ANALYSIS OF WATER QUALITY DATA USING
STATISTICAL AND ANN TECHNIQUE

A DPISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degres
of
MASTER OF TECHNOLOGY
in
WATER RESOURCES DEVELOPMENT
(CIVIL)

8y
JOYDEEP DUTTA

g

3 ooy Q =2 1, O .‘»,—J/!!)

DEPARTMENT OF WATER RESOURCES DEVELOPMENT
AND MANAGEMENT
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

% ROORKEE - 247 667 (INDIA)

JUNE, 2005



CANDIDATE’S DECLARATION

| hereby declare that the dissertation titled “ANALYSIS OF WATER

QUALITY DATA USING STATISTICAL AND ANN TECHNIQUE”, which is

being submitted in partial fulfilment of the requirement for the award of the

Degree of Master of Technology in Water Resources Development (Civil) at

Department of Water Resources Development and Management (WRD&M),

Indian Institute of Technology Roorkee (IITR), is an authentic record of my

own work carried out during July, 2004 to June, 2005 under the supervision

and guidance of Dr. S.K. Mishra, Assista-nt Professor, WRD&M, IIT

" Roorkee, (India) and Dr. M.K. Sharma, Scientist ‘B’, National Institute of

Hydrology, Roorkee, (India).

| have not submitted the matter embodied in this dissertation for the

award of any other degree.
Place: IT Roorkee,

Dated: 42 June, 2005

CERTIFICATE

correct to the best of our knowledge.

Woe—

(Dr. MK Sharma)
Scientist —‘B’, :
National Institute of Hydrology,
Roorkee, (India)

Sutin,
(Joydeep Dutta)

This is to certify that the above statement made by the candidate is

Assi%] Professor,
WRD&NM, IIT Roorkee,

Roorkee) (India)



ACKNOWLEDGEMENT

| take this opportunity to express my profound gratitude and sincere
thanks to Dr. S.K. Mishra, Assistant Professor, WRD&M, Indian lnstitute
of Te’chnoiogy' Roorkee, Roorkee, and Dr. M. K. Sharma, Scientist ‘B",_~
National Institute of Hydrology, Roorkee, for their constant
encouragement, inspiring QUidance, persuasion and continued support for aixl
aspects of this dissertation, without which this dissertation would have been
incomplete. A.

| wish to express my deep sense of gratitude to Dr. Avinash Aganrval.,,A
Scientist ‘E’, National Institute of Hydrology, Roorkee for his kinel ~
cooperatioh, encouragement and guidance. | also extend my hearty thanks te
all faculty members WRD&M, gratitude to all ’staff members of Watefr'
Resources Development and Management, especially those in computer laléi
and departmental Iibrary, for their co-operatiorr

| WISh to express my gratltude to the Secretary, CE Addl CE and
Deputy Secretary (1) to the Govt. of - Assam Water Resources
Department for giving'me an opportunity to under go this course.

| also express my sincere thanks to Mr. Nitin Kumar for his paln'-

stacklng effort to type the dissertation report in due time.

It will be ungrateful, if 1 don't mentlon the co- operatlon and moral_

support from my Wife Piyali and my Daughters Nikita and Ankita.

Place: IIT Roorkee, o
: . ’ - Dutle,
Dated: g2June, 2005 ‘ oydeep Dutta)

i



! ABSTRACT

In the present study, an effort has been made to develop statistical and
ANN models for estimation of sodiurﬁ concentration in pre-monsoon and post-
monsoon seasons using routinely monitored water quality parameters of
ground water wells in Jaipur district, Rajasthan (India). The Best Subset
procedure based on R? (coefficient of determination) and F (Fisher's test)
values was used in model dissemination. It was found that electrical
conductivity, hardness, chloride, and sulphate could be used as surrogate
parameters for the prediction of sodium. The model values of Na when
compared with actual values (validation) showed a reasonably ‘good
matching. Further it is was noticed that there was not a single model which
could be used to predict the Na levels. It is primarily attributed to the fact that
sodium concentration not only varies from site to site but also varies from
season to season. Secondly, Principal component analysis. was used to
predict the dominating water quality constituents and it was revealed that four
Sl

Ei’rggaL.components.,are.«,accounted for the total chemical variability in the

ground water quality for pre-monsoon season and three principal components
—/._,-——""—’ T e - -

for post-monsoon -season, respectively. The common factors conductivity,
fluoride, nitrate, alkalinity, and phosphate have perceptible inﬂuencé on the
quality of groundwater of Jaipur district, Rajasthan. Finally, Back Propagaﬁon,
two layer feed fdrward ANN models for both pre-monsoon and post-monsoon
season was developed for estimation of sodium using the steepest descent
optimization technique.. ANN models were developed considering a fixed
number of iterations as 1000 and these were verified on the data not
considered in calibration. The input variables considered fo'r different model
structures were identified through correlation analysis. Based onithe statistical
performance evaluation criteria such as root mean square error (RMSE),
correlation coefficient (CC), and coefficient of efficiency (CE), thé results
indicated satisfactory performance of ANN based model. '

iii
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CHAPTER 1
INTRODUCTION -

1.1 General

Water is indispensable for existence of life. It is an important
component of hydrologic cycle. It can occur above the ground as éurface
water and can be hidden'ben_e_ath as ground Waier. Groundwater Was once
considered to be free from poiiution. But the rapid industrialization made a
paradigm shift to this concept. The very uses for which the water is utilized
are adding contaminants to ground water at an alarmiiig rate. The various
uses of ground water include indusirial, agricultural, and human needs. The
indiscrimate disposal of industrial wastes on mother earth slowly makes ihe
ground water susceptible to pollution. Groiind water when once gets polluted,
iis purification is hopelessly difﬁc‘uit. The quality of ground water is usually
oh'aracterized in terms of certain water qualify constituents éccording to iis

pihysical, chemical, and microbiological properties.

1.2 Souroes of Pollution
The main .sources of water pollution are:

(a) Environmenial: This type of pollution is due to the environment th(ough
which the flow of ground water takes place. Pollution caused due to the
movement of groundwatér through chemically active rocks, salt water
intrusion etc., falls under this category.

(b) Domestic: Domestic pollution is caused due to the accidental breakage of

sewers, percolation from septic tanks, artificial recharge of aquifers by

sewage water etc.



(c) Industrial: This is due to the indiscrimate disposal of industrial waste on
land, rivers, etc. Effluents discharged from industries get infiltrated to the

ground water and become polluted.
(d) Agricultural: This type of pollution occurs due to the infiltration of irrigation
water and rainwater containing fertilizers, salts, pesticides, etc. The

pollutant transport mechanisms are mainly advection and hydrodynamic

dispersion.

1.3  Occurrence of Ground Water
Ground water is a precious and the most widely distributed resource of
the earth and unlike any other mineral resource, it gets its annual
replenishment from the meteoric precipitation. The world’s totai water
resdurces are estimated as 1.37 x 10° million ha-m. Of these, global water
' _reéources (about 97.2 percent) is salt water, mainly in oceans, and only 2.8
peircent is available as fresh water at any time on the planet earth. Out of this
2.8 peréent, about 2.2 percent is available as surface water and 0.6 percent
asi: ground water. Out of this 2.2 percent of surface water, 2.15 percent is fresh |
wa:xter in glaciers and icecaps and only of-the order of 0.01 percent (1.36 X 10*
Mha-m) is available in lakes and reservoirs, and 0.0001 percent in streams;
the remaining being in other forms: 0.001 percent as water vapour in
atmosphere and 0.002 percent as soil moiéture in the top 0.6 meter. Out of
the 0.6 percent of stored ground water, only about 0.3 percent (41.1 X 10*
Mha-m) can be economically extracted with the present drilling technology, for

the remaining is not available as it is situated below a depth of 800 meter. .



The knowledge of the occurrence, replenishment and recovery of
ground water assumes special significance in arid and semi-arid regions.
Surface waters, except when brought in by rivers from eIsewHere, a're
normally scarce, or even absent in such areas. The India Meteorological
Department cétegorizes a ‘year’ as a ‘drought year’ in which rainfall deficiency
isvnumericauy equal to or lesser than 25 percent of normal (Tizro 1995). With
a view to provide protection and control of pollution of water and matters
connected to it, Indian Parliament has enacted ‘Water (Prevention and Control

of Pollution) Act 1974°.

1.4  Objective of Study

In Rajasthan, out of a total area of 1.1 million hectares under we[[
- irrigation about 57 percent of the area is affected by the problem of salinity
and alkalinity (Paliwai, 1972). The salt affected area is about 70% of the
irrigated area in the districts of Bikaner, Jaiselmer, Pali, Jodhpur, Bharatpur,
Barmer, Nagpur, Jéipur and Bhilwara. On this basis a total area of more than
100,000 Hectares of land is Salt affected in the districts of Jaipur, Bhilwara and
Bharatpur. The mean chemical composition of well waters in some of the

- districts of Rajasthan shows that, due to low rainfall, the ground waters of

western region are more saline that those of eastern region.

N

The number of parameters needed to fully specify the water quality for
a particular place of region is quite large. Moreover, due to lack of laboratory
facilities and/or trained manpower it becomes difficult to determine all the

constituents. Also routine chemical analysis of ground water is a lengthy,

laborious and time-consuming process. Therefore, it would be worthwhile if an

e —

indirect approach is used to estimate water quality within the desired precisioh



using some easily measurab»le water quality constituents. Keeping this in
view, this study's objective is to analyze. water quality-data for the
development of a model predicting the concentration of sodium (one of the
major constituents of salinity) using |

i Best subset procedure of Regression analysis by developing
suitable Regression models,

ii. Principal component analysis (PCA) to investigate the
chemical relationship between different water quality
constituents and thereby predicting the dominating
constituents. ‘

il. Artificial neural network (ANN) anélysis to compare the
results obtained with the atiové statistical methods adopted.

District Jaipur is selected for the study, which is located in the
northeastern part’ of Rajasthan, India. The District covers an area of 10878
km?. Thirty-eight samples from district Jaipur were collected at different
locations during May 2002 and November 2003 respectively i.e., for pre-
monsoon as well as for post-monsoon season. Following standard methods,
physico-chemical analysis was performed by National Institute of Hydrology,

—
Roorkee.

1.5 Organization of Work
With the objective to determine the major water quality parameter
“sodium” by indirect method i.e. by formulation of models, this dissertation is

organized as follows:



|-

{
Chapter 2: Deals with the Literature Review of Multilinear regression,

Principal Component Analysis and Artificial Neural Network.

Chapter 3: Describes in brief the study area, Jaipur District, Rajasthan

(India)
Chapter 4. Deals with the statistical formulation of models.
Chapter 5: Describes thé artificial neural network models.
Chapter 6: Provideg a discussion of the results of the study.

Chapter 7: Concludes and provides suggestions for future study.



CHAPTER - 2

LITERATURE REVIEW

2.1 Best Subset Procedure of Regression Analysis

As a fesult of increasing industrialization, urbanization, civilization and
otﬁer developmental activities most of our water bodies, like ponds, lakes,
streams, rivers as wéll as groundwater bodies have become polluted. The
industrial effluents, sewage, domesticl wéste, agricultural and land drainage
etc., are the major sources that cause water pollution. The necessity of rapid
monitoring of watér quality is bei_ng urgently felt. It is however, very difficult in
developing countries, like India, where laboratory facilities and / or ‘t‘réined
man power are inadequate. |

Correlations among water quality parameters in a specific
environmental conditidn have been shown to be useful and sﬁccessful. When
such correlaﬁons exist, measuring a few important parameters and then
predicting others using these correlations and regres_sion analysis would give
some idea about the overall quality of water. Correlation analysis provides an
excellent tool for rapid monitoring of the status of pollution of a water body
and achieves economy in matters. of collection and analysis of samples.

Kannan and Vallinuyagam (1'992) carried out systematic study of
correlation analysis of water quality parameters of industrial effluents, Match
industry. Industrial effluent had beén collected from different match units \;«iere
analyied bi-monthly for a period qf 8 months. Physico-chemical water quality
parameters were found to be well above the permissible levels. The computed
water quality index (WQI) values indicated highly polluted nature of the

effluents. Correlation analysis of water quality parameters were car_ried‘out



among all the possible pairs of quality parameters of match industry effluents,
and correlation coefficients computed for all possible correlations. Significant
correlations were noticed to exist between the following pairs of water quality
parameters: TDS — EC, permanent hardness — Total hardness, WQI — K, and
QEJ;PO‘«.. Correlation analysis of water quality data revealed existence of

\‘j ¥ linear relationships between different pairs of parameters. Thus correlations

provided an excellent tool for the prediction of physico-chemical water quality
parameter values within reasonable degree of accuracy.

SingAanen et al. (1995) carried out a correlation study on physico-.
‘chemicalw characteristics .of groundwater in Rameswaram Island and

3
3 discussed the usefulness of the correlations in predicting groundwater quality

w?

L

characteristics. Groundwater samples collected from bore wells and dug-wells

&

of 5 villages of Rameswaram and observations clearly indicated that, most of

o

the samples were alkaline in nature and had high salinity. A systematic

7"’““ ?Ij“g’té’u
' M{g&

_ calculation of correlation coefficient and regression analysis had been carried
/

:@ ey
— e

out among the various water quaiity parameters resulted in significant linear

relationships between the following water quality parameters, namely, EC, Ca,

e

Mg, Na, K Cl, SO4, NO3; and COD.
Krishna et al. (1995) carried out a study on well water of 7 villages of
Reddigudam Mandal, Krishna district, Andhra Pradesh for physico-chemical
R and bacteriological examination. Well waters were found to be relatively
, ,
/\ NG harder, and sulphates and fluorides almost within permissible limits. The well
N
@ ? water exhibited COD/BOD ratio of > 3 in all the villages. Correlation
—_—— |
coefficients (R) among various water quality parameters were determined.

The water quality index calculated from 11 physico-chemical and 1 biological

AN
§ parameter taken together varied from 82.6 — 254.6 mg/l indicating the
\\&

> ?ﬂﬂ\
Iy 7 Jf\/\.



poliution in the well water of Reddigudam Mandal. Thus, tlte water was unsafe
for human use.

