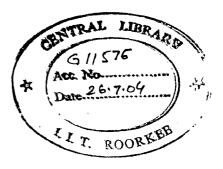
CHANNELIZATION IN A REACH OF BEAS RIVER - A CASE STUDY


A DISSERTATION

Submitted in partial fulfillment of the requirements for the award of the degree of MASTER OF TECHNOLOGY in WATER RESOURCES DEVELOPMENT (CIVIL)

By

RABINATH BABU SHRESTHA

WATER RESOURCES DEVELOPMENT TRAINING CENTRE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE-247 667 (INDIA) JUNE, 2004

ACKNOWLEDGEMENT

It is my great pleasure to express my sincere thanks with deep sense of respect and gratitude to my guide Dr. Nayan sharma, professor, Water Resources Development Training Centre (WRDTC), IIT-Roorkee for his valuable guidance and constant encouragement throughout the duration of the present study.

I also extend my sincere gratitude to prof. U.C. Chaube, prof. G.C. Mishra, prof. Devdutta Das, prof. G. Chauhan, Dr. B.N. Asthana, prof. R.P. Singh, prof. S.K. Tripathi, Dr. M.L. Kansal and Dr. Deepak Khare of WRDTC for making me worth conducting this study.

I'm also thankful to all the staff of WRDTC for their kind cooperation and support during my stay here.

The friendship and the help rendered by my fellow trainee officers can never be expressed in words.

I also like to acknowledge the government of India and ITEC for the sponsorship granted to me to pursue this M. Tech. Course.

I'm also extremely grateful to my parents, who made innumerable sacrifices for me. Finally a word of sincere thanks should also go to my wife Susmita, who constantly supported me for a successful completion of this course.

ii

CANDIDATE' S DECLARATION

I hereby declare that the dissertation titled "Channelization in a reach of Beas River – A case study" being submitted in partial fulfillment of the requirements for the award of degree of Master of Technology in Water Resources Development (Civil) to Water Resources Development Training Centre (WRDTC), Indian Institute of Technology (IIT), Roorkee is an authentic record of my own work carried out during the period of 24th July, 2003 to the date of submission under the supervision and guidance of Dr. Nayan Sharma, professor, WRDTC, IIT Roorkee.

The matter embodied in this dissertation has not been submitted by me for the award of any other degree.

Place: Roorkee Date: 29.th...June, 2004

(Rabinath Babu Shrestha) 47th WRD (civil) WRDTC, IIT, Roorkee

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Dater 2.9.1. June, 2004

(Dr. Nayan Sharma) Professor WRDTC, IIT, Roorkee

EXECUTIVE SUMMARY

Beas River at Kullu, in the Himachal Pradesh of India, is a perennial snow fed mountainous river. A small township called Bhuntar is located along the banks of this river. A domestic airport is situated at Bhuntar along the right floodplain of the river. Every year the flood in the river inundates a larger area and frequently inundates the airport often disrupting the air services. To mitigate the frequent recurring flood problem, the airport authority and the flood control department of Kullu district have been carrying out flood protection measures but the problem has not been solved yet. The flood of 1995 severely damaged the existing bank protection works in the river and also damaged the airport runway, interrupting the air service for a long time.

Kullu is an attractive tourist destination and the number of tourists is increasing every year. The existing runway is 1128 m long and 30.5 m wide and is suitable for landing of small 16-18 seated aircraft only. So the airport authority is planning to extend the runway to increase capacity for landing of bigger aircraft. Presently the airport authority has decided to extend the existing runway length by 1000 m and to increase the width to 200 m (100m on either side from the centerline of the runway).

In this dissertation titled "Channelization in a reach of Beas River- A case study" efforts are being made to analyse the hydraulic and morphological behavior of Beas River and to design a complete channelization work to accommodate the design flood and the extended runway.

The study reach starts from a steel bridge, located near the confluence of the Parbati River and the Beas River, to a length of 3.27 km downstream. The latest survey map of 2004 with a contour interval of 0.50 m has been used to gather required geometric data. The river is very steep with the average slope of about 0.0091. The width of the river varies from 40 m to 170 m. The bed material consists of silt, sand, cobbles and boulders. The gradation of the bed material has been determined by the Wolman sampling method. The grain-size distribution curve of the bed material shows the median size is equal to 32 mm.

iii

The annual maximum flood discharge of Beas River for the period of 1965-1995 has been collected for flood frequency analysis. Floods of 2 year, 100 year, 500 year and 1000 year return period have been calculated for normal, lognormal, extreme value type-1 and log-pearson type-3 distributions. The variations of discharge for different distribution is significant, so the chi-square test has been carried out to find out which theoretical distributions is closest to the sample data. It is found that the sample data is closest to the log-pearson type-3 distribution. For this distribution, the 2-year, 100 year, 500 year and 1000 year flood discharges were found to be 777.40, 2783.19, 4671.52 and 5853.07 cumecs respectively. However for the design purpose the values are rounded to 800, 2800, 4700 and 5900 cumecs respectively.

The first and foremost important step for planning and design of any river channelization project is to determine the water surface profile for given flow in the given channel geometry. This can be achieved by employing various simulation models developed for this purpose. In the present study HEC-RAS and HEC-6 have been used for fixed bed simulation and HEC-6 for mobile bed simulation. In the fixed bed model, the bed and the banks are assumed to be fixed while in the mobile bed model it is assumed that the bed and the banks may be eroded or deposited with sediment. Thus to run hec-6 in mobile bed mode sediment data is required in addition to geometric and hydrologic data.

In this study roughness coefficient has been taken as 0.045 for the left and the right overbank and 0.04 for the channel. Similarly, the coefficients of expansion and contraction have been taken as 0.3 and 0.1 respectively. The stage discharge curve generated at the downstream end of the study reach has been used as the downstream boundary condition for the simulation. The results obtained, from both the above software are quite matching for fix bed application. However, the water surface profile obtained from HEC-6 for mobile bed application differs to some extent, as anticipated, with that calculated for fix bed application. This is due to the change in bed level as a result of scour or deposition of the bed material. Both the fix bed and the mobile bed simulation shows that the channel section is not adequate to carry the design flood of 4700 cumecs throughout reach under investigation. Earthen dikes shall be provided to prevent spillage of water over the banks. The dike shall be provided with a side slope of

2 horizontal in 1 vertical and it's top shall be kept 1.5 m above the design water surface profile. The top width of the dikes shall be kept 3.0 m wide to allow for vehicular movement during construction and subsequently for inspection and maintenance.

The computations of stable channel parameters show that the stable channel width, depth and longitudinal slope are respectively 120 m, 3.5 m and 1/270. So the channel has been designed with a trapezoidal section of 120 m bottom width with side slope of 2 horizontal in 1 vertical. However, the stable longitudinal slope could not be provided in the channel, as the existing channel is much steeper than it with the value of about 1/110. To accommodate this stable slope in the channel it has to be designed with longer meandering length, which will be very uneconomical. So the channel has been designed with the existing slope of 1/110 from chainage 0+000 to 1+900 and then after the diversion channel has been designed with the available slope of 1/99 (=0.01007). This will lead to instability of the channel in its natural condition. It is expected that the concrete blocks designed for slope protection will strict the channel in its designed course.

As already mentioned, to accommodate the extension of the runway the existing channel has to be diverted along a new diversion channel. The diversion channel has been designed as a smooth cosine curve instead of a straight channel because of the inherent instability of the later. A computer program has been developed in fortran to compute coordinates of points along the cosine curve for given minimum radius, R_{min} and curve length, L. A cosine curve for the given field situation is designed by trial assuming different values of R_{min} and L within certain prescribed limits.

A diversion channel comprising of two cosine curves with R_{min} equal to 400 m and L equal to 1750 m and R_{min} equal to 500 m and L equal to 1600 m has been proposed for the present case. The existing channel of 1800 m length shall be replaced by the diversion channel of length 1700 m. In this case the reduction in channel length by diversion of the existing channel is not significant, so a pilot channel may not enlarge satisfactorily. Further, it is not possible to allow sufficient time for development of channel to ultimate section. So the full section of the channel will be excavated before diverting the flow into it.

v

Three different types of cover layer, namely the stone rip-rap, the gabion mattress and the cement concrete blocks have been designed for protection of the embankment slope. The nominal thickness of stone rip-rap, gabion mattress and cement concrete blocks are found to be 1.80 m, 1.25 m and 0.80 m. However, the cement concrete blocks have been recommended for protection of the embankment slope as it requires less frequent maintenance in comparison to that for the stone rip-rap and the gabion mattress.

A tentative cost estimate has been prepared for the channelization works. It includes the cost of excavation of the design channel section from chainage 0+000 to 1+900 and a diversion channel from chainage 1+900 to 3+600. It also includes the cost of dikes and P.C.C. concrete block for slope protection works. It also includes the cost of earthworks in filling for construction of airport runway and also includes the cost of relocation of about 2.5 km of Garsa gravel road. It however does not include the cost of runway and the cost of land acquisition and compensation. The cost of channelization for extension of the runway comes out to be Rs. 608,140,074.77. The total project cost with 5 % contingencies and workcharge staff comes out to be Rs. 638,547,078.50.

There is another option to accomplish the extension of runway without channelization of the existing river. This option requires construction of two bridges at the river crossings and the extended runway shall be placed over the bridges. The maximum depth of scour around the bridge piers has been calculated for this case and is found to be 4.7 m below the river bed level. The hydrodynamic force acting horizontally on the bridge piers has also been calculated and is found to be 183.31 KN/m.

		PAGE N
	S DECLARATION	i
ACKNOWLEDGEMENT EXECUTIVE SUMMARY		
LIST OF FIGU	JRES	x
CHAPTER-1:	INTRODUCTION	1
1.1	Statement of the Problem	1
1.2	Description of the Study Area	2
1.3	Objectives of the Study	2
1.4	Methodology	2 2 3 3
	1.4.1 Geometric Data	3
	1.4.2 • Sediment Data	3
	1.4.3 Hydrologic Data	4
	1.4.4 Water Surface Profile Simulation	4
1.5	Assumptions and Limitations of the Study	4
1.6	Organization of Thesis	5
CHAPTER-2:	REVIEW OF LITERATURE	6
2.1	Theoretical Concepts of Gravel Bed River	6
	2.1.1 General	6
	2.1.2 River Morphology	10
	2.1.3 Flow Resistance in Gravel Bed Rivers	13
	2.1.4 Sediment Transportation	15
	2.1.5 Sediment Sampling	18
2.2	Channelization of Rivers	19
	2.2.1 Introduction	19
	2.2.2 History of River Channelization	20
	2.2.3 Engineering Methods of Channelization	20
	2.2.4 Planning and Design of Channelization Works	32
	2.2.5 Effects of Channelization	43
	2.2.6 Recommendations to Minimise the Adverse Effects of	45
	Channelization	62
СНАРТЕВ-3•	DESCRIPTION OF MODELS USED	
		66
3.1	HEC-RAS	66
	3.1.1 General Introduction	66
	3.1.2 Overview of Program Capabilities	66
	3.1.3 Steps in Developing a Hydraulic Model with HEC-RAS	69
3.2	HEC-6	74
	3.2.1 Introduction	74
		,
1		

CONTENTS

	3.2.2 Application of HEC-6	75
	3.2.3 Summary of HEC-6 Capabilities	76
	3.2.4 Theoretical Assumption and Limitations	78
CHAPTER-4:	ANALYSIS AND DESIGN	80
4.1	Morphology of Beas River	80
4.2	Hydrological Analysis	81
4.3	Grain Size Distribution of Bed Material	96
4.4	Estimation of Manning's Roughness Coefficient	98
4.5	Generation of Stage-Discharge Curve	99
4.6	Generation of Water Surface Profile	100
4.7	Sediment Load Computation	108
4.8	Determination of Stable Channel Parameters	110
4.9	Diversion of Beas River	113
4.10	Design of Longitudinal Dikes	118
4.11	Computation of Water Surface Profile with Dikes and Diversion Channel	119
4.12	Design of Cover Layer for the Embankment Slope	127
	4.12.1 Design of Stone Rip-rap	127
	4.12.2 Design of Gabion Mattresses	130
	4.12.3 Design of Loose Concrete Blocks	132
4.13	Design of Filter	133
	4.13.1 Design of Granular Filter	133
	4.13.2 Design of Geotextile Filter	137
4.14	Determination of Maximum Scour Depth around Bridge Piers	138
4.15	Computation of Horizontal Force on Bridge Piers	142
4.16	Estimation of Financial Implications	143
CHAPTER-5:	CONCLUSIONS AND RECOMMENDATIONS	147
5.1	Conclusions	147
5.2	Recommendations	149

•

REFERENCES

.

APPENDICES

viii

TABLE NO.	TITLE	PAGE NO.
Table-2.1	Effects of Straightening a Reach by Cutoffs	45
Table-2.2	Effects of Main Channel Straightening on its Tributary Stream	48
Table-2.3	Factors Important to the Stability of Relocated Channels	50
Table-2.4	Critical Factors Contributing to the Stability and Instability of	
	Relocated Channels	50
Table-2.5	Changes in Manning's 'n' Following Clearing and Snagging and after Regrowth	
Table-2.6		56
1010-2.0	Types of Channel Modification Listed in Ascending Order of	<i></i>
Table-4.1	Impact on Fish and Wild Life Resources	62
Table-4.2	Variation of Bed Slope along the Study Reach in Beas River	80
Table-4.3	Maximum Annual Discharge	83
1 4010-4.5	Comparison of the Flood Discharge of Different Return Period for Different Distribution	
Table-4.4	Check for Normal Distribution	92
Table-4.5		93
Table-4.6	Check for Log-normal Distribution	93
Table-4.7	Check for Extreme Value Type-1 (Gumble) Distribution	94
Table-4.8	Check for Log-Pearson Type-3 Distribution Grain Size Distribution of Bed Material	95
Table-4.9		96
Table-4.10	Detail Calculation for Stage-Discharge Curve	99
14010 4.10	Summary of Output of Hec-6 (both fix bed and mobile bed) and	
Table-4.11	Hec-Ras (fix bed) in Natural Condition for 2 Year Flood	103
14010-4.11	Summary of Output of Hec-6 (both fix bed and mobile bed) and	
Table-4.12	Hec-Ras (fix bed) in Natural Condition for 500 Year Flood	104
1 4010-4.12	Result of Computer Program of Cosine Curve for Minimum Radius	
Table-4.13	of 400 m and Curve Length of 1750 m	114
1 4010-4.15	Result of Computer Program of Cosine Curve for Minimum Radius	
Table-4.14	of 500 m and Curve Length of 1600 m	116
1 4010-4.14	Summary of Output of Hec-6 (both fix bed and mobile bed) and	
	Hec-Ras (fix bed) with Dikes and Diversion Channel for 2 Year Flood	
Table-4.15		120
14010-4.15	Summary of Output of Hec-6 (both fix bed and mobile bed) and	
	Hec-Ras (fix bed) with Dikes and Diversion Channel for	
Tuble 116	500 Year Flood	121
Table-4.16	Abstract of Cost for Channelization of Beas River for Extension	
Table-4.17	of Airport Runway at Kullu	144
	Estimate of Quantity for Channelization of Beas River for	
	Extension of Airport Runway at Kullu	145

LIST OF TABLES

۰.

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
Fig1.1	Site Survey Plan of Beas River near Bhuntar, Kullu, Himanchal	
	Pradesh	
Fig2.1	Cutoff Flow Capacity Versus Accumulated Streamflow	31
Fig2.2	Accretion in Old River Bends at Cutoffs	32
Fig2.3	Symmetrical Arc According to Cosine-Generated Curve	33
Fig2.4	Scheme for Curve Ranging in the Cartesian Co-ordinate	35
Fig2.5	Forces Diagram on Particle Resting on a bank	41
Fig2.6	Degradation in Straight Alluvial Channels	45
Fig2.7	Morphological Adjustment of the Willow Drainage Ditch, Harrison	
	County, Iowa	46
Fig2.8	Morphological Adjustment along a Relocated Segment of the	
	Peabody River, New Hampshire	47
Fig2.9	Number of Assumed Headcut Events Related to Valley Slope with	
	Distance along Oaklimiter Creek, Northern Mississippi	49
Fig2.10	Degradation due to Continuous Dredging	54
Fig2.11	Comparison of the Channel Morphology and Hydrology of a	
	Natural Stream with a Channelized Watercourse	60
Fig4.1	Grain Size Distribution Curve	97
Fig4.2	Stage-Discharge Curve	100
Fig4.3	Cross-Section of Beas River in Natural Condition during 500	
	Year Flood	105
Fig4.4	Cross-Section of Beas River with Dikes and Diversion Channel	
	during 500 Year Flood	122
Fig4.5	L-Section of Beas River with Dikes and Diversion Channel for	
	500 Year Flood	126
Fig4.6	Typical Cross-Section of Embankment with P.C.C. Block	
	Protection	134

.

1

INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

Beas River in the Himachal Pradesh of India is a perennial snow fed mountainous river. A small township called Bhuntar is located along the banks of this river. A domestic airport is situated at Bhuntar along the right floodplain of the river. Every year the flood in the river inundates a larger area and frequently inundates the airport often disrupting the air services. To mitigate the frequent recurring flood problem, the airport authority and the flood control department of Kullu district have been carrying out flood protection measures but the problem has not been solved yet. The flood of 1995 severely damaged the existing bank protection works in the river and also damaged the airport runway, interrupting the air service for a long time.

Kullu is an attractive tourist destination and the number of tourists is increasing every year. The existing runway is 1128 m long and 30.5 m wide and is suitable for landing of small 16-18 seated aircraft only. So the airport authority is planning to extend the runway to increase capacity for landing of bigger aircraft. Presently the airport authority has decided to extend the existing runway length by 1000 m and to increase the width to 200 m (100m on either side from the centerline of the runway).

In this dissertation titled "Channelization in a reach of Beas River - A case study" attempt has been made to analyse the hydraulic and morphological behavior of Beas River and to design a complete channelization work to accommodate the design flood and the extended runway.

1.2 DESCRIPTION OF THE STUDY AREA

The study area consists of a reach of Beas River of length 3.27 km downstream of the steel bridge at Bhuntar of Kullu district in Himanchal Pradesh. It is situated at the latitude of 77° 9' E and 31° 53' N. The Beas River is a perennial and snow fed river. It originates from Beas Kund situated within the Himalayan range about 20 km upstream from Nehru Kund. The study reach of the Beas River is generally characterised by steep slope, high flow velocity and coarse bed material. The left bank of the river is higher than the right bank in the upstream portion of the study reach; hence there is often inundation at the right floodplain during flood.

The Kullu-Manali national highway runs parallel to the right bank and a motorable gravel road, called Garsa road along the left bank of the river. A steel bridge has been constructed just down stream of the confluence of the Parbati and the Beas River connecting the two roads. The study reach starts from this bridge to a length of 3.27 km downstream. There is an old suspension bridge about 600 m downstream of this steel bridge and a domestic airport further 200 m downstream of this suspension bridge at the right floodplain.

1.3 OBJECTIVES OF THE STUDY

The main objective of this study is to design a complete channelization work for the Beas River at Bhuntar to accommodate the design flood and the extended runway. Other objectives of this study are as follows:

- To study the general behavior of river including river morphology and sediment transportation.
- To study different methods of river channelization and their effects in terms of hydraulics and morphological changes.
- To carryout the flood frequency analysis and workout the design flood.
- To determine the water surface profile and hence to check the adequacy of the existing channel section against the design flood.
- To workout the stable channel parameters and suggest a suitable channel section to convey the design flood, in case the existing section is inadequate to do so.

- To design a smooth cosine curve for the diversion of the existing channel to accommodate the extended runway
- To design various types of cover-layer for riverbank protection and recommend a suitable one for the present case.

1.4 METHODOLOGY

To study and analyse the hydraulic and sediment transportation behavior of river and to design suitable control measures about 3.27 km of Beas River along Bhuntar Bazaar near the airport of Kullu district of Himanchal Pradesh was selected as a case study. The detail methodology adopted to meet the desired objectives of the study is explained below.

1.4.1 GEOMETRIC DATA

The latest survey map of 2004 with a contour interval of 0.50 m has been used to gather required geometric data. The cross-sections were obtained at 100-200 m intervals. The river width, depth and the water surface level were noted and the reach length between successive cross-sections measured along the left bank, right bank and along the channel. The variation of longitudinal slope of Beas River along its length is given in table-4.1.

1.4.2 SEDIMENT DATA

To determine the flow resistance, sediment transport rates and hence to predict the bed level changes, we require the gradation of bed and suspended sediment. For collection of a representative bed sample, the Wolman sampling method is generally adopted for the gravel bed river like Beas. Then to determine the gradation of the collected sample, manual measurement are carried out for the coarse material and the sieve analysis is carried out for the fine material. The grain size distribution table and the gradation curve used for this study are given in table-4.8 and fig.-4.1 respectively. The available suspended load record of Beas River for the period of 1985-1995 is given in appendix-12.

1.4.3 HYDROLOGIC DATA

The annual maximum flood discharge of Beas River for the period of 1965-1995 is given in table-4.2. The frequency analysis can be carried out with these flood data and floods of different recurrent intervals can be found. To determine the value of Manning's roughness coefficient different methods suggested by Bray, Meyer, Strickler and Limerinos can be used. The stage discharge data required for simulation of water surface profile can be generated from the available cross-sections, longitudinal slope and roughness coefficient using Manning's formula.

1.4.4 WATER SURFACE PROFILE SIMULATION

The first and foremost important step for planning and design of any river channelization project is to determine the water surface profile for given flow in the given channel geometry. This can be achieved by employing various simulation models developed for this purpose. In the present study HEC-RAS and HEC-6 have been used for fixed bed simulation and HEC-6 for mobile bed simulation.

1.5 ASSUMPTIONS AND LIMITATIONS OF THE STUDY

Some of the assumption and limitations of the study are as follows:

- The detail cross-sections of the river actually measured in the field was not available, so the cross-section obtained from the contour map of the study area has been employed for the present study.
- The flood frequency analysis has been carried out with the available 31 years annual maximum flood. If relatively longer data were available the predicted floods would have been more realistic.
- The roughness coefficient varies along the length of the channel and it also varies with flow and season. However due to non-availability of such detail data, the roughness coefficient has been assumed to be constant throughout the channel for different flows.
- Similarly, the gradation of bed material varies along the channel but it has been assumed to be constant throughout the study reach.

1.6 ORGANIZATION OF THESIS

This thesis has been organized in the following five chapters and appendixes:

CHAPTER-1, INTRODUCTION: In this chapter the statement of the problem, description of the study area, objectives of the study, methodology and assumptions and limitations of the study have been presented.

CHAPTER-2, REVIEW OF LITERATURE: In this chapter the basic concepts of river channelization such as methods of channelization, planning and design of channelization works, effects of channelization, recommendation to minimise adverse effects of channelization etc. have been explained. Additionally some theoretical concepts of gravel bed stream have also been included in this chapter.

CHAPTER-3, DESCRIPTION OF MODELS USED: The basic principles and methods of simulation with HEC-RAS and HEC-6 have been presented in this chapter.

CHAPTER-4, ANALYSIS AND DESIGN: This chapter comprises of two parts. In the first part analysis of data for computation of design flood, generation of ratting curve, simulation for water surface profile using HEC-RAS and HEC-6 etc. have been covered. Similarly, in the second part design of cosine-generated curve for alignment of new channel and the design of earthen embankment, revetments launching apron and filter etc. have been presented. A tentative cost of the channelization works has also been worked out in this chapter.

CHAPTER-5, CONCLUSIONS AND RECOMMENDATIONS: The final results of the design and analysis along with some recommendations have been given in this final chapter.

APPENDIX: Input and output of HEC-RAS and HEC-6 have been included at the end of this thesis. The computer programme (in fortran) for design of cosine generated curve has also been given in the appendix.

REVIEW OF LITERATURE

2.1 THEORETICAL CONCEPTS OF GRAVEL BED RIVER

2.1.1 GENERAL

A study on behavior of rivers is essential before carrying out any engineering works in a river. Different rivers and different reaches of the same river have different channel patterns, channel cross-section shape, bed and bank material, slope and valley characteristics. In general the longitudinal slope of a natural river shows a continual decrease along its length. Similarly, the size of the bed material in a stream is found to decrease continually along the length of the stream. Thus streams can be categorised into sand-bed, gravel-bed, boulder-bed and cobble-bed streams. However, such detail categorisation is not significant as far as the process of sediment transport, armoring, resistance to flow and river training analysis are concerned. Hence, streams are broadly classified into sand-bed rivers and gravel-bed rivers, which include all rivers with coarse bed material including cobbles and boulders.

The gravel-bed rivers are mountain rivers, which are generally found near the head of most of the river system in upland areas. They are steeper, possess greater energy to transport sediment, generally have higher turbulent velocities and have the energy to maintain the channel basically in its original form unless flows are dramatically reduced. They possess a surface bed layer that is considerably coarser than the sub-surface material, while the sand bed streams are characterised by uniformity of material in the vertical direction. The existence of such a layer plays an important role in the sediment transport mechanism of gravel bed streams.

The median diameter, D_{50} is often adopted as the bed size to distinguish gravel rivers from the sand bed rivers. Chang (1980) defines gravel bed streams as those, which have

bed materials with a median diameter exceeding 16 mm. According to Bray (1982) the river containing D_{50} size more than 2 mm in the bed material is categorised as gravel-bed river. In particular, gravel-bed rivers are characterised by macro bed forms, pools and riffles and the general absence of smaller scale ripple, dune and antidune features.

According to Simons the gravel-bed rivers are different from the sand-bed rivers in the following aspects:

I) VARIATION IN BED MATERIAL SIZE

The bed material of gravel bed rivers is coarser than that of sand bed rivers. The sediment size in sand bed rivers ranges from 0.0625 mm to 2.0 mm where as in gravel bed river it ranges from 2 mm to 100 mm or more. With respect to grain size variability, sand is normally well sorted but since sand and fine particles are also present in gravel-bed rivers, gravelly sediment are poorly sorted. These characteristics of the gravel-bed rivers make them behave differently compared to sand-bed rivers in respect of flow resistance, sediment transport, armor layer formation and bed packing. Thus, in case of gravel-bed rivers, sediment size (such as median diameter) and sediment routing may have to be carried out for each size fraction in turn.

II) VARIATION IN CHANNEL SLOPE

The longitudinal slope of a gravel bed channel is generally steeper than that of sand-bed channel. The slope of the stream can be co-related with the median diameter of the bed material forming the stream; the steeper the river the coarser the material on the bed of the channel.

III) VARIATION IN BED ARMORING

It is not possible to form an effective armor in sand bed rivers, where as in gravel-bed rivers, due to sorting of material in the transport process, fairly significant armoring may occur. However the armoring observed may not be continuous across the full width of

the riverbed. As such the armoring is not going to be as effective in controlling the vertical elevation of the bed as might be imagined. Nevertheless, the size of the material and the formation of armoring can play a significant role in terms of influencing the magnitude of transport through the system, particularly when considering sizes smaller than those, which form the bed or the bed armor.

IV) VARIATION IN BED FORMS

In sand bed rivers various bed forms such as ripples, dunes, standing waves and antidunes are commonly observed. But in gravel bed rivers, ripples do not form. However, at high velocities, when gravel is transported, it is possible to form typical dunes in a gravel-bed river. Conventional ripples and dunes are not found under any of the usual circumstances in boulder-bed channels.

V) VARIATION IN BAR FORMS

In sand bed rivers various bar forms are commonly encountered. The most common types are the point bars which form on the inside of bends, alternate bars which are a precursor of meandering in many systems, middle bars that subsequently may become islands where the river is exceptionally wide and tributary bars where steep tributaries carrying heavy sediment loads deposit material in the mainstream at the confluence. All these bar forms may also be observed in gravel bed rivers. However, in cobble and boulder bed channels it is unusual to find middle bars.

VI) VARIATION IN SEDIMENT TRANSPORT

In gravel-bed rivers, there are long periods of low flow with no sediment transport, during which the sediment is able to settle, interlock and generally become consolidated. However during the periods of high flow, movement of coarse material occurs. But in sand-bed rivers sediment transport occurs at almost all flows. In gravel-bed channels the bed load accounts for larger proportion of the total load in comparison to sand-bed channels. The presence of wash load significantly affects the geomorphic and hydraulic response of sand-bed channels. Large concentration of wash load in sand-bed rivers can significantly alter the viscosity, reduce the fall velocity and increase the ability of the river to transport sand. Conversely in gravel bed rivers even though the wash load significantly affects the viscosity of the water, it has small effect on the movement of the bed material.

VII) VARIATION IN BED SCOUR AND FILL

In sand bed rivers the rate of change of bed elevation can be both large and rapid. This may be due to downstream movement of a large bar or local aggradation or degradation resulting from natural or man-induced changes. On boulder-bed rivers, bed elevation changes can be significant, but they are not usually as large as in sand-bed rivers. These changes are usually associated with large events, ice-jams that have failed, dam breaches and major storms.

VIII) VARIATION IN PLAN FORMS

Sand-bed rivers can be meandering, transitional or braided, and they may change dramatically from one plan form to another as significant changes in discharge are experienced. Gravel-bed rivers have a much greater tendency to be transitional, braided or somewhere between these limits while for boulder-bed rivers it is rare to find reaches that meander significantly. Moreover, it is very easy to define the thalweg of sand bed stream but for boulder bed river it is virtually impossible to define its location.

IX) VARIATION IN REGIME OF FLOW

The magnitude of the Froude number at which the sand-bed channel changes from lower regime to the upper regime may be in the order of 0.2, 0.3 or 0.4 depending upon the size of the bed material. In mountain streams where the beds are formed of coarse material, the Froude number has to be greater than 1 before the stream has sufficient energy to cause any general movement of the bed material.

X) VARIATION IN RESISTANCE TO FLOW

The resistance to flow for the sand bed channels is a function of the form of the river, the discharge and its duration, the type of bed forms, the size and gradation of bed material, the bars, their geometry, their location, etc. Whereas the resistance for the gravel rivers is largely a function of the grain size, the grain size distribution and the degree to which the space between the larger particles may be filled will finer sediment.

2.1.2 RIVER MORPHOLOGY

The river morphology is concerned with river plan-form, channel geometry, bed form and longitudinal profiles. It changes with time and is affected by water and sediment discharges including sediment characteristics, composition of bed and bank material and vegetation. Because of the complex inter-relation between river channel variables it is still not possible to give a complete physical and mathematical description of various morphological processes.

PLAN-FORM OF RIVERS

Rivers can be classified according to their plan-form into straight, meandering or braided. A meandering river has a single channel, while a braided has a number of channels. This division is in part arbitrary as it is difficult to distinguish between straight channel and a meandering channel of low sinuosity and it is still a matter of debate on what constitutes of meandering or a braided channel. Sand-bed rivers can be meandering, transitional or braided, but they may change dramatically from one plan-form to another as significant changes in discharge are experienced. Whereas, gravel-bed rivers have much greater tendency to be transitional, braided or somewhere between these limits and due to which it is very difficult to define the thalweg of such stream.

Brotherton (1979) developed a theory of origin of channel patterns. He concluded that channel meandering occurs where discharge erodes and transports bank materials easily. Braided channel occurs when the channel banks are highly erodible. In both cases, the bank erosion can be induced either by deposition of input sediments (deposition meander or braid) or directly by a discharge with excess energy (erosion meander or braid). Deposition meanders form where the bank material is fine grained relative to the deposited sediment. Deposition braids form where the bank material is coarse grained or where banks are incoherent and fine-grained. Erosion meanders carry a flow, which entrains bank particles in preference to bed grain and transport them downstream. Erosion braids carry a flow, which moves bank material to bed without downstream transport.

White (1987) indicates that braiding occurred when valley slope exceeded equilibrium slope indicated by the division of the main channel into three sub-channels. Accordingly, if $S_v < S_1$ it leads to a straight channel, if $S_1 < S_v < S_3$ it leads to a meandering channel and if $S_3 < S_v$ it leads to a braided channel.

Where, $S_v = Valley$ slope

 S_1 = Equilibrium slope of single channel

 S_2 = Equilibrium slope of double channels

 S_3 = Equilibrium slope of triple channels

Bed topography and plan-form geometry are the results of the complex interaction of the fluid flow with the channel boundaries and sediment transport The bed disturbances forces the thalweg to follow a sinusoidal path. The result of the varying curvature of this path is a secondary flow. The lateral velocity component tends to amplify the bed disturbances and contributes to its downstream propagation, and thus the amplification is intensified as the friction forces become more important. The secondary flow component also contributes to the growth of bed perturbation; Lateral bed slope opposes the growth of the bed deformations. The reaction between these three mechanisms for a given flow will determine whether the channel will remain stable or not. For an unstable channel the bed deformation dictates whether the channel will meander or braid.

Parker (1976) observed the development of meandering in an initially straight channel with erodible banks in the laboratory. An alternate bar pattern developed first while the channel was still straight. Later, the growth of the bars caused bank erosion and channel

meandering without altering the wavelength of the bars. Thus bar development appears to be a precursor of incipient meandering and/ or braiding.

THRESHOLD BETWEEN MEANDERING AND BRAIDING

Calander (1969) and Parker (1976) developed a two-dimensional flow model to explain the origin of meandering. They treat the meandering or braiding tendencies of straight channels as a stability problem. But they did not account for the effect of secondary current. Engelund and Skorgaard (1973) used a three-dimensional flow model to describe the instability. The model was based on the theory that an important property of the instability mechanism was the helical flow. The result of their analysis was that all straight runs are unstable and will form either a meander pattern or braided pattern depending on whether the width of the channel is smaller than some threshold value or not.

Fredsoe (1978) used a 2D-flow model and proposed planform classification diagram. He concluded that the prevailing mode of instability depends only on the Shields' parameter θ and the width-depth ration B/h_o. The former is not as important in establishing the thresholds of straight-meandering and meandering-braiding regimes. It influences considerably the streamwise wavelength, L/h_o selected by the dominant bed deformation which increases as the Shields' parameter does, though L/h_o approaches a constant value for $\theta > 1.2$. Fredsoe recommends the following stability criteria:

- for $B/h_o < 8$ straight
- for $B/h_o > 60$ braiding
- for 5 < L/B < 15 meandering

Blondeaux and Seminara (1983), based on 2D flow model with bed load transport, extended Parker's work by including the effect of the lateral bed slope on bed-load transport and the influence of the secondary flow on the direction of the bed shear stress.

They concluded that the stability of a stream depends on three parameters: θ , h_0/D (D = sediment size) and h_0/B .

2.1.3 FLOW RESISTANCE IN GRAVEL BED RIVERS

The relationship between the mean velocity of flow U, the hydraulic radius R, the water surface slope S, and the characteristics of channel boundary is known as a resistance equation. A resistance equation is required in the design of river improvement works, sediment transport studies, etc. The most common resistance equation for gravel-bed rivers is Manning's equation, which is given as:

 $U = 1/n R^{2/3} S^{1/2}$

Where, n is the Manning's roughness coefficient. A detail list of n values for channels of various kinds are available in open channels hydraulics by Ven Te Chow. It gives the following values of n pertaining to gravel-bed streams:

Types of Channel and Description	n Values			
Natural Streams				
a) Minor Streams (Top width at flood stage < 100 ft)				
Mountain streams, no vegetation in channel,				
Banks usually steep, trees and brush along banks				
Submerged at high stages				
i) Bottom: gravel, cobbles and few boulder	0.030-0.050			
ii) Bottom: cobbles with large boulders	0.040-0.070			
b) Major Streams (Top width at flood stage > 100 ft)				
i) Regular section with no boulders or brush	0.025-0.060			
ii) Irregular and rough section	0.035-0.100			

The flow resistance may be assumed to consist of two components: grain roughness and form roughness. The former is due to the shear force and the latter is attributed to the pressure difference in the presence of larger elements such as bed forms.

In channels paved with sand or gravel, the resistance to flow in the absence of bed forms can be considered to be mainly caused by grain roughness. Formulas that relate grain roughness to Manning's "n" are given below:

I) STRICKLER'S FORMULA

It is based on data from gravel bed rivers and fixed bed channels, with grains pasted on the bottom and walls. It defines Manning's n as a function of the particle size in meter as:

 $n = (d_{50})^{1/6}/21.1$

II) MEYER-PETER AND MULLER FORMULA

 $n = (d_{90})^{1/6}/26$

III) BRAY'S FORMULA

It is based on study carried out with 67 gravel-bed river data of Alberta, Canada and it relates the roughness coefficient with the slope as:

 $n = 0.104 S^{0.177}$ for 0.0002 < S < 0.01

IV) LIMERINOS' FORMULA

It is based on study of gravel-bed rivers in California and is given as:

 $n = (0.113 \text{ D}^{1/6}) / \{1.16 + 2.0 \log (D/d_{84})\}$

Where, D = depth of flow

Flow resistance in gravel-bed rivers is primarily a result of grain roughness since dunes tend to be poorly developed. For this reason, resistance formulas developed for gravelbed rivers are similar to those for fixed bed grain roughness. Of course, the total roughness in a river consists of contributions from other sources such as bars, curvature and other forms of irregularity. Numerous resistance equations have been developed in terms of Manning's coefficient or the friction factor.

Hey (1979) developed the following relationship for flow resistance in gravel-bed rivers:

 $1/f^{1/2} = 2.03 \log \{(a R)/(3.5 d_{84})\}$

Where, d_{84} is used as the representative roughness height of non-uniform gravel material. The coefficient a is used to define the effect of cross-sectional geometry on flow resistance. Its value ranges from 11.1 to 13.46 in reverse relation to the width-depth ratio. The Hey equation is substantiated with data from certain British rivers with discharge from more than 1 to 444 m³/s. Therefore it should not be used for very large rivers.

Using the data from 67 gravel bed rivers in Alberta, Canada Bray (1979) obtained the best-fit coefficients for a logarithmic resistance equation as given below:

 $1/f^{1/2} = 0.248 + 2.36 \log (D/d_{50})$

Where, D is the depth of flow. The best-fit power form of resistance equation based on d_{50} obtained by Bray is:

 $1/f^{1/2} = 1.36 (D/d_{50})^{0.281}$

2.1.4 SEDIMENT TRANSPORTATION

When the average shear stress on the bed of a channel exceeds the critical tractive stress for the bed material, the particles on the bed move in the direction of flow. The particles move in different ways depending on flow conditions, ratio of densities of the fluid and the sediment and size of the sediment. One mode of movement of sediment particles is by rolling or sliding along the bed of a channel. Sediment transported in this way is

known as contact load. A second mode of sediment movement is by hopping or bouncing along the bed. Thus for sometime the particle losses contact with the bed. Material transported in this way is known as saltation load. The contact load and the saltation load are grouped together as bed load. Thus bed load is the material transported on or near the bed. The third mode of transport is in a state of suspension, in which the particles are supported by the turbulent fluctuations. Material supported in this way and transported by the flow is known as suspended load. Again, there is another category of sediment moving in a stream, which is known as the wash load. The wash load refers to the finest portion of sediment that is washed through the channel, with an insignificant amount of it being found in the bed. The total load is the sum of the bed load, suspended load and wash load.

A knowledge of the rate of total sediment transport for given flow, fluid and sediment characteristics is necessary in the study of problems of aggradation and degradation, channel changes, river training, etc. Thus, attempts have been made to relate the sediment transport rate to the hydraulic conditions and the sediment characteristics. A large numbers of formulas have been developed for predicting sediment discharge. These formulas have been developed based on three different approaches, which are given as follows together with their respective formulas:

I) SHEAR STRESS APPROACH

Duboys formula, Shields formula, Einstein bed load function, Meyer-Petter-Muller foumula, Einstein-Brown formula and Parker et. all formula for gravel fall in this category.

II) **POWER APPROACH**

Engelund-Hansen formula, Ackers-White formula and Yang formula fall in this category.

III) PARAMETRIC APPROACH

Colby relation falls in this category.

Because of the large number of sediment transport formulas now in existence, it is very difficult to select a reliable formula for a particular application in the field problem. It requires a thorough understanding of theoretical and empirical foundation on which each equation was developed. Basic assumptions and physical limitations of each equation must be known. Further, comparison of sediment discharge prediction with the field measurement is highly desirable. Yang (1988) and Raphelt (1990) based on the literature review on sediment transport formulae stated that there is no sediment relationship that would consistently predict the sediment discharge correctly for all ranges of sediment from very fine sand to cobble. Raphelt (1990) general guidance developed from the literature is as follows:

- Gravel streams (bed material coarser than 2 mm):
 - Yang (2 mm < D < 10 mm)
 - Meyer-Peter Muller (D50 > 5 mm)
- Large rivers (channel width > 800 ft, i.e. 224 m, depth > 25 ft, i.e. 7.6 m):
 - Toffaleti
 - Laursen (Copeland)
 - Laursen (Madden)

• Small rivers and streams:

- Laursen (Copeland)
- Ackers and White
- Colby

Alonso (1980) tested eight sediment transport formulas. This comparison was based on 40 field measurements and 225 flume experiments. The Yang (1973) formula was the most reliable over the entire data range. The formulas developed by Ackers and White,

Engulund and Hansen and Laursen also were found reliable but gave relatively higher errors.

2.1.5 SEDIMENT SAMPLING

The sediment transport rate in a channel can be determined by using an appropriate sediment transport equation. But such equations only give approximate values. For obtaining more reliable data for design of river engineering projects field measurements of sediment samples are required. Such field measurements also enable us for checking and modification of existing methods of computation of sediment.

Both the transport rate and grain size distribution of sediment show temporal and spatial variations. Movements of bed load particles change the bed shape and bed form (ripples, dunes, plane bed, bars etc.) which in turn affect the flow and bed load transport. Particles moving as bed load in one reach may not move in another reach or may move as suspended load. Thus, bed load observations in a given reach do not necessarily represent bed load discharge in other reaches. To obtain a representative bed load discharge at a section repetitive measurements are required at a number of different lateral locations across the section.

The amount of sediment passing a section can be determined either directly or indirectly. The direct method involves the determination of the weight of sediment passing a section in a particular time. The indirect method requires the measurement of the concentration of sediment, the area of cross-section and the velocity of the particles in motion. The bed load in a stream can be conveniently measured by the direct method while the indirect method is not suited for bed load measurement because of the difficulty of measuring the velocity of particles moving as bed load. The indirect method is well suited for suspended load measurement since the suspended particles travel with the flow velocity.

The early types of direct measuring samplers are box or basket type, tray or pan type and the pressure difference type. Most of the recent direct measuring bed load samplers are improved versions of the early pressure-difference type. Fine sediments can be sampled

easily by these samplers. But in gravel bed streams as the bed consists of coarser materials, penetration by samplers is difficult. Further, as large quantities of material are to be collected from the gravel-bed stream, manual collection and measurement is necessary to determine representative sample of such material. The stream must be dry or easily wadable for this purpose.

The grid sampling method is generally recommended for wadable gravel-bed streams to locate sampling points. This method was first developed by Wolman (1954) and hence is called Wolman Walk Method of sampling. In this method, grid system is established over the desired length of the reach by pacing or with the help of actual lines. Then the stones found at specific grid points or during pacing, just underneath the toe of the operator are to be picked up by hands.

The particles picked up from each grid point are measured from its intermediate axis. When a grid point is over sand or finer material, a small volume about 15 ml is collected and combined with samples from other points for sieve analysis. The coarser material collected by grid sampling is usually analysed as a frequency distribution by number. Hey and Throne (1983) recommended the use of template to aid in classifying the particles in terms of size. Kellerhal and Bray (1971), showed that if particles of various sizes are randomly dispersed throughout a deposit, the number percentage for surface grain are equal to weight percentage of a three-dimensional sample of the deposit, assuming that all particles have the same specific gravity. Therefore, sizes determined by hand measurements could be combined with size that determined by sieving into a continuous frequency distribution.

2.2 CHANNELIZATION OF RIVERS

2.2.1 INTRODUCTION

River Channelization is an engineering technique, which either enlarges (widens and/or deepens), straighten, embank or protect an existing channel or which involve the creation

of new channels. It also refers to river channel maintenance including dredging, clearing and snagging or the removal of obstructions in the channel. The term channelization in USA is known as kanalisation in Germany, chenalisation in France and canalization in UK. Channelization of rivers is carried out for the purposes of flood control, drainage improvement, maintenance of navigation or reduction of bank erosion etc.

2.2.2 HISTORY OF RIVER CHANNELIZATION

There is a long history of channelization throughout the world. The earliest form of channelization comprises of canals and ditches built to carry water into and sewage out of ancient cities. The construction of embankment to control flooding of agricultural land and settlement is recorded in the histories of most early civilizations. Flood banks were constructed on the Yellow River in China as early as 600 BC.

The environmental impact of the earliest works was minimal due to the limitation of hand and animal labour. The revolution in the practice of channelization came as a result of several factors. These were the availability of heavy equipment such as bulldozers and draglines, the involvement of government agencies and the increased demand placed on floodplain lands either for agricultural productivity or for urban development. Many of the channelized works needed constant maintenance, probably because disrupted system attempted to regain equilibrium.

River channelization is extensive in many countries throughout the world. But the historical background and geographical distributions about it are well documented for only a relatively few countries. The United States of America has undergone an intense period of channelization during the past 150 years. Most of the early modification was highly fragmented, being carried out by a variety of bodies and was not properly planned and engineered. The later works were more planned engineered and substantial following improvements in dredging technology. It was only in the 19th century that channel improvements became widespread in the United States. The primary purpose of these efforts was to drain land for agriculture, to control flood and to provide for the waterborne transportation of goods.

In UK channelization have been carried out by a number of organizations for flood control and agricultural drainage during the past 550 years. However major rivers were changed in the late 19th century for agricultural or navigation purposes. Cutoffs were long recognized as a means of improving navigation by shortening the length of channel, although this method was not widely used until the 17th century.

In Denmark only 2.2% (880 km) of the total 40000 km channel is sinuous, the remaining 97.8% has been straightened (Brookes 1987). This is equivalent to a density of modified watercourses of 0.9 km/ km² in the USA (Leopold, 1977). Denmark thus has a density of channelised river 15 times greater than England and 300 times greater than the USA. These differences can be attributed mainly to the intensities of land use: the majority of the surface area in Denmark is either intensively farmed or developed for residential or industrial purposes.

2.2.3 ENGINEERING METHODS OF CHANNELIZATION

Several methods of channelization exist for the purpose of flood relief, agricultural drainage, erosion control or navigation. The more conventional types of it are discussed below.

I) RESECTIONING BY WIDENING AND DEEPENING

This involves enlargement of a channel by widening and/or deepening to increase the conveying channel cross-section so that water, which would previously have spread onto the floodplain, is contained. Widening or deepening of a channel permits a given quantity of water to flow through at a lower level than in the unimproved channel. For flood control purposes the size of the modified channel is determined by the flood discharge, which is to be contained. Resectioning of a river is usually combined with regrading of the bed. In theory a channel should have a cross-section area, which provides the maximum efficiency in discharge with the minimum of excavation. But in practice this is not always possible due to factors such as bank instability, porosity of the

bed and the proximity of structures, which restrict the width or depth to which the channel can be constructed. Channel with unlined earth banks are often designed with trapezoidal cross-sections to provide side slope for stability. Since the rectangle has vertical sides it is commonly used for channel built of stable material such as concrete.

II) REALIGNMENT OR STRAIGHTENING

Several scales of channel realignment can be distinguished, ranging from an improved alignment introduced by dredging, to the more conventional form of cutting-off bends in rivers. The objective may be to design an adequate channel to convey flood flows. The technique is intended to reduce the flood level in a reach by increasing the velocity of flow. A certain degree of realignment can be introduced into a channel as a result of maintenance dredging, being achieved by the removal of shoal, which may have accumulated as point bars on the inside of bends. A more significant form of realignment involves the shortening of a river by means of a cutoff, often at the scale of an individual meander. Program of cutoffs have been carried out on a number of rivers worldwide. In extreme cases straightening may extend for several hundred kilometers. Cutoffs are used to reduce the flood height by increasing the gradient and therefore the velocity. They are also used to improve maneuverability during navigation.

III) DIVERSION CHANNEL

River channel has been constructed which has the purpose of diverting only the flood flow away from an area to be protected, the existing channel carrying the normal flow. It is favoured in urban areas where it is not possible to widen the existing channel due to development. Das (1976) described a cut made on the River Bhargavi in India, which was used to bypass flood flow. A diversion is only effective in reducing the flood stage if the distance between the point of diversion and point of return is sufficiently large to overcome backwater effects. Another consideration in such a diversion is the availability of adequate head for the diversion channel to develop the necessary velocity. If the velocity is too low, the channel section has to be large and hence the diversion channel will be expensive. If local condition permit, a small dam can be built slightly

downstream of the diversion to raise the water level and create adequate head for diversion. Depending on the terrain through which the artificial diversion channel has to pass, it can be either in complete cutting or partly in cutting and partly in embankment.

Cutoff channels can be used as an entirely separate system for the purpose of diversion of all flow away from an area. A classic example is the Great Ouse Flood Protection Scheme in England, which directs the flow of the River Lark, Little Ouse and Wissey along a 43 km long cutoff channel from Mildenhall to Denver Sluice.

IV) EMBANKMENTS OR LEVEES

Embankments are also known as flood banks, levees, bunds or stopbanks. Their purpose is to artificially increase the capacity of a channel so that high flows, which would normally have spread onto an adjacent floodplain, are now confined. They are one of the oldest forms of flood protection measures used in either rural or urban areas provided that there is sufficient space for construction. Some of the great rivers of the world have extensive embankment systems such as those that extend for more than 1000 km alongside the Nile and 1400 km on the Red River in Vietnam.

Historical observation of all the great levee systems in the world have a few aspects in common, namely i) the levees have been extended gradually, ii) there has been a gradual enlargement in the cross section of levees and iii) none of the levee systems has been free from breaches. The main advantage of the levees is that they can be constructed of locally available materials and labour, so it is fairly inexpensive and simple method of flood control. Also, levees can be extended gradually to cover more and more area and need not be executed in one stretch. As against these advantages there are also a few disadvantages. Levees being made up of earth are susceptible to boring action by animals and thus vulnerable to piping failure. Levee breaches, especially in the upper reaches, can result in flooding of the entire area, which depends on levees for protection. Consequently, levees need very careful supervision especially during floods and any breaches need to be plugged almost on a war footing. Generally, levees of height greater than about 40 feet are uneconomical.

Embankments are built to contain a design discharge and the entire floodplain may be protected when two banks are located sufficiently close together, although this is extremely expensive because the banks need to be very high. In other circumstances the embankments are placed just outside the meander belt of a migrating river to avoid erosion and if a high discharge capacity is required for a given stage then the embankments are placed far apart. Both the topography and human infrastructure on a floodplain influence the alignment of embankments. The elevation is primarily selected according to the design flood discharge and its accepted probability of exceedance, the design flood being routed through a section and flood stage calculated at desired positions along the channel. An embankment cannot be built too high because of the increased danger to the population if the banks were to be overtopped or breached during an extreme flow event. To allow for subsidence following construction a freeboard may be incorporated above the design level but in general the slope must not be over-steep, otherwise failure may occur. Trapezoidal sections have been used, typically with 1:2 side slopes, although in rural areas it is recommended that a bank top width of 3.0m be used. Berms may be incorporated between the channel and the foot of the structure, thus allowing for improved access and a higher discharge capacity for a given stage. Top width should exceed 2m and this often has to be wide enough to allow maintenance traffic. Embankments are normally constructed from material excavated either from the channel or from a borrow pit in the floodplain, but also can be built from imported materials.

V) STABILIZATION AND RECTIFICATION OF RIVER

Bank stabilization and rectification works may be undertaken to protect the banks against abrasion and slip and to fix the channel along the desired alignment permanently. To be successful, the bank stabilization and rectification works must control the river by guiding it along a natural alignment with channel cross-sections that accommodate the river's water and sediment regime rather than forcing it into unnatural conditions. Bank stabilization and channel rectification works are of three broad types; a brief discussion of it follows:

REVETMENTS

Revetments are structures parallel to the current and are used for such purposes as stabilizing concave banks of bends. Revetments provide direct protection to the channel

24

11 -

by armoring the banks and protecting the underlying soil layer against erosion. Revetments can be broadly classified into rigid revetments and flexible revetments. The rigid revetments are made of concrete (plain, reinforced or pre-cast slabs), cement mortar, soil cement, sheet pile (steel or timber), brick works or stone works. These are mainly impermeable unless water and soil movement is possible through the joints or special pressure relief holes. The flexible revetments are made up of rip-rap (loose or bound or grouted stone), concrete blocks (loose, interlocked, cable connected or anchored), fabric and other containers (bags, blankets, fabric mattresses, tubes, wire, bamboo or polymer gabion baskets and mattresses), bitumen (asphalt, bound or grouted stone or willow) and many other materials (old tires, oil drums etc.).

In constructing a revetment, irregularities are first removed and banks graded to acceptable slopes so that the structure will not be damaged due to improper support. Theoretically the slope must be less than the critical angle of repose of the material. In designing revetments, consideration should be given to the following:

- The stream bank should be graded to a slope in the order of 1V: 2H to 1V: 4H depending on the bank material to ensure stability of the protected bank and the protective material.
- Protective blankets on the bank should be porous so that the bank drains through the blanket without the build up of excessive pore pressure, which would lift and damage the blanket.
- A filter should be placed under the blanket, using either graded gravel or synthetic filter cloth, where bank material is likely to be leached out through the protective blanket. The design criteria for the filter element are also discussed below.
- Where erosion at the toe of the bank is a contribution factor to bank erosion, protective measures should either extend sufficiently riverward into the channel to protect the toe of the bank or excess material (usually stone) should be placed along the toe of the bank in such a manner as to slide into the developing scour hole.

FILTER ELEMENT

The main function of the filter element is the retention of subsoil without generation of unacceptable excess pore water pressures. The filter also acts as a separation layer and as soil reinforcement. The filters are mainly of two types: granular filters (made of loose, bounded or packed grains) and fibre filters (synthetic or natural materials).

The granular filter is the traditional filter, which is constructed using aggregates with certain specific gradation. It must be fine enough to prevent the base materials from being escaped through the filter, but at the same time it must be more permeable than the base material. The requirements of these filters corresponding to the gradation of subsoil being protected, as given by US Corps of Engineers, are as follows:

- $D_{15 \text{ filter}} < 5 D_{85 \text{ soil}}$ retention criterion
- $D_{50 \text{ filter}} < 25 D_{50 \text{ soil}}$ uniformity criterion
- $4 < D_{15 \text{ filter}}/D_{15 \text{ soil}} < 20 40$ uniformity criterion

Where, D_n is the particle size of filter or subsoil from a particle size distribution plot at n % finer.

The fibre (geo-textile) filter is made from artificial fibres such as polyamide, polyester, polyethylene, polypropylene, PVC etc. The geo-textile may be of woven or unwoven types. Its popularity against the granular filter is increasing day by day. The requirements of fibre filters are similar to that of granular filters. The fibre must be soil-tight and permeable during its whole lifetime. According to Ingold it is more practical to assume that only the larger particle size such as D_{90} should be positively retained. The filter criteria suggested by Ingold are:

• For 1 < Cu < 50, $O_{90}/D_{50} = 2 Cu \exp(1-\sqrt{2}/Cu)$

Where, Cu = D60/D10 is the coefficient of non-uniformity.

 O_{90} = Effective fibre pore.

- For Cu < 5, $O_{90} < D_{90}$
- For 5 < Cu < 50, $O_{90}/D_{90} = 2 Cu \exp(0.2 \cdot \sqrt{2}/Cu)$.
- For non-cohesive soils containing more than 50 % by weight of silt, $O_{90} < 0.2$ mm.

DIKES

Dikes, groynes or spurs are structures, which are built, transverse to the river flow and extend from the banks into the channel. Their purpose is, to guide or deflect the axis of flow, create a desired channel width, promote scour or build up the riverbanks by trapping the sediment load and inducing deposition. The groynes are generally used in braided river to establish a well-defined channel. They are also used in meandering rivers to control flow into or out of a bend or through a crossing. But they are useless for regularising mountain rivers of strong current, in which as a rule, continuous longitudinal structure that do not directly obstruct the flow should be used. Further, maintenance of groynes is difficult since the currents deflected by them deepen the bottoms at their heads forming scour holes. Due to such possibilities of scour holes being formed at the groynes, they should be made strong and provided with gentle head slope (such that they are protected from being knocked out) and launching apron of sufficient length.

Groynes vary greatly in their construction, appearance and action on stream flow. Their different classification is given as follows:

• Based on the method and material of construction, they are classified as permeable and impermeable groynes. The permeable groynes have ability to transmit the flow and they slow down the current. They are most often fabricated from piles, bamboo or timber. Thy are most effective in alluvial stream with considerable bed load and sediment concentration, which favor rapid deposition around the groynes. The impermeable groynes are solid obstructions made up of rock or river bed materials with a scour resisting outer surface. They are primarily used to protect a section of eroding bank and to deflect the current toward a more suitable alignment.

- Based on design condition they are classified as submerged and non-submerged groynes. In most instances the impermeable groynes are designed to be non-submerged, whereas, permeable groynes are better suited to submerged condition, as they do not create severe flow disturbance as created by solid groynes.
- Based on their action on the stream flow they may be classified as attracting, deflecting and repelling groynes. An attracting groyne points downstream and attracts the flow toward itself. This type of groyne does not repel the flow towards the opposite bank and therefore should never be placed on a concave bank. A deflecting groyne, usually of short length, changes only the direction of flow without repelling it, and gives only local protection. A repelling groyne points upstream and has the property of repelling the river flow away from it. Generally this type of groyne is used to protect the concave bank, which is susceptible to erosion.
- Based on their appearance in plan, they are classified as: straight, T-head, L-head and hockey stick shaped groynes.

The length of a dike depends on its location (in a crossing, a bend, across an old channel, etc.) the amount of channel constriction desired and the spacing of dikes in a system. Dike spacing is usually 1.5 to 6 times the dike length, however 1.5 to 2.0 times the length gives the well-defined channel for navigation and flood control.

The U.P.I.R.I. has given an empirical relation for the spacing of groynes based on its research conducted in Gandak River. Accordingly, the groyne spacing depends not only on the length of the groyne but also on the are-chord ratio of the embayment line between two successive groynes. The relation is as follow:

$$L = S/2 * (\rho^2 - 1)^{1/2}$$

Where, L= groyne length, S= groyne Spacing and ρ = arc-chord ratio for the river.

CUTOFFS

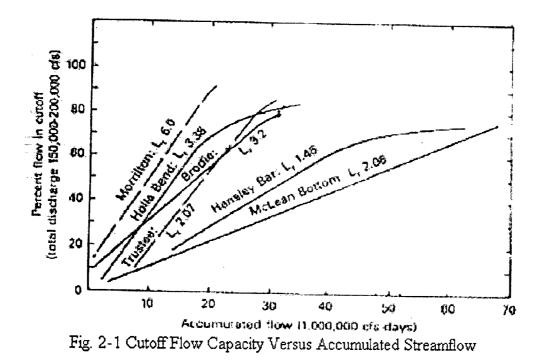
Cutoffs are short channels across the neck of bends. They may occur naturally at long, looping bends, but are also man-made to improve river alignment for navigation or as a flood control measure. The natural cutoffs are usually not preferred as they

- Disrupt the established river regimen.
- Aggravate bank recession upstream
- Increase shoaling downstream as a result of accelerated bank erosion and thus increase stages downstream.
- Tend to result in poor channel alignment that produced currents, which is difficult and some time hazardous to navigate.

Man-made cutoffs had been constructed in Europe for sometime but they were channels excavated in the dry to full dimensions and the river was then diverted into the cutoff. The concept of excavating a limited pilot channel of relatively small cross-sectional area and letting the river develop and enlarge the excavated cut to full channel dimensions was first suggested in 1930 by General H.B. Ferguson, corps of engineers, and was first used later on the lower Mississippi River under his direction as president of the Mississippi River Commission. Since then many (man-made) cutoffs were successfully constructed using a narrow pilot channel excavated on desired alignment of the river, with the river completing enlargement of the cut to full channel dimensions. A plug or plugs were left in the excavated cut until construction was completed. On the lower Mississippi the plugs were removed by blasting: at some cutoff on the Arkansas the plugs were designed to be overtopped and washed out by the river at a specific design discharge.

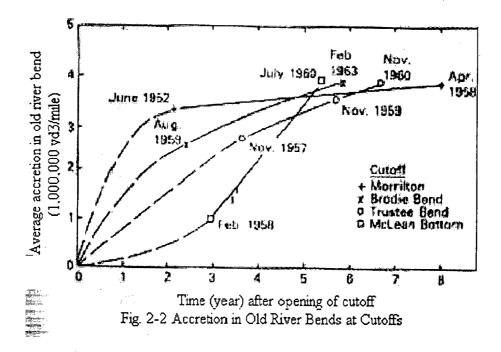
Under some conditions, such as where the difference in water surface elevation across the neck of a bend is small and where surface and subsurface soils are resistant to erosion, a pilot channel will not enlarge satisfactorily and essentially the full crosssection of the channel must be excavated. Also if flow conditions are such that navigation cannot continue to use the old bend channel after a cutoff is opened, it is necessary to excavate the cutoff to full dimensions.

DESIGN PROCEDURE FOR PILOT CHANNELS


The excavated pilot channel cross-section is designed in such a way that the sediment transport capacity of the channel is greater than required to transport the sediment load entering the pilot channel. It facilitates the erosion of the pilot channel and the channel gets widen. The sediment transport capacity is a function of the tractive force, to (which is proportional to the product of hydraulic radius and slope), and the greater the ratio of tractive force, pilot channel to natural river bend, the more favorable are conditions for development of the cutoff. Further, to minimize diversion of bed load to an excavated pilot channel, the entrance should be located in the concave bank of the bend well upstream from the point of inflection.

