# EXPERIMENTAL STUDY OF FLOW PATTERN IN MULTISLOPE STEPPED SPILLWAYS

## **A DISSERTATION**

Submitted in partial fulfillment of the requirements for the award of the degree of

MASTER OF TECHNOLOGY

in

WATER RESOURCES DEVELOPMENT (CIVIL)

## By PŘAKASH CHANDRA POKHAREL





WATER RESOURCES DEVELOPMENT TRAINING CENTRE
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE-247 667 (INDIA)
JUNE, 2004

## **CANDIDATE'S DECLARATION**

I hereby certify that the work which is being presented in the dissertation entitled "Experimental study of flow pattern in multi-slope stepped spillways" in partial fulfillment of the requirement for the award of the degree of master of technology in Water Resources Developments in civil (WRD Civil) submitted in the Department of Water Resources Developments Training Center (WRDTC), IIT, Roorkee; is an authentic record of my own work carried out during the period from June 30th, 2003 to the date of submission under the supervision of prof.Dr.Nayan Sharma WRDTC, IIT, Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any

other degree.

Date: 28th June 2004

(Prakash Chandra Pokharel)

M.Tech. 47<sup>th</sup> WRD Civil WRDTC, IIT, Roorkee.

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

(**Dr.Nayan Sharma**) Prof.WRDTC, IIT, Roorkee

Ι

#### **ACKNOWLEDGEMENTS**

I express my sincere gratitude to my supervisor prof. Dr.N.Sharma, WRDTC, IIT Roorkee for his consistence guidance, help, advice and genuine encouragements provided during preparation of my dissertation reports.

I am also grateful to Sri Rajesh Shukla, AE, PWD, Uttaranchal (Mtech.Civil Environmental, IIT, Roorkee) who helped me in preparing my experimental and other related design works for dissertation reports.

I am also grateful to prof. Dr. G.C. Mishra, DRC Chairman of WRDTC, IIT Roorkee for his kind cooperation and help.

I am also very much grateful to prof. Dr. U. C. Chaube, Prof & Head WRDTC, IIT Roorkee for his kind cooperation and administrative supports.

I also extend my hearty thanks to all faculty members WRDTC, River Engg.Staffs WRDTC staffs, Computer staffs and my colleagues for their good cooperation.

28th June 2004 Date:

(Prakash Chandra Pokharel) Trainee Officer M. Tech. 47<sup>th</sup> WRD (Civil)

WRDTC, IIT, Roorkee

#### **SYNOPSIS**

Stepped Spillways are those types of chute spillways whose face is provided with a series of steps, from near the crest to the toe. The main function of a spillway is to dispose of excess water from a reservoir safely and in addition to it the steps of a stepped spillway dissipate the falling energy of flow and reduces the size of dissipater generally provided at the toe of spillways.

Stepped spillways have been used since more than 3000 years. These are used in different types of dams (masonry dams, concrete dams, earth dams etc). Stepped channel are used for handling flood releases in storm water channels in river training works, water treatment plants etc. Stepped fountains have been constructed in different cities (HongKong, Taipei, Tokyo etc) for the aesthetical applications. Check dams are usually constructed as a succession of drop structures to reduce the steep gradient in mountain areas. It has been used in irrigation and power channels also.

The stepped channels are mainly of three types: flat steps, pooled steps and inclined steps channels. Flat stepped are horizontal, pooled steps are those where a sill height is provided at the end of steps. The inclined steps are inclined upward and downwards.

A stepped chute consists of an open channel with a series of steps or drops. The flow over stepped chute can be divided into three regimes: nappe flow regime, transition flow regime and skimming flow regime. In nappe flow regime the total fall is divided into a number of smaller free falls. The water proceeds in a series of plunges from one step to another. The energy dissipation occurs by jet break-up in air, jet mixing in the step and formation of fully or partially developed hydraulic jump on the step. In transition flow regimes the flow is neither nappe nor skimming flow régime. The flow is characterized by significant air entrainment and flow instabilities. In the skimming flow regime the water flows down the stepped face as a cushioned by the recirculating fluid trapped in between them. The external edges on the steps form a pseudo-bottom over which the flow passes. Beneath this recirculating vortices are developed.

Most of the small dams have single slope stepped spillways. The high dam and hill irrigation channels, where the chute/channel may align through different country slopes, may have multislope spillways channel. Till now the exact design principle solutions have not been found out. So it is still under investigation process.

The aim of the dissertation is to study the flow pattern in multi-slope stepped spillways. The study has been done over a model of multi-slope stepped spillways (scale: 1:15) of Rammam hydel project II, West Bengal electricity board, in River Engg. Lab.of WRDTC, IIT Roorkee.

The main questions that have been directed in the study are: 1. How the different discharges passing over the model behave 2. Whether the flows are nappe, transition or skimming regimes 3. What are the pressures at the bottom of the channel 3. What are the flow depths in the channel 4. What is the velocity of flow 5. How the recirculating vortices are being generated in the skimming flow regimes 6. What is the rate of energy dissipation through the stepped chute 7. What is the residual head at the toe of the spillways, which is to be dissipated in stilling basin 8. What is the position of the cavitations risks of the damages of the spillways etc. The objectives of the study are: 1. Study of the flow patterns in multi-slope stepped spillways without placing suppressor plates. 2. Study of the flow patterns in multi-slope stepped spillways with the use of different suppressor plates (circular and elliptical). 3. How the energy is dissipated through the stepped spillways such that the dimensions of the stilling basin can be

reduced i.e cost is reduced. 4. After placement of the suppressor plates the flow depths in the spillway channel is reduced i.e. air concentration is also reduced (so we have to study the cavitations risks then).

The flow patterns in multislope stepped spillways were found to be same as in single slope stepped spillways in first spillway channel slope but were found different patterns in junction point and other downstream slopes of the spillways. At the convex junction point where the flatter slope of channel meets the steeper slope of channel, the flows were of sprayed nature with deflecting or jumping of jet. After the placement of suppressor plate at the convex flow region the jet deflection phenomenon is arrested.

In the first channel slope  $\alpha_1 = 34^0 32'$  of the experimental set up, the flow patterns were same as in single slope (mono slope) stepped spillways and in other channel slopes d/s of it the flow patterns were different from it. The second channel slope  $\alpha_2 = 50^0 14'$ , which is steeper than first slope, and the third channel slope  $\alpha_3 = 38^0 50'$  which is milder than second slope, had displayed different flow patterns: i.e. the convex flow and trajectory flow depths and the concave flow and trajectory flow depths respectively.

At the first junction point of the channel slopes  $\alpha_1$  and  $\alpha_2$  the flow was of convex nature and the flow past it through a trajectory path d/s of the channel with the slope  $\alpha_2$ . The flow at the second junction point of the channel of slopes  $\alpha_2$  and  $\alpha_3$  was of concave nature and similarly in slope  $\alpha_3$  the flow past through a trajectory path d/s of the channel with the slope  $\alpha_3$ . At the lower unit discharge rates (3 to 4 lps/0.2m i.e. 0.015 to 0.02 m3/s/m) the flow pattern followed transition and skimming flow regimes pattern where as at higher flow rates than these rates (6 to 20 lps/0.2m i.e. 0.03 to 0.10m3/s/m) the flow were all skimming flow regimes with recirculating vortices. At the convex and concave flow regions first-six to first-two steps were having air cavities with bigger sizes at upper ones and decreasing the cavity sizes to d/s steps.

After the placement of suppressor plates at the junction points of slopes the flow followed uniform depth throughout the channel d/s of it. The placement height of the suppressor plate was fixed as the depth of flow at the toe of respective slopes. Hence the suppressor plates were found to be a good key structural element to check the deflecting flow flow depths in the spillways, which help thereby in reducing the sidewall height of the spillways. Among the circular and elliptical suppressor plates used in experiments, the elliptical suppressor plate gave good result in uniformity of flow with smaller flow of depths after placement of it at the junction points. It means after placement of suppressor plate the flow depth decreases and obviously the air entrainment of the flow also decreases.

Multislope stepped spillways with the final or last channel slope steeper than the second last slope dissipated more head or energy compared to spillways channels with the milder slope than the second slope. The rates of energy dissipation in the multislope and single slope stepped spillways were found to be in between 85 to 90%.

## List of figures

| , Page n                                                                                                   | os.      |
|------------------------------------------------------------------------------------------------------------|----------|
| 1. Fig. 1 Multi-slope stepped spillways: With four L-slopes                                                | 1        |
| 2. Fig. 2 Multi-slope stepped spillways: With four L-slopes                                                | 5        |
| 3. Fig.3.Nappe flow with flat slope                                                                        | 6        |
| 4. Fig.4.Nappe flow with pooled steps                                                                      | 6        |
| 5. Fig.5 Nappe flow regime with fully developed hydr.jump                                                  | 7        |
| 6. Fig, 6. Nappe flow with partially developed hydraulic jump                                              | 8        |
| 7. Fig.7. Nappe flow without hydraulic jump                                                                | 8        |
| 8. Fig.8. Flow at a drop structure                                                                         | 9        |
| 9. Fig 9. Variation of relative energy loss over several steps for $h/l = 0.421$                           | 12       |
| 10. Fig.10 Consolidated results of variation of a with d <sub>c</sub> /h for Horner and Moore              | 12       |
| 11. Fig.11 Nappe flow with pooled steps                                                                    | 13       |
| 12. Fig.12 Energy dissipation in nappe flow regime-comparision between                                     | •        |
| equations (for ungated & gated chute) by CHANSON and                                                       |          |
| experimental data (MOORE 1943,RAND 1955,HORNER 1969,                                                       |          |
| STEPHENSON 1979a).                                                                                         | 15       |
| 13. Fig.13. Transition flow regime on steep slope                                                          | 17       |
| 14. Fig.14 Transition flow on steep slope                                                                  | 17       |
| 15. Fig. 15 Section of stepped spillways showing flow patterns in skimming                                 |          |
| flow regime                                                                                                | 19       |
| 16. Fig. 16 Skimming flow with stable cavity recirculation                                                 | 19       |
| 17. Fig.17. Flow conditions for the transition from nappe to                                               | ~~       |
|                                                                                                            | 23       |
| 18. Fig.18 Characteristics of the inception point of air entrainment                                       |          |
| (based on experiments by BEITZ&LAWLESS 1992,BINDO et al 1993,FRIZEL&MEFFORD 1991,SORENSON 1985,TOZZI 1992) |          |
| · · · · · · · · · · · · · · · · · · ·                                                                      | 24       |
| 19. Fig.19 Characteristics of the inception point of air entrainment (based on                             | 24       |
| experiments by BINDO et al 1993,FRIZEL&MEFFORD 1991,                                                       |          |
|                                                                                                            | 25       |
|                                                                                                            | 25<br>25 |
| 21. Fig. 21 Uniform equilibrium air concentration Ce as a fn. Of chute slope                               |          |
| α -Model data (STRAUB &ANDERSON 1958), prototype data                                                      | •        |
| (AIVAZYAN 1986) and equation Ce=0.9*sinα and Table                                                         |          |
| , ,                                                                                                        | 27       |
| 22. Fig. 22 Rapidly varied flow region at the inception point of free                                      | _,       |
|                                                                                                            | 30       |
| 23. Fig 23 Rapidly varied flow region at the inception point of free surface                               | -        |
|                                                                                                            | 30       |
| 24. Fig.24. Flow pattern in the cavity between adjascent steps: Wake step                                  |          |
| interference sub regime in flat slopes                                                                     | 33       |
| 25. Fig.25 Flow pattern in the cavity between adjascent steps:                                             |          |
| Wake-wake interference sub regime in slope about 27 degrees                                                | 33       |
| 26. Fig.26. Flow pattern in the cavity between adjascent steps:                                            |          |
| Recirculating cavity flow sub regime in steep slope                                                        | 34       |
| 27. Fig.27 ΔHres/Hres as a function of the mean air concentration Ce and the                               |          |
| channel slope $\alpha$                                                                                     | 36       |

| 28. Fig 28 Step geometries                                                 | 37         |
|----------------------------------------------------------------------------|------------|
| 29. Fig.29 Multi-slope stepped spillways: With four L-slopes               | 40         |
| 30. Fig. 30. Multislope stepped spillways with suppressor plate: Showing t | he         |
| effect of the plate in making the flow with uniform depths after it.       | 45         |
| 31. Fig.31 Section of elliptical suppressor plate (general)                | 45         |
| 32. Fig.32 Multislope stepped spillways with suppressor plate: Showing th  | e          |
| effect of the plate in making the flow with uniform depths after it.       | 46         |
| 33. Fig.33 Section of designed elliptical suppressor plate                 | 47         |
| 34. Fig 34 Multislope stepped spillways with curved (convex) flow at the   |            |
| junction point: Showing the elements of curve setting to find out          |            |
| the radius of curvature of flow.                                           | 49         |
| 35. Fig.35 Elements of simple circular curve                               | 49         |
| 36. Fig. 36 Detail of convex curve at the junction point                   | 50         |
| 37. Fig.37 Section of designed circular suppressor plate                   | 51         |
| 38. Fig. 38 Section of designed angular suppressor plate                   | 51         |
| 39. Fig. 39 Placement position of suppressor plate at the convex junction  |            |
| point of the multislope stepped spillways                                  | 52         |
| 40. Fig. 40 Experimental set up: Multislope stepped spillways              | . 53       |
| 41. Fig. 41 Experimental set up: Monoslope stepped spillways               | 53         |
| 42. Fig.42 Graphs                                                          | Appendix B |
| 43. Fig.43. Drawings and experimental photographs                          | Appendix C |
|                                                                            |            |

## **List of Tables**

| $\mathbf{P}_{i}$                                                                                                                                       | age nos. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1. Table of relations between D', K' and Cmean                                                                                                         | 28       |
| 2. Table of relations between $\alpha$ , C <sub>e</sub> , Y <sub>90</sub> /d <sub>w</sub> , f <sub>e</sub> /f and h/l                                  | 29       |
| 3. Model scale ratios                                                                                                                                  | 44       |
| 4. Table of relations between difference of mercury level x and flow                                                                                   |          |
| of discharge Q in manometer.                                                                                                                           | 54       |
| 5. Flow depths in multi-slope and mono-slope stepped spillways                                                                                         | 55       |
| 6. Result table of d <sub>w</sub> and V <sub>w</sub>                                                                                                   | 77       |
| 7. Uplift water pressure at suppressor plates                                                                                                          | 78       |
| 8. Table of prediction of flow regimes: Theoretical, observational with or                                                                             |          |
| without circular suppressor plate                                                                                                                      | 86       |
| 9. Table of water pressures at different points of steps for the study of                                                                              |          |
| cavitations risk with or without circular suppressor plate.                                                                                            | 99       |
| 10. Table of calculation of cavitations numbers                                                                                                        | 125      |
| 11. Table of study of flow patterns in small and high flow rates.                                                                                      | 126      |
| 12. Table of calculation of d <sub>90</sub> vs x , d <sub>90</sub> /h vs Fr , H <sub>res</sub> /H <sub>max</sub> vs H <sub>spill</sub> /d <sub>c</sub> |          |
| graphs with or without circular suppressor plate  Appendix B                                                                                           | 138      |
| 13. Table of calculation of $d_w$ vs $V_w$ and $q_w$ graphs Appendix B                                                                                 | 138      |

## **List of Symbols**

 $d_c = Critical depth$ h = Step height l = Step length $d_p$  = Height of water in pool behind the over fall jet  $d_1 = prejump depth$  $d_2 = post jump depth$  $d_3 = Sill height$  $L_d$  = Distance from the drop wall to the position of d1  $L_i = length of jump$  $d_o/d_w = Average water flow depth$  $q_w = Unit discharge$ g = Accelerations due to gravity Q = Dischargeb = Width of spillways (If not stated)  $\sigma$  = Surface tension  $\rho w = \text{Water density}$  $d_{ap}$  = Air bubble diameter  $u_r = Bubble rise velocity$  $\alpha$  = Slope of spillways (If not stated) V' = Turbulent velocity  $H_o = Head$  at crest  $H_{spill} = H_{dam} = Height of spillways$  $L_i$  = Length of inception point from crest  $d_i$  = Depth of water at inception point  $\lambda = (h^2 + l^2)^2$  $\tau o =$  Average shear friction  $K_s$  = Step roughness height R = Hydraulic mean radius $F = F_r = F_b = Froude no.$  $\Delta H = \Delta E = \text{Difference}$  between the maximum head and residual head C = Air concentration $Y_{90}$  = Flow depth where C = 90% fe = Darcy friction factor ≈ √ ฉ ч DH = Hydraulic diameter  $K_s' = Skin roughness height$ f= Friction factor k = Karman constant Cr = Fluid friction Ec  $(\alpha)$  = Coriolic coeff. = Kinetic energy correction coefficient n = mannings roughness coeff. Z = section factor $\eta$  = Factor of safety  $y_a = Aerated flow depth = d_a$  $y = d_w = flow depth$ 

 $h_d$  = Height of side wall of spillways

## **CONTENTS**

|                                                              | Page nos                             |
|--------------------------------------------------------------|--------------------------------------|
| Candidate's declaration                                      | Ī                                    |
| Acknowledgements                                             | II                                   |
| Synopsis                                                     | · III                                |
| List of figures                                              | $\mathbf{V}$ t                       |
| List of tables                                               | VII                                  |
| List of symbols                                              | ΛЩ                                   |
| Chapter-1 Introduction                                       | 1                                    |
| 1.1 Introduction                                             | 1                                    |
| 1.2 Present study and the objectives of the study            | 2                                    |
| 1.3 Scope and limitation of the study                        | . 2                                  |
| 1.4 Methodology used in the studies                          | 3                                    |
| 1.5 Organization of the dissertation                         | 3                                    |
| 1.6 Experimental Problems of the study                       | 3                                    |
| 1.7 Findings of the study                                    | 3                                    |
| Chapter-2 Review of literature                               | 2<br>2<br>3<br>3<br>3<br>5<br>5<br>5 |
| 2.1 Multi-slope stepped spillways                            | 5                                    |
| 2.2 Applications                                             | 5                                    |
| 2.3 Type of stepped channels                                 | 6                                    |
| 2.4 Flow regimes                                             | · 7                                  |
| 2.4.1.1 Nappe (Jet) flow Regimes                             | 7                                    |
| 2.4.1.2 Introduction                                         | 7                                    |
| 2.4.1.2 Hydraulic characteristics of nappe flow              | 9                                    |
| 2.4.1.3 Design of chute with nappe flow regime               | 10                                   |
| 2.4.2 Transition flow regimes                                | 16                                   |
| 2.4.3 Skimming Flow Regimes                                  | 18                                   |
| 2.4.3.1 Introduction                                         | 18                                   |
| 2.4.3.2 Onset of skimming flow                               | 20                                   |
| 2.4.3.3 Transition from nappe to skimming flows              | 22                                   |
| 2.5 Boundary layer growth                                    | 23                                   |
| 2.6 Uniform flow conditions                                  | 26                                   |
| 2.7 Flow aeration                                            | 27                                   |
| 2.8 Flow properties                                          | 28                                   |
| 2.8.1 Rapidly varied flow at inception point (Chanson 2001)  | 30                                   |
| 2.8.2 Gradually varied flow properties (Chanson 2001):       | 31                                   |
| 2.9 Flow resistance                                          | 31                                   |
| 2.10 Flow patterns                                           | 32                                   |
| 2.11 Velocity distribution                                   | 34                                   |
| 2.12 Energy dissipation                                      | 35                                   |
| 2.13 Selection of step height                                | 38                                   |
| 2.14 Selection of training wall height of stepped spillways  | 38                                   |
| 2.15 Comparison between nappe and skimming flow regimes      |                                      |
| regarding energy dissipation                                 | . 39                                 |
| Chapter-3 Experimental study of flow patterns in multi-slope | er<br>George                         |
| stepped spillways                                            | 40                                   |
| 3.1 Introduction                                             | 40                                   |
| 3.2 Model laws (Similarity laws) and scale ratios            | 40                                   |
| 3.3 The suppressor plate                                     | 44                                   |

| 3.3.1. Design of suppressor plates                                                                                                         | 46  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.3.2 Positioning of the suppressor plate                                                                                                  | 51  |
| 3.4 Experimental set up                                                                                                                    | 52  |
| 3.5 Experimental procedures                                                                                                                | 54  |
| 3.6 Analysis of results                                                                                                                    | 54  |
| 3.6.1 Introductions                                                                                                                        | 54  |
| 3.6.2 Experimental data and calculations                                                                                                   | 54  |
| 3.6.2.1 Venturimeter Calculation                                                                                                           | 54  |
| 3.6.2.2 Experiment-1 (water flow depths without suppressor plate)                                                                          | 55  |
| 3.6.2.3 Calculation of rate of energy dissipation and residual head                                                                        | 63  |
| 3.6.2.4 Experiment-2 (water flow depths with circular suppressor plate)                                                                    | 66  |
| 3.6.2.5 Calculation of rate of energy dissipation and residual head                                                                        | 75  |
| 3.6.2.6 Experiment-3 (uplift water pressure at circular/elliptical                                                                         |     |
| suppressor plate)                                                                                                                          | 78  |
| 3.6.2.7 Prediction of flow regimes                                                                                                         | 86  |
| 3.6.2.8 Experiment-4 (water flow depths without suppressor plate                                                                           |     |
| in mono-slope stepped spillways)                                                                                                           | 93  |
| 3.6.2.9 Calculation of rate of energy dissipation and residual head                                                                        | 95  |
| 3.6.2.10 Experiment-5 (water pressure at different points of steps                                                                         |     |
| for the study of cavitations risks)flow depths without                                                                                     |     |
| suppressor plate in mono-slope stepped spillways)                                                                                          | 99  |
| 3.6.2.11 Experiment-6 (water flow depths with elliptical                                                                                   |     |
| suppressor plate no.1 i.e. $P = 135 \text{mm}$ )                                                                                           | 101 |
| 3.6.2.12 11 Experiment-7 (water flow depths with elliptical                                                                                |     |
| suppressor plate no.2 i.e. P =90mm)                                                                                                        | 109 |
| 3.6.2.13 Experiment-8 (water flow depths with elliptical                                                                                   |     |
| suppressor plate no.3 i.e. $P = 45 \text{mm}$ )                                                                                            | 117 |
| 3.6.2.14 Calculation of cavitations number                                                                                                 | 125 |
| 3.7 The study flow patterns in the multi-slope stepped spillways                                                                           | 126 |
| Chapter-4 Discussion of results and conclusions                                                                                            | 129 |
| References                                                                                                                                 | 132 |
| Appendix A: It deals with the hydraulic design of stepped spillways by                                                                     |     |
| different methods.                                                                                                                         | 133 |
| Appendix B: Graphs (H <sub>res</sub> /H <sub>max</sub> verses H <sub>spill</sub> /d <sub>c</sub> & d <sub>90</sub> verses distance x etc.) | 138 |
| Appendix C: Drawings and photographs of flow patterns in multi and                                                                         |     |
| mono-slope stepped spillways                                                                                                               | 179 |

# CHAPTER- 1 INTRODUCTION

## Chapter-1

## Introduction

#### 1.1 Introduction:

Stepped spillway is a type of chute spillways whose face is provided with a series of steps, from near the crest to the toe. The main function of a spillway is to dispose of excess water from a reservoir safely and in addition to it the steps of a stepped spillways dissipate the falling energy of flow and reduces the size of dissipater generally provided at the toe of the spillways.

A stepped spillway can be economically integrated on the downstream face of an RCC gravity dam and on the embankment dams as emergency spillways to safely pass the maximum flood over the crest of dam. Advantages of stepped spillways include the ease of construction, reduction of cavitations risks potential and reduction of the stilling basin dimensions at the downstream toe of the dam due to continuous energy dissipation along the stepped chute.

Multi-slope stepped spillways are those chute/spillways, which have more than one longitudinal channel slopes with different step geometries in their faces.

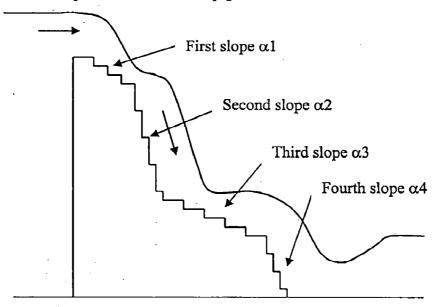



Fig. 1 Multi-slope stepped spillways: With four L-slopes

The aim of the dissertation is to study the flow pattern in multi-slope stepped spillways. The study has been done over a multi-slope stepped model (scale: 1:15) of Rammam hydel project II, West Bengal electricity board, situated at the River Engg. Lab.of WRDTC, IIT Roorkee. The main points to be studied are: 1. How the different discharges passing over the model behave 2. Whether the flows are nappe, transition or skimming regimes 3. What are the pressures at the bottom of the channel 3. What are the flow depths in the channel 4. What is the velocity of flow 5. How the recirculating vortices are being generated in the skimming flow regimes 6. What is the rate of energy dissipation through the stepped chute 7. What is the residual head at the toe of the spillways, which is to be dissipated in stilling basin 8. What is the position of the cavitations risks of the damages of the spillways etc.

The application limits of stepped spillways is up to unit discharge of q = 25 to 30 m3/s/m (Minor 2000) which is far below the maximum discharge of q = 200 to 280 m3/s/m for smooth

chutes (Volkart 1984). This limitation comes from the fact that the inception point of air entrainment moves downstream with increasing unit discharge, leaving a longer spillways stretch without air bubbles counteracting cavitations damage at the concrete surface (Boes 2000). Appropriate placement of aerators should be designed to check cavitations risk in the stepped spillways. That's why the investigation over exact design solution of stepped spillways with mono/multiple slopes have to be undertaken

## 1.2 Present study and the objectives of the study:

The main questions to be addressed are: 1. How the different discharges passing over the model behave 2. Whether the flows are nappe, transition or skimming regimes 3. What are the pressures at the bottom of the channel 3. What are the flow depths in the channel 4. What is the velocity of flow 5. How the recirculating vortices are being generated in the skimming flow regimes 6. What is the rate of energy dissipation through the stepped chute 7. What is the residual head at the toe of the spillways, which is to be dissipated in stilling basin 8. What is the position of the cavitations risks of the damages of the spillways etc

The objectives of the study are: 1. Study of the flow patterns in multi-slope stepped spillways without placing suppressor plates. 2. Study of the flow patterns in multi-slope stepped spillways with the use of different suppressor plates (circular and elliptical). 3. How the energy is dissipated through the stepped spillways such that the dimensions of the stilling basin can be reduced i.e cost is reduced. 4. After placement of the suppressor plates the flow depths in the spillway channel is reduced i.e. air concentration is also reduced (so we have to study the cavitations risks then).

## 1.3 Scope and limitation of the study:

The study of flow pattern in multi-slope stepped spillways provides the knowledge of: Scope of the study:

- 1) Water flow depth: so that we can design the sidewall of the spillways accordingly.
- 2) Velocity of flows and pressure at the bottom of the steps: so that we can check the cavitations risks of damage of the channel.
- 3) Water pressure exerted on the underneath of the suppressor plate placed above the water surface at convex or concave regions of the spillways:- so that we can design the thickness of the suppressor plate (designed as a beam).
- 4) The recirculating vortices generated between the pseudobottom and the niches of the steps helps in reducing the velocity of flow thereby reducing the falling energy of the spillways.
- 5) The inception of air in the flow reduces the risks of cavitations damages to the channel and spillways and the stilling basin provided at the bottom of the spillways.
- 6) Studies of the flow patterns after the placement of different types of suppressor plates (circular and elliptical) have been done so that which of the suppressor plate gives minimum water flow depth in the spillway channel without cavitations risks.

## Limitations of the study:

- 1) The study is done over a multi-slope stepped spillways model (scale 1:15) of Rammam hydel Project II, west Bengal electricity board, situated at the River Engg. Laboratory of WRDTC, IIT Roorkee.
- 2) The height and width of the spillway model are 2m and 0.20m respectively.
- 3) The longitudinal slopes of the spillways channel are 34°32', 52°14' and 38° 50'.
- 4) The discharges allowed passing over the spillways for experiment is from 4 lps to 20 lps.

## 1.4 Methodology used in the studies:

- 1) Computation of discharges passing through the spillways by venturimeter measurement of flow.
- 2) The flow allowed passing through the spillways ranged from 4 lps to 20 lps.
- 3) Depth of flow was measured perpendicular to pseudobottom.
- 4) Rate of energy dissipations were computed by Chanson (1994) and Tatewar & Ingle (1996) and Knight & McDonold (1979) methods.
- 5) Then residual head at the end of spillways were computed.
- 6) The graphs of flow patterns and their AutoCAD drawings and the experimental photographs have also been prepared and presented in Annexes-B&C.
- 7) The distance x verses d<sub>90</sub> graphs, H<sub>res</sub>/H<sub>max</sub> verses H<sub>spill</sub>/d<sub>e</sub> graphs, Velocity V<sub>w</sub> verses d<sub>90</sub> graphs, and rate of flow q<sub>w</sub> verses d<sub>90</sub> graphs for different slopes have been prepared and presented in Annex-B.
- 8) The AutoCAD drawings of flow patterns of different discharges with the use of circular/elliptical or without suppressor plate have also been prepared and presented in Annex-C.

## 1.5 Organization of the dissertation:

Chapter-1: Chapter 1 deals with the introduction, which includes objectives, scopes, limitations, methodology, organizations and the findings of the study.

Chapter-2: Chapter 2 deals with the review of literature.

Chapter-3: Chapter 3 deals with the experimental study of flow pattern in multi-slope stepped spillways/Mono-slope stepped spillways which includes:

(Model laws, Suppressor plates, Experimental procedures, Experimental data, Analysis of results, Rate of energy dissipations, and Study of cavitations risks).

Chapter-4: Chapter 4 deals with the discussions of results and conclusions. References.

Appendix A: It deals with the hydraulic design of stepped spillways by different methods.

Appendix B: Table of calculation of  $d_{90}$  vs x ,  $d_{90}$ /h vs Fr ,  $H_{res}/H_{max}$  vs  $H_{spill}/d_c$  graphs with or without circular suppressor plate and Table of calculation of  $d_w$  vs  $V_w$  and  $q_w$  graphs

Appendix C: Drawings and photographs of flow patterns in multi and mono-slope stepped spillways

## 1.6 Experimental Problems of the study:

- (1) Lack of smooth transition at the entrance of the experimental stepped spillways model the flows showed irregularities in water depths d/s of it.
- (2) The improper positioning of the suppressor plate may also create the problems in the flow patterns.
- (3) The tips of nut and bolts projected from the suppressor plate also hindered the flow patterns in the channel.

## 1.7. Findings of the study:

The flow patterns of the multi-slope/mono-slope stepped spillways with or without suppressor plates are given in section 3.6.2.7 tables, 3.7,in graphs (Annex-B), in AutoCAD drawings & photographs (Annex-C) and energy dissipation rates by Tatewar & Ingle (1996) and Knight & McDonold (1979) in the multi-slope and mono-slope stepped spillways were found to be 87.4% and 89.9% respectively for the flow rate of 20 lps (or unit flow rate q =

0.10 m3/s/s). And similarly by Chanson (1994) the rate of energy dissipation were found to be 85.3% and 85.85% respectively for the same flow rate.

Among the circular and elliptical suppressor plates used in experiments, the elliptical suppressor plate (P=135mm) gave good result in uniformity of flow with smaller flow of depths after placement of it at the junction points. It means after placement of suppressor plate the flow depth decreases and obviously the concentration of air in the flow also decreases.

Multi-slope stepped spillways with the final or last channel slope steeper than the second last slope dissipated more head or energy compared to spillways channels with the milder slope than the second slope.

## CHAPTER- 2 REVEW OF LITERATURE

## Chapter-2

## **Review of literature**

## 2.1 Multi-slope stepped spillways:

Stepped spillway is a type of chute spillways whose face is provided with a series of steps, from near the crest to the toe. The main function of a spillway is to dispose of excess water from a reservoir safely and in addition to it the steps of a stepped spillways dissipate the falling energy of flow and reduces the size of dissipater generally provided at the toe of the spillways.

Multislope stepped spillways are those chute/spillways, which have more than one longitudinal channel slopes with different step geometries in their faces.

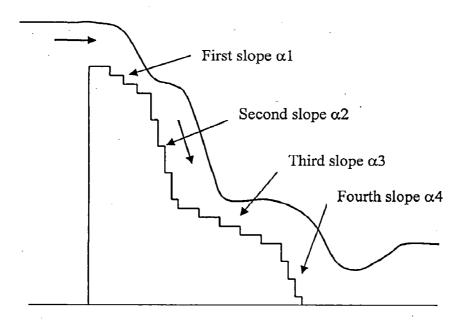



Fig. 2 Multislope stepped spillways: With four L-slopes

#### 2.2 Applications:

Stepped channels have been used since more than 3000 years. These are used for handling flood releases in storm water channels for river training works. Stepped cascades are utilized in water treatment plants (along or besides of rivers and streams to re-oxygenate waters with low dissolved oxygen contents). Stepped fountains have been constructed in different world cities for the aesthetical applications. Check dams are usually constructed as a succession of drop structures to reduce the steep gradient in mountain areas. It has also been used in Irrigation and power channels.

Stepped spillways are being used in different types of dams or weirs such as in masonry dam, concrete dam, gabion dam, debris dam, timber and crib dam, diversion weirs, tunnel spillways, unlined rock spillways etc in different countries (USA, UK, Brazil, South Africa, Norway, Australia, Canada etc).

Multi-slope stepped spillways are used in earthen dams, masonry dams etc and irrigation canal falls where there may be of different side of dam and country slopes.

## 2.3 Type of stepped channels:

- (A) According to geometry:
  - 1. Flat type steps
  - 2. Pooled steps
  - 3. Inclined steps

Flat steps are horizontal steps. Pooled steps are those where a raised sill is provided at the end of steps to make a pool for the flowing jet to impinge over it. The inclined steps are made inclined downstream or upstream according to requirements.

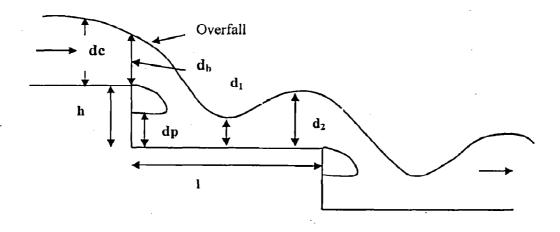



Fig.3. Nappe flow with flat slope

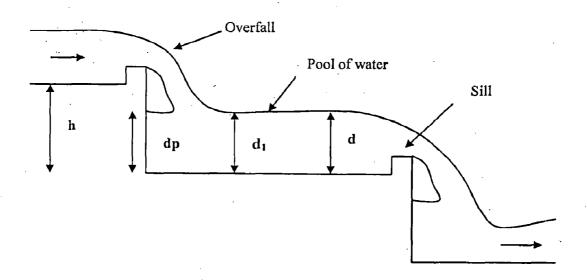



Fig.4.Nappe flow with pooled steps

- (B) According to construction materials:
  - 1. Concrete stepped spillways
  - 2. Gabion stepped spillways
  - 3. Earth dam spillways with pre-cast concrete blocks
  - 4. Stone block stepped spillways

Concrete stepped spillways are made to assist energy dissipation and help to reduce the size of downstream stilling basin. The step should be of high strength to withstand the impinging forces of flowing jets. Nowadays Roller Compacted Concrete (RCC) stepped spillways are being used because of easy to construct and economic in construction.

Gabion stepped spillways are extensively used in different weirs and channel linings. Their porosity, flexibility, low cost and stability and easiness for construction are the characteristics of popularity. They are made of local stones.

Earth dam spillways with pre-cast concrete blocks have been in use for its capacity to pass the design flows without failure. They are made of pre-cast concrete blocks of different geometry and configurations. The blocks are laid on a filter to protect the dam from erosion. Stone block stepped spillways are made of local stones. These are used to decrease the cost of the structures as a whole. These chutes release the seepage pressure and make the structure stable. These are easy to construct and maintain.

## 2.4 Flow regimes:

A stepped chute consists of an open channel with a series of steps or drops. The flow over stepped chute can be divided into three regimes: nappe, transition and skimming flow regimes.

## 2.4.1 Nappe (Jet) flow Regimes

#### 2.4.1.1 Introduction:

The nappe flow regime is defined as a succession of free falling nappies. The flowing waters bounce from one step to the next as a series of small falls. Along a chute with horizontal steps, a typical nappe flow situation consists of a series of free fall jets impinging on the next step and followed by a hydraulic jump. The flow energy is dissipated by jet breakups in air, by jet impact and mixing, on the step and by the formation of a hydraulic jump on the step. Stepped channels with nappe flows can be analyzed as a succession of drop structures.

There are three types of nappe flows occurring:

- 1.nappe flow with fully developed hydraulic jump for low flow rate and small flow depth.
- 2.nappe flow with partially developed hydraulic jump.
- 3.nappe flow without hydraulic jump.

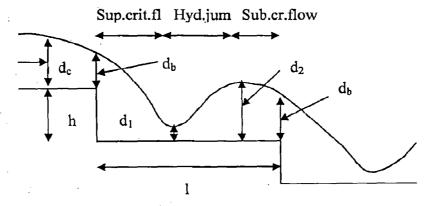



Fig. 5. Nappe flow regime with fully developed hydr.jump

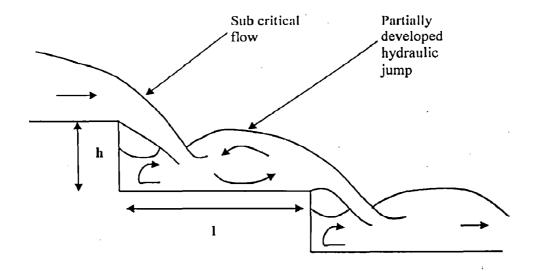



Fig.6.Nappe flow with partially developed hydraulic jump

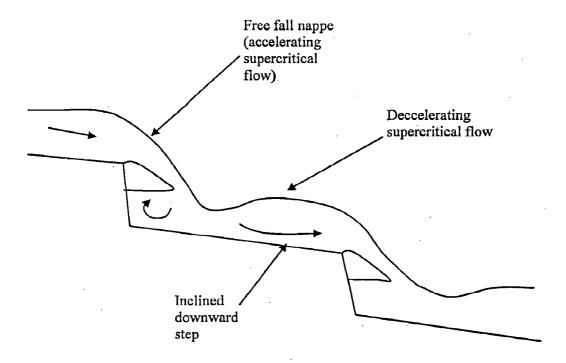



Fig.7 Nappe flow without hydraulic jump

A nappe flow without hydraulic jump might occur for relatively large discharges, before the starting of skimming flow.

## 2.4.1.2 Hydraulic characteristics of nappe flow:

The flow depth at the brink of step d<sub>b</sub> (Rouse 1936) is:  $d_b = 0.715 d_c$ (1) where d<sub>c</sub> is critical depth of flow.

Application of the momentum equation to the base of the over fall leads to (White 1943):

$$\frac{d_1}{d_c} = \frac{2^{\frac{1}{2}}}{\frac{3}{2^{\frac{3}{2}}} + \sqrt{\frac{3}{2} + \frac{h}{d_c}}}$$
(2)

where d1 is the pre jump depth.

The total head H<sub>1</sub> at section 1 can be expressed non-dimensionally as:

$$\frac{H_1}{d_c} = \frac{d_1}{d_c} + \frac{1}{2} \left(\frac{d_c}{d_1}\right)^2 \tag{3}$$

The flow depth and total head at the section 2 are given by the classical hydraulic jump equations:

$$\frac{d_2}{d_1} = \frac{1}{2} (\sqrt{1 + 8F_{r1}^2} - 1) \tag{4}$$

where  $d_2$  is post jump and  $F_{rl} = \frac{qw}{\sqrt{gd_1^3}}$ .

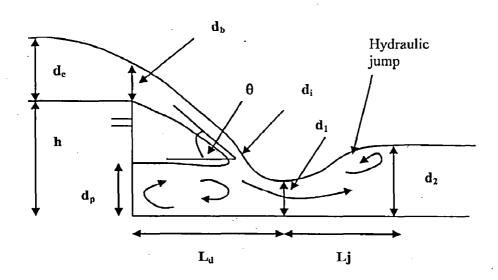



Fig.8 Flow at a drop structure

Rand (1955) reanalyzed several experiments and developed the following correlations:

$$\frac{d_1}{h} = 0.54 \left(\frac{d_0}{h}\right)^{1.275}$$

$$\frac{d_2}{h} = 1.66 \left(\frac{d_0}{h}\right)^{0.81}$$

$$\frac{d_p}{h} = \left(\frac{d_0}{h}\right)^{0.66}$$
(7)

$$\frac{\mathrm{dp}}{\mathrm{h}} = \left(\frac{\mathrm{dc}}{\mathrm{h}}\right)^{0.66} \tag{7}$$

$$\frac{L_d}{h} = 4.3(\frac{d_c}{h})^{0.81} \tag{8}$$

where  $d_p$ = height of water in pool behind the over fall jet  $L_d$ = distance from the drop wall to the position of the depth d1

Using equations (1) and (7) the nappe thickness di, the nappe velocity  $V_i$  and the angle  $\theta$  of the nappe with the horizontal can be correlated by:

$$\frac{d_1}{h} = 0.687(\frac{d_c}{h})^{1.483} \tag{9}$$

$$\frac{V_i}{V_c} = 1.455 \left(\frac{d_c}{h}\right)^{-0.483} \tag{10}$$

$$\tan \theta = 0.838 \left(\frac{d_c}{h}\right)^{-0.586} \tag{11}$$

$$\frac{L_{\rm j}}{d_{\rm l}} = 8[(\frac{d_{\rm c}}{d_{\rm l}})^{\frac{3}{2}} - 1.5]$$
 (12) (Hager et al 1990)

Combining equations (8)& (12) a condition of nappe flow regime with fully developed hydraulic jump is deduced. A nappe flow regime with fully developed hydraulic jump occurs for discharges smaller than a critical value defined as:

$$(\frac{dc}{h})char = 0.0916(\frac{h}{l})^{-1.276} \tag{13}$$

where for nappe situation with fully developed hydraulic jump occurs for dc/h < (dc/h)char. Equation (13) was obtained for: 0.2 < h/l < 6. For steep slopes (h/l > 0.5) the fully developed hydraulic jump nappe flow can occur only for low flow rates.

For supercritical over falls (i.e. nappe flow without hyd.jump) fig.14, the application of the momentum equation at the base of the over fall, using same method as White (1943) leads to the result:

$$\frac{d_1}{d_c} = \frac{2F_r^{-\frac{2}{3}}}{1 + \frac{2}{F_r^2} + \sqrt{1 + \frac{2}{F_r^2}(1 + \frac{h}{d_c}F_r^{\frac{2}{3}})}}$$
(14)

where F<sub>r</sub> is the Froude no of the supercritical flow upstream of the over fall brink.

## 2.4.1.3 Design of chute with nappe flow regime:

Stephenson (1991) suggested that the most suitable conditions for nappe flow situations are:

$$\tan \alpha = \frac{h}{l} < 0.20 \tag{1}$$
 and 
$$\frac{dc}{l} < \frac{1}{2} \tag{2}$$

where  $\alpha$  is the slope of channel.

The two equations satisfy the equation,

$$(\frac{dc}{h})char = 0.0916(\frac{h}{l})^{-1.276}$$
 (3)

i.e. the flow situation satisfying both equations (1)&(2) is a nappe flow regime with fully developed hydraulic jump.

These recommendations imply relatively large steps and flat slopes. This situation is not often practical, but it may apply to relatively flat spillways, natural etreams, creeks, and river training and storm waterways. For step channels or small step heights, a skimming flow regime is more desirable and will achieve large rate energy dissipation.

(A) Chamani and Rajaratnam (1994) have presented a technical note of a method to estimate the energy loss on stepped spillways for the jet flow regime, which occurs when the ratio of the critical depth, dc to the height of the step,h is less than approximately 0.8. It introduces the concept of  $\alpha$  the proportional energy loss per step and using the extensive experimental results of Horner  $\alpha$  was evaluated. It was found that  $\alpha$  is a function of dc/h and h/l, where l is the length of step and an equation has been developed that describes this variation. It was also found that the energy loss on a stepped spillway with a large number of steps could be very significant in the jet flow regimes. It also appears that for skimming flow, which occurs for dc/h larger than about 0.8, the average energy loss per step would be less than that of jet flow.

The relative energy loss  $\Delta E/Eo$  with dc/h for a stepped spillway with several steps, where  $\Delta E$  is the energy loss and Eo is the total energy at the base of the drop, assuming no energy loss is:

$$\Delta E/Eo = 1 - \frac{\{(1-\alpha)^{N}[1+1.5(dc/h)] + \sum_{i=1}^{N-1}(1-\alpha)^{i}\}}{N+1.5(dc/h)}$$
(1)

Where  $\alpha$  = proportional energy loss per step

N = total no. of steps of spillways of height H<sub>spill</sub>

 $d_c = critical depth$ 

Using the experimental results of Horner (1969) for stepped spillways and Moore (1943) for a single step it is evaluated that  $\alpha$  decreases continuously as dc/h increased. It was also found that the variation of  $\alpha$  with h/l was described well by the equation;

$$\alpha = a-b \log (d_c/h) \tag{2}$$

Where, the coefficients a = 0.30-0.35 h/l & b = 0.54 + 0.27 h/l

Equation (1) explains that for relatively smaller value of dc/h,  $\alpha$  is large and  $(1-\alpha)^N$ . Becomes negligible when the no. of steps N is large. Under such condition the energy loss  $\triangle$  E/Eo approaches to unity. This approach is supported by observations of Horner (1969) where in case of 30 steps d<sub>c</sub>/h =0.3 and relative energy loss is about 0.97.

It appears that for skimming flow, which occurs for dc/h larger than about 0.8, an analysis of observations of Sorensen (1985) as well as equation (2) indicate that the average energy loss per step would be less than for jet flow.

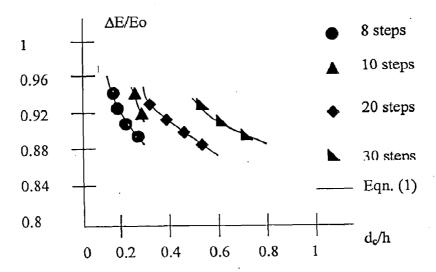



Fig 9. Variation of relative energy loss over several steps for h/l =0.421

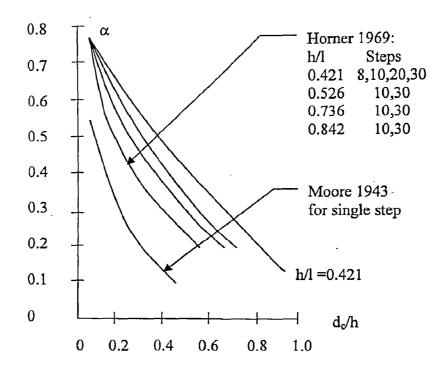



Fig. 10 Consolidated results of variation of a with  $d_c/h$  for Horner and Moore

(B) Yasuda & Ohtsu (1999) presented a technical paper to define the upper limit of rnappe flow regime and lower limit for skimming flow regime. According to them the equation to define the flows are:

$$d_c/h = \frac{(1.4 - h/l)^{0.26}}{1.4}$$

(1) for upper limit of nappe flow regime

 $d_c/h = 0.862 (h/1)^{-0.165}$ 

(2) for lower limit of skimming flow regime

and these equations appear to be effective for the chute inclination lower than 53°.

(C) Detlef Aigner (2000) German presented a technical paper on the hydraulic design of pooled step cascades. If the steps of the cascades are designed as small stilling basins to dissipate the energy, they are called pooled cascades. The hydraulic design are as follows:

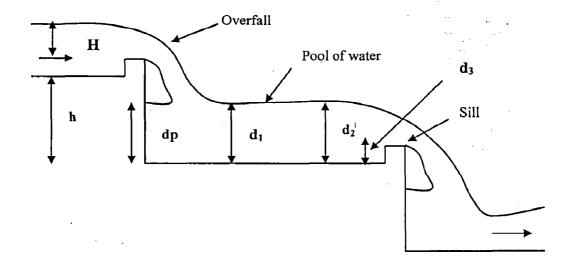



Fig.11.Nappe flow with pooled steps

If  $\alpha$  is the slope of the step;

$$\tan \alpha = h/l \tag{1}$$

and dc is the critical depth;

$$d_{c} = \sqrt[3]{\frac{q^{2}}{g}}$$
 (2)

specific discharge;

$$q = \frac{2}{3}Cd\sqrt{2g}H^{\frac{3}{2}}$$
 (3)

The discharge coeff. C<sub>d</sub> (sharp crested weir, Bollrich 2000) should include the coef. of approach velocity.

$$C_{\rm d} = 0.615 \left(1 + \frac{1}{1000H + 1.6}\right) \left\{1 + 0.5\left(\frac{H}{H + d3}\right)^2\right\} \tag{4}$$

The velocity  $V_1$  at the downstream end of the jet is calculated from the enegy equation without loss of energy as:

$$V_1 = \sqrt{\left\{d3 + h + H - d_1 + \frac{dc^3}{2(d3 + H)^2}\right\}}$$
 (5)

$$d_1 = \frac{q}{V_1} \tag{6}$$

The hydraulic jump is assumed to be developed fully and calculated with the conjugate depth equation (Bollrich 2000):

$$\frac{d^2}{dt} = \frac{1}{2} (\sqrt{1 + 8(\frac{d_0}{dt})^3} - 1)$$
 (7)

Height of the weir d<sub>3</sub> plus a 5% safety margin for d<sub>2</sub> amounts to:

$$d_3 = 1.05d_2 - H \tag{8}$$

Length of floor L;

$$L = L_d + L_i \tag{9}$$

Where  $L_d$  = length of drop &  $L_j$  =Length of jump. Length of drop  $L_d$ ,

$$L_{d} = 1512 \left(\frac{d_{3} + h}{H}\right)^{0.556} H \tag{10}$$

Length of jump Li,

$$L_i = 6d_2 \tag{11}$$

The above-described equations allow to design pooled step cascades with full hydraulic jump.

(D) Chanson (1994) has presented a report for the energy dissipation in nappe flow regime. He has written that in nappe flow regimes of chute the total head loss along the chute  $\Delta H$  equals the difference between the maximum head available  $H_{max}$  and the residual head at the downstream end of the channel  $H_1$  ie

$$\frac{H_1}{d_c} = \frac{d_1}{d_c} + \frac{1}{2} (\frac{d_c}{d_1})^2$$
 (1)

In dimensionless form the head loss yields:

$$\frac{\Delta H}{H_{\text{max}}} = 1 - \left\{ \frac{\frac{d_1}{dc} + \frac{1}{2} \left(\frac{d_c}{d_1}\right)^2}{\frac{3}{2} + \frac{H_{\text{max}}}{d_c}} \right\}$$
 (2) For ungated chute

$$\frac{\Delta H}{H_{\text{max}}} = 1 - \left\{ \frac{\frac{d_1}{d_c} + \frac{1}{2} \left(\frac{d_c}{d_1}\right)^2}{\frac{H_{\text{dam}} + H_o}{d_c}} \right\}$$
 (3) for gated chute

Where  $H_{dam}$ = dam crest head above downstream toe  $H_o$ =reservoir free surface elevation above chute crest For an ungated chute, the maximum head available and the dam height are related by:  $H_{max}$ =  $H_{dam}$ +1.5d<sub>c</sub>

For a gated channel,

 $H_{\text{max}} = H_{\text{dam}} + H_{\text{o}}$ 

The residual head or energy is dissipated at the toe of the chute by a hydraulic jump in the dissipation basin. We have also,

$$\frac{d_1}{h} = 0.54 \left(\frac{d_c}{h}\right)^{1.275} \tag{4}$$

Combining equations (4)&(2), the total energy loss becomes:

$$\frac{\Delta H}{H_{\text{max}}} = 1 - \left[ \frac{0.54 \left(\frac{d_c}{h}\right)^{0.275} + \frac{3.43}{2} \left(\frac{d_c}{h}\right)^{-0.55}}{\frac{3}{2} + \frac{H_{\text{dam}}}{d_c}} \right]$$
 (5) for ungated chute

$$\frac{\Delta H}{H_{max}} = 1 - \left[ \frac{0.54 \left(\frac{d_e}{h}\right)^{0.275} + \frac{3.43}{2} \left(\frac{d_e}{h}\right)^{-0.55}}{\frac{H_{dam} + H_o}{d_e}} \right]$$
 (6) for gated chute

from the fig.26, given below, it indicates that most of energy is dissipated on the step channel for large numbers of step and for a given dam height the rate of energy dissipation decreases when the discharge increases.

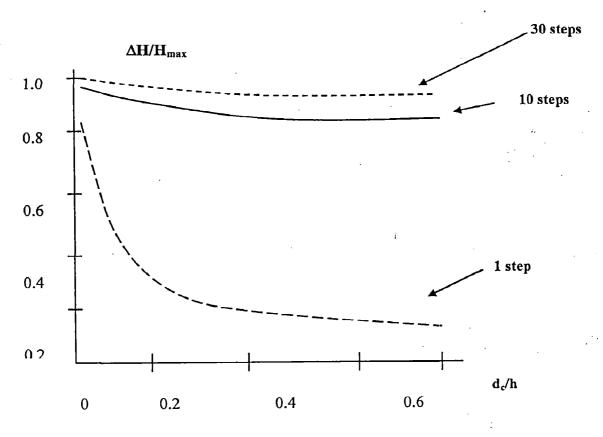



Fig.12 Energy dissipation in nappe flow regime-comparision between equations (for ungated & gated chute) by CHANSON and experimental data (MOORE 1943,RAND 1955,HORNER 1969,STEPHENSON 1979a).

Equations (5),(6) may be applied with a reasonable accuracy to most nappe flow situations on horizontal step chutes& are for fully developed hydraulic jumps.

Chanson has also written that a nappe flow regime with fully developed hydraulic jump occurs for a discharge smaller than a critical value defined as;

$$(\frac{dc}{h})$$
char = 0.0916 $(\frac{h}{l})^{-1.276}$  (7)

Where 1 is the length of step! Nappe flow situations with fully developed hydraulic jump occur for  $\frac{d_e}{h} < (\frac{d_e}{h})$ char.

Equation (7) was obtained for: 0.2 < h/l < 6.

(E) Schoklitch (1937) has presented a note for the designing the steps and estimating energy dissipations in nappe flow regime, which are as flows:

$$\frac{h}{l} = \tan \alpha = [3 + 4.3(\frac{d_e}{h})^{0.81}]^{-1}$$
 (1)

$$\frac{\Delta E}{E} = 1 - \left[ \frac{\frac{d_1}{d_c} + \frac{1}{2} (\frac{d_c}{d_1})^2}{\frac{3}{2} + \frac{H_{\text{spill}}}{d_c}} \right]$$
 (2)

$$\frac{d_1}{h} = 0.54 \left(\frac{d_c}{h}\right)^{1.275} \tag{3}$$

(F) Stephenson (1991) has presented a note for fully developed hydraulic jump in a nappe flow regime, which are as;

$$\tan \alpha < 0.2 \tag{1}$$

$$\frac{d_c}{h} < \frac{1}{3} \tag{2}$$

#### 2.4.2 Transition flow regimes:

Chanson (2002) has presented a technical note for the method of predicting the flow characteristics of transition flow regime on stepped spillways. He writes that the type of flow regime (ie, nappe, transition & skimming flow) is a function of the discharge and step geometry. The low flows behave as a succession of free jets (nappe flow) while large discharges skim over pseudo-bottom formed by the step edges. For a range of intermediate flow rates, a transition flow regimes take place. The dominant feature is stagnation on the horizontal step face associated with significant splashing and a chaotic appearance. Transition flows are then characterized by significant air entrainment and flow instabilities.

The upper limit of nappe flow regime may be approximated as:

$$\frac{d_c}{h} = 0.89 - 0.4(\frac{h}{l})$$
 (1) (NA-TRA)

The lower limit of skimming flow regime may be estimated as:

$$\frac{d_c}{h} = 1.2 - 0.325(\frac{h}{l})$$
 (2) (TRA-SK)

Where dc is critical depth, h is the step height and l is the step length; NA is nappe flow, TRA is transition and SK is skimming flow regime. These equations (1) and (2) were deduced for flat horizontal steps with 0.05 < h/l < 1.7; there is no information on their validity outside this

range. These equations (1)&(2) characterize a change in flow regime for uniform or quasiuniform flows only; for rapidly varied flows, the results are in accurate.

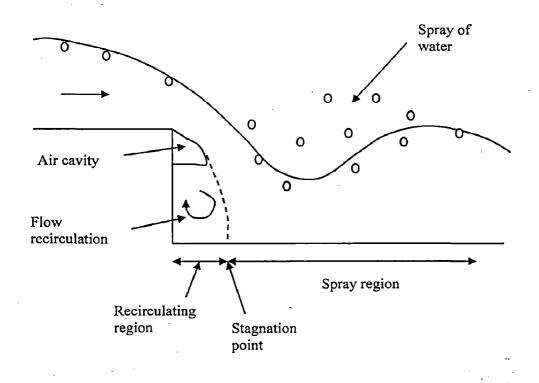



Fig.13.Transition flow regime on steep slope

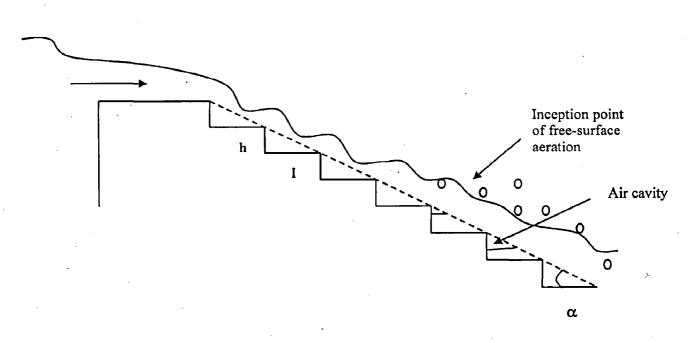



Fig.14 Transition flow on steep slope

## 2.4.3 Skimming Flow Regimes

#### 2.4.3.1 Introduction:

Depending on the discharge value, for a given step height and channel slope, two different hydrodynamic behaviors can be observed in stepped channels. In particular, for low discharges and large steps, a nappe flow occurs and for higher discharges and smaller steps the water flow down a stepped channel as a coherent stream, skimming over the steps. In the skimming flow, the external edges of steps form a pseudo-bottom over which the water skims. Beneath the pseudo-bottom, recirculating vortices develop, filling the zone between the main flow and steps. The vortices are maintained through the transmission of shear stress from the fluid flowing past the edges of the steps. In addition small-scale vorticity is generated continuously at the corner of the step bottom. Most of the flow energy is dissipated to maintain the circulation of the recirculation vortices.

On stepped chutes with skimming flow regime, the flow is highly turbulent and the condition of free-surface aeration is satisfied.

Large quantities of air are entrained along the channel. The free surface aerated flow region where the flow over the chute is smooth and glassy. Next to the boundary, turbulence is generated and the boundary layer grows until the outer edge of the boundary layer reaches the free surface. When the outer edge of the boundary layer reaches the free surface, the turbulence initiates natural free surface aeration. The location of the start of air entrainment is called the point of inception.

Downstream the inception point, a layer containing a mixture of both air and water extends gradually through the fluid. Far downstream, the flow will become uniform and for a given discharge, any measure of flow depth, air concentration and velocity distribution will not vary along the chutes. This region is defined as the uniform equilibrium flow region.

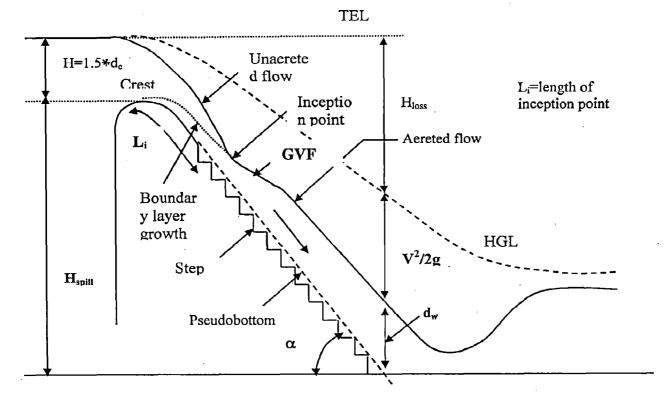



Fig.15. Section of stepped spillways showing flow patterns in skimming flow regime

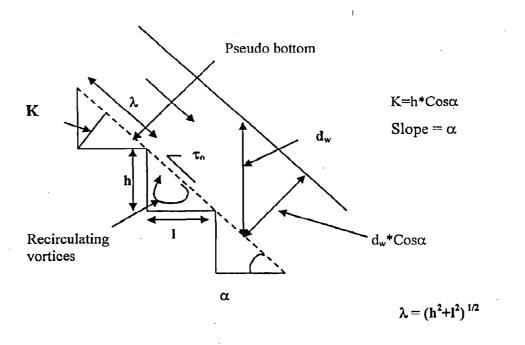



Fig.16.Skimming flow with stable cavity recirculation

## 2.4.3.2 Onset of skimming flow:

For small discharges and flat slopes, in the stepped chutes, the water flows as a nappe flow regime and an increase of discharge or of the slope of channel might induce the apparition if skimming flow regime.

The onset of skimming flow is defined by the disappearance of cavity beneath the free falling nappes, the waters flowing as a quasi-homogeneous stream. The phenomenon presents some similarities with the cavity filling or submergence of aeration devices and ventilated cavities. Two different ways to define the onset of skimming flow were proposed by Chanson (1994). In particular, a first relation (Chanson 1994) was obtained by means of a fitting procedure of the experimental data:

$$\frac{(dc)onset}{h} = 1.057 - 0.465 \frac{h}{l} \tag{1}$$

and it is valid for dc > (dc)onset & for slopes between 0.2 1.25.

The second relation (Chanson 1996) was derived by imposing that, at the onset of skimming flow, the air cavities beneath the falling nappe disappear and by using simplified jet trajectory calculations.

$$\frac{(dc)onset}{h} = \frac{Fb^{\frac{2}{3}}\sqrt{1 + \frac{1}{Fb^{2}}}}{\sqrt{1 + 2Fb^{2}(1 + \frac{1}{Fb^{2}})^{\frac{3}{2}}(1 - \frac{\cos\theta b}{\sqrt{1 + \frac{1}{Fb^{2}}}})}}$$
 (2)

in which Fb is the Froude no at the step edge and  $\theta b$  is the angle of streamline falling from the step that at the onset of skimming flow should be equal to the channel slope.

According to Boes (2000) skimming flow sets in for ratios larger than,

$$\frac{dc}{h} = 0.91 - 0.14 \tan \alpha \tag{3}$$

where  $\alpha$  is channel slope.

Chamani and Rajaratnam (1999 Sept) proposed two equations for the onset of skimming flow, which are as under:

The upper limit of the nappe flow domain is,

$$\frac{h}{l} = 0.405 \left(\frac{dc}{h}\right)^{-0.62} \tag{4}$$

While the onset of skimming flow for steeply sloped structures (h/l > 1) is given by:

$$\frac{h}{l} = \sqrt{0.89[(\frac{dc}{h})^{-1} - (\frac{dc}{h})^{-0.34} + 1.5] - 1}$$
 (5)

Equations (4) & (5) have been derived through some empirical relationships (Chamani & Rajaratnam 1995 and 1955). Equation (4) has been obtained by imposing that the length (in other words, the inner side of jet coincides with the tip of the step) and equation (5) has been obtained by observing that, in incipient skimming flow, the jet becomes parallel to the spillways slope.

However, the authors observed that equation (4) under estimates the experimental data and hence its applicability appears to be limited, while equation (5) provides a rather good fitting

of their data. This observation points out that the application range of this methodology is too narrow and probably is strongly related to their experimental data.

From the previously recalled studies, it appears that the hydraulic behavior of stepped spillways is not clearly understood and that the available experimental data are very difficult to compare with each other.

Rajaratnam (1990) has presented a technical note for the method of predicting the characteristics of skimming flow on stepped spillways. For a stepped spillway with a slope of 1V:0.78(H), the fluid friction coefficient,  $C_f$  was evaluated using the experimental results of Sorenson and found to be 0.18. An estimate has also been made of energy loss on stepped spillways for skimming flow.

The characteristics or onset of skimming flow and estimate of energy loss has been given below as:

#### Onset of skimming flow:

At the onset of skimming flow, the range of h/l from 0.4 to 0.9, dc/h was approximately equal to 0.8. This means that for dc/h greater than 0.8, the skimming flow occurs. And for dc/h less than 0.8, one would expect to get nappe flow. After experimental observations the nappe flow occurred for dc/h less than 0.33.

#### Energy loss:

An estimate of energy loss for skimming flow in stepped spillway is as follows:

$$E=y_0 + \frac{Vo^2}{2g}$$
 (1)

Average Reynolds's shear stress:  $\tau = yo\gamma \sin \alpha$  (2)

And again, 
$$\tau = C_{fp} \frac{Vo^2}{2}$$
 (3)

Where  $C_f$ =coeff.of fluid friction ( $C_f$ =f/4,f=Darcy friction factor); Vo=constant mean velocity;  $\rho$ =mass density of fluid; yo=normal depth;  $\alpha$ =slope of stepped spillways. From equation (2)&(3),

$$Cf = \frac{2yo^3g\sin\alpha}{q^2} \tag{4}$$

Where q = discharge per unit width of spillways.

From equations (1)&(4),

$$E = \left(\frac{Cfq^2}{2g\sin\alpha}\right)^{\frac{1}{3}} + \left(\frac{q\sin\alpha}{Cf\sqrt{2g}}\right)^{\frac{2}{3}} \tag{5}$$

If yo' and Vo' =corresponding depth and velocity at the toe of a smooth spillways without steps,

$$E' = yo' + \frac{Vo^2}{2g} \tag{6}$$

and one can write an equation similar to (5) with Cf' replacing Cf, where Cf'= the coeff.of skin friction for the smooth spillways. Sorenson's test (B series) on a smooth spillway give a value of 0.0065 for Cf'. If  $\Delta E$  is defined as:

$$\Delta E = E' - E \tag{7}$$

 $\Delta E$  gives the energy loss caused by the steps over that caused by the smooth spillways face. If the relative energy loss is defined as  $\Delta E/E$ , it can be shown that,

$$\frac{\Delta E}{E'} = \frac{(1-A) + \frac{Fo^2}{2} \frac{(A^2 - 1)}{A^2}}{1 + \frac{Fo^{2}}{2}}$$
(8)

Where  $A = (\frac{Cf}{Cf})^{\frac{1}{3}}$ ; and Fo'= the Froude no. at the toe of the smooth spillways. Taking  $C_f = 0.18$  and Cf' = 0.0065 then A = 3 and for relatively large of Fo',  $\Delta$  E/E is approximately equal to  $\frac{A^2 - 1}{A^2}$ , which further reduces to 8/9 i.e. 88.88%. This indicates the considerable amount of energy loss that can be produced by steps, as found by Sorenson.

Ohtsu and Yasuda (1997) proposed a different approach to the problem by introducing a transition regime that appears to fit the available experimental data, even if some uncertainties remain.

Recently, their analysis has been improved, producing two equations that can be used to define the upper limit for nappe flow regime and the lower limit for the skimming flow regime (Yasuda and Ohtsu (1999)). The proposed equations are:

$$\frac{dc}{h} = \frac{(1.4 - \frac{h}{l})^{0.26}}{1.4} \tag{1}$$

$$\frac{dc}{l} = 0.862(\frac{h}{l})^{-0.165} \tag{2}$$

and they appear to be effective for chute inclination angles lower than 55°.

## 2.4.3.3 Transition from nappe to skimming flows:

## Boes and Minor (2000) & Boes and Hager (2003):

The transition from nappe to skimming flow can be expressed by the ratio of critical flow depth, dc and step height h. According to Boes(2000), skimming flow sets in the ratios larger than,

$$\frac{dc}{h} = 0.91 - 0.14 \tan \alpha \tag{1}$$

where  $\alpha$  is the spillway channel slope. It is an approximate agreement with the transition functions given by

Rajaratnam(1990), Stephenson(1991), Yasuda&Ohtsu(1999), Chanson(1996), Tatewar&Ingle(1999) and Matos(2001) and is applicable for chute inclim=nation angles of approximately  $25^{\circ}$  <  $\alpha$  <  $55^{\circ}$ .

A certain risk of acoustic noise due to vibrations of the falling jets exists in the nappe flow regime, especially for wide spillways where the cavity below the nappe is not aerated over the entire width. The nappe aeration at the free surface is rather large due to the high degree of turbulence caused by the macro roughness of the steps, so that the excessive sub pressures beneath the falling nappe are likely to occur. Further studies on the pressure distribution for the transition between nappe and skimming flows are recommended.

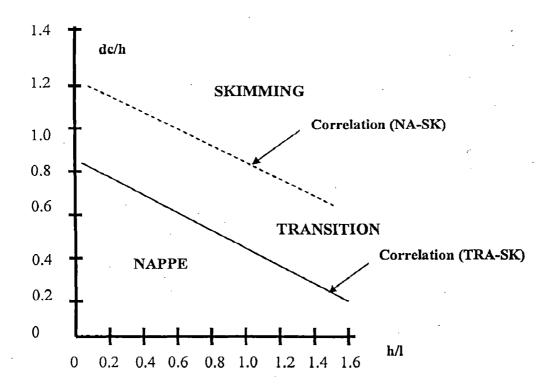



Fig.17 Flow conditions for the transition from nappe to skimming flow-Summary of experimental data (after CHANSON 2001)

#### 2.5 Boundary layer growth:

(a) Chanson (1994): From the crest of the chute or from the upstream gate, a bottom turbulent boundary layer develops. The location where its outer edge reaches the free surface is called the inception point of air entrainment. Downstream of that location, the turbulence next to the free surface become large enough to initiate natural free surface aeration. The characteristics at the inception point are Li and di: Li = the distance from the start of the growth of boundary layer and di = the depth of flow at the point of inception.

On stepped spillways, the position of the point of inception is primarily the function of the discharge and chute roughness (Keller & Rastogi 1977), suggested for smooth spillway:

$$\frac{Li}{Ks'} = 13.6(\sin\alpha)^{0.0796} Fr^{0.713} \tag{1}$$

$$\frac{di}{Ks'} = \frac{0.223}{(\sin \alpha)^{0.04}} Fr^{0.643} \tag{2}$$

where Froude no.F =  $\frac{qw}{\sqrt{g \sin \alpha (Ks')^3}}$  and Ks' is skin roughness height and

$$\frac{di}{Li} = 0.0212(\sin\alpha)^{0.11} \left(\frac{Li}{Ks'}\right)^{-0.10} \tag{3}$$

Chanson reanalyzed the flow properties at the point of inception of model experiment of stepped spillways and found the equations (1), (2), (3) for stepped spillways as:

$$\frac{Li}{Ks} = 9.719(\sin\alpha)^{0.0796} Fr^{0.713} \tag{4}$$

$$\frac{di}{Ks} = \frac{0.4024}{(\sin \alpha)^{0.04}} Fr^{0.592} \tag{5}$$

where Froude no.F =  $\frac{qw}{\sqrt{g \sin \alpha (Ks)^3}}$  and Ks = h cos  $\alpha$  and

$$\frac{di}{Li} = 0.06106(\sin\alpha)^{0.133} \left(\frac{Li}{Ks'}\right)^{-0.17} \tag{6}$$

Indeed the rate of boundary layer growth on stepped chute (eqn. (6)) is approximately 2.8 times larger than on smooth channels (eqn. (3)).

For a given channel geometry, equation (4) implies that the location of the inception point moves downstream with increasing discharge.

The results of equation (4) and (5) after the experimental model test by Chanson can be shown in the following figs. as:

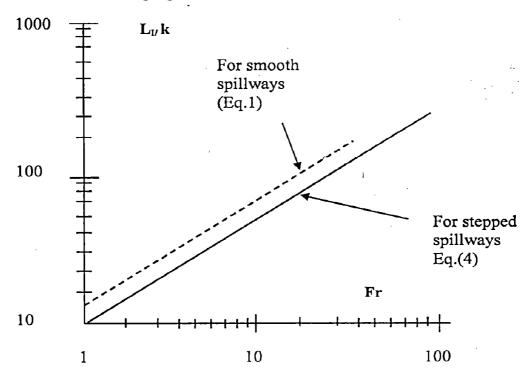



Fig.18. Characteristics of the inception point of air entrainment (based on experiments by BEITZ&LAWLESS 1992,BINDO et al 1993,FRIZEL&MEFFORD 1991,SORENSON 1985,TOZZI 1992) and equation by CHANSON 1994.

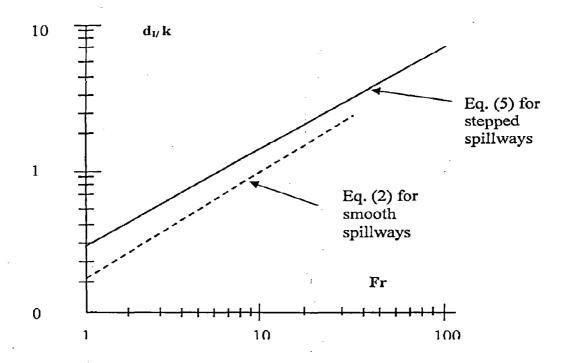



Fig.19 Characteristics of the inception point of air entrainment (based on experiments by BINDO et al 1993, FRIZEL&MEFFORD 1991, SORENSON 1985, TOZZI 1992) and equation by CHANSON 1994.

Definition of the roughness height Ks for skimming flow regime (equation and fig. are given below):

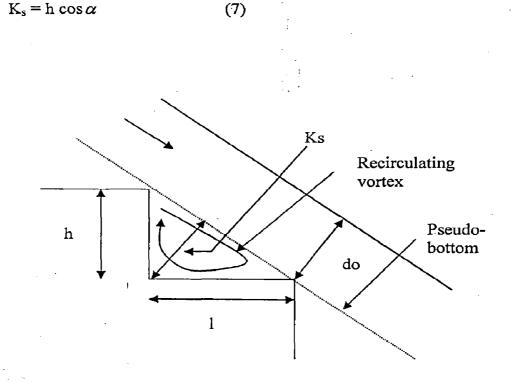



Fig. 20 Definition sketch of roughness height Ks

#### (b) Boes and Minor (2000):

Air entrainment: Where the turbulent boundary layer reaches the free surface, the degree of turbulence is large enough to entrain air into the water flow at the so called inception point of air entrainment. For the designer of the stepped chute knowing the location of inception point is important to have an idea of unaerated spillways zone, which is potentially prone to cavitations damage due to large sub pressures. According to Boes (2000), the unaerated or black water length Li from the spillway crest to inception point can be described by:

$$\frac{Li}{Ks} = 9.72(Fr)^{0.86} \tag{1}$$

where  $K_s$ =h  $\cos \alpha$  denotes the roughness height perpendicular to pseudo-bottom

$$Fr = \frac{qw}{\sqrt{g \sin \alpha h^3}}$$
 is a roughness Froude no. containing the relevant parameters of

stepped spillway flow such as unit discharge qw, step height h and chute inclination angle  $\alpha$  and g is the acceleration due to gravity. The above equation can be written as in dimensional form:

$$Li = 9.72 \frac{qw^{0.86}\cos\alpha}{g^{0.43}(\sin\alpha)^{0.43}h^{0.29}}$$
 (2)

The small influence of step height becomes obvious, where as it can be seen that the unit discharge predominantly determines the location of the inception point.

If in the case of high velocities the hydrodynamic pressures on the step surfaces or at the step corners fall below the vapor pressure, cavitations might cause severe damage to the spillway concrete. The placement of an aerator to artificially entrain air is therefore of interest in the black water region of stepped spillways. This can also be achieved by bridge-supporting piles downstream of the spillway crest. Further research on the hydrodynamic pressure fluctuations should shed more light on the cavitations risk potential of stepped spillways, particularly of unaerated spillways zone.

#### 2.6 Uniform flow conditions:

If the chutes are long enough, uniform flow conditions are reached before the end of inclined chute (Smooth or Stepped).

The local air concentration, C is defined as the volume of air per unit volume of air and water. The characteristic water flow depth dw is defined as:

$$dw = \int_{0}^{y90} (1-C)dy \tag{1}$$

where y is measured perpendicular to the channel surface and y90 is the depth where the local air concentration is 90%. The characteristic depth dw is defined from 0 to y90: above 90% of air concentration, air concentration and velocity measurement are not accurate (Chanson 1992a) & the integration of the air concentration above y90 becomes meaningless.

The depth averaged mean air concentration Cmean is defined as:

$$Cmean = \frac{1}{y90} \int_{0}^{y90} Cdy \tag{2}$$

and combining with equation (1), this yields:

$$Cmean = 1 - \frac{dw}{y90} \tag{3}$$

The mean flow velocity is defined as:

$$Uw = \frac{qw}{dw} \tag{4}$$

where qw is the water discharge per unit width. The characteristic velocity V90 is defined as that at y90.

#### 2.7 Flow aeration:

#### (a) Chanson (1994):

The amount of air entrained within the flow is defined usually in terms of the depth averaged mean air concentration (Cmean):

$$\frac{qair}{qw} = \frac{Cmean}{(1 - Cmean)} \tag{1}$$

The mean equilibrium air concentration Ce is a function of slope only (not of discharge, flow depth, and roughness (Wood 1983, Chanson 1993a)). For slopes flatter than 50°, the average air concentration may be estimated as:

$$Ce=0.90 \sin \alpha \tag{2}$$

The quantity of air entrained on rock fill channels was found to be related as:

Ce=1.44 
$$\sin \alpha$$
 -0.08 (3 which is similar to equation (2).

The plotting eqn 2 as Ce vs channel slope (From model data of Straub & Anderson 1958, prototype data (Aivazyan 1986) and rock fill channel (Knauss 1979) is given below in fig.23.

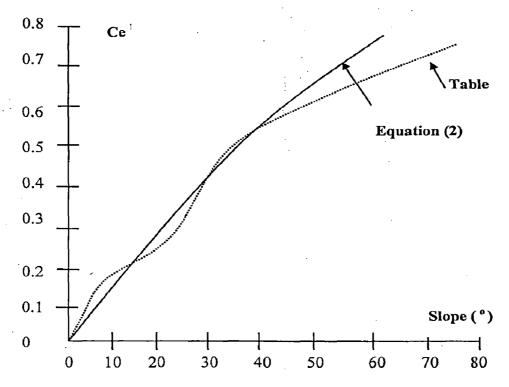



Fig 21 Uniform equilibrium air concentration Ce as a fn. Of chute slope α-Model data (STRAUB &ANDERSON 1958), prototype data (AIVAZYAN 1986) and equation Ce=0.9\*sinα and Table of average air concentration in uniform self aerated flows

#### (b) Hager (1991):

Mean air concentration Cmean,

$$Cmean = 0.75(\sin \alpha)^{0.75} \tag{1}$$

To check the validity of this equation for stepped spillways, the writer calculated the aerated flow depth and compared with the experimental data of Sorenson 1985, and Diea-Cascon et al 1991. The aggreement was found to be good.

# (c) Chanson (2001):

Void fraction or air concentration, C

$$C = 1 - \tanh^2(K' - \frac{y}{2D'y90})$$
 (1)

where C=void fraction or air concentration

tanh=hyperbolic tangent function

y =distance normal to the pseudo-bottom formed by the step edges y90 =distance where C=90%

D' =dimensionless turbulent diffusibility

K'=integration constant

D' and K' are the functions of mean air content Cmean only (table below) where Cmean is the depth averaged air content defined in terms of y90:

$$Cmean = \frac{1}{y90} \int_{0}^{y90} Cdy \tag{2}$$

The uniform equilibrium mean air content Ce is a function of the slope  $\alpha$  only. For slope less than  $50^{\circ}$ , it may be estimated Ce as:

$$Ce = 0.9 \sin \alpha \tag{3}$$

Table:

| SN | Cmean | D'     | K'      |
|----|-------|--------|---------|
| 1  | 0.01  | 0.0073 | 68.7045 |
| 2  | 0.05  | 0.0366 | 14.0029 |
| 3  | 0.1   | 0.0731 | 7.1652  |
| 4  | 0.15  | 0.1097 | 4.8852  |
| 5  | 0.2   | 0.1465 | 3.7400  |
| 6  | 0.3   | 0.2232 | 2.5670  |
| 7  | 0.4   | 0.3110 | 1.9340  |
| 8  | 0.5   | 0.4230 | 1.5100  |
| 9  | 0.6   | 0.5870 | 1.1780  |
| 10 | 0.7   | 0.8780 | 0.8970  |

# 2.8 Flow properties:

Assuming a long stepped channel and if the uniform flow conditions are reached before the end of the channel, the uniform flow depth is deduced from the momentum equations, i.e. the weight component in the flow direction equals the bottom friction. It yields:

$$\tau o P w = \rho w g A w \sin \alpha \tag{1}$$

where Pw is the wetted perimeter,  $\varpi$  is the average shear stress between the skimming flow and the recirculating fluid underneath i.e. the men shear stress along the pseudo-bottom,  $\rho w$  is the water density, g is the gravity constant, Aw is water flow cross section area.

The average shear stress  $\tau o$  is defined as for open channel flow (Henderson 1966, Streeter & Wylie 1981):

$$\tau o = \frac{fe}{8} \rho w(Uw)o^2 \tag{2}$$

where fe is the Darcy friction factor of the air water flow and (Uw)o is the uniform velocity of flow.

Combining eqns. (1),(2),

$$(Uw)o = \sqrt{\frac{8g}{fe}} \sqrt{\frac{DH\sin\alpha}{4}}$$
 (3)

where  $D_H$  is hydraulic diameter:  $D_H = 4Aw/Pw$ 

For a wide channel, the uniform flow velocity(Uw)o and normal depth do are deduced from the continuity and momentum equations. In dimensionless form, it yields;

$$\frac{(Uw)o}{Vc} = \sqrt[3]{\frac{8\sin\alpha}{fe}} \tag{4}$$

$$\frac{do}{dc} = \sqrt[3]{\frac{fe}{8\sin\alpha}} \tag{5}$$

where Vc is critical flow velocity. Combining eqn.(3) of section 5.4 and eqn.(5) the characteristic depth (Y90)o for uniform flow becomes:

$$\frac{(Y90)o}{dc} = \sqrt[3]{\frac{fe}{8(1-Ce)^3 \sin \alpha}} \tag{6}$$

where Ce is mean equilibrium air concentration and the recorded values corresponding to channel slope is given below (By Straub & Anderson & equations):

Table:

| Slope             | Ce     | Y90/do | fe/f  | h/l   |
|-------------------|--------|--------|-------|-------|
| $\alpha$ (degree) |        | _      |       |       |
| 0                 | 0      | 1      | 1     | 0     |
| 7.5               | 0.1608 | 1.192  | 0.964 | 0.132 |
| 15.5              | 0.2411 | 1.312  | 0.867 | 0.268 |
| 22.5              | 0.31   | 1.449  | 0.768 | 0.414 |
| 30                | 0.4104 | 1.696  | 0.632 | 0.577 |
| 37.5              | 0.5693 | 2.322  | 0.43  | 0.767 |
| 45                | 0.6222 | 2.647  | 0.36  | 1     |
| 60                | 0.6799 | 3.124  | 0.277 | 1.732 |
| 75                | 0.7209 | 3.583  | 0.215 | 3.732 |

# 2.8.1 Rapidly varied flow at inception point (Chanson 2001):

Visual observations and detailed point measurements indicate that the flow properties are rapidly varied next to and immediately downstream of the inception point of air entrainment. Side view observations suggest that some air is entrapped in the step cavity i.e upstream of free surface aeration.

Immediately upstream the flow is extremely turbulent and the free surface appears to be subjected to a flapping mechanism. See fig.24.

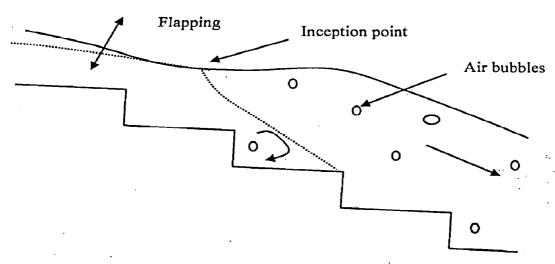



Fig.22. Rapidly varied flow region at the inception point of free surface aeration

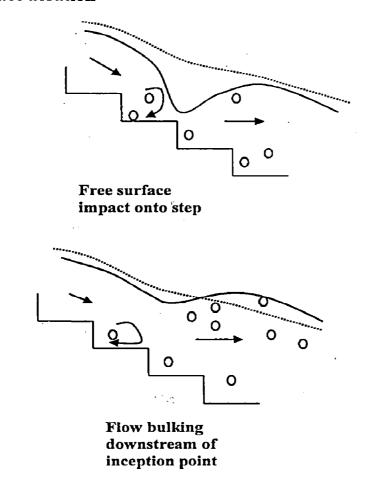



Fig.23 Rapidly varied flow region at the inception point of free surface aeration: Flow mechanisms next to the inception point

# 2.8.2 Gradually varied flow properties (Chanson 2001):

Downstream of the inception point, the flow is fully developed and the flow properties tend gradually to uniform equilibrium (i.e. normal flow conditions) while the flow resistance on smooth invert chutes is primarily skin friction, skimming flow over stepped chute are characterized by significant form losses.

The water skims over stepped edges with formation of recirculating vortices between the main stream and the step corner. Form drag is predominant. The reanalysis of over 650 laboratories and prototype data showed that the dimensionless friction coefficient f (or Darcy's friction factor) is about 0.1-0.3, with an analytical development implying f = 0.20. The results are independent of step height within limits (1 < dc/h < 10).

On smooth invert chutes, the gradually varied flow properties are deduced from the differential form of the energy equation or back water equation:

$$\frac{\partial H}{\partial S} = -Sf \tag{1}$$

where H= total head, Sf =friction slope, S =longitudinal coordinate in the flow direction.

It is believed that two basic assumptions of the back water calculations are violated in skimming flows. These are:

- a. the flow must be gradually varied
- b. the flow resistance must be the same as for a uniform flow

The form drag and associated cavity recirculations are very energetic processes and the flow properties in the mixing layer are rapidly varied. A number of researchers showed drastic differences between void fraction and velocity data measured at the step edge and above the cavity at one step, as well as from one step to the adjacent ones. The concept of gradual variation of the flow resistance is inappropriate in a form drag-dominated skimming flow. (Indeed the above equation assumes a one dimensional flow motion that is untrue).

#### 2.9 Flow resistance:

# (a) Chanson (1994):

The flow resistance is the sum of the skin resistance and the form resistance of the steps. For a stepped chute geometry of the step is characterized by the depth normal to the streamlines (i.e. Ks=h cos  $\alpha$ ) and the channel slope (tan  $\alpha = \frac{h}{l}$ ).

Dimensional analysis suggests that the friction factor is a function of the surface (skin) roughness height Ks', the Reynold's no., the step roughness height Ks, the channel slope and the quantity of air entrained:

$$fe = f(\frac{Ks'}{D_H}; \text{Re}; \frac{Ks}{D_H}; \alpha; Cmean)$$
 (1)

where Reynold's no. Re= $\frac{\rho_w U_w D_H}{\mu_w}$ ,  $\mu_w$  is the dynamic viscosity of water.

But after a detailed analysis of experimental data it has been found that the friction factor is independent of surface roughness Ks' and Re. And then the above equation (1) becomes:

$$f = f\left(\frac{Ks}{D_H};\alpha\right) \tag{2}$$

i.e dependent of  $\frac{Ks}{D_H}$  and slope  $\alpha$ .

This equation (2) can be correlated by:

$$\frac{1}{\sqrt{f}} = 1.42 \ln(\frac{D_H}{K_S}) - 1.25 \tag{3}$$

for flat slopes and it can be used for  $0.02 < Ks/D_H < 0.3$ .

The present investigation (by Chanson) recommends to use f=1.0 as an order of magnitude of friction factor for skimming flow on steep slopes (50 to 55°).

# (a) Boes and Minor (2000):

The friction factor f varies only slightly with the relative roughness  $Ks/D_H$ , where  $D_H = 4$  R<sub>h</sub> denote the hydraulic diameter,  $R_h = bh_w/(b+2h_w)$  is the hydraulic ratio and b the spillway width. The uniform equivalent clear water depth can be calculated with the equation;

$$\frac{hw}{dc} = 0.23(\sin\alpha)^{\frac{-1}{3}} \tag{1}$$

The friction factors:

$$\frac{1}{\sqrt{fw}} = 2.69 - 1.38 \log(\frac{ks}{wD_H})$$
 (2) for  $\alpha = 30^{\circ}$ 

$$\frac{1}{\sqrt{fw}} = 4.25 + 0.58\log(\frac{ks}{wD_H})$$
 (3) for  $\alpha = 50^{\circ}$ 

where the form coefficient w:

$$w = 0.9 - 0.38 \exp(\frac{-5h}{b})$$
 (4) for h/b > 0.04  
 $w = 0.60$  (5) foe h/b < 0.04

For  $\alpha = 30^{\circ}$ ; the friction factor increases with increasing relative roughness, whereas the converse is observed for  $\alpha = 50^{\circ}$ .

For preliminary design processes, the friction factor f = 0.09 and 0.07 for  $\alpha = 30^{\circ}$ ; and  $50^{\circ}$  respectively are suggested.

#### 2.10 Flow patterns:

For very flat slopes: The flow is characterized by the impact of the wake on the next step, a 3-dimensional unstable recirculation in the wake and some skin friction drag on the step downstream of the wake impact. The flow pattern is called "wake-step interference" sub regime.

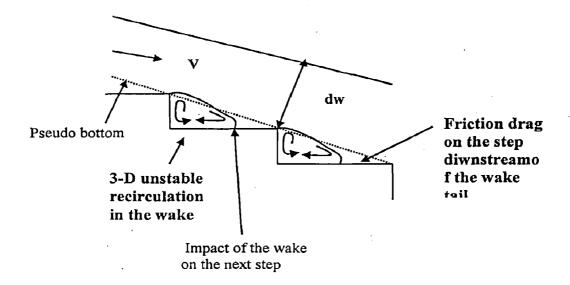



Fig.24. Flow pattern in the cavity between adjascent steps: Wake step interference sub regime in flat slopes

For larger slopes: The wake interferes with the next wake and there is no skin friction drag component. This pattern is called "wake-wake interference" sub regime.

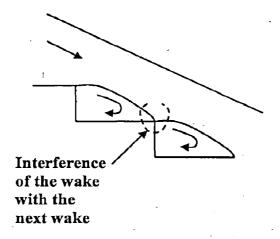



Fig.25 Flow pattern in the cavity between adjascent steps: Wake-wake interference sub regime in slope about 27 degrees

For steep slopes: The energy dissipation and the flow resistance are functions of the energy required to maintain the circulation of the large-scale vortices. The flow pattern is called a "recirculating cavity flow" sub regime.

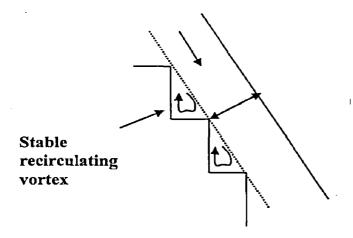



Fig.26 Flow pattern in the cavity between adjascent steps: Recirculating cavity flow sub regime in steep slope

# 2.11 Velocity distribution:

The velocity distribution in the gradually varied flow region of the stepped spillways with the slopes 27° to 53° has been found to follow the power law (Frezill 1992, Tozzi 1992):

$$\frac{V}{V \max} = \left(\frac{Y}{d}\right)^{\frac{1}{N}} \tag{1}$$

where Vmax is the velocity near free surface. The exponent of this velocity distribution is about: N = 3.5 and 4.

In uniform non aerated flows above smooth chute (Chen 1990):

$$N = K \sqrt{\frac{8}{f}}$$
 (2)

Where K = von karman constant = 0.4, f = 0.10.

For free surface aerated flows on smooth chutes (Chanson 1993a):

$$\frac{V}{V_{90}} = \left(\frac{Y}{y_{90}}\right)^{\frac{1}{N}} \tag{3}$$

where V90 is the characteristic velocity at Y90. This applies to both uniform and gradually varied flows, and the exponent N is independent of mean air concentration Cmean.

On stepped chutes, self-aerated skimming flows are expected to behave as free surface aerated flows on smooth spillways. For smooth chute N=6.0 & for stepped chute N=3.5 to 4.

For known air concentration distributions, the characteristic velocity V90 may be deduced from the continuity equation (Chanson 1989):

$$\frac{V90}{Uw} = \frac{1}{(1 - Cmean)} \left[ \int_{0}^{1} (1 - C)y^{\frac{1}{N}} dy \right]^{-1}$$
 (4)

Chanson described the mean velocity:

$$Uw = \sqrt{\frac{8g}{fe}} \sqrt{\frac{D_H \sin \alpha}{4}}$$
 where D<sub>H</sub> =4Aw/Pw and for wide channel he prescribed

as:

$$\frac{V}{Vc} = \sqrt[3]{\frac{8\sin\alpha}{fe}}$$
 where fe can be calculated by tables given in section 5.4.

Sorenson's method:

$$V = (\frac{2}{Cr})^{\frac{1}{2}} (gSoy)^{\frac{1}{2}}$$
 where Cr (fluid friction) = 0.18;  $y = 0.23(\frac{l^4q^6}{hg^3})^{\frac{1}{12}}$ ; h = step height, l = step length, So = slope of spillway.

# 2.12 Energy dissipation:

In a skimming flow regime, the water flow exhibits large friction losses over the stepped bottom. Most of energy is dissipated in maintaining recirculation vortices in the cavities beneath the pseudo-bottom formed by the step edges. Figs 5nos. If the uniform flow conditions are reached before the end of chute, analytical calculations of the energy dissipation can be developed.

Residual energy: The residual energy is the energy of the flow at the end of channel. Usually the residual energy is dissipated in a dissipation basin at the downstream end of chute. The residual head at the bottom of chute is:

$$\frac{\Delta H}{H \max} = \left[ \left( \frac{fe}{8 \sin \alpha} \right)^{\frac{1}{3}} \cos \alpha + \frac{Ec}{2} \left( \frac{fe}{8 \sin \alpha} \right)^{\frac{-2}{3}} \right] \tag{1}$$

The aeration of the flow reduces the flow resistance and increases the kinetic energy of the flow. As a result, the residual energy increases with the amount of entrained air. The relative increase of residual energy caused by the aeration of the flow is:

$$\frac{\Delta(Hres)}{Hres} = \left(\frac{fe}{f}\right)^{\frac{1}{3}} \left(\frac{1+4\frac{Ec\tan\alpha}{f}\left(\frac{f}{fe}\right)}{1+4\frac{Ec\tan\alpha}{f}}\right) - 1 \tag{2}$$

where 
$$\frac{fe}{f} = 0.5[1 + \tanh(0.628 \frac{0.514 - Ce}{Ce(1 - Ce)})]$$
 where  $\tanh(x) = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}$  for smooth chutes.

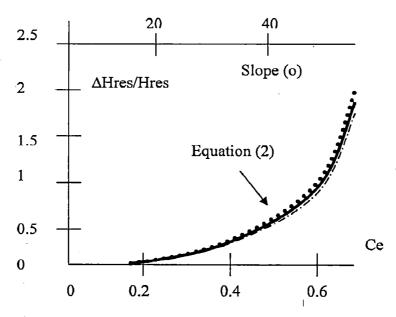



Fig. 27.  $\Delta Hres/Hres$  as a function of the mean air concentration Ce and the channel slope  $\alpha$ 

# Tatewar&Ingle (1996) and Knight&Mc Donold (1979):

Computation of energy dissipation: Knowing the data of a stepped spillway regarding unit discharge, q slope of downstream face, S step size and geometry and the parameters  $\lambda$ , K, and l can be determined as in fig.30 below. Tatewar and Ingle (1996) proposed a method for computation of flow depth at the toe of spillways for skimming flow regime. The toe depth can be determined using Manning's equation as:

$$V = (\frac{1}{n})R^{\frac{2}{3}}S^{\frac{1}{2}} \tag{1}$$

where V=q/y =velocity of flow.

Therefore  $y = (\frac{qn}{\sqrt{S}})^{0.6}$  (2) where n =manning's roughness coeff.; R =hydraulic

mean radius = y for wide channel;  $S = \sin \alpha = \text{slope}$  of downstream spillway face.

Equating the values of velocity given by eqn(1) and eqn. given by Knight&McDonold1979 for the velocity over large roughness elements, the following equation can be obtained:

$$\frac{Z^{0.1}}{n\sqrt{g}} = 0.25 + 19\log(\frac{\lambda}{l}) + 5.75\log(\frac{Z^{0.6}}{K})$$
 (3)

where  $Z=(\frac{qn}{\sqrt{S}})$  =section factor for computation of uniform flow.

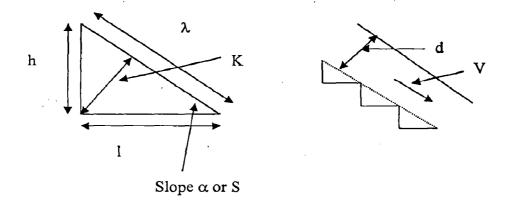



Fig 28 Step geometries

For a known discharge and downstream slope of spillway the value of Manninng's n can be determined from equation (3). With this value of n the toe depth (y) and toe velocity (V) can be computed from equation (2) and equation (1). The energy dissipation over the surface of spillway is given as:

$$\Delta E = Ec - Et \tag{4}$$

where Ec is energy or head at crest of spillway =H+1.5dc; Et is energy at the toe of the spillway =  $y+V^2/2g$ ; H =height of spillway; dc =critical depth of flow.

#### Hager and Boes (2000):

Residual energy: If uniform aerated flow is attained i.e. Hdam > 15 dc and 35 dc for  $\alpha$ =300 and 500 respectively, the relative residual energy head Hres/Hdam at the toe of ungated stepped spillways can be calculated from equation proposed by Chanson (1994b) for uniform flow:

$$\frac{Hres}{H\max} = \frac{\left(\frac{fwu}{8\sin\alpha}\right)^{\frac{1}{3}}\cos\alpha + \frac{E}{2}\left(\frac{fwu}{8\sin\alpha}\right)^{\frac{-2}{3}}}{\frac{Hdam}{dc} + \frac{3}{2}} \tag{1}$$

where Hmax denotes the reservoir head, fwu is the friction factor for uniform equivalent clear water flow and E is the kinetic energy correction coeff. (=1.21 on an average) i.e. 1.2 < E < 1.26.

If uniform flow is not attained i.e. Hdam < 15dc and 35dc for  $\alpha = 30$ o and 50o respectively, the energy head at the spillway toe should be computed as:

$$Hres = Z' + hw\cos\alpha + E\frac{q^2}{2gh_w^2}$$
 (2)

where Z' is the elevation above a reference level usually the stilling basin bottom, the equivalent clear water depth hw along a stepped chute is expressed by (Hager&Boes 2000):

$$hw(x) = \frac{hwu}{1 - (1 - \frac{hwu}{dc}) \exp(-\frac{10}{3} \frac{hwu^2 \sin \alpha}{dc^3} x)}$$
(3)

But, 
$$\frac{hwu}{dc} = 0.23(\sin\alpha)^{\frac{-1}{3}}$$
 (4)

So combining these two equations:

$$hw(x) = \frac{0.23(\frac{q^2}{g\sin\alpha})^{\frac{1}{3}}}{1 - (1 - \frac{0.23}{(\sin\alpha)^{\frac{1}{3}}})\exp(-0.176(\frac{g\sin\alpha}{q^2})^{\frac{1}{3}}x)}$$
(5)

# 2.13 Selection of step height:

For Roller Compacted Concrete (RCC) dams, the step height is usually one to four times the thickness of a compacted lift of typically 0.3m i.e. between 0.3m and 1.2m. Two main aspects have to be considered when selecting the step height are: 1. cavitations risk potential and 2. energy dissipation rate of a cascade.

