
DESIGN OF A LOOPED WATER DISTRIBUTION NETWORK
USING NON LINEAR PROGRAMMING

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

WATER RESOURCES DEVELOPMENT
(CIVIL)

By

ROY PANAGOM PARDEDE

DEPARTMENT OF WATER RESOURCES DEVELOPMENT & MANAGEMENT
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)
JUNE, 2005

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled

"Design of a Looped Water Distribution Network using Non Linear Programming",

in partial fulfillment of the requirement for the award of the Degree of Master of

Technology in Water Resources Development (Civil), submitted in the Department of

Water Resources Development and Management (WRDM), Indian Institute of

Technology Roorkee, Roorkee is an authentic record of my own work carried out

during the period July 2004 to June 2005 under the supervision of. Dr. M.L. Kansal,

Associate Professor Department Water Resources Development and Management,

and Dr. K. Deep, Associate Professor Department of Mathematics, Indian Institute of

Technology Roorkee, India

I have not submitted the matter embodied in this thesis for the award of any'

other degree.

Date 	: June i.i.,112005
	 Roy Panagom Pardede

Place 	: Roorkee 	 Candidate

This is to certify that the above statement made by the candidate is correct to

the best of our knowledge.

Dr. Kusum Deep 	 Dr. M.L. Kansai
Associate Professor, 	 Associate Professor,

Department of Mathematics, IIT Roorkee, 	Department of WRDM, IIT Roorkee,
India 	 India

ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere and profound
gratitude to Dr. M.L. Kansal, Associate Professor, Department of Water Resources

Development and Management, IIT Roorkee, for his kind help and valuable

guidance, encouragement, suggestions at every stage of this dissertation. In spite of

his busy schedule, he has been ever ready to help me to solve any difficulty until the
completion of this dissertation.

My sincere gratitude also goes to Dr. Kusum Deep, Associate Professor,

Department of Mathematics, IIT Roorkee, for her valuable guidance and
encouragement throughout this dissertation work.

I express my sincere gratitude also to Dr. S.K. Triparthi, Professor and .Head

of Department of Water Resources Development and Management, IIT Roorkee for
the facility extended.

My sincere thanks to Dr. E. Keedwell from Centre for Water Systems,
University of Exeter, UK for his kind help during this work.

Thanks to Department of Public Works - Government of Indonesia, which
gave me an opportunity of attending this course.

Lastly, I also express my heartfelt thanks to my mother and all my sisters for
their support and encouragement, so that I could finish my course.

Date 	: June tti
 2005

Place 	: Roorkee
Roy Panagom Pardede

ii

SYNOPSIS

Design of water distribution network is become subject of experiment of

many researchers. It is because of the distribution network cost takes major part of

total network (it is around 70 percent), .so the optimal design of water distribution

network will bring the optimal design of water supply.

The problem of water distribution network is non linear in nature, due to the

cost pipe function and hydraulic law that are formed the problem. The problem can be

formulated in Non Linear Programming approach either in D-Q formulation, D-h

formulation or in Q-h formulation. Along these three formulations, the Q-h

formulation giving a better performance because of optimal result is achieved in

small number of iteration.

In this thesis, Non Linear programming approach will be applied, with using

Generalised Reduced Gradient (GRG) algorithms. Microsoft Excel Solver is used in

the process of iteration. As it is applied for simple networks, Q-h formulation is also
used for solving a real type network.

The solutions that are achieved by using Non Liner Programming approach

are guarantee only for local optimal solution, and due to this a lot of number of trial

solution is needed to ensure the optimal solution. The pipe diameter solutions that are

achieved are continuous, so it needs to round up to market size diameter.

The , using of Genetic Algorithms in design of water distribution network

problem will increase the chance of getting the global optimum solution. It is because

of the principles of genetics process in human nature are applied in getting optimal

solutions in design of water distribution networks problem. The trial solutions will be

simultaneously generated, to get the optimal solution. The superiority of Genetic

Algorithms dealing with discrete variable for example market size diameter of pipe, is

also becomes an advantage in solving water distribution network design problem.

Software package "Water Network Optimiser" that using Genetic Algorithm, will be

used in design areal type network, and it gives global optimal solution.

iii

Contents

CONTENTS

Candidates Declaration 	
Acknowledgements 	 ii
Synopsis 	
Contents 	 .. iv
List of Tables 	 vii
List of Figures 	 viii
CHAPTER - I: 	INTRODUCTION

	

1.1 	Water Distribution System 	 I-1

	

1.2 	State of Art in Water Distribution Models 	 1-3

	

1.3 	Objectives 	 1-5
CHAPTER - 	PROBLEM FORMULATIONS

	

2.1 	General 	 II=1

	

2.2 	Formulations 	 11-2
2.2.1 D-Q Formulation 	 11-3
2.2.2 D-h Formulation 	 11-5
2.2.3 Q-h Formulation 	 11-6

	

2.3 	Summary 	 11- 1 2
CHAPTER - 	TECHNIQUES FOR SOLVING NON LINEAR

PROGRAMMING PROBLEMS

	

3.1 	General 	 111-1

	

3.2 	Characteristics of an NLP Problem 	

	

3.3 	Classical Optimisation 	 111-3
3.3.1 Unconstrained Optimisation 	

3.3.1.1 Single Variable Objective Function 	

3.3.1.2 Multiple Variable Objective Function 	
3.3.2 Constrained Optimisation 	

3.3.2.1 Equality Constraints 	 III-7
a. Method of Direct Substitution 	 III-7

iv

Contents

b. Method of Lagrange Multipliers 	
3.3.2.2 Inequality Constraints 	 I11-10

3.4 	Numerical Methods 	 III-14

3.4.1 Unconstrained Minimisation 	 M-15

3.4.1.1 Direct Search Method 	 III-16
a. Univariate Method 	 III-16

b. Pattern Search Method 	 1H-16

c. Rosenbrock's Method of Rotating

	

Coordinates III-16

d. Simplex Method 	 III-16
3.4.1.2 Descent Method 	

3.4.2 Constrained Minimisation 	 III-20

3.4.2.1 Direct Method 	 III-21

a. Heuristic Search Method 	 III-21

b. Objective and Constraint Approximation

Methods 	

c. Methods of Feasible Direction 	 DI-33

d. Generalised Reduced Gradient Method 	

3.4.2.2 Indirect Method •

a. Transformation of variables method 	
b. Penalty Function method 	 III-56

3.5 	Stochastic Search Techniques 	 III-62
3.5.1 Genetics Algorithms 	 III-62

3.5.1.1 GA Characteristics 	 111-63

3.5.1.2 GA Operators 	 E11-65

3.5.1.3 Advantages and Shortcoming - 	
3.5.1.4 GA Applications 	 111-70

3.5.2 Simulated Annealing Method 	
3.6 Summary 	

CHAPTER - IV: 	CASE STUDY
4.1 	Application of Non Linear Programming 	 IV-1

Contents

4.1.1 Microsoft Excel Solver 	 IV-1

4.1.1.1 Forward and Central Differencing 	 IV-2

4.1.1.2 Optimality Conditions 	 IV-4

4.1.1.3 Multiple Locally Optimum Points 	 IV-4

4.1.2 Working with Solver 	 IV-5

4.1.2.1 Target Cell 	 IV-5

4.1.2.2 Changing Cells 	 IV-5

	

4.1.2.3 Constraints IV-5

4.1.2.4 Installing and Running Solver 	 IV-5
4.1.3 Application of Solver 	 W-7

4.1.3.1 D-Q Formulation 	 ..IV-7

4.1.3.2 D-h Formulation 	 IV-8

4.1.3.3 Q-h Formulation 	 IV-9

4.1.4 Discussion of Results 	 IV-10

	

4.2 	Application of Genetic Algorithm 	 W-10
4.2.1 Illustrative Example 	 IV-11

4.2.2 Modelling the Problem 	 IV-12

4.2.3 Running the Models 	 W-13
4.2.4 Discussion of Results 	 W-15

	

4.3 	Application on Design of Real Type Network 	 W-18
4.3.1 Solution by using Non Linear Programming Approach ...IV-21

4.3.2 Solution by using Genetic Algorithm Approach 	 W-28

CHAPTER - V: 	CONCLUSIONS AND SCOPE FOR FUTURE STUDY

	

5.1 	Conclusions V-1

	

5.2 	Scope for Future Study 	 V-3

References

Appendix — A

Appendix — B

Appendix —

LIST OF TABLES

TABLE
NO. DESCRIPTION PAGE NO.

2-1 Required Pressure Head and Demand at each node II - 7
2-2 Nature of objective function and constraints II - 12
3-1 Value and nature of extreme points DI - 7
3-2 Unconstrained Minimisation Methods III - 15
3-3 Constrained Optimisation Techniques III - 21
3-4 Results for Example 3.6 III - 26
3-5 Results for Example 3.12 DI - 59
3-6 Results for Example 3.13 III - 61
3-7 Example of Pipe Size and coding DI - 64
4-1 Result of Example 2.1 (using D-Q Formulation) IV - 7
4-2 Head pressure at each node (using D-Q Formulation) IV - 7
4-3 Result of Example 2.1 (using D-h Formulation) N - 8
4-4 Head pressure at each node (using D-h Formulation) N - 8 .
4-5 The Result of Example 2.1 (using Q-h Formulation) N - 9
4-6 Head pressure at each node (using Q-h Formulation) N - 9
4-7 Diameter — Cost relationship of network in Example 2-1 N - 11
4-8 Diameter of pipe of network (First running) IV - 16
4-9 Head pressure at each node of network (First running) IV - 17
4-10 Diameter of pipe of network (Second running) N - 17
4-11 Head pressure at each node (Second running) N - 18
4-12 Demand node and pressure head requirement of Example 4.1 IV - 19
4-13 Characteristic of link of network in Example 4.1 N - 20
4-14 Cost diameter pipe relationship of Example 4.1 IV - 21
4-15 Diameter — Cost relationship in mm and monetary unit N - 22
4-16 Optimum solution of Example 4.1 (using MS- Excel Solver) - N - 26
4-17 Head pressure at each node of network of Example 4.1 IV - 27
4-18 Results of Example 4.1 (First trial) N - 28
4-19 Results of Example 4.1 (Second trial) N - 30

vii

LIST OF FIGURES

FIGURE
NO. DESCRIPTION

PAGE
NO.

2-1 Types formulation of Non Linear Programming for Water - 3
Distribution Network Design

2-2 Two-loop gravity network II - 7
3-1 Nonlinear programming minimisation problem: (a) inactive

constraints; (b) minimum occurring on a linear constraints,
and (c) minimum occurring at the point of intersection of two
constraints

III- 2

3-2 Saddle point of function Z = x2 - y2 III - 6
3-3 Division of Non Linear programming Techniques III- 15
3-4 Penalty function methods: (a) exterior method; (b) interior

method
III- 57

3-5 Population Strings III - 66
3-6 Crossover Process DI - 67
3-7 Mutation Process DI - 68
4-1 Solver Options Menu in MS-Excel Solver IV- 3
4-2 Solver Parameters Dialog Box IV - 6
4-3 Iteration Process using MS-Excel Solver W - 10
4-4 Project Window of Water Network Optimiser IV -13
4-5 Key buttons of Water Network Optimiser software W -14
4-6 GA option of Water Network Optimiser - 14
4-7 Iteration process in Water Optimiser Network - 16
4-8 An example of real type water distribution network W - 19
4-9 Diameter-cost pipe relationship IV - 22
4-10 Initial guess of flow direction , IV - 23

viii 	.

Introduction

CHAPTER I

INTRODUCTION

1.1 WATER DISTRIBUTION SYSTEM

Municipal water distribution systems represent a major portion of the

investment in urban infrastructure and a critical component of public works. The

goal is to design water distribution systems to deliver potable water over spatially

extensive areas in required quantities and under satisfactory pressures. In addition to

these goals, cost-effectiveness and reliability in system design are also important.

Municipal water distribution systems are inherently complex because they are:

• large-scale and spatially extensive
• composed of multiple pipe loops to maintain satisfactory levels of redundancy

for system reliability

• governed by nonlinear hydraulic equations
• designed with inclusion of complex hydraulic devices such as valves and

pumps

• impacted by pumping and energy requirements
• complicated by numerous layout, pipe sizing, and pumping alternatives
• influenced by analysis of tradeoffs between capital investment and operations

and maintenance costs during the design process.

Traditional methods of design of municipal water distribution systems are

limited because system parameters are often generalized; spatial details such as

installation cost are reduced to simplified values expressing average tendencies; and

trial and error procedures are followed, invoking questions as to whether the optimum

design has been achieved. Even with use of hydraulic network simulation models,
design engineers are still faced with a difficult task.

Introduction

The optimal design of municipal water distribution systems is a challenging
optimization problem for the following reasons:

• the system optimization requires an imbedded hydraulic simulation model for

pressurized, looped pipe networks
• the discrete decision variables are discrete, since pipe sizes must be selected

from commercially available sets [e.g., 8", 10", 12", 15",...]; combinatorial

problems involving discrete variables are considered NP-hard in optimization
theory

• the optimization problem can be highly nonlinear due to nonlinear hydraulic
models and pump characteristic curves

• the optimization problem should be regarded as stochastic due to uncertain
demand loadings and system reliability issues

• one way of considering uncertain demands is to include multiple demand

loading scenarios in the optimization, which increases problem size and
complexity

• pressure constraints must be directly included in the optimization.

The optimal design of municipal water distribution systems involves numerous

characteristics which carry significant spatial dependencies. These include:

• topography and its influence on pressure distribution in a pipe network
• street network characteristics, since most water distribution systems are

installed in existing and planned road systems
• right of way issues

• congestion problems during installation due to buried utilities
• land use and development issues impacting installation costs, such as

increased costs of pipe excavation in commercial districts due to business
disruption and the need for traffic rerouting

• spatially distributed soil characteristics impacting excavation costs, such as

loose, sandy soils requiring more costly reinforcement of the site.

I - 2

Introduction

1.2 STATE OF ART IN WATER DISTRIBUTION MODELS

The current focus in optimal design models is on improving the efficiency and

realism of the optimization techniques. With development of "Operation Research",
now we able to find the optimise solution for any particular problem through various

methods. Various method such as: Linear Programming, Non Linear Programming,

Dynamic Programming have also used in water distribution network design. A

number of researchers have used Linear programming to optimise a design of a pipe

network. Researchers have developed two principal approaches (Alperovits and

Shamir 1977; Quindry et al. 1979). Dynamic Programming, that is developed by

Richard Bellman in early 1950s, is powerful in solving allocation of water in water

distribution problem. The principle of Dynamic Programming is decomposes a

multistage decision problem into a sequence of single stage decision problem. As the

number of unit that is allocated and number of resources increases, Dynamic

Programming become quite complex. Dynamic Programming is rarely used to solve

problems of allocation of more than two resources.

A wide variety of techniques have been proposed, with one of the most oft

studied being the Linear Programming Gradient (LPG) method and its extensions

(Alperovits and Shamir, 1977; Eiger, et al., 1994). However, Bhave and Sonak

(1992) claim that the LPG method is inefficient compared with other methods.

Methods based on the use of linear programming (LP) have been developed

which are capable of maintaining the constraint on discrete pipe sizes without the

need for rounding off solutions. Morgan and Goulter (1985) modified the procedure

of Kally (1972) to link a Hardy-Cross network solver with linear programming

model. The model is designed to optimize both the layout and design of new systems

and expansion of existing systems. It is a highly efficient method, with the main

disadvantage being the generation of split pipe solutions (i.e., with some pipe sections

requiring two pipe sizes). The latter indeed reduces system costs, but may not be

attractive to design engineers.

I - 3

Introduction

More recent literature emphasizes reliability issues in water distribution

system design, with consideration of the probabilities of satisfying system flow and

pressure requirements. Lansey, et al. (1989) employed a chance constrained model to
consider uncertainties in demands, pressure head, and pipe roughness. Bao and Mays

(1990) applied Monte Carlo simulation methods to measure system reliability.

Although reliability-based water distribution system models are useful for analysis of

the problem, they may be impractible for designing large-scale systems. The use of

multiple demand loading scenarios may be a means of indirectly including system

reliability issues at more practical computational expense.

Some approaches attempt to employ efficient combinatorial methods to the

optimal design problem. Gessler (1982) linked a network hydraulic simulation model

to a filtering subroutine to efficiently enumerate all feasible solutions in pipe network

design. This model selects both the optimal design, as well as several near-optimal

solutions for tradeoff analysis, and is perhaps the most widely used optimization
model.

Other authors have formulated the optimal design problem as a nonlinear

programming problem with discrete pipe sizes treated as continuous variables. By

considering the link diameters as a continuous variable, several researchers have

suggested the optimisation of looped water distribution networks through nonlinear

programming ever since Pitchai (1966), Jacoby (1968), and others applied NLP for

optimisation of water distribution networks such as Chiplunkar, et al. (1986)

employed the Davidon-Fletcher-Powell method to design a water distribution under a

single demand loading scenario. Lansey and Mays (1989) coupled the generalized

reduced gradient (GRG) algorithm with a water distribution simulation model to

optimally size pipe network, pump stations, and tanks. . These approaches differ from

one another in the formulation of the problem and/or the method of its solution. The

primary disadvantage of these NLP methods is the required rounding off of optimal

continuous decision variables to commercially available sizes, which can lead to

network infeasibilities as well as raise questions as to optimality of the adjusted
solution.

I - 4

Introduction

Recent studies have attempted to apply a variety of heuristic programming

methods to the optimal design of water distribution systems. These include the

application of genetic algorithms (Savic and Walters; 1997) and simulated annealing
(Cunha and Sousa, 1999). The advantages of these methods are that they allow full
consideration of system nonlinearity and maintain discrete design variables without

requiring split pipe solutions.

The disadvantages include:

• cannot guarantee generation of even local optimal solutions, particularly for

large-scale systems

• require extensive fine-tuning of algorithmic parameters, which are highly

dependent on the individual problem

• can be extremely time consuming computationally

• current applications have not included use of multiple demand loadings

because of computational difficulties.

1.3 OBJECTIVES

The aim of dissertation is to explore the application of Non Linear

Programming in solving of design of a looped water distribution network problem.

The problem of water distribution network is formulated as Non Linear Programming

problem and will be solved using a suitable algorithm in Non Linear Programming

approach. Due to increasing of complexity of the network will affect the searching of

optimal solution, the random search method will also be applied. In this case, Genetic

algorithm as a part of evolutionary algorithm will be incorporated in solving water

distribution network design problem. These two approaches will be compared to

know the better algorithm in solving looped water distribution network design
problem. "

I - 5

Problem Formulations .

CHAPTER II

PROBLEM FORMULATIONS

2.1 GENERAL

The design of water distribution systems is often viewed as a least-cost

optimization problem with pipe diameters acting as the primary decision variables.

However, although the cost of operating a water distribution system can be

substantial (arising from maintenance, repair, water treatment, energy costs, and so

on), the costs of some items often do not greatly depend on pipe size. In most

situations, pipe layout, connectivity, and imposed minimum head constraints at pipe

junctions (nodes) are taken as fixed design targets.

Clearly, other elements (such as service reservoirs and pumps) and other

possible objectives (reliability, redundancy, flexibility in the face of uncertain future

demands, and satisfactory water quality) can be included in the optimization process.

But the difficulties of including reservoirs and pumps and quantifying additional

objectives for use within the optimization process have focused researchers on

determining pipe diameters while maintaining the single objective of least cost.

Typically, pumping and storage alternatives are taken as entirely separate approaches

that are considered outside of the optimization process. Even this somewhat limited

formulation of optimal network design offers a difficult problem to solve (Savic and

Walters, 1997). Generally the objective function of the pipe-sizing problem is

assumed to be a cost function of pipe diameters and lengths:

minimise f (x) ..E c, (xi ii) 	 (2.1)

where 	f 	= 	objective function to be minimized

x 	 vector of unknown diameters xi

number of pipes

Problem Formulations

ci 	= 	cost function for pipe i

it 	= 	length of pipe i

The set of constraints associated with this problem consist of continuity and
energy loss equations, which can be satisfied by running a standard hydraulic

simulation program to evaluate the hydraulics of the solution. Other constraints may
include

• The minimum and maximum head constraint at each or selected nodes

• The minimum and maximum velocity in pipes

• The minimum reliability and redundancy constraints

• Other operational constraints, such as balancing reservoirs within 24 hours or

any other period, or ensuring at least a minimum turnover of water in storage

The initial process of optimisation problem of water distribution. network is

started by formulating the objective function. The objective function is to minimise

the energy cost of pumped station and cost function of pipeline network (in case of

pumped network) and to minimise cost function of pipeline network (in case of

gravity network). Pipe cost term has variables such as diameter pipe and pipe length,

and energy term has variables i.e. available head at source node and minimum head at

each node. The constraints that must be satisfied are continuity of flow at each node,

algebraic sum of the head losses in each loop is zero, algebraic sum of the head losses

in a path from source to each demand node is not more than the permissible head loss

in the path and all pipe lengths, diameter pipe and head loss and or available head are
non negative.

2.2. FORMULATIONS

Consider a single source pumped (labelled 0), looped water distribution
network having N demand nodes (j = 1,.., N), X links (x = 1,... X) and C basic circuits
or loops (c = 1,... C). Since the variation in capital cost of pumps is negligible, we

11 - 2

Problem Formulations

shall consider the present worth of energy charges, PW, and the network cost C in the

objective function, and follow the usual notation.

Since the diameter D, discharge Q and head loss h for a link are interrelated
through the link head loss relationship, we can consider any two of them as basic
decision variables. Thus, for general Non Linear Programming problem for looped
networks, we have:

1. Diameter-discharge, D-Q formulation

2. Diameter-head loss, D-h formulation, and

3. Discharge-head loss, Q-h formulation

D-Q Formulation

Non Linear
Programming

D-h Formulation Q-h Formulation

Figure 2-1 Types formulation of Non Linear Programming for Water

Distribution Network Design

2.2.1 D-Q Formulation

In D-Q formulation, for a single source pumped network, decision variables are

HGL at the source HO, the link diameters Dx, x = 1,... X; and link discharges Qx, x =
1, ..., X Thus we have 2X+1 decision variables. The objective function is:

Minimise CT = K (Ho — H) + EBxLxD:.'
x=1

(2.2)

where :

CT = cost of water distribution networks plus cost of energy for pump station

- 3

Problem Formulations

86000CeQm hpF
K — 	

77
Cc = cost of unit energy, monetary units/kWh

Q,,, = mean discharge, m3/s

Hp = pumping or total head, m

F = Present worth factor (P/A, i %, n)

77 = pump efficiency

Ho = Hydraulic gradient level (HGL) at source node

He = Hydraulic gradient level (HGL) at demand node

L, = link of each link

Dx = diameter of each link

B, m = pipe cost constant

Since the node flow continuity must be satisfied at each demand node, we have

N node flow continuity constraints,

EQx+q;=
	 (2.3)

Kincidentonj

where:

Qx = discharge at link x, m3/s

qj = demand node at j, m3/s

The head loss in links along each loop must be balanced, thus we have C loop
head loss constraints,

EALxQfax-r = 0 	 (2.4)
SEC

where:

A = constant depending on the link material, and units of different terms

Lx = length of link x

Qx = discharge at link x

D., = diameter pipe of link x

- 4

Problem Formulations

P, r = exponents equal to 2 and 5, respectively, in Darcy Weisbach formula; 1.85 and

4.87, respectively in Hazen William formula and 2 and 5.33 respectively in Manning

formula.

To satisfy the HGL constraint at each demand node we have N path head loss

constraints,

E AL xQf D;r < H — Hrn 	 (2.5)
XE Pi

where:

1/0 = Hydraulic gradient level at source node

= Minimum Hydraulic gradient level required at node j

In addition, we have the usual non negative constraints for decision variables:

Ho ?_0(_.H,),Dx ..0,Qx _O 	 (2.6)

When the optimisation problem with the non negative constraints is solved, the

looped network converts to a branched one. To avoid this, the nonnegative

constraints can be replaced by finite value boundary. constraints. The link diameters

should at least be of the minimum size, Dmin, corresponding to the D-specified

condition. Alternatively, the link discharges must not be less than some specified

discharge Qmin, corresponding to the Q- specified condition. Thus, the boundary

constraints are:

110_ 0 He), Dx 	 Qmin 	 (2.7)

2.2.2 D-h Formulation
Objective function:

Minimise CT = K (Ho — HO + EBx41)","
x=1

(2.8)

subject to:

- 5

Problem Formulations

Ekhxg)/(ALA/P +qi = 0
xincidentonj

0
XEC

Ehx < Ho — Hr

Or

Ho 0 He), Dx Dmin, i(hxDxr)/(ALA IIP Qmin

2.2.3 Q-11 Formulation

x
Minimise CT — K (Ho — +

x=1

subject to:

Qx +q j "="
xincidentonj

Ehx = 0
SEC.

Ehx Ho — HP
xePj

H00 (.1-1e),hx

or

H0 He, hx AL,QxP(Dminr , or Q. T in

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

Example 2.1
A simple water distribution network is given. It is a two-loop gravity network as

shown in Figure 2-2. Node 1 is a source node with HGL of 210 m and nodes 2, ..., 7

are demand nodes having demands, shown near the arrow heads, and minimum

required HGL values, shown near the nodes. The network has eight links, each 1,000

m long.

- 6

100 	 100 m311 	 •
190 	 180 an .1120

Problem Formulations

The required pressure head and demand at each node is given in Table 2-1.

Figure 2-2 	Two-loop gravity network

'fable 2-1 Required Pressure Head and Demand at each node

Node 	Required Pressure head (m) 	Demand (m3/h)

1
	

210
2
	

180 	 100

3
	

190. 	 100

4
	

185 	 120

5
	

180 	 270

6
	

195 	 330

7
	

190 	 200

The link cost function is C = 1.2654 LDI'327 in which D is in millimetres, L in metres

and C in rupees. Formulate optimisation problem using: (1) D-Q formulation; (2) D-h

formulation and (3) Q-h formulation. Use Hazen-Williams head loss formula for

headloss calculation, with Hazen Williams coefficient is 130 for all links.

Solution

The cost function can be written as follows:

C = 1.2654 (1000) (103 D)1.327

- 7

Problem Formulations

= 12.1123 106 D' .327

where, C = Cost of pipe per m' (in rupees)

D = diameter of pipe (in meter)

Head loss function, h —
10.7 LQ1.852

(Q)1.852
— (10.7)(1000) 	

3600)
1301.852 D4.87 "

= 3.37356 10-7 Q„ 1.852 pn -4.87

where, hn = headloss of link-n (in metre)

Qn = discharge in link-n (in m3/s)

Dn = diameter of pipe of link-n (in meter)

1. D-Q Formulation

Objective function,

Minimise C = 12.1123 106 (D11.327 + D21.327 + D31.327 + D41.327 + D51327 + D61.327

+ D71327 + D81.327)

subject to:

Constraints of flow continuity at each node:

1020— Q2 — Q3 0

Q3 — Q5 Qa -120 = 0

Q2 — Q7 = 100

Q4 + Q8 + Q7 = 270

Q5 — Q6-330 0

Q6 — Qa — 200 = 0

Path head loss constraints:

3.37356 104 Q11.852 D1-4.87 30

3.37356 le (Q11.852 D1-4.87 + Q21.852
D24.87) < 20

3.37356 10-7 (Q0.852 — -4.87 L1 + 1.852 	-4 87 D3) C 25

c It ./8;y52D 4 . 87

- 8

= 0

it D4.87 4 4

Problem Formulations

3.37356 10-7 (01.852 D1-4.87 + Q21.852 D2-4.87 + 01.852 D7-4.87) < 30

3.37356 10-7 (01.852 D1-43
7 + 01.852 D3-4.87 + 0

1;
852 D4-4.87) <30

3.37356 10-7 (01.852 Di-4.87 + 01.852 D3-4.87 + 01.852 D5-4.87) < 15

3.37356 10-7 (01.852 D1-4.87 + 01.852 D3-4.87 + Q51.852 D5-4.87 + Q61.852D6-4.87.) < 20

Constraints of summation of headloss on loop equal zero:

3.37356 10"7 (Q21.852 D2-4.87 + Q71.852 D7-4.87.) = 3.37356 10-7 (Q31.852 D3-4.87+

Q41.852 D4-4.87)

3.37356 10-7 (01.852 D5-4.87 + 	48 	1852 	 7 Q61.852 D6-.7+ 0 . 	D8-4.87.) = 3.37356 10-
(Q41.852 D4-4.87)

Non negativity constraints:

DI, D2,, D8 0

Q1) Q29 • • •-, Q8 0

2. D-h Formulation

Objective function,

Minimise C = 12.1123 106 (D11327 + D21.327 + D31.327 + D41.327 + D51.327 + D61327

+ D71.327 + D81327

subject to:

Constraints of flow continuity at each node:

h2D187 	 1.539 	h31487)0.539 1020
3.37356(10-7) 	3.37356(10-7)

hD,;.87)11539 3

3.37356(10-7))

h14.87)0339 2 2
3.37356(10-7))

h1):87 	539 5
3.37356(10-7) 	3.37356(10-7

h7D74.87)0.539
= 100

3.37356(10-7)

0.539

= 120

- 9

•

h6D:87)0339
3.3735600-7) 	= 330

Problem Formulations

3.37356(10-7

hD:87)0.539 5
(3.37356(10-7)

h6 D:.87 	10.539

(3.37356(10-7))

h4 D:87 	
0.539 +
	h8 D4.87 	1) 539 	h7 D;87

3.37356(10-7) . 3.37356(10-7

h8 D:87)0.539
200

3.37356(10-7)) =

Constraints of summation of headloss on loop equal zero:

h2+ h7— h3 — h4= 0

h4 = h5 + h6 + hg

Path headloss constraints:

hi 30

h i + h2 20

h i + 	25

hi + h2 + 	30

h1+h3+h7.30

hi + h3 + 	15

h1 + h3 + h5 + h6__ 20

h1 + h3 + h5 + h64 h8 30

Non negativity constraints:

Di, D2,, D8 0

h1, h2, 	Its 	0

3. Q-h formulation

C= 12.1123 106D1.327

3.37356(10-7)Q1852-
 D=

h

0.539

= 270

4.97

(b)

- 10

Problem Formulations

Combine a & b, we get:
1.327

C= 12.1123 106 [3'37356(10-7)Q1.852

= 208,814.2616 Q0.5046 h-0.2725

So, the objective function:

Minimise C= 208814.5616 (11200'5046 h1 -02725 + _1_ 0.5046h 2 0.2725 + 0.5046

h3-0.2725 Q40.5046h4-0.2725 Q50.5046h5-0.2725

Q60.5046h60.2725 00.5046k0.2725 + Q80.5046

h8-02725)

subject to:

Node flow continuity constraint:

1020 — Q2 — Q3 0

Q3 — Q5 — Q4 -120 = 0

Q2— Q7 = 100

Qa

Q5

Q6

Qa ± 	= 270

Q6 -330 = 0

Q8 — 200 = 0

Constraints of summation of headloss on loop equal zero:
h2 + 177— h3 h4= 0

h4 = h5 + h6 + h8

Path headloss constraints:

hi 5. 30

h1 + h2 5_20

h1 + h3 25

hi + h2 + h7 5 30

h1 + h3 + h7 30

h1 + h3 + h5 15

h

- 11

Problem Formulations

hi + h3 + h5 + h6 20

hi + h3 + h5 + h6 + h8 5 30

Non negativity constraints:

Qi, Q2,, Q8 > 0

hi , h2, 	128 0

2.3 SUMMARY
The nature of objective function and constraints for formulations in water

distribution network design problem is shown in Table 2-2.