For each pilot channel, a number of excavated cross-sections are investigated to determine the most economical section that will assume erosion and development. Where the length around the natural river bend is long compared to that through the pilot channel, the slope ratio is favorable for enlargement of the cut and an excavated pilot channel of narrow width and mild grade is adequate, if there is sufficient time for development to ultimate section. Where there is little length or slope advantage, a larger, deeper cross-section must be excavated to ensure development. The pilot channel can be cut with 1V: 3H side slope up to the average water table elevation and 1V: 2H side slope above that point.

DEVELOPMENT OF FLOW CAPACITY OF CUTOFF

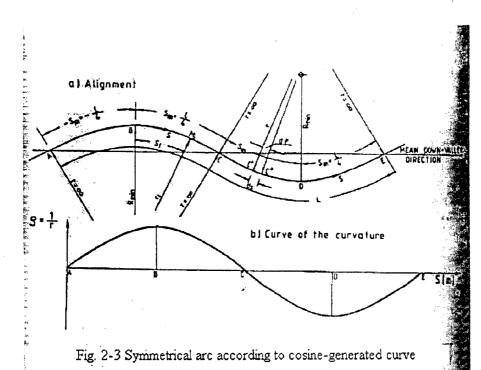

Arkansas River data indicate that with favorable stream flow conditions, the flow capacity of a pilot channel develops as a function of the length ratio, river bend to pilot channel, for channel in sandy materials. The discharge capacity of the range of 150000 cfs is plotted as a function of accumulated river discharge after opening of each pilot channel. Morrilton, Holla Bend and Brodie Bend pilot channels were all subjected to

high discharges shortly after being opened. Hensley Bar cutoff was opened in November 1951, and no significant rises occurred on the river until 1957, by which time, the cutoff carried about 60 percent of a river discharge of 150000 cfs, and the Hansley Bar curve on Fig. 2-1 is appreciably flatter than the preceding four. The slow development of Mclean Bottom cutoff can probably be attributed to gravelly material in the cutoff area and to the fact that caving of the right bank above the entrance to the pilot channel produced a flow configuration which tended to transport much of the natural sediment load of the river through the cutoff rather than diverting it into old river bend.

FILLING OF OLD RIVER BENDS

Accretion in cubic yards per mile in four old river bends cutoff of the Arkansas River is plotted as a function of time in Fig. 2-2. The data indicate that deposition per unit length is a function of the length ratio for several years following opening of cutoffs, but that after about 5 years all bends were filled approximately the same amount regardless of the pattern of stream flow. The rate of accretion at Mclean Bottom was slower than at the other areas investigated, indicating that probably a larger percent of the sediment load was transported through Mclean Bottom cutoff than through the other cutoffs.

2.2.2 PLANNING AND DESIGN OF CHANNELIZATION WORKS


BASIC CONCEPTS

The following points should be kept in mind while planning and designing the channelization works.

ALIGNMENT

To minimize attack by the stream on stabilization and rectification structures, the river is shaped to an alignment consisting of a series of easy bends, with the flow directed from one bend into the next bend downstream in such a way as to maintain a direction essentially parallel to the channel control line. Straight reaches and reaches of very flat curvature should be avoided, insofar as practicable, because there is a tendency for flows to shift from side to side in such reaches.

Planning of the alignment depends upon geologic conditions, but it also dependent upon the requirements of human settlements, industrial establishments, harbours, barge terminals, sports clubs, bridges, tributaries etc. The alignment should be carried at a suitable distance from the existing levees and communication lines so that even at certain amount of bank erosion they could not be endangered.

COSINE-GENERATED CURVE

According to Leopold and Langbein the cosine generated curve is a close approximation of the shape of river bends and meanders. They found that the cosine-generated curve minimises the sum of the square of the changes in direction and hence it is also a curve at which the river spends the minimum of total work in bending. With properly selected values of curve radius (Rm) and arc length (L), the cosine-generated curve fits the shape of river meanders quite well (Chang, 1988).

The equation of cosine- generated curve in a system of curvilinear co-ordinates (Fig. 2-3) has the form of (Engelund, 1974; Przedwojski, 1988):

$$\frac{1}{r_i} = \frac{1}{R_{min}} \cos(l_o s_i)$$
(2.1)
Where, $l_o = 2\pi/L$
(2.2)

and r_i is the radius of curvature at a distance s_i from the apex, R_{min} is the minimum curvature radius on the bend apex. The cosine-generated curve is a periodic curve of 2π period and L is the meander length. It follows from eq. (2.1) that the curve shape depends on two parameters R and L, and the curvature is a function of distance s from the apex.

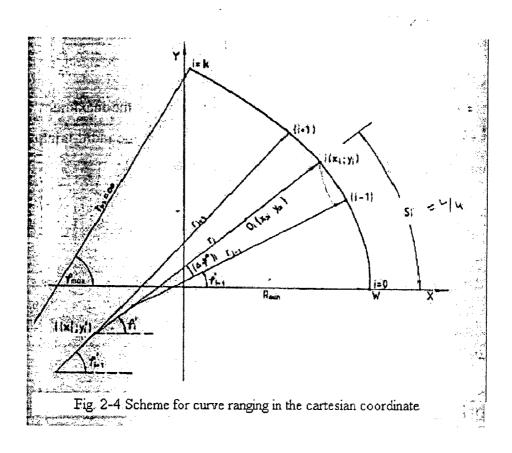
In the curvilinear system of co-ordinates (Fig. 2-3a) the infinitely small increase in curve length between points c' and c" can be expressed approximately by the arc differential ds:

$$ds = r \, d\phi \tag{2.3}$$

Where r is the radius of curvature in c' point, $d\phi$ is the angle differential, ϕ is the angle expressed in radians. The curvature of a curve in point c':

 $\frac{1}{r} = \frac{d\phi}{ds}$ (2.4)

We have from eqs (2.1) and (2.4):


$$d\phi = \left[\frac{1}{R_{\min}}\cos(l_o s)\right]ds$$
(2.5)

Integration of eq. (2.5) leads to a solution:

$$l_o R_{\min} \phi = \sin(l_o s) \tag{2.6}$$

Raising the left and right term of eqs (2.1) and (2.6) to a square and adding the equations with their respective terms we obtain:

$$\frac{R_{\min}^2}{r^2} + R_{\min}^2 (l_0 \phi)^2 = 1$$
(2.7)

Hence the curvature radius in point 'i' (Fig. 2-4) in the function of the angle ϕ_i contained between the positive directions of the radii R_{min} and r_i can be expressed with a formula:

$$r_{i} = \frac{R_{\min}}{\sqrt{1 - (l_{o}R_{\min}\phi)^{2}}}$$
(2.8)

Substitution of formula (2.8) in place of the radius r in eq. (2.3) provides:

$$ds = \frac{R_{\min}}{\sqrt{1 - (l_o R_{\min} \phi)^2}} d\phi$$
(2.9)

Equation (2.9) in the interval from 0 to ϕ leads to the formula:

$$s_{i} = \frac{L}{2\pi} \arcsin(l_{o} R_{\min} \phi_{i})$$
(2.10)

in which the distance s_i (Fig. 2-4) for the assigned values of R_{min} and L is a function of the ϕ_i angle expressed in radians. Equation (2.10) can also be transformed into:

$$l_o R_{\min} \phi_i = \sin(l_o s_i) \tag{2.11}$$

If $s_i = s_m = L/4$ then sin $(l_0 s_i) = sin ((2\pi/L)s_i) = sin\pi/2 = 1$ and the maximum values of the angle $\phi_i = \phi_{max}$ contained between the positive directions of the radii: minimum R_{min} and maximum $r = \infty$ (Fig. 2-4) is determined with a formula:

$$\phi_{\max} = \frac{L}{2\pi R_{\min}}$$
(2.12)

Where the angle ϕ_{max} is expressed in radians or in the form of:

$$\phi_{\max}^{\circ} = \frac{180^{\circ}}{2\pi^2 R_{\min}} L$$
 (2.13)

Where, the angle ϕ° is expressed in degrees. In the system of curvilinear co-ordinates the eqs. (2.8) and (2.10) determine the parameters of the curve s and r in the function of the angle ϕ , which changes within the interval $\phi_i \leq \phi_{max}$. But setting out of the curve in the curvilinear set of coordinates is very tiresome and unpractical. In order to facilitate the method of setting out the curve according to a cosine-generated one the formulae were determined to specify location of any point of a curve in the system of cartesian coordinates x, y (Fig. 2-4). It follows from Fig. 2-4 that the co-ordinates of the point 'i' are determined with the following dependencies:

$$\mathbf{x}_{i} = \mathbf{r}_{i} \cos \phi_{i} + \mathbf{x}_{i}$$
 (2.14)

$$\mathbf{y}_{i} = \mathbf{r}_{i} \sin \phi_{i} + \mathbf{y}_{i} \tag{2.15}$$

Where,

 $\mathbf{x}_{i} = (\mathbf{r}_{i-1} - \mathbf{r}_{i})\cos\phi_{i} + \mathbf{x}_{i-1}$ (2.16)

$$y_{i} = (r_{i-1} - r_{i}) \sin \phi_{i} + y_{i-1}$$
 (2.17)

The co-ordinates of the point o_i determine the direction of the radius r_i and are located at a distance $\frac{1}{2} R_{min}$ from the point 'i' measured along the radius. The co-ordinates of the point are determined from the formulae:

$x_{oi} = (r_i - 1/2R_{min}) \cos \phi_i + x_{i-1}$	(2.18)
$y_{oi} = (r_i - 1/2R_{min}) \sin \phi_i + y_{i-1}$	(2.19)

FIXED POINT

One of the essential requirements in designing a system of stabilization works is that construction start at a stable, fixed point on the bank and continue downstream to another stable location or to some point below which the river can safely be left uncontrolled. Construction of relatively short isolated stabilization work has often proved unsuccessful because eventual changes in the direction of flow inherent in bank caving in the upstream uncontrolled reach either will set up a direct attack against the isolated protective work and severely damage or destroy it or will shift the attack to some other nearby reach of bank, requiring additional work and possible abandonment of the original work.

TRACE WIDTH

Optimum channel width, especially through crossings, is another essential consideration in assuring a suitable alignment of flow and minimum attack on the structures. Design trace widths for a rectified channel should be based on examination of widths characteristic of naturally stable sections of the river, and the design should be sufficiently flexible to permit modification of the controlled width in the future if required.

RADIUS OF CURVATURE

The most appropriate radius of curvature for rectification and stabilization varies from river to river and from reach to reach for a given river. It must be determined on the basis of relatively stable natural bends for each stream. The shorter the radius of curvature of a bend the deeper the channel will be adjacent to the concave bank. The deeper the channel, the greater the possibility of undermining the bank protection work in the bend and the greater the cost of maintaining the structure. Therefore, sharp curvature of bends should be avoided to obtain the most economical control of the river.

STABLE CHANNEL SECTION

A stable channel is defined as a channel that transports water and sediment without objectionable deposition and scour of sediment in the channel. It means minor de position or scour can take place in the channel, but over a long period of time the banks and bed must be stable. The design of such stable channels is based on laws governing the resistance and sediment transport or on equations derived empirically from data on channels, which have carved for themselves the stable sections. Some of the methods of stable channel design are as follows:

- Regime theory method
- Permissible velocity method
- Tractive force method
- Extremal hypotheses method

REGIME THEORY METHOD

Various investigators, such as Kennedy, Lindley, Lacey, Blench, Simons etc. have proposed different empirical relationships for design of stable channels. These relationships are based on study and analysis of limited flume and canal data. As such application of regime method is limited to narrow range of flow and sediment variables. It must be emphasised that these regime equations were never intended for application to a stream where the discharge varies. In other word, the regime equations are strictly valid for only one discharge condition. The discharge to be used in regime equations is either the sustained discharge for irrigation channel or the dominant discharge for alluvial streams.

Bray (1982) presents four sets of final equation for estimating channel width B, channel depth h, channel slope I, and mean flow velocity u. These equations are based on 67 gravel bed river reaches in Alberta, Canada. According to Bray the third and the fourth set of final equations can be used for the design of stable gravel-bed channels with small sediment transport. These equations are as follows:

- Best-fit dimensionless expressions $B= 2.68 \text{ Q}_2^{0.496} \text{ D}_{50}^{-0.241}$ $h= 0.20 \text{ Q}_2^{0.397} \text{ D}_{50}^{0.008}$ $u= 1.87 \text{ Q}_2^{0.107} \text{ D}_{50}^{0.233}$ $I= 0.063 \text{ Q}_2^{-0.375} \text{ D}_{50}^{0.937}$
- Best-fit expressions $B = 3.83 Q_2^{0.528} D_{50}^{-0.07}$ $h = 0.246 Q_2^{0.331} D_{50}^{-0.025}$ $u = 1.05 Q_2^{0.14} D_{50}^{0.095}$ $I = 0.018 Q_2^{-0.334} D_{50}^{0.586}$ Where, $Q_2 = 2$ -year flood flow

The importance of bank vegetation for controlling width and the fact that slope responds to changes in bed load transport through erosion and deposition in gravel bed rivers was considered by Hey (1985). Hey introduced four classes of bank vegetation:

Vegetation I	:	0 per cent tree or shrub cover
Vegetation II	•	1-5 per cent tree or shrub cover
Vegetation III	:	5-50 per cent tree or shrub cover
Vegetation IV	:	greater than 50 per cent tree or shrub cover

- The regime formula suggested by Hey (1985) for design of gravel-bed rivers with bank side vegetation are presented below:
- B= 4.33 $Q_{bf}^{0.50}$, for vegetation I B= 3.33 $Q_{bf}^{0.50}$, for vegetation II

B= 2.73 $Q_{bf}^{0.50}$, for vegetation III B= 2.34 $Q_{bf}^{0.50}$, for vegetation IV

 $h=0.22 Q_{bf}^{0.37} D_{50}^{-0.11}$ $h_{max}=0.20^{0.37 \sigma D} Q_{bf}^{0.36} D_{50}^{-0.21}$ $I=0.087^{0.84 \sigma D} Q_{bf}^{-0.43} D_{50}^{0.75} S_{b}^{0.10}$

Where, S_b = bed load transport rate and $\sigma D = \frac{1}{2} \log (D_{84}/D_{16})$.

PERMISSIBLE VELOCITY METHOD

Four characteristic velocities are often used in designing channel cross-sections, namely: critical shear velocity, permissible bottom velocity, maximum permissible mean velocity and lowest permissible velocity. The critical shear velocity, u_{*c} can be expressed by the bottom critical shear stress, $\tau c = \rho u_{*c}^2$, in which $\tau c = \rho g R_h I_c$. The critical bottom velocity, u_{bc} can be expressed as $u_{bc} = \phi \sqrt{D}$. Where, D is the diameter of particles, in m and ϕ is a constant of value 4 to 6.

The maximum permissible velocity is the maximum mean velocity for incipient motion for bed sediment. This velocity is more convenient for practical design work. The Institute of Hydraulic Design, USSR has specified the maximum permissible mean velocity for loose granular bed material, cohesive soil and lined canals. The velocity limit for coarse gravel bed river with sediment size range from 10 mm to 100 mm, varies from 0.8 m/s to 2.7 m/s for a flow depth of 1 m. In case, the depth varies from 1 m, the actual permissible maximum mean velocity, u is obtained from tabulated values, u₁ (Pilarczyk 1995) as $u = \alpha u_1$ where, α is a coefficient varying from 0.80 to 1.25 for flow depth of 0.3 to 3.0 m.

The lowest permissible velocity, u_1 should also be determined in order to prevent the canal from silting. For the computation of non-silting, i.e. lowest permissible velocity, no generally accepted formula or tabulation has as yet been developed. However, no sedimentation is likely to occur if the mean velocity:

 $u_1 = 0.3 \text{ m/s}$ for silty water

 $u_1 = 0.3 - 0.5$ m/s for water carrying fine sand.

TRACTIVE FORCE METHOD

Ikeda and Kimura (1987) developed a mathematical model for stable straight gravel bed river (sinuosity less than 1.2), in which heterogeneous bed materials are transported without altering their channel cross-section. The shape of the cross-section is shown in Fig. 2-5 and its parameters are described by the following equations:

Depth, h= $0.0615\{\log (19 \sigma)\}^{-2} \sigma \Delta D_{50} I^{-1}$ Width, B= Q/(2.5 L_h h_u*) + [2.571+ 2.066/L_h] h Wetted perimeter, P= (1 + 5.048 h/B₀) B₀ Cross-sectional Area, A= (1 + 2.982 h/B₀) h B₀ Hydraulic radius, R= A/P= (1-2.066 h/B₀) h

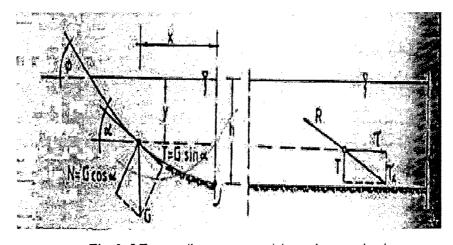


Fig. 2-5 Forces diagram on particle resting on a bank

Bank profile (Parker's equation):

 $Y/h = 1/(I-\phi_t) [\cos \{\{(2x-(B-B_s))/(B_s)\} \cos^{-1}\phi_t\} - \phi_t]$

Shield parameter:

 $\theta = hI/(D_{90} \Delta)$ Where, $L_h = \ln (11 h/k);$ $\sigma = D_{90}/D_{50}$ $k = 1.5 D_{90} = 1.5 \sigma D_{50}$ $B_s = 4.52 h;$ $u_* = \sqrt{ghI}$

And Q is the discharge of flow, $\phi_1 = \tan \phi = 0.714$ for a lateral bank inclination at the water margin $\phi = 40^\circ$, I is the surface slope, h is the depth at the junction J, x is the lateral co-ordinate taken from the channel centre-line, Y is the local vertical depth, B is the total channel width, B_s is the total width of the bank regions, B₀ is the bottom width, ρ , ρ_s are the density of water and the density of sediment, D₅₀ is the median size of mixture, D₉₀ is the grain size for which 90 % is finer.

The assumptions in this model are:

- a) The longitudinal bed-load transport along the channel bottom is weak.
- b) The channel banks are stable and its shape is described by a cosine curve (Parker's equation).
- c) The relation of Shields parameter to its critical value is $\theta/\theta_c = 1.23$.
- d) The model is valid for the relations: $B_{s}/B < 0.6$ and 5 < h/k < 100.

EXTREMAL METHODS

In contrast to regime concept, which relate canal or river width to discharge and sediment in the bed, recently different concepts have been put forth:

- i. Minimum energy dissipation rate
- ii. Minimum stream power
- iii. Maximum sediment transport rate

The theory of minimum rate of energy dissipation was developed by Yang and Song (1986), which states that for a closed and dissipative system under dynamic equilibrium conditions, the system's total rate of energy dissipation is a minimum. This minimum

value is dependent upon the constraints applied to the system. If the system is not at its equilibrium condition, its total rate of energy dissipation is not at its minimum value. However, the system will adjust itself in such a manner that its rate of energy dissipation can be reduced to reach a minimum value, which is compatible with the constraints and regain equilibrium.

The concept of minimum stream power was developed by Chang (1986). The hypothesis of Chang is that the necessary and sufficient condition for regime is that the stream power per unit length of channel, γ QI be a minimum subject to constraints, where γ is the unit weight of fluid and I is the slope of the channel bed. Given a water and sediment inflow, the channel establishes its width, depth and slope such that the stream power or in case Q is a constant, slope is a minimum.

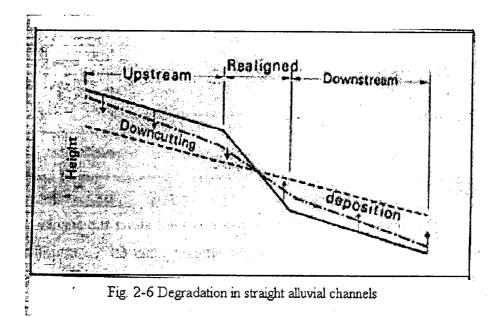
The concept of maximum sediment transport rate was developed by White et al. (1982). It states that channel for a specific slope will adjust its cross-sectional geometry such that its ability to transport sediment is a maximum. The channel geometry including the slope go on adjusting until the sediment transport capacity of the channel is equal to the value supplied from upstream.

2.2.5 EFFECTS OF CHANNELIZATION

The various effects of channelization can be broadly classified into physical effects and biological effects. The details of each of the category are given below.

I) PHYSICAL EFFECTS

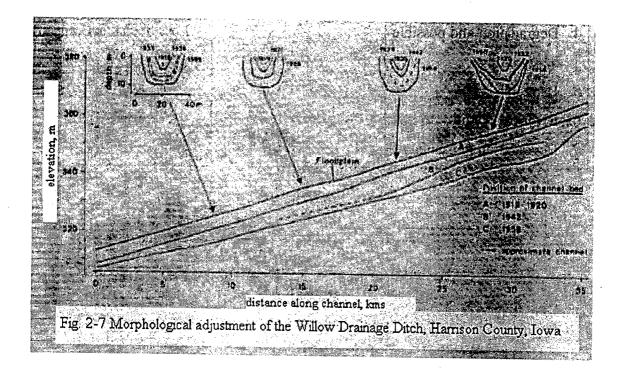
Channelization involves changing one or more of the interdependent hydraulic variables of slope, width, depth, roughness or size of the sediment load. This changing one or more of the interdependent hydraulic variable disrupts the existing equilibrium and to compensate for this there will be natural change in the remaining hydraulic variables in an attempt to attain a new state of equilibrium. Thus channelization induces instability


not only in the improved channel reach but also upstream and downstream of the reach unless modified channels which are adjusting are regularly maintained then the hydraulic efficiency may be decreased. The physical impacts and subsequent adjustment of channels which have been realigned, enlarged, lined, embanked, diverted, or affected by clearing and snagging follows:

EFFECTS OF CHANNEL REALIGNMENT

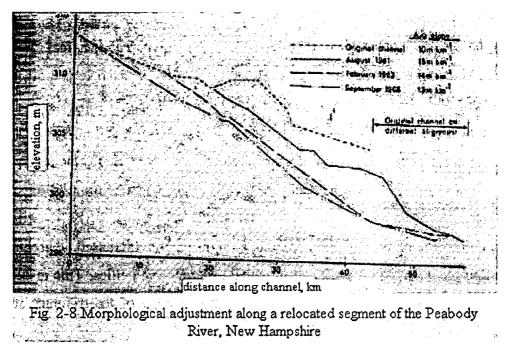
Lane (1947) demonstrated the effects of cutoffs in both non-erodible and erodibe channels. Non-erodible channels do not adjust. However long term changes occur after straightening of erodible channels. For the East and West Prairie Rivers in Alberta (Canada), Parker and Andrews (1976) found that straightening a meandering stream increased the slope by providing a shorter channel path (Fig. 2-6). This increase of slope enabled the transport of more sediment than was supplied at the upstream end of the channelized reach and the difference was obtained from the bed, causing degradation, which progressed upstream as a nickpoint. An excess of load was then supplied to the downstream part of the channelized reach and because the flatter natural reach downstream could not transport this sediment it was deposited on the bed. The excess may be deposited in gradually decreasing quantities with distance downstream. Degradation within the straightened reach may also cause bank collapse. The range of adjustments which might occur in response to straightening are summarized in Table 2-1 and include local effects within the engineered reach such as a steeper slope, higher velocities, increased transport and channel degradation.

Table 2-1,	Effects of	Straightening	a Reach l	by Cutoffs
· · · -,				


Lo	cal Effects	Upstream Effects	Downstream Effects
1.	Steeper slope	Same as the local effects	1. Deposition downstream
2.	Higher velocity		of straightened channel
3.	Increased transport		2. Increased flood stage
4.	Degradation and possible		3. Loss of channel capacity
	head cutting		
5.	Bank unstable		
6.	River may braid		
7.	Degradation in tributary		

CASE STUDIES

The Willow River in Harrison County, Iowa was straightened during 1919-20 over a distance of approximately 42.1 km. The gradient of the original river was 1.0 m per km in the lower reaches and 1.4 m per km in a reach further upstream. The average slope of the river, which replaced these two reaches, was 1.5 m per km and 1.7m per km respectively. The ditch had a trapezoidal section with 1:1 side slopes. A comparison of the original profile of the ditch and a survey of the ditch in 1958 showed a maximum


increase in channel size of 440 % between 1919-20 and 1958 in the upper reaches (Fig. 2-7). At the Monona- Harison County line the ditch had increased from an original depth of 3.4 m to a depth of 13 m. The 1920 top width of 9 m had increased to 33.5-36.6 m. Nickpoints were observed to move upstream rapidly during period of high flow. Passage of nickpoint caused the channel banks to collapse through slumping.

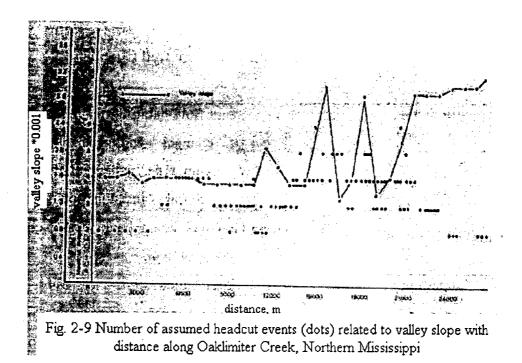
Drastic channel incision and enlargement was observed along the Blackwater River in Johnson County, Missouri, as a result of straightening 60 years previously. The shortened course was 24.6 km less than the original and the gradient was nearly doubled. The present channel had increased from a cross-section of 125 m² when newly dredged to a size ranging from 525 to 1589 m². The maximum value represents an increase in area of 1173 % over 60 years.

The Peabody River in New Hampshire was shortened by approximately 260 m and immediately after construction the channel began to adjust through erosion and scour. However, major changes occurred within the first year and adjustments were of decreasing significance in subsequent years (Fig. 2-8). The original channel had a fall of 10 m per km and the relocated channel was steepened to 15 m per km. The channel

adjusted itself to 14 m per km after two years and to 13 m per km seven years after construction.

Brice (1981) assesses the stability of 103 streams in different regions of the united states that were realigned for purposes of road or bridge construction, mostly during the period of 1960-70. The length of natural channel relocated ranges from 70 to 4200 m (8 to 550 m channel width). Stability of the relocated channel was rated as good at 36 sites, fair to good at 41 sites, fair at 15 sites and poor at 8 sites. Three sites were totally lined with concrete. In comparison with bank stability of the prior channel, bank stability of the relocated channel was about the same at 45 sites (52 %), better at 28 sites (32 %) and worse at 14 sites (16 %).

EFFECTS ON TRIBUTARIES


The lower reaches of tributary streams of the Black River in Johnson County, Missouri, underwent down cutting in response to entrenchment, sixty years after channelization. For example, the cross-section area of honey creek had increased from 12 m^2 immediately after dredging to 255 m^2 . Table 2-2 summarizes the effects on a tributary stream of lowering the base level in the main river channel, which can result from straightening.

Local Effect	Upstream Effect	Downstream Effect	
1. Head cutting	1. Increased velocity	1. Increased transport to main	
2. Scour	2. Increased bed load	channel	
3. Bank instability	3. Unstable channel	2. Aggradations	
	4. Channel morphology	gy 3. Increased flood stage	
	changes	changes 4. Channel morphology change	

The local gradient of the tributary stream is significantly increased, thereby inducing head cutting and causing a significantly increase in water velocities. This results in bank instability, possibly with major changes in the morphology of the tributary stream and increased local scour.

CONTROL ON CHANNEL CHANGES

Degradation by the upstream migration of nickpoints is the main process by which oversteepened channel gradients are reduced, thereby enabling the channels to evolve to a new condition of dynamic equilibrium. Schumm and other (1984) attempted to determine the number of head cut events, which had occurred in the channelized reaches of Oaklimiter Creek. For a given reach the total increase in depth following construction was calculated. Based on field observation the assumption was made that each head cut event increased the channel depth by 1.2 m. Therefore the number of head cut events was calculated by dividing the total increase in depth by 1.2 m. Fig. 2-9 plots distance along the straightened channel against the number of head cut events. A plot of valley slope against distance is also included and it can be seen that a greater number of head cut events have been associated with steepen valley reaches.

The behavior of straightened stream channels depends on the character of the bed and bank sediments, their erodibility and stratification. Bray and Cullen (1976) observed that degradation following a cutoff on the Coverdale River in New Brunswick was controlled by bedrock outcrops, which prevented a nickpoint from migrating upstream and affecting the foundations of a bridge. Computed degradation rates indicated that problems might have occurred if there were no controls. Similarly it is expected that bed degradation will be restricted where a coarse segregated or armored layer develops.

The nature of sediment load conveyed through the channel and the change in character of the sediment load as the channel adjusts might also be important. Sediment is initially derived from incision, followed by bank collapse. Subsequently, rejuvenation of the tributaries upstream becomes a source of sediment. A line of trees adjacent to the bank may have the effect of inhibiting adjustment.

Brice (1981) identified three types of factor important to bank stability, namely site factors existing before modification, alteration factors, which may be relevant to stability after alteration and post alteration factors. These three factors are defined as given in the Table 2-3.

1 Cita Contant			
1. Site factor:	Stream flow habit, drainage area, water		
	discharge, channel width, bank height,		
	sinuosity, stream type, valley relief, channel		
	boundary material, incision of channel,		
	vegetation cover along banks, prior channel		
· ·	stability, works of man.		
2. Alteration factor:	Length of relocation, slope and cross sections		
	of relocated channels, aspects of channel		
	alignment, measures for erosion control and		
	environmental purposes.		
3. Post alteration factor:	Length of performance period, stream flows		
	during performance period, post constructions,		
	maintenance and addition of countermeasures,		
	growth of vegetation along the channel.		

Brice (1981) further listed 13 factors contributing to the stability and 15 factors responsible for instability of relocated channels. These factors (given in Table 2-4) are ranked in order of importance for the 103 relocated channels, which Brice studied in North America.

Table 2-4, Critical Factors Contributing to the Stability and Instability of Relocated Channels

Stal	bility	Instability	
1.	Growth of vegetation on	1. Bends in relocated	-
	banks	41 Sites channel 21 Sites	
2.	Bank revetment	33 Sites 2. Floods of large	
3.	Stability of prior channel CENT	20 Sites Frecurrence interval 17 Sites	
	Acc. Date	No	5

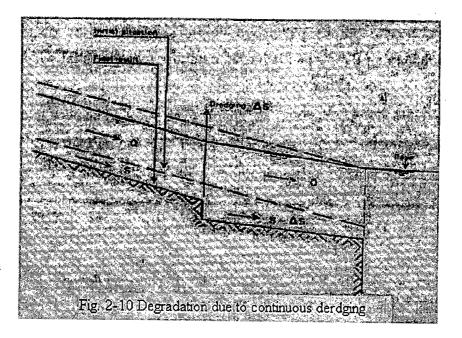
4. Straightness of channel	20 Sites	3. Erodibility of bed or	
5. Low channel slope	16 Sites	bank material	16 Sites
6. Erosion resistance of bed or		4. High channel side,	
bank material	15 Sites	susceptible to	
7. Minimum channel		slumping	9 Sites
shortening	15 Sites	5. Instability of prior	
8. Bed rock control	13 Sites	channel	8 Sites
9. Check dam or drop structure	11 Sites	6. Sharp decrease in	
10. Natural or artificial		channel length	8 Sites
discharge regulation	10 Sites	7. Failure of revetment	7 Sites
11. Number of floods in first		8. Width change factor	
few years after construction	6 Sites	too high or too low	6 Sites
12. Preservation of original		9. Cleared field at bank	
vegetation	3 Sites	line	5 Sites
13. Dual channel	3 Sites	10. Flood soon after	
		construction	5 Sites
		11. Lack of continuity in	
1		vegetal cover along	
		banks	5 Sites
		12. Turbulence at check	
		dam or drop structure	4 Sites
		13. Flow constriction at	
		bridge	4 Sites
		14. Non-linear junction	
		with natural channel	3 Sites
		15.Steep channel slope	2 Sites

ENGINEERING CONSEQUENCES

Adjustments arising from channelization can have serious implications for structures built adjacent to or across the channel. The Lang Lang River in Victoria, Australia, was modified in 1920-23 to be 12 m wide by 2.5 m deep and straightened. After flooding,

further straightening was undertaken in 1926 by a new cut, 18 m wide and 2 m deep, most of the excavated material being used to construct a levee bank. Erosion along the Lang Lang River has caused the damage or destruction of seven bridges. The erosion is generally 7-9 m with a minimum of 15 m. Erosion took place in the new cut almost as soon as it was excavated. A bridge 12.2 m wide built in 1924 at this section had to be strengthened in 1931 because of scouring of the riverbed. Three month later it was expanded 7.3 m to span the rapidly enlarging channel. From the 1940s onwards it required annual repairs until in 1968 a new reinforced concrete bridge 55.5 m wide was built.

PREDICTION


Attempts have been made to predict the average rate of degradation using bed load equations and flow duration curves. However, predicted rates may differ substantially from the observed rates where bedrock or armoring restricts down cutting. Without a set of deterministic equations it is not possible to precisely predict the morphological response to alterations of width, depth, slope, roughness or plan form caused by channelization. However, behavior can be deduced to a certain extend by observing responses of stream channels that have already been altered. Channels stable priors to channelization are more likely to remain so, however, an initially unstable channel will probably require extensive engineering and maintenance following construction.

Chang (1986) described a method for prediction river channel adjustments based upon the qualitative relationships among the variables of water discharge, bed material discharge, slope, sediment size, channel width and depth for sand bed rivers in equilibrium. In response to changes of certain variables, the directions and magnitudes of adjustments for the other could be determined. The method was applied to a reach of the Mississippi River near Greenville, where a number of cutoffs have been made between 1933 and 1937, and it was determined that the original channel width of 1310 m was sensitive to channel slope along this reach. Since slope was increased by the cutoffs. Then this should have been accompanied by significant increased of width and widthdepth ratio to avoid subsequent channel adjustment. In practice it was desirable to maintain an adequate depth for navigation and the channel was not widened. However, following straightening the channel adjusted naturally by substantial widening and even braiding, with the result that an extensive bank protection programme was subsequently undertaken to maintain the unnatural alignment. Chang (1986) showed that the predicted width of 2800 m for the 1975 channel was greater than the measured value of 2000 m, probably because the bank protection inhibited width development.

EFFECTS OF CHANNEL ENLARGEMENT

Adjustments of channel morphology have been noted within reaches, which have been enlarged (widened and/ or deepened). The River Tame near Birmingham, in Central England was widen to increase its capacity under a flood alleviation scheme. The channel riverted to its original capacity in less than 30 years in the absence of maintenance. This was due to the enlarged channel being in equilibrium with a particular design flow event, while out of equilibrium with the normal range of flows. Widening a channel reduces the unit stream power, thereby decreasing the sediment discharge. The low flows, which tend to predominate for most of the time deposit sediment because of the reduced velocities in an over widened channel, and the deposits may become stabilized to form permanent morphological features. Extensive aggradations in some rivers has caused the development of mid channel bars and braided flow at low discharges.

Continuous dredging causes a riverbed to degrade until the balance between the sediment load supplied to the river reach and the sediment transport capacity is restored (Fig. 2-10). In the long term the bed degrades to a gentler slope and greater depth downstream from the point of dredging. Degradation also occurs upstream, resulting in a lower riverbed with the initial slope. Deepening the main channel also lowers tributary base levels and increases tributary slopes and head cut may develop. Rapid tributary erosion may result in aggradations within the main channel.

Griggs and Paris (1982) reported that within 10 years of completion of a flood channel on the San Lorenzo River at Santa Cruz in California, 350000 m3 of sediment had been deposited. This reduced the capacity from the designed 100-year flood to a 25-30 year flood. The project had involved deepening the channel by some 0.9 to 2.1 m below the original channel bottom, thus functioning as sediment trap for the large volumes of sand and silt derived from the urbanized watershed.

EFFECTS OF CHANNEL LINING

Adjustments occurring specifically within concrete-lined channels are less well documented, although there is often a requirement to remove sediment, which has accumulated above the artificial substrate. Where the banks of an actively migrating channel have been protected by riprap, gabions or similar protection materials, then adjustments during flood events may destroy these structures. The Little Choconut Creek, near Binghamton, New York was rip rapped during the construction of a highway. The flood of 1975 caused the banks behind the riprap to be washed away.

EFFECTS OF CHANNEL EMBANKING

Adjustments may arise from embanking a channel because larger flows are confined than previously and the greater velocities associated with these flow may cause degradation of the bed and/ or banks.

EFFECTS DUE TO CONSTRUCTION OF DIKES

Dikes reduce the flow area and increase the velocity, as a result, shoals in the channel are scoured and secondary channels and chutes are closed such that all flow is confined to the main channel. Dikes have been used extensively on the lower Mississippi to help maintain navigation channels, principally since 1960. By using photographs and hydrographic surveys taken between 1962 and 1976, Nunnally and Benerly (1983) demonstrated the morphological changes in diked and undiked reaches. The total surface area of the river between river miles 320 and 954 remained relatively constant between 1962 and 1976. However, this area was classified on the based of main channel used for navigation, secondary channels which carry flow all year, sloughs on slack- water areas with a single inlet or outlet, chute or narrow channel with relatively little flow and pools which were found on sand banks. Within the diked areas secondary channel area decreased by 38.6 %, but this was offset by increases in sloughs (53.2 %) chutes (44.8 %) and pools (2423.8 %). Pools, sloughs and chutes are all considered as valuable types, while secondary channels are considered as less valuable type of aquatic habitat.

EFFECTS OF CHANNEL CLEARING AND SNAGGING

Trees, snags and logjams have a significant impact on channel morphology. Trees have been shown to retard bank erosion, whilst fallen trees and logjams may trigger bank erosion and bed erosion, particularly in small stream. In meandering channels, it has been shown that logjam frequently result in local channel widening, deposition and mid channel bars downstream of the obstruction. Removal of debris and bank side vegetation increases the hydraulic efficiency, increases current velocity adjacent to the bank and reduces bank resistance to erosion. Changes in Manning's 'n' following the removal of vegetation, snags, log jams and mid channel bars are summarized in Table 2-5.

Table 2-5, Changes	in Manning's 'n'	Following	Clearing and	Snagging and after
Regrowth				

Source	Location	Condition	Manning's
			'n'
Wilson (1973)	15 m wide, 3.6 m deep	Clean ,	0.022
	channelized stream near	After one growing	
	Jackson, Mississippi	season	0.045
		After 6 years (summer	
	с	foliage)	0.070
	· · ·	After 8 years (winter	
		foliage)	0.070
Pickles (1931)	4.5-16.8 m wide drainage	Clear weeds and willow	0.032
	ditch in central Illinois	1.2 m height weeds	0.050
Burkham	Gila River during a flood	Dense growth of	
(1976)		mesquite and salt-cedar	0.080
		After eradication	0.024

II) HYDROLOGICAL EFFECTS

Channelization affects the timing and magnitude of downstream flood flow. Channelization eliminates a certain amount of local storage such that water, which should previously have spread on to an adjoining floodplain, is now contained in the channel and as passed downstream. Peak and near peak flows are therefore increased.

The effects of straightening on flood flows have been examined for the Boyer river in western Iowa, where the total channel length was reduced from approximately 400 km to 160 km between 1900 and 1950 (Komura, 1970; Campbell et al., 1972). Using a unit hydrograph approach and flood routing procedures it was demonstrated at a total of 36

cross-sections that straightening increased the peak discharge in the range 90- 190%, depending on the roughness value of the floodplain. The time base of the discharge hydrograph was significantly shortened and the time of travel of the flood wave down the river was greatly reduced.

Permanent wetlands such as swamps and bogs are important regulators of streamflow, since organic soils can store large amount of water during wet periods and sustain baseflow during dry periods (Hill, 1976). Simmel et al. (1966) calculated that during the spring more than 17 billion litres of water was retained by the floodplain swamps of the Iplswich River in the northeast United States, thereby reducing downstream floodpeaks. The Massachusetts Water Resources Commission (1971) estimated that a reduction of only 10% of the wetland flood storage of the Neponset River basin would cause a 46 cm increase of flood stage.

III) EFFECTS ON WATER QUALITY

Channelization of river alters the water quality variables such as sediment concentration, temperature and water chemistry. The effects on these variables are site specific, reflecting watershed land use, the severity of modification and the length of the recovery period.

SEDIMENTATION

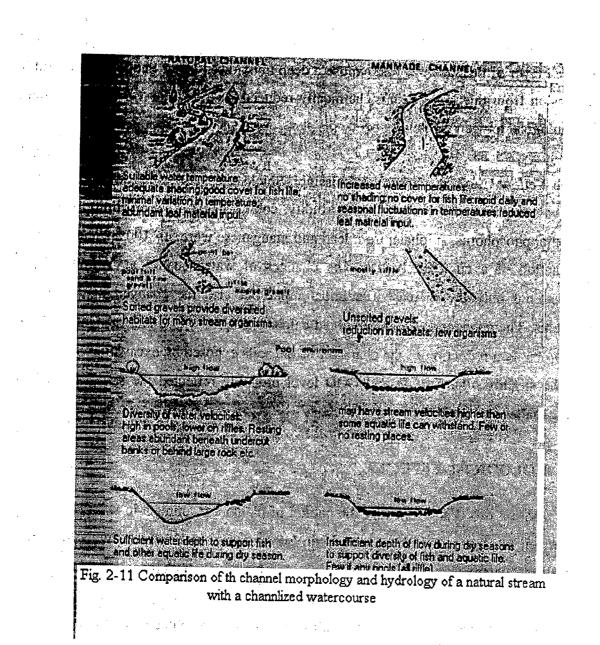
Channelization over a specific length of a river increases downstream sediment load. Hill (1976) stated that increased sediment loads downstream from channelization works are probably at a peak during dredging and in the immediate post-construction phase when erosion of unvegetated banks is at a maximum. A study of sites undergoing channelization in England reported suspended sediment concentration up to a maximum of 340 times in excess of those measured simultaneously in the natural channel above each of the works (Brookes 1983).

The river Wylye in UK was realigned for a short distance of 95 m to facilitate road improvements over a period of 15 working days in January and February 1982. The spoil excavated from the new channel was used to backfill the old river course. Fig 51 depicts suspended sediment concentrations for the points monitored above and below the reach undergoing channelization. The amount of sediment released was at a maximum during working hours. Concentrations were high during the first three days of construction (January 25-27) of the pilot channel, cut along the new course. Higher concentrations were recorded on January 28 when spoil excavated from the new course were used to backfill the old channel and eroded by flowing water. All flow was eventually diverted to the new course by plugging the old channel (January 29- February 1). Between February 3 and 11 the new channel was enlarged and suspended sediment values remained relatively low but higher that those recorded upstream. The new cut had a cross-sectional area 160% larger than the old channel, creating a very deep pool with low flow velocities unable to erode the new channel and remove sediment in suspension to the downstream reach. Suspended sediment concentrations were found to decline with distance downstream during construction, which could by attributed to localised deposition of sediment and to the dilution effect of tributaries carrying relatively little suspended sediment entering the mainstream.

TEMPERATURE

The reduction of shade immediately following construction, as a result of removal of trees/ undercut banks and debris, usually results in an increased mean and daily fluctuation of temperature. Duvel et al. (1976) indicated that where substantial lengths of modified channel exists a rise in water temperature would occur. For the Yellow Creek in northeast Mississippi, which was relocated over a distance of 9.6 km, the average daily maximum stream temperature was 4° C greater after construction.

WATER CHEMISTRY


The removal of organic substrate, increased velocity and more turbulent flow arising from channelization increase dissolved oxygen levels. Dredging may cut through the

oxidised layer of the substrate and expose a deep unoxidised layer. Sediment removed in suspension from this layer is in a chemically reduced state and has very high chemical and biological oxygen demands.

For the Yellow Creek in northeast Mississippi, Shield and Sanders (1986) observed that mean values of specific conductance, turbidity, colour, COD, total alkalinity, hardness, ammonia, phosphorus, sulphate, iron, lead and manganese were 50- 100% greater during construction of a cut than before. The changes of water quality at Yellow 'Creek reflected not only the increased sediment input but also the changed nature of the sediments. The changes in mean dissolved calcium, sulphate, iron and manganese level were probably a reflection of the character of the soils exposed by excavation of the new cut. The slightly higher BOD and COD level probably reflected the small amount of organic matter present in exposed soils.

IV) BIOLOGICAL EFFECTS

Channelization can destroy or alter the habitat of plants and animals in watercourses. A comparison of the morphology and hydrology of a natural stream with a typical channelized watercourse is shown in Fig. 2-11. Channelization changes a heterogeneous system into a homogeneous one. Bank cover is eliminated, pools are lost, flow approaches a laminar character and the substrate approaches homogeneity throughout the channel due to channelization. The result in ecosystem terms is that habitat diversity is reduced.

The impact on the invertebrates, fish and aquatic plants within a channel arise mainly from channel excavation and dredging, the lining of channels, clearing and snagging and weed cutting. The habitat of birds and mammals may also be destroyed by the removal during construction of bank side trees, bushes and plants. The draining of wetlands can have very serious consequences for mammals, amphibians, insects and birds.

Many factors, which can be changed by channelization, include velocity of flow, temperature, and the substrate, including vegetation and dissolved substances. Velocity controls the occurrence and abundance of species. It is found that certain species are confined to fairly definite ranges of velocity. There are other species, which can only

occurs in stony substrate. Species such as the burrowing mayfly nymph requires fine particles, particularly coarse sand. Whereas large number of burrowing worms require silty substrate. Similarly detritus, partly caused by the accumulation of leaf litter from overhanging trees is important for certain species. Vegetation also affects the fauna. Several studies have shown that there are more animals in moss, rooted plants and filamentous algae than there are on stones.

A few studies have reported a correlation between shade and the occurrence of abundance of particular species. This may be due to indirect effect of temperature or organic detritus from overhanging trees. The leaves and needles, which fall into the stream, provide organic material, which contributes to the aquatic insect production. The rise of temperature reduces the solubility of oxygen in fresh water. It means there is a direct relation between the respiratory rate of aquatic lives and temperature of water. Consequently some species require relatively more oxygen for respiration and can not survive in high temperature water.

Animals may be physically removed during the process of excavation. Silt deposition as a consequence of channelization may kill many invertebrates, standing crop, productivity, species diversity and numbers of macro-invertebrates were lower in channelized section of the Luxapalila River even 52 years later. This was attributed to differences in the substrate, pebbles being common in natural reaches and fine sand typifying channelized sections. Recovery of the macro-invertebrate fauna following channelization has been shown to occur where there is no substantial changes in the substrate size and stability. A study of the Bunyip River in Australia revealed no significant and consistent differences in the density, biomass and composition of the macro-invertebrates at channelized and unchannelized sites. This was because the two channelized sites of the Bunyip River had the most stable substrates composed of clay bedrock.

2.2.6 RECOMMENDATIONS TO MINIMISE THE ADVERSE EFFECTS OF CHANNELIZATION

The adverse effects of conventional channelization methods may be minimised by careful selection of option at the planing stage or by limiting the degree to which a channel is modified. The selection of engineering options may depend on the type of river channel for which solution is sought. A river channel may be classified into number of zones based on valley cross-section, channel pattern, gradient and bed load size. The boulder zone is a river environment adjusted to transport water and sediment through a steep, resistant 'V' shaped valley. The river is self-maintaining and intrusions such as landslides and rockfalls are soon flushed out. By contrast the floodway zone is more problematical since high energy and low bank resistance combine to make a dynamic channel. Efforts to straighten such channel will intensify the velocities and create adverse effects. In the pastoral zone, the channel is more stable because of the cohesive strength of the finer sediment load and a gentler gradient. The rate of meander migration in this zone is considerably less.

The selection of engineering options also depends on economic, social, political and environmental consideration. Table-6 lists the conventional engineering practices most commonly used on alluvial rivers, tentatively ranked in order of increasing environmental impact.

Table-6, Types of Channel Modification Listed in Ascending Order of Impact on Fish and Wild Life Resources

- 1. Rip-rapping (placement of rocks as bank protection)
- 2. Selective snagging (selective removal of objects such as fallen trees)
- 3. Clearing and snagging (removal of debris such as shoal and vegetation)
- 4. Widening (enlargement of channel by widening)
- 5. Deepening (enlargement of channel by deepening)
- 6. Realignment (construction of a new channel)
- 7. Lining (placement of non-vegetative smooth lining)

Some recommendation to minimise the adverse effects of conventional engineering procedure are given below:

I) CHANNEL REALIGNMENT

The biological impact of realignment can be reduced if guidelines relating to the design, construction and clean-up phase are followed. At the design stage there should be minimal reduction of channel length, the amount of excavation and fill should be controlled and equipment, which minimises destruction of banks and streamside growth should be used. Banks should be replanted whenever possible and riprap placed such that the growth of vegetation close to the stream edge is not impeded. During construction, access by vehicles should be strictly controlled and disruption to the streambed and banks should be minimised, which can be attained by educating the foremen and specifying the types of equipment that can be used in particular areas. Finally, in the 'clean-up 'phase it is recommended that gravel and large rocks be placed in the streambed to approximate conditions existing prior to construction and to restore stability. Replanting and/ or reseeding of banks with native trees, plants or grass provides shelter and cover for wildlife.

II) CHANNEL ENLARGEMENT

Enlargement of channels by modifying only one bank and leaving the opposite bank almost entirely untouched, is now a commonly used practice so that the vegetation on the opposite bank remain undisturbed as far as possible. The bank from which the work is undertaken can be designated on the bases of habitat value of the vegetation, aesthetics, shade and bank stability. If work is alternated from one bank to the other the aesthetic appearance may be improved and this enables avoidance of sensitive habitats. Retention of tall vegetation will shade out aquatic vegetation and thereby reduce maintenance costs. The impact of excavation on the aquatic vegetation have been shown to be minimised by avoiding the creation of very deep pools, which may serve as silt trap or preclude light from reaching the channel bed. It is also recommended that excessive widening be avoided since this is likely to reduce the depth of water in a channel for a given discharge and thus limit the space for growth of vegetation.

The preservation of the substrate is critical for the macro-invertebrate fauna. This can be achieved by stockpiling the original substrate and reinstating the same after excavation has been completed. For maximum diversity of species it is necessary to preserve or recreate morphological diversity, a pool and riffle sequence and a variety of substrates. Retention of stands of aquatic plants along the margins of a channel will be beneficial to the diversity and stability of macro-invertebrate habitats. Limiting the removal of bankside vegetation, including trees will allow organic litter input to the stream, which is an important food source. Preserving bankside vegetation and revegetating the disturbed vegetation will also avoid excess water temperatures and luxuriant growth of aquatic vegetation, which may otherwise limit habitat diversity.

III) CHANNEL ÉMBANKMENTS

Embanking may have the least impact where banks are constructed of imported materials and the original channel is left intact. Preserving trees and shrubs with unique wildlife value for fooding, nesting or resting during construction of embankment is always recommended as it maintain scenic and ecological values and minimise the need for revegetation. The borrow pits may be developed in the form of fish ponds or marshes useful as habitats for birds etc. Turfing the inner and outer slopes of embankments enhance visual appearance and stability of embankments.

IV) CHANNEL LINING

Lining of channel disturbs the original substrate and retards the regrowth of vegetation. So use of artificial lining should be avoided as far as possible. The choice of material for bank protection is important from environmental viewpoint. Rigid linings such as

reinforced concrete, grouted riprap, bagged cement and filled mats and membranes have perhaps the most detrimental effect on the aquatic habitat. By contrast riprap of stones, gabions, gravel armoring and woody vegetation are more desirable. Concrete lining can be alternated with short lengths of natural channel, which provide and acceptable habitat for fish.

V) DIKES

The major objective of dikes has been to stabilise long length of rivers. Recently studies have shown that dikes can provide an extremely valuable habitat for fish and macroinvertebrates. The main problem is to design dike fields, which do not fill with sediment. This can be achieved by varying the length and height, but constriction gaps or notches in dikes are the most widely employed environmental feature at present (shield, 1983). These allow water to flow through the dike at intermediate stages and prevent sediment accretion by scouring. A variety of notch widths, shapes and depths are recommended through a reach to provide spatial and temporal habitat diversity. Notches should be wide enough to develop the desirable habitat, yet not so wide that erosion damage occurs.

DESCRIPTION OF MODELS USED

3.1 HEC-RAS

3.1.1 GENERAL INTRODUCTION

The U.S. Army Corps of Engineers River Analysis System (HEC-RAS) is a software developed by the Hydrologic Engineering Center to perform one-dimensional hydraulic calculation for a full network of natural channels. The current version of HEC-RAS (Version 3.0) supports only the steady and unsteady water surface profile calculations. However it will ultimately contain three one-dimensional hydraulic analysis components for: i) Steady flow water surface profile computations; ii) Unsteady flow simulation and iii) Movable boundary sediment transport computation. A key element is that all three components will use a common geometric data representation and common geometric and hydraulic computation routines. In addition to the three hydraulic analysis components, the system contains several hydraulic design features that can be invoked once the basic water surface profiles are computed.

3.1.2 OVERVIEW OF PROGRAM CAPABILITIES

HEC-RAS comprises of a graphical user interface, separate hydraulic analysis components, data storage and management capabilities, graphics and reporting facilities.

I) USER INTERFACE

The user interacts with HEC-RAS through a graphical user interface. The interface provides for the following functions:

- File management
- Data entry and editing

- Hydraulic analysis
- Tabulation and graphical displays of input and output data
- Reporting facilities
- On-line help

II) HYDRAULIC ANALYSIS COMPONENTS

STEADY FLOW WATER SURFACE PROFILES

This component of the modeling system is intended for calculating water surface profiles for steady gradually varied flow. The system can handle a full network of channels, a dandritic system or a single river reach. The steady flow component is capable of modeling sub-critical, super-critical and mixed flow regime water surface profile.

The basic computation procedure is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction (Manning's equation) and contraction/ expansion (coefficient multiplied by the change in velocity head). The momentum equation is utilised in situations where the water surface profile is rapidly varied. These situations include mixed flow regime calculations (i.e. hydraulic jumps), hydraulics of bridges and evaluating profiles at river confluences (stream junctions).

The effects of various obstructions such as bridges, culverts, weirs and structures in the floodplain may be considered in the computations. The steady flow system is designed for application in floodplain management and flood insurance studies to evaluate floodway encroachments. Also capabilities are available for assessing the change in water surface profiles due to channel improvements and levees.

UNSTEADY FLOW SIMULATION

This component of the HEC-RAS modeling system is capable of simulating onedimensional unsteady flow through a full network of open channels. This unsteady flow component was developed primarily for sub-critical flow regime calculation. The hydraulic calculation for cross-sections, bridge, culverts and other hydraulic structures for the unsteady flow module are the same as that for the steady flow component.

SEDIMENT TRANSPORT/ MOVABLE BOUNDARY COMPUTATIONS

This component of the modeling system is intended for the simulation of one dimensional sediment transport/movable boundary calculations resulting from scour and deposition over moderate time periods. The sediment transport potential is computed by grain size fraction, thereby allowing the simulation of hydraulic sorting and armoring. Major features will include the ability to model a network of streams, channel dredging, various levee and encroachment alternatives and the use of several different equations for computation of sediment transport.

The model will be designed to simulate long term trends of scour and deposition in a stream channel that might result from modifying the frequency and duration of the water discharge and stage, or modifying the channel geometry. This system can be used to evaluate deposition in reservoirs, design channel contractions required to maintain navigation depths, predict the influence of dredging on the rate of deposition, estimate maximum possible scour during large flood events, and evaluate sedimentation in fixed channels

III) DATA STORAGE AND MANAGEMENT

Data Storage is accomplished through the use of "flat" files as well as the HEC-DSS. User input data are stored in flat files under separate categories of project, plan, geometry, steady flow, unsteady flow, and sediment data. Output data is predominantly stored in separate binary files. Data can be transferred between HEC-RAS and other programs by utilising the HEC-DSS.

Data management is accomplished through the user interface. The modeler is requested to enter a single filename for the project being developed. Once the project filename is entered, all other files are automatically created and named by the interface as needed.

The interface provides for renaming, moving and deletion of files on a project-by-project basis.

IV) GRAPHICS AND REPORTING

Graphics include X-Y plots of the river system schematic, cross-sections, profiles, rating curves, hydrographs, and many other hydraulic variables. A three-dimensional plot of multiple cross-sections is also provided. Tabular output is available. Users can select from pre-defined tables or develop their own customised tables. All graphical and tabular output can be displayed on the screen, sent directly to a printer or passed through the Windows Clipboard to other software, such as a word-processor or spreadsheet.

Reporting facilities allow for printed output of input data as well as output data. Reports can be customised as to the amount and type of information desired.

3.1.3 STEPS IN DEVELOPING A HDRAULIC MODEL WITH HEC-RAS

There are five main steps in creating a hydraulic model with HEC-RAS. These are:

- Starting a new project
- Entering geometric data
- Entering flow data an boundary conditions
- Performing the hydraulic calculation
- View and printing results

STARTING A NEW PROJECT

The first step in developing a hydraulic model with HEC-RAS is to establish the directory to work in and to enter a title for the new project. In HEC-RAS terminology, a project is a set of data files associated with a particular river system. The data files for a project are categorised as plan data, geometric data, steady flow data, unsteady flow data, sediment data and hydraulic design data. To start a new project, we go to the File menu on the HEC-RAS window and select New Project. This will bring up a new project window, in which, the drive and path are selected to work in. Next a project title and file

name is entered in the same window. After entering all the above information, the OK botton is pressed. This will bring a message box with the title of the project and the directory that the project is going to be placed in. If this information is correct the OK botton is pressed otherwise the Cancel botton is pressed to return to the New Project window.

Finally, the unit system (English or Metric) is selected before entering any geometric or flow data. This step can be accomplished by selecting Unit System from the Options menu of the main HEC-RAS window.

ENTERING GEOMETRIC DATA

The next step is to enter the necessary geometric data, which consist of connectivity information for the stream system (River System Schematic), cross-section data and hydraulic structure data (bridges, culverts, weirs etc.). Geometric data are entered by selecting **Geometric Data** from the **Edit** menu on the main HEC-RAS window. The geometric data is developed by first drawing the river system schematic. This is accomplished on a reach-by reach basic by pressing the **River Reach** button and then drawing a reach from upstream to downstream. After the reach is drawn, the user is prompted to enter a river and reach identifiers. As reaches are connected together, junctions are automatically formed by the interface. The user is also prompted to enter an identifier for each junction.

After the river system schematic is drawn, the cross-section and hydraulic structure data can be entered. Pressing the **Cross-section** botton causes the cross-section editor to pop up. In the cross-section editor, each cross-section has a river name, reach name, river station and a description. The river, reach and river station identifiers are used to describe where the cross-section is located in the river system. The river station identifier does not have to be the actual river station at which the cross-section is located on the stream, but it does have to be a numeric value e.g. 1.1, 2, 3.5 etc. The numerical value is used to place cross-sections in the appropriate order within a reach, cross-sections are ordered

within a reach from the highest river station upstream to the lowest river station downstream.

The basic data required for each cross-section are stations and elevations of all the points in the cross-sections, downstream reach length, Manning's "n" values and the bank stations. Different cross-section features are available under **Options** from the menu bar. Also available from the cross-section data editor is the ability to plot any cross-section or reach profile. Once the cross-section data are entered, any hydraulic structures such as bridges, culverts, weirs etc. can be added. Data editors, similar to the cross-section data editor, are available for the various types of hydraulic structures. If there are any stream junctions in the river system, additional data are required for each junction.

Once the geometric data are entered, the data should be saved to a file on the hard disk. This is accomplished by selecting the **Save Geometric Data As** option from the File menu or the geometric data editor. This option allows the user to enter a title for the geometric data. A filename is automatically established for the geometric data and then saved to the disk. Once a title is established, geometric data can be saved periodically by selecting **Save Geometric Data** from the **File** menu or the geometric data editor.

ENTERING FLOW DATA AND BOUNDARY CONDITIONS

Once the geometric data are entered, then either steady flow or unsteady flow data can be entered. The type of flow data entered depends upon the type of analyses to be performed. In case a steady flow analysis is to be performed, the data entry form for steady flow data is available under the **Edit** menu on the HEC-RAS main window. The steady flow data consist of; the number of profiles to be computed, the flow data, and the river system boundary conditions. At least one flow must be entered for every reach within the system. Additionally, flow can by changed at any location within the river system. Flow values must by entered for all profiles.

Boundary conditions are required in order to perform the calculations. If a sub-critical flow analysis is going to be performed, then only the downstream boundary condition are

required. It a super-critical flow analysis is going to be performed, then only the upstream boundary conditions are required. If a mixed flow regime is going to be performed, then both upstream and downstream boundary conditions are required. The boundary condition data entry form can be brought up by pressing the Enter Boundary Conditions button from the steady flow data entry form.

Once all the steady flow data and boundary conditions are entered the data should be saved to the hard disk. This can be accomplished by selecting Save Flow Data As from the File option of the steady flow data menu bar. Flow data is saved in a separate file. We are only required to enter a title for the flow data, the filename is automatically assigned.

PERFORMING THE HYDRAULIC COMPUTATION

Once all of the geometric data and flow data are entered the hydraulic calculations can be started. As stated previously there are three types of calculations that can be performed in the current version of HEC-RAS: steady flow analysis, unsteady flow analysis and hydraulic design functions. Any of the available hydraulic analysis can be selected from the **Run** menu bar option on the HEC-RAS main window.

To perform steady flow analyses the Steady Flow Analysis window is first activated. Then a plan can be formed by selecting a specific set of geometric data and flow data. A plan can be put together by selecting New Plan from the File menu bar option of the steady flow analysis window. Once a plan title and short identifier have been entered a flow regime for which the model will perform calculations, can be selected. The flow regime may be sub-critical, supercritical or mixed regime.

Once a plan is selected and all of the calculation options are set, the steady flow calculations can be performed by pressing the Compute botton at the bottom of the steady flow analysis window. When this button is pressed, the HEC-RAS system packages up all the data for the selected plan and write it to a run file. The system then runs the steady flow model and passed it the name of the run file. This process is

executed in a separate window. Therefore, the modeler can work on other tasks while it is executing.

