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ABSTRACT 

The exit gradient theory up to 19th  century that used for designing various 

irrigartion structures was empirical method based on experience and 

intuition. Some of the structures failed because of subsurface flow. The 

subsurface flow may cause the failure of the impervious floor either by 

piping or by uplift pressure. 

Bligh went a step forward and gave a creep theory. According to this theory, 

the percolating water creeps along the contact surface of the base structure 

with subsoil. As the water creeps from the upstream end to the downstream 

end, the head loss occurs. The head loss is proportional to the creep 

distance traveled. 

Lane brought out the deficiencies in Bligh's creep theory. The theory gives 

the vertical creep three times more weightage as compared to the 

horizontal creep. 

Koshla and his associates determined the flow pattern below the 

impervious base of hydraulic structures on permeable foundation. They 

started with potential flow theory and found the solution of Laplace's 

equation for different configuration of floors. From the flow pattern, the 

distribution of uplift pressure on the base of the hydraulic structures and exit 

gradient were found. Piping starts from the downstream side, when the 

hydraulic gradient at the exit end is greater than the critical gradient of the 

soil. To ensure that the piping does not occur, there must be a downstream 

pile and the exit gradient should be safe. 

A general method of determining the functional relationship for confined 

flow problem was first introduced by Pavlovsky. If the all boundaries of the 

flow domain are completely defined, such flow is said to be confined. All 

the flow characteristics could be obtained once the function w = f (z) was 

known. By Schwarz-Cristoffel transformation the flow region in each of 
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these planes can be mapped conformally onto the same half on an auxiliary 

t plane, yielding the function z = 1, (t) and w = f2  (t) . 

In the present study, using methods of fragments and conformal 

mapping, confined flow under a weir with a downstream cut off founded on 

a porous medium of finite depth with a highly porous slit in the foundation 

soil, has been analysed and the distribution of exit gradient, which is the 

prime cause of the piping, has been studied. The presence of a slit changes 

the distribution of exit gradient. It shifts the place vulnerable to piping from 

the sheet pile to its own location. 
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e 	= soil void ratio 

F 	= seepage force 

F(0,m) = incomplete elliptical integral of the first kind without 
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t 	= transformation plane 
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w 	= complex variable in w plane 

W., 	= weight of soil 

z 	= complex variable in z plane 

0 	= velocity potential function 

/// 	= stream function 

a 	= slope of non homogeneous permeable soil 

8 	= coefficient of seepage quantity 
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CHAPTER I 

INTRODUCTION 

1.1. General. 

Hydraulic structure such as weir or barrage may either be founded on 

an impervious solid rock foundation or on a permeable foundation. 

Whenever a weir is constructed on permeable foundation, it is subjected to 

seepage of water beneath the structure. The water seeping below the body 

of a weir may cause failure of the structure due to piping. When the 

seepage water retains sufficient residual force at the downstream end, it 

may lift up the soil particles and increase the the flow channel by 

progressive removal of soil from the downstream end toward the upstream 

end of weir. 

For the soil to remain stable, the seepage force should be less than 

the submerged weight of soil or the gradient of water pressure which is 

called the exit gradient should be less than the safe exit gradient. 

Therefore, it is necessary to provide downstream sheetpile in order to 

reduce the exit gradient. 

The permeable soil foundation of a weir is not always homogeneous. 

Sometime it consists of another soil of different permeability. If there is 

another permeable soil at the downstream of a weir which is more porous 

or its permeability is higher than the permeability of soil foundation, it is 

possible the piping will occur through that layer. 
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1.2.. Objectives of the study. 

The objectives of the study is to investigate the piping on the 

downstream of weir, where there is an inclined soil layer of high 

permeability or more porous than the permeable soil foundation, as shown 

in fig.I-1. 

The weir is assumed to rest on permeable soil foundation of finite 

depth. An approximate analytical method of solution for any confined flow 

system of finite depth, directly applicable to design, was furnished by 

Pavlovsky. The fundamental assumtion of this method, called method of 

fragments, is that equipotential lines at various critical parts of flow region 

can be approximated by straight vertical lines. that divide the region into 

sections or fragments. 

In the thesis the effect of the presence of a thin highly porous layer, 

which would act as a conduit, on exit gradient distribution has been studied 

using method of fragments. 

Fig. 1.1 
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CHAPTER II 

LITERATURE REVIEW 

2.1. Two Dimensional Flow 

Physically, all flow systems extend in three dimensions. How ever, in 

many problems the features of groundwater motion are essentially planar, 

with the motion being substantially the same in parallel planes. For this 

problem, the flow system can be simplified as two-dimensional flow. 

In general, Dardy's law may be written as: 

d 
v = –k  dh 
	

(2.1.1) 

and velocity components in x-y plane can be derived as : 

ah aq5 
u= —k — = — 	 (2.1.2) 

ax ax 

v=  k ah .ao 
ay ay 

where : 

k = coefficient of permeability of isotropic soil 

( h = total head = P 
—+Y 
rw 

(1) = velocity potential = -kh + c 

If the coefficient of permeability is independent of direction of velocity, 

the soil is said to be an isotropic. Moreover, if the soil has the same 

coefficient of permeability at all points within the region of flow, the soil is 

said to be homogeneous and isotropic. 

In non homogeneous and isotropic soil the coefficient of permeability is 

independent on the direction of velocity but dependent on the space 

coordinate. 

(2.1.3) 
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2.2. Steady Flow 

For steady flow there is no change of velocity with respect to time and 

the equation of continuity becomes : 

au av n  
ax +  ay - 	

or 	 (2.2.1) 

0,0 +0 , = 0  
(2.2.2) 

ax2 ay2 

and this expression is known as the Laplace's equation for two-dimensional 

flow. 

The velocity potential curves q5(x,y)=constant are orthogonal 

trajectories of the stream function curves yi(x,y)=constant, and the flow 

velocity components can be defined as : 

0 0  av u = a —= 

	

	 (2.2.3) 
ay 

V= 00 av —=– 	 (2.2.4) 
ay ax 

and the equation of continuity become : 

azo a2
tp. . 0  

axay ayax 	
(2.2.5) 

 

The relation of 0 and yr. can be found from the Cauchy-Riemann equations 

as follows : 

0=f 	 dx - 	dyl 
ay 	ax 

= 	 0 dy  _ 80 
ax 	ay 

(2.2.6) 

(2.2.7) 

A combination of the function (I) and tv is called complex potential and defined 

by : 

w=0 -Ficu 	 (2.2.8) 
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Y z-plane Y 	 t-plane 

t = —co t = +co 

2.3. Schwarz Cristoffel Transformation 

The shape of the flow net depends on the configuration of impervious 

floor and the homogeneity of soil permeability in the flow region. In practical 

case where the sheet pile is provided below the weir or if there is non 

homogeneous soil in the flow region, the flow net will be distorted. The 

streamline and equipotential line do not consist of confocal ellipse and 

hyperbolas respectively, as in the case of a horizontal floor on 

homogeneous permeable foundation. 