To avoid cavitations damage to concrete faces a minimum value of a local air concentration of about 5 to 8% is accepted today by design engineers.

The step height selected should be such that for a given discharge, the required length of stilling basin should be a minimum. The Froude no. at the toe of the spillway governs the type of stilling basin.

It is recommended that optimum value of Fraude no. Fr at the toe of spillway should be 5.3, which gives the minimum length of stilling basin & which is adequate for all the discharges lower than the design discharge. The step height required for the downstream slope resulting in a Froude no of 5.3 are computed and are given below:

| ~  | •   | •     |    |
|----|-----|-------|----|
|    | ìh  | . 1 2 | ٠. |
| 10 | 11. | , , , | Ξ. |

| Slopes (h/l) | Step height (h) | Froude no. (Fr) |
|--------------|-----------------|-----------------|
| 1V: 0.6H     | h = dc/1.557    | 5.3             |
| 1V:0. 7H     | h = dc/2.622    | 5.3             |
| 1V:0.8H      | h = dc/4.01     | 5.3             |

Other approximation of step height is to assume trial step sizes as per fluid condition, which should be less than 1.25 dc for establishment of skimming flow (Rajaratnam 1990).

# 2.14 Selection of training wall height of stepped spillways:

For a stepped spillway, the considerable aeration leads to bulking of the flow, which has to be taken into account in the design of, stepped spillway-training walls (Side walls). The characteristic mixture flow depth d90 with a surface air concentration of 90% serves as a guide for the design in the aerated or white water region.

Hager and Boes (2000): Starting from the inception point of air entrainment, the air water mixture is described by a super critical backwater curve. Inserting the approximation of the uniform mixture flow depth:

$$\frac{d90}{dc} = 0.55(Frs)^{\frac{-1}{6}} \tag{1}$$

with Froude no  $Frs = \frac{q}{[g(\frac{S}{\sin \alpha})^3]^{\frac{1}{2}}}$  at the step, into the approximation of the differential

equation of back water curve (Hager & Boes 2000) yields:

$$d90(x) = 0.55 \left(\frac{q^2 h}{g \sin \alpha}\right)^{\frac{1}{4}} \tanh\left(\frac{g h \sin \alpha (x - Li)}{3q}\right) + 0.42 \left(\frac{q^{10} h^3}{(g \sin \alpha)^5}\right)^{\frac{1}{18}}$$
(2)

where Li is the length of inception point from crest:

$$Li = 9.72 \frac{q^{0.86} \cos \alpha}{g^{0.43} (\sin \alpha)^{0.43} h^{0.29}}$$
 (3)

The designed training wall height, h<sub>d</sub>:

$$h_d = \eta d_{90} \tag{4}$$

where  $\eta$  = factor of safety =1.2 for concrete dams with no concern of erosion on the downstream face and 1.5 in case of emergency spillway on embankment dams prone to erosion (taking into account the increase of the spray height in the prototype due to higher turbulence).

Other method of calculation of height of side wall:

$$\frac{ya}{y} = [1 + 2(C - 0.25)^2] \tag{1}$$

where C = mean air concentration =  $0.75 \sin \alpha^{0.75}$  (Hager 1991) ya=aerated flow depth

y=depth of water without mixing of air

 $\alpha$  = slope of stepped spillways

so the height of side wall will be:

$$hd = \eta y \tag{2}$$

where  $\eta$  is the factor of safety as described above

# 2.15 Comparison between nappe and skimming flow regimes regarding energy dissipation:

If the spillways channel is long enough (i.e. if uniform flow conditions are obtained) and for identical conditions and for large dam heights (Hdam/dc > 35 and slope > 30°) the skimming flow regime dissipates more energy than nappe flow regime. On steeper chutes the flow aeration reduces the flow resistance and hence the rate of energy dissipation.

In short chutes and small height dams the nappe flow regime dissipate more energy than skimming flow regime.

# **CHAPTER-3**

# EXPERIMENTAL STUDY OF FLOW PATTERNS IN MULTI-SLOPE STEPPED SPILLWAYS

# **Chapter-3**

# **Experimental study of flow patterns**

# in multi-slope stepped spillways

# 3.1 Introduction:

Multi-slope stepped spillways are those chute/spillways, which have more than one longitudinal channel slopes with different step geometries in their faces.

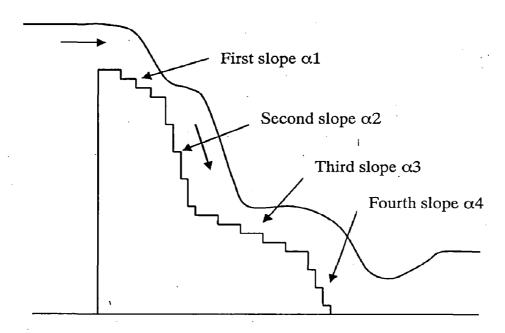



Fig. 29 Multi-slope stepped spillways: With four L-slopes

The experimental study of flow patterns as envisaged under the objectives were conducted in River Engineering Laboratory of WRDTC, IIT, Roorkee. The suppressor plates, the experimental set-up, procedures, observation records, analysis of results, and flow patterns are described briefly below.

# 3.2 Model laws (Similarity laws) and scale ratios

Models are the small replicas of the actual structure (i.e. the prototype) where model studies are usually conducted to find solutions to numerous complicated problems in hydraulic engineering and fluid mechanics. The results obtained in the model studies correctly represent the behavior of the prototype. The results may be transferred to the prototype by the use of model laws, which may be developed, from the principles of different similarities (Geometric, Kinematics and Dynamic similarities), which are described briefly below.

a. Geometric similarity: For geometric similarity to exist between the model and the prototype the ratio of corresponding lengths in the model and in the prototype must be same and the included angles between two corresponding sides must be the same. Models, which are not geometrically similar, are known as geometrically distorted models. The ratios are defined as scale ratios and may be written as:

Length scale ratio = 
$$Lr = \frac{Lm}{Lp} = \frac{bm}{bp} = \frac{dm}{dp}$$
 etc (1)

Area scale ratio = Ar = 
$$\frac{Am}{Ap} = \left(\frac{Lm * bm}{Lp * bp}\right) = Lr^2$$
 (2)

Volume scale ratio = 
$$Vr = \left(\frac{Lm * bm * dm}{Lp * bp * dp}\right) = Lr^3$$
 (3)

in which the subscripts m and p correspond to model and prototype respectively.

b. Kinematic similarity: Kinematic similarity is similarity of motion. If at the corresponding (or homologous) points in the model and in the prototype, the velocity or the acceleration ratios are same and the velocity or acceleration vectors point in the same direction, the two flows are said to be kinematically similar. A few useful scale ratios are as follows:

Time scale ratio = 
$$Tr = \frac{Tm}{Tp}$$
 (1)

Velocity scale ratio =Vr = 
$$\frac{Vm}{Vp} = \frac{\frac{Lm}{Tm}}{\frac{Lp}{Tp}} = \frac{Lr}{Tr}$$
 (2)

Acceleration ratio = ar = 
$$\frac{am}{ap} = \frac{\frac{Lm}{Tm^2}}{\frac{Lp}{Tp^2}} = \frac{Lr}{Tr^2}$$
 (3)

Discharge scale ratio = 
$$Qr = \frac{Qm}{Qp} = \frac{\frac{Lm^3}{Tm}}{\frac{Lp^3}{Tp}} = \frac{Lr^3}{Tr}$$
 (4)

c. Dynamic similarity: It is the similarity of forces. The flows in the model and in the prototype are dynamically similar if at all the corresponding points, identical types of forces are parallel and bear the same ratio. In dynamic similarity, the force polygons of the two flows can be superimposed by change in force scale.

In the problems concerning fluid flow, the forces (mass\*acceleration, Ma) acting may be one or a combination of the several of the following forces:

- (i) Inertial forces, Fi
- (ii) Friction or viscous forces, Fv
- (iii) Gravity forces, Fg
- (iv) Pressure forces, Fp
- (v) Elastic forces, Fe
- (vi) Surface tension forces, Fs

The ratio of the inertia forces of the two systems must also be equal to the ratio of individual component forces i.e. the following relationship will be developed:

(i) 
$$\left(\frac{Ma}{Fv}\right)_{m} = \left(\frac{Ma}{Fv}\right)_{n}$$
 (1)

(ii) 
$$\left(\frac{Ma}{Fg}\right)_{m} = \left(\frac{Ma}{Fg}\right)_{n}$$
 (2)

(iii) 
$$\left(\frac{Ma}{Fp}\right)_{m} = \left(\frac{Ma}{Fp}\right)_{p}$$
 (3)

(iv) 
$$\left(\frac{Ma}{Fe}\right)_{m} = \left(\frac{Ma}{Fe}\right)_{p}$$
 (4)

$$(v) \left(\frac{Ma}{Fs}\right)_{m} = \left(\frac{Ma}{Fs}\right)_{p} \tag{5}$$

It may thus be mentioned that when the two systems are geometrically, kinematically and dynamically similar, then they are said to be completely similar or complete similatude exists between the two systems.

# Model laws:

Types of model laws:

- (i) Reynolds model law
- (ii) Froude model law
- (iii) Euler model law
- (iv) Mach model law
- (v) Weber model law

Among these the brief descriptions of Reynolds, Froude, and Weber model laws are given below:

(i) Reynolds model law: For the flows where in addition to inertia, viscous force is the only other predominant force, the similarity of flow in the model and its prototype can be established if the Reynolds number (Rn) is same for both the systems. This is known as Reynolds model law, according to which:

$$(Rn)_m = (Rn)_n$$

or, 
$$\frac{\rho_{\rm m}V_{\rm m}L_{\rm m}}{\mu_{\rm m}} = \frac{\rho_{\rm p}V_{\rm p}L_{\rm p}}{\mu_{\rm p}} \tag{1}$$

or, 
$$\frac{\rho_r V_r L_r}{\mu_r} = 1$$
 (2)

or, 
$$\frac{V_r L_r}{\mu_r} = 1$$
 (3)

(ii) Froude model law: When the force of gravity can be considered to be the only predominant force which controls the motion in addition to the force of inertia, the similarity of the flow in any two such systems can be established if the Froude number for both the systems is the same. This is known as Froude model law according to which;

$$(\operatorname{Fr})_{m} = (\operatorname{Fr})_{p}$$

or, 
$$\frac{Vm}{\sqrt{g_m L_m}} = \frac{Vp}{\sqrt{g_p L_p}}$$
 (1)

or, 
$$\frac{Vr}{\sqrt{g_r L_r}} = 1$$

or, 
$$V_r = \sqrt{g_r L_r}$$
 (2)

or, 
$$V_r = \sqrt{L_r}$$
 since  $gr = 1$  (3)

(iii) Weber model law: When surface tension effects predominate in addition to inertia force the pertinent similitude law is obtained by equating the Weber number for the model and its prototype, which is known as Weber model law. Thus according to this model law,

$$(We)m = (We)p$$

or, 
$$\frac{V_{m}}{\sqrt{\left(\frac{\sigma_{m}L_{m}}{\rho_{m}}\right)}} = \frac{V_{p}}{\sqrt{\left(\frac{\sigma_{p}L_{p}}{\rho_{p}}\right)}}$$
 (1)

or, 
$$\frac{Vr}{\sqrt{\left(\frac{\sigma_r L_r}{\rho_r}\right)}} = 1$$
 (2)

# Types of models:

- (i) Undistorted models
- (ii) Distorted models
- (i) An undistorted model is that which is geometrically similar to its prototype that is, the scale ratios for corresponding linear dimensions of the model and its prototype are same.
- (ii) Distorted models are those in which one or more terms of the models are not identical with their counterparts in the prototype.
  - A distorted model may have either geometrical distortion, or material distortion, or distortion of hydraulic quantities or a combination of these.

#### Scale ratios:

# Scale ratios for models governed by Reynolds and Froude model laws:

| Description of quantities | Scale 1                                            | ratios                                            |
|---------------------------|----------------------------------------------------|---------------------------------------------------|
| Description of quantities | Reynolds law                                       | Froude law                                        |
| Length                    | L <sub>r</sub>                                     | L,                                                |
| Velocity                  | $\frac{\mu_{r}}{L_{r}}$                            | $L_{r}^{\frac{1}{2}}g_{r}^{\frac{1}{2}}$          |
| Time                      | $\frac{L_{r}^{2}\rho_{r}}{\mu_{r}}$                | $\frac{L_{r}^{\frac{1}{2}}}{g_{r}^{\frac{1}{2}}}$ |
| Acceleration              | $\frac{\mu_{\rm r}^2 L_{\rm r}^3}{\rho_{\rm r}^2}$ | $g_{r}$                                           |
| Discharge                 | $\frac{L_r \mu_r}{\rho_r}$                         | $L_r^{\frac{5}{2}}g_r^{\frac{1}{2}}$              |
| Force                     | $\frac{\mu_r^2}{\rho_r}$                           | $\rho_{r}L_{r}^{3}g_{r}$                          |
| Work, Energy and Torque   | $\frac{{\mu_r}^2 L_r}{\rho_r}$                     | $\rho_{r}L_{r}^{4}g_{r}$                          |
| Pressure intensity        | $\frac{\mu_{r}^{2}}{L_{r}^{2}}$                    | $\rho_r \mathbf{g}_r \mathbf{L}_r$                |
| Power                     | $\frac{\mu_r^3 L_r}{\rho_r^2}$                     | $\rho_r g_r^{\frac{3}{2}} L_r^{\frac{7}{2}}$      |

# 3.3 The suppressor plate:

The suppressor plate is that structure which is placed above the surface of flow of water above the junction point of the two different slopes of multislope stepped spillways attached or fixed to the side walls of the spillways to suppress, concentrate and align the sprayed flow uniformly at a constant depths D/S of the spillways channels so that the height of the side walls can be reduced comparatively to the side walls of stepped channels without suppressor. The design of suppressor can be of hydraulic and structural. The hydraulic design is governed by the toe velocity and the clear water depth of the chute just U/S of the junction points of the slopes of the spillways. The structural design is governed by the uplift water pressure head at the underneath of the suppressor where the surface of the flow of water touches the suppressor. This uplift water pressure is taken as uniformly distributed load across the width wise of the suppressor and designed like a beam fixed at the two ends at the sidewalls of the spillways.

The suppressors are of different types such as circular, elliptical, angular etc according to the requirements suitability of the working sites. Some design principles are given below.

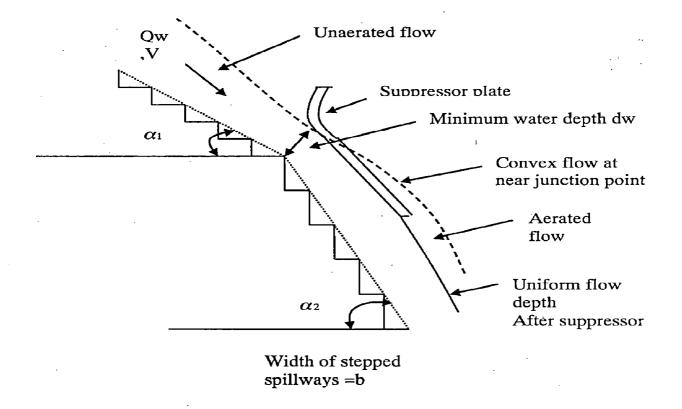



Fig.30 Multislope stepped spillways with suppressor plate: Showing the effect of the plate in making the flow with uniform depths after it.

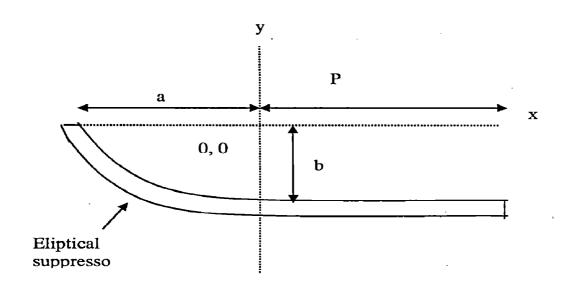



Fig 31 Section of elliptical suppressor plate (general)

# 3.3.1. Design of suppressor plates:

The design of suppressor can be of hydraulic and structural. The hydraulic design is governed by the toe velocity and the clear water depth of the chute just U/S of the junction points of the slopes of the spillways. The structural design is governed by the uplift water pressure head at the underneath of the suppressor where the surface of the flow of water touches the suppressor. This uplift water pressure is taken as uniformly distributed load across the width wise of the suppressor and designed like a beam fixed at the two ends at the sidewalls of the spillways.

The suppressors are of different types such as circular, elliptical, angular etc according to the requirements suitability of the working sites. Some design principles are given below.

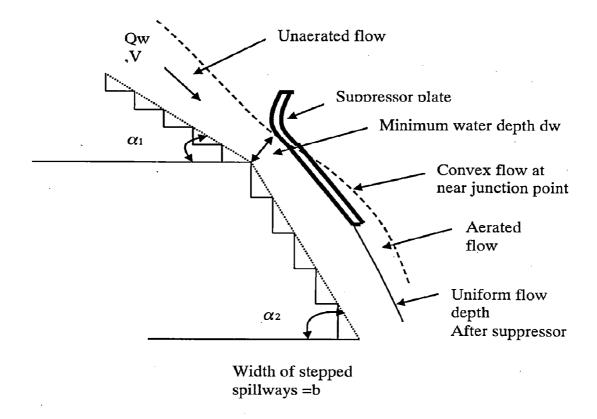



Fig.32 Multislope stepped spillways with suppressor plate: Showing the effect of the plate in making the flow with uniform depths after it.

# (i). Design of elliptical suppressor:

Suppose we have the design discharge, Q velocity of flow u/s of the junction point where the suppressor is to be placed, Vw the depth of clear water at the point, dw the slope of spillways,  $\alpha$ . Suppose a and b are the horizontal distance covered by the incoming flow with the velocity of flow Vw and vertical distance covered by the flow in the trajectory path (projectile motion of the flow) respectively then we have;

$$a = \frac{Vw^2}{2g}\sin 2\alpha \tag{1}$$

$$b = \frac{Vw^2}{2g}\sin^2\alpha \tag{2}$$

P = straight portion

=equal to dw

= equal to a

= equal to (a+dw) (3)

For elliptical design,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \tag{4}$$

from this equation the ordinates of elliptical portion of suppressor can be designed i.e.

$$\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2}$$
or  $y = b\sqrt{1 - \frac{x^2}{a^2}}$  (5)

Putting different values of x we can get different values of y.

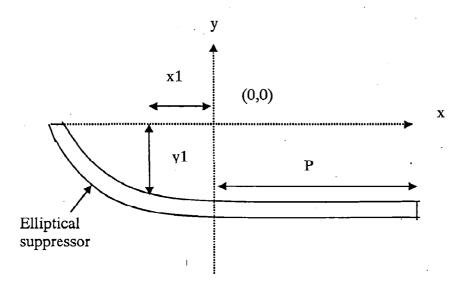



Fig. 33 Section of designed elliptical suppressor plate

# (ii). Design of circular suppressor:

As in design of elliptical suppressor suppose a and b are the horizontal distance covered by the incoming flow with the velocity of flow Vw and vertical distance covered by the flow in the trajectory path (projectile motion of the flow) respectively then we have;

$$a = \frac{Vw^2}{2g}\sin 2\alpha \tag{1}$$

$$b = \frac{Vw^2}{2g}\sin^2\alpha \tag{2}$$

P = straight portion

=equal to dw

= equal to a

= equal to (a+dw) (3)

Let us take the first junction point of the multislope spillways where the milder slope of the chute meets with the steeper slope of the chute. At this point the flow pattern will be curved and sprayed type of convex nature as shown in fig. below. When the flow leaves the milder slope the flow starts moving with its residual momentum energy and follows the trajectory path and after consumption of the energy the flow starts falling vertically downward to meet the d/s chute slope. If we join the tangents of the curved path drawn at the starting of the curve and end point of the curve then we can calculate the radius of curvature by the following concepts:

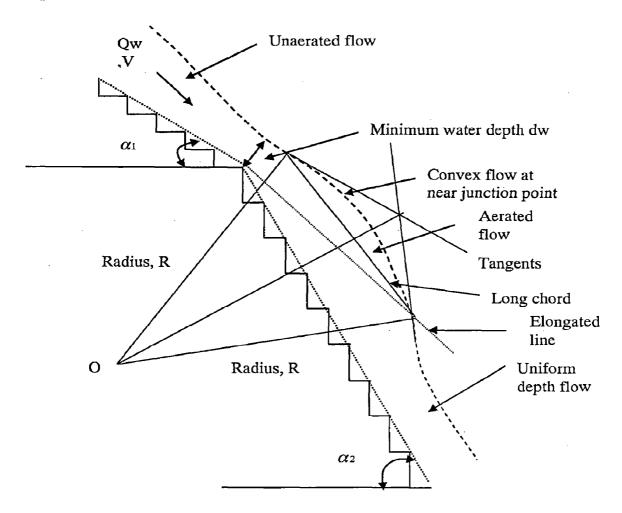



Fig.34 Multislope stepped spillways with curved (convex) flow at the junction point: Showing the elements of curve setting to find out the radius of curvature of flow.

Computation of radius of curvature of circular suppressor plate using the "simple curve setting" methods:

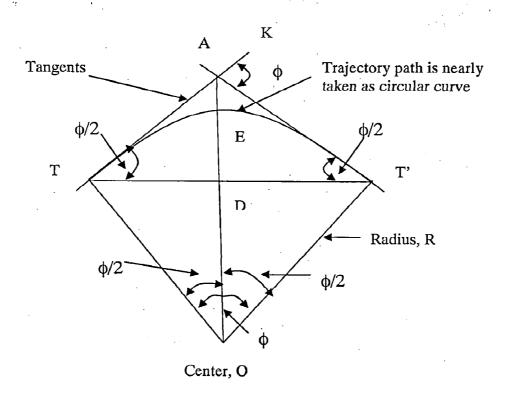



Fig. 35 Elements of simple circular curve

# **Notations:**

T= starting point of curve and tangent TA can be drawn.

T'=end of curve and tangent T'A can be drawn

A=the point of intersection

 $\angle KAT' = \phi$ , is the angle of deflection

TT'=long chord

O=center of circular curve

OT=OT'= radius R, of circular curve

D=is the point of intersection on the long chord by the line joining A to O

DE=distance of apex curve from long chord

AE= apex distance

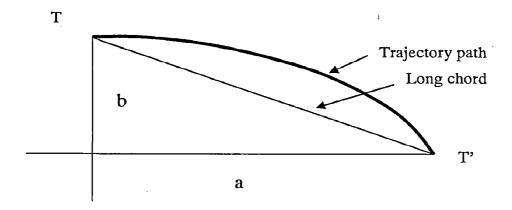



Fig. 36 Detail of convex curve at the junction point

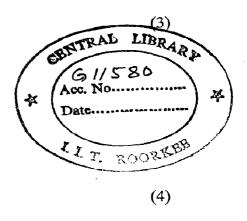
Now long chord = TT'= 
$$\sqrt{(a^2 + b^2)}$$
  
=  $\sqrt{(\frac{V^2}{2g}\sin 2\alpha)^2 + (\frac{V^2}{2g}\sin^2\alpha)^2}$  (1)

where  $\alpha$  is the spillway slope. And

$$\tan\frac{\phi}{2} = \frac{b}{a} = \frac{\frac{V^2}{2g}\sin 2\alpha}{\frac{V^2}{2g}\sin^2\alpha}$$
 (2)

From right angle triangle  $\Delta$  TOD,

$$\frac{TD}{TO} = \sin\frac{\phi}{2}$$


and we know TT'= 2 TD

$$= 2TO\sin\frac{\varphi}{2}$$
$$= 2R\sin\frac{\varphi}{2}$$

From equations (1) and (2) we have

or 
$$\sqrt{(\frac{V^2}{2g}\sin 2\alpha)^2 + (\frac{V^2}{2g}\sin^2\alpha)^2} = 2R\sin\frac{\phi}{2}$$

or 
$$R = \frac{\sqrt{(\frac{V^2}{2g}\sin 2\alpha)^2 + (\frac{V^2}{2g}\sin^2 \alpha)^2}}{2\sin \frac{\phi}{2}}$$



The value of  $\phi$  can be found out by equation (2). Other parameters such as V and  $\alpha$  are known. Therefore the equation (4) gives the radius of the curve, which can be used as a radius of curvature for the circular suppressor plate. The value of P can be taken as in elliptical suppressor plate.

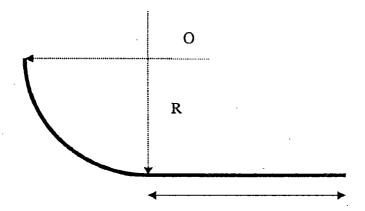



Fig. 37 Section of designed circular suppressor plate

# (iii). Design of angular suppressor:

The horizontal distance and vertical distance covered by the flow can be taken as the parameter to find out the slope of angular suppressor plate. i.e.

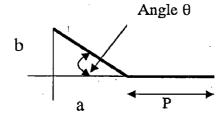



Fig. 38 Section of designed angular suppressor plate

Now the angle  $\theta$  can be computed as

$$\tan \theta = \frac{b}{a} = \frac{\frac{V^2}{2g} \sin 2\alpha}{\frac{V^2}{2g} \sin^2 \alpha} \tag{1}$$

The value of P can be taken as in elliptical suppressor plate. The horizontal and the vertical lengths of the angular suppressor are a and b respectively. The angle  $\theta$  is calculated by the equation (1).

# 3.3.2 Positioning of the suppressor plate

The suppressor plates are placed at the junction point of the two changed slopes of the spillway channel (i.e. it can be at the convex region or at concave region). The straight portion of the suppressor plate (denoted by letter P) is placed parallel to the d/s slope of the channel. The front tip of the curved / ellipsoid / angled portion of the suppressor plate should be placed in such a way that the maximum height of the curved flow at the convex / concave region shouldn't overflow the tip of the suppressor plate. The placement height of the suppressor plate should be fixed to the water depth formed at the toe of the respective slope of the spillway channel.

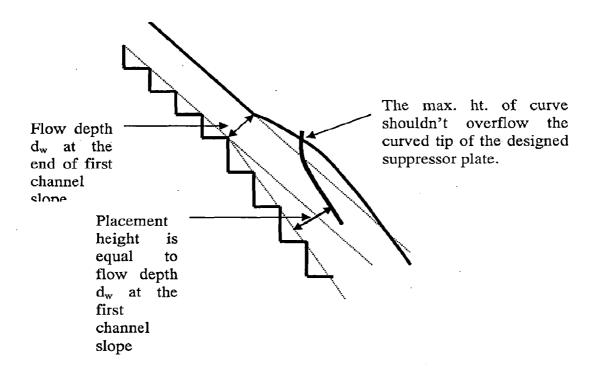



Fig.39. Placement position of suppressor plate at the convex junction point of the multislope stepped spillways

# 3.4 Experimental set up:

A schematic view of the experimental set up is shown in fig. 41 below. Experiments were conducted in a recirculating pipe with reservoir tank, water collection tank, and multislope stepped spillways systems (with the three slopes), which is the model of Rammam hydel project stage-II, Darjilling, West Bengal electricity board, India. The model is geometrically similar model with the scale ratio of 1:15. The model's Reynold's number, Re Froude no., Fr and Weber no., W are 1\*10<sup>5</sup>, 3.72 and 178 respectively. The prevalent flow regime in this model is skimming flow regime.

The set up consists of venturimeter pipe with mercury manometer, which is used to measure the discharge flowing through the pipe over the stepped spillways.

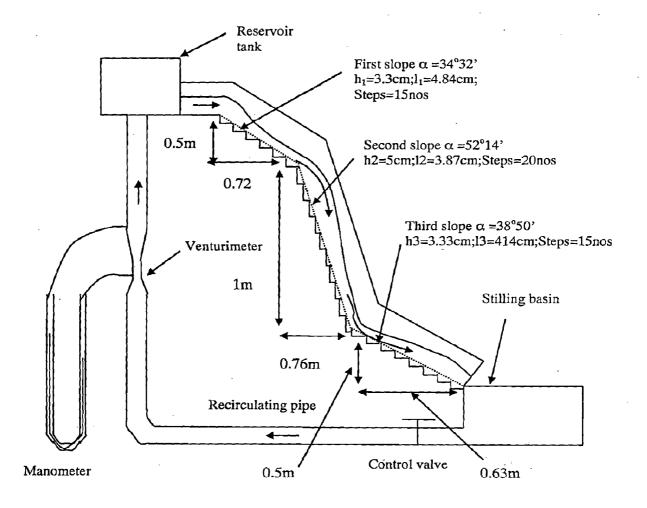



Fig. 40 Experimental set up: Multislope stepped spillways

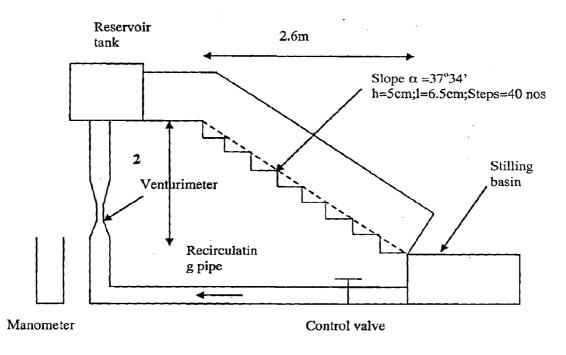



Fig.41 Experimental set up: Monoslope stepped spillways

# 3.5 Experimental procedure:

Before starting the experiments, the manometer reading (attached to venturimeter) was adjusted to zero settings. All the points at the channel bottom of the spillways where the water pressures were to be observed for the study of cavitations risk, were joined with piezometers of small pipes. The air bubbles inside the piezometric pipes were taken out by keeping water into the piezometers. After completing these works different discharge rates ranging from 4 to 20 lps of flow of water were allowed to pass through the spillways and then the water depths perpendicular to pseudo bottom and piezometric head were observed and noted down. The flow patterns such undular and glassy flow, gradually varied flow, recirculating vortex flow, inception point of air entrainment with bubbles, uniform flow, spray of the flow, formation of air cavities, convexity and concavity of flow etc were observed at the smaller and higher flow rates. Rate of head loss or energy dissipation at the spillways and residual head at the toe of spillways were also studied and compared.

# 3.6 Analysis of results:

#### 3.6.1 Introductions:

The experimental data were collected for the study of flow patterns, rate of energy dissipation, residual energy at the toe of the spillways, cavitations risk in the spillways and are given in tabular forms below in this section.

# 3.6.2 Experimental data and calculations:

# 3.6.2.1 Venturimeter Calculation:

```
h = x^*(\gamma/\gamma_w-1) where x is difference of level of Hg in manometer
limbs.
h = x*(13.6/1-1)
h = x*(13.6-1)
h = 12.6 * x
We have,
Q = \{C_d * a_1 * a_2 * (2gh)^{1/2}\} / (a_1^2 - a_2^2)^{1/2}
Where,
a_{1}=PI/4*(0.1)^{2}=7.854*10^{-1}
^{3}=0.007854
a_2 = PI/4*(0.06)^2 = 2.827*10^{-3} = 0.002827
C_{d=}0.98
Now.
Q = \{0.98*7.854*2.827*10 - 6*(2*9.81*1206x)^{1/2}\}/\{(7.854*10^{-3})^2 - (7.854*10^{-3})^2\}
(2.827*10^{-3})^2
Q=0.0466*(x)^{1/2}
x = 460.5 * Q^2
```

# $x = 460.5*Q^2$ in MKS System Table of relation between x & Q:

| Sn | Q(m3/s) | x(m)   | x(cm) |
|----|---------|--------|-------|
| 1  | 0.004   | 0.0074 | 0.74  |
| 2  | 0.006   | 0.0166 | 1.66  |
| 3  | 0.008   | 0.0295 | 2.95  |
| 4  | 0.01    | 0.0461 | 4.61  |
| 5  | 0.012   | 0.0663 | 6.63  |
| 6  | 0.014   | 0.0903 | 9.03  |
| 7  | 0.016   | 0.1179 | 11.79 |
| 8  | 0.018   | 0.1492 | 14.92 |
| 9  | 0.02    | 0.1842 | 18.42 |

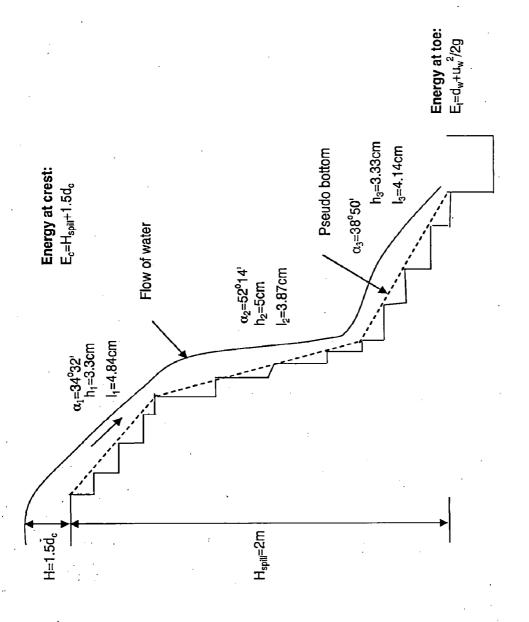
3.6.2.2 Experiment no.1: (Water flow depths(perpendicular to pseudobottom) in multislope stepped spillways): Without use of suppressor

|          |                                                  | 20                |                           |         |             |                                                  |             |           |            |                                                             |                                   | 20        | 3           | 2.5  | 3    | 2.5       | 2.75        |           |            | S                   | ŕ         | 20        |      |              |      |      |             |                                                  |            |   |
|----------|--------------------------------------------------|-------------------|---------------------------|---------|-------------|--------------------------------------------------|-------------|-----------|------------|-------------------------------------------------------------|-----------------------------------|-----------|-------------|------|------|-----------|-------------|-----------|------------|---------------------|-----------|-----------|------|--------------|------|------|-------------|--------------------------------------------------|------------|---|
|          |                                                  | 19                |                           |         |             |                                                  |             |           |            |                                                             |                                   | 19        | 3.8         | 3    | 3.6  | 2.8       | 3.3         |           |            | 100% recir.vortices |           | 19        |      |              |      |      |             |                                                  |            |   |
|          | i                                                | 18                |                           |         | _           |                                                  |             |           |            |                                                             |                                   | 18        | 4           | 3    | 4    | 3         | 3.5         |           |            | recir               |           | 18        |      |              |      |      |             |                                                  |            | ١ |
|          |                                                  | 17                |                           |         |             |                                                  |             |           |            |                                                             |                                   | 17        | 4           | 3    | 4.5  | 3.5       | 3.8         |           | _          | 100%                |           | 17        |      |              |      |      |             |                                                  |            | 1 |
|          |                                                  | 16                |                           |         |             |                                                  |             |           |            |                                                             |                                   | 16        | 4.5         | 3.5  | 4.5  | 3.4       | 4           |           |            |                     |           | 16        |      |              |      |      |             |                                                  |            | 1 |
|          |                                                  | 15                | 33                        | 2       | 3           | 2                                                | 2.5         |           |            |                                                             |                                   | 15        | 4.5         | 3.5  | 4.5  | 3.5       | 4           |           |            |                     |           | 15        | 3    | 2.5          | 3    | 2.5  | 2.8         |                                                  |            | I |
|          | Ì                                                | 14                | 2.8                       | 2       | 2.8         | 2                                                | 2.4         |           |            |                                                             |                                   | 14        | 4.5         | 3.5  | 5    | 4         | 4.25        |           |            |                     |           | 14        | 3    | 2.5          | 3    | 2.5  | 2.75        |                                                  |            |   |
|          | İ                                                | 13                | 2.6                       | 7       | 2.6         | 2                                                | 2.3         |           |            | steps.                                                      |                                   | 13        | 5           | 3.5  | 5.5  | 4         | 4.5         | -         |            |                     | i         | 13        | 3    | 2.5          | 3    | 2.5  | 2.75        |                                                  |            |   |
|          | ļ                                                | 12                | 2.6                       | 2       | 2.6         | 2                                                | 2.3         |           |            | in all s                                                    |                                   | 12        | 5.5         | 3.5  | 5.5  | 3.5       | 4.5         | -         |            |                     |           | 12        | 4    | 2.5          | 4    | 2.5  | 3.3         |                                                  |            | 1 |
|          |                                                  | 11                | 2.5                       | 7       | 2.5         | 2                                                | 2.3         |           |            | ated i                                                      |                                   | 11        | 5.5         | 3.5  | 5.5  | 3.5       | 4.5         |           | -          | ex                  |           | 11        | 5    | 3            | 4.5  | 3    | 3.9         |                                                  |            |   |
|          | ĺ                                                | 10                | 2.5                       | 7       | 2.5         | 2                                                | 2.25        |           |            | No air cavities, weak recirculating vortices were generated |                                   | 101       | 5.5         | 3.8  | 5.8  | 4         | 4.78        |           | _          | 50% rec.vortex      |           | 10        | 9    | 4            | 5.5  | 4.2  | 4.93        |                                                  | <br>       |   |
|          |                                                  | 6                 | 2.5                       | 7       | 2.5         | 2                                                | 2.3         |           |            | were                                                        |                                   | 6         | 9           | 4    | 9    | 4         | 5           | -         | _          | 0% re               |           | 6         | 6.5  | 4            | 9    | 4.5  | 5.3         |                                                  | -          | • |
|          |                                                  | 8                 | 2.4                       | 2       | 2.4         | 2                                                | 2.2         |           |            | rtices                                                      |                                   | 8         | 6.5         | 5    | 6.5  | 5         | 5.8         | -         |            | 5                   |           | 8         | 7.5  | 4.5          | 7    | S    | 9           |                                                  | -          |   |
|          |                                                  | 7                 | 2.3                       | 1.9     | 2.3         | 1.9                                              | 2.1         |           |            | io gi                                                       |                                   | 7         | 7           | 5.5  | 7    | 5.5       | 6.3         | -         | -          | <br> . <u>::</u>    |           | 7         | 7.5  | 4.5          | 8.9  | 5.3  | 9           |                                                  |            | • |
|          |                                                  | 9                 | 7                         | 1.9     | 7           | 1.9                                              | 7           |           |            | ulatir                                                      |                                   | 9         | 7.5         | 9    | 7.5  | 5.8       | 6.7         |           |            | 25%air              |           | 9         | ∞    | 5            | 6.7  | 5.2  | 6.2         | <del>                                     </del> |            |   |
| 1        | =34°32                                           | 5                 | 2                         | 1.9     | 2           | 1.9                                              | . 2         |           |            | recirc                                                      | $\alpha_2 = 52^{\circ}14^{\circ}$ | 5         | 7.5         | 9    | ∞    | 9         | 6.9         |           |            |                     | =38°50'   | 5         | 7.5  | 5            | 6.5  | S    | 9           |                                                  |            |   |
|          | - 1                                              | 4                 | 2                         | 1.9     | 2           | 1.9                                              | 7           |           |            | veak                                                        | ς; = ζ <sub>2</sub> Ο             | 4         | 7.5         | 9    | 1    | 5.5       | 6.5         |           |            | S.                  | ļ ლ       | 4         | 7    | 4.5          | 6.5  | 4    | 5.5         |                                                  |            |   |
|          | ways                                             | 3                 | 2                         | 1.9     | 2           | 1.9                                              | 2           |           |            | ities,                                                      | ways                              | 3         | 6.5         | 5    | 6.5  | S         | 5.8         |           |            | avitie              | ways      | 3         | 5.5  | 3.5          | 5    | 3    | 4.3         |                                                  |            | • |
| 1        | spilly                                           | 2                 | 2                         | 1.9     | 2           | 1.9                                              | 2           |           |            | r cav                                                       | spillways                         | 2         | 5           | 3.5  | S    | 3.5       | 4.3         |           |            | air                 | spillways | 2         | 3    | 2.5          | æ    | 2.5  | 2.8         |                                                  |            |   |
|          | pbed                                             | 1                 | 3.5                       | 2       | 3           | 2                                                | 2.6         |           | 46         | No ai                                                       | padd                              | 1         | 3.5         | 2    | 3.5  | 7         | 2.8         |           | 65         | 100% air cavities   | pbed      | 1         | 3.5  | 2.5          | 3.5  | 2.5  | 3           |                                                  | 50         |   |
|          | Disch. Width Disch. Slope of stepped spillways a | perunit Step nos. | Max.                      | Min.    | Max.        | Min.                                             | Aver.(dwps) | Inception | length(cm) | _                                                           | Slope of stepped                  | Step nos. | Max.        | Min. | Max. | Min.      | Aver.(dwps) | Inception | length(cm) | 1 -                 | 1 23      | Step nos. | Max. | Min.         | Max. | Min. | Aver.(dwps) | Inception                                        | length(cm) | • |
|          | Disch.                                           | perunit           | (cum) spillw. length Max. | (b)     | cum/m) Max. |                                                  |             |           |            |                                                             |                                   |           |             |      |      | 0.03 Min. |             | •         | •          | <del></del>         |           | -         |      |              |      |      |             |                                                  |            | • |
|          | Width                                            | of                | spillw.                   | ways    | (b m)       |                                                  |             |           |            |                                                             |                                   |           |             |      |      | 0.2       |             |           |            |                     | _         |           |      |              |      |      |             |                                                  |            | • |
|          | Disch.                                           | <u> </u>          | (cum)                     | ,       |             |                                                  | -           |           |            | -                                                           |                                   | •         |             |      |      | 0.006     |             | •         |            |                     |           |           |      |              |      |      |             |                                                  |            |   |
| <u> </u> | SN Mano                                          | metre             | reading                   | (x cm)  |             |                                                  | -           |           |            |                                                             |                                   |           |             |      |      | 1.65      |             |           |            |                     | -         | •         |      |              |      |      |             |                                                  |            | • |
| 1        | NS                                               |                   | _ <u></u>                 | <u></u> |             | <del>                                     </del> |             |           |            |                                                             |                                   |           | <del></del> |      |      | T         |             |           |            |                     |           |           |      | <del>.</del> |      |      |             | (                                                |            |   |

| CNI Man           | ┢        | W/: 4+b | Diech       | Dieck Width Diech Clone of ctorned enillerance | a pour   | - Ilka | 2 3/10             | Cropr-           | 1620       |                                            |         |         |            |           | ľ      |        |      |     |           |                     |        |           |     |
|-------------------|----------|---------|-------------|------------------------------------------------|----------|--------|--------------------|------------------|------------|--------------------------------------------|---------|---------|------------|-----------|--------|--------|------|-----|-----------|---------------------|--------|-----------|-----|
| metre             |          | - F     | neminit     | nermit Step nos                                | 1 P      | 2      |                    |                  | 3 V        | \<br>\                                     | 7 8     | 0       | 101        | 11        | 1      | 12     | =    | 15  | 16        | 17                  | 18     | 10        | 7   |
| છ ો<br>∓ મે       | <u> </u> | 10      | per unit    | Mess                                           | 100      |        | Щ.                 |                  | 7 7 7      | ) V                                        |         |         | $\perp$    | 1         |        | 1      | 7 6  |     | 2         | +                   | 9      |           | 3   |
| Summal (according | ( cmm)   | winds ( |             | Min                                            | 9        |        | ء اذ               | ء اد             | 3 6        | ء اد<br>                                   |         |         |            |           | ی د    | 7      | 7    | 7   | $\dagger$ | +                   | +      | +         |     |
|                   | _        | Ways    |             | MIII.                                          |          |        | ╗                  | <del>1</del>   1 | 1 1        | 1 L                                        |         | $\perp$ |            |           | 1      | 7 (    | 7 6  | 7   | $\dagger$ | +                   | +      | $\dagger$ | Т   |
| 1                 |          | (E)     | cum/m) Max. | Max.                                           | 21       |        | Ц.                 | _ _              | 7 (7       | ر<br>ر                                     | _       |         |            |           | 30     | 3      | 3    | ·   | +         | +                   | +      | $\dagger$ |     |
|                   |          |         |             | Min.                                           | 33       | 3      | 3                  | 7                | 7          | 7                                          | 2 2     | 2       | 2          | 7         | 2      | 7      | 7    | 2   |           | _                   | -      | -         |     |
|                   |          | _       |             | Aver.(d <sub>wps</sub> )                       | 3.4      | 3.3    | 3.3                | 2.3              | 2.3 2.     | 3 2.                                       | 5 2.5   | 5 2.5   | 2.5        | 2.5       | 2.5    | 2.5    | 2.5  | 2.5 |           |                     | ,      |           |     |
|                   | •        |         |             | Inception                                      |          |        |                    |                  |            |                                            |         |         |            |           |        |        |      |     |           |                     |        |           |     |
|                   |          |         | ,           | length(cm)                                     | 50       |        |                    |                  |            |                                            |         |         |            |           |        |        | -    |     |           |                     |        |           |     |
|                   |          | -       |             |                                                | No air c | cavit  | ies,we             | ak re            | circul     | cavities, weak recirculating vortices were | vortice | S Wer   |            | generated | in all | steps. |      |     |           |                     |        |           |     |
|                   |          |         |             | Slope of stepped spillways                     | s padd   | pillw  | ays α <sub>2</sub> | 2 =52°1          | 914        |                                            |         |         |            |           |        |        |      |     |           |                     |        |           |     |
|                   |          |         |             | Step nos.                                      | FT       | \$7    | 3                  | 4                | 5          | 9                                          | 2 2     | 6 8     | 10         | 11        | 12     | 13     | 14   | 15  | 16        | 17                  | 18     | 19        | 20  |
|                   |          | -       | -           | Max.                                           | 3.5      | 5.5    | 7                  | 8 8              | 8.5 8      | .5 8.                                      | 5 8     | 3 7.5   | 6.5        | 6.5       | 9      | 9      | 9    | 6.5 | 5.5       | 5.5                 | 5      | 4.6       | 4   |
|                   |          |         |             | Min.                                           | 2.5      | 4      | 9                  | 6.5              | 6.5 6      | 6.5                                        | 7 6.5   | 9 9     | 5          | 4.5       | 4.5    | 4.5    | 4.5  | 4.5 | 4.5       | 4.2                 | 4      | 4         | 3   |
|                   |          |         |             | Max.                                           | 3.5      | 5      | 6.5                | 8                | 8.5 8      | .5 8.                                      | 5 8     | 3 7     | 6.5        | 6.5       | 9      | 9      | 9    | 6.5 | 5.5       | 5.5                 | 5      | 4.6       | 4   |
| 2.95              | 5 0.008  | 8 0.2   |             | 0.04 Min.                                      | 2.5      | 3.8    | 5.5                | 9                | 6.5 6      | 6.5                                        | 7 6.5   | 5 5     | 5          | 4.5       | 4.5    | 4      | 4    | 4.5 | 4.5       | 4.2                 | 4      | 4         | 3   |
|                   |          |         |             | Aver.(dwps)                                    | 3        | 4.6    | 6.3                | 7.1              | 7.5 7      | 7.5 7.8                                    | 8 7.3   | 5.5     | 5.75       | 5.5       | 5.3    | 5.13   | 5.13 | 5.5 | 5.        | 4.9                 | 4.5    | 4.3       | 3.5 |
|                   |          |         |             | Inception                                      |          |        | -                  |                  |            |                                            |         |         |            |           |        |        |      |     |           |                     |        |           |     |
|                   |          |         |             | length(cm)                                     | 06.      |        |                    |                  |            |                                            | i       | _       |            |           |        |        | -    |     |           |                     |        |           |     |
|                   |          |         |             |                                                | 100% air | air ca | cavities           |                  | 25         | 25%air                                     |         | 20%     | rec.vortex | tex       | ]<br>  |        |      |     | 1         | 100% recir.vortices | cir.vo | rtices    |     |
|                   |          |         |             | Slope of stepped spillways                     | s padd   | pillw  | ays α <sub>3</sub> | 3 =38°           | 050        |                                            |         | _       |            |           |        |        |      |     |           |                     |        |           |     |
|                   |          | -       |             | Step nos.                                      | 1        | 2      | 3                  | 4                | 5          | 9                                          | 7 8     | 6 8     | 10         | 11        | 12     | 13     | 14   | 15  | 16        | 17                  | 18     | 19        | 20  |
|                   |          |         |             | Max.                                           | 4        | 3.5    | Ь.                 | 6.5              | 7.5 7      | 5 7                                        | .5 7.5  | 7       | 7          | 7         | 9      | 5.5    | 4    | 4   |           |                     |        |           |     |
|                   | -        | _       |             | Min.                                           | 3        | 3      | 3.5                | 4.5              | 5.5 5.     | .5 5.                                      | 5 5.5   | 5 5     | 5          | 4.5       | 4.5    | 3.5    | 3.5  | 3.5 |           |                     | !      |           |     |
|                   |          |         |             | Max.                                           | 3.5      | 3      | 4.5                | 6.5              | 6.5        | .5 7.                                      | 5 7.5   | 7       | 7          | 9         | 9      | 5      | 4.5  | 4.5 |           |                     |        |           |     |
|                   | _        | _       |             | Min.                                           | 2.5      | 2.5    | 3 4                | 4.5              | 5 5.       | 5 5                                        | .5 5.5  | 5 5     | .5         | 4.5       | 4.5    | 3.5    | 3.5  | 3.5 |           |                     |        |           |     |
|                   |          |         |             | Aver.(d <sub>wps</sub> )                       | 3.3      | 3      | 4                  | 5.5              | 6.1 6      | 5.                                         | 5 6.5   | 5 6     | 9          | 5.5       | 5.3    | 4.38   | 3.88 | 3.9 |           |                     | _      |           |     |
|                   |          |         |             | Inception                                      |          |        |                    |                  |            |                                            |         |         |            |           |        |        |      |     |           | _                   | _      |           |     |
|                   |          |         |             | length(cm)                                     | . 50     |        |                    |                  |            |                                            |         |         |            |           |        |        |      |     |           |                     |        |           |     |
|                   |          |         |             |                                                | 100% re  | recirc | ecirculating       | ig vor           | vortices i | in all s                                   | steps   |         |            |           |        |        |      |     |           |                     |        |           |     |
|                   |          |         |             |                                                |          |        |                    |                  |            |                                            |         |         |            |           |        |        |      |     |           | ,                   |        |           |     |

| Disch. Width Disch. Slope of stepped spillways $\alpha_1 = 34^{\circ}32$ (Q) of perunit Step nos. 1 2 3 4 5 (cum) spillw length Max 5 5 4 3 3 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 2.5 2.                                                                                                                                        |
| 1                                                                                                                                             |
| Min. 2.5 2.5                                                                                                                                  |
| Aver.(d <sub>wps</sub> ) 3.8 3.8                                                                                                              |
| Inception                                                                                                                                     |
| length(cm) 50                                                                                                                                 |
| Flow patt No air cavities, weak recirculating vortices were generated in                                                                      |
| tepped                                                                                                                                        |
| Step nos. 1 2                                                                                                                                 |
| Max. 4 6                                                                                                                                      |
| Min. 3 4                                                                                                                                      |
| Max. 4 6                                                                                                                                      |
| 0.05 Min. 3 4                                                                                                                                 |
| Aver.(d <sub>wps</sub> ) 3.5 5                                                                                                                |
| Inception                                                                                                                                     |
| length(cm) 90                                                                                                                                 |
| Flow patt 100% air cavities                                                                                                                   |
| Slope of stepped spillways                                                                                                                    |
| Step nos. 1 2                                                                                                                                 |
| Max. 5 4                                                                                                                                      |
| Min. 4 3                                                                                                                                      |
| Max. 5 4                                                                                                                                      |
| Min. 3.5 2.5 3.5                                                                                                                              |
| Aver.(d <sub>wps</sub> ) 4.4 3.4 4                                                                                                            |
| Inception                                                                                                                                     |
| length(cm) 60                                                                                                                                 |
| Flow patt 100% recirculating vortices in all steps                                                                                            |

| SN Mano   | Disch         | ı. Wıdt  | nj Dasch.            | Disch. Width Disch.   Slope of stepped |                                                    | spillways |        | $\alpha_1 = 3$ | =34°32  |          |        |        |        |                |       |        |                                  |         |          |          |          |          |    | _    |
|-----------|---------------|----------|----------------------|----------------------------------------|----------------------------------------------------|-----------|--------|----------------|---------|----------|--------|--------|--------|----------------|-------|--------|----------------------------------|---------|----------|----------|----------|----------|----|------|
| metre     | <u>©</u>      | of       | peruni               | perunit Step nos.                      |                                                    | 2         | 3      | 4              | 5       | 9        | 7      | 8      | 6      | 10             | 11    | 12     | 13                               | 14      | 15       | 16       | 17       | 18       | 19 | 8    |
| Ħ         | reading (cum) | ) spillw | (cum) spillw. length | Max.                                   | 9                                                  | 9         | 5      | 5              | 5       | 5        | 4      | 4      | 4      | 4              | 4     | 4      | 4.5                              | 4.5     | 4.5      |          | -        | _        | -  |      |
| (x cm)    | _             | ways     |                      | Min.                                   | 5                                                  | 5         | 4      | 4              | 4       | 4        | 3      | 3      | 3      | 3              | 3     | 3.5    | 3.5                              | 3.3     | m        | -        | -        |          | -  |      |
| , j       |               | (p m)    | cum/m) Max.          | ) Max.                                 | 9                                                  | 9         | 5      | 5              | 5       | 5        | 4      | 4      | 4      | 4              | 4     | 4.2    | 4.2                              | 4.2     | 5        |          | -        | _        | -  |      |
|           |               |          |                      | Min.                                   | 5                                                  | 5         | 4      | 4              | 4       | 4        | 3      | 3      | 3      | 3              | 3     | 3.2    | 3.2                              | 3.2     | 3.7      | -        | -        | -        | -  |      |
|           | <u>.</u>      |          |                      | Aver.(dwps)                            | 5.5                                                | 5.5       | 4.5    | 4.5            | 4.5     | 4.5      | 3.5    | 3.5    | 3.5    | 3.5            | 3.5   | 3.7 3  | 3.85                             | 3.8     | 4.1      | -        | -        | -        | -  |      |
|           |               |          |                      | Inception                              |                                                    | _         |        | -              | _       |          | -      |        |        |                | _     | _      |                                  | -       |          | H        | $\vdash$ | $\vdash$ | -  |      |
|           |               |          | _                    | length(cm)                             | 09                                                 |           |        |                |         |          |        |        |        | -              |       | -      |                                  | -       | -        | $\vdash$ | -        | $\vdash$ | -  |      |
|           |               |          |                      | Flow patt                              | No air cavities, weak recirculating vortices up to | cavi      | ies,w  | eak r          | ecircu  | ılatin   | g vor  | ticesu | p to 1 | 2thst          | ep&st | rong   | 12thstep&strong vortices onwards | s onv   | /ards.   |          |          |          |    |      |
|           |               |          |                      | Slope of stepped                       | s padd:                                            | spillways | ays c  | $\alpha_2 = 5$ | =52°14' |          |        |        |        |                |       |        |                                  |         |          |          |          |          |    |      |
|           |               |          |                      | Step nos.                              | F                                                  | 2         | 3      | 4              | 5       | 9        | 7      | 8      | 6      | 10             | 11    | 12     | 13                               | 141     | 15       | 16       | 17       | 18       | 19 | 8    |
|           | _             |          |                      | Max.                                   | 5                                                  | 7         | 8.5    | 10             | 11      | 11       | 11     | 11 1   | 12.5   | 12.5           | 12 1  | 11.5   | 11                               | 10      | 01       | 9.5      | 9.5      | 8        | 7  | 6.5  |
|           |               | :        |                      | Min.                                   | 3.5                                                | 5.5       | 6.5    | 8              | 6       | 6        | 6      | 6      | 10     | 10             | 6     | 8.5    | 6.5                              | 9       | 9        | 9        | 5.5      | 5        | 5  | 5    |
|           |               |          |                      | Max.                                   | 5.5                                                | 6.5       | 8.5    | 9.5            | 11      | 11       | 11     | 11 1   | 12.5   | 13             | 12 1  | 11.5   | 11.5                             | 10.5    | 9.5      | 2        | 9.5      | ∞        | 7  | 6.5  |
| 5.6       | 6.63   0.012  | 2 0.2    |                      | 0.06 Min.                              | 4                                                  | 4.5       | 6.5    | 7.5            | 9.5     | 6        | 6      | 6      | 9.5    | 9.5            | 6     | 8.5    | 7                                | 6.5     | 5.5      | 6.5      | 5.5      | 5        | 5  | 5    |
|           | _             | _        |                      | Aver.(d <sub>wps</sub> )               | 4.5                                                | 5.9       | 7.5    | 8.8            | 6.6     | 10       | 10     | 10     | 11 1   | 11.3           | 11    | 10     | 8                                | .25     | 7.8      | ∞        | 7.5      | 6.5      | 65 | 5.75 |
|           |               |          |                      | Inception                              |                                                    |           |        |                |         |          |        | _      | _      |                |       |        | -                                |         | $\vdash$ | -        | -        | -        | -  |      |
|           |               |          |                      | length(cm)                             | 120                                                |           |        |                |         |          |        |        |        |                |       | -      | -                                | -       | -        | $\vdash$ | -        | -        | -  |      |
|           |               |          |                      | Flow patt                              | 100% air cavities                                  | air c     | vities |                | 2       | 25%air   | Į.     | 5(     | o% re  | 50% rec.vortex | ×     | 10     | 100% recir.vortices              | cir.vor | tices    |          |          |          |    |      |
|           |               |          |                      | Slope of stepped                       |                                                    | spillways | ays c  | $\alpha_3 = 3$ | =38°50' |          |        |        |        |                |       | ı      |                                  |         |          |          |          |          |    |      |
|           |               |          |                      | Step nos.                              |                                                    | 7         | 3      | 4              | 5       | 9        | 7      | 8      | 6      | 10             | 11    | 12     | 13                               | 14      | 15       | 16       | 17       | 18       | 19 | 20   |
|           |               |          |                      | Max.                                   | 9                                                  | 5         | 5.5    | 6.5            | 6       | 11       | 9.5    | 10     | 11     | 11.5           | 8.5   | ∞      | ∞                                | 8       | 7.5      | -        | -        | _        | -  |      |
|           |               | _        |                      | Min.                                   | 5                                                  | 4         | 4      | 4.5            | 5.5     | 9        | 9      | 6.5    | 7      | 7              | 5     | 4      | 4                                | 4       | 4.5      | -        | -        | _        |    |      |
|           |               |          |                      | Max.                                   | 6.5                                                | 5.5       | 5.6    | 6.5            | 5.5     | 10       | 10     | 11 1   | 11.5   | 12             | 6     | 8.5    | 8.5                              | 7.5     | 7.6      | $\vdash$ | -        | -        | -  |      |
|           |               |          |                      | Min.                                   | 4.5                                                | 3.5       | 3.5    | 4              | 5       | 6.5      | 6.5    | 7      | 7.5    | 7.5            | 5.5   | 4.5    | 4.5                              | 4       | 4        | -        | -        | -        | -  |      |
| <i>:.</i> |               |          |                      | Aver.(dwps)                            | 5.5                                                | 4.5       | 4.7    | 5.4            | 6.3     | 8.3      | 8      | 8.6    | 9.3    | 9.5            | 7     | 6.3 6. | .25 5.                           | 88.     | 5.9      |          | ļ        |          |    |      |
|           |               |          |                      | Inception                              |                                                    |           |        |                |         | -        |        |        |        |                |       |        |                                  |         | _        | -        |          | -        |    |      |
|           |               |          |                      | length(cm)                             | 70                                                 |           |        |                |         | $\dashv$ |        |        |        |                |       | -      |                                  | -       |          | -        | -        | -        |    |      |
|           |               |          |                      | Flow patt                              | 100% recirculating vortices in all steps           | recir     | ulati  | ov gr          | rtices  | in al    | 1 step | S      |        |                |       |        |                                  |         | -        |          |          |          |    |      |


|                                        | 18                | T                    |          | ]           |                                                  |             | Ţ             | Γ             |                                                                                  |                  | 2         | 9.5  | 5    | 10   | 5.5        | 7.5                      | Γ         |            | I                   | Γ                | 20          | Г        | Ι         |      | Г    | _                        | ·         |            | $\Box$                    |
|----------------------------------------|-------------------|----------------------|----------|-------------|--------------------------------------------------|-------------|---------------|---------------|----------------------------------------------------------------------------------|------------------|-----------|------|------|------|------------|--------------------------|-----------|------------|---------------------|------------------|-------------|----------|-----------|------|------|--------------------------|-----------|------------|---------------------------|
|                                        |                   | ļ                    | L        | _           | <u> </u>                                         | _           | L             | <u> </u> -    |                                                                                  | i                |           |      | 2    | L    |            |                          | _         | _          |                     |                  |             |          | _         | _    | _    |                          |           | L          |                           |
|                                        | 15                |                      |          |             |                                                  |             |               |               |                                                                                  |                  | 19        | 9.5  |      | 10   | 5.5        | 7.5                      |           | Ì          |                     |                  | 19          |          |           |      |      |                          |           |            |                           |
|                                        | 18                |                      |          |             |                                                  |             |               | 1             |                                                                                  |                  | 18        | 101  | 5.5  | 11   | 9          | 8.1                      |           |            |                     |                  | 18          |          |           |      |      |                          |           |            |                           |
|                                        | 17                |                      |          |             |                                                  |             |               |               | ļ.                                                                               |                  | 17        | 11   | 9    | 12   | 7          | 6                        | -         |            |                     |                  | 17          |          | -         | -    |      |                          | -         |            | -                         |
|                                        | 16                | 1                    |          |             | <del>                                     </del> |             | -             | T             |                                                                                  |                  | 16        | 11   | 9    | 12   | 7          | 6                        |           | -          |                     |                  | 16          | -        |           |      | -    |                          | $\vdash$  |            |                           |
|                                        | 151               | 4.6                  | 3.5      | 5           | 3.5                                              | 4.2         |               | <br>          | wards                                                                            |                  | 15        | 11   | 7    | 12   | 7          | 9.3                      |           | -          | rtices              | !                | 15          | 7        | 4.5       | 7.5  | 5    | 9                        |           |            | Н                         |
|                                        | 14                | 4.6                  | 3.5      | 5           | 3.5                                              | 4.15        |               |               | r cavities, weak recirculating vortices up to 14th step&strong vortices onwards. |                  | 14        | 12   | 7.5  | 13   | ∞          | 10.1                     | _         |            | 100% recir.vortices |                  | 14          | 8        | 5         | 8    | 5.5  | 6.63                     | -         | -          |                           |
|                                        | 13                | 4.6                  | 3.5      | 5           | 3.5                                              | 4.15        |               |               | vortic                                                                           |                  | 13        | 13   | 6    | 14   | 9.5        | 11.4                     | -         |            | 0% re               |                  | 13          | 8.5      | 5.5       | 6    | 6.5  | 7.38                     | Ė         |            |                           |
|                                        | 12                | 4.6                  | 3.5      | S           | 3.5                                              | 4.2.        | -             |               | rong                                                                             |                  | 12        | 13   | 10   | 14   | 10         | 12                       | -         | -          | =                   |                  | 12          | 10       | 6.5       | 10   | 6.5  | 8.3 7                    |           |            |                           |
|                                        | 11                | 4.6                  | 3.5      | 5           | 3.5                                              | 4.2         | -             |               | p&st                                                                             |                  | 11        | 14   | 10   | 15   | 11         | 13                       | _         | -          | ×                   |                  | 11          | 10       | 7         | 10   | 7    | 8.5                      |           | -          |                           |
|                                        | 10                | 4.6                  | 3.5      | 5           | 3.5                                              | 4.15        | -             |               | 4thste                                                                           |                  | 10        | 15   | 11   | 16   | 10.5       | 13.1                     |           |            | 50% rec.vortex      |                  | 10          | 10       | 7         | 101  | 7    | 8.5                      |           |            |                           |
|                                        | 6                 | 5                    | 3        | 5           | 3                                                | 4 4         |               | <del> -</del> | to 1                                                                             |                  | 6         | 14   | 11   | 15   | 11 1       | 13 1                     |           |            | % rec               |                  | 6           | 11       | 7.5       | 11   | 8    | 9.3                      |           | <u> </u>   |                           |
|                                        | 8                 | 5                    | 3.       | 5           | 3                                                | 4           | -             | _             | icesn                                                                            |                  | 8         | 14   | 11   | 13   | 10         | 12                       |           | -          | 50                  |                  | <u>∞</u>    | 11       | 7.5       | 11   | 8    | .3                       | H         |            |                           |
|                                        | 7                 | 5                    | 3        | 5           | 3                                                | 4           | <del> -</del> |               | yvort                                                                            |                  | 7         | 13   | 10   | 13   | 10         | 11                       |           | _          |                     |                  | 7           | 10       | 6.5       | 11   | 7    | 6 5.                     |           |            | steps                     |
|                                        | 9                 | 5                    | 3        | 5           | 3                                                | 4           | $\vdash$      |               | lating                                                                           |                  | 9         | 12   | 9.5  | 12   | 6          | 11                       | _         |            | 25%air              |                  | 9           | 10       | 5.8       | 11   | 9    | .1 8                     | _         |            | a                         |
| =34°32'                                | 5                 | 5                    | 3        | 5           | 3                                                | 4           | -             |               | circu                                                                            | =52°14'          | 5         | 11   | 6 6  | 11   | 9.5        | 6.6                      |           |            | 2,                  | =38°50'          | 5           | 6        | 9         | 6    | 5.5  | 7.4 8.                   |           |            | tices                     |
|                                        | 4                 | 9                    | 4        | 9           | 4                                                | 5           | -             |               | eak re                                                                           | $\alpha_2 = 52$  | 4         | 9.5  | 8    | 10   | 8          | 8.9                      |           |            |                     | 3 =38            | 4           | 7        | 4.5       | 7.5  | 5    | , 9                      |           |            | recirculating vortices in |
| spillways a                            | 3                 | 9                    | 4        | 9           | 4                                                | 5           |               |               | ies,w                                                                            | ays o            | 3         | 8.8  | Ż    | 6    | 7          | 8                        |           |            | air cavities        | ays $\alpha_3$   | 3           | 5        | 4         | 5    | 4.5  | 4.6                      |           |            | ulatin                    |
| pillw                                  | 2                 | 9                    | 4        | 9           | 4                                                | 5           |               |               | cavit                                                                            | spillways        | 2         | 7    | 5.5  | 7    | 5.5        | 6.3                      |           | _          | air ca              | pillways         | 2           | 5.5      | 4         | 5.5  | 3.5  | 4.6                      |           |            | ecirc                     |
|                                        |                   | 7                    | 4.5      | 9           | 4                                                | 5.4         | ε             | 09            | No air                                                                           | 1                | 1         | 5    | 3.5  | 5.5  | 3.5        | 4.4                      |           | 120        | 100%                | 92               | 1           | 9        | 5         | 6.5  | 4.5  | 5.5                      |           | 80         | 100%                      |
| Disch. Width Disch.   Slope of stepped | perunit Step nos. | Max.                 | Min.     | Max.        | Min.                                             | Aver.(dwps) | Inception     | length(cm)    | Flow patt                                                                        | Slope of stepped | Step nos. | Мах. | Min. | Max. | Min.       | Aver.(d <sub>wps</sub> ) | Inception | length(cm) | Flow patt 1         | Slope of stepped | Step nos.   | Max.     | Min.      | Max. | Min. | Aver.(d <sub>wps</sub> ) | Inception | length(cm) | Flow patt 1               |
| Disch.                                 | perunit           |                      | <u>Б</u> | cum/m) Max. | <u></u>                                          | :           | نينا          |               | ,                                                                                |                  |           |      |      |      | 0.07 Min.  |                          |           | -          |                     |                  | <b>V.</b> 2 | <u> </u> | <u></u> , |      |      |                          |           | I          |                           |
| Width                                  | of 1              | (cum) spillw, length | ways     | (p m)       |                                                  | ·           |               |               |                                                                                  |                  |           |      |      |      | 0.2        |                          |           |            |                     | _                |             |          |           |      |      |                          |           |            | $\dashv$                  |
| Disch.                                 | <u>©</u>          | _                    |          |             |                                                  |             |               |               |                                                                                  |                  |           |      |      |      | 9.03 0.014 |                          |           |            |                     |                  | _           |          | ŧ         |      | _    | •                        |           |            |                           |
| SN Mano                                | metre             | reading              | (x cm)   |             | -                                                |             |               |               |                                                                                  |                  | _         |      |      |      | 9.03       |                          |           |            | •                   |                  |             | •        |           | _    |      |                          |           | •          |                           |
| SN                                     |                   | . ,                  |          |             |                                                  |             |               |               |                                                                                  |                  |           |      |      |      | 2          |                          |           |            |                     |                  |             |          |           |      |      |                          |           |            | $\exists$                 |

| reading (cum) ways (9) of perunit (Step nots. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20    reading (cum) ways (9) (2 m) ways (1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z   | SN Mano | Disch. | Width   | Disch.   | Disch. Width Disch. Slope of stepped | ls padd | spillways | $\alpha_1$ | 1=34°32 | 32,      |         |         |         | 1      |       |       |         |         |         |          |          |              |     |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|--------|---------|----------|--------------------------------------|---------|-----------|------------|---------|----------|---------|---------|---------|--------|-------|-------|---------|---------|---------|----------|----------|--------------|-----|------|
| (vcm) spillor, length Max. 7.5 7 7 6 6 5 5 5 4.5 4.5 4.5 4.8 5 5 5 4.8 7 7 7 6 6 6 7 4 4 4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |         |        |         | perunit  | Step nos.                            | 1       | 7         | 3          | 4       | 5        |         |         |         |        | L_    | 12    |         | 14      | 15      | 16       | 17       | 18           | 19  | 20   |
| (\$\(\text{(Rem)}\) (\$\(\text{(Ways}\) (\$\((Wa |     | reading |        | spillw. | length   | Max.                                 | 7.5     | 7         | 7          | 9       | 9        |         |         | 4.      | 4      |       | 4.8   | 5       | iS      | 4.8     | _        | <u> </u> | -            | _   |      |
| (b m) cum/m) Max. 10 9 7 6 6 5 5 4 4 4 5 5 5 5 5 6 7 7 8 6 7 8 6 8 7 8 6 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | (x cm)  |        |         | <u>(</u> | Min.                                 | 9       | 9         | 5          | 5       | 5        |         |         | 3.      | 3      | 3.5   |       |         |         | 3.5     | -        | -        | -            | -   |      |
| Min. 8 7 6 5 5 4 4 4 3 5 3 3 5 4 4 4 3 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1 |         |        | (p m)   | cum/m    | Max.                                 | 10      | 6         | 7          | 9       | 9-       |         |         | 4       |        | _     | S     | 5       | 5       | 5       |          |          | -            | -   |      |
| Aver.(d <sub>wps</sub> )   79   73   53   55   55   45   45   45   45   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |        |         |          | Min.                                 | 8       | 7         | 9          | 5       | 5        |         |         | 3.      | S.     | 3.5   | 4     | 4       | 4       |         | -        | -        | -            |     |      |
| Flow part   No size cavities, weak recirculating vortices up to 12th step&strong vortices onwards.   Slope of stepped spillways 02, =52°14'     Min.   38   5.5   7   8   9   10   11   12   13   13   13   13   13   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         |        |         |          | Aver.(d <sub>wps</sub> )             | i       | .3        | 3          | .5      | .5       | 5 4     | 4       |         |        | 4     |       |         |         | 4.3     |          |          | <del> </del> |     |      |
| Flow pair   No air cavities, weak recirculating vortices up to 12thsrep-&strong vortices onwards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | ·       |        |         |          | Inception                            |         |           |            |         |          |         |         |         |        |       |       |         |         |         | T        | -        | $\vdash$     | T   |      |
| Flow patt   No air cavities, weak recirculating vortices up to 12thstep&strong vortices onwards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |         |        |         |          | length(cm)                           | 09      |           |            | -       | -        | _       | _       |         |        |       |       |         |         |         | $\vdash$ | $\vdash$ | $\vdash$     |     | Γ    |
| Slope of stepped spillways $\alpha_2 = 52^{\circ}14$ .  Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  Max. 55 7 8 5 10 11 13 13 13 15 15 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |         |        |         |          |                                      | No air  | caviti    | es,we      | ak re   | circul   | ating 1 | vortice | sup to  | , 12th | step& | stron | g vorti | ces on  | wards   |          |          |              |     |      |
| Step nos.   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   11   11   11   11   11   11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |         |        |         |          | Slope of ste                         | pped s  | illwa     | ys a       | , =52   | 14'      |         |         | }       |        |       |       |         |         |         |          |          |              |     |      |
| Min. 3.8 5.5 7 8.5 10 11 13 13 13 15 15 14 14 13 13 13 13 14 17 10 10 9 9 9 9 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |         |        |         |          | Step nos.                            | 1       | 7         | 3          | 4       | 5        |         |         |         |        |       | 12    | 13      | 14      | 15      | 16       | 17       | 18           | 19  | 20   |
| Min. 3.8 5.5 7 8 9 10 11 11 12 12 11 10 9 9 9 9 7 6 6 6 6 6 8 Min. 5.5 7 9 11 11 12 13 14 17 17 15 15 14 14 13 14 13 12 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |         |        |         |          | Max.                                 | 5       |           | 5.         | 10      |          | 3 1     |         |         |        | 14    | 14    | 13      | 13      | 13      | 12       | 12       | Ħ            | 11  | 11   |
| Hax. 5.5 7 9 11 11 12 13 14 17 17 15 15 15 14 14 13 14 13 12 11 11 10 9 9 9 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |         |        |         |          | Min.                                 | i       | 5.5       | 7          | 8       |          |         |         |         |        | 11    | 10    | 6       | 6       | 6       | 6        | 1        | ७            | 9   | 9    |
| 11.8 0.016 0.2 0.08 Min. 4 5.5 6.5 8 9.5 9.5 11 10 11 11 11 11 9 9 9 9 7 6 6 6 6 8 Not. (dwys.) 4.6 6.3 7.8 9.1 9.9 11 12 12 14 13.8 13 13 13.3 11.3 11.3 11 11 9.8 8.8 8.5 8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         |        |         |          | Max.                                 | 5.5     | 7         |            | _       | _        |         |         |         |        | 15    | 15    | 14      | 14      | 13      | 14       | 13       | 12           | H   | 10.5 |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5   |         |        |         | 0.08     | Min.                                 | 1       | 5         | 5.5        |         | 43       |         |         |         |        | 11    | 11    | 6       | 6       | 6       | 6        | 7        | ७            | 9   | 9    |
| 100% air cavities  100% air cavities  100% air cavities  100% recirvortices  100% recirvortices  100% recircularing vortices in all steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |        |         |          | Aver.(d <sub>wps</sub> )             | í       | 3         |            |         |          |         |         |         | 13.    | 13    | 13    |         |         | 11      | 11       | 8.6      |              | 8.5 | 8.38 |
| 1 120       1 120       1 120       1 120       1 100% recir.vortices         stepped spillways α₃ =38°50¹         1 00% air cavities       90%air 50% rec.vortex       100% recir.vortices         1 2 3 4 5 6 7 8 6 7 8 8.5 9 8 7 6 6 6 6       10 11 12 13 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         | ·· .   |         |          | Inception                            |         |           |            |         |          |         |         |         |        |       | -     |         |         | _       | -        | -        | -            |     |      |
| 100% air cavities   90% air   50% rec.vortex   100% recir.vortices   100% air cavities   38°Sortex   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         | _      |         |          | length(cm)                           | 120     |           |            |         | _        |         | _       |         |        |       |       |         | _       | _       |          |          | -            | -   |      |
| stepped spillways α <sub>3</sub> =38°50·         1       2       3       4       5       6       7       8       9       10       11       12       13       14       15       16       17       18       19         6       4.5       6       7.5       6       6.5       7       8       8.5       9       8       7       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       7       7       7       8       8       8       7       6       6       6       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |         |        |         |          |                                      | 100% a  | ir cav    | rities.    |         | 96       | %air    | 50%     | rec.voi | rtex   |       |       | 100%    | ecir.vo | ortices |          |          |              |     |      |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 8 6.5 6 7.5 9.5 10 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |         |        |         |          | Slope of ste                         |         | illwa     |            |         | ,050     |         |         |         |        |       |       |         |         |         | }        |          |              |     |      |
| 8 6.5 6 7.5 9.5 10 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         | ٠.     |         |          | Step nos.                            | 1       | 7         | 3          | 4       | 5        |         |         |         |        | •     | 12    | 13      | 14      | 15      | 16       | 17       | 18           | 19  | 702  |
| 6       4.5       4.5       5       6       6.5       7       8       8.5       9       8       7       6       6         7.5       6       5.5       7.5       10       10       13       14       15       16       14       13       12       12       12       13         1.6       6.8       5.4       5.4       5.5       6       6       7       7.5       8       8       7       6       6         1.6       6.8       5.4       5.1       6.3       7.9       8.1       9.9       11       11       11.5       11       9.8       9       9         1.0       6.8       5.4       5.1       6.3       7.9       8.1       9.9       11       11       11.5       11       9.8       9       9         1.0       6.8       5.4       5.1       6.3       7.9       8.1       9.9       11       11       11.5       11       9.8       9       9         1.0       6.8       5.4       5.1       6.3       7.9       8.1       9.9       11       11       11.5       11       9.8       9       9 <td< td=""><td></td><td></td><td></td><td>· · ·</td><td></td><td>Max.</td><td></td><td></td><td></td><td>.5</td><td>5</td><td>1</td><td></td><td>1</td><td>13</td><td>12</td><td>12</td><td>12</td><td>12</td><td>12</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |         |        | · · ·   |          | Max.                                 |         |           |            | .5      | 5        | 1       |         | 1       | 13     | 12    | 12    | 12      | 12      | 12      | -        | -        | -            | -   |      |
| 7.5       6       5.5       7.5       10       10       13       14       15       16       14       13       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       13       13       13       14       13       13       14       13       14       13       14       13       14       14       13       14       14       14       13       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |         |        |         | _        | Min.                                 | ı       | 5         | 5.         | 5       |          |         |         |         |        | 8     | 7     | 9       | 9       | छ       | -        | -        |              | -   |      |
| 5.5       4.5       4.5       5       6       6       7       7.5       8       8       8       7       6       6         .(dwps)       6.8       5.4       5.1       6.3       7.9       8.1       9.9       11       11.5       11       9.8       9       9         option       80       1       1       1       1       1       9.8       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |         |        | _       |          | Мах.                                 | 7.5     |           |            | .5      |          |         |         |         |        | 14    | 13    | 12      | 12      | 12      |          | -        | -            | -   |      |
| (a) 5.8 5.4 5.1 6.3 7.9 8.1 9.9 11 11 11.5 11 9.8 9 9 9 9 9 8.0 80 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | -       |        |         |          | Min.                                 | - 1     | 5         | .5         | 5       | 9        |         |         |         |        | 8     | 7     | 9       | 9       | .٠      |          | -        | -            | -   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         |        |         |          | Aver.(d <sub>wps</sub> )             | I       | 4         |            | 6       | 6.       | 1 9.    |         |         | _      | 11    |       | 6       | 6       | 6       | -        | -        | -            | -   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         |        |         |          | Inception                            |         | {         | _          |         |          |         |         |         |        |       |       |         |         |         | -        | -        | -            | -   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         |        |         |          |                                      | 8       | $\dashv$  | -          |         | $\vdash$ |         |         |         |        |       |       |         |         |         |          | -        | -            | -   |      |
| l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |         |        |         |          |                                      | 100% r  | ecirc     | lating     | g vor   | tices i  | n all s | teps    |         |        |       |       |         |         |         |          |          | 1            |     |      |

|                     | 20                |                |        |                   |      |             |           |            |                                                                             |                  | 20        | 12   | 8    | 12   | 8           | 10                       |           |            |                     |                         | 20        |          |      |          |            | $\neg$                   | ,         | $\neg$     |                           |
|---------------------|-------------------|----------------|--------|-------------------|------|-------------|-----------|------------|-----------------------------------------------------------------------------|------------------|-----------|------|------|------|-------------|--------------------------|-----------|------------|---------------------|-------------------------|-----------|----------|------|----------|------------|--------------------------|-----------|------------|---------------------------|
|                     | 19                |                |        |                   |      |             | _         | _          |                                                                             |                  | 19        | 12   | 8    | 12   | 8           | 10                       |           |            |                     |                         | 19        |          | -    | _        |            |                          | 1         | _          |                           |
|                     | 18                |                |        |                   |      |             |           |            |                                                                             | ı                | 18        | 12   | 8    | 12   | 6           | 10                       | ·         |            |                     |                         | 18        |          | -    |          |            | $\dashv$                 | -         | -          | Ì                         |
|                     | 17                |                |        |                   |      |             | _         |            |                                                                             |                  | 17        | 13   | 10   | 13   | 6           | 11                       | $\dashv$  | _          |                     |                         | 17        |          |      |          | _          |                          | _         | _          |                           |
|                     | 16                | _              |        |                   |      |             | -         |            |                                                                             |                  | 16        | 13   | 10   | 13   | 10          | 12                       | _         | _          |                     |                         | 16        |          |      | _        |            |                          | _         | -          |                           |
|                     | 15                | 5              | 4      | 5                 | 4    | 4.5         |           |            | ırds.                                                                       |                  | 15        | 13   | 10   | 14   | 11          | 12                       |           | _          | tices               |                         | 15        | 12       | 8    | 13       | 8          | 10                       | _         |            | $\dashv$                  |
|                     | 14                | 5              | 4      | .5                | 4    | 4.5         |           |            | onwa                                                                        |                  | 14        | 13   | 10   | 14   | 11          | 12                       |           |            | cir.vor             |                         | 14        | 11.5     | 8    | 13       | 7.5        | 10                       |           |            |                           |
|                     | 13                | 5              | 4      | 5                 | 4    | 4.5         |           | _          | cavities, weak recirculating vortices up to 6thstep&strong vortices onwards |                  | 13        | 13   | 10   | 14   | 11          | 12                       |           |            | 100% recir.vortices |                         | 13        | 12 1     | 8    | 13       | 8          | 10.3                     |           | -          |                           |
|                     | 12                | 5              | 4      | 5                 | 4    | 4.5         | _         |            | ov gn                                                                       |                  | 12        | 15   | 12   | 16   | 12          | 14                       | -         |            | 10                  |                         | 12        | 12       | 8    | 14       | 6          | 11 1                     |           |            |                           |
|                     | 11                | 5              | 4      | 5                 | 4    | 4.5         | -         |            | Estro                                                                       |                  | 11        | 15   | 12   | 16   | 12          | 14                       |           |            |                     |                         | 11        | 14       | 6    | 15       | 6          | 12                       |           |            |                           |
|                     | 10                | 5              | 4      | 5                 | 4    | 4.5         | -         |            | thstep                                                                      |                  | 10        | 15   | 12   | 16   | 12          | 13.8                     | -         |            | ×                   |                         | 10        | 14       | 6    | 15       | 6          | 11.8                     |           | -          |                           |
|                     | 6                 | 5              | 4      | 5                 | 4    | 4.5         | -         | -          | p to 6                                                                      |                  | 6         | 15   | 12   | 15   | 11          | 13 1                     |           |            | 50% rec.vortex      |                         | 6         | 13       | 6    | 14       | 6          | 11 1                     |           |            |                           |
|                     | 8                 | 5              | 4      | 5                 | 4    | 4.5         | -         |            | icesu                                                                       |                  | 8         | 14   | 12   | 14   | 11          | 13                       | _         | _          | % rec               |                         | <u></u>   | 13       | 8.5  | 13       | ∞          | 11                       | _         |            |                           |
|                     | 7                 | . 5            | 4      | 5                 | 4    | 4.5         | -         |            | g vort                                                                      |                  | 7         | 13   | 11   | 13   | 11          | 12                       | _         | _          |                     |                         | 7         | 13       | 7.5  | 13       | ∞          | 10                       | _         |            | all steps                 |
|                     | 9                 | 5              | 4      | 5                 | 4    | 4.5         |           | -          | Jatin                                                                       |                  | 9         | 12   | 101  | 12   | 10          | 11                       |           | -          | 90%air              |                         | 9         | 12       | 8    | 12       | 7.5        | 8.6                      |           |            | in al                     |
| =34°32'             | 5                 | 5.5            | 4.5    | 5                 | 4    | 4.8         | -         | -          | ecirc                                                                       | =52°14'          | 5         | 11   | 6    | 11   | 9.5         | 9.9                      |           |            | 5                   | 8°50'                   | 5         | 10       | 6.5  | 11       | 7          | 9.8                      |           |            | ortice                    |
| α, =3               | 4                 | 7              | 5      | 7                 | 5    | 9           |           |            | veak 1                                                                      | α2 = 5           | 4         | 11   | 8.5  | 11   | 8.5         | 9.5                      |           | -          | Ş                   | $\alpha_3 = 38^{\circ}$ | 4         | 8        | 9    | ∞        | 9          | 7                        |           |            | ng v                      |
| vays                | 3                 | 7              | 5.5    | 7                 | 5.5  | 6.3         |           |            | ities,v                                                                     | vays             | 8         | 6    | 7    | 9.5  | 7           | 8.1                      |           |            | air cavities        | pillways                | 3         | 6.5      | 5    | 9        | 5          | 5.6                      |           |            | recirculating vortices in |
| spillways           | . 2               | 6              | 4      | 6                 | 7    | 8           |           |            |                                                                             | spillways        | 2         | 7.5  | 5.5  | ∞    | 9           | 6.8                      | 1         |            |                     | spilly                  | 2         | 7        | 5.5  | 9        | S          | 5.9                      |           |            |                           |
| padd                | 1                 | 6              | 7      | 6                 | 7    | 8           |           | 09         | No air                                                                      | pbed             | T         | 5.5  | 4    | 9    | 4           | 4.9                      |           | 120        | 100%                | padd                    | T         | ∞        | 9    | 7.5      | 5.5        | 8.9                      |           | 80         | 100%                      |
| Slope of stepped    | perunit Step nos. | Max.           | Min.   | Max.              | Min. | Aver.(dwps) | Inception | length(cm) |                                                                             | Slope of stepped | Step nos. | Max. | Min. | Max. | Min.        | Aver.(d <sub>wps</sub> ) | Inception | length(cm) |                     | Slope of stepped        | Step nos. | Max.     | Min. | Max.     | Min.       | Aver.(d <sub>wps</sub> ) | Inception | length(cm) | Flow patt                 |
| isch.               | runit             |                |        | (b m) cum/m) Max. |      |             |           |            |                                                                             |                  |           |      |      |      | 0.09 Min.   | <u> </u>                 |           |            |                     |                         | -         | <u> </u> |      | <u> </u> | · <u> </u> |                          | L         |            |                           |
| Disch. Width Disch. | Pe                | spillw. length | (b)    | n) [ப             |      |             |           |            |                                                                             | <u>.</u>         |           |      | _    | _    | 0.2         |                          |           |            |                     |                         |           |          |      |          |            | -                        |           |            | $\dashv$                  |
| h. Wi               | Jo                | ) spil         | ways   | <u>ē</u>          | -    |             |           | _          |                                                                             |                  |           | -    |      | _    |             |                          |           |            |                     | -                       |           |          |      |          |            |                          |           |            | _                         |
| Disc                | 0                 | (cnm)          | -      |                   |      |             |           |            |                                                                             |                  |           |      |      | _    | 0.0         |                          |           |            |                     |                         | <u>.</u>  |          |      |          | _          |                          | _         |            |                           |
| SN Mano             | metre             | reading        | (x cm) |                   |      |             |           |            |                                                                             |                  |           |      |      |      | 14.92 0.018 |                          |           |            |                     |                         |           |          |      |          |            |                          |           |            |                           |
| SN                  |                   |                |        |                   |      |             |           | -:         |                                                                             |                  |           |      |      |      | 7           |                          |           |            |                     |                         |           |          |      |          |            |                          |           |            |                           |

|                                         | 6                 |         | <u> </u>   |             |          |                                              |            |             |                                             | ſ                   | 0         |                                               | 2           | $\vdash$                           | 7     | 6             |                |            | 7                   |                     | 0         |        | _     |        | _        | ·           | - 7       |            | —                        |
|-----------------------------------------|-------------------|---------|------------|-------------|----------|----------------------------------------------|------------|-------------|---------------------------------------------|---------------------|-----------|-----------------------------------------------|-------------|------------------------------------|-------|---------------|----------------|------------|---------------------|---------------------|-----------|--------|-------|--------|----------|-------------|-----------|------------|--------------------------|
|                                         | 20                |         |            |             | Ŀ        |                                              |            |             |                                             |                     | 20        | 11                                            | 7.5         | $\begin{bmatrix} 11 \end{bmatrix}$ |       | 9.13          |                |            |                     |                     | 20        |        |       |        |          |             |           |            |                          |
|                                         | 19                |         |            |             |          |                                              |            |             |                                             |                     | 19        | 11                                            | 7.5         | 11                                 | 7     | 9.13          |                |            |                     |                     | 19        |        |       |        |          |             |           |            |                          |
|                                         | 18                |         |            |             |          |                                              |            |             |                                             |                     | 18        | 11                                            | 8           | 12                                 | 8     | 9.8           |                |            |                     |                     | 18        |        |       |        |          |             |           |            |                          |
|                                         | 17                |         |            |             |          |                                              |            |             |                                             |                     | 17        | 11.5                                          | 10          | 13                                 | 6     | 11            |                |            |                     |                     | 17        |        |       |        |          |             |           |            |                          |
|                                         | 16                |         |            |             | <u> </u> |                                              |            |             |                                             |                     | 16        | 12                                            | 10          | 13                                 | 10    | 11            |                | <u> </u>   |                     |                     | 16        |        |       |        |          |             |           | _          |                          |
|                                         | 15                | 5.5     | 4          | 5.5         | 4        | 4.8                                          |            |             | ards.                                       |                     | 15        | 12                                            | 10          | 14                                 | 11    | 12            |                |            | rtices              |                     | 15        | 12     | 8     | 12     | 8        | 2           |           |            |                          |
|                                         | 14                | 5.5     | 4          | 5.5         | 4        | 4.75                                         |            |             | 3thstep&strong vortices onwards             |                     | 14        | 13                                            | 11          | 14                                 | 11    | 12.3          | ·              |            | 100% recir.vortices |                     | 14        | 12     | 8     | 12     | 8        | 10          |           |            |                          |
|                                         | 13                | 5.5     | 4          | 5.5         | 4        | 4.75                                         |            |             | ortice                                      |                     | 13        | 14                                            | 11          | 14.5                               | 10.5  | 12.5          |                | ļ,         | 00% r               |                     | 13        | 12.5   | 6     | 13.5   | 6        | =           |           |            | l                        |
|                                         | 12                | 5.5     | 4          | 5.5         | 4        | 4.8                                          |            |             | v gno                                       |                     | 12        | 14                                            | 11          | 16                                 | 11    | 13            |                | -          | 1                   |                     | 12        | 12.5   | 6     | 13.5   | 6        | 11          |           | -          |                          |
|                                         | 11                | 5.5     | 4          | 5.5         | 4        | 4.8                                          |            |             | Sestr                                       |                     | 11        | 15                                            | 12          | 16                                 | 12    | 14            |                | -          |                     |                     | 11        | 12.5   | 6     | 13.5 1 | 6        | 11          | _         |            |                          |
|                                         | 10                | 5.5     | 4          | 5.5         | 4        | 4.75                                         |            |             | thster                                      |                     | 10        | 15                                            | 12          | 16                                 | 12    | 3.8           |                |            | ×                   |                     | 10        | 12.5 1 | 6     | 14 1   | 6        | 1.1         |           |            |                          |
|                                         | 6                 | 5.5     | 4          | 5.5         | 4        | 4.8                                          |            |             |                                             |                     | 6         | 14                                            | 12          | 15                                 | 11    | 13 1          |                | -          | vorte               |                     | 6         | 13     | 6     | 14     | 6        | 11 1        |           |            |                          |
|                                         | ∞                 | 5.5     | 4.5        | 5.5         | 4        | 4.9                                          | -          | -           | cavities, weak recirculating vortices up to |                     | ∞         | 14                                            | 11          | 15                                 | 11    | 13            | -              |            | 50% rec.vortex      |                     | 8         | 12     | 8.5   | 13     | 8        | 10          |           |            |                          |
|                                         | 7                 | 5.5     | 4.5        | 5.5         | 4.5      | 2                                            | $\vdash$   | _           | yort                                        |                     | 7         | 13                                            | 11          | 14                                 | 11    | 12            |                |            |                     |                     | 7         | 12     | ∞     | 13     | ∞        | 10          |           |            | steps                    |
|                                         | 9                 | 9       | 5          | 9           | 4.5      | 5.3                                          | <u> </u> - | _           | lating                                      |                     | 9         | 12                                            | 11          | 14                                 | 11    | 12            |                | _          | 90%air              |                     | 9         | 11     | 7.5   | 11     | 7.5      | 9.1         |           | <u>.</u>   | in all                   |
| 32,                                     | <u>v</u>          | 6.5     | 4.5 4.     | 9           | 4.5 4    | 5.4 5                                        |            |             | circu                                       | 14                  | 5         | 11                                            | 6           | 12                                 | 9.5   | 10            |                | _          | 9                   | .050                | 5         | 10     | 7.5 7 | 11     | 7        | 8.9 5       |           | _          | tices                    |
| =34°32                                  | 4                 | 8       | 9          | ∞           | 9        | 1                                            |            | -           | ak re                                       | =52°14              | 4         | 11                                            | 8.5         | 11                                 | 8.5   | 9.5           | -              | _          |                     | 3=38°50             | 4         | 7.5    | 9     | ∞      | 6.5      | 7           |           |            | g vor                    |
| ıys α <sub>1</sub>                      | 5                 | 9.5     | 7.5        | 6           | 7        | 8.3                                          |            | -           | es,we                                       | ıys α <sub>2</sub>  | 60        | 6                                             | ~           | ن,                                 | 7     | 8.1           |                | -          | /ities              | ıys α <sub>3</sub>  | 3         | 6.5    | 5.5   | 7      | 9        | 6.3         |           |            | ecirculating vortices in |
| illways                                 | 77                | 01      | 8          | 6           | .5       | 9:                                           | $\vdash$   | -           | aviti                                       | oillways            | 7         | 3.                                            | ن.          | 6 8                                | 9     | 8.            | _              |            | ir cavities         | illways             | 7         | 7      | 3     | .5     | 9        | 9.6         |           |            | ecirci                   |
| ed sb                                   | H                 | 10      | $\infty$   | 101         | 8        | 6                                            |            | 09          | No air (                                    | ed sb               | -         | 9                                             | 4.3 5       | 9                                  | 4.5   | 5.2           | -              | 120        | 100% a              | ed sp               | 1         | ∞      | 6.5   | 8.5 7  | 6.5      | 7.4 6       |           | 80         | 100%  re                 |
| stepp                                   | -                 |         |            | -           | -        |                                              |            |             | 1                                           | stepp               | -         |                                               | 1           |                                    | 7     | <del> _</del> |                | -          |                     | stepp               | -         | _      |       |        | -        |             |           |            |                          |
| Disch. Width Disch. Slope of stepped sp | perunit Step nos. | Max.    | Min.       | Max.        | Min.     | Aver.(dwps)                                  | Inception  | length(cm)  | Flow patt                                   | Slope of stepped sp | Step nos. | Max.                                          | Min.        | Max.                               | Min.  | Aver.(dwps.)  | Inception      | length(cm) | Flow patt           | Slope of stepped sp | Step nos. | Max.   | Min.  | Max.   | Min.     | Aver.(dwps. | Inception | length(cm) | Flow patt                |
| ch.                                     | unit              | th<br>T |            | cum/m) Max. |          | <u>,                                    </u> | <u>, —</u> | <u>, — </u> | , —                                         | <u>, w</u>          | 100       | <u>1 =                                   </u> | <u>1 🚝 </u> | <u> </u>                           | 0.1   |               |                | <u>. —</u> |                     | <u> </u>            | 101       |        |       |        | <u> </u> |             |           |            |                          |
| h Dis                                   | per               | v. leng | <u>ੰ</u> ਉ |             | _        |                                              |            |             |                                             |                     |           |                                               |             |                                    | 2     |               | . <del>-</del> |            |                     |                     |           |        | _     |        |          |             |           |            |                          |
| Widt                                    | jo                | ylliqs  | ways       | (p m)       |          |                                              |            |             |                                             |                     |           |                                               |             |                                    | 0.2   |               |                |            |                     |                     |           |        |       |        |          |             |           |            |                          |
| Disch.                                  | <u>(</u>          | (E      | ,          |             |          |                                              |            |             |                                             |                     |           |                                               |             |                                    | 0.05  |               |                |            |                     |                     |           |        |       |        |          |             |           |            |                          |
|                                         |                   |         |            |             |          |                                              |            |             |                                             |                     |           |                                               |             |                                    | 18.42 |               |                |            |                     | •                   |           | -      |       |        |          | _           |           | _          |                          |
| SN Mano                                 | me                | reac    | <u>×</u>   | ,<br>       |          | _                                            |            |             |                                             |                     |           |                                               |             |                                    | 8 18  |               |                |            |                     |                     |           |        |       |        |          |             |           |            |                          |
| <u> </u>                                |                   |         |            |             | <u>L</u> |                                              |            |             |                                             |                     |           |                                               |             | _                                  |       |               |                |            |                     |                     |           |        |       |        | _        |             |           |            |                          |

3.6.2.3 Calculation of rate of energy dissipation and residual head:



Therefore equvalent water depth,  $d_w = \{q_w n/\sin\alpha^{0.5}\}^{0.6}$ 

Hence value of n is 0.05

n LHS RHS 0.04 4.704 3.498 0.05 3.848 3.832

# Equations to be solved: Tatewar & Ingle (1996) & Knight & Mc Donald(1979) Methods $Z^{0.1}$ Ing<sup>0.5</sup>=0.25+19log( $\lambda$ /|\,+5.75\log( $Z^{0.6}$ /\,K\) \ $Z=qn/(\sin\alpha)^{0.5}$ 
qw=0.02cum/0.2m=0.1cum/m

