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SYNOPSIS

Design of water distribution network is become subject of experiment of
many researchers. It is because of the distribution network cost takes major part of
total network ( it is around 70 percent), so the optimal design of water distribution
network will Bring the optimal design of water supply. |

The problem of water distribution netwpfk is non linear in nature, due to the
cost pipe function and hydraulic law that are formed the prqblem. The problem can be
formulated in Non Linear Programming approach either in D-Q formulation, D-h
formulation or in Q-h formulation. Along these three formulations, the Q-h
formulation giving a better performance because of optimal result is achieved in
small number of iteration.

In this thesis, Non Linear programming approach will be applied, with using
Generalised Reduced Gradient (GRG) algorithms. Microsoft Excel Solver is used in
the process of iteration. As it is applied for simple networks, Q-h formulation is also
used for solving a real type network. =

The solutions that are achieved by using Non Liner Programming approach |
are guarantee only for local optimal solution, and due to this a lot of number of trial
solution is needed to ensure the optimal solution. The pipe diameter solutions that are
achieved are continuous, so it needs to round up to market size diameter.

The using of Genetic Algorithms in design of water distribution network
problem will increase the chance of getting the global optimum solution. It is because
of the principles of genetics process in human nature are applied in getting optimal
solutions in design of water distribution networks problem. The trial solutions will be
simultaneously generated, to get the optimal solution. The superiority of Genetic
Algorithms dealing with discrete variable for example market size diameter of pipe, is
also becomes. an advantage in solving water distribution network design problem.
Software package “Water Network Optimiser” that using Genetic Algorithm, will be

used in design a real type network, and it gives global optimal solution.
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Introduction

CHAPTER I
INTRODUCTION

1.1 WATER DISTRIBUTION SYSTEM

Municipal water distribution systems represent a major portion of the
investment in urban infrastructure and a critical component of public works. The
goal is to design water distribution systems to deliver potable water over spatially
extensive areas in required quantities and under satisfactory pressures. In addition to

these goals, cost-effectiveness and reliability in system design are also important.
Municipal water distribution systems are inherently complex because they are:

e large-scale and spatially extensive

» composed of multiple pipe loops to maintain satisfactory levels of redundancy

for system reliability

e governed by nonlinear hydraulic equations

 designed with inclusion of complex hydraulic devices such as valves and
pumps

e impacted by pumping and energy requirements

» complicated by numerous layout, pipe sizing, and pumping alternatives

» influenced by analysis of tradeoffs between capital investment and operations

and maintenance costs during the design process.

Traditional methods of design of municipal water distribution systems are
limited because system parameters are often generalized; spatial details such as
installation cost are reduced to simplified values expressing average tendencies; and
trial and error procedures are followed, invoking questions as to whether the optimum
design has been achieved. Even with use of hydraulic network simulation models,

design engineers are still faced with a difficult task.

I-1



Introduction

The optimal design of municipal water distribution systems is a challenging

optimization problem for the following reasons:

» the system optimization requires an imbedded hydraulic simulation model for
pressurized, looped pipe networks

» the discrete decision variables are discrete, since pipe sizes must be selected
from commercially available sets [e.g., 8, 10”, 12", 15”,...]; combinatorial
problems involving discrete variables are considered NP-hard in optimization
theory |

o the optimization problem can be highly nonlinear due to nonlinear hydraulic
models and pump characteristic curves | '

+ the optimization problem should be regarded as stochastic due to uncertain
demand loadings and system reliability issues

e one way of éonsideﬁng uncertain demands is to include multiple demand
loading scenarios in the optimization, which increases problem size and
complexity

» pressure constraints must be directly included in the optimization.

The optimal design of municipal water distribution systems involves numerous

characteristics which carry significant spatial dependencies. These include:

» topography and its influence on pressure distribution in a pipe network

o street network characteristics, since most water distribution systems are
installed in existing and planned road systems

» right of way issues

» congestion problems during installation due to buried utilities

» land use and development issues impacting installation costs, such as
increased costs of pipe excavation in commercial districts due to buéincss

disruption and the need for traffic rerouting
» spatially distributed soil characteristics impacting excavation costs, such as

loose, sandy soils requiring more costly reinforcement of the site.

I-2
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1.2 STATE OF ART IN WATER DISTRIBUTION MODELS

The current focus in optimal design models is on improving the efficiency and
realism of the optimization techniques. With development of “Operation Research”,
now we able to find the optimise solution for any particular problem through various
methods. Various method such as: Linear Pfogramming, Non Linear Programming,
Dynamic Programming have also used in water distribution network design. A
number of researchers have used Linear programming to optimise a design of a pipe
network. Researchers have developed two principal approaches (Alperovits and
Shamir 1977; Quindry et al. 1979). Dynamic Programmiﬁg, that is developed by
Richard Bellman in early 1950s, is powerful in solving allocation of water in water
distribution problem. The principle 6f Dynamic Programming is decomposes a
multistagé decision problem into a sequeﬁce of single stage decision problem. As the
number of unit that is allocated and number of resources increases, Dynamic
Programming become quite complex. Dynamic Programming is rarely used to solve

problems of allocation of more than two resources.

A wide variety of techniques have been proposed, with one of the most oft
studied being the Linear Programming Gradient (LPG) method and its extensions
(Alperovits and Shémir, 1977, Eiger, et al.,, 1994). However, Bhave and Sonak
(1992) claim that the LPG method is inefficient compared with other methods.

Methods based on the use of linear programming (LP) have been developed
which are capable of maintaining the constraint on discrete pipe sizes -without the
need for rounding off solutions. Morgan and Goulter (1985) modified .the procedure
of Kally (1972) to link a Hardy-Cross network solver with linear programming
model. The model is designed to optimize both the layoilt and design of new systems
and expansion of existing systems. It is a highly efficient method, with the main
disadvantage being the generation of split pipe solutions (i.e., with some pipe sections
requiring two pipe sizes). The lattef indeed reduces sysfern cosfs, but may not be

attractive to design engineers.
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More recent literature emphasizes reliability issues in water distribution
system design, with consideration of the probabilities of satisfying system flow and
pressure requirements. Lansey, et al. (1989) employed a chance constrained model to
consider uncertainties in demands, pressure head, and pipe roughness. Bao and Mays
(1990) applied Monte Carlo simulation methods to measure system reliability.
Although reliability-based water distribution system models are useful for analysis of
the problem, they may be impractible for designing large-scale systems. ‘The use of
multiple demand loading scenarios may be a means of indirectly including system

reliability issues at more practical computational expense.

Some approaches attempt to employ efficient combinatorial methods to the
optimal design probiem. Gessler (1982) lini(ed a network hydraulic simulation model
to a filtering subroutine to efficiently enumerate all feasible solutions in pipe network
design. This model selects both the optimal design, as well as several near-optimal

solutions for tradeoff analysis, and is perhaps the most widely used optimization

model.

Other authors have formulated the optimal design problem as a nonlinear
programming problem with discrete pipe sizes treated as continuous variables. By.
considering the link diameters as a continuous variable, several researchers have
suggested the optimisatién of looped water distribution networks throﬁgh nonlinear
programming ever since Pitchai (1966), Jacoby (1968), and others applied NLP for
optimisation of water distribution networks such as ‘Chiphinkar, et al. (1986)
employed the Davidon-Fletcher-Powell method to design a water distribution under a
single demand loading scenario. Lansey and Mays (1989) coupled the generalized
reduced gradient (GRG) algorithm with a water distribution simulation model to
optimally size pipe network, pump stations, and tanks. . These approaches differ from
one another in the formulation of the problem and/or the method of its solution. The
primary disadvantage of these NLP methods is the required rounding off of optimal
'continuous decision variables to cbmmercially available sizes, which can lead to

network infeasibilities as well as raise questions as to optimality of the adjusted

solution.

1-4



Intraduction

Recent studies have attemptéd to apply a variety of heuristic programming
methods to the optirrial design of water distribution systems. These include the
application of genetic algorithms (Savic and Walters; 1997) and simulated annealing
(Cunha and Sousa, 1999). The advantages of these methods are that they allow full
consideration of system nonlinearity and maintain discrete design variables without

requiring split pipe solutions.

The disadvantages include:

cannot guarantee generation of even local optimal solutions, particularly for

large-scale systems

. requiré extensive fine-tuning of algorithmic' parameters, which are highly
dependent on the individual problem

e can be extremely time consuming computationally

o cumrent applications have not included use of multiple demand loadings

because of computational difficulties.

1.3 OBJECTIVES

The aim of dissertation is to explore the application of Non Linear
Programming in solving of design of a looped water distribution network problem.
The problem of water distribution network is formulated as Non Linear Programming
problem and will be solved using a suitable algorithm in Non Linear Programmiﬁg

approach. Due to increasing of complexity of the network will affect the searching of
| optimal solution, the random search method will also be applied. In this case, Genetic
algorithm as a part of evolutionary algorithm will be incorporated in solving water
distribution network design problem. These two approaches will be compared to

know the better algorithm in solving looped water distribution network design
problem. -

I-5
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CHAPTER II
PROBLEM FORMULATIONS

2.1 GENERAL

The design of water distribution systems is often viewed as a least-cost
optimization problem with pipe diameters acting as the primary decision variables.
However, although the cost of operating a water distribution system can be
substantial (arising from maintenance, repair, water treatment, energy costs, and so
on), the costs of some items often do not greatly dependvon pipe size. In most
situations, pipe. layout, connectivity, and imposed minimum head constraints at pipe

junctions (nodes) are taken as fixed design targets.

Clearly, other elements (such as service reservoirs and pumps) and other
possible objectives (reliability, redundancy, flexibility in the face of uncertain future
demands, and satisfactory water quality) can be included in the optimization process.
But the difficulties of including reservoirs and pumps and quantifying additional
objectives for use within the opﬁmizatioﬁ process have- focused researchers on
determining pipe diameters while maintaining the single objective of least cost.
Typically, pumping and storage alternatives are taken as éntirely separate approaches
that are considéred outside of the optimization process. Even this somewhat limited
formulation of optimal network design offers a difficult problem‘ to solve (Savic and
-W'alters, 1997). Generally the objective function of the pipe-sizing problem is

assumed to be a cost function of pipe diameters and lengths:

N
minimise f(x) = ¢, (x,J;) . 2.1
x i=1
where f = objective function to be minimized |
x = vector of unknown diameters x;
N = number of pipes
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Gi = cost function for pipe /

L

length of pipe i

The set of constraints associated with this problem consist of continuity and
energy loss equations, which can be satisfied by running a standard hydraulic

simulation program to evaluate the hydraulics of the solution. Other constraints may

include

¢ The minimum and maximum head constraint at each or selected nodes

¢ The minimum and maximum velocity in pipes

¢ The minimum reliability and redundancy constraints

o Other operational constraints, such as balancing reservoirs within 24 hours or

any other period, or ensuring at least a minimum turnover of water in storage

The initial process of optimisation problem of water distribution network is
started by formulating the objective function. The objective function is to minimise
the energy cost 6f pumped station and cost function of pipeline network (in case of
pumped network) and to minimise cost function of pipeline network (in case of
gravity network). Pipe cost term has variables such as diameter pipe and pipe length,
and energy term has variables i.e. available head at source node and minimum head at
each node. The constraints that must be satisfied are continuity of flow at each node,
él gebraic sum of the head losses in each loop is zero, algebraic sum of the head losses
in a path from source to each demand node is not more than the permissible head loss

in the path and all pipe lengths, diameter pipe and head loss and or available head are

non negative.

2.2. FORMULATIONS

Consider a single source pumped -(labelled 0), looped water- distribution
network having N demand nodes (j = 1,.., N), X links (x = 1,... X) and C basic circuits

or loops (¢ = 1,... C). Since the variation in capital cost of pumps is negligible, we
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shall consider the present worth of energy charges, PW, and the network cost C in the

objective function, and follow the usual notation.

Since the diameter D, discharge Q and head loss # for a link are interrelated
- through the link head loss relationship, we can consider.any two of them as basic

decision variables. Thus, for general Non Linear Programming problem for looped

networks, we have:

1. Diameter-discharge, D-Q formulation
2. Diameter-head loss, D-4 formulation, and

3. Discharge-head loss, O-# formulation

Non Linear
Programming

FD-Q Formulationj LD-h Formulation J [ Q-h Formulation ]

Figure 2-1 Types formulation of Non Linear Programming for Water

Distribution Network Design

2.2.1 D-Q Formulation -

In D-Q formulation, for a single soufce pumped network, decision variables are
HGL at the source HO, the link diaméters D,, x =1,... X; and link discharges Q,, x = .

1, ..., X. Thus we have 2X+1 decision variables. The objective function is:

X
Minimise Cr=K (Ho— H)) + > B,L D% (2.2)

x=1
where :

Cr= cost of water distribution networks plus cost of energy for pump station
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K- 86000c,Q,, 4, F
- 7]
C. = cost of unit energy, monetary units’kWh

0., = mean discharge, m>/s

H), = pumping or total head, m

F = Present worth factor (P/A, 1%, n)

n = pump efficiency ’

Hj = Hydraulic gradient level (HGL) at source node
H. = Hydraulic gradient level (HGL) at demand node
L, = link of each link |

D, = diameter of each link

B, m = pipe cost constant

Since the node flow continuity must be satisfied at each demand node, we have

N node flow continuity constraints,

2.0, +q; =0 | : ' (2.3)

xincidentonj
‘where:
Q, = discharge at link x, m*/s

cij = demand node at j, m’/s

The head loss in links along each loop must be balanced, thus we have C loop

- head loss constraints,

. Y ALOID; =0 ' E (2.4)

where: ' :

A = constant depenciing on the link material, and units of different terms
L, = length of link x

O, = discharge at link x

D, = diameter pipe of link x
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P, r = exponents equal to 2 and 5, respectively, in Darcy Weisbach formula; 1.85 and

4.87, respectively in Hazen William formula and 2 and 5.33 respectively in Manning

formula.

To satisfy the HGL constraint at each-demand node we have N path head loss

éonstraints,
> ALQ!D; <H,-H™ (2.5)
xeP ’ ' .

where:

Hy = Hydraulic gradient level at source node

H ;“‘“ = Minimum Hydraulic gradient level required at node j

In addition, we have the usual non negative constraints for decision variables:
Hy>=0(=H,),D.20,0,20 ' ' (2.6)

When the optimisation problem: wifh the non negative constraints is solved, the
looped network converts to a branched one. To avoid this, the nonnegative
constraints can be replaced by finite value boundary. constraints. The link diameters
should at least be of the minimum size, Dp,, corresponding to the D-speciﬁed
condition. Alternatively, the link discharges must not be less than some specified

discharge QOmin, corresponding to the Q- specified condition. Thus, the boundary

constraints are:
Hp=0 (2 Hc), Dy 2 Drin, Ox = anin (2.7)
2.2.2 D-h Formulation
Objective function:
X .
Minimise Cr=K (Hp- Ho) + Y ,B,L,D? 298

x=]

subject to:
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SO ALY +g; =0

Xincidentonj ' . (2.9)
Zh_\_ =0

xec (2.10)
> h <H,-H" '

wer) _ @.11)
Hy20(=H.), D20 : (2.12)
or
Hy 2 0 (2 Hy), Dx 2 Diiny [(1:D3 WAL 2 Onin (2.13)

2.2.3 Q-h Formulation
X , ’
Minimise Cr=K (Ho— H) + > B AY' "L "Qr b (2.14)
x=]

subject to:

xincidentonf (2 1 5)
> h =0 S

xec. ' (2.16)
> h <H,—H"

xer ' (2.17)
HOZO(ZHc,thO, QxZO ' (2-18)
or ' '
Hy> H,, by 2 AL,OP(D™™), or O > Q™™ (2.19)

Example 2.1

A simple water distribution network is given. It is a two-loop gravity network as
shown in Figure 2-2. Node 1 is a source node with HGL of 210 m and nodes 2, ..., 7
are demand nodes having demands, shown near the arrow heads, and minimum

required HGL values, shown near the nodes. The network has eight links, each 1,000
m long.
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The required pressure head and demand at each node is given in Table 2-1.

. 210 m
100 100 m*/h .
19 ‘\r\lﬁ)m 1120 m*/h
.\ 2 ) {

> =
/ ) ‘W
7 Loop 1 3
270 120
180 :E 185
3 O ’
d 4
8 -
Loop 2 5
200 330
190 6 195
kot R0

Figure2-2  Two-loop gravity network

Table 2-1 Required Pressure Head and Demand at each node

Node . Required Pressure head (m)  Demand (m*/h)

1 210 -

2 180 -100
3 190. 100
4 185 120
5 180 270
6 195 330
7 190 200

The link cost function is C = 1.2654 LD'~*’ in which D is in millimetres, L in metres
and C in rupees. Formulate optimisation problem using: (1) D-Q formulation; (2) D-h

formulation and (3) Q-# formulation. Use Hazen-Williams head loss formula for

headloss calculation, with Hazen Williams coefficient is 130 for all links.

Solution

The cost ﬁlﬁction can be written as follows:
C = 1.2654 (1000) (10° D)%’
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=12.1123 10° D'3%
where, C = Cost of pipe per m’ (in rupees)

D = diameter of pipe (in meter)

1.852
Head loss function, / = lgTZé%WT
HwW
0 1.852
10.7)(1000)] ——
- a0.7x )(36OOJ

1301.852 D4.87
=3.37356 107 Q, ®?* p, %
where, &, = headloss of link-n (in metre)
O, = discharge in link-n (in m%/s)

D, = diameter of pipe of link-n (in meter)

1. D-Q Formulation
Objective function,

Minimise C = 12.1123 10° (D,3% + D,'327 + p,13%7 4 p,1327 4 p 1327 | p 1327 -

+ D737 4 pgt 37Ty

subject to:

Constraints of flow continuity at each node:
1020—- 0, —03=0
Q3—- Qs— Q4 -120=0

Q.- 0,=100
Qs+ Qg+ 07=270
Os — Qs-330=0
Qs—Qs—200=0

Path head loss constraints:
3.37356 107 0,'%% D,*% < 30
3.37356 10-? (Qll.852 Dl-4.87 + Q21.852 D2-4.87) <20
3.37356 10-7 (Q11.852 D1-4.87 + Q31.852 D3-4.87) <25
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3.37356 107 (02 D, %% + Q2]'852. Dy 4874 0,182 p.487) < 3¢
1337356 107 (Q\*%2 D% + 051552 ;4814 0,182 48T < 30
337356 107 (0,552 D, ¥ + ;1852 487 4 1852 D5-4.87) <15
337356 107 (0,352 D, 487 + 0,852 D, 487 4 1852 487 4 18521y 487 < 9

Constraints of summation of headloss on loop equal zero:
3.37356 10~7 (Q21<852 D2-4.87 + Q71.852 D7-4.87) = 3.37356 10-7 (Q3l.852 D3~4.87+
Q4].852 D4-4.87)
3.37356 10-7 (Q51.852 D5-4.87 + Q61.852 D6-4.87+ Q81.852 D8—4.87) = 3.37356 10-7
(Q4].852 D4—4.87) ' ’

Non negativity constraints:

D, D, ..., D20
Ql, QZ, [ERET) Q8 >0

2.  D-h Formulation
Objective function,
Minimise C = 12.1123 10° (D' + D,'3% + D327 4 1327 4 p,1377 4 p 1327
+ D2 4 Dyl
subject to:

Constraints of flow continuity at each node:

- th ;'87 0.539 - th ;'87 0.539 o
3.37356(1077) 3.37356(1077)

h3D ;.8? N\ 0.539 ] hs D :.87 \ 0.539 h4D :,87 ) 0.539
3.37356(1077) 3.37356(1077) 3.37356(1077)

=120

=100

mD N [
3.37356(107") 3.37356(107") )
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0.539 0.539 0.539 .
h4D:.87 7 . hsD:.87 N h7D;.87 _ 270
3.37356(1077) 3.37356(1077) 3.37356(1077)

/ 1D :87 0.539 - ___h&;'gi_ 0.539 130
3.37356(1 0“7) 3.37356(1077)

h D"'” 0.539 h D4'87 0.539
660 - 88 = 200
3.37356(10‘7)J (3.37356(10"’))

Constraints bf summation of headloss on loop equal zero:
hay+ hg—hs —hs=0
ha=hs + he + hg

Path headloss constraints:
hy <30
hy+hy <20
hy+h3 <25
hy+hy+hy <30
hy+h3+h7<30
h+h3+hs<15
hy+ hy+ hs+ he <20
hy + h3 + hs+ hg + hg <30

Non negativity constraints:
D\, Dy, .....Dg=>0
hi, hyy ..., hig 20

3. Q-h formulation
C=12.1123 106 D'3%

<. (@)
D= (3.37356(10‘7)Q"352‘ J“

h
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Combine a & b, we get:

C=12.1123 10° [3'37356(10_7)@'852 ]T

h
=208,814.2616 Q°°0%6 0272

So, the objective function:
Minimise C = 208814.5616 (1120%5046 7y 02755 4 Q20'5046h2',0'2725 + Q30.5046
Ry 02725 4 005046, 02725 4 ) 05046, 02725
+ Q0504602725 O0-5046p,, 02725 Q'80.5046
g 02725y
subject to:

Node flow continuity constraint:
1020_Q2_Q3=0,
O3—0Os—04-120=0
0, — Q7=100
Os+ Qs+ 07=270
Os—(06-330=0
Os—Q0s—200=0

Constraints of summation of headloss on loop equal zero:
ha+hi—h3—hs=0
hs=hs+ hg + hg

Path headloss constraints: ' ‘ *
hy <30
h +hy <20
h+h3<25
hy+hy+ hy <30
i+ hy+ h; <30
hi+h3+hs<15
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h +h3+hs+he<20 -
hy+hy+hs+ he+hg <30

Non negativity constraints:

01, 02, - ves 020
hi, hy oo, hg20
2.3 SUMMARY

The nature of objective function and constraints for formulations in water

distribution network design problem is shown in Table 2-2.

Table 2-2 Nature of objective function and constraints )

Constraints
Objective | Node flow Lbop Path Non Q- or D-
Formulation function | continuity | head head "negativity | specified
loss loss
D-Q Non- Linear Non- Non- Linear .- | Linear
* | linear tinear . | linear . |
D-h Non- Non-linear | Linear | Linear - | Linear Non-
| tinear . - | linear
i
Q-h Non- Linear Linear - | Linear | Linear Non-
| linear o _ linear

If objective function and or constraints are nonlinear, the problem becomes a
non linear programming problem. The formulation above indicates that the problem
in water distribution network design is a non linear programming in nafure. Between
of these three formulations, it is easier to solve Q-h formulation than D-Q or D-h

formulation, because all the constraints are in linear state, 1t is better to choose Q-h
formulation.