The distorted flow can be mapped conformally onto the upper half of t-

plane by using Schwarz-Cristoffel transformation. The Schwarz-Christoffel 

Transformation is the method of mapping from one or more planes onto the 

upper half of another plane as shown in fig 2.1. 

Fig 2.1 

If a polygon is located in z plane, then the transformation that maps it 

conformally onto the upper half of the t plane (t=r+is) is : 

z= M 	
dt 

, A 	 N 	 (2.3.1) 
1-- 	1— 

(t – a) IC  (t b) (t – 	+ 

The equation above is called Schwarz Cristoffel Transformation, 

where: 

- M and N are complex constants. 

- A,B,C,...are the interior angle (rad) of the polygon in the 

z-plane. 
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- a,b,c,...(a<b<c...) are points on the real axis of the t plane 

corresponding to the respective vertices A,B,C,... 

The complex constant N correspondents to the point on the perimeter of the 

polygon that has its image at t=0. 

2.4. Critical Gradient 

The seepage water exerts a force on soil particles. This force (F) acts 

in the direction of flow or tangential to the streamline if the soil is isotropic. 

The force is known as seepage force. The seepage force per unit volume is 

proportional to the hydraulic gradient at that point, denoted by : 

ah 

F 7.( as 	 (2.4.1) 

The seepage force has an upward component when the flow line turn 

upward. At the downstream end the flow line emerge vertically, because it 

has to be orthogonal to the equipotential at the downstream bed. Therefore, 

at the exit end the seepage forces acts vertically upward, as shown in 

Fig.2.1. 

Fig. 2.1. Seepage Force 

The soil remains stable and there will be no piping if the downward 

force due to submerged weight of the soil (Ws ') is equal to or greater than 

the seepage force. If the seepage force exceeds the downstream force, the 

piping Will occur. The submerged unit weight of soil is given by : 
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Ws' = yw = yw(1-nXGs -1) 
1 + e 

(2.4.2) 

where : 
	

Gs = the specific gravity of soil particles 

the porosity 

the void ratio 

r„, = the specific weight of water 

In the critical condition, the upward force will be just balanced by the 

submerged unit weight of soil. Thus from the equation (2.4.1) and (2.4.2) 

the critical gradient /, will be found as follows : 

F = 

ah 
74as) 

(aahs ) 

cr 

Ws' 

y1  (1— n)(Gs — 1) 

(1—n)(Gs-1) 

(1—n)(Gs-1) (2.4.3) 
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CHAPTER III 

ANALYSIS 

3.1. Statement of problem. 

A weir with a downstream sheet pile rests on permeable soil 

foundation of finite depth. At the downstream side of the weir there is a soil 

of high permeability and inclined at an angle an-  . 

The water flows from the upstream side to the downstream side. 

Some quantity of the flow come out to the downstream surface and others 

come out through the inclined layer of high permeability. The inclined highly 

porous layer acts as a constant head boundary. The flow lines are 

perpendicular to the inclined equipotential line as shown in Fig.3.1. 

For computation the confined flow of finite depth, the flow domain is 

devided into two fragment as shown in Fig.3.2. 

Flow domain with a highly draining layer 

Fig. 3.1 Flow Net 



D 

-(Skh 

S 

v 

- co A 

3.2. Seepage Flow Analysis. 

Fig. 3.2 

3.2.1. Fragment I. 

- co A 	 E 
	 A 

z-plane 	 w-plane 
Fig. 3.3 
	

Fig. 3.4 

- co 	-b 	-1 
	

d 	+1 	+ co 

t-plane 
Fig.3.5 

A 

B 	C 	D 
A 

. • . 

- 8.kh 

- kh 
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Applying - Schwarz–Cristoffel transformation, the conformal mapping of 

fragment I in z-plane onto the auxialiary t-plane is given by : 

dt 
z = M .1 	  

(1 + 01/2  (1 – 01/2  N  

After integrating : 

z =M1  sin-1  t + (3.1.1) 

At point C : t = -1 and z = 0 

0= M, sin-1(-1)+ 

= M,
2 
	 (3.1.2) 

At point E : t = 1 and z = - iT 

– iT = M, sin-1  (1) + M, (1-2  ) 

M = –iT 
	

(3.1.3) 
a- 

Subtituting M from (3.1.3) in (3,1.2) the constant N1  is found to be : 

—iT 

2 
	 (3.1.4) 

Hence : 

z = --iT si.n _,  (t)--iT  
Ir 

sin-` 
	

(3.1.5) 

At Point B : t = - b and z = - L 

iT . 	iT 
– L = 	(–b) - 

it 	 2 

– L = sin -1  (b)– iT  
2 

(3.1.6) 
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Let sin-1  (b) be equal to 6 and b > . Sin -1  (b) is derived as follows : 

ig 
e'°  =i(b±Vb 2  -1) = e 2 (b± b2.-1) 

Taking logarithm on either side 

i0 = LF-+1n(b ± Vb2  -1) 
2 

0 =— +-
1 ln(b ± Vb 2  -1) 

2 i 

Subtituting 0 from (3.1.7) in (3.1.6) : 

-L = 111- + -11n(b ±lb2  -1)1- gi 
71" 2 i 	 2 

- L 	ln(b ± 172 -1) 
71" 

—LT  = --1  ln(b 	2  - 1) 

(3.1.7) 

(3.1.8) 

From (3.1.8) the value of parameter b can be found by iteration. 