Jai-n & -Sharma (1997) analyzed groundwater samples from different
vrllages of Jammu district for various water quality parameters durlng pre-
monsoon and post-monsoon seasons and establlshed correlation coeffi cxents
among different parameters. The study revealed significant'correlationship
‘betwe‘en»covnductivity and total dissolved solids, alkalinity, hardness, chloride,
nitrate, sulphate, sodium, and potassiu_m, although the quality of groundwater
varied significantly. Linear regression equations wereETQJEEQélSEEJ tort_he
constltuents havmg significant correlation coeffi crents |

Mary et al. (1998) analyzed the physrco chemical charactenstlcs of
“wastewater samples collected at different pornts from carbonization plant
NLC (Nayveli Lrgnite corporation). No significant variation in water quality from
p0|nt to point sample was found. The wastewater quality parameters w_ere
compared with. the parameters of the raw water used._‘A correlation analysis | »‘
carried out among the various parameters resulting in signiﬁcant linear
relationship between electrical conductivity and total dissolved solids. |

Tyagi et al. (1998) developed statistical models for the estimation of
conductivity for pre-monsoon and post-monsoon seasons using routirtely "
monitored water quality parameter of groundwater-wells in Saharanpur District
N (UP) and Haridwar district (Uttaranchal) Best subset procedure based- ori R? |
(coeﬁ' cient of determination) and F (Fishers test) values were used |n model
dlsseminatlon ‘The predicted values of conductivity were compared wnth
observed ‘(actual) values and reasonably good matching was obtalned.

Rambabu et al. (1998) conducted a systematic study on water quality

on the open well water sour_ces of a thickly populated Chirale towh, Prakasam -



. district, a municipal area. In addition, number of textile processing and small
scale industries were present in its lower limit. Water samples were

periodicaliy bi-monthly collected '.-and analyzed' for *various better quality

- parameters Irke pH, EC, TDS TAk TH and metals like Na, K Ca, and Mg.

The anions Cl SO4, N03 and F and the other pollution parameter, like

' drssolved oxygen (DO) were also esﬁr_n_lated. Pearson s correlation coefficient

and regresswn analysis was carried out for all the water quality parameters.
The study mdrcated that out of .13 open wells 7 open weIIs were polluted.

" Hence, proper protectlon of these weIIs and good sanltary maintenance were -

' recommended

' Jain et al. (1998) attempted to develop statistical models to find out the
critical parameters reSponsible for .‘the salanity in‘.a coastal region of Andhra
_Pradesh. Best subset procedure baséd on R and F values was used in model '
formulation. It_-.\jNa.s foundltthat'chloride‘, alkalinity, magnesium -and sodium
could be used as surrogate parameters for tne prediction of salinity '/ ‘
conductivity. The predicted and obse‘rved values were found to be in good

agreement. | |
Jain and Sharma -(2002) carried out ; a systematic calculation of
correlatlon coeﬁ' cients among water quality constltuents for groundwater_
samples of Malprabha river basin, Karnataka The regression equations were
developed, and their utility discussed to predict the concentratron‘of water
- quality constituents having significant correlations- with electrical conductivity.
Neurn'ann et al. (2.00’3) dei/eloped an empirical model to predict daily
maximum stream temperatures for the summer period. The model was
. developed using a s_tepwise linear regression procedure to select significant

predictors. The predictive model includes a prediction confidence interval to

/



quantify the uncertainty. The methddology was applied to the Truckee River in
California and Nevada. The ste;iwise_ procedure selected daily maximum air
- temperature and-av.erage daily flow as the variables to predict maximum daily
stream.terriperature at Reno, Nev. The model was shown to work in.a
predictive mode by valid_ati'on using three years of ’histoiieal data. Using the
uncertainty quantification, the amount of required addiftional flow to meet a
target stream temperature with a desired level of confidence was determined.
- 2.2 Principal ComponentAnaIysis _
Prineipal component analysis (PCA) isi-a ‘multivariate . etaiistieal
technique. This is a powerful tool used to investigate the chemical relationship '

between different water quality constituents, and finally .dominating

~ constituents may be predicted. This technique is used for reduction of data

/

and decipher patterns within Ierge sets. No constraints sluch asﬂnormality are
imposed on data because principal component analysis is based solely updn
eigen analysis. of the correlation or coQarianc}e-matrix. The Ultimete targei of
principal component analysis is td deecribe the majdiity of the varienee in the
large data 'sets or .in few principal components, with -the remaining '
'unexplained veriance corisisting of noise. Hidden patterns -can then -Ee
amplified and the noise discarded.
Dawdy and Feth (1967) applied factor analysis to results of chemical
' analysee of 103 water samples from wells in 'the Uppel:' and middle Mdjeve
River valley, San VBerrierdino County, Celifornia. Chemical analyses showed .
that there were three principal chemical types of water,ﬁ calcium bicarbonate,
~sodium squAhat:e, and sodium chloride, as weli as many'mb'(tures of ’ihe three.
Data were studied by factor analysis to learn the relative importance of each -

principal ion in determining the variations among the samples, and to examine

10



the poseibility of chemicel equilibrium between edUeeus and solid phases i_n
_fthe aquifers. Most of the covariance in the .system might be accodnted for by
variances of Ca*2. -Mgfzi Na”, 8042, and CI"'. There was almost identical
Ieadiﬁgv on the co'nstitue_nts ‘Na*' and 4C'I'1., "The variance ih chemical
composition of the hydro chemical system was Qevemed largely sources of

sodium chioride. None of the components was controlled by equilibrium

between ions by in the water and minerals in“the aquifers. Concentrations of
NO;*, and F! varied u’independehtly of other censtituents. Geographic
d_is'tri'bution of statistical loadings of the principal'_ cons.tituents:at individual
~ wells did not reveal sources of the constituents, which must be deduced from
geologic and hydrologic evidence. Factor'anelysis, however, furnished the
eritical information on chemieal (elationships besic to the deduction.

Reid et ell (1980) studied the chemistryA of precipitation end river water
for one year_ih Glendye, a 4'1 'Km? moorland catchments in north east
Scotland. The precipitatioh was very dilute, wee.kly acidic and highly variable
in composition. River water was much less dilute, neutral, and less variable.
Factor analysis ‘was used to inveetigate the controls qn'water chemistry. Thie
suggested three main'process,ee affectidg 'precipitefion aerosols of oceanic
spray, whichaffected s'o'dium, m-agnesium,- chloride and total organic carbon
(TOC) concentrations, emission ef agaseous sulphur and nitrogen oxides from
industriel processes and fhe burning of fossil fuels, which affected pH, wind-
below ferreetrial dusf. The facter aﬁeCting river water was quite different. The
first factor represents c'aiion exchange and weathering reactions in the soil
and affected calcidm,_ - magnesium, eodium, : bicarbohafe and silicon
concenfration. The second fec_:tor affected the concentratio_ns of the iron, TOC,

Manganese and aluminum and represents the translocation of these elements

11



doWn the soil profile and 'into the river at times of thé high discharge. The third
factor affected the concentration of the chromium and nitrate énd reflects
nitrogen demand -and mineralisation’ in- the soil. Phosphate, - éUlphate,
po.tassiurr; vand chloride appeared to vary independently, but low varia‘bility?in-
river water compared witﬁ’precipitation was apparent. The chemiétry of river
water from the catchments was alsd investi_gated during two storm events,
and the results report the grouping of the variable produced by factor analysié. :
The chemistry of the river water was thus controlled by process in theAsoil,,
suggesting that nearly all the river water orig'inates' within the soiAI, and that
" direct surface runoff was of minor important. |
Puckett and Bricker (1992) studied the factor controlling thé chemiét&
of 69 loW-order' streaﬁs in the Blue'-. 'Ridge and Valley- an_d ' Rid.ge
Aphysiographic provinces:of Virginia and Maryland over é_1é-mont_ﬁ beriod.
"Prin‘cipal component analysis was used to examine regional patternsl in -
stream chemistry and to examine the dégrée to which the chemistry of IQW-
order stréams was cbhtrolled by the bedrock upon which'they fléw. Streams
clustered into reg-iohally isolated groups, strongly related to bedrock type,Wi_th '
SOf‘ and HCOj3~the chemical variables _of most importance. Sulphate
concentrations appear to be strongly controlled by climate andn_ hydrology, and
sorption in the soils within_- thé wa‘té'rshe-d. Much of the atmospherically _deﬁ&ed
© S04 accumulated in watersheds duriﬁg the growing season and flushed out
later. Weathering reactions were found to be particularly important in the
production of -HCOg3, accounting‘f,or 49.1 'percent on an annual basis, and
export of .',di'valent cations fr=0m these watersheds, accounting for 48-50
percent on an annual basis. About half of non-anthropbgenic Na* Was derived i

from WeatheringA of silicateé; whereas nearly all K* was identiﬁed with Iééching_ '
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by 8042'. Water chemistry was strongly relate'd-‘ to the rock type in the
_watefshéd» and the weatherability of the ’componen-t minerals. Rock type was
nof a randofnly distribute'd function. Instead, it was cbntrolled-by geologic
factors that result m clusters of similar tock typé ‘in a given region. When
planning large synoptic stﬁdies, it_ is. extremely important to consider that a
sampling scheme based on random sampling of a hon-randomiy distributed
function may not prdvide the rl'nost’ accurate representation of the variables of
interest. A hieréchical sarhpling scheme may rathér be indicated. This study
su_cjgested that although one sample in time mAight bé sufficient to characterize
thé’ primary geochemical faétors controlling stream chemistry throughout the
yea.r, it was sufficient to detect subtle, flow-related alterations in chemistry.

L Chak;apani and Subrémaniah (1993) applied the 'multivar'iate analysis
| to the sediment composiﬁon and concluded that fnetals have been grouped
into different factors depending upon_their sourcé of origin. |

Subrémaﬁian and Balasubramanian (1994) applied. the_'_principal
componen{ 'ana_lysis to idWcharacterized
groundwate; cﬁemistry of Tirqchandwe Coest,‘ Tamil Nadu.

Vajrappa and -S-rinivas (1994) used factor analysis to identify domingnt
factors ',responsi'ble for \)ariatioh' in the‘ hydrochemistry of the Kébri river basin
in Karnataka. o

Tizro (1995) -_attempted principal componént analysis and factor
analyéis for asseséiné the chémical chafacteristics of groundwater of
Mahendragarh district, 'Haryana usihg a computer programme g'i\./en by Davis,

' (1973). The experimehtél' jonic vélues,were uﬁlized in these computations.
Principal - component ‘-analysis was ca_rried out taking in account eight

variables, némely Na*, K* , Mg**, Ca™, CI, SO4~, HCOs", and CO;™ for the
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shallow groundwater for April 1991, January 1992 and May 1993 and deep
groundwater of May’, 1993. A;nong the factors mentioned above, four factors
accounted for over 97% percent of the total vériance for the sl;1allow
~ groundwater of 1991. The first eigen value (3.47) correspon(;led to the largest . -
factor, which accounted for 43.4-14% of total 'variance‘and_was highly loaded
with K, HCO;7?, -SO4'2, COs2 and Ca*z. The second higher eigen value
(3.023) corresponded to 37.7‘9%; and was highly loaded with CI, Mg*?
followed with Né‘” ions. The third eigen value (1.04) corresponding to 13.02%
of trace,uwas loaded with Ca*? only. Similarly,» among the eight factors’; in
groundwater samplé 6f Jan, 1992, four factors accounted for over ‘95%A
percent of total variance. It was observed that fhe first eigen value: (4._?}'4)
correspon.ded with 55.66 percentage of tface and was loaded with CI', Sq;'z,
Ca-?,-Mg*?, Na*, and K*. The second value (1.6673) cori'esponded to 20.84
percent of trace and was loaded with HCO3 only. The third eigen vaiue
.(1.141) accounted for 14.26% and it was loaded with CO32. In cése of ithe
faétor loading for ‘the shallow groundwater in 1993, the first eigen vaiUe
(4.9793, 62.24% of trace) was highly loaded with Cr, Na*, Ca*, S042 and K*.
and negatively Ioadéd with CO5". The second eigen value (1.5895> or i9.9%)
was loaded with HCO;™ and Mg*? . For deep gro,u"ndwater of 1993 the first
eigen value (3;81 or 47.72% of trace) was high'ly loaded with K*, Mg*?, Ca™, |
Na*?, Sb.{z and CF . The second eigen value (1.6544 or 20.64% of trace) was
negaﬁvely loaded with HCO3', CI', Na*, SO42."

Nolan et al. (1995) attempted to statistically verify the materiél risk map
of the United States with groundwater nitrate data collected by Nationél Water.
- Quality AssesAsmen_t‘(NAWQA) Program during 1993-1995 and 'inferred

mechanism by which nitrate concentration in groundwater of the Southeastern

14



United States was attenuated. A principal component analysis was performed
and a “nitrate reduntion" component explained 23% of the total variancé and
indicated that .dissolved oxygen and nitrate were inversely related to
ammonium, iron, manganese, and dissolved organic carbon. Additional
component extracted by principal component analysis included “calcite —
dissolution” (18 percent to variances explained ) “and “phosphate —
dissolution” (9 percent of variance explained). Together, the three principal
components explained 50% of the total variation in the data subset
representing the South East.

