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SYNOPSYS

A weir is constructed across a river to divert flow into a man made chanﬁel satisfying all
possibilities of surface and sub-surface- flow considerations. The surface flow
consideration decides the crest level, downstream floor length, minimum depth of cutoff
/sheet pile for the upstream and downstream end of floor. The maximum depth of
cutoff/sheet pile depends upon the design flood. The effect of sub-surface flow is
considered in respect of the uplift pressures of the percblating water acting on the bottom
of the floor and the exit gradient and hence safety of the structure against piping. The
total weir floor length is determined in relation to the downstream cutoff/sheet pile depth
in order to satisfy exit gradient criteria. These parameters, cutoff/sheet pile depths and
floor length, govern the uplift pressure at different points under the floor. These uplift
pressures are counter acted by the floor thickness.

Structures built on pervious soil, little resistance may be offered by the soil and
percolation may reach the downstream toe of the structure without any substantial loss of
head. In such situation the percolating water may carry soil particles with it and thus
undermine the structure. This is.called piping. The sub-soil flow below weirs along with
the hydraulic gradients and uplift-pressures has been widely recogniged as the
determining factor in the design of a weir on permeable foundation after the classic
experiments that have been carriéd out by Lt. Col.Clibborns, Principal Thomson
Engineering College, Roorkee, to Khanki weir in 1895, with a tube 36.6m long and 8.6m.
diameter filled with Khanki sand. These experiments confirmed the accuracy of Darcy’s
law regarding subsoil flow except under high heads. As a result of Col.Clibborns
experiments in 1902, the hydraulic gradient theory came to be generally accepted in
India. ‘

Later Bligh (1907) went a step forward and presumed that the percolation water creeps
along the contact of base profile of the structure with subsoil and losses head in
proportion to the creep distance. ,

E.W. Lane (1935), after analyzing a large number of dams and weirs both with failures
and non failures, brought out deficiencies in Bligh theory .He propounded a new theory
on statistical basis which is known as Lane’s weighted creep theory.

Investigations carried out by Dr.A.N.Khosla on the then existing weirs led to the rational

solution to the problem of sub-surface flow at the Punjab Irrigation Research Institute.

iii



The results have been published in publication No.12 of CBIP (Central Board of

Irrigation and Power) India, NewDelhi.

These developments took place with special reference to weirs on permeable foundations

but are applicable to all hydraulic structures on alluvial sbils.

Weirs on permeable foundation are designed to safeguard against uplift pressure and

piping. The flow characteristics are determined assuming the flow to be two dimensional

and steady. For non-homogeneous sub-soil, numerical method is used to solve the two

dimensional equation satisfying the boundary conditions. ,

For homogeneous, isotropic soil, the Laplace equation can be solved analytically

using conformal mapping technique. ‘

Using the Scwartz-Christoffel conformal mapping technique, Khosla et.al. (1936) have

obtained analytical solutions for a stepped weir with a sheet pile provided at the step,

resting on a homogeneous, isotropic porous medium of infinite depth. They have

neglected the depression so as to reduce the number of vertices to arrive at a simple

solution and suggested a correction factor to account for the depression.

Present study is undertaken to find an analytical solution which can quantify uplift

pressure below the floor of depressed weir with downstream concrete cutoff and to

prepare a comprehensive comparison of the values of uplift pressure with that obtained,

by using the eguation of Khosla et.al.(1936) in case of sheet pile. It is also expected to see

the effects due to increase in the thickness of concrete cutoff. The cdmparison is to be

carried for weirs with depression and with cutoff at various positions. It is proposed to

compare for the following hydraulic structures: '

I. Depressed weir with concrete cutoff downstream.

II. Depressed weir with concrete cutoff upstream.

IIT. Depressed weir with concrete cutoff positioned at various options.

In this dissertation, an analytical solution for the flow around a depressed weir with a
- concrete cutoff at the downstream end, upstream end and cutoff position at different

options has been obtained using the Schwartz-Christoffel conformal mapping technique
where many non linear equations are derived.

Since the integrals are improper, Gaussian-Quadrature method of substitution has been

used to remove the singuiarities of the integrals. Newton Raphson technique has been

used to find the solution. The solution of Jacobian Matrix is done by using FORTRAN

program.
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From the study it is found that:

1) It is possible to solve two dimension flow under a hydraulic structure which has more
number of vertices. Solution to flow under a depressed weir with concrete cutoff has been
given. The conformal mapping transformation parameters have been computed
conveniently using Newton-Raphson technique.
2) Khosla’s approximate correction to account for depression may lead to uneconomical
and unsafe design. Using the solution given in this study uplift pressure can be computed
exactly at any point.

3) A depression on downstream is more advantageous than that in upstream side; a

depressed floor acts as a sheet pile and controls the exit gradient.
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CHAPTER 1

INTRODUCTION

1.1  General

The art of constructing weir across rivers to divert the flow for irrigation purpose is quite
old. Some weirs constructed in 19™ century are still serving their purpose, while some
have been renovated of reconstructed. In such structures the water way was generally
kept equal to the width of the river. History of these works indicates that their
maintenance was generally problematic due to shoaling formation on the upstream and
meandering of the river. On such works a complex river training works got developed,
which suggests that an artificial narrowing of waterway can be done with advantage. It
was also felt that it would improve the performance of the barrage and was adopted at
works constructed during 20™ century.

However, too much narrowing of water way may not be desirable and economical as a
high afflux can lead to deep cistern with heavy excavation and long afflux bunds. Thus
there is clear need to evolve a methodology to determine optimal waterway.

On the basis of such experience on existing works some guidelines have been laid to fix
the waterway of weirs and barrages such as:

i) Lacey’s waterway = 4.83Q"> m where Q is design discharge in cumecs

if) Discharge intensity of 30 to 32 cumecs/m for boulder reaches

1ii) Discharge intensity of 22 to 27 cumecs/m for alluvial reaches

From the sub-surface flow, there are two forces that weirs have to withstand, firstly, the
residual pressure, which will tend to lift up the weir floor if the weight on the latter is less
than the upward pressure of water at that point, and secondly, the pressure gradient or the
force of water acting along the direction of flow. This latter is of no moment except at
the tail end where the water emerges from the sub-soil. If at this end upward force of
water is in excess of the restraining force of the sub-soil, viz, weight, internal friction,
etc., the surface soil will be lifted up followed by progressive disruption of that further
down. This may result in undermining of the foundation soil and ultimafe failure of the

structure.
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Figure 1.1Typical drawing of a weir

The two essentials to be considered in weir design, therefore, are:

i) Residual head or uplift pressure on the weir floor

ii) Exit gradients
These two essentials are inter-connected. For any given foundation profile of a weir in a
given class of soil, there will be a definite distribution of pressure and a definite exit
gradient. To safeguard against undermining, the exit gradient must not be allowed to
exceed a certain safe limit, generally 1/5 to 1/7.The uplift pressure must be kept as low as
possible, consistent with safety at the exit, so as to keep the ﬂodr thickness at a minimum.
Since ancient times in irrigation engineering, weirs remain as the most eXtensively used
control structures for the diversion of flow and flow measurement. Though the types and
shapes of weirs differ from place to place, depending on the available materials for
construction, sub-soil condition and hydrology of the river, they are provided with one or

more sheet piles when constructed in alluvial soils. Weirs are designed to satisfy the



surface and subsurface flow considerations. Where as the surface flow considerations
decide the crest level, down stream floor length and minimum depths of upstream and
downstream sheet-pile/cut-off, the sub-surface flow considerations at the maximum
ponding condition require more attention to protect the structure against heaving, roofing,
piping and uplift. The parameters i.e. sheet-pile depth and floor length influence the uplift
pressure at different points uﬁder the floor. The uplift pressures are counteracted by the
floor thickness. A weir generally consists of either a horizontal or sloping floor with sheet
piles.

The sheet-pile/cutoff in the upstream is provided to reduce the uplift pressures under the
floor and to cutoff the seepage-lines through permeable upper layers where as the
provision of a down stream sheet-pile/cutoff raises the uplift pressures under the floor. A
downstream sheet-pile/cutoff is necessary from scour consideration as well as to keep the
exit gradient below the safe limit. This helps in mitigating the piping below the floor. The

depression of the floor can replace the need of a sheet pile/cutoff to certain extent.

1.2 Background
The sub-soil flow below weirs along with the hydraulic gradients and uplift-pressures has
been widely recogniged as the determining factor in the design of a weir on permeable
foundation after the classic éxperiments that have been carried out by Col.Clibborns,
Principal of Thomson Civil Engineering College, Rookies in connection with the failure
of Khanki Weir, in India during 1895-97. It was then concluded and accepted eventually
by all over that the subject of subsurface flow is more complex than what the Bligh's
creep theory indicated. | |
In 1936 Rai Bahadur A.N.Khosla, ISE presented a note on the observations and records
of pressures below works on permeable foundations in publication No.8 of Central
Board of Irrigation and Power.
Khosla et.al have analysed the flow under a stepped weir considering it to be resting on
the surface of a porous medium of infinite depth. They have presented design charts,

which are extensively used by the field engineers.

1.3 Need for further studies
As Khosla's concept of barrage or weir design for subsurface flow (Khosla et.al.1936) is
based on the assumption that the thickness of floor is negligible and it is resting on the

surface, the values of uplift pressure thus obtained refer to the bottom level of the’ﬂoor,



where in practice; structures are somewhat depressed into, acting as foundation. In fact, in
order to achieve a tractable analytical solution, the depression of the hydraulic structure
has been neglected. With such assumptions, four extra vertices, which should take part in
the conformal transformation, are reduced and some part of the seepage head is lost
through the foundation depth. To remove the difference due to floor thickness, a
correction factor is applied to the uplift pressure obtained from Khosla's equation. This
factor is being computed by interpolation assuming that, there occurs a linear variation in

the pressure along the upstream or downstream sheet-pile length.

1.4 Scope of present study
The present study is done to analyse the flow under a depressed weir with downstream
concrete cutoff, using the conformal mapping technique. The aim of this investigation is

to determine designs, which will ensure absolute safety with utmost economy.

1.5 Objectives of Present Study

Present study is undertaken to find an analytical solution which can quantify uplift
pressure below the floor of depressed weir with downstream concrete cutoff and to
prepare a comprehensive comparison of the values of uplift pressure with that obtained,
by using the equation of Khosla et.al.(1936). It is also expected to see the effects due to
increase in the thickness of concrete cutoff. The comparison is to be carried for weirs with
depression and with cutoff at various positions. It is proposed to compare for the
following hydraulic structures:

L. Depressed weir with concrete cutoff downstream. (Figure 1.5.1)

II. Depressed weir with concrete cutoff upstream. (Figure 1.5.2)

III. Depressed weir with concrete cutoff positioned at various options. (Figure 1.5.3)

IV. Depressed weir without concrete cutoff (Figure 1.5.4)

Use of conformal mapping technique generally results in multivariable non-linear
equations. The non-linear equations are proposed to be solved by Newton-Raphson
technique. Then the uplift pressure distribution at the key points and exit gradienfs are

determined.
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Figure 1.5.4 Depressed weir without concrete cutoff



CHAPTER 2
LITERATURE REVIEW

2.1 General

Kholsa et.al. (1936) found solutions to two-dimensional steady flow under a number of
simple profiles of weirs resting on a homogeneous and isotropic soil of infinite depth
using the Scwarz-Christoffel conformal transformation technique. Pressure heads; at key
points (C, D, and E as shown in Figure.2.1) in excess of the hydrostatic head at the
downstream boundary have been presented as P percentage of the seepage head in the
form of charts, which are widely in use for the sub surface design of hydraulic structure.
Khosia et.al. have neglected the depth of depression to reduce the number of vertices
taking part in the conformal mapping. By reducing the number of vertices it was possible
to carryout the integration required in solving the transformation. Numerical integration is

necessary in case of structures having vertices more than three.

Figure 2.1 Two dimensional steady of flow

2.2 Approximate Method for Accounting Depression:

In Khosla's method of analysis, the excess pressure head has been derived, assuming that
the thickness of floor is negligible and the structure is resting on the surface. As the
foundation has some thickness, a part of the seepage head is lost along the foundation
depth, which has to be accounted for.

To account for the head lost along the floor thickness, Khosia et.al. has suggested a
correction. This is being computed by interpolation under the assumption that, the
variation of hydraulic head is linear along the sheet-pile depth and the rate of variation is
equal to the variation along the depth of depression. The correction for accounting

depression for a flat-based weir proposed by them is as follows:



The correction for pressure head at point C in Figure.2.1 is [¢Cd % ) . Which is
1

subtracted from the value of ¢, The correction for pressure head at the point 'E'is

(%d ¢E) wn Which is added to the value of ¢g, where ¢c, ¢p and ¢g are the pressure
1

heads at points C, D and E respectively which have been obtained by neglecting the

depression and using conformal mapping.

It may be noted here that the nature of dissipation of head along the depth of depression

and sheet-pile are not similar. Because, at point. A. the flow velocity is finite, where as, at

point C the velocity is zero. Therefore, the corrections proposed by Khosia need an

investigation.

Now a days, it is possible to carryout numerical integration and solve non-linear

equations easily using computers. So instead of applying a correction factor as proposed
by Khosla, in this dissertation, a solution has been given accounting floor thickness below

the ground level for direct computation of the uplift pressure.

=

Figure 2.2.1 Depressed weir

Khosla has also suggested an emprical formulal for computation of uplift pressure under
a flat bottom depressed weir, the type shown in Fig.2.2.1. The formula is based on tests

conducted on a scale model. The empirical formula is
. 2 3
¢p = p _§(¢c —-fp)+—5
a

in which ¢p and ¢c are pressures at D and C corresponding to figure.2.1 for which Khosla
et.al. have given analytical solution.The parameter o. is equal to B/D. ¢ p is the pressure at
point D in figure 2.2.1.

Using the conformal mapping technique, Malhotra (1962) has given solution for flow
under a depressed hydraulic structure having two sheet-piles one at each end. Safety
against piping for dépressed structure can be investigated using Lane's weighted creep
theory (Lane,1935).



However no analytical solution are available for stepped-depressed weir.

2.3 Condition and Methods of Conformal Transformation

It is important to ascertain whether conformal transformation is indeed possible in all the
foundation problems, with which we may eventually be confronted in practice. Apart
from this, it is essential to know whether every particular transformation problem in hand
admits of one solution only, or several such conditions.

Both question were dealt with in 1851 by Reiman in the following manner: Suppose we
have a zone, or region, the boundaries of which are formed by a number of analytical
curves (which includes, in this case straight lines as well).Reiman proved that such a zone
can be conformally transformed into another one which is delimited by a circle; also, that
this solution will be unique; provided that:

(a) one “point inside the first zone, and another one on its boundary, correspond
respectively to a point inside the circle and second point on its periphery; or
alternatively,

(b) Three points taken in the same consecutive order, on the circle, represent three
points on the original boundary.

Reiman’s proof fncludes both the direct and the converse problems, ie. Transformation of "
surface delimited by analytical curves into that of circle, and vice versa. Thus , using the
circle as an intermediate operation, areas circumscribed by analytical curves can always
be transformed conformally from one into another, provided the conditions (a) and (b) are

satisfied. .

2.4 Analytical Method for Accounting Depression:

Pavlovsky (1922) has given solution to a flat bottomed depressed weir using Scwartz-
christoffel transformation. Analytical solutions for the uplift pressure under the floor and
the maximum exit gradient have been given.

Confomal mapping technique has been applied to comi)ute uplift pressure and exit
gradient for a flat depressed structure with two symmetrical row of piling on a permeable
soil of infinite depth (Harr,1962). The solution has been given for structure on foundation
of finite depth by Filchakov (Polubarinova-Kochina.1962). The analytical solution is not
tractable as it contains elliptic integral of third kind.’ -



2.5 Conclusion

Analytical solution for a weir with concrete cutoff is not available. Analytical solution for
flat-bottomed depressed floor resting on a soil of finite depth is available. However uplift
pressure, exit gradient cannot be computed easily as the derived equations are highly non-
linear and contain elliptic integral of third kind. Solution to flow under structure having
vertices more than three can be obtained using conformal mapping and applying Newton-

Raphson technique for solving the non-linear equation.



CHAPTER 3
ANALYSIS

3.1 General

Weirs on permeable foundation are designed to safeguard against uplift pressure and
piping. The flow characteristics are determined assuming the flow to be two dimensional
and steady. For non-homogeneous sub-soil, numerical method is used to solve the two

dimensional equation satisfying the boundary conditions.
] oh, 0 oh
—{~-k(x,y)—}+—{-k(x,y)—} =0
o Y)Y ay{ (x.y) ay}

For homogeneous, isotropic soil, the governing equation is the Laplace equation,
which can be solved analytically using conformal mapping technique.

Using the Scwartz-Christoffel confprmal mapping technique, Khosla et.al. (1936) have
obtained analytical solutions for a stepped weir with a sheet pile provided at the step,
resting on a homogeneous, isétropic porous medium of infinite depth. They have
neglected the depression so as to reduce the number of vertices to arrive at a simple
solution and suggested a correction factor to account for the depression. In this thesis, an
analytical solution for the flow around a depressed weir with a concrete cutoff at the
downstream end has been obtained using the Schwartz-Christoffel conformal mapping

technique.

3.2 Statement of the Problem

The depressed weir with concrete cutoff either at down stream end or upstream end or at
any position is analysed. The total width of floor including thickness of cutoff is B'. The
depth of the cutoff is 'S' and thickness of cutoff is “T”. The depth of depression of the
floor at the upstream and down stream floor is “D”. The heights of water above the
upstream and downstream bed can be considered h; and h, respectively where as for
maximum exit gradient the value of h; is assumed to be zero and the difference in the
total heads between the upstream and downstream is h. It is required to find the pressure
distribution along the impervious base BCDEFG of the structure and exit gradient along
the downstream boundary.

3.3 Analysis

3.3.1 Weir with down stream co_ncrete cutoff

10



z-plane

i

A >

Figure3.3.1 (2) Physical Domain in z-plane
t-plane

Figure 3.3.1 (b) : Physical Domain Mapped onto t-plane boundaries

The conformal mapping of the flow domain in z-plane onto the lower half of the

auxiliary t-plane is given by:

JE-a)B-0¢ -0,
Ja-e2)s -1

The vertices A, B, C, D, E, F, G, H being mapped onto - =, -1,a, 1, B, v, 8 and + o

z=M | (3.3.1)

respectively in the t-plane. M and N are complex constants to be determined. The
constant N is governed by the lower limit of integration. To find the constants M and N,
and the relationship between the transformation parameters and dimension of the
structure integration between consecutive vertices are to be carried out.

(a). Integration between vertices Cand D  (as t=1)

For point C, t = o, and z= 0

For point D,t=+1 andz=B-T

Applying these conditions

11



Bty YE-DB-OC-1)

dt+0
© Ja-)o -1

B-T= MI;,
¢ =BG -0
where I, =
. Ja-2)6 -9
M= B-T
II

(b) Integration between vertices D and E A=t=p)
For vertex D,-t =1 andz=B-T
For vertex E, t=f and z=B-T-i S
Applying these relations

ETSMfJacmﬁtm/o
T Ja-ye-n

__Anga a)B-0)r-1)
CE e -ne-n

S=M I,

VE-aXB-0( -1
where L= Jﬂ \/(t -6 -1} -

i
s-N |N~

S I _

222
B-T I

(c) Integration between vertices Eand F  (B=< t=y)
For vertex E, t=f and z=B-T-i S

For F, f=y and z=B-i S

Applying these conditions

12

(3.3.2)

- (333)



o fx/(t—a)(t—/o’)(y—t)
T e - -

J(t—a)(t—ﬁ)(y —t) p

M e neog

X I_Jn/(t—a)(t—ﬁ)(y D,
where ;= | \/(t 1)(5

!
~

3

B-T I,

13
F,=——-"x
I

(d) ‘Integration between vertices Fand G (y <t <d)

For vertex F, t=y and z=B-i S .
For vertex G, t= 8 and z=B +i D

df 4B-T-i S

I3

V(- o)t - )t - )i+ B - Al

B+iD=Mif

JE-D@ -5

t—a)(t - /J’)(f V)

Y

D+S= Ml, , where I4=f5 \/( \/(t

_D+S§ I,

-2 =0
B-T I,

(e) Integration between vertices BandC (-1 st=a)

For vertex B, t=-1 and z=i D
For vertex C, t=0. and z=0

Applying these conditions

-1)(6 -

(3.3.4)

(3.3.5)



0-Mf J(a NE-Or-1) ..o

NA-2)G -0)

D= Mf \/(a (B ~t)y -9) &
1 (1 )6 -1)

Substitute t=-t then dt=-dt

For t=-1, T=1 and t=q, T=-a.

« @+ (B+r+7)

D=M

J; ’\/(T -D(d +7)

(@B +T)

D=M

f \/71 -7?)(S +7)
b I
B-T I’
where I, = fW/(a'*“f)(ﬁ +T)(y +1:)

NA-72)©6 +7)
D I,
B 5or 1

The parameters o,3,y and & are to be found

S T D+S D

B-T' B-T' B-T ' B-T

nonlinear equations.