At Point D : t= d, z=-is 

-is =
iT

sin
_1  (d) - iT 

2 

d = sin sic 7l 
T 2 

(3.1.9) 
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Applying Schwarz-Christoffel transformation, the conformal mapping of 

w-plane onto t- plan is given by : 

For (-00 < 	—b ) : 

w = M2 	
dt 
 	kh—iq 

_5.\1(—b — t)(d — t)(1— t) 

2 	1-̀  	dB 
 =M2 	

 1 vl—mi 2sin2 0 

AA. 	2 
— iv,  2 	 F(01 ,m1 )— kh—iq 

J1+b 

 

(3.2.1) 

     

in which : A =sin- 	
1+b

. 	and mi =
.111—d 

1—t 	 1+b 

At point B : 	= -b and W = -kh 

— kh= M2 
 2 

 F(7112,m1)—kh—iq 
-\11+b 

2F(42, m1 ) 
= M2 

N
i
l+ b 

For(—b<i 

1 	dt w= 11/12 kh 
(b + t)(d — t)(1 — t) 

Air  2  de  do  = — 2 	
b ni22  sin2  0 

kh 

=M2 	
2  F(92  , M2 )— kh 

i-V1+ b 

in which : 92  =sin-' 	+b  and m2 = 
d + b 

 
d +b 	 1+b 

(3.2.2) 

(3.2.3) 
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M2 = (1-  8)kh 
 iV1+ b 
2F(42,m2 ) 

At point D t' =d and w = - 8kh 

- 8 kh = M2 	r 
2 
- F(2tI2,m2 )-kh 

iVl+b 

(1- 8)kh = M2 	+ b F(n-12,m2) 

Subtituting M2  from (3.2.2) in (3.2.4) 

q= (1-8)kh 
 /41+b 	2F(42,7111)  

[  
2F(nI2,m2 ) 

q = (1- 8)kh 
 F(42, )  
F(nI2,m2 ) 
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A G+00  
A 

w-plane 

Fig. 3.7 

T 

z-plane 

Ag. 3.6 

A 

0 
C 

E 
F 

B 

3.2.2. Fragment II. 

t-plane 

Fig. 3.8 

Applying Schwarz—Cristoffel transformation, the conformal mapping of 

fragment II in z-plane onto the auxiliary t-plane is given by : 

(t — e)dt 
Z  = M3  t 	- 01/2  - 01-a  (f — 

+ N3  

t't2 dt 	 dt 
= M  3  al  (1— 0'12  (d 	(f — 	

e I t'12  (1— 01/2  (a — 01-  a f 

 

 

At point A : t = 0 and z = - iT, hence N3  =- iT 	 (3.3.2) 
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At point C : t = / and z = 0 

t V2 dt 
0= M 3 [ 1.1 	  

0  ( 	t)''
,  
2 (d - t)i-a (f - t 

       

 

e 	 
0 

dt 

  

iT 

    

 

t112 (1-0112 (d -t)'-"(f -t 

  

       

[1 
	tV2  dt iT = M3 fa _ 01/2  (d  - t)I-ce (f - t)a 

iT = M 3 (I, - e 1-2) 

      

o f 	 
0 

 

dt 

   

 

t1I2 (1 - 0'12 (d - 01-a  (f - 

   

      

M3  iT 
= 	e 2 ) (3.3.3) 

t1/2 dt 
(1-0'12 (d - t)'-a(f - t)" 

Let assume : 

1- t = v2 	t =1-v2 
	

dt =. - 2vdv 
at : t = 0 	v=1 

t = I 	v = 0 
1 	

- V2  1/2  (2VdV) 
I 

= 1- 1-v2  r2 d - - v 2  r [f - 1-v2  r 

1r 	20.-  v 2 )W2 
dv  

j ( 
0  kd -1+ v2 ra  -1+ V2  )2  

Further assume : 

1 
14 	 =-

1
clu v = -

2
kl+) 

2 

112 1 [1 - - + 021 du 
4  

= ._a 
ld -1+-1  0+021 [f -1+-1 (l+u )21

a 

4 	 4 
(3.3.4) 
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dt  
f t1/2  (1 — 0112  (d — t)l-a (f -- t)a  0 

1/2 	 1 dt 	 + 	dt 

0 tV2  (1— 0'12  (d — t)'' (f — tr 	I li 2  (1 —  t)il 2  — 	a f—t)a — 

12 =121+122 	 (3.3.5) 

dt  
'21 	 —t)'-a( 

Let us assume : 

t = V2 
	

dt = 2vdv 
at : t = 0 
	

v= 0 

t =1/2 	v= 11172 

/21 
„ 

2vdv 
= Fri 

	1/2 o (V2 	(1—V2  )1/2  (d —V2  

2dv  
= f 0 (1—v2  )1/2  (d — V2  )1-cc 	— V2  )cr  

Further assume : 

v=' riy2  (1+u)  

 

dv = 
2 
—1 (

2
1

112 
) du 

at : v = 0 

1 v = (-0
1/2 

u = -I 

u= 1 

 

1/2

du 1 
/21  = 	  

(1 — -10 + )1/2  (d 	+102  )1  a  (f —(1+02 )a 	(3.3.5a) 

v2 
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-1 	 dt 
122  = f  t v2(1_ 01/2 (d _ 0" (f_t)a  

1/2 	k  

Let us assume : 

1— t = v2 	t =1—v2  

at : t = 1/2 	v= /172 

t =1 	v = 0 

dt = - 2vdv 

1/2 

'22 = 
	

2vdv 

0 	v 2  )1  " [1 — — V 2 AI 1 2  {d 	V2 )11-cc 

2dv  

= I 0.-v2y2(d_i_i_v21- (f_i+v2r 

Further assume : 

V = 
1( 
2 

1 )1/2 
2 

II) dv  . 1 ( 
—2 

1 )112  du  
2 ) 

at : 	v 	u = -1 

-= (-21  )112 

	

u= 1 

122 = f 	 
-1[1-18-0.+01

1/2
[d + +142 

I 

1/2 

2 1 	 d 

1-a 

f 
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At point D : t=d  and z =L I  

L1  = M3  
[1 	

tv2  dt 
e 	

dt 
(1 — 0112  (d — t) l-a (f — t)a 	tv2  (1— )112  (d — I)"  (f — t)a 

11/2 dt  dt  
i 3 	(t — 1)112  (d — 01—ce  (f — 	

e t
1/ 2  (t —1)112  (d — t) l-a (f — t)a _ 

= 	3  (13  — e 	 (3.3.6) 

Subtituting M3  from equation (3.3.3) in (3.3.6) 

1  iT 
L1 = 

i (I I  — e 2) ( 
I 3 — e I

4
) 

L1  _ (13  — e 14 ) 
T 	e 2 ) 

