
COMPUTER AIDED DESIGN OF WEIRS 
ON PERMEABLE FOUNDATION 

A DISSERTATION 
Submitted in partial fulfillment of the 

requirements for the award of the degree 
of 

MASTER OF TECHNOLOGY 
in 

WATER RESOURCES DEVELOPMENT. 

M 
NGUYEN VAN KIEV 

0  

OF TEC((0 

DEPARTMENT OF WATER RESOURCES DEVELOPMENT AND MANAGEMENT 
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE -247 667 (INDIA) 
JUNE, 2007 



DEPARTMENT OF WATER RESOURCES 

ss 	 DEVELOPMENT & MANAGERMENT 

INDIAN INSTITUDE OF TECHNOLOGY ROORKEE 
Candidate's Declaration 

------------------------------------------------------------------------------------------------------------
I hereby declare that the dissertation titled "Computer Aided Design of Weirs on 

Permeable Foundation" which is being submitted in partial fulfillment of the 
requirements for the award of Degree of Master of Technology in Water Resources 

Development (Civil) at Department of Water Resources Development and Management 
(WRD&M), Indian Institute of Technology, Roorkee is an authentic record of my own 
work carried out during the period of July, 2006 to June, 2007 under the supervision and 
guidance of Professor G.0 Mishra, WRD&M, IIT, Roorkee. 
I have not submitted the matter embodied in this dissertation for the award of any other 
degree. 

Place: Roorkee 
Dated: June, 2007 

T\k4TT... 
Nguyen Van Kien 

This is to certify that the above statement made by the candidature is correct to the best 
of my knowledge. 

Emerif+ Fellow 
Prof. G.0 Mishra 

F-x Professor 
WRD&M, ITT, Roorkee 

Roorkee-247667 
(India) 

I 



ACKNOWLEDGEMENT 

I take this opportunity to express my profound sense of gratitude and grateful 

regards to Professor G.0 Mishra, Department of Water Resources Development & 

Management, IIT Roorkee for his valuable suggestion and guidance during this 

dissertation work. 
I would also like to express my gratitude to Dr. S. K. Tripathi, Professor& Head 

and all the faculty members of WRD&M, IIT, Roorkee for their valuable suggestions 

during this dissertation work. 

I wish to express my thanks to Center for Irrigation and Water Supply Research, 

Vietnam Institute for Water Resource Research, Ministry of Agriculture & Rural 

Development, Ministry of Education and Training, Government of Viet Nam and 

Government of India for giving me an opportunity to undergo M. Tech course at IIT 

Roorkee. Financial assistance provided by ITEC during the M. Tech course in Water 

Resources Development (Civil) is also highly acknowledged. 

I would like to thank my friends and colleagues who presented me an advice or 

assistance during this work. 

I am also grateful to the staff of the WRD&M who extended all cooperation 

whenever required. 

Last but not the least, I would like to extend my gratitude to my parents, my 

brothers, sisters and my girl friend for their patients and good understanding throughout 

the course of my study. 

Date 	 NGUYEN VAN KIEN 

June, 2007 

II 



CONTENTS 

Page No. 

CANDIDATE'S DECLARATION I 

ACKNOWLEDGEMENT II 

CONTENTS III 

LIST OF FIGURES V 

LIST OF TABLES VI 

LIST OF SYMBOLS VII 

SYNOPSIS VIII 

CHAPTER 1 
1 	 INTRODUCTION 1 

1.1 	GENERAL 1  

1.2 	OBJECTIVE OF STUDY 2  

1.3 	SCOPE OF STUDY 2  

CHAPTER 2 
2 	 REVIEW OF LITERATURE 3 

2.1 	GENERAL 3  

2.2 	THEORETICAL ANALYSIS 4  

2.2.1 	Two Dimensional Flow 4 

2.2.2 	The Schwart — Christoffel Transformation 5 

2.2.3 	Exit Gradient 5  

2.2.4 	Method of Fragment 6 

CHAPTER 3 

3  A STEPPED WEIR ON A POROUS MEDIUM OF FINITE DEPTH 8  
3.1 INTRODUCTION 	 8  

3.2 STATEMENT OF THE PROBLEM 	 9 

3.3 SEEPAGE FLOW ANALYSIS 	 9 

3.2.1 Fragment 1 	 9  

3.2.2 Fragment 2 	 14 

3.2.3 Calculating head loss factor through fragments: 	 20 

3.2.4 Calculating uplift pressure at weir floor 	 20 

III 



3.2.5 	Calculating exit gradient 21 

3.4 RESULT AND DISCUSSION 23 

CHAPTER 4 

A WEIR WITH MULTI CUT - OFFS RESTING ON A POROUS 
4  MEDIUM OF FINITE DEPTH 27 

4.1 INTRODUCTION 27 

4.2 STATEMENT OF THE PROBLEM 27 

4.3 ANALYSIS 29 

4.3.1 	Fragment Type 1 29 

4.3.2 	Fragment Type 2 33 

4.3.3 	Fragment Type 3 46 

4.3.4 	Calculating Head Loss Coefficients Through Fragments 49 

4.3.5 	Calculating Uplift Pressure Acting On Weir Floor 50 

4.3.6 	Calculating Exit Gradient 53 

4.4 RESULT AND DISCUSSION 54 

5 CHAPTER 5 

RESULT AND DISCUSSION 	 57 

REFERENCES 	 59 

IV 



LIST OF FIGURES 
Fig. 

No. 
TITLE 

Page  

No. 

FIG 3.1 A STEPPED WEIR ON PERMEABLE FOUNDATION OF 8 
3.1  FINITE DEPTH 

3.2 FIG. 3.2 STEP OF MAPPING FOR FRAGMENT 1 (CASE 1) 10 

3.3 FIG. 3.3 STEP OF MAPPING FOR FRAGMENT 2 (CASE 1) 15 

3.4 FIG 3.4: DISCHARGE (Q/KH) FOR SYMMETRICALLY PLACED 24 
PILINGS AS A FUNCTION OF S/T AND L/2T 

3.5 FIG. 3.5 INFLUENCE OF THE POSITION OF THE PILING ON THE 25 

DISCHARGE FOR VARIOUS COMBINATIONS OF DEPTH OF 

EMBEDMENT AND SIZE OF STRUCTURE 

4.1 FIG.4.1 A WEIR WITH MULTI CUT - OFFS ' RESTING ON A 28 
POROUS MEDIUM OF FINITE DEPTH 

4.2 FIG4.2 TRANSFORMATION LAYOUT 31 

(FRAGMENT TYPE 1 1(CASE 2) 

4.3 FIG 4.3 — TRANSFORMATION LAYOUT 35 

(FRAGMENT TYPE 2) — CASE 2 

4.4 FIG 4.4 — TRANSFORMATION LAYOUT FRAGMENT TYPE 3 — 47 

CASE 2 

V 



LIST OF TABLES 
Table No. Title Page No. 

3.1 Discharge (q/kh) for symmetrically placed pilings as a function 24 
of SIT and L/2T 
Influence of the position of the piling on the discharge for 

. 3.2 various combinations of depth of embedment and size of 25 
structure 
Influence of saturation depth (T) on potential at point C1 and C2 

3.3 evaluated for L1,L2 25 

VI 



LIST OF SYMBOLS 
A1,2,3, Geometry factors 

C Constant 

ds Depth of step 

F(V,m) Elliptic integral first kind 

IE Exit gradient 

i The imaginary unit 

k Coefficient of permeable 

L Length of weir floor 

L1,L2,L3 Length of fragments 

M Complex constants 

N Complex constants 

P Uplift pressure 

q Quantity of seepage 

S, S1,S21,S22,S3 Depth of sheet pile 

TI,T2,T21,T22,T3 Depths of flow domain under structure 

t Transformation plane 

u Velocity in x-direction 

v Velocity in y-direction 

x Horizontal co-ordinate; 

y Vertical co-ordinate; 

z Complex variable 

w Complex variable 

a Coefficient angle of impervious floor boundary 

al, a2, a3 Head loss coefficient through fragments 1,2,3... 

Coefficient angle of impervious boundary 

0 Velocity potential function 

Stream function 

VII 



SYNOPSIS 
In irrigation engineering, weir is the most extensively used hydraulic structure for 

diversion of river flow. A diversion of water may be required for the purposes of 

irrigation, hydro electric power generation, drinking water supply or industrial, 
navigation, inter basin transfer of water or combination of any of these purposes. 

The problems involved in hydraulic design of structures are linked to surface and 
subsurface flow conditions. In general design of weir on permeable foundation, for a 

given surface flow criteria, the cost of the apron can be minimized with respect to 

subsurface flow consideration to safeguard against undermining, the exit gradient must 

not be allowed to exceed a certain safe limit, the uplift force must not exceed the weight 
of the structures but the floor thickness should be at minimum from economic 

consideration. The provision of sheet piles or cutoffs play an important role in the 

distribution of the uplift pressure. The stability of a weir demands provision of an 

upstream sheet pile and downstream sheet pile to prevent slipping of the soil under the 

weir to anticipated scour holes at the upstream and downstream reaches. Further more, 

the downstream sheet pile prevents undermining but uplift pressures at pucca floor is 

increased with length of downstream sheet pile. Therefore, some intermediate sheet piles 

or cut off walls should be built for decreasing uplift pressure and exit gradient. However, 

the mapping the flow region onto the half-plane becomes complicated when the weir has 

several cut-offs. The number of parameters to be determined increases, since each cut off 

adds three new vertices to flow region. 

The present study is primarily concerned with the analysis of two dimensional 

steady confined flow through isotropic porous media and the evaluation of quantity of 

seepage, pressure and exit gradient distribution for the hydraulic structures with multi 

cut-offs generally constructed in the field. The analysis for confined flows is done by 

applying Schwarz — Christoffel transformation. Analytical method of fragments was 

furnished by Pavlovsky (vide Harr 1962) to analysis uplift pressure distribution on the 

base of structure and exit gradient with composite cut offs. In this study various 

geometry of weir floor and slope of underlying impervious boundary has been 

considered. With known geometry, for any complex hydraulic structure, the uplift 

pressure and exit gradient can be computed using developed software. 

VIII 



CHAPTER 1 

INTRODUCTION 

1.1 General 

In irrigation engineering, weir is the most extensively used hydraulic structure for 

diversion of river flow for the purposes of irrigation, hydro electric power generation, drinking 

water supply or industrial use, navigation, inter basin transfer of water or combination of any of 

these purposes. Type and shape of weir differ from one place to other, depend on available 

materials of construction, type of soil foundation and hydrology of the river. 

The designs of the diversion structures are to be carried out in two parts, namely 

hydraulic and structural. In the hydraulic designs, overall dimensions and profiles of main 

structure and a few of the components are worked out so that satisfactory hydraulic performance 

of the structure can be ensured. In structural designs, the various sections and reinforcement 

wherever needed are worked out. Details are then worked out to have a structure which will be 

safer under any possible and probable combination of loading. In both the cases, the diversion 

structure has to be properly designed for both the surface and sub-surface flow condition. The 

surface designs will include the fixing up of waterway, top profile of various structures energy 

dissipation arrangements, protection works, safeguard against scour, .length and protection of 

divide walls alignment, levels and protection of guide bunds, afflux bunds, etc. The subsurface 

designs includes fixing of the depth and section of cutoffs, uplift pressure calculation and 

computation of exit gradient, etc. Many structures failed in the past by undermining through 

piping due to excessive exit gradient, eruption of floor caused by uplift pressure exceeding 

gravity force, deep scour in.the immediate vicinity on upstream or downstream of the impervious 

floor etc. In fact the modern designs of diversion structures have been developed from analysis 

of these failures. 

As a weir is founded on porous medium, therefore, in addition to drag forces on account 

of the surface flow it is subjected to lift forces due to seeping of water under the weir foundation. 

The provision of sheet piles plays an important role in the distribution of the uplift pressure 

under the floor. The sheet piles at upstream and downstream ends of the impervious floor should 
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be designed against scour due to surface flow conditions. The maximum depth of scour at a 

particular location depends upon the type of structure, and the curvature of the river. For given 

surface flow criteria, the pressure distribution under the floor and exit gradient, which depend on 

the length and geometry of the floor, depth and number of sheet-piles, depth of porous medium 

and others. However, calculation uplift pressure and exit gradient become complicated when the 

weir has several cutoffs, as is apparent from paragraph the number of parameters to be increases, 

since each cutoff add two or three new vertices to the law of transformation. An approximate 

analytical method of solution for any confined flow system of finite depth, directly applicable to 

design, was furnished by Pavlovsky in 1935 (vide Harr 1962). The fundamental assumption of 

this method, called the method of fragment, is equipotential lines at various critical parts of the 

flow region can be approximated by straight vertical lines that divide the region into fragments 

or sections. By method of fragment the complexity of transformation is simplified and, the uplift 

pressure distribution under weir floor and exit gradient can be easily obtained. 

1.2. Objective of Study 

The present investigation is primarily concerned with two — dimensional steady confined 

flow through foundation of a weir resting on a pervious foundation with finite depth, the 

impervious boundary may dip upstream or downstream or it may be horizontal. The Schwarz — 

christoffel, transformation, and method of fragment are used for analyses. 

1.3. Scope of Study 

In this study, an attempt has been made to study the uplift pressure distribution under 

weir floor and exit gradient. The following hydraulic structures have been studied: 

• (i) 	A depressed weir resting on porous medium of finite depth. 

(ii) 	A weir having multi vertical cutoffs and resting on porous medium of finite depth. 

The underlying impervious boundary is not horizontal, either the upstream flow 

domain or the downstream flow domain has a triangular shape. 

The solutions of the above cases have been obtained with the help of conformal mapping and 

numerical integration, King method (vide Zhang Shanjie) have been used to carry out the elliptic 

integral. A computer programming in C++ has been developed. 
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CHAPTER 2 

REVIEW OF LITERATURE 

The subject of flow of water through soil is of prime importance in the design, 
construction and operation of hydro-engineering installations. From the time Darcy established 
the linear relationship between discharge velocity and hydraulic gradient, this field has been 
enriched by the contribution of several investigation and many field problems have been 
analysed. 

Confined flow under a weir having a vertical sheet piles and resting on a horizontal layer 
of porous medium underlain by either a horizontal impervious stratum or a draining layer was 
investigated by Muskat, .1937; Pavlovsky (vide Harr, 1962) 

Chawla (1967) computed the exit gradient and uplift pressures at the key points of 
hydraulic structures by changing the length of both upstream and downstream pervious reaches. 

The study of uplift pressures on depressed weir floors with downstream vertical cutoff 
was conducted by Surendra Kumar (1968) by electrical analogy. He has studied the effect of 
different lengths of pervious medium upstream and downstream of the structure. 

Verigin (vide Harr 1962), Mishra (1972), Basu (1976) and many other have analysed the 
confined flow under a weir laid on permeable foundation for various shape of the foundation 
floor by using Schwarz — Christoffel conformal mapping technique. 

