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RESUME  

The work reported in this thesis is the result of 

the author's attempts to investigate the nature of 

electron states in disordered alloys. In particular, the 

interest was in alloys of the noble metals. It was clear 

that two aspects of the problem must be explored. 

1) The choice of the one-electron potential and 

2) The scheme for determining eigenvalues. Both these 

choices must be such that for the corresponding pure host, 

they give an adequate description of the band structure. 

The first part of the thesis is therefore concerned 

with an energy-band calculation of silver and its change 

with different choices of the crystal potential. The 

2nd chapter is devoted to an exposition of one of the methods 

of energy band calculation of metals, namely the Green's 

function method of Korringa, Kohn and Rostoker (also called 

the KKR method), and its comparison with other methods. 

The reasons for the choice of the KKR method for this 

investigation :Ire also indicated. The 3rd chapter gives 

details of methods of constructing the crystal Potentials 

and some other details relevant to the calculation. The 

IVth chapter deals with the application of the method to 

calculate the energy bands in silver and presents the 

conclusions regarding the choice of a crystal potential. 



The remaining chapters deal with an extension of 

these ideas to tae aisordered alloy problem. In the 

Vth chapter we discuss what we call 'Virtual Crystal :Jodels', 
and though these differ slightly in the actual approximations, 

they are all characterised by assuming an infinite life 

time for the eigenstates. There is thus a unique energy-

wavevector EW relationship and the effect of alloying is 

assuPed simply, to alter this from that of the host. 

However, one knows that in a disordered alloy, we cannot 

speak of an E(1;) relationship. Rather, we must formulate 

in terms of densitiesesuch as p(E,k) and this does not 

have a 6-function peak but is broadened. Such a treatment, 

based on a multiple scattering description is carried out 

in the subsequent chapters. An attempt is made to evaluate 

the T matrix for the assembly of scatterers and to find the 

spectral function Ip(E,k) from it. The 12 matrix of the 

system is expressed - as an infinite series in the t-matrices 

of the individual atoms and the problem is to sum it and 

average it over all configurations. For the case of a 

perfect' lattice the series is geometric and it is found 

thatio(E,k) is non zero only when E and k satisfy a certain 

relationship, which is exactly the equation for the KKR method, 

discussed in Chapter II. In chapter VI we sum the series for 

the disordered case, under the geometric aperoximation, and 

present the results for disordered p-brass. -4 -a alternative 

multiple scattering description is the coherent potential 

model, which postulates an effective potential at each site, ai 
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INTRODUCTION 

A knowledge of the electronic spectra is fundamental 

to an understanding of the physical properties of materials. 
For the case of perfectly periodic solids, the nature of 
the electronic spectra is well underStood. The basic 

mathematical formalisms had been known for a long time 

and one has an adequate general prescription for determining 

the energy bands, and wave functions in perfect lattices. 

With the availability of high speed and large memory 

electronic computers and standardized programs, such 

calculations have become a routine procedure in some 

laboratories. Energy band calculations became more 

sophisticated with the development of experimental techniques 

such as the de Haas van Alphan effect, (dHvA) which give 

direct information about the topology of the Fermi surface.2 

Disordered systems have attracted much attention 

in the last decade - alloys, liquid metals, crystals with 

impurities and even long molecular cnains may be regarded 

as such systems. Our understanding of disordered systems 

is still fax from complete. There are experimental as well 

as theoretical difficulties. In disordered systems, the 

short mean free path renders the observation of such (dHvA) 

oscillations difficult. Attempts have been made, however, 

to apply dHvA to dilute alloys, by using high magnetic 

fields and sensitive measurement techniques to overcome the 



9 
amplitude reduction caused by impurity scattering. The 

effect requires that coc T> 1, where toe  = eH/m*c is the 

cyclotron frequency and T is the lifetime of an electron 

in an orbit, between scattering events. It is clear therefore 

that with increasing impurity concentration, higher magnetic 

fields will be required and the method becomes irrappropriate 

for non-dilute alloys. Recourse has therefore to be taken 

to measurements of other properties, not so directly related 

to the Fermi surface, and hence, the interpretation of the 

results is not always unambiguous. In recent years more 

and more experimental data related to electronic states 

in disordered systems is becoming available and this has 

stimulated a great deal of theoretical work, and the interest 

in the field is rapidly increasing. Before proceeding further 

with the theories, we mention here some of the different 

types of measurements made to study electron states in 

disordered alloys, and refer to the original papers or review 

articles for details. 

A phenomenon whose observation is not restricted 

by the requirement of long electron relaxation times is 

that of magnetoresistance. Berlincourt et al.
3 

have made 

pulsed magnetic field studies of the magnetoresistivities 

of Ti Mn and Cu - Mn. alloys. There has been considerable 

investigation of the optical properties of alloys, both in 
4,5 

the visible and soft-X-ray region. There are two conference 

reports which deal with these electromagnetic probes. The 

interpretation of the data is not straightforward. It is 

not possible to attribute the absorptivity peaks only to 
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'direct' transitions, for even in the case of pure 

metals, it has been argued that indirect transitions are 

important. In the case of X-ray spectra many body effects 

play an important role. Extensive observations of the 

optical absorption in noble metals alloys have been reported 

by Rayne and his collaborators6 and these are used 

frequently to compare the results of theoretical calculations. 

They have also carried out measurements for specific heat 

(which is related to the density of states at the Fermi 

energy) for a number of alloy systems. Another optical 

method, which has been applied to the study of noble metal 

alloys by Stern, McGroddy et al. is the polar reflection 

Faraday effect.'7 The experiment consists in measuring the 

rotation of surface polarized light on the metal (or alloy) 

with a magnetic field applied perpendicular to the surface. 

This method has been applied to Ag - AL alloys to observe 

their absorption spectrum in the visible and ultraviolet 

region. 

When positrons annihilate in a solid, the gamma-rays 

emitted are not exactly anticolinear and their angle is 

determined by the motion of the electrons in the solid 

where the annihilation takes place. Since for most of the 

metals, detailed investigations of the Fermi surface are 

available, this is not of much interest. Because the 

techniques of measuring electron momentum by positron 

annihilation do not require specimens of high purity or 

long mean free paths, they are more useful for examining 
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the Fermi surface and electron structure of disordered 

alloys. Several alloy systems have been investigated by 

this method, some examples, being Cu3Aul  Ni3Mn, LiMg and 

Cu-A1.819  

The existence of Kohn anomalies in phonon dispersion 

curves measured by X-ray and neutron scattering is well 

known and can yield information about the Fermi surface. 

Moss10 has shown in a recent work, that similar anomalies 

occur in the local order diffuse scattering of X-rays and 

neutrons. The detectability of the anomaly depends upon 

the curvature of the Fermi surface and its diffuseness at 

the particular temperature. If the mean free path becomes 

too small, the singularity will be smeared out. These 

ideas were applied to existing data on Cu3Au and P-CuZn 

alloys to make qualitative conjectures about the Fermi 

surface. Though Moss's interpretation of the existing data 

is interesting, the method is not of general applicability, 

and the interpretation of the data not entirely unambiguous. 

A novel method for deriving information about the 

Fermi surface topology and the electronic density of states 

was proposed by Higgins and Kaehn.
11  It consists in the 

precise measurement of the superconductivity transition 
Tc 

temperature Tc and its pressure derivative 
d
70 -- 	The 

results of the measurements are interpreted within the 

BCS framework12 and it is seen that dTc/dp is essentially 

proportional to the energy-derivative of the electronic 

density of states, and therefore reflects strong structure 
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at values of Ey  near the van Hove singularities in the 

density of states. 

Thus, being equipped with. a good understanding of 

the perfect lattice and with the large amount of data 

available from experiments, it was natural to enquire, what.  

happens to the electron states, when the periodicity of the 

lattice is destroyed by introducing substitutionally a 

large number of atoms of a different kind. This is the 

subject matter of this thesis. One faces enormous difficulties 

in building up a rigorous theory of such systems and 

approximations have to be made. The great simplification 

resulting from the Bloch theorem in the case of the perfect 

lattice problem is not there in a disordered system. Apart 

from the intrinsic theoretical interest, the presence 

of disorder leads sometimes to interesting physical effects 

which may be of technological importance. A well known 

example is the Ovshinsky effect13  in amorphous materials. 

Another example, which is more directly related to the 

work reported in this thesis ,concerns alkali-noble metal 

alloys. Li, Ca, Ag and Au are all metals, but when one 

makes the alloys LiAg and CsAu, one finds that LiAg still 

retains a metallic character, while CsAu behaves like an 
14 

extrinsic semiconductor. 

The work reported in this thesis is the reault of 

the author's attempts to investigate the nature of electron 

states in disordered alloys. Our interest was in alloys 

of the noble metals, It was clear that two aspects of 
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the problem must be explored: 

1) The choice of the one-electron potential and 

2) The scheme for determining eigenvalues. Both these 

choices must be such that for the pure host, it gives an 

adequate description of the band structure. For this 

reason and because the theories of alloys, discussed here 

are based on a multiple scattering framelkork, we discuss 

in the beginning of the thesis a theory for energy bands 

in periodic lattices and apply it to see the dependence of 

the energy bands on the choice of crystal potentials 

for silver. 

The ..2nd! chapter is devoted to an exposition 

of the Green's function method of Korringa, Kohn and 

Rostoker (also called the KKR method),15  for energy band 

calculations of metals, and its comparison with other 

methods. The chief feature of the KKR method which renders 

it more suitable for this investigation is the separation 

of the structural and potential parts of the problem. Other 

advantages of the KKR method are also mentioned. The 

3rd chapter discusses some prevalent methods for constructing 

crystal potentials and presents some relevant details. 

.The 4th chapter deals with the application of the method 

to calculate the energy bands in silver and presents 

conclusion regarding choice of crystal potential. 

The remaining chapters deal with the study of 

electronic states in disordered alloys. In the 5th chapter 

we discuss, what we call 'virtual crystal models', and 
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though the models we discuss differ slightly in details 

they are all characterized by assuming an infinite 

lifetime for the eigenstates. There is thus a unique 

energy wave-vector E(1) relationship, and the effect of 

alloying is assumed to only alter this from that of the 

host, However, one knows that k is no longer a good 

quantum number in a disordered system and it is no longer 

appropriate to speak in terms of an E(k) relationship. 

Rather we must formulate in terms of spectral functions 

(E,h) 

f(E,k) =
n 
 6(E-En) 1 (pri(k) 1

2 
—  

where 	is the kth Fourier component of the eigenfunc- 

tian n, and En  is the corresponding eigenvalue. This 

function is no longer the 6-function characteristic 

for the periodic lattice, but is broadened. Multiple 

scattering theory16 is used to evaluate the T matrix 

for the assembly of scatterers and to find the spectral 

function r(Etk) from it. The T matrix is expressed as 

an infinite series in the t-matrices of the individual atoms 

and the problem is to sum it and average it over all 

Configurations. For the case of a perfect lattice the 

series is geometric and it is found that IF(E,k) is non-

zero only when E and k satisfy a certain relationship, 

which is exactly the equation for the KKR method. In 

Chapter 6, we sum the series for the disordered alloy 

case, under the geometric approximation, with explicit 
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introduction of short range order. The method is applied 

to disordered p-brass. The above mentioned geometric 

approximation, in the absence of short-range order reduces 

to the averaged t matrix approximation, which consists 

in placing at each site of the alloy lattice, an effective 

potential, such that its t-matrix is equal to the average 

of the t matrices of the constituents. Later investigations 

by Soven showed that the use of the averaged t2matrix 

approximation leads to a spurious band gap both for model 

one-dimensCional and 3-dimensidnal alloys. 	The coherent- 

potential model, which seems to be best of the single site 

approximations overcomes this difficulty. Soven and 

Velicky et al. have developed the coherent potential 

approximation (CPA) and applied it to several models. They 

view a given scatterer as embedded in an effective medium 

whose choice is made self consistently. The physical 

condition corresponding to this choice is simply that the 

scatterer embedded inthis effective medium should produce 

no further scattering on the ave-age. The final self-

consistent equations can be solved exactly to give the 

effective potential, only for very special cases. 

Applications to real systems therefore involve some further 

approximations. These are discussed in Chapter 7, and 

results of aptual computations are presented for Cu-Zn 

and Cu-Al. 
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The applications to real systems are usually to 

alloys of noble metals, the copper-zinc alloy (brass), 

being one of them. A brief description of the phase 

diagram and the definitions and nomenclatures of the 

different phases is therefore given here. 

Primary and Secondary Alloys:  

When a small amount of a metal B dissolves in 

a metal A, the resulting alloy has the same crystal 

structure as A, and is forMed by B atoms replacing A atoms 

in the lattice. Such a substitutional alloy is called a 

primary alloy. Interstitial alloys are also possible when 

came atom is very much smaller than the other. The smaller 

atom, usually hydrogen, boron, carbon or nitrogen does . 

not displace a metal atom from its lattice, but fits 

into the spaces which exist in the original structure. 

For some pairs of metals, which have the same crystal 

structure, the primary alloy may exist for all concentra-

tions, examples being AuAg, CuPt and NiMn. 

When the metals have different crystal structures, 

it is impossible for a primary solid solution to extend 

over the whole of the concentration range. For some 

concentrations, either the alloy must consist of a 

mixture of two primary solid solutions, or el se an 

alloy must be formed whose crystal structure differs from 

those of the parent metals. Such alloys are called 

secondary or intermediate solid solutions. 
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As example, we show in Fig.Iithe phase diagram 

for the copper-zinc alloy system and introduce some 

nomenclature, which is prevalent in the literature and 

used in this thesis. When zinc is added to copper, the 

first or a-phase is face-centred cubic and is a primary 

solution of zinc in copper; it persists apt() 35Z of zinc. 

Between the limits of 35Xand 46Z of zinc, a two-phase 

region, corresponding to the a-I3 brasses occurs, while 

for concentrations between 467,2  and 49% the alloys are 

body centred cubic and are known as the p-brasses. 

The fa-phase undergoes an order-disorder transition at 

a temperature of about 540o0 below which we have an 

ordered 13L phase of CsOl structure. At higher zinc 

concentrations we have a cubic *I- phase, an hexagonal 

6-phase with an axial ratio in the neighborhood of 1.56 

and a hexagonal '1-phase with an axial ratio near 1.8. 

The 1-phase, like the a-phase is a primary solid solution, 

but of copper in zinc, while the p- `r and 6-phases are 

secondary solutions. 
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CHAPTER II 

The Green's Function Method for Energ Bands in Periodic 
Lattices:-. 

To determine the energy band structure of a perfect 

crystal, one has to solve a one-electron SchrOdinger 

equation, with a suitably determined periodic potential 

V(r). The equation to be solved is 

-va+ -v(L) 	E J b(r) = 0 	 (2.1) 

where 
	V(r) = V(r + 1). 	(2.2) 

We look for propagating solutions (Bloch functions) of the 

form 

‘11(1: 	) = exp 	V)(r), 
	(2.3) 

where k is the crystal momentum vector, and 1 is any 

translation vector of the lattice. We introduce a Green's 

function defined by 

(N+ E ) G (r, 1'1 ) = 	r i ). 	 (2.4) 

With the help of Eq.(2.4), the Schrodinger equation (2.1) 

may be rewritten as an integral equation 

Yl(r) = f G(r, r') 11(r9 9.1(r') dr' 	(2.5) 

where the integral is over the unit cell of volume 7. 

11 
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From this stage, one can proceed in two ways, using either 

a variational principle or otherwise. Both these approaches 

were discussed by Kohn and Rostoker in their orig inal 
15 paper. 	The variational method starts with constructing 

a functional A such that Eq..(2.5) is obtained from the 

condition 

(2.6) 

It is seen that the following functio-ndsatisfies this 

condition 

A= I dr_ 	V(r) [ yi (I) fG(1:,i)v(s) y) (h) (11.1 	(2.7) 

Thus, if (P(r) is the exact solution of (2.1) or (2.5) then 

A( Y(r) k, E) = 0. 	 (2.8) 

On the other hand, if we have a trial function of the 

form 

t(E) 	til(E) + 

where e is a small parameter, then 

A(t(E), k, Et) =*f dr (V)(32)+ e3((.0)*  V(r)(Y(r)+C.X(r)) 

f f dr dr/ ( yi(r)+CA(r))*  if(r) 	V(11)(q()+ eX(4) 
/ 7/ 

= f dr V4r) V(r) E (f)(r) 	f G(Lli) AT(1) Yi(Lf ) dr'] 

+ es; dr,x4(E) v(E) [ 4f(E),— 	v(L y, ( i) a/2' 1 

+ jr ,a.L/v(i).2( (E) [AL) — f ALL.) v(E) (1_) 

+ 62  [J 	r) V(r))((r) dr -f f A r) V(r) G(r,) V(i),X(ri.)dr  7 7' 
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Since the correct Y-/( r) satisfies (2.5), we are left with 

(k,k ,Et) = 0 (62 ) 

and hence 

Et 	E = 0(62). 	 (2.9) 

This is an important result showing that the error in 

the energy is of the second order of the error in the 

wavefunction. This is one of the advantages of the KKR 

method, that one can get fairly good energy values with a 

small number of trial wave functions. Having set up 

the variational principle we use the Rayleigh Ritz technique, 

and choose a trial wave function of the form 

gi(11) 	ei #i(M) 

in Eq.(2.7) for A. 

If we define Ail)  as 

Air  V(E) 4. (r) dr —f f ct.(r) V(r) G(r,r) V(F:)4(r)dr.  dr 
d 	. 

(2.10) 

then 
A  n 
A = u 	c • * A13..  0 • •

1, j=o 

The conditions 

aA/aci = 0 for i = 0,1, 	 

then give the linear equations 

	

i = 0,1 	 

(2.11) 
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and a solution exists only if 

Det 	Z = 0. 	 (2.12) 

These equations represent a formal solution to the problem, 
but the practicability depends upon whether the elements 

nib  can be evaluated with a reasonable effort. In general, 
this is a formidable task requiring first the calculation 

of the Green's function. for various It and E and then the 
evaluation of the 6-dimensional integrals, which have to 
be performed over the complicated atomic polyhedron. A 
great simplification can be achieved if one confines 

oneself to 'muffin-tin' potentials V(t) with the following 

form 

V(r) = V(r) 	 r < rmt 
= Vo • 	r >rmt 

	 (2.13) 

That is V(r) is spherically symmetric within a' muffin-tin' 
sphere of radius rmt  and constant outside. We then shift 
the zero of energy to Vo  so that V(r) = 0 for r > rmt. 

