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Abstract

Land transformation is one of the foremost fields of human-induced environmental change

with an extensive history dating back to antiquity. The process of land transformation has not

abated, but rather accelerated and diversified with the onset of industrial revolution and the

expansion of population and technological capacity. Settlement refers to the occupation of

land for human living.

Monitoring and evaluating the growth of urban settlements is essential in order to avoid

environmental problems such as, depletion of natural resources, increased pollution levels,

loss of green cover etc., especially in developing countries where cities are experiencing a

rapid growth. It is of vital importance for urban planners to not only understand the past and

present urban growth patterns but also be able to predict the future growth patterns. This is

where spatial models of urban growth become useful. These models not only provide an

understanding of urban dynamics, but also provide realizations of the numerous potential

scenarios that an urban system may take.

In recent years, Cellular Automata (CA) techniques have evolved as possible alternatives for

urban growth simulation due to their potential for dynamic spatial simulation capability and

affinity towards GIS and remote sensing. However, the CA based models highly depend on

formation of transition rules, which is often subjective, as these are based on expert's

opinions. Secondly in Indian context, very few attempts have been made to develop CA

based models for assessing the urban growth.

The present research aims to apply CA based models to simulate urban growth in two typical

Indian cities having markedly different growth patterns and to examine the efficacy of

Artificial neural networks (ANN) in formation of transition rules for CA based modeling and

its comparison vis a vis multi-criteria evaluation technique (MCE). Besides, the effect of



different neighbourhoods viz Von Neumann and Moore neighbourhood in CA modelling has

also been investigated. The simulated urban growth has been evaluated, based on cell by cell

match using Percent correct match (PCM) and spatially using Moran Index and Entropy.

Finally using ANN, an urban growth zonation map depicting zones having different growth

potential at an ordinal scale has also been generated and evaluated.

The proposed CA based models have been implemented in two Indian cities namely

Dehradun with geographical extents 30°15' N to 30°25' N and 77°55' E to 78°10' E. The

region is experiencing a fast urban growth, which is taking place in a dispersed manner

mainly along the roads and Saharanpur with geographical extents 29°55' N to 30°0' N and

77°30' E to 77°35' E. The city is expanding onto the nearby fertile agricultural land in a

compact manner, mainly along the roads. The following datasets have been used to generate

various thematic data layers for the two study area:

a) Remote sensing data: IRS-1C LISS-III and IRS-P6 LISS IVmultispectral, PAN,

and aerial photographs

b) Survey of India toposheets at 1:50,000 scale (53J/3,53F/15 and 53G/9)

c) Guide map at 1:20,000 scale

d) Master plans at 1:20,000 scale

The ERDAS Imagine image processing software has been used for processing and analysis of

remote sensing data. The GIS analysis has been carried out using ArcGIS software while

ANN processing has been done in Neural Network Tool Box of MATLAB software.

The following GIS data layers have been generated from remote sensing data and other data

sources,

i) Land cover maps showing built-up/non built-up areas for years 1997, 2001, 2005

from digital image classification of IRS LISS III images of Dehradun city. For

Saharanpur city, built-up/non built-up areas maps for years 1993 and 2001
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through visual interpretation of aerial photographs (1:10,000 scale) and IRS PAN

image

ii) Road network maps from LISS III and PAN images, master plan and guide maps

iii) City core map after consultation with local planning authorities. In these GIS

layers, the boundary of reserved forests, restricted areas and public lands have

been masked out.

The proposed CA models take into consideration only the physical factors affecting urban

growth. Social and economic factors have not been considered due to non availability of

accurate data pertaining to these factors. The three physical factors considered are,

i) Distance to city core

ii) Accessibility to infrastructural facilities

iii) Distance to road network

Corresponding to these three factors, following four raster maps have been created in GIS,

i) Map showing Euclidian distance of each cell from the nearest road

ii) Map showing Euclidean distance of a cell from the nearest built-up

iii) Map showing Euclidian distance of each cell from the city core

iv) Map showing amount of built-up cells in neighbourhood

In the MCE based CA model (MCE-CA), the urban growth suitability is first generated using

the MCE technique. The weights are assigned to the three factors using Analytical

Hierarchical Process (AHP) technique. Taking the MCE generated suitability map as an

input, the MCE-CA model is run iteratively for user-defined number of iterations and the

amount of built-up in the neighourhood is estimated using Von Neumann and Moore

neighbourhoods of sizes varying from 3x3 cells to 39x39 cells. Using different combinations

of the neighborhood and model iterations, the MCE-CA model has been executed several
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times for each of the study areas, so as to determine the optimum values of the parameters.

For theDehradun city, the model has been calibrated for theperiod 1997-2001. Since for this

city, the actual growth for the period 2001-2005 is available, the model is validated for year

2005. For Saharanpur city, the model has been calibrated for the period 1993-2001. Using the

calibrated model, future urban growth simulation for year 2011 has been carried out for both

the study areas.

In the ANN based CA model (ANN-CA), a multilayered feed forward ANN with one input

layer, one or two hidden layers and one output layer has been designed and trained using

backpropagation algorithm. The input layer consists of 4 neurons corresponding to the four

variables. The output layer consists of 1 neuron corresponding to whether a cell location

changed from non-built-up to built-up (l=change, 0=no change). The number of neurons in

the hidden layer has been finalized in two ways: i) based on literature driven thumb rules and

ii) by trial and error. The ANN, producing the highest accuracy has been selected for

simulation. The output from ANN is a map showing the development potential of cells. All

the cells have not transitioned immediately to built-up. Only the cells that have a

development potential above a certain threshold are changed. The size ofneighbourhoods has

been fixed as 5x5 cells for Dehradun city and 13x13 cells for Saharanpur city, as identified

from MCE-CA model.

The accuracy of the simulated urban growth has been determined using two measures:

i) Percent correct match (PCM) for cell by cell assessment and ii) Moran Index (I), a spatial

statistical indicator to assess the patternof growth.

An urban growth zonation map has also been generated based on the ANN outputs. The ANN

output shows the development potential of each cell, based on which the study area has been

categorized into three zones (i.e. high, medium and low) showing the urban growth potential

on an ordinal scale. Since the ANN outputs are not normally distributed, a logit
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transformation has been applied to make the data normally distributed. The transformed data

has then been categorized into three classes as low potential zone < (u-a), (u-a) < medium

potential zone < (u+ a), (u+ a) < high potential zone, where u is mean and a is the standard

deviation. These urban growth zonation maps have been validated by overlaying them with

the actual urban growth maps for the respective years, to find the spatial distribution of actual

urban growth in each zone.

Further, the simulated growth patterns for both study areas have also been evaluated using

relative entropy. It is a structural measurement index that assesses the goodness of fit

according to the spatial domain of interest, which in this case is the distribution of urban

growth with respect to distance from roads and distance from the city core.

The results show that for Dehradun city which has a dispersed growth pattern, Von Neumann

neighbourhood of small size produces the highest accuracy, in terms of pattern and location

of urban growth. While for Saharanpur city which has a compact growth pattern, large

neighbourhoods, produces the most optimum results irrespective of the neighbourhood. It has

also been observed that large number of model iterations does not increase the model

accuracy, as they have resulted in an increasingly compact patterns as compared to the actual

growth. This may be due to unplanned and stochastic behavior of urban growth process in

Indian cities, which the CA models have not been able to simulate completely.

The ANN-CA model also produces comparable results as obtained from the MCE-CA model.

This shows that the ANN are able to define the CA transition results directly from the

database without human intervention, which proves the usefulness of ANN in urban growth

simulation. In ANN-CA model, the ANN architecture based on literature driven thumb rules

produces better or comparable results than those obtained from the optimal network from trail

and error.



The urban growth zonation maps, obtained from ANN outputs show that most of the

simulated growth has taken place in the high potential zone followed by the medium and low

potential zone. Thus, the delineated urban growth zones matched with the actual growth

pattern. These results demonstrate that ANN can be used effectively in reducing the

subjectivity involved in the urban zonation process.

The simulation results have also been evaluated at a macro level using relative entropy. The

evaluation of the simulation results using relative entropy, indicate that the model has been

able to simulate the distribution of urban growth with respect to roads and city core

accurately. The study also demonstrates the usefulness of PCM and Moran Index as simple

indicators for evaluating the simulation results on a cell by cell basis and at spatial level

respectively.

Thus, the proposed CA based models and the urban growth zonation approach developed in

this research can be very fruitful for the urban planners in planning and regulating the future

growth in Indian cities.
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Chapter 1

Introduction

1.1 Motivation

India is undergoing a rapid pace of urbanization. The urban population of India increased

from 217.6 million to 285 million in the last decade and presently constitutes 27.8% of the

total population (Census of India, 2001), it is expected to increase to 40% of the total Indian

population by the year 2021 (GGIM, 2005). In India, urban growth has two contradictory

facets; on one hand, cities act as engines of economic growth and on the other, it is

accompanied by environmental degradation, as the surrounding agricultural lands, forests,

surface water bodies get converted to urban use and are irretrievably lost (Kulshrestha, 2004,

2007a, 2007b; Gowda and Sridhara, 2000; Tayal and Bharat, 1997). Faced with these severe

negative impacts, there is an urgent need for urban planners to manage urban growth more

scientifically in the near future (Jain, 2002, 2003; Routray, 1993, 2000). A number of studies

and national projects have been conducted in India to monitor the urban growth using images

acquired by a series of Indian Remote Sensing (IRS) satellites (e.g., Kumar et al, 2007;

Pathan et al, 1989, 1991, 1993; Pathan, 2004, 2005, 2006; Sudhira et al, 2003; Lata et al,

2001; Fazal, 2000; Rashid et al, 1993, 1999a, 1999b; Mahavir and Galema, 1991). However,

these studies were limited to mapping and monitoring of urban growth and did not attempt to

develop any predictive urban growth model. Hence, a follow up task may be to model the

urban growth for the purpose of decision making in urban planning. This has been the major



rational behind this study wherein simulation of spatial and temporal urban growth has been

assessed through suitable models.

1.2 Issues in urban modelling

Urban modelling bloomed in the late 1950s and throughout the 1960s in both USA and

Western European countries. Most of the models developed during this time conceived the

city as being static, and attempted to simulate how land uses are located with respect to each

other at a cross-section of time. Linear econometric models, in which spatial interaction was

implicit, formed one class of models, in contrast to the non-linear models such as Lowry

Pittsburgh model which attempted to model spatial interaction explicitly (Reif, 1973). All

these spatial interaction models were static and operated at a fairly aggregate level, i.e.,

census tracts and traffic zones formed the level at which cities were represented. Forrester

(1969) proposed a model of urban dynamics in 1969 where the life-cycle of an urban area

was examined using stock and flows equations. The model was non spatial in nature and was

run on an abstract city, hence the model parameters were defined intuitively. However, all

these models were criticized by Lee (1973) for being hyper comprehensive, data hungry and

complicated. Towards the mid 1980s, Cellular Automata (CA) based models were proposed

as an alternative, due to the following reasons (Sullivan and Torrens, 2000a):

i) Simplicity

ii) Potential for dynamic spatial simulation

iii) Capability for high resolution modelling

iv) An innovative bottom up approach



v) Affinity to Geographic Information Systems (GIS) and remote sensing data

At the most rudimentary level, a CA is a lattice of regular cells. At any time (t), a

particular cell is in one of a finite number of allowed states, and the state of the cell at time

(t+1) will change according to a uniformly applied set of transition rules, which are based on

the states of the neighbouring cells in the lattice. Cells alter their states iteratively and

synchronously through the repeated application of these transition rules. A CA is thus

composed of five principal elements (Torrens, 2000):

i) A lattice

ii) Cells

iii) A set of allowed states

iv) Neighborhoods

v) Transition rules.

The notion of neighbourhood and transition rules is central to the CA paradigm, but their

definitions are strongly dependent on domain knowledge and individual preference of the

model builder. Thus, a critical issue in CA based modelling is how to reduce the subjectivity

in defining the transition rules and to fix the size and shape of neighbourhoods.

Further, most of the studies based on CA models evaluate the simulation results visually

or at the most using overall classification accuracy only (Barredo et al, 2003, 2004; Cabaral

and Zamyatin, 2006; Li and Yeh, 2001, 2002). The use of other quantitative indices for

comparing the simulated growth patterns with the actual ones has been lacking. Thus, there is



a need for quantitative indices that can comparatively evaluate the pattern of the CA based

simulations with actual growth patterns in an effective way.

1.3 Indian scenario

In the Indian context, very few attempts have been made to develop CA based models for

urban growth simulation. Jacob et al. (2006) developed a CA model for simulating land use

dynamics for degradation prone areas in the State of Andhra Pradesh. In the unpublished

works of Singh (2003) and Sudhira (2004), a CA model for land cover simulation for Shimla

District and Manglore city has been developed. These models evaluated the simulation results

visually or using overall classification accuracy. The use of other quantitative indices such as

Moran Index, Shannon entropy, fractal dimension and other shape indexes for quantitative

and comparative analysis of simulated growth pattern with the actual one may be more

informative. Thus, not much work has been reported on urban growth simulation using CA

based models in India. Nevertheless, the CA based models can be quite useful in the Indian

context, as the present day focus of the Indian Government is on infrastructure development

in urban areas.

1.4 Role of GIS in CA based modelling

In order to be useful and realistic, urban models depend on 'real-world' data such existing

urban land uses and growth patterns, existing road network, location of various facilities,

availability of infrastructure facilities etc., that can be integrated and mapped in a modelling

scenario. Geographic Information Systems (GIS) has emerged as a prime framework for the

integration and management of a range of spatial real world data. However, to use GIS alone

as modelling tool have been received with skepticism, as it has limited modelling

functionalities and has constraints in handling temporal datasets. Nevertheless, GIS and CA



in combination can be used as a strong couple to model the urban growth to take advantages

of both the techniques. For example, although the capacity of CA to explore complex systems

has been well established (Itami, 1994), its capacity to represent real patterns is yet to be

proven. In case of GIS, its spatial data analysis capacities may be insufficient to handle

complex urban dynamics. The integration of the dynamic strength of CA with the effective

spatial representation found in GIS thus may be beneficial to achieve realistic representation

of a phenomenon such as urban growth (Wolff and Wu, 2004).

Based on this premise, the present study has been aimed to simulate growth of Indian

cities. An extensive literature review on the usage of CA based models for urban growth

simulation has been presented in chapter 2. A number of CA based models have been

developed by various authors, while models have been developed for abstract cities, some

have also attempted to simulate the growth of real cities. It has been observed that the critical

issue in CA based modelling is the definition of transition rules, which in most of the cases

depends on the experience and expertise of the individual. Some authors have attempted to

use Multi-Criteria Evaluation (MCE) and more objective methods like Artificial Neural

Networks (ANN) to reduce the subjectivity in transition rule definition. Besides transition

rule definition, the shape and size of neighbourhood, indices for evaluating the simulation

results are also other important issues in CA modelling. From the review, in chapter 2, certain

research gaps, as listed below have been identified, which form the basis of formulating the

objectives of this research,

i) The applicability of CA based models to Indian cities having varied growth patterns,

have been lacking.



ii) Focus has to be placed on development and use of techniques such as ANN to bring

objectivity in the definition of transition rules for CA based models.

iii) Research needs to be conducted on optimization of parameters such as neighbourhood

type and neighbourhood size for calibration of CA based models.

iv) There is limited amount of work on quantitative evaluation of model simulation

results, as the assessment is mostly based on visual inspection.

v) As urban planners are often interested in targeting areas that have very high to high

potential of urban growth, thus, availability of urban growth zonation maps may be

useful, as these can form key inputs to various planning exercises. The research in this

direction is lacking.

1.5 Research Objectives

The main aim of this research is to advance the work on CA based urban growth

modelling. Based on the identified research gaps, the following objectives have been framed:

i) To implement the proposed CA based models to simulate urban growth in two

typical Indian cities having markedly different growth patterns,

ii) To evaluate the efficacy of ANN in formation of transition rules for CA based

modeling and its comparison with the traditional MCE based CA model,

iii) To investigate the effect of different neighbourhood sizes and neighbourhood

types in calibration of CA based models,

iv) To evaluate the performance of CA based models using Moran, Percent correct

match and Shannon's entropy,

v) To generate ANN based urban growth zonation maps depicting zones of urban

growth potential at an ordinal scale.



1.6 Scope and Limitations

The scope of the study carried out in this thesis is limited to the following:

i) Urban growth has been defined in terms of increase in built-up area, as mapped from

the remote sensing data. The classification system in the model is based on the

dichotomy ofbuilt-up and non built-up areas only.

ii) The model takes into consideration only the physical factors affecting urban growth.

Social and economic factors have not been considered due to non availability of

accurate data pertaining to these factors.

iii) Certain areas that do not have any developmental potential have been treated as

exclusionary zones and excluded from the model. These areas include strategic

locations, reserved forests, water bodies, public grounds and gardens.

1.7 Organization of the thesis

The thesis has been divided into seven other chapters. All the illustrations and tables have

been put along with text relevant to them, the references have been placed at the end of the

thesis. In the present chapter, an overview of the problem and research objectives has been

identified.

Chapter 2 undertakes a critical review of traditional urban models and identifies their

shortcomings. The advantages of using CA models as compared to the traditional models

have been highlighted. The concepts and issues in CA based urban growth modelling with an

emphasis on combining CA models with GIS have also been discussed. This review forms

the basis of understanding the existing work done in the area of CA based urban growth

modelling.



In chapter 3, the characteristics and growth trend of the two Indian cities, on which the

proposed CA models have been applied, are described. The factors driving the urban growth

in the study area have been dealt in detail. The chapter concludes with a description of

various aspects related to the database creation for the two Indian cities taken as the study

areas here.

The concepts of the MCE based CA (MCE-CA) model have been explained in chapter 4.

Various model parameters, viz., neighbourhood type and size, model iterations, stopping

criteria and model calibration have been discussed in detail. The simulation results after

implementation of proposed models have been illustrated using various indices namely

Moran Index and Percentage correct match. Finally, simulation of future urban growth has

been described for both the study areas.

Chapter 5 discusses the concepts of ANN based CA (ANN-CA) model. Various

parameters in the ANN based CA model, viz., the network architecture, training and testing

of network, have been explained in detail. The analysis of simulation result and its

comparison with the MCE-CA model has been highlighted.

Chapter 6 discusses the technique and advantage of ANN based urban growth zonation,

which is followed by an evaluation of thezoning results forthe two study areas.

The analysis of simulated results using structural measures like Shannon entropy has been

described in chapter 7. The Shannon entropy is calculated for simulated and actual growth

and results have been evaluated.

In chapter 8, based on the results and their analysis of the proposed models, certain

conclusions have beendrawn from this study, recommendations and pointers to future works

have been stated.



Chapter 2

Urban Growth Modelling and Cellular Automata

2.1 General

It is generally argued that although traditional urban modelling approaches of the 1960s

were based on sound theories, they had significant weaknesses such as poor handling of

space-time dynamics, coarse representation of data and top-down approach, which ultimately

failed to reproduce realistic simulations of urban systems.

Urban modelling has gradually moved from these static approaches to other dynamic

spatio-temporal based approaches such as Cellular Automata (CA), which were developed in

the 1940s to explore complex phenomena like urban growth. These are now progressively

being adopted and adjusted to address the criticism raised by traditional models.

CA based approach has also found place in urban modelling due to its affinity towards

GIS (Torrens, 2000, 2001). GIS has emerged as a prime framework for the management of a

range of spatial data (Routray, 1990). Thus, the integration of CA with GIS opens up new

vistas to improve urban modelling. The aim of this chapter is to present the state of

knowledge on urban modelling, specifically in relation to GIS based urban CA modelling.



2.2 Spatial models in urban simulation

Any data that shows location of features in space with respect to a reference system is

known as spatial data. Geospatial data implies a subset of spatial data applied specifically to

the earth surface or data showing the location of features on the earth surface (Laurini and

Thompson, 1996; Burrough and McDonnell, 1998). However, in this thesis, the terms

geospatial data and spatial data have been used interchangeably.

Spatial data can be represented by a physical or abstract model. Physical models are

scaled down replicas of the real world, whereas in an abstract model, the real world is

represented by symbols (i.e., line, points, polygons or cells). The conventional maps and

spatial databases created in a GIS may be regarded as the abstract spatial data models (Batty,

2001; Wegener, 2000). The spatial models can also be categorized as static or dynamic

models (Reif, 1973).

Static models simulate the spatial distribution of various activities in an urban area, at one

point of time. These represent a cross section of the urban system at some time or date.

Dynamic models focus on the process of change rather than the final state of the urban

system. A static model considers the system as in equilibrium, whereas a dynamic model

develops multiple discrete or continuous timeframes within the system under investigation.

The urban growth is expressed in terms of spatial factors, which vary from one study or

the other. These factors are interrelated by mathematical functions that represent the

dynamism of the urban system. Thus, for the study of spatial temporal processes such as

urban growth, there is a need to develop abstract spatial dynamic models. The dynamic

spatial models can be solved using two methods:
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i) Analytical method

ii) Simulation method

Analytical method refers to the use of deductive reasoning of mathematical theory to

provide a model solution. In analytical methods, the model is expressed in some particular

format (e.g., linear algebraic equations or continuous linear differential equations). The

system must be approximated or abstracted in order to derive a model that fits a mathematical

equation.

Simulation methods involve application of numerical or computational procedures for

solving the model. It is a step-by-step process of solving the dynamic model numerically in

time domain. As a result, the current values at any step of the computation represent the state

of the system being modeled at that point of time. Compared to the analytical method,

simulation methods are computationally intensive and produce general solutions rather than

specific solutions. Further, simulation method is useful when the model contains non linear

stochastic expressions that are difficult to evaluate analytically.

Moreover, urban growth is a spatio-temporal process which is complicated and ill

defined. Thus, it may not be possible to propose a universal solution that may explain the

growth in different cities. Hence, simulation method appears effective in understanding the

urban growth and its prediction.

2.3 Traditional models of urban growth

Since the beginning of 19th century, various models and theories have been proposed to

explain urban growth. Burgess concentric zone theory in 1925, was based on the idea that the

growth of a city took place outwards from its central area to form a series of concentric zones
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of various land uses. However, discrepancies between the concentric model and the actual

distribution of urban land use patterns encouraged the formulation of various theories,

notably among these was the sector theory proposed by Hoyt and Davie in 1939. According

to this theory, patterns of urban land use were influenced by the road network radiating

outwards from the city centre. The accessibility to roads created a sectoral pattern of land

values, which in turn influenced the urban land use pattern. However, both the concentric

zone and sector theories assumed that the city grew around single nucleus, but actual pattern

of urban growth is generally far more complex and varied than any of the models suggested.

