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NOTATION

The following symbols are used in this dissertation:

B( ) = complete beta function;

Bi( )Bi( ) = incomplete beta function;

b : = width of weir in actual anisotropic flow domain ;

b1 b2 . = - width of upstream and down stream blanket respectively, in

actual anisotropic flow domain ;

o
il

width of weir in fictitious isotropic flow domain ;
bl, b2 = width of upstréam and down stream blanket respectively, in
fictitious isotropic flow domain ;
C = constant ; _
= point of intersection of horizontal floor and downstream
face of sheet pile in chapter 3
= point of intersection of horizontal floor and upstream face
of sheet pile in chapter 4;
D = point corresponding to the tip of sheet pile;
E = point of intersection of horizontal floor and upstream

face of sheet pile in chapter 3;

al
)

absolute value for sl corresponding to depth of toe in
fictitious isotropic flow domain ;

= gravitational force;

= seepage force;

Upstream head of water;

= Exit gradient in anisotropic flow domain;

m~|gn'" jan, ;'rjm"rj
]

= Exit gradient in fictitious isotropic flow domain;
i = N-1;
k = k. k2 ; (equivalent coefficient of permeability of the

fictitious homogeneous isotropic flow domain);
k., ka = Principle coefficient of permeability in the direction of p
and A, respectively;

m = parameter;

vi



N

M,M; M;,,M3
N,N1,N,,N3
P

rl,r2,r3

X2

x2

X1+Xo

A o+ x2

XY, X, Y

75,26 25 »Z5 »

magnification coefficient for transforming the value of exit
gradient from fictitious isotropic flow region to actual
anisotropic flow domain. |

k,/ka,

constants;

constants;

pressure

transformation coefficients to transfer the horizontal length,

vertical length and the ratio of horizontal and vertical
length from actual anisotropic flow domain to a fictitious
isotropic flow region;

embedded length of sheet pile in actual anisotropic flow

domain;

embedded length of sheet pile in fictitious isotropic flow
domain;
embedded depth of toe structure in actual anisotropic flow

domain;

embedded depth of toe structure in fictitious isotropic flow
domain;

parametric plane;

complex potential = ¢+i¥

top width of toe structure in actual anisotropic flow domain

in chapter 4

top width of toe wall in fictitious isotropic flow domain in
chapter 4
bottom width of toe wall in actual anisotropic flow domain

in chapter 4
bottom width of toe wall in fictitious isotropic flow domain
in chapter 4

cartesian co-ordinates;
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VARYVARY AT

W, A

QI

B1
B2

Yw

s

z coordinates in fictitious isotropic flow domain corres-

Cartesian co-ordinates;

b/s ratio;

v | o

angle made by maximum coefficient of permeability
with downstream horizontal boundary;

parameter;

parameter

parameter;

parameter;

angle in units of xx made by embedded length of sheet pile
with upstream horizontal boundary in fictitious isotropic
flow domain; ]

angle in units of x made by scoured surface with
downstream face of sheet pile in chapter 5

unit weight of water;

angle in degrees made by scoured surface with the
horizontal in chapter 5;

velocity potential function;

stream function;

Note : Additional notations are defined locally wherever they occur.
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ABSTRACT

Field and laboratory tests indicate that most natural and man-made porous media
exhibit directional variation in permeability. However, in general practice, hydraulic
structures are designed based on the analysis of flow through isotropic porous media. The
analyses have shown that the anisotropy may have considerable influence on the pressure
and exit gradient distributions. This dissertation is therefore primarily concerned with the
development of the charts, as design aids, for pressure at key points and exit gradient
distributions for a flat bottomed weir with a vertical sheet pile on anisotropic porous
medium. The analysis is done by transforming the anisotropic flow region into a fictitious
isotropic domain and applying Schwarz-Christoffel transformation to the transformed
region. The results obtained in transformed region are retransformed to the actual
anisotropic flow domain and the charts are developed.

In general, as a thumb rule, a filter blanket is provided in downstream of a weir
for a length of D to 2D, where D is the anticipated depth of scour measured from the
downstream bed of the river. A method to find the length of filter blanket is not yet
available. An analytical method for obtaining the length of filter blanket is suggésted.in
the dissertation.

The scope and nature of work undertaken is presented in Chapter 1. This is
followed by a review of literature in chapter 2, which embraces the pertinent theory of
. seepage in anisotropic porous media and the provision of filter blanket downstream the
weir.

Chapter 3 deals with the analysis for flat bottomed weir with a vertical sheet pile
on anisotropic porous medium of infinite depth. Numerical results are presented for uplift
pressure at key points and exit gradient distribution for various position of sheet pile and
different degree of anisotropy. The results are compared with those of Khosla et al, for
the particular case in which maximum and minimum coefficient of permeability ratio is
one. The inclination of the direction of coefficient of permeability and the ratio of
maximum and minimum coefficient of permeability have considerable influence on the
pressure and exit gradient distribution.

Chapter 4 deals with the problems in a weir on anisotropic flow domain where
maximum exit gradient becomes infinite when downstream sheet pile is vertical. The

analyses are made for the provision of exit gradient controlling device (a concrete block



with certain shape) and the numerical results for obtaining the size and shape of such
device are given. .

Chapter 5 deals with the design of a filter blanket for a weir on isotropic porous
media of infinite depth. The analysis is carried out applying Schwarz-Christoffel
transformation. The exit gradient distribution corresponding to straight line scour of the
downstream reservoir boundary is analysed. Numerical results for the length of the filter
blanket are given for various ratio of weir width and length of sheet pile. The ratio of
width of weir and the length of downstream vertical sheet pile has considérable influence
on the length of filter blanket.

Finally, in Chapter 6, the results presented in earlier chapters are discussed and

the important conclusions of the study are summerised.



CHAPTER 1
INTRODUCTION

Weirs are the most extensively used hydraulic structure for diversion of river
flows for different purposes .A weir founded on porous medium is designed for surface
and sub-surface flow conditions. The design from surface flow consideration is primarily
concerned with the fixation of waterway, pond level, and effective dissipation of excess
energy of water flowing over the structure. The weir floor is also subjected to forces due
to seepage flow through the porous foundation underneath. The seepage flow causes
uplift pressure under the apron and tends to lift the soil particles at the exit. Therefore, the

weir floor is designed to ensure safety against uplift pressure and undermining.

Most of the theoretical analyses of ground water flow problems assume the porous
medium to be isotropic and homogeneous with respect to coefficient of permeability.
However, from the field and laboratory tests, it has been found that most natural and
man-made soil deposits are anisotropic with respect to permeability to a considerable
degree. Flow through anisotropic media is generally analysed by first transforming the
anisotropic actual flow domain to a fictitious isotropic flow region by a suitable co-
ordinate transformation and then applying a method of solution to the transformed
section. From the solution of the problem in the transformed region, the solution for the

actual problem in the anisotropic region can be obtained.

In cases, the directions of principle coefficients of permeability are different from
the vertical and horizontal directions, the actual flow domain loses its shape in the
transformed section and a vertical sheet pile changes into inclined one. In such cases,
depending upon the degree of anisotropy, analyses to design the elements of the weir
from sub surface flow consideration namely total floor length, thickness of the floor, and

the depth of the downstream sheet pile, are required to be carried out accordingly.

Several methods are available for finding solutions to the problems of flow
through isotropic media. Some of the methods that are used are conformal mapping, finite

difference method, finite element method, graphical approach, Fourier series, analogue




method etc. For anisotropic porous media, these methods can be made use of after the

anisotropic flow domain is transformed to a fictitious isotropic flow region.

The present work is primarily concerned with the analysis of flow under a flat
bottomed weir in homogeneous anisotropic porous media and evaluation of pressure and
exit gradient distribution for various position of a vertical sheet pile. Velocity potential
curves and exit gradient distribution curves, as design aid, comparable to the curves given
by Khosla are prepared for different degrees of anisotropy. For weirs on inclined
stratified foundation soil, where the provision of a vertical sheet pile of any length still
results in infinite exit gradient, a toe structure as exit gradient controlling device has been
suggested. Analysis has been made to work out the shape and size of the toe structure. In
~ addition, an analysis has been done to find the length of downstream filter blanket for a
weir in isotropic homogeneous flow domain. All these analyses are done applying the

Schwarz — christoffel transformation.
The scheme of the presentation in the dissertation is as follows:
Chapter 2 presents a review of literature.

Chapter 3 presents a study of flow under a flat bottomed weir with a vertical sheet
pile resting on homogeneous anisotropic porous medium of infinite depth. Numerical
results are presented in nondimensional form for pressure head at key points of the weir
and exit gradient distribution for various degree of anisotropy. The results show that the
inclination of the maximum coefficient of permeability with the horizontal and the degree
of anisotropy have considerable influence on the pressure distribution and on the
magnitude and location of the maximum exit gradient. The results are presented in the
form of curves so that they can be used as design aids. The results are compared with the
results presented by Khosla, et al (1954) for the particular case in which the degree of

anisotopy is 1 (which represents the isotropic flow domain).

Chapter 4 deals with design of toe structure for controlling exit gradient in
anisotropic medium. When the direction of maximum coefficient of permeability is
inclined at an angle greater than O and less than m/2 with the horizontal (measured
clockwise from downstream horizontal bed) then for a structure with downstream vertical
sheet pile the value of maximum exit gradient becomes infinite. In this chapter, an

attempt has been made to bring the value of maximum exit gradient within the desired
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value by providing a suitable toe structure. Numerical results are given in nondimensional

form for the exit gradient distribution.

Chapter 5 deals with design of downstream filter length assuming straight line

profile of the scour.

In Chapter 6, the results presented in earlier chapters are discussed and important

conclusions of the present studies are summarized.’

It is hoped that the analyses and results presented will be assistance to a Design

Engineer for designing the weirs in anisotropic porous medium of infinite depth.



CHAPTER 2

REVIEW OF LITERATURE

2.1 General

Weirs on permeable foundation are designed for both surface and sub-surface
flow conditions. The criteria for design for sub-surface flow conditions are that the
hydraulics structure should be safe against uplift pressure and should not fail due to
imdeimining. These criteria are satisfied when the submerged weight of the structure at
any section is equal to the uplift pressure acting at that section and the maximum exit

gradient is less than the permissible exit gradient.

The analyses which have impact on the present study are: the case of confined
flow under a weir having a vertical sheet pile and resting on porous medium of infinite
depth (Khosla, et al, 1954); confined flow under a depressed weir (Pavlosky (vide Harr,
1962)); the case of an inclined sheet pile in a semi-infinite horizontal porous
medium(Verigin (vide Harr, 1962)); confined and unconfined flows through anisotropic
porous media (Mishra, 1972).

In reality, soil is seldom isotropic and homogeneous. According to Casagrande
(1940) soils in their natural undisturbed condition are always anisotropic with regard to
permeability even if they convey to the eye the impression of being entirely uniform in

character.
2.2 Field and Laboratory Investigations

Many field and laboratory permeability tests on soils show evidence of anisotropy
of a considerable degree. The various factors that are responsible for the directional

variation of permeability are:

i) particle shape and orientation (Graton and Fraser, 1935; Dapples
and Rominger, 1945) (vide Krizek and Anand,1968)

ii) natural and artificial stratification (Massland, 1957) and

iii) soil structure.



The carefully conducted permeability tests by Fancher, et al (vide Muskat, 1937)
on oil sands have shown significant anisotropic properties of the sand. Out of the 65 pairs
of samples tested, 46 pairs gave permeabilities parallel to the bedding planes grater than
those normal to the bedding planes. The ratio of high to low permeability ranged from 1
to 40. In some cases, the permeability normal to the bedding plane exceeded that parallel

to it, the maximum ratio of the two values being 7.3.

Arnovici (1947) (vide Krizek and Anand, 1968) conducted permeability tests on
15 soil samples and reported a maximum coefficient of anisotropy (ratio of maximum and

minimum coefficient of permeability) 3.0.

Reeve and Kirkham(1951) (vide Krizek and Anand, 1968) used various methods
of measurement of permeability such as: the auger hole method, the peizometer method,

the tube method and laboratory tests. They noticed marked evidence of anisotropy.

Johnson and Houghes (1948) (vide Krizek and Anand, 1968) and Johnson and
Breston (1951) (vide Krizek and Anaﬁd, 1968) measured the permeability of natural rock
piecec obtained from oil well cores in interval through 180°. Anisotropic permeability
conditions were found and some consistency was observed in the directions of maximum

and minimum coefficients of permeability.

Mansur and Dietrich (1965) conducted pumping test on a 16 inches diameter and
100 feet deep well located in the alluvial valley of the Arkansas river, to determine the
coefficient of horizontal permeability and ratio of the coefficients of horizontal and
vertical permeabilities,viz ky / ky. The ratio ky / ky was determined by two methods. In
the first method, ky / kv was found by comparing the potential distribution around the test
well with that around a similar well in a three-dimensional electrical analogy model. In
the second method, Muskat’s equation, which relates the flow from a partially penetrating
well to that of a fully penetrating well, was made use of. The analyses of the pumping test
data revealed that the coefficient of horizontal permeability is twice the coefficient of

vertical permeability.

The extensive investigations carried out by De Ridder and Wit (1965) in the
polder ‘De Oude korendijk’, were aimed at the determination of vertical and horizontal
conductivity. These quantities were determined by (a) transmission of the tidal waves, (b)

pumping tests, (c) laboratory tests on core samples from borings and (d) calculation from
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- mechanical analysis of core samples and disturbed samples obtained from bailer borings.
From the laboratory tests on undisturbed samples, it was found that the horizontal

conductivity of the core samples exceeded the vertical conductivity by 2 to 4 times.

Dagan (1967) and Boulton (1970) analysed the pumping test data collected by
Wenzel at the Grand Island Nebraska.Dagan’s analysis of the test data shows an 'average

degree of anisotropy of 7.5,

Theoretical analysis concerned with anisotropic porous media, collected during

the review of the literature is given in appendices A-I and A-II.

A properly designed stilling basin forms an integral part of a barrage/weir apron.
It helps to dissipate excess energy of flow. However, some undissipated energy is
generally carried over to the unprotected fiver bed, which causes scour. The shape and
extent of scour depends upon type of soil, Froude number of flow, dimensions of stilling
basin and basin appurtenances. Ample evidence is available in literature to conclude that
the shape of scour downstream of stilling basins, founded on cohesionless soils, resemble

arc of a circle or an aerofoil.

The scour profile downstream of various barrages, falls and regulators in the
model studies carried out at Irrigation Research Institute, Roorkee (Sharma, 1972,1975)

resemble the shape of aerofoil or arc of a circle.

The scour profiles, observed in the downstream side of Sambeek and Grave

barrage, as reported by Leliavsky (1955), resemble the shape of an aerofoil.

This change in the boundary flow domain causes the redistribution of the exit
gradient and may reduce the design factor of safety against piping in some cases.
Therefore, usually a filter blanket for a length of one to times of the anticipated scour
depth is provided just downstream of the structure to arrest the vertical movement of the

bed particles.
2.3 Summary of Literature

From the foregoing review of literature, it can be concluded that: many field and
laboratory tests give indication that most soils are anisotropic to a considerable degree
with respect to their permeability. The degree of anisotropy in some cases is as high as
40.