F 	
L 	

3 	
— e I

4 
 ) 

, = 
• T (11 — e 2 ) (3.3.7) 

t'12  dt 
= 	  

(t — 1YR (d — 0J -a  (f — 

l+d 
2 

= 
tv2  dt 	 t 1/2  dt 

(t —1)v2  (d — 01-a  (f —t)a + 	(t — 1)112  — t)' -a  (f — t) a  
2 

1 	3 
	 (3.3.8) 



+ V 2  )112  (2vdv) 

K1+ v2)_11/2[d_(1+vii-a[f 4+v2r 

2(1+ v 2 )112  dv 
0 (d_1_v2)I--(f_i_v2)a 

2 

131 = 
0 

l+d 
2 	t1/2  dt 

1-31 
(t — 1)112  (d -01-a (f -t a 

Let us assume : 

t-1=v2 	 t=1+v2  

at : t = / 	v = 0 

dt = 2vdv 

- 	1+d 	lid -1  
t= 2 	 2 

 

Further assume : 

1/2 
v  = 1 r d -1) (1+u) 

2 
dv = l i d -1)112 

2 
2 du 

at : v = 0 

'-iy2  
v = 

2 ) 

u -1 

u= 1 

1/2 d 	-1)12  (1+ 	-41+ u)2 	
2 	

du 
- 

a  
1 	 1 Ld -1- 
8  
-(d -41+021 [f- 

8
-1X1+ u)21 	(3.3.8a) 
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1 
2a 

u)]a  1 

I Vc  
a (3.3.8b) 

d 
[1 (d  
2 2 

— la
du 

2 

f  
2 ) 

\ 112 

a 

-132 

t'12  dt 
2  i 	(t — 1)112 (d -01-a (f -t) a  

2 

Let us assume : 

d -t = vP 	t=d-v" dt = - pvP-1  dv 

1+d 
at : 	t - 2 

t=d 

id- 	11/P  v.  
2 

v = 0 

(d-I) 
2 VP  

— V P  )112  vP-1  dv 
132=  

Kd - v P )-111" [d — (c1 - v P )J i-a [f 	- v 

(
d-1

) 
	

pd-vP)112  vc'P-1  dv 
-vP -412  -d + vP)a  

LET: 	a p -1 = 0 1 
a 

0<a<1 

For 0<a<i. 

/32  

(dly2  

0 

f 

1  (d - va 
a 

1/2 

dv 

N1/2( 

d -va -1 	f - d +va 

Further assume : 

1 id-1 a  v4+0  
2 2 ) 

dv = 1  rd la  du 
2 2 
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V - 
2 

d -1 
2 

1+d 
t = 

14 

14 

1= 

= 

dt 

l+d 
2 

dt 
l+d 
2 

141 

117 	112 	- t 	(t - 1) 	(d - 01-ct f-t)a 

dt 
t '/2 (t — 0112  (d - 01-a (f - 

+ 142  

± 
t'12  (t -1) 112  (d 

(3.3.9) 

01' ( f - t) a 

l+d 
2 dt 

t'12 (t 01/2 (d  _ I-. (f  _ 

Let us assume : 

t -1 = 	t=1+v 2 	dt = 2vdv 

at : t = I 	v = 0 

141 

r-1
2  2vdv 

1+v 2v 	[0. + V2  )— 1F2  [d 	+ V11-cc  f - 

2dv 
\ 

V2  )112  (d -1- v 
2  . )1-a  -1-v2r 

Further assume : 

(d 
2 	 2 
1112 	 (1 	

 2
-11/2  v= 2 

	
(l+ u) 	dv 	du 

at : v = 0 u = -1 
v 

(d -1112  
u = 1  

2 

1/2 1 	 1 f 	\2 + -(d -1)0 + 021 [d -1- -kd -1A1+ u )- 
8 	 8 

2 

= 

0 

141 

V2  r 

(
2

d -11/2  du 
1-a 

8 
(d -1)(1+ u)2  

(3.3.9a) 
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1+d 

v=0 

v= d —1 
t — 

t=d  

LI;10 

2 2 

p 

0 

dv 
-vP)]1-a[f —v112 (d Kd — VP)--111/2 k — (d -(d — 

at : 

142 = 

dt 
142 = 

l+d tv2 (t -01/2 (d — t̀ 1
-a (f —tr 

2 

Let us assume : 

d —t = vP 
	

t = d vP 
	

dt = — pvP-1  dv 

p vc1P-1  dv 

(d —vP112 (d—vp-1,'l2 (f — d +vP) 

LET: 

1.42 = 

a p -1= 0 

/d 1\a 

2 

1 
P =— 	 0<a<1 

a 

—1 dv 
a 

0 
d—va 

■ 

1/2 j1/2 

d—va —1 
■ 

( 	 \a 

f —d +va 
■ 

Further assume : 

1 (d — l ea  
v = 

2 2 
(1+u) dv 

2 2 

142=5 

1 d -1);  du 2a 2 

 

•\ 1/2 	 \ I/2 

p2(d;i)
a

(1+01" 	 I d l a  

[2( 	(i+u)] 	
f d + 

■ 

(3.3.9b) 



   

(Rei9 – e) Rei°  id0  
le r (1–Re'°72  (d_Re4ra(f–Reie)a 

iT lirn M3  
R-->co 

  

  

  

 

e2i  ic10 

 

 

	= iT 

  

   

ie ie 
---i 00-a)-Ukt 2fr 	2 2 	ide = iT M3 fe  

z 	1)112 

id9 

M 3(-1) 

312  = iT 

tr  

M3  is = (-1)312  T 

iT M3  _— 
IC 

Let : M3  = –
iT 
 -- 

7C 
(3.3.10) 

Subtituting M3  from (3.3.3) in (3.3.10) 

iT 	iT 
(1-1 – e 1-2 ) 	g 

e= 	 
1.1 + g 

-12 
(3.3.11) 
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At point E : t e and z=/-int 

12 dt 1 - im = M 3[f 	,„ 
d  (1 — 	(d - t).-a ( f -t)" 

dt 
1/2  - t)112  (d t)1-a (f- 

 

a  + 

 