Table 2-2
	Nature of objective function and constraints

Formulation

Constraints

Objective

function
Node flow
continuity

Loop

head

loss

Path

head

loss

Non

negativity

Q- or D-

specified

D-Q

D-h

.

Q-h

Non-

linear

Non-

linear

Non-'

linear

Linear

Non-linear

Linear

Non-

linear

Linear

Linear

Non-

linear

Linear

Linear

Linear

Linear

P
Linear

Linear

Non-

linear

Non-

linear

If objective function and or constraints are nonlinear, the problem becomes a

non linear programming problem. The formulation above indicates that the problem

in water distribution network design is a non linear programming in nature. Between

of these three formulations, it is easier to solve Q-h formulation than D-Q or D-h

formulation, because all the constraints are in linear state, it is better to choose Q-h
formulation.

II - 12
ti /IL

Techniques for Solving Non Linear Programming Problems

CHAPTER III

TECHNIQUES FOR SOLVING NON LINEAR

PROGRAMMING PROBLEMS

3.1 GENERAL

In Non Linear Programming Problem, solution can be obtained from classical

optimisation method and from numerical optimisation method. Classical optimisation

method proved to be performed well if objective function or constraints are fairly

simple in terms of decision variables. In practice, however, the objective function and

or constraints would be too complicated to be manipulated for obtaining the optimal

solution. In such cases, the numerical approach would be necessary.

3.2 CHARACTERISTICS OF AN NLP PROBLEM

According to the nature of objective function and constraints, the optimisation
problem can be divided into 2, i.e. linear and nonlinear programming problem. When

the objective function and all the constraints are linear function of the decision

variables, the optimisation problem is called a linear programming (LP) problem.

When either of objective function or constraints is nonlinear, the optimisation

problem is defined as nonlinear programming (NLP) problem.

Mathematically, a non linear programming problem can be expressed as:

Optimise Z = f
	

(3.1)

subject to

gt (xl,x2,• • •,xn) 	 b1
g2 (X1,-X2,• • • rtn)

gm (xi,x2,• • ,xn) J 	bm
where the variables (xi 	are non linear in nature.

b2

DI - 1

Techniques for Solving Non Linear Programming Problems

The presence of constraints in an NLP problem creates difficulties in finding the

optimum solution. For example, consider some minimisation problem with linear and

non linear constraints as shown in Figure 3-1.

-to
Figure 3-1 Nonlinear programming minimisation problem: (a) inactive

constraints; (b) minimum occurring on a linear constraints, and

(c) minimum occurring at the point of intersection of two

constraints

The feasible region is shown shaded. Different objective function contours are

also shown, and the arrows show the direction in which the objective function value

decreases. Each problem has one minimum solution. The simplest situation is shown

in Figure 3-1(a) where the constraints are inactive so that the optimum solution is the

same as the unconstrained one, as shown in point A. However, for practical problems

one or more constraints may be active so that the optimum solution would be at point

B or at point C as shown in Figure 3-1(b) and Figure 3-1(c) respectively. Therefore

for practical problems it is better to start with an assumption that at least some of the

constraints would be active and play a role in deciding the optimal solution.

However, if we can identify, a priori, inactive constraints from the constraints set,

then we can omit them and simplify the NLP problem to that extent.

TEE - 2

Techniques for Solving Non Linear Programming Problems

3.3 CLASSICAL OPTIMISATION

The classical methods of optimisation are useful in finding the optimum

solution of continuous and differentiable functions. These methods are analytical and

make use the techniques of differential calculus in locating the optimum points.
Constraints may be absent or present; accordingly there will be unconstrained

optimisation and constrained optimisatiim. Since- some of the practical problems

involve objective functions that are not continuous and or differentiable, the classical

optimisation techniques have limited scope in practical applications. However, a

study of the calculus methods of optimisation forms a basis for developing most of

the numerical techniques of optimisation.

3.3.1 Unconstrained Optimisation

1. Single Variable Objective Function

The simplest unconstrained optimisation problem is a single variable objective

function for which Theorems 3.1 and 3.2 give the necessary and sufficient conditions,

respectively.

Theorem 3.1. If a function is defined in the interval a di, and at x---x* (a<x*<b)
if the derivative clf(x)/dx=f'(x) exists as a finite number at x=x*, then f'(x*) = 0 gives a

minimum, maximum or stationary point.

Theorem 3.2. Let f'(x*) =f"(x*) = . 	1 (x *)=0, butf(x*) 00. Then f(x*) is:

(a) A minimum value off(x) iff(x*)>0 and n is even,

(b) A maximum value off(x) iff(x*)<0 and n is even,

(c) Neither a minimum nor a maximum if n is odd.

(Note: the superscript *, denotes an optimum value, either the minimum or the

maximum value).

Example 3.1
Determine the maximum and minimum values of the function:

.f(x) = 12x5 — 45x4 + 40x3 +5

DI - 3

Techniques for Solving Non Linear Programming Problems

Solution:

Since f'(x) = 60 (x4 -3x3 + 2x2) = 60 x2 (x-1) (x-2), the value f (x) = 0 at x = 0, x = 1,

and x = 2.

The second derivative is
f"(x) = 60 (4x3 — 9x2 + 4x)

At x = 1, f"(x) = -60 and hence x = 1 is a relative maximum. Therefore,

fmax 'AX=1) = 12

At x= 2, f"(x) = 240 and hence x = 2 is a relative minimum. Therefore,

finin 'AX=2) = -11

At x= 	(x)= 0 and hence we must investigate the next derivative.

f" '(x) = 60(12x2 — 18x+4) = 240 at x = 0

Since f' "(x) #0 at x=0, x= 0 is neither a maximum nor a minimum and it is an

inflection point.

2. Multiple. Variable Objective Function
If the objective function has several variables, say n, giving objective function

Z = fixi ,x2, • • -,xn)
	

(3.2)

then the necessary and sufficient conditions are given by Theorem 4.3 and 4.4

respectively.

Theorem 3.3. If an extreme point (minimum or maximum) exist for a function

X2,• • • ,Xn) and also the first partial derivatives exist at this point, then at this point

of = of 	of .0
ax, axe 	ax„

Theorem 3.4. The matrix of second partial derivatives (Hessian matrix) of f(xi,

X2, • • • ,Xn) evaluated at the extreme points is:

a) Positive definite for minimum solution, and

b) Negative definite for maximum solution.

(3.3)

The Hessian matrix off(xi, 	having second partial derivatives is given by

1I f =

32f 32f a 2 f

Techniques for Solving Non Linear Programming Problems

(3.4)

ax1 2

a2
f

aXi axe
a 2 f

ax, ax„
a 2 f

aX2aXI

02f

aX22

43f
aX2axn

02f

ax„ ax, axn aX2 aXn 2

One simple test to know whether the matrix is positive definite or negative

definite of Hessian matrix, A of order n is by evaluating the determinants of matrix.

A=laill

A2

A3

An

all 	a12
a21 	a22

all 	a12

a21 	a22
a31 	a32

all 	a12
a21 	a22

an 1 	ant

a13

a23
a33

' • •

• •

al n

azn

a,

(3.5)

(3.6)

(3.7)

(3.8)

The matrix A will be positive definite if and only if all the values A1, A2, A3,

...An are positive. The matrix A will be negative definite if and only if the sign ofAi is
(-1)' for j = 1,2,...n. If some of the 4 are positive and the remaining are zero, the
matrix A will be positive semidefinite.

In case of a function of two variables Ax,y), The Hessian matrix may be

neither positive definite nor negative definite at a point (x*, y*) at which (aflax) and

(0/Wy) are equal zero. In this case the point (x* y*) is called a saddle point. The

characteristic of saddle point is that it gives a relative minimum with respect to one

variable while it gives a relative maximum with respect to another variable, as shown

in Figure 3-2 for function, Z = x2-y2, with saddle point at x = 0, y = 0.

III - 5

Saddle
point

Techniques for Solving Non Linear Programming Problems

Figure 3-2 Saddle point of function Z= x2 -y2

Example 3.2
Find the extreme points of the function

J(xi,x2) = x/3+ x23+2x12+4x22+6

Solution:
The necessary conditions for the existence of an extreme point are

of
=3X1 2 ± 4X1 = Xf(3X1 ± 4) = 0

ax,

ax2

These equations are satisfied at the points

(0,0), (0,-+), (-4,0) and (-4 4)

To find the nature of these extreme points, we have to use the sufficiency conditions.

The second-order partial derivatives off are given by

a2f — 6xi + 4
ax,

a2f — 6x2 + 8
ax2

a 2f

	— 0
ax,x2

The Hessian matrix off is given by

F6x, +4 	0
L 0 6x2 +8

of =3x2 OX2 = A2 /1_1 +8) A

III - 6

Techniques for Solving Non Linear Programming Problems

If J1 = 16xi + 4 I and J2 =
6x1 +4 	0

0 	6x2 +8
, the values of J1 and J2 and the nature of

the extreme point are as given below:

Table 3-1 	Value and nature of extreme points

Value of J1 Value of J2 Nature of J Nature of X F(X)

4 32 Positive

definite

Relative

minimum

6

4 -32 Indefinite Saddle 	point 418 "
27

-4 -32 Indefinite Saddle 	point 194
27

-4 32 Negative Relative
50

definite maximum 3

Point X

(0,0)

3.3.2 Constrained Optimisation •

In constrained optimisation, the objective function of several variables has

constraints, which may be equality constraints, or inequality constraints.

1. Equality constraints.

The problem is defined with only equality symbol in constraints. Naturally number of

constraints is less than number of variables. When number of constraints (m) is more
than number of variables (n), the problem .is over defined and there is no solution.

When m = n, the problem has a unique solution. It is only when m<n that the problem

has many solutions and the question of optimisation arises. Of the several methods

available for solution of this problem, the methods of direct substitution and

Lagrange multipliers are discussed herein:

a. Method of Direct Substitution

The m equality constraints are simultaneously solved and any m variables are

expressed in terms of remaining n-rn variables. These expressions are then

substituted in the objective function so that the objective function becomes an

unconstrained one in n-m variables. This optimisation problem then can be solved

by using the method using for unconstrained optimisation problem.

III - 7

Techniques for Solving Non Linear Programming Problems

Method of direct substitution appears to be quite simple in theory, but when the

constraints are nonlinear as usually is the case in design of water distribution

networks, it is not easy to solve m equations simultaneously and express m

variables in terms of remaining n-m variables.

Example 3.3

Solve the following optimisation problem by direct substitution.

Minimise Z = 2x1 + 9.x1x2 + 20X32

subject to

xi -3x2+2x3 = 6

x2+3x3=4

Solution:

From equation (E3),

x2 = 4-3x3 	 (E4)
and from equation (E2)

x1=6+3(4-3x3) -2x3

or xi =18-11x3

Substituting the values of x1 and x2 in the objective function and simplifying, we

get

Minimise Z = 684 — 904x3 + 317x32 	 (E6)

Optimisation problem of equation (E6) is now a single variable, unconstrained
one. Therefore, dZ/dx3 = 0 gives

-904 +2 (317 x3) = 0

or x3* = 1.426

Substituting the value of x3*, we get xi* = 2.315 ; x2* 7-0.278 and Z* = 39.508
Since d2Z/dx32 is positive, the stationary point gives the minimum value. Thus,
minimum value of Z, Z* = 39.508

III- 8

Techniques for Solving Non Linear Programming Problems

b. Method of Lagrange Multipliers
In Lagrange multiplier method, an additional variable is introduced for each

constraint and the original problem is converted to:

Optimise L = f (X1,X2,- • • :XII) + [gl (XI rr27 • • • :Xn) b 1 1 + /-2[g2 (X1 	,-)Cn) b2}

	 Am[gm (xi ,x2, • • • ,x,,) — 	 (3.9)

in which L is a Lagrange function of xi,x2,• • ,xn, 	 Am, with n+m

variables.

Equation above can be expressed in a concise form as

Optimise L = f (xi) + 	(xi)] , i = I, ..,n 	 (3.10)
i=1

In Lagrange multiplier method the original constrained problem of n variables

and m constraints is converted into an unconstrained one with n + m variables.

This problem now can be solved by solution method of unconstrained problem.

The condition auaa j= 0, 	m will ensure that the constraints are satisfied

at the optimum point.

Example 3.4

Find the maximum of the functionf(AI) = 2x1 + x2 + 10

subject to
g(X) = x1 + 2x22 =. 3
using the Lagrange multiplier method.

Solution:

The Lagrange function is given by:

L(X, A) = 2x1+ x2 + 10 + A. (3 - - 2x22)

The necessary conditions for the solution of the problem are

aL = 2 - A = 0
ax,

=1 - 4Ax2 = o
ax„

III- 9

Techniques for Solving Non Linear Programming Problems

aL = 3—xi-2x22 =0 a2
The solution is

=
 {

4} = 12.971
x2 	0.13

/1,* = 2.0

The application of the sufficiently condition yields

L11 — z 	L12

L21 	L22 	Z

g11 	g12

— z 	0
0 	— 4.1 — z

—1 	— 4x2

g11

g12

0

—1
—4x2

0

0

— z
0

—1

0
— 8 — z
—0.52

—1
— 0.52

0.
=0

0.2704z+ 8+z=0
z = -6.2972
Hence X* will be a maximum off with j* = j(X*) = 16.07.

2. Inequality constraints
Inequality constraints are converted to equality constraints by adding non

negative slack variables sj2 to constraints with less than equal (4 sign or by
subtracting nonnegative surplus variables sj2 from constraints with more than

equal (sign. The introduction of - sj2 instead of sj has avoided further
introduction of constraints sj 	The Lagrange function is now a function of xi, i

= 	n; 	j 	1, 	m and sj2, j = 1,...., m if all constraints are inequality

constraints. For a minimisation problem, aliaAj = 0 will ensure that the

constraints are satisfied. From aL/asj = 0, we have 2.10J--- 0, j = 	m. Thus, we

have either aj = 0 or sj = 0. If = 0 for a particular value off, that constraint is

inactive, thus, nonbinding at the optimum point, if sj = 0, that constraint is active,
thus, binding at the optimum point. The necessary conditions to be satisfied at the
constrained minimum point can be expressed as

III- 10

Techniques for Solving Non Linear Programming Problems

—af + 	
ag

=0, i= 1,,n
axi 174 axi

(3.11)

where:

%l>0, je Jl

In which J1 is a set of active constraints. These conditions are known as

Kuhn-Tucker conditions. These conditions are necessary but not sufficient to

ensure a relative minimum. However, for convex programming problems, which

have only one minimum, Kuhn-Tucker conditions are necessary and also

sufficient to ensure global minimum.

If the set of active constraints is not known, as generally would be the case in

practice, the Kuhn-Tucker conditions can be expressed as

of + 	=o, = 1, 	n 	 (3.12)
• ax, ;Eft 	

ag .
ax,

	

where: 2,igi= 0, 	0, and 2j>0, j =1, 	m

Example 3.5

Consider a problem:

Minimisefixi,x2) = (xi — 3)2 + (x2_ 8) 2

subject to

exi,x2) = -x12 + x2 C 2

g2(xi,x2) = 3x1 + x2 12

Solve the problem using Kuhn Tucker conditions.

Solution:

The minimisation problem can be written as:

Minimise Z =Axi) =

subject to:.

gi (xi) = -xi2 + x2— 2

— 3)2

0

+ (x2 — 8) 2 (E1)

(E2)

g2(xi) = 3x1 + x2— 12 0 (E3)

Techniques for Solving Non Linear Programming Problems

The Kuhn Tucker conditions are :

of + ag̀ +22 °g.2 = 0, i=1,2
axi 	Oxi 	axi

Thus,

2(x1-3) + i (-2x1) + 2.2 (3) = 0 	 (Ea)

2(x2 -8) + + .12 =0 	 (Es)

= 0,j = 1,2

Gives

Aigi= Al (-x12 + x2 -2) = 0 	 (E6)

/12g2= /1,2 (3x1 + .X2 -12) = 0 	 (E7)

gi 	j = 1,2

Gives

g1(xi) = -x12 + x2 — 2 < 0 	 (E8)

g2(xi) = 3x1 + x2 —12<_ 0 	 (E9)

j = 1,2

Gives Al 	 (E1o)

and .1.2 	 (Ell)

Simultaneous solution of equation (Ea), 	(E7) will give the values of xl, x2,

Al and /12. The acceptable values will be those that also satisfy equation (E8),...,

(E11).

Now, from equation (E6) and (E7), we have 24 = 0 or gi = 0; and /12 = 0, or g2 = 0.

This gives four combinations:

(1) /11=0, and /12=0

(2) .11=0 and 3.x1 + x2 —12 = 0

(3) 22=0 and 	+ x2 — 2 = 0, and

(4) 3x1 + x2 — 12 = 0 and -xi2 + x2— 2 = 0

III- 12

Techniques for Solving Non Linear Programming Problems

(1) .11=0, and .12=0

Substituting these values of A4 and 2.2, equation (Ea) and (E5) give xi = 3 and x2 =

8. These values of Ai, A2, xi and x2 satisfy equation (Es), (E10) and (E11) ; but

violate equation (E9).

(2) .11=0 and 3x1 +x2 — 12 = 0

Substituting these values of A4= 0 and /12 =1, give x1 = 1.5 and x2 = 7.5. These

values of Ai, A,2, X1 and x2 satisfy, equation (E9), (E10) and (E11) ; but violate

equation (E8).

(3) .12=0 and -x12 + x2 — 2 = 0,

This condition gives x2 = x12 + 2 and leads to two solutions:

(a) Ai= -0.2136, 22=0, xi=2.4712 and x2=8.1068; and

(b) A4=
10.3666, 22=0, x1=-2.1947 and x2=6.8167.

Solution (a) satisfies equation (E8) and (Eli) but violates equation (E9) and (E10).

Solution (b) satisfies equation (E8), 	(E,1) and gives local minimum solution
Z* = 28.3851

(4) 3x1 + x2— 12 = 0 and -x12 + x2 — 2 = 0

This condition gives also two solutions:

(a) xi= -5, x2=27, 24= 18.5714, and .12=-56.5714; and

(b) xi= 2, x2=6, .1.1= 1.4286, and .12=2.5714.

Solution (a) satisfies equation (E8), (E9) and (E10) but violates equation (En).

Solution (b) satisfies equation (E8), ..., (En) and gives local minimum solution
Z* = 5.

Thus this optimisation problem has two local optimum solutions:

(1) xi*= -2.1947 and x2*=6.8167, giving Z* = 28.3851; and

(2) xi*= 2* and x2*=6, giving Z* = 5.

Note that the solutions 1, 2, and 3(a) are infeasible solutions as they violate

one or both constraints. Solution 4(a) satisfies both constraints and thus gives a

feasible solution. However, the solution is not optimal. Solution 3(b) and 4(b)

give local minimum solutions, with solution 4(b) being global minimum.

III- 13

Techniques for Solving Non Linear Programming Problems

Classical optimisation methods have following limitations, i.e.

a. The variable must be continuous. Optimality conditions cannot be

formulated when the function is non- differentiable or consists of discrete

sets. It cannot also define optimal solution when the fUnction is piecewise

linear.

b. It is not possible, a priori, to distinguish between points giving maxima,

minima or saddle points; unless secondary criteria are applied.

c. It is not possible to locate optimal points that occur at points where the

optimality conditions are not satisfied such as the boundary points of a

range of variables.

d. Solutions to optimality criteria may be unstable when the differential

equations are written as difference equations for obtaining solution with a

computer. The rate of change of Z with respect to any variable xi, i.e. AZ/Lxi

will be very small near the optimum, AZ/Ax, P.5 0. This derivative will then

be very sensitive to round off errors that occur in the evaluation of Z. The

computation of the optimum value will then be inherently inaccurate

estimate of the true optimum.

e. It fails to provide practical means to define the sensitivity of the solution to

changes in the values of the variables.

3.4 NUMERICAL METHODS
Since it may not be possible to tackle an NLP problem directly by manipulating

the constraints, the NLP solution methods that based on numerical methods of

optimisation is applied. In the classical optimigation method, the optimum values of

decision variables are achieved and then also the optimal solution. However, in

numerical methods, the opposite procedure is followed. First, trial solution is selected

and check for optimality. If it is not optimal, it successively improved to obtain the

optimal solution.

In optimisation problem of water distribution network, the objective function is to

minimise the cost of project. In this case, the minimisation problem can be broadly

classified in two categories:

III - 14

Constrained Optimisation
Techniques

•

Direct Search Method

Descent Method
	 Jl 	

Unconstrained Optimisation
Techniques

Direct Method

Non Linear Programming
Techniques

1

Indirect Method

Techniques for Solving Non Linear Programming Problems

1. Unconstrained minimisation problems and

2. Constrained minimisation problem.
Even though practical design problems are usually constrained, they can be

converted to unconstrained so that powerful and convenient methods of
unconstrained minimisation can be used. Furthermore, unconstrained minimisation

methods provide basic understanding that is very helpful to study constrained
minimisation methods. The various methods of solving NLP problems are presented

in tree diagram in Figure 3-3.

Figure 3-3 Division of Non Linear programming Techniques

3.4.1. Unconstrained minimisation
Methods available for solving unconstrained minimisation problems can be

classified in two categories, i.e. Direct Search method and Descent method

Table 3-2
	

Unconstrained Minimisation Methods

Direct Search Method Descent Method

Random Search Method

Grid Search Method

Univariate Method

Pattern Search Method

- Powell's Method

- Hooke-Jeeves Method

Rosenbrock's Method

Simplex Method

Steepest Descent (Cauchy) Method

Fletcher Reeves Method

Newton's Method

Marquardt Method

Quasi-NewtonMethod

Davidon-Fletcher —Powell Method

Broyden-Fletcher-Goldfarb-Shanno

Method

III- 15

Techniques for Solving Non Linear Programming Problems

3.4.1.1 Direct Search Method
Direct Search Methods require only objective function evaluations, and do not

need the partial derivatives of the function in the finding the minimum. Therefore,
they also called non gradient methods. Some of them will be reviewed as follows:

a. Univariate Method.
In univariate method, only one design variables is changed at a time while other

variables are held constant. Thus, from a starting solution of an n-variable problem,

any n-1 design variables are held constant, the remaining variables is changed and its

improved value is obtained. Similarly, other design variables are also improved

sequentially to complete one optimisation iteration. Iterative procedure is continued

until the optimal solution of desired accuracy is obtained.

Univariate method is quite simple and can be easily implemented. However, it

has a tendency to oscillate with steadily decreasing progress towards the optimum;

thus, it does not converge rapidly. In some cases it may not even converge.

b. Pattern Search Method
In univariate method, the minimum is searched along direction parallel to the

coordinate axes. However, convergence is slow as the optimum point is approached.

In pattern search methods, the directions of search are changed favourably so that

convergence characteristics are improved. Hooke and Jeeves method explores moves

in different directions to asses the local behaviour of the objective function; and

decides the pattern search direction. Powell's method is a widely used direct search

method based on conjungate directions. It has quadratic convergence; thus, it rapidly

converges to the optimal solution.

c. Rosenbrock's Method of Rotating Coordinates

In this method,. the first axis is oriented toward its best local direction and all

other axes are made mutually orthogonal and normal to the first one. Since the

coordinate system can be suitably rotated it can follow curved and steep valleys,

thereby improving convergence.

d. Simplex Method

Simplex method in NLP is based on the concept of simplex, a geometric figure

formed by set of n+1 points in n-dimensional space (In two dimensions the simplex is

III- 16

Techniques for Solving Non Linear Programming Problems

triangle, and in three dimensions it is a tetrahedron). For an n-dimensional problem,

n+1 points are selected to form a general simplex. The values of the objective

function at the n+1 vertices of the simplex are then compared and the vertex having
the maximum value of the objective function in a minimisation problem is replaced
by another vertex through operations of reflection, and expansion or contraction, to
obtain revised simplex. If H is the point corresponding to the highest value, we can
expect vertex R, obtained by reflection of H on the opposite face, to have the smallest
value. (Reflection point R lies on the other side of Gn the centroid of all other n points
except point H). When AR) <f(H), to enhance convergence, we may shift point R to a
further point N through an operation termed expansion by moving along the direction
from G„ to R, using expansion coefficient >1 (ratio of distance between N and Gn and
distance between R and GO. IfA/V) <AR) we select point N, however iff(N) >f(R) the
expansion process is not successful and we retain point R to form revised simplex. If
the reflection process gives f(R) >f(H) we contract the simplex through an operation

termed contraction using contraction coefficient (ratio of distance between N and G,,
and distance between R and GO lying between 0 and 1. The iterative procedure of

revising simplex is continued until convergence is reached and theoretically the

simplex collapses into a point, the optimal point. In practice, however, the method is

assumed to have converged when the standard deviation of the function at the n+1

vertices of the current simplex is smaller than some preselected small quantity. When

the convergence is satisfied, the centroid of the latest simplex is taken as the optimum
point.

3.4.1.2. Descent Method

The descent methods require, in addition to objective function, evaluation of

the first and possibly higher order derivatives of the objective function. The

derivatives provide more information about the function being minimised; therefore,

descent methods are more efficient than the direct search methods. The descent
methods are also known as gradient methods.

The general procedure of minimisation of unconstrained, and also constrained
problem involves following steps:

Step 1. Start with an initial trial point ixi, i = 1,2,..., n.

III - 17

Techniques for Solving Non Linear Programming Problems

Step 2. Find a suitable direction kSi, 	(the prefixing subscript k represent

iteration number, 1 to start with) points in the general direction of minimum.

Step 3. Find a suitable step length to move along the direction kSi, i=1,2,...,n

Step 4. Obtain new approximation k+ixi given by

k+IXi=kXi+ 	. kSi , i=1,2....,n 	 (3.13)

Step 5. Test whether k+lxi, i =1,..., n is optimum. If optimum, stop the procedure,

otherwise set new k=k+1 and repeat step 2 onwards.

The iterative procedure is valid for unconstrained as well as constrained

optimisation problems. In iterative procedure it is necessary to:

1. Select an initial point

2. Select suitable direction

3. Select suitable step length

4. Decide a criterion for termination of the iterative procedure.

The efficiency of the optimisation procedure would depend on the efficiency of

selection of these parameters.

1. Selection of initial trial point

Selection of an initial trial point, i.e. selection of an initial feasible solution' does

not pose any problem in engineering. For example, in water distribution network,

larger diameter can be adopted so that head losses are small and water would reach

all demand nodes. Even tough the iterative procedure will work from any feasible

solution, it would be better if the initial solution were close to the minimum solution

so that the number of iterations in the iterative procedure is reduced.