Because of the spherical symmetry of the rotential 
within the muffin-tin sphere, the trial function can be 
chosen to be of the form 

1max 	1 t.  (r) =1E:o  C lm R  ( ) Ylm (P)  (2.14) 

within the spheres. Here Ri(r) is a radial wave function 

satisfying the radial differential equation 

[(-1/r2) d/dr(r2d/dr) + 1(1+1)/r2  +V(r)-EI.R.1(r) = 0, 

(2.15) 
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for the same value of E used in constructing G(r,/f). The 

funct ions 71,( f) are linear combinations of spherical  

harmonics chosen to transform according to the irreducible 

representations of the symmetry group of the wave vector k 

and they are normalized real, and mutually orthogonal. 

211 
o.rd o  f S ine de y(f) 	1(P) = an' 5mmt• 

To deal properly with the singularities of G-, we 

must use a limiting procedure in evaluating A . The 

integration over rt  is done within a sphere of radius rmt e 

and the r integration over a sphere of radius rmt - 2C. 

Here C is a small number which tends to zero. Thus 

A= um AB 
e 0 

where 

, A = f 	dr 91(r) V(r) [y)(r) -fdr G(r,r)V(r) Vi(r)j. (2.17) 
6  r<rm-t2C 14<rmt-e  

Using Eq.(2.1) satisfied by ill(r).  and (2.4) by G(r,r) and 

then transforming the volume integrals into surface 

integrals, we have 

(j) 	- f 	v(rt) 11)(11-) 
rr<rmt -6  

= Vi(r) - f dr j  G-(r1/1.) (V+E) yi(Z) 

a  - f ds[G(r,r)a-.r1 (p(/) 	Fg  G(r )] 
r,2mt-e 

(2.16) 
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Substituting into Eq.(2.17) and noting that 

f dr (L.) V(r) G(r,r) = f dr (p+E)Y-'(r)G(r,r) 
r<rmt=26 	.r<rmt7-26 

f as[6(l(r)•  G 
rant-2E 6.r 

r,r) y.,(r)a  G(s1L1. 

We then find that 
*-, 

E = faa , ids' 'eL(r)  -,T9fq,(1).41 G(rM-G(r,Z)WP(4 
r*rmt-26 

(2.18) 

The Green's function G(ttr) can be expanded for r<Armt  as 

r-. 1-1 j 1(9(r) iv  OCT) +Kai 1/ 8 ,ji(Kr)n1(xr) G(r,r.) = 	Li 	Blmlm 	DIM 

X Ylm( 	Y110 
	

(2.19) 

where jl  and n1  are the spherical Bessel and Neumann 
functions. 

Substituting for G(r,A andck(r) from (2.19) and . 

(2.14) into (2.18) we arrive at 

/\ = E /El  C111  Alm  fru' Clip lm lm 

where 

m
=D11(r)9 i1(7<r)] Bim 	D'1(r),  i1(x01 

l lm 

+K 6131 6mmi [R1 (r)  9  n1(xr)  (2.20) 

The brackets CP,G] denote expressions of the form 

[F(r),G(r)] = [F(r) tr) 	G(r)  dicl;r)  
r=rmto 
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and 

E1/2 if E > 0 

= i ( _,E )1/2 if E<0..  

The solution of the problem is therefore 

Det I Aim 	H = 0 

which may be rewritten as 

ni 	n.11.4 
1131m liri+ 	6111  °Ind = 0 	(2.21) 

Or in terms of the phase shifts Iv of the potential V(r) as 

I Blin 	-0(cot 11181f °ram' I = ° 	(2.22) 

The phase shifts It are defined by 

coo  n1 1  n1L1 
(1 . 31 - J11,1 

and completely determine thescattering from the potential 

V(r) 	The potential makes its influence felt only 

through these phase shifts. 
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Non-Variational Derivation of the Secular Equation:  

We start with Eq.(2.5) 

W(1) = f G(r,11') V(r5 (P(Z.) dri  

2- 

= f G(r,/f) (V+ E)(1P(E) dr 

2- 

f C G(s,,r1) 	y(r) -(1)(r) v1G(r,i'.) 

+ I 	s5(r,-r) dri  

or using Green's theorem as a surface integral 

f {G(E,F)4,q(/) _ip(1f) 3r ,G-(r,/c)} dS = 0 

Substituting as above from Eqs. (2.19) and (2.14) for G(r,4 

and '(r) we arrive at the same equations (2.21) and (2.22). 

Yet another derivation of this secular equation 

was given by Beeby16 and elaborated by Ziman.17 but that will 

be discussed later (Chapter,6). Eq.(2.22) is the fundamental 

secular equation of the KKR method and is an implicit 

equation for the E(k) relationship. 

This is a convenient point to evaluate the KKRmethod 

for its usefulness and consider its relationships with the 

other well-known methods for energy-band calculations, e.g. 

the tight binding method, the orthogonalised plane wave 

(OPW) and pseudopotential methods, the cellular method, and 

the augmented plane wave (APW) method. These methods have , 
18-21 

been discussed in several texts. 



1 9 
The tight-binding method is suitable for core 

states or localized electrons, such as say, the d-bands 

in the transition metals. The pseudopotential is most 

suitable for the other extreme - the nearly free el(ctron 

energy bands such as in the alkali metals. The AI and 

the KKR methods, resulted as developments of the cellular 

method. In these methods, the difficulty of satisfying the 

periodic boundary conditions on the boundary of the unit 

cell is removed as the boundary conditions are built into 

the formulation. Before going further into the reltion-

ships between the AP4 and the KKR methods, we say a 

few words about the OPW method. 

The OPW method requires the electrons in the crystal 

to be separated into two categories - core electrons and 

itinerant electrons, and such a categorisation is not 

easy in the case of transition and noble - metals. The 

electrons in partially filled d-shells do not fall 

naturally into either category. However, for those systems 

where this is possible the OPW method has an advantage 

over the APW and the KKR method because there is no 

implicit dependence of the matrix elements on the energy. 

It is therefore much faster (in computer time), than the 

APW and the KKR methods, because in these methods, it is 

necessary to examine the secular determinant as a 

function of the energy to find its zero, hence the 

eigenvalues. The APW and the KKR methods do not require 
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this separation of the electrons into core and itinerant 

electrons. The other disadvantage of the OPT method is 

that it is more difficult to apply to crystals containing 

heavy elements with more core states, because the plane 

wave has to be orthogonalised to more core states. 

Besides, the core states in the OD/ method are to be 

taken as the eigenfunctions of the crystal potential and 

these are not the same as atomic states. 

Both the APW and the KKR methods are based on the 

muffin-tin model for the crystal potential. The unit 

cell is divided into two regions by non-overlapping 

spheres, centred on each lattice site. Inside the spheres, 

the potential is spherically symmetric, and outside it 

is a constant. This is'a fair approximation in most 

cases, but may be a poor representation in case of group 

IV diamondlrlattice semiconductors, where there is a 

directional bonding. 

By intercompaxison of the results of APW and the 

KKR methods for copier with the same potential; it has 

been established that they give identical results.22,23  

There have been attempts to prove a formal equivalence 
24 between the two methods. eThe efforts of Ziman,

17 Slater, 

Lloyd25 and Johnson26 have resulted in an understanding 

of the differences between them and to put them into a 

common basis within the framework of the pseudopotential 

method Slater tried to transform the Ziman form of the 
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KKR method, to a form very similar to the APW form, 

but it could not be transformed exactly into the APW 

formulation. 

Both the APW and the KKR methods involve a summation 

over atomic orbitals (1Q inside the spherical region and 

a summation over reciprocal lattice vectors. In the APiii 

method, the coefficients in the atomic orbital expansion 

are specified, and those in the reciprocal lattice vector 

expansion are determined variationally. The size of the 

secular determinant is equal to the number of reciprocal 

lattice vectors included, and this is 20-40 in most cases. 

The number of terms in the atomic expansion is usually 

about 12. On the other hand, in the KKR method, the 

reciprocal lattice expansion is carried out formally, 

and the atomic orbital coefficients are determined 

variationally. The size of the secular determinant 

is now(-  1 max 1)2 , where lm  is the maximum value of 

1 included in the summation in Eq.(2.14). In practice it 

is found that 1 = 2,3 is adequate. A plausible explanation 

for the fact that 1 = 2,3 is adequate will be given in 

Chapter 6, in connection with another derivation of the 

KKR method. The size of the secular determinant in the 

KKR method is thus smaller than that in the APvf method and 

it therefore requires less computer time to evaluate. 

Another advantage of the KKR method stems from the structure 

of the secular equation (2.22). The coefficients Bim 
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which occur there, are dependent on the energy, the crystal 

structure and the wave vector of the electron state, but 

not the muffin-tin potential. The calculation of these 

is elaborated in an Appendix Al. The potential makes 

its influence felt only through the phase shifts 

If the structure dependence is tabulated once and for 

all via the coefficients 13,171 lm., then the KKR method is 

very convenient for studying the effect of changes in the 

crystal potential upon the band structure. Such a program 

has been carried out by the author, with a view to find 

a suitable crystal potential for noble metals, and this 

work is reported in the following Chapters 3 and 4. 

We may add here that the OPO, APa and KKR methods 

have all been generalized to the relativistic case.
27-29 

It is estimated that relativistic effects become signifi-

cant in metals with atomic number treater than 55, and 

for Z > 71, they should not be ignored. 
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CHAPTER III  

Crystal Potentials in Energy Band Calculations: 

Our problem is to find the energy eigenstates for 

conduction electrons moving in a perfect lattice. Obviously, 

the problem must be treated in some kind of a self-consistent 

field approximation. Somehow, we must set up a potential 

in which an individual electron moves, representing not 

only the action on this electron of the nuclei but of some 

sort of average of the effect of the other electrons. 

Having set up this potential, we must solve the Schrodinger 

Equation of an individual electron in such a periodic 

potential, by one of the methods discussed in Chapter II. 

When we have done this, we should determine the resulting 

charge distribution, assuming that the lowest states are 

occupied while those above certain energy (the Fermi energy) 

are empty. We use the resulting charge distribution to 

compute the potential and carry out iterations of this 

procedure until the resulting potential is identical with 

the one with which we started. 

In the work reported here, a self-consistent 

calculation has not been performed. Rather, the aim has 

been to look for a potential, which with only one part 

of this,cycle-will give a reasonable description of the 

energy bands. Because of the variational principle in the 

KKR method, the energies are given to a :Teter accuracy 
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than the wave functions, the successive cycles are more 

expensive in computer time. Another reason for not 

undertaking a self-consistent calculation was the fact that 

this work had been motivated to lead to the choice of an 

appropriate starting potential for the constituents, in 

the alloy problem. As will be discussed later in this 

thesis, the prevalent theories for electron states in 

disordered alloys involve fairly drastic approximations, 

and it was therefore thought that the additional effort of 

performing a self-consistent calculation for the pure metal 

case, was not worthwhile. 

One of the simplest choice for V(r) would be to 

take it to be the same as the atomic potential within the 

muffin-tin sphere and cut it off outside. For the atomic 

potential, Gaspar and Ivanecsko 	have suggested phenomeno- 

logically, simple analytical forms or one could use the 

results of a self-consistent Hartree-Fock-Slater calculation 
31 

of the type performed by Herman and Skillman. 	We will 

return to these only later when discussing the results 

for energy bands of silver obtained with such a potential. 

It is clear that the potential experienced by an 

itinerant electron within the lattice is not quite the 

same as that felt by an electron in an atom. Taus, one 

method of constructing the crystal potential regards it 

as a sum of several individual contributions of the core 

and conduction electrons. Such a scheme is commonly used 

in OPW calculations for simple metals. 	Heine32 first 



25 
used it for aluminium, Falicov33 for magnesium and more 
recently Gaspari and Das34 for calculation of Knight shift 
in Indium. Following deine,32 we enumerate the various 

contributions to the crystal Potential: 

(i) potential due to ion-core 

(ii) exchange among ion-core electrons 

(iii) correlation among ion-core electrons 

(iv) exchange between conduction and core electrons 

(v) correlation between conduction and core-electrons 

(vi) potential due to the conduction electrons 

(vii) deviation from spherical symmetry 

(viii) exchange among conduction electrons 

(ix) correlation among conduction electrons. 

The main contributions come from (i) and (vi). 

Next in importance are (ii), (iv) and (viii). It is 

difficult to make accurate estimates of the contribution 

due to correlation effects, and these are generally ignored, 

or taken in account in rather simplified ways. In a simple 

scheme, which we apply to silver, in the next chapter, we 

take contributions (i) and (ii) from Hartree-Fock-Slater 

calculations for the ion-core, add contributions (vi) and 

(vii), and the contributions due to exchange and correlation 

between core and conduction electrons are taken into 

account in a simple way. We now indicate in brief how 

these contributions are evaluated. It is convenient to 

express the potential in a form 

V(r) = 2Z(r)/r 	 OA) 
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and we will now enumerate the various contributions to 

Z1(r) - Contribution of the ion-core: 

This is taken to be the sum of the Coulomb contribu-

tion of the nucleus with charge Z and the surrounding core 

electrons, and exchange between core electrons. The wave 

functions for the core electrons were obtained from the 

Herman,Skillman program, run for the bare ion. The chargé 

density due to the core is 

 
'core 

(r) 
 - 	1 

 tfr (r) 	(r) 1 
	(3.2) 

the summation being over the core states. The wave function 

is expressed in terms of another function 

Pnl (r) 	r Rnl(r)  

where Rnl(r) is the radial wave function. The charge 

density is then 

P 	(r) - E 2 core 	nlm 	r2 	lm  
Pnl (r)  y 	(0

' 	
ylm (e,#) 

2 

1-- E 2(21+1) 2(r)/r2 . - 411 

	

	Pnl n,1 
(core) 

(3.3) 

The corresponding potential V1(r) may be written from the 

solution of Poisons equation as 

V (r) = 2 (- 	+ 	r (1')  dr'  ) 
r 	IETZI 

(3.4) 
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Performing the integration, and substituting for V1(r) gives 
the final result for Z1(r) as 

00 r 
Ze(r) = Z - r f(r)clr

# 
 + r 	dr ev(r)/r 	r 	drifi_(if)/r i  (3.5) 

where 

2 (r) = 4nr2 
core 	.ni 2(21+1) 2111()* (3.6) 

Numerical integration of the above equation gives the 

Coulomb contribution. To this is added the exchange 

contribution, obtained from Slater's local density 

approximation, 35 

Vex(r) = - 6 	3 r(r)/ ]1/3 	 (3.7) 

and Z1ex(r) = - r Vex(r)/2. 

The total contribution of Ze(r) and ex(r) is then the 1 
Z1(r) corresponding to the effect of the core. 

Z2(r) - Coulomb potential between conduction electrons: 

This is calculated by assuming a uniform distribution 

of the conduction electrons in the Wigner-Seitz spheres. 

The potential resulting from such a distribution is easily 

seen to be 

Z3(r) = 11-er 
2 r3 

(r2_ 3r  2\  
s / r<rs 

(3.8) 
r>rs  
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where Ne  is the number of conduction electrons per 

unit cell. This uniform distribution should be corrected 

for the oscillations due to orthogonalisation to core states. 

However, a more important correction is due to the fact 

that a sum of Wigner-Seitz spheres does not Completely map 

the crystal. This correction is essentially a geometrical 
32 	 33 

problem and has been given by Heine and Falicov. 	Once 

the correction is estimated for a given lattice structure, 

it can be used for any metal with the same structure, by 

scaling with respect to the lattice parameter and the number 

of conduction electrons. 

Z3(r) - Exchange and Correlation among:core  and conduction  
electrons:  

The Hartree-Fock theory takes into account the 

correlations between electrons of parallel spin but neglects 

Coulomb correlation. This results in an exchange potential 

that is too large. What Robinson et al.36 have tried to 

do is to obtain an expression which has the simplicity of 

the Slater formula (i.e. a local density, k independent 

approximation) but takes into account some correlation 

effects as well. Effectively, they replace the Coulomb 
e2 

interaction e2 /1'12 in Slater's derivation by 	exp(-k sr12)1 12 
where k is the Thomas-Fermi screening factor. The 

s 
 

resulting screened Slater exchange potential is 
.„ 1/3 

- 6 [3e(r)/Enj 	F(a) 	 (3.9) 
sc.ex 
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where F(a) depends on the charge density in the following 

way 

2 	 2 2 4 	a 	 a a F(a) = 1- 3  - a tan 1(2/a) + 	log (1+4/a2  ) 	- 6(1-...4  log(1+4/a2)) 2  

(3.10) 

1/6 where a = 0.646/[r(r)
-, 
 

The correction factor F(a) has the effect of reducing 

the unscreened exchange potential at all distances but this 

reduction becomes most severe in the low density region. 

It has been shown37 that the Slater formula overexaggerates 

exchange effects in the low density region, resulting 

in a potential with a rather long tail. The screened 

Slater exchange used here does oversimplify correlation 

effects, but it has the advantage of correcting the unscreened 

Slater potential in a region where it is known to be inaccurate 

while retaining a form which is convenient for calculation. 

There can be severRl variants within the above frame- 

work of constructing the crystal potential, depending upon 

the treatment of exchange and correlation effects. Kohn and 

Sham38 had shown that 2/3 of the Slater formula is a better 

approximation. Snow39  had concluded that a coefficient 

between 2/3 and 1 would be best, according to his results 

of self-consistent APW band calculations for copper and 

silver and found that the coefficient 5/6 gave good agreement 

with experimental results. Recent theoretical work by 

Lundqvist40 seems to lend support to this conclusion. 
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An alternative method for constructing the crystal 

potential starts from the total atomic charge densities and 

overlaps them. The atomic charge densities are obtained 

usually from the Hartree-Fock-Slater calculations of 

Herman and Skillman,31 but for heavier elements it is pre-

ferable to use the results of Liberman's calculations41 

based on the relativistic Dirac equation. Such an approach 

was first used by Mattheiss42 in connection with his APW 

calculations. The motivation is that in the central 

Portion, the crystal potential also has an atomic character 

and in the outer portion, there is overlap from neighboring 

atoms. To evaluate the magnitude of this overlap, two 

approximations are made, 

(1) The atomic potentials which are overlapped are 

spherically symmetric, and 

(2) Only the spherically symmetric contributions from 

neighbors are retained. 

