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ABSTRACT

Estimation of magnitudes of likely occurrence of floods is ofgreat importance

for design of various types ofhydraulic structures. Floods ofdifferent return periods

are also required for taking up some of the non-structural measures of flood

management. As per the Bureau of Indian Standards hydrological design criteria,

frequency based floods find their applications in estimation of design floods for

almost all the types of hydraulic structures viz. small size dams, barrages, weirs, road

and railway bridges, cross drainage structures, flood control structures etc., excluding

large and intermediate size dams. For design of large and intermediate size dams

probable maximum flood (PMF) and standard project flood (SPF) are adopted,

respectively. However, in these two cases also flood frequency analysis is invariably

performed for assessing the return periods of PMF and SPF. Whenever, rainfall or

river flow records are not available at or near the site of interest, it is difficult for

hydrologists or engineers to derive reliable design flood estimates directly. In such a

situation, regional flood frequency relationships developed for the region are one of

the alternative methods, which may be adopted for estimation of design floods

especially for small catchments.

As the studies on flood frequency estimation in India are limited, scattered and

mostly based on the conventional techniques; hence, there is an urgent need for

making systematic efforts for developing a reliable and convenient regional flood

frequency estimation procedure based on the state of art technique for gauged and

ungauged catchments. Further, the soft computing techniques offer real advantages

over conventional modeling, including the ability to handle large amounts of noisy

data from dynamic and nonlinear systems, especially when the underlying



hydrological relationships are not fully understood. These techniques viz. Artificial

Neural Networks (ANN) and Fuzzy Logic (FL) have been applied for solving some of

the hydrological problems such as development of stage-discharge relationship, flood

forecasting, rainfall-runoff modeling, estimation of precipitation and evaporation,

ground water modeling, water quality modeling etc. However, applications of ANNs

in regional flood frequency estimation are limited and use of Fuzzy Logic in regional

flood frequency estimation remains to be investigated. Whereas, some of the recent

studies show that the fuzzy modeling is more versatile and improved alternative to

ANNs.

In this study, regional flood frequency relationships have been developed for

17 hydrometeorologically homogeneous categorized Subzones of India using the L-

moments approach. The applicability of soft computing techniques viz. Artificial

Neural Networks (ANN) and Fuzzy Inference System (FIS) in regional flood

frequency estimation has also been investigated. The L-moments form basis of an

elegant mathematical theory and can be used to facilitate the estimation process in

regional frequency analysis. The L-moment based methods are demonstrably superior

to those that have been used previously, and are now being adopted by many

organizations worldwide. For carrying out the regional flood frequency estimation

study, screening of the annual maximum peak flood data has been carried out for

assessing the suitability of the data for regional flood frequency analysis by the L-

moments based Discordancy (Dj) statistic test. The regional homogeneity of the 17

Subzones has been tested employing the L-moments based heterogeneity measure (H)

by carrying out 500 simulations using the four parameter Kappa distribution. For

carrying out regional flood frequency analysis studies based on the L-moments

approach twelve frequency distributions viz. Extreme Value (EV1), General Extreme
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Value (GEV), Logistic (LOS), Generalized Logistic (GLO), Normal (NOR),

Generalized Normal (GNO), Exponential (EXP), Uniform (UNF), Generalized Pareto

(GPA), Pearson Type-Ill (PE3), Kappa (KAP) and five parameter Wakeby (WAK)

have been used. Based on the L-moment ratio diagram as well as Zdist -statistic

criteria robust frequency distributions have been identified for the 17 Subzones of

India.

The 17 Subzones cover total 25,89,342 km2 area, which constitutes about79%

of the geographical area of India. The annual maximum peak flood data and

catchment areas of 261 streamflow gauging sites of the 17 Subzones of India were

collected for carrying out the study. Outof these, the data of 196 streamflow gauging

sites and their catchment areas have been used for regional flood frequency

estimation. The data of remaining 65 streamflow gauging sites have been excluded as

per the data screening and regional homogeneity testing procedures. The record length

for these streamflow gauging sites varies from 5 to 38 years. The catchment areas of

the streamflow gauging sites range from 6 km2 to 2,297 km2 and their mean annual

peak floods vary from 12.8 m3/s to 1687.3 m3/s.

Out of the 17 Subzones, PE3 has been identified as the robust distribution for

7 Subzones, GNO for 3 Subzones, GEV for 3 Subzones, GPA for 3 Subzones and

GLO for 1 Subzone of India. The regional flood frequency relationships have been

developed based on the respective robust identified frequency distributions for

estimation of floods of various return periods for gauged catchments for the 17

Subzones.

For estimation of floods of various return periods for ungauged catchments,

the regional relationships have been developed betweenmean annual peak floods and

catchments areas of the gauged catchments of the 17 Subzones using the Levenberg-
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Marquardt (LM) iteration procedure. The performance of this technique has been

evaluated based on the statistical performance indices viz. Efficiency (EFF),

Correlation Coefficient (CORR), Root Mean Square Error (RMSE) and Mean

Average Error (MAE). The regional relationships developed between mean annual

peak floods and catchments areas for the 17 Subzones have been coupled with the

respective L-moments based robust identified regional flood frequency relationships

developed for gauged catchments for each of the Subzones.

The regional flood frequency relationships have also been developed for

estimation of floods of various return periods for gauged and ungauged catchments

for 4 Subzones out of the 17 Subzones using ANN and FIS techniques. Performances

of ANN, FIS and L-moments in regional flood frequency estimation have been

compared based on the statistical performance criteria viz. EFF, CORR, RMSE and

MAE.

The regional flood frequency relationships developed in the present study

based on L-moments provide a convenient method for estimation of floods of various

return periods for gauged and ungauged catchments of the 17 Subzones of India for

the practitioners. The applicability of ANN and FIS in regional flood frequency

estimation is explored and comparison of ANN, FIS and L-moments establishes the

potential of FIS in regional flood frequency estimation.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Since the beginning of scientific hydrology in the seventeenth century, one of

the problems facing the engineers and hydrologists has been estimation of design

floods for basins for which the data required for hydrological analysis are not

available or the available data are inadequate. Pilgrim and Cordery (1992) mention

that estimation of peak flows on small to medium-sized rural drainage basins is

probably the most common application of flood estimation as well as being of greatest

overall economic importance. In almost all cases, no observed data are available at the

design site, and little time can be spenton the estimate, precluding use of other data in

the region. The authors further state that hundreds of different methods have been

used for estimating floods on small drainage basins, most involving arbitrary

formulas. The three most widely used types of methods are the rational method, the

U.S. Soil Conservation Service method and regional flood frequency methods.

Considering the importance of prediction in ungauged basins, the International

Association of Hydrological Sciences (IAHS) has launched Predictions in Ungauged

Basins (PUB) as an IAHS initiative for the decade of 2003-2012, aimed at uncertainty

reduction in hydrological practice (Sivapalan et al., 2003). Further, due to rapidly

increasing population and speedy economic growth of India, there is a need for

judicious and optimal planning, development and management of water resources

projects including construction of more and more hydraulic structures for generation

of hydropower, interlinking of rivers for enhancing the availability of water for

various uses, construction of road and railway bridges as well as taking up structural



and non-structural measures of flood management etc. Realizing the importance and

requirement of Hydrological Design Aids (HDA); it has been proposed to develop the

hydrological design aids under one of the components of the currently ongoing World

Bank funded Hydrology Project Phase-II (HP-II). Eight Central government agencies

and thirteen States of India are participating in the HP-II. Thus, there is an urgent

need for making systematic efforts for developing a reliable and convenient regional

flood frequency estimation procedure for gauged and ungauged catchments based on

the state of art technique of regional flood frequency estimation for the practicing

engineers, academicians and researchers. Also, there is a need for investigating the

applicability of the soft computing techniques in regional flood frequency estimation.

Frequency analysis is performed to determine the frequency of the likely

occurrence of hydrologic events. Singh (1994) mentions that the information on flood

magnitudes and their frequencies is needed for design of various types of water

resources projects/ hydraulic structures such as dams, reservoirs, spillways, bridges,

road and railway bridges, culverts, levees, urban drainage systems, airfield drainage,

irrigation systems, stream control works, water supply systems and hydroelectric

power plants. Estimation floods of various return periods is also required for taking up

various types of non-structural measures of flood management such as flood hazard

modelling, flood risk zoning, flood plain zoning (e.g. Forster et al., 2005; Goyal and

Arora, 2007; Forster et al., 2008; Chatterjee et al., 2008) for industrial, residential and

recreational use, setting of flood insurance premiums, economic evaluation of flood

protection projects, drought mitigation programmes etc. As per the Bureau of Indian

Standards (BIS) hydrological design criteria, frequency based floods find their

applications in estimation of design floods for almost all the types of hydraulic

structures excluding large and intermediate size dams. For design of large and
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intermediate size dams Probable Maximum Flood (PMF) and Standard Project Flood

^ (SPF) are adopted, respectively (National Institute of Hydrology, Roorkee, 1992).

However, for these two cases also flood frequency analysis is generally performed for

ascertaining the return periods of PMF and SPF.

The L-moments form basis of an elegant mathematical theory for carrying out

regional frequency analysis and are being used by many organizations the worldwide,

-t- Hosking (1990) introduced the L-moments approach for estimation of parameters as

well as for screening of data, testing the regional homogeneity andidentifying thebest

fit distributions. The L-moments are capable of characterising a wider range of

distributions, compared to the conventional moments. Zafirakou-Koulouris et al.

(1998) mention that the L-moments offer significant advantages overordinary product

moments, especially for environmental data sets, because of the following:

i. L-moment ratio estimators of location, scale and shape are nearly unbiased,

regardless of the probability distribution from which the observations arise

(Hosking, 1990).

ii. L-moment ratio estimators such as L-coefficient of variation, L-skewness, and

L-kurtosis can exhibit lower bias than conventional product moment ratios,

especially for highly skewed samples,

iii. The L-moment ratio estimators of L- coefficient of variation and L-skewness do

not have bounds which depend on sample size as do the ordinary product

moment ratio estimators of coefficient of variation and skewness.

y
iv. L-moment estimators are linear combinations of the observations and thus are

less sensitive to the largest observations in a sample than product moment

estimators, which square or cube the observations.



v. L-moment ratio diagrams are particularly good at identifying the distributional

properties of highly skewed data, whereas ordinary product moment diagrams

are almost useless for this task (Vogel and Fennessey, 1993).

Robson and Reed (1999) presented the statistical procedures for flood

estimation in the Flood Estimation Handbook. In the Handbook L-moments approach

has been used for estimation of the parameters of the flood growth curves. The

authors mention that L-moments are preferred for flood frequency estimation because

of their robust properties in the presence of unusually small or large values (outliers).

Griffs and Stedinger (2007 a, b) presented evolution of flood frequency analysis with

Bulletin 17 of USA. The authors mention that the fields of hydrology and flood

frequency analysis have substantially evolved since Bulletin 17 was first published

and new techniques are now available which should become part of these standard

procedures. A comparison is provided which demonstrates how the standard and

weighted Bulletin 17B quantile estimators perform relative to alternative Log Pearson

Type-Ill (LP3) quantile estimators that also make use of regional information.

Presently, the soft computing techniques are being used for solving various

types of hydrologic problems (e.g. ASCE Task Committee, 2000 a, b; Coulibaly et al.,

2000; Xiong and Shamseldin, 2001; Chang et al, 2005; Wu et al., 2005, Raghuwanshi

et al., 2006; Nayak and Sudheer, 2007; Nayak et al., 2007). The soft computing

techniques such as Artificial Neural Network (ANN) and Fuzzy Inference system

(FIS) offer real advantages over conventional modeling, including ability to handle

large amounts of noisy data from dynamic and nonlinear systems, especially when

underlying hydrological relationships are not fully understood.
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1.2 GAPS IN PRESENT PRACITICE OF REGIONAL FLOOD
FREQUENCY ESTIMATION

In India studies have been carried out for regional flood frequency estimation

by various organizations. Prominent among these include the studies carried out

jointly by Central Water Commission (CWC), Research Designs and Standards

Organization (RDSO) and India Meteorological Department (IMD) using the method

based on synthetic unit hydrograph and design rainfall considering physiographic and

meteorological characteristics for estimation of design floods (e.g. CWC, 1982; CWC,

1985) and regional flood frequency analysis studies carried out by RDSO using the

USGS and pooled curve methods (e.g. RDSO, 1991) for various hydrometeorological

Subzones of India. Besides these, regional flood frequency analysis studies have also

been carried outat some of theacademic and research Institutions (e.g. Chander et al,

1978; Pemmal and Seth, 1985). In most of the regional flood frequency studies the

conventional methods such as U.S.G.S. method, regression based methods and

Chow's method etc. have been used. Some attempts have been made by Singh (1989),

Sankarasubramanian (1995), Upadhyay and Kumar (1999), Kumar et al. (1999),

Kumar et al. (2003 a, b), Kumar and Chatterjee (2005) and others to apply the recent

approaches of regional flood frequency estimation.

Recently, the soft computing techniques such as Artificial Neural Networks

(ANN) and Fuzzy Logic (FL) have beenapplied for solving some of thehydrological

problems such as development of stage-discharge relationship, flood forecasting,

rainfall-runoff modeling, estimation of precipitation and evaporation, ground water

modeling, water quality modeling etc. (ASCE Task Committee, 2000 a, b; Jain et al.,

2004; Raghuwanshi et al., 2006; Kumar et al., 2009). However, applications of ANNs

in regional flood frequency estimation are limited and use of Fuzzy Logic in regional

flood frequency estimation remains to be investigated. Whereas, recent studies show
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that the fuzzy modeling is more versatile and improved alternative to ANNs (Aqil et

al, 2007; Lohani, 2007).

Thus the studies carried out for regional flood frequency estimation in India

are limited to a few regions, scattered as well as they are mostly based on the various

types of conventional techniques. As a result, the gap between research and practice

in the area of regional flood frequency estimation is increasing. To overcome the

problems of prediction of floods of various return periods for gauged, sparsely gauged

and ungauged catchments, a robust and convenient method of regional flood

frequency estimation is required to be developed for the practitioners in India. Also,

there is a need for exploring the applicability of the soft computing techniques in

regional flood frequency estimation.

1.3 BROAD OBJECTIVES OF THE STUDY

With a view to bridge the gaps in the procedure of regional flood frequency

estimation in India as well as to explore the potential of the soft computing techniques

in regional flood frequency estimation the present studyhas been carried out with the

following objectives:

(i) To develop regional flood frequency relationships based on L-moments

approach for gauged and ungauged catchments of the 17 Subzones of India,

and

(ii) To investigate applicability of the soft computing techniques viz. Artificial

Neural Network (ANN) and Fuzzy Inference System (FIS) in regional flood

frequency estimation.

The study has been carried out for 17 hydrometeorologically homogeneous
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Subzones of India covering about 79% of its geographical area. For this purpose, the

annual maximum peakflood data of 196 streamflow gauging sites and their catchment

areas have been used.

1.4 LAYOUT OF THESIS

The subject matter of this thesis has been laid out in six chapters. The first

^ chapter gives a brief introduction about regional flood frequency estimation and the

broad objectives of the study. The second chapter provides general description of

regional flood frequency estimation and reviews the research works in the area of

regional flood frequency analysis and soft computing techniques viz. ANN and FIS.

The chapter three presents description of the study area and data used in the study.

Chapter four provides the details of themethodology of L-moments for regional flood

frequency estimation and applications of soft computing techniques viz. ANN andFIS

in regional flood frequency estimation. The results are presented in chapter five along

with the discussions. Chapter six concludes the findings of the study and provides

suggestions for further research work.

t



7

t

CHAPTER 2

REVIEW OF LITERATURE

2.1 GENERAL

Estimation of design flood for various types of hydraulic stmctures has been

engaging the attention of engineers, since long time. Flood frequency analysis has

been a very active area of investigation in hydrology. Frequency based floods find

their applications in design of various types of hydraulic stmctures as well as for

taking of some of the measures of flood management. Chow (1964) mentions that the

frequency analysis of streamflow data is believed to have been first applied to flood

studies by Herschel and Freeman in 1880 to 1890 by means of a graphical procedure

of using flow-duration curves. The author further quotes that according to Fuller

(1914), the use of probability methods in runoff studies had been suggested to him in

1896 by George W. Rafter. Owing to the dearth of long-period records on American

rivers at that time, the use of probability methods for flood frequency analysis was

apparently hindered until later years. Fuller (1914) gave a full account of the first

really comprehensive study of statistical methods applied to floods in the United

States. However, Hazen (1914) soon discovered that if the logarithms representing the

annual floods are used instead of the number themselves, the agreement with the

normal law of errors is closer. This is tme because the frequency distributions of

annual floods are usually skewed or asymmetrical and the distribution can be suitably

represented by such frequency distribution laws as the Galton, or lognormal-

probability, law.

Hazen (1914) proposed the use of lognormal-probability paper and developed

a procedure of analysis (Hazen, 1921). Hazen's method requires a table of factors for



computing theoretical frequency curves by means of the coefficients of variation and

skewness. The table was originally obtainedby empirical methods and hence has been

found to be inaccurate. A corresponding table of exact factors based on a

mathematical procedure was later prepared by Chow (1954). Other laws of frequency

distribution and methods of frequency analysis of floods were also proposed by many

hydrologists. Type 1 and Type 3 of Karl Pearson's curves of frequency distribution

were put in a form convenient for use in flood studies by Foster (1924). Gumbel

(1941) published the first of a great number of papers (e.g. Gumbel, 1941; Gumbel,

1949) on the application of the Fisher-Tippett theory of extreme values to flood

frequency analysis. The use of extreme-value theory has been further extended by

other hydrologists. The Type III external distribution was first proposed by Gumbel

(1954) for drought frequency analysis. -f

Jenkinson (1955) proposed the General Extreme Value (GEV) distribution. Its

theory and practical applications are reviewed in the Flood Studies Report (Natural

Environmental Research Council, 1975). The index flood method developed by the

U.S. Geological Survey (Dalrymple, 1960 a, b; Benson, 1962) was also widely used

to perform regional flood frequency analysis. The Flood Studies Report of Natural

Environmental Research Council (1975) deals with the British flood frequency

analysis procedures. Greenwood et al. (1979) introduced the concept of the

probability weighted moments (PWMs) and Landwehr et al. (1979 a, b) compared the

PWMs with the traditional techniques and carried out studies using the PWMs.

Hosking (1990) introduced the theory of L-moments.

The main aspects of flood frequency analysis and its applications have been

described by investigators such as Chow (1964), Nash and Shaw (1965), Bell (1968),

Thomas and Benson (1970), Larson and Reich (1972), Yevjevich (1972), Filliben
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(1975), Kendall (1975), Kite (1977), Kuczera (1982), Interagency Advisory

Committee on Water Data (1982), U.S.W.R (1982), Gries and Wood (1983),

Stedinger (1983), Lettenmaier and Potter (1985), Hebson and Cunnane (1986),

Cunnane (1988), National Research Council (1988), Cunnane (1989), Tasker and

Stedinger (1989), Bobee and Ashkar (1991), Lu and Stedinger (1992), Maidment

(1992), Mc Cuen (1993), Stedinger et al. (1992), Stedinger et al. (1993), Cong et al.

(1993); Barnett and Lewis (1994), Zrinji and Bum (1994), Karim and Chowdhury

(1995), Hosking and Wallis (1997), Rao and Hamed (2000), Anderson et al. (2000),

Kavvas (2003), Griffis and Stedinger (2007 a), Bhunya et al. (2007), and Bhunya et

al. (2008) etc.

Recently the soft computing techniques have also drawn considerable

attention for their effective applications in hydrology and water resources. The soft

computing techniques such as ANN and FIS offer significant advantages over

conventional modeling, including the ability to handle large amounts of noisy data

from dynamic and nonlinear systems, especially when the underlying hydrological

relationships are not fully understood. The applications of soft computing techniques

in hydrology and water resources have been discussed by many investigators

(Zimmermann 1991; Baldwin, 1996; ASCE Task Committee 2000 a, b; Coulibaly et

al., 2000; Xiong andShamseldin, 2001; Kumar et al., 2002; Chang et al., 2005; Wu et

al.2005, Raghuwanshi et al., 2006; Nayak and Sudheer, 2007; Nayak et al., 2007;

Kumar et al., 2009). The various aspects of flood frequency analysis as well as

applications of the soft computing techniques in hydrology and water resources have

been reviewed as follows.
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2.2 FLOOD FRQUENCY ANALYSIS

Flood frequency analysis refers to estimation of floods of various return

periods. The primary objective of frequency analysis is to relate the magnitude of

extreme events to their frequency of occurrence through the use of probability

distributions (Chow et al., 1988). Rao and Hamed (2000) mention that the data

observed over an extended period of time in a river system or hydrometeorologically

homogeneous region are analyzed in frequency analysis. The data are assumed to be

independent and identically distributed. The flood data are considered to be

stochastic and are space and time independent. Further, it is assumed that the floods

have not been affected by natural or manmade changes in the hydrological regime in

the system. The authors further mention that in practice, the tme probability

distribution of the data at a site or a region is unknown. The assumption that data in a -+

given system arise from a single-parent distribution may be questionable when data

from large watersheds are analyzed. In such cases, more than one type of rainfall or

flow may contribute to extreme events in a region. However, for the analysis to be of

practical use, simpler distributions are often used to characterize the relation between

flood magnitudes and their frequencies. The performance of distributions is evaluated

by using different statistical tests. Quite often, many assumptions made in flood

frequency analysis may be invalid. At any rate these assumptions have been

questioned and discussed extensively (Klemes, 1987 a, b: Yevjevich, 1968).

Hosking and Wallis (1997) have presented the L-Moments based regional

frequency analysis approach. The authors mention that regional flood frequency

analysis resolves the problem of short data records or unavailability of data by

"trading space for time"; as the data from several sites are used in estimating flood

frequencies at any site. Robson and Reed (1999) state that gauged records are rarely

11
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long enough to allow direct estimation of the average interval between major floods at

a site, other than very approximately. This average interval defines the return period

at which flooding occurs. The authors further mention that the return periods of

interest in UK flood design are often as long as 50 or 100 years. For many

catchments, streamflow data are not available or the data are inadequate at the site of

interest. In such cases the methods of frequency analysis using data from a single site

have limited value because of large sampling errors, and as a result, regional flood

frequency analysis is performed. Bydefining a region that is hydrologically similar in

terms of the parameters or variables to be studied, data from several gauging sites

within this homogeneous region are pooled together into a single regional frequency

analysis. Several methods are available to perform a regional analysis. One of the first

steps in a regional frequency analysis is to define the region itself. The definition of a

region depends on the quantities to be estimated. Many methods are available to

define a region that is homogeneous. Regional boundaries can be defined in terms of

similarity of flood-frequency curves in a region which can be considered

homogeneous (Singh, 1994).

A number of methods have been used for carrying out regional flood

frequency analysis. The index flood method developed by the U.S. Geological Survey

(Dalrymple, 1960 a, b; Benson, 1962) was widely used to perform regional flood

frequency analysis. A uniform approach for determining flood frequencies was

recommended for useby U.S. federal agencies in 1967, which consisted of fitting Log

Pearson type - 3 (LP-3) distribution to describe the flood data. This procedure was

extended in 1976 to fitting LP-3 distribution with a regional estimator ofthe log-space

skew coefficient and this was released as Bulletin 17 by US Water Resources Council

(USWRC). Bulletins 17A and 17B were released subsequently, in 1977 and 1981,

12



respectively. These procedures of the USWRC were widely followed in USA and a

few other countries USWRC (1981). Cunnane (1988) describes twelve different

regional flood frequency analysis methods.

Greis and Wood (1983) presented an initial evaluation of the index-flood

approach, which did not reflect the uncertainties in flood quantile estimators, resulting

from scaling the regional flood frequency estimates by the at-site means. Some of the

prominent flood frequency analysis studies include Potter and Walker (1981), Wallis

and Wood (1985), Lettenmaier et al. (1987), Boes et al. (1989), Jin and Stedinger

(1989), Potter and Lettenmaier (1990), Farquharson (1992), Bum and Goel (2000)

etc. Cunnane (1989) mentions that a procedure for estimating flood magnitudes for

return period of T years Qt is robust if it yields estimates of Qt which are good (low

bias and high efficiency) even if theprocedure is based onan assumption which is not ^

tme. Farquharson (1992) states that GEV distribution was selected for use in the

Flood Studies Report (Natural Environmental Research Council, 1975) and has been

found in other studies to be flexible and generally applicable. Hosking and Wallis

(1997) mention that the method recommended in the U.K. Flood Studies Report

(Natural Environmental Research Council, 1975) has a strong regional component. It

divides the British Isles into eleven regions with region boundaries largely following

those of major catchments. The frequency distribution of annual maximum stream

flow is assumed to be the same at each gauging site in a region after the streamflow

values have been divided by the site mean annual maximum streamflow. Some of the

recent flood frequency analysis studies havebeen reviewed in Section 2.8.

Based on data availability and record length of the data the following three

types ofapproaches may be adopted for developing the flood frequency relationships:

(a) at-site flood frequency analysis, (b) at-site and regional flood frequency analysis,

13
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and (c) regional flood frequency analysis. The steps involved in carrying out flood

frequency analysis based on the above approaches are mentioned below.

2.2.1 At-Site Flood Frequency Analysis

(i) Fit various frequency distributions to the annual maximum peak flood data of

a stream flow gauging site,

(ii) Select the best fit distribution based on the goodness of fit criteria,

(iii) Use the best fit distribution for estimation of T-year flood.

2.2.2 At-Site and Regional Flood Frequency Analysis

(i) Identify a hydrometeorologically homogeneous region.

(ii) Screen the observed annual maximum peak flood data of the streamflow

gauging sites of the homogeneous region andtest the regional homogeneity,

(iii) Develop regional flood frequency relationships for the region considering

various frequency distributions,

(iv) Select the best fit distribution based on the goodness of fit criteria,

(v) Estimate the at-site mean annual peak flood,

(vi) Use the best fit regional flood frequency relationship for estimation of T-year

flood for gauged catchment.

2.2.3 Regional Flood Frequency Analysis

(i) Identify a hydrometeorologically homogeneous region.

(ii) Screen the observed annual maximum peak flood data of the streamflow

gauging sites of the homogeneous region and test the regional homogeneity,

(iii) Develop regional flood frequency relationship for the region considering

14



various frequency distributions,

(iv) Select the best fit distribution based on the goodness of fit criteria. f

(v) Develop a regional relationship between mean annual peak flood and

physiographic and climatic characteristics of the gauged catchments for the

region,

(vi) Estimate the mean annual peak flood using the developed regional

relationship,

(vii) Use the best fit regional flood frequency relationship for estimation of T-year

flood for ungauged catchments.

2.3 ASSUMPTIONS AND DATA REQUIREMENT

The assumptions and data requirement for frequency analysis are described ±

below.

2.3.1 Assumptions in Frequency Analysis

The three assumptions are implicit in frequency analysis,

(i) The data to be analyzed describe random events,

(ii) The natural processof the variable is stationary with respect to time and

(iii) The population parameters can be estimated from the sampledata.

2.3.2 Assumptions in Index-Flood Procedure

This index-flood procedure makes the following assumptions (Hosking and

Wallis, 1997).

(i) Observations at any given site are identically distributed,

(ii) Observations at any given site are serially independent,

(iii) Observations at different sites are independent.
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(iv) Frequency distributions at different sites are identical apart from a scalefactor,

(v) The mathematical form of the regional growth curveis correctly specified.

2.3.3 Data Requirement for Frequency Analysis

For flood frequency analysis either annual flood series or partial duration

flood series may be used. The requirements with regard to dataarethat:

(i) It should be relevant.

(ii) It should be adequate and

(iii) It should be accurate.

The term relevant means thatdatamust deal with problem. Forexample, if the

problem is of duration of flooding then data series should represent the duration of

flows in excess of some critical value. If the problem is of interior drainage of an area

then dataseries must consist of the volume of water above a particular threshold. The

term adequate primarily refers to length of data. The length of data primarily depends

upon variability of data and hence there is no guide line for the length of data to be

used for frequency analysis. The term accurate also refers to the homogeneity of data

and accuracy of the discharge values. The data used for analysis should not have any

effect of man made changes. Changes in the stage-discharge relationship may render

stage records non-homogeneous and unsuitable for frequency analysis. It is therefore

preferable to work with discharge values and if stage frequencies are required then

most recent rating curve is used.

2.4 ADEQUACY OF RECORD LENGTH FOR FLOOD FREQUENCY
ANALYSIS

Subramanya (1990) mentions that the floodfrequency studies are most reliable

in climates that are uniform from year to year. In such cases even a relatively short
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record gives a reliable picture of the frequency distribution. With increasing lengths

of flood records, it affords a viable alternative method of flood-flow estimation in

most cases. The author further states that the minimum number of years of record

required to obtain satisfactory estimates depends upon the variability of data and

hence on the physical and climatological characteristics of the basin.

Robson and Reed (1999) states that single site analysis is used when there is a

reliable and long record at the site of interest and when the target return period T is

not too long. Single-site analysis is not usually appropriate if the record length is

shorter than T. If the record is between T and 2T years in length, it is recommended

that both a single site analysis and a pooled analysis are carried out. If the record

length is more than 2T years long, then a single-site analysis is usually sufficient, but

comparison with a pooled analysis is recommended as a precaution. The number of +

stations included in the pooling-group is determined by a rule of thumb: the 5t rule.

This specifies that the pooled stations should collectively supply five times as many

years of record as the target return period, T. Thus, the pooling-group is sized to

provide at least 5T station-years of flood data.

2.5 PARAMETERS ESTIMATION

Several approaches have been used for estimating the parameters of frequency

distributions. Some of the commonly used parameter estimation approaches for most

of the frequency distributions include:

(i) Method of least squares

(ii) Method of moments

(iii) Method of mixed moments

(iv) Method of maximum likelihood

17
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(v) Method of probability weighted moments

(vi) Method of maximum entropy

(vii) Method of L-moments

The method of least squares is based on the principal of least squares for the

sumof squares of residuals. The method of moments has beenone of the simplest and

conventional parameter estimation techniques used in statistical literature. In this

method, while fitting a probability distribution to a sample of data, the parameters are

estimated by equating the sample moments to those of the theoretical moments of the

frequency distribution. Even though this method is conceptually simple, and

computations are straight-forward, it is found that numerical values of the sample

moments can be very different from those of the population from which the sample

has been drawn, especially when sample size is small and/or the skewness of the

sample is considerable. Further, estimated parameters of distributions fitted by

method of moments, are not very accurate. Stedinger et al. (1992) mention that the

method that has strong statistical motivation is the method of maximum likelihood.

Maximum likelihood estimators (MLEs) have very good statistical properties in large

samples, and experience has shown that they generally do well with records available

in hydrology. However, often MLEs cannot be reduced to simple formulas, so

estimates must be calculated using numerical methods. Cunnane (1989) described

statistical distributions for flood frequency analysis. Hosking (1990) introduced the L-

moments approach for estimation of parameters as well as for screening of data,

testing the regional homogeneity and identifyingthe best fit distributions.

A number of attempts have beenmade literature to develop unbiased estimates

of skewness for various distributions. However, these attempts do not yield exactly

unbiased estimates. Further, a notable drawback with conventional moment ratios
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such as skewness and coefficient of variation is that, for finite samples, they are

bounded, and are not able to attain the full range of values available to population

moment ratios (Kirby, 1974). Wallis et al. (1974) have shown that the sample

estimates of conventional moments are highly biased for small samples. The L-

moments are capable of characterisinga wider range of distributions, compared to the

conventional moments. A distribution may be specified by its L-moments, even if

-f
some of its conventional moments do not exist (Hosking, 1990). Further, L-moments

are more robust to outliers in data than conventional moments (Vogel and Fennessey,

1993) and enable more reliable inferences to be made from small samples about an

underlying probability distribution.

Stedinger et al. (1992) mention that fitting a distribution to data sets provides a

compact and smoothened representation of the frequency distribution revealed by the +•

available data, and leads to a systematic procedure for extrapolation to frequencies

beyond the range of the data set. When flood flows, low flows, rainfall, or water-

quality variables are well-described by some family of distributions, a task for the

hydrologist is to estimate the parameters of that distribution so that required quantiles

and expectations can be calculated with the "fitted" model. Appropriate choices for

distribution functions can be based on examination of the data using probability plots

and moment ratios, the physical origins of the data, previous experience, and

administrative guidelines. Stedinger et al. (1992) have also described the theoretical

properties of the various distributions commonly used in hydrology, and have

summarised the relationships between the parameters and the L-moments. The

expressions to compute the biased and the unbiased sample estimates of L-moments

andtheirrelevance with respect to hydrologic application havealso beenpresented by

the authors.
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Hosking (1990) also introduced L-moment ratio diagrams, which are quite

useful in selecting appropriate regional frequency distributions of hydrologic and

meteorologic data. The advantages offered by L-moment ratio diagrams over

conventional moment ratio diagrams are well elucidated by Vogel and Fennessey

(1993). The advantages offered by L-moments over conventional moments in

hypothesis testing, boundedness of moment ratios and identification of distributions

have also been discussed in detail by Hosking and Wallis (1997). Recently a number

of regional flood frequency analysis studies have been carried out based on the L-

moments approach. The L-moment methods are demonstrably superior to those that

have been used previously, and are now being adopted by many organizations

worldwide (Hosking and Wallis, 1997).

2.6 GOODNESS-OF-FIT TESTS

Rigorous statistical tests have been used and are useful for assessing whether

or not a given set of observations might have been drawn from a particular family of

distributions. The goodness of fit tests provide evaluation criteria for identifying the

robust frequency distribution based on the comparison of different frequency

distributions. The various goodness-of-fit tests include (i) Kolmogorov-Smimov test,

(ii) Chi-square test, (iii) D-index test, (iv) Descriptive ability criteria, (v) Predictive

ability criteria, (vi) L-moments ratio diagram and (vii) L-moments based

heterogeneity statistic (H) criteria described by Hosking and Wallis (1997). The

Kolmogorov-Smimov test provides bounds within which every observation on a

probability plot should lie if the sample is actually drawn from the assumed

distribution. It is useful for evaluating visually the adequacy of a fitted distribution

(Stephens, 1974). In the Chi-square test, data are first divided into k class intervals.
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The statistic Chi square is distributed asymptotically as Chi square with k-1 degrees

of freedom. The observed number of events in the class interval is the number of

events that would be expected from the theoretical distribution and k is an arbitrary

number of classes to which the observed data are divided and the Chi square value is

computed (Rao and Hamed, 2000).