The problems of seepage under a weir in anisotropic porous media can be solved
by a suitable co-ordinate transformation of the actual anisotropic flow domain into a

fictitious isotropic domain.

Solutions for flow characteristics under a stepped weir with inclined sheet pile in
isotropic flow domain have been given by Mishra (1972). This is the transformed case of
an actual anisotropic flow domain into a fictitious isotropic one. There is a need to
analyse the flow characterstics under a weir in actual anisotropic flow domain itself, and

study the effect of degree of anisotropy.

From the available solutions it is concluded that when a sheet pile makes an angle
0 < yr < m/2 with the horizontal measured from upstream side in anti clockwise direction
in an-isotropic (fictitious or real) flow domain the maximum exit gradient becomes
infinite. There is a need to design a structure so as to contain the exit gradient within
limit.

The shape of scour, downstream of different hydraulic structures resemble arc of
a circle or an aerofoil. Generally, a filter blanket is provided in downstream of a weir as
extra safety measure to encounter the reduction in factor of safety against piping due to
redistribution of exit gradient under scour and there is a need for finding the suitable

length of the filter blanket.



CHAPTER 3

FLOW UNDER A FLAT BOTTOMED WEIR WITH A VERTICAL SHEET PILE
ON ANISOTROPIC POROUS MEDIUM OF INFINITE DEPTH

3.1 General

Mostly, the porous media under hydraulic structures extend to a depth, which is
very large in compared to the widths of the hydraulic structures. In such cases, a study on

flow through porous medium of infinite depth is pertinent.

Taking a soil of infinite depth, two-dimensional steady flow beneath a weir with
vertical sheet pile has been analysed by Khosla, et al (1954). Also, Khosla has developed
curves to find i) the uplift pressure at key points along the base of a flat bottomed weir
with a vertical sheet pile at various position and ii) the maximum exit gradient .The
Khosla’s curves are only applicable to a homogeneous isotropic porous medium of
infinite depth.

Mishra (1972) has analysed the flow characteristics under a stepped weir with

inclined sheet pile, which corresponds to the transformed fictitious isotropic flow domain

of an actual anisotropic flow domain.

In this chapter an analysis of flow under a flat bottomed weir on an anisotropic
porous medium with a vertical sheet pile, that may be located anywhere along the bottom,
is carried out. Extensive sets of curves depicting pressure and exit gradient distributions
are presented so that the flow characteristics can be obtained direétly for the structure on

anisotropic medium.
3.2 Statement of the Problem

Fig.3.1 (a) shows a flat bottomed weir with a vertical sheet pile in an anisotropic
flow domain. The direction of maximum coefficient of permeability makes an angle 0
with the horizontal axis ox measured in clockwise direction. k, and [k, are the

magnitude of the maximum and minimum coefficients of permeabilities, respectively. b

and b, are the widths of the upstream and downstream apron respectively, b is the total
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width of the apron and s is the length of the vertical sheet pile. H is the height of water
at the upstream side and there is no water in downstream side or H is the head difference
that causes the flow. It is required to find the pressures at key points i.e. at points C, D

and E shown in figure 3.1(a) and exit gradient distributions, for by/b ratio ranging from 0

to 1.The analyses are to be carried out for Ku = 1,2,4and10, 8 =0°, 300, 60°, 120° and

ka
150° and for b/s ratio =1,2,3,4,5,10 and 15. The ratio by/b = O corresponds to a weir with

an upstream sheet pile and b1/b = 1 represent a weir with a downstream sheet pile.
3.3 Analysis

First, the real anisotropic flow domain is transformed into fictitious isotropic flow

domain using the relations given in appendix 1.

Let theflow domain in X,y co-ordinate system be transformed into ;,; co-
ordinate system and that a vertical sheet pile in x,y co-ordinate system make an angle yrx
with x axis (measured from upstream side in anti clockwise direction) in the fictitious

flow domain in ;,; co-ordinate system. Let the new length of the oblique sheet pile in

the fictitious flow domain be s and the new widths corresponding to by, b, and b be
31 ,b_2 and _l;, respectively. The transformed section in fictitious isotropic flow domain of
the weir given in fig.3.1 (a) is shown in fig.3.1 (b).

The weir in fictitious isotrpic flow domain has been analysed by Mishra (1972)

using the Schwarz-christoffel transformation. The same approach is applicable here.

The results obtained are then transferred to the corresponding points in the actual
anisotropic flow domain. The values of exit gradients obtained in fictitious flow domain
are multiplied by the magnification factor given in appendix-II to get the values of exit

gradient in the actual flow domain at the corresponding points.

The transformed fictitious isotropic flow region in z plane is mapped onto the
lower half of an auxiliary t plane and then the complex potential plane is mapped onto the
lower half of the auxiliary t plane; From these two conformal mappings, the relationship

between w and z plane is obtained. The Schwarz-Christoffel transformation for mapping

the polygon AEDCG onto the lower half of the auxiliary t plane shown in fig.3.1 (d) is
given by ‘



_Gmm) N | . (33.1)

The vertices A, E, D, C, G being mapped onto -, -1, m, 1, oo, respectively.
In eq. 3.3.1, M; and N; are the constants to be determined. Let the point

- Band F be mapped onto the points t = -B; and B,, respectively. The parameters f; and

B2 can be found from eq. 3.3.1 when the constants M;, m and N; are known. To find the
constants M; and N; and the relationship between the transformation parameters and
dimension of the structure, the integration between consecutive vertices are carried out.:

The constant N is governed by the lower limit of integration.

i) Integration between vertices E and D (-1 =t=m)
For point E , Z5=0 and t = -1; and for point D , Zp = st andt=m

Applying these conditions

-————dt 0
Zo = le E+1)"7 -ty ¥

or sl dt =ML .. (3.3.2)

-] (t+1)1 v (1 Y

The integration I; can be carried out numerically or analytically splitting the
integration in two parts and using the properties of Beta function. Analytical solution

yields

L=2B_ (+yl-y)-Q+m)B_ (y1-7)

2

in which B (1 +y,1- }f) and B (y 1- y) are incomplete Beta functions.

2 2
From eq.(3.3.2) the constant M, is found to be '

5 e(l—y)ifr

I

M; = .(3.3.3) |
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ii) Integration between vertices D and C (m=t=<l)
For point 5, Zp = st andt = m; and for point C, Zg =0and t=1.
Applying these conditions in €q.(3.3.1):

: ! t—m
0 =M C ()

m

dt +5 0

~ (ep)in 1 t—m.
or __Se(l r) _M1£ Wdt =M112 ...(3.3.4)

The integration I, can be carried out numerically or analytically splitting the
integration in two parts and using the properties of Beta function. Analytical integration

yields
L=2Bl+y1-y)-(1+m)B(y1-y)
in which B(1+y,1-v) and B(y,1-y)are complete Beta functions.
Equating egs. (3.3.3) and (3.3.4)

[2BQA+y1-y)~A+m)B(yl~y)]=2B,_ (+y1-y)-(+m)B_ (y1-7)..335)

2

For the known value of y the unknown m can be found using an iteration from eq.

(3.3.5). Knowing m, the constant M; is found from eq. (3.3.3).

1ii) Determination of f31:

The parameter 1 can be found performing the integration between Band E (P1=t=-1)
For point E, Z7=0and t =-1; and for point B , Z5 =- pyand t = -,

Applying these conditions

-1 t—-m —
0= Ml—_[['g Wdt -b, ..(3.35 ()
Substituting t = -t and dt = -dt, and accordingly changing the limits
1 -T-m —
0=-Mm dr - p ..(3.3.5 (b))
' /{71 (1-z)" (+z) ’

11



. ,
- M ! ~T—-m Mil3

- dv = Mils
o b (-7 _If @-1)"" Q+7) ’ -7

..(3.3.5 ()

The integration I3 can be carried out numerically or analytically splitting the
itegration in two parts and using the method of successive integration by parts.

wmalytical solution yields

— | b 1 . ﬁl_l rert _ had 1 ﬁl—l "
I =- {(l—ﬁl)}’"%(y+n_1)(y+n)('31+1) } (1+m)'§1 {y+n—1(ﬁl+1) }

Substituting M; from equation 3.3.3 in (3.3.5 (c))

E e(l - y)i:t 1-3

R

b

or p, sl

I

or s - ..(3.3.6)
s o

Now for known value of ;1 the value of ; can be found using an iterative

procedure.

iv) Determination of B,:
The parameter 8, can be found performing the integration between Cand F (1=st=PB2)
For point E, Zz=0and t = 1; and for point F, ZF = Ezand t =P

Now applying these conditions

b =M1b}2“_mdt ..(33.7 (a))
2 D ) Q=)
or g, =M1 [} i gy Ml (337 (b))
D )T ) Y
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The integration I4 can be carried out numerically or analytically splitting the

integration in two parts and using the method of successive integration by parts.
Analytical solution yields

_ <1 (BT < [ 1 (1)
14-—{(1—/;2»;;1(”_1_”(”_”([32“) }—(1+m>z{ ( )}

n=l |R—Y ﬂ2+1
Substituting the value of M, from equation (3.3.3) in (3.3.7 (b))

by | _ L .(33.8)
s I

Now for known values of B;, the parameter §, can be found using an iterative
procedure.

Mapping of w plane onto t plane:

The complex potential w is defined as w = ¢ + i¥ in which ¢ = velocity potential

and ¥ = stream function. The velocity pdtential function ¢ is defined as

) = _k(yi_y) + Cc - (339)

The w plane corresponding to fictitious flow domain in z plane shown in Fig.3.1
(b) is shown in Fig.3.1(c)

The constant C = k hy, where h; is the depth of water in the downstream side
which may be taken as zero for convenience. In that case constant C = 0.

The mapping of the w plane onto the lower half of the t plane according to the
Schwarz-Christoffel transformation is given by

dt
w =M : +N ..(3.3.10 (2))
2f G+ﬁ1) 1/2(t_52) 1/2 2
Integrating
2t + B, -
w o= iM, sin'1#+Nz ..(3.3.10 (b))
1 2

13



LA -Bs

Gag, TN ..3.3.10 (c)

orw = Msjsin

in which M; and N, are constants.

For point F , t = B2 and w = 0, therefore, N = -M3 /2.
For point B,t= -B1 and w = -kH; hence, M3 = kH/x.
Substituting the values of M3 and N2 in eq. 3.3.10 (¢)

kH —12t+ﬁ1—ﬂ2_lﬂ_

w= — sin ..(3.3.11)
Bi+ B, 2

Along the impervious boundary W = 0, therefore w = ¢. Equation 3.3.11 yields

1 .-12t+ﬁ1'ﬁ2 1
sm —— — ——C

9 _ 1 ..(3.3.12)
kH o x B.+B, 2 .

The uplift pressure at any point along the impervious boundary is given by

H -12t+ﬁ1“ﬁ2+

p= rw[—;cos 545, y] ..(3.3.13)

The pressure at key points can be obtained substituting the corresponding values

ft and y co-ordinate in eq. (3.3.13)
ForpointE,t=-1,and y = 0.

) -
HBDCG, Pr= },w[ﬂ cos_l——iﬁ ] (3314)
T

Bit+ B,

Forpoint C,t=1,and y = 0.

2 _
Hence, Pc = }/w[—li cos_l——ﬂz ] ..(3.3.15)
JT .

B+ B,
And for point D,t=m, and y = ssin 23

-12m+ﬁ1_ﬁ2 -

Hence, Pp = yw[E cos +ssinyrm | ...(3.3.16)
T B+ B,
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Exit gradient

The exit gradient Ig is given by

i dw dt
Ip = ———

k dt dz

Replacing %: from eq.(3.3.10 (a)) and %— from eq.(3.3.1), and simplifying
) t
_H 1 (o) Q-2)
7 ) -5,)" mile-m)
Substituting the value of M; and simplifying, the equation changes into

- i I (+2)"" (-1) b
IE H 7[ Q+ﬁ )”2@ ﬁ:)IIZ -(t_m) . | (3317( ))

For the weir with sheet pile located at downstream end f, = 1.0.Therefore

5 (1+2)"7 -1y |
Iepr= Q+ﬁ )[,2 ) .(3.3.18)

.(33.17(a)

For y = 0.5 (i.e. vertical sheet pile case), the above equation can be written as

% Q+,61 ¥ (1(’: t_)m) ..(3.3.19)

3.4 Results and Discussions

Numerical results are presented in the form of curves so that the pressure at key
points and magnitude and location of maximum exit gradient for a flat bottomed weir
- with a vertical sheet pile in anisotropic flow domain can be read off the curves. The
curves are prepared fork, /k) =1,2,4 and 10 ,0 = 0°, 300, 600, 120° and 150° and b/s ratio
= 1,2,3,4,5,10 and 15.The procedure adopted to arrive at the results presenied here, is as

follows:

The weir with a vertical sheet pile in the anisotropic flow domain gets
transformed into an equivalent weir with an oblique or a vertical sheet pile in the
fictitious isotropic flow domain. The governing flow equation, the Laplace equation, is

solved satisfying the boundary conditions in the fictitious isotropic flow domain. The
15



flow characteristics, complex potential under the structure, and exit gradient in the
downstream side in the fictitious flow domain, are found and finally these are related to

the actual location in flow domain by a reverse co-ordinate transformation.

We define the following ratios to -transform the results from fictitious isotropic
domain to that at actual anisbtropic domain: -

The ratios r; and r, depend only on degree of anisotropy and orientation of the

principle permeai)ility direction. The correspondence between points in the fictitious and
actual flow domain is as follows:

A point on the vertical sheet pile in anisotropic domain is given by :

o -y)in -
re” = ¢ , where r is the point on the inclined sheet pile in fictitious
r2

isotropic domain.
Exit gradient at a point in the anisotropic flow domain is given by:

I ;I S - ;S *mf , where J,is the exit gradient at the corresponding point in
r2

the fictitious domain and mf is the magnification factor as depicted in appendix A-IL
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¢-curves

With known degree of anisotropy and orientation angle (6 ) made by the direction
of maximum coefficient of permeability with the horizontal, the value of -¢/kH at key
points can be directly obtained from the curves, for known values of a (= b/s) and base
ratio by/b. Dimensionless potential (¢/-kH) at key points of the weir are presented in are
in fig.3.2 (al) through fig. 3.2(f3.3) for various location of the sheet pile and for various
ratios of depth of sheet pile to width of the weir for different degree of anisotropy and
orientation of the maximum principle permeability direction.. Separate curves for the end
sheet pile conditions are also given in fig.3.3 (al) through fig. 3.3(e3). Using these graph
the uplift water pressure can be computed. The results for ky/ky = 1, which represents the

isotropic case, agree with those of khosla’s curves.

Pressure head at key points in anisotropic flow domain can be obtained using the

following relations:
Pressure head at the junction of sheet pile and the floor,
Pg /tw = H (-¢g / KH);
Pc /yw = H (-¢c / kH); and,
Pressure head at the tip of sheet pile,
Pp Yw = H (-¢p / kH) + s.