Evans et al. (1995) used factor analysis to investigate processes
controTIing the chemical composition of four streams in the Adirondack
Mountains, New York. Four streams were monitored intensively over. a two-
year period. Factor analysis was used to identify interrefationships between
dissolved'speciesvduring this period, and to determine physical processes
.controlling their benaviour. Analysis of the full data set identified species .
which varied predominantly on an episodic timescale, and species which werel
subject'to seasonal cycles. Two-month subsets of data were defined to
remove the influence of seasonal Cycles, énd factor analysis of individual
subsets then allowed episodic behaviour to be exam.ined for ea;:h 2-month
périod. Results showed that base cation dilution was a consistent cause of
change in acid neutralization capacity (ANC) in all four streams. NO3” exhibits.
strong seasonality in concentration and also in episode béhavior, increasing
dunng winter — snowmelt episodes, but disputing during some summer
episodes. DOC concentration also varied seasonally, but 2-month analysis
indicated episédic increases during all periods, SO, did not exhibit consistent

episodic behavior, as it was strongly influenced by antecedent conditions.
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Behavior of Ca™, Mg™" , was apparently influenced by a significant soil source

in three of the streams.
- St-Hilarie et al. (2004) used multivariate analysis of water quality in the
Richibuctb 'Drainaée Basin (New Brunswick, Canada). Specific conductivity,
pH, dissolvéd~ oxygen, 'cafbon, phosphorus, and nitrogen species wéfe
measured at 36 s.,tations'in the Richibucto river drainagé basin, includi'ng. the
estuary, in New Brunswick, Canada,‘ over the six year period 1996 ;thro‘qg'h
2001.' Each staﬁon was sampled between 1h'_and 26 times (meah = 7.5,
standard deviation A= 6.0) during. the icé free seasons without regard to tide. .
- There 'Waséigniﬁcant vériancé among stations in rhost'parametefs. Principal
-component analysis (PCA) was used to identify the processés explaining the
- observed variance in water quality. Because of the high variability in spec}iﬁc‘
conductance, stations were firstr grouped in a fresh wa-terAsubset a-nd",an :
estuarine (brackish water) subset. For fresh water stations, most of .:'the
variance in water quality was explained by bH and total organic car:bon,' as.
wellas high nutrient cbncentratioﬁs. These :high nutrient conbeﬁtrations, a!c;ng
with waier salinity, which varied with flow and tides, were also important in ‘,
determining water quality variability in brackish water. It was recommended
that water quality‘parame;cers that were found to explain most of the variance
by principal comp.onen't analysis bé monitored more closely, as they-formed.
~ key elements in understanding the variability iﬁ water quality in-the Richibucfo |
drainage basin. Cluster analysis showed that high phosphorus a:nd‘ nitrate "
concentrations were mostly found in areas of peak runoff, tributaries receiving
treated municipal effluent, and lentic zéﬁes upétream of culverts. Péa_k runoff

even from a harvested area was also shown to be acidic..
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23 Artificial Neural Netvtrork (ANN)

On account of the unlque structure in which the neurons are arranged
and operate, humans are able to quickly recognize patterns process data,
" and learn from past expenences.-Artlftmal Neural Networks (ANNs) refer to
computing sy'stems'wh,o‘se central theme is borrowed from the analogy of

biological neural networks. ANNs represent highly - simplified mathematical

" models of our understanding of the biological neural networks. They include

the ability to learn and generalize from examples to produce meaningful

T

solutions to problems even when input data contains error or are incomplete,

T

and to adapt solutions over time to compensate for changing circumstances

e mincn e T s i et
e

and to process |nformat|on rapldly-.

| Dunng the last decade, ANNs have become - very popuiar and have
been apphed to a wide range of problems In the water sector also, ANNs
have found app’llcatlons ina range of problems dealing with surface water,
“groundwater, rrtanagement of water resources systems, water quality, and so
on. A large nqmber ‘of studies have been cc‘mpleted in which ANNs have
Been successfully applied tc ﬁeld broblem_s related to water resources. The
results of these stud~ies ‘conﬁr'm' that ANNs are a versatile alternative to the
con_ventiohal modeling techniques.

Agarwal and Singhl (2003) developed m'ulti-layer back ‘propagation
 artificial neutal netwcrk (BPANN) models to simulate rainfall runoff process for
vtwc)sub’-basinscf Natmada river (India) viz. Banjar up to Hridnagar and
Narmada upto Manot considering tttre_e time scales viz. Weekly, ten-daily and
mcnthly with Variable and".uncerta‘in data sets. The BPANN runoff models
were developed using cradient ‘descent optimization technique, and

generalized through cro_ss-validation. In almost all cases, .the BPANN
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developed with the data having relatively high variability and uncertainty
learned in Iess number of iterations with high generaliZatioh Performance of
BPANN models was compared with the developed linear transfer function { -
(LTF) model and found to be superior.

“Batisha  (2004) attempted water quality sensing osing multi-layer .
perception artificial neural networks. Traditional methods for classifying high |
volumes of such data into farge numbers of class‘es based on statlstloal
parametric methods often do not give sufficient descriptive acouracy'tor
discriminating : the numoers of classes required. The use of multiplayer
perception )_neural“networks as new method for solving this problem for

realistic “operational purposes had been established. The multiplayer

perception offered a good classification method and completed well with ‘the‘
traditional techniques }us,ed Cin statistical methods. ' Induced by using
reasonably large netWork'architectures the method seemed to work qdite well ‘.
with large number of classes that is where problems were normally
encountered with the traditional parametric methods.

Bowden et al (2004) attempted forecasting chlorine resrduals in awater
distribution system usmg a general regresslon Neural Network. In a water
distribution system (WDS), chiorine drsmfectrons is lmportant in preventlngv the
spread of water borne diseases. By strictly controlling residual chlorine
throughout the WDS, water quality managers could ensure the satisfaction |
and safety of thelr customers However due to the travel time. of ‘water
“between the chlorine closing point and any strategic monltonng pomts water ‘ |
treatment plant (WTP) operators often receive, information too late for their
responses to be effective. Given the ability to forecast the chlorine residual at/

strategic points in or WDS, it would be possible to have superior control over
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: ,‘the chlonne‘dose thereby pre'ventlng‘ mcndents of under—and over-chlorination.
A general regresswn neural network (GRNN) was been _developed for'
'i'_forecastlng chlorlne resrduals in the Myponga Water Distribution System
(WDS) to the South of Adelaide South Australia 24 hours in advance A
number of critlcal model issues were addressed ~including selection of an
' appropriate forecasting horizon; division-jof theav'ailable data into subsets for
modeling, andv the determination of the inputsi’ there are- relevant to the
chlorine forecasts. In order to determi_neif the GRl\lN was able to capture any
non-linear relationships that -might be present in the data set, a comparison
was made between the GRNN. model and'a rnultiple linear regression (MLR)
model. When tested on independent validation set of data, the ‘GRNN models
-were able to iorecast chlorine l_evels'to a high level of accuracy, up to 24
hours in ad\{ance the GRNN also signiﬁ_cantly outperformed the MLR model,
_thereby providing evidence for the existence of.non-linear relationships in the
data set.
Jha and Jain (2005) investigated the use of ANN technique in modeling
'the complex ralnfall - runoff process in a Iarge watershed Kentucky River
~ basin, USA. In additlon three different normalization methods were
Vlnvest|gated as the pre-processing tools The results obtained in this study :
indicated that the performance of an ANN rainfall — runoff model depended or
the normalization method adopted. A normalization method that employs only
one parameter was recommended for use in ANN mode! development due to
its msensntiveness on the ANN. model performance
Raghuwanshi et al. (2005) developed ANN model to forecast stream
discharge at Jamatara‘ gauging site of Ajay river basin in Jharkha_nd at three

different lead times of 3h, 6 h and Sh using hourly rainfall data at Jamtara
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gauging site and hourly sfre_am discharge data at Jamtara as well as three

upstream gauging sites at Sweath, Dhakwa and Ghesko. The performance of

the developed ANN model was evaluated using-three different error functioﬁs,
vi'z.-, root mean square error, Nash — Sutdifée coefficient and percentage,
deviations in peak"disch'arge. It was found that the develobed ANN model for
forecasting flqods at Jamtara gauging site of Ajay river basin performed very
well for 3 h and 6 h lead time.

Sarkar et al. (2005) developed back propagation artificial néural‘ '

“network (BPANN) runoff models using -the steepest 'deécent optimization

technique to simulate and forecast daily runoff for a part of the Satluj basin of -

~India.” ANN models had been developed cp‘nsidering a fixed number of

“iterations as 5000 and verified on data not considered for calibration. The

input variables considered for- different model strLI»ctufesr Were idehtiﬁed
through correlation analysis. Based on the statistical performance evalué’(iion
criteria such as root mean square error"('RM'SE), correlation coefficient (CC),
coefficient of efficiency (E) and volumetric error (EV), itv was obseryed' that

only rainfall and temperature, considered as inputs, were not adequate to

develop a model for the'simulatiorir"‘;s well as forecasting of the catchmént
* runoff resulting from rainfall and snowmelt contribution. In order to improve - |

~upon the perfdrmance of the models, the runoff of the upstream data Wa_é also

included as an additional inbut to the model. )
| Kotﬁyari and Jain (2005) made an approach for modeling monthly -

runoff using artificial neural network (ANN). The modeling was p'erformed by

coupling- an auxiliary model for monthly runoff with an ’ANN.’ Data from
different sub-catchments of the Barakar basih 'in India were stacked together .

for model -application. The study demonstrated that the approach adopted |
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therein fo.r‘modeling proqucéd reasonably satisfactory results for data from
catchments with varying characteristics. |

Kumar et al. (2005) developed Artificial Neural Network (ANN) models
for short term forecasting for Jamtara stream flow gauging sité of Ajay river
basiﬁ (lying in Jharkhand). Seven flodd events were considered for model
'development to prqvide forecast for diﬂereﬁt Iead- times (6 hours, 9 hours, 12
hours) using previous runoff values. The éompdted and observed flood
hydrographs of various lead times Was evaluated in terms of Root Mean
Squére‘ Error for each ﬂoéd hydrograph. .'-rhe study also used fhe alternative
evaluation measures such as percentage errors in the peak flows and time to
peak to examine specific performance of the ANN based flood forecasting

models.
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| CHAPTER 3
STUDY AREA DESCRIPTION

3.1 General
The study area selected is district Jaipur of Rajasthan, India (Fig 3.1-

3.3). Thirty-eight samples from district Jaipur were collected during May 2002 p /

e/
- seasons. The samples were collected from different sources viz, handpumps /“W‘Zd@

and November 2003 respectively i.e., for pre-monsoon and post monsoon j@
open wells, and tube-wells, which are being extensively used for drinking and / ah @
other domestic purposes. The physico-chemical anaIySIs was -performed M,

e e e e e e

following standard methods Msﬂtuie of Hydrology, Roorkee
(India).
3.2 Lécation
Jaipur.disirict is situated in n_ortheasterr_l part _of theA state Rajasthan,
India. Itis located between 26° 25' and 27° 51’ North latitude and 74° 55’ and
76° 10" East Iongitiide coi/ering an aiea of 10878 sq; km. Jaipur district is
| bounded by Sikar district} in ncirth west, Alwar c!iistiict- in- North east, Daus_a in
- east, Toni< in south, Ajmer in south»west and Nq'gpuriin ViléSt |
Administratively, Jéi_pur districvtt is a part of Jaipurildivisioii and is also
the capital of Rajas’ihan; The district is -div'ided into 13 tehsils namely ‘. (i)
Amer, (i) Chomu , (iii) Jamwa Ramgarh (iv) Shahpura , (v) Viratnagar , (vi)
Kotptiti,i ,"I(vii) Duduf\, iviii) Phagi » (ix) bPh‘uiera, (x) BasSi, (xi)‘Chaks.u, (xii)
Sangaher, and (xiii)' '\iaipur. It i:ompriséé 13'_panchayat samities néméiy - (i)‘ ~
'Kotputli iii) Viratnaéar (iii) Shahpura (iv) deincigarh (v) Amei (.\‘/'i) Jamwa_
,Ramgarh (vu) Sambhar (vm) Dudu (IX) Sanganer (x) Jhotwara (X'i) Bassi,

. (xii) Phag| and (xm) Chaksu
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Fig.3.1 Location of Rajasthan in India Map.
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Fig. 3.3: Study area (Jaipur District) showing location of sampling sites.
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- 3.3 Climate
The clifﬁ—at'e of the district is dry and heélthy and is subjected to
extremes of cold and héat at various pléces. The minimum and  maximum
temperatures are 3°C and 45°C, respectively while the mean temperature is
24°C. In the c'Iistrict' réiny season usually from June“to Séptember, the nofrﬁal '
annual rainfall is 548.2 mm. | | '
34 Geologjy and Mineral
. T_he oldest groups of rock, in the district are schist, »gneisse;, migmétite
and quaﬁzite of APre—Aravalli, which are considered {o be nea-rly 2',500'million
~year old. These rocks are covered under a mahtle. of sand--a_nd‘ alluvium of
recent to sub-recent age. Oveﬂying these rocks with a major unconforrhity are
the rocks of Délhi 'SUper group, which'aré madé up of Rialo, Alwar, ;nd
Ajabgarh groupé. The rocks of Rialo co'mp'rise‘s ma'inly dolomific méfble and N |
minor quartzite. Thé Alwar group consists of qongldmeratic quartzites_ :;md
;schist»whif:h either I~ie unconfirmably: over the Rfalo or_direétly oVerfthe
- metamorphic of Pre-Aravalli. The Ajébgarh group i.s'mainly made up 6f schlst
phyllites; 'pegmatit.es and ﬁuartz veins.
A variety of. minerél' deposits foun;j in the .district are Chi'naclay_l in.
" Buchara &’ATorda, Copber ﬁéar Gol, Badshahpur,-Chanla and Chatigodlyéna
- area, i.ron ‘ore is Moriza; Bonai etc. Cement grade limestone near Kbtpulti énd
Maonda &'impﬁre lime stone at Nimala, Dabla gtg. S_ilicé sand .is found at
Banskhop and Jir hills. Soapstoné oceurs in Dogetha, Jh'arna,j Geéjgarﬁ,

Khawa etc.
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'35 Phys:ography and Sorl
- A Iarge part of dlstnct is covered by th|ck mantle of sorl brown sand

“and alluvrum in eastern and northern area is occupled by hrlls range and

belong to Aravalll system and are known by dlfferent names at dlfferent |

‘ places the longest range stamng from Sambhar Iake in this dlstnct crosses

"~ over upto Smghana in the dlstrrct of Jhunjhunun
| The drstrlct is dramed by a number of largely non-perennial nvers of
which Banganga and Sabr are rmportant ones. The Banganga has been
' lmpounded near Jamwa Ramgarh WhICh provrdes a major share of dnnkmg
,' water supphes to Jarpur city. A large area-of the district has been affected by
‘Asand encroachment through wmd gaps and river valleys
The sorls of the dlstrlct are greyrsh brown- to brown and yellowish
_brown light to medlum textured and deep to very deep. These sorls can be
¥ classrt" ed in Entisols order by 7"‘ approxrmatron classifi catron ‘some sorls
belong to Arldrsols order ‘ o
About 4.06 percent of the total area of the district is under forest. ‘;
‘TSubS|d|ary edaphlc type of dry troplcal forests are found in the district. The

‘ total area under forest is about 44239 hectares
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CHAPTER 4

'STATISTICAL PROCEDURE FOR MODEL
DEVELOPMENT

4.1 ‘Multiple Linear Regression

The'general purpose of multiple regression is to learn more ab'out the .
vrelationshi_p, ] between_ several in'dependent. or p'r_edictor ‘variables as a'
dependent or criterion variable. In general,” multiple regres-sion'allows the |
' researcher to ask (and hopefully answer) the-. general ciuestion “what is the
best predictor of ......." The general computational problem‘that needs to be
solved in rnuttiple regression analysis is to fit a s"trairght .line.'to. a number of
p.oi'nts. ‘In? the simplestﬂ case- one depend'ent and_ one"tindependent variable
one can visualize this in scatter p'lot.-‘ .