The D-index for comparison of the fit of various distributions in upper tail is

given as:

_ 6

Dindex = (l/x)^Abs(xi-xi) (2.1)
i=l

where x; and xt are the ith highest observed and computedvalues for the distribution.

As per this test the distribution giving the least D-index is considered to be the

best fit distribution. The descriptive ability criteria relate to ability of a chosen model

to describe/reproduce chosen aspects of observed flood peaks. The descriptive ability

criteria which have been used in flood frequency analysis are: (i) average of relative

deviations between computed and observed values of annual maximum peak

discharge (ADF), efficiency (EFF) and standard error (SE). The predictive ability

criteria relate to statistical ability of procedure to achieve its assigned task with

minimum bias, and maximum efficiency and robustness and various predictive ability

criteria used in flood frequency analysis are: (i) Bias (BIAS), (ii) Root mean square

error (RMSE) and (iii) Coefficient of variation (CV). The details of these criteria are

discussed elsewhere (Cunnane, 1989; National Institute of Hydrology, 1994-95). The

L-moments based goodness of fit test defined by Hosking and Wallis (1997) are L-

moment ratio diagram and | Zflst | -statistic criteria. These tests of goodness of fit are

the most powerful, out of all the available tests. The details of these tests are

presented in Chapter 4.
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2.6.1 Identification of Homogeneous Region

Hosking and Wallis (1997) mention that of all the stages in regional frequency

analysis involving many sites, the identification of homogeneous regions is usually

most difficult and requires the greatest amount of subjective judgement. The aim is to

form groups of sites that approximately satisfy the homogeneity condition, that the

sites' frequency distributions are identical apart from a site-specific scaling factor.

Several authors have proposed methods for forming groups of similar sites for use in

regional frequency analysis. The authors have categorized the procedures as

geographical convenience, subjective partitioning, objective partitioning, cluster

analysis and other multivariate analysis methods. A summary of these procedures and

some of the examples of their applications in regional frequency analysis, described

by the authors is given below.

Under the procedure of geographical convenience the regions are often chosen

to be sets of contiguous sites based on administrative areas (Natural Environmental

Research Council, 1975), or major physical groupings of sites (Matalas et al., 1975).

Cervantes et al. (1983) presented a cluster model for flood analysis. It is sometimes

possible, particularly in small scale studies, to define regions subjectively by

inspection of the site characteristics. In objective partitioning methods, regions are

formed by assigning sites to one of the two groups depending on whether a chosen

site characteristic does or does not exceed some threshold value. The threshold is

chosen to minimize a within-group heterogeneity criterion, such as a likelihood-ratio

statistic within-group variation of the sample coefficient of variation (Wiltshire, 1986

a, b). The groups are then further divided in an iterative process until a final set of

acceptably homogeneous regions is obtained.
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Acreman and Sinclair (1986) analysed annual maximum streamflow data for

168 gauging sites in Scotland and formed five regions, four of which they judged as

homogeneous. Bum (1989) used cluster analysis to derive regions for flood frequency

analysis, though his cluster variables include at-site statistics.

Schaefer (1990) analyzed the annual maximum peak flood data for sites in

Washington state and formed regions by grouping together sites with similar values of

mean annual precipitation.

Pilon and Adamowski (1992) carried out a Monte-Carlo simulation study to

show the value of information added to flood frequency analysis, by adopting a GEV

regional shape parameter model over the at-site models using the observed data

collected from the province of Nova Scotia (Canada). However, authors assumed the

at-site mean in all sites considered as 100.0 and they have generated the flood data

directly from a GEV distribution (after selecting through L-Moment ratio diagram),

whose parameters have been computed from the regional moments. This simulation

does not correspond to the tme regional Monto-Carlo simulation of the region

considered, even though it shows that additional information value is added by

regional models. Further, their simulation does not incorporate the degree of

heterogeneity present in the region.

Hosking and Wallis (1997) mention that for regional frequency analysis with

an index-flood procedure there is little advantage in using very large regions. The

authors further mention that little gain in the accuracy of quantile estimates is

obtained by using more than about 20 sites in a region. Thus, there is no compelling

reason to amalgamate large regions whose estimated regional frequency distributions

are similar.
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2.6.2 Regional Homogeneity Tests

In carrying out regional flood frequency analysis once a set of physically

plausible regions has been identified, it is desirable to assess whether the region is

meaningful and may be accepted as homogeneous. Various types of homogeneity

tests are reported in literature e.g. Dalrymple's (1960a, b) homogeneity test (U.S.G.S.

test), the tests proposed by Acreman and Sinclair (1986), Wiltshire (1986 a, b),

Choudhury et al. (1991) etc. Most of these tests involve a statistical value which

measures some aspect of frequency distribution which is uniform/constant in a

homogeneous region. This statistic may be a 10 year value scaled by mean,

coefficient of variation, coefficient of skewness or L-moment ratio of a combination

thereof. The test statistic H, termed as heterogeneity measure has been described by

Hosking and Wallis (1997). It is a very effective regional homogeneity test and it is

being very widely used in carrying out regional flood frequency analysis. It compares

inter-site variations in sample L-moments for the group of sites with what would be

expected of a homogeneous region. This heterogeneity measure has been discussed in

detail in Chapter 4.

2.7 FLOOD FREQUENCY ANALYSIS STUDIES CARRIED OUT IN

INDIA

A number of studies have been carried out in the area of regional flood

frequency analysis in India. Some of these include Goswami (1972),

Thimvengadachari et al. (1975), Varshney (1979), Jhakade et al. (1984), National

Institute of Hydrology (1984-85), Venkataraman and Gupta (1986), Venkataraman et

al. (1986), Thimmalai and Sinha (1986), Mehta and Sharma (1986), Huq et al. (1986),

Kaur (1988), Upadhyay et al. (1990), Research, Designs and Standards Organization

24



(1991), National Institute of Hydrology (1990-91), National Institute of Hydrology

(1997-98), Kurothe et al. (1997), Kurothe et al. (2001), Ali and Singh (2001), Bhatt t

(2003), Sikka and Selvi (2005), Goyal and Arora (2007), Bhadra et al. (2008). In most

of the regional flood frequency studies the conventional methods such as U.S.G.S.

method, regression based methods and Chow's method have been used. Some

attempts have been made by Chander et al. (1978), Pemmal and Seth (1985), Singh

and Seth (1985), Seth and Singh (1987), Singh (1989) and others to study the

applications of new approaches of regional flood frequency analysis for some of the

typical regions of India for which the conventional methods had been already applied.

Some of the recent studies on regional flood frequency estimation are reviewed as

follows.

Sankarasubramanian (1995) investigated the sampling properties of L- c

moments for both unbiased and biased estimators for five of the commonly used

distributions. Based on the simulation results, regression equations have been fitted

for the bias and the variance in L-skewness for the five distributions. The sampling

properties of L-moments have been compared with those of conventional moments

and the results of the comparison have been presented for both the biased and

unbiased estimators. The performance of evaluation in terms of relative RMSE in

third moment ratio reveals that conventional moments are preferable at lower

skewness, while L-moments are preferable at higher skewness.

Kumar and Singh (1996) carried out a comparative study for the seven

hydrometeorological Subzones of Zone-3 of India using the EV1 distribution by

fitting the probability weighted moment (PWM) as well as following the modified

U.S.G.S. method. In the study General Extreme Value (GEV) and Wakeby

distribution based on PWMs have also been used and performances of the various
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methods have been evaluated based on the descriptive ability and predictive ability

criteria.

Upadhyay and Kumar (1999) applied L-moments approach for regional flood

frequency analysis. The study concluded that at gauged sites, regional flood frequency

estimates were found to be more accurate than at-site estimates as is clear from root

mean square error and standard error of regional estimates as compared to at-site

estimates. The authors recommended that alongside the discharge data collection at

gauging sites, emphasis should be given collection of data about the physiographic

and hydrological characteristics of the catchment. The authors recommended that it

would improve reliability and accuracy of regional flood estimates not only at

ungauged sites, but also at gauged sites having short record lengths and facilitate

reliable and economically viable design of the hydraulic stmctures.

Parida and Moharram (1999) compared quantile estimates computed using

some of the commonly used statistical models and found that based on ranking of

mean absolute deviation of the estimates the Generalized Pareto (GPA) distribution,

in general, performed well for the study area.

Parmeswaran et al. (1999) developed a flood estimating model for individual

catchment and for the region as a whole using the data of fifteen gauging sites of

Upper Godavari Basins of Maharashtra. Seven probability distributions were used in

the study. Based on the goodness of fit tests log normal distribution is reported to be

the best fit distribution. A regional relationship between mean annual peak flood and

catchment area has been developed for estimation of mean annual peak flood for

ungauged catchments and regional relationship for maximum discharge of a known

recurrence interval for the ungauged catchments.
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Kumar and Chatterjee (2005) carried out regional flood frequency analysis for

North Brahmaputra region of India. In the study, data of 13 stream flow gauging sites

were screened using the discordancy measure (D;) and homogeneity of the region is

then tested employing the L-moment based heterogeneity measure (H). Based on this

test, it was observed that the data of 10 out of 13 gauging sites constituted a

homogeneous region. Comparative regional flood frequency analysis studies were

conducted employing the L-moments based commonly used frequency distributions.

Based on the L-moment ratio diagram and |Z; dist| -statistic criteria, Generalized

Extreme Value (GEV) distribution was identified as the robust distribution for the

study area. Regional flood frequency relationships were developed for estimation of

floods of various return periods for gauged and ungauged catchments using the L-

moment based GEV distribution and a regional relationship developed use the method >-

of least squares between mean annual peak flood and catchment area. Flood

frequency estimates of gauged and ungauged catchments were compared; when,

without satisfying the criteria of regional homogeneity, data of all the 13 gauging sites

were used instead of data of only 10 gauging sites constituting the homogeneous

region.

Some of the recent flood frequency analysis studies carried out abroad have

been reviewed as follows.

2.8 RECENT FLOOD FREQUENCY ANALYSIS STUDIES CARRIED
OUT ABROAD

Wang (1996) mentioned that the estimation of floods of large return periods

from lower bound censored samples may often be advantageous because interpolation

and extrapolation are made by exploring the trend of larger floods in each of the

records. The method of partial probability weighted moments (partial PWMs) is a
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useful technique for fitting distributions to censored samples. The author redefined

partial PWMs. The expression for partial PWMs is derived for the extreme values

type I distribution. Combined with those for the extreme value II and III distributions,

an unified expression for partial PWMs is presented for the GEV distribution. The

equations for solving the distribution parameters are provided. Monte Carlo

simulation shows that lower bound censoring at a moderate level does not unduly

reduce the efficiency of high-quantile estimation even if the samples have come from

a tme GEV distribution.

Zafirakou-Koulouris et al. (1998) introduced L-moments diagrams for the

evaluation of goodness of fit for censored data (data containing values above or below

the analytical threshold of measuring equipments). The authors also summarized the

advantages of the L-moments approach.

Iacobellis and Fiorentino (2000) presented a new rationale, which incorporates

the climatic control for deriving the probability distribution of floods which based on

the assumption that the peak direct streamflow is a product of two random variates,

namely, the average mnoff per unit area and the peak contributing area. The

probability density function of peak direct streamflow was found as the integral over

total basin area, of that peak contributing area times the density function of average

mnoff per unit area. The model was applied to the annual flood series of eight gauged

basins in Basilicata (Southern Italy) with catchment area ranging from 40 to 1600

km . The results showed that the parameter tended to assume values in good

agreement with geomorphologic knowledge and suggest a new key to understand the

climatic control of the probability distribution of floods.

Martins and Stedinger (2000) mention that the three-parameter extreme-value

(GEV) distribution has found wide application for describing annual floods, rainfall,
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wind speeds, wave heights, snow depths and other maxima. Previous studies show

that small-sample maximum-likelihood estimators (MLE) of parameters are unstable

and recommend L-moment estimators. Examination of the behaviour of MLEs in

small samples demonstrates that absurd values the GEV-shape parameter k can be

generated. The authors state that use of a Bayesian prior distribution to restrict k

values to a statistically/physically reasonable range in a generalized maximum

likelihood (GML) analysis eliminates this problem.

Durrans et al. (2003) mention that in some applications, it is desirable to

perform joint (i.e., simultaneous) flood frequency analyses on seasonal as well as

annual bases. However, a problem one encounters in seasonal flood frequency

analysis is that the consistency or interrelationship that must exist between the annual

maximum and individual seasonal flood frequency distributions may not be >

preserved. The most important cause of inconsistencies is that one cannot arbitrarily

specify the parametric forms of the annual and all of the seasonal distributions. A

correct theoretical analysis of the joint frequency problem would require the use of a

rather unusual and complicated distributional model. The authors mention that their

study presents two approximate but useful methods for joint frequency analysis using
>

the log Pearson Type 3 distribution. The authors show via examples that the two

methods can be applied to reasonably model annual and five seasonal flood

distributions in the Tennessee Valley.

Jingyl and Hall (2004) applied the geographical approach (Residual method),

Wards' cluster method, the Fuzzy c-means method and a Kohonen neural network to

86 sites in the Gan-Ming river basin of China to delineate homogeneous regions based

on site characteristics. The authors state that since the Kohonen neural network can

be employed to identify the number of sub-regions as well as the allocation of the
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sites to sub-regions, this method is preferred over Ward's method and the Fuzzy c-

means approach. The regional L-moment algorithm has been used to take advantage

of both identifying an appropriate underlying frequency distribution and to constmct

sub-regional growth curves.

Chokmani and Quarda (2004) proposed a physiographical space-based kriging

method for regional flood frequency estimation. The methodology relies on the

constmction of a continuous physiographical space using physiographical and

meteorological characteristics of gauging stations and the use of multivariate analysis

techniques. Two multivariate analysis methods were tested: canonical correlation

analysis and principal component analysis. Ordinary kriging, a geostatistical

technique, was then used to interpolate flow quantiles through the physiographical

space. Data from 151 gauging stations across the southern part of the province of

Quebec, Canada, were used to illustrate this approach. Results of the proposed

method were compared to those produced by a traditional regional estimation method

using the canonical correlation analysis. The proposed method estimated the 10 year

return period specific flow with a coefficient of determination of 0.78. However, this

performance decreases with the increase in quantile return period. The authors also

observed that the proposed method works better when the physiographical space is

defined using canonical correlation analysis.

Merz and Bloschl (2005) examined the predictive performance of various

regionalization methods for the ungauged catchment case, based on a jack-knifing

comparison of locally estimated and regionalized flood quantiles of 575 Austrian

catchments. It is observed that spatial proximity is a significantly better predictor of

regional flood frequencies than are catchment attributes. A method that combines

spatial proximity and catchment attributes yields the best predictive performance. The
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method is based on kriging and takes differences in the length of the flood records

into account. It is shown that short flood records contain valuable information which

can be exploited by the method proposed by the authors. A method that used only

spatial proximity performs second best. The methods that only use catchment

attributes perform significantly poorer than those based on spatial proximity. These

are a variant of the Region of Influence (ROI) approach, applied in an automatic

model and multiple regressions. The authors suggest that better predictive variables

and similarity measures need to be found to make these methods more useful.

Cunderlik and Bum (2006) developed a new pooling approach that takes into

consideration the sampling variability of flood seasonality measures used as pooling

variables. A nonparametric resampling technique is used to estimate the sampling

variability for the target site, as well as for every site that is a potential member of the >

pooling group for the target site. The variability is quantified by Mahalanobis distance

ellipses. The similarity between the target site and potential site is then assessed by

finding the minimum confidence interval at which their Mahalanobis ellipses

intersect. The confidence intervals can be related to regional homogeneity, which

allows the target degree of regional homogeneity to be set in advance. The approach

is applied to a large set of catchments from Great Britain, and its performance is

compared with the performance of a previously used pooling technique based on

Euclidean distance. The results demonstrated that the proposed approach outperforms

the previously used approach in terms of the overall homogeneity of delineated

pooling groups in the study area.

Kjeldsen and Jones (2006) mention that the standard for conducting flood

frequency analysis in the UK, as set out in the Flood Estimation Handbook, is based

on the index flood method, using the median of the annual maximum flood as the
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index flood. The authors used a region-of-influence approach is used, involving the

creation of a collection of hydrologically similar catchments. The authors also

examined the sampling uncertainty of quantile estimates on the basis of pooling

groups and using the median as the index flood for both gauged and ungauged sites.

Analytical approximations for the variance of the quantile estimates were derived, on

the basis of asymptotic theory, and were used to calculate approximate confidence

intervals for flood frequency curves obtained using both single-site and pooled

analysis at gauged and ungauged sites. The authors showed that the pooled analysis

yields narrower confidence intervals than the single-siteanalysis and that the presence

of intersite correlations increases the sampling uncertainty. The method was extended

to encompass estimation at ungauged sites in the UK on the basis of a regression

model for the index flood, which significantly increases the prediction uncertainty

compared with using an estimate of the index flood derived from observations at the

target site.

Zhang and Singh (2006) derived bivariate distributions of flood peak and

volume, and flood volume and duration using the copula method. The authors state

that major advantage of this method is that marginal distributions of individual

variables (i.e. flood peak, volume, and duration) can be of any form and the variables

can be correlated. The copula method was applied to obtain the conditional return

periods that are needed for hydrologic design. The derived distributions were tested

using flood data from Amite River at Denham Springs, La., and the Ashuapmushuan

River at Saguenay, Quebec, Canada. The derived distributions were also compared

with the Gumbel mixed and the bivariate Box-Cox transformed normal distributions.

The copula-based distributions were found to be in better agreement with plotting

position-based frequency estimates than were other distributions.
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Chebana and Quarda (2007) presented a multivariate L-moments homogeneity

test with the aim to extend the statistical homogeneity test of Hosking and Wallis

(1997) to the multivariate case. The usefulness of the methodology is illustrated on

flood events. Monte-Carlo simulations are also performed for a bivariate Gumbel

logistic model with Gumbel marginal distributions. Results illustrate the power of the

proposed multivariate L-moment homogeneity test to detect heterogeneity on the

whole stmcture of the model and on the marginal distributions. In a bivariate flood

setting, a comparison is carried out with the classical homogeneity test of Hosking

and Wallis based on several types of regions.

Griffs and Stedinger (2007a) presented evolution of flood frequency analysis

with Bulletin 17. The authors mention that the current methodology recommended for

flood-frequency analyses by U.S. Federal agencies is presented in Bulletin 17B.

Bulletin 17 was first published in 1976, minor corrections were made in 1977

resulting in Bulletin 17A, which was later succeeded by Bulletin 17B published in

1982. The authors further mention that the fields of hydrology and flood frequency

analysis have substantially evolved since Bulletin 17 was first published. New

techniques are now available which should become part of these standard procedures.

The authors provide a comparison which demonstrates how the standard and weighted

Bulletin 17B quantile estimators perform relative to alternative Log Pearson Type-Ill

(LP3) quantile estimators that also make use of regional information.

Griffis and Stedinger (2007b) state that since the adoption of the log-Pearson

Type 3 (LP3) distribution by U.S. federal agencies, it has been widely used in

hydrology, but its properties are not well understood. The authors explore the

characteristics of the LP3 distribution in both real space and log space, and their

relationship and comparisons with U.S. flood data summaries reveal that the LP3
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distribution provides a reasonable model of the distribution of annual flood series

from unregulated watersheds for log space skews Wx\< 1.414 (through\yx| < 1 is

more realistic), and for yx = 0 with standard deviations in the range 0.1 to 1.0 with

base-e natural logarithms (0.04 to 0.43 with base-10 common logarithms). L-moment

ratio relationships for the LP3 distribution are also developed by the authors so they

can be compared to summary statistics for a region, and to several other distributions

>

frequently recommended for modeling hydrometeorological extremes.

Genest et al. (2007) introduced metaelliptical copulas as a flexible tool for

modeling multivariate data in hydrology. The author reviewed the properties of the

broad class of dependence functions, along with associated rank-based procedures for

copula parameter estimation and goodness-of-fit testing. A new graphical diagnostic

i tool is also proposed for selecting an appropriate metaelliptical copula. The author use

peak, volume, and duration of the annual spring flood for the Romaine River (Quebec,

Canada) for illustration purposes.

Zhang and Singh (2007) derived volume, and duration, and then obtained

conditional return periods using the Gumbel-Hougaard copula, trivariate distributions

of flood peak. The derived distributions were tested using flood data from the Amite

River Basin in Louisiana. The authors mention that a major advantage of the copula

method is that marginal distributions of individual variables can be of any form and

the variables can be correlated.

Stmpczewski et al. (2009) mention that the main objections to the use of a

pure statistical approach in the analysis of hydrological extremes are small sample

size and unknown distribution function. The maximum likelihood (ML) estimates of

large quantiles are highly sensitive to the distributional choice, while the power of

discrimination procedures is unacceptably low for hydrological sample sizes. The L-
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moments method seems to be the best for this purpose. Application of heavy-tailed

distributions for extremes modeling is discussed by the authors. Moreover two-shape

parameter distributions, while some of them are heavy-tailed, are proposed. Keeping

in mind that the largest sample element is a low quality data, the effect of its omission

on the L-moments accuracy of upper quantiles of two-parameter heavy-tailed

distribution is examined. The authors further mention that recent developments in the

statistics of extremes are primarily related to the maximum likelihood estimation in

the presence of covariates. Its present and prospective hydrological applications are

discussed with emphasis on non-stationary flood frequency analysis. As and

alternative a two level estimation technique is proposed by the authors for estimation

of non-stationary parameters of the distribution.

It is often necessary to interpret information about flood frequency in terms of

the risk of exceedance, i.e. the probability of a flood exceeding a threshold value.

There are simple relationships between risk and return periods. Some aspects of risk

analysis related to flood frequency analysis are reviewed as follows.

2.9 RISK ANALYSIS

Kite (1977) mentions that for any hydraulic stmcture there is a total risk of

failure which can be broken down into the risk of failure of each project component

i.e. hydrologic, hydraulic and structural. The risk within any component can then be

broken down into tme risk and uncertainty. Yen and Ang (1971) have used the terms

objective risk and subjective risk. For the hydrologic component, risk is the calculable

probability of failure e.g. occurrence of a certain flood, occurrence of a drought, etc.

The calculation of risk is based on the assumption that the underlying event

distribution is known. As an example, if it is known that flood magnitudes in a
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particular river valley location follow the lognormal distribution and that the time-

a distribution of the floods follow a Poisson distribution then the risk that the flood of a

certain magnitude will occur in the next five years can becomputed exactly.

Uncertainty occurs because the basic data available contain random

measurement and computation errors, systematic errors, non-homogeneity in time,

loss of information in changing from a continuous record to a discrete data set and so

> on. These imperfect data are then used to estimate the parameters of the assumed

population distribution. Uncertainty generally increases as the variance of the sample

data increases and decreases as the sample length increases. Prasad (1971) describes

Risks in hydrologic design of engineering projects. Thomas (1971) has evaluated the

errors in streamflow estimates made from a continuous stage record while Moss

(1969) has related the standard error of discharge estimates to the number of

streamflow measurements made per year and the associated costs of maintaining the

station. The effect of uncertainty on the parameters of the population distribution can

be included in an analysis by computing the standard error of estimate of the

particular distribution at the required probability level. Confidence limits around the

expected event magnitude can then be calculated. To summarize this concept,

hydrologic risk is made up of basic risk and uncertainty both of which can be

evaluated. What cannot be evaluated is the error caused by selecting the wrong

distribution to fit the sample data.

Yen (1971) has tabulated values of T, the required design return period, for

various expected project lives, n, and permissible risks of failure, p. Table 2.1 is

reproduced from Yen (1971).

H
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Table 2.1 Design return period for various project lives and risks of failure (Yen,
1971)

Permissible

risk of failure

Expected Project Life, n, in years
1 2 5 10 20 25 50 100

0.99 1.01 1.11 1.66 2.71 4.86 5.95 11.4 22.2

0.95 1.05 1.29 2.22 3.86 7.16 8.85 17.2 33.9

0.90 1.11 1.46 2.71 4.86 9.19 11.4 22.2 43.9

0.75 1.33 2.00 4.13 7.73 14.9 18.6 36.6 72.6

0.50 2.00 3.41 7.73 14.9 29.4 36.6 72.6 145.0

0.33 3.00 5.45 12.9 25.2 49.9 62.1 124.0 247.0

0.25 4.00 7.46 17.9 35.3 70.0 87.3 174.0 348.0

0.20 5.00 9.47 22.9 45.3 90.1 113.0 225.0 449.0

0.10 10.0 19.5 48.0 95.4 190.0 238.0 475.0 950.0

0.05 20.0 39.5 98.0 195.0 390.0 488.0 975.0 1950.0

0.02 50.0 99.0 248.0 495.0 990.0 1238.0 2476.0 4951.0

0.01 100.0 199.5 498.0 995.0 1990.0 2488.0 4977.0 9953.0

2.10 SOFT COMPUTING TECHNIQUES

2.10.1 General

Recently soft computing techniques such as Artificial Neural Networks

(ANN) and Fuzzy Inference system (FIS) are being applied for solving various types

of hydrologic and waterresources problems such as flood forecasting, development of

rating curves, estimation of evaporation, estimation of sediment yield, approximating

the three dimensional flow and transport processes in coastal aquifers, studying soil

water retention, etc. Mohan (2007) mentions that the history of the ANNs stems from

the 1940s, the decade of the first electronic computer. However, the first significant

step took place in 1957 when Rosenblatt introduced the first concrete neural model,

the perceptron. In 1959, Bernard Widrow and Marcian Hoff of Stanford developed

models they called ADALINE and MADALINE. These models were named for their

use of Multiple ADAptive LINear Elements. MADALINE was the first neural

network to be applied to a real world problem. In 1974, Werbos introduced a so-called

backpropagation algorithm for the three-layered perceptron network. Hopfield

brought out his idea of a neural network in 1982.
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Fuzzy logic is another area of artificial intelligence that has been applied

successfully in different engineering fields. Fuzzy logic concepts were introduced by

Lotfi A. Zadeh in 1965 (ASCE, 2000 a, b). He was a professor ofcomputer science at

the University of California in Berkeley. Fuzzy logic is a superset of conventional

Boolean logic that has been extended to handle imprecise data and the concept of

partial truth. In fuzzy logic, variables are "fuzzified" through the use of membership

functions that define the membership degree to fuzzy sets. These variables are called

linguistic variables. Fuzzy algorithms are formed by the union use of the fuzzy OR

operator of individual fuzzy mles. The way in which the fuzzy operators IF, THEN,

AND, OR are implemented can have a significant impact on model performance.

Fuzzy systems are defined by a number of fuzzy rules, a number of membership

functions, and mechanisms to apply logical operators. There are numerous successful

applications of fuzzy systems in control and modeling. They are suitable for situations

where an exact model of a process is either impractical or very costly to build, but an

imprecise model based on existing human expertise can do the job. In such situations,

fuzzy systems are considered the best alternative. Fuzzy sets are an aid in providing

information in a more human comprehensible or natural form and can handle

uncertainties at various levels. The new smart gadgets and fuzzy control systems

appeared in mass in Japan and Korea in the 1990s. The soft computing techniques viz.

ANN and FIS are described as follows.

2.10.2 Artificial Neural Network (ANN)

Pal and Mitra (1999) mention that Artificial Neural Networks are relatively

cmde electronic models basedon the neural stmcture of the brain. The brain basically

learns from experience. It is natural proof that some problems that are beyond the
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scope of current computers are indeed solvable by small energy efficient packages.

This brain modeling also promises a less technical way to develop machine solutions.

These biologically inspired methods of computing are thought to be the next major

advancement in the computing industry. Even simple animal brains are capable of

functions that are currently impossible for computers. The computers have trouble

recognizing even simple patterns much less generalizing those patterns of the past into

4
actions of the future. Now, advances in biological research promise an initial

understanding of the natural thinking mechanism. This research shows that brains

store information as patterns. Some of these patterns are very complicated and allow

us the ability to recognize individual faces from many different angles. This process

of storing information as patterns, utilizing those patterns, and then solving problems

encompasses a new field in computing. This field does not utilize traditional >•

programming but involves the creation of massively parallel networks and the training

of those networks to solve specific problems. This field also utilizes words very

different from traditional computing, words like behave, react, self-organize, learn,

generalize, and forget.

The ANN methods are capable of adopting the non-linear relationship among
y

the various hydrological variables, e.g. between rainfall and mnoff as compared to the

conventional techniques, which assume a linear relationship between rainfall and

mnoff. The ANNs have strong generalisation ability, which means that once they

have been properly trained, they are able to provide accurate results even for cases

they have never seen before (Haykin, 1994). The neural-network approach, also

referred to as connectionism or paralleled distributed processing, adopts a "Brain

metaphor" of information processing. Information processing in a neural network

occurs through interactions involving large number of simulated neurons. Artificial
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neural-networks (ANNs) are massively parallel systems composed of many

processing elements connected by links of variables weights. The network consists of

layers of neurons, with each layer being fully connected to the proceeding layer by

inter connection strengths or weights (W). Fig. 2.1, illustrates a three-layer neural

network consisting of input layer (Li), hidden layer (LH) and the output layer (L0)

with the inter-connection weights Wih andWho between layers of neurons. Some of

the recent applications of ANNs in hydrology include comparison of ANNs and

empirical approaches for predicting watershed mnoff (Anmala et al, 2000);

comparative analysis of event based rainfall mnoff modelling techniques-

deterministic, statistical and artificial neural networks (Jain and Indurthy, 2003). Wu

et al. (2005) demonstrated an application of ANNs for watershed-mnoff and stream-

flow forecasts. Bhattacharjya et al. (2007) developed a simulation methodology using

a trained ANN model to approximate the three-dimensional density dependent flow

and transport processes in a coastal aquifer. Some of the studies dealing with the

applications of ANN in hydrology are reviewed along with applications of FIS after

Section 2.10.3.

Input • Output

Fig. 2.1 Configuration of three-layer neural network
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2.10.3 Fuzzy Inference System (FIS)

In crisp logic, the tme value acquired by propositions orpredicates are 2-valued, 'V

namely Tme, False, which may be treated numerically equivalent to (0, 1). However,

in fuzzy logic, tme values are multi-valued such as absolutely tme, partly tme,

absolutely false, very tme, and so on and are numerically equivalent to (0-1). Thus, in

fuzzy logic, the event may take a range of values between 0 and 1. The fuzzy set

theory is an effective tool to handle the problems of uncertainty.

Rajasekaran and Pai (2004) mention that fuzzy set theory is an excellent

mathematical tool to handle the uncertainty arising due to vagueness. Fuzziness

means 'vagueness'. The fuzzy systems approximate functions. They are universal

approximators if they use enough fuzzy mles. In this sense fuzzy systems can model

any continuous function or system. Those systems canjust as well come from physics y

or sociology as from control theory or signal processing. The quality of the fuzzy

approximation depends on the quality of the rales. In practice experts guess at the

fuzzy rales. Or neural schemes leam the rales from data and tune the rules with new

data. The result always approximates some unknown nonlinear function that can

change in time. Better brains and better neural networks give better function
>

approximations. This is not the standard view of fuzzy systems but it is the view that

is generally taken in fuzzy engineering: function approximation with fuzzy systems.

The standard view is that fuzzy systems theory or "fuzzy logic" is a linguistic theory

that models how we reason with vague rales of thumb and common sense. Fuzzy sets

and systems serve as means to this linguistic end. It tends to hold in practice when the

number of inputs and outputs in a problem is small enough and when the time scale is

slow enough for a human to find some solution paths as when we focus a camera lens

or back up a car or grill a steak. It reflects the kinds of issues the first fuzzy engineers
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addressed and shows the kinds of tools they often used in their work and the language

they used to defend it.

The basic structure of a FIS consists of three conceptual components: A rale

base, which contains a selection of fuzzy rales; a database which defines the

membership function (MF) used in the fuzzy rales; and a reasoning mechanism,

which performs the inference procedure upon rales and a given condition to derive a

reasonable output conclusion. A FIS implements a nonlinear mapping from its input

space to an output space. A FIS can utilize human expertise by storing its essential

components in a rale base and database, and perform fuzzy reasoning to infer the

overall output value. Derivation of if-then rales and corresponding membership

functions depends heavily on a priori knowledge about system under consideration.

Fuzzy logic modeling technique can be classified into three categories, namely

the linguistic or Mamdani type (Zadeh, 1973; Mamdani, 1977), the relational equation

(Yi and Chung, 1993) and the Takagi, Sugeno (TS) fuzzy model (Takagi and Sugeno,

1985). Fuzzy algorithms are formed by the union use of the fuzzy OR operator of

individual fuzzy rales (Brown & Harris, 1994). Fuzzy rale based modeling has been

attempted in water resources management, reservoir operation by some of the

investigators. Applications of fuzzy set theory in hydrology and water resources are

illustrated by Panigrahi and Mujumdar (2000), Cheng et al. (2002), Nayak et al.

(2007) and Nayak and Sudheer (2007) etc.

Nauck and Kruse (1997) mention that Neuro-fuzzy systems have recently

gained a lot of interest in research and application. Neuro-fuzzy models are fuzzy

systems that use local learning strategies to leam fuzzy sets and fuzzy rales. Neuro-

fuzzy techniques have been developed to support the development of e.g. fuzzy

controllers and fuzzy classifiers. The authors discuss a learning method for fuzzy
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classification rales. The learning algorithm in a simple heuristics that is able to derive

fuzzy mles from a set of training data very quickly, and tunes them by modifying ^

parameters of membership functions. The authors' approach is based on NEFCLASS,

a neuro-fuzzy model for pattern classification. The authors also discuss some results

obtained by the software implementation of NEFCLASS, which is freely available on

the Internet. Applications of some of the soft computing techniques in hydrology and

water resources are reviewed as follow.