The deviation of potential ¢/-kH in anisotropic flow domain from that, had the
domain been isotropic, are presented in the following tables for different degree of
anisotropy and orientation of principal permeability direction. The comparison has been
made only for key points. (-) minus sign indicates the value higher than that of isotropic

flow domain.
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o =b/s

s
/l‘

Vertical sheet pile at end

Isotropic
medium Anisotropic medium (8 = 0°)

KKy, =2 Kw/Ks, =4 Ku/Ks, = 10

o —¢cr/kh |-¢pi/kh|-d¢/kh|Deviation [-¢pi/kh|Deviation [~¢ci/kh[Deviation | —¢o1 /kh [Deviation | —pcy/kh [Deviation [ —¢pi/kh_[Deviation
1

Table 3.4.1
Isotropic
medium Anisotropic medium (6 = 0°)
KK, =2 Kwik, = 4 KwK, =10

of ~¢e/kh | ~¢n/kh | —¢/kh [Deviation | -¢o/kh [Deviation [ -¢s/kh [Deviationi| —¢o/kh |Deviation | —¢z/kh |Deviation | —¢o/kh |Deviation

Ll Mfeg MaAg9 L en 2 [ 2808 o1 U858 | 1049 | MFeq T8l VWYL el | VEe TS )
.2 0576 0375 0654 _ -13.5 0414 _ -104 0728 -26.39 _ 0445 1867} 0813 4115 0473 -26.13

P R e B L T S iy pl Wihnsbosived PESSSL bl RPhfpughdiihgd (PRI i N e - SR T B R R S e el
.5 0388 0265 0454 - -17/.0.308 ___-155 05271 -35.82 0348 3132 0629 6211 0403 __ -51.7)
10 0280 0194 033 _ -17.9 0228  -17.5 0388 _-38.57) 0265 _ -36.6 0477 7086 9_3?{_-_-_6_"5 95
18 0230 0.161 0272 -18.3 0.189 -17.4 0321 -39.57 0222 -37.89 0398 -73.04 0271 -68.32

Table 3.4.2
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Isotropic

medium Anisotropic medium ( = 30°
MKL =2 K]J/KA —"'—4 K“/KA = 10
of ~¢cr/kh |~¢pi/kh|-¢cy/kh|Deviation [-¢ni/kh|Deviation |~¢ci/kh Deviation | —¢ns /kh [Deviation | —dci/kh [Deviation | —¢oy/kh |Deviation
.1 .0:272 0555 _9.-_2_7_52__-__:3_1__9;69?%___:9?_Z__Q;%Q_L____-_Q-J.f!___-9-_6_9'1 _____ 19.1 0286  -5.14 0729 | -31.35
| 2| 0424 0.625 0412 2.83 0.661 576 0412 _ : 283 0704 1264 0412 2,801 _0.762 | -21.92
| 3 0512 0.674 0495 332 07 -386 0490 - 43 .. 0738 905 0490 9.@9[-9_-_7?_6__._:_1_6_-9_2__
| 40570 0709 0551 _ ?:@?L-?;Z?? _____ 282 0543 ¢ 474 0759 705 0543 473/ 0804 | -13.40
.2 ..0612 0735 0592 ?';%ZT_QJEJL___-:2_-_1.3.__9_5_§§ ______ 474 0777 . :5_-_7_1T | 0583 4.74 0818 | -11.29
110, 0720 0.806/ 0.702 2.5 0815 __ -1.12 0693 375 0832  -323 0693 3.75 0861 | 682 _
15 0.770 0.839] 0.75 2.08 0.84 -0.83| 0.745] 3.25] 0.859 -2.38) 0.744 3.38 0.883 -5.24
Table 3.4.3
Isotropic
medium Anisotropic medium (8 = 30%)
K, =2 KWK, = 4 KK, =10
—¢e/kh | —¢n/kh | —¢/kh |[Deviation | ~¢o/kh [Deviation | ~¢p/kh [Deviationi] —¢p/kh [Deviation | —¢&/kh |Deviation | -¢o/kh [Deviation
_1..0728 0445 0798 962 0524 _ -17.8 0.864 -18.68 _ 0.599 ___:39;@1___9_9%____-_2_55-9_2 ...0685 5399
. os7e 0a7s 0838 104 _0449 197 0692 2014 0523 Y Y
"d o4sd 0seq o508 98l oad  1ed 057 tses oA secd oeid ze2d . o5 5951
.4..0430 0291 0471 953 0348 196 0505 -17.44 0401|378 0531 2349 0455 5636
50389 0269 0424 928 0316 193 0453 1679 0363 3699 0472 2165 0408 -53.99
19,0280 0194 0304 857 0231 191 0321 t4ed 0262 3508 033 -17.80 ____<_>_2_f_ss_3k___-_4_8_-_9_7T
15/ 0.230, 0.161| 0.249 -8.26] 0.19 -18/ 0.262] -13.91 0.215] -33.5 0.268‘ -16.52] 0.235| -45.9&
Table 3.4.4
Isotropic
medium Anisotropic medium (6 = 60
KwK, =2 KwkK, =4 Kp/Ky = 10
of ~¢cr/kh |~¢oi/kh|—¢c/kh |Deviation [-goi/kh|Deviation |~¢cy/kh Deviation | —gos /kh_|Deviation | ¢cr/kh [Deviation | —¢pi/kh_|Deviation
| 1]..0.272 0555 0339 -24.6] 063 _ -135 0398 -4632 0698 2577 0457 __-6801 0773 _ -39.1
| 90428 0620 040 134 000 10900 2 0750 2043 05T %A 081 304
| o|_0512 0674 0560 938 0734 -89 002 750 0786 1662 0644 2578 0841 2478
| 4 o570 o708 0612737 o762 748 0e4g 138 osod 141 oess 2035  osse -21.02
| 5,..0.612 0735 0.649 _ -6.05 0783 -653 0682 1144 0826 -1238_ 0716 __-1699 0871 __ -185
10,0720 0806 0749 _ 901 084 494 0770 604 0872 819 0794 1028 0909, :1241
15, 0.770 0.839 0.791 -2.73] 0.868 -3.46; 0.810; -5.1 0.89 -G.Sd 0.831 -7.92 0.922 -9.89;




Table 3.4.5

Isotropic
medium Anisotropic medium (8 = 60°)
Ku/K, =2 KKy =4 Ku/Ky =10
of —¢s/kh | -¢p/kh | —¢p/kh [Deviation | —¢p/kh |Deviation | —¢z/kh [Deviationi| -¢o/kh |Deviation | —¢e/kh [Deviation| —¢p/kh |Deviation
(0728 0445 0724 055 0493 _ -10.8 0.713 206 __ 0334 _____ 201 0692 495 0573 -28.76
.2/ 0576 0375 0553 ____3.99 0.401 __ -693 0523 __ 92 0414 __-104 0484 1597, 0418 -11.47
_3..0.488 0326 0461 553 0341 __ -4.6 0430 1189 034§ 613 0392 1967 0341 4.6
_4..0430) 0291 0402 _ 651 0301 __ -344 0373 1326 0302 378 0338 214 0296 _ -1.72
_5_.0.388 __Q-?_G_ﬁ _0361 696 0272 _ -264 0333 1418 0271 _ -226 0301 _ 2242 0264 __ 0.38
10_.0.280 0.194 0.258 __ 7.86 0.196 ....:1;(23__9;%5_35i ..... 1871 0.193 | 052 0212 2429 018§ ___ 4.12
15 0.230; 0.161] 0.211 8.26 0.161 0 0.192 16.52 0.158; 1.86| 0.172 25.22] 0.152, 5.59)
Table 3.4.6
Isotropic
medium Anisétropic medium (6 = 120%
KKy =2 Ku/ky =4 KKy, = 10
~cy/kh |~pi/kh|—pc,/kh[Deviation |-¢pi/khDeviation |-¢ci/kh [Deviation | —¢p1/kh |Deviation | —¢c/kh Deviation | —¢pi/kh |Deviation
| 1|_0272 0555 0277 184 0507 865 02687 551 0468 1604 0308 1324 0427 _ 23.08
| 20424 0625 0447 _ 547 0509 416 0477 125 0586 624 05%¢ _ 217 0582 688
| 30512 0674 0540 547 0659 223 0570 -11.33 0654 _ 297 0608 -1875 0659 223
| 40570, 0709 0598 _ -491 0699 141 0627 10 0898 _ 155 0662 -16.14 0704 071
| 9| 0612 0738 0639 441 0728 093 0667 899 0729 082 0699 1422 0738 014
100720 0800 0.747 308 0803 037 0764 611 osos o o7e8 944 o813 087
18] 0.770, 0.839 0.789 -2.47) 0.838 0.12] 0.807] -4.81 0.841 -0.24] 0.827| -7.4 0.847| -0.95
Table 3.4.7
Isotropic
medium Anisotropic medium (8 = 120°%
KKy =2 KK, = 4 KK, = 10
of —¢e/kh | ~¢o/kh | —¢5/kh [Deviation | —go/kh [Deviation { —¢x/kh [Deviationi| —¢o/kh [Deviation | ~¢w/kh [Deviation| —¢o/kh |Deviation
10728 0448 0661l 92 037 1685 0607 1731 0302 3213 0543 _ 2541 0228 4876
20576 0375 0519 99 0307 1813 0470 184 0247 3413 0421 2691 0185 5067
_3_0488 0326 044 984 0266 184 0398 1844 0214 343§ 0356 _ 27.05 0159 5123
4 0430 0201 0388 977 0238 1821 0351 1837 _ 0191 3436 0314 2698 0141l _ 51.55
50388 0269 0351 954 0217 1811 0318 1811 0174 3452 02835 2693 0129  51.55
190280 0194 0254 929 0.159| 1804 0230 17.86 0127 3454 0205 _ 2679 0094 _ 51.55
15 0.230] 0.161] 0.208, 9.57] 0.131 18.63| 0.189 17.83 0.105] 34.78 0.168] 26.96 0.078] 51.55
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Table 3.4.8
Isotropic
medium Anisotropic medium (0 = 150°)
Kl.l)K}, =2 K]JJKA =4 K}IJKA = 10
of —¢cr/kh |-¢pi/kh|-¢ci/kh |Deviation |-¢pi/kh[Deviation [-¢ci/kh |Deviation | —¢p1 /kh_|Deviation | -dci/kh [Deviation | —¢pi/kh |Deviation
110272 0.555 0202 2574 0477 __14.05 0136 50 ___ 0401 ___27.75 0068 75 .. 0315 __43.24
.2 0424 0625 0364 _14.15 0551 _ 11.84 0308 _ 27.36 0477 _ 2368 0248 4151 039 37.6
8. 0512 0.674 0464 9.38 __0.61 ____ 9.5 0421 __17.77) 0548 _ 1869 0.384 - 25 . 048 2878
.4 0579 0709 0528 | 7.19_0.852 -____8_9_"'..9-_425_____3?_IPJ ...0589 1551 0489 17.721 __0.545 2313
.5 0612 0735 0.578 5.88_ 0684 ___ | 6.94_ 0547 ___10.62 ____Q-QQi___-J?_f?? ..0528  13.73 _0.582  19.46
.10 __9;12_&__9_@95._9_@955 _____ @-_3.31__9-_7_@9%-__-_4__59 .0679 569 0738 844 087 6.94 0713 __11.79
15 0.770; 0.839 0.751 2.4% 0.81 3.46) 0.737 4,29 0.785 6.44 0.732 4.94 0.764] 8.94;
Table 3.4.9
Isotropic
medium Anisotropic medium (8 = 150°)
KKy, =2 KKy, = 4 KwK, = 10
o) -og/kh | -on/kh | ~¢/kh [Deviation | -¢p/kh [Deviation | —¢s/kh |Deviationi| —¢p/kh |Deviation | —¢-/kh |Deviation| —¢p/kh |Deviation
(10728 0445 0725 041 0.393 ____1_1-_‘39%_9;?!9 _____ 1 59_2____9@9%___.2_3_3.2___(2-9153.2______9_9? sLne2ry 39.1
.2 0576 0375 0588 - .2_-9%_9_@39 ______ 8.6 0588 :%9%---.9:@?%---.%1-.‘2 .. 0574 035 0238 _ 36.53
/30488 0326 0505 - ?*.-4%---9-? ..... 798 0510 451 0265 1871 0502 _ -287 0214 _ 34.36
40430 0201 0449 - f"_-‘}?r_f)_-?ﬁ ..... 687 0457 :6;2_@____9_-%‘}_1 _____ 17.18_ 0451 -4.88 0196 _ 3265
.5)..0.388 0.265 0408 _ -5.15 0248 @;Q‘lj__9.-‘}1_7L____:Z_"fj____9;%??' _____ 1585 0413 644 0182 _ 3132
100280 0194 0208 643 0185 464 0307 964 o168 134 0307 964 0139 _ 2835
15! 0.230{ 0.161] 0.245 -6.520 0.154 435 0.254 -10.43 0.141 12.42, 0.255 -10.87] 0.116] 27.95
Table 3.4.10

In most cases the stratification is horizontal. For horizontal stratification, when the

sheet pile is located at the middle of the foundation floor, the potential -¢p/kH at the tip

of the sheet pile is 0.5 irrespective of the degree of anisotropy. If the sheet pile is located

nearer to upstream side, with increasing degree of anisotropy, the potential at the tip of

the sheet pile decreases. On the other hand, if the sheet pile is located nearer to the

downstream side, with increasing degree of anisotropy, the potential increases.

In particular, for 6 =0, by/b =0.1, b/s = 15, and N = 1, ¢p/-kH = 0.77 (fig 3.2
(a3)). For by/b =0.9, the corresponding value is 0.22. For N = 4, the corresponding values

are 0.74 and 0.26, respectively.
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For for 8 =0, byb =0.1, b/s = 15, and N = 1, ¢/-kH = 0.85. For N = 4, the
corresponding value is 0.88. For by/b =0.9, for N = 1, ¢g/-kH = 0.28. For N = 4 the
potential is 0.35. Thus with increasing in degree of anisotropy there is increase in the

potential ¢g/-kH irrespective of the position of sheet pile.
Maximum Exit Gradient:

The exit gradient distribution curves for the cases under study are prepared and
presented in fig 3.4(al) through 3.4(c3). With known values of 6, ky/k;, and o, the value
of Ig*s/H at a point downstream of the structure can be directly read off curves. The
curves are plotted for Ig*s/H against x/s, where x is the length measured from

downstream sheet pile.

Equation 3.3.18, for y < ¥, the maximum exit gradient at x = 0 (B, = 1) becomes
infinite. Such condition arises for 0 < 6 < 90°. A sheet pile of any depth in such case is of
no use. An alternate controlling structure needs to be visualized for such condition.
Chapter 4 deals with such cases. In this chapter the exit gradient distributions

corresponding to 8 = 0°, 120° and 150° are analysed and presented.

The values of maximum Ig*s/H obtained for k,/kj = 1(which is an isotropic case) '

tally with those of Khosla.

Sheet piles are provided at the downstream end to control exit gradient. Degree of
anisotropy and orientation of the principal permeability direction influence quite

strikingly the trend and magnitude of the exit gradient.

For horizontal stratification i.e. 8 = 0, and N>1, Ig max™s/H is higher than that had
the domain been isotropic, and the % difference increases as k,/k) increases.
Corresponding to ky/k) =2,4 and 10 and o = 1, Ig max*s/H are 4.14%,6.55% and 8.28%
higher than those for isotropic flow domain and for a = 15, the corresponding values are
16.81%,36.28% and 64.60% higher. The location of the maximum exit gradient is at x =
0 for all values of ky/ky and a. With horizontal stratification, the magnitude of exit
gradient is increased at all points, however the nature of distribution does not change
much. It is maximum npear the sheet pile and decreases monotonically with distance from

the sheet pile. With increasing degree of anisotropy the exit gradient increases at all
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points. Thus if the sheet pile controls the maximum gradient near the sheet pile, the exit

gradient at other locations are also under control.