Several methods are applicable to calculate seepage characteristics of various confined 
flow systems. Although closed-form solutions exist for special structures with two, three, and 
even four sheet-piles, the resulting expressions are generally too complicated for engineering 
use. Theoretically the solution exists for any configuration; however, with each additional 
sheetpile or alterlation in contour of the structure the flow domain adds two or three new vertices 
to the Schwarz — Christoffel transformation and hence necessitates the evaluation of hyper 
elliptic integrals. Some approximate method of solution for confined flow problems are: 
Graphical Flow Net, Electrical Analogue, Viscous Flow Models (Hele — Shaw Model), Relation 
Method, Method of Fragment etc. 

In this study we apply an approximate analytical method of solution for any confined 
flow system of finite depth, directly applicable to design, which was proposed by Pavlovsky 
(section 2.4) to analysis seepage flow under weir -structure. 
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2. THEORETICAL ANALYSES 

2.1 Two dimensional flow: 

Physically, all flow system extend in three dimensions. However, in many problems the 
features of groundwater motion are essentially planar, with the motion being substantially the 
same in parallel planes. For this problem, the flow system can be simplified as two-dimensional 
flow. 

The equation of continuity for a two dimensional steady flow is 

au 8v 
ax+ay= 0 	 (2.1.1) 

in which 

u, v = discharge velocities in x and y directions, respectively. From generalized Darcy's law, 

Oh 00 aip 
u = —kx 8x ax a 	 (2.1.2) 

Y 

Oh 00 aip 
v = —k y  ay  = = — ax 	 (2.1.3) 

kX, ky  = Principle coefficients of permeability in x and y directions, respectively. In case 
of isotropic soil kX ky=k 

h = Total head = 
(VW
p+ y) 

cD= velocity potential = —kh + c 

Then the continuity equation becomes 

0 20 320 —+ —=
8x2 

 
0 0y2   (2.1.4) 

A combination of the function cP and 	is called complex potential and defined by 
w=q5+iii 

Much of the analytical method for the solution of two-dimensional ground water 
problems is concerned with the determination of a function which will transform a problem 
from a geometrical domain within which a solution is sought into one within which the solution 
is known. We shall consider the more general method of finding a functional relationship that 
provide a specific transformation. 
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Let to =i + ii be an analytic function of z = x + iy and a geometrical 
representation of co = f (z). 

2.2. The Schwarz — Christoffel Transformation: 

In ground water problem, where it is often necessary to determine the seepage 
characteristics within complicated boundaries, solving the flow problem by drawing flow net is 
far from satisfactory. Theoretically, a transformation exists which will map any pair of simply 
connected regions conformally onto each other. This is assured by the Riemann mapping 
theorem. 

If a polygon is located in the z plane, then the transformation that maps it conformally 
onto the upper half of the t plane (t = r + is) is: 

f 	 dt  
z= MJ A 	 B 	 c +N 	 (2.1.5) 

(t — a)'---(t — b)i-n(t — c)1-  7t ... 

where M and N are complex constants A, B, C,....., are the interior angles (in radians) of 
the polygon in the z plane and a,b,c...(a < b <c <...) are points on the real axis of the t plane 
corresponding to the respective vertices A, B, C, .... The parameters a, b, c, and constants M and 
N are determined from the geometry of the flow domain. 

2.3. Exit gradient: 

The exit gradient is the hydraulic gradient of the seepage flow under the base of the weir 
floor. As the rate of the seepage increases in exit gradient, and such an increase would cause 
boiling of the surface soil and the soil to be washed away by the percolating water The flow 
concentrates into the resulting depression thus removing more soil and creating progressive scour 
backwards. This phenomenon is called piping and eventually undermines the weir foundations. 

Criteria for safety against piping is not the average hydraulic gradient as enunciated by 
Blight (1916). Water has a certain residual force at each part a long its flow through the subsoil 
which acts in the direction of flow and is proportional to the hydraulic gradient at that point. At 
the tail end, this force is obviously upwards and will tend to lift up the soil particles if it is more 
than the submerged weight of the latter. The frictional resistance, cohesion, etc., of the adjacent 
soil will have to be considered in certain cases. Once the surface particles are disturbed the 
resistance against upward pressure of water will be further reduced, tending to progressive 
disruption of the subsoil. The flow gathers into a series of pipes in the latter and dislocation of 
particles is accelerated. The subsoil is thus progressively undermined. Soil erosion can also occur 
through natural pipes or faults in subsoil. The factor of safety has to take note of the class of 
material, specific weight and pore space, angle of faint in the subsoil. 
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The seepage force per unit volume is proportional to the hydraulic gradient as 

F = Yw (8s) 	 (2.1.6) 

The submerged unit weight of the soil (Ws) is 

Ws= (
Gs-1 
1+e)Y'=Yw(1— n)(Gs -1) 	(2.1.7) 

where: 	Gs = the specific gravity of soil particles 

n = the porosity 

e = the void ratio 

yw  = the specific weight of water. 

In the critical condition, the upward force will be just balanced by the submerged unit weight of 
soil. Thus the critical gradient Icr  will be found as follows: 

F 	= Ws 

Yw  (ah) = yw (1 — n) (Gs — 1) as 

(as) = (1 — n)(Gs — 1) 

Icr  = (1 — n) (Gs — 1) 
	

(2.1.8) 

2.4. Method of Fragment: 

For solving Laplace equation by conformal mapping method Schwarz — Christoffel 
transformation is used. However, for the complicated apron profiles with multiple sheet piles, 
solution by Schwarz — Christoffel transformation has been found to be difficult. An approximate 
analytical method of solution for any confined flow system of finite depth, directly applicable to 
design, was furnished by Pavlovsky in 1935. The fundamental assumption of this method called 
the method of fragment, is that equipotential lines at various critical parts of the flow region can 
be approximated by straight vertical lines that divide the region into fragment or section 

Suppose, now that we can compute the discharge in the mth  fragment as 

khm  
q= 

	

	 m=1,2,...n 	 (2.1.9) 
m 

Where 

M 



hm=head loss through fragment, 

4m = dimensionless form factor 

Then, since the discharge through all fragment must be the same 

khlkhzkhm_..._khn 	 (2.1.10) 
03. 	02 	1 m 	On 

Jim q = k 	= ~n kh~m 	 (2.1.11) 
m=1 

Where h (with out subscript) is the total loss through the section. By similar reasoning we 
find that the head loss in the mth fragment can be calculated from 

_ hom Jim  n 
Lim=z 'Pm 

(2.1.12) 

Once the head loss for any fragment has been determined the pressure distribution on the base of 
the structure and the exit gradient can be easily obtained. Thus the primary task is to implement 
this method by establishing a catalogue of typical form factor. 
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CHAPTER 3 

A STEPPED WEIR ON A POROUS MEDIUM 

OF FINITE DEPTH 

3.1 INTRODUCTION: 

Analysis of flow under a stepped weir with a sheet pile resting on a porous medium of 
finite depth has been presented by Khosla, Bose, and Taylor. In nature, the thickness of subsoil 
porous layer is always finite. The uplift pressure acting on the base of the structure is governed 
by the thickness of this layer. We analyses the flow under weir resting on a porous medium. of 
finite depth. The flow domain is decomposed into two fragments and conformal mapping 
technique is applied. 

FIG 3.1 A STEPPED WEIR ON PERMEABLE FOUNDATION OF FINITE DEPTH 
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3.2 STATEMENT OF THE PROBLEM: 

The weir resting on permeable foundation of finite depth hasthe following dimension: 

Height of water at upstream of weir 
- Height of water at downstream of weir 
- Difference of hydraulic head between upstream and downstream 
- Length of weir floor of fragment 1 
- Length of weir floor of fragment 2 
- Total length of weir floor 
- Depth of step 
- Depth of sheet pile 
- Discharge per unit width of weir 
- Coefficient of permeability of the homogeneous isotropic soil 

h, 
h2  
h 

L1 
L2  

L=L1 +L2  
ds 
S 

q 
k 

3.3 SEEPAGE FLOW ANALYSIS 

3.3.1 FRAGMENT 1: 

3.3.1.1 Mapping of the flow domain in z plane onto t plane z = fl(t) (Fig 3.2a) 

According to Schwarz - Christoffel transformation, the mapping function is 

dz 	M  
1 

t(1 - t)2 

fo

tdt
or z(t') = M 	x  + N =%M sin-1  + N 

 t2(1-t)z  
(3.1.1.1) 

where M, N are constants 



(a) z — Plane (z = x + iy) 

-co 	-b1 	0 	d1 	1 	+o0 

,Al 	::B1 ; 	Cl ,'.D1 :,: ;_ ..E1 	Al 

(b) t —Plane (t = r + is) 

- kh 

B1f 	Cl 	ID1 	 j 	1$ 

4) 

(c) w —Plane (w = 0 + it') 
FIG. 3.2 STEP OF MAPPING FOR FRAGMENT 1 (CASE 1) 
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(i) For point C1, t=0, and z(t) = zci; hence N=0 

Hence z(t') = 2M sin'Vi  

(ii) For point El, t = 1, Z(t) = ZE  = iT 

hence, 	iT = 2M sin-' VT or, 	ZE1  = Mn 

then M= IT 
It 

(iii) For point D1, t = dl, and ZD1  = i(ds + s) 

Hence, i(ds  + s) = Z`—T  sin-1  di n 

( n(ds+s)  Z 
or, 	dl  = isin C 	2T Ji 

(iv) 	For point B1, t = -b1, Z(t) =ZB1= -Li 

Hence, 	-L1  = UT —sin-1  -bl  n 
xx 

[Note i 2  = --1, 	Sin(ix) = isinh(x), 	sinh(x) = e z 

Simplifying, we get 

Lll  2 
b1  = 

[
sinh (2T)l 

3.3.1.2 Complex potential plane w = f2 (t) 

The transformation of the polygon in w plane onto t plane (Figure 3.2 c) is given by 

dw 	M1  
1 dt - (-b1  - t)1(d1  - t)z(1  - t )i 

f t 	M 
or,w =J1  , 1 	i +N1 

-(-b1 - t)z(d1 - t)z(1-t)z 

where Ml  and Nl are constants 

(a) Integration along flow boundary A1B1 (-oo < t <_ -bl) 
(i) 	For point A1, t = -oo, w = iq - kh 

(3.1.1.2) 

(3.1.1.3) 

(3.1.1.4) 
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(ii) 	At point B1 , t = -b1, w = -kh, hence 
1 1  11 

 J 	 1 
111 

1 	1 +iq-kh 
- (-b1 - t)z(di - t)z(1- t)z 

M1-bl 	 dt 
q =— i I 	 1 	1 	1 

°° (-br - t)?(d1 - t)z(1 - t}z 

Performing the integration (Byrd and Friedman, 1971) 

q = - M1 9F(~P, m) 

where , g = 2  
1+b1 1FLI +-b 

7r 
~p = 	

_
sin 

	2 ' 
/1- d1 

m= 1 + b1 

Hence, 

2M1 i F(7r JL1- di 

	

a_ 1+b1 	2'41 +b1 

(b) Integration along flow boundary B1D1 (-bi <_ t <- d1) 
(i) At pointB1,t=-bl,w =-kh 
(ii) At point D1, t = 1, w = -aikh 

Hence 

d1 	dt 
-ai kh = Mi 	1 	1 	1 - kh. 

bi (1— t)z(d1 — t)(—b1 — t)z 

d 
or, -c 1 kh = MZ f 	dt1 	1 -- kh 

b (1 - t)z(d1 - t)2[t - (-b1)J2 

Performing the integration (Byrd and Friedman, 1971) 

-oci kh = MZ gF(cp, m) - kh 

1+b1 it  

	

9 	1+b1' 
	1+b1 2' m = 1+12 

(3.1.2.1) 
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Therefore, 

a kh = M'~ 2 F ~c J~dj + bl 
kh 

1 	i2 1+b1 2'1+b, 

i.e. M1 = 
iz(1—ccl )kh 1 + bl 

2F n dl + b1 
 1+b1 ) 

(3.1.2.2) 

Seepage'discharge is positive then, substituting value of M1 into (3.1.2.1). we have 

q = (1—al)kh (3.1.2.3) 

letting, Al = 
F n 1—d1 2' 1+b1 

rc d1 + b1 
F 2' 1+b1 

then, 	q = (1—oc1)khA1 (3.1.2.4) 

(c) Integration along floor boundary B1C1 (—b1 <— t < 0) 
(i) At point B1, t = -bi, w(t) = -kh 
(ii) At point C1, t = 0, w = w(C1) 

0 
 dt 

w(C1)=M1 f  	 —kh 
bl (1— t)z(di — t)(—b1 — t)z 

0 

or w(C1 ) = Ml 	dt 	
— kh 

fb (1— t)z (d1 — t)z[t — (—b1)] 
Performing the integration (Bryd and Fried man, 1971) 

w(Cl ) = M1 gF(cp,m) — kh 

 

2 b1  d1 + bl 
- 

g= 1f b 	
cp= sin 1 dl+b~,m= 1+b~ s 

or, w(C1) 	Ml 	2 	-1 	b1 	dl + bi — kh _ 

	

1 ± b1 F sin 	dl + b1' 1 + b1 

(3.1.2.5) 

(3.1.2.6) 
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Substituting Ml from (3.1.2.2) into (3.1.2.6) we have 

 1d,+b1(sin-' F J~—b 
1 + bl ' 1+b1  

w(C1) _ (1 -al )kh 	 - kh 
d1 +b1

F(E2'~T+—b, 

3.3.2. FRAGMENT 2: 

3.1.1.1 Mapping of the flow domain in z plane onto t plane z = f, (t) (Fig 3.3a) 

(3.1.2.7) 

According to Schwarz - Christoffel transformation the conformal mapping of fragment 2 in Z 
plane onto the auxiliary t plane is given by 

dz 	M 
dt t2(t — c2)1!2 

fo
t 	dt 

or, z= M
O 1 
	+ N 	 (3.2.1.1) 

 tZ(t - c2)1/2 

Where M, N are constants. 