2. Select suitable direction

The direction of search can be decided by several methods: These methods use

gradient of the objective function Vf defined as:

af /
of / axe

Vf = (3.14)

of ax„

The gradient is an n-component vector having an important property that the

function increases at the fastest rate along the gradient direction. Thus, the gradient

- 18

Techniques for Solving Non Linear Programming Problems

direction is the direction of the steepest ascent. This property is a local property, and
the direction of the steepest ascent generally varies from point to point. However, by

moving in steps, it is possible to reach local maximum solution.,

Negative of the gradient vector, -Of denotes the direction of the steepest descent

and it used to determine the search direction in steepest descent method for

minimisation of the objective function. Steepest descent method has several merits

and limitations; and several approaches have been suggested to improve convergence

characteristics of the steepest descent method.
In a constrained minimisation problem, the direction can be found such that:

a) a small move in that direction does not violate any constraint;

b) the value of the objective function can be reduced in that direction.

A direction satisfying property (a) is called a feasible direction; while that

satisfying both properties (a) and (b) is called a usable feasible direction. If the trial

point kxi, i=1,..., n lies in the interior of the feasible region, the usable direction is

given as:

kSi = -Vf (kxi) 	 (3.15)

the direction of the steepest descent. However, when the trial point lies on the

boundary of the feasible region, one or more of the constraints are critical. If the

critical constraints are linear, the search direction lies in the constraint surface, but if

the critical constraints are nonlinear, the search direction satisfying both properties (a)

and (b) has to be found by trial and error.

3. Select suitable step length

After deciding the search direction kSi at any point kxi, we have to determine suitable

step length do to obtain the next point k-FiXi. There are several ways of computing the

step length. One method is to determine optimal step length a* which minimises f(kxi

kAkSi) such that the new point given by kfixi lies in the feasible region. Another

method is to choose the step length by trial and error so that the objective fimction

reduces withou violating any of the constraints. If the trial step length increases the

value of the objective function the step is reduced to half. If the trial step length

violates a constraint, the reduced step length can be optimally selected so that the

violated constraint is just justified and becomes critical. Since no constraint will

III- 19

Techniques for Solving Non Linear Programming Problems

become exactly zero while working with a computer, a constraint can be considered

active if

gi(xi) — bi 	sg, i =1, . . ,n ; j=1, . ,m 	 (3.16)

in which eg is a small number of the order of 10-2 to 10-6.

4. 	Decide a criterion for termination of the iterative procedure.
The iterative procedure can be stopped when it converges to the optimal

solution. The optimality of the solution Scan be checked by testing the Kuhn-Tucker

conditions. Alternatively, we can perturb the optimal design variable xi*, i=1,. . .,n; by

changing each of the design variables, one at a time, by a small amount, positive as

well as negative, and verify that Z* does not decrease in a minimisation problem

without violating any of the constraints.

• In the iterative procedure we can check convergence to the optimal (minimum)

solution by testing

k J (xi) 	f (xi) 	f , i=1,. ..,n 	 (3.17)
k f (xi)

in which ef is a predetermined, small functional change value of the order of 10-2 to

10-6. Another convergence criterion can be

	

kXj k+1Xj I 5 EX, i 	 (3.18)

in which ex is a predetermined small value of the order of 10-2 to 10 -6.

During the iteration procedure, if all given constraints become active at a

point, the solution at this point is optimal and the iterative procedure is stopped.

Several variations of the general descent method have been suggested for

minimisation of unconstrained problems. The steepest descent method uses the

negative of the gradient vector as a suitable direction. Conjugate gradient method

(Fletcher-Reeves method), Quasi Newton method and variable metric method

(Davidon-Fletcher-Powell method) are some variations of descent method with

improved convergence characteristics.

3.4.2 Constrained Minimisation

Method available for constrained minimisation problems can be classified into

two categories:

IIi - 20

Techniques for Solving Non Linear Programming Problems

(1) Direct method and

(2) Indirect Method

In Direct Method, the constraints are handled explicitly while in most of
indirect mcthods, the constrained minimisation is changed to an unconstrained one.

Table 3-3 Constrained Optimisation Techniques

Direct Methods 	 Indirect Methods

Random Search Method
	

Transformation of variables technique
Heuristic Search Method

	
Sequential unconstrained minimi-

- Complex method 	 sation techniques
Objective and constraint approximation Methods 	Interior penalty function method

Sequential Linear Programming Method
	

Augmented Lagrange multiplier

- Sequential Quadratic Programming Method 	method
Method of Feasible Directions

- Zoutendijk's Method
- Rosen's gradient projection method

Generalised Reduced Gradient Method

3.4.2.1 Direct Method

In Direct Method, there are four categories that available:
1) Heuristic Search Method.

2) Objective and Constraint Approximation Methods

3) Method of Feasible Direction

4) Generalised Reduced Gradient Method

Those methods are described as follows:

1) Heuristic Search Method.

Heuristic Search Method are mostly based on intuition and do not have much

theoretical support. However, they are simple and applicable to specific problems.

An example of Heuristic method is Complex method that is suggested by Box

(1965). This method is an extension of simplex method of unconstrained

DI - 21

. Techniques for Solving Non Linear Programming Problems

optimisation. It does not require the derivative of the objective function and

constraints, and thus is comparatively very simple. However, it cannot handle

nonlinear equality constraints but can handle side constraints in which the decision
variables are restricted by lower and upper bounds.

In simplex method for n-dimensional unconstrained minimisation problem a

simplex (geometrical figure) with n+lvertces is generated; while in complex method

for n-dimensional constrained minimisation problem, a complex geometrical figure

with k 	n+1 vertices is generated, each vertex representing a feasible solution

satisfying all constraints. The values of .the objective function at all k vertices are

obtained, compared and the vertex H with the value of the function is located. It is

then reflected in the opposite face to locate reflection point R. If R is a feasible point

and if f(R)1(H) , point R replaces point H to obtain revised complex. If at R,

f(R)>f(H) or any of the constraints is violated, point R is the remaining k-1 vertices so

that point N gives a feasible solution and f(1V) < AB). If such a point N cannot be

located, instead of point H, a point with next largest value of the function is selected

for the reflection procedure. The procedure of finding point H with highest value of

the function in the current complex and replacing it by point R or point N to get

revised complex is continued until convergence is achieved. The convergence is said

to be achieved when either the complex shrinks to a specified small size or the

standard deviation of the function value becomes sufficiently small..

2) Objective and Constraint Approximation Methods

There are two examples of objective and constraint approximation methods, i.e.:

a) Sequential linier programming method

b) Sequential quadratic programming method

Those methods are described as follows:

2.a Sequential tinier programming method

Sequential Linear Programming (SLP) method also known as Cutting Plane

method, was originally presented by Cheney and Goldstein (1959). It linearises the

constraints at selected point through Taylor's series. These lihearised constraints,

III- 22

Techniques for Solving Non Linear Programming Problems

which approximate the feasible region by linearised envelopes, are then used to solve

the LP problem. The iterative procedure is continued to find a sufficiently accurate
solution. This method is efficient and can use the available LP algorithms. However,

all the optimum solutions of the approximating LP problems lie in the infeasible

region. Thus, the final optimum solution depends upon the tolerance limit and may
require adjustment in practice.

The SLP algorithm can be stated as follows:

1. Start with an initial point and set the iteration number as i=1. The point X1 need

not be feasible.

2. Linearise the objective and constraint function about the point Xi as

.i(X) 	VfMT (X-X) 	 (3.19)
gi (x) g(xi) v gj (xiir 	 (3.20)

hk(X) hk(Xi) + V hk (Xi)T (X-X) 	 (3.21)

3. Formulate the approximating linear programming problem as

Minimisef(Xi)+ V .fir(X-Xi) 	 (3.22)

subject to

g(Xi) + V gi (X j)1. (XX) 0, 1=1,2,....,m

hk(Xi) + V hk car (X-X) 5- 0, k=1,2,...,p

4. Solve the approximating LP problem to obtain the solution vector Xi+1

5. Evaluate the original constraints at X+1, that is , find

j=1,2,../ and hk(X+1), k=1,2,• • .d)
If gi(X+i) < 6 for j=1,2,..,m and Ihk(X1+1)1 	k =1,2,..,p, where s is a prescribed

small- positive tolerance, all the original constraints can be assumed to have been

satisfied. Hence stop the procedure by taking

Xopt Xii+1

If gi(Xj+i) > e for some j, or Ihk(Xi+1)1 > E for some k, find the most violated

constraint, for example, as

gk(X+1) = max [gi(Xi+i)] 	 (3.23)
J

Relinearise the constraint gk(X) 5_ 0 about the point X,•+1 as

gk(X) ~ gaol) + V gk 	(X-Xi+i) 0 	 (3.24)

DI - 23

Techniques for Solving Non Linear Programming Problems

and add this as thein 1) (+•■th inequality constraints to the previous LP problem.

6. Set the new iteration number as i=i+1, the total number of constraints in the new

approximating LP problems as f+1 inequalities and p equalities, and go to step 4.

The sequential linear programming method has several advantages:
t. It is an efficient technique for solving convex programming problems with nearly

linear objective and constraint functions

2. Each of the approximating problems will be a LP problem and hence can be

solved quite efficiently. More over, any two consecutive approximating LP

problems differ by only one constraint, and hence the dual simplex method can be

used to solve the sequence of approximating LP problems much.more efficiently.

3. The method can easily be extended to solve integer programming problems. In

this case, one integer LP problem has to be solved in each stage.

Example 3.6

Minimise Axi ,x2) = xi — x2
subject to

gi(xi,x2) = 3x12 -2xix2 +x22 - 1 < 0

using Sequential Linear Programming Method. Take the convergence limit as e =

0.02.

Note: Since the constraint boundary represent an ellipse, the problem is convex

programming problem. From graphical representation, the optimum solution of the

problem can be identified as xi* = 0, x2* = 1 andfmin = -1.

Solution:

Step 1,2,3: Although we can start the solution from any initial point X1, to avoid the

possible unbounded solution, we first take the bounds on xi and x2 as -2 5 x15 2 and -

2 x2 2 and solve the following LP problem:

Minimisef = xi — x2 	 (E1)
Subject to

III - 24

Techniques for Solving Non, Linear Programming Problems

-2 5_x2. 2

The solution of this problem can be obtained as

x=r 2] withf(X) = -4

Step 4: Since we have solved one LP problem, we can take

—2
Xi+1= X2 ="-- 2

Step5: Since gi(X2) = 23 > e, we linearise gi(X) about point X2 as

gi (X) pe, gi(X2) +V gi (X2)T (X-X2) 0 	 (B2)

as

ag
gi(X2)=23, , ax,

x2

= (6x1 — 2x2)1x2 = -16

ag,
ox 2

x2

So the above equation becomes

gi(X) 	+ 8x2 - 25 0

By adding this constraint to the previous LP problem, the new LP problem becomes:

Minimisef= xi - -x2 	 (E3)

subject to:

2

-2 x2 2,

-16xi + 8x2 — 25 0

Step 6: Set the iteration number as i= 2 and go to step 4

Step 4: Solve the approximating LP problem stated in equation (E3) and obtain the

solution

{— 0.5625
X3 = 	

2.0 	
withf3=f(X3) = -2.5625

This procedure is continued until the specified convergence criterion, gi(X) Se, in

step 5 is satisfied. The computation result are summarised in Table 3-4.

= (-2x1 + 2x2)1x, = 8

III- 25

Techniques for Solving Non Linear Programming Problems

Table 3-4 	Results for Example 3.6
Iteration
Number

New 	Linearised 	Constraint
Considered

Solution 	of 	the
Approximating 	LP
Problem Xi4.1

f(X;+i) g(Xi.1)

1 -2 ..vi 	and-2 	,T2 (-2.0,2.0) -4.00000 23.00000
2 -16.0x1+8.0x2-25 93 (-0.56250,2.00000) -2.56250 6.19922
3 -7.375x1+5.12x2-8.19922 93 (0.27870,2.00000) -1.72193 2.11978
4 -2.33157x1+3.44386x2-4.11958 a (-0.52970,0.83759) -1.36730 1.43067
5 -4.8534 lxi+2.73459x2-3.43067 a (-0.05314,1.16024) -1.21338 0.47793
6 -2.63930x/+2.42675x2-2.47792 a (6.42655,1.48490) -1.05845 0.48419
7 -0.41071x1+2.11690x2-2.48420 .a. (0.17058,1.20660) -1.03603 0.13154
8 -1.38975x1+2.07205x2-2.13155 15.0. (0.01829,1.04098) -1.02269 0.04656
9 -1.97223x1+2.04538x2-2.04657 .a. (-0.16626,0.84027) -1.00653 0.06838
10 -2.67809x1+2.01305x2-2.06838 a (-0.07348,0.92972) -1.00321 0.01723

2.b Sequential quadratic programming method

This method has a theoretical basis that is related to:

(a) the solution of a set of nonlinear equations using Newton's method, and

(b) the derivation of simultaneous nonlinear equations using Kuhn-Tucker

conditions to the Lagrangian of the constrained optimisation problem.

(1) Derivation

Consider a nonlinear optimisation problem with only equality constraints as:

Find X which minimises f(X) 	 (3.25)

subject to

hk (X) = 0, k = 1,2,..., p.

The Lagrange function, L(X,,%), corresponding to the problem of Equation (3.25) is

given by

L =IV) +EA.k hk 	 (3.26)
k=1

where .3.,k is the • Lagrange multiplier for the kth equality. The Kuhn-Tucker

necessary conditions can be stated as

III- 26

Techniques for Solving Non Linear Programming Problems

VL = 0 or Vf + E il,k hk =0 or Vf + 	= 0 	 (3.27)
kr--1

hk 	= 0, k= l,2,• • •,12
	 (3.28)

where [A] is an n x p matrix whose kth column denotes the gradient of the function
hk. Equation (3.27) and (3.28) represent a set of n+p nonlinear equations in n+p

unknowns (xi, i = 1,..,n and tk , k =1,.., p). These nonlinear equations can be solved

using Newton's method. For convenience Equation (3.27) and (3.28) can be rewrite

as
F(Y)= 0 	 (3.29)

where

F=
Jo Ll 	f 	

'O= j0
}

 0 	
(3.30)

(n+p)xl 	 (n+ p)xl 	{} (n+p)xl

According to Newton's method, the solution of Equation (3.29) can be found
iteratively as

Yi+i = Y.; + A Yi 	 (3.31)
with

PFirj Ay; = -F(Yj) 	 (3.32)

where Y is the solution at the start of jth iteration and AY; is the change in Y./

necessary to generate the improved solution, Yi-Fi [VF]/ = [YRYA is the (n +p) x
(n+p) Jacobian matrix of the nonlinear equations whose ith column denotes the
gradient of the function Fi(Y) with respect to the vector Y. By substituting Equation
(3.29) and (3.30) into Equation (3.32), we obtain

[

[\ 7 2 L] [H]] {AX} 	f t7
[H]T [0] 	 j j

(3.33)

= Xj+1 — Xi 	 (3.34)

= 	- 	 (3.35)
where:

[V2L]n„,, denotes the Hessian matrix of the Lagrange function. The first set of

equation in Equation (3.33) can be written separately as

III- 27

Techniques for Solving Non Linear Programming Problems

[V2LJ AX; + [H] j A.1.j = - VLj 	 (3.36)

Using Equation (3.35) for AAj and Equation (3.27) for VL1, Equation (3.36) can be

expressed as

[V2L]i AX + [H] i (Aj+1- Aj) = - Vf - [1-1]7i. A.j 	 (3.37)

which can be simplified to obtain

[V24AA + [H] 	= - Of 	 (3.38)

Equation (3.38) and second set of equations in (3.33) can now be combined as

[[V2L] [H]] 	 fVf 	
(3.39)

Equations (3.39) can be solved to find the change in the design vector AX and the

new values of the Lagrangian multipliers Ap.i. The iterative process indicated by

Equation (3.39) can be continued until convergence is achieved.

Now consider the following quadratic programming problem:

Find AX that minimises the quadratic objective function

Q—VfT AX+ z AXT [V2.L] AX 	 (3.40)

subject to the linear equality constraints

hk + Vek. AX= 0, k= 1,2, ...,p or h + [HIT AX= 0 	 (3.41)

The Lagrange function, L, corresponding to the problem of Equation (3.40) and
• (3.41) is given by.

L = V!' AX + AXT [V 2 L] AX + ±Ak (h k + V hi f AX) 	 (3.42)
k=i

where .14, is the Lagrange multiplier associated with the kth equality constraint.

The Kuhn-Tucker necessary condition can be stated as
• Vf + [V2/.] AX+ [H] A = 0 	 (3.43)

hk + Vhk AX= 0, k= 1,2,...,p 	 (3.44)

Equation (3.43) and (3.44) can be identified to be same as Equation (3.39) in matrix
form. This shows that the original problem of equation (3.25) can be solved
iteratively by solving the quadratic programming problem defined by Equation

III- 28

Techniques for Solving Non Linear Programming Problems

(3.40) and (3.41). In fact, when inequality constraints are added to the original

problem, the quadratic programming problem of Equation (3.40) and (3.41)

becomes:

Find X that minimises Q = VIT X + 2 OXT [V2/] AX 	 (3.45)

subject to:

gi + 	0, j = 1,2,..., m

hk + VhT AX= 0, k= 1,2,...,p

with Lagrange function given by

L = f(X) + EAkgj (X) -FE ii,,n+k hk (X) 	 (3.46)

(2) Solution Procedure

As in case of Newton's method of unconstrained minimisation, the solution vector

AX in Equation (3.45) is treated as the search direction, S, and the quadratic

programming subproblem (in terms of the design vector S) is restated as:

Find S which minimises Q(S) = Of)T S + 2 ST [H] S 	 (3.47)

subject to:

pig) (X) + V g (X)T S 0, j = 1,2,..., m

Phk + Vhk (X)TS = 0, k= 1,2, • P

where [II] is a positive definite matrix that is taken initially as the identity matrix

and is updated in subsequent iterations so as to converge to the Hessian matrix of

the Lagrange function of Equation (3.46), and f3j and /3 are. constants used to ensure

that the linearised constraints do not cut off the feasible space completely. Typical
values of these constants are given by

1 	if gi (X) _‹) {
0.9; flj- 	if g>((

(3.48)
fi 	X)

The subproblem of Equation (3.47) is a Quadratic programming problem and can

be solved by any available methods. Once the search direction, S is found by

solving the problem in Equation (3.47), the design vector is updated as

III - 29

Techniques for Solving Non Linear Programming Problems

Xj+1 = Xi + a*S 	 (3.49)

where a* is the optimal step length along the direction S found by minimising the

function (using exterior penalty function approach):

0 =NO + Ak (max[0, g (X)]) +EA m+k Ihk (X)I 	 (3.50)
1=1 	 k=1

with

(3.51)
Max { I AJI , 	I Ail)} in subsequent iteration

and 2.1 = 2j of the previous iteration. The one dimensional step length a* can be

found by any of methods related to one dimensional optimisation.

Once Xj+1 is found from Equation (3.47) for next iteration the Hessian matrix [11] is
updated to improve the quadratic approximation in Equation (3.98). Usually, a

modified BFGS formula, given below, is used for this purpose

[Hi]ITT [Hi} + 777. tHi+1] = [Hi] 	 (3.52)
PiT [H. JP' 	PiT

Pi = 	- 	 (3.53)

y= 0.a + (1- 0[Hi]Pi
	 (3.54)

Qi = Ox L(Xi+1,A.14-1) - Dx L (X611,1)
	

(3.55)

The value of 9 will be:

a) 1.0
	

if PiT a > 0.27 [H i]Pi , or 	 (3.56)

b) 0.8Pir [H. i]Pi 	if pira 0.2./37[H i]Pi
PT [-r i]Pi PIT Qi

where L is given by Equation (3.46) and the constants 0.2 and 0.8 in Equation

(3.56) can be changed, based on numerical experience.

Example 3.7

Find the solution of.the problem

Minimise f(X) = 0.1 xi + 0.05773 	 (E1)
subject to

I ili I ,j = 1,2,.., m+p in first iteration {

DI - 30

Techniques for Solving Non Linear Programming Problems

0.6 0.3464
gi (X) 	+ 	 0.1 5_0

X i 	x2

g2 (X) = 6 — xi
g3 (X) = 7 — x2 5_0
using the sequential quadratic programming technique.

Solution:
Let the starting point be X1 = (11.8765 7.0)T with gi (X1) = g3 (X1) = 0, g2 (Xi) = -

5.8765, and f (Xi) = 1.5917. The gradients of the objective and constraint functions at

Xi are given by

{ 0.1
VAX) —

0.05733

— 0.6
— 0.004254 x 	.

2

— 0.3464 	— 0.007069
{ i

y2
rv2

Vg2(X1) 	011, Vg3(Xi) =
—
°
1
1

We assuming the matrix [H1] to be the identity matrix and hence the objective

function of Equation (3.47) becomes

Q(S) = 0.1 sl + 0.0577352 + 0.5.512 0.5522 	 (E5)

Equation (3.48) gives flu = fi3 = since gi = g3 = 0 and /12 = 1.0 since g2 < 0, hence the

constraint of Equation (3.47) can be expressed as

gi = - 0.004254 s1 — 0.007069 52 	 (E6)

g2 = -5.8765 --si 	 (E7)
g3 = - 52 51)
	

(Es)
We solve this quadratic programming problem directly with the use of the Kuhn -

Tucker conditions. The Kuhn Tucker conditions are given by

aQ 3 ag v 	 (E9)
as, fr.., as,

(E2)

(E3)

(Ea)

III- 31

X XL =

aL

ax,
aL

Techniques for Solving Non Linear Programming Problems

aci 	ag +E2.---t- =0 	 (Bio)
as, 	 j.,, - as,

A:xi= 0 j= 1,2,3 	 i)

gi 0 = 1,2,3 	 (E12)
= 1,2,3 	 (E13)

Equations (E9) and (E10) can be expressed, in this case, as

0.1 + Si - 0.004254 Ai -.12 = 0 	 (E14)

0.05773 + s2 - 0.007069 21 - .13 = 0 	 (B15)
By considering all possibilities of active constraints, we find that the optimum

solution of the quadratic programming problem is given by

s1* = - 0.04791, s2* = 0.02883, Al* =12.2450, 2.2* = 0, 11.3* = 0

The new design vector, X, can be expressed as

{11.8765 - 0.04791a1
X= Xi + aS =

7.0 + 0.02883a

where a can be found by minimising the function 0 in Equation (3.50)

= 0.1(11.8765

+ 12.2450

- 0.04791a)

0.6 0. .

+ 0.05773 (7.0+0.02883a)

0.3464 	0.1
11.8765 - 0.04791a 	7.0 + 0.02883a

By using quadratic interpolation technique (unrestricted search method can also be

used for simplicity), we find that q attains its minimum value of 1.48 at a* = 64.93,

which corresponds to the new design vector

{8.7657}

withf(X2) = 1.38874 and gi(X2) = 0.0074932 (violated slightly). Next we update the
matrix [1-1] using Equation (3.52) with

L = 0.1x1+ 0.05773x2 + 12.2450 -0.6 + 0.3464 0.1)
X1 	X2

=
8.8719

with -aL =0.1 7.3470 4
ax, 	x1

2

axe

DI - 32

Techniques for Solving Non Linear Programming Problems

and —aL =0.05773 4.2417

P1 =X2 X1 =
{— 3.1108

1 8719

{0.004381 f 0.04791 	{– 0.043531
Qi = V, L(X1) = 0.00384 j 1– 0.02883 	0.03267

P,T [Hi] P1 = 13.1811, F;T Qi = 0.19656,

This indicates that PIT Qi < 0.2 PIT [H1] P1 , and hence 9 is computed using Equation

(3.56), as

(0.8)(13.1811) 9 = 	 –0.81211
13.1811– 0.19656

y=0.Q1 + (1-0 [Hi] Pl =
– .

{ 0.54914
0 32518

Hence

[0.2887 0.4283
[H2] =

0.4283 0.7422

We can now start another iteration by defining a new quadratic programming

problem using Equation (3.47) and continue the procedure until the optimum solution

is found. Note that the objective function reduced from value of 1.5917 to 1.38874 in

one iteration when X changed from X1 to X2.

3) Method of Feasible Direction

The methods of feasible directions are based on selecting usable feasible direction

and determining the proper step length. The methods that adopt this concept is

Zoutendijk's method and Rosen's gradient projection method..

3.1 Zoutendijk's method

Algorithm of Zoutendijk's method is stated as follow:

ax2 	 X2
2

III - 33

Techniques for Solving Non Linear Programming Problems

Step 1:

Start with an initial feasible point X1 and small numbers si, 62 and 83 to test the

Convergence of the method. Evaluatef(X1) and gi(X1), j = 1,2,...,m., Set the iteration

number as i =1. 	•
Step 2:

If g)(X;) < 0, j = 1,2,...,m (i.e. Xi is an interior feasible point), set the current search

direction as

Si = -VAX) 	 (3.57)

Normalise Si in a suitable manner and go to step 5. If at least one gi(X1) = 0, go to step

3.

Step 3:

Find a usable feasible direction S by solving the direction-finding problem:

Minimise -a

subject to:

(3.58a)

STVgi(Xi) + 6j a. j = 1,2,..,p (3.58b)

STVf + a 5_0 (3.58c)

-1 Ssi 	i = 1,2,..,n (3.58d)

where si is the ith component of S, the first p constraints have been assumed to be

active at the point Xi (the constraint can always be renumbered to satisfy this

requirement), and the values of all 9 can be taken as unity. Here a can be taken as

additional design variable.

Step 4:

If the value of a* found in step 3 is very nearly equal to zero, that is, if a* Si,

terminate the computation by taking X.pt klXi. If a* > sl, go to step 5 by taking Si = S.

Step 5:

Find a suitable step length Al along the direction Si and obtain a new point Xi+i as

= + .14 Si 	 (3.59)

There are 2 methods of finding the step length 	i.e. to determine an optimal step

length (.1i) that minimise f(Xi -F ASi) such that the new point Xi+1 lies on feasible

El - 34

Techniques for Solving Non Linear Programming Problems

region. Another method is to choose the step length (.1,i) by trial and error so that it

satisfies the relations

f(Xi+ AiSi) f(X) 	 (3.60)

0, j = 1,2,..,m 	 (3.61)

Step 6:
Evaluate the objective functionfM+0

Step 7:

Test for the convergence of the method. If

f(xi)- f(xi+i)
f(xi)

Terminate the iteration by taking Xopt 	Otherwise, go to step 8.

Step 8:

Set the new iteration number as i i + 1, and repeat from step 2 onward.

Example 3.8 .

MinimiseAxi,x2) = x12 + x22_ 4x1- 4x2 + 8
subject to:

gi(xl, x2) = x1+ 2 xi- 4 0

{0
with the starting point Xi = 0 . Take El = 0.001, 62= 0.001, and 82= 0.01

Solution:

Step 1:

0
At Xi = 0

j()(1) = 8 and g1(Xi) = -4
Iteration 1

Step 2:

Since gi(X1) < 0, we take the search direction as

62 and 11Xi —Xi+ t II < 63 (3.62)

III - 35

Techniques for Solving Non Linear Programming Problems

faf 1 ax,1 j41
SI = -VIVO= - of I ax2 f xi t41

{
This can be normalised to obtain Si = ii

Step 5:

To find the new point X2, we have to find a suitable step length along SI. For this,

minimisef(Xl+ASI) with respect to A. Here

f(X1+2S1)=1(0+2, 0+A) = 222 - 8A +8

-Ld =0 at A = 2
cbl,

{2
Thus the new point is given by X2 = 	and gi(X2) = 2. As the constraint is violated,

2

the step size has to be connected.

As gi = gi I A,0 = -4 and gi " = g1 ,I=2 = 2, linear interpolation gives the new step

length as

An
g

= 1 ll'=—
g1"— gi' 	3

This gives gi I,I_Ari = 0 and hence X2 = {X}

Step 6: j(X2) =

Step 7: Here

f (x.)- f(x2)
f (xi)

8—

= > 9 	L.

8

11X1 — X211 =[(0-)2 ± (0_1)211/2 = 1.887 > 82 •

And hence the convergence criteria are not satisfied.

Iteration 2

Step 2: As g1=0 at X2, we proceed to find a usable feasible direction.

Step 3: The direction-finding problem can stated as

Minimisef= -a

III - 36

Step 5: We have to move along the direction 82 =
— 03
1.0

from the point X2 =

Techniques for Solving Non Linear Programming Problems

subject to :

ti + 2t2 + + yi =3

t2 + + y2 =

ti + y3 2
t2 +v4 = 2
ti

t2

where yi to y4 are the nonnegativity slack variable.

Since an initial basic feasible solution is not readily available, we introduce an
artificial variable y5 	0 into the second constraint equation. By adding the
infeasibility form w =y5, the LP problem can be solved to obtain the solution:
t1* =2

t2* = 10
a* = 10

* = 17
Y4 	10

Yi* =y2* = y3*=0

= - a* = -10

As a* >0, the usable feasible direction is given by

S
. s, = {t; —11 	1.0

	

tS21 	t; — 1 	— 0.7

Step 4: Since a* > sj, we go to the next step.