. From equation 3.3.2 to 3.3.6 which are the

14

for known values of

(3.3.6)



3.3.2 Weir with an up stream concrete cutoff,

Figure. 3.3.2(a) Physical Domain in z-plane

t-plane

>
g
Figure 3.3.2(b) : Physical Domain Mapped onto t-plane boundaries
The conformal mapping of the flow domain in z-plane onto the lower half of the
auxiliary t-plane is given by:
VE-a)B -0 -1)
Z=Mf —dt+ N ( 3.3.7)

V-6 1)
the vertices A, B, C, D, E, F, G, H being mapped onto - «, -1,a, B,+1,y,0 and +
respeétively in the t-plane. M and N are complex constants to be determined. The
constant N is governed by the lower limit of integration. To find the constants M and N,
and the relationship between the transformation parameters and dimension of the
structure, integration is carried out between consecutive vertices.
(2). Integration between vertices CandD (o< t<f)
For point C, t = a, and z= -iS and

For point D, t = and z = T-iS

15



Applying these conditions

. JE=a(B -0 -1)
T-iS=M dt -
f Ja-oe-n

IA)

T=MIL,

JE=a)(B-0r-1)
Wh =
A

M=—L
I,

(3.3.8)

(b) Integration between vertices D and E B=t=<1
Forvertex D,t=fandz=T-i S
For vertex E, t=1 and z=T

Applying these conditions
=)=y -0)
T=Mlj; J(l—tz)(é—t) I 4T

J-a)it- )y -1)
M o
JE-o)B-00r-1)
P Ja-?)e -1

Incorporating constant M

1S

dt = M,

where =

S_
T

b~ |~""

-

—~

3.3.9
Fi=—-"2=0 ‘ ( )

Nt

(=

(c) Integration between vertices EandF (1 st <y)
For vertex E, t=1 and z=T

For vertex F, t=y and z=B
Applying these conditions

16



X JE-a)e-Br -1 4,

J@ -1 -1)
pr L[ J(t—a)(t—/s)(y ),
) J@E -1 -
B-T I,
T

| (t—a)-BYr -1,
where I3:fr \/(t > —1)(6 = t) t

&
|
h.i
~

3 =g

A

(d) Integration between vertices Fand G (y = t <d)
For vertex F, t=y and z=B
For vertex G, t= 8 and z=B+iD

Applying these conditions

B+iD=Mijf‘/(t A)e-B)Xt-Y) 4\ g

V& -1 -1)
D=£L
Il
G a)(t At-1),
where I;= f Do -1 t
FooD L,
T I

(e) Integration between vertices Band C (-1 =t =<a)
For vertex B, t= -1 and z=iD
For vertex C, t=a and z= -iS

Applying these conditions

(i) (@ ~)(B -y ~1) , .
—iS = i
Mfl NRroTn dt +iD

17

(3.3.10)

(3.3.11)



Substituting, t=-t, dt=-dt and accordingly changing the limits of integration

_iS = M(sd) 1«/(a+f)(ﬁ+f)(y+f)
JA-72)6 +7)

f (a+?)(ﬁ+t)(Y+6)
LY, Ja-zh6+2)

+iD

D+S I,
T I

’

where I, f‘/(a +T)(B+T)y + T)
\/ 1-7*)(6 +7)

S+D I_5

F, = =0
T I,

(33.12)

The parameters o,B,y and 8 are to be found for known values of %

b

B-T D S+D
T ° T’

7 from equation 3.4.2 to 3.4.6 which are the nonlinear

equations.

3.3.3 Weir with a cutoff at any position along the floor

The solution to this problem will give solution for any position of a cutoff

Figure. 3.3.3 () Physical Domain in z-plane

18



A 4

Figure 3.3.3 (b) : Physical Domain Mapped onto t-plane boundaries

The conformal mapping of the flow domain in z-plane onto the lower half of the

auxiliary t-plane is given by:

JB+O@-0¢=1)o=1) .
J-1Xa + (1)

z=M [

(3.3.13)

The vertices A, B, C, D, E, F, G, H,1,j being mapped onto - o, ,-a.,- 8,-1,y, §, +1,0,u and + o

respectively in the t-plane. M and N are complex constants to be determined. The constant N is

governed by the lower limit of integration. To find the constants M and N, and the relationship

between the transformation parameters and dimension of the structure, integrations are carried

out between consecutive vertices.

(2). Integration beﬁeen vertices EandF  (ys t<0)
Applying the conditions

For vertex E, t =y, and z=-T/2 -iS and

For vertex F, t = 8 and z =T/2-iS

Applying these conditions

T/2-is =M V-G -DOC=1) \ 7r o

T A=)+ (u 1)
T=MI;

where 1, - [ JB+E-E -0 1)
L Ja-fa -1

M=
Il

(b) Integration between vertices F and G Bd=t=<1)

19

(3.3.14)



For vertex F, t = 8 and z = T/2-iS
For vertex G, t= and z=T/2
Applying these conditions

T Mif\/(ﬁﬂ)(t PE-8)o-1
Ja-Pu-tj@rn 2

JJ\/(BH)(t E-8)o-1)

P - -t +r)

A
T,
o pBenE-rE-d)o -y
e Ja-)u-t)(a+1)
F1-= S—— I—2=o
T I,

(C) Integration between vertices GandH (1 =t =0)

For vertex G, t=1 and z=T/2
For vertex H, t=c and z=B2 -

VB +OE-7)E-6)o-1)
B,=M
) J@E -D(u-)a+1)

| VB +OE-1)E-0)0-1)
where Iz= j:’ > t
N - -t}(a +1)
(d) Integration between vertices Hand I (o =t suw)
For vertex H, t=0 and z=B2
For vertex I, t= u and z=B2+iD,

Hence,

.20

—-iS

(3.3.15)

(3.3.16)



B, +iD, f‘fﬁ-"t)(t"’)(t 0)(t-0)
& -1 u-ty(a +1)

dt+B,

b, L1
Il
JB+0E-1E-8)i-0) . p,
where L= fu \/(t DD ?=I_1
a=2 Liqg
T 1,

(e) Integration between verticesD and E (-1 <t=<y)
For vertex D, t=-1 and z=-T/2
For vertex E, t=y and z=-T/2 -iS

“T/Z—iS-‘——M(:i)f VB +D)y =6 -1)o-1)
N NA-£2) e+ 1) ~1)

Substituting t=-t, dt = -dt and changing accordingly the limits of integration

dt T/2

f‘ \/(ﬁ T)(J/+1:)(6+r)(0+r)
7 A=) -o)(u+T)

£

S5
T 1,

where 1 =JJ \/(ﬁ ~7)(y +7)(6 +7)(0 +T)
B R

F, =

Nt

I
S o

1"

o

(f) Integration between vertices Cand D (-f<t<-1)
For vertex C, t= - and z=-B1
For vertex D, t=-1 and z=-T/2

Hence,

21

(3.3.17)

(3.3.18)



S AL G0 ) CRD IS
P A=) a+H)(p-1)

Substituting t=-t, dt = -dv and changing accordingly the limits of integration

=T/2=M

B, _Z=£Jﬁ JB-7)¥ +7)(6 +7)(0 +7) i
2 LA @ - D) (u+)

where 1. = fe JB-D)¥ +7)(@ +T)(0 +7) 4
e - Da-ou )

(g) Integration between vertices Band C (o=t = -f)
For vertex B, t= -0, and z=-B;+iD;
For vertex C, t =-f and z=-B;
Hence,
sy VB -D@-1)o-1)
Bine j:a 2
VA=) + 1) (p-1)

Substituting t=-t, dt=-dt ,we get

dt - B, +iD,

D _5L
T I
—— JE=B D@+ +D)
R s )
F6=21—£7—m
T 1,

.22

(3.3.19)

(3.3.20)



The parameters

S B D, B D

a,p,y,0,u and o are to be found for known values of —, —=, —=,

b

T’ T T T

From the six equations (3.3.15,3.3.16,3.3.17,3.3.18,3.3.19 and 3.3.20) which are

nonlinear equations.

Newton Raphson technique has been used to find the solution and this has been explained

in appendix. Using corresponding Jacobian matrixthese nonlinear equations containing

the six unknowns o,8,y,0,0 and u are expressed as

Vo 'Fl(a S S P ]

0F, oF, 0F, dF, aF, 0F,
da 8B dy 096 d0 du
oF, oF, dF, dF, oF, dF,
da If dy 06 00 du
oF, dF, OF, oF, oF, oF,
daa 9B 9y 96 00 du
oF, oF, oF, oF, oF, oF,
da 9 9y 96 940 Au
oF, oF, oF, dF, dF, dF,
da 9B 9y 98 do  du
oF, oF, 0oF, oF, OoF, oF,
(0a B 9y 98 9o du |

. Vu- LF‘;((Z‘,/J",}",(S*,O'*,‘LL')_

vg| |F, (a',ﬁ',y',é',a',y')
vy | BBy 76 0% u")
vs | |F, (a*,ﬁ',y‘,é',o‘,y')
Vol |k ,8 "6 0" u")

In which a*,ﬁ*,y*,ﬁ_* ‘0 and ]J.* are initial guess of the parameters. The integrals are

improper; Method of substitution and then Gaussian Qudrature have been used to

evaluate the integrals. The solution of Jacobian Matrix is done using a FORTRAN

program. The FORTRAN program is listed in Appendix III.

. e

3.3.4 Mapping of w-"plane onto lower half of t - plane:

The complex potential w is defined as

w=¢+H¥

(3.3.21)

where ¢ = velocity potential function and = stream function.

For Y-axis +ve upward, the velocity pdtential function ¢ is defined as

a

w

P,

;

(33.22)
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The constant ¢ is conveniently chosen as k(h, + D5 ), where h; is the depth of water and D,

is the depth of depression ,in the down stream side, p = water pressure,yy = unit weight of
water, k= hydraulic conductivity.

Accordingly the velocity potential on downstream bed is zero and on upstream bed is

—kh, where h is the hydraulic head difference causing flow. The complex potential, for the

flow domain is shown in Figure 3.3.4(a), where w=¢+i¥ , and ¥ is stream function. So,

w

5 - _k(yl + y) k(D + 1)  eam)

The w2 - plane for the flow domain of Figure 3.3.3(a) is shown in Figure 3.4.

w-plane

C DE F G H

\A

o,_.

sy
+00

Figure 3.3.4 (a) w-plane for the flow domain of fig.3.3.3 (a)

Mapping of the complex potential plane onto the lower half t-plane is given by:
v _ M, |

dt 1/(t +a)(u-t)

(3.3.24)

dt
VM faa

where M; and Nj are complex constants.
With a substitution ¢ = %[,u —a+(u+ a)sinG]
1 - : .
dt = E(y + a)cosBdB , the integration reduces to
. 2t +a — u 3.95
w=M,Sin” (————) + N, , (3.3.25)

a+u

For the point I, t=p  and W=¢+ip=0,
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So N =-M*Z
2

w=M,sin (FEEHy T
Soa+u 2

For the point B, t=-a and w=-Kh

So M, =ﬁ
7
Thus we get w=—K£sin ‘1(2t ta- y) _Kh (3.3.26)
4 a+u 2

For the design purpose we need to know the pressure distribution acting along the various
section of the structure and magnitude of the exit gradient. Now we have to find the
potential at the key points B,C,D,E,F,G and H where stream function y=0.So w=¢ along
the impervious base of the structure. From equations (3.3.23) and (3.3.26)

@Sm_l(2t+a—u)_@
T

-k + )+ kD, + ;)= a2

Yo

P 1 L ZrO By (D, s, -yt (3.3.27)
YWh 2 = o+ U h

This is the general equation for pressure distribution along the impervious floor for the

case shown in Fig 3.3.3 ( a).

3.4The Pressure Distribution
Eq. (3.3.27) is the general equation for seepage pressure under the floor. To find the
pressure at various points B,C,D,EF,G,H and I, the ordinate of "y" from z-plane and the
corresponding t from t-plane is to be entered in Eq. (3.3.27):

i). Atpoint B (y=Dj,t=-a, and

Ps =Ywh (3.3.28)

ii ) Atpoint C  y=0,t=-8,

L +h,  (33.29)

iii) At point D y=0,t=-1,
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..‘p_D = h—'}iSin—l(:M)‘i’Dz +h2
a+u

iv) At point E, y=-§, t=y,

h -
&—=——£sin'l(——2y+a ‘u)+D2+S+h2
Yw 2 & a+u
V) At point F y=-S, t=9,

Pr =ﬁ—ﬁsin‘l(m)+D2 +S+h,
Yw .2 &« o+ u

vi) At point G y=0, t=+1,

h -
—&;—=———£sin‘l(———2+a M)+D2+h2
Yw 2 &« o+
vii) At point H y=0,t=0,

Py =ﬁ_ﬁ in—l(20+a—u)+D2
Yw 2 T a+u

vii) At point I y=D, t=p.

D

——=n,

Yw

(3.3.30)

(3.3.31)

(3.3.32)

(3.3.33)

(3.3.34)

(3.3.35)

Similarly one can derive the equations for potential at different key points for the weir

with the downstream cutoff Fig 3.3.1(a) and for the upstream cutoff Fig 3.3.2(a)

Now the w-plane for the down stream concrete cutoff with respect to Fig 3.3.1 (a) and 3.3.2

(a) will be as shown below:

w-plane

Figure 3.3.4 (b) w-plane for the flow domain of Fig.3.3.1 (a) and 3.3.2 (a)
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The mapping of w-plane onto t-plane is given by

W _ M, ! (3.3.36)
dt JE+1D)(6 1)
Following the preceding procedure, we get

W=_Kh_sin‘1( )._
T 1+6 2

The general equation for the potential distribution for a weir with down stream concrete

cutoff is
P _h RG220y G iDy—y (3.3.38)
Yo 2 T 1+

For a weir with upstream concrete cutoff the general solutions for potential and pressure

‘ distribution are

W= @sm-l(&“.—"l) and (3.3.39)
/1 l+a
Y, 2 l+a

Pressures can be obtained at a point substituting the corresponding value of ‘t’ and ‘y’as

described above.

3.5 The Exit Gradient
Since w is analytic, the differential
dw _aw _dw

dz dx idy

dw 0 ¢ Y
—=—(+ =—+

dx dx @+iw) ox a

dw 129 é
12 Gai)- 22
idy idy ay

dw
Hence, — =u—i 3.41
il ield (3.3.41)

The downstream surface of the flow _domain is horizontal. Hence u=o0 and then

dw .
—=-iv=ikl,
z

where Ig is theexit gradient
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or, I __(i‘ﬂ ﬂ)

K dt

3.5.1 Exit gradient for the weir with a downstream concrete cutoff

The flow domain is shown in Fig.3.3.1 (a)

1

. NE-DE -0

where M = E—
2

For maximum exit gradient at t=8

Ie Elm/(tu)(a ) M- a)(t Bt-rv)

*S IZ % (6 _1)

I, *==|-% v

ho |7 \@—a)(é—ﬁ)(a—y)]
e f‘/(’ )(B-D -1)

-1 -1}
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CHAPTER 4
TABULATION AND PLOTTING OF RESULTS

Numerical results for velocity potential distribution and exit gradient are obtained for
different cases with the help of FORTRAN program. The calculated values are tabulated
and plotted in the graph which are listed below:

4.1 Depressed Weir With Concrete Cutoff Downstream

Table 4.1.1 Variation of potential distribution with increasing thickness of
cutoff for depressed weir with concrete cutoff (d/s)

D/B fixed, S/B varying
D/B=0.05,S/B=0.05 epressed weir with d/s concrete cutoff]
-S.No. | T/B | ¢co ¢p2 0% | Or% v

1 [0.01]83.88 [ 23.28272 [19.78 |15.57 | . |= I» |
2 10.03[83.97] 2546648 |22.5715.11 . ,
3 0.05 | 84.05 | 27.30124 |24.71 | 149
4 0.07 | 84,12 | 28.95087 | 26.55 | 14.77
5 0.09 | 84.19 | 30.47798 | 28.22 | 14.68
6 0.11 | 8426 | 31.9159 |29.77| 14.61
7 0.13 | 84.33 | 33.28531 |31.22 | 14.56 —
8 0.15{ 84.4 | 34.60022 | 32.61 | 14.51

D/B=0.05,S/B=0.15 D/B=0.05,5/B=0.10

SNo. [T/B| ¢cz | p% | $ew | ¢p% | T/B  ¢cn  ¢p%  $ew  Ore

1 0.01 | 84.76 | 34.42492 | 26.88 | 22.43 | 0.01 | 84.32 | 29.49 | 23.76 | 19.38
2 0.03 | 84.88 | 36.13636 ;29.47|21.67 | 0.03 | 84.42 | 31.38 | 26.44 | 18.74
3 0.05 | 84.99 | 37.62973 [31.43 |21.28 | 0.05 | 84.52 | 33.01 | 28.48 | 18.42
4 0.07 | 85.09 | 39.0044 [33.13]21.01| 0.07 | 84.61 | 34.5 | 30.24 | 18.21
5 0.09 | 85.18 | 40.29911 | 34.66 | 20.8 | 0.09 | 84.69 | 35.89 | 31.83 | 18.06
6 |011)8528 4153492 36.08 20.64 | 0.11 | 84.78 | 37.21 | 33.31 | 17.94
7 0.13 | 85.37 | 42.72511 | 37.42 | 20.51 | 0.13 | 84.86 | 38.47 | 34.7 17.84
8 0.15[85.46 | 43.87889 | 38.7 | 20.4 | 0.15 | 84.94 | 39.69 | 36.03 | 17.76
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Potential Variation at Point D
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Figure 4.1.1 (a) Variation of ¢p with increasing cutoff thickness (d/s)
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Figure 4.1.1 (b) Variation of ¢g with increasing cutoff thickness (d/s)
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Table 4.1.2 Variation of potential distribution with increasing thickness of cutoff for
depressed weir with concrete cutoff (d/s)

S/B fixed D/B varying
S/B=.05,D/B=.02 S/B=.05,D/B=.06
SNo. |T/B| Ocw dp% dE dro bc dpg ¢e% OF%
1] 0.01] 87.75004] 22.19153] 18.39174] 13.78046] 83.01081] 23.61907] 20.19453 16.08962
2 0.02] 87.78959] 23.45061] 20.06637] 13.47753] 83.06052] 24.74883] 21.6862 15.80341
3 0.03]  87.8251] 245645 21.44084] 13.29919] 83.10528 25.75419] 2291868 15.63262
4 004 87.85835| 25.58706] 22.65195] 13.17565| 83.14724] 26.68106] 24.01012 15.51328
5/ 0.05 87.89011] 26.54394] 23.7552] 13.08286] 83.18738] 27.55132] 25.0083]  15.4231
6 0.06] 87.92088] 27.45016 24.78]  13.00962| 83.22624] 2837781] 25.9386] 15.35161
7 0.07]  87.95089] 28.31559] 25.74433] 12.94982] 83.26416] 29.16899] 26.81647 15.29306
8 0.08 87.98036] 29.14722] 26.66017] 12.89974] 83.30139] 29.93085| 27.65224] 15.24395
9 0.09] 88.00941 29.95019]  27.536] 12.85701 83.3381] 30.66783 28.45324] 15.20201
10, 0.1] 88.03816 30.72849] 28.37811] 12.81998 83.37441] 31.38334] 29.22489 15.16566
11] 0.11] 88.06669] 31.48526] 29.19133] 1278749 83.41042]  32.0801] 29.97137 15.13378
12 0.12] 88.09505] 32.22306] 29.97948] 12.75871 83.44623| 32.76034]  30.696 15.10558
13| 0.13] 88.12331) 32.94399| 30.74561] 12.73295 83.48188| 33.42587 31.40141 15.08041
14) 0.14) 881515 33.64982| 31.49224] 12.70976| 83.51746| 34.07821] 32.0898 15.05779
15] 0.15| 88.17967] 34.34209| 3222151 12.68874] 83.55209 34.7187 32.76301] 15.03734
S/B=.05,D/B=.1 S/B=.05,D/B=.15
SNo. |T/B| ¢cs Pp% de% dr% b $n% de% Or%
1 0.01] 8043277 24.82073 21.64195| 17.85913] 78.25401] 26.06563| 23.11003| 19.61337
2 002 80.48658] 25.86686] 23.01697] 17.58674] 7831049 27.03675| 2438155 19.35555
3 0.03] 80.53512] 26.80106] 24.15751] 17.42302] 78.36152] 27.90646| 25.43961  19.1998
4 0.04] 80.58065| 27.66459] 25.17058] 17.30808] 78.40042] 28.71212] 2638174 19.09012
51 0.05] 80.62423] 28.47706] 26.09936] 17.22094 7845527 29.4715| 27.24727] 19.00681
6 0.06] 80.66643] 29.25004] 26.96675| 17.15171] 78.49966] 30.19508] 2805701 18.94055
70.07]  80.7076| 29.99115] 27.78673] 17.09495 - 78.54298] 30.88972] 28.82365] 18.88619
8 0.08] 80.74802] 30.70574] 28.56861 17.0473| 78.58549] 31.56031] 29.55568] 18.84058
9 0.09] 80.78786] 3139783 2931902 17.00659| 78.62738] 32.21047] 30.25900] 18.80164
100 0] 80.82726] 32.07051] 30.04286] 16.97133] 78.66881] 32.84299] 30.93834] 18.76794
11] 0.11]  80.86633 32.72622]  30.7439 16.94045 78.70988] 33.46012| 31.59688| 18.73849
12 0.12] 80.90517 33.36696] 31.42511] 16.91315] 7875068 34.06365| 32.2374  18.7125
13 0.13]  80.94384] 33.99437] 32.08891] 16.88884] 78.79129] 34.65508] 32.86209] 18.68941
14 0.14] 809824 34.60986] 32.7373 16.86704] 78.83178] 35.23568 33.47275 18.66877
15 0.15|  81.0209] 35.2146] 3337191 16.84739] 78.8722] 35.80652 34.07089 18.65022
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Table 4.1.3 Variation of potential distribution with increasing
thickness of cutoff for depressed weir with concrete cutoff

d/s)