VIEWING AND PRINTING RESULTS

Once the model has finished all of the computations, the results can be viewed in graphical form or in tabular form. Several output features are available under the View option from the main window. These options include; cross-section plots, profile plots, ratting curve plots, X-Y-Z perspective plots, tabular output at specific locations (Detail Output Tables), tabular output for many locations (Profile Summary Tables) and the summary of errors, warnings and notes.

Any cross-section can be viewed by simply selecting the appropriate river, reach and river station from the list boxes at the top of the plot. The user can also step through the plots by using up and down arrow buttons. Several plotting features are available under the **Options** menu of the cross-section plot. These options include: zoom in; zoom out; full plot; pan; animate; selecting which plans, profiles and variables to plot; velocity distribution; viewing interpolated cross-sections and control over the lines, symbols labels, scaling and grid options.

A profile plot can be achieved by selecting the **Profile Plot** under the **View** menu of the main window. All of the options available in the cross-section plot are also available in the profile plot. Additionally specific reach to plot can be selected, when a multiple-reach river system is being modeled.

Similarly an X-Y-Z perspective plot can be achieved. The user has the option of defining the starting and ending location for the extent of the plot. The plot can be rotated left or right and up or down, in order to get different perspectives of the river reach. The computed water surface profiles can be overlaid on top of the cross-section data.

Hard copy outputs of the graphics can be obtained in two different ways. Graphical plots can be sent directly from HEC-RAS to the printer or plotter or to the window clipboard.

Once the plot is in the clipboard it can then be pasted into other programs, such as a word processor. Both of these options are available from the File menu on the various plot windows.

The tabular output is available in two different formats. The first type of tabular output provides detailed hydraulic results at a specific cross-section location (detailed Output Table). The second type of tabular output shows a limited number of hydraulic variables for several cross-sections and multiple profiles (Profile summary Tables). Users can also define their own tables by specifying what variables they would like to have in a table. User specified table headings can be saved and then selected later as one of the standard tables available to the project.

Tabular output can be sent directly to the printer or passed through the clipboard in the same manner as the graphical output described previously.

3.2 HEC-6

3.2.1 INTRODUCTION

Hec-6 is a one-dimensional movable boundary open channel flow numerical model designed to simulate and predict changes in river profiles resulting from scour and/ or deposition over moderate time periods. A continuous flow record is partitioned into a series of steady flows of variable discharges and durations. For each flow a water surface profile is calculated thereby providing energy slope, velocity, depth etc. at each cross-section, potential sediment transport rates are then computed at each section. These rates combined with the duration of the flow permit a volumetric accounting of sediment within each reach. The amount of scour or deposition at each section is then computed and the cross-section adjusted accordingly. The computation then proceeds to the next flow in the sequence and the cycle is repeated beginning with the updated geometry. The sediment calculations are performed by grain size fraction there by allowing the simulation of hydraulic sorting and armoring. Features of HEC-6 include: capability to

Ş.

S. 1

analyse networks of streams; channel dredging; various levees and encroachment alternatives and to use several methods for computation of sediment transport rates.

HEC-6 simulates the capability of a stream to transport sediment given the yield from upstream sources. This computation of transport includes both bed and suspended load. Using the hydraulic properties of the flow and the characteristics of the sediment material, one can compute the rate of sediment transport. HEC-6 implements similar concepts to compute the movement of sediment materials for a temporal sequence of flows and through volume conservation of bed material, changes in channel dimensions. The transport, deposition and erosion of silts and clay may also be calculated. Effects of the creation and removal of an armor layer are also simulated.

3.2.2 APPLICATIONS OF HEC-6

A dynamic balance exists between the sediment moving in a natural stream, the size and gradation of sediment material in the stream's boundaries and the flow hydraulics. When a reservoir is constructed, flood damage reduction measures are implemented, or a minimum depth of flow is maintained for navigation, that balance may be changed. HEC-6 can be used to predict the impact of making one or more of those changes on the river hydraulics, sediment transport rates and channel geometry.

HEC-6 is designed to simulate long-term trends of scour and/or deposition in a stream channel that might result from modifying the frequency and duration of the water discharge and/ or stage, or from modifying the channel geometry. HEC-6 can be used to evaluate deposition in reservoirs, design channel contractions required to maintain navigation depths or decrease the volume of maintenance dredging, predict the influence that dredging has on the rate of deposition, estimate possible maximum scour during large flood events and evaluate sedimentation in fixed channels.

3.2.3 SUMMARY OF HEC-6 CAPABILITIES

GEOMETRY

A river system consisting of a main stem, tributaries and local inflow/ outflow points can be simulated. Such a system in which tributary sediment is calculated is referred to as a network model. Sediment transport is calculated by HEC-6 in primary rivers and tributaries. The upper limits on number of network branches, number of cross sections, etc., in the present version, due to computer memory limitations are as follow:

- 10 Stream Segments (Main Stem + Tributaries)
- 150 Cross Sections
- 100 Elevation/Station Points per Cross Section
- 20 Grain Sizes
- 10 Control Points

HYDRAULICS

The one-dimensional energy equation is used by HEC-6 for water surface profile computations. Manning's equation and n values for overbank and channel areas may be specified by discharge or elevation. Manning's n for the channel can also be varied by Limerinos' method using the bed gradation of each cross-section. Expansion and contraction losses are included in the determination of energy losses. The energy loss coefficients may be changed at any cross section.

For each discharge in a hydrograph, the downstream water surface elevation can be determined by either a user specified rating curve or a time dependent water surface elevation. Internal boundary condition can be imposed on the solution. The downstream rating curve can be changed at any time. Internal boundary condition can also be changed at any time. Split flow computations are not done and no special capabilities for computing energy losses through bridges is available. The supercritical flow is ي ماني د ر

approximated by normal depth; therefore sediment phenomena occurring in supercritical reaches are simplified in HEC- 6.

HEC-6 can be executed in "fixed bed" mode, in which only water surface profiles are computed. Sediment information such as inflowing sediment load and bed gradations are not needed to run HEC-6 in fixed-bed mode.

SEDIMENT

Sediment transport rates are calculated for grain sizes up to 2048 mm. Sediment sizes larger than 2048 mm, that may exist in the bed, are used for sorting computations but are not transported. For deposition and erosion of clay and silt sizes up to 0.0625 mm, Krone's method is used for deposition and Ariathurai and Krone's method is used for scour. The default procedure for clay and silt computations allows only depositions using a method based on settling velocity. The sediment transport function for bed material load is selected by the user. Transport functions available in the program are the following:

- a. Toffaleti's (1966) transport function
- b. Madden's (1963) modification of Laursen's (1958) relationship
- c. Yang's (1973) stream power for sands
- d. Duboys' transport function (Vanoni 1975)
- e. Ackers-White (1973) transport function
- f. Colby (1964) transport function
- g. Toffaleti (1966) and Schoklitsch (1930) combination
- h. Meyer-Peter and Muller (1948)
- i. Toffaleti and Meyer-Peter and Muller combination
- j. Madden's modification of Laursen's (1958) relationship
- k. Modification by Ariathurai and Krone (1976) of Parthenaides' (1965) method for scour and Krone's (1962) method for deposition of cohesive sediments
- Copeland's (1990) modification of Laursen's relationship (Copeland and Thomas 1989)

m. Users specification of transport coefficients based upon observed data

The above methods (except for method a.) utilise the Colby (1964) method for adjusting the sediment transport potential when the wash load concentration is high. Armoring and destruction of the armor layer are simulated based upon Gessler's (1970) approach. Deposition or scour is modeled by moving each cross-section point within the movable bed. The movable bed limits may extend beyond the channel bank limits. Deposition is allowed to occur in all wetted areas, even if the wetted areas are beyond the conveyance or movable bed limits. Scour occurs only within the movable bed limits. Sediment transport potential is based upon the hydraulic and sediment characteristics of the channel alone. Simulation of geological controls such as bedrock or a clay layer may be done by specifying a minimum elevation for the movable bed at any particular crosssection.

The sediment boundary conditions (inflowing sediment load as a function of water discharge) for the main river channel, its tributaries and local inflow/ outflow points can be changed with time. HEC-6 has the capability to simulate the diversion of water and sediment by grain size. A transmissive boundary condition is available at each downstream boundary: this boundary condition forces all sediment entering that section to pass it, resulting in no scour or deposition at that section.

3.2.4 THEORETICAL ASSUMPTIONS AND LIMITATIONS

HEC-6 is a one-dimensional continuous simulation model that uses a sequence of steady flows to represent discharge hydrographs. There is no provision for simulating the development of meanders or specifying a lateral distribution of sediment load across a cross-section. The cross-section is sub-divided into two parts with input data; that part which has a movable bed, and that which does not. The movable bed is constrained within the limits of the wetted perimeter. The entire wetted part of the cross section is normally moved uniformly up or down; an option is available, however, which causes the bed elevation to be adjusted in horizontal layers when deposition occurs. Bed forms are not simulated; however, n values can be input as a function of discharge, which

indirectly permits consideration of the effects of bed forms if the user can determine those effects from measured data. Limerinos' (1970) method is available as an option for computation of bed roughness. Density and secondary currents are not simulated.

There are three restrictions on the description of a network system within which sediment transport can be calculated with HEC-6:

a. Sediment transport in distributaries is not possible.

b. Flow around islands; i.e., closed loops, cannot be directly accommodated.

c. Only one junction or local inflow point is allowed between any two cross sections.

ANALYSIS AND DESIGN

4.1 MORPHOLOGY OF BEAS RIVER

The study reach of the Beas River lies under the boulder reach with steep slope and coarse bed material. There is a total drop of 29.90 m in the bed elevation of the river within this reach of 3.27 km. Hence the average slope of the river is about 0.0091 or 1:110. However, the variation of slope along the river is significant and varies from 0.01476 to 0.00309. In the initial reach from chainage 0+000 to 1+015 the bed slope is relatively steeper with the slope of 1:100; hence the sediment carrying capacity of the river is higher. Then after from chainage 1+015 to 1+400 the bed slope becomes relatively flat with the slope of 1:192; hence the sediment carrying capacity gets reduced. Consequently, there is a heavy deposition of sediment and the river is braided in this reach. Similarly the slope of river becomes steeper in the reach from chainage 1+400 to 2+870 and flattens again then after. The variation of bed slope along the study reach of the river is as given below.

Chainage	Reach	River Bed	Difference in		Slo	pe
	Length	Elevation	Elevation			
(km)	(m)	(ft)	(ft)	(m)		
0.000	-	3595.22				
0.100	100.00	3591.62	3.60	1.098	0.01098	1:91
0.200	100.00	3588.18	3.44	1.049	0.01049	1:95
0.400	200.00	3581.29	6.89	2.101	0.01050	1:95
0.615	215.00	3576.30	4.99	1.521	0.00708	1:141
0.815	200.00	3568.07	8.23	2.509	0.01255	1:80
1.015	200.00	3562.09	5.98	1.823	0.00912	1:110

Table-4.1, Variation of Bed Slop	e along the Study	Reach in Beas River
and the state of the stop	e along the Study	Keach in Beas River

1.200	185.00	3558.81	3.28	1.000	0.00541	1:185
1.400	200.00	3555.53	3.28	1.000	0.00500	1:200
1.600	200.00	3548.02	7.51	2.290	0.01145	1:87
1.800	200.00	3541.14	6.88	2.098	0.01049	1:95
2.000	200.00	3535.84	5.30	1.616	0.00808	1:124
2.270	270.00	3525.51	10.33	3.149	0.01166	1:86
2.470	200.00	3517.80	7.71	2.351	0.01175	1:85
2.670	200.00	3509.60	8.20	2.500	0.01250	1:80
2.870	200.00	3499.92	9.68	2.951	0.01476	1:68
3.070	200.00	3497.20	2.72	0.829	0.00415	1:241
3.270	200.00	3495.17	2.03	0.619	0.00309	1:323

Regarding the plan form, the river is almost straight from chainage 0+000 to 2+370. Then it suddenly takes a right turn and again a left turn. Thus the river is curved from chainage 2+370 to 3+270 with its right bank concave. There are two major islands in the river in this study reach; one between chainage 1+015 to 1+400 and the other between chainage 2+350 to 2+750. The river width is varying from 40 m to 170 m. The river is very narrow from chainage 2+750 to 3+250 with the average width of about 50 m only. The outer (right) bank in this narrow reach is under attack of high current and thus unstable. The width of river is particularly wider at the location of islands.

4.2 HYDROLOGICAL ANALYSIS

The Beas River is a mountainous perennial river with significant variation of discharge with time and space. The discharge in the river is particularly very high during monsoon season due to high rainfall in its catchment. Normally the discharge in the river increases at night due to melting of snow over high Himalayas during the day. Every year the flood inundates a large area of floodplain mainly due to the low height of the right bank. The flood of 1995 was the highest flood ever recorded at the gauging site in this river. The magnitude of the flood was about 2500 cumees, which inundated the entire runway and covered it with a large amount of sediments and tree trunks. The flood not only damaged

the existing flood protection works but also badly damaged the airport runway interrupting the air services for a long period of time.

The annual maximum flood data of 1965 to 1995 for the Beas River at Bhunter gauging site, downstream of the confluence of Beas River with Parbati River, is given in table-4.2. The record shows the minimum annual discharge of 511.50 cumecs in the year 1979 and the maximum annual discharge of 2483.40 cumecs in the year 1995.

FLOOD FREQUENCY ANALYSIS

The objective of flood frequency analysis is to relate the magnitude of extreme flood events to their frequency of occurrence through the use of probability distributions. The U.S. Water Resources Council recommends that adjustments be made for outliers before carrying out the flood frequency analysis.

TESTING FOR OUTLIERS

Outliers are data points that depart significantly from the trend of the remaining data. The retention or deletion of these outliers can significantly affect the magnitude of statistical parameters computed from the data, especially for small samples. So the available maximum annual discharge is first checked for existence of any outliers before use in further analysis.

The following equations are used to detect the outliers:

$$Y_{H} = \overline{Y} + K_{n}S_{y}$$
$$Y_{L} = \overline{Y} - K_{n}S_{y}$$

Where Y_H and Y_L are respectively high outlier and low outlier threshold in log units, \overline{Y} and S_y are respectively the mean and the standard deviation of log transformed values of the sample data and K_n is a factor depending on the sample size.

According to the Water Resources Council (1981), if information is available that indicates a high outlier is the maximum over an extended period of time, the outlier is treated as historic flood data and excluded from analysis, otherwise the outliers should be retained as part of systematic record.

Year	Discharge (X)	$(x - \overline{x})^{2}$	Y= log X	(Y - Y)	$(Y - \overline{Y})^{B}$
	cumecs				
1965	711.06	39687.07	2.851906	0.005967	-0.000461
1966	802.53	11609.23	2.904461	0.000610	-0.000015
1967	823.17	7587.48	2.915490	0.000187	-0.000003
1968	709.40	40351.22	2.850891	0.006125	-0.000479
1969	768.70	20043.80	2.885757	0.001883	-0.000082
1970	837.50	5296.36	2.922985	0.000038	-0.000000
1971	689.30	48830.45	2.838408	0.008234	-0.000747
1972	1161.00	62862.46	3.064832	0.018410	0.002498
1973	821.60	7863.46	2.914660	0.000210	-0.000003
1974	677.50	54184.73	2.830909	0.009651	-0.000948
1975	983.20	5317.89	2.992642	0.004031	0.000256
1976	879.00	978.20	2.943989	0.000220	0.000003
1977	918.60	69.29	2.963126	0.001154	0.000039
1978	728.30	33115.31	2.862310	0.004468	-0.000299
1979	511.50	159022.40	2.708846	0.048534	-0.010692
1980	991.70	6629.85	2.996380	0.004520	0.000304
1981	682.00	52109.99	2.833784	0.009095	-0.000867
1982	665.40	59964.32	2.823083	0.011250	-0.001193
1983	682.40	51927.53	2.834039	0.009046	-0.000860
1984	580.50	108752.30	2.763802	0.027340	-0.004521
1985	717.50	37162.64	2.855822	0.005377	-0.000394
1986	770.20	19621.32	2.886604	0.001810	-0.000077

Table -4.2, May	imum Annual	Discharge
-----------------	-------------	-----------

l.,			· · · · · · · · · · · · · · · · · · ·		
Sum	28218.56	5388151.07	90.803666	0.671665	0.157853
1995	2483.40	2474718.71	3.395047	0.217059	0.101127
1994	1085.70	30773.53	3.035710	0.011355	0.001210
1993	2153.50	1545605.59	3.333145	0.163211	0.065937
1992	850.10	3621.17	2.929470	0.000000	0.000000
1991	633.00	76882.05	2.801404	0.016319	-0.002085
1990	810.40	9975.24	2.908699	0.000418	-0.000009
1989	1029.00	14095.36	3.012415	0.006933	0.000577
1988	1461.10	303406.94	3.164680	0.055474	0.013066
1987	600.30	96085.20	2.778368	0.022735	-0.003428

Mean,
$$\overline{\mathbf{X}}$$

 $=\frac{1}{n}\sum_{i=1}^{n}X_{i}$

= 910.28 cumecs

Mean, \overline{Y}

 $=\frac{1}{n}\sum_{i=1}^{n}Y_{i}$

= 2.929151

Standard Deviation,
$$S_X = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n} (x_i - \overline{x})^i} = 423.80$$
 curnecs

Standard Deviation, $S_y = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n} (Y_i - \overline{Y})^2} = 0.149629$

 $K_n=2.577$ (Taken from table 12.5.3 of Applied Hydrology by Ven Te Chow et. al. 1988)

HIGH OUTLIERS

$Y_{H} = \overline{Y} + K_n S_y$	= 2.929151+ 2.577* 0.149629	=3.314744
The corresponding	$discharge, Q_{\rm H} = 10^{3.314744}$	= 2064.16 cumecs

Comparing the above value of Q_H with the flood discharge of table-4.2, we find the discharge of 1993 and 1995, which are respectively 2153.50 and 2483.40 cumecs are greater than threshold value of 2064.16 cumecs. So these are high outliers. However, as there are no additional information available to confirm the high outliers, they are retained as part of the systematic record.

LOW OUTLIERS

$Y_L = \overline{Y} - K_n S_y = 2.929151 - 2.577 * 0.149629$	=2.543557
The corresponding discharge, $Q_{\rm H} = 10^{2.543557}$	= 349.59 cumecs

Comparing the above value of Q_L with the flood discharge of table-4.2, we find no discharge lower than the threshold value of 349.59 cumecs. So there are no low outliers.

Now the frequency analysis is carried out using frequency factors method, in which the magnitude of extreme hydrologic event is giver as:

 $X_T = \overline{X} + K_T Sx$

Where K_T is the frequency factor depending on the return period and the type of probability distribution to be used in the analysis.

Frequency analysis of the available maximum annual discharge shall be carried out for the following types of probability distribution.

I) NORMAL DISTRIBUTION

For this distribution, the frequency factor, K_T , is equal to the standard normal variable, z. The value of z corresponding to an exceedence probability of p (p= 1/T) can be calculated by finding the value of an intermediate variable w:

W=
$$\left[\ln \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}}$$
 (0

Then z can be calculated using the approximation

$$z = W - \frac{2.515517 + 0.802853W + 0.010328W^2}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3}$$

Now, using the above formulae annual maximum discharge of various return period can be found as:

For T= 2 years,

$$p=1/2 = 0.5$$

 $W = \left[In \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}} = \left[In \left(\frac{1}{0.5^2} \right) \right]^{\frac{1}{2}} = 1.177410$
 $z = W - \frac{2.515517 + 0.802853W + 0.010328W^2}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3} = -1.341*10^{-7}$
 $X_T = \overline{X} + K_T Sx = 910.28 - 1.341*10^{-7}*423.80 = 910.28$ cumecs

For T= 100 years,

$$p=1/100 = 0.01$$

$$W = \left[In \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}} = \left[In \left(\frac{1}{0.01^2} \right) \right]^{\frac{1}{2}} = 3.034854$$

$$z = W - \frac{2.515517 + 0.802853W + 0.010328W^2}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3} = 2.326785$$

$$X_T = X + K_T Sx = 910.28 + 2.326785 * 423.80 = 1896.37$$
 cumees

For T= 500 years,

p=1/500 = 0.002

$$W = \left[In \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}} = \left[In \left(\frac{1}{0.002^2} \right) \right]^{\frac{1}{2}} = 3.525509$$

$$z = W = \frac{2.515517 + 0.802853W + 0.010328W^2}{2.515517 + 0.802853W + 0.010328W^2} = 0.070506$$

$$z = W - \frac{2.313517 + 0.802835W + 0.010328W}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3} = 2.878506$$

For T= 1000 years,

p=1/1000 = 0.001 $W = \left[In \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}} = \left[In \left(\frac{1}{0.001^2} \right) \right]^{\frac{1}{2}} = 3.716922$ $z = W - \frac{2.515517 + 0.802853W + 0.010328W^2}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3} = 3.090522$

 $X_{T} = \overline{X} + K_{T} Sx = 910.28 + 3.090522 * 423.80 = 2220.04$ currecs

II) LOG NORMAL DISTRIBUTION

For log normal distribution, the frequency factor, K_T , is calculated in the same line as for the normal distribution. But the mean and the standard deviation are calculated for the logarithms of the data and using

$$Y_T = Y + K_T S_v$$

Then the required value of X_T is calculated by taking the antilog of Y_T .

For T= 2 years,

$$p=1/2 = 0.5$$

$$W = \left[In \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}} = \left[In \left(\frac{1}{0.5^2} \right) \right]^{\frac{1}{2}} = 1.177410$$

$$z = W - \frac{2.515517 + 0.802853W + 0.010328W^2}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3} = -1.341*10^{-7}$$

$$Y_{T} = \overline{Y} + K_{T}S_{y} = 2.929151 - 1.341*10^{-7}*0.149629 = 2.92915$$

$$X_{T} = 10^{Y_{T}} = 10^{2.92915} = 849.47 \text{ cumecs}$$

For T = 100 years,

p=1/100 = 0.01

$$W = \left[In \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}} = \left[In \left(\frac{1}{0.01^2} \right) \right]^{\frac{1}{2}} = 3.034854$$

$$z = W - \frac{2.515517 + 0.802853W + 0.010328W^2}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3} = 2.326785$$

$$Y_{T} = \overline{Y} + K_{T}S_{y} = 2.929151 + 2.326785 * 0.149629 = 3.277305$$

$$X_{T} = 10^{Y_{T}} = 10^{3.277305} = 1893.67$$
 cumecs

For T= 500 years,

p=1/500 = 0.002

W=
$$\left[\ln\left(\frac{1}{p^2}\right) \right]^{\frac{1}{2}} = \left[\ln\left(\frac{1}{0.002^2}\right) \right]^{\frac{1}{2}} = 3.525509$$

$$z = W - \frac{2.515517 + 0.802853W + 0.010328W^2}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3} = 2.878506$$

$Y_T = Y + K_T S_y$	= 2.929151 + 2.878506 * 0.149629	= 3.359859
$X_{T} = 10^{Y_{T}}$	$= 10^{3.359859}$	= 2290.12 cumecs

For T= 1000 years,

$$p=1/1000 = 0.001$$

$$W = \left[In \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}} = \left[In \left(\frac{1}{0.001^2} \right) \right]^{\frac{1}{2}} = 3.716922$$

$$z = W - \frac{2.515517 + 0.802853W + 0.010328W^2}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3} = 3.090522$$

$$Y_{\rm T} = \overline{Y} + K_{\rm T}S_{\rm y} = 2.929151 + 3.090522 * 0.149629 = 3.391583$$

$$X_{\rm T} = 10^{Y_{\rm T}} = 10^{3.391583} = 2463.67 \text{ cumecs}$$

III) EXTREME VALUE TYPE I DISTRIBUTION (GUMBEL DISTRIBUTION)

For this distribution, the frequency factor, K_T , is given by the following expression as given by Chow (1953).

$$K_{T} = -\frac{\sqrt{6}}{\pi} \left\{ 0.5772 + \ln \left[\ln \left(\frac{T}{T-1} \right) \right] \right\}$$

For T= 2 years,

$$K_{T} = -\frac{\sqrt{6}}{\pi} \left\{ 0.5772 + \ln \left[\ln \left(\frac{2}{2 - 1} \right) \right] \right\} = -0.164272$$

$$X_T = X + K_T Sx = 910.28 \cdot 0.164272 \cdot 423.80 = 840.66$$
 cumecs

For T= 100 years,

$$K_{T} = -\frac{\sqrt{6}}{\pi} \left\{ 0.5772 + \ln \left[\ln \left(\frac{100}{100 - 1} \right) \right] \right\} = 3.136681$$

$$X_T = \overline{X} + K_T S x = 910.28 + 3.136681 * 423.80 = 2239.61$$
 cumecs

For T= 500 years,

$$K_{T} = -\frac{\sqrt{6}}{\pi} \left\{ 0.5772 + \ln \left[\ln \left(\frac{500}{500 - 1} \right) \right] \right\} = 4.394689$$
$$X_{T} = \overline{X} + K_{T} Sx = 910.28 + 4.394689 * 423.80 = 2772.75 \text{ cumecs}$$

For T= 1000 years,

$$K_{T} = -\frac{\sqrt{6}}{\pi} \left\{ 0.5772 + \ln \left[\ln \left(\frac{1000}{1000 - 1} \right) \right] \right\} = 4.935524$$

$$X_T = X + K_T Sx = 910.28 + 4.935524 * 423.80 = 3001.96$$
 cumees

IV) LOG-PEARSON TYPE III DISTRIBUTION

For this distribution, the mean \overline{Y} , standard deviation S_Y and the coefficient of skewness, C_S are first calculated for the logarithms of the data. Then, the frequency factor, K_T , is computed by the following expression as given by Kite (1977).

$$K_{T} = z + (z^{2} - 1)k + \frac{1}{3}(z^{3} - 6z)k^{2} - (z^{2} - 1)k^{3} + zk^{4} + \frac{1}{3}k^{5}$$

Where $k = C_s / 6$ and z is as calculated in the normal distribution.

Now, Cs=
$$\frac{n \sum_{i=1}^{n} (Y_i - \overline{Y}_i)^{B}}{(n-1)(n-2)S_Y^{3}} = \frac{31*0.157853}{30*29*0.149629^{3}} = 1.678989$$

$$k = C_s / 6$$
 = 1.678989/6 = 0.279832

For T= 2 years,

$$p=1/2 = 0.5$$

$$W = \left[In \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}} = \left[In \left(\frac{1}{0.5^2} \right) \right]^{\frac{1}{2}} = 1.177410$$

$$z = W - \frac{2.515517 + 0.802853W + 0.010328W^2}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3} = -1.341^{*}10^{-7}$$

$$K_T = z + (z^2 - 1)k + \frac{1}{3}(z^3 - 6z)k^2 - (z^2 - 1)k^3 + zk^4 + \frac{1}{3}k^5 = -0.257348$$

$$Y_T = \overline{Y} + K_T S_y = 2.929151 - 0.257348^{*} 0.149629 = 2.890644$$

$$X_T = 10^{Y_T} = 10^{2.890644} = 777.40 \text{ cumecs}$$

For T= 100 years,

$$p=1/100 = 0.01$$

$$W = \left[In \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}} = \left[In \left(\frac{1}{0.01^2} \right) \right]^{\frac{1}{2}} = 3.034854$$

$$z = W - \frac{2.515517 + 0.802853W + 0.010328W^2}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3} = 2.326785$$

$$K_{T} = z + (z^{2} - 1)k + \frac{1}{3}(z^{3} - 6z)k^{2} - (z^{2} - 1)k^{3} + zk^{4} + \frac{1}{3}k^{5} = 3.444468$$

$$Y_{T} = \overline{Y} + K_{T}S_{y} = 2.929151 + 3.444468 * 0.149629 = 3.444543$$

$$X_{T} = 10^{Y_{T}} = 10^{3.444543} = 2783.19 \text{ cumecs}$$

For T= 500 years,

$$p=1/500 = 0.002$$

$$W = \left[In \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}} = \left[In \left(\frac{1}{0.002^2} \right) \right]^{\frac{1}{2}} = 3.525509$$

$$z = W - \frac{2.515517 + 0.802853W + 0.010328W^2}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3} = 2.878506$$

$$K_T = z + (z^2 - 1)k + \frac{1}{3}(z^3 - 6z)k^2 - (z^2 - 1)k^3 + zk^4 + \frac{1}{3}k^5 = 4.947620$$

$$Y_T = \overline{Y} + K_T S_y = 2.929151 + 4.947620 * 0.149629 = 3.669458$$

$$X_T = 10^{Y_T} = 10^{3.669458} = 4671.52 \text{ cumecs}$$

For T= 1000 years,

p=1/1000 = 0.001

$$W = \left[In \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}} = \left[In \left(\frac{1}{0.001^2} \right) \right]^{\frac{1}{2}} = 3.716922$$

$$z = W - \frac{2.515517 + 0.802853W + 0.010328W^2}{1 + 1.432788W + 0.189269W^2 + 0.001308W^3} = 3.090522$$

$$K_T = z + (z^2 - 1)k + \frac{1}{3}(z^3 - 6z)k^2 - (z^2 - 1)k^3 + zk^4 + \frac{1}{3}k^5 = 5.602079$$

$$Y_T = \overline{Y} + K_T S_y = 2.929151 + 5.602079 * 0.149629 = 3.767384$$

$$X_T = 10^{Y_T} = 10^{3.767384} = 5853.07 \text{ cumecs}$$

The results of the above computations has been summarised and presented in table-4.3.

Distribution	Discharge of different return period in cumecs						
	2 Years	100 Years	500 Years	1000 Years			
Normal	910.28	1896.37	2130.19	2220.04			
Log normal	849.47	1893.67	2290.19	2463.67			
EV- Type 1	840.66	2239.61	2772.75	3001.96			
Log- Pearson Type III	777.40	2783.19	4671.52	5853.07			

Table-4.3, Comparison of the Flood Discharge of Different Return Period for Different Distribution

GOODNESS OF FIT

It can be seen from table-4.3 that the variation of discharge of different return period computed assuming different probability distribution is significant. So we have to check which of the theoretical distribution is closest to our sample data. The chi-square test can be used to determine how well the theoretical distribution function fit the empirical distributions (distributions obtained from sample data). The chi-square test statistic χ_c^2 is given by

$$\chi_{c}^{2} = \sum_{i=1}^{m} \left[\frac{(o_{i} - e_{i})^{2}}{e_{i}} \right]$$

Where m is the number of intervals of the sample data and o_i and e_i are the observed and expected frequencies respectively.

The null hypothesis for the test is that the proposed probability distribution fits the data adequately. This hypothesis is rejected if the value of χ_c^2 is larger than a limiting value, $\chi_{\nu,l-\alpha}^2$, determined from the χ^2 distribution with ν degrees of freedom. Here, $\nu = m$ -p-1, where m is the number of intervals as before, p is the number of parameters used in fitting the proposed distribution and α is the significance level. Now, let us check for the theoretical distribution that is closest to the observed sample data.

ţ

•		Observed	Relative		Cumm.	Probabi	Expected	
Interval	Range	Frequency	Frequency		Probability	lity Density	Frequency	χ^2_c
i	r	0 _i	fs(xi)	Zi	F(xi)	f(xi)	ei	
1	<550	1	0.0323	-0.850	0.198	0.198	6.138	4.30
2	550-800	14	0.4516	-0.260	0.397	0.199	6.169	9.94
3	800-1050	11	0.3548	0.330	0.629	0.232	7.192	2.02
4	1050-1300	2	0.0645	0.920	0.821	0.192	5.952	2.62
5	>1300	3	0.0968	3.712	1.000	0.179	5.549	1.17
Total:		31	1.0000			1.000	31.000	20.05
\ <i>(</i>								

Table-4.4, Check for Normal Distribution

Mean=

910.28 cumecs

Standard deviation= 42

423.80 cumecs

Here,

m=5, p=2, v=m-p-1=2

 $\chi^2_{2,0.95}$ = 5.99, from standard table

Since $\chi_c^2 > \chi_{2,0.95}^2$ the sample data does not follow the normal distribution.

Table-4.5, Check for Log-normal Distribution	Table-4.5,	Check for	Log-normal	Distribution
--	------------	-----------	------------	--------------

Interva	l Range	Observed	Relative		Cumm.	Probabi lity	Expected	
		Frequency	Frequency	Zi	Probability	Density	Frequency	χ^2_c
i	r	Oi	fs(xi)		F(xi)	f(xi)	ei	
1	<2.80	3	0.0968	-0.863	0.194	0.194	6.014	1.511
2	2.80-2.88	10	0.3226	-0.328	0.371	0.177	5.487	3.712
3	2.88-2.96	9	0.2903	0.206	0.582	0.211	6.541	0.924
4	2.96-3.04	5	0.1613	0.741	0.771	0.189	5.859	0.126
5	>3.04	4	0.1290	3.147	1.000	0.229	7.099	1.353
Total:		31	1.0000			1.000	31.000	7.626
Mean=		L,	2.929151			ł		

Standard deviation=

0.149629

Here,

m=5, p=2, v=m-p-1=2

 $\chi^2_{2,0.95}$ = 5.99 , from standard table

Since $\chi_c^2 > \chi_{2,0.95}^2$ the sample data does not follow the lognormal distribution.

Table-4.6, Check for Extreme Value Type-1 (Gumble) Distribution

		Observed	Relative	Cummulative	Probabi	Expected	
Interval	Range	Frequency	Frequency	Probability	lity Density	Frequency	χ^2_c
i	r	Oi	fs(xi)	F(xi)	f(xi)	ei	
1	<550	1	0.0323	0.188	0.188	5.828	4.00
2	550-750	12	0.3871	0.402	0.214	6.634	4.34
3	750-950	10	0.3226	0.608	0.206	6.386	2.05
4	950-1200	5	0.1613	0.792	0.184	5.704	0.09
5	>1200	3	0.0968	1.000	0.208	6.448	1.84
Total:		31	1.0000		1.000	31.000	12.32
Mean=		910.28	cumecs		/		

Standard deviation= 423.8 cumecs

Here,

m=5, p=2, v=m-p-1=2

 $\chi^2_{2,0.95}$ = 5.99 , from standard table

Since $\chi_c^2 > \chi_{2,0.95}^2$ the sample data does not follow the extreme value type-1 distribution.

Interval	Range	Observed Frequency	Relative Frequency	Cumm. Probability	Probability Density	Expected Frequency	χ^2_c
i	r	οί	fs(xi)	F(xi)	f(xi)	ei	
1	<2.80	3	0.0968	0.166	0.166	5.145	0.89
2	2.80-2.88	10	0.3226	0.466	0.300	9.313	0.05
3	2.88-2.96	9	0.2903	0.653	0.187	5.794	1.77
4	2.96-3.04	5	0.1613	0.812	0.159	4.925	0.00
5	>3.04	4	0.1290	1.000	0.188	5.823	0.57
Total:		31	1.0000		1.000	31.000	3.29
Aean=		2.929151	· · · · · · · · · · · · · · · · · · ·	I			

Table-4.7, Check for Log-Pearson Type-3 Distribution

Standard deviation= 0.149629

Here,

m=5, p=3 v=m-p-1=1

 $\chi^2_{2,0.95} = 3.84$, from standard table

Since $\chi_c^2 < \chi_{2,0.95}^2$ the sample data can be assumed to be following the log-Pearson type-3 distribution.

DESIGN FLOOD

It can be seen from table-4.3 that the variation of flood discharge is significantly high for different probability distribution. The 2-year return period flood, computed assuming log-Pearson distribution is the lowest among all the distributions. But the 100 year and 1000 year return period floods computed assuming log-person distribution is the highest among all the distributions. However, the above chi-square tests show that the sample data is closest to log-Pearson distribution. So, the following discharge shall be employed as the design discharge for further computation.

2-year return period flood, Q_2 = 800 cumecs

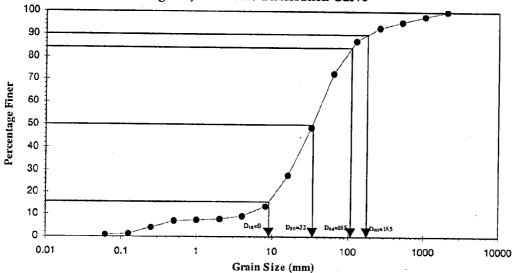
100-year return period flood, Q_{100} = 2800 cumecs 500-year return period flood, Q_{500} = 4700 cumecs 1000-year return period flood, Q_{1000} = 5900 cumecs

4.3 GRAIN SIZE DISTRIBUTION OF BED MATERIAL

There is wide a variation of grain size of bed material in the Beas River ranging from 0.031mm to 2048 mm. The bed predominantly consists of sand, gravel and boulder. For representative sample of bed material, Wolman Sampling Method can be adopted in which samples are collected from numerous grid points and manual as well as sieve analysis are carried out to determine the gradation of the bed material. The following grain size distribution obtained from field measurements shall be used for this study.

Grain Size	Number of	f Percentage within		Percentage by	Cumulative	
Class	Stones	the Subgroup		Weight of the	Percentage Finer	
(mm)		Larger Sieve		Entire Size	than Upper Size	
		Stone	Analysis	Range	Limit	
4096-2048	-	-		-	-	
2048-1024	4	2.76		2.00	100.00	
1024-512	5	3.45		2.52	98.00	
512-256	5	3.45		2.50	95.48	
256-128	12	8.28		6.00	92.98	
128-64	29	20.00		14.50	86.98	
64-32	48	33.10		23.93	72.48	
32-16	42	28.97		21.00	48.55	
	145	100.00		·····		
16-8	452.00		50.36	13.85	27.55	
8-4	141.62		15.78	4.35	13.70	
4-2	43.54		4.85	1.34	9.35	

Table-4.8, Grain Size Distribution of Bed Material


	897.57	100.00	100.00	
0.062-0.031	24.25	2.70	0.75	0.75
0.125-0.062	21.68	2.42	0.68	1.43
0.25-0.125	93.35	10.40	2.86	4.29
0.50-0.25	93.85	10.46	2.88	7.17
1-0.50	8.63	0.96	0.27	7.44
2-1	18.65	2.08	0.57	8.01

The above grain size distribution of the bed material can be presented in a graphical form, popularly known as the grain size distribution curve, which is given in fig.-4.1. It shows the grain size in logarithmic scale as abscissa and the percentage finer as ordinate. This curve is utilised for determining different characteristic size of the bed material. The values of some of these characteristic size obtained from fig.-4.1 are given below:

 $D_{16} = 9 \text{ mm}$ $D_{84} = 105 \text{ mm}$

 $D_{50} = 32 \text{ mm}$

D₉₀= 185 mm

4.4 ESTIMATION OF MANNING'S ROUGHNESS COEFFICIENT

The manning's roughness coefficient can be determined by the following empirical equations.

I) STRICKLER'S EQUATION

$$n = \frac{(D_{50})^{1/6}}{21.1} = \frac{(32*10^{-3})^{1/6}}{21.1} = 0.027$$

II) MEYER'S EQUATION

$$n = \frac{(D_{90})^{\frac{1}{5}}}{26.0} = \frac{(185 * 10^{-3})^{\frac{1}{5}}}{26.0} = 0.029$$

III) LIMERINO'S EQUATION

 $n = \frac{0.113d^{1/6}}{1.16 + 2.0\log(d/D_{84})} = \frac{0.113(1.65)^{1/6}}{1.16 + 2.0\log(1.65/0.105)} = 0.035$

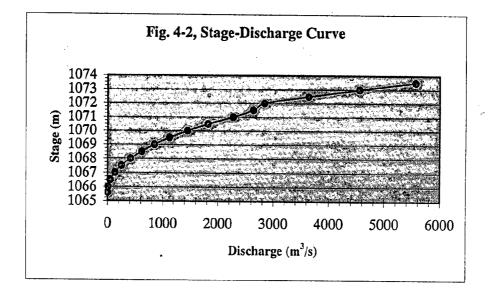
(for D_{84} = 105 mm and depth of flow, d= 1.65 m for low water level)

IV) BRAY'S EQUATION

$$n = 0.104 * S^{0.177}, if 0.0002 < S < 0.01$$
$$= 0.104 * 0.0091^{0.177}$$
$$= 0.045$$

Thus the value of n computed from Bray's equation is the largest. Bray's equation is mainly developed for the gravel-bed river, which shall be used for computation of water surface profile by HEC-6.

4.5 GENERATION OF STAGE-DISCHARGE CURVE


The stage-discharge curve, at the downstream end of the study reach is required to compute the water surface profile for the given flow and river geometry. It can be generated by the following stepwise procedure.

- i) The cross-section of the river, at which the stage- discharge curve is desired, is plotted at a suitable scale.
- ii) The cross-sectional areas and the wetted perimeters are measured from the plot for various depths of flow, also known as the stages.
- iii) The corresponding hydraulic mean radii are calculated for different stages of flow.
- iv) The flow velocity is calculated using Manning's equation with the roughness coefficient, n = 0.045 and the bed slope, S = 0.0091.
- v) The discharge is computed by multiplying the velocity and the flow area.
- vi) Finally the stage-discharge curve is prepared with the stage as ordinate and the corresponding discharge as abscissa. The detail of the calculation is shown below in table-4.9 and the curve is given in fig.-4. 2.

Table-4.9,	Detail	Calculation	for	Stage	-Discharge Curv	/e
------------	--------	-------------	-----	-------	-----------------	----

Stage	Area	Wetted	Hydraulic	Velocity	Discharge
		Perimeter	Radius		
(m)	(Sq.m)	(m)	(m)	(m/s)	(m ³ /s)
1065.60	0.000	0.00	0.000	0.000	0.00
1066.00	. 8.475	34.50	0.246	0.831	7.05
1066.50	32.325	54.00	0.599	1.506	48.67
1067.00	63.225	64.70	0.977	2.088	131.98
1067.50	98.850	74.28	1.331	2.565	253.53
1068.00	138.675	82.24	1.686	3.003	416.47
1068.50	182.625	89.81	2.033	3.403	621.38
1069.00	231.075	101.20	2.283	3.676	849.39
1069.50	285.000	111.64	2.553	3.960	1128.50

1070.00	344.325	122.72	2.806	4.217	1452.04
1070.50	409.050	134.16	3.049	4.457	1823.28
1071.00	478.725	142.79	3.353	4.749	2273.28
1071.50	556.500	166.20	3.348	4.745	2640.36
1072.00	689.250	254.15	2.712	4.123	2841.47
1072.50	820.200	270.27	3.035	4.443	3644.54
1073.00	958.720	285.40	3.359	4.755	4558.53
1073.50	1106.240	302.53	3.657	5.031	5566.02

4.6 GENERATION OF WATER SURFACE PROFILES

The water surface profile in a stream for a given geometry and flow condition can be determined by using softwares called Hec-Ras or Hec-6, developed by U.S. Hydrologic Engineering Center. In the present version of Hec-Ras only fix bed simulation is possible while in Hec-6 both fix bed and mobile bed simulation is possible. In the fixed bed model, the bed and the banks are assumed to be fixed i.e. there is neither erosion nor deposition of sediment; while in the mobile bed model it is assumed that the bed and the banks may be eroded or deposited with sediment. Thus to run hec-6 in mobile bed mode sediment data is required in addition to geometric and hydrologic data. In the present

study the water surface profiles have been computed by using Hec-6 for both fixed bed and mobile bed. The water surface profiles have also been calculated by using Hec-Ras for fix bed. The various steps involve in the computations of water surface profiles are as follows:

- Cross-section points are marked in the available survey map (Fig.-1.1) and are numbered as 1 to 17 from downstream to upstream within the study reach of the river.
- Co-ordinates (elevation and station) of cross-section points are determined for all the 17 cross-sections with the help of contour lines in the map.
- The Manning's roughness coefficient, the expansion and the contraction coefficients along with the co-ordinates of the cross-section points constitute the geometric data. The roughness coefficient of 0.045 for the left and right overbank and 0.04 for the channel and the expansion and contraction coefficients of 0.3 and 0.1 respectively have been used in the calculation.
- The hydraulic computation starts from the downstream boundary toward the upstream boundary of the study reach. The stage-discharge curve generated at section 1 (as described in section 4.5) has been used as the downstream boundary condition.
- After feeding all the geometric and the flow data the program is executed, which finally produces the water surface profiles for the fix bed. In order to produce the water surface profile for mobile bed sediment data is required to be entered before the flow data.

As far as the requirement of input data is concerned, it is the same in both Hec-Ras and Hec-6. But there is a difference in the way the data is supplied to the program. In Hec-6 the input data are entered into the input file at specified fields, while in Hec-Ras the input data are entered into designated locations of the users' interface.

The input and the output data file of Hec-6 for simulation of Beas River in natural condition for 2 year and 500 year return period floods in fix bed mode is given in appendix-1 and 2 respectively. The output for the same condition as obtained by Hec-Ras is given in appendix-3. The input and the output data file of Hec-6 for simulation of Beas River in natural condition for 2 year and 500 year return period floods in mobile bed mode is given in appendix-4 and 5 respectively. A summary of outputs of Hec-6 (both fix bed and mobile bed) and Hec-Ras (fix bed) in natural condition for 2 year and 500 year floods are given in table-4.10 and table-4.11 respectively. Cross-sections of Beas River in natural condition with 500 year flood are shown in fig.-4.3.

Table-4.10, Summary of Output of Hec-6 (both fix bed and mobile bed) and Hec-Ras (fix bed) in Natural Condition for 2 Year Flood

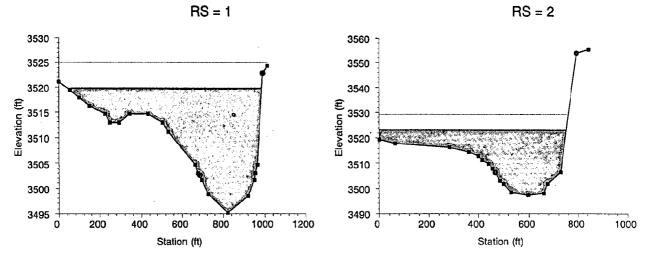
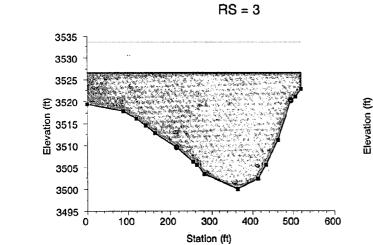
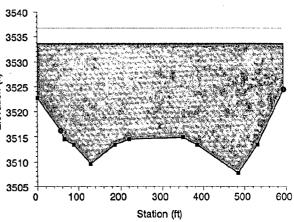
Sec.		water surface level	CVCI	Vei	Velocity Head	p	Ent	Energy Line Level	ivel	-	Top Width		Hyd	Hydrauhc Depth	ptn
	Hec-Ras	Hec-6	د-و ا	Hec-Ras	He	Hec-6	Hec-Ras	Hec-6	-6	Hec-Ras	Hec-6	9	Hec-Ras	He	Hec-6
No.		(fix)	(mobile)		(fix)	(mobile)		(fix)	(mobile)		(fix)	(mobile)		(fix)	(mobile)
L	(m)	(m)	(m)	(m)	(E)	(m)	(m)	(m)	(m)	(m) ,	(m)	(m)	(m)	(u)	(m)
1	1068.881	1068.881	1068.881	0.765	0.767	0.767	1069.646	1069.648	1069.648	100.247	100.283	100.283	2.375	2.375	2.375
2	1070.210	1070.222	1070.222	0.512	0.508	0.508	1070.723	1070.730	1070.730	93.037	93.385	93.385	3.061	3.076	3.076
3	1071.085	1071.085 1071.089	1071.089	0.698	0.698	0.698	1071.784	1071.788	1071.788	94.323	94.397	94.397	2.744	2.748	2.748
4	1072.655	1072.615	1072.615	0.488	0.509	0.509	1073.140	1073.123	1073.123	159.076	158.582	158.582	1.680	1.647	1.647
5	1075.244	1075.261	1075.261	0.713	0.696	0.696	1075.957	1075.958	1075.958	152.262	152.307	152.307	1.402	1.421	1.421
9	1077.524	1077.501	1077.501	0.662	0.679	0.679	1078.186	1078.180	1078.180	111.341	111.145	111.145	2.021	2.000	2.000
7	1080.771	1080.789	1080.789	1.009	0.991	0.991	1081.777	1081.780	1081.780	97.564	98.116	98.115	2.183	2.198	2.198
8	1082.881	1082.870	1082.870 1082.874	0.671	0.671	0.676	1083.552	1083.541	1083.550	112.659	112.731	112.469	2.369	2.370	2.365
6.	1085.015	1085.035	1085.045	0.921	0.899	0.890	1085.933	1085.934	1085.934	114.851	115.209	115.358	2.113	2.129	2.135
10	1086.905	1086.898	1086.895	0.451	0.448	0.452	1087.357	1087.347	1087.346	133.338	133.481	133.305	2.341	2.348	2.341
11	1088.027	1088.007	1088.012	0.366	0.374	0.373	1088.393	1088.382	1088.384	177.841	177.585	177.650	1.765	1.749	1.753
12	1088.899	1088.914	1088.913	0.354	0.350	0.350	1089.250	1089.264	1089.263	139.390	139.452	139.444	2.198	2.209	2.208
13	1090.409		1090.424 1090.420	0.896	0.882	0.885	1091.305	1091.306	1091.305	106.689	106.942	106.885	1.787	1.799	1.796
14	1093.174	1093.202	1093.202	1.012	0.983	0.984	1094.183	1094.185	1094.185	90.027	90.372	90.370	1.994	2.016	2.016
15	1095.241	1095.249	1095.250	0.421	0.417	0.417	1095.662	1095.666	1095.667	127.948	128.321	128.295	2.454	2.464	2.463
16	1096.405	1096.425	1096.426	0.915	0.896	0.895	1097.320	1097.321	1097.321	124.564	125.950	126.038	1.857	1.874	1:876
17	1097.966	1097.966 1097.962 1097.961	1097.961	0.613	0.629	0.630	1098.579	1098.591	1098.591	152.366	151.156	151.082	1.512	1.506	1.506

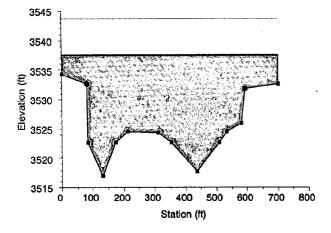
Table-4.11, Summary of Output of Hec-6 (both fix bed and mobile bed) and Hec-Ras (fix bed) in Natural Condition for 500 Year Flood

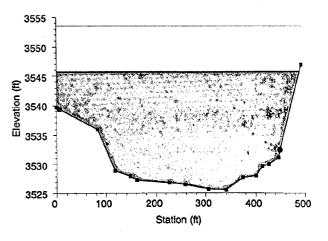
	Water	Water Surface Level	evel	Vel	Velocity Head	p	En	Energy Line Level	evel		Top Width		Hyd	Hydraulic Depth	epth
Sec.	Hec-Ras	Hec-6	<u>۲</u> -6	Hec-Ras	He	Hec-6	Hec-Ras	He	Hec-6	Hec-Ras	Hec-6	c-6	Hec-Ras	H	Hec-6
No.		(fix)	(mobile)		(trx)	(mobile)		(tix)	(mobile)		(fix)	(mobile)		(fix)	(mobile)
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(III)	(II)	(m)	(m)	(m)	(m)	(m)
1	1073.082	1073.081	1073.081	1.640	1.642	1.651	1074.723	1074.723	1074.731	288.082	288.046	288.038	6.244	6.242	6.213
7	1074.110	1074.097	1074.109	1.826	1.825	1.824	1075.933	1075.923	1075.933	229.037	229.036	229.044	6.649	6.647	6.656
9	1075.177	1075.150 1075.147	1075.147	2.146	2.149	2.224	1077.320	1077.299	1077.371	157.991	157.991	157.991	6.482		6.313
4	1077.271	1077.222	1077.320	166.0	1.004	1.021	1078.265	1078.226	1078.341	180.991	180.991	180.991	6.131	6.074	6.016
5	1078.488	1078.521	1078.507	1.918	1.879	1.874	1080.405	1080.399	1080.382	213.991	213.991	213.991	4.595	4.629	4.640
6	1080.994	1081.035	1080.937	2.399	2.356	2.357	1083.396	1083.391	1083.294	148.970	149.086	148.800	4.930	4.971	4.979
7	1084.841	1084.866	1084.743	2.796	2.715	2.717	1087.637	1087.581	1087.460	118.030	118.030	118.030	6.168	6.192	6.266
8	1086.909	1086.798	1086.604	2.299	2.343	2.444	1089.207	1089.141	1089.048	124.034	124.034	124.034	6.226	6.114	6.022
6	1088.793	1088.823	1088.609	2.518	2.477	2.490	1091.308	1091.300	1091.099	139.168	139.258	138.627	5.591	5.623	5.708
10	1091.223	1091.209	1090.970	1.317	1.320	1.369	1092.540	1092.530	1092.338	179.152	179.019	177.254	6.439	6.420	6.405
11	1092.360	1092.352	1092.133	0.860	0.858	0.950	1093.223	1093.210	1093.083	214.576	214.602	213.575	5.970	5.976	5.690
12	1092.561	1092.561	1092.364	1.527	1.527	1.834	1094.088	1094.088	1094.197	170.043	170.043	169.124	5.494	5.489	5.007
13	1094.256	1094.293	1094.313	2.302	2.261	2.261	1096.558	1096.554	1096.575	157.192	157.312	157.380	5.137	5.173	5.166
14	1097.436	1097.485	1097.261	2.244	2.189	2.203	1099.683	1099.673	1099.464	170.043	170.043	170.043	5.662	5.709	5.804
15	1099.555	1099.545	1099.278	1.302	1.292	1.413	1100.854	1100.838	1100.691	166.043	166.043	166.043	6.655	6.640	6.404
16	1100.363	1100.364	1100.241	1.442	1.433	.1.388	1101.805	1101.797	1101.629	196.049	196.049	196.049	5.195	5.195	5.507
17	1100.966	1100.970	1100.972	1.555	1.541	1.196	1102.521	1102.512	1102.168	230.058	230.058	230.058	4.046	4.054	4.662

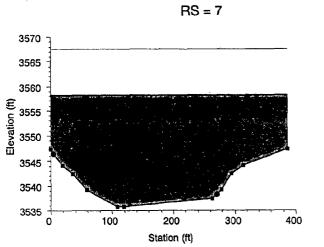
104

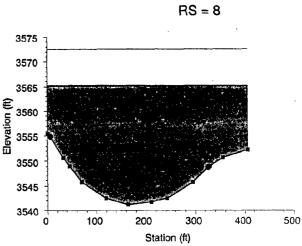
,

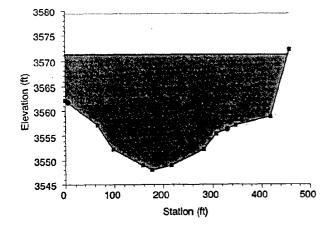




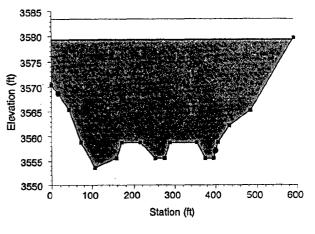

Fig. 4-3, Cross-Sections of Beas River in Natural Condition during 500 Year Flood

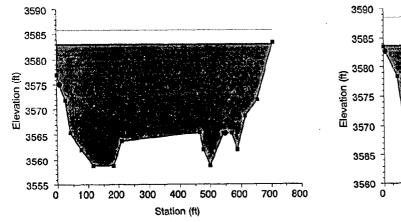


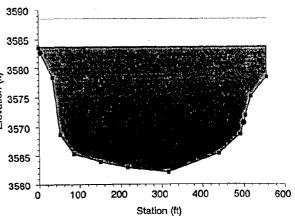

RS = 4

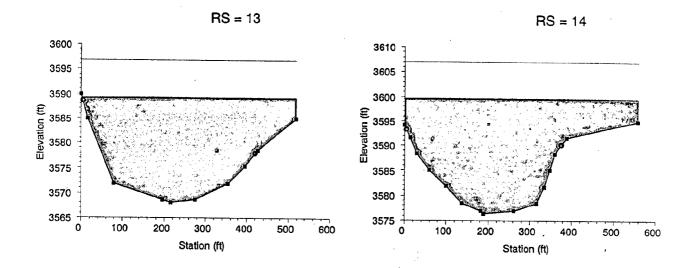

RS = 5

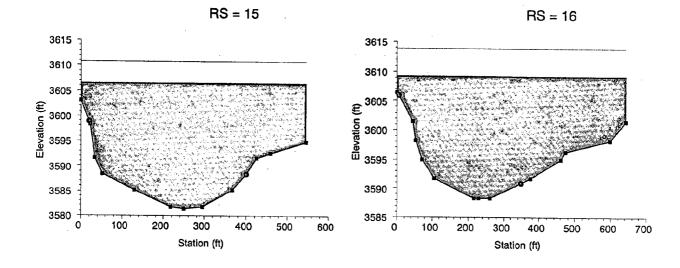

RS = 6

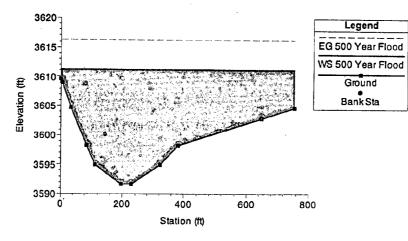











RS = 12

RS = 17

4.7 SEDIMENT LOAD COMPUTATION

The total sediment load in a stream consists of bed load and suspended load. The bed load is that part of sediment load, which is transported on or near the bed while the suspended load is the material moving is suspension in fluid, being kept in suspension by the turbulent fluctuations. The bed load and the suspended load are computed separately and the total sediment load is computed as the sum of the two.

BED LOAD

As the field data for bed load is not available, the bed load transport rate is computed using the empirical relation given by Meyer, Peter and Muller, which is applicable for gravel-bed stream. The equation for bed load is given as:

$$q_{b} = 8(\tau_{*} - \tau_{*c})^{1.5} (D_{50})^{1.5} [g(G-1)]^{0.5}$$

where,
$$\tau_{*c} = \frac{\tau_c}{\gamma(G-1)D_{50}}$$

 $\tau_* = \frac{\tau_o}{\gamma(G-1)D_{50}}$

$$\tau_{o} = \gamma RS$$

Taking average width, B= 200 m and average depth of flow, d= 3.0 m for design discharge of 2834 m³/s (100000 ft³/s) by fixed bed run in Hec-6.

B/d= 66.67 ∴R≅d

 D_{50} = 32*10⁻³ m (from grain size distribution curve) G= 2.65 S= 0.0091

:. Critical value of Shield's parameter for turbulent zone, $\tau_{\cdot c} = 0.056$ (from River Training Techniques by Pilarczyk et. all.)

$\tau_{o} = 9810 * 3.0 * 0.0091$	$= 267.81 \text{ N/m}^2$
$\tau = \frac{267.81}{(9810 \times 1.65 \times 32 \times 10^{-3})}$	= 0.517
$q_b = 8(0.517 - 0.056)^{1.5} * (32 * 10^{-3})^{1.5} * (9.81 * 1.65)^{0.5}$	$= 0.058 \text{ m}^3/\text{m-s}$
Considering density of sediment, $\rho_s = 2650 \text{ kg/m}^3$	
\therefore Bed load transport rate = $0.058*200*2650$	= 30740 kg/s
	= 30.74 t/s

SUSPENDED LOAD

Suspended load data for Beas River at Bhuntar is available for eleven years from 1985 to 1995 and is given in appendix-12. Referring this data, it is assumed that the suspended load is equal to 150 ha-m/month for the discharge of 2834 m³/s. Assuming the loose unit weight of sediment as 1650 kg/m³ and sediment void ratio as 30 percent, we get:

Total weight of suspended sediment transported per month = $150* 10^{4}* 0.7* 1650$ = $173.25*10^7$ kg

.:.Suspended load transport rate	= 173.25*10 ⁷ /(30*24*60*60)
	= 668.40 kg/s
	= 0.668 t/s
Total sediment load transport rate	= 30.74+0.668
	= 31.408 t/s
Total sediment concentration in ppm	$= 31.408 \times 10^3 \times 10^6 / (2834 \times 1000)$

= 1,1083 ppm

4.8 DETERMINATION OF STABLE CHANNEL PARAMETERS

I) BY RAUDKIVI'S METHOD

$$\tau_{*c} = \frac{d * S}{D(G - 1)} = 0.056$$

for G= 2.65, we get D= 10.82 d S ~ 11 d S
Hydraulic Radius, R= 0.59 d
 $\Rightarrow D = \frac{11RS}{0.59} = 19RS$
Taking D= D₉₀ = 185 mm S= 0.0091
 $\therefore R = \frac{D}{19S} = \frac{185 * 10^{-3}}{19 * 0.0091} = 1.07 m$
Mean flow velocity, U = $28R^{1/2}S^{1/3} = 28 * (1.07)^{1/2} (0.0091)^{1/3} = 6.05 m/s$
Area of flow, $A = \frac{Q_2}{U} = \frac{800}{6.05} = 132.23 m^2$
Depth of flow, $d = \frac{R}{0.59} = \frac{1.07}{0.59} = 1.81$
Top width, $B = \frac{A}{R} = \frac{132.23}{1.07} = 123.58 m$

II) BY HEY'S EMPIRICAL FORMULA

Using $Q_{bf} = 800 \text{ m}^3/\text{s}$ $D_{16} = 9 \text{ mm}$ $D_{50} = 32 \text{ mm}$ $D_{84} = 105 \text{ mm}$ $B = 4.33Q_{bf}^{0.50} = 4.33(800)^{0.5} = 119.64 \text{ m}$ $d = 0.22Q_{bf}^{0.37} (D_{50})^{-0.11} = 0.22(800)^{0.37} (32 * 10^{-3})^{-0.11} = 3.81 \text{ m}$ $d_{\text{max}} = 0.20^{0.37\sigma_{D}} (Q_{bf})^{0.36} (D_{50})^{-0.21} = 16.64 \text{ m}$ Where $\sigma_{D} = 1/2\log(D_{84}/D_{16}) = 1/2\log(105/9) = 0.533$

Now, to calculate the regime slope, we first have to calculate the sediment transport at the bankful discharge.