(a) Integration along boundary A2B2 and A2C2 (0 <_ t <- bZ and 0 _< t < c2) 
(i) For point A2, t = 0, z = z,2, hence N = ZA2 
(ii) For point B2, t = b2, z = ZB2 
(iii) For point C2, t = c2, Z = Z 2 

fo

t 	dt 
z(t)=M 1 	+ZA 

 t2(t — C2)1/2 

fo

rdt
or 	z(t ' ) = M 	 + ZA 	 (3.2.1.2) 

tz(-1)1~2(t — c2)112 

Setting t = c2 sin2r, dt = 2c2 sinr cos r dr 

Substituting to the equation (3.2.1.2) we have 

z(t) = M 
t 2c2 sin r cos r dr 

i j (./)2  sin r cos r o 

-~t M 
 fo

sin cZ
+ZA2 = 2— dr 
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T-ds 4 : ~ 

• e 
; 

_I j= q . 	,e •:, 

i A2 a 	'•. 	_ ~• . 	E2 

Y 

(a) z — Plane (z = x + iy) 

co 	0 b2 c2 	1 +CO 

E.2- 	 -'.A2: °. B2 	C2 	D'2 	"E2 

(b) t Plane (t = r + is) 

B2 	C2 	ID2 

i q —o 
.'-a° a 	.< 

—s . . a 

' 

E2 
akh 

(c) w —Plane (w = + iyr) 
FIG. 3.3 STEP OF MAPPING FOR FRAGMENT 2 (CASE 1) 

2M 	t 
z(t) _ -- sin-' — + ZA 

i 	cz 
(3.2.1.3) 

Replacing values of t = b2 and t = c2 to (3.2.1.3) we have 
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2M _1 bz 
ZB2 = i sin C + zAz 

2M_1f~7 	MIT 
zC2 = l sin 	 + zA2 = l + ZA2 

z 	z - Mac or M = i(zcz - ZA2) = T - ds 
C2 A2 	

it 	 it 

Therefore, 

2M 	b2 	 2M 	bz 
ZCZ — ZB2 = — 7r — sin-' — and ZB2 — ZA2 = —sin-1 -  

i 	Cz 	i 	cz 

From z-Plane, we have 

ZB2 — ZA2 = —i(T — d, — s) 	and ZC2 — ZB2 = — iS 

From the equations (3.2.1.6) and (3.2.1.7) we have the ratio 

rr b 

(3.2.1.4) 

(3.2.1.5) 

(3.2.1.6) 

(3.2.1.7) 

it - 2 sin-1 	z 

ZC2 - ZB2 	 c2 	simplifying, 	n(T - ds - s) = sin-1 bz 

ZB2 - ZAZ 	2 sin-1 bZ 	
2(T - ds) 	cz 

c2 

therefore, 

	

bZ 	2 rn(T — ds — s)1 

=sin I z Td) J 	
(3.2.1.8) 

	

2 	( -- s 

(b) Integration along weir floor boundary C2D2 (c S t S 1) 
(i) For point C2, t = c2, z = ZC2, hence N = ZC2 
(ii) For point D2, t = 1, z = z02 

t 	dt 	 (3.2.1.9) 
Z(t) = M J 1 	1 + ZC2 

tZ(t — C2)2 

t (3.2.1.10) 
z(t) = 2M cosh-1 -- + ZC2 

cz 
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(3.2.1.11) 
ZD2. = 2M cosh-1 Z + ZC or ZDZ - Zc2 = 2M cosh-'- 1 

4 C2 	 c2 

[ note cosh-1 x = In (x ± xz - 1)] 

From z-plane, we have ZD2 - ZCZ = L2 hence, 

1 
Lz = 2M cosh-1 - 

cz 

or, L2 = 2(T - ds) cosh-' 1 
it 	cz 

(3.2.1.12) 

cosh 1̀ 	= In± 1 - 1 substituting to the equation (2.1.12)we have 
cZ 	c2 	cZ 

rc 	 k 

)  f~22(T - d 
_ 

s) 	cz 

Therefore, 

(3.2.1.13) 

7rL2 

 fZ2 
e z(T-ds) - 	+ — - 1 	 (3.2.1.14) 

 ~z 

By an iteration we get the value of c from (3.2.1.4) and substituting the value of c in 
equation (3.2.1.8) we get the value of b. 

3.3.2.2 Complex potential plane w = f2 (t) 

The transformation of the polygon in the mapping of w plane onto t plane (Fig 3.3 c) is given by 

	

dw 	M1dt 
dt (t -1)Z(t - bz)Z tZ 

t 	M~dt 

	

or,w(t) _ 	 1 	1 1+N1 
fo (t _ 1)2(t — b2)2 tz 

where Ml and Nl are constants 

(a) Integration along boundary A2B2 (0 <- t S b2) 
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(i) At point A2, t = 0 , w(t) = —oc1 kh + iq, 
(ii) At point B2, t = b2 , w(t) _ —oci kh 

Applying these condition in above equation 

b2 
—ai kh = f

o
1 	11 — akh + iq 	 (3.2.2.1) 

 (1 — t)z(b2 — t)ztz 

	

fo
b2 	 dt 

q= M1i 	 1 	1 1 	 (3.2.2.2)  (1 — t)2(b2 — t)?tz 
Performing the integration (Bryd and Fried man, 1971) 

q = M1igF(co, m) 
Where  2,  (3.2.2.3)  

Hence, 

q = 2'M1 i F (2 , bZ ) . 	
(3.2.2.4) 

(b) Integration along floor boundary B2D2 (b2 S t <1) 
(i) At point B2, , t = b2, w = —a, kh 
(ii) At point D2, t = d2, w = 0 
Applying these conditions 

J
t' 	Midt 

o = 	1 	1 1 	«ikh 	 (3.2.2.5) 
b (t — 1)z(t — b2) tz 

M1 1 t' 	dt 	- 
or, 	0 =

/~ 	 1 	1 1 — 0(1 kh 	 (3.2.2.6) 
y 1 b (1 — t)2(t — b2)'t - 

or, 	ai kh= 
~ 	 1 	1 1 	 (3.2.2.7) 
V 1 b (1 — t)Z(t — b2)2 tz 

Performing the integration (Bryd and Fried man, 1971) 

oci kh = 	gF (cp, m) (3.2.2.8) 
=2 

where 	• 	q' = Z 
( m=/1—b2 
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i.e. Ml =a1 
kh 2F 	1— b) 	 (3.2.2.9) 

 
Substituting the value of Ml from (3.2.2.9) to (3.2.2.4) we get the value of q 

q =a1 kh F \' bz~ 
F (2, 1—b2) 

F(
~c 
Z , bZ ) 

letting, A2 = 	therefore, 	q =az khA2 
F ~2 ,—b2 

(3.2.2.10) 

(3.2.2.11) 

( c) Integration along boundary B2C2 (b2 S t _< c2) 

(i) At point B2, t = b2 , w = —ocl kh 
(ii) At point C2, t = C2, W = WC2 

Applying these conditions in w(t) plane 

	

c2 	Mldt 
w(C2).= 	1 	1 1 — akh J 

b2 (t — 1)2(t — b2)ZtZ 

MI ( c2 	dt 

b2. (1 — t)a(t — b2)z to 

Performing the integration (Bryd and Fried man, 1971) 

M1 
w(C2) = 	gF(co11 ml) —oc,. kh 

where g = 2, q= sin-1 1 — b z , 	m1 = 1 — b2 
z 

hence, 

	

 2W!1 	i w(CZ ) _F "sin-1FL2b2,  

Substituting value of Ml from (3.2.2.9) to (3.2.2.12) we have 

(3.2.2.12) 
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F sin~1 1 _ ~2 , 1 — b2 
w(C2 ) =oc1 kh 	 — akh 	 (3.2.2.13) 

F(2, 1— b2) 

3.3.3. CALCULATING HEAD LOSS FACTOR THROUGH FRAGMENTS: 

From equation 3.1.2.4 and 3.2.2.11 we have the value of q 
F(/) 

q =ocl kh AZ where AZ = 	bZ 	 (3.3.3.1) 

F (2 , 1—b2) 
r~. 1 —d1'\ 

F 2' 1+b~ 
q = (1—a1 )khA1 where Al = F 

	+ b 	
(3.3.3.2) 

2' 1+b1)  
Dividing (3.3.3.1) by (3.3.3.2) we have 

oc1 AZ 
 1-0(1A1 

 A2 or, 	1 — a =oc1 A i 
A1 

0c,  A, + Az 	 (3.3.3.3) 

q _ AjAZ kh 	 (3.3:3.4) 
Al +AZ 

With given characteristics of weir foundation profile, characteristic of soil and impervious 
boundary, total head of water . We can easy find out head loss factors and discharge per unit 
width of weir by computer programming. 

3.3.4. CALCULATING UPLIFT PRESSURE AT WEIR FLOOR: 

For design purposes, we need to know the pressure distribution acting along the various 
sections of the structure and the magnitude of the exit gradient. Along the contour of the 
structure iJ.' = 0, and w = 0 , where the velocity potential function 0 is given by 

(3.4.1) 

Let an origin be chosen at the step (point C1 ) 
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let C = k(h2 — ds ), in that case 0 along downstream base D2 E2 = 0 and 0 along the 
upstream base A1B1 = —kh, the uplift pressure acting on the impervious floor is given by 

Yw  0 
— +(h2 — 

ds) + y 

 
(3.4.2) 

We have the values of w at points C1 (eq.3.2.1.7), D1 (or B2) and C2 (eq. 3.2.2.13) therefore, 

	

F sin's 	bl dl + bl dl + bl ' 1+b1  
ci(C1 ) = (1 —oc1)kh 	F 	d + b 	~" kh 	 (3.4.3) 

' 1+b1 

çb(D1) = O(B2) = —alkh 	 (3.4.4) 

F(sin' 1 _ bz , 1 — bz 
4)(C2) =a1 kh 	 ocl kh 	 (3.4.5) 

 (', —b2) 
Substituting (3.3.3), (3.3.4) and (3.3.5) to equation (3.4.2) we have value of uplift pressures at 
the particulars points 

-1  1dl +bi

pcl  
F sin 

~T_b 
l + b1' 1 + b1 

Yw h — (1—al)h 	 d +b 	
+ (h2 — ds) 

F 2' 1+b1 

Yci= 0 

-D1 =a1kh+(h2.—ds )+(s+ds )=aikh+h2 +S 
Yw 

YDi =S+ds 

(3.4.6) 

(3.4.7) 

pcz =oc1 h —ocl h L-  
Yw 

Ycz = ds 

F sin-1FC2 b z' 1- bz 
+ h2 

F(, /1 — b2) 
(3.4.8) 

3.3.5. CALCULATING EXIT GRADIENT: 

Let the complex potential w = 95 + ii/i be analytic function of the complex variable z 
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dwdo alp then, 	=  dz 	Ox + Lax 	
(3.5.1) 

Substituting the velocity components, yields the complex velocity 
dw 
dz =u — iv 

Along the downstream horizontal boundary u = 0, hence 

dw_ 
dz = — iV 	

(3.5.2) 

From Darcy's Law 

v=—IEk (3.5.3) 

Substituting (3.5.3) in (3.5.2) 
dw= i1Ek therefore IE  = 1 dw 1 dw dt (3.5.4) 
dz 	 ik dz ik 	d t dz 

The exit gradient is computed from Fragment 2 
From analysis of fragment 2 

dz _T—ds 	1 
— 	1 	 (2.5.5) dt 	7r t2(t  — C )1!2 

dw 	M1  
dt (t-1)2(t—b)ztz  

i M1  =oc1  kh 	hence 
2F (Z , 1—b2 ) 

dw 	 i 	 1 — =oc1  kh 	n 	 1 	1 1 	 (2.5.6) dt 	2F (, 1— b2) (t — 1)2(t — b)z to 
Substituting eq. (3.5.6)and eq. (3.5.5) in eq.(3.5.2) we have, 

i 
1 	 i 	 1 	irtz(t — c)1 / 2  

IE  ik a1 kh  2F (7r,  1— b2 ) (t —1)z(t  — b)2 tZ  (T — ds) 

it
a1h 
	(t —c)1/ 2 

IE = 	 2.5.7   ( 	) 
2(T —ds)F(Z , 1— b2)(t— 1)(t— b) 

IE 	TL a1  h 	(t — c)112  
(2.5.8) 

2(T — ds)F (2, 1— b2 ) (t —1)z(t — b)2 
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Substituting some value of t> 1, we can have values of exit gradient through foundation 
structure. 

3.4 RESULT AND DISCUSSION: 
Variation of q/kh with SIT is presented in the Figure 3.4. As a length of sheet pile 

increase, the seepage quantity decreases and at S/T=1, q/kh = 0. This result is in agreement with 
those given by Pavlopsky. The quantity of seepage decreases as either the depth of sheet pile or 
the weir increases; How ever the benefit to be gained by increasing the depth of sheet pile 
embedment is seen to decrease sharply as the ratio of width of the weir and thickness of the 
permeable foundation layer. Thus little or no material advantage is to be gained by increasing the 
piling depth for ratio L/2T > 1 unless the piling can be driven into the impervious base. This is 
particularly noteworthy, as with increasing depths of driving the risk of faulty connections 
between the individual piling sections is also likely to increase. 

For different floor length and position of cut off, the seepage variation with L1/L is 
presented in Figure 3.5. At the position of cut off has little influence on the magnitude at seepage 
loss. However, cut off position is important for controlling the exit gradient. If a cut off is not 
provided at the downstream end, the exit gradient becomes infinite which is not safe for the 
hydraulic structure. 
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Table 3.1 Discharge (q/kh) for symmetrically placed pilings as a function of S/T and L/2T 
S/T b/T=0 b/T=0.25 b/T=0.5 b/T=0.75 b/T= 1 b/T= 1.25 b/T=1.5 

0.00 0.7428 0.5332 0.4200 0.3470 0.2956 0.2576 
0.05 1.2509 0.7364 0.5314 0.4191 0.3464 0.2953 0.2573 
0.10 1.0298 0.7185 0.5263 0.4166 0.3449 0.2942 0.2565 
0.15 0.8999 0.6924 0.5181 0.4125 0.3423 0.2924 0.2552 
0.20 0.8072 0.6615 0.5071 0.4069 0.3388 0.2900 0.2533 
0.25 0.7346 0.6284 0.4939 0.3998 0.3343 0.2868 0.2509 
0.30 0.6747 0.5949 0.4787 0.3914 0.3288 0.2829 0.2480 
0.35 0.6233 0.5619 0.4621 0.3817 0.3225 0.2784 0.2446 
0.40 0.5780 0.5298 0.4443 0.3710 0.3153 0.2731 0.2406 
0.45 0.5373 0.4988 0.4257 0.3593 0.3072 0.2672 0.2361 
0.50 0.5000 0.4689 0.4064 0.3466 0.2984 0.2607 0.2310 
0.55 0.4653 0.4400 0.3865 0.3331 0.2887 0.2534 0.2253 
0.60 0.4325 0.4117 0.3661 0.3187 0.2782 0.2454 0.21.90 
0.65 0.4011 0.3840 0.3452 0.3034 0.2667 0.2366 0.2120 
0.70 0.3706 0.3565 0.3237 0.2872 0.2544 0.2269 0.2042 
0.75 0.3403 0.3288 0.3013 0.2698 0.2409 0.2161 0.1955 
0.80 0.3097 0.3004 0.2777 0.2510 0.2259 0.2041 0.1856 
0.85 0.2778 0.2704 0.2522 0.2302 0.2089 0.1902 0.1740 
0.90 0.2428 0.2372 0.2232 0.2059 0.1888 0.1733 0.1599 
0.95 0.1999 0.1961 0.1865 0.1743 0.1619 0.1504 0.1402 
1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1.40 
h 	i 

1.20  

1.00 	 -4- L/2T=0.00 

0.80 	 -t- L/2T=0.25 
a 	 -*- L/2T=0.50 

0.60 	 -.- L/2T=0.75 
0.40 L/2T1.00 

--0 L/2T=1.25 
0.20  

-1- L/2T=1.50 

0.00 

0.00 	0.20 	0.40 	0.60 	0.80 	1.00  

S/T 

Figure 3.4: Discharge (q/kh) for symmetrically placed pilings as a function of i/ I ana LIZ I 
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Table 3.2 Influence of the position of the piling on the discharge for various combinations of 
depth of embedment and size of structure 