\}r



Techniques for Solving Non Linear Programming Problems

CHAPTER IIT
TECHNIQUES FOR SOLVING NON LINEAR
PROGRAMMING PROBLEMS

3.1 GENERAL

In Non Linear Programming Problem, solution can be obtained from classical
optimisation method and from numerical optimisation method. Classical optimisation
method proved to be performed well if objective function or constraints_ are fairly
simple in terms of decision variables. In practice, however, the objective function and
or constraints would be too complicated to be manipulated for obtaining the optimal

solution. In such cases, the numerical approach would be necessary.
3.2 CHARACTERISTICS OF AN NLP PROBLEM

- According to the nature of objective function and constraints, the optimisation
problem can be divided into 2, i.e. linear and nonlinear progfamming probiém. When
the objective ﬁmction and all the constraints are iinear function of the decision
variables, the optimisation problem is called a linear programming (LP) problem.
When either of objective function or constraints is nonlinear, the optimisation

problem is defined as nonlinear programming (NLP) problem.

Mathematically, a non linear programming problem can be expressed as:

Optimise Z = f (x1,x2,.. .,Xn) (3.1
subject to
g1 (X1,%2;+- ., %n) ) ( by
82 (x1,%2,.. . %) by
. & = ﬁ .
. = .
gm (X1%2,- - %n) L bm

where the variables (x;,x3,...,%,) are non linear in nature.

m-1
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The presence of constraints in an NLP problem creates difficulties in finding the
optimum solution. For example, consider some minimisation problem with linear and

non linear constraints as shown in Figure 3-1.

Figure 3-1 Nonlinear programming minimisation problem: (a) inactive
constraints; (b) minimum occurring on a linear constraints, and
(¢) minimum occurring at the point of intersection of two

constraints

The feasible region is shown shaded. Different objective function contours are
also shown, and the arrows show the direction in which the objective function value
decreases. Each problem has one minimum solution. The simplest situation is shown
in Figure 3-1(a) whefe the constraints are inactive so that the optimum solution is the
same as the unconstrained one, as shown in point A. However, for practical problems
one or more constraints may be active so that the optimum solution would be at point
B or at point C as shown in Figure 3-1(b) and Figure 3-1(c) respectively. Therefore
for practical problems it is better to start with an assumption that at least some of the
constraints would be active and play a. role in deciding the optimal solution.
However, if we can identify, a priori, inactive constraints from the constraints set,

then we can omit them and simplify the NLP problem to that extent.
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3.3 CLASSICAL OPTIMISATION

" The classical methods of optimisation are useful in ﬁndi’hg the optimum
solution of continuous and differentiable functions. These methods are analytical and
make use the techniques of differential calculus in locating - the optirhum points.
Constraints may be absent or present; accordingly there will be unconstrained
optimisation and constrained optimisation. Since some of the practical problems
involve objective functions that are not continuous and or differentiable, the classical
optimisation techniques have limited scope in practical applications. However, a
study of the calculus methods of optimisation forms a basis for developing most of

the numerical techniques of optimisation.

3.3.1' Unconstrained Optimisation

1. Single Variable Objective Function
\

The simplest unconstrained optimisation problem is a single variable objective
function for which Theorems 3.1and 3.2 give the necessary and sufficient conditions,

respectively.

Theorem 3.1. If a function is defined in fhe interval a < <, and at x=x* (a<x*<b)
if the derivative df{x)/dx=f"(x) exisfs as a finite number at x=x*, then f"(x*) =0 gives a
minimum, maxirhum or stationary point. »

Theorem 3.2. Let f'(x*) =f""(x*) = ....=/"/(x¥)=0, but *(x*) 0. Then f{x*) is:
(8 A minimum value of f{x) if * (x*¥)>0 and n is even, | '
(b) A maximum value of f{x) if /* (x*)<0 and n is even,
(c) Neither a minimum nor a maximum if n is odd.

(Note: the superscript *, denotes an optimum value, either the minimum or the

maximum value).

Example 3.1
Determine the maximum and minimum values of the function:
flx) =12x" — 45x* + 40 x* +5

m-3
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Solution:

Since f'(x) = 60 (x* -3x° + 2x*) = 60 x* (x-1) (x-2), the value f* (x) =0 at x =0, x =1,
and x = 2. ‘

The second derivative is

F7(x) = 60 (4x> — 922 + 4x)

Atx =1, f”’(x) = -60 and hence x = 1 is a relative maximum. Therefore,

Srmax =flx=1) =12

Atx=2, f”(x) =240 and hencex=2isa relafive minimum. Therefore,

fonin = fx=2) =-11

Atx=0, " (x)= 0 and hence we must investigate the next derivative.

17(x) = 60(12x* — 18x+4) =240 at x =0

Since f”’'(x) #0 at x=0, x= 0 is neither a maximum nor a minimum and it is an

inflection point.

2. Multiple Variable Objective Function
If the objective function has several variables, say #, giving objective function
Z = flx1,%2,. . -5%n) | (32)
- then the necessary and sufficient conditions are given by Theorem 4.3 and 4.4

respectively.

Theorem 3.3. If an extreme point (minimum or maximum) exist for a function

f(x1, X2,...,%) and also the first partial derivatives exist at this point, then at this point
%) : '
o _o _o 0 , A _ (3.3)

o, ox, | ox

n

Theorem 3.4. The matrix of second partial derivatives (Hessian matrix) of f(x;,
X2,...,X) evaluated at the extreme points is:
a) Positive definite for minimum solution, and

b) Negative definite for maximum solution.

The Hessian matrix of f{x;, x,...,x,) having second partial derivatives is given by

-4
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[ &S erl )

ox  oxox,  owox,
' f O f o' f
Hr= | ox,ox, ax, | oxox, (3.4)
>y &f  &f
| Ox,0x, Ox,0x, ot |

One simple test to know whether the matrix is positive definite or negative

definite of Hessian matrix, 4 of order 7 is by evaluating the determinants of matrix.

A=|ay] (3.5)
Ay = ay Ay (3.6)
ay a4y

ay Gy G

As=la,, ayn ay - 3.7

a, ap a,,
a4y Gy .. 4

fom : 6.9
anl anz ann .

The matrix 4 will be positive definite if and only if all the values 4,, 4,, 43,
...A, are positive. The matrix 4 will be negative definite if and only if the si_gﬁ of 4;is .
(-1Y for j = 1,2,...n. If some of the 4; are positive and the remaining A; are zero, the

matrix 4 will be positive semidefinite.

In case of a function of two variables f{x,y), The Hessian matrix may be
neither positive definite nor negative definite at a point (x*, y*) at which (Jf/0x) and
(9f10y) are equal zero. In this case the point (x**) is called a saddle point. The
characteristic of saddle point is that it gives a relative minimum with respect to one
- variable while it gives a relative maximum with respect to another variable, as shown

in Figure 3-2 for function, Z = x*-y?, with saddle point at x =0, y = 0.

-5
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z
Saddle

Figure 3-2 Saddle point of function Z = x* -yt

Example 3.2
Find the extreme points of the function

Slx1,x2) = X/ + X2 42, 2 +4x,246

Solution:
The necessary conditions for the existence of an extreme point are

gji =3x; + dx; = x;(3x +4) =0

Xy

aanz=3x22+8x2 =X 3x2+8) =0

These equations are satisfied at the points

(0,0), (0,-1), (-3,0) and (-5, -3)

To find the nature of these extreme points, We have to use the sufficiency conditions.

The second-order partial derivatives of fare given by

2
0 j:=6x1+4
X)

2
0 ]:=6X2+8
ox,

2

o°f -0
ox, x,

-The Hessian matrix of f'is given by
Je 6x, +4 0
0  6x,+8

-6
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6x,+4 0

IfJi=16x+4 dJ,=
: |X1 lan 2 0 6x, +8

I,_ the values of J1 and J; and the nature of

the extreme point are as given below:

Table 3-1 Value and nature of extreme points

Point X ValueofJ;  ValueoflJ, NatureofJ Nature of X F(X)

(0,0) 4 32 ~_ Positive Relative 6
definite ‘minimum '
(0,- ¢ 4 -32 Indefinite Saddle point 412
-4.0) -4 -32 Indefinite Saddle po‘ihf 194
32 . . 27
(4,-8) -4 32 Negative Relatlve‘ 2
definite maximum -

3.3.2 Constrained Optimisation
In constrained optimisation, ‘the objective function of several variables has
constraints, which may be equality constraints, or inequality constraints.
1. Equality constraints. - .
The problem is defined with only equality symbol in constraints. Naturally‘, number of
constraints is less than number of variables. When number of constraints () is more
than number of variables (n), the problem is over defined andither'e' is no solutibn.
When m = n, the problem has a unique solution. It is only when m<n that the problem
has many solutions and the question of optimisation arises. Of the sevérél methods
available for sdlution of this problem, the methgds of direct substitution and
Lagrange multipliers are discussed herein:
a. Method of Direct Substitution
The m equality constraints are simultaneously solved and any m variables are
expressed in terms of remaining n-m variables. These express'ionsv are then
substituted in the objective function so that the objective function becomes an
unconstrained one in n-m variables. This optimisation problem then can be solved

by using the method using for unconstrained optimisation problem.

-7
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Method of direct substitution appears to be quite simple in theory, but when the
constraints are nonlinear as usually is the case in design of water distribution
networks, it is not easy to solve m equations simultaneously and. express m

variables in terms of remaining »#-m variables.

Example 3.3

Solve the following optimisation problem by direct substitution. ’

Minimise Z = 2x; + 9x1x; + 20x3> - ~(Ey)
subject to

x1-3%2+2%3 = 6 (B
x2+3x3=4 (E3)

Solution:

From equation (E3), ,

xp=43x; | * I (Es)
and from equation (E;)

x1=6+3(4-3x3) -2x3

or x1=18-11x3 ' - (B9

Substituting the values of x; and x; in the objective function and simplifying, we

get
Minimise Z = 684 — 904x; + 317x> ' (Es)

Optimisation problem of equation (Eg) is now a single variable, unconstrained
one. Therefore, dZ/dx; = 0 gives

904 +2 (317 x3) =0

or x3* = 1.426

Substituting the value of x3*, we get x;* = 2.315 ; xp* = -0.278 and Z* = 39.508

Since d*Z/dx,* is positive, the stationary point gives the minimum value. Thus,
minimum value of Z, Z* = 39,508
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b. Method of Lagrange Multipliers
In Lagrange multiplier method, an additional variable is introduced for each
constraint and the original problem is converted to: ‘
Optimise L =f (x1,%2,...%n) + Ai[g1 (¥1,2,.. . %a) = b1] + Zalg2 (1,25 %) — B2]
+. .. + Amlgm (x1,%2, .. -sXn) — D) (3.9

in which L is a Lagrange function of xyx,....%,, A1, 42,...., Am, With n-Fm
variables.

Equation above can be expressed in a concise form as
Optimise L =£(x) + »_A,[g,(x)],i=1,....n (3.10)
j=1

In Lagrange multiplier method the original constrained problem of » variables
and m constraints is converted into an unconstrained one with » + m variables.

This problem now can be solved by solution method of unconstrained problem.

The condition 8L/04; =0, j = 1,..., m will ensure that the constraints are satisfied

at the optimum point.

Example 3.4
Find the maximum of the function f{X) = 2x;, + x, + 10

subject to +
gX) =x +2x" =3
using the Lagrange multiplier method.

Solution:

The Lagrange function is given by:

LA =2x1+x+10+ A (3 -x1 - 2%%)

The necessary conditions for the solution of the problem are
oL

O 5. a=0
ox,
L 4ix=0
0ox,

-9
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The solution is -

* = xl: _ {2.97
X, 0.13
A¥=20
The application of the sufficiently condition yields

L,-z L, gy

L, Ly-z g,|=0

&n &2 0

-z 0 -1 -2z 0 -1

0 —-4i-z -4x,|=|0 -8-z -0.52|=0
-1 —4x, 0 -1 =052 0O

0.2704z+8+z=0
z=-6.2972
Hence X* will be a maximum of f with f* = fX*) = 16.07.

2. Inequality constraints

Inequality constraints are converted to equality constraints by adding non
negative slack variables s,-2 to constraints with less than equal (3 sign or by
subtracting nonnegative surplus vaﬂabies s,-2 from codnstraints with more than
equal (D sign. The introduction of -s? instead of s; has avoided further
introduction of constraints s; =0. The Lagrange function is now a function of x;, i
=1l,.,m A j=1,..,mands? j=1,.., mif all constraints are inequality
constraints. For a minimisation problem, OL/04; = 0 will ensure that the
constraints are satisfied. From 0L/ds; = 0, we have 24;s= 0, j = 1,..., m. Thus, we
have either 4; = 0 or s; = 0. If 4; = 0 for a particular value of j, that constraint is
inactive, thus, nonbinding at the optimum point, if s; = 0, that constraint is active,
thus, binding at the optimum point. The necessary conditions to be satisfied at the

constrained minimum point can be expressed as
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N a . ) ’ ) . .
Yy 524,Bi0i=1,...,n (3.11)

ox; e, ~ Ox
where:
A>0,je Ly

In which J; is a set of active constraints. These conditions are known as
Kuhn-Tucker. conditions. These conditions are necessary but not sufficient to
ensure a relative minimum. However, for convex programming: ’prdblems, which
.have only one minimum, Kuhn-Tucker conditions are necessary and also
sufficient to ensure global minimum.

If the set of active constraints is not known, as generally would be the case in

practice, the Kuhn-Tucker conditions can be expressed as

o, |
L sy a,Blm,i=1, 0 (3.12)
X

Jjed, xl‘ -

where: 4gi=0,g;<0,and 4>0,j=1,...,m

Example 3.5

Consider a problem:

Minimise f{x;,x%) = (x1 — 3)° + (x;— 8) 2

subject to

gi(x1.x2) = x> +x, £ 2

ga(x1,62) =3x1 + X £ 12 .

Solve the i)roblem using Kuhn Tucker conditions.

Solution:

The minimisation problem can be written as:

Minimise Z = f{x;) = (x; — 3)* + (xo— 8) 2 (E1)
subject to:. :

gi(x) = x> +x-2<0 ; (E2)
2(x)=3x1+x,—-12<0 ‘ . (Ea)
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The Kuhn Tucker conditions are :

g—i+ A —Zi—:+zz %‘i—j= 0, =1,2

Thus,-. .

2(x1-3) + A1 (-20) + A2 (3) =0 . | | (Es)
2 -8)+ A+ A =0 _ (Es)
4 g=0,j=12

Gives _

Agi=A (z® +x-2)=0 . o (Ee)
Aagr= 2 (3x1 +x2-12) =0 ‘ (E)
g <0,j=12

Gives

i) =2+ 31— 250 | - (Es)
g(x)=3x1+x,—12<0 (Eo)
A 20,j=12 |

Gives 4, =0 _ (E10)
and 4, =0 o | (En)

rl

Simultaneous solution of equation (Eg), ..., (E7) will give the values of x1, x3,
Arand A,. The acceptable values will be those that also satisfy equation (Eg),...,
(En). o

Now, from equa;tion (E¢) and (E7), we have A; =0 org; = 0; and 4, =0, or g = 0.
This gives four combinations:

(1)  A1=0,and A,=0

(2) A=0and3x;+x,-12=0

3)  A=0and-x;”+x,~2=0, and

4 3x+x-12=0and-x’+x,-2=0

- 12
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(1) 4;=0, and 4,=0
- Substituting these values of A; and A,, equation (E4) and (Es) give x; =3 and x, =

8. These values of 4y, A2, x; and x; satisfy equation (Es), (E1o) and (E11) ; but
violate equation (Eo). )
(2) A1=0and 3x; +x; — 12=0

Substituting these values of 4= 0 and A; =1, give x; = 1.5 and x, = 7.5. These
values of 4;, A2, x; and x; satisfy equation (Es), (Eio) and (Eyy) ; but violate
equation (Eg).

(3) =0 and x> +x, -2 =0,

This condition gives x, = x;> + 2 and leads to two solutions:

(a) 41=-0.2136, 4,=0, x;=2.4712 and x,=8.1068; and

(b) 41=10.3666, 1,=0, x;=-2.1947 and x,=6.8167.

Solution (a) satisfies equation (Eg) and (E;;) but violates equation (Es) and (Eo).

Solution (b) satisfies equation (Es), ..., (E11) and gives local minimum solution
Z* =28.3851 ' ‘ '

(@) 3 +x-12=0and x’+x,~-2=0
This condition gives also two solutions:
(2) xi=-5, =27, J1= 18.5714, and A,=-56.5714; and
(b) x1=2, x:=6, ,;= 1.4286, and A,=2.5714.
Solution (a) satisfies equation (Eg), (Eo) and (E1o) but violates equation (Ej;).
Solution (b) satisfies equation (Eg), ..., (Eu) and gives local minimum solution
Z*¥=5.
Thus this optimisation problem has two local optimum solutions.:
(1) x;*=-2.1947 and x,*=6.8167, giving Z* = 28.3851; and
(2) x1*= 2 and x,*=6, giving Z* =5. |

Note that the solutions 1, 2, and 3(a) are infeasible solutions as they violate
one or both constraints. Solution 4(a) satisfies both constraints and thus gives a
feasible solution. However, the solution is not optimal. Solution 3(b) and 4(b)

give local minimum solutions, with solution 4(b) being global minimum.
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Classical optimisation methods have following limitations, i.e.
a. The variable must be continuous. Optimality conditions cannot be
formulated when the function is non differentiable or cc_)nsists of discrete

sets. It cannot also define optimal solution when the function is piecewise

linear. '

b. It is not possible, a priori, to distinguish between points giving maxima,
minima or saddle points; unless sécondary criteria are applied.

c. It is not possible to locate optimai points that occur at points where the
optimality conditions are not satisfied such as the boundary poinfs of a
range of variables. “ |

d. Solutions to optimality | criteria may be unstable when the differential
equations are written as difference equations for obtaining solution with a
computer. The rate of change of Z with respect to any variable x;, i.e. AZ/Ax;
will be very small near the optimum, AZ/Ax; = 0. This dérivative will then
be very sensitive to round off errors that occur in the evaluation of Z. The
computation of the optimum value will then be inherently inaccurate
estimate of the true optimum.

e. It fails to provide practical means td define the sensitivity of the solution to

changes in the values of the variables.

3.4 NUMERICAL METHODS _ . '

Since it may not be possible to tackle an NLP problem directly by manipulating
the constraints, the NLP solution methods that based on numerical methods of
optimisation is applied. In the classical optimisation method, the optimum values of
decision variables are achieved and then also the optimﬁl solution. However, in
numerical methods, the opposite procedure is followed. First, trial solution is selected
and check for optimality. If it is not optimal, it successively improved to obtain the
optimal solution. |

In optimisation problem of water distribution network, the objective function is to

minimise the cost of project. In this case, the minimisation problem can be broadly

classified in two categories:
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1.  Unconstrained minimisation problems and
2. Constrained minimisation problem.

Even though praqtical design problems are usually constrained, they can be
converted to unconstrained so that powerful and convenient methods of
unconstrained minimisation can be used. Furthermore, unconstrained minimisation
methods provide basic understanding that is very helpful to study constrained
minimisation methods. The various methods of solving NLP problems are presented
in tree diagram in Figure 3-3. '

Non Linear Programming
Techniques
I

1 . | |
Unconstrained Optimisation Constrained Optimisation
Techniques Techniques

‘ Direct Search MethodT ' Direct Method J
‘ Descent Method j ‘ ! Indirect Method J

Figure 3-3 Division of Non Linear programming Teéhniques

3.4.1. Unconstrained minimisation _ _
Methods available for solving unconstrained minimisation problems can be
classified in two categories, i.e. Direct Search method and Descent method

Table 3-2 °~ Unconstrained Minimisation Methods

Direct Search Method ’Descent A{ethod
Random Search Method Steepest Descent (Cauchy) Method
Grid Search Method Fletcher Reeves Method ‘
Univariate Method Newton’s Method
Pattern Search Method Marquardt Method

- Powell’s Method Quasi-NewtonMethod

- Hooke-Jeeves Method .1 - Davidon-Fletcher —-Powell Method
Rosenbrock’s Method | - Broyden-Fletcher-Goldfarb-Shanno
Simplex Method Method

m-15
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3.4.1.1 Direct Search Method _
Direct Search Methods require only objective function evaluations, and do not
need the partial derivatives of the function in the finding the minimum. Therefore,

they also called non gradient methods. Some of them will be reviewed as follows:

a. Univariate Method.

In univariate method, only one design variables is changed at a time whilé other
variables are held constant. Thus, from a starting solution of an n-variable problem,
any n-1 design variables are held constant, th76 remaining variables is changed and its
improved value is obtained. Similarly, other design variables are also improved
sequentially to complete one optimisation iteration. Iterative procedure is cc;ntinued
until the optimal solution of desired accuracy is obtained. |

Univariate method is quite simple and can be easily Emplemented. Howevér, it
has a tendency to oscillate with steadily decreasing progress towards the optimum;

-thus, it does not converge rapidly. In some cases it may not even converge.
b. Pattern Search Method | ' |

In univariate method, the minimum is searched along direction parallel to the
coordinate axes. However, convergence is slow as the optimum point is approached.
In pattern search methods, the directions of search are changed favourably so that
convergence characteristics are improved. Hooke and Jeeves method explores moves
in different directions to asses the local behaviour of the objective function; and
decides the pattern search direction. Powell’s method is a widely used direct search
method based on conjungate directions. It has quadratic convergence; thus, it rapidly
converges to the optimal solution.

c. Rosenbrock’s Method of Rotating Coordinates

In this method, the first axis is oriented t;)ward its best local direction and all

other axes are made mutually orthogonal and normal to the first one. Since the

coordinate system can be suitably rotated it can follow curved and steep valleys,

thereby improving convergence.

d. Simplex Method
Simplex method in NLP is based on the concept of simplex, a geometric figure

formed by set of n+1 points in n-dimensional space (In two dimensions the simplex is

oI- 16
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triangle, and in three dimensions it is a tetrahedron). For an n-dimensional problem,
n+l points are selected to form a .general simplex. The values of the objective
function at the n+1 vertices of the simplex are then compared and the vertex having
the maximum value of the objective function in a minimisation problem is replaced
by another vertex through operations of reflection, and expansion or contraction, to
obtain revised simplex. If H is the point corresponding to the highest value, we can
expect vertex R, obtained by reflection of H on the opposite face, to have the smallest
value. (Reflection point R lies on the other side of Gy the centroid of all other n points
except point H). When f{R) <f{H), to enhance convergence, we may shift point R to a
further point N through an operation termed expansion by moving aiong the direption
from G, to R, using expansion coefficient >1 ( ratio of distance between N and G, and
distance between R and G,). If AN) < f(R)- we select point N, howevef if AN) >A(R) the
expansion process is not successful and we retain point R to form revised simplex. If
the reflection process gives f{R) _>f(H) we contract the simplex through an operétion
termed contraction using contraction coefficient (ratio of distance between N and G,
and distance between R and G,) lying between 0 and 1. The iterative procedure of
revising simplex is continued until convergence is reached and theoretically the
simplex collapses into a point, the optimal point. In practice, however, the method is
assumed to have converged when the standard deviation of the function at the n+1
vertices of the current simplex is smaller than some preselected small quanﬁty. When
the convergence is satisfied, the centroid of the latest simplex is taken as the optimum
-point. ‘ y

3.4.1.2. Descent Method o .

The descent methods require, in addition to objective function, evaluation of
the first and possibly higher order derivatives of the objective function. The
derivatives provide more information about the function being minimised; therefore,
descent methods are more efficient than the direct search methods. The descent
methods are also known as gradient methods. _

The general procedure of minimisation of unconstrained, and also constrained
problem involves following steps:

Step 1. Start with an initial trial point 1x;, i = 1,2,..., n.