The superposition is done using Lawdin's a-function 

expansion technique, and this is outlined briefly.43 

In Fig.(3.1) we have the point P, whose coordinates 

are (r1,1.11) and (r2,P2 ) about the origins 1 and 2. We 

want to expand a function 

V21m (S1)  = fl(r1) 71m(r1) 
	

(3.11) 

centred at the origin 1 in terms of spherical harmonics 
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a+r2 
f(aIr2) = 2ar 	f  f(ri)ridri 

2 la-r2i 
1 (3.15) 

3 

centred at 2. Thus 

00 1 
im 	m=-1/  

(ri ) = E 	a(1/4 1m) Yleni,();  (3.12) 

where the coefficients a(lmIlm) are to be determined. 

Multiplying both sides by 1-10r2 ) and integrating over the 
angular variables gives 

a(Alm) = f Y%,  (4) kiim(r1) 4.2 
	(3.13) 

In view of the two assumptions mentioned above only the 

1 = o, m = o and 1 = o, m'= o contributions are required 

and 	a(00100) = 4 it f f(r1)d12 	= f(a 

Now, from the geometry of the problem 

= 
r1 cos 01 + r2 cos 02 = a 

r1 sin 01 = r2 sin 02 
	 (3.14) 

r12 = a2 r2
2 - 2ar2 cos 02 

Performing the angular integration and using the 

relation sin 02  del = r1dr1Aai2), from the above expressions, 

we have 
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This gives the contribution at r2, measured from the origin 

2, due to the function f(ri) centred at the origin 1, 

the two origins being separated by the distance a. 

In the Mattheiss prescription, the exchange and 

Coulombic contributions to the muffin—tin potential 

are treated separately. The Coulomb part is obtained by 

integrating the Poisson's equation in a way similar to 

that disbussed before. If Vo(r) is the Coulomb contribution 

to the atomic r-,Otential, then the Coulomb part of the 

crystal potential is 

Vo(r) = Vo(r) + E Vo 	 (3.16) 

where al  • are lattice vectors. To calculate the exchange, 

the charge densities are overlapped to give the crystal 

charge density as 

Pc  ( = Po(r)+i i 
(r)+E 

13 
(ailr) 

-  
(3.17) 

and the exchange calculated by using Slater's formula, 

with another factor (2/3 or 5/6) with this density0r). 

, 
Vex  (.r) = 	6 (3rc(r)/en)

1/3 
 . 

The total crystal potential is then simply 

VT(r) = vc(r) + Vex(r). 
	 (3.19) 

The Mattheiss prescription has the advantages of 

(3.18) 
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simplicity and generality. It does not demand a distinct 

categorisation into core and conduction electrons, and is 

therefore equally applicable to noble and transition metals. 

The only information required is the total atomic charge 

density, and this choice is sometimes critical. We will 

discuss this point in the next chapter, in connection with 

results for energy bands in silver. 

The restriction to spherically symmetric muffin-tin 

potentials is a feature of all the work that is discussed 

in this thesis. Attempts to include effects of the non-

muffin tin contributions in self-consistent APW calculations 
44 by Budge show that the muffinttin model is reasonable for 

metals. dowever, in the case where directional bonding is 

important, say the diamond lattice semiconductors, the 

muffin-tin approximation may be poor. 
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CHAPTER IV 

Energy Band Structure of Silver:  

In this chapter we discuss the energy bands for 

silver resulting from a KKR calculation and employing some 

of the crystal potentials of Chapter III. Cooper has been 

the subject of several first principle energy band calculation 

using different potentials as well, and the shape of the 

Fermi surface is rather well established.45-50 The main 

part of the surface, referred to as the 'belly' is nearly 

spherical like the free electron Fermi sphere, but in the 

eight (111) directions, there are 'necks' which contact 

the hexagonal zone faces. Experiments indicate that silver 

too, has a Fermi surface which is quite similar to that 
51 

for copper. Joseph and Thorsen have studied the deHaas 

van Alphen (dHvA) effect in silver and Jan and Templetdn52  

made precision measurements for the <111> neck dHvA 

frequencies. Bohm and Easterling
53 have performed 

magnetoacoustic measurements, and optical properties have 

been studied by Cooper et al.
54 

Berglund and SpiCer55 

have carried out photoemdssion studies for silver to determinE 

the density of states and certain energy level separations. 

The purpose of the work reported here was to examine 

the various prescriptions for constructing crystal potentials 

discussed in Chapter III. A comparison of the results for 

copper (from available calculations) and silver (this 

calculation) would allow some general conclusions to be drawn 
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with respect to the suitability of a given potential for 

noble metals. The KKR method was used in preference to the 

APVI method for reasons discussed in Chapter II. Calculations 

were performed for the various irreducible representations 

at the sTmetry points F,  x, and L and along the61 " and 

E axes. This limited calculation does not allow an 

accurate determination of the density of states, nor does it 

give detailed information about the Fermi surface. It 

is, however, sufficient to depict the salient features, 

such as the widths of the sp and d bands, their relative 

locations and the Fermi level, which can be compared with 

optical data. Contact of the Fermi surface at the zone 

face is investigated, and under certain approximations22 

(which do not involve errors of more than 3-5%) the neck and 

belly radii can be estimated and compared with experimental 

results. 

The steps of the calculation are briefly as follows: 

1) Constructio4 of the crystal potential by one of the 

methods discussed in Chapter III. 

2) Solution of the radial Schrodinger equation for 

this potential' to get the phase shifts. This is done by 

using the Numerov method,
56-758 discussed in Appendix 2. 

The other part of the calculation is independent of the choice  

of potential and involves only the structure of the lattice. 

3) Calculation of the structure constants using the 

formulae of Appendix 1. Full use is made of symmetry 

Considerations to reduce the size of the secular determinant 
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and the number of structure constants required. 

4) For a chosen k value and a given symmetry representa-

tion, the secular determinant is evaluated as a function 

of energy. The zero of the determinant is then interpolated 

by using the method of regula and falsi. 59  

5) Once the energy values, in a given direction are 

obtained, the points are joined together to form a 

continuous curve, taking into consideration the compatibility 

relations between the different representations.19 

6) To estimate the neck and belly radii, we follow a 

method used by Segall
22 

in his calculations for copper, 

and this involves two assumptions. 

(i) The volume of the belly (the total volume less the 

volume of the necks) is approximately equal to the volume 

of a sphere with a radius E which is an average of the 

'Ws in the (100) and (110) directions. 

(ii) The energy in the vicinity of the point L id given 

by 

E(k) = h2ki 2  ( 4 . 1 ) 
21n*  

with k = ki  + kff where k" and kj_axe the components of 

the wave vector along and perpendicular to the (111) axis, 

and m* is the 'neck' effective mass. E(kll ) is obtained.  

from the band structure along the r-L axis. On the circle 

a  at which the neck joins the belly, the relation R7.0c1. -11- Kfi 

is satisfied. From this and E4.(4,1), the limits of k i(  

for the neck region are found for a given energy. The 
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neck volume is then found by straightforward integration. 

By adding the volume of the eight necks to that of the 

sphere and making a small correction for the eight spherical 

caps, the total volume within the constant energy surface 

is evaluated. The Fermi energy is than determined by the 

requirement that the volume equal one-half the volume of the 

Brillouin Zone, so that the correct number of states are 

occupied. 

We now discuss the results of the calculations done 

with different crystal potentials, and also compare these 

with experiments. 

A. Gaspar potential: 

Gaspar and Ivanecsko30 have suggested a phenomenolo-

gical potential of the form 

V(r) = 2Z 	92(—Aorj 	C exp(-ar)  fAk4, r 	1+Aor 	1+Ar 

where the first term simulates the Coulomb contribution 

and the second the exchange. f ex  is a parameter which was 

varied through a range of valves 0.60 to 1.70, and the 

values of the other parameters used in the calculation were 

A0  = 0.74883 	 a = 0.16305 

A0 = 428017 
	 A =36.68715 

C =39.75900 	 .47 

Best results were obtained with fex equal to 1.50 and are 

shown in Table 4.1 together with results of'other 

calculations, but even here the agreement with experiments 
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is not good. 

B. Atomic Potential 

Next we have evaluated the Eq) for a self-consistent 
atomic potential of silver derived from a Hartree-Fock-

Slater scheme. For silver, such a potential, derived from 

the Herman-Skillman program31 gives results which are 

surprisingly close to experimental results. The Fermi 

surface touches the zone face at L and Ep - L2' has a 

value of 0.016 Ry, which is close to the experimental 

value of 0.022 Ry. Tne L2/- L1  gap is 0.267 Ry compared 

with the experimental value of 0.31 Ry. The state 1-25i is 

pulled below 	; the F26- 1-1  gap being -0.01 Ry, 

which is equal to the value obtained by Snow from a self 

consistent APW ctAculation with a potential constructed 

according to the Mattheiss prescription and using the 

full Slater exchange. But the d-bands are pushed below the 

Fermi level considerably more than predicted by experiments. 

It would appear that an atomic potential should be a poor 

approximation to the crystal potential. However, the 

following considerations indicate that the crystal potential 

in some situations, may not be very much different from 

the atomic potential. 

In Cnapter III, we saw that the crystal potential may 

be built up by superposition of atomic Coulomb potentials, 

and charge densities. The exchange is proportional to the 

cube root of charge density. The Slater exchange is 

thought to exaggerate the actual exchange and various 
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schemes have been suggested to approximate the exchange 

in a better way. It is just possible that the crystal 

Coulomb potential plus a reduced Slater exchange derived 

from the crystal charge density may more or less equal the 

atomic Coulomb potential plus the full Slater exchange for 

the atomic charge density. Further, a comparison of the 

Herman-Skillman atomic potential for silver with self 

consistent crystal potentials obtained by Snow49 shows 

that the atomic potential is close to the self-consistent 

- potential using the full Slater exchange. 

0. Heine Potential 

This has been outlined in Chapter III. A problem 

which One faces in trying to build up a crystal potential 

along these lines is how to distinguish the core from the 

conduction states, and for the noble metals this is not 

a trivial matter. 

We reg-rded the core as Ag+  and assumed one conductior 

electron to be uniformly distributed over the Wigner Seitz 

cell to calculate the three main contributions mentioned 

in Chapter III. 

Tde results of the calculations indicate that such 

a potential is not suitable. The d bands are too high and 

at the point X, the X5  state is found to be higher than X4'. 

There is a pronounced discrepancy-for the widths of the d 

bands as measured by the energy difference X5  - Xl  which 

is twice the experimental value. The width of the sp bands 
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as measured by X4,- fl is 0.69 Ry which is of the same 

order as obtained from other calculations. 

D. Superposed Atomic Potentials 

Reference has been made in Chapter III to the 

Mattheiss prescription for constructing crystal potentials 

from a superposition of atomic potentials. The critical 

point here is the choice of the electronic configuration 

for obtaining the atomic charge densities. Mattheiss 

and Snow et al. have carried out such investigations. 

More recently, Davis et al.50 have studied the effects of 

changing the atomic wave functions on the band structure 

of copper. They conclude in the light of the abundant 

experimental data for copper, that the potential generated 

for a 3d1°4s1  configuration by using atomic wave functions 

for a 3d94s2 configuration gave the best results. This 

may be understood because the effective occupation number 

changes on going from a free atom to a crystalline 

environment, because of the overlap of d and s bands. For 

silver, we have accordingly chosen to calculate the charge 

density for a 4d105s
1configuration from atomic wave 

functions obtained from the Hermann-Skillman program for 

an assumed 4d95s2 configuration. The superposition 

of the atomic potentials and charge densities is done 

through sixth neighbors. For charge densities obtained 

from this configuration, best results were- obtained, 

with the potential constructed using full Slater exchange. 
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FIGURE CAPTIONS 

Fig.4.1 'Charge' Z(r) = -rV(r)/2 for the potentials 

employed in the calculations for silver and 

for Snow's s.elf-consistent potentials. 

Fig.4.2 Energy bands of silver for a potential constructed 

from overlap of atomic potentials obtained for 

4d105s1  configuration from wave functions for 

a 4d
9
5s
2 

configuration. 
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CHAPTERV 

Virtual Crystal Models for electron states  in Disordered/Alloys: 

The energy-band structure of pure metals and ordered 

alloys may be calculated by any of the standard techniques, 

such as the APW or the KKR method. Both techniques have 

been snown to give identical energy bands when the same 

potential is employed in the calculation. We can now 

claim to have a good understanding of the problem and 

with the availability of high speed computers, the 

calculations can also be carried out to a high degree of 

accuracy. The theories of disordered alloys, on the 

other hand, are still in a primitive stage, all the 

more so, at the level of apPlication to real systems of 

interest. 

We discuss in this chapter, some simple theories 

for disordered alloys, in waich a kind of band structure 

is assumed to persist and an E() relationship is derived. 

The effect of alloying is assumed only to alter this from 

that for the pure host. The results are compared usually 

with optical data with the assumption that direct transitions 

alone are important. 

The simplest treatment of the disordered alloy 61,62 
problem invokes the virtual crystal approximation (VOA). 

 

The VCA consists in replacing the disordered alloy by an 

equivalent ordered lattice where each site carries a 
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potential, which is the mean value over all possible 

configurations. Amar et al.63-65  in their calculations 

for a-brass as well as P-brass use the KKR method and 

assume that the effective potential is given by 

( V(r) 	UA
a) 

 (r) + mB  U (a) (r). 	 (5.1) 

(a) , 
(. 	(a) Here UA r) and UB  (r) are the atomic potentials and 

mA, Intl  are the atomic concentration of the constituents. 

It is clear that the. virtual crystal approximation is 

an oversimplification . of the problem. 66 

An attempt to use better starting potential within 

the virtual' crystal' approximation, led to:the condlasion 

that this itself is not enough.67 In the virtual crystal 

approximation no account is taken of any short range 

ordering effects that inay be present. 	theory to be 

developed in the following is a generalization of the 

KKR theory of chapter II, to a disordered alloy, also 

taking into account any short-range order that may be 

present. The study was motivated by a suggestion of 

Phariseau and Ziman68 that the KKR method can be 

generalized to the case of disordered systems. In treating 

a one component disordered system, Ziman69 used Foldyls70 

Coherent wave ape2roximation to define a configuratianally 

averaged wave function. This wave function obeys a 

Bloch-type condition and can be used to determine the 

electronic spectra of liquid metals. Our problem differs 



from that treated by Ziman in that, whereas in the case 

of liquid metals the disorder arises because the distance 

between the scattering centres is not fixed, in the 

Present case it is because the spheres located at the 

lattice sites are not identical. 

We consider only disordered substitutional binary 

alloys, and assume that the state of the alloy is 

completely specified by the short-range order parameters. 

In this formulation, the sense of the 'configuration 

averaging' is generalized beyond Ziman's considerations 

to derive Bloch-type conditions. The order parameters 

enter through the Green's function as well as through 

the averaged potentials. The secular determinant 

becomes a function of the state of order, besides the 

crystal structure and constituents of the alloy. The 

order parameters can be obtained from X-ray, electron or 

neutron diffraction measurements. 71-74 

We regard the alloy as consisting of two types 

of closed-shell positive ion cores, A and B, embedded in 

a medium of electrons. The potential at any point is 

built up as a superposition of screened potentials. 

V(r) = E U(L-xj) 	 (5.2) 

where x is the position vector of the jth ion carrying 

a potential U i(r). The potential. U j(r) is approximated by 

a muffin-tin form. For the present application, this is 



a fairly good approximation, and to a certain extent 

unavoidable. 

Leaving aside the practical difficulties associated 

with the construction of the potential function, our 

Problem is to solve the Schrodinger equation 

v(r) J (i)(s) = K2 4(1.) 
	

( 5 . 3) 

where x2 is the energy of the electron state under 

consideration. The Schrodinger equation (4.3) is equivalent 

to the integral equation 

; ~(r)(r) 	fGo(r-r) V(r') Vi(S1) dr 	 (5.4) 

where 

G (r-r) 	exp( iX 	) 	 (5.5) 0 	Ir-r1t 

is the free electron propagator. With the Help of (5.2) 

we can write (5.4) as 

CF(r) = E fGo (r-r) U (11--3(..) Lfr(r i )dr. 	( 5. 6) 

U i(r-x j) is zero in the interstitial regions and therefore 

the integral equation relates the wave function to itself 

only in and on the spheres. We now introduce a variable 

e defined. by 

= 

th. when r is within or on the boundary of the 0 sphere, 

and write (li(') for 94x3•-i-r). With this notation, vie can 
- - 
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write Eq.(5.6) as 

= Po(it—e+2Sj—xj) uj
(j)  

at-ei  (5.7) 

In order to proceed ahead, we need another relation between 
th(p'and (hie). In the case of a perfect crystal, the 

potential at all lattice sites is the same, and we can 

use the Bloch theorem 

(E) = 	1  e 	x j)(t) Tii(e) (5.8) 

to obtain the relation 

V)(e) = f Gkx  (e,f) U(11) (p(ri) 
	4  

(5.9) 

Here Gkx  (f4) in the complete Green's function of the 

system given by 

1  0  ikfx.!x.) G (Pe) = E G (Lf+ x.-x./) e 	-3 -3 kx..1? 	_J  (5.10) 

This forms the starting point of the KR method. 

For tae case of a liquid metal, Ziman has shown that 

a Bloch type conditi-;n holds for the configurationally 

averaged wave function. de again arrive at Eq.(5.9), but 

the Green's function now becomes 

(a) = Go(r-e) 	Jr*  Go(T.1Lx) e .711C"11  n(x)dx 

The first term on the right hand side arises due 

to i = j in Eq.(5,10), while for the remaining terms, the 

summation h s been reoly ced by an integration containing 
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n() the probability of finding another sphere at a 

distance x from the one considered first. 