Consequently, Harris and Ullman in 1945 proposed the multiple-nuclei theory, and suggested

that urban growth in large cities took place around a number of nuclei rather than a single

nucleus (Knowles and Wareing, 1976).

Thus, with the help of these theories, attempts were made to formulate comprehensive

models of urban growth. However, none was entirely satisfactory, as these theories were rigid

and static in nature and sought only to represent visually the spatial arrangement of

hypothetical urban socio- economic systems (Ramachandran, 1991).

Urban growth modelling bloomed in the 1950s and 1960s. Most of these models

developed were spatial interaction models. Spatial interaction models drew from the original

efforts of Reilly in 1931 and Zipf in 1946 to model human activities. The model formula, in

its most basic form, was based on Newton's Law of Gravitation. Models included in this

group were the well known gravity type models and their reincarnated formulations such as

Lowry and Grain-Lowry model. The spatial interaction models were used to study a variety

of intersections arising out of human activities within the urban system, such as journey to

work, land use transport interactions and urban growth in general. However, these models

12



had significant limitations; they were very complicated, required lot of data, their resolution

was coarse and they were static in nature.

Forrester (1969) introduced the concept of industrial dynamics, for simulating industrial

processes in firms and attempted to apply this idea to model the growth dynamics of an

abstract city using differential equations (referred as stock and flow equations). Since the

model was developed for an abstract city, it was not calibrated for real world. Besides, the

model also ignored the spatial dimension of urban growth. According to Batty and Torrens

(2001), it was not appropriate to treat this model as a generalized model of a city. Although,

Forrester model played an important role in introducing the dynamic view of the urban

systems, but it was Lowry model, with extensions and modifications that found widespread

use.

2.4 Cellular Automata for urban growth modelling

CA offers a range of advantages for urban modelling and in several ways it gets over the

deficiencies of the traditional models. CA based models are inherently spatial, dynamic and

have a natural affinity towards GIS (Couclelis, 1997; Torrens, 2000, 2001).

2.4.1 Concept of Cellular Automata

Cellular automata (CA) were originally conceived by Ulam and Von Neumann in the

1940s to provide a framework for investigating the behavior of complex systems (Torrens,

2000). The concept of self-organization, which is one of the main characteristics of complex

systems, is central to CA based modelling. Self-organization refers to the tendency of system

to spontaneously develop ordered patterns, often on a large scale from local decision making

processes (Torrens and Sullivan, 2001). Thus, CA are able to simulate processes such as

13



urban growth where global or centralized order emerges as a consequence of local or

decentralized rules.

At themost rudimentary level, a CAis an array (or lattice) of regular cells. At anygiven

time, a cell is in oneof the finite number of allowed states. Thecell changes its state based on

the state of its neighbouring cells in the lattice, as per uniformly applied set of transition

rules. Cells change their states iteratively and synchronously through repeated application of

these transition rules. CA is thus composed of five principal elements (Torrens, 2000, 2001),

i) Lattice: A regular uniform and infinite 'lattice' or 'array' with discrete variables at

each cell. Lattice space can have n dimensions, but two-dimensional CA is the most

common in urban simulation,

ii) State: A state is a variable, which takes different values at each cell. It can be a

property, a number or word (0 or 1, urban or non-urban),

iii) Cell: A cell is the sub-unit of the lattice or the regular geometrical grid. A cell at any

instant of time can be in only one state out of a given number of states. The states of

all cells in a grid are updated during CA iterations.

iv) Neighbourhood: In a lattice, there are normally the cells that are physically closest to

the central cells, which influence the state of the central cell in the next step. The

neighbourhood cells act as immediate areas of interest for the central cell, as the

transition rules which decide the state of the central cell in next step are based on the

neighbourhood values. The neighbourhood also includes the central cell itself. The

two commonly used neighburhoods are the Von Neumann and Moore

neighbourhoods. A 3x3 cell Von Neumann and Moore neighborhoods are shown in

Figure 2.2. The black cell (which represents the cell under consideration) and the

surrounding grey cells (4 in case of Von Neumann and 8 in case of Moore
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neighbourhood) together constitute the neighbourhood. The neighbourhoods can also

be extended from their 3x3 cells size to other larger odd numbered sizes (e.g. 5x5,

7x7, 9x9 and so on).

E-I-EE
Fig 2.1: Von Neumann neighborhood Moore neighborhood

v) Transitional rules: These are a set of conditions or functions that define the state of

change in each cell in response to its current state and that of its neighbors. The

future state of cells is determined by the transitional rules in a discrete time frame.

Mathematically, CA can be defined as:

{St+l}=f({St}{/,})

where, { St+\ } is the state of the cell at time (t+1), { St} is the state of the cell at time (t) and

{ /, } refers to the neighbourhood, function / refers to the transition rules, t is the time

steps in temporal space, h is the neighbourhood size.

Hence, it is the capacity to integrate spatial and temporal dimensions that makes CA

appealing for the development of robust and reliable urban dynamics models.

2.4.2 Limits and strengths of cellular automata

Conceptually and theoretically, CA for urban studies has some limitations and

strengths with regard to the development of an urban dynamics framework. This section first

discusses some of the limitations of CA and then expands on its strengths to model complex

phenomena like urban growth.
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The original framework of CA is not appropriate to support realistic urban dynamics

(Wolfram, 1986). For instance, the overall original structure of CA is too simplistic and

constrained to apply in real urban applications (Sipper, 1997). Similarly, it is not reasonable

to apply the concept of an infinite space plane (two-dimensional) and uniform regular space

to the city because cities are not infinite, regular, or uniform. Moreover, the notion of

neighbourhood is too coarse and does not take external factors and distance-decay actions

into consideration.

Another criticism is that cellular automata only assumes a bottom-up approach, and

accounts for local specificities that ultimately define the overall representation of the space

generally. All constituents of urban systems, however, do not exhibit bottom-up behaviour

like, urban planning decisions, national policies, macro-economy, and so on. These factors

operate from top to bottom and serve to constrain the urban growth.

In the original CA, transition rules were universal and applied synchronically to all

cells. In real urban growth processes, however, no single rule governs the behaviour of the

entire system. To solve the rigid transitional rules, urban dynamics CA transition rules are

formulated using Boolean statements, and probabilistic expressions such as

{< IF >, < THEN >, < ELSE >}. The flexibility thus gained in these expressions, simplifies

the representation of more complex systems (Batty, 2000).

The simulation of urban dynamics is an area of research where CA has been recently

implemented. Here, CA represents a useful tool for understanding urban dynamics,

improving theory, achieving realistic and operational urban models (White, 1998). White and

Engelen (1993) have demonstrated that a cellular automata approach can lead to a better

understanding of spatial patterns as well as representing realistic patterns. In the spatial

modelling perspective, the strengths of CA lie in their capacity to perform dynamic spatial
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modelling over a discrete and continuous Euclidean space. Similarly, CA has the ability to

exhibit explicit spatio-temporal dynamics. Several studies (e.g., Bivand and Lucas, 2000;

Openshaw and Abrahart, 2000) have shown how CA models can be integrated with other

spatio-temporal models, to improve the representation of urban features. Finally, the

flexibility of transitional rules embedded into CA architecture favours an effective control

over the dynamic patterns that are generated.

The role of CA is to discover, understand and explain how cities emerge and change

(Couclelis, 1985; White and Engelen, 1994; Portugali, 2000; Ward et al, 2000). The

introduction of CA approaches in geography may be traced back to the work of Hagerstrand

(1968), who highlighted the major components of current CA architectures as, discrete time

and state, cell, neighbourhood, uniform transitional rules and lattice. The investigation of

Hagerstrand was limited by the capacity of the simulation (e.g., less than 200 cells), yet it was

theoretically and conceptually well formulated. Tobler (1970) further developed a forecasting

model based on urban growth. In fact, Tobler's study laid the theoretical and conceptual

foundation of CA for future applications in geography. In 1979, he published a paper

formalizing the concept of CA (Tobler, 1979), which opened the gates for geographers to use

CA for urban planning applications, spatial modelling and simulation. However, the temporal

dimension of Tobler's CA was considered weak because the simulated maps developed for

each year were very different from the actual growth simulation (Wegener, 2000).

Tobler's work was improved by Couclelis (1985, 1989, 1997), Batty and Longley

(1986, 1994) and Batty and Xie (1994c, 1997), who enhanced the theoretical and

methodological aspects of CA for analysing and modelling complex urban dynamics. In the

same spirit, Couclelis (1989) demonstrated the use of CA as a metaphor to study different

varieties of urban dynamics. Couclelis claimed that although CA was not originally intended
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to produce realistic representations of urban dynamics, it could be reformulated and

integrated with some spatial models to form better predictive models. White and Engelen

(1993, 1994) went further to advocate that CA was capable of generating real patterns of

urban land-use change. Thus, it is during the last two decades or so, impetus on the use of CA

models for urban growth simulation can be seen. The following sections demonstrates the

uses of CA; first as a hypothesis to explore the urban growth dynamics of fictitious cities, and

then in the simulation of real urban growth.

2.4.3 Hypothetical urban simulation with cellular automata

A number of researchers have shown the use of CA to explore urban theories and

growth patterns (Batty and Longley, 1986; Batty and Xie, 1994; Sullivan and Torrens,

2000b). Earlier CA models such as Tobler's (1970) model of Detroit, and Coucleli's (1985)

model of the Los Angeles, were used to demonstrate how global patterns emerge from local

transitional rules. Cecchini (1996), for instance, demonstrated that CA could provide a

comprehensive understanding of land use change in fictitious cities. In other examples, Batty

(1994) applied CA to verify urban dynamics theories and to test some hypotheses of urban

changes. Similarly, Semboloni (1997) assessed the aspects of economic theory by applying

CA for the simulation of urban growth in a hypothetical city. Benati (1997) also used CA to

simulate the location of competitors on a discrete and bi-dimensional market place using

equilibrium theory. Phipps and Langlois (1997) applied CA to test the Von Thiinen model in

order to establish CA suitability for the interpretation of real patterns. This work was

interesting in the sense that it showed another way of understanding a well-established

geographical model. In another example, Wu (1998a) and Batty (1998) demonstrated the use

of CA to explore the development of polymorphous-polycentric cities. CA was also used to

investigate intra-urban land use transformations (White and Engelen, 1994) and long-term
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spatial urban sprawl (Batty, 1996). Portugali et al. (1994) demonstrated the use of CA to

simulate spatial segregation between different social groups.

One of the most significant improvements to CA models came from Wu (1998b) work,

who applied CA in a generic city to highlight the fact that CA could significantly improve the

understanding of growth patterns of polycentric urban forms. Wu and Webster (1998, 2000)

also applied CA to explore the sustainability of urban forms. Two main difficulties, however,

limited the applicability of these experiments into actual urban areas. First, the limited size of

the space considered reduced the potentiality of these applications in real world situations

(Batty, 2000). Second, was the difficulty experienced in spatially reflecting some

fundamental formulations of CA. For example, the model did not address the concept of

CA's explicit representation of change of state based on general rules and attributes of the

neighbouring elements. In light of these key questions, researchers had to readjust the

structure of CA or seek alternative integration with other spatial models that can better handle

real world data in a simple manner.

2.4.4 Modelling real cities with CA

Since the 1970s, CA has been regarded as a useful tool to simulate and model various

urban systems. Although, initial CA applications were limited to test hypothesis, theories and

generating fictitious cities, real applications have been rare. This may be partially due to the

rigid conceptual framework of the original CA. In the 1990s, however, operational urban CA

models started to emerge owing to the progress in conceptual urban CA, the development in

the rapport between CA and real data interfaces and computing power. In these models

(Meaille and Wald, 1990; Clarke et al, 1997, 1998; Almeida et al, 2003), some CA

principles have been relaxed as a means of achieving more realistic simulations. This section
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reviews some examples of CA urban modelling applied to real cities highlighting the

achievements made, and also points out some of the limitations of CA models.

White and Engelen (1993) used CA to explore the spatial structure and temporal

dimension of urban land use and to test general theories of structural evolution. The cellular

model generated patterns for each land use type, which were then, compared with data from a

set ofUS cities using fractal dimension. The results showed realistic representations ofactual

urban form. In another example, White and Engelen (1997) and White et al (1997),

implemented CA, to model and predict the land use of the Carribean island of St. Lucia and

in USA. In both studies, the transition rules were based on the suitability value of a cell for

different land uses and neighbourhood information. The model for Cincinnati was calibrated

by trial and error process, whereas in case of St. Lucia, the final calibration was not done and

one scenario was described, in order to illustrate the behavior of the model. The simulation

results for Cincinnati were evaluated using two measures:

i) Visual comparison of simulated land use with the actual land use.

ii) Comparison of the fractal dimension of the simulated and actual land uses.

From visual comparison, it was found that the simulation result appeared to be the

actual growth. As a more precise measure of the urban form, the fractal dimension associated

with the area-radius plot ofvarious land uses was used. Plots ofarea occupied by aparticular

land use against the radial distance from the city centre were prepared for both the simulated

and actual cityof Cincinnati. Results showed that plots for actual and simulated land uses did

not match exactly, but the patterns were similar. Thus, the model results were realistic and the

model was able to simulate the land use pattern of Cincinnati. In all the threemodels thus far
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discussed, the neighbourhood used was of circular shape and included the cell itself and the

cells lying within a radius of six cells.

Barredo et al. (2003, 2004) also developed a CA model for predicting the land use of

Dublin and Lagos, Nigeria respectively. The model was based on 22 states, which were

classified as fixed classes (water bodies, airport, rail and road network etc.), passive states

(arable land, forests, shrub, sparsely vegetated and wetlands) and active states (different

categories of residential areas, industrial, commercial, public services, port areas and

abandoned lands). The transition rules were based on accessibility, neighbourhood, suitability

of a cell and zoning status. The neighbourhood used was of circular shape and included the

cell itself and the cells lying within a radius of eight cells. The model parameters were

determined heuristically. For Dublin, the simulation results were evaluated using three

indices:

i) Visual comparison with actual land use,

ii) Comparison matrix which evaluated the simulation results with the actual land use on

a cell by cell basis,

iii) The distribution of land use pattern through relatively abstract measures such as

fractal dimension.

The visual comparison of the simulated and actual land use map showed similarity

between the two maps. However, the simulated land use was less fragmented than the actual

land use. The fractal dimension was calculated by calculating the total area occupied by

individual land uses with a given radius from the city using a set of increasing radii. Despite

marginal difference in the area-radius plot, the general agreement of the plots for simulated

and actual land use indicates the similarity of the pattern distribution in both maps. Each land
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use was compared on cell by cell basis using comparison matrix. A maximum accuracy of

92% was reported for residential uses and the minimum accuracy of 64% was reported for

industrial uses. For Lagos, the results were evaluated based on :

i) Comparison matrix

ii) Spatial metrics such as mean patch area, total edge, shape index proximity index

splitting index and Simpson diversity index.

The statistics obtained from the comparison matrix showed an acceptable fit between

the simulated and actual land use maps. The maximum accuracy of 85% was obtained for

residential uses and a minimum accuracy of 63% for informal settlements. To compare the

pattern similarity between the actual and simulated land uses, various spatial metrics were

computed for actual and simulated land use and compared using regression analyses. The

correlation coefficient varied from 0.84 to 0.98. The spatial metrices showed a high degree of

similarity betweenthe actual and simulated maps in terms of pattern.

Clarke etal. (1997) developed the Urban Growth model (UGM) based on integration of

GIS and cellular automata approaches. The UGM simulates the urban growth transition from

non-urban to urban land. In UGM, the input factors were the local (roads, existing urban

areas and slope), and temporal (historical patterns of growth). The simulation was controlled

by five parameters, which carry respective weights or coefficients: slope resistance, road

gravity, breed, dispersion and spread. The coefficient of each parameter was determined by

running four rigorous calibration phases: coarse, fine, final and averaging best results. The

weighted probabilities of each parameter were then used as input into the growth prediction.

Clarke and Gaydos (1998) gave the SLEUTH model, which is a CA-based urban growth

model(UGM) coupled with a land cover change model (US Geological Survey 2003).The
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SLEUTH, stands for slope, land cover, exclusion area, urban extent, transportation network

and hillshade. These characters constitute the five main categories of data input. Whereas

UGM was designed for local application, SLEUTH was more ambitious and claimed to be

used for forecasting urban growth at a regional and continental scale. The results from the

model were evaluated on the basis of a single composite measure, which was generated on

the basis of the following factors:

i) R fit between the actuaUand predicted number of urban pixels

ii) R fit between the actual and predicted number of edges in the image

iii) R fit between the actual and the predicted number of separate clusters in the urban

distribution

iv) Modified Lee-Sallee shape index.

UGM and SLEUTH models have been applied in the study of many planned cities in

North America such as San Francisco (Clarke et al, 1997), Chicago, Washington-Baltimore

area (Clarke and Gaydos, 1998), Sioux Falls, California, and Philadelphia (Varanka, 2001);

Lisbon and Porto (Silva and Clarke, 2002) in Portugal (Europe); and Porto Alegre (Leao,

2002) in Brazil South America.

In order to derive behavior oriented transition rules in CA, the Analytical Hierarchical

Process (AHP) of MCE was also used by various authors. Jacob et al. (2006) implemented a

MCE based CA model for simulating the land degradation process in degradation prone

districts of Andhara Pradesh, India. The land use classes were grouped into three classes:

degraded land, non degraded land and land prone to degradation. The suitability of each cell

for various classes was determined using the AHP method. The transition rules were based on

the suitability value of each cell. A 3x3 cells Von Neumann neighbourhood was used in the
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model. The model was calibrated heuristically and the simulated results were evaluated using

a comparison matrix. An overall accuracy of 78% was achieved during the validation. Cabral

and Zamyatin (2006), also used a MCE based CA model for simulating the urban growth in

Sintra-Cascais municipality, Portugal. The suitability of each cell for built-up was determined

using the AHP method. The transition rules were based on these suitability values. Various

neighbourhoods size were attempted. The results were evaluated using five indices: percent

correct, Kstandard, Kn0, Kiocation and KqUantjty. Kstandaid is the standard Kappa index of agreement

and compares the observed proportion correct to the proportion correct due to chance. Kno

denotes kappa for no information and indicates the proportion classified correctly relative to

the expected proportion classified correctly by a simulation with no ability to specify

accurately quantity or location. Kiocation denotes kappa for location and indicates the extent to

which the simulated and actual maps agree in terms of location of each category, given the

specified quantities. K quantity denotes kappa for quantity and indicates the extent to which the

two maps agree in terms of quantity of each category, given the specified locations. The

values obtained for these indices during model validation were: 83.95%, 66.28%, 67.9%,

68.57% and 96.66% respectively.

Li and Yeh (2001, 2002) developed CA based urban growth models for Dongguan city

of China. The ANN derived weights acted as the transition rules derived directly from the

database, instead of the user defining them as in case of MCE based CA models. Li and Yeh

(2001), applied the ANN based CA model to predict the urban growth in Dongguan city. The

model was based on the dichotomy of built-up and non built-up areas. A 7x7 cells Von

Neumann neighbourhood was used in the model. The ANN was first trained and then using

this trained network, the urban growth was simulated. The simulated result was evaluated

using comparison matrix and an overall accuracy of 79% was reported. Li and Yeh (2002)
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used the same model to simulate land cover classes, like cropland, construction sites orchard

built-up areas, forest and water in Dongguan city. The results were again evaluated using

comparison matrix and the overall accuracy of 83% was reported. Thus, the ANN was able to

extract the transition rules from the database without much human intervention.

These studies suggest that even in cases where CA has been extensively used as an urban

simulator, its implementation on real world data sets has to go a long way.

2.5 Integrating GIS and CA for urban dynamics modelling

Yeh and Li (2001b, 2002, 2003) and Batty (2001) have shown that GIS can act as a key

tool to make effective use of urban dynamics models such as those based on CA. The concept

of integrating GIS and CA tools is based upon their resemblance to each other. For instance, a

raster GIS structure can be represented in a CA environment by the cells and lattice. This

section extends the discussion on the similarities between CA and GIS and then explores the

potentialities for a workable integration. After expressing the theoretical framework of an

integrated GIS based CA model, some examples have been presented to illustrate existing

approaches that claim to achieve successful and accurate modelling of urban dynamics.

2.5.1 Reasons for linking GIS and CA for urban dynamics modelling

A number of important points have been raised in the literature about the benefits of

linking GIS and CA to improve urban dynamics modelling. GIS and CA have been argued to

have significant common features and complementary functionalities, and can therefore

supplement and complement each other (Wagner, 1997; White, 1998). Couclelis (1985,

1989) discussed the theoretical considerations for the integration of GIS and CA as well as

their potentialities in improving the quality of spatial urban dynamics models. Couclelis also

(1997) pointed out the natural affinity between CA and GIS and advocated a more interactive
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and visual integration of GIS and CA to improve the patterns of realism in urban modelling

and simulation.

Sui and Zeng (2001) recognized the advantage of GIS based CA urban modelling and

simulation. One of the advantages cited is the bottom-up approach of CA, which enables the

incorporation of various local factors into the modelling process in order to better represent

their evolution. In doing so, the model can generate realistic urban dynamics thereby

correcting the static representation of GIS.

In many ways, the deficiencies of GIS and CA can be compensated by each other. For

example, although the capacity of CA to explore complex systems is well established

(Wolfram, 1984; Itami, 1994), its capacity to represent real patterns has still to be proven. In

case of GIS, its predictive and analytical capacities are insufficient to handle complex urban

dynamics. The integration of the dynamic strength of CA with the realistic temporal and

spatial representation found in GIS and remote sensing is, therefore, appealing as a practical

means to achieve realistic representation. On one hand, GIS has much to offer in this

integration as it can do data pre-processing, sorting, storage and retrieval of data, database

querying, graphical display, input and output editing. Onthe other hand, CAmay provide the

power for database analysis, temporal dimensionality (for instance by handling multiple

iterations), the flexibility to assign transitional rules and definition of the spatio-temporal

neighbourhoods.

2.5.2 GIS and CA integration: a review of some studies

Urban researchers in principle have agreement on, the usefulness and necessity to link

CA with GIS to achieve more realistic and informed urban dynamics models. However,
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implementation strategies are divergent in identifying the appropriate way to achieve

optimum results.

One approach consists of building a CA modelling application using the programming

language within a GIS language protocol (Batty and Xie, 1994a; 1994b; Yeh and Li, 2001b).

This requires a certain level of familiarity with the programming language embedded in the

GIS package in use. The flexibility of the language, however, is not always guaranteed and

the scope for application of the skills learnt in the process is limited.