For 8 = 120°, Ig max™s/H for anisotropic case is lower than that had the soil been
isotropic. The % difference increases as k,/k, increases. For the same kah, the %
difference increases as b/s ratio increases. Corresponding to ky/k) =2,4 and 10 and a = 1
the computed values of Ig ma™*s/H are 25.86%, 41.03% and 54.83% lower than those in
isotropic domain. For o = 15 the corresponding values are 28.32%, 44.25% and 59.29%
lower than those of isotropic flow domain. The location of maximum exit gradient is at
x/s = 0.5, 0.6 and 0.7 for ky/k, = 2,4 and 10,. respectively. As k,/ky increases the position
of maximum exit gradient shifts towards downstream, but remains unaltered with change
in o.

- Similar trend is observed for 6 = 150°. Corresponding to k,/k) =2,4 and 10 and o
= 1 the computed values of Ig max*s/H are 24.14%,43.79% and 62.07% lower than those
of values in isotropic domain. For o = 15 the corresponding values are 17.70%, 36.28%
and 55.75% lower than those of isotropic flow domain. The location of maximum exit
gradient is at x/s = 0.7, 1.10 and 1.60 for k/k) = 2,4 and 10, respectively. As ky/kx
increases the position of maximum exit gradient shifts towards downstream, but remains

unaltered with change in o.

A numerical exaniple is worked out below to show the use of the graphs

presented.
Illustrative Example:

Determine the pressure at key points and the minimum factor of safety available
to the structure against piping for a flat bottomed weir with a vertical sheet pile at down

stream end for the following data:
Width of the horizontal blanket b = 25 m
Depth of the vertical sheet pile s = Sm.
Upstream head of the water H=5m. and there is no water in downstream side.
Critical exit gradient = 1.

The cases to be considered are:
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For ky/ky = 1(isdtropic case)
For k,/k), = 10 and 6 = 0°,30°, 60°, 120° and 150°
Solution:
a=b/s=25/5=5
)0=0°,ky/kr=10,a=5
From Fig.3.3(a3), -¢s/kH = 0.629
From Fig.3.3(a4), -¢o/kH = 0.402
From Fig.3.4(a3), Igmax * 8 /H =0.2657 atx/s =0
Pressure at the junction of sheet pile and floor = 0.629*H*yy, =0.629*5*y,, = 3.145yy,
Pressure at the tip of sheet pile = (0.402*H+s)*yw = (0.402*5+5)*yw = 7.017w
Maximum exit gradient Igmax = 0.2657 * H/s = 0.2657*5/5 =0.2657
Minimum factor of safety available against piping = I citicat /IEmax = 1/0.2657 = 3.76
i) 8=30°,ky/kr =10, ¢ =5
From Fig.3.3(b3), -¢g/kH = 0.472
From Fig.3.3(b4), -¢op/kH = 0.408
TEmax = ©
Pressure at the junction of sheet pile and floor = 0.472*¥H*y,, =0.472*5*y,, = 2.36y,,
Pressure at the tip of sheet pile = (0.408*H+s)*yy = (0.408%5+5)*yy, = 7.04yw
Minimum factor of safety available againét piping = I critical /Igmax =1/ 0 =0
iii) 8 = 60°, ky/k =10, =5
From Fig.3.3(c3), -¢e/kH = 0.301
From Fig.3.3(c4), -¢p/kH = 0.271
Igmax =
Pressure at the junction of sheet pile and floor = 0.301"‘1.11"‘\(w =0.301*5%y,, = 1.505yw

Pressure at the tip of sheet pile = (0.271*H+s)*yw = (0.271*5+5)*yy = 6.355Yw,
24




Minimum factor of safety available against piping = I ciiticat Tgmax = 1/ =0

iv) 8 =120°, k/kp =10, a =5

From Fig.3.3(d3), -¢p/kH = 0.284

From Fig.3.3(d4), -¢p/kH = 0.129

From Fig.3.4(b3), Igmax * s /H = 0.076 at x/s = 0.7
Pressure at the junction of sheet pile and floor = 0.284*ﬂ*yw =0.284*5%y,, = 1.42y,,
Pressure at the tip of sheet pile = (0.129*H+s)*y,, = (0.129%5+5)*y,, = 6.45y,,
Maximum exit gradient Igmax = 0.076* H/s = 0.076%5/5 = 0.076
Minimum factor of safety available against piping = Iiicar Memax = 1/0.076 = 13.16

V)0 =150, k/k, =10, a=5

From Fig.3.3(e3), -¢g/kH = 0.413

From Fig.3.3(e4), -¢p/kH = 0.182

From Fig.3.4(c3), Igmax * s /H = 0.076 at x/s =16
Pressure at the junction of sheet pile and floor = 0.413*H*y,, =0.413*5%y,, = 2.065vy,
Pressure at the tip of sheet pile = (0.265 YH+8)*yy = (0.182*5+5)*y,, = 5.91v,
Maximum exit gradient Igy., = 0.076* H/s = 0.076*5/5 = 0.076
Minimum factor of safety évailable against piping = I gitical /Igmax = 1/0.076 = 13.16

v) ky/k, = 1(isotropic case) ,a =5 and 1/a = 0.2

-¢p/kH = 0.388

-¢p/kH = 0.265

Igmax * s/H =0.1823 at x/s =0
Pressure at the junction of sheet pile and floor = 0.388*H*y,, =0.388*5*y,, = 1.94y,,
Pressure at the tip of sheet pile = (0.265*H+s)*y,, = (0.265*5+5)*yy, = 6.325yy
Maximum exit gradient Igmax = 0.1823* H/s = 0.1823*5/5 = 0.1823

Minimum factor of safety available against piping = I critical /IEmax = 1/0.1823 = 5.49
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Compared to the isotropic flow domain, from the above examples, it is seen that for 0<6
90° an upstream blanket becomes less effective in dissipating the total head along its
width. In such cases of stratification a vertical sheet pile is more effective in dissipating
the total head-along its length. For 90° < 8 < 180° an upstream blanket becomes more
effective in dissipating the total head along its width. In general, it is seen that as 6
approaches to either O or m, an horizontal floor becomes less effective while a vertical
sheet pile becomes more effective in dissipating the total head. As 6 approaches to /2 the

horizontal floor becomes more effective in dissipating the total head.

In the above illustrated example, if the flow domain is anisotropic with 8 = 0 and
k/ky = 10, then design based on isotropic condition gives the lesser thickness of the
apron than the required. At the junctioﬁ of the down stream sheet pile and floor, uplift
force equal to (0.629-0.388) *H*y,, = 0.241*H*y,, remains unbalanced and the apron may
be susceptible to the floating. In addition, the minimum factor of safety provided against

piping is reduced from 5.49 to 3.65.

Similarly, if the flow domain is anisotropic with 8 = 120° and k,/k) = 10, then the
design based on isotropic condition gives a larger thickness of the apron at the junction of
the downstream sheet pile than the‘ required and the thickness for uplift force equal to
(0.388-0.284) *H*y,, = 0.104*H*y,, remains unused. In addition, the minimum factor of
safety provided against piping is increased from 5.49 to 13.16 which indicates an over

estimate of length of blanket and/or the depth of sheet pile.
3.5 Conclusion

Based on the results presented in this chapter the following conclusions are

drawn;

Depending upon the degree of anisotropy, the value of -¢/kh underneath the
structure and the maximum exit gradient, may be significantly different in two identical
structures of same shape and size but constructed on isotrdpic and anisotropic porous
medium. For the same inclination of the maximum coefficient of permeability, the exit

gradient increases as the degree of anisotropy increases.

Compared to the isotrbpic flow domain, as 6 approaches to either 0 or s the

horizontal floor becomes less effective while vertical sheet pile becomes more effective
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in dissipating the total head and as © approaches to m/2 an horizontal floor is more

effective in dissipating the total head.

For 0 = 0, the position of maximum exit gradient is at the downstream end of the
structure, and for all ky/ky > 1, the value of maximum exit gradient is always more than

that of isotropic flow domain.

For m/2 < 0 < m, the maximum exit gradient is finite but occurs somewhere
downstream of the structure. As 6 increases the position of maximum exit gradient shifts
away from the structure. In this case, the value of maximum exit gradient is always less

than that of isotropic medium.

For 0 < 8 < m/2, the exit gradient becomes infinite at the downstream end of the
structure, therefore, the structure becomes vulnerable to the piping. Care should be taken

to bring the maximum exit gradient within the safe limit.

Design of a weir based on isotropic flow medium may be over or under designed

for anisotropic flow medium depending upon 6 and ky/k,.

The results obtained for k,/kj, = 1 tally with the results given by Khosla et al.
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Structure in actual Anisotropic flow domain
Fig. 3.1(a)

Structure in Transformed fictitious isotropic flow domain
Fig. 3.1(b)

t - Plane
Fig. 3.1(d)
FIG.3.1, STEPS FOR FLOW DOMAIN TRANSFORMATION
& CONFORMAL MAPPING
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¢ curves for 6 = 0 with end sheet pile
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¢ curves for 6 = 0 with end sheet pile
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¢ curves for 6 = 120° with end sheet pile
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¢ curves for 6 = 120° with end sheet pile
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¢ curves for 6 = 150° with end sheet pile
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¢ curves for 6 = 150° with end sheet pile
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¢ curves for 6 = 30° with end sheet pile
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¢ curves for 6 = 30° with end sheet pile
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¢ curves for 6 = 60° with end sheet pile
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¢ curves for 6'= 60° with end sheet pile
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CHAPTER 4
DESIGN OF.- TOE STRUCTURE FOR CONTROLLING THE EXIT GRADIENT

4.1 General

The study of flow under a flat bottomed weir with a vertical sheet pile at the
downstream end in an anisotropic porous medium reveals that in cases where inclination
of maximum coefficient of permeability makes an angle 0 <0 <n/2 witH the horizontal,
the exit gradient becomes infinite near the downstream sheet pile, and therefore, the
structure vulnerable to piping. In such cases, undermining would start at the downstream
point of the sheet pile. Though the infinite gradient rapidly falls to a safe figure within a
finite distance from the sheet pile, even then, a certain zone is subjected to gradient in

excess of the critical, and piping is likely to start in this zone.

Flow under a controlling structure (other than sheet pile) that can govern the exit

gradient in anisotropic domain has been analysed in this chapter.
4.2 Statement of the Problem

Fig.4.1 (2) shows a flat bottomed weir with a vertical sheet pile embedding a toe
structure. The direction of maximum coefficient of permeability makes an angle ., 0<0

< m/2, with the horizontal axis ox, measured in clockwise direction. g, and k; are the

magnitude of the maximum and minimum coefficients of permeability, respectively. The
width of the apron is b and s is the length of the vertical sheet pile. An impervious toe
structure is constructed flushed with the sheet pile downstream, x, and s; being the top
width and the depth of the toe structure, respectively. The downstream face of the toe
structure makes an angle ¢ with the horizontal as shown in the figure. It is required to
find the shape (angle . ’) and size of the toe structure so that the maximum exit gradient
is finite.

4.3 Analysis

The actual anisotropic flow domain is transformed into fictitious isotropic flow

domain using the co-ordinate transform equations given in appendix - I. The shape of the
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toe structure should be such that the angle ¢’ gets transformed into 5t/2 with the horizontal
in isotropic fictitious domain. Value of ¢” can be obtained using the equation given in

appendix II.

Let the x axis be transformed into x axis and a vertical sheet pile in the

anisotropic domain makes an angle ym with x axis measured from upstream side in anti

clockwise direction. Let in the fictitious flow domain the length of the oblique sheet pile
be s and the width of the structure be b. The top width x> and the depth of the toe
structure s; are converted to x, and g, respectively. The equivalent section of the

weir in the fictitious isotropic flow domain is shown in fig.4.1 (b).

The two dimensional flow under the weir in isotropic fictitious flow domain is
analysed using the Schwarz-Christoffel transformation. The results obtained are then
transferred to the corresponding points in the actual anisotropic flow domain. The values
of exit gradient at a point in fictitious flow domain is multiplied by the magnification
factor given in appendix - II to get the value of the exit gradient in the actual flow domain

- at the corresponding point.

First, the fictitious isotropic flow region in z plane is mapped onto the lower half
of an auxiliary t plane and then the complex potential plane is mapped onto the lower half
of the auxiliary t plane. From these two conformal mappings, the relationship between w

and z plane is obtained. The Schwarz-Christoffel transformation for mapping the polygon

ACDEFGI onto the lower half of the auxiliary t plane shown in fig.4.1 (d) is given by

) (t = m) (V _t)l/z
’ _M. / (+2)" @-2) (B-2)"

The vertices A,C,D,E,F,G,I being mapped onto -, -1, m, 1, v, B, oo,

dt + N .(43.1)

respectively. In eq. 4.3.1, M and N are constants to be determined. Let the point B be

mapped onto the points t = -B;. -

The correspondences between z and t are:
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Vertex t Z

C -1 Zec=0
D m 75 = 3 e
E 1 Zi= g =g+ id

%= s Cosym; d =7, Sinym.
F Y ZF = x, tid
G B2 ZGc = ;2

Integration between consecutive vertices are carried out to relate the geometrical
dimension of the flow domain and the transformation parameter. Using the relations the

constant M, and the unknown parameters m,v, are found. The constant N is governed by

the lower limit of integration.

i) Integration between vertices C and D ((-lst=sm)

(=t +m) ( )1/2

(1+t)1 ' (1—t) (ﬁ _t 7 .43.2(a)

or s ..43.2(b)

(—t N m) ( t)l/Z |

-where I; = ! (1+t)1 y(l_t) (ﬂ_t —d

From 4.3.2(b)
S (1-y Jim
M=-€ - 432(c)
I
ii) Integration between vertices D and E (m <t <1)
1/2
RG] ) - oy
(1 y)ur dt +5 e(l—y)ur
S1 1~ 1/2
M| G Gy (6
3 -y Yin B
= - € L+ s e(l_Y)i” 4-3'3(3)

1
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C eemy—)"
L ey ey (o)™

Simplifying

- where I =

- — -,
s—5 =52

of ———=

iii) Integration between vertices E and F (I=tsv)leadsto

— = Ee(l—}')"’ (m—t)(V t) .
o Ly @y =
B o)

(1+t)1 =ty (B=)™

considering -1 = ™™, Eq. (4.3.4(b)) reduces to

I
or =+ Zcosyr -2 =0
S S 1

1
14
where I, = (t—me —t)idt

)7 -1 (Bt

iv) Integration between vertices F and G (y=t=p) leads to
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1(1—)’)’7 ﬁ (m th—t)% -

xz— +x2+id [4.3.5(2)]
1 y(1+t)‘ (1—t7(ﬁ—t)£ |

ceit-nT B i -
=S61 f (=) - m)(—l) ¢-7) X, +id [4.3.5(b)]
LT ED A+ )T -1 (B -1)?

simplifying
d_ L
S 1
S
or “Lsinym - Lo [4.3.5(c)]
s .