4.1.1 Leastsquares

In the scatter plot; we have an independent‘or'X"variabIe' and a

e

dependent orY varlable The goal of hnear regressron procedures is to ﬁt a . .

- straight l|ne through the pomts Spemf’ cally, a I|ne is computed SO that the
squared devratlons of the observed points fror'n_‘ that line are minimized. Thus,
- this general'proce'dLirenis sometir'ﬁj'es alsol_freferred to as Ieast,squares o
AA.j'estlmatron R |

4.1.2 The regressmn equatlon

A Ilne in a two dlmenS|onal or two- vanable space |s deflned by the

' equatlon Y—a+b* X, the Y varrable can be expressed |n terms of a constant el

. (a) and a slope (b) tlmes the X varlable The constant is also referred to as the : R

- intercept, and the slope (b) as the regressuon coefF crent or B coefF crent In the ,

| »y.multwanate case when there are more than one mdependent vanable the__,?.Af‘«"_-;.:._"gl‘ s
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regressron line cannot be wsualrzed in the two dlmensmnal space that can be
_"lcomputed just as easrly In general mult:ply regressron procedures estlmates;
a linear equatlon of the form | r |
y a+b X +b X; +..‘_A.:;l.+b X
4.1 3‘ Umque predlctlon and partlal correlatlon -
,_lt may be noted frorn the above equation that the regression
coefficients '(or B coeff" cients) represent the‘ indepen'dent contributions of each |

: mdependent varrable to the prediction of the dependent variable. Another way

o to express this fact is. to say that for example vanable X1 IS correlated wrth

the Y variable after controlling for all other independent variables This type of» |
correlation is also referred to as a partial correlation ”
4. 1 4 Predicted and resudual scores e

The regressron line expresses the '-best‘ prediction of the'dependent
varlable (Y) given the mdependent varlables (X) However, the nature is
rarely (lf ever) perfectly predictable and usually there is substantlal variation
5 of the observed pomts around the fitted regressron line The de\natlon of a
’ partlcular pornt_ from4 the regressmn line ‘(ItS ~predicated value) is called the
‘ 'residual value Residuals are calculated by working out ‘expected’ values of'Y"
by . applying the regressron equal to the actual values of X and then
. 'subtractlng each expected Y value from its correspondlng actual Y value.
, Where the value of Y predicted by the equation lS less than the actual value of |
Y, the reSJdual is posutive Negative reS|duals result from cases where Y is

predicted higher than it actually i is.
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~or X varlables) are related to the dependent (Y) vanable is expressed in the ‘

4.1.5 Residual \rariance and R-square
The smaller the variability of the residual values around the regression

line relative to the overall variability, the better is the preclictlon. For example,
if there is no relaticnship between the Xand Y variables, then the ratio of the - |
residual variability of the Y variable to the original variance is equal to 1.0. If X.
and Y are perfectly related then there is no residual variance and the ratlo of
variance would be 0.0. In most cases, the ratio would fall somewhere between_
these extremes, tha_t‘ |s. between 0.0 and 1.0. 1.0 minus this ratio is referred to
as R-square or the -coefficient of determination. This value is immediately
interpretable in the following manner. If we have an R-square of 0.4 then we
know that the vari‘ability_oflthe Y-values around the regression line is 1.0-0.4 »‘

times the original variance. In other words, we' have explained 40 percent of

the original vanabllrty, and are left with 60 percent resrdual variability.. ldeally, .
we would llke fo. explarn most part of it, if not all of the orrglnal variability. The_ L
" R- square value is an mdncator of how well the model fits the data (e g an R-

| square close to 1 O rndrcates that we have accounted for almost aII of the

vanablhty wnth the vanables specrfred in the model ).

"4 1.6 lnterpretmg the correlatlon coefﬁclent R

Customarrly, the degree to which two or more predlctors (lndependent .

- correlation coeﬂ" CIent R whlch is the square root of R- square To mterpret the S
, dlrectron of the relatlonshlp between vanables one Iooks at the signs (plus or - S -
mmus) of the regressnon or B coeffrcrents If a B-coefﬂcxent is: posrtlve then i f

~_the relatlonshlp of thls varlable wrth the dependent vanable is posrtlve |f the‘ Y




o (a) Assumpt:on of Imearlty

- o B-coeff crent is negatlve then the relatlonshrp is, negatlve Of course |f the B-
coefF crent is equal to zero then there s, no retatsonshlp between the varlables

41 7 Assumptrons Ilmrtatlons and practlcal consnderatlons

Flrst of all, as is’ evndent |n the name multrple Ilnear regressron it is '4 4

assumed that the relatlonshlp between varlables are Ilnear In practrce this -
L v'assumptron can wrtually never be confrrmed Fortunately, multrgl__e_r_egressron

_ procedures are not greatly affected by mrnor dewatrons from thrs assumptron

' However as a rule it IS prudent to always Iook at blvanate scatter plot of the
varrables of mterest If. curvature ln the relatlonshlps is. ewdent one may
'/con5|der erther transformlng the varrables or eprIC|tIy allowmg for non-linear
. components N

(b) Normallty assumptron o

lt is assumed in multrple regressmn that the resuduals (predlcted minus. L

observed values) are dlstnbuted normally (i.e., foIIow the normal distribution).
Agaln even though most tests (specrt" cally the F-test) are qurte robust with

: regard to VIOIatlons of thls assumptlon |t is always a good |dea before
- drawrng final conclusrons to review the dlstnbutlons of the major vanables of -
: mterest. |
(c) erltatlons
o The major conceptual hmrtat|on of all regressron techniques is that one :

3 only ascertams relatlonshlps, butfnever be sure abotit u.nderlylng casual
'mechanism. For example.,‘.bronch'itis rates corretate positively with population

" density, but there is no direct casual relationship between them. The

\correlation exists because they are both related to air pollution.
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(d) Choice ofthe number of varlables

| Multlple regressions is a seductive techmque | “Plug in” as many
predictor variables as one can thlnk of and usually at |east"a few of them will
come out signif icant. ~This is because one is capitalizing on chance when
. S|mply mcludmg as many variables as one can thmk of as predlctors of some
other varlables of mterest This problem is compounded. when in addltron the
number of observatlons is relatively low. Most researchers recommend that
there should -be at Ieast.10 to 20 times as many observations as one has
varlables othemnse the estimates of the regressuon line are probably very
unstable and unlrkely to repllcate if one were to do the study over.
(e) Multi-collinearity and matrix lll -conditioning

Thistis‘a common pro‘blem in many correlatiOn analyse-s. Wnen there .

are many variables involved, it is’ often not }ir_nmedia‘tely -apparant that this-
problem exlsts,.land it may only manifest itself after several variables h_ave
already been entered into the regression equation. Nevertheless,"when this
: problem.occiérs- it: means that atleast one' of tne predictor '.vari‘ablesj is
(practically) cornpletely_ redundant':with' other predictors'. There‘a'rie many
statistical indi(:ators of this type .of";:’r"'edundancy as well as'_some remedies
3 (e.g., Ridge regressmn) | |
. (. Frttmg centered polynomral models
The fitting of higher- order. polynomials of an independent variable'

with a mean not equal to zero can create diffi cult multlcolllnearlty problems '

With large numbers thls problem is very serious, and if proper protectlons are - “

not put in place can’ cause wrong resultsl The solutlon is to center” the

- |ndependent varlable (sometlmes thls procedures IS reffered to as centered .

AN
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- polynomials”),” i.e., it_o subtract - _the' mean, -and then to compute the

' polynOmials =

: (g) The Jmportance of resrdual analysts

Even though most assumptlons of : multlple regressmns cannot be -
tested explrcrtly, gross vrolatlons.can be detected and should be dealt with _

approprlately In partlcular outllers (l e extreme cases) can serrously bias the -

: results by pulllng pushlng the regressron line in a particular dlrectron
‘ 'therby leadmg to biased regressron coefflcrents Often excluding just a smgle
extreme case can yleld a completely dlfferent set of results

4. 2 Formulatlon of Models

_ T_he general representatlon of statistioal models may be given by -

Y=Y Bix;+e - | SV
. j=0 ) - L : . ’ . - "_,

with X = 1. .Here x;is the indeben'dent variable for the ith observation

| (varlous water quallty constltuents |n the present study) Y; is the dependent

~;k. .

| vanable for the ith observatlon ﬁj is unknown coefficients to be estlmated k

|s the number of coefﬂcrent (to be estlmated) |n the model, and ¢ is the error

in the determlnatlon of Y; which IS generally assumed as having zero mean

) and constant standard deviation o .

The unknown coeffrcrents (,B) are estlmated by least squares method

because here no ‘assumptlon is necessary on the probablllty distribution of ’
data due to its simplilcity.A Hence for ﬁnding\out’ the coefficients of various’

water quality constituents in the model least square. method is used for

predlctlon of sodium. This method has been used frequently by various

authors (Draper and Smlth 1981 Wersberg 1980). Regressmn analy3|s was
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perforh'led on pre-monsoon 'and post-monsoon data sets. Initially preliminary
analys'is of data was carried out before startino actual statistical regression
analysis. | |
4.21 l-PreIiminary analysis of data
, The preliminary analysis consists of ”
(i) Initial ﬁltration of data
(i) - Partiai visual inspection of,the data files |
(iliy  Creation of scatter plots. |
I anv outlier is ‘detected from the scatter plot by taki.ng all the vvater
quality parameters as mdependent variables and sodlum as a dependent :

variable, those were removed
'4.2.2  Secondary analysis »

‘The filtered data for the two data s‘ets obtained . after prelimin'ary
analysns is used-to find correlatlon matrices predlctmg correlatlon of each

water quallty constltuent w1th sodlum To enhance the VIsuallzatlon of the "

correlation matrlx the s'quare of correlation coefﬂcrept (RYor coefﬁ_clent of < - .

determinattonf%' ifs‘,calculated to indicate the'_contributton- of individual water
quality parameters. in "ekplai'ning the_variation' 'in the dependent va‘ri‘able '

B respectively‘. Since:pH"'nitrate 'phosphate and"potasium ha‘d‘-no sign\iﬁc'ant

correlation wsth sodlum for pre-monsoon and post—monsoon data sets AR

respectlvely these parameters were excluded from model formulatron

- 4.23 Selectlon of lndependent varlables for regressmn analySIS

- If more number of independent varlables as possmle are used then ln, '.f

that case relaable t" tted values can be determmed and model predlctlon wr|| be “"‘

more accurate Moreover since R2 glves the proportlon of the vanatlon in the e




o dependent varrables that is explarned by the ftted regressron model, one.

. obvrously wants R2 to be Iarge But on the other hand because of the costs
] mvolved ln obtalnlng lnformatron on a large number of mdependent vanable

and subsequently monltonng them there |s rnterest in mcludlng as few

ui,W‘mdependent varlables as possble Thus one has to make compromlse'

between these extremes L.e. for selectmg the best regressron varlables and
thereby the best model There is no unlque statlstrcal procedure for donng this
-_ (Draper and Smlth 1981) Drfferent researchers suggested drfferent statistical

"T'procedures namely backward ellmlnatlon all possmle regressmn ridge -

e regressron fonNard elrmlnatron |n stepwnse regressron principal. component

regressron and stagewrse regressron whrch may help mformatlon of optimum
model._ .
-|n the present study, attempt h'as be"en.— made to use the best subset

- regressron approach to select the best set of mdependent variables.