$/B=0.12,D/B=0.02 S/B=0.12,D/B=0.06

©

T/B| ¢c% | $p% | O5% | OFr% | Pc% | 9% | Pe% | Pr%

0.01 [ 88.27 | 31.31 | 24.42 | 19.71 | 83.64 | 31.7 | 25.32 | 20.99

0.02 | 88.32 | 32.32 | 25.97 | 19.26 | 83.71 | 32.64 | 26.74 | 20.57

0.03 | 88.36 | 33.24 | 27.23 | 18.98 | 83.76 | 33.48 | 27.91 | 20.3

0.04 | 88.4 | 34.09 | 28.35 | 18.78 | 83.81 | 34.28 | 28.94 | 20.11

0.05 | 88.44 | 349 |29.37 | 18.61 | 83.86 | 35.03 | 29.88 | 19.95

0.06 | 88.48 | 35.67 | 30.31 | 18.48 | 83.91 | 35.75 | 30.76 | 19.83

0.07 | 88.52 | 36.41 | 31.2 | 18.37 | 83.96 | 36.44 | 31.59 | 19.72

0.08 | 88.56 | 37.14 | 32.05 | 18.27 | 84.01 | 37.12 | 32.38 | 19.63

o (Qon]slwin =2

0.09 | 88.59 | 37.84 | 32.86 | 18.19 | 84.05 | 37.77 | 33.13 | 19.55

10 ] 0.1 | 88.63 | 38.52 | 33.64 | 18.11 | 84.1 | 38.41 | 33.86 | 19.48

11 1011 88.66 | 39.19 | 34.4 | 18.05 | 84.14 | 39.03 | 34.57 | 19.41

12 10.12] 88.7 |39.84 | 35.13 | 17.99 | 84.19 | 39.65 | 35.25 | 19.36

13 10.13) 88.73 | 40.48 | 35.84 | 17.93 | 84.23 | 40.25 | 35.92 | 19.3

14 10.14|88.77 | 41.11 | 36.53 | 17.88 | 84.28 | 40.84 | 36.57 | 19.25

15 1015 88.8 | 41.73 | 37.21 | 17.83 | 84.32 | 41.43 | 37.2 | 19.21

S/B=0.12,D/B=0.10 S/B=0.12,D/B=0.15

SNo. |'T/B | ¢c% | 9p% | $% | ¢r% | Oc% | $p% | Pe% | PF%
1 0.01 | 81.1 |32.23 | 26.21 | 22.14 | 78.94 | 32.88 | 27.2 | 23.39
2 0.02} 81.17 | 33.11 | 27.54 | 21.74 | 79.01 | 33.7 | 28.45 | 23.01
3 0.03 ] 81.23 | 33.91 | 28.64 | 21.49 | 79.07 | 34.46 | 25.48 | 22.76
4 0.04 1 81.28 | 34.66 | 29.61 | 21.3 | 79.13 | 35.16 | 30.4 | 22.58
S 0.05 | 81.34 | 35.37 | 30.5 | 21.15 | 79.19 | 35.84 | 31.23 | 22.44
6 |0.0681.39 | 36.05 | 31.33 | 21.03 | 79.24 | 36.48 | 32.01 | 22.33
7 0.07 ] 81.44 | 36.71 | 32.11 | 20.93 | 79.3 | 37.11 ] 32.75 | 22.23
8 0.08 | 81.49 | 37.35 ) 32.86 | 20.84 | 79.35 | 37.71 | 33.46 | 22.14
9 . |0.09]|81.54 | 37.97 | 33.57 | 20.76 | 79.4 | 383 |34.14 | 22.07
10 0.1 | 81.59 | 38.58 | 34.26 | 20.69 | 79.45 | 38.88 | 34.79 | 22
11 |0.11|81.64 | 39.18 [ 34.93 | 20.63 | 79.5 [39.45 | 35.42 { 21.94
12 012 81.69 | 39.76 | 35.58 | 20.57 | 79.55 | 40 | 36.04 | 21.89
13 ]10.13181.74 | 40.33 |1 36.22 | 20.52 | 79.6 | 40.55 | 36.64 | 21.84
14 (0.14( 81.78 | 40.9 |} 36.83 | 20.48 | 79.65 | 41.08 | 37.23 | 21.79
15 10.15)81.83 | 41.45 | 37.44 { 20.43 | 79.7 | 41.61 | 37.8 | 2175
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Figure 4.1.3 (b) Variation of ¢g with increasing cutoff thickness (d/s)
Table 4.1.4 Potential distribution with increasing cutoff depth of
depressed weir with concrete cutoff (d/s)

D/B fixed, T/B varying :
D/B=0.05,T/B=0.05 D/B=0.05,T/B=0.10 .
SNo. SB | ¢c% | 9p% | ¢e% | Op% | dcon | $p% | Ge% | 9%
0.01] 83.668 21.045| 20.418 11.25 83.81( 25.488] 24.985| 11.186
0.03] 83.859] 24.485 22.802| 13.203| 84.022( 28.606 27.21| 13.031
0.05| 84.048| 27.301] 24.707 149 84.229| 31.207] 29.008] 14.641
0.07 84.237| 29.763] 26.347| 16.413| 84.432] 33.502] 30.562 16.08|
0.09] 84.425 31.978 27.804] 17.783| 84.634 3558 31943 17.386
0.11} 84.613] 34.004 29.12| 19.039| 84.834 3749 33.192] 18.584
0.13] 84.801 35.88/ 30.323| 20.199| 85.033| 39.264| 34.333] 19.691
0.15{ 84.988 37.63] 31.432] 21.277 85.229] 40.923] 35.384 20.72
D/B=0.05,T/B=0.15
SNo. |SB | ¢c% | ¢p% | 9% | Ora
0.01 83.95| 29.228| 28.787 11.163
0.03 84,18 32.144] 30.896] 12.951
0.05] 84.401 34.6 32.61] 14.512
0.07] 84.618 36.78 34.094] 15.906
0.09] 84.832] 38.761] 35.415] 17.171
0.11] 85.043| 40.588] 36.609] 18.331
0.13] 85.251] 42.287] 37.698] 19.403
0.15| 85.457| 43.879| 38.701] 20.398

ooy s [w ] [

OIS [ WD) [
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Figure 4.1.4 (b) Variation of ¢g with increasing cutoff depth (d/s)




Table 4.1.5 Potential distribution with increasing cutoff depth of depressed weir with concrete

cutoff (d/s)
_ T/B fixed, D/B varying
D/B=0.05,T/B=0.10 D/B=0.10,T/B=0.10
SNo. |SB| oca $n% P2 ) Pca Pp% $E% OF%
1 0.01 | 83.80964 | 25.48787 24.9852 11.186 80.38382 | 27.03429 | 26.57817 | 14.31846
2 0.03 | 84.02206 | 28.60641 | 27.21045 | 13.03081 | 80.60736 29.7637 28.48471 15.7088
3 0.05! 84.22866 | 31.20659 | 29.00816 | 14.64094 | 80.82726 | 32.07051 | 30.04286 | 16.97133
4 0.07| 84.4324 33.50164 | 30.56152 | 16.08012 | 81.04633 | 34.12948 | 31.40425 18.1326
5 |0.09| 84.63412 | 35.57962 | 31.94283 | 17.38615 | 81.26506 | 36.01075 | 32.62659 | 19.2095
6 0.11| 84.83413 | 37.48982 | 33.19165 18.5839 81.48351 | 37.75327 | 33.74096 | 20.21412
7 0.13 | 85.03254 | 39.26378 | 34.33301 19.6909 81.70156 | 39.38196 34.7669 21.15561
8 0.15| 85.22939 | 40.92342 | 35.38418 | 20.72013 | 81.91908 | 40.91418 | 35.71792 | 22.04113
D/B=0.15,T/B=0.10
S.No. |S/B| ¢ $p% Pe% Pro
| 1 0.01| 78.21976 28.2376 27.81307 | 16.53296
2 0.03 | 78.44579 | 30.72707 | 29.53039 | 17.69657
3 0.05( 78.66881 | 32.84299 | 30.93834 | 18.76794
4 0.07 | 78.89191 | 34.74197 32.174 19.76535
5 0.09( 79.11562 | 36.48564 | 33.28849 | 20.69989
6 0.11| 7933991 | 38.10783 | 34.30894 | 21.57947
7 0.13 | 7956463 | 39.63004 | 35.25224 | 22.41014
8 0.15) 79.78954 | 41.06722 | 36.12996 | 23.19674
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Figure 4.1.5 (b) Variation of ¢g with increasing cutoff depth (d/s)

Table 4.1.6 Potential distribution with increasing cutoff depth of depressed weir with concrete

cutoff (d/s)
T/B fixed, D/B varying
D/B=0.05,T/B=0.05 _ D/B=0.10,T/B=0.05
SNo. IS/B dc Pp% de% Pre dce Op% PE% dro
1 0.01] 83.66751 21.04513| 20.41763| 11.24959 80.22076 23.01777] 22.45477| 14.37655
2| 0.03] 83.85861] 24.48463| 22.80184] 13.20337 80.42271] 25.99894 24.46953 15.87499
3] 0.05| 84.04784| . 27.30124] 24.70729] 14.90006| 80.62423 28.47706] 26.09936| 17.22094
4 0.07) 84.23669| 29.76303| 26.34742{ 16.41282| 80.82708 30.66965| 27.51924 18.4521
S| 0.09] 84.42526] 31.97766| 27.80365| . 17.78349] 81.03121 32.66173] 28.79324] 19.58997
6 0.11] 84.61348] 34.00413] 29.11965| 19.03919] 81.23634 34.4995| 29.95508( 20.64905
7| 0.13] 84.80118] 35.87965| 30.32273| 20.19889] 81.44215 36.21217 31.0257] 21.63998
8 0.15] 84.98823] 37.62973] 31.43161] 21.27654 81.64833| 37.81982 32.01939] 2257092
. D/B=0.15,T/B=0.05 . :
S.No. IS/B 9% e Pro e

1 0.01] 78.04 24.50 23.98 16.58
2] 0.03 78.2506] 27.20941] 25.78568 17.85414
3] 0.05) 78.45527, 29.4715) 2724727 19.00681
4 0.07] 78.66188] 31.48466 28.5263] 20.07189
5| 0.09] 78.87053| 33.32331| 29.67934] 21.06518
6 0.11] 79.08092 35.0275] 30.73568] 21.99713
70 013 79.29274] 36.62228| 31.71324] 22.87523
§ 0.15 79.50561] 38.12491 32.6242]  23.70535
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Table 4.1.7 Variation of potential distribution with increasing depression for depréssed
weir with d/s concrete cutoff
S/B fixed T/B varying

S/B=0.05,T/B=0.05 S/B=0.05/T/B=0.15
SNo. [DB| tex dp% dE% drp - dco A de% br%
1 ]0.01| 90.25843 | 26.34323 | 23.46338 | 12.38216 | 90.50086 | 34.37246 | 32.19062 | 11.98597
2 10.03] 86.29103 | 26.78978 | 24.07529 | 13.73526 | 86.60913 | 3439845 | 32.32751 | 13.34278
3 ]0.05| 84.04784 | 27.30124 | 24.70729 | 14.90006 | 84.40134 | 34.60022 | 32.61013 | 14.51174
4 0.07] 82.43665 | 27.79437 | 25.29776 | 1591307 | 82.81213 | 34.84152 | 32.91732 | 15.53012
5 10.09| 81.16993 | 28.25723 | 25.84277 | 16.80895 | 81.56062 | 35.09074 | 33.22272 | 1643214
6 {0.11| 80.12373 | 28.68945 | 26.34616 | 17.61225 | 80.52559 | 35.33701 | 33.51814 | 17.24202
7 10.13] 79.23208 | 29.09328 | 26.81281 | 18.34056 | 79.64241 | 35.57614 | 33.80103 | 17.97712
8 |0.15]| 78.45527 | 29.4715 | 27.24727 | 19.00681 | 78.8722 | 35.80652 | 34.07089 | 18.65022
S/B=0.05,T/B=0.10
1 10.01| 90.38236 | 30.65722 | 28.23575 | 12.11804
2 10.03| 86.4537 | 30.86821 | 28.57564 | 13.47343
3 10.05] 84.22866 | 31.20659 | 29.00816 | 14.64094
4 10.07] 82.62875 | 31.5595 29.4376 | 15.65744
5 10.09| 81.36987 | 31.90381 | 29.84691 | 16.55726
6 [0.11] 80.32944 | 32.23317 | 30.23295 | 17.36476
7 (0.13( 79.44218 | 32.54613 | 30.59624 | 18.09738
8 [0.15( 78.66881 | 32.84299 | 30.93834 | 18.76794
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Figure 4.1.7 (b) Variation of ¢g with increasing depression

Table 4.1.8 Variation of potential distribution with increasing depression for depressed weir

with concrete cutoff (D/S
T/B=0.05,5/B=0.05 | T/B=0.05,5/B=0.10
SNo. [D/B | - ¢ce Op% e Oro ez dpa (i O
1] 0.01) 90.25843| 26.34323| 23.46338| 12.38216] 90.59398| 32.84916 27.90571] 16.84591
2 0.03 86.29103| 26.78978 24.07529] 13.73526| 86.72327 32.83703| 28.12848| 17.64487
3 0.05| 84.04784] 27.30124{ 24.70729( 14.90006] 84.51942( 33.01174 28.47721] 18.42438
4 0.07| 82.43665 27.79437| 2529776 15.91307] 82.92933 33.23643| 28.84555| 19.14723
5 0.09] 81.16993| 28.25723| 25.84277 16.80895 81.67509| 33.47647 29.20924| 19.81427
6 0.11) 80.12373[ 28.68945! 26.34616] 17.61225| 80.63654{ 33.71879 29.56056] 20.43124
7 013] 79.23208] 29.09328 26.81281] 18.34056| 79.74959] 33.95764 29.89705] 21.00413
8 0.15| 78.45527 204715 27.24727| 19.00681] 78.97552] 34.19041 .30.2183] 21.53831
T/B=.05,5/B=0.15
S.No. |D/B| ¢ca Pp% PE% Pre
1) 0.01] 90.91869| 37.95387| 31.25848| 20.23345
20 0.03] 87.14835 37.6671) 31.25757] 20.72851
3| 0.05| 84.98823] 37.62973| 31.43161 21.27654
4 0.07] 83.42296] 37.67809 31.65563] 21.81278
5 0.09 82.1842) 37.7668] 31.89679 22.32483
6/ 0.11) 81.15571| 37.87663] 32.14208 22.81038
7 0.13] 80.27536 37.9978 32.38552| 23.27003
8 0.15 79.50561] 38.12491 32.6242| 23.70535
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Table 4.1.9 Potential variation at athe key points with increasing u/s and d/s

depression respectively

SNo.|DI/B|D2B| SB | T/B | ¢p% | de% [ SNo.|DI/B | D2/B| SB | T/B | ¢p% | 9%
1 | 002 | 002005001 [2219]{1378] 1 | 002|002 | 005 | 003 |2456| 133
2 | 005 ]002]005) 001 (2157|134 | 2 | 005002 | 005 | 003 |23.88 | 12.93
3 1007002005 001[21.27]1322] 3 | 0.07 | 0.02 | 0.05 | 0.03 | 23.55 | 12.76
4 009 ]002]005]| 001 [21.02]13.06] 4 | 009 | 0.02 | 005 | 0.03 |23.27 | 12.61
5 0.11 | 0.02 | 0.05 | 0.01 20.8 | 12.93 5 0.11 | 0.02 | 0.05 | 0.03 | 23.03 | 12.48
6 |013 ] 002|005/ 001|206 1281 6 |013 | 002 | 005 | 003 |22.81 |12.37
7 (015 ] 002 | 005 | 0.01 [2042] 127 | 7 | 015 | 0.02 | 005 | 0.03 |22.61 | 12.26
S.No. Dl/B D2/B S/B T/B (bD% (1)_5% S.No. D1/B { D2/B S/B /B ¢D% ¢E%
1 002002005001 [2219[1378] 1 | 002|002 005|003 [2456| 133
2 | 002005005001 [2394]1601] 2 | 002005 | 005|003 {2619 |15.53
3 1002|007 | 005001 [2495]1726| 3 | 0.02 | 0.07 | 005 | 0.03 |27.13 | 16.78
4 1002|009 | 005001 |2586]|1838| 4 {002 | 0.09 | 0.05 | 0.03 |27.98|17.91
5 1002[011 005001 ]2.7][1939] 5 |002]0.11 ] 005 | 003 |2877]1892
6 | 002 013|005 | 001 |2747]2032] 6 | 002] 013 ] 005 | 0.03 |29.4919.86
7 1002]015 005|001 28192118 7 | 002 | 015 | 005 | 0.03 |30.18|20.72
SNo. | D1/B | D2/B | §/B T/B Opy, b, { SNo. | DI/B {D2/B | S/B T/B $po [
1 (002002005005 [2654][1308{ 1 | 002002005 01 |3073]|12.82
2 005 (002 005) 005|258 |1273] 2 |005|002]005] 01 [2987]1248
3 1007 ] 0.02 005|005 |2545]|1256| 3 | 007 | 0.02 | 005 | 0.1 |29.46]|12.31
4 009002005005 [2515|1241| 4 009|002 005] 01 |20.11]1217
.5 1011 | 002]005]005 |2488]1228| 5 | 011 | 002]005] 01 |2881]1205
6 013 | 002 005|005 2465|1217 6 | 013 | 0.02 | 005 [ 0.1 |2854]11.94
7 1015 | 0.02 | 0.05 | 0.05 [24.44 1207 7 {015 | 002 | 005 | 0.1 |2829]11.84
SNo.|DI/B (D2/B| S/B | T/B | dps | s | SNo.{DI/B |D2/B| SB | T/B | ¢py | s
1 1002002005 | 005 26541308 1 |0.02] 002 005] 01 {3073 1282
2 1002|005 ] 005|005 [2807]1531] 2 [002]005] 005 01 |32.09]15.04
3 1002|007 005005289 |1656| 3 | 002|007 | 005 | 01 |32.88]16.29
4 1002|009 |005|005[20.77]1768] 4 [0.02] 009 | 005 01 |33.61]17.41
5 1002011005005 ]3052]187 | 5 |002]011] 005 01 |34.29]18.42
6 002|013 | 005|005 |31.22[1964| 6 |002]0.13] 005 | 01 [34.92]19.36
7 1002015 | 005 | 005 {31.87{2051{ 7 [002]015|005]| 01 [3551]20.23
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Potential Variation at Point E
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" 4.2 Depressed Weir With Concrete Cutoff Upstream

Table 4.2.1 Variation of potential distribution with increasing thickness of cutoff for
depressed weir with concrete cutoff (u/s)
' S/B fixed D/B varying

S/B=0.05,D/B=0.02

S/B=0.05,D/B=0.06

S.No.

T/B

dco

$p%

[T

Or%

Pco

Op%

Pe%

[0

0.01

85.22724

80.5547

76.6897

6.75088

83.12175

78.86159

75.30193

11.20359

0.02,

85.17783

78.56258

75.14351

6.72538

83.06844

77.01862,

73.85839

11.16114

0.03

85.08926

76.96685

73.82481

6.70564

82.97779

75.53385

72.62257,

11.12806

0.04

84.99193

75.58438

72.64133

6.68903

82.87863

74.24271

71.51075

11.10007

0.05

84.89394

74.34137

71.55188

6.67447

82.77873

73.07872

70.48547

11.07547

0.06

84.79803

73.19891

70.53321

6.6614

82.68081

7200676

69.52554

11.0533

0.07

84.70521

72.13342

69.5705

6.64948

82.58586,

71.00546

68.61743

11.03302

0.08

84.61578

71.12926

68.65352

6.6384

82.49422/

70.06062,

67.75179

11.01422

LI I T D TO IR

0.09

84.52975

70.17544

67.77486

6.62808

82.40591

69.16222,

66.92176

10.99665

-
(=]

0.1

84.44699

69.26379

66.92885

6.61835

82.32082

68.30285

66.12219

10.98008

-
p—t

0.11

84.36736

68.38817

66.11112

6.60915

82.23881

67.47682,

65.34898

10.96439

[EY
[

0.12

84.29066,

67.54368

65.31813

6.60038

82.15971

66.67974

64.59895|

10.94945

=
(88

0.13

84.21671

66.72644

64.54701

6.59201

82.08335,

65.908

63.86938

10.93515

ot
N

0.14]

84.14532

65.93327,

63.79539

6.58396

82.00954

65.15867

63.15808

10.92143

—
Lh

0.15

84.07633

65.16151

63.06122

6.57622

81.93813

64.42931

62.46319|

10.9082

S/B=0.05,D/B=

0.10

S/B=.05,D/B=0.15

S.No.