{1.3331
. To find the minimising step length, we minimise

1.333

f(X2 + .1S2) =f(1.333 	1.333-0.7.1.)

= 1.49/12-0.4A. +0.889

As dfidA. = 2.98 — 0.4 =0 at A,=0.134, the new point is given by

III- 37

Techniques for Solving Non Linear Programming Problems

1.333}
1.333 +0.134 { 1.0 { 	

111.467
X3 = X2 ± AS2 = 	

.
— 0.7 j 1.239

At this point, the constraint is satisfied since g1(X3) = -0.055. Since point X3 lies in the
interior of the feasible domain, we go to step 2.

{ The procedure is continued until the optimum point X* =
1.6

 and finin =0.8 are
1.2

obtained.

3.2 Rosen's gradient projection method

Another method of feasible direction is Rosen's Gradient Projection Method.

This method does not require the solution of an auxiliary linear optimisation variable

(a) to find the usable feasible direction. It uses the projection of the negative of the

objective function gradient onto the constraints that are currently active. Although the

method has been described by Rosen for general nonlinear programming problem, its

effectiveness is confined primarily to problems in which the constraints are all linear.

The algorithm of Rosen's Method is given as follows:

Step 1:

Start with an initial point X1. The point X1 has to be feasible, that is,

gi(Xi) 	j=1,2,...,m 	 (3.63)

Step 2:

Set the iteration number as i=1

Step 3:

If Xi is an interior feasible point [i.e. if gi(Xi) < 0 for j= 1,2,..m), set the direction of

search as Si = -WI), normalise the search direction as

Si-
- Vf (X i)
1lVf (Xi)11 	

(3.64)

And go to step 5. However, if gi(Xi) = 0 for j =j1, j2, ...,jr, go to step 4.

Step 4:

Calculate the projection matrix Pi as

	

= I — N p(Np T Np)-1 Npl. 	 (3.65)

In- 38

Techniques for Solving Non Linear Programming Problems

where

Np [Vgii(Xi) Vgii2(X,) • • • Vgip(Xi)a 	 (3.66)

and find the normalised search direction Si as

/W(X i)
IlPiVf (X i)11

Step 5:

Test whether or not Si = 0. If Si # 0, go to step 6. If Si = 0, compute.the vector A at Xi

as

	

= ..ovpi.Npy NpTvAxi) 	 (3.68)

If all the components of the vector A are nonnegative, take Xopt = Xi and stop the

iterative procedure. If some of the components of A are negative, find the component

Aq that has the most negative value and form the new matrix Np as

Np = [Vgji Vgi2 	lc/gip] 	 (3.69)

And go to step 3.

Step 6:

If Si #0, find the maximum step length Am that is permissible without violating any of

the constraints as AM = min(Ak), Ak > 0 and k is any integer among .1 to m other than

ji, j2,..., jp. Also find the value of dfidA(A,,,) is zero or negative, take the step length as

= AM. On the other hand, if dfidA(A„,) is positive, find the minimising step length

Ai* either by interpolation or by any other methods, and take AI=A1*.
Step 7:

Find the new approximation to the minimum as

=Xi + Ai Si 	 (3.70)

If Ai = AM or if AM 	, some new constraints (one or more) become active at Xi+1

and hence generate the new matrix Np to include the gradients of all active constraints

evaluated at Xi+1. Set the new iteration number as i=i+1, and go to step 4. If A.i = Ai*

and Ai* < Am, no new constraint will be active at Xi+i and hence the matrix Np remains
unaltered. Set the new value of i as i=i+1, and go to step 3.

(3.67)

III- 39

Techniques for Solving Non Linear Programming Problems

Example 3.9
Minimisef(xi,x2) = x12 + x22 - 2 xi- 4 x2
subject to:

gi (xi ,x2) = xi + 4x2 — 5 0

g2(xl,x2) = 2xi + 3x2 — 6 0
g3(xi,x2) = -x i < 0

ga(xi ,x2) = -X2

1.0
starting from the point X1 =

1.0 •

Solution:
Iteration i=1
Step 3:
Since gi(Xi) = 0 for j = 1, we have p = 1 and ji = 1

[1

Step 4: As N1 = [Vgi (Xi)] = 4 , the projection matrix is given by

Pi = Fl 01_111 [u. 4 j[1]] [1 4]
LO 1 L4 	4

1 [16 — 4

17-4 1

The search direction Si is given by:

1 [16 — { 0

	

= - 17 4 1 	—2

As

	

2x,-2 	o

	

VAX) =
44. —4 	—2 2 	xi

{-- *I= j— 0.4707
-1- 	0.1177 17

The normalised search direction can be obtained as

1 	f— 0.47071 {— 0.9701
—

R-0.4707)2 + (0.1177)2 r 1 0.1177 	0.2425

III- 40

Techniques for Solving Non Linear Programming Problems

Step 5:

Since Si #O, we go to step 6.

Step 6:
To find the step length Am, we set

X=
x'
 X1 + AS

X2

{

1.0 - 0.97012,1
1.0+0.2425.1.

For j = 2:

g2(xl ,x2) = (2.0 - 1.9402 A) +(3.0+0.7275.1,) - 6.0 = 0 at A= 2,2 = -0.8245

For j = 3:

g3(x1,x2) = -(1.0 - 0.9701 A)= 0 at A= 2,3=- 1.03

For j = 4:

g4(xl,x2) = -(1.0 - 0.2425 A) = 0 at A. = 2.4.= -4.124

Therefore,

A,m = 2,3= 1.03

Also

f(X) = f(A) = (1.0 - 0.97012)2 + (1.0 + 0.24252)2 - 2(1.0 - 0.97012) - 4(1.0 +

0.24252)

= 0.9998 A2 - 0.48502. -4.0

df =1.9996 A, -0.4850
dA,

df
(Am) = 1.9996 (1.03)- 0.4850 = 1.5746

As dfidA (Am) > 0, we compute the minimising step length .1..1* by setting dfic12. =

This gives

= A,1*-
0.4850 -0.2425
1.9996

Step 7: We obtain the new point X2 as

	

1.0
	
1-- 0.97011 10.76471

X2 =X1 + 2,151= 	+0.2425 +0.2425

	

1.0 	0.2425 I 11.0588

dA

III- 41

Techniques for Solving Non Linear Programming Problems

Since Ai = Ai* and Ai* < Am, no new constraint has become active at X2 and hence the

matrix N1 remains unaltered.

Iteration i = 2

Step 3:

Since gi(X2) = 0 we setp = 1,11 = 1 and go to step 4.

[1
Step 4: N1 = 	, the projection matrix is given by

4

1 [16 –4
17 –4 1

r2x1 – 2 	1.5294 – 2.01 I– 0.47061
71(11(i) = 12x2 4 = 	

_
2.1176– 4.0f –1-1.88241

The search direction S2 is given by:

1 	1f 11
1 [16 – 41 f0.47061 f0
7 –4 1 	1.8824 	0

Step 5:

Since S2 = 0, we compute the vector A at X2 as

	

= 	Nir I Ni Tvfix2)

= - —1 [1 4]
{0.4706}

=0.4707 > 0
17 	1.8824

The non negative value of A. indicates that we have reached the optimum point and

hence that

{0.76471

	

Xopt 	

with f
ops

t =
X 2 = 	 A 	4.059

1.0588

	

(4) 	Generalised Reduced Gradient Method
This method is an extension of the reduced gradient method that was presented
originally for solving problems with linear constraints only.

Consider the non linear programming problem: •

Minimise f(X) 	 (3.71)

P2

S2 = -P27f(X2) = -

III- 42

Techniques for Solving Non Linear Programming Problems

subject to

hi (X) 0,j = 1,2,..., m 	 (3.72)

/k (X) = 0, k = 1,2, ..., 1 	 (3.73)

xi(1) xi xi(") , i = 1,2,..., n 	 (3.74)

By adding a non negative slack variable to each of the inequality constraints, the
problem can be stated as

Minimisef(X) 	 (3.75)
subject to

hi (X) + xn-Fi = 0, j = 1,2,..., m 	 (3.76)
/k (X) = 0, k = 1,2, ...,1 	 (3.77)

xi(1) < xi < xi(u) , i = 1,2,..., n 	 (3.78)
x„ti 	j = 1,2,, m 	 (3.79)
with n+m variables. The problem can be rewritten in a general form as :

Minimi se f(X) 	 (3.80)
subject to

gy (X) 0,j = 1,2,..., m+/ 	 (3.81)

xi(1) xi xi(u) , i = 1,2,..., n+m 	 (3.82)

where the lower and upper bounds on the slack variables, xi are taken as 0 and a large
number (infinity), respectively.

The GRG method is based on the idea of elimination of variables using the

equality constraints. Thus, theoretically, one variable can be reduced from set of n+m
variables for each of the m+/ equality constraints. It is convenient to divide the n+m
design variables arbitrarily into two sets as

X=
{Y} 	

(3.83)

where :

III- 43

df df
df(X)= E-dyi + E 	=V yr fdY + V 7z. fdZ

1=1 dyi 	i=1 dzi

or

dg = [C] dY+ [D] dZ

where

Techniques for Solving Non Linear Programming Problems

= design or independent variables 	 (3.84)

= state or dependent variables 	 (3.85)

and where the design variables are completely independent and the state variables are

dependent on the design variables used to satisfy the constraints gi (X) 0,j = 1,2,...,

m+/.

Consider the first variations of the objective and constraint functions:

(3.86)

(3.87)

(3.88)

of
az,
of
az,
a. f...

8Zm+i

ag, 	ag ,
ay, 	°Yn-1

ag m+i 	ag
ay. 	aYn-1

V zf=

[C1 =

(3.89)

(3.90)

III- 44

df
dY (X)= GR • (3.96)

Techniques for Solving Non Linear Programming Problems

ag, 	ag,
az, 	az m+,

ag m+, 	agm-0
az, 	az m+,

dye

dyn_i

dy,

dz,
dz2

dz m
Assuming that the constraints are originally satisfied at the vector X, (g(X) = 0), any

change in the vector dX must correspond to dg = 0 to maintain feasibility at X+dX.

Equation (3.87) can be solved to express dZ as

dZ = 4/3]-1 [C] dY 	 (3.94)

The change in the objective function due to the change in X is given by Equation

(3.86), which can be expressed, using Equation (3.94) as

cif (X) = (V7; f —V Tz f pri[q) dY . 	 (3.95)

or

[D] =

dY=

(3.91)

(3.92)

(3.93)

where

GR = V yf— 01-1 [C1)TVzf 	 (3.97)

is called the generalised reduced gradient.

Noting that Equation (3.94) is based on using a linear approximation to the original

nonlinear problem, we find that the constraints may not be exactly equal to zero at

that is dg # 0. Hence when Y is held fixed, in order to have

gi(X) + dgi (X) = 0, i = 1,2,..., m+/ 	 (3.98)
we must have

g(X) + dg (X) = 0 	 (3.99)

III- 45

Techniques for Solving Non Linear Programming Problems

Using Equation (3.87) for dg in Equation (3.99), we obtain

dZ = [Df' (-g(A)— [C] dY) 	 (3.100)

The value of dZ given by Equation (3.100) is used to update the value of Z as

Zupdate = Zcurrent dZ 	 (3.101)

The constraints evaluated at the updated vector X,. and the procedure of finding dZ is
repeated until dZ is sufficiently small. Note that Equation (3.100) can be considered

as Newton's method of solving simultaneous equations for dZ.

The algorithm can be summarised as follow:

1. Specify the design and state variables. Start with an initial trial vector X Identify

the design and state variables (Y and Z) for the problem using the following

guidelines.

(b) The state variables are to be selected to avoid singularity of the matrix, [D].

(c) Since the state variables are adjusted during the iterative process to maintain

feasibility, any component of X that is equal to its lower or upper bound

initially is to be designated a design variable.

(d) Since the slack variable appear as linear terms in the (originally inequality)

constraints, they should be designated as state variables. However, if the

initial value of any state variable is zero (its lower bound value), it should be

designated a design variable.

2. Compute the generalised reduced gradient. The GRG is determined using

Equation (3.97). The derivatives involved in Equation (3.97) can be evaluated

numerically, if necessary

3. Test for convergence. If all the components of the GRG are close to zero, the

method can be considered to have converged and the current vector X can be

taken as the optimum solution of the problem. For this, the following test can be

used:

GR II
	

(3..102)

where s is a small number. If this relation is not satisfied, we go to step 4.

4. Determine the search direction. The techniques such as Steepest descent, Fletcher-

- Reeves, etc that is used to find suitable search direction by using gradient of an

III - 46

Techniques for Solving Non Linear Programming Problems

unconstrained objective function can be used for this purpose. For example, if

step descent method is used, the vector S is determined as:

S — -GR 	 (3.103)

5. Find the minimum along the search direction by using following procedures:

(a) Find an estimate for A. as the distance to the nearest side constraint. When

design variables are considered, we have

Y u) (Ydord
si

(l) Wow
si

where si is the ith component of S. Similarly, when state variables are considered,

we have from Equation (3.94),

dZ = -pri[c] dY 	 (3.105)

using dY = AS, Equation (3.104) gives the search direction for the variables Z as

T = -[D]-1 [c] s 	 (3.106)

Thus

If ti> 0
(3.104)

If ti <0

ti

Ifti > 0

If ti < 0
A= (3.107)

where ti is the ith component of 7'.

(b) The minimum value of A. given by Equation (3.104), A.1, makes some design , 	.
variable attain its lower or upper bound. Similarly, the minimum value of A.

given by Equation (3.107), A2 will make some state variable attain its lower or

upper bound. The smaller of Ai or A2 can be used as an upper bound on the

value of A. for initializing a suitable one-dimensional minimisation procedure.

The quadratic interpolation method can be used conveniently for finding the

optimal step length A,*.

(c) Find the new vector)(new:

 Yo

ld

+ dY} = {Vo id + I: S }
(3.108)xnew. t

Z old ± dZ 	Zold + A
•
7

111 - 47

Techniques for Solving Non Linear Programming Problems

If the vector Xnew corresponding to A* is found infeasible, then 	is held

constant and Znew is modified using Equation (3.100) with dZ = Znew — Zola.

Finally, when convergence is achieved with Equation (3.100), we find that

f Yaw + AY
Xnew

t Zord AZJ

and go to step 1.

GRG algorithm has been worldwide adopted in many optimisation software.

One of them is GRG2. It uses a robust implementation of the BFGS quasi-Newton

algorithm as its default choice for determining a search direction. A limited-memory

conjugate gradient method is also available. The problem Jacobian is stored and

manipulated as a dense matrix. The GRG2 software may be used as a stand-alone

system or called as a subroutine. The user is not required to supply code for first

partial derivatives of problem functions; forward or central difference approximations

may be used instead. This software is also incorporated in MS-Excel Solver for

solving non linear programming problems.

Example 3.10

Minimise AXI, X2, X3) = (x1- x2)2 + (X2' X3)4
subject to:

gi(X) = x1(1+ x22) + x34 -3 = 0

xi 	3, i = 1,2,3

using the GRG method.

Solution:

Step 1. We choose arbitrarily the independent and dependent variables as

{
YI = {xi , Z = {zi} = {X3}
Y2 	X2

— 2.6
Let the starting vector be X1= 	2

2
withf(Xi) =21.6.

(3.109)

DI - 48

Techniques for Solving Non Linear Programming Problems

Step 2: Compute the GRG at X1. Noting that
of = 2(x1- -x2) ax,

of = 2(x1- x2) + 4(x2 - x3)3
axe
of = -4(x2- x3)3 ax3

ag' = 1+x22
ax,

ag, =-- 2 x1 x2 ax2

0g1 = 4 3
aX3 	3

We find, at xi,
of
ax,
of
ax2 jx

VZ/=--
af
ax3 x,

2(-2.6 — 2) 	—9.21
t— 2(-2.6 — 2) + 4(2 — 2)31 	9.2

d x,
ag2,

[c] = 	= [5 -10.4]
[.:: a

[D] =[2-g-11 = [32] Wig'
 xi

[D] 1 = [31i], [Df1 [c] = 51-2- [5 -10.4] = [0.15625 -0.325]

GR = V f — ([D]-1 [C])T V zf

9.2} {0.156251
(0

) {-- 9./ .
9.2 	— 0.325 	9.2

Step 3: Since the components of GR are not zero, the point X1 is not optimum, and
hence we go to step 4.

DI - 49

Techniques for Solving Non Linear Programming Problems

Step 4: We use the steepest descent method and take the search direction as

{-- 9.21
S=- GR=

9.2

Step 5: We find the optimal step length along S.
(a) Considering the design variables, we use Equation (3.104), to obtain:

For yi = xi

3 - (-2.6) A - 	 - 0.6087
9.2

For Y2 = x2:
-3 - (-2) A - 	 - 0.5435

- 9.2

Thus the smaller value gives Ai =0.5435. Equation (3.106) gives:

T= -[Df' [C] S = -(0.15625 -0.325) { 9 9.2
.2

 1-- -4.4275

And hence Equation (3.107), leads to

For zi =x3; A,- 3 - (2) - 1.1293
- 4.4275

Thus 22 = 1.1293.

(b) The upper bound on 2 is given by the smaller of Ai and 22, which is equal

to 0.5435. By expressing

{Y+AS1
X=

Z+271

We obtain

x1 9.2
X= x2 =

-2.6}
2 +2 -9.2

{ 2.6 + 9.22}
= 	2 -9.22

} {-

x3 2 - 4.4275 2 - 4.42752

And hence

.1(2) =fiX) = (-2.6 + 9.22 - 2 + 9.2 2)2 + (2-9.22-2+4.4275)4

= 518.7806 24 + 338.5622 - 169.28 2 + 21.16

= 0 gives

2075 	3 	77.12 2 Y 169.28 = 0

r:crat2.-.2-11-14-
Doto20,tm2l,r)5„_

IP 	 _

TII - 50

Techniques for Solving Non Linear Programming Problems

From which we find the root as 2* 0.22. Since %* is less than the upper bound

value 0.5435, we use A.*.
(c) The new vector Xnev, is given by

{1Cid 	{ Yad + 1 1 *S
Xnew =

Z old dZ 	Z old + T

— 2.6 + 0.22 *9.2
2 + 0.22*(-9.2)

2 -F 0.22 * (-4.4275)

— 0.576
— 0.024
1.02595

with

{ 2.024
dY=

— 2.024
dZ = {-0.97405}

Now, we need to check whether this vector is feasible. Since

gi (Xnew) = (-0.576) [1 + (-0.024)2] + (1.02595)4 — 3 = -2.4685 # 0.
The vector Xnew is infeasible. Hence we hold Ynew constant and modify Znew

using Newton's method Equation (3.100) as

dZ= [D]-1 (-g(X) — [C] dY)

Since

[D]=P
L1= [4x33] = [4 (1.02595)1= [4.319551]
z,

gt(X) = {-2.4684}

[C] = 	.-1-]={[2(-0.576 + 0.024)][-2(-0.576+0.024)+4(-0.024
ay2

1.02595)3])
= [-1.104 -3.5258]

1 dZ — 	[2.4684 — {-1.104 3.5258} 2.024
4.319551 	 — 2.024

= {-0.5633}

DI - 51

Techniques for Solving Non Linear Programming Problems

We have Znew = Zold dZ = {2-0.5633} {1.4367}. The current Xnew becomes

—0.576}
— 0.024
1.4367

{You + dY
= Xnew

Zold dZ

The constraint becomes

gi = (-0.576)(1-(-0.024)2) + (1.4367)4 — 3 = 0.6842 # 0

Since this Xnew is infeasible, we need to apply Newton's method Equation (3.100) at
the current)(new. In the present case, instead of repeating Newton's iteration, we can

find the value of Znew = {x3}new by satisfying the constraint as

g1(X) = (-0.576)[1-(-0.024)2) + x3 4 — 3 = 0

or x3 = (2.4237)0'25 = 1.2477

This gives

— 0.576
— 0.024 and
1.2477

Xnew =

f(Xnew) = (-0.576 + 0.024)2 + (-0.024 — 1.2477)4 = 2.9201

Next we go to step 1.

Step 1: We do not have to change the set of independent and dependent variables and

hence we go to the next step.

Step 2: We compute the GRG at the current X using Equation (3.97). Since

of

	

ax, 	 2(-0.576 + 0.024) 	 —1.104

	

of 	— 2(-0.576 + 0.024) + 4(-0.024 —1.2477)3 	— 7.1225
axe

Def
of

—a 	1 {-4(-0.024 — 1.2477)3} {8.2265}

	

, 	ax3

[CI =[agl
a
a
g, 1=[(-1 +(- 0.024)2 2(-0.576)(-0.024)]

ax, x2

= [1.000576 0.027648]

III - 52

Techniques for Solving Non Linear Programming Problems

[D] 	3 1= [4x33] = [4 (1.2477)3] = [7.7694]
ax3

[D]-1 [c] - 	[1.000576 0.027648] = [0.128784 0.003558] 7.7694

GR = Vrf— ([D]-1[C])TVil'

{ —1.104 } {0.1287841 	
=

{— 2.16341
—7.1225 	0.003558

(8.2265) 	
—7.1518

Since GR # 0, we need to proceed to the next step.

Note: It can be seen that the value of the objective function reduced significantly

from 21.16 to 2.9201 in one iteration.

3.4.2.2 Indirect Method

In Indirect Methods, there are two basic solving methods, that is

Transformation of variables methods and Penalty function methods.

(1) Transformation of variables method

If the constraints are explicit function of the variables and have certain simple

forms, it may be possible to use transformation techniques so that the constraints

would be automatically satisfied. There are two options to transform the variables,

i.e. change of variables and Eliminations of variables.

1.a. Change of variables method

Change of variables method, particularly useful when the variables are

bounded by lower and upper limits, can be used to convert a constrained

optimisation problem into unconstrained one. The method should be used only

when it is possible to eliminate all constraints. Partial transformation may result

into a distorted objective function that may be more difficult to minimise than the

original function. Some typical transformations are indicated below:

1. If lower and upper bounds on xi are specified as

< xi < ui 	 (3.110)

these can be satisfied by transfOrming the variable xi as

xi = + (ui - 10 sin2yi 	 (3.111)

III- 53

1 + yi2 xi = sin yi, x, = cos yi, or xi — 2yi (3.114)

Techniques for Solving Non Linear Programming Problems

where yi is the new variable, which can take any value.
2. 	If a variable xi is restricted to lie in the interval (0,1), such transformation can

be used, i.e.

xi = sin2yi , xi = cos2yi 	 (3.112)

xi =
eY 2

Yi 	 or x,
e''' + e 	1+ yi2

3. If the variable xi is constrained to take only positive values, the transformation

can be

xi = abs(yi), xi = yi2 or xi = 	 (3.113)

4. If the variable is restricted

Note the following aspects that are important in transformation techniques

1. The constraints gi(X) have to be very simple function of xi.
2. For certain constraint it may not be possible to find the necessary

transformation

3. If it is not possible to eliminate all the constraints by making change of

variables, it may be better not to use the transformation at all. The partial

transformation may sometimes produce a distorted objective function

which might be more difficult to minimise than the original function.

Example 3.11

Find the dimensions of a rectangular prism type box that has the largest volume when

the sum of its length, width and height is limited to a maximum value of 60 in. and its

length is restricted to a maximum value of 36 in.

Solution:

Let x1 , x2, and x3 denote the length, width, and height of the box, respectively. The

problem can be stated as follows:

Maximise f(xi, x2, x3) = xix2x3 	 (E1)

III- 54

Techniques jor Solving Non Linear Programming Problems

subject to:

xi+ x2 +x3 .CAO
	

(E2)
x16
	 (B3)

= 1,2,3
	

(E4)

By introducing new variable as:

Yi= x1, Y2 = x2 Y3= Xl+ X2+ x3 	 (B5)

or

..x1 =y1, X2 == j129 X3= Y3 	-y2
	

(E6)
the constraints of Equation (B2) to (E4) can be restated as

0 	 0 	 0 _*3 	 (B7)

where the upper bound, for example, on y2 is obtained by setting xi= x3 = 0 in

Equation (E2). The constraints of Equation (E7) will be satisfied automatically if we

define new variables zi, i = 1,2,3 as

yi= 36sin2zi, y2= 60 sin222, y3= 60sin2z3 	 (Es)
Thus the problem can be stated as an unconstrained problem as follows:

Maximisefizi, z2, z3)

=y1 Y2 (y3 - yi -y2)
= 2160 sin2 z1 sin2z2 (60 sin2z3 — 36 sin2zi — 60 sin2z2) 	 (E9)

The necessary conditions of optimality yield the relations

af —= 259,000 sin 21 cos 21 sin222 (sin2z3 - s sin2zi - sin222) = 0
azi

of = 518,400 sin2 z1 sin 22 cos 22 sin2z3 - 	sin2zi - sin2z2) = 0

—af = 259,200 sin2 z1 sin2 22 sin 23 cos z3 = 0 	 (E12) az3

Equation (E12) gives the nontrivial solution as cos z3 = 0 or sin2 z3 = 1. Hence

Equation (E10) and (B11) yield sin2 z1 = -95- and sin2 22 = 3 . Thus the optimum solution

is given by xi* = 20 in., x2* = 20 in. and x3* = 20 in., and the maximum volume =
8000 in.3.

az2

(E1o)

(Ell)

III- 55

Techniques for Solving Non Linear Programming Problems

1.b. Elimination of variables method
Elimination of variables method is used for an n-variable problem with m

inequality constraints, if it is known in advance that r constraints would be active at

the optimal point. It may be possible to eliminate any r variables and obtain a new
problem involving n-r variables with m-r constraints. This new problem with reduced
number of variables and constraints may be easier to solve. However, it may not be

possible to know before hand, which of the constraints would be active at the

optimum point.

(2) Penalty Function Method

In penalty function methods, also known as Sequential Unconstrained

Minimisation Techniques (SUMTs), the constrained minimisation problem is

transformed into alternative formulations. such that the minimisation problem is

solved through a sequence of unconstrained minimisation problems. The alternative

formulation is obtained by adding a penalty term that takes care of the constraints.

There two methods of this concept, i.e. exterior penalty function method and

interior penalty function method. In exterior penalty function methods, all

intermediate solutions lie in the infeasible region and converge to the optimal

solution from exterior of the feasible region. Herein, it is not necessary to have a

starting feasible solution, however, since intermediate solutions are infeasible, search

cannot be stopped before reaching the optimum. In interior penalty function, all

intermediate solutions lie in the feasible region and converge to the optimal solution

from interior, of the feasible region. Herein, the search can be stopped any time and

the solution though sub optimal is feasible, therefore it can be taken as the final

solution. However, an initial feasible solution is necessary to start the search

procedure.

III - 56

• .3q-ge 	 .

Techniques for Solving Non Linear Programming Problems

2.1 	Interior Penalty Function Method

0. f 	 ...1
Thln,1 	 #Cr21.

Ox.r3) .

Fig. 3-4 	Penalty function methods: (a) exterior method; (b) interior

method

In interior penalty function methods, a new function (0 function) is

constructed by augmenting a penalty term to the objective function. The penalty term

is chosen such that its value will be small at points away from the constraint

boundaries and will tend to infinity as the constraint boundaries approached. Hence

the value of the 0 function also 'blows up' as the constraints boundaries approach.

This behaviour can be seen from Figure 3-4. Thus once the unconstrained

minimisation of 0 (X, rk) is started from any feasible point X1, the subsequent points

generated will always lie within the feasible domain since the constraint boundaries
act as barriers during the minimisation. process. This is why the interior penalty

function methods are also known as barrier methods. The 0 function defmed

originally by C.W. Carroll in 1961 is:

0 (X, rk) = .1(X) - 0 rk 	1 	 (3.115)
.J=1 gi (X)

It can be seen that the value of the function 0 will always be greater than f

since gi (X) is negative for all feasible point X. If any constraint gi (X) is satisfied

critically (with equality sign), the value of 0 tends to infinity. It is to be noted that the

penalty term in Equation (3.115) is not defined if X is infeasible. This introduces

serious shortcoming while using the Equation (3.115). Since this equation does not

III- 57 •

Techniques for Solving Non Linear Programming Problems

allow any constraint to be violated, it required a feasible starting point for search
toward the optimum point.

The algorithm is given as follows:
1. Start with an initial feasible point X1 satisfying all the constraints with strict

inequality sign, that is, gj (X1) < 0 for j = 1,2, ...,m, and an initial value of ri > 0.
Set k =1.

. 2. Minimise 0 (X, rk) by using any of the unconstrained minimisation method and
obtain the solution Xk* •

3. Test whether Xk* is the optimum solution of the original problem. If Xk* is
found to be optimum, terminate the process. Otherwise, go to the next step.

4. Find the value of the next penalty parameter, rkfi, as

r k+1 = C rk

where c < 1.