' 424 Best subset regressron

“y #

Usrng the R? rnformatlon e, the proportlon of variation explalned in the

e dependent varlable dlfferent best subsets of rndependent varrables could be

| 4 | selected. The regressron was assessed tor each subset accordlng to:
| The yalue of l_?z achieved,. S
The F value (given in' eg‘Uati-on 4’3) and
R The number of observatlons used in developlng the model
The model obtalned from large dataset and achrevrng hlgher values of
R?and F value will always be preferred. '
E '(a} R? criterion |

The square of the multiple COrreIathn coefficients R? is defined as
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S,

SSR SSE . |
R'= s, ﬂf( ] | | -
with SSy = sum of squares about the mean = Z(Yi -¥y)?
SSE = sum of squares about regression = = Z(y; ;—yi)?'
. 8SR =sum of squares due to regression = > _.7)2
ie., SSy= SSE + 8SSR-
‘where, | Y is the avefage value of dependent yariable, and
9,, is thé model corﬁputed values of the dependeht variable. -
| The stronger Athe,-linear a‘ssociaﬁon between Yli and ¥, it will yield a |
large va[ué of R® and Qice-vers(a.» Unfortunately, wherever compaﬁhé_ a subset
"model to a large model inc_:luding- the subset, ‘Rz- pr'ovidfes' 'an inadedUéte i '
criterion f§r subsét médel éelection because "Iarge model will always hvavé;fan ‘
" R®value lérger than that_fqr fhé sﬁbset modei. Howeve’r, fora ﬁ;<ed v"nrumber of -
indepeﬁdent‘ variables. (ecidal to k) R% can be used to- compgre. diffgféht'
modéls_ with a ll'ai'ge. value éf R2 indicating the bref‘erred model. ) L
(b) F value“‘critériong | o |

The v_a_hje of F is mathematically expressed as

N-KEY(REY
_Ffi(» K ')(1-32) o o o ;¢4§).,'

" where, | RZ = 'e‘xpllarined variation of'Yi,' :
(1-R?) = uhexpléinéd variation of Y,
N " a ﬁumbén{ of data- pcjﬁnts,x and

. K -  ;-=‘numbef.of,indepénde‘h‘thvariables‘.' :

‘From equation (4.3), it is evident that F \)alue which is the ratio of the

expiained'to the unex’pléined varjation:iri Yi, will be large when the propbﬁibh cL
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- of explalned varratlon in Y. W|ll be Iarge The regressron will be srgnrf icant

L 5 when the F value is large

The F - statlstlc can also be used to compare any two models as Iong

- ~as all the lndependent varlables |n the smaller model are also included in the

RN large model that rs small model is a subset model of the Iarge model ‘The ,

resrdual sum of squares descrlbes unexplained» variation in the depen_dent

variable by the model. If the indepe‘ndent_‘variables', Whioh are important, then
- idroppin'g these fromthe sUbset ‘mod’el, s:hould res’ult‘in a significant increase -
: fi'n unexplained ~variation of Y{, that is SSE;, should beoome considerably large
"_than SSEf Using thls idea, a srmple test statlstlc proposed by Welsberg |

l' L(1980) can be expressed as

(SSE, _SSE )I(K m)
~ SSEJin-k-1)

Fiem, k-1, = (4.4)

"where SSEf Resrdual error sum of squares of full model contarmng K

' rndependent varrables

SSE, = Re3|dua| error sum of squares of the subset model contalmng (K-m)

» mdependent vanables
. m = Number of independent variables dropped from the full model;
K = Number of mdependent vanables

~ The larger model W|ll be preferred when the Fk-m, n-K-1 stat:stlc is
's'uff” cnently large. One reasonable rule: should be to prefer the full model if
" Fremonk > F* | | »

where, F* is the @ x 100% point of the Fium, st distribution. The choice of

- a'=0.05"is typical.



4.3 Princ_ipal Component Analysis |

Principal component analysis (PCA) is a‘classlcal sta_tistical ‘metho'd.
This linear transform has been widely used in data analysis and compre'ssion.'
Principal component'analysi‘s is based -on-_the .s‘tatistical representatio_n' ot a
~ random vairable. |
Suppose_vve have a random vector populvatlon X, o o
“where,- X = (X1, X2, Xa, ..;;.-xn)‘T_.f
and the mean of that ‘population is denoted by

, ,=.E 0 :

and theco-variance matrix of the‘ sarne dataset is

C, =E {0- 1) (x- 1)}

The,components of Cy, denoted by‘V C; represent: thehcova:rla‘nces’

. between the random vanable components x; and Xj. The component C,. is the AR

* variance of the component xl The vanance of a component mdrcates the
spread of the component values. around lts mean value. lf two -components xi .
-and xj of the data are uncorrelated their covarlance is zero (CIJ J. = 0) The«

covarrance matnx is, by det" n|t|on always symmetrlc R - :
From a symmetnc matnx such as. the covanance matrlx we. can K
calculate an orthogonal basrs by t" ndmg |ts ergen values and e|gen vectors.
The elgen vectors € and the correspondmg elgen values A are the solutuons :
| of the eq'uatlovnv | c
| Cx e{= A; 'éi, _ |= 1, ,n
For srmplucrty we assume that the 1 are dlstlnct These value.s can be}

“found, for example by flndmg the solutlons of the charactenstlc equatron

jeako

(4 5)




».where I Is the ldentlty mvatrlx havmg the same order as Cx, and
the | | denotes the determlnent of the matnx
CIf the data vector has n components the characteristic- equatron
‘becomes of order n. By orderlng the elgen vectors in the order of descendlngv
o elgen values (largest f rst) one can create an ordered orthogonal baSIS with
‘ the first elgen vector havmg the dlrectlon of largest variance of the data In

th|s way, we can f nd dlrectuons |n whlch the dataset has the most srgnn" icant’

e amounts of energy

Suppose one has a dataset of whlch the sample mean and the
\ covarlance matnx have been calculated Let A be a matnx conS|st|ng of elgen |

vectors of the covanance matnx as the row vectors By transformrng a data

e "’:‘vectorx, we get -

".H-y*=A‘.($<::px) DT “8)
= vvhlch |s a pomt in the orthogonal coordmate system defined by the elgen,_
v vectors Components of y can be seen as the coordmates |n the orthogonal |
'base | o
' We can construct the orlglnal data vector X from Y by

. Usmg th_'e‘pro_perty of an o'rthogonal matrtx; | - |
l'.-,."A-1=AT-",. o ‘

The AT is the transpose .of the matnx A The original vector X was
pro;ected on the coordmate area deflned by the orthogonal basis. The original

'vect_or was then reconstructed by ,a linear comb:natlon of the orthogonal basis

vectors.
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Instead of using all the eigen vectors of the covariance matrix, we may
represent the data in terms of only a few bas'is vectors of the» orthog‘onal B
basis. If we denote the matrix havtng the K tirst eigen vectors as rows by 'AK,
we can create a similar transformation as seen above. . (

y=Ac(X- 1)

:>x=Al Iy+,ux' o o . (48)

Thls means that we prolect the orlgrnal data vector on the coordlnates ‘
areas having the dlmensron K and transformlng the vector back by a Ilnear
combrnatron of the basis vectors This minimises the mean ’— square error
. between the data and thrs representatron with grven number of ergen vectors
If the data is concentrated in a linear subspace this. provrdes a way to'
: 'compress data wrthout losing much rnformatron and srmplrfylng the
_ representatron By prckrng the ergen vectors havrng the Iargest elgen values _-
we lose as lrttle mformatron as possrble in the mean square sense One can
choose a f xed number of ergen vectors and thelr respective ergen values-and R
get a consistent representatron or abstractlon of the data Thrs preserves a
varying amount of energy of the orrgrnal data. Alternatrvely; we can choose

<

approximately the same amount of energy and a varyrng amount of ergen

. vectors * and therr respectrve ergen values. Thrs would in turn grve.
. approximately consrstent amount of mformatron at the expesne of varylng

, representations with regard to the drmensron of the subspace

We are here faced wrth contradrctory goals On one hand we should

simplfy the problem by reducmg the drmensron of the representatlon Onthe AR

other.hand we ,want to p_reserve ‘as much as_.;possrble-x of;, the' ongr_nal




L -:',rnformatlon content PCA offers a convenrent way to control the trade-off o

y ;::‘f*}",bet\Neen loosmg lnformatlon and srmpllfymg the problem at hand

: ‘,4 3 1 Basrc ldea of factor analysrs as a data reductron method

The marn applrcatrons of factor analytlc technrques are: (1) to reduce -

o he number of varrables and (2) to detect structure in: the relatronshrps‘

between varrables that is to classrfy vanables Therefore factor analysrs is

- applred as a data reductlon or structure detectron method

o (a) Combmmg two varlables lnto a smgle factor o .

One can summarlze the correlatron between two vanables ina scatter -.
plot. A regressron hne can then be ﬁtted that represents the “best" summary of
the llnear relatlonshlp between the varlables If we could det’ ine a varlable that. - "
.7 _ would approxrmate the regressron line i m such a plot then that vanable wou!d_.. |
. capture most of the ‘essence’ of the two rtems Subject’s srngle scores on. thatJ
.new factor represented by the regressron lrne could then be used in future'
. data analyses to represent that essence of the two |tems vln a sense we have
. ’ ;reduced the two vanables to one. factor Note that the new factor is actually a
Irnear comblnatlon of the two varrables o -
: (b) Extractmg prmcrpal components

B Basrcally, the extractron of prmcrpal components amounts to a variance

s maxrmrzrng (varrmax) rotatlon of the orrgrnal varlable space. For example in a

scatter plot we can think of the regressron lrne as.the original X—axrs rotated .

- -so that rt approxrmates the regressron Irne Thrs type of rotation is cailed
variance maxrmlzmg because the crltenon for (goal of) the rotation is to
maximize the “variance (varlabuty) of the ‘new” variable -(factor), while

minimizing the variance around the new variable.
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(c) Generalizing the case of multiple varlables

When there are more than two variables, ‘we can thrnk of them as
defining a “space” just as two variables.defined a plane. Th_us, .when we have ’
three variables ‘we could plot athree-dimensional scatter plot and again'fwe
could fit a plane through the data, however the logic of rotatrng the axesl SO
as to maximize the varrance of the new factor remains the same ‘
. (d) Multiple orthogonal factors . |

Afterr'we have found?) the line on which the’variance isfmaxi'ma’l' thiare B
remains some varrabrlrty around this line. |n pnncrpal components analySts
after the first factor has been extracted that is, after the f rst lrne has been o
drawn through the data ‘we contrnue- and def ne another lrne'that maxrmrzes
‘ the remalnmg vanablllty, and SO on. ln thls manner, consecutrve factors are
extracted Because each consecutrve factor rs deﬂned to maxrmlze the- .
vanabrhty that i is not captured by the precedmg factor consecutlve factors are,
L rndependent of each other Put another way, consecutrve factors are.;{j"

‘ uncorrelated or are orthogonal to each other

(e) How many factors to extract" ol
| We~ extract consecutrve factors they account for Iess and less,

'A :varrablhty The decusron of when to stop extractlng factors basrcally depends

on when there is only very ||ttle random varrabrllty Ieft The nature of thls

decision is arbltrary, however varrous gurdelrnes have been developed Ilke _'

o the Kalser crlterron the scree test etc




4.3.2 Factor anélysis as a classification m'ethod'

(a) Factor loadings B

" Factors are produced .ithrou-gh"an _eigen value analysis of the . -

' ,correiation 'matrix the mathematios';of which haye been described by Davis .
(1973) Factors are vectors WhICh Iie orthogonal to one ‘another within a
,k multtdrmens;onal space defined by the number of variables in the analysrs

Unlike the origrnal varrbales therefore the factors are completeiy
uncorrelated with each other. They are described by means, of therr
_correlations wrth (or ‘Ioadlngs on) the original variabies and ranked in order
of the. amount of the total variance they explain A Ioadlng close =+ 1.0
indicates a strong relationshrp between the facto_r and the variable, a zero

'ioadlng mdrcates that two are unrelated

| (b) Rotatmg the factor structure

|n most instances the first few factors expiain the bulk of total variance,
‘and it is possrble to exclud.e_. the.remainlng factors from further analysis
'without significant Ioss of information. A subjective decision must be made as
to how many factors shouid be retalned for- which several methods exist. In
- this study, factors, which explained at least as much of the total variance as ,
' one of the original vanable ‘were retarned The retained factors were then
‘rotated’. using the" Varimax method. Varimax rotation aims to attain ‘simple
structure’, whereby factor loadings approach either + ‘-I.Oior zero. This aids |
| , interpretatioh, in that as far as possibie a given factor either does or does not'

4 . \ ’
include a particular variable (Dawdy and Feth, 1967).
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4.4 Formulation of Model
- The methodology involves (Davis, 1973):

) Standard_ization of the raw data in terms of zero mean and unit
variance and compu@ation of the linear correlétion coefficient
matrices.

(D) bomputatioﬁ ;;f the-raig’én values and corresponding eigenv vecforé '
| based on thue correlation coefficient rrjatfix. B

(iii) VCompUtatio‘ns}of .na set of mutually orthogonal unrotatedr'fagtor

| matrix',_the‘ element in eacﬁ factor are referred to as "facithor_loading’..

(iv)  ldealization of‘ihe factor matrix by rotation of the féctqrs around the

: .origin, so that ;the loading on a _partiéular féctor. is made als ,mljch o
close to +-1.0, 0.0and 1.0 as p‘ossib.le. , |

'(\)) | Lastly a s-et of va’rima* rofated factor scoreé is éér_npﬁtea fof‘eéch'

- sample.