Here,
$$Q_{bf} = 800 \text{ m}^3/\text{s}$$
 B= 457.40 ft = 139.45 m

d= 3571.638-3564.392= 7.	246 ft = 2.21 m		
B/d= 139.45/2.21 = 63.10	∴R= d= 2.21		
$D_{50}=32*10^{-3}$ m	G= 2.65	S=0.0091	$\tau_{*c} = 0.056$
$\tau_{o} = \gamma RS = 9810 * 2.21 * 0.00$	091=197.29 N/m	2	
$\tau_{\bullet} = \frac{\tau_{o}}{\gamma(G-1)D_{50}} = \frac{1}{9810 * (2)}$	197.29 2.65 – 1) * 32 * 10 ⁻³	-= 0.38	
$q_{b} = 8(\tau_{*} - \tau_{*c})^{1.5} (D_{50})^{1.5} [g($	$(G-1)^{0.5} = 8(0.38)$	$-0.056)^{1.5}(32*10^{-3})^{1}$	$[9.81(2.65-1)]^{p.5}$
= 0.034 m3/m-s			- · · · ·
:. Bed load = $0.034*139.4$	5*2650/1000 = 1	2.56 t/s	
Suspended load assumed		= 100 ha/m/month	(based on field
measurement of suspended	load)		
Total weight of suspended	sediment transpo	rted per month	
		$= 100*10^{4}*1650*0.$	$7 = 1.16 \times 10^9 \text{ kg}$
Rate of suspended sedimen	t Transported	= 1.16*10 ⁹ /(30*24*	°60*60)
		= 447 kg/s	=0.447 t/s
Total sediment load transpo	orted	= 12.56+0.447	= 13 t/s

$$S = 0.087^{0.84\sigma_{\rm b}} (Q_{\rm bf})^{-0.43} (D_{50})^{0.75} (Q_{\rm t})^{0.10}$$

= 0.087^{0.84*0.533} (800)^{-0.43} (32 * 10⁻³)^{0.75} (13000)^{0.10}
= 0.0037 \approx 1/270

III) BY BRAY'S BEST FIT DIMENSIONLESS EXPRESSION

$B = 2.68 * (Q_2^{0.496}) * (D_{50}^{-0.241}) = 2.68 * (800)^{.496} (32 * 10^{-3})^{-0.241}$	= 169.17 m
$d = 0.20 * (Q_2^{0.397}) * (D_{50}^{0.008}) = 0.20 * (800)^{0.397} * (32 * 10^{-3})^{0.008}$	= 2.76 m
$U = 1.87 * (Q_2^{0.107}) * (D_{50}^{0.233}) = 1.87 * (800)^{0.107} * (32 * 10^{-3})^{0.233}$	= 1.71 m/s
$S = 0.063 * (Q_2^{-0.375}) * (D_{50}^{0.937}) = 0.063 * (800)^{-0.375} * (32 * 10^{-3})^{0.937}$	= 0.000204
= 1/4900	

IV) BY BRAY'S BEST FIT EXPRESSION

$B = 3.83Q_2^{0.528}D_{50}^{-0.07} = 3.83(800)^{0.528}(32 \times 10^{-3})^{-0.07}$	= 166.21 m
$d = 0.246Q_2^{0.331}D_{50}^{-0.025} = 0.246(800)^{0.331}(32 * 10^{-3})^{-0.025}$	= 2.45 m
$U = 1.05Q_2^{0.140}D_{50}^{0.095} = 1.05(800)^{0.140}(32 * 10^{-3})^{0.095}$	= 1.93 m/s
$S = 0.018Q_2^{-0.334}D_{50}^{0.586} = 0.018(800)^{-0.334}(32 \times 10^{-3})^{0.586}$	= 0.00026
	= 1/3846

V) BY KELLERHAL'S METHOD

$B = 3.26Q_2^{0.5} = 3.26(800)^{0.5}$	= 92.21 m
$d = 0.183Q_2^{0.4}D_{90}^{-0.12} = 0.183(800)^{0.4}(185 * 10^{-3})^{-0.12}$	= 3.25 m
$U = 1.67Q_2^{0.10}D_{90}^{0.12} = 1.67(800)^{0.10}(185*10^{-3})^{0.12}$	= 2.66 m/s
$S = 0.026Q_2^{-0.4}D_{90}^{0.92} = 0.026(800)^{-0.4}(185 * 10^{-3})^{0.92}$	= 0.00038
	= 1/2630

VI) BY HEY AND THORNE'S EMPIRICAL FORMULA

$B = 3.98Q_2^{0.52}Q_5^{-0.01} = 3.98(800)^{0.52}(13000)^{-0.01}$	= 117.05 m
$d = 0.16Q_2^{0.39}Q_s^{-0.02}D_{50}^{-0.15} = 0.16(800)^{0.39}(13000)^{-0.02}(32 \times 10^{-3})^{-0.15}$	= 3.00 m
$S = 0.087Q_2^{-0.43}Q_s^{-0.10}D_{50}^{-0.09}D_{84}^{0.84} = 0.087(800)^{-0.43}(13000)^{-0.10}(32*10^{-3})^{-0.10}(32*10)^{-0.10}(32*10)^{-0.10}$	$-0.09(105 * 10^{-3})^{0.84}$
= 0.00039	= 1/2564

The above calculations show that the values of stable channel parameters calculated by different methods vary significantly. Actually these empirical relations are based on some flume and field data. So they are applicable for a particular range of discharge and sediment size and gradation. Hey's empirical formulas are mainly developed for mobile gravel bed rivers, so it is considered most suitable for the Beas river. Thus the following channel parameters computed by Hey's relation is used for river channelization:

Channel width, B = 120.00 m flow depth, d = 3.80 m bed slope = 1/270

4.9 DIVERSION OF BEAS RIVER

As already mentioned, the runway length is required to be extended by 1000 m of 200 m width. But it is not possible to extend it from 16 side of the runway due to existence of heavy settlement and market at this side. So it is extended from 34 side only for the entire length of 1000 m. It can be observed from the survey map that the centerline of runway extended for the required length of 1000 m crosses the river twice. It requires diversion of existing channel along a new course so that the required space for the runway can be created.

The diversion channel shall be diverted from chainage 1+900 of the existing channel and is merged again with the existing channel at chainge 3+700. Thus the existing channel of 1800 m length shall be replaced by a new diversion channel of length 1700 m. In this case the reduction in channel length by diversion of the existing channel is not significant, so a pilot channel may not enlarge satisfactorily. Further, it is not possible to allow sufficient time for development of channel to ultimate section. So the full section of the channel will be excavated before diverting the flow into it.

The diversion channel shall be designed as a cosine curve since a straight channel is always unstable and try to meander. According to Chang (1984) most meanders tend to develop a radius of curvature to width ratio (r/B) between 2.2 and 4.0. Similarly according to Mamak (1956) and Grisin the optimum meander arc length is related with channel width (B) as L/2 = 10 to 15 * B. Hey (1983) suggests the relation $L/2 = 2\pi B$. Assuming the trapezoidal cross-section for the diversion channel with bottom width of 120 m and side slope of 2H:1V, we get average width B of 130 m for average depth of flow of 5 m.

Hence, the range of R_{min} and L can be as given below:

$R_{min} = 286 m - 520 m$	- by Chang
L = 2600 m - 3900 m	- by Mamak and Grisin
L = 1633 m	- by Hey

A cosine curve for the given field situation is designed by trial assuming different values of R_{min} and L. It is found that two cosine curves (length L/2 each) with R_{min} equal to 400 m and L equal to 1750 m and R_{min} equal to 500 m and L equal to 1600 m provided the required space for accommodation of the runway extension as shown in the survey map. A computer program has been developed in fortran to compute co-ordinates of points along the cosine curve for given R_{min} and L. This program has been included here as appendix-6 in this thesis. The results of the program for R_{min} equal to 400 m and L equal to 1750 m and R_{min} equal to 500 m and L equal to 1600 m are given below in table-4.12 and 4.13 respectively.

TABLE-4.12, RESULT OF COMPUTER PROGRAM OF COSINE CURVEFOR MINIMUM RADIUS OF 400 M AND CURVE LENGTH OF 1750 M

Radmin (m)	Curve Length (m)	N-division	
400	1750	37	
	Angles	s in degrees	
2.250	2.250	2.250	2.250
2.000	2.000	2.000	2.000
1.750	1.750	1.750	1.750
1.250	1.250	1.250	1.250
1.000	1.000	1.000	1.000
0.750	0.750	0.750	0.750
0.600	0.600	0.600	0.600
0.250	0.250	0.250	0.250
0.100	0.100	0.100	0.100
0.063			· · · ·
	Cartesian coordinat	tes and radii of the curve	
Angle	Abscissa, X (m)	Ordinate, Y (m)	Radius (m)
2.250	399.691	15.719	400.639
4.500	398.762	31.463	402.573
6.750	397.205	47.261	405.861
9.000	395.007	63.140	410.602
11.000	392.496	77.369	416.166
13.000	389.444	91.715	423.152
15.000	385.848	106.128	431.713
17.000	381.637	120.806	442.223
18.750	377.425	133.857	453.296
20.500	372.722	147.036	466.379
22.250	367.426	160.559	482.107
24.000	361.550	174.309	500.926
25.250	356.927	184.389	516.854
26.500	351.876	194.797	535.524
27.750	346.445	205.390	557.241

RESULTS OF COSINE GENERATED CURVE: MNDR.OUT

		-	
29.000	340.539	216.316	583.046
30.000	335.415	225.365	607.535
31.000	329.898	234.723	636.407
32.000	324.000	244.342	670.591
33.000	317.509	254.525	712.868
33.750	312.212	262.561	751.661
34.500	306.494	270.992	798.702
35.250	300.369	279.775	856.269
36.000	293.532	289.310	931.422
36.600	287.564	297.429	1008.904
37.200	280.825	306.398	1113.802
37.800	273.339	316.146	1259.683
38.400	264.585	327.301	1488.219
38.650	260.205	332.799	1488.219
38.900	255.535	338.609	
39.150	250.196	345.191	1833.102
39.400	243.801	353.005	2124.221
39.500	240.694	356.780	2624.736
39.600	237.117	361.109	2965.190
39.700	232.766	366.355	3487.141
39.800	226.706	373.636	4443.093
39.860	220.459		7255.691
	And the second	381.120 es for XOIs and YOIs	27006.970
Angle	Abscissa, X (m)		
2.250	600.181	Ordinate, Y (m)	Radius (m)
4.500	600.723	23.599	400.639
1.200			
and the second se		47.364	402.573
6.750	601.658	71.469	405.861
6.750 9.000	601.658 603.041	71.469 96.103	405.861 410.602
6.750 9.000 11.000	601.658 603.041 604.720	71.469 96.103 118.648	405.861 410.602 416.166
6.750 9.000 11.000 13.000	601.658 603.041 604.720 606.910	71.469 96.103 118.648 141.962	405.861 410.602 416.166 423.152
6.750 9.000 11.000 13.000 15.000	601.658 603.041 604.720 606.910 609.715	71.469 96.103 118.648 141.962 166.122	405.861 410.602 416.166 423.152 431.713
6.750 9.000 11.000 13.000 15.000 17.000	601.658 603.041 604.720 606.910 609.715 613.331	71.469 96.103 118.648 141.962 166.122 191.667	405.861 410.602 416.166 423.152
6.750 9.000 11.000 13.000 15.000 17.000 18.750	601.658 603.041 604.720 606.910 609.715 613.331 617.336	71.469 96.103 118.648 141.962 166.122 191.667 215.349	405.861 410.602 416.166 423.152 431.713
6.750 9.000 11.000 13.000 15.000 17.000 18.750 20.500	601.658 603.041 604.720 606.910 609.715 613.331 617.336 622.308	71.469 96.103 118.648 141.962 166.122 191.667 215.349 240.381	405.861 410.602 416.166 423.152 431.713 442.223
$\begin{array}{r} 6.750 \\ \hline 9.000 \\ \hline 11.000 \\ \hline 13.000 \\ \hline 15.000 \\ \hline 17.000 \\ \hline 18.750 \\ \hline 20.500 \\ \hline 22.250 \end{array}$	601.658 603.041 604.720 606.910 609.715 613.331 617.336 622.308 628.608	71.469 96.103 118.648 141.962 166.122 191.667 215.349 240.381 267.472	405.861 410.602 416.166 423.152 431.713 442.223 453.296
$\begin{array}{r} 6.750 \\ 9.000 \\ 11.000 \\ 13.000 \\ 15.000 \\ 17.000 \\ 18.750 \\ 20.500 \\ 22.250 \\ 24.000 \end{array}$	$\begin{array}{r} 601.658 \\ 603.041 \\ 604.720 \\ 606.910 \\ 609.715 \\ 613.331 \\ 617.336 \\ 622.308 \\ 628.608 \\ 636.568 \end{array}$	71.469 96.103 118.648 141.962 166.122 191.667 215.349 240.381 267.472 296.789	405.861 410.602 416.166 423.152 431.713 442.223 453.296 466.379
$\begin{array}{r} 6.750 \\ 9.000 \\ 11.000 \\ 13.000 \\ 15.000 \\ 15.000 \\ 17.000 \\ 18.750 \\ 20.500 \\ 22.250 \\ 24.000 \\ 25.250 \end{array}$	$\begin{array}{r} 601.658 \\ 603.041 \\ 604.720 \\ 606.910 \\ 609.715 \\ 613.331 \\ 617.336 \\ 622.308 \\ 628.608 \\ 636.568 \\ 643.635 \end{array}$	71.469 96.103 118.648 141.962 166.122 191.667 215.349 240.381 267.472	405.861 410.602 416.166 423.152 431.713 442.223 453.296 466.379 482.107
$\begin{array}{r} 6.750 \\ \hline 9.000 \\ \hline 11.000 \\ \hline 13.000 \\ \hline 15.000 \\ \hline 17.000 \\ \hline 18.750 \\ \hline 20.500 \\ \hline 22.250 \\ \hline 24.000 \\ \hline 25.250 \\ \hline 26.500 \end{array}$	$\begin{array}{r} 601.658 \\ 603.041 \\ 604.720 \\ 606.910 \\ 609.715 \\ 613.331 \\ 617.336 \\ 622.308 \\ 628.608 \\ 636.568 \\ 643.635 \\ 652.268 \end{array}$	71.469 96.103 118.648 141.962 166.122 191.667 215.349 240.381 267.472 296.789	405.861 410.602 416.166 423.152 431.713 442.223 453.296 466.379 482.107 500.926
$\begin{array}{r} 6.750 \\ 9.000 \\ 11.000 \\ 13.000 \\ 15.000 \\ 17.000 \\ 18.750 \\ 20.500 \\ 22.250 \\ 24.000 \\ 25.250 \\ 26.500 \\ 27.750 \end{array}$	601.658 603.041 604.720 606.910 609.715 613.331 617.336 622.308 636.568 643.635 652.268 662.743	71.469 96.103 118.648 141.962 166.122 191.667 215.349 240.381 267.472 296.789 319.641	$\begin{array}{r} 405.861 \\ 410.602 \\ 416.166 \\ 423.152 \\ 431.713 \\ 442.223 \\ 453.296 \\ 466.379 \\ 482.107 \\ 500.926 \\ 516.854 \end{array}$
$\begin{array}{r} 6.750 \\ 9.000 \\ 11.000 \\ 13.000 \\ 15.000 \\ 15.000 \\ 17.000 \\ 18.750 \\ 20.500 \\ 22.250 \\ 24.000 \\ 25.250 \\ 26.500 \\ 27.750 \\ 29.000 \end{array}$	$\begin{array}{r} 601.658\\ 603.041\\ 604.720\\ 606.910\\ 609.715\\ 613.331\\ 617.336\\ 622.308\\ 628.608\\ 636.568\\ 643.635\\ 652.268\\ 662.743\\ 675.734\\ \end{array}$	71.469 96.103 118.648 141.962 166.122 191.667 215.349 240.381 267.472 296.789 319.641 344.670	405.861 410.602 416.166 423.152 431.713 442.223 453.296 466.379 482.107 500.926 516.854 535.524
$\begin{array}{r} 6.750 \\ 9.000 \\ 11.000 \\ 13.000 \\ 15.000 \\ 17.000 \\ 18.750 \\ 20.500 \\ 22.250 \\ 24.000 \\ 25.250 \\ 26.500 \\ 27.750 \\ 29.000 \\ 30.000 \end{array}$	$\begin{array}{r} 601.658\\ 603.041\\ 604.720\\ 606.910\\ 609.715\\ 613.331\\ 617.336\\ 622.308\\ 628.608\\ 636.568\\ 643.635\\ 652.268\\ 662.743\\ 675.734\\ 688.552\\ \end{array}$	71.469 96.103 118.648 141.962 166.122 191.667 215.349 240.381 267.472 296.789 319.641 344.670 371.908	405.861 410.602 416.166 423.152 431.713 442.223 453.296 466.379 482.107 500.926 516.854 535.524 557.241
$\begin{array}{r} 6.750 \\ 9.000 \\ 11.000 \\ 13.000 \\ 15.000 \\ 15.000 \\ 17.000 \\ 18.750 \\ 20.500 \\ 22.250 \\ 24.000 \\ 25.250 \\ 26.500 \\ 27.750 \\ 29.000 \\ 30.000 \\ 31.000 \end{array}$	601.658 603.041 604.720 606.910 609.715 613.331 617.336 622.308 628.608 636.568 643.635 652.268 662.743 675.734 688.552 704.207	71.469 96.103 118.648 141.962 166.122 191.667 215.349 240.381 267.472 296.789 319.641 344.670 371.908 402.226	$\begin{array}{r} 405.861 \\ 410.602 \\ 416.166 \\ 423.152 \\ 431.713 \\ 442.223 \\ 453.296 \\ 466.379 \\ 482.107 \\ 500.926 \\ 516.854 \\ 535.524 \\ 557.241 \\ 583.046 \\ 607.535 \end{array}$
$\begin{array}{r} 6.750 \\ 9.000 \\ 11.000 \\ 13.000 \\ 15.000 \\ 15.000 \\ 17.000 \\ 18.750 \\ 20.500 \\ 22.250 \\ 24.000 \\ 25.250 \\ 26.500 \\ 27.750 \\ 29.000 \\ 30.000 \\ 31.000 \\ 32.000 \end{array}$	$\begin{array}{r} 601.658\\ 603.041\\ 604.720\\ 606.910\\ 609.715\\ 613.331\\ 617.336\\ 622.308\\ 628.608\\ 636.568\\ 643.635\\ 652.268\\ 662.743\\ 675.734\\ 688.552\\ \end{array}$	71.469 96.103 118.648 141.962 166.122 191.667 215.349 240.381 267.472 296.789 319.641 344.670 371.908 402.226 429.379	$\begin{array}{r} 405.861 \\ 410.602 \\ 416.166 \\ 423.152 \\ 431.713 \\ 442.223 \\ 453.296 \\ 466.379 \\ 482.107 \\ 500.926 \\ 516.854 \\ 535.524 \\ 557.241 \\ 583.046 \\ 607.535 \\ 636.407 \\ \end{array}$
$\begin{array}{r} 6.750\\ 9.000\\ 11.000\\ 13.000\\ 15.000\\ 17.000\\ 18.750\\ 20.500\\ 22.250\\ 24.000\\ 25.250\\ 26.500\\ 27.750\\ 29.000\\ 30.000\\ 31.000\\ 32.000\\ 33.000\\ \end{array}$	601.658 603.041 604.720 606.910 609.715 613.331 617.336 622.308 628.608 636.568 643.635 652.268 662.743 675.734 688.552 704.207	71.469 96.103 118.648 141.962 166.122 191.667 215.349 240.381 267.472 296.789 319.641 344.670 371.908 402.226 429.379 459.785	$\begin{array}{r} 405.861 \\ 410.602 \\ 416.166 \\ 423.152 \\ 431.713 \\ 442.223 \\ 453.296 \\ 466.379 \\ 482.107 \\ 500.926 \\ 516.854 \\ 535.524 \\ 557.241 \\ 583.046 \\ 607.535 \\ 636.407 \\ 670.591 \\ \end{array}$
$\begin{array}{r} 6.750\\ 9.000\\ 11.000\\ 13.000\\ 15.000\\ 15.000\\ 17.000\\ 18.750\\ 20.500\\ 22.250\\ 24.000\\ 25.250\\ 26.500\\ 27.750\\ 29.000\\ 30.000\\ 31.000\\ 32.000\\ 33.000\\ 33.750\\ \end{array}$	$\begin{array}{r} 601.658\\ 603.041\\ 604.720\\ 606.910\\ 609.715\\ 613.331\\ 617.336\\ 622.308\\ 628.608\\ 636.568\\ 643.635\\ 652.268\\ 662.743\\ 675.734\\ 688.552\\ 704.207\\ 723.411\\ \end{array}$	71.469 96.103 118.648 141.962 166.122 191.667 215.349 240.381 267.472 296.789 319.641 344.670 371.908 402.226 429.379 459.785 493.998	$\begin{array}{r} 405.861 \\ 410.602 \\ 416.166 \\ 423.152 \\ 431.713 \\ 442.223 \\ 453.296 \\ 466.379 \\ 482.107 \\ 500.926 \\ 516.854 \\ 535.524 \\ 557.241 \\ 583.046 \\ 607.535 \\ 636.407 \\ 670.591 \\ 712.868 \end{array}$
$\begin{array}{r} 6.750\\ 9.000\\ 11.000\\ 13.000\\ 15.000\\ 17.000\\ 18.750\\ 20.500\\ 22.250\\ 24.000\\ 25.250\\ 26.500\\ 27.750\\ 29.000\\ 30.000\\ 31.000\\ 32.000\\ 33.000\\ \end{array}$	601.658 603.041 604.720 606.910 609.715 613.331 617.336 622.308 628.608 636.568 643.635 652.268 662.743 675.734 688.552 704.207 723.411 748.033	$\begin{array}{r} 71.469\\ 96.103\\ 118.648\\ 141.962\\ 166.122\\ 191.667\\ 215.349\\ 240.381\\ 267.472\\ 296.789\\ 319.641\\ 344.670\\ 371.908\\ 402.226\\ 429.379\\ 459.785\\ 493.998\\ 534.212\\ \end{array}$	$\begin{array}{r} 405.861 \\ 410.602 \\ 416.166 \\ 423.152 \\ 431.713 \\ 442.223 \\ 453.296 \\ 466.379 \\ 482.107 \\ 500.926 \\ 516.854 \\ 535.524 \\ 557.241 \\ 583.046 \\ 607.535 \\ 636.407 \\ 670.591 \\ 712.868 \\ 751.661 \end{array}$
$\begin{array}{r} 6.750\\ 9.000\\ 11.000\\ 13.000\\ 15.000\\ 15.000\\ 17.000\\ 18.750\\ 20.500\\ 22.250\\ 24.000\\ 25.250\\ 26.500\\ 27.750\\ 29.000\\ 30.000\\ 31.000\\ 32.000\\ 33.000\\ 33.750\\ \end{array}$	$\begin{array}{r} 601.658\\ 603.041\\ 604.720\\ 606.910\\ 609.715\\ 613.331\\ 617.336\\ 622.308\\ 628.608\\ 636.568\\ 643.635\\ 652.268\\ 662.743\\ 652.268\\ 662.743\\ 675.734\\ 688.552\\ 704.207\\ 723.411\\ 748.033\\ 771.355\\ \end{array}$	$\begin{array}{r} 71.469\\ 96.103\\ 118.648\\ 141.962\\ 166.122\\ 191.667\\ 215.349\\ 240.381\\ 267.472\\ 296.789\\ 319.641\\ 344.670\\ 371.908\\ 402.226\\ 429.379\\ 459.785\\ 493.998\\ 534.212\\ 569.509\\ \end{array}$	$\begin{array}{r} 405.861 \\ 410.602 \\ 416.166 \\ 423.152 \\ 431.713 \\ 442.223 \\ 453.296 \\ 466.379 \\ 482.107 \\ 500.926 \\ 516.854 \\ 535.524 \\ 557.241 \\ 583.046 \\ 607.535 \\ 636.407 \\ 670.591 \\ 712.868 \end{array}$

.

26.600	000.000	700.001	1000.001
36.600	938.206	780.831	1008.904
37.200	1010.321	860.491	1113.802
37.800	1113.111	967.898	1259.683
38.400	1278.354	1131.141	1488.219
38.650	1388.089	1235.453	1637.159
38.900	1534.337	1371.142	1833.102
39.150	1754.809	1570.828	2124.221
39.400	2141.037	1912.153	2624.736
39.500	2408.290	2144.539	2965.190
39.600	2824.782	2503.024	3487.141
39.700	3609.261	3171.290	4443.093
39.800	6100.363	5270.600	7255.691
39.860	30553.880	25721.130	27006.970

TABLE-4.13, RESULT OF COMPUTER PROGRAM OF COSINE CURVE FOR MINIMUM RADIUS OF 500 M AND CURVE LENGTH OF 1600 M

RESULTS OF CC	SINE GENERATED CU	RVE: MNDR.OUT	<u> </u>				
Radmin (m)	Curve Length (m)	N-division					
500	1600 41						
Angles in degrees							
1.750	1.750	1.750	1.750				
1.500	1.500	1.500	1.500				
1.250	1.250	1.250	1.250				
1.000	1.000	1.000	1.000				
0.750	0.750	0.750	0.750				
0.500	0.500	0.500	0.500				
0.250	0.250	0.250	0.250				
0.150	0.150	0.150	0.150				
0.100	0.100	0.100	0.100				
0.030	0.030	, 0.030	0.030				
0.037			· · · · · · · · · · · · · · · · · · ·				
	Cartesian coordinat	es and radii of the curve					
Angle	Abscissa, X (m)	Ordinate, Y (m)	Radius (m)				
1.750	499.766	15.285	500.903				
3.500	499.063	30.610	503.642				
5.250	497.884	46.019	508.308				
7.000	496.215	61.558	515.064				
8.500	494.387	74.985	522.683				
10.000	492.158	88.660	532.294				
11.500	489.536	102.467	544.088				
13.000	486.461	116.617	558.622				
14.250	483.548	128.626	573.157				
15.500	480.308	140.816	590.268				
16.750	476.665	153.411	610.812				
18.000	472.600	166.394	635.546				
19.000	469.024	177.078	659.078				
	. 465.077	188.216	687.213				
21.000	460.785	199.688	720.745				
22.000	456.057	211.685	761.779				
22.750	452.155	221.158	799.414				

.

00 500	442.042		
23.500	447.915	231.079	844.844
24.250	443.334	241.423	900.232
25.000	438.218	252.576	971.481
25.500	434.504	260.449	1030.832
26.000	430.471	268.806	1104.157
26.500	425.967	277.936	1199.630
27.000	421.032	287.717	1325.335
27.250	418.374	292.903	1404.733
27.500	415.416	298.613	1505.154
27.750	412.318	304.531	1627.106
28.000	408.789	311.200	1792.698
28.150	406.527	315.437	1917.894
28.300	404.084	319.988	2074.541
28.450	401.410	324.936	2278.367
28.600	398.243	330.760	2578.852
28.700	396.075	334.726	2835.081
28.800	393.661	339.124	3188.280
28.900	390.621	344.640	3783.142
29.000	387.219	350.787	4786.389
29.030	385.735	353.461	5415.814
29.060	384.483	355.714	6094.988
29.090	382.528	359.228	7593.616
29.120	380.693	362.525	9924.783
29.160	376.726	369.641	42432.240
		es for XOIs and YOIs	
Angle	Abscissa, X (m)	Ordinate, Y (m)	Radius (m)
1.750	750.561	22.950	500.903
3.500	752.250	46.102	503.642
5.250	755.135	69.667	508.308
7.000	759.341	93.879	515.064
8.500	764.124	115.296	522.683
10.000	770.220	137.716	532.294
11.500	777.792	161.124	544.088
13.000	787.255	186.104	558.622
14.250	796.855	208.251	573.157
15.500	808.323	231.798	590.268
16.750	822.311	257.467	610.812
18.000	839.445	285.631	635.546
19.000	856.017	310.360	659.078
20.000	876.147	337.919	687.213
21.000	900.540	368.569	720.745
22.000	930.919	403.603	761.779
22.750	959.232	433.889	799.414
23.500	993.908	468.619	844.844
24.250	1036.825	508.846	900.232
25.000	1092.909	557.986	971.481
25.500	1140.261	597.196	1030.832
	1199.431	643.964	1104.157
26.000		702.711	1199.630
26.000 26.500	1277.398		1000 000
26.000 26.500 27.000	1277.398 1381.348	777.304	1325.335
26.000 26.500 27.000 27.250		777.304 823.196	1325.335
26.000 26.500 27.000 27.250 27.500	1381.348		
26.000 26.500 27.000 27.250	1381.348 1447.628	823.196	1404.733

28.150	1884.158	1106.411	1917.894
28.300	2019.505	1190.125	2074.541
28.450	2196.754	1298.012	2278.367
28.600	2460.160	1455.667	2578.852
28.700	2686.599	1589.351	2835.081
28.800	3001.368	1773.187	3188.280
28.900	3538.364	2083.211	3783.142
29.000	4464.458	2611.691	4786.389
29.030	5059.647	2948.966	5415.814
29.060	5715.163	3319.132	6094.988
29.090	7214.431	4162.669	7593.616
29.120	9703.556	5558.326	9924.783
29.160	58200.940	32642.460	42432.240

4.10 DESIGN OF LONGITUDINAL DIKES

The computation of water surface profiles (appendix-2, 3 and 5) shows that there is spillage of flow over the banks of the river for the design flood of 500 year return period (4700 cumecs). Longitudinal dikes shall be provided to protect the flooding of nearby area including the airport. The river is carried along the existing course from chainage 0+000 to 1+900. There after it shall be channelised along the new course downstream of chainge1+900 to accommodate extension of the existing runway.

The top width of the dikes shall be kept 3.0 m wide to allow for vehicular movement during construction and subsequently for inspection and maintenance. Both the waterside slope and the outer slope of the dikes shall be sloping 2 H: 1 V. The top of the dikes shall be fixed 1.50 m above the design flood level. The main body of the dikes shall be constructed with riverbed material conforming certain specific gradation. In this case study, properties of embankment fill material will be considered as given below:

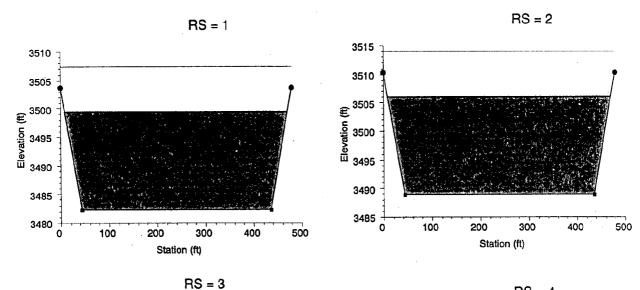
$D_{10} = 0.18 \text{ mm}$	$D_{15} = 0.20$ mm	$D_{50} = 1.20 \text{ mm}$
$D_{60} = 2.20 \text{ mm}$	$D_{90} = 15.00 \text{ mm}$	Solid density, ρ_s = 2650 kg/m3
Porosity, n = 40 %	Angle of repose, $\phi = 40^{\circ}$	Cohesion, $c = 0$

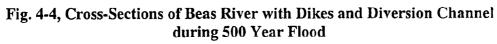
The waterside slope of the dikes shall be protected by one of the following three alternative options of cover-layer:

- Stone rip-rap with graded filter
- Gabion mattress with geo-textile filter

• Cement concrete blocks with geo-textile filter

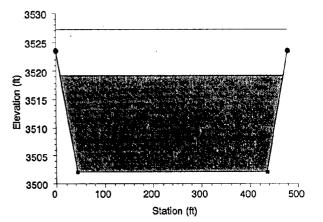
The final selection of the best alternative among the above alternatives depends upon the degree of protection required, durability, effectiveness, economy and ease of construction etc.

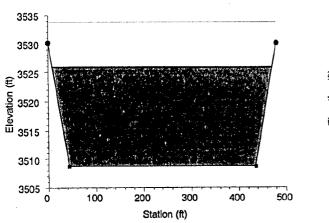

4.11 COPMUTATION OF WATER SURFACE PROFILE WITH DIKES AND THE DIVERSION CHANNEL

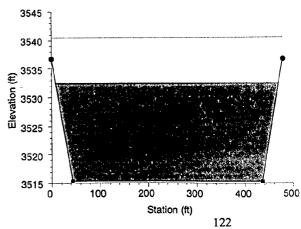

Water surface profile is again calculated for the study reach with the dikes and the diversion channel following the procedure given in section 4.6. The Manning's roughness coefficient is taken as 0.038 for the channel and 0.045 for the left and the right overbanks. The geometric data shall be fed assuming a trapezoidal channel section of bottom width 120 m, depth 6.5 m and side slope of 2:1. The longitudinal slope of the diversion channel is 0.01007 {Assuming the slope of the existing channel downstream of chainage 3+270 equal to 0.0091, we get the bed level at chainage 3+700 as 3482.34 ft (3495.17-3.28*(3700-3270)*0.0091). The bed level at chainage 1+900 is 3538.49 ft (averaging the bed level at chainage 1+800 and 2+000)}. The stage discharge curve shall again be prepared for the downstream end of the diversion channel following the procedure given is section 4.5 with n = 0.038 and S = 0.01007. This stage discharge curve shall be used as the downstream boundary condition for simulation in Hec-6 and Hec-Ras.

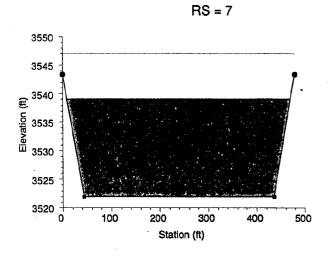
The input and the output data file of Hec-6 for simulation of Beas River with flood dike and diversion channel for 2 year and 500 year return period floods in fix bed mode is given in appendix-7 and 8 respectively. The output for the same condition as obtained by Hec-Ras is given in appendix-9. The input and the output data file of Hec-6 for simulation of Beas River with flood dike and diversion channel for 2 year and 500 year return period floods in mobile bed mode is given in appendix-10 and 11 respectively. A summary of outputs of Hec-6 (both fix bed and mobile bed) and Hec-Ras (fix bed) with dike and channelization for 2 year and 500 year floods are given in table-4.14 and table-4.15 respectively. Cross-sections and L-section of Beas River with dike and channelization for 500 year flood are shown in fig.-4.4 and fig.-4.5 respectively.

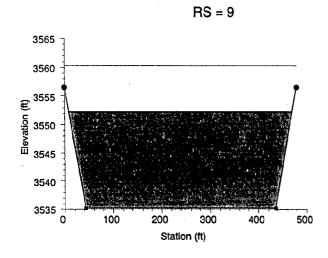
		Water Surface Level	evel	Vel	Velocity Head	Ð	Ene	Energy Line Level	ivel	,	Top Width	-	Hydu	Hydraulic Depth	pth
Sec	Hec-Ras	He	Hec-6	Hec-Ras	Hec	ec-6	Hec-Ras	Hec-6	9	Hec-Ras	Hec-6	ę	Hec-Ras	He	Hec-6
So.		(fix)	(mobile)	<u></u>	(tix)	(mobile)		(tix)	(mobile)	د	(fix)	(mobile)	1	(fix)	(mobile)
	E	(III)	(H)	(m)	(II)	(U)	(E)	(II)	(m)	(H)	(B)	Ē	(ii)) E	(II)
-	1063.415	1063.415	1063.415	0.720	0.719	0.719	1064.134	1064.134	1064.134	126.902	126.896	126.896	1.680	1.679	1.679
7	1065.451	1065.451	1065.451	0.701	0.701	0.701	1066.152	1066.152	1066.152	126.988	126.982	126.982	1.698	1.699	1.699
m	1067.448	1067.447	1067.447	0.713	0.714	0.714	1068.162	1068.161	1068.161	126.924	126.922	126.922	1.683	1.684	1.684
4	1069.473	1069.472	1069.472	0.704	0.706	0.706	1070.177	1070.177	1070.177	126.966	126.961	126.961	1.695	1.693	1.693
S	1071.482	1071.480	1071.480	0.710	0.713	0.713	1072.192	1072.192	1072.192	126.933	126.931	126.931	1.686	1.686	1.686
9	1073.500	1073.506	1073.506	0.704	0.710	0.710	1074.204	1074.216	1074.216	126.963	126.942	126.942	1.692	1.689	1.689
2	1075.509	1075.525	1075.525	0.710	0.711	0.711	1076.220	1076.235	1076.235	126.936	126.940	126.940	1.686	1.688	1.688
8	1077.527	1077.540	1077.540	0.704	0.706	0.706	1078.232	1078.246	1078.246	126.963	126.962	126.962	1.692	1.693	1.693
6	1079.537	1079.550	1079.550	0.710	0.712	0.712	1080.247	1080.262	1080.262	126.936	126.935	126.935	1.686	1.686	1.686
10	1080.549	1080.563	1080.563	0.707	0.699	0.699	1081.253	1081.262	1081.262	126.960	126.999	126.999	1.692	1.701	1.701
11	1081.534	1081.535	1081.535	0.579	0.575	0.575	1082.113	1082.110	1082.110	127.671	127.684	127.684	1.860	1.865	1.865
17	1083.348	1083.375	1083.375	0.802	0.777	0.777	1084.152	1084.152	1084.152	126.540	126.651	126.651	1.591	1.618	1.618
13	1085.713	1085.680	1085.680	0.732	0.753	0.753	1086.445	1086.433	1086.433	126.835	126.739	126.739	1.662	1.642	1.642
14	1087.302	1087.325	1087.325	0.399	0.389	0.389	1087.698	1087.715	1087.715	129.189	129.298	129.298	2.216	2.239	2.239
15	1088.091	1088.095	1088.095	0.485	0.484	0.484	1088.576	1088.579	1088.579	128.354	128.364	128.364	2.021	2.023	2.023
16	1089.460	1089.459	1089.459	0.802	0.795	0.795	1090.265	1090.254	1090.254	126.543	126.570	126.570	1.595	1.600	1.600
17	1091.970	1091.993	1091.993	0.802	0.781	0.781	1092.774	1092.774	1092.774	126.537	126.633	126.633	1.591	1.614	1.614
18	1093.976	1093.971	1093.971	0.470	0.471	0.471	1094.445	1094.441	1094.441	128.476	128.478	128.478	2.049	2.049	2.049
19	1095.591	1095.618	1095.618	0.802	0.778	0.778	1096.396	1096.396	1096.396	126.540	126.642	126.642	1.591	1.617	1.617
20	1096.796	1096.774	1096.774	0.665	0.686	0.686	1097.463	1097.460	1097.460	127.162	127.067	127.067	1.741	1.716	1.716

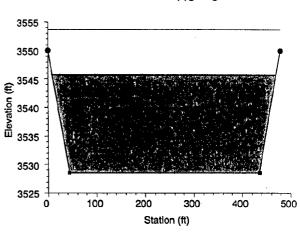

									•		• . ·								v*					
poo	pth	Hec-6	(mobile)	(ÎL)	4.829	4.854	4.854	4.862	4.857	4.859	4.860	4.854	4.867	4.859	4.850	4.865	4.875	5.325	5.116	5.105	4.880	4.914	5.071	
) Year Fl	Hydraulic Depth	He	(fix)	(E)	4.826	4.853	4.857	4.859	4.848	4.853	4.856	4.859	4.854	4.848	5.021	4.855	4.851	5.791	5.616	4.849	4.855	5.311	4.855	
Channel for 500 Year Flood	Hyd	Hec-Ras	- H	(E)	4.829	4.829	4.832	4.832	4.829	4.829	4.832	4.832	4.829	4.829	5.034	4.832	4.829	5.796	5.610	4.829	4.832	5.308	4.832	
on Chan		6	(mobile)	(E)	140.719	140.763	140.765	140.807	140.786	140.776	140.783	140.722	140.454	140.520	141.320	140.325	139.880	143.417	143.651	141.916	140.101	141.159	140.005	-
nd Diversi	Top Width	Hec-6	(fix)	(E)	140.824	140.958	140.977	140.989	140.943	140.967	140.987	141.000	140.982	140.956	141.730	141.005	140.938	145.401	144.552	140.948	140.994	143.115	140.983	-
th Dikes a	F	Hec-Ras		(E)	140.869	140.866	140.875	140.869	140.869	140.866	140.875	140.869	140.869	140.866	141.808	140.869	140.869	145.399	144.527	140.863	140.872	143.098	140.875	-
IN (nag vit	el		(mobile)	(U)	1069.318	1071.299	1073.312	1075.327	1077.341	1079.348	1081.363	1083.365	1085.286	1086.322	1087.368	1089.159	1091.317	1092.792	1094.027	1095.438	1097.699	1099.487	1101.053	
I THECHAR	Energy Line Level	Hec-6	(fix)	(III)	1069.352	1071.353	1073.366	1075.381	1077.396	1079.408	1081.423	1083.435	1085.450	1086.456	1087.274	1089.362	1091.652	1092.944	1093.850	1095.475	1097.984	1099.570	1101.606	-
obile bed) and Hec-Ras (fix bed) with Dikes and Diversion	Ener	Hec-Ras	<u> </u>	(m)	1069.335	1071.351	1073.363	1075.378	1077.393	1079.405	1081.421	1083.433	1085.448	1086.454	1087.277	1089.360	1091.649	1092.939	1093.845	1095.473	1097.982	1099.582	1101.604	
			(mobile)	(m)	2.438	2.412	2.412	2.402	2.408	2.406	2.405	2.413	2.409	2.415	2.397	2.416	2.422	1.930	2.085 1	2.145 1	2.409 1	2.341 1	2.233 1	
oth tex bed	Velocity Head	Hec-6	(fix) ((m)	2.438	2.406	2.401	2.399	2.412	2.406	2.402	2.399	2.404	2.411	2.224	2.402	2.409	1.588	1.709	2.411	2.403	1.949	2.403	
r Hec-6 (be	Vel	Hec-Ras		(U)	2.430	2.430	2.427	2.430	2.430	2.430	2.427	2.430	2.430	2.430	2.207	2.430	2.430	1.585	1.710	2.430	2.430	1:951	2.427	
o indino	vel	و	(mobile)	(II)	1066.880	1068.887	1070.900	1072.925	1074.933	1076.942	1078.957	1080.952	1082.877	1083.907	1084.971	1086.743	1088.895	1090.862	1091.942	1093.293	1095.290	1097.146	1098.820	
	Water Surface Level	Hec-6	(fix)	(II)	1066.913	1068.947	1070.964	1072.981	1074.984	1077.002	1079.021	1081.037	1083.046	1084.046	1085.050	1086.960	1089.244	1091.356	1092.141		1095.581	1097.620	1099.203	
Aabre-4.15, Summary of Uutput of Hec-6 (both fix bed and m	Water	Hec-Ras	<u>1</u>	(u)	1066.905	1068.921	1070.936	1072.948	1074.963	1076.976	1078.994	1081.003	1083.018	1084.024	1085.067	1086.930	1089.220	1091.354	1092.134		1095.552	1097.631	1	
1 4		Sec.	No.			2	3	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	19	

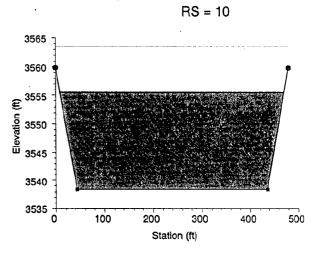


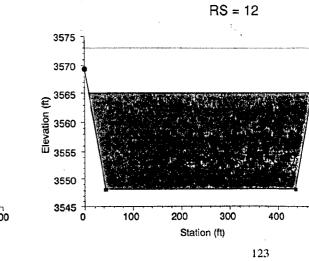


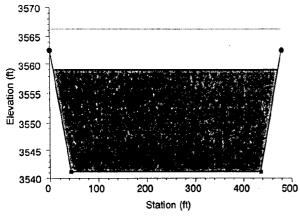


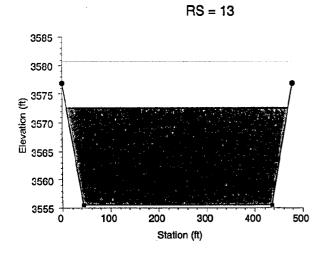





RS = 5



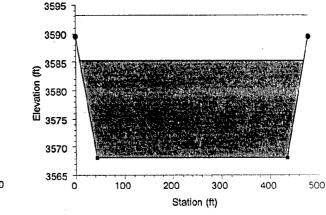


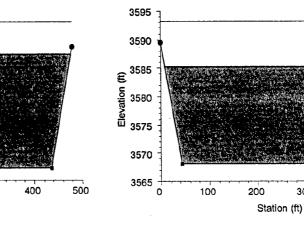


RS = 11

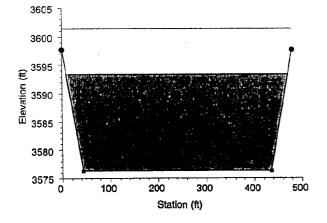
RS = 8

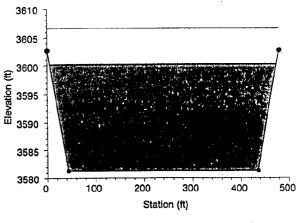
3560 | 0

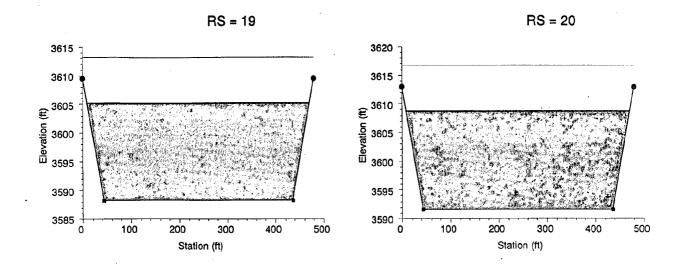

Station (ft)


(1) 3575 3570 3565 3555 + 0

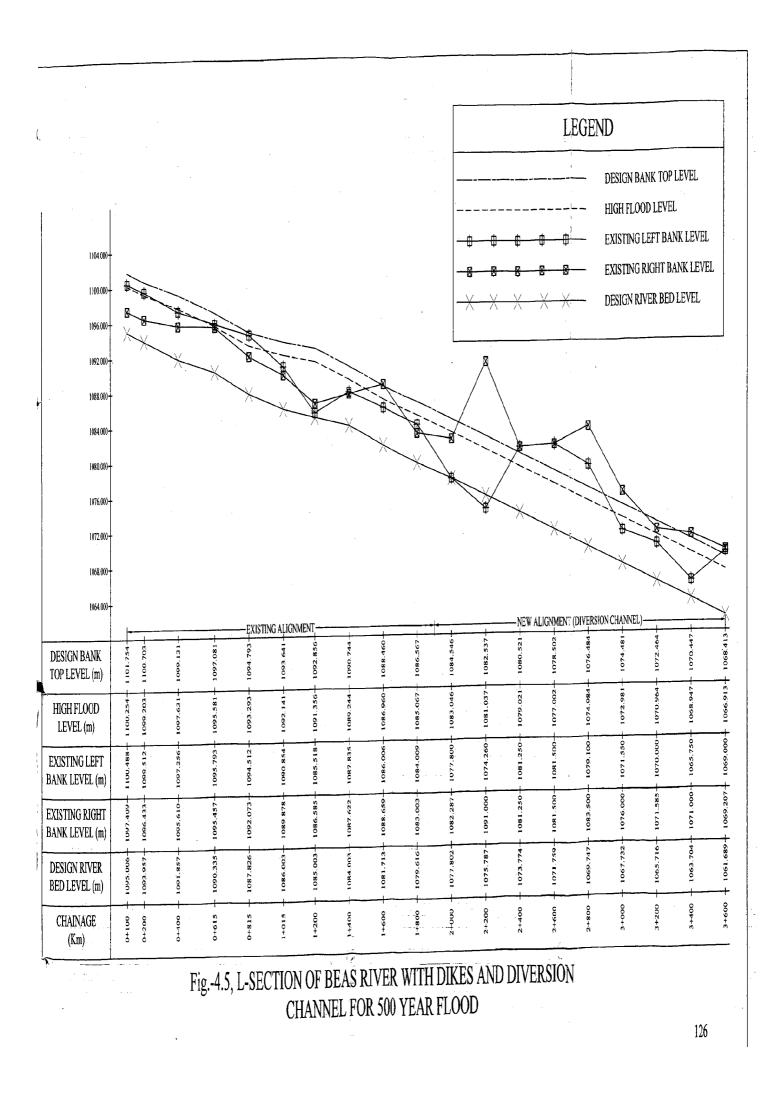
Station (ft)


RS = 14





RS = 15



RS = 18

	Le	gend				
EG	500	Year	Flood			
ws	WS 500 Year Flood					
	G	round				
	Ва	nk St	a			

4.12 DESIGN OF COVER LAYER FOR THE EMBANKMENT SLOPE

The nominal thickness of fully stable cover-layer with respect to current action can be calculated using the following general formula by Pilarczyk (1989):

$$D_{n} = \frac{\phi_{c} * K_{T} * K_{h}}{\Delta_{m} * K_{s}} * \frac{0.035}{\theta_{c}} * \frac{\overline{u}^{2}}{2g}$$

Where, D_n is the nominal thickness of protection unit, ϕ_c is the stability factor, K_T is the turbulence factor, K_h is the depth and velocity distribution factor, Δ_m is the relative density of protection unit, K_s is the slope factor, θ_c is the critical dimensionless shear stress, \overline{u} is the mean velocity and g is the acceleration due to gravity.

4.12.1 DESIGN OF STONE RIP-RAP

I) EMBANKMENT SLOPE PROTECTION

The thickness of stone rip-rap required for slope protection of an embankment can be computed by using the following formulae:

A) PILARCZYK FORMULA

$$D_{n} = \frac{\phi_{c} * K_{T} * K_{h}}{\Delta_{m} * K_{s}} * \frac{0.035}{\theta_{c}} * \frac{\overline{u}^{2}}{2g}$$

Where, $\phi_c = 0.75$ for continuous protection of loose units

 $K_T = 1.50$ for non-uniform flow with increased turbulence and bends ($R_c/B > 2$).

$$K_{h} = \left(\frac{h}{D_{n}} + 1\right)^{-0.2}$$

$$\Delta_{m} = G - 1 = 2.65 - 1 = 1.65 \text{ for rip-rap}$$

$$K_{s} = \sqrt{1 - \frac{\sin^{2} \alpha}{\sin^{2} \phi}} = \sqrt{1 - \frac{\sin^{2} 26.56}{\sin^{2} 40}} = 0.718$$

 $\theta_c = 0.035$ for rip-rap

$$\therefore D_{n} = \frac{0.75 * 1.5}{1.65 * 0.718} * \left(\frac{5.0}{D_{n}} + 1\right)^{-0.2} * \frac{0.035}{0.035} * \frac{7^{2}}{2 * 9.81}$$

By trial $D_n = 1.82 \text{ m}$

B) INDLAN FORMULA

According to Indian formula thickness of stone cover is given by the following relationship:

 $t = 0.06 * Q^{1/3} = 0.06(4700)^{1/3} = 1.01 m$

C) USBR FORMULA

According to USBR, after Kinori and Hevorach (1984), the maximum stone size required for rip-rap is 1.60 m corresponding to flow velocity of 7.0m/s (referring the USBR curve).

D) NEILL'S CURVE

According to Neill's curve, equivalent spherical diameter of rip-rap stone is 1.8 m corresponding to flow velocity of 7.0 m/s.

Provide the maximum of the above values of 1.80 m as the thickness of the stone rip-rap in sloping portion of the embankment.

II) EMBANKMENT TOE PROTECTION

Launching apron is normally provided at the toe of an embankment to take care of the scour and to prevent the failure of the rip-rap provided in the sloping portion of the embankment. Hence the design of the launching apron first requires the prediction of scour depth. The following formulas can be used for prediction of scour due to long constriction:

A) KOMURA (1971) FORMULA

Komura obtained the following equation for relative depth of scour along the constricted reach with the width of B_1 and the water depth h_1 :

$$\frac{\Delta z}{h} = \left(1 + 1.2 * Fr^2 \left\{ \left(\frac{B}{B_1}\right)^{2/3} - 1 \right\}$$

Where, B is the upstream width of channel and Fr is the upstream Frounde Number and h is the upstream depth of flow.

Here, B = 215 m U = 5.50 m/s \therefore Fr = $\frac{U}{\sqrt{gh}} = \frac{5.5}{\sqrt{9.81^* 4}} = 0.88$ $\therefore \qquad \frac{\Delta z}{4.0} = \left[1 + 1.2(0.88)^2\right] \left[\left(\frac{215}{120}\right)^{2/3} - 1\right] = 0.92$ \therefore Scour depth below the bed, $\Delta z = 0.92^* 4 = 3.68$ m

B) MICHUE ET AL. (1984) FORMULA

$$\frac{\Delta z}{h} = \left[\left(\frac{B_1}{B}\right)^{-4/7} - 1 \right] + \left(0.5 * Fr^2 \right) \left[\left(\frac{B_1}{B}\right)^{-6/7} - 1 \right]$$
$$\frac{\Delta z}{4.0} = \left[\left(\frac{120}{215}\right)^{-4/7} - 1 \right] + 0.5 * (0.88)^2 \left[\left(\frac{120}{215}\right)^{-6/7} - 1 \right] = 0.65$$

 \therefore Scour depth below the bed, $\Delta z = 0.65*4 = 2.60$ m

C) GILL (1972) FORMULA

$$\frac{\Delta z}{h} = \left(\frac{B_1}{B}\right)^{-6/7} \left[\left(\frac{B_1}{B}\right)^{-2/3} \left(1 - \frac{\tau_c}{\tau}\right) + \frac{\tau_c}{\tau} \right]^{-3/7} - 1$$

Here $\tau_c = 0.06(G-1) \gamma_f D_{50} = 0.06^* (2.65-1)^* 9810^* 32^* 10^{-3} = 31.08 \text{ N/m}^2$

$$t = \gamma_f R S = 9810 * 4 * 0.0091 = 357.08 N/m^2$$

$$\therefore \qquad \frac{\Delta z}{4} = \left(\frac{120}{215}\right)^{-6/7} \left[\left(\frac{120}{215}\right)^{-2/3} \left(1 - \frac{31.08}{357.08}\right) + \frac{31.08}{357.08} \right]^{-3/7} - 1 = 0.41$$

.•.

Scour depth below the bed, $\Delta z = 0.41*4 = 1.64$ m

The maximum of the above values is taken as the scour depth, $\Delta z = 3.68$ m Anticipated scour depth below the deepest bed level = 1.25 * 3.68 = 4.60 m

Now, using Pilarczyk formula thickness of stone rip-rap at the launching is given as:

$$D_{n} = \frac{1.25 * 1.5}{(2.65 - 1) * 0.718} \left(\frac{5}{D_{n}} + 1\right)^{-0.2} * \frac{0.035}{0.035} * \frac{7^{2}}{2 * 9.81}$$

By trial thickness of launching apron $D_n = 3.28 \text{ m}$

Provide thickness of launching apron = 3.6 m (ln two layers of 1.8 m each, so that it can launch in the scour hole with the thickness of 1.8 m)

Quantity of stone required in the launching apron with anticipated scour depth of 4.60 m and thickness of cover layer of 1.80 (assuming the stable side slope of 1 V: 2 H after launching) = $\sqrt{5} * 4.6 * 1.8 = 18.51 \text{ m}^3/\text{r.m.}$

This quantity of stone shall be placed in horizontal apron with 3.6 m thickness. So length of apron required = 18.51/3.60 = 5.14 m (Say 6.0 m).

Hence, provide 3.6 m thick stone launching apron for 6.0 m length at the toe of the embankment.

4.12.2 DESIGN OF GABION MATTRESSES

I) EMBANKMENT SLOPE PROTECTION

The nominal thickness of gabion mattress is determined by using Pilarczyk formula as given below:

$$D_{n} = \frac{\phi_{c} * K_{T} * K_{h}}{\Delta_{m} * K_{s}} * \frac{0.035}{\theta_{c}} * \frac{u^{-2}}{2g_{e}}$$

Where, $\phi_c = 0.50$ for continuous protection of gabion mattress

 K_T = 1.50 for non-uniform flow with increased turbulence and bends (R₂/B > 2).

$$K_{h} = \left(\frac{h}{D_{n}} + 1\right)^{-0.2}$$

$$\Delta_{m} = (G - 1)(1 - n) = (2.65 - 1) * (1 - 0.4) = 0.99 \text{ (assuming porosity, n of gabion filing as 40%)}$$

$$K_{s} = \sqrt{1 - \frac{\sin^{2} \alpha}{\sin^{2} \phi}} = \sqrt{1 - \frac{\sin^{2} 26.56}{\sin^{2} 40}} = 0.718$$

$$\theta_{c} = 0.06 \text{ for gabion}$$

$$\therefore D_{n} = \frac{0.5*1.5}{0.99*0.718} * \left(\frac{5.0}{D_{n}} + 1\right)^{-0.2} * \frac{0.035}{0.06} * \frac{7^{2}}{2*9.81}$$

By trial $D_n = 1.10 \text{ m}$

Hence provide 2.0 m * 1.5 m * 1.25 m size gabion mattress in the slope.

II) EMBANKMENT TOE PROTECTION

The nominal thickness of gabion mattress as launching apron is calculated by Pillarczyk formula with ϕc equal to 1.0 (for exposed edges of mattress) and all other variables as used in case (I).

$$\therefore D_{n} = \frac{1.0*1.5}{0.99*0.718} * \left(\frac{5.0}{D_{n}} + 1\right)^{-0.2} * \frac{0.035}{0.06} * \frac{7^{2}}{2*9.81}$$

By trial $D_n = 2.46$ m, say 2.50 m

Quantity of gabion works required in the launching apron with anticipated scour depth of 4.60 m and thickness of cover layer of 1.25 m = $\sqrt{5*4.6*1.25} = 12.86 \text{ m}^3/\text{r.m.}$

Length of launching apron with 2.50 m thickness = 12.86/2.5 = 5.144 m, say 6.0 m Hence provide 2.50 m thick (2 layers of 1.25 m thickness) gabion launching for 6.0 m length.

4.12.3 DESIGN OF LOOSE CONCRETE BLOCKS

I) EMBANKMENT SLOPE PROTECTION

The nominal thickness of loose concrete blocks is determined by using Pilarczyk formula as given below:

$$D_{n} = \frac{\phi_{c} * K_{T} * K_{h}}{\Delta_{m} * K_{s}} * \frac{0.035}{\theta_{c}} * \frac{\overline{u}^{2}}{2g}$$

Where, $\phi_c = 0.50$ for continuous protection of block mats

 $K_T = 1.50$ for non-uniform flow with increased turbulence and bends (R_o/B > 2).

$$K_{h} = \left(\frac{h}{D_{n}} + 1\right)^{-0.2}$$

 $\Delta_{m} = (G-1)(1-n) = (2.4-1)*(1-0.15) = 1.19 \text{ (assuming G and n for loose}$ concrete blocks as 2.4 and 0.15 respectively.)

$$K_{s} = \sqrt{1 - \frac{\sin^{2} \alpha}{\sin^{2} \phi}} = \sqrt{1 - \frac{\sin^{2} 26.56}{\sin^{2} 40}} = 0.718$$

 $\theta_c = 0.075$ for block mats

$$\therefore D_{n} = \frac{0.5*1.5}{1.19*0.718} * \left(\frac{5.0}{D_{n}} + 1\right)^{-0.2} * \frac{0.035}{0.075} * \frac{7^{2}}{2*9.81}$$

By trial $D_n = 0.67 \text{ m}$

Hence provide 1.0 m * 1.0 m * 0.8 m size 1:3:6 concrete blocks in the slope.

II) EMBANKMENT TOE PROTECTION

The nominal thickness of loose concrete blocks as launching apron is calculated by Pillarczyk formula with ϕc equal to 1.0 (for exposed edges of block mats) and all other variables as used in case (I).

$$\therefore D_{n} = \frac{1.0*1.5}{1.19*0.718} * \left(\frac{5.0}{D_{n}} + 1\right)^{-0.2} * \frac{0.035}{0.075} * \frac{7^{2}}{2*9.81}$$

By trial $D_n = 1.53$ m, say 1.60 m

Quantity of concrete blocks required in the launching apron with anticipated scour depth of 4.60 m and thickness of cover layer of $0.8 \text{ m} = \sqrt{5*4.6*0.8} = 8.23 \text{ m}^3/\text{r.m.}$ Length of launching apron with 1.60 m thickness = 8.23/1.60 = 5.144 m, say 6.0 m. Hence provide 1.60 m thick (2 layers of 0.80 m thickness) loose concrete blocks for 6.0 m length. A typical cross-section of embankment with P.C.C. block protection is shown in fig.-4.6.