5. Set the new value of k = k+1, take the new starting point as X1 = Xk , and go to
step 2.

Example 3.12
Minithisef(X) = x13 — 6xi2 + 1 lxi + x3
subject to :

2 	2 	2
Xi -r" X2 - X3. 50

4 - xi2 - X22 - X32 0

x3 - 5 0

-.xi 0, i =1,2,3

Solution:

The interior penalty function method, coupled with the Davidon — Fletcher- Powell

method of unconstrained minimisation and cubic interpolation method of one-

dimensional search, is used to solve this problem. The necessary data are assumed as
follows:

Starting feasible point, X1 =
0.1
0.1
3.0

III - 58

Techniques for Solving Non Linear Programming Problems

r1 = 1.0, f(Xi) = 4.041, AX1, ri) = 25.1849

{ .5
0

The optimum solution of this problem is known to be X* = 	, f* = -5 . The
li.

results of numerical optimisation are summarised in Table 3-5.

Table 3-5 Results for Example 3.12

k Value of rk xl* x2* X3* 4* fk*
1 1.0 x 10° 0.37898 1;67965 2.34617 10.36219 5.70766
2 1.0 x 104 0.10088 1.41945 1.68302 4.12440 2.73267
3 1.0 x 10-2 0.03066 1.41411 1.49842 2.25437 1.83012
4 1.0 x 10-2 0.009576 1.41419. 1.44081 1.67805 1.54560
5 1.0 x 10-4 0.003020 1.41421 1.422263 1.49745 1.45579
6 1.0 x 104 0.0009530 1.41421 1.41687 1.44052 1.42735
7 1.0 x 106 0.0003013 1.41421 1.41505 1.42253 1.41837
8 1.0 x 10-7 0.00009535 1.41421 1.41448 1.41684 1.41553
9 1.0 x 10-8 0.00003019 1.41421 1.41430 1.41505 1.41463
10 1.0 x 10-9 0.000009567 1.41421 1.41424 1.41448 1.41435
11 1.0 x 10-10 0.00003011 1.41421 1.41422 1.41430 1.41426
12 1.0 x 1041 0.9562 x10-6 1.41421 1.41422 1.41424 1.41423
13 1.0 x 1042 0.3248 x 10-6 1.41421 1.41421 1.41422 1.41422

2.2 	Exterior Penalty Function Method

In the exterior penalty function method, the q5 function is generally taken as

0 (X, rk) =J(X) rk 	(g i (X))Q
	

(3.116)

where rk is a positive penalty parameter, the exponent q is a nonnegative constant,

and the bracket function (g (X)) is defined as

(g (X)) = max (g i (X),0) 	 (3.117)

gi(X) > 0 (constraints is violated)
= (X)

0 	gi(Y) 50 (constraint is satisfied)

It can be seen from Equation (3.116) that the effect of the second term on the

right side is to increase q (X, rk) in proportion to the qth power- of the amount by

which the constraints are violated. Thus, there will be a penalty for violating the

constraints, and the amount of penalty will increase at a faster rate than will the

amount of violation of a constraint (for q > 1). This is the reason why the formulation

III - 59

Techniques for Solving Non Linear Programming Problems

is called the penalty function method. Usually, the function 0 (X, rk) possesses a
minimum as a function of X in the infeasible region. The unconstrained minima Xk*

converge to the optimal solution of the original problem as k tends to infinity and rk
also tends to infinity. Thus, the unconstrained minima approach the feasible domain
gradually, and as k tends to infinity, the Xk* eventually lies in the feasible region.

The algorithm is given as follows:

1. Start from any design Xi and a suitable value of r1. Set k= 1.
2. Find the vector Xk* that minimises the function

0 (X, rk) = 	+ rk 	(gi(X)r 	 (3.118)
i=1

3. Test whether the point Xk* satisfies all the constraints. If Xk* is feasible, it is the
desired optimum and hence terminate the procedure. Otherwise, go to step 4.

4. Choose the next value of the penalty parameter that satisfies the relation

rk+1> rk 	 (3.119)
and set the new value of k as original k plus 1 and go to step 2. Usually, the value

• of rk+1 is chosen according to the relation rk+1 = c rk, where c is a constant greater
than 1.

Example 3.13

Minimise f(x , x2) = i (x1+1)3 + X2

subject to:

gi(xi, x2) = 1 -

g2(xi, x2) = -x2 SO

Solution:

To. illustrate the exterior penalty function method, we solve the unconstrained

minimisation problem by using differential calculus method. As such, it is not

necessary to have an initial trial point Xi. The 0 function is:

0 (X1, r) = 3 (x,+1)3 + x2 + r [max(0, 1- x1)]2 + r [max(0,- ;Q)]?

The necessary conditions for the unconstrained minimum of 0 (X1, r) are

III- 60

NortsTiv‘,

Nr‘1%

Yz)--v.s 	 /*W.-

b

9)0'(Fo--601 ed_rz

Viko6fle 	
09673(1-i

Techniques for Solving Non Linear Programming Problems

a° =(x,+02 - 2r [max(0, 1- xi)] = 0
ax,

a° = 1- 2r [max(0,- X2)] = °
axe

These equations can be written as
min Rx1+1)2 , (xi+1)2 - 2r (1- xi)] = 0 	 (El)

min [1, 1+2rx2] = 0 	 (E2)

In Equation (E1) if (xi+1)2 = 0, xi = -1 (this violates the first constraint), and if

(x1+1)2 - 2r (1-) = 0, x1= -1- r + 11r2 ± 4r

In Equation (E2) the only possibility is that 1 + 2rx2= 0 and hence x2 = -1/2r.

Thus the solution of the unconstrained minimisation problem is given by

• (r)= -1 - r + r +

x2* (r) = - 1
2r

From this, the solution of the original constrained problem can be obtained as

▪ = limx:(r)= 1, x2* = lim x;(r)= 0
r-4.0 	 r-)to

fmin = lim0„,in (r)

The convergence of the method, as r increases gradually, can be seen from Table 3-6.

Table 3-6 	Results for Example 3.13

Value of r xi* X2* I, min(r) f min(r)
0.001 -0.93775 -500.00000 -249.9962 -500.0000
0.01 -0.80975 -50.00000 -24.9650 -49.9977
0.1 -0.45969 -5.00000 -2.2344 -4.9474
1 0.23607 -0.50000 0.9631 0.1295
10 0.83216 -0.05000 2.3068 2.0001
100 0.98039 -0.00500 2.6249 2.5840
1000 	. 0.99800 -0.00050 2.6624 2.6582
10,000 0.99963 -0.00005 2.6655 2.6652
co 1 0 8 8

3 3

(E3)

(E4)

III -61

Techniques for Solving Non Linear Programming Problems

3.5 STOCHASTIC SEARCH TECHNIQUES
Although the linear and nonlinear methods are good for finding local optima,

in real problems it quickly becomes inconvenient to invert matrices (linear
programming) or calculate the partial derivatives with respect to the decision
variables (nonlinear programming). In such a situation, knowledge of the functional
relationship between the objective function value and the decision variables either

does not exist or is too complex to be. usable. Automated search methods are then

used instead of computationally intensive mathematical 'programming approaches.

The feature common to all of these methods is a generate-and-test strategy in which a

new point is generated and its function value tested. Depending on the particular

method, a new point (or set of points) is generated, and the search for the best

solution continues.

3.5.1 Genetic Algorithms

Most real network models are too large or too complex to be handled by any

of the previously discussed optimization methods without making significant
simplifications. Among the techniques that show promise, genetic algorithms (GAs)

are most capable of meeting the needs of the design engineers without the necessity

of contorting the problem to fit the algorithm (Dandy, Simpson, and Murphy, 1996;

Savic and Walters, 1997; Walters, Halhal, Savic, and Ouazar, 1999; Wu et al., 2002).

GAs have a relatively short but promising history, although the basic

principles date from the beginning of life on earth. In simple terms, the GA uses a

computer model of Darwinian evolution to "evolve" good designs or solutions to

highly complex problems for which classical solution techniques such as linear

programming or gradient-based methods are often inadequate. The GA incorporates

ideas such as a population of solutions to a problem, survival of the fittest (most

suitable) solutions within a population, birth, death, breeding, inheritance of genetic
material (design parameters) by children from their parents, and occasional mutations

of that material (thereby creating new design possibilities).

A genetic Algorithm (GA) is an approach used for optimal design in many

fields of engineering including water transmission and distribution networks. It is a

search algorithm based on natural selection and the mechanism of population

III - 62 •

Techniques for Solving Non Linear Programming Problems

genetics. GA simulates mechanism of population generation and natural rules of

survival. It relies on the collective learning process within a population of

individuals, each of which represent a point in space of feasible or infeasible

solutions.
A GA developed for distribution system optimization uses:

• An objective function defined on a set of decision variables (pipe diameters, for

example)

• A calibrated model of the system to simulate its hydraulic behavior and to ensure

that continuity and head-loss equations are satisfied at all times (hard constraints)

• A penalty term to penalize insufficient levels of service (soft constraints), such as

pressures at nodes, imbalance of reservoir flows, or low/high velocity in pipes.

3.5.1.1 GA Characteristics

Genetic algorithm differs from other search methods in the following ways:

1. GA works with the coding of the parameter set, not with the parameters

themselves.

In other search method, decision variables, such as pipe diameters and

nodal HGL values are directly used in the formulation. In GA, however, the

decision variables are coded as a finite length string, each string representing a

feasible or infeasible solution. Each string consists of sub strings, wherein each

sub string represents a parameter, e.g. a pump in on or off condition, a link size,

and so on. The coded string is similar to the structure of a chromosome of

genetic code. Standard GA uses a binary alphabet (character is 0 or 1) to form a
chromosome. Let us assume that in a network optimisation problem we have

pipe sizes ranging from 0 (link is absent in a looped network) to 750 mm, a

maximum available size, as shown in Table 3-7. Since we have fifteen pipe size

possibilities, each sub string, denoting a pipe size, consists of four bits (24 =
16>15). Thus, in binary coding as shown in Col. 3, 100 mm is coded by 4 bit

string 0010, a size 250 mm by 0110, and so on. A trial solution with

combination of pipe size of all links will become a union of binary codes. A

network consisting of six links, labelled 1, ..., 6 with pipe sizes of 600, 400,

BI - 63

Techniques for Solving Non Linear Programming Problems

300, 250, 200, and 	150 mm, respectively, is coded by a 24-bit string
110010010111011001010100.

Table 3-7 	Example of Pipe Size and coding
Serial Number Diameter (mm) Coded sub string

(1) (2) Binary (3) Gray (4)
1 0 0000 0000
2 80 0001 . 	0001
3 100 0010 0011
4 125 0011 0010
5 150 0100 0110
6 200 0101 0111
7 250 0110 0101
8 300 0111 0100
9 350 1000 1100
10 400 1001 1101 .
11 450 1010 1111
12 500 1011 1110
13 600 1100 1010
14 700 1101 1011
15 750 1110 1001

One disadvantage with ordinary binary code is that two similar

solutions may differ in several bits. For example, in ordinary binary code of

Column 3, a pipe of 300 mm diameter is represented by sub string 0111;

while the next larger size of 350 mm diameter is represented by substring

1000 in which all four bits of the sub string have changed. To avoid this, Gray

coding may be used. In Gray coding adjacent pipe sizes are represented by

substrings that differ by only one bit, as shown in Column 4.

2. GA searches from a population of points, not from a single point.

In GA, a population of strings is generated and tested simultaneously

in one iteration and the process is continued successively. This process is

similar to a natural biological proces's wherein successive generations of

organisms are born and brought up. Since each string represents a solution,

we consider several starting points and climb many peaks simultaneously in a

multimodal maximisation problem. Since these solutions are spread through

out the solution space, probability of reaching the global optimum solution is

increased. Furthermore, a number of optimal (or near optimal) solutions are

available in the end; thus, the designer has a wide range of solutions to choose

from.

III - 64

Techniques for Solving Non Linear Programming Problems

In the usual search methods (e.g. steepest descent method), we

consider a single point in space (a particular flow distribution), follow certain

rules to select direction of movement and step size and ultimately reach a
local optimum solutions (corresponding to a branched configuration). We
may obtain several solutions by considering several starting points (several
flow distributions or several branching configurations) successively. In GA,

however, we consider several starting points right from the beginning,

consider them in parallel, and thus obtain several solutions simultaneously.

3. GA requires only the 'objective function, not trend, derivative or other

auxiliary data.
In direct optimisation methods, the objective function and constraints

are considered simultaneously; thus knowledge of optimisation is required.

GA, on the other hand, is similar to the traditional, approach in which a

solution is generated, tested for its feasibility, and the value of the objective

function is evaluated. Thus iri GA, the objective function and constraints are

considered separately.

4. GA uses probabilistic transition rules, not deterministic transition rules.

Genetic Algorithms uses probabilistic rules rather than deterministic rules

in moving from one set of trial solutions to the next set of solutions.

3.5.1.2 GA Operators
In Genetic Algorithms, a set of P initial solutions is generated randomly. The

initial solution P, is usually between 30 to 200 for distribution networks. These P

initial solutions are represented by P strings, each string consisting of X substring as

shown in Fig. 3.5. Here, A, B, 	P represent P strings and, subscripts 1,2„..,x,.., X
denote X substrings. Thus, sub string B2 denotes sub string (link) 2 in string (solution)
B and is coded 1011 in ordinary coding if it is of 500 mm diameter (according Table

4.1).

III- 65

Techniques for Solving Non Linear Programming Problems

Substring
String A

2

x

X- 1 X

B Bi I Bd 	

I Px-i Px 1

P • Ps 	P2 , •

Px-

Px-1

Figure 3-5 	Population Strings

A simple genetic algorithm consists of three operators:

1. Reproduction
2. Crossover, and

3. Mutation.
These operators are described as follows:

• Reproduction

Reproduction is an operator in which an old string is copied into the

new population according to that string's fitness. Fitness of string (solution)

can be taken as the objective function value (maximisation problem) or its
inverse (minimisation problem). For distribution networks, in general, fitness
of a string can be represented by

s = (+)
(3.120)

in which fi = fitness of string i, i = A,B, ..,P; C7i = total cost of network

represented by string i; and s = scaling exponent taken 1 in the early
generation (so that GA can sort through the potential strength of the strings);

but increase to 3 or 4 in subsequent generations to exaggerate small

differences in fitness of strings.

Generation of new members in the next generation is based on

probability of selection of string, i.e., pi given by

III- 66

1211/1121 • r3
B2 A3 I •

 . . I Axj

A'

crossover

Crossing point

A Ai A3. A3 • • • Ax

B [B11 '12 1831 • • • [41

Techniques for Solving Non Linear Programming Problems

(3.121)

Thus, reproduction is based on the survival of the fittest principle -

more fit strings make more copies for mating than less fit strings.

• Crossover
Crossover, in its simplest form, is the partial exchange of

corresponding segments between two parent strings to produce two offspring

strings. The crossing point is decided randomly. Thus, two strings A and B as

parent strings will produce two offspring string A' and B' after crossover with

crossing point 2 as shown in Fig. 3-6.

Parent strings
	

offspring strings

Figure 3-6 Crossover Process

The probability of crossover pc is usually selected between 0.6 and

1.0. The GA randomly picks two strings from the new population. A

uniformly distributed random number is then generated between 0.0 and 1.0.

The GA applies the crossover operator if the,random number is less than Pc,
otherwise the two strings are retained as they are. For example, for a

population size of 100 (P=100) and crossover probability of 0.7 (pc = 0.7), on

average

P x pc = 100 x 0.7 = 70 strings are crossed over in each generation.

• Mutation

Mutation is an operation in which the mutation operator randomly alters a

gene, i.e., a bit (0 to 1 and 1 to 0 in binary code) as shown in Fig. 3-7. Even

though reproduction and crossover effectively search and recombine to

produce next generation population, they may become overzealous , and lose

some useful genetic character (a 1 or 0 in a particular location). Mutation

operator tries to protect against such irreparable loss.

111 - 67

Techniques for Solving Non Linear Programming Problems

Selected gene
1

[1 1 °1 1 ° i 11111 0 Mutation

Figure 3-7 	Mutation Process
Probability of mutation pm is usually taken between 0.01 and 0.05.

3.5.1.3 Advantages and shortcoming

Genetic algorithms have a number of advantages over other mathematical

programming techniques. In the context of optimisation of pipe network design some

advantages include the following:

1. Genetic Algorithms deal directly with a population of solutions at any one time.

These are spread throughout the solution space, so the chance of reaching the

global optimum is reached significantly.

2. Each solution consists of a set of discrete pipe sizes. One does not have to round

diameters up or down to obtain the final solution.

3. Genetic Algorithms identify a set of solutions of pipe network configurations that

are close to the minimum cost solution. These configurations may correspond to

quite different designs that can be then compared in terms of other important but

non quantifiable objectives.

4. Genetic Algorithms use objective function or fitness information only, compared

with the more traditional methods that rely on existence and continuity of

derivative or other auxiliary information.

5. Genetic Algorithms can easily handle multiple sources and multiple loadings. It

can be used for new designs as well as for rehabilitation, replacement and

expansion of existing networks.

Despite the advantages, there is also shortcoming in using GA as tools of design

of water distribution networks, i.e. Genetics Algorithm requires a large number of

objective function evaluations and checking for their feasibility or infeasibility. Thus

computer times, even for moderate network are quite large.

There are different steps involved in optimisation of gravity water distribution

network through Genetic Algorithm are as folldws

III - 68

Techniques for Solving Non Linear Programming Problems

Step 1. Generation of initial population.
An initial population of coded strings, each string representing a solution that may be

feasible or infeasible, is randomly generated.

Step 2. Computation of cost of each network.
Each string of population is decoded to obtain pipe sizes in the solution and then the

network cost is obtained.

Step 3. Hydraulic analysis of each network.

Each network is analysed for the specified demand pattern to obtain link flows and

nodal HGL values. These available HGL values at demand nodes, Hr are then

compared with minimum required HGL values, Himin and head deficit at each node,

HT in - 	is noted.

Step 4. Computation of Penalty Cost.

Rather than ignoring infeasible solutions and considering only the feasible solutions,

the infeasible solutions in the population are also considered through exterior penalty

function method. A penalty cost for each demand pattern is assigned if the solution

does not satisfy minimum HGL requirements. The HGL violation, at the node at

which the HGL deficit is maximum, [max (Hr - H71),j= 1,2,.., /V] is used as the

basis for computation of the penalty cost. The maximum HGL deficit is multiplied by

a penalty factor to obtain the penalty cost. The penalty factor is a measure of the cost

of violating one unit of node HGL and can be taken equal to the capitalised cost of
raising the total quantity of water at the source node by one unit. However, the value

of the penalty function should be checked at the end of GA iteration to see that the

best infeasible solution (solution with least penalty cost) is not superior to any

feasible solution in the population. If so, the value of penalty factor is sufficiently

increased.

Step 5. Computation of total cost

The cost of each solution in the current population is obtained as the sum of network

and penalty costs, obtained in Steps 2 and 4, respectively.

Step 6. Computation of fitness.

Fitness of each string (solution) is then obtained by using Equation (3.120).

1111 - 69

Techniques for Solving Non Linear Programming Problems

Step 7. Reproduction of new population.
Members of next generation based on the probability of selection of a string given by
Equation (3.121) are reproduced.

Step 8. Crossover.

Crossover operation is then carried out to produce offspring strings from parent

strings.

Step 9. Mutation

Mutation operation is carried out.

Step 10. Production.of successive generations.

Successive generation are produced maintaining the size of the population. A set of

least cost strings (e.g., the best 20) is stored and the set is updated as less costly

alternatives are generated. Typically, generations between 100 and 1000 are

evaluated.

The steps involved in optimisation of a pumped network are as follows:

Step 1-2. Step 1 and 2 are same as those for gravity network.

Step 3. Hydraulic Analysis of each network. A suitable HGL at pumped source node

H„ is either increased or decreased so that maximum HGL deficit [max (Hr -

), j = 1,2,.., N] or minimum HGL surplus [min (Hr -Hp), j = 1,2,.., N] is

zero. The revised HGL, Hs is used in calculating pumping head hi, (=Hs — He); and the

energy cost (present worth of energy charges) is obtained using first term Equation

(2.2) that pointed energy cost.

Step 5. Computation of Total Cost.

The total cost is the sum of network and energy costs.

Step 6 —10. Step 6 to 10 are same as those for gravity network.

3.5.1.4 	GA Applications

The application of GA in water distribution network design is subject of

interdisciplinary research and development. Because GA itself does not do the design

of water distribution network, it need a number of things from different domains

III- 70

Techniques for Solving Non Linear Programming Problems

integrated together, including a water distribution design model — formulation of

design objectives, design criteria/constraints and design variables, and also the

hydraulic simulation model — solving the network hydraulics. By seamlessly

integrating three of the models, designer will be able to use a GA code to design

water distribution network.
Several researchers have demonstrated the application of GA in water

distribution network, for example Dandy, Simpson and Murphy (1996) and Savic and

Walters. (1997). One of such software is Water Network Optimiser (Savic and

Keedwell). This program use Epanet 2.0 as its simulation engine and the problem

must be inputted in Epanet input file format. The Water Network Optimiser is a

simple method using genetic algorithms (both single objective — SOGA and multi

objective — MOGA) to find optimal sets of pipe diameters for a water distribution

network. The genetic algorithm (GA) uses the principles of evolution to test various

combinations of pipes in the model to achieve two goals:

1. A minimum cost (bigger pipes more cost to add) .

2. Certain pressure limits within the network (every network has head

requirements at its nodes)

3.5.2 	Simulated Annealing Method

Simulated annealing method is search approach based on the analogy with

the physical annealing process. In physical annealing process the temperature of

molecules is increased sufficiently high so that they become highly mobile and can

attain different states. If the molecules are then gradually cooled from this initial high

temperature, they attain a crystalline structure, an optimal one corresponding to

minimum energy state. Cunha and Sousa (1999) applied it to the optimal design of
looped water distribution networks.

In each step of the algorithm, a change of configuration is produced, and

then its cost is evaluated. The new configuration is chosen at random in the

neighbourhood of the current configuration In this algorithm, the neighbourhood

includes the configurations having all the pipes, but one, with the same diameter as in

the current configuration. The pipe having a different diameter can take either a

III- 71

Techniques for Solving Non Linear Programming Problems

diameter one size above or one size below its current diameter. The new

configuration is accepted or not, according to the Metropolis criterion

(p<min[1,exp(Ac)/tp. If it is accepted, this configuration will be used as the starting

point for the next step. If not, the original configuration will play this role.

If t is decreased at a suitable rate, the system will tend to converge to the

global least—cost configuration as the number of transition attempts increases. This

property of convergence to a global optimum cost configuration derives from the fact

that transitions from low to high cost configurations are not automatically excluded.

They will take place or not depending on the. difference between costs and on the

level of temperature. Initially, even very negative (counteroptimum) transitions will

be accepted; as the temperature falls, the acceptance of such transitions will become

increasingly rare. By accepting worsening moves, the annealing algorithm will, in

principle, avoid being trapped in local optima.

Simulated annealing method requires the following parameters:

1. Elasticity of Acceptance, a

This parameter represents the probability of accepting a transition from an

initial cost solution to higher cost solution. The value may be between 0.2 to

0.9, the higher the value the more is the probability of covering the entire

space and reaching the global optimum solution; however the computation

time would be more

2. Minimum Number of Iterations, n1

This parameter represents the minimum number of iterations that will be

performed before decreasing the temperature even if there is no more

improvement in the current solution. The value may be between 10 and 70,

the higher the value the more is the probability of reaching global optimum;

however computation time is more.

3. Initial Temperature, Ti

This parameter is the initial temperature at which the annealing process is

stated. It may be taken as

0.1C. (3.122)
In a

III- 72

Techniques for Solving Non Linear Programming Problems

in which C1 = cost of the initial solution; and a = elasticity of acceptance.

4. Final Temperature, T1

This parameter represents the temperature at,which the annealing process is

stopped. Lower the value, the probability of reaching the global optimum

solution increases; however, the computation time also increases.

5. Cooling Factor, r

This parameter represents the rate at which the temperature is decreased

whenever a temperature decrease should occur. Thus,

Ti+i = rTi 	 (3.123)

in which Tj and Tj+1 = temperature at steps j and j+1, respectively. The value

of r may be between 0.1 and 0.9 (even up to 0.99) and may be a constant

value for all steps or may vary from step to step. Faster cooling requires less

computer time but may give sub optimal solutions.

6. Number of Temperature Decreases, n2

This parameter represents the number of temperature decreases that will be

performed without an improvement in the current optimum before stopping the

algorithm. The value of n2 may be between 2 and 7.

The algorithm for optimal design of water distribution networks through

simulated annealing method consists of following steps (Cunha and Sousa, 1999):

Step 1. Choose s1, the initial configuration of the network satisfying all
constraints. Find its cost, Ci.

Step 2. Choose T, the initial temperature according to Equation (3.122).

Step 3. Choose Tf, the final temperature.

Step 4. Choose at random another configuration sj, in the neighbourhood of the
current configuration Si, by changing the diameter of any one link to' either one

size higher or one size lower than the current one. Test it for feasibility. If

acceptable, find the change in cost AC.

Step 5. Choose at random p E [0,1]

Step 6. If < min [1,exp (AC/7'j)], accept the changed configuration, otherwise

retain the original configuration.

Step 7. Choose another temperature, less than the earlier one.

III- 73

Techniques for Solving Non Linear Programming Problems

Step 8. Continue step 4 to 7 until the final temperature is reached.

Step 9. The last solution is the optimal solution.

The advantages and shortcoming of GA are applicable to simulated annealing

• also.

3.6 SUMMARY
The water distribution network design problem is non linear in nature.

Solution of this problem can be achieved by using NLP approach with direct or

indirect method. Generalized Reduced Gradient (GRG) algorithm that is

implemented in GRG2 has been worldwide applied and fully-tested and becomes a

robust algorithm backed by more than 15 years of solving real-world problems in the

petroleum, chemical, defence, financial, agriculture, and process control industries.

GRG2 is like other gradient-based methods, guaranteed to find a local optimum only

on problems with continuously' differentiable functions, and then only in the absence

of numerical difficulties (such as degeneracy or ill conditioning). However, GRG2

has a reputation for robustness, compared to other nonlinear optimization methods,

on difficult problems where these conditions are not fully satisfied. The application of

this method will be discussed in next chapter for solving water' distribution network

design problem

Due to the solution that is achieved by using Non Linear Programming

approach cannot guarantee to be global optimum value, Random Search Techniques

will be adopted. Genetic Algorithms (GA) that is part of Random Search Techniques,

will be applied in solving water distribution network design problem. Genetic

Algorithm is able to work for complex network where there would be a lot of

combination of links to form one global solution. The application of Genetic

Algorithm in solving water distribution network design problem will be discussed in

next chapter.

III- 74

Case Study

CHAPTER IV

CASE STUDY

4.1 APPLICATION OF NON LINEAR PROGRAMMING

As we have already known, for Non Linear Programming approach, there are 3 types

of formulation, i.e. D-Q, D-h and Q-h formulation. In all of these formulations, the

constraints must be satisfied, i.e. node flow continuity, summation of headloss in

every loop equal zero and minimum required pressure at each node. From previous

chapter, it has been concluded that Generalized Reduced Gradient (GRG) algorithm

is capable enough to solve the real-world problems. Microsoft Excel Solver is one

example of software that using GRG algorithm in their calculation. This software

application will be discussed further in next paragraphs.

4.1.1 Microsoft Excel Solver

Microsoft Excel Solver is licensed product from Microsoft Corporation.

Microsoft Excel Solver uses the Generalized Reduced Gradient (GRG2) algorithm for

optimizing nonlinear problems. This algorithm was developed by Leon Lasdon, of

the University of Texas at Austin, and Allan Waren, of Cleveland State University.

For linear and integer problems, the simplex method, with bounds on the variables

and the branch and bound method are used, which is implemented by John Watson

and Dan Fylstra, of Frontline Systems, Inc.

GRG2 uses an implementation of the generalized reduced gradient (GRG)

algorithm.. It seeks a feasible solution first (if one is not provided) and then retains

feasibility as the objective is improved. It uses a robust implementation of the BFGS

quasi-Newton algorithm as its default choice for determining a search direction. A

limited-memory conjugate gradient method is also available, permitting solutions of

problems with hundreds or thousands of variables. The problem Jacobian is stored

and manipulated as a dense matrix, so the effective'size limit is one to two hundred

Case Study

active constraints (excluding simple bounds on the variables, which are handled
implicitly).

Microsoft Excel Solver uses iterative numerical methods that involve

"plugging in" trial values for the adjustable cells and observing the results calculated

by the constraint cells and the optimum cell. Each trial is called an iteration. Because
a pure trial-and-error approach would be extremely time-consuming (especially for

problems involving many adjustable cells and constraints), Microsoft Excel Solver

performs extensive analyses of the observed outputs and their rates of change as the

inputs are varied, to guide the selection of new trial values.

In a typical problem, the constraints and the optimum cell are functions of

(that is, they depend on) the adjustable cells. The first derivative of .a function

measures its rate of change as the input is varied. When there are several values

entered, the function has several partial derivatives measuring its rate of change with

respect to each of the input values; together, the partial derivatives form a vector

called the gradient of the function.