Another approach to integrate CA and GIS is to develop a stand-alone CA program that

can use data from GIS. Data interchange and compatibility can be achieved through file

conversion protocols (Yates and Bishop, 1998; Yeh and Li, 2002, 2003). However, if the

program can not access and modify the data to and from the GIS environment, then the

process of reformatting the input and output is not only more likely to mislead the

representation, it may also be time consuming and error prone. For these reasons, 'loose' or

'tight' coupling are more likely to produce better integration models (Bivand and Lucas, 2000;

Almeida et al, 2003; Couclelis, 2002).

There are two dominant views that sustain the way in which realistic dynamics

modelling may be achieved, if GIS and CA are to be used simultaneously. The difference lies

in the extent to which the integration is achieved. Coupling is attractive because of the

continuous expansion of GIS technology and its interchangeability with other spatial

platforms and technologies (Waters, 2002). Another advantage of coupling is the possibility it

creates to use different tools (e.g., statistics, image processing, stand-alone programs, GIS

platform, etc.) to process all the information (Almeida et al, 2003).
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The first view is constructed around the argument that GIS functionalities and

capabilities shouldbe extended to respond to specific needs. Therefore, the integration of GIS

and CA approaches may be successfully achieved through tight coupling. That is, new

extensions, functionalities or dynamic tools are encoded into the GIS environment to expand

its capabilities to perform tasks for which it has not been originally designed. In the

perspective of urban spatial modelling by means of GIS, the tight coupling group supports the

view that future GIS shouldbe equipped with spatial dynamics modelling. This can, however,

be achieved by incorporating GIS functionalities into a type of analytical engine of cellular

automata; The CAM modelling machine developed by Toffoli and Margolus (1987) is one

such example. Although, models generated through tight coupling are often suitable for a

specific application, these are poorly replicable in a different context. Moreover, spatial

models developed within GIS remain less flexible and the capabilities of handling other

modelling functionalities are also weak. Thus, there are thresholds for the extension of CA or

GIS functionalities and capacities. At least in the case of GIS, it is clear that the technology

has not yet been designed to perform complex modelling operations (Longley and Batty,

1996; Alberti, 1999; Waddell, 2002).

An alternative view on the integration of GIS and spatial modelling approaches is that,

it should be envisaged in respect of the sole strength and contribution of each set of tools.

This technique is known as loose coupling. In loose coupling, both GIS and CA maintains

their fundamental structure and functionalities, and only execute the operations, where they

perform the best. In case of CA and GIS, for instance, a loose coupling approach is the first

pragmatic choice when it comes to dynamics modelling and simulation of real data (Clarke

and Gaydos, 1998). In case of loose coupling, there are many variants; from using GIS purely

as the display environment to a more expanded coupling where the contribution of GIS is
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much wider (Batty et al, 1999). In a sharing task, GIS may act as a data management,

storage, retrieval and static visualization interface, whereas CA may perform other functions

that cannot or are less effectively handled by GIS, such as dynamic exploration and data

analysis, interaction with commands and functions, insertion of weighting parameters,

iterations, calibration, modelling, dynamic visualization and simulation. If the synergy task is

not carefully defined, however, there is a potential risk of role conflict, and also a possibility

that the user may not have full control over the system and the data. When this difficulty can

be avoided, loose coupling can be considered as a flexible and adjustable integration strategy

that usually leads to more realistic simulations.

The loose coupling can also be achieved through the development of a macro language.

Conceiving and building scripts using macro languages may achieve optimum and flexible

integration of CA and GIS. This supplementary programming task, which takes place outside

the GIS and CA environment has advantages since programming languages can be used and

the knowledge gained may be re-used or expanded for other applications. Moreover, the

scenario can be easily updated or adjusted. Also, many of these programs support conditional

statements such as Boolean logic based ('if...then') iterations, calibration possibilities, and

many other functions which help in modelling. In that respect, properties of Object-Oriented

Programming (OOP) have been reported as appropriate for realistic urban modelling and

simulation (Benenson and Torrens, 2004). For instance, the SWARM software tool uses OOP

to simulate landscape behaviour based on the integration of GIS and CA (Wu, 1999). The

integration can also be realized by creating a graphic user interface (GUI) that gets its input

from a GIS to subsequently run a simulation based on a CA protocol (Wu, 1998b; Wu and

Webester, 1998). Thus, it appears that the linkage between spatial models and modelling and

simulation techniques can be effectively achieved through the loose coupling approach.
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2.6 Summary

The review presented in this chapter has clearly indicated that the current research based

on CA, GIS and their integration. Chronologically, the work can be divided into two periods,

the first period (from 1940s to 1990s) was the development of the conceptual and theoretical

frameworks. The second period (i.e., beyond 1990s) has been marked by the increasing

interests in the applications of these dynamic approaches; first in fictitious cities, and then in

real contexts.

In particular, the review demonstrates that in the area of urban modelling, there is

evidence of growing awareness that the concept of equilibrium is no longer sustainable, and

the theory of complex systems (i.e. dynamics) is prevailing. The realistic urban dynamics

models should consider the equal representation of space, time and other key attributes,

which can onlybe successfully conducted by the integration of many spatial tools. However,

the process of coupling of technologies for realistic representation remains wide open for

debate.

The second part of the review illustrates how the improvements in computing and GIS

technologies have helped the developments in the area of urban dynamics modelling and

simulation. In particular, the literature reflects that GIS may be appropriate for urban

modelling and simulation as compared to CA, which although well suited, needs real-world

data to generate informed and useful simulations. It is also apparent from the review that the

integration of GIS and CA is the way forward to gain betterinsight into the process and form

ofurban dynamics simulation and modelling.

Nevertheless, some research gaps as follows, have been identified from this review, which

need attention,
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i) In most of the studies, the use of only one neighbourhood has been reported. The

effect of using neighbourhood of different shapes and sizes on the simulation result

has not been studied exhausitively.

ii) A comparative evaluation study of more objective approaches such as ANN for

definition of transition rules in comparison to the subjective definition via MCE and

other behavior oriented methods to examine their efficiency is required,

iii) There is a need for indices that can evaluate the growth pattern, with respect to

various urban elements that influence urban growth (e.g., road network, distance to

various facilities etc.).

iv) For evaluating the simulated growth pattern, different indices have been used in

various studies. There is a need to devise simple indicators to ensure a straight

forward comparison between various models,

v) The research is also lacking in development of urban growth zonation maps. These

maps may depict zones having different growth potential and can serve as a important

input in the planning process,

vi) Very few CA models have been implemented in Indian cities.

These research gaps have led to the formulation of research objectives of this thesis. To

accomplish these objectives, some CA based models have been proposed and implemented

on two markedly different urban cities in India, as discussed in the subsequent chapter.
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Chapter 3

Study Area and Data Layer Generation

3.1 General

For carrying out the simulation studies, two Indian cities namely, Dehradun and

Saharanpur having different growth patterns have been selected. Figure 3.1 shows the

location of these two cities on the map of India. In this chapter, description of spatial

databases generated for these study areas has been provided. These databases form the basis

for analysis of growth trend of these two cities. Based on the growth trend analysis, the

factors influencing urban growth have been identified. These factors become the indicators

for various simulation studies as described in subsequent chapter.

3.2 Study area I: Dehradun city

3.2.1 Physical setting

Dehradun city, the capital of Uttarakhand Sate (India), is located in the picturesque

Doon valley. The lower Himalayas are located in the north, Siwalik mountain range in the

south, river Song in the east and river Tons in the west of the city. The hills which form the

north and south boundaries of the study area are covered with dense patches of reserved

forest (Figure 3.2). A number of civil and defense institutions of national level are located in

the city. The city has also emerged as a vital service centre within the region, since the trade

and commerce requirements of the region, higher order facilities of health, education,

recreation and transportation are met by the city. The city and its adjoining areas are



exuberant in fruit and agricultural products. During the last decades, the city has registered an

unprecedented growth in its area and population.

In order to regulate the development of the city, the Town and Country Planning

department has demarcated the Dehradun planning area, which consists of Dehradun city and

the surrounding areas. The planning area is selected on the basis of the influence of the city

on its surrounding areas. The geographical extents of the Dehradun planning area are 30°15'

N to 30°25' N latitude and 77°55'E to 78°10' E longitude, and covers a total area of 360 km2.

3.2.2 Demography

An analysis of the decadal population from 1971 to 2001 (Figure 3.3) reveals an

increasing trend in population from 30.38% in 1971-1981 to 37.92 % in 1991-2001. The

Town and Country Planning department has projected the future population on a decadal

basis (Figure 3.3), and plans to develop the area with a gross density of 130 persons per

hectare (Town andCountry Planning Department, 2005).

As per 2001 census, 75% of the workforce is engaged in tertiary sector, 20% in

secondary sector and 4% in primary sector. The employment of a large portion of the

population in tertiary sector highlights the role of Dehradun as a major service and

commercial centre in the region.
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Figure 3.1: Location of study areas (Not to scale)
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Figure 3.2 : Study area I: Dehradun planning area
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Figure 3.3: Demography of study area I

3.2.3 Major functions of the city

The major functions of Dehradun city are,

a) Administrative: Dehradun is the capital of Uttarakhand State, with the State

Government functioning from here.

b) Educational and Institutional: Dehradun has several national level research institutes

viz. Forest Research Institute, Indian Institute of Himalayan Geology, Wild Life

Institute, Indian Institute of Remote Sensing and many others. A number of colleges

and technical institutes are also located in the city.
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c) Commercial: Dehradun is a clearing place for goods exported for the hill areas of the

district and also for those imported from these areas. The trade of the city has

followed two main channels: one between valley and plain and other between the

valley and hills. After becoming capital of the State, the commercial activities have

gained momentum. Dehradun is now considered as one of the largest service centre

within the hilly region of Uttarakhand state.

d) Industrial: Dehradun has a number of industries that include information technology,

biotechnology, agro based and food processing industry, floriculture and industry

based onherbs and medicinal plants. In addition, tea and forest product industries also

have potential of further evolution.

e) Tourism: As Dehradun is located in the picturesque Doon valley, it is endowed with

immense importance as a place of tourist attraction. There are number of places and

recreational spots within short distance from the city center. Dehradun is also a

gatewayto the hill stations located in the lower Himalayas.

f) Defense: Dehradun also occupies a strategic location in terms of military

establishment of the country. A number of defense organisations viz. Indian Military

Academy, Doon Cantonment, Clement town Cantonment, Ordinance Factory, Indo-

Tibet border police, the President's body-guard offices etc., are located inthe city.

3.3 Study area II: Saharanpur city

3.3.1 Physical setting

Saharanpur city is located in the fertile tract of Upper Ganga-Yamuna daob (tract of

land between two confluent rivers) in the western part ofUttar Pradesh State (India). The city

is a district headquarters and is well connected by several roads and railways transport to

other important cities. Thus, the city in its regional setting also has a very significant place as
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a transport node. The city besides being a major market of food grains also acts as a service

centre for the surrounding hinterland, as it provides education and medical facilities. The

present city is bisected into two parts by a railway line. The old city area is located in the

northern part, where most of the commercial facilities are located (Figure 3.4). Lately, due to

the emergence of several industries (e.g., paper, strawboard, tobacco), the city has lost its

agrarian fabric and, therefore, growing numbers of its labour force is presently employed in

the secondary and tertiary sectors. The development of industry and services is attracting

migrants not only from the city's hinterland but also from further away far areas. As a result,

the city is expanding rapidly, onto the nearby surrounding fertile agricultural lands (Subudhi,

1998; Fazal, 2000). The study area II consists of Saharanpur city and its surroundings areas.

The study area encompasses the geographical extents, 29°55' N to 30°0' N latitude and

77°30' E to 77°35' E longitude and covers a total area of about 80 km .

3.3.2 Demography

From the analysis of decadal population, it is evident that the city had a constant rate of

population growth (Figure 3.5). The growth rate is 31.04% in 1971-81, 25.59% in 1981-1991

and 25.64% in 1991-2001 time periods. The Town and Country Planning department has

projected the future population on a decadal basis (Figure 3.5) and plans to develop the area

with a gross density of 140 persons per hectare (Town and Country Planning Department,

2001). According to 2001 census, 60% of the workforce is engaged in tertiary sector, 36% in

secondary sector and 4% in primary sector, thus highlighting its role as a commercial and

service centre in the region.
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Figure 3.4 : Study area II: Saharanpur city
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Figure 3.5: Demography of study area II

3.3.3 Major functions of the city

The major functions of the city are,

a) Commercial: Saharanpur is a leading commercial centre for its surrounding

hinterland. It has a big wholesale market for various agro based products like rice,

maize, groundnuts etc. It also provides other higher level economic and other services

such as banking, agricultural equipments etc. to the surrounding areas.

b) Industrial: Saharanpur city is also important for its agro-based industries. The city has

various small scale industries such wood carving, hosiery etc. These household

industries also play an important role in defining the economic structure of the city.

c) Transport: The development of Saharanpur is highly attributed to its transport

facilities. The city is also an important junction for traffic plying on various National
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and State highways, besides it is well connected by railways to the other parts of the

country,

d) Educational: A number of colleges and technical institute's viz. horticulture research

institute, pulp and paper technology department of IIT Roorkee are also located in the

city.

3.4 Generation of spatial database

3.4.1 Software used

For the preparation of spatial databases, two key software namely ERDAS Imagine

image processing software and ArcGIS software have been used. While ERDAS software has

been mainly used for image geo-referencing, registration and classification operations,

ArcGIS software is used for all GIS related operations.

3.4.2 Study Area I

3.4.2.1 Data sources used for creating spatial database

For analyzing the growth trend in study area I, maps depicting the built-up and non

built-up area for years 1997, 2001 and 2005, have been produced from the remote sensing

data acquired by sensors onboard Indian Remote Sensing (IRS) 1C/1D satellite. Table 3.1

lists the spatial and spectral resolutions and date of acquisition of the remote sensing data

used. The topographical maps, as listed in the Table 3.1, have been used for image geo-

referencing and as a reference data. Figure 3.6 shows the standard false colour composite

(FCC) of the study area generated from green, red and near infrared bands of LISS-III sensor.

The different tones of red color denote vegetation cover. Cyan colour with rough texture

represents built-up area. The dry river beds have dark blue to cyan tone, and a smooth

texture. The fallow land appears in greenish grey tone with smooth texture. The bare soil

havingno vegetation appears in bright white tone.
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Figure 3.6: LISS III standard FCC of study area I:
(a) LISS III standard FCC of 11-2-1997
(b) LISS III standard FCC of 23-12-2001
(c) LISS III standard FCC of 13-3-2005
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Table 3.1: Characteristics of remote sensing data and other data used for study area I

Satellite/Other data

used

Sensor Date of Acquisition

IRS -1C LISS-III ( Spatial resolution: 23.5 meters)

operating in four bands(Green : 0.52-0.59um,

Red: 0.62-0.68^m, Near infra red: 0.77-0.86um,

Sort wave infra red: 1.55(im-1.77(xm)

13-3-2005

23-12-2001

11-2-1997

IRS-1C PAN (Spatial resolution: 5.8 meters), operating

in single band 0.5-0.75 fun

14-3-1997

10-10-2001

IRS-P6 LISS-IV ( Spatial resolution: 5.8 meters)

operating in three bands(Green : 0.52-0.59um,

Red: 0.62-0.68^m, Near infra red: 0.77-

0.86um)

4-4-2005

Topographic maps Sheet number: 53J/3and 53F/15 at 1:50,000

scale

1965-66

Guide map 1:20,000 scale 1968

Master plan of
Dehradun for year
2025

1:20,000 scale 2005

3.4.2.2 Pre-processing of remote sensing data

For analyzing urban growth, the maps depicting the built-up/non built-up areas for

years 1997, 2001 and 2005, must be accurately registered with each other. This, image to

image registration of images of these years is pre-requisite, since the built-up/non built-up

areas maps are derived from these images only. The LISS-III image of year 2005 is first geo-

referenced to a topographical map using 28 well distributed ground control points (GCP). The

GCP consists of road intersections and other distinct well defined and prominent features

which could be identified in both image and topographical sheet. The registration has been

performed to a sub pixel accuracy using first order polynomial transformation and the image
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has been resampled using nearest neighbor technique. The images of years 1997 and 2001

have then been registered to the georeferenced LISS-III image of 2005, using 35 and 30 GCP

respectively. The root mean square error (RMSE) obtained is 0.09 and 0.11 pixels for 1997

and 2001 respectively.

3.4.2.3 Generation of maps showing built-up / non built-up areas

The built-up/non built-up maps have been produced from classification of LISS-III

images of year 1997, 2001 and 2005 using the maximum likelihood classifier (MLC). The

MLC is a parametric supervised classification algorithm. The various steps involved in the

classification process are, >r ^•-^TTT/y rrTh"••'-'.. ^S.ff /^ACC.No^.„T3..S..r.... .>s YV
V\*V Date ... .- . J*)Ji) Classification system ^/^~- - —-•- ^f

The present study is based on the dichotomy of built-up and non built-up classes. Built-up

class has been defined as land covered by structures and other impervious material. The non

built-up class consists of fallow land, scrubland, agricultural and bare soil classes (Anderson

et al, 1976; Gautam, 1976; Kasetkasem et al, 2005; Mundia and Aniya, 2005). The

description of these classes along with their characteristics on the LISS-III imageries is

discussed in Table 3.2 (Lillesand and Kiefer, 2000). After the classification of images into

these classes, the classes have been merged into one class, i.e., non built-up.
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Table 3.2: Characteristics of various land cover classes

Class

attributes

Class name Definition Characteristic on LISS III

standard FCC

1 Built-up Land covered by structures,
having block like appearance.

Cyan, bright and dull

2 Non Built-up Non Built-up class includes the following sub classes
(i.e., subclasses with attributes 21,22,23 and 24)

21 Fallow land Agricultural land presently
lying vacant

Greenish grey with smooth
texture

22 Scrubland Land having sparse
vegetation

Dull red to pink

23 Agricultural Land used primarily for
production of food and fiber.

Dull red and smooth

appearance

24 Bare-soil Land having thin soil, sand or
rocks. Vegetation if any is
scrubby.

Bright whitish

ii) Formation of training datasets

The MLC algorithm uses the statistical parameters derived from the training data to

classify the remote sensing image into various classes. Thus, in order to obtain higher

classification accuracy, the training data should be representative of the respective classes

and should be collected from relative homogenous areas.

The quality of a training dataset can be analyzed by its histogram plots. A unimodal

histogram following a normal distribution is representative of pure training dataset, while

multimodal histograms indicate the presence of two or more classes in the dataset (Arora,

2002). Since the generation of training data set is a tedious process, therefore its size should

be kept small. However, it should be large enough for accurate determination of various

statistical parameters that are required by the classification algorithm. As a rule of thumb, in a

training dataset, the number of training samples for each class may be 3On (Mather, 1999)

where n is the number of spectral bands of remote sensing image. In this study, LISS-III data

having four bands is being used, thus the minimum number of training samples in each class

in the training dataset has been kept as 120 (Table 3.3). The histogram plots of the training
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dataset for each class, generated from 1997, 2001 and 2005 images have been found to be

unimodal.

Table 3.3: Number of training pixels used in classification for each class

""~\^ Remote sensing
^^-^image

Land cover^^^^
classes 1 ^^^^

1997

image
2001

image
2005

image

Built- up 160 184 156

Bare soil 130 162 157

Agricultural 174 195 152

Fallow land 157 152 142

Scrubland 157 141 178

iii) Separability analysis

Separability analysis is mostly performed on the training dataset in order to identify the

combination of bands that is most effective in discriminating each class from all others. The

aim is to remove the bands that provide redundant spectral information while retaining the

maximum class separability, thereby reducing the dimensionality of dataset and processing

time.

To find the band combination that gives maximum class separability. Transformed

Divergence (TD), (Jensen, 1986) has been used in this study. The Transformed Divergence

(TD) values range from 0-2000. A TD value of 2000 indicates excellent class separability,

above 1900 provides good separability while values below 1700 are considered as poor. The

band combinations which have yielded maximum TD values for the 1997, 2001 and 2005

images are shown in Table 3.4. These band combinations have then been used for classifying

the LISS III images using MLC.

52



Table 3.4: Best band combinations and their average Transformed divergence
(TD) values

Bandl Green: 0.52-0.59um; Band 2 Red: 0.62-0.68um
Band 3 NIR: 0.77-0.86um; Band 4 SWIR: 1.55um-1.77um

Year Band combinations Average TD

1997 1,3,4 2000

2001 1,3,4 1998

2005 2,3,4 2000

iv) Image classification

The best band combinations as of, the LISS III images of the three years have been

classified using the maximum likelihood classification (MLC) algorithm. The MLC is based

on the probability density function associated with a particular training data signature. Pixels

are assigned to the most likely class based on a comparison of the posterior probability of

each class. The image has thus been classified into one class of built-up and 4 classes of non

built-up area. The later classes have then been merged into non built-up class. The maps thus

produced show the built-up and non built-up class for years 1997, 2001 and 2005 and are

shown in Figure 3.7, 3.8 and 3.9 respectively. These maps also show exclusionary areas

which include restricted areas, reserved forests, water bodies, public grounds and gardens,

these areas do not have any development potential. Mask corresponding to these areas have

been generated using the survey of India topographical maps, guide map and Dehradun

master plan (Figure 3.10) and these areas were masked before the classification.

v) Accuracy assessment

In order to determine the accuracy of classification, testing samples are collected from the

classified image, which are compared with the corresponding samples on the ground or
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reference data. In this study the PAN and LISS-IV images providing data of higher spatial

resolution than the LISS III image have been used as a reference data. The class attributes of

testing data as observed on classified image and reference data are cross tabulated in the form

of an error matrix. An error matrix is a square matrix of nxn dimensions, where n refers to the

number of classes. The column represents the reference data, while the rows refer to the

classified image. From this matrix, the overall accuracy is obtained, by dividing the number

of correctly classified samples, along the diagonal by the total number of samples. The

choice of a suitable sampling scheme and the determination of an appropriate sample size,

plays an important role in determining the appropriate testing sample data (Arora and

Agarwal, 2002). As a rule of thumb, the number of testing samples selected per class for

accuracy assessment is 50, which can be increased to 75-100 when the study area is large or

the numbers of classes are large (Congalton, 1991; Congalton and Green, 1999).

A stratified random sampling has been used here to select 100 testing pixels each from the

built and non built-up classes. The overall accuracy for the three classified images of 1997,

2001 and 2005 have been found to be are 94%, 90.5% and 93% respectively, which are more

than the minimum accuracy criteria of 85% overall accuracy as recommended by Anderson et

al. (1976).