. CHAPTER-5

ANN PROCEDURE

5.1 General
An artificial neural network (ANN)‘ is a computing paradigm designed to
mimic the human braln and nervous system Neural network (NN) has a blg

role to play in the. fleld of water sector where complex natural processes'

dommate The hlgh degree of empmmsm and approxmatnon ln the analysns of =

. water quallty systems make the use of neural network hlghly swtable In other

words, when the p033|b|I|ty of. representrng the complex relatlonshlps between

various aspects of the processes in terms of physrcal or conceptual modellng R

- isvery remote the neural network plays an lmportant role

ANN is an lnformatlon processmg system that uses an approach L

',,entlrely dlfferent from conventlonal algonthmlc programmlng and roughly..‘f.-? '

"repllcates the behaVIour of a human braln by emulatlng the operatlons and o

o connectlwty of blologlcal neurons From a mathematlcal pomt of V|ew lt lS a -

: complex non-llnear funct|on W|th many parameters that are tralned ln such a

-way that the ANN output becomes S|m|lar to the measured output ona known G

L data set ANNs are hlghly dlstnbuted |nterconnect|ons of adaptlve nonllnear S

lprocessmg-elements (PEs) (Flgure 51) When |mplemented rn dlgrtal e

b hardware the processrng-element |s a S|mple sum of products followed by IR

: non- llneanty The connectlon strengths also called the network welghts can

be adapted such that the network’s output matches the desrred response

N
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Connectlon T e .
welghts U a e Connection .-
' S  .~weights ..

onnection
~weights -, -

| T =

» ;;“Nodes in- o Nodes in :f“" Nodes in
“-‘inputlayer . hidden layer. - - -output layer

Cej=lt0) »"i=_1;to,i~;~_:. “k=1tok .
Fig 5.1: The Buildiiig ‘Bl‘ocks‘io-f ANN
|n multi layered perceptron hrdden layer means third |ayer of-

. processrng elements or unrts in between the |nput and output layers that

'rncreases computatronal power In prrncrple the hldden layer can be more

. _’ . than one Iayer In practlce the number of neurons |n thrs Iayer is evaluated by

trral and error Hornik et al (1989) proved that a srngle hldden layer contaimng o
| i sufﬁcrent number of neurons could be used to approxrmate any measurable_ |
N functlonal relatlonshlp between the input data and the output variable to any .
- desrred accuracy. In addltlonj, De Villars and 'Barnardx(1993). showed that an
L »ANN comprising of two hi‘dde'n‘layers tends to be ‘Iess accurate than its single,
hidden layer counterpart. L |

uThe ANNs are not 'ekactly the -sub'stitute of »regreseion. General
i regression cannot sol\)ef‘the‘, problemswhere vt'h._e:input dimension epace is
high and Ather;eiis‘restriction on the number'ot inp‘ut}data. Regression imposes

a priori variable selection, with all the inherent pitfalls, where one is limited to
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a few inputs among hundreds available.- Regressions are performed using
sirnple dependency functions that are not very realistic. In regresslon vthere is
' only one dependency'functiOn_ over the whole data set, instead of rnany
distinct -niches which is taken care of by ANNS- Where dependency betw:een
the input vanables and the output are not well—deﬂned ANNs solve it better

The most lmportant dlfference between ANN and regressron is that the former. ’

maps the output by generalrzatron whereas the later by: memonzatron i \

Generallzatron refers to the neural network producrng reasonable outputs for

inputs, not encountered during learnlng To over-srmphfy’, if an object rs‘

represented ina network as a pattern of actlvatlon of several unlts and if aa,_[,

l

“ unit or two responds mcorrectly, the overall patterns remarn pretty well the L

same, and the network wrll stlll respond correctly to stlmulr

ANNs have been developed as a generalrzatron of mathematlcal._f";-*‘7? S

. models of neural blology and are, based on. followmg rules
"(i) L ’lnformatron processmg occurs at many srngle elements called“!;
-“-'"f,:nodes also referred to as. unrts of neurons

(n) Srgnals are passed between nodes through connectron lrnks

"i

(m) Each connectron I|nk has an assocrated welght that represents;_".r .

"_.5 |ts connectron strength

(IV) Each node typlcally applles a nonllnear transformatron called:;;,

actlvatron functron to |ts net rnput to determlne |ts output srgnal oy

52 The ANN Structure

521 Blologlcal neuron |
A typrcal brologlcal neuron compnses of Dendrrtes Soma Axon and

Synaptrc Buttons |s shown in Flgure (5 2) The dendntes form a very f ne“'




A frlarhentary brush surroundrng the body of the ‘neuron. The lnformatlon is
. plcked up at the Dendrlte The Soma is cell body whereas the Axon is long |
' transmrssron line like structure and the tail end of the Axon is called Synaptic
lButtons These heurons are so powerful in processmg the information, that
even a small earthworm wrth onIy 302 neuron has a computmg power around
ene thousarrd times the pewer ef Pentium I Processor. Thus the computation

power of parallel processing in neuro biological system is very high.

¢4y Dendrlte R . -
: ' y . Synapiic buttons
y ' Huclout . Axon - A _ » e

m——

J— .___=__,___.-==_'__,"=.-"

et e e e I p—— \
< D - S

s .
Som - Biological neuron

Fig. 5.2: Anatomy of Blologlcal Neuron

5. 2 2 Artificial neuron .- | 4

Let neuron has a set of n i'nputs X1, xz,i X3 cerreeinnnnn Xn and wy, wé,
w3,ﬁ ..... 4 ......wn are weights attached to the input fink. The inp'uts to the neuron
may come from the environment in'-whic‘h it is embedded or outputs to the
'other neuron are located in. The signals are passed to the cell body through.
the synapse, which may aecelerate or retard. This acceleration_or retardation
of the input signal is modeled by the weights. Weights are multiplicative
factors of the inputs to account for the strength. of the eynapse. The total
output is | |

1= WXy + WoXo +WaXs + ... + WnXn

or, 1= Twx, - (5.1)
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To generate the final output y, the sum is passed through a non-linear
fitter ¢ called activation function .or transfer function, whichireleaSesﬂthe
“outputy as. | , _

Y=40) o 62

| The error. (E) is calculated at the output as

Z[(YObs yest) ] . . | (53) ..
Summed units

Activation function *

Outpht

Figure 5.3: Anatomy of artificial neuron

5.3 Gradient Descent Lea"rning Algorithm -
- Gradient descent learnlng is the mostly used prlncrple of ANN tralnmg
The reason is that trial computatron |s requrred to rmplement thrs method and .

the fact that the gradient can be computed with local mformatron The‘

. _prlnmple‘ of gra_drent descent learnmg is very simple. The welghts are moved, T

in a direction opposite'to;the direction of the gradient The gradient of a

~ surface mdrcates to the drrectlon of the maxnmum rate of change Therefore if

the welghts are. moved in the opposrte drrectlon of the gradlent the system, ‘ L

state well approach pomts where the surface is flatter
- . .




Gradient

X

Gradient direction

along x , X1 X

' E gX@ X0, X1 X3

Optimal X, — =0
dx

Fig. 5.4: Gradient Descent in One Dimension

5.4 The Neural Network Topology
The arrangement of the processing units, connections and pattern

input / output in an ANN is referred to as topology. The processing units are

. arranged in three layers that are input, hidden and output. The units of a layer
are similar in the sense that they all have the san;le activation dynamics and
-output function. The- number of input and the number of output are problem
specific. There are no fixed rules as to the how many units should be included
in the hidden layer. If there are too less units in the hidden layer, the network
may have difficulty in Qeneralizing the problem. On the other hand, if there are
tdo many units in the hidden layer, the network may take an unacceptabiy
long time to Ieérn. On the‘basis of direction of information flow and processing
the ANNs '{are élassiﬁed as féed forward and feed backward network.

roe
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5.4.1 Feed forward network

The nodes arelgenerally'arranged- in layers, sta‘rtin'g\ from first input
layer and.ending at the final output layer. There oan be .several hidde’n\ layers |
with each'layer having one or more nodes. Information passes from the i'nput ,
to the out‘put side. The neurons in one layer are connected to those intthe
next, but not to those-in the same ’Iay'er. Thus the output of a node in the one
Iayer is only a-dependent on the input it receives from previous layers an‘d‘ the =

lcorreS'pbo‘nding. l/veights. ‘ | o
5.4.2 Feed ha'ckward network

lnformatlon ﬂows through the nodes in both direcfions from the mput to
the output snde and vice-versa. Thls is generally achleved by: recyclmg '
previous network outputs as current mputs,‘thus allowing for feedback.
5.5 Actlvatlon Functlon | - | |

Slgm0|d functlon is the mostly used functlon for solvmg ANN problems _
5.56.1 Slgm0|d functlon |

Th|s functlon IS a contmuous functlon that vanes gradually between'
asymptotlc values 0 and 1 or —1 and +1 and is glven by

o

,¢(>%)“=

1+e

| where [3 |s the slope parameter Wthh adjusts the abruptness of the functlon B |

as it changes between the tW° as'ymptotlc values Stgmord functlons are SR

dlfferentlable whlch |s an lmportant feature of neural network theory
Experlmental observatlons of blologlcal neurons demonstrate that the 'r" rlng is |

roughly SlngId when plotted




-10 5 0 s 10
) Input

Fig 5.5: The Sigmoid,Function :

5;6: Architecture of ANN

B The manner in v_v_hich',the neﬁroﬁs of'a neural network are structurally
“and intimately linked with learning algo'r/ithm ceésed to train the network. The
optimal architecfuré is oné, which yields the best performance in terms of
error minimization, while training sim;i)le and corﬁpact structure. The numbers
of input and output nodeé ,aré problem dependent. The flexibility lies in
selecting number of hidden Iayers and in assigning »the number of nodes to
each of these layers.. ”
5.7 Training of Artificial Neural Network

Once a netwc;rk has been structured for a particular application, that '

network is ready to be' trained. To start this process the initial weights are
. chosen randomly. Then,‘ the training, or Iearninyg begins. Supervised and

unsupervised are two methods used to train neural network.

e .
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5.71 Snpervised training

In supervised‘ training, both the inputs and the outputs are provided.
The networks then process the inputs; end compare its resulting outputs
against the desifed outputs. Errors are then propagated back through 'the
system, causing the systern to adjust the 'weights, which control the network.
This process occurs over and over as the weights. are continually tweaked;
The set of data, which enables-the training, is called the ‘training set'. Du‘ring
the training of a network the same set of data is processed meny times as‘;the
connection weights are ever reﬂned Sometimes, some networks never learn
because the mput data does not contam the specific |nformat|on

If a network simply cannot solve the problem, the designer th_en has to
reView theinput and outputs, the number of layers, the number of elements
per layer, the connections' between the layers, the summation, transfer ond
training functions, and even the initial weight themseives, those chan;ges
create a successful network. |
5..7'._2 Unsupervised training'

In unsuoervised' fcreining, the network is provideo with input but noi With
desired outputs. The system itself must then decide what f}reaturee it will use ;to
oroup the input“ data. At the present time, uns_upervised’ 'Iea.rning is-not well
understood. Currently this field rema'ins one that is sfcill in the laboretory.

5.8 Back Propagation Algorithm

Back propegation is4a system of method of training"rnulti layer artif cial

neural networks. Scientist and Engineering communlty to the modelmg has s

used it and processmg of many quantltatlve phenomena usmg neural network

has used it. This learning algonthm is applied to rnultl layer feed fonmarded R
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»network consisting of -neurons with continuous differentiable activation
functions. Such networks associated with the back propagation-learning
algorithm are calle_d back propagation networks. The back propagation
algorithm is a generalization of the-least mean square algorithm that modifies
network weights to minimize the mean squaréd error between the desired and
actual outputs of the network. Back propagation uses supervised leaming in
which the netWork is trained using data for which inputs as well as desired
outputs are known. Once trained, the network weights are frozen and can be

used to compute output values for new input samples.

Input nodes Hidden nodes ‘ Output nodes

Fig 5.6: A typical two layered back propagation feed forward
neural network
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Considering a two layered feed forward neural network, the network
has n nodes in the input layer, q nodes in the hidden layer and m nodes in the
output layer. Bias node is connected to all the layers to take care of threshold

values.
X = (X1, X2, == Xa) — inputs
T=(t, tz, —-- tm) — target ou;tputs
Y = (Y1, Y2 e Ym) — actual output of ANN.

Total input to jth hidden node

Corresponding output

1

- ph,

Z; =8,(h;), where S; =sigmoid function = .

= Z, =Sﬁ[§ W, xiJ
Total input to Kth output node

j=0

=Wy, X, +i| Wk,..S,,(‘ZWji xi)
Jj=

i=0
Final output will be

Ye =S5(0k)

q n
= S,;[Wko Xq +Z} wkj.s,,](z Wi xi)
j= i=0
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The error function,

RS-

In steepest descent approach
Change in weight @ negative gradient of E, at the present location.

(i) - Correction for weight between hidden to output layer:

oE ‘
Aw,; = -n—= where 5 is a positive constant known as learning rate.
W ow, :
g

=135 b-s, 00

k=l

t\)l'—'

q
where, Oc= D wyz
=0

. BE
===t -5,(0,)]8',(0,)2

K

Again, S;a(ok) =By(l-Yyy)

- OE, '
v, f—(tk - Y B YK(l_YK)Zj

L Awkj=+7Z(tk_yk)ﬂYK(1_yk_)Zj
= AW, =1 8,2, | . (5.5)

where, S, = Bt =y -y, )y,

il. Correction of weights between input to hidden layer:
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=1 aW

ji

SAw, = 3 n.(tk—yk)s ). Wy Py l
. i’?(t _YK)S (O)Wle' (Z X)x

iﬂ(t '_YK)S (O ). WS (h) xv : |

AW =) 76X, o (5.6)
. k=1 A s _ .
~ where, . 8, =6,W.S,(h))

=6,W,,.A(1-Z,)Z,
AW = r;x;kz S5
B =]
= AW, ;q[/}(l—»zi)zj.;(skwkj]xi |
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= AW, =18, X, (5.7)
where, 8= PA-Z)Z;.> 5, wy
- m=1

Hence,
(@) . Change in weights
a(input to the node ih the forward direction x Error term )
(b) S, valué;s are calculated by using actual errors.