T/B

Oco

Op%

Oro

¢F%

Oco

P

QE%

Or%

0.01,

81.55312

77.57738

74.23493

13.96867

80.02051

76.3095]

73.17365

16.48389

0.02

81.49918

75.84245

72.86816

13.91604

79.96759

74.67882

71.88266]

16.42259

0.03

81.4091

74.43931

71.69486

13.87482

79.87959

73.35535

70.77151

16.37433

0.04]

81.31053

73.21599

70.63736

13.83985

79.78304

72.19874

69.76827

16.33325

0.05

81.21106

72.11108

69.66089

13.80901

79.68533

71.15221

68.84066

16.29695

0.06

81.11335

71.09206

68.74574

13.78117

79.58911

70.1857

67.97043

16.26411

0.07

81.01844

70.13911

67.87929

13.75566

79.49544

69.28085

67.14583

16.23396

0.08

80.92667

69.23907

67.05283

13.73197

79.40469)

68.42545

66.35876

16.20593

VIR IO B 1IN

0.09

80.83809

68.38258

66.25994)

13.70982

79.31694

67.61086

65.60325

16.1797

=
(e}

0.1

80.75263

67.56281

65.49583

13.68893

79.23215

66.83064

64.8748

16.15493

p—
—

0.11

80.67016

66.77441

64.75665

13.66912

79.15019|

66.0799

64.16987

~16.13142

juny
[ye]

0.12]

80.5905

66.01328

64.03938

13.65023

79.07094

65.35478

63.4856

16.10901}

juny
W

0.13

80.51351

65.27606

63.34152

13.63218

78.99424

64.65215

62.81966,

16.08757

—
I

0.14

80.43903

64.56002

62.661

13.61483

78.91994

63.96946

62.1701

16.06697

=
wn

0.15]

80.36689

63.86287

61.99606

13.59813

78.84792

63.30458

61.53529

16.04711
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Figure 4.2.1(a) Variation of ¢p with increasing cutoff thickness (u/s)
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Table 4.2.2 Variation of potential distribution with increasing thickness of cutoff for
depressed weir with concrete cutoff (u/s)

S/B fixed D/B varying
S/B=0.12,D/B=0.02 $/B=0.12,D/B=0.06
S.No.[T/B Dcg __bpp bEo bra e bpos KA o
1 0.01 79.15711 74.37514167.35476| 6.51106{77.93521] 73.45647/66.84656{10.85256
2 0.02] 79.29071 72.54096(66.10265| 6.47917[78.06179 - 71.7315365.66107(10.80141
3 0.03 79.33522, 71.07056| 65.0125| 6.4537) 78.1033] 70.34464/64.62706{10.76048
4 0.04! 79.34319 69.79462164.01926| 6.43175|78.10972 69.138763.68382{10.72518
5 0.05! 79.33235 68.64558] 63.0941] 6.41216|78.09795] 68.05098/62.80437| 10.6936
6 0.06 79.31066 67.58793| 62.2206| 6.39429|78.07566] 67.04855|61.97348[10.66475
7 0.07 79.28238 66.60023161.38832| 6.37771178.04694] 66.11147161.18134[10.63801
8 0.08 79.24994 65.6683(60,59002( 6.36217/78.01414] 65.22658/60.42118(10.61292
9 0.09 79.21485 64.78213{59.82032| 6.34749|77.97874] 64.3845559.68801{10.58919
10 0.1 79.1781 63.93437/59.07519( 6.33347| 77.9417| 63.57854158.97802|10.56662
11 0.11 79.14034 63.1194/58.35143| 6.32009(77.90364] 62.8033358.28822(10.54503
12 0.12 79.10206 62.33286(57.64647 6.30723|77.86503| 62.05481| 57.6162/10.52425
13 0.13 79.06353 61.57116|56.95818| 6.29483({77.82617 61.32969 56.96| 10.5042
14 0.14 79.02502 60.83146/56.28482| 6.28278|77.78729] 60.62527|56.31792|10.48478
150 . 0.15 78.98666 060.11132(55.62482| 6.27108|77.74857, 59.93932/55.68858(10.46593
S/B=0.12,D/B=0.10 S/B=0.12,D/B=0.15
S.No.[T/B e $p2% 9e% | Or% dc 9n% ez | 9re
1 0.01 76.91286 72.66722/66.37638(13.56841| 75.8429| 71.8299565.86134/16.05005
2 0.02 77.03427 71.02741165.24364|13.50642 75.9593| 70.27615/64.78268(15.97918
3 0.03 77.0738 69.7059964.25417(13.45671|75.99704|  69.02122(63.83901(15.92222)]
4 0.04] 77.07935 68.55514/63.35064| 13.4138/76.00197| 67.92651(62.97636[15.87298
5 0.05 77.06721 67.5158(62.50755| 13.3754(75.98973| 66.93663|62.17076(15.82886
6, 0.06, 77.0448 66.55701(61.71051{13.34026|75.96747 66.02254{61.40866|15.78847
7 0.07 77.01608 65.6660.95029|13.30766(75.93901] 65.16662|60.68135(15.75097
8 0.08 76.98333 64.81234160.22044(13.277081 75.90659] 64.3572359.98281}15.71578
9 0.09, 76.94799 64.0052959.51626(13.24818] 75.8716] 63.58614/59.30859]15.68247
10, 0.1 76.91101 63.23237|58.83416|13.22064( 75.83496| 62.84729| 58.6553/15.65076
11 0.11] 76.87302, 62.48868(58.17131| 13.1943(75.79728| 62.13604/58.02026(15.62041
12 0.12 76.83444 61.77032/57.52542(13.16895| 75.759| 61.4487657.40135|15.59121
13 0.13 76.79561 61.0742/56.89461(13.14451)75.72043|  60.78252/56.79677|15.56305
14 0.14 76.75672 60.39775|56.27732(13.12083| 75.68178| 60.13491/56.20504{15.53577
15 0.15 76.71796 59.73888/55.67219(13.09783|75.64322| 59.50395(55.62489(15.50928
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Table 4.2.3 Variation of potential distribution with increasing depth of cutoff for depressed
weir with concrete cutoff (u/s)

T/B fixed D/B varying

D/B=0.02,T/B=0.05

D/B=0.06,T/B=0.05

SNo. | S/B dco $p% OEa Oro Pcx Pp% Oe% bra
1 0.01 | 89.77888 | 79.58647 | 78.89573 6.83268 86.47588 | 77.45971 | 76.83531 [11.28785
2 0.02 | 88.32421 | 77.97244 | 76.68649 6.79162 85.42955 76.1397 74.965 - |11.23494
3 0.03 | 87.05882 | .76.61444 | 74.79021 6.75189 84.47919 | 75.01008 | 73.33121 (11.18205
4 10.04| 8592606 | 75.41912 73.0969 6.7129 83.60017 74.0006 71.85133 |[11.12892
5 0.05 | 84.89394 | 74.34137 | 71.55188 6.67447 82.77873 | 73.07872 | 70.48547 |11.07547
6 |0.06]| 83.94195 | 73.35461 70,1224 6.63641 82.00569 | 72.22555 | 69.20981 | 11.0217
7 10.07| 83.05602 | 72.44147 | 68.78678 6.59865 81.27439 | 71.42875 | 68.00854 |10.96764
8 0.08 | 82.22591 | 71.58976 | 67.52967 6.56112 80.57977 | 70.67965 | 66.87035 [10.91331
9 [0.09| 81.44392 | 70.79047 | 66.33971 6.5237 79.9178 69.9718 65.78678 [10.85872
10 |0.10| 80.70404 | 70.03677 | 65.20816 6.48645 79.28525 | 69.30025 | 64.75127 |10.80388
11 [0.11| 80.00148 | 69.32325 | 64.12814 6.44927 78.67938 | 68.66104 | 63.75855 |10.74884
12 1012 79.33235 | 68.64558 63.0941 6.41216 78.09795 | 68.05098 | 62.80437 |10.6936
13 [0.13] 78.6934 68.00018 | 62.10144 6.37517 77.53899 | 67.46741 | 61.88519 (10.63817
14 10.14| 78.08194 | 67.38408 | 61.14639 6.3382 77.00085 66.9081 60.99801 (10.58261
15 10.15] 77.49567 | 66.79481 | 60.22572 6.30128 76.48206 | 66.37112 | 60.14027 |10.52688
D/B=0.02,T/B=0.10 ' D/B=0.02,T/B=0.15
S.No. | §/B dc $p% Peg dro ben $pa bE% o
1 0.01 | 84.37857 | 76.05414 | 75.47178 | 14.04455 | 82.47019 | 74.74901 | 74.20476 | 16.5493
2 ]0.02| 83.49023 | 74.86846 | 73.76812 | 13.98606 | 81.69002 | 73.66624 | 72.63483 (16.48635
3 0.03 | 82.67863 | 73.85332 | 72.27534 | 13.92761 | 80.97752 | 72.74084 | 71.25803 [16.42378
4 0.04 | 81.92259 | 72.94401 | 70.91816 | 13.86862 | 80.31267 | 71.91199 | 70.00431 {16.36073
5 [0.05]| 81.21106 | 72.11108 | 69.66089 | 13.80901 | 79.68533 | 71.15221 | 68.84066 (16.29695
6 [0.06]| 80.53696 | 71.33776 | 68.48253 | 13.74874 | 79.08925 | 70.44595 | 67.74788 [16.23233
7 0.07 |- 79.89536 | 70.61323 | 67.36925 | 13.68783 | 78.52014 | 69.78327 | 66.71336 (16.16692
8 0.08 | 79.28249 | 69.92996 | 66.31124 | 13.62636 | 77.97485 | 69.15734 | 65.72826 |16.1007
9 0.09 | 78.69543 | 69.28241 | 6530117 | 13.56432 | 77.45096 | 68.56314 | 64.78603 [16.03375
10 0.1 | 78.13178 | 68.66633 64.3334 13.5018 76.9465 67.99685 | 63.88157 |15.96609
11 [0.11] 77.58961 | 68.07837 | 63.40343 | 13.43881 | 76.45987 | 67.45548 63.0109 |15.89779
12 1012 77.06721 67.5158 62.50755 13.3754 7598973 | 66.93663 | 62.17076 |15.82886
13 |0.13 | 76.56316 | 66.97638 | 61.64274 | 13.31159 | 75.53493 | 66.43829 | 61.35843 |15.75936
14 |0.14| 76.07622 | 66.45821 | 60.80642 | 13.24744 | 75.09448 | 65.95881 | 60.57163 |15.68933
15 10.15| 75.60529 | 65.95969 | 59.99641 | 13.18295 | 74.66751 | 65.49676 | 59.80845 [15.61881
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Table 4.2.4 Variation of potential distribution with increasing depression for
depressed weir with u/s concrete cutoff

S/B=0.05,T/B=0.05

S/B=0.05,T/B=0.075

S.No. [ D/B

bce $pa dE%

A

e

$pa OE%

Ora

0.01

85.56288 | 74.72283 | 71.86897

4.78162

85.33207

71.95307 | 69.37963

4.75986

0.03

84.29173 | 73.98873 | 71.25583

8.07829

84.05569

71.31874 | 68.8502

8.04093

0.05

83.24239 | 73.36056 | 70.72475

10.20948

83.00386

70.77224 | 68.38821

10.16171

0.07

82.34779 | 72.81483 | 70.26099

11.85245

82.1084

70.29665 | 67.98421

11.79663

0.09

81.56718 | 72.33266 | 69.85004

13.20803

81.32794

69.87629 | 67.62622

13.14556

0.11

80.87434 | 71.90075 | 69.48119

14.3691

80.6359

69.49978 | 67.30508

14.301

0.13

80.25133 | 71.50961 | 69.14667

15.38783

80.01414

69.15891 | 67.01403

15.31486

QO INIS IO DS IGIN | —

0.15

79.68533 | 71.15221 | 68.84066

16.29695

79.44969

68.84758 | 66.74802

16.2197

S/B=0.05,T/B=0.10

S/B=0.05,T/B=0.15

S.No. | D/B

P $pa Oe%

dre

b

$po e

Pro

0.01

85.12202 | 69.54869 | 67.16344

4.7418

84.75714

65.3733 | 63.22934

4.71191

0.03

83.84042 | 68.99696 | 66.70632

8.00983

83.46537

64.95959 | 62.89779

7.95836

0.05

82.78584 | 68.51823 | 66.30396

10.12191

82.40498

64.59421 | 62.59881

10.05601

0.07

81.88911 | 68.10102 | 65.95158

11.75003

81.50509

64.27475 | 62.33587

11.67278

0.09

81.10833 | 67.73222 | 65.63938

13.09335

80.72286

63.99242 | 62.10299

13.00671

0.11

80.4166 | 67.40205 | 65.35954

14.24401

80.03082

63.74004 | 61.89468

14.14934

0.13

79.79557 | 67.1033 | 65.10616

15.25373

79.41029

63.51215 | 61.70657

15.15207

QO INIDIOV AN {2

0.15

79.23215 | 66.83064 | 64.8748

16.15493

78.84792

63.30458 | 61.53529

16.04711
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Table 4.2.5 Variation of potential distribution With increasing depression for

depressed weir with u/s concrete cutoff

T/B fixed S/B varying
T/B=0.05,S/B=0.05 T/B=0.05,S/B=0.075
S.No.| D/B e 9p% de Pr dco VA OE% dra
1 0 85.56288 74.72283|71.86897| 4.78162 |83.14513(72.27713|68.34067 | 4.71022
2 0.02 84.29173 73.98873|71.25583 | 8.07829 {82.16058{ 71.7496 |67.95906| 7.96882
3 0.05 83.24239 73.36056|70.72475 (10.20948 | 81.3084 |71.26997|67.59982(10.08106
4 007 82.34779 72.8148370.26099|11.85245| 80.56 |70.83861 67.27217)11.71216
5 0.09 81.56718 72.33266)69.85004 |13.20803 (79.89334( 70.4485 | 66.9735 |13.05944
6 0.11 80.87434 71.90075)69.48119| 14.3691 |79.29255]70.09309| 66.7 |(14.21442
7 0.13 80.25133 71.50961|69.1466715.38783|78.74593|69.76704 |66.44817 |15.22848
8 0.15 79.68533 71.15221)68.84066 |16.29695 | 78.2446869.46606 |66.21508 | 16.1339
T/B=0.05,5/B=0.10 T/B=0.05,S/B=0.15
S.No.| D/B Pco $p% DE% dFg Gco dp% ) )

1 0 81.10962 70.22818)65.31223 | 4.64046 [77.76633 |66.88481{60.21153 ] 4.50345
2 0.02 80.31922 69.84438165.09427| 7.85977 |77.22955166.69266| 60.2177 | 7.64212
3 0.05 79.61132 69.47501|64.86366| 9.9516 |76.72223|66.47838|60.17133| 9.6903

4 0.07 78.97563 69.13226164.64187[11.56961|76.25067 |66.26523 |60.10638 |11.27954
5 0.09 78.40012 68.8156364.43291|12.90771{75.81271| 66.0593 |60.03388(12.59709
6 0.11 77.875 68.5226 164.23711[14.05589]75.40501 [65.86244{59.95864 |13.72988
7 0.13 77.39249 68.25049|64.05367[15.06474|75.02425| 65.675 |59.88308(14.72684
8 0.15 76.9465 67.99685(63.88157]15.96609|74.66751|65.49676|59.80845 |15.61881
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Potential Variation at Point ‘D'
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Figure 4.2.5 (2) Variation of ¢p with increasing depression
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Table 4.2.6 Potential variation at the key point with increasing u/s and d/s depression
respectively
D1=U/S Depression,D2=D/S Depression

SNo. | DI/B | D2/B | S/B | T/B | ¢pw | ¢es | S:No. |D1/B | D2/B | S/B | T/B | ¢pw | ¢ea
1 [ 002 ] 002 [005]0.01]8055]7669] 1 [ 002 [ 002 [0.05]0.01]80.55 | 76.69
2 | 005|002 [005]001]788 [7516| 2 [ 0.02 | 0.05 [0.05]0.01]8091]77.12
3 1007 [002 [005]001]77.80 7428 | 3 | 0.02 | 0.07 [0.05[0.01] 8112|7737
4 [ 009 ]002]005]001]7702[73.49] 4 | 0.02 [ 009 [0.05]0.01] 813 | 77.59
5 o011 [ 002 |005]001]7623 7277 5 ] 002 [ 011 [0.05]0.01 ] 81.47 | 77.79
6 | 013 ] 002 [005][001]7551| 721 | 6 | 0.02 | 013 [0.05]0.01 ] 81.62 | 77.98
7 | 015 [ 002 [005]001]| 7483|7148 7 | 0.02 | 0.15 |0.05 |-0.01 [ 81.77 | 78.16
SNo. | DI/B | D2/B | S/B | T/B | ¢ | ¢su | SNo. | DI/B | D2/B | S/B | T/B | ¢vs | ¢rs
1 002 ]002]005]005][7434 [71.55] 1 | 0.02 | 0.02 | 0.05]0.05 | 74.34 | 71.55
2 [005[002 [005[005]7287 7018 2 [ 0.02 | 0.05 [0.05]005]74.81 | 72.08
3 | 007002 005[005[72.03] 694 | 3 | 0.02] 007 [005]0.05]75.08]72.38
4 | 009 ]002 [005][005]71.28 6869 4 | 002 ] 009 [0.05]005]7532]72.65
5 | 011 ] 002 [005]005]7059[68.04| 5 | 0.02] 011 |0.05]0.05] 7554 | 72.89
6 | 013 | 002 [0.05]0.05]69.95|6744] 6 | 002 | 013 [0.05]005]75.75 | 73.12
7 1015 | 0.02 |0.05]0.05(69.36 [66.88| 7 | 002 | 015 0050057594 [ 7334

S.No. |DI/B |D2/B | S/B [ T/B | ¢os | ¢es | SNo. {DI/B | D2/B | S/B | T/B | ¢ps | ¢es
1 002|002 005]01[6926[6693] 1 [ 002002 [005]01[69.26 [ 66.93
2 | 005|002 [005]01]67946568] 2 | 0.02] 005 [005] 01 |69.83]67.55
3 007 002 005]01 67186496 3 | 0.02 [ 0.07 [0.05] 0.1 |[70.15 | 67.89
4 1009 |002]005]01]665 6431 4 | 0.02] 009 [005] 0.1 |7044] 6821
5 | o011 [002 [005]01[6587[6372] 5 | o0.02] 011 [005] 01 7071 ] 68.49
6 {013 ]| 002 005|01] 653 [6317] 6 [002] 013 [005] 01 | 7095 68.76
7 1015 [ 002 [005] 01 |6476 | 6266 7 | 0.02] 015 [005] 01 |71.18]69.01
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POTENTIAL VARIATION AT POINT 'D'WITH INCREASING UPSTREAM
DEPRESSION(D2/B=.02,5/B=.05)
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Figure 4.2.6 (a) Variation of ¢p with increasing u/s depression
POTENTIAL VARIATION AT POINT 'D'WITH INCREASING DOWNSTREAM
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Figure 4.2.6 (b) Variation of ¢p with increasing d/s depression
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POTENTIAL VARIATION AT POINT 'EWITH INCREASING UPSTREAM

DEPRESSION(D2/B-=.02,5/B=.05)
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4.3 Comparison in the Variation of Potential Values of Concrete Cutoff at Different
Points of the Horizontal Floor with the Sheet Pile.

Table 4.3.1 Potential variation at point 'D' for different case.

B/S=5,B/T=10 B/S=30,B/T=10
S.No. [B1/B [Shee [B/D1=25 [B/D1=10 [B/D1=80 [Sheet B/D1=25 [B/D1=10 B/D1=80
tpile P/’DZ:ZS P/D2=80 B/D2=1Q |pile }3/D2=25 /D2=80 [B/D2=10

1 0 100 100 100 100] 100, _ 100 100 100
2 0.1] 50.73 92.03 88.25 94.441 82.68 85.39 80.91 88.69
3] 0.2] 82.37 84.04 80.42 86.56 73.05 75.34 71.59 78.24
4 03[ 74.94 77.11 73.75 79.61{ 65.37 67.94 64.57 70.69
5| 0.4 68.24 70.96 67.83 73.42| 58.56 61.54 58.43 64.26
6 0.5 62.1 65.38 62.45 67.82| 52,12 55.63 52.69 58.38
7 0.6] 56.38 60.23 57.47 62.65 45.77 49.83 47.11 52.75
8 0.7] 50.99 55.45 52.87 57.86| 39.25 44.24 41.5 47.17
9 0.8 45.92 51.13 48.36 53.48| 32.23 38.4 35.6 41.49
100 0.9 41.83 47.55 45.42 49.74] 24,22 . 32.38 29.73 35.64
11 1] 38.93| 44.7845| 42.58804] 47.2573( 15.79] 28.8265| 26.2838 32.2745
100
90
80
70

2 60

g

'6*50
40

3 ""' h
0 \\ﬂ ez 1.
] i ] Khusla(ﬁgl) EENENENRESE
20 — —  B/S=5B/T=10
1 B/D1=BM2 (fig2)

t—1 2 B/D1=10, B/D2-80 (fig 2)
3 B/D1=80,B/D2=10C (fig2)

—
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Figure 4.3.1 (a)Variation of ¢p at B/S=5 and B/T=10 for different cases
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Potential Variation at Point ‘D' for Different Cases
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Figure 4.3.1 (b) Variation of ¢p at B/S=30and B/T=10 for different cases

Table 4.3.2 Potential variation at point 'F' for different case.

B/S=5,B/T=10 B/S=30,B/T=10

S.No. | B1/B"| Sheet | B/D1=25 | B/D1=10 | B/D1=80| Sheet | B/D1=25 (B/D1=10|B/D1=80
pile |B/D2=25|B/D2=80 |B/D2=10]| pile | B/D2=25 |B/D2=80|B/D2=10

0 73.27 | 62.79 59.88 6452 | 88.2 73.33 69.39 75.69

01 | 70.7 | 59.94 57.65 61.94 79 69.18 65.85 | 71.84

02 | 665 | 56.52 54.06 58.77 | 708 63 59.86 65.7

0.3 62 52.33 49.84 5476 1 63.75| 57.08 54.11 59.81

04 | 555 47.79 45.31 50.34 56.8 51.37 48.52 54.17

0.5 50 43.05 40.61 45.72 50 45.68 42.92 48.59

0.6 | 445 | 38.18 35.78 40.96 43.2 39.74 37.11 42.9

0.7 38 33.25 30.91 36.12 [ 36.25 | 33.59 30.85 36.89

0.8 34 28.49 25.85 3138 | 29.2 26.53 23.56 30.16

0.9 | 29.3 24.62 22.7 27.33 21 17.71 14.63 21.89

2B el |xlaln|sivini-

1 26.73 | 22.8055 | 21.0229 | 25.4622 | 11.8 | 12.66205 | 9.81143 | 16.9956
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Potential Variation at Point 'F for Different Cases
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Potential Variation at Point 'F' for Different Cases
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Figure 4.3.2 (b) Variation of ¢r at B/S=30 and B/T=10 for different cases
Table 4.3.3 Potential variation at point 'G' for different case.

B/S=5,B/T=10 B/S=30,B/T=10
"|S.No.| B1/B |Sheet| B/D1=25 | B/D1=10 | B/D1=80 | Sheet | B/D1=25 | B/D1=10 | B/D1=80
pile | B/D2=25 | B/D2=80 | B/D2=10 pile | B/D2=25 | B/D2=80 | B/D2=10
1 0 61.07| 54.66 52.80 56.54 84.21 70.76 67.88 75.11
2 0.1 |58.17| 52.45 50.26 54.38 75.78 67.62 64.36 70.27
3 0.2 ([54.08 48.87 46.52 51.26 67.77 61.6 58.51 - 64.3
4 0.3 [49.01| 44.55 42.14 47.13 |60.75| 55.76 52.83 58.5
5 0.4 |43.62 39.77 37.35 42.53 54.23 50.08 47.25 52.89
6 0.5 |37.9 34.62 32.18 37.55 |47.88| 44.37 41.62 47.31
7 0.6 {31.76] 29.04 26.58 3217 |41.44| 38.36. 35.74 41.57
8 0.7 |25.06 22.89 20.39 26.25 34.63 32.06 29.31 35.43
9 0.8 [17.63| 15.96 12.69 19.58 [26.95| 24.66 21.62 28.41
10 0.9 9.27 7.97 5.56 11.75 17.32 14.61 11.31 19.09
11 1 0 0 0 0 0 0 0 0
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Potential Variation at Point 'G' for Different Cases
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Table 4.3.4 Potential variation at point 'D' for different case.