### Calculations:

| ", 1g) <sup>1/3</sup> .               | H <sub>spill</sub>        | 2    |       |                   | k(m)          | 0.026       | Solving Manning's n from eq.(1) | LHS | 3.84801193   | log(\/\)        | 0.10680811 | RHS          | 3.83236537 | Put different values of n & check whether LHS=RHS |
|---------------------------------------|---------------------------|------|-------|-------------------|---------------|-------------|---------------------------------|-----|--------------|-----------------|------------|--------------|------------|---------------------------------------------------|
| Critical depth $(dc)=(q_w^2/g)^{1/3}$ |                           |      | አ (m) | 0.053             | cosα          | 0.779       | ing's n f                       | ۲   | 0.006 1.2788 |                 |            |              |            | lues of 1                                         |
| al depth                              | <b>d</b> <sub>c (m)</sub> | 0.10 | _     | 0.033 0.041 0.053 | $\sin \alpha$ | 0.627 0.779 | g Mann                          | Z   | 0.006        | /k}             |            | 0.6/k}       |            | ferent va                                         |
| Critic                                | ď                         | 0.1  | 0.21  | 0.033             | ۵             | 38.83       | Solvin                          | п   | 0.05         | $\{z^{0.6/k}\}$ | 1.862      | log{z^0.6/k} | 0.27       | Put dif                                           |

```
Uniform velocity, uw = qw/dw

uw (mts)
2.09

Change in energy between crest and toe of spillways: AE=Ec-Et
Ec =Hspill+1.5dc Ec(m)
2.151

Et =dw+uw^2/2g Et(m)
0.270
AE(m)
1.881

Energy dissipated=AE/Ec*100 = 87.4 %
Residual head = Et = 0.27m
```

dw(m) 0.048

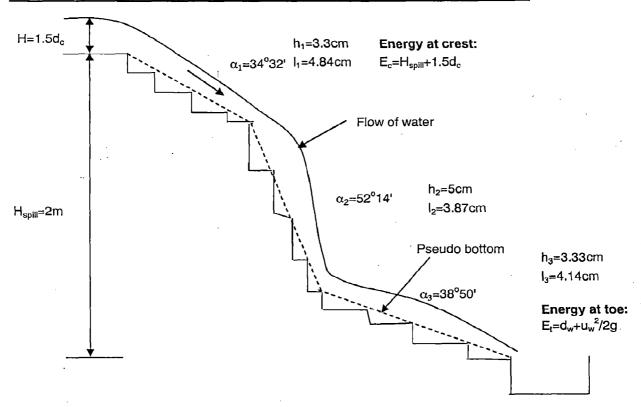
3.6.2.4 Experiment no.2: (Water flow depths in multislope stepped spillways)

| of perunit Step nos. 12 2 2 2 2 2 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | With the use | With the use of circular suppressor | inlan<br> | r supp     | ressor                   | 1       |          |        |          |           |        |         |        |         |         |       |               |        | ļ      |         |     | ŀ   |      |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------|-----------|------------|--------------------------|---------|----------|--------|----------|-----------|--------|---------|--------|---------|---------|-------|---------------|--------|--------|---------|-----|-----|------|---------|
| of perunit Step nos. 1  spillw. length Max. 2.5  (b m) cum/m) Max. 2.5  Min. 2.4  Aver.(d <sub>wps</sub> ) 2.5  Inception 30  Flow patt No air  Step nos. 1  Max. 2.5  Min. 1.5  Max. 2.5  Min. 1.5  Aver.(d <sub>wps</sub> ) 2.5  Flow patt 100%  Step nos. 1  Max. 2.5  Min. 1.5  Min. 2.5  Min. 1.5  Aver.(d <sub>wps</sub> ) 2.1  Inception 1.5  Aver.(d <sub>wps</sub> ) 2.1  Inception 1.5  Aver.(d <sub>wps</sub> ) 2.1  Inception 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sch          | Wi                                  | idth      | Disch.     | Slope of ster            | ed      | pillw    |        |          | 32.       | }      | }       | ļ      |         |         | ļ     |               | !      | }      |         |     |     |      |         |
| spillw.         length         Max.         2.5           (b m)         Min.         2.4           (b m)         Min.         2.4           Min.         2.4           Aver.(d <sub>wps</sub> )         2.5           Inception         30           Flow patt         No air           Slope of stepped sign         2.5           Max.         2.5           Min.         1.5           Aver.(d <sub>wps</sub> )         2           Step nos.         1           Inception         35           Flow patt         100%           Step nos.         1           Max.         2.5           Min.         2           Min.         2.5           Min.         2.5           Min.         1.5           Aver.(d <sub>wps</sub> )         2.1           Inception         1.5           Aver.(d <sub>wps</sub> )         2.1           Inception         1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9            | ot                                  |           | perunit    | Step nos.                | ᆔ       | 7        | 6      | 4        | 5         | 9      | <u></u> |        |         | 0 11    | 1 12  | 13            |        | 14 15  | 5 16    | 17  | 18  | 19   | 20      |
| (q) Min. 2.4    Min. 2.4     Aver.(d <sub>wps</sub> ) 2.5     Inception   Bength(cm) 30     Flow patt   No air     Step nos. 1     Max. 2.5     Min. 1.5     Max. 2.5     Min. 1.5     Aver.(d <sub>wps</sub> ) 2.5     Flow patt   100%     Step nos. 1     Max. 2.5     Min. 1.5     Aver.(d <sub>wps</sub> ) 2.1     Inception                                                                                                                                                 | (mm          | spil                                | Ilw.      |            | Max.                     | - : 1   | 5        | 5      | ۲.       | <u>بر</u> | 2      | 5.      | .5     | 5.      | 5 2.5   | 5 2.5 | 5 2.5         | 5 2.5  | 5 2.5  |         |     |     |      |         |
| (b m) cum/m) Max. 2.5  Min. 2.4  Aver.(d <sub>wps</sub> ) 2.5  Inception 30  Flow patt No air  Slope of stepped s;  Max. 2.5  Min. 1.5  Max. 2.5  Nineption 35  Flow patt 100%  Step nos. 1  Max. 2.5  Min. 1.5  Aver.(d <sub>wps</sub> ) 2.1  Inception 1.5  Aver.(d <sub>wps</sub> ) 2.1  Inception 1.5  Aver.(d <sub>wps</sub> ) 2.1  Inception 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | wa)                                 |           | <b>(b)</b> | Min.                     | 2.4     | 4        |        | 2        | 7         |        | .5      | .5     | 1       | 5 1.5   | 5 1.5 | 5 1.5         | 1      | 5  1.5 | 2       |     |     |      |         |
| Min. 2.4     Aver.(d <sub>wps</sub> ) 2.5     Inception   30     Flow patt   No air     Slope of stepped sign   1.5     Max. 2.5     Max. 2.5     Min. 1.5     Aver.(d <sub>wps</sub> ) 2.5     Flow patt   100%     Step nos. 1     Max. 2.5     Aver.(d <sub>wps</sub> ) 2     Min. 2     Max. 2.5     Min. 2     Max. 2.5     Min. 2     Max. 2.5     Min. 2     Max. 2.5     Min. 1.5     Aver.(d <sub>wps</sub> ) 2.1     Inception     Incepti                                                                                                                                     |              | <u>e</u>                            | E)        | cum/m)     | Max.                     |         |          |        |          | _         |        |         |        | 7       | 5 2.5   | 5 2.5 | 5 2.5         | 5 2.5  | 5 2.5  | 16      |     |     |      |         |
| Aver.(dwps) 2.5 Inception 30 Iength(cm) 30 Flow patt No air Slope of stepped s Step nos. 1 Max. 2.5 Min. 1.5 Aver.(dwps) 2 Inception 1.5 Flow patt 100% Step nos. 1 Max. 2.5 Min. 1.5 Aver.(dwps) 2.1 Inception 1.5 Aver.(dwps) 2.1 Inception 1.5 Aver.(dwps) 2.1 Inception 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                     |           |            | Min.                     | 4.      |          |        |          |           | ن,     | ı.      | .5     | 1       | 5 1.5   | 5 1.5 | 1.5           | 1      | 5 1.5  | 100     |     |     |      |         |
| Inception   30     Flow patt   No air     Slope of stepped s    Step nos.   1     Max.   2.5     Max.   2.5     Min.   1.5     Aver. (d <sub>wps</sub> )   2     Inception   35     Flow patt   100%     Step nos.   1     Max.   2.5     Min.   2.5     Min.   1.5     Aver. (d <sub>wps</sub> )   2.1     Inception   1.5     Max.   2.5     Min.   1.5     Aver. (d <sub>wps</sub> )   2.1     Inception   1.5     Inception                                                                                                                                                  |              |                                     |           |            | Aver.(d <sub>wps</sub> ) | 55      |          | ll     |          | 2.4       | 7      | 7       |        |         |         | 2     | 2             | 7      | 2 2    | <u></u> |     |     |      |         |
| Flow patt   No air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                     |           |            | Inception                |         | -        |        | -        | -         | _      | _       |        |         |         | _     | _             | _      |        |         |     |     |      |         |
| Step nos.   1   Step nos.   1   Max.   2.5   Min.   1.5   Max.   2.5   Min.   1.5   Max.   2.5   Min.   1.5   Aver.(d <sub>wps</sub> )   2   Inception   100%   Step nos.   1   Max.   2.5   Min.   2.5   Min.   2.5   Min.   1.5   Aver.(d <sub>wps</sub> )   2.1   Inception   2.5   Aver.(d <sub>wps</sub> )   2.1   2.5   Aver.(d <sub>wps</sub> )   2.1   2.5   Aver.(d <sub>wps</sub> )   2.1   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5 |              |                                     |           | -          | length(cm)               | 30      |          | _      |          |           |        |         | _      |         |         |       | _             |        |        |         |     |     |      |         |
| Slope of stepped stepped stepped stepped stepped step nos.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                     |           |            |                          | No air  | caviti   | es,we  | ak re    | circu     | lating | ; vorti | ces,ne | ither E | lappe   | nor s | skimming flow | ng flo | ě      |         | }   |     |      |         |
| Step nos. 1 2 3 4 5 6 7 8  Max. 2.5 4 4.5 5.5 5.5 5.5 5.5 5.5  Min. 1.5 3 4 4.5 5.5 5.5 5.5 5.5 5.5  Max. 2.5 4 4.5 5.5 5.5 5.5 5.5 5.5  Aver.(d <sub>wps</sub> ) 2 3.5 4.3 5 5.3 5.3 4.8 4.8  Inception  Inception  Step nos. 1 2 3 4 5 6 7 8  Max. 2.5 2.5 5 5 6.5 7 7 6.5  Min. 1.5 1.5 2.5 3.5 4.4 5 5.5  Min. 1.5 1.5 2.5 3.5 4.5 5.6  Aver.(d <sub>wps</sub> ) 2.1 2.1 3.8 5 5.8 5.7 6.1 5.5  Inception  Inceptin                                                                                                                                                         |              |                                     |           |            | Slope of ster            | s pad s | pillwa   | ıys α  | 2=52     | 14'       |        |         |        |         |         |       |               |        |        |         |     |     |      |         |
| Max.       2.5       4       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5.5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                     |           |            | Step nos.                |         | 7        |        | 4        | 5         | 9      | 7       | L      |         | 0 11    | 1 12  | 13            | 3 14   | 4 15   | 16      | 17  | 18  | 19   | 20      |
| Min. 1.5 3 4 4.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                     |           |            | Max.                     |         |          |        | <u> </u> | 5         | 3.     | 5       | 5 5    |         | 9 10    | 10    |               | 6      | 8 8.5  | 8       | 7   | 5   | 5    | 4.5     |
| Max. 2.5 4 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                     |           |            | Min.                     | 1.5     | 3        |        | 1.5      | 5         | 5      | 4       | L      | 3,      | 5 3.5   | 3     |               | 8      | 3 2.5  | 2.5     | 2.5 | 2.5 | 2.5  | 2.5     |
| O.02 Min.       1.5       3       4       4.5       5       5       4       4       8       4       8       4       8       4       8       4       8       4       8       4       8       4       8       4       8       4       8       4       8       4       8       4       8       4       8       4       8       4       8       4       8       4       8       4       5       6       7       8       8       4       5       6       7       8       4       5       6       7       7       6       5       4       5       6       7       6       5       4       5       6       7       7       6       5       4       5       6       7       7       6       5       4       5       3       4       5       6       7       7       6       5       4       5       3       4       5       6       7       7       6       5       4       5       3       4       5       3       4       5       3       4       5       4       5       3       3       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                     |           |            | Max.                     | 2.5     | <u> </u> |        | 5.       | 3         | نج     | ٤.      | 5 5    |         | 9 10    | 10    |               | 6      | 8 8.5  | 8       | 7   | 5   | 5    | 4.5     |
| s) 2 3.5 4.3 5 5.3 5.3 4.8 4.8 (a) 35 (a) 35 (b) 35 (b) 36 (a) 4 (b) 36 (a) 4 (b) 4 (a) 4 (b) 4 (a) 4 (b) 4 (a) 4                                                                                                                                                                                | 90           |                                     | 0.2       | 0.05       | Min.                     | 1.5     | 3        |        | 1.5      | 5         | 5      | 4       |        | 3       | 5 3.5   |       | 3             | ю      | 3 2.5  | 2.5     | 2.5 | 2.5 | 2.5  | 2.5     |
| 100% air cavities 10%to40% vortex 100% air cavities 10%to40% vortex 1 2 3 4 5 6 7 7 8 2.5 2.5 5 6.5 7.5 7.2 7.5 7.5 7.5 2.5 2.5 4.5 5.5 6.5 7 7 6.5 1.5 1.5 2.5 3.5 4 4 5 3.5 8, 2.1 2.1 3.8 5 5.8 5.7 6.1 5.5 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                     |           |            | Aver.(d <sub>wps</sub> ) |         |          | 4.3    |          |           |        |         |        |         | 5 6.8   | 3 6.5 |               | 6 5    | 5.5    | 5.3     | 4.8 | 3.8 | 3.75 | 3.5     |
| 100% air cavities       100%to40% vortex         stepped spillways $\alpha_3 = 38^050^\circ$ 2.5       2.5       2.5       7.5       7.5       7.5       7.5         2.5       2.5       3       4.5       5       4.5       7.5       7.5         2.5       2.5       3       4.5       5       4.5       7.5       7.5         2.5       2.5       4.5       5.5       6.5       7       7       6.5         1.5       1.5       2.5       3.5       4       4       5       3.5         s)       2.1       2.1       3.8       5       5.8       5.7       6.1       5.5         tool       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                     |           |            | Inception                | -       |          |        |          | -         |        |         |        | _       | _       | <br>  |               |        |        |         |     |     |      |         |
| 100% air cavities       10%to40% vortex         stepped spillways $\alpha_3 = 38^{\circ}50^{\circ}$ 1       2       3       4       5       6       7       8         2.5       2.5       5       6.5       7.5       7.2       7.5       7.5         2.5       2.5       3       4.5       5       4.5       5       4.5         2.5       2.5       4.5       5.5       6.5       7       7       6.5         1.5       1.5       2.5       3.5       4       4       5       3.5         s)       2.1       2.1       3.8       5       5.8       5.7       6.1       5.5         tool       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                     |           |            | length(cm)               | 35      |          |        |          | _         |        |         |        |         |         |       |               |        |        |         |     |     |      |         |
| tepped spillways α <sub>3</sub> =38°50'  1 2 3 4 5 6 7 8 9 10  2.5 2.5 5 6.5 7.5 7.2 7.5 7.5 7 6  2.5 2.5 4.5 5.5 6.5 7 7 6.5 6 4.5  1.5 1.5 2.5 3.5 4 4 5 3.5 3 2.5  3) 2.1 2.1 3.8 5 5.8 5.7 6.1 5.5 4.9 4  1.0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                     |           |            |                          | 100%    | air ca   | vities |          | %to4      | 0% vc  | rtex    | 100    | % reci  | r.vorti | Sac   |               |        |        |         |     |     | ,    | :       |
| 2.5 2.5 5 6.5 7.5 7.2 7.5 7.5 7 65 2.5 2.5 2.5 4.5 5.5 6.5 7 7 7 6.5 6 4.5 3.5 3 2.5 3 2.1 2.1 3.8 5 5.8 5.7 6.1 5.5 4.9 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                     | -         |            | Slope of ster            |         | pillwa   |        |          | ,20,      |        |         |        |         |         | 1     |               |        |        |         |     |     |      |         |
| 2.5 2.5 5 6.5 7.5 7.2 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                     |           |            | Step nos.                | 1       | 2        | 3      | 4        | 5         | 9      | 7       |        |         | 0 11    | 1 12  | 13            | 3 14   | 4 15   | 16      | 17  | 18  | 19   | 20      |
| 2       2       3       4.5       5       4.5       5       4.5       3.5         2.5       2.5       4.5       5.5       6.5       7       7       6.5       6         1.5       1.5       1.5       2.5       3.5       4       4       5       3.5       3         2.1       2.1       2.1       3.8       5       5.8       5.7       6.1       5.5       4.9         10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                     |           |            | Max.                     | 5.      |          |        | .5       | .5        | .2     | .5 7    | .5     |         | 6 5     | 5 4.5 | 3.5           |        | 3      |         |     |     |      |         |
| 2.5     2.5     2.5     4.5     5.5     6.5     7     7     6.5     6       1.5     1.5     2.5     3.5     4     4     5     3.5     3       2.1     2.1     2.3     3.8     5     5.8     5.7     6.1     5.5     4.9       10     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                     |           |            | Min.                     | . 2     | 2        | $\Box$ | 1.5      | _         | 1.5    | Щ       | 3      |         |         | 3 2.5 | 5 2.5         |        | 2 2    | -       |     |     |      |         |
| 1.5 1.5 2.5 3.5 4 4 5 3.5 3 2.<br>2.1 2.1 3.8 5 5.8 5.7 6.1 5.5 4.9 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                     | -         |            | Max.                     | .5      |          |        |          | 5.5       | 7      |         |        |         | 5   5   | 5 4.5 | 3.5           |        | 4 3.5  | 10      |     |     |      |         |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                     |           |            | Min.                     | 1.5     | .5       |        |          | 4         | 4      | 3       | .5     | 2.      | 5 3     | 3 2.5 | 2.            | 5 2.   | 5 2.5  | - 10    |     |     |      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | •                                   | -         |            | Aver.(d <sub>wps</sub> ) | .1      |          | 3.8    |          |           |        |         | 4      |         | 4 4     | 3.5   |               | 3 2.88 | 8 2.8  |         |     |     |      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                     |           |            | Inception                |         |          |        |          | _         |        |         |        |         | _       | _     |               | _      | _      |         |     |     |      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                     |           |            | length(cm)               | 10      |          |        |          | $\square$ |        |         |        |         |         |       |               | _      |        |         |     |     |      |         |
| Flow patt 100% recirculating vortices in all steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                     |           |            | Flow patt                | 100%    | recirc   | ulatin | g vor    | tices     | in all | steps   |        |         |         |       |               |        |        |         |     |     |      | <br>  ! |

|                                                             | 12 13 14 15 16 17 18 19 20 | 3 3 3 3              | 2 2 2 2    | 3 3 3         | 2 2 2 2 | 2.5 2.5 2.5 2.5 |           |            | air cavities, weak recirculating vortices, neither nappe nor skimming flow |                                   | 12 13 14 15 16 17 18 19 20 | 5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 | 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | 5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 | 5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | 4.8 5 5 5 5 5 5 5 |           |            |                     |                           | 12 13 14 15 16 17 18 19 20 | 4.5 4.5 4.5 | 3 3 3 3 | .5 4.5 4.5 4.5 | 3 3 3 3 | .8 3.75 3.75 3.8 |           |            |
|-------------------------------------------------------------|----------------------------|----------------------|------------|---------------|---------|-----------------|-----------|------------|----------------------------------------------------------------------------|-----------------------------------|----------------------------|-----------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------|-------------------|-----------|------------|---------------------|---------------------------|----------------------------|-------------|---------|----------------|---------|------------------|-----------|------------|
|                                                             | 11 01 6                    | 3 3                  | 2 2 2      | 5 3 3         | 2 2     | 3 2.5 2.5       |           |            | ther nappe n                                                               |                                   | 10 11                      | 5 5                               | 5 4.5 4.5                               | 5 5                               | 5 4.5 4.5                         | 3 4.75 4.8        |           |            | 100% recir.vortices |                           | 10 11                      | 6 5.5       | 3.5 3.5 | 6 5.5          | 3.5 3.5 | 3 4.75 4.5       |           | _          |
|                                                             | 8 9                        | 2.5 2.5              | 2 2        | 2.5 2.5       | 2 2     | 2.3 2.3         |           | _          | rtices,neit                                                                |                                   | 8                          | 5 5                               | 4.5 4.5                                 | 5 5                               | 4.5 4.5                           | 4.8 4.8           |           |            |                     |                           | 8                          | 6.5 6       | 5 3.5   | 6.5 6.         | 5 3.5   | 5.8 4.8          |           |            |
|                                                             | 6 7                        | 2.5 2.5              | 2 2        | 2.5 2.5       | 2 2     | 2.3 2.3         |           |            | ulating vo                                                                 |                                   | 1 9                        | 5 5                               | 4.5 4.5                                 | 5 5                               | 4.5 4.5                           | 4.8 4.8           |           |            | 10%to40% vortex     | -                         | L 9                        | 6.5 7       | 5.5 5.5 | 6.5            | 5.5 5.5 | 6.3              |           |            |
| 4 =34°32                                                    | 4 5                        | 3.5 2.5              | 3 2        | 3.5 2.5       | 3 2     | 3.3 2.3         |           |            | eak recirc                                                                 | $\alpha_2 = 52^{\circ}14^{\circ}$ | 4 5                        | 6.5 6.5                           | 9 9                                     | 6.5 6.5                           | 9 9                               | 6.3 6.3           |           |            |                     | $\alpha_3 = 38^{\circ}50$ | 4 5                        | 5.5 6       | 4.5 5   | 5.5 6          | 4.5 5   | 5 5.5            |           |            |
| illways c                                                   | 2 3                        | .5 3.5               | 3 3        | 3.5           | 3 3     | 3.3 3.3         |           | _          | avities, w                                                                 | spillways o                       | 2 3                        | .5 5                              | 4 5                                     | .5 5                              | 4 5                               | .3 5              |           |            | air cavities        | spillways o               | 2 3                        | 3.5 5       | 3 3.5   | 5 5            | 3 3.5   | .3 4.3           |           |            |
| epped sp                                                    |                            | 4 3                  | 3          | 4 3           | 3       | 3,5             | _         | 45         | S<br>S                                                                     |                                   | 1                          | 3.5 4                             | 2.5                                     | 3.5 4                             | 2.5                               | 3 4               |           | 40         | 100% a              | þ                         | T                          | 4 3         | 3       | 4 3            | 3       | 3.5 3            |           | 8          |
| SN Mano Disch. Width Disch.   Slope of stepped spillways α, | perunit Step nos.          | Max.                 | Min.       | Max.          | Min.    | Aver.(dwps,     | Inception | length(cm) | Flow patt                                                                  | Slope of steppe                   | Step nos.                  | Max.                              | Min.                                    | Max.                              | 0.04 Min.                         | Aver.(dwps,)      | Inception | length(cm) | Flow patt           | Slope of steppe           | Step nos.                  | Max.        | Min.    | Max.           | Min.    | Aver.(dwps)      | Inception | length(cm) |
| h Disch.                                                    | perunit                    | (cum) spillw. length | <u>(b)</u> | ) cum/m) Max. |         |                 | <u>-</u>  |            | _                                                                          | ·- <u>-</u> -                     |                            |                                   |                                         |                                   |                                   |                   |           |            | ·<br>               |                           |                            |             |         |                |         |                  |           |            |
| h. Widt                                                     | of                         | a) spillw            | ways       | (b m)         |         | •               |           |            |                                                                            |                                   |                            |                                   |                                         |                                   | 08 0.2                            | _                 | ī         |            | _                   |                           |                            |             |         | _              |         |                  |           |            |
| 10 Disc                                                     | (Q)                        |                      | (m)        |               |         |                 | _         |            | <u></u>                                                                    |                                   |                            |                                   |                                         |                                   | 2.95 0.008                        | -                 |           |            |                     |                           |                            |             |         |                |         |                  |           |            |
| SN Man                                                      | metre                      | reading              | (x cm)     |               |         |                 |           |            |                                                                            |                                   |                            |                                   |                                         | _                                 | 3 2.                              |                   |           |            |                     |                           |                            |             |         |                |         | *                |           |            |

| Disch. Width Disch. Slope of stepped spillways $\alpha_1 = 34^{\circ}32$ ?  (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 6 (cum) spillw. length Max. 5 5 4 3 3.5 3.5 3.5 3.5 (b m) cum/m) Max. 5 5 4 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Aver.(d <sub>wps</sub> ) 4 4 3.3 2.8 2.8 3 3 3 3 1nception length(cm) 45 |                         |                                         | pillways $\alpha_1 = 34^{\circ}32$ 2 3 4 5 5 4 3 3 3 2.5 2.5 2.5 5 4 3 3 3 3 2.5 2.5 2.5 4 3.3 2.8 2.8 cavities, weak recirr pillways $\alpha_2 = 52^{\circ}14$ 2 3 4 5 4.5 5 6 6 | ays $\alpha_1 = 34^{\circ}32$ 3 4 5  4 3 3  2.5 2.5 2.5 2.5  2.5 2.5 2.5  3.3 2.8 2.8  es, weak recirc  ays $\alpha_2 = 52^{\circ}14$ | 1, =34°32<br>4 5<br>4 5<br>3 3<br>3 3<br>2.5 2.5<br>2.8 2.8<br>2.8 2.8<br>2.8 2.8<br>2.8 4 5<br>4 5<br>6 6 | 2.5.5.3.3.3.5.5.5.5.5.5.5.5.5.5.5.5.5.5. | [- <u></u>                              | 3.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3.5.5.2.2.2.2.5.3.3.3.3.3.3.3.3.3.3.3.3. | 1       | 68                  |                                                          | 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3       | 878 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | 5.5                                      | 3 2 2 2 3 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3                  | 16 16 16 5.5 | 17                | 18 18 5.5   | 91 19 5.5     | 20 20 20 25 25 25 25 25 25 25 25 25 25 25 25 25 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|---------|---------------------|----------------------------------------------------------|-----------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------------------------|--------------|-------------------|-------------|---------------|-------------------------------------------------|
| 0.0                                                                                                                                                                                                                                                                                                           | Min. Max 0.05 Min. Aver | Min. Max. Min. Aver.(d <sub>wps</sub> ) |                                                                                                                                                                                   | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                               | 2,4 4,5 8,4 8,8 8,9 8,9 8,9 8,9 8,9 8,9 8,9 8,9 8,9                                                        | 5.5 6 5.5 5.8                            | 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 | 8 P P P                                 | 3 3 3 3                                  | 2 2 2 2 | 10                  | 5.5 5.8 5.65 5.65 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5. | 5.5.8 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 | 5.5 5.8<br>5.8 5.8<br>5.5 5.5<br>5.7 5.65 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 5.3 5.3      | 5.5<br>5.3<br>5.3 | 5.5 5.3 5.3 | 5.5 5.25 5.25 | 5.5 5.5 5.25                                    |
|                                                                                                                                                                                                                                                                                                               | 의[표] 55] 5              |                                         | 40   100% air cavities pped spillways α                                                                                                                                           | air cavitii                                                                                                                           | vities ays $\alpha_3$                                                                                      |                                          | 40%to8(                                 | 40%to80% vortex<br>\$8°50'              | ortex                                    | 100     | 100% recir.vortices | ir.vort                                                  | tices                                         | -     -                                   | _                                        | _     <del> </del>                                       | 1 7          | 1                 | 100         | 101           | 700                                             |
|                                                                                                                                                                                                                                                                                                               | ō ∑ ∑ ∑                 | Max. Min.                               | 1 2 6 4                                                                                                                                                                           | 1 4 W 2                                                                                                                               | $\bot$                                                                                                     |                                          | 6.5                                     | 9 7                                     | - 10 0 4                                 | 9       | 2 2 2               | 1 1 7 1                                                  | 4                                             |                                           |                                          |                                                          |              | "                 | OT          |               | 3                                               |
|                                                                                                                                                                                                                                                                                                               | <u> </u>                | Min.<br>Aver.(d <sub>wps</sub> )        |                                                                                                                                                                                   | 3.5 3 4                                                                                                                               | 0 4 5                                                                                                      | 5.3                                      | 5.5                                     |                                         | <u> </u>                                 | 0 0 0   | 0 0 00              | 9 W W                                                    | 6 6 6<br>4.5 4.5<br>5.3 5.3                   | 3 4.5                                     | ų ω 4.                                   | 5 3.5<br>4.5                                             |              |                   |             |               |                                                 |
|                                                                                                                                                                                                                                                                                                               | 됩힐                      | Inception<br>length(cm)                 | 5                                                                                                                                                                                 |                                                                                                                                       |                                                                                                            |                                          | H                                       |                                         |                                          |         |                     |                                                          |                                               |                                           |                                          |                                                          |              |                   |             |               |                                                 |
|                                                                                                                                                                                                                                                                                                               | 臣                       | Flow patt                               | 100% r                                                                                                                                                                            | ecirc                                                                                                                                 | ulatin                                                                                                     | lg voi                                   | recirculating vortices in               | in all                                  | all steps                                |         |                     | -                                                        |                                               |                                           |                                          |                                                          |              |                   |             |               |                                                 |

|                                       | 20                | Γ                    | Γ        |                                        |      |                          | Γ         | Ţ          | Γ                                         | П               | 8         | 6.5  | 5    | 6.5         | 3         | 15                       | Γ             |            | I —                 | Γ_              | 18        | 1    | Г    |      |      |                          | Ė         | Ţ          | $\Box$                           |
|---------------------------------------|-------------------|----------------------|----------|----------------------------------------|------|--------------------------|-----------|------------|-------------------------------------------|-----------------|-----------|------|------|-------------|-----------|--------------------------|---------------|------------|---------------------|-----------------|-----------|------|------|------|------|--------------------------|-----------|------------|----------------------------------|
|                                       |                   | ļ                    | -        |                                        |      | _                        |           | ļ_         |                                           |                 |           |      | 5    | 5 6         | 5         | 5 5.75                   | _             | ļ_         |                     |                 |           | _    | _    | _    | _    | _                        |           | _          |                                  |
|                                       | 19                |                      |          |                                        |      |                          |           |            |                                           |                 | 19        | 6.5  |      | 9           | "         | 5.75                     |               |            |                     |                 | 19        |      |      |      |      |                          |           |            |                                  |
|                                       | 18                |                      |          |                                        |      |                          |           |            |                                           |                 | 18        | 6.5  | 5    | 6.5         | 5         | 5.8                      |               |            |                     |                 | 18        |      |      |      |      |                          |           | 1.0        |                                  |
|                                       | 17                |                      |          |                                        |      |                          |           |            |                                           |                 | 17        | 6.5  | 5    | 6.5         | S         | 5.8                      |               |            |                     |                 | 17        |      |      |      |      |                          |           | 1          |                                  |
|                                       | 16                |                      |          |                                        |      |                          |           |            |                                           |                 | 16        | 6.5  | 5    | 6.5         | 5         | 5.8                      |               |            |                     |                 | 16        |      |      |      |      |                          |           |            |                                  |
|                                       | 15                | 4.5                  | 3        | 4.5                                    | co.  | 3.8                      |           |            |                                           |                 | 15        | 9    | 5    | 9           | 5         | 5.5                      | Г             |            |                     |                 | - 15      | 9    | 4.5  | 9    | 4.5  | 5.3                      |           |            | П                                |
|                                       | 14                | 4.5                  | 3        | 4.5                                    | E.   | 3.75                     |           |            |                                           |                 | 14        | 9    | 5    | 9           | 5         | 5.5                      | -             |            |                     |                 | 14        | 9    | 4.5  | 9    | 4.5  | 5.25                     |           |            |                                  |
|                                       | 13                | 4.5                  | 3        | 4.5                                    | 3    | 3.75                     | -         |            |                                           |                 | 13        | 9    | 5    | 9           | 5         | 5.5                      | $\vdash$      |            |                     |                 | 13        | 9    | 4.5  | 9    | 4.5  | 5.25                     | -         | -          |                                  |
|                                       | 12                | 4.5                  | 8        | 4.5                                    | 3    | 3.8                      | -         |            | 1                                         |                 | 12        | 9    | 5    | 9           | 5         | 5.5                      | -             |            |                     |                 | 12        | 8.9  | 5    | 7    | 5    | 9                        | -         | -          |                                  |
|                                       | 11                | 4                    | 3        | 4                                      | 3    | 3.5                      | -         | -          |                                           |                 | 11        | 9    | 5    | 9           | 5         | 5.5                      | -             |            | rtices              |                 | 111       | 7    | S    | 7    | 5    | 9                        | -         |            |                                  |
|                                       | 10                | 4                    | 3        | 4                                      | 3    | 3.5                      | -         |            |                                           |                 | 10        | 9    | 5    | 9           | 5         | 5.5                      | <del> -</del> | -          | cir.vo              |                 | 10        | 7    | 5    | 7    | 3    | 9                        | -         |            |                                  |
|                                       | 6                 | 4                    | 3        | 4                                      | 3    | 3.5                      | -         |            |                                           |                 | 6         | 9    | 5    | 9           | 5         | 5.5                      | $\vdash$      |            | 100% recir.vortices |                 | 6         | 7    | 5.5  | 7    | 5.5  | 6.3                      | _         |            |                                  |
|                                       | 8                 | 4                    | 3        | 4                                      | 3    | 3.5                      | -         | _          | ices                                      |                 | 8         | 9    | 5.5  | 9           | 5.5       | 5.8                      |               |            | 1(                  |                 | 8         | 7    | 5.5  | 7    | 5.5  | 6.3                      |           | _          |                                  |
|                                       | 7                 | 4                    | 3        | 4                                      | 3    | 3.5                      | -         | _          | g vort                                    |                 | 7         | 9    | 5.5  | 9           | 5.5       | 5.8                      |               |            | ortex               |                 | 7         | 7    | 5.5  | 7    | 5.5  | 6.3                      |           |            | steps                            |
|                                       | 9                 | 5                    | 4        | 5                                      | 4    | 4.5                      | -         | _          | lating                                    |                 | 9         | 9    | 5.5  | 9           | 5.5       | 5.8                      |               | _          | 40%to80% vortex     |                 | 9         | 6.8  | 5.5  | 8.9  | 5.5  | 6.2                      |           |            | in all                           |
| =34°32'                               | 5                 | 5                    | 4        | 5                                      | 4    | 4.5                      | -         |            | ecircu                                    | =52°14'         | 5         | 5.5  | 5.5  | 5.5         | 5.5       | 5.5                      |               |            | 0%to8               | =38°50'         | 5         | 6.5  | 5    | 6.5  | 5 ;  | 5.8                      | _         |            | rtices                           |
| x <sub>1</sub> =3,                    | 4                 | 5                    | 4        | 5                                      | 4    | 4.5                      | -         |            | air cavities, weak recirculating vortices | $\alpha_2 = 5$  | 4         | 5.5  | 5.5  | 5.5         | 5.5       | 5.5                      |               |            |                     | α3 =3{          | 4         | 9    | 5    | 9    | 5    | 5.5                      |           |            | 1% recirculating vortices in all |
| ays                                   | 3                 | 9                    | 4        | 9                                      | 4    | 5                        | L         |            | ies,w                                     | ays c           | 3         | 5.5  | 5.5  | 5.5         | 5.5       | 5.5                      |               |            | vities              |                 | 3         | 5    | 4    | 5    | 4    | 4.5                      |           | -          | ulatii                           |
| spillways $\alpha_1$                  | 2                 | 9                    | 5        | 9                                      | 5    | 5.5                      |           |            | cavit                                     | spillways       | 2         | 4.5  | 4.5  | 4.5         | 4.5       | 4.5                      |               |            | air ca              | spillways       | 2         | 4.5  | 4    | 4.5  | 4    | 4.3                      |           |            | recirc                           |
| 뎟                                     | 1                 | 9                    | 5        | 9                                      | 5    | 5.5                      |           | 20         | No air                                    |                 | 1         | 4.5  | 3    | 4.5         | 3         | 3.8                      |               | 40         | 100% air cavities   | P               | 1         | 5.5  | 4    | 5.5  | 4    | 4.8                      | -         | 5          | 100%                             |
| Disch. Width Disch.   Slope of steppe | perunit Step nos. | Max.                 | Min.     | Max.                                   | Min. | Aver.(d <sub>wps</sub> ) | Inception | length(cm) | Flow patt                                 | Slope of steppe | Step nos. | Max. | Min. | Max.        | Min.      | Aver.(d <sub>wps</sub> ) | Inception     | length(cm) | Flow patt           | Slope of steppe | Step nos. | Max. | Min. | Max. | Min. | Aver.(d <sub>wps</sub> ) | Inception | length(cm) | Flow patt                        |
| isch.                                 | :runit            | ngth                 |          | cum/m) Max.                            |      |                          |           |            |                                           |                 |           |      |      |             | 0.06 Min. | • •                      |               |            |                     | _               |           |      |      |      |      |                          |           |            |                                  |
| di D                                  | ŭ                 | (cum) spillw. length | (g) s/   |                                        |      |                          |           |            |                                           |                 |           |      |      | _           | 0.2       |                          |               | _          |                     |                 |           |      |      |      |      |                          |           |            | $\dashv$                         |
| W.                                    | Jo                | spil.                | ways     | (b m)                                  |      |                          |           |            |                                           |                 |           |      |      |             |           |                          |               |            |                     |                 |           |      |      |      |      | <del>.</del> .           |           |            | _                                |
| Disch                                 | <u> </u>          | (cum)                |          |                                        |      |                          |           |            |                                           |                 |           |      |      |             | 0.012     |                          |               |            |                     |                 |           |      |      |      |      |                          |           |            |                                  |
| ano                                   | metre             | reading              | (x cm)   |                                        |      |                          | _         | -          |                                           |                 | -         |      |      |             | 6.63      |                          |               |            |                     |                 |           |      |      |      |      |                          |           |            |                                  |
| SN Mano                               | Ē                 | ĕ                    | <u>×</u> | _                                      |      |                          |           |            | _                                         |                 |           |      |      | <del></del> | 2         |                          |               |            |                     |                 |           |      |      |      |      |                          |           |            | $\dashv$                         |
| [6]                                   |                   |                      |          | نـــــــــــــــــــــــــــــــــــــ |      |                          |           |            |                                           |                 |           |      | _    |             |           |                          |               |            |                     |                 |           |      |      |      |      |                          |           |            |                                  |


|                                      | 20                |                      |           |             |      | Γ                                               | Π                                             |            |                                       | Γ                          | 200       | 6.5   | 5.5  | 6.5  | 5.5       | 9                        | <u> </u>  |            |                     |                    | 707       |       |          |       |      |             |             |            |                                     |
|--------------------------------------|-------------------|----------------------|-----------|-------------|------|-------------------------------------------------|-----------------------------------------------|------------|---------------------------------------|----------------------------|-----------|-------|------|------|-----------|--------------------------|-----------|------------|---------------------|--------------------|-----------|-------|----------|-------|------|-------------|-------------|------------|-------------------------------------|
|                                      | 19                | $\vdash$             |           | -           | ╁    | <u> </u>                                        | <u>                                      </u> |            |                                       |                            | 19        | 6.5   | 5.5  | 6.5  | 5.5       | 9                        |           |            |                     |                    | 19        |       |          |       | -    |             |             |            |                                     |
|                                      | 18                | <del> </del>         | -         | _           | -    | ├-                                              | -                                             | -          | 1                                     |                            | 18        | 5     | 5.5  | 6.5  | 5.5       | 9                        |           |            |                     |                    | 18        |       |          | _     | _    |             | _           |            |                                     |
|                                      | <u></u>           | _                    | $\vdash$  |             |      | <u>  .                                     </u> | -                                             | -          |                                       |                            | 1         | .5 6. | 5 5  | 5 6  | 5 5       | 9                        |           | _          |                     |                    | 17        |       | _        | _     | _    | _           |             |            |                                     |
|                                      | 6 1               |                      | ļ         | ŀ           |      | <u>                                     </u>    |                                               |            |                                       |                            | 16 1      | 5 6.  | .5   | 5 6. | 5.        | 9                        | _         | L          |                     | •                  | 16 1      |       | <u> </u> | )<br> | _    |             |             |            |                                     |
|                                      | 5 1               | 4                    | 3         | 4           | 3    | <u>.</u>                                        |                                               |            | _                                     | -                          | 5 1       | 5.6   | 5    | 5 6. | 5         | 9                        | L         |            |                     |                    | 5 1       | 5     | 5        | 5     | . 2  | 8:          |             |            |                                     |
|                                      | 4                 | 4                    | 8         | 4           | 8    | 5.3.                                            | _                                             |            |                                       |                            | 4         | 9     | 5.5  | 9    | 5.5       | 9                        |           | ļ.         |                     |                    | 4         | 5 6.5 | 5        | 5 6.  | 5    | 5           | _           |            |                                     |
|                                      |                   |                      |           |             |      | 60                                              |                                               |            |                                       |                            | Ľ         | 6.5   | 5.5  | 6.5  | 5.5       |                          | _         |            |                     |                    | Ľ         | 6.5   |          | 9     |      | 5.75        |             |            |                                     |
|                                      | 13                | 4                    | 3         | 4           | 3    | 3.5                                             |                                               |            |                                       |                            | 13        | 6.5   | 5.5  | 6.5  | 5.5       | 9                        |           |            |                     |                    | 13        | 7     | 5.2      | 8.9   | 5    | 9           |             |            |                                     |
|                                      | 12                | 4                    | 3         | 4           | 3    | 3.5                                             |                                               |            |                                       |                            | 12        | 9     | 5.5  | 9    | 5.5       | 5.8                      | :         |            |                     |                    | 12        | 7     | 5.2      | 7     | 5    | 6.1         |             |            |                                     |
|                                      | 11                | 3.5                  | 3         | 3.5         | 3    | 3.3                                             |                                               |            |                                       |                            | 11        | 9     | 5.5  | 9    | 5.5       | 5.8                      |           |            |                     |                    | 11        | 7.5   | 5.5      | 7.5   | 5.5  | 6.5         |             |            |                                     |
|                                      | 10                | 4                    | C         | 4           | 3    | 3.5                                             |                                               |            |                                       |                            | 10        | 9     | 5.5  | 9    | 5.5       | 5.75                     |           |            |                     |                    | 10        | 8     | 9        | 8     | 9    | 7           | ·           |            |                                     |
|                                      | 6                 | 4                    | c         | 4           | ς,   | 3.5                                             |                                               |            |                                       |                            | 6         | 9     | 5.5  | 9    | 5.5       | 5.8                      |           |            | ွ                   |                    | 6         | 8     | 9        | 8     | 9    | 7           | -           |            |                                     |
|                                      | ~                 | 4                    | 3         | 4           | 3    | 3.5                                             |                                               |            | tices                                 |                            | 8         | 9     | 5.5  | 9    | 5.5       | 5.8                      |           |            | 100% recir.vortices |                    | ∞         | 8     | 9        | 8     | 9    | 7           |             |            | S                                   |
|                                      | 7                 | 5                    | 3         | 5           | 33   | 4                                               | _                                             | _          | g vor                                 |                            | 7         | 9     | 5.5  | 9    | 5.5       | 5.8                      | _         |            | ecir.v              |                    | 7         | 8     | 9        | 8     | 9    | 7           |             |            | step                                |
|                                      | 9                 | 5                    | 3         | 5           | 3    | 4                                               | -                                             |            | ılatin                                |                            | 9         | 9     | 5.5  | 9    | 5.5       | 5.8                      | ,         |            | 00% 1               |                    | 9         | 7     | 5.5      | 7     | 5.5  | 6.3         |             | -          | in al                               |
| =34°32'                              | S                 | ۲۷.                  | 3.5       | 5           | 3.5  | 4.3                                             |                                               |            | ecirc                                 | =52°14'                    | 5         | 9     | 5.5  | 9    | 5.5       | 5.8                      |           |            | 1                   | =38°50'            | 5         | 6.5   | 5.5      | 6.5   | 5.5  | 9           |             |            | rtices                              |
|                                      |                   | 9                    | 4         | 9           | 4    | 5                                               |                                               |            | cavities, weak recirculating vortices | $\alpha_2 = 5$             | 4         | 5.5   | 5.5  | 5.5  | 5.5       | 5.5                      |           | lacksquare | ortex               | α <sub>3</sub> =3{ | 4         | 9     | 5        | 9     | 5    | 5.5         |             |            | recirculating vortices in all steps |
| spillways α,                         | <u>, E</u>        | 9                    | 4         | 9           | 4    | 5                                               | _                                             |            | ies,w                                 | ays c                      | 3         | 5     | 5    | 5    | 5         | 5                        |           |            | 40% vortex          | ays o              | 3         | 5     | 4        | 5     | 4    | 4.5         |             |            | ulati                               |
| nil w                                | 7                 | 9                    | 4         | 9           | 4    | 5                                               |                                               |            |                                       | pillw                      | 2         | 4.5   | 4.5  | 4.5  | 4.5       | 4.5                      |           |            | air 4               | pillways           | 2         | 4.5   | 4        | 4.5   | 4    | 4.3         |             |            | recirc                              |
| ned s                                | <u> </u>   =      | 6.5                  | 4.5       | 6.5         | 4.5  | 5.5                                             |                                               | 50         | No air                                | s pad                      | 1         | 4     | 3.5  | 4    | 3.5       | 3.8                      |           | 30         | 100%                | <b>G</b> 2         | 1         | 5     | 4        | 5     | 4    | 4.5         |             |            | 100%                                |
| Disch. Width Disch. Slope of stepned | nos.              |                      |           |             | ·    | Aver.(d <sub>wps</sub> )                        | tion                                          | length(cm) |                                       | Slope of stepped spillways | nos.      |       |      |      |           | Aver.(d <sub>wps</sub> ) | tion      | length(cm) |                     | Slope of stepped   | nos.      |       |          |       |      | Aver.(dwps) | tion        | n(cm)      |                                     |
| Slop                                 | Step              | Max.                 | Min.      | Max.        | Min. | Aver                                            | Inception                                     | lengt      | Flow patt                             | Slope                      | Step nos. | Max.  | Min. | Max. | Min.      | Aver.                    | Inception | lengt      | Flow patt           | Slope              | Step nos. | Max.  | Min.     | Max.  | Min. | Aver.       | Inception   | length(cm) | Flow patt                           |
| Disch.                               | perunit Step nos. | ength                | <u></u>   | cum/m) Max. |      |                                                 |                                               |            |                                       |                            | -         |       |      |      | 0.07 Min. |                          |           |            |                     |                    |           |       |          |       | ` ]  |             | اشت         |            |                                     |
| Width                                | of p              | (cum) spillw. length | ways (    | (b m)       |      | <u> </u>                                        |                                               |            |                                       |                            |           |       |      |      | 0.5       |                          | ,         |            |                     |                    |           |       |          |       |      | · <b></b>   | <del></del> |            |                                     |
| Disch.                               | <u> </u>          |                      | <u></u> - |             |      |                                                 |                                               |            | -                                     |                            | -         | _     |      |      | 0.014     |                          |           |            |                     |                    |           |       |          |       |      |             |             |            | $\dashv$                            |
| SN Mano                              |                   | reading (            | (x cm)    |             | _    |                                                 |                                               |            |                                       |                            |           |       |      |      | 9.03      |                          |           |            |                     | -                  |           |       |          | •     | -    |             |             |            | $\dashv$                            |
| E                                    | _=                | <u> </u>             | <u>ت</u>  | $\dashv$    |      |                                                 | -                                             | ,          |                                       |                            |           |       |      |      | 9         | •                        |           |            |                     |                    |           |       |          |       |      |             |             |            | $\dashv$                            |

|                                      | 8                 | Ι                    |          |             | Γ    | Γ-          | _         | <u> </u>   | Π                                          | _                | ाठ        | [V]  | 5    | 3    | 2          | 9           | $\overline{}$ | _          | <del>-</del>                  | _                | 20        |      | Γ.       | <del></del> | $\Gamma$ |             | Γ         | · ·        |                                          |
|--------------------------------------|-------------------|----------------------|----------|-------------|------|-------------|-----------|------------|--------------------------------------------|------------------|-----------|------|------|------|------------|-------------|---------------|------------|-------------------------------|------------------|-----------|------|----------|-------------|----------|-------------|-----------|------------|------------------------------------------|
|                                      |                   |                      |          |             |      |             |           | L          |                                            |                  | 20        | 6.5  | 5.5  | 6.5  | 5.5        |             |               |            |                               |                  |           |      |          |             | ·        |             |           | _          |                                          |
|                                      | 19                |                      |          |             |      |             |           |            |                                            |                  | 19        | 6.5  | 5.5  | 6.5  | 5.5        | 9           |               |            |                               |                  | 19        |      |          |             |          |             |           |            |                                          |
|                                      | 18                |                      |          |             |      |             |           |            |                                            |                  | 18        | 6.5  | 5.5  | 6.5  | 5.5        | 9           |               |            |                               |                  | 18        |      |          |             |          |             |           |            |                                          |
|                                      | 17                |                      |          |             |      |             |           |            |                                            |                  | 17        | 6.5  | 5.5  | 6.5  | 5.5        | 9           |               |            |                               |                  | 17        |      |          |             |          |             |           | -          |                                          |
|                                      | 16                |                      |          |             |      |             |           |            | 1                                          |                  | 16        | 6.5  | 5.5  | 6.5  | 5.5        | 9           |               |            | 1                             |                  | 16        |      |          |             |          |             |           |            |                                          |
|                                      | 15                | 4.5                  | 3.5      | 4.5         | 3.5  | 4           |           |            |                                            |                  | 15        | 6.5  | 5.5  | 6.5  | 5.5        | 9           |               |            |                               |                  | 15        | 7.5  | 5.5      | 7.5         | 5.5      | 6.5         |           |            |                                          |
|                                      | 14                | 4.5                  | 3.5      | 4.5         | 3.5  | 4           |           |            |                                            |                  | 14        | 6.5  | 5.5  | 6.5  | 5.5        | 9           |               |            |                               |                  | 14        | 7.5  | 5.5      | 7.5         | 5.5      | 6.5         |           |            |                                          |
|                                      | 13                | 4.5                  | 3.5      | 4.5         | 3.5  | 4           |           |            |                                            |                  | 13        | 6.5  | 5.5  | 6.5  | 5.5        | 9           |               |            |                               |                  | 13        | 7.5  | 5.5      | 7.5         | 5.5      | 6.5         |           |            |                                          |
|                                      | 12                | 4.5                  | 3.5      | 4.5         | 3.5  | 4           |           |            |                                            |                  | 12        | 9    | 5.5  | 9    | 5.5        | 5.8         | -             |            |                               |                  | 12        | 8    | 9        | 7           | 9        | 8.9         |           |            |                                          |
|                                      | 11                | 4.5                  | 3.5      | 4.5         | 3.5  | 4           |           |            |                                            |                  | 11        | 9    | 5.5  | 9    | 5.5        | 5.8         |               |            |                               |                  | 11        | 8    | 6.5      | 8           | 6.5      | 7.3         |           |            |                                          |
|                                      | 10                | 4.5                  | 3.5      | 4.5         | 3.5  | 4           |           |            |                                            | -                | 10        | 9    | 5.5  | 9    | 5.5        | 5.75        |               |            |                               |                  | 10        | 8    | 6.5      | ∞           | 6.5      | 7.25        |           |            |                                          |
|                                      | 6                 | 4.5                  | 3.8      | 4.5         | 3,8  | 4.2         |           |            |                                            |                  | 6         | 9    | 5.5  | 9    | 5.5        | 5.8         |               |            |                               |                  | 6         | 8    | 6.5      | 8           | 6.5      | 7.3         |           |            |                                          |
|                                      | 8                 | 5                    | 4        | 5           | 4    | 4.5         |           |            | ir cavities, strong recirculating vortices |                  | 8         | 9    | 5.5  | 9    | 5.5        | 5.8         |               |            | Si                            |                  | 8         | 7.5  | 9        | 7.5         | 9        | 8.9         |           |            | SC                                       |
|                                      | 7                 | 5                    | 4        | 5           | 4    | 4.5         |           |            | ing vo                                     | ·                | 7         | 9    | 5.5  | 9    | 5.5        | 5.8         |               |            | 20%vortex 100% recir.vortices |                  | 7         | 7    | 5.5      | 7           | 5.5      | 6.3         |           |            | 100% recirculating vortices in all steps |
| _                                    | 9                 | 5                    | 4        | 5           | 4    | 4.5         |           |            | culati                                     |                  | 9         | 9    | 5.5  | 9    | 5.5        | 5.8         |               |            | recir.                        |                  | 9         | 7.5  | 5.5      | 7.7         | 5.5      | 9.9         | _         |            | s in a                                   |
| =34°32                               | 5                 | 9                    | 5        | 9           | 5    | 5.5         |           |            | recir                                      | =52°14'          | 5         | 9    | 5.5  | 9    | 5.5        | 5.8         |               |            | 100%                          | =38°50           | 5         | 6.5  | 5        | 6.5         | 5        | 5.8         |           |            | ortice                                   |
|                                      | 4                 | 9                    | 5        | 9           | 5    | 5.5         |           |            | trong                                      | $\alpha_2 = 5$   | 4         | 5.5  | 5.5  | 5.5  | 5.5        | 5.5         |               |            | ortex                         | ၓ                | 4         | 9    | 4.5      | 9           | 4.5      | 5.3         |           |            | y gri                                    |
| spillways $\alpha_1$                 | 3                 | 7                    | 5        | 7           | 5    | 9           |           |            | ities,s                                    | spillways        | 3         | 5    | 5    | 5    | 5          | 5           |               |            | 20%v                          | spillways        | 3         | 5    | 4        | 5           | 4        | 4.5         |           |            | rculat                                   |
| spill                                | 2                 | 7                    | 9        | 7           | 9    | 6.5         |           |            | r cav                                      | spilly           | 2         | 4.5  | 4.5  | 4.5  | 4.5        | 4.5         |               |            | air                           | spilly           | 2         | 5.5  | 4        | 5.5         | 4        | 4.8         |           |            | reci                                     |
| padd                                 | 1                 | 8                    | 9        | 8           | 9    | 7           |           | 50         | No ai                                      |                  | 1         | 4    | 3    | 4    | 3          | 3.5         |               | 30         | %06                           | pbed             | 1         | 6.5  | 4.5      | 6.5         | 4.5      | 5.5         |           |            | 100%                                     |
| Disch. Width Disch. Slope of stepped | perunit Step nos. | Max.                 | Min.     | Max.        | Min. | Aver.(dwps) | Inception | length(cm) |                                            | Slope of stepped | Step nos. | Max. | Min. | Max. | Min.       | Aver.(dwps) | Inception     | length(cm) | Flow patt                     | Slope of stepped | Step nos. | Max. | Min.     | Max.        | Min.     | Aver.(dwps) | Inception | length(cm) | $\overline{}$                            |
| Disch.                               | erunit            | ength                | <u></u>  | cum/m) Max. |      |             |           |            | <u> </u>                                   |                  |           |      |      |      | 0.08 Min.  | •           | ·             |            | •                             | _ <del></del> _  |           |      | <u> </u> | . 1         | ر ت      | . 7         |           |            |                                          |
| Width                                | of I              | (cum) spillw. length | ways (   | (b m)       |      |             |           |            |                                            |                  |           |      |      |      | 0.2        |             |               |            | _                             | _                |           |      |          | -           |          |             | _         |            | $\neg$                                   |
| Disch.                               | <u> </u>          |                      |          |             |      |             |           |            |                                            |                  |           |      |      | _    | 11.8 0.016 |             |               |            |                               |                  |           |      |          |             |          |             |           |            |                                          |
| SN Mano                              | metre             | reading              | (x cm)   |             | i    |             |           |            |                                            |                  | -         |      |      | -    | 11.8       |             | -             |            |                               |                  |           |      |          |             |          |             |           |            |                                          |
| NS                                   | <u> </u>          | <u> </u>             | <u> </u> |             | -    |             |           |            |                                            |                  |           |      |      | -,   | 7          | _           |               |            |                               |                  |           |      |          |             | _        |             |           |            | $\dashv$                                 |
|                                      |                   |                      |          |             |      |             |           |            | _                                          |                  |           |      |      |      |            |             | _             |            |                               | _                |           |      |          |             |          |             |           |            |                                          |

|                                        | 20                |                      |          |                   |      |            |           |                                              |                                         | [                  | 20        | رب<br>ا | 1     | 3      | 6.5         | Ŋ                        |           | Г          |                     |                    | 20        |       | _     |            |       | Ė           |           |            |                                     |
|----------------------------------------|-------------------|----------------------|----------|-------------------|------|------------|-----------|----------------------------------------------|-----------------------------------------|--------------------|-----------|---------|-------|--------|-------------|--------------------------|-----------|------------|---------------------|--------------------|-----------|-------|-------|------------|-------|-------------|-----------|------------|-------------------------------------|
|                                        |                   |                      |          |                   |      |            |           |                                              |                                         |                    |           | 8.5     | 6.7   | 8.5    |             | 7.55                     |           |            |                     |                    | ·         |       |       |            |       |             |           |            |                                     |
|                                        | 19                |                      |          |                   |      |            |           |                                              |                                         |                    | 19        | 8.5     | 6.7   | 8.5    | 6.5         | 7.55                     |           |            |                     |                    | 19        |       |       |            |       | ĺ           |           |            |                                     |
|                                        | 18                |                      |          |                   |      |            |           |                                              |                                         |                    | 18]       | 8.5     | 6.7   | 8.5    | 6.5         | 7.6                      |           | ì          |                     |                    | 18        |       |       |            |       |             |           |            |                                     |
|                                        | 17                |                      |          |                   |      |            |           | -                                            |                                         |                    | 17        | 8.5     | 6.7   | 8.5    | 6.5         | 9.7                      |           |            |                     |                    | 17        |       |       |            |       | -           |           |            |                                     |
|                                        | 16                |                      |          |                   | _    |            |           |                                              |                                         |                    | 16        | 8       | 9     | 8      | 9           | 7                        |           |            |                     |                    | 16        |       |       |            |       |             |           |            |                                     |
|                                        | 15                | 5                    | 4        | 5                 | 4    | 4.5        |           |                                              |                                         |                    | 15        | 8       | 9     | 8      | 9           | 7                        | •         |            |                     |                    | 15        | 7     | 5.5   | 7          | 5.5   | 6.3         |           |            |                                     |
|                                        | 14                | 5                    | 4        | 5                 | 4    | 4.5        |           |                                              |                                         | -                  | 14        | 8       | 9     | 8      | 9           | 7                        |           | -          |                     |                    | 14        | 7     | 5.5   | 7          | 5.5   | 6.25        |           |            |                                     |
|                                        | 13                | 5                    | 4        | 5                 | 4    | 4.5        | _         |                                              |                                         |                    | 13        | 8       | 9     | 8      | 9           | 7                        | _         |            |                     |                    | 13        | 7     | 5.5   | 7          | 5.5   | 6.25 6      |           | -          |                                     |
|                                        | 12                | 5                    | 4        | 5                 | 4    | 4.5        |           |                                              |                                         |                    | 12        | 8       | 9     | ∞      | 9           | 7                        | -         | <br>       |                     |                    | 12        | 7.5   | 5.5   | 7.5        | 5.5   | 6.5 6       | •         |            |                                     |
|                                        | 11                | 5                    | 4        | 5                 | 4    | 4.5        |           |                                              |                                         |                    | 11        | ∞       | 9     | 8      | 9           | 7                        |           | _          |                     |                    | 11        | 8     | 5.5   | ∞          | 5.5   | 6.8         |           | _          |                                     |
|                                        | 10                | 5                    | 4        | 5                 | 4    | 4.5        |           | <u>.                                    </u> |                                         |                    | 10        | 8       | 9     | ∞<br>∞ | 9           | 7                        |           |            |                     |                    | 10        | 8.2   | 6.2   | 8.5        | 6.2   | 7.28        |           |            |                                     |
|                                        | 6                 | 5                    | 4        | 5                 | 4    | .5         | -         |                                              |                                         |                    | 6         | ∞       | 9     | 8      | 9           | 7                        | _         |            |                     |                    | 6         | 8.2   | 6.2   | 8.5        | 7     | 7.3 7.      |           |            |                                     |
|                                        | 8                 | 5                    | 4        | 5                 | 4    | 5 4        |           |                                              | ices                                    |                    | 8         | 6       | 4.    | 6      | 4.          | 7.2                      |           |            |                     |                    | ·<br>∞    | .5    | 6.5   | 8.5        | 6.5 6 | 7.5         |           |            |                                     |
|                                        | 7                 | 5                    | 4        | 5                 | 4    | 5 4        |           |                                              | y vort                                  |                    | 7         | 7       | 5 5   | 7      | 5.5         | 6.8 7                    |           |            | ļ '                 |                    | 7         | 8 6   | 6.5 6 | 8.8        | 5.5 6 | 7.5 7       |           |            | steps                               |
|                                        | 9                 | 5                    | 4        | 5                 | 4    | 5.         | _         |                                              | lating                                  |                    | 9         | 7       | 9 9   | 7      | 9           | 6.5 6                    |           |            |                     |                    | .9        | 6     | 6.5 6 | 8          | 6.5 5 | 7.8 7       |           |            | ın all                              |
| 32'                                    | 5                 | 5                    | 4        | 5                 | 4    | 5.         |           |                                              | circu                                   | 14.                | 5         | ٦.      | 5.5   | 6.5    | 3.          | 9 9                      |           | _          | rtices              | 20,                | 5         | 7.5   | 9 9   | 7.5        | 9 9   | ∞           |           |            | ices i                              |
| =34°32                                 | 4                 | 7                    | .5       | 7                 | 5.   | .3 4       |           |                                              | ong re                                  | =52°14'            | 4         | 6 6.    | 5.    | 9 9    | 5.          | ∞.                       |           |            | cir.vo              | =38°50'            | 4         | 7 7   | 5     | 7 7        | 5     | 6 6.        |           |            | y vor                               |
| pillways α <sub>1</sub>                | 3                 | 7                    | 5 5.     | 7                 | 5.5  | .3 6       | _         |                                              | cavities, strong recirculating vortices | ys α <sub>2</sub>  | 3         | 7.      | 5 5   | 5.     | 5 5         | .3                       |           |            | 100% recir.vortices | ys α <sub>3</sub>  | 3         | 9     | 8.    | 9          | .5    | .3          |           |            | recirculating vortices in all steps |
| illwa                                  | 2                 | 6                    | 7 5      | 6                 | 7 5  | 9 8        |           |                                              | avitie                                  | pillways           | 2         | 5       | 5.    | 5 5    | 4.5         | 4.5 5                    | _         | -          |                     | pillways           | 7         | .5    | 5 4   | <i>ن</i> ہ | 5 4   | .8          |           | _          | scircu                              |
| ed sp                                  | 1                 | 6                    | 7        | 6                 | 7    | 8          |           | 20                                           | No air c                                |                    | 1         | 4.5 4   | 4.5 4 | 4.5 4  | 4.5 4       | 4.5 4                    |           | 30         | 80% air             | ed sb              | 1         | 7.5 6 | 5.5   | 7.5 6      | 5.5   | 6.5 5       |           |            | 100% re                             |
| tepp                                   | <u> </u>          | _                    |          |                   |      | (3         |           |                                              |                                         | tepp               |           |         | 4     | 4      | 4           | <u> </u>                 |           | _          |                     | tepp               | _         | 7     | 5     | 7          | 5     | _           |           |            |                                     |
| Disch. Width Disch. Slope of stepped s | perunit Step nos. | Max.                 | Min.     | Max.              | Min. | Aver.(dwps | Inception | length(cm)                                   | Flow patt                               | Slope of stepped s | Step nos. | Max.    | Min.  | Max.   | Min.        | Aver.(d <sub>wps</sub> ) | Inception | length(cm) | Flow patt           | Slope of stepped s | Step nos. | Max.  | Min.  | Max.       | Min.  | Aver.(dwps) | Inception | length(cm) | Flow patt                           |
| sch.                                   | runit             | ngth                 |          | (b m) cum/m) Max. |      |            |           |                                              |                                         |                    | 1         |         |       |        | 0.09 Min.   |                          |           | ٠.         |                     |                    | ,         |       |       |            |       |             | ,         |            |                                     |
| 1th D                                  | <u>g</u>          | (cum) spillw. length | (b) s    | n)   Cn           |      |            |           |                                              |                                         |                    |           |         | _     |        | 0.2         |                          |           | -          | <del></del>         |                    |           |       |       |            | •     |             |           |            | $\dashv$                            |
| Wic                                    | of                | Spill                | ways     | (b n              |      |            |           |                                              |                                         |                    |           |         |       |        |             |                          |           |            |                     |                    |           |       |       |            |       |             |           |            | _                                   |
| Disch                                  | <u> </u>          | (cmm)                |          |                   |      |            |           |                                              |                                         |                    |           |         |       |        | 0.01        |                          |           |            |                     |                    |           |       |       |            |       |             |           |            |                                     |
|                                        | metre             | reading              | (x cm)   |                   |      |            |           |                                              |                                         | 1                  |           |         |       |        | 14.92 0.018 | •                        |           | -          |                     |                    | ,         |       |       |            |       |             |           |            | $\neg$                              |
| SN Mano                                | Ĕ                 | Tea                  | <u>×</u> |                   |      |            |           |                                              |                                         |                    |           |         |       |        | 8           |                          |           |            |                     |                    |           |       |       |            |       |             |           |            | $\dashv$                            |
| S                                      |                   |                      |          |                   | L    |            |           |                                              |                                         |                    |           |         |       |        |             |                          |           |            |                     |                    |           |       |       |            |       |             |           |            |                                     |

| Z         | Mano    | Disch.   | Wid    | th Disch             | h. Sic   | SN Mano Disch. Width Disch. Slope of stepped | pped   | spillways | ays (   | $\alpha_1 = 34$ | =34°32'                             |        |                                         |          |          |           |       |        |      |     |     |     |     |     |     |
|-----------|---------|----------|--------|----------------------|----------|----------------------------------------------|--------|-----------|---------|-----------------|-------------------------------------|--------|-----------------------------------------|----------|----------|-----------|-------|--------|------|-----|-----|-----|-----|-----|-----|
|           | metre   | <u> </u> | oţ     | perun                | nit Ste  | perunit Step nos.                            | 1      | 2         | 3       | 4               | 5                                   | 9      | 7                                       | 8        | 9 1      | 10 1      | 1 12  | 2 13   | 14   | 15  | 16  | 17  | 18  | 19  | 20  |
|           | reading |          | spilly | (cum) spillw. length | h Max.   | 1X.                                          | 9.5    | 10        | 6       | 8               | 9                                   | 9      | 6 5.                                    | 5 5.     | 5.5      | 5.5       | 5.5   | 5.5    | 5.5  | 5.5 |     |     |     |     |     |
|           | (x cm)  |          | ways   | <u></u>              | Min.     | n.                                           | 8      | 8         | 7       | 9               | 5                                   | 5      | 5                                       | 4        | 4        | 4         | 4     | 4      | 4    | 4   |     |     |     |     |     |
|           |         |          | (p m)  | cum/m) Max.          | m) Ma    | ıx.                                          | 10     | 10        | 6       | 8               | 9                                   | 9      | 6 5.                                    | 5 5.     | 5.5      | 5.        | 5 5.5 | 5.5    | 5.5  | 5.5 |     |     |     |     |     |
|           |         |          |        |                      | Min.     | n.                                           | 8      | 8         | 7       | 9               | 5                                   | 5      | 5                                       | 4        | 4        | 4         | 4     | 4      | 4    | 4   |     |     |     |     | _   |
|           |         | ,        |        | _                    | Av       | Aver.(dwps)                                  | 8.9    | 6         | 8       | 7               | 5.5 5                               | 5 5    | .5 4                                    | 8:       | 4.8 4.75 | 4         | 8.4.8 | 3 4.75 | 4.75 | 4.8 |     |     |     |     |     |
|           |         |          |        |                      | Inc      | Inception                                    | ,      |           |         | -               |                                     | -      |                                         | <u> </u> | _        | _         |       | _      | _    | _   |     |     |     |     |     |
|           |         |          |        |                      | len      | length(cm)                                   | 55     |           |         | -               | _                                   |        |                                         | _        | _        | _         |       |        | _    |     |     |     |     |     |     |
|           |         |          |        |                      | Fic      |                                              | No air |           | ties,st | rong            | ecirc                               | ılatin | cavities, strong recirculating vortices | ces      |          |           |       |        |      |     |     |     |     |     |     |
|           |         |          |        |                      | SI       | Slope of stepped                             | pado   | spillways |         | $\alpha_2 = 52$ | =52°14'                             |        |                                         |          |          |           |       |        | :    | ļ   |     |     |     |     |     |
|           |         |          |        |                      | Ste      | Step nos.                                    | 1      | 2         | 3       | 4               | 5                                   | 9      | 7                                       | 8        | 9        | 10 1      | 1 12  | 13     | 14   | 15  | 16  | 17  | 18  | 19  | 20  |
|           |         |          |        |                      | Max.     | ıx.                                          | 4.5    | 4.5       | 5.5     | 9               | 6.5 6                               | 3.     | 7                                       | 7        | 7 6.     | 5         | 5 6.5 | 7      | 7.5  | 7.5 | 7.5 | 7   | 7.5 | 7.5 | 7.5 |
|           |         |          |        |                      | Min.     | n.                                           | 4      | 5         | 5       | 5.5             | 5.5 5                               | 5 5    | 9.                                      | .6 5.    | 6.5      | 5.5       | 5 5.5 | 5.5    | 5.5  | 5.5 | 5.5 | 5   | 5.5 | 5.5 | 5.5 |
|           |         |          |        |                      | Max.     | ıx.                                          | 5.5    | 4.5       | 5.5     | 9               | 9                                   | 9      | 9                                       | 9        | 9        | 5         | 5     | 5      | 5    | 5   | 5.5 | 4   | 5   | 5   | 5   |
| 9         | 18.42   | 0.02     | 0.7    |                      | 0.1 Min. | 'n.                                          | 4.5    | 4.5       | 5       | 5.5             | 5                                   | 5      | 5                                       | 5        | 5        | 4         | 4 4   | 4      | 4    | 4   | 4.5 | 5   | 4   | 4   | 4   |
|           |         |          |        |                      | Av       | Aver.(dwps)                                  | 4.6    | 4.6       | 5.3     | 5.8             | 5.8 5.                              | .8     | .9 5.                                   | .9 5.    | 9 5.2    | .25 5.    | 3 5.3 | 3 5.38 | 5.5  | 5.5 | 5.8 | 5.3 | 5.5 | 5.5 | 5.5 |
|           |         |          |        |                      | Inc      | Inception                                    |        |           |         |                 |                                     | -      | _                                       |          |          | _         | _     | _      |      |     |     |     |     |     |     |
|           |         |          |        |                      | len      | length(cm)                                   | 20     |           |         |                 |                                     |        |                                         |          |          | _         |       |        | _    |     |     |     |     |     |     |
|           |         |          |        |                      | Fio      | Flow patt                                    | 25% a  | ir        | 00% 1   | ecir.v          | 100% recir.vortices                 |        |                                         |          |          |           |       | 1      |      |     |     |     |     |     |     |
|           |         |          | _      |                      | Slo      | Slope of stepped s                           | ped    | spillways | ays c   | $\alpha_3 = 38$ | =38°50'                             |        |                                         |          |          |           |       |        |      |     |     |     |     |     |     |
|           |         |          |        | _                    | Ste      | Step nos.                                    | 1      | 2         | 3       | 4               | 5                                   | 9      | 7                                       | 8        | 9 1      | 0 11      | 1 12  | 13     | 14   | 15  | 16  | 17  | 18  | 19  | 20  |
|           |         |          |        |                      | Max.     | ıx.                                          | 8.5    | 7         | 6.5     | 6.5             | 7.5 8.                              | 5 9    | .5                                      | 10 1     | 11 1     | 12 1      | 13 13 | 3 11.5 | 11   | 11  |     |     |     |     |     |
|           |         |          |        |                      | Min.     | n.                                           | 6.5    | 5         | 5       | 5               | 5.5 5.                              | .5 6   | .5                                      | 7 7.5    | .5       | 8 8.5     | 5 8   | 7      | 7    | 7   |     |     |     |     |     |
|           |         |          |        |                      | Max.     | ×.                                           | ∞      | 7         | 9       | 6.5             | 6.5                                 | 7      | 8 8.                                    | .5 8.5   |          | 8.6 8.7   | 7 9   | 7.5    | 7.5  | 7.5 |     |     |     |     |     |
| <i>,</i>  |         |          | _      |                      | Min.     | n.                                           | 5.5    | 5         | 4.5     | 5               | 5 5.                                | .5     | 6 6.                                    | 5 6.     | 5        | 6.8 6.8   | 8 7   | 5.5    | 5.4  | 5.4 |     |     |     |     |     |
|           |         |          |        |                      | Av       | Aver.(dwps)                                  | 7.1    | 9         | 5.5     | 5.8             | 6.1 6.                              | 9      | 7.5                                     | 8 8.     | .4 8.85  | 1.6   5.1 | 1 9.1 | 7.88   | 7.73 | 7.7 |     |     |     |     |     |
|           | •       |          |        |                      | Inc      | Inception                                    | ı      |           |         |                 |                                     |        |                                         |          |          |           | _     |        |      |     |     |     |     |     |     |
|           | -       | 2.       |        |                      | len      | length(cm)                                   |        |           |         |                 | $\left  - \right $                  |        |                                         |          |          | <u> </u>  |       |        |      |     |     |     |     |     |     |
| $\exists$ |         |          |        |                      | 윤        | Flow patt                                    | 100%   | recir     | ulati   | lg vo           | recirculating vortices in all steps | in all | steps                                   |          |          |           |       | 1      |      |     |     |     |     |     |     |

### 3.6.2.5 Calculation of rate of energy dissipation and residual head:



### (a) Tatewar & Ingle (1996) & Knight & Mc Donald (1979) Methods:

Case:Only final slope  $\alpha = 38^{\circ}50^{\circ}$  and step sizes are taken.

### Data:

 $q_w$ =0.02cum/0.2m=0.1cum/m

### Equations to be solved:

| $z^{0.1}/ng^{0.5} = 0.25 + 19\log(\lambda/1) + 5.75\log(z^{0.6}/k) \dots \dots \dots \dots (1)$                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $z=qn/(sina)^{0.5}(2)$                                                                                                                          |
| $y={qn/(sina)^{0.5}}^{0.6} \dots    |
| v=q/y                                                                                                                                           |
| k=h*cosa                                                                                                                                        |
| $\lambda = (h^2 + l^2)^{0.5} \dots  |
| $E_c = H_{spill} + 1.5 d_{c$                                                                                                                    |
| $E_t = d_w + u_0^2 / 2g \dots \dots \dots \dots (8)$                                                                                            |
| $\Delta E = E_c - E_{t_{m_1, m_2, m_3, m_4, m_4, m_4, m_4}}(9)$                                                                                 |

### Calculations:

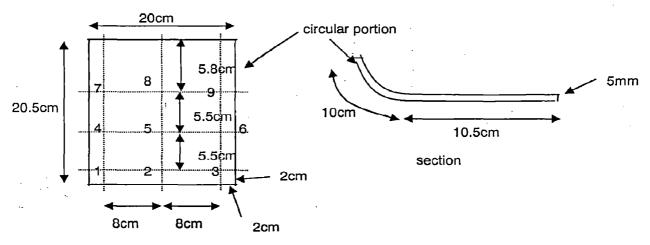
### Critical depth $(dc)=(q_w^2/g)^{1/3}$

| $q_w$                  |                           | $\mathbf{d}_{\mathrm{c}\;(\mathrm{m})}$ |               | H <sub>spill</sub>                          |
|------------------------|---------------------------|-----------------------------------------|---------------|---------------------------------------------|
| 0.1                    |                           | 0.10                                    |               | 2                                           |
| h                      |                           | 1                                       | λ (m)         |                                             |
| 0.0                    | 33                        | 0.04                                    | 0.052         |                                             |
| α                      |                           | $sin\alpha$                             | $\cos \alpha$ | k(m)                                        |
| 38.                    | 83                        | 0.627                                   | 0.779         | 0.026                                       |
| Sol                    | ving                      | Mann                                    | ing's n       | from eq.(1)                                 |
|                        |                           | ,                                       | 0             |                                             |
| n                      |                           | z                                       | λ/Ί           | LHS                                         |
|                        |                           | z                                       | $\lambda / 1$ |                                             |
| n<br>0.0               |                           | z<br>0.006                              | $\lambda / 1$ | LHS                                         |
| n<br>0.0               | 5<br>0.6/                 | z<br>0.006                              | $\lambda / 1$ | LHS<br>3.84802584                           |
| n<br>0.0<br>{z^<br>1.8 | 5<br>0.6/<br>62           | z<br>0.006                              | $\lambda / 1$ | LHS<br>3.84802584<br>log(λ/l)               |
| n<br>0.0<br>{z^<br>1.8 | 5<br>10.6/<br>62<br> {z^( | z<br>0.006<br>k}                        | $\lambda / 1$ | LHS<br>3.84802584<br>log(λ/l)<br>0.11273541 |

```
Put different values of n & check whether LHS=RHS
         LHS
                 RHS
0.04
         4.704
                 3.498
        3.848 3.832
0.05
Hence value of n is 0.05
Therefore equivalent water depth, d_w = \{q_w n / \sin \alpha^{0.5}\}^{0.6}
d_{w(m)}
0.048
Uniform velocity,uw =qw/dw
uw (m/s)
2.09
Change in energy between crest and toe of spillways: ∆E=Ec-Et
Ec =Hspill+1.5dc
                         Ec(m)
                         2.151
Et = d_w + u_w^2 / 2g
                         Et(m)
                         0.270
                         \Delta E(m)
                         1.881
Energy dissipated=\Delta E/Ec*100 =
                                           87.4 %
Residual head =Et =0.27m
(b) Chanson (1994) methods:
\alpha = 38^{\circ}50'; h = 3.33cm; l = 4.14cm.
Average equilibrium air concentration (Ce) =0.9*\sin \alpha
Ce
0.564
Self aerated friction factor, fe/f = 0.5[1+tanh\{0.628*(0.514-Ce)/(Ce(1-Ce))\}]
                         or, fe/f = 0.5[1+(e^{x}-e^{-x})/(e^{x}+e^{-x})]
                         where x = \{0.628*(0.514-Ce)/(Ce(1-Ce))\}
                         f = 1;a non aereted friction factor
(1-Ce) (0.514-(Ce(1-C
0.436
        -0.05
                 0.246 -0.1278747
                 e<sup>-x</sup>
        ex
                         ex-e-x
f
                                       ex+e-x
1
        0.88
                 1.136 -0.256447
                                       2.0164
fe
Uniform aereted flow depth, dwu = dc^* \{fe/(8\sin\alpha)\}^{1/3}
8sina dw
5.014 0.045
Characteristic depth (bulk depth), d_{90}=dc^*\{fe/(8(1-Ce)^3\sin\alpha)\}^{1/3}
8(1-Ce)<sup>3</sup>sina
                 d<sub>90</sub>(m)
0.415
                 0.102
But it has come 0.065m from experiment. So questionable?
Rate of energy dissipation;
\Delta H/Hmax = 1 - \frac{(fc/8sina)1/3*cosa+Ec/2(fc/8sina)-2/3}{(1.5+Hdam/dc)}; where Ec=(N+1)^3/\{N^2*(N+3)\}
where N=3.5 to 4,
                        Ec=1.1 for N=3.5; Hmax=Hdam+1.5*dc
\{fe/(8sina)\}1/3 \{fe/(8sina)\}-2/3
                                       (1.5+Hdam/dc)
0.443
                 5.083
                                       21.368
∆H/Hmax
0.853
ie, rate of energy dissipation is 85.30%
Residual energy, Hres:
Hres/dc = (fe/8sina)^1/3 + Ec/2(fe/8sina)^-2/3
H<sub>res</sub>(m)
0.316
ie, energy lost by stepped spillways is:
```

H<sub>toss</sub>=Hmax-Hres=Hspill+1.5\*dc-Hres

### H<sub>loss</sub>(m) 1.835


### Result:

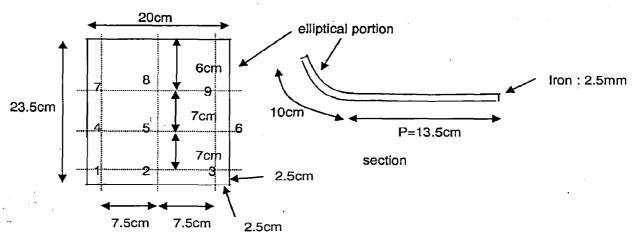
| α     | h     | 1     | ΔH/Hmax | Hmax  | Hloss | Hres  | dw(m) | V(m/s) |
|-------|-------|-------|---------|-------|-------|-------|-------|--------|
| 34.53 | 0.033 | 0.048 | 0.5719  | 0.65  | 0.372 | 0.279 | 0.049 | 2.03   |
| 52.23 | 0.05  | 0.039 | 0.5456  | 1.549 | 1.026 | 0.523 | 0.045 | 2.24   |
| 38.83 | 0.033 | 0.041 | 0.514   | 0.545 | 0.229 | 0.316 | 0.048 | 2.09   |

### 3.6.2.6 Experiment no. 3 (uplift water pressure at

### circular/elliptical suppressor plate)

i.uplift water pressure at circular suppressor plate:




plan of circular suppressor plate

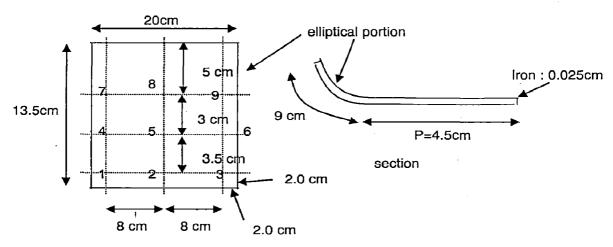
### Uplift water pressure at circular suppressor plate:

| Disch. | Points    | 1   | 2    | 3   | 4    | 5   |
|--------|-----------|-----|------|-----|------|-----|
| (m3/s) | Piezom.   |     |      |     |      |     |
|        | head (cm) | 2.2 | -2.5 | 2.7 | 1.5  | 0.5 |
| 0.004  | Points    | 6   | 7    | 8   | 9    |     |
|        | Piezom.   |     |      |     |      |     |
|        | head (cm) | 4.1 | 1    | 0.7 | 8.0  |     |
|        | Points    | 1   | 2    | 3   | 4    | 5   |
| - !    | Piezom.   |     |      |     |      |     |
| 0.006  | head (cm) | 2.4 | -2.5 | 2.7 | 1.5  | 0.6 |
| 1      | Points    | 6   | 7    | 8   | 9    |     |
|        | Piezom.   |     |      |     |      |     |
| · .    | head (cm) | 4.1 | 1    | 1.5 | 1.7  |     |
|        | Points    | 1   | 2    | 3   | 4    | 5   |
|        | Piezom.   |     |      |     |      |     |
| 0.008  | head (cm) | 2.5 | -2.5 | 2   | 1.5  | 0.5 |
| !      | Points    | 6   | 7    | 8   | 9    |     |
| l i    | Piezom.   |     |      |     |      |     |
|        | head (cm) | 4.2 | 0.7  | 1.4 | _1.5 |     |
|        | Points    | 1   | 2    | 3   | 4    | 5   |
| 0.01   | Piezom.   |     |      |     |      |     |
|        | head (cm) | 2   | -2.5 | 2.4 | 1.5  | 0.5 |
| 1      | Points    | 6   | 7    | _8  | 9    |     |
| 1      | Piezom.   |     |      |     |      |     |
|        | head (cm) | 4.1 | 1    | 1.5 | 1.5  |     |

|       | Points    | 1            | 2     | 3     | 4   | 5    |
|-------|-----------|--------------|-------|-------|-----|------|
| 0.012 | Piezom.   |              |       |       |     |      |
|       | head (cm) | 4            | -2.5  | . 1.7 | 1.5 | 0.5  |
|       | Points    | 6            | 7     | 8     | 9   |      |
|       | Piezom.   |              |       |       |     |      |
|       | head (cm) | 4.2          | 1     | 1.5   | 1.6 |      |
|       | Points    | 1            | 2     | 3     | 4   | 5    |
| 0.014 | Piezom.   |              |       |       |     |      |
|       | head (cm) | 4.3          | -2.1  | 2.1   | 1   | 0.5  |
|       | Points    | 6            | 7     | .8    | 9   |      |
|       | Piezom.   |              |       |       | ٠   |      |
|       | head (cm) | 4.5          | 0.7   | 1.5   | 1.5 |      |
|       | Points    | 1            | 2     | 3     | 4   | 5    |
| 0.016 | Piezom.   |              |       |       |     |      |
|       | head (cm) | 4.5          | -2.3  | 1.7   | 1.7 | 0.7  |
| , i   | Points    | 6            | 7     | 8     | 9   |      |
|       | Piezom.   |              |       |       |     |      |
|       | head (cm) | 4.5          | 0.8   | 1.5   | 1.4 |      |
|       | Points    | 1            | 2     | 3     | 4   | 5    |
| 0.018 | Piezom.   |              |       |       |     |      |
|       | head (cm) | 5.2          | -5.5  | 2.2   | 1.3 | 0    |
| -     | Points    | 6            | 7     | 8     | 9   |      |
|       | Piezom.   | •            | _     |       |     |      |
|       | head (cm) | 4            | 0.5   | 1.2   | 0   |      |
|       | Points    | 1            | 2     | 3     | 4   | 5    |
| 0.02  | Piezom.   | <del>-</del> |       |       |     |      |
|       | head (cm) | 4.3          | -6.75 | . 0.8 | 1.5 | -1.1 |
|       | Points    | . 6          | 7     | 8     | 9   |      |
|       | Piezom.   |              |       |       |     |      |
|       | head (cm) | 2.6          | 0.3   | 1.1   | 0.4 |      |

### ii.uplift water pressure at elliptical suppressor plate(P=135mm):




plan of elliptical suppressor plate

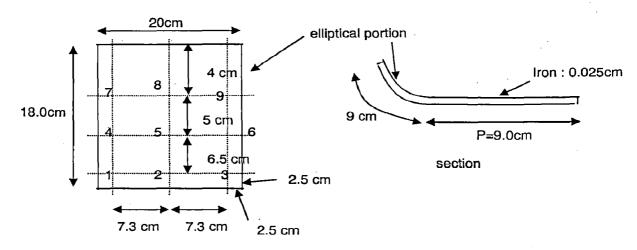
### Uplift water pressure at elliptical suppressor plate(P=135mm):

| Disch.   | Points    | 1   | 2            | 3    | 4   | 5      |
|----------|-----------|-----|--------------|------|-----|--------|
| (m3/s)   | Piezom.   |     | ,            |      |     |        |
|          | head (cm) | -1  | -5.8         | -3   | 1.8 | 1.8    |
| 0.006    | Points    | 6   | 7            | 8    | 9   |        |
|          | Piezom.   |     |              |      |     |        |
|          | head (cm) | 1.9 | 0.5          | 1    | 0.5 |        |
|          | Points    | 1   | 2            | 3    | 4   | 5      |
|          | Piezom.   |     |              |      |     |        |
| 0.008    | head (cm) | -1  | <b>-</b> 5.8 | -2.9 | 1.8 | 1.9    |
|          | Points    | 6   | 7            | . 8  | 9   |        |
| 1        | Piezom.   |     |              |      |     |        |
|          | head (cm) | 2   | 0.5          | 1    | 0.5 | :<br>! |
|          | Points    | 1   | 2            | 3    | 4   | 5      |
| 0.01     | Piezom.   |     | :            | . 4  |     |        |
|          | head (cm) | -1  | -6           | -3.2 | 1.8 | 1.8    |
| ]        | Points    | 6   | 7            | 8    | 9   |        |
|          | Piezom.   |     |              |      |     |        |
| <u>L</u> | head (cm) | 1.8 | 0.5          | 1    | 0.5 |        |

| Points    | 1                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Piezom.   |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ž.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| head (cm) | 0.9                                                                                                                                                                                                                                                                                                                                                           | -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Points    | 6                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Piezom.   |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| head (cm) | 2.1                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Points    | 1                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Piezom.   |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| head (cm) | -1                                                                                                                                                                                                                                                                                                                                                            | -6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Points    | 6                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Piezom.   |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| head (cm) | 2                                                                                                                                                                                                                                                                                                                                                             | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Points    | 1                                                                                                                                                                                                                                                                                                                                                             | . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Piezom.   |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| head (cm) | -1                                                                                                                                                                                                                                                                                                                                                            | -6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Points    | 6                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Piezom.   |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| head (cm) | 2.1                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Points    | 1                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Piezom.   |                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| head (cm) | -1.5                                                                                                                                                                                                                                                                                                                                                          | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Points    | 6                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Piezom.   |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| head (cm) | 2                                                                                                                                                                                                                                                                                                                                                             | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Points    | 1                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ' 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Piezom.   |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| head (cm) | -1.5                                                                                                                                                                                                                                                                                                                                                          | -7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Points    | 6                                                                                                                                                                                                                                                                                                                                                             | . 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Piezom.   | _                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| head (cm) | 1.5                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | Piezom. head (cm) Points | Piezom.         -0.9           Points         6           Piezom.         -0.9           head (cm)         2.1           Points         1           Piezom.         -1           head (cm)         -1           Points         1           Piezom.         -1           head (cm)         -1           Points         6           Piezom.         -1           head (cm)         -1.5           Points         6           Piezom.         -1.5           Points         1           Piezom.         -1.5           Points         1           Piezom.         -1.5           Points         1           Piezom.         -1.5           Points         1           Piezom.         -1.5           Points         6           Piezom.         -1.5           Points         6           Piezom.         -1.5 | Piezom.       -0.9       -6         Points       6       7         Piezom.       -1       0.5         Points       1       2         Piezom.       -1       -6.5         Points       6       7         Piezom.       -1       -6.5         Points       1       2         Piezom.       -1       -6.5         Points       6       7         Piezom.       -1       -6.5         Points       1       2         Piezom.       -1       -5.5         Points       1       2         Piezom.       -1.5       -7         Points       6       7         Piezom.       -1.5       -7.5         Piezom.       -1.5       -7.5         Points       1       2         Points       1       2         Points       6       7         Piezom.       -1.5       -7.5         Points       6       7         Piezom.       -1.5       -7.5         Points       6       7         Piezom.       -1.5       -7.5 | Piezom. head (cm) -0.9 -6 -3.2 Points 6 7 8 Piezom. head (cm) 2.1 0.5 1 Points 1 2 3 Piezom. head (cm) -1 -6.5 -3.5 Points 6 7 8 Piezom. head (cm) 2 0.4 1 Points 1 2 3 Piezom. head (cm) -1 -6.5 -3.5 Points 6 7 8 Piezom. head (cm) -1 -6.5 -3.5 Points 7 8 Piezom. head (cm) -1 -6.5 -3.5 Points 7 8 Piezom. head (cm) 2.1 0.5 1 Points 1 2 3 Piezom. head (cm) -1.5 -7 -3.5 Points 6 7 8 Piezom. head (cm) -1.5 -7 -3.5 Points 6 7 8 Piezom. head (cm) -1.5 -7 -3.5 Points 6 7 8 Piezom. head (cm) -1.5 -7 -3.5 Points 6 7 8 Piezom. head (cm) -1.5 -7.5 3.8 Piezom. head (cm) -1.5 -7.5 3.8 Points 6 7 8 Piezom. head (cm) -1.5 -7.5 3.8 Points 6 7 8 Piezom. | Points         1         2         3         4           Piezom.         head (cm)         -0.9         -6         -3.2         2           Points         6         7         8         9           Piezom.         head (cm)         2.1         0.5         1         0.5           Points         1         2         3         4           Piezom.         head (cm)         -1         -6.5         -3.5         2           Points         6         7         8         9           Piezom.         head (cm)         2         0.4         1         0.4           Points         1         2         3         4           Piezom.         head (cm)         -1         -6.5         -3.5         1.8           Points         1         2         3         4           Piezom.         head (cm)         2.1         0.5         1         0.5           Points         1         2         3         4           Piezom.         head (cm)         -1.5         -7         -3.5         2.1           Points         6         7         8         9 |

### iil.Uplift water pressure at elliptical suppressor plate(P=45mm):




plan of elliptical suppressor plate

### Uplift water pressure at elliptical suppressor plate(P=45mm):

|        | Points    | 1    | 2    | 3   | 4   | 5   |
|--------|-----------|------|------|-----|-----|-----|
| (m3/s) | Piezom.   |      |      | ·   |     |     |
|        | head (cm) | -1.4 | -7.5 | 1.6 | -5  | 11  |
| 0.006  | Points    | 6    | 7    | 8   | 9   |     |
| 1      | Piezom.   |      |      |     |     |     |
|        | head (cm) | -1.1 | 1.1  | 2.1 | 3.5 |     |
| ,      | Points    | 1    | 2    | 3   | 4   | 5   |
| •      | Piezom.   |      |      |     |     |     |
| 0.008  | head (cm) | -1.4 | -7.5 | 1.5 | -5  | -11 |
|        | Points    | 6    | 7    | 8   | 9   |     |
|        | Piezom.   |      |      |     |     |     |
|        | head (cm) | -1.6 | 1.1  | 2.1 | 3.5 |     |
|        | Points    | 1    | 2    | _3  | 4   | 5   |
| 0.01   | Piezom.   | ,    |      |     |     |     |
|        | head (cm) | -1.5 | -7.5 | 1.5 | -5  | -11 |
| 1      | Points    | 6    | 7    | 8   | 9   |     |
|        | Piezom.   |      |      |     |     |     |
|        | head (cm) | -1.8 | 1.1  | 2.1 | 3.6 |     |

|       | Points    | 1    | 2    | 3   | 4    | 5     |
|-------|-----------|------|------|-----|------|-------|
| 0.012 | Piezom.   |      | , ,  |     |      | •     |
| l     | head (cm) | -1.5 | -7.5 | 1.5 | -5   | -11   |
|       | Points    | 6    | 7    | 8   | 9    |       |
|       | Piezom.   |      |      |     |      | ·     |
|       | head (cm) | -2.6 | 1.1  | 2.1 | 3.6  |       |
|       | Points    | 1    | 2    | 3   | 4    | 5     |
| 0.014 | Piezom.   |      |      |     |      |       |
|       | head (cm) | -1.5 | -7.8 | 1.5 | -5   | -11.3 |
|       | Points    | 6    | 7    | 8   | 9    |       |
|       | Piezom.   |      |      |     |      |       |
|       | head (cm) | -3   | 1.1  | 2.2 | 3.5  |       |
| *     | Points    | 1    | 2    | 3   | 4    | 5     |
| 0.016 | Piezom.   |      |      |     |      |       |
|       | head (cm) | -1.8 | -8.5 | 1.5 | 5.4  | 12    |
|       | Points    | 6    | 7    | 8   | 9    |       |
|       | Piezom.   |      |      |     |      |       |
| _     | head (cm) | -5.2 | 1.4  | 2.5 | 4    |       |
|       | Points    | 1    | 2    | 3   | 4    | 5     |
| 0.018 | Piezom.   |      |      |     |      |       |
| •     | head (cm) | -1.8 | -8.5 | 1.5 | -5.5 | -12   |
|       | Points    | 6    | 7    | 8   | 9    |       |
|       | Piezom.   |      |      | ·   |      |       |
|       | head (cm) | -6.5 | 1.5  | 2.4 | 3.4  | l     |
| "     | Points    | 1    | 2    | 3   | 4    | 5     |
| 0.02  | Piezom.   |      |      |     |      |       |
|       | head (cm) | -3   | -9.5 | 1.1 | -6.4 | -13.2 |
|       | Points    | 6    | 7    | 8   | · 9  |       |
|       | Piezom.   |      |      |     |      |       |
|       | head (cm) | -8.5 | 1    | 2   | 2.8  |       |

### iv.Uplift water pressure at elliptical suppressor plate(P=90mm):



plan of elliptical suppressor plate

### Uplift water pressure at elliptical suppressor plate(P=90mm):

| Disch. | Points    | 1     | 2    | 3            | 4   | 5   |
|--------|-----------|-------|------|--------------|-----|-----|
| (m3/s) | Piezom.   |       |      | -            |     |     |
|        | head (cm) | 0     | -2.2 | -2.3         | 0.6 | 1.5 |
| 0.006  | Points    | 6     | 7    | 8            | 9   |     |
|        | Piezom.   |       |      |              |     | _   |
|        | head (cm) | 3.4   | 0.9  | 1.2          | 0.5 |     |
|        | Points    | 1     | 2    | 3            | 4   | 5   |
|        | Piezom.   |       |      |              |     |     |
| 0.008  | head (cm) | 0     | 2:1  | <b>-2</b> .2 | 0.6 | 1.5 |
| 1      | Points    | 6     | 7    | 8            | 9   |     |
|        | Piezom.   |       |      |              |     |     |
|        | head (cm) | . 3.7 | 0.7  | 1.3          | 0.5 |     |
|        | Points    | 1     | 2    | 3            | 4   | 5   |
| 0.01   | Piezom.   |       |      |              |     |     |
| İ      | head_(çm) | 0     | -2.2 | -2.2         | 0.6 | 1.5 |
|        | Points    | . 6   | 7    | 8            | 9   |     |
|        | Piezom.   |       |      |              |     |     |
|        | head (cm) | 3.8   | 0.8  | 1.3          | 0.4 |     |

|       | Points    | . 1   | 2    | 3    | 4   | 5   |
|-------|-----------|-------|------|------|-----|-----|
| 0.012 | Piezom.   |       |      |      |     | -   |
| Ì     | head (cm) | - 0.1 | -2.3 | -2.4 | 0.6 | 1.5 |
|       | Points    | 6     | 7    | 8    | . 9 |     |
|       | Piezom.   |       |      |      |     |     |
|       | head (cm) | 4     | 0.7  | 1.2  | 0.4 |     |
|       | Points    | 1     | 2    | 3    | 4   | 5   |
| 0.014 | Piezom.   |       |      |      |     |     |
|       | head (cm) | 0     | -2.6 | -2.6 | 0.6 | 2   |
|       | Points    | 6     | 7    | 8    | 9   |     |
|       | Piezom.   |       |      |      |     |     |
|       | head (cm) | 4.1   | 0.8  | 1.3  | 0.3 | _   |
|       | Points    | 1     | 2    | 3    | 4   | 5   |
| 0.016 | Piezom.   |       |      |      |     |     |
| ·     | head (cm) | 0     | -3   | -2.8 | 0.6 | 2.6 |
|       | Points    | 6     | 7    | 8    | 9   |     |
|       | Piezom.   |       |      |      |     |     |
|       | head (cm) | 4.3   | 0.7  | 1.1  | 0.3 |     |
|       | Points    | 1     | 2    | _ 3  | 4   | 5   |
| 0.018 | Piezom.   |       |      |      |     |     |
|       | head (cm) | -1.2  | -5   | -3.5 | 0.5 | 2.4 |
|       | Points    | 6     | 7    | 8    | 9   |     |
|       | Piezom.   |       |      |      |     |     |
|       | head (cm) | 4.1   | \ o  | 0.9  | O   |     |
|       | Points    | 1     | 2    | 3    | 4   | 5   |
| 0.02  | Piezom.   |       |      | ,    |     |     |
|       | head (cm) | o     | -3.1 | -3.2 | 0.7 | 1.8 |
|       | Points    | 6     | 7    | 8    | 9   |     |
|       | Piezom.   |       |      |      |     |     |
|       | head (cm) | 3.5   | 1    | 1.9  | 0.3 |     |

## 3.6.2.7 Prediction of the flow regimes:

تايز

Nappe to Transition (NA-TRA)
Transition to Skimming (TRA-SK) **Chanson (2001):** dc/h=0.89-0.4\*h/l ......