CI-17
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Step 2. Find a suitable direction 4S;, i=1,2,...,n (the prefixing subscript k represent
iteration number, 1 to start with) points in the ggneral direction of minimum.
Step 3. Find a suitable step length A4 to move along the direction S;, i=1,2,...,n
Step 4. Obtain new approximation x+1x; given by
i Xi=i A kSi, =120 (3.13)
Step 5. Test whether g+1x;, i =1,..., n is optimum. If optimum, stop the procedure,
otherwise set new k=k+1 and repeat step 2 quards. |

The iterative procedure is valid for unconstrained as well as constrained
optimisation problems. In iterativé procedure it is necessary to:
1. Select an initial point
2. Select suitable direction
3. Select suitable step length
4. Decide a criterion for termination of the iterative procedure. _

The efficiency of the optimisation procedure would dépend on the efficiency of
s‘election of these parameters.
1. Selection of initial trial point

Selection of an initial trial point, i.e. selection of an initial feasible solution does
not pose any problem in engineering. For example, in water distribution network,
larger diameter can be adopted so that head losses are small and water v_vbuld reach
all demand nodes. Even tough the iterative procedure will work from any-feasible
solution, it would be better if the initial solution were close to the minimum solution
so that the number of iterations in the iterative procedure is reduced.
2. Select suitable direction _

The direction of search can be decided by several methods. These methods use
gradient of the objective function Vf defined as:

of / ox,

Vf= V% - | (3.14)

of /ox,

The gradient is an n-component vector having an important propeity that the

function increases at the fastest rate along the gradient direction. Thus, the gradient
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direction is the direction of the steepest ascent. This property is a local property, and
the direction of the steepest ascent generally varies from point to.point. However, by
moving in steps, it is possible to reach local maximum solution., |

Negative of the gradient vector, -V/ denotes the direction of the steepest descent
and it used to determine the search direction in steepest descent method for
minimisation of the objective function. Steepest descent method has several merits
and limitations; and several approaches have been suggested to improve convergence
characteristics of the steepest descent métho d.

In a constrained minimisation problem, the direction can be found such that:
a) asmall move in that direction does not violate any constraint;
b) the value of the objective function can be reduced in that direction.

A direction satisfying property (a) is called a feasible direction; while that
satisfying both properties (a) and (b) is called a usable feasible direction. If the trial
point gx;, i=1,..., n lies in the interior of the feasible region, the usable direction is
given as: A
oSi=-Vf (x) | - (3.15)
the direction of the steepest descent. However, when the trial point lies on the
boundary of the feasible region, one or more of the constraints are critical. If the
critical constraints are linear, the search direction lies in the constraint surface, but if
the critical constraints are nonlinear, the search directi;n satisfying both properties (a)
and (b) has to be found by trial and error. o
3. Select suitable step length _

After deciding the search direction 4S; at any point zx;, we have to determine suitable
step length ;4 to obtain the next point 4+1x;. There are several ways of computing the
step length. One method is to determine optimal step length ;A* which minimises f{ix;
+ 448 such that the new point given by 1x; lies in the feasible region. Another .
method is to choose the step length by trial and error so that the objective function
reduces withou violating any of the constraints. If the trial step length increases the
value of the objective function the step is reduced to half. If the trial step length
violates a constraint, the reduced step length can be optimally selected so that the

violated constraint is just justified and becomes critical. Since no constraint will

m-19



Techniques for Solving Non Linear Programming Problems

become exactly zerb while working with a computer, a constraint can be considgred
active if '
| gi(xi) — b | < &, i =1,...,n; j=1,....m . (3.16)
in which & is a small number of the order of 102 t0 10°%. '
4.  Decide a criterion for termination of the iterative procedure.
The iterative procedure can be stopped when it converges to the optimal
“solution. The optimality of the solution .can be checked by testing the Kuhn-Tucker
conditions. Alternatively, we can perturb the ;)ptimal design variable x;*, i=1,...,n; by
changing each of the design variables, one at a time, by a small arnount; positive as
well as negative, and verify that Z* does not decrease in a minimisation problem
without violating any of the constraints. |
In the iterative procedure we can check convergence to the optimal (minimum)
solution by testing
oS () = S(30)
S ()

in which & is a predetermined, small functional change value of the order of 107 to

<&, =l | 3.17)

10°. Another convergence criterion can be ,
| 0 — k1% | < &, i =1,...,n . (3.18)
in which &, is a predetermined small value of the order of 10%t0 106, .
During the iteration procedure, if all given constraints become active at a
point, the solution at this point is optimal and the iterative procedure is stopped.
Several variations of the general descent method have been suggested for
minimisation of unconstrained problems. The steepest descent method uses the
negative of the gradient vector as a suitable direction. Conjugate gradient method
(Fletcher-Reeves method), Quasi Newton -method and variable metric method

(Davidon-Fletcher-Powell method) are some variations of descent method with

improved convergence characteristics.

3.4.2 Constrained Minimisation

Method available for constrained minimisation problems can be classified into

two categories:
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(1) Direct method and
(2) Indirect Method
In Direct Method, the constraints are handled explicitly while in most of

indirect methods, the constrained minimisation is changed to an unconstrained one.

Table 3-3 Constrained Optimisation Techniques

Direct Methods Indirect Methods

Random Search Method ) - Transformation of variébles technique

Heuristic Search Method Sequential unconstrained  minimi-
- Complex method sation techniques

Objective and constraint approxifnation Methods - Interior penéity function method
- Sequential Linear Programming Method - Augmented Lagrange multiplier
- Sequential Quadratic Programming Method method

Method of Feasible Directions
- Zoutendijk’s Method
- Rosen’s gradient projection method

Generalised Reduced Gradient Method

3.4.2.1 Direct Method
In Direct Method, there are four categories that available:
1)  Heuristic Search Method.
2)  Objective and Constraint Approximation Methods
3) Method of Feasible Direction
4)  Generalised Reduced Gradient Method

Those methods are described as follows:
1) Heuristic Search Method.
Heuristic Search Method are mos_tly based on intuition and do not have much
theoretical support. However, they are simple and applicable to specific problems.
An example of Heuristic method is Complex method that is suggested by Box

(1965). This method is an extension of simplex method of unconstrained
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optimisation. It does not require the derivative of the objective function and
constraints, and thus is comparatively very simple. However, it cannot handle
nonlinear equality constraints but can handle side constraints in which the decision

variables are restricted by lower and upper bounds. ,

In simplex method for n-dimensional unconstrained minimisation problem a
simplex (geometrical figure) with n+1vertces is generated; while in complex method
for n-dimensional constrained minimisation problem, a complex geometrical figure
with & =n+1 vertices is generated, each vertex representing a feasible solution
satisfying all constraints. The values of the objective function at all k£ vertices are
obtained, comparedA and the vertex H with the value of the function is located. It is
then reflected in the opposite face to locate reflection point R. If R is a feasible point
and if AR)<AH) , point R replaces point H to obtain revised complex. If at R,
JSIR)>f(H) or any of the constraints is violated, point R is the remaining k-1 vertices so
that point N gives a feasible solution and fAN) < f{lH). If such a point N cannot be
located, instead of point H, a point with next largest value of the function is selected
for the reflection procedure. The procedure of finding point A with highest value of
the function in the current complex and replacing it by point R or point N to get
revised complex is continued until convergénce is achieved. The convergence is said
to be achieved when either the complex shrinks to a specified small size or the

standard deviation of the function value becomes sufficiently small..

2) Objective and Constraint Approximation Methods

There are two examples of objective and constraint approximation methods, i.e.:
a)  Sequential linier programming method
b) Secjuential quadratic programming method

Those methods are described as follows:

2.a Sequential linier programming method :
Sequential Linear Programming (SLP) method also known as Cutting Plane
method, was oﬁginally presented by Cheney and Goldstein (1959). It linearises the

constraints at selected point through Taylor’s series. These linearised constraints,
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which approximate the feasible region by linearised envelopes, are then used to solve
the LP problem. The iterative procedure is continued to find a sufficiently accurate
solution. This method is efficient and can use the available LP}\algorithms. However,
all the optimum solutions of the approximating LP problems lie in.the,infeasible

region. Thus, the final optimum solution depends upon the tolerance limit and may

require adjustment in practice.
The SLP algorithm can be stated as follows:

1. Start with an initial point and set the iteration number as i=1. The point X; need |
not be feasible.

2. Linearise the objective and constraint function about the point X; as

SX) = LX) + V £ (X)) (X-X)) | - (B19)

g (%) ~gX) +V g (X)' (X-X)) (3.20)

FaX) ~ () + V i (X)T (4-X0) @2
3. Formulate the approximating linear programming problem as

Minimise f{X}) + V £T(X-X)) - o 322

subject to

g(X) +V g ()" (X-X) <0, j=1,2,....,m | -
X)) + V e ()T (X-X) <0, k=1,2,....p

4. Solve the approximating LP problem to obtain the solution vector X

5. Evaluate the original constraints at Xj., that is , find
g(Xi1), j=1,2,..f and h(Xin1), k=1,2,...,p
If g(Xi1) < € for j=1,2,..,m and |h(Xi1)] < & &k =1,2,..,p, Where ¢1is a prescribed
small positive tolerance, all the original constraints can be assumed to have been
satisfied. Hence stop the procedure by taking
Xopt = Xirl |

If gi(Xi1) > & for some J> or |h(Xi+1)| > & for some %, find the most violated

constraint, for example, as

gXen) = max [ g(Xie)] | . (323)

Relinearise the constraint g;(X) < 0 about the point X+, as
giX) ~geXin1) +V g (K1) (X-Xe) < 0 (3.24)
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and add this as the (m+l)th inequality constraints to the pfevious LP problem.
6. Set the new iteration number as i=i+1, the total number of constraints in the new

approximating LP problems as f+1 inequalities and p equalities, and go to step 4.

The sequential linear programming method has several advantages:

I. It is an efficient technique for solving convex programming problems with nearly
linear objective and constraint functions '

2. Each of the approximating problems will be a LP problem and hence can be
solved quite éfﬁciently. More over, any two consecutive approximating LP
.problems differ by only one constraint, and hence the dual simplex method can be
used to solve the sequence of approximating LP probléms much more efficiently.

3. The method can easily be extended to solve integer programming problems. In

this case, one integer LP problem has to be solved in each stage.

Example 3.6

Minimise f{x1,%2) = x| — x2

subject to p

g10x1,x2) = 330" = 200 + 12" = 1 <0 _
using Sequential Linear Programming Method. Take the convergence limit as & =
0.02. A

Note: Since the constraint boundary represent an e_llipsg, the problem is convex

programming problem. From graphical representation, the optimum solution of the

problem can be identified as x1* = 0, x* = 1 and fn = -1.

Solution:

Step 1,2,3:' Although we can start the solution from any initial point Xj, to avoid the
pbssible unbounded solution, we first take the bounds on x; and x; as -2 <xp <2 and-
2 <x,<2 and solve the following LP problem: |
Minimise f'= x; — x : e (B
Subject to

255152
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2 <52

The solution of this problem can be obtained as
-21 .
X= 1: ) ] with f{X) =-4

Step 4: Since we have solved one LP problem, we can take

Xo=Xp= 12
i+1 2 2

Step5: Since g1(X2) = 23 > g, we linearise g1(X) about point X; as - |
gi(X) ~gi(Xp) +V g (X)" (X-X5) <0 (E2)
as o

9
)23, 1 =(6x,-2x,)|, =-16

iy,

%
ox,

—

= (=2x, +2x, )|x2 =8

So the above equation becomes
g1(X) =-16x) +8x,-25<0
By adding this constraint to the previous LP problem, the new LP problem becomes:
Minimise f=x; — x, (Es)
subject to: |
2<x, L2
2<x52
-16x; + 8x2—25<0
Step 6: Set the iteration number as i = 2 and go to step 4

Step 4: Solve the approximating LP problem stated in equation (E;) and obtain the
solution

0.5625
Xy = { oo } with f; = f(X3) = -2.5625

This procedure is continued until the specified convergence cﬁteﬁon, 21Xy <¢ in

step 5 is satisfied. The computation result are summarised in Table 3-4.
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Table 3-4 Results for Example 3.6

Iteration | New Linearised Constraint | Solution of the | flXx1) g(Xi1)
Number | Considered Approximating LP

. Problem X,
1 -2 <x; <2 and-2 <x, <2 (-2.0,2.0) -4.00000 | 23.00000
2 -16.0x,+8.0x,-25 <0 (-0.56250,2.00000) | -2.56250 | 6.19922
3 -7.375x,+5.12x,-8.19922 <0 (0.27870,2.00000) | -1.72193 | 2.11978
4 -2.33157x,+3.44386x,-4.11958 <0 | (-0.52970,0.83759) -1.36730 1.43067
5 -4.85341x,+2.73459x,-3.43067 <0 | (-0.05314,1.16024) | -1.21338 | 0.47793
6 -2.63930x,+2.42675x,-2.47792 <0 | (0.42655,1.48490) | -1.05845 | 0.48419
7 -0.4107.1x1+2.1‘1 690x,-2.48420 <0 1 (0.17058,1 .206.60) -1.03603 | 0.13154
8 -1.38975x,+2.07205x,-2.13155 <0 | (0.01829,1.04098) -1.02269 | 0.04656
9 -1 .97223x1+2.04538x2-2.0465.7 <0 |(-0.16626,0.84027) | -1.00653 | 0.06838
10 -2.67809x,+2.01305x,-2.06838 <0 | (-0.07348,0.92972) | -1.00321 | 0.01723

2.b Sequential quadratic programming method

This method has a theoretical basis that is related to:

(@) the solution of a set of nonlinear equations using Newton’s method, and
(b)  the derivation of simultaneous nonlinear equations using Kuhn-Tucker

conditions to the Lagrangian of the constrained optimisation préblem.

(1) Derivation
Consider a nonlinear optimisation problem with only equality constraints as:
Find X which minimises f{X) _ (3.25)

subject to

h(X)=0, k=1.2,...,p.

The Lagrange function, L(X,4), corresponding to the problem of Equation (3.25) is
given by

L=fX)+ fz,‘hk ' (3.26)
k=1

“where /; is the Lagrange multiplier for the Ath equality. The Kuhn-Tucker

necessary conditions can be stated as
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. |

VL=0or Vf+ > Ak, =00r Vf+[4]'A=0 (3.27)
k=1

he(X)=0, k=1,2,....p . - (3.28)

where [4] is an # X p matrix whose kth column denotes the gradient of the function
hx. Equation (3.27) and (3.28) represent a set of n+p nonlinear equations in nt+p -
unknowns (x;, i = 1,..,n and A , k =1,.., p). These nonlinear equations can be solved
using Newton’s method. For convenience Equation (3.27) and (3.28) can be rewrite
as ‘ .

F()=0 | o (3.29)

where

VL X 0 ' |
F={ } _,Y={ } ,0={} (3.30)
’ h (n+p)x1 2’ (n+p)x1 0 (n+p)xi

According to Newton’s method, the solution of Equation (3.29) can be found

iteratively as

Y=Y +AY , (3.31)
with
[VFT AY;=-F(¥) , (332

where Y; is the solutlon at the start of jth iteration and AY; is the change in Y;
. necessary to generate the improved solution, Y , [VF]; = [VF(IG)] is the (n +p) x
(n+p) Jacobian matrix of the nonlinear equations whose ith column denotes the

gradient of the function Fy(¥) with respect to the vector Y. By substltutmg Equation -
(3.29) and (3.30) into Equation (3.32), we obtain

[ViL] [H]} [AX| _ VL ' - -
|:[H]T [0] ]j {M}j { h }j (3.33)
A% = L = 2 639
M= Ao | | (3.35)
where:

[VZL]nx,, denotes the Hessian matrix of the Lagrange fuhction.j The first set of

equation in Equation (3.33) can be written separately as
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[V2L) AX; + [H] ; AL =- VI (3.36)
Using Equation (3.35) for A, and Equation (3.27) for VL;, Equatioh (3.36) can be

expressed as

(VLY AX; + [H] j (1= A) =- Vi - [HI] 4, (337
. which can be simplified to obtain .
(VLY AX; + [H] ; A == Vfj o (339
Equation (3.38) and second set of equations in (3.33) can now be combined as
[[WLTJ [H]] {AX,-}z_ {Vf,} . e
[HY [01], {4m By

- Equations (3.39) can be solved to find the change in the design vector AX; and the

new values of the Lagrangian multipliers 4. The iterative process indicated by

Equation (3.39) can be continued until convergence is achieved.

Now consider the following quadratic programming problem:
.Find AX that minimises the quadratic objective function
Q=Vf AX+ LAXT [V’L] AX L (3.40)
subject to the linear equality constraints
he+ VhT AX=0, k=12, wporh+[HTAX=0 (341

The Lagrange function, L, corresbonding to the problem of Equation (3.40) and
"(3.41) is given by . : ' '
7 P
L=Vf AX+ LAX" [V’L] AX+)" 4, (h, + VA AX) (3.42)
! . k=1

where 4y is the Lagrange multiplier associated with the kth equality constraint.
The Kuhn-Tucker necessary condition can be stated as '

Vf+ VL) AX+ [H] A=0 ' . (343)
b+ VAT AX=0, k=12,...p L (344)

Equation (3.43) and (3.44) can be identified to be same as Equation (3.3 9) in matrix
form. This shows that the original problem of equation (3.25) can be solved
iteratively by solving the quadratic programming problem defined by Equation
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(3.40) and (3.41). In fact, when inequality constraints are added to the original
problem, the quadratic programming problem of Equation (3.40) and (3.41)

becomes: .
Find X that minimises Q = Vf* AX+ L AXT [V’L] AX - (3.45)
subject to:

g+ VgiAX<0, j=1.2,.,m
It VB AX=0, k=12,...p

with Lagrange function given by
m 14

L=fX)+ D 08 (X)+Y Ay (X) (3.46)
=l k=1 .

(2) Solution Procedure

As in case of Newton’s method of unconstrained minimisatidn, the solution vector
AX in Equation (3.45) is treated as the search direction, S, and the quadratic
programming subprobllem (in terms of the design vector S) is restated as:

Find § which minimises Q(S) = VAX)" S+ 1 ST [H] § (347
subject to: . . o '

Bgi (X) + Vg, (0'S<0, j=12,.., m

Phe+ VR (X)'S=0, k=12,..,p |

where [H] is a positive definite matrix that is taken initially as the identity matrix
and is updated in subsequent iterations so as to cohverge to the Hessian matrix of

the Lagrange function of Equation (3.46), and f;and S are. constants ﬁsed to ensure

that the linearised constraints do not cut off the feasible space completely. Typical

values of these constants are given by

;  Hg() =<0
B ifgX) =0
The subproblem of Equation (3.47) is a Quadratic programming problerh and can

be solved by any available methods. Once the search direction, S is found by

solving the problem in Equation (3.47), the design vector is updated as

B09; = { (.49)
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) _X;'.H = X/ + OL*S (3.49)
where o* is the optimal step length along the direction S found by minimising the

function (using exterior penalty function approach):
m ’ p -
$=fX) + DA, (max[0, g; D+ Ay [, (X)] (3.50)
i=1 k=)
» with

{ lﬂj | ,J =1,2,.., m+p in first iteration '

- (3.51)
Max {| 41,0.5(4’1 41)} in subsequent iteration

and 4’ = J; of the previous iteration. The one dimensional step length a* can be
found by any of methods related to one dimensional optimisation. ,

Once X is found from Equation (3.47) for next iteration the Hessian matrix [H] is
ﬁpdated to improve the quadratic approximation in Equation (3.98). Usually, a

modified BFGS formula, given below, is used for this purpose
[HPPTIH], p"

[(His) =[Hi] - PTIH P | PP (3:52)
Pi=Xim - X; B (353)
7= 0.0;+ (1- O[HP; S (35
0= Vi LXiv1,Ais1) - Vi L (X ) (359
The value of &will be:

a) 1.0 if  P'Q,202P[H,]P, ,or “ -~ (3.56)
b) Po[zp]fff ) if P'Q, <02R[H,]A,

where L is given by Equation (3.46) and the constants 0.2 and 0.8 in Equation

(3.56) can be changed, based on numerical experience.

Example 3.7

Find the solution of the problem _ o '

Minimise f{(X) = 0.1 x; + 0.05773 | (E1)
subject to |
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g = 20,0390 41 o (E2)
)Cl x2 ;

2(X)=6-x <0 o (Es)

&X)=7T-x =<0 ' (Es4)

using the sequential quadratic programming technique.

Solution: ‘
Let the starting point be X7 = (11.8765 ' 7.0)" with g, (X1) =g3 (X1) =0, g2 (X1) =-

5.8765, and f (Xi) = 1.5917. The gradients of the objective and constraint functions at
X, are given by ‘ .

ooy 01
X =10.05733

-0.6 ‘
— —0.004254
= xl =3 '
VaiX) =1 _ g 3464 {- 0.007069}
- 2
X X,

Vega(Xi) ={_01}, Vgs(X1) ={_01}

We assuming the matrix [H;] to be the identity matrix and hence the objective
function of Equation (3.47) becomes - .

O(S) = 0.1 51 + 0.05773s; + 0.55;% + 0.55, | (Es)
Equation (3.48) gives 5 = f; = since g, =g3 =0 and £ = 1.0 since g, <0, hence the

constraint of Equation (3.47) can be expressed as

g1 = - 0.004254 5, — 0.007069 s, <0 ' (Ee)
&= -58765 -85 <0 : (E7)
g3=-5 =0 . (ES)

We solve this quadratic programming problem directly with the use of the Kuhn —
Tucker conditions. The Kuhn Tucker conditions are given by |

00 . Og;
0s, ; J as~l _ (Eo)
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852 =] /1’ aij =0 : E10)
2g=0 ,j=1.2,3 o (Em)
g<0 ,j=123 (Er2)
g =0 ,/=1.23 (E3)
Equaﬁons (E9) and (E0) can be expressed, in this case, as

0.1+5—0.004254 A, - =0 o (E1s)
0.05773 + 5, — 0.007069 4, - A3=0 (Eis)

By considering all possibilities of active constraints, we find that the optimum
solution of the quadratic programming problem is given by |

s1* =—10.04791, s;* = 0.02883, A;* =12.2450, A,* =0, A3*=0

The new design vector, X, can be expressed as ’

11.8765 — 0.04791a}

X=Xj+oS=
7.0+ 0.02883cx
where a can be found by minimising the function ¢in Equation (3.50)

¢=0.1(11.8765 — 0:047910:) + 0.05773 (7.0+0.02883c)

0.6 N 03464 o1
11.8765-0.04791c 7.0+ 0.02883a¢

+12.2450 (

By using quadratic interpolation technique (unrestricted search method can also be
used for simplicity), we find that ¢ attains its minimum value of 1.48 at a* = 64.93,

which corresponds to the new design vector
8.7657
X2 =
8.8719 .
with f{X3) = 1.38874 and g1(X>) = 0.0074932 (violated slightly). Next we updaté the

matrix [H] using Equation (3.52) with

L =0.1x+ 0.05773x, + 12.2450 (%+ 0.3464. -0. 1)

Xy )
oL
VL= {0 Ly g 13470,
_?£_ ox, X
ox,
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and 2L =0.05773 - 22217
X, . X,
~3.1108
Pi=X-X=
1.8719
0.00438] [ 0.04791 ] _[-0.04353
Qi =V, L(X) = - =
0.00384] |-0.02883] | 0.03267

PT[H\] P, =13.1811, BT Q; =0.19656

This indicates that BT Q; <0.2 BT [H,] P, , and hence @is computed using Equation
(3.56),as

(0.8)(13.1811)

= =0.81211
13.1811-0.19656

- 0.54914 |.
0.0, +(1-6) [Hi] P1 =
=60,+(1-9) [ IA] 1 {—0.32518}

Hence

0.2887 0.4283
[Hy] =
0.4283 0.7422

We can now start another iteration by defining a new quadratic .proéfahlming
problem using Equation (3.47) and continue the procedure until the optimum solution
is found. Note that the objective function reduced from value of 1.5917 to 1.38874 in

one iteration when X changed from X, to X5.