B/S=5,B/T=20 B/S=30,B/T=20

S.No. |B1/B| Sheet | B/D1=25 | B/D1=10 | B/D1=80 | Sheet | B/D1=25 | B/D1=10 | B/D1=80

pile | B/D2=25 | B/D2=80 | B/D2=10 | pile | B/D2=25 | B/D2=80 | B/D2=10
1 1.0 | 100 100 100 100 100 | 100 100 100
2 |01 ]90.7 | 89.71 88.15 91.22 |8268| 8222 79.97 84.5
3 02 | 84| 81.88 79.6 83.9 73.05| 73.13 69.49 75.5
4 03 1749 | 75.07 71.74 77.59 |65.37| 66.05 62.76 68.8
5 04 | 68.2 69 65.9 71.49 58.56 59.8 56.74 62.53
6 | 05 |621 63.44 60.53 65.91 |52.12| 54.04 51.04 56.72
7 0.6 | 56.4 | 58.26 55.51 60.73 |45.77| 48.22 45.44 50.81
8 07 | 51 53.4 50.81 55.87 |39.25| 4247 39.76 45.75
9 0.8 | 45.9 48.92 46.91 51.37 |32.23] 36.46 33.85 39.94
10 | 09 | 418 45.1 42.92 47.42 12422] 30.23 27.21 33.64
11 1 | 389 41.6 39.48743 44.16 |15.79] 25.83 22.08 28.28

A




Potential Variation at Point 'D' for Diffwerent Cases
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Table 4.3.5 Potential variation at point 'F' for different case.

B/S=5,B/T=20 B/S=30,B/T=20
S.No. [B1/B [Shee B/D1=25 [B/D1=10 [B/D1=80 [Sheet [B/D1=25 |[B/D1=10 [B/D1=80
tpile B/D2=25 [B/D2=80 [B/D2=10 |pile B/D2=25 [B/D2=80 [B/D2=10
1 0 73.27 64.57 62.11184 67.77] 882 76.33| 72.25983 79.8
2 0.1 70.7 63.16 60.68 65.22, 79 71.72] 68.21 74.48
"3 0.2 66.5 59.36 56.77 61.66 70.8 65.04 61.8 67.76
4 0.3 62 54.91 52.31 57.35| 63.75 58.92 55.88 61.65
50 0.4 55.5 50.19 47.63 52.75 56.8 53.11 50.22] 55.89
6 0.5 50 45.34 42.83 48 50 47.5 44.61 50.28
7 0.6 44.5 40.4 37.94 43.16 43.2] 41.58 38.87 44.34
8 0.7 38 35.39 32.99 38.25| 36.25 35.48 32.77 39.02
9 0.8 34] 30.47 28.64 33.38 29.2 28.68 25.99 32.56
10, 0.9 29.3 26.2 2415 - 29.01 21 20.73 17.29 © 2436
11 1 26.73 23.75 21.6535| 26.16775 11.8 13.75 9.97692| 17.20517
Potential Variation at Point 'F’ for different cases
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Table 4.3.6 Potential variation at point 'G' for different case.

B/S=5 B/S=30
S.No.| B1/B | Sheet | B/D1=25 | B/D1=10 | B/D1=80 | Sheet | B/D1=25 | B/D1=10 | B/D1=80
pile | B/D2=25 | B/D2=80 | B/D2=10 | pile | B/D2=25 | B/D2=80 | B/D2=10
1 0 61.07 56.16 54.26 58.00 84.21 73.45 70.44 75.78
2 0.1 | 5817 54.9 52.58 57.08 75.78 69.99 66.57 72.72
3 0.2 | 54.08 51.08 48.63 53.49 67.77 63.54 60.36 66.26
4 0.3 | 49.01 46.6- 44.13 49.19 60.75 57.53 54.53 60.26
51 04 |43.62 41.74 39.27 44.49 54.23 51.76 48.91 54.56
6 0.5 37.9 36.56 34.09 39.47 47.88 46.15 43.28 48.96
7 0.6 | 31.76 31 28.51 34.1 41.44 40.18 37.47 42.97
8 0.7 | 25.06 24.93 22.41 28.26 34.63 33.95 31.23 37.56
9 0.8 | 17.63 18.12 . 16.28 21.71 26.95 26.87 24.15 30.87 -
10 | 0.9 9.27 10.29 7.77 14,1 17.32 18.15 145 21.84
11 1 0 0 0 0 0 0 0 0
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Potential variation at point 'G’ for different case
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4.4 Exit Gradient Curves for Different Cases
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Table 4.4.1 Exit Gradient Calculation Equal Depression u/s

and d/s
D/S=0.20

T/S=0.20 T/S=0.40 T/S=0.60 T/S=0.80
S.No. | B/S | (IE/h)*S | B/S | (IE/h)*S | B/S | (IE/h)*S |B/S| (IE/h)*S
1 |045 023612 | 0.65 | 02212 |0.821| 0.2103 [1.1| 02
2 -] 06 |0.23267 |0.801| 0.2183 | 0.91 | 02089 | 4 | 0.1528
3 08 [ 022747 | 1 0.214 1 0.2074 |10 | 0.1084
4 1 022192 | 4 | 0.1564 4 0.1544 |20 | 0.0803
5 5 014712 | 10 | 0.1103 | 10 | 0.1092 |40 | 0.0584
6 10 | 0.11194 | 20 | 0.0816 | 20 | 0.0809 |50 | 0.0525
7 20 | 0.08269 | 40 | 0.0593 | 40 | 0.0587
8 40 | 0.06002 | 50 | 0.0533 | 50 | 0.0529
9 50 | 0.054

D/S=0.40

T/S=0.20 T/S=0.40 T/S=0.60
S.No.| B/S | (IE/h)*S | B/S | (IE/W)*S | B/S [ (IE/h)*S
1 10436| 0.20565 | 0.56 | 0.195 |0811] 0.185
2 1051020411 | 0.8 | 0.1908 1 0.182
3 0.8 | 019752 | 1 0.1869 4 0.1365
4 1 0.1927 | 4 0.138 | 10 | 0.0978
5 4 (014015 | 10 | 00987 | 20 | 0.073
6 10 | 0.09998 | 20 | 0.0736 | 40 | 0.0534
7 20 | 0.07452 | 40 | 00538 | 50 | 0.0482
8 40 | 0.05445 | 50 | 0.0485
9 50 | 0.04907

D/S=0.60 - D/S=0.80

T/S=0.20 T/S=0.40 T/S=0.80

B/S | (IE/h)*S | B/S | (IEM)*S | B/S | (E/h)*S
1 1046 | 01818 | 9.65 | 01723 | 1.2 | 0.1419
2 | 06| 01791 0.8 | 0.1698 4 0.1112
3 08 [0.17501, 1 | 01663 | 10 | 0.0815
4 1 017082 | 4 | 01241 | 20 | 0.0617
5 4 | 01238 | 10 | 0.0898 | 40 | 0.0456
6 10 | 0.05079 [ 20 | 00675 | 50 | 0.0412
7 20 | 006817 | 40 | 0.0496
8 40 ' 0105008 | 50 | 0.0448
9 50,/| 0.0452
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Figure 4.4.1(b) Exit Gradient Curve for D/S=0.20 and T/S=0.60

IEX(S/h)

EXIT GRADIENT CURVE

0.22 : o — D ) S S O
D/S=0.40
0.2 4

< ! T/8=0.20 :j f= f‘\' 4
0.18 :

0.16 \

Py

T

0.14

0.12 N
0.1

0.08 ]
0.06 L

0.04

0.02

B/S
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Table 4.4.2 Exit Gradient Calculation for Unequal Depression u/s and d/s

S.No. | D1/S D2/S T/S B/S Ig D1/S D2/S T/S B/S Ig
1 0.4 0.1 0.2 1 0.23 0.1 0.6 0.4 1 0.176
2 0.4 0.1 0.2 5 0.152 0.1 0.6 0.4 5 0.122
3 0.4 0.1 0.2 10 0.116 0.1 0.6 0.4 10 0.094
4 0.4 0.1 0.2 20 0.086 0.1 0.6 0.4 20 0.07
5 0.4 0.1 0.2 40 0.062 0.1 0.6 0.4 40 0.051
6 0.4 0.1 0.2 50 0.056 0.1 0.6 0.4 50 0.046
7 0.4 0.1 0.4 1 0.222 0.1 0.6 0.6 1.02 0.17
8 0.4 0.1 0.4 5 0.149 0.1 0.6 0.6 5 0.121
9 0.4 0.1 0.4 10 0.114 0.1 0.6 0.6 10 0.093
10 0.4 0.1 0.4 20 0.085 0.1 0.6 0.6 20 0.069
11 0.4 0.1 0.4 40 0.062 0.1 0.6 0.6 40 0.05
12 0.4 0.1 0.4 50 0.055 0.1 0.6 0.6 50 0.045
13 0.6 0.1 0.4 1 0.218 0.6 0.1 0.6 1 0.212
14 0.6 0.1 0.4 5 0.147 0.6 0.1 0.6 5 0.145
15 0.6 0.1 0.4 10 0.112 0.6 0.1 0.6 10 0.111
16 0.6 0.1 0.4 20 0.084 0.6 0.1 0.6 20 0.083
17 0.6 0.1 0.4 40 0.061 0.6 0.1 0.6 40 0.061
18 0.6 0.1 0.4 50 0.055 0.6 0.1 0.6 50 0.055
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CHAPTER 5
RESULTS, DISCUSSION AND CONCLUSION

The constant c in the definition of ¢ is assumed to be zero,and ¢ = —k(—‘q- +y)
While presenting the result, ¢ has been non-dimensionlized dividing ¢ by —kh where h is
the head difference causing seepage to occur.

5.1 Variation of Potential Distribution under a weir with Concrete Cutoff toe

Potential Variation At key points ‘D’ and ‘E”-

Figure 5.1.1 Depressed weir with concrete cutoff downstream
B=Total horizontal floor length, T=Thickness of concrete cutoff

S= Depth of concrete cutoff, D=Depth of depression in upstream and downstream side

Table 5.1.1 Variation'in ¢p and ¢ with variation of T/B ;T varying

D/B=0.05
S/B=0.05 S/B=0.10 S/B=0.15
Difference in Difference in Difference in
SNo. | T/B | 0.01 | 0.15 % 0.01 | 0.15 % 0.01 | 015 %
1 |¢p%|23.28] 346 11.32 29.49 | 39.69 10.2 34.42 | 43.88 9.46
2 |de%|19.78 32.61 12.83 23.76 {36.03 12.27 26.88 | 38.7 11.82
' S/B=0.05
D/B=0.02 _ D/B=0.06 D/B=0.10
Difference in Difference in Difference in
T/B | 0.01 | 0.15 % 0.01 | 0.15 % 0.01 | 0.15 %
3 [é6p%|22.19]34.34 12.15 23.62 | 34.72 11.1 24.82 |35.215] 10.3946
4 e % | 18.39(32.22 13.83 20.19 | 32.76 12.57 21.642 |133.372 | 11.72996
S/B=0.12
D/B=0.02 D/B=0.06 D/B=0.10
Difference in Difference in Difference in
T/B | 0.01 0.15 % 0.01 0.15 % 001 o015 %
5ldp % | 31.31 41.73 10.42| 31.7} 41.43 9.73] 32.23| 41.45 9.22
6| o % | 24.42f 37.21 12.79| 25.32| 37.2 11.88] 26.21] 37.44 11.23
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From the variation of T/B from 0.01 to 0.15 for the same depression and cutoff depth it is
found that:
I. The velocity potential (at D and E) increases as the thickness of cutoff increases.
II. The rate of increment of the velocity potential ¢p and ¢ decreases with increase in
cutoff thickness. For S/B=0.05 the rate of increment of ¢pand ¢gis 11.32% and
12.83% while for S/B=0.15 the values are 9.46% and 11.82% respectively.
III.  The velocity potential increases more for smaller cutoff depth than for greater
depth also the rate of increment in potential values is more in smaller cutoff depth.
IV. The rate of increment of the velocity potential ¢p and ¢g decreases with increase in
cutoff depth.
V. The rate of increment of velocity potential decreases marginally as the depression

increases.

Table 5.1.2 Variation ¢pand ¢g with variation of S/B;S varying

D/B=0.05
T/B=0.05 T/B=0.10 T/B=0.15
Difference in Difference in Difference in
S/B | 0.01 | 0.15 % 0.01 | 0.15 % 0.01 | 0.15 %

¢p% |21.05|37.63 16.58 25.49140.92 15.43 29.22 143.88 14.66

8 o5 % [20.41]31.43 11.02 24.99 |35.38 10.39 28.78 | 38.7 9.92

T/B=0.05
D/B=0.05 D/B=0.10 D/B=0.15
Difference in Difference in Difference in
S/B | 0.01 | 0.15 % 0.01 | 0.15 % 0.01 | 0.15 %

9 ¢p % |21.04[37.63 16.59 23.0237.82 14.8 25.5 [38.12 12.62

10 | ¢g% [20.4131.43 11.02 22.45(32.02 9.57 23.98 132.62 8.64

T/B=0.10
D/B=0.05 D/B=0.10 D/B=0.15
Difference in Difference in Difference in
S/B |0.01]0.15 % 0.01 | 0.15 % 0.01 | 0.15 %o

11 | ¢p% |25.48]40.92 15.44 27.03 140.91 13.88 28.23 | 41.06 12.83

12 |f ¢ % [24.98 35.38 10.4 26.57|35.71 9.14 27.81]36.13 8.32

From the variation of S/B from 0.01 to 0.15 for the same depression and cutoff depth it is
seen that
I. The rate of decrease in ¢p values are found to be 1.15% and 0.77%and that of ¢z

values are0.63% and 0.47% corresponding to the change in cutoff thickness T/B
from 0.05 to 0.10 and 0.10 to 0.15 respectively.
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- II. The increment in velocity potential ¢p and ¢g is more in smaller cutoff thickness
than in greater thickness. |
III. Depression D/B has lesser impact for the velocity potential than the thickness of
cutoff T/B. As mentioned in the Table 5.2 that the velocity potentials ¢p and ¢g
for D/B=0.05 and T/B=0.15 are 14.66% and 9.92% while these values for
T/B=0.05 and D/B=0.15 are 12.62% and 8.64% respectively.

IV. The potential values increase as the thickness of cutoff increases.

Table 5.1.3 Variation in ¢p and ¢g with variation of D/B; D varying

S/B=0.05
T/B=0.05 T/B=0.10 T/B=0.15
. Difference in Difference in Difference in
D/B | 0.01 | 0.15 % 0.01 | 0.15 % 0.01 | 0.15 %

13 | ¢p% |26.34 (2947 3.13 30.65132.84 2.19 34.37| 358 1.43

14 | ¢s% |23.46(27.24 '3.78 28.23130.93 2.702 32.19 |34.07 1.88

_ T/B=0.05
S/B=0.05 | S/B=0.10 S/B=0.15
Difference in Difference in Difference in
D/B | 0.01 | 0.15 % 0.01 | 0.15 % 0.01 } 0.15 %

15 | op% |26.34(29.47 3.13 32.85(34.19 1.34 37.95]38.12 0.17

16 | ¢g% |23.46|27.24 3.78 27.91 [30.22 2.31 31.25(32.62 1.37

From the variation of D/B from 0.01 to 0.15 for the same thickness and cutoff depth it is observed from
table 5.1.3 that::

I. The values of ¢p and ¢g increase marginally as the depression D/B increases.

II. The effect of depression in the velocity potential is more in smaller cutoff
thickness and cutoff depth than in smaller cutoff thickness and greater depth. As
listed in the Table 5.3 the increment values of ¢p and ¢g for T/B=0.05 and
S/B=0.05 are 3.13% and 3.78% while these values for T/B=0.05 and S/B=0.15 are -
0.17% and 1.37% respectively.

L Depression has more impact in the ¢g values than in ¢p values.
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Table 5.1.4 Variation in ¢p and ¢ with variation of Dy/B and D, /B: D; and D, varying

Varying with 'D,’

S/B=0.05,D,/B=0.02

T/B=0.03 T/B=0.05 T/B=0.10
: Difference in Difference in Difference in
D,/B | 0.02 0.15 % 0.02] 0.15 % 0.01] 0.15 %
17 ¢p% | 22.19| 20.42 -1.77| 26.54| 24.44 -2.1{ 30.73| 28.29 -2.44
18 ¢ % | 13.78 12.7 -1.08| 13.08| 12.07 -1.01; 12.82| 11.94 -0.88

Varying with 'D,'

. S/B=0.05
T/B=0.03 T/B=0.05 | T/B=0.10 |
Difference in Difference in Difference in
D,/B | 002 0.15 % 0.02] 0.15 % 0.01] 0.15 %
19| ¢p % | 24.56| 30.18 5.62| 26.54| 31.87 5.33| 30.73| 35.51 4.78
20] oz % 13.3| 20.72 7.42| 13.08] 20.51 7.43| 12.82] 20.23 7.41

From the variation of D1/B from 0.02 to 0.15 for the same thickness, d/s depression and
cutoff depth it is seen that:
I. The decrement in velocity potential ¢p increases and Qg decreases with increase

in thickness of cutoff.

From the variation of D»/B from 0.02 to 0.15 for the same thickness, u/s depression and
cutoff depth it is observed that: :

I. The velocity potential ¢p increase with increase in the thickness of cutoff while

the velocity potential ¢g remains constant. The increment rate of ¢p value
decrease as the thickness of cutoff increases. '

5.2 Variation of Potentials Distribution for a weir with a Concrete Cutoff

B

Upstream

Figure 5.2.1 Depressed weir with concrete cutoff upstream
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B=Total horizontal floor length, T=Thickness of concrete cutoff

S= Depth of concrete cutoff, D=Depression in upstream and downstream side whereas

Table 5.2.1 Variation in ¢p and ¢g with variation of T/B;T varying

S/B=0.05
D/B=0.02 D/B=0.06 D/B=0.10 .
Difference in Difference in Differen_ce in
SNo.| T/B | 0.01 | 0.15 % 0.01 | 0.15 % 0.01 | 0.15 % -
1 | $p% |80.55|65.16 1539 | 78.86 | 64.43 -14.43 77.58 | 63.86 -13.72
2 | ¢e% |76.69 | 63.06 -13.63 75.3 | 62.46 -12.84 7423 | 62 1223
S/B=0.12
D/B=0.02 . D/B=0.06 D/B=0.10
Difference in Difference in Difference in
SNo. | T/B | 0.01] 0.15 % 0.01 0.15 % 0.01 0.5 %
3 op% | 74.38] 60.11 -14.27| 73.46] 59.94 -13.52| 72.67| 59.74 -12.93
4 $e% | 67.35| 55.62 -11.73| 66.85 55.69] -11.16| 66.38| 55.67 -10.71

From the variation of T/B from 0.01 to 0.15 for the same depression and cutoff depth it is
observed from table 5.2.1 that: - '

I. The velocity potential decreases as the thickness of cutoff increases.
II. With the increase in the depression D/B from 0.02 to 0.06 the velocity potential ¢p
and ¢g decrease by 2% and 1.39% respectively.
III. The decrement rate of potential values is lesser for greater depression than for
smaller one. ' .
IV. ¢p and ¢g decrease by 6.19% and 9.34% respectively as the depth of cutoff S/B
increases from 0.05 to 0.12 for the ‘shme depression D/B=0.02.
Table 5.2.2 Variation in ¢p and ¢r with variation of S/B;S varying
T/B=0.05
D/B=0.02 D/B=0.06 D/B=0.10
_ Difference Difference Difference
S.No. | S/B| 0.01] 0.15 in% 001 015 in% 0.01) 0.15 in%
5|¢p % | 79.59] 66.79 -12.8/ 77.46] 66.37 -11.09 76.05| 65.96 -10.09
6o %| 78.9 60.23 -18.67] 76.84 60.14 -16.7,75.47, 60 -15.47

From the variation of S/B from 0.01 to 0.15 for the same depression and cutoff thickness
we observe from Table 5.2.2 that:
I. The rate of decrement of ¢p is 12.8% for D/B=0.02 and 10.09% for D/B=0.15

while these values of ¢g is 18.67% and 15.47% respectively for the same cutoff
thickness T/B=0.05.
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II. As the depth of cutoff increases the velocity potentials decrease.

Table 5.2.3 Variation in ¢p and ¢g with variation of D/B; D varying

S/B=0.05
T/B=0.05 T/B=0.10 T/B=0.15
Difference in Difference in Difference in
SNo. | D/B| 001 0.15 % 0.01 0.15 % 0.01] 0.15 %o
7 6p%| 7472 7115 3.57| 69.54] 66.83 2.71| 65.37] 633 -2.07
8 0% | 71.86] 68.74 3.12] 67.16] 64.87 2.29 63.22] 61.54 -1.68
T/B=0.05
S/B=0.05 | _8/B=0.10 S/B=0.15
‘ Difference in Difference in Difference in
SNo. | D/B| 001 0.15 % 0.01] 0.15 % 0.01] 0.15 %
9 op% | 74.72] 71.15 3.57] 7023 68 2.23| 66.88] 65.5 -1.38
10| 0z % | 71.86] 68.74 -3.12] 65.31| 63.88 -1.43| 60.21] 59.8 .0.41

We observe from Table 5.2.3 that:

L. The rate of decrement for ¢p is more in smaller depth and greater thickness while

for ¢g it is more in smaller thickness and greater depth. As mentioned in Table
5.2.3 the ¢p value for, S/B=0.05 and T/B=0.15 is 65.37%, and, for S/B=0.15 and
T/B=0.05 is 66.8% while these values for ¢gis 63.22% and 60.21% respectively.