L1/L L/2T=1/4 L/2T=1/2 

SJT=1/4 S/T=1/3 S/T=1/2 S/T=1/4 S/T=1/2 

0.00 0.59064 0.54035 0.44834 0.45948 0.37372 

0.05 0.59830 0.54646 0.45210 0.46888 0.38009 

0.10 0.60505 0.55197 0.45552 0.47623 0.38579 

0.15 0.61088 0.55687 0.45859 0.48173 0.39078 

0.20 0.61578 0.56111 0.46129 0.48576 0.39504 

0.25 0.61980 0.56470 0.46360 0.48866 0.39859 

0.30 0.62298 0.56762 0.46551 0.49074 0.40144 

0.35 0.62539 0.56989 0.46700 0.49219 0.40362 

0.40 0.62707 0.57150 0.46807 0.49314 0.40515 

0.45 0.62806 0.57247 0.46872 0.49368 0.40606 

0.50 0.62839. 0.57279 0.46894 0.49385 0.40636 

0.55 0.62806 0.57247 0.46872 0.49368 0.40606 

0.60 0.62707 0.57150 0.46807 0.49314 0.40515 

0.65 0.62539 0.56989 0.46700 0.49219 0.40362 

0.70 0.62298 0.56762 0.46551 0.49074 0.40144 

0.75 0.61980 0.56470 0.46360 0.48866 0.39859 

0.80 0.61578 0.56111 0.46129 0.48576 0.39504 

0.85 0.61088 0.55687 0.45859 0.48173 0.39078 

0.90 0.60505 0.55197 0.45552 0.47623 0.38579 

0.95 0.59830 0.54646 0.45210 0.46888 0.38009 

1.00 0.59064 0.54035 0.44834 0.45948 0.37372 

Table 3.3 Influence of saturation depth (T) on potential at point Ct and C2 evaluated for L1,L2 

T 
s=3 	ds=0 	L1=10 	L2=10 

T 
s=3 	ds=0 	L1=7 	L2=7 

a q/kh a q/kh  

8 0.5 0.27584 -0.54149 -0.47345 8 0.5 0.34563 -0.61071 -0.37767 

9 0.5 0.30324 -0.51994 -0.44041 9 0.5 0.37739 -0.57386 -0.57540 

10 0.5 0.32884 -0.50353 -0.50510 10 0.5 0.40654 -0.46188 -0.44449 

11 0.5 0.35284.. -0.49268 -0.46299 11 0.5 0.43346 -0.64733 -0.41938 

12 0.5 0.37540 -0.47931 -0.45094 12 0.5 0.45845 -0.57464 -0.40582 

13 0.5 0.39667 -0.46933 -0.44223 13 0.5 0.48175 -0.55610 -0.39591 

14 0.5 0.41677 -0.45515 -0.43082 14 0.5 0.50356 -0.54687 -0.38760 

15 0.5 0.43581 -0.43252 -0.41541 15 0.5 0.52406 -0.54113 -0.38012 
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L  h u 	~2 
0.60 
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0.55 

	

0.50 	 -4- L/2T=1/4;5/T=1/4 

®I--L/2T=1/4;S/T=1/3 

 

0.45  -*- L/2T=1/4;S/T=1/2 

L/2T=1/2;S/T=1/4 

	

0.40 	 44 L/2T=1/2;5/T=1/2 

0.35 

0.30 

0.00 	0.20 	0.40 	0.60 	0.80 	1.00 

L1/L 

Figure 3.5 Influence of the position of the piling on the discharge for various combinations of 
depth of embedment and size of structure 
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CHAPTER 4 

A WEIR WITH MULTI CUT - OFFS RESTING ON A POROUS 

MEDIUM OF FINITE DEPTH 

4.1. INTRODUCTION: 
In chapter 3 we analyzed flow under a depressed weir resting on a porous medium 

of fmite depth. In practice, we have to provide some cut off walls or sheet piles for the 

safety of weir and economic considerations. The provision of sheet piles plays an 

important role in the distribution of the uplift pressure under the floor. The sheet piles at 

up stream and downstream ends of the impervious floor should be designed against scour 

due to surface flow condition. The maximum depth of scour at a particular location 

depends upon the type of structure, and the curvature of the river. For given surface flow 

criteria, the pressure distribution under the floor and exit -gradient depend on the length 

and geometry of the floor, depth and number of sheet-piles, depth of porous medium. 

However, calculation uplift pressure and exit gradient become complicated when the weir 

has several cutoffs, as the number of parameters involved increases, since each cutoff add 

three new vertices to the flow region. In this chapter, we analysis a weir with multi cut 

offs, resting on permeable foundation of fmite depth. The uplift pressure and exit gradient 

distribution have .been analyzed using Schwartz and Christoffel, conformal mapping, and 

method of fragment. 

4.2. STATEMENT OF THE PROBLEM: 

A weir is embedded in a permeable foundation of finite depth. The underlying impervious 

boundary. The angle between impervious boundary and vertical axis is /3n. We decompose the 

flow domain into 5 fragments (fragment I,II, III, IV and V) division. We can group the fragment 

into three types. 
G 

First type: Fragment I, Second type: Fragment V, and third type: Fragment II, III, and IV. 

Which differ only in depth of sheet piles, slope of impervious floor. The number of vertices for 

each fragment II, III, IV are identical. 
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4.3. ANALYSIS 

4.3.1 FRAGMENT TYPE 1: 

4.3.1.1 Mapping of the flow domain (see Fig 4.2)in z plane to t plane z = f 11(t) 

The Schwarz — Christoffel transformation that gives the afore mentioned mapping is 

	

dz_ 	M 
-- dt t1(1 _ t)(1-R) 

fo

t Mdt 

	

or, z(t)= 	 +N 
 t2 (1— t)(1-I?) 

(4.1.1) 

M, N are constants. 

fo

t 1 

z(t) = M t-z (1— t)#-ldt + N 

z(t) = MBt C2 ) + N 

Bt (2, 13) is incomplete Beta function, its value depends on the value of t 

(i) For point B, t = 0, z(t)=ZB. 

From Z plane we have z = z6 therefore N = zB 

z(t) = MBt (2 , /3) + zB 

(ii) For point C, t = c, Z(t) = zc 

G 
+ZB 	 (4.1.1.2) Hence, 	Zc =MBA , ~i)  

where Bc (1, (3) is incomplete Beta function 

(iii) At t = 1, Z(t) = ZD 

G'fl)Hence, ZD = MB 	+ ZB 	 (4.1.1.3) 



Where B (Z, /3) is complete Beta function 

From (4.1.1.2) and (4.1.1.3) we have 

1 Zc  ZB  = MBA ( Z  , f3), and ZD - ZB  = MB (!,.8) (4.1.1.4) 

From geometry, we have 

Zc  - ZB  = iS1, 	 ZD  - ZB  = i Tl- 	 (4.1.1.5) 

Combination two equations (4.1.1.4) and (4.1.1.5) results in 

Zc - ZB 
B( 

c  `' f3) 

 (7,Zc
ZaB (' ) 

1 	Sl Bc 13 J 2 flT = 1 
Zc  -  ZB  Si 	1  B(Z,13) 
Zc  - ZB  Ti  

(4.1.1.6) 

From equation (4.1.1.6) with one variable c. We can get the value of c by an interpolation. 

4.3.1.2. Complex potential plane w = f12 ( t): 

The transformation of the polygon in w - plane onto t- plane ( Fig 4.2c) 

dw 	M1  
dt (-t)z(c-t)(1-t)2 

f t 	Mldt  
or, w(t) = J 
	1 	1 	1 + N1 
-(-t)z(c- t)2(1-t)-  

(a) Integration along flow boundary A B (-oo <- t <- 0) 

(i) At point A:, t = -oo, w = + iq - kh hence, N1 = iq - kh 
(ii) At point B., t = 0, w = -kh 

Therefore 

L M1dt-kh= 	( —t)1/ 2 (c — t)112 (1 — t)1/ 2  + iq — kh 

Performing the integration (Byrd & Friedman, 1971) 

(4.1.2.1) 



10  X 

f4'Ir—_ O • 

I

' 

•''• .f, e~ fit"•• y ~:-~~IF̀—~~ 

~•l.7 !  •,•  %• 

(a) Z-Plane (z= x + iy) 

00 	G c.  

A _ 	B C' 	D  

(b) t — Plane (t = r + is) 

-kh 

o .kh. -~ 
B c 

A O 

(c) w — Plane (w = 0 + ill') 

FIG 4.2 — TRANSFORMATION LAYOUT ( FRAGMENT TYPE 1—. CASE 2) 
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2 
g = 	 =2 1-0 

1-07r 
(p sin-1 1- 00 

-c 
m_- 10  -= 1-c 

-kh = M fg F(cp, m) + iq - kh 

-kh = 2M1 F(2, 1-c)+iq-kh 

2M1 	at or, 	q= . F(Z, 1-c) (4.1.2.3) 

(b) Integration along floor boundary BC (0 _< t < c) 

(i) At point B, t = 0, w(t) = -kh, hence N = -kh 
(ii) At point C, t = 1, w (t) = - kh + a1 kh = - (1- a1 ) kh 

Msdt 

w(t) = fo  (—t)1/2 (C — t)1/2 (1 — t)1/2 — kh 

_ MI ('c 	dt 	- kh= M1 l c 	dt 	- kh w(t) 	J 	
Jo 	 - 	t)   o (t)z(c - t)(1- t)Z 

Performing the integration- ( Bryrd and Friedman, 1971) 

w(t)= 	gF(cp,m)-kh 

2M1 w(t)= 	F(2,Th)-kh 

2 _  _ 
g  

Vi-o. 2 

c-0 it 
cp = sin-14ci _O 	2 

c-0 
m= 1-0 
	

_vc 

2M1 it 
or,-(i - al)kh = 	F (2 , ~) - kh 
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_ 	aikh or, 1 2F (Z , J) (4.1.2.5) 

Substituting the value of MI from the equation (4.1.2.5) to the equation (4.1.2.3) we get 

the value of q 

F(2, 1-c) 
q=calkh 

	

	 (4.1.2.6) 
F (Z f) 

F(2, 1•-c) 
Letting Al = 	 therefore, 	q = a1khA1 	 (4.1.2.7) 

F (?./ ) 
4.3.2.FRAGMENT TYPE 2: 

4.3.2.1. Mapping of the flow domain into z - plane onto t -plane z = f Z (t) see Fig 4.3 

The Schwarz - Christoffel transformation that gives the afore mentioned mapping is 

dz_ 	M 
dt tP (c - t)a(1 - t)1-a 	 (4.2.1.1a) 

f t 	Mdt 

o 	

421bz= 	tR (C —t)a(1—t)1-a~ N 	
(. . 

(a) For point A, t = 0, z = zA, hence N = ZA 

Integration along the boundary AB (0 < t < b) and AC (0 < t < c) 

z(t) = M t tR c - )a 1 - t 
1-a + zA = M 

J 
tt-R(c - t)-a(1- t)a-1 dt + zA 

~o 	( 	) ( 	) 	o 

z(t) = MC-a f 'o t-/3 (1 - t)(1 -  )-a dt + ZA 

Expanding the term (1 - t)-" according to Binomial theorem 

t 	cc t cc (cc +1)t2 cc (a +1)(oc +2)t3 
(1--)=1+—+ 	+ 	 +••• 

c 	1!c 	2!c  z 	3! c3 
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fo,  

a t a (a +1)t2 
z(t) = Mc-a 	t-R(1— t)a-1 1 + 1'c 	2~ cz 

 

+ oc (cc +1)(0c +2)t3 + oc (oc +1)(oc +2)(oc +3)t4 
1 dt 3! c3 	 3!c4 	J 

+ ZA 

integrating term by term the following relationship between z and t is 

obtained 

z(t) = Mc-a [B t (1 — fl, a) +B(2 Bt(2 — fl, a) + 
oc (a +1) Bt(

3 — fl, a) t 1! c 	 2! cz 

a (cc +1) (oc +2) 

	

+ 	3!c3 	Bt(4— fl, a) +...}+zA 

+Go 

z=Mc-°`jr«orBt(r+1—f3,a)+zA 
r=0 

where (oc)r =a (a +1) (a +2) ... (a + r — 1) = r(«+r) 
r(oc) 

(oc)rPoch hammer symbol 

F(oc +r) = Gamma function 

where Bt(r + 1— f3, a)is an incomplete Beta function 

(i) For point B, t = b, z(t) = zB 

a 	 cc (oc +1) 	/ 

zB =Mc-a{Bb( 1— l9,a)+ic Bb( 2— fJ ,a)+ 21c2 Bb( 3— N
~

,a) 

cc (cc +1) (oc +2) 

	

+ 	3!c3 	Bb(4— l3,a)+" )+zA 

+00 

or, zB = M c_°̀  > (a)r Bb (r + 1 — f , a) + zg r! cr 
r=o 

(4.2.1. l c) 
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of 	 x 

y 

(a) Z-Plane (z= x + iy) 

- 00 0 b c 1 
I 

e 
I 

±O 

F. : A_ . 	_ B C" . ' D - E. F. 

(b)t—Plane(t=r+is) 

-(1- -2 ar )kh 
r=1 - 

(c)w—Plane(w=¢~+iW) 

Fig 4.3 — Transformation layout ( Fragment type 2) — Case 2 
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+00 
a 

letting, 	121 = 	
r! r 

Bb (r + 1— /3, a) 
c 

r=0 

For the parameter c is less than land parameter b is less than c. The term reduces to zero and the 

series disconverged. The series I21, is evaluated as follows: 

(note we can express in hypergeometric series as follow 

xp Bx(p, q) = p 2F1(p,1 — q, 1 + p, x) (Bateman,1953) 

In which 2F1(p,1— q, 1 + p, x) = Gauss hypergeometric series 

2F1(p,1— q,1+p,x) 

p( 1— q) 	p(p+ 1)( 1— q)( 1— q+ 1) 2 =1+ 

	

	
x (1+p)1!x+ (1+p)(1+p+1)2!  

p(p+1)(p+2)(1—q)(1—q+1)(1—q+2) 3 

+ 	(1+p)(1+p+1)(1+p+2)3! 
 

• 

Hence, 

bl-R 
Bb(1—#,a) = 1-13 2F1(1—f3,1—a,2—f3,b) 

1 	 1b2 
—Bb(2 -13,a)=c2—/3 

b bl_fl 

c2—/3 

1 	 _1b3-P 
c Bb(3—/9'a) c2 3—/3 

2F1(2—/3,1 —a,3—/3,b) 

2F1(2— (3, 1— a,3— f3,b) 

2F1(3—(3,1—a,4—/9,b) 

_ (b Z bl-9 
`c) 3- 1  

1 _ 1 b4-~ 
c3Bb(4—J3' a) c3 4—/3 

( b\3 b1-Q 

— \c 4-13 

2F1(2-13,1— a,3— /3, b) 

2F1(4 — $,1-a,5— /3,b) 

2F1(4 — fJ,1 — a,5 —fi,b) 
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I21 =b1-R 	1 	2F1(1-/3,1-a,2-/3,b) 

Cc b 
+1!(2-p)lc) 2Fi(2-/,1-a,3-f3,b) 

oc (o( +1) b\2 
+2!(3-J3)\c) 

2F1(2-J3,1-a,3-,6,b) 

« (a +1)(a +2) (b 3 

	

+ 
	3!(4- /) c  

ZFl(4-1-a,5-f3,b)~... 	(4.2.1.2x) 

	

+co 
	(«)r 	(b r _ 

121 bl-R~r!(r+1-/3)`c) 2 F1(r+1-/3,1-a,r+2-/3,b) (4.2.1.2b) 
r=0 

Thus, I21 has a finite value as the term b/c<1 series converges. 

