
and conducfion electrons. Such a séheme is comuonly used

. B3R ..
in OPW calculations for simple metals. Heine first
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used it for aluminium, Falicov33

recently Gaspari and Da534 for calculation of Knight shift

for magnesium and more

. X 3 s . 32
in Indium. Following deine, we enumerate the various

contributions to the crystal potential:

(i) potential due to ion-core

(ii) exchange among ion-core electrons

(iii) correlation among ion-core electrons

(iv) exchange between conduction and core elz=ctrons

(v) correlation between conduction and core-electrons

(vi) potential due to the conduction electrons

(vii) deviatiOn'fromVSpherical symme try
(viii) exchange among conduction electrons

(ix) correlation among conduction e€lectrons.

The main contributions come from (i) and (vi).
Next in importance are (ii), (iv) and (viii). It is
difficult to make accurate estimates of the contribution
due to correlation effects, and these are generally ignored,
or taken in account in rather simplified ways. In a simple
scheme, wnich we apply to silver, in the next chapter, we
take contributions (i) and (ii) from Hartree-Fock-Slater
calculations for the ion-core, add contributions (vi) and
(vii), and the contributions due %o exchange and correlation
between core and conduction electrons are taken into
sccount in a simple way. We now indicate in brief how

these contributions are evaluated. It is convenient to

express tne potential in a form

V(r) = - 22(r)/r (3.1)
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and we will now enumerate the various contributions to

Z(r).

Zl(r) - Contribution of the ion-core:

This is taken to be the sum of the Coulomb contribu-~
tion of the nucleus with charge Z and the surrounding core
eleotfons, and exdhange between core electrons, The wave
functions for the core electrons were obtained from the
Herman-Skillman program, run for the bare ion. The chargé

density due to the core is
e (r) Y 99( ) (3.2)
r) = .\ 0 .
‘core E i) % lx

the summation being over the core states. The wave function

is expressed in terms of another function

Pnl (r) =TI RYll(r) | -

where Rnl(r) is the radial wave function. The charge

density is then

(£) =% 2 —&1——@ L (0,8) 1y, (0.8)

C)OI’G nlm
2 2
= I 2021)R % (x)/r7 (3.3)
n,l
(core)

Phe corresponding potential Vl(r) may be written from the

/
solution of Poissons eguation as

Vv, (r) =2 (- Z, £ 4 )« (3.4)
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Performing the integration, and substituting for vy (x) gives
the final result for Z1(r) as

r 1 ' ' ‘ had '
Zz(r) =2 - { ﬁﬂr)dr + r grdrfi(r)/r‘ - £ dr“ﬁjr)/r' (3.5)

where

& () = amr” Poorel®) =z 2(21+1) Pil(r). (3.6)

Numerical integration of the above equation gives the
Coulomb contribution. To this is added the exchange

contribution, obtained from Slater's local density

approximation,
Vv (r) = ~ 6 [3¢p(r)/en]'/5 | (3.7)
and Zlex(r) = -7 Vex(r)/z.

The total contcibution of 2$(r) and zix(r) is then the

Zl(r) corresponding to the effect of the core.

Zz(r) — Coulomb potential between conduction electrons:

This is calculated by assuming a uniform distribution
of the conduction electrons in the Wigner-Seitz spheres.
The potential resulting from such a distribution is easily

seen to be

|
L0)
2]
~~
R
|
93]
H

Z3(I’)

(3.8)
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where N, is the number of conduction electrons per

unit cell. This uniform distribution should be corrected
for the oscillations due to orthogonalisation to core states.
dowever, a more important correction is due to the fact

that a sum of Wigner-Seitz spheres does not c¢ompletely map
the crystal. This correction is essentially a geometrical
problem and has been given by Heine52 and Falicov. Once
the correction is estimated for a given lattice structure,
it can be used for any metal with the same structure, by
scaling with respect to the lattice parameter and the number
of conduction electrons. |

Zs(r) - Bxchange and Correlation among core and conduection
electrong:

The Hdartree-Fock theory takes into account the
correlations between electrons of parallel spin but neglects
Coulomb correlation. This results in an exchange potential
that is too large. What Robinson et al.36 have tried to
do is to obtain an expression which has the simplicity of
the Slater formula (i.e. a local density, k independent
approximation) but takes into account some correlation

effects as well. Effectively, they replace the Coulomb

interaction 92/r12 in Slater's derivation by 512 exp(—ksrlz),
where k is the Thomas-Fermi screening factor. The
S .

resulting screened Slater exchange potential is

Voc.ox =~ 6 [5’>l’(r)'/8ﬂ:_'11/:5 F(a) (3.9)
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where F(g) depends on the charge density in the following

way

|

P(q) L 4 tan~t o 2) _ a(ya® 2
«) = 1- 3 o tan (2/a) + 5 log (1+4/0°) - g(l—g_log(1+4/a ))

(3.10)

where o = 0.646/[?(r)]1/§
The correction factor F(a) has the effect of reducing
~ the unscreeneqd exchange potential at all distances but this
reduction becomes most severe in the low density region.
It has been sl:lovsmg'7 that the Slater formula overexaggerates
exchange effects in the low density region, resulting
in a potential with a rather long tail. The screened
Slater exchange used hereJdoes overZsimplify correlation
effects, but it has the advanbage of correcting the unscreened
Slater potential in a region where it is known to be inaccurate
while retaining a form which is convenient for calculation,

There can be several variants within the above frame-
work of congtructing the crystal potential, depending upon
the treatment of exchange and correlation effects, Kohn and
Sham°° had shown that 2/3 of the Slater formula is a better
approximation. Snow39 had concluded that a coefficient
between 2/3 and 1 would be best, according to his results
of self-consistent APW band calculations for copper and
silver and found that the coefficient 5/6 gave good agreement

with experimental results. Recent theoretical work by

Lundqvist40 seems to lend support to this Qonclusion.
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An alternative method for constructing the cryétal
potential starts from the total atomic charge densities and
overlaps them., The atomic charge densities are obtained
usually from the Hartree-Pock-Slater calculations of
Herman and Skillman,31 but for heavier elements it is pre-
ferable to use the results of Liberman's calculations41
based on the relativistic Dirac equation. Such an.approach
was first used by Mattheiss42 in connection with his APV
. calculations. The motivation is that in the central
portion, the crystal potential also has an atomic character
and in the outer vortion, there is overlap from neighboring
atoms. To evaluate the magnitude of this overlaﬁ, two
approximétions are made,

(1) The atomic potentials which are overlapped are
spherically symmetric, and
(2) Only the spherically symmetric contributions from
neighbors are retained.
The superposition is done using Lowdin's g-function
expansion technique, and this is outlined briefly.43
In Fig.(3.1) we have the point P, whose coordinates

are (rl,fl) and (rg,fz) about the origins 1 and 2, We

want to expand a function

y)lm (r) = £1(ry) Y, (%) (3.11)

centred at the origin 1 in terwms of spherical harmonics
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centred at 2. Thus

; o(1m]1m) Yypr (F) (3.12)

. w 1
(z,) =2 3
Ll)l m 1 ll= o m

I'4
where the coefficients a(lﬁqlm) are to be determined.
) . #*
Multiplying both sides by Yq4y (ry) and integrating over the

angular variables gives
N * o4 L "
«(1m|lm) = J Yy (Z5) \,‘:’Lm(rl) dzr, . (3.13)

In view of the two assumptions mentioned above only the

/ / . . ‘ .
1 =0, m=0and 1 =0, m= 0 contributions are required

Poolry) = f€r1>/v4n
and  4(00]00) = %'n J £(rat, = f(alrz).

Now, from the geometry of the problem

6 = ¢

r1 cos 61 + rg cos 82 = a

1
2
r12 = a f r2 —_2ar

r, sin 8, = r, sin o, (3.14)
2

5 cos 62

Performing the angular integrati>n and using the

relation sin 85 A6, = T dr /(arz), from the above expressions,

171
we have
1 a+r )
flalry) = Zor, J f(ry)ryar, . (3.15)

2|a-r2|
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This gives the contribution at ry, measured from the origin
2, due to the function f(rl) centred at the origin 1,
the two origins being separated by the distance a.

In the Mattheiss prescription, the exchange and
Coulombic contributions to the muffin-tin potential
are treated separately. The Coulomb part is obtained by
integrating the Poisson's equation in a way similar to
that discussed before., If Voir) is the Coulomb contribution
to the atomic —otential, then the Coulomb part of the

crystal potential is
Velr) = Vo(x) + z Vo (a;|r) (3.16)
where a; are lattice vectors. To calculate the exchange,

the charge densities are overlapped to give the crystal

charge density as

6, (r) = Fo(r)+‘€ e (azlr) (3.17)

and the exchange calculated by using Slater's formula,
with another factor (2/3 or 5/6) with this density 6(r).
; 1/3
Voglr) = -6 (3 pPc(x)/Em) . (3.18)
The total crystal potential is then s imply

Vplr) = Vo(x) + Veu(®)- ' (3.19)

The Hattheiss prescription has the advantages of
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simplicity and genérality. It does not demand a distinct
categorisation into core and éonduction electrons, and is
therefore equally applicable to noble and transition metals.
The only information required is the total atomic charge
“density, and this choice is sometimes critical. We will
discuss this point in the next chapter, in connection with
results for energy bands in silver.

The restriction to spherically symmetric muffin-tin
potentials is a feature of all the work that is discussed
in this thesis. Attempts to include effects of the non-
maffin tin contributions in self-consistent APW calculations
by Rudge show that the muffin+tin model is reasonable for
metals. idowever, in the case where directisngl bonding is
important,}say the diamond lattice semiconductors, the

miffin~tin approximation may be poor.
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CHAPTER iv

Energy Band Structure of Silver:

In this chapter we discuss the energy bands for
silver resulting from a KKR calculation and employing some
of the crystal potentials of Chapter IITI. Cooper has been
the subject of several first principle energy band calculation
using different potentials as well, and the shape of the.
Fermi surface is rather well established.45-5o The main
part of the surface, referred to as the ‘belly' is nearly
spherical like the free electron Fermi sphere, but in the
eignt (111) directions, there are 'necks' which contact
the hexagonal zone faces. Lxperiments indicate thut silver
to0, has a Fermi surfaeé which is gquite similar to that
for copper. Joseph and Thorsensiave studied the deHaas
van Alphen (dHvA) effect in silver and Jan and Templetcm52
made precision measurements for the <111> neck dHvA
frequencies. Bohm and Easterling53 have performed
magnetoacoustic measurements, and optical properties have
been studied by Cooper'et a1.54 Berglund and Spider55
have carried out photoemission studies for silver to determine
the density of states and certain energy level separations.
The purpose of the work reported here was to examine
the various prescriptions for constructing crystal potentials
discussed in Chapter III. A compsrison of the results for
copper (from available calculations) and silver (this

coloulation) would allow some general conclusions to be drawn
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with respect to the suitability of a given potential for
noble metals. The KKR method was used in preference to the
APW method for reasons discussed in Chépter IT. Calculétions
were performed for the various irreducible representations
at the sy metry points [,X, and L and along the A, /\ and
Z axes. This limited calculation aoes net allow an
accurate determin.tion of the density of states, nor does it
give detailed information about the Fermi surface. It
_is, however, sufficient to depict the salient features,
such as the widths of the sp and d bands, their relative
1éoaiions and the Fermi level, which can be compared with
optical data. Contact of the Fermi surface at the zone
face is investigated, and under certaiﬁ approximationszz
(which do not involve errors of more than 3-51) the neck and
belly radii can be estimated and compared with experimental
results.
The steps of the calculation are briefly as follows: °
1) Construction of the crystal pé{éntial by one of the
methods discussed in Chapter III.
2) Sélution of the radial Schrodinger equation for
this potentisl to get the phase shifts. This is done by
using the Numerov me thod , °67%€ giscussed in Aprendix 2.
Phe other part of the calculation is independent of the choice
of potential and involves only the structure of the lattice.
3) Calculation of the structure constants using the

tormalae of Appendix 1. Full use 1s made of symnetry

considerations to reduce the size of the secular de terminant
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and the number of structure constants required,
4) For a chosen k value and a given sywumetry representa-
tion, the secular determinant is evaluated as a function
of energy. The zero of the determinant is then interpolated
by using the method of regula and falsi.59
5) Once the energy values, in a given direction are
obtained, the points are Jjoined together to form a
continuous dﬁrve, taking into consideration the compatibility

relations between the different representatians.lg

8) To estimate the neck and belly radii, we follow a
method used by Sega1122 in his calculations for copper,
and this involves two assumptions.

(i) The volume of the belly (the total volume less the
volume of the necks) is approximately equal to the volume
of a sphere with a radius E which is an average of the
|k|t's in the (100) and (110) directions.

(ii) The energy in the vicinity of the point L is given

oy

2 2
B(k) = 2% + Blky) (4.1)

with Kk = K, +.K” where k, and k) are the components'of
the wave vector along and perpendicular to the (111) axis,
ond m* is the '‘neck! effective mass. E(ky ) is obtained
from the band structure along the [-L axis. On the circle
ot which the neck joins the belly, the relation Eae:KfQ-KZ
is satisfied. From this and Eq.(4,1), the limits of k,

for the neck region are found for a given energy. The
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neck volume is then found by straightforward integration.
By adding the volume of the eight necks to that of the
sphere and méking a small correction for the eight spherical
caps, the total volume within the congtant enefgy surface
is evaluated. The Fermi energy is than determined by the
- requirement that'the volume equal one-half the wvolume of the
Brillouin Zone, so that the correct number of states are
occupied.

~ We now discuss the results of the calculations done
with different cfystal potentials, and also cowmpare these

“with experiments.

A, Gaspar potential:

Gaspar and Ivanecsk050 have suggested a phenomenolo-

gioal potential of the form

V(I’) - - 2% ‘eXD("‘)\or) _ C eXD(-—(xl’)_ f)éi\.\

r 1+Aor 1+Ar

where the first term simulates the Coulomb contribution
and the second the exchunge. fex is a parameter which was

varied through a range of values 0.60 to 1.70, and the

values of the other parameters used in the calculation were

AO = 0.74883 a = 0.16305
o = 4,28017 A =36,68710
C =39.78900 % =47 .