L (t-m)t-y)*

1
MM VECENE
The parameter m,y and 8 can be solved from equations 4.3.3( ¢), 4.3.4 ( ¢) and 4.3.5 (¢),

where I, =

S X
for known values of y, 4 ,Tl and——_—2—

S S S
Determination of 3

For point B 2. =—é and t=-f,
B

Integration between B and C_’ (-B1 =t =-1) leads to

1

; ei(l—y)zr _fﬂl (m=t)(y - t)> d

1

AN S SUUCEDE

(17 f (=it ~0° Tt
=T (DT (1= A-0)7(B - 1)?

Let t=-t
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1
B 2
(m+7)(y +7) : e

i ;
()7 @D (o)
or b 5_5 (43.6)
s |
in which 7 : _(mam)(y +0)? _dt
ST (r )T A +7) (B +7)2

&) ||®‘|

B1 can be found using an iteration procedure for known

Determination 3,
For point I:[ ,z. =] andt=f;
H

Integrating between G and [_{ (1=tsBy)

Lo Lel-r ’Sf (m-1)(y -1)* it
Py Ty

1

L X _ B (D (-m-1)?
s s Py ey e By
: lj___x_*=‘§_5 (4.3.7)
s s

% e-me-n®

where I, =
P+8)7 (¢ -1y (- B)?
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Mapping of w plane onto t plane:

The complex potential w is defined as w = ¢ + i¥ in which ¢ = velocity potential

and W = stream function. The velocity potential function ¢ is defined as

6 = -Z-y| + C ..(43.8)
Y
in which C = kh,

The w plane for the flow domain is shown in fig.4.1(c)

The mapping of the w plane onto the lower half of the t plane according to the

Schwarz-Christoffel transformation is given by

dt
R OV R R R 9

2+ -
or w = MzSin_l_Bﬁ_:Tﬁ +N, ~(4.3.10)

in which M, and N, are constants.

For point G ,t=f and w = 0, therefore, Ny = -M; /2
For point B,t= -1 and w = -kh gives

M,=kh/x

Substituting the values of M3 and N; m eq. 4.3.10

2%+ B, -
wo R 2P K .(43.11)

4 B+ B 2
Exit gradient
The exit gradient Ig is given by

idw dt
I = T ———

k dt dz
_ dw o dz N
Replacing p from eq.4.3.9 and :l—t— from eq.4.3.1, and simplifying,
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7 i= L 1 (1+2)" (1)’
e Ty o i )

(4.3.12)

Substituting the value of t = {3, the exit gradient at a point along the reservoir

boundary GH can be found.

The maximum exit gradient occurs at point G , thus, putting the value of t = 3, the

maximum exit gradient is given by,

- s _ 4 1 @) (1) 4313
IEmaxH . (/J’+/J’1)1/2(ﬁ—v)1/2 (/J’—m) ..(4.3.13)

4.4 Results and Discussion

Numerical results are presented so that the shape and size of the toe structure for a
-weir with a vertical sheet pile constructed in an anisotropic flow domain with can be
readily obtained corresponding to desired (safe) maximum exit gradient. Only
inclinations . = 30° and 60°been considered.

The procedure adopted to arrive at the results presented in this chapter, is as

follows:

We define the following ratios to transform the results from fictitious isotropic

domain to that at actual anisotropic domain:

The ratios 11 and r, depend only on degree of énisotropy and orientation of the
principle permeability direction. The correspondence between points in the fictitious and

actual flow domain is as follows:
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A point on the vertical sheet pile in anisotropic domain is given by :

>

7 oU-1)in -
re” =e—, where r is the point on the inclined sheet pile in fictitious
r2

isotropic domain.
Exit gradient at a point in the anisotropic flow domain is given by:
Ies Ics

H = T *mf , where ,is the exit gradient at the corresponding point in
ra '

the fictitious domain and mf is the magnification factor as depicted in appendix A-II.

The variations of maximum exit gradient with s; /s, has been obtained for
different values of o with top width of the toe as 0 and 0.1s for the inclination of

downstream face of the toe structure with the horizontal (¢‘) and are shown in fig.

4.2(al.1) through fig. 4.2(b3.2).

From the curves, it is seen that the exit gradient decreases as o increases. Initially,
the rate of decrease is slow, then the gradient decreases when o . 1. The decrease at.
higher value of o is monotonic. For example, for 6 = 30°, k,/k), = 10, s1/s =0.1 and x,/s =
0.1, from the figure 4.2(a3.2), it is seen that as o increases from O to 1.4, Ig max™s/H
decreases from 0.417 to 0.408; as « increases from 1.4 to 2.8, Ir max*s/H decreases from
0.408 to 0.35; and as a increases from 10.2 to 11.6, Ig max*s/H decreases from 0.208 to
0.197. For an increment in a by 1.4, initially Ig nax decreases by 2.16%, then it decreases
by 14.20% and afterwards it decreases by about 5%. As the depth of toe structure
increases exit gradient decreases but the rate of decrease decreases. For example, for 6 =
30°, ky/ka, = 10, s1/s =0.1 and xo/s = 0.1, from the figure 4.2(a3.2), it is seen that as s1/s
increases from 0.1 to 0.2, Ig max*s/H decreases from 0.417 to 0.3096 and as s1/s increases
from 0.1 to 0.2, Ig max*s/H decreases from 0.3096 to 0.259. For an increment of s1/s by
0.1, initially Ig pnax decreases by 25.75%, and then it decreases by 16.34% and so on. In

addition, it is seen that for small value of si/s, the effect of top width of the toe structure
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is negative, i.e. it increases the exit gradient while for large value of sy/s, it decreases the

exit gradient but the amount decrease is insignificant.

A numerical example is worked out below to show the use of the results obtained.
Illustrative Example:

For the data given for example in chapter 3, design a suitable toe structure so that

minimum factor of safety against piping should not be less than 5. Take 6 = 30°

drawn:

Solution.

a=5s=5H=5k,/k =10

For a factor of safety = 5

Iemax * s /H = (1/5)*s/H

Ifmax *s/H =0.20

Take top width of the toe structure x, =0

From the fig.4.2 (a3.1), the angle ¢’ = 39.82°

For o =5 and Ig nax * s /H =0.2, s1/s = 0.25

Llet us take si/s = 0.30, the corresponding Ig max * s /H = 0.1823.
Available factor of safety against piping = 1/0.1823 =5.49 > 5
The section of the toe structure is as follows:

Top width of the structure = 0 (triangular section)

Depth of the structure s; = 0.3*s =0.3*5 = 1.50 m.

Bottom width of the structure = s; / tan ¢ = 1.50/tan 39.82° = 1.80 m.
4.5 Conclusion

Based on the results presented in this chapter the following conclusions are

For 0 < 0 < m/2, the maximum exit gradient, just down stream of the structure

becomes infinite, which makes the structure unstable against piping, in such cases the exit

gradient can be controlled by providing a suitable toe structure. The inclination of the
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down stream face of the toe structure with the horizontal should be such that, in
transformed fictitious isotropic flow domain, the face makes an angle < m/2 with the
transformed x axis. If the inclination of the toe structure is placed in such a way that in
transformed fictitious flow domain, it makes an angle 5/2 with the transformed x axis,

then the maximum exit gradient is finite and occurs just downstream of the structure.

The value of the maximum exit gradient can be decreased by increasing the depth
of toe structure. The effect of increasing the depth of toe structure is more effective for

decreasing the exit gradient for small value of o as compared to large value of a.

For small depth of the toe structure, the effect of top width of the toe structure is
nor preferable, i.e. it increases the exit gradient while for large depth of toe structure, it
decreases the exit gradient. Therefore, minimum possible top width of toe structure,

feasible from practical point of view, will be appropriate one.
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Structure in actual Anisotropic flow domain
Fig. 4.1(a)

_ z -Plane
Structure in Transformed fictitious isotropic flow domain
Fig. 4.1(b)

t - Plane
Fig. 4.1(d)
FIG.4.1, STEPS FOR FLOW DOMAIN TRANSFORMATION
& CONFORMAL MAPPING
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CHAPTERSS

DESIGN OF DOWNSTREAM FILTER BLANKET FOR A WEIR.

5.1 General

In any ordinary structure, the critical value of exit gradient is 1 or nearly so, this
value of the exit gradient will not be reached if other factors do not intervene. If the exit
- gradients were considered purely from the academic point of view, failures of any normal
structure is not possible. However, in field, various other factors encountered those create
conditions leading the development of critical values of exit gradients, these are scour,
wave action, sudden application or reduction of head and high spring level etc. Taking

these factors into account, Khosla has suggested the following factor of safety to critical

Exit gradient:
Shingle 4to5
Coarse sand S5to6

Fine sand 6to7

Generally, in a weir, the value of exit gradient is brought within the safe value by
adjusting the dimensions of the weir. Usually, a filter blanket is provided in ail hydraulic
structures beyond the end sheet pile, even if, the maximum exit gradient is well within the
permissible limit because of the provision of the sheet pile. The function of the filter
blanket is to provide an adequate cover for the downstream sheet pile line to safe guard
against the piping in case of scour. Provision of filter blanket stops the upward movement
of the soil particles with the emerging sub-soil flow at exit. Usually, as a thumb rule, the
filter blanket is provided for a length of D to 2D, where D is the anticipated depth of

scour measured from the downstream bed of the river.

The shape of eroded bed, downstream of a hydraulic structure, as observed by
various investigators in the models and on prototype, resembles arc of a circle or an
aerofoil. This change in the boundary of the flow domain will result in redistribution of
the exit gradient on downstream side and the factor of safety provided to the exit gradient

decreases. In this chapter, an attempt has been made to design the length of the filter (i.e.
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-to find the required length). The scour profile has been assumed to be linear near the

sheet pile.
5.2 Statement of the Problem

Fig.5.1 (a) shows a flat bottomed weir with a vertical sheet pile constructed in an
isotropic porous medium of infinite depth. b is the width of the weir and s is the length of
Vthe vertical sheet pile. The downstream reservoir boundary is inclined at an angle yx with
the vertical sheet pile consequent to scour.It is required to find the exit gradient

distribution along t\he downstream reservoir boundary and the length of filter blanket.

\

5.3 Analysis

The problem is solved applying the Schwarz-Christoffel transformation. First the
flow region in z plane is mapped onto the lower half of an auxiliary t plane and then the
complex potential plane is also mapped onto the lower half of the auxiliary t plane. From
these two conformal mappings, the relationship between w and z plane is obtained. The
Schwarz-Christoffel transformation for mapping the polygon ACDEG onto the lower half
of the auxiliary t plane shown in fig.5.1 (c) is given by

z=M | (t+1)(f/2_ (T_)t)‘-f dt +N (53.1)

the vertices A,C,D,E,G being mapped onto -0, -1, m, 1, o, respectively. In eq.
4.3.1, M and N are the constants to be determined. Let the point B and F be mapped onto
the points t = -1 and f,, respectively. Thé values of 3; and P, can be found from eq.
4.3.1 when the constants M,m and N are known. To find the constants M and N and the
relationship between the transformation parameters and dimension of the structure, the
integration between consecutive vertices are carried out. The constant N is governed by
the lower limit of integration. For the point C, Z = 0 and t = -1, thus equation 5.3.1 can be
written as

b QD= (em)
ML ) ey

or z=M }(1+t)”2(1-t)"1 dt —M(1+m)} (14¢) (1= Yt .(53.2)
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Using the variable r = 1—-+—t—, Eq. 5.3.2 transforms to

1+t 1+t

2=M 22 [ OV 0=r) " dr ~MA+m) 275 [ () (er Y dr
0 ]

142y 3 2r-1 1
orz=M 272 B (E,y) -M@1+m)273 B, (—E,y) ..(5.3.3)
'_2" .

2

In which B (%,y ) and B, (%,y ) are incomplete Beta functions.
EX 2

2
Eq. 5.3.3 governs the relationship betweenzand t for—-1 <t =< 1.

For point D, t = m and Z = is. Hence, from equation 5.3.3

. 1+2y 3 2y-1 1

is=M 272 B (E,y) -M@1+m)272 B (E,y) ..(534)
2 2

Hence,

M=is/T; | .(53.5)

For point E, t = 1 and Z = 0. Hence, from equation 5.3.4

0=M 27 B (%y) _M@1+m)2 5B (%y) ..(5.3.6)

in which B (%,y) and B (%,y ) are complete Beta functions.

Now from equation 5.3.6, since M = 0, m can be found for known value of y.

Then the constant M can be obtained from eq. 5.3.5

Determination of 81 and P
For point B, Z = Zg - -b and t = -B;. Therefore,

-1 (t—m)

= . ..(58.3.7
Zo=M | Gy 3D

Substituting t = -7, and dt = -d. , equation 5.3.7 reduces to
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' O @E+m) , 1 (m+7)dx
N oy ) ER A Sy

or2 = —1—3 ...(5.3.8)
s

I

From Equation 5.3.8 for known values of b/s, $; can be found by using iterative

method.

Integration from E to F

(1
For point E, Zg =0 and t = 1; and for point F, Zg = [, € ’(5 - ’)” and t = 3,,

Applying these conditions in eq. (5.3.1)

2 (t-m)
Zr=M Gy e
M - (t—m) M,
) Gy ")
in which
Le o @=m

L ey G

Substituting the value of M and Zg

L, _ L .(53.9)

s I,

From Equation 5.3.9 for known values of L,/s, B, can be found by using an

iteration.
Mapping of w plane onto t plane:

The complex potential w is defined as w = ¢ + i¥ in which ¢ = velocity potential

and W = stream function. The velocity potential function ¢ is defined as

b = _vk(ﬁ_y) . C .(5.3.10)
7
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The corresponding w plane for the flow domain is shown in fig.5.1(b)
The constant C for the present case is assumed as C = kh;

The mapping of the w plane onto the lower half of the t plane according to the

Schwarz-Christoffel transformation is given by

aw

a dt + .os e
dt 2f G_i_ﬁl)m(l_t)uz N, (5.3.11)

dt
w = M, s —+N, (5.3.12(2))
T ep) ™00y
orw = Mzsin'lﬂi+ N, | - (53.120)

B.+1
in which M, and N, are constants.
For point E, t = 1 and w = 0, therefore, N, = -M; /2
For point B, t = -f; and w = -kH gives
M, =kH/x
Substituting the values of Mjand N3 in-eq. 5.3.12(b)

kH . _12t+ﬁ1_1 kH
W= — s§in -
1 B +1 2

..(53.13)

Exit gradient

The exit gradient Ig is given by

i dw dt
Ig = ————

k dt 4z

Replacing %: from eq.5.3.11, and Z—: from eq.5.3.1, and simplifying
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H 1 (L+1)" (1)
7, -2 . _ ..(5:3.14)
) (1) e

Substituting the value of IM I and simplifying

s L1 (142)"* (1)
h 7T (t+'31)1/2 (t—m)

Substituting t = >, in above

s 11 1 (1+/32)1/2 (ﬁ2_1)1/2-y
[EZ= ; Q+/3’1)”2 (ﬁz—";) . ..(5.3.15)

which is the exit gradient at location F.