ZB = Mc-x121 + ZA 	or 	ZB - ZA = Mc-',21 	 (4.2.1.2c) 

(ii) For point C, At t = c we have Z( t) = Zc 

oc 
zc =Mc-" Bc(1-l3,a)+ lac Bc(2-1, a)+« 2!c 1) Bc(3- / , a) 

cc (ac +.1) (cc +2) 

	

+ 	3!c3 	Bc(4-/3,a)+..j+zA 

a 	 oc (oc + 1) 
Letting, !22 = Bc (1 - /3, a) + 1~ c Bc(2 - /3, a) + 

2!c2  
Bc (3 - , a) 

cx (oc +1) (oc +2) 

	

+ 	3!0 	Bc(4- f3,a)+...~ 

'22 is evaluated as follow: 

cl-p 
Bc(1-$, a)

_ 
1 	2F1(1-f3,1-a,2-f3,c) 

1 c2~13 

= c2-~3 2F1(2 -/1,1 -a,3 -/3,c) 

cl-R 
= 2-fl 2F1(2-,C3,1-a,3-/3,c) 

3-5 
2F1(3 - fl,1 - a, 4 - /3, c) 

cl-p 
3-fl 2F1(2-f3,1-a,3-/3,c) 
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1  1 c4-fl 
— Bc(4–/3,a) =c34-18 2F1(4-13,1–a,5–/3,c) 

c1_R 

3/1 2F1(4—(3,1—a,5—/3,c) 

Therefore, 

122 	
1 

=c1-R 
1/3 

2F1(1— x(3,1—a,2— f3,c) 

cc 
+ 

1!(2—fl) 
2F1(2—/3,1—a,3-13,c) 

cc (cc: + 1) 

+2!(3—f3) 
2F'1(2—/1,1 —a,3—/3,c) 

cc (cx +1)(a +2) 

+ 3!(4— /3) 
+00 

or, 122 =c1-1 y 	(00r 

	

L. r!(r+ 	2F1(r+1—(3,1—a,r+2—(3,c) 	(4.2.1.3a) 

r=0 

where (cc) r = Poch hammer symbol 

2 F1(r + 1— /i,1— a, r + 2 — /3, c) = hypergeometric function 

I22 is a converging series as r —co, 2 F1(r + 1 — /3,1 — a, r + 2 — /3, c) 

converges to a finite value and r !(r+lr  ) also converges to a finite value and 

~ 	
a

r O r!(r+1~ f3) 2 F1(r + 1 – /3,1 – a, r + 2 – /3, c)-->0. 

zc = Mc-x122 + ZA 	or, ZC – ZA = Mc-aI22 	 (4.2.1.3b) 

(b) Integrating along weir floor CD (c <_ t <_ 1) 

(i) Att = c,z = zc 

(ii) At t = 1,z = ZD 

f 1 

zD = M 
J 

t
-/3(c _ t)-a(1 _ t)a-1 dt + zc 

c 

1 

ZD = M(-1)-a f {[1— (1— t)]- (t — c)-a(1 — t)a-1} dt + zc 
~  (4.2.1.4) 

To evaluate the integral, we expand 	[1 — (1 — t)]-R according to Binomial Theorem 

and integrating term by term 



R—(1—t)]-a =1+ R (1—t)+  
2!  3! 

Substituting the expansion the equation (4.2.1.4) we get 

ZD=M(-1)-a(t—c)-a( l—t)a-1 1+RI(1—t)+2
fc, 
	 (1—t)2 

+RCP+ 3(R +3)(1— t)3+...~ dt+zc 

setting, r = 1 — 	(Grobner and Hofreiter, 1961) 

or, zo = M(-1)-af
o,

ra-i(1_r)-a 1 + (1— c)r +  2  (1— c)2r7 

+RCP+13(R+3)(1—c)3r3 +...~ dr+zc 

a 
or,zo =M(-1)- B(a,1—a)+1i (1—c)B(a+1,1 — a) 

a (a +1) 
+ 2! (1—c)2B(a+2,1—a) 

a (a +1)(a +2) 
+ 	 (1—c)

3 
B(a+3,1~a)+• +zc 

3! 

a 
Letting 123 =B(a,1—a)+1~(1—c)B(a+1,1 — a) 

oc (a +1) 
+ 

oc (oc +1) (a .+2) 
+ 3! 	(1—c)3B(a+3,1—a)+" 

+00 

or,123 __ 	(a)r (1— c)r B(a + r ,1— a) 
r! 

r=0 

ZD = M(-1)-"I23 + zc 	or 	ZD — ZC = M(-1)-"I23 	(4.2.1.5) 

(c) Integrating along DE (1 < t < e) 
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zE = M fi e t—R(C — 	_ t)a-1 dt + ZD 

~• e 
= 

 M J
t-R(-1)-a(t - c)-a(-1)a-1(t - 1)a-1 dt + ZD 

1 

e 

-M 
 J

t-R (t - c)"" (t - 1)a-1 dt + ZD 
1 

Setting t = r we have dt = r~r 

zE 

 

1 
= _Mf

l/e 

 rfl-1(1- r)a-1(1- cr)-a dr + zo 
 

1 

zE = M I e rR-1( 1 - r)a-1(1- cr)-a dr 
Jo 

f1 

	

- ML rI-1(1- r)a-1(1 - cr)-" dr + ZD 	 (4.2.1.6) 
0 

zE = M124 - MI25 + zo 	 (4.2.1.7) 

1 

letting,124 = M f
o
e ra-1(1 - r)a-1(1- cr)-" dr 	 (4.2.1.8) 

 1 
letting,125 = Mf

o 
r1-1(1- r)a-1(1- cr)"" dr 	 (4.2.1.9) 

We expand the term (1 - cr)-"according to Binomial theorem and integrating term by term Eq 

(4.2.1.8) and (4.2.1.9) reduces 

a r 	a (a +1)rz 	a (a +1)(« +2)r3 

1 
e 	 oc r 	a (a +1)r2 	a (a +1)(a +2)r3 124 = J1( - r) 	[1 {1 + c— + cZ 	2i 	+ c3 	

3! 
	...}dr 

Jo 

1 
	

cc r 	cc (cc +1)r2 	cc (cc +1)(oc +2)r3 
I25 = r~-1(1 - r)a-1 {1 + c 1i + c2 	

2! 	
+C 	

3! 
 

0 

Performing the integration 

a 	 a (a +1) 
124 = Be(f3,a)+c1i Be((3+1,a)+C2 	2! 	Be((3+2,a) 

cc (cc+1)(oc +2)r3 	
(4.2.1.10) 

+c3 	
3! 
	B1(/3+3,a)+ •• 

e 



125 =B(f~,a)+c1iB(f3+1,a)+c2a (2r+1)B(f3+2,a) 

(4.2.1.11) 

+ c3 
a (a +13ia 	+2)r3 

B(f3 + 3 , a) + • • 

From z plane and t plane we have 

ZB - ZA = — i(T21 - S 21) therefore, 	— i(T21 — S21) = Mc-aI21 	(4.2.1.12) 

Zc - ZA = - iT21 	therefore, 	 -iT21 = Mc-x122 	(4.2.1.13) 

ZD - Zc = L2 - iL2 Cotan (air) 

Therefore, L2 - iL2Cotan (air) = M(-1)-"123 	 (4.2.1.14) 

ZE — ZD = IS22 or 	iS22 = M124 - MI25 	 (4.2.1:15) 

121 = F1(b, c) , 122 = F2 (C), 123 = F3 (C), 124 = F (c),125 = F4 (C, e) 

ZD - Zc _ L2 - iL2Cotan (air) _ L2Cotan (arr) L2 
+— 

Zc -ZA 	- iT21 	 T21 	T21
c 

 

The right part is a complex number and we can express the complex number 

in the form Re ie 

The modulus is given by 

R 
= J (L2co a (an))Z + (

T21)2 = `T22) [Cotan (amr)]2 + 1 

_  L2 

R - T21sin(air)' 

The argument is given by 

L 

= tan-1 LZCotan (an) = tan-1 lCotan (air) ) _ 
T21 

Therefore, 

L2 
e Zc - ZA sin(arc)T21 

(4.2.1.16) 
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Z ZM(—-'X1 -« 

	

D —C 	 1) 23 	.-1)r23 

	

ZC — ZA 	Mc-a122 	c-a122 (4.2.1.17) . 

We can express (-1) = [cos(±rr) + isin(±n)] and applying De Moivre's Theorem (the law 

of multiplication of complex numbers in preceding section). 

(_1)-0c = [cos(±n) + isin(±n)]-°` = e±ia,r 

Substituting above in equation (4.2.1.17) we get 

ZD — Zc e±ia7r123 
Zc — ZA — c-a122 

(4.2.1.18) 

From (4.2.1.16) and (4.2.1.18) we have 

L2 e iai = 123 a+iocrc 
sin(air)T21 	c-a122 

lsin(aiT)T21 
L2 	_ 123 a1 i«or or, 

	122 c J 
e 	= 0 because of ei°"` * 0 then, 

 

L L2 	_ 12s
c"1 =0 

t~n(a7r)T21 122 

 

(4.2.1.19) 

From equation (4.2.1.19) the only unknown c can be found using an iteration for given L2, 121, 

and a. 

From equations (4.2.1.12) and (4.2.1.13) we have 

ZB - ZA — i(T21 - S 21) __ (T21 -.521) 	
(4.2.1.20) Zc - ZA 	—iT21 	T21 

ZB - ZA _ Mc-al21 	__ 	121 	
(4.2.1.21) 

ZC - ZA 	Mc 122 	122 

From (4.2.1.20) and (4.2.1.21) we have 

(T21 - S 21) _ 121 	 (4.2.1.22) 
T21 	— 122 

From the equation (4.2.1.22) with two unknown variable b and c but we have the value of c 

from the equation (4.2.1.19) so that only unknown variable b. To find out the value of b, by 

interpolation we can get it. 
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From the equation (4.2.1.13) and (4.2.1.15) we have 

	

ZE — ZD 	iS22 	_ 	S27 	
(4.2.1.23) 

	

Zc - ZA 	-iT21 	T21 

ZE - ZD _ MI24 - M125- Ca 125 -'24 	
(4.2.1.24) 

	

ZC - ZA 	Mc-alai 	122 

From the equation (4.2.1.23) and ( 4.2.1.24) we have 

TZ= 
ea(125-124) 	

(4.2.1.25) 
zs  zz 

With two unknown variables in the equation (4.2.1.25) are c and e. But variable c we have got 

from (4.2.1.19) so that only unknown variable e we need to find out. By interpolation we can get 

the value of e. 

4.3.2.2. Mapping of complex potential on w plane w=f2(t) see (Fig 3.2c) 

The transformation of the polygon in w-plane onto the t plane is given by 

dw 	M1 

or, w = 	1 	M1 	1 + N1 	 (4.2.2.1) 
L 

Where M1, Nl are constants 

(a) Integration along boundary AB (0 < t S b) 

(i) At point A, t = 0, w = - (1 - Ej-1 ar )kh + iq 
where ar=head loss coefficient through fragment r, j is the fragment number. 

(ii) At point B, t = b, w = -(1- E,~.=1 ar )kh 
Therefore, 

j-1 b j-1 

- 1-I ar kh=
J 

M1dt 
1 	1 	1 - 1-tar 	kh+iq 

r=i o tz (t - b)z(t - e)2 r=1 

b 
r 	dt 

or, 	q = iM1 
J 

t1/2 (b - t)1/2(e - t)1/2 
0 
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Performing the integration (Bryd and Fried man, 1971) 

q = iM1gF(co, m) 

In this case g = -i,.i91 = sin-1(1) = Z ,m=  e , 

2 	b therefore, q = iM1— F(!2~, - V  e 
(4.2.2.2) 

(b) Integration along boundary BCDE (b < t <_ e) 

(i) At pointB,t=b,w = -(1-) f-1 ar )kh 
Therefore 

 

t  j-1 
_  M1dt 

w(t) — f  t1/2 (t — b)1/2(t — e)1/2 — (1- 
b  r=1 

t  j-1 
M1 ( 	dt 

w(t) 	J t1/2 (t - b)1 /2(e - t)1/2  (1- 
	ar )kh 

b  r=1 

Performing the integration (Bryd and Fried man, 1971) 

j-1 

	

w(t) = M11 	p, m) - ( i-  Y ar kh 	 (4.2.2.3) 
r=1 

In this case 

2 	_1 	e(t—b) 	/e_b 
g=__,~p=sin 	(e—b)*t 'm 	e 

(ii) At point C, t = c, w = we 
j-1 

	

Mi 2 	_1
f~c

c-b)
Few(C) _ 	 F sin 	 e - b) 	1-~ ar kh (4.2.2.4) 

e 
r=1 

(iii) At point D, t = 1, w = WD 

44 



j-1 M1 2 	e(1-b) fe_— b w(D) _ ~_—F 
sin-1 (e - b) ' e 	1-~ ar kh 	(4.2.2.5) 

r=1 

(iv) At point E, t = e, w = - (1- Xj_i ar )kh 

Ml 2 	TL e — b 	
j -1 

w(E) = 	F Z 	e - 1- ar kh 
r=1 

(4.2.2.6) 

Therefore 

- 1- , ar kh= Ml 2 F -, e-b - 1- I-t ar khe )r=1 
 

I 

	

M1 2 	Ie-b or, 	aj kh = 	F Z , eri7 

then, Ml = 
a j kh 

2F 	e-b 
2'  e 

(4.2.2.7) 

Substituting the value of MI from (4.2.2.7) in (4.2.2.4), (4.2.2.5) (4.2.2.6) and (4.2.2.2) 

we have 

e(c - b) a - b 

	

F sin 1 c(e - b)' 	a 	~1  
w(C) = ajkh 	 - 1- 	ar kh 	(4.2.2.8) 

F(H2,r=1 
 e 

F sin-1 (1- b) e - b  
e-b  e 

w(D) = ajkh 	 - 
(

I- 	ar kh 	(4.2.2.9) 

	

F 7t e—b 	 r-1 
2'' e 

F   
q = aj kh 	 (4.2.2.10) 

F(!2E
, e 
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Let A23 _ 

1t  F( f )  
Z, e 

F(H2'4 
 e—b

e 

substituting for A2~ and simplifying q = oc~ khA~2 	 (4.2.2.11) 

4.3.3 FRAGMENT TYPE 3: 

4.3.3.1. Mapping of the flow domain in to z plane onto t plane z=fl(t) (see Fig 4.3a) 

The schwarz -- Christoffel transformation that given the afore mentioned mapping is 

given by 

dz 	M 

dt 1 ta(t — 1)z 

z(t) 	t Mdt 1 + N = M 
Jo 

t t-R 	(1— t)-2dt + N = T Bt (1— 1 = 	 ) + N 
fo 	-  

Bt (1 — f3, 2) is complete or incomplete Beta function and depends on t 

Zc — ZA  T3 
ZB — ZA M — S3) 

Ze — ZA B (1_/3,)  therefore 

ZB—ZA Bb(1—/3,2) 

(i) At point A, t = 0, z(t) = ZA so that N = ZA 

(ii) At point B, t = b 

	

zB = M Bb (1—p, Z)+zy or, 	ZB — ZA=MBb(1-13,2) 

(iii) At point C, t 1, z = zc 

	

M Zc -B (1— /l, 2 ) + ZA or, 	Zc — ZA = -B (1-13, 2) 

From z-plane 

Zc — ZA = —iT3 	and 	ZB — ZA = —i(T3 — S3 ) 

From (4.3.1.1), (4.3.1.2) and (4.3.1.3), we have 

(4.3.1.1) 

(4.3.1.2) 

(4.3.1.3) 

1 
(T3 — 53) 	Bb l—/3,- 

T3 
T3 	B (1— JL2) 

\ (4.3.1.4) 
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Equation (4.1.3.4) the unknown variable b can be solved by iteration, 

x 

y 

(a) z-Plane ( z= x + iy) 

-co 	0 	b 	1 	±C) 

(b)t—Plane(t=r+is) 

1_L 

(c) w — Plane (w=(i +iP) 

FIG 4.4 — TRANSFORMATION LAYOUT TYPE 3— CASE 2 

4.3.3.2.Complex potential plane w = f2(t) 

The transformation of th polygon in w plane onto the t plane (Fig 4.3 c) 
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dw 	M1dt 

dt t2(t — b)2(t — 1)z 

Hence, 

fo

t M1dt w(t) ` 	 z 	1 	s + N2 	 (4.3.2.1) 
 t- t(t — b)z(t — 1)2 

Where Ml and N1 are constants. 