Best results were obtained with fex equal to 1,50 and are

shovn in Table 4,1 together with results of > other

caleculations, but even here the agreement with experiments
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is not good.

B. Atomic Potentiagl

Next we have evaluated the E(k) for a self-consistent
atomic potential of silver derived from a Hartree-Fock~
Slater scheme. For silver, such a potential, derived from
the Herman-Skillman prOgramsl gives results which are
surprisingly close to experimental results. The Fermi
surface touches the zone face at L and Ep - Ly’ has a
value of 0,016 Ry, which is close to the experimental
value of 0.022 Ry. The Lo/ - Li gap is 0.267 Ry compared
with the experimental value of 0.31 Ry. The state T25’1is
pulled below [1 ; the réé—- r; gap being -0.,01 Ry,
which is equal to the value obtained by Saow from a self
consistent APW calculation with a potential constructed
according to the Mattheiss prescription and using the
full Slater exchange. But the d-bands are pushed below the
Fermi level considerably more than predicted by experiments.
It would zppear that an atomic potential should be a poor
approximation to the crystal potential, However, the
following considerations indicate that the crystal potential
.~ in some situations, may not be very mucin different from
the atomic potential.

In Chapter II1, we saw that the crystal potential may
be built up by superposition of atomic Coulomb potentials,
and charge densities. The exchange is propertional to the
cube root of charge density. The Slater exchange is

thought to exaggerate the actual exchange and various
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schemes have been suggested to_approximate the exchangé

in a better way. It is Jjust possible that the crystal
Coulomb potential plus a reduced Slater exchange derived
from the crystal charge density may more or less equal the
atomic Coulomb potential plus the full Slater exchange for
the atomic charge density. Further, a comparison of the
vHarman—Skillman atomic potential for silver with self

49 shows

consistent crystal potentigls obtained by Snow
that the atomic gotential is close to the self-consistent

potential using the full Slzter exchange.

C, Heine Potential

This has been outlined in Chapter 1II. A problem
which one faces in trying to build up a crystal potential
along these lines is how to distinguish the core from the
conduction states, and for the noble metals this is not
a trivial matter.

‘e reg-rded the core as Ag+ and assumed one conduction
electron to be uniformly distributed over the Wigner Seitz
cell to calculate the‘three main contributions mentioned
in Chapter II1IT.

The results of the calculations indicate that such
a potential is not suitable. The d bands are too high and
ot the point X, the X5 state is found to be higher than X4
There is a pronounced discrepancy for the widths of the 4
bands as measured by the energy difference X5 - X1 which

is twice the experimental value. The_width of the sp bands
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as measured by X,/ - f1 is 0.69 Ry which is of the samé

ordér as obtained from other calculations.
D. Superposed Atomic Potentials

Reference has been made in Chapter IITI to the
Mattheiss prescription for constructing crystal potentials
from a superposition of atomic poténtials; The critical
point here is the choice of the electronic configuration
for obfainjng the atomic charge densities. Mattheiss
and Snow et al. have carried out such investigations.

50

More recently, Davis et al. have studied the effects of

chagging the atomic wave'functions on the band structure
of copper. They conclude in the light of the abundant
experimental data for copper, that the potential generated
for a 3d10481 configuration by using atomic wave functions
for a 3d94s2 configuration gave the best results. This
may be understood because the effective occupation number
changes on going from a ffee atom to a crystalline
environment, because of the overlap of 4 and s bands. For
silver, we have accordingly chosen %o calculate the charge
density for a 4dlo5slconfiguration from atomic wave
functions obtained from the Hermann-Skillman program for
an assumed 4d9532 configuration. The superposition

of the atomic potentials and charge densities is domne
through sixth neighbors. For charge densities obtained
from this configuration, best results were- obtained,

with the potential constructed using full Slater exchange.
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FIGURE CAPTICNS

Fig.4.1 'Charge' 2Z(r) = -rV(r)/2 for the potentials
employed in the calculations for silver and

for Snow's self-consistent potentials.

Fig.4.2 Energy bands of silver for a potential constructed
from overlap of atomic potentials obtained for

4d105slconfiguration from wave functions for

a 4d95sz configuration,
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CHAPTER V

Virtual Crystal Models for electron states in-DiSOfdere&hllovs:

+

The energy-band structure of nure metals and ordered

alloys may be calculated by any of the standard technigues,
such as the APW or the KKR method. Both techniques have
been snown to give identical energy bands when the same
potential is employed in the calculation. We can now
claim to have a good understanding of the problem and
with the availsbility of high speed computers, the
calculations can also be carried out to a high degree of
accuracy. The theories of disordered alloys, on the
other hand, are still in a primitive stage, 211 the
more SO0, af the level of apvlication to real systems of
interest. |

We discuss in this chapter, some simple theories
for disordered alloys, in waich a kind of band structure
is assumed to persist and an E(k) relationship is derived.
The effect of alloying is assumed only to alter this from
that for the pure host. The results are compared usually
with optical data with the assumption that direct transitions

alone are important.

The simplest treatment of the disordcred &lloy

' ) 61,62
problem invokes the virtual crystal approximation (VCA).
The VCA consists in replacing the disordered alloy by an

equivalent ordered lattice where each site carries a



potential, which is the mean value over all possible

configurations. Amar et a1.63'65

in their calculations
for g-brass as well as B-brass use the KKR method and

assume that the effective vpotential is given by

V(r) = my Uia)(r) + mp Ug e (z). - (5.1)

(a) (a)
Here U, (r) and Uz “(r) are the atomic potentials and

ma, mg are the atomic concentration of the constituents.
It is clear that the virtual crystal avproximation is
an oversimplification . of the problem.

An attempt to use better starting potential within
the virtual‘crystal'appr0xiﬁation, led to the conclusion
that this itself is not enough.67 In the virtual crystal
approximation no account is takeh of any short range
ordering effects thuat may be present. Tue theory to be
developed in the following is a generalization of the
KXR tneofy of chapter II, to a disordered alloy,'also
taking into account any short-range order that may be
present. The study was motiveted by a suggestion of

68 that the KKR method can be

Phariseau and Zimen
generalized to the case of disordered systems, In treating

7
a one component disordered systemn, Ziman69 used Foldy's

Coherent wave apsroximation to define a configuratiomally
averaged wave function., This wave function obeys a
Bloch-type condition and can be used to determine the

electronic spectra of liquid metals., Our problem differs
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from that treated by Ziman in that, whereas in the case

of 1liquid metals the disorder arises becaucse the distance
between the scatteriﬁg centres is not fixed, in the
present case it is because the spheres located at the
lattice sites are not identical.

We consider only disordered substitutional binary
alloys, and ass@me that the state 6f the alloy is
completely specified by the snort-range order paranmeters,
In this formulation, the sense of the 'configuration
averaging' is generaligzed beyond Ziman's considerations
to derive Bloch-type conditions. 'The order parameters
enter thyough the Green's function as well as through
the averaged potentials. The secular determinant
becomes gz function of the state of order, besides the
crystal structure and constituents of the alloy. The
order parameters can be obtained from X-ray, electrOn'or

) . . 71=74
neutron diffraction measurements.

We regard the alloy as consisting of two types
of closed-shell positive ion cores, & and B, embedded in
= medium of electrons. The potential at any point is

built up as = superposition of screened potentials.

V(r) = % U(z-x3) (5.2)
Jd d

where ;ﬁ is the position vector of the jth ion carrying
a potential Uj(g). The potential,Uj(g) is approximated by

o muffin-tin form. TFor the present application, this is



a fairly good approximation, and té a certain extent
unavoidable.

Leaving aside the practical difficulties associated .
with the constructicn of the potential function, our

problem is to solve the Schrodinger eqguation

[-v* v 1@ =« W) | (5.3)

where x2 is the energy of the electron state under
consideration. The Schrodinger equation (4.3) is equivalent

to the integral equation
U(z) = Jeolz-x) V(z') P(z") az’ (5.4)

where

l 3
Go(ET?) - %ﬁ exnflxlr-glz (5.5)

{z-r

is the free electron propagator. With the nelp of (5.2)

we can write (5.4) as
P =2 foy(em) T GLxp Pz ax! (5.6)
o d

Uj(rixj) is mero in the interstitial regions and therefore
the integral eguation relates the wave function to itseld
only in and on the spheres. We now introduce & variable
€ defined Dby

r=x25+f

th

when T is within or on the boundary of the j~ sphere,

and write %{f) for qb(§j+j?. Vith this notation, we can
d—
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write Eq.(5.6) as

_ ! i / /
P = Hoole—t+ xxp Us (@) Yue) 4 - (5.7

In order to proceed ahead, we need another relation between
yﬁ(j?'and %3&@). In the case of a perfect crystal, the
potential at all lattice sites is the same, and we can

use the Bloch thevrenm
’ , p)
_ o k(x4 ~ x5
F3 () = =TT E ey (5.8)
to obtain the relation

e = S Gy (_g,g') U(j’) gv(f') df’f (5.9)

l |
Here Gy, (pe) im the compl:te Green's function of the

system given Dby

) , ) ,
“exlbl) = 300t xymxy) e 575y (5.10)

This forms the starting point of the KR method.

For tae case of a liguid metal, Ziman has shown that
a Bloch type conditiwn holds for the configurationally
averaged wave function. Ve again arrive at Eq.(5.9), but

the Green's function now becomes
! ! ' ikx
GracBf) = Golp-€) + J Golp-r~x) e 7= n(x)dx

The first term on the right nand side arises due
to 1 = j in Eq.(5.10), while for the remaining terms, the

summation h s been repl ced by an integration conteining
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n(x), the probability of finding another sphere at a
distance x from the one considered first,

We consider two types of configuration averages
for a binary alloy, <{4(P)>, the average over all
permissible configurations in which an 4 atom is in the
sphere at Xy and <95(E)>B the average over all configurations

with B at x It is made plausible in the Appendix 3

jo
that Ziman's conditions may be generalized to

i

3 AC RN

e E(xjmx4) <!,L;.!,(f)>A

-and (5.11)

~<%(f)>3 = o ifxi-x5) <5le(_g')>B

The summation in Eq.(5.7) is now divided in two

"
parts £/ over 4 atoms only and X over B atoms only:
! ! i { |
P30 = % Joo(p-exyxy) Uule) Yido) ag
+ flfG (p- ¢+ ' ’ ' ).
TR -t 353"_3_(3') UB(f) L/’J,(f) df . (5.12

Introducing the configuration averages of Bq.(5.11) dnto

(5.12), we arrive at the relations

<H5(P) = §: fG‘:A (.f".ﬁf"l{j"_&j')UA(j‘) < (}:_j,(f) >ad f_'

] AB . ’ i { i
FE G (EPuxgmx UL (P <Ufp)>ap

/ BA, / j I
=2z, J&; (f-f+x 5-x 4 Uﬂf“%‘ﬁ»ﬁf




Here, the first and the second superscrivts on. the free

electron propagator denote the kindg of atom located at
th .

the j and J‘th site, respectively., We now make use

of the Bloch type conditions of Eg.(5.11) to obtain the

following two equations
B I AA ( , ik x f-x s
B = %, SO g gy 0,(6) o " gy6)oap
JG (p-g+xy-x AU @f) o1k (x5t )<?,(f)> g

and
ik(x{~x.)

<Hy()>g = ?.ngAG?fgzj-zj)'UA(f>e 7 <?b(f)> dﬁ
* ZfGBB(f_cﬂc -x5) U (f)e .'("3 ‘3 < (_t)) ag’

These expressions may be rewritten in terms of a set of

in complete Green's function a8

BN SIS fG (ff)UA(f)<‘{’(f)> Lap+ f@kx(ff)UB(¢><tf(£)> e

(5.13a)
and
<HE)>g (rf)UA(f)<‘f(_ﬁ)> df+ ka (f[’_)UB(_f)G}’(f)) Yy
(5.13Db)

The incomplete Green's functions occuring in the above

expressions are defined Dy
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98 . ; . y H
| ka(f'f‘) = Gol-f) Saa'+ T Go(f‘f‘ii)elﬁ Pss(zs) . (5.14)

887 \ .
Here F""(x) is the probability that a site at a distance

t th

X from an atom of the s h type is of the sl

type, and
the prime on the summation sign denotes that the x = 0
term is excluded. Within the sphere of variablesfip'the

Green's functions satisfy the following equation
i

2 53 i '
(V+ %) Gy @) = 8,46 (-0

The Green's functions depend upon k and X, but these
subscripts will be dropped henceforth.

In Eq.(5.13), we replsce the potential gé%ﬁ)
by its configurational average and treat <{{(f) >g ac a
solution of the Schrodinger eguation for this averaged
potential. A typical term of 3gs.(5.13a) and (5.13b) then

simplifies as follows:
S GAA(f,E) UA(E') e >,ae
‘?fGM(Ef) [Vi%_c') p+ K <P > lag!
= J[* e e vfigb(_é»ﬁdy(_é) >AVZéAA@,£) Jag'
| v Jo-g) HE) >ap

We use Green's theorem to convert the volume integral

into a surface integral over the muffin-tin sohere, and

obtain .
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AA ' ‘ ! /
J&70 ) Uate) <He) >par
= SOV AKE) 5 - KO >4V ) Jas
+ fa(f-_f') ) >af

Simplifying the other terms on the right hand side of

(5.13a) and (5.13b) in a similar manner, we have

<(/~(f) >4 = S e %'(3‘ HE) >p- <CHUE) >y af" A(ﬁf’)st’

B +/8(g- f)(‘{*(f) > df
+ f[ (jff) <y»(f) >5- <yz(f_») >B a( GAB(.E{I)] 3’

and
P >3 —-f[GBA(tIi) L <CHEY A KOy 5,8 (o) Jas!
f

+ J6% ) & <%(f)>3- <‘/’(f’) >8 35 e ef)]as’

+ fé(f-_f') <‘f(_f_) >3 df , (5.15)

The integrals involving 8-functions cancel with the terms
on the left. |

The steps now onwards proceed in a manner parallel
to that of the non-variational derivation of the KKR
method. The spherical symmetry of the potential within

the muffin-tin sphere engbles us to write

s)
P s =2 it ;LR(?(r) v, (F) .