3.4.2.4 Generation of road network map

The road network has been derived from LISS III 1997 remote sensing data through

visual image interpretation. The PAN data and the guide map of Dehradun have been used as

data sources. The road network has not undergone any major modification during the period

1997-2005. Therefore the same road network has been used for 1997-2001 and 2001-2005

period. As can be seen from the map of road network (Figure 3.11), the road network is radial

in nature, with the roads radiating outwards from the city core. These radiating roads are

interconnected to each other by a network of roads.
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3.4.2.5 Delineation of city core

The city core has been defined as that part of the city where most of the higher level

facilities are located. In Dehradun study area, the city core has been identified after

consultation with the local planning authorities (Figure 3.11). The city core consists mainly

of the old portions of the city, which have formed the nucleus around which the city has

grown. The master plan of 2005-2025 also proposes to further develop the economic

activities in this city core area.
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Figure 3.7: Built-up/ non built-up areas in year 1997 (study area I)
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Figure 3.8: Built-up/ non built-up areas in year 2001 ( study area I)
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Figure 3.9: Built-up/ non built-up areas in year 2005 ( study area I)
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Figure 3.10: Exclusionary areas (study area I)
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Figure 3.11: Road network and city core (study area I)
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3.4.3 Study area II

3.4.3.1 Data Sources used for creating spatial database

Data used to produce the built-up/non built-up area maps of years 1993 and 2001

consisted of aerial photographs and remote sensing data acquired Indian Remote Sensing IRS

1C PAN sensor. Table 3.5 lists the scale and date of acquisition of the aerial photographs and

the remote sensing data. Both the data products are panchromatic, so the built-up area has a

blocky appearance with light tone. The vegetated areas have light to dark tone with rough

texture. Bare soil has very light tone, while the water bodies have a dark tone.

The topographical map has been used for extraction of control points for geometric

registration of the maps. The guide map and master plan have been used as a reference data,

during the creation of different maps.

Table 3.5: Data products used for study area II

Data product Scale Date of Acquisition

Aerial Photograph in analogue form 1:10,000 1993

IRS-1C PAN data in analogue form
(Spatial resolution: 5.8 meters,
operating in single band 0.5-0.75 urn)

1:12,500 3-11-2001

Topographic maps Sheet number 53G/9

at 1:50,000 scale

1965-66

Guide map of Saharanpur 1:20,000 1982

Master plan of Saharanpur for year
2021

1:20,000 2001

3.4.3.2 Generation of maps showing built-up / non built-up areas

Maps depicting the, built-up/non built-up for year 1993 and 2001 are prepared by

visual image interpretation of the aerial photographs and IRS-1C PAN image (Figure 3.12

and 3.13 respectively). These maps are then scanned to convert them to digital format. In
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order to ensure a proper overlay between the two maps, the two maps are registered to each

other. Firstly, 30 ground control points (GCP) well distributed across the 1993 map and also

present in the topographical map are selected. Using these GCP, the 1993 map is

georeferenced to the topographical map using first order polynomial transformation, resulting

in a RMSE of less than half a pixel. The 2001 map is then registered to the geoferenced 1993

built-up/ non built-up areas map using 25 GCP and the RMSE obtained is 0.14 pixels.

The overall accuracy of these 1993 and 2001 year maps prepared by visual

interpretation is 93% and 91% respectively. The restricted areas and water bodies have been

treated as exclusionary zones. Mask corresponding to these areas have been generated based

on Survey of India topographical map, guide map and Saharanpur master plan (Figure 3.14).

3.4.3.3 Generation of road network map

The road network map has been generated by visual image interpretation of 1993

aerial photographs (Figure 3.15). The guide map and master plan of Saharanpur city have

also been used as data sources.

3.4.3.4 Delineation of city core

After consultation with the local planning authorities, the city core has been

demarcated (Figure 3.15). Most of the commercial and institution facilities in Saharanpur city

are located in the city core. This area constitutes the old part of the city and has a very high

built-up area and population density. The city originates from here, and slowly spreads in the

south and west directions.
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Figure 3.13: Built-up/ non built-up areas in year 2001( study area II)
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Figure 3.15: Road network and city core (study area II)
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3.5 Analysis of urban growth trend

3.5.1 Study area I

As discussed in chapter one, urban growth has been quantified in terms of increase in

the built-up area over a period of time .Thus, maps depicting built-up and non built-up area

for years 1997, 2001 and 2005 have been prepared for monitoring the urban growth. The

growth analysis for the two time periods 1997-2001 and 2001-2005 has been carried out in a

GIS environment using overlay operation (Figures 3.16 and 3.17). The overlay analysis

shows that during 1997-2001, the increase in built up area is 797 hectares and in 2001-2005 it

is 1108 hectares respectively. The boundary of the planning area mainly in the north, east and

south directions is hilly and covered with reserved forests, thereby restricting any growth.

Large area of land is also occupied by defense establishments in the west, north-west, east

and south directions. The tea plantation in the west also occupies a large tract of land. Due to

these constraints, the city has not been able to grow in a compact and continuous manner,

with growth taking place in a scattered manner mainly in pockets. The existing trend of

physical development indicates that the city may expand in the south-east and south-west

directions, where the terrain is flat, level of accessibility is good and not many constraints are

there.

The growth pattern has also been analyzed in terms of distance from road network and

city core. After consultation with the local planning authorities and based on field knowledge,

different buffer zones have been created around the roads and city core (Tables 3.6 and 3.7),

and have been overlaid with the growth maps of 1997-2001 and 2001-2005.
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Figure 3.16: Urban growth pattern during 1997-2001 (study area I)
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Table 3.6: Buffer zones with respect to roads Table 3.7: Buffer zones with respect to
city core

Zones Distance from Roads

(in meters)

I 0-200

II 200-400

III 400-800

IV 800-1600

V >1600

Zones Distance from city core
(in meters)

I 0-1000

II 1000-2000

III 2000-3000

IV 3000-4000

V >4000

a) Growth patterns with respect to roads

A study of Table 3.8 shows that in 1997-2001, 62.4%, of the total urban growth has taken

place within zone I, which increased to 68.5% in 2001-2005. The growth in zone II remains

the same, i.e., 21%. However, in zone III, the growth has decreased from 13% in 1997-2001

to 8.6% in 2001-2005. Thus, 83% of the total growth in 1997-2001 and 89% of the total

growth in 2001-2005 has taken place within a distance of 400 meters from the roads. This

highlights the importance of road accessibility in the growth process of the study area I.

Table 3.8: Percentage of growth in different distance zones from existing roads
(study area I)

Zones Distance from Roads

(in meters)
% of Total Growth

(1997-2001)
% of Total Growth

(2001-2005)

I 0-200 62.4 68.5

II 200-400 21.1 20.5

III 400-800 13.0 8.6

IV 800-1600 3.2 2.0

V >1600 0.3 0.4

b) Growth with respect to city core

The urban growth during 2001-2005 in zone I is 8%, as compared to 13.4 % in 1997-2001

(Table 3.9). The total growth in Zone II, III and IV has increased to 54% in 2001-2005 from
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43% in 1997-2001.Thus, distance from city core is also a important factor affecting the

growth process in zone I.

Table 3.9: Percentage of growth in different distance zones from city core (study area I)

Zones Distance from City Core
(in meters)

% of Total Growth

(1997-2001)
% of Total

Growth

(2001-2005)

I 0-1000 13.4 8.0

II 1000-2000 16.6 18.0

III 2000-3000 16.2 19.7

IV 3000-4000 9.7 16.2

V >4000 44.1 38.1

3.5.2 Study area II

The urban growth of Saharanpur has been analyzed for the period 1993 to 2001

(Figure 3.18), using maps depicting built-up/ nori built-up areas for year 1993 and 2001.

Results show that 630 hectares of land has changed from non built-up to built-up during the

1993-2001 period. This growth has taken place in the form of infilling of vacant areas and

outgrowth from already built-up area in 1993. In the absence of any natural constraints, the

city has grown in a concentric compact pattern, mainly along the roads and in contiguity of

alreadybuilt-up areas. Due to the presence of defense establishment, i.e., Remount Depot, in

the east direction, the growth has been restricted in this direction. The growth pattern has

also been analyzed with respect to distance from roads and distance from city core.
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a) Growth with respect to roads

From Table 3.10, it can be deduced that 79% of the total growth has taken place within

zone I and II during 1993-2001. While 21.4 % of the total growth has taken place in zone III,

IV and V respectively. This highlights the importance of road accessibility in the growth

process of study area II.

Table 3.10: Percentage of growth in different distance zones from roads
(study area II)

Zones Distance from Roads

(in meters)
% of Total Growth

(1993 -2001)

I
0-200

51.6

II
200-400

27.0

III
400-800

18.3

IV
800-1600

2.9

V
>1600

0.2

b) Growth with respect to city core

In case of distance from city core (Table 3.11), it has been observed that 83% of the total

growth has taken place in zone II, III and IV during 1993-2001. Thus, distance from city core

is also an important factor affecting the growth process in study area II

Table 3.11: Percentage of growth in different distance zones from city core
(study area II)

Zones Distance from City Core
(in meters)

% of Total Growth

(1997 -2001)

1 0-1000 8.0

2 1000-2000 30.9

3 2000-3000 28.0

4 3000-4000 24.2

5 >4000 8.9
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3.6 Factors driving the urban growth

As observed from growth trend in both the study areas, distance to roads and city core are

two important factors that influence the growth process. However, besides these two factors,

the accessibility to basic infrastructure facilities (i.e., water supply, sewerage, electricity,

banks, shopping centre, medical centre etc.) also influences the urban growth process

(Paul and Bharat, 1997; Gupta and Bawa, 2004; Gowda, 1998). Thus, urban growth in both

study areas is defined as a function of the following three factors:

i) Distance to road network

ii) Accessibility to infrastructural facilities

iii) Distance to city core

The following raster maps corresponding to these three factors have been generated in GIS.

The cell size of these raster maps has been kept as 23.5 meters, which corresponds to the

spatial resolution of LISS III image used in this study,

i) Distance to road network

The distance to transport network has been measured in terms of Euclidian distance from

the nearest road. Raster maps depicting the Euclidian distance of each cell from the nearest

road have been generated in GIS for both the study area, as shown in Figure 3.19 and 3.20.

ii) Accessibility to infrastructural facilities

The accessibility to infrastructural facilities has been measured in terms of:

a) Distance from nearest built-up cells: The cost of connecting to urban services (e.g. water

supply, sewerage, etc.) decreases with the distance from already built-up areas, as these

facilities are already available in existing built-up areas. Raster maps showing the Euclidean

distance of a cell from the nearest built-up cells have been generated and are shown in

Figure 3.21 and 3.22
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b) Amont of built-up cells in the neighbourhood: A larger proportion of built-up area in the

neighbourhood implies availability of localized facilities, i.e., shopping centre, medical

centre, banking, post office etc., necessary to support the population. Figure 3.23 and 3.24

show the amount of built-up cells in neighbourhood, calculated using a 5x5 cell Von

Neumann neighbourhood.

iii) Distance to city core

The distance to city core has been measured in terms of Euclidean distance of each cell

from the city core, where most of the higher level commercial facilities are located. Raster

maps depicting the Euclidian distance of each cell from the city core have been generated

and are shown in Figures 3.25 and 3.26

The database pertaining to factors driving the urban growth, as discussed in this chapter,

forms the input to various CA based models implemented in this research.
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Figure 3.19: Distance from nearest road (study area I)
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Figure 3.20 : Distance from nearest road (study area II)
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Figure 3.21: Distance from nearest built-up (study area I)
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Figure 3.22: Distance from nearest built-up (study area II)
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Figure 3.23: Number of built-up cells in neighbourhood (study area I) calculated using 5x5 cell Von Neumann
neighbourhood
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Chapter 4

Multi-Criteria Evaluation based CA model

4.1 Introduction

In this chapter, a Multi-Criteria Evaluation (MCE) based CA model to simulate urban

growth, has been proposed. The model simulates urban growth as a function of the three

factors, which were discussed in chapter 3. In the proposed model MCE is used to define the

CA transition rules. The proposed MCE-CA model is calibrated for both the study areas and

the calibrated results have been evaluated with respect to the actual growth on a cell by cell

basis and spatial growth patterns. The calibration parameters, which produce the highest

accuracy, have been used for future urban growth simulations in both the study areas.

4.2 Multi-criteria evaluation

The urban growth, in both the study areas, has been expressed as a function of following

three factors,

i) Distance to city core

ii) Accessibility to infrastructural facilities

iii) Distance to road network



Corresponding to these three factors, the following raster maps have been created in GIS,

i) Euclidian distance of each cell from the city core

ii) Euclidean distance of a cell from the nearest built-up

iii) Euclidian distance of each cell from the nearest road

The Multi-Criteria Evaluation (MCE) technique has been used, in order to combine these

three raster maps into a single raster map (suitability map), which depicts the potential or

suitability of each cell for future urban growth. In implementing MCE, each factor has been

assigned a weight, which indicates the relative importance of a factor with respect to other

factors in determining the urban growth suitability of cells. In MCE, several weight

assignment strategies, such as, ranking, rating, Analytical Hierarchical Process (AHP) and

tradeoff methods are available. Amongst these, AHP method, given by Satty in 1980, is the

most popular one (Malczewski, 1999, 2006) and has been used in the present study for

deriving the weights of factors. These weights are then used for generating the urban growth

suitability map. The AHP process consists of following three steps,

i) Generation of pair wise comparison matrix,

ii) Computation of factor weights,

iii) Estimation of consistency ratio.

4.2.1 Generation of pair wise comparison matrix

The three factors are compared pair wise and scores are assigned to the factors on a

numerical scale ranging from 1 to 9 (Table 4.1) based on their relative importance with

respect to each other in the urban growth process. The results of this comparison are

displayed in the form of a pair wise comparison matrix. In the present study, the comparison
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matrix has been created based on the expert opinions from local planning authorities

(Table 4.2). This matrix is reciprocal in nature and shows the pair wise score between all

factors. For example, the factor distance to road network has strong importance as compared

to the factor, distance to city core. Hence, distance to road network has been assigned a score

of 5 and the factor, distance to city core, receives a score of 1/5 (Table 4.1).

Table 4.1: Definition of numerical scales for pair wise comparison

Numerical scale Relative importance

1 Equal importance

2 Equal to moderate importance

3 Moderate importance

4 Moderate to strong importance

5 Strong importance

6 Strong to very strong importance

7 Very strong importance

8 Very to extremely strong importance

9 Extreme importance

Table 4.2: Pair wise comparison matrix

Factor
Distance to

city core
Accessibility to
infrastructural facilities

Distance to

road network

Distance to city core
1 1/3 1/5

Accessibility to
infrastructural facilities

3 1 1/3

Distance to road

network
5 3 1

109



4.2.2 Computation of factor weights

The pair wise comparison matrix has been used for calculation of factor weights. The

steps in weight calculation are:

i) The values in each column of the pair wise comparison matrix are summed

ii) Each element in the matrix is divided by its column total

iii) The average of the elements in each row is computed, i.e., the sum of each row is

divided by the number of factors, which in the present case is 3

Thus, the computed factor weights are, distance to city core = 0.10, accessibility to

infrastructural facilities = 0.26 and distance to road network = 0.64

4.2.3 Estimation of consistency ratio

Depending on the expert opinions, the factors can be assigned different scores and the

corresponding factors weights calculated which at times can be subjective. Therefore, in

order to determine the consistency of comparisons between the factors and computed

weights, a measure namely, consistency ratio (CR) has been used. The CR is defined as the

ratio between consistency index (CI) and random index (RI), as explained in Equation 4.1,

CI
CR-- ...4.1

Random index (RI) is the consistency index of a randomly generated pair wisecomparison

matrix. The valueof RI used is 0.58, as found out from the Random Inconsistency indices

table given by Satty (Malczewski, 1999).
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Consistency index (CI) is defined as follows,

X — n
CI = ...4.2

n- 1

Where,

X= average value of the consistency vector

n = number of factors (n = 3 in present case, since three factors are considered)

The value of Xis calculated as (refer Table 4.3),

i) The weight of the factor, distance to city core (i.e., 0.12), is multiplied by the first

column of pair wise comparison matrix (refer Table 4.2), as shown in step I of Table

4.3

ii) The weight of the factor, distance to infrastructural facilities (i.e., 0.23), is multiplied

by the second column of pair wise comparison matrix (refer Table 4.2), as shown in

step I of Table 4.3

iii) The weight of the factor distance to road network (i.e., 0.65), is multiplied by the third

column of pair wise comparison matrix (refer Table 4.2), as shown in step I of

Table 4.3

iv) These values are summed over the rows as shown in step I of Table 4.3

v) The consistency vector is determined by dividing the weighted sum vector by the

criterion weights as shown in section II of Table 4.3.
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Table 4.3: Determination of consistency vector (Note: the values in brackets indicate the
factor scores assigned in Table 4.2)

Factor
Step I Step II

Distance to city core (l)x0.10+ (l/3)x0.26+ (l/5)x0.64= 0.32

(3)x0.10+(l)x0.26+ (l/3)x0.64= 0.78

(5)x0.10+ (3)x0.26+ (l)x0.64 = 1.93

0.32/0.10

=3.2

Accessibility to
infrastructural

facilities

0.78 / 0.26

=3.0

Distance to road

network

1.93/0.64

= 3.01

The value of Xis found out by averaging the value of the consistency vector obtained in

Table 4.3 as,

3.2+3.0+3.01
A = =3.07

The value of CI is then calculated using Equation 4.2 as,

3.07-3
CI=——— = 0.04

3-1

Thus, 0=0.04 and RI=0.58, using Equation 4.1, the value of CR is calculated as,

0.04

CR=a==007

If CR < 0.1, it indicates a reasonable level of consistency in pair wise comparison and the

weights are accepted. On the other hand, if CR > 0.1, it indicates inconsistent judgment and

the scores in the comparison matrix need to be assigned again and the weights determined

again. Since, the computed value of CR is 0.07 and less than 0.1, therefore the computed

weights are accepted.
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4.2.4 Generation of urban growth suitability map

The AHP derived factor weights have then been used for creating the urban growth

suitability map. The raster maps corresponding to the three factors driving urban growth

(discussed in section 4.2), are reclassified on a 0-1 linear scale. In these maps, the cells near

to built-up area, road and city core receive a value of 1 and cells farther away receive lesser

values. These three raster maps have been multiplied with their respective factor weights, and

the products added together (Equation 4.3) as,

S = (Dcc * 0.10+ Dnb* 0.26 + Dnr *0.64) .... 4.3

Where,

S is the suitability map which shows the potential of each cell for urban growth

Dnb denotes the raster map distance to nearest built-up

Dcc denotes the raster map distance to city core

Dnr denotes the raster map distance to nearest road

The suitability map thus produced, shows the suitability of each cell for urban growth.

Figure 4.1, depicts the process of suitability map creation. The suitability map produced for

study areas I and II using the MCE technique are shown in Figure 4.2 and Figure 4.3

respectively. The areas with black colour represents cells that are already built-up and fall in

exclusionary zones (discussed in chapter 3) and have thus been excluded from analysis. The

cells with value 1 are the most suitable for future urban growth, while cells with lower values

are less suitable for urban growth.
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Figure 4.1: Process of generation of urban growth suitability map
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Figure 4.2: Urban growth suitability map generated using MCE (study area I)
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Figure 4.3: Urban growth suitability map generated using MCE (study area II)
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4.3 MCE based CA model (MCE-CA)

The urban growth suitability maps are static in nature, since these are created by linear

summation of factors which are also static in nature. For example, the values in the factor

map, distance from roads, will only change when a new road is built. Similarly, the factors

distance to city core and existing built up area are also static and will change only when some

external forces act on them. However, urban growth is a dynamic process in space and time

and can not be modelled using the static approach. Therefore, a MCE based CA (MCE-CA)

model is proposed to capture the dynamic process of urban growth.

The proposed model uses the MCE derived suitability map as input. The potential of cell

for future urban growth has been expressed as a function of the suitability of the cell and

local level factors (i.e., amount of built-up in the neighbourhood). These factors interact at the

local level in a recursive manner, initiate a non-linear dynamic process, which is able to

capture the dynamics of urban growth.

The proposed model is based on the dichotomy of built-up and non built-up areas and

simulates transition from non built-up to built-up areas with no reverse process. Therefore,

the existing built-up areas and areas that do not have any development potential, e.g.,

restricted areas, reserved forests, water bodies, public grounds (discussed in chapter 2) have

been treated as exclusionary areas. The proposed model makes no prediction of urban growth

in these exclusionary areas. A schematic diagram of the model is shown in Figure 4.4.
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Figure 4.4: Flowchart of MCE based CA model
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Following steps are followed in the running of MCE-CA model:

i) Generation ofmaps corresponding to factors driving urban growth in study area

ii) Generation of MCE based urban growth suitability map using maps generated in

step i)

iii) Stopping criteria for the model

iv) Masking of exclusionary areas

v) Modification of suitability map based on amount of built-up cells in neighbourhood

vi) Allocation of cells from non built-up to built-up

vii) Updation ofbuilt-up/ non built-up map and factor maps

viii) Generation of urban growth suitability map based on updated factor maps

ix) The process from step iv) to step viii) is repeated, till the stopping criteria is fulfilled.

The final updated built-up/non built-up map is stored as simulated urban growth map

of study area.

The proposed model is implemented for study areas I and II. In order to simulate the

growth of cities, it is necessary to fix the values of model parameters that are able to generate

realistic patterns of urban growth. This process is called as model calibration. The proposed

ANN-CA model has been calibrated for both the study areas. For study area I, the model is

calibrated for period 1997-2001 whereas for study area II for the period 1993-2001. The

detailed description of the calibration steps is as follows,
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4.3.1 Generation of maps corresponding to factors affecting urban growth in study area

As discussed earlier, urban growth is expressed as a function of three factors, and

corresponding to these three factors, four maps are created in GIS.

i) Euclidian distance of each cell from the nearest road (fl)

ii) Euclidean distance of a cell from the nearest built-up (f2)

iii) Euclidian distance of each cell from the city core (O)

iv) Amount ofbuilt-up in neighbourhood (f4)

For generating the f4 map (i.e., amount of built-up in neighbourhood), Von Neumann and

Moore neighbourhoods with cell sizes varying from 3x3 cells to 39x39 cells have been used.

4.3.2 Generation of urban growth suitability map

A suitability map created using the MCE technique (refer section 4.2) has been taken

as a input.