Derivatives (and gradients) play a crucial role in iterative methods in

Microsoft Excel Solver. They provide clues as to how the adjustable cells should be

varied.. For example, if the optimum cell is being maximized and its partial derivative

with respect to one adjustable cell is a large positive number, while another partial

derivative is near zero, Microsoft Excel Solver will probably increase the first

adjustable cell's value on the next iteration. A negative partial derivative suggests that

the related adjustable cell's value should be varied in the opposite direction.

4.1.1.1 Forward and Central Differencing

Microsoft Excel Solver approximates the derivatives numerically by moving

each adjustable cell value slightly and observing the rate of change of each constraint

cell and the optimum cell. This process is called a finite difference estimate of the

derivative. Microsoft Excel Solver can use either forward differencing or central

differencing, as controlled by the Derivatives option on the Solver Options dialog box

which is shown in Figure 4-1.

IV - 2

El El Solver Options

Max lime:

Iterations:

precision:

Tolerance:

Convergence:

seconds

100

19.000001

5

0.001

OK

Cancel

Load Model...

nave Model...

Help

°A)

r Model

Negative

100

Assume Linea

0 Assume Non-
-Estimates 	

G Tangent

o Quadratic

OUse Automatic Scaling

❑Show Iteration Results
Derivatives 	
G Eo rward

o Central

-Search 	
o newton

0 Conjugate

Case Study

Forward differencing uses a single point (that is, a set of adjustable cell

values) that is slightly different from the current point to compute the derivative,

while central differencing uses two points in opposite directions. Central differencing

is more accurate if the derivative is changing rapidly at the current point, but requires

more recalculations. The default choice is forward differencing, which is fine in most

situations.

Figure 4-1 Solver Options Menu in MS-Excel Solver

Linear. problems can be solved with far less work than nonlinear problems;

Microsoft Excel Solver does not need to recompute changing derivatives, and it can

extrapolate along straight lines instead of recalculating the worksheet. These time

savings are brought into play when user clicks to select the Assume Linear Model

check box in the Solver Options dialog box. If the user doesn't select this box,

Microsoft Excel Solver can still solve the problem, but it will.spend extra time doing

so.

When we know that a problem is completely linear, selecting the Assume

Linear Model option will speed up the solution process by a factor of 2 to 20

(depending on the size of the worksheet). The downside is that, if the real worksheet

formulas are nonlinear and this option is selected, we solve the wrong problem.

IV - 3

.Case Study

Although Microsoft Excel Solver does check the final solution when Assume

Linear Model is checked, using a full worksheet recalculation, this is not an absolute
guarantee that the problem is truly linear. We can always recheck the solution by

running the same problem with the check box cleared.

4.1.1.2 Optimality Conditions

• Because the first derivative (or gradient) of the optimum cell measures its rate
of change with respect to (each of) the adjustable cells, when all of the partial
derivatives of the optimum cell are zero (that is, the gradient is the zero vector), the

first-order conditions for optimality have been satisfied (some additional second-

order conditions must be checked as well), having found the highest (or lowest)

possible value for the optimum cell.

4.1.1.3 Multiple Locally Optimum Points
Some problems have many locally optimum points where the partial

derivatives of the optimum cell are zero. A graph of the optimum cell function in

such cases would show many hills and valleys of varying heights and depths. When

started at a given set of adjustable cell values, the methods used by Microsoft Excel

Solver will tend to converge on a single hilltop or valley floor close to the starting

point. But Microsoft Excel Solver has no sure way of knowing whether there is a

taller hilltop, for example, in some distance away.
The only way to find the global optimum is to apply external knowledge of

the problem. Either through common sense reasoning about the probleni or through

experimentation, the user must determine the general region in which the global

optimum lies, and start Microsoft Excel Solver with adjustable cell values that are

within that region. Alternatively, we can start Microsoft Excel Solver from several

different, widely separated points and see which solution is best.

The maximum number of constraints and variables that can be handled by

Microsoft Excel Solver is given as follows:

• For Non Linear Programming problem, the maximum number of variables is 200,

and the maximum number of constraints is 100.

P/- 4

Case Study

• For. Linear Programming problem, the maximum number of variables is 200, and

the maximum number of constraints is unlimited.

4.1.2 Working with Solver
Solver is part of a suite of commands sometimes called "what-if analysis"

tools, i.e. process of changing the values in cells to see how those changes affect the

outcome of formulas on the worksheet, for example, varying the interest rate that is

used in an amortization table to determine the amount of the payments. Optimization

model in Solver has three parts: the target cell, the changing cells, and the constraints.

4.1.2.1 Target cell

The target cell represents the objective or goal. We want to either minimize or

maximize. the target cell.

4.1.2.2 Changing cells

Changing cells are the spreadsheet cells that we can change or adjust to

optimize the target cell.

4.1.2.3 Constraints

Constraints are restrictions we place on the changing "cells. In most Solver

models, there is an implicit constraint that all changing cells must be nonnegative.

With Solver, we can find an optimal value for a formula in one cell, called the target

cell, on a worksheet. Solver works with a group of cells that are related, either

directly or indirectly, to the formula in the target cell. Solver adjusts the values in the

changing cells that we already specify, called the adjustable cells, to produce the

result that we specify from the target cell formula. We can apply constraints to restrict

the values in the model, and the constraints can refer to other cells that affect the

target cell formula.

4.1.2.4 Installing and running Solver

To Install Solver, we can click Add-Ins on the Tools menu, and then select the

Solver Add-in check box. Then we click OK, and Excel will install the Solver. Once

the add-in is installed, we can run Solver by clicking Solver on the Tools menu.

IV - 5

•

Solver:Rarpmeterso.
se Target Ce
Equal To: 	• e Max
-By Changing Calk. 	,.

,SubJect to the Consit:' is "

Case Study

Figure 4-2 shows the Solver Parameters dialog box, in which we input the
target cell, changing cells, and constraints that apply to our optimization model.

Figure 4-2 Solver Parameters Dialog Box
After we have input the target cell,. changing cells, and constraints, Solver is

doing calculating to find the feasible solution. Any specification of the changing cells

that satisfies the model's constraints is known as a feasible solution. For instance, in

looped water distribution network problem, network that satisfies the following three

conditions would be a feasible solution:

• Continuity of flow in each node.

• Summation of headloss in every loop equal zero.
• Minimum required pressure at each node is satisfied.

Essentially, Solver searches over all feasible solutions and finds the feasible

solution that has the "best" target cell -value (the largest value for maximum

optimization, the smallest for minimum optimization). Such a solution is called an
optimal solution. Some Solver models have no optimal solution and some have a

unique solution. Other Solver models have multiple (actually an infinite number of)
optimal solutions.

IV - 6

Case Study

4.1.3 Application of Solver
Solver is a useful tool in solving Water Distribution Network problem. The

previous problem in Chapter II, i.e. Example 2.1. will be solved using Solver.

4.1.3.1 D-Q Formulation
In D-Q formulation, the initial value of Diameter (D) and Discharge (Q) are assumed.

• The number of trial in my experiment is 10 trials and the complete results are

presented in Appendix A. The final result is given in Table 4-1.

Table 4-1 	Result of Example 2.1 (using D-Q Formulation)

Link Diameter (m) Discharge (m3/h) Head loss (m)

1 0.480 0 5.33
2 0.262 370 13.10
3 0.395 650 5.03

4 0 0 0

5 0.372 530 4.64
6 0.253 200 5

7 0.238 270 11.57
8 0 0 0

Table 4-2 Head pressure at each node (using D-Q Formulation)

Node Pressure Head (m)

Actual 	Required

1 210 210

2 204.67 180

3 191.57 190

4 199.64 185
5 180 180

6 195 195

7 190 190

The cost of this network is Rs. 17,172,733.

- 7

Case Study

4.1.3.2 D-h Formulation
In D-h forthulation, the initial value of Diameter (D) and headloss (h) are

assumed. The number of trial in my experiment is 8, and the complete results are
presented in Appendix A. The final result is given in Table 4-3.

Table 4-3 Result of Example 2.1 (using D-h Formulation)

Link Diameter (m) 	Head loss (m) Discharge (m3/h)

1 0.499 	4.5 1120
2 0.298 	6.4 347.65
3 0.381 	6.5 672.36
4 0.104 	5.4 20.25

5. 0.385 	4 532.10
6 0.336 	1.3 202.10

7 0.270 	5.5 247.65

8 0.099 	0.1 2.10

Table 4-4 Head pressure at each node (using D-h Formulation)

Node Pressure Head (m)
Actual 	Required

1 210 210
2 205.5 180
3 199.1 190
4 199 185
5 193.6 180
6 195 195
7 193.7 190

The cost of this network is Rs. 20,181,642.

W - 8

Case Study .

4.1.3.3 Q-h Formulation

In D-h formulation, the initial value of Diameter (D) and headloss (h) are

assumed. The number of trial in my experiment is 6, and the complete calculation is

presented in Appendix A. The final result is given in Table 4-5.

Table 4.5 	Results of Example 2.1 (using Q-h Formulation)

Link Discharge (m3/h) Head loss (m) Diameter (m)

1 1120 5.33 0.480
2 370 13.10 0.262
3 650 5.03 0.395
4 0 0 0

5 530 4.64 0.372

6 200 5 0.253
7 270 11.57 0.238
8 0

Table 4-6 	Head pressure at each node (using Q-h Formulation)

Node Pressure Head (m)
Actual . 	Required

1 210 210
2 204.67 180
3 191.57 190

4 199.64 185

5 180 180

6 195 195

7 190 190

The cost of this network is Rs. 17,168,950.

IV - 9

•

• • • 1

Case Study

4.1.4 Discussion of results
The selections of initial values in all three formulations are very important is

iteration process, because if the values that are selected are far from optimum values,
the trial process will be quite tough and takes a lot of time. The result of running

process will become an input for next running.
The process in getting the optimum point for three formulations is graphically

presented in Figure 4-3. This graphic shows us that it is better to use Q-h formulation

rather than D-Q or D-h formulation, because the number of iteration that is required

to achieve local optimum solution is less, and so computation time will be reduced.

Also the solution that is achieved by using Q-h formulation is more economical than

the other two formulations. Based of this fact, Q-h formulation will be applied in

solving a real world water distribution network problem in next section.

N
et

w
or

k
co

st

30,000,000

25,000,000

20,000,000

15,000,000

10,000,000

5,000,000

0
0
	

5 	10
	

15
Running

Figure 4-3 Iteration Process using MS-Excel Solver

4.2 APPLICATION OF GENETIC ALGORITHM
The same problem will be solved by using Genetic Algorithm (GA)

application. There are many GA applications on water distribution network. In this

dissertation, Water Network Optimiser is presented which is developed by Dr. E.

Keedwell from Centre for Water Systems, University of Exeter, UK. This particular

program that is used in this dissertation is a demo program, which can only run for

IV - 10

Case Study

maximum 50 pipes. The genetic algorithm (GA) uses the principles of evolution to

test various combinations of pipes in the model to achieve two goals:
1. A minimum cost of network

2. Pressure of each node must be greater than minimum head requirements.

4.2.1 Illustrative Example
A simple water distribution network will be solved using Water Network Optimiser.

It is taken from previous problem in Example 2.1 with different cost of pipe. The

available pipe sizes in inches (1 inch = 25.4 mm) and their unit cost in arbitrary units

shown in Table 4-7.

Table 4-7 Diameter — Cost relationship .of network in Example 2-1

Diameter

(inch)

Cost

(monetary unit/m')

1 2

2 5

3 8

4 11

6 16

8 23

10 32

12 50

14 60

16 90

18 130

20 170

22 300

24 550

Hazen-Williams head loss formula is used for headloss calculation, with Hazen

Williams coefficient is 130 for all links.

w- 11

Case Study

4.2.2 Modelling the problem

Water Network Optimiser uses Epanet 2.0 (EPA - Govt. of USA, 2000) as its

simulation engine and therefore no other modelling packages can currently be used
with it. The Water Network Optimiser uses a simple text file which contains the

details of the current project which has the extension *.prj. The file must be written

correctly for the program to work and consists of 4 sections, i.e.:

1. Input File

2. Costs

3. Modify Links, and

4. Solution Sets

All of section is discussed as follows:
[InputFile]

This section shows the location of the Epanet *.inp file which can be exported from

the Epanet 2.0 program. This can either include a full path or just the filename.

[Costs]

This section shows the costs in monetary units/ unit length of replacing a pipe within

the network. The first number is the diameter (in mm), and the second is the cost per

unit length of the pipe (in monetary units). They must be Tab separated.

[RequiredHead]

This section shows the required head at each node within the network. The first

number is the nodelD as found in the Epanet model and the second is the minimum

required head at that node. If the resulting model does not achieve this head then a

penalty can be applied. Again, these values must be Tab separated.

[modifyLinks]

This is a list of pipes which can be modified within the network. In this case, it is

allowed all the section of network to be optimised. The numbers must correspond to
nodelD in the Epanet model.

IV - 12

ALL 41: 	RYi

" iliWate et i ptimiser

File Edit Window telp-

•

ST 	

4611)ocjiirsehils" anitSettiiiisIddlMiDoeunrients1GAPrOjeciATesiPiej''' 4. 17

Cos(

Pen Cost

Case Study

[SolutionSets]

This section is used by the program to point to solution sets from previous runs saved

into the project. There must be a blank line between each section.

The project file of above illustrative example is presented in Appendix B.

4.2.3 Running the Model

4.2.3.1 Project Window

Once this project file has been written, it can be opened, where the screen as shown in

Figure 4-4 should appear.

Figure 4-4 Project Window of Water Network Optimiser

There are three tabs in the window, Optimisation where the GA runs are

completed, Results where the results from runs can be seen and manipulated and

Options where the Project Options (as specified in the prj file) can be viewed and

changed.

IV - 13

817.1i;c41,56C,';;;;;;;;17 	

Steady State

Fonseca & Fleming
"VinViN-Poira7170M7M74tfit,

OptionForm ,

Case Study

4.2.3.2 Optimisation
On this page are the controls for optimising the water network. There are four

buttons which control various aspects of the GA as shown in Figure 4-5.

Figure 4-5 Key buttons of Water Network Optimiser software

The play button will start the GA. The GA can be stopped and the solutions

saved by pressing the stop button. The pause button will pause the procesS, to resume

we can click play. The final button will show the GA options form where various

parameters can be changed in OptionForm menu, as shown in Figure 4-6.

Figure 4-6 GA option of Water Network Optimiser

Each of these options affects the way the GA works.

Iterations: Specifies the number of iterations before the GA stops

Population Size: Determines the number of individuals in the population

Crossover Rate: Determines the probability of crossover (0.0-1.0)

Mutation Rate: Determines the probability.of mutation (0.0-1.0)

Random Seed: As a default, each time the GA is run it begins from a new. random •

position. To start the GA from the same point each time, We check the "Fix" box and

enter the fixed random seed.

W- 14

Case Siudy

Genetic Algorithm: There are two types of GA used in this application, Steady State

and Generational.

Multi-Objective Genetic Algorithm: There are two types of MOGA used in this

program, FonSeca and Fleming and NSGA-II.

4.2.4 Discussion of results
The program is running after reading the input data in Epanet format. The

network is modelled first in Epanet forinat. Then the project file is developed. Then

we select the parameter of Genetic Algorithm, such as: Number of iterations,

Population size, crossover rate, mutation rate, and type of Genetic Algorithm. A

number of trials are applied, with different values of parameters. The results are given.

below.

First running:

The parameters are as follows:

Violation Penalty 	10000

Population size : 	100

Iterations: 	 10000

Crossover rate: 	0.9

Mutation rate: 	 0.01

GA Type: 	 Generational

We can see the running process of the program from start up to terminal

iterations. Here the price is fluctuated and decreasing, and after some number

iterations, the-fluctuation will stabilise and the optimise result will be achieved. The

animated graphic that shows the process is presented on Figure 4.7. The better result

will be achieved if we use Generational types of GA, rather than Steady state, even

though time consumed will be more. For two looped network, with 10000 iterations,

the Pentium 4 ® computer needs 5 minutes to find the solution. The optimal solution

in this trial is given in the Table 4-8.

IV - 15

441,=-•

	

r nesic 	r; rim r 	 re, up Ifil-kkal mi-U.13 ; 	ff; 	6 Ni
Em. tat 	 . ; • 	 1,1 	 .••• ava.

!To 	tra4

Paamian 4313:
CAS moo

Paltotr. . 0 •

- -25 4fAil

..2

PlaeitY6a.,<O5t 	 %OW.%

Case Study

Figure 4-7 Iteration process in Water Optimiser Network

Table 4-8 Diameter of pipe of network (First running)

Link
	

Diameter (m) Diameter (in)

1 0.4572 18
2 0.3048 12

3 0.4064 16

4 0.254 10

5 0.3556 14
6 0.1524 6

7 0.254 10
8 0.254 10

The head pressure at each node and the required head is giiien in Table 4-9.

- 16

Case Study

Table 4.9 Head pressure at each node of network (First running)

Node Pressure Head (m)
Actual 	Required

1 210 210
2 203.25 180

3 198.62 190
4 198.15 185
5 193.09 180
6 195.03 195
7 190.28 190

The cost of water network is 442,000 units.

Second running:

The parameters are as follows:

Violation Penalty 	10000

Population size: 	100

Iterations: 	 10000

Crossover rate: 	0.9

Mutation rate: 	 0.05

GA Type: 	 Generational

The results for this trial are given in Table 4-10 and 4-11.
Table 4-10 	Diameter of pipe of network (Second running)

Link Diameter (m) Diameter (in)

1 0.4572 18
2 0.3556 14
3 0.3556 14
4 0.0254 1

5 0.3556 14

6 0.1524 6
7 0.3556 14

8 0.2540 10

IV - 17

Case Study

Table 4-11 Head pressure at each node (Second running)

Node Pressure Head (m)
Actual 	Required

1 210 210

2 203.25 180

3 197.66 190

4 198.13 185

5 193.89 180
6 195.06 195

7 190.95 190

The cost of water network is 420,000 units, and this is the optimum one. From Figure

4-7, we can see that in the early stage of iterations, the cost of network is decrease

progressively and in the later stage decreasing process is,reduced and finally gives

constant value, which is the optimum one. Since the direction of searching the

optimum cost is random, the chance of getting the global optimum solution is high.

In GA approach, the program can work with discrete value of pipe diameter as

a decision variable, where in Non Linear Programming approach can not handle

discrete variables. In Non Linear Programming approach, the diameters that are given

in solution are fractional number, so they need to be rounded up to get the market size

diameter of pipe.

It is showed that the use of Genetic Algorithm Application in water

distribution network problem is more promising than Non Linear Programming

Approach. The application of Water Network Optimiser shows that the solution is

better than Non Linear Programming approach.

4.3 APPLICATION ON DESIGN OF REAL TYPE NETWORK

In a real world, the network will be more complex than previous example.
An example of real water distribution network problem is given in Example 4.1. and

this problem will be solved using NLP approach and GA approach.

- 18

Case Study

Example 4.1

Figure 4-8 An example of real type water distribution network ,

Water distribution network on one city is proposed and presented in Figure 4-8.

Ground level and demand node at each node are presented on Table 4-12.

Table 4-12 Demand node and pressure head requirement of Example 4.1

Node Demand (m3/day) Ground level
1 -14300 180
2 600 178
3 1000 179
4 900 180
5 1200 181
6 900 183
7 800 182
8 800 181
9 1200 • 180
10 1200 182
11 600 181
12 800 181
13 1200 183
14 800 184
15 800. 179
16 600 180
17 900 181

- 19

Case Study

The required pressure head at each node is 1.7 m.

The information about links characteristics (length and roughness) are given in

Table 4-13. Head loss is computed by using Hazen Williams formula.

Table 4-13 Links Characteristics of network in Example 4.1

Link Length (in) Roughness Coeff.

1 1400 100

2 1700 100

3 1000 100

4 900 100

5 1350 100

6 900 100

7 1100 100

8 1400 100

9 900 100

10 1000 100

11 1200 100

12 1100 100

13 800 100

14 1400 100

15 800 100

16 1100 100

17 1200 100

18 800 100

19 900 100

20 1400 100

21 1200 100

The information about cost of each diameter pipe is given in Table 4-14.

IV - 20

Case Study

Table 4-14 Cost diameter pipe relationship of Example 4.1

Diameter

(mm)

Cost
(monetary unit/m)

25 2

50 5
75 8

100 11•

150 16

200 23

250 32

300 50

350 60

400 90

450 130

500 170

550 300

600 550

4.3.1 Solution by using Non Linear Programming approach .

The relationship of diameter of pipe (in m) and cost of pipe (in monetary unit)

is presented in Table 4-15.

The equation that depicts the relationship of diameter and cost of pipe should

be carried out in order to get the objective function. This is Can be done by using MS-

Excel. First, the points are plotted on log-log paper and the regression line is drawn

so that it will give the best fit of the distribution of the points. The distribution of

points and regression line is given in Figure 4-9.

- 21

Case Study

Table 4-15 Diameter — Cost relationship in mm and monetary unit

Diameter (m) Cost

(monetary unit/m')

0.025 2

0.050 5

0.075 8

0.100 11

0.150 16

0.200 23

0.250 32

0.300 50

0.350 60

0.400 90

0.450 130

0.500 170

0.550 300

0.600 550

	1-0 0—
•
•

0—
• •

• • •
10

• 	y = 468.06x1.5918
• 	 R2 = 0.9325 	

1
0.01 	 0.1

	
1

diameter of pipe (m)

Figure 4-9 	Diameter-cost pipe relationship

ry - 22

Case Study

So the pipe cost equation is :

C = 468.06 D1.5918

where:

C = Pipe cost per m' (in monetary units)

D = Diameter of pipe (m)

The next step is to develop initial distribution of the flow on the network. By

using this assumption, the constraints are developed, i.e. flow continuity on every

node, sum of headloss on every loop is equal zero, and non negativity value of

disharge as well as headloss. The flow direction is drawn in Figure 4-10.

Figure 4-10 Initial guess of flow direction

The problem is formulated in Q-h formulation, and the formulation is given as

follow:

Objective function:
21 Q.0.60535 hi70.32686 Minimise C = 0.0642 ELI:
i=1

IV - 23

Case Study

subject to the constraints as follows:

Node flow continuity constraints

Q1-1-02= 14300

Q1-Q2-Q6= 600

Q2-Q3= 1000

Q3-Q4 — 900

Q4-FQ8-Q5-Q9-Q10= 1200

Q5±Gs11= 900

Q6-Q7= 800

Q7-Q8 "=. 800

Q9+05 = 1200

Qlo-Q11-Q16= 1200

Q12-Q13-Q17= 600

Q13-Q14= 800

04+09-05= 1200

Q16+Q21= 800

Q17-Q18= 800

Q18-Q19-Q20= 600

Q2o-Q21= 900

Summation of Headloss equal to 0 's constraints

h1+h6+h7+h8+h9-h15-h14-h13-h12= 0

h2+h3+h4-h8-h7-h6 = 0

/15-h11-h10= 0

hi3+44-h19-1118-h17= 0

h19+1/15-h9+1/10+h16-h21-h20= 0

Path Headloss constraints

h1<_ 25

h i +h2 	24

IV - 24

Case Study

h ri-h2+h3 	23

h1+h2+h3+h4 22

hi+h6 21

h1+h6+h7 22

hi+h6+h7+h8 22

h1+h2+h3+h4+h5 < 20

h1+h6+127-Fh8+h5 20

hii-h2+h3+h4+hio+hli < 20

	

h1+126+h7+h8+h10+hi1 	20

h1 -Fh2-Fh3-Fh4-Fh10 . 21

hi-Fh6+1/7-Fh8+hio 21

hi-Fh2+h3+ha+h9 23

h1+h6+717-Fh8+h9 23

	

h1+h2+h3+h4+hio+h 16 	19

	

h i +h6+127-Fh8+hio+h 16 	19

h12 22

hi2+ho 22

h12+h13+1214 20

h12+h17 24

h12+h17+h18 23

hi2+hi7+1218+ho 20

1112+h13+44-Fh15 23

1112+h17+1218+h19+h15 23

ht2+hi7+his-Ph20 22

Non negativity constraints:

Qi, ••.., Q21 	0

h 1, ••••5 h21 	0

IV - 25

Case Study

By using MS-Excel Solver, we can get the optimal solution as follows:

Table 4-16 Optimum solution of Example 4.1 (using MS- Excel Solver)

Link Discharge
(m3/day)

Headloss (m) Diameter (m)

1 7400 4.69996526 0.357
2 2201.29051 7.00758381 0.216

3 1201.29051 3.15474065 0.181

4 301.290511 1.52832015 0.122

5 411.052828 3.60939014 0.125

6 4598.70949 3.42465735 0.291
7 3798.70949 3.8530486 0.275
8 2998.70949 4.41293865 0.257

9 0 6.60939014 0

10 1688.94717 2.16997288 0.223

11 488.947172 1.43941725 0.157
12 6900 4.71268226 0.331
13 2281.15598 6.49599232 4 0.19
14 1481.15598 8.79132542 0.17

15 1200 3 0.175
16 0 0.43941725 0

17 4018.84402 4.80279687 0.273

18 3218.84402 2.80105462 0.258
19 918.84402 7.68346625 0.133

20 1700 4.13419406 0.21

21 800 • 2.54927219 0.168

IV - 26

Case Study

Table 4.17 Head pressure at each node of network of Example 4.1

Node 	 Pressure Head (m)
Actual 	Required

1
	

220 	220

2
	

215.3 	195

3
	

208.2925 	196

4
	

205.1377 	197

5
	

203.6094 	198

6
	

200 	200

7
	

211.8754 	199

8
	

208.0223 	198

9
	

197 	197

10
	

201.4394 	.199

11
	

215.2873 	.198

12
	

208.7913 	198

13
	

200 	200

14
	

201 	 201

15
	

210.4845 	196

16
	

207.6835 	197

17 	 - 203.5493 	198

The cost of water network is 934,412 units. The complete iteration process is

presented in Appendix B

This solution gives us information that link 9 and 16 are redundant, so based

on optimality point of view, these pipes can be deleted. But if reliability becomes our

consideration, then for each node there should be minimum 2 links connected. In this

case, link 9 and 16 should be kept available to supply node 9 and 14 respectively. If

we give minimum diameter 100 mm for these two links, then the cost of network will

becomes 1,159,348 units.

IV - 27

Case Study

4.3.2 Solution by using Genetic Algorithm approach
The first step is to develop a model of the problem in Epanet Format. The

model is written in Epanet format so that the problem can be read by Water network

optimiser program and saved in input file (*.inp).
The project file of this problem also developed. The information related to

diameter-cost of pipe, the model itself, pipes that need to be modified, required

pressure head on every node are given in project file.

The process of finding optimum solution is trial process. The trial process is

given as follows:

First trial:

The parameters are as follows:

Violation Penalty 	20000

Population size : 	100

Iterations: 	 10000

Crossover rate: 	0.9

Mutation rate: 	 0.1

GA Type: 	 Generational

The results for this trial are given in Table 4-18.

Table 4-18 Results of Example 4.1 (First trial)

Link Diam

eter

(mm)

Node Pressure Head (m)

Actual 	Required

1 350 .1 220.06 	220
2 150 2 215.61 	195

3 25 3 205.84 	.196
4 150 4 197.51 	197

5 200 5 201.58 	198

6 300 6 200.04 	200

W - 28

Case Study

7

8

9

300

250

150

7

8

9

	

211.93 	199

	

208.63 	198

	

203.41 	197

10 200 10 199.66 	199
11 25 11 215.91 	198
12 350 12 211.54 	198

13 250 13 206.62 	200

14 250 14 203.19 	201

15 200 15 211.31 	196

16 25 16 209.54 	197

17 250 17 20431 	198

18 250

19 25

20 200

21 200

The cost of water network is 625,850 units.

Second trial:

The parameters are as follows:

Violation Penalty 	20000

Population size: 	100

Iterations: 	 10000

Mutation rate: 	 0.05

GA Type: 	 Generational

The results for this trial are given in Table 4-19.

IV - 29

Case Study

Table 4-19 	Results of Example 4.1 (Second trial)

Link Diameter

(mm)
Node Pressure

Actual
Head (m)
Required,

1 350 1 220.06 220

2 200 2 213.78 195

3 150 3 206.08 196

4 25 4 201.50 197

5 200 5 203.78 198

6 300 6 202.24 200

7 350 7 209.40 199

8 300 8 207.49 198

9 25 9 199.62 197

10 250 10 202.09 199

11 25 11 214.06 198

12 300 12 210.86 198

13 250 13 201.15 200

14 200 14 201.07 201

15 200 15 206.25 196

_16 200 16 205.45 197

17 200 17 199.02 198
18 250

19 25

20 150

21 25

The cost of water network is 625,450 units which is the optimal one.

If reliability issue becomes our concern, then minimum diameter of pipe

should be kept available. If we apply the minimum diameter 100 mm, then the cost of

network will increase to 671,350 units.

- 30

Conclusions and Scope for Future Study

CHAPTER V

CONCLUSIONS AND SCOPE FOR FUTURE STUDY

5.1 CONCLUSIONS
1. Water distribution network design problem, basically is a highly non linear

programming problem in nature, and it can be solved using Non Linear

Programming approach or Stochastic Search approach. There are various

methods available in Non Linear Programming approach including Generalised

Reduce Gradient,(GRG) algorithm which is capable to solve the real world type

optimisation problems. Genetic Algorithms, a method in Stochastic Search

approach, is proved to be a better algorithm for solving water distribution

network design problem which is highly non linear type.