3) Method of Feasible Direction
The methods of feasible directions are based on selecting usable feasible direction

and determining the proper step length. The methods that adopt this concept is

Zoutendijk’s method and Rosen‘s gradient projection method..

3.1 Zoutendijk’s method
Algorithm of Zoutendijk’s method is stated as follow:
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Step 1: ‘
Start with an initial feasible point X; and small numbers €;, & and g3 to test the
convergence of the method. Evaluate X)) and gj(X1),j = 1,2,...,m. Set the iteration
numberasi=1. - o ’

'Step 2:

If g(X) <0, = 1,2,...,m (i.e. X; is an interior feasible point), set the current search
direction as : »

5= -VfX) | . (3.57)
Normalise S; in a suitable manner and go to step 5. If at least one gi(X;) = 0, go to step
3.

Step 3:

Find a usable feasible direction S by solving the direction-finding proble'm:

Minimise -o ‘ ' ' (3.58a)
subject to: ‘ '

S"Vg(X)+ 0,0 <0, =1,2,..p | T (3.58)
STVf+ o <0 | (3.58¢)
-1 <5 <1,i=1,2,..n ' (3.58d)

where s; is the ith component of S, the first.p constraints have been assumed to be
active at the point X; ( the constraint can always be renumbered to sétisfy this
requirement), and the values of all 6; can be taken as unity. Here o éan be taken as
additional design variable. |

Step 4: _

If the value of o* found in step 3 is very nearly equal to zero, that is, if a* < g,
terminate the computation by taking Xop: & X;. If o* > €1, go to step 5 by taking S; = S.
Step 5: o N ' -

Find a suitable step length 4; along the direction S; and obtain a new point X as

X1 =Xi+ A Si ' (3.59)
There are 2 methods of finding the step length 4., i.e. to determine an optimél step
length (4;) that minimise f{X; +AS;) such that the new point Xy lies on feasible
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region. Another method is to choose the step length (4;) by trial and error so that it

satisfies the relations

SXit iSi) < XD

g X+ 4:8)<0,/=12,..m

Step 6: ,
Evaluate the objective function f(/‘(;+1)
Step 7: "

Test for the convergence of the method. If

{f(x,-} - ){gx){ <erand X, — X, S&

Terminate the iteration by taking Xopt = Xiv1. Otherwise, go to step 8.-
Step 8:

Set the new iteration number as i = i + 1, and repeat from step 2 onward.

¥

Example 3.8 . A
Minimise f{x,x2) =x2+x° - 4x,-4x; + 8
subject to:

g, ) =x1+2x-4<0

0 ‘ .
with the starting point X; = {0} . Take €, =0.001, &, = 0.001, and &, = 0.01

Solution:
Step 1:

0
AtX = {}
0

ﬂXl) =8 and g1(X1) = -4
Iteration 1

Step 2:

Since g1(X1) <0, we take the search direction as

(3.60)
(3.61)

(3.62)
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of 1 ox, 4
Sy =-VAiX)=- = :
of / ox, X, 4 ’
o o 1
This can be normalised to obtain S, = {1}

Step 5: .

To find the new point X5, we have to find a suitable step length along S;. For this,
minimise fX;+AS1) with respect to A. Here

fIX+A8) =fl0+4, 0+1) =247 - 81 +8

i=0 atA=2
di

) A
Thus the new point is given by X; = {2} and g)(X2) = 2. As the constraint is violated,

the step size has to be connected.

Asgi=gi | 120 = -4 and a1’ =g |12 = 2, linear interpolation gives the new step
length as

glu"gl' 3

ﬂ; _ gl' 4

4
This gives g; | 1210 = 0 and hence X; = {ﬁ}
. 3

Step 6: flXy) =%

Step 7: Here
FACORNICHIN LS I
SN

[X, = X, ={(0-4)" + (0-4)"1"* = 1.887 > ¢,

And hence the convergence criteria are not satisfied.

Iteration 2

Step 2: As g1=0 at X, we proceed to find a usable feasible direction.
Step 3: The direction-finding problem can stated as

Minimise = -o
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subject to :
h+2nh+o+y =3

th-4ntaty=-4

Hhtys=2
trtys=2
t =0
t =0
o =0

where y; to y4 are the nonnegativity slack variable. '
Since an initial basic feasible solution is not readily available, we introduce an
artificial variable ys = 0 into the second constraint equation. By adding the

infeasibility form w = ys, the LP problem can be solved to obtain the solution:
n¥=2

* = 3
f2 10
* = 4
@ 10
* = 17
Y4 10

As a* >0, the usable feasible direction is given by

eIl tI: -1 _J 10
S, t, -1 -0.7
Step 4: Since a* > g, we go to the next step.

1.0 a .
Step 5: We have to move along the direction S, = { 0 7} from the point X; =

1.333
{1 333} - To find the minimising step length, we minimise

SO+ A8) =f(1.333 +4, 1.333-0.74)
'=1.4942-0.41,+0.889 -
As dffdA =2.98 — 0.4 =0 at 1=0.134, the new point is given by
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1.333 1.0 1.467
X3=X+ A5, = +0.134 =
- 11.333 -0.7 1.239
At this point, the constraint is satisfied since g;(X3) =-0.055. Since pointX3 lies in the

interior of the feasible domain, we go to step 2.
1.6 |
The procedure is continued until the optimum point X* = {1 2} and fmin =0.8 are

obtained.

3.2 Rosen‘s gradient projection method | A
Another method of feasible direction is Rosen’s Gradient Projecfion Method.
This method does not reduire the solution of an auxiliary linear optimisation variable
() to find the usable feasible direction. It uses the projection of the negative of the
objective function gradient onto the constraints }hat are currently active. Although the

method has been described by Rosen for genefal nonlinear programming problem, its

effectiveness is confined primarily to problems in which the constraints are all linear.

The algorithm of Rosen’s Method is given as follows:

Step 1:

Start with an initial point Xi. The point X; has to be feasible, that is,

g () <0, j=12,...m . 6
Step 2: | |

Set the iteration number as i=1

Step 3: “

If X; is an interior feasible point [i.e. if gi(X1) < 0 for j= 1,2,..m), set the direction of
search as §; = -VfA{X}), normalise the search direction as

/(X))
Si= ———= : 3.64
o/ x| - G

And go to step 5. However, if gi(X;) = 0 for j =ji, ja, ..., j, g0 to step 4.

Step 4:

" Calculate the projection matrix P; as . ' '
P;=1—NyN,'Np)'N," (3.65)
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where :
Npy=[Vgn(Xy) Vgn(X)) ... Vgp(Xi)] o (3.66)
and find the normalised search direction S; as
_ —RV/(X)) 3.67)
levr ol
Step 5:

Test whether or not S; = 0. If §; # 0, go to step 6. If S; = 0, compute the vector A at X;

as

A= -V, NpY N, VA | (6
If all the components of the vector A are nonnegative, take Xy = X; and stop the
iterative procedure. If some of the components of 4 are negative, find the component
Aq that has the most negative value and form the new matrix N, as

N,=[Vgn Vgp ... Vgp) ~ (3.69)
And go to step 3.

Step 6:

IfS; '¢0, find the maximum step length A, that is permissiblg without violating any of
the constraints as Ay, = min(4y), A« > 0 and k-is any integer among 1 to m other than
J15J25--+5 Jp- Also find the value of df/dA(4,) is zero or negative, take the step ‘length as
Ai = Ay On the other hand, if df/dA(4,,) is positive, find the mirﬁmising étep_ length
Ai* either by interpolation or by any other methods, and take 1,=21;*.

Step 7: ‘

Find the new apprqximation to the minimum as

X =Xi+ 4 Si (3.70)
If A; = Ap or if Ay <A;*, some new constraints (one or' more) become active at X
and hence generate the new matrix N, to include the gradients of all active constraints
evaluated at X+, Set the new iteration number as i=i+1, and go to step 4. If 1; = A;*

and A/* < Ay, no new constraint will be active at X;;; and hence the matrix N, remains

unaltered. Set the new value of i as i=i+1, and go to step 3.
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Example 3.9

Minimise f{x1,x2) = xlz + xzz -2x1-4x2
subject to:

gi(xi,x2) =x1 +4x,-5<0

g2(x1,x2) = 2x) +3x, -6 <0

g3(x1,x2) =-x1 <0

g4(x1,x2) = -x2 <0

1.0
starting from the point X; = {1 0} .

Solution:

Iteraﬁon i=1

Step 3:

Since gi(X1)=0forj=1,wehavep=1landj =1

1 .
Step 4: As N, =[Vgi(X1)] = [4] , the projection matrix is given by

ooy Il o
=T17“[i64 _1] | B l

The search direction S is given by:

oo 1[16 —4][0] _[-%]_[-04707
TT17l-4 1 |2 z (] 01177

As

A = 2x, -2 |0
A% = 2x, -4 xl_ -2

The normalised search direction can be obtained as

G 1 ~0.4707) _ {-0.9701
' 1047077 +(0.1177)717% | 0.1177 | | 0.2425
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Step 5:

Since S; #0, we go to step 6.

Step 6:

To ﬁ;ld the step length Ay, we set
X= {x‘ }zX, +AS

X3
_ {1 0- 0.97011}
1.0 +0.24251
. Forj=2: .
gax1,%2) = (2.0 —1.9402 A)+(3.0+0.72754)-6.0=0at A=A, = -0.8245
Forj=3: )
g3(x1,%2) =-(1.0-0.9701 A)=0atA=4;=-1.03

Forj=4:

ga(x1,%2) =-(1,0-0.2425 ) =0 at A= A4=-4.124
Therefore,

A= A3 =1.03

Also

fX) = fiA) = (1.0 = 0.97014)° + (1.0 + 0.24254)% — 2(1.0 — 0.9701.2) — 4(1.0 +
0.24252)

=0.9998 A% - 0.48501 -4.0

£=1 9996 4 -0.4850
di

%(AM) =1.9996 (1.03) - 0.4850 =1.5746

As dfldA (M) > 0, we compute the minimising step length A,* by setting dffdA = 0.
This gives
1= A= 0.4850
1.9996
Step 7: We obtain the new point X; as |

=0.2425

~

1.0 -0.9701| fo.
X=X, + IuSi= 10,2425 0.9701| _]0.7647
1.0 0.2425 1.0588
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Since A; = A4;* and A;* < Ax, no new constraint has become active at X5 and hence the

matrix N; remains unaltered.

Tteration i =2
Step 3:
Since g1(X2) =0, we set p=1,j; =1 and go to step 4.

1 .
Step 4: N, = [4] , the projection matrix is given by

1116 -
P, = _—
- 171-4 1
2x, —2 1.5294-2.0 —-0.4706
VAX) = %) = =
2x, -4 . 2.1176-4.0 —1.8824
The search direction S; is given by:

1{16 —41(0.4706 0
5= -PVAL)=- ﬁ[-4 1 ] {1.8824} - {o}
Step 5:
Since S; = 0, we compute the vector 4 at Xj as
A= -(N,"Ny)' N TVAXG)

1 A {0.4706

=.—[1 4 =0.4707>0
1.8824

17

~ The non negative value of 4 indicates that we have reached the optimum point and

hence that

0.7647| .
Xopt = XZ = {1 .0588} Wlthf;,pt =.4.059

()] Generalised Reduced Gradient Method

This method is an extension of the reduced gradient method that was presented
originally for solving problems with linear constraints only.

Consider the non linear programming problem: "

Minimise f{X) o | | o | (3.71)
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subject to ,
h(X)<0,j=12,.,m . . (372)
L(X)=0,k=12,...,1 - (1)
WO <x<x®, i=12,...n | | (374

By adding a non negative slack variable to each of the inequality constraints, the

problem can be stated as

Minimise f{X) R ' (3.75)
subject to | | |
B () + Xy =0, j=1,2,....m (3.76)
hX)=0,k=12,...,1 3.77) -
xV<x<x®, i=12,...,n . (3.78)
Xnej 20, j=1,2,....,m (3.79)
with n+m variables. The problem can be rewritten in a general form as : - .

Minimise f{X) . - - (3.80)
subject to '
gX)<0,7=1.2,...,m+l (3.81)
xV<x<x®, i=12,..., ntm . : (3.82)

where the lower and upper bounds on the slack variables, x; are taken Aas 0 and a large

- number (infinity), respectively.
The GRG method is based on the idea of elimination of variables using the
equality constraints. Thus, theoretically, one variable can be reduced from set of n+m -

variables for each of the m+] equality constraints. It is convenient to divide the ntm

design variables arbitrarily into two sets as

x=1Y o 3.83) -
=1, : (3.83)

where :
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Y=< ¥= design or independent variables _ (3.84)

Z= ] 2 | state or dependent variables | (3.85) -
zm+1J

and where the design variables are completély independent and the state Variables are

dependent on the design variables used to satisfy the constraints g; (X) <0,j=1,2,...,
m+.

Consider the first variations of the objective and constraint functions:

n~l m+l
dfx) = Zidyi + Zidzi =VT Y +V? fdz (3.86)

o Ay i i=l dzi

or

dg=[C] dY +[D] dZ 68
where |

o )

Vyif = % : . . (3.88)
}ayz
-
kayn-l,
r af 3

2
g

V=< oz, | ' L (3.89)

o
|0z

m+! )

ayl .a},n-l

[CI=1 . . - : ~ (3.90)
ag m+1 ag m+l

Loy oy
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D1=| .. (3.91)

dy (3.92)

Il
PR—

dZ= , | (3.93)

Assuming that the constraints are originally satisfied at the vector X, (g(X) =0), any
change in the vector dX must correspond to dg = 0 to maintain feasibility at X+dX.
Equation (3.87) can be solved to express dZ as

dz=-[D]" [C] dY - (3.94)
The change in the objective function due to the change in X is given by Equation
(3.86), which can be expressed, using Equation (3.94) as

4 = (V5 f -V f [DI'[Ch dY . o (3.95)
or

b e :

o7 X) G{e . . (3.96)
where

Gr=Vyf - (DT'[CD'Vof (3.97)

is called the generalised reduced gradient.
Noting that Equation (3.94) is based on using a linear approximation to the original
nonlinear problem, we find that the constraints may not be exactly equal to zero at A,

that is dg # 0. Hence when Y is held fixed, in order to have

gl(X) + dgt (X) = Os i= 1’23-- * m+l ) : (3'98)
we must have : , : ‘
gX)+dg(X)=0 ' . . (3.99)
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Using Equation (3.87) for dg in Equation (3.99), we obtain v
dz=[D]" (g0 - [C1dY) - : (3.100)
The value of dZ given by Equation (3.100) is used to update the \;alue of Z as

Zupdate = Zeurent T dZ | (3.101)

The constraints evaluated at the updated vector X, and the procedure of finding dZ is

repeated until dZ is sufficiently small. Note that Equation (3.100) ban be considered

as Newfon’s method of solving simultaneous equations for dZ.
The élgorithm can be summarised as fo ll‘owﬁ
1. Specify the design and state variables, Start with an initial trial vector X. Identify
" the design and state variables (Y and Z) for the problem using the following
guidelines. |

(b) The state variables are to be selected to avoid singularity of tﬁe matrix, [D].

(c) Since the state variables are adjusted dﬁring the iterative process to maintain
feasibility, any component of X that is equal to its lower or upper bound
initially is to be designated a design variable.

(d) Since the slack variable appear as linear terms in the (originally inequality)
constraints, they should be designatéd as state variables. However, if the

- initial value of any state variable is zero (its lower bound valﬁe), it should,,bc_:
designated a design variable. | _ | .

2. Compute the generalised reduced gradient. The GRG is detenﬁihed using
Equation (3.97). The derivatives involved in Equation (3.97) cén. be evaluated
numerically, if necessary | ‘

3. Test for convergence. If all the components of the GRG are close to zero, the
method can be considered to have coﬁverged and the curfenf vecfor X can be

taken as the optimum solution of the problem. For this, the following test can be

used:
|G =<e - : S (3102)
where € is a small number. If this relation is not satisfied, we go to step 4.

4. Determine the search direction. The techniques such as steepest descent, Fletcher-

Reeves, etc that is used to find suitable search direction by using gradient of an
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unconstrained objective function can be used for this purpose. For example, if

step descent method is used, the vector .S is determined as:

S=-Gr (3.103)
5. Find the minimum along the search direction by using 'follpwing procedures:

(a) Find an estimate for A as the distance to the nearest side constraint. When '

design variables are considered, we have

'y,gu) = (Yi)ou If4,>0

$; ‘ ’ . '
= Si < (3.104)
»y}l) _(yi)old Ift,'<0

S

1

where s; is the ith component of §. Similarly, when state variables are considered,

we have from Equation (3.94), -

dz=-pr'icray " (3.105)
using dY = AS, Equation (3.104) gives‘ the search direction for the variables Z as

 T=DI'[C]S - S (3.106)
Thus | ' |

2" ~ (2 ot If4>0

2= t 7 (3.107)

O _ '
Z; t(zi)old If4,<0

where 1, is the i component of 7. |

(b) The minimum value of A giveg by Equation (3.104), A1, makes some design
variable attain its lower or upper “bound. Similarly, the mlmmum value of 4 -
given by Equation (3.107), A, will make some state variable attain its lower or
upper bound. The smaller of 4; or 4 can be used as an upper bound on the
value of A for initializing a suitable one-dimehsional minimisation procedure. .
The quadratic interpolation method can be used conveniently for finding thé
optimal step length A*. | |

(c¢) Find the new vector Xew:

Y, +dY Y, +A4S , _
Xow=1 " =4 oM : . 3.108
"-‘V {zom +dZ} {zo,d +/1'T} , G109
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If the vector Xpew corresponding to A* is found infeasible, then Ype, is held
constant and Z. is modified using Equation (3.100) with dZ = Zw — Zou.

Finally, when convergence is achieved with Equation (3.100), we find that

Xoow = You + AY | (3.109)
Zold + AZ

and go to step 1.

GRG algorithm has been worldwide adopted in many optimisation software.
One of them is GRG2. It uses a robust impiementation of the BFGS ‘quasi-NeWton
algorithm as its default choice for determining a search direction. A limited-memory
conjugate gradient method is also available. The problem Jacobian is stored and
manipulated as a dense matrix. The GRG2 software may be used as a stand-alone
system or called as a subroutine. The user is not required to supply code for first
partial derivatives of problem functions; forward or central difference approximations
may be used instead. This software is also incorporated in MS-Excel Solver for

solving non linear programming problems.

Example 3.10

Minimise f{x1, X2, x3) = (x1- x2)2 + (x2- .x3)4
subject to:

a®) =x1+x)+x*-3=0

3K x1£3,i=1,2,3

using the GRG method.

Solution: _ ;
Step 1. We choose arbitrarily the independent and dependent variables as

={y‘} ={x‘} ,Z={n} = {m)
Y2 (X2

-2.6
Let the starting vector be X; = { 2 with X)) =21.6.
2 |
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Step 2: Compute the GRG at X;. Noting that

0
= 2(xy-
ox, (x1- x2)
0,
—5{:: -2(x1- x2) + 4(xz - x3)°
0,
T - 45y’
Ox,4
..a_g.l_= 1+ x22
Ox,
-gg—l': 2 x1 X2
ox,
Oxy
We find, at X,
9 | '
ox, 2(-2.6-2) -9.2
Vyfz a = 3 =
_f_ -2(-2.6-2)+4(2-2) 9.2
axl X, :

sz= {g} = {-4(X2 —X3)3} X1 = 0

[C]{a_gL gg_,] =[5 -104]

ox, Ox,
~ %) _
(D] l: axaL [32]

[D]-l - [_31?]’ [D]-l [C]= 3'—2[5 -10.4] .= [0.15625 -0.325]

Gr=Vyf - ([DT'[C)'Vof

~92) (0.15625 ~92) .
) { 9.2 }—{~o 325}(0)={ 9 2}

Step 3: Since the components of Gy are not zero, the pdint X, is not optimum, and

hence we go to step 4.
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Step 4: We use the steepest descent method and take the search direction as

G |92
B 92

Step 5: We find the optimal step length along S.

(a) Considering the design variables, we use Equation (3.104), to obtain:

For y; =x:

A= -:-)'-:—(ﬂ =(.6087

For y; = x5:

a=232C2D 0.5435
-9.2

Thus the smaller value gives A; =0.5435. Equation (3.106) gives:
1 92 |
T'=-[D]" [C]S=-(0.15625 -0.325) 9. =-4.4275

And hence Equation (3.107), leads to

3-@)
- 4.4275

Thus 4, =1.1293.

Forzi=x3; A= =1.1293

(b) The upper bound on A is given by the smaller of 4; and A,, which is equal
to 0.5435. By expressing

Y+AS|
X=
{Z+AT}

We obtain
X, -2.6 9.2 -2.6+9.24
X={x,t=¢ 2 b+3{ -92 b={ 2-921
X, 2 —-4.4275 2-44275
And hence

D) =X)=(-2.6+9.21-2+ 9.2 A +(2-9.21-2+4.4275)°
=518.7806 A* + 338.5612 — 169.28 1 +21.16
dfidA =0 gives
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From which we find the root as A* = 0.22. Since A* is less than the upper bound
_value 0.5435, we use A*.

(c) The new vector Xpew is given by

Y, +dY| [v,+AS|
Knew = = .
Z,q +dZ Zyuy+AT

-2.6+022%92 -0.576
=4q 24022%(-9.2) ;=:¢-0.024
2+0.22*(—4.4275) 1.02595
with
2.024 ‘ )
dY= R dZ = {-0.97405}
-2.024

Now, we need to check whether this vector is feasible. Since
g1(Xnew) = (-0.576) [1 + (-0.024)?] + (1.02595)* — 3 = -2.4685 = 0.