Here, L denotes the pair of angular momentum quantum
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numbers 1 and m and Yy ( E) are real spherical harmonics
as used- in Chapter II, and Rl (‘&)(r) are the solutions
of the radial part of the Scarodinger equation for the Sth
potential. The Green's functions may also be expanded

as

ﬂss' ; ‘2’21 ss' ;
¢ (pp) =§:is,[1 Brre d1(xp) 3y (xp)

+ k8 8gg0 3,(xp) mxp) [ (P)TLE)  (5.16)

where j; and ny denote, respectively, sphericsl Bessel

a8’
end Neumsnn functions, and Bp1/are coefficients to be
determined. On substituting these expressions in Eq.(5.15)

we arrive at
38’ ) 3'

%’g’[BLL/+ X cot; ’7}& E)LIJ' 65’8’] BL/ = 0. (5.1’7)

Here, we have redefined the parameters of the trial

function as

.ﬁL(S)= OCL(S) [Rl(s>(r) g_;-— [J]_(XI‘)J "jl(xr)—%?’ ITR]‘(S)(r):]:lif'=35'rn‘t

(s) '
and ), 1is the phase shift of the 1th partial wave

T
for the & atom defined by

t ” [ 1(@‘?‘L)(r)(d/élr) [y ()] - ny () (/) [ 8 ()] ]
Co =
L Rl(s)('r)(d/dr) [ip (%)) - 37(xr) (asdr) [Rl(s)(r)]

=1

and Tpy is tne radius of the muffin-tin snhere.
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The structure constants depend on the energy and
the wave vector, and tae ph.se snifts depend on the
energy. The condition (5.17), therefore, leads to the
following implicit relationship between the energy and
the wave vector. g

det | B";SL/: + X cot"'](s)é 185! = 0 (5.18)
g LL" "se

The energy eicenvalues are determined by locating
the values of E for which the determinant vanishes. The
procedure adopted is analogous to the usual KKR method.
The structure constante, logerithmic derivatives of the
redial funetions, the Bessel functions are tabulated at
a sequence of cnergies. The deferminant is fhen evaluated
for these energies and intervolated to locate the zero.

Ziman®9 showed that for a one-comnonent_diso}dered
system, a Bloci-type condition can be obtained, provided
the wave function within any 8vhere is intervreted as
the average wvalue of the wave function for an ensemble
where this sphere is fixed, while the remaining spoheres
take all the permitted configurations. In the pure metal
case, the rearrangement of the atoms among the lattice
site does not produce any new configuration. Therefore
the configurationally-averaged wave function is Just
the same as the wave function for the potential at a site.
However, in the case of a disordered binary alloy, the
averaged wave function is different from the wave function

for a crystal of either A or B atoms,
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The average votential around any site is taken
to be the actual potential at the site plus contributions
from neighbouring atoms, their average arrangement being
described in terms of the short-range order parameters.
Let P[B|A(i)] denote the probability that if a given site
is occupied by a B atom, then a site which is its i'B
neighbor is occupied by an A atom. We denote this by
p; and assume that a knowledge of pi(i = 1,2,+....) gives
an adequate description of the state of order in the alloy
crystal.

If Y, denotes the position of the various lattice
sites referred to the B site under consideration as origin,
then the potential at a point B distant r from B, is,

on the average:

Vy(r) = Uéa)(_:;) +z {P [BlA(i):lUga) (!—%) +P[§3|B(i)]U](3a) (_r—_:t:a)}

The summation is over all lattice sites, though it is
only the contripution from the immediate ne ighborhood,

thet is significant, Similarly, we have for an A atom,

| (a)
(o) = U@ () + 3 PRIADIEY @z )eBiB0ly z,)
(04

. Y .
In fact, the P's are related to the }?S by the following

relationsh19875 _
PBla(1)] = p3
PBB(D] =1 - py
Plaja(i)] = 1 - pymp/my
PAIB(L)] = pimB/mA
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-y

We can now write the final expressions for Vl(r) and

VB(fg in terms of p; alone as

ﬁl(f? (a)(f)+ 2 [(1-p;mp/m )Uia)(£~r )+(p mp/m, )U r-r )]
(5.19)

and

Vg(g) = (a)(r) + E [ II(a)(r-r ) + (1-p .) (a) r-r j]

(5.20)

We requiré the potentialsth(g) and V%(E) to be of the
maffinstin form. The overlap from neighbouring sites
is tbérefore, evaluated using Lowdin's g~function expansion
tecanigue and retaining only the spherically symmetric
term.,

The votential is built up as a sum of a Coulomb
and an exchange part; both heing obtained from free-atom
wave functions. The Coulonmb potentisl due to a given
site plus contribﬁtion from Coulomb potentials on neighboring
sites gives the crystal Coulomb sotentigl. The crystal
charge density is obtained by an overlap of the atomic
charge densities. The exchange potential can then be
obtained by Slater's formula. The contribution due to
a pariicular kind of atom from a given neighborhood is
mltiplied by its occupation probability and summed as

in Bgs. (5,19) and (5.20) to give the averaged potentials.



Except for the introduction of these probability factors,
the procedure is exactly similar to the well-known
42

Mattheiss prescription™ for constructing a muffin-tin

potential. The radial functions Rl(s)(r) are the solution

of the Schrodinger equation for these potentials.

Evaluation of Structure Constants:

7
ss
The Bppsoccurring in £q.(5.18) are the coefficients

in the angular momentum representations of the incomplete
Green's- functions of BEg.(5.14). These are given by the

expression

e’ | ik.x P
¢ (R) = - 2= 2 £ e = %a T (zr), (5.21)

where the summation is over all lattice sites and

th tyve atom

Psskfa) is the probability of finding an s/
at a position r, with respect to an afom of the ghtype.
Por the case of a perfect lattice Pss(ra) is always

unity (8=%'), end Ham and Segall © have used the Bwald's
method to express this infinite series in direct space
‘as a sum of two rapidly convergent series - one in direct
space and the other in recgprocal space. For tpe case

of the disordered alloy the presence of the Pss(ga) term
does not allow us to follow such an approach. Therefore,

we assume that the short-range order extends only upto

a neighbornood o-. Then we have
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//’

G%s}R) _ PébG(R) g exp(ixjR-1, |) ik.r,
SR - 87w |Rerg|
@\W\ ~— ss’ s‘*l
AV x [2™%(z,) - Pgl (5.22)

s

we may expand these Greenians as

! 20 Ss’. ' S :
Gss(@ - - Cos(x R) + % i Dy, al(xR)YL(B). (5.23)

1
ar "

8g -

DL arg called the structure constants and are related 1o
ss '

the BLL/ of Eq.(5.18) by

» 01" Cry/ ot

and CIJfIfare relsted to the Clebsch-Gordon coefficients.
Comparing Eqs.(5.22) and (5.23), we arrive at the following

expression for the structure constants

S8 S‘sl ~1 ik.r
Dp =P Dy +k1 L_oTme [0y (xre) -1 31(xr,)]
oaNOo—
~ ss' ss!
XY () [P (rg) -2 1. (5.25)

Here the DL without the superscript, denotés the structure
constants for & perfect lattice., The summation extends
indirect space through a neighbornood o~ , and the prime
‘on the summation indicates that o = O is excluded.
BEq.(5.25) offers a convenient way of calculating the
structure constants for the disordered lattice, The
determination of the vhase shifts is straightforward, as

in the pure metal band structure groblem. The eigenvalues



are then determined by evaluating the determinant (5.18)
at a sequence of energies'and then locating i%s Zero
by interpolation.

The theory outlined sbove has been anplied to

78

q—brass77 and g@isordered CuSAu. The choice was guided

by the availability of experimental data. The former
system o-brass does not possess any short range order71
and the structure constants in this case are related by
simple factors to that of the perfect host lattice. The
latter CugAu is well known for exhibiting short-range

order effects and requires the use of the full form

(5.25). We consider these applications in the following.

Application to o-brass:

In this scheme, the potential as well as the
structural part depend upon the short-range-ordexr:
parameters. The absence of short-range order in the case
of q-brass, brings about a considerable sinmplification,
becanse the pair correlation factorsZP[AiB(i)])P[BIB(i)],
etc. depend simply on the concentration of the solute

(zinc) and are independent of the neighborhood.

60

The averaged potentials for Cu and Zn are determined

as discussed before. The atomic potentials, employed
to calculate the averaged potentials, were derived fron

o Hartree-Fock-Slater scheme us ing the Herman-Skillman

pfogram. An overlap was carried'through 6th neighbors.
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It was assumed that there is no change in the lattice
parameter upon alloying zinc with copper. The radii of

the copper and zinc spheres were both chosen to be ejqual

to the inscribed‘sphere radius Ting * The constant potential

in the interstitial region is chosen to be

V, = 0.5 [ Vo () + Vg (rins)].
- . sl ' .
Tne structure constants DLshave a very simple

relationsaip to those for a perfect fce lattice, because
of the short range order. E;.(5.25) reduces to
ss’

Dy = mgiDy

where D is the structure constant for the perfect f.c.c.
lattice and mg’is the atomic concentration of the éth
component.

| Calculations were performed for the energies of
conduction and d bunds af the nigh symmetry points I,X, and
L for a range of 0307, Zn concentration. The results
are presented in Table 5.1 and in Table 5.2 we compare %tne
changes in importaut level separati-ns obtained from the
present calculation, with experiment and otheXr theoretical‘
results.

The experimental information is available from

. : 6
the optical studies of g-brass by Biondl and Rayne.

Their results are shown in Fig.5.1. They observed that

the 2.2 eV abscrption peak in pure congel shifts to 2.6 eV
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for a~Cup, 9o Zny z5. The secondary absorption veak at
4.2 eV in pure Cu shifts to lower energies, with increasing
zinc concentration, the reduction being 1.3 eV for 30%

VAR

The other theoreticsl calculations for g-brass

64 79

are of Amgr, Johnson and Sommers

and of Soven. Amar

et al. use the virtual crystal apnroximation for the
conduction bands and assume that the d-band are unaltered
upon alloying. Soven uses an averaged t-matrix approximnation.
However, in order to nerform numerical calculations, Soven
had +to separate the conduction and d-band problems. In
the present formulation of the disordered alloy problem,
both the conduction ard'd-bands are. treated on the same
footing, and we find that the downward shift of the X5
level is in =2lmost ex=ct agreement with thot calculated
by Soven. Our com~uted shift for Bd% Zn is 0.0R23 Ry.
compared to 0.025 Ry obtained by Soven. Ve may mention
here, that the term d-like states is uced here for the
d bands originating due to the copper atoms. e do not
congider at all the d-bands arising from the Zn atoms. It
is well known that in pure Zn and probably in g-brass too,
the bands for the 4 electroms of zinc are highly atomic
in character and ere not influenced by the environment.
Table 5.2 shows that the predictions of our model
are in good agreement with Soven's results but differ
considerably from the experimental values. We attribute

the discrepency to the simplified model assumed for an



alloy. It may also be partly be due to the choice of (13
- potentials. The almost exact agrecement with experiments

of AJS5 is perhaps fortuitous, because for Ag-In alloys

those scheme did not give satisfactory resul‘ts.a7

It is clear that as the Zn concentration changes,
the averaged potentials of the constituents will be
modified and also the distribution of the constituents
amongst the lattice sites will alter. AJS ‘ignore effects
due to change in the arrangement of atoms amongst the
lattice sites, and attribute all effects of alloving to
changes in notential only. ;On the other hgnd, S8oven uses
potentials which are independent of Zn concentration,
thus ignoring certzin effects of alloying. In our
formulation, both VCu(r) and VZn(r) are functions of Zn
concentration. Tne internal arrangement dependence in
the problem is introduced via the partial Grean's functions
of Bq.(5.14), which also depend on the Zn concentration.
Thus, from this point of view, our model éives a better
-picture of ﬁhe disordered alloy.

However, it must be conceded that the model is
still a very simplified approximation to a real disordered
2lloy. When we employ Bloch-tyDe conditions, we are in
effect equating the alloy to a periodic system, implying
thereby infinite lifetime of the eigenstates. This is
élearly not so. A true eigenfunction of an electron
moving in a disordered assembly of atoms will be very

complicated and will eventually be diffracted and scattered
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into all possible waves. The function assumed by us is
an gporoximate solution, wvalid only for a limited time.
We have assumed them to be valid for ever. Using better
theories, like the coherent potential aprroximetion

(to be discussed in Chapter 7)s to calculate the spectral
density of gtates in aéhrass, we find that the widths of
the peaks for s-p states are of the order of 1% of a
Brillouin done dimension. This indicates that the wave
functions are very nearly Bloch functions. For d-like
stetes, the widths are slightly larger. The assumptions
implicit in defining a Bloch-type condition may not be

to0 bazd.

Application to Disordered Cuxéy,

.