Vie consider two types of configuration averages 

for a binary alloy, <rii(f)>A  the average over all 

permissible configurations in which an A atom is in the 

sphere at xi  and <th(f)>B  the average over all configurations 

with B at ).xi. It is made plausible in the Appendix 3 

that Zimants conditions may be generalized to 

<yii(f)>A  = e 	otif.r»A 

and 

<y).(f)>
B 
   = e 	x - j-x <7%1(1)›

B 

(5.11) 

The summation in Eq.. (5.7) is now divided in two 
parts E over A atoms only and E over B atoms only: 

j(f) = E
1 
 fG0 ( f+cj-x j) UA  ') 

	
f) f 1  

3 
'I I 

) E fC4- (t 	-a 	el ) 	. it 0 - + 3 x . U -3 	B ( 	ji(f  ( 5.12) 

Introducing the configuration averages of Eq. (5.11) into 

(5.12), we arrive at the relations 

	

AA, 	t 	 1 	i 
	j' <91i ( f)> A= !Go  ctir.+2cj-Lyu A(f) 06(r)> Ad c 

' 

	

" AB 	1 	,, 1  I 
+ Eii  fG0 (r—f l- i-2...cii)uB(f)< ( if)>Bci_r 

and 
 

< 11j( f )>B=  10.1 fGo
BA 	r 	

UA(.1))<etii)>Ad-r 

z# BB 1 fG0  (f-f-tai_x?uB(f)<90>Bd....g i 
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Here, the first and the second superscripts on the free 

electron propagator denote the kind of atom located at 
th the 	 and j4th  site, respectively. We now make use 

of the Bloch type condition of Eq.(5.11) to obtain the 

following two equations 

<  f) >A= E.: fGAA0  (t-t+xi  -xj) 
J 

ik x f-x e 	ot4(r)>Itidt  

Eif Go  (r_f±xi_x,)Ucr) e ik  .--- jLIC.) fl ., 

W O'Bdr 

and 

< (f) >B = Ei  SGMo 	rDSP UA(t) e 	<V)i(c) 
3 

	 ik. x !- 	
dt 

L x -) + EfG0-13  (r:f+4  Lci-xj) 	
x 

UB(C) e 	01).(z) 
> del 
B 

These express ions may be rewritten in terms of a set of 

in complete Green's function as 

(1,(f)>, 	iGAA. ct,ti )uAcr) 	>Adr+ iGitx(,),E1 )UB  (t)) < (i )(i ) > Bdc 

(5.13a) 
and 

r  BA 1 	, 	r  BB 
<tn,r) >B  = Gkx(r,f)ITAk,00tkv>licir JGkx(tou ()<tii(r )>Bdr . . 

(5.13b) 

The incomplete Green's functions occuring in the above 

expressions are defined by 



5 2 5'6 
Gkx(r, f 	 89s1 -1- E GA-f-x) e 	P

95 
 (x) . 	(5.14) 

Here ESSI  
(x) is the probability that a site at a distance 

x from an atom of the sth type is of the s/th type, and 

the prime on the summation sign denotes that the x = 0 

term is excluded. Within the sphere of variables P,pi the 

Green's functions satisfy the following equation 

0  SS 
(v x2) Gkx 	4%615 (N) 

The Green's functions depend upon k and x, but these 

subscripts will be dropped Ie:nceforth. 

In Eci.(5.13), we replace the potential IJbV) 

by its configurational average and treat q•c() >s as a 

solutirm of the Schrodinger equation for this averaged 

potential. A typical term of ::,i'qs.(5.13a) and (5.13b) then 

s impl if ies as follows: 

f GAA1p6 uik(i) 01(6 >Ade 

fceA(r, r') [ NAy/(i) >A + x <q)  >A id ri 

f D'AA  co ) vr'f--< 10>-A.<9,(i) >AVLGAA 	f l  

fo(f-rj) <1'(..) >Ad t 

We use Green's theorem to convert the volume integral 

into a surface integral over the muffin-tin cohere, and 

obtain.  
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fGAAT,  t71) u 	 i) > Ad"'  

= IEGAA(tt)Vgqi) >A - < tt(e) >AvGAA(s) ids/ 

fo(f-r j) <tfr(i) >Ad _e- 
Simplifying  the other terms on the right hand side of 

(5.13a) and (5.13b) in a similar manner, we have 

AA 	/ )Jds  = f [GAA  [1 ) a 

si  [GAB (r, ri ) a 
or/ 

and 

. 
< Y'(r)  >A-  <`!'(c) >A rr's 

-44'6 	ti) <(F(ri) >Ad 

<M 
	

1  G 
--AB ( ri)] dsa 

) >B- <91(r) >B 77 

<y(r) >13  f  [-GBA(t, ) 	< ti„(2) >A h., GBA (f,  a  Id r.1  

6 
EGBB (1,76 	<ft)>B- <IP(r) / >B TT/ 

• 

f8(- ') <ii<0 >13 de 

BB n 
G 	; f› ).1ci.S  

( 5. is) 

The integrals involving  8-functions cancel with the terms 

on the left. 

The steps now onwards procped in a manner parallel 

to that of the non-variational derivation of the KKR 

method. The spherical symmetry of the potential within 

the muffin-tin sphere enables us to write 

1 
.1 0) Cs) 

<Y(1) >6 = E 	aLR1(r) YL(1).  L 

Here, L denotes the pair of angular momentum quantum 
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A 

numbers 1 and m and YL(f) are real spherical harmonics 

as used in Chapter II, and lit (/)(r) are the solutions 
of the radial part of the Schrodinger equation for the Sth  
potential. The .Green's functions may also be expanded 
as 

ss 
G 	(r,  P̀ ) 

tif sa l 
= gi But 	(zf')  

s 4  JI( xr) rii(xf s )1Y.L(P)YLI(F) ( 5 .1 6) 

where j1  and n1  denote 

and Neumann functions, 

respectively, spherical Bessel 
ss 

and BLL/ are coefficients to be 

 

determined. On substituting these expressions 

we arrive at 

	

Is' 	 $ 

 

Z, E i L BLL, 	cot ,-71t 	6ssii 131/ = 0. 

in Eq.(5.15) 

5.17) 

Here, we have redefined the parameters of the trial 

function as 

PL(s)= al,()E11(5)(r)  Cil(Xr)] -il( Xr)  dr Eti1(5)(r)]]
r=rmt 

and 	is the phase shift of the 1th partial wave 

for the S atom defined by 

60 

cot` 
Rl(r)(d/dr) [al(Xx)]  - 

Hi(S) (1-- ) (d/dr) [l cc)] 

ni(xr) (d/dr)[41(') (r)] 

ii(xr)(didr)[al( s ) (r)]],_3  

and rmt is tree radius of the muffin-tin snhere. 
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The structure constants depend on the energy and 

the wave vector, and the pla'_se shifts depend on the 

energy. The condition (5.17), therefore, leads to the 

following implicit relationship between the energy and 
the wave vector. 

SS  det j Biz/ + X cotrYts),5LI/5ss  = 0 (5.18) 

The energy eienvalues are determined by locating 

the values of E for which the determinant vanishes. The 

procedure adopted is analogous to the usual KKR method. 

The structure constants, logarithmic derivatives of the 

radial functions, the Bessel functions are tabulated at 
a sequence of energies. The determinant is then evaluated 
for these energies and interpolated to locate the zero. 

Zimanb9  showed that for a one-conmonent disordered 

system, a Blocia-type condition can be obtained, provided 

the wave function within any Sphere is interpreted as 

the average value of the wave function for an ensemble 

where this sphere is fixed, while the remaining spheres 

take all the permitted configurations. In the pure metal 

case, the rearrangement of the atoms among the lattice 

site does not produce any new configuration. Therefore 

the configurationally-averaged wave function is just 

the same as the wave function for the potential at a site. 

However, in the case of a disordered binary alloy, the 

averaged wave function is different from the wave function 

for a crystal of either A or B atoms. 
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The average potential around any site is taken 

to be the actual potential at the site plus contributions 

from neighbouring atoms, their average arrangement being 

described in terms of the short-range order parameters. 

Let PEBIA(i)] denote the probability that if a given site 

is occupied by a B atom, then a site which is its ith  

neighbor is occupied by an A atom. We denote this by 

pi  and assume that a knowledge of pi(i = 	gives 

an adequate description of the state of order in the alloy 

crystal. 

If r  denotes the -oosition of the various lattice 

sites referred to the B site under consideratipn as origin, 

then the potential at a point B distant r from B, is, 

on the average: 

TB( r) = 03a)  ( 	+ {P [B IA( i)]lija)  (x_r  ( 
+P [3 I B( i)1UB

a) 
 Cr-sa)} 

The summation is over all lattice sites, though it is 

only the contrioution from the immediate neighborhood, 

th:_t is significant, similarly, we have for an A atom, 

A(r) = 	(r) + E {PEA A( 1)]Uia)  (r-ra)+P I B( 1)14a)  Cr-rd.) 
a 

In fact, the P's are related to the p.'.s by the following 
3 

relat ionships75 

PRilk(i)1 = Pi 

PEBIB(i)1 = 1 - pi  

P[AIA(i)] = 1 - pimB/mA  

P [A. 1B (  = pimBimA 



	

We can now write the final expressions for VA(r) and 
	51 

VB(r) in terms of pi  alone as 

(a) 	 (a) VA(r) Uila)(r)+ [(1-pimB/mA)UA  Cr-ra )+(pimBAJOUB  (r-ra)1 a 

(5.19) 
and 

VB(r) = ITi a)(r) 	E [piU(Aa)(r-roc ) + (1-Pi  )143a)  (r-r_o )] a 

(5.20) 

We require the potentials VA(r) and VB(r) to be of the 

muffin+tin form. The overlap from neighboduing sites 

is therefore, evaluated using Lowdin's a-function expansion 

technique and retaining only the spherically symmetric 
term. 

The potential is built up as a sum of a Coulomb 

and an exchange part; both "tieing obtained from free-atom 

wave functions. The Coulomb potential due to a given 

site plus contribution frot Coulomb potentials on neighboring 

sites gives the crystal Coulomb potential. The crystal 

charge density is obtained by an overlap of the atomic 

charge densities. The exchange potential can then be 

obtained by Slater's formula. The contribution due to 

a particular kind of atom from a given neighborhood is 

multiplied by its occupation probability and summed as 

in Eqs. (5.19) and (5.20) to give the averaged potentials. 
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Except for the introduction of these probability factors, 

the procedure is exactly similar to the well-known 

Mattheiss prescription42  for constructing a muffin-tin 

potential. The radial functions Ri(s)(r) are the solution 

of the Schrodinger equation for these potentials. 

Evaluation of Structure Constants:  

ss 
The Byoccurring in Eq.(5.18) are the coefficients 

in the angular momentum representations of the incomplete 

Green's functions of Eq:(5.14). These are given by the 

expression 

ixIR-r 1 	ss 

	

Gsg  (R) 	- 1  E e 	
_a 	

e 1-1-c- *L'a 	(r ) 	(5.21) 
4n 

a 	IR - Sal 	
a 

where the summation is over all lattice sites and 
_ss 
-L" (.Ea) is the probability of finding an sith  type atom 

at a position ra  with respect to an atom of the VI-type. 

For the case of a perfect lattice P ss  (ra) is always 

	

4 	 76 
unity (S-2---s ), and Ham and Segall 	have used the wcad's 

method to express this infinite series in direct space 

as a sum of two rapidly convergent series - one in direct 

space and the other in reciprocal space. For the case 
s' 

of the disordered alloy the presence of the P (ra) term 

does not allow us to follow such an approach. Therefore, 

we assume that the short-range order extends only upto 

a neighborhood a-. Then we have 
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 SS 	6S, 	exp(ix1.1.31) 	ik.r 

R G (R) . P. G(R) - E 	 e 	-a 
a< o~ 	IR-ra l 

,,,,,,, 	---,\ 	 — 

( (111,.0; 	I 	i 
vo 	____ 

'X EP"(ra) - TR] (5.22) 

we may expand these Greenians as 

i ss 
	DL G (4) 	Cos 	R 	i DL ii(xR)YL(i) . 	(5.23) 

GS 
Di are called the structure constants and are related to 

sss  
the BLL/ of Eq.(5.18) by 

SS 
BL  = 	Dil/ CLL./ Li/ 

and CLL L" J are related to the Clebsch-Gordon coefficients. 

Comparing Eqs.(5.22) and (5.23), we arrive at the following 

expression for the structure constants 

SQ 
DL = PR  DI 	E 	[41(Xra)-i ji(Xra)] 

a<coo 

ss 
X YL(f:a) L Pss (ra) - PR  (5.25) 

Here the DL  without the superscript, denotes the structure 

constants for a perfect lattice. The summation extends 

indirect space through a neighborhood o-  , and the prime 

on the summation indicates that a = 0 is excluded. 

Eq.(5.25) offers a convenient way of calculating the 

structure constants for the disordered lattice. The 

determination of the phase shifts is straightforward, as 

in the pure metal band structure problem. The eigenvalues 
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are then determined by evaluating the determinazit (5.18) 

at a se4uence of energies and then locating its zero 

by interpolation. 

The theory outlined above has been applied to 

a-brass77 and disordered Cu3Au.78 The choice was guided 

by the availability of experimental data. The former 

system a-brass does not possess any short range order71 

and the structure constants in this case are related by 

simple factors to that of the perfect host lattice. The 

latter Cu3Au is well known for exhibiting short-range 

order affects and requires the use of the full form 

(5.25). We consider these applications in the following. 

Application to a-brass: 

In this scheme, the potential as well as the 

structural part depend upon the short-range-order 

parameters. The absence of short-range order in the case 

of a-brass, brings about a considerable simplification, 

because the pair correlation factors P[MB(i)],PDIB(i)], 

etc. depend simply on the codcentration of the solute 

(zinc) and are independent of the neighborhood. 

The averaged potentials for Cu and Zn are determined 

as discussed before. The atomic potentials, employed 

to calculate the averaged potentials, were derived from 

a Hartree-Pock-Slater scheme using the Herman-Skillman 

program. An overlap was carried through 6th neighbors. 
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It was assumed that there is no change in the lattice 

parameter upon alloying zinc with copper. The radii of 

the copper and zinc spheres were both chosen to be equal 

to the inscribed sphere radius rias. The constant potential 

in the interstitial region is chosen to be 

Vc  = 0.5 [ Vca(r,,,,$ ) 
	

VZn ("0]. 

The structure constants DL have a very simple 

relationsnip to those for a perfect fcc lattice, because 

of the short range order. El.(5.25) reduces to 

S9 

DL = D L 

where DL 
is the structure constant for the perfect f.c.c. 

lattice and ms' is the atomic concentration of the gth  

component. 

Calculations were performed for the energies of 

conduction and d bands at the high symmetry points r.,x, and 

L for a range of 	Zn concentration. The results 

are presented in Table 5.1 and in Table 5.2 we compare the 

changes in important level separatims obtained from the 

present calculation, with experiment and other theoretical, 

results. 

The experimental information is available from 

the optical studies of a-brass by Biondi and Rayne.
6 

Their results are shown in Fig.5.1. They observed that 

the 2.2 eV absorption peak in pure coper shifts to 2.6 eV 
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FIG 51 Optical absorptivity of DC—brasses as measured by Biondi 
and Rayne. 
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for a--Cup, 70 Zn030. The secondary absorption peak at 

4.2 eV in pure Cu shifts to lower energies, with increasing 

zinc concentration, the reduction being 1.3 eV for 307, 

Zn. 

The other theoretical calculations for a-brass 

are of Amar, Johnson and Sommers"  and of Soven.79 Amar 

et al. use the virtual crystal apnroximation for the 

conduction bands and assume that the d-band are unaltered 

upon alloying. Soven uses an averaged t-matrix approximation. 

However, in order to perform numerical calculations, Soven 

had to separate the conduction and d-band problems. In 

the present formulation of the disordered ,alloy problem, 

both the conduction absild-bdtds_Are. treated on the same 

footing, and we find that the downward shift of the X5  

level is in almost ex--,ct agreement with that calculated 

by Soven. Our con-uted shift for 30% Zn is 0.023 Ry. 
compared to 0.025 Ry obtained by Soven. We may mention 

here, that the term d-like states is used here for the 

d bands originating due to the copper atoms. We do not 

consider at all the d-bands arising from the Zn atoms. It 

is well known that in pure Zn and probably in a-brass too, 

the bands for the d electrons of zinc are highly atomic 

in character and are not influenced by the environment. 

Table 5.2 shows that the predictions of our model 

are in good agreement with Soven's results but differ 

considerably from the experimental values. We attribute 

the discrepancy to the simplified model assumed for an 



alloy. It may also be partly be due to the choice of 
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.Potentials. The almost exact agreement with experiments 

of AJS is perhaps fortuitous, because for Ag-In alloys 

those scheme did not give satisfactory results.67 

It is clear that as the Zn concentration changes, 

the averaged potentials of the constituents will be 

modified and also the distribution of the constituents 

amongst the lattice sites will alter. AJS ignore effects 

due to change in the arrangement of atoms amongst the 

lattice sites, and attribute all effects of alloying to 

changes in potential only. :On the other hand, Boven uses 

potentials which are independent of Zn concentration, 

thus ignoring certain effects of alloying. In our 

formulation, both Vau(r) and Vzn(r) are functions of Zn 

concentration. Tne internal arrangement dependence in 

the problem is introduced via the partial Green's functions 

of Eq.(5.14), which also depend on the Zn concentration, 

Thus, from this point of view, our model gives a better 

picture of the disordered alloy. 

However, it must be conceded that the model is 

still a very simplified approximation to a real disordered 

alloy. When we employ Bloch-type conditions, we are in 

effect equating the alloy to a periodic system, implying 

thereby infinite lifetime of the eigenstates. This is 

clearly not so. A true eigenfunct ion of an electron 

moving in a disordered assembly of atoms will be very 

complicated and will eventually be diffracted and scattered 
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into all possible waves. The function assumed by us is 
an approximate solution, valid only for a limited time. 

We have assumed them to be valid for ever. Using better 

theOries, like the coherent potential approximation 

(to be discussed in Chapter 	to calculate the spectral 

density of states in a-brass, we find that the widths of 

the peaks for s-p states are of the order of 1% of a 

Brillouin Zone dimension. This indicates that the wave 

functions are very nearly Bloch functions. For d-like 

states, the widths are slightly larger. The assumptions 

implicit in defining a Bloch-type condition may not be 

too bc4. 

Application to Disordered Cu3Au  

The alloy Cu3Au is a classical example of one 

undergoing the order-disorder transformation. For the 

perfectly ordered state, all Au atoms are at the 

corners and Cu atoms at the face centers of a cubic lattice. 

Above the critical temperature of 39000 there is no long 

range ordering present. But short-range-order exists and 

both X-ray and electron diffraction methods have been usea 
72-74  

to study the variation of the short-range-order with 

temperature in this system. 