The vector Xoew is infeasible. Hence we hold Y. constant and modify Zew

using Newton’s method Equation (3.100) as
dZ=[D]" (%) -[C] dD)

Since

[D] = [%‘-} [4x3'3] = [4 (1.02595)’] = [4.319551]

g1(X) = {-2.4684}

[C] = [% %]#[2(—0.576 +  0.024)][-2(-0.576+0.024)+4(-0.024 —

1.02595)*1}
=[-1.104 -3.5258]

-1 _ 2.4684 — {—1.104 —3.5258} 2024
4.319551 —-2.024

= {-0.5633}
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We have Zpew = Zgig + dZ = {2-0.5633} = {1.4367}. The current X, becomes

—-0.576
Yoy +dY
Xnew = = - 0 024
Zyy +dzZ
1.4367
The constraint becomes ‘ )

g1 = (-0.576)(1-(-0.024)* ) + (1.4367)* — 3 = 0.6842 = O

Since this Xpew is infeasible, we need to-apply Newton’s method Equation (3.100) at
the current Xpew. In the present case, instead of repeating Newton’s iteration, we can
find the value of Zew = {X3}new bY satlsfylng the constraint as

21(X) = (-0.576)[1-(-0.024)* )+ x3 * =3 = 0

or x3 = (2.4237)°% = 1.2477

This gives
-0.576
Xnew=<—0.024 } and
1.2477

AXnew) = (-0.576 + 0.024)2 + (-0.024 — 1.2477)* = 2.9201
Next we go to step 1.

Step 1: We do not have to change the set of independent and dependent variables and

hence we go to the next step.

Step 2: We compute the GRG at the current X ﬁsing Equation (3.97). Since

A of ' .

V= ox, | _ 2(-0.576 +0.024) _ -1.104
I | |-2(-0.576+0.024) + 4(—0.024 —1.2477)° -7.1225)
0Ox,

Vof= {Z } {;{ } {-4(-0.024 - 1.2477)’} = {8. 2265}

[C]= [—- ——] (-1 +(- 0.024) 2(-0.576)(-0. 024)]

=[1.000576 0.027648]
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[D] = [%] = [4x5°] = [4 (1.2477)*] =[7.7694)

3

[D]'.1 [C] = 7;@[1.000576 0.027648] =10.128784 0.003558]-.
Gr=Vyf - ((DI'[C])'Vof

-1.104 0.128784 -2.1634
= - 4 (8.2265) =
-7.1225 0.003558 -7.1518
Since Gg # 0, we need to proceed to the next step.

Note: It can be seen that the value of the objective function reduced significantly
from 21.16 to 2.9201 in one iteration. '

3.4.2.2 Indirect Method
In Indirect Methods, there are two basic solving methods, that is
Transformation of variables methods and Pénalty function methods. ‘
(1) Transformation of variables method , |
If the constraints are explicit function of the variables and have certain simple
forms, it rhay be possiblé to use transformation techniques so that the constraints
would be automaticaily satisfied. There are two options to transform the variables,

i.e. change of variables and Eliminations of variables.

1.a. Change of variables method |

Change of variables method, particularly useful when the variables are
bounded by lower and upper limits, can be used to convert a constrained
optimisation problem into unconstrained one. The  method should be used only
when it is possible to eliminate all constraints. Partial -transformation may result
into a distorted objective function that may be more difficult to minimise than the
original function. Some typical transformations are indicated below:

1. Iflower and upper bounds on x; are specified as

L<xi<u ~(3110)
these can be satisfied by transfdr'ming the variable x; as ' |
x;= I+ (u; - L) siny; ’ (3.111)
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where y; is the new variable, which can take any value.

o

If a variable x; is restricted to lie in the interval (0,1, such transformation can

be used, i.e.
x;= sin’y; , X; = cos’y; ' (3.112)
X V 2
eyl "
Xi = ‘—y————_-;- or x; = 2
e’ +e I+y,

3. If'the variable x; is constrained to take only positive values, the transformation

can be
x;=abs(y), x; = y? or x; = " : (3.113)
4.  Ifthe variable is restricted |
. 2y,
X; = sin y;, X; = COS y;, Or X; = Ji > - (3.114)
+Y;

Note the following aspects that are important in transformation techniques

1. The constraints gj(X) have to be ver}; simple function of x;.

2. For certain constraint it may mnot be possible to find the necessary
transformation

3. If it is not possible to eliminate all the constraints by making change of
variables, it may be better not to use the transformation at all. The p'artial
transformation may sometimes produce a distorted objectivé function

which might be more difficult to minimise than the original function.

Example 3.11

Find the dimensions of a rectangular prism type box that has the largest volume when
the sum of its length, width and height is limited to a maximum value of 60 in: and its

length is restricted to a maximum value of 36 in.

Solution:

Let x;, x2, and x3 denote the length, width, and height of the box, respectively. The
problem can be stated as follows:

Maximise f(x, x2, x3) = X1X2X3 (Ey)
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subject to:

x1+x; +x3 <60 ‘ - S (E2)
x; <36 : (Es)
xi 20,i=1,22,3 - : (Es)

By introducing new variable as:

VI= X1, Y2 = X2, y5= X1t Xpt X3 o - (Bs)
or '
X1= Y1, X2= Y2, X3=Y3- Y1 - Y2 (Es)
the constraints of Equation (E2) to (E4) can be restated as
0 <y, <36, 0 <y, <60, 0 <y, <60 ' | (Ex)

where the upper bound, for example, on y, is obtained by setting x;= x3 = 0 in
Equation (E;). The constraints of Equation (E7) will be satisfied autc.)mati.cally if we
define new variables z;, i = 1,2,3 as , ‘

Y= 36sin> Z1, y2= 60 sin’ 22, V3= 60sin223 ' | (Es)
Thus the problem can be stated as an unconstrained problem as follows:

Maximise f{z], z2, z3)

=0y (3-y1-y2)
= 2160 sin® z; sinzéz (60 sin’z; — 36 sin’z, — 60 sin’z;) ' | (Eg)
The necessary conditions of optimality yield the relations

of

—_=259,000 sin z; cos z; sin’z, (sin’z; - £ sin’z; - sin’z; ) =0 o (Eio0)
Z)
of _ :
= 518,400 sin’ z; sin z; cos 2, (3 sin’z3 - 2 sin’z; - sin zz) 0 (En)
Z, : '
6f _ .2 .2 . _ . '
—=259,200 sin” z; sin” z; sinz3 cos z3 =0 - (Er2)
zZ

3
Equation (E;z) gives the nontrivial solutlon as cos z3 = 0 or sin® z; = 1. Hence
Equation (E;¢) and (E) yleld sin’ z, = 3 and sin® z; = L. Thus the optimum solution

is given by x* = 20 in., x;* = 20 in. and x3* = 20 in., and the maximum volume =
8000 in.,
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1.b. Elimination of variables method

Elimination of variables method is used for an n-variable problem with m
1nequahty constramts if it is known in advance that » constraints would be active at
the optimal point. It may be possible to eliminate any r variables and obtain a new
problem involving n-r variables with m-r constraints. This new problem with reduced
number of variables and constraints may be easier to solve. However, it may not be

possible to know before hand, which of the constraints would be active at the

optimum point.

(2) Penalty Function Method

In penalty function methods, also known as Sequential Unconstrained
" Minimisation Techniques (SUMTs), the constrained minimisation problem is
transformed into alternative formulations. such that the minimisation problem is
solved thrdugh a sequence of unconstrained minimisation problems. The alternative

foﬁnulation is obtained by adding a penalty term that takes care of the constraints.
There two methods of this concept, i.e. exterior penalty function method and
interior penalty function method. In exterior penalty function methods, all
intermediate solutions lie in the infeasible region and converge to the optimal
solution from exterior of the feasible region. Herein, it is not necessary to have a
starting feasible solution, however, since intermediate solutions are infeasible, search
cannot be stopped before reaching the optimum. In interior penalty fu_.nction; all
intermediate solutions lie in the feasible region and converge to the optimal solution
' from interior of the feasible region. Herein, the search can be stopped any time and
the solution thougﬂ sub optimal is feasible, therefore it can be taken as the final

solution. However, an initial feasible solution is necessary to start the search

procedure.
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2.1 Interior Penalty Function Method
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Fig.3-4  Penalty function methods: (a) exterior _meﬂmd; (b) interior
method | A | |
In interior penalty function methods, a new function (¢ funbtion) is
constructed by augmenting a penalty term to the objective function. The penalty term
is chosen such that its value will be small at points away from the constraint
boundaries and will tend to infinity as the constraint boundaries approaqhed. Hence
the value of the ¢ function also ‘blows up’ as the constraints boundaries approach.
This behaviour can be seen from Figure 3-4. Thus once the unconstraiﬁed
minimisation of ¢ (X, %) is started from any feasible point X;, the subsequent points
generated will always lie within the feasible domain since the constraint boundaries
act as barriers during the minimisation process. This is why the interior penalty
function methods are also known as barrier methods. The § function defined
originally by C.W. Carroll in 1961 is: |

b (X, 1) =fX) - b Zg,EX) | . (3.115)

It can be seen that the value of the function ¢ will always be greater than f
since g (X) is'negative for all feasible point X. If any constraint g, (X) is satisfied
critically (with equality sign), the value of ¢ tends to infinity. It is to be noted that the
penalty term in Equation (3.115) is not defined if X is infeasible. This introduces

serious shortcoming while using the Equation (3.115). Since this equation does not
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allow any constraint to be violated, it required a feasible starting point for search

toward the optimum point.
The algorithm is given as follows: : ,

1. Start with an initial feasible péi’nt X, satisfying all the constraints with strict
inequality sign, that is, g; (X1) <0 forj = 1,2, ...,m, and an initial value of ; > 0.
Setk =1. |

.2. Minimise ¢ (X, ri) by using any of the unconstrained minimisation method and
obtain the solution Xi*, 4 | '

3. Test whether X;* is the opfimum solution of the original problem. If Xz* is
found to be optimum, terminate the process. Otherwise, go to the next step.

4. Find the value of the next penalty parameter, 7+, as
Tirl = C Ty
where ¢ < 1. R

5. Set the new value of k = k+1, take the néW starting point as X = X, and go to.
step 2. | '

Example 3.12

Minimise fX) = x;> - 6x;> + 11x; + x3

subject to :

xlz +x22 —x3.2 <0

4 -x‘z-xz2 -xgst

x3-5<0

-x;20,i=1,2,3

Solution: _

The interior penalty function method, coupled with the Davidon — Fletcher- Powell
method of unconstrained minimisation and cubic interpolation method of one-

dimensional search, is used to solve this problem. The necessary data are assumed as

follows:
0.1
Starting feasible point, Xj = < 0.1
3.0
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n=10, fiX)=4.041, ¢X),r)=25.1849

| o)

The optimum solution of this problem is known to be X* = - V2 L= V2. The
V2, |

results of numerical optimisation are summarised in Table 3-5.

Table 3-5 Results for Example 3.12

k Value of r, | x;* < xp¥ | xa* &t | fi*

1 1.0x 10° 0.37898 1.67965 | 2.34617 | 10.36219 | 5.70766

2 1.0x 10" 0.10088 141945 | 1.68302 | 4.12440 2.73267

3 1.0x 102 0.03066 1.41411 | 1.49842 | 2.25437 1.83012

4 1.0x10° 0.009576 1.41419. | 1.44081 1.67805 1.54560

5 1.0x 10 0.003020 141421 | 1.422263 | 1.49745 1.45579

6 '1.0x 107 0.0009530 1.41421 | 1.41687 | 1.44052 1.42735

7 1.0x10° 0.0003013 1.41421 | 1.41505 | 1.42253 1.41837

8 1.0x 107 0.00009535 1.41421 | 1.41448 | 141684 | 1.41553

9 1.0x 10® 0.00003019 1.41421 | 1.41430 | 1.41505° | 1.41463

10 1.0x 10? 0.000009567 141421 | 141424 | 1.41448 1.41435
11 1.0x 10" | 0.00003011 1.41421 | 1.41422 | 1.41430 1.41426
12 1.0x 10" | 0.9562 x10°C 1.41421 | 1.41422 | 1.41424 1.41423
13 1.0x 10" | 0.3248x 10°® 1.41421 | 141421 | 1.41422 1.41422

2.2  Exterior Penalty Function Method
In the exterior penalty function method, the ¢ function is generally taken as

b X ) = fX) + ¢ Zm:(g,-(X )’ (3.116)

where 7; is a positive penalty parameter, the exponent ¢ is a nonnegative constant,

and the bracket function ( g;(X )) is defined as

(8;(20) =max (g,(x),0) | (3.117)
g.(X) g/(X) >0 (constraints is violated)
) { 10 gj(X) =0 (constraint is satisfied)

It can be seen from Equation (3.1}6) that the effect of fhe second term on the
right side is to increase ¢ (X, rx) in-proportion to the qth.power'of the amounf by
which the constraints are violated. Thus, there will be a penalty for violating the
constraints, and the amount of penalty will increase at a faster rate tl:an will the

amount of violation of a constraint (for ¢ > 1). This is the reason why the formulation
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is called the penalty function method. Usually, the function ¢ (X, r;) possesses a
minimum as a function of X in the jnfeasible region. The unconstrained minima X *
converge to the optimal solution of the original problem as k tends to infinity and 7,
also tends to infinity. Thus, the unconstrained minima approach the feasible domain

gradually, and as k tends to infinity, the Xi* eventually lies in the feasible region.
| The algorithm is given as follows:

1. Start from any design X} and a suitablé value of ;. Set k= 1.

2. Find the vector X;* that minimises the function
6 G r) =) +re Y g,(X)) | (3.118)
J=l

‘3. Test whether the point X;* satisfies all the constraints. If X;* is feasible, it is the
desired optimum and hence terminate the procedure. Otherwise, go to step 4.
4. Choose the next value of the penalty parameter that satisfies the relation
Tee1 > Pk | ' (3.119)
and set the new value of k as original & plus 1 and go to step 2. Usually, the value

of 7+ is chosen according to the relation 4y = ¢ 7y, where c is a constant greater
than 1.

Example 3.13

Minimise f{x;, x2) = iB(x1+}.v)3 +x;
subject to:

gilxi, x)=1-x <0

ga(x1,x2) = -x2 <0

Solution:
To- illustrate the exterior penalty function method, we solve the unconstrained
minimisation problem by using differential calculus method. As such, it is not

necessary to have an initial trial point X;. The ¢ function is:
$ (X1, )= L (ert1)’ + x2+ 7 [max(0, 1-x;)]? + 7 [max(0,- x; )

*The necessary conditions for the unconstrained minimum of ¢ (X;, r) are
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These equations can be written as

——= 1- 2r [max(0,- x )1=0

Techniques for Solving Non Linear Programming Probley_ns

o _ (e +1)? - 2r [max(0, 1-x;)] =0
Ox

min [(e+1)%, (1) - 27 (1-%,)] =0

min [1,1+2rx;] =

0

In Equation (E,) if (x+1)*=0,x = -1 (fhis violates the first constraint), and if

@rH)? -2r (1-x) =0, x=-1—r+r* +4r

In Equation (E;) the only possibility is that 1 + 27x,= 0 and hence x; = -1/2r.

Thus the solution of the unconstrained minimisation problem is given by -

x*(r)=-1-r+ r(1+—4—]

1

x* (r) = '2_

r

From this, the solution of the original constrained problem can be obtained as

x* = 1i_zgx;(r)= 1, x* = 1i§:x;(r)=0

fmin = }i_ﬁ}q’min (r) =%

(E)
(E2)

(Es)

(Eq)

The convergence of the method, as r increases gradually, can be seen from Table 3-6.

Table 3-6 Results for Example 3.13
Value of r X* xz‘.v & (1) f mi,.( r)
0.001 -0.93775 -500.00000 -249.9962 -500.0000
0.01 -0.80975 -50.00000 -24.9650 | 49.9977
0.1 -0.45969 -5.00000 -2.2344 | 4.9474
1 0.23607 -0.50000 0.9631 0.1295
10 0.83216 -0.05000 2.3068 2.0001
100 0.98039 -Q.OOSQ'O 2.6249 2.5840
1000 0.99800 -0.00050 - 2.6624 2.6582
10,000 0.99963 -0.00005 2.6655 2.6652 |
© 1 0 2 s
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3.5 STOCHASTIC SEARCH TECHNIQUES . .

Although the linear and nonlinear methods are good for finding local optima,
in real problems it quickly beéomes inconvenient to invert matrices (linear
pro'gramming) or calculate the partial derivatives with respect to the decision
variables (nonlinear programming). In such a situation, knbwledge of the functional
relationship between the objective function value and the decision variables either
does not exist or is too complex to be usable. Automated search methods are then
used instead of computationally intensive mathematical “programming approaches.
’fhe feature common to all of these methods is a generate-and-tést strategy in which a
new point is generated and its function value tested. Depending on the particular
method, a new point (or set of points) is generated, and the search for the best
solution continues. '-
3 5.1 Genetic Algorithms ‘

Most real network models are too large or too complex to be handled by any

of the previously "discussed optimization methods without makmg significant

A simplifications. Among the techniques that show promise, genetic algorithms (GAs)
are most capable of meeting the needs of the design engineers without the necessity
of 6ontorting the problem to fit the algorithm (Dandy, Simpson, and Murphy, 1996;
Savic and Walters, 1997; Walters, Halhal, SaQic and Quazar, 1999; Wu et al., 2002).

GAs have 3 relatively short but promising history, although the basic
principles date from the beginning of life on earth. In simple terms, the GA uses a
computer model of Darwinian evolution to "evolve" good de51gns or solutions to
highly complex problems for which classical solution techniques such as linear
programming or gradient-base‘d méthods are often inadequate. The GA incorporates
ideas such as a population of solutions to a problem, survival of the fittest (most
suitable) solutions within a population, birth, death, Breedihg, inheritance of genetic
material (design paraxheters) by children from their parents, and occasional Ihutations
of that material (thereby creating new design possibilities).

A genetic Algorithm (GA) is an dpproach used for optimal design in many
fields of engineering including water transmission and distribution networks. It is a

search algorithm based on natural selection and the mechanism ‘of -population
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genetics. GA simulates mechanism of population generation and natural rules of -
survival. It relies on the collective learning process within a population of

individuals, each of which represent a point in space of feasible or infeasible

solutions. ‘

A GA developed for distribution system optimization uses:

e An objective function defined on a set of decision variables (pipe diameters, for
example)

e A calibrated model of the system to simulate its hydraulic behavior and to ensure
that continuity and head-loss equations are satisfied at all times (hard constraints)

» A penalty term to penalize insufficient levels of service (soft constraints), such as

pressures at nodes, imbalance of reservoir flows, or low/high velocity in pipes.

3.5.1.1 GA Characteristics
Genetic algorithm differs from other search methods in the following ways:

1. GA .WOI'kS with the coding of 'the parameter set, not with the parameters
themselves. _

In other search method, decision variables, such as pi‘pe diameters and

nodal HGL values- are diréctly used in the formulation. In GA, however, the
decision varjables are coded as a finite length string, each striﬁg representing a
feasible or infeasible solution. Each string consists of sub strings, wherein each
sub string represents a parameter, e.g. a pump in on or off condition, a link size,
and so on. The coded string is similar to the. structure of a chromosome of '
genetic code. Standard GA uses a binary alphabet (character is 0 or 1) to form a
chromosbme. Let us assume that in a network optimisation problem we have
pipe sizes ranging from 0 (link is absent in a looped. network) to 750 mm, a
maximum available size, as shown in Table 3-7. Since we have fifteen pipe size
possibilities, each sub string, denoting a pipe size, consists of four bits (2* =
16>15). Thus, in binary coding as shown in Col. 3, 100 mm is codé;d by 4 bit
string 0010, a size 250 mm by 0110, and so on. A 'trial solution with
combination of pipe size of all links will become a union of binary codes. A

network consisting of six links, labelled 1, ..., 6 with pipe sizes of 600, 400,
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300, 250, 200, and 150 mm, respectively, is coded by a 24-bit string
110010010111011001010100.
Table3-7 ~ Example of Pipe Size and coding

Serial Number Diameter (mm) . Coded sub string
M () Binary (3) Gray (4)
1 0 0000 0000
2 80 0001 - 0001
3 100 0010 ) 0011
4 125 . o011 ’ 0010
5 150 . 0100 0110
6 200 - 0101 0111
7 250 0110 o101
8 300 0111 0100
9 350 1000 1100 .
10 400 1001 ©1101.
11 450 1010 1111
12 500 1011 1110
13 600 1100 1010
14 700 1101 1011
15 750 1110 1001

One disadvantage with ordinary binary code is ‘that two similar
solutions may differ in several bits. For example, jn ordinary bix_lary- code of
Column 3, a pipe of 300 mm diameter is represented by sub string 0111;
while the next larger size of 350 mm diameter is represented by substring
1000 in which all four bits of the sub étring have changed. To avoid this,'Gray
coding may be used. In Gray coding adjacent pipe sizes are represented by
substrings that differ by only one bit, as shown in Column 4. B

2. GA searches from a population of points, not from a single point.

In GA, a population of strings is generated and tested simultaneously
in one iteration and the process is continued successively. This process is
similar to a natural biological process wherein successive generations of
organisms are born and brought up. Since eaéh stﬁng represents a solution,
‘'we consider several starting points and climb marny peaks simultaneously‘i'n a
multimodal maximisation problem. Since these solutions are spread through
out the solution space, probability of reaching the global optimum solution is
increased. Furthermore, a number of optimal (or near optimal) solutions are

available in the end; thus, the designer has a wide range of solutions to choose

from.

I - 64



Techniques for Solving Non Linear Progr;zmming Problems

In the usual search methods (e.g. steepest descent method), we
consider a single point in space ( a particular flow distribution), follow certain
rules to select direction of movement and step size and ultimafely reach a
local optimum solutions (corresponding to ; branched configuration). We
may obtain several solutions by cohsidering-several starting points (several
flow distributions or several branching configurations) successively. In GA,
however, we consider several starting points right from the -beginning,
consider them in parallel, and thus obtain several solutions simultaneously.

3. GA requires only the objective function, not trend, derivative or other
auxiliary data. _

In direct optimisation methods, the objective function and constraints.
are considered simultaneously; thus knowledge of optimisation is required.
GA, on the other hand, is similar to the traditio'n‘al, approach in which a |
solution is generated, tested for its feasibility, and the value of the objective
ﬁlﬁctidn is evaluated. Thus in GA, the objective function and constraints are
considered separately.

4. GA uses probabilistic transition rules, not deterministic transition rules.
Genetic Algorithms uses probabilistic rules rather than deterministic rules

in moving from one set of trial solutions to the next set of solutions.