Onset of Skimming (SK) dc/h=1.2-0.325\*h/l ... Boes & Hager (2003): dc/h=0.91-0.14\*h/l ... ... ... Critical depth(dc):

| Table:1 | Table: 1 (Theoretical) | tical) |              |       |       |       |        |             |         |         |
|---------|------------------------|--------|--------------|-------|-------|-------|--------|-------------|---------|---------|
| Ь       | Slope                  | Step   | Step         | 1/q   | dc(m) | dc/h  |        | dc/h (onset | t       | Flow    |
| (s/gm)  | <u>(g)</u>             | height | length       |       |       | •     | Cha    | Chanson     | Boes    | regimes |
|         |                        | (h)m   | (I)m         |       |       |       | NA-TRA | TRA-SK      | & Hager | ı       |
| 0.02    | 34032'                 | 0.033  | 0.0484       | 0.682 | 0.034 | 1.043 | 0.617  | 0.978       | 0.815   | SK      |
| 0.02    | 52014'                 | 0.05   | 0.0387       | 1.292 | 0.034 | 0.689 | 0.373  | 0.780       | 0.729   | TRA     |
| 0.02    | 38050'                 | 0.0333 | 0.0414       | 0.804 | 0.034 | 1.034 | 0.568  | 0.939       | 0.797   | SK      |
| 0.03    | 34032'                 | 0.033  | 0.0484       | 0.682 | 0.045 | 1.367 | 0.617  | 0.978       | 0.815   | SK      |
| 0.03    | 52014'                 | 0.05   | 0.0387       | 1.292 | 0.045 | 0.902 | 0.373  | 0.780       | 0.729   | SK      |
| 0.03    | 38050'                 | 0.0333 | 0.0414       | 0.804 | 0.045 | 1.355 | 0.568  | 0.939       | 0.797   | SK      |
| 0.04    | 34032'                 | 0.033  | 0.0484       | 0.682 | 0.055 | 1.656 | 0.617  | 876.0       | 0.815   | SK      |
| 0.04    | 52014'                 | 0.05   | 0.0387       | 1.292 | 0.055 | 1.093 | 0.373  | 0.780       | 0.729   | SK      |
| 0.04    | 38050'                 | 0.0333 | 0.0414       | 0.804 | 0.055 | 1.641 | 0.568  | 0.939       | 0.797   | SK      |
| 0.05    | 34032'                 | 0.033  | 0.0484       | 0.682 | 0.063 | 1.922 | 0.617  | 0.978       | 0.815   | SK      |
| 0.05    | 52014                  | 0.05   | 0.0387       | 1.292 | 0.063 | 1.268 | 0.373  | 0.780       | 0.729   | SK      |
| 0.05    | 38050'                 | 0.0333 | 0.0414 0.804 | 0.804 | 0.063 | 1.904 | 0.568  | 0.939       | 0.797   | SK      |
|         |                        |        |              |       | İ     |       |        |             |         |         |

| ı | ۰ |   |
|---|---|---|
| Ċ | ĭ | ١ |

| _      |        | _      |        |        |        | _      |        |        |        |        |        |        |        |        | <b>T</b> |    |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|----|
|        |        |        |        |        |        |        |        | i      |        |        |        |        |        | , ,    |          |    |
| ĺ.,    |        |        |        |        |        |        |        |        |        |        |        |        |        |        |          |    |
| SK     | SK     | SK     | SK     | SK     | SK     | SK     | SK     | SK     | SK     | SK     | SK     | SK     | SK     | SK     |          |    |
| 2      | 6      | 7      | 2      | 6      |        | 2      | 6      | 7      | 2      | 6      | 7      | 5      | 6      |        |          |    |
| 0.815  | 0.729  | 0.797  | 0.815  | 0.729  | 0.797  | 0.815  | 0.729  | 0.797  | 0.815  | 0.729  | 0.797  | 0.815  | 0.729  | 0.797  |          |    |
|        | _      | _      |        |        |        |        |        |        |        | _      |        |        |        |        |          |    |
| 0.978  | 0.780  | 0.939  | 8/6'0  | 0.780  | 0.939  | 0.978  | 0.780  | 0.939  | 0.978  | 0.780  | 0.939  | 0.978  | 0.780  | 0.939  |          | 87 |
|        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |          |    |
| 0.617  | 0.373  | 0.568  | 0.617  | 0.373  | 0.568  | 0.617  | 0.373  | 995.0  | 0.617  | 0.373  | 0.568  | 0.617  | 0.373  | 0.568  |          |    |
|        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |          |    |
| 2.170  | 1.432  | 2.151  | 2.405  | 1.587  | 2.383  | 2.629  | 1.735  | 2.605  | 2.844  | 1.877  | 2.818  | 3.050  | 2.013  | 3.023  |          |    |
| 7.2    | 72     | 172    | 6/1    | 62     | 62     | 187    | 187    | 28     | 194    | 94     | 94     | 0.1    | 0.1    | 01     |          |    |
| 0.072  | 0.072  | 0.072  | 0.079  | 0.079  | 0.079  | 0.087  | 0.087  | 0.087  | 0.094  | 0.094  | 0.094  | 0.101  | 0.101  | 0.101  |          |    |
| 0.682  | 1.292  | 0.804  | 0.682  | 1.292  | 0.804  | 0.682  | 1.292  | 0.804  | 0.682  | 1.292  | 0.804  | 0.682  | 1.292  | 0.804  |          |    |
| ł      |        |        |        |        |        |        |        |        |        |        |        |        |        |        |          |    |
| 0.0484 | 0.0387 | 0.0414 | 0.0484 | 0.0387 | 0.0414 | 0.0484 | 0.0387 | 0.0414 | 0.0484 | 0.0387 | 0.0414 | 0.0484 | 0.0387 | 0.0414 |          |    |
| Ω      | , _    | 133    | 13     |        | 33     | 13     |        | 133    | 13     |        | :33    | 13     |        | 133    | ,        |    |
| 0.033  | 0.05   | 0.0333 | 0.033  | 0.05   | 0.0333 | 0.033  | 0.05   | 0.0333 | 0.033  | 0.05   | 0.0333 | 0.033  | 0.05   | 0.0333 |          |    |
| 34032' | 52014' | 38050' | 34032' | 52014' | 38050' | 34032' | 52014' | 38050' | 34032  | 52014  | 38050  | 34032' | 14'    | 38050  |          |    |
| 346    | 520    | 380    | 340    | 520    | 380    | 340    | 52c    | 380    | 340    | 520    | 380    | 340    | 52014' | 380    | ·        |    |
| 9      | 9      | 6      | 7      | 7      | 7      | 8      | <br>∞  | 8      | 6      | 6      | 6      |        |        |        |          |    |
| 0.0    | 0.0    | 0.00   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.1    | 0.1    | 0.1    | ]        |    |
|        |        |        | . •    |        |        |        |        |        |        |        |        |        |        |        |          |    |
|        |        |        |        |        |        |        |        |        |        |        | ,      |        |        |        |          |    |
|        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |          |    |

Table:2 Observational:Without suppressor

|        | 1      |        |        |       |       |       |                                                                                 |
|--------|--------|--------|--------|-------|-------|-------|---------------------------------------------------------------------------------|
|        |        | Step   | Step   | [/q   | dc(m) | dc/h  | Flow patterns                                                                   |
| (m3/s) | (B)    | height | length |       |       |       |                                                                                 |
|        |        | (h)m   | m())   |       | •     |       |                                                                                 |
| 0.02   | 34032' | 0.033  | 0.0484 | 0.682 | 0.034 | 1.043 | Undulating skim flow, Invisible vortices, Inception length=45cm.                |
| 0.02   | 52014  | 0.05   | 0.0387 | 1.292 | 0.034 | 0.689 | Strong undulating transition flow,full vortices at lower steps, Incept. L=60cm. |
| 0.02   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.034 | 1.034 | Full vortices in all steps, concave skim flow at junction, incept. L=45cm.      |
| 0.03   | 34032  | 0.033  | 0.0484 | 0.682 | 0.045 | 1.367 | Undulating skim flow, Invisible vortices, Inception length=48cm.                |
| 0.03   | 52014  | 0.05   | 0.0387 | 1.292 | 0.045 | 0.905 | Strong undulating skim flow,full vortices at lower steps, Incept. L=65cm.       |
| 0.03   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.045 | 1.355 | Full vortices in all steps, concave skim flow at junction, incept. L=50cm.      |
| 0.04   | 34032' | 0.033  | 0.0484 | 0.682 | 0.055 | 1.656 | Step1 had 75% vortex, rests had full vortices& looked like a skim flows.        |
| 0.04   | 52014' | 0.05   | 0.0387 | 1.292 | 0.055 | 1.093 | Strong undulating skim flow,full vortices at lower steps,Incept.L=90cm.         |
| 0.04   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.055 | 1.641 | Full vortices in all steps, concave skim flow at junction, incept. L=60cm.      |
| 0.05   | 34032" | 0.033  | 0.0484 | 0.682 | 0.063 | 1.922 | Step1 had 90% vortex, rests had full vortices& looked like a skim flows.        |
| 0.05   | 52014' | 0.05   | 0.0387 | 1.292 | 0.063 | 1.268 | Strong airmixed skim flow, full vortices at lower steps, Incept. L=90cm.        |
| 0.05   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.063 | 1.904 | Full vortices in all steps, concave skim flow at junction, incept. L=60cm.      |
| 90.0   | 34032' | 0.033  | 0.0484 | 0.682 | 0.072 | 2.170 | Full vortices after step12, rests weak vortices, skim flow, incept. L=60cm.     |
| 90.0   | 52014' | 0.05   | 0.0387 | 1.292 | 0.072 | 1.432 | Full vortices after step12, rests weak vortices, skim flow, incept. L=90cm.     |
| 90.0   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.072 | 2.151 | Full vortices in all steps, concave skimf low at junction, incept. L=70cm.      |
| 0.07   | 34032' | 0.033  | 0.0484 | 0.682 | 0.079 | 2.405 | Full vortices after step15, rests weak vortices, skimmingflow, incept. L=60cm.  |
| 0.07   | 52014' | 0.05   | 0.0387 | 1.292 | 0.079 | 1.587 | Full vortices after step12, rests weak vortices, skim flow, incept. L=120cm.    |
| 0.07   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.079 | 2.383 | Full vortices in all steps, concave skimflow at junction, incept. L=70cm.       |
| 80.0   | 34032' | 0.033  | 0.0484 | 0.682 | 0.087 | 2.629 | Full vortices after step13, rests weak vortices, skimmingflow, incept. L=60cm.  |
| 0.08   | 52014' | 0.05   | 0.0387 | 1.292 | 0.087 | 1.735 | Full vortices after step12, rests partial, skim. flow, convexflow, Li=120cm.    |
| 0.08   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.087 | 2.605 | Full vortices in all steps, concave skimflow at junction, incept. L=70cm.       |
| 0.09   | 34032' | 0.033  | 0.0484 | 0.682 | 0.094 | 2.844 | Full vortices after step13, rests weak vortices, skimmingflow, incept. L=60cm.  |
| 0.09   | 52014' | 0.05   | 0.0387 | 1.292 | 0.094 | 1.877 | Full vortices after step12, rests partial, skim. flow, convexflow, Li=120cm.    |
| 0.00   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.094 | 2.818 | Full vortices in all steps, concave skimflow at junction, incept. L=70cm.       |
| 0.1    | 34032' | 0.033  | 0.0484 | 0.682 | 0.101 | 3.050 | Full vortices after step13, rests weak vortices, skimmingflow, incept. L=60cm.  |
| 0.1    | 52014' | 0.05   | 0.0387 | 1.292 | 0.101 | 2.013 | Full vortices after step12, rests partial, skim. flow, convexflow, Li=120cm.    |
| 0.1    | 38050' | 0.0333 | 0.0414 | 0.804 | 0.101 | 3:023 | Full vortices in all steps, concave skimflow at junction, incept. L=70cm.       |
|        |        |        |        |       |       |       |                                                                                 |

Table:3
Observational: With circular suppressor

|        |        |        | I      |       |       |       |                                                                                             |
|--------|--------|--------|--------|-------|-------|-------|---------------------------------------------------------------------------------------------|
| b      | Slope  | Step   | Step   | h/1   | dc(m) | dc/h  | Flow patterns                                                                               |
| (m3/s) | (g)    | height | length |       |       |       |                                                                                             |
| ·      |        | (h)m   | (I)m   |       |       |       |                                                                                             |
| 0.02   | 34032' | 0.033  | 0.0484 | 0.682 | 0.034 | 1.043 | Undulating skim flow, Invisible vortices, Inception length=45cm.                            |
| 0.02   | 52014' | 0.05   | 0.0387 | 1.292 | 0.034 | 0.689 | Strong undulating skim flow, full vortices at lower steps, Incept. Li=60cm.                 |
| 0.02   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.034 | 1.034 | Full vortices in all steps, concave skim flow at junction, incept. Li=40cm.                 |
| 0.03   | 34032  | 0.033  | 0.0484 | 0.682 | 0.045 | 1.367 | Undulating skim flow, Invisible vortices, Inception length=48cm.                            |
| 0.03   | 52014' | 0.05   | 0.0387 | 1.292 | 0.045 | 0.905 | Strong undulating skim flow, full vortices at lower steps, Incept. Li=55cm.                 |
| 0.03   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.045 | 1.355 | Full vortices in all steps, concave skim flow at junction, incept. L=38cm.                  |
| 0.04   | 34032' | 0.033  | 0.0484 | 0.682 | 0.055 | 1.656 | All steps had full vortices looked like a skim flows Li=45cm                                |
| 0.04   | 52014  | 0.05   | 0.0387 | 1.292 | 0.055 | 1.093 | Air cavities at first few steps, uniformdepth flow, full vortices at lower steps, Li=50cm.  |
| 0.04   | 38050  | 0.0333 | 0.0414 | 0.804 | 0.055 | 1.641 | Full vortices in all steps, concave skim flow at junction, incept. Li=35cm.                 |
| 0.05   | 34032' | 0.033  | 0.0484 | 0.682 | 0.063 | 1.922 | All steps had full vortices & looked like a skim flows, Li=45cm.                            |
| 0.05   | 52014  | 0.05   | 0.0387 | 1.292 | 0.063 | 1.268 | Air cavities at first few steps, uniform depth flow, full vortices at lower steps, Li=50cm. |
| 0.05   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.063 | 1.904 | Full vortices in all steps, concave skim flow at junction, incept. Li=35cm.                 |
| 90.0   | 34032' | 0.033  | 0.0484 | 0.682 | 0.072 | 2.170 | All steps had full vortices & looked like a skim flows, Li=45cm.                            |
| 90.0   | 52014  | 0.05   | 0.0387 | 1.292 | 0.072 | 1.432 | Air cavities at first few steps, uniform depth flow, full vortices at lower steps, Li=55cm. |
| 0.06   | 38050  | 0.0333 | 0.0414 | 0.804 | 0.072 | 2.151 | Full vortices in all steps, concave at junction, uniform skim flow, incept. Li=40cm.        |
| 0.07   | 34032  | 0.033  | 0.0484 | 0.682 | 0.079 | 2.405 | Full vortices after step15, rests weak vortices, skimmingflow, incept. Li=60cm.             |
| 0.07   | 52014' | 0.05   | 0.0387 | 1.292 | 0.079 | 1.587 | Full vortices after step5, rests weak vortices, uniform skim.flow, incept.Li=20cm.          |
| 0.07   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.079 | 2.383 | Full vortices in all steps, concave at junction, uniform skimflow, incept. Li=10cm.         |
| 0.08   | 34032  | 0.033  | 0.0484 | 0.682 | 0.087 | 2.629 | Full vortices after step13, rests weak vortices, skimming flow, incept. Li=60cm.            |
| 0.08   | 52014' | 0.05   | 0.0387 | 1.292 | 0.087 | 1.735 | Full vortices after step4, rests weak vortices, uniform skim.flow, incept.Li=20cm.          |
| 80.0   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.087 | 2.605 | Full vortices in all steps, concave at junction, uniform skimflow, incept. Li=10cm.         |
| 60.0   | 34032  | 0.033  | 0.0484 | 0.682 | 0.094 | 2.844 | Full vortices after step13, rests weak vortices, skimming flow, incept. Li=60cm.            |
| 60.0   | 52014  | 0.05   | 0.0387 | 1.292 | 0.094 | 1.877 | Full vortices after step3, rests weak vortices, uniform skim.flow, incept.Li=10cm.          |
| 60.0   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.094 | 2.818 | Full vortices in all steps, concave at junction, uniform skim flow, incept. Li=5cm.         |
| 0.1    | 34032  | 0.033  | 0.0484 | 0.682 | 0.101 | 3.050 | Full vortices after step13, rests weak vortices, skimming flow, incept. Li=60cm.            |
| 0.1    | 52014' | 0.05   | 0.0387 | 1.292 | 0.101 | 2.013 | Full vortices after 2ndstep, rest partial, uniform skim.flow, convexflow, Li=5cm.           |
| 0.1    | 38050' | 0.0333 | 0.0414 | 0.804 | 0.101 | 3.023 | Full vortices in all steps, concave at junction, uniform skim flow, incept.Li=0cm.          |
|        |        |        |        |       |       |       |                                                                                             |

Table:4 Observational:With elliptical suppressor (P =135 mm)

| b     | Slope  | Step   | Step h/1 | [ <u>F</u> | dc(m) dc/h  | dc/h  | Flow patterns                                                                             |
|-------|--------|--------|----------|------------|-------------|-------|-------------------------------------------------------------------------------------------|
| n3/s) |        | height | length   |            | · · · · · · |       |                                                                                           |
|       |        | (h)m   | (l)m     |            |             |       |                                                                                           |
| 0.03  | 34032' | 0.033  | 0.0484   | 0.682      | 0.045       | 1.367 | Undulating skim flow, Invisible vortices, Inception length=20cm.                          |
| 0.03  | 52014' | 0.05   | 0.0387   | 1.292      | 0.045       | 0.902 | Strong undulating skim flow, full vortices at lower steps, <del>fincepts</del>            |
| 0.03  | 38050' | 0.0333 | 0.0414   | 0.804      | 0.045       | 1.355 | Full vortices in all steps, concave skim flow at junction, incept.                        |
| 0.04  | 34032  | 0.033  | 0.0484   | 0.682      | 0.055       | 1.656 | All steps had full vortices& looked like a skim flows, Li=20cm                            |
| 0.04  | 52014' | 0.05   | 0.0387   | 1.292      | 0.055       | 1.093 | Air cavities at first few steps, nearly uniformdepth flow, full vortices at lower steps,  |
| 0.04  | 38050' | 0.0333 | 0.0414   | 0.804      | 0.055       | 1.641 | Full vortices in all steps, concave skim flow at junction, incepta                        |
| 0.05  | 34032' | 0.033  | 0.0484   | 0.682      | 0.063       | 1.922 | All steps had full vortices& looked like a skim flows, Li=25cm.                           |
| 0.05  | 52014' | 0.05   | 0.0387   | 1.292      | 0.063       | 1.268 | Air cavities at first few steps, nearly uniform depth flow, full vortices at lower steps, |
| 0.05  | 38050  | 0.0333 | 0.0414   | 0.804      | 0.063       | 1.904 | Full vortices in all steps, concave skim flow at junction, incept:                        |
| 90.0  | 34032' | 0.033  | 0.0484   | 0.682      | 0.072       | 2.170 | All steps had full vortices & looked like a skim flows, Li=30cm.                          |
| 0.06  | 52014' | 0.05   | 0.0387   | 1.292      | 0.072       | 1.432 | Air cavities at first few steps, nearly uniform depth flow, full vortices at lower steps, |
| 0.06  | 38050' | 0.0333 | 0.0414   | 0.804      | 0.072       | 2.151 | Full vortices in all steps, concave at junction, non uniform skim flow , incept.          |
| 0.07  | 34032' | 0.033  | 0.0484   | 0.682      | 0.079       | 2.405 | Full vortices after step5, rests weak vortices, skimmingflow, incept. Li=35cm.            |
| 0.07  | 52014  | 0.05   | 0.0387   | 1.292      | 0.079       | 1.587 | Full vortices after step5, rests weak vortices, nearly uniform skim. flow, incept.        |
| 0.07  | 38050' | 0.0333 | 0.0414   | 0.804      | 0.079       | 2.383 | Full vortices in all steps, concave at junction, non uniform skimflow, incept.            |
| 0.08  | 34032' | 0.033  | 0.0484   | 0.682      | 0.087       | 2.629 | Full vortices after step5, rests weak vortices, skimming flow, incept. Li=35cm.           |
| 0.08  | 52014' | 0.05   | 0.0387   | 1.292      | 0.087       | 1.735 | Full vortices after step4, rests weak vortices, nearly uniform skim. flow, incept.        |
| 0.08  | 38050' | 0.0333 | 0.0414   | 0.804      | 0.087       | 2.605 | Full vortices in all steps, concave at junction, non uniform skimflow, sucept.            |
| 0.09  | 34032  | 0.033  | 0.0484   | 0.682      | 0.094       | 2.844 | Full vortices after step 5, rests weak vortices, skimming flow, incept. Li=38cm.          |
| 0.09  | 52014' | 0.05   | 0.0387   | 1.292      | 0.094       | 1.877 | Full vortices after step 5, rests weak vortices, nearly uniform skim flow, incept.        |
| 0.09  | 38050' | 0.0333 | 0.0414   | 0.804      | 0.094       | 2.818 | Full vortices in all steps, concave at junction, non uniform skim flow, incepts           |
| 0.1   | 34032' | 0.033  | 0.0484   | 0.682      | 0.101       | 3.050 | Full vortices after step 7, rests weak vortices, skimming flow, incept. Li=40cm.          |
| 0.1   | 52014' | 0.05   | 0.0387   | 1.292      | 0.101       | 2.013 | Full vortices after 4th step, rest partial, nearly uniform skim flow, convexflow,         |
| 0.1   | 38050' | 0.0333 | 0.0414   | 0.804      | 0.101       | 3.023 | Full vortices in all steps, concave at junction, non uniform skim flow, incept.           |
|       |        |        |          |            |             |       |                                                                                           |

| Table:5<br>Observa | tional:V | Table:5<br>Observational:With elliptical suppressor | ical sug | presso | r (P=90 mm) | ) mm ( |                                                                                           |
|--------------------|----------|-----------------------------------------------------|----------|--------|-------------|--------|-------------------------------------------------------------------------------------------|
| d                  | Slope    | Step                                                | Step     | l/1    |             | dc/h   | Flow patterns                                                                             |
| (m3/s)             | (a)      | height                                              | length   |        |             |        |                                                                                           |
|                    |          | (h)<br>m                                            | (I)<br>m |        |             |        |                                                                                           |
| 0.03               | 34032'   | 0.033                                               | 0.0484   | 0.682  | 0.045       | 1.367  | All steps had full weak vortices & skim flows, Li=15cm                                    |
| 0.03               | 52014'   | 0.05                                                | 0.0387   | 1.292  | 0.045       | 0.905  | Air cavities at first few steps, nearly uniformdepth flow, full vortices at lower steps   |
| 0.03               | 38050'   | 0.0333                                              | 0.0414   | 0.804  | 0.045       | 1.355  | Full vortices in all steps, concave skim flow at junction, incept. Li=0cm.                |
| 0.04               | 34032'   | 0.033                                               | 0.0484   | 0.682  | 0.055       | 1.656  | All steps had full weak vortices& skim flows, Li=18cm.                                    |
| 0.04               | 52014'   | 0.05                                                | 0.0387   | 1.292  | 0.055       | 1.093  | Air cavities at first few steps, nearly uniform depth flow, full vortices at lower steps, |
| 0.04               | 38050'   | 0.0333                                              | 0.0414   | 0.804  | 0.055       | 1.641  | Full vortices in all steps, concave skim flow at junction, incept. Li=0cm.                |
| 0.05               | 34032'   | 0.033                                               | 0.0484   | 0.682  | 0.063       | 1.922  | All steps had full vortices looked like a skim flows, Li=20cm.                            |
| 0.05               | 52014'   | 0.05                                                | 0.0387   | 1.292  | 0.063       | 1.268  | Air cavities at first few steps, nearly uniform depth flow, full vortices at lower steps, |
| 0.05               | 38050'   | 0.0333                                              | 0.0414   | 0.804  | 0.063       | 1.904  | Full vortices in all steps, concave at junction, non uniform skim flow, incept. Li=0cm.   |
| 0.06               | 34032'   | 0.033                                               | 0.0484   | 0.682  | 0.072       | 2.170  | Full vortices after step5, rests weak vortices, skimmingflow, incept. Li=25cm.            |
| 0.06               | 52014'   | 0.05                                                | 0.0387   | 1.292  | 0.072       | 1.432  | Full vortices after step5, rests weak vortices, nearly uniform skim.flow,                 |
| 0.06               | 38050'   | 0.0333                                              | 0.0414   | 0.804  | 0.072       | 2.151  | Full vortices in all steps, concave at junction, non uniform skimflow, incept. Li=0cm.    |
| 0.07               | 34032    | 0.033                                               | 0.0484   | 0.682  | 0.079       | 2.405  | Full vortices after step5, rests weak vortices, skimming flow, incept. Li=25cm.           |
| 0.07               | 52014'   | 0.05                                                | 0.0387   | 1.292  | 0.079       | 1.587  | Full vortices after step4, rests weak vortices, nearly uniform skim flow, incept.         |
| 0.07               | 38050'   | 0.0333                                              | 0.0414   | 0.804  | 0.079       | 2.383  | Full vortices in all steps, concave at junction, non uniform skimflow, incept. Li=0cm.    |
| 0.08               | 34032    | 0.033                                               | 0.0484   | 0.682  | 0.087       | 2.629  | Full vortices after step 5, rests weak vortices, skimming flow, incept. Li=25cm.          |
| 0.08               | 52014    | 0.05                                                | 0.0387   | 1.292  | 0.087       | 1.735  | Full vortices after step 5, rests weak vortices, nearly uniform skim flow, incept.        |
| 0.08               | 38050'   | 0.0333                                              | 0.0414   | 0.804  | 0.087       | 2.605  | Full vortices in all steps, concave at junction, non uniform skim flow, incept. Li=0cm.   |
| 0.00               | 34032'   | 0.033                                               | 0.0484   | 0.682  | 0.094       | 2.844  | Full vortices after step 7, rests weak vortices, skimming flow, incept. Li=30cm.          |
| 0.00               | 52o14'   | 0.05                                                | 0.0387   | 1.292  | 0.094       | 1.877  | Full vortices after 4th step, rest partial, nearly uniform skim. flow, convexflow,        |
| 0.09               | 38050'   | 0.0333                                              | 0.0414   | 0.804  | 0.094       | 2.818  | Full vortices in all steps, concave at junction, non uniform skim flow, incept.Li=0cm.    |
| 0.1                | 34032'   | 0.033                                               | 0.0484   | 0.682  | 0.101       | 3.050  | Full vortices after step13, rests weak vortices, skimming flow, incept. Li=40cm.          |
| 0.1                | 52014'   | 0.05                                                | 0.0387   | 1.292  | 0.101       | 2.013  | Full vortices after 2ndstep, rest partial, uniform skim flow, convexflow,                 |
| 0.1                | 38050'   | 0.0333                                              | 0.0414   | 0.804  | 0.101       | 3.023  | Full vortices in all steps, concave at junction, uniform skim flow, incept.Li=0cm.        |

Table:6

Observational:With elliptical suppressor (P = 45 mm)

|        |          | •      |        |       | ,            | ,     |                                                                                           |
|--------|----------|--------|--------|-------|--------------|-------|-------------------------------------------------------------------------------------------|
| ď      | Slope    | Step   | Step   | 1/4   | qc(m)   qc/h | qc/h  | Flow patterns                                                                             |
| (m3/s) | <u>ප</u> | height | length |       |              | _     |                                                                                           |
|        | -        | (h) m  | (I)m   |       |              |       |                                                                                           |
| 0.03   | 34032    | 0.033  | 0.0484 | 0.682 | 0.045        | 1.367 | Undulating skim flow, Invisible vortices, Inception length=15cm.                          |
| 0.03   | 52014'   | 0.05   | 0.0387 | 1.292 | 0.045        | 0.902 | Strong undulating skim flow,full vortices at lower steps, Incept.                         |
| 0.03   | 38050'   | 0.0333 | 0.0414 | 0.804 | 0.045        | 1.355 | Full vortices in all steps, concave skim flow at junction, incept. L=0cm.                 |
| 0.04   | 34032'   | 0.033  | 0.0484 | 0.682 | 0.055        | 1.656 | All steps had full vortices& looked like a skim flows, Li=20cm                            |
| 0.04   | 52o14'   | 0.05   | 0.0387 | 1.292 | 0.055        | 1.093 | Air cavities at first few steps, uniformdepth flow, full vortices at lower steps,         |
| 0.04   | 38050'   | 0.0333 | 0.0414 | 0.804 | 0.055        | 1.641 | Full vortices in all steps, concave skim flow at junction, incept. Li=0cm.                |
| 0.05   | 34032'   | 0.033  | 0.0484 | 0.682 | 0.063        | 1.922 | All steps had full vortices& looked like a skim flows, Li=25cm.                           |
| 0.05   | 52014'   | 0.05   | 0.0387 | 1.292 | 0.063        | 1.268 | Air cavities at first few steps, nearly uniform depth flow, full vortices at lower steps, |
| 0.05   | 38050'   | 0.0333 | 0.0414 | 0.804 | 0.063        | 1.904 | Full vortices in all steps, concave skim flow at junction, incept. Li=0cm.                |
| 90.0   | 34032'   | 0.033  | 0.0484 | 0.682 | 0.072        | 2.170 | All steps had full vortices& looked like a skim flows, Li=30cm.                           |
| 90.0   | 52014    | 0.05   | 0.0387 | 1.292 | 0.072        | 1.432 | Air cavities at first few steps, uniform depth flow, full vortices at lower steps,        |
| 90.0   | 38050'   | 0.0333 | 0.0414 | 0.804 | 0.072        | 2.151 | Full vortices in all steps, concave at junction, uniform skim flow, incept. Li=0cm.       |
| 0.07   | 34032    | 0.033  | 0.0484 | 0.682 | 0.079        | 2.405 | Full vortices after step5, rests weak vortices, skimmingflow, incept. Li=35cm.            |
| 0.07   | 52014    | 0.05   | 0.0387 | 1.292 | 0.079        | 1.587 | Full vortices after step5, rests weak vortices, uniform skim. flow, incept.               |
| 0.07   | 38050    | 0.0333 | 0.0414 | 0.804 | 0.079        | 2.383 | Full vortices in all steps, concave at junction, uniform skimflow, incept. Li=0cm.        |
| 80.0   | 34032'   | 0.033  | 0.0484 | 0.682 | 0.087        | 2.629 | Full vortices after step5, rests weak vortices, skirnming flow, incept. Li=38cm.          |
| 0.08   | 52014    | 0.05   | 0.0387 | 1.292 | 0.087        | 1.735 | Full vortices after step4, rests weak vortices, uniform skim. flow, incept.               |
| 0.08   | 38050    | 0.0333 | 0.0414 | 0.804 | 0.087        | 2.605 | Full vortices in all steps, concave at junction, uniform skimflow, incept. Li=0cm.        |
| 0.09   | 34032'   | 0.033  | 0.0484 | 0.682 | 0.094        | 2.844 | Full vortices after step 5, rests weak vortices, skimming flow, incept. Li=40cm.          |
| 0.09   | 52014    | 0.05   | 0.0387 | 1.292 | 0.094        | 1.877 | Full vortices after step 5, rests weak vortices, uniform skim.flow, incept.               |
| 0.09   | 38050    | 0.0333 | 0.0414 | 0.804 | 0.094        | 2.818 | Full vortices in all steps, concave at junction, uniform skim flow, incept. Li=0cm.       |
| 0.1    | 34032'   | 0.033  | 0.0484 | 0.682 | 0.101        | 3.050 | Full vortices after step 6, rests weak vortices, skimming flow, incept. Li=40cm.          |
| 0.1    | 52014    | 0.05   | 0.0387 | 1.292 | 0.101        | 2.013 | Full vortices after 4th step, rest partial, nearly uniform skim.flow, convexflow,         |
| 0.1    | 38050'   | 0.0333 | 0.0414 | 0.804 | 0.101        | 3.023 | Full vortices in all steps, concave at junction, uniform skim flow, incept. Li=0cm.       |
|        |          |        |        |       |              |       |                                                                                           |

### **3.6.2.8** Experiment no.4

### Experimental study of flow patterns in single slope (monoslope) stepped spillways:

 $\alpha = 37^{\circ}34'$ ; h = 5cm; l = 6.5cm; No.of steps = 40 nos.

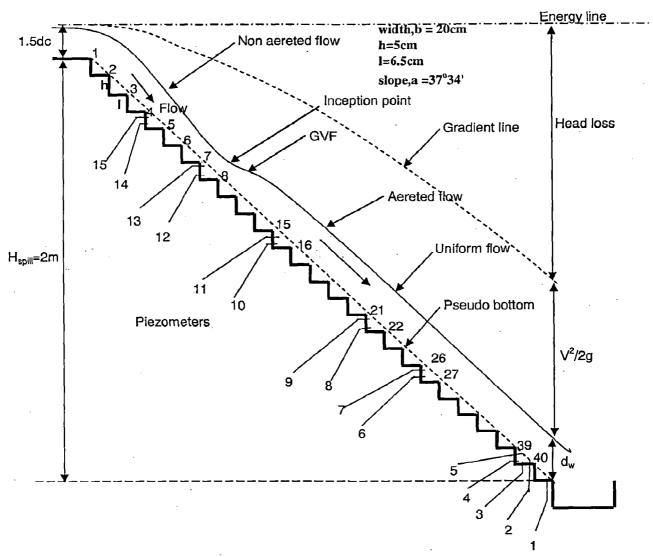
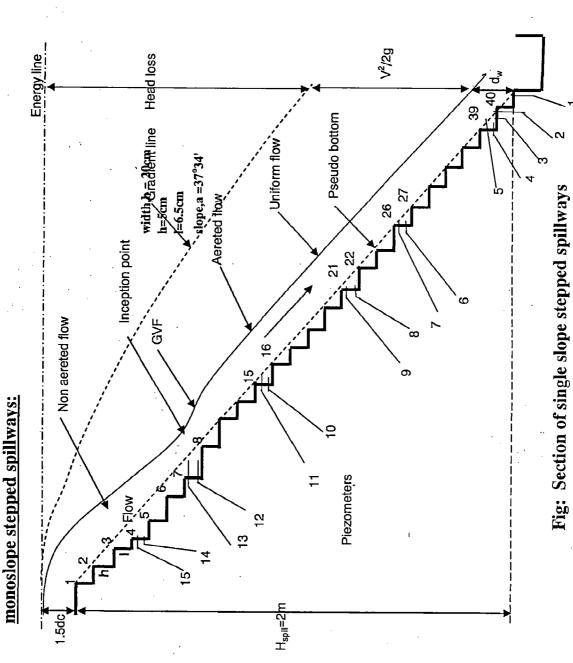




Fig: Section of single slope stepped spillways

### Experimental study of flow patterns in single slope (monoslope) stepped spillways: Flow water depths:

spillways:Flow water depths:  $\alpha = 37^{\circ}34'$ ; h = 5cm; l = 6.5cm; No.of steps = 40 nos SN Q (m3/s) Steps no. 5 6 7 8 10 11 12 13 14 15  $0.006 \, d_{\rm w} \, ({\rm cm})$ 3.5 2.8 2.72.6 2.8 2.8 3 2.6 2.6 3.5 3.8 2.6 2.6 2.6 2.6 Piezometer 0.4 2.3 9.5 -0.5 2.9 2.4 -0.5 -0.8 -0.8 2.3 -0.5 reading(cm) 1.4 1.3 1.6 -1 25 21 22 23 24 30 16 17 18 19 20 26 27 28 29 Steps no. 2.6 2.6  $d_w(cm)$ 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 37 38 39 40 Steps no. 31 32 33 34 35 36 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6  $d_w(cm)$ Flow pattern Inception length=15cm, vortex generated after 3rd step,50% vortex in some steps and fluctuation flows,100% air cavity ie no water at 40th step 0.01 Steps no. 2 10 14 15 5 6 8 11 12 13 7 6 5 4.2 4.3 4.5 4.5 4.5 4.5 4.5 dw (cm) 4 4.5 4.5 4.5 Piezometer 8.3 2.3 13.4 reading(cm) -0.5 2.6 3.2 -0.8 4.2 -0.3 -0.1 3 -1 21 22 23 24 25 16 17 18 19 20 26 27 29 Steps no. 28 30 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5  $d_w(cm)$ 4.5 4.5 4.5 4.5 4.5 4.5 Steps no. 31 32 33 34 35 36 37 38 39 40 dw (cm) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4,5 Incept. length=35cm, vortex generated after 7th step and there was full vortices in all steps. Flow pattern 0.014 Steps no. 10 12 13 14 15 8 9 11 9 7 7 6 5 4.5 4.5 4.5 4.8 4.8 4.8 4.8 4.8 4.8 4.8  $d_w(cm)$ Piezometer 16.5 -0.7-1.1 4.6 0 5.5 0.7 reading(cm) 11 -0.52.8 3.1 -1.126 27 16 17 20 21 22 23 24 25 28 Steps no. 18 19 29 30 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8  $d_w(cm)$ 4.8 4.8 4.8 4.8 4.8 31 32 33 34 35 36 37 38 39 40 Steps no. 4.8 4.8 4.8 4.8  $d_w(cm)$ 4.8 4.8 4.8 4.8 4.8 4.8 Flow pattern Incept.length=45cm,0%vortex at first step,50% at 2nd step,aerated flow and full vortices from 3rd to last steps. 0.018 Steps no. 10 12 13 14 15 11 6 9.5 5.5 5.5 5.8 5.8 5.8 5.8 5.8 5.8 10 5.8 dw (cm) 6 Piezometer -0.75.2 0.6 5.6 1.2 reading(cm) 13.4 2 18.1 -0.5 2.8 3 -0.6 3.5 20 22 23 24 25 26 30 16 17 18 19 21 27 28 29 Steps no. **5.**8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8  $d_w(cm)$ Steps no. 31 32 33 34 35 36 37 38 39 40 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8  $d_w(cm)$ Incept.length=60cm,0%vortex at first step,50% at 2nd step,aerated flow and full vortices Flow pattern from 3rd to last steps. 0.02 Steps no. 10 11 13 14 15 11 10 9 8.5 7.5 7 6 б 6.5 6.5 6.5 6.5 6.5 6.5  $d_w(cm)$ Piezometer reading(cm) 13.4 18.1 -0.6 -0.72.9 0.6 5.6 20 21 22 23 24 25 26 27 28 29 30 16 17 18 19 Steps no. 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 dw (cm) 40 36 38 39 Steps no. 31 32 33 34 35 37 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 dw (cm) Incept.length=65cm,0%vortex at first step,50% at 2nd step,aerated flow and full vortices Flow pattern

from 3rd to last steps.



32

# (a) Tatewar & Ingle (1996) & Knight & McDonald (1979) Methods:

| Data:                             |                                                             |                       |                | Energy at crest:       | Energy at toe:     |
|-----------------------------------|-------------------------------------------------------------|-----------------------|----------------|------------------------|--------------------|
| q <sub>w</sub> =0.02cu            | qw=0.02cum/0.2m=0.1cum/m                                    | cum/m                 |                | $E_c=H_{spill}+1.5d_c$ | $E_t=d_w+u_w^2/2g$ |
| Equations                         | Equations to be used:                                       |                       |                |                        |                    |
| $z^{0.1}/ng^{0.5} = ($            | $z^{0.1}/ng^{0.5} = 0.25 + 19log(1/1) + 5.75log(z^{0.6}/k)$ | /I)+5.75log           | $(z^{0.6}/k)$  | (1)                    |                    |
| z=qn/(sina) <sup>0.5</sup>        | ) <sup>0.5</sup>                                            | (2)                   |                |                        |                    |
| $y=\{qn/(sina)^{0.5}\}^{0.6}$     | •                                                           | (.3)                  |                |                        | *                  |
| v=q/y                             |                                                             | (4)                   |                |                        |                    |
| k=h*cosa                          | :                                                           | (5)                   |                |                        |                    |
| $\lambda = (h^2 + l^2)^{0.5}$     | 5                                                           | (9)                   |                |                        |                    |
| $E_c=H_{spill}+1$                 | E <sub>c</sub> =H <sub>spill</sub> +1.5d <sub>c</sub> (7)   | ( <u>)</u>            |                |                        |                    |
| $E_1=d_w+u_o^2$                   | $E_1 = d_w + u_o^2/2g$                                      | (8)                   |                |                        |                    |
| ΔE=E <sub>c</sub> -E <sub>i</sub> | ΛΕ=Ε <sub>c</sub> -Ε <sub>c</sub> (9)                       | (6)                   |                |                        |                    |
| Calculations:                     | tions:                                                      |                       |                |                        |                    |
| Critical d                        | Critical depth $(dc)=(q_w^2/g)^{1/3}$                       | , 2/g) <sup>1/3</sup> |                |                        |                    |
| ď                                 | <b>d</b> <sub>c (m)</sub>                                   |                       | $ m H_{spill}$ |                        |                    |
| 0.1                               | 0.10                                                        |                       | 7              |                        |                    |
| h                                 |                                                             | γ (m)                 |                |                        |                    |
| 0.05                              | 0.065                                                       | 0.082                 |                |                        |                    |
| ಶ                                 | sina                                                        |                       | k(m)           |                        |                    |
| 37.566667                         | 0.609                                                       | 0.793                 | 0.040          |                        |                    |
| Solving M                         | Solving Manning's n from eq.(1)                             | rom eq.(1             | <u> </u>       |                        |                    |
| n                                 | z                                                           | ×                     | THS            |                        |                    |
| 0.06485                           | 0.008307                                                    | 1.26163               | 3.0493         |                        |                    |
| $\{z^{0.6/k}\}$                   |                                                             |                       | log(l/l)       |                        |                    |
| 1.4240046                         |                                                             |                       | 0.1009         |                        |                    |
| $log\{z^{\circ}0.6/k\}$           | <b>₹</b>                                                    |                       | RHS            |                        |                    |
| 0.1535114                         |                                                             |                       | 3.0504         |                        |                    |
| Put differe                       | Put different values of n & check whether I.HS=RHS          | n & check             | whether        | THS=RHS                |                    |
| c c                               | LHS                                                         | RHS                   |                |                        |                    |
| 90:0                              | 3.27                                                        | 2.934                 |                |                        |                    |
| 0.06485                           | 3.049                                                       | 3.05                  |                |                        |                    |
| Hence val                         | Hence value of n is 0.06485                                 | 6485                  |                |                        |                    |

```
Therefore equvalent water depth, d_w = \{q_w n/\sin a^{0.5}\}^{0.6}
```

**ф** (ш)

0.056

Uniform velocity,uw =qw/dw

Uw (m/s)

Change in energy between crest and toe of spillways: DE=Ec-Et

Ec(m) Ec =Hspill+1.5dc

2.151

0.216 Et(m)

 $Et = d_w + u_w^2/2g$ 

 $\Delta E(m)$ 

1.935

89.9 %

Energy dissipated=DE/Ec\*100 =

Residual head =Et =0.22m

(b) Chanson methods(1994):

Average equilibrium air concentration (Ce) =0.9\*sina

0.5484786

**Self** aerated **friction** factor,  $fe/f = 0.5[1 + tanh \{0.628*(0.514-Ce)/(Ce(1-Ce))\}]$ 

or,fe/f =0.5[1+(e<sup>x</sup>-e<sup>-x</sup>)/(e<sup>x</sup>+e<sup>-x</sup>)] where  $x = \{0.628*(0.514-Ce)/(Ce(1-Ce))\}$ 

f = 1;a non aereted friction factor

(1-Ce) (0.514-Ce) Ce(1-Ce) x 0.4515214 -0.03448 0.24765 -0.087

0.916281 1.09137 -0.175 2.008

0.456395

Uniform aereted flow depth, dwu =dc\*{fe/(8sin $\alpha$ )}  $^{1/3}$ 

8sina

**d**wu 0.045711 4.875365

Charactivistic depth (bulk depth),  $d_{90}=dc^*\{fe/(8(1-Ce)^3\sin\alpha)\}^{1/3}$ 

8(1-Ce)<sup>3</sup>sina

d<sub>90</sub>(m) 0.10123

0.4487891

But it has come 0.065m from experiment. So questionable?

Rate of energy dissipation;

 $\Delta H/Hmax = 1 - [\{(fe/8sina)1/3*cosa + Ec/2(fe/8sina) - 2/3\}/(1.5 + Hdam/dc); where Ec=(N+1)^3/\{N^2*(N+3) + Ec=1.1 \text{ for } N=3.5; Hmax=Hdam+1.5*dc \}$  where N=3.5 to 4,

Ec=1.1 for N=3.5; Hmax=Hdam+1.5\*dc {fe/(8sina)}-2/3 (1.5+Hdam/dc) 4.84275

[fe/(8sina)]1/3

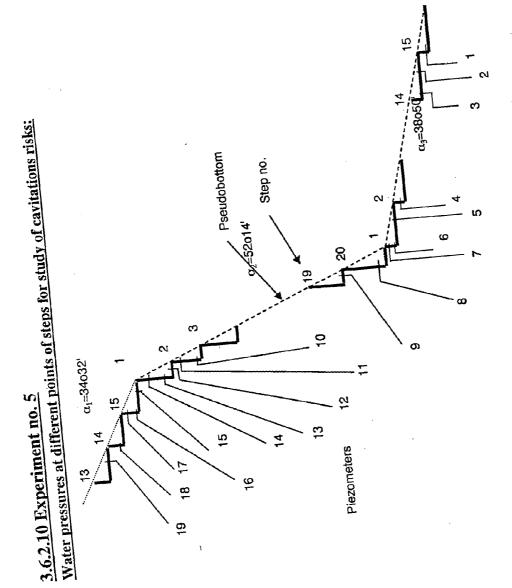
0.4540938

ΔH/Hmax

0.8585014

ie, rate of energy dissipation is 85.85%

Residual energy, H<sub>res</sub>: Hres/dc=(fe/8sina)^1/3+Ec/2(fe/8sina)^-2/3


H<sub>res</sub>(m)

0.3043631

ie, energy lost by stepped spillways is:

H<sub>loss</sub>=Hmax-Hres=Hspill+1.5\*dc-Hres

1.8466337



Experimental setup
Section of multislope stepped spillways showing the points in steps where the points of multislope stepped spillways showing the piezometric pressure head have been taken for cavitation risk study the piezometric pressure head have been taken for cavitation risk study

Water pressures at different points of steps for study of cavitation risk (with use of circular suppressor):

|    |           |       |       |                                                 |       |           |         |        |       |     |      |      |      |      |      |      |     |      |     | ,    |
|----|-----------|-------|-------|-------------------------------------------------|-------|-----------|---------|--------|-------|-----|------|------|------|------|------|------|-----|------|-----|------|
| SN | Disch.(Q) | Piezo | metri | Piezometric reading of diff.points in steps(cm) | lo gu | diff.p    | oints i | in ste | os(cm | _   |      |      |      |      |      |      |     |      |     | ļ -  |
|    | . s/gm    |       | 2     | 3                                               | 4     | 5         | 9       | 7      | 8     | 6   | 10   | 11   | 12   | 13   | 14   | 15   | 16  | 17   | 18  | 19   |
|    | 0.004     | 0.5   | 4.1   | 1.6                                             | 0     | 13.5      | 4.8     | 0.7    | 2.4   | 2.5 | 0    | 0    | 0    | 0.4  | 0    | 4    | 1.5 | -2   | 1.9 | 4.1  |
| _  | 9000      | 0.0   | 4.5   | 1.7                                             | 0     | 16        | 8.9     | 2.2    | 3     | 5.5 | 0    | 0    | 0    | 0.4  | 0    | 6.5  | 1.4 | -2   | 2.1 | 7.5  |
| _  | 800.0     | 1     | 5.5   | 1.7                                             | 0.8   | 16.5      | 7.9     | . 3    | 3.4   | 5.5 | 0    | 0    | 0    | 0.4  | 0    | 6.5  | 1.5 | -2   | 2.1 | 8.1  |
| +  | 0.01      | 1.4   | 9     | 1.7                                             | 1.6   | 16.5      | 8.8     | 3.5    | 3.6   | 5.8 | 0    | 0    | -0.1 | 0.4  | 0    | 7.7  | 1.6 | -5   | 2.3 | 9.5  |
|    | 0.012     | 1.5   | 6.9   | 1.8                                             | 2.4   | 17.5      | 9.4     | 4.3    | 4.2   | 6.4 | 0    | 0    | -0.3 | 0.2  | 0    | 11   | . 2 | -2   | 3.4 | 12.8 |
|    | 0.014     | 1.6   | 7.8   | 1.8                                             | 3.1   | 18.1      | 10.3    | 5.1    | 5.1   | 7.3 | 0    | 0    | 9.0- | 0    | 0    | 12   | 2   | -2   | 3.5 | 13.2 |
|    | 0.016     | 1.6   | 9.8   | 1.8                                             | 3.8   | 19.5 11.4 | 11.4    | 5.8    | 5.2   | 8   | -0.5 | -0.2 | -1.1 | -0.5 | 0    | 11.5 | 2   | -1.9 | 4   | 12.7 |
| ~  | 0.018     | 1.6   | 6.5   | 2                                               | 4.4   | 19.8 11.9 |         | 6.5    | 5.7   | 8.8 | -1   | -1.7 | -1.8 | -1.3 | 0    | 11.5 | 7   | -1.8 | 4   | 12.6 |
|    | 0.02      | 1.6   | 10    | 1.9                                             | 5     | 21.1      | 11.8    | 7      | 9     | 9.5 | -2   | -3   | -3.1 | -2.5 | -0.3 | 12.6 | 1.9 | -1.8 | 4.4 | 12.5 |
|    |           |       |       |                                                 |       |           |         |        |       |     |      |      |      |      |      |      |     |      |     |      |

Water pressures at different points of steps for study of cavitation risk (without use of circular suppressor):

|                              | 6      | 3     | 2     | 3     | 9    | 4     | Ι <del>Π</del> | Ι <del>Π</del> | 3     | 7    |
|------------------------------|--------|-------|-------|-------|------|-------|----------------|----------------|-------|------|
|                              | 19     | 4.3   | ×.    | 8.3   | 9.   | 13.4  | 13.1           | 13.            | 13    | 13.2 |
|                              | 18     | 2     | 2.1   | 2.6   | 3.1  | 3.5   | 4              | 4.1            | 4.3   | 4.5  |
|                              | 17     | -1.9  | -1.9  | -2    | -5   | -2.1  | -1.7           | -1.7           | -1.7  | -1.6 |
|                              | 16     | 1.5   | 1.5   | 1.8   | 1.9  | 7     | 7              | 7              | 2     | 2.4  |
|                              | 15     | 3.6   | 7     | 7.3   | 8.2  | 11.2  | 11.8           | 11.3           | 11.5  | 12   |
|                              | 14     | 0.3   | 0.3   | 0.3   | 0.25 | 0.2   | 0.1            | 0              | 0     | 0    |
|                              | 13     | 0.4   | 0.4   | 0.4   | 0.3  | 0.2   | 0.1            | 0              | 0     | 0    |
|                              | 12     | -2.4  | -2.4  | -2.4  | -2.4 | -2.4  | -2.4           | -2.4           | -2.4  | -2.4 |
|                              | 11     | -0.9  | 6.0-  | -0.9  | 6.0- | -0.9  | -0.9           | -0.9           | 6.0-  | -0.9 |
|                              | 10     | -1.4  | -1.4  | -1.4  | -1.4 | -1.4  | -1.4           | -1.4           | -1.4  | -1.4 |
| <u> </u>                     | 6      | 4.2   | 5.4   | 5.4   | 7    | 9.3   | 10.8           | 12.4           | 14.1  | 16.4 |
| points in steps(cm)          | 8      | es.   | 3.3   | 3.6   | 3.8  | 4.4   | 5.1            | 5.9            | 8.9   | 7.6  |
| in ste                       | 7      | 1.4   | 2.6   | 3.4   | 4    | 4.9   | 5.9            | 6.7            | 1.5   | 8.3  |
| oints                        | 9      | 5.1   | 6.8   | 7.9   | 8.8  | 10    | 11.5           | 13             | 15    | 17   |
| diff.p                       | S      | 14    | 16.3  | 18    | 19.6 | 23.5  | 26             | 28             | 33.5  | 40   |
| ng of                        | 4      | 0     | 0.3   | 1.1   | 1.9  | 2.5   | 3              | 3.6            | 4.4   | 5.4  |
| readi                        | 3      | 1.6   | 1.55  | 1.5   | 1.5  | 1.8   | 1.7            | 1.7            | 1.7   | 1.8  |
| metric                       | 2      | 4.2   | 4.8   | 5.3   | 9    | 8.9   | 7.4            | 7.8            | 8.3   | 8.5  |
| Piezometric reading of diff. | 1      | 1.1   | 1.2   | 1.2   | 1.2  | 1.4   | 1.4            | 1.4            | 1.4   | 1.4  |
| Disch.(Q)                    | m3/s . | 0.004 | 900'0 | 800.0 | 0.01 | 0.012 | 0.014          | 0.016          | 0.018 | 0.02 |
| SN                           |        | 1     | 7     | 3     | 4    | 5     | 9              | L              | 8     | 6    |

3.6.2.11 Experiment no.6: (Water flow depths in multislope stepped spillways) With the use of Elliptical suppressor plate, No.1 i.e. P=135mm

| ſ |                         | - 20      |               |          |        |      |                          |           |            |                                                                               |                         | 20        | c    | 2.5  | 3    | 2.5          | 2.8                      |           |            |                     |                                       | 20        |      |          |      |      |                          |           |            |                             |
|---|-------------------------|-----------|---------------|----------|--------|------|--------------------------|-----------|------------|-------------------------------------------------------------------------------|-------------------------|-----------|------|------|------|--------------|--------------------------|-----------|------------|---------------------|---------------------------------------|-----------|------|----------|------|------|--------------------------|-----------|------------|-----------------------------|
| - |                         | 19        |               |          |        |      |                          |           |            |                                                                               |                         | 19        | 4.5  | 4    | 4.5  | 4            | .25                      | -         |            |                     |                                       | 19        | _    |          | -    | r    |                          |           |            |                             |
|   |                         | 18        |               |          |        | _    |                          |           |            |                                                                               |                         | 18        | 4.5  | 4    | 4.5  | 4            | 4.25 4                   | -         |            |                     | i                                     | 18        | -    |          |      | -    |                          |           |            |                             |
|   |                         | 17        |               |          |        |      |                          |           |            |                                                                               |                         | 17        | 4.5  | 4    | 4.5  | 4            | 4.25                     |           |            |                     |                                       | 17        |      | -        |      | -    | -                        | _         |            |                             |
| ł |                         | 16        | -             |          |        |      | -                        |           |            |                                                                               |                         | 16        | 4.5  | 4    | 4.5  | 4            | 4.25                     | _         |            |                     |                                       | 16        | -    | -        |      |      | -                        |           |            |                             |
|   |                         | 15        | 7             | 2        | 2      | 7    | 2                        |           |            | -                                                                             | 1                       | 15        | 5.5  | 4.5  | 5.5  | 4.5          | 5,                       | -         |            |                     |                                       | 15        | 2.5  | 7        | 2.5  | 7    | 2.3                      |           |            |                             |
|   |                         | 14        | 2             | 2        | 2      | 2    | 2                        |           |            | Me                                                                            |                         | 14        | 5.5  | 5    | 5.5  | 5            | 5.25                     |           | -          |                     |                                       | 14        | 2.5  | 7        | 2.5  | 2    | 2.25                     | _         |            |                             |
|   |                         | 13        | 2             | 2        | 2      | 7    | 2                        |           |            | ing flo                                                                       |                         | 13        | 5.5  | S    | 5.5  | S            | 5.25                     | -         | -          |                     |                                       | 13        | 2.5  | 2        | 2.5  | 2    | 2.25                     |           |            |                             |
|   |                         | 12        | 2             | 2        | 2      | 2    | 2                        |           |            | kimm                                                                          |                         | 12        | 4    | က    | 4    | 3            | 3.5                      |           | _          | ortices             |                                       | 12        | 2.6  | 2        | 2.6  | 7    | 2.3                      |           |            |                             |
|   |                         | 11        | 2             | 2        | 2      | 2    | 2                        | ,         |            | nor s                                                                         |                         | 11        | 4.3  | 4    | 4.3  | 4            | 4.15                     |           |            | 100% recir.vortices |                                       | 11        | 2.8  | 2        | 2.8  | 2    | 2.4                      | _         |            |                             |
|   |                         | 10        | 2             | 2        | 2      | 2    | 2                        |           | -          | lappe                                                                         |                         | 10        | 4.5  | 4    | 4.5  | 4            | 4.25                     | -         |            | 00%                 |                                       | 101       | 3    | 2        | 3    | 2    | 2.5                      | · · ·     | П          |                             |
|   |                         | 6         | 2             | 2        | 2      | 2    | 2                        |           |            | ither 1                                                                       |                         | 6         | 4.8  | 4.5  | 4.8  | 4.5          | 4.65                     |           |            |                     |                                       | 6         | 3.2  | 2.3      | 3.2  | 2.3  | 2.75                     |           |            |                             |
|   |                         | 8         | 2             | 2        | 2      | 2    | 2                        |           |            | es,ne                                                                         | ļ                       | ∞         | 5    | 5    | 5    | S            | 5                        |           |            | vortex              |                                       | $\infty$  | 3.3  | 2.6      | 3.3  | 2.6  | 3                        |           |            | ļ ,                         |
|   |                         | 7         | 2             | 2        | 2      | 7    | 2                        |           |            | vortic                                                                        |                         | 7         | 5.2  | 5    | 5.2  | 5            | 5.1                      |           |            | 25%to75% vortex     |                                       | 7         | 3.5  | 2.7      | 3.5  | 2.7  | 3.1                      |           |            | steps                       |
|   |                         | 9         | 2             | 2        | 2      | 7    | 2                        |           |            | lating                                                                        |                         | 9.        | 5.3  | 5    | 5.3  | S            | 5.2                      |           |            | 25%tc               |                                       | 9         | 3.8  | 2.9      | 3.8  | 2.9  | 3.4                      |           |            | in all                      |
|   | 7.2                     | 5         | 2             | 2        | 2      | 2    | 2                        |           |            | circu                                                                         | 4                       | 5         | 5.4  | 5    | 5.4  | 5            | 5.2                      |           |            |                     | ,20,                                  | 5         | 4    | 3        | 4    | 3    | 3.5                      |           |            | rtices                      |
| 1 | =34-32                  | 4         | 3             | _ 2      | 3      | 2    | 2.5                      |           |            | eak re                                                                        | =52°14                  | 4         | 5.5  | 5    | 5.5  | 5            | 5.3                      |           |            |                     | =380                                  | 4         | 3.8  | 2.8      | 3.8  | 2.8  | 3.3                      |           |            | oo gu                       |
|   | ways α <sub>1</sub>     | 3         | 3             | 2        | 3      | 2    | 2.5                      |           |            | ties,w                                                                        | ways $\alpha_2$         | 8         | 5    | 4.5  | 5    | 4.5          | 4.75                     |           |            | cavities            |                                       | 3         | 3.5  | 2.5      | 3.5  | 2.5  | 3                        |           |            | culati                      |
|   | III Wa                  | 2         | 3             | 2        | 3      | 2    | 2.5                      |           |            | r cavi                                                                        | illwa                   | 2         | 3    | 2.5  | 3    |              | 2.75                     |           |            | _                   | illwa                                 | 2         | 2    | 1.8      | 2    | 1.8  | 1.9                      |           |            | recir                       |
| , | bea sh                  | 1         | 3.5           | 3        | 3.5    | 3    | 3.25                     |           | 30         | No air cavities, weak recirculating vortices, neither nappe nor skimming flow | sed sp                  | 1         | 2.5  | 2    | 2.5  | 7            | 2.25                     |           | 35         | 100% ai             | s pac                                 | 1         | 2.5  | 2        | 2.5  | 2    | 2.25                     |           | 10         | 100% recirculating vortices |
|   | Stope of stepped spilly | Step nos. | Max.          | Min.     | Max.   | Min. | Aver.(d <sub>wps</sub> ) | Inception | length(cm) | Flow patt                                                                     | Slope of stepped spilly | Step nos. | Max. | Min. | Max. | Min.         | Aver.(d <sub>wps</sub> ) | Inception | length(cm) | Flow patt           | Slope of stepped spillways $\alpha_3$ | Step nos. | Max. | Min.     | Max. | Min. | Aver.(d <sub>wps</sub> ) | Inception | length(cm) | Flow patt                   |
|   |                         | perunit   |               |          | cum/m) |      | _ •                      |           |            |                                                                               |                         | •         |      |      | ني-ن | 0.03 Min.    | <u> </u>                 | اخصا      |            |                     |                                       |           |      | <u> </u> |      |      |                          |           | , <u></u>  |                             |
|   | n Dis                   | per       | v. length     | <u></u>  |        |      |                          |           |            |                                                                               |                         |           |      |      |      | 0.2          |                          |           |            |                     | <del></del> -                         |           |      |          |      |      |                          |           |            | 4                           |
|   | M IGI                   | jo        | (cum) spillw. | ways     | (b m)  |      |                          |           |            |                                                                               |                         |           |      |      |      |              |                          |           |            |                     |                                       | _         |      | `        |      |      |                          |           |            |                             |
| - | Discn. width Discn.     | <u>(</u>  | (cnm)         |          |        |      |                          |           |            |                                                                               |                         |           |      |      |      | 1.66 0.006   |                          |           |            |                     |                                       |           |      |          |      |      |                          |           |            |                             |
|   |                         | metre     | reading       | (x cm)   | _      |      |                          |           |            |                                                                               |                         |           |      |      |      | 1.66         |                          | -         |            |                     |                                       |           |      | _        |      |      |                          |           |            |                             |
|   | SN Mano                 | Ĕ         |               | <u>*</u> | _      |      |                          |           | -          |                                                                               |                         |           |      |      |      | <del>,</del> |                          |           |            |                     |                                       |           |      |          |      |      |                          |           |            | $\dashv$                    |
| L | <u> </u>                |           |               |          |        |      |                          |           |            |                                                                               |                         |           |      |      |      |              |                          |           |            |                     |                                       |           |      |          |      |      |                          |           |            |                             |

| 1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   13   14   15   13   14   15   13   14   15   13   14   15   13   13   13   13   13   13   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ー | SN Mano | Disch.   | Disch. Width Disch. | Disch.   | Slope of stepped spill   | ped sp | illways | ชื่             | =34°32 |         |         |        |          | ]<br> - |          |          |         |         |     |     |      |      |      |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|----------|---------------------|----------|--------------------------|--------|---------|-----------------|--------|---------|---------|--------|----------|---------|----------|----------|---------|---------|-----|-----|------|------|------|-----|
| (c cm) spillw. [length Max. 4 3.5 3.5 2.5 2.5 2.5 2.5 2.5 3 3 3 3 3 3 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | metre   | <u> </u> |                     | perunit  |                          |        | 2       | 3               | 4      | 5       | 9       | 7      |          |         | 11       | 12       | 13      | 14      | 15  | 16  | 17   | 18   | 19   | 20  |
| (cm) ways (q) Min. 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | reading |          | spillw.             | length   |                          | 4      |         | 5.              | 3.5    | 5       | 5       | 5      | 5 2.     | 5       |          |          | 3       | 3       | 3   |     |      |      |      |     |
| (b m)   Max,   4   3.5   3.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   |   | (x cm)  |          |                     | <u>Б</u> | Min.                     | 3      | 3       | $\epsilon$      | 3      | 7       | 2       | 2      |          | _       |          |          | 2       | 2       | 7   |     |      |      |      |     |
| Aver. (4 <sub>vec.</sub> ) 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |         |          | (p m)               | cum/m)   |                          | 4      |         | 5.              |        | 5       |         | 5      | 2        |         |          |          | 3       | 3       | 3   |     |      |      |      |     |
| Inception   Signature   Sign   |   |         | _        |                     |          | Min.                     |        | 3       | 33              | 3      | 2       | 7       | 2      |          |         |          | _        |         | 2       | 7   | _   |      | -    |      |     |
| Inception   Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |         |          |                     |          | Aver.(dwps)              | 3.5    | 3.25    | .25             | 6.     | .25     | 3       | 6      | 3 2      |         | 2        | <u> </u> | 7       | 2.5     | 2.5 | -   |      | -    |      |     |
| Flow patt   No air cavities, weak recirculating vortices, preither nappe nor skimming flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |         |          |                     |          | Inception                |        |         |                 | _      | _       | _       |        |          |         |          |          |         |         |     |     |      |      |      |     |
| Elow patt No air cavities, weak recirculating vortices, neither nappe nor skimming flow Slope of stepped spillways $\alpha_3 = 32^{\circ}14^{\circ}$ Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Max. 2.5 4 5 5 4 3 2.8 2.8 3 3.5 3.8 4.2 4.5 4.5 3 Min. 2 3.5 4.5 5 4 3 2.8 2.5 2.8 3 3.5 3.5 3.2 3 2.6 Max. 2.5 4 4.5 5 4 2 2.8 2.8 2.8 3.5 3.5 3.5 3.2 2.8 Min. 2 3.5 3.7 3 4 5 5 4 2 3 2.8 2.8 3 3.5 3.8 4.2 4.5 3 2.8 Max. 3 3.5 3.8 4.2 4.5 5 4 2 3.2 8 2.8 3.5 3.2 3.8 3.2 2.8 Min. 2 3.5 3.7 3 3.5 3.2 2.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |         |          |                     |          | length(cm)               | 45     |         |                 | -      |         |         | _      | -        |         |          |          |         |         |     |     |      |      |      |     |
| Stope of stepped spillways $c_2 = 52^{\circ} 14$   Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15    Min. 2 3 4 4.5 5 4 3.5 3 3.5 3.8 4.2 4.5 4.2 4.5 14 3.5    Min. 2 3.5 4.5 5 4 3.5 3.2 2.8 3 3.5 3.5 3.5 3.5 3.5 2.6    Min. 2 3.5 4.5 5 4.5 5 4.5 3.5 3.5 3.8 4.2 4.5 4.2 4.5 3.5 4.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |         |          |                     |          | Flow patt                | No air | r cavit | ies,wea         | ık rec | irculat | ting vc | rtices | ,neithe  | er napt | oc nor   | skimn    | ning fl | OW<br>O |     |     |      |      |      |     |
| Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  Max. 2.5 4 4.5 5 4.5 4 3.5 3.8 4.2 4.5 4.2 4 3  Min. 2 3.5 4.5 5 4.5 5 4 3 2.8 2.5 2.8 3 3.5 3.5 3.2 3 2.8  Min. 2 3.5 4.5 5 4.5 3 4 3.5 3.5 3.8 4.2 4.5 4.2 4 3  Aver.(d <sub>wps</sub> ) 2.25 3.75 4.5 5 4.2 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |         |          |                     |          | Slope of step            | ped sp | illwa   | $rs \alpha_2 =$ | 52°14  |         |         |        |          |         |          |          |         |         |     |     |      |      |      |     |
| Max. 2.5 4 4.5 5 4.5 4 3.5 3.8 3.8 4.2 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |         |          |                     |          | Step nos.                | 1      | 2       | 60              | 4      | 5       | 9       | 7      |          |         |          |          | 13      | 14      | 15  | 16  | 17   | 18   | 19   | 20  |
| Min. 2 3.5 4.5 5 4 3 2.8 2.5 2.8 3 3.5 3.5 3.2 3 2.6  Max. 2.5 4 4.5 5 4.5 3 4 3.5 3.5 3.8 4.2 4.5 4.5 3 5 1.0 3.5 3.5 3.5 3.8 4.2 4.5 3 2.6  Aver.(dwps.) 2.25 3.75 4.5 5 4.2 3.5 3.2 2.8 3.5 3.5 3.5 3.5 2.8  Inception length(cm) 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | _       |          |                     |          | Max.                     | 2.5    | 4       | 4.5             |        |         | _       | 5.     | _        | L       | 匚        | <u> </u> | 4.2     | 4       | 3   | 6   | 3    | 3    | 60   | 3   |
| Max.   2.5   4   4.5   5   4.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5 |   | _       |          |                     |          | Min.                     | 2      |         | 4.5             | 5      | 4       | L       |        | <u> </u> |         | <u> </u> |          | 3.2     | 3       | 2.6 | 2.6 | 2.5  | 2.5  | 2.5  | 2.5 |
| 0.20 Min.       2 3.5 4.5 5 4.5 5 4.25 3.2 2.8 3.15 3.4 3.85 4 3.7 3.5 2.8         Aver.(d <sub>wps</sub> )       2.25 3.75 4.5 5 4.25 3.5 3.2 2.8 3.15 3.4 3.85 4 3.7 3.5 2.8         Inception       40         Flow patt       100% air cavities         Step nos.       1       2 3 4 5 6 7 8 9 10 11 12 13 14 15         Max.       3 2.5 4 4.2 4.4 4.5 4.5 4.5 4.3 3.2 3.8 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _ |         |          |                     |          | Max.                     | 2.5    | 4       | 4.5             |        | 4.5     |         | .5     | ldash    | _       | 匚        |          | 4.2     | 4       | 3   | 3   | 3    | 3    | 3    | 3   |
| tion  th(cm) 40  th 2.25 3.75 4.5 5 4.25 3.2 2.8 3.15 3.4 3.85 4 3.7 3.5 2.8  th(cm) 40  th 2  th 3  th 3  th 4  th 3  th 4  th 3  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  th 4  t |   | 2.95    | 0.008    |                     |          | )4 Min.                  |        |         | 4.5             | 5      | 4       |         |        | 7        |         |          | ᆫ        | 3.2     | 3       | 2.6 | 2.6 | 2.5  | 2.5  | 2.5  | 2.5 |
| h(cm) 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |         |          |                     |          | Aver.(d <sub>wps</sub> ) |        | 3.75    | 4.5             | Ľ      | 25      | ن.      | 7      | _        | 3       | ├        |          | 3.7     | 3.5     | 2.8 | 2.8 | 2.75 | 2.75 | 2.75 | 2.8 |
| hh(cm) 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |         |          |                     |          | Inception                |        |         |                 |        | _       |         |        |          |         |          |          |         |         |     |     |      |      |      |     |
| of stepped spillways α <sub>3</sub> =38°50·         25%to75% vortex         100% recir.vortices           nos.         1         2         3         4         5         6         7         8         9         10         11         12         13         14         15           nos.         1         2         3         4         2         4         4.5         4.5         4         3.5         3.2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |         |          |                     |          | length(cm)               | 40     |         |                 |        |         |         |        |          |         |          |          |         |         |     |     |      |      |      |     |
| nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  1 2.5 2.2 3 3.2 3.4 3.5 3.2 2.8 2.2 2 2 2  2.5 2.2 3 3.2 3.4 3.5 3.2 2.8 2.2 2 2 2  2.5 2.2 3 3.2 3.4 3.5 3.5 3.2 2.8 2.2 2 2 2  2.5 2.2 3 3.2 3.4 3.5 3.5 3.2 2.8 2.2 2 2 2  3.6 4 2 4 4 3 5 3 5 3 2 2 8 2 2 2 2  3.6 4 2 4 4 3 5 3 5 3 2 2 8 2 2 2 2  3.7 3 3 3 3 3 3 3 3  3.8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ |         |          |                     |          | Flow patt                | 100%   | air ca  | vities          |        |         | 5%to75  | % vor  | tex      | 100%    | 6 recir. | vortice  | S       |         |     |     |      |      |      |     |
| nos.       1       2       3       4       5       6       7       8       9       10       11       12       13       14       15         2.3       3.2.5       4       4.2       4.4       4.5       4.5       4       3.2       3.2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |         |          |                     |          | Slope of step            | bed sp |         |                 | 38,20  | _       |         |        |          | !       |          |          |         |         |     | ;   |      |      |      |     |
| 2.5 2.2 3 3.2 3.4 4.5 4.5 4.5 2.8 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |         |          |                     |          | Step nos.                | 1      | 2       | 3               | 4      | 5       | 9       | 7      |          |         | L        | 12       | 13      | 14      | 15  | 16  | 17   | 18   | 19   | 20  |
| 2.5 2.2 3 3.2 3.4 3.5 3.5 2.8 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |         |          |                     |          | Max.                     | 3      |         |                 | 2      | 4.      |         | 5.     | _        |         |          | .3       | 3       | 3       | 3   |     |      |      |      |     |
| 3 2.5 4 4.2 4.4 4.5 4.5 4.5 3.2 3.3 3 3 3 3 3 3 2.5 2.2 2.2 2.2 2.2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |         |          |                     |          | Min.                     | 2.5    |         |                 |        |         |         |        | _        |         |          |          | 2       | 2       | 2   | -   |      |      | -    |     |
| 2.5 2.2 3 3.2 3.4 3.5 3.5 3.2 2.8 2.2 2 2 2 2 2 2 2 3 2.75 2.35 3.5 3.7 3.9 4 4 3.6 3.15 2.7 2.5 2.5 2.5 2.5 2.5 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |         |          |                     |          | Max.                     | 3      |         |                 | L      | 4       |         | 3      |          | L       |          |          | 3       | 3       | 3   |     |      |      |      |     |
| s) 2.75 2.35 3.5 3.7 3.9 4 4 3.6 3.15 2.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ |         |          |                     |          | Min.                     |        | 2.2     | <u> </u>        | 7      |         |         | L      | 7        | 2       |          |          | 2       | 2       | 2   |     |      |      |      |     |
| ) 8   100% recirculating vortices in all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |         |          |                     |          | Aver.(d <sub>wps</sub> ) | _      | 2.35    | 3.              |        | 3.9     | 4       |        | _        | 2       |          | 2        | 2.5     | 2.5     | 2.5 |     |      |      |      |     |
| ) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |         |          |                     |          | Inception                |        |         |                 |        |         | -       |        |          |         |          |          |         |         |     |     |      |      |      |     |
| 100% recirculating vortices in all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |         |          |                     |          | length(cm)               | 8      |         |                 |        |         |         |        |          |         |          |          |         |         |     |     |      |      |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |         |          |                     |          | Flow patt                | 100%   | recirc  | ulating         | vorti  | ces in  |         | sd     |          |         |          |          |         |         |     |     |      |      |      |     |

| JISCH. | widin         | Disch. width Disch. | Slope of stepped spillwa   | bed st      | illwa         | iks a                                    | =34°32'        | <b>.</b> 7 |         |        |                     |         |        |        |         |        |       |       |          |          |        |         |
|--------|---------------|---------------------|----------------------------|-------------|---------------|------------------------------------------|----------------|------------|---------|--------|---------------------|---------|--------|--------|---------|--------|-------|-------|----------|----------|--------|---------|
|        | of            | perunit             | Step nos.                  | 1           | 2             | 3                                        | 4              | 5          | 9       | 7      | 8                   | 6       | 10     | 11     | 12      | 13     | 14    | 15    | 16       | 17       | 18 1   | 9 20    |
|        | (cum) spillw. | length              | Max.                       | . 5         | 5             | 4                                        | 3              | 3          | 2.5     | 2.5    | 2.5                 | 2.5     | 2.5    | 2.5    | 2.5     | 2.5    | 2.5   | 2.5   |          | <u> </u> |        |         |
|        | ways          | <u>(</u> b)         | Min.                       | 3           | 3             | 2.5                                      | 2.5            | 2.5        | 2       | 2      | 2                   | 2       | 2      | 2      | 2       | 2      | 7     | 7     |          |          |        | _       |
|        | (p m)         | cum/m)              | Max.                       | 5           | 5             | 4                                        | 3              | 3          | 2.5     | 2.5    | 2.5                 | 2.5     | 2.5    | 2.5    | 2.5     | 2.5    | 2.5   | 2.5   | _        |          | _      | _       |
|        |               |                     | Min.                       | 3           | 3             | 2.5                                      | 2.5            | 2.5        | 2       | 2      | 2                   | 7       | 7      | 2      | 2       | 7      | 2     | 7     |          | _        | ·<br>  | -       |
|        |               |                     | Aver.(d <sub>wps</sub> )   | 4           | 4             | 3.25                                     | 2.8            | 2.75       | 2.3     | 2.3    | 2.3                 | .25 2.  | 25 2   | .25    | 2.25 2. | .25 2. | 25    | 2.3   |          |          |        |         |
|        |               |                     | Inception                  |             |               |                                          | <br>           |            |         | -      |                     | -       |        |        |         |        |       |       | _        | -        | _      |         |
|        |               |                     | length(cm)                 | 45          |               |                                          |                |            |         |        |                     |         |        |        |         | -      |       |       | _        | _        |        | -       |
| _      | ,             |                     | Flow patt                  | No air cavi | r cavi        | ties, weak recirculating vortices        | ak re          | circul     | ating   | vortic | es                  |         |        |        |         |        | F 1   | -     |          |          |        |         |
| -      |               |                     | Slope of stepped spillwa   | bed st      | illwa         | iys α2                                   | =52°1,         | 4          |         |        |                     |         |        |        |         |        |       |       |          |          |        |         |
| 1      |               |                     | Step nos.                  | 1           | 2             | 6                                        | 4              | 5          | 9       | 7      | 8                   | 6       | 10     | 11     | 12      | 13     | 14    | 15    | 16       | 17       | 18 1   | 19 20   |
|        |               |                     | Max.                       | 2.5         | 33            | 4                                        | 4.5            | 4          | 3.5     | 3      | 3.2                 | 3.4     | 3.5    | 4.2    | 4.5     | 4.2    | 4     | 3.8   | 3.5 3    | 3.5      | 3.5 3. | 3.5 3.5 |
|        |               |                     | Min.                       | 2           | 3.5           | 3.8                                      | 4              | 3.5        | 3       | 2.5    | 2.6                 | 2.8     | 3      | 3.3    | 3.5     | 3.2    | 3     | 2.8 2 | 2.5 2    | 2.5      | 2.5 2. | 2.5 2.5 |
|        |               |                     | Max.                       | 2.5         | 3.5           | 4                                        | 4.5            | 4          | 3.5     | E.     | 3.2                 | 3.4     | 3.5    | 4.2    | 4.5     | 4.2    | 4     | 3.8   | 3.5      | 3.5      | 3.5 3. | 3.5 3.5 |
| 0.01   | 0.2           |                     | 0.05 Min.                  | 7           | 3.5           | 3.8                                      | 4              | 3.5        | 3       | 2.5    | 2.6                 | 2.8     | 3      | 3.3    | 3.5     | 3.2    | 3     | 2.8 2 | 2.5 2    | 2.5      | 2.5 2. | 5 2.5   |
|        |               |                     | Aver.(dwps)                | 2.25        | 3.5           | 3.9                                      | 4.3            | 3.75       | 3.3     | 2.8    | 2,9                 | 3.1 3   | 25     | 3.75   | 4       | 3.7    | 3.5   | 3.3   | 60       | ε        | 3      | 3       |
|        |               |                     | Inception                  |             |               |                                          |                |            |         | -      | _                   |         |        |        |         |        |       |       |          |          |        |         |
|        |               |                     | length(cm)                 | 40          |               |                                          |                |            |         |        |                     | -       |        |        |         |        |       |       | <u> </u> |          |        |         |
|        |               |                     | Flow patt                  | 2001        | 100% air cav. |                                          | 25%to80% vort. | 30% ve     | _       | .00%   | 100% recir.vortices | ortices |        |        |         |        |       |       | -        |          | ٠,     |         |
|        |               |                     | Slope of stepped spillways | bed sp      | illwa         | පි                                       | =38,20         | <u></u>    |         |        |                     |         |        |        |         |        |       |       |          |          |        |         |
|        |               |                     | Step nos.                  | 1           | 7             | 3                                        | 4              | 5          | 9       | 7      | 8                   | 6       | 10     | 11     | 12      | 13     | 14    | 15    | 16       | 17       | 18 1   | 19 20   |
|        |               |                     | Max.                       | 3.5         | 3             | 4                                        | 4.5            | 4.8        | 5       | 4.8    | 4.5                 | 4       | 3.5    | 8      | 6       | 3      | 3     | ω,    |          |          |        | .       |
|        |               |                     | Min.                       | 3           | 2.5           | 3                                        | 3.2            | 3.4        | 3.5     | 3.2    | 3                   | 2.8     | 2.6    | 2.5    | 2.5     | 2.5    | 2.5 2 | 2.5   |          |          |        | -       |
|        |               |                     | Max.                       | 3.5         | 6             | 4                                        | 4.5            | 4.8        | 5       | 4.8    | 4.5                 | 4       | 3.5    | 6      | m       | 3      | 3     | 3     | _        |          | -      |         |
|        |               |                     | Min.                       | 3           | 2.5           | 3                                        | 3.2            | 3.4        | 3.5     | 3.2    | 3                   | 2.8     | 2.6    | 2.5    | 2.5     | 2.5    | 2.5 2 | 2.5   | _        | _        |        | _       |
|        |               |                     | Aver.(d <sub>wps</sub> )   | 3.25        | 2.75          | 3.5                                      | 3.9            | 4.1        | 4.3     | 4      | 3.8                 | 3.4 3   | 3.05 2 | 2.75 2 | 2.75 2  | 2.75 2 | 2.75  | 2.8   |          |          |        |         |
|        |               |                     | Inception                  |             |               |                                          | -              |            |         |        |                     |         |        |        |         |        |       |       |          |          |        | 5       |
|        |               |                     | length(cm)                 | 5           |               |                                          |                |            |         |        |                     |         | _      | J      |         |        |       |       |          |          |        |         |
|        |               |                     | Flow natt                  | 100%        | recir         | 100% recirculating vortices in all stens | O VOT          | i saut     | o III c | tens   |                     |         |        |        |         |        |       | L     |          |          |        |         |

| SN Mano Disch. Width Disch.   Width Disch.   Width Disch.   Slope of stepped spillways q, =34°22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l        |          |          |        |         |            |               |        |       |                     |          |         |        |        |         |     |          |            |    |   |    |    |    |   |    |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|--------|---------|------------|---------------|--------|-------|---------------------|----------|---------|--------|--------|---------|-----|----------|------------|----|---|----|----|----|---|----|--------|
| reading (cum) Sign noss. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 reading (cum) Sign noss. 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (7)      | N Ma     |          | isch.  | Width   | Disch.     | Slope of step | bed sp | illwa | $\alpha_1$          | 34°32    | 2.      |        |        |         |     |          |            |    |   |    |    |    |   |    |        |
| (cm) spillw. (ength Max. 6 6 6 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | me       |          |        |         | perunit    | Step nos.     | 1      | 2     | 3                   | 4        | 5       | 9      | 7      | 8       |     | 1        | $1 \mid 1$ | 1  | 1 | 1  | 16 | 17 |   |    | 8      |
| (ccm) (bm) (dm, m) (dm                                                                                                                                                                                   |          | reac     | _=       | cum)   | spillw. | length     | Max.          | 9      | 9     | 9                   | 5        | 5       | 5      | 4      | 4       | 4   |          |            |    |   |    |    |    |   |    |        |
| (b m) Cum/m) Max. 6 6 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | ×        |          | -      | ways    | <u>(b)</u> | Min.          | 5      | 5     | 4                   | 4        | 4       | 4      | 3      | 3       | 3   |          |            |    |   |    |    |    |   |    |        |
| Min. 55 5.4 4.4 4.4 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |        |         | cum/m)     | Max.          | 9      | 9     | 9                   | S        | S       | 5      | 4      | 4       | 4   |          |            |    |   |    |    |    |   |    |        |
| Flow part   No air cavities, weak recirculating vortices   Single of stepped spillways c <sub>2</sub> = 52°14   Single of stepped spillways c <sub>4</sub> = 50°14   Single of single of stepped spillways c <sub>4</sub> = 50°14   Single of single of stepped spillways c <sub>4</sub> = 50°14   Single of single of stepped spillways c <sub>4</sub> = 30°14   Single of single of stepped spillways c <sub>4</sub> = 30°14   Single of single of stepped spillways c <sub>4</sub> = 30°14   Single of single of stepped spillways c <sub>4</sub> = 30°14   Single of single of stepped spillways c <sub>4</sub> = 30°14   Single of single of stepped spillways c <sub>4</sub> = 30°14   Single of single of stepped spillways c <sub>4</sub> = 30°14   Single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of single of s | <u> </u> | _        | -        |        |         |            | Min.          | S      | 5     | 4                   | 4        | 4       | 4      | 3      | 3       |     |          |            |    |   |    |    |    |   |    |        |
| Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Finception   Fin                                                                                                                                                                                     |          |          | _        |        |         |            | Aver.(dwps)   | 5.5    | 5.5   | 5                   | 4.5      |         | 3.     | .5     |         | 5 3 | 5 3      | 3,         | 3. | 3 | 3  |    |    |   |    |        |
| Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities, weak recirculating vortices     Flow patt   No air cavities     Flow patt                                                                                                                                                                                      |          |          |          |        |         |            | Inception     |        |       |                     |          |         |        |        |         |     |          |            |    |   |    |    |    |   |    |        |
| Elow patt No air cavities, weak recirculating vortices  Slope of stepped spillways $\alpha_1 = 52^{\circ}$ T 4  Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  Max. 3.5 3.5 4.5 5 4.8 4.5 4.6 4.7 4.8 4.9 4.9 4.9 5 4.8 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |          |        |         |            |               | 50     |       |                     |          |         |        |        |         |     |          |            | _  | _ |    |    |    | _ |    |        |
| Slope of stepped spillways $c_2 = 52^{\circ} I4^{\circ}$ Siep nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  Max. 3.5 4.5 4.5 4.8 4.5 4.6 4.7 4.8 4.9 4.9 4.9 5 4.8 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |        |         |            |               | No aii | cavit | ies,we              | ak rec   | ircula  | ting v | ortice | s       |     |          |            |    |   |    |    |    |   |    |        |
| Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  Max. 35 3.5 4.5 5 4.8 4.5 4.6 4.7 4.8 4.9 4.9 4.9 4.9 5 4.8 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |          |          |        |         |            | Slope of step | bed sp | illwa | rs α <sub>2</sub> = | :52°14   |         |        |        |         |     |          |            |    |   | ļ  |    |    |   |    |        |
| Max. 3.5 3.5 4.5 4.8 4.5 4.7 4.8 4.9 4.9 4.9 5 4.8 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          |          |        |         |            | Step nos.     | 1      | 7     | 3                   | 4        | 5       | 9      | 7      | <u></u> |     |          |            |    |   |    |    |    |   | 19 | 20     |
| 6.63 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          |          |        |         |            | Max.          | 3.5    | 3.5   |                     | 5        | 4.8     | 5.     |        | L       | 4 8 | 9 4.     | 4.         |    |   | 7  |    |    |   |    | 4.5    |
| 6.63 0.012 0.06 Min. 3 5.5 4.5 5 4.8 4.5 4.4 4.4 4.45 4.45 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |          |          |        |         |            | Min.          | 3      | 3.5   | 4                   | 4.5      | 4.2     | 4      | 4      | 4       | 4   | <u> </u> |            | 4  |   | ε  |    |    |   |    | 3.5    |
| 6.63 0.012 0.2 Min. 3 3.5 4 4.5 4.2 4.4 4.4 4.4 4.4 4.45 4.45 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |          |        |         |            | Max.          | 3.5    | 3.5   |                     | 5        | 4.8     | ٠.     | 9      | 7.      | ∞.  | .9 4.    | 4          | 6  |   | 4  |    |    |   |    | 4.5    |
| tion  40  tion  40  tion  40  tion  40  40  40  40  40  40  40  40  40  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          | 6.63     | 0.012  | 0.2     |            | Min.          | 3      | 3.5   | 4                   |          |         | 4      | 4      | 4       |     |          |            |    | 3 | G. | 3  |    | 3 |    | 3.5    |
| 1) 40       40       100% air       40%to80% vort.       100% recir.vortices         100% air       40%to80% vort.       100% recir.vortices         1       2       3       4       5       6       7       8       9       10       11       12       13       14       15       16       17       18       19         4       3.5       4       5       5.5       5.8       6       6       5.5       5       4       3.5       3.5       3.5       3.5       3       3       3       4       4       4       4       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |          |          |        |         |            | Aver.(dwps)   | 3.25   | 3.5   | 4.25                | 4.8      |         | 6      | 3      | 4       | 4 4 | 4        | 4          | 4. | 4 |    |    | 4  |   | 4  | 4      |
| 100% air   40%to80% vort.   100% recir.vortices    100% air   40%to80% vort.   100% recir.vortices    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |          |        |         |            | Inception     |        |       |                     |          |         |        |        |         |     |          |            |    |   |    |    | .  |   |    |        |
| 100% air         40%to80% vort.         100% recir.vortices           itepped spillways α <sub>3</sub> =38°50′           1         2         3         4         5         5.5         5.8         6         6         5.5         5         4.5         4         4         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        |          |          |        |         |            | length(cm)    | 40     |       |                     |          |         |        |        | _       | _   |          | _          | _  |   | _  |    |    |   |    |        |
| stepped spillways $\alpha_3 = 38^{\circ}50^{\circ}$ 1 2 3 4 5 5.5 5.8 6 6 5.5 5 4.5 4 3.5 3.5 3.5  4 3.5 4 5 5.5 5.8 6 6 5.5 5 4.5 4 3.5 3.5 3.5  3 3 3 3 4 4 4 4 3.8 3.5 3.2 3 3 3 3 3  3 3 3 4 4 4 4 3.8 3.5 3.2 3 3 3 3 3  3 3 3 4 4 4 4 3.8 3.5 3.2 3.2 3.3 3 3  3 3 3 4 4 4 75 4.9 5 5 4.55 4.25 3.85 3.5 3.2 3.3  100% recirculating vortices in all steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |          |        |         |            | Flow patt     | 100%   |       | 40%to8              | 30% vc   | t.      | 00% 1  | ecir.v | ortice  | S   |          |            |    |   |    |    |    |   |    |        |
| 1 2 3 4 5 5.5 5.8 6 6 5.5 5 4.5 4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |          |        |         |            | Slope of step | bed sp | illwa | రో                  | -38°5(   | . (     |        |        |         |     |          |            |    |   |    |    |    |   |    |        |
| 4       3.5       4       5       5.8       6       6       5.5       5       4.75       4       4       4       4       3.8       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |          |        |         |            | Step nos.     | 1      | 7     | 3                   | 4        | 5       | 9      | 7      | 8       |     | _        | 1          |    | 1 |    |    |    |   |    | 8      |
| 3       3       3       4       4       4       4       3.5       3.5       3.5       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Max.</td> <td>4</td> <td>3.5</td> <td>4</td> <td>2</td> <td></td> <td></td> <td>9</td> <td></td> <td>5.</td> <td></td> <td>į</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |          |        |         |            | Max.          | 4      | 3.5   | 4                   | 2        |         |        | 9      |         | 5.  |          | į          |    |   | 3  |    |    |   |    |        |
| 4       3.5       4       5       5.5       5.8       6       6       5.5       5       4.5       4       4       3.8       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.5       3.3       3.3       3.3       3.5       3.5       3.5       3.25       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.2       3.25       3.25       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.3       3.2       3.2       3.2       3.2       3.2       3.2       3.2       3.2       3.2       3.2       3.2       3.2       3.2       3.2       3.2       3.2       3.2       3.2       3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -        | •        |          |        | •       |            | Min.          | 3      | 3     | 3                   | 3        | 4       | 4      | 4      |         |     | 5.       | 2          | 3  |   |    |    |    |   |    |        |
| 3 3 3 4 4 4 4 3.8 3.5 3.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -        |          |          |        |         |            | Max.          | 4      | 3.5   | 4                   | 5        |         | 5.8    | 9      |         |     |          |            | 3. |   | 3  |    |    |   |    |        |
| (a) 3.5 3.25 3.5 4 4.75 4.9 5 5 4.65 4.25 3.85 3.5 3.25 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |          | _        |        |         |            | Min.          |        | 3     | 3                   | 3        | 4       | 4      | 4      |         |     |          |            | 3  |   |    |    |    |   |    |        |
| ) 5   100% recirculating vortices in all steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>-</u> |          | -        |        |         |            | Aver.(dwps)   |        | 3.25  |                     | $\sqcup$ | ۱ : ۱۰  |        | 5      | 4       | 4   | 3        | 3.         | 3. | 3 |    |    |    |   |    |        |
| ) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          | <u>-</u> | ,      |         |            | Inception     |        |       |                     |          |         |        |        | _       | _   | $\dashv$ | 4          |    |   |    |    |    |   |    |        |
| 100% recirculating vortices in all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |        |         |            | length(cm)    | 5      |       |                     |          |         |        |        |         | _   | _        | 4          | _  |   |    |    |    |   |    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | $\dashv$ | $\dashv$ | $\neg$ | ,       |            | Flow patt     | 100%   | recir | ulatin              | g vort   | ices in | all    | eps    |         |     |          |            |    |   |    |    |    |   |    | $\neg$ |

| 1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18     4.5   4   4   4   3.5   3   3   3   3   3   3   3   3   3     6.5   6   6   6   5   5   5   4   4   4   4   4   4   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 19 20     |         |        |          |        |            |           |           |           |                | 19 20     | 4    | 5 3.5    | 4        | 3.5 3.5  | 75 3.8     |           |           |           |            | 19 20     |          |          |          |          |            |           | -          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|---------|--------|----------|--------|------------|-----------|-----------|-----------|----------------|-----------|------|----------|----------|----------|------------|-----------|-----------|-----------|------------|-----------|----------|----------|----------|----------|------------|-----------|------------|
| Disch. Width Disch. Slope of stepped spillways c <sub>1</sub> =34°22.  (Cum) spillw, length Max. 6.5 6 6 6 5 5 5 7 4 4 4 3.5 4 4 4 4 4 4 4 3.5 4 4 4 4 4 4 3.5 4 4 4 4 4 3.5 4 4 4 4 4 3.5 4 4 4 4 4 3.5 4 4 4 4 4 3.5 4 4 4 4 4 4 3.5 4 4 4 4 4 4 3.5 4 4 4 4 4 4 3.5 4 4 4 4 4 4 4 3.5 4 4 4 4 4 4 4 3.5 4 4 4 4 4 4 4 4 3.5 4 4 4 4 4 4 3.5 4 4 4 4 4 4 4 4 3.5 4 4 4 4 4 4 3.5 4 4 4 4 4 4 3.5 4 4 4 4 4 4 3.5 4 4 4 4 4 4 4 3.5 4 4 4 4 4 4 3.5 4 4 4 4 4 4 4 4 3.5 4 4 4 4 4 4 4 4 3.5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | L         | ╁       |        |          | _      |            |           |           |           |                | <u> </u>  | 4    | 2        | 4        |          |            | <br>      |           |           |            |           |          |          |          |          |            |           |            |
| Disch. Width Disch. Slope of stepped spillways c <sub>1</sub> =34 5.5 6 7 8 9 10 11 12 13 14 15 16 16 (20) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 (20m) spillw length Max. 6.5 6 6 6 5 5 5 4 4 4 3.5 4 4 4 4 3.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 17        | -       | _      | _        | -      |            |           |           | -         |                | 17        | 4    | 2        | 4        |          |            |           |           |           |            | 17        |          |          | _        |          |            |           |            |
| Disch. Width Disch.    Step nos.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 16        | -       | _      | -        | -      | -          | -         |           |           |                | 16        | 4    | 3.5      | 4        | 3.5      |            |           |           |           |            | 16        |          | _        | -        |          |            |           |            |
| Disch. Width Disch.  (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 4 4 8 5 6 7 8 9 10 11 12 13 13 8 8 9 10 10 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 15        | 4       | 3      | 4        | E.     | 3.5        | _         |           |           |                | 15        | 4    |          | 4        | 3.5      |            |           | _         |           |            | 15        | 3.5      | 3.5      | 3.5      | 3.5      | 3.5        |           | _          |
| Disch. Width Disch.  (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12  ways (q) Min. 4.5 4 4 4 3.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 14        | 4       | 3      | 4        | 3      |            |           |           |           |                | 14        | 5    | 4        | 5        | 4        |            |           |           |           | }          | 14        | 3.5      | 3.5      | 3.5      | 3.5      |            |           |            |
| Disch. Width Disch.  (Q) of perunit Step nos.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 13        | 4       | 3      | 4        | 3      | 3.5        |           |           |           |                | 13        | 5.5  | 4.5      | 5.5      | 4.5      | 5          |           |           |           |            | 13        | 3.5      | 3.5      | 3.5      | 3.5      | 3.5        |           |            |
| Disch. Width Disch.   Slope of stepped spillways c <sub>1</sub> = 34°32.     (cum) spillw. length   Max.   6.5   6   6   5   5   5   4   4   4   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 12        |         | L      |          |        | 3          |           |           |           |                | 12        | 5.3  | 4.5      | 5.3      |          |            |           |           |           |            | 12        | 3.5      | l        | 3.5      | 3.5      |            |           |            |
| Disch. Width Disch.  (Q) of perunit Step nos.  (b m) spillw. length  (b m) cum/m) Max.  (b m) cum/m) Max.  (b m) cum/m) Max.  (b m) cum/m) Max.  (cum) spillw.  (b m) cum/m) Max.  (b m) cum/m) Max.  (cum) spillw.  (b m) cum/m) Max.  (b m) cum/m) Max.  (cum) spillw.  (d m) cum/m) Max.  (d m) cum/m) Cum/m) Cum/min.  (d m) cum/m) Cum/min.  (d m) cu                                                                                                                                                     | <  ·       | L         | 3       |        | 3        |        | 3          |           |           |           |                | L         |      | 4        |          |          | <u> </u>   |           |           |           | -          | 1         | <u> </u> | 33       | L        | 3.       | <u> </u>   |           |            |
| Disch. Width Disch.  (Q) of perunit. Step nos.  (Cum) spillw. length ways.  (Q) m cum/m) Max.  (D) of perunit.  (D) of microption.  (D) min.  (D) cum/m) Max.  (D) cum/m) Solope of stepped spillways $\alpha_2 = 52^{\circ} 74$ (D) cum/m) Solope of stepped spillways $\alpha_2 = 52^{\circ} 74$ (D) cum/m) Solope of stepped spillways $\alpha_2 = 52^{\circ} 74$ (D) cum/m) Solope of stepped spillways $\alpha_2 = 52^{\circ} 74$ (D) cum/m) Solope of stepped spillways $\alpha_3 = 52^{\circ} 74$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m) Solope of stepped spillways $\alpha_4 = 5$ (D) cum/m |            | L         |         |        |          |        | 3          |           |           |           |                |           |      |          | <u> </u> | _        | _          |           |           |           |            |           | _        |          | 4.       | ω.       | -          | _         |            |
| Disch. Width Disch.   Slope of stepped spillways $\alpha_1 = 34^{\circ}32$   Ceum) spillw length   Max.   6.5   6   6   6   5   5   5   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | L         |         |        |          |        | 3          |           |           |           |                |           |      |          | 4        |          | 4.         |           |           |           |            |           |          |          |          |          | 4          |           | _          |
| Disch. Width Disch.   Step nos.   1   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |         |        |          |        | 3          |           |           | tices     |                | <u> </u>  |      | Ŀ        | 4        | <u> </u> |            |           |           | tices     |            |           |          | <u> </u> |          | 4        |            | _         |            |
| Disch. Width Disch.   Step nos.   1   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |         |        |          |        |            |           |           | iov gr    |                |           |      | 3        |          | _        | -          |           | _         | ir.vor    |            |           | L        |          | <u> </u> | <u> </u> |            | _         |            |
| Disch. Width Disch.   Step nos.   1   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 5         | 5       |        | 5        | ر<br>ا | 25         |           |           | culati    |                | 5         | 3.4  | 4        | ω        | 4        | _          |           |           | % rec     |            | 5         | L        | <u> </u> |          |          | Λ.         | _         | L          |
| Disch. Width Disch.   Step nos.   1   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4°321      | 4         | 9       |        | 9        |        |            |           |           | k recir   | 2,14           | 4         |      | 5.       | L        | 3.       | 4          |           | _         |           |            | 4         | ∞.       | ∞.       | ∞.       | ∞.       |            | _         | -          |
| Disch. Width Disch.   Step nos.   1   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8          | <u> </u>  | 9       | 4      | 9        | 4      | 5          |           | -         | s,weal    | $\alpha_2 = 5$ | 3         | 1    | 5.       |          | 5        |            |           | _         | % vort    | రో         | 3         | 5        | 5        | <u> </u> | S.       | <u> </u>   | _         | <u> </u>   |
| Disch. Width Disch.  (Q) of perunit length ways (q)  (b m) cum/m)  3 0.014 0.2 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wavs       | 2         | 9       | 4      | 9        | 4      | رح<br>آ    |           |           |           |                | -2        | 3.5  | <u> </u> | 3.5      | <u> </u> |            | _         | -         |           | S          | }         |          |          |          | <u> </u> | 25         | _         | -          |
| Disch. Width Disch.  (Q) of perunit length ways (q)  (b m) cum/m)  3 0.014 0.2 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spill      | 1         | 5.5     | 4.5    | 5.5      | 4.5    | 5.5        | -         | 50        | o air c   | l spill        | -         | 1    | m        |          | 6        |            | -         | 30        | 0% a      | l spill    | 1         |          | m        | <u> </u> | (m)      | -          |           |            |
| Disch. Width Disch.  (Q) of perunit length ways (q)  (b m) cum/m)  3 0.014 0.2 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tenne      |           | ľ       | Ľ      | <u> </u> |        |            |           |           |           | teppe          | -         | · ·  | ├        |          |          |            |           |           |           | teppe      | -         |          |          |          | <br>     |            |           |            |
| Disch. Width Disch.  (Q) of perunit length ways (q)  (b m) cum/m)  3 0.014 0.2 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Slope of s | Step nos. | Max.    | Min.   | Max.     | Min.   | Aver.(dwps | Inception | length(cm | Flow patt | Slope of s     | Step nos. | Max. | Min.     | Max.     | Min.     | Aver.(dwps | Inception | length(cm | Flow patt | Slope of s | Step nos. | Max.     | Min.     | Max.     | Min.     | Aver.(dwps | Inception | Jeneth/cm) |
| Disch. Width (Q) of (Cum) spillw. ways (b m) 3 0.014 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Disch.     | perunit   | length  | (b)    | cum/m)   |        |            |           | ٠         |           |                |           |      |          |          | 0.07     | -          | -         |           |           |            |           |          |          |          |          |            |           |            |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Width      | Jo        | spillw. | ways   |          |        |            |           |           | _         | -              |           | -    | -        |          | 0.2      |            |           | ,         |           |            |           |          |          |          |          |            | -         |            |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Disch      | 9         | _       |        |          |        |            |           |           |           |                |           |      |          |          | 0.014    |            |           |           | •         |            |           |          |          |          |          |            |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           | eading  | (x cm) |          | :      |            |           |           |           |                |           |      | •        |          | 9.03     |            |           |           |           |            |           |          |          |          |          |            | •         |            |