Many physical properties of this alloy have been 

measured both in the ordered and disordered states. The 

Hall coefficient was found to be negative for the disordered 
BO 

alloy, but becomes positive for the ordered phase. 
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However, the variation of the Jail coefficient with the 

short range-order was amall. Airoldi and coworkers have 

carried out measurements of the magnetic susceptibility. as 

well as thermoelectric power as a function of the short--

range-order for Cu3Aa.31 They conclude that the electronic 

structi2re and the Fermi surface (if we may use the term) 

for Cu3Au is quite similar to that of pure Cu. The 

specific heat measurements by Rayne82 failed to detect a 

difference in the density of states at the Fermi surface 

between the ordered and disordered state. Recent and 

more refined experiments do show a variation of 3.5% 

with the setting in a order, 83 The soft X-ray emission 

spectroscopy shows that the spectrum for this alloy is 

almost identical with the spectrum of pure Cu. Besides, 

there is no detectable difference between the emission 

spectra from the alloy in tAe ordered and disordered 

conditions .84 The positron-annidilation experiments by 

Dakhtyar et al. revealed the maximum conduction-electron 

momentum to be the same for both the ordered and disordered 

Cu A 3.1.85 Very recently, both the ordered and disordered 

Cu3Au have been studied by optical and Photoemission 

techniques, and the imaginary part of the dielectric 

constant has been obtained from a Kramers-Kroing analysis of 

the data. The spectrum of the disordered sample was 

found to be well represented by a superposition of the 

spectra of the constituents.
86 

All these properties cannot be interpreted in 
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terms of the band structure alone. Still, we thought it 

would be interesting to investigate tne dependence of the 

band structure of disordered Cu3Au, on the degree of the 

short-range order. Fairly detailed calculations of the 

energy bands have already been carried out for the ordered 

Cu3Au by Gray and Brown.87 They employed the modified 

plane-wave method in conjunction with the orthogonalized-

plane-wave method. T4e crystal potential was constructed 

by slightly modifying the atomic potentials of .Herman and 

Skillman. 

The method for calculation adopted here for 

disordered Ou3Au is very similar to the one discussed 

before for a-brass. The potentials were determined by 

considering the overlap from neighboring sites, as indicated 

in Eqs.(5.19) and (5.20). The occupation probabilities 

were derived from the available experimental data on short-

range-order parameters. The starting atomic potentials 

and charge densities were obtained from the non-relativistic 

program of Herman and Skillman. The relativistic wave 

functions were not employed in view of the fact that the 

band calculation itself is a non-relativistic one. 

The energies were computed for states of different 

representations at the symmetry points r, X, and L for 

disordered Cu3Au at temperatures of 405°C, 450°C and 550°C. 

Cowley's short-range order parameters were used for 550°C, 

while for the other two temperatures, results from the 
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more accurate measurements of Moss were em -oloyed. TheSe 

parameters are tabulated in Table 5.3. The results of 

the calculation are presented in Table 5.4. The muffin-tin 

radius rmt  was chosen to be equal for Cu and Au and 

equal to 2.46095 a.n. In order to see how the alteration 

of a-  affects the results, we performed calculations for 

a-  = .6, as well as o- = 10. Except for the 172-bland r- 12 

states (which cnanged by as much as 0,06 Ry), the change 

was not more than 0.004 Ry. The satisfactory convergence 

shows that the approximation involved in calculating the 

partial Greenians is not bad. Although the scheme adopted 

takes account of short-range-correlations, it is still 

a simplified treatment of a real disordered alloy. It 

was therefore felt that a very detailed calculation 

of the energy bands is not merited at this stage. Even 

with the limited calculation reported here, it is possible 

to have some idea of the distortion 	of the Fermi surface. 

The results indicate only slight varietion in the energy 

levels with temperature. The fact that the shifts with 

temperature of some of these levels are not regular is a 

bit unsatisfactory, and may be ascribed to the different 

sources of the short-range order parameters employed in 

the calculation. 
If we interpret the peak at 2,4 eV observed by 

Nilsson and liorris
86 to direct transitions alone, we 

notice that the X5 - X4
stransition is a suitable one. Our 

calculation scows this to be significantly constant at 
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1.5 eV. 'The calculations also show that although the 

positions of the s-p bands are appreciably altered, 

rele_tive to that for pure copper, the d-bands are relatively 

unchanged. Tnis.explains why the soft X-ray emission 

spectrum for the disordered Cu3Au is similar that of pure 

Cu, and confOrms to Rooker interpretation of this 

effect.88 

The formalisms and calculations discussed above 

were virtual crystal models based on a KKR framework. 

A virtual crystal approximation, based on the APW 

framework has been proposed by Schoen.89 His model 

excludes both long and short-range order. The muffin-tin 

potential wz.s constructed separately for each component 

and is simiL:r to that discussed in Ref.67, 77. Schoen 

starts from Aid 	
25 pseudopotential formalism of Lloyd 	and 

uses a random phase ap roximation to show that the logarithmic 

derivative of the component spheres on equivalent lattice 

sites have been replaced by a weighted average or effective 

logarithmic derivative. The standard APW programs 

developed for perfect crystals may now be used to determine 

the energy eigenvalues. Moreover, the symmetry of the 

alloy superlattice can be exploited to simplify the 

calculations. The APW VCA was applied to determine the 

band structure, density of states as a function of 

vacancy concentration and composition for TiO and hence 

to study its stability.90 Applications to most other alloy 

systems of interest have not been reported. 
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TABLE 5.3:S.hort-range order parameters pifor 
Cu3Au employed in the present calculation 

Neighbor 
lmn 

Short-range order parameter 
405°0 	4500C 	550 C 

1 110 -0,218 -0.195 0.131 

2 200 +0,286 +0.215 +0.105 

3 211 -0.012 +0.003 +0.026 

4 220 +0.122 +0.077 +0.047 

5 310 ...0.073 -0.052 -0.032 

6 222 +0.069 +0.028 -0,009 

7 321 -0.023 -0.010 -0.003 

8 400 +0.067 +0.036 +0.019 

9 
-0.028 -0.015 -0.011 

{
330 
411 +0.004 +0.007 +0.007 

10 420 +0.047 +0.015 +0.007 



TABLE 5.4: Energy values at the symmetry points r, X, and 
for the disordered Cu3Au as a function of the 
temperature. All the energies are in Ry., 
and relative to the muffin-tin zero 
Vo  . -1.1358. o-  denotes the order of the 
significant neighborhood. 

 

1 40500 	 	405°C 	450°C 1 450°C 	5500c 	5500  

	

§ o-= 6 	o- =10 I cr. 6 cr= 10 cr. 6 	10 

11 	 0.0041 

125/ 	0.5581 

172  0.6009 

L11(lower) 	0.4952 

L12(higher) 0.9938 

L2i 	0,5539 

L31(lower) 	0,6023 

L32(higher) 0.6668 

X (Lower) 	0 ,5013 11 
X12(hither) 1,1847 

X2 	0.6548 

X3 	0,5574 

X4 / 	0,7753 

X5 	0.6649 

0.0042 0.0041 0,0041 0.0041 0.0039 
0.6114 0.5572 0.5994 0.6499 0.6076  

0.6410 0.5390 0.6276 0.5717 0.6469  

0.4933 0.4950 0.4950 0.4952 0.4828  

0.9906 0.9894 0.9883 1.0281 0,9790  

0.5573 0.5544 0,5544 0.5732 0.5687 

0.6016 0.6022 0.6019 0.6005 0.6003 

0.6670 0.6673 0.6673 0.6724 0.6724 

0.5017 0.5004 0 ,5026 0.4981 0.4982 

1.1857 1.1861 1.1866 1.2334 1.2341  

0.6542 0.6558 0.6558 0.6604 0.6604 

0.5570 0.5565 0.5567 0.5499 0,5500 

0.7693 0.7746 0,7714 0.7930 0.7933  

0.6684 0.6650 0.6648 0.6690 0.6690  
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CHAPTER VI 

Spectral Density oIstates in  Disordered Alloys-geometric 
approximation: 

In the preceding chapter, we discussed some simple 

theories for electron states in disordered alloys, all of them 

having the common weakness of associating a unique momentum 

with a given eigenstate, thus assigning to it an infinite 

lifetime. But k will no longer be a good quantum number for 

electrons in a disordered alloy. In such systems the 

important andirleVent physical quantity is the spectral density 

of states f(E,k). For the case of a perfect lattice, this 

has a 5-function peak at the band energies. As a result of 

disorder, this peak is broadened and its width would indicate 

the departure from the Bloch-wave character of the alloy wave 

function. 

We will now be concerned with a theory to find the 

spectral density of states by evaluating the T-matrix for the 

system of scatterers, and then its a •;lication to an actual 

• alloy system-disordered p-brass. We will also point out that 

for the case of a perfect lattice the formalism reduces exactly 

to the KKR method of energy-band calculation. 

General FormulLttion: 

If G is the CT,'reen function of an electron moving 

under the inflience of l otentials Ua we have 

ri). 	(6.1) 2-. 
ti 	 cc +ie }G(r,r' ) 	 5 (r. 

a 



We denote by enclosing in brackets, the average over all 

possible configurations of the system. Then the spectral 

density is given by 

= 	Im <G(k)>/n 	 (6.2) 

where Im denotes the imaginary part of the quantity that 

follows it, and 

G(k) = f e - G (rr )drdr 	 (6.3) 

and 

n(E) = 	f(11,E)dk. 	 (6.4) 

The T-matrix for the system is relted to G and the free 

particle Green's function Go by 

m  
G(r,r) = Go(rA + f Go(r,4 T(r,r) Go(r

111
,r) dr dr

,,,  (6.5) 

!4 

and , -it. (r-r/  ) 
T(k) = f e T(r,r') dr dr 

We have, from Fourier transform of (6.5), 

G(k) = Go(k) + Go(k) T(k) Go(k) 

T(k) 4G0(h)}-2 G(k)  - [Go(k)Y-1 	 (6.6) 

The real and imaginary parts of T(k) are then immediately 

Im T(k) = (E-k2 ) 2  Im G(k) 
(6.7) 

<ReT(k) 	(E-k2 )2 1?r_G(k) - (E-k2 ) 

One can develop an expansion for G in terms of the 

t-functions of a si..gle atom. Tae series looks very much 
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like that in the potentials U, except that the repetitions 

of any particular U which aDpJar in the expansion of the 

t-fanction of that atom are missing: 

G = Go  + Go  E UaGo  + Go  2 UaGo  ZUG()  + 
a 	a 	13P 

G = Go  +Go  Et aGo  + Go  E (taGotp)G0  + Go  E E Eta  GotpGotr  
a 	a Pt-C1C 	a NOW 

(6.8) 

The usual symbolic notation is adopted here, in which 

integrations are implicit. It may be noted that in the 3rd 

term, a .1rmust be included and that t is related to kill 

by 

t(r 	= U(4.5(r-r5 + P(r)Go(r-At(rf,/  ri )dr". 	(6.9) 

From definitions of T and t (Eqs.6.51  6.8, 6.9) it follows 

thut 

T .Eta  + E E 	taGotl3 +E 	E 	EtGntAG
°
t 

a 	a 4cc 	 P#a op 	- 

  

(6.10) 

.(6.10) is the starting point of our discussions in this 

caapter. Let Ra, 4....denote the positions of the 

scattering centres 

//// 

T(rr) =Et(E-Rar-R )+ E 	Efft(r-R r-Ra  )Go  (rr) _ 
a 	a 04a 

H 	if/ 

X t(E -Rp, r-Rp)dr dr + 

(6.11) 

For the case of a perfect lattice., the translational sylmetry, 



enables us to perform the following manipulations 

T(1,c) f  e-1-1..;(r-1.:1) 

a 	 K-Fla r -R ) dr dr 

a P#a 
//I 	i 	ik(r-r ) 

X t(r-R -R )e - p/r _13 	drdrdrdr + 	 

-ik.(r-r) 	„Th. 	 In 	-ik. -d Cr- )„ = Ejje t(s,rdsdr +Njjjjt(rr)Gk(s,r)t(r,r)e 	rd_drarni+ • . • • 
a 

a 
	

(6.12) 

where we h. ve defined the matrix 

4 
+E E fffit(r-Ra, r-Ra  )Go  Cr r ) - -- - 

ik.(R _R  
Go(r +11a 	 4) e 	

) 
 (6.13) Pta 

The series (6.12) is geometric and can be summed to give 

f 	 / 

	

TQ) = Nfie 	tt+tGkt + tGktGktt.... 3dsdr 

-ik$C.r-rS 

tt-1- G
k'13 

	

= We 	 dr dr 

We expect singularities of T(k) at singularities of the 

matrix [t-1 	-1. These would occur at the zeros of the 

determinant of this matrix, and this turns out to be Eq.(6.24) 

first the condition for the KKR method. 

We now proceed with application of these ideas 

to the disordered alloy problem. There are two basic 

approximations invoked in this analysis. 

(6.14) 



1) The first approximation is the use of muffin=-tin 

potentials where the potential at each site can be 

aproximated by a sphericplly symnetric distribution within 

non-overlapping spheres around eL.:ch ion, and assumed constant 

in the interstitial region. This approximation could be improv 

at the cost of more computational effort, but the muffin-tin 

approximation has been found to be reasonable in band 

structures calculations, and the errors due to this should 

not be too serious. 

2) The second simplification introduced 'mere is the 

geometric approximation discussed by Beeby.1691'92 This 

aproximation (which is exact for the perfect lattice) 

enables us to sum the infinite series expressing the T matrix 

for the system in terms of the t matrices for the individual 

scatterers. 

We start from 24.(6.10), and because of the presence 

of 2 kinds of atoms, the sunmations have to be done by 

splitting the T matrix series into 4 parts. 

T = E 
	T  ss 

s=1,2 	 ( 6.15) 
s =1,2 

hai-e 

T = Eta  +EEt
1G0 ,J tl +E E 	EtaG0 taGotpGo  

a  a Pta  a Pfa OR 

E E ta  iGotp 2+ E E 	EtaG t pGotr
2  
	(6.16) 

a P#a  a P#a 1 
T21 

E Eta  2Gotp1- EzEta-GotpGotW 	 =  
a P c 	a Pra 014) 
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In the above expressions, the superscripts 1 and 2 denote the 

two types of atoms, tas is the t matrix colresponding to 

the potential Us at a. Ts  corresponds to that part of 

the total T function in which the electron scatters,. first, 

off an atom of the sth type and lastly off one of the s /th 

type. The intermediate scatterers may be of either type and 

are represented by t's without any superscript in the abOve 

series. 

In order to obtain a matrix representation, we 

make an angular momentum expansion of the t-functions. It 

is convenient to use, as before, real spherical harmonics 

YL(1) of the angles of r , where L is a compound subscript, 

denoting -both 1 and m: 

t(rIA = 	t (r/r1) YL (I) 11(1)   L 
(6.17) 

The Fourier transformati in to T(k) may now be carried out 

separately for each term of the series in (6.16). The 

first term of T11  or T22  gives 

s 	X1 
a
9, 

talg,I)e-ik. r =4470 2
° 1 	1  

Efj (kr)• (khtls(r,)r2dr 
a 

r? drl YL  (11) YL  ().  (6.18)  - 

T =Eta +zzi  ta2Gotp2 -FEE 	Eta
2G0 p 	6 tnG,t,..2 + 	 

a 	a 13..a 	 a Oa ao 

where Ns 	the number of potentials of type s. The 

calculation of a general term in the series involves angular 



integrations of the type 

	 9 
ik.(R ss 	1 1  

	

' 1  JYL(r  )G0(E-E + 	 ayi:(1,5 daicji7.14 
aP 

besides, the radial integrals involved in t1 and a summation 

over L. A typical term in the series therefore contains 

products of the form 

/ 	/f 	 /11, 
Sc 	 S S 	 S S 

	

ta 	
S 0 Z 	30 	 
aP rtp 	XN 	'''' 	) LL 1/  

where the superscripts on S take the values 1 and 2, 

depending on the type of atoms at locations specified by 

the subscripts.' The problem is to sum an infinite series 

with.terms of this nature, and then to average such sums over 

all configurations. Beeby presented a method of tackling 
s ,s 

this problem by replacing Sa 
= E Sad 	b3t some S SS  which 

Pfa 
does not depend on a. 	The series then become geometric, 

and this approximation is therefore called the 'geometric 

approximation.' Then 

(S 
1.1,1J 

E 

Ns Oa 

SS 
(s uiou' 

=  1 N  E fi
1-1 

 YL(g )G0(r7S 	YI(IL ') dill:4  

sPta 

	
-ik.(.ac za ) 

(6.19) 

The formalism here is identical with that of Beeby. Beeby 

proceeds further by relating the lattice sums to the Kohn- 

Rostoker Green's functions. 
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We can identify 

1k.(Ra-Rp )  
E 	Go(r -ri 	-R) e 

Pta 

as the incomplete Green's function of Chapter 4, with the 

p=a term omitted. Tais may therefore be expanded as 

, -ik.(accap) 
E Go  (r 	/ + 3,01(.44) e 

f4m 

	

1-1 	i 	 4/ 

= 	i 	GED ji(xr) 	) Y1,1( r ) . 
LL 

Therefore, 
s 	

GLL,  ii(xx' ) 	1(7ce 
	 (6.20) 

where x = VE if E > 0 and i 1--E if E < 0; and G219! are 

	

ss 	 ss related to the B1-0- discussed in Chapter V. The GLL are 

independent of r and r and are collectively denoted by 

Tae radial integrals now involve only Bessel functions 

and the radial t1  functions. Their most general form is 

tls(P,  cl) = f jl(Pr) tis  (rri  ) ii( 	
2 

) r drr 	dr 
	

(6.21) 

with p and q taking the values k or x. We use T to denote 

tis  (x,x). In this notation we have for the series 

of E4.(6.16) 

T11= (4n)2  N4 E Y1, (c) Yt(11)-(ti(k,k) &LI/ N4 
1,1,1." 

	

+ t L (klx)(G11+E al  74- 
S 9

G
3 
-1-EG 7SG 7 G 	4.....) 

r 1 	1 	1S 	SS ?S  GS 
1 

	

/ 	r 

s=1,2 	s=1,2 
s'=1,2 

t(x, k)jIJLI 1 9  
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r  , ./ T12.(4n)2N 	Y (k)Lt(K/KAG12  + 	G1ssGs2 1/ L-- 	s=1,2 

+EGisT 
s 
G
ssi s'

G
s / 

 +
2 

T 
s=1,2 

s =1,2 

22 
with sinilhr expressions for T

21 and T 

)t2(x,k)]LL  YL,01). 