(a) Integration along flow boundary AB (0 < t < b) 
(i) At point A, t = 0, w(t) = —(1- ~r=i a)kh — iq 
(ii) At point B, t = b, w(t) = —0(3 kh therefore, 

n-1 	

fo

t M1dt n-1 — 1- jar kh = 1 	I1 	1 +iq— 1- ~ar kh 	(4.3.2.2) 
r_1 	t2 (t — b)i(t — 1)z 	 r=1 

Performing the integration (Bryd and Fried man, 1971) 

It — 1- 	a kh = M1g F(~p, m) + iq — 1- I ar kh where 
r=1 	 r=1 

 

m= 1 
 

Then 

rc. q = 2iMiF (2 , -\/i) 	 (4.3.2.3) 

(b) Integration along sheet pile BC (b <— t < 1) 

(i) At point B, t = b, w(t) _ —(1- Er=i ar )kh 
(ii) At point C, t = 1, w(t) = 0 

Therefore 

n-1 
0= 	1 	M1dt1 	

1 	1- jar kh 	 (4.3.2.4) 
b t2(t — b)Z(-1)2(1 — t) 	r=1 

Performing the integration (Bryd and Fried man, 1971) 

m 



M 	 n-1 
O=LgF(cp,m)— 1- Iar kh 

r=1 

F4 

g 	1-0 
	=2 

	

(1-0)(1 -- b) 	it 
~p =sin-1 	 — -  

 

J(1— b)(1-0) 	2 

m= 
/1—

b = 1  

Therefore, 

(1- ;a  )kh 
M1 =  2F( 2, 1—b) 

 
(4.3.2.5) 

Substitute the value of Ml from the eq (4.3.2.5) to the equation (4.3.2.3) we have 

n-1  n F 
q = 1-  ar kh  (4.3.2.6) 

r=1 	F (Z , 1 — b ) 

Tt 	 n-1 F Z,~   letting, An3 = 	 and a = 1- 	ar 
F( 1 V1—b) 	 r=1 

	

therefore, 	q = ankhAn3 	 (4.3.2.7) 

4.3.4. CALCULATING HEAD LOSS COEFFICIENTS THROUGH 5 FRAGMENTS: 

Discharge through each fragment is the same so: 

q =oc1 kh Al =a2 kh A2 —0(3 kh A3 ..... =c< kh An 

where n = number of fragments. 

From eq (4.4.1) we can calculate headloss coefiction through any fragment 

q 1 	_ q 1 	_ q 1 	q 1 
«1

_ 
khA1' «Z khAZ ' «3 khA3 ' "'' «n~ khAn 

there f ore, 	ocl+0c2+0 3 + • • • • +°C 	
1 	1 	1 	1 

n= kh CA + A + A3 + + A ) 

	

1 	2 	3 	n 

q 	0(1+0(2+0(3 + .... +0Cn 
or 

CA1 Az A3  An) 

(4.4.1) 

(4.4.2) 



But, (oc1+oc2+oc3 + "' . +an ) = 1 then, 

q  1  kh or, q = 	 (4.4.3) kh' (i 
 ~A 	 1 2 3 	n 

Now we substituting value of q from eqtion (4.4.2) and get 

_ (*) 	 _ 	 \A2 

1l ~a2 ( +++."+ ) '
11  

= 	
(;Tn 1 ) 	« — 	 (An 

' OC n-1 	1 	1 	1 	1 l " ( 1 	1 	1 	1 l 	(4.4.4) 

	

1 A2 A3 	An)  (A1 A2 A3 	Anl 

From eq( 4.4.4) one can easily find head loss coefficient through any fragment if we know the 
geometry of weir foundation. For present study, we find head loss coefficient through five 
fragments from eq (4.4.4) 

b22 
F ( 	1 — cl ) 	F 2' e22 ) 

A1 = 	 ,A2 = 	 ;A3 = 
F G , ~ 	F n e22 — b22 

2  e22 

7r b4z 
2 e32  F(.2.,   bss 

A4 = 	
n 

;As. = 	 l 3 
F 	e42 - b42 	F (2 , 	— b53

J 2' 	e42 

Where, bn2, cn2 mean values of b and c at the fragment n 
b53means value of b at the fragment 5 by type 3 

F 	bs2 

esa 

F 	 bs2 

ML 19a---_- 14 

With the given geometry parameters, depth of sheet piles, cut offs, length of fragment, 
depth of impervious boundary etc. by iteration we can find the value of b, c, e at any fragment 
and calculate elliptic integral in this study we can apply numerical method given byKing L.V 
which to be introduced in the appendix 1. After calculating the values of Al, A2, A3, A4, A5. We 
will substituting in the equation (4.4.4) and gain head loss coefficients through each of the 
fragments. 

4.3.5. CALCULATING UPLIFT PRESSURE ACTING ON WEIR FLOOR: 

For design purposes, we need to know the pressure distribution acting along the various 
sections of the structure and the magnitude of the exit gradient . A long the contour of the 
structure tj = 0 and 0 = w 

=—k(p —y)+C 	 (4.5.1) 
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Choosing an origin at `O let the constant C 
At y = yc , (P = 0 and - = h2 or, C = k(hz — ycn ) 

Yw —
y+(hz — Ycn) — k 	 (4.5.2) 

From w plane analytic of 
(a) Calculating uplift pressure at fragment 1: 

At fragment 1, we calculate the uplift pressure at the deepest of sheet pile (cut offs). Note 
that along the sheet pile, w = 0 = —(1— a1 )kh, y = sl 
Substituting value of 0 in equation (3.4.2) we have 

pe — al Yw=s1+(h2—yCn)— —(1 k )kh 
=s1 +(h2 —ycn )+(1—ai )kh 	 (4.5.3) 

(b) Calculating uplift pressure at fragment 2: 
At fragment 2,(type 2) we calculate uplift pressure at the points C,D and E. At w-plane 

analysis on fragment type 2, value of w(C)&w(D) in the equation (4.2.2.8)&(4.2.2.9) 
Replacing value of n = 2 we have value of øc and substituting in (4.5.2) to get value of uplift 
pressure. 

Yw — Yc + 
(h2 — Ycn) — k 	 (4.5.4) 

F sin-1 e22(c22 — b22)~ e22 — b22 

czz(ezz — bzz)  e22 

where øc = w(C) = ankh 	 — (1- al )kh 
F  ezz —_b22\ 

2' 	e22 

PD
=Yo+(hz — YC )—

(Po 	
(4.5.5) 

Yw 

-1Ifzz(1 — bzz) e22 — bzz F sin  
(e22—b22) , 

 
ezz 

where, O D = w(D) = azkh 	 — (1 - a1)kh 
F ~ ezz — bzz 

e22 
pE

=YE — (h2 — Ycn)
--E 	 (4.5.6) 

Yw 

where, 'PE _ —(1 — al — a2 )kh 

(c) Calculating uplift pressure at fragment 3: 
At fragment 3,(type 2) we calculate uplift pressure at the points F,G and H. At w-plane 

analysis on fragment type 2, value of w in the equation (4.2.2.8)& (4.2.2.9). Replacing value of 
j=3 we have value of OF, OG, OH and substituting in (4.5.2) to get value of uplift pressure. 
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PF =YF+(h2 -Ycn)- k 
Yw 

F sin 1
FC3(e3

2 — b32)~ e32 — b32 

2 — b33)  e32 

where OF = w(F) = a3kh 
F 7r e32 — b32 )  

2' 	e32 

PG =Yc+(h2-Yct)-~c 
Yw 

(4.5.7) 

- (1- a1 - a2 )kh 

(4.5.8) 

-1 e32(1 — b32) e32 — b32 
F sin  

(e32 — b32)  e32 
 

where OF = w(F) = a3kh 	 - (1-a1 - a2 )kh 

F(H2'~ 
 e3z -b32\ 

e32 

PH  = YE + Ch2 - Ycn ) - k Yw 

where, 'PE _ -(1- as - a2 - a3 )kh 

(4.5.9) 

(d) Calculating uplift pressure at fragment 4: 
At fragment 4,(type 2) we calculate uplift pressure at the points land J. At the point I and 

point J, from w-plane analysis on fragment type 2, value of w in the equation (4.2.2.8)& 
(4.2.2.9). Replacing value of n = 4 we have value of 01, O and substituting in (4.5.2) to get 

value of uplift pressure.. 

PI = Yi + (h2 - Ycn) - 
	 (4.5.10) 

Yw  k 

F sin 1If42(
1 — b42)~ 1e42—b42 

(e42 — b42)  e42  3 

where, 01 = w(I) = a4kh 	 e 	b 	- (1_ar') kh 

F(H2 	42 — 42  r=1 
' 	e42 

pi =Yj+Ch2-Ycn)- 	 (4.5.11) 
Yw 

F sin-1 e42(1 — b42)~ e42-b42\  
4 

(e42 — b42)  e42  3 

where, 01 = w(J) = a4kh 	 - 
(

1- 	a,. kh 

F(H e42 — b42 	 r-1 
2'4 	

r

e42 

(e) Calculating uplift pressure at fragment 5: 

Uplift pressure at the point K 
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PK 

Yw
Y)+(h2 Ycn) — Ox 	 (4.5.12) 

where, OK = —(1 — al — a2 — a3 — a4 )kh = a5 kh 

From equations (4.5.3), (4.5.4), (4.5.5), (4.5.6), (4.5.7), (4.5.8), (4.5.9), (4.5.10), (4.5.11), 
(4.5.12) by numerical calculation, we can find the value of uplift pressure at some special points 
of weir foundation and analysis the distribution of uplift pressure along the base of structure with 
variable of geometry characteristics. 

4.3.6. CALCULATING EXIT GRADIENT: 

The exit gradient is computed by fragment 5. 
Let the complex potential w = q5 + iili be analytic function of the complex variable z 

dw_aq5 alp 4.6.1 
then, dz ax + ` ax 	

(4.6.1
) 

Which, substituting the velocity components, yields the complex velocity 
dw 

= U — iv 
dz 

Along the downstream horizontal boundary u = 0, hence 

(4.6.2) 
dz 

From Darcy's Law 

	

V = —IEk 	 (4.6.3) 

Substituting (3.5.3) in (3.5.2) 
dw 	 1 dw 

= 

	

1 dw dt 	 4.6.4 

	

dz = ilE k therefore 1~ = ik dz ik dt dz 	 ( 	) 

The exit gradient is computed from Fragment 2 
From analysis of fragment 2 

dz _ 	M 	B (1— ~, 2) 	1 
1 	 1 (4.6.5) 

dt tfl(t — 1)2 	T3 	tfl(t — 1)z 

dw 	M1dt 
dt t2(t — b)2(t — 1)z 

iankh 
where, M1 = 	 hence, 

(H,—  1b) 

dw 	ia.,,kh 	1 = 	 (4.6.6) 
dt 2F(T, 1—b)tZ(t—b)z(t-1)i 
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Substituting eq. (3.5.6)and eq. (3.5.5) in eq.(3.5.2) we have, 

s 

	

1 	iankh 	 1 	T3t1(t  — 1)z 
ik 2 F (,Vi — b) ti(t — b)z (t — 1) z B C1 —  '2J 

IE  _ 
an  hT3 	 to 

2B(1—/3, )F(2'  1—b) t1(t —b)z 

	

IE 	anT3 	 to 
or,—= 	 1 	1 

h  2B(1—/3,)F( , 1—b) tz(t—b)z 

Substituting some value of t> 1, we can have values of exit gradient through foundation 
structure. 

4.4 RESULT AND DISCUSSION: 

(4.6.7) 

(4.6.8) 

From example, exit gradient is at maximum value if we didn't provide any sheet pile at 
upstream and downstream of weir floor. Providing upstream sheet pile more effective decreasing 
up lift pressure but exit gradient is high. providing the sheet pile at downstream end of 
impervious floor more effective to decrease exit gradient but increasing at uplift pressure at weir 
floor (PD2). In case of providing two sheet piles at upstream and downstream of weir floor exit 
gradient is minimum and uplift pressures is in medium. 
For weir design required, we should find the good combination of weir foundation profile for 
safety and economic consideration. 
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ILLUSTRATE EXAMPLE: 

CASE1: 
h=6(m) h2=2(m),Slope of impervious boundary Q 
=0.5 
Number of fragment n =3 
********Fragment type 1******** h=6(m) 
S1=2,T1=10,A1=2.599531 
Fragment Type 2 [1] L2=9. 	h2=2(m) 
Angle alpha=0.5 
L2[2]=9, T21 [2]=8 S21[2]=0,S22[2]=0 
A[2]=1.165983 

I 

********Fragment type 3 ******** cL 	a~ 
S3[3]= 2, T3[3]= 10 
A[3]=2.036505 T1=10, T3 =10, 
Head loss coefficient Alpha[1]=0.221929 T21=8. 
Head loss coefficient Alpha[2]=0.494786 
Head loss coefficient Alpha[31=0.283285 
exit gradient Ie/h =1.758494 
PB2[2]=7.668425, 
PC2[2]=7.668425, 
PD2[2]=4.69971 1, 
PE2[2]=4.699711 
CASE 2: 
h=6(m) h2=2(m),Slope of impervious boundary t7 
=0.5 
Number of fragment n =3 
********Fragment type 1******** 

h=6(ro) 

S1=6,T1=10, A1=1.74141 
Fragment Type 2 [1] 

L2=9 	h2=2(r~) 

Angle alpha=0.5, 
 L2[2]=9,T21 [2]=8,521 [2]=4,522[2]=0, 

A[2]=0.819214 G . 
********Fragmenttype3 ******** 
S3[3]= 2,T3[3]= 10, A[3]=2.036505 T1 

51=6. 
=10. 

f 

 T3 =10. 
Head loss coefficient Alpha[1]=0.251205 T21 =8. 
Head loss coefficient Alpha[21=0.533989 
Head loss coefficient Alpha[3]=0.214805 