' ' \
(c) &;values are calculated using the weighted sum of errors coming to

thé .hidden node from_"the higher level nodes to which this node is
connected.
5.9 'Learning Factors of E’ack Propagation |
One of tlhe major issues concernfng back propagation algorithm is its
converg'énqe. The 'cc.)nvergence of back propégation is based on some
impqr’cant learning 'factofs subh as the initial weights, the learning rate, the
“nature of tréiniﬁg set and the architec;cu}é of the -network. : | |
5.9.1 Initial wéig_hts |
The initial weights of a multi léyer feed forward network strongly affect
the ultimate solution. They are typically'initialized by smal_l random values
(between — 1:Owand‘ 1.0 or ;0.5 to +0.5$. Equal weights values vcannot train the
network probérly if the solution requires unequal weights fo be developed.
The ini'_[ial weights éannot be large, otherwise the sigmoid will saturate, from
~ the beginning and the system will stuck at a local minimﬁm. The saturation is
avoided. by choosing the initial values&of the synoptic weig'hts to be uniformly
distributed inéide a small range of values. The range should not be too small

as it can cause the learning to be very small.
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5.9.2 Learning rate (n)

Weight vector chavnge in back propagation are proportional to the
negative gradient of the érror, this guideline determines the relati\{e changes
that must occur in different weights whe_n a training sample (or a set of
| samples) is presented, but does not fix the exact magnitudes of the vdesi!l'ed
wéight changes. The magnitude change depends on the appropriate choiqe of

the learning rate . A large value of n will lead to rapid learning but the weight’
I-—may»then oscillate, while low values imply slow Iearnfng. This is typical of all
gradient descent methods. The right value of n will depend on the application.
Values between 0.1 and 0.9 have been used in many applications. The most
efﬁcient approach is to vary the' learning rate as the training'progresses, the
effectiveness of learning rate may be checked as the training progresses and
the value of the learning rate can be changed baséd on that. |

5.9.3 Momentum factor («).

Back propagation leads the weights in a neural neMork to a local
minimum rof the MSE, possibly substantially different from the global minimum
that corresponds to the best bhbice of weigﬁts. This problem can ‘be
particularly bothersome if the “error 'Eurface" (plotting MSE against network
weights) is highly uneven or jagged, with a large humber of local. minima. "

We may prevent the network _from getting stuck in some local minimum

by making the weight changes depend on the average gradient of MSE in a
‘small region rather than the precise gradient at a point average %NE in a small

heighbourhood can allow the network Weights to be modified in the general

direction of MSE decrease, without getting stuck in some local minima.
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Calculating averages can be an expensive task. Atshortcut, suggested
by R.umelhart,’et:. a'l. (1986), is to make weighf changes in the ith iteration of
the back propagation algorithm depend on immediafely preceding weight
changes, made in the (i-1) th iteratioh.“This has an 'averaging effect, and
diminishes the drastic fluctuation‘s‘ in weight changes bver consecutive
iterations. The impiementation of thié method is straight- forward, and is
accomplished by adding a momentum.term to the weight update rule,

AW (t-1) =7 8%, +a Aw, (1) | (5.8)
wh'erev,‘ Aw (1) is the weight required at time t, and

o is an additional parameter known as momentum factor.

Values for the momentum coefficient a can be obtained adaptively, as
in the case of the learning rate parameter n . A well-chosen value of o can
significantly reduce the number of iterations for con'vergenée. A value close to
0 ihhlies that the past history does not have mugh effect on the weight
change, while a value closer to 1 suggests th‘at the current error has little
effect on the wéight change.

5.9.4 Data normalization

The variables fall in the range of'b to 1 because ',it smoothens thc;:-,
solution space and averages out some of the noise .effects. Su;:h process is
called normalization or standardization. A typical variable, say electrical
conductivity (EC), which can véw between zero to svome maximum value

ECmax Can be standardized by the following formula: .

EC, = —£C | | . (5.9)
ECmax ’
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where ECs is the standardized electrical conductivity. A different formula will
be more suitable for a variable that varies wifhin a certaih range. There is,
however, some danger of losing information i_n hstandardization.
56.9.5 Training data and generalization
The training data submitted to the network for it to learn and generaiize
the relation between | inpuf and output should be sufficient and proper.
‘Networks with too many trainable parameters for a given amount of training
. data learn well but ;10 not generalizc—; well. This. phéhomenon is called dver
fitting with too few trainable parametérs, the network fails to learn the training
data. In estimation of parameter of a water quality model, the available daté
are divided into two parts. The first part is uséd to calibraté the model, and the
second to validéte it. This practice is known as ‘Split-Sample’ test. The length
'oAf calibration data depends upon the number of parameters to be estimated.
- The general practice is to use half to two-third of the data for calibration and
the remaining for validation.
5.10 | Steps in Development of ANN Model
The steps followed in the developmént of Artificial Neural Model are
summarized as:
Step I:Identify parsimoniously all physically based input variables with their
time memory that influence the output.
Step II: All inputs and output sets fdr the calibration (25 data sets) and
verification (‘i 3 data sets) are normalized.
Step-lll. Start with a three layered ANN model having only one hidden layer
énd the number of nodes in the hidden Iayer is approXimately double of

input models. The numbers of nodes in the input layer are equal to the
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number of input' variables, whereas, the number of nodeé in output
layer is equal tov the number of output variables. |

Step-1V: All the interconnecting weights are assigned a small value be_tween_—
0.5to +0.5 througﬁ a random numbers generation program. .

Step-V: Select fixed or variable values of learning rate and / or momentum
term depending upon the algorithrﬁ used for optimization.h

Step-VI: Select the learning process that is'either pattern Ieéming or batch
learning processes.

Step-VIil: Execute the program, which perforrﬁs:

(@) feed forward calculation,
(b)  error back propagation in the network, and
(c) finally change the Weight.

Step-Vill: Estimate output for calibration and verification and apply‘
performance evaluation criteria.

| Step-IX: Perform whole operation fc_nr maximum desired iterations.

: Steb-X: Select the iteration that results in maxilmum generalization on the
basis of performance evaluation criteria.

Step-Xl: For required generalization repeat the learning process by assigning -
more numbers of nodes in the hiddenilay_er or by increasing the
numbers ‘;of hidden layers.

5.11 Performance Evaluation Criteria
The éerformance evaluation criteria used in the present study are

RMSE, CC and CE.
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Root Mean Square Error (RMSE):

It yields the residual errors in terms of mean square error, expressed

as.

RMSE = \/reszdual variance

-3 (Yi_vj)z,n)’”

Jj=

where, Y and Y are the observed and estimated values of sodium
respectively and n is the number of observations.
Correlation coefficient (CC)
It is expressed as:
.on . _ R —
N
CC=—2=5 —x100

{z v, -v)3: (% _7)2}5

Jj=1 j=1

where ¥ and Y are mean of observed and estimated values.
Coefficient of Efficiency (CE):
Based on the standardization of residual variance with initial variance,

the coefficient of eff_icienby can be used to compare the relative performance.

It is expressed as:

ce<l1. res.|<.1ual v§rlance} X 100%
Initial variance
or,
c v \2
DY -9)
CE={1-£—————x100%
Y-V )
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| CHAPTER 6
RESULTS AND DISCUSSION ‘

As discussed in the previous chapters, the present work aims at to
develop (a) statistical models and (b) ANAN-b‘alsec'j models for determination of
crucial ground water quality parameters for pre-monsoon and post-monsoon
seasoriséf Jaipur District, Rajasthan, using the easily measurable quantities.
Finally, the performance of these models is cpmpared using the criteria
discussed in Chapters 4 and 5. Thus, the following text discusses the results
of the statistical and ANN-based models. - |
6.1  Statistical Model Developmeht
6.1.1 Best subset procedure

The best sut;set procedure primarily helpsf;%ecide the sub-set which is
the best in its performance, which is based on F, R?, and SSE-values. _To this
end, dut of thirty eight wa;ter quality data values for both pre-monsoon and
post-monsoon seasons, the first- twenty five were used for fnodel formulation,
and the others for model validation. The results are discussed for pre- and
post-monsoon seasons sepafately, in what follows.

(a) Pre-monsoon

To form ‘variou.s appropriate svub—sets, ‘the' Pearson correlation
coefficient (R) between water quality pérameters is computed, and the:
resulting cogﬁipients are s_,hown in Table 6.1. It is apparent from this table that
Cl signiﬁ‘dantly correlates with EC (R = 0.927) and Hard (R = 0.794); SO, with

EC (R =0.834) and Cl (R = 0.725) NO; with ‘Hard (R =0.752); "Nawith -

EC R = 0966) cl (R 0.855), so4 (R 0851) and A (R = 0.731); K

with NO3 (R 0. 885) Hard (R 0. 814) and so on.

.
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Since Na plays a greater role in determination of the level .of salinity,
which is the stipulated problem of the study, than Mg vvhich correlates with
other parameters such as Hard, Cl, NOs, Ca, and K as vvell as does Na with
other above-described parameters, the determination of Na is more crucial to

the study than Mg. Therefore, taking the former element as a dependent
| variable, a model is: developed for |ts determlnatlon | |

Since R does not provide any literal interpretation, except for the.

strength of assoaatron with other variables, the coefficient of determlnatlon L
(R? is»computed for a better physical lnterpretation. lt is computed and ithe
resulting values are shown in Table 6.2. It is apparent from this table that: Na . ‘.
is signlt_“rcantly correlated with EC, Cl; and SOy, and least with PO4 pr, l\l03,
and K. Th‘us, a~mode‘l can possibly be developed for.Na using EC, Cl, and
SO4 as inde.pendent variables. | |

ln the next step, Na was taken as a-dependent variable' different

: combmatron of models was mvestlgated for performance usmg R2 F-value

and SSE as cntena The computed values of these ‘measures. for drfferent S

combmatlons are shown in Table 6.3, and its results are summanzed in Table- “ |

6. 4‘ Table 6 4 actually presents only those‘c.ombinations whlch ‘show highest

R%? and F and Iowest SSE It Ieads to lnfernng that there exrst elght possrble o

- comblnatlons for model development To further select an appropnate model ".i

: contalnmg least number of rndependent vanables - criterion (Chapter 4) was'. .‘ U

~ applied, as shown in Table 6.5. lf Frmnk1 > F* at S|gn|f|cance level (a) equal IR N

:. to 5%, the model |s -more preferable than those showmg othen/vlse trend‘

S tis apparent from Table 6 5 that EC Hard CI and SO4 form to be the most
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y
optimal set of independent variables. It is noted that Na is taken as the
dependent variable in this analysié. it folIow$ that -

Na = 27.082+0.173EC-0.520 Hard+0.263CI+0.154S0, (6.1)

(R?=99.8%, F = 2166)

The above proposed model (Eq. 6.1) is verified on the above remaining
13 data-points observed at the‘sites different from those used in model
development. Tﬁe validation results are shown in Table 6.6 and plotted in
Figs. 6.1 and 6.2. Both these figures indicate more than satisfactory modél
performance in validation as the model-computed values fall quite close t.oA

the observed.
(b) Post Monsoon

Following the same steps as in the pre-monsoon, an analysis was
_repeated with the data set of post-monsoon season, and the results éfé_

shown in Tables 6.7-6.12. Finally, a model from Tabl‘e 6.11 can be sugg‘este_d

as follows:
Na = 14.481 + 0.174 EC - 0.519 Hard + 0.301 Cl B (6.2) -
(R? = 99.8% and F = 4082)

This model (Eq. 6.2) is \}alidated on the data set not used in model
development and the results are shown in Table 6.12 and plotted in'F'igs. 6.3
and 6.4. The fesulting R? value equal to 99.84% indicates almost a perfect
match between the obsérved and computed values, as appérent from these
figures.

Thus, the model (Eq. 6.2) suggested is appropriate for determination of

Na from the indicated independent variables.
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It is tovfu'rther emphasize that in both the models (Egs. 6.1 and 6.2)
developed for ;;re- and post monsoon seasons, EC is the most significant and
dominating independent variable and Cl stands next to it. On the other‘hand
hardness and SO, (valid fdr pre-monsoon season) are the less domination
variables for use in the mo‘del. An elimination of these from the pre-monséon
model (Table 6.3) can be developed with R? = 0.945, and post—fnonséon
model (Table 6.9) with R? = 0.956. Both these R%-values are reasonably close
to 1.00 to suggest appropriate models with consideration of onl); EC ahd:Cl.
The advantage of such a simplification is obvious for easy data collection and
Ice:'sé"i‘é'ibenditure reasons. Statistically, the most dominatihg variables can
better be identified using the Principal component ahalysis and the results can
be better interpreted, in what follows.

6.1.2 Principal Component Analysis

In the principal component analyéis, aé also discussed in Chapter 4, R-
values are first determined, as shown in Tables 6.1 and 6.7 for abOvé bre- :
and post-monsoon analyses, respectively. Then elig'en values and associéted
percent of total variances are determined, as shown in Table 6.13 and 6.14
for both pre- and post-monsoon seasons, respectively. Afterwards, the
principal component variables are éxtracted form the thirteen explanatory
variables, as shown in Tables 6.15 and 6.16 for pre-'and post—mons§on
seasons, respectively. In Table 6.15, the nos. in the second row refer t<; 13
principal components and the resulting fractional values show the correlation
of a parﬁcular variable with the principal component, If the value is close *
1.00, the variable is most correlated with the correspohding principal

component.
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Further, the number of principal c_:ompbnents 'required to .explain the
variatio’n in data is selected on the basis>of eigen values (Tables 6.13 and-
6.14). Components that explain 87.207 percent for pre-monsoon and 82.121
,pefcent for post-monsoon of the total variance are chosen for further analysis.
The eigen values, percent of t_ota] variancé explained and cumulative perqent
of total variance are given in Tablés 6.13 and 6.14 for pre—mbnsoon and post-
rﬁbnsoon, respectivély. The rotated loading corresponding to each se{ectéd '
variable for components is givén in Tables 6.15 and 6.';16 for pre—monsbon
and post-monéoon, respectively. The 'féct'ors and their loadings are shAown
diagrammatically in Figures 6.5 and 6.6 for pre-mohsoon énd post-monsoon
season, respective!y. The rectangular boxes represent the factors and the
horizontal central line represents zero loading for the variable. Lines near the
top of boxes represent high positive I_oading, and the points near theibottom
high negative loading.

(a) Pre-monsoon: :
In case of pre-monsoon, the first ‘eigén value is 6.59 and it explains

47.374% of total variance, second value (A= 3.407) explains 26.10% of total
variance, third value (= 0.978) explains 7.521%, and so on. Thus, the first four
components account for a total of 87.207% of the total variance (Table 6.13).