4.3.3 Stopping criteria for the model

The stopping criterion defines the condition at which the model stops allocating non

built-up cells to built-up during each iteration. For defining stopping criteria in this model, it

is assumed that equal number of cells transit to built-up during each iteration. Thus, if a total

of N cells transit to built-up during the entire simulation period and the number of model

N
iterations is T, then —— numberof cells are allocated to built-up during each iteration and

is denoted by C. The process stops when C numbers of cells are allocated from non built-up

to built-up.

CA models are recursive in nature (i.e., they involve a repeated procedure for a finite

number of iterations, such that the model output at iteration lt* becomes the input for 't+V
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iteration). It is this recursive nature that makes the CA models dynamic in nature. The

proposed MCE-CA model is run for a user defined number of iterations. During each

iteration, cells transit from non built-up to built-up area based on their suitability values.

For study area I, the model is calibrated for the period 1997 to 2001. Using the built-

up/non built-up maps of year 1997 and 2001 (discussed in chapter 3), the total number of

cells that transit from non built-up to built-up during this period are found, this defines the

stopping criteria for the model. Thus, this ensures that the same number of cells transit from

non built-up to built-up during the simulation, as that have actually transit from non built-up

to built-up during 1997-2001. Similarly, for study area II, the model is calibrated for the

period 1993 to 2001. The built-up/non built-up maps of year 1993 and 2001 (discussed in

chapter 3) have been used to determine the actual number of cell that transit from non built-

up to built-up, which define the stopping criteria .

Using different combinations of the neighborhood and number of iterations, the MCE-CA

model has been executed several times for each of the study areas so as to determine the

optimum values of the parameters.

4.3.4 Masking of exclusionary areas

The restricted areas, reserved forests, water bodies, public grounds and gardens have

been treated as exclusionary zones and the model makes no prediction in these areas. A mask

corresponding to these areas has been generated based on Survey of India topographical map,

guide map and master plan of the study areas. Since the model only simulates transition from

non built-up to built-up with no reverse process taking place, so the built-up cells are also

masked out. At the end of each model iteration when cells are allocated from non built-up to

built-up, the built-up mask is also updated.
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4.3.5 Modification of suitability value based on neighbourhood

The concept of neighbourhood is central to CA (i.e., a non built-up cell having a larger

proportion of built-up cells in its neighbourhood has a higherpotential for transiting to built-

up as compared to non built-up cell, which has a lower proportion of built-up cells in its

neighbourhood). Thus, the urban growth suitability map generated using MCE, has been

modified by multiplying the suitability value at each cell with the amount of built-up cells in

its neighbourhood (Equation 4.4). Thus, for a cell to be a likely choice for transition to built-

up, it should be both inherently suitable and near to built-up areas. Thus, the modified

suitability value is given as,

Sc=SmCeXfi ...4.4

where, Sc is themodified suitability value, Smce is theMCE derived suitability value and Q is

the amount of built-up cells in the neighbourhood. The amounts of built-up cells in

neighbourhood are updated aftereach model iteration as explained in latersteps.

4.3.6 Allocation of cells from non built-up to built-up

On the basis of their MCE and neighbourhood information derived urban growth

suitability value, the cells in study area are ranked in a descending order. The first C ranked

cells are only allocated to built-up (refer section 4.3.3), while the rest of the cells remain as

non built-up.

4.3.7Updation of built-up/non built-up map and factor maps

On the basis of the cells that have transit from non built-up to built- up, the built-up/ non

built-up area map is updated for study area I and II. Other factor maps such as, distance to
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nearest built-up and amount of built-up in neighbourhood are then recalculated on the basis of

this updated map.

4.3.8 Generation of urban growth suitability map based on updated factor maps

The urban growth suitability map is generated again using MCE technique and the

updated factor maps. During suitability map generation, the same factor weights are used as

computed initially using Satty's method.

4.3.9 Model iterations

The process from step 4.3.4 to step 4.3.8 is repeated, until the total number of iteration

as decided in step 4.3.3 are executed. The updated built-up/ non built-up map in the last

iteration is the final simulated urban growth map of the study area.

4.4 Evaluation of simulated growth patterns

The MCE-CA model has been executed several times for each of the study areas, using

different model parameters. The simulated urban growth patterns have been evaluated on the

basis of cell by cell matching of simulated growth with actual growth using Percent correct

match (PCM). However, the PCM is based on independent comparison between pair of cells.

Thus, small displacements between the actual and simulated urban growth maps are

considered as errors and the same error is reported even if the displacement is of'«' cells or

one cell (Barredo et al, 2003). The PCM, therefore, is unable to take into account the

patterns or distribution of urban growth. Therefore, the model results have also been

evaluated on the basis of the similarity between the actual and simulated growth patterns

using Moran's Index.
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a) Percent Correct Match (PCM)

The raster maps depicting simulated and actual urban growth have been overlaid and the

corresponding cells, which have changed from non built-up to built-up, in both the maps are

counted. PCM is defined as the ratio between correctly simulated cells and the actual total

number of cells that have transitted from non built-up to built-up during the simulation period

(Equation 4.5).

Ni
PCM=— *100 ...4.5

N2

Ni= Cells correctly simulated to change to built-up by the model

N2 = Cells actually transiting to built-up during the simulation period

A higher value of PCM implies that the model is able to accurately simulate the growth cells.

b) Moran Index

In order to evaluate growth pattern spatially, Moran Index has been used. A Moran Index is a

spatial statistical indicator that reveals the pattern of clustering of the same type of class at

adjacent cells (Shortridge, 2007, Wu, 2002, Li and Yeh, 2004a). The indicator reflects the

extent to which built-up and non built-up cells are intermixed with each other. A value of

Moran Index close to +1 indicates a compact growth pattern with less intermixing of built-up

and non built-up cells. A value close to -1 indicates a dispersed pattern with more intermixing

of built-up and non built-up cells. If the values of the Moran index for the simulated and the

actual growth are close to each other, it implies that the model is able to simulate the urban

growth pattern accurately. The other advantage of Moran Index is that it is simple and easy to
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compute as compared to other spatial metrics (e.g., mean patch area, total edge, shape index )

and fractal dimension, which are complex in nature.

4.5 Results and Discussion

As discussed in section 4.5, in order to optimize the model parameters, the MCE-CA

model has been calibrated by varying the sizes of two neighborhoods as well as the model

iterations for subsequent urban growth simulation. PCM and Moran index have been used to

compare the model derived simulated urban growth with actual urban growth for the two

study areas and has been discussed in the following.

4.5.1 Study area I

i) Analysis based on PCM value

The PCM value has been plotted as a function of neighbourhood size for both the

neighbourhoods as well as the number of iterations (Figures 4.5 and 4.6). On executing the

model using Von Neumann neighbourhood, the maximum value of PCM has been obtained

as 35%, for 5x5 cell size and 16 iterations. Increase in the sizes of the neighbourhood

decreases the PCM. The lowest PCM of 29.5% is recorded when the model is executed using

neighbourhood of 39x 39 cell size and 16 iterations. Increasing the number of iterations has

also led to a further decrease in value of PCM.

Exactly similar trend has been observed in executing the model using Moore neighbourhood.

Thus, for a study area, which has got dispersed urban growth pattern, neighbourhoods of

small size (e.g., 5x5 cells) but large number of iterations produces realistic growth trends.

The type of neighbourhood has been found to be immaterial.
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ii) Analysis based on Moran Index value

The Moran index value has been plotted as a function of size in neighbourhood for both the

neighbourhoods as well as the number of iterations (Figures 4.7 and 4.8). On executing the

model using Von Neumann neighbourhood, a Moran index value of 0.29 has been obtained at

5x5 cell size and 1iteration. This value exactly matches with the Moran Index for actual

urban growth in study area.

On increasing the neighbourhood size, the simulated growth patterns become increasingly

compact. For example, the Moran index increases significantly when neighbourhood size

increases from 3x3 cells to 15x15 cells. After this, the increase in Moran index is gradual.

Similar trend canbe seen in caseof Moore neighbourhood (Figure 4.10).

Thus, increase in the neighbourhood size as well as increase in the number of iterations tend

to increase the compactness of the urban growth pattern. However, since the urban growth

trend in this study area is of dispersed nature, a neighbourhood of small size with less number

of iterations has produced growth patterns which are close to the actual growth patterns

spatially.

Hence, for study area I, which has a dispersed growth pattern, neighbourhoods of small size

(i.e., 5x5 cells) produced accurate growth patterns, as cab be seen from the analysis of PCM

and Moran Index values. However, while large number of model iterations resulted in higher

values of PCM, but on the other hand they also generated increasingly compact patterns, as

comparedto the actual growth taking place in the study area.

132



36

29

28

27

Number of iterations

-+-16 iteration

"fr8 iteration

*-*-4 iteration

-*-2 iteration

HK-1 iteration

3x3 7x7 11x11 15x15 19x19 23x23 27x27 31x31 35x35 39x39

Size of Von Neumann neighbourhood (cells) >

Figure 4.5 : PCM as a function of different Von Neumann neighbourhood sizes (Study area I)
133



36.00

35.00

34.00

33.00

g 32.00

% 31.00

30.00

29.00

28.00

27.00

26.00

Number of iterations

—♦—16 iteration

-*-8 iteration

-A-4 iteration

^-2 iteration

-*K-1 iteration

3x3 7x7 11x11 15x15 19x19 23x23 27x27 31x31 35x35 39x39

Size of Mooreneighbourhood (cells) >

Figure 4.6: PCM as a function of different Moore neighbourhood sizes (Study area I)
135



0.70

0.20

0.10

0.00

Number of iterations

"♦-16 iterations

-^8 iterations

-A-4 iterations

-*-2 iterations

-*-l iteration

3x3 7x7 11x11 15x15 19x19 23x23 27x27 31x31 35x35 39x39

Size ofVon Neumann neighbourhood (cells) >

Figure 4.7: Moran Index as a function of different Von Neumann neighbourhood sizes (Study area I)
137

«



X
u

a

v.

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

i, L .

Number of iterations

-^16 iteration

H*-8 iteration

-t*t-4 iteration

-*-2 iteration

^K-l iteration

3x3 7x7 11x11 15x15 19x19 23x23 27x27 31x31 35x35 39x39

Size of Moore neighbourhood (cells) >

Figure 4.8 :Moran Index as afunction of different Moore neighbourhood sizes (Study area I)
139



4.5.2 Study area II

i) Analysis based on PCM value

Looking at the plots of PCM as a function of neighbourhood sizes for different model

iterations (Figures 4.9 and 4.10), it can be noticed that the maximum PCM value of 58.1%

has been obtained at neighbourhood size of 39x39 cells and 1 iteration for Moore

neghbourhood. Corresponding value of PCM for Von Neumann neighbourhood is 57.9% at

39x39 cell size and 2 model iterations. Thus, for study area II, which has a compact urban

growth pattern, the use of larger neighourhoods but small number of model iterations has

produced realistic growth patterns.

ii) Analysis based on Moran Index value

Looking at the plots of Moran index as a function of neighbourhood sizes for different

model iterations (Figures 4.11 and 4.12), it can be noticed that a Moran index value of 0.75

has been obtained at neighbourhood size of 13x13 cells and 4 iterations for Moore

neghbourhood. This value exactly matches with the Moran Index for actual urban growth in

study area.

On increasing the neighbourhood size, the simulated growth patterns become increasingly

compact. However, unlike the findings in the previous study area, the increase in value of

Moran Index is gradual as the neighbourhood size increases from 3x3 cells to 39x39 cells.

This can be expected also since the urban growth in this study area is largely compact in

nature. Similar trend can be seen in case of Moore neighbourhood (Figure 4.12).
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Thus, a neighbourhood of large size with less number of iterations may produce growth

patterns which are close to the actual growth patterns spatially.

Therefore, for study area II, which has a compact growth pattern, large neighbourhoods (i.e.,

39x39 cells and 13x13 cells) produced the growth pattern as can be seen from the values of

PCM and Moran Index. The model also required less number of iterations.

Thus, for areas having compact growth pattern, large neighbourhoods produced the best

simulation results, while for areas having a dispersed growth pattern, small neighbourhoods

produced the best results. Large number of iterations failed to increase the accuracy of the

models. The increase in number of iterations resulted in a more compact growth pattern as

compared to the actual growth pattern.

4.6 Future urban growth simulation

4.6.1 Study area I

Having defined the calibration parameters of the model, future urban growth trends have

been found by execution of calibrated MCE-CA model for next 4 years and 10 years. The

findings from model calibrations for the period 1997-2001 clearly indicate that 5x5 cells

von-Neumann neighbourhood and 16 iterations produced the highest PCM.

Further, comparison of simulated growth with actual one on spatial basis using Moran index

shows that the calibration of model with 5x5 cells Von Neumann neighbourhood and 1 model

iteration has resulted in exact matching of simulated growth with that of actual growth.

However, since urban growth is a stochastic process, the emphasis is usually placed on

predicting the patterns of the urban growth rather than the urban growth on a particular

location or point. Therefore, the model parameters which have produced realistic urban
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growth spatially, as identified on the basis of Moran index, have been used for simulation of

urban growth in future. For this, two time windows viz, 2001-2005 years and 2001-2011

years, have been selected. Figure 4.13a shows the urban growth simulated by the model for

the period 1997-2001. A comparison of the simulated and actual growth (Figure 4.13b)

shows that the model is able to simulate the growth pattern occurring in the main city (around

the city core), where the growth has taken place in a contiguous and dense manner. However,

in the city fringe areas where the growth has taken place in a dispersed and isolated manner

with development extending far from the core without notable concentrations or nuclei,

especially in the west and south east directions of study area, the model has not been able to

simulate the urban growth accuracy

Fortunately, the actual urban growth during 2001-2005 is also known. Therefore, the

predictions for this period, as derived from the model, can also be validated. Thus, the

calibrated model is executed for the two time windows using 5x5 cells Von Neumann

neighbourhood and 1iteration for urban growth simulations.

The PCM for the simulated growth for the period 2001-2005 has been obtained as 42%

which is higher than that obtained for the period 1997-2001. Similarly, the Moran index for

the simulated growth for 2001-2005 has been obtained as 0.30, which matches with the

Moran Index of 0.33 for the actual growth during this period. This shows that the calibrated

model has been able to predict the urban growth accurately for the 4 years period of 2001-

2005. The future urban growth predicted for this period is shown in Figure 4.14a. On

comparing the simulated urban growth with actual growth (Figure 4.14b) for 2001-2005, it

can be observed that the model is able to simulate the growth pattern in the main city where

growth has occurred in the form of densification of existingbuilt-up areas. The model is also
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able to simulate, to some extent, the pattern of urban growth taking place in the fringe areas

mainly in the north, south east and west directions of the study area.

These figures also corroborate the findings that the model can successfully predict urban

growth in future. Hence, the calibrated model is executed again for the period 2001-2011 to

predict urban growth in next 10 years. The predicted urban growth from the model is shown

in Figure 4.15. From this figure, it can be deduced that in the future the city will grow mainly

in the south and south east directions. In addition, the densification of existing built-up areas

may also. However, most of the area in the north direction is occupied by reserved forest,

which is further compounded by hilly topography, whereas in the west direction, a large area

is occupied by defence establishments and the tea gardens. Therefore, these two directions do

not have much potential to attract future urban growth. While the land between the south and

south east direction is mainly under agriculture and has a dense road network. The national

highways connecting the city to other parts of the state are also located in the south and south

east directions. Therefore, due to their good connectivity and availability of land for future

urban growth, this area has a high potential to attract future urban growth. As observed from

the field conditions in the current year (i.e., 2008), the area between the south and south east

direction is experiencing a rapid growth, with a number of housing complexes and other

infrastructure facilities coming up in these areas, thus validating the predictions made by the

model. In the existing built-up areas, growth is taking place in the form of filling up of vacant

pieces of land and by subdivision of large tracts of land holdings, resulting in densification of

existing built-up areas, as predicted by the model.
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4.6.2 Study area II

The calibrated MCE-CA model for the period 1993-2001 is executed to predict the

future growth trends for next 10 years. The calibration results for the period 1993-2001

indicate that 39x39 cells Moore neighbourhood and 1 model iteration produced the maximum

PCM on cell by cell basis. Further, when the simulated urban growth is compared with the

actual growth on spatial basis using Moran Index, the calibration of the model with 13x13

cells Von Neumann neighbourhood and 4 model iterations produced exact matching of

simulated growth with the actual growth.

Thus, Moore neighbourhood produced a higher accuracy in terms of cell by cell

comparison as indicated by higher value of PCM. In terms of comparison on a spatial basis,

Von Neumann neighbourhood was able to predict the spatial pattern more accurately as the

Moran Index match with that of actual growth. The utility of a model is in its ability to

predict the future urban growth pattern, if not the exact location of urban growth, since it is a

stochastic process. Therefore, the model parameters 13x13 cells Von Neumann

neighbourhood and 4 iterations have been selected for future simulation of urban growth in

the study area.

The urban growth simulated for the period 1993-2001 using the calibrated parameters is

shown in Figure 4.16a. A comparison of the simulated urban growth with the actual growth

(Figure 4.16b) that occurred during that periods reveals, that the model is able to simulate the

actual urban growth pattern which has taken place in a contiguous and concentric manner

around the existing built-up area. However, some growth has taken place in an isolated and

patchy form in the city fringe areas, mainly in the south and north east directions. The model

is not able to predict these types of growth quite accurately. Thus, similar to study area I, the
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model is able to simulate thegrowth pattern in areas having a compact, dense and contiguous

growth (city core) more accurately as compared to the areas which have a dispersed and

isolated growth pattern (city fringe areas).

The calibrated model is implemented to predict the urban growth for next 10 years

during the period 2001-2011 (Figure 4.17). It can be concluded from this figure, that the

future urban growth may take place in a compact form and contiguous to the existing built-up

areas. The area in the east direction is mainly occupied by defense establishments therefore,

not much of future growth is expected in this direction. The areas in the north, north west,

south and south east may experience more growth, as these areas are well served by the road

network and most of the roads connecting the city to other parts of the state are located also

in these areas. Growth is also expected to occur around patches of built-up areas located in

vicinity of the main city. According to the model, these areas may grow in future and finally

merge with the city. As observed from the existing growth trends in the current year

(i.e., 2008), the city is growing mainly in the north and south directions with a number of

residential areas and other facilities coming up in these areas. Besides growth is also taking

place around the areas which have developed in a leap frog manner around the city. These

field observations also validatethe predictions made by the model for 2011.

The subjectivity in the MCE-CA model especially during, suitability map creation can

be reduced by using techniques like ANN. The next chapter discusses an ANN based CA

model for the same study areas, and compares the results obtained with the present ones to

demonstrate the usefulness ofobjective techniques such asANN in CA modelling.
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1996, 1997), hazard zonation (Arora et al, 2004; Kanungo et al, 2006), land use modelling

(Pijanowski et al, 2002a, 2002b, 2005). Unlike the commonly used analytical methods, ANN

has following advantages (Openshaw et al, 1997, 2000; Haykin, 1999),

i) It makes no assumptions regarding the distributional properties of the data

ii) Mixtures of data types can be used.

iii) There are no restrictions on using non numeric data.

iv) It can solve highly non linear problems.

v) It can use many variables some of which may be redundant.

These features make ANN a promising technique for modelling nonlinear complex

phenomena like urban growth assessment and prediction (Li and Yeh, 2001, 2002; Yeh and

Li, 2002, 2003)

5.2.1 ANN architecture

In ANN, the basic processing elements are the neurons that work in parallel to transform

input data into output entities. In order to increase the computing capabilities of ANN, the

neurons are arranged in different layers. The neurons in each layer are connected to the

neurons in the next successive layer and each connection carries a weight (Atkinson and

Tatnall, 1997). This arrangement of neurons in layers and the pattern of connection within

and in between these layers is called as ANN architecture. In the present study, the multilayer

perceptron (MLP) feedforward ANN architecture has been used. The MLP consists of input,

hidden and output layers consisting of neurons which are interconnected to each other layer

wise. There are no interconnections between neurons within the same layer. Since the ANN is

feedforward, a link is allowed from a neuron in layer i only to neurons in layer z'+l (Kavzoglu

and Mather, 2003). The architecture of a three-layer MLP feedforward ANN is shown in
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Figure 5.1. The black circles represent the neurons, in the input, hidden and output layers,

while the lines represent the weighed connection between neurons in different layers. The

ANN is described by a sequence of numbers indicating the number of neurons in each layer.

For example, the ANN shown in Figure 5.1 is a 4-5-1 architecture ANN, i.e., it contains four

neurons in the input layer, five neurons in the hidden layer and one neuron in the output

layer.

w (Weighted connection
\ between neurons)

Input 1

Input 2

—----pw > Output

Input 3
4fe^ x \V \ ^^H —

Input 4

Input Layer Hidden Layer Output Layer

Figure 5.1: A MLP feedforward ANN architecture

The number of neurons in the input layer depends on the number of input data sources.

The number of hidden layers and their neurons are often determined by trial and error or

literature driven thumb rules. The number of neurons in the output layer depends on the

number of class being mapped (Arora et al, 1998, 2004; Kavzoglu and Mather, 2003;

Kanungo et al, 2006). For example, in the present case, classes will be built-up/ non built-up

areas.
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The neurons in the input layer only transmit data to the next layer, while the hidden and

output layer neurons actively process the data. Each neuron in hidden and output layers,

responds to the weighted inputs it receives from the connected neurons in the preceding input

layer. If i is the sender neuron in the input layer and / is a receiver neuron in the next layer,

then the weighted input (net/) that neurony receives is calculated as,

n

i=0

where,

It = input signal from neuron i

Wy = weight associated with connection between neurons i andj

net/= weighted input at neuron j

The receiver neuron j generates an activation signal, in response to the net/. The

activation signal at each neuron becomes the input for next layer. Thus, all the hidden and

output neurons collect the activation signals of the neurons in the previous layer and generate

an activation signal as the input for the successive neuron. The activation signal is generated

via a transfer function. Any differentiable non linear function can be used as a transfer

function, but a sigmoid function is generally used (Equation 5.2) (Hayken, 1999), since the

sigmoid function has useful properties like monotonicity and continuity which help in

increasing the learning capacity of the ANN (Kumar, 2004; Sivanandam et al 2006). The

sigmoid function constraints the outputs of the ANN between 0 and 1.
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0,= f(net,)= , = ....5.2

Where,

Oy = activitation signal

net/ = weighted sum of neuron inputs

5.2.2 Training of ANN

During training, the ANN is taught the salient characteristics of the dataset. Once the

ANN learns the characteristics of the dataset, it can be then be used for generating outputs at

unseen data. During ANN training, the network weights are continuously updated till the

weights are optimized. Using these optimum network weights, the outputs for unseen data are

generated (Haykin, 1999; Kumar, 2004).