4.13 DESIGN OF FILTER

A filter layer is normally required beneath the cover layer to prevent the water from removing bank material through the voids. The filter layer may be either a granular filter or geotextile filter. The designs of granular filter for rip-rap and geotextile filter for cement concrete blocks are presented below:

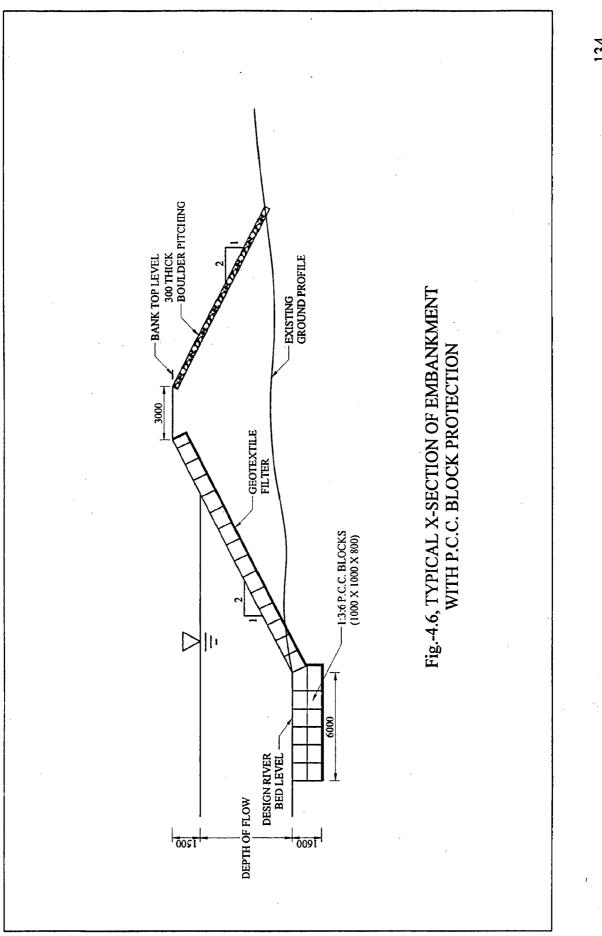
4.13.1 DESIGN OF GRANULAR FILTER

Let's say the gradations of bank material and the rip-rap are as given below:

Bank Material	Rip-rap
$D_{10} = 0.18 \text{ mm}$	
$D_{15} = 0.20 \text{ mm}$	$D_{15} = 400.00 \text{ mm}$
$D_{50} = 1.20 \text{ mm}$	D ₅₀ = 900.00 mm
$D_{60} = 2.20 \text{ mm}$	
$D_{85} = 14.00 \text{ mm}$	D ₈₅ =1440.00 mm

Let's first determine whether the filter layer shall be required or not based on the retention criteria, uniformity criteria and the permeability criteria.

i) Retention Criteria


$$\frac{D_{15} \text{ of rip} - \text{rap}}{D_{85} \text{ of base}} = \frac{400}{14} = 28.57 > 5, \text{ not ok.}$$

ii) Uniformity Criteria

 $\frac{D_{15} \text{ of rip} - \text{rap}}{D_{15} \text{ of base}} = \frac{400}{0.20} = 800 > 40, \text{ not ok.}$

iii) Permeability Criteria

$$\frac{D_{50} \text{ of rip} - \text{rap}}{D_{50} \text{ of base}} = \frac{900}{1.2} = 750 > 25 \text{ not ok.}$$

The above values do not meet the recommended criteria, So a filter layer is required between the given base material and the rip-rap. The required size gradation of the filter with respect to the base material is determined from

 $\frac{D_{50} \text{ of filter}}{D_{50} \text{ of base}} < 25; \text{ hence } D_{50} \text{ of filter} < 25*1.2=30 \text{ mm}$ $\frac{D_{15} \text{ of filter}}{D_{15} \text{ of base}} < 40; \text{ hence } D_{15} \text{ of filter} < 40*0.2=8 \text{ mm}$ $\frac{D_{15} \text{ of filter}}{D_{85} \text{ of base}} < 5; \text{ hence } D_{15} \text{ of filter} < 5*14=70 \text{ mm}$ $\frac{D_{15} \text{ of filter}}{D_{15} \text{ of base}} > 5; \text{ hence } D_{15} \text{ of filter} > 5*0.2=1 \text{ mm}$

From these results, the filter material adjacent to the base material should have the following dimension: $D_{50} < 30$ mm and 1 mm $< D_{15} < 8$ mm.

In the next step, the required filter dimension with respect to the rip-rap is determined from

$$\frac{D_{50} \text{ of rip} - \text{rap}}{D_{50} \text{ of filter}} < 25; \text{ hence } D_{50} \text{ of filter} > \frac{900}{25} = 36 \text{ mm}$$

$$\frac{D_{15} \text{ of rip} - \text{rap}}{D_{15} \text{ of filter}} < 40; \text{ hence } D_{15} \text{ of filter} > \frac{400}{40} = 10 \text{ mm}$$

$$\frac{D_{15} \text{ of rip} - \text{rap}}{D_{85} \text{ of filter}} < 5; \text{ hence } D_{85} \text{ of filter} > \frac{400}{5} = 80 \text{ mm}$$

$$\frac{D_{15} \text{ of rip} - \text{rap}}{D_{15} \text{ of filter}} > 5; \text{ hence } D_{15} \text{ of filter} < \frac{400}{5} = 80 \text{ mm}$$

On the basis of these calculations, the filter layer adjacent to the rip-rap should have the following dimensions: $10 \text{ mm} < D_{15} < 80 \text{ mm}$, $D_{50} > 36 \text{ mm}$, $D_{85} > 80 \text{ mm}$

The two results obtained here are not compatible to each other, indicating that a single layer of granular material is not adequate. So two layers of filter shall be provided between the base material and the rip-rap. The filter 2 shall be provided in between the filter 1 and the rip-rap. Now let us assume the following gradation for the two filter layers:

Filter 1	Filter 2
$D_{15} = 2.00 \text{ mm}$	$D_{15} = 15.00 \text{ mm}$
$D_{50} = 15.00 \text{ mm}$	$D_{50} = 50.00 \text{ mm}$
$D_{85} = 40.00 \text{ mm}$	D ₈₅ =85.00 mm

The gradation of both the above filters need to be checked against the specified criteria. Let's first check the gradation of filter 1 with respect to the base material.

 $\frac{D_{s0} \text{ of filter 1}}{D_{s0} \text{ of base}} < 25; \text{ hence } D_{s0} \text{ of filter 1} < 25*1.2 = 30 \text{ mm}$ $\frac{D_{15} \text{ of filter 1}}{D_{15} \text{ of base}} < 40; \text{ hence } D_{15} \text{ of filter 1} < 40 * 0.2 = 8 \text{ mm}$ $\frac{D_{15} \text{ of filter 1}}{D_{85} \text{ of base}} < 5; \text{ hence } D_{15} \text{ of filter 1} < 5*14 = 70 \text{ mm}$

 $\frac{D_{15} \text{ of filter 1}}{D_{15} \text{ of base}} > 5; \text{ hence } D_{15} \text{ of filter 1} > 5 * 0.2 = 1 \text{ mm}$

From these results, the filter 1 adjacent to the base material should have the following dimension $D_{50} < 30 \text{ mm}$ and $1 \text{ mm} < D_{15} < 8 \text{ mm}$.

In the next step, the required filter 1 dimension with respect to the filter 2 is determined from

 $\frac{D_{s0} \text{ of filter 2}}{D_{s0} \text{ of filter 1}} < 25; \text{ hence } D_{s0} \text{ of filter 1} > \frac{50}{25} = 2 \text{ mm}$ $\frac{D_{15} \text{ of filter 2}}{D_{15} \text{ of filter 1}} < 40$; hence $D_{15} \text{ of filter 1} > \frac{15}{40} = 0.375 \text{ mm}$ $\frac{D_{15} \text{ of filter 2}}{D_{85} \text{ of filter 1}} < 5; \text{ hence } D_{85} \text{ of filter 1} > \frac{15}{5} = 3 \text{ mm}$ $\frac{D_{15} \text{ of filter 2}}{D_{15} \text{ of filter 1}} > 5; \text{ hence } D_{15} \text{ of filter 1} < \frac{15}{5} = 3 \text{ mm}$

Based on these calculations, the filter 1 adjacent to the filter 2 should have the following dimensions: 0.375 mm < D_{15} < 3 mm, D_{50} > 2 mm, D_{85} > 3 mm. We thus can conclude that the filter 1 should have the following dimensions: $1 \text{ mm} < D_{15} < 3 \text{ mm}$, $2 \text{ mm} < D_{50}$ < 30 mm, D_{85} > 3 mm. It means the assumed gradation for filter 1 satisfies all the required criteria.

Similarly the gradation of filter 2 with respect to filter 1 is obtained from

 $\frac{D_{50} \text{ of filter 2}}{D_{50} \text{ of filter 1}} < 25; \text{ hence } D_{50} \text{ of filter 2} < 25*15 = 375 \text{ mm}$ $\frac{D_{15} \text{ of filter 2}}{D_{15} \text{ of filter 1}} < 40; \text{ hence } D_{15} \text{ of filter 2} < 40*2 = 80 \text{ mm}$ $\frac{D_{15} \text{ of filter 2}}{D_{85} \text{ of filter 1}} < 5; \text{ hence } D_{15} \text{ of filter 2} < 5*40 = 200 \text{ mm}$ $D_{15} \text{ of filter 2}$

 $\frac{D_{15} \text{ of filter 2}}{D_{15} \text{ of filter 1}} > 5; \text{ hence } D_{15} \text{ of filter 2} > 5 * 2 = 10 \text{ mm}$

From these results, the filter 2 adjacent to the filter 1 should have the following dimension: $D_{50} < 375$ mm and 10 mm $< D_{15} < 80$ mm.

In the next step, the required filter 2 dimension with respect to the rip-rap is determined from

$$\frac{D_{50} \text{ of rip} - \text{rap}}{D_{50} \text{ of filter 2}} < 25; \text{ hence } D_{50} \text{ of filter 2} > \frac{900}{25} = 36 \text{ mm}$$

$$\frac{D_{15} \text{ of rip} - \text{rap}}{D_{15} \text{ of filter 2}} < 40; \text{ hence } D_{15} \text{ of filter 2} > \frac{400}{40} = 10 \text{ mm}$$

$$\frac{D_{15} \text{ of rip} - \text{rap}}{D_{85} \text{ of filter 2}} < 5; \text{ hence } D_{85} \text{ of filter 2} > \frac{400}{5} = 80 \text{ mm}$$

$$\frac{D_{15} \text{ of rip} - \text{rap}}{D_{15} \text{ of filter 2}} > 5; \text{ hence } D_{15} \text{ of filter 2} < \frac{400}{5} = 80 \text{ mm}$$

Based on these calculations, the filter 2 adjacent to the rip-rap should have the following dimensions: 10 mm < D_{15} < 80 mm, D_{50} > 36 mm, D_{85} > 80 mm. We thus can conclude that the filter 2 should have the following dimensions: 10 mm < D_{15} < 80 mm, 36 mm < D_{50} < 375 mm, D_{85} > 80 mm. It means the assumed gradation for filter 2 satisfies all the required criteria.

4.13.2 DESIGN OF GEOTEXTILE FILTER

The cement concrete blocks shall be laid over the geotextile filter to retain the base material without building up of excessive water pressure. The required grade of the geotextile is fixed by the criteria of soil tightness and permeability as given below:

i) Sand Tightness

From fig.-6.136 of River Training Techniques by Pilarczyk et.al. for hydraulic loads without natural filter at unacceptable consequences $O_{98} < D_{15} = 0.2$ mm.

ii) Permeability

From fig.-6.137 of River Training Techniques by Pilarczyk et.al. for $D_{10} = 0.18$ mm and $k_s = 4*10^{-3}$ m/s, we get . = 0.06. Using equation 6.328 of River Training Techniques by Pilarczyk et.al., geotextile permeability $k_g > k_s/. = 4*10^{-3}/0.06 = 0.067$ m/s.

4.14 DETERMINATION OF MAXIMUM SCOUR DEPTH AROUND BRIDGE PIERS

A large number of formulas have been developed for predicting local scour around bridge piers. Some of these have been given below.

I) NEILL FORMULA

$$\frac{d_s}{b} = 1.5 \left(\frac{D_0}{b}\right)^{0.3}$$

Where, d_s is the depth of scour below mean bed elevation, b is the width of pier normal to flow and D_0 is the mean depth of flow upstream of pier.

Assuming the circular piers of 2 m diameter, b = 2.0 m $D_0 = 4.97 m$

$$d_s = 1.5 \left(\frac{4.97}{2.0}\right)^{0.3} * 2.0$$
 =3.94 m

II) SHEN ET AL, FORMULA

$$\frac{d_s}{b} = 3.4(F_0)^{2/3} \left(\frac{D_0}{b}\right)^{1/3}$$

Where $F_0 = U_0/(gD_0)^{1/2}$ is the Froude number based on the mean upstream velocity U_0 and depth D_0 .

Using U₀= 6.85 m/s D_0 = 4.97 m F_0 = 6.85/(9.81*4.97)^{1/2} = 0.98

$$d_s = 3.4(0.98)^{2/3} \left(\frac{4.97}{2.0}\right)^{1/3} * 2.0 = 9.10 \text{ m}$$

III) COLORADO STATE UNIVERSITY FORMULA

$$\frac{d_s}{D_0} = 2.2 \left(\frac{b}{D_0}\right)^{0.65} (F_0)^{0.43}$$
$$d_s = 2.2 \left(\frac{2.0}{4.97}\right)^{0.65} (0.98)^{0.43} * 4.97 = 6.0 \text{ m}$$

IV) MELVILLE AND SUTHERLAND FORMULA

 $d_s = K_i K_v K_d K_\sigma K_s K_\alpha b$

Where the coefficients describe the influence of flow intensity (K_i), flow depth (K_y), sediment size (K_d), sediment gradation (K_{σ}), pier shape (K_s) and alignment (K_{α}).

We have

$d_{50} = 32 \text{ mm}$	d ₈₄ = 105 mm		×
Depth of flow, y	= 3545.795-3529.490	= 16.305 ft	= 4.97 m
Flow velocity, U	22.468 ft/s	= 6.85 m/s	
(y and U is given as	s calculated by Hec-6 at sectior	n 6, location of the	e bridge.)

Calculation for K_i

For $d_{50}=32$ mm, the critical shear velocity, $u_{*c}=0.17$ m/s from Shields' diagram. Using the equation

$$\frac{U_c}{u_{c}} = 5.75 \log(5.53 \frac{y}{d_{50}})$$

or,
$$\frac{U_c}{0.17} = 5.75 \log(5.53 * \frac{4.97}{32 * 10^{-3}})$$
$$\therefore U_c = 2.87 \text{ m/s}$$

Geometric Standard deviation, $\sigma g = \frac{d_{84}}{d_{50}} = \frac{105}{32} = 3.28$

Equating d_{max} with d_{95} , we have $d_{max} = \sigma g^{1.65} d_{50} = 3.28^{1.65} * 32 = 227.17 \text{ mm}$ Median size of the coarsest possible armour, $d_{50a} = \frac{d_{max}}{1.8} = \frac{227.17}{1.8} = 126.21 \text{ mm}$ The critical shear velocity of the armored bed is then given as:

u._{ca} = 0.03(d_{50a})^{1/2} = 0.03(126.21)^{1/2} = 0.34 m/s

$$\frac{U_{ca}}{u_{ca}} = 5.75 \log(5.53 \frac{y}{d_{50a}})$$
or, $\frac{U_{ca}}{0.34} = 5.75 \log(5.53 * \frac{4.97}{126.21 * 10^{-3}})$
∴ U_{ca} = 4.57 m/s

$$U_a = 0.8 * U_{ca} = 0.8 * 4.57 = 3.66 \text{ m/s}$$

(here $U_a > U_c$ so ok. Otherwise U_a is taken equal to U_c .)

Now $\frac{U - (U_a - U_c)}{U_c} = \frac{6.85 - (3.66 - 2.87)}{2.87} = 2.11 > 1$ So live bed scour occurs.

$$\therefore K_i = 2.4$$

Calculation for K_v

Assuming circular piers of diameter, D = 2.0 m

$$\frac{y}{D} = \frac{4.97}{2.0} = 2.485$$

Since y/D < 2.6, K_y is given by the following relation:

 $K_y = 0.78(y/D)^{0.255} = 0.78 * (4.97/2.00)^{0.255} = 0.98$

Calculation for K_d

Since it is the case of live bed scour, we first determine D/d_{50} . (For clear bed scour we are required to determine D/d_{50a})

$$\frac{D}{d_{so}} = \frac{2}{32 * 10^{-3}} = 62.50$$

 \therefore K_d= 1 because D/d₅₀ > 25

Here, K_{σ} = 1, also for group of circular piers both the K_s and K_{α} are equal to 1. $\therefore d_s$ = 2.4 * 0.98 * 1 * 1 * 1 * 1 * 2 = 4.70 m

V) SCOUR BASED ON RIVERBED ARMOR

Riverbed armoring refers to coarsening of the bed material as a result of degradation of well-graded sediment mixtures. The selective erosion of finer particles of the bed material leaves the coarser fractions of the mixture on the bed to induce coarsening of bed material. When the applied bed shear stress is sufficiently large to mobilise the larger bed particles, degradation continues; when the applied bed shear stress cannot mobilise the coarse bed particles, an armor layer forms on the bed surface. The armor layer becomes coarser and thicker as the bed degrades until it is sufficiently thick to prevent any further degradation. The armor layer is representative of stable bed condition and can be mobilised only during large floods.

The minimum grain diameter, d_{sc} forming armor layer is given by the following relation:

$$d_{sc} = 10 h S$$

Where h is the flow depth during floods and S the channel slope. Using h equal to 6.85 m (from hec-6 output) and S equal to 0.0091, we get:

$$d_{sc} = 10 * 6.85 * 0.0091 = 0.623 m$$

Quantitatively, we can consider that an armor layer of approximately twice the grain size will stabilise the bed. The scour depth Δz that will form an armor layer equal to 2 d_{sc} can be estimated from the following equation:

$$\Delta z = 2 * d_{sc} (1 / \Delta pc - 1)$$

Where Δpc is fraction of material coarser than d_{sc} available in the bed material. In our case Δpc is equal to 0.05 from grain size distribution curve, fig. 4-1.

$$\therefore \Delta z = 2 * 0.623 \left(\frac{1}{0.05} - 1\right) = 23.67 \text{ m}$$

Here, the fraction of material coarser than d_{sc} is very low, so a large volume of bed material needs to be scoured before the armor layer can form. The effect of armor layer in this case will be limited.

The Melville and Sutherland formula consider a large number of variables affecting the scour. So adopt the scour depth, $d_s = 4.70$ m below the average bed of the river for the present study.

4.15 COMPUTATION OF HORIZONTAL FORCE ON BRIDGE PIERS

The pier between the water level and the maximum scour is subjected to the horizontal force due to water current. The water current pressure is given by the equation: $p = Kv^2$

Where, p is intensity of pressure in kg/m^2 due to water current, K is a constant having different values for different shapes of well and v is velocity of current in m/s at the point where pressure intensity is being calculated.

It is assumed that the velocity distribution in streams is such that v^2 is maximum at the free surface of water, zero at the deepest scour level and varies linearly in between them. Also the maximum velocity of flow is assumed to be equal to $\sqrt[6]{2}$ times the mean velocity of the current.

Here, the average velocity U = 6.85 m/s.

So, the maximum velocity Umax= $\sqrt[6]{2*6.85}$ = 9.69 m/s For circular piers, K= 34.7 (from table 6.4 of Analysis and Design of Foundations and Retaining Structures by Shamsher Prakash, Gopal Ranjan and Swami Saran) p_{max} = 34.7*9.69² = 3258.20 kg/m² Horizontal force H= ½ * p_{max} * h = ½* 3258.20* (4.97+6.50) = 18685.78 kg/m = 183.31 KN/m

4.16 ESTIMATION OF FINANCIAL IMPLICATIONS

The estimation of quantity is based on the design and drawings included within the report. The cost estimate has been carried out with an approximate market rate. It includes the cost of excavation of the design section of the channel including the cost of 1700 meter long diversion channel. It also includes the cost of dikes and P.C.C. concrete block for slope protection works. It also includes the cost of earthworks in filling for construction of airport runway and also includes the cost of relocation of about 2.5 km of Garsa gravel road. It however does not include the cost of runway and the cost of land acquisition and compensation.

The detail of estimated quantity is given in table-4.17 and the abstract of cost of various items has been presented in table-4.16 below. The cost of channelization for extension of the runway comes out to be Rs. 608,140,074.77. The total project cost with 5 % contingencies and workcharge staff comes out to be Rs. 638,547,078.50.

Table-4.16, Abstract of Cost for Channelization of Beas River for Extension of Airport
Runway at Kullu

,

Item.No.	Item of Work	Unit	Quantity	Rate	Amount
1	Site clearance	L.S.		+	500,000.00
2	River diversion and care of water				
	during construction	L.S.	<u> </u>		1,500,000.00
3	Earthwork in excavation in riverbed		<u> </u>		
	with sand, gravel and boulder				
	a) upto 1.5 m depth in wet condition	m ³	537988.63	95.00	51,108,919.38
	b) above 1.5 m depth in wet	m ³	173763.03	110.00	19,113,932.75
	condition			· ·	
4	Earthwork in excavation by blasting				
	of big boulders	m ³	39065.85	300.00	11,719,755.00
5	Earthwork in excavation in gravel				
	boulder mixed soil	m ³	1204375.00	60.00	72,262,500.00
6	Earthwork in filling for embankment				
	with river bed material in 30 cm thick				
	horizontal layers with 98 %		`		
	compaction	m ³	1523477.50	100.00	152,347,750.00
7	Supply and placing of 1.0 m * 1.0 m *				
	0.8 m size 1:3:6 P.C.C. blocks in the	<u> </u>	······		
	waterface of the river	m ³	103680.00	2560.00	265,420,800.00
8	Supply and packing of boulder in 30				
	cm thickness in land ward slope of				
	the embankment	m ³	6417.66	454.00	2,913,617.64
9	Supply and placing of geotextile filter				
	as per the drawing	m ²	129600.00	218.00	28,252,800.00
10	Construction of 5m wide gravel road		······	· · · · · · · · · · · · · · · · · · ·	
7	including supply of construction				
	materials	km	2.50	1200000.00	3,000,000.00
Total:		[608,140,074.77
Contingenc	cies and workcharge staff @ 5%				30,407,003.74
Grand Tot	al:				638,547,078.50

•

.

					a. Earthwork a	Earthwork along the channel					
Chainage	Length	Cross-sectional Area	onal Area	Average Cross-	ross-sectional Area	Quantity			Item No.	No.	
0	C	Excavation	Filling	Excavation	Filling	Excavation	Filling	3(a)	3(b)	4	S
(II)	(II)	(m²)	(m ²)	(m ²)	(m ²)	(m ³)	(m ³)	(m ³)	(m ³)	(m ³)	(m ³)
000+0		194.00	46.00	1	•		-				
0+100	100.00	194.00	46.00	194.00	46.00	19400.00	4600.00	16490.00	2522.00	388.00	0.00
0+200	100.00	120.00	46.00	157.00	46.00	15700.00	4600.00	13345.00	2041.00	314.00	0.00
0+400	200.00	147.00	27.00	133.50	36.50	26700.00	7300.00	22695.00	3471.00	534.00	0.00
0+615	215.00	241.00	13.00	194.00	20.00	41710.00		35453.50	5422.30	834.20	0.00
0+815	200.00	155.00	13.00	198.00	13.00	39600.00		33660.00	5148.00	792.00	0.00
1+015	200.00	67.00	40.00	111.00	26.50	22200.00	5300.00	18870.00	2886.00	444.00	0.00
1+200	185.00	162.00	123.00	114.50	81.50	21182.50	15077.50	18005.13	2753.73	423.65	0.00
1+400	200.00	169.00	25.00	165.50	74.00	33100.00	14800.00	28135.00	4303.00	662.00	0.00
1+600	200.00	242.00	17.00	205.50	21.00	41100.00	4200.00	34935.00	5343.00	822.00	0.00
1+800	200.00	206.00	42.00	224.00	29.50	44800.00	5900.00	38080.00	5824.00	896.00	0.00
2+000	200.00	336.00	97.00	271.00	69.50	54200.00	13900.00	46070.00	7046.00	1084.00	0.00
2+200	200.00	1535.00	151.00	935.50	124.00	187100.00	24800.00	28065.00	14968.00	3742.00	140325.00
2+400	200.00	995.00	0.00	1265.00	75.50	253000.00	15100.00	37950.00	20240.00	5060.00	189750.00
2+600	200.00	1210.00	0.00	1102.50	0.00	220500.00	0.00	33075.00	17640.00	4410.00	165375.00
2+800	200.00	1592.00	0.00	1401.00	0.00	280200.00	0.00	42030.00	22416.00	5604.00	210150.00
3+000	200.00	760.00	21.00	1176.00	10.50	235200.00	2100.00	35280.00	18816.00	4704.00	176400.00
3+200	200.00	726.00	14.00	743.00	17.50	148600.00	3500.00	22290.00	11888.00	2972.00	111450.00
3+400	200.00	683.00	52.00	704.50	33.00	140900.00	6600.00	21135.00	11272.00	2818.00	105675.00
3+600	200.00	695.00	0.00	689.00	26.00	137800.00	5200.00	20670.00	11024.00	2756.00	103350.00
Sub-total:						1962992.50	139877.50	546233.63	175024.03	39259.85	1202475.00
		n		Ą	b. Earthwork along the runway extension	the runway extens	sion				
Chainage	Length	Cross-sectional Area	onal Arca	Average Cross-sectional Area	sectional Area	Quantity			Item No.	No.	
		Excavation	Filling	Excavation	Filling	Excavation	Filling	3(a)	3(b)	4	5
(m)	(m)	(m ²)	(m ²)	(m ²)	(m ²)	(m ³)	(m ³)	(m)	(m ³)	(^c m)	(m ³)
0+000		0.00	310.00	•	1	•	1			•	•
0+200	200.00	0.00	1170.00	0.00	740.00	0.00	148000.00	0.00	0.00	0.00	0.00
0+400	200.00	0.00	1032.00	0.00	1101.00	0.00	220200.00	0.00	0.00	0.00	0.00
0+600	200.00	0:00	1455.00	0.00	1243.50	0:00	248700.00	00.0	0.00	0.00	0.00
0+800	200.00	0.00	2140.00	0.00	1797.50	0.00	359500.00	0.00	0.00	0.00	0.00
1+000	200.00	19.00	1955.00	9.50	2047.50	1900.00	409500.00	0.00	0.00	0.00	1900.00
Sub-total:						1900.00	1385900.00	00.0	0.00	0.00	1900.00
Grand Total:	li.					1964892.50	1525777.50	546233.63	175024.03	39259.85	1204375.00

Table-4.17, Estimate of Quantity for Channelization of Beas River for Extension of Airport Runway at Kullu

Chai	nage	No.	Length	Breadth	Height	Quantity
(r	n)		(m)	(m)	(m)	(m3)
0+000 t	o 3+600	2.00	3600.00	18.00	0.80	103680.00
	d. 9	Supply and pla	cing of geotext	ile filter as per t	he drawing	J
Chai	nage	No.	Length	Breadth	Height	Quantity
(r	n)		(m)	(m)	(m)	(m2)
0+000 t	o 3+600	2.00	3600.00	18.00	-	129600.00
e. Supp	ly and pack	ing of boulder	in 30 cm thickr	less in land war	d slope of the e	mbankment
Chainage		Length	Breadth	Average	Height	Quantity
	No.			Breadth		
(m)		(m)	(m)	(m)	(m)	(m3)
0+000		-	5.52	-		-
0+100	2	100.00	5.52	5.52	0.30	331.20
0+200	2	100.00	5.39	5.46	0.30	327.30
0+400	2	200.00	2.97	4.18	0.30	501.60
0+615	2	215.00	2.59	2.78	0.30	358.62
0+815	1	200.00	4.09	3.34	0.30	200.40
1+015	2	200.00	3.20	3.65	0.30	437.40
1+200	2	185.00	9.48	6.34	0.30	703.74
1+400	2	200.00	3.27	6.38	0.30	765.00
1+600	1	200.00	4.98	4.13	0.30	247.50
1+800	2	200.00	5.79	5.39	0.30	646.20
2+000	1	200.00	10.02	7.91	0.30	474.30
2+200	1	200.00	9.00	9.51	0.30	570.60
2+400	0	200.00	0.00	4.50	0.30	0.00
2+600	0	200.00	0.00	0.00	0.30	0.00
2+800	0	200.00	0.00	0.00	0.30	0.00
3+000	1	200.00	3.00	1.50	0.30	90.00
3+200	2	200.00	3.17	3.09	0.30	370.20
3+400	1	200.00	9.95	6.56	0.30	393.60
3+600	0	200.00	0.00	4.98	0.30	0.00
Total						6417.66

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

- The hydrological analysis of the available annual maximum discharge data shows that the discharge data is closest to the Log-Pearson Type-3 distribution. Accordingly, the 2-year, 100-year, 500-year and 1000-year return period floods are found to be 800 cumecs, 2800 cumecs, 4700 cumecs and 5900 cumecs respectively. The flood dikes and the diversion channel have been designed based on 500 year return period flood as the airport is an important installation and deserves for high safety factor.
- In the present study the water surface profiles have been computed by using two well-established software called HEC-RAS and HEC-6. The results obtained, from both the above software are quite matching for fixed bed application. However, the water surface profile obtained from HEC-6 for mobile bed application differs to some extent, as anticipated, with that calculated for fixed bed application. This is due to the change in bed level as a result of scour or deposition of the bed material.
- The computation of water surface profiles shows that the existing channel section is inadequate to carry the design flood of 4700 cumecs for the entire reach under investigation. Dikes are required to be provided to prevent spillage of water over the banks. The dike should be provided with a side slope of 2 horizontal in 1 vertical and it's top shall be kept 1.5 m above the design water surface profile.
- The computations of stable channel parameters show that the stable channel width, depth and longitudinal slope are respectively 120 m, 3.5 m and 1/270. So the channel has been designed with a trapezoidal section of 120 m bottom width with side slope of 2 horizontal in 1 vertical. The longitudinal slope of the channel

has been provided with the existing slope of 1/110 from chainage 0+000 to 1+900 and then after the diversion channel has been designed with the available slope of 1/99 (=0.01007).

The existing channel of 1800 m length needs to be replaced by a new diversion channel of length 1700 m to accommodate the alignment of runway extension. The diversion channel has been designed as a smooth cosine curve instead of a straight channel because of the inherent instability of the later. In this case the reduction in channel length by diversion of the existing channel is not significant, so a pilot channel may not enlarge satisfactorily. Further, it is not possible to allow sufficient time for development of channel to ultimate section. So the full section of the channel needs to be excavated before diverting the flow into it.

Three different types of cover layer; namely the stone rip-rap, the gabion mattress and the cement concrete blocks have been designed as possible alternative solutions for protection of the embankment slope. The nominal thickness of stone rip-rap, gabion mattress and cement concrete blocks are found to be 1.80 m, 1.25 m and 0.80 m. However, the cement concrete blocks have been recommended for protection of the embankment slope as it requires less frequent maintenance in comparison to that for the stone rip-rap and the gabion mattress.

5.2 **RECOMMENDATIONS**

- Channelization of Beas River for extension of the runway may have certain environmental impact on the existing plants and animals. So environmental impact assessment of the channelization works is recommended prior to execution of the works in the field.
- Many assumptions have been made in the preceeding design and analysis of the channelization works, which may lead to some discrepancies in the computed and the observed results. Model study is recommended to simulate and verify the satisfactory functioning of the channelization works.
- The proposed channelization works require land acquisition and resettlements, which must be properly assessed and the displaced people must be properly rehabilitated to minimise the disturbances during the construction phase.

REFERENCES

- Brice, J.C., 1983, "Factors in Stability of Relocated Channels" Journal of the Hydraulics Division, ASCE, vol.109, no. HY10, October1983.
- Brookes, A., 1988, Channelized Rivers, Published by John Wiley and Sons Limited, USA.
- Chang, H.H., 1988, Fluvial Processes in River Engineering, Published by John Wiley and Sons Limited, New York, USA.
- 4. Chow, V.T., 1982, Open Channel Hydraulics, Published by McGraw-Hill Book Company.
- 5. Chow, V.T., Maidment, D.R. and Mays, L.W., 1988, Applied Hydrology, Published by McGraw-Hill Book Company, Singapore.
- 6. Das, B.P., "Channelization of river Bhargavi: India" from River 76, vol. II.
- 7. Garde, R.J. and Ranga Raju, K.G., 1977, Mechanics of sediment Transportation and Alluvial Stream Problems, Published by Wiley Eastern Limited, New Delhi.
- 8. Julien, P.Y., 2002, River Mechanics, Published by Cambridge University Press, UK.
- Keller, E.A. and Brookes, A., "Consideration of Meandering in Channelization Projects: Selected observations and Judgements" from River Meandering, Proceedings of the Conference Rivers' 83.
- Mutreja, K.N., 1986, Applied Hydrology, Tata McGraw-Hill Publishing Company Limited, New Delhi.
- Parker, G. and Andres, D., "Detrimental Effects of River Channelization" from River 76 vol. II.
- Petersen, M.S., 1986, River Engineering, Published by Prentice-Hall, New Jersey, USA.
- 13. Petts, G. and Calow, P., River flows and Channel Forms

- 14. Przedwojski, B., Blazejewski, R. and Pilarczyk, K.W., 1995, River Training Techniques, Published by A. A. Balkema/Rotterdam/Brookfield, Netherlands
- 15. Rhodes, D.D. and Williams, G.P., 1982, Adjustment of Fluvial System, George Allen and Unwin (Publishers) Limited, London, UK.
- 16. Richardson, J.R. and Stevens, M.A., "Responses of Gitaduy River in Indonesia to Development" from Water Forum' 86: World Water Issues in Evolution vol. II.
- 17. Shen, H.W., 1971, River Mechanics Vol. I & II, Published by the Author, USA.
- 18. Thorne, C.R., Bathurst, J.C. and Hey, R.D., 1987, Sediment Transport in Gravelbed Rivers, Published by John Wiley and Sons, New York, USA.
- U.S. Army Corps of Engineering, Hydrologic Center, User's Manual for HEC-RAS.
- 20. U.S. Army Corps of Engineering, Hydrologic Center, User's Manual for Hec-6.
- 21. UK Department of the Environment, Transport and the regions (DETR), HR Walingford and UK Environment Agency, 2001, River and Channel Revetments-A Design Manual, Thomas Telford Publishing, Thomas Telford Limited, London.

APPENDIX-1, INPUT DATA FILE FOR HEC-6 FOR SIMULATION OF BEAS RIVER IN NATURAL CONDITION FOR 2 YEAR AND 500 YEAR RETURN PERIOD FLOODS (FIX BED APPLICATION).

		APPLICA							
		ON OF BEA					RETURN F	PERIOD FL	CODS
NC .045		.040		.3					
X1 1.0			993.84	0.	0.	0.	ο.	0.	0.
GR3521.1	0.03	3519.44	52.48	3517.80	98.40	3516.16	147.60	3514.52	226.32
GR3512.9				3514.52				3512.88	505.12
GR3511.2								3501.73	
GR3498.8								3503.04	
GR3504.7		3522.72		3524.20					
HD 1.0									
	18.	465.76	793.76	665.84	672.40	669.12	0.	Ο.	ο.
GR3519.4				3516.16		3514.52		3512.88	
GR3511.2		3509.60		3507.96		3506.32		3503.04	
GR3501.8				3497.20		3497.86		3501.79	
GR3506.3				3555.52	842.96				
HD 2.0									
		216.48	495.28	623.20	672.40	721.60	0.	0.	Ο.
GR3519.4				3516.16		3514.52		3512.88	
GR3509.6		3506.32		3505.66				3499.92	
GR3502.4				3511.24				3521.08	505.12
GR3522.7	518.24								
HD 3.0	-								
X1 4.0 GR3522.7	12.	55.76	593.68	580.56	787.20	656.00	ο.	ο.	· 0.
GR3522.7	0.03	3516.16	55.76	3514.52	65.60	3513.37	88.56	3509.60	127.92
GR3513.4	186.96	3514.52	219.76	3514.85	350.96	3513.37	383.76	3507.63	482.16
GR3513.4		3524.36	593.68						
HD 4.0									
	14.	82.00	593.68	596.96	754.40	672.40	Ο.	ο.	Ο.
X1 5.0 GR3534.2	0.03	3532.56		3522.72				3522.72	
GR3524.4		3524.36		3522.72		3517.80		3522.72	
GR3524.4		3526.00		3531.74		3532.56	701.92		
HD 5.0							1. A.		
	15.	6.00	450.00	682.24	688.80	685.52	Ο.	0.	Ο.
GR3539.6	0.03	6.00 3535.85	82.11	3528.96	118.14	3527.97		3527.32	
GR3526.8		3526.50		3525.68				3527.65	374.05
GR3527.9		3529.61		3529.94		3531.09		3546.87	492.16
HD 6.0									
	11.	5.00	270.00	885.60	885.60	885.60	0.	Ο.	Ο.
X1 7.0 GR3547.3	0.03	3544.05	19.72	3542.41	36.12	3539.13	59.09	3535.85	108.30
GR3535.8	118.15	3537.49	262.50	3539.13	278.91	3542.41	295.31	3544.05	315.00
GR3547.3	387.17								
HD 7.0									
X1 8.0	12.	5.00	325.00	656.00	656.00	656.00	0.	٥.	0.
GR3555.5	0.03	3550.61	32.84	3548.97	45.96	3545.69	68.93	3542.41	118.14
GR3541.1	164.07	3541.62	210.01	3542.41	242.81	3545.69	295.01	3548.97	328.12
GR3550.6			406.86						
HD 8.0									
X1 9.0	11.	5.00	330.00	656.00	656.00	656.00	0.	0.	ο.
GR3562.1	0.03	3557.17	65.65	3552.25	98.46	3548.97	157.51	3548.02	177.20
GR3548.9	216.57	3552.25	282.18	3555.53	308.43	3557.17	347.80	3558.81	419.98
GR3572.2	459.32								
HD 9.0	· · · -								

17. 15.00 400.00 656.00 656.00 656.00 X1 10.0 0. Ο. 0. GR3570.3 0.03 3565.38 42.68 3558.81 72.21 3553.56 105.02 3555.53 157.51 GR3558.8 170.63 3558.81 216.57 3555.53 252.65 3555.53 275.62 3558.81 288.74 GR3558.8 354.36 3555.53 374.05 3555.53 393.73 3558.81 406.85 3562.09 433.10 GR3565.3 485.59 3579.60 590.55 HD 10.0 16.10.00550.00656.00656.00656.000.033571.9426.283565.3842.683562.09 X111.016.10.00550.00656.00656.00656.000.0.0.GR3576.80.033571.9426.283565.3842.683562.0978.773558.81118.14GR3558.8183.763563.74210.003565.38465.913562.09479.033558.81498.72 X1 11.0 GR3565.3 544.65 3565.34 570.90 3562.09 590.58 3568.66 616.80 3571.94 656.20 GR3583.3 705.38 HD 11.0 X1 12.0 12, 5.00 500.00 606.80 606.80 606.80 0. Ο. 0. GR3583.4 0.03 3578.50 32.84 3568.66 52.52 3565.38 85.33 3563.93 150.95 GR3563.0 216.57 3562.09 314.99 3565.38 439.66 3568.66 492.16 3571.94 505.28 GR3575.2 518.40 3578.50 557.77 HD 12.0 X1 13.0 10. 5.00 420.00 656.00 656.00 656.00 0. 0. 0. GR3590.00.033585.0616.433571.9478.773568.66196.883568.07216.57GR3568.6275.623571.94354.363575.22393.733578.50426.543585.06518.40 HD 13.0 X1 14.0 15. 5.00 375.00 656.00 656.00 656.00 0.03 3591.62 13.15 3588.34 29.55 3585.06 ٥. 0. 0. GR3594.2 59.08 3581.78 98.45 GR3578.5 137.82 3576.86 183.83 3576.30 190.32 3576.86 262.49 3578.50 314.99 GR3581.7 334.67 3585.06 347.80 3588.34 357.64 3591.62 387.17 3594.90 557.77 HD 14.0 X1 15.0 13. 20.00 400.00 705.20 705.20 705.20 X115.013.20.00400.00705.20705.20705.200.0.0.0.GR3603.10.033598.1823.003591.6232.843588.3452.523585.06127.98GR3581.7216.573581.29249.373581.78295.313585.06367.483588.34400.29GR3591.6426.543592.64459.353594.90544.65 HD 15.0 X1 16.0 5.00 350.00 656.00 656.00 656.00 13. Ο. 0. Ο. GR3606.40.033601.4645.963598.1852.523594.9072.213591.62105.02GR3588.3216.573588.18229.693588.34262.503591.62374.053594.90459.32 GR3596.2 472.47 3598.18 597.14 3601.46 643.07 HD 16.0 X117.09.5.00650.00328.00328.00328.000.0.0.0.GR3609.60.033604.7532.843598.1885.333594.90111.583591.62196.88GR3591.6229.693594.90321.553598.18380.613604.75754.62 X1 17.0 HD 17.0 EJ SHYD SRATING 28 7057.51 0 0 3495.17 3500.78 3502.94 3504.52 3505.93 RC RC 3507.21 3508.29 3509.34 3510.26 3511.17 3511.90 3512.62 3513.34 3514.29 3516.00 3516.55 3516.98 3517.24 3517.64 3518.03 3518.46 3518.82 3519.18 3519.54 3519.87 3520.19 3520.46 3520.85 RC RC * A PROFILE 1 = 2 YEAR RETURN PERIOD FLOOD Q 28230. т 60. W 1. * A PROFILE 2 = 500 YEAR RETURN PERIOD FLOOD Q165850. 60. T W 1. \$\$END

APPENDIX-2, OUTPUT OF HEC-6 FOR SIMULATION OF BEAS RIVER IN NATURAL CONDITION WITH 2 YEAR AND 500 YEAR RETURN PERIOD FLOODS (FIX BED APPLICATON).

* SCOUR AND DEPOSITION IN RIVERS AND RESERVOIRS * * U.S. ARMY CORPS OF ENGINEERS * Version: 4.1.00 - OCTOBER 1993 * * HYDROLOGIC ENGINEERING CENTER * INPUT FILE: FIXBED.DAT * 609 SECOND STREET * OUTPUT FILE: FIXBED.OUT * DAVIS, CALIFORNIA 95614687 * RUN DATE: 27 FEB 04 RUN TIME: 14:43:35 * (916) 7561104 * ***********************************
 MAXIMUM LIMITS FOR THIS VERSION ARE: 10 Stream Segments (Main Stem + Tributaries) 500 Cross Sections 200 Elevation/Station Points per Cross Section 20 Grain Sizes 10 Control Points 10 Control Points 10 Control Points 11 FIXED BED APPLICATION IN NATURAL CONDITION. T1 FIXED BED APPLICATION IN NATURAL CONDITION. T2 WITH A RATING CURVE AT THE DOWNSTREAMBOUNDARY. T3 SIMULATION OF BEAS RIVER FOR 2 YEAR AND 500 YEAR RETURN PERIOD FLOODS
N values Left Channel Right Contraction Expansion 0.0450 0.0400 0.0450 1.1000 0.7000
SECTION NO. 1.000 DEPTH of the Bed Sediment Control Volume = 0.00 ft.
SECTION NO. 2.000 DEPTH of the Bed Sediment Control Volume = 0.00 ft.
SECTION NO. 3.000 DEPTH of the Bed Sediment Control Volume = 0.00 ft.
SECTION NO. 4.000 DEPTH of the Bed Sediment Control Volume = 0.00 ft.
SECTION NO. 5.000 DEPTH of the Bed Sediment Control Volume = 0.00 ft.
SECTION NO. 6.000 DEPTH of the Bed Sediment Control Volume = 0.00 ft.
SECTION NO. 7.000 DEPTH of the Bed Sediment Control Volume = 0.00 ft.
SECTION NO. 8.000 DEPTH of the Bed Sediment Control Volume = 0.00 ft.
SECTION NO. 9.000 DEPTH of the Bed Sediment Control Volume = 0.00 ft.
SECTION NO. 10.000 DEPTH of the Bed Sediment Control Volume = 0.00 ft.
SECTION NO. 11.000 DEPTH of the Bed Sediment Control Volume = 0.00 ft.
SECTION NO. 12.000 DEPTH of the Bed Sediment Control Volume = 0.00 ft.

SECTION NO. 13.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 14.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 15.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 16.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 17.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. NO. OF CROSS SECTIONS IN STREAM SEGMENT= 17 NO. OF INPUT DATA MESSAGES = 0 TOTAL NO. OF CROSS SECTIONS IN THE NETWORK = 17 TOTAL NO. OF STREAM SEGMENTS IN THE NETWORK= END OF GEOMETRIC DATA **\$HYD** FIXED BED MODEL _____ **\$RATING** Downstream Boundary Condition - Rating Curve Elevation Stage Discharge Elevation Stage Discharge 3495.1703495.1700.000 |3516.0003516.00098805.1403500.7803500.7807057.510 |3516.5503516.550105862.650 14115.020 | 3516.980 3516.980 112920.160 3502.940 3502.940 3504.5203504.52021172.5303517.2403517.240119977.6703505.9303505.93028230.0403517.6403517.640127035.1803507.2103507.21035287.5503518.0303518.030134092.690 3508.2903508.29042345.060 |3518.4603518.460141150.2003509.3403509.34049402.570 |3518.8203518.820148207.7103510.2603510.26056460.080 |3519.1803519.180155265.220 3511.170 63517.590 | 3519.540 3519.540 162322.730 3511.900 70575.100 | 3519.870 3519.870 169380.240 3511.170 3511.9003511.90070575.1003519.8703519.8703512.6203512.62077632.6103520.1903520.190 169380.240 176437.750 3513.340 3513.340 84690.120 | 3520.460 3520.460 3514 290 3514 290 91747 630 | 3520.850 3520.850 183495.260 3514.290 3514.290 91747.630 | 3520.850 3520.850 190552.770 TIME STEP # 1 * A PROFILE 1 = 2 YEAR RETURN PERIOD FLOOD FIXED BED APPLICATION IN NATURAL CONDITION. ACCUMULATED TIME (yrs)..... 0.000 --- Downstream Boundary Condition Data for STREAM SEGMENT NO. 1 at Control Point # 1 ---DISCHARGE TEMPERATURE WATER SURFACE (cfs) (deg F) (ft) 28230.000 60.00 3505.930 **** DISCHARGE WATER ENERGY VELOCITY ALPHA TOP AVG AVG VEL (by subsection) SURFACE LINE HEAD (CFS) WIDTH BED 1 2 3 SECTION NO. 1.000 **** 28230.000 3505.930 3508.446 2.516 1.037 1.037 328.928 3498.140 3.785 12.780 0.000 FLOW DISTRIBUTION (%) = 0.965 99.035 0.000 SECTION NO. 2.000 **** 28230.000 3510.329 3511.995 1.665 1,028 306.302 3500.241 2.714 10.381 0.000 FLOW DISTRIBUTION (%) = 0.591 99.409 0.000 SECTION NO. 3.000 1.049 309.622 3504.161 3.724 12.212 **** 28230.000 3513.173 3515.463 2.289 0.000 FLOW DISTRIBUTION (%) = 1.347 98.653 0.000SECTION NO. 4.000 **** 28230.000 3518.176 3519.844 1.669 1,007 520.149 3512.773 3.017 10.371 0.000 FLOW DISTRIBUTION (%) = 0.188 99.812 0.000 SECTION NO. 5.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 5.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS 0. 3526.763 3525.022 3524.866 3526.807 3526.857 1. 28230.000 3526.857 3529.141 2.283 1.000 499.568 3522.195 0.000 12.122 0.000 12.122 0.000 0.000 100.000 0.000 0.000 FLOW DISTRIBUTION (%) = 6.000 SECTION NO. 1.003 364.554 3527.642 0.000 11.970 2.746 FLOW DISTRIBUTION (%) = 0.000 99.953 0.047 **** 28230.000 3534.203 3536.429 2.226 2.746 SECTION NO. 7.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 7.000 TIME = 1.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL NO. WS WS WS 0. 3544.8953542.2093544.9893542.102 3544.939 1. 1.065 321.822 3537.779 0.000 14.692 6.558 FLOW DISTRIBUTION (%) = 0.000 96.055 3.945 **** 28230.000 3544.989 3548.238 3.249 SECTION NO. 8.000 0.000 11.961 0.000 98.994 3.200 **** 28230.000 3551.813 3554.015 2.202 1.046 369.759 3544.038 FLOW DISTRIBUTION (%) = 1.006 SECTION NO. 9.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 9.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS Ο. 3558.822 3556.810 3558.8223556.8103558.9163556.768 3558.866 1. 1.063377.8873551.9330.00013.8633.726FLOW DISTRIBUTION (%)=0.00098.6201.380 **** 28230.000 3558.916 3561.865 2.948 SECTION NO. 10.000 **** 28230.000 3565.026 3566.497 1.471 1.058 437.818 3557.323 0.000 9.884 4.653 FLOW DISTRIBUTION (%) = 0.000 95.9974.003 SECTION NO. 11.000 **** 28230.000 3568.664 3569.893 1.228 582.480 3562.928 0.000 9.026 6.045 1.023 FLOW DISTRIBUTION (%) = 0.000 94.563 5.437 SECTION NO. 12.000 **** 28230.000 3571.638 3572.785 1.147 1.001 457.401 3564.392 0.000 8.593 1.262 FLOW DISTRIBUTION (%) = 0.000 99.991 0.009 13.000 SECTION NO. ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 13.000 TIME = 1.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL NO. WS WS WS 3574.724 3574.724 - 01 357 3576.497 Ο. 3576.541 3576.591 1. 1.000 350.769 3570.691 0.000 13.641 0.000 **** 28230.000 3576.591 3579.483 2.892 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 14.000 SECTION NO. ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 14.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS 3585.608 3585.702 3584.598 3584.490 3585.652 0. 1. 1.000 296.421 3579.090 0.000 14.405 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 **** 28230.000 3585.702 3588.926 3.225

SECTION NO. 15.000 **** 28230.000 3592.416 3593.785 1.368 1.030 420.892 3584.335 0.000 9.415 2.663 FLOW DISTRIBUTION (%) = 0.000 99.280 0.720 SECTION NO. 16.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 16.000 TIME = 1.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL. NO. WS WS WS 1. 3596.179 3595.916 3596.273 2. 3595.891 3596 223 28230.000 3596.273 3599.212 2.939 * * * * 1.092 413.117 3590.125 0.000 14.300 7.959 0.000 89.089 10.911 FLOW DISTRIBUTION (%) = SECTION NO. 17.000 **** 28230.000 3601.315 3603.379 2.064 1.000 495.793 3596.374 0.000 11.524 0.000 FLOW DISTRIBUTION (%) = 0,000 100.000 0.000 TIME STEP # 2 AB PROFILE 2 = 500 YEAR RETURN PERIOD FLCOD FIXED BED APPLICATION IN NATURAL CONDITION. ACCUMULATED TIME (yrs)..... 0.003 --- Downstream Boundary Condition Data for STREAM SEGMENT NO. 1 at Control Point # 1 ---DISCHARGE TEMPERATURE WATER SURFACE (cfs) (deg F) (ft) 165850.000 60.00 3519.705 **** DISCHARGE WATER ENERGY VELOCITY ALPHA TOP AVG AVG VEL (by subsection) 9 (CFS) SURFACE LINE HEAD WIDTH BED 1 2 3 SECTION NO. 1.000 **** 165850.000 3519.705 3525.092 5.387 1.389 944.792 3499.231 8.789 20.635 0.000 FLOW DISTRIBUTION (8) = 22.718 77.2820.000 SECTION NO. 2.000 **** 165850.000 3523.038 3529.026 5,987 1.315 751.239 3501.237 9.427 21.399 0.000 FLOW DISTRIBUTION (%) = 19.687 80.313 0.000 SECTION NO. 3.000 **** 165850.000 3526.492 3533.541 1.150 518.210 3505.317 12.982 22.811 7.049 7.895 FLOW DISTRIBUTION (%) = 18.243 81.197 0.561 SECTION NO. 4.000 **** 165850.000 3533.289 3536.582 3.293 1.017 593.650 3513.367 10.252 14.739 7.599 FLOW DISTRIBUTION (%) = 4.765 95.235 0.000SECTION NO. 5.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 5.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS Ο. 3537.454 3534.404 3534.439 3537.548 1. 3537.498 **** 165850.000 3537.548 3543.710 6.162 1.090 701.890 3522.364 7.733 20.316 9.189 FLOW DISTRIBUTION (%) = 1.593 95.170 3.237 SECTION NO. 6.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 6.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS 0. 3545.701 3542.247 1. 3545.795 3542.256 3545.745 **** 165850.000 3545.795 3553.523 7.728 1.028 489.001 3529.490 10.642 22.468 10.658 FLOW DISTRIBUTION (%) = 0.243 98.076 1.681

7.000 SECTION NO. ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 7.000 TIME = 1.000 DAYS. COMPUTED CRITICAL TRIAL TRIAL NO. WS WS WS 3558.265 3552.623 3558.359 3552.626 3558.309 Ο. 1. **** 165850.000 3558.359 3567.265 8.906 1.055 387.140 3538.050 15.161 25.147 17.680 FLOW DISTRIBUTION (%) = 0.521 81.601 17.878 SECTION NO. 8.000 1.039 406.830 3544.645 12.373 22.920 15.975 FLOW DISTRIBUTION (%) = 0.355 88.689 10.957 **** 165850.000 3564.699 3572.383 7.684 SECTION NO. 9.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 9.000 TIME = 1.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL WS WS WS NO. 0. 3571.247 3569.419 1. 3571.341 3569.440 3571.291 0. 1.067 456.766 3552.899 13.558 23.855 15.303 FLOW DISTRIBUTION (%) = 0.383 86.208 13.409 **** 165850.000 3571.341 3579.463 8.123 SECTION NO. 10.000 1.097 587.183 3558.111 9.305 17.532 10.401 FLOW DISTRIBUTION (%) = 0.815 85.699 13.486 **** 165850.000 3579.167 3583.499 4.331 SECTION NO. 11.000 **** 165850.000 3582.915 3585.730 2.815 1.050 703.895 3563.314 6.229 13.906 9.246 FLOW DISTRIBUTION (%) = 0.265 88.748 10.986 SECTION NO. 12.000 **** 165850.000 3583.600 3588.607 5.008 1.030 557.740 3565.595 1.586 18.125 9.340 FLOW DISTRIBUTION (%) = 0.003 97.3972,600 SECTION NO. 13.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 13.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS ŴS 0. 3589.187 3586.107 1. 3589.281 3586.134 3586.134 3589.231 **** 165850.000 3589.281 3596.696 7.415 1.056 515.984 3572.314 1.559 22.282 11.759 FLOW DISTRIBUTION (%) = 0.001 94.598 5.401 SECTION NO. 14.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 14.000 TIME = 1.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL NO. WS WS WS 0. 3599.656 3594.550 3599.750 3599.700 3594.605 1. **** 165850.000 3599.750 3606.929 7.179 1.122 557.740 3581.025 9.186 22.162 9,911 FLOW DISTRIBUTION (%) = 0.166 92.578 7.256 SECTION NO. 15.000 **** 165850.000 3606.509 3610.748 4.239 1.069 544.620 3584.729 6.072 17.227 11.331 FLOW DISTRIBUTION (%) = 0.404 85.970 13.626 SECTION NO. 16.000 5.313 18.793 14.190 **** 165850.000 3609.195 3613.894 4.700 1.054 643.040 3592.154 0.049 66.618 33.333 FLOW DISTRIBUTION (%) = SECTION NO. 17.000 **** 165850.000 3611.183 3616.239 5.056 1.036 754.590 3597.886 4.535 18.342 11.013 FLOW DISTRIBUTION (%) = 0.027 94.853 5.120 SSEND DATA ERRORS DETECTED. 0 TOTAL NO. OF TIME STEPS READ = 2 TOTAL NO. OF WS PROFILES = 2 ITERATIONS IN EXNER EQ = 0 COMPUTATIONS COMPLETED RUN TIME = 0 HOURS, 0 MINUTES & 0.00 SECONDS

APPENDIX-3, OUTPUT OF HEC-RAS FOR SIMULATION OF BEAS RIVER IN NATURAL CONDITION WITH 2 YEAR AND 500 YEAR RETURN PERIOD FLOODS (FIX BED APPLICATION)

Plan: N	Plan: Natural Beas River Study Reach RS: 1 Profile: 2 Year Flood				
E.G. Elev (ft)	3508.44	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.51	Wt. n-Val.	0.045	0.04	
W.S. Elev (ft)	3505.93	Reach Len. (ft)	-		
Crit W.S. (ft)	3504.93	Flow Area (sq ft)	71.88	2189.06	
E.G. Slope (ft/ft)	0.007693	Area (sq ft)	71.88	2189.06	
Q Total (cfs)	28230	Flow (cfs)	272.14	27957.86	
Top Width (ft)	328.81	Top Width (ft)	47.96	280.85	
Vel Total (ft/s)	12.49	Avg. Vel. (ft/s)	3.79	12.77	
Max Chl Dpth (ft)	10.76	Hydr. Depth (ft)	1.5	7.79	
Conv. Total (cfs)	321861.5	Conv. (cfs)	3102.8	318758.7	
Length Wtd. (ft)		Wetted Per. (ft)	48.1	282.07	
Min Ch El (ft)	3495.17	Shear (lb/sq ft)	0.72	3.73	
Alpha	1.04	Stream Power (lb/ft s)	2.72	47.6	
Frctn Loss (ft)		Cum Volume (acre-ft)			
C & E Loss (ft)		Cum SA (acres)			

Plan: N	latural Beas	River Study Reach RS: 2	Profile: 2 Ye	ar Flood	
E.G. Elev (ft)	3511.97	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.68	Wt. n-Val.	0.045	0.04	
W.S. Elev (ft)	3510.29	Reach Len. (ft)	665.84	669.12	672.4
Crit W.S. (ft)	3507.21	Flow Area (sq ft)	59.57	2690.24	
E.G. Slope (ft/ft)	0.003687	Area (sq ft)	59.57	· 2690.24	
Q Total (cfs)	28230	Flow (cfs)	162.56	28067.44	
Top Width (ft)	305.16	Top Width (ft)	37.28	267.88	
Vel Total (ft/s)	10.27	Avg. Vel. (ft/s)	2.73	10.43	
Max Chl Dpth (ft)	13.09	Hydr. Depth (ft)	1.6	10.04	
Conv. Total (cfs)	464885.6	Conv. (cfs)	2677	462208.6	
Length Wtd. (ft)	669.09	Wetted Per. (ft)	37.52	270.47	
Min Ch El (ft)	3497.2	Shear (lb/sq ft)	0.37	2.29	
Alpha	1.03	Stream Power (lb/ft s)	1	23.89	
Frctn Loss (ft)	3.45	Cum Volume (acre-ft)	1	37.48	
C & E Loss (ft)	0.08	Cum SA (acres)	0.65	4.21	

Plan: N	Plan: Natural Beas River Study Reach RS: 3 Profile: 2 Year Flood					
E.G. Elev (ft)	3515.45	Element	Left OB	Channel	Right OB	
Vel Head (ft)	2.29	Wt. n-Val.	0.045	0.04	[
W.S. Elev (ft)	3513.16	Reach Len. (ft)	623.2	721.6	672.4	
Crit W.S. (ft)		Flow Area (sq ft)	101.29	2277.66		
E.G. Slope (ft/ft)	0.005832	Area (sq ft)	101.29	2277.66		
Q Total (cfs)	28230	Flow (cfs)	376.91	27853.09		
Top Width (ft)	309.38	Top Width (ft)	56.4	252.98		
Vel Total (ft/s)	11.87	Avg. Vel. (ft/s)	3.72	12.23		
Max Chl Dpth (ft)	13.24	Hydr. Depth (ft)	1.8	9		
Conv. Total (cfs)	369668.3	Conv. (cfs)	4935.5	364732.8		
Length Wtd. (ft)	720.66	Wetted Per. (ft)	56.51	254.49		
Min Ch El (ft)	3499.92	Shear (lb/sq ft)	0.65	3.26		
Alpha	1.05	Stream Power (lb/ft s)	2.43	39.85	·	
Frctn Loss (ft)	3.3	Cum Volume (acre-ft)	2.16	78.62		
C & E Loss (ft)	0.18	Cum SA (acres)	1.32	8.53		

Plan:	Natural Beas	Profile: 2 Ye	ar Flood		
E.G. Elev (ft)	3519.9	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.6	Wt. n-Val.	0.045	0.04	
W.S. Elev (ft)	3518.31	Reach Len. (ft)	580.56	656	787.2
Crit W.S. (ft)		Flow Area (sq ft)	19.61	2774.3	
E.G. Slope (ft/ft)	0.007707	Area (sq ft)	19.61	2774.3	
Q Total (cfs)	28230	Flow (cfs)	59.29	28170.71	
Top Width (ft)	521.77	Top Width (ft)	18.28	503.49	
Vel Total (ft/s)	10.1	Avg. Vel. (ft/s)	3.02	10.15	
Max Chl Dpth (ft)	10.68	Hydr. Depth (ft)	1.07	5.51	
Conv. Total (cfs)	321569.9	Conv. (cfs)	675.4	320894.5	
Length Wtd. (ft)	655.42	Wetted Per. (ft)	18.41	504.94	
Min Ch El (ft)	3507.63	Shear (lb/sq ft)	0.51	2.64	
Alpha	1.01	Stream Power (lb/ft s)	1.55	26.84	
Frctn Loss (ft)	4.37	Cum Volume (acre-ft)	2.96	116.66	
C & E Loss (ft)	0.07	Cum SA (acres)	1.82	14.22	

Plan: Natural Beas River Study Reach RS: 5 Profile: 2 Year Flood									
E.G. Elev (ft)	3529.14	Element	Left OB	Channel	Right OB				
Vel Head (ft)	2.34	Wt. n-Val.		0.04					
W.S. Elev (ft)	3526.8	Reach Len. (ft)	596.96	672.4	754.4				
Crit W.S. (ft)	3526.8	Flow Area (sq ft)		2298.32					
E.G. Slope (ft/ft)	0.014466	Area (sq ft)		2298.32					
Q Total (cfs)	28230	Flow (cfs)		28230					
Top Width (ft)	499.42	Top Width (ft)		499.42					
Vel Total (ft/s)	12.28	Avg. Vel. (ft/s)		12.28					
Max Chl Dpth (ft)	9.82	Hydr. Depth (ft)		4.6					
Conv. Total (cfs)	234710.9	Conv. (cfs)		234710.9					
Length Wtd. (ft)	672.32	Wetted Per. (ft)		504.23					
Min Ch El (ft)	3516.98	Shear (lb/sq ft)		4.12					
Alpha	. 1	Stream Power (lb/ft s)		50.56					
Frctn Loss (ft)	6.93	Cum Volume (acre-ft)	3.1	155.81					
C & E Loss (ft)	0.22	Cum SA (acres)	1.94	21.97					