Table 5.2.4 Variation in ¢p and ¢g with variation of Dy/B and D,/B

Varying with 'D'
S/B=0.05,D,/B=0.02
T/B=0.01 T/B=0.05 T/B=0.10
Difference in Difference in Difference in
Dy/B | 002 015 % 0.02] 0.15 % 0.01 0.15 %
11] dp% | 80.55] 74.83 -5.72) 74.34] 69.36 -4.98] 69.26] 64.76 -4.5
12) ¢ % | 76.69 71.48 -5.21] 71.55| 66.88 -4.67| 66.93 62.66 -4.27
Varying with 'D,’
S/B=0.05
T/B=0.01 T/B=0.05 T/B=0.10
Difference in Difference in Difference in
DyB | 002 0.15 % 0.02] 0.15 % 0.02] 0.15 %
13[ ¢p% | 80.55! 81.77 1.22] 74.34| 75.94 1.6] 69.26] 71.18 1.92
14] ¢z % | 76.69] 78.16 1.47) 71.55) 73.34 1.79] 66.93] 69.01 2.08

From the variation of D1/B from 0.02 to 0.15 for the same thickness, d/s depression and
cutoff depth we see from table 5.2.4 that:
I. Potential values decrease with increase in the upstream depression D; /B. The rate

of decrement is more in smaller cutoff thickness than in greater one.
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Varying Dy/B from 0.02 to 0.15 for the same fhickness, u/s depression and cutoff depth it
is found that: -
- I. The velocity potentials ¢p and ¢ increase with increase in the downstream

depression Do/B. The rate of increment is more in greater thickness than in smaller
one.

5.3 Potentials at the key points for the depressed weir with concrete cutoff at

different points of the floor

" F

D1 D2

Figure 5.3.1 Variation of concrete cutoff at different point of the horizontal floor

B=Total horizontal floor length, B;=Length of u/s floor
B;=Length of d/s floor,T=Thickness of concrete cutoff
S= Depth of concrete cutoff, D=Equal depression for upstream and downstream whereas

Diand D2 is used for upstream depression and downstream dépression respectively.

Figure 5.3.2 Variation of sheet pile at different point of the horizontal floor

The difference in exact potential and approximate potential computed by Khosla method
is presented in tTable5.3.1.The deviation is computed subtracting the exact value from the
approximate value.
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Table 5.3.1 Deviation of ®p from Khosla’s values expressed as percentage

The cutoff position has been varied

- B/S=5
B/T=10 B/T=20
S.No | B1/B | B/D1=25 | B/D1=10 B/D1=80 B/D1=25 B/D1=10 B/D1=80
B/D2=25 | B/D2=80 B/D2=10 B/D2=25 B/D2=80 B/D2=10
1 0 0 0 0 0 0| 0
2 0.1 -1.3 2.48 -3.71 1.02 2.58 -0.49
3 0.2 -1.67 1.95 -4.19 0.49 2.77 -1.53
4 0.3 -2.17 1.19 -4.67 | -0.13 3.2 -2.65
5 0.4 -2.72 0.41 -5.18 -0.76 2.34 -3.25
6 0.5 -3.28 -0.35 -5.72 -1.34 1.57 -3.81
7 0.6 -3.85 -1.09 -6.27 -1.88 0.87 -4,35
8 0.7 -4.46 -1.88 -6.87 -2.41 0.18 -4.88
9 0.8 -5.21 -2.44 -7.56 -3 -0.99 -5.45
10 0.9 -5.72 -3.59 -7.91 -3.27 -1.09 -5.59
11 1 -5.85 -3.66 -8.33 -2.67 -0.56 -5.23
: B/S=30
B/T=10 B/T=20
1 0 0 0 o 0 0 0
2 0.1 -2.71 1.77 -6.01: 0.46 2.71 -1.82
3 0.2 -2.29 1.46 -5.19 -0.08 3.56 -2.45
4 0.3 -2.57 0.8 -5.32 - -0.68 2.61 -3.43
5 0.4 -2.98 0.13 -5.7 -1.24 1.82 -3.97
6 0.5 -351 ]| - -0.57 -6.26 -1.92 1.08 -4.6
7 0.6 - -4.06 -1.34 -6.98 -2.45 0.33 -5.04
8 0.7 -4.99 -2.25 -7.92 -3.22 -0.51 -6.5
9 0.8 -6.17 -3.37 -9.26 -4.23 -1.62 -7.71
10 0.9 -8.16 -5.51 -11.42 -6.01 -2.99 -9.42
11 1 -13.04 -10.49 -16.48 -10.04 -6.29 -12.49

from upstream to downstream position.B;/B=0

indicates the upstream cutoff and By/B=1.0 indicates downstream cutoff. A negative

value is the indication of underestimation of ¢p by Khosla approximate method.A

positive value means over estimation. - Mostly Khosla approximate method

underestimates. Therefore it is not safe to use Khosla approximate method to design the

thickness of floor.

The deviation of true value from that computed using Khosla’s approximate method for

point G is presented in Table 5.3.2. As seen Khosla’s method over estimates for most of

the weir :However in some cases ,Khosla’s method under estimates ¢ .As mentioned in

the Table 5.3.2 negative sign means under esthhation of ¢g and positive sin means over

estimation of ¢g .Under estimations occurs for higher downstream depression
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Table 5.3.2 Deviation in % for D¢ win, respect to Khosla’s values

B/S=5
B/T=10 B/T=20
S.No | B1/ |B/D1=25 B/D1=10 B/D1=80 B/D1=25 B/D1=10 B/D1=80
. B B/D2=25 B/D2=80 B/D2=10 B/D2=25 B/D2=80 B/D2=10
1 0 6.41 8.27 4.53 4.91 6.81 3.07
2| 0.1 5.72 7.91 | 3.79 3.27 5.59 1.09
3| 0.2 5.21 7.56 2.82 3.00 5.45 0.59
4| 03 4.46 6.87 1.88 2.41 4.88 -0.18
5| 04 3.85 6.27 1.09 1.88 4.35 -0.87
6| 05 3.28 5.72 0.35 1.34 3.81 -1.57
7| 06 2.72 5.18 -0.41 0.76 3.25 -2.34
8| 07 2.17 4.67 - -1.19 0.13 2.65 -3.20
9| 0.8 1.67 4.94 -1.95 -0.49 1.35 -4.08
10| 0.9 1.30 3.71 -2.48 -1.02 1.50 -4.83
11 1 0.00 0.00 0.00 0.00 0.00 0.00
: B/S=30 :
- _ B/T=10 : B/T=20
1 0 13.45 16.33 9.10 10.76 13.77 8.43 |
2| 0.1 8.16 11.42 5.51 5.79 - 9.21 3.06
3| 0.2 6.17 " 9.26 3.47 423 | 7.41 1.51
4| 03 4.99 7.92 2.25 3.22 | 6.22 0.49
5| 04 4.15 6.98 1.34 2.47 5.32 -0.33
6| 05 3.51 6.26 0.57 1.73 4.60 -1.08
7| 0.6 3.08 5.70 -0.13 1.26 3.97 -1.53
8| 0.7 2.57 5.32 -0.80 0.68 3.40 -2.93
9| 0.8 2.29 5.33 -1.46 0.08 2.80 -3.92
10| 0.9 2.71 6.01 -1.77 -0.83 2.82 -4.52
11 1 0.00 0.00 0.00 0.00 0.00 " 0.00

Table 5.3.3 Differences in velocity potential @p ,®r and ®¢ with changing cutoff position

from upstream end of floor to downstream end of floor for B/S=5,30 and B/T=10,20.

S.No.| B1/B [B/D1=25| B/D1=10 |B/D1=80|B/D1=25| B/D1=10 | B/D1=80
B/D2=25| B/D2=80 |B/D2=10|B/D2=25| B/D2=80 | B/D2=10
B/T=10.0 B/T=20.0
Variation at point 'G'
1 0 -16.10 | -15.08 | -18.57 | -17.29 | -16.18 | -17.78
2 0.1 | -1517 | -1410 | -15.89 | -15.09 | -13.99 | -15.64
3 02 | -12.73 | -11.99 | -13.04 | -1246 | -11.73 | -12.77
4 03 | -11.21 | -10.69 | -11.37 | -1093 | -1040 | -11.07
5 04 | -10.31 -9.90 -10.36 | -10.02 -9.64 -10.07
6 0.5 -9.75 -9.44 -9.76 |. -9.59 -9.19 -9.49
7 0.6 -9.32 -9.16 -9.40 -9.18 -8.96 -8.87
8 0.7 -9.17 -8.92 -9.18 -9.02 ~-8.82 -9.30
9 0.8 -8.70 -8.93 -8.83 -8.75 -7.87 -9.16
10 0.9 -6.64 | -5.75 -7.34 -7.86 -6.73 -7.74
11 1 0.00 0.00 0.00 0.00 0.00

0.00
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Variation at point 'D’

1 0 0 0 0 0 0 0
2 0.1 6.64 7.34 5.75 7.49 8.18 6.72
3 0.2 8.7 8.83 8.32 8.75 10.11 8.4
4 0.3 9.17 9.18 8.92 9.02 8.98 8.79
5 0.4 9.42 94 9.16 0.2 9.16 8.96
6 0.5 9.75 9.76 9.44 9.4 9.49 9.19
7 0.6 104 10.36 9.9 10.04 10.07 9.92
8 0.7 11.21 11.37 10.69 10.93 11.05 10.12
9 0.8 12.73 12.76 11.99 12.46 13.06 11.43
10 0.9 15.17 15.69 14.1 14.87 15.71 13.78
11 1 15.96 16.30 14.98 15.77 1741 15.87
Variation at point 'F'

1 0 -10.54 -9.51 -11.17 | -11.76 | -10.15 | -12.03
2 |01 9.24. -8.20 -9.90 -8.56 -7.53 -9.26
3 0.2 -6.48 -5.80 -6.93 -5.68 -5.03 -6.10
4 0.3 -4.75 -4.27 -5.05 -4.01 -3.57 -4.30
5 0.4 -3.58 -3.21 -3.83 -2.92 -2.59 -3.14
6 0.5 -2.63 -2.31 -2.87 -2.16 -1.78 -2.28
7 0.6 -1.56 -1.33 -1.94 -1.18 -0.93 -1.18
8 0.7 -0.34 0.06 -0.77 -0.09 | 022 -0.77
9 0.8 1.96 2.29 1.22 1.79 2.65 0.82
10 0.9 6.91 8.07 5.44 5.47 6.86 4.65
11 1 10.14 11.21 8.47 10.00 | 11.68 | 8.96

Table 5.3.3 indicates that the error in Khosla;s approximate method is highly dependent
on the position of cutoff. The maximum over estimation is 16% and this would lead

uneconomical design. The maximum under estimation is of the order of 19% which

would lead to unsafe design.

Therefore, the method should be adopted for design of barrage floor with concrete

cutoff. The computation of water pressure on conctete cutoff will be useful in designing

the cutoff

The value of ¢g is reducing marginally as the position of cutoff is transferred toward d/s

side and it finally reaches to zero value as shown in the following fig 5.3.3.
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Difference of Potential Variation at Point 'G'
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Figure 5.3.3 Variation of Potential difference ®¢ for constant cutoff thickness with

“variation of cutoff depth

I. By increasing the cutoff depth from B/S=30 to B/S=5, ¢p value decreases by 15%
when the cutoff position arrives at the end of d/s floor. The variation of potential

difference is shown in the fig 5.3.4
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Difference of Potential Variation at Point 'D’
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Figure 5.3.4 Variation of Potential difference ®p, for constant cutoff thickness with
variation of cutoff depth

II. As the depth of cutoff increase from B/S=30 to 5, the value of ¢ decreases unto
10% for the cutoff position at the u/s end of the floor. ¢r goes on decreasing

" marginally as the cutoff position shifts toward downstream side of the floor.¢r
attains zero value when cutoff crosses 0.65 of horizontal floor. Afterward ¢r

value increases up to 10 % for the cutoff position at the downstream end of floor

as'shown in the fig 5.3.5.
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Difference ofPotential Variation at Point 'F'
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Figure 5.3.5 Variation of Potential difference ®r for constant cutoff thickness with
variation of cutoff depth

5.4 Exit Gradient

The permissible exit gradient depends on the type of soil below the floor; for sand the of
permissible exit gradient is higher than for silt. Depending on grain size, it ranges
between 0.20.to 0.25 for sand. Values less than 0.2 are for silt and silty clay.

Different cases are considered and results are presented in chapter 4 on Table 4.4.1 and
4.4.2 and variation of maximum exit gradient with B/S are shown from fig 4.4.1(a) to

4.4.1 (f) for equal depression and 4.4.2 (a) to 4.4.2 (¢) for unequal depression.
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The results are also presented in Table 5.3.4 and 5.3.5From the swdy of the curves

following table is obtained.

Table 5.3.4 Floor length with respect to equal depression

S.No. D/S /s lg B/S
1 0.2 0.2 0.1 13
2 0.2 0.4 0.1 12.5
3 0.2 0.6 0.1 12
4 0.4 0.2 0.1 10
5 0.4 0.4 0.1 9.75
6 0.4 0.6 0.1 9.5
7 0.6 0.2 0.1 7.8
8 0.6 0.4 0.1 7.5
9 0.8 0.8 0.1 5.6

Table 5.3.5 Floor length with respect to unequal depression

SNo.| DS D./S T/S e B/S
1 0.40 0.10 0.20 0.10 14.00
2 0.40 0.10 0.40 0.10 13.50
3 0.60 0.10 ]  0.40 0.10 13.00
4 0.10 0.60 0.40 0.10 8.30
5 0.10 - 0.60 0.60 0.10 8.00
Incase of sheet pile 0.10  19.50

The value of B/S for which IE =0.1 are shown in Tables 5.3.4 and 5.3.5.Provision of

higher depression in the down stream would lead to less floor width. This is because; the

depression in down stream side is more effective in reducing the maximum exit gradient.

Higher depression on the upstream side is not of much consequence in reducing the

maximum exit gradient.

5.5 Conclusion

5.5.1 Effect of downstream cutoff thickness:

1)

2)
3)

The thickness of cutoff which has been neglected so far has significant impact on
the uplift pressure. |

Uplift pressure increase with increase in cutoff depth.

The variation of thickness of downstrearﬁ cutoff has more impact on the variation

of uplift pressure than for variation in the depth of cutoff.
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4) The increment rate of potential values decreases marginally for different depth for
the same .+r::  cutoff thickness. '

'5) Equal depressions have less impact on the potential values in comparison to
unequal depression. For same cutoff thickness, the variation in depth of cutoff
leads to marginai variation in potential.

6) The potential values decrease by providing upstream depression greater than
downstream one and reverse will be the case on providing downstream depression
- greater than upstream one.
5.5.2 Effect of upstream cutoff thickness:
1) Velocity potential ®p and ®g decrease as the thickness of cutoff increases;
same things happen on increasing the cutoff depth.
2) The decrement rate on potential value is minor on increasing cutoff
thickness for greater depression.
3) The increase in cutoff depth has more impact on®g 2y on Pp.
4) There is the difference of impact due to depression on potential values.
5) Potential values decrease with increase in upstream depression.
5.5.3 Comparison of Potential on the floor with concrete cutoff, and Khosla’s potential
values
In the present analysié thickness of concrete cutoff has been considered while Khosla’s

solution assumes the thickness of cutoff to be negligible.

5.5.4 Exit gradient B

1) With an increase in the permissible. value of exit gradient, the design depth of
downstream cutoff and floor length decrease.

2) The exit gradient is not controlled by upstream cutoff depth.

3) Thef increase in thickness of cutoff subject to its limitation, to maintain
permissible maximum exit gradient, decreases the floor length to some extent but
it increases uplift pressure on the floor nominally.

5.5.5 Overall view

It is economical and safer to provide concrete cutoff as it reduces the length of floor and
there will be no chance of leakage from the construction joint as in case of sheet pile. The
potential values obtained from the present analytical method are on safer side compared

to those values obtained by Khosla.et.al.



Appendix-I

General

Most of the analytical method for the solution of two-dimensional ground water problem
is concerned with the determination of a function, which will transform a problem from a
geometrical domain within which a solution is sought for into one within -which the
solution is known; This chapter deals with the study of elementary function and the
manner in which these function s transform geometric figures from one complex to
another.

Conformal mapping technique is a powerful tool for solving two-dimensional Laplace
equations. The method is used for solving the problems of flow under hydraulic

structures.

Conformal Mapping Technique
An elementary but rather important case of conformal transformation is represented by

the formula

Z=%cosh w where z =x+iy and w=u+iv

b b .. .
x=§ooshucosv y=§smhusmv

From this general formula (which may be considered as the equation of complex
potential), we can obtain two sets of curves, by letting either

u=constant, or v=constant
It is generally known that for a weir with flat base and resting on a surface of ground, the

stream lines or lines of flow are confocal ellipses with their focci at ‘o’ as shown in figure

A-1.The equation to these ellipses is given by:

For u const. d + b4 =1 @

where u is stream line function.

So.
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Figure A-1 Streamlines for flat base weirs on surface

For v const. We can obtain we can obtain a family of confocal hyperbola

@ |
Either of these two groups may alternatively be taken to represent equipotentials or
stream lines

Consider the physical domain in the z-plane Figure A-2 .when a vertical obstruction like
as the cutoff is introduced , the configuration of the streamlines or the flow lines are
distorted .By applying the Schwartz-Christoffel transformation technique, the distortion
can be brought back to the normal configuration as shown in figure A-3.The streamlines

that will be formed after the transformation are smooth ellipses with confocal points.

Z-plane

Figure A-2 Physical domain in Z-plane
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Figure A-3 Physical domain mapped on t-plane

Assuming physical domain to be on the Z-plane, any point on this plane is given by
Z=x+iy.The transformed plane is known as t-plane, where any point on this plane is
described by g=E+in.

In weir-foundétion problems the zones subject to percolating straight lines (or circles of
infinite diameter). It therefore follows that the case in which a rectilinear polygon is

transformed into a semi-infinite plane is the most significant problem in this method.

So, the physical flow domains in z-plane as well as complex potential domain w are
transformed onto a common platform known as the auxiliary t-plane for which a direct
relation between z-plane and w-plane are obtained. In this process, the flow region in the
z-plane is first mapped into the lower half of the auxiliary t-plane. Then the complex
potential plane is also mapped into lower half of t-plane. From these two conformal

mapping s, the relation between z and o plane is obtained.

This transformation is given by the relation:

dt
S T oy T sy o e o PP o Fpy ®

where M1, Aoft, AsTt, AT, AsT, Aert are the changes in the angles at vertices B,C,D,E,F,G
in the positive sense and a, o, 03, 0Ly, s, ot are the ordinates at the points B,C,D,E,F,G in
the t-plane on which the points B,C,D,E,F,G of the z-plane are mapped.

As seen in the figure A-2 on the z-plane, the angles of turning at B,C,D,E,F,G ar

LA A S S A 1 .
~,-—,—,——,——,— respectively so that

27 2’27 27 272
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i1 1
= — or = —
ot =~ b=
T 1
2,2”:—5 or Azz——'_z"
T 1
== or -—
ded 2 As 2
i 1 1

At =—— or )L4=——2— and so on.

The origin in figure A-2 is at the point C, while in t-plane it is chosen I between Band C.
Assuming, oy=-1, ap=0, az=+1, 04 =B, a5 =y, ag =0 the equation of the transformation

reduces to

s M dt

f 1 1 1 1 1 1 +N
@-t)20+tR0-2)(B-2t)2(y-2t)2(6~1)

z=Mf‘[(a'tXf"’X”"’:)dt+N 4
Ja-2 Yo -1)

The equation (4) is the general equation between z-plane and t-plane obtained by

Schwartz Christoffel transformation technique for the physical domain shown in fig

A-2.

Similarly by applying the same transformation technique , the relation between w-plane

and t-plane can be obtained as explained in chapter 3 figure 3.3.4(b).The derived equation

is:

= M,sin” (—Zt 1++1a— 0 ) +N, 5)
By equating equations (4) and (5) t can be eliminated and direct relationship

between z and w-plane can be obtatned.
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Appendix- I

General
Since the mapping steps result in a set of non linear equations, which require a suitable

technique to compute the unknown parameters. The implicit nature of the non linear
equations restricts the range of its applicability. So such non linear equations are solved
by iterative method given by Newton- Rapshon.

The set of non linear equations are derived in Chapter 3.All the sets eg. for downstream
cutoff, upstream cutoff and cutoff varying at different position of the floor from u/s to d/s
are represented by :

Fi (X1,X2, -« «ov vee «..Xp)=0, where i=1,2, ... ... n constitute the variables X; X5 ..... X

Let ‘X’ and ‘F’ denote entire values of vector X; and functions F; ,then in the

neighbourhood of X, eacg of the functions F; can be expanded in Taylor series.

F(X +&)=F,(X)+ g—Eij +0.0x°

71 0X;
In matrix notation, the above equation can be written as:
F,(X + &) = F(X) +J.Ax, + 0.5x°
Neglecting the term of the order 8x” and higher and setting Fi( X+6x)=0
We have:J.Ax=-F(X) is an equation of matrix of set of non-linear equations.This matrix
equation can be solved by LU decomposition and and then correction are then added to
the solution vector as :Xpew = Xoig+AX

Where J is known as the Jacobian matrix and is represented as:
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[0F;, oF, oF, oF,
o, am, am ox,
oF, oF, oF, dF,
x, Ax, g ax,
J = [ o

oF, oF, oF, dF,
ax, 0x, Ox, ox,,

Where,

aF, Fi(x,X;, X500 x; +Ah,...... ,%,) = F (%, %5, %5 e X, )

ax, Ah

and Ax, = ~-F[7 '

or X; =X, +Ax X;is the variables in the non linear equations.
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Appendix- llI

FORTRAN PROGRAM

****************************************************************

* This Program is a part of M.Tech Dissertation for W.R.D.T.C,IIT Roorkee *

- * Developed by Gir Bahadur K.C.M.Tech WRD (Civil) 2002-2004.