On performing the summations, we get 

T11= = (4n)
2N 	L, YL(I) y (k)[7.t1  (k,k)(51,L

. 
-  

44,L,x) mIlD211(.1-G2272)( G121.2 ) -1G11j  

, 	22 	22 2„ 12 2,-1 12 T12=(4n)2N1  Y,1
(1.0Yv(k)fykogdM 	+(1-G TA.G 7 ) G 1 III 4  

X t2(ZIk)"l,LI 

(6.22) 

and T
22 

and T21 may be ootained by interch.,:mging the 

superscripts 1 and 2 in the above expressions. Mi  and M2  

are defined by the following expressions: 

= 

= 

(1-G22T2 )(G1272 )  -1 

(1_G11 	)(G211;)-1 

(1-G11).) 

/ 
11 	

22 	2, ) -G T 

G217.1 

G
12 T2. 
G 

(6.23) 

The above sets of E4s.(6.21), (6.22) and (6.23) enable us to 

determine the spectral density of states. 
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We may mention here that if there was only one 

kind of atom and the geometric approximation were invoked 

(which is exact for the case of a perfect lattice), the 

final expression for T(10 would be 

- 
T(k) = (470 4"N

Li  
E YL(...0Y1/,(1.) Cti(k,108Lit + ti(k,x) [G'(i- G7)-11 
t 

ti(x..,k)3 	(6.24) 

where G has been defined before. The zeros of the 

determinant of the matrix [1- GT
,
1  gives the singularities 

in the T(k). We then have 

(let' I C41111-  Tl 	= 0 

Using the relationship between ir and the phase shifts 

= - Zcotiltl  + 

The imaginary part of this cancel with the imaginary part 

of GU/ and we are left with the Condition. 

det I BLL/+ 7; cot el l  Old!' = 0 	(6.24a) 

which is identical with the determinantal Eqn. of the KKR 

method.. 

From .bris.(6.22) and (6.23) we see th:...t the peaks in 

the spectral density curves are given by 

det 114111 = 0 or det 1E2 1 = 0, both t.isiet of the 

which are the same i.e. 

1 1-G1 T1  
G2111 

Glar2 0 
22 2 - 

1-G I 
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If we consider an alloy for which the solute atoms are 

randomly distributed on the lattice sites, we have 

12 
G22 	G 	= c G . 

G21 = G
11  = (1-c) G 

where c is the concentration and G is the Green's function 

for the corresponding perfect lattice. The above 

condition then becomes 

1 	G 	1--c)13° + cJ = 0 

Comparing this with the expression Eq.(6.24), we 

see that for such a system of random substitutional 

impurities the energy values will be the same as that 

for a perfect lattice having an averaged t-matrix at each 

site.92,79 

In order to calculate the spectral densit-,i of states 

from the above formulae, we need the matrix elements of . 
ss G 	and of the t-matrices. It is clear that the calculation 

of Gss  requires a detailed knowledge of the relative 

positions of the atoms. In the case of a disordered alloys, 

the short-range-order parameters may be used TO estimate 

an average distribution pattern of the constituents, thus 

enabling us to calculate the GsT A detailed discussion of 

the use of the short-range order parameters to determine the 

matrix elements of G56  h.s already been given in Chapter V. 

It is assumed that the short-range-order extends only upto 
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a certain neighborhood, beyond which the occupation probabili 

ties are those of a randomly occupied lattice. In terms of 

the Cowley short-range order parameters a i, this means 

thut ai = 0 for i greater than a certain value o-. The 

matrix elements GIL/ ss  are given by 

,SS S s G 	= 4n 	1)T# LL 	L" "" • uLL L 
► (6.25) 

Here CLL Li/ R axe related to the Clebsch-Gordon coefficients and 

► -1 ik.Ry ss D = m■D-r+ix(4n)-1/2
m i&L 	Xi Ee 1ocRe-iii(xRx/YOr) s 0 L 	s 	 r‹ o- 

x EPss  (Er) — inj 
	

(6.26) 

In the above expre-,sion, m5  is the atomic concentration of 

atoms of the sth type and the DL  without superscripts are the 

familiar structure constants of the ordered lattice, which 

occur in the KKR method. Pss  (R/r) denotes the probability 

of finding an e.tom of the th type at a Position R' wita 

respect to an atom of the sth type. Tais probability is 

related to the short range order parameters. Tne 

summation is over a neighborhood T in direct space and the 

prime on the sum-qation indicates th-at the term with it = 0 

is to be omittdd. 

Potentials and t-matrices 

The evaluation of the elements ti(p,q) of Li.(6.21) 

is simplified by introducing model potentials in place of 
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the true potential. In performing calculations on a-brass 

using the averaged t-matrix apiroximation, Soven79 

suggested the use of model 6-function potentials in Dlace 

of the true potentials. The model potentials were chosen 

to be of the form24' fig  

5  (L lx) 	z YL(1) 6(x—Yht) 	us  6(x-rmt) 
rmt2 	1 	 YLOc/  VS ). 

(6.27) 

where rmt  is the radius of the muffin-tin sphere and 

• Ul are energy-dependent potential amplitudes. We know 

from the formalisms of the APB and KKR methods for the 

perfect lattice and the extension of the KKR Method to 

disordered alloys, that the potential enters the final 

formulas only through the logarithmic derivatives of the 

radial wave function at the muffin-tin s-;,here. A suitable 

method for determining 1113(E) is then to re4uire it to 

yield the same logarithmic derivatives as ::4enerated by 

the -,ctual )otential. 	IT7(11 ) are related to the 

logarithimic derivative by 

(E) 	rm.tta (E) -Aj 	rat)/ 	rmt)}, 	(6.28) 

where j1  is the derivative of the Bessel function. and 

ME) is the logarithmic derivatiVe of the radial wave 

function (for angular momentum 1 and energy E) of the 

actual potential, Tne muffin-tin potentials to generate 

the logarithmic derivative can be constructed by overlapping 

rmt2  



8(r "-rmt) 
t ( 	+: 1,r3r, = 5(1" -rmt)  (6.29) 

   

rmt2 

 

rmt2  
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the atomic potentials from neighboring sites, taking 

due account of the probability of occupatim of a site 

by a given type of atom, 'as discussed already in Chapter V. 

For a potential of the form (6.27), the angular 

momentum components of the t matrix can then be written 

as 

so that 

ti 	(1-4Jigi) 
	

(6.30) 

where gl  = G1  (rmt, rmt)is the 1th co:TDonent in the 

angular momentum representation of G-(g--..g ). The•introduction 

of the 8-function model potentials then leads to the 

following siaole expression for the matrix elements 

(6.21) of t. 

t1(1),  q)  = t1 jl(Prmt)  ii( grmt) - 
	(6.31) 

ss' 
These expres n sios completely define T (k) in terms of 
ss G and the logaritirniic derivatives of the radial functions 

at the muffin-tin radius. The spectral density of ttate 

. is then obtained from. 

r(E,1) 1 Im 	E Ts  (k) 	(6.32) 
s=112 

s'.112 (E--k2)2n J  

Tie use of energy dependent 	iiotentials necessitates 



	

the correction factor 
	 8? 

(s 
dUl( 

) 

	

E) 

s=1,2 	dE 

with Eq.(6.32). 

Applications 

Tne first ap-)liction of the t-matrix formalism 

to real alloys was made of Coven, who calculated the 

spiactral density of states for various symmetries in 

a-brass using an averaged t-matrix apflroximation.79 For 

the case of a-brass experiments did not show the presence 

of any short-range order. Hence, from the preceding 

discussion, the averaged t-matrix approximation is applicable. 

But for the f3-brass, for examole, where short-range order 

is significant to a large neigiaborhood, one should use the 

more general geometric ai_aproximL„tion. We report below in 

brief the results of such a program. 

Neutron diffraction has been used successfully to 

observe short-range-order diffuse scattering in the alloy.93 

Walker and Keating94 found that it was not possible to 

assign unique values to the short-range order parameters 

in p-brass, because of the long range nature of the short-ranr.  

order. They therefore compared the measured scattering 

with tts values calculated from various theoretical approaches 

and showed th:tt (for 75°C above the critical transition 

temperature) the short-range order oarameters could be given 

by a Zernike-type exprecc ion 



la(r)1 	= 0.540 
- e   0.400r 88 
rf 

  

where r = 2r/a, and a is the lattice constant. Je have 

used this expression to calculate the short-range-order 

parameters exmployed in the calculation. Although the 

disordered p-phase is found for a range of Zn concentrations 

in the vicinity of the 50-50 stoidhiometry, we have chosen 

the concentrations of Cu and Zn atoms to be equal. 

The muffin-tin potentials for Cu and Zn were constructE 

by overlapping tnrough tenth neighbors. While calculating 

the Gss , the order of significant neighborhood o- was also 

set equal to 10. The actual potential for copper and zinc. 

employe'd in the calculation are shown in Fig.6.1, and some 

relevant input parameters are given in Table 6.1. 

The numerical calculations have been curried out for 

spectral density of states.at the symmetry points I", 11, P 

and N of the Brillouin Zone, 4e have calculated tne reduced 

spectral density 

T:(E,10 	E f(Elk + 
K 

where K is a reciprocal lattice vector, and k is confined 

to the first Brillouin zone. This reduced spectral density 

should be convenient for comparison with the energy-versus-

momentum curves of an ordered crystal, which are also defined 

modulo a reciprocal lattice vector. Some plots of IC(E,k) 

plotted against E are shown in Figs. 6.2 -6.3 , and their 

peals oositions are tabulated in Table 6.2. The abscissa is 
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a dimensionless quantity 6 in terms of which, the energy is 

given by E =(4n2/a2 )B. The ordinates give e(E,k)a3/(470 2  
We now make a comparison of the results with the 

experimental data. Moss10 has conjectured that nonspherical 

pieces of the Fermi surface may give rise to a detectable 

singularity in the intensity of diffusely scattered X-rays, 

electrons or neutrons. He applied the idea to the neutron-

scattering curves for P-brass measured by Walker and Keating,94 

and concluded that along <111>, kp = 0.74 of the 	P 

distance. In order to estimate. kp from our limited calculation 

we use the Cohen-Heine" model, characterising the band struc-- 

ture in terms of the states IT,N1 and N j/.. An effective mass 

can than be defined for the TT NI,  band and the Fermi-energy 

obtained. The intersection of Ep with 17.._ P4  band gives 

kp = 0.75 of the F-P distance. The free-electron value 

for tais ratio is 0.82 and the -Virtual crystal approximation 

gives the value 0.78. Our calculations thus indicate that 

the Fermi surface normal to <111> is flatter than ttiat given 

by the VOA. The calculated flatness compares surprisingly well 

with Moss's analysis of the neutron scattering data. 0 course, 

Moss's conclusion is subject to a number of uncertainties. 

The diffuseness in the Fermi surface as a result of the 

disorder should erode the singularity and render its 

observation difficult. It has been seen from some calculations 

that eigenfunction for weve vectors about half way to the zone 

edge depart serioudly from Bloch waves and the Fermi surface 

would appear to be a conceet of limited utility in this 
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region.

96, 
Besides, the experimental data used by Moss is 

of uncertain accuracy in the region of interest. We find 

that our calculations give a value of 2.2 eV for the Nfe- Ni  

gap, whereas the value due to Amar,Johnson and Wang for this 

gap is 1.5 eV. Thus our calculation gives a Fermi surface 

for which the departure from sphericity is greater than that 

given by the virtual crystal ap;roximation. In order to 

carry this comparison further we have calculted the N1/- N1 

gap following the same method, but using atomic potentials 

for copper and zinc. nese were the potentials used by 

Amar et al.63  in their VGA calculations for n-brass, with 

atomic potentials the N11- N1  .gap was found to be 2.4 eV. 

Thus the energy gap for the disordered alloy also is 

sensitive to the choice of potential, but it is clear that 

the striking differences in the values of the N1! N1  gap 

given by the present method and by the VGA approach originates 

from the differences in the formalisms. 



Table 6.1: Some  rameters relevant to  the s-brass  
calculation:  

Lattice constant 	2.9907.Z (5.6514 a.u.) 

Atomic concentration of zinc 50% 

Atomic concentration of copper 50% 

Radii of muffin-tin spheres for 
Cu and Zn 	2.4148 (a.u.) 

Radius of inscribed sphere 	2.4472 (a.u.) 

Order of significant 	6= 9 	10 
neighborhood 

Constant part of muffin-tin -0.9152 Ry. 
potential 
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Table 6.2 Positions 

curves for 
in 13-brass 
relative t 
-0.9152 Ry 

of peaks in (v- (E, k) versus E 
states of various symmetries 

. All energies are in Ry and 
o the muffin-tin zero t Ve  = 

Energy 	State 	Energy State 

ri 

57'2 

0.018 P4 0,158 

0.160 P3 0.162 

0.180 P4 0.896 

0.124 1 0.985 

0.198 N1  0.120 

1.051 N2 0.141 

1.133 N1  0.165 

1.693 N4 0.183 

0.511 N3 0.204 

N1/ 0.404 

N1  0.571 

H12 

H25/ 

H15 
1112 
H1 

' EF(Cohen- 
Heine method) 
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FIGURE CAPT 

Fig.6.1 'Charge' Z(r) 	-rV(r)/2 for copper and zinc 

in disordered p-brass at 7500 above the transition 

temperature. 

Fig.6.2 Spectral density of states for 125/and 172 (d-like 

states) in n-brass, plotted as a function of 

energy. 

Fig.6.3 Spectral density of states for N1! (p--like) state 

in p-brass, plotted as a function of energy. 



1.60 	1.80 	2.00 	2.20 
RI 	PrYH1P 



E/1.236 (Ry 





94 
CHAPTER VII 

Coherent Potential Model for Disordered alloys - Application 
to real Systems: 

We have seen in the previous chapter, how the spectral 

function may be obtained by evaluating the T matrix for a 

system of random scatterers, under the 'geometric' and average 

t-matrix 	roximation. Soven97 and Velicky et al.98  

developed a more accurate theory by introducing ideas of an 

effective medium propagator. They view the scatterers as 

being embedded in an effective medium, whose choice is made 

self-consistently. This medium is chosen by requiring that 

a single scatterer embedded in this effective medium should 

produce no further scattering on the avera,fr. e. TAis self-

consistent Hamiltonian is optimal among all single-s ite 

aP.roximations, i.e, those which neglect scattering from 

clusters of atoms. S imil r arguments were used by EcIdillan an 

Anderson99  in their treatment of liquid iron. Onodera and 

Toyozawa100  used exactly the same formalism to describe 

Prenkel excitons in mixed ionic crystals. Closely related 

to this are the efforts of 'Hibbard to obtain a self-consistent 

description of electron correlation in narrow bands. In one 

of his papers, Hubbard
101 introduces an alloy analogy and 

by using ai,propriate decoupling schemes for the Green's 

functions eautions, he arrives at a self-consP7tent solution 

of the alloy problem, which. is precisely equivalent to the 

coherent -)otential ay" roximut ion, 
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The first application of the CPA was to a one-dimension 

array of 8-function potentials, where it w s fo,ind to give goo 

agreement with results of machine calculations. A notable 

feature was thL:.t the spurious band gap predicted by the 

'averaged t-matrix approxi.nation' was absent.96 
Since then 

it has teeh applied to model 3 dimensional alloys, and also 

to some real alloys. The theory of the CPA as used here 

ignores the presence of any short-ran,"-e order. :fence the 

applications have been made to systems like a-CuZn102 
and 

Ou-Al103 for which experiments show that there is no 

short range order, and not to p-brass for example, wnich 

shows short-range correlations upto fairly large distances. 

When applied to Cu-Al alloys, the results of the CP model 

agreed well with the data from positron annihilation angular 

correlation studies.9 For a-brass too, the results are in 
6 

better agreement with experiments, than previous calculations 

with VCA and averaged t-matrix approximations. 

Velicky et al's treatment of the Coherent  Potential Theory: 

The alloy system under consideration may be described 

as a periodic lattice containing N equivalent sites occupied 

by two kinds of atoms A and B. The respective concentrations 

of atoms are c and 1-c, and c can vary from 0 to 1. The 

physical quantities of interest are ensemble averages. 

Such an average of an operator 0,will,be denoted by <0>. 

For any configuration, the single-particle Green's 

function is given as 

G(2) 	- Hi -1  , (7.1) 
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where H is tne one-electron Hamiltonian corresponding 

to tnis configuration. All macroscopic quantities of 

interest are then determined by <G(z)> and the averaged 

<G> has the full sym:aetry of the lattice. The equation 

determining the eff=ective Hamiltonian Heff is 

<G(z)> = (z - Heff)
-1. 	(7.2) 

If K = K(z) is a starting ar:roximation to H eff, then  

<G> = R + R (Heff 	K) <G> 	(7,3) 

where 	R (z K)-1 	 (7.3a) 

is the unperturbed Greents function. The T matrix 

corresponding to a given configuration may be written as 

G .R+RT R, 	 (7.4) 

which gives upon averaging 

<G> = R + R <T> R. 	(7.5) 

Comparing Eqs.(7.3) and (7.5), we have 

1 1 
Heff = K + <T> [1+R<T>j . (7.6) 

The 1;q.(7.6) relates the-  effective Hamiltonian 

Heff to the trial function K and the averaged T. The 

equation can therefore be used in two ways to determine 

the effective Jaxriltoniar'. 

1) Jon self-consistent procedure - This consists 

in determining <T(K)> corres:c.ZLing to a given K nd 
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insertinz it into Eq.(7.6). 

2) Self-consistent procedure - One chooses the K 

such that <T(K)> = 0 and then Eq.(7.6) ensures that 

Heff = K 	. 	 (7,7) 

The next step is to decomnose the random-perturbing 

potential H-K iiito a sum of contributions of single 

scatterers associated with each site, i.e. 

H-K = E Vn 	 (7.8) n 

where n is a site index. 

The Green's function G can be written in terms of 

K as  

G R + R (H-K) G. 