3 	 t'12  dt 	 dt  = 	[ e 	  
t(-1)'-a 

f 	 e 
(t 1)112  (t CO I-a  (f - t)" 	(t -1)112  (t - CO I-a (f - al + II  

1 	(- iT), 
7r  kI 5  - e 6 )+ 3 

(-1) 2  a  

a-3  
= (-1) 2  (- 	- e I 6 ) + 

a--3 T = (-1) 2  (i) ( ;)e 6  - 5 ) + L 

= (-sin ag ± i cos arc)(i) (-1(e 6  — /5  )-F 
71" 

= (—i sin cur ± cos arc) 7 )16 — 5 L1 

1 	= (- cos air) (—T7r )(e 16  - 1 5 ) + 

F2  = 	— COS az) (-1(e 6  — /5  ) 
	

(3.3.12) 
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1 + va dv 
a 

I 	Y12  ( 	1 Yt  
d+va -1 	f -d-va 

■ 

1/2 

(e-dr 

Is = 1 
0 

t '12  dt 
IS =M3

J (t -1) 112  (t - d)l-a (f — 

Let us assume : 
t - d = vP 	t=d+vP 	dt = pvP-'dv 

at : t=d 	v = 0 

t = e 	v= (e-dr 

(e_d yip 
(d +v112  pvP-1  dv I, 

o  m+vP)-11i/2 [(d+vP)-41f— d +v1 
(e-diy/P 	I

d + V ),/2 2  09-1dV  

(d + V P  0112  - d - vP)a 
 

LET: 	ap-1=0 
1 p=- 
a  0<a<1 

Further assume : 

v =Ye- dr 0+0 1 dv = 
2
-(e - dr du 

Is = 
2
1
a 	2 
{d+[1 - dr (1+ u)]a 

 }1/2 

(e- dr du 

, 	112 
a 

[2 e- dro+,0] _1 	f-d-[-1 (e-dr(l+u) 
2 

a 
(3.3.13) 
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dt 
1.6  — 1112  (t —1)112  (t — d)' (f 

Let us assume : 

t — d = vP 	t=d+vP 
	

dt = p vP-I dv 

at : t=d 	v = 0 

t = e 	v = (e- d)11P  

pvP-1dv 

(d +1/12)1/2  [(a + VP)-111/2  [(a + VP)- di [f -(d +11/It 

pv°P-1  dv 

+vP)112  + vP —11/2 (f — d —vP)a  

LET: 	a p -1= 0 	 p= - 
1 
a 

(e-d 

	

	 dv r 
11.6  = 	 a 

	

)1/2  ( 	1 	)1/2 	vz 
0 

d+va 	d+va —1 	f —d—va 

0<a<1 

Further assume : 

v = 1  (e- d)" (1+u) 1 dv = -
2
(e - dr du 

I 

16 = f 	 
2a 

(e- dr du 

	

1 	
1}112 	 }1/2 

e- (1+0]a  {d +[(e- (11-uT -1 	- d -[Y 	
a 

e- dr (1+u) 

	

{ 
2 	

} 

(3.3.14) 
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The equation (3.3.7) and (3.3.12) contains the unknown parameter d, f 

and those equations are non-linier. Newton-Raphson technique has been 

used to solve the equations as explained in Appendix-I. 

The solution is given by the Jacobian matrix. 

aF, aF, 
ad of 
aF2  aF2  
ad of 

[Ad] 	[F,(d , f )1 
6f 	F2 (d , f) 

 

At point B : t = b and z = - is 

iT  br 	(t - e) dt — is = 	j t1/2 	01/2 (d  _ 01-a (f — t)a iT 0 

IT ) 11 	(t — e) dt 
S= 

 
) 61  t112  (1— 0112  (d — 01-  a ( f — 	

+T 

(t — e) dt  
— T)( 5- --7,) 

= t112  (1— 0112  (a - 01-a  f — 

(t — e) dt  

	

77 1 	= f 1/2 	I/2 	I—a 0  t (1 — t) (d — t) (f — t 

(1_ s) 71.  = 

	

T 	br 	(e — t) dt 
6 

 tv2 
 (1 — t) / 2  (d — t) a ( f — t)

a 

 
(3.3.15) 

The value of parameter b can be found by iteration. 
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Applying Schwarz-Christoffel transformation, the conformal mapping of 

segment II in w- plane onto t plan is given by : 

For(-00<t' 

141 = 
dt  

(b – t)'12  (1– t)v2 
iq 

14 de = M 4 2 	  iq 
o 111 – m32  sing  0 

= 2M 4 F (03  , m3 ) – iq 	 (3.4.1) 

in which : 0, = 	=,I11 
t 	

T) and m3 = I 
  

At point A: =0 and w = - 8 kh - iq 

– bkh –iq = 2M 4F (n-12 ,m3 )– iq 

- 8 kh 	- 8 kh 
M4 = 2F(42 , m3 ) 2F(42 

(3.4.2 ) 

For(0<tb): 

dt  
w M4

0 0 (_1)112 (0,12 _ 01/2 _ 0112 iq – 8 kh 

2 fib 	d  
= M. iq–kh , 	 

1- 	I 	
c5 

P M 2  sin2  

yin  
-

2 
Cif  l'u4 3 M4 iq – kh 

in which : 04  = sin-1  = —
b 

and m4  = 
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At point B : t' = b and w = - 8kh 

- 8 kh= M4-2 F(71-12 m )— iq — Skh 

q = —2M 4F(n-12,m4 ) 	 (3.4.3) 

Subtituting M4  from (3.4.2) in (3.4.3) 

—5 k q = 2 
[ 	h  1F(42, 

2F(7-1-12,m3 ) 

q =5 kh
F(n-I2,m4) 
F(r1-12,m3 ) 

(3.4.4) 

3.3. Computation of Seepage discharge. 

The discharge of seepage flow at Fragment I should be the same with 

discharge of seepage flow at fragment II. 

From (3.3.5) discharge at Fragment I : 

(1— 8) kh 
 F(7112,m1)  

F(421122 ) 

From (3.4.4) discharge at Fragment II : 

q = khF(7i12,m4) 
F(Tc12 07 3 ) 

Equating (3.2.5) and (3.4.4) 

	

(1 — kh 
F(42, m, ) 	

kh 
 F(42,7714)  

	

F(7/12 m2  ) 	F(g12 0;13 ) 

1-5 F(7r12,177  4 ) F(7i-12,in 2 )  
F(42,1,13 ) F(42071,) 
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If : 	X = F(n
-12,m4 ) F(R-12,m2 ) 

F(71-12,1713 ) RzI2,m,) 

1-s =X 

(3.5.1) 

The values of seepage discharge of various depth of sheet pile, various 

distance and slope of porous layer are shown in Fig.3.1. 