* This source code is intended as asupplement to the Dissertation
*“Design of Depressed Weir on Permeable Foundation with

*downstream Concrete Cutoff” A
seshedesieskcskkskokokkkkokskoksksksk ok okskskskskosk ok skshokskosk sk sk ok sk skse sk sk sk sk sk sk sfesie sfe sfe sk shesheshe sk sk e sk skeshese s s ke ok

C

C

6

£

S
%
%

PROGRAM FOR DEPRESSED WEIR WITH DOWNSTREAM CONCRETE CUTOFF

B=TOTAL FLOOR LENGTH,T=CUTOFF THICKNESS,D1=U/S DEPRESSION,
C D2 =D/S DEPRESSION,S=CUTOFF DEPTH

DIMENSION WW(96),XX(96)

open(1,file='weirp.dat',status='old")
open(2.file="weirp.out',status="unknown')
open(3.file='gauss.dat',status='old")

READ(3,*)N

READ (3,*)(WW(I),I=1,N)

READ (3,*)(XX(I),I=1,N)

READ (1,%)B,T,S,D1,D2 :
WRITE (2,*)'Program Result for Velocity Potential'
WRI"I‘E (2’*)|****************’i********************'
WRITE(2,*))B TS D1 D2
WRITE (2,5)B,T,S,D1,D2
FORMAT(SF5.2)
WRITE (2,%) '
FORMAT(4F7.2)

INDEX=1

ALPHAO=.01
BETAO=1.+ALPHAO
GAMAO=BETA0+.01

DETA0=GAMAO0+.01
WRITE(2,*)' INITIALLY GUESSED VALUES'
WRITE (2,%)" '
WRITE(2,*))ALPHAO BETA0 GAMAO DETAO '
WRITE(2,6)ALPHAO,BETA0,GAMAO,DETA0 :
CALL MAIN(N,WW,XX,Al PHAO,BETA0,GAMAO,DETAO,

1 ENT1,ENT2,ENT3,ENT4,ENT5,B,T,D1,D2,S,
2 FA,FB,FC,FD,FF1,FF2,FF3,FF4,
3 DALPHAO,DBETAQ,DGAMAOQ,DDETAQ)
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Write(2,*)'Value of ENT2="ENT2
VVRFTECL*T**************************************M
CALL PRESS(ENT2,ALPHAO,BETA0,GAMAO,DETAO,PC,PD,PE,PF,ZIE)
‘WRITE(2,*)’ RESULTS'
VVRITECL*Y***************************************W
WRITE (2,¥)) VELOCITY POTENTIALS IN %'
WRITE (2,¥))
WRITE (2,*)) PC PD PE PF
WRITE (2,%)' '
WRITE (2,6)PC,PD,PE,PF -
VVRITTKZJﬁW**************************************W
WRITE (2,*) EXIT GRADIENT'
WRITE (2.*)
'WRITE(2,*)' B/S. IE'

WRITE(2,109)B/S,ZIE

109 FORMAT(2(F9.5,2X))
WRITE (2,%)
WRITE(2,*)' B/S D1/S D2)S T/S
WRITE(2,110)B/S, D1/S,D2/S,T/S

110 FORMAT(4(F7.3,2X))
WRITE (*,*)'B/S IE'
WRITE (*,111) B/S,ZIE

111 FORMAT(2(F8.5,2X))

WRITE(Z,*)'* sk kxxkt BND OF RESULTS®*% %% #4% % %!
STOP
END

skskock skok sk skok Rk ks skok sk ck sk sk sk ckock sk skokoR sk kR Rk ks sk R koo kR kR ck kR ok kokoskok

SUBROUTINE MAIN (SOLUTION OF JACOBIAN MATRIX)
sk ok ok skock sk osk sk sk sk sk okl sk ok ckosk sk sk sk sk skook sk sk skosk skesk sk ok skok skosk sk e kR skskesk sk sk sk ok ke sk ok
SUBROUTINE MAIN(N,WW,XX,ALPHAO,BETA0,GAMAO,DETAO,
1 ENT1,ENT2,ENT3,ENT4,ENTS B, T,D1,D2,S,
2 FA,FB,FC,FD,FF1,FF2,FF3,FF4,
3 DALPHAO,DBETAQ,DGAMAO,DDETAO)
DIMENSION WW(96),XX(96)
DIMENSION AA(4,4),CC(4)

[N e Kt

EPSILON=0.00001
10 CONTINUE _
CALL BX(N,WW,XX,ALPHAO,BETA0,GAMAO,DETAO,
1 ENT1,ENT2,ENT3,ENT4,ENT5,B,T,D1,D2,S,
2 FA,FB,FC,FD,FF1,FF2,FF3,FF4)
CC(1)=-FF1
CC(2)=-FF2
CC(3)=-FF3
CC(4)=-FF4

C " ek ko sk oK kK

DALPHA=EPSILON
DBETA=EPSILON
DGAMA=EPSILON
DDETA=EPSILON

C sk sie sk ok ske s sk sk sk sk sk o sk sk sk ok st sk ok ok sk ok sk ok sk sk ok o ke ol s e Sl ok e sje s sk s sk ke ke sk sk ok

ALPHA1=ALPHAO+DALPHA

CALL BX(N,WW,XX, ALPHA1,BETAO,GAMAO,DETAUO,
1 ENT1,ENT2,ENT3,ENT4,ENTS,B.T,D1,D2,S,
2 FA,FB,FC,FD,FF11,FF22 FF33,FF44)
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D =

AA(1,1)=(FF11-FF1)/DALPHA
AA(2,1)=(FF22-FF2)/DALPHA
AA(3,1)=(FF33-FF3)/DALPHA
AA(4,1)=(FF44-FF4)/DALPHA
Fskckokskckokkockkokckokskkskkkckokkk ks skokskskok sk bk kk sk ki ckok
BETA1=BETAO+DBETA

CALL BX(N,WW,XX,ALPHAO,BETA1,GAMAO,DETAO,
ENT1,ENT2,ENT3,ENT4,ENTS5,B,T,D1,D2,S,
FA,FB,FC,FD,FF11,FF22,FF33,FF44)

AA(1,2)=(FF11-FF1)/DBETA
AA(2,2)=(FF22-FF2)/DBETA
AA(3,2)=(FF33-FF3)/DBETA
AA(4,2)=(FF44-FF4)/DBETA

ok skt ok ke sk sk sk ok

GAMA1=GAMAO+DGAMA

CALL BX(N,WW,XX,ALPHAO,BETAD,GAMA1,DETAO,
ENT1,ENT2,ENT3,ENT4,ENT5,B,T,D1,D2,S,
FA,FB,FC,FD,FF11,FF22,FF33,FF44)

AA(1,3)=(FF11-FF1)/DGAMA
AA(2,3)=(FF22-FF2)/DGAMA
AA(3,3)=(FF33-FF3)/DGAMA
AA(4,3)=(FF44-FF4)/DGAMA
Hokockkkockkokkk
DETA1=DETA0+DDETA

CALL BX(N, WW,XX,ALPHAO,BETA0,GAMAO,DETAL1,
ENT1,ENT2,ENT3,ENT4,ENT5,B,T,D1,D2,S,
FA,FB,FC,FD,FF11,FF22,FF33,FF44)
AA(1,4)=(FF11-FF1)/DDETA
AA(2,4)=(FF22-FF2)/DDETA
AA(3,4)=(FF33-FF3)/DDETA
AA(4,4)=(FF44-FF4)/DDETA
kkkRkkkkRE
VVRITE(&*Y***********************
WRITE(*,*YMATRIX AA'

DO 91=1,4

WRITE(*,21) (AA(LT),J=1,4)
FORMAT (16F8.5,8X)

CONTINUE

dkokkckkdkkokk

MM=4

CALL MATRIXIN(AA,MM)
dckpkkRkk Rk

SUM=0

DO J=1,4
 SUM=SUM+AA(1,1)*CC()

ENDDO

DALPHA0=SUM

. SUM=0

DO J=1,4
SUM=SUM+AA(2,7)*CC(J)

ENDDO

DBETA0=SUM

SUM=0

DO J=1,4
SUM=SUM+AA(3,J)*CC(J)

ENDDO

DGAMAO=SUM
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20

30

400

500

600

40

a0

SUM=0
DO J=1,4

" SUM=SUM+AA(4,1)*CC({)

ENDDO
DDETAO0=SUM

*oEE KKK KA K

ALPHAO=DALPHACG+ALPHAO
BETAO=DBETAC+BETAQO
GAMAO=DGAMAO+GAMAO
DETAO=DDETAO+DETAO

e 3 3k ok ke sk sk ok s sk ok ke ok ok sk sleooke sk e sk e kool sk skl itk e sk sk sk ke sk skeok sk sk

INDEX=INDEX+1 (

IF(INDEX.GT.1500)GOTO 20
IF(ABS(DALPHA0).GT.0.00001)GOTO 10
IF(ABS(DBETAQ).GT.0.00001) GOTO 10
IF(ABS(DGAMAGO).GT.0.00001) GOTO 10
IF(ABS(DDETA0).GT.0.00001) GOTO 10

GOTO 30

CONTINUE

WRITE(2,*)ITERATRION HAS FAILED'

GOTO 40

CONTINUE
WRI"I‘E(Z’*)‘************************************ '
WRITE(2,*)NUMBER OF ITERATIONS ='INDEX
FORMAT(I3)
WRITE(Z,*)'************************************ 1
WRITE(2,*) VALUES OF THE FUNCTIONS AFTER ITERATIONS'
WRITE(2,500)cc(1),cc(2),cc(3),cc(4)

WRI’I‘E(z,*)'*****************************************

FORMAT(4F7.5)
WRIT'E(*’*)l*************************************'
WRITE(2,*)'  VALUES COMPUTED'
WRITE(2,*)ALPHA BETA GAMA DETA'
WRITE(2,600)ALPHA0,BETA0,GAMAO,DETAQ
FORMAT(4(F8.5,2X))

WRITE(2,%)'

- CONTINUE

RETURN
END

sk 3 sk sk sk of sk ok ok ke s ke sk sk sk ke sk e sk ke sk ke sk sk ok ki sk sk ok ok ko ek sk ko ok

SUBROUTINE MATRIXINV (LU DECOMPOSITION)

e 3k ok sk ke 3k ok sk ok s sk sk ok ok ok oo ok ke ke e ok ok ok S ok sk sk sk Sk sk sk ok sk ke ke ok ok

SUBROUTINE MATRIXIN (AA,MM)
DIMENSION AA(4,4),B(4),C(4)

NN=MM-1
AA(1,1)=1./AA(1,1)
DO 8 M=1,NN
K=M+1

DO 3 1=1,M
B(I)=0.0

DO 3J=1,M
B(I)=B(ID)+AA(N*AA{J.K)
D=0.0

DO 4 1=1,M
D=D+AA(K,I)*B(I)
D=-D+AA(K,K)
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29
17

oNoXe!

oNoNe!

AA(KK)=1./D

DO 5 I=1,M
AA(QK)=-B(I)*AA(K,K)
DO 6J=1,M

C(1)=0.0

DO 6 I=1,M
CA)=CO)+AAK.D*AA(LT)
DO 7J=1,M
AA(K,T)=-C()*AA(K, K)
DO 8 I=1,M
DO 8J=1,M
AALT)=AAQLY)-B)*AAK,T)
WRITE(*’*)'*************************7
WRITE(*,*)INV MATRIX'
DO 17 I=1,4
WRITE(*,29) (AA(LY),J=1,4)
FORMAT (16F8.5,5X)
CONTINUE

RETURN
END

s s o oK N K K KK Sk SRR oK Sk ok Rk R sk sk sk ks kok ok sk ok

SUBROUTINE PRESSURE(CALCULATES UPLIFT PRESSURE)

ok skeckokdkokeosk ek ok ok b dok skdok ok sk ok ko kb skok ko skl b ok

SUBROUTINE PRESS(ENT2,ALPHA0,BETA0,GAMAO,DETAO,PC,PD,PE,PF,

1 ZIE)

PI=3.141592654
PC=(.5-1./PI* ASIN((2* ALPHAO+1-DETAQ)/(DETAO+1.)))*
1 100. “

PD=(.5-1./PI*ASIN((3.-DETAO)/(DETA0+1.)))*
1 - 100.

PE=(.5-1./PI* ASIN((2.*BETAO+1.-DETA0)(DETAO+1.)))*
1 100.

PF=(.5-1./PI*ASIN((2*GAMAO+1.-DETAO0)/(DETAO+1.)))*
1 100.

X1=SQRT(DETA0-1.)
X2=SQRT((DETAO-ALPHAO0)*(DETA0-BETAQ)*(DETA0-GAMAO))
X3=(1/PI)*ENT2

ZIE=X3*(X1/X2)

RETURN
END

kiR ko dkok kb ok okl dok ok ok ko koleokskokokok ok ok

SUBROUTINE BX(GROUPING OF SUBROUTINES)

s skooksk skokek sk ko Rockeck skolok ook ok kR Rk ok ook ok sk ok okokokok

SUBROUTINE BX(N,WW, XX AL PHAO,BETA0,GAMAO,DETAQ,

1 ENT1,ENT2,ENT3,ENT4,ENTS5,B,T,D1,D2,S,
2 FA,FB,FC,FD,FF1,FF2,FF3,FF4)
DIMENSION WW(96),XX(96)

CALL Fx1(N,WW XX AL PHAQ,BETA0,GAMAO,DETAQ,ENT 1)
CALL Fx2(N,WW,XX,A1 PHAQ,BETA0,GAMAO,DETAQ,ENT 2)
CALL Fx3(N,WW,XX,AT PHAO,BETA0,GAMAO,DETAQ,ENT 3)
CALL Fx4(N,WW,XX,AI PHAOQ,BET A0,GAMAO,DETAO,ENT 4)
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CALL Fx5(N,WW XX AT PHAO,BETA0,GAMAO,DETAOQ,ENT 5)

FA=ENT2/ENT1
FB=ENT3/ENT1
FC=ENT4/ENT1
_ FD=ENTS5/ENT1

FF1=(S/(B-T))-FA
FF2=(T/(B-T))-FB
FF3=((D2+S)/(B-T))-FC
FF4=(D1/(B-T))-FD

RETURN
END

SUBROUTINE Fx1
SUBROUTINE Fx1(N,WW,XX,AlPHAO,BETA0,GAMAO,DETAO,ENT1 )
DIMENSION WW(96),XX(96)

SUM=0
DO I=1,N

U=XX(l)

Y =((U+L.)/2.)*(SQRT(1.-ALPHAO))

FIN=SQRT((1.-ALPHAO-Y**2.)*(BETAO-1.+Y**2.)*
1 (GAMAO-1.+Y*%2.)

F1D=SQRT((2.-Y**2.)*(DETA0-1.+Y**2.))

F1=FIN/FID
SUM=SUM+WW(I)*F1

ENDDO

ENT1=SUM*(SQRT(1.-ALPHAO))

RETURN

END

SUBROUTINE Fx2

SUBROUTINE Fx2(N,WW,XX,ALPHA0,BETA0,GAMAO,DETA0,ENT? )

DIMENSION WW(96),XX(96) .

SUM=0

DO [=1,N

U=XX(0)

Y =((U+1.)/2.)*(SQRT(BETA0-1.))

F2N=SQRT((1.+Y**2.-ALPHAO)*(BETAO-1.-Y**2.)*
1  (GAMAO-1.-Y**2.))

F2D=SQRT((DETAO-1.-Y**2.)*(2.4Y**2.))
" _F2=F2N/F2D
SUM=SUM+WW(I)*F2
ENDDO
ENT2=SUM*SQRT( BETAO-1.)
RETURN
END

SUBROUTINE Fx3
SUBROUTINE Fx3(N,WW,XX,ALPHAO,BETAO,GAMAOQ,DETA0,ENT3)
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DIMENSION WW(96),XX(96)
SUM=0
DO I=1,N
U=XX(I) \
Y=((U+1.)/2.)*(SQRT(GAMAO-BETAO))

F3N=(Y**2.)*(SQRT((BETAO+Y**2. -ALPHAQ)*(GAMAQ-BETA0-Y**2.)))

F3D=SQRT((BETAO+1.+Y**2.)*(BETAO+Y**2.-1.)*
1 (DETAO0-BETAQ-Y**2.))
F3=F3N/F3D

SUM=SUM+WW(I)*F3

ENDDO

ENT3=SUM*(SQRT(GAMAO-BETAUO))
RETURN

END

SUBROUTINE Fx4 .
SUBROUTINE Fx4(N,WW,XX AL PHA(,BETA0,GAMAO,DETAO,ENT4)
DIMENSION WW(96),XX(96)
SUM=0
DO I=1,N
U=XX(I)
Y=((U+1.)/2.)*(SQRT(DETAO0-GAMADO))

F4N=SQRT((DETA0-Y**2.-ALPHA0)*(DETA0-Y**2,-BETAO0)
1 *(DETAO-Y**2.-GAMAOQ))
F4D=SQRT((DETAO-Y**2.+1.)*(DETA0-Y**2-1))
F4=F4N/FAD
SUM=SUM+WW(I)*F4
ENDDO
ENT4=SUM*(SQRT(DETA0-GAMAO))
RETURN
END

SUBROUTINE Fx5
SUBROUTINE ExS(N,WW, XX, ALPHAQ,BETA0,GAMAO,DETAQ,ENTS)
DIMENSION WW(96),XX(96)
SUM=0
DO I=1,N
U=XX(I)

Y=((U+1.)/2./(SQRT(1.+ALPHAO0))

FSN=SQRT((ALPHAO+1.-Y**2)#(BETAO+1.-Y**2.)*

1 (GAMAO+1.-Y**2.)

FSD=SQRT((2.-Y**2.)*(DETA0+1.-Y**2.))

F5=F5N/F5D
SUM=SUM-+WW(I)*F5
ENDDO 4
ENT5=SUM*(1.+ALPHAQ)

RETURN
END

#102



Sample result output

dkkeoiokockkkockk ko kockkckokeckkkokk kR kkok kb ok ek sk Rk sk sk ek keok sk ok sk kokk

Data Entry Procedure:( Weir parameters to be entered as per below)
B T S D1 D2 ‘
50. 0.10 1.0 0.2 0.8

ok kR oRok sk k ki kokok kok sk skoksk kb sk okok sk sk sk ckokk kR ck sk Rk bk sk kb ko ok

SAMPLE RESULT OUTPUT

Program Result for Velocity Potential

EE L EEEEEEEEEEEEEEEEELEDEEEEEEEEELSE]
B T S D1 D2

50.00 .10 1.00 .20 .80

INITIALLY GUESSED VALUES

ALPHAO BETA0 GAMAQ DETAQ
01 1.01 1.02 .1.03

************************************

NUMBER OF ITERATIONS = 9

ks dkesk ook koo skockockeosk kckoskskckck ksk kckokck kR kkokk ok skokokkok ok

VALUES OF THE FUNCTIONS AFTER ITERATIONS

.00000 .00000 .00000 .00000

*_****************************************
VALUES COMPUTED

ALPHA BETA GAMA DETA

~97110 1.03592 1.05949  1.11511

Value of ENT2= 3.841983E-02

kkkkkkckkckkkkkckkkkek sk kokkkkekkkkoRkkkkk

RESULTS
kckokskckkckckokckckRokokskokkk ok kokokskokpkkkkkspsRkskkskskokok sk
VELOCITY POTENTIALS IN %
PC PD PE PF
92.54 1499 12.40 .10.37
e o8 o6 ok o ok oK ok o o ke sk 3k o sk o sk ok ok ok o ok o ko 3R ok oK o SR oK Rk ok ok ok ok o oK O
EXIT GRADIENT
B/S IB
© 50.00000 04329
B/S DIS DS T/S

50.000 .200 .800 .100
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! DEPRESSED FLOOR WITH CONCRETE CUTOFF VARYING FROM U/S END TO D/S
END OF FLOOR

! B1=BASE1,T=CUTOFF THICKNESS,B2=BASE2,D1=U/S DEPRESSION,
C D2=D/S DEPRESSION,S=DEPTH OF CUTOFF

C sk 3k sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk R sk ok ok ok ok e sk skskock sk kokok skok sk ok sk ok sk sk ko sk kR ks ke sk ok

DIMENSION WW(96),XX(96)

open(1,file="weirp.dat',status="old")
open(2, file='weirp.out',status="unknown’)
open(3,file="gauss.dat',status="old")

READ(3,*N
READ (3,*)(WW(I),I=1,N)
READ (3,*)(XX(1),I=1,N)

READ (1,*)B1,B2,D1,D2,S,T

6 FORMAT(6E7.3)
INDEX=1
B=B1+B2
GAMAOQ=.1
DETAO0=.25
SIGMAO=1.1
CMUO=SIGMAG+.1
BETAO=1.1
ALPHAO=BETAQO+.15

WRITEQ2,*Bl1 T B2 DI D2 S
WRITE(2,6)B1,T,B2,D1,D2,S
write (2,%) INITIALLY GUESSED VALUES'
WRITE(2,%)' ' :
WRITE(2,*)'ALPHAO, BETAO, GAMAO, DETAO, SIGMAO, MUO '
i WRITE(2,7)ALPHAO,BETA0,GAMAO,DETA0,SIGMAO,CMUO

7 FORMAT(6F7.3) :
CALL MAIN(N;WW,XX,ALPHAO,BETA0,GAMAO,DETA0,SIGMA0,CMUO,
1 ENT1,ENT2,ENT3,ENT4,ENTS,ENT6,ENT7,B1,T,B2,D1,D2,S,
2 FA,FB,FC,FD,FE,FF,FF1,FF2, FF3,FF4,FF5,FF6,
3 DALPHAO,DBETA0,DGAMAO,DDETAO,DSIGMAQ,DCMUC)

Write(2,*) Value of ENT1=',ENT1

o Pk ok o ok sk ok sk sk oo ok sk ok ok s sl sk ok sleske ek e ok e sk eskeskesk ke sk sk ke ok
WRITE(2,*)

CALL PRESS(ALPHAO,GAMAO,DETAO,CMUO,PD,PE,PF,PG)
WRITE(2,*)' RESULTS'

WRITE(2, *)*# ###4 k# kb hbotok kbbbt ek ok ok ok ko ok ok )
WRITE(2,*)' B/T B/S B/D1 B/D2
WRITE(2,109)B/T,B/S,B/D1,B/D2

109 FORMAT(4(F7.2,2X))
WRITE(2,*)' '
WRITE(2,YBI/B B2B PD% PE% PF% PG%'
WRITE(2,110)B1/B,B2/B,PD,PE,PF,PG

110 FORMAT(6(F5.2,2X))
WRITE(2’*)|*** Kk kkkk *END OF RESULTS** s ok skook cksk sk sk !
STOP
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oAo

END

sk kookook kok ok skakosk sk sk ok skok ks ckosk dkeskokok ek sk koo sk ke sk sk skok Rk ko sk kb ok R skeskosk sk ok ke k