2. In Non Linear Programming approach, water distribution network problem can

be formulated in 3 types, i.e. D-Q (diameter-discharge),. D-h (diameter-

headloss), and Q-h (discharge- headloss) formulation. Problem formulation in

Q-h is better than D-Q or D-h, because the constraints in Q-h formulation are

linearly in type and this condition will bring optimisation process faster than the
other two formulations.

3. Microsoft Excel Solver, which is a software that using Generalised Reduced

Gradient methods in solving Non Linear Programming problem, is using

iterative methods in the optimisation process. In its process, derivatives and

gradients play a crucial role on how to variables should be adjusted.. Microsoft

Excel Solver approximates the derivatives numerically by moving each

adjustable cell value slightly and observing the rate of change of each constraint

cell and the optimum cell. Because the first derivative (or gradient) of the

optimum cell measures its rate of change with respect to (each.of) the adjustable

cells, when all the partial derivatives of optimum cell are zero, then the

optimum solution has been achieved.

4. In solving water distribution network design problem, Microsoft Excel Solver

has performed well. However, the solution that is achieved is locally optimal.

When started at a given set of adjustable cell values, the methods used by

V - 1

Conclusions and Scope for Future Study

Microsoft Excel Solver will tend to converge on optimal point close to the

starting point. But Microsoft Excel Solver has no sure way of knowing global

optimum. For searching global optimum solution, we can start Microsoft Excel

Solver from several different, widely separated points and see which solution is
best.

5. The solution that is achieved by using NLP approach is continuous value and it

need to be round up to available market size of diameter. The. process of

rounding up the diameter is causing the cost of network is increased and the

solution is not optimum.

6. The using of Genetic Algorithm (GA) methods in solving water distribution

network design problem giving chances in getting global optimum solution,

because Genetic Algorithm simultaneously considers a population of solutions,

spread throughout the solution space, so the probability of reaching global

optimum solution is increased. By implementing the principle of genetic

process, i.e. survival the fittest, the initial population of solutions is randomly

generated and the cost of network is computed, also the information about their

feasibility. This algorithm tends to search the solutions that give less cost of

network and if the solutions are not hydraulically feasible aCcording to

hydraulic requirement, the penalty will be applied and the consequences the cost

of network will be increased. To know whether solution hydraulically feasible

or not, the hydraulic simulation package is incorporated, for example Epanet 2.0

is used by Water Network Optimiser. Water Network Optimiser which is an

example of GA application software in water distribution network design

performs a good result and gives a better solution than MS- Excel Solver.

7. GA can deal with discrete variable, and in this case it becomes an advantage.

Because of discrete variables, such as market size diameter of pipe, can be

handled, there are no need of rounding up process as in NLP approach and cost

of network is not get increase. This advantage makes GA approach is superior
to NLP approach.

V - 2

Conclusions and Scope for Future Study

5.2 SCOPE FOR FUTURE STUDY
There are large scope for future study in are of looped water distribution network

design. The things that can be considered are:
1. Multiple loadings and multiple sources

The design of water distribution network should consider also multiple loading
and multiple sources in the network. This dissertation only considers a network

with one source and one demand pattern.

• 2. Reliability point of view

The further study of reliability issue in water distribution network design also can

be done, by calculating incremental of reliability could be achieved upon

incremental cost of network.

3. Spatial based design of water distribution network

The impact of land use and development issues to installation cost should also be

considered. The spatially distributed soil characteristic will impact excavation

cost, and this should also be considered.

4. Modification and Expansion of water distribution network

The dissertation is considered for new network. We should also consider dealing

with existing network that is needed to be modified or to be expanded.

V - 3

References

REFERENCES

1. Alperovits, E and Shamir, U; 'Design of Optimal Water Distribution

Systems'; Water Resources Research, Vol. 13, No.6, December 1977

2. Bao, Y. and Mays, L.W.: 'Model for water distribution system reliability';

Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 9, 1990.

3. Bhave, P.R. ; 'Optimal Design of Water Distribution Networks'; Narosa, New

Delhi, 2003

4. Bhave, P.R., and Sonak, V.V.; 'A critical study of the linear programming

gradient method for optimal design of water supply networks'; Water

Resources Research, Vol. 28, No. 6, 1992.

5. Bronson, R.; 'Operation Research'; Schaum Outline Series-Mc Graw Hi

Singapore, 1983

6. Chiplunkar, A., Melmdiratta, S. and Khanna, P.; 'Looped water distribution

system optimization for single loading', J. Environmental Eng., ASCE, Vol.

112, No. 2, 1986.

7. Cunha, M.C. and Sousa, J ;' Water Distribution Network Design Optimisation:

Simulated Annealing Approach'; Journal of Water Resources Planning and

Management, ASCE, Vol. 125, No.4, July/August 1999

8. Eiger, G., Shamir, U., and Ben-Tal, A.: 'Optimal design of water distribution

network'; Water Resource Research, Vol. 30, No. 9, 1994.

9. Fylstra, D., Lasdon, L., Watson, J. and Warren, A. ;' Design and Use of the

Microsoft Excel Solver'; INTERFACES, September-October 1998

10. Garg, S.K. ;'Water Supply Engineering'; Khanna,, New Delhi, 1977

11. Gessler, J.: 'Optimization of pipe networks'; Proc. of the Ninth International.

Symposium on Urban Hydrology, Hydraulics and Sediment Control, Univ. of

Kentucky., Lexington, USA, July 27-30, 1982.

12. Halhal, D., Walters, G. A., Savic, D. A., and Ouazar, D.; 'Scheduling of

Water Distribution System Rehabilitation using Structured Messy Genetic

Algorithms', Evolutionary Computation, Vol. 7, No.3, 1999

References

13. Haupt, R.L. and Haupt, S.E. ;'Practical Genetic Algorithms'; John Wiley and
Sons Inc, Canada, 1998

14. Jacoby, S.L.S. ;'Design of Optimal Hydraulic Networks'; Journal of

Hydraulic Division, ASCE, Vol. 94, No. 3, May 1968
15. Jeppson R.W.; 'Analysis of Flow in Pipe Networks'; Ann Arbor Science,

Michigan, USA, 1977

16. Keedwell, E.C.; 'Water Network Optimiser-Help'; Centre for Water Systems,

University of Exeter, U.K.

17. Kiswarman; 'Reliability Based Design of Pumping Station for an Urban

Water Supply Scheme'; M.Tech Dissertation, WRDTC, IIT Roorkee, India,

2004

18. Kumari, I.J.; 'Optimal Design of Water Distribution Networks', M.E.

Dissertation, Dept. of Civil Engineering, Delhi College of Engineering, India,

1998

19. Lansey, K., Duan, N., Mays, L.W., and Tung, Y.: 'Water distribution system

design under uncertainties'; Journal of Water Resources Planning and

Management, ASCE, Vol. 115, No. 5, 1989.

20. Lansey, K.E. and Mays, L.W. ;'Optimisation Model for Water Distribution

System Design'; Journal of Hydraulic Engineering, ASCE, Vol. 115, No. 10,

October 1989

21. Morgan, 	and Goulter, I.C.: 'Optimal Urban Water Distribution Design';

Water Resources Research, Vol. 21, No. 5, 1985

22. Rao, S.S. ; 'Engineering Optimisation, Theory and Practice'; New Age

International Limited, 2002

23. Rossman, L.A. :'Epanet 2, Users Manual'; US. Environmental Protection

Agency, Cincinnati, USA, 2000.

24. Savic, D.A. and Walters, G.A. ;'Genetic Algorithms for Least-Cost Design of.

Water Distribution Network'; Journal of Water Resources Planning and

Management, ASCE, Vol. 123, No. 2, March-April 1997

25. Simpson, A.P, Dandy, G.C. and Murphy, L.J.; 'Genetic Algorithms

Compared to Other Techniques for Pipe Optimisation'; Journal of Water

References

25. Simpson, A.P, Dandy, G.C. and Murphy, L.J.; 'Genetic Algorithms Compared

to Other Techniques for Pipe Optimisation'; Journal of Water Resources
Planning and Management, ASCE, Vol. 120, No. 4, July/August 1994.

26. Taher, S. and J. Labadie: 'Optimal Design of Water Distribution Networks
with GIS'; Journal of Water Resources Planning and Management, ASCE,
Vol. 122, No. 4 , July 1996

27. Varma, K.V.K., Narasimhan, S. and Bhallamudi, S.M. ;'Optimal Design of
Water Distribution Systems using an NLP methods'; Journal of

Environmental Engineering, ASCE, Vol. 123, No. 4, April 1997
28. Walsh, T.M. et al. ; 'Advanced Water Distribution Modeling and

Management', First Edition, Haestead Press, 2003
29. Winston, W.L. ;'Microsoft Excel Data Analysis and Business Modelling';

Microsoft Press, 2003
30. Wu, Z. Y, Walsh, T. M., Mankowski, R., Tryby, M., Herrin, G., and Hartell,

W.: 'Optimal Capacity of Water Distribution Systems'; Proceedings of the 1st
Annual Enviromental and Water Resources Systems Analysis (EWRSA)
Symposium, Roanoke, Virginia, 2002

Initial values
1st running 2nd running 3rd running 4th running 5th running

0.5 0.5 0.4 0.418153212 0.42 0.44801623 0.42 0.4851939 0.42 0.499554975
64 0.38322803 0.2 0.234781497 0.23 0.25888143 0.23 0.3034944 0.24 0.299380162
0.4 0.45460242 0.35 0.363531496 0.36 0.38632903 0.36 0.3933749 0.36 0.404778844
0.1 0.10854545 0.07 0.068986648 0.07 0.08322111 0.06 0.0350655 0.06 0
0.4 0.44034893 0.25 0.264465428 0.28 0.29477405 0.3 0.4158683 0.3 0.434741709
0.3 0.34146755 0.2 0.213306484 0.3 0.3115242 0.32 0.3359914 0.32 0.343046716
0.3 0.2435461 0.1 0.189800738 0.19 0.21357195 0.21 0.2768684 0.22 0.28473458
0.1 0.3024008 0.1 0.104164367 0.1 0.10729313 0.06 0.0873952 0.08 0.070765361
300 300.000051 340 - 339.9999818 350 349.98997 368 367.99945 368 367.9988166
720 719.999949 680 680.0000182 870 670.00003 652 652.00055 652 652.0011834
20 20.0001383 20 20.0000515 10 10.0000821 • 1 1.0012818 1 1.00263728

580 579.999811 540 539.9999667 540 539.999948 531 530.99927 531 530.9985462
250 249.999811 210 209.9999667 210 209.999948 201 200.99927 201 200.9985462
200 200.000051 240 239.9999818 250 249.99997 • 268 267.99945 268 267.9988166
50 49.999811 10 9.999966676 10 9.99994784 1 0.9992667 1 0.998546156

1020 1020 1020 1020: 1020
120 120 120 120 120
100 100 • 100 100 100
270 270 270 270 270
330 330 330 330 330
200 200 200 200 200

4.37780382 10.45530329 7.47204833 5.0679544 4.396829249
1.39405614 19.11764957 13.0108028 8.3381681 6.773761874
3.07044665 8.204558496 5.93603933 5.1685305 4.497148477
4.30698013 39.15726179 16.5919127 4.1262351 #DIV/01
2.40251281 25.20838663 14.8617163 2.6955496 2171574934
1.74445983 12.49075488 1.97484642 1.2600468 1.138757672
5.98337015 28.24417183 17.1471866 5.5098113 4.806917632
0.16000749 1.458120282 1.26240617 0.1706384 0.134366593
-4.8584E-07 9.07474E-07 7.63003736 2.5530137 #DIV/01

7.237E-10 1.2057E-13 -1.5070562 2.542E-07 #DIV/01
4.37780382 10.45530329 7.47204833 5.0679544 4.396829249
5.77185996 29.57295288 20.4828512 11.406122 11.17059092
7.44825046 18.65986179 13.4080877 10.236485 8.893977726
11.7552301 57.81712448 37.6300378 16.915734 15.97750855
11.7552306 57.81712358 30.0000004 14.36272 #DIV/01
9.85076328 43.86824842 28.269804 12.632035 11.06555266
11.5952231 56.3590033 30.2446504 14.192081 12.20431033

24,436,593 14,659,743 17,066,752 • 19,953,123 20,500,330

Appendix A

1. D-C1 formulation

Changing cells

d 1 	 0.499555
d2 	 0.2993802
d3 	 0.4047766
d4 	 0
65 	 0.4347417
d6 	 0.3430467
d7 	 0.2847346
d8 	 0.0707654
q2 	 367.99882
q3 	 652.00118
q4 	 1.0026373
q5 	 530.99855
q6 	 200.99855
q7 	 267.99882
q8 	 0.9985462

q2+q3=1020 	1020
q3-q5-q4=120 • 	- 120
q2-q7=100 	100
q4+q8+q7=270 	270
q5-q6=330 	330.
q6-q8=200 	200
hi 	 4.3968292
h2 	 6.7737617
h3 	 4.4971485
h4 	 #DIV/01
h5 	 2.1715749
h6 	 1.1387577
h7 	 4.8069176
h8 	 0.1343666
h2+h7-h3-h4=0 #D1V/01
h4-h5-h6-h8=0 	#01V/01
hl <= 	4.3968292
h1+h2<= 	11.170591
h1+h3<= 	8.8939777
h1+h2+h7<= 	15.977509
h1+h3+h4<= 	#D1V/01
hl +h3+h5<= 	11.065553
h1+h3+h5+h6<= 12.20431

Target cell

f(x) 	20,500,330

Constraints
q2+q3=1020 	1020
q3-q5-q4=120 	120
q2-q7=100 	100
q4+q8+q7=270 	270
q5-q6=330 	330
q6-q8=200 	200
h2+h7-h3-h4=0 	0
h4-h5-h6-h8=0 	0
hl <= 	 30
h1+h2<= 	 20
h1+h3<= 	 25
h1+h2+h7<-. 	30
h1+h3+h4<= 	30
h1+h3+h5<= 	15
h1+h3+h5+h6<= 	20

q1,..,q4>=0
h1 	h4 >=0

Changing cells

dl 0.480199195
d2 0.281991412
d3 0.395109475
d4 0
d5 0.371718411
d6 0.252692647
d7 0.238426255
d8 0
q2 370
q3 650
q4 0
q5 530
q6 200
q7 270
q8 0

q2+q3=1020 1020
q3-q5-q4=120 120
q2-q7=100 100
q4+q8+q7=270 270
q5-q6=330 330
q6-q8=200 200
h1 5.329885302
h2 13.10207473
h3
h4
h5

5.03025524

4.63985938
h6 5
h7
h8

h1<=

11.56803988

5.329885302
trt+h2<= 18.43196004
h1+h3<= 10.36014054
h1+h2+h7<= 29.99999992
hl+h3+h4<= 10.36014054
h1+h3+h5<= 14.99999992
h1+h3+h5+h6<= 19.99999992

Target cell

f(x) 17,172,733

Constraints
q2+q3=1020 1020
q3-q5-q4=120 120
q2-q7=100 100
q4+q8+q7=270 270
q5-q6=330 330
q6-q8=200 200

h1<= 30
h1+h2<= 20
h103<= 25
h1+h2+h7<= 30
h1+h3+h4<= 30
h1+h3+h5<= 15
h1+h3+h5+h6<=

q1„q4>=0
h1 	h4>=0

20

Initial values
6th running 7th running 8th running 9th running 10th running

0.42 0.47893276 _ 0.42 0.48019289 0.42 0.4801911 0.42 0.4802169 0.42 0.4801992
0.24 0.258228023 0.25 0.26198128 0.25 0.2619745 0.25 0.2819783 0.26 0.2819914
0.38 0.395682618 0.41 0.39510844 0.41 0.3950946 0.36 0.395096 0.41 0.3951095

0 0 0 0 0 , 0 0 0 0 0
0.3 0.372273622 0.32 0.37172712 0.38 0.3717408 0.3 0.3717165 0.38 0.3717184

0.32 0.252692647 0.3 0.25289285 0.28 0.2526926 0.3 0.2526926 0.26 0.2526926
0.22 0.24568527 0.3 0.23843815 0.28 0.2384455 0.3 0.2384357 0.26 0.2384283

0 0 . 0 0 0 0 0 0 0 0
370 370 370 370 370 370 370 370 370 370
650 650 1350 850 650 650 650 650 650 650

0 0 0 0 0 0 0 0 0 0
530 530 530 530 530 530 530 530 530 530
200 200 200 200 200 200 200 200 200 200
270 270 270 270 270 270 270 270 270 270

0 0 0 0 0 0 0 0 0 0

1020 1020 1020 1020 1020
120 120 120 120 120
100 100 100 100 100
270 270 270 270 270
330 330 330 330 330
200 200 200 200 200

5.398873897 6.33022639 5.330323 5.3289298 5.3298853
14.60112652 13.104543 13.106186 13.105259 13.102075
4.994870486 5.03044361 5.0311758 5.0310926 5.0302552

4.608256523 4.63933001 4.6385012 4.6399776 4.6398594
5 5 5 5 5

10 11.5652306 11.563491 11.665812 11.56804

5.398873897 5.33022639 30 5.330323 5.3289298 5.3298853
20.00000042 18.4347694 20 18.436509 18.434189 18.43196
10.39374438 10.36087 25 10.361499 10.360022 _ 10.360141
30.00000042 30 30 30 30.000001 30
10.39374438 10.36067 30 10.361499 10.360022 10.360141
15.00000091 15 15 15 15 15
20.00000091 20 20 20 20 20

17,183587 17,172,733 MEMO IESIMEEI

2. D-h formulation

Changing cells

dl 0.499541666
d2 0.297563101
d3 0.381376347
d4 0.104324057
d5 0,305424822
d6 0.335681071
d7 0.269777606
d8 0.099772511
h1 4.500082408
h2 6.401708037
h3 6.499867607
h4 5.40144262
h5 4.000049985
h6 1.301121853
h7 5.499602191
h8 0.100270782

q1 1120
q2 347.6447909
q3 672.3552091
q4 20.25401087
q5 532.1011982
q6 202.1011982
q7 247.6447909
q8 2.101198194

q1 1120
q2+q3=1020 1020
q3-q5-q44120 120
q2-q7=100 100
q4+q8+q7=270 270
q5-q6=330 330
q6-q8=200 200
h2+h7-h3-h4=0 0
h4-h5-h6-h8=0 -1.80411E-16
h1<= 4.500082408
h1+112<=. 10.90179044
h1+n3<= 10.99995002
h1+h2+h7<= 16.40139264
h1+h3+h4<= 16.40139264
h1+h3+h5<= 15
h1+h3+h5+h6<= 16.30112185

Target cell
f(x) 20,181,642

Constraints
q1 1120
q2+q3=1020 1020
q3-q5-q4=120 120
q2-q7=100 100
q4+q8+q7=270 270
q5-q6=330 330
0-0=200 200
h2+h7-h3-h4=0 0
h4-h5-h6-h8=0 0
hl <= 30
hi +h2<= 20
h1+h3<= 25
h1+h2+h7<= 30
h1+h3+h4<= 30
h1+h3+h5<= 15
h1+h3+h5+h6<= 20

Initial values 	.
1st running 2nd running 3rd running

0.42 0.44107101 0.42 0.488827439 0.48 0.488848685
0.3 0.30267446 0.24 0.301907955 0.24 0.283789821

0.36 0.37791807 0.41 0.378436243 0.39 0.39
0.06 0.05832942 0.06 0.068581014 0.06 0.065869544

0.4 0.40887145 0.3 0.39192447 0.35 0.394167457
0.3 0.29861372 0.3 0.298627583 0.25 0.268829553
0.3. 0.27623569 0.22 0.275282928 0.22 0.25195509
0.1 0.0995607 0.1 0.100042379 0.1 0.1

5 5.00037002 5 5.00123288 5 5.00017443
6.4 6.40078725 6.4 6.402425084 6.4 6.401878125
6.5 6.50022771 6.5 6.500159591 6.5 6.500160155
5.4 5.40020322 5.4 5.402587873 5.4 5.40182693

3 3.00014178 3 3.002255676 3 3.001058012
2.3 2.30005738 2.3 2.300143414 2.3 2.30059495
5.5 5.49964367 5.5 5.500322381 5.5 5.500108961
0.1 0.10000406 0.1 0.100188783 0.1 0.100173968

855.031711 1120 1120
363.511277 361.1495999 306.9834388
656.488723 658.8504001 713.0165613
4.40221168 6.735183463 6.058005466
532.086512 476.3096172 483.3943156
202.086512 202.1152166 153.3943156
263.511276 261.1495991 206.9834388
2.08651166 2.115216607 2.112696974

1020
855.031711

1020
1120
1020

1120
1020

120 120 175.8055995 223.5642402
100 100 100.0000009 99.99999999
270 270 269.9999991 215.1541412
330 330 274.1944006 330
200 200 200 151.2816186

0 0 0 0
0 -4.8572E-16 -9.57567E-16 -3.19189E-16

30 5.00037002 5.00123288 5.00017443
20 11.4011573 11.40365796 11.40205255
25 11.5005977 11.50139247 11.50033459
30 16.9008009 16.90398034 16.90216152
30 16.9008009 16.90398034 16.90216152
15 14.5007395 14.50384815 14.5013926
20 16.8007969 16.80379156 16.80198755

19,073,578 19,527,474 18,917,371

q1,..,q4>=0
h1,...,h4 >=0

4th running 5th running 6th running 7th running 8th running

0.48 0.49954681 0.48 0.499545879 0.48 0.49954183 0.48 0.49954167 0.49954167 0.499541666
0.24 0.28994206 0.24 0.296817724 0.26 0.29467416 0.2635 0.29756297 0.29756297 0.297563101
0.39 0.38626622 0.39 0.381861513 0.39 0.38326793 0.381 0.38115142 0.38115142 0.381376347
0.06 0.06444615 0.06 0.064661861 0.1 0.10453755 0.1 0.10432406 0.10432406 0.104324057
0.37 0.38543319 0.39 0.39 0.37 0.38542512 0.37 0.38513757 0.38513757 0.385424822
0.32 0.3356996 0.32 0.33570412 0.32 0.33568163 0.32 0.33502357 0.33502357 0.335681071
0.26 0.26 0.28 0.275663696 0.28 0.26973182 0.28 0.26977708 0.26977708 0.269777606
0.1 0.10041035 0.1 0.100612006 0.1 0.09979559 0.1 0.09979559 0.09979559 0.099772511
4.5 4.49985671 4,5 4.499897587 4.5 4.500075 4.5 4.50008241 4.50008241 4.500082408
6.4 6.40229687 6.4 6.402524392 6.4 6.40173344 6.4 6.40167799 6.40167799 6.401708037
6.5 6.49998355 6.5 6.500045739 6.5 6.49987087 6.5 6.49986761 6.49986761 6.499867607
5.4 5.40189792 5.4 5.401961352 .5.4 5.4014615 5.4 5.40141257 5.40141257 5.40144262

4 4.00015974 4 4.000056674 4 4.00005414 4 4.00004998 4.00004998 4.000049985
1.3 1.30122826 1.3 1.30129193 1.3 1.30112772 1.3 1.30108709 1.30108709 1.301121853
5.5 5.49958459 5.5 5.499482699 5.5 5.49959894 5.5 5.49960219 5.49960219 5.499602191
0.1 0.10050992 0.1 0.100612748 0.1 0.10027964 0.1 0.1002755 0.1002755 0.100270782

1120 1120 1120 1120 1120
324.772994 345.3873134 • 338.855667 347.643522 347.6447909
695.227006 674.6126859 681.144333 V1.314814 672.3552091
5.72042454 5.770857547 20.3630296 20.2539501 20.25401087
532.139387 548.8418284 532.102575 531.060864 532.1011982
202.139387 202.1518691 202.102575 201.060864 202.1011982
224.772994 262.0772733 247.534396 247.643522 247.6447909
2.13938675 2.151869149 2.1025746 2.10252773 2.101198194

1120 1120 1120 1120 1120
1020 1019.999999 1020 1018.95834 1020

157.367195 120 128.678729 120 120
100 83.31004012 91.321271 100 100

232.632805 270 270 270 270
330 346.6899592 330 330 330
200 200 200 198.958336 200

0 0 0 0. 0
6.5226E-16 0 -7.7716E-16 0 -1.80411E-16
4.49985671 4.499897587 4.500075 4.50008241 4.500082408
10.9021536 10.90242198 10.9018084 10.9017604 10.90179044
10.9998403 10.99994333 10.9999459 10.99995 10.99995002
16.4017382 16.40190468 16.4014074 16.4013626 16.40139264
16.4017382 16.40190468 16.4014074 16.4013826 16.40139264

15 15 15 15 15
16.3012283 16.30129193 16.3011277 16.3010871 16.30112185

•

19,775,486 20,018,185 20,174,000 20,168,399 20,181,642

3. Q-h formulation

Changing cells Initial values
1st running 2nd running 3rd running 4th running

q2 369.760183 300 336.637381 370 369.5 370 369.5 370 369.83541
q3 650.239817 720 683.362619 650 650.5 650 650.5 650 650.16459
q4 0.23981637 20 -1.27411101 1 -0.975 1 -0.475 1 -0.052966
q5 530 580 564.63673 530 531.475 530 530.975 530 530.21756
q6 200 250 234.63673 200 201.475 200 200.975 200 200.21756
q7 269.760183 200 236.637381 270 269.5 270 269.5 270 269.83541
q8 0 50 34.6367302 30 28.025 20 18.525 1 0.21756
h1 6.12176293 10 5.19581498 6 6 6 6 6 5.8864285
h2 13.7044433 10 14.804185 13 13 13 13 13 13.130327
h3 6.11654102 5 6.08044071 6 6 6 6 6 5.9721066
h4 17.6000812 15 18.7237443 17 17 17 17 17 17.001999
h5 2.76169605 1 3.72374431 2.5 2.5 2.5 2.5 2.5 3.1414649
h6 4.99181108 5 5 5 5 5 5 5 5
h7 10.0056569 10 10 10 10 10 10 10 10.154895
h8 9.9 10 37.2291272 10 10 10 10 10 10.004421

q2+q3=1020 	• 1020 1020 1020 1020 1020
q3-q5-q4=120 120.000001 120 120 120 120
q2-q7=100 100 100 100 100 100
q4+q8+q7=270 269.999999 270 296.55 287.55 270
q5-q6=330 330 330 330 330 330
q6-q8=200 200 200 173.45 182.45 200
h2+h7-h3-h4=0 0 0 0 0 0.311117
h4-h5-h6-h8=0 0 -27.2291272 -0.5 -0.5 -1.143888
h1<= 6.12176293 5.19581498 6 6 5.8864285
h1+h2<= 19.8262062 20 19 19 19.016755
hl+h3<= 12.238304 11.2762557 12 12 11.858535
h1+h2+h7<= 29.8318631 30 29 29 29.171651
h1+h3+h4<= 29.8383852 30 29 29 28.860534
h1+h3+h5<= 15 15 14.5 14.5 15
h1+h3+h5+h6<... 19.9918111 20 19.5 19.5 20

Target cell

f(x) 17,405,292 #NUM! #NUMI #NUM! #NUM!