The following four components have been interpreted as follows:

Component | : Conductivity factor
.CI, EC, Hard, Mg, Ca, Na, SO4

Component Il Fluoride factor

. Alk, F, pH ,
Component lil: Phosphate factor | .

o PO, | T
Cbmponent AV Nitrate factor |

‘ NO;
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The first principal component accounts for 47.374% of total variance
and is characterized by Cl, EC, Hard, Mg, Ca, Na, é—nd S0s. High loading of
chloride and electrical conducti)}ity were observed which may be called as
conductivity factor. Moderate positive loading of Mg, Ca, Na, and sulphate
ions indicate the contribution of these ions towards conductivity.

| The second principal component which accounts for 26.10% of f‘btal'
variance, mainly loaded on alkalinity, fluoride, and. pH ions. The'loéding for
other cation and anion is obéerved to be negligible. Hence this factor is called
fluoride factor. The inﬂuence of local lithology and soil added by other faétors-
like very low fresh ‘water exchange due to arid climat_e_ of the region is
responsible for highe} concentration of fluoride in these aquifers.

The third principal component explains 7.521 percent of total variance.
This component is highly negatively loaded with phosphate. The Ioéding for all
other cation and anion is observed to bé negligible. Therefore, this f_actér is
calléd as phosphate ion factor.

The fourth principal c'omponent explains 6.102 pércent of total variénce
is negatively loaded on nitrate with low loading of pH,‘ sulphate and
potassium. Thé loading for other cation and énion is agaiﬁ »negligible.
Therefore, this factor may be called nitrate factor.

Post —-monsoon:

In case of post-monsoon, the first eigen value is 6.188 percent and
explains 47.599 percent of total variance, second is 3.412 whicﬁ expléins
26.247 percent of total variancé,“third is 1.076 which explains 8.275 percent of

total variance and so on. The first three components accounts for a total of
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' 82.121 percent of total variance (Table 6.14). The foliowing three components
have been interpreted as follows:
Component I: Conductivity factor

Cl, EC, Hard, Ca, Mg, Na, SOq4

e

Cdmponent il Fluoride factor
Alkalinity, F, pH

Component lli: Phosphate factor
PO,

Thé first principal component accounts for 47.599 percent- of total
variance and has more or less uniform loading of electrical conductivity and
chloride, and may be called as conductivity factor. High positive loading of
chloride; qalcium, magnesium, sodium, and sul_phéte ions indicate the highér
contribution of these ions towards conductivity in the post-monsoon of this
area. As the salinity of ground water is measured in terms of electrical
conductivity, the high salinity in these aquifers may be due to alluvial aquifers
existing in the area.

The second principal component Which accounts for 26.247 percent of
total variance, mainly loaded with alkalinity, fluoride, and pH respectively.
Moderate loading was observed on sodium. The loading for other cation and
anion is negligible. Hence this factor is called fluoride factor. The presenc‘:e of
fluoride ion may be due to dissolution of fluoride bearing minerals present in
the study area. Further arid climate of the .regio'n and long residence time of

ground water in aquifers are also responsible for the higher concentration of

fluoride.
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The third principal component accounts for 8.275 percent of total
‘variance. The highest loading on phosphate is observed in this component -
while almost negligible loading on ali other cation and anion. Hence it is called

phosphate factor.

Thus it can bé inferred from the above-disAcussion that EC, Hardnéss,
chlo.ride, nitrate, hydrogen ion, and phosphate may be responsible for 'fthe‘
variation in the ground water quality in the pre-monsoon season wheréas
conductivity, fluoride, phosphate, hydrogen ion, and hardnéss in the post-
monsoon season of the district Jaipur, Rajasthan. By and large the common
factofs fluoride, nitrate, pﬁosphate »have perceptible influence on the q'ua_lity of
ground water of both pre-monsoon and post;mon'soon season.

6.2 Artificial Neural Network Analysis
The selected candidate sets/subsets used 'in statistical model
development (Tables 6.4 and 6.10) were further used in development of a
model based on the artificial neural network (ANN) theory. The possible sets
of combinations for various ANN models are shown in Tables 6.17 and 6.18
for pre-monsoon and post-rhonsoon season, respectively. In these tables;"the
models are described as ANN1, ANN2, ANNZ3, and so on, and their structqres
- shown in the second columns of Tables 6.19 and 6.20. In model developrﬁént,
the same, as above, twenty five data points were used, and the other thirf.ee.n
data points in model validation. The root mean square error (RMSE),
correlation coefficient (CC), and coefficient of eﬁicienéy (CE) 'we're used as
performance criteria for ‘both training (cal.ibration.) and testing (valida't.io'n).jfhe‘
resulting yalues of the performancé indicatdrs_aré giQen, in Tables .6'.19 and.

6.20, and the computed water quality values are depicted in Figs. 6.7 and 6.9 -
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_‘for_ cavlibratio_n ,an_d'Figs. 6.3 and 6.10 for va-lidation, for pre-monsoon and post-

monéoon, respectively. | V.

o It is seen frqm Table _6.19 that, for pré—ménsoon season, the resulting
RMSE is minimum for ANN4 in calibratibn, whereas it is more than that for
ANNS in verification. In célibration, the values of coefficient of efficiency (CE)
B for both the models ANN3 and ANN4 -aré the same as 99%. However, in
verification, CE is 97% for ANN3 a_hd it is 95% for ANN4. Thus, both these
critéria lead td prefér ANNS3 to ANN4. A similar inference can also be drawn if
coefficient of. correlatiqn (CC) values are cohsidered.

Similar to t.he above analysis, .ANN11 (Table 6.20) can be éons,idered
to b‘e fhe most appropriéte model, whjcn'hA indicates CE values equal to 99% in
'bott; calibration and validation. Sinbe the CE vévlues. are quite high, the
probbse_d models can be describéd t_d h'ave performed satisfactorily. It can
also be asserted from Figs. 6.7-6.10 showing satisfactory match of the
:'com[:)uted- and. obvservedA values, valid _for both ﬁre- and post-monsobn
seasons.

Based on Rz, Table 6.21 comparéé the performancé.o'f both the
staﬁsticali ahd ANN médéis. It js épparent that using the observed
conlcé_r]t(gtiq.q"qua'ntities of EC, Hafd, Cl, and SO4, Na can be predicted by
both the models reas-bnably with R? Qafying from 98.2-99.8% in both pre- and
po;st monsoons.. It is however noted here that the statistical model uti!izes ail
these'foﬁr constituents to predict Na in‘ pre-monsoon season. On the other
hand, all other models requfre only tHree constituents, viz., EC, Hard, énd Cl,
to predict Na in both the seasons. Thus, both the models perform equally well .

in Na—predictiqn, verifying the results derived from both the approaches.
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Table 6.17: Description of various ANN models for training and testing of

sodium levels for pre-monsoon season.

Model No. ANN models No. of No. of

, training data | verification data
[ANN 1 EC ' 25 EE ‘

ANN 2 EC+Hard - 35 13

ANN3 | EC+Hard+Cl 55 13

ANN 4 EC+Hard+CI+SO, 25 ~ 13

ANN 5 EC+Hard+CI+SO+AK 25 13

ANN 6 ' EC+Hard+Cl+SO,+AK+F %5 |13

ANNT ] EC+Hard+CI+SO,+AK+F Mg |25 13
ANNB Ec+Hard+p|+so4+Alk‘+F+Mg+Ca 55 13
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Table. 6.18: Description of various ANN models for training and testing

of sodium levels for post-monsoon season.

Model No. ANN models No.of | 'No. of
training data | verification data
ANN O EC 25 13
ANN10 | EC+Hard 25 13
ANN11 | EC+Hard+Cl 25 13
ANN12 | EC+Hard+CI+SO;, 25 13
ANN 13 | EC+Hard+CI+SO,+AK 25 13
ANN 14 | EC+Hard+CI+SO,+Alk+Mg 25 13
ANN15 | EC+Hard+CI+SO,+Alk+Mg+Ca | 25 13
ANN 16 25 13

EC+Hard+Cl+SO,+Alk+Mg+Ca+F

99




Table. 6.19:

Comparative performance of selected models for pre- |

monsoon season for sodium

Model No. | Nodes- Performance evaluétion of models
input, Calibration (Training) - Verification (testing) ’
hidden | RMSE | CC% | CE% RMSE .CC% CE%
output
ANNT —[121 | 36302 |67.07 [66 |13364 9186 |83
ANN 2 2,41 73.89 99.37 |99 72.62 98.55 |95
ANN 3* 361 . | 6211 19956 |99 58.55 199.08 |97
ANN 4 4,8,1 55.41 99.64 |99 73.57 98.09 |95
ANN 5 5,10,1. | 47.51 99.74 - | 99 110.92 94.79 -.88'
ANN 6 6,12,1 1} 44.25 99.77 |99 107.74 94.95 |89 -
ANN 7 7,141 | 46.20 99.756 |99 103.33 95.55 |90
ANN 8 8,16,1 | 44.38 9951 [99 | 105.85 94.>90 89
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Table. 6.20: Comparative performance of selected models for post-.

monsoon season for sodium

Model Nodes- | Performance evaluation of models
No. input, Calibration (Training) Verification (te’sting).A 2
| hidden [RWSE— [CC% [CE% [RWSE  [CC% |CE% |
output- o | .

ANN 9 1,21 27_3.53 93.51 |71 15’;4.8-6 K 91786-‘ 83 -
ANN 10 |24,1 |67.65 99.17. |98 47.95 99.05 |98 .j.
ANN 11* | 3,6,1 46.01 99.62 - |99 — 33.05 99.51 199.

| ANN 12 [4,8,1- |45.05 99.63 -199 38.04 - '- ‘99.37 199
ANN 13 | 5,10,1 42.77 .. |99.67 |99 47.38._ ' ,99..0A3V 98 
ANN 14| 6,121 | 43.89 55.65 | 99 50.41 5886 | 6
ANN 15 7,141 | 4174 99.68 99} 47.00 ,9,9'.28 11 98.
ANNT6 |816.1 4076|9970 |99 |5626  |86.09 |87
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Table 6. 21 Cbmparison of statistical and ANN-Based models

Model Season Mode Resulting R*-value
(%)
Stétistic;al-based Pre-monsoon Calibration 99.8
{(With 4 inputs: [ Validation 995
EC, - Hard,~- Cl,
ASO4)
Post-monsoon Calibration 99.8
(With 3 inputs: | Validation 9.8
EC, Hard, Cl)
ANN-based Pre-monsoon Calibration 99.1
(with 3 inputs: | Validation 98.2
EC, Hard, CL)
Post-monsoon Calibration 99.2
~ - ] (with 3 inputs: | Validation 99.0
EC, Hard, CL)
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: . CHAPTER -7
SUMMARY AND CONCLUSIONS

71 'Best Subset Procedure

Useful regression models for predicting sodium concentration using |
~other ground water quality constituents were developed for both pre-monsoon
and post-monsoon seasons of Jaipur district, Rajasthanr As both of ;;t'he‘
regression models for pre-monsoon and post- monsoon are successfu:t in
~ explaining about 99% of the variation in the sodium levels, the de\reloped
models may be used for the prediction of missing observed vaiues. Howe;rer,
the variab‘ility\of the results from one season to another indicates thatAa
general model cannot be derived to predict the sodium concentration for hoth
_the seasons. Also thle _variation in sodium causing parameters varies from ione |
site to-'another due _to the regional geomorphic 'and hydrogeologic features.
7.2 - Principal Component Analysis

Principal component analysis was used to predict the dominating vxrater
quality constltuents and it was revealed that four prrnc:pal components are
accounted for the total chemical variability in the groundwater quality of dlstnct B
Jaipur for-pre- monsoon season and three pnncrpal components for post-
monsoon season, respectlvely The common factors conducthlty, fluorlde

nitrate, alkahnlty and phosphate have perceptrble lnfluence on the quality of

groundwater of district Jaipur. ngher conductlwty represents the sallnlty of

the groundwater and hlgher ﬂuorlde content may be attributed to dlstnbutlon -

of fluorlde bearmg minerals in the sorl thelr solublhzatlon charactenstlcs

'nature of the product W|th s0|l and other enwronmental condltrons The .

' parameters influencing the concentratlon_of quorlde are observed to be pH -
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and alkalinity. The higher nitrate content may be attributed to the combined
effect of contamination of domestic sewage and runoff from fertilized fields.
7.3  Artificial Neural Network Ana4lysis | |

Using the steepest descent‘optifnization technique and the sigmoid
activation function, the back propagation two layered feed forward ANN
models were developed for estimation of sodium for both pre- mdnsoon and
post- monsoon seasons, respectively. The number of iterations was fixed at
1000, and the models were validated with data not used in calibration. The
input variables considered for different model structure were identified using
correlation analysis. The statistical performance evaluation criteria such as
root mean square error (RMSE), correlation coefficient (CC), and coefﬁéient‘ of
efficiency (CE) weré used to demonstrate the médel performance.

Based on the coefficient of determination (R?), the performance
evaluation of both the above statistical and ANN models revealed both of
them to perform equally well in both bre- and post-monsoon seasons. In field

application, the observations of EC, Hard, and Cl may be used to predict Na

Jr—

in both the seasons.
7.4 Suggestions Pfoposed For Future Studies

| A suitable regression model may be estimated to predict. the
concentration of f[uoride and nitrate in the Jaipur district, Rajas;than becadse
fluoride and nitrate concentration in groundwater is a growing problerﬁ of
Jaipur district. According to BIS (1991) permissible limit of fluoride is 1.0 = 1.5
mg/l depending on climate, whereas in the study area it varies from 0.07 to
22.4 mg/l with a mean or 2.48 mg/l iﬁ pre- monsoon and from 0 to 21.0 mg/l

with mean value of 1.79 mg/l in post- monsoon season. Again, according to
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BIS (1991), nitrate contamination above 45 mg/l rhay prove detrimental to
human health. In district‘Jaipur, it varies from 2—.4 to 9>8.6 rﬁg/l with mean value
of 135 mg/l in pre- monsoon 'and from 1.3-to 800 mg/l with mean value of 122
mg/l fn post- monsoon, respectively. Usin'g the same procedure és' used in
this study, an attempt was also made to d”evelop statistical/ANN model forfthe
prediction of 'F ahd NOa,, but to no avail. It is perhaps due to lack of-
observations in 'number and/or ‘the cbnstituent actually describing :;the

concentration of F and NOs.
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