Whitley and Hromadka (1999) presented approximate confidence intervals for

design floods for a single site using a neural network. The authors mention that a

basic problem in hydrology is the computation of confidence levels for the value of

the T-year flood when it is obtained from a log Pearson 3 distribution using the

estimated mean, standard deviation and skewness. The authors gave a practical y

method for finding approximate one-sided or two-sided confidence intervals for the

100-yearflood based on data from a single site. The confidence intervals are generally

accurate to within a percent or two, as tested by simulations, and are obtained by use

of neural network.

Shi and Mizumoto (2001) improved a neuro-fuzzy learning algorithm based
>

on the fuzzy clustering method. In this approach, before learning fuzzy rules typical

data were extracted from training data by using fuzzy c-means clustering algorithm, in

order to remove redundant data and resolve conflicts in data, and make them as

practical training data. By these typical data, fuzzy rales can be tuned by using the

neuro-fuzzy learning algorithm. Therefore, the learning time can be expected to be

reduced and the fuzzy rules generated by the improved approach are reasonable and

suitable for the identified system model. Moreover, the efficiency of the improved

method is also shown by identifying nonlinear functions by the authors.
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Jain et al. (2004) presented analysis of soil water retention data using artificial

neural networks. The authors mention that many studies of water flow and solute

transport in the vadose zone require estimates of the unsaturated soil hydraulic

properties, including the soil water retention curve (WRC) describing the relationship

between soil suction and water content. An ANN approach was developed to describe

the WRC using observed data from several soils. The ANN approach was found to

produce equally or more accurate descriptions of the retention data as compared to

several analytical retention functions popularly used in the vadose zone hydrology

literature. The authors mention that given sufficient input data, the ANN approach

was also found to closely describe the hysteretic behavior of a soil, including

observed scanning wetting and drying curves.

Keskin and Ozlem (2006) proposed ANN models as an alternative approach of

evaporation estimation for Lake Egirdir. The study was carried out to develop ANN

models to estimate daily pan evaporation from measured meteorological data; to

compare the ANN models to the Penman model; and to evaluate the potential of ANN

models. Meteorological data from Lake Egirdir consisting of 490 daily records from

2001 to 2002 were used to develop the model for daily pan evaporation estimation.

The measured meteorological variables included daily observations of air and water

temperature, sunshine hours, solar radiation, air pressure, relative humidity, and wind

speed. The results of the Penman method and ANN models were compared to pan

evaporation values. The comparison showed that there is better agreement between

the ANN estimations and measurements of daily pan evaporation than for other

model.

Raghuwanshi et al. (2006) mention that accurate estimation of both mnoff and

sediment yield is required for proper watershed management. The ANN models were
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developed, to predict both runoff and sediment yield on a daily and weekly basis, for

a small agricultural watershed. A total of five models were developed for predicting

runoff and sediment yield, of which three models were based on a daily interval and

the other two were based on a weekly interval. All five models were developed both

with one and two hidden layers. Each model was developed with five different

network architectures by selecting a different number of hidden neurons. Training was

conducted using the Levenberg-Marquardt backpropagation where the input and

output were presented to the neural network as a series of learning sets. Simulated

surface runoff and sediment yield were compared with observed values and the

minimum root-mean-square error and Nash Sutcliff efficiency (coefficient of

efficiency) criteria were used for selecting the best performing model. Regression

models for predicting daily and weekly mnoff and sediment yield were also

developed using the above training datasets, whereas these models were tested using

the testing datasets. In all cases, the ANN models performed better than the linear

regression based models. The ANN models with a double hidden layer were observed

to be better than those with single hidden layer. Further, the ANN model prediction

performance improved with increased number of hidden neurons and input variables.

As a result, models considering both rainfall and temperature as input performed

better than those considering rainfall alone as input. Training and testing results

revealed that the models were predicting the daily and weekly mnoff and sediment

yield satisfactorily.

Garbrecht (2006) investigated the performance of three ANN designs that

account for the effects of seasonal rainfall and mnoff variations for monthly rainfall-

runoff simulation on an 815 km2 watershed in central Oklahoma. The ANN design

that accounted explicitly for seasonal variations of rainfall and runoff performed best
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by all performance measures. Explicit representation of seasonal variations was

achieved by use of a separate ANN for each calendar month. For the three ANN

designs tested, a regression of simulated versus measured ranoff displayed a slope

slightly under 1 and positive intercept, pointing to a tendency of the ANN to

underpredict high and overpredict low ranoff values.

The data required for initially training the ANN model is generated by using a

numerical simulation model. The simulated data consisting of corresponding sets of

input and output patterns are used to train a multilayer perceptron using the back-

propagation algorithm. The trained ANN predicts the concentration at specified

observation locations at different times. The performance of the ANN as a simulator

of the density dependent saltwater intrusion process in a coastal aquifer is evaluated

using an illustrative study area. The authors mention that the evaluation results show

that the ANN technique can be successfully used for approximating the three-

dimensional flow and transport processes in coastal aquifers.

Kisi (2007) mentions that forecast of future events are required in many

activities associated with planning and operation of the components of a water

resources system. For the hydrologic components, there is a need for both short term

and long term forecasts of streamflow events in order to optimize the system or to

plan for future expansion or reduction. The author presents a comparison of different

ANNs algorithms for short term daily streamflow forecasting. Four different ANN

algorithms, namely, backpropagation, conjugate gradient, cascade correlation and

Levenberg-Marquardt are applied to continuous streamflow data of the North Platte

river in the United States. The modules are verified with untrained data. The results

from the different algorithms are compared with each other. The correlation analysis

46



was used in the study and found to be useful to determine appropriate input vectors to

the ANNs. *

Aqil et al. (2007) mention that traditionally, the multiple linear regression

technique has been one of the most widely used models in simulating hydrological

time series. However, when the nonlinear phenomenon is significant, the multiple

linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy

systems have gained much popularity for calibrating the nonlinear relationships. The

authors evaluated the potential of a neuro-fuzzy system as an alternative to the

traditional statistical regression technique for the purpose of predicting flow from a

local source in a river basin. The effectiveness of the proposed identification

technique was demonstrated through a simulation study of the river flow time series

of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty y

associated with the estimation of river flow, a Monte Carlo simulation was performed.

As a comparison, a multiple linear regression analysis that was being used by the

Citarum River Authority was also examined using various statistical indices. The

simulation results using 95% confidence intervals indicated that the neuro-fuzzy

model consistently underestimated the magnitude of high flow while the low and
>

medium flow magnitudes were estimated closer to the observed data. The comparison

of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated

that the neuro-fuzzy approach was more accurate in predicting river flow dynamics.

The neuro-fuzzy model was able to improve the root mean square error (RMSE) and

mean absolute percentage error (MAPE) values of the multiple linear regression

forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and

efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling

of flow dynamics in the study area.
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Nayak and Sudheer (2007) explored the potential of integrating two different

i artificial intelligence techniques, namely neural network and fuzzy logic, effectively

to model the rainfall-runoff process from rainfall and ranoff information. The

integration is achieved through representing fuzzy system computations in a generic

artificial neural network (ANN) architecture, which is functionally equivalent to a

fuzzy inference system. The model is initialized by a hyperellipsoidal fuzzy clustering

^ (HEC) procedure, which identifies suitable numbers of fuzzy if-then rales through

proper partition of the input space. The parameters of the membership functions are

optimized using a nonlinear optimization procedure. The consequent functions are

chosen to be linear in their parameters, and a standard least squares error method is

employed for parameter estimation. The proposed model is tested on two case studies:

Narmada basin in India and Kentucky basin in the United States. The results are

highly encouraging as the model is able to explain more than 92% of the variance.

The performance of the proposed model is found to be comparable to that of an

adaptive neural based fuzzy inference system (ANFIS) developed for both the basins.

The number of parameters in the proposed model is fewer compared to ANFIS, and

the former can be trained in lesser time. It is also observed that the proposed model

simulates the peak flow better than ANFIS. Overall, the study suggests that the

proposed model can potentially be a viable alternative to ANFIS for use as an

operational tool for rainfall and ranoff modeling purposes.

Mukerji et al. (2009) carried out flood forecasting studies for Jamtara gauging

site of the Ajay river basin in Jharkhand, India using an ANN model, an ANFIS

model, and an adaptive neuro-GA integrated system (ANGIS) model. Relative

performances of these models are also compared. Initially the ANN model is

developed and is then integrated with fuzzy logic to develop an ANFIS model.
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Further, the ANN weights are optimized by generic algorithm (GA) to develop an

ANGIS model. For development of these models, 20 rainfall-ranoff events are

selected, of which 15 are used for model training and five are used for validation.

Various performance measures are used to evaluate and compare the performances of

different models. The authors mention that for the same input data set ANGIS model

predicts better than the ANN model in most of the cases.

The review of literature reveals that studies carried out in India on regional

flood frequency estimation are limited, scattered and based on the conventional

techniques and in general do not meet the requirements of the practitioners. Also,

there is a need for making systematic efforts for development of reliable and

convenient regional flood frequency relationships for gauged and ungauged

catchments of India based on the state of art technique of regional flood frequency

estimation. Further as the applications of ANNs in regional flood frequency

estimation are limited and the applicability of fuzzy techniques in regional flood

frequency estimation broadly remains to be investigated; hence, there is also a need

for investigating applicability of artificial neural networks and fuzzy techniques in

regional flood frequency estimation.

2.11 PROBLEM DEFINITION

Keeping in view the gaps in the existing literature of regional flood frequency

estimation, the present study has been taken up. The steps involved in carrying out the

study are mentioned below,

(i) To develop regional flood frequency relationships for estimation of floods of

various return periods for gauged catchments using the L-moments approach

for 17 Subzones of India.
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(ii) To develop regional relationships between mean annual peak floods and

catchment areas of the gauged catchments for estimation of mean annual peak

floods for ungauged catchments for 17 Subzones of India,

(iii) To develop regional flood frequency relationships for estimation of floods of

various return periods for ungauged catchments using the L-moments

approach for 17 Subzones of India.

(iv) To investigate applicability of the soft computing techniques viz. Artificial

Neural Network (ANN) and Fuzzy Inference System (FIS) in development of

regional flood frequency relationships,

(v) To compare the performances L-moments, ANN and FIS in regional flood

frequency estimation,

(vi) To evolve a robust procedure for regional flood frequency estimation for the

17 Subzones of India. S^fi*™*1 UQ&K
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CHAPTER 3

y DESCRIPTION OF STUDY AREA AND DATA USED

3.1 GENERAL

This chapter gives details of study area and data used in carrying out the study.

For carrying out the study annual maximum peak flood data and catchment areas of

261 stream flow gauging sites of the 17 Subzones of India were collected. The 17

Subzones for which regional flood frequency analysis has been carried out cover total

25,89,342 km2 area of India, which forms about 79% of the geographical area of

India. The description of the study area and data used in the study is given as follow.

X

3.2 STUDY AREA

India has been divided into 7 major zones, which are further sub-divided into

26 hydrometeorologically homogeneous Subzones (CWC, 1982). In this study

regional flood frequency relationships have been developed for 17 Subzones out of

the 26 Subzones of India. As the data for remaining 9 Subzones are not available;

hence, the study could be carried out only for 17 Subzones. The names of the 17

Subzones for which study has been carried out are mentioned below and their location

map is shown in Fig. 3.1.

(i) Chambal Subzone 1 (b)

(ii) Sone Subzone 1 (d)

(iii) Upper Indo-Ganga Plains Subzone 1 (e)

(iv) Middle Ganga Plains Subzone 1 (f)

(v) Lower Ganga Plains Subzone 1 (g)



Fig 3.1 Location map of 17 Subzones of India

(vi) North Brahmaputra Subzone 2 (a)

(vii) South Brahmaputra Subzone 2 (b)

(viii) Mahi and Sabarmati Subzone 3 (a)

(ix) Lower Narmada and Tapi Subzone 3 (b)

(x) Upper Narmada and Tapi Subzone 3 (c)

(xi) Mahanadi Subzone 3 (d)

(xii) Upper Godavari Subzone 3 (e)
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(xiii) Lower Godavari Subzone 3 (f)

V (xiv) Krishna and Pennar Subzone 3 (h)

(xv) Kaveri Basin Subzone 3 (i)

(xvi) East Coast Subzone 4 (b)

(xvii) Sub-Himalayan Region Zone-7

The descriptions of the 17 Subzones are given in the flood estimation reports

which were jointly prepared by the Central Water Commission, India Meteorological

Department and Research Designs and Standards Organization (e.g. CWC, 1982;

CWC, 1985). Brief descriptions of these subzones based on the information available

in the flood estimation reports are presented in Appendix 3.1. The details of data used

in the study are described as follows.

r

3.3 DATA USED

The annual maximum peak flood data and catchment areas of 261 streamflow

gauging sites of the 17 Subzones of India were collected for carrying out the study.

Out of the collected data of the 261 stream flow gauging sites the annual maximum

peak flood data of 196 stream flow gauging sites and their catchment areas have been

used after carrying out the data screening and testing the regional homogeneity, as

discussed in Chapter 5. Table 3.1 summarizes the status of data availability and

salient features of the data for 17 Subzones of India. Table 3.2 provides the range of

catchment areas and mean annual peak floods for 17 Subzones of India. The record

lengths for these streamflow gauging sites vary from 5 to 38 years. The catchment

areas of the streamflow gauging sites range from 6 km2 to 2,297 km2 and their mean

annual peak floods vary from 12.8 m3/s to 1687.3 m3/s. The station-year record length
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varies from 165 to 393 and the average station-year record length for the 17 Subzones

is about 262 years.

Table 3.1 Details of data availability and salient features of the data for 17 Subzones
of India

Subzone Area of

Subzone

(km2)

No. of gauging
sites for which

data are

available

No. of gauging
sites whose

data are used

in analysis

Record

length
(Years)

Station-year
record length

(Years)

1(b) 146630 13 12 10-31 231

1(d) 128900 12 10 13-33 232

1(e) 226000 21 12 25-34 356

1(f) 171350 13 8 11-33 231

Kg) 130280 13 10 10-33 267

2(a) 121444 24 13 13-27 279

2(b) 73556 16 11 5-28 217

3(a) 138400 10 10 14-25 191

3(b) 77700 19 14 12-28 296

3(c) 86353 15 13 14-30 301

3(d) 195256 23 15 11-31 326

3(e) 88870 12 9 14-32 192

3(f) 174201 19 17 14-29 393

3(h) 280881 18 16 14-33 373

3(i) 96051 12 8 12-33 193

4(b) 131300 10 8 17-38 219

Zone-7 322170 11 10 13-20 165

54

y



T

Table 3.2 Range of catchment areas and mean annual peak floods for 17 Subzones
of India

Subzone Range of catchment
area

(km2)

Range of mean annual
peak flood

(m3/s)
1(b) 26.2-2297.3 18.8-1549.0

1(d) 34.0-1658.0 130.2-584.4

1(e) 25.3-2072.0 13.7-780.5

Kf) 32.9-447.8 24.3-555.2

Kg) 15.0-569.8 51.2-650.5

2(a) 21.4-595.7 18.5-852-7

2(b) 21.4-497.3 22.2-321.1

3(a) 18.4-1094.0 74.0-448.7

3(b) 17.2-1017.0 34.9-558.3

3(c) 53.7-2110.9 209.2-1687.3

3(d) 19.0-1150.0 25.1-1071.9

3(e) 31.3-2227.4 60.1-868.9

3(f) 35.0-824.0 77.8-1212.8

3(h) 31.7-1689.9 28.3-794.9

3(i) 30.0-953.0 12.8-309.1

4(b) 51.2-663.0 43.2-316.0

Zone -7 6.0-2072.0 17.1-1606.8
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CHAPTER 4

y METHODOLOGY

4.1 GENERAL

This chapter deals with the methodologies of regional flood frequency

estimation using L-moments and the soft computing techniques used in study. Section
T

4.2 describes the methodology of L-moments, data screening, test of regional

homogeneity, frequency distributions used and goodness of fit measures employed in

the study. Development of regional relationships between mean annual peak floods

and catchment areas of the gauged catchments for estimation of mean annual peak

floods for ungauged catchments is discussed in Section 4.3. The methodology of

regional flood frequency estimation using the soft computing techniques viz.

Artificial Neural Network (ANN) and Fuzzy Inference System (FIS) are presented in

Section 4.4. The description of various techniques are available in different books,

reports and research papers also. In the present thesis, the methods scattered at

different places have been brought at one place for completeness, better readability

and continuity of the present work.
«

4.2 L-MOMENTS APPROACH

4.2.1 General

The L-moments were introduced by Hosking (1990) and these are a recent

development within statistics. In a wide range of hydrologic applications, L-moments

provide simple and reasonably efficient estimators of characteristics of hydrologic

data and of a distribution's parameters (Stedinger et al., 1992). Like the ordinary

product moments, L-moments summarize the characteristics or shapes of theoretical



probability distributions and observed samples. Both moment types offer measures of

distributional location (mean), scale (variance), skewness (shape), and kurtosis

(peakedness). Recently a number of regional flood frequency analysis studies have

been carried out based on the L-moments approach. The L-moment methods are

demonstrably superior to those that have been used previously, and are now being

adoptedby many organizations worldwide (Hosking and Wallis, 1997).

4.2.2 Probability Weighted Moments and L-Moments

The L-moments are an alternative system of describing the shapes of

probability distributions (Hosking and Wallis, 1997). They arose as modifications of

probability weighted moments (PWMs) of Greenwood et al. (1979). Probability

weighted moments is defined as:

Mp,r,s =E(xP{F}r{l-F}s)=J{x(F)}PFr{l-F}sdF (4.1)
v ' 0

where, F = F(x) is the cumulative distribution function (CDF) for x, x(F) is the inverse

CDF of x evaluated at the probability F, and p, r and s are real numbers. If p is a

nonnegative integer, Mp,o,o represents the conventional moment of order p about the

origin. If p = 1 and s = 0,

Mi,r,o=Pr = jx(F)FrdF (4.2)
0

For an ordered sample xi < x2 .... < xN, N > r, the unbiased sample PWM's are given

by

N

X
1 i=l

(\-\\

Pr =
N

/N_}\
(4.3)
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For any distribution the r* L-moment Ax is related to the r* PWM (Hosking, 1990),

y through:

KYr+k^
r-k

(4.4)Vl=iPk(-D
k=0

These L-moments are linear functions of PWMs. For example, the first four L-

moments are related to the PWMs using:

h= Po

X2 = 2(3i - p0

h = 6|32 - 6f3a + p0 (4.5)

A4 = 20p3- 30p2+ 12p! - p0

The L-moments are analogous to their conventional counterparts as they

can be directly interpreted as measures of scale and shape of probability distributions

and hence, are more convenient than the PWMs. Hosking (1990) defined L-moment

ratios which are analogous to conventional moment ratios as:

L-coefficient of variation, L-CV: x2 = A,2 / A-i

L-coefficient of skewness, L-skew: X3 = A-3 / A-2 (4.6)

L-coefficient of kurtosis, L-kurtosis: X4 = A4 / A-2

Analogous to the conventional moment ratios, /Vi is a measure of location, x2 is

a measure of scale and dispersion, T3 is a measure of skewness and T4 is a measure of

kurtosis. Hosking (1990) showed that for x > 0, the value of T2 lies between 0 and 1,

while the absolute values of x3 and x4 lie between 0 and 1. This restriction in the

values of the L-coefficients works out to be an advantage in their interpretation as

opposed to the conventional moments which do not have any bounds (Rao and

Hamed, 2000).

58



4.2.3 Screening of Data Using Discordancy Statistic Test

The objective of screening of data is to check that the data are appropriate for

performing the regional flood frequency analysis. In this study, screening of the data

was performed using the L-moments based Discordancy statistic (Dj). Discordancy is

measured in terms of the L-moments of the sites' data and the aim is to identify those

sites that are grossly discordant with the group as a whole. The sample L-moment

ratios (t2,13 and U) of a site are considered as a point in a three-dimensional space. A

group of sites form a cluster of such points in the three-dimensional space. A site is

considered discordant if it is far from the centre of the cluster.

Hosking and Wallis (1997) defined the Discordancy statistic D; for a site i in a

group ofNsites. Let Ui = [t2(l) t3(l) t4(l)]T be a vector containing the sample L-moment

ratios t2, t3 and U values for site i,

N

u = N-lIui (4.7)
i=l

analogous to their regional values termed as x2, X3, and X4, expressed in Eq.

(4.6). T denotes transposition of a vector or matrix. Let

N

I
i=l

Am=X(ui-u)(ui-u)T (4.8)

be the (unweighted) group average. The sample covariance matrix is defined as:

The Discordancy measure for site i is defined as:

D^NO-ii-ufA^u.-u) (4.9)

The site i is declared to be discordant, if D; is greater than the critical value of

the Discordancy statistic Di, given in a tabular form by Hosking and Wallis (1997).
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4.2.4 Test of Regional Homogeneity

For testing regional homogeneity, a test statistic H, termed as heterogeneity

measure has been discussed by Hosking andWallis (1997). It compares the "inter-site

variations in sample L-moments for the group of sites" with "what would beexpected

of a homogeneous region". The inter-site variations in sample L-moments are

evaluated based on any of the three measures of variability Vi (based on L-CV), V2

(based on L-CV and L-skewness) and V3 (based on L- skewness and L-Kurtosis).

These measures of variability are computed as follows:

(i) Vi is theweighted standard deviation of at site L-CV's (t2(l))

V, =
N m r o I NI nj (t2« - t2R)2

i=l i=l

Vi

(4.10)

where, mis the record length at each site and t2R is the regional average L-CV

weighted proportionally to the sites' record length as givenbelow.

t R v ♦ (i) / vI = I nj t2w/ I nj
i=l / i=l

(4.11)

(ii) V2 is the weighted average distance from the site to the group weighted mean

(based on L-CV and L-skewness) on a graphof t2 versus t3

V2 =I nj {(t2« - t2R)2+(t3« - t3R)2f7 Xni (4.12)
i=l J / i=l

where, t3R is the regional average L-Skew weighted proportionally to the sites'

record length.

(iii) V3 is the weighted average distance from the site to the group weighted mean

(based on L-skewness andL-kurtosis) on a graph of t3 versus U

V3 =I~ij(tJ|i)-.3R)2+(t,(i,-.M7!ni
i=l J / i=l

(4.13)
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where, t4R is the regional average L-Kurtosis weighted proportionally to the sites'

record length.

To establish "what would be expected of a homogeneous region", firstly

simulations are used to generate homogeneous regions with sites having same record

lengths as those of observed data. In order to generate the simulated data, a four

parameter Kappa distribution is used. Thefour parameter Kappa distribution is chosen

so as not to commit to a particular two or three parameter distribution. Further, the

four parameter Kappa distribution includes as special cases the Generalised Logistic

(GLO), Generalised Extreme Value (GEV) and Generalised Pareto (GPA)

distributions and hence, acts as a good representation of many of the probability

distributions occurring in environmental sciences.

The parameters of the Kappa distribution are obtained using the regional

average L-moment ratios t2R, t3R, UR and mean = 1. Alarge number ofdata regions are

generated (say Nsim = 500) based on this Kappa distribution. The simulated regions

are homogeneous andhave no cross-correlation or serial correlation. Further, the sites

have the same record lengths as the observed data. For each generated region, Vj (i.e.

any of Vi, V2 or V3) is computed using Eqns. 4.10 to 4.13. Subsequently, their mean

(|iv) and standard deviation (ov) are computed.

The heterogeneity measure H(j) (i.e. H(l), H(2) or H(3)) is computed as:

H(j) =^L^I (4.14)

If the heterogeneity measure is sufficiently large, the region is declared to be

heterogeneous. Hosking and Wallis (1997) mention the following criteria for

assessing heterogeneity of a region:

If HO) < 1, the region is acceptably homogeneous;
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If 1 < HO) < 2, the region is possibly heterogeneous; and if

HO) > 2, the region is definitelyheterogeneous.

These boundary values of HO) being 1 and 2 are determined by performing a

series of Monte Carlo experiments in which the accuracy of quantile estimates

corresponding to different values of HO) are computed (Hosking and Wallis, 1997).

The authors further mention that for both real world data and artificially simulated

regions, H(l) has much better power to discriminate between homogeneous and

heterogeneous regions as compared to H(2) and H(3).

4.2.5 Frequency Distributions Used

The following frequency distributions have been used in this study. Thedetails

about these distributions and relationships among parameters of these distributions

and L-moments are available in literature (e.g. Hosking and Wallis, 1997).

4.2.5.1 Extreme Value Type-I Distribution (EV1)

Extreme ValueType-I distribution (EV1) is a two parameter distribution and it

is popularlyknown as Gumbel distribution. The quantile function or the inverse form

of the distribution is expressed as:

x(F) = u-aln(-lnF) (4.15)

Where, u and a are the location and scale parameters respectively, F is the non-

exceedence probability viz. (1-1/T) and T is return period in years.

4.2.5.2 General Extreme Value Distribution (GEV)

General Extreme Value distribution (GEV) is a generalized three parameter

extreme value distribution. Its theory and practical applications are reviewed in the
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Flood Studies Report (NERC, 1975). The quantile function or the inverse form of the

distribution is expressed as:

x(F) = u + a{l-(-lnF)k}/k; k*0 (4.16)

x(F) = u-aln(-lnF) k = 0 (4.17)

Where, u, a and k are location, scale and shape parameters of GEV

distribution respectively. EVl distribution is the special case of the GEV distribution,

when k = 0.

4.2.5.3 Logistic Distribution (LOS)

Inverse form of the Logistic distribution (LOS) is expressed as:

x(F) = u -aln{(l-F)/F} (4.18)

Where, u and a are location and scale parameters respectively.

4.2.5.4 Generalized Logistic Distribution (GLO)

Inverse form of the Generalized Logistic distribution (GLO) is expressed as:

x(F) = u + oc[l-{(l-F)/F}k]/k; k*0 (4.19)

x(F) = u -ccln{(l-F)/F}; k = 0 (4.20)

Where, u, a and k are location, scale and shape parameters respectively.

Logistic distribution is the special case of the Generalized Logistic distribution, when

k = 0.

4.2.5.5 Generalized Pareto Distribution (GPA)

Inverse form of the Generalized Pareto distribution (GPA) is expressed as:

x(F) = u +oc{ l-(l-F)k}/k; k*() (4.21)

x(F) = u -aln(l-F) k =0 (4.22)
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where u, a and k are location, scale and shape parameters respectively.

Exponential distribution is special case of Generalized Pareto distribution, when k =

0.

4.2.5.6 Generalized Normal Distribution (GNO)

The cumulative density function of the three parameter Generalized Normal

distribution (GNO) is given below.

F(x)=(|)[-k"1 log[l-k(x-5)/a}| (4.23)

where, £,, a and k are its location, scale and shape parameters respectively. When k =

0, it becomes normal distribution with parameters \ and a. This distribution has no

explicit analytical inverse form.

4.2.5.7 Pearson Type-Ill Distribution (PE3)

The inverse form of the Pearson type-Ill (PE3) distribution is not explicitly

defined. Hosking and Wallis (1997) mention that the PE3 distribution combines

Gamma distributions (which have positive skewness), reflected Gamma distributions

(which have negative skewness) and the normal distribution (which has zero

skewness). The authors parameterize the Pearson type-Ill distribution by its first three

conventional moments viz. mean u\, the standard deviation o\ and the skewness y. The

relationship between these parameters and those of the Gamma distribution is as

follows. Let X be a random variable with a Pearson type-Ill distribution with

parameters ii, a and y. If y > 0, then X - u\ + 2 a/y has a Gamma distribution with

parameters a =4/y2, p=a y/2. If y=0, then Xhas normal distribution with mean \i

and standard deviation a. If y < 0, then -X + |i - 2 c/y has a Gamma distribution with

parameters a =4/y2, (3 = Ia y/2|.
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If y * 0, let a = 4/y2, p = Ia y/2|, and £ = ji - 2a/y and r (.) is Gamma

function. If y > 0, then the range of x is h, < x < «= and the cumulative distribution

function is:

F(x)=G
%

T(cc) (4.24)

If y< 0, then the range of x is -°= < x < £, and thecumulative distribution function is:

F(x) = l-G $-x T(oc) (4.25)
/

4.2.5.8 Kappa Distribution (KAP)

The kappa distribution is a four parameter distribution that includes as special

cases the Generalized Logistic (GLO), Generalized Extreme Value (GEV) and

Generalized Pareto distribution (GPA).

x(FK+a[l-{(l-F)h/h}k]/k (4.26)

where, £, is the location parameter, a is the scale parameter.

When h = -1, it becomes Generalized logistic (GLO) distribution; h = 0 is the

Generalized Extreme Value distribution (GEV); and h = 0 is the Generalized Pareto

distribution (GPA). It is useful as a general distribution with which to compare the fit

of two and three parameter distributions and for use in simulating artificial data in

order to assess the accuracy of statistical methods (Hosking andWallis, 1997).

4.2.5.9 Wakeby Distribution (WAK)

Inverse form of the five parameter Wakeby distribution (WAK) is expressed

as:

x(F) =̂{l-(l-Ff}-l{l-(l-F)-S} (4.27)
where, £, a, p, y, and 8 are the parameters ofthe Wakeby distribution.
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4.2.6 Goodness of Fit Measures

In a realistically homogeneous region, all the sites follow the same frequency

distribution. But as some heterogeneity is usually present in a region so no single

distribution is expected to provide a true fit for all the sites of the region. In regional

flood frequency analysis the aim is to identify a distribution which will yield

reasonably accurate quantile estimates for each site of the homogeneous region.

Assessment of validity of the candidate distribution may be made on the basis of how

well the distribution fits the observed data. The goodness of fit measures assess the

relative performance of various fitted distributions and help in identifying the robust

viz. most appropriate distribution for the region. Recently introduced L-moment ratio

diagram and the goodness of fit or behavior analysis measure for frequency

distributions given by Zfist statistic mentioned by Hosking and Wallis (1997) have

been used in the study. A description of these goodness of fit measures is given as

follows.

4.2.6.1 L-moment Ratio Diagram

The L-moment statistics of a sample reflect every information about the data

and provide a satisfactory approximation to the distribution of sample values. The L-

moment ratio diagram can therefore be used to identify the underlying frequency

distribution. The average L-moment statistics of the region is plotted on the L-

moment ratio diagram and the distribution nearest to theplotted point is identified as

the underlying frequency distribution. One big advantage ofL-moment ratio diagram

is that one can compare fit of several distributions using a single graphical instrument

(Vogel and Fennessey, 1993).
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4.2.6.2 |Zdist |-Statistic Criteria

The best fit frequency distribution for a homogeneous region is determined by

how well the L-skewness and L-kurtosis*of the fitted distribution match the regional

average L-skewness and L-kurtosis of the observed data (Hosking and Wallis, 1997).

This procedure is described below.

Initially, several three parameter distributions arefitted to theregional average

L-moments t2R, t3R and mean =1. Let xjist be the L-kurtosis of the fitted distribution

which may be GEV, GLO, GNO, PE3 etc. Using the Nsim number of simulated

regions of the Kappa distribution, the regional average L-kurtosis, t™ is computed for

the m* simulated region. The bias of tR is computed as:

•Nsim
B, N-1 T(tf - tj) (4-28)

m=l

The standard deviation of tRis computed as:

a4 (Nsim-1)"1ff (t4 - tRf-NsimBj X
(4.29)

The goodness-of-fit measure for each distribution is computed as (Hosking and

Wallis, 1997):

Mis* _ tR+B4) /
7dist = I 4 4 4// (4.30)
L /<*4

The fit is considered to be adequate if |Zdlst |-statistic is sufficiently close to

zero, areasonable criterion being |Zdlst | -statistic less than 1.64. Hosking and Wallis

(1997) state that the |Zdlst| -statistic has the form of a normal distribution under
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suitable assumptions. Thus the criterion |Zdlst | -statistic less than 1.64 corresponds to

acceptance of the hypothesized distribution at a confidence level of 90%.

4.3 DEVELOPMENT OF REGIONAL RELATIONSHIPS BETWEEN
MEAN ANNUAL PEAK FLOODS AND CATCHMENT AREAS

For estimation of T-year return period flood at a site, the estimate for mean

annual peak flood is required. For gauged catchments, such estimates can be obtained

based on the at-site mean of the annual maximum peak flood data. However, for

ungauged catchments at-site mean can not be computed in absence of the flow data.

In such a situation, a regional relationship between the mean annual peak flood of

gauged catchments in the region and their pertinent physiographic and climatic

characteristics is needed for estimation of the mean annual peak flood. For example,

the form of this regional relationship may be:

Q=aAbScDdRe (4.31)

Here, (Q) is the mean annual peak flood, A is the catchment area, S is the slope, D is

the drainage density, R is the annual normal rainfall or rainfall for the duration of

annual maximum peak flood for the catchment etc., a, b, c, d, and e are the regional

coefficients. The regional coefficients are estimated using the mean annual peak

floods of the gauged catchments and their pertinent physiographic and climatic

characteristics for a region. The physiographic and climatic characteristics which are

considered pertinent for generation of annual maximum peak floods from a catchment

and can be obtained from the observed records e.g. rainfall for the duration of

occurrence ofthe annual maximum peak floods and derived from the toposheets/maps

of the gauged catchments may be considered for development of this relationship.
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This form of regional relationship may be developed using an optimization technique

such as Levenberg-Marquardt technique.

4.3.1 Levenberg- Marquardt Algorithm

The Levenberg-Marquardt algorithm (LMA) provides a numerical solution to

the problem of minimizing a function, generally nonlinear, over a space of parameters

of the function (Levenberg, 1944; Marquardt, 1963; Jacoby et al, 1972; Kuester and

Mize, 1973; Gill et al., 1981). These minimization problems arise especially in least

squares curve fitting and nonlinear programming. The LMA interpolates between the

Gauss-Newton algorithm (GNA) and the method of gradient descent. The LMA is

more robust than the GNA, which means that in many cases it finds a solution even if

it starts very far off the final minimum. On the other hand, for well-behaved functions

and reasonable starting parameters, the LMA tends to be a bit slower than the GNA.

The LMA is a very popular curve-fitting algorithm used in many software

applications for solving generic curve-fitting problems.