| $\mathbb{Z}$ | SN Mano | Disch        | Disch. Width Disch. | Disch      | Г              | Slope of stepped spil    | ped sp   | illways | ฮ                                      | =34°32  |          |                     |        |         |        |       |      |      |      |     |     |     |     |     | Γ        |
|--------------|---------|--------------|---------------------|------------|----------------|--------------------------|----------|---------|----------------------------------------|---------|----------|---------------------|--------|---------|--------|-------|------|------|------|-----|-----|-----|-----|-----|----------|
|              | metre   | <u>0</u>     | of                  | perunit    |                | Step nos.                |          | 2       | 3                                      | 4       | 5        | 9                   | 7      | 8       | 9 10   | 0 11  | 12   | 13   | 14   | 15  | 16  | 17  | 18  | 19  | 20       |
|              | reading |              | (cum) spillw.       | length     |                | Max.                     | 8        | 7       | 7                                      | 9       | 9        | 5                   | 5      | 5 4.5   | 5 4.5  | 5 4.5 | 4.5  | 4.5  | 4.5  | 4.5 |     |     |     |     |          |
|              | (x cm)  |              | ways                | <u>(b)</u> | 2              | Min.                     | 9        | 9       | 5                                      | 5       | 5        | 4                   | 4      | 4 3.8   | 8 3.5  | 5 3.5 | 3.5  | 3.5  | 3.5  | 3.5 |     |     |     |     |          |
|              |         |              | (p m)               | cum/m)     |                | Max.                     | ∞        | 7       | 7                                      | 9       | 9        | 5                   | 5      | 5 4.5   | 5 4.5  | 5 4.5 | 4.5  | 4.5  | 4.5  | 4.5 |     |     |     |     |          |
|              |         |              |                     |            | 2              | Min.                     | 9        | 9       | 5                                      | 5       | 5        | 4                   | 4      | 4 3.8   | 3.5    | 3.5   | 3.5  | 3.5  | 3.5  | 3.5 |     |     |     |     |          |
|              |         |              |                     |            | <b>∀</b>       | Aver.(d <sub>wps</sub> ) | 7        | 6.5     | 9                                      | 5.5     | 2.5      | 4.5 4               | 4.5 4  | .5 4.15 |        | 4     | 4    | 4    | 4    | 4   |     |     |     |     |          |
|              |         |              |                     |            | 1              | Inception                |          |         |                                        |         |          | `                   |        |         |        |       |      |      |      |     |     |     |     |     |          |
|              |         |              |                     |            | <u>위</u>       | length(cm)               | 20       |         |                                        | _       |          |                     | _      |         |        |       |      |      |      |     |     |     | -   | -   |          |
|              |         |              |                     |            | H              |                          | No air c |         | avities, strong recirculating vortices | ng re   | sircul   | ating v             | ortice | Š.      |        |       |      |      |      |     |     |     |     |     | Γ        |
|              |         |              |                     |            | N N            | Slope of stepped spill   | bed sp   |         | ways α <sub>2</sub> =                  | =52°14  | <u>.</u> |                     |        | ļ.<br>  |        |       |      |      |      |     |     |     |     |     | <u> </u> |
|              |         |              |                     |            | S              | Step nos.                | 1        | 2       | 3                                      | 4       | 5        | 9                   | 7      | 8       | 9 10   | 11    | 12   | 13   | 14   | 15  | 16  | 17  | 18  | 19  | 20       |
|              |         |              |                     | _          | [2]            | Max.                     | 4        | 4.5     | 5.5                                    | 5       | 4.5      | 4.5 4               | 4.5 4  | 4.8     | 5 5.3  | 3 5.3 | 5.4  | 5.5  | 5.3  | 5   | 5   | 5   | 5   | S   | 5        |
|              |         |              |                     |            | Z              | Min.                     | 3.5      | 4.5     | 5                                      | 4.5     | 4.5      | 4 3                 | 3.5 3  | 3.6 3.8 | 8      | 4.3   | 4.3  | 4.5  | 4.3  | 4   | 4   | 4   | 4   | 4   | 4        |
|              |         |              |                     |            | Z              | Max.                     | 7        | 4.5     | 5.5                                    | 5       | 4.5      | 4.5 4               | 4.5 4  | 4.8     | 5.3    | 3 5.3 | 5.4  | 5.5  | 5.3  | S   | S   | S   | S   | 5   | 5        |
| 9            |         | 11.8   0.016 | 0.2                 |            | 0.08 Min.      | din.                     | 3.5      | 4.5     | 2                                      | 4.5     | 4.5      | 4 3                 | 3.     | 3.6 3.8 |        | 4 4.3 | 4.3  | 4.5  | 4.3  | 4   | 4   | 4   | 4   | 4   | 4        |
|              |         |              |                     |            | \ <del>V</del> | Aver.(d <sub>wps</sub> ) | 3.75     | 4.5     | 5.25                                   | 4.8     | 4.5      | 4.3                 | 4      | 4.2 4.4 | 4 4.65 | 4.8   | 4.85 | 5    | 4.8  | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5      |
|              | _       |              |                     |            | <u>.</u>       | Inception                |          |         |                                        |         |          |                     |        |         |        |       |      |      |      |     |     |     |     |     |          |
|              |         |              |                     |            | le             | length(cm)               | 30       |         |                                        |         |          |                     |        | _       |        |       |      |      |      |     |     |     |     |     |          |
|              |         |              |                     |            | 国              | Flow patt                | 90% air  |         | 20%vortex                              |         | 10% re   | 100% recir.vortices | tices  |         |        |       |      |      |      |     |     |     |     |     |          |
|              |         |              |                     |            | S              | Slope of stepped spill   | ds pac   |         | ways $\alpha_3 =$                      | =38,20, | _        |                     |        |         |        | :     | ;    |      |      |     |     |     |     |     |          |
|              |         |              |                     |            | S              | Step nos.                | 1        | 2       | 3                                      | 4       | 5        | 9                   | 7      | 8       | 9 10   | 11    | 12   | 13   | 14   | 15  | 16  | 17  | 18  | 19  | 20       |
|              |         |              |                     |            | Σ              | Мах.                     | 5        | 4.5     | 4.5                                    | 5       | 5.3      | 5.5 5               | 8.9    | 9       | 6 5.5  | 5.5   | 5.5  | 4.8  | 4.5  | 4.5 |     |     |     |     |          |
|              |         |              |                     |            | Σ              | Min.                     | 4        | 3.5     | 4                                      | 4       | 4.2.     | 4.5 4               | 4.5 4. | 4.5 4.5 | 5 4.2  | 4     | 3.5  | 3.5  | 3.5  | 3.5 |     |     |     |     | Γ        |
|              |         |              |                     |            | Σ              | Max.                     | 6.5      | 5.5     | 5                                      | 9       | 6.5      | 7.7                 | 7 7    | 7.5     | 8      | 8     | 7    | 7.5  | 7.5  | 7.5 | _   |     |     |     | Г        |
|              |         |              |                     |            | Σ              | Min.                     | 4.5      | 4       | 4                                      | 4.5     | 5        | 5.5 5               | 5.5    | 6 6.5   | 5 6.5  | 6.5   | 9    | 5.5  | 5.5  | 5.5 |     |     |     |     |          |
|              |         |              |                     |            | <b>∀</b>       | Aver.(d <sub>wps</sub> ) | 5        | 4.38    | 4.38                                   | 4.9 5   | .25      |                     | 5.7    | 6 6.25  | 5 6.05 | 9     | 5.5  | 5.33 | 5.25 | 5.3 |     |     |     |     |          |
|              |         |              |                     |            | ī              | Inception                |          |         |                                        |         |          |                     |        |         |        |       |      |      |      |     |     |     |     |     |          |
|              |         |              |                     |            | <u>의</u>       | length(cm)               |          |         |                                        |         | Н        |                     |        |         |        |       |      |      |      |     |     |     |     |     |          |
| 1            |         |              |                     |            | H              | Flow patt                | 100% re  |         | circulating vortices in all steps      | yvorti  | ces in   | all ste             | sda    |         |        |       |      |      |      |     |     |     |     |     |          |
| ì            |         |              |                     |            |                |                          |          |         |                                        |         |          |                     |        |         |        |       |      |      |      |     |     |     |     |     | 1        |

|           | Γ                                     |                                                                             | · ·                                                                         | _                                                                           |                                                                             | Γ                                                                           | <u> </u>                                                                    | <u> </u>                                                                    | 22                                                                          | 5                                                                         | 4.5                                                                       | S                                                                         | 4.5                                                                       | 8.                                                                         |                                                                                      |                                                                           |                                                                           |                                                                              | 2                                                                         |                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Γ                                                                        | T                                                                         |
|-----------|---------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|
|           | -                                     | <del></del>                                                                 | -                                                                           | -                                                                           | $\vdash$                                                                    | $\vdash$                                                                    | 1                                                                           |                                                                             | 19                                                                          | 5                                                                         | نح                                                                        | 5                                                                         | <u> </u>                                                                  |                                                                            | -                                                                                    | _                                                                         |                                                                           | ]                                                                            | 19                                                                        |                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\vdash$                                                                  |                                                                           | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                        | $\frac{1}{2}$                                                             |
|           | <u> </u>                              | -                                                                           | <u>                                     </u>                                |                                                                             | _                                                                           | $\vdash$                                                                    |                                                                             |                                                                             | 18                                                                          | 5                                                                         |                                                                           | 5                                                                         |                                                                           |                                                                            |                                                                                      |                                                                           |                                                                           |                                                                              | 18                                                                        | <u> </u>                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                         |                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                        | 1                                                                         |
|           |                                       |                                                                             |                                                                             |                                                                             | _                                                                           | _                                                                           |                                                                             |                                                                             | 17                                                                          | 5                                                                         |                                                                           | 5                                                                         |                                                                           |                                                                            |                                                                                      |                                                                           |                                                                           |                                                                              | 17                                                                        |                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                         | $\vdash$                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vdash$                                                                 | _                                                                         |
|           |                                       |                                                                             |                                                                             | -                                                                           | _                                                                           |                                                                             |                                                                             |                                                                             | 16                                                                          | 5                                                                         |                                                                           | 5                                                                         |                                                                           | 1                                                                          |                                                                                      |                                                                           |                                                                           |                                                                              | 16                                                                        | -                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                        | 1                                                                         |
| 4.5       | 3.5                                   | 4.5                                                                         | 3.5                                                                         | 4                                                                           | $\vdash$                                                                    | -                                                                           | _                                                                           |                                                                             | 15                                                                          | 9                                                                         | 5,                                                                        | 9                                                                         | 3                                                                         | ن.                                                                         | -                                                                                    | _                                                                         |                                                                           |                                                                              | 15                                                                        | 4.5                                                                          | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                                                       | 3.2                                                                       | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vdash$                                                                 | 1                                                                         |
|           | 3.5                                   | 4.5                                                                         | 3.5                                                                         | 4                                                                           | -                                                                           |                                                                             |                                                                             |                                                                             | 14                                                                          | 5.2                                                                       | 5                                                                         | 5.2                                                                       | 5                                                                         | 1                                                                          | _                                                                                    |                                                                           |                                                                           |                                                                              | 14                                                                        |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                         | 7                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                        | 1                                                                         |
|           | 3.5                                   | 4.5                                                                         | 3.5                                                                         | 4                                                                           |                                                                             | -                                                                           |                                                                             |                                                                             | 13                                                                          | <u> </u>                                                                  | 4.5                                                                       |                                                                           | 4.5                                                                       | 6.                                                                         |                                                                                      | -                                                                         |                                                                           |                                                                              | 13                                                                        | <u> </u>                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                        | ,                                                                         |
|           |                                       | L                                                                           |                                                                             | 4                                                                           |                                                                             | _                                                                           |                                                                             |                                                                             | 12                                                                          | 5                                                                         | 3.                                                                        | 5                                                                         |                                                                           |                                                                            |                                                                                      |                                                                           |                                                                           |                                                                              | 12                                                                        |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |                                                                           |
|           |                                       | L                                                                           |                                                                             | 4                                                                           | _                                                                           |                                                                             |                                                                             |                                                                             | 11                                                                          | 5                                                                         | ω,                                                                        | 5                                                                         |                                                                           |                                                                            |                                                                                      | _                                                                         |                                                                           |                                                                              | 11                                                                        | 5                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                        |                                                                           |
|           |                                       |                                                                             | _                                                                           | 4                                                                           |                                                                             |                                                                             |                                                                             |                                                                             | 10                                                                          | 8.4                                                                       | _                                                                         | 4.8                                                                       | <u> </u>                                                                  | 5                                                                          |                                                                                      |                                                                           |                                                                           |                                                                              | 10                                                                        | 5.5                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.5                                                                       | <u> </u>                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                        |                                                                           |
| .5        |                                       | 7,                                                                          | ن.                                                                          | 4                                                                           |                                                                             |                                                                             |                                                                             |                                                                             | 6                                                                           | 15.                                                                       | 4                                                                         | 5.                                                                        | 4                                                                         | 25                                                                         |                                                                                      |                                                                           |                                                                           |                                                                              | 6                                                                         | 9                                                                            | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                 |                                                                           |
| _         |                                       |                                                                             |                                                                             | 4                                                                           |                                                                             | _                                                                           | es                                                                          |                                                                             | 8                                                                           |                                                                           | 4                                                                         | <u> </u>                                                                  | 4                                                                         | 3 4.                                                                       |                                                                                      | _                                                                         |                                                                           |                                                                              | $\infty$                                                                  | <u>∞</u>                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.9                                                                       |                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                        |                                                                           |
|           |                                       | ·                                                                           |                                                                             | 4                                                                           | _                                                                           |                                                                             | vortic                                                                      |                                                                             | 7                                                                           | <u> </u>                                                                  | 4                                                                         |                                                                           | 4                                                                         | 3                                                                          |                                                                                      |                                                                           |                                                                           |                                                                              | 7                                                                         | 5.                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                        |                                                                           |
| 4.5       | 3.5                                   | 4.5                                                                         | 3.5                                                                         | 4                                                                           |                                                                             |                                                                             | ating                                                                       |                                                                             | 9                                                                           |                                                                           | 4                                                                         |                                                                           | 4                                                                         |                                                                            |                                                                                      |                                                                           |                                                                           |                                                                              | 9                                                                         | ٠Ċ.                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                         | 4                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\vdash$                                                                 |                                                                           |
| 4.5       | 3.5                                   | 4.5                                                                         | 3.5                                                                         | 4                                                                           |                                                                             |                                                                             | circul                                                                      |                                                                             | 5                                                                           | 4.8                                                                       | 4                                                                         | 4.8                                                                       | 4                                                                         | 4.4                                                                        |                                                                                      |                                                                           | rtices                                                                    |                                                                              | 5                                                                         | 5.2                                                                          | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.2                                                                       | 3.9                                                                       | .55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |                                                                           |
| 7         | 5.5                                   | 7                                                                           | 5.5                                                                         | 6.3                                                                         |                                                                             | _                                                                           | ng re                                                                       | 52°14                                                                       | 4                                                                           | 5                                                                         | 4                                                                         | 5                                                                         | 4                                                                         | 4.5                                                                        |                                                                                      | -                                                                         | cir.vo                                                                    | 38,20                                                                        | 4                                                                         | 5                                                                            | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                         | 3.8                                                                       | 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vdash$                                                                 | 1                                                                         |
| 7         |                                       | 7                                                                           |                                                                             |                                                                             |                                                                             |                                                                             | s,stro                                                                      | $\alpha_2 =$                                                                | 3                                                                           | 4.5                                                                       | 4                                                                         | 4.5                                                                       | 4                                                                         |                                                                            |                                                                                      |                                                                           | )0% re                                                                    | α3<br>11                                                                     | 3                                                                         | 4.5                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                        |                                                                           |
| 6         | 7                                     | 6                                                                           | 7                                                                           | 9 8                                                                         |                                                                             |                                                                             | zavitie                                                                     | ways                                                                        | 7                                                                           | <u> </u>                                                                  | 4.5                                                                       |                                                                           | 4.5                                                                       |                                                                            |                                                                                      |                                                                           | 1(                                                                        | lways                                                                        | 2                                                                         |                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                        |                                                                           |
| 6         | 7                                     | 6                                                                           | 7                                                                           | 8                                                                           | _                                                                           | 20                                                                          | Vo air                                                                      | ed spil                                                                     | 1                                                                           | 3.5                                                                       | 3.5                                                                       |                                                                           |                                                                           |                                                                            |                                                                                      | 30                                                                        | 0% air                                                                    | ed spil                                                                      | 1                                                                         | 5                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                         | 4                                                                         | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | 1                                                                         |
| Мах.      | Min.                                  | Max.                                                                        | Min.                                                                        | Aver.(d <sub>wps</sub> )                                                    | Inception                                                                   | length(cm)                                                                  | Flow patt                                                                   | Slope of stepp                                                              | Step nos.                                                                   | Max.                                                                      | Min.                                                                      | Max.                                                                      | Min.                                                                      | Aver.(d <sub>wps</sub> )                                                   | Inception                                                                            | length(cm)                                                                | Flow patt 8                                                               | Slope of stepp                                                               | Step nos.                                                                 | Max.                                                                         | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max.                                                                      | Min.                                                                      | Aver.(d <sub>wps</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inception                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | length(cm)                                                               | 1                                                                         |
| length    | (b)                                   | cum/m)                                                                      |                                                                             |                                                                             |                                                                             |                                                                             |                                                                             |                                                                             |                                                                             |                                                                           |                                                                           |                                                                           | 0.00                                                                      |                                                                            |                                                                                      |                                                                           | -                                                                         |                                                                              |                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |                                                                           |
| spillw.   |                                       |                                                                             |                                                                             |                                                                             | _                                                                           |                                                                             |                                                                             | _                                                                           | _                                                                           |                                                                           |                                                                           |                                                                           | 0.7                                                                       |                                                                            |                                                                                      |                                                                           |                                                                           |                                                                              |                                                                           | -                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                           | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | -                                                                         |
| (cum)     |                                       |                                                                             |                                                                             |                                                                             |                                                                             |                                                                             |                                                                             |                                                                             |                                                                             |                                                                           |                                                                           |                                                                           | 0.018                                                                     |                                                                            |                                                                                      |                                                                           |                                                                           |                                                                              |                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | -                                                                         |
| reading ( | (x cm)                                |                                                                             |                                                                             |                                                                             |                                                                             |                                                                             |                                                                             | 1                                                                           | •                                                                           |                                                                           |                                                                           |                                                                           | 14.92                                                                     |                                                                            |                                                                                      | -                                                                         |                                                                           | -                                                                            |                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | _                                                                         |
|           | (cum) spillw. length Max. 9 9 7 7 4.5 | (cum) spillw. length Max. 9 9 7 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (bm) spillw. length Max. 9 9 7 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (bm) spillw length (bm) (hmx, equ) 9 9 7 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) Spillw. length Max. 9 9 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spilltw. length Max. 9 9 7 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length Max. 9 9 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillor, length Max. 9 9 7 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw. length (bm) ways (q)         Min.         7         7         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5 <th< td=""><td>(cum) spillw. length Max. 9 9 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5</td><td>(cum) spillw length Max. 9 9 7 7 4 55 55 35 35 35 35 35 35 35 35 35 35 35</td><td>(cum) spillw. reigth Max.   9   9   7   7   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5</td><td>(cum) spillw. [ength Max.   9   9   7   7   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5</td><td>(cum) spillw length Max. 9 9 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5</td><td>(cum) spillw, length Max. 6 9 7 7 4 45 45 45 45 45 45 45 45 45 45 45 45 4</td></th<> | (cum) spillw. length Max. 9 9 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw length Max. 9 9 7 7 4 55 55 35 35 35 35 35 35 35 35 35 35 35 | (cum) spillw. reigth Max.   9   9   7   7   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5 | (cum) spillw. [ength Max.   9   9   7   7   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5 | (cum) spillw length Max. 9 9 7 7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | (cum) spillw, length Max. 6 9 7 7 4 45 45 45 45 45 45 45 45 45 45 45 45 4 |

|                         | 20        |                      |          |          |      |             |           | $\neg$     |                         |                | 20        | 9    | 5    | 9    | 2        | 5.5                      |              | _          |                     |                         | 20        |      |      |      |      |                          |           | $\neg$     | $\neg$                         |
|-------------------------|-----------|----------------------|----------|----------|------|-------------|-----------|------------|-------------------------|----------------|-----------|------|------|------|----------|--------------------------|--------------|------------|---------------------|-------------------------|-----------|------|------|------|------|--------------------------|-----------|------------|--------------------------------|
|                         | 6]        |                      |          |          | _    | $\dashv$    | ·         | $\dashv$   |                         |                | 61        | 9    | 2    | 9    |          | 5.                       | $\dashv$     | $\dashv$   |                     |                         | 6]        |      |      |      | _    | $\dashv$                 |           | -          |                                |
|                         | ~         | _                    |          |          |      |             | _         |            |                         |                | 3 1       | 9    | 2    | 9    |          | 5 5                      | $\dashv$     |            |                     |                         | 8         |      |      |      |      |                          | _         | _          |                                |
|                         | 18        |                      |          | -        |      |             | 1         |            |                         |                | 18        |      | "    |      | 4,       | 5.5                      |              |            |                     |                         | <u>~~</u> |      |      | !    |      |                          |           | - 1        |                                |
|                         | 17        |                      |          |          |      |             |           |            |                         |                | 17        | 9    | 5    | 9    | 5        | 5.5                      |              |            |                     |                         | 17        |      |      |      |      |                          |           |            |                                |
|                         | 16        |                      |          |          | ,    | $\neg$      |           |            |                         |                | 16        | 9    | 5    | 9    | 5        | 5.5                      | $\neg$       |            |                     |                         | 16        |      |      |      |      |                          | _         | $\dashv$   |                                |
|                         | 5         | 5                    | 4        | 5        | 4    | .5          | $\vdash$  |            |                         |                | 5         | 9    | 5    | 6    | 5        | 5.5                      | _            |            |                     |                         | 15        | 5    | 4    | 5    | 4    | 4.5                      | -         |            |                                |
|                         | 4 1       | 5                    | 4        | 5        | 4    | 5 4         | Н         |            |                         |                | 14        | 9    | 5    | 9    | 5        | 5 5                      |              |            |                     |                         | 4 1       | 5    | 4    | 5    |      | 5 4                      |           | [          | -                              |
|                         | 1         |                      |          |          |      | 4.          |           |            |                         |                | L         |      |      |      |          | 5                        |              |            |                     |                         | 1         |      |      |      |      | 4                        |           |            |                                |
|                         | 13        | 5                    | 4        | 5        | 4    | 4.5         |           |            |                         |                | 13        | 5.5  | 5    | 5.5  | 5        | 5.25                     |              |            |                     |                         | 13        | 5.3  | 4    | 5.3  | 4    | 4.65                     | 1         |            |                                |
|                         | 12        | 5                    | 4        | 5        | 4    | 4.5         |           |            |                         |                | 12        | 5.3  | 5    | 5.3  | 5        | 5.15                     |              |            |                     |                         | 12        | 5.5  | 4.5  | 5.5  | 4.5  | 5                        |           |            |                                |
|                         | 11        | 5                    | 4        | 5        | 4    | 4.5         |           |            |                         |                | 11        | 5    | 4.5  | 5    | 4.5      | 4.75                     |              |            |                     |                         | 11        | 9    | 5    | 9    | iS.  | 5.5                      |           | _          |                                |
|                         | 10        | 5                    | 4        | 5        | 4    | .5          | _         |            | •                       |                | 10        | 5    | ئ.   | 5    | 7.       |                          |              |            |                     |                         | 10        | .S.  | 5    | 5.   | S    |                          |           | _          |                                |
|                         | 9         | 5                    | 4        | 5        | 4    | 5 4         |           |            |                         |                | 6         | 6    | 5 4  | 6    | 4        | 7 4.75                   |              |            |                     |                         | 6         | 9 /  |      | 7    | 5    | 6 5.75                   |           |            | l                              |
|                         |           |                      |          |          | _    | 4           |           |            |                         |                |           | 4.9  | 4.5  | 4.9  | 4.5      | 4.                       |              |            |                     |                         | Ĺ         |      |      | Ĺ    |      |                          |           |            |                                |
|                         | 8         | 5                    | 4        | 5        | 4    | 4.5         |           |            | ices                    |                | 8         | 4.7  | 4.5  | 4.7  | 4.5      | 4.6                      |              |            |                     |                         | ∞         | 6.8  | 5    | 6.8  | 5    | 5.9                      |           |            |                                |
|                         | 7         | 9                    | 5        | 9        | 5    | 5.5         |           |            | vortices                |                | 7         | 4.5  | 4.5  | 4.5  | 4.5      | 4.5                      |              |            |                     |                         | 7         | 6.3  | 'n   | 6.3  | 3    | 5.7                      |           |            | steps                          |
|                         | 9         | 9                    | 5        | 9        | 5    | 5.5         |           |            | recirculating           |                | 9         | 4.8  | 4.5  | 4.8  | 4.5      | 4.7                      |              |            |                     |                         | 9         | 9    | 5    | 9    | 2    | 5.5                      |           |            | all                            |
| _                       | 5         | 9                    | 5        | 9        | 2    | 5.5         |           |            | circul                  | _              | 5         | 5    | 4.5  | 5    | 4.5      | 4.75                     |              |            | rtices              | _                       | 5         | 5.5  | 4.5  | 5.5  | 4.5  | 5                        |           |            | 100% recirculating vortices in |
| =34°32                  | 4         | 8                    | 9        | 8        | 9    | 7           | _         |            |                         | $=52^{0}14$    | 4         | 5    | 1.5  | 5    | 5.       | ∞                        | _            |            | 100% recir.vortices | =38°50'                 | 4         | 5    | 4    | 5    | 4    | .5                       |           | _          | vorti                          |
| $\alpha_1 = 1$          | 3         | 6                    | 7        | 6        | 7    | 8           | -         |            | stroi                   | $\alpha_2 = 5$ | 3         |      | 5 4  | 5    | 5 4      | 5 4                      |              |            | % rec               | α <sub>3</sub> =3       | 3         | 5    | 4    | 5    | 4    | 5 4                      |           |            | ting                           |
| ays (                   | 2         | 0                    | ~        | 0        | ~    | _           |           |            | ities                   | ays (          |           | L    |      |      |          |                          |              | <u> </u>   | 100                 | ys.                     | 2         | 1.0  |      |      |      | 4                        |           |            | ıcı                            |
| ) illw                  | 7         | 10                   | ~        | 1        | ω    | 5           |           |            | t cav                   | illw           | 7         | 4.7  | 4.5  | 4.7  | 4.5      | 4.6                      |              |            | air                 | illw                    | 7         | 5.5  | 3.5  | 5.5  | 3.5  | 4.5                      |           |            | reci                           |
| ed si                   | 1         | 9.5                  | 8        | 9.5      | 8    | 8.75        |           | 55         | No air cavities, strong | ed si          | T         | 4.5  | 4.5  | 4.5  | 4.5      | 4.5                      |              | 20         | 25% air             | is pa                   | T         | 9    | 4    | 9    | 4    | 5                        |           |            | 00%                            |
| Slope of stepped spillw | Step nos. | Max.                 | Min.     | Max.     | Min. | Aver.(dwps) | Inception | length(cm) |                         | tepl           | Step nos. | Max. | Min. | Max. | 0.1 Min. | Aver.(d <sub>wps</sub> ) | Inception    | length(cm) |                     | Slope of stepped spillw | Step nos. | Max. | Min. | Max. | Min. | Aver.(d <sub>wps</sub> ) | Inception | length(cm) | Flow patt                      |
| نے                      |           |                      |          |          |      |             |           |            |                         |                |           |      |      |      | 0.1      |                          |              |            |                     |                         |           |      |      |      |      |                          |           |            |                                |
| Discl                   | perunit   | lengt                | <u> </u> | cum/m)   |      |             |           |            |                         |                |           |      |      |      |          |                          |              |            |                     |                         |           |      |      |      |      |                          |           |            |                                |
| Vidth                   | of        | pillw.               | ways     | (p m)    |      |             |           |            |                         |                |           |      |      |      | 0.7      |                          |              |            |                     |                         |           |      |      |      |      |                          |           |            | $\neg$                         |
| Disch. Width Disch.     |           | (cum) spillw. length | _=       | <u> </u> |      |             |           |            |                         |                |           |      |      |      | 0.05     |                          | <del>-</del> |            |                     |                         |           |      |      |      |      |                          | <u> </u>  |            | $\dashv$                       |
|                         | <u> </u>  | <u>)</u> gı          | <u> </u> |          |      | _           |           |            |                         |                |           |      | -    |      |          | <u>.</u>                 |              |            |                     |                         | -         |      |      |      |      |                          |           |            | $\dashv$                       |
| SN Mano                 | metre     | reading              | (x cm)   |          |      |             |           |            |                         |                |           |      |      |      | 18.42    |                          |              |            |                     |                         |           |      |      |      |      |                          |           |            | _                              |
| SN                      |           |                      |          |          |      |             |           |            |                         |                |           |      |      |      | 00       |                          |              |            |                     |                         |           |      |      |      |      |                          |           |            |                                |

3.6.2.12 Experiment no.7: (Water flow depths in multislope stepped spillways) With the use of Elliptical suppressor plate, No. 2 i.e. P=90mm

|        | Serci Ollara Pro | 711. VY 1. | 7<br> <br>     | Disch.   Width   Disch. | Slope of stepped spillwa | ped sp      | illwa | $ys \alpha_1$ :                                  | =34°32 | ~ <b>1</b> |                  |        | -                   |        |        |        |          |          |      |          |          |          |          |          |     |
|--------|------------------|------------|----------------|-------------------------|--------------------------|-------------|-------|--------------------------------------------------|--------|------------|------------------|--------|---------------------|--------|--------|--------|----------|----------|------|----------|----------|----------|----------|----------|-----|
| metre  | <u>0</u>         | of         | d              | perunit                 | Step nos.                | 1           | 2     | 3                                                | 4      | 5          | 9                | 7      | 8                   | 6      | 10     | 11     | 12       | 13       | 14   | 15       | 16       | 17       | 18       | 19       | 20  |
| d:     | reading (cum)    | n) spill   | spillw. length |                         | Max.                     | 3.5         | 3.5   | 3.3                                              | 3      | 2.8        | 2.8              | 2.8    | 2.8                 | 2.8    | 2.8    | 2.8    | 2.8      | 2.8      | 2.8  | 2.8      |          |          |          |          |     |
| (x cm) | (F)              | ways       |                | (b)                     | Min.                     | 3           | 3     | 2.5                                              | 2      | 1.8        | 1.8              | 1.8    | 1.8                 | 1.8    | 1.8    | 1.8    | 1.8      | 1.8      | 1.8  | 1.8      |          |          |          | -        |     |
|        |                  | (p m)      |                | cum/m)                  | Max.                     | 3.5         | 3.5   | 3.3                                              | 3      | 2.8        | 2.8              | 2.8    | 2.8                 | 2.8    | 2.8    | 2.8    | 2.8      | 2.8      | 2.8  | 2.8      | -        | $\dashv$ | ٠        | $\dashv$ |     |
| 1      | _                |            |                |                         | Min.                     | 3           | 3     | 2.5                                              | 2      | 1.8        | 1.8              | 1.8    | 1.8                 | 1.8    | 1.8    | 1.8    | 1.8      | 1.8      | 1.8  | 1.8      |          | ,        | _        |          | -   |
|        |                  | _          |                |                         | Aver.(d <sub>wps</sub> ) | 3.25        | 3.25  | 2.9                                              | 2.5    | 2.3        | 2.3              | 2.3    | 2.3                 | 2.3    | 2.3    | 2.3    | 2.3      | 2.3      | 2.3  | 2.3      | _        | -        |          |          |     |
| ,      |                  | - 4        |                |                         | Inception                |             |       |                                                  |        |            |                  |        |                     |        |        |        |          | -        |      |          | :        | <u> </u> |          |          |     |
|        |                  |            | <u> </u>       | - <del></del>           | length(cm)               | 15          |       |                                                  | -      |            |                  |        |                     |        |        | _      |          |          |      |          |          | H        |          |          |     |
|        |                  |            | _              |                         |                          | No air cavi |       | ties, weak recirculating vortices, with skimming | ak re  | circul     | ating            | vortic | es,wit              | h skin | aming  | flow   |          |          |      | -        |          |          |          |          |     |
|        |                  |            |                |                         | Slope of stepped spillwa | ped sp      | illwa | ys α2:                                           | =52°14 | 4          |                  |        | ٠                   |        |        |        |          |          | -    |          |          | -        |          |          |     |
|        |                  |            |                |                         | Step nos.                | 1           | 7     | 3                                                | 4      | 5          | 9                | 7      | ∞                   | 6      | 10     | 11     | 12       | 13       | 14   | 15       | 16       | 17       | 18       | 19       | 20  |
|        |                  | _          |                |                         | Max.                     | co          | 4.5   | 5.5                                              | 9      | 5.5        | 5.5              | 5      | 4.5                 | 4      | 4      | 4      | 4        | 4        | 4    | 3.5      | 3.5      | 3.5      | 3        | 3        | 3   |
|        |                  |            |                |                         | Min.                     | 2           | 4     | 5.5                                              | S      | 5          | 5                | 4      | 3.5                 | 3.5    | 3.5    | 3.5    | 3.5      | 3.5      | 3.5  | 3        | 3        | 7.       | 2        | 2        | 2   |
|        |                  | -          |                |                         | Max.                     | co          | 4.5   | 5.5                                              | 9      | 5.5        | 5.5              | 5      | 4.5                 | 4      | 4      | 4      | 4        | 4        | 4    | 3.5      | 3.5      | 3.5      | 3        | 3        | 3   |
| τi     | 1.66 0.006       |            | 0.2            | 0.03                    | 0.03 Min.                | 7           | 4     | 5.5                                              | 5      | S          | 5                | 4      | 3.5                 | 3.5    | 3.5    | 3.5    | 3.5      | 3.5      | 3.5  | 3        | 3        |          | 2        |          | 7   |
|        |                  |            |                |                         | Aver.(d <sub>wps</sub> ) | 2.5         | 4.25  | 5.5                                              | 5.5    | 5.25       | 5.3              | 4.5    | 43                  | 3.75 3 | 3.75 3 | 3.75 3 | 3.75 3   | 3.75 3   | 3.75 | 3.3 3.   | 25       | 2.75     | 2.5      | 2.5 2    | 2.5 |
|        |                  |            |                |                         | Inception                |             |       |                                                  |        |            | <u> </u>         |        |                     |        |        |        |          |          |      |          | •        | $\dashv$ | _        | -        |     |
|        |                  |            |                |                         | length(cm)               |             |       |                                                  |        |            |                  |        |                     |        |        |        |          | <u> </u> |      | -        |          |          |          | -        |     |
|        |                  |            |                |                         |                          | 100%        | air c | 100% air cavities                                |        | 35to10     | 85to10% air cav. | _      | 100% recir.vortices | cir.vo | rtices |        |          |          |      |          |          |          |          |          | - 1 |
|        |                  |            |                |                         | Slope of stepped spillwa | ped sp      | illwa | ıys α3 :                                         | =38,2  | ,20,       |                  |        |                     |        |        |        |          |          |      |          | ı ,      |          |          |          |     |
|        |                  |            |                |                         | Step nos.                | 1           | 2     | 3                                                | 4      | 5          | 9                | 7      | 8                   | 6      | 10     | 11     | 12       | 13       | 14   | 15       | 16       | 17       | 18       | 19       | 8   |
|        |                  |            |                |                         | Max.                     | 2.5         | 2.5   | 4.5                                              | 5.5    | 9          | 5.5              | 5.5    | 4.5                 | 4      | 4      | 3.5    | 6.5 3    | .25 3    | .25  | 3.3      |          |          |          | -        |     |
|        |                  |            |                |                         | Min.                     | 7           | 2.5   | 3.5                                              | 4      | 4.5        | 4                | 3.5    | 3.5                 | 3      | 3      | 2.5    | 2.5      | 7        | 2    | 2        |          |          | _        |          | ,   |
|        |                  |            | _              |                         | Max.                     | 2.5         | 2.5   | 4.5                                              | 5.5    | 9          | 5.5              | 5.5    | 4.5                 | 4      | 4      | 3.5    | 6.5 3    | .25 3.   | 25   | 3.3      |          |          |          |          |     |
|        |                  | •          |                |                         | Min.                     | 2           | 2.5   | 3.5                                              | 4      | 4.5        | 4                | 3.5    | 3.5                 | m      | 3      | 2.5    | 2.5      | 2        | 7    | 2        |          |          |          |          |     |
|        |                  |            |                |                         | $Aver.(d_{wps})$         | 2.25        | 2.5   | 4                                                | 4.8    | 5.25       | 4.8              | 4.5    | 4                   | 3.5    | 3.5    | 3      | 4.5 2    | 2.63 2.  | 63   | 2.6      |          |          |          |          |     |
|        |                  |            |                |                         | Inception                |             |       |                                                  |        |            |                  |        |                     | {      |        |        | -        |          | -    | $\dashv$ | $\dashv$ |          | +        | $\dashv$ |     |
|        |                  | _          |                |                         | length(cm)               |             |       |                                                  | _      |            |                  |        |                     |        |        |        | $\dashv$ |          | _    | $\dashv$ | -        | $\dashv$ | $\dashv$ | $\dashv$ | ٦   |
|        | _                |            |                |                         | Flow patt                | 100% recir  | recir | culating vortices in all steps                   | IOV 2  | tices 1    | n all s          | teps   |                     |        |        |        |          |          |      |          |          |          |          |          |     |

| Step nos. 1 2  Max 5 5 | ped spil                   | =        | Ilway<br>22 | <u>α</u> <u>ε</u> 4 | =34°32'                                      | - N N    | 3 3     | 8 6                 | 9      | 10   | 11  | 3.5 | 13  | 35  | 3.5      | 16       | 17       | 18       | 19 2     | 12     |
|------------------------|----------------------------|----------|-------------|---------------------|----------------------------------------------|----------|---------|---------------------|--------|------|-----|-----|-----|-----|----------|----------|----------|----------|----------|--------|
|                        | Min.                       | 4        | 3.5         | 10                  |                                              | 2        | 2.      | 2.                  | 2.     | 2.   | 2.5 | 2.5 | 2.5 |     | 2.5      | +-       | +        | +-       | -        | $\top$ |
| $\mathbf{Z}$           | Мах.                       | 5        | 5           | 4                   | 4                                            | 3.5      | 3 3     | 3                   | 3      | 3    | 3.5 | 3.5 | 3.5 | 3.5 | 3.5      | -        |          |          |          |        |
| $\mathbf{Z}$           | Min.                       | 7_       | 3.5         | 3                   | 3 2                                          | 2.8 2.5  | 5 2.5   | 5 2.5               | 2.5    | 2.5  | 2.5 | 2.5 | 2.5 | 2.5 | 2.5      | _        |          |          |          |        |
| Ā                      | Aver.(d <sub>wps</sub> )   | 4.5      | 4.25        | 3.5                 | 3.5 3.                                       | 3.15 2.8 | 8 2.8   | 3 2.8               | 2.75   | 2.75 | 3   | 3   | 3   | 3   | 3        |          |          |          |          |        |
| ŢUC                    | Inception                  |          |             | _                   |                                              |          |         |                     |        |      |     |     |     |     | _        |          | _        |          |          |        |
| len                    | length(cm)                 | 28       |             |                     |                                              |          | _       |                     |        |      |     |     |     |     |          |          |          |          |          |        |
| 윤                      | Flow patt                  | No air   | caviti      | es,we               | No air cavities, weak recirculating vortices | culatin  | ng vor  | tices               |        |      |     |     |     |     |          |          |          |          |          |        |
| S                      | Slope of stepped spillw    | bed sp   | illway      | ays $\alpha_2 =$    | =52°14'                                      |          | <br>    |                     |        |      |     |     |     |     |          |          |          |          |          | Γ      |
| St                     | Step nos.                  | 1        | 2           | <u></u>             | 4                                            | 5        | 2 9     | 8                   | 6      | 10   | 11  | 12  | 13  | 14  | 15       | 16       | 17       | 18       | 19 2     | 20     |
| Max.                   | , v                        | 3.5      | 4.5         | 5.5                 | 5.5                                          | 5        | 5 5     | 5                   | 5      | 5    | 5.5 | 5.5 | 5.5 | 5.5 | 5.5      | 5.5      | 4        | 4        | 4        | 4      |
| Min.                   |                            | 2.8      | 4.5         | 5                   | 5                                            | 5 ,      | 4 4     | 1 4                 | 4      | 4    | 4.5 | 4.5 | 4.5 | 4.5 | 4.5      | 4.5      | 4        | 3        | 3        | 3      |
| Max.                   | ر.                         | 3.5      | 4.5         | 5.5                 | 5.5                                          | 5        | 5 5     | 5                   | 5      | 5    | 5.5 | 5.5 | 5.5 | 5.5 | 5.5      | 5.5      | 4        | 4        | 4        | 4      |
| 0.05 Min.              |                            | 2.8      | 4.5         | 5                   | S                                            | 5,       | 4 4     | 4                   | 4      | 4    | 4.5 | 4.5 | 4.5 | 4.5 | 4.5      | 4.5      | 4        | 3        | 3        | 3      |
| Ave                    | Aver.(dwps)                | 3.15     | 4.5         | 5.25                | 5.3                                          | 5 4.5    | 5 4.5   | 4.5                 | 4.5    | 4.5  | 5   | 5   | 5   | 5   | 5        | 5        | 4        | 3.5      | 3.5 3    | 3.5    |
| Ince                   | Inception                  |          |             |                     |                                              |          |         |                     |        |      |     |     |     |     |          | -        |          | _        |          |        |
| leng                   | length(cm)                 |          |             |                     |                                              |          |         |                     |        |      |     |     |     |     | _        |          | _        | -        | _        |        |
| Flo                    | Flow patt                  | 100% air | air cav.    |                     | 75to5% air cav.                              | ir cav.  | 100%    | 100% recir.vortices | vortic | es   |     | ·   |     |     |          |          |          |          |          | $\Box$ |
| Se                     | Slope of stepped spillways | ds pad   | dlway       | క్ర                 | =38,20,                                      |          |         |                     |        |      |     |     |     |     |          |          |          |          |          |        |
| St                     | Step nos.                  | ī        | 2           | 3                   | 4                                            | 2        | 2 9     | 8 /                 | 6      | 10   | 11  | 12  | 13  | 14  | 15       | 16       | 17       | 18       | 19 2     | 20     |
| Max.                   | tx.                        | 4        | 3.5         | 4.5                 | 5.5 5                                        | 5.6      | 6 6.5   | 6.5                 | 9      | 5.5  | 5   | 4.5 | 4   | 4   | 4        |          |          |          | _        |        |
| Min.                   | n.                         | 6        | 2.8         | 3.5                 | 4                                            | 4.5      | 5 5     | 5                   | 4.5    | 4    | 3.8 | 3.5 | 3   | 3   | 3        |          |          |          |          |        |
| Ϊ́Ξ                    | Max.                       | 4        | 3.5         | 4.5                 | 5.5 5                                        | 5.6      | 6 6.5   | 6.5                 | 9      | 5.5  | 5   | 4.5 | 4   | 4   | 4        | _        |          |          |          | -      |
| Min.                   | ij.                        | 3        | 2.8         | 3.5                 | 4                                            | 7,       | 5 5     | 5.                  | 4.5    | 4    | 3.8 | 3.5 | 3   | 3   | 3        |          |          | _        |          |        |
| A                      | Aver.(dwps)                | 3.5      | 3.15        | 4                   | 4.8 5.1                                      | 5.05 5   | .5 5.8  | 5.8                 | 5.25   | 4.75 | 4.4 | 4   | 3.5 | 3.5 | 3.5      |          |          |          | -        | П      |
| الحرا                  | Inception                  |          |             |                     | -                                            |          |         |                     |        |      |     |     |     | -   | $\dashv$ | $\dashv$ |          | $\dashv$ | -        | П      |
| 12                     | length(cm)                 |          |             |                     |                                              |          |         |                     |        |      | •   |     |     | -   | -        | $\dashv$ | $\dashv$ | $\dashv$ | $\dashv$ |        |
| Į,                     | Flow patt                  | 100%     | recirc      | ulating             | 100% recirculating vortices in all steps     | es in a  | ll step | s                   |        |      |     |     |     |     | _        | l        |          |          |          |        |

|                       | 18 19 20  |                      |          |           |        |             |           |            |                                              |                         | 18 19 20  | 5 5 5 | 4 4 4 | 5 5 5 | 4 4 4      | 4.5 4.5 4.5 |           |            | !                   |                        | 18 19 20  |              |          |        |            |                          |           |            |   |
|-----------------------|-----------|----------------------|----------|-----------|--------|-------------|-----------|------------|----------------------------------------------|-------------------------|-----------|-------|-------|-------|------------|-------------|-----------|------------|---------------------|------------------------|-----------|--------------|----------|--------|------------|--------------------------|-----------|------------|---|
|                       | 17        |                      |          |           |        |             |           |            |                                              | ļ                       | 17        | 5.5   | 4     | 5.5   | 4          | 4.75        |           |            |                     |                        | 17        |              |          |        |            |                          |           |            |   |
|                       | 16        |                      |          |           |        |             |           |            |                                              |                         | 16        | 5.5   | 4     | 5.5   | 4          | 4.75        |           |            |                     |                        | 16        |              |          |        | <u>-</u> _ |                          |           |            |   |
|                       | 15        | 4                    | 3        | 4         | 3      | 3.5         |           |            |                                              |                         | 15        | 5.5   | 4     | 5.5   | 4          | 4.8         |           |            |                     |                        | 15        | 4.5          | 4        | 4.5    | 4          | 4.3                      |           |            |   |
|                       | 14        | 4                    | 3        | 4         | 3      | 3.5         |           |            |                                              |                         | 14        | 5.5   | 4     | 5.5   | 4          | 4.75        |           |            |                     |                        | 14        | 4.5          | 4        | 4.5    | 4          | 4.25                     |           |            | • |
|                       | 13        | 4                    | 3        | 4         | 3      | 3.5         |           |            |                                              |                         | 13        | 5.5   | 4     | 5.5   | 4          | 4.75        |           |            |                     |                        | 13        | 5            | 4.5      | 5      | 4.5        | 4.75                     |           |            |   |
|                       | 12        | 4                    | 3        | 4         | 3      | 3.5         |           |            |                                              |                         | 12        | 5.5   | 4     | 5.5   | 4          | 4.75        |           |            |                     |                        | 12        | 5.5          | 4        | 5.5    | 4          | 4.75                     |           |            |   |
|                       | 11        | 4                    | 3        | 4         | 3      | 3.5         |           |            |                                              |                         | 11        | 5.5   | 4     | 5.5   | 4          | 4.75        |           |            |                     |                        | 11        | 5.5          | 4.5      | 5.5    | 4.5        | 5                        |           |            |   |
|                       | 10        | 4                    | 3        | 4         | 3      | 3.5         |           |            |                                              |                         | 10        | 5.5   | 4     | 5.5   | 4          | 4.75        |           |            |                     |                        | 10        | 9            | 5        | 9      | 5          | 5.5                      |           |            |   |
|                       | 6         | 4                    | 3        | 4         | 3      | 3.5         |           |            |                                              |                         | 6         | 5.5   | 4.5   | 5.5   | 4.5        | S           |           |            | tices               |                        | 6         | 6.5          | 5.5      | 6.5    | 5.5        | 9                        |           |            |   |
|                       | 8 /       | 4                    | 3 3      | 4         | 3      | 3.5         |           |            | tices                                        |                         | 8         | 5.5   | 4.5   | 5.5   | 4.5        | 5           |           |            | 100% recir.vortices |                        | 8         | 7            | 5.5      | 7      | 5.5        | 6.3                      |           | _          |   |
|                       | 2 9       | 4                    | 5 3      | 4 4       | 3      | 3.5         | _         |            | g vor                                        |                         | 1 9       | 5.5   | 4.5   | 5.5   | 5 4.5      | 5 5         |           |            | % rec               |                        | 2 9       | 7 7          | 9        | 7 7    | 9          | 3 6.5                    |           | L          |   |
|                       | 5         |                      | 5 3.5    |           | .5 3.5 | 4 3.8       |           |            | ulatin                                       |                         | 5         | 5.5   | 5 4.5 | 5.5   | 5 4.5      | 5           |           | _          | 1                   |                        | 5         | 5            | 5.5      |        | 5.5        | 6.3                      | _         | _          |   |
| =34°32                | 4         | 5 4.5                | 3.5      | 5 4.      | .5 3.  | 5           |           |            | recirc                                       | ,14,                    | 4         | 2     | 5 4.5 | 5.5   | 5.4        |             |           |            | ir cav.             | =38,20,                | 4         | 9            | 5.5      | .5 6.5 | 5.5        | 5                        |           | L          |   |
| $\alpha_1 = 34$       | 3         | 5.                   | 5 4.5    | 5.        | 4      | 5           |           |            | No air cavities, weak recirculating vortices | $\alpha_2 = 52^{\circ}$ | 3         | 5.5   | 5     | 5.5   | 5          | 5 5.3       |           | _          | 60to10% air cav.    | $\alpha_3 = 38$        | · E       | 5 5.5        | 4 4.5    | 2      | 4.5        |                          |           | L          |   |
| ways c                | 2         | 6 5.5                | 5 4.5    | 6 5.5     | 5 4.5  | 5.          | _         |            | vities,                                      | ways c                  |           |       |       | نہ    | 3          | .5          |           |            |                     | ways c                 | 7         | .5 4.5       |          | .5 4.5 | 33         | 25 4.25                  | _         | _          |   |
|                       | 1         | 9                    | 2        | 9         | 5      | 5           |           | 30         | air ca                                       | spilly                  | 1         | 4     | 4     | 4 4.  | 4          | 4           |           |            | 100% air            | spilly                 | <u>—</u>  | (C)          |          | 3      |            | 4 3.2                    |           |            |   |
| padd                  |           |                      |          |           |        | 5.5         | _         | 3          | 2                                            | padd                    | _         | L     | 3.5   |       | 3.5        | 3.75        | _         | _          | 100                 | pbed                   | _         | 4.5          | 3.5      | 4.5    | 3.5        |                          |           | _          |   |
| Slope of stepped spil | Step nos. | Max.                 | Min.     | Max.      | Min.   | Aver.(dwps) | Inception | length(cm) | Flow patt                                    | Slope of stepped spill  | Step nos. | Max.  | Min.  | Max.  | Min.       | Aver.(dwps) | Inception | length(cm) | Flow patt           | Slope of stepped spill | Step nos. | Max.         | Min.     | Max.   | Min.       | Aver.(d <sub>wps</sub> ) | Inception | length(cm) |   |
|                       |           |                      | -        | n/m)      |        | •           |           |            |                                              |                         |           |       |       |       | 0.06 Min.  |             |           |            |                     | • <u> </u>             |           | •            | <u> </u> |        | <u> </u>   |                          |           |            |   |
| Vidth I               | ų.        | illw.                | ways (   | (b m)     |        |             |           | •          |                                              |                         | •         | •     |       |       | 0.5        |             |           |            |                     |                        |           | <del>-</del> |          |        |            |                          |           |            |   |
| Disch. Width Disch.   | (Q) of    | (cum) spillw. length | 3        | <u>(1</u> | -      |             |           |            |                                              | -                       |           |       | -     |       | 0.012      |             |           |            |                     |                        |           |              |          |        |            |                          |           |            |   |
| SN Mano D             |           | _                    | (x cm)   |           | _      |             |           |            |                                              |                         |           | -     |       |       | 6.63 0.012 |             |           |            |                     |                        |           |              |          |        |            |                          |           |            |   |
| ĮΫ                    | me        | rea                  | <u>×</u> |           |        |             |           |            |                                              |                         |           |       |       |       | 4          |             |           |            |                     |                        |           |              |          |        |            |                          |           |            |   |

|                         | L            | 19 20     |                      |          |          |      |                                               |              |                                                |                                              |                            | 19 20     | 5.5     | 5 4.5    | 5.5     | 5 4.5     | 5 5         |           |                                               |                               |                                   | 19 20       |      |           |      |          |                          |           |            |
|-------------------------|--------------|-----------|----------------------|----------|----------|------|-----------------------------------------------|--------------|------------------------------------------------|----------------------------------------------|----------------------------|-----------|---------|----------|---------|-----------|-------------|-----------|-----------------------------------------------|-------------------------------|-----------------------------------|-------------|------|-----------|------|----------|--------------------------|-----------|------------|
|                         | L            | 18        |                      |          | _        |      |                                               |              |                                                |                                              | !                          | 18 1      | 5.5 5.5 | 4.5 4.5  | 5 5.5   | 5 4.5     | 5           |           |                                               |                               |                                   | 18 1        |      |           |      | _        |                          |           |            |
|                         | L            | 17        |                      | _        |          |      | _                                             |              |                                                |                                              |                            | 17 1      | 5.5 5.  | 4.5 4    | 5.5 5.5 | .5 4      | 2           |           |                                               |                               |                                   | 17  1       |      | _         | _    |          |                          |           |            |
|                         | L            | 16        |                      |          |          |      | _                                             | _            |                                                |                                              |                            | 16        | 5.5 5   | 4.5 4    | 5.5 5   | 4.5 4     | 5           |           | _                                             |                               |                                   | 16          |      |           |      | _        |                          |           |            |
|                         | ļ            | 15        | 4                    | 3        | 4        | 3    | .5                                            |              | _                                              |                                              |                            | 15        | 5.5 5   | 4.5 4    | 5.      | 4.5 4     | 5           |           |                                               |                               |                                   | [5]         | 5    | 4         | 5    | 4        | .5                       |           |            |
|                         | L            | 14        | 4                    | 3        | 4        | 6    | 3.5 3.                                        |              | _                                              |                                              |                            | 14        | 5.5 5   | 4.5 4    | 5.5 5   | 4.5 4     | 5           |           |                                               |                               |                                   | 14          | 5    | 4         | S    | 4        | 4.5 4.                   |           |            |
|                         | ,            | 2         | 4                    | n        | 4        | 3    | 3.5                                           |              |                                                |                                              |                            | 13        | 5.5     | 4.5      | 5.5     | 4.5       | 5           |           |                                               |                               |                                   | 13          | 5    | 4         | 5    | 4        | 4.5                      |           |            |
|                         | ,            | 77        | 4                    | $\alpha$ | 4        | 3    | 3.5                                           |              |                                                |                                              |                            | 12        | 5.5     | 4.5      | 5.5     | 4.5       | 5           |           |                                               |                               |                                   | 12          | 5.5  | 4.5       | 5.5  | 4.5      | , 5                      |           |            |
|                         |              | 11        | 4                    | 3        | 4        | 3    | 3.5                                           |              |                                                |                                              |                            | 11        | 5.5     | 4.5      | 5.5     | 4.5       | 5           |           |                                               | 5.5                           |                                   | 111         | 9    | 4.5       | 9    | 4.5      | 5.25                     |           |            |
|                         | (            | 2         | 4                    | 3        | 4        | 3    | 3.5                                           |              |                                                |                                              |                            | 10        | 5.5     | 4.5      | 5.5     | 4.5       | 5           |           |                                               | 100% recir.vortices from step |                                   | 10          | 6.5  | 5         | 6.5  | S        | 5.75 5                   |           |            |
|                         | ,            | 6         | 4                    | 3        | 4        | 3    | 3.5                                           |              |                                                |                                              |                            | 6         | 5.5     | 4.5      | 5.5     | 4.5       | 5           |           | _                                             | es fro                        |                                   | 6           | 6.5  | 5.5       | 6.5  | 5.5      | 9                        |           | Г          |
|                         | ,            | ×         | 4                    | 3        | 4        | 3    | 3.5                                           |              |                                                | SS                                           |                            | 8         | 5.5     | 4.5      | 5.5     | 4.5       | 5           |           |                                               | vortic                        |                                   | 8           | 6.5  | 5.5       | 6.5  | 5.5      | 9                        |           |            |
|                         | ŀ            | 7         | 4                    | 3        | 4        | 3    | 3.5                                           |              |                                                | No air cavities, weak recirculating vortices |                            | 7         | 5.5     | 4.5      | 5.5     | 4.5       | 5           |           | _                                             | recir.                        |                                   | 7           | 7    | 5.5       | 7    | 5.5      | 6.3                      |           |            |
|                         |              | ٥         | 4.5                  | 3        | 4.5      | 3    | 3.8                                           |              |                                                | ating                                        |                            | 9         | 5.5     | 5        | 5.5     | 5         | 5.3         |           |                                               | 100%                          |                                   | 9           | 6.5  | 5.5       | 6.5  | 5.5      | 9                        |           |            |
| 12                      |              | 2         | 5                    | 3.5      | 5        | 3.5  | 4.25                                          |              |                                                | circul                                       | 14'                        | 5         | 5.5     | 5        | 5.5     | 5         | 5.25        |           |                                               | Г                             | <u>.</u>                          | 5           | 9    | 5         | 9    | 5        | 5.5                      |           |            |
| -2012                   | 5            | 4         | 5                    | 4        | 5        | 4    | 4.5                                           |              |                                                | eak re                                       | =520]                      | 4         | 5.5     | 5        | 5.5     | 5         | 5.3         |           |                                               | 50to10%aircav.                | $\alpha_3 = 38^{\circ}50^{\circ}$ | 4           | 5.5  | 4.5       | 5.5  | 4.5      | 5                        |           |            |
|                         |              |           | 5.5                  | <b>7</b> | 5.5      | 4    | 4.75                                          |              |                                                | ties,w                                       | ıys α <sub>2</sub>         | 3         |         | 5        | 5       | 5         | 5           |           |                                               | 50to1                         | ays $\alpha_3$                    | 3           | 4.5  | 4         | 4.5  | 4        | 4.25                     |           |            |
|                         |              | 2         |                      | 5        | 9        | 5    | 5.5                                           |              |                                                | r cavi                                       | oillwa                     | 2         | 4.5     | 4.5      | 4.5     | 4.5       | 4.5         |           |                                               | air                           |                                   | 2           | 4    | 3.5       | 4    | 3.5      | 3.75                     |           |            |
| nod e                   | lo mad       | 1         | 6                    | 5        | 9        | 5    | 5.5                                           |              | 30                                             | No a                                         | bed sl                     | 1         | 4       | 3        | 4       | 3         | 3.5         |           |                                               | 100% air                      | ped s                             | 1           | 5.5  | 4.5       | 5.5  | 4.5      | 5                        |           |            |
| Slope of stenned snilly | nobe or sech | Step nos. | Max.                 | Min.     | Max.     | Min. | Aver.(d <sub>wps</sub> )                      | Inception    | length(cm)                                     | Flow patt                                    | Slope of stepped spillways | Step nos. | Max.    | Min.     | Max.    | fin.      | Aver.(dwps) | Inception | length(cm)                                    | Flow patt                     | Slope of stepped spillw           | Step nos.   | Max. | Min.      | Max. | Min.     | Aver.(d <sub>wps</sub> ) | Inception | length(cm) |
|                         |              | Ħ         |                      | (b)      | cum/m)   |      | <u> </u>                                      | <u>1 —  </u> | <u>i —                                    </u> | <u> </u>                                     | <u> </u>                   | نما       | 15      | <u> </u> |         | 0.07 Min. | 144         | <u> </u>  | <u>1 –                                   </u> | 1174                          | <u>دما</u>                        | <u>دۍ ا</u> |      | <u>14</u> | 15   | <u> </u> | 1*                       | <u> </u>  | <u>–</u>   |
| Vidth IT                | , 10111 v    | ot        | pillw.   It          | ways (   | (p m)    |      | <u>.                                     </u> |              |                                                |                                              |                            |           |         |          |         | 0.2       |             |           |                                               | <u> </u>                      |                                   |             |      |           |      |          |                          | _         |            |
| Diech Width Diech       | 115011       | <u>ಿ</u>  | (cum) spillw. length | <u>*</u> | <u> </u> | -    | _                                             |              |                                                |                                              |                            |           |         |          |         | 0.014     |             |           |                                               |                               |                                   |             |      |           |      | _        | <del>-</del>             |           |            |
| Г                       |              | metre ((  | reading (            | (x cm)   |          |      | _                                             |              |                                                |                                              |                            |           |         | _        |         | 9.03      |             |           | <del></del>                                   |                               |                                   |             |      |           |      |          |                          |           |            |
| CN Mono                 | <u> </u>     | Ē         | ĭë                   | <u>×</u> | ·        |      |                                               |              |                                                |                                              |                            |           |         |          |         | Ŋ         |             |           |                                               | _                             |                                   |             |      |           |      |          | •                        |           |            |

.

| SN Mano |               | Disch. Width Disch.  | Disch    |           | Slope of stepped spilly    | ed spi                         | llways | α              | =34°32           |                              |          |          |          |          |                          |             |          |        |     |     |          |          |          |
|---------|---------------|----------------------|----------|-----------|----------------------------|--------------------------------|--------|----------------|------------------|------------------------------|----------|----------|----------|----------|--------------------------|-------------|----------|--------|-----|-----|----------|----------|----------|
| metre   | <u>©</u>      | of                   | perunit  |           | Step nos.                  | 1                              | 2      | 3              | 4                | 5                            | 9        | 7        | 8        | 9 1      | 10 1                     | $1 \mid 12$ | 13       | 14     | 15  | 16  | 17       | 18       | 19       |
| CII)    | reading (cum) | (cum) spillw. length | length   | _         | •                          | 7                              | 7.5    | 7              | 9                | 2                            | 4        | 4        | 4        | 4        | 4                        | 4 4         | 4        | 7      | 4   |     |          |          |          |
|         | (x cm)        | ways                 | <u> </u> | Min.      |                            | 5                              | 5.5    | S              | 4                | 4                            | 3.5 3    | 3.5 3    | 5.3      | 5.3      | 5.3                      | .5 3.5      | 3.5      | 3.5    | 3.5 |     |          |          | -        |
|         |               | (p m)                | cum/m)   | n) Max.   |                            | 7                              | 7.5    | 7              | 9                | S                            | 4        | 4        | 4        | 4        | 4                        | 4           | 4        | 4      | 4   |     |          |          | -        |
|         |               |                      |          | Min.      |                            | 5                              | 5.5    | 5              | 4                | 4                            | 3.5 3.   | 3.5 3    | .5       | 5.       | 5.3                      | 5 3.5       | 3.5      | 3.5    | 3.5 |     |          |          |          |
|         |               |                      |          | Ave       | Aver.(dwps)                | 9                              | 6.5    | 9              | S                | 4.5                          | 3.8 3    | 3.8 3    | ω.<br>   | .75 3.75 | 5 3.75                   | 5 3.75      | 3.75     | 3.75   | 3.8 |     |          | <u> </u> | -        |
|         |               |                      |          | Ince      | Inception                  | -                              |        |                |                  | ,                            | $\vdash$ | _        | L        |          |                          | _           |          |        |     |     | <u> </u> |          |          |
|         |               |                      |          | leng      | length(cm)                 | 32                             |        |                |                  |                              | L        |          | _        |          |                          |             |          |        |     |     |          |          |          |
|         | ·             | -                    |          | Flow      | Flow patt                  | No air ca                      |        | es,strc        | ng re            | vities, strong recirculating | ting v   | vortices | လ္လ      |          |                          |             |          |        |     |     |          | -        |          |
|         |               |                      |          | Slop      | Slope of stepped spillways | ed spi                         | llway  | $s \alpha_2 =$ | $=52^{\circ}14$  |                              |          |          |          |          |                          |             |          |        |     |     |          | •        |          |
|         |               |                      |          | Step nos. | nos.                       | П                              | 2      | 3              | 4                | 5                            | 9        | 7        | <u></u>  | 9 1      | 10 1                     | 1 12        | 13       | 14     | 15  | 16  | 17       | 18       | 19       |
|         | -             |                      |          | Max.      |                            | 4.5                            | 4.5    | S              | 5                | 5                            | 5 5      | 5.5 5    | 5.5      | 5.5      | 5.5                      | 5 5.5       | 5.5      | 5.5    | 5.5 | 5.5 | 5.5      | 5.5      | 5.5 5.5  |
|         |               |                      |          | Min.      |                            | 3.5                            | 4.5    | 4              | 4                | 4                            | 4        | 4.5 4    | 4.5 4    | 4.5 4.5  | 5 4.5                    | 5 4.5       | 4.5      | 4.5    | 4.5 | 4.5 | 4.5      | 4.5      | 4.5 4.5  |
|         |               |                      |          | Max.      |                            | 4.5                            | 4.5    | 5              | 5                | 5                            | 5 5      | 5.5 5    | 3.       | 5.5 5.   | 5.5                      | 5.5         | 5.5      | 5.5    | 5.5 | 5.5 | 5.5      | 5.5      | 5.5 5.5  |
| -       | 11.8 0.016    |                      | 0.2      | 0.08 Min. |                            | 3.5                            | 4.5    | 4              | 4                | 4                            | 4        | .5 4     |          | 5.4.     | 5 4.5                    | 5 4.5       | 4.5      | 4.     | 4.5 | 4.5 | 4.5      | 4.5      | 4.5 4.5  |
|         |               | -                    |          | Ave       | Aver.(d <sub>wps</sub> )   | 4                              | 4:5    | 4.5            | 4.5              | 4.5.                         | 4.5      | 5        | 5        | 5        | 5                        | 5 5         | 5        | 5      | 5   | 5   | 2        | 5        | 5        |
|         |               |                      |          | Ince      | Inception                  |                                |        | _              |                  |                              |          | _        |          | _        |                          |             | _        |        |     |     | _        | -        | <u> </u> |
|         |               |                      |          | leng      | length(cm)                 |                                |        |                |                  |                              |          | _        | _        |          |                          |             |          |        | ·   |     |          |          |          |
|         |               |                      |          | Flow      | Flow patt                  | 100to 109                      | 120    | r cav.         | air cav. In step | 1,2                          | 6        | 10       | % rec    | ir.vorti | 100% recir.vortices from | step        | 4 onward | Į<br>Į |     |     |          |          |          |
|         |               |                      |          | Slop      | Slope of stepped spillways | ed spi                         | llway  | క              | =38,20           | _                            |          |          |          |          |                          |             |          |        |     |     |          |          |          |
|         |               |                      |          | Step nos. | nos.                       | T                              | 7      | 3              | 4                |                              | 9        | 7        | <u>∞</u> | 9 1      | 10 11                    | 1 12        | 13       | 14     | 15  | 16  | 17       | 18       | 19       |
|         |               |                      |          | Max.      |                            | 5.5                            | 4.5    | 4.5            | 5.5              | 9                            | 6.5      | 7        | 7.5      | 7 6.5    | 5 6.5                    | 9           | 5.5      | 5.5    | 5.5 |     |          |          |          |
|         | •             | -                    |          | Min.      |                            | 4.5                            | 4      | 4.5            | 4.5              | 5 5                          | 5.5      | 9 9      | 6.5      | 6 5.5    | 5.5                      | 5           | 4.5      | 4.5    | 4.5 |     | -        | :        |          |
|         |               |                      |          | Max.      |                            | 5.5                            | 4.5    | 4.5            | 5.5              | 9                            | 6.5      | 7 7.     | 3.       | 7 6.     | 5 6.                     | 5 6         | 5.5      | 5.5    | 5.5 | _   | $\vdash$ |          | _        |
|         |               |                      |          | Min.      |                            | 4.5                            | 4      | 4.5            | 4.5              | 5.                           | 5.5      | 9 9      | ιζ.      | 6 5.     | 5.5                      | 5           | 4.5      | 4.5    | 4.5 |     |          |          | H        |
|         |               |                      |          | Aver      | Aver.(d <sub>wps</sub> )   | 5 4                            | 4.25   | 4.5            | 5                | 5.5                          | 9 9      | 5.5      | 9 /      | 5        | 9                        | 6 5.5       | 5        | 3      | 5   |     |          |          |          |
|         |               |                      |          | Inception | ption                      |                                |        |                |                  |                              |          |          | _        |          |                          |             |          |        |     |     |          |          |          |
|         | ···           |                      |          | lengi     | length(cm)                 |                                | _      |                |                  |                              | _        |          |          |          |                          |             |          |        |     |     |          |          |          |
|         |               |                      |          | Flow      | Flow patt                  | 100% recirculating vortices in | ecirca | lating         | vorti            |                              | all      | steps    |          |          |                          |             |          |        |     |     |          |          |          |

|         |             |                      |          | Discii. Widiii Discii. | Stope of stepped spillw    | sed sp  | illwa | ays α <sub>1</sub> = | =34.32                                         | _       |         |          |        |                                         |          |         |        |        |          |     |     |     |     |     |
|---------|-------------|----------------------|----------|------------------------|----------------------------|---------|-------|----------------------|------------------------------------------------|---------|---------|----------|--------|-----------------------------------------|----------|---------|--------|--------|----------|-----|-----|-----|-----|-----|
| metre   | <u> </u>    | of                   | perunit  |                        | Step nos.                  | 1       | 2     | 3                    | 4                                              | 5       | 9       | 7        | 8      | 9 1                                     | 10 11    | 1 12    | 13     | 14     | 15       | 16  | 17  | 18  | 19  | 20  |
| reading | _           | (cum) spillw. length | length   |                        | Max.                       | 6       | 10    | 8                    | 7                                              | 9       | 5.5     | 5 4      | .5 4   | 5 4.5                                   | 5 4.5    | 5 4.5   | 4.5    | 4.5    | 4.5      |     |     |     |     |     |
| (x cm)  |             | ways                 | <u>_</u> | ~                      | Min.                       | 7       | 9     | 5.5                  | 2                                              | 4.5     | 4.5     | 4 3      | 3.5 3. | 3.5 3.5                                 | 5 3.5    | 5 3.5   | 3.5    | 3.5    | 3.5      |     |     |     |     |     |
|         |             | (p m)                | cum/m)   |                        | Мах.                       | 6       | 10    | 8                    | 7                                              | 9       | 5.5     | 5 4      | 5      | 4.5 4.5                                 | 4        | .5 4.5  | 4.5    | 4.5    | 4.5      |     |     |     |     |     |
|         |             |                      |          |                        | Min.                       | 7       | 9     | 5.5                  | \$                                             | 4.5     | 4.5     | 4 3      | 5.3    | .5 3.                                   | .5 3.    | .5 3.5  | 3.5    | 3.5    | 3.5      |     |     |     |     |     |
|         |             |                      |          | _~_                    | Aver.(dwps)                | 8       | 8     | 6.75                 | 6 5                                            | .25     | 5 4     | .5       | 4      | 4                                       | 4        | 4 4     | 4      | 4      | 4        |     |     |     |     |     |
|         |             |                      |          | <u> </u>               | Inception                  |         |       |                      |                                                |         |         |          | -      |                                         |          |         |        |        |          |     |     |     |     |     |
|         |             |                      |          |                        | length(cm)                 | 38      |       |                      |                                                |         |         |          |        |                                         |          |         |        |        |          |     |     |     |     |     |
|         |             |                      |          | 1,                     | Flow patt                  | No air  | cavit | ies,str              | No air cavities, strong recirculating vortices | ircula  | ting v  | ortice   | S      |                                         |          | . 1     |        |        |          |     |     |     |     |     |
|         |             |                      |          | <u>رس</u>              | Slope of stepped spillways | ed sp   | illwa | ဦ                    | =52°14                                         |         |         |          |        |                                         |          |         |        |        |          |     | i   |     |     |     |
|         |             |                      |          | دما                    | Step nos.                  | 1       | 7     | 8                    | 4                                              | 5       | 9       | 7        | 8      | 9 1                                     | 10 1.    | 12      | 13     | 14     | 15       | 16  | 17  | 18  | 19  | 20  |
|         |             | ·                    |          | <u> </u>               | Max.                       | 4.5     | 4.5   | 5                    | 5                                              | 5       | 5       | 5 5      | .5 5.  | 5                                       | 6 6.5    | 5 6.5   | 6.5    | 6.5    | 7        | 7   | 7   | 6.5 | 9   | 9   |
| •       |             |                      |          | 1=4                    | Min.                       | 3.5     | 4.5   | 5                    | 5                                              | 5       | 5       | 5        | 5      | 5                                       | 5.5      | 5.5     | 5.5    | 5.5    | 9        | 9   | 9   | 5.5 | 5   | 5   |
|         |             | _                    | -        | 1~                     | Max.                       | 4.5     | 4.5   | 5                    | S                                              | 5       | S       | 5 5      | .5 5.  | 5                                       | 9 6.5    | 5 6.5   | 6.5    | 6.5    | <i>L</i> | L   | 7   | 6.5 | 9   | 9   |
| 14.97   | 14.92 0.018 | .8 0.2               |          | 0.09 Min.              | Min.                       | 3.5     | 4.5   | 5                    | s)                                             | 5       | 5       | 5        | 5      | 5                                       | 5 5.     | 5 5.5   | 5.5    | 5.5    | 9        | 9   | 9   | 5.5 | 2   | 5   |
|         |             |                      |          | _~_                    | Aver.(d <sub>wps</sub> )   | 4       | 4.5   | 5                    | 5                                              | 5       | 5       | 5 5      | 3 5.2  | .25 5.5                                 |          | 9 9     | 9 _ 9  | 9      | 6.5      | 6.5 | 6.5 | 9   | 5.5 | 5.5 |
|         |             |                      |          |                        | Inception                  |         |       |                      |                                                |         |         | _        |        |                                         |          |         |        |        |          |     |     |     |     |     |
|         |             |                      |          | <u> </u>               | length(cm)                 |         |       |                      |                                                |         |         |          |        |                                         |          |         |        |        |          |     |     |     |     |     |
|         |             |                      |          |                        | Flow patt                  | 100to5% |       | air cavities in      | es in s                                        | steps 1 | ,2,3    |          | 100    | 100% recir.vortices from step 4 onwards | r.vortic | es fron | n step | 4 onwa | rds      |     |     |     |     |     |
|         |             |                      |          | <u> </u>               | Slope of stepped spillw    | ds pac  | illwa | ays α3 =             | =38,20                                         | _       |         |          |        |                                         |          |         |        |        |          |     |     |     |     |     |
|         |             |                      |          | <u> </u>               | Step nos.                  | τ       | 2     | 3                    | 4                                              | 5       | 9       | 7        | 8      | 9 1                                     | 10 1.    | 1 12    | 13     | 14     | 15       | 16  | 11  | 18  | 19  | 20  |
|         |             |                      |          | 154                    | Max.                       | 9       | 5     | 5                    | 5.5                                            | 9       | 7       | 8        | 8 8    | 5 8.5                                   | 5 7.5    | 5 7.5   | 6.5    | 5.5    | 5.5      |     |     |     |     |     |
|         |             |                      |          |                        | Min.                       | 5       | 4     | 4                    | 4.5                                            | 5       | 5.5     | 9        | 9 9    | 6.5 6.5                                 |          | 9 9     | 5.5    | 4.5    | 4.5      |     |     |     |     |     |
|         |             |                      | <u> </u> | 155                    | Max.                       | 9       | 5     | 5                    | 5.5                                            | 9       | 7       | <u>∞</u> | ∞<br>∞ | 8.5 8.5                                 | 5 7.5    | 5 7.5   | 6.5    | 5.5    | 5.5      |     |     |     |     |     |
|         |             |                      | :        | <u> </u>               | Min.                       | 5       | 4     | 4                    | 4.5                                            |         | 5.5     | 9        | 9 9    | .5 6.5                                  |          | 9 9     | 5.5    | 4.5    | 4.5      |     |     |     |     |     |
|         |             |                      |          | <u> </u>               | Aver.(d <sub>wps</sub> )   | 5.5     | 4.5   | 4.5                  | 5                                              | 5.5     | 6.3     | 7        | 7 7    | 7.5 7.5                                 | 5 6.75   | 5 6.75  | 9      | 5      | 5        |     |     |     |     |     |
|         |             |                      |          | _                      | Inception                  |         |       |                      |                                                |         |         |          |        |                                         |          |         |        |        |          |     |     |     |     |     |
|         |             |                      |          |                        | length(cm)                 |         |       |                      |                                                | H       |         |          |        |                                         |          |         |        |        |          |     |     |     |     |     |
|         |             |                      |          |                        | Flow patt                  | 100%    | recir | ulatin               | 100% recirculating vortices in all steps       | ces in  | all ste | _ sda    |        |                                         |          |         |        |        |          |     |     |     |     |     |

| SN | SN Mano | Disch.   | Disch. Width Disch.  | Discl        |               | Slope of stepped spilly  | ed sb    | illways  | ช                                              | =34°32'  |          |          |         |           |          |                     |        |          |      |     |      |      |      |      |     |
|----|---------|----------|----------------------|--------------|---------------|--------------------------|----------|----------|------------------------------------------------|----------|----------|----------|---------|-----------|----------|---------------------|--------|----------|------|-----|------|------|------|------|-----|
|    | metre   | <u> </u> | of                   | perunit      | -             | Step nos.                | 17       | 2        | 3                                              | 4        | 5        | 9        | 7       | 8         | 9 1      | 10 11               | 12     | 13       | 14   | 15  | 16   | 17   | 18   | 19   | 20  |
|    | reading |          | (cum) spillw. length | length       |               | Max.                     | 6        | 6        | ∞                                              | 7        | 6.5      | 9        | 5       | 5         | 5        | 5 5                 | 2      | 5        | 5    | 5   |      |      |      |      |     |
|    | (x cm)  | <b>.</b> | ways                 | <u>_</u>     |               | Min.                     | . 7      | 6.5      | 9                                              | 5        | 5        | 4.5      | 4       | 4         | 4        | 4 4                 | 4      | 4        | 4    | 4   |      |      |      |      |     |
|    |         |          | (p m)                | cum/m)       |               | Max.                     | 6        | 6        | 8                                              | 7        | 6.5      | 9        | 5       | 2         | 2        | 5 5                 | 5      | 5        | 5    | 5   |      |      |      |      |     |
|    |         |          |                      |              |               | Min.                     | 7        | 6.5      | 9                                              | 5        | 5        | 4.5      | 4       | 4         | 4        | 4 4                 | 4      | 4        | 4    | 4   |      |      |      |      |     |
|    |         |          |                      |              |               | Aver.(d <sub>wps</sub> ) | 8        | 7.75     | 7                                              | 9        | .75      | 5.3 4    | 4.5 4   | .5 4.     | 5 4.     | .5 4.5              | 4.5    | 4.5      | 4.5  | 4.5 |      |      |      |      |     |
|    |         |          |                      |              |               | Inception                |          |          |                                                |          |          |          |         |           |          |                     |        |          |      |     |      |      |      |      |     |
|    |         |          |                      |              |               | length(cm)               | 40       |          | _                                              |          |          |          |         |           |          |                     |        |          |      |     |      |      |      |      |     |
|    |         |          |                      |              |               | Flow patt                | No air   | cavit    | No air cavities, strong recirculating vortices | ing rec  | circul   | ating v  | /ortice | S.        |          |                     |        |          |      |     |      |      |      |      |     |
|    |         |          |                      |              | 102           | tepl                     | ed sb    | illways  | $^{1}S \alpha_{2} =$                           | =52°14   | <u>.</u> |          |         |           |          |                     |        |          |      |     |      |      |      |      |     |
|    |         |          |                      |              | ر ت           | Step nos.                | 1        | 2        | 3                                              | 4        | 5        | 9        | 7       | ∞         | 9 10     | 0 11                | 12     | 13       | 14   | 15  | 16   | 17   | 18   | 19   | 20  |
|    |         |          |                      |              | <u></u>       | Max.                     | 4.5      | 4.5      | S                                              | 5        | 5        | 5        | 5 5     | .5 7.     | 5 7.5    | 5 7.5               | 7.5    | 7.5      | 7.5  | 7.5 | 7.5  | 7.5  | 7.5  | 7.5  | 7.5 |
|    |         |          |                      |              |               | Min.                     | 4.5      | 4.5      | 4.5                                            | 4.5      | 4.5      | 4.5 4    | 1.5     | 5         | ) 9      | 9 9                 | 9      | 9        | 9    | 9   | 9    | 9    | 9    | 9    | 9   |
|    |         | -        |                      |              | <u>~</u>      | Max.                     | 4.5      | 4.5      | 5                                              | 5        | 5        | 5        | 5 5     | .5 7      | .5 7.    | .5 7.5              | 7.5    | 1.5      | 7.5  | 7.5 | 7.5  | 7.5  | 7.5  | 7.5  | 7.5 |
| ∞  | 18.42   | 0.02     | 0.7                  | <del></del>  | 0.1           | Min.                     | 4.5      | 4.5      | 4.5                                            | 4.5      | 4.5      | 4.5 4    | 4.5     | 5         | ) [9     | 9 9                 | 9      | 9        | 9    | 9   | 9    | 9    | 9    | 9    | 9   |
|    |         |          |                      |              | _ ~           | Aver.(d <sub>wps</sub> ) | 4.5      | $\vdash$ | 4.75                                           | 4.8 4    | .75      | 4.8 4    | 4.8 5   | .3 6.7    | 5 6.7    | 5 6.75              | 6.75   | 6.75     | 6.75 | 6.8 | 6.75 | 6.75 | 6.75 | 6.75 | 6.8 |
|    |         |          |                      |              |               | Inception                |          |          |                                                |          |          |          |         |           |          |                     |        |          |      |     |      |      |      |      | -   |
|    |         |          |                      |              |               | length(cm)               |          |          | _                                              |          |          |          |         |           |          |                     |        |          |      |     |      |      |      |      |     |
|    |         |          |                      |              |               | Flow patt                | 40 to 5% |          | air cavity in step                             | , in ste | ep 1,2   |          | 101     | 100% reci | ir.vorti | recir.vortices from | n step | 3 onward | ards |     |      |      |      |      |     |
|    |         |          |                      |              | <u> </u>      | Slope of stepped spilly  | ed sb    | illway   | န္ထင္သ                                         | =38,20   | _        | ļ<br>,   |         |           |          |                     | ·      |          |      |     |      | i    |      |      |     |
|    |         |          | ٠                    |              | 1 <del></del> | Step nos.                | T        | 2        | 3                                              | 4        | 5        | 9        | 7       | ∞         | 9 10     | 0 11                | 12     | 13       | 14   | 15  | 16   | 17   | 18   | 19   | 20  |
|    |         |          |                      | <del>-</del> | ⊏.            | Max.                     | 7.5      | 9        | 5                                              | 5.5      | 9        | 7        | 8       | .5        | 6        | 6 6                 | 8.5    | 8.5      | 8    | 8   |      |      |      |      |     |
|    |         |          |                      |              |               | Min.                     | 5.5      | 5        | 4.5                                            | 4.5      | 5        | 5.5      | 9   9   | 6.5       | . 1      | 7 7                 | 6.5    | 9        | 9    | 9   | •    |      |      | -    |     |
|    |         |          |                      |              |               | Max.                     | 7.5      | 9        | 5                                              | 5.5      | 9        | 7        | ∞<br>∞  | 5         | 6        | 6 6                 | 8.5    | 8.5      | 8    | 8   |      |      |      |      |     |
|    |         |          |                      |              |               | Min.                     | 5.5      | 5        | 4.5                                            | 4.5      | 5        | 5.5      | 9 9     | 6.5       | , /      | 7 7                 |        | 6.5      | 6    | 9   |      |      |      |      |     |
|    |         |          |                      | -            |               | Aver.(d <sub>wps</sub> ) | 6.5      | 5.5      | 4.75                                           | 2        | 5.5      | 6.3      | 7 7     | .5        | ∞        | 8 8                 | 7.5    | 7.5      | 7    | 7   |      |      |      |      |     |
|    |         |          |                      |              | لڪ            | Inception                |          |          |                                                |          | $\dashv$ |          |         | -         |          | _                   |        |          |      |     |      |      |      | Ì    |     |
|    |         |          |                      |              | ==1           | length(cm)               |          |          |                                                | _        | •        | $\dashv$ | -       | -         | _        |                     |        |          |      |     |      |      |      |      |     |
|    | ,       |          |                      |              |               | Flow patt                | 100% rec | recirc   | irculating vortices                            | yvorti   | ices in  | all      | steps   |           |          |                     |        |          |      |     |      |      |      |      |     |