In the proposed ANN-CA model, during network training, once the ANN learns the state

of a cell at time t+1 as a function of various driving factors existing at t, the ANN will be

able to predict the state of the cell for time t+2.

Typically, the backpropagation (BP) learning algorithm proposed by Rumelhart et al.

(1986) is used for training the ANN and has been used here also. In this algorithm, the ANN

weights are randomly initialized and the training data is fed to the input neurons of the

network. The hidden neurons collect the activation signals of the neurons in the previous

layer and generate an activation signal as the input to the next layer. The outputs generated at

the output neurons, are compared with the target outputs (i.e., known output as obtained from

reference data). The error (difference) between the ANN outputs and the target outputs is

back propagated through the ANN and is minimized by updating the interconnection weights

between the layers. This process of backpropogating the errors is repeated iteratively with
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weights being recomputed in each iteration, till the error is minimized and the adjusted

weights are stored. The general steps in the BP algorithm can be summarized as,

i) Select a pattern X; from the training datasets and present it to the ANN.

ii) Compute activation and output signals of input, hidden and output neurons

respectively,

iii) Compute error (e) by comparing the ANN generated outputs with the target outputs,

iv) Compute the change in the connection weights based on the errors, as given in

Equation 5.3 and 5.4. The ANN weights are updated iteratively until the error falls

below a predefined threshold value

wf^w^+Aw*, ...5.3

= w%+ ^(de/dwff,) ...5.4

where,

Wft1 = weight at iteration k+1 between neuron i and h

Wih = weight at iteration k between neuron i and h

Avi^ = Change inweight in iteration k

r\ = learning rate

e = error term

r\ is called as learning rate and is a positive constant, which controls the speed of the

learning process. The learning rate determines the change in weight (Aw*/,) at iteration k, in

search for the global minimum of the error function in the training process. If the learning

rate is set too high, then Aw*/, will be large and the ANN will become unstable and fail to
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converge. If the learning rate is set too low, then Aw*/, will be small, this will result in longer

training times and there is a likelihood of the ANN, getting trapped in a local minimum

(Kavzoglu and Mather, 2003).

Therefore, in order to increase the rate of learning while maintaining the ANN stability a

momentum term (a) is introduced into weight update process. The momentum term uses the

previous weight configuration (Aw/^-1) to determine the direction of search for the global

minimum of the error, as given in Equation 5.5 (Kumar, 2004). A careful selection of these

two parameters is necessary during the ANN training.

*4+/ = *4 + 1 (de/S wkih) +aAw% ... 5.5

where,

w^+/ = weight at iteration k+1 between neuron i and h

wf/, = weight at iteration k between neuron i and h

Awf^"1 = Change in weight in iteration k-1

a = momentum term

r\ = learning rate

e = error term

Once the network is trained, an independent database known as testing data is fed to

ANN to generate network output, which is then compared with target outputs to determine

the accuracy of network. By varying the number of hidden layers and their neurons, the ANN

is run several times to determine the most appropriate ANN architecture, based on training

and testing dataset accuracy (Kanungo et al, 2006)
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Chapter 5

ANN based CA model

5.1 Introduction

In the MCE-CA model (chapter 4), the urban growth suitability map is produced on the

basis of numerical scores assigned to the factors driving urban growth. These numerical

scores were assigned depending on the ability of the factor to influence the urban growth

process. However, this decision is subjective in nature and depends on the individual's

knowledge and experience, which leads to subjectivity in MCE-CA model.

In order to reduce this subjectivity, an ANN based CA (ANN-CA) model has been

developed. The objective is to demonstrate the advantage of using ANN in urban growth

modelling. As, it allows to reverse the modelling approach, by learning the urban growth

suitability values directly from the database instead of the user defining them subjectively

(Diappi et al, 2002; Fischer et al, 2000), this makes the model simpler and objective as

compared to the MCE- CA model.

5.2 Concept of ANN

ANN is a useful technique for regression and classification problems and has been

successfully applied in a number of fields, such as, image classification (Arora et al, 1998,

2000; Arora and Mathur 2001; Foody, 1995, 1996a, 1996b, 2001, 2004; Foody and Arora,



5.2.3 Stopping criteria for ANN training

Theoretically, the ANN is assumed to be trained, when all the patterns produce correct

outputs. However, this requires a number of ANN iterations and time. Besides, the ANN may

also get over-trained when the number of iterations increases. The over-trained ANN gives

high accuracy on the training data, but low accuracies on other unseen data. In order to avoid

these problems, other stopping criteria have also been defined for the ANN. The three

stopping criteria used in the present study are listed below. The training ANN stops when any

of these three criteria is met,

i) When the error falls below a threshold value.

ii) A specified number of ANN iterations have been performed.

iii) When the ANN starts over-training.

During the training of ANN, a validation dataset is used to prevent over-training.

Initially, when the training of ANN is being performed, the error over training and the

validation data decreases up to a point. After which the error on the training dataset keeps on

decreasing, whereas the error on the validation dataset starts increasing as shown in Figure

5.3. This indicates that the ANN has become over-trained, and is not able to generalize.

Therefore, the ANN training is stopped at the point when the error on the validation dataset

begins to increase as shown in Figure 5.2.
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Figure 5.2: Stopping criteria to prevent the over-training of ANN

5.3 ANN-CA model

In CA models, the transition rules are defined subjectively depending on the knowledge

and experience of the user. Secondly, it is extremely time consuming to find proper values of

the parameters for the CA models during calibration. To get over these limitations, an ANN-

CA model has been proposed. The model does not require generation of detailed and explicit

transition rules and the calibration time is also reduced.

Similar to the MCE-CA model, the proposed ANN-CA model is based on the dichotomy

of built-up and non built-up areas, and simulates transition from non built-up to built-up areas

with no reverse process. So, the existing built-up areas and areas that do not have any

development potential e.g., restricted areas, reserved forests, water bodies, existing built-up

areas, public grounds (discussed in chapter 2) are treated as exclusionary areas, and the model

makes no prediction of urban growth in these areas.

The user has to provide training data pertaining to built-up and non built-up area so that

the ANN can learn the growth trend from these dataset. The trained ANN is then used for
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finding the development potential of each cell in the study area. Since CA are recursive in

nature and involve number of iterations, so cells that have development potential above a

certain threshold only transit to built-up in each iteration. Based on these cells, the built-up

/non built-up map and other factor maps are updated. The ANN determines the development

potential of cells based on the updated site attributes iteratively till the model's boundary

conditions are fulfilled.

The neural network processing has been implemented using Neural Network Tool Box of

MATLAB software. A schematic diagram of implementation of ANN-CA model is shown in

Figure 5.3. Following steps are followed in implementing the ANN-CA model,

i) Generation of maps corresponding to factors driving urban growth in study area

ii) Generation of maps depicting actual urban growth in study area

iii) Generation of training and testing dataset from the data created in step i) and ii)

iv) Design of ANNs with different network architectures

v) Training and evaluation of ANNs

vi) Selection of optimal ANN architecture

vii) Stopping criteria for the model

viii) Estimation of the growth potential using optimal ANN

ix) Masking of exclusionary areas

x) Allocation of cells from non built-up to built-up

xi) Updation of built-up/non built-up area and other factor maps

xii) Model iterations.
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Figure 5.3 : A schematic diagram of the ANN-CA model
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The proposed ANN-CA model is implemented for study areas I and II. For study area I the

model is calibrated for period 1997-2001 and for study area II, it is calibrated for the period

1993-2001. The detailed description of the model steps is as follows,

5.3.1 Generation of maps corresponding to factors driving urban growth in study area

As discussed in chapter 4, urban growth in both the study areas is expressed as a

function of following four raster maps created in GIS,

i) Euclidian distance of each cell from the nearest road (fl)

ii) Euclidean distance of a cell from the nearest built-up (f2)

iii) Euclidian distance of each cell from the city core (f3)

iv) Amount of built-up in neighbourhood (f4)

For generating the f4 map (i.e, amount of built-up in neighbourhood), the

neighbourhood size which produced the most accurate urban growth simulation for study

areas I and II in MCE-CA model have been used. Thus, 5x5 cells Moore and Von Neumann

neighbourhoods, for study area I and 13x13 cells Moore and Von Neumann neighbourhods

for study area II have been selected (refer chapter 4). Thus, two datasets based on both the

selected neighbourhoods have been created for study areas I and II. Table 5.1 provides a

description of these datasets.
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Table 5.1: Datasets created using Von Neumann and Moore neighbouhood
(study areas I and II)

Study area I

Dataset I i)Amount ofbuilt up in neighbourhod (Calculated using 5x5 Moore
neighbourhood)

ii) Distance to nearest built-up
iii) Distance to city core
iv) Distance to nearest road

Dataset 11 i)Amount of built up in neighbourhod (Calculated using 5x5 Von Neumann
neighbourhood)

ii) Distance to nearest built-up
iii) Distance to city core
iv) Distance to nearest road

Study area II
Dataset I i)Amountofbuilt up in neighbourhod (Calculated using 13x13 Moore

neighbourhood)
ii) Distance to nearest built-up
iii) Distance to city core
iv) Distance to nearest road

Dataset II i)Amount ofbuilt up in neighbourhod (Calculated usingl3xl3 Von
Neumann neighbourhood)

ii) Distance to nearest built-up
iii) Distance to city core
iv) Distance to nearest road

All the data pertaining to all the layers have been normalized from 0 to 1, before these are

input to neural networks (Kumar, 2004). Scaling the variables also makes them compatible

with the sigmoid activation function, which produces a value between 0 and 1. In the present

study for normalization, each cell value in a map has been divided by the maximum cell

value in the map.

5.3.2 Generation of maps depicting actual urban growth in study area

For study area I, a map depicting cells that transit from non built-up to built-up area

during 1997-2001 is generated using remote sensing data and GIS tools as discussed in

chapter 3. Similarly, for study area II, a similar maphasbeenprepared for period 1993-2001
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5.3.3 Generation of training and testing dataset

i) Training data

The ANN learns the growth patterns of the study area I and II, from the training dataset

directly without any statistical parameters such as, mean, standard deviation, variance, co-

variance derived from them. Hence, the size and characteristics of the training data has a

significant impact on the performance of ANN. In the present study, the training data has

been generated based on reference data, as discussed in section 5.3.2. The training data

consists of two types of cells,

a) Non built-up cells that transit to built-up

b) Non built-up cells which did not transit to built-up.

A cell is assigned a target value of 1 if it transits from non built-up to built-up, and 0 if it

remains non built-up during the calibration period.

Table 5.2 shows an example of the training dataset. For samples 1 to 5, the values under

fl,f2,f3 and f4 columns show the attributes value at a cell corresponding to the four factors,

while the target value indicates whether the cell transits to built-up or not (1 or 0).

A total of 2400 training samples have been selected based on equal stratified random

sampling. Out of these 2400 samples, 1200 samples belong to cells which were non built-up

and transit to built-up, while 1200 belong to cells that remained non built-up. Thus, for study

area I, two training datasets are generated corresponding to Moore and Von Neumann

neighbourhoods. Similarly, two training datasets have been prepared for study area II.
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Table 5.2: Example of training dataset consisting of cell attributes and the
target value

f1 f2 f3 f4 Target output

Sample 1 0.132 0.407 0.010 0.345 0

Sample 2 0.015 0.343 0.010 0.181 0

Sample 3 0.015 0.390 0.007 0.089 1

Sample 4 0.009 0.409 0.007 0.236 1

Sample 5 0.009 0.402 0.007 0.222 1

ii) Testing dataset

In order to determine the accuracy of ANN and hence to test its generalization, capabilities, a

testing dataset of 1200 cells has been created in the same manner as the training data set.

However the training and testing datasets are mutually exclusive, i.e., they do not have

common samples (Foody and Arora, 1997). Thus, two testing datasets; one each for Von

Neumann and Moore neighbourhood have been generated for both the study areas.

5.3.4 Design of ANNs having different network architecture

Different MLP feed forward ANN architectures have been designed, the basis of

variations in network architecture is discussed in the following:

Input layer: The number of neurons in the input layer has been kept equal to the number of

factors used in the creation of model. Hence, four neurons are kept in the input layer

corresponding to the four maps representing data pertaining to four factors.
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Hidden layer: The number of hidden layers and the number of neurons in each layer has been

determined heuristically. A number of thumb rules exist but none is universally accepted, as

each real life problem may be unique. ANN having small number of hidden neurons can not

identify the internal structure of the data (a state known as under-fitting) and therefore

produce lower accuracies. While ANN having large number of hidden neurons become

overspecific to the training data (over-fitting or over-training the data). These over-trained

ANN may give high accuracy on the training data, but perform badly in processing of

unknown dataset.

In the present study, maximum two hidden layers have been used, as these are sufficient for

most of the classification like problems (Kanellopoulos and Wilkinson, 1997; Arora et.al,

2004). Different ANN architectures having single and double hidden layers have been

generated, some of these networks are shown in Table 5.3. Out of the different ANN

architectures, 3 ANNs having a single hidden layer with 4-3-1, 4-9-1 and 4-12-1 architectures

are based on heuristics given by Kanellopoulos and Wilkinson (1997), Hush (1989), Hecht-

Nielsen (1987), Wang (1994), Ripley (1993) and Paola (1994). Table 5.4 illustrates these

thumb rules and the corresponding ANN architectures.

Output layer: There is one neuron in the output layer. Its value ranges from 0-1. A value of 1

indicates maximum potential for transiting from non built-up to built-up and 0 denotes the

minimum potential. The intermediate values between 0 and 1, indicate different potential for

transiting from non built-up to built-up area.
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Table 5.3: ANN architectures based on trial and error

4-6-1 4-3-3-1 4-6-3-1 4-9-3-1 4-12-3-1 4-15-3-1 4-18-3-1 4-21-3-1

4-15--1 4-3-6-1 4-6-6-1 4-9-6-1 4-12-6-1 4-15-6-1 4-18-6-1 4-21-6-1

4-18-1 4-3-9-1 4-6-9-1 4-9-9-1 4-12-9-1 4-15-9-1 4-18-9-1 4-21-9-1

4-21-1 4-3-12-1 4-6-12-1 4-9-12-1 4-12-12-1 4-15-12-1 4-18-12-1 4-21-12-1

4-3-15-1 4-6-15-1 4-9-15-1 4-12-15-1 4-15-15-1 4-18-15-1 4-21-15-1

4-3-18-1 4-6-18-1 4-9-18-1 4-12-18-1 4-15-18-1 4-18-18-1 4-21-18-1

4-3-21-1 4-6-21-1 4-9-21-1 4-12-21-1 4-15-21-1 4-18-21-1 4-21-21-1

Table 5.4: ANN architectures based on literature driven thumb rules

Thumb rule Number of hidden neurons ANN architecture

Hecht-Nielsen

(1987)
2Nj +1 4-9-1

Hush (1989) 3N; 4-12-1

Ripley (1993) (Ni + N0) / 2 4-3-1

Wang (1994) 2N;/3 4-3-1

Paola (1994) 2 + N0.Ni+l N0(Ni" + Ni)-3
" 2

4-3-1

Ni + N0

Kanellopoulos and
Wilkinson (1997)

3N; 4-12-1

* Number of input = Nj, Number of output = N0(Note: Here N;= 1 and N0=4)

5.3.5 Training and evaluation of ANNs

The different ANN architectures have been trained using the training datasets, as

discussed earlier. The backpropagation (BP) training algorithm given by Rumelhart et al.

(1986) has been used to train these ANNs. The training process is initiated by assigning

arbitrary connection weights, which are constantly updated until acceptable training data

accuracy is achieved. Table 5.5 shows the network parameters and stopping criteria used

during network training. These network parameters are based on the recommendation given

Kavzoglu and Mather (2003), after rigorous experiments on different datasets. The adjusted
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weights are subsequently used to process the testing dataset, in order to find the

generalization capability of the trained ANN. The performance of the networks is evaluated

by determining the training and testing data accuracies in terms of percent correct or overall

classification accuracy (Congalton, 1991).

Table 5.5: Network parameters and stopping criteria used during ANN training

1. Training parameter Value used

1.1 Learning rate 0.10

1.2 Momentum factor 0.50

2. Stopping Criteria
2.1 Acceptable error 0.01

2.2 Maximum number of iterations 10,000

2.3 Validation dataset 1200 samples

5.3.6 Selection of optimal ANN architecture

The acceptable ANN is the one for which the difference between the training and testing

accuracy is minimum, as it reflects the ANN is able to train accurately as well as generalize.

For study area I, the 4-9-1 and 4-6-1 ANN architectures based on literature driven thumb

rules and the 4-20-1 ANN architecture based on trial and error produced the most accurate

outputs. Table 5.5 shows the training and testing accuracies for these ANNs and the nature

of dataset used.

For study area II, the 4-9-1 and 4-3-1 architecture based on literature driven thumb rules and

the 4-12-21-1, architecture based on trial and error, produces the most accurate outputs. Table

5.5 shows the training and testing accuracies for these ANN and the dataset used.

The weights of these optimal networks for study area I and II are saved for future subsequent

use.
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Table 5.6: Acceptable ANN architectures (study area I)

Network

architecture

Training data
accuracy

Testing data
accuracy

Dataset from which

training data is created

4-9-1 78% 74% Dataset II

4-6-1 79% 73% Dataset II

4-20-1 71.2% 67.7% Dataset I

Table 5.7: Acceptable ANN architectures (study area II)

Network

architecture

Training data
accuracy

Testing data
accuracy

Dataset from which

training data is created
4-12-21-1 76.8% 74.3% Dataset II

4-9-1 73.2% 70.7% Dataset II

4-3-1 70.4% 69.1% Dataset I

4-12-21-1 75.2% 73.2% Dataset I

5.3.7 Stopping criteria for the model

For study area I, the model has been, implemented for the period 1997 to 2001. The total

number of cells that transit from non built-up to built-up areas during the period is found.

These cells define the stopping criteria for the model. The model is stopped stops, when the

total number of cells that transit from non built-up to built-up area in all model iterations

equals the number of cells that have actually transited to built-up area in 1997-2001. This

ensures the number of cells which transit from non built-up to built-up area during processing

are same as the actual cells transiting from non built-up to built-up during the period selected.

Similarly for study area II, the model has been calibrated for the period 1993 to 2001.

The built-up/non built-up maps of year 1993 and 2001 have been used to find the actual

number of cell that transit from non built-up to built-up area, which are subsequently used

for defining the stopping criteria .
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5.3.8 Estimation of growth potential using optimal network

For study area I, the dataset created using 5x5 cells Von Neumann neighbourhood is

passed through the 4-9-1 and 4-6-1 ANN architectures, while the 5x5 cells Moore

neighbourhood dataset is passed through the 4-20-1 ANN architecture. For study area II, the

dataset created using 13x13 cells Von Neumann neighbourhood is passed through the 4-9-1

and 4-12-21-1 ANN architectures, while and the 13x13 cells Moore neighbourhood dataset is

passed through the 4-3-1 and 4-12-21-1 ANN architectures.

5.3.9 Masking of exclusionary areas

The restricted areas, water bodies, public grounds and gardens have been treated as

exclusionary zones and the model makes no prediction in these areas. A mask corresponding

to these areas has been generated based on Survey of India topographical map, guide map and

master plan of the study areas. Since the model only simulates transition from non built-up to

built-up with no reverse process taking place, so the built-up cells are also masked out. At the

end of each model iteration when cells are allocated from non built-up to built-up, the built-

up mask is also updated.

5.3.10 Allocation of cells from non built-up to built-up

The outputs obtained from the different ANN for study area I and II, show the

development potential of each cell. However, all the non built-up cells are not transitioned to

built-up cells simultaneously. Only cells that have a development potential above a certain

threshold value transit to built-up. This is necessary since CA models are recursive in nature

and involve many iterations with the output of iteration t being the input for iteration t+1.

The model is executed with different values of threshold, i.e., 0.8, 0.85, 0.9 and 0.95.

These values are decided based on experiments and literature survey. In the proposed ANN-
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CA model when the threshold value is kept low (i.e., 0.8) a large number of cells qualify for

transiting to built-up in each model iteration. Thus, less number of model iterations are

required for the stopping criteria to be fulfilled. In contrast when the threshold value is kept

high (i.e., 0.95) a small number of cells qualify for transiting to built-up in each iteration.

Hence, it requires a large number of model iterations for the stopping criteria to be fulfilled.

Thus, for study area I, the ANN-CA model is executed using 4-9-1, 4-6-1 and 4-20-1

ANN architectures. Using each of these ANN architecture, the ANN-CA model is executed 4

times using the threshold values 0.8, 0.85, 0.9 and 0.95.

For study area II, the ANN-CA model is executed using 4-9-1, 4-3-1 and 4-12-21-1

ANN architecture. Using each of these ANN architectures, the ANN-CA model is executed 4

times using the threshold values 0.8, 0.85, 0.9 and 0.95.

5.3.11 Updation of built-up/non built-up and other factor maps

The built-up/non built-up area map is updated for study area I and II, based on the cells

that have transit from non built-up to built-up. Other factors maps such as, distance to nearest

built-up and amount of built-up in neighbourhood are then recalculated on the basis of this

updated map.

5.3.12 Model iterations

Using the updated factor maps, the process from section 5.3.8 to section 5.3.11 is

repeated, until the stopping criteria is fulfilled. The updated built-up/non built-up map in the

last iteration is the final simulated urban growth map of the study area.

194



5.4 Results and Discussion

5.4.1 Study area I

Similar to the MCE-CA model, the ANN-CA model for 1997-2001 has been evaluated

on a cell by cell basis and spatially using PCM and Moran Index respectively. For study area

I, the 4-9-1 ANN architecture produced the highest accuracy of 33.4% using the 5x5 cells

Von Neumann neighbourhood as can be seen from Table 5.8. The Moran Index for the

simulated growth using 4-9-1 architecture is 0.29, which is equal to the Moran Index of 0.29,

calculated for actual growth in the study area during 1997-2001.

The values of Moran Index for other two ANN architecture are 0.48 and 0.47 which are

significantly higher than 0.29. Thus, the 4-9-1 ANN architecture based on literature driven

thumb rules produced comparable and even higher accuracy than that obtained from the

acceptable network 4-20-1 as identified from processing of several ANN architectures.

Figure 5.8: Performance of ANN-CA model for urban growth
(study area I)

ANN

architecture

Neighbourhood
used

Threshold

value

PCM Moran Index

4-9-1 Von-Neumann 0.8 33.4% 0.29

4-6-1 Von-Neumann 0.9 22.6% 0.48

4-20-1 Moore 0.85 28.4% 0.47

A comparison of the simulated urban growth map generated using 4-9-1 ANN

architecture (Figure 5.4a) and actual growth map (Figure 5.4b), shows that the model is able

to successfully, simulate the urban growth pattern taking place in the main city (i.e., around

the city core) where there is contiguous urban growth. However, in the fringe areas where

growth has taken place in a dispersed and patchy form, the model has not been able to
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simulate growth pattern. These results are similar to the ones obtained for the simulated urban

growth using MCE-CA model.