The primary application of the Levenberg-Marquardt algorithm is in the least

squares curve fitting problem: given a set of empirical data pairs of independent and

dependent variables, (xt ,y(), optimize the parameters P of the model curve f(x, /?) so

that the sum of the squares of the deviations

m

S(P) =£[y,-f(xi,P)]2 (4.32)
i=l

becomes minimal.

The details of LMA are given in Appendix 4.1.
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4.4 REGIONAL FLOOD FRQUENCY ESTIMATION USING ANN AND
FIS

The methodology used for regional flood frequency estimation employing the

soft computing techniques viz. ANN and FIS is described below.

4.4.1 Artificial Neural Network

The ANNs have shown a good potential to efficiently model complex input-

output relationships where there is presence of nonlinearity and inconsistent/noisy

data that adversely affects other approaches. The ANNs have gained popularity in a

large array of engineering applications where conventional analytical methods show

inferior performance. An ANN consists of a number of interconnected computational

elements called neurons that are arranged in a number of layers. The connection

between each pair ofneurons is called a link and is associated with a weight that is a

numerical estimate of the connection strength. Every neuron in a layer receives and

processes weighted inputs from neurons in the previous layer and transmits its output

to neurons in the next layer. The weighted summation of the inputs to a neuron is

converted to anoutput according to a transfer function, typically a sigmoid function.

There are a wide range of ANN architectures, among which the three-layer

feed-forward architecture is widely used. This network contains three distinctive

modes: training, cross validation, and testing. In the training mode, the training data

sets consisting of input-output patterns are presented to the network. The weights are

found through an iterative process, in which the back propagation learning algorithm

is used to find the weights such that the difference between the given outputs and the

outputs computed by the network is sufficiently small. While training, it is a usual

practice that the training data sets are further subdivided into two sets training and

cross testing sets according to data availability. Atraining data set is used for training,
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during which the training data set mean square error (MSE) and the cross-validation

data set MSE, which is not usedfor training are monitored together to find the optimal Y

termination point for training. This check avoids overtraining. After training, the

network is tested with the testing data set to determine how accurately the network

can simulate the input-output relationship.

ANNs have been proven to provide better solutions when applied to (i)

complex systems that may be poorly described or understood; (ii) problems that deal

with noise or involve pattern recognition, diagnosis, abstraction, and generalization;

and (iii) situations where input is incomplete or ambiguous by nature. An ANN has

the ability to extract patterns in phenomena and overcome difficulties due to the

selection of a model form such as linear, power, or polynomial. An ANN algorithm is

capable of modeling the hydrological process due to its ability to generalize patterns

in noisy and ambiguous input data and to synthesize a complex model without prior

knowledge or probability distributions. The ANN model is calibrated using automatic

calibration techniques. Thus, an ANN model eliminates subjectivity and lengthy

calibration cycles.

4.4.1.1 Structure of ANN

Artificial Neural Networks are massively parallel systems composed of many

processing elements connected by links of variables weights. The ANN is

characterized by its architecture that represents the pattern ofconnection between the

nodes, its method of determining the connection weights and the activation function.

Artificial neural network consists of a number of artificial neurons known as

processing elements or nodes. Each node performs a mapping of its inputs to its

output in a three step process: firstly, it calculates the sum of the activation of its
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inputs, and then decides its new activation level based on the derived sum, and finally

generates an output signal corresponding to the new level. The neurons in ANN are

usually arranged in layers shown in the Fig. 4.1: an input layer, an output layer and

one or more intermediate layers known as hidden layers. Each neuron in a specific

layer is connected to many other neurons via weighted connections. The weights

determine the strength of the connections between interconnected neurons.

4.4.1.2 Input Layer

The first layer, known as input layer, consists of neurons that represent the

inputs received from the external environment. It does not perform any

transformations upon the inputs butjust sends them to the neurons of the second layer

(hidden layer). The sole role of the nodes of the input layer is to relay the external

inputs to the neurons of the hidden layer. Hence, the number of input nodes

corresponds to the number of input variables.

Fig 4.1 Schematic representationof a multilayerperceptron

4.4.1.3 Hidden Layer

The layer between the input and the output layer is known as the hidden layer,

the purpose of which is to extract higher order (nonlinear) statistics from the input
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data. It is the hidden layer nodes that allow the network to detect and capture the

relevant pattern(s) in the data and to perform the complex nonlinear mapping between

the input and output variables. Hidden layer consists of neurons that typically receive

the inputs from the input layer, perform transformation on it, and pass the output to

the layer next to it, which can be a second hidden layer or the output layer.

4.4.1.4 Output Layer

The last layer is the output layer consisting of neurons that receive the hidden

layer output and send it to the user. Number of neurons in this layer corresponds to

the number of network outputs.

4.4.1.5 Transfer Function

The mapping or final activation level of a node is determined by its transfer

function. Multilayer networks typically use sigmoid transfer functions in the hidden

layers. These functions are often called as squashingfunctions, since they compress

an infinite input range into a finite output range. Logistic sigmoid, tangent sigmoid

and linear type transfer functions are the most popular transfer functions used for the

modeling purposes.

The connection weights Wi, W2, W3 Ws reflect the relative importance of

each input to the neuron. The sum of the weighted inputs and the bias forms the input

to the transfer function f. Neurons may use any differentiable transfer function, f (),

to generate their output. Output from individual node after summation operation is

given by the following expressions:

m=WiX+bi (4.33)

Output from individual node after passing through transfer function is given by:

73



*

a1=f(n1) =f(W1TX+b1) (4.34)

Where, f ( ) is the neuron transfer function for limiting the amplitude of the

output of a neuron, X is the input to the network; b is the bias of the hidden layer

node.

4.4.1.6 Feed Forward Network (FFN)

Feed forward network (FFN) is the most commonly used network in ANN

modeling. Multi-layer FNN can have more than one hidden layer. The network ability

to learn from examples and to generalize depends on the number of hidden nodes. A

too small network (i.e. with very few hidden nodes) will have difficulty in learning

the data, while a too complex network tends to overfit the training samples and thus

has a poor generalization capability. Finding a parsimonious model for accurate

prediction is particularly critical since there are no formal methods for determining

the appropriate number of hidden nodes prior to training. Therefore, trial-and-error

method is commonly used for network design.

Multi-layer FNN training (supervised type of training) consists of providing

input-output examples to the network, and minimizing the objective function (i.e.

error function) using either a first-order or a second order optimization method. There

are two modes of feeding the data into the network: incremental mode and batch

mode. In incremental mode of training, the weights and biases of the network are

updated after one set of training data is being applied to the network. In batch mode of

training, the weights and biases of the network are updated only after the entire

training set of data is applied to the network.
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4.4.1.7 Development of Model Architecture

The architecture of a network (model) consists of a description of how many >

layers a network has, the number of neurons in each layer, transfer function of each

layer and how the layers connect to each other. In order to improve network

performance, many factors like determination of adequate model inputs, data division

and pre-processing, the choice of suitable network architecture, selection of network

internal parameters, the stopping criteria and model testing need careful addressing

(Maier and Dandy, 2000).

4.4.1.8 Training Algorithms

A major concern in the development of a neural network is determining an

appropriate set of weights that make it perform the desired function. There are many

ways that this can be done; the most popular class of these algorithms is based on

supervised training. Supervised training starts with a network comprising an arbitrary

number of hidden neurons, a fixed topology of connections, and randomly selected

values for weights. The network is then presented with a set of training patterns, each

comprising an example of the problem to be solved (the inputs) and its corresponding

solution (the targeted output). Each problem is input into the network in turn, and the

resultant output is compared to the targeted solution providing a measure of total error

in the network for the set of training patterns. Properly trained back propagation

network give reasonable results when presented with new input during validation. In

the process of model development several network architectures with different

number of input neurons in input layer with varying number of hidden neurons are

considered to select the optimal architecture of the network. A trial and error

procedure based on the minimum error during validation is used to select the best

network architecture.

75



+

4.4.1.9 Back Propagation Algorithm

The generalised delta rule, which determines the appropriate weight

adjustments necessary to minimise the errors can be explained through Figure 4.2.

The Figure 4.2 shows a neuron (j) andits functions.

The total input Hy to hidden units j is a linear function of outputs xt of the

units that are connected toj and of the weights wy- on these connections i.e.

Hy=Xxiwij (4.35)
i

Units can be given biases (6j) by introducing on extra input to each unit which

always has a value of 1.

• Net input

Hij=XWijxi

Activation of

H0j =
1+e^W

• Output H0

Fig. 4.2 A Neuron and its function

A hidden unit has a real-value output H0j, which is a non-linear function of its

total input.

H„; =
1

1 + e
-(Hij+V (4.36)

The use of a linear function for combing the inputs to a unit before applying

the non-linearity greatly simplifies the learning procedure.

The aim is to find a set of weights that ensure that for each input vector, the

output vector produced by the network is the same as (or sufficiently close to) the
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desired outputvector. If there is a fixed, finite set of input-output cases, the total error

in the performance of thenetwork with a particular set of weights canbe computed by

comparing the actual and desired output vectors for every case. The total error E, is

defined as:

E=JZI(0j,c-Tit)2 (4-37)
* c f

where 'c' is the an index over cases (input-output pairs), j is an index over output

units, 'O' is the actual state of an output unit and T is its targeted state. To minimise E

by gradient descent, it is necessary to compute the partial derivative of E with respect

to each weight in the network i.e. dE/dWjj. This can computed successively as

follows:

Firstly differentiate Eqn (3.37) for a particular case, c,

dE

do
(Oj-T,.) (4.38)

NextdE/dxj is computed using chain rule i.e.

dE _ dE dOj
dxj dOj dxj

Differentiating Eqn (3.36) to get the value of dOj/3xj and substituting in (3.39)

Eqn (3.39) calculates how the change in the total input 'x' to an output unit,

will affect the error E. The total input is just a linear function, of the states of the

lower level units and it is also a linear function of the weights on the connections, it

is, therefore, easy to compute how the error will be affected by changing these states

and weights. For a weight Wy, from i to j the derivative is
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dE dE dXj dE
• Oj (4.41)dwj; dxj dWji dxj

and for the output of the ithunit the contribution todE/dO; resulting from the effect of

i on j is simply.

dE dxj dE

* 3oj = a? Wjl (4'42)
So taking into account all the connections emanating from unit i we have

dE v, dE
m " 2 ^ w» (4-43>

Given dE/dO for all units j, in the previous layer, the dEA^ in the

penultimate layer can be computed using Eqn (3.43). This procedure can therefore be

repeated for successively layers.

The simplest version of gradient descent is to change each weight by an

amount proportional to the accumulated dE/dw.

Aw = -e dE/dw (4.44)

The convergence of Eqn (3.44) can be significantly improved, by an

acceleration method wherein the incremental weights at t can related to the previous

incremental weights given in Eqn (3.45).

dE
Aw(t)=e- -f-aAw(t-l) (4.45)

dw(t)

where a is an exponential decay factor between '0' and T that determines the

relative contribution of the current gradient and earlier gradients to the weight change.

The term back propagation refers to the process by which derivatives of network

error, with respect to network weights and biases, can be computed. In back

propagation algorithm, the weights are moved in the direction of the negative

gradient, i.e. in the direction in which the performance function decreases most
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rapidly. Thus, as the training proceeds, the back propagation learning algorithm

constantly adjusts the weight towards the minimum.

4.4.2 Fuzzy Inference System (FIS)

Fuzzy logic is another area of artificial intelligence that has been applied

successfully in different engineering fields. Fuzzy logic concepts were introduced by

Zadeh in 1965 (ASCE, 2000 a,b). Fuzzy logic is a superset of conventional Boolean

logic that has been extended to handle imprecise data and the concept of partial truth.

In fuzzy logic, variables are "fuzzified" through the use of membership functions that

define the membership degree to fuzzy sets. These variables are called linguistic

variables.

The basic structure of fuzzy modeling, (Fig 4.3) commonly known as Fuzzy

Inference System (FIS), is a rule-based or knowledge-based system consisting of three

conceptual components: viz. (i) a rule base that consists of a collection of fuzzy IF-

THEN rules; (ii) a database that defines the membership function (MF) used in fuzzy

rules; and a reasoning mechanism that combines these rules into a mapping routine

from the inputs to the outputs of the system, to derive a reasonable Output conclusion.

Knowledge Base

Rule Base Data Base

' r

i

i '

Fuzzification

Interface

Defuzzification

Interface

< '

i .

Decision Making Unit

Fig 4.3 Schematic representation of Fuzzy Inference System
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4.4.2.1 Architecture of FIS

Consider that the FIS has two inputs x, y and one output z. Figs. 4.4 and 4.5

illustrate a TSK fuzzy inference system. For a first-order Takagi Sugeno (TSK)

model, a common rule set with twofuzzy if-then rules canbe written as follows:

Rule 1, if x isAl and y is Bl, then fl = plx + qly + rl, and

Rule 2, if x is A2 and y is B2, then f2 = p2x + q2y + r2, where (4.46)

The "if" statement is the antecedent, the "then" statement is the consequent,

x and y are linguistic variables and Al, A2, Bl, B2 are corresponding fuzzy sets, and

pi, ql, rl and p2, q2, r2 are linear parameters.

Al

\ \
1 Bl

Wl

W2

_^i ^- *
X

A2

>sr\.

!
• 1

J l_ 1/ XI—
x

X.

1 "-
i y

y

fl = plx + qly + rl f2 = p2x + q2y + r2
Fig 4.4 FIS membership functions (MFs) and rule generation

Layerl Layer2

s

* <

\

\ Prod K "i Korra

TV \
Prod K-

/

/

B2 '

\ m
Norm i

Layer4 Layers

ixiy

•xY \ £

A! j

p~fy

Fig 4.5 FIS network
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4.4.2.2 Functionality of Each Layer in FIS

Layer 1 *

Each node in this layer generates membership grades of an input variable. The node

output OP; is defined by:
♦

OPi1=(iAi(x) fori = 1,2 (4.47)

OP^lWy) fori = 3,4 (4.48)

where x (or y) is the input to the node; Ai (or Bi-2) is a fuzzy set associated with

this node, characterized by the shape of the MFs (u) in this node and can be any

appropriate functions that are continuous and piecewise differentiable such as

Gaussian, generalized bell shaped, trapezoidal shaped and triangular shaped functions.

Assuming a Gaussian function as the MF, the output OP; (1) can be computed as:

OPi1=M.Ai(x) = e 2 s> (4.49)

where {c;, Si} is the parameter set that changes the shapes of the membership

function with maximum equal to 1 and minimum equal to 0. These parameters are

called premise parameters or antecedent parameters.

Layer 2 Y

Every node in this layer multiplies the incoming signals, denoted as n, and the output

OPt2 that represents thefiring strength of a rule is computed as,

OP* =Mx)My) = wi for i = U (4-5°)

Layer 3 -y

The ith node of this layer, labeled as N, computes the normalized firing strengths as

OP3=-^— =W; fori =1,2 (4.51)
w,+w2
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Layer 4

Node i in this layer computes the contribution ofthe ith rule toward the model output,

with the following node function:

OP^Wjfi =wi(pix +qiy +ri) (4.52)

Where, w is the output of layer 3 and {pif q;, n} is the parameter set.

The clustering algorithms are used extensively not only to organize and

categorize data, but are also useful for data compression and model construction.

Clustering partitions a data set into several groups such that the similarity within a

group is larger than that among groups. The clustering techniques are validated on the

basis of the two assumptions viz. (i) similar inputs to the target system to be modeled

should produce similar outputs, and (ii) These similar input-output pairs are bundled

into clusters in the training data set.

The subtractive clustering method assumes that each data point is a potential

cluster center and calculates a measure of the likelihood that each data point would

define the cluster center, based on the density of surrounding data points. Using a

fuzzy clustering algorithm, membership functions can be determined according to two

possible methods. In the first method, the clusters are projected orthogonally onto the

axes of the antecedent variables, and the membership functions are fitted to these

projections. The second method uses multi-dimensional antecedent membership

functions, i.e. the fuzzy clusters are projected onto the input space. The subtractive

clustering algorithm performs the following tasks (i) selects the data point with the

highest potential to be the first cluster centre, (ii) removes all data points in the

vicinity of the first cluster centre (as determined by radii), in order to determine the

next data cluster and its centre location and (iii) iterates on this process until all of the

data is within radii of a cluster centre.
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In the present study the MATLAB software (Math Works, 1994; The Math

Works MATLAB Digest. 2(5))has been used for regional flood frequency estimation

by ANN and FIS.

4.5 STATISTICAL PERFORMANCE INDICES

The statistical performance indices for evaluation of the performances of

various approaches used in this study are described below.

4.5.1 Correlation Coefficient (CORR)

The Correlation Coefficient (CORR) is expressed as:

JcA-OiXPi-PO
r= ,i=1 (4.53)

X^-oo^-po2
V i=l i=l

Where, n = total number of data sets; O; = Observed peak floods for i* data

set; P; =predicted peak flood for i* data set and Os =mean ofobserved peak flood for

i& dataset. Correlation coefficient is a measure ofhow well the variation in the output

is explained by the targets, 'r' value equal to one implies a perfect fit between the

outputs and the targets.

4.5.2 Nash-Sutcliffe Efficiency (EFF)

The Nash-Sutcliffe efficiency (EFF) is expressed as:

Zto.-P,)2
E = 1--1=I (4.54)

ICOt-O,)'
i=i
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The value ofNash-Sutcliffe efficiency EFF varies between -oo to 1. Itmay also

be expressed in terms of percentage. The closer the value to 1 or 100%, the better is

the model performance.

4.5.3 Root Mean Square Error (RMSE)

The Root MeanSquare Error (RMSE) is expressed as:

RMSE= l^-P,)2 (4.55)
V n i=l

RMSE indicates the discrepancy between the observed and predicted values.

A RMSE value close to zero indicates better performance of the model. The best fit

between observed and predicted values, which is unlikely to occur, would have

RMSE as 0.

4.5.4 Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) is expressed as:

MAE =-Y|Oi-Pi| (4.56)
n w

In the statistical performance index taking the absolute value of the error term

rather than its square removes the bias towards outlying points in the data set. The

best fit between observed and predicted values would have MAE close too.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 GENERAL

The methodology discussed in Chapter 4 has been applied for development of

regional flood frequency relationships for gauged and ungauged catchments using the

L-moments, ANN and FIS techniques. The annual maximum peak flood data of 196

stream flow gauging sites of the 17 hydrometeorologically homogeneous categorized

Subzones of India, described in the Chapter 3 have beenused for the development of

the regional flood frequency relationships. Regional relationships have been

developed between mean annual peak floods and catchment areas of the 17 Subzones

using the Levenberg-Marquardt (LM) iteration on the data of the mean annual peak

floods and catchment areas for the 17 Subzones. For this regional relationship the

statistical performance indices viz. efficiency (EFF), correlation coefficient (CORR),

root mean square error (RMSE) and mean average error (MAE) have been computed.

For estimation of floods of various return periods for ungauged catchments the

regional relationships developed between mean annual peak floods and catchments

areas for the 17 Subzones have been coupled with the regional flood frequency

relationships developed based on the robust identified frequency distributions for the

respective Subzones.

For investigating the applicability of the soft computing techniques in

regional flood frequency estimation the ANN and FIS techniques have been applied

for the data of 4 Subzones out of the 17 Subzones viz. Subzone 3(c), Subzone 3(d),

Subzone 3(f) and Zone-7. These four Subzones have been identified for carrying the

detailed regional flood frequency estimation studies based on their lower values of the



heterogeneity measure (H), more number of streamflow gauging sites in the Subzones

and better representation of the regional relationships between mean annual peak

floods and catchment areas as compared to the other Subzones. The regional flood

frequency relationships computed by the L-moments, ANN and FIS have also been

compared using the aforementioned statistical performance indices. The following

aspects of analysis and discussion of results are presented in this chapter:

(i) Screening of the data using the discordancy measure, D;.

(ii) Testing of homogeneity of the region using the heterogeneity measure, H.

(iii) Identification of the robust frequency distributions for 17 Subzones based on

the goodness of fit measures viz. the L-moment ratio diagram and Z lst statistic

criteria,

(iv) Development of regional flood frequency relationships using the L-moments

approach for gauged catchments,

(v) Development of regional relationships between mean annual peak floods and

catchment areas using the Levenberg-Marquardt technique,

(vi) Development of regional flood frequency relationships using the L-moments

approach for ungauged catchments,

(vii) Regional flood frequency estimation for gauged catchments using ANN and

FIS techniques,

(viii) Comparison of performances of L-moments, ANN and FIS techniques for

regional flood frequency estimation,

(ix) Development of regional flood frequency relationships for ungauged

catchments using the better identified soft computing technique.
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5.2 SCREENING OF DATA USING DISCORDANCY STATISTIC TEST

The objective of the discordancy statistic (D;) test is to identify those

streamflow gauging sites from a group of given sites that are grossly discordant with

thegroup as a whole. Values of D; have beencomputed in terms of theL-moments for

all the gauging sites of each of the Subzones. The computed values of D; for each of

the sites are compared with the critical value of D;. The critical values of D;

corresponding to the number of stream flow gauging sites whose data have been used

in the analysis are given by Hosking and Wallis (1997) and the same are reproduced

in Table 5.1.

Table 5.1 Critical values for the Discordancy statistic, Di(Hosking and Wallis, 1997)

Number of sites

in region
Critical value

ofDi

5 1.333

6 1.648

7 1.917

8 2.140

9 2.329

10 2.491

11 2.632

12 2.757

13 2.869

14 2.971

>15 3.000

If for a Subzone the computed value of D, for some site is more than the

critical value of Dj then that site is discarded from the analysis and Di values for the

remaining sites are again computed. These re-computed D; values are again compared

with the critical Di value. When the computed D; values of all the sites are less than

the critical value of Di for a Subzone; then such a group of the streamflow gauging

sites is considered for further analysis as described below.
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5.3 TESTING OF REGIONAL HOMOGENEITY

The test based on the heterogeneity measure 'H' takes into consideration that

in a homogeneous region, all sites have same population L-moment ratios. But their

sample L-moment ratios may differ at each site due to sampling variability. The

intersite variation of L-moment ratio is measured as the standard deviation of the at-

site LCV's weighted proportionally to the record length at each site. To establish what

would be the expected inter-site variation of L-Moment ratios for a homogeneous

region, 500 simulations were carried out using the Kappa distribution for computing

the heterogeneity measure (H) (Hosking and Wallis, 1997).

The heterogeneity measure (H) has been computed for each Subzone using the

data of the streamflow gauging sites which are found suitable for regional flood

frequency analysis as per the screening of data using the D; statistic described in

Section 5.2. The values of the heterogeneity measures H(l), H(2) and H(3) were

computed utilizing the data of all the sites passing the D; test by generating 500

regions using the fitted Kappa distribution. Hosking and Wallis (1997) suggested the

following criteria for assessing heterogeneity of a region: if H(j) < 1, the region is

acceptably homogeneous; if 1 < H(j) < 2, the region is possibly heterogeneous; and if

H(j) > 2, the region is definitely heterogeneous. Hence, if by following the above

procedure the values heterogeneity measure H(l), H(2) and H(3) for a Subzone are

obtained more than 1; then the site exhibiting the maximum D; as per the D; statistic

test is excluded from the analysis and the heterogeneity measure H(l), H(2) and H(3)

values are again computed. This procedure is repeated until the heterogeneity measure

(H) is obtained within the range suggested by Hosking and Wallis (1997), as

mentioned above. In the case of analysis of the data of 17 Subzones of India

considered in the present study the efforts to reduce the values of H(l), H(2) and H(3)
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to 1 led to elimination of data of a large number of the stream flow gauging sites

resulting in the significant loss of data and hence, this was considered appropriate to

accept the H(l), H(2) and H(3) value close to 2 for formation of a homogeneous

region. Similar procedure has also been adopted in some of the studies carried out

earlier also (Kumar and Chatterjee, 2005; Kumar et al, 2003a, b).

The values of number of streamflow gauging sites, the range of discordancy

statistic (Dj) as well as the heterogeneity measures(Hl, H2, H3) computed by carrying

out 500 simulations using the Kappa distribution for the 17 Subzones, which have

been considered hydrometeorologically homogeneous for carrying out the regional

flood frequency analysis, are given in Table 5.2. The catchment area, sample

statistics, sample size and discordancy statistic for each of the streamflow gauging

sites the 17 Subzones are given in Tables 5.3.1 to Table 5.3.17.

Table 5.2 Discordancy statistic Di and Heterogeneity measures for 17 Subzones

S.N. Subzone No. of gauging
sites

Range of
discordancy

statistic

Heterogeneity measures

Di HI H2 H3

1 1(b) 12 0.09-2.12 1.65 0.91 0.08

2 1(d) 10 0.35-2.12 0.97 0.93 0.17

3 1(e) 12 0.00-2.16 2.12 2.06 1.09

4 1(f) 8 0.08-2.08 0.71 0.89 1.76

5 1(g) 10 0.08-2.27 1.32 1.06 0.53

6 2(a) 13 0.25-2.51 1.66 0.93 0.39

7 2(b) 11 0.23-1.73 2.26 2.16 0.79

8 3(a) 10 0.36-1.89 0.46 0.74 0.56

9 3(b) 14 0.08-2.49 1.84 0.91 0.14

10 3(c) 13 0.17-2.56 1.79 1.84 0.54

11 3(d) 15 0.08-2.11 1.68 0.71 1.98

12 3(e) 9 0.36-2.10 1.21 0.34 0.39

13 3(f) 17 0.34-2.03 1.13 1.64 0.61

14 3(h) 16 0.09-2.51 2.26 0.75 0.52

15 3(i) 8 0.36-2.01 2.18 1.26 0.90

16 4(b) 8 0.19-2.00 1.28 0.87 0.00

17 Zone 7 10 0.10-1.95 0.47 0.43 0.81
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Table 5.3.1 Catchment area, sample statistic, sample size and discordancy statistic for
Chambal Subzone 1(b)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean

Annual

Peak

Flood

(m3/s)

Sample
Size

(Years)

L-CV

Cfe)

L-skew

(x3)

L-

kurtosis

(14)

Discordancy
Statistic

(Di)

94 2297.330 1549.000 20 0.3816 0.2044 0.1582 0.64

72 662.800 597.520 23 0.5447 0.2907 0.1185 0.57

118 41.000 70.800 10 0.2574 0.1193 0.3110 2.12

1116/3 361.050 339.560 16 0.5308 0.4779 0.3076 1.63

1 44.750 100.078 13 0.5197 0.3285 0.2394 0.95

437 237.140 197.130 10 0.5253 0.2520 -0.0186 1.43

77 26.180 18.820 11 0.6632 0.4965 0.2180 1.56

306 43.770 76.770 31 0.4650 0.2911 0.1820 0.09

35 39.520 184.654 26 0.3348 0.0108 0.0340 1.67

44 109.000 202.680 22 0.4598 0.2517 0.0875 0.64

406 48.090 92.210 24 0.4068 0.1454 0.1263 0.39

519 1500.020 1551.600 25 0.5212 0.2804 0.0749 0.31

Table 5.3.2 Catchment area, sample statistic, sample size and statistic statistic for
Sone Subzone 1(d)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean

Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(x2)

L-skew

(T3)

L-

kurtosis

(TO

Discordancy
Statistic

(Di)

1198/1 341 224.258 31 0.4145 0.2782 0.1320 0.37

1136/1 158 166.850 20 0.2439 0.2951 0.2983 2.12

611 440 201.483 29 0.5276 0.4881 0.3127 1.09

171 373 203.970 33 0.4597 0.4699 0.2851 1.87

462 517 130.217 23 0.4206 0.2360 0.0668 1.17

184 249 337.125 24 0.3643 0.3281 0.2643 0.54

155 181 235.375 24 0.4881 0.4550 0.3100 0.81

187 1658 404.889 18 0.3341 0.2213 0.1473 0.35

108 K 279 269.056 18 0.3297 0.1377 0.0629 1.12

31 812 584.417 12 0.4602 0.4899 0.3496 0.55
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Table 5.3.3 Catchment area, sample statistic, sample size and discordancy statistic for
Upper Indo -Ganga Plains Subzone 1(e)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean

Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(T2)

L-

skew

(ta)

L-

kurtosis

(x4)

Discordancy
Statistic

(Di)

89 810.94 64.256 32 0.5799 0.3717 0.1527 0.22

1227 41.15 33.575 28 0.6813 0.5115 0.2527 1.03

181 352.00 38.611 32 0.6828 0.4773 0.1728 1.11

99 90.65 187.893 28 0.5533 0.4012 0.1743 0.62

1307 322.19 190.707 27 0.5194 0.3237 0.2049 0.27

1231 49.47 56.497 30 0.4985 0.3240 0.1076 1.72

93 264.18 411.029 34 0.5307 0.3505 0.1819 0.02

146 194.26 9.152 25 0.3712 0.1259 0.1194 1.03

20 2425.53 112.774 31 0.5128 0.2606 0.1700 1.06

325 252.60 350.897 29 0.3944 0.1337 0.1102 0.89

50 38.85 13.702 30 0.4760 0.2505 0.1165 0.21

61 278.94 97.113 30 0.6472 0.4846 0.2024 0.60

Table 5.3.4 Catchment area, sample statistic, sample size and discordancy statistic for
Middle Ganga Plains Subzone 1(f)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean

Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(T2)

L-skew

(Xa)

L-

kurtosis

(X4)

Discordancy
Statistic

(Di)

59 54.39 97.485 33 0.3107 -0.0475 0.0216 1.63

30 447.76 490.500 30 0.3268 0.1201 0.0013 1.24

160 150.40 70.313 32 0.2958 0.1394 0.1792 0.28

3 32.89 24.290 31 0.3867 0.2226 0.1335 0.89

60 130.00 140.556 27 0.2205 0.3578 0.3932 2.08

24 69.75 59.308 26 0.3289 0.1231 0.1188 0.08

141 59.83 79.391 23 0.3354 0.1958 0.0918 0.55

104 234.19 555.207 29 0.3647 0.2429 0.2497 1.26
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Table 5.3.5 Catchment area, sample statistic, sample size and discordancy statistic for
Lower Ganga Plains Subzone 1(g)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean

Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(T2)

L-skew

(T3)

L-

kurtosis

(T4)

Discordancy
Statistic

(Di)

181 212.90 260.423 23 0.4363 0.3478 0.1857 0.25

94 336.70 356.062 18 0.4105 0.2673 0.1120 0.21

286 136.83 137.120 29 0.3244 0.1607 0.0184 1.08

49 393.68 650.450 36 0.5482 0.6362 0.5179 2.16

462 516.30 163.200 10 0.2540 0.1351 0.2107 1.40

656 79.50 99.918 33 0.5400 0.4261 0.2784 0.89

676 92.39 185.539 33 0.2718 -0.0183 0.1660 2.27

101 244.24 223.987 23 0.3782 0.2385 0.1500 0.08

167 569.80 342.441 32 0.4525 0.2266 0.1209 0.65

27 15.01 51.215 30 0.4425 0.1961 -0.0048 1.01

Table 5.3.6 Catchment area, sample statistic, sample size and discordancy statistic for
North Brahmaputra Subzone 2(a)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean

Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(x2)

L-skew

(Ta)

L-

kurtosis

(T4)

Discordancy
Statistic

(Di)

450 233.10 208.108 17 0.3417 0.0677 0.0492 0.74
242 230.00 698.710 24 0.3812 0.1872 0.0848 0.25

285 92.45 149.421 22 0.3377 0.1857 0.1395 0.48
566 46.26 18.542 23 0.2815 0.1499 0.1403 0.60

70 21.42 22.665 13 0.3164 0.2739 0.1654 0.92

91 132.35 852.743 22 0.3133 0.0565 0.0321 0.84

139 22.17 50.940 26 0.4745 0.3511 0.1668 2.51

215 135.66 33.510 25 0.3959 0.1918 0.0822 0.41

24 42.10 49.782 23 0.3864 0.3218 0.1492 0.85

363 326.00 380.289 27 0.2366 0.1054 0.1611 2.25

12 230.40 581.713 21 0.3221 0.2269 0.1264 0.74

196 85.47 79.715 19 0.3809 0.4082 0.2303 1.34

373 595.70 526.603 17 0.3441 0.0586 0.0134 1.08
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Table 5.3.7Catchment area, sample statistic, sample size and discordancy statistic for
South Brahmaputra Subzone 2(b)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean

Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(T2)

L-skew

(T3)

L-

kurtosis

(T4)

Discordancy
Statistic

(Di)

8 259.83 75.265 21 0.5954 0.5218 0.3374 0.76

526 303.68 158.606 5 0.2120 0.0906 0.1910 1.29

215 135.66 31.233 27 0.4318 0.2028 0.0738 0.91

160 497.28 74.262 18 0.3652 0.2567 0.2735 0.82

141 59.80 76.000 21 0.3498 0.2542 0.1313 1.59

414 338.72 321.148 16 0.2986 0.1084 0.0034 1.28

269 76.93 78.197 24 0.5576 0.5199 0.3732 1.00

404 20.98 28.699 26 0.2307 -0.0276 0.0198 1.57

566 46.62 18.319 24 0.2811 0.1536 0.1501 0.41

130 46.44 61.014 14 0.5654 0.4114 0.2348 0.71

170 32.37 30.877 21 0.5616 0.4109 0.1968 0.65

Table 5.3.8 Catchment area, sample statistic, sample size and discordancy statistic for
Mahi and Sabarmati Subzone 3(a)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean

Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(x2)

L-skew

(x3)

L-

kurtosis

(TO

Discordancy
Statistic

(Di)

8 30.14 74.000 25 0.4728 0.4372 0.2557 0.36

192/253 48.43 189.684 19 0.3545 0.2002 0.1432 1.20

281/334 18.44 75.588 17 0.4854 0.4657 0.3758 1.89

5 230.00 352.722 18 0.5839 0.4512 0.1824 1.72

46 580.00 352.955 22 0.4807 0.2842 0.0626 0.53

99 144.50 258.143 21 0.3826 0.2427 0.0846 0.53

945 231.11 212.071 14 0.4698 0.2561 0.1035 0.47

26 1094.00 448.650 20 0.404 0.2748 0.0666 0.90

11 98.16 164.667 18 0.4183 0.4671 0.2888 1.46

141 73.19 108.941 17 0.4280 0.1648 0.0403 0.93

93



Table 5.3.9 Catchment area, sample statistic, sample size and discordancy statistic for
Lower Narmada and Tapi Subzone 3(b)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean

Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(T2)

L-skew

Ct3)

L-

kurtosis

(TO

Discordancy
Statistic

(Di)

105 59.59 223.821 28 0.4580 0.4467 0.3591 1.83

110 18.90 116.654 26 0.4092 0.1943 0.0935 0.65

502/3 105.07 234.154 26 0.3489 0.2670 0.1626 1.37

200 27.18 34.952 21 0.4471 0.3240 0.2037 0.08

162 17.22 69.273 22 0.3838 0.2424 0.1425 0.29

21(DEV) 378.04 492.526 19 0.5757 0.4946 0.3178 1.32

701 28.23 239.000 18 0.5760 0.4647 0.2355 0.58

374/1 225.84 316.095 21 0.5630 0.3981 0.1367 1.17

497/1 53.09 77.652 23 0.3984 0.1045 0.0318 2.49

50 193.73 352.053 19 0.4721 0.3686 0.2603 0.61

411/1 261.59 558.286 21 0.4741 0.419 0.2288 0.88

485/4 284.90 248.333 21 0.4570 0.3129 0.1278 0.53

361/2 828.00 244.053 19 0.3072 0.1712 0.1306 1.09

53 103.26 274.917 12 0.5972 0.4514 0.1841 1.09

Table 5.3.10 Catchment area, sample statistic, sample size and discordancy statistic
for Upper Narmada and Tapi Subzone 3(c)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean

Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(x2)

L-skew

(Ta)

L-

kurtosis

(TO

Discordancy
Statistic

(Di)

731/6 115.90 252.867 30 0.2922 0.1900 0.0962 2.05

294 518.67 919.600 30 0.3470 0.1613 0.1106 0.17

897/1 314.88 856.462 26 0.4119 0.3103 0.1610 0.18

634/2 348.92 380.103 29 0.3434 0.2221 0.2018 1.07

831/1 53.68 209.174 23 0.2729 -0.0222 0.0548 1.56

505 67.37 211.792 24 0.3104 0.1045 0.0571 0.55

863/1 2110.85 1687.273 22 0.4515 0.3783 0.1546 0.95

253 114.22 216.900 20 0.3600 0.1247 0.0923 0.86

584/1 139.08 248.783 23 0.4298 0.3415 0.1700 0.35

512/3 142.97 219.955 22 0.3848 0.2383 0.0869 0.72

776/1 179.90 572.778 18 0.2791 0.1842 0.1622 1.38

644/1 989.89 546.250 20 0.4498 0.3764 0.1903 0.59

787/2 321.16 811.786 14 0.4457 0.5553 0.3520 2.56
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Table 5.3.11 Catchment area, sample statistic, sample size and discordancy statistic
for Mahanadi Subzone 3(d)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean

Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(x2)

L-skew

(x3)

L-

kurtosis

(TO

Discordancy
Statistic

(Di)

48 109 103.900 30 0.4020 0.2950 0.1658 0.46
93K 74 153.071 28 0.2740 0.1235 0.1974 1.44

59KGP 30 72.897 29 0.4079 0.2770 0.1780 0.74

308 19 41.222 27 0.3461 0.2339 0.0882 0.87

332NGP 225 188.591 22 0.2899 0.2117 0.2020 1.23

59BSP 136 196.227 22 0.4068 0.3471 0.2283 1.48

698 113 247.000 25 0.4240 0.3210 0.1356 1.09

121 1150 1003.857 21 0.2690 0.1622 0.0787 1.19

332KGP 175 71.833 24 0.3102 0.1569 0.1647 0.51

40K 115 260.667 21 0.3469 0.2328 0.1784 0.14

42 49 53.500 20 0.2260 0.0488 0.0530 1.92

69 173 238.895 19 0.3457 0.2392 0.1455 0.08

90 190 130.727 11 0.3570 0.1566 0.1335 2.11

195 615 963.769 13 0.2394 0.1305 0.1614 1.10

235 312 176.143 14 0.3128 0.2205 0.1130 0.63

Table 5.3.12 Catchment area, sample statistic, sample size and discordancy statistic
for Upper Godavari Subzone 3(e)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean

Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(x2)

L-skew

(Ta)

L-

kurtosis

(TO

Discordancy
Statistic

(DO

139 93.60 163.344 32 0.3907 0.2321 0.1497 0.36

234 2227.39 868.875 24 0,4171 0.2080 0.0425 0.52

79 35.22 60.130 23 0.4562 0.2001 0.0089 0.93

346 64.88 203.696 23 0.3615 0.1103 0.0867 0.36

295 77.70 90.864 22 0.2933 0.1775 0.1395 2.08

368 136.75 206.286 21 0.3896 0.0993 0.0681 0.96

76 1197.76 695.333 18 0.4804 0.3040 0.0544 0.86

44 152.33 214.643 14 0.5022 0.4267 0.2009 2.10

289 458.00 263.800 15 0.3062 0.0452 0.0885 0.81
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Table 5.3.13 Catchment area, sample statistic, sample size and discordancy statistic
for Lower Godavari Subzone 3(f)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(T2)

L-

skew

(x3)

L-

kurtosis

(TO

Discordancy
Statistic

(DO
184 364 344.483 29 0.3879 0.2106 0.1462 0.34

57 163 189.393 28 0.2567 0.1229 0.1154 1.02

973/1 362 505.036 28 0.3414 0.0600 0.0323 0.60

912/1 137 404.862 29 0.4042 0.2779 0.1095 0.94

20 60 204.714 28 0.3335 0.0219 0.0529 1.02

4 50 237.966 29 0.2834 0.1236 0.0878 0.75

214 35 77.750 24 0.2813 0.2460 0.2389 1.25

51 87 206.680 25 0.2802 0.0747 0.1428 1.35

807/1 824 1212.826 23 0.3730 0.1823 0.0663 0.63

228 483 1075.273 22 0.3827 0.2806 0.1172 0.93

15 459 854.913 23 0.3767 0.1968 0.1170 0.11

881/1 158 307.783 23 0.2855 0.0763 0.0990 0.59

875/1 751 778.095 21 0.4119 0.0773 0.0030 1.56

161 53 93.882 17 0.2992 0.3648 0.2329 2.03

36 139 170.800 15 0.4150 0.3185 0.2357 1.43

224 750 687.357 14 0.4067 0.3365 0.2431 1.18

65 731 725.133 15 0.4147 0.4224 0.2557 1.27

Table 5.3.14 Catchment area, sample statistic, sample size and discordancy measure
for Krishna and Pennar Subzone 3(h)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(x2)

L-skew

(x3)

L-

kurtosis

(x4)

Discordancy
Statistic

(DO
642 326.08 283.469 32 0.3890 0.2883 0.1590 0.58

123 64.75 111.485 33 0.3394 0.0994 0.1331 1.31

16 270.60 65.679 28 0.4413 0.1889 0.0215 0.96

53(i) 102.45 78.517 29 0.4668 0.1517 -0.0435 2.51

378/3 79.00 89.773 22 0.4071 0.1837 0.0608 0.47

53(ii) 1689.92 794.885 26 0.4752 0.3098 0.1966 0.74

215 167.32 44.308 26 0.4827 0.3099 0.1560 0.25

215(GTL) 139.08 88.040 25 0.4072 0.2559 0.1567 0.13

18 131.52 117.760 25 0.3674 0.1761 0.1851 0.99

322 31.72 50.920 25 0.3013 0.2454 0.1507 2.18

480/3 118.23 92.235 17 0.5419 0.3959 0.1710 1.02

63 1357.15 403.368 19 0.3687 0.1162 0.1504 1.55

601 398.60 280.235 17 0.4775 0.2811 0.1189 0.09

313 220.45 443.167 18 0.3966 0.3250 0.1547 1.17

66 70.84 28.294 17 0.6073 0.3750 0.0998 1.63

98 348.40 125.357 14 0.5162 0.3361 0.1198 0.40
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Table 5.3.15 Catchment area, sample statistic, sample size and discordancy statistic
for Kaveri Basin Subzone 3(i)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(x2)

L-skew

(x3)

L-

kurtosis

(TO

Discordancy
Statistic

(Di)
37 294.00 51.630 33 0.7054 0.5443 0.2805 0.52

26 74.70 27.305 30 0.7008 0.5307 0.2633 0.36

244 30.00 60.593 29 0.5090 0.1712 -0.0441 0.58

583 146.00 54.196 27 0.7496 0.5780 0.2904 0.78

28 953.00 309.133 18 0.6050 0.5091 0.2691 2.01

683 287.00 64.333 12 0.4643 0.1275 -0.0484 1.23

683 287.50 58.536 14 0.4870 0.1950 -0.0206 0.68

845 31.23 12.803 30 0.6719 0.4242 0.1149 1.84

Table 5.3.16 Catchment area, sample statistic, sample size and discordancy statistic
for East Coast Subzones 4(b)

Stream

Gauging
Site

Catchment

Area

(km2)

Mean Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(x2)

L-skew

(x3)

L-

kurtosis

(x4)

Discordancy
Statistic

(Di)
765 663.00 104.635 20 0.5922 0.3866 0.1973 1.88

583 146.20 53.990 28 0.7406 0.5673 0.2875 0.19

172 51.18 48.063 38 0.6703 0.4184 0.1103 1.57

313 258.22 43.204 27 0.8054 0.6505 0.3467 0.88

346 266.76 160.017 29 0.7525 0.6040 0.3369 0.35

252 401.32 315.983 29 0.5803 0.4960 0.3535 2.00

60 96.60 116.677 31 0.6117 0.4221 0.1913 0.62

152 626.78 167.941 17 0.7096 0.5536 0.3206 0.51

Table 5.3.17 Catchment area, sample statistic, sample size and discordancy statistic
for Sub-Himalayan region Zone - 7

Stream

Gauging
Site

Catchment

Area

(km2)

Mean Annual

Peak Flood

(m3/s)

Sample
Size

(Years)

L-CV

(x2)

L-skew

(x3)

L-

kurtosis

(TO

Discordancy
Statistic

(Di)
104 2072 855.000 20 0.4008 0.2660 0.1555 0.47

232 710 1606.769 13 0.2363 -0.0031 0.1784 0.72

104 234 677.750 20 0.3025 0.2978 0.3595 1.54

65 190 296.000 20 0.2732 0.1599 0.1964 1.13

3 178 145.846 13 0.4139 0.2869 0.1923 0.67

629 104 530.846 13 0.2551 0.0776 0.2621 0.83

154 43 264.462 13 0.2337 -0.0453 0.1391 1.05

48 27 68.400 20 0.3999 0.1508 0.0137 1.53

50 25 17.100 20 0.3518 0.2118 0.1891 0.10

278 6 20.462 13 0.4250 0.1059 0.0676 1.95
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5.4 IDENTIFICATION OF ROBUST REGIONAL FREQUENCY
DISTRIBUTIONS

The choice of an appropriate frequency distribution for a homogeneous region

is made by comparing the L-moments of the distributions to the average L-moments

statistics from regional data. The aim of goodness-of-fit measure is to identify a

distribution that fits the observed data acceptably closely. The goodness of fit is

judged by how well the L-Skewness and L-Kurtosis of the fitted distribution match

the regional average L-Skewness and L-Kurtosis of the observed data. The L-moment

ratio diagram and |Zfist | -statistic are used as the best fit criteria for identifying the

robust distribution for the study area. For each of the Subzones the regional average

values of L-skewness i.e. X3 and L-kurtosis i.e. X4 are plotted on the L-moment ratio

diagram and the frequency distribution lying closest to the point defined by the

regional average value of L-skewness i.e. T3 and L-kurtosis i.e. T4 on the L-moment

ratio diagram is considered as the suitable frequency distribution as per this test.

For identification of the robust frequency distribution for a Subzone, | Zfst | -

statistic of the various distributions having its value lower than 1.64 are also

compared and the frequency distribution exhibiting the lowest value of and |Zfst | is

considered appropriate distribution as per this test (Hosking and Wallis, 1997). The

comparison of various frequency distributions based on these two tests viz. the L-

moment ratiodiagram and the | Z*st | -statistic provides the robust distribution for each

of the Subzones. The L-moment ratio diagrams for the 17 Subzones are shown in

Figs. 5.1.1 to 5.1.17 and the Zflst values for various frequency distributions for the 17

Subzones are given in Tables 5.4.1 to 5.4.17. Based on the L-moment ratio diagram

and |zfst| -statistic criteria, robust distributions are identified for each of the 17

Subzones. The names of the robust identified distributions and values of |Zf'st | -
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statistic of the robust identified frequency distributions for each of the 17 Subzones

are given in Table 5.5.
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Fig 5.1.1 L-moments ratio diagram for Chambal Subzone 1(b)
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Fig 5.1.12 L-moments ratio diagram for Upper Godavari Subzone 3(e)
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Fig 5.1.13 L-moments ratio diagram for Lower Godavari Subzone 3(f)
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Fig 5.1.14 L-moments ratio diagram for Krishna and Pennar Subzone 3(h)
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Fig 5.1.15 L-moments ratio diagram for Kaveri Basin Subzone 3(i)
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Fig 5.1.16 L-moments ratio diagram for East Coast Subzone 4(b)
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Fig 5.1.17 L-moments ratio diagram for Sub-Himalayan region Zone-7

distTable 5.4.1 Z; statistic for various distributions for Chambal Subzone 1 (b)

S.No. Distribution Zi dlst -statistic
1. Pearson Type III (PE3) 0.01

2. Generalized Normal (GNO) 0.88

3. Generalized Pareto (GPA) -1.32

4. Generalized Extreme Value (GEV) 1.37

5. Generalized logistic (GLO) 2.46

distTable 5.4.2 Z; ' statistic for various distributions for Sone Subzone 1 (d)

S.No. Distribution Zi dIst -statistic
1. Generalized Extreme Value (GEV) 0.13

2. Generalized Normal (GNO) -0.57

3. Generalized logistic (GLO) 0.70

4. Generalized Pareto (GPA) -1.59

5. Pearson Type III (PE3) -1.76

distTable 5.4.3 Z; ' statistic for various distributions for Upper Indo-Ganga Plains Subzone 1 (e)

S.No. Distribution Zi dlst -statistic
1. Generalized Pareto (GPA) -0.30

2. Pearson Type III (PE3) -0.73

3. Generalized Normal (GNO) 0.90

4. Generalized Extreme Value (GEV) 1.85

5. Generalized logistic (GLO) 2.54
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distTable 5.4.4 Zi statistic for various distributions for Middle Ganga Plains
Subzone 1 (f)

S.No. Distribution Z;dIst -statistic
1. Generalized Extreme Value (GEV) 0.01

2. Generalized Normal (GNO) -0.14

3. Pearson Type III (PE3) -0.62

4. Generalized logistic (GLO) 1.58

5. Generalized Pareto (GPA) -3.40

Table 5.4.5
distZj statistic for various distributions for Lower Ganga Plains

Subzone 1 (g)

S.No. Distribution Zj aist -statistic
1. Generalized Extreme Value (GEV) 0.27

2. Generalized Normal (GNO) -0.32

3. Generalized logistic (GLO) 1.22

4. Pearson Type III (PE3) -1.36

5. Generalized Pareto (GPA) -2.19

Table 5.4.6 Zj lst statistic for various distributions for North Brahmaputra
Subzone 2(a)

S.No. Distribution Zjaist -statistic
1. Pearson Type III (PE3) 0.68

2. Generalized Normal (GNO) 1.44

3. Generalized Pareto (GPA) -1.80

4. Generalized Extreme Value (GEV) 1.80

5. Generalized logistic (GLO) 3.38

Table 5.4.7 Zj ist statistic for various distributions for South Brahmaputra
Subzone 2(b)

S.No. Distribution Zimst -statistic
1. Generalized Normal (GNO) -0.11

2. Generalized Extreme Value (GEV) 0.40

3. Pearson Type III (PE3) -1.00

4. Generalized logistic (GLO) 1.28

5. Generalized Pareto (GPA) -1.84

Table 5.4.8 ZiUISL statistic for various distributions for Mahi and Sabarmati
Subzone 3 (a)

dist

S.No. Distribution Z; a,st -statistic
1. Pearson Type III (PE3) -0.06

2. Generalized Pareto (GPA) -0.14

3. Generalized Normal (GNO) 1.13

4. Generalized Extreme Value (GEV) 1.82

5. Generalized logistic (GLO) 2.51
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Table 5.4.9
distZi statistic for various distributions forLower Narmada and Tapi

Subzone 3(b)

S.No. Distribution Z; dlst -statistic
1. Generalized Normal (GNO) 0.32

2. Pearson Type III (PE3) -1.02

3. Generalized Extreme Value (GEV) 1.10

4. Generalized Pareto (GPA) -1.14

5. Generalized logistic (GLO) 1.88

Table 5.4.10 Z; ist statistic for various distributions for Upper Narmada andTapi
Subzone 3(c)

S.No. Distribution Z;dIst -statistic
1. Pearson Type III (PE3) 0.05

2. Generalized Normal (GNO) 1.02

3. Generalized Extreme Value (GEV) 1.54

4. Generalized Pareto (GPA) -1.84

5. Generalized logistic (GLO) 2.95

distTable 5.4.11 Zi 1S statistic for various distributions for Mahanadi Subzone 3 (d)

S.No. Distribution Z; dlst -statistic
1. Generalized Normal (GNO) 0.22

2. Pearson Type III (PE3) -0.62

3. Generalized Extreme Value (GEV) 0.66

4. Generalized logistic (GLO) 2.08

5. Generalized Pareto (GPA) -2.68

distTable 5.4.12 Zj statistic for various distributions for Upper Godavari Subzone 3 (e)

S.No. Distribution Zidlst -statistic
1. Generalized Pareto (GPA) -0.54

2. Pearson Type III (PE3) 1.72

3. Generalized Normal (GNO) 2.38

4. Generalized Extreme Value (GEV) 2.68

5. Generalized logistic (GLO) 4.10

distTable 5.4.13 Z; ' statistic for various distributions for Lower Godavari Subzone 3(f)

S.No. Distribution Zi dist -statistic
1. Pearson Type III (PE3) 0.49

2. Generalized Normal (GNO) 1.28

3. Generalized Extreme Value (GEV) 1.60

4. Generalized Pareto (GPA) -2.94

5. Generalized logistic (GLO) 3.64

109



Table 5.4.14 Z;aist statistic for various distributions for Krishna and Pennar
Subzone 3(h)

dist

S.No. Distribution Z;dIst -statistic
1. Generalized Pareto (GPA) -0.95

2. Pearson Type III (PE3) 0.99

3. Generalized Normal (GNO) 2.17

4. Generalized Extreme Value (GEV) 2.82

5. Generalized logistic (GLO) 4.37

distTable 5.4.15 Z; statistic for various distributions for Kaveri Basin Subzone 3(i)

S.No. Distribution Zidist-statistic
1. Pearson Type III (PE3) 1.13

2. Generalized Pareto (GPA) 2.13

3. Generalized Normal (GNO) 2.74

4. Generalized Extreme Value (GEV) 3.69

5. Generalized logistic (GLO) 4.11

distTable 5.4.16 Zi IS statistic for various distributions for East Coast Subzones 4 (b)

S.No. Distribution Zi dlst -statistic
1. Pearson Type III (PE3) -0.30

2. Generalized Pareto (GPA) 1.30

3. Generalized Normal (GNO) 1.36

4. Generalized Extreme Value (GEV) 2.34

5. Generalized logistic (GLO) 2.53

distTable 5.4.17 Zi statistic for various distributions for Sub-Himalayan region Zone 7

S.No. Distribution Z;dIst -statistic
1. Generalized logistic (GLO) 0.19

2. Generalized Extreme Value (GEV) -0.91

3. Generalized Normal (GNO) -1.02

4. Pearson Type III (PE3) -1.35

5. Generalized Pareto (GPA) -3.29
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Table 5.5 Robust identified distributions for 17 Subzones and their Z; statistic

S.No. Subzone Distribution Zjdist -statistic
1 1(b) PE3 0.01

2 1(d) GEV 0.13

3 1(e) GPA -0.30

4 1(f) GEV 0.01

5 1(g) GEV 0.27

6 2(a) PE3 0.68

7 2(b) GNO 0.08

8 3(a) PE3 -0.06

9 3(b) GNO 0.32

10 3(c) PE3 0.05

11 3(d) GNO 0.22

12 3(e) GPA -0.54

13 3(f) PE3 0.49

14 3(h) GPA 0.95

15 3(i) PE3 1.13

16 4(b) PE3 -0.30

17 Zone 7 GLO 0.19

5.5 DEVELOPMENT OF REGIONAL FLOOD FREQUENCY
RELATIONSHIPS USING L-MOMENTS FOR GAUGED

CATCHMENTS

For estimation of floods of various return periods for gauged catchments

regional flood frequency relationships have been developed for the 17 Subzones

based on the robust identified distribution. The values of regional parameters for the

various distributions which have and |Zdlst | -statistic values less than 1.64 as well as

the five parameter Wakeby distribution are given in Table 5.6.1 to 5.6.17. The

frequency distribution exhibiting lowest value of |Zd!St | -statistic among the various

distributions is given in the first row and the second lowest in the second row and so

on. The regional parameters of the Wakeby distribution have also been included in

Table 5.6.1 to 5.6.17, because the Wakeby distributionhas five parameters, more than

most of the common distributions and it can attain a wider range of distributional

shapes than can the common distributions. This makes the Wakeby distribution

particularly useful for simulating artificial data for use in studying the robustness,
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under changes in distributional form of methods of data analysis. It is preferred to use

Wakebydistribution for heterogeneous regions (Hosking and Wallis, 1997).

For the commonly used return periods the values of the growth factors (Qt/Q)

estimated by various distributions having |zfst | -statistic less than 1.64 for each of the

17 Subzones are given in Tables 5.7.1 to 5.5.17. Here, (QT) is the value of flood for T-

yearreturn period and (Q) is the mean annual peak flood of the gauged catchment. In

the Tables 5.7.1 to 5.7.17 the growth factor values are given in first row for the best

fit distribution i.e. distribution having lowest value of |Zfst | statistics as compared to

other distributions. In the second row for the second best identified distribution and so

on. The values of growth factors for the robust identified distributions for the 17

Subzones are summarized in Table 5.8.

For estimation of flood of desired return period (QT) for a gauged catchment

of a Subzone, the growth factor (QT / Q) value of the corresponding return period of

the respective Subzone is to be multiplied by the mean annual peak flood (Q) of the

gauged catchment. Floods of various return periods may also be computed by

substituting the values of the parameters of the robust identified distribution of each

of the Subzones into the equation of the robust distribution for the respective Subzone

and multiplying it by the mean annual peak flood of a gauged catchment.

Table 5.6.1 Regional parameters for various distributions for Chambal Subzone 1 (b)

Distribution Parameters of the Distribution

PE3 p. = 1.000 0 = 0.875 Y=1.477
GNO ^ = 0.801 a = 0.734 k = -0.509

GPA 5 = -0.021 a =1.237 k = 0.212

GEV ^ = 0.584 a = 0.592 k =-0.114

WAK 5 = -0.074 a = 0.990 3 = 1.631 7=0.663 8 = 0.050
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Table 5.6.2 Regional parameters for various distributions forSone Subzone 1 (d)

Distribution Parameters of the Distribution

GEV £ = 0.597 a = 0.439 k = -0.260

GNO £, = 0.754 a = 0.584 k =-0.734

GLO |1 = 0.777 a = 0.335 k = -0.348

GPA ^ = 0.188 a = 0.786 k = -0.033

WAK £ = 0.082 a= 1.516 P = 7.077 7=0.628 8 = 0.139

Table 5.6.3 Regional parameters for various distributions for Upper Indo-Ganga
Plains Subzone 1 (e)

Distribution Parameters of the Distribution

GPA £ = -0.034 a = 0.968 k = -0.064

PE3 LL= 1.000 a =1.091 7 = 2.176
GNO £ = 0.670 a = 0.741 k = -0.766

WAK £ = -0.034 a = 0.000 p = 0.000 7=0.968 8 = 0.064

Table 5.6.4 Regional parameters for various distributions for Middle Ganga Plains
Subzone 1(f)

Distribution Parameters of the Distribution

GEV ^ = 0.734 a = 0.468 k = 0.010

GNO £ = 0.906 a = 0.544 k =-0.337

PE3 LL= 1.000 a = 0.588 7=0.994
GLO |i = 0.915 a = 0.308 k =-0.164

WAK ^ = 0.109 a =1.708 P = 2.525 7=0.362 8 = 0.108

Table 5.6.5 Regional parameters for various distributions for Lower Ganga Plains
Subzone 1(g)

Distribution Parameters of the Distribution

GEV ^ = 0.610 a = 0.512 k =-0.159

GNO %= 0.797 a = 0.649 k = -0.576

GLO pi= 0.816 a = 0.370 k = -0.276

PE3 H =1.000 0 = 0.812 7=1.661
WAK 5 = 0.028 a =1.173 P = 1.650 7=0.407 8 = 0.232

Table 5.6.6 Regional parameters for various distributions for North Brahmaputra
Subzone 2(a)

Distribution Parameters of the Distribution

PE3 Li = 1.000 o = 0.646 7= 1.207
GNO £ = 0.876 a = 0.575 k = -0.412

WAK %= 0.099 a= 1.312 P = 5.562 7=0.824 8 = -0.175
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Table 5.6.7 Regional parameters for various distributions for South Brahmaputra
Subzone 2(b)

Distribution Parameters of the Distribution

GNO £ = 0.805 a = 0.643 k =-0.561

GEV £ = 0.619 a = 0.510 k =-0.149

PE3 11=1.000 o = 0.795 7=1.618
GLO \L = 0.823 a = 0.366 k = -0.269

WAK £ = 0.002 a =1.461 p = 4.417 7=0.698 8 = 0.041

Table 5.6.8 Regional parameters for various distributions for Mahi and Sabarmati
Subzone 3 (a)

Distribution Parameters of the Distribution

PE3 It =1.000 0 = 0.890 7=1.961
GPA £ = 0.099 a = 0.914 k = 0.015

GNO £ = 0.748 a = 0.651 k = -0.686

WAK £ = 0.099 a = 0.914 p = 0.015 7=0.000 8 = 0.000

Table 5.6.9 Regional parameters for various distributions for Lower Narmada and
Tapi Subzone 3 (b)

Distribution Parameters of the Distribution

GNO £ = 0.746 a = 0.661 k = -0.683

PE3 ji-1.000 o = 0.902 7=1.950
GEV £ = 0.564 a = 0.504 k = -0.228

GPA £ = 0.085 a = 0.932 k = 0.019

WAK £ = 0.027 a = 0.783 3 = 5.303 7=0.803 8 = 0.054

Table 5.6.10 Regional parameters for various distributions for Upper Narmada and
Tapi Subzone 3 (c)

Distribution Parameters of the Distribution

PE3 11=1.000 o = 0.684 7=1.394
GNO £ = 0.852 a = 0.585 k = -0.479

GEV £ = 0.677 a = 0.477 k = -0.093

WAK £ = 0.040 a = 2.773 P = 11.709 7=0.844 8 = -0.137

Table 5.6.11 Regional parameters for various distributions for Mahanadi Subzone
3(d)

Distribution Parameters of the Distribution

GNO £ = 0.870 a = 0.548 k =-0.451

PE3 u.= 1.000 o = 0.629 7=1.316
GEV £ = 0.704 a = 0.452 k = -0.073

WAK £ = 0.100 a =1.985 P = 6.486 7=0.684 8 = -0.078
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Table 5.6.12 Regional parameters for various distributions for Upper Godavari
Subzone 3 (e)

Distribution Parameters of the Distribution

GPA £ = 0.069 a =1.251 k = 0.344

WAK £ = 0.048 a = 0.656 P = 1.261 7=0.759 8 = -0.148

Table 5.6.13 Regional parameters for various distributions for Lower Godavari
Subzone 3 (f)

Distribution Parameters of the Distribution

PE3 li=1.000 0 = 0.633 7=1.104
GNO £ = 0.888 a = 0.575 k = -0.376

GEV £ = 0.709 a = 0.487 k =-0.019

WAK £ = 0.102 a =1.258 P = 2.720 7=0.591 8 = -0.056

Table 5.6.14 Regional parameters for various distributions for Krishna and Pennar
Subzone 3 (h)

Distribution Parameters of the Distribution

GPA £ = 0.050 cc= 1.161 k = 0.223

PE3 Lt= 1.000 o = 0.808 7=1.453
WAK £ = 0.026 a = 0.786 P = 0.940 7 = 0.549 8 = 0.034

Table 5.6.15 Regional parameters for various distributions for Kaveri Basin
Subzone 3(i)

Distribution Parameters of the Distribution

PE3 \i = 1.000 o=1.356 7=2.522
WAK £ = -0.158 a = 0.000 p = 0.000 7 = 0.952 8 = 0.178

Table 5.6.16 Regional parameters for various distributions for East Coast Subzone
4(b)

Distribution Parameters of the Distribution

PE3 11=1.000 o=1.584 7=3.145
GPA £ = -0.127 a = 0.733 k = -0.349

GNO £ = 0. 445 a = 0.717 k = -1.115

WAK £ = -0.127 a = 0.000 p = 0.000 7=0.733 8 = 0.349

Table 5.6.17 Regional parameters for various distributions for Sub-Himalayan
region Zone 7

Distribution Parameters of the Distribution

GLO H = 0.911 a = 0.318 k =-0.165

GEV £ = 0.725 a = 0.483 k = 0.008

GNO £ = 0.902 a = 0.562 k = -0.340

PE3 11=1.000 o = 0.608 7=1.002
WAK £ = -0.028 a = 3.230 P = 5.406 7 = 0.514 8 = 0.020
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Table 5.7.1 Values of growth factors (QT/ Q) for Chambal Subzone 1 (b)

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

PE3 0.793 2.167 2.873 3.392 3.901 4.403 5.059 5.550
GNO 0.801 2.127 2.874 3.460 4.070 4.709 5.599 6.310

GPA 0.777 2.233 2.865 3.267 3.615 3.915 4.249 4.463

GEV 0.805 2.102 2.869 3.493 4.164 4.888 5.935 6.802

WAK 0.805 2.136 2.844 3.395 3.963 4.551 5.360 5.996

Table 5.7.2 Values of growth factors (QT/ Q) for Sone Subzone 1(d)

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

GEV 0.766 1.939 2.786 3.563 4.489 5.594 7.393 9.068

GNO 0.754 1.997 2.835 3.552 4.348 5.230 6.540 7.648

GLO 0.777 1.884 2.727 3.548 4.584 5.896 8.190 10.479

GPA 0.739 2.067 2.855 3.467 4.093 4.734 5.603 6.279

WAK 0.752 2.002 2.848 3.564 4.352 5.220 6.503 7.589

Table5.7.3 Values of growth factors (Qt/Q) for Upper Indo-Ganga Plains
Subzone 1 (e)

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

GPA 0.652 2.367 3.426 4.269 5.150 6.071 7.353 8.374

PE3 0.643 2.403 3.440 4.232 5.028 5.828 6.889 7.693

GNO 0.670 2.284 3.400 4.366 5.449 6.659 8.472 10.019

WAK 0.652 2.367 3.426 4.269 5.150 6.071 7.353 8.374

Table 5.7.4 Values of growth factors (Qt/Q ) for Middle Ganga Plains Subzone 1(f)

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

GEV 0.906 1.776 2.209 2.527 2.840 3.151 3.557 3.862

GNO 0.906 1.777 2.203 2.516 2.826 3.136 3.549 3.864

PE3 0.904 1.788 2.200 2.493 2.775 3.048 3.400 3.659

GLO 0.915 1.728 2.197 2.589 3.023 3.505 4.231 4.857

WAK 0.929 1.731 2.180 2.549 2.947 3.375 3.993 4.503
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Table 5.7.5 Values of growth factors (QT/Q) for Lower Ganga Plains Subzone 1(g)

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

GEV 0.803 1.995 2.745 3.379 4.083 4.867 6.042 7.052

GNO 0.797 2.028 2.760 3.349 3.975 4.641 5.587 6.356
GLO 0.816 1.934 2.699 3.401 4.243 5.257 6.930 8.506

PE3 0.787 2.076 2.764 3.274 3.778 4.278 4.934 5.427
WAK 0.818 1.961 2.681 3.329 4.087 4.976 6.394 7.685

Table 5.7.6 Values of growth factors (QT/ Q) for North Brahmaputra Subzone 2 (a)

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

PE3 0.873 1.866 2.350 2.699 3.038 3.370 3.799 4.118

GNO 0.876 1.848 2.353 2.735 3.122 3.517 4.052 4.470
WAK 0.868 1.895 2.361 2.666 2.937 3.176 3.451 3.632

Table 5.7.7 Values of growth factors (QT/Q) for South Brahmaputra Subzone 2(b)

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

GNO 0.805 2.011 2.718 3.285 3.884 4.518 5.416 6.143

GEV 0.811 1.981 2.707 3.315 3.985 4.726 5.828 6.767

PE3 0.796 2.055 2.721 3.214 3.701 4.182 4.814 5.288
GLO 0.823 1.920 2.663 3.340 4.148 5.117 6.704 8.192
WAK 0.808 2.019 2.735 3.295 3.871 4.463 5.273 5.905

Table 5.7.8 Values of growth factors (QT/ Q) forMahi and Sabarmati Subzone 3(a)

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

PE3 0.731 ^2.162 2.971 3.581 4.191 4.800 5.604 6.213
GPA 0.730 2.169 2.973 3.574 4.168 4.757 5.526 6.101
GNO 0.748 2.085 2.953 3.682 4.481 5.355 6.637 7.708
WAK 0.730 2.169 2.973 3.574 4.168 4.757 5.526 6.101

Table5.7.9 Values of growth factors (Qt/Q) for Lower Narmada and Tapi
Subzone 3 (b)

Distri

bution
Return period (Years)