3.6.2.13 Experiment no.8: (Water flow depths in multislope stepped spillways) With the use of Elliptical suppressor plate, No.3 i.e. P=45mm

| 3         | 3 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5                       | 2                                                                                                                                                | 3 3 3 2.5 2.5 2.                                                                                                                          | 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                        | 25 2.5 2.5 2.5 2.25 2.3 2.3 2.3 2.25 2.25                                                                                                       |                                                                                                                                          | 55                                                                                                                                               | ities, weak                                                                                                                                    | ays $\alpha_2 = 52$                                                                                                                              | 8                                                                                                                                                | 3.5 4.5 5.                                                                                                                                     | 2 3 4.5 5.5 5 5 4.5 4.5 4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5                                                                        | 3.5 4.5 5.5 6 5.5 5 4 4                                                                                                            | 4.5 5.5 5 4.5 4 3.5 3.5 3                                                                                                                               | 25 3.25 4.5 5.5 5.5 5.5 5 4.5 3.8 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75                                                           |                                                                |                                                                          | cavities                                                                | రో                                                                          | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 4.5 4.5                                                                                                                                | 1                                                                          | 2                                                                           | 2.25 3.                                                                  |                                                                                                                                 |                                                                                                                                            |
|-----------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 0 1       | 2.                                                                  |                                                                                                                                                  | S                                                                                                                                         |                                                                                                                                          | 2.                                                                                                                                              |                                                                                                                                          |                                                                                                                                                  | pe nor s                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                | 5 3.                                                                                                                                     | ĺ                                                                                                                                  | 5 3                                                                                                                                                     |                                                                                                                                     |                                                                |                                                                          | r.vortices                                                              |                                                                             |                                                                          | $ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ld}}}}}}$ |                                                                                                                                          | 7                                                                          |                                                                             | 2                                                                        |                                                                                                                                 |                                                                                                                                            |
|           | 12                                                                  |                                                                                                                                                  | 5.2                                                                                                                                       |                                                                                                                                          | 25 2.                                                                                                                                           |                                                                                                                                          |                                                                                                                                                  | ther nap                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                | .5 3.                                                                                                                                    |                                                                                                                                    | 3.                                                                                                                                                      |                                                                                                                                     |                                                                |                                                                          | 00% reci                                                                |                                                                             | L_                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.5                                                                                                                                      | 3.                                                                         | 5                                                                           | 3.                                                                       |                                                                                                                                 |                                                                                                                                            |
| 8         |                                                                     | 2                                                                                                                                                | 2.5                                                                                                                                       | 7                                                                                                                                        | 3                                                                                                                                               |                                                                                                                                          |                                                                                                                                                  | ces,nei                                                                                                                                        |                                                                                                                                                  | 8                                                                                                                                                | 4                                                                                                                                              |                                                                                                                                          | 4                                                                                                                                  | 3.5                                                                                                                                                     | <u> </u>                                                                                                                            | · ·                                                            |                                                                          |                                                                         |                                                                             | 8                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                        | 5                                                                          | 4                                                                           | 4.5                                                                      | _                                                                                                                               |                                                                                                                                            |
|           | 2                                                                   | L.                                                                                                                                               | 2                                                                                                                                         |                                                                                                                                          | 2                                                                                                                                               |                                                                                                                                          |                                                                                                                                                  | g vorti                                                                                                                                        |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                          |                                                                                                                                    |                                                                                                                                                         | <u> </u>                                                                                                                            |                                                                |                                                                          | 25%                                                                     |                                                                             |                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                          | S                                                                          |                                                                             |                                                                          |                                                                                                                                 |                                                                                                                                            |
| L         | 5 2                                                                 | L                                                                                                                                                | .5                                                                                                                                        |                                                                                                                                          |                                                                                                                                                 |                                                                                                                                          |                                                                                                                                                  | culatir                                                                                                                                        |                                                                                                                                                  |                                                                                                                                                  | Щ                                                                                                                                              |                                                                                                                                          |                                                                                                                                    | Ľ.                                                                                                                                                      | i.                                                                                                                                  | _                                                              |                                                                          |                                                                         |                                                                             | L                                                                        | 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                          | 5.                                                                         | iر.                                                                         |                                                                          |                                                                                                                                 | _                                                                                                                                          |
| 4         |                                                                     | 2                                                                                                                                                |                                                                                                                                           | 7                                                                                                                                        | 5 2.                                                                                                                                            |                                                                                                                                          |                                                                                                                                                  | k recir                                                                                                                                        | 2°14'                                                                                                                                            | 4                                                                                                                                                | .5                                                                                                                                             |                                                                                                                                          | .5                                                                                                                                 | نہ                                                                                                                                                      | 5                                                                                                                                   | _                                                              |                                                                          |                                                                         | 8,20                                                                        | 4                                                                        | 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,                                                                                                                                       | 3                                                                          | 3                                                                           | 5                                                                        |                                                                                                                                 | _                                                                                                                                          |
| <u> </u>  | 3                                                                   | 7                                                                                                                                                | 3                                                                                                                                         | 7                                                                                                                                        | 3.                                                                                                                                              |                                                                                                                                          |                                                                                                                                                  | s,weal                                                                                                                                         | ర                                                                                                                                                | ı                                                                                                                                                | 5                                                                                                                                              | .5                                                                                                                                       | 5                                                                                                                                  |                                                                                                                                                         | 5                                                                                                                                   | -                                                              |                                                                          | ities                                                                   | రో                                                                          | n                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                 | <u></u>                                                                    |                                                                             |                                                                          |                                                                                                                                 |                                                                                                                                            |
| 2         | 3                                                                   | 2                                                                                                                                                | 3                                                                                                                                         | 2                                                                                                                                        |                                                                                                                                                 |                                                                                                                                          |                                                                                                                                                  | cavitie                                                                                                                                        | Iways                                                                                                                                            | 7                                                                                                                                                | · '                                                                                                                                            |                                                                                                                                          |                                                                                                                                    | ł                                                                                                                                                       |                                                                                                                                     | _                                                              |                                                                          |                                                                         | lways                                                                       | 7                                                                        | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                        | 2.5                                                                        | 7                                                                           |                                                                          |                                                                                                                                 | _                                                                                                                                          |
|           | 3.5                                                                 | 3                                                                                                                                                | 3.5                                                                                                                                       | 3                                                                                                                                        |                                                                                                                                                 |                                                                                                                                          | 25                                                                                                                                               | No air                                                                                                                                         | ed spil                                                                                                                                          | 1                                                                                                                                                | L                                                                                                                                              | 2                                                                                                                                        | 2.5                                                                                                                                | 7                                                                                                                                                       |                                                                                                                                     | -                                                              |                                                                          | 100%                                                                    | ed spi                                                                      | <u> </u>                                                                 | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L.                                                                                                                                       | 2.6                                                                        | 1                                                                           |                                                                          |                                                                                                                                 | ۶.                                                                                                                                         |
| Step nos. | Max.                                                                | Min.                                                                                                                                             | Мах.                                                                                                                                      | Min.                                                                                                                                     | Aver.(dwps)                                                                                                                                     | Inception                                                                                                                                | length(cm)                                                                                                                                       |                                                                                                                                                | Slope of stepp                                                                                                                                   | Step nos.                                                                                                                                        | Max.                                                                                                                                           | Min.                                                                                                                                     | Max.                                                                                                                               | Min.                                                                                                                                                    | Aver.(dwps)                                                                                                                         | Inception                                                      | length(cm)                                                               | Flow patt                                                               | Slope of stepp                                                              | Step nos.                                                                | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Min.                                                                                                                                     | Max.                                                                       | Min.                                                                        | Aver.(dwps)                                                              | Inception                                                                                                                       | leneth(cm)                                                                                                                                 |
|           |                                                                     |                                                                                                                                                  |                                                                                                                                           |                                                                                                                                          |                                                                                                                                                 |                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                          |                                                                                                                                    | 0.03                                                                                                                                                    |                                                                                                                                     |                                                                |                                                                          |                                                                         |                                                                             |                                                                          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                          |                                                                            |                                                                             |                                                                          |                                                                                                                                 |                                                                                                                                            |
| of        | spillw.                                                             | ways (                                                                                                                                           |                                                                                                                                           |                                                                                                                                          |                                                                                                                                                 | -                                                                                                                                        | <del>, -</del>                                                                                                                                   |                                                                                                                                                |                                                                                                                                                  | -                                                                                                                                                |                                                                                                                                                |                                                                                                                                          |                                                                                                                                    | 0.2                                                                                                                                                     |                                                                                                                                     |                                                                |                                                                          |                                                                         |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                                            | -                                                                           |                                                                          |                                                                                                                                 |                                                                                                                                            |
| <u> </u>  | (cum)                                                               |                                                                                                                                                  |                                                                                                                                           |                                                                                                                                          |                                                                                                                                                 |                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                          |                                                                                                                                    | 0.006                                                                                                                                                   | ,                                                                                                                                   |                                                                |                                                                          |                                                                         |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                                            |                                                                             |                                                                          |                                                                                                                                 |                                                                                                                                            |
| metre (   |                                                                     |                                                                                                                                                  |                                                                                                                                           | -                                                                                                                                        | -                                                                                                                                               |                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                          |                                                                                                                                    | 1.66                                                                                                                                                    |                                                                                                                                     |                                                                |                                                                          |                                                                         |                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                                            |                                                                             |                                                                          |                                                                                                                                 |                                                                                                                                            |
|           | of perunit Step nos.   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (cum) spillw length Max. 3.5 3 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (cum) spillw. length Max. 3.5 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (cum) spillw length Max. 3.5 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (cum) spillw. length Max. 3.5 3 3 2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2 | (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (cum) spillw length Max. 3.5 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (cum) spillw length Max. 3.5 3 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (cum) spillw length Max. 3.5 3 3 2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2 | (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (cum) spillw length Max. 3.5 3 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (cum) spillw length Max. 3.5 3 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (cum) spillw length Max. 3.5 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (cum) spillw length Max. 3.5 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (Q) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 10 ways (q) Min. 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (Q) of perunit Step nos. 31 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 10 10 11 12 13 14 15 16 17 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | (Q) of perunit Step nos. 3.5 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 (ways) (d) Min. 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (Q) of perunit Step nos. 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (Q) of perunit Siep nos. 3.5 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (Q) of perunit Step nos. 35 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (cm) spillw. length (Max. 3.5 3 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (bm) spillw length (Max. 3.5 2.3 2.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (bm) spillw, length (bm) Max. 3.5 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) of perunit Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 10 10 max. 3 5 3 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (bm) spilly, length Max. 3.5 3 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (eum) spilly, length Max. 3.5 3 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (bm) spillw. length Max. 3.5 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 | (b) of perunit Step nos. 3 5 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 18 ways (i) Max. 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (b) of perunit Step nos. 35 3 3 4 5 6 7 8 9 10 111 12 13 14 15 16 17 18 19  (bm) spilly length Max. 35 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |

| Crank (Crank)   Ord   Decrunit   Step nos.   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X | SN Mano | Disch    | Disch. Width Disch. | h Dis  |              | Slope of stepped spillw  | ped sp | illwa | ys α <sub>I</sub> | =34°32 | 12       |         |         |          |        |          |        |          |              |    |          |          |     |          |     |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|----------|---------------------|--------|--------------|--------------------------|--------|-------|-------------------|--------|----------|---------|---------|----------|--------|----------|--------|----------|--------------|----|----------|----------|-----|----------|-----|-----|
| (ccm) spillw, length Max. 4   35   35   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | metre   | <u>0</u> | Jo                  | per    |              | Step nos.                | 1      | 2     |                   | 4      | 5        | 9       | 7       | 8        | 6      | 10       | 11     | 12       | 13           | 14 | 15       | 16       | 17  | 18       | 19  | 20  |
| (b m) (c m) (b m) (c m) (b m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m) (d m)                  |   | reading | $\sim$   | spillw              | v. len |              | Max.                     | 4      | 3.5   | 6.2               | 3      | 3        | 3       | 3       | 3        | 3      | 3        | 3      | 3        | 8            | 3  | 3        | -        |     | ļ.<br> - |     |     |
| (b m) cum/m) Max. 4 3.5 3.5 3.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | (x cm)  |          | ways                |        |              | Min.                     | 3      | 2.8   | 2                 |        |          | 2.5     |         |          |        |          | 2.5    | 2.5      | 5            | 5  |          | -        | -   |          | -   |     |
| Aver. (d. e.g.)  2.95  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008  0.008                   |   |         |          | (p m)               |        |              | Max.                     | 4      | 3.5   |                   | 3      | 3        | 3       | 3       | 3        | 3      | 3        | 6      | 8        | 3            | 3  | 3        | -        | _   |          |     |     |
| Aver. (d <sub>rep</sub> ) 3.5 3.15 3.15 2.8 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |         |          |                     |        |              | Min.                     | 3      | 2.8   | 2.8               |        |          |         |         |          |        |          |        | 2.5      | 5            | 5  |          | -        | _   | -        | ├   | Γ   |
| Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Inception   Ince                   |   |         |          |                     |        |              | Aver.(d <sub>wps</sub> ) | 1      | 3.15  | 3.15              | 2.8    | 2.75     | 2.8     | 2.8     | <u>∞</u> |        |          |        |          |              |    | 2.8      |          |     | -        | -   | Π   |
| Elow patt No air cavities, weak recirculating vortices, neither nappe nor skimming flow Slope of stepped spillways $\alpha_2 = 32^{\circ}14$ Slope of stepped spillways $\alpha_2 = 32^{\circ}14$ Max. 2.8 4.5 5.5 5.5 5.4 4 4 2.2 4.4 4.5 4.6 4.8 5 4.8 Max. 2.8 4.5 5.5 5.5 5.5 5.5 5.5 5.4 4 4 3.5 3.6 3.8 4 4 4 3.8 Slope of stepped spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the spillways of a series of the series of the spillways of a series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series |   |         |          |                     |        |              | Inception                |        |       |                   |        | -        |         |         |          |        | -        |        | -        |              | _  |          | $\vdash$ |     |          |     |     |
| Elow patt No air cavities, weak recirculating vortices, neither nappe nor skirmning flow Stepped spillways $\alpha_2 \pm 32^{\circ}14^{\circ}$ .  Slope of stepped spillways $\alpha_2 \pm 32^{\circ}14^{\circ}$ .  Max. 2.8 4.5 5.5 5.5 5.5 5.5 5.4 4 4.2 4.4 4.5 4.6 4.8 5 4.8 Min. 2.4 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |         |          |                     |        |              | length(cm)               | 20     |       |                   |        |          | -       |         |          | -      |          | -      |          |              |    |          | -        |     |          |     |     |
| Slope of stepped spillways $c_2 = 52^\circ 14^\circ$ Step nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  Max. 2.8 4.5 5 5.5 5.5 5 4.5 4 4 2.4, 4.4 4.5 4.6 4.8 5 4.8  Min. 2 4 5 5.5 5.5 5.5 5 4.5 4 4 3.5 3.6 3.8 4 4 4 4 3.8  Aver.(d <sub>wp</sub> ) 2.4 4.25 5 5.5 5.5 5 5 4.5 4 4 3.7 3.9 4.1 4.25 4.4 4.5 4.3 4.3 8.3 1.6 pto.  Step nos. 1 1 2 3 4 5 6 6 5.5 5.5 5 5 4.5 4 4 3.7 3.9 4.1 4.25 4.4 4.5 4.3 4.3 8.3 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |         |          |                     |        |              |                          | No air | cavi  | ies,we            | ak re  | circul   | ating   | vortice | es,nei   | ther n | appe     | TOT Sk | immi     | off gr       |    | $\vdash$ | 1        |     |          | 1   |     |
| Step nos.   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17    Max.   2.8   4.5   5.5   5.5   5.5   5.5   5   4.5   4   4.2   4.4   4.5   4.6   4.8   5   4.8    Min.   2   4   5   5.5   5.5   5.5   5   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |         |          |                     |        | · -          | Slope of steps           | ds pad | illwa | ys α2:            | =52"1  | 4        |         |         |          |        |          |        |          | )            |    |          |          |     |          |     |     |
| 2.95 0.008 0.2 0.04 Min. 2.8 4.5 5 5.5 5.5 5.5 5.4 4 4.2 4.4 4.2 4.4 4.5 4.6 4.8 5 4.8 Min. 2.8 4.5 5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |         |          |                     |        |              | Step nos.                | 1      | 2     |                   | 4      | 5        | 9       | 7       | 8        | 6      | 10       | 11     | 12       | 13           | 14 | 15       | 16       | 17  | 18       | 19  | 20  |
| Min. 2. 4 5 5.5 5.5 5.5 5.4 4 4 3.5 3.6 3.8 4 4 4 3.8 4 4 3.8 4 4 4 3.8 4 4 4 3.8 4 4 4 3.8 4 4 4 3.8 4 4 4 3.8 4 4 4 3.8 4 4 4 3.8 4 4 4 3.8 4 4 4 3.8 4 4 4 3.8 4 4 4 3.8 4 4 4 3.8 4 4 4 3.8 4 4 4 4 3.8 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 3.8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |         |          |                     |        |              | Max.                     | 2.8    | 4.5   |                   | 5.5    |          |         | 5       | 4.5      | 4      |          | 4.2    | 4.4      |              |    |          | 5        |     | 4.5      | 4.5 | 4.5 |
| 2.95 0.008 0.2 0.04 Min. 2 4 5 5.5 5.5 5.5 5.5 4.8 4 2 4 4.2 4.4 4.5 4.4 4.5 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |         |          |                     |        |              | Min.                     | . 2    | 4     | 5                 | 5.5    | 5        | 5       |         | 4        | 4      | 3.5      | 3.6    | 3.8      | 4            | 4  | 4        | 4        |     | 3.5      | 3.5 | 3.5 |
| 2.95 0.008 0.2 0.004 Min. 2 4 4.25 5.5 5.2 5.3 4.8 4.3 4 3.5 3.6 3.8 4 4 4 4 4 3.8 1.8   Aver.(d <sub>wps</sub> ) 2.4 4.25 5 5.5 5.2 5.3 4.8 4.3 4 3.75 3.9 4.1 4.25 4.3 4.4 4.5 4.3   Inception length(cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |         |          |                     |        | <u>.</u>     | Max.                     |        | 4.5   | 5                 | 5.5    | 5.5      |         |         | 4.5      | 4      | <u> </u> | 4.2    | 4.4      |              | 9  |          | 5        |     | 4.5      | 4.5 | 4.5 |
| tion h(cm) 2.4 4.25 5 5.25 5.25 5.25 4.8 4.3 4.3 75 3.9 4.1 4.25 4.3 4.4 4.5 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 |         | 0.00     |                     | 7      | 0.04         | Min.                     |        | 4     | 5                 | 5.5    | 5        | 5       | 4.5     | 4        | 4      | 5.       |        | 3.8      | 4            | 4  | 4        | 4        | ∞   | 3.5      | 3.5 | 3.5 |
| h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm) h(cm)                  |   |         |          |                     |        |              | Aver.(d <sub>wps</sub> ) |        | 4.25  | 5                 | 5.5    | 5.25     |         |         | 4.3      | ⊢      | 1.75     | 3.9    | -        | .25          | 3  | 4.       | ا        | 4.3 | 4        | 4   | 4   |
| hf(cm) hf(cm)  patt 100% air cavities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |         |          |                     |        |              | Inception                |        |       |                   |        |          |         |         |          | _      |          |        | <u> </u> |              |    | _        | _        |     | _        | _   |     |
| e of stepped spillways $\alpha_3$ =38°50¹         50 to 80% air         100% recir.vortices           nos.         1         2         3         4         5         6         7         8         9         10         11         12         13         14         15         16         17           nos.         1         2         3         4         5         6         7         8         9         10         11         12         13         14         15         16         17           nos.         3         3.6         4.5         6         6         5.5         5.5         4.5         4         3.8         3.5         3.5         3.5         3.5           1         3.8         3.5         4         4.5         4.5         4.5         4.5         4.5         4.5         3.8         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |         |          |                     |        |              | length(cm)               |        |       |                   |        |          |         |         |          | _      |          | -      |          | _            | -  | _        |          | -   | _        |     |     |
| nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 10 10 11 12 13 14 15 16 17 10 10 11 12 13 14 15 16 17 10 10 11 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |         |          |                     |        |              |                          | 100%   |       | vities            |        | 0 to 80  | 0% air  |         | T        | 30% re | cir.vo   | rtices |          |              |    |          |          |     |          |     |     |
| nos.       1       2       3       4       5       6       7       8       9       10       11       12       13       14       15       16       17         3.8       3.5       4.5       5       6       6       5.5       5.5       4.5       4       3.8       3.5       3.5       3.5       3.5         3.8       3.5       4.5       5       6       6       5.5       5.5       4.5       4       3.8       3.5       3.5       3.5         3.8       3.5       4       4.5       4.5       4.5       4.5       4.5       3.8       3.5       3.5       3.5         4 w <sub>ps</sub> )       3.4       3.25       3.5       4       4.5       4.8       4.65       4       3.5       3.4       3.5       3.3       3.5         h(cm)       5       4       4.5       4.8       4.65       4       3.5       3.4       3.25       3.3       3.3       3.3         h(cm)       5       1       100% recirculating vortices in all steps       100% recirculating vortices in all steps       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |         |          |                     |        |              | Slope of stept           | ds pad | illwa | /S 03             |        | 0        |         |         |          |        |          |        |          |              |    |          |          |     |          |     |     |
| 3.8 3.5 4.5 5 6 6 5.5 5.5 4.5 4 3.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | _       |          |                     |        | •            | Step nos.                | 1.     | 7     |                   | 4      | 5        | 9       | 7       | 8        | 6      | 10       | 11     | 12       | 13           |    | 15       | 16       | 17  | 18       | 19  | 20  |
| 3.8       3.5       4       4.5       4.5       4       4       3.8       3.5       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | _       |          |                     |        |              | Max.                     |        | 3.5   | 4                 | 5      | 9        | 9       | 3.      | 5.5      | 5.5    | 4.5      | 4      | <u>∞</u> |              | N. | 3.5      | -        |     | -        | -   |     |
| 3.8 3.5 4.5 5 6 6 5.5 5.5 5.5 4.5 4 3.8 3.5 3.5 3.5 3.6 4.5 4.6 5.5 5.5 5.5 4.5 4.5 4.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |         |          |                     |        |              | Min.                     | 3      | 3     | 3.5               | 4      |          | 4.5     | 4       |          | 3.8    | 3.5      | 3      | 3        | <del>m</del> | 3  | 3        | -        |     |          | _   |     |
| Clayes 3.3 3.5 4 4.5 4.5 4.8 4.8 4.8 3.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |         |          |                     |        |              | Max.                     | 3.8    | 3.5   | 4.5               | 5      | 9        | 9       | 5.      | 1,7      | 5.5    | 4.5      | 4      |          | 7.           | ٠. | 3.5      | _        |     |          | _   |     |
| s) 3.4 3.25 4 4.5 5.25 5.3 4.8 4.65 4 3.5 3.4 3.25 3.5 3.6 (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |         |          |                     |        | <u> </u>     | Min.                     | _      | 3     | 3.5               | 4      | 4.5      |         | 4       |          | 3.8    |          | 3      | 3        | . 3          | 3  | 3        | $\vdash$ | _   |          | _   |     |
| ) 5<br>100% reci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |         |          |                     |        | <u> </u>     | Aver.(d <sub>wps</sub> ) |        | 3.25  | 4                 | 2      | 5.25     | 5.3     | 8       | 8        | .65    |          | 3.5    | 4        | 25 3.        | 25 | 3.3      |          |     |          |     |     |
| () 5<br>100% rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |         |          |                     |        | <u>. '</u> ] | Inception                |        |       |                   |        |          |         |         |          |        |          |        |          |              |    |          |          |     |          | _   |     |
| 100% rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |         |          |                     |        | <u> 1  </u>  |                          | 5      |       |                   |        | -        |         |         |          |        |          |        |          |              | -  |          |          |     |          |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |         |          |                     | _      |              |                          | 100%   | recir | ulatin            | g vor  | tices in | n all s | teps    |          |        |          |        |          |              |    |          |          |     |          |     |     |

| _                                     | 20                 |           |          |          |      |                          |           |            | ,                          | Ι                                         | 2         | <u>\</u> | 4    | Ś       | 4           | m            |           |            | [ <u> </u>          |                                       | 20                  |      |     |      | İ    | Ė           |           | - 1        |                                          |           |   |  |
|---------------------------------------|--------------------|-----------|----------|----------|------|--------------------------|-----------|------------|----------------------------|-------------------------------------------|-----------|----------|------|---------|-------------|--------------|-----------|------------|---------------------|---------------------------------------|---------------------|------|-----|------|------|-------------|-----------|------------|------------------------------------------|-----------|---|--|
|                                       | 19 2               | Н         | -        |          |      |                          |           |            |                            |                                           | 19 2      | 4.5 4.5  | 4    | 4.5 4.5 |             | 5 4.3        |           |            | ١.                  |                                       | 19 2                |      |     |      |      |             |           | -          |                                          | İ         |   |  |
|                                       | 18                 |           |          |          |      | _                        |           |            |                            |                                           | 18        |          | 4    |         |             | 5 4.25       |           |            |                     |                                       | 18                  |      |     |      |      |             |           |            |                                          |           |   |  |
|                                       |                    | -         |          |          | _    |                          |           |            |                            |                                           | L.        | 2        |      |         |             | 5 4.5        |           | 4          | •                   | : '                                   |                     |      |     | _    |      |             |           |            |                                          |           |   |  |
|                                       | 17                 |           |          |          | i    |                          |           |            |                            |                                           | 17        | 5.5      |      |         | 4.5         |              |           |            |                     |                                       | 17                  | _    |     |      |      | _           |           |            |                                          |           |   |  |
|                                       | 16                 |           |          | _        |      |                          |           |            |                            |                                           | 16        |          | 4.5  |         | ١.          | 5            |           | :          | .                   |                                       | 16                  |      |     |      |      |             |           |            |                                          | -         |   |  |
|                                       | 15                 |           | 2.8      | i l      | 2.8  |                          |           |            |                            |                                           | 15        | 1        | 1    | 5.5     | ı           | 3            |           |            |                     |                                       | 15                  |      | 3   |      | l I  |             |           |            |                                          |           |   |  |
|                                       | 14                 |           | 2.8      |          | 2.8  |                          |           |            |                            |                                           |           | 1        | 4.5  | l       |             | 5            | ·         |            |                     | į                                     | 14                  | ٰ    |     |      | ł    |             |           |            |                                          |           |   |  |
| ;                                     | 13                 |           | 2.8      |          | 2.8  |                          |           |            |                            |                                           | 13        | 1        | 4.5  |         | 4.5         | 5            |           |            |                     |                                       | 13                  | 4    | 3.5 |      | 3.5  |             |           |            |                                          |           | ٠ |  |
|                                       | 12                 | 3         | 2.8      | 3        | 2.8  | 2.9                      |           |            |                            |                                           | 12        | 5        | 4    | 5       | 4           | 4.5          |           |            |                     |                                       | 12                  |      |     | 1    | 3.8  | 14          |           |            |                                          |           |   |  |
|                                       | 11                 | 3         | 2.8      | 3        | 2.8  | 2.9                      |           |            |                            |                                           | 11        | 4.5      | 4    | 4.5     | 4           | 4.25         |           |            |                     |                                       | 11                  | S    | 4   | S    | 4    | 4.5         |           |            |                                          |           |   |  |
|                                       | 10                 | 3         | 2.8      | 3        | 2.8  | 2.9                      |           |            |                            |                                           | 10        | 4        | 3.5  | 4       | 3.5         | 3.75         |           |            | s                   |                                       | 10                  | 5.5  | 4.5 | 5.5  | 4.5  | 5           |           |            |                                          | -         |   |  |
|                                       | 6                  | 3         | 2.8      | 3        | 2.8  | 2.9                      |           |            |                            |                                           | 6         | 4        | 3.5  | 4       | 3.5         |              |           |            | 100% recir.vortices |                                       | 6                   | 5.5  | 4.5 | 5.5  | 4.5  | 5           | -         |            | ֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֡֓֡ |           |   |  |
|                                       | 8                  | €.        | 2.8      | 6        | 2.8  | 2.9                      |           |            | န္                         |                                           | ∞<br>∞    | 4        | 3.5  | 4       | 3.5         | 1            | -         |            | recir.v             |                                       | $\overline{\infty}$ | 5.5  | 4.5 | 5.5  | 4.5  | 5           |           |            |                                          |           |   |  |
|                                       | 7                  | 3         | 2.8      | €.       | 2.8  | 2.9                      |           |            | vortic                     | i                                         | 7         | S        | 4.5  | 5       | 4.5         | 4.8          |           |            | %00                 |                                       | 7                   | 5.5  | 4.5 | 5.5  | 4.5  | S           |           |            | teps                                     |           |   |  |
|                                       | 9                  | 4         | 3        | 4        | 3    | 3.5                      |           |            | eak recirculating vortices |                                           | 9         | 5.5      | 5    | 5.5     | 5           | 5.3          |           |            |                     | İ                                     | 9                   | 5.5  | 4.5 | 5.5  | 4.5  | 5           |           |            | ng vortices in all steps                 |           |   |  |
| .2                                    | 5                  | 4         | 3        | 4        | 3    | 3.5                      |           |            | ircul                      | -                                         | 5         | 5.5      | 5.5  | 5.5     | 5.5         | 5.5          |           |            | % air.              | -0                                    | 5                   | 5.5  | 4.5 | 5.5  | 4.5  | 5           |           |            | ices i                                   |           |   |  |
| =34°32                                | 4                  | 4         | 3        | 4        | 3    | 3.5                      |           | -          | ak re                      | =52°14'                                   | 4         | 5.5      | 5.5  | 5.5     | 5.5         | 5.5          |           |            | 60to 10% air.       | -38,20                                | 4                   | S    | 4   | N    | 4    | 4.5         | -         |            | g vor                                    |           |   |  |
|                                       | 3                  | 4         | 3        | 4        | 3    | 3.5                      |           |            | es,we                      |                                           | 3         | 3        | 5    | 5       | 2           | 5            | -         |            |                     |                                       | 9                   | 4    | 3.5 | 4    | 3.5  | 3.75        |           | _          | ılatin                                   |           |   |  |
| Iway                                  | 2                  | 4         | 3        | 4        | 3    | 3.5                      |           |            | caviti                     | Iway                                      | 2         | 4.5      | 4.5  | 4.5     | 4.5         | 4.5          | -         |            | ir cav              | Iway                                  | 7                   | 3.5  | 3   | 3.5  | 3    | 3.25        |           |            | ecirc                                    |           |   |  |
| d spil                                | <del> </del>       | 4.5       | 3.5      | 4.5      | 3.5  | 4                        |           | 35         | No air cavities,w          | d spil                                    | 1         | 6        | 6    | 1       | 1           | 6            |           |            | 100% air cav.       | d spil                                | -                   | 4.8  | 3.8 | 4.8  | 3.8  | 4.3 3       |           | 5          | 100% recirculati                         |           |   |  |
| eppe                                  | $\vdash$           |           |          |          |      |                          |           | <u> </u>   |                            | eppe                                      | _         | -        | -    | -       | -           |              |           |            | 1                   | eppe                                  |                     |      |     | H    |      |             |           | _          | 1(                                       |           |   |  |
| Slope of stepped spillways $\alpha_1$ | nos.               |           |          |          |      | Aver.(d <sub>wps</sub> ) | tion      | length(cm) | patt                       | Slope of stepped spillways α <sub>2</sub> | nos.      |          |      |         |             | Aver.(dwps.) | tion      | length(cm) | Flow patt           | Slope of stepped spillways $\alpha_3$ | nos.                |      |     |      |      | Aver.(dwps. | tion      | length(cm) | patt                                     |           | • |  |
| Slop                                  | Step nos.          | Max.      | Min.     | Max.     | Min. | Aver                     | Inception | lengt      | Flow patt                  | Slop                                      | Step nos. | Max.     | Min. | Max.    | Min.        | Aver         | Inception | lengt      | Flow                | Slop                                  | Step nos.           | Max. | Min | Max. | Min. | Aver        | Inception | lengt      | Flow patt                                |           |   |  |
| Ę.                                    | nit                | н.        |          | (m/      |      |                          |           |            | ,                          |                                           |           |          |      |         | 0.05        |              | *         |            |                     |                                       |                     |      |     |      |      |             |           |            |                                          |           |   |  |
| Disch.                                | perunit            |           | <u> </u> | cum/m)   |      |                          |           |            |                            |                                           |           |          |      |         | <u></u>     |              | 1         |            |                     |                                       |                     |      |     |      |      |             |           |            | _                                        |           |   |  |
| Width                                 | jo                 | spillw.   | ways     | (p m)    |      |                          |           |            |                            |                                           |           |          |      |         | 0.5         |              |           |            |                     |                                       |                     |      |     |      |      |             |           |            |                                          |           |   |  |
| Disch. Width                          | _ <del></del><br>② | (cum)     | <u> </u> | <u> </u> |      |                          |           |            |                            |                                           |           |          |      |         | 0.01        |              |           |            |                     |                                       |                     |      |     |      |      |             |           |            | -                                        | <br> <br> |   |  |
| _                                     | metre (            | reading ( | (x cm)   |          |      |                          |           |            |                            |                                           |           | -        |      |         | 4.61        |              |           | ,          |                     |                                       |                     |      |     |      |      | ,           |           |            |                                          |           |   |  |
| SN Mano                               | me                 | rea       | Š        |          |      |                          | -         |            | _                          |                                           |           |          |      |         | <del></del> |              |           |            |                     |                                       |                     |      |     |      |      |             |           |            |                                          |           |   |  |

| SN          | SN Mano | Disch.     | Disch. Width Disch.  | Disch.     | Slope of stepped spilly  | ped sp   | illwa | vays $\alpha_1$ :                            | =34°32 | -2       |         |                     |          |        |          |          |        |        |        |     |     |     |     | <br> |
|-------------|---------|------------|----------------------|------------|--------------------------|----------|-------|----------------------------------------------|--------|----------|---------|---------------------|----------|--------|----------|----------|--------|--------|--------|-----|-----|-----|-----|------|
|             | metre   | <u>0</u>   | Jo                   | perunit    | Step nos.                |          | 2     | 3                                            | 4      | 5        | 9       | 7                   | 8        | 9      | 10 $11$  | <u> </u> | 12 13  | 3 14   | 4 15   | 16  | 17  | 18  | 19  | 8    |
| -           | reading | (cnm)      | (cum) spillw. length | length     |                          | 5.5      | 5.5   | 5                                            | 4.5    | 4        | 3.5     | 3.5                 | 3.5 3    | i.     | 3.5 3.5  | 3        | 5.3    | 5 3.5  | 3.5    |     |     |     |     |      |
|             | (x cm)  |            | ways                 | <u>(</u> ъ | Min.                     | 4.5      | 4.5   | 4                                            | 3.5    | 3        | 3       | 3                   | 3        | 3      | 3        | 3        | 3      | 3 3    | 3 3    |     |     |     |     |      |
|             |         |            | (p m)                | cum/m)     | Max.                     | 5.5      | 5.5   | 5                                            | 4.5    | 4        | 3.5     | 3.5                 | 3.5 3.   | .5 3   | .5 3     | 5 3.     | .5 3.  | .5 3.5 | 3.5    |     |     |     |     |      |
|             |         |            |                      |            | Min.                     | 4.5      | 4.5   | 4                                            | 3.5    | 3        | 3       | 3                   | 3        | 3      | 6        | 3        | 3      | 3 3    |        |     |     |     |     |      |
|             |         |            |                      |            | Aver.(d <sub>wps</sub> ) | 5        | 5     | 4.5                                          | 4      | 3.5      | 3.3     | 3.3                 | 3.3 3.2  | 25 3.2 | .25 3.25 | 5 3.25   | 5 3.25 | 5 3.25 | 3.3    |     |     |     | •   |      |
|             |         | ı          |                      |            | Inception                |          |       |                                              |        |          |         | -                   |          |        |          |          | _      | ·.<br> |        |     |     |     |     |      |
|             |         |            |                      |            | length(cm)               | 35       |       |                                              |        |          |         |                     |          | _      | _        |          |        |        |        |     |     |     |     |      |
|             |         |            |                      |            | Flow patt                | No air   | cavit | No air cavities, weak recirculating vortices | ak re  | ircul    | ting v  | ortice              | Š        |        |          |          |        |        |        |     |     |     |     |      |
|             |         |            |                      |            | Slope of stepped spilly  | ped sp   | illwa | rays α2 =                                    | =52°14 | <b>-</b> |         |                     |          |        |          |          |        |        | ļ<br>, |     |     | ;   |     |      |
|             |         |            |                      |            | Step nos.                | 1        | 2     | 6                                            | 4      | 5        | 9       | 7                   | 8        | 6      | 10 1     | 1 1      | 2 13   | 3 14   | 15     | 16  | 17  | 18  | 19  | 20   |
|             |         |            |                      |            | Max.                     | 3.5      | 4.5   | 5                                            | 5.5    | 4        | 4       | 4                   | 4        | 4      | .5       | 5        | 5 5.5  | 5 6    | 5 5    | 5   | 9   | 9   | 5.5 | 5.5  |
|             |         |            |                      |            | Min.                     | 3        | 4.5   | 5                                            | 5.5    | 3.5      | 3.5     | 3.5                 | 3.5 3.   | .5     | 3 3.     | .5       | 4 4.5  | 5 4.8  | 3 4.8  | 4.8 | 4.8 | 4.8 | 4.5 | 4.5  |
|             |         |            |                      |            | Max.                     | 3.5      | 4.5   | 5                                            | 5.5    | 4        | 4       | 4                   | 4        | 4 4    | .5       | 2        | 5.5    | 9   9  | 5 5    | 5   | 9   | 9   | 5.5 | 5.5  |
| 4           |         | 6.63 0.012 | 0.2                  |            | 0.06 Min.                | 3.       | 4.5   | 5                                            | 5.5    | 3.5      | 3.5     | 3.5                 | 3.5   3. | 3.5    | 3 3.5    |          | 4.4    | 5 4.8  | 3 4.8  | 4.8 | 4.8 | 4.8 | 4.5 | 4.5  |
|             | •       |            | -                    |            | Aver. $(d_{wps})$        | 3.25     | 4.5   | 5                                            | 5.5    | 3.75     | 3.8     | 3.8                 | 3.8 3.7  | 75 3.7 | 75 4.25  | 4.       | 5      | 5 5.4  | 4.9    | 4.9 | 5.4 | 5.4 | . 5 | 5    |
|             |         |            |                      |            | Inception                |          |       |                                              |        |          |         |                     |          |        |          |          |        |        |        |     |     |     |     |      |
|             |         |            |                      |            | length(cm)               |          |       |                                              |        |          |         |                     | _        |        |          |          |        | _      |        |     |     |     |     |      |
|             |         |            |                      |            | Flow patt                | 100% air |       | 50% air.                                     |        | 00% 1    | recir.v | 100% recir.vortices | S        |        |          |          |        |        |        |     |     |     |     |      |
|             |         |            |                      |            | Slope of stepped spilly  | bed sp   | illwa | rays α3 =                                    | =38,20 | 0.       |         |                     |          |        |          |          |        |        |        |     |     |     |     |      |
|             |         |            |                      |            | Step nos.                |          | 2     | 3                                            | 4      | 5        | 9       | 7                   | 8        | 9 1    | 10  11   | 1 12     | 1      | 3 14   | 15     | 16  | 17  | 18  | 19  | 20   |
|             |         |            |                      |            | Max.                     | 5        | 4     | 4.5                                          | 5      | 5.5      | 9       | 9                   | 9        | 9      | 6 5.8    | 8 5.5    |        | 5 4    | 1 4    |     |     |     |     |      |
| <del></del> |         |            |                      |            | Min.                     | 4        | 3.5   | 4                                            | 4.5    | 4.5      | 4.5     | 5                   | 5        | 5      | 5 4.5    |          | 4      | 4 3.5  | 3.5    |     |     |     |     |      |
|             |         |            |                      |            | Max.                     | 5        | 4     | 4.5                                          | 5      | 5.5      | 9       | 9                   | 9        | 9      | 6 5.     | .8 5.5   |        | 5 4    | t 4    |     |     |     |     |      |
|             |         |            |                      |            | Min.                     | 4        | 3.5   | 4                                            | 4.5    | 4.5      | 4.5     | 5                   | 5        | 5      | 5 4.5    |          | , 4    | 4 3.5  | 3.5    |     |     |     |     |      |
|             |         |            |                      | -          | Aver.(d <sub>wps</sub> ) | 4.5      | 3.75  | 4.25                                         | 4.8    | 5        | 5.3     | 5.5                 | 5.5 5.   | 5 5.   | .5 5.1   | 5 4.75   | 4      | 5 3.75 | 3.8    |     |     |     |     |      |
|             |         |            |                      | _          | Inception                |          |       |                                              |        |          |         |                     |          |        |          |          |        |        |        | ·   |     |     |     |      |
|             |         |            |                      |            | length(cm)               | 5        |       |                                              |        |          |         |                     |          |        |          |          |        |        |        |     |     |     |     |      |
|             |         |            |                      |            | Flow patt                | 100%     | recir | 100% recirculating vortices in               | g vort | ices ii  | all     | steps               |          |        |          |          |        |        |        |     |     |     |     |      |

| Slope of stepped spillw            |
|------------------------------------|
| 1                                  |
| 9                                  |
| 4                                  |
| 9                                  |
| 4 4                                |
| 5 4.                               |
|                                    |
| 25                                 |
| No air cav                         |
| Slope of stepped spillw            |
| 7                                  |
| 4                                  |
| 4.                                 |
| 4.                                 |
| 4.                                 |
| 4                                  |
|                                    |
|                                    |
| 100% air                           |
| Slope of stepped spillw            |
| ·                                  |
|                                    |
| 3.5                                |
| 4                                  |
| 4                                  |
| 3.75                               |
|                                    |
|                                    |
| 100% recirculating vortices in all |

| -        | SN Mano | Disch.   | Disch. Width Disch. | ı Dis    |           | Slope of stepped spillways | ed sp     | illwa   | ซี                                    | =34°32 | .7                  |        |        |          |       |          |          |         |           |        |      |     |      |      |     |
|----------|---------|----------|---------------------|----------|-----------|----------------------------|-----------|---------|---------------------------------------|--------|---------------------|--------|--------|----------|-------|----------|----------|---------|-----------|--------|------|-----|------|------|-----|
|          | metre   | <u>0</u> | ot                  | peru     | perunit   | Step nos.                  | 1         | 2       | 3                                     | 4      | 5                   | 9      | 7      | 8        | 6     | 10 1     | 11 1     | 2 1     | 3 1       | 4 15   | ) 16 | 17  | 7 18 | 3 19 | 20  |
| <u> </u> | reading |          | (cum) spillw.       | . length |           | Max.                       | 7         | 9       | 5.5                                   | 5      | 4                   | 4      | 4      | 4        | 4     | 4        | 4        | 4       | 4         | 4 4    |      |     |      |      |     |
| <u> </u> | (x cm)  |          | ways                | <u> </u> |           | Min.                       | 2         | 5.5     | 5                                     | 4      | 3.5                 | 3.5    | 3.5    | 3.5 3    | 5.    | 3.5   3. | 5 3.     | .5 3.   | .5 3.5    | 5 3.5  | 15   |     |      | i    |     |
|          |         |          | (p m)               |          | cum/m)    | Max.                       | 7         | 9       | 5.5                                   | 5      | 4                   | 4      | 4      | 4        | 4     | 4        | 4        | 4       | 4         | 4      |      |     | _    |      | _   |
| -        |         |          |                     |          |           | Min.                       | 5         | 5.5     | Ñ                                     | 4      | 3.5                 | 3.5    | 3.5    | 3.5 3    | 3.5 3 | 3.5 3.5  | <u> </u> | 3.5 3.5 | 5 3.5     | 5 3.5  | 15   |     | _    | Ŀ    |     |
|          |         |          |                     |          | , ,       | Aver.(d <sub>wps</sub> )   | 9         | 5.75    | 5.25                                  | 4.5    | 3.75                | 3.8    | 3.8    | 3.8 3.7  | 75 3. | 75 3.7   | 75 3.7   | 75 3.7  | 75 3.75   | 5 3.8  |      |     |      |      | _   |
|          |         |          |                     |          |           | Inception                  |           |         |                                       | -      |                     |        |        |          |       |          |          |         |           |        |      |     | 1    |      |     |
|          |         |          |                     |          |           | length(cm)                 | 25        |         |                                       | _      |                     |        |        |          |       |          | _        |         |           |        |      |     |      |      |     |
|          |         |          |                     |          |           |                            | No air ca | rcavit  | vities, strong recirculating vortices | ong re | circul              | ating  | vortic | es       |       |          |          |         |           |        |      |     |      |      | ·   |
|          |         |          |                     |          | <u> </u>  | Slope of stepped spillways | sed sp    | illwa   | $VS \alpha_2 =$                       | =52°14 | <u>_</u>            |        |        |          |       |          |          |         |           |        |      |     |      |      |     |
|          |         |          |                     |          | <u> </u>  | Step nos.                  | 1         | 2       | 3                                     | 4      | 5                   | 9      | 7      | 8        | 6     | 10 1     | 1 1      | 2 1     | 3 14      | 4 15   | 16   | 17  | 7 18 | 3 19 | 20  |
|          |         |          |                     |          | L==_      | Max.                       | 4         | 4.5     | 5                                     | 5.5    | 5.5                 | 5.5    | 5      | 5        | 5 5   | 5.5      | 9        | 9       | 9         | 9 9    | 9    | 9   | 9    | 9    | 9   |
|          |         |          |                     |          |           | Min.                       | 3.5       | 4.5     | 5                                     | S      | ئ                   | 5      | 4.5 4  | 4.5 4    | .S.   | 4.5      | 9        | 5       | 5         | 5 5    | 5    | 5   | ζ.   | . 5  | 5   |
|          |         |          |                     |          |           | Max.                       | 4         | 4.5     | 5                                     | 5.5    | 5.5                 | 5.5    | 5      | 5        | 5 5   | 5.5      | 9        | 9       | ) [9      | 9 9    | 9 9  | 9   | 9  9 | 9 9  | 9   |
| 9        | 11.8    | 0.016    | 0.7                 | <u></u>  | 0.08 Min. |                            |           | 4.5     | S                                     | 5      | 5                   | 3      | 4.5 4  | 4.5 4    | 4     | 5.       | 9        | 5       | 5         | ŀ      |      |     |      | 5 5  | _   |
|          |         |          |                     |          |           | Aver.(d <sub>wps</sub> )   | 3.75      | 4.5     | 5                                     | 5.3    | 5.25                | 5.3    | 4.8 4  | 4.8 4.75 | 75    | 5        | 6 5.     | 5 5.    | 5 5.      | .5 5.5 | 5.5  | 5.5 | 5.5  | 5.5  | 5.5 |
|          |         |          |                     |          | <u>-</u>  | Inception                  |           |         |                                       |        |                     |        |        |          |       |          |          |         |           |        |      |     |      |      |     |
|          |         |          |                     |          |           | length(cm)                 |           |         |                                       |        |                     |        |        |          |       |          |          |         |           |        |      |     |      |      |     |
|          |         |          |                     |          |           | Flow patt                  | 100% air  |         | 50% air                               |        | 100% recir.vortices | cir.vo | rtices |          |       |          | <br> -   |         |           |        |      |     |      | -    |     |
|          |         |          |                     |          |           | Slope of stepped spilly    | ds pac    | illways | ည်                                    | =38,20 | -0                  |        |        |          |       |          |          |         |           |        |      |     |      |      |     |
|          | -       |          |                     |          |           | Step nos.                  | 7         | 7       | 3                                     | 4      | 5                   | 9      | 7      | 8        | 6     | 10 1     | 1 1      | 12 1    | $3 1^{2}$ | 4 15   | 16   | 17  | 7 18 | 3 19 | 20  |
|          |         |          |                     |          |           | Max.                       | 5.5       | 4.6     | 4.5                                   | 5      | 5.5                 | 9      | 6.5    | 6.5 6    | 5.    | 6.5 6.   | .5 6.    | 6.5     | 9 (9      | 9  9   |      |     |      |      |     |
|          |         |          |                     |          |           | Min.                       | 5         | 4       | 4                                     | 4.5    | 4.5                 | 5.     | 5.5 5  | 5.5 5    | 5.5 5 | 5.5 5.5  |          | 5.5     | 5 5       | 5 5    |      |     |      |      |     |
|          |         |          |                     |          |           | Max.                       | 5.5       | 4.6     | 4.5                                   | S      | 5.5                 | 9      | 6.5    | 6.5 6    | .5    | 6.5 6.   | .5 6.    | 6.5     | 9         | 9 9    | .=   |     |      |      |     |
| _        |         |          |                     |          |           | Min.                       | 5         | 4       | 4                                     | 4.5    | 4.5                 | 5      | 5.5 5  | 5 5      | .5    | 5.5 5.   | .5 5.    | 5.5     | 5 5       | 5 5    |      |     |      |      |     |
|          |         |          |                     |          | . 7.      | Aver.(d <sub>wps</sub> )   | 5.25      | 4.3     | 4.25                                  | 4.8    | 5                   | 5.5    | 9      | 9        | 9     | 9        | 9        | 6 5.    | 5 5.5     | 5.5    |      |     |      |      |     |
|          |         |          |                     |          | رح        | Inception                  |           |         |                                       |        |                     |        |        |          |       |          |          |         |           |        |      |     |      |      |     |
| *        |         |          |                     | 1        |           | length(cm)                 |           |         |                                       |        |                     |        |        |          |       |          |          |         |           | Ц      |      |     |      |      |     |
|          |         | _        |                     | _        |           | Flow patt                  | 100%      | recirc  | 100% recirculating vortices in all    | g vort | ices ir             |        | steps  |          |       |          |          |         |           |        |      |     |      |      |     |

| z | SN Mano | Disch.      | Disch. Width Disch.  | Disch.   | Slope of stepped spilly    | ped sp    | illways | 8       | =34°32                                | <u> </u> |                     |        |          |          |           |        |        |        |      |     |     |     |     | Γ   |
|---|---------|-------------|----------------------|----------|----------------------------|-----------|---------|---------|---------------------------------------|----------|---------------------|--------|----------|----------|-----------|--------|--------|--------|------|-----|-----|-----|-----|-----|
|   | metre   | <u> </u>    | of                   | perunit  | Step nos.                  | 1         | 2       | 3       | 4                                     | 5        | 9                   | 7      | 8        | 6        | 10 1      | 1 12   | 2 13   |        | 4 15 | 16  | 17  | 18  | 19  | 20  |
|   | reading |             | (cum) spillw. length | length   | Max.                       | ∞         | 9       | 5       | 4.5                                   | 4        | 4                   | 4      | 4        | 4        | 4         | 4      | 4      | 4      | 4    |     |     |     |     |     |
|   | (x cm)  |             | ways                 | <u> </u> | Min.                       | 9         | 5       | 4       | 4                                     | 3.5      | 3.5                 | 3.5    | 3.5 3    | 3.5 3    | 5 3.      | 5 3.   | 5 3.   | .5 3.5 | 3.5  |     |     |     |     |     |
|   |         |             | (p m)                | cnm/m)   | Max.                       | 8         | 9       | 5       | 4.5                                   | 4        | 4                   | 4      | 4        | 4        | 4         | 4      | 7      | 4      | 4    |     |     |     |     |     |
|   |         |             |                      |          | Min.                       | 9         | 5       | 4       | 4                                     | 3.5      | 3.5                 | 3.5    | 3.5 3.   | 3        | 3.5 3.    | 3.     | 5 3.5  | 3.5    | 3.5  |     |     |     |     |     |
|   |         |             |                      |          | Aver.(d <sub>wps</sub> )   | 7         | 5.5     | 4.5     | 4.3 3                                 | 3.75     | 3.8                 | 3.8    | 3.8 3.   | 3.75 3.  | 3.75 3.75 | 5 3.75 | 5 3.75 | 3.75   | 3.8  |     |     |     |     |     |
|   |         |             |                      |          | Inception                  |           |         |         |                                       |          | H                   |        |          |          | _         | _      | _      | L      |      |     |     |     |     |     |
|   |         |             |                      | <u> </u> | length(cm)                 | 30        |         |         |                                       |          |                     |        | _        | <u> </u> | <u> </u>  | _      | L      | _      | _    |     |     |     |     |     |
|   |         |             |                      |          | Flow patt                  | No air ca | cavi    | ies,str | vities, strong recirculating vortices | circul   | ating               | vortic | es       |          |           |        |        |        |      |     |     |     | ] " |     |
|   | 1       |             |                      |          | Slope of stepped spillways | ds pad    | illwa   | ಕ       | =52°14                                |          |                     |        |          |          |           |        |        |        |      |     |     |     |     | T   |
|   |         |             |                      |          | Step nos.                  | 1         | 2       | 3       | 4                                     | 5        | 9                   | 7      | ∞        | 6        | 10 11     | 1 12   | 2 13   | 3 14   | 15   | 16  | 17  | 18  | 19  | 20  |
|   |         |             |                      | ,        | Мах.                       | 4         | 4.5     | 5       | 5.5                                   | 5.5      | . 5                 | 5      | 5        | 5 5      | 5.5       | 6 6.5  | 5 6.5  | 5 6.5  | 6.5  | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 |
| 1 |         |             |                      |          | Min.                       | 3.5       | 4.5     | 5       | !                                     | 1        | 4.5                 | 4.5    | 4.5 4    | .5       | 4.5       | 5 5.5  | 5.5    | 5.5    | 5.5  | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 |
|   |         |             |                      |          | Мах.                       | 4         | 4.5     | 5       | 5.5                                   | 5.5      | 5                   | 5      | 5        | 5 5      | 5.5       | 6 6.5  | 5 6.5  | 5 6.5  | 6.5  | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 |
| 7 |         | 14.92 0.018 | 0.7                  |          | 0.09 Min.                  | 3.5       | 4.5     |         |                                       |          | 4.5 4               | 4.5    | 4.5 4.   | 5        | 4.5       | ς.     | 5.5    | 5.5    | 5.5  | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 |
|   |         |             |                      |          | Aver.(d <sub>wps</sub> )   | 3.75      | 4.5     | 5       | 5.3 5                                 | 5.25     | 4.8                 | 4.8    | 4.8 4.75 | 75       | 5.5       | _      | 9      | 9 9    | 9    | 9   | 9   | 9   | 9   | 9   |
|   |         |             |                      |          | Inception                  |           |         |         |                                       |          |                     |        | <u> </u> |          | _         |        |        | L      |      |     |     |     |     |     |
|   |         |             |                      |          | length(cm)                 |           |         |         |                                       |          |                     |        |          | -        |           |        |        |        |      |     |     | T - |     |     |
| - |         |             |                      |          | Flow patt                  | 100 to 10 | 10%     | I       |                                       | 00% r    | 100% recir.vortices | ortice | ·        |          |           |        |        | ľ      |      |     |     |     |     |     |
|   | _       |             |                      |          | Slope of stepped spillways | ds pac    | llwa    | ဗ်      | =38°50'                               | _        |                     |        |          |          |           |        |        |        |      |     |     |     |     |     |
|   | _       |             |                      |          | Step nos.                  | 1         | 7       | 3       | 4                                     | 5        | 9                   | 7      | <u>∞</u> | 6        | 10 1      | 1 12   | 13     | 3 14   | 15   | 16  | 17  | 18  | 19  | 20  |
|   |         |             |                      |          | Max.                       | 9         | 5       | 4.8     | 5.5                                   | 9        | 6.5                 | 6.5    | 6.5 6    | 8.9      | 7 6.8     | 8 6.5  | 5 6.5  | 9      | 9    |     |     | -   |     |     |
|   | _       |             |                      |          | Min.                       | 5         | 4.5     | 4.2     | 4.5                                   | 5        | 5.5                 | 5.5    | 5.5 5    | 5.5 5    | 5.5 5.5   | 5 5.3  | 3      | 5      | S    |     |     |     |     |     |
|   |         |             |                      |          | Max.                       | 9         | 5       | 4.8     | 5.5                                   |          | 6.5                 |        | 6.5 6    | 8.9      | 7 6.8     | 8 6.5  | 5 6.5  | 9      | 9    |     |     |     |     |     |
|   |         |             |                      |          | Min.                       | 5         | 4.5     | 4.2     | 4.5                                   | 5        | 5.5 5               | 5.5 5  | 5.5 5    | 5.5 5    | 5.5 5.5   | 5 5.3  | 3      | 5      |      |     |     | -   |     |     |
|   |         |             |                      |          | Aver.(d <sub>wps</sub> )   | 5.5       | 4.75    | 4.5     | 5                                     | 5.5      | 9                   | . 9    | 6 6.15   | 15 6.25  | 25 6.15   | 5 5.9  | 5.75   | 5.5    | 5.5  |     |     |     |     |     |
|   |         |             |                      |          | Inception                  |           |         |         |                                       |          |                     |        | _        |          |           |        |        |        |      |     |     |     |     |     |
|   |         |             |                      |          | length(cm)                 |           |         | Н       | $\vdash$                              |          |                     | _      | $\vdash$ |          |           |        |        |        |      |     |     |     |     |     |
| ヿ |         |             |                      |          | Flow patt                  | 100%      | recirc  | ulatin  | 100% recirculating vortices in        | ces in   | all                 | steps  |          |          |           |        |        |        |      |     |     |     |     |     |

| $\mathbf{z}$ | SN Mano  | Disch.   | Widtl         | Disch. Width Disch. | Slope of stepped spilly    | bed sp    | illwa  | vays \alpha_1     | =34°32 | 121                            |         |                                       |          |        |        |        |        |       |     |          |          |     |     |     |     |
|--------------|----------|----------|---------------|---------------------|----------------------------|-----------|--------|-------------------|--------|--------------------------------|---------|---------------------------------------|----------|--------|--------|--------|--------|-------|-----|----------|----------|-----|-----|-----|-----|
|              | metre    | <u>©</u> | Jo            | perunit             | Step nos.                  | 1         | 2      | 3                 | 4      | 5                              | 9       | 7                                     | 8        | 6      | 10     | 11     | 12     | 13    | 14  | 15       | 16       | 17  | 18  | 19  | 20  |
|              | reading  | (um)     | (cum) spillw. | : length            |                            | 01        | ∞      | 7                 | 9      | 5                              | 4.5     | 4.5                                   | 4.5      | 4.5    | 4.5    | 4.5    | 4.5    | 4.5   | 4.5 | 4.5      |          |     |     |     |     |
|              | (x cm)   |          | ways          | <u>(b)</u>          | Min.                       | ∞         | 9      | 9                 | S      | 4.5                            | 4       | 4                                     | 4        | 4      | 4      | 4      | 4      | 4     | 4   | 4        |          |     | -   | _   |     |
|              |          |          | (p m)         |                     | Max.                       | 10        | ∞      | 7                 | 9      | 5                              | 4.5     | 4.5                                   | 4.5      | 4.5    | 4.5    | 4.5    | 4.5    | 4.5   | 4.5 | 4.5      |          |     |     |     |     |
|              |          |          |               |                     | Min.                       | 8         | 9      | 9                 | 5      | 4.5                            | 4       | 4                                     | 4        | 4      | 4      | 4      | 4      | 4     | 4   | 4        |          |     |     |     |     |
|              |          |          |               |                     | Aver.(d <sub>wps</sub> )   | 6         | 7      | 6.5               | 5.5    | 4.75                           | 4.3     | 4.3                                   | 4.3 4    | 1.25 4 | 1.25 4 | 1.25 4 | 1.25 4 | .25 4 | .25 | 4.3      |          |     |     | Н   |     |
|              | _        |          |               |                     | Inception                  |           |        |                   |        |                                | -       |                                       | -        | -      |        |        |        |       |     |          |          |     |     |     |     |
| -            |          |          |               |                     | length(cm)                 | 30        |        |                   |        |                                |         |                                       |          |        |        |        |        |       |     |          |          |     |     |     |     |
|              | <u>.</u> |          |               |                     | Flow patt                  | No air ca | r cavi | ties,st           | rongı  | ecircu                         | lating  | vities, strong recirculating vortices | ces      |        |        |        |        |       |     |          |          |     |     |     |     |
|              | _        |          |               |                     | Slope of stepped spillways | bed sp    | illwa  | ys α <sub>2</sub> | =52°14 | 4                              |         |                                       |          |        |        |        |        |       |     | [        |          |     |     |     |     |
|              |          |          |               |                     | Step nos.                  | 1         | 7      | 3                 | 4      | 5                              | 9       | 7                                     | 8        | 6      | 10     | 11     | 12     | 13    | 14  | 15       | 16       | 17  | 18  | 19  | 8   |
|              |          |          |               |                     | Max.                       | 4.5       | 4.5    | 5                 | 5.5    | 5.8                            | 5.5     | 5                                     | 5        | 5      | 5.5    | 9      | 9      | 6.5   | 6.5 | 6.5      | 7        | 7   | 7   | 7   | 7   |
|              |          |          |               |                     | Min.                       | 4.2       | 4.5    | 4.5               | 5      | 5.5                            | 5       | 4.5                                   | 4        | 4.5    | 4.5    | 5      | 5      | 5.5   | 5.5 | 5.5      | 9        | 9   | 9   | 9   | 9   |
|              |          |          |               |                     | Max.                       | 4.5       | 4.5    | 5                 | 5.5    | 5.8                            | 5.5     | 5                                     | 5        | 5      | 5.5    | 9      | 9      | 6.5   | 6.5 | 6.5      | 7        | 7   | 7   | 7   | 7   |
| 80           | 18.42    | 0.05     | 0.2           |                     | 0.1 Min.                   | 4.2       | 4.5    | 4.5               | 5      | 5.5                            | 5       | 4.5                                   | 4        | 4.5    | 4.5    | 5      | 5      | 5.5   | 5.5 | 5.5      | 9        | 9   | 9   | 9   | 9   |
|              |          |          |               | _                   | Aver.(d <sub>wps</sub> )   | 4.35      | 4.5    | 4.75              | 5.3    | 5.65                           | 5.3     | 4.8                                   | 4.5 4    | 4.75   | 5      | 5.5    | 5.5    | 9     | 9   | 9        | 6.5      | 6.5 | 6.5 | 6.5 | 6.5 |
|              | _        |          |               |                     | Inception                  |           |        |                   |        |                                |         |                                       |          |        |        |        |        |       |     |          |          |     |     |     |     |
|              |          |          |               |                     | length(cm)                 |           |        |                   |        |                                |         |                                       | $\vdash$ |        |        | -      |        |       |     | _        |          |     |     |     |     |
|              |          |          |               |                     | Flow patt                  | 100 to 25 | 25%    | air               | 100%   | 100% recir.vortices            | ortices | _                                     |          |        |        |        |        |       |     |          |          |     |     |     |     |
|              | _        |          |               |                     | Slope of stepped spillw    | ped sp    | illwa  | 'S α <sub>3</sub> | =38°50 | 0.0                            |         |                                       |          |        |        |        |        |       |     |          |          |     |     |     |     |
|              | _        |          |               |                     | Step nos.                  | 1         | 2      | 3                 | 4      | 5                              | 9       | 7                                     | 8        | 6      | 10     | 11     | 12     | 13    | 14  | 15       | 16       | 17  | 18  | 19  | 20  |
|              |          |          |               |                     | Max.                       | 7         | 9      | 5.5               | 5.4    | 9                              | 6.5     | 7.5                                   | ∞        | ∞      | ∞      | 7.5    | 6.5    | 9     | 9   | 9 .      |          |     |     |     |     |
|              |          |          |               |                     | Min.                       | 9         | 2      | 4.5               | 4.5    | 5                              | 5.5     | 9                                     | 6.5      | 6.5    | 9      | 5.5    | 5.5    | 5     | 5   | 2        |          |     |     |     |     |
|              | _        |          |               |                     | Max.                       | 7         | 9      | 5.5               | 5.4    | 9                              | 6.5     | 7.5                                   | 8        | 8      | 8      | 7.5    | 6.5    | 9     | 9   | 9        |          |     |     | _   |     |
|              |          |          |               |                     | Min.                       | 9         | S      | 4.5               | 4.5    | 5                              | 5.5     | 9                                     | 6.5      | 6.5    | 9      | 5.5    | 5.5    | 5     | 5   | 5        | _        |     |     |     |     |
|              |          | _        |               |                     | Aver.(d <sub>wps</sub> )   | 6.5       | 5.5    | 5                 | 5      | 5.5                            | 9       | 8.9                                   | 7.3 7    | 7.25   | 7      | 6.5    | 9      | 5.5   | 5.5 | 5.5      |          |     |     |     |     |
|              |          |          |               |                     | Inception                  |           |        |                   |        |                                |         |                                       |          |        |        |        |        | -     | -   | -        | $\dashv$ |     | +   | -   |     |
|              |          |          |               |                     | length(cm)                 | 5         |        |                   |        |                                |         | '                                     |          |        |        |        |        |       |     | $\dashv$ | $\dashv$ |     | -   | ┪   | Ţ   |
|              |          |          |               |                     | Flow patt                  | 100%      | recir  | culatin           | 10V gr | 100% recirculating vortices in | all     | steps                                 |          |        |        |        |        |       |     |          |          |     | -   |     |     |
| 1            |          |          |               |                     |                            |           |        |                   | )      |                                |         |                                       |          |        |        |        |        |       |     |          |          |     |     |     |     |

# 3.6.2.14 Calculation of cavitation number:

Equation for cavitation number,  $\sigma = (d*\cos\alpha + d*V^2/gR + Pb - Pv)/(V^2/2g)$ 

Where

d=depth of flow

α=inclination of spillways with horizontal

Pb=atmospheric pressure=76cm of Hg=76/100\*13.6=10.33m of water

Pv=vapour pressure of water=0.233m of water

V=velocity of flow

R=radius of curvature

dV<sup>2</sup>/gR is +ve for concave&-ve for convex

# Important points about an aerator:

- 1 If cavitation number  $\sigma > 1.8$  then no protection against cavitation is required.
- 2 If cavitation number  $\sigma$  is in between 0.25 to 1.8 then surface treatement is adequate.
- 3 If cavitation number  $\sigma$  is in between 0.17 to 0.25 then modify design or provide an aerator.
- 4 If cavitation number  $\sigma$  is in between 0.12 to 0.17 then an aerator must be provided.
- 5 If cavitation number  $\sigma < 0.12$  then an aerator will not be able to eliminate cavitation so design should be changed must be provided.
- 6 First aerator should be provided where  $\sigma$ =0.2 and Froude number is about 6.
- 7 Other aerator will be provided at a distance 2 times the average velocity in the reach.

### Data:

Q =20 lps per 0.20m width of spillways i.e. q = 0.10 m3/s/m

 $\alpha_1 = 34^{\circ}32'$ ; d1= 0.049m; V1=2.03m/s.(Knight&McDonold)

 $\alpha_2 = 52^{\circ}14'$ ; d2 = 0.045m; V2=2.24m/s.(Knight&McDonold)

 $\alpha_3 = 38^{\circ}50'$ ; d3=0.048m; V3=2.09m/s.(Knight&McDonold)

Suppose radius of curvature, R = 1.0m.

Equation for cavitation number,  $\sigma = (d^*\cos\alpha + d^*V^2/gR + Pb - Pv)/(V^2/2g)$ 

# Calculations of cavitations no.:

| d(m)  | cosα  | V(m/s) | R(m)     | V2/gR   | V2/2g   | σ       | Remarks                |
|-------|-------|--------|----------|---------|---------|---------|------------------------|
| 0.049 | 0.824 | 2.03   | very big | 0.00000 | 0.21004 | 2.12921 | > 1.8 so no protection |
| 0.045 | 0.824 | 2.24   | 1        | 0.5115  | 0.25574 | 2.58579 | against cavitations    |
| 0.048 | 0.824 | 2.09   | 1        | 0.4453  | 0.22264 | 2.26151 |                        |

# 3.7 The study flow patterns in the multislope stepped spillways:

(a) For small flow rates: (Qw = 4 to 8 lps per 0.20m width of spillways);

$$\begin{split} qw &= Q/b = 4 \text{ lps/20 cm} = 0.004 \text{ m3/s/0.2m} = 0.02 \text{ m3/s/m} \\ dc &= (qw^2/g)^{1/3} = (0.02^2/9.81)^0.333 = 0.034 \text{ m.} \\ qw &= Q/b = 8 \text{ lps/20 cm} = 0.008 \text{ m3/s/0.2m} = 0.04 \text{ m3/s/m} \\ dc &= (qw^2/g)^{1/3} = (0.04^2/9.81)^0.333 = 0.0546 \text{ m.} \end{split}$$

Table-1.

| Qw(lps) | qw(Qw/0.2) | $\alpha$ (degree) | h(cm) | l(cm) | dc/h  | h/l  | 0.05 <h l<="" th=""></h> |
|---------|------------|-------------------|-------|-------|-------|------|--------------------------|
|         | m3/s/m     |                   |       |       |       |      | <1.7                     |
| 4       | 0.02       | 34°32'            | 3.33  | 4.84  | 1.043 | 0.68 | Ok                       |
| 8.      | 0.04       |                   |       |       | 1.655 |      |                          |
| 4       | 0.02       | 52°14'            | 5     | 3.87  | 0.69  | 1.29 | Ok                       |
| 8       | 0.04       | -                 |       |       | 1.09  |      | ]                        |
| 4       | 0.02       | 38°50'            | 3.33  | 4.14  | 1.042 | 0.80 | Ok                       |
| 8       | 0.04       |                   |       |       | 1.64  | 7    | ł                        |

Table-2

| Spillways | Upper limit of     | Lower limit of | Onset of skimming | Flow      |
|-----------|--------------------|----------------|-------------------|-----------|
| slopes    | nappe flow         | skimming flow  | flow              | regimes   |
| ,         | regimes            | regimes        | dc/h=0.91-0.14    | (NA,      |
|           | dc/h=0.89-0.4 *h/l | dc/h=1.2-0.325 | * $\tan \alpha$   | TRA, SK)  |
|           | (Chanson 2001)     | *h/l           | (Boes And Hager   | (From     |
|           |                    | (Chanson 2001) | 2003)             | table- 1) |
| 34°32'    | 0.62               | 0.98           | 0.81              | SK        |
| 52°14'    | 0.373              | 0.78           | 0.73              | SK        |
| 38°50'    | 0.57               | 0.96           | 0.80              | SK        |

i.e. in small flow rates for  $\alpha=34^{\circ}32'$  (q=0.02 to 0.04 m3/s/m) the flow over the steps were observed undular in phase with the step geometry but the flow regime was found to be skimming flow because all the steps have recirculating vortices. Aeration in the step corners was observed immediately U/S of the inception point of air entrainment. Inception length was increased when the flow rate increased. For the flow rate less than q=0.02m3/s/m the flow was observed a nappe flow regime, where the flow was bouncing from one step to other. After the inception point, more or less the flow depths were found to be uniform.

For slope  $\alpha = 50^{\circ}14^{\circ}$ , the flow was different from the first slope. At the junction point of slopes (1<sup>st</sup> and 2<sup>nd</sup> slope) of the spillways, the flow seemed to be sprayed and

followed a convex curve and a trajectory path, under which the steps from the first to few steps (1<sup>st</sup> to 6<sup>th</sup>) to the D/S there was no water in the niches of steps i.e. full of air cavities. The sizes of air cavities were full at first and decreasing when we go D/S of the channel. From the point where the trajectory of flow hits the step, the aeration took place and strong recirculating vortices were existed. After the point from where the recirculating vortices created, the flow was more or less uniform. The spraying of water droplets started from the step just D/S of the junction point and hit the steps D/S of the channel at different locations at the bottom of channel and the side walls according to its residual energy collected from the first slope of the flow.

For slope  $\alpha = 38^{\circ}50^{\circ}$ , the nature of flow was nearly same as of  $2^{nd}$  slope, and only the difference was at the junction point of  $2^{nd}$  and  $3^{rd}$  slopes where the slope changed to smaller than former. At this junction point the flow was of concave nature of curve and after the potential of the residual energy the flow follow the trajectory path D/S of the steps. Under the trajectory flow, the steps had air cavities filled with 25 to 0% from first to  $2^{nd}$  step, and after it the flow was recirculating in the niches of steps i.e. skimming flow regime. The aeration started just after the tip of step from where the change of the slope started. The sprayed water followed the trajectory path of flow with the bigger depths at rising point and smaller depths at falling point. Most of the flow followed uniform depth after the inception point (which was comparatively smaller in concave flow).

# (b) For higher flow rates: (Qw = 20 lps per 0.20m width of spillways);

qw = Q/b=20 lps/20 cm=0.02 m3/s/0.2m=0.10 m3/s/m dc= $(qw^2/g)^{1/3}$ = $(0.10^2/9.81)^0.333$ =0.10 m.

Table-1.

| Qw(lps) | qw(Qw/0.2) | $\alpha$ (degree) | h(cm) | l(cm) | dc/h  | h/l  | 0.05 <h l<="" th=""></h> |
|---------|------------|-------------------|-------|-------|-------|------|--------------------------|
|         | m3/s/m     |                   |       |       |       |      | <1.7                     |
| 20      | 0.10       | 34°32'            | 3.33  | 4.84  | 3.02  | 0.68 | Ok                       |
|         |            | 52°14'            | 5     | 3.87  | 2.0   | 1.29 | Ok                       |
|         |            | 38°50'            | 3.33  | 4.14  | 3.003 | 0.80 | Ok                       |

Table-2

| Spillways | Upper limit of     | Lower limit of | Onset of        | Flow         |
|-----------|--------------------|----------------|-----------------|--------------|
| slopes    | nappe flow         | skimming flow  | skimming flow   | regimes      |
|           | regimes            | regimes        | dc/h=0.91-0.14  | (NA, TRA,    |
|           | dc/h=0.89-0.4 *h/l | dc/h=1.2-0.325 | *tan \alpha     | SK)          |
|           | (Chanson 2001)     | *h/l           | (Boes And Hager | (From table- |
|           |                    | (Chanson 2001) | 2003)           | 1)           |
| 34°32′    | 0.62               | 0.98           | 0.81            | SK           |
| 52°14'    | 0.373              | 0.78           | 0.73            | SK           |
| 38°50'    | 0.57               | 0.96           | 0.80            | SK           |

i.e. in high flow rates, for slope  $\alpha = 34^{\circ}32^{\circ}$  (q=0.1m3/s/m) the flow was smooth and glassy on the upper steps and no free aeration was observed. The air entrainment started from the inception point steps. The flow depths in the upper steps were gradual from bigger to smaller and was minimum at just U/S of inception point. The flow depths after the inception point were nearly uniform. Full recirculating vortices were found in all steps after the inception point. Before inception point invisible recirculation vortices were observed.

For slope  $\alpha = 50^{\circ}14$ ' the flow at the junction point of the change of slope of spillways was of convex nature and spraying type of flow was observed. The spray of droplets followed the trajectory path and the flow depths were varying along length of spillway as the trajectory path of flow i.e. depths over first few steps were smaller and then bigger in mid steps and smaller at the last steps. First few steps were having air cavities. The full recirculating vortices started from the point from where few of trajectory flow hit the steps, which was the point of uniform flow with nearly constant depths. The aeration generally seemed started from the first step from where the trajectory flow started.

For slope  $\alpha = 38^{\circ}50^{\circ}$  the flow was of concave nature at the junction point of  $2^{nd}$  and  $3^{rd}$  slopes ( $\alpha = 50^{\circ}14^{\circ}$  and  $38^{\circ}50^{\circ}$ ) and sprayed in the trajectory path to the D/S of the spillways. The inception point was short i.e. up to  $2^{nd}$  step. The aeration started from the inception point. The flow depths were varying from smaller at first two to three steps to larger at the mid steps and smaller in the later parts of the steps of the channel because the flow was of trajectory nature. The recirculating vortices were seen in all steps. So the flow was skimming flow regime. See figs (graphs and drawings) in Annex-1 & 2.

# **CHAPTER-4**

# DISCUSSION OF RESULTS AND CONCLUSIONS

# <u>Chapter-4</u> Discussion of results and conclusions

# 4.1 Discussion and results:

The flow patterns of the multislope/monoslope stepped spillways with or without suppressor plates are given in section 3.6.2.7 tables, 3.7,in graphs (Annex-B), in AutoCAD drawings & photographs (Annex-C) and enrgy dissipation rates by Tatewar & Ingle (1996) and Knight & McDonold (1979) in the multislope and monoslope stepped spillways were found to be 87.4% and 89.9% respectively for the flow rate of 20 lps (or unit flow rate q = 0.10 m3/s/s). And similarly by Chanson (1994) the rate of energy dissipation were found to be 85.3% and 85.85% respectively for the same flow rate.

Among the circular and elliptical suppressor plates used in experiments, the elliptical suppressor plate gave good result in uniformity of flow with smaller flow of depths after placement of it at the junction points. It means after placement of suppressor plate the flow depth decreases and obviously the concentration of air in the flow also decreases.

# **Results in tables:**

# Calculation of $H_{max}$ , $H_{loss}$ , $H_{res}$ , $d_{90w}$ and $V_w$ :

| Result: |       |       |         |       |       |        |       |        |
|---------|-------|-------|---------|-------|-------|--------|-------|--------|
| α       | h     | 1     | ΔH/Hmax | Hmax  | Hloss | Hres   | dw(m) | V(m/s) |
| 34.533  | 0.033 | 0.048 | 0.5719  | 0.65  | 0.372 | 0.2787 | 0.049 | 2.03   |
| 52.233  | 0.05  | 0.039 | 0.5456  | 1.549 | 1.026 | 0.523  | 0.045 | 2.24   |
| 38.833  | 0.033 | 0.041 | 0.514   | 0.545 | 0.229 | 0.316  | 0.048 | 2.09   |

# Calculation of flow regimes:

| Table:1 (Theoretical) |
|-----------------------|
|-----------------------|

| q      | Slope  | Step   | Step   | h/l   | dc(m) | dc/h  |        | dc/h (onsc | t)      | Flow    |
|--------|--------|--------|--------|-------|-------|-------|--------|------------|---------|---------|
| (m3/s) | (a)    | height | length |       |       | -     | Cha    | nson       | Boes    | regimes |
|        | · ·    | (h) m  | (l)m   |       |       |       | NA-TRA | TRA-SK     | & Hager |         |
| 0.02   | 34o32' | 0.033  | 0.0484 | 0.682 | 0.034 | 1.043 | 0.617  | 0.978      | 0.815   | SK      |
| 0.02   | 52014' | 0.05   | 0.0387 | 1.292 | 0.034 | 0.689 | 0.373  | 0.780      | 0.729   | TRA     |
| 0.02   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.034 | 1.034 | 0.568  | 0.939      | 0.797   | SK      |
| 0.03   | 34o32' | 0.033  | 0.0484 | 0.682 | 0.045 | 1.367 | 0.617  | 0.978      | 0.815   | SK      |
| 0.03   | 52014' | 0.05   | 0.0387 | 1.292 | 0.045 | 0.902 | 0.373  | 0.780      | 0.729   | SK      |
| 0.03   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.045 | 1.355 | 0.568  | 0.939      | 0.797   | SK      |
| 0.04   | 34o32' | 0.033  | 0.0484 | 0.682 | 0.055 | 1.656 | 0.617  | 0.978      | 0.815   | SK      |
| 0.04   | 52014' | 0.05   | 0.0387 | 1.292 | 0.055 | 1.093 | 0.373  | 0.780      | 0.729   | SK      |
| 0.04   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.055 | 1.641 | 0.568  | 0.939      | 0.797   | SK      |
| 0.05   | 34o32' | 0.033  | 0.0484 | 0.682 | 0.063 | 1.922 | 0.617  | 0.978      | 0.815   | SK      |
| 0.05   | 52014' | 0.05   | 0.0387 | 1.292 | 0.063 | 1.268 | 0.373  | 0.780      | 0.729   | SK      |
| 0.05   | 38050' | 0.0333 | 0.0414 | 0.804 | 0.063 | 1.904 | 0.568  | 0.939      | 0.797   | SK      |

| 0.06 | 34032  | 0.033  | 0.0484 | 0.682 | 0.072 | 2.170 | 0.617 | 0.978 | 0.815 | SK   |
|------|--------|--------|--------|-------|-------|-------|-------|-------|-------|------|
| 0.06 | 52014' | 0.05   | 0:0387 | 1.292 | 0.072 | 1.432 | 0.373 | 0.780 | 0.729 | SK   |
| 0.06 | 380501 | 0.0333 | 0.0414 | 0.804 | 0.072 | 2.151 | 0.568 | 0.939 | 0.797 | SK   |
| 0.07 | 34o32' | 0.033  | 0.0484 | 0.682 | 0.079 | 2.405 | 0.617 | 0.978 | 0.815 | SK   |
| 0.07 | 52014' | 0.05   | 0.0387 | 1.292 | 0.079 | 1.587 | 0.373 | 0.780 | 0.729 | SK   |
| 0.07 | 38050' | 0.0333 | 0.0414 | 0.804 | 0.079 | 2.383 | 0.568 | 0.939 | 0.797 | SK   |
| 0.08 | 34o32' | 0.033  | 0.0484 | 0.682 | 0.087 | 2.629 | 0.617 | 0.978 | 0.815 | SK.  |
| 0.08 | 52014' | 0.05   | 0.0387 | 1.292 | 0.087 | 1.735 | 0.373 | 0.780 | 0.729 | SK   |
| 0.08 | 38050' | 0.0333 | 0.0414 | 0.804 | 0.087 | 2.605 | 0.568 | 0.939 | 0.797 | SK · |
| 0.09 | 34o32' | 0.033  | 0.0484 | 0.682 | 0.094 | 2.844 | 0.617 | 0.978 | 0.815 | SK   |
| 0.09 | 52014' | 0.05   | 0.0387 | 1.292 | 0.094 | 1.877 | 0.373 | 0.780 | 0.729 | SK   |
| 0.09 | 38050' | 0.0333 | 0.0414 | 0.804 | 0.094 | 2.818 | 0.568 | 0.939 | 0.797 | SK   |
| 0.1  | 34032' | 0.033  | 0.0484 | 0.682 | 0.101 | 3.050 | 0.617 | 0.978 | 0.815 | SK   |
| 0.1  | 52014' | 0.05   | 0.0387 | 1.292 | 0.101 | 2.013 | 0.373 | 0.780 | 0.729 | SK   |
| 0.1  | 38050' | 0.0333 | 0.0414 | 0.804 | 0.101 | 3.023 | 0.568 | 0.939 | 0.797 | SK   |

### Calculations of cavitations no.:

| d(m)  | cosa  | V(m/s) | R(m)     | V2/gR   | V2/2g   | σ       | Remarks                |
|-------|-------|--------|----------|---------|---------|---------|------------------------|
| 0.049 | 0.824 | 2.03   | very big | 0.00000 | 0.21004 | 2.12921 | > 1.8 so no protection |
| 0.045 | 0.824 | 2.24   | 1        | 0.5115  | 0.25574 | 2.58579 | against cavitations    |
| 0.048 | 0.824 | 2.09   | 1        | 0.4453  | 0.22264 | 2.26151 | 1                      |

### 4.2 Conclusions:

1.Energy dissipation capacity of spillways and energy dissipaters is a key element to minimize the erosion potential of the flow d/s of a dam and thus to ensure its stability against failure during flood. Stepped spillways allow to continuously dissipate a considerable amount of the kinetic energy such that the downstream stilling basin where the residual energy is dissipated by hydraulic jump can be largely reduced in dimension compared to a basin at the toe of a conventional smooth chute. Also the cavitations risk along the spillways decreases significantly due to smaller flow velocities and the large air entrainment rate because the macro-roughness of the steps significantly reduces flow velocities and leads to flow aeration along the spillways.

2.Now-a-days stepped spillways has been designed for increasing dam height and design discharges due to good experience gained with the Roller Compacted Concrete (RCC) construction methods. This raises the question on the application limit of the stepped cascades. Up to the date unit discharges do not exceed q = 25 to 30 m3/s/m (Minor 2000) which is far below the maximum discharge rates of q = 200 to 250 m3/s/m (Volkart 1984) for smooth chutes. This limitation comes from the fact that the inception point of air entrainment moves downstream with increasing unit discharges leaving a longer spillways stretch length without the air bubbles counter acting cavitations damage at the concrete surface

3. Keeping in mind the shortcomings mentioned above a systematic study on spillway aeration on stepped spillways, as a measure against the inception of cavitations erosion

- for high unit discharges should be undertaken. For conventional spillways, where the air entrainment takes place significantly further downstream compared to stepped chutes, the placement of aerators to artificially aerate the spillways invert locally has proved to be an effective measure against cavitations damages. The application to this principle to stepped spillways is therefore a research topic of great interest.
- 4. Multislope stepped spillways have more than one longitudinal channel slopes with different step height (or step geometries). In the first channel slope  $\alpha_1 = 34^{\circ}32'$  of the experimental set up, the flow patterns were same as in single slope (mono slope) stepped spillways and in other channel slopes d/s of it the flow patterns were different from it. The second channel slope  $\alpha_2 = 50^{\circ}14'$ , which is steeper than first slope, and the third channel slope  $\alpha_3 = 38^{\circ}50'$  which is milder than second slope, had different flow patterns: i.e. the convex flow and trajectory flow depths and the concave flow and trajectory flow depths respectively.
- 5. At the first junction point of the channel slopes  $\alpha_1$  and  $\alpha_2$  the flow was of convex nature and the flow past it through a trajectory path d/s of the channel with the slope  $\alpha_2$ . The flow at the second junction point of the channel of slopes  $\alpha_2$  and  $\alpha_3$  was of concave nature and similarly in slope  $\alpha_3$  the flow past through a trajectory path d/s of the channel with the slope  $\alpha_3$ . At the lower unit discharge rates (3 to 4 lps/0.2m i.e. 0.015 to 0.02 m3/s/m) the flow pattern followed transition and skimming flow regimes pattern where as at higher flow rates than these rates (6 to 20 lps/0.2m i.e. 0.03 to 0.10m3/s/m) the flow were all skimming flow regimes with recirculating vortices. At the convex and concave flow regions first-six to first-two steps were having air cavities with bigger sizes at upper ones and decreasing the cavity sizes to d/s steps.
- 6. After the placement of suppressor plates at the junction points of slopes the flow followed uniform depth throughout the channel d/s of it. The placement height of the suppressor plate was fixed as the depth of flow at the toe of respective slopes. Hence the suppressor plates were found to be a good key structural element to reduce the flow depths in the spillways, which help in reducing the sidewall height of the spillways. Among the circular and elliptical suppressor plates used in experiments, the elliptical suppressor plate (P=135mm) gave good result in uniformity of flow with smaller flow of depths after placement of it at the junction points. It means after placement of suppressor plate the flow depth decreases and obviously the concentration of air in the flow also decreases.
- 7. The energy dissipation rate by Tatewar & Ingle (1996) and Knight & McDonold (1979) in the multislope and monoslope stepped spillways were found to be 87.4% and 89.9% respectively for the flow rate of 20 lps (or unit flow rate q = 0.10 m3/s/s). And similarly by Chanson (1994) the rate of energy dissipation were found to be 85.3% and 85.85% respectively for the same flow rate.
- 8. Multislope stepped spillways with the final or last channel slope steeper than the second last slope dissipated more head or energy compared to spillways channels with the milder slope than the second slope.

# REFERENCES

### References

- Boes & Hager (2003 Sept.) "Two phase flow characteristics of stepped spillways" ASCE, JOHE, Vol. 129 No. 9.
- Boes & Hager (2003 Sept.) "Hydraulic design of stepped spillways" ASCE, JOHE, Vol. 129 No. 9.
- Chamani & Rajaratnam (1994 Feb.) "Jet flow on stepped spillways" ASCE, JOHE, Vol.120 No. 2
- Chamani & Rajaratnam (1999 Sept.) "Onset of skimming flow on stepped spillways" ASCE, JOHE, Vol.125 No. 9
- Chamani & Rajaratnam (1999 April.) "Characteristics of skimming flow over stepped spillways" ASCE, JOHE, Vol.125 No. 4
- Chanson (2001) "Hydraulic design of stepped spillways and downstream energy dissipaters" University of Queens land, Australia.
- Chanson (2001) "A transition flow regime on stepped spillways the facts" University of Queensland, Australia.
- Chanson (1994) "Hydraulics of stepped cascades, channels, weirs & spillways" University of Queensland, Australia.
- Detlef aigner (2000) "Hydraulic design of pooled step cascades" Technische Universitact Dresden, 01309 Germany.
- James, Ball (1976) "Cavitations from surface irregularities in high velocities" ASCE, JOHD, Vol.102 No. HY 9.
- Marinis, Fratino & Piccini (2000) "Flow regimes on stepped spillways" Italy casino Minor&Hager (2000) "Hydraulics of stepped spillways"
- N.Sharma, Prof.WRDTC, IIT, Roorkee (2003) "Preliminary draft of standard on design of stepped spillways"
- Ohmoto, Nagaya, Nariai &Yakita (1995) "Flow characteristics of skimming flow in stepped steep open channel" Kumanoto University Japan.
- Shahani, P.B. Surveying part II, UOR, Roorkee, 1966.

# Appendix-A

### Hydraulic design of stepped chutes (spillways)

### 6.1 Chanson (1994):

- (i) Nappe flow regimes: Design steps;
- 1. Calculate dc/h from given data with the formula:

$$dc = \sqrt[3]{\frac{qw^2}{g}}$$
; where dc is the critical depth.

2.Calculate (dc/h)char with the relation;

$$(\frac{dc}{h})char = 0.0916(\frac{h}{l})^{-1.276}$$
, where h/l=tan\alpha.

- 3. Calculate db flow depth at the brink of step.
- 4. Calculate nappe thickness at the impact with the receiving pool by the relation,

$$\frac{di}{h} = 0.687 \left(\frac{dc}{h}\right)^{1.483}$$

5. Calculate impact velocity of the nappe, by;

$$\frac{vi}{vc} = 1.455 \left(\frac{dc}{h}\right)^{-0.483}$$

6. Calculate jet angle of the impinging nappe with,

$$\tan \theta = 0.838 (\frac{dc}{h})^{-0.586}$$

7. Calculate flow depth (conjugate) upstream of hydraulic jump with the relation;

$$\frac{d1}{h} = 0.54 \left(\frac{dc}{h}\right)^{1.275}$$

8. Find Fraude no. at the start of hydraulic jump;

$$Fr = \frac{q}{\sqrt{gd1^3}}$$

9.Find conjugate depth d2;

$$\frac{d2}{d1} = \frac{1}{2}(\sqrt{1+8Fr^2} - 1)$$

10. Find flow depth in pool beneath the nappe,

$$\frac{dp}{h} = \left(\frac{dc}{h}\right)^{0.66}$$

11. Calculate length of drop with,

$$\frac{Ld}{h}=4.3(\frac{dc}{h})^{0.81}$$

12. Find out length of jump or roller length;

$$\frac{Lj}{d1} = 8[(\frac{dc}{d1})^{\frac{3}{2}} - 1.5]$$

13. Rate of energy dissipation can be calculated by the formula;

$$\frac{\Delta H}{H \text{ max}} = 1 - \left[ \frac{0.54 \left( \frac{dc}{h} \right)^{0.275} + \frac{3.43}{2} \left( \frac{dc}{h} \right)^{-0.55}}{\frac{3}{2} + \frac{Hdam}{dc}} \right]$$
 for ungated chute.

14. Nappe ventilation at each step can be found out by the relation;

$$\frac{Qair^{nappe}}{Qw} = 0.19(\frac{h - dp}{dp})^{0.95} \text{ for } 3 < \text{Fr} < 10$$

$$\frac{Qair^{nappe}}{Qw} = 0.21(\frac{h - dp}{dp})^{1.03}$$
 for 13 < Fr <15

15.By Kogga (1982);

$$Ve = 2.58\theta - 0.3$$
 for d=4.6mm and  $\Pi/7.2 < \theta < \Pi/2.8$   $Ve = 1.73\theta - 0.73$  for d=1.2mm and  $\Pi/3 < \theta < \Pi/2$ 

16. Nappe Fraude no. at the impact;

$$Fr = \frac{(V - Ve)}{\sqrt{gd}}$$
 where d is the jet thickness or dia.

17.Plunging jet entrainment at each step;

$$\frac{Qair^{jet}}{Qw} = K4 \frac{Fr^2}{(\sin \theta)^{1.2}}$$
 where K4 is proportionality constant= 0.0055 for 
$$\frac{Vi}{\sqrt{gd1}} < 5.5$$

18. Air entrainment at hydraulic jump at each step;

$$\frac{Qair^{Hj}}{Qw} = 0.018(Fr - 1)^{1.245}$$
 where  $Fr = \frac{qw}{\sqrt{gd1^3}}$ 

(ii) Skimming flow regime: Design steps;

1. Calculate dimension less critical depth by;

$$\frac{dc}{h} = \frac{\sqrt{\frac{qw^2}{g}}}{h}$$

2.Skimming flow occurs for discharge larger than a critical value,

$$\frac{(dc)onset}{h} = 1.057 - 0.465 \frac{h}{l}$$

It is deduced for h/l ranging from 0.2 to 0.125 (i.e. 11°<a<52°)

3.Location of the point of inception point;

$$\frac{Li}{Ks} = 9.719(\sin \alpha)^{0.0796} Fr^{0.713} \text{ where Ks=hCos}\alpha \quad \text{and } \alpha = \text{slope angle},$$

$$Fr = \frac{qw}{\sqrt{g \sin \alpha (h \cos \alpha)^3}}$$

4. Flow depth at the point of inception;

$$\frac{di}{Ks} = \frac{0.4034}{\left(\sin\alpha\right)^{0.04}} Fr^{0.592}$$

5. Average equilibrium air concentration Ce;

$$Ce = 0.9 \sin \alpha$$

6.Uniform aerated flow depth;

$$\frac{do}{dc} = \sqrt{\frac{fe}{8\sin\alpha}}$$
 f=1.0 for non aerated friction factor and aerated friction factor fe;

$$\frac{fe}{f} = 0.5[1 + \tanh(0.628 \frac{0.514 - Ce}{Ce(1 - Ce)})] \text{ where } \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

7. Characteristic depth Y90 where C=90%; 
$$\frac{Y90}{dc} = \sqrt{\frac{fe}{8(1 - Ce)^3 \sin \alpha}}$$

8. Mean flow velocity;

$$(Uw)o = \frac{qw}{do}$$

6.2 Boes and Hager (2003):

Skimming flow: Design steps

1. Selection of spillways width:

To avoid converging spillway training walls which lead to the creation of shock waves, a chute width equal to the d/s river width is chosen.

Therefore chose width = b

Find unit discharge, qw = Qd/b

Find critical depth  $dc = \sqrt[3]{\frac{qw^2}{a}}$ 

2. Selection of step height and flow regime:

If RCC lift is given then take step height, h=2\*lift height. Because it facilitates spillways construction on one hand and ensure a large energy dissipation rate on the other.

Onset of skimming flow;

$$\frac{dc}{h} = 0.91 - 0.14 \tan \alpha$$

3.Inception of air entrainment: Length of inception point or backwater distance;

$$Li = \frac{5.9(dc)^{\frac{6}{5}}}{(\sin \alpha)^{\frac{7}{5}}h^{\frac{1}{5}}}$$

4.Inception flow depth for  $26^{\circ} < \alpha < 55^{\circ}$ 

Find air mixed depth;

$$\frac{dmi}{h} = 0.4Fr^{0.60} \text{ where } Fr = \frac{qw}{\sqrt{g\sin\alpha h^3}}$$

Find two phase air mixed flow velocity at inception point;

$$Vmi = \frac{qw}{dmi}$$

Find depth averaged inception air concentration;

$$\overline{Ci} = 1.2 * 10^{-3} (240 - \alpha)$$

Find inception clear water depth;

$$dwi = dmi(1 - \overline{Ci})$$

Find clear water velocity;

$$Vwi = \frac{qw}{dwi}$$

This value should be just below the critical velocity for the inception of cavitations in unaerated stepped chute flow.

5.Attainment of uniform flow:

Vertical distance required for uniform flow to be attained;

$$\frac{Hdam, u}{dc} = 24(\sin\alpha)^{\frac{2}{3}}$$

6.Uniform flow depths: If the spillway is sufficiently long for uniform flow to be established, the uniform equivalent clear water depth would be;

$$\frac{dw,u}{dc} = 0.215(\sin\alpha)^{\frac{-1}{3}}$$

and uniform characteristic mixture depth;

$$\frac{d90u}{h} = 0.5Fr^{(0.1\tan\alpha + 0.5)}$$

and uniform depth averaged air concentration,

$$\overline{Cu} = 1 - \frac{dw, u}{d90, u}$$

7. Energy dissipation:

Residual head at any section along a stepped spillway regardless of uniform or non-uniform condition can be expressed by;

 $Hres = dw \cos \alpha + Ec \frac{qw^2}{2g(dw)^2}$  where Ec is energy correction coefficient=1.1.

Rate of energy dissipation;  $\frac{Hres}{H \max} = \exp[(-0.045(\frac{K}{Dhw})^{0.1}(\sin \alpha)^{-0.8})\frac{Hdam}{dc}]$ 

for Hdam/dc < 15 to 20.

And 
$$\frac{Hres}{H \max} = \frac{F}{\frac{Hdam}{dc} + F}$$
 with  $F = \left(\frac{fh}{8\sin\alpha}\right)^{\frac{1}{3}}\cos\alpha + \frac{Ec}{2}\left(\frac{fh}{8\sin\alpha}\right)^{\frac{-2}{3}}$ 

for Hdam/dc>15 to 20.

Where Hmax=Hdam+1.5 dc

Dh,w=Hydraulic diameter=4Rhw=
$$\frac{4b(dwu)}{(b+2(dwu))}$$

Ec=1.1

fh=friction factor=
$$[0.5 - 0.42\sin(2\alpha)](\frac{K}{Dhw})^{0.2}$$

 $K = h \cos \alpha$ 

8. Training wall design:

Training wall height,  $hd = \eta(d90,u)$  where  $\eta$  is factor of safety=1.2 for concrete dam and 1.5 for emergency spillways.