Now, the exit gradient at any Ly/s can be found substituting the corresponding

value of 3,
Length of filter blanket:

Water, while moving through porous soil, imparts energy to soil particles through
friction. The direction of the seepage force, acting on soil particles, will be along the
gradient direction. The seepage force on the soil particles, located at the downstream
boundary of the flow domain, which is an equipotential line, will act normal to the
downstream surface. The other force acting on the soil particles, located at the

downstream boundary of the flow domain is, gravitational force due to the effective

weight of the soil particle.
Considering a volume V of soil mass, the effective weight of the soil is given by
F, =V (G-1) (1-n) yw (...5.3.16)

Where F; is the gravitational force acting vertically downwards, G is the specific

gravity of the soil, n is the porosity of the soil, and y,, is the unit weight of water.

The seepage force exerted on the soil mass of volume V, by the hydraulic gradient
Ig, is given by (Ceder Green, 1967)

Fo=-Ig yw V ~(5.3.17)
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When the boundary of flow domain is horizontal, the seepage force F; acts
vertically upwards. Thus the factor of safety against piping, neglecting cohesion forces, is
given by (Khosla, 1936)

Factor of safety = Fe _ _ w .-(5.3.18)
Fs IE :

However, with an inclined flow domain boundary, the direction of the hydraulic
gradient no longer remains vertical. Fig. 5.2 shows a soil particle at the boundary of flow
domain. The assumed inclined scour surface makes an angle & with the horizontal plane
{(d = (0.5-y)x}. The seepage force, being normal to the inclined surface will be at angle 6
with the vertical. Therefore, the factor of safety against piping for the soil particle at this
point is given by |
(G-1){1-n)Cosé

Iz

Factor of safety =

..(5.3.19)

The value of factor of safety against piping can be evaluated at any point on the

assumed inclined scour profile surface using the equations ( 5.3.15) and (5.3.19).

Depending upon the inclination of the scoured surface with that of the horizontal,
for a certain length along the downstream boundary the value of factor of safety may
decrease in comparison to no scour situation. Thus, the length up to which factor of safety
remains less than the providéd (i.e. corresponding to no scour condition) may be

considered as the length of the filter blanket.
5.4 Results and Discussion

Numerical results are presented so that the length of filter blanket for a flat
bottomed weir with a vertical sheet pile at downstream end, can be obtained easily.

Exit gradient distribution with and without scour is obtained for a (b/s ratio)
=1,5,10,15, and 20. The variation of Ig*s/H*cosd with L,/s taking the scoured slope as
1:1 (1 horizontal :1 vertical) is shown in fig.5.3. From these curves, for known value of o
the value ofv Ly/s, up to which the factor of safety becomes. less compared to no scour
condition, can be obtained. From the figure 5.3, it is seen that for scoured slope 1:1, the
value of Ig*s/H*cosd is 0 at L, = 0, increases with increase in Ly/s, attains a maximum -
value and decreases with further increase in Ly/s. In addition, it is seen that the value of

Ig*s/H*cosd with scour exceeds the maximum Ig*s/H corresponding to no scour at Ly/s =
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0.50 to 2.01,0.62 t01.82, 0.78 t01.52 and 0.88 to1.23 for a = 1,5,10 and 15, respectively.
In these zones, the factors of safety providéd to the maximum exit gradieni with no scour
will be no longer available with scour condition. Thus, these are the locations up to which
the filter blanket needs to be provided. However, to maintain the continuity of the
structure the filter blankets are to be placed from the point I, = O itself. As seen in the
figure 5.3, when o = 20, at no point the value of Ig*s/H*cosd exceeds the maximum
Ig*s/H of no scour condition, thus filter blanket is not needed.

| From the above results, one can interpret the suitable length of filter blanket to be
2.01%s, 1.82%s, 1.52%s and 1.23*s for o = 1,5,10 and 15, respectively. Usually, the depth
of downstream sheet pile is kept equal to the scour depth, in such condition the range of

filter blanket can be taken as 1.23d to 2.01d that agree with the prevailing practice.
5.4 Conclusion

An analysis for exit gradient distribution for a flat bottomed weir, resting on
isotropic porous medium of infinite depth, with straight line scour profile of 1:1 slope
commencing from the downstream end of apron, has been obtained, using conformal
mapping technique.

The analysis shows that the factor of safety against piping for the straight line
scour, described by 1:1 slope, is reduced by 46.3%, 21.8%, 8.6% and 1.3% corresponding
to a =1, 5, 10 and 15, respectively in comparison to no scour condition. As o increases
the effect of scour decreases. Therefore, as b/s ratio increases the required length of filter
blanket decreases.

. The suitable length of the filter blanket is 2.0*s, 1.80%s, 1.50*s and 1.25%s for a =
1,5,10 and 15, respectively.

The results obtained are in agreement with the prevailing practice.
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Structure with down stream scoured (inclined) boundary.
z -Plane

Fig. 5.1(a)

t - Plane
Fig. 5.1(c) .
FIG.5.1, STEPS FOR CONFORMAL MAPPING
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CHAPTER 6

GENERAL DISCUSSIONS AND CONCLUSIONS

This chapter is devoted to the critical examination of the studies reported in this

dissertation and the important conclusions derived from these studies.

The aim of the present study, as stated in chapter 1 of the dissertation, is to
develop the design curves for a flat bottomed weir in anisotropic porous medium of
infinite depth with a vertical sheet pile line anywhere along its bottom apron. In addition,
the study aims to arrive at .possible length of downstream filter blanket of a weir on

isotropic porous media of infinite depth with inclined profile of scoured surface.

Most natural and man-made soil deposits are anisotropic with respect to
permeability to a considerable degree. The field and laboratory tests conducted by many
investigators, which show sufficient evidence of anisotropy, are reported in the literature

review.

Flow through anisotropic media can be analysed by transforming the anisotropic
actual flow domain to a fictitious isotropic flow region by a suitable co-ordinate
transformation, for which the Laplace equation is valid and conformal mapping
techniques are applicable. From the solution of the problem in the transformed region, the
solution for the actual problem in the anisotropic region can be obtained. In the present
study, for anisotropic flow domain problem, the analyses are carried out by applying the
Schwarz-Christoffel transformation to the corresponding fictitious isotropic flow domain
and the obtained results are re-transformed to the actual anisotropic flow domain. The
analysis to obtain the length of downstream filter blanket of a weir on isotropic porous
media of infinite depth is carried out by directly applying the Schwarz-Christoffel

transformation to the actual flow domain.

The analyses and results presented here can be used directly to design the weirs in
anisotropic porous media of infinite depth and to obtain the length of downstream filter

blanket for a weir in isotropic porous media of infinite depth. The design charts are
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presented in the non-dimensional form to enable Engineers to make use of them for any

systems of unit.

Chapter 3 deals with the analysis of a flat bottomed weir with a vertical sheet pile
anywhere along the apron in actual anisotropic medium. The design charts are bbtained
and presented for different ratio of maximum and minimum coefficient of permeability,
direction of maximum coefficient of permeability, ratio of floor length and vertical sheet

pile and position of vertical sheet pile.

Depending upon the degree of anisotropy, the value of -¢/kh underneath the
structure and the maximum exit gradient, may be significantly different in two identical
structures of same shape and size but constructed on isotropic and anisotropic porous
medium. For the same inclination of the maximum coefficient of permeability, the exit

gradient increases as the degree of anisotropy increases.

Compared to the isotropic flow domain, as 0 approaches to either 0 or s the
horizontal floor becomes less effective while vertical sheet pile becomes more effective in
dissipating the total head and as 6 approaches to m/2 an horizontal floor is more effective

in dissipating the total head.

For 6 = 0, the position of maximum exit gradient is at the downstream end of the
structure, and for all ky/ky, > 1, the value of maximum exit gradient is always more than

that of isotropic flow domain.

For w/2 < 8 < m, the maximum exit gradient is finite but occurs somewhere
downstream of the structure. As 0 increases the position of maximum exit gradient shifts
away from the structure. In this case, the value of maximum exit gradient is always less

than that of isotropic medium.

For 0 < 8 < m/2, the exit gradient becomes infinite at the downstream end of the
structure, therefore, the structure becomes vulnerable to the piping. Care should be taken

to bring the maximum exit gradient within the safe limit.

Design of a weir based on isotropic flow medium may be over or under designed

for anisotropic flow medium depending upon 6 and ky/k.

The results obtained for k,/k) = 1 tally with the results given by Khosla et al.
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Chapter 4 deals with the design of a toe structure for controlling the exit gradient

for a structure built in anisotropic flow domain with0 < 0 < /2.

For 0 < 0 < n/2, the maximum exit gradient, just down stream of the structure
becomes infinite, which makes the structure unstable against piping, in such cases the exit
gradient can be controlled by providing a suitable toe structure. The inclination of the
down stream face of the toe structure with the horizontal should be such that, in
transformed fictitious isotropic flow domain, the face makes an angle < m/2 with the
transformed x axis. If the inclination of the toe structure is placed in such a way that in
transformed fictitious flow domain, it makes an angle n/2 with the transformed x axis,

then the maximum exit gradient is finite and occurs just downstream of the structure.

The value of the maximum exit gradient can be decreased by increasing the depth
of toe structure. The effect of increasing the depth of toe structure is more effective for

decreasing the exit gradient for small value of o as ‘compared to large value of a.

For small depth of the toe structure, the effect of top width of the toe structure is
nor preferable, i.e. it increases the exit gradient while for large depth of toe structure, it
decreases the exit gradient. Therefore, minimum possible top width of toe structure,

feasible from practical point of view, will be appropriate one.

Chapter 5 deals with the design of a filter blanket for a weir on isotropic porous
media of infinite depth. In the present study following assumptions are made while

arriving the results in this chapter:

i)The downstream shape of the scoured surface is a straight line and

inclined at a slope of 1: 1 (Horizontal: Vertical)

ii)The filter blanket is provided in the zone where designed factor safety

against piping is reduced due to scour.

The analysis shows that the factor of safety against piping for the straight line
scour, described by 1:1 slope, is reduced by 46.3%, 21.8%, 8.6% and 1.3% corresponding
to a =1, 5, 10 and 15, respectively in comparison to no scour condition. As o increases
the effect of scour decreases. Therefore, as b/s ratio increases the requifcd length of filter

blanket decreases.

49



The suitable length of the filter blanket is 2.0%s, 1.80%*s, 1.50*s and 1.25*s for o =
1,5,10 and 15, respectively.

The results obtained are in agreement with the prevailing practice.

Using the present solutions, software in FORTRAN is developed which gives the
uplift pressure at key points and exit gradient distribution for a/2 < 6, maximum exit
gradient for 8 = 0 or /2 and maximum exit gradient with toe structure for 0 < 8 < /2.

The program can be modified as per the requirement.
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APPENDIX -1

FLOW REGION TRANSFORMATION

Problems concerned with anisotropic porous media may be solved by
transforming the actual anisotropic flow region into a fictitious isotropic region by an
appropriate co-ordinate transformation. The required scale of transformation of a two-

dimensional flow problem is obtained from the equation of continuity as follows (Harr,
1962):

The equation of continuity for two-dimensional steady flow is

ou, ¥ _ (A-L1)
ox dy
in which
u,v = discharge velocity in x and y directions, respectively.
From the generalized Darcy’law,

U= —kx '% cen (A-I.Z)

ox
and
oh
=—ky— ...(A-L3

v y ay ( )

" in which ky, ky = principal coefficients of permeability in x and y directions,

respectively;
ho= 2.4 y
Vw
Where,

p = pressure,

Yw = unit weight of water , and
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X,y = co-ordinates.

substituting the values of u and in equation (A-1.1),

2 2
oh L h

-~ =0 .(AL4)
e *

Substitution of X = x(%)}é reduces eq. (A-1.4) to

7h , ot
IX* a9y

0 . (A-L5)

In a similar manner, substituting ¥ = y(%)}é , it is found that
y

a*h  3*h

ax2 ay"

= 0 ...(A-L.6)

Thus, by choosing one of the above two scales of transformation, a homogeneous
anisotropic region can be transformed into a fictitious isotropic region for which the

Laplace equation is applicable.

The mathematical procedure for transformation follows the example of

Polubarinova-Kochina as given below:

Figure A-I.1 represents in x,y plane a flat bottomed weir having a vertical sheet
pile and resting on an anisotropic porous medium, the direction of maximum coefficient
of permeability makes an angle 6 with horizontal as shown. The directions of co-ordinate
axes,u and A, are chosen to coincide with the directions of maximum and minimum

coefficients of permeability, respectively. The correspondence between these co-ordinate

systems is given by
U =X cosO - y sinf «.(A-L.7)

A =xsinf - y cos6 «.(A-1.8)
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In order to transform the anisotropic flow region to isotropic one, an expansion in

the direction of A is necessary. As stated earlier the co-ordinate in the direction of Ashould

be expanded using multiplying factor (%)%
A

In which

K, and K, = principal coefficients of permeability in the direction of w and A,

respectively.

Designating 7 = )L(%)}/2 and replacing the value of A from eq. (A-L.8)
A

n = (%)}é (xsin@ + ycosh) - (A-L9)

Thus, the physical anisotropic flow domain in x,y plane to fictitious isotropic flow

domain in p,n using egs. (A-1.7) and (A-1.9)

The straight line y = 0 is transformed to a straight line in u,n plane, governed by

the equation
1~ &y ang ..(A-L10)
u kx '
and a straight line x = 0 is transformed to a straight line given by

% _ —(%)%cot() - | . (A-L11)
A

if s is the length of a vertical sheet pile in anisotropic medium, its new length, s ,

in fictitious isotropic medium is given by

s = s(sm29+%00529)% | . (A-112)

A

A horizontal blanket of width bin the physical domain is transformed in the

fictitious isotropic flow domain to a blanket of width b, which is given by

b = b(00529+%sm29)% ..(ALL13)

A
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APPENDIX -II

RELATIONSHIPS BETWEEN EXIT GRADIENTS IN ORIGINAL AND
TRANSFORMED DOMAINS

The mathematical procedure for finding the relationships between i) exit gradients
in anisotropic and fictitious isotropic domain; and ii) inclination of flow lines at exit in

anisotropic region follow the derivation obtained by Mishra (1972) as given below:
Figure AIL.1 shows the section of an anisotropic confined flow region near the

downstream surface in x,y co-ordinate system and its corresponding transformed

isotropic section in x,y co-ordinate system. The direction of maximum coefficient of

permeability makes an angle 6 with the direction of x. w and A are the axes chosen

parallel to the directions of maximum and minimum coefficients of permeability,
respectively. The straight line y = O transforms to the straight line ox when the
anisotropic region is converted into fictitious isotropic region. The y axis is
perpendicular to the x axis. Point Q in fig. All.1 locates the exit of flow line in the
anisotropic flow domain and P is a point on the flow line adjacent to point Q. Pand Q

are the corresponding points in the fictitious isotropic flow domain.

hep—ho

The exit gradient at the point Q in actual flow domain is givén by , in
which pp and hy are the total heads at the point P and Q respectively, and ds is the
elemental length PQ . Since the total head at P and Q are the total head at P and é,

. . . s D hp—h
respectively, the exit gradient in the fictitious region is given by %

S

in which ds is
the transformed length of ds.