Plan: Natural Beas River Study Reach RS: 6 Profile: 2 Year Flood										
E.G. Elev (ft)	3536.45	Element	Left OB	Channel	Right OB					
Vel Head (ft)	2.17	Wt. n-Val.		0.04	0.045					
W.S. Elev (ft)	3534.28	Reach Len. (ft)	682.24	685.52	688.8					
Crit W.S. (ft)		Flow Area (sq ft)		2386.15	5.22					
E.G. Slope (ft/ft)	0.008159	Area (sq ft)		2386.15	5.22					
Q Total (cfs)	28230	Flow (cfs)		28215.55	14.45					
Top Width (ft)	365.2	Top Width (ft)		359.69	5.51					
Vel Total (ft/s)	11.8	Avg. Vcl. (ft/s)		11.82	2.77					
Max Chl Dpth (ft)	8.77	Hydr. Depth (ft)		6.63	0.95					
Conv. Total (cfs)	312539.9	Conv. (cfs)		312379.9	160					
Length Wtd. (ft)	685.52	Wetted Per. (ft)		360.68	5.83					
Min Ch El (ft)	3525.51	Shear (lb/sq ft)		3.37	0.46					
Alpha	1	Stream Power (lb/ft s)		39.84	1.26					
Frctn Loss (ft)	7.3	Cum Volume (acre-ft)	3.1	192.68	0.04					
C & E Loss (ft)	0.02	Cum SA (acres)	1.94	28.73	0.04					

Plan: Natural Beas River Study Reach RS: 7 Profile: 2 Year Flood								
E.G. Elev (ft)	3548.23	Element	Left OB	Channel	Right OB			
Vel Head (ft)	3.31	Wt. n-Val.		0.04	0.045			
W.S. Elev (ft)	3544.93	Reach Len. (ft)	885.6	885.6	885.6			
Crit W.S. (ft)	3544.93	Flow Area (sq ft)		1829.25	165.62			
E.G. Slope (ft/ft)	0.01159	Area (sq ft)		1829.25	165.62			
Q Total (cfs)	28230	Flow (cfs)		27130.4	1099.6			
Top Width (ft)	320.01	Top Width (ft)		255.58	64.43			
Vel Total (ft/s)	14.15	Avg. Vel. (ft/s)		14.83	6.64			
Max Chl Dpth (ft)	9.13	Hydr. Depth (ft)		7.16	2.57			
Conv. Total (cfs)	262227.2	Conv. (cfs)		252013.1	10214.1			
Length Wtd. (ft)	885.6	Wetted Per. (ft)		256.12	64.89			
Min Ch El (ft)	3535.8	Shear (lb/sq ft)		5.17	1.85			
Alpha	1.06	Stream Power (lb/ft s)		76.64	12.26			
Frctn Loss (ft)	8.55	Cum Volume (acre-ft)	3.1	235.53	1.78			
C & E Loss (ft)	0.34	Cum SA (acres)	1.94	34.98	0.75			

	r	River Study Reach RS: 8	Profile: 2 Yes	· · · · · · · · · · · · · · · · · · ·	i
E.G. Elev (ft)	3554.05	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.2	Wt. n-Val.	<u> </u>	0.04	0.04
W.S. Elev (ft)	3551.85	Reach Len. (ft)	656	656	65
Crit W.S. (ft)	3550.51	Flow Area (sq ft)		2334.67	88.3
E.G. Slope (ft/ft)	0.006771	Area (sq ft)		2334.67	88.3
Q Total (cfs)	28230	Flow (cfs)		27947.33	282.67
Top Width (ft)	369.52	Top Width (ft)		300.46	69.06
Vel Total (ft/s)	11.65	Avg. Vel. (ft/s)		11.97	3.2
Max Chl Dpth (ft)	10.75	Hydr. Depth (ft)		7.77	1.28
Conv. Total (cfs)	343059.6	Conv. (cfs)		339624.4	3435.1
Length Wtd. (ft)	656	Wetted Per. (ft)		301.28	69.14
Min Ch El (ft)	3541.1	Shear (lb/sq ft)		3.28	0.54
Alpha	1.05	Stream Power (lb/ft s)		39.21	1.73
Frctn Loss (ft)	5.71	Cum Volume (acre-ft)	3.1	266.88	3.69
C & E Loss (ft)	0.11	Cum SA (acres)	1.94	39.17	1.70

E.G. Elev (ft)	3561.86	Element	Left OB	Channel	Right OB	
Vel Head (ft)	3.02	Wt. n-Val.		0.04	0.04	
W.S. Elev (ft)	3558.85	Reach Len. (ft)	656	656	65	
Crit W.S. (ft)	3558.85	Flow Area (sq ft)		1987.72	98.1	
E.G. Slope (ft/ft)	0.010818	Area (sq ft)		1987.72	98.1	
Q Total (cfs)	28230	Flow (cfs)		27873.38	356.6	
Top Width (ft)	376.71	Top Width (ft)		286.63	90.0	
Vel Total (ft/s)	13.53	Avg. Vel. (ft/s)		14.02	3.6	
Max Chl Dpth (ft)	10.82	Hydr. Depth (ft)		6.93	1.0	
Conv. Total (cfs)	271413.2	Conv. (cfs)		267984.5	3428.	
Length Wtd. (ft)	656	Wetted Per. (ft)		287.49	90.1	
Min Ch El (ft)	3548.02	Shear (lb/sq ft)		4.67	0.7	
Alpha	1.06	Stream Power (lb/ft s)		65.48	2.6	
Fretn Loss (ft)	5.54	Cum Volume (acre-ft)	3.1	299.43	5.0	
C & E Loss (ft)	0.24	Cum SA (acres)	1.94	43.59	2.9	

P			· .		
Plan: N	latural Beas	Profile: 2 Yo	ar Flood		
E.G. Elev (ft)	3566.53	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.48	Wt. n-Val.		0.04	0.04
W.S. Elev (ft)	3565.05	Reach Len. (ft)	656	656	65
Crit W.S. (ft)		Flow Area (sq ft)		2733.93	241.0
E.G. Slope (ft/ft)	0.004744	Area (sq ft)		2733.93	241.0
Q Total (cfs)	28230	Flow (cfs)		27105.26	1124.7
Top Width (ft)	437.35	Top Width (ft)		355.84	81.5
Vel Total (ft/s)	9.49	Avg. Vel. (ft/s)		9.91	4.6
Max Chl Dpth (ft)	11.49	Hydr. Depth (ft)		7.68	
Conv. Total (cfs)	409883.7			393553.1	16330.
Length Wtd. (ft)	656	Wetted Per. (ft)		358.4	82.0
Min Ch El (ft)	3553.56	Shear (lb/sq ft)		2.26	
Alpha	1.06	Stream Power (lb/ft s)		22.4	
Frctn Loss (ft)		Cum Volume (acre-ft)	3.1	334.98	
C & E Loss (ft)	0.15	Cum SA (acres)	1.94		

Plan: N	Natural Beas	River Study Reach RS: 11	Profile: 2 Year Flood			
E.G. Elev (ft)	3569.93	Element	Left OB	Channel	l Right OB	
Vel Head (ft)	1.2	Wt. n-Val.		0.04		
W.S. Elev (ft)	3568.73	Reach Len. (ft)	656	656	656	
Crit W.S. (ft)		Flow Area (sq ft)		2987.3	257.77	
E.G. Slope (ft/ft)	0.005598	Area (sq ft)		2987.3	257.77	
Q Total (cfs)	28230	Flow (cfs)		26692.42	1537.58	
Top Width (ft)	583.32	Top Width (ft)		515.69	67.63	
Vel Total (ft/s)	8.7	Avg. Vel. (ft/s)		8.94	5.96	
Max Chl Dpth (ft)	9.93	Hydr. Depth (ft)		5.79	3.81	
Conv. Total (cfs)	377320.8	Conv. (cfs)		356769.6	20551.2	
Length Wtd. (ft)	656	Wetted Per. (ft)		518.22	68.71	
Min Ch El (ft)	3558.8	Shear (lb/sq ft)		2.01	1.31	
Alpha	1.02	Stream Power (lb/ft s)		18	7.82	
Frctn Loss (ft)	3.37	Cum Volume (acre-ft)	3.1	378.06	11.4	
C & E Loss (ft)	0.03		1.94		5.37	

Plan: 1	Natural Beas	River Study Reach RS: 12	Profile: 2 Year Flood			
E.G. Elev (ft)	3572.74	Element	Left OB	Left OB Channel		
Vel Head (ft)	1.16	Wt. n-Val.		0.04		
W.S. Elev (ft)	3571.59	Reach Len. (ft)	606.8	606.8	606.8	
Crit W.S. (ft)		Flow Area (sq ft)		3269.75	1.87	
E.G. Slope (ft/ft)	0.00389	Area (sq ft)		3269.75	1.87	
Q Total (cfs)	28230	Flow (cfs)		28227.68	2.32	
Top Width (ft)	457.2	Top Width (ft)		453.33		
Vel Total (ft/s)	8.63	Avg. Vel. (ft/s)		8.63		
Max Chl Dpth (ft)	9.5	Hydr. Depth (ft)		7.21	0.48	
Conv. Total (cfs)	452628.9	Conv. (cfs)		452591.7	37.2	
Length Wtd. (ft)	606.8	Wetted Per. (ft)		454.6		
Min Ch El (ft)	3562.09	Shear (lb/sq ft)		1.75	0.11	
Alpha	1	Stream Power (lb/ft s)		15.08	0.14	
Fretn Loss (ft)	2.81	Cum Volume (acre-ft)	3.1	421.64		
C & E Loss (ft)	0	Cum SA (acres)	1.94	61.74	5.87	

. Å.

Plan: 1	Natural Beas	Profile: 2 Ye	ar Flood		
E.G. Elev (ft)	3579.48	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.94	Wt. n-Val.		0.04	
W.S. Elev (ft)	3576.54	Reach Len. (ft)	656	656	656
Crit W.S. (ft)	3576.54	Flow Area (sq ft)		2050.17	
E.G. Slope (ft/ft)	0.013049	Area (sq ft)		2050.17	
Q Total (cfs)	28230	Flow (cfs)		28230	
Top Width (ft)	349.94	Top Width (ft)		349.94	· ·
Vel Total (ft/s)	13.77	Avg. Vel. (ft/s)		13.77	
Max Chl Dpth (ft)	8.47	Hydr. Depth (ft)		5.86	
Conv. Total (cfs)	247128.2	Conv. (cfs)		247128.2	
Length Wtd. (ft)	656	Wetted Per. (ft)		350.75	
Min Ch El (ft)	3568.07	Shear (lb/sq ft)		4.76	
Alpha	1	Stream Power (lb/ft s)		65.57	
Frctn Loss (ft)	4.27	Cum Volume (acre-ft)	3.1	461.7	13.23
C & E Loss (ft)	0.54	Cum SA (acres)	1.94	67.79	5.9

E.G. Elev (ft)	3588.92	Element	Left OB	Channel	Right OB
Vel Head (ft)	3.32	Wt. n-Val.		0.04	
W.S. Elev (ft)	3585.61	Reach Len. (ft)	. 656	.656	656
Crit W.S. (ft)	3585.61	Flow Area (sq ft)		1931.89	
E.G. Slope (ft/ft)	0.012712	Area (sq ft)		1931.89	
Q Total (cfs)	28230	Flow (cfs)		28230	
Top Width (ft)	295.29	Top Width (ft)		295.29	
Vel Total (ft/s)	14.61	Avg. Vel. (ft/s)		14.61	
Max Chl Dpth (ft)	9.31	Hydr. Depth (ft)		6.54	
Conv. Total (cfs)	250383.9	Conv. (cfs)		250383.9	
Length Wtd. (ft)	656	Wetted Per. (ft)		296.45	
Min Ch El (ft)	3576.3	Shear (lb/sq ft)		5.17	<u> </u>
Alpha	1	Stream Power (lb/ft s)		75.57	
Frctn Loss (ft)	8.45	Cum Volume (acre-ft)	3.1	491.68	13.23
C & E Loss (ft)	0.11	Cum SA (acres)	1.94	72.64	5.9

E.G. Elev (ft)		River Study Reach RS: 15 Element	Left OB	Channel	Right OB
Vel Head (ft)		Wt. n-Val.		0.04	0.045
W.S. Elev (ft)	3592.39	Reach Len. (ft)	705.2	705.2	705.2
Crit W.S. (ft)		Flow Area (sq ft)		2963.14	74.38
E.G. Slope (ft/ft)	0.004035	Area (sq ft)		2963.14	74.38
Q Total (cfs)	28230	Flow (cfs)		28030.86	199.14
Top Width (ft)	419.67	Top Width (ft)		368.31	51.30
Vel Total (ft/s)	9.29	Avg. Vel. (ft/s)		9.46	2.68
Max Chl Dpth (ft)	11.1	Hydr. Depth (ft)		8.05	1.45
Conv. Total (cfs)	444388.8	Conv. (cfs)		441254.1	3134.8
Length Wtd. (ft)	705.2	Wetted Per. (ft)		369.19	51.58
Min Ch El (ft)	3581.29	Shear (lb/sq ft)		2.02	0.30
Alpha	1.03	Stream Power (lb/ft s)		19.13	0.97
Frctn Loss (ft)	4.66	Cum Volume (acre-ft)	3.1	531.31	13.83
C & E Loss (ft)	0.19	Cum SA (acres)	1.94	78.02	6.32

		River Study Reach RS: 1	6 Profile: 2 Ye	ar Flood	
E.G. Elev (ft)	3599.21	Element	Left OB	Channel	Right OB
Vel Head (ft)	3	Wt. n-Val.		0.04	0.04
W.S. Elev (ft)	3596.21	Reach Len. (ft)	656	656	65
Crit W.S. (ft)	3596.21	Flow Area (sq ft)		1739.93	378.8
E.G. Slope (ft/ft)	0.013623	Area (sq ft)		1739.93	378.8
Q Total (cfs)	28230	Flow (cfs)		25140.64	3089.3
Top Width (ft)	408.57	Top Width (ft)		285.64	122.9
Vel Total (ft/s)	13.32	Avg. Vel. (ft/s)		14.45	
Max Chl Dpth (ft)	8.03	Hydr. Depth (ft)		6.09	3.0
Conv. Total (cfs)	241870.2	Conv. (cfs)		215401.1	26469.
Length Wtd. (ft)	656	Wetted Per. (ft)		286	123.0
Min Ch El (ft)	3588.18	Shear (lb/sq ft)		5.17	2.6
Alpha	1.09	Stream Power (lb/ft s)		74.76	21.3
Fretn Loss (ft)	4.44	Cum Volume (acre-ft)	3.1	566.72	17.2
C & E Loss (ft)	0.49	Cum SA (acres)	1.94	82.94	7.6

	atural Beas	River Study Reach RS: 17	Profile: 2 Year Flood			
E.G. Elev (ft)	3603.34	Element	Left OB	Channel	Right OB	
Vel Head (ft)	2.01	Wt. n-Val.		0.04		
W.S. Elev (ft)	3601.33	Reach Len. (ft)	328	328	328	
Crit W.S. (ft)	3600.88	Flow Area (sq ft)		2479.67		
E.G. Slope (ft/ft)	0.011117	Area (sq ft)		2479.67		
Q Total (cfs)	28230	Flow (cfs)		28230		
Top Width (ft)	499.76	Top Width (ft)		499.76		
Vel Total (ft/s)	11.38	Avg. Vel. (ft/s)		11.38		
Max Chl Dpth (ft)	9.73	Hydr. Depth (ft)		4.96		
Conv. Total (cfs)	T	Conv. (cfs)		267737.9		
Length Wtd. (ft)	328	Wetted Per. (ft)		500.41		
Min Ch El (ft)	3591.6	Shear (lb/sq ft)		3.44	-	
Alpha	1	Stream Power (lb/ft s)		39.15		
Frctn Loss (ft)	4.03		3.1	582.61	18.67	
C & E Loss (ft)	0.1	Cum SA (acres)	1.94	85.9	8.09	

E.G. Elev (ft)	3525.09	Element	Left OB	Channel	Right OE
Vel Head (ft)	5.38	Wt. n-Val.	0.045	0.04	
W.S. Elev (ft)	3519.71	Reach Len. (ft)			
Crit W.S. (ft)	3519.52	Flow Area (sq ft)	4284.7	6213	
E.G. Slope (ft/ft)	0.005632	Area (sq ft)	4284.7	6213	
Q Total (cfs)	165850	Flow (cfs)	37635.81	128214.2	
Top Width (ft)	944.91	Top Width (ft)	641.52	303.39	1
Vel Total (ft/s)	15.8	Avg. Vel. (ft/s)	8.78	20.64	
Max Chl Dpth (ft)	24.54	Hydr. Depth (ft)	6.68	20.48	
Conv. Total (cfs)	2210008	Conv. (cfs)	501510.1	1708498	
Length Wtd. (ft)		Wetted Per. (ft)	• 642.03	308.49	
Min Ch El (ft)	3495.17	Shear (lb/sq ft)	2.35	7.08	
Alpha	1.39	Stream Power (lb/ft s)	20.61	146.13	
Frctn Loss (ft)		Cum Volume (acre-ft)		*******	
C & E Loss (ft)		Cum SA (acres)			

Plan: N	latural Beas I	Giver Study Reach RS: 2		ear Flood	·····
E.G. Elev (ft)	3529.06	Element	Left OB	Channel	Right OB
Vel Head (ft)	5.99	Wt. n-Val.	0.045	0.04	
W.S. Elev (ft)	3523.08	Reach Len. (ft)	665.84	669.12	672.4
Crit W.S. (ft)	3523.08	Flow Area (sq ft)	3468.25	6227.88	
E.G. Slope (ft/ft)	0.005619	Area (sq ft)	3468.25	6227.88	
Q Total (cfs)	165850	Flow (cfs)	32548.71	133301.3	
Top Width (ft)	751.24	Top Width (ft)	465.73	285.51	
Vel Total (ft/s)	17.1	Avg. Vel. (ft/s)	9.38	21.4	
Max Chl Dpth (ft)	25.88	Hydr. Depth (ft)	7.45	21.81	
Conv. Total (cfs)	2212457	Conv. (cfs)	434203.3	1778253	
Length Wtd. (ft)	668.43	Wetted Per. (ft)	469.8	292.26	
Min Ch El (ft)	3497.2	Shear (lb/sq ft)	2.59	7.48	
Alpha	1.32	Stream Power (lb/ft s)	24.31	160.01	
Frctn Loss (ft)	3.76	Cum Volume (acre-ft)	59.25	95.55	
C & E Loss (ft)	0.18	Cum SA (acres)	8.46	4.52	

Plan: N	Natural Beas F	liver Study Reach RS: 3	Profile: 500 Y	ear Flood	
E.G. Elev (ft)	3533.61	Element	Left OB	Channel	Right OB
Vel Head (ft)	7.04	Wt. n-Val.	0.045	0.04	0.045
W.S. Elev (ft)	3526.58	Reach Len. (ft)	623.2	721.6	672.4
Crit W.S. (ft)		Flow Area (sq ft)	2345.79	5926.11	119.43
E.G. Slope (ft/ft)	0.006476	Area (sq ft)	2345.79	5926.11	119.43
Q Total (cfs)	165850	Flow (cfs)	29849	135144.8	856.25
Top Width (ft)	518.21	Top Width (ft)	216.45	278.8	22.96
Vel Total (ft/s)	19.76	Avg. Vel. (ft/s)	12.72	22.8	7.17
Max Chl Dpth (ft)	26.65	Hydr. Depth (ft)	10.84	21.26	5.2
Conv. Total (cfs)	2060909	Conv. (cfs)	370913.8	1679355	10640.1
Length Wtd. (ft)	702.96	Wetted Per. (ft)	223.86	281.26	26.95
Min Ch El (ft)	3499.92	Shear (lb/sq ft)	4.24	8.52	1.79
Alpha	1.16	Stream Power (lb/ft s)	53.91	194.26	12.85
Frctn Loss (ft)	4.24	Cum Volume (acre-ft)	100.84	196.22	0.92
C & E Loss (ft)	0.32	Cum SA (acres)	13.34	9.2	0.18

Plan: N	latural Beas F	River Study Reach RS: 4	Profile: 500 Y	ear Flood	
E.G. Elev (ft)	3536.71	Element	Left OB	Channel	Right OB
Vel Head (ft)	3.25	Wt. n-Val.	0.045	0.04	
W.S. Elev (ft)	3533.45	Reach Len. (ft)	580.56	656	787.2
Crit W.S. (ft)		Flow Area (sq ft)	781.58	10819.11	
E.G. Slope (ft/ft)	0.002928	Area (sq ft)	781.58	10819.11	
Q Total (cfs)	165850	Flow (cfs)	7192.03	158658	
Top Width (ft)	593.65	Top Width (ft)	55.73	537.92	
Vel Total (ft/s)	14.3	Avg. Vel. (ft/s)	9.2	14.66	
Max Chl Dpth (ft)	25.82	Hydr. Depth (ft)	14,02	20.11	
Conv. Total (cfs)	3065226	Conv. (cfs)	132922.5	2932304	
Length Wtd. (ft)	647.91	Wetted Per. (ft)	66.87	548.99	
Min Ch El (ft)	3507.63	Shear (lb/sq ft)	2.14	3.6	
Alpha	1.02	Stream Power (lb/ft s)	19.66	52.82	
Frctn Loss (ft)	2.71	Cum Volume (acre-ft)	121.68	322.31	2
C & E Loss (ft)	0.38	Cum SA (acres)	15.16	15.35	0.38

Plan: 1	Plan: Natural Beas River Study Reach RS: 5 Profile: 500 Year Flood								
E.G. Elev (ft)	3543.73	Element	Left OB	Channel	Right OB				
Vel Head (ft)	6.29	Wt. n-Val.	0.045	0.04	0.045				
W.S. Elev (ft)	3537.44	Reach Len. (ft)	596.96	672.4	754.4				
Crit W.S. (ft)	3537.44	Flow Area (sq ft)	332.45	7711.84	572.13				
E.G. Slope (ft/ft)	0.008426	Area (sq ft)	332.45	7711.84	572.13				
Q Total (cfs)	165850	Flow (cfs)	2497.08	158243.3	5109.6				
Top Width (ft)	701.89	Top Width (ft)	81.97	511.68	108.24				
Vel Total (ft/s)	19.25	Avg. Vel. (ft/s)	7.51	20.52	8.93				
Max Chl Dpth (ft)	20.46	Hydr. Depth (ft)	4.06	15.07	5.29				
Conv. Total (cfs)	1806816	Conv. (cfs)	27203.9	1723947	55665.4				
Length Wtd. (ft)	671.46	Wetted Per. (ft)	85.22	522.41	113.12				
Min Ch El (ft)	3516.98	Shear (lb/sq ft)	2.05	7.77	2.66				
Alpha	1.09	Stream Power (lb/ft s)	15.41	159.33	23.76				
Frctn Loss (ft)	3.11	Cum Volume (acre-ft)	129.32	465.33	6.96				
C & E Loss (ft)	0.91	Cum SA (acres)	16.1	23.45	1.32				

Plan: Natural Beas River Study Reach RS: 6 Profile: 500 Year Flood									
E.G. Elev (ft)	3553.54	Element	Left OB	Channel	Right OB				
Vel Head (ft)	7.87	Wt. n-Val.	0.045	0.04	0.045				
W.S. Elev (ft)	3545.66	Reach Len. (ft)	682.24	685.52	688.8				
Crit W.S. (ft)	3545.66	Flow Area (sq ft)	37	7180.88	256.48				
E.G. Slope (ft/ft)	0.009145	Area (sq ft)	37	7180.88	256.48				
Q Total (cfs)	165850	Flow (cfs)	247	162847.2	2755.77				
Top Width (ft)	488.62	Top Width (ft)	5.97	444	38.65				
Vel Total (ft/s)	22.19	Avg. Vel. (ft/s)	6.68	22.68	10.74				
Max Chl Dpth (ft)	20.15	Hydr. Depth (ft)	. 6.2	16.17	6.64				
Conv. Total (cfs)	1734289	Conv. (cfs)	2582.8	1702890	28817.1				
Length Wtd. (ft)	685.57	Wetted Per. (ft)	12.04	445.21	40.86				
Min Ch El (ft)	3525.51	Shear (lb/sq ft)	1.75	9.21	3.58				
Alpha	1.03	Stream Power (lb/ft s)	11.71	208.83	38.5				
Frctn Loss (ft)	6.02	Cum Volume (acre-ft)	132.21	582.52	13.51				
C & E Loss (ft)	0.47	Cum SA (acres)	16.79	30.97	2.48				

		River Study Reach RS: 7		ear Flood	
E.G. Elev (ft)	3567.45	Element	Left OB	Channel	Right OF
Vel Head (ft)	9.17	Wt. n-Val.	0.045	0.04	0.0
W.S. Elev (ft)	3558.28	Reach Len. (ft)	885.6	885.6	88
Crit W.S. (ft)	3558.28	Flow Area (sq ft)	56.63	5362.1	1668
E.G. Slope (ft/ft)	0.008633	Area (sq ft)	56.63	5362.1	1668
Q Total (cfs)	165850	Flow (cfs)	403.15	137197.5	28249
Top Width (ft)	387.14	Top Width (ft)	4.97	265	117
Vel Total (ft/s)	23.4	Avg. Vel. (ft/s)	7.12	25.59	16
Max Chl Dpth (ft)	22.48	Hydr. Depth (ft)	11.39	20.23	14
Conv. Total (cfs)	1784978	Conv. (cfs)	4338.9	1476603	30403
Length Wtd. (ft)	885.6	Wetted Per. (ft)	16.02	265.67	128
Min Ch El (ft)	3535.8	Shear (lb/sq ft)	1.91	10.88	. (
Alpha	1.08	Stream Power (lb/ft s)	13.56	278.33	118
Frctn Loss (ft)	7.87	Cum Volume (acre-ft)	133.16	710.02	33
C & E Loss (ft)	0.39	Cum SA (acres)	16.9	38.17	· 4

Plan: Natural Beas River Study Reach RS: 8 Profile: 500 Year Flood										
E.G. Elev (ft)	3572.6	Element	Left OB	Channel	Right OB					
Vel Head (ft)	7.54	Wt. n-Val.	0.045	0.04	0.045					
W.S. Elev (ft)	3565.06	Reach Lon. (ft)	656	656	656					
Crit W.S. (ft)	3563.58	Flow Area (sq ft)	49.35	6534.19	1167.34					
E.G. Slope (ft/ft)	0.006749	Area (sq ft)	49.35	6534.19	1167.34					
Q Total (cfs)	165850	Flow (cfs)	301.76	148657.3	16890.91					
Top Width (ft)	406.83	Top Width (ft)	4.97	320	81.86					
Vel Total (ft/s)	21.4	Avg. Vel. (ft/s)	6.11	22.75	14.47					
Max Chl Dpth (ft)	23.96	Hydr. Depth (ft)	9.93	20.42	14.26					
Conv. Total (cfs)	2018759	Conv. (cfs)	3673.1	1809486	205599.4					
Length Wtd. (ft)	656	Wetted Per. (ft)	14.58	321.03	94.76					
Min Ch El (ft)	3541.1	Shear (1b/sq ft)	1.43	8.58	5.19					
Alpha	1.06	Stream Power (lb/ft s)	8.72	195.12	75.11					
Frctn Loss (ft)	4.99	Cum Volume (acre-ft)	133.96	799.6	54.42					
C & E Loss (ft)	0.16	Cum SA (acres)	16.97	42.58	5.57					

E.G. Elev (ft)	3579.49	Element	Left OB	Channel	Right OB
Vel Head (ft)	8.26	Wt. n-Val.	0.045	0.04	0.045
W.S. Elev (ft)	3571.24	Reach Len. (ft)	656	656	656
Crit W.S. (ft)	3571.24	Flow Area (sq ft)	46.34	5960.27	1440.2
E.G. Slope (ft/ft)	0.008699	Area (sq ft)	46.34	5960.27	1440.2
Q Total (cfs)	165850	Flow (cfs)	315.13	143330.6	22204.29
Top Width (ft)	456.47	Top Width (ft)	4.97	325	126.5
Vel Total (ft/s)	22.27	Avg. Vel. (ft/s)	6.8	24.05	15.42
Max Chl Dpth (ft)	23.22	Hydr. Depth (ft)	9.32	18.34	11.39
Conv. Total (cfs)	1778155	Conv. (cfs)	3378.6	1536714	238062.5
Length Wtd. (ft)	656	Wetted Per. (ft)	14.12	325.97	128.59
Min Ch El (ft)	3548.02	Shear (lb/sq ft)	1.78	9.93	6.08
Alpha	1.07	Stream Power (lb/ft s)	12.12	238.81	93.78
Frctn Loss (ft)	5.01	Cum Volume (acre-ft)	134.68	893.68	74.06
C & E Loss (ft)	0.22	Cum SA (acres)	17.05	47.44	7.13

Plan: Natural Beas River Study Reach RS: 10 Profile: 500 Year Flood										
E.G. Elev (ft)	3583.53	Element	Left OB	Channel	Right OB					
Vel Head (ft)	4.32	Wt. n-Val.	0.045	0.04	0.045					
W.S. Elev (ft)	3579.21	Reach Len. (ft)	656	656	656					
Crit W.S. (ft)		Flow Area (sq ft)	146.26	8129.83	2161.58					
E.G. Slope (ft/ft)	0.003845	Area (sq ft)	146.26	8129.83	2161.58					
Q Total (cfs)	165850	Flow (cfs)	999.87	142390.8	22459.35					
Top Width (ft)	587.62	Top Width (ft)	14.97	385	187.65					
Vel Total (ft/s)	15.89	Avg. Vel. (ft/s)	6.84	17.51	10.39					
Max Chl Dpth (ft)	25.65	Hydr. Depth (ft)	9.77	21.12	11.52					
Conv. Total (cfs)	2674544	Conv. (cfs)	16124.1	2296234	362185.8					
Length Wtd. (ft)	656	Wetted Per. (ft)	23.97	387.78	189.11					
Min Ch El (ft)	3553.56	Shear (lb/sq ft)	1.46	5.03	2.74					
Alpha	1.1	Stream Power (lb/ft s)	10.01	88.15	28.51					
Frctn Loss (ft)	3.64	Cum Volume (acre-ft)	136.13	999.78	101.18					
C & E Loss (ft)	0.39	Cum SA (acres)	17.2	52.78	9.5					

Plan: Natural Beas River Study Reach RS: 11 Profile: 500 Year Flood								
E.G. Elev (ft)	3585.77	Element	Left OB	Channel	Right OB			
Vel Head (ft)	2.82	Wt. n-Val.	0.045	0.04				
W.S. Elev (ft)	3582.94	Reach Len. (ft)	656	656	656			
Crit W.S. (ft)		Flow Area (sq ft)	70.48	10574.04	1967.66			
E.G. Slope (ft/ft)	0.002687	Area (sq ft)	70.48					
Q Total (cfs)	165850	Flow (cfs)	320.4	147304	18225.61			
Top Width (ft)	703.81	Top Width (ft)	9.97	540				
Vel Total (ft/s)	13.15	Avg. Vel. (ft/s)	4.55	13.93	9.26			
Max Chl Dpth (ft)	24.14	Hydr. Depth (ft)	7.07	19.58	12.79			
Conv. Total (cfs)	3199468	Conv. (cfs)	6181	2841691	351596.3			
Length Wtd. (ft)	656	Wetted Per. (ft)	16.28	543.43	156.31			
Min Ch El (ft)	3558.8	Shear (lb/sq ft)	0.73	3.26	2.11			
Alpha	1.05	Stream Power (lb/ft s)	3.3	45.47	19.56			
Frctn Loss (ft)			137.76	1140.61	132.27			
C & E Loss (ft)		Cum SA (acres)	17.39	59.75	132.27			

-

Plan: Natural Beas River Study Reach RS: 12 Profile: 500 Year Flood					
E.G. Elev (ft)		Element	Left OB	Channel	Right OB
Vel Head (ft)	5.01	Wt. n-Val.	0.045	1	
W.S. Elev (ft)	3583.6	Reach Len. (ft)	606.8	606.8	
Crit W.S. (ft)		Flow Area (sq ft)	2.85		
E.G. Slope (ft/ft)	0.005088	Area (sq ft)	2.85		
Q Total (cfs)		Flow (cfs)	4.48		
Top Width (ft)		Top Width (ft)	4.97	495	
Vel Total (ft/s)		Avg. Vel. (ft/s)	1.57	18.13	
Max Chi Dpth (ft)		Hydr. Depth (ft)	0.57	18.02	
Conv. Total (cfs)	2325215		62.8	2267796	the second s
Length Wtd. (ft)	· 606.8	Wetted Per. (ft)	5.23	498.21	63.57
Min Ch El (ft)	3562.09	the second s	0.17	5.69	
Alpha		Stream Power (lb/ft s)	0.17		
Frctn Loss (ft)	2.19		138.27	103.12	
C & E Loss (ft)		Cum SA (acres)	138.27	1276.39 66.96	149.2 13.55

Plan: Natural Beas River Study Reach RS: 13 Profile: 500 Year Flood					
E.G. Elev (ft)		Element	Left OB	Channel	Right OB
Vel Head (ft)		Wt. n-Val.	0.045	0.04	0.04
W.S. Elev (ft)	3589.16	Reach Len. (ft)	656	656	
Crit W.S. (ft)	3589.16	Flow Area (sq ft)	0.72	6991.49	
E.G. Slope (ft/ft)	0.008548	Area (sq ft)	0.72		
Q Total (cfs)	165850	Flow (cfs)	1.03		And the second se
Top Width (ft)	515.59	Top Width (ft)	2.19		
Vel Total (ft/s)		Avg. Vel. (ft/s)	1.42		
Max Chl Dpth (ft)		Hydr. Depth (ft)	0.33		7.62
Conv. Total (cfs)		Conv. (cfs)	11.1	1700624	
Length Wtd. (ft)		Wetted Per. (ft)	2.29	417.27	102.77
Min Ch El (ft)	3568.07		0.17	8.94	3.89
Alpha	1.06	Stream Power (lb/ft s)	0.24	201.1	44.73
Fretn Loss (ft)		Cum Volume (acre-ft)	138.3	1396.2	
C & E Loss (ft)		Cum SA (acres)	17.55	73.81	<u>158.33</u> 14.72

Plan: Natural Beas River Study Reach RS: 14 Profile: 500 Year Flood					
E.G. Elev (ft)	3606.96	Element	Left OB	Channel	Right OB
Vel Head (ft)	7.36	Wt. n-Val.	0.045	0.04	0.045
W.S. Elev (ft)	3599.59	Reach Len. (ft)	656	656	656
Crit W.S. (ft)	3599.59	Flow Area (sq ft)	29.24	6870.24	1185.66
E.G. Slope (ft/ft)	0.007478	Area (sq ft)	29.24	6870.24	1185.66
Q Total (cfs)	165850	Flow (cfs)	165.69	154109.7	11574.57
Top Width (ft)	557.74	Top Width (ft)	4.97	370	182.77
Vel Total (ft/s)	20.51	Avg. Vel. (ft/s)	5.67	22.43	9.76
Max Chl Dpth (ft)	23.29	Hydr. Depth (ft)	5.88	18.57	6.49
Conv. Total (cfs)	1917861	Conv. (cfs)	1916	1782098	133846.3
Length Wtd. (ft)	656	Wetted Per. (ft)	10.46	372.34	187.57
Min Ch El (ft)	3576.3	Shear (lb/sq ft)	1.31	8.61	2.95
Alpha	1.13	Stream Power (lb/ft s)	7.4	193.23	28.81
Frctn Loss (ft)	5.24	Cum Volume (acre-ft)	138.53	1500.58	172.9
C & E Loss (ft)	0.02	Cum SA (acres)	17.6	79.72	16.84

C & D 2035 (II)	0.02	Cull OA (acies)	17.0	19.12	10.04
	<u> </u>		T) (11 500 7		
Plan: Na		iver Study Reach RS: 15	Profile: 500 Y	ear Flood	
E.G. Elev (ft)	3610.8	Element	Left OB	Channel	Right OB
Vel Head (ft)	4.27	Wt. n-Val.	0.045	0.04	0.045
W.S. Elev (ft)	3606.54	Reach Len. (ft)	705.2	705.2	705.2
Crit W.S. (ft)		Flow Area (sq ft)	111.32	8295.85	2001.88
E.G. Slope (ft/ft)	0.003591	Area (sq ft)	111.32	8295.85	2001.88
Q Total (cfs)	165850	Flow (cfs)	615.11	143572.1	21662.77
Top Width (ft)	544.62	Top Width (ft)	19.97	380	144.65
Vel Total (ft/s)	15.93	Avg. Vel. (ft/s)	5.53	17.31	10.82
Max Chl Dpth (ft)	25.24	Hydr. Depth (ft)	5.57	21.83	13.84
Conv. Total (cfs)	2767632	Conv. (cfs)	10264.6	2395868	361498.7
Length Wtd. (ft)	705.2	Wetted Per. (ft)	23.86	382.7	156.53
Min Ch El (ft)	3581.29	Shear (lb/sq ft)	1.05	4.86	2.87
Alpha	1.08	Stream Power (lb/ft s)	5.78	84.1	31.03
Fretn Loss (ft)	3.53	Cum Volume (acre-ft)	139.67	1623.34	198.7
C & E Loss (ft)	0.31	Cum SA (acres)	17.8	85.79	19.49

Plan: Natural Beas River Study Reach RS: 16 Profile: 500 Year Flood						
E.G. Elev (ft)	3613.92	Element	Left OB	Channel	Right OB	
Vel Head (ft)	4.73	Wt. n-Val.	0.045	0.04	0.045	
W.S. Elev (ft)	3609.19	Reach Len. (ft)	656	656	656	
Crit W.S. (ft)		Flow Area (sq ft)	15.19	5877.38	3894.42	
E.G. Slope (ft/ft)	0.005947	Area (sq ft)	15.19	5877.38	3894.42	
Q Total (cfs)	165850	Flow (cfs)	60.42	111144.2	54645.34	
Top Width (ft)	643.04	Top Width (ft)	4.97	345	293.07	
Vel Total (ft/s)	16.95	Avg. Vel. (ft/s)	3.98	18.91	14.03	
Max Chl Dpth (ft)	21.01	Hydr. Depth (ft)	3.06	17.04	13.29	
Conv. Total (cfs)	2150672	Conv. (cfs)	783.5	1441271	708617.3	
Length Wtd. (ft)	656	Wetted Per. (ft)	7.79	346.53	301.07	
Min Ch El (ft)	3588.18	Shear (lb/sq ft)	0.72	6.3	4.8	
Alpha	1.06	Stream Power (lb/ft s)	2.88	119.07	67.39	
Frctn Loss (ft)	2.98	Cum Volume (acre-ft)	140.62	1730.07	243.1	
C & E Loss (ft)	0.14	Cum SA (acres)	17.99	91.25	22.78	

E.G. Elev (ft)	3616.27	Element	Left OB	Channel	Right OE
Vel Head (ft)	5.1	Wt. n-Val.	0.045		
W.S. Elev (ft)	3611.17	Reach Len. (ft)	328	·	
Crit W.S. (ft)		Flow Area (sq ft)	9.63		
E.G. Slope (ft/ft)	0.007855	Area (sq ft)	9.63		f
Q Total (cfs)		Flow (cfs)	36.3	157659.8	
Top Width (ft)	754.59	Top Width (ft)	4.97	645	104
Vel Total (ft/s)	17.77	Avg. Vel. (ft/s)	3.77	18.43	
Max Chl Dpth (ft)		Hydr. Depth (ft)	1.94	13.27	
Conv. Total (cfs)	1871304	Conv. (cfs)	409.6	1778893	9200
Length Wtd. (ft)		Wetted Per. (ft)	6.59	646.17	111
Min Ch El (ft)	3591.6	Shear (lb/sq ft)	0.72	6.49	
Alpha		Stream Power (lb/ft s)	2.7	119.65	
Fretn Loss (ft)	2.23	Cum Volume (acre-ft)	140.71	1784.41	260
<u>C & E Loss (ft)</u>	0.11	Cum SA (acres)	18.03	94.98	

APPENDIX-4, INPUT DATA FILE FOR HEC-6 FOR SIMULATION OF BEAS RIVER IN NATURAL CONDITION FOR 2 YEAR AND 500 YEAR TETURN PERIOD FLOODS (MOBILE BED APPLICATION).

T1 M	OBILE B	ED APPLIC	CATION I	N NATURAL	L CONDIT	ION.			
T2 W T3 S	TMUT A R.	ATING CUP	C DIVER	HE DOWNS	FREAM BO	UNDARY.			
NC .045		ON OF BEF	IO KIVER	.3	LAR AND	500 YEAR	RETURN	PERIOD FI	LOODS
		.685.52					•	0	•
GR3521.1	0 03	2510 44	52 10	2517 00	00 10	0.	147 (0	0.	0.
GR3512.9	246 00	3519.44 3512.88	22.40	2517.00	98.40	3510.10	147.60	3514.52	226.32
GR3512.9 GR3511.2	521 26	3512.88	295.20	3514.52	344.40	3514.52	432.96	3512.88	
GR3498.8	77/ 00	3495.17	002.00	3303.04	077.32	3502.55	685.52	3501.73	
GR3498.8 GR3504.7	964 32	3493.17	023.20	3498.45	921.00	3501.73	951.20	3503.04	954.48
		685.52			1013.52				
X1 2.0	10.	465 76	702 76	665 04	672 40	660 10	0	0	•
GR3519.4	0 03	465.76 3517.80	62 32	2516 16	202.40	2514 52	260 00	2512 00	
GR3511.2	413 28	3509 60	439 52	3507 96	155 02	3514.52	165 76	3512.88	396.88
GR3501.8	498 56	3498.19	531 36	3497 20	400.92	3300.32		3503.04	
GR3506.3	728 16	3553 88	793 76	3555 52	842 96	3497.00	002.30	3301.79	075,00
HD 2.0				55,55,52		*			
		216.48				721 60	0	0.	0
GR3519.4	0 03	3517 80	88 56	3516 16	119 09	2514 52	141 04	2512 00	164 00
GR3509.6	216 48	3506 32	255 94	3505 66	265 69	3503 37	707 00	3400 02	164.00
GR3502.4	413 28	3505 66	432 96	3511 24	203.00	3520 26	405 20	3499.92	364.08
	518.24		452.90	5511.24	402.40	3320.20	495.20	3521.08	505.12
		216.48	495 28						
X1 4.0	12	55.76	593 68	580 56	787 20	656 00	^	0	0
GR3522.7	0.03	3516 16	55 76	3514 52	65 60	3513 37	88 56	3509 60	127 02
GR3513.4	186 96	3514 52	219 76	3514 85	350 96	3513.37	202.00	3509.00	121.92
GR3513.4	531.36	3524.36	593 68	5514.05	330.90	5515.57	505.70	5507.05	402.10
HD 4.0	10.	55.76	593 68						
HD 4.0 X1 5.0 GR3534.2	14.	82.00	593.68	596.96	754 40	672 40	0	0	0
GR3534.2	. 0.03	3532.56	82.00	3522.72	83 64	3516 98	131 20	3522 72	173 84
GR3524.4	213.20	3524.36	311.60	3522.72	354 24	3517 80	436 24	3522.72	508 40
GR3524.4	534.64	3526.00	580.56	3531.74	593.68	3532.56	701.92	5522.72	500.40
HD 5.0	10.	82.00	593.68		055.00	3352.50	101.72		
X1 6.0					688.80	685.52	0.	0.	0.
GR3539.6	0.03	3535.85	82.11	3528.96	118.14	3527.97	147.67	3527.32	160.79
GR3526.8	226.41	3526.50	259.22	3525.68	305.15	3525.51	341.24	3527.65	
GR3527.9	400.29	3529.61	413.42	3529.94	426.54	3531.09	446.22	3546.87	492 16
HD 6.0	10.	6.00	450.00	•					104120
X1 7.0	11.	5.00	270.00	885.60	885.60	885.60	0.	0.	0.
HD 6.0 X1 7.0 GR3547.3	0.03	3544.05	19.72	3542.41	36.12	3539.13	59.09	3535.85	108.30
GR3535.8	118.15	3537.49	262.50	3539.13	278.91	3542.41	295.31	3544.05	315.00
GR3547.3	387.17								
HD 7.0	10.	5.00	270.00						
			325.00	656.00	656.00	656.00	0.	0.	· 0.
GR3555.5		3550.61		3548.97		3545.69			118.14
GR3541.1		3541.62		3542.41		3545.69		3548.97	328.12
GR3550.6		3552.25	406.86			•			
HD 8.0	10.	5.00	325.00						
X1 9.0	11.	5.00		656.00	656.00	656.00	0.	0.	Ο.
GR3562.1		3557.17		3552.25		3548.97		3548.02	177.20
GR3548.9		3552.25		3555.53		3557.17		3558.81	419.98
GR3572.2	459.32		_						
HD 9.0	10.	5.00	330.00						
	-		-						

	X1 10.0	17.	15.00 3565.38	400.00	656.00	656.00	656.00	Ο.	0.	0.
	GR3570.3	0.03	3565.38	42.68	3558.81	72.21	3553.56	105.02	3555.53	157.51
	GR3558.8	170.63	3558.81	216.57	3555.53	252.65	3555.53	275.62	3558.81	288.74
	GR3558.8	354.36	3555.53	374.05	3555.53	393.73	3558.81		3562.09	
	GR3565.3	485.59	3579.60	590.55		000000	0000.01		5562.05	100.10
	HD 10.0		15.00							
	X1 11 0	16	10 00	550 00	656 00	656 00.	656 00	0	0	^
	GR3576 8	0.03	.10.00 3571.94	26 20	2565 20	42.69	2562.00	70 77	2550 01	110 14
	CD3550 0	102 76	3563.74	20.20	3565.30	42.00	3562.09	18.11	3558.81	118.14
	003565 3	103.70 EAA CE	3565.34	210.00	3565.38	465.91	3562.09	479.03	3558.81	498.72
				570.90	3562.09	590.58	3568.66	616.80	3571.94	656.20
		705.38								
	HD 11.0	10.	10.00	550.00						
	XI 12.0	12.	5.00 3578.50	500.00	606.80	606.80	606.80	0.	0.	0.
	GR3583.4	0.03	3578.50	32.84	3568.66	52.52	3565.38	85.33	3563.93	150.95
	GR3563.0	216.57	3562.09	314.99	3565.38	439.66	3568.66	492.16	3571.94	505.28
			3578.50							
	HD 12.0	10.	5.00	500.00						
	X1 13.0	10.	5.00	420.00	656.00	656.00	656.00	Ο.	0.	ο.
	GR3590.0	0.03	3585.06	16.43	3571.94	78.77	3568.66	196.88	3568.07	216.57
	GR3568.6	275.62	3571.94	354.36	3575.22	393.73	3578.50	426.54	3585.06	518,40
· .	HD 13.0	10.	5.00	420.00						
	X1 14.0	15.	5.00	375.00	656.00	656.00	656.00	0.	Ο.	0
	GR3594.2	0.03	3591.62	13.15	3588.34	29.55	3585.06	59 08	3581 78	98 45
	GR3578.5	137.82	3576.86	183.83	3576.30	190.32	3576.86	262 49	3578 50	314 99
	GR3581.7	334.67	3585.06	347.80	3588.34	357 64	3591 62		3594.90	
	HD 14.0	10.	5.00			00,104	5551.02	507.17	3334,90	557.77
	X1 15.0					705 20	705 20	0	0.	^
	GR3603.1	0.03	3598.18	23 00	3501 62	32 94	3500 34	50 50	2505 00	107 00
		216 57	3581.29	249 37	3581 78	205 31	3505.34	367 49	3505.00	127.98
	GR3591.6	426 54	3592.64	150 35	3594.90	293.31 544 CE	2202.00	307.40	3388.34	400.29
	HD 15.0	10	20.00	400.00		544.65				
		10.	20.00	250.00	656 00	CF.C. 00				
	CB3606 4	· · · ·	5.00 3601.46	350.00	636.00	656.00	656.00	0.	0.	0.
	GR3000.4	216 57	3588.18	45.96	3598.18	52.52	3594.90	72.21	3591.62	105.02
					3588.34	262.50	3591.62	374.05	3594.90	459.32
			3598.18		3601.46	643.07				
	HD 16.0	10.	5.00	350.00						
	X1 17.0		5.00		328.00	328.00	328.00	0.	Ο.	0.
	GR3609.6	0.03	3604.75	32.84	3598.18	85.33	3594.90	111.58	3591.62	196.88
			3594.90		3598.18	380.61	3604.75	754.62		
		10.	5.00	650.00						
	EJ .									
	Τ4	BEAS RIVE	ER FROM C	HAINAGE	0+000 TO	3+270				
	т5	LOAD CURV	/E FROM G	AGE DATA	<i>.</i>					
			ATIONS FR			•				
	т7	Use Full	Range of	Sands,	Gravels,	Cobbles	s and Bou	lders		
	Т8	SEDIMENT	TRANSPOR	T BY Yar	ng's STRE	AM POWER	liref AS	CE JOURN	NAL (YANG	1971)1
	I1 .	10			-)		. LEGT NU		(1040	12,111
	I2 CLAY									
	12	1	.0585	.1170	.264	6.860	93.30			
	12	2	.0585	.1170	.264	6.860				
	I3 SILT		.0585	.1170	.204	0.000	93.30			
	I4 SAND		4	15						
	I4 SAND	.5			F	0.5	~			
		.5	.5	.25	.5	.25	0	1.0		

200 LQ 1000 10000 50000 100000 200000 LT TOTAL 115 780 10200 72500 182000 432000 LF CLAY . 000 .000 .000 .000 .000 .000 \mathbf{LF} SILT .280 .250 .100 .150 .150 .150 .450 LFVFS .350 .350 .220 .250 .080 LF FS .150 .250 .220 .200 .180 .120 LF .100 MS .080 .100 .150 .130 .150 \mathbf{LF} CS .020 .050 .080 .150 .120 .180 .000 LF vcs .020 .060 .120 .100 .100 .030 .030 .050 \mathbf{LF} VFG .000 .000 .100 FG LF .000 .000 .010 .020 .040 .060 \mathbf{LF} MG .000 .000 .000 .000 .030 .010 \mathbf{LF} CG .000 .000 .000 .000 .000 .010 . .000 LF VCG .000 .000 .000 .000 .000 LFSC .000 .000 .000 .000 .000 .000 \mathbf{LF} \mathbf{LC} .000 .000 .000 .000 .000 .000 \mathbf{LF} SB .000 .000 .000 .000 :000 .000 .000 \mathbf{LF} MB .000 .000 .000 .000 .000 \mathbf{LF} LB.000 .000 .000 .000 .000 .000 PF EXAMP 1024.0 1.0 1.0 2048.0 97.98 512.0 95.48 256.0 92.98 PFC128.0 86.98 64.0 72.48 32.0 48.55 16.0 27.55 8.0 13.70 8.01 PFC 4.0 9.35 2.0 1.0 7.44 0.5 7.17 0.25 4.29 PFC0.125 1.43 0.062 0.75 \$HYD **\$RATING** RC 28 7057.51 0 0 3495.17 3500.78 3502.94 3504.52 3505.93 3507.21 3508.29 3509.34 3510.26 3511.17 3511.90 3512.62 3513.34 3514.29 RC 3516.00 3516.55 3516.98 3517.24 3517.64 3518.03 3518.46 3518.82 3519.18 3519.54 3519.87 3520.19 3520.46 3520.85 RC RC * AB PROFILE 1 = 2 YEAR RETURN PERIOD FLOOD Q 28230. т 60. W 1. * AB PROFILE 2 = 500 YEAR RETURN PERIOD FLOOD Q165850. Т 60. . 1. \$\$END

APPENDIX-5, OUTPUT OF HEC-6 FOR SIMULATION OF BEAS RIVER IN NATURI CONDITION WITH 2 YEAR AND 500 YEAR RETURN PERIOD FLOODS (MOBILE BI APPLICATION).

***** ***** SCOUR AND DEPOSITION IN RIVERS AND RESERVOIRS * * U.S. ARMY CORPS OF ENGINEERS * HYDROLOGIC ENGINEERING CENTER Version: 4.1.00 - OCTOBER 1993 * * * 609 SECOND STREET INPUT FILE: MOBILE.DAT * DAVIS, CALIFORNIA 95616-4687 OUTPUT FILE: MOBILE.OUT * (916) 756-1104 RUN DATE: 27 FEB 04 RUN TIME: 14:38:19 * ********* ******* Х X XXXXXXX XXXXX XXXXX X X ХХ X X х х х Х X Х x xxxxxxx xxxx x x x x x x Х XXXXX XXXXXX X Х Х хх х х Х Х Х x X XXXXXXX XXXXX XXXXX MAXIMUM LIMITS FOR THIS VERSION ARE: 10 Stream Segments (Main Stem + Tributaries) 500 Cross Sections 200 Elevation/Station Points per Cross Section 20 Grain Sizes 10 Control Points ****** MOBILE BED APPLICATION IN NATURAL CONDITION. т1 WITH A RATING CURVE AT THE DOWNSTREAM BOUNDARY. Т2 SIMULATION OF BEAS RIVER FOR 2 YEAR AND 500 YEAR RETURN PERIOD FLOODS ΤЗ N values... Left Channel Right 0.0450 0.0400 0.0450 Contraction Expansion 1.1000 0.7000 SECTION NO. 1.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 2.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. 3.000 SECTION NO. ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 4.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 5.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 6.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 7.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 8.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. 9.000 SECTION NO. ... DEPTH of the Bed Sediment Control Volume = 10.00 ft.

SECTION NO. 10.000 ... DEPTH of the Bed Sediment Control Volume = __10.00 ft. SECTION NO. 11.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. 12.000 SECTION NO. ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 13.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 14.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 15.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 16.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. 17.000 SECTION NO. ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. NO. OF CROSS SECTIONS IN STREAM SEGMENT= 17 NO. OF INPUT DATA MESSAGES = 0 TOTAL NO. OF CROSS SECTIONS IN THE NETWORK = 17 TOTAL NO. OF STREAM SEGMENTS IN THE NETWORK= 1 END OF GEOMETRIC DATA BEAS RIVER FROM CHAINAGE 0+000 TO 3+270 Τ4 т5 LOAD CURVE FROM GAGE DATA. тб BED GRADATIONS FROM FIELD SAMPLES. Τ7 Use Full Range of Sands, Gravels, Cobbles and Boulders Т8 SEDIMENT TRANSPORT BY Yang's STREAM POWER [ref ASCE JOURNAL (YANG 1971)] MOBILE BED APPLICATION IN NATURAL CONDITION. WITH A RATING CURVE AT THE DOWNSTREAM BOUNDARY. SIMULATION OF BEAS RIVER FOR 2 YEAR AND 500 YEAR RETURN PERIOD FLOODS SEDIMENT PROPERITES AND PARAMETERS IBG O MNQ SPGF ACGR NFALL IBSHER 1 1.000 32.174 2 1 SPI MNO I1 10. - - - - - - - - -CLAY IS PRESENT.
 PUCD
 UWCL
 CCCD

 78.000
 30.000
 16.000
 MTCL SPGC 2 2.650 78.000 12

						· ·	
DEPOSITION COE	FFICIEN	DEPOSITI THRESHOI	ON				
	LAYER NO.	SHEAR STRESS lb/sq.f					
ACTIVE LAYE INACTIVE LAYE		0.0585 0.0585					
EROSION COE	FFICIEN						
		PARTICLE EROSION SHEAR	MASS EROSION SHEAR	MASS EROSION RATE	SLOPE OF PARTICLE EROSION	SLOPE OF MASS EROSION	
	LAYER NO	STRESS lb/sq.ft	STRESS lb/sq.ft.	lb/sf/hr	LINE=ER1 1/hr	LINE=ER2 1/hr	
ACTIVE LAYE INACTIVE LAYE		0.1170 0.1170	0.2640	6.8600 6.8600	46.6667 46.6667	93.3000 93.3000	
SILT IS PRESE	NT -						_
MTCL I3 2	IASL 4	LASL SO	SL PUSD				
DEPOSITION	COEFFIC LAYER NO.	IENTS BY LA DEPOSITI THRESHOI SHEAR STRESS lb/sq.1	ON JD	·			
ACTIVE LAYE INACTIVE LAYE		0.0200 0.0200					
EROSION COE	FFICIEN LAYER NO	PARTICLE EROSION SHEAR	MASS EROSION SHEAR STRESS lb/sq.ft.	MASS EROSION RATE lb/sf/hr	SLOPE OF PARTICLE EROSION LINE=ER1 1/hr	SLOPE OF MASS EROSION LINE=ER2 1/hr	
ACTIVE LAYE INACTIVE LAYE		0.1170 0.1170		6.8600 6.8600			
SANDS - BOUL	DERS AR	E PRESENT					
MTC I4 4	IASA 1	LASA 15				PSI UWDLB	
USING TRANSPO GRAIN SIZES U	TILIZED) (mean diam					
CLAY COARSE SI VERY FINE FINE SANE MEDIUM SA COARSE SA VERY COAF	LT SAND ND	0.00 0.04 0.08 0.17' 0.354 0.70' 0 1.414	5 COARS 3 VERY 7 SMALL 4 LARGE 7 SMALL 4 MEDIU	M GRAVEL E GRAVEL	11.314 22.627 EL 45.255 90.510 181.019 362.039 724.077		

5	D 0.5	BI 00	DB 0.50	-		ID 50		(IN 500	0	XIU .250		UB: 0.000	_	UB 00		JSL 1				
		1000	TABLE	 EOB			eecme			1										
сv	1195141	-	D BY G							_										-
ĴQ		20	0.000	 I	100	0.00		10	0000.	0	15	50000	. 0	1	00000	•	2	0000	0.	
LF	CLAY	10.1	00000E	-191	0.10	0000	E-19	10.1	0000	0E-19	10.	1000	00E-19	10.	100000)E-19	10.	1000	00E-	191
LF			.2000			.000			30.0			7250.			7300.0			4800		I.
LF	VFS	51	.7500	i	273	.000		35	570.0			18125		4	0040.0	0	3	4560	.0	1
LF	FS	17	.2500	Í	195	.000		22	244.0	0]	L4500	.0	3	2760.0	C	5	1840	.0	1
LF	MS	11	.5000	Í	62.	4000		10	20.0	0	1	L0875	.0	2	3660.0	0	6	4800	.0	1
LF	CS	2.	30000	1	39.	0000		81	6.00	0	1	L0875	.0	2	1840.0	0	7	7760	.0	1
LF	VCS	10.1	00000E	-19	15.	6000		62	12.00	0	1.7	7250.	00	1	8200.0	0	5	1840	.0	
LF	VFG	10.1	00000E	-19	0.10	0000	E-19	30	06.00	0	2	2175.	00	9	100.00	0	4	3200	.0	
LF	FG	0.1	00000E	-19	0.10	0000	E-19	10	02.00	0	1	L450.	00	7	280.00	0	2	5920	.0	1
LF	MG	10.1	00000E	-19	0.10	0000	E-19	10.3	10000	0E-19	10.	1000	00E-19	1	820.00	С	1	2960	.0	1
LF	CG	10.1	00000E	-19	0.10	0000	E-19	10.3	10000	0E-19	10.	.1000	00E-19	10.	100000	0E-19	4	320.	00	1
ĻΓ	VCG	10.1	00000E	-19	0.10	0000	E-19	10.3	10000	0E-19	10.	.1000	00E-19	0.	100000	0E-19	10.	1000	00E-	19
LF	SC	10.1	00000E	-19	0.10	0000	E-19	10.3	10000	0E-19	010.	.1000	00E-19	0.	100000	0E-19	10.	1000	00E-	19
LF	LC	0.1	00000E	-19	0.10	0000	E-19	10.3	10000	0E-19	10.	.1000	00E-19	10.	10000	0E-19	10.	1000	00E-	19
LF								•			•		00E-19				-			
LF													00E-19							
LF	LB	0.1	00000E	-19	0.10	0000	E-19	10.1	10000	0E-19	10.	.1000	00E-19	0.	10000	0E-19	10.	1000	00E-	19
	TOTAL	11	5.000		780	.000		1(0200.	0	1 7	72500	.0	1	82000		4	3200	0.	