6.3 Tatewar & Ingle (1996) and Knight & Mc Donold (1979):

Skimming flow design steps. See section 2.12 (Energy dissipation)

# Appendix-B

## **Graphs:**

### Tables of calculations and plotting of graphs of:

- 1.Flow depth d<sub>90</sub>(d<sub>w</sub>) verses distance x graphs
- 2. Flow depth d<sub>90</sub> (d<sub>w</sub>) verses Fr graphs
- $3.H_{res}/H_{max}$  verses  $H_{spill}/d_c$  graphs
- 4. Flow depth  $d_{90}(d_w)$  verses velocity  $V_w$  graphs

# Graphs: Without circular suppressor plate

(1) d<sub>w90</sub> vs x graph:

| ន        |                     | Г              |            | 1                     | 9            | -            | N                     |                |            |                                                  |
|----------|---------------------|----------------|------------|-----------------------|--------------|--------------|-----------------------|----------------|------------|--------------------------------------------------|
|          |                     | <u> </u>       | _          | L                     | 126          | 1.6          | 15                    | _              | _          |                                                  |
| 19       |                     |                |            |                       | 120          | 9.1          | 15                    |                |            |                                                  |
| 18       |                     |                |            |                       | 113          | 8.6          | 16                    |                |            |                                                  |
| 17       |                     |                |            |                       | 107          | 11           | 18                    |                |            |                                                  |
| 16       |                     |                |            |                       | 101          | 11           | 18                    |                |            |                                                  |
| 15       |                     | 82             | 4.8        | 5.8                   | 94           | 12           | 20                    | 81             | 10         | 13                                               |
| 13 14    |                     | 26             | 4.8        | 5.8                   | 88           | 12           | 20                    | 75             | 10         | 13                                               |
|          |                     | 70.3           | 4.8        | 5.8 5.8 5.8 5.8       | 82           | 13           | 20                    | 70             | 11         | 14 14.1                                          |
| 12       |                     | 64 7           | 4.8        | 5.8                   | 75           | 13           | 21                    | 65             | 11         | 14                                               |
| 11       |                     | 59             | 4.8        | 5.8                   | 69           | 14           | 22                    | 59             | 11         | 14                                               |
| 10       | _                   | 52.7           | 4.8        | 5.8                   | 63           | 14           | 22                    | 54             | 11         | 14.3                                             |
| 6        |                     | 46.9 52.7      | 4.8        | 5.8                   | 99           | 13           | 21                    | 49             | 11         | 14.4                                             |
| 8        |                     | 41             | 4.9        | 5.9                   | 20           | 13           | 21                    | 44             | 10         | 13.2                                             |
| 7        |                     | 35.1           | 5          |                       | 43.5         | 11.9         | 19.4                  | 38             | 10.3       | 9.47 8.5 8.02 8.99 11.4 11.7 13.2 13.2 14.4 14.3 |
| 9        |                     | 29.3           | 5.3        | 6.5 6.4 6.07          | 38           | 12           | 19                    | 32.9           | 9.1        | 11.7                                             |
| 2        |                     | 23.4           | 5.4        | 6.5                   | 31           | 10           | 17                    | 27.6           | 8.9        | 11.4                                             |
| 4        |                     | 17.6 23.4 29.3 | 7          | 8.5                   | 24.9         | 5.6          | 15.5                  | 16.9 22.3 27.6 | 7          | 8.99                                             |
| က        |                     | 11.7           | 8.6 8.25   | 10                    | 12 18.5 24.9 | 8.13         | 8.5 7.5 13.3 15.5     | 16.9           | 6.25       | 8.02                                             |
| N        |                     | 5.9            | 8.6        | 10                    | 12           | 5.2 6.8      | 7.5                   | 12             | 7.4 6.6    | 8.5                                              |
| -        |                     | 0              | 6          | 11                    | 5.9          | 5.2          | 8.5                   | 6.32           | 7.4        | 9.47                                             |
| Step no. |                     | x(cm)          | dw90cosa   | (d <sub>w90</sub> )cm | x(cm)        | 0.1 dw90cosa | (d <sub>w90</sub> )cm | х(сш)          | dw90cosa   | mɔ(06^p)                                         |
|          | (s/ <sub>c</sub> m) |                | =          |                       | <u></u> :    | 0.1          |                       |                |            |                                                  |
| cosa da  |                     |                | 0.82       |                       |              | 0.61         |                       |                | 0.78       |                                                  |
|          | <br>                |                | 34032 0.82 |                       | _            | 52014 0.61   |                       |                | 38050      | 7                                                |
| Sn a     | $\neg$              |                | (4)        | ل                     |              | 1.5          |                       |                | <u>(1)</u> | $\dashv$                                         |

| 20                        | Т     | Γ        |          | ७     | 10               | 15                    | ı     | Γ          | Г                          |
|---------------------------|-------|----------|----------|-------|------------------|-----------------------|-------|------------|----------------------------|
|                           | _     |          | _        | 126   | L.,              |                       | L     | _          |                            |
| 19                        |       |          |          | 120   | 10               | 16                    |       |            |                            |
| 18                        |       |          |          | 113   | 10               | 17                    |       |            |                            |
| 17                        |       |          |          | 107   | 11               | 18                    |       |            |                            |
| 16                        |       |          |          | 101   | 12               | 19                    |       |            |                            |
| 15                        | 82    | 4.5      | 5.8      | 94    | 12               | 20                    | 81    | 10         | 13                         |
| 4                         | 9/    | 4.5      | 5.8      | 88    | 12               | 8                     | 75    | 10         | 13                         |
| 5                         | 70.3  | 4.5      | 5.8      | 82    | 12               | 20                    | 2     | 10         | 13.2                       |
| 12                        | 64    | 4.5      | 5.8      | 75    | 14               | 22                    | 65    | 11         | 14                         |
| 11                        | 59    | 4.5      | 5.8      | 69    | 14               | 22                    | 59    | 12         | 15                         |
| 10                        | 52.7  | 4.5      | 5.5      | 63    | 14               | 22                    | 54    | 12         | 15.1                       |
| 6                         | 46.9  | 4.5      | 5.5      | 56    | 13               | 21                    | 49    | 11         | 14.4                       |
| ω                         | 41    | 4.5      | 5.5      | 20    | 13               | 21                    | 4     | 11         | 13.5                       |
| 7                         | 35.1  | 4.5      | 5.46     | 43.5  | 11.6             | 19                    | 38    | 10.4       | 13.3                       |
| 9                         | 29.3  | 4.5      | 5.5      | 38    | 11               | 18                    | 32.9  | 9.8        | 12.5                       |
| S.                        | 23.4  | 4.8      | 5.8      | 31    | 6.6              | 16                    | 27.6  | 9.8        | 11.1 12.5                  |
| 4                         | 17.6  | 9        | 7.28     | 24.9  | 9.5              | 15.5                  | 22.3  | 7          | 8.99                       |
| က                         | 11.7  | 6.25     | 7.58     | 18.5  | 8.13             | 13.3                  | 16.9  | 5.63       | 7.22                       |
| 2                         | 5.9   | 8        | 6.7      | 12    | 8.9              | 11                    | 12    | 5.9        | 7.5                        |
| -                         | 0     | 8        | 6.7      | 5.9   | 4.9              | 8                     | 6.32  | 8.9        | 99.8                       |
| Step no.                  | x(cm) | dw90cosa | mɔ(06mp) | x(cm) | 0.09 dw90cosa    | шэ( <sup>06м</sup> р) | x(cm) | dw90cosa   | $(d_{\underline{w}90})$ cm |
| (6)                       |       |          |          |       | 0.00             |                       |       |            |                            |
| cosα q <sub>w</sub> (m3/s |       | 0.82     |          |       |                  |                       |       | 0.78       |                            |
|                           |       | 34032    |          | -     | 2   52014   0.61 |                       |       | 38050 0.78 |                            |
| Sn   a                    |       | m        |          |       | 25               | ب_                    |       | <u>w</u>   |                            |

| 8                | Т         | T          | Τ                     | छ     | 4             | 4                     | Т     | Т            | Γ                          |
|------------------|-----------|------------|-----------------------|-------|---------------|-----------------------|-------|--------------|----------------------------|
|                  | - -       | ↓_         | <u> </u>              | 126   | 8.4           |                       | L     | <u> </u>     | <u> </u>                   |
| 19               |           |            | Ĺ                     | 120   | 8.5           | 1.                    | 1     |              |                            |
| 18               |           |            |                       | 113   | 8.8           | 14                    |       |              |                            |
| 17               |           |            |                       | 107   | 8.6           | 18                    |       |              |                            |
| 16               |           |            |                       | 101   | 11            | 18                    | Γ     |              |                            |
| 15               | 82        | 4.3        | 5.8                   | 46    | 11            | 20                    | 81    | 6            | 12                         |
| 14               | 76        | 4.4        | 5.8                   | 88    | 11            | 18                    | 75    | 6            | 12                         |
| 13               | 70.3      | 4.4        | 5.8                   | 82    | 11            | 18                    | 70    | 6            | 11.6                       |
| 10 11 12         | 49        | 4.3        | 5.8                   | 75    | 13            | 20                    | 65    | 8.6          | 14                         |
| Ξ                | 59        | 4          | 5.8                   | 69    | 13            | 22                    | 59    | 11           | 13                         |
| 10               | 52.7      | 4          | 4.9                   | 63    | 14            | 22                    | 54    | 12           | 14.8                       |
| 6                | 46.9 52.7 | 4          | 4.9                   | 26    | 14            | 21                    | 49    | 11           | 14                         |
| 80               | 41        | 4.5        | 5.5                   | 50    | 12            | 20                    | 44    | 11           | 13.5                       |
| 7                | 35.1      | 4.5        | 5.46                  | 43.5  | 11.6          | 19                    | 38    | 88'6         | 12.7                       |
| 9                | 29.3      | 4.5        | 5.5                   | 38    | 11            | 18                    | 32.9  | 8.1          | 10.4 12.7                  |
| 2                | 23.4      | 5.5        | 6.7                   | 31    | 9.9           | 16                    | 27.6  | 7.9          | 10.1                       |
| 4                | 17.6 23.4 | 5.5        | 19.9                  | 24.9  | 9.13          | 14.9                  | 22.3  | 6.25         | 8.02                       |
| 8                | 11.7      | 6.25       |                       | 18.5  | 7.75          | 12.6                  | 16.9  | 5.13         | 6.58                       |
| 2                | 5.9       | 7.3        | 8.8 7.58              | 12    | 6.3           | 10                    | 12    | 5.4 5.13     | 6.9 6.58                   |
| -                | 0         | 7.9        | 9.6                   | 5.9   | 4.6           | 7.5                   | 6.32  | 6.8          | 8.66                       |
| Step no.         | x(cm)     | dw90cosa   | (d <sub>w90</sub> )cm | x(cm) | 0.08 dw90cosa | (d <sub>w90</sub> )cm | x(cm) | dw90cosa     | (d <sub>w90</sub> )cm 8.66 |
| qw (m3/s)        |           |            |                       |       | 0.08          |                       |       |              |                            |
| cosa qw<br>(m3/s |           | 0.82       |                       |       | 0.61          |                       |       | 0.78         |                            |
|                  |           | 34032 0.82 |                       | -     | 3 52014 0.61  |                       |       | 38050 . 0.78 |                            |
| Sυα              | <u> </u>  |            |                       |       | n             |                       |       |              |                            |

|                                     | 1         | _          | -                     | <u> </u> | <u> </u>      | آج،                   | _              | 1          |                       |
|-------------------------------------|-----------|------------|-----------------------|----------|---------------|-----------------------|----------------|------------|-----------------------|
| 8                                   |           |            |                       | 126      | 7.5           | 12                    |                | _          |                       |
| 19                                  |           |            |                       | 120      | 7.5           | 12                    |                |            |                       |
| 18                                  |           |            |                       | 113      | 8.1           | 13                    |                |            |                       |
| 17                                  |           |            |                       | 107      | 6             | 15                    |                |            |                       |
| 9                                   |           |            |                       | 101      | 6             | 15                    |                |            |                       |
| 15                                  | 82        | 4.2        | 5.8                   | 24       | 9.3           | 15                    | 81             | 9          | 7.7                   |
| 14                                  | 76        | 4.2        | 5.8                   | 88       | 10            | 17                    | 75             | 9.9        | 8.5                   |
| 13                                  | 70.3      | 4.2        | 5.8                   | 82       | 11            | 19                    | 70             | 7.4        | 11 9.47               |
| 127                                 | 64        | 4.2        | 5.8                   | 75       | 12            | 19                    | 92             | 8.3        | •                     |
| Ę                                   | 59        | 4.2        | 5.8                   | 69       | 13            | 77                    | 59             | 8.5        | 11                    |
| 10                                  | 52.7      | 4.2        | 5                     | 63       | 13            | 17                    | 54             | 8.5        | 10.9                  |
| 6                                   | 46.9      | 4          | 4.9                   | 99       | 13            | 21                    | 49             | 9.3        | 11.9                  |
| 8                                   | 41        | 4          | 4.9                   | 20       | 12            | 19                    | 44             | 9.3        | 11.9                  |
| 2                                   | 35.1      | 4          | 4.85                  | 43.5     | 11.4          | 18.6                  | 38             | 8.5        | 10.9 11.9 11.9 10.9   |
| 9                                   | 29.3      | 4          | 4.9                   | 38       | 11            | 17                    | 32.9           | 8.1        | 10.4                  |
| Ω.                                  | 23.4      | 4          | 4.9                   | 31       | 6.6           | 16                    | 27.6           | 7.4        | 9.47                  |
| 4                                   | 17.6 23.4 | 5          |                       | 24.9     | 8.88          | 13 14.5               | .22.3          | 9          | 7.7                   |
| က                                   | 11.7      | 5          | 6.1 6.07 6.07         | 18.5     | 7.95 8.88     | 13                    | 16.9 22.3 27.6 | 4.63       | 5.94                  |
| 2                                   | 5.9       | 5          | 6.1                   | 12       | 6.3           | 10                    | 12             | 4.6        | 5.9                   |
| _                                   | 0         | 5.4        | 6.5                   | 5.9      | 4.4           | 7.1                   | 6.32           | 5.5        | 7.06                  |
| cosα q <sub>w</sub> Step no. (m3/s) | x(cm)     | dw90cosa   | (d <sub>w90</sub> )cm | x(cm)    | 0.07 dw90cosa | (d <sub>w90</sub> )cm | x(cm)          | dw90cosa   | (d <sub>w90</sub> )cm |
| qw<br>(m3/s)                        |           |            |                       |          | 0.07          |                       |                |            |                       |
| cosa                                |           | 0.82       |                       |          | 0.61          |                       |                | 0.78       |                       |
|                                     |           | 34032 0.82 |                       |          | 4 52014 0.61  |                       |                | 38050 0.78 |                       |
| Sn α                                |           |            |                       |          | 4             |                       |                |            |                       |

|          |          |       |          |                       |         |               |                       |          |          |                       |   |   | _ |              |          |           |
|----------|----------|-------|----------|-----------------------|---------|---------------|-----------------------|----------|----------|-----------------------|---|---|---|--------------|----------|-----------|
| 8        | T        |       |          |                       | 126     | 5.8           | 9.4                   |          |          |                       |   |   |   | 20           |          | _         |
| 5        |          |       |          |                       | 120     | 9             | 8.6                   |          |          |                       |   |   | ı | 19           |          |           |
| 18       | 7        |       |          |                       | 113     | 6.5           | 11                    |          |          |                       |   |   |   | 18           |          |           |
| 17       | 7        | 1     |          |                       | 107     | 7.5           | 18                    |          | _        |                       |   |   |   | 17           |          | -         |
| 16       | 1        | 1     | 1        |                       | 101     | 8             | 13                    |          |          |                       |   |   |   | 16           |          | _         |
| 15       | +        | 82    | 4.1      | 5.8                   | 94      | 7.8           | 20                    | 81       | 5.9      | 53                    |   |   | i | 15           | 82       | -;<br>  • |
| 14       | 1        | 92    | 3.8      | 5.8                   | 88      | 8.3           | 13                    | 75       | 5.9      | 7.5                   |   |   |   | 14           | 9/       |           |
| 13       |          | 703   | 3.9      | 5.8                   | 82      | 6             | 15                    | 70       | 6.3      | 8.02                  |   |   |   | 13           | 70.3     | Ī         |
| 12       | _        | 40    | 3.7      | 5.8                   | 75      | 10            | 16                    | 65       | 6.3      | 14                    |   |   |   | 2            | 64       | Ī         |
| =        |          | 59    | 3.5      | 5.8                   | 69      | 11            | 22                    | 59       | 7        | 6                     |   |   |   | F            | 59       | Ī         |
| 9        |          | 52.7  | 3.5      | 4.2                   | 63      | 11            | 18                    | 54       | 9.5      | 12.2                  |   |   |   | 0            | 52.7     | Ī         |
| 6        |          | 46.9  | 3.5      | 4.2                   | 99      | 11            | 21                    | 49       | 9.3      | 11.9                  |   |   |   | 6            | 46.9     | l         |
| 8        | 1        | 41    | 3.5      | 4.2                   | 50      | 10            | 16                    | 44       | 8.6      | 11.1                  |   | • |   | 8            | 41       | ŀ         |
| 7        |          | 35.1  | 3.5      | 4.25                  | 43.5    | 101           | 16.3                  | 38       | ∞.       | 10.3                  |   |   |   | 7            | 35.1     |           |
| 9        |          | 29.3  | 4.5      | 5.5                   | 38      | 2             | 16                    | 32.9     | 8.3      | 10.6                  |   |   |   | 9            | 29.3     | ŀ         |
| 2        |          | 23.4  | 4.5      | 5.5                   | 31      | 9.9           | 16                    | 27.6     | 6.3      | 8.02                  |   |   |   | 2            | 23.4     | ŀ         |
| 4        |          | 17.6  | 4.5      | 5.46                  | 24.9    | 8.75          | 14.3                  | 22.3     | 5.38     | 6.9                   |   |   |   | 4            | 17.6     | ŀ         |
| 8        | -        | 11.7  | 4.5      | 5.46 5                | 18.5    | 7.5           | 12.2 1                | 16.9     | 4.65 5   | 5.97                  |   |   |   | က            | 11.7     | L         |
| 7        |          | 5.9 1 | 5.5      | 6.7 5                 | 12 1    | 5.9           | 9.6                   | 12 1     | 4.5 4    | 5.8 5                 |   |   |   | N            | 5.9 1    | L         |
| -        | $\dashv$ | 0     | 5.5      | 6.7                   |         | <u> </u>      | 7.3                   | 丄        | 5.5      | 90:                   |   |   |   | -            | 0        | l         |
| <u> </u> | $\dashv$ |       |          | <u> </u>              | ᆫ       | <del> </del>  | <del>  _</del>        | 9        | ᄂ        | 7                     |   |   |   | <u> </u>     | ╄        | ł         |
| Step no. |          | x(cm) | dw90cosa | (d <sub>w90</sub> )cm | X(CIII) | 0.06 dw90cosa | (d <sub>wen</sub> )cm | x(cm)    | dw90cosa | (d <sub>w90</sub> )cm |   |   |   | Step no.     | x(cm)    |           |
| ď.       | (m3/s)   |       | -        |                       |         | 0.00          |                       |          |          |                       |   |   |   | qw<br>(m3/s) |          |           |
| cosa d.  |          |       | 0.82     |                       |         | 0.61          |                       | Γ        | 0.78     |                       |   |   |   | σοοσ         |          | _         |
| ۴        |          | -     | 34032    |                       | -       |               |                       | $\vdash$ | 38050    |                       |   |   |   | -            | $\vdash$ | _         |
| 8        | _        | _     | 346      |                       | _       | 5 52014       |                       | L        | 38       |                       |   |   |   | Sn α         | 1        | _         |
| Sn       |          | l     |          |                       |         | ٠,            |                       |          |          |                       | 1 |   |   | l?           | 1        |           |

|        |       | *        |                       |          |               |                       |       |          |           |   |    | ·            |           |          |                       |          |               |                                    |          |               |                       |   |   |  |  |   |
|--------|-------|----------|-----------------------|----------|---------------|-----------------------|-------|----------|-----------|---|----|--------------|-----------|----------|-----------------------|----------|---------------|------------------------------------|----------|---------------|-----------------------|---|---|--|--|---|
|        |       |          |                       |          |               |                       |       |          |           |   |    |              |           |          |                       |          |               |                                    |          |               |                       |   |   |  |  |   |
| _      | П     |          |                       | 126      | 8.8           | 4.6                   | _     |          |           |   |    | 8            | 7         | _        | $\neg$                | 126      | 8.4           | 6:7                                | $\neg$   | $\overline{}$ |                       | ٠ |   |  |  |   |
| +      | 1     |          | -                     | 120      | 9             | 8.6                   | 7     |          | ٦         |   | -  | 19           | $\dashv$  |          | 7                     | 120      | 8.4           | 7.7                                | 十        |               |                       |   |   |  |  |   |
|        | 1     |          | _                     | 113      | 6.5           | 11                    |       |          | $\exists$ |   | ٠. | 18           | 1         | _        |                       | 113      | 2             | 8.2                                | 1        |               | ┪                     |   |   |  |  |   |
| -      | ┪     |          |                       | 107      | 7.5           | 18                    |       |          |           |   |    | 17           |           |          |                       | 107      | 5.3           | 8.6                                | 7        |               |                       |   |   |  |  |   |
|        | 1     |          |                       | 101      | 8             | 13                    |       |          |           |   |    | 16           | ٦         |          |                       | 101      | 5.3           | 8.6                                |          | 7             | $\dashv$              |   |   |  |  |   |
|        | 82    | 4.1      | 5.8                   | 94       | 7.8           | 20                    | 81    | 5.9      | 13        |   |    | 15           | 82        | 3.4      | 5.8                   | 94       | 5.3           | 8.6                                | 81       | 5             | 6.4                   |   |   |  |  |   |
| _      | 92    | 3.8      | 5.8                   | 88       | 8.3           | 13                    | 75    | 5.9      | 7.5       |   |    | 14           | 76        | 3.4      | 5.8                   | 88       | 5.5           | 6                                  | 75       | N             | 6.4                   |   |   |  |  |   |
|        | 70.3  | 3.9      | 5.8                   | 82       | 6             | 15                    | 70    | 6.3      | 8.02      |   |    | 13           | 70.3      | 3.4      | 5.8                   | 82       | 9             | 8.6                                | 2        | 5.4           | 6.9                   |   |   |  |  |   |
|        | 64    | 3.7      | 5.8                   | 75       | 10            | 91                    | 9     | 6.3      | 14        |   |    | 12           | 64        | 3.4      | 5.8                   | 75       | 6.8           | 11                                 | 65       | 6.1           | 14                    |   |   |  |  | • |
|        | 59    | 3.5      | 5.8                   | 69       | 11            | 22                    | 59    | 7        | 6         |   |    | 11           | 59        | 3.3      | 5.8                   | 69       | 7.5           |                                    | ш        | 6.3           | 8                     |   |   |  |  |   |
| 1      | 52.7  | 3.5      | 4.2                   | 63       | 11            | 18                    | 54    | 9.5      | 12.2      |   |    | 9            | 52.7      | 2.9      | 3.5                   | 63       | 8.6           |                                    | 54       | 6.4           | 8.22                  |   |   |  |  |   |
|        | 46.9  | 3.5      | 4.2                   | 99       | L             | 21                    | 49    | 9.3      | 11.9      |   |    | 0            | 46.9      | 2.9      | 3.5                   | 95       | 5.5           | 6                                  | Ш        | 6.8           | 8.7                   |   |   |  |  |   |
|        | 41    | 3.5      | 4.2                   | 50       | 10            | 16                    | 44    | 8.6      | 11.1      |   |    | 8            | 41        | 2.8      | 3.3                   | 50       | 8.3           | 13                                 | 44       | 7.1           | 9.15                  |   | • |  |  | , |
|        | 35.1  | 3.5      | 4.25                  | 43.5     | 10            | 16.3                  | 38    | 8        | 10.3      |   |    | 7            | 35.1      | 2.9      | 3.52                  | 43.5     | œ.            | 13.1                               | 38       | 6.53          | 8.38                  |   |   |  |  | • |
|        | 29.3  | 4.5      | 5.5                   | 38       | 10            | 16                    | 32.9  | 8.3      | 10.6      |   |    | 9            | 29.3      | 2.9      | 3.5                   | 38       | 7.8           | 13                                 | 32.9     | 6.3           | 8.02                  |   |   |  |  |   |
|        | 23.4  | 4.5      | 5.5                   | 31       | 9.6           | 16                    | 27.6  | 6.3      | 8.02      |   |    | 5            | 23.4      | 2.9      | 3.5                   | 31       | 7.8           | 13                                 | 27.6     | 9             | 7.7                   |   | * |  |  |   |
|        | 17.6  | 4.5      | 5.46                  | 24.9     | 8.75          | 14.3                  | 22.3  | 5.38     | 6.9       |   |    | 4            | 17.6      | 2.9      | 3.52                  | 24.9     | 6.75          | 11                                 | 22.3     | 5.25          | 6.74                  |   |   |  |  |   |
|        | 11.7  | 4.5      | 5.46                  | 18.5     | 7.5           | _                     | 16.9  | 4.65     | 5.97      |   |    | က            | 11.7      | 3.75     | 4.55                  | 18.5     | 9             | 9.79                               | 16.9     | 4.25          | 5.46                  |   |   |  |  |   |
|        | 5.9   | 5.5      | 6.7                   | 12       | 5.9           |                       | 12    | 4.5      | 5.8       |   |    | 2            | 5.9       | 1        | 4.6                   | 12       | 5             | 8.2                                | 12       | 3.4           | 4.3                   |   |   |  |  |   |
|        | 0     | 5.5      | 6.7                   | 5.9      | 4.5           | 7.3                   | 6.32  | 5.5      | 7.06      |   |    | -            | 0         | 3.8      | 4.6                   | 5.9      | 3.5           | 5.7                                | 6.32     | 4.4           | 5.62                  |   |   |  |  |   |
|        | (1    | as oo    | (d <sub>w90</sub> )cm | 2        | cosa          | (d <sub>w90</sub> )cm |       | .esoo    | 1         |   |    | no.          | 2         | cosa     | (d <sub>w90</sub> )cm |          | ES OS         | (d <sub>w</sub> q <sub>0</sub> )cm | 1 1      | cosa          | mɔ(06 <sup>m</sup> p) |   |   |  |  |   |
|        | x(cm) | dw90cosa | (d                    | x<br>CED | 0.06 dw90cosa | d <sub>w9</sub>       | x(cm) | dw90cosa | 9         |   |    | Step no.     | x(cm)     | dw90cosa | d<br>M                | X(CII)   | 0.05 dw90cosa | d<br>d                             | x(cm)    | dw90cosa      | (d <sub>w90</sub>     |   |   |  |  |   |
| (m3/s) |       |          |                       |          |               |                       |       |          |           |   |    | qw<br>(m3/s) |           |          |                       |          |               |                                    |          |               |                       |   |   |  |  |   |
|        |       | 0.82     |                       |          | 0.61          |                       |       | 0.78     |           |   |    | cosa         |           | 0.82     |                       |          | 0.61          |                                    |          | 0.78          |                       |   |   |  |  |   |
|        |       | 34032    |                       |          | 52014         |                       | T     | 38050    |           |   |    |              |           | 34032    |                       |          | 6 52014       |                                    |          | 38050         |                       |   |   |  |  |   |
|        | -     | <u></u>  |                       | <u></u>  | 5 5           |                       | Ь.    | <u> </u> |           |   |    | Sn a         | $\dagger$ | m        | —                     | <u> </u> | 65            |                                    | <u> </u> | 3             |                       |   |   |  |  |   |
|        |       |          | _                     |          |               |                       | _     | _        |           | • |    |              | _         |          |                       |          |               |                                    | _        |               |                       |   |   |  |  |   |

(2) d<sub>w</sub> vs Fr graph:

| Fr            |        | 3.54  | 3,64 | 3.52  | 3.72  | 3.60  | 3,7   | 148   | 3.68  | 3.66  | 3.8    | 3.73  | 3.75  | 48,€  | 3.76   | 3.80 | 16.5  | 3.76  | 3.83  |
|---------------|--------|-------|------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|--------|------|-------|-------|-------|
| 3             | (m)    | 0.033 | 0.02 | 0.032 | 98000 | 0.033 | 0.035 | 1,500 | 0.036 | 01039 | Eho. 0 | 0.639 | 0.042 | 940.0 | or 042 | Show | 640.0 | Shora | 8,000 |
| $\sin \alpha$ |        | 0.57  | 0.79 | 0.63  | 0.57  | 0.79  | 0.63  | 0.57  | 0.79  | 0.63  | 0.57   | 0.79  | 0.63  | 0.57  | 0.79   | 0.63 | 0.57  | 0.79  | 0.63  |
| α             |        | 34.5  | 52.2 | 38.8  | 34.5  | 52.2  | 38.8  | 34.5  | 52.2  | 38.8  | 34.5   | 52.2  | 38.8  | 34.5  | 52.2   | 38.8 | 34.5  | 52.2  | 38.8  |
| ď             | (m3/s) | 0.05  | 0.05 | 0.05  | 0.00  | 0.00  | 0.00  | 0.07  | 0.07  | 0.07  | 0.08   | 0.08  | 0.08  | 0.0   | 0.0    | 0.09 | 0.1   | 0.1   | 0.1   |
| Sn            |        | 1     |      |       | 2     |       |       | 3     |       |       | 4      |       |       | 5     |        |      | 9     |       |       |

| 20                     |                |                     |                       | 120 126    |                     | 158                   |            |                     |                       |
|------------------------|----------------|---------------------|-----------------------|------------|---------------------|-----------------------|------------|---------------------|-----------------------|
| 19                     |                |                     |                       |            | 7.7                 | 154                   |            |                     |                       |
| 18                     |                |                     |                       | 113        | 8.2                 | 164                   |            |                     |                       |
| 17                     |                | -                   |                       | 101 107    | 6                   | 180                   |            |                     |                       |
| 16                     |                |                     |                       | 101        | 6                   | 180                   |            |                     |                       |
| 15                     | 82             | 5.8                 | 176                   | 94         | 6                   | 180 180               | 81         | 6.4                 | 194                   |
| 14                     | 9/             | 5.8                 | 176                   | 88         | 6                   | 180                   | 75         | 6.4                 | 194                   |
| 13                     | 70.3           | 5.8                 | 176                   | 82         | 8.6                 | 196                   | 70         | 7                   | 212                   |
| 12                     | 64             | 5.8                 | 176                   | 75         | 11                  | 220                   | 65         | 8                   | 248 242 242           |
| 11                     | 59             | 5.8                 | 176                   | 69         | 12                  | 240                   | 59         | 8                   | 242                   |
| 10                     | 52.7           | 3.5                 | 106                   | 63         | 14                  | 280                   | 54         | 8.2                 | 248                   |
| 6                      | 46.9 52.7      | 3.5                 | 106                   | 26         | 11                  | 220                   | 49         | 8.7                 | 264                   |
| 8                      | 41             | 3.5                 | 106                   | 50         | 13                  | 260                   | 44         | 9.2                 | 279                   |
| 7                      | 35.1           | 3.5                 | 106                   | 38 43.5    | 13                  | 260                   | 38         | 8.4                 | 255                   |
| 9                      | 29.3           | 3.5                 | 106                   | 38         | 13                  | 260                   | 32.9       | 8                   | 242                   |
| 5                      | 17.6 23.4 29.3 | 3.5                 | 106                   | 31         | 13                  | 260                   | 27.6       | 6.7                 | 203                   |
| 4                      | 17.6           | 3.5                 | 106                   | 24.9       | 11                  | 220                   | 22.3       | 6.7                 | 203                   |
| 3                      | 11.7           | 4.6                 | 139                   | 18.5       | 8.6                 | 196                   | 16.9       | 5.5                 | 167                   |
| 7                      | 5.9            | 4.6                 | 139 139               | 12         | 8.2                 | 164                   | 12         | 5.6 4.3             | 130                   |
| 1                      | 0              | 4.6                 | 139                   | 6.5        | 5.7                 | 114                   | 6.32       | 9.5                 | 170                   |
| Steps                  | 0.03 x(cm)     | шо <sup>06м</sup> р | d <sub>w90</sub> cm/h | 0.05 x(cm) | d <sub>w90</sub> cm | d <sub>w90</sub> cm/h | ).03 x(cm) | d <sub>w90</sub> cm | d <sub>w90</sub> cm/h |
| h(п) Steps             | 0.03           |                     | -                     | 0.05       |                     |                       | 0.03       |                     |                       |
| q <sub>w</sub><br>m3/s |                | 0.05                |                       | _          |                     |                       |            |                     |                       |
| ັ ຮ                    | 34032          |                     |                       | 52014      |                     |                       | 38050'     | 1                   |                       |

| 8          |           |                   |     | 126        | 7.9                | 158                   |            |                     |          |
|------------|-----------|-------------------|-----|------------|--------------------|-----------------------|------------|---------------------|----------|
| 19         |           |                   |     | 120        | 7.7                | 154                   |            |                     |          |
| 18         | •         |                   |     | 113        | 8.2                | 164                   |            |                     |          |
| 17         |           |                   |     | 107        | 6                  | 180                   |            |                     |          |
| 16         |           |                   |     | 101        | 6                  | 180                   |            |                     |          |
| 15         | 82        | 5.8               | 176 | 94         | 6                  | 180                   | 81         | 13                  | 388      |
| 14         | 76        | 5.8               | 176 | 88         | 6                  | 180                   | 75         | 7.5                 | 229      |
| 13         | 70.3      | 5.8               | 176 | 82         | 8.6                | 196                   | 70         | 8                   | 243      |
| 12         | 64        | 5.8               | 176 | 75         | 11                 | 220                   | 65         | 14                  | 424      |
| 11         | 59        | 5.8               | 176 | 69         | 12                 | 240                   | 59         | 6                   | 370 272  |
| 10         | 46.9 52.7 | 4.2               | 129 | £9         | 14                 | 280                   | 54         | 12                  | 370      |
| 9          | 46.9      | 4.2               | 129 | 99         | 11                 | 220                   | 49         | 12                  | 360      |
| 8          | 41        | 4.2               | 129 | 20         | 13                 | 260                   | 44         | 11                  | 336      |
| 7          | 35.1      | 4.25              | 129 | 43.5       | 13                 | 260                   | 38         | 10.3                | 311      |
| 9          | 29.3      | 5.5               | 165 | 38         | 13                 | 260                   | 32.9       | 11                  | 321      |
| 5          | 23.4      | 5.5               | 165 | 31         | 13                 | 260                   | 22.3 27.6  | ∞                   | 243      |
| 4          | 17.6 23.4 | 5.46              | 165 | 24.9       | 11                 | 220                   | 22.3       | 6.9                 | 209      |
| 3          | 11.7      | 5.46 5.46         | 165 | 18.5       | 8.6                | 196                   | 16.9       | 5.97                | 181      |
| 2          | 5.9       | 6.7               | 202 | 12         | 8.2                | 164                   | 12         | 5.8                 | 175      |
| F          | 0         | 6.7               | 202 | 5.9        | 5.7                | 114                   | 6.32       | 7.1                 | 214      |
| Steps      | x(cm)     | mo <sub>w</sub> p |     | 0.05 x(cm) | д <sup>м</sup> ост | d <sub>w90</sub> cm/h | 0.03 x(cm) | d <sub>w90</sub> cm | d_secm/h |
| h(m) Steps | 0.03 x(cm |                   |     | 0.05       |                    |                       | 0.03       |                     |          |
| qw<br>m3/s |           | 90.0              |     | _          |                    |                       |            |                     |          |
| α          | 34032     |                   |     | 2 52014    |                    |                       | 38050      |                     |          |
| Sn a       |           |                   |     | -2         |                    |                       |            |                     |          |

|            |                |                    |                       |            |                     |         |            | •                   |     |
|------------|----------------|--------------------|-----------------------|------------|---------------------|---------|------------|---------------------|-----|
| 20         |                |                    |                       | 126        | 12                  | 245     |            |                     |     |
| 19         |                |                    |                       | 120        | 12.2                | 245     |            |                     |     |
| 18         |                |                    |                       | 113        | 13.3                | 265     |            |                     |     |
| 17         |                |                    |                       | 107        | 14.7                | 294     |            |                     |     |
| 16         | $\vdash$       |                    |                       | 101        | 14.7                | 294     |            |                     |     |
| 15         | 82             | 5.8                | 176                   | 94         | 15                  | 302     | 81         | 7.7                 | 233 |
| 14         | 20             | 5.8                | 176                   | 88         | 17                  | 330     | 75         | 8.5                 | 258 |
| 13         | 70.3           | 5.8                | 176                   | 82         | 18.6                | 371     | 70         | 9.5                 | 287 |
| 12         | 64             | 5.8                | 176                   | 75         | 19                  | 383     | 65         | 11                  | 321 |
| 11         | 59             | 5.8                | 176                   | 69         | 22                  | 440     | 59         | 11                  | 331 |
| 10         | 52.7           | 5                  | 153                   | 63         | 21.4                | 428     | 54         | 11                  | 331 |
| 6          | 46.9 52.7      | 4.9                | 147                   | 56         | 21                  | 420     | 49         | 12                  | 360 |
| 8          | 41             | 4.9                | 147                   | 50         | 19.4                | 387     | 44         | 12                  | 360 |
| 7          | 35.1           | 4.85               | 147                   | 43.5       | 18.6                | 371     | 38         | 10.9                | 331 |
| 9          |                | 4.9                | 147                   | 88         | 17.3                | 347     | 32.9       | 2                   | 314 |
| 5          | 23.4           | 4.9                | 147                   | 31         | 16.1                | 322     | 27.6       | 9.5                 | 287 |
| 4          | 17.6 23.4 29.3 | 6.07               | 184                   | 24.9       | 14.5                | 290     | 22.3       | 7.7                 | 233 |
| 3          | 11.7           | 6.07               | 184                   | 18.5       | 13                  | 259     | 16.9       | 5.94                | 180 |
| 2          | 5.9            | 6.1                | 184                   | 12         | 101                 | 204     | 23         | 5.9                 | 180 |
| -          | 0              | 6.5                | 198                   | 5.9        | 7.14                | 143     | 6.32       | 7.1                 | 214 |
| Steps      | 0.03 x(cm)     | d <sub>w</sub> ocm | d <sub>w90</sub> cm/h | 0.05 x(cm) | d <sub>w90</sub> cm | dwocm/h | 0.03 x(cm) | d <sub>w90</sub> cm | Г   |
| h(m) Steps | 0.03           |                    |                       | 0.05       |                     |         | 0.03       |                     |     |
| Ф.<br>m3/s |                | 0.07               |                       |            |                     |         |            |                     |     |
|            | 34032          |                    |                       | 52014      |                     |         | 38050'     |                     |     |
| Snα        |                |                    |                       | m          |                     |         |            |                     |     |

| 20         |                |                     | Π                     | 126                  | 14                  | 273                   | İ                      |                     | Г                     |
|------------|----------------|---------------------|-----------------------|----------------------|---------------------|-----------------------|------------------------|---------------------|-----------------------|
| 19         | +              | -                   |                       | 00                   | 6.                  | 277 2                 | $\vdash$               |                     | ├                     |
| ı          | _              | <u> </u>            | ļ                     | 120 1                | 13.9                |                       |                        |                     |                       |
| 18         |                |                     |                       | 113                  | 14.3                | 285                   |                        |                     |                       |
| 17         |                |                     |                       | 107                  | 18                  | 360                   |                        | İ                   |                       |
| 16         |                |                     |                       | 94 101               | 17.9                | 359                   | -                      | ļ .                 |                       |
| 14 15      | 82             | 5.8                 |                       | 8                    | 20                  | 400                   | 81                     | 12                  | l                     |
| 14         | 92             | 5.8                 |                       | 88                   | 18                  | 367                   | 75                     | 12                  | 350                   |
| 13         | 64 70.3        | 5.8                 | 176                   | .82                  | 18.4                | 367                   | 70                     | 12                  | 350                   |
| 12         | 64             | 1 -                 | 176                   | 75                   | 20                  | 408                   | 65                     | 14                  | 424                   |
| 11         | 59             | 5.8                 | 147 176               | 69                   | 22                  | 40                    | 59                     | 13                  | 408                   |
| 10         | 52.7           | 4.9                 | 147                   | 63                   | 22.4                | 449 4                 | 54                     | 15                  | 447                   |
| 6          | 46.9 52.7      | 4.9                 | 5 147 1               | 99                   | 21                  | 420                   | 49                     | 14                  | 423                   |
| ∞          | 41             | 5.5                 | 165                   | 20                   | 19.6                | 392                   | 44                     | 13                  | 408                   |
| 7          | 35.1           | 5.5 5.46            | 165                   | 43.5                 | 19                  | 379                   | 38                     | 12.7                | -384                  |
| 9          | 17.6 23.4 29.3 |                     | 165                   | 38                   | 17.9                | 329                   | 32.9                   | 10                  | 316                   |
| 5          | 23.4           | 6.7                 | 202                   | 31                   | 16.1                | 322                   | 27.6                   | 10                  | 306                   |
| 4          | 17.6           | 6.67                | 202                   | 24.9                 | 14.9                | 298                   | 22.3 27.6              | 8.02                | 243                   |
| 3          | 11.7           | 7.58                | 230                   | 18.5                 | 12.6                | 253                   | 16.9                   | 6.9 6.58            | 199                   |
| 2          | 5.9            | 8.8                 | 267                   | 12                   | 10                  | 204                   | 12                     | 6.9                 | 209                   |
| 1          | 0              | 9.6                 | 290                   | 5.9                  | 7.46                | 149                   | 6.32                   | 8.7                 | 263 209               |
| Steps      | 0.03 x(cm)     | d <sub>w90</sub> cm | d <sub>w90</sub> cm/h | 0.05 x(cm)           | d <sub>w90</sub> cm | d <sub>w90</sub> cm/h | x(cm)                  | d <sub>w90</sub> cm | d <sub>w90</sub> cm/h |
| h(m) Steps | 0.03           |                     |                       | 0.05                 |                     |                       | $0.03  \mathrm{x(cm)}$ | -                   |                       |
| qw<br>m3/s |                | 0.08                |                       |                      |                     |                       | -                      |                     | ,                     |
|            | 34032          |                     |                       | 4 52014 <sup>1</sup> |                     |                       | 38050'                 |                     |                       |
| Suα        | Γ,             |                     |                       | 4                    |                     |                       | 1                      |                     |                       |

| _          | Τ              | ,                   |                       | 1.2        | 1.2                 | -                     |            | 1                   |                       |
|------------|----------------|---------------------|-----------------------|------------|---------------------|-----------------------|------------|---------------------|-----------------------|
| 20         |                |                     |                       | 126        | 15                  | 300                   |            |                     |                       |
| 19         |                |                     |                       | 120        | 16.3                | 326                   |            |                     |                       |
| 18         |                |                     |                       | 113        | 16.7                | 334                   |            |                     |                       |
| 17         |                |                     |                       | 107        | 18                  | 360                   |            |                     |                       |
| 16         | ľ              |                     |                       | 101        | 18.8                | 375                   | _          |                     | -                     |
| 15         | 82             |                     | 176                   | 94         | 8                   | 400                   | 81         | 13                  | 388                   |
| 14         | 76             | 5.8                 | 176                   | 88         | 8                   | 392                   | 75         | 13                  | 389                   |
| 13         | 70.3           | 5.8                 | 176                   | 82         | 19.6                | 392                   | 20         | 13                  | 399 389               |
| 12         | 49             | 5.8                 | 176                   | 75         | 22                  | 449                   | 65         | 14                  | 424                   |
| 11         | 59             | 5.8                 | 176                   | 69         | 22                  | 440                   | 65         | 15                  | 457 457               |
| 10         | 52.7           | 5.5                 | 165                   | .63        | 21 22.4             | 644                   | 54         | 15                  |                       |
| 6          | 46.9 52.7      | 5.5                 | 165                   | 56         | 21                  | 420 4                 | 49         | 14                  | 438                   |
| 8          | 41             | 5.5 5.5 5.5         | 165                   | 20         | 20.8                | 416                   | 44         | 13                  | 408                   |
| 7          | 35.1           | 5.8 5.5 5.46        | 165                   | 43.5       | 19                  | 379                   | 38         | 13 13.3             | 404                   |
| 9          | 29.3           | 5.5                 | 165                   | 38 4       | 17.9                | 329                   | 32.9       | 13                  | 379                   |
| 5          | 23.4           | 5.8                 | 175                   | 31         |                     | 322                   |            | 11                  | 336                   |
| 4          | 17.6 23.4 29.3 | 7.58 7.28           | 221                   | 18.5 24.9  | 13.3 15.5 16.1      | 310                   | 22.3 27.6  | 8.99                | 272                   |
| m          | 11.7           | 7.58                | 230                   | 18.5       | 13.3                | 265                   | 16.9       | 7.22                | 219                   |
| 7          | 5.9            | 7.6                 | 294                   | 12         | 11                  | 220                   | 12         | 7.5                 | 229                   |
| П          | 0              | 9.7                 | 294                   | 5.9        | 7.95                | 159                   | 6.32       | 8.7                 | 263                   |
| Steps      | 0.03 x(cm)     | d <sub>w90</sub> cm | d <sub>w90</sub> cm/h | 0.05 x(cm) | d <sub>w90</sub> ст | d <sub>w90</sub> cm/h | 0.03 x(cm) | d <sub>w90</sub> cm | d <sub>w90</sub> cm/h |
| h(m) Steps | 0.03           |                     |                       | 0.05       |                     | ·                     | 0.03       |                     |                       |
| qw<br>m3/s |                | 0.0                 |                       |            |                     |                       |            |                     |                       |
|            | 34032'         |                     |                       | 5 52014'   |                     |                       | 38050      |                     |                       |
| Sn a       |                |                     |                       | S          |                     |                       |            |                     |                       |

| <u> </u>   | 1          | т—                  | 1                     | 150        | <u> </u>            | <u> </u>             | Г          |                     | _                     |
|------------|------------|---------------------|-----------------------|------------|---------------------|----------------------|------------|---------------------|-----------------------|
| 20         | L          |                     |                       | 120 126    | 15                  | 300                  |            | L                   | <u> </u>              |
| 19         |            |                     | -                     | 1          | 14.9                | 298                  |            |                     |                       |
| 18         |            |                     | `                     | 113        | 15.9                | 318                  | 1          |                     |                       |
| 17         |            |                     |                       | 107        | 18                  | 360                  |            |                     |                       |
| 16         |            |                     |                       | 101        | 18.4                | 367                  |            |                     |                       |
| 15         | 82         | 5.8                 | 176                   | 94         | 20                  | 400                  | 81         | 13                  | 388                   |
| 14         | 9/         | 5.8                 | 176                   | 88         | 20                  | 400                  | 75         | 13                  | 389                   |
| 13         | 70.3       | 5.8                 | 176                   | 82         | 20.4                | 408                  | 07         | 14                  | 428                   |
| 12         | 64         | 5.8                 | 176                   | 75         | 21                  | 424                  | 65         | 14                  | 424                   |
| 11         | 59         | 5.8                 | 176                   | 69         | 22                  | 440                  | 65         | 14                  | 428                   |
| 10         | 52.7       | 5.8                 | 175                   | 63         | 22.4                | 449                  | 54         | 14                  | 433                   |
| 6          | 46.9       | 5.8                 | 175                   | 56         | 21                  | 420                  | 49         | 14                  | 438                   |
| ∞ .        | 41         | 5.9                 | 179                   | 50         | 20.8                | 416                  | 44         | 13                  | 399                   |
| 7          | 35.1       | 6.07                | 184                   | 38 43.5    | 19.4                | 387                  | 38         | 13.2                | 339                   |
| 9          | 29.3       | 6.4                 | 193                   | 38         | 19                  | 379                  | 32.9       | 12                  | 355                   |
| 5          | 23.4       | 6.5                 | 198                   | 31         | 16.7                | 334                  | 27.6       | 11                  | 345                   |
| 4          | 17.6       | 8.5                 | 257                   | 24.9       | 15.5                | 310                  | 22.3       | 8.99                | 272                   |
| m          | 11.7       | 10                  | 303                   | 18.5       | 13.3                | 265                  | 16.9       | 8.02                | 243                   |
| 7          | 5.9        | 10                  | 317                   | 12         | 7.5                 | 150                  | . 12       | 8.5                 | 258                   |
| 1          | 0          | 11                  | 331                   | 5.9        | 8.48                | 170                  | 6.32       | 9.5                 | 287                   |
| Steps      | 0.03 x(cm) | d <sub>∞90</sub> ст | d <sub>ws0</sub> cm/h | 0.05 x(cm) | d <sub>w90</sub> ст | d <sub>we</sub> cm/h | 0.03 x(cm) | d <sub>w90</sub> cm | d <sub>w90</sub> cm/h |
| h(m) Steps | 0.03       |                     |                       | 0.05       |                     |                      | 0.03       |                     |                       |
| qw<br>m3/s |            | 0.1                 |                       |            |                     |                      |            |                     |                       |
| α          | 34032      |                     |                       | 6 52014'   |                     |                      | 38050      |                     |                       |
| Sn         | <u>,</u>   |                     |                       | 9          |                     | !                    | <u> </u>   |                     |                       |

### (3) $H_{res}/H_{max}$ vs $H_{spill}/d_c$ graph:

### Data:

 $q_w$ =0.02cum/0.2m=0.1cum/m

Equations to be solved:

Tatewar & Ingle (1996) & Knight & Mc Donald (1979) Methods

$$\begin{split} z^{0.1} / ng^{0.5} &= 0.25 + 19 \log(\lambda/l) + 5.75 \log(z^{0.6}/k) \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad ... \quad .$$

### Calculations:

### Critical depth (dc)= $(q_w^2/g)^{1/3}$

| $q_w$        | $d_{c (m)}$ |           | $\mathbf{H}_{	ext{spill}}$ |
|--------------|-------------|-----------|----------------------------|
| 0.1          | 0.10        |           | 2                          |
| h            | 1           | λ (m)     |                            |
| 0.033        | 0.0414      | 0.053     |                            |
| a            | sina        | cosa      | k(m)                       |
| 38.83        | 0.627       | 0.779     | 0.026                      |
| Solvin       | g Mannin    | g's n fro | m eq.(1)                   |
| n            | Z           | λ/1       | LHS                        |
| 0.05         | 0.00632     | 1.2788    | 3.84801                    |
| $\{z^{0.6},$ | /k}         |           | log(l/l)                   |
| 1.862        |             |           | 0.10681                    |
| $log{z^{*}}$ | RHS         |           |                            |
| 0.27         |             |           | 3.83237                    |

### Put different values of n & check whether LHS=RHS

n LHS RHS 0.04 4.7038 3.498 0.05 3.848 3.832 Hence value of n is 0.05 Therefore equivalent water depth,  $d_w = {q_w n/\sin a^{0.5}}^{0.6}$ 

 $d_{w(m)}$ 

0.048

Uniform velocity, $u_w = qw/dw$ 

uw (m/s)

2.09

Change in energy between crest and toe of spillways:DE=Ec-Et

Ec =Hspill+1.5dc

Ec(m) 2.151

 $Et = d_w + u_w^{-2}/2g$ 

Et(m)

0.270

 $\Delta E(m)$ 

1.881

Energy dissipated= $\Delta E/Ec*100 =$ 

87.4 %

Residual head =Et =0.27m

| Sn | q (m3/s) | Hres (m | Hmax (m | Hspill(m) | dc(m) | H <sub>res</sub> /H <sub>max</sub> | H <sub>spill</sub> /dc |
|----|----------|---------|---------|-----------|-------|------------------------------------|------------------------|
| 1  | 0.1      | 0.27    | 2.15    | 2         | 0.1   | 0.13                               | 15.93                  |
| 2  | 0.09     | 0.25    | 2.14    | 2         | 0.09  | 0.12                               | 17.12                  |
| 3  | 0.08     | 0.23    | 2.13    | 2         | 0.09  | 0.11                               | 18.52                  |
| 4  | 0.07     | 0.21    | 2.12    | 2         | 0.08  | 0.10                               | 20.19                  |
| 5  | 0.06     | 0.18    | 2.11    | 2         | 0.07  | 0.09                               | 23.44                  |
| 6  | 0.05     | 0.16    | 2.1     | 2         | 0.06  | 0.08                               | 26.25                  |

Without circular suppressor plate:

|       | out circular s |     |               | 17    | 1-00(0 101) |
|-------|----------------|-----|---------------|-------|-------------|
| x(cm) | dw90(Q=201p    |     | dw90(Q=14lps) | x(cm) |             |
| 0     | 11             | 0   | 7             | 0     | 5           |
| 6     | 10             | 6   | 6             | 6     | 5           |
| 12 .  | 10             | 12  | 6             | 12    | 5           |
| 18    | 9 i            | 18  | 6             | 18    | 4           |
| 23 ·  | 7              | 23  | 5             | 23    | 4           |
| 29    | 6              | 29  | 5             | 29    | 4           |
| 35    | 6              | 35  | 5             | 35    | 4           |
| 41    | 6              | 41  | 5             | 41    | 4           |
| 47    | 6              | 47  | 5             | 47    | 4           |
| 53    | 6              | 53  | 5             | 53    | 4           |
| 59    | 6              | 59  | 6             | 59    | 6           |
| 64    | 6              | 64  | 6             | 64    | 6           |
| 70 ·  | 6              | 70  | 6             | 70    | 6           |
| 76    | 6              | 76  | 6             | 76    | 6           |
| 82    | 6              | 82  | 6             | 82    | 6           |
| 88    | 9              | 88  | 7             | 88    | 6           |
| 94    | 8              | 94  | 10            | 94    | 8           |
| 101   | 13             | 101 | 13            | 101   | 10          |
| 107   | 16             | 107 | 15            | 107   | 11          |
| 113   | 17             | 113 | 16            | 113   | 13          |
| 120   | 19             | 120 | 17            | 120   | 13          |
| 126   | 19             | 126 | 19            | 126   | 13          |
| 132.  | 21             | 132 | 19            | 132   | 13          |
| 138   | 21             | 138 | 21            | 138   | 11          |
| 145   | 22             | 145 | 22            | 145   | 12          |
| 151   | 22             | 151 | 22            | 151   | 12          |
| 157   | 21             | 157 | 19            | 157   | 11          |
| 164   | 20             | 164 | 19            | 164   | 10          |
| 170   | 20             | 170 | 17            | 170   | 9           |
| 176   | 20             | 176 | 15            | 176   | 9           |
| 183   | 18             | 183 | 15            | 183   | 9           |
| 189   | 18             | 189 | 15            | 189   | 9           |
| 195   | 16             | 195 | 13            | 195   | 8           |
| 202   | 15             | 202 | 12            | 202   | 8           |
| 208   | 15             | 208 | 12            | 208   | 8           |
| 214   | 10             | 214 | 7             | 214   | 6           |
| 220   | 9              | 220 | 6             | 220   | 4           |
| 225   | 8              | 225 | 6             | 225   |             |
| 230   | 9              | 230 | 8             |       | 6           |
| 236   | 11             |     |               | 230   | 7           |
|       |                | 236 | 10            | 236   | 7           |
| 241   | 12             | 241 | 10            | 241   | 8           |
| 246_  | 13             | 246 | 11            | 246   | 8           |
| 251   | 13             | 251 | 12            | 251   | 9           |
| 257   | 14             | 257 | 12            | 257   | 9           |
| 262   | 14             | 262 | 11            | 262   | 8           |
| 267   | 14             | 267 | 11            | 267   | 8           |
| 273   | 14             | 273 | 11            | 273   | 8           |
| 278   | 14             | 278 | 10            | 278   | 7           |
| 283   | 13             | 283 | 9             | 283   | 6           |
| 289   | 13             | 289 | 8             | 289   | 6           |

| Hres/Hr | Hspill/dc |
|---------|-----------|
| 0.13    | 15.93     |
| 0.12    | 17.12     |
| 0.11    | 18.52     |
| 0.10    | 20.19     |
| 0.09    | 23.44     |
| 0.08    | 26.25     |

With circular suppressor:

| x(cm) | dw90(Q=20lps | x(cm) | dw90(Q=14lp | s) | x(cm) | dw90(Q=10lps) |
|-------|--------------|-------|-------------|----|-------|---------------|
| 0     | 9            | 0     | 6           |    | 0     | 4             |
| 6     | 9            | 6.    | 5           |    | 6     | 4             |
| 12    | 8            | 12    | 5.          |    | 12    | 3             |
| 18    | 7            | 18    | 5           |    | 18    | 3             |
| 23    | 6            | 23    | 4           |    | 23    | 3             |
| 29    | 6            | 29    | 4           |    | 29    | 3             |
| 35    | 6            | 35    | 4           |    | 35    | 3             |
| 41    | 5            | 41    | 4           |    | 41    | 3             |
| 47    | 5            | 47    | 4 .         |    | 47    | 3             |
| 53    | 5            | 53    | 4           |    | 53    | 3             |
| 59    | 5            | 59    | 4           |    | 59    | 3             |
| 64    | 5            | 64    | 4           |    | 64    | 3             |
| 70    | 5            | 70    | 4 .         |    | 70    | 3             |
| 76    | 5            | 76    | 4           |    | 76    | 3             |
| 82    | 5            | 82    | 4           |    | 82    | 3             |
| 88    | 5            | 88    | 4           |    | 88    | 3             |
| 94    | 5            | 94    | 5           |    | 94    | 4             |
| 101   | 5            | 101   | 5           |    | 101   | 5             |
| 107   | 6            | 107   | 6           |    | 107   | 6             |
| 113   | 6            | 113   | 6           |    | 113   | 6             |
| 120   | 6            | 120   | 6           |    | 120   | 6             |
| 126   | 6            | 126   | 6           |    | 126   | 6             |
| 132   | 6            | 132   | 6           |    | 132   | 6             |
| 138   | 6            | 138   | 6           |    | 138   | 6             |
| 145   | 6            | 145   | 6           |    | 145   | 6             |
| 151   | 6            | 151   | 6           |    | 151   | б .           |
| 157   | 6            | 157   | 6           |    | 157   | 6             |
| 164   | 6            | 164   | 6           |    | 164   | 6             |
| 170   | 6            | 170   | 6           |    | 170   | 6             |
| 176   | 6            | 176   | 6           |    | 176   | 6             |
| 183   | 6            | 183   | 6           |    | 183   | 5             |
| 189   | 6            | 189   | 6           |    | 189   | 5             |
| 195   | 6            | 195   | 6           |    | 195   | 5             |
| 202   | 6            | 202   | 6           |    | 202   | 5             |
| 208   | 6            | 208   | 6           |    | 208   | 4             |
| 214   | 6            | 214   | 5           |    | 214   | 4             |
| 220   | 6            | 220   | 4           |    | 220   | 5             |
| 225   | 6            | 225   | 5           |    | 225   | 5             |
| 230   | 6            | 230   | 6           |    | 230   | 6             |

| 236 | 7 | 236 | 6 | 236 | 6 |
|-----|---|-----|---|-----|---|
| 241 | 8 | 241 | 6 | 241 | 6 |
| 246 | 8 | 246 | 7 | 246 | 6 |
| 251 | 8 | 251 | 7 | 251 | 6 |
| 257 | 9 | 257 | 7 | 257 | 6 |
| 262 | 9 | 262 | 7 | 262 | 6 |
| 267 | 9 | 267 | 7 | 267 | 5 |
| 273 | 9 | 273 | 6 | 273 | 5 |
| 278 | 8 | 278 | 6 | 278 | 5 |
| 283 | 8 | 283 | 6 | 283 | 5 |
| 289 | 8 | 289 | 6 | 289 | 5 |

# Graphs (With circular suppressor):

| 20         | _           |                     |            | 126             | 5                   | 100                   |             |        |                                                                                   |
|------------|-------------|---------------------|------------|-----------------|---------------------|-----------------------|-------------|--------|-----------------------------------------------------------------------------------|
| 19         |             |                     |            | 120             | .5                  | 100                   | -           |        |                                                                                   |
| 18         |             |                     |            | 113             | 5                   | 100                   |             |        | П                                                                                 |
| 17         | Π           |                     |            | 107 113 120 126 | 2                   | 100                   |             |        |                                                                                   |
| 15 · 16    |             |                     |            | 94 101          | S                   | 100                   | 1           |        | П                                                                                 |
| 15         | 82          | 60                  | 91         | 94              | 9                   | 120                   | 81          | 2      | 152                                                                               |
| 14         | 76          | c                   | 91         | 88              | 9                   | 120                   | 75          | 5      | 152                                                                               |
| 13         | 2           | n                   | 91         | 82              | 9                   | 120 120 120 100       | 20          | 5      | 152                                                                               |
| 12         | 64          | 3                   | 16         | 75              | 9                   | 120                   | 65          | 5      | 152                                                                               |
| 11         | 59          | n                   | 91         | 69              | 9                   | 120                   | 59          | 5      | 152                                                                               |
| 10         | 53          | c                   | 91         | 63              | 9                   | 120                   | 54          | 9      | 182                                                                               |
| 6          | 47          | 60                  | 91         | 56              | 9                   | 120 120               | 49          | 9      | 182                                                                               |
| ∞          | 41          | c                   | 91         | 50              | 9                   | 120                   | 44          | 9      | 182                                                                               |
| 7          | 35          | 3                   | 91         | 44              | 9                   | 120 120               | 38          | 9      | 182                                                                               |
| 9          | 59          | 3                   | 16         | 38              | 9                   | 120                   | 33          | 9      | 182                                                                               |
| 5          | 23          | 3                   | 91         | 31              | 9                   | 120                   | 28          | 9      | 182                                                                               |
| 4          | 17.6        | 3                   | 16         | 25              | 9                   | 120 120               | 22.3        | 5      | 121   121   152   152   182   182   182   182   182   152   152   152   152   152 |
| $\omega$   | 12 17.6     | 3                   | 91         | 19              | 5                   | 100                   | 17          | 5      | 152                                                                               |
| 7          | 5.9         | 4                   | 121        | 12              | 4                   | 80                    | 12          | 4      | 121                                                                               |
| П          | 0           | 4                   | 21         | 5.9             | 3                   | 09                    | 6.3         | 4      | 121                                                                               |
| Steps      | x(cm)       | d <sub>w90</sub> cm | dwoocm/h 1 | 0.05 x(cm)      | mɔ <sup>06^</sup> p | d <sub>w90</sub> cm/h | x(cm)       | шэостр | d <sub>w90</sub> cm/h                                                             |
| h(m) Stepa | 0.033 x(cm) |                     | J          | 0.02            | _                   | Ĭ                     | 0.033 x(cm) | Ť      |                                                                                   |
| qw<br>m3/s |             | 0.05                |            |                 | _                   |                       |             |        |                                                                                   |
| ರ          | 34032       |                     |            | 52014           |                     |                       | 38050       |        |                                                                                   |

| 20                     |            |       |                                                   | 126                | 9                   | 120                   |             |                    |                                                                                                         |
|------------------------|------------|-------|---------------------------------------------------|--------------------|---------------------|-----------------------|-------------|--------------------|---------------------------------------------------------------------------------------------------------|
| 19                     |            |       |                                                   | 120                | 9                   | 120                   |             |                    |                                                                                                         |
| 18                     | ·          |       |                                                   | 113                | 9                   | 120                   |             |                    |                                                                                                         |
| 17 18                  |            |       |                                                   | 107 113 120 126    | 9                   | 120 120 120           |             |                    |                                                                                                         |
| 16                     |            |       |                                                   | 101                | 9                   | 120                   |             |                    |                                                                                                         |
| 15                     | 82         | 4     | 121                                               | 94 101             | 9                   | 120                   | 81          | 9                  | 182                                                                                                     |
| 14                     | 76         | 4     | 121 121                                           | 88                 | 9                   | 120                   | 75          | 9                  | 182                                                                                                     |
| 13                     | 70         | 4     | 121                                               | 82                 | 9                   | 120                   | 70          | 9                  | 182                                                                                                     |
| 12                     | 49         | 4     | 121                                               | 75                 | 9                   | 120 120 120 120 120   | 65          | 9                  | 182                                                                                                     |
| 11                     | 59         | 4     | 121                                               | 69                 | 9                   | 120                   | 65          | 7                  | 212                                                                                                     |
| 10                     | 53         | 4     | 121                                               | 63                 | 9                   | 120 120               | 54          | 7                  | 212                                                                                                     |
| 9.                     | 47         | 4     | 121                                               | 99                 | 9                   | 120                   | 49          | 7                  | 212                                                                                                     |
| ∞                      | 41         | 4     | 121                                               | 20                 | 9                   | 120 120 120 120 120   | 44          | 7                  | 212                                                                                                     |
| 7                      | 35         | 4     | 121                                               | 44                 | 9                   | 120                   | 38          | 7                  | 212                                                                                                     |
| 9                      | 62         | 4     | 121                                               | 38                 | 9 .                 | 120                   | 33          | 9                  | 182                                                                                                     |
| 5                      | 23         | 4     | 121                                               | 31                 | 9                   | 120                   | 28          | 9                  | 182                                                                                                     |
| 4                      | 17.6       | 5     | 152                                               | 25                 | 9 .                 | 120                   | 22.3        | 9                  | 182                                                                                                     |
| 33                     | 12 17.6    | 5     | 152                                               | 19                 | 5                   | 100                   | 17 22.3     | 5                  | 152                                                                                                     |
| 7                      | 5.9        | 5     | 152                                               | 12                 | 5                   | 100                   | 12          | 4                  | 121                                                                                                     |
| Π                      | 0          | 9     | 182                                               | 5.9                | 4                   | 80                    | 6.3         | 5                  | 152                                                                                                     |
| Steps                  | x(cm)      | шэкмр | dwom/h 182 152 152 152 121 121 121 121 121 121 12 | 0.05   x(cm)   5.9 | mo <sub>06w</sub> p | d <sub>w90</sub> cm/h | 0.033 x(cm) | д <sup>м</sup> ост | d_oom/h   152   121   152   182   182   182   212   212   212   212   212   182   182   182   182   182 |
| h(m) Step              | 0.033 x(cr |       |                                                   | 0.05               |                     |                       | 0.033       |                    |                                                                                                         |
| q <sub>w</sub><br>m3/s |            | 0.07  |                                                   |                    |                     |                       |             |                    |                                                                                                         |
| ಶ                      | 34032      |       |                                                   | 52014              |                     |                       | 38050'      |                    |                                                                                                         |

| i |   |   |  |
|---|---|---|--|
|   | ۰ | d |  |

|                  |                                              |                     |                       |            |                |                       |             |                     |                       | - |   |   |   |   |   |  |   |   |  |   |  |  |
|------------------|----------------------------------------------|---------------------|-----------------------|------------|----------------|-----------------------|-------------|---------------------|-----------------------|---|---|---|---|---|---|--|---|---|--|---|--|--|
| 200              |                                              |                     |                       | 126        | 9              | 120                   |             | <u> </u>            | _                     |   | ż |   |   |   |   |  |   |   |  |   |  |  |
| 19               |                                              |                     |                       | 120        | 9              | 120                   |             |                     |                       |   |   |   |   |   |   |  | ` |   |  |   |  |  |
| 18               |                                              |                     |                       | 113        | 9              | 120                   |             |                     | ï                     |   |   |   |   |   |   |  |   |   |  |   |  |  |
| 17               |                                              |                     |                       | 107        | 9              | 120                   |             |                     |                       |   |   |   |   |   |   |  |   |   |  |   |  |  |
| 16               |                                              |                     |                       | 101        | 9              | 120                   |             |                     |                       |   |   |   |   |   |   |  |   |   |  |   |  |  |
| 15               | 82                                           | 5                   | 152                   | 94         | 9              | 120                   | 81          | 80                  | 242                   |   |   |   |   |   |   |  |   |   |  |   |  |  |
| 3 14             | 76                                           | 5 5                 | 152                   | 88         |                | 12                    | 7           | 8                   | 242                   |   |   |   |   |   |   |  |   |   |  |   |  |  |
| 2 13             | 4 70                                         | 5 5                 | 2 152                 | 5 82       | 9 9            | 0 120                 | 5 70        | 8 6                 | 3 242                 |   |   |   |   |   |   |  |   |   |  |   |  |  |
| 11 12            | 9 64                                         |                     | 2 152                 | 9 75       |                | 0 120                 | 9 65        | 5 6                 | 3 273                 |   |   |   |   | , |   |  |   |   |  |   |  |  |
| 10 1             | 53 59                                        | 5                   | 2 152                 | 3 69       |                | 0 120                 | 4 59        | 6                   | 3 273                 |   |   |   |   |   |   |  |   |   |  |   |  |  |
| 9                | 47 5                                         |                     | 2 152                 | 6 63       |                | 0 120                 | 49 54       | 8                   | 2 273                 |   |   |   |   |   |   |  |   |   |  |   |  |  |
| <u>∞</u>         | 41 4                                         |                     | 2 152                 | 50 56      |                | 20 120                |             | 8                   | 2 242                 |   |   |   |   |   |   |  |   |   |  |   |  |  |
| 7                | 35 4                                         |                     | 2 152                 | 44 5       |                | 0 120                 | 38 4        | ∞                   | 2 242                 |   |   |   |   |   |   |  |   |   |  |   |  |  |
| 9                | 29 3                                         |                     | 2 182                 | 38 4       | 9 9            | , ,                   | 33 3        | 7                   | 2 242                 |   |   |   |   |   |   |  |   |   |  |   |  |  |
| 2                | 23 2                                         | 9                   | 2 182                 | 31 3       | 9 9            | LI                    | 28 3        | 9                   | 2 212                 |   |   |   |   |   |   |  |   |   |  |   |  |  |
| 4                | <u> </u>                                     |                     | 2 182                 | 25 3       |                | 20 120                |             | 9                   | 32 182                |   |   |   |   |   |   |  |   |   |  |   |  |  |
| ·                | 12 17.6                                      |                     | 2 212                 | 19 2       |                | 120                   | 17 22.3     | 9                   | 82 182                |   |   | : |   |   | ٠ |  |   |   |  |   |  |  |
| 2                | 5.9                                          |                     | 73 242                | 12 1       |                |                       | 12 1        | 9                   | 7                     |   |   |   |   |   |   |  |   |   |  |   |  |  |
|                  |                                              |                     | 73 273                | 5.9 1      |                | 100 100               | ]           | 7                   | 182                   |   |   |   |   |   |   |  |   |   |  |   |  |  |
|                  | H                                            | Ī                   | ı/h 273               |            |                |                       |             |                     | ı/h 212               |   |   |   |   |   |   |  |   |   |  |   |  |  |
| Steps            | x(cm                                         | d <sub>w90</sub> cm | d <sub>w90</sub> cm/h | 0.05 x(cm) | <b>д</b> ∞90сп | d <sub>∞90</sub> ст/h | x(cm        | d <sub>w90</sub> cm | d <sub>w90</sub> cm/h |   |   |   |   |   |   |  | - |   |  |   |  |  |
| h(m)             | 0.033 x(cm)                                  |                     |                       | 0.05       |                | _                     | 0.033 x(cm) |                     |                       |   |   |   |   |   |   |  |   |   |  |   |  |  |
| 4 <sub>w</sub> h | -                                            | 0.1                 |                       |            |                | ,                     |             |                     |                       |   |   |   |   |   |   |  |   |   |  |   |  |  |
|                  | 34032'                                       | $\dashv$            |                       | 52014'     |                | $\dashv$              | 38050'      | اء -                | $\vdash$              |   |   |   |   |   |   |  |   | • |  |   |  |  |
| Snα              | 34,                                          | l                   |                       | 652        |                |                       | <u>چ</u>    |                     |                       |   |   |   |   |   |   |  |   |   |  |   |  |  |
|                  | <u>.                                    </u> |                     |                       |            |                |                       |             | •                   |                       |   |   |   | ٠ |   |   |  |   |   |  | • |  |  |
|                  |                                              |                     |                       |            |                |                       |             |                     |                       |   |   |   |   |   |   |  |   |   |  |   |  |  |
|                  |                                              |                     |                       |            |                |                       |             |                     |                       |   |   |   |   |   |   |  |   |   |  |   |  |  |

# Graphs: Average flow depth $d_{\rm w}$ verses average velocity of flow Vw and flow rates $q_{\rm w}$ :

### Table of Calculations:

### Table 1

| Q (m3/s) | q (m3/s/m) | Slope (o) | h (m) | l/h   | $V_{\rm w}$ (m/s) | d <sub>w</sub> (m) |
|----------|------------|-----------|-------|-------|-------------------|--------------------|
| 0.006    | 0.03       | 34°32'    | 0.033 | 1.455 | 1.25              | 0.024              |
|          |            | 52°14'    | 0.05  | 0.774 | 1.38              | 0.022              |
|          |            | 38°50'    | 0.033 | 1.255 | 1.29              | 0.023              |
| 0.008    | 0.04       | 34°32'    | 0.033 | 1.455 | 1.4               | 0.028              |
|          |            | 52°14'    | 0.05  | 0.774 | 1.55              | 0.026              |
|          |            | 38°50'    | 0.033 | 1.255 | 1.45              | 0.028              |
| 0.01     | 0.05       | 34°32'    | 0.033 | 1.455 | 1.54              | 0.033              |
|          |            | 52°14'    | 0.05  | 0.774 | 1.7               | 0.029              |
|          | <u> </u>   | 38°50'    | 0.033 | 1.255 | 1.58              | 0.032              |
| 0.012    | 0.06       | 34°32'    | 0.033 | 1.455 | 1.65              | 0.036              |
|          |            | 52°14'    | 0.05  | 0.774 | 1.82              | 0.033              |
|          |            | 38°50'    | 0.033 | 1.255 | 1.7               | 0.035              |
| 0.014    | 0.07       | 34°32'    | 0.033 | 1.455 | 1.76              | 0.04               |
| -        |            | 52°14'    | 0.05  | 0.774 | 1.94              | 0.036              |
|          |            | 38°50'    | 0.033 | 1.255 | 1.81              | 0.039              |
| 0.016    | 0.08       | 34°32'    | 0.033 | 1.455 | 1.85              | 0.043              |
|          |            | 52°14'    | 0.05  | 0.774 | 2.05              | 0.039              |
|          |            | 38°50'    | 0.033 | 1.255 | 1.91              | 0.042              |
| 0.018    | 0.09       | 34°32¹    | 0.033 | 1.455 | 1.94              | 0.046              |
|          |            | 52°14'    | 0.05  | 0.774 | 2.15              | 0.042              |
|          |            | 38°50'    | 0.033 | 1.255 | 2                 | 0.045              |
| 0.02     | 0.1        | 34°32'    | 0.033 | 1.455 | 2.03              | 0.049              |
|          |            | 52°14'    | 0.05  | 0.774 | 2.24              | 0.045              |
|          |            | 38°50'    | 0.033 | 1.255 | 2.09              | 0.048              |

### Table 2

| Q (m3/s) | q (m3/s/m) | Slope (o) | h (m) | l/h   | V <sub>w</sub> (m/s) | d <sub>w</sub> (m) |
|----------|------------|-----------|-------|-------|----------------------|--------------------|
| 0.006    | 0.03       | 34°32'    | 0.033 | 1.455 | 1.25                 | 0.024              |
| 0.008    | 0.04       | 34°32'    | 0.033 | 1.455 | 1.4                  | 0.028              |
| 0.01     | 0.05       | 34°32'    | 0.033 | 1.455 | 1.54                 | 0.033              |
| 0.012    | 0.06       | 34°32'    | 0.033 | 1.455 | 1.65                 | 0.036              |
| 0.014    | 0.07       | 34°32'    | 0.033 | 1.455 | 1.76                 | 0.04               |
| 0.016    | 0.08       | 34°32'    | 0.033 | 1.455 | 1.85                 | 0.043              |
| 0.018    | 0.09       | 34°32'    | 0.033 | 1.455 | 1.94                 | 0.046              |
| 0.02     | 0.1        | 34°32'    | 0.033 | 1.455 | 2.03                 | 0.049              |

### Table 3

| Q (m3/s) | q (m3/s/m) | Slope (o) | h (m) | l/h   | V <sub>w</sub> (m/s) | d <sub>w</sub> (m) |
|----------|------------|-----------|-------|-------|----------------------|--------------------|
| 0.006    | 0.03       | 52°14'    | 0.05  | 0.774 | 1.38                 | 0.022              |
| 0.008    | 0.04       | 52°14'    | 0.05  | 0.774 | 1.55                 | 0.026              |
| 0.01     | 0.05       | 52°14'    | 0.05  | 0.774 | 1.7                  | 0.029              |
| 0.012    | 0.06       | 52°14'    | 0.05  | 0.774 | 1.82                 | 0.033              |
| 0.014    | 0.07       | 52°14'    | 0.05  | 0.774 | 1.94                 | 0.036              |
| 0.016    | 0.08       | 52°14'    | 0.05  | 0.774 | 2.05                 | 0.039              |
| 0.018    | 0.09       | 52°14'    | 0.05  | 0.774 | 2.15                 | 0.042              |
| 0.02     | 0.1        | 52°14'    | 0.05  | 0.774 | 2.24                 | 0.045              |

### Table 4

| Q (m3/s) | q (m3/s/m) | Slope (o) | h (m) | l/h   | V <sub>w</sub> (m/s) | d <sub>w</sub> (m) |
|----------|------------|-----------|-------|-------|----------------------|--------------------|
| 0.006    | 0.03       | 38°50'    | 0.033 | 1.255 | 1.29                 | 0.023              |
| 0.008    | 0.04       | 38°50'    | 0.033 | 1.255 | 1.45                 | 0.028              |
| 0.01     | 0.05       | 38°50'    | 0.033 | 1.255 | 1.58                 | 0.032              |
| 0.012    | 0.06       | 38°50'    | 0.033 | 1.255 | 1.7                  | 0.035              |
| 0.014    | 0.07       | 38°50'    | 0.033 | 1.255 | 1.81                 | 0.039              |
| 0.016    | 0.08       | 38°50'    | 0.033 | 1.255 | 1.91                 | 0.042              |
| 0.018    | 0.09       | 38°50'    | 0.033 | 1.255 | 2                    | 0.045              |
| 0.02     | 0.1        | 38°50'    | 0.033 | 1.255 | 2.09                 | 0.048              |

Graphs (With elliptical suppressor plate, P=135mm):

| 20                        |             |                     | 126                       | 3                   |            |                     |
|---------------------------|-------------|---------------------|---------------------------|---------------------|------------|---------------------|
| 19                        |             |                     | 88 94 101 107 113 120 126 | 3                   |            |                     |
| 18                        |             |                     | 113                       | 3                   |            |                     |
| 9 10 11 12 13 14 15 16 17 |             |                     | 107                       | 3                   |            | ╗                   |
| 16                        |             |                     | 101                       | 3                   |            | $\neg$              |
| 15                        | 82          | 2                   | 94                        | 3                   | 81         | 6                   |
| 14                        | 20 76       | 2                   | 88                        | 4                   | 75         | 3                   |
| 13                        | 70          | 2                   | 82                        | 4                   | 70         | 3                   |
| 12                        | 64          | 2                   | 75                        | 4                   | 65         | 3                   |
| 11                        | 59          | 2                   | 69                        | 4                   | 59         | 3                   |
| 10                        | 53          | 2                   | 63                        | 3                   | 54         | 3                   |
| 6:                        | 47          | 2                   | 56                        | 3                   | 49         | 4                   |
| 8                         | 41          | 2                   | 20                        | 3                   | 44         | 4                   |
| 7                         | 35          | 2                   | 44                        | 3.                  | 38         | 4                   |
| 9                         | 29          | 2                   | 38                        | æ                   | 33         | 4                   |
| 5                         | 23          | 3                   | 31                        | 4                   | 28         | 4                   |
| 4                         | 18          | 3                   | 25                        | 4                   | 22         | 4                   |
| 2 3 4                     | 0 5.9 12 18 | 3                   | 19                        | 4                   | 12 17      | 4                   |
| 2                         | 5.9         | 4                   | 12                        | 4                   | 12         | 3                   |
| 1                         | 0           | 4                   | 9                         | 7                   | 9          | 3                   |
| h(m) Steps                | 0.03 x(cm)  | ф <sub>м90</sub> сш | 0.05 x(cm)                | d <sub>w90</sub> cm | 0.03 x(cm) | d <sub>w90</sub> cm |
|                           | 0.03        |                     | 0.05                      |                     | 0.03       |                     |
| qw<br>m3/s                | = .         | 0.05                | -                         |                     |            |                     |
| מ                         | 34032'      |                     | 52014                     |                     | 38050      |                     |
| Sn α                      |             |                     | Ŧ                         |                     |            |                     |

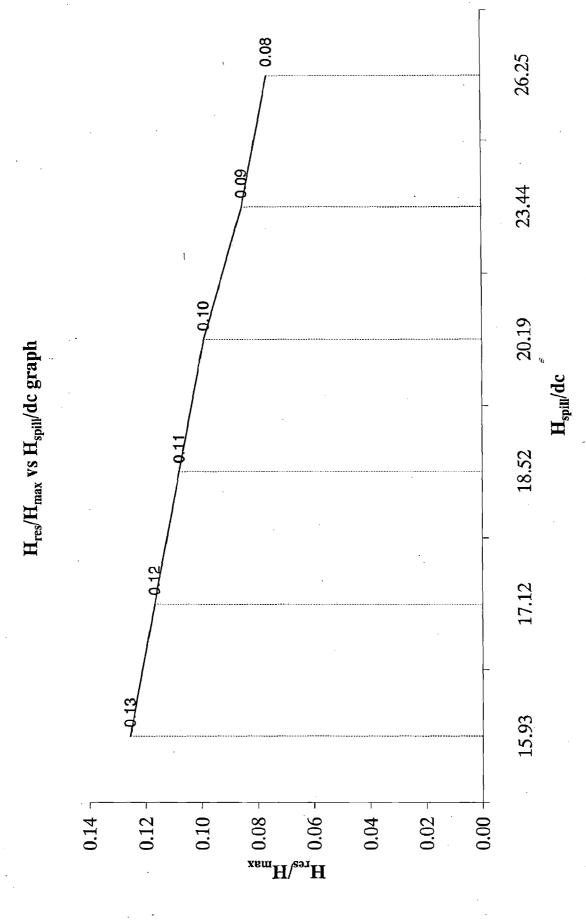
|   |                                 |                       | _                   |                                 |                     |                    |                       |
|---|---------------------------------|-----------------------|---------------------|---------------------------------|---------------------|--------------------|-----------------------|
|   | 20                              |                       |                     | 126                             | 4                   |                    |                       |
| ſ | 19                              |                       |                     | 120                             | 4                   |                    |                       |
| Ì | 18                              |                       |                     | 113                             | 4                   |                    |                       |
|   | 17                              |                       |                     | 107                             | 4                   |                    |                       |
| Ì | 9 10 11 12 13 14 15 16 17 18 19 |                       |                     | 75 82 88 94 101 107 113 120 126 | 4                   |                    |                       |
| ļ | 15                              | 82                    | 4                   | 94                              | 4                   | -81                | 4                     |
|   | 14                              | 76                    | 4                   | 88                              | 5                   | 75                 | 4                     |
|   | 13                              | 70                    | 4                   | 82                              | 5                   | 70                 | . 4                   |
|   | 12                              | 59 64 70              | 4                   | 75                              | 5                   | 65                 | 4 4 4                 |
| ] | 11                              | 59                    | 4                   | 69                              | 5                   | 59                 | 4                     |
|   | 10                              | 53                    | 4                   | 63                              | 5                   | 54 59 65 70 75     | 4                     |
|   |                                 | 47                    | 4                   | 26                              | 4                   | 49                 | 5                     |
|   | ∞                               | 41 47 53              | 4                   | 31 38 44 50                     | 4                   | 44                 | 5                     |
| ١ | 7                               | 35                    | 4                   | 44                              | 4                   | 38                 | 5                     |
|   | 5 6                             | 29                    | 4                   | 38                              | 4                   | 33                 | 5 . 5                 |
|   | 5                               | 0 5.9 12 18 23 29     | 4                   | 31                              | 4                   | 6 12 17 22 28 33   | 5                     |
|   | 4                               | 18                    | 5                   | 12 19 25                        | 5                   | 22                 | 4                     |
|   | 2 3                             | 12                    | 5                   | 19                              | 4                   | 17                 | 4                     |
|   | 2                               | 5.9                   | 5                   | 12                              | m                   | 12                 | 3                     |
|   | 1                               | 0                     | 9                   | 9                               | 3                   | 9                  | 4                     |
|   | Steps                           | $0.03 \mathrm{x(cm)}$ | d <sub>w90</sub> cm | 0.05  x(cm)                     | d <sub>w90</sub> cm | $0.03 \times (cm)$ | d <sub>w90</sub> cm 4 |
|   | h(m) Steps                      | 0.03                  |                     | 0.05                            |                     | 0.03               |                       |
|   | qw<br>m3/s                      |                       | 0.07                |                                 |                     |                    |                       |
|   |                                 | 34032                 |                     | 2 52014'                        |                     | 38050'             |                       |
|   | Sn a                            |                       |                     | 7                               |                     |                    |                       |

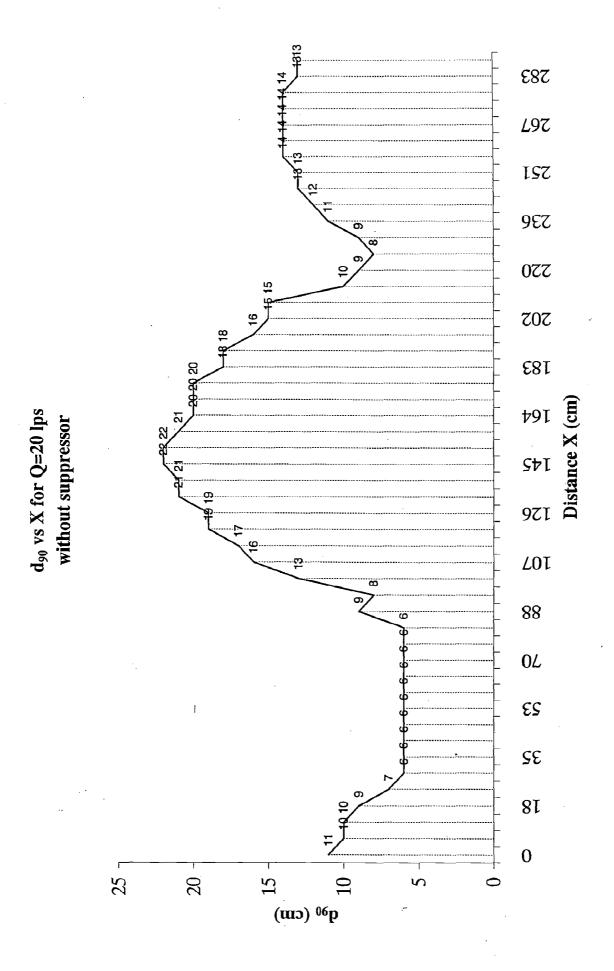
|   | 20                     |                                  |                     | 126                                         | 9                   |                   |                     |
|---|------------------------|----------------------------------|---------------------|---------------------------------------------|---------------------|-------------------|---------------------|
|   | 19                     |                                  |                     | 120                                         | 9                   |                   |                     |
|   | 18                     |                                  |                     | 113                                         | 9                   |                   |                     |
| ŀ | 17 18                  |                                  |                     | 50 56 63 69 75 82 88 94 101 107 113 120 126 | 9                   |                   | <del></del>         |
| ĺ | 9 10 11 12 13 14 15 16 |                                  |                     | 101                                         | 9                   |                   |                     |
|   | 15                     | 82                               | 5                   | 94                                          | 9                   | 81                | S                   |
|   | 14                     | 76                               | 5                   | 88                                          | 9                   | 75                | 5                   |
| Ì | 13                     | 64 70                            | 5                   | 82                                          | 5                   | 70                | 5                   |
|   | 12                     | 64                               | 5                   | 75                                          | 5                   | 65                | 3                   |
| 1 | 11                     | 59                               | 5                   | 69                                          | 5                   | 59                | 9                   |
| Ì | 10                     | 53                               | 5                   | 63                                          | 5                   | 49 54 59 65 70 75 | 9                   |
|   |                        | 47                               | 5                   | 56                                          | 5                   | 49                | 9                   |
|   | 8                      | 41                               | 5                   | 20                                          | 5                   | 38 44             | 9                   |
|   | 7                      | 35                               | 9                   | 44                                          | 5                   | 38                | 9                   |
|   | 9                      | 29                               | 9                   | 38                                          | 5                   | 33                | 9.9                 |
|   | 5 6                    | 0 5.9 12 18 23 29 35 41 47 53 59 | 9                   | 12 19 25 31 38 44                           | 5                   | 6 12 17 22 28 33  | 5                   |
|   | 4                      | 18                               | 7                   | 25                                          | 5                   | 22                | 5                   |
| Ì | 2 3                    | 12                               | 8                   | 19                                          | 5                   | 17                | 5                   |
|   | 2                      | 5.9                              | 6                   | 12                                          | 5                   | 12                | 5                   |
|   | -                      | 0                                | 6                   | 9                                           | 5                   | 9                 | 5                   |
|   | Steps                  | 0.03  x(cm)                      | d <sub>w90</sub> cm | $0.05 \mathrm{x(cm)}$                       | d <sub>w90</sub> cm | 0.03  x(cm)       | d <sub>w90</sub> cm |
|   | h(m) Steps             | 0.03                             |                     | 0.05                                        |                     | 0.03              |                     |
|   | qw<br>m3/s             | -                                | 0.1                 |                                             |                     |                   |                     |
|   | sn α                   | 34032                            |                     | 3 52014                                     |                     | 38050             |                     |
|   | 1.5                    | 1                                |                     | (1)                                         |                     |                   |                     |

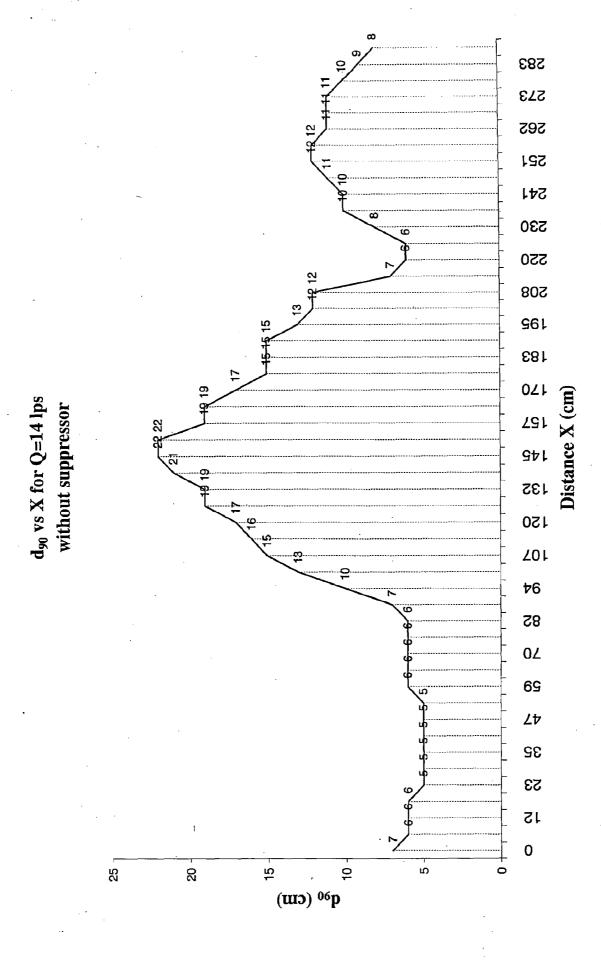
Graphs (With elliptical suppressor plate, P=90mm):

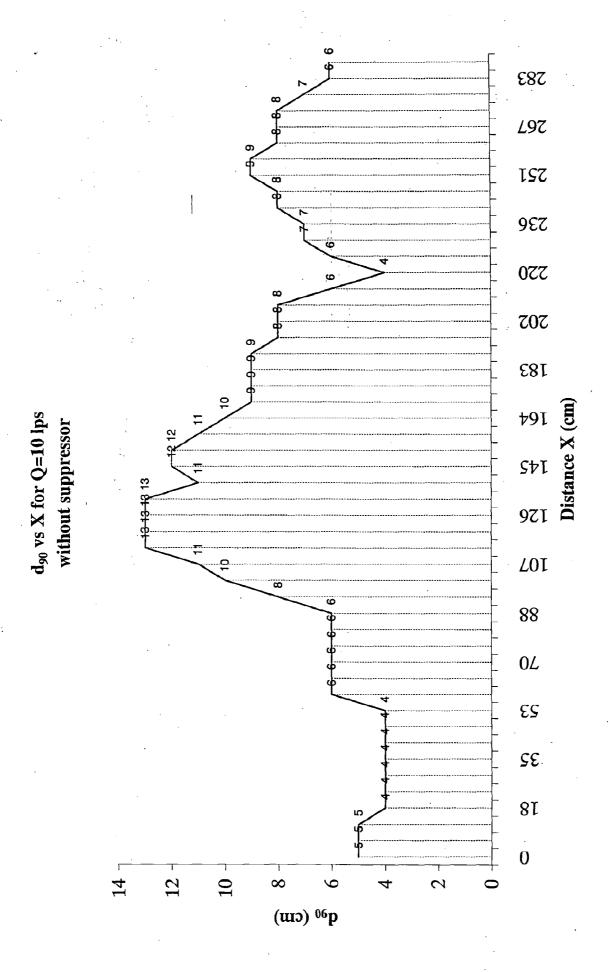
| 20                   |            |                     | 126                    | 4                   | •          |             |
|----------------------|------------|---------------------|------------------------|---------------------|------------|-------------|
| 19                   |            | Ŀ_                  | 94 101 107 113 120 126 | 4                   |            |             |
| 17 18                |            |                     | 113                    | 4                   |            |             |
| 17                   |            |                     | 107                    | 4                   |            |             |
| 10 11 12 13 14 15 16 |            |                     | 101                    | 4                   |            |             |
| 15                   | 82         | 3                   | 24                     | 5                   | 81         | 4           |
| 14                   | 72         | 3                   | 88                     | 2                   | 75         | 4           |
| 13                   | 20         | 3                   | 8                      | 5                   | 2          | 4           |
| 12                   | 64         | 3                   | 75                     | 5                   | 65         | 4           |
| 11                   | 59         | 3                   | 69                     | 5                   | 59         | 4           |
| 10                   | 53         | 3                   | 63                     | 5                   | 54         | 5           |
| 6                    | 47         | 3                   | 56                     | 5                   | 49         | 5           |
| <u></u>              | 41         | 3                   | 20                     | 5                   | 4          | 9           |
| 7                    | 35         | 3                   | 44                     | 5                   | 38         | 9           |
| 9                    | 29         | 3                   | 38                     | 5                   | 33         | 9           |
| 2                    | 23         | 3                   | 31                     | 2                   | 28         | 5           |
| 4                    | 18         | 4                   | 25                     | 5                   | 22         | 5           |
| 6                    | 12         | 4                   | 19                     | 5                   | 12 17      | 4           |
| 7                    | 5.9        | 4                   | 12                     | 5                   | 12         | 3           |
| Ħ                    | 0          | 5                   | 9                      | 3                   | 9          | 4           |
| (m) Steps            | 0.03 x(cm) | d <sub>w90</sub> cm | 0.05 x(cm)             | d <sub>w90</sub> cm | 0.03 x(cm) | $d_{w90}cm$ |
| h(m)                 | 0.03       |                     | 0.05                   |                     | 0.03       |             |
| q.w<br>m3/s          |            | 0.05                | -                      |                     |            |             |
| ಶ                    | 34032      |                     | 52014                  |                     | 38050      |             |
| Sυ                   |            |                     | 1                      | _                   |            |             |

| h(m) Steps                      | 0.03 x(cm) | d <sub>w90</sub> cm | 0.05 x(cm)                | d <sub>w90</sub> cm | 0.03 x(cm) | d <sub>w90</sub> cm |
|---------------------------------|------------|---------------------|---------------------------|---------------------|------------|---------------------|
|                                 | -          | iii (               | <u> </u>                  | m 4                 |            | m S                 |
| 1 7                             | 5.9        | 9                   | 6 12                      | 5 1                 | 6 12       | 4                   |
| w                               | 0 5.9 12   | 5                   | 19                        | 2                   | 17         | 4                   |
| 4                               | 18         | 5                   | 19 25                     | 5                   | 22         | 5                   |
| N                               |            | 4                   | 31                        | 5                   | 28         | 9                   |
| 2                               | 23 29 35   | 4                   | 38 44                     | 5                   | 33         | 9                   |
| 7                               | 35         | 4                   | 44                        | 5                   | 38         | 9                   |
| ∞                               | 41         | 4                   | 50                        | 5                   | 44         | 9                   |
|                                 | 47         | 4                   | 56                        | 2                   | 49         | 9                   |
| 10                              | 53         | 4                   | 63                        | 5                   | 54         | 9                   |
| 11                              | 59 64 70   | 4                   | 69                        | 5                   | S9 6S      | 5                   |
| 12                              | 64         | 4                   | 75                        | 5                   | 65         |                     |
| 9 10 11 12 13 14 15 16 17 18 19 | 2          | 4                   | 75 82                     | 5                   | 70         | 5                   |
| 14                              | 76         | 4                   | 88                        | Š                   | 75         | 5                   |
| 15                              | 82         | 4                   | 94 1                      | 5                   | 81         | 5                   |
| 16                              | -          |                     | 01                        | 5                   |            | $\vdash$            |
| 17                              |            |                     | 107                       | 5                   |            |                     |
| 18                              |            |                     | 88 94 101 107 113 120 126 | 5                   |            |                     |
| 19                              |            |                     | 120                       | 5                   |            |                     |
| 20                              |            |                     | 126                       | 5                   |            |                     |

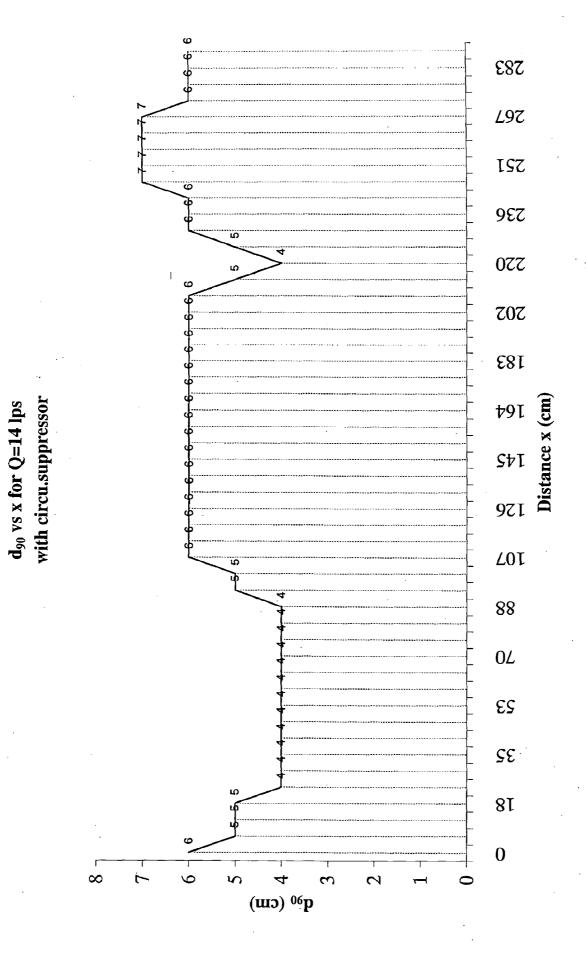

|                        | _           |        |                       |                     |            | _      |
|------------------------|-------------|--------|-----------------------|---------------------|------------|--------|
| 20                     | ]           |        | 126                   | 7                   |            |        |
| 19                     |             |        | 120                   | 7                   |            |        |
| 18                     |             |        | 113                   | 7                   |            |        |
| 17 18                  |             |        | 94 101 107 113 120    | 7                   |            |        |
| 16                     |             |        | 101                   | 7                   |            |        |
| 15                     | 82          | S      | 94                    | 7                   | 81         | 7      |
| 14                     | 20          | 5      | 88                    | 7                   | 75         | 7      |
| 13                     | 2           | 2      | 8                     | 7                   | 70         | 8      |
| 12                     | 64          | 5      | 75 82                 | 7                   | 65         | 8      |
| 11                     | 59 64 70    | 5      | 69                    | 7                   | 59         | 8      |
| 9 10 11 12 13 14 15 16 | 53          | 5      | 63                    | 7                   | 54 59 65   | 8      |
|                        | 47          | 5      | 98                    | 7                   | 49         | 8      |
| 8                      | 41 47       | 5      | 20                    | 5                   |            | 8      |
| 7                      | 35          | 5      | 44                    | 5                   | 38 44      | 9      |
| 9                      | 29          | 5      | 38                    | 5                   | 22 28 33   | 9      |
| 2                      | 23          | 9      | 31                    | 5                   | 28         | 5      |
| 4                      | 0 5.9 12 18 | 9      | 25                    | 2                   | 22         | 5      |
| 8                      | 12          | 7      | 12 19                 | 5                   | 12 17      | 5      |
| 7                      | 5.9         | 8      | 12                    | 5                   | 12         | 9      |
| 1                      | 0           | 8      | 9                     | 5                   | 9          | 7      |
| h(m) Steps             | 0.03 x(cm)  | шообмр | $0.05 \mathrm{x(cm)}$ | mo <sub>06w</sub> p | 0.03 x(cm) | dwoncm |
|                        | 0.03        |        | 0.05                  |                     | 0.03       |        |
| qw<br>m3/s             |             | 0.1    |                       |                     |            |        |
| <b>ರ</b> _             | 34032       |        | 52014                 |                     | 38050      |        |
| Sn a                   |             |        | 3                     |                     |            |        |


With elliptical suppressor plate P=135mm:

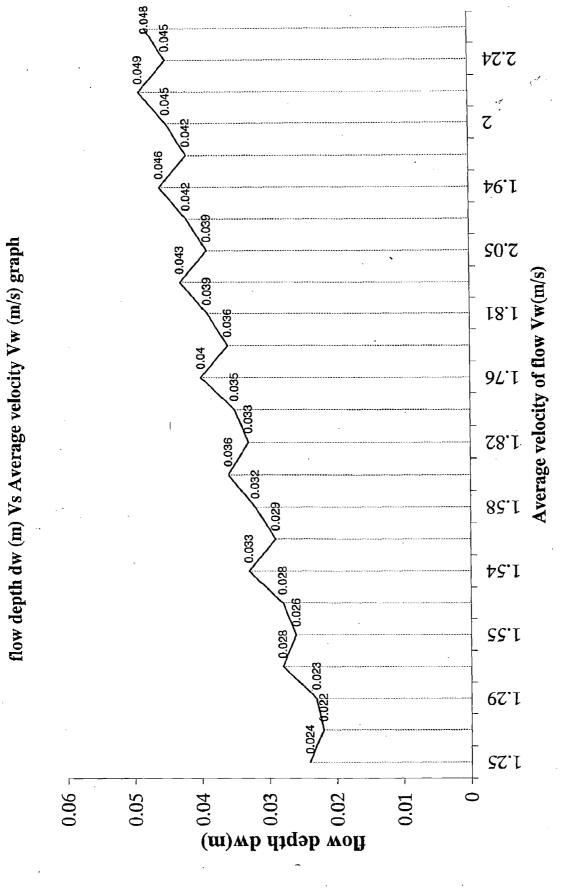

|                                                | emptical supp |       |               |     | L: 00(0, 10)             |
|------------------------------------------------|---------------|-------|---------------|-----|--------------------------|
| x(cm)                                          | dw90(Q=20lps) | x(cm) | dw90(Q=14lps) |     | dw90(Q=10lps)            |
| <u>0,                                     </u> | 9             | 0     | 6             | 0   | 4                        |
| 6<br>12                                        | 9             | 6     | 5             | 6   | 4                        |
| 12                                             | 8             | 12    | 5             | 12  | 3                        |
| 18                                             | 7             | 18    | 5             | 18  | 3                        |
| 23                                             | 6             | 23    | 4             | 23  | 3                        |
| 23<br>29                                       | 6             | 29    | 4             | 29  | 12                       |
| 35                                             | 6             | 35    | 4             | 35  | 2                        |
| 41                                             | 5             | 41    | 4             | 41  | 2                        |
| 47                                             | 5             | 47    | 4             | .47 | 2                        |
| 53                                             | 15            | 53    | 14            | 53  | 2                        |
| 59                                             | 5             | 59    | 4             | 59  | 12                       |
| 64                                             | 5             | 64    | 4             | 64  | 2                        |
| 70                                             | 5             | 70    | 4             | 70  | $\frac{\overline{2}}{2}$ |
| 76                                             | 5             | 76    | 4             | 76  | $\frac{\overline{2}}{2}$ |
| 82                                             | 15            | 82    | 4 ,           | 82  | 2                        |
| 88                                             | 5             | 88    | 3             | 88  | 2                        |
| 94                                             | 5             | 94    | 3             | 94  | 4                        |
| 101                                            | 5             | 101   | 4             | 101 | 4                        |
| 107                                            | 5             | 107   | 4             | 107 | 4                        |
| 113                                            | 5             | 113   | 4             | 113 | 4                        |
| 120                                            | 5             | 120   | 4             | 120 | 3                        |
| 126                                            | 5             | 126   | 4             | 126 | 3                        |
| 132                                            | 5             | 132   | 4             | 132 | 3                        |
| 138                                            | 5             | 138   | 4             |     |                          |
| 145                                            |               |       | 4             | 138 | 3                        |
| 143                                            | 5             | 145   | 5             | 145 | 3                        |
| 151                                            | 5             | 151   | 5             | 151 | 4                        |
| 157                                            | 5             | 157   | 5             | 157 | 4                        |
| 164                                            | 5             | 164   | 5             | 164 | 4                        |
| 170                                            | 5             | 170   | 5             | 170 | 4                        |
| 176                                            |               | 176   | 4             | 176 | 3                        |
| 183                                            | 5             | 183   | 4             | 183 | 3                        |
| 189                                            | 5             | 189   | 4             | 189 | 3                        |
| 195                                            | 5             | 195   | 4             | 195 | 3                        |
| 202                                            | 5             | 202   | 4             | 202 | 3                        |
| 208                                            | 5             | 208   | 4             | 208 | 3                        |
| 214                                            | 5             | 214   | 4             | 214 | 3                        |
| 220                                            | 15            | 220   | 3             | 220 | 3                        |
| 225                                            | 5             | 225   | 4             | 225 | 4                        |
| 230                                            | 5             | 230   | 4             | 230 | 4                        |
| 236                                            | 5             | 236   | 5             | 236 | 4                        |
| 241                                            | 5             | 241   | 5             | 241 | 4                        |
| 246                                            | 5             | 246   | 5             | 246 | 4                        |
| 251                                            | 5             | 251   | 5             | 251 | 4                        |
| 257                                            | 5             | 257   | 5             | 257 | 4                        |
| 262                                            | 6             | 262   | 4             | 262 | 3                        |
| <del>262</del><br><del>267</del>               | 6             | 267   | 4             | 202 | 3                        |
| <del>207</del><br>273                          | _             |       |               | 267 | 3                        |
| <del>273</del><br><del>278</del>               | 6             | 273   | 4             | 273 | 3                        |
|                                                | 6             | 278   |               | 278 | 3                        |
| 283                                            | 6             | 283   | 4             | 283 | 3                        |
| 289                                            | 6             | 289   | 4             | 289 | 3                        |


With elliptical suppressor plate P=90mm:

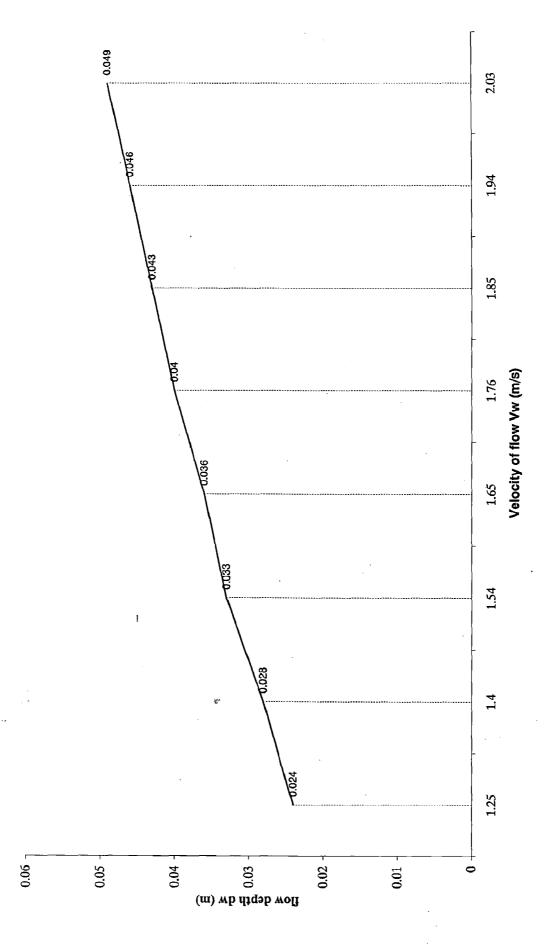
| with elliptical suppressor |                                                  |             |       |              |        |            |               |
|----------------------------|--------------------------------------------------|-------------|-------|--------------|--------|------------|---------------|
| x(cm)<br>0                 | dw90(                                            | Q=20lps)    | x(cm) | dw90(Q=      | 14lps) | x(cm)      | dw90(Q=10lps) |
| 0                          | 8                                                |             | 0     | 6            |        | 0          | 5             |
| 6                          | 8                                                |             | 6     | 6            |        | 6          | 4             |
| 12                         | 7                                                |             | 12    | 5            |        | 12         | 4             |
| 18                         | 6                                                | <del></del> | 18    | 5            |        | 18         | 14            |
| 23                         | 6                                                | 1           | 23    | 4            |        | 23         | 3             |
| 29                         | 5                                                |             | 29    | 4            |        | 29         | 13            |
| 35                         | 5                                                | i — —       | 35    | 4            | i      | 35         | 3             |
| 41                         | 5                                                |             | 41    | 4            |        | 41         | 3             |
| 47                         | 15                                               |             | 47    | 4            |        | 47         | 3             |
| 53                         | 5                                                |             | 53    | 4            |        | 53         | 3             |
| 59                         | 5                                                |             | 59    | 4            |        | 59         | 3             |
| 64                         | 5                                                |             | 64    | 4            |        | 64         | 3             |
| 70                         | 5                                                |             | 70    | 4 .          |        | 70         | 3             |
| 76                         | 5                                                | -           | 76    | 4            | -      | 76         | 3             |
| 82                         | 5                                                |             | 82    | 4            |        | 82         | $\frac{1}{3}$ |
| 88                         | 5                                                |             | 88    | 4            |        | 88         | 3             |
| 94                         | 5                                                |             | 94    | 5            |        | 94         | 5             |
| 101                        | 5                                                |             | 101   | 5            |        | 101        | 5             |
| 107                        | 5                                                |             | 107   | 5            |        | 107        | 5             |
| 113                        | 5                                                |             | 113   | 5            |        | 113        | 15            |
| 120                        | 5                                                |             | 120   | 5            |        | 120        | 5             |
| 126                        | 5                                                |             | 126   | 5            |        | 126        | 5             |
| 132                        | 5                                                |             | 132   | 5            |        | 132        | 15            |
| 138                        | 7                                                |             | 138   | 5            | •      | 138        | 5             |
| 145                        | 7                                                |             | 145   | 5            |        | 145        | 5             |
| 151                        | <del>                                     </del> |             | 151   | 5            |        | 151        | 5             |
| 157                        | <del>   </del>                                   | -           | 157   | 5            |        | 157        | 5             |
| 164                        | <del>   </del>                                   |             | 164   | 5            |        | 164        | 5             |
| 170                        | 7                                                |             | 170   | 5            |        | 170        | 5             |
| 176                        | 7                                                |             | 176   | 5            |        | 176        | 5             |
| 183                        | 7                                                |             | 183   | <del>-</del> |        | 183        | 4             |
| 189                        | 7                                                |             | 189   | 5            |        | 189        | 4             |
| 195                        | <del> </del>                                     |             | 195   | 5            |        | 195        | 4             |
| 202                        | 7                                                |             | 202   | 5            |        | 202        | 14            |
| 208                        | 7                                                |             | 208   | 5            |        | 202        |               |
| 214                        | <del> </del>                                     |             | 214   | 5            |        | 214        | 4             |
| 220                        | 6                                                |             | 220   | 4            |        | 214        | 4             |
| 225                        | 5                                                |             | 225   | 4            |        | 220<br>225 | 3             |
| 230                        | 5                                                | <del></del> | 230   | 5            |        | 220        | 4             |
| 236                        | 5                                                |             | 236   |              |        | 230        | 5             |
| 241                        | 6                                                |             | 241   | 6            |        | 236        | 5             |
| 246                        |                                                  |             |       | 6            |        | 241        | 6             |
| 251                        | 6<br>8                                           |             | 246   | 6            |        | 246        | 6.            |
| 251                        | 10                                               |             | 251   | 6            |        | 251        | 6             |
| 257                        | 8                                                |             | 257   | 6            |        | 257        | 5             |
| 262                        | 8                                                |             | 262   | 6            |        | 262        | 5             |
| 267                        | 8                                                |             | 267   | 5            |        | 267        | 4             |
| 273                        | 8                                                |             | 273   | 5            |        | 273        | 4             |
| 278                        | 8                                                |             |       | 5            |        | 278        | 4             |
| 283                        | 7                                                |             | 283   | 5            |        | 283        | 4             |
| 289                        | 7                                                |             | 289   | 5            |        | 289        | 4             |