For study area I, the 4-9-1 ANN produced the maximum accuracy, at a low threshold

value i.e., 0.8 (refer Table 5.8). The low value of threshold results in less number of iterations

as large number of cells are able to transit to built-up in each iteration. Similarly, in the MCE-

CA model for study area I (chapter 4), the best simulation results are obtained when the

number of iterations are less. Thus, both the ANN-CA and MCE-CA model have been able to

provide acceptable results at less number of iterations.

On implementing the model for the period 1997-2001, the simulated results obtained

using the MCE-CA model for study area I (chapter 4), also produced a Moran Index of 0.29

and PCM value of 34.3% when it was calibrated for 1997-2001. This shows that the ANN-

CA model has produced accuracy comparable to the MCE-CA model. Thus, ANNs are able

to learn the urban growth process objectively without much human intervention.

Since, actual urban growth for 2001-2005 is known, the urban growth has been

simulated for the period 2001-2005 to validate the model. The 4-9-1 ANN and 5x5 cells Von

Neumann neighbourhood data has been used. After implementing the model, the simulated

growth has a PCM of 44.3%. Similarly, the Moran Index for the simulated growth for the

period 2001-2005 is 0.34, which matches the Moran Index of 0.33 for actual growth.

Correspondingly, the accuracy of simulation results from MCE-CA model are; PCM of 42%,

Moran Index: 0.3, which are similar to ANN-CA model. This further demonstrates the

usefulness of ANN-CA model in urban growth simulation.
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Figure 5.4 a: Simulated urban growth pattern for 1997-2001 using ANN-CA model (study area I)
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On comparing the simulated growth with the actual growth (Figures 5.5a and 5.5b), it is

observed that the model is able to simulate the contiguous growth pattern that has occurred in

the main city and its surrounding areas. The model, to some extent, is also able to simulate

the urban growth pattern that has occurred in the fringe area in the north, south east and south

west directions.

5.4.2 Study area II

For study area II, the 4-12-21-1 ANN architecture using 13x13 cells Moore

neighbourhood based dataset produced the maximum accuracy of 56% whereas the three

other ANNs produced a PCM of 54% (refer Table 5.9). The Moran Index of the simulated

growth using 4-12-21-1 ANN is 0.77, the other three ANNs produced a Moran Index of 0.76

and 0.74, which is comparable with the value of 0.75 obtained for actual growth during the

1993-2001 period.

Further, the 4-9-1 and 4-3-1 ANN architecture based on literature driven thumb rules

produced comparable accuracy with that obtained from the acceptable network 4-12-21-1 as

identified from trial and error.

Figure 5.9: Performance of ANN-CA model for urban growth
(study area II)

ANN

architecture

Neighbourhood
used

Threshold

value

PCM Moran Index

4-9-1 Von-Neumann 0.8 54.72% 0.76

4-12-21-1 Von-Neumann 0.8 54.93% 0.74

4-3-1 Moore 0.8 54.78% 0.76

4-12-21-1 Moore 0.8 56.08% 0.77
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For study area II, the 4-12-21-1 ANN produced the maximum accuracy, at low threshold

value (i.e., 0.8). The low threshold value results in less number of model iteration. Similarly,

in case of the MCE-CA model for study area II, the best simulation results were obtained for

less number of iterations (Moran Index: 0.76 and PCM of 55.6%). Thus, the ANN-CA model

in study area II has been able to simulate the urban growth process thereby increasing the

objectivity in the simulation process.

A comparison of the simulated growth for year 1993-2001 (Figure 5.6a) using the 4-12-

21-1 architecture with the actual growth during this period (Figure 5.6b), shows that the

model has been able to simulate urban growth pattern that has taken place around the existing

built-up areas. However, it is not able to accurately simulate the isolated patches of growth

that has taken place in the study area. These results are also similar to those obtained for

simulated growth during the same period using the MCE-CA model.

5.5 Comparative analysis of CA based models for both cities

The Moran Index and PCM values for MCE-CA and ANN-CA model for study areas I

and II are given in Table 5.10. It can be inferred from this table that for both the study areas

the ANN-CA model in which the network architecture was decided based on thumb rules

gave comparable and even better results than that obtained from the network architecture

which was decided by trial and error.

Table 5.10: Comparative Analysis of models results for both study area

Model

Study area I Study area II

Moran Index PCM Moran Index PCM

ANN-CA (trial and error) 0.47 28.41% 0.74 54.93%

ANN-CA (thumb rule) 0.29 33.44% 0.76 54.78%

MCE-CA 0.29 34.26% 0.76 55.57%
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Nevertheless, for both the study areas I and II the ANN-CA model produced accuracy

comparable to the MCE-CA model results, demonstrating that the ANN are able to learn the

urban growth process objectively without any human intervention. The next chapter discusses

how the ANN output can be used for defining the urban growth zonation maps which are a

important input in many planning applications
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Figure 5.6a: Simulated urban growth pattern for 1993-2001 using ANN-CA model (study area II)
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Chapter 6

ANN based approach for Urban Growth Zonation

6.1 Introduction

Most of the Indian cities are undergoing a rapid growth. This growth if left unregulated

will not only create environmental problems such as, depletion of natural resources, increased

pollution levels, loss of green cover etc., but will also lead to lack of infrastructural facilities

such as water supply, sewerage etc., in the cities.

In order to regulate the future growth of cities, the urban planning authorities draft a

master plan, which provides a framework for future growth of the city and aims at controlling

the growth along preconceived and predetermined paths. In the master plan, the planning

authorities delineate future urbanizable zones and propose different land uses, such as, high,

medium and low density residential areas, commercial, recreation etc., for these zones

depending on their growth potential. Therefore, there is an urgent need to generate urban

growth zonation maps depicting zones with varying urban growth potential (i.e. high,

medium and low). These zonation maps can serve as an important input to the master plan

preparation, as they provide a rational scientific ground on which the planning authorities can

base their decisions regarding the future growth of the city. Besides, the urban growth

zonation maps can also be used as inputs for disaster relief plans and environmental related

studies.



Although in other fields, such as, landslide hazard zonation (LHZ) a number of

techniques like ANN (Arora et al, 2004), Fuzzy, combined neural and fuzzy ( Kanungo et

al, 2006) and the conventional weighting assignment procedure (Saha et al, 2002) have

been used for generating zones having different landslide susceptibility. However, in the field

of urban planning, only the conventional weighting assignment procedure has been

implemented (Pathan et al, 2004) for generating urban growth potential zones. In the

conventional weight assignment procedure, the factor weights are assigned based on

experience and previous knowledge. This makes the generation of zonation maps subjective

in natureand might therefore contain some implicitbiases towards the assumptions made.

This chapter intends to make the process of urban growth zonation more objective, by

utilizing ANN to generate urban growth zonation maps. Afterhavingpredicted urban growth

at a cell location using ANN-CA model, the present study has been further extended to define

zones having different urban growth potential using ANN.

6.2 ANN based urban growth zonation

The inputs to urban growth zonation are the same as were used for simulating urban

growth based on CA models and are listed again,

i) Distance to road network

ii) Accessibility to infrastructural facilities

iii) Distance to city core

Thus, corresponding to above three factors, the following four rastermaps havebeen used

as an input to the ANN,

i) Euclidian distance of each cell from the nearest road (fl)

ii) Euclideandistance of a cell from the nearest built-up (f2)
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iii) Euclidian distance of each cell from the city core (f3)

iv) Amount of built-up in neighbourhood (f4)

Since the datasets used here are the same as before, the network that produced the highest

training and testing accuracy in the ANN-CA model have been used here also. Thus, for

study area I, the 4-9-1 ANN architecture using Von Neumann neighbourhood has been

selected, while for study area II, the 4-12-21-1 architecture using Moore neighbourhood has

been selected (refer Tables 5.6 and 5.7). The trained networks are run on the whole dataset to

produce the output at each cell.

The ANN outputs show the development potential of each cell on a 0 to 1 scale. The cell

with value of 1 being the most potential cell for future development while the cell with value

0 being the least potential.

The ANN output values ranging between 0 and 1, have been categorized into three classes

which show the urban growth potential on an ordinal scale and are listed as,

i) Low potential zone

ii) Medium potential zone

iii) High potential zone

The categorization can be done in a number of ways. A judicious way for such

categorization is to search for abrupt change in the values (Davis, 1986) or to divide the data

into classes representing near equal distribution (van Westen, 1997). Saha (2004) also

attempted to categorize the data using a probabilistic approach called as 'success rate curve'.

However, in the present study, the class boundaries have been determined statistically, in

order to avoid the subjectivity in fixing the class boundaries. Assuming that data are normally

distributed, the boundaries for categorization have been defined as,
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i) Low potential zone < (u-a)

ii) (u-a) < Medium potential zone < (u+ a)

iii) (u+ o) < High potential zone

where, u is mean and a is the standard deviation of the ANNoutputover all cells

A histogram plot of the ANN outputs for the study areas I and II (Figure 6.1a), show that

the ANN outputs do not follow a normal distribution. Therefore in order to make these

outputs normally distributed, a number of mathematical transformations can be applied to

these ANN outputs. The logit transformation (Petruccelli et.al., 1999), as given in Equation

6.1 has been selected,

0>ln(T|-) ...6.,

where,

O, = ANN output

0/ = Transformed ANN output

The histogram of the logit transformed ANN output is given in Figure 6.1b, which clearly

shows the data are now normally distributed. These transformed ANN outputs are then

categorized into the 3 urban growth potential zones using the class definitions as discussed

above.

Figure 6.2 shows a schematic diagram of the ANN based urban growth zonation process. For

study area I, Figure 6.3 shows the zonation map generated for year 2001 taking 1997 as base

year. For study area II, Figure 6.4 shows the zonation map generated for year 2001 taking

1993 as the base year.
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6.3 Evaluation of the zonation maps

The distribution of the actual urban growth in study area I and II, has been used to

evaluate the validitiy of the urban growth zonation map.

6.3.1 Study area I

In the urban growth zonation map generated for 2001 taking 1997 as base year (refer

Figure 6.3), the high potential zone occupies 11.85% of the total study area, the medium and

low potential zones occupy 76.43% and 11.72% of the study area respectively. The high

potential zones are contiguous to the existing built up area, the medium potential zones

occupy most of the agricultural areas surrounding the city, while the low potential zones are

situated in patches at the periphery of the study area mainly in the North, west and South-east

direction

In order to evaluate the validity of the urban growth zonation map generated, the map of

actual urban growth that occurred during 1997-2001 is overlayed with the zonation map

created to find the number of growth cells lying in each zone. It has been found that 50% of

the growth cells (cells that changed from non built-up to built-up) are located in high

potential zone, 48% of the growth cells in medium potential zone and 2% growth cells in low

potential zone. Relative frequency of urban growth occurring in different buffer zones has

been found out by dividing the percentage of growth cell lying in a zone with the percentage

of study area occupied by the particular zone (Table 6.1).
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Table 6.1: Areas and relative frequencies of urban growth with respect to different
zones for 1997-2001 (study area I)

Low potential
zone

Medium potential
zone

High potential
zone

Percentage of growth
cells lying in the zone (A)

2.00 48.00 50.00

Percentage of study area
occupied by the zone (B)

11.72 76.43 11.85

Relative frequency (A/B) 0.17 0.63 4.22

Ideally, the relative frequency value should increase from low potential zone to high

potential zone, since the high potential zones will have more urban growth compared to other

zones (Arora et al, 2004). Figure 6.5 shows the plot of the relative frequency values. It can

be observed that there is a increase in the relative frequency values from low potential to high

potential zone. The high value of relative frequency for high potential zone compared to other

zones is due to the fact that a lot of urban growth (50%) has taken place in the high potential

zone which only constitutes 11.85%) of the study area. Thus, ANN has been able to zone the

areas effectively.
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Figure 6.5: Plot of relative frequency versus urban growth zones for the period
1997-2001 (study area I)

Since actual growth for 2001-2005 is also known, so an urban growth zonation map has

also been generated, taking 2001 as the base year and is shown in Figure 6.6. In the zonation

map, the high potential zone occupies 12.11% of the total study area, the medium and low

potential zones occupy 76.82% and 10.47%) of the study area respectively.

In order to evaluate the validity of the urban growth zonation map generated, the map

depicting actual urban growth during 2001-2005 is overlayed with the zonation map created

to find the number of growth cells lying in each zone. It is found that 57% of the growth cells

are located in high potential zone, 42% in medium potential zone and 1% in low potential

zone. A relative frequency table has been generated (Table 6.2). The relative frequencies

have been plotted as shown in Figure 6.7.
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It can be seen that there is an increase in the frequency from low potential to high potential

zone. This further corroborates the applicability of ANN for zonation.

Table 6.2: Areas and relative frequencies of urban growth with respect to different
zones for 2001-2005 (study area I)

Low potential
zone

Medium potential
zone

High potential
zone

Percentage of growth
cells lying in the zone (A)

1.00 42.00 57.00

Percentage of study area
occupied by the zone (B)

10.47 76.82 12.71

Relative frequency (A/B) 0.10 0.55 4.48

5.00

cr

Low potential zone Medium potential zone High potential zone

Urban growth zones >

Figure 6.7: Plot of relative frequency versus urban growth zones for the period
2001-2005 (study area I)

An overlay of this zonation map with the 2001 zonation maps reveals that 27.6%> of low

potential zone in 2001 has changed to medium potential zone, while 4.4% of medium

potential zone in 2001 has changed to high potential zone. From Tables 6.2 and 6.3 it can also
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be observed that in the two zonation maps created, the area occupied by low, medium and

high potential is nearly same, but the percentage of urban growth taking place in high

potential zone has increased from 50% during 1997-2001 to 57%, during 2001-2005. While

the urban growth in medium potential zone has decreased from 48% in 1997-2001 to 42% in

2001-2005. This shows that densification of built-up area has taking place, with most of the

new growth occurring in contiguity of already built-up areas in the high potential zone. This

can also be observed from the fact that the value of relative frequency increased from 4.42 in

1997-2001 to 4.48 in 2001-2005.

6.3.2 Study area II

In the urban growth zonation map generated for 2001 taking 1993 as base year

(refer Figure 6.4), the high potential zone occupies 18.69% of the total study area, the

medium and low potential zones occupy 62.68% and 18.63% of the total study area

respectively. The high potential zones are mainly contiguous to the existing built up area, the

medium potential zones are adjacent to the high potential zones, and cover most of the

agricultural areas around the city. The low potential zones are situated mainly in the southof

the city and consists of areas which are situated at a distance from the road network or are

adjacent to the restricted areas.

The map showing actual urban growth that occurred during 1993-2001 is overlayed

with the zonation map to find the number of growth cells lying in each zone. It has been

found that 68% of the growth cells are located in high potential zone, 31% in medium

potential zone and 2% in low potential zone. A relative frequency table has been generated

(Table 6.3) and the frequencies have been plotted and are shown in Figure 6.8. It can be seen

that there is a increase in the relative frequency from lowpotential to high potential zone.
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Table 6.3: Areas and relative frequencies of urban growth with respect to different
zones for 1993-2001 (study area II)

Low potential
zone

Medium potential
zone

High potential
zone

Percentage of growth
cells lying in the zone (A)

2.00 31.00 68.00

Percentage of study area
occupied by the zone (B)

18.63 62.68 18.69

Relative frequency (A/B) 0.11 0.49 3.64
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Figure 6.8: Plot of relative frequency versus urban growth zones for the period
1993-2001 (study area II)

Thus for both study areas, the relative frequency follows the ideal trend, thereby

validating the urban growth potential zones generated using ANN. In the zonation maps

generated for both the study areas, the medium potential zones occupy the maximum study

area, while the high potential zones occupy relatively less areas but in comparison have a

high intensity of urban growth. The low potential zones are located in the fringes of the study

areas in proximity of reserved forests, restricted areas and other areas which have no
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development potential. It can be inferred that the ANN based methodology for integration of

various factors seems to be quite applicable for urban growth zonation. The next chapters

discusses the evaluation of simulation results using entropy method
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Chapter 7

Evaluation of Urban Growth using Entropy

7.1 Introduction

In chapters 4 and 5, the MCE-CA and ANN-CA models for urban growth were discussed

and evaluated using PCM and Moran Index respectively. The PCM compares the simulated

and actual urban growth maps on cell by cell basis only. Moran Index is a spatial statistical

indicator that measures the clustering of the growth cells (cells which transit from non built-

up to built-up during the simulation period) and is used to assess the closeness of simulated

growth pattern to the actual one.

However, both PCM and Moran index evaluate the urban growth at the finest possible

scale (i.e., at the cell level), and thus have limitations in explaining the growth pattern at

macroscopic level (i.e., whether the urban growth is compact or distributed, with respect to an

individual factor such as road network , city core etc).

In the proposed models, since urban growth has been expressed as a function of factors,

such as distance to road network and city core, there is a need to identify indices which can

evaluate the simulated growth patterns, in terms of their distribution and orientation with

respect to these factors.



According to Li and Yeh (2004), the Shannon entropy is an effective indicator to evaluate

whether patterns of urban growth are dispersed or compact with regard to a factor. Therefore,

in this study, the Shannon entropy has been used for evaluating the simulated urban growth

patterns with respect to road network and city core.

7.2 Shannon entropy

SE measures the degree of spatial concentration or dispersion of phenomenon (e.g., urban

growth) in n different zones. It is calculated as ( Lata et. al, 2001; Yeh and Li, 2001a; Li and

Yeh, 2004b),

n

SE = > pi* log —
M Pi

Pi, is the proportion of the phenomenon occurring in the ith zone and is defined as,

Xi

Pi=y^—T -..7.2
2,1=1 X)

Xi is the observed value of the phenomenon in the i zone, and n is the total number of

zones.

The value of SE ranges from a minimum of0 toa maximum of log (n). Relative entropy (RE)

maybe used to scale the SE value in range from 0 to 1 and is defined as,

SE
RE = —— ...7.3

log(n)

If the phenomenon is maximally concentrated in one zone, the value of relative entropy will

be 0. Conversely, if the phenomenon is evenly dispersed across all the zones, the value of

relative entropy will be 1 (Sudhira et. al, 2003; Yehand Li, 2001a).
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7.3 Relative entropy (RE) of simulated and actual urban growth

For both the study areas, the simulated urban growth, as obtained from MCE-CA model

has been evaluated with respect to actual urban growth using relative entropy (RE).

Since urban growth is expressed as a function of distance from road network and city

core, the simulation results and the actual growth have been evaluated using RE calculated

with respect to these factors. The buffer function in GIS has been used to create buffer zones

along the roads and around the city core. These buffer zones are based on distances, as given

in Tables 3.6 and 3.7 (refer chapter 3) decided on the basis of opinions of the experts from

the local planning authorities.

The buffer zones along the roads and around the city core for study area I are shown in

Figures 7.1 and 7.2 respectively. The buffer zones along roads and city core for study area II

are shown in Figures 7.3 and 7.4 respectively.

7.3.1 Study area I

The two time periods for which the RE has been calculated are 1997-2001 and 2001-

2005. The RE is calculated for both simulated and actual urban growths.

RE for the period 1997-2001

The map showing simulated urban growth for the period 1997-2001 has been overlaid on the

buffer zones created along the road network (Figure 7.1) and around the city core

(Figure 7.2). The spatial distribution of the simulated urban growth in these buffer zones is

shown in Figures 7.5 and 7.6 respectively. The stepwise computation of RE, with respect to

road network and city core, is shown in Tables 7.1 and 7.2.
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Figure 7.1 : Buffer zones along road network (study area I)
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Figure 7.2 : Buffer zones around city core (study area I)
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Figure 7.4 : Buffer zones around city core (study area II)
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Figure 7.5 : Spatial distribution of simulated urban growth for 1997-2001 in different buffer zones along road network
(study area I)
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Figure 7.6 : Spatial distribution of simulated urban growth for 1997-2001 in different buffer zones around city core
(study area I)
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Table 7.1: Calculation of RE with respect to road network for simulated urban
growth (1997-2001)

Step 1 Step 2 Step 3
Buffer

zones

Number of growth
cells

P log 1/p p*log 1/p

Zone I 10733 0.743 0.129 0.096

Zone II 2641 0.183 0.738 0.135

Zone III 977 0.068 1.170 0.079

Zone IV 66 0.005 2.340 0.011

Zone V 25 0.002 2.762 0.005

Step 4: SE = Si=i Pi* log - = (0.096 + 0.135 + 0.079+ 0.011+ 0.005) = 0.325
Pi

Step 5: RE = SE/log 5= 0.325/log 5 = 0.46

Table 7.2: Calculation of RE with respect to city core for simulated urban
growth (1997-2001)

Stepl Step 2 Step 3
Buffer

zones

Number of growth
cells

P log 1/p p*log 1/p

Zone I 2640 0.183 0.738 0.135

Zone II 4081 0.283 0.549 0.155

Zone III 3896 0.270 0.569 0.154

Zone IV 2075 0.144 0.843 0.121

Zone V 1750 0.121 0.917 0.111

Stq

Stej

?4: SE = £f=1 Pi* log - =(0.135+0.155+ 0.154+0.121+0.111) = 0.676

55: RE = SE/log 5= 0.676/log 5 = 0.96

Similarly, in order to calculate the RE for actual urban growth, the map showing urban

growth is overlaid on the buffer zones created with respect to road network and city core

(refer Figures 7.1 and 7.2). The spatial distribution of these actual growth cells in these buffer

zones is shown in Figures 7.7 and 7.8 respectively. The stepwise computation of RE with
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respect to road network and city core for actual urban growth is shown in Tables 7.3 and 7.4

respectively.