This, together with E.(7.4) gives 

T = (H -K ) (1+ AT), 

which upon using (7.8) gives 

T = E Vn (1 + RT) 

(7,9) 

(7.10) 

(7.11) 

which expresses the T matrix as a sum of contributions 

arising from the individual scatterers. We define a 

quantity Qn  by 

T E E Qn 	 (7.12) 

The T matrix associated with site n is 

P = (1-V R)-1 n n (7.12i 



He f = K + E <Tn> (1+ R<Tn>) 
n 

(7.18) -1 
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Substitution into (7.11) gives 

Qn = Tn  (1+ R 
m

E 	Qm) 	 (7.13) 4n 

Averaging Ejs.(7.12) and (7.13), we have 

<T> 	<Qn> 
n 

(7.14) 

<Qn> 	<Tn(1+ RjriQrd> 	(7.15) 

Eq.(7.15) may be rewritten as 

<Qn> 	<Tn> (<1+R E Qm>) 
mAn 

+ <Tn  R E ( m-<Qm>)> 
min (7.16) 

In tais e4uation, the first term described the 

effect of the averaged effective wave seen by tree nth 

atom, and the second term corresponds to fluctuations 

about the effective wave. The basic ap,roximation is 

to neglect the 2nd term. El.(7.16) then reduces to 

<Qn>cTn> (1+ R E <Qin>) 
mn  

or 	
<Qn> = (1+ <Tn> R) -1  <Tn> (1+R<T>) 	(7.17) 

Substituting this into Eq.(7.6), we have for the effective 

Hamiltonian 
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which relates it to the average scattering arising from 

the nth s catterer. 

The self consistent procedure mentioned after 

Eq.(7.6) then sim-plifies to 

<Tn(K)> =0 for all n. 	 (7.19) 

Because of the periodicity of the averaged quantities, 

it is sufficient to consider only one, say the zeroth 

site 	This is identical with the condition imposed by 

Soven96 to determine Ileff4 

The validity of the neglect of the 2nd term in 

Eq.(7.16), i.e. the assumption that 

<Tn  R E (Qm  
m/n 

Qn›)› =O 	 (7.20) 

imlies neglect of all statistical correlations between 

n and all other sites m. These co relations arise from 

the presence of short-range-order and multi-Dle scattering. 

Application to a Model Hamiltonian;  

We choose a single-band model, closely rel,ted to 

the tight-binding aprroximation. A single orbital In> 

is associated with each site n. _lance the name 1 siw_--le-

band model.' The one-electron Hamiltonian for this 

system is 

H = E In>en<ni + E In>t <ml 	(7.21) 
n 	 n/m 

= .1) + VI 
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The Hamiltonian H is thus split up into a diagonal 

part D and an off-diagonal part W with respect to the 

Wannier representation, The matrix elements of H 

depend in general on the configuration of A and B atoms 

in the crystal. The model is physically realizable when 

the orbitals are sufficiently localized and the atomic 

potantials are not too different. We then find that 

the diagonal elements D are random but the off-diagonal 

is translationally invariant. 

The operator W is diagonal in the Bloch repreenta- 

-tion 

<k1 41k > = (Sick/ E ton  e 	= akk"s(k)  n 
(7.22) 

where 
	

1k> = N-1/2 	 I in> 
n 

relates the Bloch and Wannier bases and w is one-half 

the bandwidth. The quantity s(k) describes the k 

dependence of the band energy, and is dimensioncaess. 

For example, in the case of a simple cubic laitice, with 

nearest neighbor tight-binding bands, we have 

- 1 < a(k) < + 1 . 
We choose the same units for the atomic energy levels eA 

and 6B and choose the energy zero such that 

eA= 
2 

w 6  

eB = 1 co 8 
2 

and hence 6  = (cA €13)/w. 
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For a given operator W, the ensemble 5f Hamiltonians is 

completely specified in terms of two dimensionaless 

parameters c and 6, characterising the concentration, 

and separation between atomic levels. Here c ranges from 

0 to 1 and 8 can assume any value. But it is clear 

from symmetry arguments that only the range 0 < c < 1/2 

and & > 0 need be considered. 

Vie want to apply the coherent potential criterion 

(7.19) to the model =iamiltonian (7.21). Since Heff (z) has 

the full symmetry of the eryrtal, both Heff (z) and 

<G(z)> = (z 	Heff)-1  are (liagonal in the k representation. 

<killef f(z)lk > = [d(k)+ E(k,z)j 6kk' 
	

(7.23) 

E (k,.z) is the self energy with respect to the perfect 

crystal haying Hamiltonian d. Another im-:.ortant quantit7 

is 
G(k,z) = <<k1G(Z)1k>> = [Z-S(k)-E( ,Z)]-1 	(7,24) 

which is rel.)ted to the spectral density p(k,E) by 

F(k,E) 	- 	Im G(,E + io) 	(7.25) 

and the average density of states is 

n(E) = 	(RM 1  Im. Tr <G(E + io)>. 	7.26) 

It is useful to introduce an auxiliary function F(z) 

defined by 

F(z) = f z 
n(h1) (7.27) 
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All the quantities defined in. Eqs. (7.24 - 7.27) when 

su2erscripted with a o, denote the corresponding 

quantity for the perfect crystal. 

We choose the unperturbed Hamiltonian K to be of 

the form 

K = W + E In> u(z)<nj = Vi + u(z) I 	(7.28) 
n 

u(z) is independent of k and hence the entire k dependence 

is contained in W and hence s(k). For the K defined 

in Eq.(7.26), the unperturbed Green's function is, from 

Eq.(7.3a), 

R(z) 	K) -1  

	

= [z -u(z) 	- 11( z)] 
	

(7,29) 

Considering the E.1s.(7.21) and (7.28) for H and K, we 

use 

H 	K = E In> [en 	u(z)j<nI, 	(7.30) 

so that using El.(7.8) we ?Live 

Vn = In> [en 	u(z)] <nl 
	

(7.31) 

which can be written as 

Vn  = In> vn  <nj 
	

(7.32) 

Tn 
can be obtained by substitution into :.q.(7•1a), 
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and is 

Tn( z) = In>vn  [1-vn  F(°)(z-u(z))r1  <n1 

= In>vn  [1-vn  P (z)r1  <n] 
	

(7.33) 

where 	F (z) = F(°)  (z - u(z)) 	. 	 (7.34) 

The coherent -,-otential condition, then is to set the 
configurational average of Eq.(7.33) to zero. We see 
that 

TEA cL u] ‹Tn( z)> = (n>  -- 
1_ (6A_a) 17,  a)  11 

<11. 1 

= In> {c  °TA +(l-c) TB 	<ni 

= In> 7".<n. 

The equation for the self energy E(z) is then obtained 

by settinET(z) = 0, that is 

c( eA u) 

1-(6A -u) 

 

(1-0)(6B  -u) 
= 0 	(7.36) 

   

  

1-(6B-- u) 

and tiaen we have 

u(z) = 6 - (6A  - u) i;  (6B  -u) 

and from the OP criterion we have the self-energy E(2) 

E(z) = u(z) = 6 -PA-E(z)j F (z)V-E(z)] 
 

(7.37) 
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with 6 = c A + (1-o) CB, which is exactly the form 
obtained by Soven.96 Alternatively E4.(7.37) may be 

written in a form obtained by Onodera and Toyozawa100  viz, 

E(z) 
c(1-c)82  F°  [z 	E(z)J (7.38) 

1-1-[z(z)+6  [z - E (z) 

We have seen that E(z) is completely determined by .0, 8 

and the host density of states n°(E). For n°(E) we use 

the form used before by Hubbard 

n°(E) = (2/n&2) (4,2 E2 1 	1 E14 c-L) 

= 0 
	

1E1> (̂ 4 
	(7.39) 

The function F°(z) defined in (7.27) corresnonding to 

this form of the density of states is 

p°(z) = (2/0,,,2) 
CZ 

_(z2...()1/23 	 (7.40) 

Using (7.37), (7.38) and (7.40) we find that 

E(z) = z 	[F(z)]-1  - 	F(z) 
	

(7.41) 

and F(z) satisfies the cubic eauation 

16 p
3  _  2 zp2 	- 	(b2-1)]F-(z+€) = 0 (7.42) 

These Eqs.(7.41) and (7.42) may be solved to yield either 

3 real roots or one real root and a complex pair. In the 

latter case the one in the lower half-Plane is -olysical, 

since it results in a non-neputi-re density of states. 
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The theory and the model outlined above hai,e 
been discus;ed in great detail in the original papers . 

of Velicky et al. and Soven. We will here touch on two 

main points - 1) the comparison of results with those 

predicted by other approximation schemes and 2) the 

change in the density of states, as predicted by the 

coherent-potential model, when the Parameterseand 8 are 

varied. These two features are illustrated in the two 

figures (7.1) and (7,2). 

In the first case, the results of the CPA are 

compared with those obtained by the virtual crystal 

model and the averaged t matrix appximation. Fig. ('7.1) 

shows that in the virtual crystal case, the band is niways 

symmetrical and even for large 8 there is no splitting into 

two subbards. The averced t-matrix ap-,roximation on 

the other hand, shows that the band always splitS, nis 

spurious band gap was,also observed by Soven in his 

calculations on one-dimensions model alloy. The results 

of the CPA appear to be most satisfactory. Ofcourse, in 

the case of large 8, the split band limit, the results 

of the CPA ate not expected to be correct. 

The other figure (7,2) shows the density of stites 

calculateta with the model /1O(E) for a range of t,6 values, 

as obtained by the CPA. The general features of the 

results are as follows. For small concentration (and 8 not 

too large), the density of states is slightly modified 
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from the host density of states. When 6 is small, this 

results from a reson_nce in the band. lihen 6 is greater 

than the 'all width W , localized states will start 

forming and as c increases, these broaden into an impurity 

band and wizen 6 is large enough, there will be essentially 

two bands, one for each atom type. ae have shown104 

that the same features can be predicted qualitatively from 

arguments from a density matrix approach, in a much 

simpler way. 

Applications to real alloy Systems: 

It is not quite easy to apply the ideas of tae 

coherent potential to a realistic system, becau-e the 

self-consistent equation for the coherent-,)otential cannot 

be solved for an arbitrary syrtem. The only efforts 

so far have been by Kirkpatrick et al.
105 and by us .102,103 

Kirkpatrick et al. have essentially generalized 

the arguments above to asymmetric density of states and 

to Lystems having orbital degeneracy in order to be 

able to calcul.:te the density of states in paramagnetic 

NiCu alloys, 
Tne object of the calculati:m is to obtain the dens it; 

of states for NiCu using only the host density of states 

-s input. The function Pc3 (z) corresponding to -.1.(7.27) 

is thus obtained by aproximating n°(E), to the accuracy 

desired by a straigat line Interpolation connecting the 
o 

points n (60. Tile band edges being taken at E0  and En, 
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the resulting function F(0)  may be written as 

F(0) ( z) = 

1=0 
a (z-E- 	(z-- i 	)1 	E 1)  n 	/, (7.43) 

where ai may be determined by peg forming the integrations 

in (7.27). This is the form of F°(z) used to solve E4.(7.37) 

by an iterative procedure. To take aecoUat,of sharp 

structures and overall asymetries, such as encountered 

in Ni and Cu, Kirkpatrick et al. introduce a 'steeple' 

model for the density of states. This consists of 

sharp peak, one tenth as wide as the whole band, located 

at the to of the band, and a low wide shoulder region. 

The potentials placed on the Ni and Cu sites are 

atomic Hartree-Fock Potentials for neutral configurations. 

Kirkpatrick et al. axgue that the s-bands in NiCu will 

be unaffected by alloying and concentrate attention on lhe 

tight-binding like-d bands and represent the model 

Hamiltonian in terms of the interpolation schemes of Hodges 

and tiueller.106 The alloy Hamiltonian expressed in a 

basis of tight-binding Bloch functions and OPW's will be 

separated into a random part D and a configurati-)n-independen 

part W: 

     

H = W + D = 

Wss  

WEE  WET' 

Wds WT 14/TT 

0 0 

FE 0 

0 0 3)-7- 
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The varioJs blocks in (7.44) are labelled by the 

indices s for the plane-wave like states, d for the 

tight-binding d-states and E, T denote d states constructed 

from orbitals of eg  or t2g symmetry. The CIA self-consistentci 

equation is applied to this Hamiltonian to yield two 

equations for EE: and ET. 

Cu Ni 
= <CE> -(CE 	EE) P (CE -EE)  (7.45) 

Cu 
E T = <C T>  - (CT -ET) FT( 

Ni 
12 -ET/  (7.46) 

Using the above scheme, Kirkpatrick et al. culculted 

the density of states for a range of Cu cmeentrations 

ranging from 0 to 64 at intervals of 10%. It is seen that 

the strong peaks characteristic of pure Ni and Cu persist 

in all cases studied, but the effects of alloying are 

strong. At low concentrations, the peaks loose intensity 

and broaden, at the same tine, the many wiggles due to 

fine features of the density of states are quickly damped 

out. After about a concentration of 34, the band shape 

changes only slightly. The peaks continue to reduce in 

height and the second peak becomes stronger. These features 

arein distinct contrast from the predictions of the virtual 

crystal aonroximation which predicts a uniform shift without 

any change in structure. Even if scattering corrections 

are included the resulting change affects all  parts of 

the band equally. 

Tae density of states -oredicted by the CPA is in 
a 

pod agreement with the photoenission data of Deib and Spicer, 
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But one must bear in mind that interpretation of Photo-

emission data is not unarnbiguoas. 

,)uite another u.,:._roach, whicn is Perhaps as 

approximate but of more general a7licability wls suggest 

by us and applied to real systems such as Cu-Al and 

a-CuZn alloys. The idea is essentially to make use of 

model potentials of the type used by Soven"  in his 

application of the average a t matrix approximation to a-

brass. The motivation is that in the calculation of 

electron states in solids, the effect of the Potential 

enters the final equations, only through the logarithmic 

derivative of the corresronding radial function at the 

muffin-tin radius. We can thus reel: ce the actual 

potential by a model Totential which yields logarithmic 

derivatives identical with thoce generated by the real 

Potentials. Tne model Potential is chosen to be energy-

and angular momentum de pendent 8-function Potential. 

We rewrite here the formulas for the GP theory 

as introduced originally by Soven and show how th.e 

introduction of model Potentials of the type specified 

above results in simcle expressions for the density of 

states. The essence of the GP theory is to place at 

each site an effective notential Vo, which will simulate 

the electronic nroperties of the actual alloy. The 

Greente function for this lattice is 

G = Go  + Go  VG 
	 (7.47) 
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where Go is the free-electron Green's function. The 

actual.alloy consists of perturbing '-otentials V1-V0  and 
V2-V0 and tne t matrix describing tne scattering of an 

electron in this medium is 

ti  = (Vi -Vo) + (Vi-V0) Gti 	 (748) 

The coherent-potential criterion then says that 

the average of the constituent t-matrices must be zero, 

i.e. 

ct1 + (1-c) t2 = 0 
	

(7.49) 

Substituting from (7.48) into (7,49), we have 

eV1+ (1-c)V2  - Vo  = (Vi-V0)G(V2.V0), 	(7.50) 

4.(7.50) must be solved self-consistently becauce G is 

itself dependent on Vo. At this stare, we introduce 

the model Potentials described above and replace the 

muffin-tin Potentials at each site by potentials of the 

form: 

Vs(x,x/) = E YI()Ac) 1...(/ . v1 5(x-R)  
YIY R2  

), 	(7.51) 

1 
where the potential amplitudes Vs  are related to the 

logarithmic derivative of the actual wave function. 

Inserting El.(7.51) into (7.50), we have 

1 1 )(-81/(1—v30-g jA (v2  _vo ), (7.52) CV1  + (1-c} V2 -170-   1 
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where= = Gi(A,R) and Gl(x,x ) is the 1th component 

of the angular momentum expansion of Go(x-x1). We than 

have for Vol the following exprersion 

V 

 

1 g111.11v21 -(0 V,1+0 V21) (7.53) 
0 

   

gl[P2V11 C1V21] - 

For a potential of the form (7.51), the T matrix is of 

the form 

T(x,x ) = E YL 
L 

) 5(x-4 tl 
R2 

o(x~-R)  (x ). 

(7.54) 

Taus the elements of the angul,i molentum 

expansion of the t matrix corresponding to Vo are 

t0 I = V01 / (1-v 1g1) 
	

(7,55) 

The calculation of the spectral density of states is now 

straightforward. One places the t matrix corresl)onding 

to (7.55) at each site and works out the spectral function 

by using the usual formula 

1 Im T(k) 	(7,56) 

(E..k2) 2 

and 
/ 	A 

1( 1C) = 47t
2

LI
(k)Y11,(k) [tl(k,k)oLL' 

Mil 
,, 

+ [t(k,x) [G(1-Gi t(x,x)i
-1 

t ›roALL4
(7

*
57) 
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where N is the nu Ibex of sites and. 	the volume of the 

assembly and 

t(P9q) = ti  ii(PR)ii(qA) 
	

(7.58) 

with p and q, being k or A:. The matrix elements of G 

are given in terms of the familiar structure constants 

of the Kohn-Rostoker method, by 

CLb /=DLL .0+ix - 	IL (7.59) 

Application to a-brass: 

The method outlined above has been applied to 

determine the spectral density of states for various 

representations at the syrmetry points r, X, and T, and 

along theAaxis for a-Cu0.70  Zn0.30 	Fig.(7.3) shows 

plots of the reduced spectral density f(E,k) against 

nergy for the k' representation, 'e notice that tie 

curve for kx 0.50 is broader than those for kx 0,75 or 

0.25, an observation which is in general agrement with 

aoven's conclusions on a hypothetical alloy, A plot of 

‘i5 (ia,k) against k is shown in Fig.(7.4), again for the 62.1  

representation. We find that for both the curves, neaked 

at kx = 0.33 and kx = 0.55, the halfwidth is the same 

about 3! of the Brillouin Zone dimension, compared to 

the value of 	for this ratio, obtained by Soven from 
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an averaged t matrix calculation. But there is no 

experimental method of directly probing p(E,k) and so 

we will limit comparison with experiments to the shifts 

in the peak positions reletive to pure copper (as given 

by a similar potential) and predictions of other models. 