3.5.1.2 GA Operators

In Genetic Algorithms, a set of P initial solutions is gener_ated randomly. The
initial solution P, is usually between 30 to 200 for distribution nétwpfks. These P
initial solutions are represented by -P strings, each string consisting of X substring as
shown in Fig. 3.5. .Here, A, B, .., P represent P strings and subscripts 1,2,,..,x,.., X
denote X substrings. Thus, sub string B, denotes sub sﬁ'ing (link) 2 in string (solution) |

B and is coded 1011 in ordinary coding if it is of 500 mm diameter (according Table
4.1).
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Figure 3-5 Population Strings

A simple genetic algorithm consists of three operators:

1. Reproduction

2. Crossover, and

3. Mutation.

These operators are described as follows:

Reproduction ,
chroduciion is an opérator in which an old string is copied into the
new population according to that string’s fitness. Fitness of string (solution)
can be taken as the objective function value (maximisation problem) or its

inverse (minimisation problem). For distribution networks, in general, fitness

of a string can be represented by

NERE - |
ﬁ—(cn] : o . (3.120)

in which f; = fitness of string i, i = 4,B, ..,P; Cr, = total cost of network
represented by string i; and s = scaling exponent taken 1 in the eaﬂy

generation (so that GA can sort through the potential strength of the strings);

but increase to 3 or 4 in subsequent generations to exaggerate small

differences in fitness of strings.

Generation of new members in the next generation is based on

probability of selection of string, i.e., p; given by
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| f, '
= _ (3.121)
p S,

Thus, reproduction is based on the survival of the fittest principlé -
more fit strings make more copi‘es for mating than less fit strings.
e Crossover

Crossover, in its simplest form, is the partial exchange of
corresponding segments between two parent strmgs to produce two offspring
strings. The crossing point is decided randomly Thus, two strings 4 and Bas
parent strings will produce two offspring string 4’ and B’ after crossover with

crossing point 2 as shown in Fig. 3-6.

Crossing point
i
AlA AjiA; oo Ay A |4y Bs oo o IBy|A
——'—. ’
Crossover
BB |8 [B] - - - |Bx]| Bi{B|Ay| -« * [Ax]|F

Parent sirings Offspring strings

Figure3-6  Crossover Process

The probability of crossover p. is usually selected between 0.6 and
1 0. The GA randomly picks two strings ‘from the new populatlon A
uniformly distributed random number is then generated between 0.0 and 1.0.
The GA applies the crossover operator if the random number is less than p,,
otherwise the two strings are retained as they are. For example, for a
population size of 100 (P=100) and crossover probability of 0.7 (p. = 0.7), on.
‘average ‘
Pxp.=100x 0.7'= 70 strings are crossed over in each genetétion.
e Mutation |
Mutation is an operation in which the mutation operator i'andomly alters a
gene, i.e., a bit (0 to 1 and 1 to O in binary code) as shown in Fig. 3-7. Even
though reproduction and crossover effectively search and recombine to
produce next generation population, they may become overzealous and lose
some useful genetic character (@ 1 or 0 in a particular location). Mutation

operator tries to protect against such irreparable loss.
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Selected gene

ﬂllﬂ Mutation Ilﬂnﬂ

Figure 3-7 Mutation Process
Probability of mutation pp, is usually taken between 0.01 and 0.05.

3.5.1.3 Advantages and shortcoming

Genetic algorithms have a number of advantages over other mathematical

programming techniques. In the context of optimisation of pipe network design some

advantages include the following:

1.

Genetic Algorithms deal directly with a populatioh of solutions at any one time.
These are spread throughout the solution space, so the chance of reaching the
global optimum is reached significantly.

Each solution consists of a set of discrete pipe sizes. One does not have to round
diameters up or down to obtain the final solution.

Genetic Algorithms identify a set of solutions of pipe network configurations that
are close to the minimum cost solution. These configurations may co‘rrespohd to
quite different designs that can be then compared in terms of other important but
non quantifiable objectives. |

Genetic Algorithms use objective function or fitness information only, compared
with the rﬁore traditional methods that rely on existence and c'on_tinuity of
derivative or other auxiliary information. | |

Genetic Algorithms can easily handle multiple sources and multiple loadings. It

can be used for new designs as well as for rehabilitation, replacement and

. expansion of existing networks. .

Despite the advantages, there is also shortcoming in using GA as tools of design

of water distribution networks, i.e. Genetics Algorithm requires a l'arge‘fnumber of

objective function evaluations and checking for their feasibility or infeasibility. Thus

computer times, even for moderate network are quite large.

There are different steps involved in optimisation of gravity water distribution

network through Genetic Algorithm are as follows

II- 68



Techniques for Solving Non Linear Programming Problems

Step 1. Generation of initial population.

An initial population of coded strings, each string representing a solution that may be
feasible or infeasible, is randomly generated.

Step 2. Computation of cost of each network.

Each string of population is decoded to obtain pipe sizes in the solution and then the

network cost is obtained.
Step 3. Hydraulic analysis of each network.
Each network is analysed for the specified demand pattern to obtain link flows and

nodal HGL values. These available HGL values at demand nodes, H}”’ are then
compared with minimum required HGL values, H ;““‘ and heéd deficit at each node,

H j'-"i“ - HJ‘?"' is noted.
Step 4. Computation of Penalty Cost.

Rather than ignoring infeasible solutions and considering only the feasible solutions,
the infeasible solutions in the population are also considered through exterior penalty
function method. A penalty cost for each demand pattern is assignegl if the solution
does not satisfy minimum HGL requirements. The HGL violation. at fh_e node at

which the HGL deficit is maximum, [max (H™" - H"),j=1,2,.., N] is used as the

basis for computeition of the penalty cost. The maximum HGL deficit is multiplied by
a penalty factor to obtain the penalty cost. The penalty factor is a measure of the cost
of violating one unit of node HGL and can be taken equal to the cépitalised cost of
raising the total quantity of water at the source node by one unit. However, the value -
of the penalty function should be checked at the end of GA iteration to see that the
best infeasible solution (solution with least penélty cost) is not superior to any

- feasible solution in the population. If so, the value of penalty factor is sufficiently
increased. '

Step 5. Computation of total cost
The cost of each solution in the current population is obtained as the sum of network
and penalty costs, obtained in Steps 2 and 4, respectively.

Step 6. Computation of fitness.
Fitness of each string (solution) is then obtained by using Equation (3.120).
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Step 7. Reproduction of new population.

Members of next generation based on the probability of selection of a string given by
Equation (3.121) are reproduced. N

Step 8. Crossover.

Crossover operation is then carried out to produce offspring strings from parent

strings. '

Step 9. Mutation

Mutation operation is carried out.

Step 10. Production-of successive generations. ' _

Successive generation are produced maintaining the size of the population. A set of
least cost strings (e.g., the best 20) is stored and the set is updated as less costly

alternatives are generated. Typically, generations between 100 and 1000 are

evaluated.

The steps involved in optimisation of a pumped network are as follows:
Step 1-2. Step 1 and 2 are same as those for gravity network. _
Step 3. Hydraulic Analysis of each network. A suitable HGL at pumped source node

H,, is either increaged or decreased so that maximum HGL deﬁcii: [maix (H}“‘" -
avl T aad : a;'l ;nin . _. .
H?),j=12,., N]or minimum HGL surplus [min (H;"-H;™), j = 1,2,.., N] is

zero. The revised HGL, H; is used in calculating pumping head 4, (=H; — H,); and the

énergy cost (present worth of energy charges) is obtained using first term Equation

(2.2) that pointed energy cost.
Step 5. Computation of Total Cost.
The total cost is the sum of network and energy costs.

Step 6 — 10. Step 6 to 10 are same as those for gravity network.

3.5.1.4  GA Applications '
The application of GA in water distribution network design is subject of

interdisciplinary research and development.' Because GA itself does not do the design

of water distribution network, it need a number of things from different domains
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integrated together, including a water distribution design model — formulation of
de'sign objectives, design criteria/constraints and design variables, and also the
hydraulic simulation model — solving the network hydra_uliés. By seamlessly
integrating three of the models, designer will be able to use a GA code to design

water distribution network.

Several researchers have demonstrated the application of GA in water
distribution network, for example Dandy, Simpson and Murphy (1996) and Savic and
Walters. (1997). One of such soﬁwal:e is Water Network Optimiser (Savic and
Keedwell). This program use Epanet 2.0 as its simulation engine and the problem
must be inputted in Epanet input file format. The Water Network Optimiser is a
simple method using genetic algorithms (both single objective — SOGA’ and multi
objective — MOGA) to find optimal sets of pipe diameters for a water distribution
network. The genetic algorithm (GA) uses the principles of evoluﬁon to test various
combinations of pipes in the model to achieve two goals:

1. A minimum cost (bigger pipes ﬁore cost to add) . _
2. Certain pressure. limits within the network (every network has head

requirements at its nodes)

3.5.2 Simulated Annealing Method

Simulated annealing method is search approach based on the analogy with
the physical annealing process. In physical annealing ﬁrocess the"te.mperature of
molecules is increased sufficiently high so that they become highly mobile and can
attain different states. If the molecules are then gradually cooled from this initial high
temperature, they attain a crystalline structure, an optimal one corresponding to
minimum energy state. Cunha and Sousa (1999) applied it to the optimal design of
looped water distribution networks. | ' - -

In each step of the algorithm, a change of configuration is produced, and
then its cost is evaluated. The new configuration is chosen at random in the
neighbourhood of the current configuration s;. In this algorithfn, the neighbourhood
includes the configurations having all the pipes, but one, with the same diameter as in

the current configuration. The pipe having a different diameter can-téke either a
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diameter one size above or one size below its current diameter. The new
cbnﬁguration is accepted or not, according to the Metropolis criterion
(p<min[1,exp(Ac)/t}). If it is accepted, this configuration will be used as the starting
point for the next step. If not, the original configuration will play this role. ,

If t 1s decreased at a suitable rate, the system will tend to converge to the
global least—cost configuration as the number of transition attempts increases. This
property of convergence to a global optimum cost configuration derives from the fact
that transitions from low to high cost cc_mﬁginations are not automatically excluded.
They will take place or not depending on the. difference between costs and on the '
level of temperature. Initially, even very négative (countefoptimuﬁi) transitions will
be accepted; as the temperature falls, the acceptance of such transitions will become
increasingly rare. By accepting worsening moves, the annealing algorithm will, in
principle, avoid being trapped in local optima.

Simulated annealing method requires the following parameters:

1.  Elasticity of Acceptance, a ' .
This parameter represénts the probability of accepting a transitib_n from an
initial cost solution to higher cost solution. The value may be between 0.2 to
0.9, the higher the value the more is the probability of covering the entire
space and reaching the global optimum solution; however the computation
tirhe would be more | .

2. Minimum Number of Iterations, n,
This parameter represents the minimum number of iterations that will be
performed before decreasing the temperature even if there is no more
improvement in the current solution. The value may be between 10 and 70,
the higher the value the more is the probability of reaching global optimum;
however computation time is more. a

3.  Initial Temperature, 7;

This parafneter is the initial temperature at which the annealihg process is

stated. It may be taken as
7= 21G (3.122)
Ina
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in which C; = cost of the initial solution; and a = elasticity of acceptance.
Final Temperature, Ty

This parameter represents the temperature at.which the annealing process is
stopped. Lower the value, the probability of reaching the global optimum
solution increases; however, the computation time also increases.

Cooling Factor, r

This parameter represents . the rate at which the temperature is decreased
whenever a temperature decreasé should occur. Thus, - ‘
T =rI; . (3.123)
in which 7; and T} = temperature at steps j and j+1, respectively. The value
of » may be between 0.1 and 0.9 (even up to 0.99) and may be a constant
value for all steps or may vary from step to step. Faster cooling requires less
computer time but may give sub optimal solutions. '

Number of Temperature Decreases, n; '

This parameter represents the number of temperature decreases that will be
performed without an improvement in the current optimum before stbpping the
algorithm. The value of #, may be between 2 and 7.

The algorithm for optimal design of water distribution networks. through
simulated annealing method consists of following Steps. (Cunha and Sdusa, 1999):
Step 1. Choose s; the initial configuration of the network satisfying all
constraints. Find its cost, C;.

Step 2. Choose Tj, the initial temperature according to Equation '(3.'122).

Step 3. Choose T the final temperature.

Step 4. Choose at random another configuration s;, in the neighbourhood of the
current configuration s;, by changing the diameter of any one hnk to' either one
size higher or one size lower than the current one. Test it for feasibility. If
acceptable, find the change in cost AC. |

Step 5. Choose at randomp € [0,1]

Step 6. If p < min [1,exp (AC/T))], accept the changed configuration, otherwise
retain the original configuration.

Step 7. Choose another temperature, less than the earlier one.
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Step 8. Continue step 4 to 7 until the final temperature is reached.

Step 9. The-last solution is the optimal solution.

The advantages and shortcoming of GA are applicable to simulated annealing

also.

3.6 SUMMARY

The water distribution network dgsfg'n problem is non linear in nature.
Solution of this problem can be achieved by usinngLP- approach with direct or
indirect method. Generalized Reduced Gradient (GRG) algorithm that is
implemented in GRG2 has been worldwide applied and fully-tested and becomes a
robust algorithm backed by more than 15 years of solving real-world problems in the
petroleum, chemical, defence, financial, agriculture, and process control industries.
GRG?2 is like other 'gradie-nt-based methods, guaranteed to find a local op_timum only
on problems with continuously differentiable functions, and then only in the absence
df numerical difficulties (such as degeneracy or ill conditioning). However, GRG2
has a reputation for robustness, compared to other nonlinear optimization methods,
on-difficult problems where these conditions are not fully satisfied. The appﬁcation of
this method will be discussed in next chapter for solving water distribution network
design problem

Due to the solution that is achieved by using Non Linear Programming
approach cannot gu‘arantee to be global optimum value, Random Search Techniques
will be adopted. Genetic Algorithms (GA) that is part of Random Search Techniques,
will be applied in solving water distribution network design problem. Genetic
Algorithm is able to work for complex network where there would bé a lot of
combination of links to form one global solution. The application of Genetic
Algorithm in solving water distribution network design problem will be discussed in

next chapter.
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CHAPTER IV
CASE STUDY

4.1 APPLICATION OF NON LINEAR PROGRAMMING

As we have already known, for Non Linear Programming approach, there are 3 types
of formulation, i.e. D-Q, D-h and Q-h formulation. In all of these formulations, the |
constraints must be satisfied, i.e. node flow continuity, summation of headloss in
every loop equal zero and minimum required pressure at each node. From previous
chapter, it has been concluded that Generalized Reduced Gradient (GRG) algorithm
is capable enough to solve the real-world problems. Microsoft Excel Solver is one
example of software that using GRG algorithm in their calculation. This software

application will be discussed further in next paragraphs.

4.1.1 Microsoft Excel Solver

Microsoft Excel Solver is-, licensed product from Microsoft Corporation.
Microsoﬁ:'Exc;el Solver uses the Generalized Reduced Gradient (GRG2) algorithm for :
optimizing nonlinear problems. This algorithm was developed by Leon Lasdon, of
the University of Texas at Austin, and Allan Waren, of Cleveland State University.
For linear and integer problems, the simplex method, with bounds on the variables
and the branch and bound method are used, which is implemented by John Watson
and Dan Fylstra, of Frontline Systems, Inc. ' . '

GRG2 uses an implementation of the generalized reduced -gradient (GRG)
algorithm. It seeks a feasible solution first (if one is not provided) and then retains
feasibility as the objective is improved. It uses a robust implementaiion of the BFGS
quasi-Newton algorithm as its default choice for determining a search direction. A
limitéd-memory conjugate gradient method is also available, permitting solutions of
problems with hundreds or thousands of variables. The problem Jacobian is stored

and manipulated as a dense matrix, so the effective size limit is one to two hundred
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active constraints (excluding simple bounds on the variables, which are handled
implicitly). | | ’

. Microsoft Excel Solver uses iterative numerical methods that inv'olve
"plugging in" trial values for the adjustable cells and observing the results calculated
by the constraint cells and the optimum cell. Each trial is called an iteration. Because
a pure trial-and-error approach would be extremely time:consuming (especially for
problems involving many adjustable cells and constraints), Microsoft Excel Solver
performs extensive analyses of the observed'outputs and their rates of change as the
ihputs are varied, to guide the selection of new trial values.

In a typical problem, the constraints and the optimum cell are functions of
(that is, they depend on) the adjustable cells. The first derivative of .a function
measures its rate of change as the input is varied. When there are several values
entered, the function has several partial derivatives measuring its rate of change with
respect to each of the input values; together, the partial derivatives form a vector
called the gradient of the function. _ _ |

Derivatives (and gradients) play ‘a crucial role in iterative ‘methods in
Microsoft Excel Solver, They provide clues as to how the adjustable cells should be
varied. For example, if the optimum cell is being maximized and its partial derivative -
with respect to one adjustable cell is a large positive number, while another partial
derivative is near zero, Microsoft Excel Solver will probably increase the. first
adjustable cell's value on the next iteration. A negative partial derivative suggests that

the related adjustable cell's value should be varied in the opposite direction.

4.1.1.1 Forward and Central Differencing

Microsoft Excel Solvef approximates the derivatives numerically by moving
each adjustable cell value slightly and observing the rate of chan.ge.of each constraint
cell and the optimum cell. This process is called a finite difference estimate of the
derivative. Microsoft Excel Solver can use either forward differencing or central

differencing, as controiled by the Derivatives option on the Solver Options dialog box

which is shown in Figure 4-1.



Case Study

Forward differencing uses a single point (that is, a set of adjustable cell
values) that is slightly different from the current point to compute the derivative,
while central differencing uses two points in o;iposite directions. Central differencing
is more accurate if the derivative is changing rapidly at the current point, but requires

more recalculations. The default choice is forward differencing, which is fine in most

situations.
Max Time: ’ seconds ' oK
Iterations: 190 I ' Céncel J
Precision: [o.oooooi |- LLoad Model...
Tolerance: % ' I Save Model... J
Conyergence; |0.001 \ L Help |

3 Assume Linear Model . Glse Automatic Scaling

O Assume Non-Negative

O Show Iteration Results

Estimates
©Tangent
O-Quadratic

Derivatives
® Forward

O Central

Search
® Newton

O Conjugate

Figure 4-1 Solver Optidns Menu in MS-Excel S(_)lver

Linear. problems can be solved with far less work than nonlinear problems;
Microsoft Excel Solver does not need to recombute éhanging derivatives, and it can '
extrapolate along straight lines instead of recalculating the worksheet. These time
savings are brought into play when user clicks to select the Assume Linear Model
" check box in the Solver Options'dialog box. If the user doesn't select tlﬁs box,
Microsoft Excel Solver can still solve the problem, but it will'spend extra time doing
§0. o

When we know that a problem is completely linear, selecting the Assume
Linear Model option will speed up the solution process by a factor of 2 to 20
(depending on the size of the worksheet). The downside is that, if the real worksheet

formulas are nonlinear and this option is selected, we solve the wrong problem.
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Although Microsoft Excel Solver does check the final solution when Assume
Linear Model is checked, using a full worksheet recalculation, this is not an absolute -
guarantee that the problem is truly linear. We can always recheck the solution by

running the same problem with the check box cleared.

4.1.1.2 Optimality Conditions

Because the first derivative (or gradient) of the optimum cell measures its rate
of change with respect to (each of) the a{djustable cells, when all of the partial
derivatives of the optimum cell are zero (that is, the gradient is the zero vector), the
first-order conditions for optimality have been satisfied (some additional second-
order conditions must be checked as well), having found the highest (or lowest)

possible value for the optimum cell.

4.1.1.3 Multiple Locally Optimum Points

Some probiems have many locally optimum points where the partial
derivatives of the optimum cell are zero. A graph of the optimum cell function in
such cases. would show many hills and valleys of varying heights and depths. When
s.tarte,d’_ at a given set of adjustable cell values, the methods used by Microsoft Excel
Solver will tend to converge on a single hilitop or valley floor close to the starting
point. But Microsoft Excel Solver has no sure way of knowing whether there is a
taller hilltop, for example, in some distance away. |

The only .way to find the global optimum is to apply external knov&ledge of
the problem. Either through common sense reasoning about the problem or through
experimentation, the user must détermine the general region in which the global
optimum lies, and start Microsoft Excel Solver with adjustable cell values that are
within that region. Altematively, we can start Micro;%oﬂ Exbel Solver from several
different, widely separated points and see which solution is best.

The maximum number of constraints and variables that can be handled by

Microsoft Excel Solver is given as follows:

e For Non Linear Programming problem, the maximum number of variables is 200,

and the maximum number of constraints is 100.
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e For Linear Programming problem, the maximum number of variables is 200, and

the maximum number of constraints is unlimited.

4.1.2 Working with Solver

Solver is f)art of a suite of commands sometimes called “what-if analysis”
tools, i.e. process of changing the values in cells to see how those changes affect the
outcome of formulas on the worksheet, for example, varying the intercst'rate that is
used in an amortization table to determine the amount of the paymenfs.v»Opt'iinization

model in Solver has three parts: the target cell, the changing cells, and the constraints.

4.1.2.1 Target cell

The target cell represents the objective or goal. We want to either minimize or
maximize.the target cell. o
-~ 4,1.2.2 Changing cells

Changing cells are the spreadsheet cells that we can change or édjust to
optimize the target cell. ’
4.1.2.3 Constraints ’

Constraints are restrictions we place on the changing cells. . In most Solver
models, there is an implicit constraint that all changing cells must be nonnegative.
With Solver, we can find an optimal value for. a formula in one celi, called the target -
cell, on a worksheet. Solver works with a group of cells that are related, either
- directly or indirectly, to the formula in the target cell. Solver adjusts the values in the
changing ceils that we already specify, called the adjustable cells, to produce the
r-esult that we specify from the target cell formula. We can apply constraints to restrict
the values in the model, and the constraints can refer to §ther cells that affect the
target cell formula.
4.1.2.4 Installing and running Solver
To Install Solver, we can click Add-ins on the Tools menu, and theﬁ select the
Solver Add-in check box. Then we click OK, and Excel will install the Solver. Once

the add-in is installed, we can run Solver by clicking Solver on the Tbbls menu.
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Figure 4-2 shows the Solver Parameters dialog box, in which we input the

target cell, changing cells, and constraints that apply to our optimization model.

g R w L —

Figure 4-2 Solver Parameters Dialog Box

After we have input the target cell, changing cells, and bdﬁStrairits, Solver is
doing calculating to find the feasible solution. Any specification of the changing cells
that satisfies the model's constraints is known as a feasible soluﬁpn. For instance, in
looped water distribution network problem, network that satisfies the following three

conditions would be a feasible solution: S

o Continuity of flow in each node.
« Summation of headloss in ever)" loop equal zero.

+ Minimum required pressure at each node is satisfied.

Essentially, Solver searches over all feasible solutions and finds the feasible
solution that has the "best" target cell ‘value (the largest value for maximum
optimization, the smallest for minimum optimization). Such a solution is éalled' an
optimal solution. Some Solver models have no optimal solution and some have a

unique solution. Other Solver models have multiple (actually an infinite number of)

optimal solutions. 4 .



4.1.3 Application of Solver

Case Study

r

Solver is a useful tool in solving Water Distribution Network problem. The

previous problem in Chapter II, i.e. Example 2.1. will be solved using Solver.