Table 7.3: Calculation of RE with respect to road network for actual urban
growth (1997-2001)

Stepl Step 2 Step 3
Buffer

zones

Number of growth
cells

P log 1/p p*log 1/p

Zone I 9005 0.624 0.205 0.128

Zone II 3043 0.211 0.676 0.143

Zone III 1873 0.130 0.887 0.115

Zone IV 458 0.032 1.498 0.048

Zone V 61 0.004 2.374 0.010

Step 4: SE= £1=iPi*log - = (0.128 + 0.143 + 0.115+ 0.048+0.01)= 0.443
Pi

Step 5: RE = SE/log 5= 0.443/log 5 = 0.63

Table 7.4: Calculation of RE with respect to city core for actual urban
growth (1997-2001)

Step 4:

Step 5:

Stepl Step 2 Step 3
Buffer

zones

Number of growth
cells

P log 1/p p*log 1/p

Zone I 1938 0.134 0.872 0.117

Zone II 2395 0.166 0.780 0.129

Zone III 2339 0.162 0.791 0.128

Zone IV 1398 0.097 1.014 0.098

Zone V 6372 0.441 0.355 0.157

SE =Sf-i Pi* log - =(0.117 + 0.129 + 0.1
Pi

RE = SE/log 5= 0.629/log 5 = 0.90

28+ 0.098+ 3.157) = 0.6 29
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Figure 7.7: Spatial distribution of actual urban growth during 1997-2001 indifferent buffer zones along road network
(study area I)
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Figure 7.8 : Spatial distribution of actual urban growth during 1997-2001 in different buffer zones around city core
(study area I)
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RE for the period 2001-2005

Similar to 1997-2001, the map showing simulated and actual urban growth for period 2001-

2005 are overlaid on the buffer zones created with respect to road network and city core

(Figure 7.1 and 7.2). Figures 7.9 and 7.10 show the spatial distribution of the simulated

growth for 2001-2005 in the buffer zones. Figures 7.11 and 7.12 show the spatial distribution

of the actual urban growth during 2001-2005 in the buffer zones.

The stepwise computation of RE with respect to road network and city core for simulated

urban growth is given in Tables 7.5 and 7.6. Similarly, Tables 7.7 and 7.8 show the stepwise

computation of RE with respect to road network and city core for actual urban growth.

Table 7.5: Calculation of RE with respect to road network for simulated urban
growth (2001-2005)

Stepl Step 2 Step 3
Buffer

zones

Number of growth
cells

P log 1/p p*log 1/p

Zone I 14436 0.719 0.143 0.103

Zone II 3531 0.176 0.755 0.133

Zone III 1674 0.083 1.079 0.090

Zone IV 319 0.016 1.799 0.029

Zone V 113 0.006 2.250 0.013

Step 4: SE = £jLiPi*log - = (0.103 + 0.133 + 0.09+0.029+0.013) = 0.367
P>

Step 5: RE = SE/log 5= 0.367/log 5 = 0.52
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Figure 7.9: Spatial distribution of simulated urbangrowth for 2001-2005 indifferent bufferzones alongroad network
(study area I)
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Figure 7.10: Spatial distribution of simulated urban growth for 2001-2005 in different buffer zones around city core
(study area I)
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Figure 7.12: Spatial distribution of actual urban growth during 2001-2005 in different buffer zones around city core
(study area I)
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Table 7.6: Calculation of RE with respect to city core for simulated urban
growth (2001-2005)

Step 1 Step 2 Step 3
Buffer

zones

Number of growth
cells

P log 1/p p*log 1/p

Zone I 2241 0.112 0.952 0.106

Zone II 4294 0.214 0.670 0.143

Zone III 4461 0.222 0.653 0.145

Zone IV 2870 0.143 0.845 0.121

Zone V 6207 0.309 0.510 0.158

Step<

Step:

k SE = E?-i Pi* log - =(0.106 + 0.143 + 0.145+ 0.121+ 0.158) = 0.673
Pi

5: RE = SE/log 5= 0.673/log 5 = 0.96

Table 7.7: Calculation of RE with respect to road network for actual urban
growth (2001-2005)

Step 1 Step 2 Step 3

Buffer zones

Number of growth
cells

P log 1/p p*log 1/p

Zone I 13753 0.685 0.164 0.113

Zone II 4116 0.205 0.688 0.141

Zone III 1723 0.086 1.066 0.092

Zone IV 396 0.020 1.705 0.034

Zone V 85 0.004 2.373 0.010

Stq

Stq

54: SE = Ei-i Pi* log - =(0.113 + 0.141+0.092+0.034+0.01) = 0.38!
P'

55: RE = SE/log 5= 0.389 /log 5 = 0.55

)

267



Table 7.8: Calculation of RE with respect to city core for actual urban growth
(2001-2005)

Step 1 Step 2 Step 3
Buffer

zones

Number of growth
cells

P log 1/p p*log 1/p

Zone I 1613 0.080 1.095 0.088

Zone II 3621 0.180 0.744 0.134

Zone III 3953 0.197 0.706 0.139

Zone IV 3255 0.162 0.790 0.128

Zone V 7631 0.380 0.420 0.160

Step 4: SE= 2,5=1 pi* log - = (0.088 + 0.134 + 0.139+ 0.128+ 0.16) = 0.649

Step 5: RE = SE/log 5= 0.649/log 5 = 0.92

7.3.2 Study area II

RE for 1993-2001 period

The map showing urban growth simulated for 1993-2001 is overlaid on the buffer zones

created along the road network and around the city core (refer Figures 7.3 ad 7.4). The spatial

distribution of the simulated growth in these buffer zones is shown in Figures 7.13 and 7.14.

Tables 7.9 and 7.10 show the stepwise computation of RE with respect to road network and

city core for simulated growth,

Similarly, the map showing actual urban growth that occurred during 1993-2001 is overlaid

on the buffer zones created with respect to road network and city core (refer Figures 7.3 and

7.4) . The spatial distribution of the actual growth in these buffer zones is shown in Figures
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7.15 and 7.16 respectively. The stepwise calculation of RE with respect to road network and

city core for actual growth is shown in Tables 7.11 and 7.12.

Table 7.9: Calculation of RE with respect to road network for simulated urban
growth (1993-2001)

Step 1 Step 2 Step 3
Buffer

zones

Number of

growth cells
P log 1/p p*log 1/p

Zone I 7106 0.622 0.206 0.128

Zone II 3042 0.266 0.575 0.153

Zone III 1242 0.109 0.963 0.105

Zone IV 32 0.003 2.553 0.007

Zone V 0 0.000 0.000 0.000

Ste]

Ste]

?4: SE = Zf=1 Pi* log - =(0.128+ 0.153+ 0.105+0.007+0) = 0.393

5 5: RE = SE/log 5= 0.393/log 5 = 0.56

Table 7.10: Calculation of RE with respect to city core for simulated urban
growth (1993-2001)

Stepl Step 2 Step 3
Buffer

zones

Number of growth
cells

P log (1/p) p*log 1/p

Zone I 1072 0.094 1.027 0.096

Zone II 3431 0.300 0.522 0.157

Zone III 3523 0.308 0.511 0.158

Zone IV 2306 0.202 0.695 0.140

Zone V 1090 0.096 1.020 0.097

Step 4

Step 5

: SE = j;i5=iPi*log - =(0.096 + 0.157 + 0.158+ 0.14+ 0.097) = 0.6'

: RE = SE/log 5= 0.649/log 5 = 0.92
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Figure 7.13: Spatial distribution of simulated urban growth for 1993-2001 in different buffer zones along road network
(study area II)
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Table 7.11: Calculation of RE with respect to road network for actual urban

growth (1993-2001)

Stepl Step 2 Step 3
Buffer

zones

Number of growth
cells

P log (1/p) P*log 1/p

Zone I 5893 0.516 0.287 0.148

Zone II 3079 0.270 0.569 0.153

Zone III 2094 0.183 0.737 0.135

Zone IV 356 0.031 1.509 0.047

Zone V 0 0.000 3.757 0.001

Step 4: SE = E?=i pi* log - = (0.148 + 0.153 + 0.135+0.0475+0.001) = 0.484
Pi

Step 5: RE = SE/log 5= 0.484/log 5 = 0.69

Table 7.12: Calculation of RE with respect to city core for actual urban
growth (1993-2001)

Stepl Step 2 Step 3
Buffer

zones

Number of growth
cells

P log 1/p p*log 1/p

Zone I 909 0.080 1.099 0.087

Zone II 3532 0.309 0.510 0.158

Zone III 3201 0.280 0.552 0.155

Zone IV 2762 0.242 0.617 0.149

Zone V 1018 0.089 1.050 0.094

Step 4: SE = Ef=i pr* log - = (0.09 + 0.16 + 0.15+0.15+0.09) = 0.643

Step 5: RE = SE/log 5= 0.643/log 5 = 0.91
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7.4 Assessment of urban growth using Relative Entropy

7.4.1 Study area I

In this section, in the first part, RE with respect to road network, for 1993-2001 and

2001-2005 periods has been analyzed. While in the second part, the RE with respect to city

core for the same two time periodshas been analyzed.

7.4.1.1 RE with respect to road network

1997-2001 period

The RE values for simulated and actual urban growth with respect to road network have been

obtained as 0.46 and 0.64 respectively (refer Tables 7.1 and 7.3). The value of RE for

simulated urban growth is smaller than that obtained for actual urban growth. This indicates

that the simulated urban growth cells are concentrated in a few zones whereas the actual

urban growth cells are dispersed with respect to road network. This can further be

substantiated from Figure 7.17 that shows the percentage of growth cells lying in different

buffer zones along the roads in the road network layer. It can beobserved from the figure that

in zone I, the percentage of simulated growth cells (i.e., 72.3%) is significantly higher than

that of actual growth cells (i.e., 62.3%). For other zones, the reverse trend can be seen.

However, for zones other than zone I, the difference between percentages ofgrowth cells for

the two growth patterns is insignificant. Due to this higher concentration of simulated urban

growth inzone I, a lower value of RE has been obtained for the simulated growth than for the

actual urban growth.
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Figure 7.17: Percentage of actual and simulated growth cells lying in different zones
along the road network for 1997-2001 (Study area I)

2001-2005 period

The RE for simulated and actual urban growth, with respect to road network have been

obtained as 0.52 and 0.54 respectively (refer Tables 7.5 and 7.7). The value of RE for

simulated growth is nearly equal to that obtained for actual growth. This indicates that the

simulated and actual urban growth cells are distributed in a same manner in the buffer zones

along the roads.

This can be explained from Figure 7.18, which shows the percentage of the growth cells lying

in different buffer zones along the roads. It can be observed from the figure, that the

distribution patterns of simulated and actual growth cells in different zones are identical.
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Figure 7.18: Percentage of actual and simulated growth cells lying in different
zones along the road network for 2001-2005 (Study area I)

The RE with respect to road network for the actual and simulated growth for 1997-2001 and

2001-2005 period have been summarized in Table 7.13

Table7.13: RE with respect to road network for actual and simulated growth

RE for simulated growth RE for actual growth
1997-2001 period 0.46 0.64

2001-2005 period 0.52 0.54

On comparing the values of RE for actual growth during 1997-2001 and 2001-2005 periods

(refer Table 7.13), it has been found that the value of RE for actual growth during 1997-2001

is greater than that for 2001-2005 period. This indicates that the actual growth cells during

1997-2001 are more dispersed with respect to the road network as compared to 2001-2005.

The growth during 2001-2005 has taken place mainly in the form of densification of existing

built-up areas that are in close vicinity of the road. Therefore, the growth in 2001-2005 is

more compact compared to 1997-2001.
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From Table 7.13, it can be inferred that for period 1997-2001, the model simulated a more

compact growth compared to actual growth, with respect to roads. However, for 2001-2005

period the model has been able to simulate the growth with respect to roads accurately, as it

matches with the actual growth pattern.

7.4.1.2 RE with respect to city core

1997-2001 period

The RE for simulated and actual urban growth, with respect to city core have been obtained

as 0.96 and 0.90 respectively (refer Table 7.2 and 7.4). Since the two RE values are nearly

equal, it indicates that the simulated and actual urban growth cells are distributed in a similar

manner in different zones around the city core. As can be substantiated from Figure 7.19, the

distribution pattern of actual and simulated growth cells in different zones is generally same,

except in zone V. It can be observed that in zone V, 44.1 % of actual growth cells are located

compared to 12.1% of simulated growth cells. While for rest of the zones, the reverse trend is

observed. It is due to this heavy concentration of cells in zone V, that the RE with respect to

city core, for actual growth is 0.90 as compared to 0.96 for simulated growth.
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Figure7.19: Percentage of actual and simulated growth cells lying in different zones
around the city core for 1997-2001 (Study area I)

2001-2005 period

The RE for simulated and actual urban growth, with respect to citycore have been obtained

as 0.96 and 0.92 respectively (refer Tables 7.6 and 7.8). The two equal values of RE, indicate

that the simulated urban growth cells are distributed ina similar manner as the actual growth

cells with respect to the city core. As canbe seen from Figure 7.20 also, thedistribution

patterns of simulated and tual growth cells in different zones are identical.
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Figure 7.20: Percentage of actual and simulated growth cells lying in different zones
around the city core for 2001-2005 (Study area I)

The RE with respect to city core, for the actual and simulated growth for 1997-2001 and

2001-2005 periods have been summarized in Table 7.14

Table 7.14: RE with respect to city core for actual and simulated growth

Simulated growth Actual growth

1993-2001 period 0.96 0.90

2001-2005 period 0.96 0.92

On comparing the RE with respect to city core, for actual growth during periods 1997-2001

and 2001-2005 (refer Table 7.14), it can be observed that the growth pattern with respect to

city core has been identical. Thus, the model has been able to simulate the growth pattern

with respect to roads quite accurately.
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From the above analysis, it can be inferred that the model has been able to simulate the

growth with respect to roads and city core accurately, except for urban growth with respect to

roads for 1997-2001 period. This may be due to dispersed urban growth, which might have

taken place along the roads during this period.

7.4.2 Study area II

Similar to study area I, the RE with respect to roads for 1993-2001 period is analyzed,

in the first part of this section, whereas the RE with respect to city core for 1993-2001 is

analyzed in second part.

7.4.2.1 RE with respect to road network

1993-2001 period

The RE values for simulated and actual urban growth with respect to road network havebeen

obtained as 0.56 and 0.69 respectively (refer Tables 7.9 and 7.11). Thus, the value of RE for

simulated growth is less than that obtained for actual growth. This shows that the actual urban

cells are dispersed with respect to the road network while the simulated growth cells are

concentrated in a few zones. This can be explained from Figure 7.21, which shows the

percentage of growth cells lying in different buffer zones along the roads. It can be observed

from the figure that in zone I, the percentage of simulated growth cells (i.e., 62.2%) is higher

than the actual growth cells (i.e., 51.6%). In zone II, a reversal takes place wherein the

percentage of simulated growth cells (i.e., 10.8%) is lower than that of actual growth cells

(i.e., 18.3%). This trend continues in other zones also, although the difference between

percentages of growth cells in simulated andactual growth patterns is insignificant. Thus, due

to higher concentration of growth cells in zone I, a lower value of RE has been obtained for

the simulated growththan for the actual urban growth.
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Figure 7.21: Percentage of actual and simulated growth cells lying in different zones
along the road network for 1993-2001 (Study area II)

7.4.2.2 RE with respect to city core

1993-2001 period

The RE values for simulated and actual urban growth with respect to city core have been

obtained as 0.93 and 0.92 respectively (refer Tables 7.9 and 7.11). Thus, the RE values for

simulated and actual growth are nearly equal. This indicates that the simulated and actual

growth cells are distributed in a similar manner in the buffer zones created around the city

core. This can be explained with the help of Figure 7.22, which shows the percentage of

simulated and actual growth cells lying in different buffer zones around the city core. It can

be seen from the figure that the distribution pattern for simulated and actual growth cells in

different zones are identical.
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From the assessment of RE with respect to road network and city core in section 7.4.2.1 and

7.4.2.2 respectively, it can be inferred that the model has simulated a more compact growth
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Figure 7.22: Percentage of actual and simulated growthcells lying in different
zones around the city core (Study area II)

along the roads as compared to the actual growth. While with respect to the city core, the

model has been able to simulate quite accurately thedistribution of urban growth.

The results presented in this chapter clearly reflect that RE can serve as a potential index for

evaluation of simulated and actual growth with respect to a given factor affecting the urban

growth.
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Chapter 8

Conclusions and Further Research

8.1 Introduction

India is experiencing a rapid pace of urbanization. As the limited land resources in the

city diminish, the pressure mounts, which result in an increasing demand for land. This leads

to an outward growth from the city. The outward growth often outpaces the planning efforts

of the government. Thus, an urgent need was felt to develop models that could predict future

urban growth in accurate manner as this may help the authorities to take proper policy and

planning measures.

The failure of a number of traditional models to deal with the spatial and temporal aspects

of urban growth has led to the development of Cellular Automata (CA) based urban growth

models. The main aim of this thesis was to investigate the efficiency of CA based models for

assessment of urban growth in a GIS environment.

8.2 Overview of methodology

In the present thesis, urban growth was defined in terms of increase in built-up area,

which could be interpreted with ease from the remote sensing data. The proposed CA model

was based on the dichotomy of built-up and non built-up areas and simulated urban growth as

a function of three factors,



i) Distance to road network

ii) Accessibility to infrastructural facilities

iii) Distance to city core

Spatial data layers corresponding to the three factors were generated using remote sensing

and GIS tools. For Dehradun city study area, the data acquired by IRS ID satellite LISS-III

and PAN sensor at a spatial resolution of23.5 and 5.8 mrespectively was used for generation

of spatial data layers. For Saharanpur city study area, aerial photographs at 1:10,000 scale

and remote sensing images from PAN sensor were used for data layer preparation.

These data layers formed the input for urban growth simulation using the MCE based CA

model (MCE-CA) and an ANN based CA model (ANN-CA). In the MCE-CA model,

weights were assigned to the factors based on their relative importance in the urban growth

process using the Analytical Hierarchy Process (AHP). These factors were then combined by

weighted linear combination to create an urban suitability map. The cell values in the

suitability map were modified based on the amount of built-up area in the neighbourhood.

Different sizes of Von Neumann and Moore neighbourhoods were used to estimate the

amount of built-up area in neighbourhood. Thus, for a cell to be a likely candidate for

transition from non built-up to built-up area, it must beboth inherently suitable and near to

built-up area. The number of cells to transit to built-up were determined exogenously and

divided into equal parts depending on the number ofmodel iterations. The data pertaining to

factors were dynamically updated after each iteration. The simulated results were then

evaluated using two indices:

i) Percentage correct match

ii) Moran Index.
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Further, in order to reduce the subjectivity in CA modelling, an ANN based CA (ANN-

CA) was also implemented to simulate the urban growth. The ANN was used to derive the

suitability from the data itself rather than assigning the user defined subjective weights.

Several ANNs were formulated and trained using backpropogation algorithm. The ANN

which produced the highest accuracy was used for urban growth simulation. The result of the

ANN-CA based model were compared with those obtained from the MCE-CA model.

The ANN outputs were also used directly for the creation of zones showing the urban

growth potential on an ordinal scale (i.e. high, medium and low). Since the ANN outputs

were not normally distributed, a logit transformation was applied to bring the data normally

distributed. The transformed data was divided into three classes as,

i) Low potential zone < (u-a)

ii) (u-a) < Medium potential zone < (u+ a)

iii) (u+ a) < High potential zone

where, p is mean and a is the standard deviation of the transformed data.

The simulated growth patterns for both the study areas were also evaluated using

Shannon's Entropy. It is a structural measurement index that assesses the goodness of fit

according to the spatial domain of interest, which in this case was the distribution of urban

growth with respect to the distance from roads and distance from city core. The spatial

relationships between urban growth and the two distance variable were established using a

two-dimension entropy space.

8.3 Conclusions

From the analysis of the results obtained after implementation of the proposed models for

assessing urban growth in the two example study areas, following general conclusions have

been drawn,
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1. Dehradun city has experienced a dispersed growth. Therefore, small neighbourhood

of 5x5 cells produced the highest accuracy in predicting the pattern and location of

growth. In Saharanpur city, the urban growth has taken place in a compact and

concentric form. Therefore, large neighbourhoods produced the most accurate

simulation results.

2. Von Neumann neighbourhood of small size was found appropriate for city having

dispersed growth, whereas for city having a compact development, both Von

Neumann and Moore neighbourhoods were found appropriate.

3. Large number of model iterations failed to increase the accuracy of the models. The

increase in number of iterations resulted in a more compact growth pattern as

compared to the actual growth pattern. This may be due to unplanned and stochastic

behavior of urban growth process in Indian cities, which the CA models have are not

been able to simulate completely.

4. Percent correct match and Moran Index were found to beuseful and simple indicators,

for matching the simulated growth pattern with the actual growth. The former was

able to match the two on a pixel by pixel basis. Whereas the later was found effective

in matching pattern of growth in the region.

5. The accuracy of ANN-CA model was comparable with that of MCE-CA model for

the data set considered. The, neural networks were, however, able to define the

transition rules for CA from the data itself, without any human intervention, in an

objective manner. This proves the usefulness ANN-CA based modelling for urban

growth simulation.
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6. The design of ANN architecture, which can be defined in many different ways, is a

key issue in this study. The ANN architecture designed on the basis of literature

driven thumb rules produced comparable and even better accuracy with that obtained

from the optimal network as identified from processing of several ANN architectures.

7. The urban growth potential zonation maps derived from neural network outputs

conveyed the actual growth pattern in the respective areas. Thus, preparing such

-j- zonation maps may be a valuable input for planning exercises like master and zonal

plan preparation.

8. Shannon's Entropy is a useful indicator for assessing the urban growth in terms of

spatial distribution of urban growth with respect to road network and city core. Since

urban growth is a function of these elements, so Shannon's Entropy is a useful index

that can evaluate the growth pattern and simulated results with respect to these

elements.

8.4 Major Contributions

The research work reported in this thesis has resulted into following major contributions,

•4. 1. The applicability of Cellular Automata (CA) techniques for modeling growth of

two Indian cities having varied growth patterns has been investigated fruitfully.

2. The application of ANN in cellular automata modelling helps in deriving the

transition rules in an objective manner thereby reducing the human intervention.

*
3. The optimum sizes and types of neighbourhood to be used in CA modelling have

been recommended for two Indian cities, one having dispersed growth pattern and

another having compact growth pattern.
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4. A methodology for generating zoning maps depicting areas with different urban

growth potential based on ANN has been proposed. The zonation maps will be

very useful for urban planners.

8.5 Further Research

The work presented in this thesis may be envisaged as a contribution to the development

of CA based modelling for urban growth simulation, with special reference to Indian cities.

Since, the work on CA based modelling for urban growth prediction in India has just started,

some research directions are now put forth,

1. In this research, the urban growth is modelled as a function of physical factors

only, therefore other socio-economic factors may also be incorporated in the

proposed models.

2. The limitation of the proposed model is that it is based on the dichotomy ofbuilt-

up and non built-up areas. Therefore, detailed urban land use information can be

incorporated as now a day's high spatial resolution satellitedata is also available.

3. The proposed CA based models can be applied to other cities with different

characteristics such as coastal and hill towns. This would establish the general

capabilities of the proposed models.
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