,3L 

exit gradient Ie/h =1.333404 
Uplift pressure at fragment type 2 are 
PB2[2]=1 1.492767 
PC2[2]=5.509961 
PD2[2]=4.288831 
PE2[2]=4.288831 
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CASE 3: 
h=6(m) h2=2(m),Slope of impervious boundary Q 
=0.5  
Number of fragment n =3 
********Fragment type 1******** h=6(r~) 
S1=2, T1=10, A1=2.599531 
Fragment Type 2 [1] L2=9. 	!► h2 =2(r) 
Angle alpha=0.5, L2[2]=9, T21[2]8, S21[2]0, 

I 
51=2, S22[2]=4 

A[2]=1.018869 
********Fragment type 3 ******** $ 
S3[3]= 6, T3[3]= 10 53=6. 
A[3]=0.864205 T1 =10. S22=4T3 =10. 
Head loss coefficient Alpha[1 ]=0.152453 T21 =8, 

Lj  Head loss coefficient Alpha[2]=0.388967 
Head loss coefficient Alpha[3]=0.45858 
exit gradient Ie/h =0.447514 
Uplift pressure at fragment type 2 are 
PB2[2]=8.085281 
PC2[2]=8.085281 
PD2[2]=6.91116 
PE2[2]=9.751478 

CASE 4: 
h=6(m) h2=2(m),Slope of impervious boundary 
=0.5 
Number of fragment n =3 h=6(n) 
********Fragment type 1******** 

S1=6,T1=10, A1=1.74141 X29 	h2-2(r~) Fragment Type 2 [1] 
Angle alpha=0.5, L2[2]=9, T21[2]8, S21[2]4, r S22[2]=4, V,,, 
A[2]=0.763024 I 	I ********Fragment type 3 ******** S16 	 i 	S3=6. 
S3[3]= 6, T3[3]= 10, T1=10. 521=4. 	S22=4. 	T3=10. 
A[3]=0.864205, T21=8. 
Head loss coefficient Alpha[1]=0.188776 13a 	 ~a 
Head loss coefficient Alpha[2]=0.430833 
Head loss coefficient Alpha[3]=0.380391 
exit gradient le/h =0.371212 
Uplift pressure at fragment type 2 are 
PB2[2]=1 1.867346 
PC2[2]=7.530658 
PD2[2]=5.645727 
PE2[2]=9.282347 
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CHAPTER 5 

RESULT AND DISCUSSIONS 

Two dimensional flow under a hydraulic structure founded on a porous medium of finite 

depth can be solved by method of fragments. The method of fragment is applicable if the porous 

medium is underlain by an impervious boundary. Conformal mapping technique when applied to 

the whole flow domain, the solution becomes cumbersome and intractable4n method of 

fragments, the flow domain is decomposed to several fragments through each fragment, the 

seepage quantity is same; the boundary of the fragments are straight line, which is either an 

equipotential line or a stream line 

A fragment can have maximum four vertices, and a maximum of three vertices take part 

in transformation, the solution is tractable and simple. Khosla, Bose and Taylor have analyzed 

flow under a stepped weir resting on a porous medium of infinite depth. In nature, the foundation 

soil layer is always finite. In chapter 3, using method of fragments, the two dimensional flow 

have been analysed. The potentials at salient points have been determined. If the porous medium 

is assumed to be of infinite depth, the up lift pressure is under estimated. In table we present 

potential for different thickness of the soil layer. It could be observed from this table, as 

thickness decreases, the potential increases, hence, the up lift pressure increases. The exit 

gradient is also under estimated with assumption of soil layer of large depth. 

In chapter 4, a structure generally constructed have been dealt. The flow domain is 

decomposed into 	5 fragments. The solution is presented for a structure that can have any 

number of fragments. An example has been presented for computation of the flow 

characteristicsuplift pressure and exit gradient are presented for a weir with two cut offs. 

A soft ware ha , been developed. The elliptic integrals have been evaluated using 

numerical method~all other integrationshave been evaluated analytically. 
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CONCLUSION 

Method of fragment considerably simplifies - the mapping technique. Flow under 

hydraulic structure having -large number of vertices, can be analyzed easily. Assumption of 

infinite depth of soil layer under estimates up lift pressure and exit gradient, which may 

endanger the safety of the structure. The only limitation in method of fragment i that the soil 

layer is underlain by an impervious layer. Method of fragment is not applicable if the underlying 

layer is a draining layer. 

The soft ware developed can be incorporated in developing a soft ware for designing 

hydraulic structure considering both surface and subsurface flow conditions. 
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INDEX 1 

ELLIPTIC INTEGRAL BY KING'S METHOD 

1. Elliptic Integrals 

The elliptic integral of the first kind is defined by 

where m is a parameter. Letting t = sin. 9, can be written as 

cat 
F x:  n - - 	 (0 `= m 	1  JCi — tJ(i mt.)  

when = --, F(q.mis comp .ete elliptic integral 

2. Arithmetic - Geometric Mean Method 

This method was described by King and its basic steps are as follows: 

Given a set of initial values (ao, bo, co, o), calculate iteratively a new set of values (( al, bl, cl, 

i), (a2, b2, c2, 2),..., (an, b, c, „) according to the follow scheme: 

a 	 a., 
1 	 = 140 

2 	
2 
	 _01 - I  

-+1-s 
2 n = ask-:A-:l a-1 + r_1 

2 

where 

xi = tan' ( ' tan ,) 
	

(i= 0,1,...,n -1) 

The terminate the iteraction when cr, is less than a given small number such as 10 7. The value of 
the elliptic integrals can then be determined as 



sT 

Mr.  

E&n) = -(2-4-2c 	) 

m) 	(k 1) 

F(p, 1) = 1/2 in (1+sinip)/(1 -siwp) 

2:7 
	+ 1qn 4j 	 7 Ø 2 c 	(k 1) 

F(q 1) = sin, ( 

If we need to calculate the complementary elliptic integrals, we can choose the initial values as 
(ao', b0', co', o') = (1, k, k', !E) and then proceed with , until ((as', be', c11', q') with c, < 10-'. 



COMPUTER PROGRAMMIENG FOR DEPRESSED WEIR RESTING ON 
POROUS MEDIA OF FINITE DEPTH 

#include<iostream.h> #include<math.h> #include<conio.h>#include<stdio.h> #include<iomanip.h> 
#include<fstream.h> 
const float PAI=3.141592653589793; 
double ellip(double angle, double hk);//Elliptic integral first kind 
void fral(double I1,double t, double ds,double s, double&bl,double&dl,double&A1); 
void fra22(double 12,double t, double ds,double s, double&b2,double&c2,double&A2); 
void main() 
{clrscr(); 
ofstream outfile("btl.text"); 
double 11,ds,s,dl,bl,t,A1; //Fragment 1; 
double 12,b2,c2,A2; 	//Fragment 2; 
double qkh,alpha,b; 
double phicl,ul,vl; 
double phic2,u2,v2; 
double agkh[50],aalpha[50],pbc1[50],pbc2[50],T[50]; 
int i=1,n=20,k=0; 
b =10.; 11= b;12 =10; d s= 0.; s=3.; t=8.; 
outfile<<"\nLl="«I1«';\tS="<<s<<"\n";  
outfile<<"t"<<"\t"<<"alpha"<<"\t"<<" q/kh"<<"\t\t"<<"PhiC1"<<"\t\t"<<"PhiC2"<<"\n"; 
for(i=0; i<n;i++) 
{fral(11,t,ds,s,bl,d1,A1);fra22(12,t,ds,s,b2,c2,A2); 
alpha=Al/(A1+A2); 
aalpha[i]=alpha; 
a q kh [i]=Al*A2/(A1+A2); 
T[i]=t; 
ul=asi n(sgrt(bl/(d1+b1))); 
vl=sgrt((d1+b1)/(1.+b1)); 
phicl=(1.-alpha)*ellip(u1,v1)/ellip(.5*PAI,v1)-1.; 
u2=asin(sgrt((c2-b2)/(1.-b2))); 
v2=sgrt(1.-b2); 
phic2=alpha*ellip(u2,v2)/ellip(.5*PAI,v2)-alpha; 
pbcl[i]=phicl;pbc2[i]=phic2; 
k=k+1; 
if(phic2<phicll I phic2<-1.I I phicl<-1.)break; 
cout<<"\nT="<<t<<"\tAlpha = "<<alpha; 
co ut<<"\tq/kh="<<A1 * A2/(A1+A2)<<e n d l; 
cout<<"\tPhiC1/kh "<<phicl; 
cout<<"\n\tPhiC2/kh ="<<phic2<<endl 
outfile<<t<<\t"<<alpha<<\t"<<A1*A2/(Al+A2)<<"\t"<<p hicl<<"\t"«phic2<<"\n' ; 
t=t+.5; 

cout<<endl<<endl; 
cout<<" T\t q/kh\talpha\t PhiC1\tPhiC2"<<endl; 
for(i=1;i<k;i++) 
cout<<setiosflags(ios::showpoint) 

<<setw(5)<<setprecision(1)<<T[i] <<setw(12)<<setprecision(4)<<agkh[i] <<setw(12)<<setprecision(2)<<aalpha[i] 
<<setw(12)<<setprecision(4)<<pbcl[i] <<setw(12)<setprecision (4) <pbc2[i]<<endl; 
getch(); 

void fral(double I1,double t, double ds, double s, 
double& bl,double& dl,double&A1) 

{double temp=ds+s,templ, temp2,temp3; 
if (temp==O) d1=0.; 
else {tempi=.5*PAI*(ds+s)/t; dl=pow(sin(templ),2.); 
if (11==0)b1=0; 



else 	bl=sinh(I1*PAI*.5/t)*sinh(11*PAI*.5/t); 
temp2=sgrt((1.-d1)/(1.+b1)); 
temp3=sgrt((d1+b1)/(1.+b1)); 
A1=ellip(.5*PAI,temp2)/ellip(.5*PAI,temp3); 

void fra22(double 12, double t, double dsdouble s, double&bZ, 
double&c2, double&A2) 

{double templ,temp2; 
if(12==O) c2=1; 
else { templ=PAi*l2*.5/(t-ds); 	c2=1./cosh(templ)/cosh(templ);} 
if(s==O.) b2=c2; 
else {temp2=sin(.5*PAI*(t-ds-s)/(t-ds));b2=c2*pow(temp2,2.);} 
A2=ellip(.5*PAI,sgrt(b2))/ellip(.5*PAl,sgrt(1.-b2)); 
} 

double ellip(double angle, double hk) 
{double phi; 
phi=angle*180/PAI; 
int i; 
double fe,d0,r,fac,ck,a,b,c,d,g=O.,aO=1.; 
double bO=sgrt(1.-hk*hk); dO=(PAI/180.)*phi; r=hk*hk; 
if(hk==1.&&phi==90.) fe=1.+30000.; 
else 
{ if (hk==1.) fe=log((1.+sin(dO))/cos(dO)); 

else 
{ fac=1.; 
for(i=1; i<=40;i++) 
{ a=(a0+b0)/2.; b=sgrt(a0*b0); c=(ao-bo)/2.; 
fac=2.*fac; r=r+fac*c*c; 
if(phi<=90) {d=d0+atan((b0/a0))*tan(dO);g=g+c*sin(d); 
dO=d+PAI*floor(d/PAI+0.5);} 
aO=a;bO=b; 

if(c<0.000001) break; 

I 
ck=PAI/(2.*a); if (phi==90) fe=ck; else fe=d/(fac*a); 

} 
} 

return fe;} 



COMPUTER PROGRAMMING FOR COMPUTATION UPLIFT PRESSURE AND 
EXIT GRADIENT FOR WEIR WITH MULTI CUT OFFS RESTING ON FINITE 

PERMEABLE FOUNDATION OF FINITE DEPTH 
#include<iostream.h> 
#include<math.h> 
#include<conio.h> 
#include<stdio.h> 
#include<iomanip.h> 
#include<fstream.h> 
const float PAI=3.141592653589793; 
long double gamma(double x); 
double beta(float p, float q); 
double inbeta(float p, float q, float x); 
double betainl(float a, float b, float x); 
double comel(float k); 
double betain3 (float a, float b, float x); 
double ellip(float angle, float k); 	int factor(int); 
long double F21(double a,double b,double c, double z); 
long double 121(double aa,double bb,double b, double c); 
long double 122(double aa,double bb,double c); 
long double 123(double aa,double c); 
long double 124(double aa,double bb,double c, double e); 
long double 125(double aa,double bb,double c); 
void fra21(double abeta, double Si, double tl,double& cl,double& forml); 
void fra22(double aa, double bb, double 12,double t21, double s21, 

double s22,double&b, double &c, double&e,double&form2) ; 
void fra32(double bb, double t3, double s3, double &b3,double &form3); 
double gra(double an,double bb,double b, double t3); 

void main() 

(clrscrO;ofstream fout("b43.text"); 
double bb=.5; 	//bb=Angle beta (slope of impervious boundaries; 
double h,hi,h2,sum1; 
double s1,tl,cl,forml; 	//for fragment 1; 
double aa,12,t21,s21,s22,b,c,e,form2; //for fragment 2; 
double yb2[10],yc2[10],yd2[10],ye2[l0],pb2[10],pc2[10],pd2[10],pe2[10]; 
double aaa[10],122[10),t212[10],s212[10],s222[10] ; 
double u21,u22,u23; 
double t3,s3,b3,form3; 	//for fragment 3; 
double total,form[20],an[20],sum=0,ycn; 
int i,n; 
h=6.; h2=2.; 
fo ut<<"\nh="<<h<<" (m)\th2="<<h2<<"(m)\n"; 
fout<<"Slope of impervious boundary ="<<bb<<"\n'; 

cout<<"\nEnter number of fragment n ='; cin>>n; 
fout<<"\nNumber of fragment n =1t;  fout<<n; 
cout<<"\n\n********Fragment type 1********" <<endl; 
fout<<"\n********Fragment type 1********\n"; 

cout<<"\nS1=";cin>>s1; fout<<"\n51="«s1<<"\t"; 
cout<<"\nT1= ;cin>>t1; fout<<"\nT1="«t1<<"\t"; 
fra21(bb,sl,tl,cl,form 1);fout<<"\nA1="<<forml<<"\n"; 
form[1]=form1;cout<<"\nForm1="<<form [1]; 

cout<<"\n\n********Fragment type 2 ********" <<endl; 
for(i=2;i<n;i++) 