4.1.3.1 D-Q Formulation

In D-Q formulation, the initial value of Diameter (D) and Discharge (Q) are assumed.

 The number of trial in my experiment is 10 trials and the complete results are

presented in Appendix A. The final result is given in Table 4-1.

Table 4-1 Result of Example 2.1 (using D-Q Formuiation)

Link Diameter (m) Discharge (m’/h) Head losé (m)
1 0480 0 533

2 0.262 370 13.10

3 0.395 650 °5.03

4 0 0 0

5 0.372 530 . 464

6 0.253 200 5

7 0238 20 1187

8 0 0 0o -

Table 4-2 Head pressure at each node (using D-Q Formulation)

Node Pressure Head (m)
| Actual Required
1 T 210 210
2 204.67 180
3 191.57 190
4 199.64 185
5 180 180
6 195 195
7 190 190

The cost of this network is Rs. 17,172,733.
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4.1.3.2 D-h Formulation _ .
In D-h formulation, the initial value of Diameter (D) and headloss (h) are

assumed. The number of trial in my experiment is 8, and the complete results -are

presented in Appendix A. The final result is given in Table 4-3.

Table 4-3 Result of Example 2.1 (using D-h Formulation)

Link Diameter (m)  Head loss (m) Discharge (m”/h)
1 0459 45 1120

2 0298 - . 64 347.65

3 0.381 65 67236

4 0.104 54 20.25

5. 0385 4 53210

6 0.336 1.3 | 202.10

7 0.270 5.5 . 247.65

8 0.099 0l 2.10

Table 4-4 Head pressure at each node (using D-h Fbrmulatiqn‘) ‘

Node ' Pressufe Head (m)
Actual Reguired

1 210 210

2 205.5 . . 180

3 1991 190

4 199 185

5 193.6 180

6 195 ‘ 195 -
7 193.7 - 190

The cost of this network is Rs. 20,181,642.
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In D-h formulation, the initial value of Diameter (D) and headloss (h) are

assumed. The number of trial in my experiment is 6, and the complete calculation is

presented in Appendix A. The final result is given in Table 4-5.

Table4.S  Results of Example 2.1 (using Q-h Formulation)

Link - Discharge (m/h)  Head loss (m)  Diameter (m) |
1 1120 533 0.480

2 370 13.10 0.262

3 650 5.03 0.395

4 0 0 0

5 530 4.64 0.372

6 200 5 0.253

7 270 11.57 0.238

8 0 0 0

Table 4-6 Head pressure at each node (using Q-h Formulation)

Node ' Pressure Head (m)
Actual . Required

1 210 - 210

2 204.67 180

3 191.57 190

4 199.64 185

5 180 180

6 195 195

7 190 190 .

The cost of this network is Rs. 17,168,950.
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4.1.4 Discussion of results _

The selections of initial values in all three formulations are very important is
iteration process, because if the values that are selected are far from thirﬁum values,
the trial process will be quite tough and takes a lot of time. The result of running
process will become an input for next running. -

The process in getting the optimum point for three formulations is graphically
presented in Flgure 4-3. This graphic shows us that it is better to use Q-h formulation
rather than D-Q or D-h formulation, because the number of iteration that is required
to achieve local optimum solution is less, and so computation time will be reduced.
Also the solution that is achieved by using Q-h formulation is more economical than
the other two formulations. Based of this fact, Q-h formglation will be’ apbligd in

solving a real world water distribution network problem in next section.

30,000,000
25,000,000

B 20,000,000 {—gimega-tra—s—s
: ’ ,“ f* ”-o-0- - DQ
15,000,000 - —s—D-h
2 i --x--Q-h
2 10,000,000 : 4

!

5,000,000 i
!
0 +—dk—h—h—h— —
0 5 10 15
Running

Figure 4-3 Iteration Process using MS-Excel Solver'

42 APPLICATION OF GENETIC ALGORITHM
The same probiem will be solved by using Genetic Algorithm (GA')
application. There are many GA applications on water distribution network. In-this
dissertation, Water Network Optimiser is presented which is developed by Dr. E.
Keedwell from Centre for Water Systems, University of Exeter, UK. This barticular

program that is used in this dissertation is a demo program, which can only run for
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maximum 50 pipes. The genetic algorithm (GA) uses the principles of evolution to

test variots combinations of pipes in the model to achieve two goals:

1. A minimum cost of network

2. Pressure of each node must be greater than minimum head requirements.

4.2.1 Illustrative Example

A simple water distribution network will be solved using Water Network Optimiser.

It is taken from previous problem in Example 2.1 with different cost of pipe. The

available pipe sizes in inches (1 inch = 25.4 mm) and their unit co_sf in arbitrary units

shown in Table 4-7.

Table 4-7 Diameter — Cost relationship of network in Example 2-1

Diameter Cost

(inch) (monetary unit/m®)
1 2

2 5

3 8

4 11

6 16

8 23

10 132

12 50

14 60

16 90

18 130

20 170 .
22 300

24 550

Hazen-Williams head loss formula is used for headloss calculaﬁbri, with Hazen
Williams coefficient is 130 for all links.

O IV-11
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4.2.2 Modelling the problem '
Water Network Optimiser uses Epanet 2.0 (EPA - Govt. of USA, 2000) as its
simulation engine and tﬁérefore no other modelling packages can currently be used
with it. The Water Network Optimiser uses a simple text file which contains-the
details of the current project which has the extension *.prj. The file must be written
correctly for the program to work and consists of 4 sections; ie.:

1. Input File

2. Costs

3. Modify Links, and

4. Solution Sets
All of section is discussed as follows:
[InputFile]
This section shows the location of the Epanet *.inp file which can be exported from

the Epanet 2.0 program. This can either include a full path or just the filename.

[Costs]
This section shows the costs in monetary units/ unit length of replacing a pipe within
the network. The first number is the diameter (in mm), and the second is the cost per

unit length of the pipe (in monetary units). They must be Tab separated.

[RequiredHead]

This section shows the required head at each node within the network. The first
number is the nodelD as found in the Epaﬁet model and the seéoﬁd is the minimum
required head at that node. If the resulting model does not achieve this head then a

penalty can be applied. Again, these values must be Tab separated.

[ModifyLinks]

This is a list of pipes which can be modified within the network. In this .casé, it is

allowed all the section of network to be optimised. The numbers must cdrresp'ond to
nodelD in the Epanet model. . |
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[SolutionSets]

This section is used by the program to point to solution sets from previous runs saved
into the project. There must be a blank line between each section. - -

The project file of above illustrative example is preserited in.Appendix B.

4.2.3 Running the Model
4.2.3.1 Project Window

Once this project file has been written, it can be opened, where the screen as shown in

Figure 4-4 should appear. | :

L”i{lilé'ﬁa FJN

5

i
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""' 1T,
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a*a
,.a:x},\“‘m
~rtpefinas

i
»su.,ma‘-‘g;

Figure 4 4 Pl‘OjeCt Wmdow of Water Network Optlmlser

There are three tabs in the window, Optimisation where ',the' GA runs are
completed, Results where the results from runs can be seen and manipulated and

Options where the Project Options (as specified in the prj file) can be viewed and
changed.
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4.2.3.2 Optimisation

~ On this page are the controls for optimising the water network. There are four

buttons which control various aspects of the GA as shown in Figure 4-5.
Joflcliolie

Figure 4-5 Key buttons of Water Network Optimiser software.

The play button will start the GA. The GA can be stopped and the solutjons
saved by pressing the stop button. The pause button will pause the process, to resume
we can click play. The final button will show the GA options form where various

parameters can be changed in OptionFormi ment, as shown in Figure 4-6.

Steady State

R R e o 7
Fonseca & Fleming

F“igui‘e 4-6 GA option of Water Network Optimiser

Each of these options affects the ’way the GA works.

Iterations: Specifies the number of iterations before the GA stops -

Population Size: Determines the number of individuals in the population

Crossover Rate: Determines the probability of crossover (0.0-1.0)

Mutation Rate: Determines the probability of mutation (0.0-1.0)

Random Seed: As a default, each time the GA is run it begins from a ﬁew, random -

position. To start the GA from the same point each time, we check the “Fix” box and
enter the fixed random seed.

IvV-14
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Genetic Algorithm: There are two types of GA used in this application, Steady State
and Generational. .

'Mulﬁ-Objective Genetic Algorithm: There are two types of MOGA used in this
program, Fonseca and Fleming and NSGA-IL ‘ '

4.2.4 Discussion of results | )

The program is running after reading the input data in Epanet format. The '
network is modelled first in Epanet format. Then the project file is devélbped. Then
we select the parameter of Genetic Algorithm, such as: Number of iterations,
Population size, crossover rate, mutation rate, and type of Genetic Algorithm. A

number of trials are applied, with different values of parameters. The results are given

below.

First running:

The parametefs are as follows:

Violation Penalty - 10000
Population size : 100
Iterations: ' 10000
Crossover rate: 0.9
Mutation rate: 0.01

GA Type: Generational

We can see the running process of the program from start up to terminal
iterations. Here the price is ﬂuctﬁated and decreasing, and after some number
iterations, the-fluctuation will stabilise and the optimise result will be achieved. The
animated graphic that shows the process is presented on Figure 4.7. The better result |
will be achieved if we use Generational types of GA, rather than Steady state, even
though time consumed will be more. For two looped network, with 10000 iterations,
. the Pentium 4 ® cdmputer needs 5 minites to find the solution. The optiirial sblution

in this trial is given in the Table 4-8.

IV-15
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Figure 4-7 Iteration process in Water Optimiser Network '. :

Table 4-8§  Diameter of pipe of network (First rimning)

Link Diameter (m)  Diameter (in)
1 04572 18
2 0.3048 12
3 0.4064 16
4 0.254 10
5 03556 14
6 0.1524 6
7 0.254 10
| 8 0.254 10

The head pressure at each node and the required head is given in Table 4-9.
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Table 4.9 Head pressure at each node of network (First running) -

Node Pressure Head (m)
Actual Required
1 210 210
2 203.25 180
3 198.62 190 -
4 198.15 185
-5 193.09 180
6 195.03 195
7 190.28 190

The cost of water network is 442,000 units.

Second running:

The parameters are as follows:

Violation Penalty
Population size:
Iterations:
Cr05sover-‘rate:
Mutation rate:
GA Type:

10000
100
10000
0.9

1005

Generational

The results for this trial are given in Table 4-10 and 4-11.

Table 4-10 Diameter of pipe of network (Second running)

Link Diameter (m)  Diameter (in)
1 0.4572 18
2 0.3556 14
3 0.3556 14
4 0.0254 1
5 0.3556 . 14
-6 0.1524 6
7 0.3556 14
8 0.2540 10
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Table 4-11 Head pressure at each node (Second running)

Node . Pressure Head (m)
Actual Required

1 210 — 210

2 203.25 180

3 197.66 190

4 198.13 185

5 193.89 180

6 195.06 195

7 190.95 190

The cost of water network is 420,000 units, and this is the optimum one. From Figure
4-7, we can see that in the early sfage of iterations, the cost of network is decrease
progressively and in the later stage decreasing process is reduced and .ﬁnally gives
constant value, which is the optimum one. Since the direction of searching the
dptimum cost is random, the chance of getting the global optimum solution is hlgh

In GA approach, the program can work with discrete value of pipe diameter as
a decision variable, where in Non Linear Programming approach can not handle
discrete variables. In Non Linear Programming approach, the diameters thaf afe_ gi\}en
in solution are fractional numbér, so they need to be rounded up to get the market size
diameter of pipe.

It is showed that the use of Genetic Algorithm Application in water
distribution network problem is more promising than Non Linear Programming

Approach. The application of Water Network Optimiser shows that the solution is

better than Non Linear Pro gramming approach.

43 APPLICATION ON DESIGN OF REAL TYPE NETWORK

In a real world, the network will be more complex than previous example.
An example of real water distribution network problem is given in Example 4.1. and
this problem will be solved using NLP approach and GA approach.
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‘Example 4.1

1& Meterperday (CMD) - -
" (-ve means supply) .
) Ground elevation (m)

o PiE‘ line No O
. Leugthinm A

Figure 4-8 An example of real type water distribution network '
Water distribution network on one city is proposed and presented in Figure 4-8.
Ground level and demand node at each node are presented on Table 4-12.

Table 4-12 Demand node and pressure head requirement of Example 4.1

Node Demand (m’/day)  Ground level -
1 -14300 ' 180
2 600 178
3 1000 179
4 900 180
5 , 1200 181-
6 900 183
7 800 182
8 800 ’ 181
9 1200 " 180
10 1200 - 182
11 600 181
12 800 181 -
13 1200 183"
14 800 184
15 800. 179
16 600 180
17 900 181
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The required pressure head at each node is 17 m.
The information about links characteristics (length and roughness) are given in

. Table 4-13. Head loss is computed by using Hazen Williams formula, -

Table 4-13 Links Characteristics of network in Example 4.1

Link Length (n? Roughness Coeff.
1 1400 100
2 1700 100
3 1000 100
4 900 | 100
5 1350 100
6 900 100
7 1100 100
8 1400 100
9 900 100
10 1000 100
11 1200 100
12 1100 100
13 800 100
14 1400 100
15 800 100
16 1100 100
17 - 1200 . 100
18 800 100 -
19 900 100
20 1400 100
21 1200 100

The information about cost of each diameter pipe is given in Table 4-14.
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Table 4-14 Cost diameter pipe relationship of Example 4.1 '

Diameter Cost
(mm) | (monetary unit/m’)
25 2
50 5
75 8
100 111

| 150 16 .
200 23
250 32
300 50
350 60
400 90
450 130
500 170
550 300
600 550

4.3.1 Solution by using Non Linear Pl;-ogramming approach
* The relationship of diameter of pipe (in m) and cost of pipe (in mone,tad unit) |
is presented in Table 4-15.

The equation that depicts the relationship of diameter and cost of pipe shouid
be carried out in order to get the objective function. This is can be done by using MS-
Excel. First, the points are plotted on log-log paper and the regression line is drawn
so that it will give the best fit of the distribution 6f the points. The distribution of

points and regression line is given in Figure 4-9.



Table 4-15 Diameter — Cost relationship in mm and monetary unit

unit cost

Diameter (m) | Cost
(monetary unit/m’)

0.025 2

0.050 5

0.075 8

0.100 11

0.150 16

0.200 23

0.250 32

0.300 50

0.350 60

0.400 90

0.450 130

0.500 170

0.550 300

0.600 550
1660
QA )

o]
10
y = 468.06x" 918 -
< | R? = 0.9325 .
0.01 0.1 1

diameter of pipe (m)

Figure 4-9  Diameter-cost pipe relationship

Case Study
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So the pipe cost equation is :

C = 468.06 D'**'*
where:
C = Pipe cost per m’ (in monetary units)

D = Diameter of pipe (m)

The next step is to develop initial distribution of the flow on the network. By
using this assumption, the constraints are developed, i.e. flow continuity on every
node, sum of headloss on every loop is equal zero, and non negativity value of

disharge as well as headloss. The flow direction is drawn in Figure 4-10.

Junetion number
Junction derand in cubic
Meter per day (CMD)
(-ve means supply)
Ground elevatica (m)

O Pipeline No O
Lengthinm h

Figure 4-10 Initial guess of flow direction

The problem is formulated in Q-h formulation, and the formulation is given as

follow:

Objective function:

’ 21
Minimise C = 0.0642 ZLli.32686Qi0.60535hi—0.32686

i=l
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subject to the constraints as follows:

Node flow continuity constraints
O1+Q12= 14300
O1-0>-Qs = 600

0>-03= 1000

- 03-04=900
Qa+05-05-0s-Q10= 1200
Os+011=900

Qs-07= 800

0+-Os= 800

Q¢+Q15= 1200
Qi0-On-Q16= 1200
Q12-013-017= 600
Q13-014= 800
QiatQio-Or1s= 1200
Qi6+021= 800

Q17-018= 800
Q15-Q19-0a0= 600
Q20-021= 900

Summation of Headloss equal to 0 's constraints
hithethythgtho-his-his-ha-h12=0
hathst+ha-hg-hi-h¢= 0

hs-hy1-h10=0 _

hsthys-hig-hig-h17=0
hgthis-hothiothie-ha1-hao= 0

Path Headloss constraints

h < 25
hi+hy < 24

IV -24

Case Study



hi+hythy < 23
hithythsthy < 22

hi+he < 21

hi+hgth; < 22
hithetrhvhg < 22
h\+hythythaths < 20
h\+hgthythgths < 20
hithythsthethothng < 20
hi+he+hrthgthiothin < 20
hi+hy+hsthathie < 21
h\+hgthrthgthp < 21
hythythythgthy < 23
h\+hethythgthy < 23
hithythythathiothis < 19
hythgthrrhgthiothis < 19
hy < 22

hiothis < 22 '
hiythisthis < 20

hithyr < 24

hiathithig < 23
hiathirthigthie < 20
hiathizthisthys < 23
hathirthsthiothis < 23

hiathirthigthyy < 22
Non negativity constraints:

O e Q1 20
hiy ooy 21 20

IV-25
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By using MS-Excel Solver, we can get the optimal solution as follows:

Case Study

Table 4-16 Optimum solﬁtion of Example 4.1 (using MS- Excel Solver)

Link Discharge Headloss ‘(m)' . Diameter (m)
(m*/day) |

1 7400 4.69996526 0.357
2 2201.29051 7.00758381 0.216
3 1201.29051 3.15474065 - 0.181
4 301.290511 1.52832015 0.122
5 411.052828 3.60939014 0.125 -
6 4598.70949 3.42465735 0.291
7 3798.70949 3.8530486 0.275
8 2998.70949 441293865 0.257
9 0 | 6.60939014 0
10 1688.94717 2.16997288 0.223
11 488.947172 143041725 0.157
12 6900 4.71268226 0.331
13 2281.15598 6.49599232 0.19
14 1481.15598 879132542 0.17
15 1200 3 0.175
16 0 0.43941725 0
17 4018.84402 4.80279687 0.273
18 3218.84402 2.80105462 0.258
19 918.84402 7.68346625 0.133
20 1700 4.13419406 0.21
21 800 2.54927219 0.168

IV-26



Table 4.17 Head pressure at each node of network of Example 4.1 .

Node - - Pressure Head (m)
Aétual Requi'red
1 220 220
2 215.3 195
3 © 208.2925 196
4 205.1377 197
5 203.6094 198
6 200 200
7 211.8754 199
8 208.0223 198
9 197 197
10 201.4394 199
11 215.2873 198
12 208.7913 198 -
13 200 200
14 201 201
15 210.4845 196
16 207.6835 197
17 - 203.5493 198

Case Study

The cost of water network is 934,412 units. The complete iteration process. is

presented in Appendix B

This solution gives us information that link 9 and 16 are redundant, so based
on optifnality point of view, these pipes can be deleted. But if reliability becomes our

consideration, then for each node there should be minimum 2 links connected. In this -

case, link 9 and 16 should be kept available to supply node 9 and 14 respectively. If

we give minimum diameter 100 mm for these two links, then the cost of network will

becomes 1,159,348 units.
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4.3.2 Solution by using Genetic Algorithm approach
The first step is to develop a model of the problem in Epanet Format. The
model is written in Epanet format so that the problem can be read by Wafernct‘work
optimiser program and saved in input file ( *.inp). ,
- The project file of this problem also developed. The inform'atioh related to
diameter-cost of pipe, the model itself, pipes that need to be modified, required
éressure head on every node are given in projecf file.

The process of finding optimum solution s trial process. The trial process is

given as follows:

First trial:

The parameters are as follows:

Violation Penalty 20000

Popu_lation size : 100

Iterations: 10000

Crossover rate: 0.9

Mutation rate: _ 0.1

GA Type: Generational B

The results for this trial are given in Table 4-18.

Table 4-18 Results of Example 4.1 (First trial)

Link Diam | Node Pressure Head (m)
eter Actual  Required
(mm) '
1 350 {1 220.06 220
2 150 |2 21561 195
3 25 |3 205.84 196
4 150 |4 19751 197
5 200 |5 201.58 198
6 300 |6 200.04 200
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9
10
11
12
13
14
15
16
17
18
19
20
21

300
250

150

200
25

350
250
250
200
25

250
250
25

200
200

10

11

12
13

14
15

16
17

211.93
208.63
203.41
199.66
215.91
211.54

206.62

203.19
21131
200.54
20431

199

198
197

199

198
198

200
201
196 .-

197
198

The cost of water network is 625,850 units.

Second trial:

The parameters are as follows:

Violation Penalty
Population size:
Iterations:
Mutation rate:

GA Type:

The results for this trial are given in Table 4-19.

20000
1100
10000

0.05°

Generational

Case Study
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Table 4-19 Reésults of Example 4.1 (Second trial)

Link | Diameter Node Pressure Head (m)
' (mm) Actual Required,
1 350 1 220.06 220
2 200 2 213.78 T 105
3 150 3 206.08 196
4 25 4 201.50 197
5 200 5 203.78 198
6 300 6 202.24 200
7 | 350 7 120940 199,
8 300 8 207.49 198
9 25 9 199.62 197
10 | 250 10 202.09 199
11 | 25 11 21406 - 198
12 | 300 12 210.86 198
13 | 250 13 20115 200
14 | 200 14 201.07 201
15 | 200 15 206.25 196
16 | 200 16 205.45 197 .
17 | 200 17 - 199.02 198
18 | 250 ' | -
19 | 25
20 | 150
21 | 25

The cost of water network is 625,450 units which is the optimal one.

If reliability issue becomes our concern, then minimum diameter of pipe

should be kept available. If we apply the minimum diameter 100 mm, then the cost of
network will increase to 671,350 units.
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CHAPTER V

CONCLUSIONS AND SCOPE FOR FUTURE STUDY

5.1 CONCLUSIONS
L.

Water distribution network design problem, basically isﬁl ahighly rlon linear
programming problem in nature, and it can be solved usivn‘gw Non Linear
Programming approach or Stochastlc Search approach There are - various
methods ava11able in Non Linear Programming approach 1nc1ud1ng Generalised
Reduce Gradlent (GRG) algorithm which is capable to solve the real world type
optimisation problems. Genetic Algorithms, a method in Stochastlc Search -
approach, is proved to be a better algorithm for solving‘ water " distribution
network design problem which is highly non linear type.

In Non Linear Programming approach, water distribution network problem can
be formulated in 3 types, i.e;_ D-Q (diameter-discharge), D-h (diameter- -
headloss), and Q-h (discharge- headloss) formulationl. Prohle_m fo.rmulation in
Q-h is better than D-Q or D-h, because the constraints in Q-h formulation are -
linearly in type and this condition w111 bring optnmsatlon process faster than the
other two formulations. . _

Microsoft Excel Solver which is a soﬁware that using Generahsed ‘Reduced
Gradient methods in solving Non Linear Programming problem, is using
iterative methods in the optimisation process. In its process, der'lvatives and
gradients play a crucial role on how to variables should be aldju'sted.._ Microsoft
Excel Solver approximates the derivatives numerically by moving each
adjustable cell value slightly and observing the rate of change of each constraint
cell and the optimum cell. Because the first denvatlve (or grad1ent) of the
optimum cell measures its rate of change with respect to (each oi) the adjustable
cells, when all the partial denvatlves of opt1mum cell are zero, then the
optimum solution has been achleved o ' ‘ |
In solvmg water distribution network design problem Mlcrosoﬁ Excel Solver °
has performed well. However, the solution that is achieved is locally optimal.