From equation (A-1.8) and (A-1.9) ds is given by

ds = ( (dx )%+ (dy )2) ” (AIL])
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_ ( (du )*+ N1 (dn )2) " (AIL2)

in which

The length ds is given by
_ 1/2
45 - ( (du)? + (dn )? ) . (A-IL3)

The length ds is equal to the length dy. Therefore, the ratio of the exit gradient at a
point in the actual flow domain and the exit gradient at the corresponding point in the

fictitious domain is given by

he = ho )
ds _ _ ds . (A-IL4)
hp — hQ ds
ds
Y2
(s 2+ @ P _ ..(A-ILS)
(P emi@p)
2e 1
- [ﬁ&} ..(A-IL6)
N,+tan'd,

in which §, = tan'l(itanHJ

VN

The inclinations of the stream lines at the exit for the actual flow region

are obtained as follows:

From egs. (A-1.7) and (A-1.9)

dx = ducosf + «/E dn sinf - (A-ILT)
dy = +[N,dn cos6 —du sinf . (A-IL8)

Therefore , the slope of the stream lines at the exit
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tan ¢ = % . —ANicotd, - tan6 ..(A-IL9)

1-+/N; cot 5, tan8

_1—\/F1cot61 - tan@
1‘\/?1 cotdy tan6

~ord = tan ...(A-11.10)

As mentioned earlier, when the actual anisotropic flow domain is
transformed to a fictitious isotropic region, a vertical sheet pile in the actual flow
domain generally becomes inclined in the transformed region. Using the
relationships given above and the results obtained for the weirs in fictitious
isotropic domain, the pressure distribution, the pressure at key points, the exit
gradient distribution and the maximum exit gradient for the anisotropic case can

be found out.

From the above relation it is evident that any line which is inclined at an
angle ¢ (as described by the equation A-II.10) with the horizontal in anisotropic
flow domain changes into the line normal to the transformed x axis in fictitious

isotropic flow domain.
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APPENDIX - III
FORTRAN PROGRAM

PROGRAM LISTINGS AND EXAMPLE OUTPUT FOR
DESIGN OF WEIRS ON PERMEABLE ANISOTROPIC POROUS MEDIUM
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This PROGRAM is a part of the M. Tech. thesis developed by Tek Bahadur Karki
IWM (2002-4), and submitted to WRDTC,IIT,Roorkee.

This source code is only intended as a supplement to the thesis

" Design of Weirs on Permeable Anisotropic Porous Medium".

See these sources for detailed information.
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User's guide for input

th = angle theta in degree, direction of maximum coefficient of permeability
r1 = ratio of maximum and minimum coefficients of permeability

w = total width of the structure

s = depth of vertical sheet pile

x1 = length of upstream blanket

sx = depth of toe structure in fraction of sheet pile depth

unit2 is input file for gaussian quadrature coefficient

unit 1 is input file for weir data and flow domain data

unit 4 is input file for depth ratio of toe and sheet pile in case theta<90 degree
Attention is to be paid while choosing initial guesses wherever

required in the programme.

C*************************************************************************

601

DIMENSION WW(96),XX(96),sx(9)
open(3,file="gauss.dat’,status="old")
open(4;file='sx.dat',status="old")
open(1,file='weir.dat';status = ‘old’)
open(2,file="result.out’,status="unknown")
read(1,*)th,rl

read(1,*)w,s,x1

. \Nrﬁecz*)W****************************************************'
H]

write(2,*) The inputs are '

write(2,601)th,r1,w,s,x1,w-x1
format(2x,/' theta = ',£6.2,'degree’',2x,/' kmu/klamda = ',2x,£6.2,
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221

222
223

300

101

102

103

C
C
C

2x,/' Total width of weir, w = ,{6.2,1x,/' Length of sheetpile,

s ='16.2,2x,/'bl = '£6.2,",'3x,b2 = ',£6.2)

erte(z *)'*****************************************************'
write(2,*)" '

write(2,*)'The outputs are '

Write(2,*) " -mmmmm e mm e '

pi=3.141592654
alpha = w/s
X2 =w-x1
2 =1/r1
th = th*pi/180
cl = ((sin(th))**2+r1*(cos(th)**2))**0.5
c2=(cos(th)**2+r1*(sin(th)**2))**0.5
x1 =x1%*c2
X2 =x2%c2
cr =c2/cl
s=s*cl
w=w*c2
d1 = atan((tan(th))/(r2**0.5))
fm=((1+((tan(d1))**2))/(x2+((tan(d1))**2)))* *O 5
if(pi/2-th)222,221,222
if(th)222,221,222
ga=0.5
goto 103
if(th)221,221,223
thl = atan(((r1)**0.5)*tan(th))
th2 = atan(~((r1)**0.5)*(1/tan(th)))
if(pi/2-th)101,101,102
ga = (abs(th1)+abs(th2))/pi
goto 103
= (pi-abs(th1)-abs(th2))/pi
goto 103

Al=1+GA

B=1.-GA

A2=GA
initial guess values to be supplied by the users are
x, bl and b2. for a dipressed weir write below the value of ratio of depression
to the length of sheet pile against variable r.

delx=0.00001

r=0

b1=4.00001

delb1=0.00001
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107

108

111

112

114

332

333

555

b2=1.00001
delb2=0.00001
2= xl1/s

3 =x2/s

call smodule(al,b,a2,x,delx,sm,zd,r)
if(x1)107,107,108

bl=1

goto 112

call fx1(ga,b1,zb,sm,delb1,{2,zd)
if(x2)111,111,112

b2=1

goto 114

call fx2(ga,b2,zfe,sm,delb2,£3,zd)
call phi(b1,b2,sm,pi,pc,pe,pd)
if(1/2-ga)332,332,333

if 0 < theta < pi/2, subroutine toex is called, otherwise subroutine ex is called

call Ex(ga,b1,sm,zd,cr,fm,pi,c1)

goto 555

call toex(n,ww,xx,sX,ga,pi,c1,c2,w,s,exi,fm,d1,th,r2)
goto 555

continue

write(2,*)RESULTS END'

Write(2, ) R AR
Stop
end
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subroutine to calculate m

Subroutine smodule(al,b,a2,x,delx,sm,zd,r)
CONTINUE

CALL BETAIN(A1,B,X BETAI)

ZD1=2 *BETAI

CALL BETAIN(A2,B,X,BETAI)
ZD2=2*X*BETAI

ZD=7ZD1-7ZD2

ZE=2.*betac(A1,B)- 2*X*betac(A2,B)

RESIDUE=r-ZE/ZD
IF(ABS(RESIDUE).LT.0.00001)GOTO 5
X=X+DELX

IF(RESIDUE.GT.0.0) GOTO 1
XR=X-DELX
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XL=XR-DELX
X=(XL+XR)/2.

CALL BETAIN(A1,B,X,BETAI)
ZD1=2.*BETAI
CALL BETAIN(A2,B,X,BETAI)
7ZD2=2*X*BETAI
ZD=7D1-ZD2
ZE=2.*betac(A1,B)- 2*X*betac(AZ,B)
RESIDUE=r-ZE/ZD ‘
IF(ABS(RESIDUE).LT.0.00601)GOTO 5
X=X+DELX
IF(RESIDUE.GT.0.0) GOTO 3
IF(RESIDUE.LT.0.0) GOTO 4

=X
GOTO 2
XR=X
GOTO 2
CONTINUE
SM=2%X-1.
return
end
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Subroutine to find bl
subroutine fx1(ga,bl,zb,sm,delb1,f2,zd)
CONTINUE

CALL ZBW(GA,B1,ZB,sm)

RESIDUE=F2-ZB/ZD
IF(ABS(RESIDUE).LT.0.00001)GOTO 7
B1=B1+DELB1 ~
IF(RESIDUE.GT.0.0) GOTO 6
B1R=B1-DELBI

. B1L=B1R-DELB1

B1=(BIL+B1R)/2.

CALL ZBW(GA,B1,ZB,sm)
RESIDUE=F2-ZB/ZD
IF(ABS(RESIDUE).LT.0.00001)GOTO 7
IF(RESIDUE.GT.0.0) GOTO 9
iF(RESIDUE.LT.0.0) GOTO 10

B1L=BI1
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23

24
25

22
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GOTO 8
B1R=B1
GOTO 8
CONTINUE
return

end

Subroutine to find b2
subroutine fx2(ga,b2,zfe,sm,delb2,{3,zd)

CONTINUE
CALL ZfeW(GA,b2,Zfe,sm)

RESIDUE=F3-abs(Zfe/ZD)
IF(ABS(RESIDUE).LT.0.00001)GOTO 22
b2=b2+DELb2

IF(RESIDUE.GT.0.0) GOTO 21
b2R=b2-DELb2

b2L=b2R-DELb2

b2=(b2L+b2R)/2.

CALL ZfeW(GA,b2,Zfe,sm)
RESIDUE=F3-abs(Zfe/ZD)

IF(ABS(RESIDUE).LT.0.00l)GOTO 22
IF(RESIDUE.GT.0.0) GOTO 24
IF(RESIDUE.LT.0.0) GOTO 25
b2L=b2

GOTO 23

b2R=b2

GOTO 23

CONTINUE

return

end

gama function to use in complete beta function

FUNCTION gammln(xx)
REAL gammln,xx
INTEGER j

DOUBLE PRECISION ser,stp,tmp,x,y,cof(6)
SAVE cof,stp .
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DATA cof,stp/76.18009172947146d0,-86.50532032941677d0,
*24.01409824083091d0,-1.231739572450155d0, 1208650973866179d—2,
*-.5395239384953d-5,2.5066282746310005d0/

X=XX

y=x

tmp=x+5.5d0

tmp=(x+0.5d0)*log(tmp)-tmp

ser=1. 000000000190015d0

do 11 j=1,6

y=y+1.d0

ser=ser+cof(j)/y

continue

gammln=tmp-+log(stp*ser/x)

return
END

EE LR ELEEEELEEEEETESEEEEESE S

complete beta function

FUNCTION betac(z,w)

REAL betac,w,z

USES gammln

REAL gammlin
betac=exp(gammIn(z)+gammln(w)-gammIn(z+w))
return

END
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subroutine for incomplete beta function
SUBROUTINE BETAIN(P,Q,X,BETAI)
IF(Q.GT.1.)GOTO 100
C4=p
C5=1.0-Q
C6=1.0+P
C7=1.0
C9=1.0
C10=1.0
C9=Co*X*C4/C6*C5/C7
C10=C10+C9
C4=C4+1.0
C5=C5+1.0
C6=C6+1.0
C7=C7+1.0
A=ABS(C9)
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100

77

(]

10

IF(A.GT.0.0000001) GOTO 7
BETAI=X**P*C10/P
RETURN

X=1.-X

P1=Q

Q1=P

C4=P1

C5=1.0-Q1

C6=1.0+P1

C7=1.0

C9=1.0

C10=1.0
C9=C9*X*C4/C6*C5/CT
C10=C10+C9
C4=C4+1.0
C5=C5+1.0

C6=C6+1.0

C7=C7+1.0

A=ABS(C9)
IF(A.GT.0.0000001) GOTO 77
BETAI=X**P*C10/P
RETURN

END
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subroutine to solve integration for bl

SUBROUTINE ZBW(GA,B1,ZB,sm)
sum1=0.

N=1
x1=(1./((ga+n-1)*(ga+n)))*((b1-1)/(b1+1))**(ga+n-1)
N=N+1

suml=suml+x1

Al=ABS(X1)

IF(n.1t.20)GOTO 5

sumx=sum1*ga*(1-b1)

sum2=0.

N=1
x2=(1./(ga+n-1))*((b1-1)/(b1+1))**(ga+n-1)
N=N+1

sum2=sum2+x2

A2=ABS(X2)

IF(n.1t.20)GOTO 10

sumy=sum2*(1+sm)

ZB = SUMX-SUMY

RETURN

END
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c subroutine to solve integration for b2
subroutine ZfeW(GA,b2,Zfe,sm)
sum1=0.

N=1

30 x1=(1./((n-1-ga)*(n-ga)))*((b2-1)/(b2+1))**(n-1-ga)
N=N+1
suml=suml+x1
Al1=ABS(X1)

IF(n.1t.20)GOTO 30
sumx=suml*ga*(1-b2)
sum?2=0.

N=1

40 x2=(1./(n-ga))*((b2-1)/(b2+1))**(n-ga)
N=N+1
sum2=sum2+x2
A2=ABS(X2)

IF(n.1t.20)GOTO 40
sumy=sum2*(1+sm)
Zfe = SUMX-SUMY

return
END
c subroutine to calculate phi
Subroutine  phi(b1,b2,sm,pi,pc,pe,pd)

pc = (1/pi)*asin((2+b1-b2)/(b1+b2))-0.5

PE = (1/pi)*asin((-2+b1-b2)/(b1+b2))-0.5
pD = (1/pi)*asin((2*sm+b1-b2)/(b1+b2))-0.5
write(2,*)'The phi values '
write(2,602)pc,pe,pd

602 format(1x,/1x,'At junc. of floor and D/S face of pile, phiC/kh =',
1£7.3,1x,/1x,'At junc. of floor and U/S face of pile, phiE/kh =",
2f7.3,1x,/1x,'At the tip of sheet pile, phiD/kh =' £7.3)

WITE( 2, ) .ttt '
return
end
c EEEEEETEEEEEEE TS LSS EETEEEEEEEEE LSS
c subroutine to obtain exit gradient distribution

Subroutine Ex(ga,bl,sm,zd,cr,fm,pi,cl)
C initial guesse to be supplied by user is b2

b2=1.000001
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c
66

61

63

64
65

62

256
750
850

950

delb2=0.00001
write(2,*)'The exit gradient distribution is as follows'
write(2,*)' x/s IE*S/H'

starting value of f4 is to be supplied by user

4 =0.01

continue

f3=f4*cr

CONTINUE

CALL ZfeW(GA,b2,Zfe,sm)
RESIDUE=F3-abs(Zfe/ZD)
IF(ABS(RESIDUE).LT.0.00001)GOTO 62
b2=b2+DELb2
IF(RESIDUE.GT.0.0) GOTO 61
b2R=b2-DELb2
b2L=b2R-DELb2
b2=(b2L+b2R)/2.