SUBROUTINE MAIN (SOLUTION OF JACOBIAN MATRIX)
sk ok ek ckokoksk sk kckkkckckokoskckokok ok koo sk sk desk Rk sk sk kskock sk sk sk skshoko sk sk kook
SUBROUTINE MAIN(N,WW,XX,ALPHAO,BETA0,GAMAO,DETA0,SIGMAO,CMUO,
1 ENT1,ENT2,ENT3,ENT4,ENTS, ENT6,ENT7,B1,T,B2,D1,D2,S,
2 FA,FB,FC,FD,FE,FF,FF1,FF2,FF3,FF4,FF5,FF6,
3 DALPHAO,DBETAQ,DGAMAO,DDETA0,DSIGMA0,DCMUO)
DIMENSION WW(96),XX(96)
DIMENSION AA(6,6),CC(6)
DELTA=0.0001
CONTINUE
CALL BX(N,WW,XX,ALPHAO,BETA0,GAMAO,DETA0,SIGMA0,CMUO,
1 ENT1,ENT2,ENT3,ENT4,ENT5, ENT6,ENT7,B1,T,B2,D1,D2,S, .
2 FA,FB,FC,FD,FE,FF,FF1,FF2,FF3,FF4,FF5,FF6)
CC(1)=-FF1
CC(2)=-FF2
CC(3)=-FF3
CC(4)=-FF4
CC(5)=-FF5
CC(6)=-FF6
kkkckkkkkkk
DALPHA=DELTA
DBETA =DELTA
DGAMA =DELTA
DDETA =DELTA
DSIGMA=DELTA
DCMU =DELTA
sokkdockgdokkk. -
ALPHA1=ALPHAO+DALPHA ‘
CALL BX(N,WW,XX,ALPHA1,BETA0,GAMAO,DETAO0,SIGMAO,CMUO,
1 ENT1,ENT2,ENT3,ENT4,ENTS,ENT6,ENT7,B1,T,B2,D1,D2,S,
2 FA,FB,FC,FD,FE,FF,FF11,FF22, FF33,FF44,FF55 FF66)

AA(1,1)=(FF11-FF1)/DALPHA
AA(2,1)=(FF22-FF2)/DALPHA
AA(3,1)=(FF33-FF3)/DALPHA
AA(4,1)=(FF44-FF4)/DALPHA
AA(5,1)=(FF55-FF5)/DALPHA
AA(6,1)=(FF66-FF6)/DALPHA

skekokokskok ko okok cksk skokoskok sk ok sk ok k¥

BETA1=BETA0+DBETA

CALL BX(N,WW,XX,ALPHA0,BETA1,GAMAO,DETA0,SIGMAO,CMUO,
1 ENT1,ENT2,ENT3,ENT4,ENT5,ENT6,ENT7,B1,T,B2,D1,D2,S, :
2 FA,FB,FC,FD,FE,FF,FF11,FF22,FF33,FF44,FF55,FF66)

AA(1,2)=(FF11-FF1)/DBETA
AA(2,2)=(FF22-FF2)/DBETA
AA(3,2)=(FF33-FF3)/DBETA
AA(4,2)=(FF44-FF4)/DBETA
AA(5,2)=(FF55-FF5)/DBETA
AA(6,2)=(FF66-FF6)/[DBETA

sk ok ke ok ok ok ok ok ok ok ke ok sk okook Skesk ke skok okok ok

GAMA1=GAMAQO+DGAMA

CALL BX(N,WW,XX,AL PHAQ,BETA0,GAMA1,DETA0,SIGMA0,CMUO,
1 ENT1,ENT2,ENT3,ENT4,ENT5,ENT6,ENT7,B1,T,B2,D1,D2,S,
2 EAFB,FC,FD,FE,FF,FF11,FF22 FF33 FF44,FF55,FF66)
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AA(1,3)=(FF11-FF1)/DGAMA
AA(2,3)=(FF22-FF2)/DGAMA -
AA(3,3)=(FF33-FF3)/DGAMA
AA(4,3)=(FF44-FF4)/DGAMA
AA(5,3)=(FF55-FF5)/DGAMA
AA(6,3)=(FF66-FF6)/DGAMA

SobskokkskokskokskkRkskkkkk ek kdkk %

DETA1=DETAO0+DDETA

CALL BX(N,WW,XX AT PHAO,BETA0,GAMAO,DETA1,SIGMAO,CMUO,
ENT1,ENT2,ENT3,ENT4,ENT5 ENT6,ENT7,B1,T,B2,D1,D2,S,
FA,FB,FC,FD,FE FF,FF11,FF22 FF33,FF44,FF55,FF66)

AA(1,4)=(FF11-FF1)/DDETA
AA(2,4)=(FF22-FF2)/DDETA
AA(3,4)=(FF33-FF3)/DDETA
AA(4,4)=(FF44-FF4)/DDETA
AA(5,4)=(FF55-FF5)/DDETA
AA(6,4)=(FF66-FF6)/DDETA

seoke skodk e sk ks sk oskok sk sk skok sk sk sk ek sk sk sk

SIGMA1=SIGMAO0+DSIGMA
CALL BX(N,WW,XX,ALPHAOQ,BETA0,GAMAO,DETA0,SIGMA1,CMUO,
ENT1,ENT2,ENT3,ENT4,ENT5,ENT6,ENT7,B1,T,B2,D1,D2,S,
FA FB,FC,FD,FE,FF,FF11,FF22, FF33,FF44,FF55, FF66)
AA(1,5)=(FF11-FF1)/DSIGMA
AA(2,5)=(FF22-FF2)/DSIGMA
AA(3,5)=(FF33-FF3)/DSIGMA
AA(4,5)=(FF44-FF4)/DSIGMA
AA(5,5)=(FF55-FF5)/DSIGMA
AA(6,5)=(FF66-FF6)/DSIGMA

seskckskeckkockkckck Rk hokksk kR ko ke

CMU1=CMU0+DCMU

CALL BX(N,WW,XX A1 PHAO,BETA0,GAMAO,DETAQ,SIGMAQ, CMU1
ENT1,ENT2,ENT3,ENT4,ENT5 ENT6,ENT7,B1,T,B2,D1,D2,S,

FA FB,FC,FD,FE,FF,FF11,FF22 FF33,FF44,FF55,FF66)

AA(1,6)=(FF11-FF1)/DCMU
AA(2,6)=(FF22-FF2)/DCMU
AA(3,6)=(FF33-FF3)/DCMU
AA(4,6)=(FF44-FF4)/DCMU
AA(5,6)=(FF55-FF5)/DCMU
AA(6,6)=(FF66-FF6)/DCMU

MM=6

CALL MATRIXIN(AA,MM)
Hobskckkkkdkckd

SUM=0

DO J=1,6
SUM=SUM+AA(1,])*CC()
ENDDO

DALPHA0=SUM

SUM=0

DO J=1,6
SUM=SUM+AA(2,)*CC(J)
ENDDO
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20

30

400

DBETAO=SUM

SUM=0
DO J=1,6
SUM=SUM+AA(3,1)*CC()
ENDDO .
DGAMAO=SUM

SUM=0
DO J=1,6 |
SUM=SUM+AA(4,5)*CC(J)
ENDDO

DDETA0=SUM

SUM=0
DO J=1,6
SUM=SUM+AA(5,J)*CC()
ENDDO
DSIGMAQO=SUM

SUM=0

DO J=1,6
SUM=SUM+AA(6,7)*CC(J)
ENDDO

- DCMUO0=SUM

Ekk kR deckRkkokkkkokdkkkkkkok

ATLPHAO=DALPHAO+AILLPHAO
BETAO=DBETAO0+BETAO

GAMAO=DGAMAO+GAMAOQ

DETAO=DDETAQ0+DETAO

SIGMAQO=DSIGMAU+SIGMAQ

CMUO=DCMUO+CMUO

'W'RI"I‘E(*;&)'*****************‘
WRITE(*,*)ALPHAO,BETA0,GAMAO,DETA0,SIGMAQ0,CMUQ'
WRITE(*,*) ALPHAO,BETAQ,GAMAO,DETA0,SIGMAO,CMUO

kdckkk sk dek kokkkkkkokdckaAokkk kg kk

INDEX=INDEX+1

JFINDEX.GT.1500)GOTO 20

IF(ABS(DALPHAO).GT.0.00001)GOTO 10
IF(ABS(DBETAO).GT.0.00001)GOTO 10
IF(ABS(DGAMAD).GT.0.00001)GOTO 10
IF(ABS(DDETAQ).GT.0.00001)GOTO 10
IF(ABS(DSIGMAO).GT.0.00001)GOTO 10
IF(ABS(DCMUO0).GT.0.00001)GOTO 10

GOTO 30
CONTINUE

- WRITE(2,*)ITERATRION HAS FAILED"

GOTO 40
CONTINUE

WRITE(2,*)' '

WRITE(2,*)NUMBER OF ITERATIONS =', INDEX
WRITE(2,400)

FORMAT(I3)

WRITE(2,*)" '
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WRITE(2,*)'VALUES OF THE FUNCTIONS AFTER ITERATIONS'
WRITE(2,*)' !
WRITE(2,500)cc(1),cc(2),cc(3),cc(4),cc(5),cc(6)

500 FORMAT(6F7.4)
WRIT‘E(2,*)|*************** ok kkkkkk k!
WRITE(2,*)'  Final Values Computed’
WRITE(2,*)) ALPHA BETA GAMA DETA SIGMA

1 MU

WRITE(2,600)ALPHAO, BETA0,GAMAO,DETAQ,SIGMAO0,CMUOQ

600 FORMAT(6(F10.4,2X))

Yok ke ok ok ok sk ok ok sk ok ok koK ok ok Kok ok ok
WRITE(2,*) HrkE

40 CONTINUE

RETURN
END

e sk ook sk ok ok sk ok ok Rk ok ok ok o ok ok ok ok ok ok o ok ok sk ok ok ok sk skl ok ok ok

SUBROUTINE MATRIXINV (LU DECOMPOSITION)

e ek s ok sk ok skl ok sk ko sk ok sk sk ok ok sk ok sk sk sk ok skook sk sk skeok sk ok skeok ok koo

Qa0

SUBROUTINE MATRIXIN (AA,MM)
DIMENSION AA(6,6),B(6),C(6)
NN=MM-1
AA(1,1)=1/AA(1,1)
DO 8 M=1,NN
K=M+1
DO 31=1,M
B(1)=0.0
DO 3 J=1,M
3 B(D=B()+AA(LT)*AA(,K)
D=0.0

DO 4 1=1,M

4 D=D+AA(K,I)*B(l)
D=-D+AA(K,K)
AA(K,K)=1./D
DO 5 I=1,M

5 AA(LK)=-B(I)*AA(K,K)
DO 6 J=1,M
C(1)=0.0

DO 6 I=1,M
6 C(=CU)+AAK,I)*AA(LY)
DO 7J=1,M
7 AA(K,))=-C(0)*AA(K,K)
DO 8I=1,M
DO 8 J=1.M
8 AA(LD=AA(L))-BI)*AA(K,J)
W’RI’I‘E(*’*)l*************************'
WRITE(*,*)INV MATRIX'
DO 171=1,5
WRITE(*,29) (AA(I,)),J=1,5)
29 FORMAT (25F8.5,5X)
17 CONTINUE

RETURN
END

3 3k 3 s s sk ok sk ok sk ok sk ok ok sk sk sk ok sk 3k sk ok ke ok sk sk ok sk ook sk sk ok sk ok ok ok sk sk ok sk sk ok ok ok ok ok ok ok sk ok sk ok

SUBROUTINE PRESS(CALCULATION OF PRESSURE AT KEY PONTS)

S8 3k e ok s ok o sk sk sk ok st sk sk Sk ok ok ok sk sk ok ok e ok s ok ok ok ok ok oK K ok ok ok Rk sk ke sk ok Sk kR Rk sk sk ki ok

aaa

SUBROUTINE PRESS(ALPHA0,GAMAO,DETA0,CMUO,PD,PE,PF,PG)
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oNoNe!

PI=3.141592654

PD=(.5-1./PI*ASIN((-2.+ALPHAO-CMUO)/(ALPHAO+CMUO0)))*100.

PE=(.5-1./PI*ASIN((2.*GAMAO+ALPHAQ-CMUO)/(ALPHA0+CMUO0)))*100.

PF=(.5-1./PI* ASIN((2.*DETAO+ALPHA0-CMUO)/(ALPHAO+CMUO0)))*100.

PG=(.5-1./PI* ASIN((2.+ALPHAO-CMUO)/(ALPHAO+CMUO)))*100.

RETURN
END

EEE R E LRSS LRSI EEEEEEE T

SUBROUTINE BX(GROUPING OF SUBROUTINES)

sk ok sk ok ok ok sk ok ok sk ok ok ok Kook ok sk skeok ok ok ks sk skok skodkoske ok ko ok ok sk kR ok

SUBROUTINE BX(N,WW,XX,ALPHAO,BETA0,GAMAO,DETA0,SIGMAG,CMUO,
ENT1,ENT2,ENT3,ENT4,ENTS,ENT6,ENT7,B1,T,B2,D1,D2,S,
FA,FB,FC,FD,FE,FF,FF1, FF2 FF3,FF4,FF5,FF6)

'DIMENSION WW(96),XX(96)

CALL Fx1(N,WW,XX,AT. PHAO,BETA0,GAMAO,DETA0,SIGMA0O,CMUG,ENT1)
CALL Fx2(N,WW, XX ,ALPHAO,BETA0,GAMAO,DETA0,SIGMAO,CMUOQ,ENT2)

CALL Fx3(N,WW,XX,ALPHAO,BETA0,GAMAO,DETA0,SIGMA.0,CMUO,ENT3)

CALL Fx4(N,WW,XX,ALPHAO,BETA0,GAMAO,DETA0,SIGMA0,CMUO,ENT4)
CALL Fx5(N,WW,XX, ALPHAO,BETA0,GAMAO,DETA0,SIGMAO,CMUO,ENTS5)
CALL Fx6(N,WW,XX,ALPHA0,BETA0,GAMAO,DETA0,SIGMAO,CMUO,ENT6)
CALL Fx7(N,WW,XX,ALPHAO,BETA0,GAMAO,DETA0,SIGMAO, CMUO,ENT7)

FA=ENTZ2/ENT1
FB=ENT3/ENT1
FC=ENT4/ENT1
FD=ENT5/ENT1
FE=ENT6/ENT1

FF=ENT7/ENT1

FF1=(S/T)-FA
FF2=(B2/T)-0.5-FB
FF3=(D2/T)-FC
FF4=(S/T)-FD
FF5=(B1/T)-0.5-FE

FF6=(D1/T)-FF

RETURN

END :

SUBROUTINE Fx1

SUBROUTINE Fx1(N,WW,XX,ALPHAO,BETA0,GAMAO,DETA0,SIGMAO,

1 CMUO,ENTL)

1

DIMENSION WW(96),XX(96)

SUM=0
DO I=1,N

U=XX()

Y=(U+1.)/2.*SQRT(DETA0-GAMAO)
FIN=(Y**2.)*(SQRT((BETAO+GAMAO+Y**2.)*(DETA0 -GAMAO-Y**2.)
*(SIGMAO-GAMAO-Y**+2.)))
F1D=SQRT((ALPHAO+GAMAO+Y**2.)*(CMUO-GAMAO-Y**2.)*

1 (1.+GAMAO+Y**2.)*(1.-GAMAO-Y**2.))

F1=FIN/F1D
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SUM=SUM+WW(I)*F1

ENDDO
ENT1=SUM*SQRT(DETA0-GAMAUO)

RETURN
END

SUBROUTINE Fx2

SUBROUTINE Fx2(N,WW,XX,ALPHAO,BETA0,GAMAO,DETA0,SIGMAO,
1 CMUO,ENT2)

DIMENSION WW(96), XX (96)

SUM=0

DO I=1,N

U=XX(I)

Y=(U+1.)/2.*SQRT(1.-DETAO)

F2N=SQRT((1.-Y**2.-GAMAO)*(BETA0+1.-Y**2.)
1 *(1.-DETAOQ-Y**2.)*(SIGMAO-1.+Y**2.))

F2D=SQRT((2.-Y**2.) (ALPHAO+1.-Y**2.)(CMUO-1+Y**2.)
F2=F2N/F2D

SUM=SUM+WW(I)*F2

ENDDO

ENT2=SUM*SQRT(1.-DETAO)

RETURN
END

SUBROUTINE Fx3
SUBROUTINE Fx3(N,WW,XX,ALPHAO,BETA0,GAMAO,DETA0,SIGMAO,
1 CMUO,ENT3)
DIMENSION WW(96),XX(96)

SUM=0

DO I=1,N

U=XX(1)
Y=(U+1.)/2.*SQRT(SIGMAO0-1.)

F3N=SQRT((BETAO+Y**2.+1.)* (1.-GAMAO+Y**2.)*(1.-DETAO+Y**2.)*
1 (SIGMAD-1.-Y**2.))

F3D=SQRT((ALPHAO+Y**2.+1.)*(CMUO-Y**2.-1.)*
1 (24Y*2))

F3=F3N/F3D

SUM=SUM+WW(I)*F3

ENDDO

ENT3=SUM*SQRT(SIGMAO-1.)

RETURN
END

SUBROUTINE Fx4

SUBROUTINE Fx4(N,WW, XX, ALPHAO, BETA0,GAMAO,DETA0,SIGMAO,
1 CMUO,ENT4)

DIMENSION WW(96),XX(96)

SUM=0
DO I=1,N

110



U=XX()
Y=(U+1.)/2.*SQRT(CMUO-SIGMAO)

FAN=(Y**2.)*(SQRT((BETA0+SIGMAO+Y**2.)*(SIGMAO -GAMAO+Y**2.)
1 *(SIGMAO-DETA0+Y**2.)))

F4D=SQRT((ALPHAO+SIGMAO+Y**2.)*(CMUO-SIGMAO-Y**2.)*
1 (SIGMAO+Y**2.+1.)*(SIGMAO+Y**2.-1.))

F4=F4N/F4D

SUM=SUM+WW(I)*F4

ENDDO

ENT4=SUM*SQRT(CMUO-SIGMAO)

RETURN

END

SUBROUTINE Fx5

SUBROUTINE Fx5(N,WW,XX,ALPHAO,BETA0,GAMAO,DETA0,SIGMAO,
1 CMUO,ENTS5)

DIMENSION WW(96),XX(96)

SUM=0

DO I=1,N

U=XX(I)

Y=(U+1.)/2.*SQRT(1.+GAMAO)

F5N=SQRT((BETAO-1.+Y**2.)*(GAMAO+1.-Y**2.)
1 *(DETAO+1.-Y**2.)*(SIGMAO+1.-Y**2.))

F5D=SQRT((ALPHAOQ-L+Y**2,)%(2.-Y**2.)*
1 (CMUO+1.-Y**2.))

FS=F5N/F5D

SUM=SUM+WW(I)*F5

ENDDO

ENT5=SUM*SQRT(1.+GAMAO)

RETURN '

END

SUBROUTINE Fx6
SUBROUTINE Fx6(N,WW,XX,AL PHAO,BETA0,GAMAO,DETA0,SIGMAD,
1 CMUO,ENTG6)
DIMENSION WW(96),XX(96)
SUM=0
DO I=1,N
U=XX(I)
Y=(U+1.)/2.*SQRT(BETAO0-1.)

F6N=(SQRT((BETAO0-1.-Y**2.)*(GAMAO+L.+Y**2.)
1 *(DETAO+1.4Y**2.)*(SIGMAQ+1.+Y**2.)))

F6D=SQRT((ALPHAQ-1.-Y**2.)*(2.4+Y**2.)*
1 (CMUO+L.+Y**2.))

F6=F6N/F6D
SUM=SUM+WW(I)*F6

ENDDO
ENT6=SUM*SQRT(BETAO-1.)
RETURN

END

SUBROUTINE Fx7

SUBROUTINE Fx7(N,WW,XX AL PHAO,BETA0,GAMAQ,DETA0,SIGMAO,
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1 CMUO,ENT?7)
DIMENSION WW(96),XX(96)
SUM=0
DO I=1,N

U=XX(I) :
Y=(U+1.)/2.*SQRT(ALPHAQ-BETAO)

F7N=(Y**2.)*(SQRT((GAMAO+BETAO+Y**2,y*(DETAO+BETA0+Y**2.)
1 *(SIGMAO+BETAO+Y**2.)))

F7D=SQRT((ALPHAO-BETAQ-Y**2.)*(BET AO+Y**2.+1.)*
1 (BETAO+Y**2.-1.)(CMUO+BETAQ+Y**2.))

F7=F7N/F7D
SUM=SUM+WW(I)*F7
ENDDO
ENT7=SUM*SQRT(ALPHAO-BETAO)
WRITE(3,*)ENT7="ENT7

RETURN
END

Sainple Out Put

B1 T B2 D1 D2 S
27.000 3.000 3.000 .200 1.200 1.000

INITIALLY GUESSED VALUES
ALPHAO BETAO0 GAMAO DETAO SIGMAO MUO
1.250 1.100 .100 250 1100  1.200
NUMBER OF ITERATIONS = 12

VALUES OF THE FUNCTIONS AFTER ITERATIONS

.0000 .0000 .0000 .0000 .0000 .0000
deskckkkckskskskkkkkkskokkkkkkkokk ’
Final Values Computed
ALPHA BETA GAMA DETA SIGMA MU
8.7637 87237 -7795  .7445 1.3562 1.5593

sk skok kosk ks sk ckokoR R ok ke kok kosk ok ok ok kb sk ok ko ok

Value of ENT1= 9.260363E-01

Hkck koK ok kR R Rk Rk kR kR Rk ok R sk ok sk koskok kk ok sk ok

RESULTS

¢ sk s ok ok ok sk ok sk ook sk ok ckok ok kR sk sk s ok ok ckok sk ek ek ek sk sk

BT B/S B/D1 B/D2
10.00 30.00 150.00 25.00

B1/B B2/B PD% PE% PF% PG%
.90 .10 33.18 31.58 18.13 14.96

**********END OF RESULTS* # % k%%
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