· :

REACH GEOMETRY FOR STREAM SEGMENT 1

CROSS DISTANCE	REACH	MOVABLE	INITI	AL BED-ELE	VATIONS	ACCUMULATED (CHANNEL
	LENGTH (ft)	WIDTH	LEFT SIDE (ft)	(ft)		FROM DOM (ft)	NSTREAM (miles)
1.000	0.000				3522.720	0.000	0.000
2.000	669.120 721.600	357.520	3506.320	3497.200	3553.880	669.120	0.127
3.000	656.000	309.960	3509.600	3499.920	3520.260	1390.720	0.263
4.000	672.400		3516.160				0.388
5.000	685.520		3532.560		3531.740 3532.388		0.515
7.000	885.600	271.940	3546.480	3535.800	3538.240	4290.240	0.813
8.000	656.000 656.000	324.045	3554.759	3541.100	3548.661	4946.240	0.937
9.000	656.000				3556.429		1.061
10.000	656.000				3557.097 3565.308		1.185
12.000	606.800				3570.620		1.424
13.000	656.000 656.000	420.755	3588.503	3568.070	3577.846	8177.040	1.549
14.000	705.200				3590.268		1.673
15.000 16.000	656.000				3588.311 3590.913		1.806
17.000	328.000				3602.912		1.993

BED MATERIAL GRADATION

 SECNO	SAE	DMAX (ft)	DXPI (ft)	XPI	TOTAL BED	BED	MATERIAL FRACTION per grain size	IS			•
1.000	1.000	6.719	6.719	1.000	1.000 C VI F M	CLAY SILT SAND SAND SAND	0.002 VC SAND 0.007 VF GRVL 0.029 F GRVL	0.003 M GRVL 0.006 C GRVL 0.013 VC GRVL 0.043 S COBL	0.138 L 0.210 S 0.239 M 0.145 L	COBL BLDR BLDR BLDR	0.060 0.025 0.025 0.025 0.020
2.000	1.000	6.719	6.719	1.000	1.000 C VI F M	CLAY SILT SAND SAND SAND	0.002 VC SAND 0.007 VF GRVL 0.029 F GRVL	0.003 M GRVL 0.006 C GRVL 0.013 VC GRVL 0.043 S COBL	0.138 L 0.210 S 0.239 M 0.145 L	COBL BLDR BLDR BLDR	0.060 0.025 0.025 0.025 0.020
3.000	1.000	6.719	6.719	1.000	1.000 C VI F M	CLAY SILT SAND SAND SAND	0.002 VC SAND 0.007 VF GRVL 0.029 F GRVL	0.003 M GRVL 0.006 C GRVL 0.013 VC GRVL 0.043 S COBL	0.138 L 0.210 S 0.239 M 0.145 L	COBL BLDR BLDR BLDR	0.060 0.025 0.025 0.020
4.000	1.000	6.719	6.719	1.000	1.000 C VF F M	CLAY SILT SAND SAND SAND	0.002 VC SAND 0.007 VF GRVL 0.029 F GRVL	0.003 M GRVL 0.006 C GRVL 0.013 VC GRVL 0.043 S COBL	0.138 L 0.210 S 0.239 M 0.145 L	COBL BLDR BLDR BLDR	0.060 0.025 0.025 0.020

5.000	1.000	6.719	6.719	1.000	1	VF SAND F SAND	0.006 C SAN 0.002 VC SAN 0.007 VF GRV 0.029 F GRV 0.029	D 0.006 C L 0.013 VC		M BLDR	0.025 0.025
6.000	1.000	6.719	6.719	1.000	1.000	C SILT VF SAND F SAND	0.006 C SAN 0.002 VC SAN 0.007 VF GRV 0.029 F GRV 0.029	D 0.006 C	GRVL 0.138 GRVL 0.210 GRVL 0.239 COBL 0.145	L COBL S BLDR M BLDR L BLDR	0.025 0.025
7.000	1.000	6.719	6.719	1.000	1.000	CLAY C SILT VF SAND F SAND M SAND	0.006 C SAN 0.002 VC SAN 0.007 VF GRV 0.029 F GRV 0.029	ID 0.006 C	GRVL 0.138 GRL 0.210 GRVL 0.239 COBL 0.145	`S BLDR M BLDR	0.025 0.025
8.000	1.000	6.719	6.719	1.000	1.000	CLAY C SILT VF SAND F SAND M SAND	0.006 C SAN 0002 VC SAN 0.007 VF GRV 0.029 F GRV 0.029	D 0.006 C (7L 0.013 VC	GRVL 0.210 GRVL 0.239	S BLDR	0.025 0.025
9.000	1.000	6.719	6.719	1.000	1.000	C SILT VF SAND	0.006 C SAM 0.002 VC SAM 0.007 VF GRV 0.029 F GRV 0.029	D 0.006 C VL 0.013 VC	GRVL 0.210 GRVL 0.239	S BLDR	0.025 0.025
10.000	1.000	6.719	6.719	1.000	1.000	C SILT VF SAND	0.002 VC SAN 0.007 VF GRV 0.029 F GRV	7L 0.013 VC	GRVL 0.210 GRVL 0.239	S BLDR	0.025
11.000	1.000	6.719	6.719	1.000	1.000	CLAY C SILT VF SAND F SAND M SAND	0.002 VC SAN 0.007 VF GRV 0.029 F GRV	1D 0.006 C	GRVL 0.210 GRVL 0.239	M BLDR	0.025 0.025
12.000	1.000	6.719	6.719	1.000	1.000	CLAY C SILT VF SAND F SAND M SAND	0.007 VF GR	D 0.003 M ND 0.006 C VL 0.013 VCC VL 0.043 S	GRVL 0.210 GRVL 0.239	S BLDR	0.025 0.025
13.000	1.000	6.719	6.719	1.000	1.000	C SILT VF SAND	0.002 VC SAL 0.007 VF GRV 0.029 F GRV	L 0.013 VC	GRVL 0.210 GRVL 0.239	S BLDR	0.025 0.025
14.000	1.000	6.719	6.719	1.000	1.000	CLAY C SILT VF SAND F SAND M SAND	0.002 VC SAL 0.007 VF GRV 0.029 F GRV	ND 0.003 M ND 0.006 C TL 0.013 VC TL 0.043 S	GRVL 0.210 GRVL 0.239	S BLDR	0.025
15.000	1.000	6.719	6.719	1.000	1.000	CLAY C SILT VF SAND F SAND M SAND	0.002 VC SAL 0.007 VF GRV 0.029 F GRV			S BLDR M BLDR	0.025 0.025
16.000	1.000	6.719	6.719	1.000	1.000	CLAY C SILT VF SAND F SAND M SAND	0.002 VC SAL 0.007 VF GRV 0.029 F GRV	ND 0.003 M ND 0.006 C ML 0.013 VC ML 0.043 S	GRVL 0.239	S BLDR	0.025 0.025
17.000	1.000	6.719	6.719	1.000	1.000	C SILT VF SAND	0.006 C SAN 0.002 VC SAN 0.007 VF GR 0.029 F GR 0.029	D 0.005 C VL 0.013 VC	GRVL 0.210 GRVL 0.239	S BLDR	0.025 0.025

.

BED SEDIMENT CONTROL VOLUMES

BED SEDIMENT (LONTROL VOLUM	23				
STREAM SEGMEN	NT # 1: MOBII	LE BED APPLIC	ATION IN NA	TURAL CONDITIC	DN.	
SECTION	LENGTH	WIDTH	DEPTH	V O I	UME	
NUMBER	(ft)	(ft)	(ft)	(cu.ft)	(cu.yd)	
1.000	334.560	334.013	10.000	0.111748E+07	41388.0	
2.000	695.360	343.639	10.000	0.238953E+07	88501.1	
3.000	688.800	358.871	10.000			
4.000	664.200	530.592	10.000	1	130526.	1 · · ·
				:		
5.000	678.960	576.674	1	0.391539E+07	145014.	
6.000	785.560	451.390	10.000	1	131331.	
7.000	770.800	316.887		0.244256E+07	90465.3	ļ
8.000	656.000	317.418		0.208226E+07	77120.7	
9.000	656.000	344.249		0.225827E+07		· [
10.000	656.000	412.577		0.270650E+07	100241.	
11.000	631.400	518.952	:	0.327667E+07	121358.	ļ
12.000	631.400	495.240	1	0.312695E+07	115813.	
13.000	656.000	426.952	10.000	0.280081E+07	103734.	
14.000	680.600	387.343	10.000	0.263626E+07	97639.1	
15.000	680.600	383.215	10.000	0.260816E+07	96598.5	
16.000	492.000	404.124	10.000	0.198829E+07	73640.4	
17.000	164.000	586.367	10.000	961641.	35616.3	Í
NO. OF INPUT END OF SEDIME		5= 0				
BEGIN COMPUTA	ATIONS.					
\$RATING			•			
Downstream Bo	oundary Condit	ion - Rating	Curve			
Elevation	Stage	Discharge	Elevation	Stage	Discharge	
3495.170	3495.170	0.000	3516.000	3516.000	98805.140	
3500.780	3500.780	7057.510	3516.550		105862.650	
3502.940	3502.940	14115.020	3516.980	3516.980	112920.160	
3504.520	3504.520	21172.530	3517.240	3517.240	119977.670	
3505.930	3505.930	28230.040	3517.640	3517.640	127035.180	
3507.210	3507.210	35287.550	3518.030	3518.030	134092.690	
3508.290	3508.290	42345.060	-3518.460	3518.460	141150.200	
3509.340	3509.340	49402.570	3518.820	3518.820	148207.710	
3510.260	3510.260	56460.080	3519.180	3519.180	155265.220	
3511.170	3511.170	63517.590	3519.540	3519.180	162322.730	
3511.900	3511.900	70575.100				
			3519.870	3519.870	169380.240	
3512.620	3512.620 3513.340	77632.610	3520.190	3520.190 3520.460	176437.750	
	3513.340					
************	***********			***********		***************
TIME STEP #						
* AB PROF	PILE $1 = 2 \text{ YEA}$	AR RETURN PER	IOD FLOOD			
MOBILE BED AP ACCUMULATED T		NATURAL COND	LTION. 0.000			
	,	ndition Data	for STREAM			Point # 1
		DISCHARGE (cfs)	(deg F)	RE WATER SURF (ft)	ACE	
		28230.000		0 3505.9	30	-
		202001000	0010			

**** DISCHARGE WATER ENERGY VELOCITY ALPHA AVG VEL (by subsection) TOP AVG (CES) SURFACE LINE 2 HEAD WIDTH BED 1. 3 SECTION NO. 1.000 *** 28230.000 3505.930 3508.446 2.516 1.037 328.928 3498.140 3.785 12.780 0.000 FLOW DISTRIBUTION (%) = 0.965 99.035 0.000 SECTION NO. 2.000 **** 28230.000 3510.329 3511.995 1.665* 1.028 306.302 3500.241 2.714 10.381 0.000 FLOW DISTRIBUTION (%) = 0.591 99.409 0.000 3.000 SECTION NO. *** 28230.000 3513.173 3515.463 2.289 1.049 309.622 3504.161 3.724 12.212 0.000 FLOW DISTRIBUTION (%) = 1.347 98.653 0.000 SECTION NO. 4.000 *** 28230.000 3518.176 3519.844 1.669 1.007 520.149 3512.773 3.017 10.371 0.000 0.188 99.812 0.000 FLOW DISTRIBUTION (%) = SECTION NO. 5.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 5.000 TIME = 1.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL NO. WS WS WS Ο. 3526.763 3525.022 3526.857 3526.807 3524.866 1. **** 28230.000 3526.857 3529.141 2.283 1.000 499.568 3522.195 0.000 12.122 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 6.000 **** 28230.000 3534.203 3536.429 2.226 1.003 364.555 3527.642 0.000 11.970 2.746 FLOW DISTRIBUTION (%) = 0.000 99.953 0.047 7.000 SECTION NO. ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 7.000 TIME = 1.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL NO. WS WS WS 0. 3544.895 3542.209 3544.8953542.2093544.9893542.102 ٦. 3544.939 **** 28230.000 3544.989 3548.238 3.249 1.065 321.817 3537.779 0.000 14.693 6.559 FLOW DISTRIBUTION (%) = 0.000 96.056 3.944 SECTION NO. 8.000 **** 28230.000 3551.827 3554.043 2.216 1.045 368.897 3544.070 0.000 11.997 3.199 FLOW DISTRIBUTION (%) = 0.000 99.011 0.989 SECTION NO. 9.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 9.000 TIME = 1.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL. NO. WS WS WS 3558.852 3556.848 Ο. 3558 946 3556.805 3558.896 1 **** 28230.000 3558.946 3561.865 2.919 1.063 378.374 3551.943 0.000 13.797 3.762 FLOW DISTRIBUTION (%) = 0.000 98.571 1.429 10.000 SECTION NO. 437.242 3557.336 0.000 9.922 4.669 **** 28230.000 3565.014 3566.496 1.482 1.058 FLOW DISTRIBUTION (%) = 0.000 96.0203.980 SECTION NO. 11.000 1.023 582.693 3562.928 0.000 9.003 6.024 **** 28230.000 3568.679 3569.901 1.222 FLOW DISTRIBUTION (%) = 0.000 94.560 5.440 SECTION NO. 12.000 **** 28230.000 3571.635 3572.784 1.149 1.001 457.376 3564.394 0.000 8.597 1.259 FLOW DISTRIBUTION (%) = 0.000 99.991 0.009 SECTION NO. 13.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 13.000 TIME = 1.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL NO. WS WS WS Ο. 3576.484 3574.748 3574.729
 1.
 3576.578
 3574.729
 3576.528

 28230.000
 3576.578
 3579.482
 2.904
 1.000 350.584 3570.688 0.000 13.670 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000

SECTION NO. 14.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 14.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED NO. WS WS CRITICAL WS
 NO.
 WS
 WS
 WS

 0.
 3585.607
 3584.622
 3585.651

 1.
 3585.701
 3584.513
 3585.651

 28230.000
 3585.701
 3588.926
 3.226
 1.000 296.413 3579.090 0.000 14.407 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 15.000 1.030 420.808 3584.340 0.000 9.418 2.664 FLOW DISTRIBUTION (%) = 0.000 99.281 0.719 **** 28230.000 3592.419 3593.788 1.369 SECTION NO. 16.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 16.000 TIME = 1.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL WS WS WS NO. 3596.184 3595.921 3596.277 3595.896 3596.227 1. 2. 28230.000 3596.277 3599.212 2.935 1.093 413.405 3590.125 0.000 14.291 7.947 FLOW DISTRIBUTION (%) = 0.000 89.090 10.910 * * * * SECTION NO. 17.000 **** 28230.000 3601.311 3603.378 2.067 SECTION NO. 1.000 495.550 3596.372 0.000 11.532 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 MOBILE BED APPLICATION IN NATURAL CONDITION. ACCUMULATED TIME (yrs).... 0.003 FLOW DURATION (days)..... 1.000 UPSTREAM BOUNDARY CONDITIONS -----Stream Segment # 1|DISCHARGE|SEDIMENT LOAD |TEMPERATURESection No.17.000 |(cfs)|(tons/day)|(deg F) ----------------INFLOW | 28230.00 | 35512.55 | 60.00 TABLE SA-1. TRAP EFFICIENCY ON STREAM SEGMENT # 1 MOBILE BED APPLICATION IN NATURAL CONDITION. ACCUMULATED AC-FT ENTERING AND LEAVING THIS STREAM SEGMENT CLAY * INFLOW OUTFLOW TRAP EFF * SILT * SAND OUTFLOW TRAP EFF * INFLOW OUTFLOW TRAP EFF INFLOW 2.95 * 15.47 * * * 35.14 -1.27 * 15.47 TOTAL= ************ TABLE SB-1: SEDIMENT LOAD PASSING THE BOUNDARIES OF STREAM SEGMENT # 1 _____ SEDIMENT INFLOW at the Upstream Boundary: GRAIN SIZE LOAD (tons/day) | GRAIN SIZE LOAD (tons/day) 0.00 0.00 0.00 7473.96 | SMALL COBBLES..... 4692.09 | LARGE COBBLES..... 0.00 MEDIUM SAND..... 0.00 4334.57 | SMALL BOULDERS... 3013.17 | MEDIUM BOULDERS... 1083.78 | LARGE BOULDERS... COARSE SAND..... 0.00 VERY COARSE SAND ... 4172.18 31340.37 VERY FINE GRAVEL.. FINE GRAVEL..... 564.85 | ----------TOTAL = 35512.55

722400		2592.	78 MEDI	UM GRAVEL	1045. 2692. .VEL 4842. 3279. 0.	96		
VERV PT	SILT	4876.	70 COAF	RSE GRAVEL	2692.	88		
VERY FIN	NE SAND	13102.	41 VERI	COARSE GRA	いじし 4842。 3270	58 76		
MEDTUM S	SAND	17223	57 LARC	SE COBBLES.	5279.	00		
COARSE S	SAND.	4820.	55 SMAI	L BOULDERS.	0.	00		
VERY COA	ARSE SAND.	4023.	13 MEDI	UM BOULDERS	···· 0.	00		
VERY FIN	NE GRAVEL	34.	02 LARC	GE BOULDERS.	· 0.	00		
FINE GRA	AVEL	192.	16					
TABLE SB-2.	STATUS OF	THE BED PRO			$\Delta L = 78645.$	29		
						n () ()	•	
NUMBER	BED CHANGE	WS ELEV	THALWEG (ft)	(ofe)	TRANSPORT RAI	STLT	() Sand	
17 000	-2 84	3601 31	3588 76	28230	41	4183	29938	
16 000	-1.96	3596.28	3586 22	28230	235	4236	54193	
15 000	-0.11	3592 42	3581 18	28230	200.	4253	55283	
14 000	-1 25	3585 70	3575 05	28230	559	4324	67893	
13 000	0 10	3576 58	3568 17	28230.	774	4382	66401	
12 000	1 03	3571 64	3563 12	28230.	816	1302.	50721	
11 000	1.03	3560 60	3558 07	20230.	010. 017	4334.	50256	
10 000	-0.17	3500,00	3550.21	20230.	TRANSPORT RAT CLAY 41. 235. 298. 559. 774. 816. 907.	4419.	50200.	
10.000	1 1 2	2550.05	2522.72	20230.	1011.		55424.	
8 000	-1.15	3551 83	3540.09	28230	1383	4518	72407	
7 000	-0.68	3511 99	3535 12	28230	1644	4619	78844	
6.000	-0.44	3534 20	3525 07	28230	1839	4672	84301	
5.000	-0.08	3526.86	3516.90	28230	1248. 1383. 1644. 1839. 2112. 2259. 2420. 2510. 2593.	4746	85115	
4 000	0.55	3518 18	3508 18	28230	2259	4786	76594	
3.000	0.46	3513.17	3500.38	28230.	2420.	4830.	71464.	
2.000	-0.05	3510.33	3497.15	28230.	2510.	4854.	71767.	
1.000	0.10	3505.93	3495.27	28230.	2593.	4877.	71176.	
TIME STEE #	2		ب بلد بین بین وا ما در به معر ها در به ما ما	ر ون می و در اون و و در ا	ے سے دی ہی ہو ا ہی اینا ہی زیر جا ہی ہی ہے اور ای ہے اور	• • • • • • • • • • • • • • •	ama a a a a a a a	
		00 YEAR RETU						
* AB PR	OFILE 2 = 5		JRN PERIOD					
* AB PR MOBILE BED ACCUMULATED	OFILE 2 = 5 APPLICATION TIME (yrs)	00 YEAR RETU	JRN PERIOD CONDITION. 0.003 Data for S' ARGE TEMPI 5) (di	FLOOD 	VT NO. 1 at Cor			
* AB PR MOBILE BED ACCUMULATED	OFILE 2 = 5 APPLICATION TIME (yrs) eam Boundar ARGE WAT	00 YEAR RETU IN NATURAL Y Condition DISCHA (cfs 165850 ER ENERGY	JRN PERIOD CONDITION. 0.003 Data for S' ARGE TEMPI 5) (di	FLOOD TREAM SEGMEN ERATURE WAT eg F) 60.00	VT NO. 1 at Cor FER SURFACE (ft)	ntrol Point		
* AB PR MOBILE BED ACCUMULATED Downstr ***** DISCH (CF SECTION NO.	OFILE 2 = 5 APPLICATION TIME (yrs) eam Boundar ARGE WAT S) SURF 1.000	00 YEAR RETU IN NATURAL y Condition DISCHA (cfs 165850 ER ENERGY ACE LINE	JRN PERIOD CONDITION. 0.003 Data for S' ARGE TEMP 5) (d).000 VELOCITY HEAD	FLOOD TREAM SEGMEN ERATURE WAT eg F) 60.00 ALPHA 1.388	NT NO. 1 at Cor FER SURFACE (ft) 3519.705 TOP AVG WIDTH BED	AVG VF 1 27 8.842	# 1 # 1 EL (by su 2 20.698	bsect 3
* AB PR MOBILE BED ACCUMULATED Downstr **** DISCH (CF SECTION NO. **** 165850	OFILE 2 = 5 APPLICATION TIME (yrs) eam Boundar ARGE WAT S) SURF 1.000 .000 3519.	00 YEAR RETU IN NATURAL y Condition DISCHA (cfs 165850 ER ENERGY ACE LINE 705 3525.11	JRN PERIOD CONDITION. 0.003 Data for S' ARGE TEMP 5) (d).000 VELOCITY HEAD	FLOOD TREAM SEGMEN ERATURE WAT eg F) 60.00 ALPHA 1.388	NT NO. 1 at Cor FER SURFACE (ft) 3519.705 TOP AVG WIDTH BED	AVG VF 1 27 8.842	# 1 # 1 EL (by su 2 20.698	bsect 3
* AB PR MOBILE BED ACCUMULATED Downstr ***** DISCH (CF SECTION NO. **** 165850 SECTION NO.	OFILE 2 = 5 APPLICATION TIME (yrs) eam Boundar ARGE WAT S) SURF 1.000 .000 3519. 2.000	00 YEAR RETU IN NATURAL y Condition DISCHA (cfs 165850 ER ENERGY ACE LINE 705 3525.11	JRN PERIOD CONDITION. 0.003 Data for S' ARGE TEMP 5) (dr 0.000 (VELOCITY HEAD 19 5.414	FLOOD TREAM SEGMEN ERATURE WAT eg F) 60.00 ALPHA 1.388 FLOW DIS 1.315	NT NO. 1 at Con FER SURFACE (ft) 3519.705 TOP AVG WIDTH BED 944.764 3499.32 STRIBUTION (%) =	AVG VF 1 27 8.842 22.852 4 9.403	# 1 # 1 20.698 77.148 21.387	0.00 0.00
* AB PR MOBILE BED ACCUMULATED Downstr **** DISCH (CF SECTION NO. **** 165850 SECTION NO. **** 165850	OFILE 2 = 5 APPLICATION TIME (yrs) eam Boundar ARGE WAT S) SURF 1.000 .000 3519. 2.000 .000 3523. 3.000	00 YEAR RETU IN NATURAL OUNDEDISCHE (cfs 165850 ER ENERGY ACE LINE 705 3525.11	JRN PERIOD CONDITION. 0.003 Data for S' ARGE TEMPIS) (dr 0.000 VELOCITY HEAD 19 5.414 51 5.984	FLOOD TREAM SEGMEN ERATURE WAT eg F) 60.00 ALPHA 1.388 FLOW DIS 1.315 FLOW DIS 1.148	NT NO. 1 at Cor FER SURFACE (ft) 3519.705 TOP AVG WIDTH BED 944.764 3499.32 STRIBUTION (%) = 751.264 3501.24 STRIBUTION (%) =	AVG VF 1 27 8.842 22.852 4 9.403 19.610 26 13.339	# 1 # 1 EL (by su 2 20.698 77.148 21.387 80.390 23.223	0.00 0.00 0.00 0.00 8.12
* AB PR MOBILE BED ACCUMULATED Downstr **** DISCH (CF SECTION NO. **** 165850 SECTION NO. **** 165850 SECTION NO. **** 165850	OFILE 2 = 5 APPLICATION TIME (yrs) eam Boundar ARGE WAT S) SURF 1.000 .000 3519. 2.000 .000 3523. 3.000 .000 3526. 4.000	00 YEAR RETU IN NATURAL Y Condition DISCHP (cfs 165850 ER ENERGY ACE LINE 705 3525.11 077 3529.06 483 3533.77	JRN PERIOD CONDITION. 0.003 Data for S' ARGE TEMPIS) (dr 0.000 VELOCITY HEAD 19 5.414 51 5.984 78 7.295	FLOOD TREAM SEGMEN ERATURE WAT eg F) 60.00 ALPHA 1.388 FLOW DIS 1.315 FLOW DIS 1.148 FLOW DIS 1.016	NT NO. 1 at Cor FER SURFACE (ft) 3519.705 TOP AVG WIDTH BED 944.764 3499.32 STRIBUTION (%) = 751.264 3501.24 STRIBUTION (%) =	AVG VF 1 27 8.842 22.852 4 9.403 19.610 26 13.339 18.590 30 10.439	<pre># 1 # 1 EL (by su 2 20.698 77.148 21.387 80.390 23.223 80.837 14.865</pre>	0.00 0.00 0.00 0.00

SECTION NO. 5.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 5.000 TIME = 2.000 DAYS.COMPUTED TRIAL TRIAL CRITICAL WS WS WS NO. 0. 3537.410 1. 3537.504 3534.821 3537.454 3534.856 **** 165850.000 3537.504 3543.652 6.148 1.090 701.890 3522.285 7.657 20.288 9.113 FLOW DISTRIBUTION (%) = 1.561 95.255 3.184 SECTION NO. 6.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 6.000 TIME = 2.000 DAYS. COMPUTED CRITICAL TRIAL TRIAL WS WS WS NO. 3542.172 3545.380 Ο. 3545,424 1. 3545.474 3542.181 **** 165850.000 3545.474 3553.204 7.730 1.027 488.065 3529.142 10.268 22.461 10.477 FLOW DISTRIBUTION (%) = 0.222 98.203 1.574SECTION NO. 7.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 7.000 TIME = 2.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS 3557.863 3552.217 Ο. 3557.957 3552.221 3557.907 1. 1.061 387.140 3537.403 14.695 25.147 17.220 FLOW DISTRIBUTION (%) = 0.487 82.589 16.924 **** 165850.000 3557.957 3566.870 8.913 SECTION NO. 8.000 406.830 3544.311 12.214 23.404 15.994 USTRIBUTION (%) = 0.328 89.187 10.485 **** 165850.000 3564.062 3572.078 8.016 1.041 FLOW DISTRIBUTION (%) = SECTION NO. 9.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 9.000 TIME = 2.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL NO. WS WS WS 3570.543 3570.637 Ο. 3569.102 3570.587 3569.122 1 **** 165850.000 3570.637 3578.804 8.167 1.073 454.698 3551.914 12.756 23.867 14.707 FLOW DISTRIBUTION (%) = 0.333 87.565 12.101 SECTION NO. 10.000 **** 165850.000 3578.381 3582.870 4.489 1.098 581.393 3557.371 8.948 17.800 10.315 FLOW DISTRIBUTION (%) = 0,720 86,810 12,470 SECTION NO. 11.000 **** 165850.000 3582.197 3585.312 3.115 1.048 700.525 3563.533 6.261 14.619 9.781 0.237 88.840 10.923 FLOW DISTRIBUTION (%) = SECTION NO. 12.000 **** 165850.000 3582.953 3588.967 6.014 1.029 554.728 3566.531 0.756 19.865 10.289 FLOW DISTRIBUTION (%) = 0.000 97.364 2.636 SECTION NO. 13.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 13.000 TIME = 2.000 DAYS. TRIAL COMPUTED TRIAL CRITICAL WS NO. WS WS 0. 3589.254 3586.909 3589.348 3586.928 3589.298 1. **** 165850.000 3589.348 3596.766 7.417 1.056 516.207 3572.403 1.649 22.290 11.841 FLOW DISTRIBUTION (%) = 0.001 94.513 5.486 SECTION NO. 14.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 14.000 TIME = 2.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL WS WS NO. WS 0. 3598.922 3594.513 3594.568 3598.966 1. 3599.016 **** 165850.000 3599.016 3606.241 7.226 1.123 557.740 3579.979 8.329 22.126 9.062 0.132 93.966 5.902 FLOW DISTRIBUTION (%) = SECTION NO. 15.000 5.792 17.995 11.607 0.324 86.604 13.072 **** 165850.000 3605.632 3610.265 4.634 1.072 544.620 3584.627 FLOW DISTRIBUTION (%) = SECTION NO. 16.000 4.645 18.550 13.240 0.038 69.701 30.261 **** 165850.000 3608.791 3613.343 4.552 1.072 643.040 3590.728 FLOW DISTRIBUTION (%) =

SECTION NO. 17.000								
**** 165850.000 3611.18	3615.112	3.923	1.040 FLOW D	754.590 ISTRIBUT	3595.896 ION (%) =	3.619 0.021	16.122 95.888	8.814 4.091
OBILE BED APPLICATION IN	NATURAL CON	DITION.						
ACCUMULATED TIME FLOW DURATION (day	(yrs) /s)	0.005						
PSTREAM BOUNDARY CONDIT								
tream Segment # 1 ection No. 17.000	DISCHARGE	I SEDT	MENT LOAD	I TEMPE	PATTIPE			
INFLOW	165850.0	0	331060.03		60.00			
ABLE SA-1. TRAP EFFICIENCY O MOBILE BED APPLIC. ACCUMULATED AC-FT	ATION IN NATURA ENTERING AND L	L CONDITIO EAVING THI	S STREAM SE					
TIME ENTRY *	CLAY	*	********	SILT	*********	*******	SAND	********
TIME ENTRY * DAYS POINT * INF: 2.00 17.000 * 0 TOTAL= 1.000 * 0	LOW OUTFLOW	TRAP EFF *	INFLOW 39.19	OUTFLOW	TRAP EFF *	INFLOW	OUTFLOW	TRAP EFF
TOTAL= 1.000 * 0	.00 3.97**	*******	39.19	39.69	-0.01 *	153.59	180.73	-0.18
GRAIN SIZE LO. CLAY COARSE SILT VERY FINE SAND FINE SAND MEDIUM SAND COARSE SAND VERY COARSE SAND VERY FINE GRAVEL	0.00 51306.01 35961.68 45795.65 49360.64 55180.24	MEDI COAR VERY SMAL LARG SMAI	UM GRAVEL SE GRAVEL COARSE G L COBBLES E COBBLES L BOULDER	RAVEL	7626.3 0.00 0.00 0.00 0.00 0.00	7 0 0 0 0 0		
FINE GRAVEL	28363.67 18393.41		E BOULDER	S	279754.0	2		
- SEDIMENT OUTFLOW from	the Dounstro		тс	TAL =	331060.0	3		
GRAIN SIZE LO	AD (tons/dav)) I GR	AIN SIZE	LOA	D (tons/da	y)		
CLAY COARSE SILT	0.00	MEDI	UM GRAVEL		3128.3	9		
COARSE SILT	51306.01	I COAF	RSE GRAVEI		9495.1	1		
VERY FINE SAND								
FINE SAND	45222.54		LL COBBLES		26276.8	-		
MEDIUM SAND	48731.64		SE COBBLES		15993.9			
COARSE SAND	55932.19	•	L BOULDER		5529.0			
VERY COARSE SAND	25683.04	-	UM BOULDE		0.0			
VERY FINE GRAVEL FINE GRAVEL	88.22 524.26		E BOULDER	S	0.0	0		
-	******		тс	 TAL =	346214.5	- 4		

TABLE SB-	2: STATUS	OF THE	: BED	PROFILE	AΤ	TIME	=

SECTION	BED CHANGE	WS ELEV	THALWEG	Q	TRANSPORT R	ATE (tons/d	ay)
NUMBER	(ft)	(ft)	(ft)	(cfs)	CLAY	SILT	SAND
17.000	7.44	3611.19	3599.04	165850.	0.	51306.	236859
16.000	-3.21	3608.79	3584.97	165850.	0.	51306.	248073
15.000	-0.24	3605.63	3581.05	165850.	0.	51306.	249654
14.000	-3.38	3599.02	3572.92	165850.	0.	51306.	275408
13.000	-1.59	3589.35	3566.48	165850.	0.	51306.	297245
12.000	-0.17	3582.95	3561.92	165850.	Ο.	51306.	314652
11.000	1.62	3582.20	3560.42	165850.	0.	51306.	292903
10.000	-0.47	3578.38	3553.09	165850.	0.	51306.	288294
9.000	-2.58	3570.64	3545.44	165850.	Ο.	51306.	303233
8.000	-0.68	3564.06	3540.42	165850.	Ο.	51306.	306449
7.000	-1.85	3557.96	3533.95	165850.	0.	51306.	319510
6.000	-0.43	3545.47	3525.08	165850.	0.	51306.	319252
5.000	0.35	3537.50	3517.33	165850.	0.	51306.	312003
4.000	1.39	3533.61	3509.02	165850.	0.	51306.	298486
3.000	-0.64	3526.48	3499.28	165850.	0.	51306.	310639
2.000	1.08	3523.08	3498.28	165850.	0.	51306.	299676
1.000	1.13	3519.70	3496.30	165850.	0.	51306.	294909

\$\$END

0 DATA ERRORS DETECTED.

TOTAL NO.	OF TIME STEPS READ =	2
TOTAL NO.	OF WS PROFILES =	2
ITERATIONS	S IN EXNER EQ =	340

COMPUTATIONS COMPLETED RUN TIME = 0 HOURS, 0 MINUTES & 0.00 SECONDS

_ _ _ _ _ _

2.000 DAYS

APPENDIX-6, COMPUTER PROGRAM FOR GENERATION OF COSINE CURVE FOR RIVER CHANNELS

* * *	************
*	MAIN PROGRAM MNDR.FOR *
* * *	***************************************
с	Program for Generation of Cosine Curve for River Channel
С	Main Program
	common /blockA/ delsai(50),cumang(50),icount(10000),rad(10000),
	1 xdash(10000),ydash(10000),rmin,crvlen,nangle,
	1 xodash(10000),yodash(10000)
	dimension x(10000),y(10000),xo(10000),yo(10000)
	open(1,file='input.dat',status='old')
	open(2,file='result.out')
с	Enter the value of Rmin in metre in the input file.
	read(1,*) rmin
с	Enter the length of the curve L in meter in the input file.
	read(1,*) crvlen
	pi=22./7.
	saimax=180.*crvlen/(2.*pi**2*rmin)
	write(*,*)'saimax= ',saimax
	write(*,*)'Break saimax into suitable number of divisions.'
	pause
С	Enter the numbers of divisions of saimax desired
с	in the input file.
	read(1,*) nangle
с	Enter the angles in degrees.
	read(1,*) (delsai(i),i=1,nangle)
	write(*,*) (delsai(i),i=1,nangle)
	m=200
	do 10 i=1,nangle
	delsai(i)=delsai(i)*pi/180.
10	continue
	alo=2.*pi/crvlen
	saimax=crvlen/(2.0*pi*rmin)
	sdelsi=delsai(1)/float(m)
	cumang(1)=delsai(1)
	do 20 i=2,nangle
•	cumang(i)=cumang(i-1)+delsai(i)
20	continue
	do 30 i=1,nangle
	t=cumang(i)/sdelsi
	it=ifix(t)
	tt=t-it
	if(tt.ge.0.5)then
	it=it+1
	endif
	icount(i)=it

30	continue rad(1)=rmin	
	x dash(1)=0.0	
	ydash(1)=0.0	
	xodash(1)=0.0)
	yodash(1)=0.0	
	x(1)=rmin	
	y(1)=0.0	
	do 60 k=1,nar	ngle
		.1)then
	(nn=2
		go to 40
	else	
		nn=icount(k-1)+2
	endif	
40	do 50	j=nn,icount(k)+1
		chkang=float(j-1)*sdelsi
		tempo = (1(alo*rmin*chkang)**2)**0.5
		if(chkang.gt.saimax) go to 70
		if(tempo.lt.0)go to 70
		rad(j)=rmin/(1.0-(rmin*alo*float(j-1)*sdelsi)**2)**0.5
с		write(*,*)'radius for line no= 'j,rad(j)
	· .	xdash(j)=(rad(j-1)-rad(j))*cos(float(j-1)*sdelsi)
	1	+xdash(j-1)
		ydash(j)=(rad(j-1)-rad(j))*sin(float(j-1)*sdelsi)
	1	+ydash(j-1)
		xodash(j)=(rad(j)-0.5*rmin)*cos(chkang)+xdash(j-1)
		yodash(j) = (rad(j) - 0.5*rmin)*sin(chkang)+ydash(j-1)
		x(j)=rad(j)*cos(chkang)+xdash(j)
		y(j)=rad(j)*sin(chkang)+ydash(j)
		xo(j)=rad(j)*cos(chkang)+xodash(j)
		yo(j)=rad(j)*sin(chkang)+yodash(j)
50	contin	ue
60	continue	
	call pout(x,y,	
70	• • •	sign another curve.'
	stop	
	end	

SUBROUTINE POUT subroutine pout(x,y,pi,xo,yo) common /block A/delsai(50),cumang(50),icount(10000),rad(10000), 1 xdash(10000),ydash(10000),rmin,crvlen,nangle, 1 xodash(10000), yodash(10000) dimension x(10000), y(10000), xo(10000), yo(10000) write(2,*)'RESULTS OF COSINE GENERATED CURVE: MNDR.OUT' write(2,*)write(2,*) write(2,*)'Radmin (m) Curve Length (m) N-division write(2,11)rmin,crvlen,nangle 11 format(f9.2,12x,f7.2,20x,i3,//) do 10 i=1,nangle cumang(i)=cumang(i)*180./pi delsai(i)=delsai(i)*180./pi 10 continue write(2,*)'Angles in degrees' write(2,*)(delsai(i),i=1,nangle) write(2,*) write(2,*)'Cartesian coordinates and radii of the curve' write(2,*)'Angle Abscissa, X (m) Ordinate, Y (m) Radius (m)' do 20 i=1,nangle ii=icount(i)+1 write(*,*)'ii= ',ii,'for division= ',i С write(2,12)cumang(i),x(ii),y(ii),rad(ii) 12 format(f5.2,3x,f10.3,8x,f10.3,8x,f10.3) 20 continue write(2,*) write(2,*)'Cartesian coordinates for XOIs and YOIs' write(2,*)'Angle Abscissa, X (m) Ordinate, Y (m) Radius (m)' do 30 i=1.nangle ii=icount(i)+1 write(*,*)'ii= ',ii,'for division= ',i с write(2,12)cumang(i),xo(ii),yo(ii),rad(ii) 30 continue return end

APPENDIX-7, INPUT DATA FOR HEC-6 FOR SIMULATION OF BEAS RIVER WITH DIKES AND DIVERSION CHANNEL FOR 2 YEAR AND 500 YEAR FLOODS (FIX BED APPLICATION)

TI I	TIXED BE	D APPLIC	ATION IN	RIVER W	ITH DIKE	S AND DI	VERSION (CHANNEL.	
T2 V	TMUTAR	CON OF DEL	KVE AT 1	HE DOWNS	FREAM BC	UNDARY.			
- NC 045	045		AS RIVER	ror 2 Y	EAR AND	500 YEAR	RETURN I	PERIOD FLOOI	DS
X1 1 0	.045	.038		• • •	•	•		0.	
GR3503.7	0 00	3192 31	4/0.00	2402 24	426.24	0.	0.	0.	Ο.
HD 1.0	0.00	5102.54	42.04	3402.34	430.24	3503.66	478.88		
	4	0	170 00	CCE 00	<i></i>		_		
GR3510 3	0 00	3/09 05	4/0.00	2400 05	645.00	656.00	0.	0.	0.
HD 2.0	0.00	3400.95	42.04	3488.95	430.24	3510.27	478.88		
X1 3.0	4	0	170 00	675 00	625 00		-	0.	•
GR3516.9	0 00	3495.55	10.00	2405 55	035.00	656.00	0.	0.	0.
HD 3.0	0.00	5475,55	72.04	3495.55	430.24	3210.81	4/8.88		
X1 4.0	4	0.	178 99	625 00	675 00	(5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		•	
GR3523.5	0.00	3502.16	47 64	3502 16	126 24	000.00	0.	0.	0.
HD 4.0		5502.10	72.07	3302.10	430.24	,3323+48	4/8.88		
X1 5.0	4	0.	478 89	645 00	665 00	(FC 00	•	ο.	
GR3530.1	0.00	3508.77	47 64	3508 77	126 24	2520.00	0.	0.	Ο.
HD 5.0		5500.77	42.04	3300.77	430.24	3530.09	4/8.88		
X1 6.0	4	0.	170 00	670 00	642 00		•	•	_
GR3536.7	0.00	3515.37	470.00	2515 27	42.00	000.00	0.	Ο.	0.
HD 6.0	0.00	5515157	72107	5515.57	430.24	3230.09	4/8.88		
	4	0	170 00	672 00	625 AA	656 00	•		
GR3543.3	0 00	3521 09	10.00	2521 00	436 04	000.00	0.	0.	0.
HD 7.0	0.00	5521.90	42.04	3521.98	430.24	3543.30	4/8.88		
X1 8.0	4	0.	170 00	647 00	665 AA	(5(00	· •	-	_
GR3549.9	0.00	3528.58	4/0.00	2520 50	426 04	656.00	0.	0.	0.
HD 8.0	0.00	5520.50	42.04	3228.28	436.24	3549.90	478.88		
	. 4	0.	170 00	627 00	675 00	656 00	•	_	
GR3556.5	0.00	3535.19	470.00	2525 10	426 24	050.00	0.	0.	0.
HD 9.0	••••	5555.15	72.04	3333.19	430.24	3220.21	4/8.88		
X1 10.0	4.	0.	478 88	323 00	333 00	228 00		<u>^</u>	•
X1 10.0 GR3559.8	0.00	3538.49	42.64	3538 49	136 24	320.00	479 90	0.	0.
HD 10.0			1	5550.45	430.24	2223.01	4/0.00		
X1 11.0	4.	٥.	478.88	328.00	328.00	328 00	0	0.	•
GR3562.5	0.00	3541.14	42.64	3541 14	436 24	3562 46	170 00	υ.	υ.
HD 11.0					130.21	5502.40	4/0.00		
	4.	0.	478.88	656.00	656 00	656 00	•	0	0.1
GR3569.3	0.00	3548.02	42.64	3548.02	436 24	3569 34	170 00	0.	0.
HD 12.0			10001	5540.02	10.24	5509.54	4/0.00		
X1 13.0	4.	0.	478.88	656.00	656 00	656 00		0	0
GR3576.9	0.00	3555.53	42.64	3555.53	436 24	3576.85	170 00	0.	Ο.
HD 13.0				0000100	130.24	5570.05	4/0.00		
X1 14.0	4.	0.	478.88	656.00	656.00	656 00	٥	ο.	ο.
GR3580.1	0.00	3558.81	42.64	3558.81	436.24	3580 13	478 89	0.	υ.
HD 14.0					100127	2200.12	-1/0.00		
X1 15.0	4.	0.	478.88	606.80	606.80	606 80	٥	ο.	0.
GR3583.4	0.00	3562.09	42.64	3562.09	436.24	3583.41	478 88	0.	0.
HD 15.0							110.00		
X1 16.0	4.	0.	478.88	656.00	656.00	656.00	0	0.	0.
GR3589.4	0.00	3568.07	42.64	3568.07	436.24	3589.39	478.88	••	v.
HD 16.0	-		• • •			, , , , , , , , , , , , , , , ,			

.

4. 0. 478.88 656.00 656.00 656.00 0. 0.00 3576.30 42.64 3576.30 436.24 3597.62 478.88 ο. 0. Ο. X1 17.0 GR3597.6 HD 17.0 X1 18.0 4. 0. 478.88 705.20 705.20 705.20 0. 0. 0. 0.00 3581.29 42.64 3581.29 436.24 3602.61 478.88 GR3602.6 HD 18.0 4. 0. 478.88 656.00 656.00 656.00 0. 0.00 3588.18 42.64 3588.18 436.24 3609.50 478.88 Ο. 0. X1 19.0 GR3609.5 HD 19.0 X1 20.0 4. 0. 478.88 328.00 328.00 328.00 0. 0.00 3591.62 42.64 3591.62 436.24 3612.94 478.88 Ο. 0. Ο. GR3612.9 HD 20.0 EJ \$HYD **\$RATING** 257057.51003482.343484.853486.103487.253488.003488.803489.583490.303490.963491.583492.183492.803493.303493.82 RC RC 3494.36 3494.82 3495.38 3495.80 3496.30 3496.75 3497.20 3497.60 3498.08 RC 3498.50 3498.90 RC * A PROFILE 1 = 2 YEAR RETURN PERIOD FLOOD Q 28230. т 60. W 1. * A PROFILE 2 = 500 YEAR RETURN PERIOD FLOOD Q165850. т 60. W 1. \$\$END

APPENDIX-8, OUTPUT OF HEC-6 FOR SIMULATION OF BEAS RIVER WITH DIKES AND DIVERSION CHANNEL FOR 2 YEAR AND 500 YEAR FLOODS (FIX BED APPLICATION)

.

 SCOUR AND DEPOSI Version: 4. INPUT FILE: FIX OUTPUT FILE: FIX RUN DATE: 31 MAY 		SERVOIRS * * * 9:21 *	* U.S. A * HYDROLO * 609 SE * DAVIS, * (916)	**************************************	RS * 'ER * * *
	X X X	XXXXXXX XXXX	X	XXXXX	
	X X X	K X	X	х х	
	x x x	<pre></pre>		x	
	XXXXXXX	XXXX X	XXXXX	XXXXXX	
	x x x	K X		x x	
	x x x	K X			
		XXXXXXX XXXX		XXXXX	
	**************************************	HIS VERSION AR	********* E:	****	* * * * * * *
*	200 Elevation/St	ation Points	per Cross S	ection	*
* *	20 Grain Sizes	•	-		*
*	10 Control Poin	nts			*
*****	*****	******	******	* * * * * * * * * * * * * * * * *	* * * * *
T2 WITH A 1 T3 SIMULAT N values Let	ED APPLICATION IN RATING CURVE AT T ION OF BEAS RIVER ft Channel Rig 50 0.0380 0.04	HE DOWNSTREAM FOR 2 YEAR AN ght Contrac	BOUNDARY. D 500 YEAR : tion Exp	RETURN PERIOD FLO	ODS
0101	50 010500 010		00 0.70	00	
SECTION NO. DEPTH of the	1.000 Bed Sediment Cont	crol Volume =	0.00 ft.		
SECTION NO.	2.000				
DEPTH of the	Bed Sediment Cont	rol Volume =	0.00 ft.		
SECTION NO. DEPTH of the	3.000 Bed Sediment Cont	crol Volume =	0.00 ft.		
SECTION NO.					
DEPTH of the	Bed Sediment Cont	rol Volume =	0.00 ft.		
SECTION NO DEPTH of the	5.000 Bed Sediment Cont	crol Volume =	0.00 ft.		
SECTION NO. DEPTH of the	6.000 Bed Sediment Cont	rol Volume =	0.00 ft.		
SECTION NO. DEPTH of the	7.000 Bed Sediment Cont	rol Volume =	0.00 ft.	•	
SECTION NO. DEPTH of the	8.000 Bed Sediment Cont	rol Volume =	0.00 ft.		
SECTION NO. DEPTH of the	9.000 Bed Sediment Cont	rol Volume =	0.00 ft.		

SECTION NO. 10.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 11.000 0.00 ft. ... DEPTH of the Bed Sediment Control Volume = SECTION NO. 12.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 13.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 14.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 15.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 16.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 17.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 18.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 19.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. SECTION NO. 20.000 ... DEPTH of the Bed Sediment Control Volume = 0.00 ft. NO. OF CROSS SECTIONS IN STREAM SEGMENT= 20 NO. OF INPUT DATA MESSAGES = 0 TOTAL NO. OF CROSS SECTIONS IN THE NETWORK = 20 TOTAL NO. OF STREAM SEGMENTS IN THE NETWORK= 1 END OF GEOMETRIC DATA \$HYD FIXED BED MODEL

\$RATING

.

Downstream H						1			
Elevation	Soundary (_			
Elevation	Stag	је D.	ischarge	> El(evation	Stag	je i	Discha	rge
3482.340	3482.3	340	0.000) 3	493.820	3493.8	320	91747.	630
3484.850	3484.8		7057.510	•	494.360	3494.3		98805.	
3486.100	3486.1		4115.020		494.820	3494.8		05862.	
3487.250	3487.2		1172.530	-	495.380	3495.3		12920.	
3488.000	3488.0		8230.040		495.800	3495.8		19977.	
3488.800	3488.8		5287.550		496.300	3496.3		27035.	
3489.580	3489.5		2345.060		496.750	3496.7		34092.	
3490.300	3490.3		9402.570		497.200	3497.2		41150.	
3490.960	3490.9		6460.080	-	497.600	3497.6	_	48207.	
3491.580	3491.5		3517.590		498.080	3498.0		55265.	
3492.180	3492.1		0575.100		198.500	3498.5		52322.	
3492.800	3492.8		7632.610		198.900	3498.9		59380.2	
3493.300	3493.3		4690.120			545075			240
TIME STEP #			*******	Mosees				-=====	
	ILE 1 = 2	YEAR RE	TURN PE	RTOD FT	.00D				
				NIOD FI		•			
FIXED BED AP	PLICATION	IN RIVE	ER WITH	DIKES A	ND DIVER	STON CHA	NNET		
ACCUMULATED	TIME (yrs)	• • •	0.000					
Downstream	Boundary (Condition	Data for	STREAM			ontrà Po	oint #	1
		Ľ	ISCHARG	e tem	IPERATURE	WATER	SURFACE	1	
			(cfs)		deg F)	(f	t)		
			28230.0	00	60.00	34	88.000		
**** DISCHARGE	WATER	ENERGY	VEDCITY	ALPHA	TOP	AVG	AVC VE	PT. (by c	ubsection)
(CFS)	SURFACE	LINE	HEAD		WIDTH	BED	1	2 (b) 1	3
SECTION NO.	1.000								
**** 28230.000									
	3488.000	3490.358	2.358	1.000	416 219	2482 404	0 000	12 210	
	3488.000	3490.358	2.358		416.219 DISTRIBUTI	3482.494 [ONI (%) =		L2.318	0.000
	2.000			FLOW	416.219 DISTRIBUT:	3482.494 [ON (%) =		12.318 100.000	
SECTION NO. **** 28230.000		3490.358 3496.979	2.358	FLOW	DISTRIBUT	CON (%) = 3489.107	0.000	100.000	0.000
**** 28230.000	2.000			FLOW	DISTRIBUT	CON (%) = 3489.107	0.000	100.000	0.000
**** 28230.000	2.000 3494.679			FLOW	DISTRIBUT	CON (%) = 3489.107	0.000	100.000 12.164 100.000	0.000
**** 28230.000 SECTION NO. **** 28230.000	2.000 3494.679 3.000 3501.226	3496.979	2.299	FLOW 1.000 FLOW 1.000	DISTRIBUT 416.502 DISTRIBUTI	ION (%) = 3489.107 ON (%) = 3495.701	0.000	100.000 12.164 100.000 12.273	0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO.	2.000 3494.679 3.000 3501.226 4.000	3496.979 3503.567	2.299 2.341	FLOW 1.000 FLOW 1.000 FLOW D	DISTRIBUT 416.502 DISTRIBUTI 416.304 DISTRIBUTIC	CON (%) = 3489.107 ON (%) = 3495.701 DN (%) =	0.000 0.000 0.000 0.000 0.000 1	100.000 12.164 100.000 12.273 00.000	0.000 0.000 0.000 0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000	2.000 3494.679 3.000 3501.226 4.000	3496.979	2.299	FLOW 1.000 FLOW 1.000 FLOW D 1.000	DISTRIBUT 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432	CON (%) = 3489.107 ON (%) = 3495.701 VN (%) = 3502.313	0.000 0.000 0.000 0.000 0.000 1 0.000	100.000 12.164 100.000 12.273 00.000 12.205	0.000 0.000 0.000 0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO.	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000	3496.979 3503.567 3510.182	2.299 2.341 2.315	FLOW 1.000 FLOW 1.000 FLOW D 1.000 FLOW	DISTRIBUT 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTI	CON (%) = 3489.107 ON (%) = 3495.701 VN (%) = 3502.313	0.000 0.000 0.000 0.000 0.000 1 0.000	100.000 12.164 100.000 12.273 00.000	0.000 0.000 0.000 0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO.	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000	3496.979 3503.567 3510.182	2.299 2.341 2.315	FLOW 1.000 FLOW 1.000 FLOW D 1.000 FLOW 1.000	DISTRIBUT: 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTI 416.334	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 0.000 1 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205	0.000 0.000 0.000 0.000 0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455	3496.979 3503.567 3510.182	2.299 2.341 2.315	FLOW 1.000 FLOW 1.000 FLOW D 1.000 FLOW 1.000	DISTRIBUT 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTI	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 0.000 1 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205 00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO.	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000	3496.979 3503.567 3510.182 3516.791	2.299 2.341 2.315 2.337	FLOW 1.000 FLOW 1.000 FLOW D 1.000 FLOW 1.000 FLOW	DISTRIBUT 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTI 416.334 DISTRIBUTI	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000	3496.979 3503.567 3510.182 3516.791	2.299 2.341 2.315 2.337	FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000	DISTRIBUT: 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTI 416.334 DISTRIBUTI 416.370	$\begin{array}{l} \text{LON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO.	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000 3521.099	3496.979 3503.567 3510.182 3516.791 3523.428	2.299 2.341 2.315 2.337 2.329	FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW	DISTRIBUTI 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTI 416.334 DISTRIBUTI 416.370 DISTRIBUTI	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242 100.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO.	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000 3521.099	3496.979 3503.567 3510.182 3516.791 3523.428	2.299 2.341 2.315 2.337 2.329	FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW	DISTRIBUT: 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTI 416.334 DISTRIBUTI 416.370 DISTRIBUTI 416.364	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242 100.000 12.242	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000 3521.099 7.000 3527.721	3496.979 3503.567 3510.182 3516.791 3523.428	2.299 2.341 2.315 2.337 2.329	FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW	DISTRIBUTI 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTI 416.334 DISTRIBUTI 416.370 DISTRIBUTI	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242 100.000 12.242	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO.	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000 3521.099 7.000 3527.721 8.000	3496.979 3503.567 3510.182 3516.791 3523.428 3530.62	2.299 2.341 2.315 2.337 2.329 2.332	FLOW 1.000 FLOW E 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW	distributi 416.502 distributi 416.304 distributio 416.432 distributi 416.334 distributi 416.370 distributi 416.364 distributi	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242 100.000 12.249 100.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000 3521.099 7.000 3527.721 8.000	3496.979 3503.567 3510.182 3516.791 3523.428 3530.62	2.299 2.341 2.315 2.337 2.329 2.332	FLOW 1.000 FLOW E 1.000 FLOW E 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW	DISTRIBUT: 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTI 416.334 DISTRIBUTI 416.370 DISTRIBUTI 416.364 DISTRIBUTI 416.436	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242 100.000 12.249 100.000 12.249 100.000	0.000 0.0000 0.00000 0.00000 0.0000 0.0000 0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO.	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000 3521.099 7.000 3527.721 8.000 3534.332 9.000	3496.979 3503.567 3510.182 3516.791 3523.428 3530.62 3536.648	2.299 2.341 2.315 2.337 2.329 2.332 2.332 2.316	FLOW 1.000 FLOW D 1.000 FLOW D 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW	DISTRIBUTI 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTI 416.334 DISTRIBUTI 416.370 DISTRIBUTI 416.364 DISTRIBUTI 416.436 DISTRIBUTI	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242 100.000 12.249 100.000 12.209 100.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO. **** 28230.000 SECTION NO.	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000 3521.099 7.000 3527.721 8.000 3534.332 9.000	3496.979 3503.567 3510.182 3516.791 3523.428 3530.62 3536.648	2.299 2.341 2.315 2.337 2.329 2.332 2.332 2.316	FLOW 1.000 FLOW D 1.000 FLOW D 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW	DISTRIBUT: 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTI 416.334 DISTRIBUTI 416.364 DISTRIBUTI 416.436 DISTRIBUTI 416.348	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242 100.000 12.249 100.000 12.229 100.000 12.229	0.000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.00000000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO.	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000 3521.099 7.000 3527.721 8.000 3534.332 9.000 3540.923 10.000	3496.979 3503.567 3510.182 3516.791 3523.428 3530.62 3536.648 3543.259	2.299 2.341 2.315 2.337 2.329 2.332 2.336 2.336	FLOW 1.000 FLOW D 1.000 FLOW D 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW	DISTRIBUTI 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTI 416.334 DISTRIBUTI 416.370 DISTRIBUTI 416.364 DISTRIBUTI 416.436 DISTRIBUTI	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242 100.000 12.249 100.000 12.229 100.000 12.229	0.000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.00000000
**** 28230.000 SECTION NO. **** 28230.000 SECTION NO.	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000 3521.099 7.000 3527.721 8.000 3534.332 9.000 3540.923 10.000	3496.979 3503.567 3510.182 3516.791 3523.428 3530.62 3536.648 3543.259	2.299 2.341 2.315 2.337 2.329 2.332 2.336 2.336	FLOW 1.000 FLOW E 1.000 FLOW E 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW	DISTRIBUT: 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTIC 416.334 DISTRIBUTI 416.364 DISTRIBUTI 416.348 DISTRIBUTI 416.348 DISTRIBUTI 416.558	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242 100.000 12.249 100.000 12.209 100.000 12.261 100.000 12.261 100.000 12.261	0.000 0.0000 0.00000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000000
**** 28230.000 SECTION NO. **** 28230.000	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.00 3521.099 7.000 3527.721 8.000 3534.332 9.000 3540.923 10.000 3544.245	3496.979 3503.567 3510.182 3516.791 3523.428 3530.62 3536.648 3543.259	2.299 2.341 2.315 2.337 2.329 2.332 2.336 2.336	FLOW 1.000 FLOW E 1.000 FLOW E 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW	DISTRIBUTI 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTIC 416.334 DISTRIBUTI 416.364 DISTRIBUTI 416.436 DISTRIBUTI 416.348 DISTRIBUTI	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242 100.000 12.249 100.000 12.209 100.000 12.261 100.000 12.261 100.000 12.261	0.000 0.0000 0.00000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000000
SECTION NO. **** 28230.000 SECTION NO.	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000 3521.099 7.000 3527.721 8.000 3534.332 9.000 3540.923 10.000 3544.245 11.000	3496.979 3503.567 3510.182 3516.791 3523.428 3530.62 3536.648 3543.259 3546.538	2.299 2.341 2.315 2.337 2.329 2.332 2.316 2.336 2.292	FLOW 1.000 FLOW D 1.000 FLOW D 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW 1.000 FLOW	DISTRIBUT: 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTIC 416.334 DISTRIBUTI 416.364 DISTRIBUTI 416.364 DISTRIBUTI 416.348 DISTRIBUTI 416.558 ISTRIBUTIO	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242 100.000 12.249 100.000 12.209 100.000 12.261 100.000 12.145 00.000	0.000 0.000
**** 28230.000 SECTION NO. **** 28230.000	2.000 3494.679 3.000 3501.226 4.000 3507.867 5.000 3514.455 6.000 3521.099 7.000 3527.721 8.000 3534.332 9.000 3540.923 10.000 3544.245 11.000	3496.979 3503.567 3510.182 3516.791 3523.428 3530.62 3536.648 3543.259 3546.538	2.299 2.341 2.315 2.337 2.329 2.332 2.316 2.336 2.292	FLOW 1.000 FLOW D 1.000 FLOW D 1.000 FLOW 1.000	DISTRIBUT: 416.502 DISTRIBUTI 416.304 DISTRIBUTIC 416.432 DISTRIBUTIC 416.334 DISTRIBUTI 416.364 DISTRIBUTI 416.364 DISTRIBUTI 416.348 DISTRIBUTI 416.558 ISTRIBUTIO	$\begin{array}{l} \text{CON} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.000 0.0000 0.00000 0.00000 0.0000 0.0000 0.00000000	100.000 12.164 100.000 12.273 00.000 12.205 00000 12.262 100.000 12.242 100.000 12.249 100.000 12.209 100.000 12.261 100.000 12.145 00.000	0.000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000000

SECTION NO. 12.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 12.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL COMPUTED NO. WS WS WS 3553.010 3552.921 Ο. 3553.375 1. 3553.469 3552.921 3553.419 **** 28230.000 3553.469 3556.018 2.550 1.000 415.415 3548.163 0.000 12.809 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 0.000 SECTION NO. 13.000 **** 28230.000 3561.029 3563.500 2.471 0.000 1.000 415.705 3555.643 0.000 12.609 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 14.000 **** 28230.000 3566427 3567.704 1.276 SECTION NO 1.000 424.098 3559.082 0.000 9.062 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = SECTION NO. 15.000 **** 28230.000 3568.951 3570.538 1.588 SECTION NO. 1.000 412.033 3562.317 0.000 10.108 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 16.000 **** 28230.000 3573.426 3576.034 2.609 1.000 415.148 3568.177 0.000 12.956 @Q.0 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 17.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 17.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS 0. 3581.643 3581.467 1. 3581.736 3581.320 3581.686 **** 28230.000 3581.736 3584.298 2.561 3581.643 3581.467 1.000 415.356 3576.442 0.000 12.838 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 18.000 **** 28230.000 3588.224 3589.768 1.544 1.000 421.407 3581.503 0.000 9.967 0.000 FLOW DISTRIBUION (%) = 0.000 100.0000.000 SECTION NO. 19.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 19.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS 3593.533 3592.561 Ο. 3592.J. 3592.498 3593.627 1. 3593.577 **** 28230.000 3593.627 3596.178 2.551 1.000 415.387 3588.323 0.000 12.813 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 20.000 **** 28230.000 3597.418 3599.669 2.251 1.000 416.779 3591.790 0.000 12.034 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 TIME STEP # 2 AB PROFILE 2 = 500 YEAR RETURN PERIOD FLOOD FIXED BED APPLICATION IN RIVER WITH DIKES AND DIVERSION CHANNEL. ACCUMULATED TIME (yrs)..... 0.003 --- Downstream Boundary Condition Data for STREAM SEGMENT NO. 1 at Control Point # 1---DISCHARGE TEMPERATURE WATER SURFACE (cfs) (deg F) (ft) 60.00 165850.000 3498.700 WATER ENERGY VELOCITY ALPHA SURFACE LINE HEAD **** DISCHARGE TOP AVG AVG VEL (by subsection) HEAD (CFS) WIDTH BED Ĺ SECTION NO. 1.000 SECTION NO. 2.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 2.000 TIME = 1.00 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS 3505.167 WS WS 3506.054 Ο. 3505.167 3505.218 3506.147 3506.097 1. **** 165850.000 3506.147 3514.039 7.891 1.000 462.342 3490.228 0.000 2235 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000