The alloy CuzAu is a clagsical example of one
undergoing the order-disorder transformation. For the
perfectly ordered state, all Au atoms are at the
conners and Cu atoms at the face centers of a cubic lattice.
Above the critical temperature of 390°C there is no long
range ordering present. But short-range-order exists and

) . 32—74
both X-ray and electron diffraction me thods have been use
to study the variation of the short-range-order with

temperature in this system.
Many physical properties of this alloy have been

measured both in the ordered and disordered states. The

ds11l coefficient was found to be negative for the disordered

alloy, but becomes positive for the ordered vhase.
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However, the variation of the 1all coefficient with the
short range-order was small. Airoldi and coworkers have
carried out measurements of the magnetic susceptibility as
well as thermoelectric power as a function of the short--
range-order for CusAu..S1 They conclude that the electronic
structure and the Fermi surface (if we may use the term)
for CuzAu is quite similar to that of pure Cu. The
specific heat measurements by Rayne82 failed to detect a
difference in the density of states at the Fermi surface
between the ordered and disordered state., Recent and

more refined experiments do show a variation of 3.5)

with the setting in a—ordér.83 The soft‘X—ray emission
spectroscopy shows that thé spectrum for.this alloy is
almost identical with the spectrum of pure Cu. Besides,
there is no detectable difference between the emission
spectra from the alloy in tuae ordered and disordered
conditions,a4 The positron—anninilation experiments by
Dakhtyar et.al. revealed the maximum conduction-electron
momentum to be the same for both the ordered and disordered
CuSAu,85 Very recently, both the ordered and disordered
CuzAu have been studied by optical and photoemission
techniques, and the imaginary part of the dielectric
constant has been obtained from a Kramers-Kroing analysis of
the data. The spectrum of the disordered sample was

found to be well represented by a sunerposition of the

8
spectra of the constituents. 6

A1l these properties cannot be interpreted in
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terms of the band structure alone. Still, we thought it
would be interesting to investigate tne dependence of the
band structure of disordered CuzAu, on the degree of the
short-range order. Fairly detailed calculations of the
energy bands have alfeady been carried out for the ordered
CuzAu by Gray and Brown.®' They employed the modified
plane-wave method in conjunction with the orthogonalized-
Plane-wave mefhod. The crystal potentigl was consiructed
by slightly modify ing the atomic potentials of Herman and
Skillman,

The method for calculation adopted here for
digordered CuzAu is very similar to the one discussed
ﬁefore for a-brass. The potentials were determined by
considering the overlap from neighboring siteé, as indicsated
in ¥35.(5.19) and (5.20). The occupation probasbilities
were derived from thg available experimental data on short-
range-order parameters., Tie starting atomic potentials
and charge densities were obtained from the non-relativistic
program of Hermsn and Skillman. The relutivistic wave
functions were not employed in view of the fact thot the
band calculation itself is a non-relativistic one.

The energies were computed for stutes of different
renresentations at the symmetry points[: X, and L for
disordered CugAu at temperatures of 40500, 450°C and 550°C.
Gowley's short-range order parameters were used for 550°C

while for the other two temperatures, results from the
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more accurate measurements of Moss were emmloyed. These
ngrame ters are tabulated in Table 5.3. The results of
the calculation are presented in Tuble 5.4. The muffin-tin
radius Tp¢ was chosen to be egual for Cu 2nd Au and
equal to 2.46095 a.n. In order to see how the alteration
of o~ affects the results, we performed calculations for
o~ = 6, as well s o = 10. LExcept for the f§5/and fzg
states (which cnanged by as much as 0,06 Ry), the change
was not more than 0.004 Ry. The satisfactory convergence
shows that the approximation involved in calculating the
partial Greenians is not bad. Although the schene adopted
takes account of short-range-correlations, it 1is still |
a 81mnllfled treatment of a real disordered alloj. it
was therefore felt that a very detailed calculition
of the energy bands is aot mcrited at tais stage. DIven
with the limited calculation reported here, it is possible
to hove some idea of the distortion . of the Fermi surface.
The results indicate only slight vari~tion in the energy
levels with temperature. The fact that the shifts with
temperature of some of these levels are not regular is &
bit unsatisfactory, and may be ascribed to the different
sources of the short-range order parameters employed in
the calculation.

I+ we interpret the peak at 2,4 eV observed by
Nilsson and NorrisSG to direct transitions along, we
nobice that the Xs - K trensition is a suitsble one. Oar

calculation saows this to be significantly constant at
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1.5 eV. The calculations also show that although the
posit;ons of the s-p bands are appreciably altered,

relstive to that for pure copper, the d-bands are relatively
unchanged. Tais-exnlains why the soft X-ray enission
spectrum for the disordered CuzAu is similar that of pure

, ,
Cu, and conforms to Rookes interpretation of thisg

effect.88

The formalisms and calculations discussed above
were virtual crystal models based on a KKR framework.
A virtual crystal approximétion, based on the APW
framework h:es been proposed by Schoen.89 dis model
excludes both long and short-range order. The muffin-tin
potential wes constructed éeparately for each comnonent
and is similszr to that discussed in Ref,67, 77, ©Schoen
starts from Aiw pseudonotential formalism of Lloyd 29 and
uses a random vhaose ap roximation to show that the logarithmic
derivative of the component spheres on equivalent lattice
sites have been replaced by a weighted average or effective
logarithmic derivative. The standard APV programs
developed for perfect crystals may now be used to determine
the energy eigenvalues. Uoreover, the symre®ry cf %he
alloy superlattice can be explolted to simplify the
oaléuiations. The APW VCA was applied to determine the
band structure, density of states as a function of
vacancy corncentration and composition for Ti0O and hence

to study its stability.go Applications to most other alloy

systems of interest have not been reported.
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TABLE 5,1: Znergy valucs (in Ry) for conduction and d+baznd

states in g~CuZn for a range of Zn concentrations

oY 57 10/, 15) 207, 257, 307,
(2 -1.2970  ~1,3334 ~1.3356 ~1.3379 ~1.3417 -1.3448  -1.3487
(25’ -0.8531  -0,8557 -0.8555 ~0.8552 -0.8545 -0.8540  -0.8535
fie -0.8078 -0.8116 ~0.8133 ~0,8151 ~0,8169 ~0.8187  -0.8205
Xy ~0.5009  -0.5219 -0,5298 -0.5389 -0.5403 ~0.5590  -0.5656
X, -0,7786  -0.,7829 -0,7862 ~0,7893 -0.7924 ~0.7954  -0,7988
Xz -0.8514  ~0.9486 -0.9431 -0.9317 ~0.9414 -0.9263  -0.9218
X ~0.1235 -0.1463 ~0.1595 ~0.1712 ~0.1839 ~0.1967  -0.2095
X5 ~0.7691  -0.7733 ~0.,7770 ~0,7806 ~0.7342 ~0.7887  -0.7923
L, -0.3506 -0.3604 ~0.3823 ~0.3944 -0.4087 ~0.4195  -0.4319
Ly’ -0.7330  -0.7573 -0.7640 -0,7718 ~0,7803 ~0.7875  -0,7933
Lz -0.7773  -0.7663 ~0,7792 ~0.7720 ~0.7782 ~0.7824  =0,7870
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TARLE 5.2: Comp
the level S

arison of exverimental and
hifts and chunges in energy

from Cu to Qloso.quBO.mo.

theoretical mesults for
saps (in Ry)

Experiment:
Biondi and 0.096 0.026
Rayne
Theoretical: _
AJS 0.051 0,043 0,139 0,094 0,008 0,035
Qoven 0.050 0.045 0,098 0,025 0,013 0.062
Present : .
0.060 0,081 0,023 0.021 0,055

calculations 0.065

0,021




TABLE 5.3:Short-range order parameters pifor
GusAu employed in the present calculation

o}

Neighbor  Short-range order parameter
i 1mn 466°C 450°C 550°C
1 110 ~-0.218 -0.195 0.131
2 200 +0,286 +0.215 +0,105
3 211 ~-0,012 +0.003 +0.026
4 220 +0.122 +0.077 +0,047
5 310 +0,073 - -0,052 -0,032
6 222 +0.069 +0.028 ~-0,009
7 321 -0.023 ~0.010 ~0.003
8 400 +0.067 +0,036 +0.019
9 330 -0.028 -0.015 -0.011
{411 +0.004 +0.,007 +0.007
10 420 +0.047 +0.015 +0,007
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TABLE 5.4: Energy values at the symmetry points [",x, and
- for the disordered CugzAu as a function of the
temperature. All the energies are in Ry.,
and relative to the muffin-tin gero
Vo = =1.1358, o denotes the order of the
significant neighborhood.

§ 105% | 405° | 450% | 450% | 550° | 550%
=6 § o=10) o=6fo=10)a=6 | & 10
{ { 1 { { 1
[1 0.0041  0.0042 0.0041 0,0041 0.0041  0.0039
257 0.5581  0,6114 0.5572 0.5994 0.6499  0,6076
12 0.6009  0.6410 0.5390 0.6276 0.5717  0,6469
Lll(lower), 0.4952 0.4933 0.4950 0.4950 0,4952 0.4828
Lyo(higher) 0.9938  0.9906 0.9894 0,9883 1,028  0,9790
Lo/ 0.5539  0,5673 0.5544 0.5544 0.5732 0.5687

Ly,(lower) ~ 0.6023  0.6016 0.6022 0.6019  0,6005 0.6003
Lzo(higher) 0.6668  0.6670 0.6673 0.6673 0.6724 0.6724
X;,(Lower)  0,5013  0,5017 0.5004 0.5026 0.4981 0.4982

X o(hither)  1,1847 1.1857 1.1861 1,1866 1.2334 1.2341
%y 0.6548  0.6542 0,6558 0.6558 0.6604 0.6604
Xz - 0,5874  0,5570 0.5565 0,5567  0.5499 0.5500
X0 0.7753  0,7693 0.7746 0.7714  0.7930 0.7933

X5 0.6649 0.6684 0.6650 0,6648 0,6690 ) 0.6690
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CHAPTER VI

Spectral Density or States in Disordered Alloys-geometric
approximation:

In the preceding chapter, we discussed some simple
theories for electron states in disordered alloys, all of them
haviang the common weakness of associating a unigue momentum
with a given eigenstate, thus assigning to it an infinite
lifetime. But k will no longer be a good quéﬂtum narper for
glectrons in a disordered alloy. In such systems the
important andQEIGVent physical quantity is the spectral deasity
of states F(E,gﬁ. For the case of a perfect latlice, this
has a 6-function peak at the band energies. As a result of
disorder, this peak is broadened and its width would indicate
the departure from the Bloch-wave character of the alloy wave
function.

We will now be concerned with a theory to find the
spectral density of states by ewaluating the T-matrix for tine
system of scatterers, and then its a lication to an actual
'allby system-disordered B-brass. We will also point out that
for tﬁe case of a perfect lattice The formalism reduces exactly

to the KKR method of energy-band calculation.

General Formulation:

If G is the Jreen function of an electron moving

under the inflaence of rotentialsjUa, we have

{E +Vi_ TU, + 16 }G(E,_Jg') =8 (r ~_r_/).- (6.1)
o
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We denote by emclosing in brackets, the averaze over all
possible configurations of the system. Then the spectral

density is given by
P(E,X = - Im<G(E)>/n ' (6.2)

where Im denotes the imaginary part of the quantity that

follows it, and

-ik.(r=;§ ,
G(k) =S e G (rr')ardr (6.3)
and
n(@) = J plkB)ak. (6.4)

The T-matrix for the system is rel:ted to G and the free

particle Green's function Go by

T4 ) w v wr . .
6(r,r) = Go(r,r) + [ Golx,o) T(&,r) Gy(r,r) dr dr™ (6.5)
and /

-ik.(¥X-Tr /
() =S e rz,z) ar ar’ -
We huve, from Fourier transform of (6.5),
G'(}_{) = Go(_l_{_) + G'o(}_c_) T(}_{_) GO(}_C)
-2 U (6.6)
(k) ={Go(0} ™" o) - {6,(1)] .

The real and imaginary parts of T(k) are then immediately
In Mk) = (E-k2)% Inm G(k)

(6.7)
Rer(k) = (B-k3)° ReG(x) - (8-15)

One can develop an expansion for G in terms of the

t-functions of a si..gle atom. Tne serics looks very macn
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like that in the potentials U, except that the repetitions
of any particular U waich appear in the expansion of the

t-function of that atom are missing:

G’:G’ +G02UGO+G02UG ZUG +o -------- LN}
a Be

G = G +GoDt G, + GoZ T ($,G,t5)Gp + Gy T 2 28, GotpGoty Gobn...
oy o Br © O F o BEBHY

(6.8)
The usual syobolic notation is adopted here, in which

integrations are implicit. It may be noted that in the 3rd
term, o =¥Ymust be included and that t is related to Eh
- . ‘

fz D = U(D)s(z-r) + () 6o(z-0)t(x) r')ax . (6.9)

From definitions of T and t (Egs.6.5, 6.8, 6.9) it follows
that

T =3 t, +5 I Gty T T It G TGt H.... .
o © o Bt COP o pta wP P

£4.(6410) is the startiag point of our discussions in this
cuapter. Let By, E@....denote the ©positions of the
scattering centres

N/l

r,r') = 7 Ha-BerR )+ T =S S tlzBgor Ry E(Zhr )
o o B+

1 ] 177

X t(_z "EB, ___—'RB)dr dr F e e s es e
(6.11)

For the case of a perfect lattice, the translational sy.meitry,
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enables us to perform the following manipalations

£ . .
(X = Z f‘f’e = )(r-Ra,r—Ra) dr dr

+3 2 SS/[+(z-R _a,r—R )Go(_,r )

a ﬁ#a
/ i_l__c(,,r_‘,-g) VI T Y)
X t(g-ﬂB,I‘;-BB)e drdrdrdr + .......
/
. —ik.(r-x)
{2 s L WSSTS b () e 2 12 e arafra
(04
L] (6012)

where we h-ve defined the metrix

/
L1 | ik. (R _-R
Gy(z,x) = ﬁi Golz + B, -x'~ Rgde i) (8.13)

The series (6.12) is geometric and can be summed to cive
o -ikJ(zx —E) ‘ /
k) = N//e {t+te,t + soytoyty. ... Jarar

e(z-n) L .
foe -t lrx {t*l_ Gk’l] 1 dr d__r_'/ (6.14)

fl

Ve expect singulérities of T(g) at singularities of the
matrix {t-l-iﬁ;}-qu These would occur at the zeros of the
determinent of this matrix, and this turns out to be Eq.(6.24)
first the condition for the KKR method.

We now procesd with apvlication of these ideas
to the disordered alloy problem. There are two basic

approximations invoked in this anslysis,
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1) The first approximation is the use of muffin-tin
potentials where the potential at each site can be
ap.roximated by a spyherically symmetric distribution within
non-overlapring spheres around euch ion, and assumed constant
in the interstitial region., This approximation could be improv
at the cost of more computational etffort, but the muffin-tin
approximation has been found to be reasonaéle in baﬁd
structures calculations, and the errors due to this should

not be too serious.

2) The second simplification introduced here is the

16,91,92 . .

geome tric approximation discussed by Beeby.
acproxination (which is exact for the perfect lattice)
enables us to sum the infinite series expressing'the T matrix
for the system in terms of the t matrices for the individual
scatterers.

We start from £3.(6.10), and because of the presence
of 2 kinds of ztoms, the surmations have to be done by
splitting the T matrix series into 4 parts.