Fig. 3.1. Seepage discharge 

L / T s / T 1/ T a q / kh 

1.25 0.5 0.5 0.1 0.4035 
1.25 0.5 0.5 0.5 0.4035 

1.25 0.5 0.5 0.25 0.4035 
1.25 0.5 1 0.25 0.4035 
1.25 0.5 2 0.25 0.4035 
1.25 0.5 3 0.25 0.4035 

1.25 0.1 0.5 0.25 0.4239 
1.25 0.2 0.5 0.25 0.4116 
1.25 0.3 0.5 0.25 0.4056 
1.25 0.4 0.5 0.25 0.4046 
1.25 0.5 0.5 0.25 0.4035 
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3.4. Computation of Exit Gradient 

Let the complex potential w= +iv/ be the analytic function of the 

complex variable z, as w = f (z) 

dw _ ao +. ay 
(3.5.2) 

dz ax ox 
which, substituting the velocity components, yields the complex velocity 

dw 
= u - iv 	 (3.5.3) 

dz 

Along the downstream horizontal boundary u = 0, hence 

dw  
—=-iv  
dz 

From. Darcy's Law 

v = - I k 	 (3.5.5) 

Subtituting (3.3.5) in (3.5.4) 

dw 	
(3.5.6) 

I k = 
dw dt 

dt dz 

I- 
1 dw dt 

i k dt dz 

The exit gradient can be computed from Fragment II. 

(3.5.7) 

1 	- kh 	1 	7C (t112  (1- 0112  (d - t)'-a (f -  t)a 
IE = _ik 2F (42 , V1-771))((- t)'12  - tr i2  (1- t)` 2 )1[ iT 	(t e) 

1 	 kh 	 1 	 R. (t112 (1- t)112 (d - t)l-a (f -  

k 	2F (42 , .N/17-7) 	(t)'/2 	- bY/2 	- tY2 	T 	(t - e) ' 

(3.5.4) 

dz 

  

S 

   

(d t)i-a (f t)a  

01/12  (e - t) 

 

E  T 

h 

     

    

(3.5.7) 

     

 

2F(TI-12,Vi-b 
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3.5. Results and Discussions 

The variations of exit gradient in the region between the hydraulic 

structure and porous layer with distance from the downstream sheet pile 

are shown in Fig. 3.9 through 3.18 for various inclination of the porous 

layer, distance from the sheet pile and depth of sheet pile. 

Due to presence of the highly porous layer, the exit gradient decrease 

from a maximum value at the sheet pile to zero at the highly porous layer. 

Thus the presence of highly porous layer, which acts as relief well, 

decreases the exit gradient on the downstream side. Hence piping will not 

commence in the vicinity of the sheet pile. However, the exit gradient at the 

entry of porous slit (i.e. at point E) would be infinite. Therefore the slit will 

act as conduit and the soil particles will escape to the downstream side 

trough the slit which would act as a pipe. 
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Fig. 3.9 Exit gradient distribution along the downstream bed 

111-26 



Fig. 3.10 Exit gradient distribution along the downstream bed 
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Fig. 3.11 	Exit gradient distribution along the downstream bed 
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Fig. 3.12 Exit gradient distribution along the downstream bed 
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Fig. 3.13 Exit gradient distribution along the downstream bed 
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Fig. 3.14 Exit gradient distribution along the downstream bed 
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Fig. 3.15 Exit gradient distribution along the downstream bed 
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Fig. 3.16 Exit gradient distribution along the downstream bed 
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Fig. 3.17 Exit gradient distribution along the downstream bed 
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Fig. 3.18 Exit gradient distribution along the downstream bed 
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CHAPTER IV 

CONCLUSIONS 

Vertical slit reduces the exit gradient more than by horizontal slit. The 

zone nearer the sheet pile is vulnerable to piping in the absence of a highly 

porous slit. The presence of slit -changes the location of vulnerable zone to 

piping as presence of a slit reduces the exit gradient. However the exit 

gradient is infinite at the entry of the slit. Piping channel will advance to the 

upstream side from the slit, which will act as a conduit for escape of 

particles to the downstream side. 

Any complex flow problem relating to weir on homogeneous porous 

medium can be solved using the method of fragments and Newton 

Raphson Technique. 
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APPENDIX A 

NEWTON RAPHSON METHOD 

The result of conformal mapping often in non-linear equations, which 

require a technique to compute the unknown parameters. A suitable 

method to solve the non-linear equations is known as Newton-Raphson 

method. 

Chapter-III reveals that the problem consists of highly non-linier 

equations involving multi variables, which makes it difficult to be solved by 

analytically. The process of numerical application is explained below. 

Let : 

(x, , x2  ,...xn ) = 0 

F„(x„x2 ,...x„) = 0 

and x denoted the enire vector of values xi . 

F denoted the entire vector of values Fi  . 

 
F;(x +8x) = F;(x) +E 

aF 	
+5 x2  

j=1 ax, 
in matrix notation, the above equation can be written as : 

F; (x +8x) = F;(x)+ J.Ax j  +5 x2  

Now neglecting the terms of the order 8 x2  and set Fi  (x +8x) = 0 , 

hence 

Fi (x)+ J.Axi  = 0 

J.Axi  = — (x) 
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aF, 	aF, 
ax,' 	ax„ 

aFa 	aF2  
ax, 	ax„ _ 

    

    

AXI  

 

) 

 

    

  

  

     

and 	+ ax 
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APPENDIX B 

FORTRAN PROGRAM 

PROGRAM PIPING 

INTEGER::IOS 
INTEGER, PARAMETER ::dsk=1 

! STRUCTURE MODEL DIMENSION 
REAL:: L0=25.,L1, 1=10, m = 10, T=20.0, a1=0.25, 5=10 
REAL:: pi=3.141592654 

1** FRAGMENT I** 

REAL:: b1=1.01, dx=0.001, dl 

INTEGER,DIMENSION(2)::Xr=(/0,1/) 
DIMENSION FX(2) 
DIMENSION b(2) 

! ** FRAGMENT II** 

! INTEGRAL COMPONENT 
REAL:: 11,12, 121,122,13,131,132,14,141,142,15,16 
REAL:: d0=1.01, dd=0.001 
REAL:: f0=1.02, df=0.001 
REAL:: e,v,dv,v2,b2 
INTEGER::11 