Constraints
q2+q3=1020 1020
q3-q5-q4=120 120
q2-q7=100 100
q4+q8+q7=270 270
q5-q6=330 330
q6-q8=200 200
h2+h7-h3-h4=0 0
h4-h5-h6-h8=0 0
h1<= 30
hi +h2<= 20
hi +h3<= 25
h1+h2+h7<= 30
h1+h3+h4<= 30
h1+h3+h5<= 15
h1+h3+h5+h6<= 20

q1,..,q4>=0
h1,...,h4 >=0

. 200 	 .330
190 	 195

5th running 6th running

370 369.7591562 370 370
650 650.2408438 650 650
0.5 0.240842815 0 0
530 530 530 530
200 200 200 200
270 269.7591562 270 270

0 0 0 0
6.1 6.119569268 6.1 5.3301495

13.7 13.77809689 13.7 13.104698
6.1 6.118869123 6.1 5.0304443

17.6 17.66031904 0 0
2.72 2.761561609 2.72 4.6394062
4.98 4.99468899 4.98 5

10 10.00109128 10 11.565153
9.9 9.904068445 0 0

1020 1020
120.000001 120

100 100
269.999999 270

330 330
200 200

0
0

6.119569268 5.3301495
19.89766616 18.434847
12.23843839 10.360594
29.89875744 30
29.89875744 10.360594

15 15
19.99468899 20

17,402,454 17,168,950

d 1 0.466765303 0.4801923
d2 0.259232611 0.2619786
d3 0.379582103 0.3951043
d4 0.015131386 0
d5 0.413508999 0.3717237
d6 0.252745781 0.2526906
d7 0.245574409 0.2384365
d8 0 0

Appendix B

[InputFile]
C:\Program Files\tria14.INP

{Costs]
25:4 2
50.8 5
76.2 8
101.6 11
152.4 16
203.2 23
254 32
304.8 50
355.6 60
406.4 90
457.2 130
508 170
558.8 300
609.6 550

TRequiredHead]
1 210
2 180
3 190
4 185
5 180
6 195
7 190

[ModifyLinks]
1
2
3
4
5
6
7
8

[SolutionSets]
GA1
GA3
GA7

00 00 OD 0- 	0 CD CD ct O cn 04 c- c- c- OD c- c- CD 	er 00 111 CO 0,4,0.- CO co CV CO CO 00 01 Is 01 CV N CD U0 OD cr N
O) co C) re- a) cr) 0 0 0) 01 0) CD CD 0 (DODO CD 0 O, 0 0 <1' N 0) 0101 ,-- 0000 CO CD 0) 0) CONIC) U) cr CO
CD CD CD C) C) OD OD C) CD CD CD C) CD CD CD CD CD CD N CD CD 0- CD CD CO'- C) 0) OD CD 	CD Is 01 Ps C) Ul O CD 03 00 U)
0) 0) 0) C13 0) CO CD CD 0) 0 0 CD Co 0)0 O c- 0 CD CD U) CON 030 CD ON UD COODcr CC) 	0) cs V) CO cr

cri 6 6 03 6 co co 6 6 6 6 ci a? 6 co 6
CD CV r- ey r- e- e- cc CO U7 CD 01 00 O CV 01 CD CO OD 0- c- CD

✓ CD CD 03 cr 	 6 CD er ua c) c) CD CD 110 Ul 	
U1 C5 CD 01 CD 01 ' CD ,T cn co ua CD 00 C) et CD C') et co r- co co

I` ct cr CD 00 	 co 0) CD O CO CD c) et .- 00 	Ul U) °D Cp 	c4 m CD 	05 CR U5 	C) C° 6 ei UP 	01 CT
r- O r- 	.- 01 	OD c- c- .- c- er co 	e- CD N ci 05 04 05 C') 	00 05 Cl) IS. ci 05 05 er 	e-

• ca ua ua ua 6 ua ua ua ua CD 0 CD CD C) 0 140 CD CD O u1 O et er cr et et 0- c- VD F.- C4 Is CO et et ca 	aa r- ua r- er
OOO 	cc a) CD CD 	cn 	OCD0) 0) 0).- -- 	CD 	0- 	Is

	
C) v, cn 6 6 rci; rso; 	 cR 6

cy cn co 	CA OD OD CD 	CD 	 01 c- Is 01 Ul 	
05 	05 	 CV C

	N
O c- 	 cr '

O
V 	

.-
	40 01 01 c- 	 c- 	

C4 01 05

2

_c

CD C) CO C4 N- C) CD 	C) CD c- CD C) CD CD CD CD CD c- CD ct 	 01 CD OD 0) 01 CD 00 CD 04 01 O OD 0 0- C) 0- 0- 	c-
CD 0 Cr) CD CD 41 Ul Ul Is CD 0- CD CD CD 	41 C) C) CD U0 C3 OD OD C4 C) N Ul 01 N VD Cel CD c- U0 Is t- CD 04 et ua 6 OD
CV Cn CO CD CD OD OD

Cr

D CO CD .‘" 	0/ 	r's 't 0 CD cn c) 0
Cr

t 01 0- 0 CD 0- CD CD 	OD Ul co cn c) ua CO Ul 0-
OD c- CD CD CD Ul ct Cr CD e- cn CO V, CV 	 CD 	CD 	Cr C) r- cr CD CD c- CV et ua ca COD 	cr 00 CD OD 0 N P.■

6 CY) cr) 	 0) 	0) 	 CD 	C) 01 et CD CD 	CD cr CD CD Uj C4 CD 00 et CD O CO C)

.4. CO et 	 CD 	cn 	 6 6 rs- C.1 N. cy csi CD Cr 01 01 	,, c- OD Is 	ct et CD ct 00 CD

C) et C) 	nt 	 et 	6 csi et 6 cy 6 6 6 0) 	 ui r- of 	6 	ci et ci e-

CD 	
0- 	0/ 0/ 	CD OD cr ct 01 0- CO 0- C4 0- CD 8 53 	E3 	53 5 53 5 8 53 3 3 	53 53 -8 8 53 53 53 g `" g Fl 4 CD '7 0) CO C4 OD r- r- et co et --, ca cn ca

C cy CD OD 	CD OD 00 CD 	CD 	c- c- 00 e- 0- et 	 cn 	6 	6 csi CS C4 OS CO CO 4 4 CO 06 4 4 C5 4 	US Csi ,- C 	03 Y- 	 er et 	- 	CO 	CV 	 CV e-

et

0- 07 07 00 CD et cr cr c- 0- CO 07 C4 C4 CD cr c- c- 0- cr CO 	CD cr CD N- 00 CD CD 01 N C) Is N et 	CD cr CD CO 	Cr)

	

0/ 11/ 11/ 0/ 04 N C4 0) CD 00 01 CD CD CD CD 07 V, 	 0/ C/ 0/ 	,t 	00 CD 00 c- N CD 00 OD N Is CV u) 0- 0- c- C)

	

0 OD CO CO OD C) CD CV 04 C4 c- OD CD CD OD c- c- 01 et N OD CD U7 01 07 07 Ul C) et co e- C) 01
030300000)00 CD 0) co a) 	.- .-. e- coco a) a) cc e- CONCONet et 	N- CD CO 	cr 	03000) co co cr N-
C) CD C) C) C) CD CD CD C) CD cn CD CD CD C) CD CD CD 0) CD C) CD et Cr 00 C) 01 CD C) U0 CD c- N CD CO CO cr 01 C) Is OD co

C) 6 6 6 cn 6 6 6 6 c) 6 6 6 cS 6
C)
 6 6 6 6 co N- ua

N CD OD 00 cn 03 c- CD Is C) CO C) CD OD 01 Ps V) cr 0-

CD CD CD CD CD CD CD CD cn 6 CD CD CD CD CD 6 cn CD cn CD 6 m 	
1.". et CD 00 CD 00 v: et g oa 0 OD CV CO N CA NO 01 01

 00 	
N-

O et 0) C) CD C') 0) c- 01 00 CD et 00 OD CD CO CD 01 	0) CD CD C21: 6 6 	0. 	 m e- "4: 	6 CD 	 C4 T- CD csi 6
.E op cy e- e- ey Cr et 01 	ct c- U7 c- c- 	CD 01 N 	c- 	N 	C? 01 nt ei 	et et 	oS et et 6 et OO

2

• 	

c) OO 	C) CD CD CD CD CD CD CD 0 CD CD CD CD CD CD CD CD 40 C4 CD 00 	 0/ CO ct ct ct N 41 CD CD c- CD CD CD III

IOD C)
CD C) CD CD CD CD C) C) CD CD C) CD CD CD CD

COD 0
CD CD

▪ Ul C) C) c- er cn e- co et et ua OD oa CD op r- et OD 0 CD y- 	
y- y- csi 	esi e- N 6 C4 .- er LI) 6 e- e- C') 6 e- et C')

c-04 osCOO, 7 04 c- CV et et 00 	 up 	 01

er ua ua ua ra co CD CA e- co co OD .- ,- C4 .- ul 41 N- et C) et CD C) CO N- 111 0- 0q N n- et co e- ua 03 c- CO 01 C) cr
C) 0- Is Is 00 c- c- 	OD N N CD 0s Is CD co co C7 CD et 01 CD CD CD 0) N CD 0- co C4 N- ct CD Is N CD 0- CD CD CD c-- Ul
OD OD OD CO C) CO CD CD 01 CD 07 c- 0 CD CD 41 CD CD C) 	cr CD N- U7 00 	 C, CD CD CO ul CD 0■ CD er e- e- r4 OD N C)
C) CD C) C) CD CD CD CD cn CD cn CD CD CD C) CD CD CD CO CD CD et cr C) M.- CD OD OC) CD 00 Ul OD N- 01 0- nt ILD N-'- CD
6 6 6 6 cn 6 6 6 cR 6 cR 6 6 6 6 cR 6 6 cR 6 cp. co et CD c- 6 CD OD h- c) er cp 03 0- CD OD te. 01 01 nt

C) cn 0) co C) 6 c) cp 0) CD OS) CD CD CD C) CP CD CD CD CD CD OD 01
N- 00 0 CD C) 0- c- CV c- C) N OD 00 CD CD CD Co et 01

Cn 	CD co CD C) et et OD OD cn CD 01 00 CD N c) cn r- co cr) co CD 	 CR 4R "R CR CO C/1 °R 	ul 	03 	ir? 9 oi 9 P.::
▪ CV c- c- 	et ca cy e- ua CD N c- 01 00 N C) c- cr 04 CO N N N 01 VD 07 Yt V1 c- 	CD co 	c- (') 	N CD 01

c

• 	

CD CD C) CD C) CD C) CD CD CD 0 C) C) CD CD CD CD C) CD CD CD 0 C4 CD 03 	C4 Tr (r) 0 Ct ct cr. 04 Ul CD ap 	CO OD a) ua
• CD CD CD CD C) CD CD CD CD CD CD CD C3 C) C) CD CD CD C) COD S

	 c- N 	04.- NC5Nc- 	ID 00 .- 	C') 	 C C) C/ 	 cr CO CO N CD CD 01 ON CD cr 0- 0) CD CD cr
▪ CC 01 N n- 	et co N 	.- CO C4 c- c- 	01 01 c- c-
C
N

CD co op 03 cr CV CV N ct C4 OD c- 0- 0- CO OD 00 01 OD cr 'I- 00 -at 0 00 CV cr c- CV OD cr CV 01 U7 04 	cr OD CD c- OD
C) cn CO 00 00 CO CD C) CD CD CD 01 CD CD CD CD CD CD CD OD CD C) 0- U3 01 Is CD CD CO cr Is OD r- CA 00 01 CD 01 01 Ul Is ct CO .g 	CD CD CD CD CD CD CD CD CD CD cn CD CD CD CD CD CD CD CD CD CD C4 00 CV Is 00 CD 'et 4 CD ., CV 01 N. CD 01 CD CO Ul CV CD CO
C 	6 C) C) CD C) CD CD CD CD CD C) ci C7 CD CD C) CD CD C) CD CD CD Ul Y- Ul h.. CO CD La CD N.. 0) Ul Y- y- 01 00 01 C4 CO cr CD

C CI) 0) C) C) 0) 6 6 6 6 6 0 C) 0 6 6 6 6 6 a? 6 .6 rs: 0 '4 0 CD "4- r"--Nopu)mcN030 Lc) "4- 07 c) '4 co CV
0 	cn 0) C) C) C) 0 0 CD co CD C) 01 CD C) CD cn 0 C CD CD 0 C) 01 N- CD CD 0 0

C) N-

OD 00 ct ct Is 00 CO 01
CO) 01

07 1--
0) t.- 	

0- CD CD C) et et co op e- CD CD 0 CD N CD 01 Is CA co co er e- uR °I °I N1 c? '7 C? n '7 n et- 0. '4: Nc '4: 	al '4. 0. ca. a)

c (0 	
0.4 n- .- .- et C') N 	.- O 	04 c- c- 	01 N CD c- 	 CD .- N CD CV .- N .c- ot e- 	6 6 e- e- co C7. et co

To ''- .
> 	 CD CD CD CD CD CD CD C) C) CD CD CD 0 CD CD CD CD CD CD CD CD C4 00 N 01 N C') N 01 N 01 04 01 N 01 N 07 N 00 01 00 N

1171 	
C) C) CD CD CD CD C) C) CD C) CD C) C) C) CD CD CD CD CD CD C)

0
0 M CD c- to et CD 00 N 0 CO CO CD N C) et Is 0) CD 0D cr F. 	00 0, C4 ,-- '-' 'f 01 CV Y- CD C4 N. 01 04 e- e-

E

41 Ul 110 0 0 CD CD CD U) 0 U) CD CD CD U) CD 41 U) U) CD CD Cr Ul Ul Ct Cr U) Cr UP Is CO OD OD cr cr C') U) OD Is N 0.- 01
CD C) CD 	CD CD CD CD 	0) 	ca co CD CD CD c- e- 	

'-- ."- 1... 	ci C) 	05 	ci 6 6 6 NI ui N- "4 6 '4 6 6 c° 6 • cn C) 	co CD CO CD 	CD 	Y- Y- 01 ,- N■ 00 CD 	CO 	6 	 CO 	44 	4 	 N OD e- 	 ID nt nt 	n- 	CD C') N.- 	CV c--

O Ul 0 0 IDCDCD CD 0 CD CD CD CDOLD CD 0 CD 0 CD 0 0- Ul 41 0 00 N- N- Is ts 0- r- r-- 01 01 C') CO CI 01 CD CO 01
C) C) C3 	0) CD 0) 0) 	C) 	0 CD CZ CD OD c- c- 	c- .- CDNNN00 CO CO CD CD c- c-- CO el V) CO et CO CO 	0101
c-

 CDC) 	OD CO CO CD 	C) 	e-- e-- co e- re- 01 U7 	0) 	CD .- CD 0 CD co CO OD CD 00 00 CO 00 CO 00 ,..; CO 01 	01 00 O r N. 41 4 .4" 	.,. 	CD CO CV c- CV c- CD • " CD CD CD 0 CD 00 01 CO 01 01 01 `'. CO 01 CO CO
CO Ln cr CD CD CD ap QD CO 01 01 CD 01 01 C') 	V) 01 	00 01
CD CD c-- .,. ,. CD 07 VI CO 00 CO OD CO 01 CO 01

h- 	 CV y- Y- Y- N- 4 03 Y.- cy CD
COD 	ti

Y- 	OD c-

Nt. 	 0 c- CO c- ctN0- C) CD c- CD 	0-0 	ct CO

CO 	 0 05 05 ct c- C4 C5 U5 ci ci ei 	ei ei 	co 6

0
X LI
13 C)

a) g
Q.
a E co 	 CD Y- N 01 4 U0 CO N- 00 C) CD ■-• 	 CD 	N 01 et ua co N- CO C) CD Y-

< 	
Y- 04 VI V - Ul CD N.- OD CD 	Cel e- CV CO 4 CD 0 Is OD 6 	 C4 CV
0' 0' 0' Cr Cr Cr 0* 0' Cr Cr Cr Cr Cr 0" Cr Cr Cr 0' 0' Cr Cr .0 .0 .0 .0 -C -C -C .0 _C _C _C _C _C _C .0 _C .0

CD CD CD CD CD CD C) CD CD CD CD CD CD CD OO CD 	CD 0000 	CD M T- 0) T0 •-• 01 01 M0) CD CO) 0) Cr <7 0) <- <-• 4--01 cr 01 0) CD C) CD CD CD CD C) CD CD CD CD CD C, CD CD CD CD 	C? 	 CC) CO CO CO CO N. co 0 0 CD CD CD 0 03 00 (0 CD CD CD 01 CD CO N 01 CD CD CD N CD CO an 04 CV UD 00 CV OD CO (0 C) 	 N. CO CO CD Ps 01 CD an aa Tr Tr Tt Tr T- ..- Tr CD CD CD P. Cl CO CD TY 	n- 	T- 	.r T- 	..- 	LU 	 CO N CV cr CO Tr cr CO CO C) CD CD CD C) C) CD CD CD CD CO <7 CO Tr T- 	 T- 	N C) N 0) 01 07 Ch 01 0) CD C) C) C) 0) 01 CD 0 C) CD CO OD N C)
CO 01 0D CD Cb T- CD cr yr UD UD U) CO cr. cr CO CD CD 0 00 cn r- U)
aR c? 6 oi a? oi oi Lei ui aS co 06 cci ,- T- 06 oi cn Of c? c4 r: a? 04 N. ,- T- un cy N T- v- .-- T- U) -- T- 0)

CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD 	CD CD C) CD 	P. CV CD <- CO. CD ,- CO 0) 	y- y- y- (0 'cc) y- 0) 0) 0) el 0- Tr T- CD CD CD CD CD CD CD CD C) CD C) CD C) CD CD C) CD 	 OD Ps CO 00 Tr 0- OD C') 00 TT Tr Tr Tr co 00 Tr T- v- m- T- CD 	Tr
coco on CD CD CV co OD 03 01 	CO CO 04 OD CO CD CD 	 CD CD CD el Tr ca on T- T- 117 U7 	UD CD CD 0 	 CD CD T- 	Ts 	 u) CD Ps. vs CD N. y- 03 CO CO oS co CO Tr Tr 6 	on on co el

O C) CD C) CD C) CD 0 C) CD C) CD CD 0 CD CD CD
0 0 0 0 C) 0 CD C) CD CD C) C) CD C) CD 0 0
CD c0 CD CD N 0) 03 OD N N on CO N OD 00 CO C) CD
.T..

CD CD C) CD CD C) CD CD C) CD CD CD C> CD CD CD C)
C) C) CD C) C) CD C) CD CD CD CD C) C) CD CD CD C)
0) CD C) N 	 c0 OD N N CO OD N OD CO CD CD cr T-

0 0 0 0 0

0 0 0 0 0

N. N. T- CO Tr on ol 0) CO N. I,. 1.... C.... CO 1.0 Ps CO CD 0) N. U) CO CV 0 CO N. U) COCO ID N. 0- 0 0 0 (003 c00 •-• •-• •-- 010 0 03 N CO CD N N- T- N Tr <4. CD CD 0) 0) 01 07 0) 	 N. T0 01' 0 01 N. T- U) N- U) UO Tr T0 U) U) ul U) CO co ul 	Tr T- 0 OD 0 CV 0 CA 0, T7- CV (OW ..- •-• •-• .-- co co ..- 	cv a) c0 1-
•- 	 CD CD CD Ps C') 0) U) CV N. I"- N V.4 r- 1,-; r-H.,: sr. Tr Is 	OD OD N C)

01 rs: c4 V^ CC! 4 ■-• T- co co c0 OD U) UD on CO 6 ..-- oi cy OD T- Ts U7 CD T- 	Ts T- T- T- N CV T- 	 T- CV ,-

Tr Is. 1,- CO C) CO CO cn co on on on on 00 CO 01 0) 0) CD 01 Ps N. <- CD CD CV cs CD N. y- CA C4 0 03 00 0 N. 0- co T- T- •-• 0 is 0) 0 D) 0) CD C') C) .6- 01 cr cr N N N CV OD 01 N 	0 T- UD CV
cr N 01 Ul cs N. 0 <- c- UP CO 0 CD C) 0 CD 	U) CD CO CO) OD 04 CD ts CD 4..... 7.... CO 00 CD CD CD CD CD C) cn 	CD <- N. P-
OD Cr c0 0 OD CO) UD T- T- Tr Tr Cr <7 0 	Cr 	CD CD 6 OD
01 c6 y- 07 Tr- 	07 (6 CD r: r: r- r: cci 6 r.: 	on ,_ ,_
N 	T- .-- UD CD 	0 <- 	„

C) CD C) CD CD CI CD CD CD C) 0 C) C) CD CD C) C)
O 0 CD CD CD CD CD 	0 C) CD 	C) 	CD 	C)
0, COCD a) N CD 00 CD CV N 	cc) N 00 0:1 	CO
Tr •- 	 T- T-
■-•

0 0 0 0 0 Cl 0 CD N. en on N. 	UD 0) el VD 01 CO) CD CO cl 01 01 cD u) 	Tr N- 	M T- Tr N- T- CD C) Ca 01 VD 01 Tr Tr on Tr Tr 	CD CO CO CD
C4 07 cr CD Ps. cr CD CO CO Ps Is. Ps Ps co 0) c- up up 	01 C3 01 C4
CD N CD 0- Tr Tr 0- V) 07 CV CV 0.1 CV OD 00 cy r- r- r- un Lel Tr r- r- on CD CD 03 	C) C) CD co cn CD CD CV N CD 	U) 	N 01 CD 03
ci 	0) 	cs.ienT 	0)NCICNC4N 	 Yj: csi lf)
y- y- 	CO T- Ti an an CD op op on on Ti op 	6 Tr 	u?

a) 	N.

1
c
8 .

in A
CD T- 	0
0 5 	u 	 F2 F2 en co o

	

.7 	o o
CV CV 	CO CO •-•

•-• •-• II II
V V a) a) c To T- (T,

E2 	 a
rn 	 a) ,_ 	 ,r, 	 n u

L .c v v O
 co c 	cc "7 	..a. 	 V V

+ + 0 (.0
g 6 ca 	N. 0 	iF/.. 	 CD C) T.: r: 4. .Z..7.1 IDI V1 y- 00 	0

	

0 	
H -r --

N CV 1= .c H H N N n- n-- C 1=

n- ca 55 C. 4> 7(,1 11 ti ++ v v II 11 _c c ++ N

	

0 	
0
0 	0 	0 	

c0 . c 	.5 C
c) a) . 	CO 	0 	

N

	

CV 	N ul CO.-,- T- .T CD 0) 	
0
N

N V0000V V ++0 0 5 	 H

..7. c) 	•-• 	CV 0 	C i 	0 	
= IT .7E 	I: '' 	0 	II 	II _c _a 1= .0 1= 4= 4= 4= .0 1= 1= 1= 	n c 	 ,_ CO IT CD 	 01 V N V + + + + + + + + + + + + 	V

C C) CD co c)

	

cir 	cm " II C) UD C° CD II CD 	15 22 6 ? ch 4F 	2 	eq Tr 	CV 00 Tr aa szt- 00 cr CO Tr OD <7 CO cr OD 	CV cr <1'

? :1. (f? E3 „ 97 8 CD O N " '6- G. CO Cr °:' CO " CD 	C + 	C) L 2 12 Tr 4 	f f 1: jF f f f f f jF jF 	I= ■■ N 01 OD CV 	Ps 	Ps 0) Is- 07 ts 01 Ps 01 Ps 01 Ps 	V+ V

 CD CD

g H Cg) (2 Si g H g g8 17 ' A 4 0) 	A X H 	 2 !',1- 2 T., 4 .,
	'
	II .c 1= H .r 	2 1= 1= JC 1= 1= 1= 1= 1= 3: -C 1: N

• " - IIH. 	HIII0 	T- CA 	;-, 	•., + + . ..- ,- 	a) U1V+ +V+ + + + + + + + + + + + + + 04 ..."2 .(.2. .1:;:: 7= CV N CV N CO CD CD CV CO C4 CD CV CO CV CD CV 0 01 CO H 1= 1= 1=
''- " C." 'r c° -- h- CO O V '''' ITT 7 ? IFT 17"ir 6 " 7- c c a) a

-0 + CT cr 7 7 7 Cr
CT + ca N 01 Tr CO N. OD CD 	E -!I. i: 1: g; a) 	t 4 1= 1= 1= i= 1= -! -4= 1: 1= -4= i= -4= 1: 1= 1= 1: 1= 1' V N N it4

0 T-

	

N CD Tr un °a rl. cn 	 cv 	m n- C4 a6 T- T- za-a-oo-o-o-cruo-o-crucrucro-o- Co a a c c.c 	0a a c a c a a_c c.c.c a c c c a c c_c_c c a a C
on

st
ra

in
ts

:

y- 	 y- 	M N. OD M 01 Ps M CV CV 	 Tr cr 	CD CD Ps
ai 	 4 : a-) CN r- •-- 	LI) 	T- 	N N 	 U) 	6

CD CD CD CD CD C) CD CD CD CD CD CD CD CD Cn CD C) 	01 CD C) U) Ps 	Ps Ps 1.- N. 01 N Ps C') 01 01 01 OD CO VI OD CV CV OD 0D Ps <7 01 0)
CD CD CD CD CD C5 CD CD 0 CD C5 C) CD CD CD 0 CD 	01 UD 	Ts ..- 	CD CID 0 COM 5 UD CO OD 0) OD CD cn co co 0 an cn cn 'CO U) OD CO
CI CO CD Ch 04 CD CO CO CV cv CD OD 0.I 03 00 CO CD 	01 ' 	.!. OD 	CO cD CO Co ca 	CO 01 07 vl 00 CD CD 01 01 CO CO CD CD 0 - co
Tr 	T- 	...- 	,-- •-• 	•-• 	 01 9 	U., OD 	CD CD CO CO 01 .- CO OD 00 OD 03 co C) on on CO CO C) cn co ,_c:' on S2 T- 	 on 	CDM 	CO U) CO +- 01 	cs N. 01 ti OD Tr Tr co co T- ..-- Tr Tr CO 	pl

w CO 	CD 01 	CO T- CV Ul OD 	1-. N- C') 0- 07 CD ul CV c0 CD CO 0 T.. CD 	CD
CO 	c7) co t ER e4 ro- on 	01 6 „: 6 ,..... cn in e4 N.: 0 0 -cr 0 g 	r....,

.c u, 	al LO . 	Y. ...I VO Ci u? 	Tr T- T- T- T- up co up LO 1..... CD CO Ch -: 	<7
• 1.0. Cil 	N. e4 	co OD Ts T- CO 	.- 	 N •- •- U) 	•-•

cOcOcOcONO) 0) 	
03

CO 	
•-•
CO +/ a- • (7)

CO CD CD 0 CO
• N CO cc) CD
N N- tf NI: CD
CO N.:
• N N

CD CD •:1* CD• LOCOcoN,-
0) CD 0 0 N LC) cc) Cr <2-
N 4 V o
(-6
• N N

O
M

0).
co
0)

o) co in cr) In 4.- in In cO +1- '1- CO cc) CO CO cO Lo N. co co co ,-. v- 	0 co co 1,.. 0) ,-- N ,- CO N CO •ct N CO N N- C) CO -7 L1) CO ,-- 10 V' CO N V I,- ,:1- .7' CO CO CO CD 0 N •,-
CO0 00 03 I!) c.-) co o 4 CD CO

CO ., 1-- CI c0 0 0) CO CO CD o CO ,-- ,- co ,- 0 a) co a) LC) O a- C) .- in 4 co a) co a) co N N.. cc) .•-• N. 1.11 Cc) CO 0 LO CO 0 11') V' - ,- LO CV NI' ,- V CO N ,-- ,- of N CV CV 0 ci ,- of ..--- ..- ‘- ,--. c.1 cs4 .- 6 '-
666606066 606606606 0

O O N 	+- 	CO CO LO cc- 0) 	N CA ,:r• N- 	CO CO 0 CO N. N CO Cc) CO N. CO CO OM OCA N O O CO CO 0) N 	CA N 	NI'O OO N- M IC) ON CD 	•-•N N 	CO CO 	0 	CO CD 0) 0 CD CD ni• •-it CD N- 	in 	N co CO a- 0 CO 03 N' CV 0 CD V•0 ID N a-- 	N ; CV 0 	c) 	e••• 	 6 oi
C7OOO 6 6 00 ci ci OO OC7O ci

0 03 	Lo
CD CD CO CO CD .
N. Cc) CO CO CD N 	a) N N. M0 COD

CO
0,- N 	 N

CO (NI 7 +t CD
• 0 U) 0

N N N •-•-•

• CO CO V' 0) CO CD 	0 	•-•
• CO CO CO CO
CO CO C) O N-
N 	CO 0) CO CO u.; 0 CC) LO •

O cc;

O

O

LI

CO N 	N. CO CO N N. cc) 	LO 	V 	t•-• O ,-- CO 0) CO I,- 	0) 	0 CI CO 0 0 CO ‘rt CO 00 LO 0) CO CV V

	

	 -.--')' .- CO co o o CD 0 CO Tr N- 0) CO N ON .4' CV CO 	0 0) 	ct 	..:1* O LO N O 	O‘-• 	CD OD CV CD CO •+/- 0) CO N. 	N N. N. 0 a) cf co o) co CO N 	V CO cc) CV 	CD a) co an co o 4 10 N- CD CD V' CV N 	LL) 0 (N1 Cal a- I- CV CI CV 6 •s- v- CV s- 	6 CV .4- N-
6 6 6 6 0 o 6 6 6 6 6 6 6 6 6 6 6 6

N 	0) CO cO
CO CO +1' -4' 	+1*
CO CO CO CD 	tr)

7co CC/ 11)
0 0) N N 0 fD ,.,;
• 4 4 cri 01
▪ •-•

CO M N-• I,- N. 0) CO CO CD 0 CD
CO el CD CD cD
M cc) CO CD CO
CO CO CD cD
0 C1 CO 0 CO
N. 	cc) cc)
.1: 4 cci cci ozi

O

O
4t

CO 	CI)
N
I I 	I I
V V

0 CO LO N
N r Cl N

II
V V + V +

co CD 0 CO 0 CD N 	 N
II .0 .0 .0
✓ + + + + +
0000•4•000
-C .0 .0 _c _C .c
+ + + + + -I- 	7 7-) N- N. CO N N. N. 	C.)
_C .0 .0 _C .0 C 	ID. + + + + + + 8) 	 Or ,- N CO ■:1- 10 CD N-- CO 0) 0 +- N N N CV N N

0 	X 	,-- CV CO ,;1' 	N -c .0 .0 _c .0 c 	I- 	Z....' 	ID '0 -0 10 -0 '0 '0 '0 '0 '0 -C) V '0 't) '0 'CI -0 '0 -cg -o -a

	WRDMG12214.pdf
	Title
	Synopsis
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Appendix