/

T = % p S8
s=1,%2 (6.15)
S =1,2 '
Te have
" zt1+ D> th ti +% ¥ % ‘biG tgf‘ s Ly
= 0 Shote) s e s s e an
0 o Bt E 0P o B ¥R @ §
2 1 { 2
o2y Bi taGOt62+ ) Bi FiﬁtaGotBGotx +oes.s.(6.16)
o Q (a4 (64
2 2 :
T i z Z%azGo'bél + ¥ I z taGotBGot%’L B PR
a Bfa o Bfa BB
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In the above expressions, the superscripts 1 and 2 denote the
two types of atoms, $,° is t?e t matrix corresponding to

the potential U® et «. T°° corresponds to that part of

the total T function in which the electron scatters, first,

off an atom of the g B /th

type and lastly off one of the s
type. The intermediate scatterers may be of either type and
are represented by t's without any superscript in the above
series.

In order %o obtain a metrix representation, we
makKe an angular monmentum expansion of the t-functions. It
is convenient to use, as before, real spherical.harmohics

YL(i) of the angles of r , where L is a compound subscript,

denoting both 1 and m:

t(r, r) = Z pa(r T ) Y1, @ r (r) (6.17)

The Fourier transformatim to T(k) may now be carried out
separately for each term of the series in (6.16). The
first term of T11 or T22 gives

' !

ik. } ( s (. 2
JT t3(r,m)e éf % =(4n)° N 231 (ke) j1(kp) 1 (z,r)r"ar
o o SL

—

ke 7 ar' v (B (D). (s.18)

where Ng is the number of potentials of type s. The

calculation of a genergl term in the series involves angular
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integrations of the type

/
S
S S

/
1= ! . ik.(R -_,
o = 1 Sip(z )Gy (z-x '+ Ry-Rgle

YL(r§ andn

besides, the radial integrals involved in t7 and a summation
cver L. A typical term in the series therefore contains
rroducts of the form

/ { 7y

where the superscripts on S take the values 1 and 2,
depending on the type of atoms at locations specified by

the subscripts. The problem is to sum an infinite series
with terms of this nature, and then to average such sums over

a1l configurations. Beeby presented a method of tackling

’ 4 /
this problem by replacing SSS = 5 sg by some SSS

Pfa

does not depend on «. The series then become geometric,

wnich

and this aporoximation is therefore called the 'geometric

aprroximation.' Then

¢ t

88 1 8s
(S%JL’ = -ﬁ-; Bi(x (S(XB )LLI
~ik.(By=R
_ % 5 fll 1! YL(r ) Golr-x ‘4 R ﬁ)e = YL(r-)gJZr aglgl
“fto (6.19)

The formalism here is identical with that of Beeby. Beeby
proceeds further by relating the lattice suwms to the Kohn-

K

Rogtoker Green's functions.



Ve can identify
ik.(R,-Rg)
£ Golr —r' RyRp) e P
Bfa
as the incompdete Green's function of Chapter 4, with the

B=a term omitted. Tais may therefore be expanded as

- _ik.(R_-Rg)
5 Go(lf_ "'-r-l"‘-B-a':B-ﬁ) el..k_(--o(, =

BEa
l“‘ll ss‘l / A ( 4/)
BT i TGp Jp(xe) jylxr Yo (z ) Yplx .
Therefore,
! i
S8 ss . . /
B 1y = 6o 310 ) (e ), (6.20)

. /

where x = VE if £ > 0 and i V-E if B < 0; and G{/ are
/ /

related to the?B%ﬁ discussed in Chapter V. The Gi% are

indpvendent of r and r and are collectively denoted by

i _ .
38 . . . .
6”7, Tae radial integrals now involve only Bessel functions

and the radial t7 functions. Their most general form is

. 2
t1%(p,q) = Ji1(pr) t75(xx") ; (qr')rz arr’ © ar’ (6.21)
1

. S
with p and g taking the values k or X. We use T to denote

tls (x,%). In this notution we have for the series

of Eg.(6.16)

mil= ()% wy 3 Yo (B ¥p(H) {tl(k,k) 8.1,/
L

S . L Tt
+ [tl(k,x)(G11+ s qtoy%esl, 5 18,5588 8,81
s=1,2 s=1,2
s’/=1,2

lo638Y 6000 )gr |7

teunl)
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A
(e B s v () [0 (6124 5 618 965”
1s_S ss's's’ 2 2 2
+ ¢ 6T Tl R C RN N Y (k)
8=1,2 =
s’=1,2

21 22
with siniler expressions for T and T .

On performing the summations, we get
|
11 2. . .
= (4n) "W, ,EUIL(K) v Ak [Bq (e, 1) 8
22 2 12 2 -1
7 Gl;]

+{t'(k,x)m'1‘1 [°14(1-6"%7°) (e

X th’k)}LL/]

12 2 ! -1 22 22 2 1é 2 -1
={4m) "N, %L,YL(@YIIQ‘){E@{”‘)I‘% [ +(1-6""77) (67 7 ) GIZJ
X tz('x,k)}mj

(86.22)

22 2
and T and T 1 may be optained by interchinging the
superscripts 1 and 2 in the above expressions. Iy and Mz

are defined by the following exprecsions:

M

il

22 2 2 - 2
X (1-G=%y )(Gl 72) 1 (‘1_(}1171) -G 17_1 6 23).

- 22 2 12 2
u (-t et (16T - e T

]

2

Phe above sets of Egs.(6.21), (6.22) and (6.23) enable us to

determine the spectral density of states.
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We mgy mention here that if there was only one
kind of atom and the geometric approximation were invoked
(which is exact for the case of a perfect lattice), the

final expression for T(k) would be

(k) = (411;)2Nmzf vy (DT ) [t1 (k) 80 + 19 (k,%) [e(a- G/T)‘l'_lm

t1(x,k) ] (6.24)

t
where G has been defined before., 'rThe g@eros of the
i . .
determinent of the matrix [1- ijLI{gives the singularities

in'the T(g). We then have
’ -l .
det]' GLLI— Tl OLLJ Il = O
Using the relstionship between T und the phase shiftS?ql

-1

Tl =—XCO‘t'Tl.1+i‘K

The imaginary part of this cancel with the imaginary part

of GLL’and we are left with the condition
et | Bpps+ x cotm | oy =0 (6.242a)

which is identical with the determinantal Eqn. of the KKR
me thod. .

From Egs.(6.22) and (6.23) we see thut the peaks in
the spectral density curves are given by

det [M;| = O or det Jtig] = 0, both xmx of the
which are the same i.e.

1-gtisd Géi?i - 0
¢?1l7l ¢ %y



If we consider an alloy for whnich the solute atoms are

randomly distributed on the lattice sites, we have

G

[}

¢c &

12
R2 G

21 11

G =G (1-¢) G

where ¢ ig the concentration and G is the Green's function
for the corresponding perfect lattice. The abvove

condition then becomes
¢ 1
l“G[(j.—C)T'FC”J}]:O

Comparing this with the expression Eq.(6.24), we
see thet for such a system of random substitutional
impurities the energy values will be the .same as that

for a verfect lattice having an averaged L-matrix at each

site.93’79

In order to calculate the s»pectral density of states
fruT the above formulge, we need the matrix eleménts of
G°° anad of the t-matrices. It is clear that the calculation
p .
of GS® requires a detailed knowledge of the relative
positions of the atoms., In the case‘of a disordered alloys,
the shorf—range-order parame ters may be used To estvimate
anl average distribution pattern ?f the constituents, thus
enabling us to calculate the Gs? A detailed discusgion of
the use of the short—r?nge order parameters to determine the
matrix elements of G°° has already been given in Chapter V;

It is assumed that the short-range-order extends only upto
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a certain neighborhood, beyond which the occupation probabili=
ties are those of a randomly occupied lattice. In terms of
the Cowley short-range order parameters ¢y, tnis means

thet aj = 0 for i greater than a cectain value o-. The
| ss’ - ‘
matrix elewents Gry/ are given by

’ / .
SS’ = 41 = DS 4 ) (6r25)
LL

S
G Z, P Oy’ 1" .

Here CLﬂfﬁ/are relgted to %he Clebsch—Go:don coefficients and

!
:DSS

L.

. -1/2 7 ] ik. Ry
= g Dy rin(am) T Pnggbyo + ki e i (xR9) -3 (xia) ) ffe)

X [PSSI Ry - mS] (6.26)

In the above expre~gion, m_ is the atomic concentration of

S
atoms of the sth type and the DL without superscrints are the
familiar structure constants qﬁ the ordered lattice, which
occur in the KKR mekhod. P°° (RF) denotes the probability

of finding an atom of the éth type at a mosition Ry wita
respect to an atonm of the sth type. This probability is
related %o the short range order parameters. Tie

'summation is over a neighborhood T in direct space and the

prime on the sumaation indicates thot the term with ¥ = 0

is to be omittad.

Potentials and t-matrices

The evaluation of the elements t,(p,q) of E,.(6,21)

is simolified by introducing model potentials in place of
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the true potential. In performing calculations on a-bréSS

using the averaged t-matrix ap:roximation, Sovenv9

suzcested the use of model &-function notentials in »lace

of the true potentials. The model potentials were chosen

to be of the form24’79

/ “ oy .
S (z,x)) =z oy () SEVEY s Slxrme) oAy

I ) 1T L(x").

- (6.27)

where Tt is the rudius of the muffin-tin sphere and
Uf are energv-dependent notential amplitudecs. We know
from the formalisms of tne APW ond KKR methods for the
perfect lattice and the extension of the KKR Method to
disordered =lloys, that the potential enters the final
formulas only through the logarithmic derivatives of the
radial wave function at the muffin-tin sohere. A suitable
rethod for determining'Ui(E) ig then to regquire it to.
yieid the same logarithmic derivatives as generated by
the ~ctual potential. Tne'Uf(E) are related to the
logerithimic derivative Dy

Ug(®) = = 2008 (B) —xi(x g/ (xrp ) (6.28)

/ :

where jq is the derivative of tuhe Bessel function and
%f(E) is the logarithmic derivative of the radial wave
function (for angulur momentum 1 =and energy B) of the

actual potential, Tne muffin-tin potentials to generate

the 1ogarithmic derivative can be coastructed by overlanping
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the atomic potentials from neighboring sites, taking

due account of the probability of occupatim of a site

by a given type of atom, 'as discussed already in Chapter V.
For a potentigl of the form (6.27), the angular |

riomentum components of the t matrix can then be written

as
/ S(p-r ) &(r -r,4)
tl(r,r) = tq me v (6.29)
] 5 -
rm‘t rm-t
so that
-1 .
t, =W (1-Uyg)) (6.30)

where g9 = Gl (Tmts rmt) is the 18 coanonent in the

/ . .
angular momentum representatiom of G(x-r ). The introduction
of the 8-function rodel potentials then leads to the

following sim»le expression for the matrix elemeats

(6.21) of t.

tl(p9Q.) = tl jl(prmt) jl(qrmf). (6.31)

’
These expressioms completely define TSS(K) in terms of
K
¢°° and the logaritnmic derivatives of tne radizal functions
at the muffin-tin radius, The spectral density of state

ig then obtained from,

(E,k) = - -t In £ 20(x) . (6.32)
5= (B-%°) % L2 s

[ e

Tae use of energy dependent .odel poteantials necessitates
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(sa i
[1 sy, AN E)
. s=1,2 S aE 4

with Bgy.(6.32).

Applications

Tne first apolicution of the t-matrix formalism
to real alloys was made of Soven, who calculated the
spactral density of stutes for various symnetries in
a-brass using an averaged t-matrix apﬁroximation.79 For
the case of g-brass experiments did not show the presence
of any short-range order. iHence, from the preceding
discussion, the averaged t-matrix aﬁprcximéﬁion is applicable.
But for the B-brass, for examnle, where short-range order
is significant to a large neigaborhood, one should use the
more general geometric approximwtion. Ve report below in
brief the results of such a program.

Neutron diffraction has been used successfully to
observe saort-range-order diffuse scattering in the alloy.g5
Walker and Keating94 found that it was not possible to
assign unigque values to the short-range order parameters
in B-brass, because of the long range nature of the short-rang
order. They therefore compared the measured scattering
with Its values calculated from various theoretical approaches
and showed that (for 75°C above the critical transition

temperature) the short-range order vurameters could be given

by a Zernike-type expreccion
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la(r)l = 0.540 € i T
T '

where r = 2r/a, and a is the lattice constant. Je have
used this expression to calculate the short-range-order
parameters exmployed in the calculation., Although the
disordered P-phase is found for a range of Zn éoncentrations
in the vicinity of the 850-80 stoidhiometry, we have chosen
the concentrations of Cu and Zn atoms to be equal.

The muffin-tin potentials for Cu and 2n were constructe
by overlapping tanrough tenth neighbors. While calculating
the Gssﬁ the order of significant neighborhood o= was also
set equal to 10. The actual potentiagl for cownper and zinc
employed in the calculation are shown in Fig.6.1, and somé
relevant input parameters are given in Table 6.1.

The numerical calculations have been carried out for
spectral density of states at the symmetry moints I', H, P
and W of the Brillouin Zone, Ve have calculated tne reduced

spectral density
P30 = 2@,k + K,

Whefe_g is a reciprocal lattice wvector, and X is confined
to the first Brillouin zone. Tais reduced spectral density
should be convenient for comparison with the energy-versuS-
momentum curves of an ordered crystal, which are also defined

modulo a reciprocal lattice vector. Some plots of'?(E,k)

plotted against E are shown in Figs. 6.2 - 6.3 , and their

peak nositions are tabulated in Table 6.2. The abscissa is
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a dimens ionkess quantity € in temms of which, the energy is
R 2 o
given by E =(4n /az)e. The ordinates give f>(E,k)a3/(4n)2‘
We now meke a compurison of the results with the

10 "
has conjectured that nonspherical

experizental data. Lioss
pieces of the Fermi surface may give rise to a detectable
singulerity in the intensity of diffusely scattered X-rays,
electrons or neutrons. He applied the idea to the neutron-
sbattering curves for B-brass measured by Walker and Keating,94
and concluded that along <111>, kp = 0,74 of the [ - P

distance. In order to estimite kp from our limited caloulatién
we use the Cohen—Heiheg5 model, characterising the band struc-
ture in terms of the states ﬂ;Ni and W/, An effective mass

can then be defined for the Iy — I/ band and the Fermi-energy
obtained. The intersection of #p with [j- P, band gives

kp = 0.75 of the [ -P distance. The free-elcctron value

for tais ratio is 0.82 uand the ¥irtual crystal apiroximation
gives the wvalue 0,78. Our qalculations thus indicate that

tne FPermi surface normal to <111> is flatter than that given

by the VCA. The calculafed flatness compares surprisingly well
with Moss's analysis of the neutron scattering data. Oficourse,
Mosg's conclusion is subject to a number of uncertainties.