We refer again to the optical absorption measurements 

of Biondi and Rayne. If the secondary absorption peak 

which shifts to lower energies by 1.3 eV is attributed to 

the L2= L1  transition, then the coherent Potential result 

is still in disagreement with exneriments. Our calculPted 

value for the reduction in this gap is 0.167 Ry. compared 

to the experimental value of 0.096 Ry. But one must 

bear in mind that even for pure metals indirect transitions 

may be imoortant. A more meaningful comparison of the 

various approximations could be made if additional 

experimental Liformation, for example from positron 

annihilP.tion experiments were available. 

A)slication to Cu-Al alloy: 

As another example, we have a.plied the above 

theory to a Cu-Al alloy. Positron anniailation experiments 

have been made for this and the measurements indicate 

that the Perini surface in the Cu0 904 A10.096 alloy has 

a neck radius which is twice that of pure copper. We 

.90 10.10 calculated the spectral function for a n -u0 	alloy 

as a function of E, for the symmetry points 17,x and L. 

One soch clot is s-lown in Fig.(7.5) ard the positions of 

9 
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the peaks in the spectral density are tabulated in 

Table (?.2). In order to make a comparison of the 

results of the coherent ?otenti9.1 theory with exneriments, 

we made a crude estimate of the neck radius from our 

calculations. It was found to be 0.30d, where d is the 

F 	distance, whereas for cop'_)er the value is 0.18d. This 

shows reasonably good agreement with experiments. 

Comoaring the 	for 'cure copper and for Cu0.90 A-10.10 
we find a reduction by 2.48 eV. This could be compared 

with optical absorption measurements, but to our knowledge 

no such measurements are available for this alloy. 
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TABLE 7.1: Peak positions (in energy measured in Ry. 

with respect to the muffin-tin sero, 
Vc= -0.9121 Ry.) in the reduced spectral 
density of states in a-Cu0.70 Z/10.30 for 
various represent:-tioils at the symmetry 
points ("y  X, and L, and along theiNaxis. 

Representation Energy Representation Energy 

	

125 	 0.157 

	

ra 	0.188 

X1 	 0.085 

X2 	 0.212 

X3 	 0.110 

X4f 	0.635 

X5 	 0,229 

L1(lower) 	0.249 

L1(higher) 	0.680 

L2/ 	 0.465 

L3(lower) 	0.260 

L3(high.er) 	0.339 

t1a(0.25,0.0) 

AL,(0.50,0.0) 

L611,2(0.75,010) 

Az(0.25,0 1 0) 

62(0.50,0,0) 

&2 (0.75,0,0) 

A10.25,0,0) 

N.(0.50,0,0) 

A (0.75,0,0) 

0.195 

O.198 

O.212 

O.144 

O.127 

O.110 

0.173 

0.224 

0.237 
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TABLE 7.2: Peak positions in reduc 

of states in Cu0.90A10  
representations at he 

ed spectral density 
10 for various 
symmetry points. 

Representation Energy Representation Energy 
(ryd) 	 (ryd)  

ve* 

0.116 X41  0.668 

0.157 5 0.203 

0.093 1 0.720 

0.195 L2  0.466 

0.051 L3 0.347 

L3 0.448 

F5I  
E2 

xi  
x2 
x3 
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FIGURE  CAPTIONS  

Fig.7.1 Comparison of the density of states as calculated 

in (a) virtual crystal approximation, (b) coherent 

potential approximation and (c) averaged t-matrix 

approximation. In each case c = 0.5 and 6,  = 0.4, 

1.0 and 2.0. 

Fig.7.2 Density of states in the coherent-potential 

approximation, for a variety of concentrations 

for constant 6 = 0.25, 0.50 and 0.75. 

Fig.7.3 The reduced spectral density of states T;(E,k) 

plotted against E (expressed in terms of 

6 = Ea2/4n2) for 2 representation in a-Cu0.70n0.30 

The numbers next to the curves denote the value 

of kx  in units of 2m/a. 

Fig.7.4 The reduced spectral density of states f(E,k) 

plotted ag6,inst kx  (in units of 2m/a) for A21 

representation in a-Cu0.70 Zn0.30  . The numbers 

next to the curves denote the value of the parameter 

6 = Ea2/4a 2 where a is the lattice parameter. 

Fig.7.5 Reduced spectral density of states for r25  sand 

t2 representations for Cu0.90A10.10  plotted as 

a function of energy. 
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EPILOGUE 

The theories of electron states in disordered alloys 

are still far from satisfactory. The Coherent potential 

approximation seems to be the best amongst those discussed • 

here. Numerical results given by the coherent potential 

calculations for three-dimensional models of random alloys, 

have proved superior to other approximate solutions. However, 

in spite of its general plausibility and success, the 

coherent potential model has one serious shortcoming. 

It takes no account of the correlation between the positions 

of the scatterers. Gyorffy
108 

has attempted a generaliza- 

tion of the coherent-potential azproximation to a system 

with short-range order to find the ensemble averaged 

Green's function <G>. The correlations between the 

position of the scatterers were explicitly taken into 

account. A quasi-crystalline approximation is used to 

obtain <G> in terms of the scattering potential and the 

correlation functions. He considers partial average of the 

operators Qn  (Chapter VII) and uses a decoupling scheme 

similar to that discussed in Appendix 3 except that Gyorffy 

deals with partial averages for scattering operators, whereas 

the previous discussion (Ref, 77) was in terms of partially 

averaged wave functions. No applications to real systems has 

been made yet, but it is hoped that use of model potentials 

of the form discussed in Chapter VI and of incomplete 

Green's functions in Chapter V will result in enough 
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simplifications to make calculations for an alloy like.  

p--brass, feasible. 

In order to make a meaningful evaluation of the' 

various approximations, it is essential to have a systematic 

experimental study of some alloy systems. We saw, for 

example, that for a-brass positron annihilation angular 

correlation studies had not been done, whereas on the 

other hand, for Cu-Al alloys no optical absorptivity 

data were available. We hope that a coordinated experimental 

program, where some or all the techniques discussed in 

the Introduction are used to study the same alloy systems, 

will be very useful in deepening our understanding of 

electrons in disordered alloys. 

On the theoretical side, there is another direction 

in which progress should be made. A good understanding of 

the theory of electron states in pure metals led to the 

development, by Hubbard109 and others,110 of approximate 

schemes, which could be used to calculate rapidly the band 

structure and hence other related properties. An example 

of such en application is the study by Pettifor111  of the 

stability of various possible structures. A development along 

similar lines for alloys would be very useful. The theories 

discussed in the thesis are apparently well suited to be 

reduced to such rapid computational schemes. 

An investigation of the transport properties of 

disordered alloys would also be very illuminating. Velicky's 
112 

attempt 	at evaluating the average of <GG> using the ideas 
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of the coherent potential approximation showed that the 

terms thrown away in making a single site approximation 

may be important when considering two-particle Green's 

functions. 

A host of other physical properties like phonon 

frequencies, specific heat, opticalproperties, remain yet 

to be explored. Understanding these physical properties 

in terms of the behavior of the electronic states are 

challenging problems in solid state theory today. 
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APPENDIX1 

Calculation of the Structure Constants: 

We have seen that the structure of the lattice 

enters through the coefficients DDS in the angular 

momentum expansion of G(r,r). This Greents function 

may be written as 

G(R) - 	expaKIR-ralj exp (ik.ra) 
a 	1R-ra  1 

(A1.1) 

where R = r r, 91c= VE and the sum is over all lattice 

sites. In order to perform this summation to an adequate 

convergence (an accuracy of six significant figures), it is 

necessary to make an Ewald. transformation and express 

the series (A1.1) in terms of a summation in direct space, 

as well as reciprocal space. 

We use the relation 

exp [ix! R-rax  1 	2 
IR-ra l 	

IrTE 

00 
(f)  exp&(E-Ia)V 4/4

2 	
(A1.2) 

1/2 
In the above integration, the contour for 	Tfll 	is  

chosen to run along the real axis,1_ being arbitrary. 

The integral can be broken into two parts (0,1 q1/2) and 
2 

+ 00) and G(R) may be written as 

G(R) = G1(R) + G2(R) 	 (A1.3) 
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by making use of the following identity, which is valid 

V 1 ' 
'2 at each point along the contour (0 -1): 

2 2 	 s3/2 	 2 2-  
E 

exp [-(x-r, ) 	+ ik.(r -R)] 	( 	3 )E exp[-(Kn+k) a 	- 	 7.f 	n. 

(A1.4 ) 

where Kn  denotes reciprocal lattice vectors, and T is the 
volume of the unit cell. We then obtain for G-1(R) and G2(R) 9 

the following expressions, 

G1(R) 	- 	exp[i(Kn+k).21 expEE-(11.n+k) 2+EVA] 

G2  (R)= - IT -3/2 CO E expD.k.r -(r -R)2,2+E/4 21d. 
i"/2-  

where we have written E for ik2 . 

We can obtain expressions for the structure 
constants DLM  by expanding G1(R) and G2(R) termwise in 
spherical harmonics with respect to R, to arrive at 

D LI+ = D 	D LM
(1) 	

LM
(2) 	

DLM(3) 610 

Since the structure constants are independent of R, we may 

take the limit R 0 obtaining 

D (1) 	 1K +kIL  exp [-(Ln+k) 2/0-11 
TIM = -(4'N/T)2‹. exp(ErIOE 	  YLM(Leh) 

n (Kn+k)'-' E 

DL (2) n -1/2 	11+1 L -L I 	 A m 	= 	\ 
(-2) 

	

	i X Er exp(iker )114mkral a a 

X i/z(C' exp  [—; 
2 	 2  + E/qid 

-  D (3) 	
1/2002-' 

00 	
E (1/1)a  

a=o a.(2a...1) 
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The prime in the summation in the expression for D a(2)  

indicates that the term with r = 0 is to be excluded. 

These are the basic expressions employed in the 

calculation of the structure constants. In practice, the 

number of independent constants required is reduced by 

using symmetry considerations. We choose the Yia(R) of 

the angular coordinates of R to transform according to 

the irreducible representations of the group of the wave 

vector k, Then only those Dim are non-zero which correspond 

to the symmetric representation. 



APPENDIX2 124 

   

Numerical Solution of the Schr6dinger Equation: 

Vie have seen during the discussion, that the effect 

of the potential, enters the final formulation, only through 

the phase shifts at the radius of the muffin-tin spheres. 

This calculation was done numerically using the Numerov 

method for integrating the Schr5dinger equation. The 

method and its advantages are discussed below briefly. 

The equation to be solved is 

r  _ 1 	d (r2 411...) 	1(1+11  4. v(r) 4/ R1(r) = 0. 	(A2.1) r2 dr 	dr 	r2  

It is convenient to work in terms of another function 

Pl(r) = rRi(r), and than the above equation reduces to 

the form 

+ 1(1+1)  + V(r) - El Pl(r) = 0. 	(A2.2) 
dr 2 	r2 

The advantage of this form is that the first derivative 

is absent, and one can use the Numerov method for numerical 

integration. In the case of the atomic problem discussed 

by Hartree, the equation has to be solved to give E and Pl(r) 

subject to the conditions 

1) Pnl = 0 	at r=0 	and r 00 

2) In the range 0<r<00, the function Pnl(r) must 

have n-1-1 nodes. 

The method for doing this had been given by Hartree, 
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where one starts with the solutions at the origin and 

integrates outwards, thus generating a trial radial wave 

function with a given energy. Tne outward integration is 

stopped at a point which lies outside the last peak of the 

trial radial wave function. If the number of nodes of this 

function is n-1-1, an inward integration is started. 

If the trial energy were equal to the true energy 

eigenvalues, the logarithmic derivative at the matching 

radius of the trial wavefunction, generated by the inward 

integration would be identical with the corresponding 

quantity generated by the outward integration. If this is 

not so, the energy is changed till the required degree of 

match is achieved. 	program to perform this has been 

given by Herman and Skillman. 

The problem in our case is simpler. The equation 

has to be solved for a given energy and subject to.the 

condition Pl(r) = 0 at the origin. The iteration in energy 

part of the Herman Skillman program is therefore not required. 

We now give a short discussion of the basic iteration 

procedure in the Numerov method. 

The radial Schrodinger equation (A.2.2) can be 

written as 

d2P(r) 	g(r) P(r) 
dr2 

(A2.3) 

(we drop the subscript 1) , where 

g(r) = [V(r) - E + 110. 1)]. 	 (A2.4) 
r' 
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We perform the integration on a mesh, which is closely 

subdivided in the region of small r and gradually with 

larger steps for large values of r. The subscripts to the 

symbols of the functions, denote values of the function 

at the corresponding mesh point. 

We can write the expansion for the function Pn  

about a point r = rn  in a Taylor's series as 

	

h2 	h3  /11  
Pn+i Pn hPn P

11  3 + - 

 

71. 	! Pn  +  

where h is the spacing in the mesh and the primes denote 

differentiation with respect to r. (h = rn+1  rn). 

Differentiating the above equation twice, we have 

	

M 	2  04 3 07 h 

	

n+1 = Pn hPn 	2! 
h Pn _,_ 3! Pn 

Let yn  Pn  h2  
12 Pn be a new variable, then 

	

2 	II 
p 	 P 4.1  yn+1 = n+1 	12 	n.- 

s 0° h6 Zvi) h3  h- Pn  + 2 #' tr" p 	s="15. Pn - 480 
51-L F

n +.3.7 n - 18 = pn --n 	12 

LW) 
We note that the coefficient of Pn  is identically zero. 

Now Yn_ j_ can be obtained from the above expression simply 

by replac ing h by -h. 

 

1/ 3 ai 
Pn  Pn -12 12 n 

W) 6 OA) h5 P h p 
180 n 480 n  + 

 

(A2.5) 

(A2.6) 
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The second difference in y at rn  is therefore 

82 yn  = yn+, Yn-1 23rn 

2 u D  # 	h6  p 4(1)  = -Ln - 240 n 

If we neglect the second term on the right hand side, 

we have the simple relationship 

	

82yn h2 Pn  = h2 
ggn 
	 (A2.7) 

Thus, if we know the solutions for Pn, yn  at two points 

n-1 and n, we can find the solution at yn+1, and hence the 

integration can be carried forward. The truncation error 
h6  

	

is determined by the term 	P so that by Iteeping h 

small this error can be readily controlled. 

The starting values required to use Eq.(A2.7) 

to continue the outward integration are obtained by 

expanding p1(r) in terms of a power series of the form 

[1+A1r = r1+1  Ll+Air + A2r2 + A3r3 + A.4r4 j 	(A2.8) 

Substituting into Eq.(A2.2) and solving the results for 

the coefficients Al to A4' Once these coefficients are 

known, Eq.(A2.8) gives the starting values at the first 

few points of the integration mesh. 
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APPENDIX3 

Proof of Bloch type conditions for averaged wave function 

Ziman has shown that the 'configurationally averaged' 

wave function satisfies a Bloch-type condition for a one-

component disordered' system, where all scatterers are 

identical. The concept of configuration averaging is, 

however, quite general and not limited to the case of 

identical scatterers. 

We denote by s the scattering properties of the 

scattering centre. In the present application s is merely 

an identifying index. A particular configuration of the 

scatterers is therefore defined if we know their position 

vectors xl, 	IN , and scattering parameters 

(identifying indices) si, s2  . 	sN. In the case of a 

binary alloy, si 	sN can have either of two values 

corresponding to the two com,Donents. The probability 

that the set of N scatterers will be located at x1, x2...xN 

is denoted by nal, 

If one scatterer is held fixed and all the other 

scatterers averaged over, the configurational average 

will be given by 

<9(02;1)> = f..API(On(xas 11;2x3...xN; s2s3..sN)dx2..d2sN 

where n(xlsi lx2,x3...xN; s2s3...sN) is the probability of 

fiading sphereres of type s2  at x2 	s3 at x.3  etc., given 
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that there is a sphere of type si  at xi . If two spheres 

are held fixed, we have: 

n(xisi ,z2s2 1313...20s3....sN) 

Ps1s2(x2-xi ) , 	(A3.2) 

where Ps1s2 (x2  - xi) denotes the probability of finding a 

sphere of type s2  at x2 , given that the sphere at xi  is of 

type si. 
We now take the configurational average of Eq.(5.6) 

Y)i(r) = E f Go(f-xj - icpTb (p i (i) del . 
it  

Let the j=--./. site be an A atom. Then the contribution of tne 

A sites to <iii(ela4is: 

„ AA 	 , /, 
f J Go 	+ 	P 

AA 
 (2i2-xi ) UA(t)V2

A 
 (E) de l  

n(x1A, gs2A 12;3. , 	; s 3. 	sN) 

aimilaxly the contribution from B sites is: 

AB 	 AB 	 t B o 
f f Go  (f-ei +xi-x2) P 	 f, 

	
)drj 

n.( xi  A , x2B 1 x3  . .2cH  ; S. 

We define 

r S n  
r

) 
IX2 X )> 2 	s s f  (Ar)mzisi ,x2s2 1 .3..1cN;s3...sN) 

2 ,  

dx ....dx 3 	--N.  

CA 3_3) 
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and make the approximation 

<Y2(f l_x29_x1)>s2s  = < (6(  --f I 2x )>s2 
	 (A3.4) 

We then arrive at 

(f I xl) >A = fGoAA(  f-Ci)VA( 	< 	el  )11.)> d 

f 
r  4A 	) + JG0 	+x1-31)U A( 1 )pAA(x )> Ade

) 
dx2  

AB + f f Go
AB 

 (f- +x1-x2 ) UB(f) P (2[2-xi)< V2(112E2)>Bdfebi2. 

A similar expression is obtained if the j  = 1 site is 

chosen to be a B atom. Both these expressions may be 

written in the abstract form: 

<Y1()›ti = f nar2-xi)  Y12(c)>A d 

<V1(E)>B = 1-6-(2-x1) <Y2(r)>B d?c2 

These equations are translatinally invariant in the spaCe of 

X1' i2 and, therefore have solutions 

<Y(C)>A = exPUIC.(2:1-A)3 12(12 )>A  

<V1C0>B = exP[its(34-)i2)] <Y2(t)>B. 

Equation (A3.4) is an insensitivity' relation implying thattr  

wave function within a particular s :here is, on the average, 
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insensitive to the exact whereabouts and arrangement of 

neighboring spheres, but depends only on the position and 

kind of the sphere. This is almost the same approximation 

as made by Ziman for liquid metals. It does not a2pear to 

be a bad approximation for the case of alloys, as it is eviden 

that very distant spheres do not affect the wave function 

within the sphere under consideration, and the effect of 

near neighbours is more or less taken into account by,-the 

averaging process. 
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