! MATRIX 
REAL::all,a12,a21,a22 
REAL::b11,b12,b21,b22 
REAL::j11,j12,j21,j22 

! DISCHARGE FLOW 
REAL::IBO,IBA,IBB,DELV 

REAL::ml,m2,m3,m4 
REAL::Fml,Fm2,Fm3,Fm4 
REAL::q1,q2,XF,DELTA 

!ITERATION 

REAL::TP,I10,Ile,Ilb,I20,I2a,I2b,IE,z0=0,c0=1 

REAL,DIMENSION (3) : :dr= (/0,1,0/) 
REAL, DIMENSION (3) : : fr= ( /0,0,1/ ) 
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DIMENSION W(96),X(96) 
DIMENSION Fl (3) , F2 (3) 
DIMENSION d(3),f(3) 

OPEN (1,FILE='GAUSS.dat',STATUS='OLD') 
READ (1,*) 	(W(i), i=1,96) 
READ (1,*) 	(X(i), i=1,96) 

OPEN(unit=dsk,FILE="OUTPUT.txt",STATUS=HOLD",IOSTAT=ios) 
IF (I0S/=0) THEN 
PRINT *,"FILE CAN NOT BE OPENED" 
STOP 
END IF 
REWIND DSK 

Ll=l+m/tan(al*pi) 

WRITE (unit=dsk, FMT=14) 
14 FORMAT (T15," (1)",T25,"(m)",T35,"(L1)",T45,"(alfa)") 

WRITE (unit=dsk, FMT=15) 1,m,L1,a1 
15 FORMAT (10x, F10.4, F10.4, F10.4, F10.4) 

WRITE (unit=dsk, FMT=16) 
16 FORMAT (" ") 

!** CALCULATION ** 

! ITERATION FOR PARAMETER (b) AT FRAGMENT I. 
write (*,*) 'FRAGMENT I :' 
write (*,*) 	' 

DO 
DO ii=1,2 
b(ii) =b1+Xr(ii)*dx 
FX(ii)=LO/T+1/pi*log(b(ii)-sqrt(b(ii)**2-1)) 
END DO 
bl=b(1)-FX(1)*dx/(FX(2)-FX(1)) 
IF ( abs(bl-b(1))<=0.0001) THEN 
EXIT 
END IF 

END DO 
write (*,*) 'b = 1 ,b1 

pause 

! CALCULATION FOR PARAMETER (d) AT FRAGMENT I. 

dl= -cos(S*pi/T) 
WRITE (*;*). 'd = ',d1 

PAUSE 

! ITERATION FOR PARAMETER (b) AT FRAGMENT I. 
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DO h = 1,50 

WRITE (*,*) 'ITERATION NUMBER :',h,' 	FOR PARAMETER d,e,f at FRAGMENT 
II' 

WRITE (*,*) 'dd, df 	=', dd, df 

DO i=1,3 

11=0; 121=0; 122=0; 12=0; 131=0; 132=0; 141=0; 142=0; 15=0; 16=0 

d(i•) = dO + dr(i)*dd 
f(i) = f0 + fr(i)*df 

DO J=1,96 

! INTEGRATION Il 

v =0.5*(1+X(j)) 
v2=v**2 
dv=0.5 

I1=I1+W (j ) *2* (1-v2) **0.5*dv/ (d(i) -1+v2) ** (1-al) / (f (i) - 
1+v2)**al 

! INTEGRATION 12 
V =0.5*(0,5)**0.5*(1+X(j)); 	v2=v**2 
dv=0.5*(0.5)**0.5 

121=121+ W(j)*2*dv/(1-v2)**0.5/(d(i)-v2)**(1-a1)/(f(i)-v2)**al 
122=122+ W(j)*2*dv/(1-v2)**0.5/(d(i)-1+v2)**(1-a1)/(f(i)- 

1+v2)**al 
12 =121+122 

END DO 

e =(Il+pi)/I2 

DO k=1,96 

! INTEGRATION 13 

v =0.5*(0.5*d(i)-0.5)**0.5*(1+X(k)); 
dv =0.5*(0.5*d(i)-0.5)**0.5 
v2 =v**2; 
I31=I31+W(k)*2*(1+v2)**0.5*dv/(d(i)-1-v2)**(1-a1)/(f(i)-1- 

v2)**al 

v =0.5*(0.5*d(i)-0.5)**a1*(1+X(k)) 
dv =0.5*(0.5*d(i)-0.5)**al 
v2 =v**(1/a1) 
132=132+ W(k)*1/a1*(d(i)-v2)**0.5*dv/(d(i)-v2-1)**0.5/(f(i)- 

d(i)+v2)**al 
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13 =131+132 

! INTEGRATION 14 

v =0.5*(0.5*d(i)-0.5)**0.5*(1+X(k)) 
dv =0.5*(0.5*d(i)-0.5)**0.5 
v2 =v**2; 
I41=I41+W(k)*2*dv/(1+v2)**0.5/(d(i)-1-v2)**(1-a1)/(f(i)-1- 

v2) **al 

v =0.5*(0.5*d(i)-0.5)**al*(1+X(k)) 
dv =0.5*(0.5*d(i)-0.5)**al 
v2 =v**(1/a1) 
142=142+ W(k)*1/al*dv/(d(i)-v2)**0.5/(d(i)-v2-1)**0.5/(f(i)- 

d(i)+v2)**al 

14 =141+142 

1 INTEGRATION 15 

v =0.5*(e-d(i))**al*(1+X(k)) 
dv =0.5*(e-d(i))**al 
v2 =v**(1/a1) 
15 =I5+W(k)*1/a1*(d(i)+v2)**0.5*dv/(d(i)+v2-1)**0.5/(f(i)- 

d(i)-v2)**a1 

1 INTEGRATION 16 

v =0.5*(e-d(i))**al*(1+X(k)) 
dv =0.5*(e-d(i))**al 
v2 =v**(1/a1) 
16 =I6+W(k)*1/al*dv/(d(i)+v2)**0.5/(d(i)+v2-1)**0.5/(f(i)- 

d(i)-v2)**a1 

END DO 

Fl(i)=L1/T-(I3-e*I4)/(I1-e*I2) 	- 
F2(1)=L1-1-T/pi*(e*I6-I5)*cos(al*pi) 