The diffuseness in the Fermi surface as a result of the
disorder should erode the singularity and render its
observation difficult. It has been seen from some calculations
that eigenfunction for w.ve vectors about half way to the zone

edge denart serioudly from Bloch waves and tae Fermi surface

would anvear to be a concent of limited utility in this
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region.ge' Besides, the experimental data used by Moss is
of uncertain accuracy in the region of interest. We find
that our calculations give a value of 2.2 eV for the Nys - Nl
- gap, whereas the value due to Amar)Johnson and Wang for thais
gap is 1.5 eV. Thus our calculation gives a Fermi surface
for which the departure from sphericity is greater than that
given by the virtual crystal apgroxination. In order to

carry this comparison further we have calculted the N, /- Ny

1
gap following the same method, but using atomic potentials
for copper and zinc. These were the potentials used by
Amar et al.63 in their VCA calculations for B-brass, with
atomic potentials the Nq/ - N, gap was found to be 2.4 eV.
Thus the energy gap for the disordered alloy also is
sensitive to the choice of potential, but it is clear that
the striking differences in the values of the N4 N, gap

given by the present metnod and by the VCA approach origingstes

from the differences in the iormalismS.
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Table 6.1: Some parameters relevant to the B-brass

calculation:

‘Lattice constant 2.99072 (5.6514 a.u.).
 Atomic concentration of zinc 507 |
Atomic concentration of copper 50%

Radii of muffin-tin spheres for

Cu and Zn 2.4148 (a.u.)
Radius of inscribed sphere  2.4472 (a.u.)
Order of significant o 10

ne ighborhood

Constant part of muffin-tin -0.,9152 Ry.
potential ,



J2

..

Table 6.2 Positions of peaks inP (E,k) versus E
curves for states of varidus symmetries
in B-brass. 4ll energies are in Ry and
relative to the muffin-tin zero,V, =
-0.9152 Ry.

State Energy State Energy

M1 0.018 P, 0,158

[25' 0.160 P 0.162

[Ié 0.180 ,P4 _ 0.896

Hyo 0,124 P, 0.985

Hy 1.693 N, 0.183

Ep(Cohen- 0.511 | Ny 0.204
Heine method) |

N_4 0.404

1 _
Nl 0.571
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PIGURE CAPTIOJS

Fig.6.1 'Charge' Z(r) = -rV(r)/2 for copper and zinc
in disordered B-brass at 75°C above the transition

temperature.

Fig.6.2 Spectral density of states for r;5land r:é (d-1like
states) in B-brass, plotted as a function of

energy .

Fig.6,3 Spectral density of states for N,/ (p-like) state

in B-brass, plotted as a function of energy.
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CHAPTLE R VII

Cohnerent Potential Model for Disordered alloys - Application
to real Systems:

We have seen in the vprevious chavter, how the spectral
function may be obtained by evaluating the T matrix for a
system of random scatterers, under the 'geometric'! and average

]
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t-matrix aprroximation. Soven and Velicky et al.98

developed a more accurate theory by introducing ideas of an
effective medium nropagator. They view the scatterers as
being embedded in an effective medium, whose choice is made
self-consistently. This medium is chosen by requiring that

a single scatterer embcdded in this effective med ium should
oroduce no further scattering on the averare. This self-
consistent Hamiltonian is optimal among all single-site

ap roximstions, i.e, those which neglect scattering from
clusters of atoms. Simil T arguments were uced by kcilillan an
Andersongg in their tceatment of liguid iron. Onodera and
Toyozawaloo used exactly the same formalism to describe
Frenkel excitons in mixed ionic crystals. Closely related

to this are the efforts of Mibbard to obtain a scelf-consistent
description of electron correlation in narrow bands. In one
of his papers, Hubbardlol introduces an alloy analogy and

by using appropriate decoupling schemes for the Green's
functions egu-:tions, he asrrives at a self-congictent solution
of the alloy vroblem, which ig precisely equivalent to the

coherent ~otential e.oroximution.
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The firet application of the CPA was to a one-dimension
array of &-function votentials, where it w s found to give goo
agrecment with results of machine calculations. A notable
fecture was that the spurious band gan nredicted by the
‘averaged t-matrix approxination' was absent.g6 Since then
it has been avvulied to model 3 dimensional allovs, and also
to some real alloys. The theory of the CPA as used here
ignores the presence of any short-ranre order. .lence the
applications have been made to systens like a—CuZniog and.
Ou-AlloS for which experiments show that there is no
short range order, and not to PB-brass for example, which
shows short-range correlations upto fairly large distances.
When applied to Cu-~Al alloys, the results of the CP model
agreed well with the data from positron annihilation angular
correlation studies.g For g-brass too, the results are in

6

better agreement with cxperiments, than previous calculations

with VCA and averaged t-matrix approximations,

Velicky et al's treatment of the Coherent Potential Theory:

The alloy system under consideration may be described
as a periodic lattice containing N equivalent sites occupied
by two kinds of atoms A and B. The respective concentrations
of atoms are ¢ and 1-c, and ¢ can vary from O to 1. The
physical Juantities of interest ave ensemble averages.

Such an average of an operator Q.will be denoted by <0>.

For azny configuration, the single-particle Grecn's

function is given as

G(z) = (Z - Hj-.l 3 (701)
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where H is tne one-electron Hamiltonian corresponding

to tais configuration., A1l macroscopic gquantities of
interest are then determined by <G(z)> and the uveraged
<G> has the full synetry of the lattice, The eguation

determining the effzective Hamiltonian Hgypp is
-1
<G(z)> = (2 - Hgrr) . (7.2)
If K = K(z) is a starting a»proximation to Hgpe, then
&> =R + R (Hgpr - K) <G> (7.3)
where R=(z - K™t (7.3a)

is the unperturbed Green's function. The T matrix

corresponding to a given configuration may be written as
G=R+RTR, (7.4)
waich gives upon averaging
<G> =R + R <> R. (7.5)

Comparing Bqs.(7.3) «nd (7.5), we have
) -1
Hope = K + <I> [1+R<T>] 7. (7.6)
The =q.(7.8) relates the effective Hamiltonian
Heff to the trial function K and the averaged T. The
equation cun therefore be used in two ways to determine
the effective Jdamiltonian.
1) don self-consistent procedure - Tais consists

in determining <T(K)> corres:.o ding to a given K «nd
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inserting it into Eq.(7.6).

2) Self-consistent procedure — One chooses the K

such thet <T(K)> = O and then £q.(7.8) ensures thut

Heff = K . ‘ (7.7)

The next step is to decomnose the random-perturbing
rotential H-K into a sum of comtributions of single

scatterers associated with each site, i.e.

H-K = % Vp , . (7.8)
n
where n is a gite index.
The Green's function G can be written in ternms of

G = R + R (H-K) G. (7.9)
This, together with B,.(7.4) gives

T = (H -K ) (1+ 2T), (7.10)
vhich uron using (7.8) gives

T =5 V, (1 + RI) (7.11)

" ,

which expresses the T matrix as a sum of contributions

arising from the individusl scatterers. We define a

quantity Qn by
T =5 . (7.12)
The T matrix associated with site n is

-1
T, o= (1-VuR) ™™ V. (7.1
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Substitution into (7.11) gives

9y = Th (1+ R 5y . (7.13)

mzn

Averaging E15.(7.12) and (7.13), we have

<KI> = ¢ <Qy> ‘ (7.14)
n

Q> = <o, (1+ R 2 Qp)> (7.15)
mEn '

£q.(7.15) may be rewritten as

M£

+ KT R 2 (Qp-<qp)> (7.16)
m#En

In tnis eqyuation, the first term described the
effect of the avergged effective wave seen by the nth
atom, and the second term corresyponds to fluctuations
about the effective wuve. The basic ap,roximation is
to neglect the 2nd term, £4.(7.16) then reduces to

Qp> =K1> (2+ R T <Qp)
mEN

or -1
: > = (1+ <> R KT (14RKD>)  (7.17)

<Y,

Substituting this into Eq.(7.6), we huve for the effective
Hamiltonian

_ -1
Hopp = K + 3 <Tp (1+ RCT,D) (7.18)
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which relates it to the average scattering arising from

the nth scatterer,

The self congistent procedure mentioned after

Eg.(7.6) then simnlifies to
<, (K)> = 0 for all n. (7.19)

Because of the periodicity of tne averaged quantities,
it is sufficient to consider bnly one, say the zeroth
site. This is identical with the condition imposed by
Soven96 to determine Hoeps

| The validity of the neglect of the Znd term in
FEq.(7.16), i.e. the assumption that

<Dy R OE (Qp — <Qp)> =0 ~ (7.20)
mgn

im;.lies neglect of all statistical correlations be tween
n and gll other sites m. These co-relations arise from

the presence of short-renge-order and multinle scattering.

Application to a Model Hamiltonian.

We choose a single-band model, closely rel«ted to
the tight-binding aprroximastion. A siagle orbital |[nd>
is associated with each site n. .Jeince the name ‘'single-—
band model.' ~The one~electron Hamiltonian for this

system is

H

£ Iepdn] + £ |[mt,<m (7.21)
n NEm

=D + W
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ihe Hamiltonian H is thus Split up into a disgonal
part D and an off-diagonal vpart W with respect to the
Wammier representation. The matrix elements of H
depend in general on the configuration of A and B atoms
in the crystal. The model is physically realizable when
the orbitals are sufficiently localized and the atomic
potentials are not too different. We then find that
the diagonal elements D are random but the off-diagonal
W is translationally invarient.

The operator W is diagonal in the Bloch renre~enta-

tion
’ ik.
<kfWlk > = 8397 T top © On _ Sy # ws (k) (7.22)
- =
where |k = N“l/z r e%8n [ >
n

relates the Bloch and Wannier buses and w is one-half
~the bandwidth. The quantity s(k) describes the k
de pendence of the band energy, and is dimensioncless.
For example, in the case of a simple cubic lattice, with
nearest neighbor tight-binding bands, we have

-1 <8(k) < +1 .

. A
We choose the same units for the atomic energy levels €

and eB and choose the energy zero such that

E:A"’ 1'.006
w

T2
2

and hence 8 = (eA - eB)/GU.
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For a given operator W, the ensemble 6f Hamiltonians is
completely sprcified in terms of two dimensionaless
parameters ¢ and &, characterising the concentration,
and separation between atomic levels. Here c¢ ranges from
O to 1,and 8 can assume any value. But it is clear
from symmetry arguments that only the range O < ¢ < 1/2
and & > 0 need be oonsidéfed,

Vie want to apply *the coherent votential criterion
- (7.19) to the model dJamiltonian (7.21). Since d_ rr(z) has
the full symmetry of the crystal, both H_pe(z) and

<G(z)> = (z - Heff)_l are diagonal in the k representation.

|Hgee(2) K> = [0+ 20k,2)] 8/ .+ (7.23)

5 (k,z) is the self energy with respect to the perfect
crystal having ilamiltonian J. Another imrortant guantity
is

6(k,2) = <<x|6(z) 0> = [ms(©-2052]70 (7.24)

which is reluted to the swectral density F(k,E) by

p(k,8) = - ) Im o(x,E + io) (7.25)

and the averuge density of states is
n(B) = -~ (™1 In Tr <&(E + io0)>. (7.26)
Tt is useful to introduce an anxiliary function F(z)

defined by

N i}
F(z) = [ £ n(s) (7.27)
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All the quantities defined in Egs. (7.24 - 7.27) when
superscripted with a2 o, denote the corresvonding
gquantity for the perfect crystal.

We choose the unperturbed Hamiltonian K to be of

the form

K =W+ 3 | u(z)<n] =W + ulz) T (7.28)
n

u(z) is independent of k¥ and hence the entire k denendence
is contained in W and hence s(k). For the X defined
in 8g.(7.28), +the unperturbed Green's function is, from

Bq.(7.3a),
R(2) =(z - k)™
= [Z --L'L(Z) --WJ—l = G‘O [Z - u(Z)J. (’7-29)

Considering the Eys.(7.21) =nd (7.,28) for H and K, we
use

H-K = > [en - u(z)]<nl, | (7.30)

b
n
so that using E4.(7.8) we hove

v, = |» 6, - u(=2)] <al (7.31)
which can be written as

V, = |n> v, <nj (7.32)

T c¢can be obtained by sabstitution into 3q.(?!12a),
n
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and 1is

T (2) = Iwv, v, P (mu()]F <al

= ]n>vh [i-vn F (z)]~1 <n| (7.33)

where T (z) = F(o) (z = u{z)) . (7.34)

The coherent votential condition, then is to set the
configurational uverzge of Eq.(7.33) to zero. We see

that

A B
(2> = o | <Ll » (o) [6-u) <n]
i- (EA—u) 7 1-(e® . ) F
= |n> {c‘]‘A +(1-c)‘TB:} <n|
= ln)T(ni

The eguation for the self energy Z(z) is then obtained

by setting T(z) = 0, that is

c(SA - u) | (1-¢) (eB —u)
— + 3 — =0 (7.38)
1-(ed —u) F 1-(e7= u) P

and then we have
A - B
u(z) =€ - (67 - u) P (g7 -u)
and from the CP criterion we huve the self-energy 2(2)

5(z) = u(z) = ¢ -[E*2()] F (2) P-2(2)] (7.37)
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. A
with € = ¢ €7 + (1-c) EB, which is exactly the form
) 96
obtained by Soven. Alternatively Ej.(7.37) may be

written in a form obtained by Onodera and Toyozawaloo viz.

c(1-c)6° F° [z - 2(z)]
1+[=(2)+] F° [z - £ (2) J

™z) =¢ + (7.38)

We have seen that £z) is completely determined by ', &

and the host density of states n®°(E). TFor nO(E) we use

the form used before by Hubbard

1/2

n%(EB) = (2/nef) (f —EX) |B|g o

(7.39)
=0 B e .