CALL ZfeW(GA,b2,Zfe,sm)

RESIDUE=F3-abs(Zfe/ZD)
IF(ABS(RESIDUE).LT.0.001)GOTO 62
IF(RESIDUE.GT.0.0) GOTO 64
IF(RESIDUE.LT.0.0) GOTO 65
b2L=b2

GOTO 63

b2R=b2

GOTO 63

CONTINUE

El=abs(zd)*((1.+b2)**(1.-ga))*(b2-1.)**ga

e2=  pi*((b1+b2)**0.5)*((b2-1.)**0.5)*(b2-sm)
Exi=el/e2 ‘

Exi=fm*Exi/cl

write(2,256)f4,Exi

format(1x,£7.3,2x,£7.4)
f4=f4+.01
if(f4-.1)66,66,750
continue

f4=f4+.09
if(f4-5.1)66,66,950
continue

f4=£f4+0.9
if(f4-11.)66,66,950
continue
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603

604

WRITE(Z,*) ..ttt !
WRITE(2,*)" '

return

end
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subroutine for controlling the exit gradient
if O<theta<pi/2

subroutine toex(n,ww,xx,sX,ga,pi,c1,c2,w,s,exi,fm,d1 th,12)

DIMENSION WW(96),XX(96),sx(9)

double precision sm0,gama0,beta0,b1,sm,gama,beta,entl,
1res1,delsm0,dgama0,dbeta0,delb1,fs

READ(3,*)N

READ (3,*)(WW(I),I=1,N)

READ (3,*)(XX(I),I=1,N)
read(4,*)(sx(I),i=1,9)

different depth of toe structure as fraction of sheet pile length are to be supplied
by the user through file 4

ph=atan( -((r2**0.5)/tan(d1))-tan(th)/

1(1-(r2**0.5)*tan(th)/tan(d1)))

ph = ph*180/pi
write(2,*)Maximum exit gradient with toe structure'

write(2,603)abs(ph)
write(*,603)abs(ph)

format(1x,/,1x, Inclination of the D/S face of toe ='f7.2,'deg.")
x2=0.

write(2,604)x2

write(*,604)x2

format(1x,/,1x, Top width of toe structure x2/s =',£7.2)
write(2,%)" '

write(2,*)'values of max. exit grad.with depth of toe structure'
write(2,*)" '

write(2,*)"' sl/s IE max *s /H'

FORMAT(8F7.3)

INDEX=1
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pi=3.141592654
c initial guess value for sm0,gama0 and beta0 are to be supplied by the user

SM0=-0.5d0

GAMAO=1.1d0

BETA(0=1.12d0
50 continue

do i=1,9

s1=sx(i)

s2=1.

x1=s1*cos(pi*ga)

d=s1*sin(pi*ga)

CALL MAIN(N,WW,XX,SM0,GAMAO,BETAO,
1resl,sl,s2,ga,x1,x2,d,
2FA,FB,FC,FF1,FF2 FF3,
3DELSMO0,DGAMAQ,DBETAO)

c initial guess value for b1 is to be supplied by the user.
b1=3.0000

sm=sm0

gama=gama(

beta=beta(

entl=resl

delb1=0.00001

call widthu(N,WW XX sm,gama,beta,bl,ga,entl,w,s,delbl,fs)
fs=-fs

300 format(1x,7.3,1x,£7.4)

Exnl=abs(entl)
exn2= (beta+1.)**(1.-ga)
exn3=(beta-1.)**ga
exn=exnl*exn2*exn3
exdl=pi*(beta-sm)

~ exd2=(beta+b1)**0.5
exd3=(beta-gama)**0.5
exd=exd1*exd2*exd3
ex1=exn/exd
exi=fm*ex1/cl
WRITE(2,300)s1/s2,exi
WRITE(*,300)s1/s2,exi

end do
WITEE(2,%) .t '



(e}

C

10

refurn

END
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SUBROUTINE TO SOLVE JACOBIAN MATRIX

subroutine MAIN(N,WW,XX ,SM0,GAMAO,BETAGO,
1resl,s1,s2,ga,x1,x2.d,
2FA,FB,FC,FF1,FF2,FF3,
3DELSM0,DGAMAOQO,DBETAO0)

double precision sm(,gama0,beta0,sm1,gamal,betal,res],aa,
1delsm0,dgama0Q,dbeta0

DIMENSION WW(96),XX(96)

DIMENSION AA(3,3),CC(3)

EPSILON=0.000001d0
CONTINUE

call bx(N,WW,XX,SM0,GAMAO0,BETAO,
1resl,s1,s2,ga,x1,x2.d,
" 2FA,FB,FC,FF1,FF2,FE3)
CC(1)=-FF1
CC(2)=-FF2
CC(3)=-FF3

DELSM=EPSILON
DGAMA=EPSIL.ON
DBETA=EPSILON

sml=smO0+Delsm

call bx(N,WW,XX,SM1,GAMAO,BETAOQ,
1resl,s1,s2,ga,x1,x2,d,
2FA FB,FC FF11,FF22,FF33)
AA(1,1)=(FF11-FF1)/DELSM
AA(2,1)=(FF22-FF2)/DELSM
AA(3,1)=(FF33-FF3)/DELSM

GAMA1=GAMAO+DGAMA
call bx(N,WW,XX,SM0,GAMA1,BETAO,
1res1,s1,s2,ga,x1,x2,d,

63



2FA,FB,FC,FF11,FF22 FF33)

AA(1,2)=(FF11-FF1)/DGAMA
AA(2,2)=(FF22-FF2)/DGAMA
AA(3,2)=(FF33-FF3)DGAMA

BETA1=BETAO+DBETA

call bx(N,WW,XX SM0,GAMAO,BETAL,
1resl,sl,s2,ga,x1,x2,d,
2FA,FB,FC,FF11,FF22 FF33)

AA(1,3)=(FF11-FF1)/DBETA
AA(2,3)=(FF22-FF2)/DBETA
AA(3,3)=(FF33-FF3)/DBETA

MM=3

CALL MATRIXIN(AA,MM)
SUM=0
DO J=1,3
SUM=SUM-+AA(1,J)*CC(J)
ENDDO
Delsm0=SUM

SUM=0

DO J=1,3
SUM=SUM+AA(2,)*CC(J)
ENDDO

DGAMAO=SUM

SUM=0

DO J=1,3
SUM=SUM+AA(3,))*CC(J)
ENDDO

Dbeta0=SUM

SM0O=DELSM0+SM0
GAMAO=DGAMAO+GAMAO
BETAO=DBETA0+BETAO

INDEX=INDEX+1
IF(INDEX.GT.200)GOTO 20
IF(ABS(DELSMO0).GT.0.000001)GOTO 10
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IF(ABS(DGAMAO).GT.0.000001)GOTO 10
IF(ABS(DBETA0).GT.0.000001)GOTO 10
GOTO 30

20 CONTINUE
WRITE(2,*)ITERATRION HAS FAILED'
GOTO 40

30 CONTINUE

40 CONTINUE

RETURN
END

SUBROUTINE FOR MATRIXINVERSE (LU DECOMPOSITION)

ON@!

SUBROUTINE MATRIXIN (AA,MM)
DIMENSION AA(3,3),B(3),C(3)
double precision aa

NN=MM-1
AA(1,1)=1/AA(1,1)
DO 8 M=1,NN
K=M+1
DO 31=1,M
B(D)=0.0
DO 3J=1,M

3 B(I)=B(I)+AAIJ)*AA{J,K)
D=0.0
DO 41=1,M

4 D=D+AA(K,])*B(I)
D=-D+AA(K.K)
AA(KK)=1./D
DO5I=1.M

5 AA(LK)=-B()*AA(K,K)
DO 6J=1.M
C(J)=0.0

DO 6 I=1,M

6 C)=CO)+AAK,D*AA(LY)
DO 7J=1.M

7 AAK,T)=-C(J)*AAK,K)
DO 8 I=1,M
DO 8 J=1,M

8 AA(LT)=AA®LT)-BO)*AA(K,T)
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RETURN
END

e ok ok ok sk ok o kool ok ook R ke sk R sk ok ok ok sk Rk sk sk e s e sk sk ksl ke sl s sk sk sk

SUBROUTINE TO GROUP SUBROUTINES

a0

subroutine bx(N,WW,XX,SM0,GAMAO,BETAGO,
1resl,sl,s2,ga,x1,x2,d,
2FA,FB,FC,FF1,FF2 FE3)

DIMENSION WW(96),XX(96)

double precision sm0,gama0,beta0,res1,res2,res3,res4

CALL Fx11(N,WW,XX,ga,SM0,GAMAO,BETAO,Res 1)
CALL Fx22(N,WW,XX,ga,SM0,GAMAO,BETAO,Res 2)
CALL Fx3(N,WW,XX,ga,SM0,GAMAO,BETAO,Res 3)
CALL Fx4(N,WW,XX,ga,SM0,GAMAO,BETAO,Res 4)

FA=RES2/RES1
FB=RES3/RES1
FC=RES4/RES1
FF1=((s2-s1)/S2)+FA
FF2=((x1+x2)/S2)+FB
FF3=(d/s2)+Fc '

RETURN
END

C st st s ok sk she s sk sk ok oo sk sk sfe ok sk sk ok ok ke sk 3k 3R sl sk oK e ok ok e sk ok sl sk sk sk sk Rk R

C SUBROUTINE Fx11

subroutine Fx11(N,WW,XX,ga,SM0,GAMAO,BETAOQ,Res 1)
DIMENSION WW(96),XX(96)
double precision sm0,gama0,beta0,res1

SUM=0

DO I=1,N

U=XX()

V1=(U+1.)/2.
v2=(sm0+1.)**(1./10.)

v=v]l*v2
F2N1=(V**10.)-1.-SM0
f2n2=v**((10.*ga)-1.)
f2n3=(gama0+1.-(v¥*10.))**0.5
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f2n=f2n1*£2n2*£2n3
F2D1=(BETA0+1-(v**10))**0.5
£2d2=(2.-(v**10))**ga
£2d=£2d1*£2d2

F2=F2N/F2D
SUM=SUM+WW(I)*F2

ENDDO
Res1=SUM*5*((sm0+1.)**(1./10.))
RETURN

END

C sk ek sk ook eockokok ko k ks ik ke sk skskck sk sk skeskoskok ek sk sk ok sk sk sk sk ok

C SUBROUTINE Fx22

subroutine Fx22(N,WW XX ga, SM0,GAMAOQ,BETAOQ,Res 2)

DIMENSION WW(96),XX(96)
double precision sm0,gama0,beta0,res2

SUM=0

DO I=1,N

U=XX(0)

Vi=(U+1.)/2
v2=(1.-sm0)**(1./10.)

v=v1l*v2

F2N1=1.-(V**10.)-SMO
f2n2=(gama0-1.+(V**10.))**0.5
f2n3=v**(9.-(10.*ga))
2n=f2n1*f2n2*f2n3
F2D1=(BETAO-1.+(v**10))**0.5
f2d2=(2.-(v**10))**(1.-ga)
f2d=f2d1*f2d2

F2=F2N/F2D
SUM=SUM+WW(I)*F2

ENDDO
Res2=SUM*5*((1.-sm0)**(1./10.))
RETURN

END

C ******************************************

C SUBROUTINE Fx3

subroutine Fx3(N,WW,XX,ga, SM0,GAMAO,BETAORes 3)

DIMENSION WW(96),XX(96)
double precision sm0,gama0,beta0,res3

SUM=0
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DO I=1,N

U=XX(I)

Vi=(u+1.)/2.

v2=(gama0-1.)**ga

v=vl¥*v2
FAN1=(v**(1./ga))+1.-sm0
f4n2=(gama0-1.-(v**(1./ga)))**0.5
f4n3=v**((1.-2*ga)/ga)
fan=f4n1*f4n2*f4n3
FAD1=2.+(v**(1./ga)))**(1.-ga)
f4d2=(beta0-1.-(v**(1./ga)))**0.5
fad=f4d1*f4d2

FA=F4N/FAD
SUM=SUM+WW(I)*F4

ENDDO
Res3=(SUM*((gama0-1.)**ga))/(2.*ga)
RETURN

END

C sk ok ok ok sk sk sk ok sk st sk sk ok ok ohe ot oo ok sk ok ok she sfe sk ok sk sk slesk ok ke sk sk sk sk ok sk sk sk sk

C SUBROUTINE Fx4

subroutine Fx4(N,WW,XX,ga, SMO,GAMAO,BETAQ,Res 4)

DIMENSION WW(96),XX(96)
double precision sm0,gamaQ,beta0,res4

SUM=0

DO I=1,N

U=XX(])

Vi=(u+l.)/2
v2=(beta0-gama0)**0.5
v=v]l*v2
F5N1=(beta0-sm0-v**2.)
f5n2=(beta0-gama(0-v**2.)**0.5
fSn=f5n1*f5n2
F5D1=(betaQ+1.-v**2.)**(1.-ga)
f5d2=(beta0-1.-v**2.)**ga
f5d=f5d1*£5d2

F5=F5N/F5D
SUM=SUM+WW()*F5
ENDDO
Res4=SUM*((beta0-gama0)**0.5)
RETURN

END

C ke sfe s sk e o oK ke ok ok s sk ok ok ok ok sk ok ok ok ok ok ok Sk sk ok sk kR ok ok R Kok e kok
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c SUBROUTINE TO OBTAIN B1
subroutine widthu(N,WW,XX sm,gama,beta,bl,ga,entl,w,s,delbl,fs)

double precision sm,gama,beta,bl,delbl,éntl,fs _
DIMENSION WW(96),XX(96)

21 CONTINUE
call fx5(N,WW,XX sm,gama,beta,bl,ga,ent1,fs)

RESIDUE=(w/s)+Fs
IF(ABS(RESIDUE).LT.0.00001)GOTO 22
bl=b1+DELbl1
IF(RESIDUE.GT.0.0) GOTO 21
b1R=b1-DELb1
b1=b1R-DELb1

23 bl=(b1L+b1R)/2.

call £x5(N,WW,XX sm,gama,beta,bl,ga,entl,fs)
RESIDUE=(w/s)+Fs

IF(ABS(RESIDUE).LT.0.000001)GOTO 22
IF(RESIDUE.GT.0.0) GOTO 24
IF(RESIDUE.LT.0.0) GOTO 25
24 bll=bl
GOTO 23
25 b1R=b1l
GOTO 23
22 CONTINUE
Return
end

C SUBROUTINE ROUTINE EX5

SUBROUTINE £x5(N,WW,XX,sm,gama,beta,bl,ga,entl,fs)
double precision sm,gama,beta,bl,entl,ent5,fs

DIMENSION WW(96),XX(96)

SUM=0
DO I=1,N
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U=XX(1)
v=(U+1.)*((b1-1.)**(1./20))/2.

FIN=(v**20.+1.+sm)*((v**20+1.+gama)**0.5)*
1(v**(20.*ga-1.))

F1D=((v**20+2.)**ga)*((v**20+beta+1.)**0.5)

F1=FIN/F1D

SUM=SUM+WW(I)*F1

ENDDO
ENT5=SUM*10*((b1-1.)**(1./20.))

Fs=ENTS/ENT1

RETURN
END
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Sample Output, example 1

3 ok ok sk ok s ok ok sk sk sk oK ok 3k sk ok ok sk sk ok ok ok ok e ok ok ok ok e ok ok ok ok ok sk sk sk ke sk sk sk sk ok ok sk sk sk ok ok ok sk ok ok

The inputs are

theta = 120.00degree
kmu/klamda = 2.00

Total width of weir, w = 25.00
Length of sheetpile, s = 5.00
bl = 25.00, b2= .00

ek o sk sheok ks sk st skok sk ok ks sk ook sk skskok sk shsksk sk sk sk ok sk sk kokoskskosk sk ks ok sk sk keoskosk sk skok

The outputs are

The phi values

At junc. of floor and D/S face of pile, phiC/kh = .000
At junc. of floor and U/S face of pile, phiE/kh = -.351
At the tip of sheet pile, phiD/kh = -.216
The exit gradient distribution is as follows
x/s IE*S/H

010 .0583

020 .0696

030 .0764

040 .0816

050 .0858

060 .0896

070 .0928

080 .0957

090 .0983

100 .1007

200 .1171

300 .1261

400 .1307

500 .1320

600 .1310

700 .1283

800 .1245

900 .1201

1.000 .1154

1.100 .1107

1.200 .1061
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................................................

RESULTS END
AR
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