2 10 25 50 100 200 500 1000

Growth factors

GNO 0.746 2.101 2.978 3.713 4.518 5.398 6.687 7.763
PE3 0.729 2.178 2.995 3.612 4.227 4.842 5.653 6.267
GEV 0.757 2.047 2.938 3.736 4.664 5.749 7.470 9.031
GPA 0.727 2.186 2.997 3.601 4.198 4.787 5.553 6.125
WAK 0.738 2.144 2.998 3.674 4.375 5.103 6.109 6.903
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Table 5.7.10 Values of growth factors (QT/Q) for Upper Narmada and Tapi Subzone 3 (c )

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

PE3 0.847 1.483 2.454 2.848 3.234 3.614 4.108 4.477

GNO 0.852 1.458 2.455 2.896 3.352 3.825 4.478 4.997

GEV 0.854 1.445 2.454 2.921 3.416 3.942 4.691 5.300

WAK 0.834 1.495 2.473 2.832 3.158 3.455 3.807 4.045

Table 5.7.11 Values of growth factors (Qt/Q ) for Mahanadi Subzone 3 (d)

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

GNO 0.870 1.821 2.331 2.723 3.125 3.538 4.105 4.552

PE3 0.866 1.843 2.213 2.683 3.028 3.366 3.806 4.134

GEV 0.872 1.809 2.332 2.745 3.175 3.627 4.260 4.767

WAK 0.865 1.848 2.353 2.712 3.052 3.374 3.774 4.058

Table 5.7.12 Values of growth factors (Qt/Q ) for Upper Godavari Subzone 3(e)

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

GPA 0.841 2.059 2.504 2.759 2.960 3.118 3.277 3.368

WAK 0.852 2.022 2.504 2.820 3.103 3.357 3.654 3.854

Table 5.7.13 Values of growth factors (Qt/Q ) for Lower Godavari Subzone 3 (f)

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

PE3 0.886 1.849 2.308 2.637 2.955 3.265 3.665 3.962

GNO 0.888 1.834 2.311 2.667 3.024 3.384 3.868 4.242

GEV 0.889 1.830 2.316 2.683 3.051 3.423 3.922 4.304

WAK 0.896 1.840 2.306 2.642 2.965 3.276 3.669 3.953

Table 5.7.14 Values of growth factors (Qt/Q ) for Krishna & Pennar Subzone3 (h)

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

GPA 0.796 2.142 2.718 3.082 3.393 3.660 3.956 4.142

PE3 0.812 2.079 2.727 3.203 3.669 4.129 4.728 5.177

WAK 0.812 2.082 2.691 3.140 3.591 4.047 4.663 5.141
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Table 5.7.15 Values ofgrowth factors (QT/Q) for Kaveri Basin Subzone 3(i)

Distri

bution
Return period (Years)

2 10 25 50 100 200 500 1000

Growth factors

PE3 0.509 2.692 4.069 5.140 6.227 7.328 8.796 9.916
WAK

—____^___

0.544 2.552 3.980 5.228 6.639 8.236 10.674 12.802

Table 5.7.16 Values of growth factors (QT/Q) for East Coast Subzones 4 (b)

Distri

bution
Return period (Years)

2 10 25 50 100 200 500 1000

Growth factors

PE3 0.363 2.833 4.608 6.032 7.503 9.009 11.039 12.598
GPA 0.448 2.466 4.235 6.005 8.259 11.132 16.170 21.209
GNO 0.445 2.488 4.335 6.158 8.416 11.179 15.742 19.995
WAK 0.448 2.466 4.235 6.005 8.259 11.132 16.170 21.209

Table 5.7.17 Values ofgrowth factors (QT/Q) for Sub-Himalayan region Zone 7

Distri

bution

Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

GLO 0.911 1.753 2.240 2.646 3.097 3.599 4.355 5.006
GEV 0.902 1.803 2.252 2.583 2.909 3.233 3.657 3.975
GNO 0.902 1.804 2.246 2.571 2.894 3.216 3.645 3.974
PE3 0.900 1.816 2.243 2.547 2.840 3.123 3.488 3.758
WAK 0.914 1.779 2.276 2.658 3.046 3.439 3.966 4.371

Table 5.8 Values of growth factors (QT/Q) for robust distributions for 17 Subzones
of India

S.No. Subzone Return Period (Years)
2 10 25 50 100 200 500 1000

1 1(b) 0.793 2.167 2.873 3.392 3.901 4.403 5.059 5.550
2 1(d) 0.766 1.939 2.786 3.563 4.489 5.594 7.393 9.068
3 1(e) 0.652 2.367 3.426 4.269 5.150 6.071 7.353 8.374
4 1(0 0.906 1.776 2.209 2.527 2.840 3.151 3.557 3.862
5 1(g) 0.803 1.995 2.745 3.379 4.083 4.867 6.042 7.052
6 2(a) 0.873 1.866 2.350 2.699 3.038 3.370 3.799 4.118
7 2(b) 0.805 2.011 2.718 3.285 3.884 4.518 5.416 6.143
8 3(a) 0.731 2.162 2.971 3.581 4.191 4.800 5.604 6.213
9 3(b) 0.746 2.101 2.978 3.713 4.518 5.398 6.687 7.763

10 3(c) 0.847 1.483 2.454 2.848 3.234 3.614 4.108 4.477
11 3(d) 0.870 1.821 2.331 2.723 3.125 3.538 4.105 4.552
12 3(e) 0.841 2.059 2.504 2.759 2.960 3.118 3.277 3.368
13 3(f) 0.886 1.849 2.308 2.637 2.955 3.265 3.665 3.962
14 3(h) 0.796 2.142 2.718 3.082 3.393 3.660 3.956 4.142
15 3(i) 0.509 2.692 4.069 5.140 6.227 7.328 8.796 9.916
16 4(b) 0.363 2.833 4.608 6.032 7.503 9.009 11.039 12.598
17 Zone 7 0.911 1.753 2.240 2.646 3.097 3.599 4.355 5.006
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5.6 DEVELOPMENT OF REGIONAL RELATIONSHIPS BETWEEN

MEAN ANNUAL PEAK FLOODS AND CATCHMENT AREAS

For ungauged catchments the value of mean annual peak flood (Q) i.e. the at-

site mean cannot be estimated in absence of the observed streamflow data. Hence,

relationships between the mean annual peak floods of gauged catchments in the

region and their pertinent physiographic and climatic characteristics are needed for

estimation of the mean annual peak floods for ungauged catchments. Therefore, the

regional relationships have been developed in the form of a power law using the

Levenberg-Marquardt (LM) iteration on the data of the mean annual peak floods and

catchment areas in the following form for the 17 Subzones.

Q = a*Ab (5.1)

Figs. 5.2.1 to 5.2.17 show the variation of mean annual peak floods and

catchment areas along with the best fitted regional relationships developed by the

Levenberg-Marquardt (LM) iteration technique for the 17 Subzones. The values of

regional coefficients i.e. 'a' and 'b' as well as the statistical performance indices viz.

EFF, CORR, RMSE and MAE for the developed regional relationships based on the

Levenberg-Marquardt procedure for the 17 Subzones are given in Table 5.9.
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Table 5.9 Regional coefficients and statistical performance indices for 17Subzones

Sub-zone a b CORR EFF RMSE MAE

1(b) 4.939 0.756 0.976 0.952 116.059 79.078

l(d) 30.768 0.363 0.570 0.325 105.165 81.778

1(e) 86.231 0.102 0.163 0.025 131.249 115.973

Kf) 2.111 0.913 0.845 0.711 105.013 72.735

1(g) 20.333 0.465 0.629 0.394 127.299 83.988

2(a) 18.709 0.555 0.614 0.370 223.165 178.008

2(b) 6.863 0.521 0.583 0.339 67.352 45.267

3(a) 31.851 0.383 0.923 0.851 46.863 39.941

3(b) 63.140 0.289 0.652 0.420 110.836 87.232

3(c) 23.449 0.547 0.867 0.751 207.729 167.318

3(d) 2.519 0.863 0.913 0.834 118.881 88.326

3(e) 11.741 0.561 0.979 0.959 53.369 43.701

3(f) 10.313 0.676 0.875 0.765 165.305 131.500

3(h) 3.652 0.701 0.857 0.735 102.425 72.619

3(i) 0.060 1.244 0.972 0.927 23.911 17.658

4(b) 16.039 0.371 0.467 0.217 75.122 57.879

Zone 7 63.597 0.387 0.737 0.534 322.405 245.636
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5.7 DEVELOPMENT OF REGIONAL FLOOD FREQUENCY
RELATIONSHIP USING L-MOMENTS APPROACH FOR

UNGAUGED CATCHMENTS x

For development of regional flood frequency relationships for ungauged

catchments, the regional flood frequency relationships developed for gauged

catchments (growth factors given in Table 5.8) have been coupled with the regional

relationships between mean annual peak floods and catchment areas of the respective

Subzones (Table 5.9). In this manner the following form of regional flood frequency

relationships have been developed for ungauged catchments of all the 17 Subzones.

QT = CT * Ab (5.2)

Where, Qt is the flood estimate for an ungauged catchment in m /s for T year

return period, A is the catchment area in km2 and CT is a regional coefficient. The

values ofregional coefficients (Ct) for some of the commonly used return periods and ^

'b' for the 17 Subzones are given in Table 5.10. The tabular and graphical forms of

the regional flood frequency relationship developed in equation 5.2 has also been

developed for the 17 Subzones and same are given in Tables 5.11.1 to 5.11.17 and

Figs. 5.3.1 to 5.3.17.

For estimation of floods of commonly used returns periods for an ungauged
y

catchments for a given catchment area the value of flood estimates may be directly

obtained from the Tables 5.11.1 to 5.11.17 for the respective Subzones. The values of

flood soft desire return periods for an ungauged catchments for given catchment area

may also be obtained from the Figs. 5.3.1 to 5.3.17.

Y
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Table 5.10 Values of regional coefficients 'b' and 'CT' for 17 Subzones of India

s.

No

Sub-

zone

Coeff.

'b'

Return Period (Years)
2 10 25 50 100 200 500 1000

Ct for various Subzones
1 1(b) 0.756 3.917 10.703 14.190 16.753 19.267 21.746 24.986 27.411

2 1(d) 0.363 23.568 59.659 85.720 109.626 138.118 172.116 227.468 279.004

3 1(e) 0.102 56.223 204.109 295.427 368.120 444.090 523.508 634.057 722.098

4 1(f) 0.913 1.913 3.749 4.663 5.334 5.995 6.652 7.509 8.153

5 1(g) 0.465 16.327 40.564 55.814 68.705 83.020 98.961 122.852 143.388

6 2(a) 0.555 16.333 34.911 43.966 50.496 56.838 63.049 71.075 77.044

7 2(b) 0.521 5.525 13.801 18.654 22.545 26.656 31.007 37.170 42.159

8 3(a) 0.383 23.283 68.862 94.629 114.058 133.488 152.885 178.493 197.890

9 3(b) 0.289 47.102 132.657 188.031 234.439 285.267 340.830 422.217 490.156

10 3(c) 0.547 19.861 34.775 57.544 66.783 75.834 84.745 96.328 104.981

11 3(d) 0.863 2.192 4.587 5.872 6.859 7.872 8.912 10.340 11.466

12 3(e) 0.561 9.874 24.175 29.399 32.393 34.753 36.608 38.475 39.544

13 3(f) 0.676 9.137 19.069 23.802 27.195 30.475 33.672 37.797 40.860

14 3(h) 0.701 2.907 7.823 9,926 11.255 12.391 13.366 14.447 15.127

15 3(i) 1.244 0.031 0.162 0.244 0.308 0.374 0.440 0.528 0.595

16 4(b) 0.371 5.822 45.438 73.908 96.747 120.341 144.495 177.055 202.059

17 Zone 7 0.387 57.937 111.486 142.457 168.278 196.960 228.886 276.965 318.367
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Table 5.11.1 Variation of floods of various return periods with catchment area based
on L-moments for Chambal Subzone 1 (b)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

F oods of various return periods (m /s)
10 22 61 81 96 110 124 142 156

20 38 103 137 161 186 209 241 264

50 75 206 273 322 371 419 481 528

100 127 348 461 545 626 707 812 891

200 215 588 779 920 1058 1194 1372 1505

300 292 798 1058 1250 1437 1622 1864 2045

400 363 992 1316 1553 1786 2016 2317 2542

500 430 1175 1557 1839 2115 2387 2742 3009

600 493 1348 1788 2110 2427 2740 3148 3453

700 554 1515 2009 2371 2727 3078 3537 3880

800 613 1676 2222 2623 3017 3405 3912 4292

900 670 1832 2429 2868 3298 3722 4277 4692

1000 726 1984 2630 3105 3571 4031 4631 5081

1100 780 2132 2827 3337 3838 4332 4977 5460

1200 833 2277 3019 3564 4099 4627 5316 5832

1300 885 2419 3207 3787 4355 4915 5647 6196

1400 936 2558 3392 4005 4606 5198 5973 6553

1500 986 2695 3574 4219 4852 5477 6293 6903

1600 1036 2830 3752 4430 5095 5751 6607 7249

1700 1084 2963 3928 4638 5334 6020 6917 7589

1800 1132 3094 4102 4843 5569 6286 7223 7924

1900 1179 3223 4273 5045 5802 6548 7524 8254

2000 1226 3350 4442 5244 6031 6807 7821 8581

2500 1451 3966 5258 6208 7139 8058 9259 10157

3000 1666 4552 6035 7125 8195 9249 10627 11658

3500 1872 5115 6781 8006 9207 10392 11941 13099

4000 2071 5658 7501 8856 10185 11496 13209 14491

4500 2264 6185 8200 9681 11134 12567 14439 15840

5000 2451 6698 8880 10484 12057 13609 15636 17154
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Table 5.11.2 Variation of floods of various return periods withcatchment areabased
on L-moments for Sone Subzone 1 (d)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

Floods of various return periods (m3/rs)
10 54 138 198 253 319 397 525 644

20 70 177 254 325 410 511 675 828

50 98 247 355 454 571 712 941 1154

100 125 317 456 583 735 916 1210 1485

200 161 408 587 750 945 1178 1557 1909

300 187 473 680 869 1095 1365 1804 2212

400 207 525 754 965 1216 1515 2002 2456

500 225 569 818 1046 1318 1643 2171 2663

600 240 608 874 1118 1408 1755 2320 2845

700 254 643 924 1182 1489 1856 2453 3009

800 267 675 970 1241 1563 1948 2575 3158

900 278 705 1013 1295 1632 2033 2687 3296

1000 289 732 1052 1346 1695 2113 2792 3425

1100 299 758 1089 1393 1755 2187 2890 3545

1200 309 782 1124 1438 1811 2257 2983 3659

1300 318 805 1157 1480 1865 2324 3071 3767

1400 327 827 1189 1520 1916 2387 3155 3870

1500 335 848 1219 1559 1964 2448 3235 3968

1600 343 869 1248 1596 2011 2506 3311 4062

1700 351 888 1276 1631 2055 2561 3385 4152

1800 358 906 1302 1666 2099 2615 3456 4239

1900 365 924 1328 1699 2140 2667 3525 4323

2000 372 942 1353 1731 2180 2717 3591 4404

2500 403 1021 1467 1877 2364 2946 3894 4776

3000 431 1091 1568 2005 2526 3148 4160 5103

3500 456 1154 1658 2120 2671 3329 4400 5397

4000 479 1211 1740 2226 2804 3494 4618 5665

4500 499 1264 1816 2323 2927 3647 4820 5912

5000 519 1313 1887 2413 3041 3789 5008 6142
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Table 5.11.3 Variation of floods of various return periods with catchment area based
on L-moments for Upper Indo-Ganga Plains Subzone 1(e)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

Floods of various return periods (m'Vs)
10 71 258 374 466 562 662 802 913

20 76 277 401 500 603 711 861 980

50 84 304 440 549 662 780 945 1076

100 90 326 473 589 710 837 1014 1155

200 97 350 507 632 762 899 1089 1240

300 101 365 529 659 795 937 1134 1292

400 104 376 544 678 818 965 1168 1330

500 106 385 557 694 837 987 1195 1361

600 108 392 567 707 853 1005 1218 1387

700 110 398 576 718 866 1021 1237 1409

800 111 404 584 728 878 1035 1254 1428

900 113 409 591 737 889 1048 1269 1445

1000 114 413 598 745 898 1059 1283 1461

1100 115 417 603 752 907 1069 1295 1475

1200 116 421 609 759 915 1079 1307 1488

1300 117 424 614 765 923 1088 1317 1500

1400 118 427 619 771 930 1096 1327 1512

1500 119 430 623 776 936 1104 1337 1523

1600 119 433 627 781 943 1111 1346 1533

1700 120 436 631 786 948 1118 1354 1542

1800 121 438 635 791 954 1125 1362 1551

1900 121 441 638 795 959 1131 1369 1560

2000 122 443 641 799 964 1137 1377 1568

2500 125 453 656 818 986 1163 1408 1604

3000 127 462 669 833 1005 1185 1435 1634

3500 129 469 679 846 1021 1203 1458 1660

4000 131 476 688 858 1035 1220 1478 1683

4500 133 481 697 868 1047 1235 1495 1703

5000 134 487 704 878 1059 1248 1512 1721
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Table 5.11.4 Variation of floods of various return periods with catchment area based
on L-moments for Middle Ganga Plains Subzone 1(f)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

F oods of various return periods (m /s)
10 16 31 38 44 49 54 61 67

20 29 58 72 82 92 103 116 126

50 68 133 166 190 213 237 267 290

100 128 251 312 357 402 446 503 546

200 241 473 588 673 756 839 947 1028

300 349 685 852 974 1095 1215 1371 1489

400 454 890 1107 1267 1424 1580 1783 1936

500 557 1092 1358 1553 1746 1937 2186 2374

600 658 1289 1604 1834 2062 2287 2582 2804

700 757 1484 1846 2112 2373 2633 2972 3227

800 855 1677 2085 2386 2681 2975 3358 3646

900 952 1867 2322 2656 2985 3312 3739 4060

1000 1048 2055 2557 2925 3287 3647 4117 4470

1100 1144 2242 2789 3190 3586 3978 4491 4876

1200 1238 2428 3020 3454 3882 4307 4862 5279

1300 1332 2612 3248 3716 4176 4634 5231 5679

1400 1425 2795 3476 3976 4469 4958 5597 6077

1500 1518 2976 3702 4235 4759 5280 5961 6472

1600 1610 3157 3927 4492 5048 5601 6323 6865

1700 1702 3337 4150 4747 5335 5920 6683 7256

1800 1793 3515 4372 5002 5621 6237 7040 7644

1900 1884 3693 4594 5255 5906 6552 7397 8031

2000 1974 3870 4814 5507 6189 6867 7751 8416

2500 2420 4745 5902 6751 7587 8418 9503 10318

3000 2858 5604 6970 7974 8962 9943 11224 12187

3500 3290 6451 8024 9179 10316 11446 12920 14028

4000 3717 7288 9064 10369 11653 12930 14596 15847

4500 4139 8115 10093 11546 12976 14397 16253 17646

5000 4557 8934 11112 12712 14287 15851 17894 19428
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Table 5.11.5 Variation of floods of various return periods with catchment area based
on L-moments for Lower Ganga Plains Subzone 1(g)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

Floods of various return periods (m3/s)
10 48 118 163 200 242 289 358 418

20 66 163 225 277 334 399 495 577

50 101 250 344 424 512 610 758 884

100 139 345 475 585 707 842 1046 1220

200 192 477 656 807 975 1163 1443 1685

300 232 575 792 975 1178 1404 1743 2034

400 265 658 905 1114 1346 1605 1992 2325

500 294 730 1004 1236 1493 1780 2210 2580

600 320 794 1093 1345 1626 1938 2406 2808

700 343 853 1174 1445 1746 2082 2584 3016

800 365 908 1249 1538 1858 2215 2750 3210

900 386 959 1320 1624 1963 2340 2905 3390

1000 405 1007 1386 1706 2061 2457 3051 3561

1100 424 1053 1449 1783 2155 2569 3189 3722

1200 441 1096 1509 1857 2244 2675 3320 3876

1300 458 1138 1566 1927 2329 2776 3446 4023

1400 474 1178 1621 1995 2411 2874 3567 4164

1500 490 1216 1674 2060 2489 2967 3684 4299

1600 504 1253 1724 2123 2565 3058 3796 4430

1700 519 1289 1774 2183 2638 3145 3904 4557

1800 533 1324 1822 2242 2709 3230 4009 4680

1900 546 1358 1868 2299 2778 3312 4112 4799

2000 560 1390 1913 2355 2846 3392 4211 4915

2500 621 1542 2122 2612 3157 3763 4671 5452

3000 676 1679 2310 2843 3436 4096 5084 5934

3500 726 1804 2482 3055 3691 4400 5462 6375

4000 772 1919 2641 3250 3928 4682 5812 6784

4500 816 2027 2789 3433 4149 4945 6139 7166

5000 857 2129 2929 3606 4357 5194 6448 7526
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Table 5.11.6 Variation of floods of various return periods with catchment area based
on L-moments for North Brahmaputra Subzone 2(a)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

Floods of various return periods (m /s)
10 59 125 158 181 204 226 255 277

20 86 184 232 266 300 332 375 406

50 143 306 386 443 498 553 623 676

100 210 450 566 651 732 812 916 993

200 309 661 832 956 1076 1193 1345 1458

300 387 828 1042 1197 1347 1494 1685 1826

400 454 971 1223 1404 1580 1753 1976 2142

500 514 1099 1384 1589 1789 1984 2237 2425

600 569 1216 1531 1758 1979 2196 2475 2683

700 620 1324 1668 1916 2156 2392 2696 2923

800 667 1426 1796 2063 2322 2576 2904 3147

900 712 1523 1917 2202 2479 2750 3100 3360

1000 755 1614 2033 2335 2628 2915 3286 3562

1100 796 1702 2143 2462 2771 3074 3465 3756

1200 836 1786 2249 2583 2908 3226 3636 3942

1300 874 1867 2352 2701 3040 3372 3802 4121

1400 910 1946 2450 2814 3168 3514 3961 4294

1500 946 2022 2546 2924 3291 3651 4116 4461

1600 980 2095 2639 3031 3411 3784 4266 4624

1700 1014 2167 2729 3134 3528 3914 4412 4782

1800 1047 2237 2817 3235 3642 4040 4554 4937

1900 1078 2305 2903 3334 3753 4163 4693 5087

2000 1110 2372 2987 3430 3861 4283 4828 5234

2500 1256 2684 3381 3883 4370 4848 5465 5924

3000 1390 2970 3741 4296 4836 5364 6047 6555

3500 1514 3235 4075 4680 5268 5843 6587 7140

4000 1630 3484 4388 5040 5673 6293 7094 7689

4500 1740 3720 4684 5380 6056 6718 7573 8209

5000 1845 3944 4967 5704 6421 7122 8029 8703
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Table 5.11.7 Variation of floods of various return periods with catchment area based
on L-moments for South Brahmaputra Subzone 2(b)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

F oods of various return periods (m3/s)
10 18 46 62 75 88 103 123 140

20 26 66 89 107 127 148 177 201

50 42 106 143 173 205 238 285 324

100 61 152 205 248 294 342 409 464

200 87 218 295 356 421 490 588 666

300 108 269 364 440 520 605 726 823

400 125 313 423 511 605 703 843 956

500 141 352 475 574 679 790 947 1074

600 155 387 523 632 747 869 1041 1181

700 168 419 566 684 809 941 1128 1280

800 180 449 607 734 868 1009 1210 1372

900 191 478 646 780 922 1073 1286 1459

1000 202 505 682 824 975 1134 1359 1541

1100 212 530 717 866 1024 1191 1428 1620

1200 222 555 750 906 1072 1247 1494 1695

1300 232 578 782 945 1117 1300 1558 1767

1400 241 601 813 982 1161 1351 1619 1837

1500 250 623 842 1018 1204 1400 1679 1904

1600 258 645 871 1053 1245 1448 1736 1969

1700 266 665 899 1087 1285 1495 1792 2032

1800 274 685 926 1120 1324 1540 1846 2094

1900 282 705 953 1152 1362 1584 1899 2153

2000 290 724 979 1183 1398 1627 1950 2212

2500 326 813 1099 1329 1571 1827 2190 2484

3000 358 894 1209 1461 1727 2009 2409 2732

3500 388 969 1310 1583 1872 2177 2610 2960

4000 416 1039 1404 1697 2007 2334 2798 3174

4500 442 1105 1493 1805 2134 2482 2975 3375

5000 467 1167 1577 1906 2254 2622 3143 3565
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Table 5.11.8 Variation of floods of various returnperiods withcatchment area based
on L-moments for Mahi and Sabarmati Subzone 3(a)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

Floods of various return periods (m fe)
10 56 166 229 276 322 369 431 478

20 73 217 298 359 420 482 562 623

50 104 308 423 510 597 684 799 885

100 136 402 552 665 779 892 1041 1155

200 177 524 720 868 1016 1163 1358 1506

300 207 612 841 1014 1186 1359 1586 1759

400 231 683 939 1132 1324 1517 1771 1963

500 252 744 1023 1233 1443 1652 1929 2139

600 270 798 1097 1322 1547 1772 2068 2293

700 286 847 1163 1402 1641 1879 2194 2433

800 301 891 1224 1476 1727 1978 2309 2560

900 315 932 1281 1544 1807 2069 2416 2679

1000 328 970 1334 1607 1881 2155 2515 2789

1100 340 1007 1383 1667 1951 2235 2609 2893

1200 352 1041 1430 1724 2017 2310 2697 2991

1300 363 1073 1475 1777 2080 2382 2781 3084

1400 373 1104 1517 1828 2140 2451 2861 3172

1500 383 1134 1558 1877 2197 2517 2938 3257

1600 393 1162 1597 1924 2252 2580 3012 3339

1700 402 1189 1634 1970 2305 2640 3082 3417

1800 411 1215 1670 2013 2356 2699 3151 3493

1900 420 1241 1705 2055 2405 2755 3217 3566

2000 428 1266 1739 2096 2453 2810 3280 3637

2500 466 1378 1894 2283 2672 3060 3573 3961

3000 500 1478 2031 2448 2865 3282 3831 4248

3500 530 1568 2155 2597 3040 3481 4064 4506

4000 558 1650 2268 2733 3199 3664 4278 4743

4500 584 1726 2372 2860 3347 3833 4475 4961

5000 608 1798 2470 2977 3485 3991 4659 5166
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Table 5.11.9 Variation of floods of various return periods with catchment area based
on L-moments for Lower Narmada and Tapi Subzone 3(b)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

Floods of various return periods (m3/s)
10 92 258 366 456 555 663 821 954

20 112 315 447 557 678 810 1004 1165

50 146 411 582 726 884 1056 1308 1518

100 178 502 712 887 1080 1290 1598 1855

200 218 613 869 1084 1319 1576 1952 2266

300 245 690 977 1219 1483 1772 2195 2548

400 266 749 1062 1324 1612 1925 2385 2769

500 284 799 1133 1413 1719 2054 2544 2953

600 299 843 1194 1489 1812 2165 2682 3113

700 313 881 1249 1557 1894 2263 2804 3255

800 325 916 1298 1618 1969 2352 2914 3383

900 336 947 1343 1674 2037 2434 3015 3500

1000 347 977 1384 1726 2100 2509 3108 3609

1100 356 1004 1423 1774 2159 2579 3195 3709

1200 366 1029 1459 1819 2214 2645 3277 3804

1300 374 1054 1493 1862 2266 2707 3353 3893

1400 382 1076 1526 1902 2315 2765 3426 3977

1500 390 1098 1556 1941 2361 2821 3495 4057

1600 397 1119 1586 1977 2406 2874 3561 4134

1700 404 1138 1614 2012 2448 2925 3624 4207

1800 411 1157 1641 2046 2489 2974 3684 4277

1-900 417 1176 1666 2078 2528 3021 3742 4344

2000 424 1193 1691 2109 2566 3066 3798 4409

2500 452 1273 1804 2249 2737 3270 4051 4703

3000 476 1342 1902 2371 2885 3447 4270 4957

3500 498 1403 1988 2479 3016 3604 4464 5183

4000 518 1458 2066 2576 3135 3746 4640 5387

4500 536 1508 2138 2666 3244 3875 4801 5573

5000 552 1555 2204 2748 3344 3995 4949 5746
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Table 5.11.10 Variation of floods of various return periods with catchment area based
on L-moments for Upper Narmada and Tapi Subzone 3(c)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

Floods of various return periods (m3/s)
10 70 123 203 235 267 299 339 370

20 102 179 296 344 390 436 496 540

50 169 296 489 568 644 720 819 892

100 247 432 714 829 942 1052 1196 1303

200 360 631 1044 1212 1376 1537 1747 1904

300 450 788 1303 1512 1717 1919 2181 2377

400 526 922 1525 1770 2010 2246 2553 2783

500 595 1041 1723 2000 2271 2538 2885 3144

600 657 1151 1904 2210 2509 2804 3187 3473

700 715 1252 2071 2404 2730 3051 3468 3779

800 769 1347 2228 2586 2937 3282 3730 4065

900 820 1436 2377 2758 3132 3500 3979 4336

1000 869 1521 2518 2922 3318 3708 4215 4593

1100 915 1603 2652 3078 3495 3906 4440 4839

1200 960 1681 2782 3228 3666 4097 4657 5075

1300 1003 1756 2906 3373 3830 4280 4865 5302

1400 1045 1829 3026 3512 3988 4457 5066 5521

1500 1085 1899 3143 3647 4142 4628 5261 5734

1600 1124 1968 3256 3779 4291 4795 5450 5940

1700 1162 2034 3366 3906 4435 4956 5634 6140

1800 1198 2098 3472 4030 4576 5114 5813 6335

1900 1234 2161 3577 4151 4713 5267 5987 6525

2000 1270 2223 3678 4269 4848 5417 6158 6711

2500 1434 2512 4156 4823 5477 6121 6957 7582

3000 1585 2775 4592 5329 6051 6762 7687 8377

3500 1724 3019 4996 5798 6584 7357 8363 9114

4000 1855 3248 5374 6237 7083 7915 8997 9805

4500 1978 3464 5732 6652 7554 8442 9595 10457

5000 2096 3669 6072 7047 8002 8942 10165 11078
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Table 5.11.11 Variation of floods of various return periods with catchment area based
on L-moments for Mahanadi Subzone 3(d)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

Floods of various return periods (m3/s)
10 16 33 43 50 57 65 75 84

20 29 61 78 91 104 118 137 152

50 64 134 172 201 230 261 303 335

100 117 244 312 365 419 474 550 610

200 212 444 568 664 762 863 1001 1110

300 301 630 806 942 1081 1224 1420 1575

400 386 807 1034 1207 1386 1569 1820 2018

500 468 979 1253 1464 1680 1902 2207 2447

600 548 1146 1467 1713 1966 2226 2583 2864

700 625 1309 1675 1957 2246 2543 2950 3271

800 702 1469 1880 2196 2520 2853 3310 3671

900 777 1626 2081 2431 2790 3159 3665 4064

1000 851 1780 2279 2662 3056 3459 4013 4451

1100 924 1933 2475 2891 3317 3756 4358 4832

1200 996 2084 2668 3116 3576 4049 4697 5209

1300 1067 2233 2858 3339 3832 4338 5033 5581

1400 1137 2380 3047 3559 4085 4625 5366 5950

1500 1207 2526 3234 3778 4336 4908 5695 6315

1600 1276 2671 3419 3994 4584 5190 6021 6677

1700 1345 2815 3603 4209 4830 5468 6345 7035

1800 1413 2957 3785 4421 5074 5745 6665 7391

1900 1480 3098 3966 4633 5317 6019 6984 7744

2000 1547 3238 4145 4842 5557 6292 7300 8095

2500 1876 3926 5026 5871 6738 7628 8850 9814

3000 2196 4595 5882 6871 7886 8928 10358 11486

3500 2508 5249 6719 7849 9008 10198 11832 13120

4000 2815 5890 7540 8807 10108 11443 13277 14723

4500 3116 6520 8347 9750 11189 12668 14697 16298

5000 3412 7141 9141 10678 12255 13874 16097 17849
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Table 5.11.12 Variation of floods of various return periods with catchment areabased
on L-moments for Upper Godavari Subzone 3(e)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

F oods of various return periods (m /s)
10 36 88 107 118 126 133 140 144

20 53 130 158 174 187 197 207 212

50 89 217 264 291 312 329 345 355

100 131 320 389 429 460 485 510 524

200 193 472 575 633 679 715 752 773

300 242 593 721 795 852 898 944 970

400 285 697 848 934 1002 1055 1109 1140

500 323 790 961 1058 1135 1196 1257 1292

600 357 875 1064 1172 1258 1325 1392 1431

700 390 954 1160 1278 1371 1444 1518 1560

800 420 1028 1251 1377 1478 1557 1636 1682

900 449 1098 1336 1472 1579 1663 1748 1796

1000 476 1165 1417 1561 1675 1764 1854 1906

1100 502 1229 1495 1647 1767 1861 1956 2010

1200 527 1291 1570 1729 1855 1954 2054 2111

1300 551 1350 1642 1809 1940 2044 2148 2208

1400 575 1407 1712 1885 2023 2131 2239 2302

1500 597 1463 1779 1960 2103 2215 2328 2393

1600 619 1517 1845 2032 2180 2297 2414 2481

1700 641 1569 1909 2102 2256 2376 2497 2567

1800 662 1620 1971 2171 2329 2453 2579 2650

1900 682 1670 2032 2238 2401 2529 2658 2732

2000 702 1719 2091 2303 2471 2603 2736 2812

2500 796 1948 2370 2610 2800 2950 3100 3186

3000 881 2158 2625 2891 3102 3268 3434 3530

3500 961 2353 2862 3153 3382 3563 3745 3848

4000 1036 2536 3085 3398 3645 3840 4036 4148

4500 1106 2709 3296 3630 3894 4102 4311 4431

5000 1174 2874 3496 3851 4132 4352 4574 4701
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Table 5.11.13 Variation of floods of various return periods with catchment area based
on L-moments for Lower Godavari Subzone 3(f)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