The functién Fo(z) defined in (7.27) correswonding to
this form of the density of states is

10(z) = (2/2) [3 (2o )/ ?] (7.40)
Using (7.37), (7.38) and (7.40) we find that

2(z) =z ~ [M(2)]"F - F(2) (7.41)
and F(z) satisfies fhe cubic eauation

%6 F° - % . +-{;2 - % (6%-1)]F-(z+€) = 0 (7.42)
These Eqs.(7.41) and (7.42) may be solved to yield either
3 real roots or one real root and a comnlex pair. In the
latter case the one in the lower half-nlane is »hysical,

cince it results in a non-nepfwtive density of stutes.
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The theory and the model outlined above have
been discus-ed in great detail in the original mapers
of Velicky et al. and Soven. e will here touch on two
main points - 1) the comparison of results with those
predicted by other approximation schemes and 2) the
chenge in the density of ostutes, as prédicted by the
coherent-potential model, when the narameterseand 8 are
varied. These two festures are illustrated in the two
figures (7.1) and (7.2).

In the first case, the results of the CPA are
compared with those obtained by the virtual crystal
model and tne averaged t mutrix approoximation., Pig.(7.1)
shows that in the virtual crystal casey the band is always
symmetrical and even for large & there is no splitting into
two subbards, The avercged t-mutrix ap,roximation on
the other hand, shows that the band always splits This
spurious band gap was also observed by Soven in his
calculations on one-dimensions model alloy. The results
of the CPA appear to be most satisfactory. Ofcourse, in
the case of lurge 8§, the split band limit, the results
of the CPA are not expected to be correct.,

The other figure (7,2) shows the density of stites
caleulated with the model 71?(E) for a range of ¢€,0 values,
as obtained by the CPA, The general features of the
results are as follows. ZFor small conceatration (and & not

too large), the density of states is slightly modified
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from the host density of states. When & is small, this
results from a reson.nce in the band. ‘When & is greater
then the 1alf width w, localized states will start
forming and as c increasss, these broaden into an impurity
band and waen & is large enoughyg thsce will be escentially
two bands, one for each utom type. We have shownlo4
that the same features can be predicted quaiitatively from
arguments from a density matrix aprrozch, in a nuch

simpler way.

Applications to real alloy Systems:

It is not quite eagsy to apply the ideas of tae
coherent potential to a realistic system, becaure the
self-consistent equation for the coherent-notential cannot
be solved for an arbitrary syctem. The only efforts |
so far have been by Kirkpatricx et a1.105_and by us.102’103

Kirkpatrick et al. huve estentially generalized
the arguments above to asymmetric density of states and
to vsystems having orbitsl degeneracy in order to be
able to calcul :te the denmsity of étates in paramagnetic
NiCu alloys.

Tae object of the celculutiom is 1o obtain the densit;
of states for NiCu using only the host dengity of states
g inout. The function FO(z) corresponding to By.(7.27)
is thus obtained by ap-roximating n®(1¥), to the accuracy

desired by a straigat 1line interpolation connecting the

o iV LY v1r .- a3 Y ’ N
points n (&£4). The band edgec being taken st By and E/,
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A

the resulting function F(O) may be written as

n
F(0) (5) =2 a;(2-B) In(z-8;), (7.43)

where a; may be determined by pexforming the integrations
in (7.27). This is the form of FO(z) used to solve Ey.(7.37)
by an iterative procedure. To take account.of sharp
structures and overall asymnetries, such as encountered
in Ni and Cu, Kirkpatrick et al. introduce & 'steeple'
model for the Gensity of states, This consists of a
sharp peak, one tenth as wide as the whole band, located
at the ton of the band, and a low wide shoulder region.

The potentials placed on the i and Cu sites are
atomic Hartree-Fock-Dotentials-for neutral configurations.
Kirkpatrick et al. argue thzt the s-bands in NiCu will
be unaffected by alloving and concentrate attention on the
tight-binding 1ike-d bands and represent the model
Hamiltonian in terms of the interpolation schemes of Hodges
and Mueller.106 The alloy Hamilbtonian expressed in a
basis of tight-binding Bloch functions and OkW's will be

separated into a random part D and a configurati-n-independen

part Wi
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The various blocks in (7.44) are labelled by the
indices s for the plane-wuve like states, d for the
tight-binding d-states and £, T denote d states constructed
from orbitals of &g OT tZg symmetry. The CIA self-consistentes
equation is applied to this Hamiltonian to vield two

equations for Iy ' and Zgq.

Ni

Cu
Iy = <eg> -(€g - Iy) Pgleg -zp) (7.45)

Cu . Ni .
Lg = <6T> - (eT “ZT) FT(GT _ZT) (7.486)

Using the above scheme, Kirkpatrick et al. culculuted
the density of states for a range of Cu concentrations
ranging from O to 60% at intervals of 10%. It is seen that
the strong peaks characteristic of vure Ni and Cu persist |
in all caseé studied, but the effects of alloying are
strong. &t low concentrations, the peaks loose intensity
and broaden, at the same tire, the many wiggles due to
fine features of the density of states are quickly damped
out. Agter about u concentration of 307, the bund shape
changes only slightly. The peaks continue to reduce in
heignt and the second peak becomes stronger. These features
are .in distinct contrast from the predictions of the virtual
crystal annroximation whica predicts a uniform shift without
any change in structure. ZTven 1f scattering corrections
are included %he resulting change affects all varts of
the band egqually.

Tac deansity of states mredicted by the CPA is in

1C
pood agreement with the photoenission data of Deib and S»icer,
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But one must bear in mind th+t interpretation of vhoto-—
emission data is not unambiguous.

Juite another ups .roach, whicn is perhagps as
apysroximate but of nmore general alicability w:s suggeste
by us and applied to real systems such as Cu-al and
a~CuZn 2alloys. The idea is essentially to make use of
model potentials of the type used by Soven96 in hie
application of the averagen t matrix approximation to «-
brass. The motivation is that in thne calculation of
electron states in solids, the effect of the votential
enters the final equations, only through the logarithmic
derivative of the corresyronding radial function at the
muffin-tin radius. We can thus rewnl ce the actual
votential by a model votential which yields logarithmic
derivatives identical with thoce generated by the Treal
notentials. Tae model notential is chosen to be energy-—
and sngular momentum dependent &-function potential.

We rTewrite here the formulas for the CP theory ,
as introduced originelly by Soven and show how the
introduction of model notentials of the tyve specified
sbove results in simnle expressions for the density of
states. The essence of the CP theory is to place at
each site an effective notential Vg, which will simulate

the electronic nroperties of the actual alloy. The

Green's function for this lattice is

G = Gy + Go VG (7.47)
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where GO is the free—election Green's function. The
actual.alloy consists of perturbing notentials V1-Vo and
Vo-Vy, and tne t matrix describing tane scattering of an

electron in this medium is

The coherent-potential criterion then says that
the average of the constituent t-matrices must be zero,
i.e.

cty + (1-c) t5 = O (7.49)
Substituting from (7.48) into (7.49), we have
eV1+ (1-¢)V, =V = (V -V )G(V5-V ), (7.80)

$3.(7.50) ruust be solved self-consistently becéuse G is
itself dependent on V. At this s*tage, we introduce
the model poteatials describasd above und renlace the
muffin-tin 2otentials at euch site by potentials of the

form:

/
A Al
Volmx) = 3y (@) el 1 xRy, (7.51)
R S R

1
where the potential amplitudes Vg are reluted to the
logarithmic derivative of the actual wave function.

Inserting Eq.(7.51) into (7.50), we have

1 1 1 .1 1 1 1
oVE + (1-0) Vg Vo =(vi-vy) [g/ (1-V5&1)] (V3 -V5), (7.52)
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th . :
comnonent

4
where g7 = G1(R,R) and Gy(x,x ) is the 1
of the anguluar momentum expansion of Go(zrgf). We than
huve for Vol , the following exprersion
1
)

i 1 1
glvl Vg —(Clvl +62V2 (’7.53)

For a potential of the form (7.51), the T matrix is of

the form

/
/ : -, 1 6 —-R R { / )
T(x,x ) = ‘% Y. {x) é—;—%—& + 8(x -R) Yo (x ).

R(,
(7.54)
T..us the elements of the sngul.r moentumnm
expansion of the + matrix corresponding to V, are
1 1 1
Tt =V / (1-VTe) (7.55)

The cuzlculastion of the spectral density of states is now
straightforward. One places the t matrix corresionding
to (7.55) at each site and works out the spectral function

by using the usual formula

~ 1
e (8K = - In T(k) (7.56)
(5-x2)° = S

and

2 N A . ,
0(i) = 4n %%}’L(k)Yﬂ(k) {‘bl(ﬂ,k)ﬁLL

+ [(x,x) [G'( 1-G° t(x,x)]-lt( x,k)_]LL,} (7.57)
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where N is the nunber of sites and (] the volume of the

assembly and

t(p,q) = 1 jl(pR)jl(qd) (7.58)

- . . " /
with » and q, being k or X ., The matrix elements o1 G
are given in terms of the Iamiliar structure constants

otf the Kohn-Rostoker mebhod, by

, _
Grys = Dpp/ + 1 % &7 - (7.89)

Application to g-brass:

The method outlined above hus been applied to
determine the spectral density ot states for various
representations at the syrmetry voints I,X, and I and

along the Aaxis for a-Cuy no 205 30 - Fig.(7.8) shows

plots of the reduced spectral density ?5(ELE) agaimst
cnergy for th34A2/ representation., ‘e notice thut tae
curve for kX = 0,50 is broader than those for kx = 0.75 or
0.25, an observation which is in general agre<ment with
Soven's conclusions on a hypothetical alloy. A plot of
?(E,gj arainst k is shown in Pig.(7.4), again for the APY
representation., Je find that for both the curves, neaked
at kx = 0,33 and kx = 0,55, the halfwidth is the same
about 3/ of the Brillouin Zone dimension, compared to

the value of 5 for this ratio, obtained by Soven from
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an averaged t matrix calculation. But there is no
experimental method of directly probing (>(m,§) and so

we will 1limit comparison with experiments to the shifts

in the peak mositions rel-tive to pure copper (as given
by a similar potential) and predictions of other models.
We refer again to tne ontical absorption measurerents

of Biondi and Rayne. If the secondary absorption peak
which shifts tc lower energies by 1.3 eV is attributed to
the Ly Ll traﬁsition, then the coherent votential result
ig 8till in disagreement with exveriments. Our calculzted
value for the reduction in this gan is 0.167 Ry. comvpared
to the experimental value of 0.096 Ry. But one must

bear in mind that even for pure metals indirect transitions
may be imvortant. A more meaningful conmparison of the
various arrroximations could be made if additional
experimental i.iformation, for exampnle from positron

annihilrstion experinents were available.

Agsiylication tc Cu-Al alloy:

As another examnle, we have a‘:plied the above
theory to a Cu-Al alloy. Positron anmiailation experimentsg
have been made for this and the measurements indicate
that the Fermi surface in the Cu0.904,A10,096 alloy has
a neck radius which is twice that of vure copper. Ve
calculated the spectral function for a CuO.QOAlo,lo alloy

as a function of &, for the symmetry voints [ ,X and L.

One such nlot is saown in Fig.(7.5) and the vositions of
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the peaks in the spectral density are tabuluted in

Table (7.2). 1In order to make a comparison of the

results of the coherent »notential theory with exneriments,
we made = crude estimaite of the neck radius from our
calculations., It was found to be 0,304, where 4 is the

f -L distance, whereas for copoer the value is 0.18d. This
shows reasonably good ugreement with experiments.

Comparing the IL,~Lq.&aPp for Ddre booper and for CuO.9OAlo,3_o
we find a reduction by 2,48 eV. This could be compared
with optical absorptioh measurernents, but to our knowledge

no such measurements are available for this alloy.
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TABLE 7.1: Peak positions (in energy measured in Ry.
with respect to the muffin-tin gero,
Vo= ~0.9121 Ry.) in the reduced smectral
density of states in o-Cug.w0 ZnO,So for
various representutions at the symmetry
points M,X, and L, and along the Aaxis.

Representation Energy Representation Energy
(25 0,157 A, (0.25,0.0) 0.195
[12 0.188 A, (0.50,0.0) 0.198

X, 0.085 A,(0.75,0.0) 0.212
X5 0,212 lqi(o.zs,o,o) 0.144
X 0.110 A,(0.50,0,0) 0.127
X 0.635 A,1(0.75,0,0) 0.110
X, | 0.229 £ [0.25,0,0) 0.173
Ll(lower) 0.249 A%(o.5o,o,0) 0.224
L, (higher) 0.680 Agjo,vs,o,o) 0.237
Ly | 0.465

Ls(lower) 0.260

Lz(higher) 0.339
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TABLE 7.2: Peak positions in reduced stectral density
of states in Cugp, godlg 10 for various
representations at ~he'symmetry points.

Representation  dnergy Revresentation Energy
(rvd% (rvd§ _

(25 0.116 X, 0.663
[12 0.15%7 Xs 0.203
Xl 0,093 Ll 0.720
X2 0,195 sz 0.466
XS 0.051 L3 0,347

LS 0.448
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FIGURE CAPTIONS

Fig.7.1 Comparison of the density of states as calculated
in {(a) virtual crystal apwroximation, (b) coherent
votential approximation and (c) averaged t-matrix
approximation. In each case ¢ = 0.5 and 6 = 0.4,

1.0 and 2,0.

Pig.7.2 Density of states in the coherent-potential
| approximation, for a variety of concentrations
for constant & = 0.25, 0.50 and 0.75.
Fig.7.3 The reduced spectral density of States'?(E,k)‘
plotted against E (expressed in terms of
¢ = Ba>/an?) for N,y Tepresentation in a~Cug 7o%0p, 30
The numbers next to the curves denote the value

of kyx in units of 2n/a.