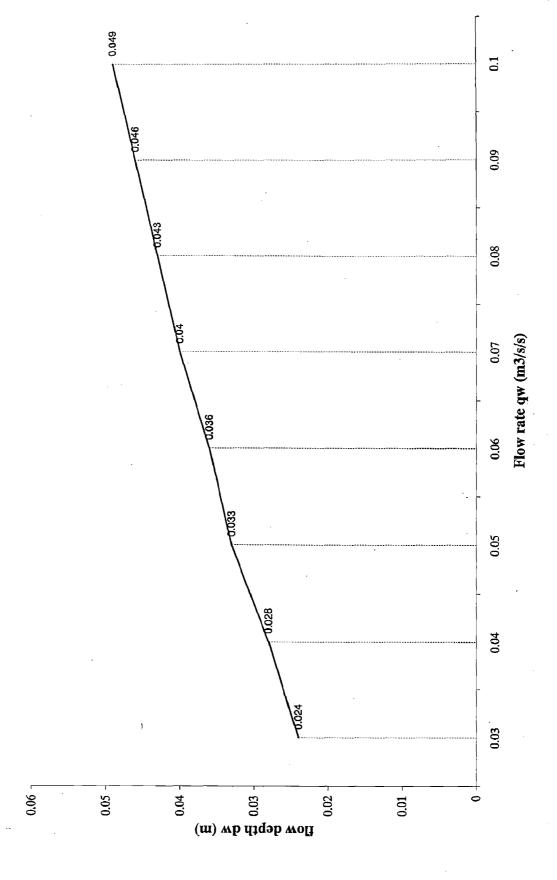




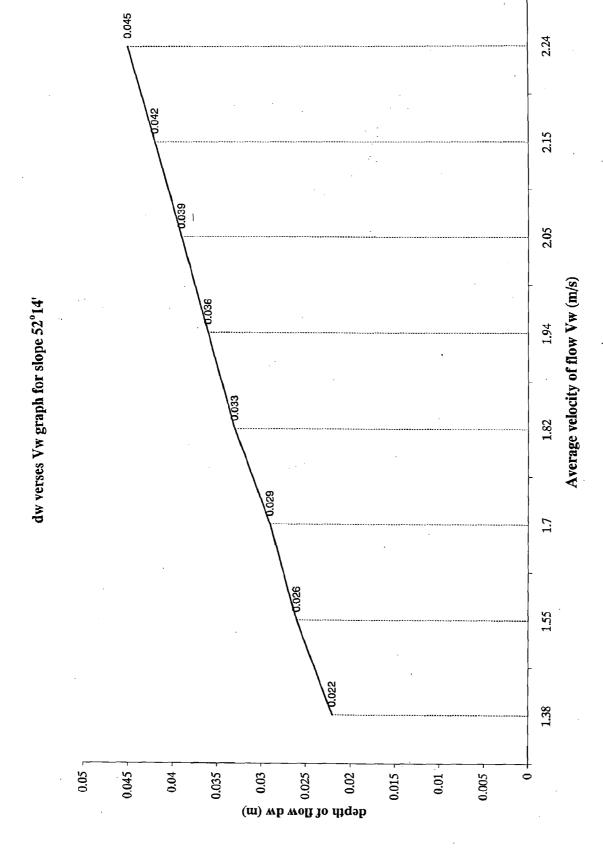



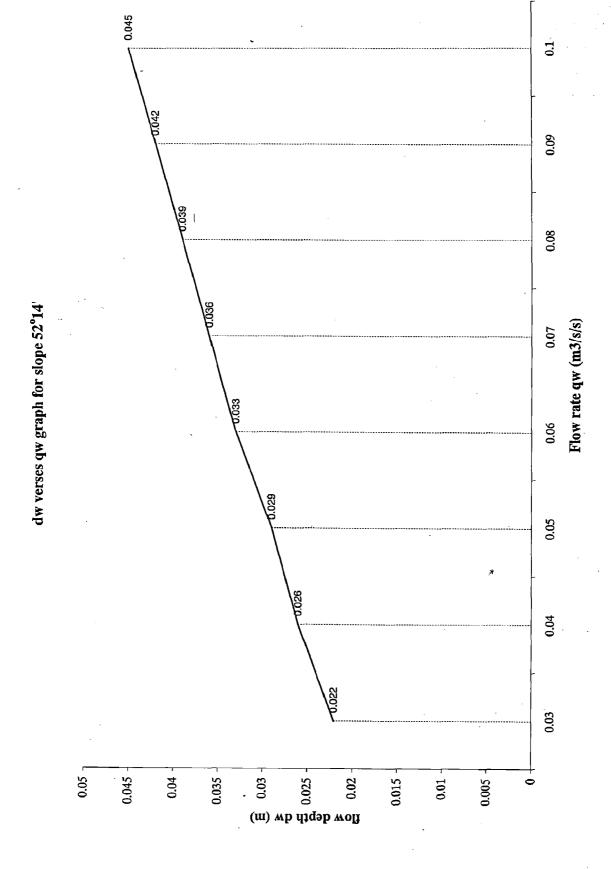


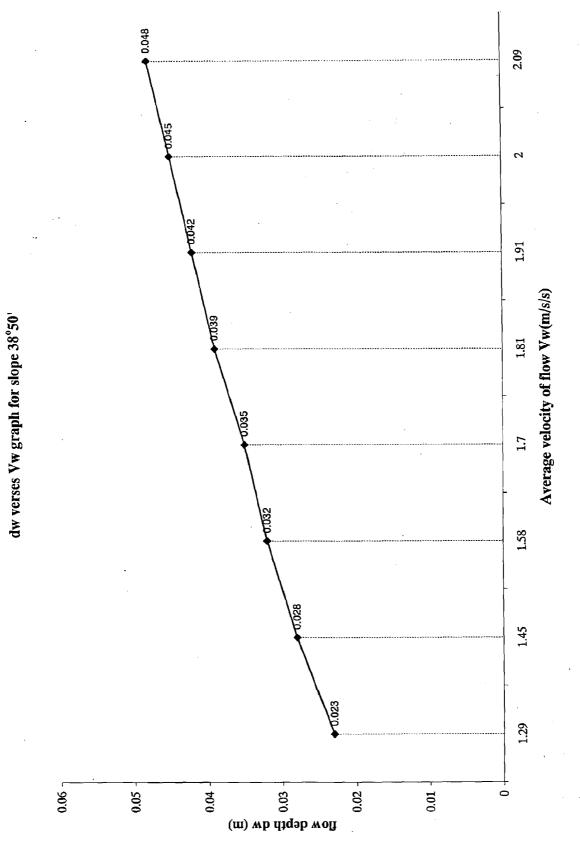


**L9**7 £81 **Distance x (cm)**  $d_{90}$  vs x for Q=20 lps with circu.suppressor **L01** q<sup>00</sup> (cm)

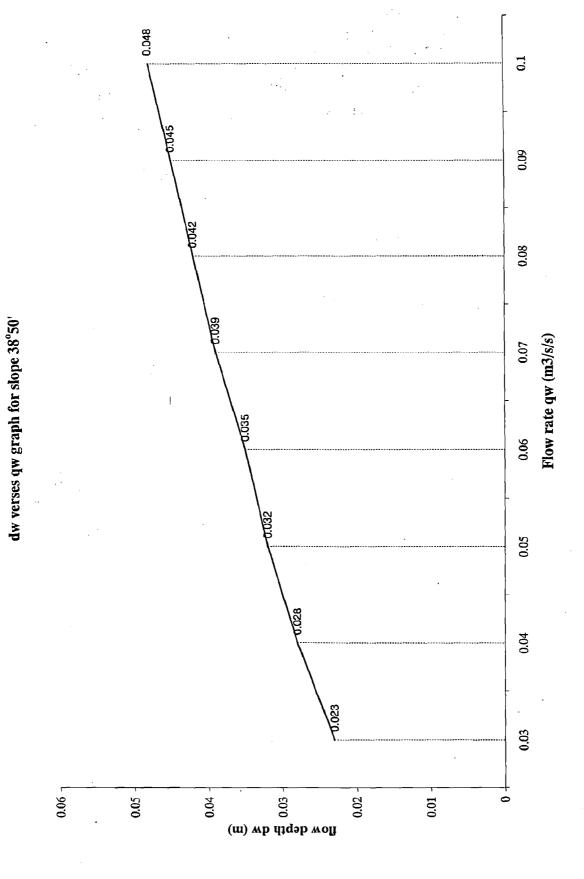


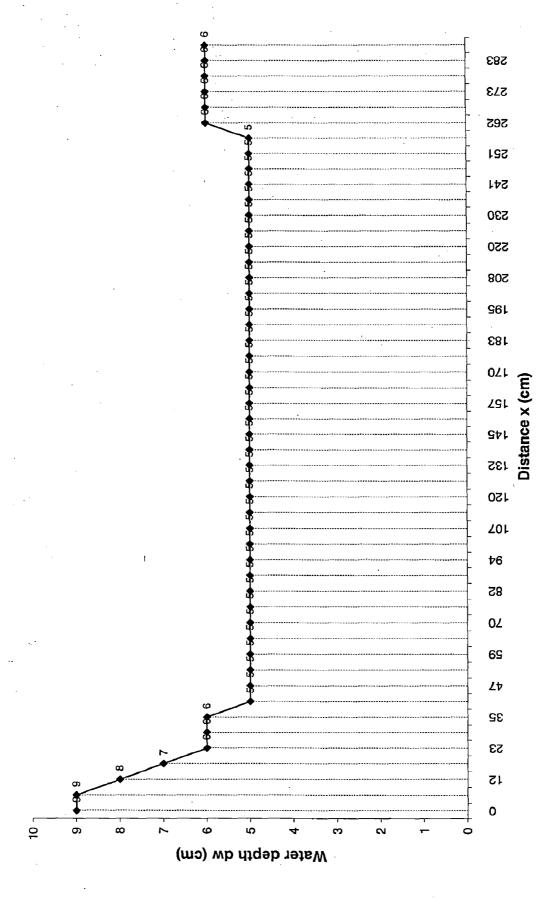

*L*97  $d_{90}$  vs x for Q=10 lps with circu-suppressor Distance x (cm) **LO1** SE . (m2) <sub>0e</sub>b 4 ω 



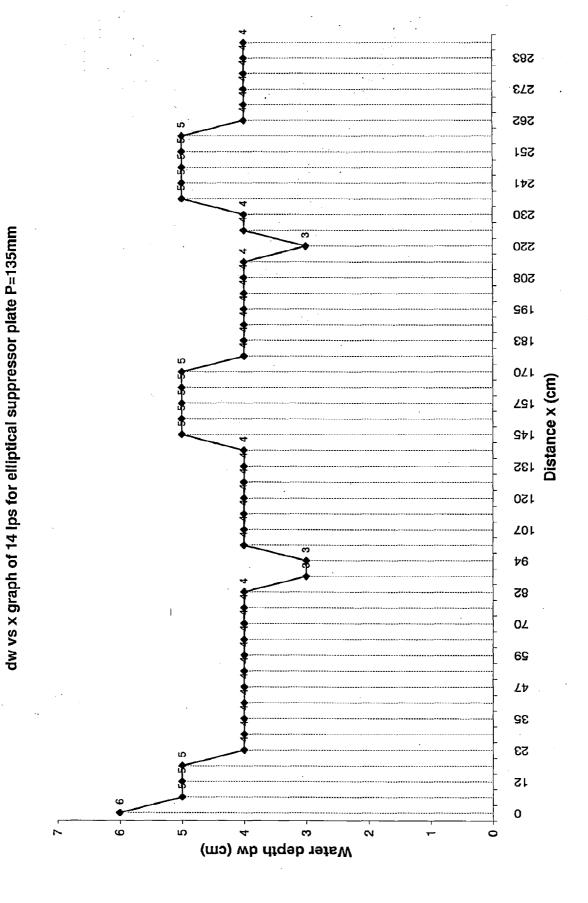


1.0 60.0 80.0 flow depth dw Vs Rate of flow qw graph Rate of flow qw (m3/s/m) 70.0 90.0 £0.0 **₽**0.0 £0.0 0.05 0.01



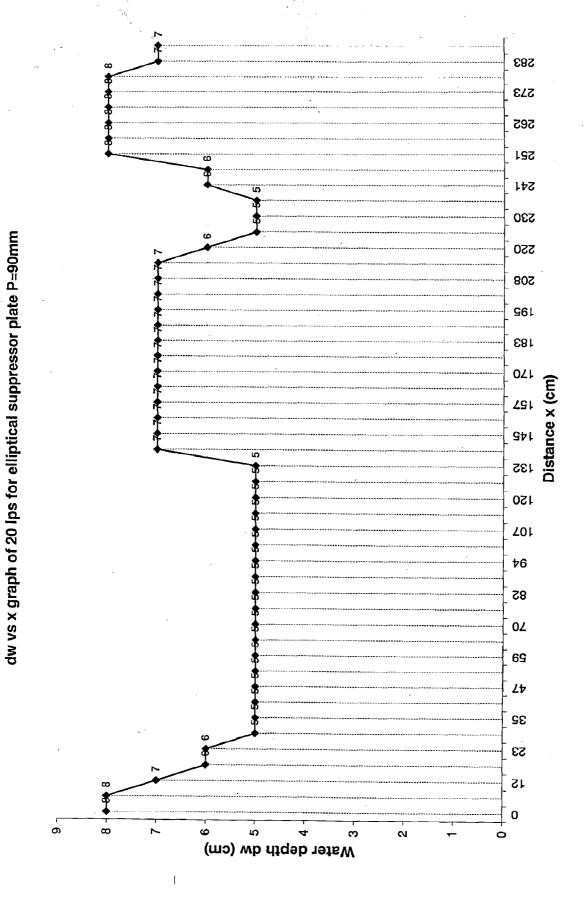



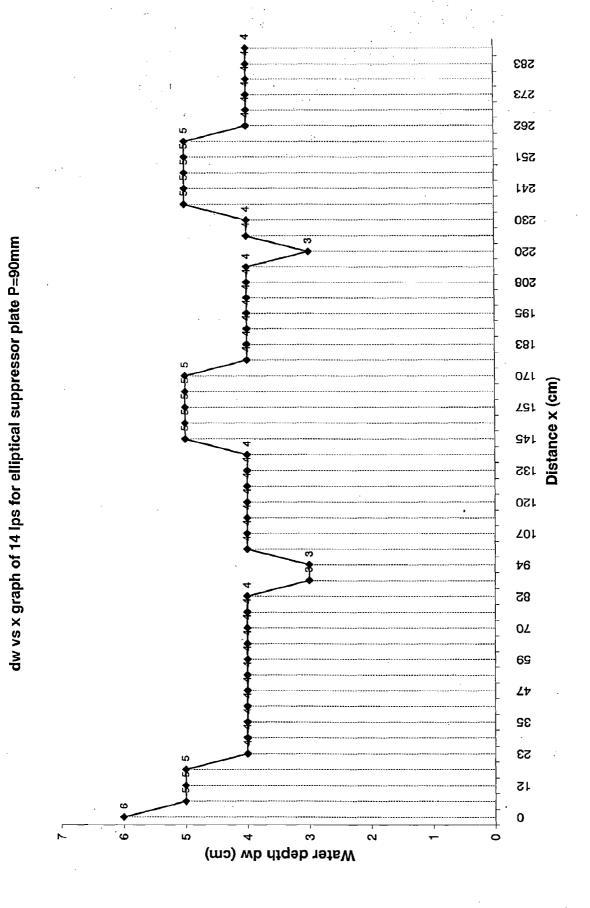


168

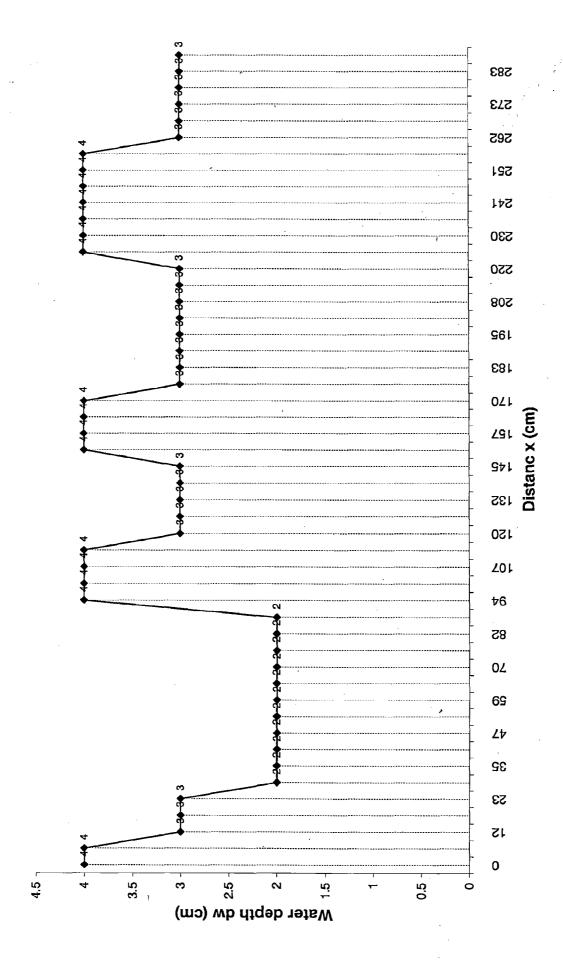




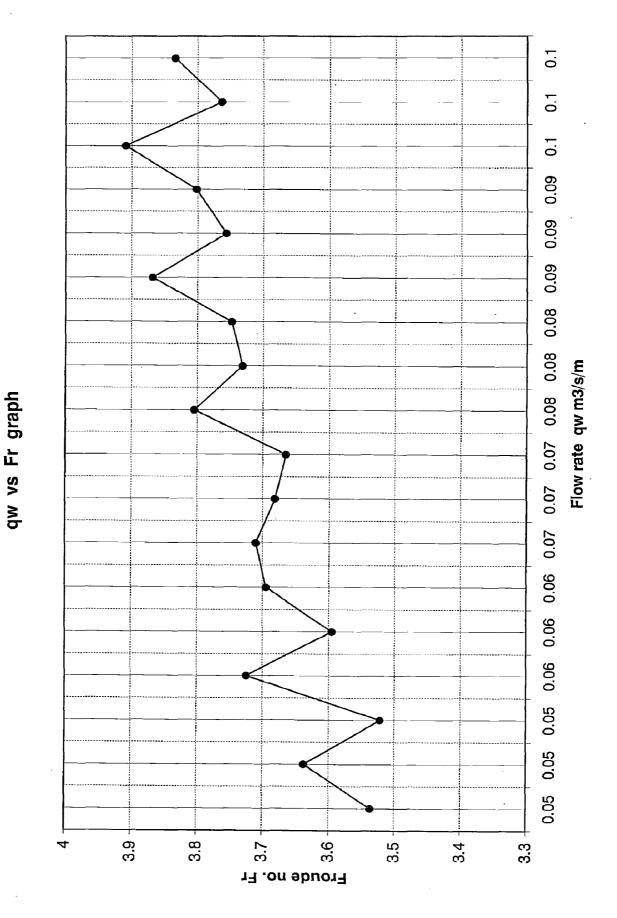




dw vs x graph of 20 lps for elliptical suppressor P=135mm







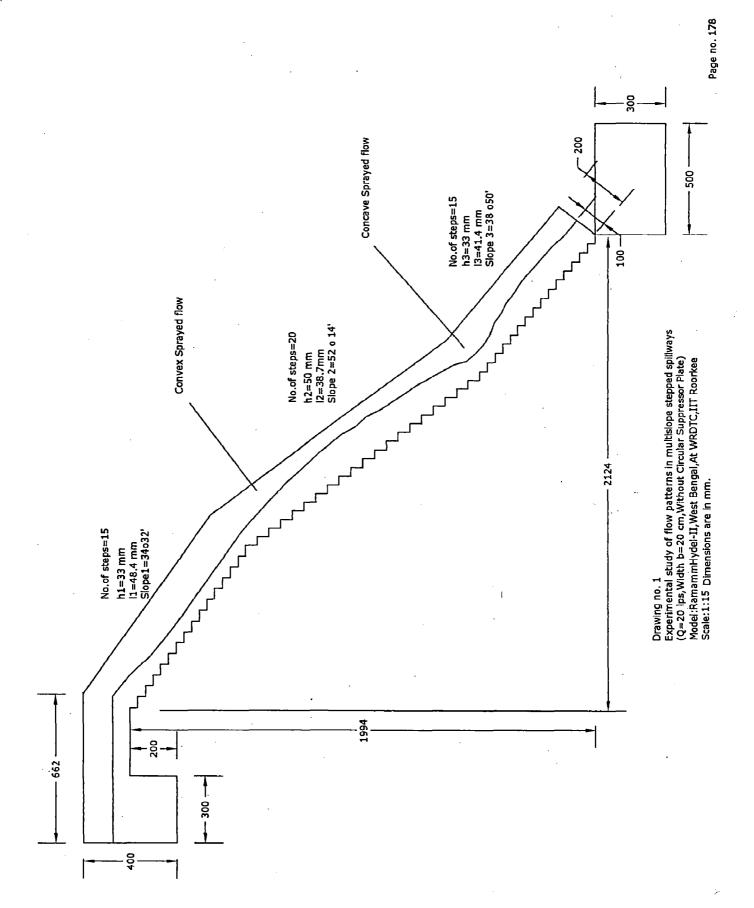


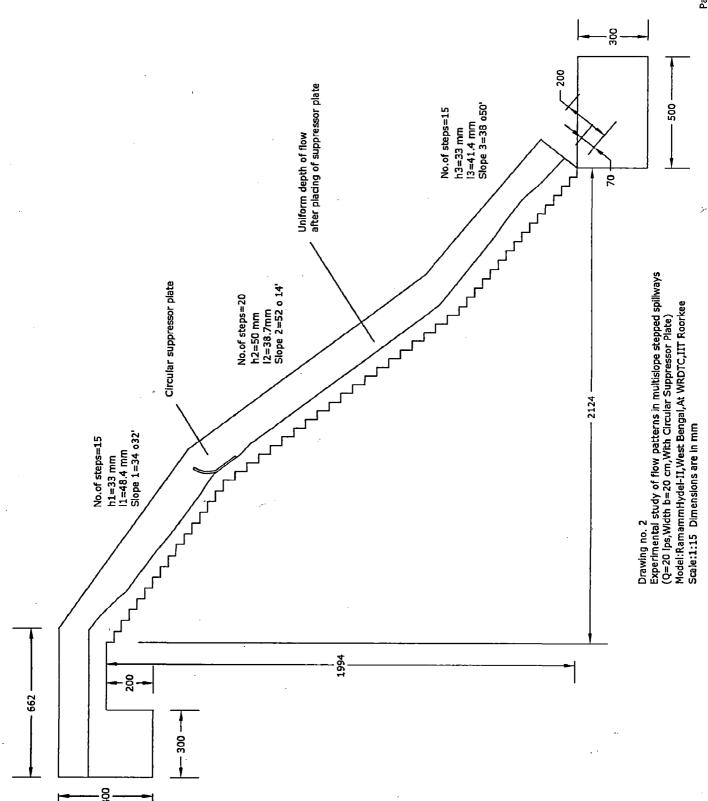


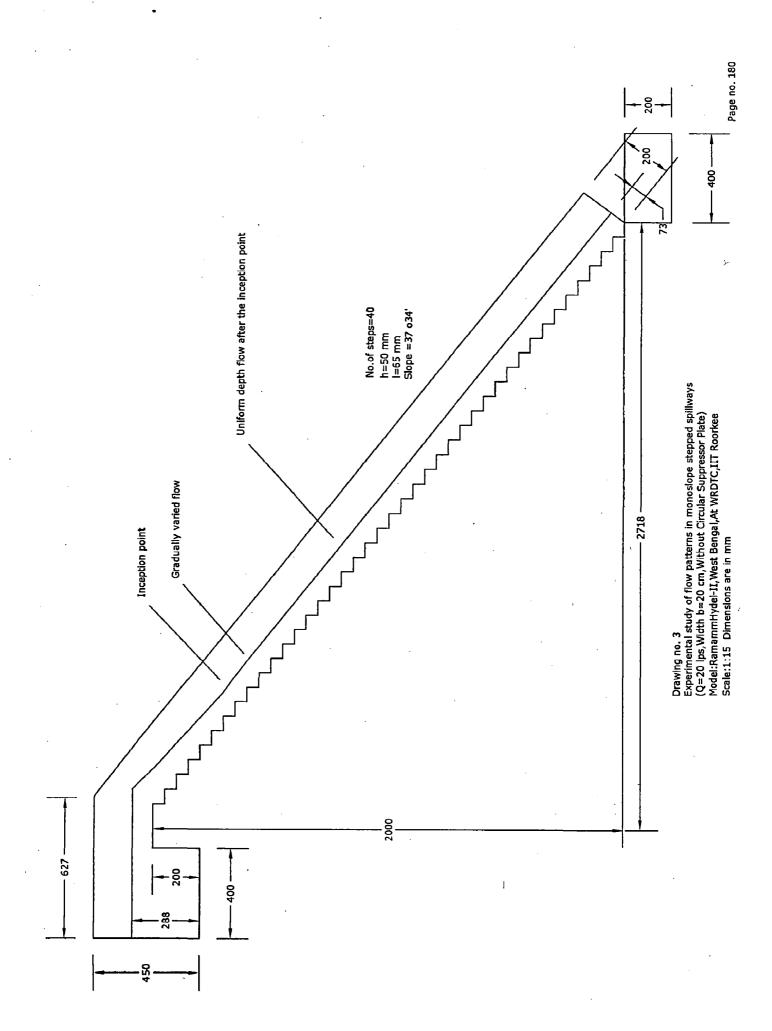

dw vs x graph for 10 lps for elliptical suppressor plate P=90mm

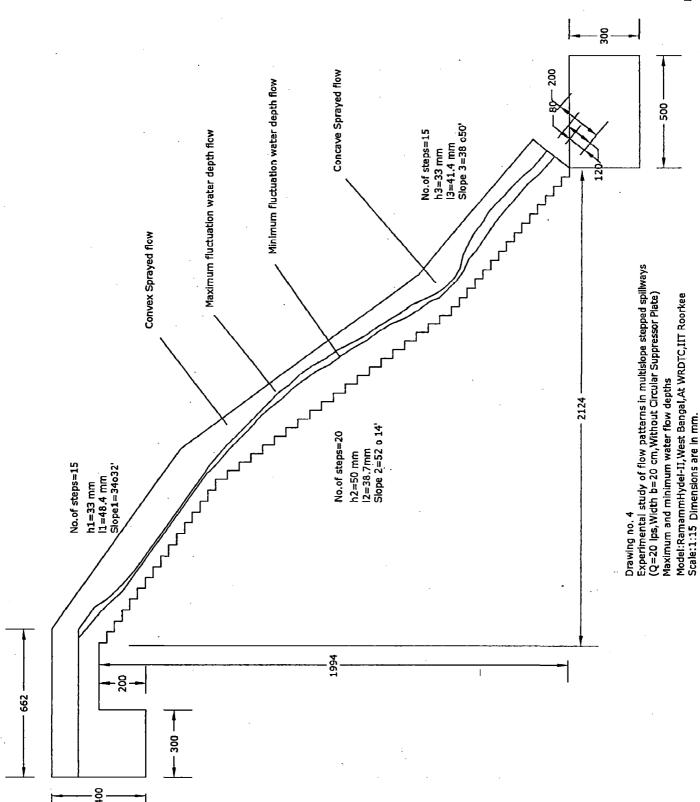


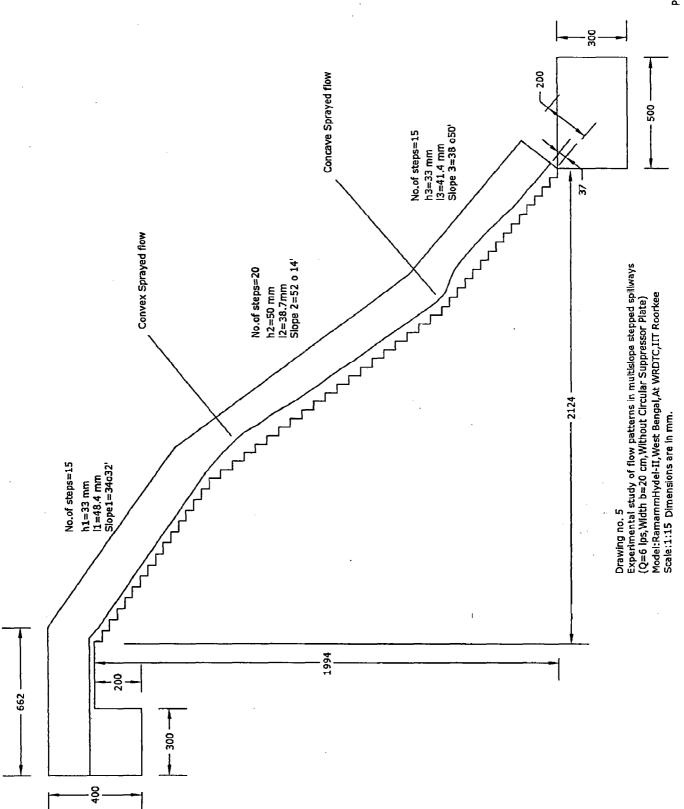
## Appendix-C

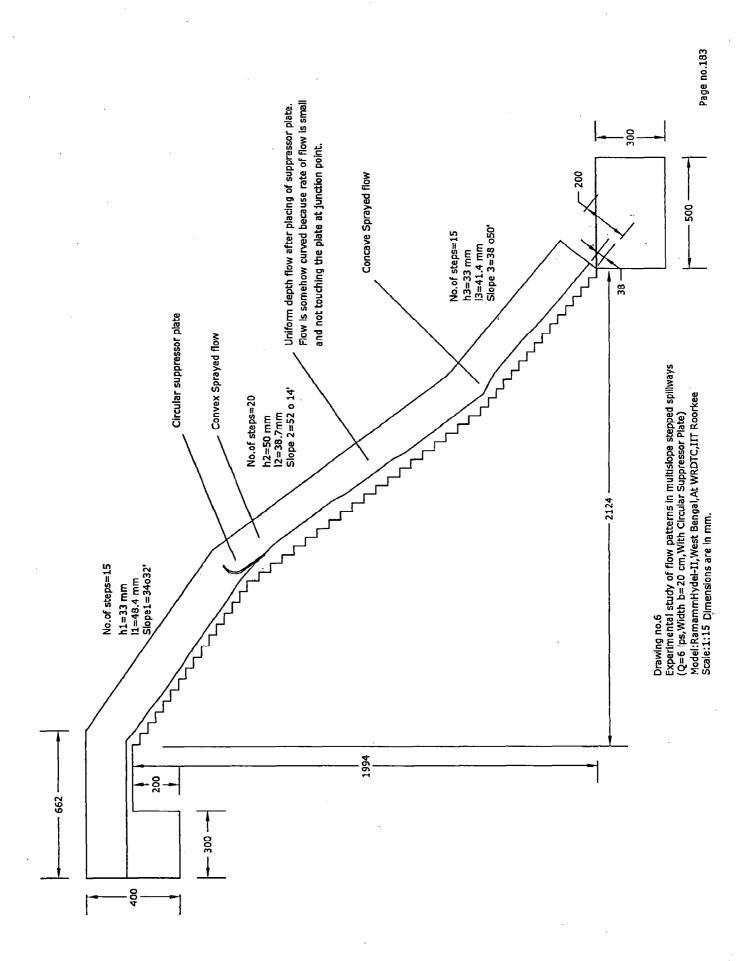

## **Drawings and Photographs:**

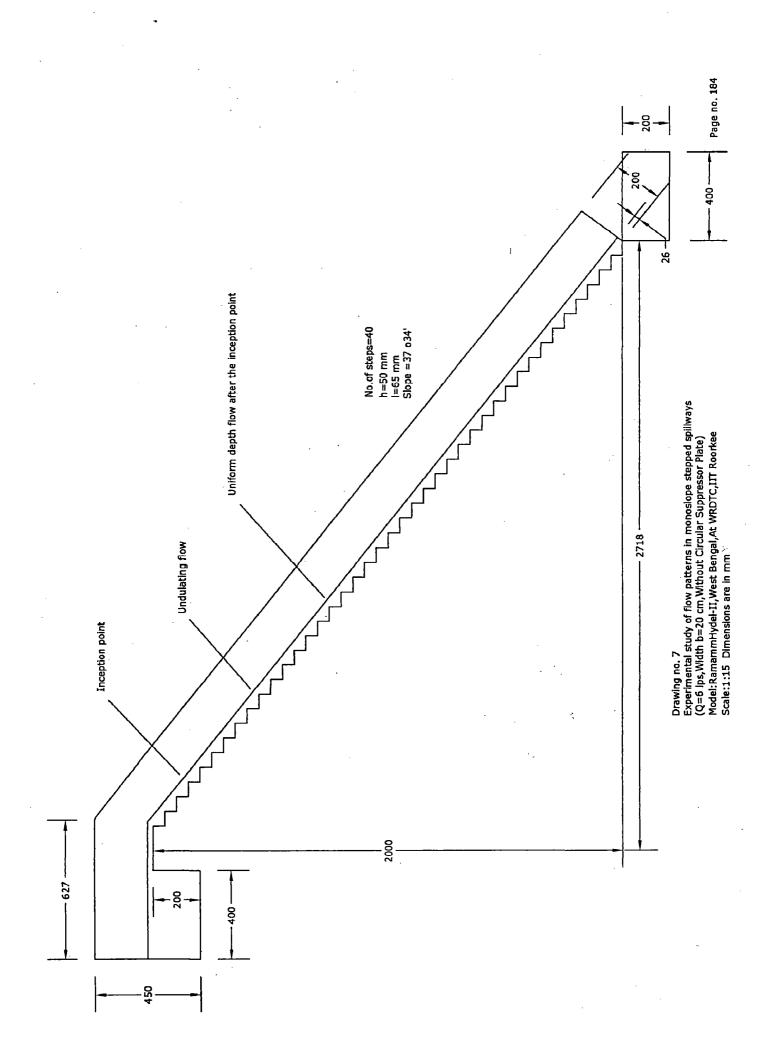

## (a) AutoCAD drawings:

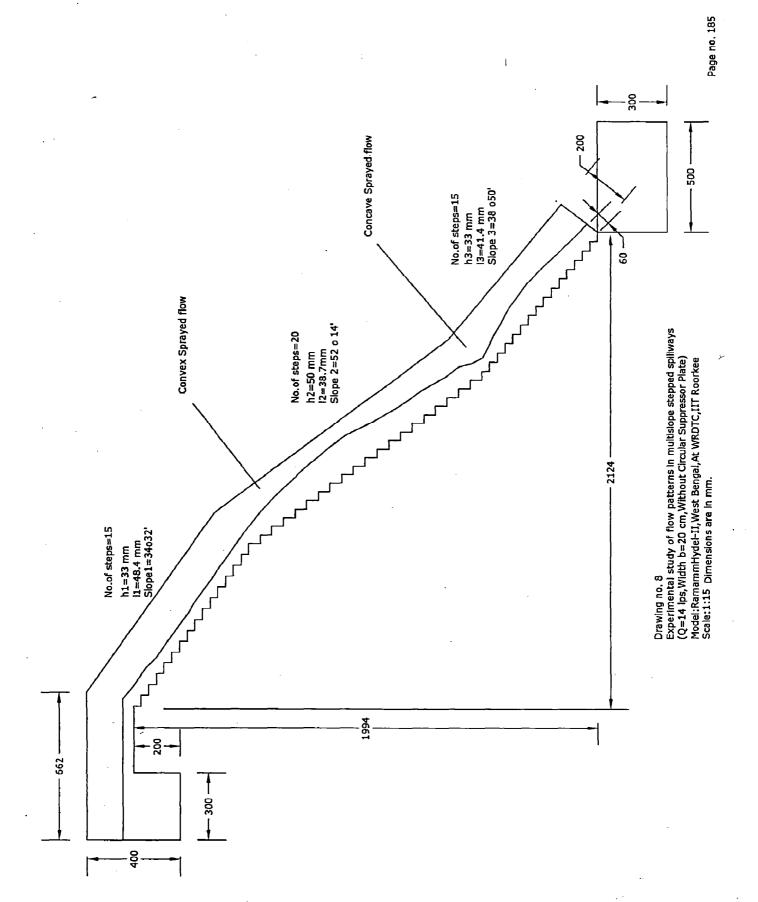

Drawings of flow patterns in multislope and monoslope stepped spillways model (width =20cm) for different discharges ranging from 6 to 20 lps.

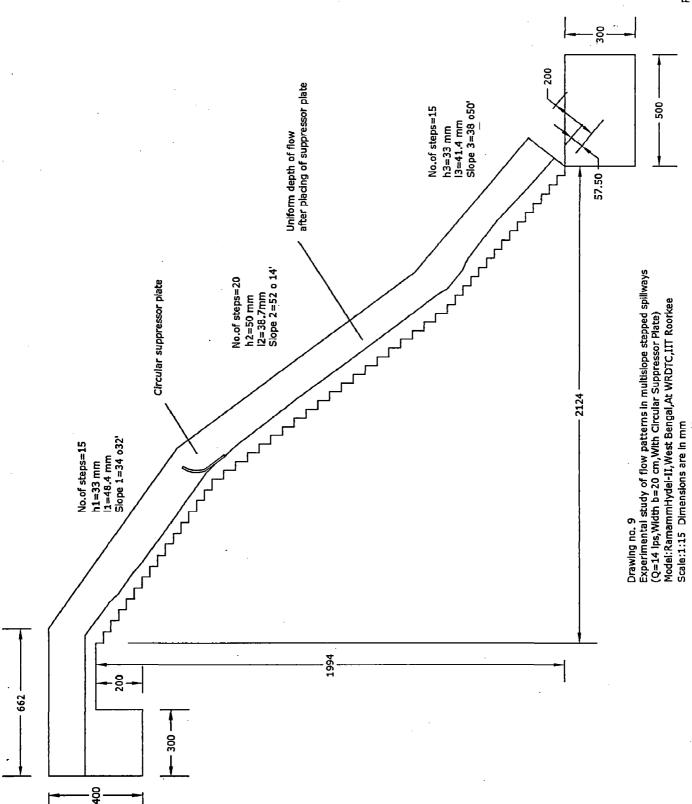

## (b) Photographs:

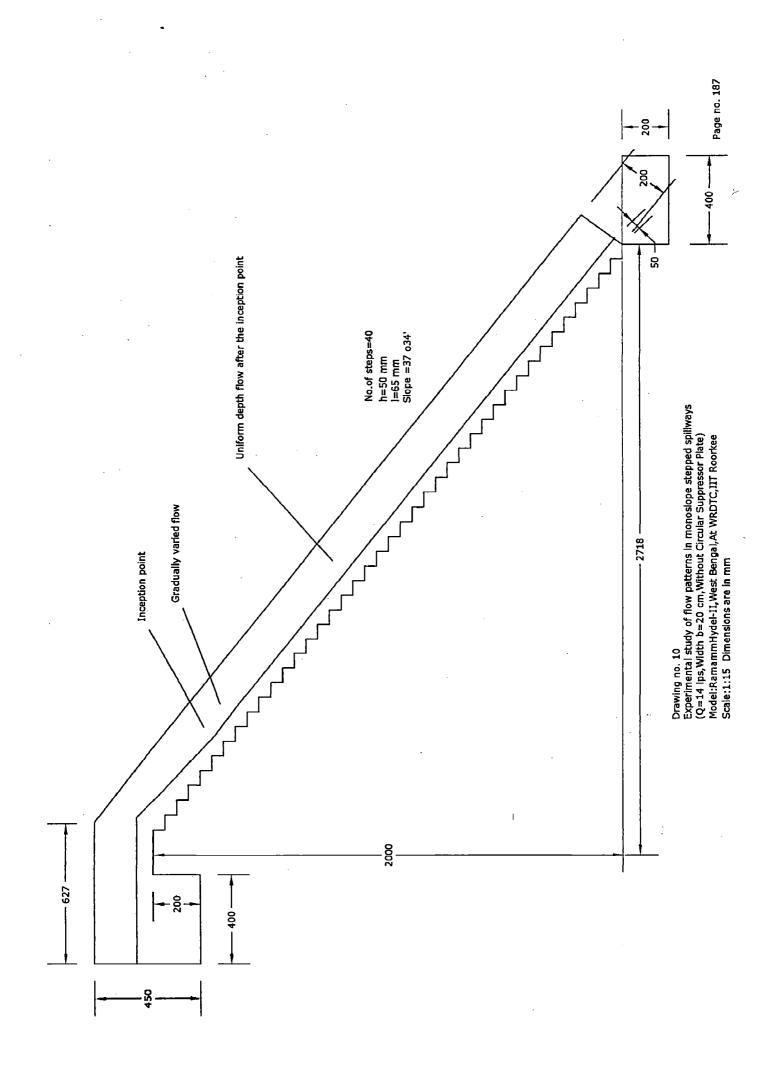

Photographs of flow patterns in the experimental setups with different discharges ranging from 6 to 20 lps.

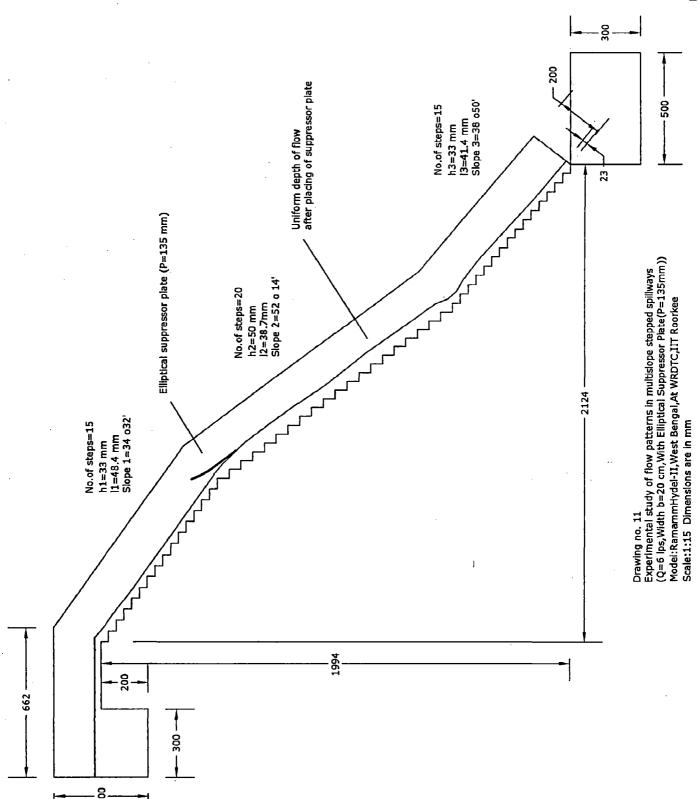


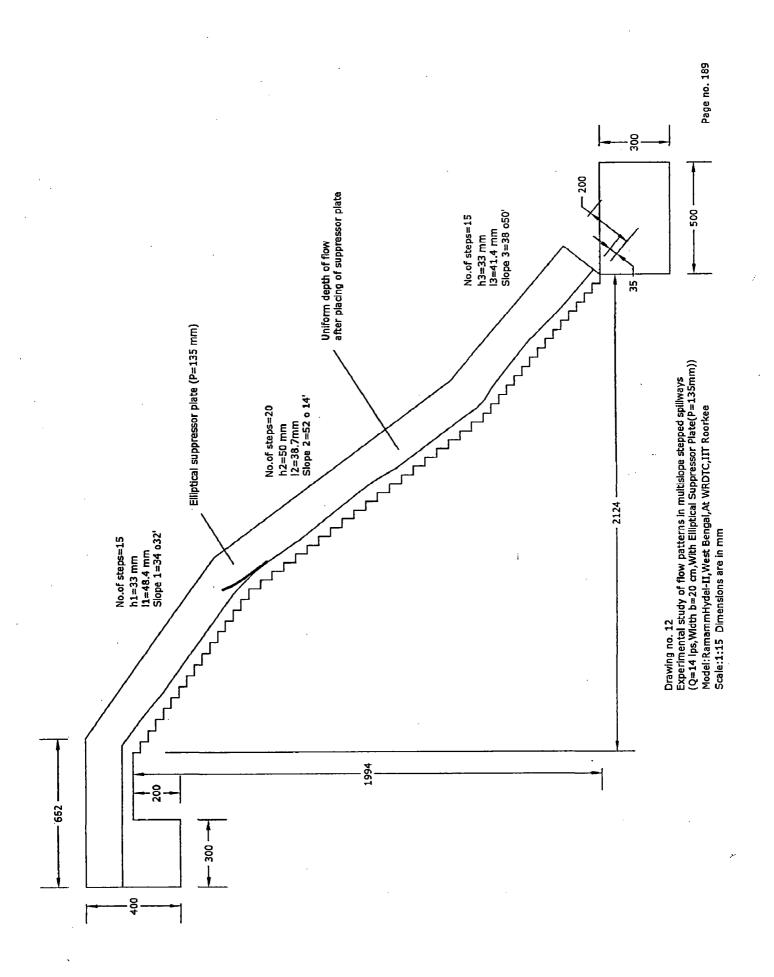



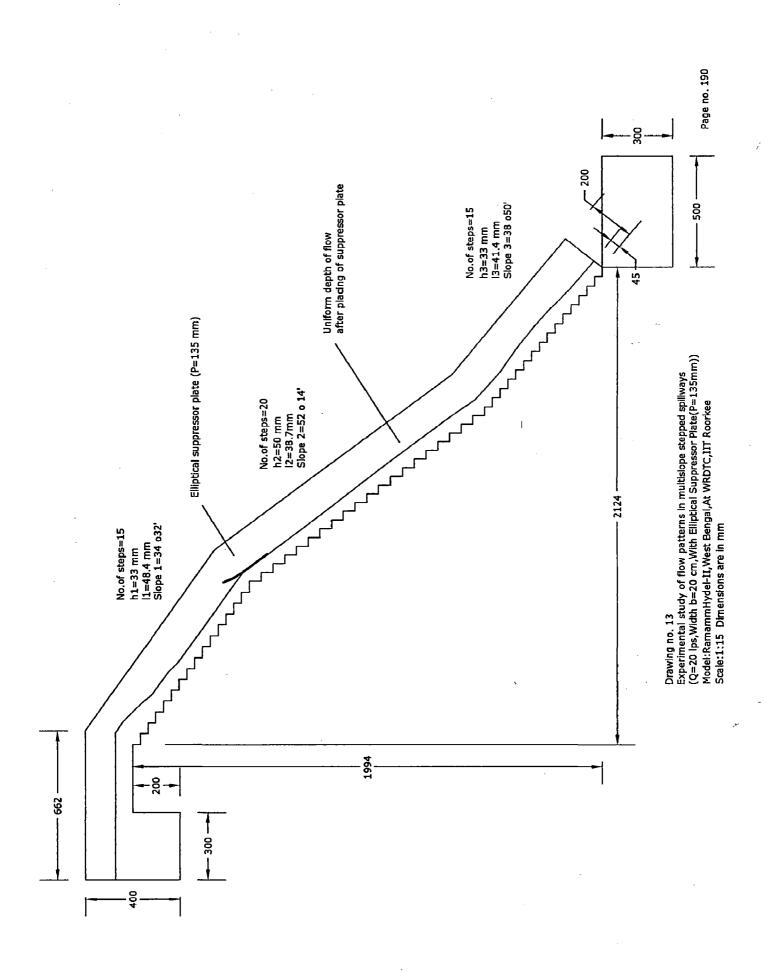



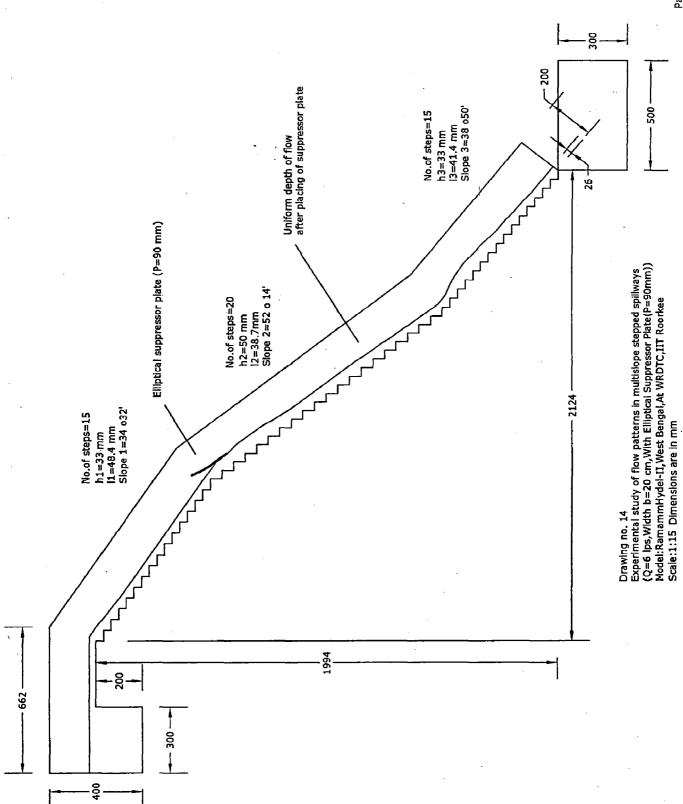



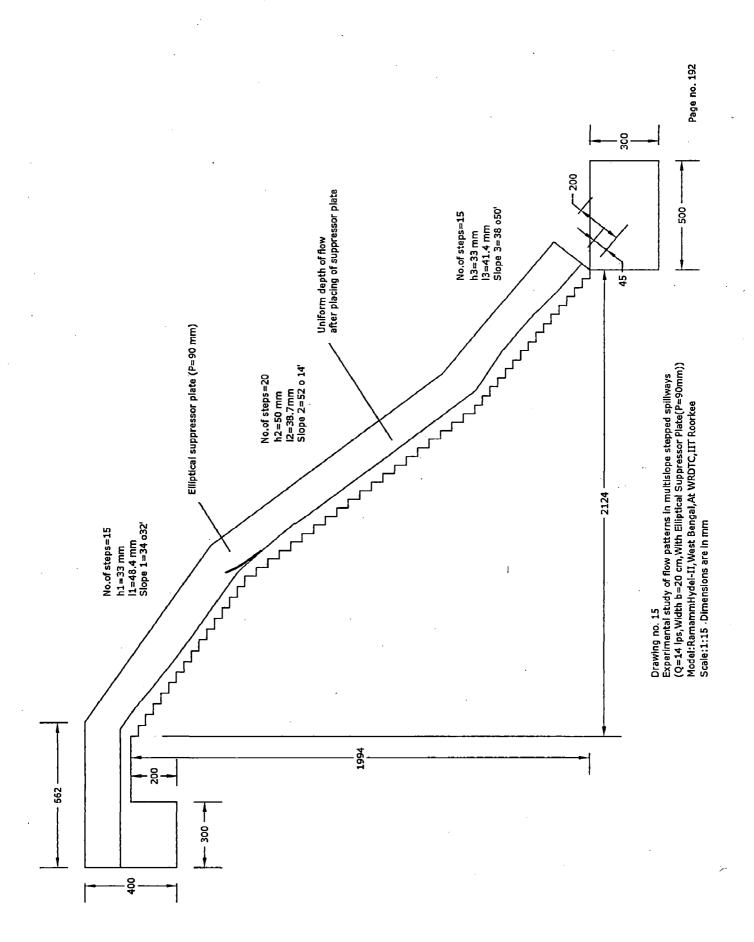



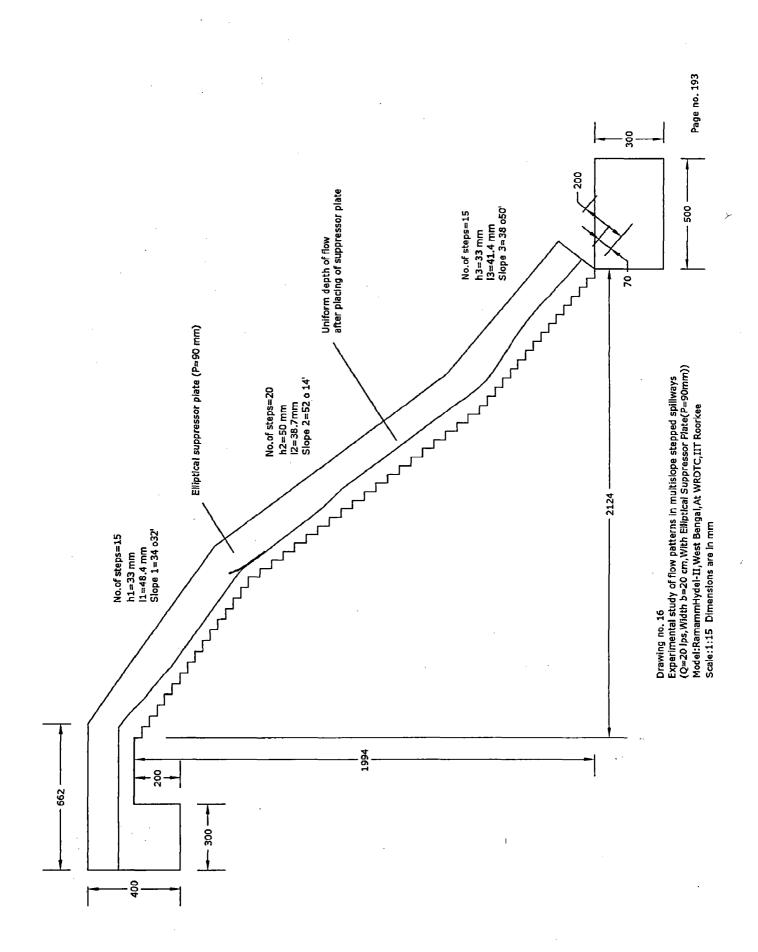



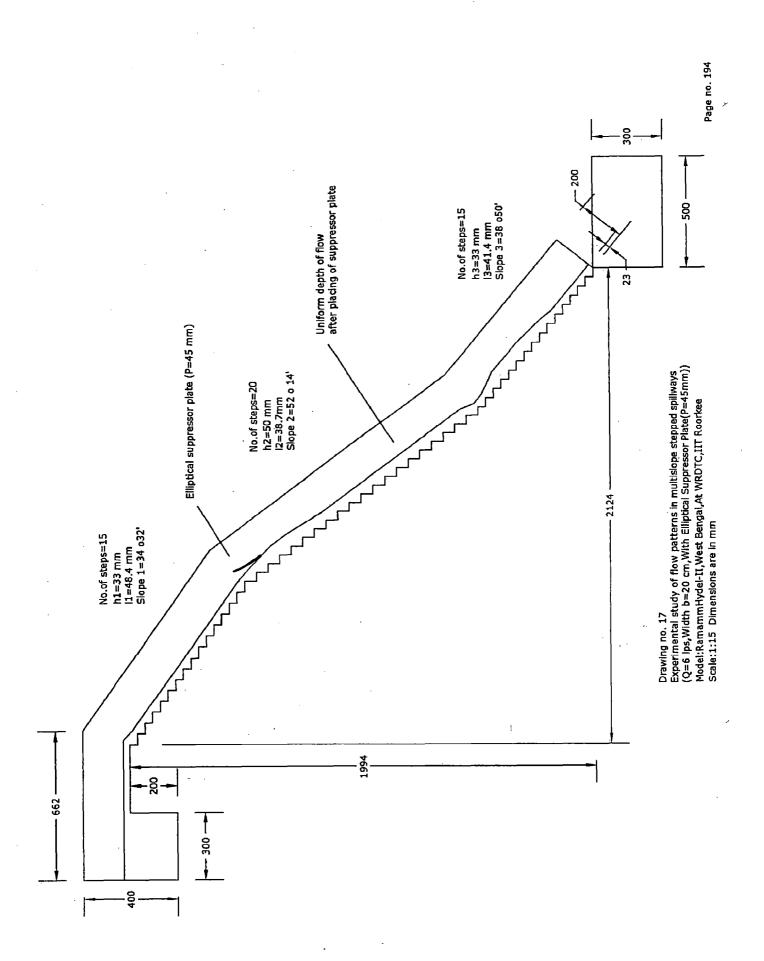



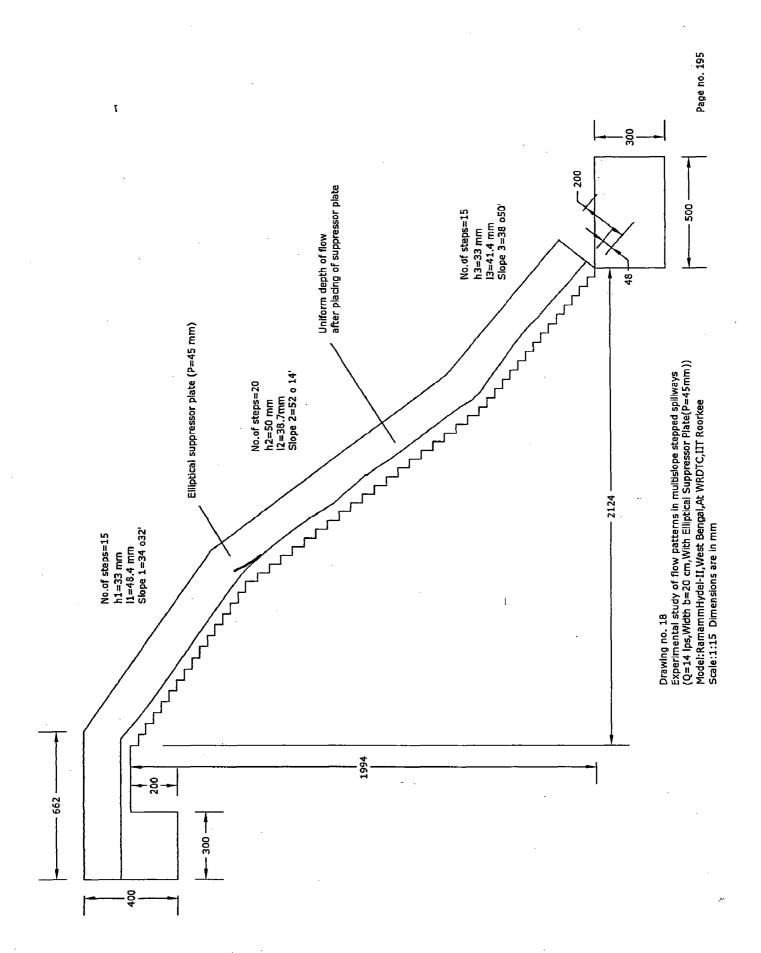



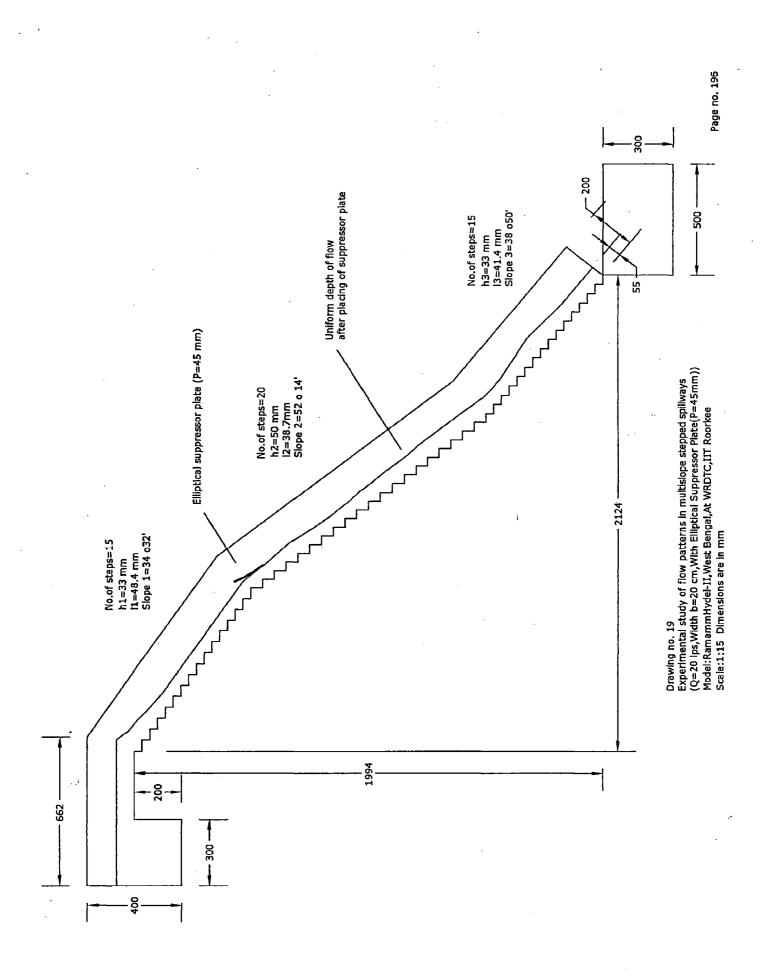













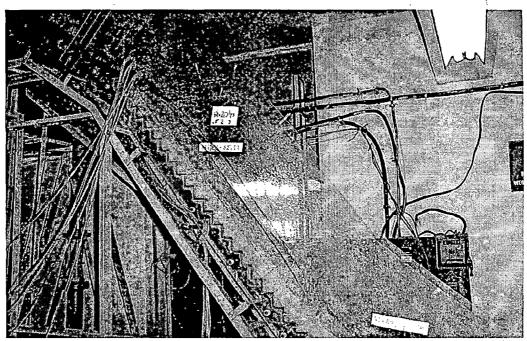




Fig. 1 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=135mm) at a discharge of 20 lps per 20cm wide spillways.

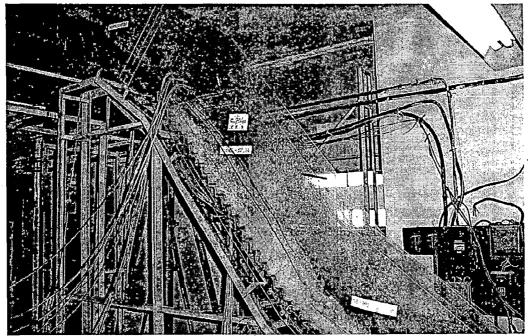



Fig. 2 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=135mm) at a discharge of 20 lps per 20cm wide spillways.

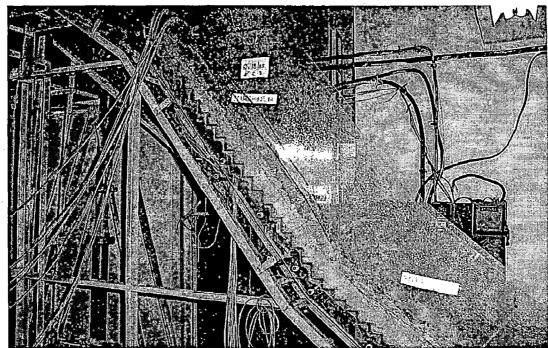



Fig. 3 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=135mm) at a discharge of 18 lps per 20cm wide spillways

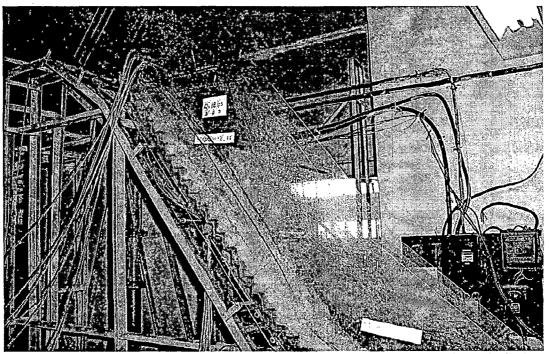



Fig. 4 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=135mm) at a discharge of 18 lps per 20cm wide spillways

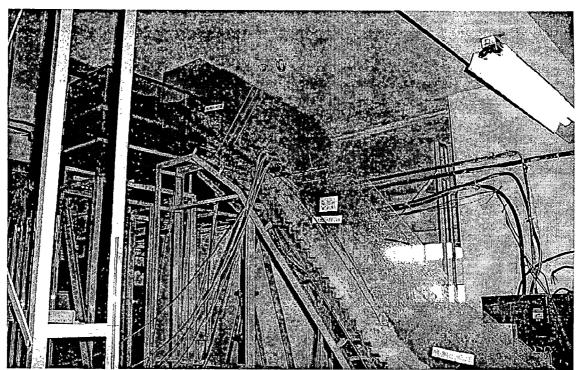



Fig. 5 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=135mm) at a discharge of 14 lps per 20cm wide spillways



Fig. 6 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=135mm) at a discharge of 14 lps per 20cm wide spillways

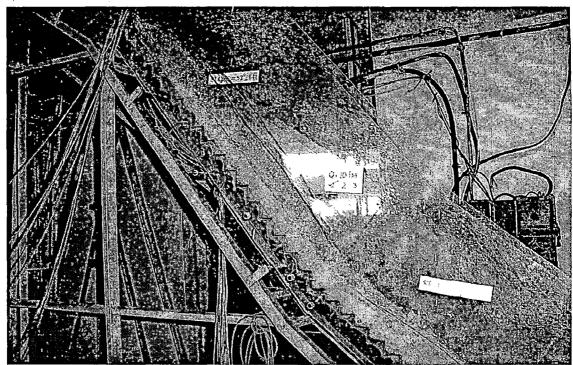



Fig. 7 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=135mm) at a discharge of 10 lps per 20cm wide spillways

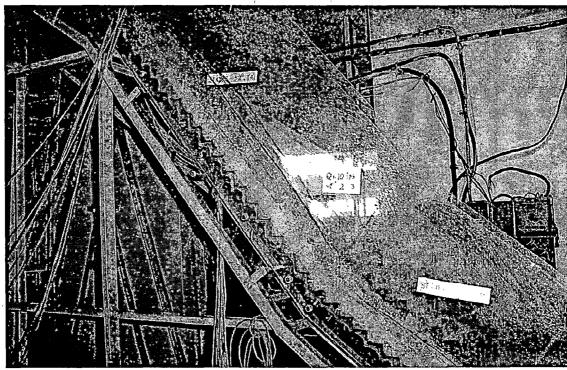



Fig. 8 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=135mm) at a discharge of 10 lps per 20cm wide spillways

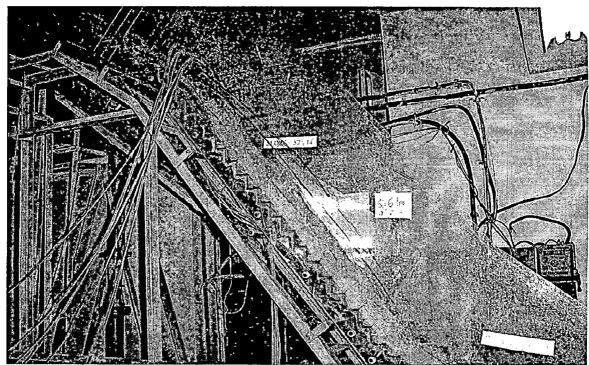



Fig. 9 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=135mm) at a discharge of 6 lps per 20cm wide spillways

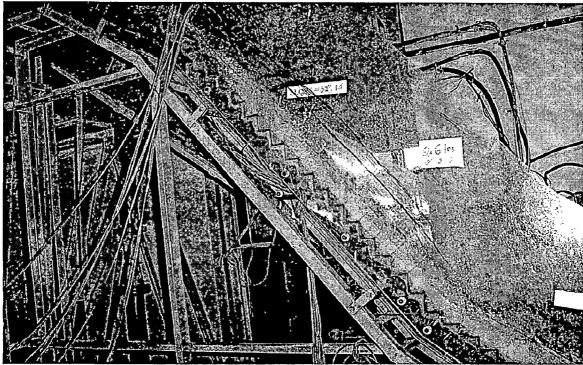



Fig. 10 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=135mm) at a discharge of 6 lps per 20cm wide spillways

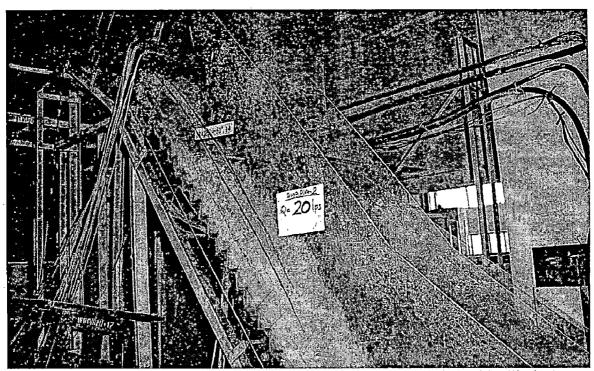



Fig. 11 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=90mm) at a discharge of 20 lps per 20cm wide spillways

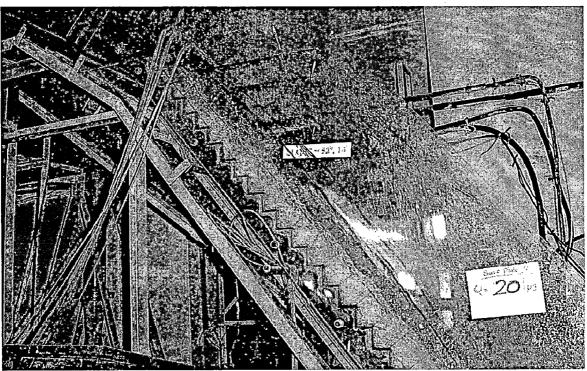



Fig. 11 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=90mm) at a discharge of 20 lps per 20cm wide spillways

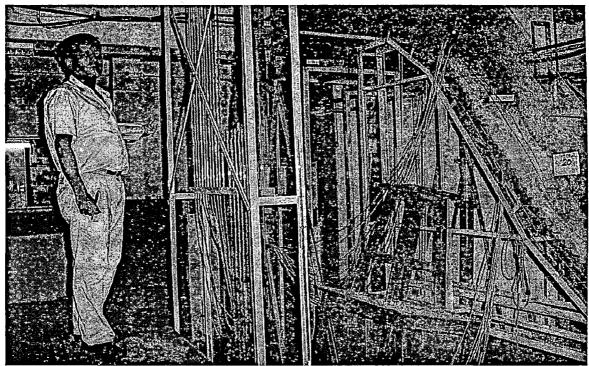



Fig. 12 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=90mm) at a discharge of 20 lps per 20cm wide spillways

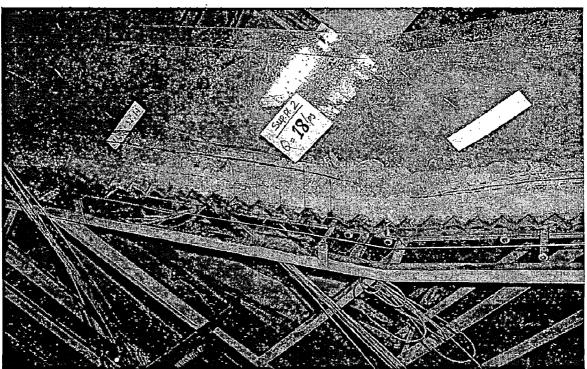



Fig. 13 Flow pattern in multislope stepped spillways in concave region with elliptical suppressor plate (P=90mm) at a discharge of 18 lps per 20cm wide spillways



Fig. 14 Flow pattern in multislope stepped spillways in d/s of convex region with elliptical suppressor plate (P=90mm) at a discharge of 18 lps per 20cm wide spillways

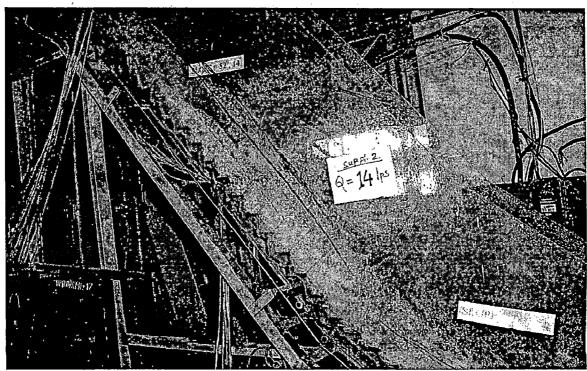



Fig. 14 Flow pattern in multislope stepped spillways in convex and concave region with elliptical suppressor plate (P=90mm) at a discharge of 14 lps per 20cm wide spillways

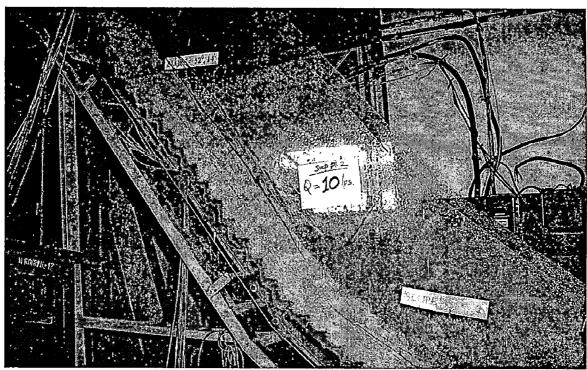



Fig. 15 Flow pattern in multislope stepped spillways in convex &concave region with elliptical suppressor plate (P=90mm) at a discharge of 10 lps per 20cm wide spillways



Fig. 16 Flow pattern in multislope stepped spillways in d/s of convex region with elliptical suppressor plate (P=90mm) at a discharge of 10 lps per 20cm wide spillways

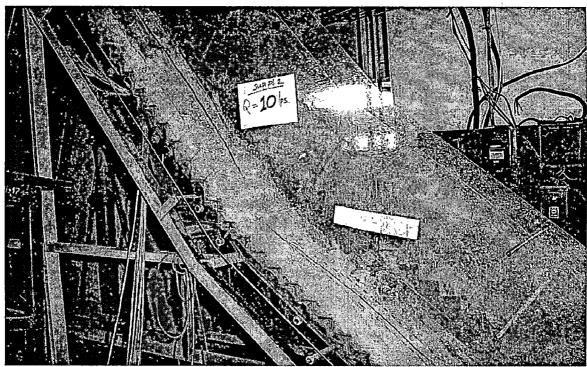



Fig. 17 Flow pattern in multislope stepped spillways in concave region with elliptical suppressor plate (P=90mm) at a discharge of 10 lps per 20cm wide spillways

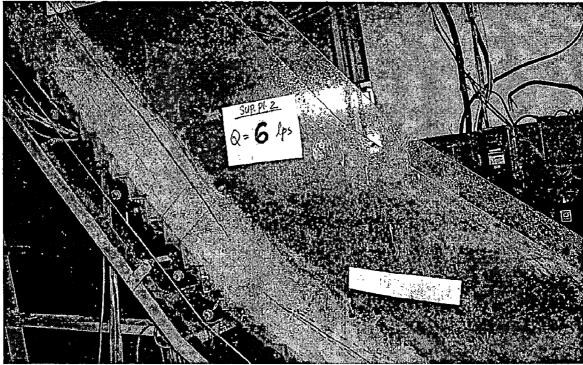



Fig. 18 Flow pattern in multislope stepped spillways in concave region with elliptical suppressor plate (P=90mm) at a discharge of 6 lps per 20cm wide spillways

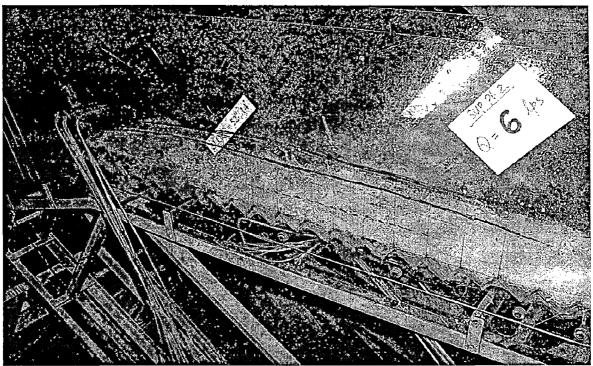



Fig. 19 Flow pattern in multislope stepped spillways in d/s of convex region with elliptical suppressor plate (P=90mm) at a discharge of 6 lps per 20cm wide spillways

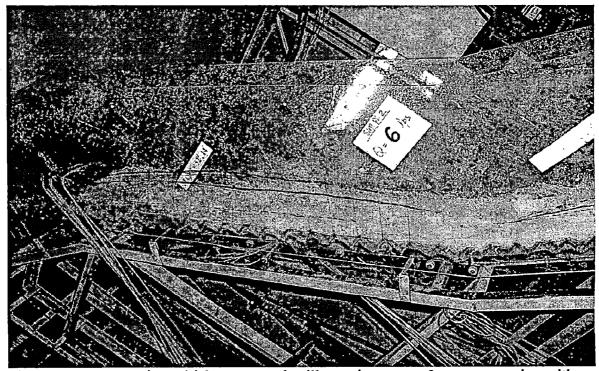



Fig. 20 Flow pattern in multislope stepped spillways in convex & concave region with elliptical suppressor plate (P=90mm) at a discharge of 6 lps per 20cm wide spillways



Fig. 21 Flow pattern in multislope stepped spillways in convex & concave region with elliptical suppressor plate (P=45mm) at a discharge of 20 lps per 20cm wide spillways

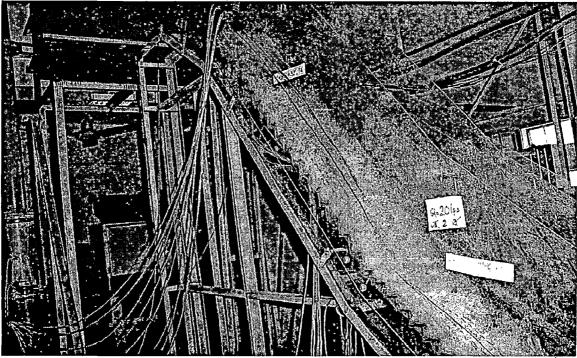



Fig. 22 Flow pattern in multislope stepped spillways in convex & concave region with elliptical suppressor plate (P=45mm) at a discharge of 20 lps per 20cm wide spillways



Fig. 23 Flow pattern in multislope stepped spillways in convex & concave region with elliptical suppressor plate (P=45mm) at a discharge of 18 lps per 20cm wide spillways

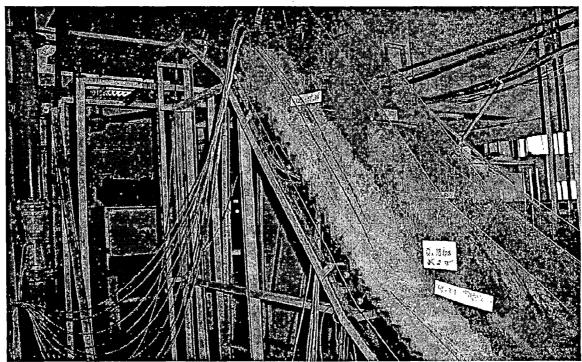



Fig. 24 Flow pattern in multislope stepped spillways in convex & concave region with elliptical suppressor plate (P=45mm) at a discharge of 18 lps per 20cm wide spillways

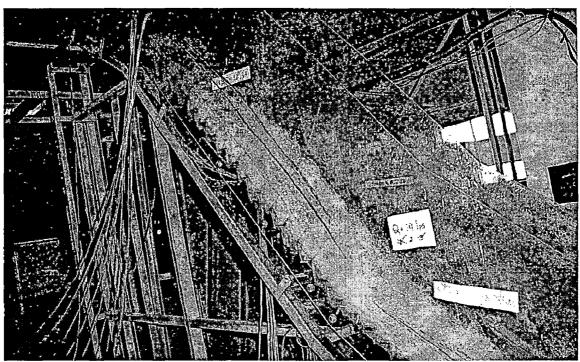



Fig. 25 Flow pattern in multislope stepped spillways in convex & concave region with elliptical suppressor plate (P=45mm) at a discharge of 14 lps per 20cm wide spillways

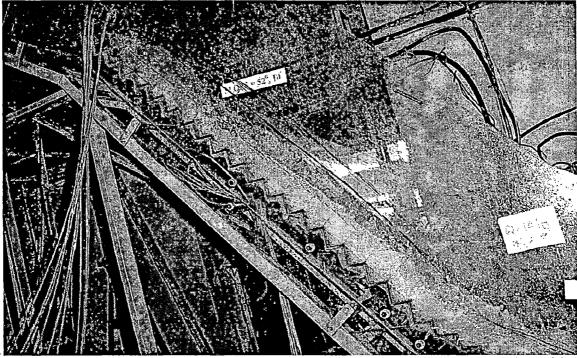



Fig. 26 Flow pattern in multislope stepped spillways in convex & concave region with elliptical suppressor plate (P=45mm) at a discharge of 14 lps per 20cm wide spillways

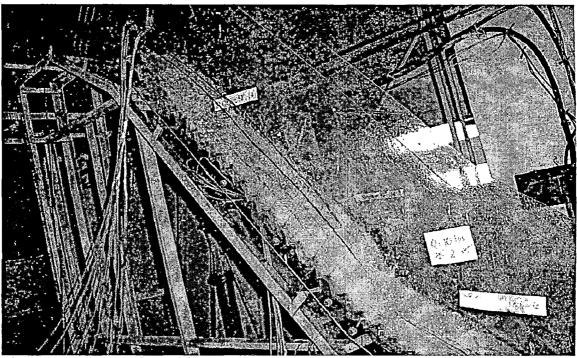



Fig. 27 Flow pattern in multislope stepped spillways in convex & concave region with elliptical suppressor plate (P=45mm) at a discharge of 10 lps per 20cm wide spillways



Fig. 28 Flow pattern in multislope stepped spillways in convex region with elliptical suppressor plate (P=45mm) at a discharge of 10 lps per 20cm wide spillways

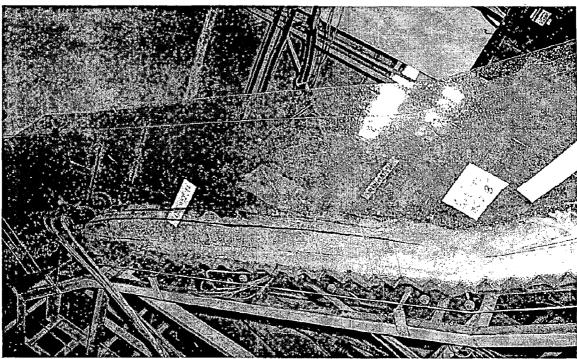



Fig. 29 Flow pattern in multislope stepped spillways in convex & concave region with elliptical suppressor plate (P=45mm) at a discharge of 6 lps per 20cm wide spillways

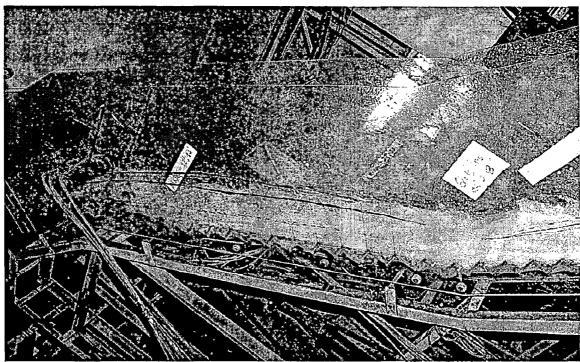



Fig. 30 Flow pattern in multislope stepped spillways in convex & concave region with elliptical suppressor plate (P=45mm) at a discharge of 6 lps per 20cm wide spillways




Fig. 31 Flow pattern in multislope stepped spillways in convex region without suppressor plate at a discharge of 20 lps per 20cm wide spillways.

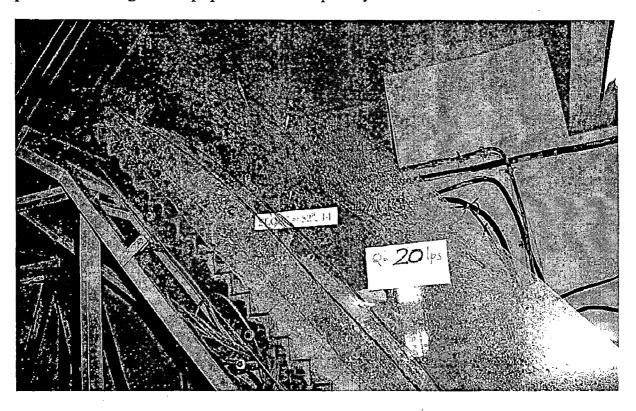



Fig. 32 Flow pattern in multislope stepped spillways in convex region without suppressor plate at a discharge of 20 lps per 20cm wide spillways.

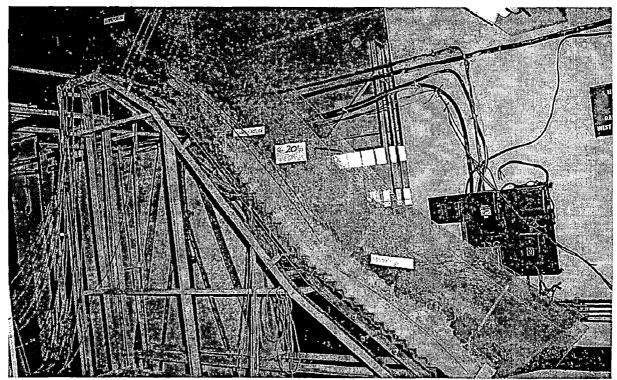



Fig. 33 Flow pattern in multislope stepped spillways in convex and concave region without suppressor plate at a discharge of 20 lps per 20cm wide spillways.

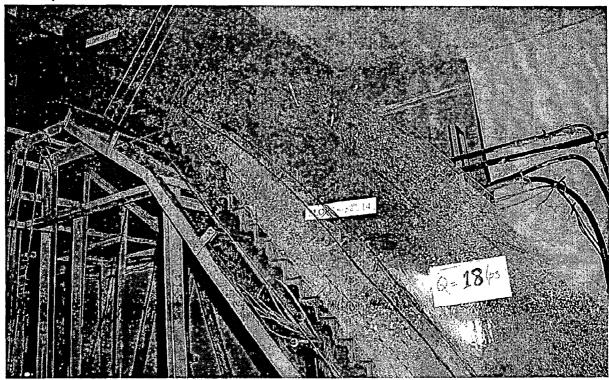



Fig. 34 Flow pattern in multislope stepped spillways in convex region without suppressor plate at a discharge of 18 lps per 20cm wide spillways.

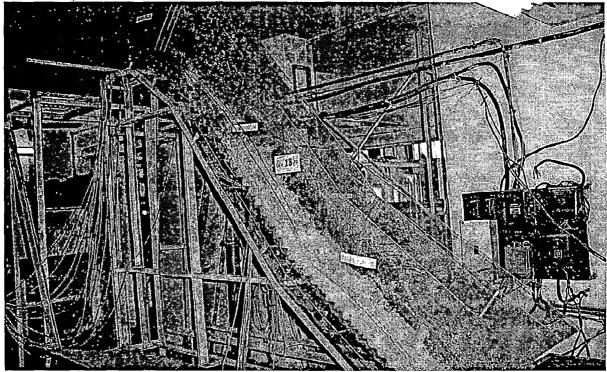



Fig. 35 Flow pattern in multislope stepped spillways in convex and concave region without suppressor plate at a discharge of 18 lps per 20cm wide spillways.

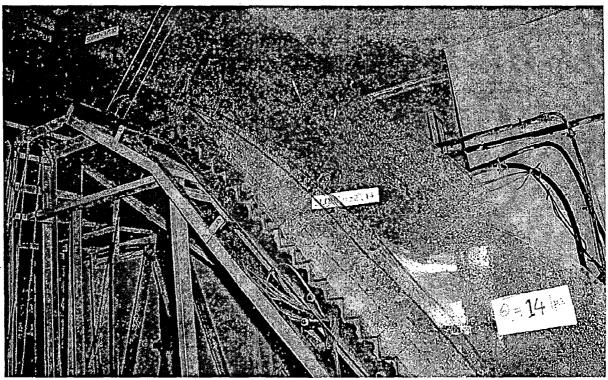



Fig. 36 Flow pattern in multislope stepped spillways in convex region without suppressor plate at a discharge of 14 lps per 20cm wide spillways.

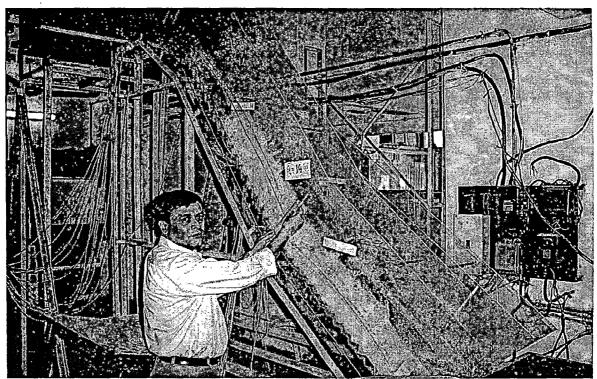



Fig. 37 Flow pattern in multislope stepped spillways in concave region without suppressor plate at a discharge of 14 lps per 20cm wide spillways.



Fig. 38 Flow pattern in multislope stepped spillways in convex region without suppressor plate at a discharge of 10 lps per 20cm wide spillways.



Fig. 39 Flow pattern in multislope stepped spillways in convex region without suppressor plate at a discharge of 10 lps per 20cm wide spillways.




Fig. 40 Flow pattern in multislope stepped spillways in convex region without suppressor plate at a discharge of 6 lps per 20cm wide spillways.



Fig. 41 Flow pattern in multislope stepped spillways in convex region without suppressor plate at a discharge of 6 lps per 20cm wide spillways.

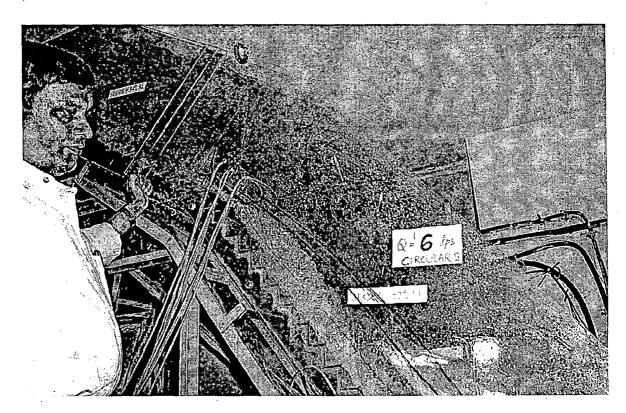



Fig. 42 Flow pattern in multislope stepped spillways in convex region with circular suppressor plate at a discharge of 6 lps per 20cm wide spillways.

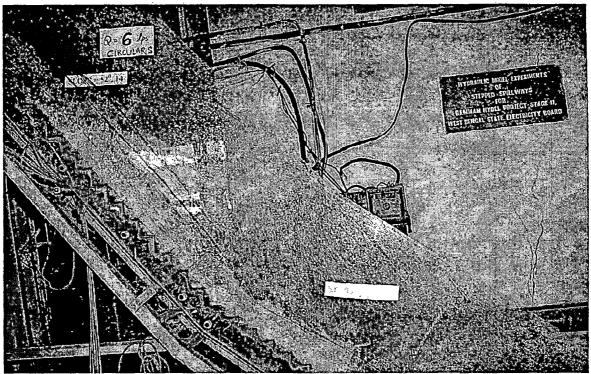



Fig. 43 Flow pattern in multislope stepped spillways in concave region with circular suppressor plate at a discharge of 6 lps per 20cm wide spillways.



Fig. 44 Flow pattern in multislope stepped spillways in convex region with circular suppressor plate at a discharge of 10 lps per 20cm wide spillways.

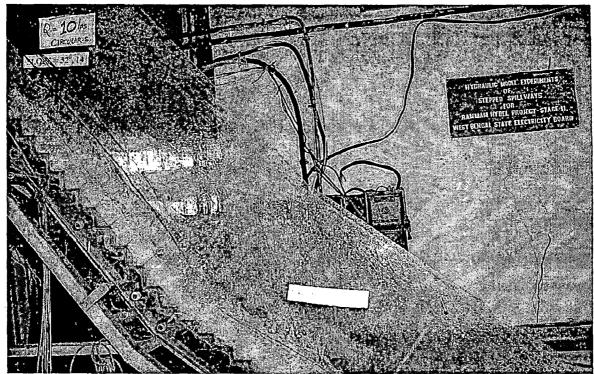



Fig. 45 Flow pattern in multislope stepped spillways in concave region with circular suppressor plate at a discharge of 10 lps per 20cm wide spillways.

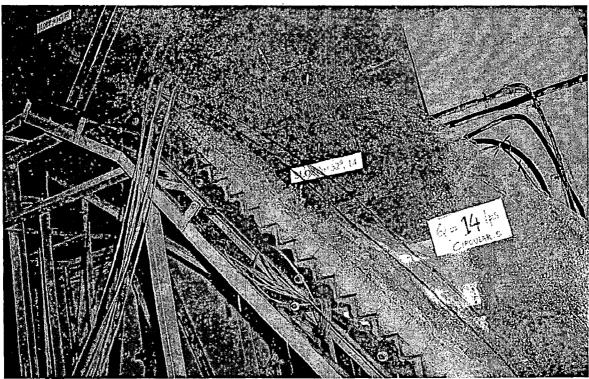



Fig. 46 Flow pattern in multislope stepped spillways in convex region with circular suppressor plate at a discharge of 14 lps per 20cm wide spillways.

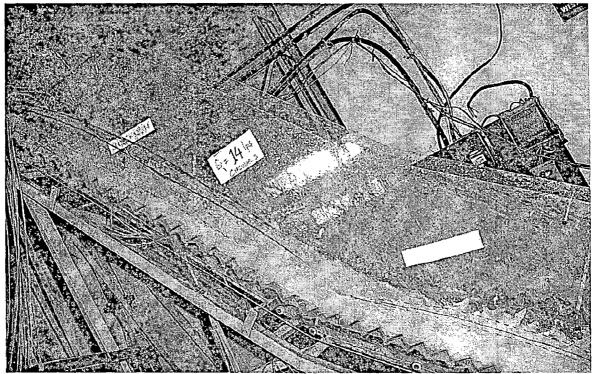



Fig. 47 Flow pattern in multislope stepped spillways in concave region with circular suppressor plate at a discharge of 14 lps per 20cm wide spillways.

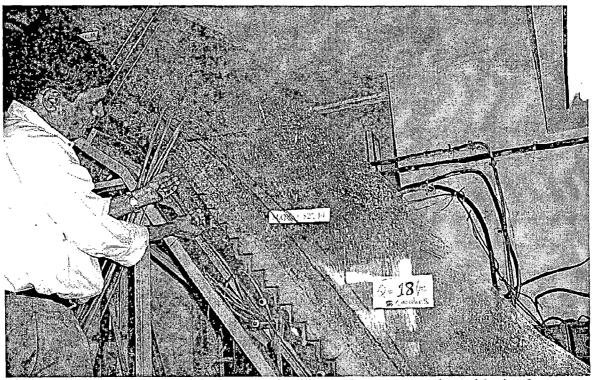



Fig. 48 Flow pattern in multislope stepped spillways in convex region with circular suppressor plate at a discharge of 18 lps per 20cm wide spillways.

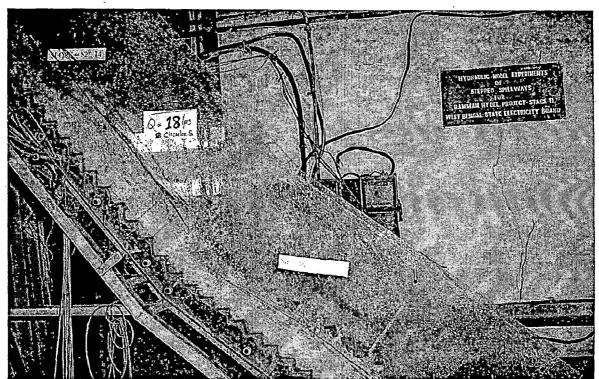



Fig. 49 Flow pattern in multislope stepped spillways in concave region with circular suppressor plate at a discharge of 18 lps per 20cm wide spillways.

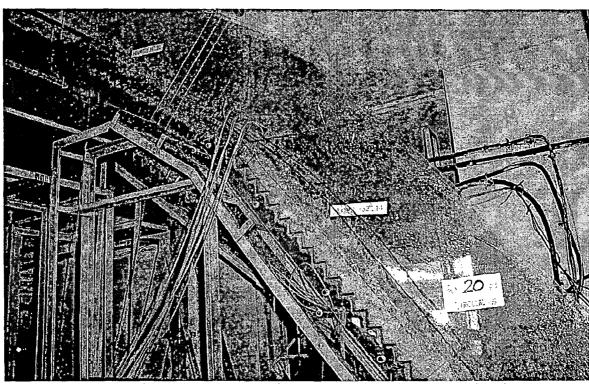



Fig. 50 Flow pattern in multislope stepped spillways in convex region with circular suppressor plate at a discharge of 20 lps per 20cm wide spillways.

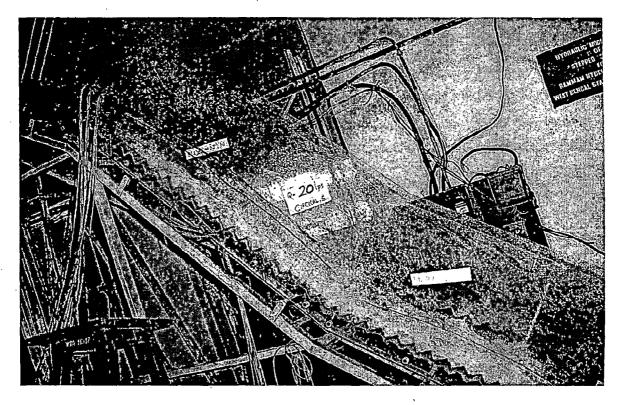



Fig. 51 Flow pattern in multislope stepped spillways in convex and concave region with circular suppressor plate at a discharge of 20 lps per 20cm wide spillways.