Floods of various return periods (m /s)
10 43 90 113 129 145 160 179 194

20 69 144 180 206 231 255 286 310

50 129 268 335 383 429 474 532 575

100 205 429 535 612 685 757 850 919

200 328 685 855 977 1095 1210 1358 1468

300 432 901 1125 1285 1440 1592 1786 1931

400 525 1095 1367 1561 1750 1933 2170 2346

500 610 1273 1589 1816 2034 2248 2523 2728

600 690 1440 1797 2054 2301 2543 2854 3086

700 766 1598 1995 2279 2554 2822 3168 3424

800 838 1749 2183 2495 2795 3089 3467 3748

900 908 1894 2364 2701 3027 3345 3754 4059

1000 975 2034 2539 2901 3250 3591 4031 4358

1100 1039 2169 2708 3094 3467 3831 4300 4648

1200 1102 2301 2872 3281 3677 4063 4560 4930

1300 1164 2429 3031 3464 3881 4288 4814 5204

1400 1223 2553 3187 3642 4081 4509 5061 5471

1500 1282 2675 3339 3815 4275 4724 5303 5732

1600 1339 2795 3488 3986 4466 4935 5539 5988

1700 1395 2911 3634 4152 4653 5141 5771 6239

1800 1450 3026 3777 4316 4836 5344 5998 6484

1900 1504 3139 3918 4476 5016 5543 6222 6726

2000 1557 3250 4056 4634 5193 5738 6441 6963

2500 1811 3779 4717 5389 6039 6672 7490 8097

3000 2048 4274 5335 6096 6831 7548 8472 9159

3500 2273 4744 5921 6765 7581 8377 9403 10165

4000 2488 5192 6481 7404 8297 9168 10291 11125

4500 2694 5622 7018 8018 8985 9928 11144 12047

5000 2893 6037 7536 8610 9648 10661 11967 12936
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Table 5.11.14 Variation of floods of various return periods with catchment area based
on L-moments for Krishna and Pennar Subzone 3(h)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

Floods of various return periods (m3/s)
10 15 39 50 57 62 67 73 76

20 24 64 81 92 101 109 118 124

50 45 121 154 175 192 207 224 235

100 73 197 250 284 313 337 365 382

200 119 321 407 462 508 548 593 620

300 158 426 541 613 675 729 787 824

400 194 522 662 751 826 891 963 1009

500 227 610 774 878 966 1042 1127 1179

600 258 693 880 997 1098 1184 1280 1340

700 287 772 980 1111 1223 1319 1426 1493

800 315 848 1076 1220 1343 1449 1566 1640

900 342 921 1169 1325 1459 1574 1701 1781

1000 369 992 1258 1427 1571 1694 1831 1917

1100 394 1060 1345 1525 1679 1811 1958 2050

1200 419 1127 1430 1621 1785 1925 2081 2179

1300 443 1192 1512 1715 1888 2036 2201 2305

1400 467 1255 1593 1806 1989 2145 2318 2427

1500 490 1318 1672 1896 2087 2251 2433 2548

1600 512 1379 1749 1983 2184 2355 2546 2666

1700 535 1438 1825 2070 2278 2458 2656 2781

1800 556 1497 1900 2154 2372 2558 2765 2895

1900 578 1555 1973 2237 2463 2657 2872 3007

2000 599 1612 2045 2319 2553 2754 2977 3117

2500 700 1885 2392 2712 2986 3221 3481 3645

3000 796 2142 2718 3082 3393 3660 3956 4142

3500 887 2386 3028 3433 3780 4077 4407 4614

4000 974 2620 3325 3770 4151 4477 4840 5067

4500 1058 2846 3611 4095 4508 4863 5256 5503

5000 1139 3064 3888 4409 4854 5236 5659 5925
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Table 5.11.15 Variation of floods of various return periods with catchment area based
on L-moments for Kaveri Basin Subzone 3(i)

Catchment

Area

(km2)

Return periods (Years)

2 10 25 50 100 200 500 1000

Floods of various return periods (m3/s)
10 1 3 4 5 7 8 9 10

20 1 7 10 13 16 18 22 25

50 4 21 32 40 49 57 69 77

100 10 50 75 95 115 135 162 183

200 23 118 178 224 272 321 385 434

300 37 195 294 372 451 531 637 718

400 53 280 421 532 645 759 911 1027

500 71 369 556 702 852 1002 1203 1355

600 89 463 697 880 1069 1257 1509 1700

700 107 561 845 1066 1295 1523 1828 2060

800 127 662 997 1259 1529 1798 2158 2432

900 147 767 1155 1458 1770 2082 2499 2816

1000 167 874 1316 1662 2018 2374 2849 3210

1100 188 984 1482 1871 2272 2673 3207 3614

1200 210 1097 1652 2085 2531 2978 3574 4027

1300 232 1211 1824 2303 2797 3290 3948 4449

1400 254 1328 2001 2525 3067 3608 4329 4879

1500 277 1447 2180 2752 3341 3931 4717 5316

1600 300 1568 2362 2982 3621 4260 5112 5760

1700 324 1691 2547 3215 3904 4593 5512 6211

1800 347 1816 2735 3452 4192 4932 5918 6669

1900 372 1942 2925 3692 4484 5275 6330 7133

2000 396 2070 3118 3936 4779 5623 6747 7603

2500 523 2732 4116 5195 6308 7421 8906 10036

3000 656 3428 5163 6518 7914 9311 11173 12591

3500 795 4153 6255 7895 9587 11279 13535 15252

4000 938 4903 7385 9322 11320 13317 15981 18009

4500 1086 5677 8550 10793 13106 15419 18502 20850

5000 1238 6472 9748 12305 14941 17578 21094 23770
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Table 5.11.16 Variation of floods of various return periods with catchment area based
on L-moments for East Coast Subzone 4(b)

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

Floods of various return periods (m Is)
10 14 107 174 227 283 340 416 475

20 18 138 225 294 366 439 538 614

50 25 194 316 413 514 617 756 863

100 32 251 408 534 664 798 977 1116

200 42 324 528 691 859 1032 1264 1443

300 48 377 613 803 999 1199 1469 1677

400 54 420 682 893 1111 1334 1635 1866

500 58 456 741 970 1207 1449 1776 2027

600 62 488 793 1038 1292 1551 1900 2169

700 66 516 840 1099 1368 1642 2012 2296

800 70 543 883 1155 1437 1725 2114 2413

900 73 567 922 1207 1501 1802 2209 2521

1000 76 589 959 1255 1561 1874 2297 2621

1100 78 611 993 1300 1617 1942 2379 2715

1200 81 631 1026 1343 1670 2005 2457 2804

1300 83 650 1057 1383 1721 2066 2531 2889

1400 86 668 1086 1422 1769 2124 2602 2970

1500 88 685 1114 1459 1814 2179 2669 3046

1600 90 702 1141 1494 1858 2231 2734 3120

1700 92 718 1167 1528 1901 2282 2796 3191

1800 94 733 1192 1561 1941 2331 2856 3260

1900 96 748 1216 1592 1981 2378 2914 3326

2000 98 762 1240 1623 2019 2424 2970 3390

2500 106 828 1347 1763 2193 2633 3227 3682

3000 114 886 1441 1886 2346 2817 3452 3940

3500 120 938 1526 1997 2485 2983 3656 4172

4000 126 986 1603 2099 2611 3135 3841 4384

4500 132 1030 1675 2193 2727 3275 4013 4579

5000 137 1071 1742 2280 2836 3405 4173 4762
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Table 5.11.17 Variation of floods of various return periods with catchment area based
on L-moments for Sub-Himalayan region Zone 7

Catchment

Area

(km2)

Return periods (Years)
2 10 25 50 100 200 500 1000

Floods of various return periods (m /s)
10 141 269 347 410 480 558 675 776

20 185 351 454 536 628 730 883 1015

50 263 501 647 765 895 1040 1259 1447

100 344 655 847 1000 1171 1360 1646 1892

200 450 857 1107 1308 1531 1779 2152 2474

300 527 1002 1295 1530 1791 2081 2518 2895

400 589 1120 1448 1710 2002 2326 2815 3235

500 642 1221 1578 1864 2182 2536 3069 3527

.600 689 1310 1694 2001 2342 2721 3293 3785

700 731 1391 1798 2124 2486 2888 3495 4018

800 770 1465 1893 2236 2617 3042 3681 4231

900 806 1533 1981 2341 2739 3184 3852 4428

1000 839 1597 2064 2438 2854 3316 4013 4612

1100 871 1657 2141 2530 2961 3441 4163 4786

1200 901 1713 2215 2616 3062 3558 4306 4950

1300 929 1767 2284 2699 3158 3670 4441 5105

1400 956 1819 2351 2777 3250 3777 4571 5254

1500 982 1868 2415 2852 3338 3879 4694 5396

1600 1007 1915 2476 2924 3423 3978 4813 5533

1700 1031 1961 2534 2994 3504 4072 4927 5664

1800 1054 2005 2591 3061 3582 4163 5038 5791

1900 1076 2047 2646 3125 3658 4251 5144 5913

2000 1098 2088 2699 3188 3731 4336 5247 6032

2500 1197 2276 2942 3476 4068 4727 5720 6576

3000 1284 2443 3157 3730 4365 5073 6139 7056

3500 1363 2593 3352 3959 4634 5385 6516 7490

4000 1435 2730 3529 4169 4880 5670 6862 7887

4500 1502 2858 3694 4363 5107 5935 7182 8255

5000 1565 2977 3848 4545 5320 6182 7480 8599
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5.8 DEVELOPMENT OF REGIONAL FLOOD FREQUENCY
RELATIONSHIPS USING ANN AND FIS

Development of regional flood frequency relationships for gauged and

ungauged catchments for four Subzones viz. Subzone 3(c), Subzone 3(d), Subzone

3(f) and Zone-7 using ANN and FIS and their comparisons with regional flood

frequency relationships developed using L-moments approach are described as

follows.
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5.8.1 Development of Regional Flood Frequency Relationships for Gauged
Catchments using ANN

The functional form of the model for development of regional flood frequency

relationships for gauged catchments using ANN is:

Qp = f(P)

Qp = Annual maximum peak flood

P = Probability of non-exceedance of the annual maximum peak flood estimated by

the Weibull's formula i.e. P = m/N+1, where m is the rank of the event when arranged

in ascending order and N is the total number of observations of the annual maximum

peak floods for a Subzone.

The architecture of ANN model consists of number of layers in a network, the

number of neurons in each layer, transfer function of each layer and how the layers

connect to each other. In order to improve network performance, many factors like

determination of adequate model inputs, data division and pre-processing, the choice

of suitable network architecture, selection of network internal parameters, the

stopping criteria and model testing are required. Data pre-processing is necessary

before they are applied to soft computing models to ensure all variables receive equal

attention during the training process (Maier and Dandy, 2000). All the data are _*,

transformed, normalized and scaled to remain within a range (0, 1). Data

transformations are often used to simplify structure of data so that they follow a

convenient statistical model (Sudheer et al, 2007).

The total available data have been divided into training and validation sets

prior to the model building, according to the statistical properties like mean and -*

standard deviation of the data sets so that the training and validation data set

represents the same population. The set of available data (probability of non-

exceedance and the annual maximum peak floods) are divided into two sets: one for
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system modeling (training) - selected regarding characteristic features - and one for

system testing. For each of the Subzones 95% values of the data set were taken for

training and remaining 5% dataset for testing. The neural network architecture

parameters for the ANN model used for the four Subzones are given in Table 5.12.

The values of growth factors estimated by ANN and the robust identified frequency

distributions for four Subzones viz. Subzone 3(c), Subzone 3(d), Subzone 3(f) and

Zone-7 are given in Tables 5.13.1 to 5.13.4 respectively. The statistical performance

indices of ANN and L-moments for four Subzones viz. Subzone 3(c), Subzone 3(d),

Subzone 3(f) and Zone-7 are presented in Tables 5.14.1 to 5.14.4 for training datasets

and in Tables 5.15.1 to 5.15.4 for validation datasets respectively. The variation of

growth factors with return periods estimated by ANN and L-moments are shown in

Figs. 5.4.1 to 5.4.4 for the four Subzones. It is observed that the growth factors

estimated by ANN provide flat growth curves i.e. relatively lower values of growth

factors for higher return periods. Hence, to overcome this limitation of ANN regional

flood frequency estimation has been attempted using FIS as discussed in the following

Section.

Table 5.12 ANN Architecture parameters for regional flood frequency estimation

No. of Input neurons 1

No. of Hidden neurons 2

No. of hidden layer 1

Learning rate 0.01

Momentum factor 0.1

Transfer function of hidden layer Sigmoidal

Transfer function of output layer Linear

Training Algorithm Back propagation

Training Cycles, epoch 1000

Training Goal 0.0001
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Table 5.13.1 Growth factors for ANN and L-moments for Upper Narmada and Tapi
Subzone 3 (c)

Distribution Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

ANN 0.852 1.970 2.561 2.852 3.162 3.427 3.763 3.924

L-moments 0.847 1.483 2.454 2.848 3.234 3.614 4.108 4.477

Table 5.13.2 Growth factors for ANN and L-moments for Mahanadi Subzone 3(d)

Distribution Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

ANN 0.856 1.980 2.564 2.848 3.113 3.303 3.660 3.979

L-moments 0.870 1.821 2.331 2.723 3.125 3.538 4.105 4.552

Table 5.13.3 Growth factors for ANN and L-moments for Lower Godavari Subzone

3(f)

Distribution Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

ANN 0.875 1.935 2.230 2.543 2.704 2.858 3.208 3.452

L-moments 0.886 1.849 2.308 2.637 2.955 3.265 3.665 3.962

Table 5.13.4 Growth factors for ANN and L-moments for Sub-Himalayan region
Zone-7

Distribution Return period (Years)
2 10 25 50 100 200 500 1000

(Growth factors

ANN 0.900 1.885 2.302 2.586 2.962 3.372 3.837 4.248

L-moments 0.911 1.753 2.240 2.646 3.097 3.599 4.355 5.006

Table 5.14.1 Statistical performance indices of ANN and L-moments for training for
Upper Narmada and Tapi Subzone 3 (c)

Statistical indices ANN L-moments

EFF 98.17 91.72

CORR 0.99 0.94

MAE 3.10 8.64

RMSE 9.07 12.38
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Table 5.14.2 Statistical performance indices of ANN and L-moments for training for
Mahanadi Subzone 3 (d)

Statistical indices ANN L-moments

EFF 98.24 94.14

CORR 0.99 0.92

MAE 2.97 7.48

RMSE 8.96 8.78

Table 5.14.3 Statistical performance indices of ANN and L-moments for training for
Lower Godavari Subzone 3 (f)

Statistical indices ANN L-moments

EFF 98.32 92.86

CORR 0.99 0.92

MAE 3.32 10.96

RMSE 7.99 8.92

Table 5.14.4 Statistical performance indices of ANN and L-moments for training for
Sub-Himalayan region Zone-7

Statistical indices ANN L-moments

EFF 98.12 93.47

CORR 0.99 0.92

MAE 3.50 6.13

RMSE 4.16 4.79

Table 5.15.1 Statistical performance indices of ANN and L-moments for validation
for Upper Narmada and Tapi Subzone 3 (c)

Table 5.15.2

Statistical indices ANN L-moments

EFF 98.10 90.03

CORR 0.99 0.92

MAE 3.69 14.40

RMSE 9.11 11.07

Statistical performance indices of ANN and L-moments for validation
for Mahanadi Subzone 3 (d)

Statistical indices ANN L-moments

EFF 99.75 93.04

CORR 0.99 0.89

MAE 2.39 14.26

RMSE 3.34 11.32
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Table 5.15.3 Statistical performance indices of ANN and L-moments for validation
for Lower Godavari Subzone 3 (f)

Statistical indices ANN L-moments

EFF 99.06 93.24

CORR 0.99 0.89

MAE 2.89 11.96

RMSE 5.60 9.54

Table 5.15.4 Statistical performance indices of ANN and L-moments for validation
for Sub-Himalayan region Zone-7

Statistical indices ANN L-moments

EFF 99.05 91.53

CORR 0.99 0.89

MAE 4.72 17.40

RMSE 8.06 12.07
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Fig. 5.4.1 Variations of growth factors with return period for ANN and L-moments for
Upper Narmada and Tapi Subzone 3(c)

170



>

GNO

ANN

0 -| 1 1—i 1—i 1 1—| 1 1—i 1—,—|—i—| 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000

Return Period in Years

Fig. 5.4.2 Variations of growth factors with return period for ANN and L-moments
for Mahanadi Subzone 3(d)

5 -1

4 -

1 3
o
CD

!

1 -

PE3

ANN

i 1 1 j 1 1 1 1 1 1 1 1 . 1 1 1 . 1 . 1

0 100 200 300 400 500 600 700 800 900 1000

Return Period in Years

Fig. 5.4.3 Variations of growth factors with return period for ANN and L-moments
for Lower Godavari Subzone 3(f)

171



5 -i GLO

ANN

"I ' 1 ' 1 • 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1

0 100 200 300 400 500 600 700 800 900 1000

Return Period in Years

Fig. 5.4.4 Variations of growth factors with return period for ANN and L-moments
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5.8.2 Development of Regional Flood Frequency Relationships for Gauged
Catchments using FIS

The functional form of the model for development of regional flood frequency

relationships for gauged catchments using FIS is same as that of the ANN approach

described in Section 5.8.1. A Takagi-Sugeno Fuzzy Inference System (FIS) has been

developed using the subtractive clustering algorithm integrated with a linear least

squares estimate algorithm for the regional flood frequency estimation model. The

FIS model has been developed based on the assumption that the cluster estimation

method when applied to a collection of input and output data produces cluster centers

where each cluster center is in essence a prototypical data point that represents a

characteristic behavior of the system. Hence, each cluster center can be used as the

basis of a rule that illustrates the system behavior. The algorithm for subtractive

clustering is as follows. In this case also, the input-output vector has been fixed as the

same as that of ANN models. The major parameter that needs to be identified in FIS
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model is the clustering radius. The cluster radius specifies the range of influence of

the cluster centre of the each input and output dimension. Assuming that the cluster

radius falls within the hyper box of unit dimension, a smaller cluster radius will yield

more clusters in a data and hence a greater number of mles. Simultaneously, it

increases the model complexity and decreases parsimony.

The steps involved in the development of the FIS model are as follows: (i)

probability values serve as inputand annual maximum peakflood values as the output

variables for the fuzzy system, (ii) the set of available data (probability of non-

exceedance and annual maximum peak flood values) are divided into two sets: one for

system modeling (training) in which 95% of the values that are used - selected

regarding characteristic features - and the other for system testing, in which 5% values

of the input data set, (iii) input variables are subdivided into clusters, (iv) independent

models are then generated for all input variables determined according to step-(i), (v)

for each model a rule base is defined containing as much mles as the input variable

possesses membership functions, (vi) the premises contain one membership function,

and the model performance is judged based on the theoretical error criteria, (vii) the

input variables showing dependencies of the probability and annual maximum peak

flood are collected in premises and then the maximum number of mles is built and the

parameters are then optimized, (viii) further improvements of results can solely be

achieved if new rules are inserted for regions with maximum error values. Again this

step is repeated together with optimization steps as mentioned above until there is no

further improvement, (ix) the influence of the input variable to the passing times can

be recognized within the rule base. Assumptions can be made, that these dependencies

exist also for other (higher) probabilities values. Based on this additional rules are

built for probability levels that are not available or yet displayed in the training set. By
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this way, an interpretation of acquired knowledge is made possible relative simply.

From the interpretation of the rule base new rules can be derived, which can describe

extreme situations beyond events and can predict such situations with higher

accuracy.

The clustering radius is identified through a trial-and-error procedure by

varying the clustering radius from 0.04 to 0.5 with an increment of 0.05. For each

cluster radius, statistical performance indices were computed for training and testing

by the FIS model. The model output that provided the maximum EFF and CORR as

well as minimum RMSE and MAE for training and testing was selected for estimation

of the growth factors for various return periods for each of the Subzones. The best

values of the model output are captured for cluster radius of 0.04, 0.05, 0.05 and 0.04

for Subzone 3(c), Subzone 3(d), Subzone 3(f) and Zone-7 respectively. The values of

growth factors for FIS and L-moments for Subzone 3(c), Subzone 3(d), Subzone 3(f)

and Zone-7 are given in Tables 5.16.1 to 5.16.4 respectively. The statistical

performance indices of FIS and L-moments for training for Subzone 3(c), Subzone

3(d), Subzone 3(f) and Zone-7 are given in Tables 5.17.1 to 5.17.4 and for validation

are provided in Tables 5.18.1 to 5.18.4 respectively. The variations of growth factors

with return periods estimated by FIS and L-moments are shown in Figs. 5.5.1 to 5.5.4

for the four Subzones.

Table 5.16.1 Growth factors for FIS and L-moments for Upper Narmada and Tapi
Subzone 3 (c)

Distribution Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

FIS 0.827 1.857 2.442 2.944 3.510 3.971 4.338 4.480

L-moments 0.847 1.483 2.454 2.848 3.234 3.614 4.108 4.477
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Table 5.16.2 Growth factors for FIS and L-moments for Mahanadi Subzone 3(d)

Distribution Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors
FIS 0.828 1.862 2.464 2.863 3.366 3.833 4.238 4.402

L-moments 0.870 1.821 2.331 2.723 3.125 3.538 4.105 4.552

Table 5.16.3 Growth factors forFIS and L-moments for Lower Godavari Subzone 3(f)

Distribution Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

FIS 0.929 1.861 2.289 2.589 2.839 3.018 3.385 3.683

L-moments 0.886 1.849 2.308 2.637 2.955 3.265 3.665 3.962

Table 5.16.4 Growthfactors for FIS and L-moments for Sub-Himalayan regionZone-7

Distribution Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

FIS 0.871 1.775 2.181 2.606 3.041 3.426 4.072 4.681

L-moments 0.911 1.753 2.240 2.646 3.097 3.599 4.355 5.006

Table 5.17.1 Statistical performance indices of FIS and L-moments for training for
Upper Narmada and Tapi Subzone 3 (c)

Statistical indices FIS L-moments

EFF 99.85 91.72

CORR 0.99 0.94

MAE 0.95 8.64

RMSE 2.62 12.38

Table 5.17.2 Statistical performance indices of FIS and L-moments for training for
Mahanadi Subzone 3 (d)

Statistical indices FIS L-moments

EFF 99.82 94.14

CORR 0.99 0.92

MAE 1.06 7.48

RMSE 2.88 8.78

Table 5.17.3 Statistical performance indices of FIS and L-moments for training for
Lower Godavari Subzone 3 (f)

Statistical indices FIS L-moments

EFF 99.91 92.86

CORR 0.99 0.92

MAE 1.20 10.96

RMSE 1.87 8.92
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Table 5.17.4 Statistical performance indices of FIS and L-moments for training for
Sub-Himalayan region Zone-7

Statistical indices FIS L-moments

EFF 99.86 93.47

CORR 0.99 0.91

MAE 0.96 6.13

RMSE 2.19 4.79

Table 5.18.1 Statistical performance indices of FIS and L-moments for validation
for Upper Narmada and Tapi Subzone 3 (c)

Statistical indices FIS L-moments

EFF 98.81 90.03

CORR 0.99 0.91

MAE 1.23 14.40

RMSE 8.76 11.07

Table 5.18.2 Statistical performance indices of FIS and L-moments for validation
for Mahanadi Subzone 3 (d)

Table 5.18.3

Table 5.18.4

Statistical indices FIS L-moments

EFF 99.69 93.04

CORR 0.99 0.89

MAE 0.81 14.26

RMSE 1.19 11.32

Statistical performance indices of FIS and L-moments for validation
for Lower Godavari Subzone 3 (f)

Statistical indices FIS L-moments

EFF 99.84 93.24

CORR 0.99 0.89

MAE 1.00 11.96

RMSE 2.32 9.54

Statistical performance indices of FIS and L-moments for validation
for Sub-Himalayan region Zone-7

Statistical indices FIS L-moments

EFF 98.50 91.53

CORR 0.99 0.89

MAE 1.87 17.40

RMSE 6.61 12.07
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5.9 COMPARISON OF ANN, FIS AND L-MOMENTS

The growth factors developed using ANN, FIS and L-moments have been

compared based on the statistical performance indices described earlier. The values of

growth factors for ANN, FIS and L-moments for Subzone 3(c), Subzone 3(d),

Subzone 3(f) and Zone-7 are given in Tables 5.19.1 to 5.19.4 respectively. Tables

5.20.1 to 5.20.4 provide the values of statistical performance indices for ANN, FIS

and L-moments for training datasets for the four Subzones. Tables 5.21.1 to 5.21.4

give the values of statistical performance indices for ANN, FIS and L-moments for

the datasets used for validation for the four Subzones. The variations of growth

factors with return periods estimated by ANN, FIS and L-moments are shown in Figs.

5.6.1 to 5.6.4 for the four Subzones. Based on the statistical performance indices the

performance of FIS is found to be better than that of ANN. For estimation of floods of

various return periods for the gauged catchments based on the better identified soft

computing technique i.e. FIS, the values of growth factors are summarized in Table

5.22 for the four Subzones.

Table 5.19.1 Growth factors for ANN, FIS and L-moments for Upper Narmada and
Tapi Subzone 3 (c)

Distribution Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

ANN 0.852 1.970 2.561 2.852 3.162 3.427 3.763 3.924

FIS 0.827 1.857 2.442 2.944 3.510 3.971 4.338 4.480

L-moments 0.847 1.483 2.454 2.848 3.234 3.614 4.108 4.477

Table 5.19.2 Growth factors for ANN, FIS and L-moments for Mahanadi Subzone 3(d)

Distribution Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

ANN 0.856 1.980 2.564 2.848 3.113 3.303 3.660 3.979

FIS 0.828 1.862 2.464 2.863 3.366 3.833 4.238 4.402

L-moments 0.870 1.821 2.331 2.723 3.125 3.538 4.105 4.552
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Table 5.19.3 Growth factors for ANN, FIS and L-moments for Lower Godavari
Subzone 3 (f)

Distribution Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

ANN 0.875 1.935 2.230 2.543 2.704 2.858 3.208 3.452

FIS 0.929 1.861 2.289 2.589 2.839 3.018 3.385 3.683

L-moments 0.886 1.849 2.308 2.637 2.955 3.265 3.665 3.962

Table 5.19.4 Growth factors for ANN, FIS and L-moments for Sub-Himalayan
region Zone-7

Distribution Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

ANN 0.900 1.885 2.302 2.586 2.962 3.372 3.837 4.248

FIS 0.871 1.775 2.181 2.606 3.041 3.426 4.072 4.681

L-moments 0.911 1.733 2.240 2.646 3.097 3.599 4.355 5.006

Table 5.20.1 Statistical performance indices of ANN, FIS and L-moments for
training for Upper Narmada and Tapi Subzone 3 (c)

Statistical indices ANN FIS L-moments
EFF 98.17 99.85 91.72

CORR 0.99 0.99 0.94

MAE 3.10 0.95 8.64

RMSE 9.07 2.62 12.38

Table 5.20.2 Statistical performance indices of ANN, FIS and L-moments for
training for Mahanadi Subzone 3 (d)

Statistical indices ANN FIS L-moments

EFF 98.24 99.82 94.14

CORR 0.99 0.99 0.92

MAE 2.97 1.06 7.48

RMSE 8.96 2.88 8.78

Table 5.20.3 Statistical performance indices of ANN, FIS and L-moments
training for Lower Godavari Subzone 3 (f)

Statistical indices ANN FIS L-moments

EFF 98.32 99.91 92.86

CORR 0.99 0.99 0.92

MAE 3.32 1.20 10.96

RMSE 7.99 1.87 8.92

180

for



-*

Table 5.20.4 Statistical performance indices of ANN, FIS and L-moments for
training for Sub-Himalayan region Zone-7

Statistical indices ANN FIS L-moments
EFF 98.12 99.86 93.47
CORR 0.99 0.99 0.92

MAE 3.50 0.96 6.13
RMSE 4.16 2.19 4.79

Table 5.21.1 Statistical performance indices of ANN, FIS and L-moments for
validation for UpperNarmada andTapiSubzone 3 (c)

Statistical indices ANN FIS L-moments

EFF 98.10 98.81 90.03

CORR 0.99 0.99 0.92

MAE 3.69 1.23 14.40

RMSE 9.11 8.76 11.07

Table 5.21.2 Statistical performance indices of ANN, FIS and L-moments for
validation for Mahanadi Subzone 3 (d)

Statistical indices ANN FIS L-moments

EFF 99.75 99.69 93.04

CORR 0.99 0.99 0.89

MAE 2.39 0.81 14.26

RMSE 3.34 1.19 11.32

Table 5.21.3 Statistical performance indices of ANN, FIS and L-moments for
validation for Lower Godavari Subzone 3 (f)

Statistical indices ANN FIS L-moments

EFF 99.06 99.84 93.24

CORR 0.99 0.99 0.89

MAE 2.89 1.00 11.96

RMSE 5.60 2.32 9.54

Table 5.21.4 Statistical performance indices of ANN, FIS and L-moments for
validation for Sub-Himalayan region Zone-7

Statistical indices ANN FIS L-moments

EFF 99.05 98.50 91.53

CORR 0.99 0.99 0.89

MAE 4.72 1.87 17.40

RMSE 8.06 6.61 12.07
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Table 5.22 Values of growth factors estimated by FIS for four Subzones of India

Subzone Return period (Years)
2 10 25 50 100 200 500 1000

Growth factors

3(c) 0.827 1.857 2.442 2.944 3.510 3.971 4.338 4.480

3(d) 0.828 1.862 2.464 2.863 3.366 3.833 4.238 4.402

3(0 0.929 1.861 2.289 2.589 2.839 3.018 3.385 3.683

Zone-7 0.871 1.775 2.181 2.606 3.041 3.426 4.072 4.681

5.10 DEVELOPMENT OF REGIONAL FLOOD FREQUENCY
RELATIONSHIPS FOR UNGAUGED CATCHMENTS USING FIS

As discussed above based on the statistical performance indices the

performance of FIS technique has been found to be better than that of the ANN and L-

moments. Hence, for development of regional flood frequency relationships for

ungauged catchments for the four Subzones the growth factors estimated using the

FIS have been coupled with the regional relationships between mean annual peak

floods and catchment areas for the respective four Subzones. In this manner the

regional flood frequency relationships have been developed for estimation of floods

of various return periods for the ungauged catchments of the four Subzones based on

FIS. The values of CT (equation 5.2) and 'b' for FIS for the four Subzones are given

in Table 5.23.

Table 5.23 Values of regional coefficients 'CT' for FIS and 'b' for four Subzones of
India

s.

No.

Sub-

zone

Coeff.

'b'

Return Period (Years)
2 10 25 50 100 200 500 1000

'Gr'for four Subzones

1. 3(c) 0.547 19.392 43.545 57.262 69.034 82.306 93.116 101.722 105.052

2. 3(d) 0.863 2.086 4.690 6.207 7.212 8.479 9.655 10.676 11.089

3. 3(0 0.676 9.581 19.192 23.606 26.700 29.279 31.125 34.910 37.983

4. Zone 7 0.387 55.393 112.885 138.705 165.734 193.398 217.883 258.967 297.698
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER
WORK

6.1 CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH
WORK

In the present study regional flood frequency relationships have been

developed based on the L-moments approach for gauged and ungauged catchments of

the 17 Subzones of India. The applicability of soft computing techniques viz. ANN

andFIS in regional flood frequency estimation has also been investigated. The results

of the study would be useful for the practitioners especially engaged in planning,

development and management of water resources projects. The analysis and results

reported in the present work leave sufficient scope for further investigations, which

could not be taken up owing to time constraint and are briefed along with the

conclusions as follows.

i. Regional flood frequency analysis has been carried out based on L-moments

approach, using the annual maximum peak flood data of 261 catchments of the

17 Subzones covering about 79% of the geographical area of India. After

conducting the L-moments based Discordancy statistic (DO test for screening

the data for suitability for regional flood frequency analysis and testing the

regional homogeneity employing the heterogeneity measure (H) data of 196

streamflow gauging sites have been used in the study.

ii. Twelve frequency distributions viz. Extreme value (EVl), Normal (NOR),

General extreme value (GEV), Logistic (LOS), Generalized logistic (GLO),

Generalized normal (GNO), Uniform (UNF), Exponential (EXP), Generalized



Pareto (GPA), Pearson Type-Ill (PE3), Kappa (KAP) and five parameter

Wakeby (WAK) have been used in the study. The regional parameters of the

frequency distributions have been estimated using the L-moments approach.

Based on the L-moment ratio diagram as well as |zflst| -statistic criteria,

robust frequency distributions have been identified for the 17 Subzones. It is

observed that out of the 17 Subzones PE3 distribution is the robust distribution

for 7 Subzones, GNO for 3 Subzones, GEV for 3, GPA for 3 and GLO for 1

Subzone of India.

iii. For estimation of floods of various return periods for gauged catchments of the

17 Subzones regional flood frequency relationships have been developed

based on the respective robust identified frequency distributions.

iv. For estimation of floods of various return periods for ungauged catchments the

robust identified L-moments based regional flood frequency relationships of

the 17 Subzones have been coupled with the respective regional relationships

developed between mean annual peak floods and catchment areas and regional

flood frequency relationships have been developed. The tabular and graphical

forms of these regional flood frequency relationships have also been prepared

for estimation of floods of various return periods for ungauged catchments.

v. The regional flood frequency relationships have also been developed for gauged

catchments using the soft computing techniques viz. ANN and FIS for four

Subzones viz. Subzone 3(c), Subzone 3(d), Subzone 3(f) and Zone-7. The

performances of ANN, FIS and L-moments have been compared based on the

statistical performance indices viz. CORR, EFF, RMSE and MAE. Based on the

comparison of ANN, FIS and L-moments the potential of applicability of FIS in

regional flood frequency estimation has been established. Regional flood
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frequency relationships have also been developed for ungauged catchments for

four Subzones by coupling the regional relationships between mean annual peak

floods and catchment areas with the respective regional flood frequency

relationships developed using FIS.

vi. As the regional flood frequency relationships have been developed using the data

of catchments ranging in areal extent from 6 km2 to 2,297 km2; therefore, the

developed regional flood frequency relationships may be expected to provide

reliable flood frequency estimates for the catchments of the respective 17

Subzones, lying nearly in the same range of areal extent, as those of the input

data. Further the statistical performance indices viz. CORR, EFF, RMSE and

MAE of the relationships developed between mean annual peak floods and

catchment areas for the 17 Subzones give the degree of accuracy of the regional

relationships and the results of the study are subject to these limitations.

vii. The developed regional flood frequency relationships may be refined for

obtaining more accurate flood frequency estimates, when the annual maximum

peak flood data for some more streamflow gauging sites become available and

physiographic as well as the climatic characteristics other than catchment area are

also used for development of the regional flood frequency relationships.

viii. More studies are required to be taken up for evaluation of applicability of the soft

computing techniques in regional flood frequency estimation.
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APPENDIX 3.1

Brief descriptions of the 17 subzones are presented as follows.