When started at a given set of adjustable cell values, the methods used by
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Microsoft Excel Solver will tend to converge on optimal point close to the
starting point. But Microsoft Excel Solver has no sure way of knowing global
optimum. For searching global optimum solution, we can start Microsoft Excel

Solver from several different, widely separated points and see which solution is
best.

. The solution that is achieved by using NLP approach is continuous value and it
ﬁeed to be round up to available market size of diameter. The process of
rounding up the diameter is causing the cost of network is increased and the
solution is not optimum. . ,

The using of Genetic Algorithm (GA) methods in solving water distribution
network design problem giving chances in getting global optimum solution,
because Genetic Algorithm simultaneously considers a population of solutions,
spread throughout the solution space, so the probability of reaching global
optimum solution is increased. By ﬁnplementing the principle of genetic
process, i.e. survival the fittest, the initial population of solutions is.randomly
generated and the cost of network is computed, also the information about their
feasibility. This algorithm tends to search the solutions that give less cost of
network and if the solutions are not hydraulically feasible according. to
hydraulic requirement, the peﬁalty will be applied and the consequences the cost
of network will be increased. To know whether solution hydraulically feasible
or not, the hydraulic simulation package is incorboratéd, for example Epanet 2.0
1s used by Water Network Optimiser. Water Network Optimiser which is an
example of GA application software in water distribution network design
performs a good result and gi\}es a better solution than MS- Excel Solver.

. GA can deal with discrete variable, and in this case it becomes an advantage.
Because of discrete variables, such as market size diameter of pipe, can .be
handled, there are no need of rounding up process as in NLP approach and cost

of network is not get increase. This advantage makes GA approach is superior
to NLP approach. |
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5.2 SCOPE FOR FUTURE STUDY

There are large scope for future study in are of looped water distribﬁtion’ network
design. The things that can be considered are: N
1. Multiple loadings and multiple sources .

The design of water distribution network should consider also multiple loading
and multiple sources in the network. This dissertation only considers a network
wifh one source and one demand pattern. |

2. Reliability point of view ‘ , ,

The further study of reliability issue in water distribution network ‘design also can
be doné, by calculating incremental of reliability could be achieved upon
incremental cost of network.

3. Spatial based design of water distribution netvs."ork

The impact of land use and development issues to installation cost should also be
considered. The spatially distributed soil characteristic will impact excavation
cost, and this should also be considered. ’ '

4. Modification and Expansion of water distribution network - _

The dissertation is considered for new network. We should also-consider dealing

with existing network that is needed to be modified or to be expanded. ...
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Appendix A

1. D-Q formulation

Changing cells

d1
d2
d3
d4
ds
dé
da7
d8
q2
q3

q2+q3=1020
q3-q5-qg4=120 -
q2-q7=100
q4+q8+q7=270
q5-q6=330
q6-98=200

hi

h2

h3

h4

hs

h6

h7

h8
h2+h7-h3-h4=0
h4-h5-h6-h8=0
hi<=

hi+h2<=
hi+h3<=
hi+h2+h7<=
h1+h3+hd<=
h1+h3+h5<=
h1+h3+hS+h6<=

Target cell
fx)

Constraints
q2+q3=1020
q3-95-q4=120
q2-q7=100
q4+q8+q7=270
q5-q6=330
q6-q8=200
h2+h7-h3-h4=0
h4-h5-h6-h8=0
hi<=

h1+h2<=
hi+h3<= .
hi+h2+h7<=
h1+h3+h4<=
h1+h3+h§<=
h1+h3+h5+h6<=

q1....q4>=0v
h....,.h4 >=0

0.499555
0.2983802
0.4047768

0
0.4347417
0.3430467
0.2847346
0.0707654
367.99882
652.00118
1.0026373
530.99855
200,99855
267.99882
0.8985462

© 1020
- 120
100
270

330.

200
4.3968292
6.7737617
4.4971485

#DIV/ol
21715749
1.1387577

- 4.8069176

0.1343666
#Diviol
#DiV/o!

4.3968292

11.170591

8.8039777

15.977509
#DIViol

11.085553
12.20431

20,500,330

1020
120
100
270
330
200

0

[+}
30
20
25
30
30
15
20

05
04
0.4
0.1
04
03
03
0.1
300
720
20
580
250
200
50

Initial values
1st running

0.5
0.38322803
0.45460242

0.10854545 |

0.44034893
0.34146755
0.2435461

2nd running

0.3024008 -

300.000051
719.999949
20.0001383
579.999811
249.999811
200.000051

49.999811

1020

120

100

270

330

200
4.37780382
1.39405614
3.07044665
4.30698013
240251281
1.74445083
5.98337015
0.16000749
-4.8584E-07
7.237E-10
4.37780382
5.77185996
7.44825048
11.7652301
11.7552308
9.85076328
11.5952231

24,436,593

0.4 0.418163212
0.2 0.234761487
0.35 0,363531406
0.07 0.08890386648
0.25 0.264465428

0.2 0.213306484

0.1 0.189800738
0.1 0.104164367
340- 330.9900818
680 680.0000182
20 20.0000515
540 639.9909667
210 209.9999667
240 239.9990818
10 9.999966676

1020
120
100
270
330

200 .

10.45530329
19.11764957
8.204558496
39,15726179
25.20838683
12,49075488
28.24417163
1.458120282
© 9.07474E-07
1.2057E-13
10.45630329
29.57295286
18.85086179
57.81712448
57.81712358
43.86824842
66.3590033

14,659,743

100’

130 J
L)

0.42
023
0.38
0.07
0.28

3rd running

0.44801623
0.25688143
0.38632003
0.08322111
0.28477405

0.3115242
0.21357195
0.10729313

349.90007

670.00003
10.0000821
539.999948
200.999948

249.99997
0.99994784

1020
120
100
270
330
200
7.47204833
13.0108028
5.93603933

16.5919127 -

14.8617163
1.97484642
17.1471866
1.26240617
7.63003736
-1.5070562
7.47204833
20.4828512
13.4080877
37.6300378
30.0000004
28.260804
30.2446504

17,068,752

o

4th running

0.42
0.23
0.36
0.08
03
0.32
0.21
0.08
. 368
- 852
S
531
201
268
1

0.4851039
0.3034844
0,3933749
0.0350855
0.4158683
0.3358914
0.2768684
0.0673952
367.99945
652.00055
1.0012818
530.98027
200.99927
267.99945
0.9992667

1020 ;

120

100

270

330

200
5.0679544
6.3381681
5.1685305
4.1262351
2.6955496.
1.2600468
5.5096113
0.1708384
2.5530137
2.542E-07

" 5.0679544

11.408122
10.238485
16.915734

14.36272
12.832035
14.192081

19,953,123

S5th running

0.42
0.24
0.36
0.08
0.3
0.32
0.22
0.08
368
852
1
531
201
268
1

0.499554975
0.288380162
0.404776644
0
0.434741709
0.343046716
0.28473458
0.070765361
367.9988166
652.0011834
1.00263728
530.9985462-
200.9985462
267.9988166
0.998546156

1020

120

100

270

330

200

4.396829249

6.773761874

4.497148477
#DIV/O!

2.171574934

1.138757672

. 4806917632

0.134366593 -
#DIV/0!
#DIV/OI

4.396829249

11.17059092

8.893977726

15.97750855
#DIV/0|

11.06555266

12.20431033

20,500,330



Changing cells

d1
da2
d3
d4
ds
dé
d7

q2+q3=1020
q3-95-q4=120
q2-q7=100
q4+q8+q7=270
q5-q6=330
46-q8=200

hi<=

hi+h2<=
hi+h3<=
h1+h2+h7<=
hi+h3+h4<=
h1+h3+h5<=
h1+h3+h5+h6<=

Target cell
f(x)

Constraints
q2+q3=1020
q3-q5-q4=120
q2-q7=100
q4+q8+q7=270
q5-q6=330
q6-q8=200

hi<=

h1+h2<=
hi+h3<=
h1+h2+h7<=
hi+h3+h4<=
hi+h3+h5<=
h1+h3+h5+h6<=

q1,..q4>=0
h1,...,h4 >=0

0.480199195
0.261891412
0.395109475
0
0.371718411
0.252692647
0.238426255
0

370

650

0

630

200

270

5.329885302
13.10207473
5.03025524

4.63985938
5
11.56803988

5.329885302
18.431986004
10.36014054
29.89999992
10.36014054
14.99989992
19.99999992

17,172,733

1020
120
100
270
330
200

Initial values .

6th running 7th running 8th running oth running 10th running

0.42 0.47893278 0.42 0.48019289 0.42 0.4801911 0.42 04802168  0.42 0.4801992
. 0.24 0.256228023 0.25 0.261988128 0.25 0.2818745 0.25 0.2619783 0.26 0.2618914
0.38 0.395682616 0.41 0.39510844 0.41 0.3850946 038 0.395086  0.41 0.3951095
0 0 0 o o0 0 0 0 0 0
0.3 0.372273622 032 0.37172712 0.38 0.3717408 0.3 03717165 0.38 0.3717184
0.32 0.252692647 0.3 0.25269265 0.28 0.2526926 - 0.3 0.2526926 0.26 0.2526926
0.22 0.24566527 0.3 0.23843815 0.28 0.2384455 0.3 0.2384357 0.26 0.2384263
0 0 0 0o 0 o - 0 0 0 0
370 370 370 370 370 370 370 370 370 370
650 650 650 650 650 650 650 650 650 650
0 0 0 0 0 0 0 0 0 0
530 530 530 830  '530 630 530 530 530 530
200 200 200 200 200 200 200 200 200 200
270 270 270 270 270 270 270 270 - 270 270
0 0 0 0 0 0 0 0 0 ]
1020 1020 1020 1020 1020

120 120 120 120 120

100 100 100 100 100

270 270 270 270 270

330 330 330 330 330

200 200 200 200 200

5.398873897 5.33022639 6.330323 5.3289208 5.3208853
14.60112652 13.104543 13.106186 13.105259 13.102075
4.994870486 5.03044361 5.0311758 5.0310926 5.0302552
4.606256523 4.63933001 4,6385012 4.6399776 4.6398594

5 5 5 5 5

10 - 11.5652306 11.563491 11.565812 11.56804

5.308873897 5.33022639 30 5.330323 5.3289298 5.3298853
20.00000042 18.4347694 20 18.436509 18.434189 18.43196
10.39374438 10.36067 25 10.361489 10.360022 _. 10.360141
30.00000042 30 30 . 30 30.000001 30
10.39374438 10.36067 30 10.361488 10.360022 10.380141
15.00000091 15 15 15 15 15
20.00000091 20 20 20 20 20

210 10
100’
W E0m 1120 m'h .

27

200

w190 6 4198

N,
N

30

=\




2. D-h formulation

Changing cells Initial values . P

’ . _1strunning 2nd running . ) 3rd running
a1 0.499541666 B 0.42 0.44107101 0.42 0.488827439 0.48 0.488848685
d2- 0.297563101 0.3 0.30267446 - 0.24 0.301807955 0.24 0.283789821
d3 0.381376347 0.36 0.37791807 0.41 0.378436243 0.39 0.39
d4 0.104324057 0.06 0.05832942 0.06 0.068581014 0.06 0.065869544
ds 0.385424822 0.4 0.40887145 0.3 0.39192447 0.35 0.394167457
dé 0.335681071 0.3 0.29861372 0.3 0.298627583 0.25 0.268829553
d7 0.269777606 0.3. 0.27623569 0.22 0.275282928 0.22 0.25195509
d8 0.099772511 0.1 .0.0995607 0.1 0.100042379 - 041 0.1
h1 : 4.500082408 5§ 5,00037002 5 5.00123288 5 5.00017443
h2 6.401708037 6.4 6.40078725 6.4 6.402425084 6.4 6.401878125
h3 6.499867607 6.5 6.50022771 6.5 6.500159591 6.5 6.500160155
h4 5.40144262 5.4 5.40020322 5.4 5.402587873 5.4 5.40182693
h& 4.000049985 3 3.00014178 3 3.002255676 ) 3 3.001058012
hé 1.301121853 2.3 2.30005738 2.3 2.300143414 - 23 2.30059495
h7 5.499602191 5.5 5.49964367 5.5 5,500322381 55 5.500108961
h8 0.100270782 0.1 0.10000406 0.1 0.100188783 0.1 0.100173968
q1 1120 855.031711 1120 1120
q2 347.6447908 363.511277 361.1495999 306.9834388
q3 672.3552091 656.488723 658.8504001 713.0165613
q4 20.25401087 ’ 4.40221168 6.735183463 6.058005466
qs5 532.1011982 532.086512 476.3096172 483.3943156
q6 202.1011982 202,086512 202.1152166 153.3943156
q7 . 247.6447909 263.511276 261.1495991 206.9834388
qs8 2,101198194 © 2,08651166 . 2.115216607° 2.112696974
q1 1120 855.031711 1120 ’ 1120
q2+q3=1020 1020 1020 1020 1020 1020
q3-q5-q4=120 120 120 120 175.8055995 223.5642402
q2-q7=100 100 100 100 100.0000009 99.99999999
qé+q8+q7=270 270 270 270 269.9999991 215.1841412
q5-q6=330 330 330 330 274.1944008 330
q6-q8=200 200 200 200 200 T 151.2816186
h2+h7-h3-h4=0 0 (] 0 0 . ' 0
h4-h5-h6-h8=0 -1.80411E-16 0 -4.8572E-16 -9.57567E-16 . ) -3.19189E-16
hi<= 4.500082408 30 5.00037002 5.00123288 5.00017443
h1+h2<= 10.80179044 20 1140115873 . 11.40365796 11.40205255
h1+h3<= 10.99995002 25 11.5005977 11.50139247 - 11.50033459
h1+h2+h7<= 16.40139264 30 16.9008009 16.90398034 . 16.90216152
h1+h3+h4<= 16.40139264 30 16.8008009 16.90398034 16.90216152
h1+h3+h5<= 15 15 14.5007395 14.50364815 14.5013926
h1+h3+h5+h6<= 16.30112185 : 20 16.8007969 16.80379156 16.80198755
Target cell .
f(x) 20,181,642 19,073,578 19,527,474 18,917,371
Constraints
qt 1120 _ . ~
q2+q3=1020 . 1020 20
q3-g5-q4=120 120 ’ wo T :
q2-q7=100 100 \( oD lnws ,
q4+q8+q7=270 270 kY 1
g5-q6=330 330
q6-08=200 200 1 lept
h2+h7-h3-h4=0 0
h4-h5-h6-he=0 0 2w R L
h1<= 30 \C}%B
hi+h2<= 20 .
h1+h3<= 25 . ]
h1+h2+h7<= 30 . w2
h1+h3+h4<= 30 20 w0
hi+h3+hs<= 15 '\6‘“ s N _-,‘”
h1+h3+h5+h6<= 20 - h
q1,..,q4>=0

hi,...,hd >=0



4th running 5th running 6th running 7th running 8th running

0.48 0.49954681 0.48 0.499545879 0.48 0.49954183 0.48 0.49954167 0.49954167 0.499541666
0.24 0.28994206 0.24 0.296817724 0.28 0.29467416 0.2635 0.29756297 0.297656297 0.297563101
0.33 0.38626622 0.39 0.381861513 0.39 0.38326793 0.381 0.38115142 0.38115142 0.381376347
0.06 0.06444615 0.08 0.064661861 0.1 0.10453755 0.1 0.10432408  0.10432408  0.104324057
0.37 0.38543319 0.39 0.39 0.37 0.38542512 0.37 0.38513757 0.38513757 0.385424822
0.32 0.3356996 0.32 0.33570412 0.32 0.33568163 0.32 0.33502357 0.33502357 0.335681071
0.26 0.26 0.28 0.275663696 0.28 0.26973182 0.28 0.26977708 0.26977708 0.269777606
0.1 0.10041035 0.1 0.100612006 0.1 0.09979559 0.1 0.08979559 . 0.09979559 0.099772511
45 4.49985671 4.5 4.499897587 45 4500075 45 450008241 4.50008241 4.500082408
6.4 6.40229687 6.4 6.402524392 6.4 6.40173344 6.4 640167799  6.40167799 6.401708037
6.5 6.49998355 6.5 6.500045739 6.5 6.49987087 6.5 6.40086761 6.49986761 6.499867607
5.4 540189792 54 5401961352 ‘64 54014615 54 540141257 540141257  5.40144262
4 4.00015974 4 4.000056674 4 400005414 4 400004998  4.00004998 4.000049985
1.3 1.30122826 13 1.30120193 13 1.30142772 - 1.3 1.30108709  1.30108709 1.301121853
5.5 5.49958459 5.5 5.499482699 5.5 5.49959894 55 5.49960219 5.49960219 5.499602191
0.1 0.10050992 0.1 0.100612748 0.1 0.10027964 0.1 0.1002755 0.1002755 0.100270782
1120 1120 1120 1120 1120

324.772994 345.3873134 . 338.855667 347.643522 347.6447909
695.227006 674.6126859 . 681.144333 671.314814 672.3552091
5.72042454 5.770857547 20.3630296 . 20.2539501 20.25401087
532.139387 548.8418284 532.102575 531.060864 532.1011982
202.139387 202.1518691 202.102575 201.060864 202.1011982
224.772994 262.0772733 247.534396 247643522 247.6447909
2.13938675 2.151869149 21025746 2.10252773 2.101198194

1120 1120 1120 1120 1120

1020 1019.999999 1020 1018.95834 1020

157.367195 120 . 128.678729 120 : 120

100 83.31004012 91.321271 100 ’ 100

232.632805 270 . 270 . 270 270

330 346.6899592 330 330 330

200 200 200 198.958336 ) 200

0 0 0 0. 0

6.5226E-16 0 -7.7716E-16 (VI -1.80411E-16
4.49985671 4.499897567 4.500075 4.50008241 4.500082408
10.9021536 10.90242198 10.9018084 10.9017604 - 10.90179044
109998403 - 10.99994333 10.9989459 _ 10.99995 _ 10.99995002
16.4017382 16.40190468 16.4014074 16.4013626 16.40139264
16.4017382 16.40190468 16.4014074 16.4013626 16.40139264

15 15 15 15 15

16.3012283 16.30129193 16.3011277 i 16.3010871 16.30112185

19,775,486 20,018,185 » 20,174,000 20,168,398 20,181,642



3. Q-h formulation

Changing cells

q2+q3=1020
q3-g5-q4=120
q2-q7=100
q4+q8+q7=270
q5-q6=330
q6-q8=200
h2+h7-h3-h4=0
h4-h5-h6-h8=0
h1 <=

h1+h2<=
h1+h3<=
h1+h2+h7<=
h1+h3+hd<=
h1+h3+h5<=
h1+h3+h5+h6<=

Target cell
f(x)

Constraints
q2+q3=1020
q3-g5-q4=120
q2-g7=100
q4+q8+q7=270
q5-q6=330
g6-98=200
h2+h7-h3-h4=0
h4-h5-h6-h8=0
hi<=

h1+h2<=
hi+h3<=
h1+h2+h7<=
h1+h3+h4<=
h1+h3+h5<=

h1+h3+h5+h6<=

q1t,...q4>=0
h1,...,hd >=0 _

369.760183
650.239817
0.23981637
530

200
269.760183
0
6.12176293
13.7044433
6.11654102
17.6000812
2.76169605
4.99181108
10.0056569
9.9

1020
120.000001
100
269.999999
330

200

0

0
6.12176293
198.8262062
12.238304
29.8318631
20.8383852

15 .
18.9918111

17,405,292

1020
120
100
270
330
200

0

0
30
20
25
30
30
15
20

300
720
20
580
250
200
50
10
10
5
15

1

5
10
10

Initial values
1st running

336.637381
683.362619
-1.27411101
564.63673
23463673
236.637381
34.6367302
5.19581498
14.804185
6.08044071
18.7237443
3.72374431
5

10
37.2291272

1020

120

100

270

330

200

0
-27.2291272
5.19581498
20
11.2762557
30

30

15

20

#NUM!

2nd running
370 369.5
650 650.5
1 -0.975
530 531.475
200 201475
270 269.5
30 28.025
6 6
13 13
6 6
17 17
25 2.5
5 5
10 10
10 10
1020
120
100
296.55
330
173.45
0
-0.5
6
19
12
29
29
14.5
19.5
#NUM!

3rd running

370 369.5
650 650.5
1 -0.475
530 530.975
200 200.975
270 269.5
20 18.525
6 . 6
13 13
6 6
17 17
2.5 25
] 5
10 10
10 10
1020
120
100
287.55
330
182.45
0
-0.5
"6
19
12

29
29
14.5
19.5

#NUM!

4th running

370
650
1
530
200
270
1

6
13
6
17
25
5
10
10

369.83541
650.16459
-0.052966
530.21756
200.21756
269.83541
0.21756
5.8864285
13.130327
5.9721066
17.001999
3.1414649
5
10.154895
10.004421

1020

120

100

270

330

200
0.311117
-1.143888
5.8864285
198.016755
11.858535

. 29.171651

28.860534
15
20

#NUM!



5th running

370
650
0.5
530
200
270
0

6.1
13.7
6.1
17.6
2.72
4.98
10
9.9

d1
d2
d3

ds
dé
d7
ds

369.7591562
650.2408438
0.240842815
530

200
269.7591562
0
6.119569268
13.77809689
6.118869123
17.66031904
2.761561609
4.99468899
10.00109128
9.904068445

1020
120.000001
100
269.999999
330

200

0

0
6.119569268
19.89766616
12.23843839
29.89875744
29.80875744
15
19.99468899

17,402,454

0.466765303
0.259232611
0.379582103
0.015131386
0.413508999
0.252745781
0.245574409

0

6th running

370 370
650 650

0 .0
530 530
200 200
270 270

0 0

6.1 5.3301495
13.7 13.104698
6.1 5.0304443
0 0
2,72 4.6394062
498 5
10 11.565153

V] 0

1020
120
100
270
330
200

5.3301495
18.434847
10.360594
30
10.360594
15
20

17,168,950

0.4801923
0.2619786
0.3951043

0
0.3717237
0.2526906
0.2384365

0

. 200 v 330

100 m*/h
100 190 ‘

”

. 210 m
1120 m* k% [

270 120

195



Appendix B

[InputFile]
C:\Program Files\trial4.INP

{Costs]

254 2

508 5

762 8

101.6 11
152.4 16
203.2 23
254 32
304.8 50
355.6 60
406.4 90
457.2 130
508 170
558.8 300
609.6 550

[RequiredHead]
210
- 180
190
185
180
195
190

N B W

[ModifyLinks]

00 N L B W R =

[SolutionSets]
GAl
GA3
GA7
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