{cout<<"\nFragment Type 2 ["<<i-1<<"]"; 	fout<<"Fragment Type 2 ["<<i-1<<]\n"; 
cout<<"\naa["<<i<<"]="; cin>>aa; aaa[i]=aa; 	fout<<"\nAngle alpha="<<aa<<"\n"; 
cout«°\nL2[°«I«']='; cin»12; 122[iJ=12; 	fout<< L2["«I«"1="<<l2<< \n"; 
tout<<"\nT21[°«I«"]=";cln>>t21;t212[i]=t21; fout<<"T21[°«i<<"]="<<t21<<"\n"; 
cout<<'\n521["«I«"]=";cin»521;5212[1]=s21; fout<<S21[°«°]="<<s21<<\n"; 
tout«°\n522["<<i«°]=";cjn>>s22;s222[I]=s22; foot«°S22["«i«°[=°«s22<<"\n°; 
fra22(aa,bb,12,t21,s21,s22,b,c,e,form2); 
form[i]=form2;cout<<\nForm["<<i«"]="<<form[i]«endl; fout<<"\nA["<<i<<"]="<<form2<<"\n"; 
} 

cout<<\n\n********Fragment type 3 ********\n" <<endl; 
cout«"\nEnter value of S3 = ";cin>>s3; 	fout<<"\nS3["«n<<"]= "<<s3<<"\n"; 
cout<<\nEnter value of 13 = ";cin>>t3; 	fout<<"T3["<<n<<"]= "«t3<<"\n"; 
fra32(bb,t3,s3,b3,form3); form[n]=form3; 	fout<<"\nA["«i«"]="<<form3<<"\n'; 

for(i=1;i<=n;i++) cout<<"\nform["<<i<<"J="<form[i]<<endl; 
sum=O; for(i=1;i<=n;i++} sum=sum+1./form[iJ;total=sum; 

for(int k=1;k<=n;k++) 
{ an[k]=1./(total*form[k]);cout<<"\nan["<<k<<"]="<<an[k]; fout<<"\nHead loss coefficient at fragment 

} 

//calculate exit gradient at distance x: 

double u; 
u=an[n]; 
fra 32(b b,t3,s3, b3,form3); 
cout<<"\nexit gradient le/h =" <<gra(u,bb,b3,t3);fout <"\nexit gradient le/h" <<gra(u,bb,b3,t3); 

//calculate uplift pressure 

double pp2,pp3,pp4,pp5,pp6,el1,el2,el3; 
cout<<"\nEnter value of Ycn=";cin>>ycn; 
for (i=2;i<n;i++) 
{ aa=aaa[i];12=122[i];t21=t212[i];s21=s212[i];s22=s222[i]; 

fra22(aa,bb,12,t21,s21,s22,b,c,e,form2); 
pp2=sgrt(e*(c-b)/c/(e-b)); pp3=asin(pp2); pp4=sqrt((e-b)/e); 
pp5=sqrt(e*(1.-b)/(e-b)); pp6=asin(pp5); 
ell=ellip(pp3,pp4); el2=ellip(pp6,pp4); el3=ellip(.5*PAI,pp4); 
sum=0;sum1=0; 
for(k=1;k<i;k++) sum=sum+an[k]; 
for(k=1;k<=i;k++) suml=suml+an[k]; 
cout<<"\nEnter value of y C2=";cin>>yc2[i]; 
yb2[i]=yc2[i]+s21; 
cout«"\nEnter value of y D2=";cin>>yd2[i]; 
ye2[i]=yd2[i]+s22; 
pb2[i]=yb2[i]+(h2-ycn)+h*(1-sum); 
if(s21==0) pc2[iJ=pb2[i]; 
else pc2[i]=yc2[ij+(h2-ycn)+h*(1.-sum-an[i]*el1/el3); 
pe2[i]=ye2[i]+(h2-ycn)+h*(1-suml); 
if (s22==0) pd2 [ i]=p e2 [i ]; 
else pd2[i]=yd2[i]+(h2-ycn)+h*(1.-sum-an[i]*el2/el3); 
fout<<"\nUplift pressure at fragment type 2 are\n" 

<<"\n P C2 ["«i«"]="<<pc2 [i] 



for (i=2;i<n;i++) 
{cout<<\n PB2 ["<i<<]="<<pb2 [1]<<endl; 
co u t<<"\n PC2 ["<<i <<"]="<<pc t [i ] <<e  n d l; 
cout<<\nPD2["<<i<<"]="<<pd2[i]<<endl; 
cout<<"\nPE2["<<i<<"]r"<<pe2[i]<<endl; 

} 

getch(); 

} 

double gra(double an double bb,double b, double t3) 
{ 	double t=1.0; 

double tel,te2,te3; 
te1=2.*beta(1.-bb,.5); 	te2=ellip(.5*PAl,sgrt(1.-b)); 
te3=1./pow(t-b,.5); double ieh; 
i e h=a n *t 3 *te 3/te 1/te 2; 

return ieh; 
} 

void fra21(double abeta, double si, double tl,double& cl,double& forml) 
{ 	double fcl,cr,cl; 

double b,x,u; 
if (sl/t1<.5)c1=.3;else c1=.7; 
u=i n beta (.5, a b eta, c1); 
fc1=s1/t1-u/beta(0. 5,a beta); 
wh ile(fabs(fcl)>0.0001) 
{ if(fc1>O.) c1=c1+0.0001;else { cr=cl;cl=c1-0.0001;c1=(cr+cl)*0.5;} 
u=in beta(.5,abeta,cl); fc1=s1/t1-u/beta(0.5,abeta); 
} 

form1=ellip(.5*PAl,sgrt(1.-c1)); 

void fra22(double aa, double bb, double 12,double t21, double s21, 
double s22,double&b, double &c, double&e,double&form2) 

{ 	long double fc3,fc2,fcl,cr,cl; 
e=1.000001, b=.0001; c=.3; 
fc1=l23(aa,c) *pow(c,aa)/I22(aa,bb,c)-12/t21/sin(aa* PAI); 

wh i le(fabs(fc1)>0.0001) 
{ if(fc1>O.) c=c+0.0001; else { cr=c;cl=c-0.0001;c=(cr+cl)*0.5;} 
fc1=123(aa,c) *pow(c,aa)/122(aa,bb,c)-12/t21/sin(aa*PAI); 
if(c>1.) {cout<<"\nerror, c>1' ;break;} 
} 

if(fcl>O) c=c-.0001; else c=c+.0001; 
double cl=c; 
if(s21==0) b=cl; 
else 
{ 	fc2=(t21-s21)/t21-121(aa,bb,b,cl)/122(aa,bb,cl); 

while(fabs(fc2)>0.001) 
{ if(fc2>0.) b=b+0.0001; else { cr=cl;cl=b-0.0001;b=(cr+cl)*0.5;} 
fc2=(t21-s21)/t21-121(aa,bb, b,cl)/122(aa,bb,cl); 
if(b<0.) {cout<<"error bi<O";break;} 
} 
if(fc2>0) b=b-.0001; else b=b+.0001; 

} 
double bl=b; 
if(s22==0) a=1; 
else 



{ 
fc3=(I25(aa,bb,c1)-124(aa,bb,cl,e))/l23(aa,c1)-s22*sin(aa* PAI)/12; 
while(fa bs(fc3)>0.0001) 
{ if(fc3<0.) e=a+0.0001;else { cr=e;cl=e-0.0001;e=(cr+cl)*0.5;} 
fc3=(l 25(aa,bb,c1)-124(aa,bb,c1,e))/l23(aa,c1)-s22*sin(aa*PAI)/12; 

if(fc3>0) e=e-.0001; else e=e+.0001; 
if(e<1.) e=1.00001; 
} 

double u2,v2; 
u2=asin(sgrt(e*(c1-b1)/(e-b1))); 
v2=sqrt((e-b1)/e); 
form2=ellip(.5*PAI,sgrt(b1/e))/ellip(.5*PA!,sgrt((e-b1)/e)); 

void fra32(double bb, double t3, double s3, double &b3,double &form3 ) 
{ 	double cr,cl; 

long double u,fcl,bl; 
if(s3/t3>.5) b1=.3; else bl=.8; 
u=pow(b1,1.-bb) *F21(1.-bb,.5,2.-bb, b1)/(1.-bb); 
fc1=u/beta(1: bb,.5)-(t3-s3)/t3; 
while(fabs(fcl)>0.001) 

{ if(fcl<O.) b1=b1+0.00001; 
else { cr=bl;cl=b1-0.00001;bl=(cr+cl)*0.5;} 
u=pow(b1,1. bb)*F21(1. bb,.5,2. bb,b1)/(1.-bb); 
fcl=u/beta(1: bb,.5)-(t3-s3)/t3; 
if (b1>1.) break; 
} 

if(fcl>0) bl=b1+.00001;else bl=bl-.00001; 
b3=bl; 
form3=ellip(PAI/2.,sqrt(b3))/ellip(PAI/2.,sgrt(1.-b3) ); 

long double F21(double a,double b,double c, double z) 
{ 	long double sum=O.,sum2; 

for lint i=0;i<8;i++) 
{ sum2=gamma(a+i)*gamma(b+i)*gamma(c)*pow(z,float(i))/ 

(gamma(a)*gamma(b)*gamma(i+c)*factor(i)); 
sum=sum+sum2; 
} return sum; 

long double 121(double aa,double bb,double b, double c) 
{ 	double sum=O.,suml,t; 

for (int 1=0;i<7;i++) 
{ suml=gamma(aa+i)*pow(b/c,float(i))*F21(i+1-bb,l: aa,i+2-bb,b)/ 
(gamma(aa)*factor(i)*(i+1.-bb)); 

sum=sum+suml; 
} 
t=pow(b,1.-bb)*sum; 

return t; 

long double 122(double aa,double bb,double c) 
{long double sum=O.,suml,t; 
for (int i=0;i<7;i++) 
{ suml=gamma(as+i)*F21(i+1-bb,l -aa,i+2-bb,c)/ 



(gamma(aa)*factor(i)*(i+1.-bb)); 
sum=sum+suml; 
} 
t=pow(c,1.-bb)*sum; 

return t; 
} 

long double 123(double aa,double c) 
{long double sum=O.,sum2,t; 
for (int i=0;i<8;i++) 
{ sum2=gamma(aa+i)*pow(1.-c,float(i)) *gamma  (aa+i)*gamma(1.-aa)/ 

(factor(i)*gamma(aa)*gam ma(i+1.)); 
sum=sum+sum2; 
} 

return sum; 
} 

long double 124(double aa,double bb,double c, double e) 
{ 	double sum=0.,sum2,u; u=1./e; 

for (int i=0;i<8;i++) 	- 
{sum2=gamma(aa+i)*pow(c,float(i))*pow(u,bb+float(i)) 
*F21(i+bb,1.-aa,i+bb+l.,u) /(factor(i)*gamma(aa)*(bb+i)); 
sum=sum+sum2; 
} 

return sum; 
} 
long double 125(double aa,double bb,double c) 
{ 	long double sum=0.,sum2,t; 

for (Int i=0;i<7;i++) 
{ sum2=gamma(aa+i) * pow(c,float(i))* beta(bb+i,aa) 
/(factor(i) * gamma(aa)); 

sum=sum+sum2; 
} 

return sum; 
} 

long double gamma(double x) 
{long double ga;double m1,z,m,r; 	int k; 
double gr,G[26]={0.,1.,.5772156649015329,-.6558780715202538, 

-.0420026350340952,.1665386113822915;.0421977345555443, 
-.0096219715278770,.0072189432466630,-.0011651675918591, 
-.0002152416741149,.0001280502823882,-.0000201348547807, 
-.0000012504934821,.0000011330272320,-.0000002056338417, 

.0000000061160950,.0000000050020075,-.0000000011812746, 

.0000000001043427,.0000000000077823,-.0000000000036968, 

.0000000000005100,-.00000000 00000206,-.000 0000000000054, 

.00000000000000141; 
if(x==floor(x)) 
{ if (x>0) 

{ ga=1.;m1=x-1.; 
for(k=2;k<=ml;k++) ga=ga*k; 

else ga=1.0+300.0; 
} 

- else 
{ 

if (fabs(x)>1.0) 



{ z=fabs(x); 
m=floor(z); 
r=1.0; 
for(k=1;k<=m;k++) r=r*(z-k); 
z=z-m; 

} 
else z=x; 
gr=G[25]; 
for (k=24;k>=1;k--) gr=gr*z+G[k]; 
ga=1.0/(gr*z); 
if(fabs(x)>1.) 
{ga=ga*r; 
if(x<O.) ga=-PAI/(x*ga*sin(PAI*x));} 

return ga; 
} 

double beta(float pp, float qq) 
{ 	float xx,yy,zz; 

double tt; 	xx=gamma(pp); 	yy=gamma(gq); 
zz=gamma(pp+qq); 	tt=(xx*yy)/zz; 
return tt; 
} 

double betainl(float a, float b, float x) 
{float dk[55],fk[55],ta,tb,t1=0.; 

double bix; 
float so=(a+1.)/(a+b+2.); 
double bt=beta(a,b); 
int k; 
if (x<=so) 
{for(k=1;k<=20;k++) 
dk[2*k]=k*(b-k)*x/(a#2.*k-1.)/(a+2.*k); 
for(k=0;k<=20;k++) 
dk[2 *k+1)=-(a+k) *(a+b+k)*x/(a+2. *k)/(a+2. *k+1.); 
tl=O.; 
for (k=20;k>=1;k--) t1=dk[k]/(1.+t1); 
ta=1./(1.+t1); 
bix=pow(a,x)*pow((1.-x),b)/(a*bt)*ta; 
} 

else 
{ 
fork=1;k<=20;k++) 
fk[2*k]=k*(a-k)*(1. x)/(b+2.*k-1.)/(b+2.*k); 
for(k=0;k<=20;k++) 
fk[2*k+1]=-(b+k) * (a+b+k) * (1.-x)/(b+2. *k)/(b+2.* k+1.); 
float t2=0.; 
fo r(k=20; k>=1; k--) 
t2=fk[k]/(1.+t2); 
tb=1./(1.+t2); 
bix=1.pow(x,a)*pow((1. x),b)/(b*bt)*tb; 
} 

float t2=bix*bt; 
return t2; 
} 
double betain3 (float a, float b, float x) 
{ 	double sum=l.,t=1.,u; int k=0; 

for(k=O;k<20;k++) 



{t=pow(x,float(k+1.))*beta(a+1.,float(k+1.))/beta(a+b,float(k+1.)); 
sum=sum+t; } 
u=sum*pow(x,a)*pow(1.-x,b)/a; 

return u; 
} 

double ellip(float angle, float hk) 
{ 	double phi; 

phi=angle*180/PAI; 
int i; 
double fe,dO,r,fac,ck,a,b,c,d,g=0.,aO=1.; 
double bO=sgrt(1. hk*hk); dO=(PAI/180.)*phi; r=hk*hk; 
if(hk==1.&&phi==90.) fe=1.+30000.; 
else 
{ if (hk==1.) fe=log((1.+sin(dO))/cos(d0)); 
else 
{ fac=1.; 
for(i=1;i<=40;i++) 
{ a=(a0+b0)/2.; b=sgrt(aO*b0); c=(aO-bG)/2.; 
fac=2.*fac;r=r+fac*c*c; 
if(phi<=90) {d=d0+atan((b0/a0))*tan(d0);g=g+c*sin(d); 
dO=d+PAI *floor(d/PAI+0.5);} 
a0=a;bO=b; 

if(c<O.000001) break; 

ck=PAI/(2.*a); if (phi==90) fe=ck; else fe=d/(fac*a); 
} 

return fe; 
} 

double inbeta(float pp, float qq,float xx) 
{ 	double betainl(float a, float b, float x); 

double betain3(float a, float b, float x); 
double inbeta; 
if (pp>=qq) inbeta=betain3(pp,qq,xx); 
else 

{if(xx<=.5) inbeta=betain3(pp,gq,xx); 
else inbeta=betain1(ppgq,xx); 

} 
return inbeta; 
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