1. Chambal Subzone 1 (b)

The Chambal Subzone 1 (b) lies approximately between 73° 20' and 79° east

longitudes and 22° 30' and 27° 15' north latitudes. This covers major parts of

Rajasthan and Madhya Pradesh and small portion of Uttar Pradesh. The Chambal is

the principal tributary of the Yamuna and other important rivers of the Subzone are

Banas from the left bank and Kali Sindh, Parbati, Kunu and Kunwari from the right

bank. The river Chambal rises in the Vindhya range near Mhow in the Indore district

of Madhya Pradesh at an elevation of 854 m. Thereafter, it flows in a generally

northernly direction for a length of about 320 km in Madhya Pradesh upto its border

with Rajasthan. The river then flows through Rajasthan and receives its right bank

tributaries Kali/Sindh and Parbati. After its confluence with Prabati, the Chambal

forms a common boundary between Madhya Pradesh and Rajasthan. Banas, the major

left bank tributary joins the Chambal in this reach near the village Rameshwar. The

river thereafter forms the common boundary between Madhya Pradesh and Uttar

Pradesh before its enters Uttar Pradesh. After flowing for about 46 km in Uttar

Pradesh, the Chambal outfalls into the Yamuna. The total length of the river from its

source to confluence with Yamuna is about 960 km of which 320 km are in Madhya

Pradesh, 226 km in Rajasthan. 251 km from the common boundary between Madhya

Pradesh and Rajasthan, 117 km from the common boundary tween Madhya Pradesh

and Uttar Pradesh and the balance 46 km area in Uttar Pradesh. From the source down

to its junction with Yamuna, the Chambal has a total fall of about 732 m of which 244



m is the first few km and 122 m in a distance of about 100 km from Courashigarh fort

to Kota city. For the rest of its course, the river passes through the flat fertile areas of *

Malwa Plateau and later in Gangetic Plains. There are mainly three types of soil viz.

medium black soil, mixed red and black soil, alluvial soil. Other types of soil are red

and yellow soil, gray-brown soil, deep-black soil, laterite soil and skeletal soil. The

arable land in the Subzone is about 52%, forest cover 23%, grass land scrub 19% and

the remaining portions are waste land urban area.

2. Sone Subzone 1 (d)

The region defined as Sone Subzone 1 (d) lies in central-eastern part of India.

Sone River is one of the major tributaries of the Ganges River flowing in the Subzone

1 (d). Additional major rivers in the region include the Tons, Karmanasa, Punpun and

Phalgu. The Sone Subzone 1 (d) region lies between latitudes 22° 30' to 25° 45' north

and longitudes 80° to 86° 15' east. The Subzone experiences heavy rainfall due to

southwest monsoon during June to September. The monsoon rainfall is about 80 to

85% of the annual rainfall. The maximum rainfall is experienced during the months of

July and August. The normal annual rainfall of the Sone Subzone generally varies

with the decrease in elevation from 1400 mm to 1600 mm in the hills and from 1000

to 1200 mm in the plains. The Subzone is mostly covered with red and yellow soils

except the alluvial soils in South Bihar plains and patches of medium black soils, red

sandy soils and mixed red and black soils in the South West. Arable land mostly in

the plains and also a large number of patches in the remaining part constitute about

45% of the Subzone. Forests cover about 50% of the Subzone and 5 % of the

remaining Subzone is mostly grass land, scrub, wasteland marshes and water bodies.
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3. Upper Indo-Ganga Plains Subzone 1 (e)

The Upper Indo-Ganga Plains Subzone 1 (e) lies between longitudes 74° to

81° east and latitude 26° to 33° north. It is traversed by the Ravi, Beas, Sutlej,

Yamuna, Ghaggar, Ganga, Gomti, Sahibi and Banganga and Ramganga rivers. It

covers almost entire Haryana, Punjab, Union Territories of Delhi and Chandigarh,

Western Uttar Pradesh and eastern boarder areas of Rajasthan. There is a small

mountainous area in northern part of Punjab varying in elevation from 450 to 600 m.

Areas with elevations less than 150 m are located in the southeast of the Subzone. The

general elevation of the remaining area is between 150 to 300 m. The mean annual

rainfall in northern parts is 1000 mm. In the middle and southern areas it varies from

600 to 800 mm and in south-western parts and from 300 to 400 mm in the south

western parts. The plains of Yamuna, Ganga, Ramganga, Gomti and upper parts of

Ravi, Beas, Sutlej and Ghaggar are covered with recent alluvial soils. The plains in

the middle reaches of Beas, Sutlej and Ghaggar are covered with calcareous soils of

alluvial origin. The saline and alkaline soils are also found in some parts of the plains

covered with alluvial soils in areas lying in the northwest part of the Subzone between

Sutlej and Ghaggar. The northwest and southwest portions comprising of 50% of the

Subzone are intensely irrigated to an extent of 80%. The intensity of irrigation in 25%

of the area is 20% to 60%. The northwestern, southwestern and northeastern areas are

covered with forests.

4. Middle Ganga Plains Subzone 1 (f)

TheMiddle Ganga Plains Subzone 1 (f) lies between latitudes 24° to 29° north

and longitude 80° to 89° east. It covers parts of Uttar Pradesh, Bihar, Jharkhand and

West Bengal. The major rivers flowing in this Subzone are Ganga, Yamuna, Gomti,
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Gandak, Ghagra, Rapti, Kosi including Kamla, Mahananda and others. The Subzone 1

(f) comprises mostly of plains and a small portion of the foothills of Tarai area in the

north. The elevation in the Tarail area exceeds 150 m. hi the plains area the elevation

lies between 150 m and 75 m and goes on decreasing eastwards to Bangladesh. The

rivers Yamuna and Ganga form southern boundary of the alluvial plains for major

part of the Subzone 1 (f). The Subzone covers lower portions of Ghaghra, Gandak,

Rapti, Kosi, and Mahananda rivers. The mean annual rainfall varies between 800 mm

to 120 mm in the plains and goes upto 2000 mm in the portion of foothills in the north

of the Subzone. The major portion of rainfall is received between June/July to

September/October in the Subzone due to southwest monsoon. Major portion of the

Subzone has alluvial soils of recent origin excepting Tarai region andthe plains on the

northeastern side between Rapti and Kosi rivers where Tarai and Calcarious alluvium

soils are encountered respectively. Most of the parts are also irrigated. Forests are

seen in a part of Tarai portion of the Subzone. Most of the land in the Subzone is

arable and well irrigated.

5. Lower Ganga Plains Subzone 1 (g)

The Lower Ganga Plains Subzone 1 (g) is lies approximately between latitude

21° 15' to 25° 45' north and longitudes 84° 35' to 89° east. It was earlier designated as

Lower Gangetic Plains including Subarnarekha and other east flowing rivers between

Ganga and Baitarani. The river basins included in this Subzone are lower portions of

Ganga, Hoogli river system and Subarnarekha. The annual rainfall over the Subzone

is of the order of 900 mm over its extreme north west portion and gradually increases

to about 1700 mm over extreme south of the Subzone. A large area in central part of

the Subzone is covered by red sandy soil. A small portion towards extreme north of
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the Subzone, is covered by alluvial soil. Red and yellow soil is found in the western

parts of the Subzone. The eastern areaof the Subzone is almost all covered by alluvial

soil along with a small region of red and loamy soil adjoining Berhampore. Mixed

red, black and yellow soil, alluvial soil and laterite soil is found, in general, in the

southern areas of the Subzone. Deltic alluvial soil is found over the areas in the

vicinity of the mouth of Bay of Bengal. The major portion of the area is under

cultivation. Rice is the main crop of the region. Other crops grown in the area are Jute

and Millets.

6. North Brahmaputra Subzone 2 (a)

The Brahmaputra also known as Tsangpo in Tibet rises at Tamchok Khamdet

Chorten in the Chemayung-dung glacier. It has a long course through the

comparatively dry and flat region of Southern Tibet, before breaking through the

Himalayas below the peak of Nancha Barwa. It is known as the Dihang in the

Arunachal Himalayas before it enters the Assam plains. The Dibang and the Lohit

join the Dihang from the east near Sadija. After traversing the Assam Valley for 720

km, the Brahmaputra sweeps round the Garo Hills and enters the Rangpur District of

Bangladesh near Dhubri. It flows southwards to join the Ganga at Goal undo. The

Brahmaputra with a total catchment of0.94 million km2 is one of the biggest rivers in

the world. The total length of river in India is 885 km. The drainage area of the

Brahmaputra basin in India is 1,95,000 km2 and the Subzone 2 (a) has an areal extent

of 1,21,444 km . The North Brahmaputra Subzone 2 (a) lies approximately between

88° and 97° 20' east longitudes and 26° and 29° 25' north latitudes. The Subzone 2 (a)

is mostly bounded by international boundaries on all the four sides. It has Bhutan and

China on the north, Burma on the east, Nepal on west and Bangla Desh on southwest.
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The states covered by this Subzone are Assam (Lower and Upper) part of West

Bengal, Sikkim and Arunachal Pradesh. Of the 25 principal north bank tributaries,

the Subansiri, the Manas, the Dibang, Dhansiri, Torsa, Testa are a few major ones.

The North Bank tributaries have comparatively moderate steep slope, meandering

channels almost from the foothills, beds and banks of alluvial soils and comparatively

low silt charge. The southwest monsoon and cyclonic storm causes the rainfall in the

Subzone from May to October. The normal annual rainfall varies from 2000 mm to

5000 mm. Broadly the soils of the Subzone canbe classified as red loamy soil, brown

hill soil, terai soil and alluvial soil of recent origin. The red loamy soil is found

towards north-east and continues through a belt in the middle of the Subzone up to

Itanagar. A small patch of brown hill soil is bound in the northern an western comer

of the Subzone. The alluvial soil is also depicted in flood plain covering north eastern

part to the west all along the main river Brahmaputra touching important towns of

Itanagar, Tezpur, Jalpaiguri. A belt of Terai soil mns through the middle of the

Subzone to the west. The Subzone has considerable area under forest.

7. South Brahmaputra Subzone 2 (b)

The drainage area of the Brahmaputra basin in India is 1,95,000 km2 and the

Subzone 2 (b) has an areal extentof 73556 km2. A number of tributaries drain into the

Brahmaputra from north and south, in its course through the State of Assam. There

are 15 principal south bank tributaries, the most important among them being the

Burhi-Dehing, the Kopili and the Dhansiri. The north bank tributaries are generally

large, since their catchments lie in theheavyrainfall zone of the Himalayas. The south

bank tributaries of the Brahmaputra in the Assam State are generally smaller than

those of the north bank, as their catchments in the Assam Hills are smaller and get
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less rain. TheBrahmaputra, in its course through the Assam plains, divides into many

channels and forms numerous braids which enclose islands of which, Majuli, is 1,250

km2 in area.

The course of the Brahmaputra river in the plains divides the Brahmaputra

basin in India into northern and southern Subzones. The Subzone 2 (b) has a variety

of soils. Broadly they can be classified as red loamysoil, red and yellow soil, laterite

soil and alluvial soils of recent origin. The red loamy soil is found towards the

northeast and continues through a belt in the lower half of the Subzone upto Shillong

in the southwest. The flood plains covering the Dibrugarh, Mariani, Nowgong,

Gauhati and Goalpara districts represent alluvial soils of recent origin. There is a

small belt of laterite soils towards southeast. The laterite soils are also found in the

southern comer and towards the south-west of the Subzone in the plain portions

between foothills and Gauhati and extend throughout the west. The red and yellow

soils are normally found towards the south and towards the southwestern comer of the

Subzone between Tura and boundary of Bangladesh. The Subzone 2 (b) has

considerable area under forest. Although this may have some marked changes in the

recent times because of more inhabitations of area towards the northeast, the intensity

of the afforestation is maximum in the east and this goes on decreasing as one comes

towards west.

8. Mahi and Sabarmati Subzone 3 (a)

The Subzone 3 (a) is traversed by the rivers Mahi, Sabarmati, Saraswati and a

large number of coastal streams. The general elevation of this Subzone varies from 0

to 600 m above mean sea level. This Subzone lies in semi-arid region. The Mahi and

Sabarmati Subzone 3 (a) lies roughly between 69° to 75° east longitudes and 21° to
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25° north latitudes. It covers more than half of Gujarat State and small parts of

southern Rajasthan and western Madhya Pradesh States. The rivers flowing in this

Subzone are Mahi, Sabarmati, Saraswati and an large number of coastal streams in

Kathiawar Peninsula. The Mahi river flows for a total length of 583 km through the

states of Madhya Pradesh, Rajasthan and Gujarat before outflowing into the Gulf of

Khambhat. The topography of the Subzone 3 (a) is mainly constituted of upper

reaches draining the parts of Aravali ranges, Vindhya ranges and Malwa Plateau,

Gujarat Plains and Kathiawar Peninsula. The upper reaches of Mahi and Sabarmati

rivers vary in elevations from 300 m to 600 m. the general elevation of Gujarat plains

vries between 150 m to 300 m and that of Kathiawar peninsula, from 0 m to 150 m

along the southern fringes and 150 m to 300 m for the remaining portion with high

elevation of 300 m to 600 m in the centre and the southern Gir ranges varying from

150 m to 300 m. The normal annual rainfall varies from 800 mm to 1000 mm over the

Mahi basin whereas it varies from 400 mm to 600 mm over the Kathiawar peninsula.

The major source of rainfall is southwest monsoon during June to September. About

90 % of the annual rainfall occurs during the monsoon season. The soils in the upper

and lower parts of Mahi basin are medium black. The middle part of Mahi basin is

covered with red and alluvial soils along with laterite soils. The Sabarmati and

Saraswati basins are constituted of grey brown soils. The Kathiawar peninsula is

mostly covered with shallow, medium and black soils except the southern coastal belt

of alluvial soils and northern coastal areas of deltaic alluvial soils. The Subzone is

mostly constituted of arable land interspersed with forests, grassland and scurb.
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9. Lower Narmada and Tapi Subzone 3 (b)

The Lower Narmada and Tapi Subzone 3 (b) is located between longitudes of

70° 30' to 76° 30' east and latitudes 20° 30' to 23° north. Its total drainage area is

about 77,700 km2. It covers parts ofMaharashtra, Gujarat, and Madhya Pradesh. The

Subzone comprises of the Kanar, Kayam, Man, Hatori, Hiran, Bhakti, Bhadar, Goi,

Korjan, Girna, Bord, Buray, Ganai, and other tributaries. It is a semi-arid region with

mean annual rainfall varying from 600 to 1400 mm. The Subzone 3 (b) is traversed by

the lower reaches of river Narmada and Tapi and their tributaries. It constitutes about

50% area of the Narmada and Tapi basins. The study area has a complex relief. Plains

of medium heights up to 300 m exist on the western and eastern sides and in the

centre of the Subzone. Low plateaus in the range of 300-600 m exist in eastern,

southern and central parts. High plateaus in the range 600-900 m lie in the northern

and also in the southern parts. The Subzone has a continental type of climate, i.e. cold

in winter and hot in summer. Most of the rainfall results from southwest monsoon

during June to October. Thunder storms also occasionally occur in the region. The

main soil group in the Subzone are black soil, and coastal alluvial soils at the mouth

of river Tapi. There is a small patch of laterite soil on the western portion of the

Subzone. Approximately, 70% of the area of the Subzone is arable land and 25% is

forest and rest is grass and waste land.

10. Upper Narmada and Tapi Subzone 3 (c)

The Upper Narmada and Tapi Subzone 3 (c) is located between east

longitudes 76° 12' to 81° 45' and north latitudes of20° 10° to 23° 45'. Lying in the

northern extremity of the Deccan plateau, the Subzone covers the States of Madhya

Pradesh and Maharashtra. The Subzone 3 (c) comprises of upper portion of Narmada
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and Tapi basins and constitutes about 50% of the entire area of the combined

Narmada and Tapi basins. The Narmada, westward flowing river rises near

Amarkantak in the Mahaikala range in the Shahdol district of Madhya Pradesh at an

elevation of about 1000 meters above sea level. It flows for a length of about 1300 km

before it outfalls into the Gulf of Cambay in the Arabian sea. Upper Narmada and its

tributaries drains a total area of 62,264 km2 which form 72% of the area of Subzone.

The river Tapi rises near Multai in the Betwa district of Madhya Pradesh and like

Narmada it flows westward for a length of about 725 km before outfalling into Gulf

of Cambay. The lengths of main Narmada and Tapi rivers in the upper Subzone are

813 km and 219 km, respectively. The upper Subzone covers parts of Madhya

Pradesh and Maharashtra States. The important tributaries of Upper Narmada are

Burhnar, Banjar, Sher, Shakkar, Dudha, Tawa, and Ganjal along left bank and Hiran,

Tendori, Barna, Kolar, Jamner and Datuni along right bank. Puma is the main

tributary of Tapi. Upper parts of Puma fall in the upper Subzone 3(c). About 20%

areaof the Subzone is under scmb and forest and the remaining is cultivable area. The

main crops in the Subzone are wheat, millets, pulses, cotton and rice. The Subzone

receives most of the rainfall from southwest monsoon. About 90% rainfall is received

in months of June to October, July and August being the wettest months. The amount

of rainfall varies from 800 mm in southwestern part of the Subzone to more than 2000

mm in the south-central parts of this Subzone. Station Pachmarhi receives the heaviest

annual rainfall of more than 2000 mm. The rainfall from the south-central part of the

Subzone decreases sharply and then increases to 1600 mm towards both western and

eastern parts. Further towards southwest, it decreases to less than 800 mm. The far

Eastern part of the Subzone receives rainfall of the order of 1400 mm.
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11. Mahanadi Subzone 3(d)

The Mahanadi Subzone 3(d) is located between longitudes of 80° 25' to 87°

east and latitudes 19° 15' to 23° 35' north. The Mahanadi Subzone 3(d) comprises of

Mahanadi, Brahmani and Baitarani basins. The Mahanadi, Brahmani and Baitarani

rivers are peninsular rivers, outfalling into the Bay of Bengal. The major tributaries of

Mahanadi river are Seonath, Hasdeo, Mand and lb joining from north, and Jonk, Ong

and Tel joining from south. The total length of Mahanadi river is about 850 km and

the river lengths of Brahmani and Baitarani are about 705 km and 333 km,

respectively. Its total drainage area is about 1,95,256 km2 out of which catchment

area of Mahanadi is 1,40,628 km ., which forms about 72% of the total area of the

Subzone 3 (d). About 50% of the area of this Subzone is hilly varying from 300 m to

1350 m. Rest of the area lies in the elevation range of 0 to 300 m. The normal rainfall

over the region varies from 1200 to 1600 mm. The Subzone receives about 75% to

80% of the annual rainfall from southwest monsoon during the monsoon season from

June to September. The red and yellow soils cover major part of the Subzone. The red

sandy, submontane and coastal alluvial soils cover the remaining part of the Subzone.

The Subzone has an extensive area under forest. Paddy is the main crop grown on the

cultivable land. Most of the irrigated area is in Sambalpur district under the canals of

the Hirakud project. In the deltaic area around Cuttak, the irrigation is mostly done by

inundation canals.

12. Upper Godavari Subzone 3 (e)

The Upper Godavari Subzone 3(e) lies between longitudes 73° 30' to 78° 45'

east and latitudes 17° 25' to 20° 35' north. The Godavari river system in its upper

reaches up to Manjra confluence constitutes the Upper Godavari Subzone. The
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Godavari river rises in the easternside of the western ghats at an elevation of 1067 m.

It flows for a total length of 584 km in the Subzone before entering the Lower

Godavari Subzone 3 (f). The major portion of the Subzone covers a part of

Maharashtra State and the minor portions in the southeastof the Subzone cover small

parts of Andhra and Karnataka States. The important towns and cities in the Subzone

are Nasik, Aurangabad, Parbhani, Bidar, Bir and Nander. The Godavari river

originates at an elevation of 1350 m. in the western ghats. The areas in the Subzone

along the north western, western and southern boundary vary in elevations from 600

to 900 m. The rest of the area in the Subzone is a plateau ranging in elevation from

300 to 600 m. Along the ghats, the mean annual rainfall decreases from 1600 to 800

mm with the decrease in elevation. Further down upto Aurangabad the mean annual

rainfall ranges from 600 to 700 mm. Thereafter, in the rest of the Subzone, mean

annual rainfall is of the order of 800 mm with a patch of heavy rainfall of 1000 mm

along the eastern periphery. The Subzone experiences the southwest monsoon during

June to October with the maximum mean monthly rainfall in July and September. The

Subzone is mostly covered with medium black soils with a strip of deep black soils

from east to west in the middle and red sandy soils in southeast extremity. Patches of

shallow black soils are found in north. The Subzone is covered mostly with arable

land with patches of forests along the northern and eastern periphery and grass land

scmb mostly along the southwesternportion.

13. Lower Godavari Subzone 3 (f)

The Lower Godavari Subzone 3(f) lies between latitudes of 17° to 23° north

and longitudes of 76° to 83° east. The Godavari river rises in the eastern side of the

Western Ghats at an elevation of 1067 m. Lower Godavari Subzone 3 (f) is a
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sub-humid region with elevation varying from 150 meters to 1350 meters in its

various portions. The Subzone receives about 75% to 80% rainfall of its annual

rainfall from southwest monsoon during the period of June to October. The Subzone

having a continental type of climate cold in winter and very hot in summer receives

most of the rainfall from the southwest monsoon (June to September). A small part of

the Subzone on the south-east end gets rain from northeast monsoon (November to

December) besides short duration thunder storms. The mean annual rain progressively

increases from west to east. Mean monthly rainfall histograms typical of the two

cities, Nagpur and Chandrapur of the Subzone and the adjoining Hyderabad indicate

sudden rise in rainfall from June to September, covering 80% of the annual total. The

broad soil groups in the Subzone are red soils and black soils. The red soils are either

classified into red sandy, red loamy and red yellow soils. Black soils are classified as

deep black, medium black and shallow black soils. The black soils are clayey in

texture and are derived from trap rocks. The texture of the red soils vary considerably

from place to place and are derived from all groups. More than 50% of the area is

covered by forests. Arable land is of the order of 25%.

14. Krishna and Penner Subzone 3 (h)

The Krishna and Penner Subzone 3 (h) lies between longitudes 73°21' to

80°25' east and latitudes of 13°7' to 19°25' north. This Subzone is catered by the

Krishna and Penner rivers excluding their deltaic strip along the eastern coast. The

Krishna river is the largest east flowing river of peninsular India. It rises on the

eastern side of western ghats about 60 km south of Pune at an altitude of 1337 m. The

river Penner originates in the Chenna Kesabir hill of Nandidoug range in Karnataka

state. The elevation range of its various parts varies from 150 m to 600 m. The total
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drainage area of the Subzone 3(h) is 2,80,881 km2. The Subzone 3(h) has a

continental climate. It is very hot in summer and moderately cold in winter. The

Subzone 3(h) receives about 75% to 80% of annual rainfall from southwest monsoon

during the monsoon season i.e. from mid June to mid October. The variation of

normal annual rainfall over the Subzone 3(h) is from a minimum of 600 mm to a

maximum of 2000 mm. The eastern side of the western boundary receives the

heaviest rainfall. Two broad soil groups of the Subzone are red soils and black soils.

Most of the areas covered by the upper portionof the Subzone are havingblackcotton

soil. The lower portion including northeast side of the Subzone consists of red type of

soil, hi addition, there are pockets of red and black type of soils. The Subzone is

having extensive area under arable land.

15. The Kaveri Subzone 3 (i)

The Kaveri Subzone 3 (i) lies between longitudes 75° 25' to 79°10' east and

latitudes 10° to 14° north. The Kaveri river has its origin in the Brahmagiri range of

the western ghats in Coorg District of Karnataka State. It flows eastwards for a total

length of about 804 km through Karnataka and Tamil Nadu States, before out falling

into the Bay of Bengal. The Kaveri river originates almost at the very edge of the

western ghats within sight of Arabian sea at a height of about 1355 m and flows

eastwards crossing mountain barrier of western ghats. The river falls about 450 m

within a course of 8 km from its source. The upper reaches of the Kaveri and its

tributaries drain the western ghats before flowing over a wide plateau. The eastern and

western ghats fringe the plateau. The Kaveri Subzone has a complex relief. The

general elevations of the plateau vary from 900 to 600 m in the northwestern part and

600 to 150 m in the southeastern part interspersed with higher elevations of 3000 to
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900 m along the western periphery and inside the Subzone. The Subzone experiences

rainfall by both southwest and northeast monsoons during June to September and

October to December, respectively. The normal annual rainfall generally varies with

the decrease in elevation along the eastern side of the western ghats from about 4000

mm to 1000 mm on the eastern side of the ghats in the Subzone. The remaining

portion of the Subzone experiences a normal annual rainfall ranging from 600 mm to

800 mm. The Subzone is generally covered with red sandy soils barring a couple of

areas of red loamy soil on the eastern and northern edges. The soil type varies

considerably from the above mentioned groups. Arable land constitutes about 6% of

the Subzone. About 25% of the Subzone is grass land and scrubs, the rest of it is

covered with forests.

16. East Coast Subzone 4 (b)

The eastern coastal belt, comprising of Upper, Lower and South Subzones

4(a), 4(b) and 4(c) lies roughly between 77° to 80° east longitudes and 8° to 20° north

latitudes. The eastern coastal belt extends roughly from Mahanadi delta to Kanniya

Kumari. The eastern coastal belt covers parts of Orissa, Andhra Pradesh and Tamil

Nadu States and Union Territory of Pondicherry. There are large number of small and

medium coastal streams besides the outfall reaches of Godavari, Krishna, Kaveri,

Vellar, Ponniyar, Pallar and Penner in the eastern coastal belt out falling into the Bay

of Bengal and the Indian Ocean. The coastal streams rise in the eastern ghats and

overflow their banks during the periods of heavy rainfall in their catchment areas.

Similarly the other rivers flowing in the plains also overflow their banks during

floods. The rivers flowing into the Bay of Bengal and Indian Ocean are also affected

by the sea tides near their outfall reaches. The major deltas of Kaveri and Krishna
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form parts of Subzone 4(b). The mean annual rainfall along the coastal plains from

the coast to eastern ghat varies from 1000 to 1200 mm, whereas the mean annual

rainfall in the eastern ghat ranges varies from 1400 to 1600 mm. About two thirds of

the annual rainfall occurs in the northern and middle parts of Subzone 4(b) during the

period of southwest monsoon from June to September. The southern portions of

Subzone 4(b) receive the rainfall from southwest monsoon during June to August and

also from northeast monsoon during September to November. The rainfall during the

northeast monsoon is higher as compared to the rainfall from the southwest monsoon

in the southern portions of the Subzone-4(b). Soils in the eastern coastal belt are

mostly coastal alluvial soils, coastal sandy soils and coastal deltaic soils in the deltas

of Godavari, Krishna and Kaveri. Besides patches of red loamy soils and red sandy

soils are interspersed in the coastal belt. About 70% of east coast belt is arable land.

About 10% of the area is covered with grass land and scrub. The remaining 20% of

the area in this east belt is covered with forest.

17. Sub-Himalayan Region Zone-7

The study area comprises of small and medium sizecatchments of the Sub-Himalayan

region which has been categorized as one of the 26 Subzones of India. The Himalayan

region up to its foot-hills, lying within the great arc passing through Madhopur near

Dara Baba Nanak in the north east between 76° to 96° east longitudes and 26° to 32°

north latitudes has been grouped under Zone-7. This Zone holds a great potential for

generation of hydropower but flood estimation for this Zone is proving to be an

intractable problem as runoff from this region consists of snow melt as well as

rainfall. The areas located in the extreme north and northeast of the zone have

elevation ranging between 7500 to 6000 m. The elevation decreases towards south
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and in the central portion of the zone it varies between 6000 to 4500 m. In the areas

adjoining the river banks the elevation varies between 4500 to 600 m. In the plain

areas of Uttar Pradesh, Punjab and Himachal Pradesh, the elevation varies between

600 to 300 m. In the northern areas of the zone, skelral soil along with saline and

alkali soils are found. The areas around Indus river are covered with mountain-

meadow soils. Sub-mountain soils are located in the central northwest to north east

areas of the Zone-7. The southern areas are covered with brown hill soils. It has

widely varying topographical features; elevation being as low as 300 m over its

southern parts and as high as 7500 m in the mountainous parts of the Zone. The areas

located in the vicinity of Subzone 1 (e) are covered with tarai soils. Nearly 75% of the

area located in north, northeast and southeast of the Zone is a waste land. Small

pockets towards south and southwest of the Zone are covered with scrubs. Forests are

located in the areas northeast and southeastof the Zone. Rice wheat and millets along

with fruits of various kinds are grown over the remaining areas.
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APPENDIX 4.1

LEVENBERG-MARQUARDT ALGORITHM

In mathematics and computing, the Levenberg-Marquardt algorithm (LMA)

provides a numerical solution to the problem of minimizing a function, generally

nonlinear, over a space of parameters of the function (Levenberg, 1944; Marquardt,

1963; Jacoby et al., 1972; Kuester and Mize, 1973; Gill et al., 1981). The algorithm

was first published by Kenneth Levenberg, while working at the Frankford Army

Arsenal. It was rediscovered by Donald Marquardt who worked as a statistician at

DuPont. These minimization problems arise especially in least squares curve fitting

and nonlinear programming.

The LMA interpolates between the Gauss-Newton algorithm (GNA) and the

method of gradient descent. The LMA is more robust than the GNA, which means

that in many cases it finds a solution even if it starts very far off the final minimum.

On the other hand, for well-behaved functions and reasonable starting parameters, the

LMA tends to be a bit slower than the GNA.

The LMA is a very popular curve-fitting algorithm used in many software

applications for solving generic curve-fitting problems.

The primary application of the Levenberg-Marquardt algorithm is in the least

squares curve fitting problem: given a set of empirical data pairs of independent and

dependent variables, (x,, v,), optimize the parameters p of the model curve f(x, /?)so

that the sum of the squares of the deviations

i=l

becomes minimal.



Like other numeric minimization algorithms, the Levenberg-Marquardt

algorithm is an iterative procedure. To start a minimization, the user has to provide an

initial guess for the parameter vector, p. In many cases, an uninformed standard guess

like P = (1,1,...1) will work fine; in other cases, the algorithm converges only if the

initial guess is already somewhat close to the final solution.

In each iteration step, the parameter vector, p, is replaced by a new estimate,

P + 8. To determine 5, the functions f{xt,(i +8) are approximated by their

linearizations

f(xi,p+8)~Kx(,P) + JiS

where J( =—-^— is the gradient (row-vector in this case) of / with respect to p.

At a minimum of the sumof squares, called S, the gradient of S with respect to p is 0.

Differentiating the squares in the definition of S, using the above first-order

approximation of f(xt ,fi + 5), and setting the result to zero leads to:

(JTJ)S = JT[y-f(/3)]

Where J is the Jocabian matrix whose i-th row equals /{, and where f and y are

vectors with i* component f(xt,f3)and Y{, respectively. This is a set of linear

equations which can be solved for 8.

Levenberg's contribution is to replace this equation by a "damped version",

(JTJ +M)8 = JT[y-f(p)]

Where I is the identity matrix, giving as the increment, 8, to the estimated parameter

vector, p.

The (non-negative) damping factor, X, is adjusted at each iteration. If

reduction of S is rapid, a smaller value can be used, bringing the algorithm closer to
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the Gauss-Newton algorithm, whereas if an iteration gives insufficient reduction in

the residual, Xcan be increased, giving a step closer to the gradient descent direction.

Note that the gradient of S with respect to p equals -2(JT[y-f(/3)])T. Therefore,

for large values of X, the step will be taken approximately in the direction of the

gradient. If either the length of the calculated step, 8, or the reduction of sum of

squares from the latest parameter vector, P + 8, fall below predefined limits, iteration

stops and the last parameter vector, p, is considered to be the solution.

Levenberg's algorithm has the disadvantage that if the value of damping

factor, X, is large, inverting JTJ + XI is not used at all. Marquardt provided the insight

that we can scale each component of the gradient according to the curvature so that

there is larger movement along the directions where the gradient is smaller. This

t avoids slow convergence in the direction of small gradient. Therefore, Marquardt

replaced the identity matrix, I, with the diagonal of the Hessian matrix, JTJ, resulting

in the Levenberg-Marquardt algorithm:

(JTJ +Mag(JTJ))8 = JT[y - f (p)].

A similar damping factor appears in Tikhonov regularization, which is used to

j|rv solve linear ill-posed problems, as well as in ridge regression, an estimation technique

in statistics.

Various more-or-less heuristic arguments have been put forward for the best

choice for the damping parameter X. Theoretical arguments exist showing why some

of these choices guaranteed local convergence of the algorithm; however these

choices can make the global convergence of the algorithm suffer from the undesirable

properties of steepest-descent, in particular very slow convergence close to the

optimum.
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The absolute values of any choice depends on how well-scaled the initial

problem is. Marquardt recommended starting with a value Xq and a factor v>l.

Initially setting X=XQ and computing the residual sum of squares S(P) after one step

from the starting point with the damping factor of X=X0 and secondly with X/\. If both

of these are worse than the initial point then the damping is increased by successive

multiplication by v until a better point is found with a new damping factor of A,vk for

some k.

If use of the damping factor X/v results in a reduction in squared residual then

this is taken as the new value of X (and the new optimum location is taken as that

obtained with thisdamping factor) and theprocess continues; if using Xh resulted in a

worse residual, but using Xresulted in a better residual then Xis left unchanged and

the new optimum is taken as the value obtained withXas damping factor.
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