Fig.?.4' The reduced spectral density of states F—UBQE)
plotted against k. (in units of 2n/a) for D!
representation in a-Cug rng %15 3. The numbers
next to the curves denote the value of the parameter

€ = Eag/énz where a is the lattice parameter.

Fig.?7.5 Reduced spectral density of states for ré5'and
Eé representations for CuO.QOAlo.lO plotted as

a function of energye.
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EPILOGUE

The theories of electron states in disordered alloys
are still far from satisfactory. The Coherent potential
approximation seemsito be the best amongst those discussed
here. Numericel results given by the coherent potential
calculations for three-dimensionzal models of random alloys,
have proved superior to other approximate solutions. However,
in spite of its general plausibility and success, the
coherent‘potential model has one Qeriods shortcoming.

It takes no account of the correlation between the positions
of the‘scatterers. Gyorffylo8 has attempted a generaliza-
tion of the coherent-potential a;proximation to a system
with short-range order to find the ensemble averaged

Green's function <G>, The correlations between the

position of the scatterers were explicitly taken into

account. A quasi-crystalline approximation ié used to
obtain <G> in terms of the scattering potential and the
correlation functions. He coasiders partial average of the
operators Qg (Chapter VII) and uses a decoupling scheme
similar to that discusged in Appendix 3 except that Gyorffy
deals with partial avefages for scattering operators, whereas
the previous discussion (Ref. 77) was in terms of partially
averaged wave functions. No applications to real systems has
been made yet, but it is hoped that use of model potentials
of the form discussed in Chapter VI and of incomplete

Green's functiong in Chapter V will result in enough
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simplirications to make calcuvlations for an alloy like:
B-brass, feasible.

In order to make a meaningful evaluation of the
various approx.mations, it is essential to have a systematic
experimental study ot some alloy Systéms. We saw, for
example, that for g-brass positron ammihilation angular
correlation studies had not been done, whereas on the
other hand, for Cu-Al alloys no optical absorptivity
data were agvailable. ‘We hope that a coordinated egperimental
program, where some or all the technigues discussed in
the Introduction are used to study the same alloy systems,
will be very useful in deepening our understanding of
electrons in disordered alloys.

On the theoretical side, there is another direction
in which progress should be made. A good understanding of
the theory of electron states in pure metals led to the

109 110 ¢ approximate

development, by Hubbard and others,
schemes, which codld be used to calculate rapidly the band
structure and hence other related properties. An example
of such an applicuation is the study by Pettiforlll of the
stabi}ity of verious possible structures. A development along
similar lines for alloys would be very useful. The theories
discussed in the thesis are apparently well suited to be
reduced to such rapid computational schemes.

An investigation of the transport properties of
~ disordered alloys would also be very illuminating. Velicky's

112
attempt at evaluating the average of <GG> using the ideas
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of the coherent potential approximation showed that the
terms thrown away in making a single site anproximation
may be important when considering two-particle Green's
functions.

A host of other physical properties like phonon
frequencies, specific heat,optical properties, remain yet
to be explored. Understanding these physical properties
in terms of the behavior of the electronic states are

challenging problems in solid state theory today.
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APPENDIX 1

Calculation of the Structure Constants:

We have seen that the structure of the lattice
enters through the coefficients Dy in the angular
: /
momentum expansion of G(_J;,E). This Green's function

may be written as

G(B) - 41%— Z eXp[i}dB‘Em” exp (ii(.za) (A1.1)
“ IRz,

where R = r -~ _I_': % = VE and the sum is over all lattice

sites. In order to perform this summation to an adequate

convergence (an accuracy of six significant figures), it is

necessary to make an Ewald transformation and express

the series (Al.1) in terms of a summation in direct space,

as well as reciprocal space.

We use the relation

exp [ix|B-ry|]
IR -

gexp[:-(gi_—;_a)z‘fz +)§/4?2e]d§ (A1.2)

!
el

Iyl

| 1/2 .
In the above integration, the contour for > %”L / is
chosen to run along the real axis, ] being arbitrary.
The integral can be broken into two parts (O,%“‘Ll/2) and

7 .
(% "L/, + ») and G(R) may be written. as

G(R) = Gy(B) + Go(R) (41.3)
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We can now express Gl(g) as a series in reciprocal space

by making use of the following identity, which is valid
t/y_

at each point along the contour (O,%"{ ):

- 2 2 3/2 2
2o (Re) § T k(B = G )8 e [-(Eovk) /ot i, 1]
(A1.4)

where K, denotes reciprocal lattice vectors, smd 7T is the

volume of the unit cell, We then obtain for Gl(g) and Go(R),

the following expressions,

G, (R) = - 1 z oxp [1(K,+K) .E] ex1>[{_(1_g:_n+_1§)2+E}/ﬂ
GZ(B_) = - %"5_3/2%%/;2_ 5 exp[il_g.;‘_a—(ga'_g_)z? 2+E/4<fz]d'j=

where we have written E for Kg.
We can obtain expressions for the structure
constants Dpy by expanding G{(R) and Go(R) termwise in

spherical harmonics with respect to R, to arrive at

(2) (3) 5

(1) .
Drm = Dy + Dy + Dry 7.0

Since the structure constants are independent of R, we may

take the limit R - O obtaining

. 2
|Kpti ™ exp [-(Kntl) "/ ! YL},z@r?*.ls)
(Kn+i0)® - E

DI‘M( ?) = —(4n/7) 7<—Le>q>(E/"l);23l

-1/2 IL+1 L L A
AL /2 gyPr it g grﬁ exp( ik.zy) Yy Za)
8 ennloff o s Tag
(3) /22 "y
D = - l__ z
00 an a=0 o' {(2q-1)
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The prime in the summation in the expression for DLM(z)

indicates that the term'with.ga = 0 is to be excluded.

These are the basic expressions employed in the
calculation of the structure constants, In practice, the
number of independent constants required is reduced by
using symmetry considerations. We choose the YLM(ﬁ) of
the angular coordinates of R to transform according to
the irreducible representations of the group of the wave
vector k, Then only those Dyy are non-zero which correspond

to the symmetric representation.
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Numerical Solution of the Schrddinger Equation:

e have seen during the discussion, that the effect
of the potential, enters the final formulation, only through
the phase shifts at thé radius of the muffin-tin spheres.
This calculation was done numericelly using the Numerov
method for integrating the Schrlddinger equation. The .
method and its advantages aie discussed below briefly.

The equation to be solved is |

- %.2. = (° )+ ;Ll_%_%_ll + V(r) -EJ Ry(zr) = O. (a2.1)

It is convenient to work in terms of another function

Pl(r) = rRl(r), énd then the above equation reduces to
the form
2
L4+ 12D y(r) - 8] Py(x) = O. (42.2)
'drz ) -

The advantage of this form is that the first derivative

is absent, and one can use the Numerov method for numerical
integration. In the case of the‘atomic problem discussed

by Hartree, the equation has to be solved to give E and Py(r)

subject to the conditions

1) Py = O at r=0 and r =

2) In the range 0<r<e, the function Ppi(r) must
have n-~-1l-1 nodes.

The method for doing this had been given by Hartree,
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where one starts with the solutions at the origin and
integrates outwards, thus generating a trial radial wave
function with a given energy. Tne outward integration is
stopped at a point which lies outside the last peak of the
trial radial wave function. If the number of nodes of this
function is n-i-1, an inwara integration is started.

If the trial energy were equal to the true energy
eigenvalues, the logarithmic derivative at the matching
radius of the trial wavefunction, generated by fhe inward
integration would be identical with the corresponding
quantity generated by the outward integration. If this is
not so, the energy is changed till the required degree of
match is achieved. A program to perform this has been
given by Herman and Skillman.,

The problem in our case is simpler. The equation
has to be soived for a given energy and subject to. the
condition Py(r) = O at the origin. The iteration in energy
part of the Herman Skillman program is therefore not required.
We now give a short discussi-n of the basic iteration
procedure in the Numerov method.

The radisl Schrodinger equation (A.2.2) can be.

written as

i__f’_éﬁ = o(r) P(r) (42.3)
r . .

(we drop the subscript 1), where

g’(r) = [V(r) -E + -1—%—*—'—1-)_'1. (A2.4)
r
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We perform the integration on a meéh, which is closely
subdivided in the region of small r and gradually with
larger steps for lafge values of r. The subscripts to the
gymbols of the functions, denote wvalues of the functicn
at the corresponding mesh point.

We can write the expansion for the function Fp

about a point r = ry, in a Taylor's series as

/ n " no M
Pnti = Pn + Py + 57 Pp + 3 By (42.5)

where h is the spacing in the mesh and the primes denote

differentiation with respect to r. (h = ry,q - Tp).

Differentiating the above eguation twice, we have

" " " ne w) .3 v
Phy1 = Pp + 1P, + o Pn+%-l. P, + (A2,8)
h2 It .
Let y, = Py - i3 P, Dbe a new variable, then
‘hz "
Yneg - = Ph+r - 15 Pn+1
/ 2 M- 3 s (7 6 Wi
- 5 ho h__ _ b
= Py + hP, + 1o F, + 35 Py, - 750 P 480Pn +

v
We note that the coefficient of 3n) is identically zero.
Now Yn.q can be obtained from the above expression s imply

byvreplacing h by -h.

i 2 3 h
Sh' h P -+ e P —
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The second difference in y at r, is therefore

62 In = yn+1 + In-1 ~ 2Yn
I 6 D)
2 h

If we neglect the second term on the right hand side,

we have the simple relationship

o P . . (AQ.’?)

Thus, if we know the solutions for Pp, ¥, at two points
n-1 and n, we can find the solution at Yn4qe 2nd hence the
integration can be carried forward, The truncation error
h6 (Vi) . i h
is determined by the fterm gz P S0 that by keeping
smsll this error can be readily controlled.
The starting valiaes required to use Eq.(AR.7)

to continue the outward integration are obtained by

expanding Pl(r) in terms of a power series of the form

1+ 2 3 44
Pi(r) =1 1 [}+Alr + Agr® + AgrT + A4r ], (A2.8)

Substituting into Eq.(A2.2) and solving the results for
the coefficients A, to A,. Once these coefficients are
known, Bq.(A2.8) gives the starting values at the first

few points of the integration mesh.
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APPENDIX 3

Proof of Bloch type conditions for averaged wave function

Ziman has shown that the 'configurationally averaged!
wave function satisfies a Bloch-type condition for a one-
component disordered ' system, where ail scatterers are
identical. The concept of configuration averaging is,
however, quite general and not limited to the case of
identical scatterers,

We denote by s the scattering properties of the
scattering centre. In the present application s is merely
an identifying index. 4 particular configuration of the
scatterers is therefore defined if we know their position
vectors X1, Xo,.....X)y » and scattering parameters
(identifying indices) 81, Sg «+.... s In the case of a
binary alloy, S4.....Sy can have either of two values
corresponding to the two components. The probability

that the set of N scatterers will be located at X1, Xo...Xy

is denoted by n(_jil, 2_{2. . -§N|s132 . -SN) dl{ld‘xz' .o .d;_SNC

If one scatterer is held fixed and all the other
scatterers averaged over, the configurational average

will be given by

<‘f(fl$1)> = f--ff(f)n(zisllggxs...EN; 8283..SN)Q32..Q§N

where n(xysq |x5,%5- . - XN3 SpSz...sy) is the probability of

finding sphereres of type Sg at Xo 9 Sg at Xg etc., given
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that there is a sphere of type sq at x5+ If two spheres

are held fixed, we have:

n(_}ngllzgz. 00}1@;‘82- . .SN) = n(_)glsl,lCzSzl_}_C_g.. o_}ib]';SS. . v-SN)

Pslsz(g_cz-—zc_l) . (A3.2)

where P°152 (xo - ;c_l) denotes the probability of finding a
sphere of type so at Xp , given that the sphere at x, 1s of

type s.

We now take the configurational average of BEg5.(5.8)

Pile) = g,f Go(e- €'+ x5 - gcjng‘(é) s (€) ae'.

Let the j;i site be an A atom. Then the contribution of the
A sites to (%({’lf&v))Ais:
J fo:A(f:f_'““_}Sl"lig) PAA (-}_{2‘_}_{1) UA(é) %A (é) dfl

n(x, 4, EZAL§3"°ﬂ§N; sg....sN) AXe -Gy

Similarly the contribution from B sites is:

AB AB i B
1 /
J Jeo (p-g'+m-x) P o(x,-x)UR €)% (£)4f
n(‘}slA’ §2Bl 2_(_3' LI L}_{N; 35. * 0 .SN) diCS LI 'd_}_c.lq-
We define

) 8 ' .

d_XB. L 2 .d-quq'

(A3.3)
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and make the approximation

i
hle '}2’3{1»3231 = < ‘/’z(filzsgbsz (43,4)

We then arrive at
Feplx)>, = Je t4eeVw, (e cyw (e [x)>, a¢!
x>y = JETHE-0V, 1L IE2 0T
A4 ) [\ AL / )
S JG T (- 4 -3 U ()P (-2 ) < H (£l 5p) > A Ay
iB ) 1 _AB j !
+ S [ 6y (f-f+x-%,) Ug(e) P (ro-x, )< H(Clxp)> dpdx,.

A sinilsr expression is obtained if the j = 1 site is
chosen to be a B atom. Both these expressions may be

written in the abstract form:

<yi(ﬁ)>ﬁ = [ F(gcz-s_cl) (’}bg(fpa dx,
Py = S M(xpmx,) <K(p)> ax,

These equations are translationally invariant in the spce of

X1sX%, and, therefore, have solutions
<t (P>, = exp[ik. (x1-%)3 Yo(p)>,

< (p)>p = exolik. (xg-%)] <§(p)> .

Equation (A3.4) is an 'insensitivity' relation implying thattk

vave function within a particular s:here ic, on the average,
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insensitive to the exact whereabouts and arrangement of
neighboring spheres, but depends only on the position and

kind of the sphere. This is almost the same apovroximation

as made by Ziman for liguid metals. It does not aspear to

be a bad sprroximation for the case of alloys, as it is eviden
that very distant spheres do not affect the wave function
within the sphere under cdnsideration, and the effect of

near neighbours is more or less taken into account by.-the

averaging process,
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