WRITE (*,*) 	'd, 	f, 	e 	=',d(i),f(i),e 
WRITE (*,*) 	'11,12,13 	= 1 ,11,12,13 

WRITE (*,*) 	1 14,15,16 = 1 ,14,15,16 

WRITE (*,*) 	'F1,F2 =',F1(i),F2(i) 
WRITE (*,*) 	" 

END DO 

all=(F1(2)-F1(1))/dd; 	a12=(F1(3)-F1(1))/df; 
a21=(F2(2)-F2(1))/dd; 	a22=(F2(3)-F2(1))/df; 

DET=all*a22-a21*a12 
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! INVERS MATRIX A 
bl1=(a22)/DET; 	b12=(-a12)/DET; 
b21=(-a21)/DET; 	b22= (all) /DET; 

dd=b11*(-F1(1))+b12*(-F2(1)); 
df=b21*(-F1(1))+b22*(-F2(1)); 

! (MATRIX A) * (INVERS MATRIX A) 
J11=b11*a11+b12*a21; 	J12=b11*a12+b12*a22; 
J21=b21*all+b22*a21; 	J22=b21*a12+b22*a22; 

d0=d0+dd 
f0=f0+df 

WRITE 
	

** MATRIX A ** 	** INVERS MATRIX A 
**I 

WRITE 
WRITE 
WRITE 
f' 
WRITE 
WRITE 

all,a12,b11,b12 
a21,a22,b21,b22 

dd, df 	d , 

(*,*) 

( *,*) 
J11,J12,dd,d0 
J12,J22,df,f0 

 

IF (F2(1)<0.0001) THEN 
IF (F1(1)<0.0001) THEN 
EXIT 
END IF 
ELSE 
CONTINUE 

END IF 
END DO 
PAUSE 

WRITE (unit=dsk, FMT=12) 
12 FORMAT (T15,"(d)",T25,"(e)",T35, f  

WRITE (unit=dsk, FMT=26) d(1),e,f(1) 
26 FORMAT (10x, F10.6, F10.6, F10.6) 

! ITERATION FOR PARAMETER (b) at FRAGMENT II 

TP=O 

DO 
IB0=0 
v=0 
IBA=2*(e-v**2)/(1-v**2)**0.5/(d(1)-v**2)**(1-a1)/(f(1)-v**2)**al 
TP=TP+0.001 
DELV=(TP**0.5)/100 

DO BB=1,100 

v=v+DELV 
IBB=2*(e-v**2)/(1-v**2)**0.5/(d(1)-v**2)**(1-a1)/(f(1)-v**2)**al 
IBO=IB0+(IBA+IBB)/2*DELV 
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IBA=IBB 

END DO 

IF (((1-S/T*pi)-IB0)<=0.0001) THEN 
EXIT 
END IF 

END DO 

WRITE (*,*) 'b 	',tp 

! DISCHARGE 
b2=tp 
ml=sqrt((1-d1)/(1+b1)) 
m2=sqrt((dl+b1)/(1+b1)) 
m3=sqrt(1-b2) 
m4=sqrt(b2) 

Fm1=0.5*pi*(1+0.25*(ml**2)+9/64*(ml**4)+25/256*(ml**6)) 
Fm2=0.5*pi*(1+0.25*(m2**2)+9/64*(m2**4)+25/256*(m2**6)) 
Fm3=0.5*pi*(1+0.25*(m3**2)+9/-64*(m3**4)+25/256*(m3**6)) 
Fm4=0.5*pi*(1+0.25*(m4**2)+9/64*(m4**4)+25/256*(m4**6)) 

XF 	= Fm4*Fm2/(Fm3*Fm1) 
DELTA = 1/(1+XF) 
ql 	= (1-DELTA)*Fml/Fm2 
q2 	= DELTA*Fm4/Fm3 

WRITE (*,*) 'Delta = ',DELTA 
WRITE (*,*) 'ql/kh = ',ql 
WRITE (*,*) 'q2/kh = ',q2 

WRITE (unit=dsk, FMT=17) 
17 FORMAT (T15,"(ql/kh)",T25,"(q2/kh)",T35,"DELTA") 

WRITE (unit=dsk, FMT=18) ql,q2,DELTA 
18 FORMAT (10x, F10.4', F10.4,F10.4) 

WRITE (unit=dsk, FMT=19) 
19 FORMAT (TI n) 

PAUSE 

j ITERATION FOR t vs ( Z and Exit Gradient ) 

write (*,*) ' t 
	

Z 	 IE' 

WRITE (unit=dsk, FMT=27) 
27 FORMAT (T15,"(t)",T25,"(z)",T35,"IE") 
WRITE (unit=dsk,. FMT=28) 
28 FORMAT (" ") 

IE=pi*DELTA/(2*Fm3)*(d(1)-1)**(1-al)*(f(1)-1)**al/(1-b2)**0.5/(e-1) 
WRITE (unit=dsk, FMT=29) c0,z0,IE 
29 FORMAT (10x, F10.4, F10.4, E12.5) 
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TP=1 

DO 

TP=TP+0.0001 
v=0 
Ila=2*sqrt(l+v**2)/(d(1)-1-v**2)**(1-a1)/(f(1)-1-v**2)**al 
I2a=2/sqrt(1+v**2)/(d(1)-1-v**2)**(1-a1)/(f(1)-1-v**2)**al 
DELV=sqrt(TP-1)/1000 
I10=0 
120=0 

DO ii=1,1000 

v=v+DELV 
Ilb=2*sqrt(1+v**2)/(d(1)-1-v**2)**(1-a1)/(f(1)-1-v**2)**al 
I2b=2/sqrt(1+v**2)/(d(1)-1-v**2)**(1-a1)/(f(1)-1-v**2)**al 
I10=I10+(Ila+Ilb)/2*DELV 
120=120+(12a+12b)/2*DELV 
Ila=Ilb 
I2a=12b 

END DO 

Z=T/pi*(e*I20-I10) 
IE=pi*DELTA/(2*Fm3)*(d(1)-TP)**(1-a1)*(f(1)-TP)**al/(TP-b2)**0.5/(e-TP) 

WRITE (unit=dsk, FMT=30) TP,Z,IE 
30 FORMAT (10x, F10.4, F10.4, E12.5) 

write (*,*) TP,Z,IE 

IF ((L1-Z)<=0.0001) THEN 
EXIT 

END IF 
END DO 

END FILE dsk 
REWIND dsk 
CLOSE (dsk) 

PAUSE 

END PROGRAM PIPING 
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