SECTION NO. 3.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 3.000 TIME = 1.000 DAYS. TRIAL COMPUTED TRIAL CRITICAL NO. WS WS WS 3511.703 Ο. 3512.669 3512.763 1. 3511.723 3512.713 **** 165850.000 3512.763 3520.639 7.876 1.000 462.404 3496.831 0.000 22.512 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 4.000 ** SUPERCRITICAL ** Using Critical Water Surface + 4.000 TIME = 1.000 DAYS. SECTION NO. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS Ο. 3519.285 3518.300 3519.379 3518.317 3519.329 1. **** 165850.000 3519.379 3527.249 7.869 1.000 462.445 3503.442 0.000 22.503 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 5.000 ** SUPERCRITICAL ** Using Critical Water Surface + 5.000 TIME = 1.000 DAYS. SECTION NO. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS 0. 3525.854 3524.902 3525.948 3524.917 3525.898 1. **** 165850.000 3525.948 3533.858 7.910 1.000 462.294 3510.046 0.000 22.561 0.000 FLOW DISTRIBUTION (%) = 000 100.000 0.000 SECTION NO. 6.000 ** SUPERCRITICAL ** Using Critical Water Surface + 6.000 TIME = SECTION NO. 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS 3532.473 353.525 Ο. 3532.567 3531.547 3532.517 1. **** 165850.000 3532.567 3540.458 7.891 462.372 3516.649 1.000 0.000 22.534 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 7.000 ** SUPERCRITICAL ** Using Critical Water Surface + 1.000 DAYS. SECTION NO. 7.000 TIME = TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS 3538.123 3539.095 Ο. 3539.189 3538.141 1. 3539.139 **** 165850.000 3539.189 3547.068 7.879 462.437 3523.261 1.000 0.000 22.516 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 8.000 ** SUPERCRITICAL ** Using Critical Water Surface + 8.000 TIME = 1.000 DAYS. SECTION NO. COMPUTED TRIAL TRIAL CRITICAL NO. WS WS WS Ο. 3545.706 3544.731 3544.749 3545.800 3545.750 1. **** 165850.000 3545.800 3553.668 7.868 1.000 462.481 3529.862 0.000 22.500 0.000 0.000 100.000 FLOW DISTRIBUTION (%) = 0.000 SECTION NO. 9.000 ** SUPERCRITICAL ** Using Critical Water Suface + 9.000 TIME = SECTION NO. 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS Ο. 3552.297 3551.325 3552.391 3551.340 3552.341 1. 1.000 462.421 3536.470 0.000 22.527 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 **** 165850.000 3552.391 3560.277 7886 SECTION NO. 10.000 ** SUPERCRITICAL ** Using Critical Water Surface + 10.00 TIME = 1.000 DAYS. SECTION NO. COMPUTED TRIAL TRIAL CRITICAL NO. WS WS WS 3555.576 3555.124 Ο. 3555.670 3555.164 3555.620 **** 165850.000 3555.670 3563.577 7.907 1.000 462.335 3539767 0.000 22.557 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 11.000 **** 165850.000 3558.965 3566.259 7.294 SECTION NO. 464.873 3542.497 1.000 0.000 21.664 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000

12.000 SECTION NO. ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 12.000 TIME = 1.000 DAYS. COMPUTED CRITCAL TRIAL TRIAL WS NS 3565.134 3563.764 3563.782 NO. WS Ο. 3565.178 1. 1.000 462.496 3549.302 0.000 22.516 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 **** 165850.000 3565.228 3573.107 7.879 SECTION NO. 13.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 13.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL COMPUTED NO. WS WS WS 3570.765 ο. 3572.626 3572.669 3572.719 3570.779 1. 1.000 462.278 3556.807 0.000 22.546 0.000 FLOW DISTRIBUTION(%) = 0.000 100.000 0.000 **** 165850.000 3572.719 3580.619 7.900 SECTION NO. 14.000 **** 165850.000 3579.648 3584.856 5.208 1.000 476.916 3560.652 0.000 18.306 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 15.000 **** 165850.000 3582.223 3587.828 5.605 SECTION NO. 1.000 474.129 3563.804 0.000 18.992 FLOW DISTRIBUTION (%) = 0.000 100.000 1.000 0.000 0.000 SECTION NO. 16.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 16.000 TIME = 1.000 DAYS. COMPUTED CRITICAL TRIAL TRIAL NO. WS WS WS 0. 3585.157 3584.807 1. 3585.251 3584.837 3585.201 **** 165850.000 3585.251 3593.158 7.907 1.000 462.309 3569.347 0.000 22.556 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 17.000 ** SUPERCRITICAL ** Using Critical Water Suface + SECTION NO. 17.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS 0. 3593.413 3590.826 1. 3593.507 3590.851 3593.457 **** 165850.000 3593.507 3601.387 7881 1.000 462.459 3577.581 0.000 22.519 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 18.000 **** 165850.000 3600.195 3606.589 6.393 1.000 469.416 3582.776 0.000 20.283 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 19.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 19.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL COMPUTED NO. WS WS WS 0. 3605.292 3003.21 1. 3605.386 3603.854 3605.336 **** 165850.000 3605.386 3613.268 7.882 1.000 462.424 3589.460 0.000 22.521 0.000 0.000 100.000 FLOW DISTRIBUTION (%) = 0.000 20.000 SECTION NO. ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 20.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITTAL WS WŚ WS NO. 3608.12B 3608.171 0. 3608.738 1. 3608.832 3608.782 1.000 462.512 3592.902 0.000 22.511 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 **** 165850.000 3608.832 3616.707 7.875 ____ SSEND 0 DATA ERRORS DETECTED. TOTAL NO. OF TIME STEPS READ = 2 TOTAL NO. OF WS PROFILES = 2 ITERATIONS IN EXNER EQ = 0 COMPUTATIONS COMPLETED RUN TIME = 0 HOURS, 0 MINUTES & 0.00 SECONDS

APPENDIX-9, OUTPUT OF HEC-RAS FOR SIMULATION OF BEAS RIVER WITH DIKES AND DIVERSION CHANNEL WITH 2 YEAR AND 500 YEAR RETURN PERIOD FLOODS (FIX BED APPLICATION)

Plan: Diversion Beas River Bhuntar Reach RS: 1 Profile: 2 Year Flood									
E.G. Elev (ft)	3490.36	Element	Left OB	Channel	Right OB				
Vel Head (ft)	2.36	Wt. n-Val.		0.038					
W.S. Elev (ft)	3488	Reach Len. (ft)							
Crit W.S. (ft)	3487.7	Flow Area (sq ft)		2291.81					
E.G. Slope (ft/ft)	0.010294	Area (sq ft)		2291.81					
Q Total (cfs)	28230	Flow (cfs)		28230					
Top Width (ft)	416.24	Top Width (ft)		416.24					
Vel Total (ft/s)	12.32	Avg. Vel. (ft/s)		12.32					
Max Chl Dpth (ft)	5.66	Hydr. Depth (ft)		5.51					
Conv. Total (cfs)	278245.2	Conv. (cfs)		278245.2					
Length Wtd. (ft)		Wetted Per. (ft)		418.91					
Min Ch El (ft)	3482.34	Shear (lb/sq ft)		3.52					
Alpha	1	Stream Power (lb/ft s)		43.31					
Frctn Loss (ft)		Cum Volume (acre-ft)							
C & E Loss (ft)		Cum SA (acres)							

Plan: Diversion Beas River Bhuntar Reach RS: 2 Profile: 2 Year Flood									
E.G. Elev (ft)	3496.98	Element	Left OB	Channel	Right OB				
Vel Head (ft)	2.3	Wt. n-Val.		0.038					
W.S. Elev (ft)	3494.68	Reach Len. (ft)	665	656	645				
Crit W.S. (ft)	3494.31	Flow Area (sq ft)		2320.78					
E.G. Slope (ft/ft)	0.009881	Area (sq ft)		2320.78					
Q Total (cfs)	28230	Flow (cfs)		28230					
Top Width (ft)	416.52	Top Width (ft)		416.52					
Vel Total (ft/s)	12.16	Avg. Vel. (ft/s)		12.16					
Max Chl Dpth (ft)	5.73	Hydr. Depth (ft)		5.57					
Conv. Total (cfs)	283991.5	Conv. (cfs)		283991.5					
Length Wtd. (ft)	656	Wetted Per. (ft)		419.22					
Min Ch El (ft)	3488.95	Shear (lb/sq ft)		3.42					
Alpha	1	Stream Power (lb/ft s)		41.54					
Frctn Loss (ft)	6.62	Cum Volume (acre-ft)		34.73					
C & E Loss (ft)	0.01	Cum SA (acres)		6.27					

Plan: Diversion Beas River Bhuntar Reach RS: 3 Profile: 2 Year Flood									
E.G. Elev (ft)	3503.57	Element	Left OB	Channel	Right OB				
Vel Head (ft)	2.34	Wt. n-Val.		0.038					
W.S. Elev (ft)	3501.23	Reach Len. (ft)	675	656	635				
Crit W.S. (ft)	3500.91	Flow Area (sq ft)		2299.64					
E.G. Slope (ft/ft)	0.01018	Area (sq ft)		2299.64					
Q Total (cfs)	28230	Flow (cfs)		28230					
Top Width (ft)	416.31	Top Width (ft)		416.31					
Vel Total (ft/s)	12.28	Avg. Vel. (ft/s)		12.28					
Max Chl Dpth (ft)	5.68	Hydr. Depth (ft)		5.52					
Conv. Total (cfs)	279793	Conv. (cfs)		279793					
Length Wtd. (ft)	656	Wetted Per. (ft)		419					
Min Ch El (ft)	3495.55	Shear (lb/sq ft)		3.49					
Alpha	1	Stream Power (lb/ft s)		42.82					
Fretn Loss (ft)	6.58	Cum Volume (acre-ft)		69.52					
C & E Loss (ft)	0.01	Cum SA (acres)		12.54					

Plan: Diversion Beas River Bhuntar Reach RS: 4 Profile: 2 Year Flood										
E.G. Elev (ft)		Element	Left OB	Channel	Right OB					
Vel Head (ft)	2.31	Wt. n-Val.		0.038						
W.S. Elev (ft)	3507.87	Reach Len. (ft)	635	656	675					
Crit W.S. (ft)	3507.52	Flow Area (sq ft)		2313.56						
E.G. Slope (ft/ft)	0.009982	Area (sq ft)		2313.56						
Q Total (cfs)	28230	Flow (cfs)		28230						
Top Width (ft)	416.45	Top Width (ft)		416.45						
Vel Total (ft/s)	12.2	Avg. Vel. (ft/s)		12.2						
Max Chl Dpth (ft)	5.71	Hydr. Depth (ft)		5.56						
Conv. Total (cfs)	282555.6	Conv. (cfs)		282555.6						
Length Wtd. (ft)	656	Wetted Per. (ft)		419.15						
Min Ch El (ft)	3502.16	Shear (lb/sq ft)		3.44						
Alpha	1	Stream Power (lb/ft s)		41.97						
Fretn Loss (ft)	6.61	Cum Volume (acre-ft)		104.26						
C & E Loss (ft)	0	Cum SA (acres)		18.81						

Plan: Diversion Beas River Bhuntar Reach RS: 5 Profile: 2 Year Flood								
E.G. Elev (ft)	3516.79	Element	Left OB	Channel	Right OB			
Vel Head (ft)	2.33	Wt. n-Val.		0.038				
W.S. Elev (ft)	3514.46	Reach Len. (ft)	645	656	66			
Crit W.S. (ft)	3514.13	Flow Area (sq ft)		2302.58				
E.G. Slope (ft/ft)	0.010138	Area (sq ft)		2302.58				
Q Total (cfs)	28230	Flow (cfs)		28230				
Top Width (ft)	416.34	Top Width (ft)		416.34				
Vel Total (ft/s)	12.26	Avg. Vel. (ft/s)		12.26				
Max Chl Dpth (ft)	5.69	Hydr. Depth (ft)		5.53				
Conv. Total (cfs)	280376.8	Conv. (cfs)		280376.8				
Length Wtd. (ft)	656	Wetted Per. (ft)		419.03				
Min Ch El (ft)	3508.77	Shear (lb/sq ft)		3.48				
Alpha	1	Stream Power (lb/ft s)		42.64				
Frctn Loss (ft)	6.6	Cum Volume (acre-ft)		139.02				
C & E Loss (ft)	0.01	Cum SA (acres)		25.08				

Plan: Diversion Beas River Bhuntar Reach RS: 6 Profile: 2 Year Flood						
E.G. Elev (ft)	3523.39	Element	Left OB	Channel	Right OB	
Vel Head (ft)	2.31	Wt. n-Val.		0.038		
W.S. Elev (ft)	3521.08	Reach Len. (ft)	670	656	642	
Crit W.S. (ft)	3520.73	Flow Area (sq ft)		2312.95		
E.G. Slope (ft/ft)	0.00999	Area (sq ft)		2312.95		
Q Total (cfs)	28230	Flow (cfs)		28230		
Top Width (ft)	416.44	Top Width (ft)		416.44		
Vel Total (ft/s)	12.21	Avg. Vel. (ft/s)		12.21		
Max Chl Dpth (ft)	5.71	Hydr. Depth (ft)		5.55		
Conv. Total (cfs)	282434.4	Conv. (cfs)		282434.4		
Length Wtd. (ft)	656	Wetted Per. (ft)		419.14		
Min Ch El (ft)	3515.37	Shear (lb/sq ft)		3.44		
Alpha	1	Stream Power (lb/ft s)		42.01		
Frctn Loss (ft)	6.6	Cum Volume (acre-ft)		173.77		
C & E Loss (ft)	0	Cum SA (acres)		31.35		
· · · · · · · · · · · · · · · · · · ·						

•

Plan: D	version Beas	River Bhuntar Reach RS	: 7 Profile: 2	Year Flood	
E.G. Elev (ft)	3530	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.33	Wt. n-Val.		0.038	
W.S. Elev (ft)	3527.67	Reach Len. (ft)	673	656	63
Crit W.S. (ft)	3527.34	Flow Area (sq ft)		2302.99	
E.G. Slope (ft/ft)	0.010132	Area (sq ft)		2302,99	1
Q Total (cfs)	28230	Flow (cfs)		28230	
Top Width (ft)	416.35	Top Width (ft)		416.35	
Vel Total (ft/s)	12.26	Avg. Vel. (ft/s)		12.26	
Max Chl Dpth (ft)		Hydr. Depth (ft)		5.53	
Conv. Total (cfs)	280457.5			280457.5	the local design of the lo
Length Wtd. (ft)	656	Wetted Per. (ft)		419.03	the second s
Min Ch El (ft)		Shear (lb/sq ft)		3.48	
Alpha	1	Stream Power (lb/ft s)		42.61	
Frctn Loss (ft)	6.6			208.53	
C & E Loss (ft)	0.01	Cum SA (acres)		37.62	
				· · · ·	······
Plan: D	iversion Beas	River Bhuntar Reach RS	:8 Profile: 2 Y	ear Flood	
E.G. Elev (ft)	3536.6	Element	Left OB	Channel	Right OB

Plan: D	iversion Beas	River Bhuntar Reach RS	: 8 Profile: 2 Y	ear Flood	_
E.G. Elev (ft)	3536.6	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.31	Wt. n-Val.		0.038	
W.S. Elev (ft)	3534.29	Reach Len. (ft)	647	656	66
Crit W.S. (ft)	3533.94	Flow Area (sq ft)		2312.55	
E.G. Slope (ft/ft)	0.009996	Area (sq ft)		2312.55	
Q Total (cfs)	28230	Flow (cfs)		28230	
Top Width (ft)	416.44	Top Width (ft)		416.44	
Vel Total (ft/s)	12.21	Avg. Vel. (ft/s)		12.21	
Max Chl Dpth (ft)	5.71	Hydr. Depth (ft)		5.55	
Conv. Total (cfs)	282353.6	Conv. (cfs)		282353.6	
Length Wtd. (ft)	656	Wetted Per. (ft)	*	419.13	
Min Ch El (ft)	3528.58	Shear (lb/sq ft)		3.44	
Alpha	1	Stream Power (lb/ft s)		·42.03	
Frctn Loss (ft)	6.6	Cum Volume (acre-ft)		243.28	
C & E Loss (ft)	0	Cum SA (acres)		43.9	

Alpha	1	Stream Power (lb/ft s)		·42.03	
Frctn Loss (ft)	6.6	Cum Volume (acre-ft)		243.28	
C & E Loss (ft)	0	Cum SA (acres)		43.9	
		· · ·	·		.
Plan: Div	version Beas	River Bhuntar Reach RS: 9	Profile: 2 Y	lear Flood	
E.G. Elev (ft)		Element	Left OB	Channel	Right OB
Vel Head (ft)	2.33	Wt. n-Val.	`	0.038	
W.S. Elev (ft)	3540.88	Reach Len. (ft)	637	656	675
Crit W.S. (ft)	3540.55	Flow Area (sq ft)		2303.3	
E.G. Slope (ft/ft)	0.010127	Area (sq ft)		2303.3	
Q Total (cfs)	28230	Flow (cfs)		28230	
Top Width (ft)	416.35	Top Width (ft)		416.35	
Vel Total (ft/s)	12.26	Avg. Vel. (ft/s)		12.26	
Max Chl Dpth (ft)	5.69	Hydr. Depth (ft)		5.53	
Conv. Total (cfs)	280517.9	Conv. (cfs)		280517.9	
Length Wtd. (ft)	656	Wetted Per. (ft)		419.04	
Min Ch El (ft)	3535.19	Shear (lb/sq ft)		3.48	
Alpha	1	Stream Power (lb/ft s)		42.59	
Frctn Loss (ft)	6.6	Cum Volume (acre-ft)		278.04	
C & E Loss (ft)	0.01	Cum SA (acres)		50.17	

Plan: Diversion Beas River Bhuntar Reach RS: 10 Profile: 2 Year Flood						
E.G. Elev (ft)	3546.51	Element	Left OB	Channel	Right OB	
Vel Head (ft)	2.32	Wt. n-Val.		0.038		
W.S. Elev (ft)	3544.2	Reach Len. (ft)	323	328	333	
Crit W.S. (ft)		Flow Area (sq ft)		2311.94		
E.G. Slope (ft/ft)	0.010005	Area (sq ft)		2311.94		
Q Total (cfs)	28230	Flow (cfs)		28230		
Top Width (ft)	416.43	Top Width (ft)		416.43		
Vel Total (ft/s)	12.21	Avg. Vel. (ft/s)		12.21		
Max Chl Dpth (ft)	5.71	Hydr. Depth (ft)		5.55		
Conv. Total (cfs)	282232.4	Conv. (cfs)		282232.4		
Length Wtd. (ft)	328	Wetted Per. (ft)		419.13		
Min Ch El (ft)	3538.49	Shear (lb/sq ft)		• 3.45	· · · · · · · · · · · · · · · · · · ·	
Alpha	1	Stream Power (lb/ft s)		42.07		
Frctn Loss (ft)	3.3	Cum Volume (acre-ft)		295.42		
C & E Loss (ft)	0	Cum SA (acres)		53.3		

Plan: Diversion Beas River Bhuntar Reach RS: 11 Profile: 2 Year Flood								
E.G. Elev (ft)	3549.33	Element	Left OB	Channel	Right OB			
Vel Head (ft)	1.9	Wt. n-Val.		0.038				
W.S. Elev (ft)	3547.43	Reach Len. (ft)	328	328	32			
Crit W.S. (ft)		Flow Area (sq ft)		2555.2				
E.G. Slope (ft/ft)	0.007227	Area (sq ft)		2555.2				
Q Total (cfs)	28230	Flow (cfs)		28230				
Top Width (ft)	418.76	Top Width (ft)		418.76				
Vel Total (ft/s)	11.05	Avg. Vel. (ft/s)		11.05				
Max Chl Dpth (ft)	6.29	Hydr. Depth (ft)		6.1				
Conv. Total (cfs)	332067.6	Conv. (cfs)		332067.6				
Length Wtd. (ft)	328	Wetted Per. (ft)		421.73				
Min Ch El (ft)	3541.14	Shear (lb/sq ft)		2.73				
Alpha	1	Stream Power (lb/ft s)		30.2				
Fretn Loss (ft)	2.77	Cum Volume (acre-ft)		313.74				
C & E Loss (ft)	0.04	Cum SA (acres)		56.45				

Plan: Di	version Beas I	River Bhuntar Reach RS: 1	12 Profile: 2	Year Flood	
E.G. Elev (ft)	3556.02	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.63	Wt. n-Val.		0.038	
W.S. Elev (ft)	3553.38	Reach Len. (ft)	656	656	656
Crit W.S. (ft)	3553.38	Flow Area (sq ft)		2168.52	
E.G. Slope (ft/ft)	0.012325	Area (sq ft)		2168.52	
Q Total (cfs)	28230	Flow (cfs)		28230	
Top Width (ft)	415.05	Top Width (ft)		415.05	
Vel Total (ft/s)	13.02	Avg. Vel. (ft/s)		13.02	
Max Chl Dpth (ft)	5.36	Hydr. Depth (ft)		5.22	
Conv. Total (cfs)	254284.3	Conv. (cfs)		254284.3	
Length Wtd. (ft)	656	Wetted Per. (ft)	•	417.59	
Min Ch El (ft)	3548.02	Shear (lb/sq ft)		4	
Alpha	1	Stream Power (lb/ft s)		52.02	,
Frctn Loss (ft)	6.08	Cum Volume (acre-ft)		349.31	
C & E Loss (ft)	0.22	Cum SA (acres)		62.72	

Plan: Di	version Beas H	liver Bhuntar Reach RS: 1	3 Profile: 2	Year Flood	
E.G. Elev (ft)	3563.54	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.4	Wt. n-Val.		0.038	
W.S. Elev (ft)	3561.14	Reach Len. (ft)	656	656	656
Crit W.S. (ft)	3560.89	Flow Area (sq ft)		2268.85	
E.G. Slope (ft/ft)	0.010637	Area (sq ft)		2268.85	
Q Total (cfs)	28230	Flow (cfs)		28230	
Fop Width (ft)	416.02	Top Width (ft)	-	416.02	
Vel Total (ft/s)	12.44	Avg. Vel. (ft/s)		12.44	
Max Chl Dpth (ft)	5.6	Hydr. Depth (ft)		5.45	
Conv. Total (cfs)	273722.3	Conv. (cfs)		273722.3	
Length Wtd. (ft)	656	Wetted Per. (ft)		418.67	
Min Ch El (ft)	3555.53	Shear (lb/sq ft)		3.6	
Alpha	1	Stream Power (lb/ft s)		44.78	
Frctn Loss (ft)	7.5	Cum Volume (acre-ft)		382.72	
C & E Loss (ft)	0.02	Cum SA (acres)		68.98	

E.G. Elev (ft)	3567.65	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.31	Wt. n-Val.		0.038	
W.S. Elev (ft)	3566.35	Reach Len. (ft)	656	656	656
Crit W.S. (ft)		Flow Area (sq ft)		3079.19	
E.G. Slope (ft/ft)	0.003949	Area (sq ft)		3079.19	
Q Total (cfs)	28230	Flow (cfs)		28230	
Top Width (ft)	423.74	Top Width (ft)		423.74	
Vel Total (ft/s)	9.17	Avg. Vel. (ft/s)		· 9.17	,
Max Chl Dpth (ft)	7.53	Hydr. Depth (ft)		7.27	
Conv. Total (cfs)	449213.4	Conv. (cfs)		449213.4	ļ
Length Wtd. (ft)	656	Wetted Per. (ft)		427.3	
Min Ch El (ft)	3558.81	Shear (lb/sq ft)		1.78	
Alpha	1	Stream Power (lb/ft s)		16.29	
Frctn Loss (ft)	4	Cum Volume (acre-ft)		422.99	
C & E Loss (ft)	0.11	Cum SA (acres)		75.31	

Plan: Di	version Beas I	River Bhuntar Reach RS:	15 Profile: 2	Year Flood	
E.G. Elev (ft)	3570.53	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.59	Wt. n-Val.		0.038	the second se
W.S. Elev (ft)	3568.94	Reach Len. (ft)	606.8	606.8	606.8
Crit W.S. (ft)		Flow Area (sq ft)		2789.53	
E.G. Slope (ft/ft)	0.005437	Area (sq ft)		2789.53	
Q Total (cfs)	28230	Flow (cfs)		28230	
Top Width (ft)	421	Top Width (ft)		421	
Vel Total (ft/s)	10.12	Avg. Vel. (ft/s)		10.12	<u>`</u>
Max Chl Dpth (ft)	6.85	Hydr. Depth (ft)		6.63	
Conv. Total (cfs)	382851.4	Conv. (cfs)		382851.4	
Length Wtd. (ft)	606.8	Wetted Per. (ft)		424.23	
Min Ch El (ft)	3562.09	Shear (lb/sq ft)		2.23	
Alpha	1	Stream Power (lb/ft s)		22.59	
Frctn Loss (ft)	2.79	Cum Volume (acre-ft)		463.87	
C&ELoss (ft)	0.09	Cum SA (acres)		81.19	

				·					
Plan: Diversion Beas River Bhuntar Reach RS: 16 Profile: 2 Year Flood									
E.G. Elev (ft)	3576.07	Element	Left OB	Channel	Right OB				
Vel Head (ft)	3	Wt. n-Val.		0.038					
W.S. Elev (ft)	3573.43	Reach Len. (ft)	656	656	656				
Crit W.S. (ft)	3573.43	Flow Area (sq ft)		2168.72					
E.G. Slope (ft/ft)	0.012321	Area (sq ft)		2168.72					
Q Total (cfs)	28230	Flow (cfs)		28230					
Top Width (ft)	415.06	Top Width (ft)		415.06					
Vel Total (ft/s)	13.02	Avg. Vel. (ft/s)		13.02					
Max Chl Dpth (ft)	5.36	Hydr. Depth (ft)		5.23					
Conv. Total (cfs)	254323	Conv. (cfs)		254323					
Length Wtd. (ft)	656	Wetted Per. (ft)		417.59					
Min Ch El (ft)	3568.07	Shear (lb/sq ft)		3.99					
Alpha	1	Stream Power (lb/ft s)		52					
Frctn Loss (ft)	5.15	Cum Volume (acre-ft)		501.2					
C & E Loss (ft)	0.31	Cum SA (acres)		87.48					

E.G. Elev (ft)		River Bhuntar Reach RS	Left OB		Right OB
Vel Head (ft)		Wt. n-Val.		0.038	
W.S. Elev (ft)	3581.66	Reach Len. (ft)	656	656	65
Crit W.S. (ft)	3581.66	Flow Area (sq ft)		2167.2	
E.G. Slope (ft/ft)	0.012349	Area (sq ft)	į	2167.2	
Q Total (cfs)	28230	Flow (cfs)		28230	
Top Width (ft)	415.04	Top Width (ft)		415.04	ļ
Vel Total (ft/s)	13.03	Avg. Vel. (ft/s)		13.03	
Max Chl Dpth (ft)	5.36	Hydr. Depth (ft)		5.22	
Conv. Total (cfs)	254032.7	Conv. (cfs)		254032.7	
Length Wtd. (ft)	656	Wetted Per. (ft)		417.57	
Min Ch El (ft)	3576.3	Shear (lb/sq ft)		4	ļ
Alpha	1	Stream Power (lb/ft s)		52.12	
Frctn Loss (ft)	8.09	Cum Volume (acre-ft)		533.85	
C & E Loss (ft)	0	Cum SA (acres)		93.73	

Plan: Di	version Beas H	River Bhuntar Reach RS:	18 Profile: 2	Year Flood	
E.G. Elev (ft)		Element	Left OB	Channel	Right OB
Vel Head (ft)	1.54	Wt. n-Val.		0.038	
W.S. Elev (ft)	3588.24	Reach Len. (ft)	705.2	705.2	705.2
Crit W.S. (ft)	3586.65	Flow Area (sq ft)		2832.52	
E.G. Slope (ft/ft)	0.005174	Area (sq ft)		2832.52	
Q Total (cfs)	28230	Flow (cfs)		28230	
Top Width (ft)	421.4	Top Width (ft)		421.4	
Vel Total (ft/s)	9.97	Avg. Vel. (ft/s)		9.97	
Max Chl Dpth (ft)	6.95	Hydr. Depth (ft)		6.72	
Conv. Total (cfs)	392452.6	Conv. (cfs)		392452.6	
Length Wtd. (ft)	705.2	Wetted Per. (ft)		424.69	
Min Ch El (ft)	3581.29	Shear (lb/sq ft)		2.15	
Alpha	1	Stream Power (lb/ft s)		21.47	and the second distance of the second distanc
Frctn Loss (ft)	5.38	Cum Volume (acre-ft)		574.32	
C & E Loss (ft)	0.11	Cum SA (acres)		100.51	

Plan: Div	version Beas l	River Bhuntar Reach RS	S: 19 Profile: 2	Year Flood	
E.G. Elev (ft)	3596.18	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.63	Wt. n-Val.		0.038	
W.S. Elev (ft)	3593.54	Reach Len. (ft)	656	656	65
Crit W.S. (ft)	3593.54	Flow Area (sq ft)		2168.62	
E.G. Slope (ft/ft)	0.012323	Area (sq ft)		2168.62	
Q Total (cfs)	28230	Flow (cfs)		28230	
Top Width (ft)	415.05	Top Width (ft)		415.05	
Vel Total (ft/s)	13.02	Avg. Vel. (ft/s)		13.02	· · · · · · · · · · · · · · · · · · ·
Max Chl Dpth (ft)	5.36	Hydr. Depth (ft)		5.22	
Conv. Total (cfs)	254303.6	Conv. (cfs)		254303.6	
Length Wtd. (ft)	656	Wetted Per. (ft)		417.59	
Min Ch El (ft)	3588.18	Shear (lb/sq ft)		4	
Alpha	1	Stream Power (lb/ft s)		52.01	
Frctn Loss (ft)	5	Cum Volume (acre-ft)		611.98	
C & E Loss (ft)	0.33	Cum SA (acres)		106.8	

Plan: Di	version Beas	River Bhuntar Reach RS: 2	0 Profile: 2	Year Flood	
E.G. Elev (ft)	3599.68	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.18	Wt. n-Val.		0.038	-
W.S. Elev (ft)	3597.49	Reach Len. (ft)	328	328	328
Crit W.S. (ft)	3596.98	Flow Area (sq ft)		2379.9	
E.G. Slope (ft/ft)	0.009105	Area (sq ft)		2379.9	
Q Total (cfs)	28230	Flow (cfs)	1	28230	
Top Width (ft)	417.09	Top Width (ft)		417.09	[
Vel Total (ft/s)	11.86	Avg. Vel. (ft/s)		11.86	
Max Chl Dpth (ft)	5.87	Hydr. Depth (ft)		5.71	
Conv. Total (cfs)	295853.1	Conv. (cfs)		295853.1	
Length Wtd. (ft)	328	Wetted Per. (ft)		419.86	
Min Ch El (ft)	3591.62	Shear (lb/sq ft)		3.22	
Alpha	1	Stream Power (lb/ft s)		38.22	
Frctn Loss (ft)	3.45	Cum Volume (acre-ft)		629.11	
C & E Loss (ft)	0.04	Cum SA (acres)		109.94	•

$C \propto E Loss (II)$	0.04	Cum SA (acres)		109.94	
Plan: Div	version Reas	liver Bhuntar Reach RS:	1 Profiles 5(0 Voor Flood	
E.G. Elev (ft)		Element	Left OB	Channel	Right OF
Vel Head (ft)		Wt. n-Val.		0.038	
W.S. Elev (ft)		Reach Len. (ft)		0.030	
Crit W.S. (ft)		Flow Area (sq ft)		7320.73	<u></u>
E.G. Slope (ft/ft)	ويستار ببنياري فيشتر التصريب التجاري والمتراج المتراجع المتك	Area (sq ft)		7320.73	+
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.05	Top Width (ft)		462.05	
Vel Total (ft/s)	22.65	Avg. Vel. (ft/s)		22.65	
Max Chl Dpth (ft)	17.11	Hydr. Depth (ft)		15.84	
Conv. Total (cfs)	1785088	Conv. (cfs)		1785088	
Length Wtd. (ft)		Wetted Per. (ft)		470.13	
Min Ch El (ft)	3482.34	Shear (lb/sq ft)		8.39	
Alpha	1	Stream Power (lb/ft s)		190.11	
Frctn Loss (ft)		Cum Volume (acre-ft)			
C & E Loss (ft)		Cum SA (acres)			

Plan: Div	ersion Beas R	iver Bhuntar Reach RS: 2	Profile: 500	Year Flood	
E.G. Elev (ft)		Element		Channel	Right OB
Vel Head (ft)	7.97	Wt. n-Val.		0.038	
W.S. Elev (ft)	3506.06	Reach Len. (ft)	665	656	645
Crit W.S. (ft)	3506.06	Flow Area (sq ft)		7320.16	
E.G. Slope (ft/ft)	0.008634	Area (sq ft)		7320.16	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.04	Top Width (ft)		462.04	
Vel Total (ft/s)	22.66	Avg. Vel. (ft/s)		22.66	
Max Chl Dpth (ft)	17.11	Hydr. Depth (ft)		15.84	
Conv. Total (cfs)	1784872	Conv. (cfs)		1784872	
Length Wtd. (ft)	656	Wetted Per. (ft)		470.12	
Min Ch El (ft)	3488.95	Shear (lb/sq ft)		8.39	
Alpha	1	Stream Power (lb/ft s)		190.16	
Frctn Loss (ft)	5.66	Cum Volume (acre-ft)		110.24	·]
C & E Loss (ft)	0	Cum SA (acres)		6.96	<u> </u>

Plan: Dive	rsion Beas R	iver Bhuntar Reach RS: 3	Profile: 500	Year Flood	
E.G. Elev (ft)		Element	Left OB	Channel	Right OB
Vel Head (ft)	7.96	Wt. n-Val.		0.038	
W.S. Elev (ft)	3512.67	Reach Len. (ft)	675	656	63
Crit W.S. (ft)	3512.67	Flow Area (sq ft)		7323.55	
E.G. Slope (ft/ft)	0.008622	Area (sq ft)		7323.55	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.07	Top Width (ft)		462.07	
Vel Total (ft/s)	22.65	Avg. Vel. (ft/s)	· .	22.65	
Max Chl Dpth (ft)	17.12	Hydr. Depth (ft)		15.85	
Conv. Total (cfs)	1786164	Conv. (cfs)		1786164	
Length Wtd. (ft)	656	Wetted Per. (ft)		470.15	L
Min Ch El (ft)	3495.55	Shear (lb/sq ft)		8.38	
Alpha	1	Stream Power (lb/ft s)		189.87	
Frctn Loss (ft)	5.66	Cum Volume (acre-ft)	<u> </u>	220.51	<u> </u>
C & E Loss (ft)	0	Cum SA (acres)		13.92	

C & E Loss (ft)	0	Cum SA (acres)		13.72	L
Plan: Div	omion Boos D	iver Bhuntar Reach RS:	4 Profile: 500	Year Flood	
E.G. Elev (ft)	and the second	Element	Left OB	the second s	Right OB
Vel Head (ft)		Wt. n-Val.		0.038	
W.S. Elev (ft)		Reach Len. (ft)	635	656	675
Crit W.S. (ft)	and the second se	Flow Area (sq ft)		7321.63	
E.G. Slope (ft/ft)	and the second	Area (sq ft)		7321.63	
Q Total (cfs)	the second s	Flow (cfs)		165850	
Top Width (ft)	462.05	Top Width (ft)		462.05	
Vel Total (ft/s)	22.65	Avg. Vel. (ft/s)		22.65	ļ
Max Chl Dpth (ft)	17.11	Hydr. Depth (ft)		15.85	
Conv. Total (cfs)	1785432	Conv. (cfs)		1785432	
Length Wtd. (ft)	656	Wetted Per. (ft)		470.13	
Min Ch El (ft)	3502.16	Shear (lb/sq ft)		8.39	
Alpha	1	Stream Power (lb/ft s)		190.03	
Frctn Loss (ft)	5.66	Cum Volume (acre-ft)		330.78	And the second s
C & E Loss (ft)	0	Cum SA (acres)		20.88	

· ·

		· .			
Plan: Di	version Beas R	liver Bhuntar Reach RS:	5 Profile: 500	Year Flood	÷
E.G. Elev (ft)	3533.85	Element	Left OB	Channel	Right OB
Vel Head (ft)	7.97	Wt. n-Val.		0.038	the second s
W.S. Elev (ft)	3525.88	Reach Len. (ft)	645	656	66
Crit W.S. (ft)	3525.88	Flow Area (sq ft)	1	7320.73	
E.G. Slope (ft/ft)	0.008632	Area (sq ft)		7320.73	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.05	Top Width (ft)		462.05	
Vel Total (ft/s)	22.65	Avg. Vel. (ft/s)		22.65	
Max Chl Dpth (ft)		Hydr. Depth (ft)		15.84	
Conv. Total (cfs)	1785087			1785087	
Length Wtd. (ft)	656	Wetted Per. (ft)		470.13	
Min Ch El (ft)	3508.77	Shear (lb/sq ft)		8.39	
Alpha	1	Stream Power (lb/ft s)		190.11	
Frctn Loss (ft)	5.66	Cum Volume (acre-ft)		441.04	
C & E Loss (ft)		Cum SA (acres)		27.83	

Plan: Div		liver Bhuntar Reach RS: 6			DULOD
E.G. Elev (ft)		Element	Left OB	Channel	Right OB
Vel Head (ft)	7.97	Wt. n-Val.		0.038	
W.S. Elev (ft)	3532.48	Reach Len. (ft)	670	656	64
Crit W.S. (ft)	3532.48	Flow Area (sq ft)		7320.17	
E.G. Slope (ft/ft)	0.008634	Area (sq ft)		7320.17	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.04	Top Width (ft)		462.04	
Vel Total (ft/s)	22.66	Avg. Vel. (ft/s)		22.66	
Max Chl Dpth (ft)	17.11	Hydr. Depth (ft)		15.84	
Conv. Total (cfs)	1784873	Conv. (cfs)		1784873	
Length Wtd. (ft)	656	Wetted Per. (ft)		470.12	
Min Ch El (ft)	3515.37	Shear (lb/sq ft)		8.39	
Alpha	1	Stream Power (lb/ft s)		190.16	
Frctn Loss (ft)	5.66	Cum Volume (acre-ft)		551.28	
C & E Loss (ft)	0	Cum SA (acres)		34.79	

Plan: Diversion Beas River Bhuntar Reach RS: 7 Profile: 500 Year Flood								
E.G. Elev (ft)	3547.06	Element	Left OB	Channel	Right OB			
Vel Head (ft)	7.96	Wt. n-Val.		0.038				
W.S. Elev (ft)	3539.1	Reach Len. (ft)	673	656	635			
Crit W.S. (ft)	3539.1	Flow Area (sq ft)		7323.55				
E.G. Slope (ft/ft)	0.008622	Area (sq ft)		7323.55				
Q Total (cfs)	165850	Flow (cfs)		165850				
Top Width (ft)	462.07	Top Width (ft)		462.07				
Vel Total (ft/s)	22.65	Avg. Vel. (ft/s)		22.65				
Max Chl Dpth (ft)	17.12	Hydr. Depth (ft)		15.85				
Conv. Total (cfs)	1786164	Conv. (cfs)		1786164				
Length Wtd. (ft)	656	Wetted Per. (ft)		470.15				
Min Ch El (ft)	3521.98	Shear (lb/sq ft)		8.38				
Alpha	1	Stream Power (lb/ft s)		189.87				
Frctn Loss (ft)	5.66	Cum Volume (acre-ft)		661.55				
C & E Loss (ft)	0	Cum SA (acres)		41.75				

Plan: Dive	rsion Beas R	iver Bhuntar Reach RS: 8	Profile: 500	Year Flood	
E.G. Elev (ft)	3553.66	Element	Left OB	Channel	Right OB
Vel Head (ft)	7.97	Wt. n-Val.		0.038	
W.S. Elev (ft)	3545.69	Reach Len. (ft)	647	656	665
Crit W.S. (ft)	3545.69	Flow Area (sq ft)		7321.63	
E.G. Slope (ft/ft)	0.008629	Area (sq ft)		7321.63	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.05	Top Width (ft)		462.05	
Vel Total (ft/s)	22.65	Avg. Vel. (ft/s)		22.65	
Max Chl Dpth (ft)	17.11	Hydr. Depth (ft)		15.85	
Conv. Total (cfs)	1785433	Conv. (cfs)		1785433	
Length Wtd. (ft)	656	Wetted Per. (ft)		470.13	
Min Ch El (ft)	3528.58	Shear (lb/sq ft)		8.39	
Alpha	1	Stream Power (lb/ft s)		190.03	
Frctn Loss (ft)	5.66	Cum Volume (acre-ft)		771.82	
C & E Loss (ft)	0	Cum SA (acres)		48.71	

Plan: Diver E.G. Elcv (ft)	3560.27	iver Bhuntar Reach RS: 9 Element	Profile: 500 Left OB	Channel	Right OB
Vel Head (ft)	7.97	Wt. n-Val.		0.038	
W.S. Elev (ft)	3552.3	Reach Len. (ft)	637	656	67
Crit W.S. (ft)	3552.3	Flow Area (sq ft)		7320.73	
E.G. Slope (ft/ft)	0.008632	Area (sq ft)	·	7320.73	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.05	Top Width (ft)		462.05	·
Vel Total (ft/s)	22.65	Avg. Vel. (ft/s)		22.65	
Max Chl Dpth (ft)	17.11	Hydr. Depth (ft)		15.84	
Conv. Total (cfs)	1785087	Conv. (cfs)		1785087	
Length Wtd. (ft)	656	Wetted Per. (ft)		470.13	<u> </u>
Min Ch El (ft)	3535.19	Shear (lb/sq ft)		8.39	
Alpha	1	Stream Power (lb/ft s)		190.11	
Frctn Loss (ft)	5.66	Cum Volume (acre-ft)		882.08	
C & E Loss (ft)	0	Cum SA (acres)		55.67	1

Plan: Dive	rsion Beas R	ver Bhuntar Reach RS:	10 Profile: 500	Year Flood	
E.G. Elev (ft)	the second s	Element	Left OB	Channel	Right OB
Vel Head (ft)	7.97	Wt. n-Val.		0.038	
W.S. Elev (ft)	3555.6	Reach Len. (ft)	323	328	333
Crit W.S. (ft)	3555.6	Flow Area (sq ft)		7320.16	
E.G. Slope (ft/ft)	0.008634	Area (sq ft)		7320.16	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.04	Top Width (ft)		462.04	
Vel Total (ft/s)	22.66	Avg. Vel. (ft/s)		22.66	
Max Chl Dpth (ft)	17.11	Hydr. Depth (ft)		15.84	
Conv. Total (cfs)	1784872	Conv. (cfs)		1784872	
Length Wtd. (ft)	328	Wetted Per. (ft)		470.12	
Min Ch El (ft)	3538.49	Shear (lb/sq ft)		8.39	<u></u> .
Alpha	1	Stream Power (lb/ft s)		190.16	
Frctn Loss (ft)	2.83	Cum Volume (acre-ft)		937.2	
C & E Loss (ft)	0	Cum SA (acres)		59.15	

Plan: Diversi	on Beas R	iver Bhuntar Reach RS: 11	Profile: 500	Year Flood	
E.G. Elev (ft)		Element	Left OB		Right OB
Vel Head (ft)	7.24	Wt. n-Val.		0.038	
W.S. Elev (ft)	3559.02	Reach Len. (ft)	328	328	32
Crit W.S. (ft)	3558.26	Flow Area (sq ft)		7678.6	
E.G. Slope (ft/ft)	0.007435	Area (sq ft)		7678.6	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	465.13	Top Width (ft)		465.13	
Vel Total (ft/s)	21.6	Avg. Vel. (ft/s)		21.6	
Max Chl Dpth (ft)	17.88	Hydr. Depth (ft)		16.51	
Conv. Total (cfs)	1923481	Conv. (cfs)		1923481	
Length Wtd. (ft)	328	Wetted Per. (ft)		473.58	
Min Ch El (ft)	3541.14	Shear (lb/sq ft)		7.53	
Alpha	1	Stream Power (lb/ft s)		162.54	
Frctn Loss (ft)	2.62	Cum Volume (acre-ft)		993.67	
C & E Loss (ft)	0.07	Cum SA (acres)		62.64	

Plan: Dive	ersion Beas R	iver Bhuntar Reach RS:	12 Profile: 500	Year Flood	
E.G. Elev (ft)	3573.1	Element	Left OB	Channel	Right Ol
Vel Head (ft)	7.97	Wt. n-Val.		0.038	
W.S. Elev (ft)	3565.13	Reach Len. (ft)	656	656	
Crit W.S. (ft)	3565.13	Flow Area (sq ft)		7321.63	
E.G. Slope (ft/ft)	0.008629	Area (sq ft)		7321.63	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.05	Top Width (ft)		462.05	
Vel Total (ft/s)	22.65	Avg. Vel. (ft/s)		22.65	
Max Chl Dpth (ft)	17.11	Hydr. Depth (ft)		15.85	
Conv. Total (cfs)	1785432	Conv. (cfs)		1785432	
Length Wtd. (ft)	656	Wetted Per. (ft)		470.13	
Min Ch El (ft)	3548.02	Shear (lb/sq ft)		8.39	
Alpha	1	Stream Power (lb/ft s)		190.03	
Frctn Loss (ft)	5.25	Cum Volume (acre-ft)		1106.62	
C & E Loss (ft)	0.22	Cum SA (acres)		69.62	

Plan: Dive		ver Bhuntar Reach RS: 13	The second second second	rear Flood	
E.G. Elev (ft)	3580.61	Element	Left OB	Channel	Right OB
Vel Head (ft)	7.97	Wt. n-Val.		0.038	
W.S. Elev (ft)	3572.64	Reach Len. (ft)	656	656	656
Crit W.S. (ft)	3572.64	Flow Area (sq ft)		7320.73	
E.G. Slope (ft/ft)	0.008632	Area (sq ft)		7320.73	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.05	Top Width (ft)		462.05	
Vel Total (ft/s)	22.65	Avg. Vel. (ft/s)		22.65	
Max Chl Dpth (ft)	17.11	Hydr. Depth (ft)		15.84	
Conv. Total (cfs)	1785087	Conv. (cfs)		1785087	
Length Wtd. (ft)	656	Wetted Per. (ft)		470.13	
Min Ch El (ft)	3555.53	Shear (lb/sq ft)		8.39	
Alpha	1	Stream Power (lb/ft s)		190.11	
Frctn Loss (ft)	5.66	Cum Volume (acre-ft)		1216.87	
C & E Loss (ft)	0	Cum SA (acres)		76.58	

Plan: Diver	sion Beas Ri	ver Bhuntar Reach RS: 14	Profile: 500	Year Flood	
E.G. Elev (ft)	3584.84	Element	Left OB	Channel	Right OB
Vel Head (ft)	5.2	Wt. n-Val.		0.038	
W.S. Elev (ft)	3579.64	Reach Len. (ft)	656	656	656
Crit W.S. (ft)	3575.92	Flow Area (sq ft)		9065.7	
E.G. Slope (ft/ft)	0.004433	Area (sq ft)		9065.7	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	476.91	Top Width (ft)		476.91	
Vel Total (ft/s)	18.29	Avg. Vel. (ft/s)		18.29	
Max Chl Dpth (ft)	20.83	Hydr. Depth (ft)		19.01	
Conv. Total (cfs)	2490830	Conv. (cfs)		2490830	
Length Wtd. (ft)	656	Wetted Per. (ft)		486.75	
Min Ch El (ft)	3558.81	Shear (lb/sq ft)		5.16	
Alpha	1	Stream Power (lb/ft s)		94.31	L
Frctn Loss (ft)	. 3.95	Cum Volume (acre-ft)		1340.26	
C & E Loss (ft)	0.28	Cum SA (acres)		83.65	

Plan: Diver E.G. Elev (ft)		ver Bhuntar Reach RS: 15 Element	Left OB		Right OB
Vel Head (ft)		Wt. n-Val.		0.038	
W.S. Elev (ft)	3582.2	Reach Len. (ft)	606.8	606.8	606.
Crit W.S. (ft)		Flow Area (sq ft)		8724.64	
E.G. Slope (ft/ft)	0.004994	Area (sq ft)		8724.64	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	474.05	Top Width (ft)		474.05	
Vel Total (ft/s)	19.01	Avg. Vel. (ft/s)		19.01	
Max Chl Dpth (ft)	20.11	Hydr. Depth (ft)		18.4	
Conv. Total (cfs)	2346943	Conv. (cfs)		2346943	
Length Wtd. (ft)	606.8	Wetted Per. (ft)		483.54	
Min Ch El (ft)	3562.09	Shear (lb/sq ft)		5.63	
Alpha	1	Stream Power (lb/ft s)		106.93	
Frctn Loss (ft)	2.85	Cum Volume (acre-ft)		1464.17	L
C & E Loss (ft)	0.12	Cum SA (acres)		90.27	1

<u> </u>					
Plan: Div	ersion Beas Ri	ver Bhuntar Reach RS: 10	S Profile: 500) Year Flood	
E.G. Elev (ft)	and the second se	Element	Left OB	Channel	Right OB
Vel Head (ft)	7.97	Wt. n-Val.		0.038	
W.S. Elev (ft)	3585.18	Reach Len. (ft)	656	656	650
Crit W.S. (ft)	3585.18	Flow Area (sq ft)		7318.25	
E.G. Slope (ft/ft)	0.008641	Area (sq ft)		7318.25	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.03	Top Width (ft)		462.03	
Vel Total (ft/s)	22.66	Avg. Vel. (ft/s)		22.66	
Max Chl Dpth (ft)	17.11	Hydr. Depth (ft)		15.84	
Conv. Total (cfs)	1784140	Conv. (cfs)		1784140	
Length Wtd. (ft)	656	Wetted Per. (ft)		470.1	
Min Ch El (ft)	3568.07	Shear (lb/sq ft)		8.4	
Alpha	1	Stream Power (lb/ft s)		190.32	
Fretn Loss (ft)	4.23	Cum Volume (acre-ft)		1584.97	
C & E Loss (ft)	0.71	Cum SA (acres)		97.32	

Plan: Div	ersion Beas R	iver Bhuntar Reach RS: 17	Profile: 500	Year Flood	
E.G. Elev (ft)	and the second secon	Element	Left OB	and a second	Right OB
Vel Head (ft)	7.97	Wt. n-Val.		0.038	
W.S. Elev (ft)	3593.41	Reach Len. (ft)	656	656	656
Crit W.S. (ft)	3593.41	Flow Area (sq ft)		7321.85	
E.G. Slope (ft/ft)	0.008628	Area (sq ft)		7321.85	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.06	Top Width (ft)		462.06	
Vel Total (ft/s)	22.65	Avg. Vel. (ft/s)		22.65	
Max Chl Dpth (ft)	17.11	Hydr. Depth (ft)		15.85	
Conv. Total (cfs)	1785518	Conv. (cfs)		1785518	
Length Wtd. (ft)	656	Wetted Per. (ft)		470.14	
Min Ch El (ft)	3576.3	Shear (lb/sq ft)		8.39	
Alpha	1	Stream Power (lb/ft s)		190.01	
Frctn Loss (ft)	5.66	Cum Volume (acre-ft)		1695.21	
C & E Loss (ft)	0	Cum SA (acres)		104.28	

C & E Loss (ft)	2 E Loss (ft) 0 Cum SA (acres) 104.28				
Plan: Diver	sion Beas Ri	ver Bhuntar Reach RS: 18	Profile: 500	Year Flood	
E.G. Elev (ft)	3606.63	Element	Left OB	Channel	Right OB
Vel Head (ft)	6.4	Wt. n-Val.		0.038	-
W.S. Elev (ft)	3600.23	Reach Len. (ft)	705.2	705.2	705.2
Crit W.S. (ft)	3598.4	Flow Area (sq ft)		8172.2	
E.G. Slope (ft/ft)	0.006121	Area (sq ft)		8172.2	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	469.36	Top Width (ft)		469.36	
Vel Total (ft/s)	20.29	Avg. Vel. (ft/s)		20.29	
Max Chl Dpth (ft)	18.94	Hydr. Depth (ft)		17.41	
Conv. Total (cfs)	2119867	Conv. (cfs)		2119867	
Length Wtd. (ft)	705.2	Wetted Per. (ft)		478.3	
Min Ch El (ft)	3581.29	Shear (lb/sq ft)		6.53	
Alpha	1	Stream Power (lb/ft s)		132.5	
Frctn Loss (ft)	5.09	Cum Volume (acre-ft)		1820.63	
C & E Loss (ft)	0.16	Cum SA (acres)		111.82	
	· .				
Plan: Diver	rsion Beas R	iver Bhuntar Reach RS: 19	Profile: 500) Year Flood	
E.G. Elev (ft)	3613.26	Element	Left OB	Channel	Right OB
	1 206			6.020	

E.G. Elev (ft)		iver Bhuntar Reach RS: 19 Element	Left OB	Channel	Right OB
Vel Head (ft)		Wt. n-Val.	1	0.038	
W.S. Elev (ft)		Reach Len. (ft)	656	656	6.
Crit W.S. (ft)		Flow Area (sq ft)		7323.88	
E.G. Slope (ft/ft)	0.00862	Area (sq ft)		7323.88	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.07	Top Width (ft)		462.07	
Vel Total (ft/s)	22.65	Avg. Vel. (ft/s)		22.65	
Max Chl Dpth (ft)	17.12	Hydr. Depth (ft)		15.85	
Conv. Total (cfs)	1786294	Conv. (cfs)		1786294	
Length Wtd. (ft)	656	Wetted Per. (ft)		470.16	
Min Ch El (ft)	3588.18	Shear (lb/sq ft)		8.38	
Alpha	1	Stream Power (lb/ft s)		189.84	
Frctn Loss (ft)	4.73	Cum Volume (acre-ft)		1937.31	
C & E Loss (ft)	0.47	Cum SA (acres)		118.83	

Plan: Div	ersion Beas R	iver Bhuntar Reach RS: 20	Profile: 500	Year Flood	
E.G. Elev (ft)	3616.7	Element	Left OB	Channel	Right OB
Vel Head (ft)	7.98	Wt. n-Val.		0.038	
W.S. Elev (ft)	3608.73	Reach Len. (ft)	328	328	328
Crit W.S. (ft)	3608.73	Flow Area (sq ft)		7317.57	
E.G. Slope (ft/ft)	0.008644	Area (sq ft)		7317.57	
Q Total (cfs)	165850	Flow (cfs)		165850	
Top Width (ft)	462.02	Top Width (ft)		462.02	
Vel Total (ft/s)	22.66	Avg. Vel. (ft/s)		22.66	
Max Chl Dpth (ft)	17.1	Hydr. Depth (ft)		15.84	
Conv. Total (cfs)	1783882	Conv. (cfs)		1783882	
Length Wtd. (ft)	328	Wetted Per. (ft)	_	470.1	
Min Ch El (ft)	3591.62	Shear (lb/sq ft)		8.4	
Alpha	1	Stream Power (lb/ft s)		190.38	· .
Frctn Loss (ft)	2.83	Cum Volume (acre-ft)		1992.44	
C & E Loss (ft)	0	Cum SA (acres)		122.31	

. . .

APPENDIX-10, INPUT DATA FOR HEC-6 FOR SIMULATION OF BEAS RIVER WITH DIKES AND DIVERSION CHANNEL FOR 2 YEAR AND 500 YEAR FLOODS (MOBILE BED APPLICATION)

.

TI MC	BILE BED A TH A RATIN	PPLICATION	IN RIVER	WITH DIK	ES AND D	IVERSION	CHANNEL.	
TJ SI	MULATION O	F BEAS RIV	ER FOR 2 Y	EAR AND	500 YEAR	RETURN I	PERIOD FLOODS	
NC .045	.045	.038	.1 .3				.0.	
X1 1.0	4.	0. 478.	88 0.	0.	0.	0.	.0 .	0.
GR3503./	0.00 348	2.34 42.	64 3482.34	436.24	3503.66	478.88		
$x_1 20$	10.	0. 478.	88 565 NA	645 00	666 00	•	0	•
GR3510.3	0.00 348	8.95 42.	64 3488.95	436.24	3510 27	478 98	U .	0.
HD 2.0	10.	0. 478.	88	100121	5510127	470.00	0.	
X1 3.0	4.	0. 478.	88 675.00	635.00	656.00	0.	0.	0.
GR3516.9	0.00 349	5.55 42	64 3495 55	136 31	2516 07	170 00		
HD 3.0	10.	0. 478.	88 .				0.	
X1 4.0	4.	0. 478.	88 635.00	675.00	656.00	0.	Ο.	ο.
GR3523.5	0.00 350	2.16 42.	64 3502.16	436.24	3523.48	478.88		
HD 4.0	10.	0. 478.	88					
XT 2.0	4.	0. 4/8.	88 645.00	665.00	656.00	0.	0.	Ο.
GR3530.1	0.00 350	8.// 42.	64 3508.77	436.24	3530.09	478.88		
X1 6.0	4	0. 478.	88 670 00	642 00	656 00	•	Ο.	~
GR3536.7	0.00 351	5.37 42.	68 870.00 64 3515 37	436 24	3536 60	U. 170 00	υ.	0.
HD 6.0	10.	0. 478.	88					
X1 7.0	4.	0. 478.	88 673.00	635.00	656.00	0.	o. o.	0
GR3543.3	0.00 352	1.98 42.	64 3521.98	436.24	3543.30	478.88	0.	0.
HD 7.0	10.	0. 478.	88					
X1 8.0	4.	0. 478.	88 647.00	665.00	656.00	0.	0.	ο.
GR3549.9	0.00 352	8.58 42.	64 3528.58	436.24	3549 90	170 00		
HD 8.0	10.	0. 478.	88					
X1 9.0	4.	0. 478.	88 637.00	675.00	656.00	0.	0.	Ο.
GR3556.5	0.00 353	5.19 42.	64 3535.19	436.24	3556.51	478.88	0.	
ED 9.0	111.	0 4/8	XX					
AI 10.0	4.	0. 4/8.	88 323.00	333.00	328.00	0.	0.	0.
HD 10.0	10.	0.45 42.	64 3336.49 88	430.24	3229.81	4/8.88	o. o.	
X1 11.0	4.	0. 478.	88 328.00	328 00	328 00	٥	0	0.
GR3562.5	0.00 354	1.14 42.	64 3541.14	436.24	3562.46	478.88	0.	0.
HD 11.0	10.	. 0. 478.	88					
X1 12.0	4.	0. 478.	88 656.00	656.00	656.00	0.	0.	0.
GR3569.3	0.00 354	8.02 42.	64 3548.02	436.24	3569.34	478.88		•••
HD 12.0	10.	0. 478.	88					
X1 13.0	4.	0. 478.	88 656.00	656.00	656.00	0.	0.	ο.
	0.00 355			436.24	3576.85	478.88		
HD 13.0	10.	0. 478.				_		•
X1 14.0 GR3580.1	4. 0.00 355	0. 478.	88 656.00	656.00	656.00	0.	0.	0.
HD 14.0	10.	0. 478.	64 3558.81	436.24	3580.13	478.88		
X1 15.0	4.		88 606.80	606 00	606 00	^	^	^
GR3583.4	0.00 356		64 3562.09	436 24	3583 /1	170 00	0.	0.
HD 15.0	10.		88	100121	5505.41	470.00		
X1 16.0			88 656.00	656.00	656.00	٥.	0.	ο.
GR3589.4	0.00 356	8.07 42.	64 3568.07	436.24	3589.39	478.88	••	~ •
HD 16.0	10.	0. 478.	88					
X1 17.0		0. 478.	88 656.00	656.00	656.00	Ο.	ο.	0.
GR3597 .6	0.00 357	6.30 42.	64 3576.30	436.24	3597.62	478.88		
HD 17.0		0. 478.						
X1 18.0	4.	0. 478.	88 705.20	705.20	705.20		0.	0.
GR3602.6 HD 18.0			64 3581.29	436.24	3602.61	478.88		
HD 18.0	10.	0. 478.						

.

0.478.88656.00656.000.3.1842.643588.18436.243609.50478.88 0. 0. X1 19.0 4. 0. 0.00 3588.18 GR3609.5 HD 19.0 10. 0. 478.88 X1 20.0 0. 478.88 328.00 328.00 328.00 0. 0. 0. 4. 0.00 3591.62 42.64 3591.62 436.24 3612.94 478.88 GR3612.9 HD 20.0 10. 0. 478.88 EJ BEAS RIVER FROM CHAINAGE 0+000 TO 3+600 ALONG DIVERSION CHANNEL. т4 т5 LOAD CURVE FROM GAGE DATA. BED GRADATIONS FROM FIELD SAMPLES. ፐሰ т7 USE FULL RANGE OF SAND, GRAVEL, COBBLE AND BOULDER. SEDIMENT TRANSPORT BY Yang'S STREAM POWER [ref ASCE JOURNAL (YANG 1971)] т8 Τ1 10 12 CLAY 2 .0585 .1170 .264 6.860 93.30 12 1 .1170 .264 6.860 12 2 .0585 93.30 2 4 I3 SILT 4 4 1 .5 15 I4 SAND .5 15 .25 .5 .25 -0 1.0 1000 10000 50000 100000 200000 200 LQ LT TOTAL 780 10200 72500 182000 432000 115 .000 .000 LF CLAY .000 .000 .000 .000 LF SILT .280 .250 .150 .100 .150 .150 .450 .080 .250 .220 \mathbf{LF} VFS .350 .350 .150 .250 .220 .200 .120 .180 \mathbf{LF} FS

 FS
 .150
 .250
 .220
 .200

 MS
 .100
 .080
 .100
 .150

 CS
 .020
 .050
 .080
 .150

 VCS
 .000
 .020
 .060
 .100

 VFG
 .000
 .000
 .030
 .030

 FG
 .000
 .000
 .010
 .020

 MG
 .000
 .000
 .000
 .000

 .130 .150 \mathbf{LF} .120 .180 \mathbf{LF} .120 \mathbf{LF} .100 .050 .100 \mathbf{LF} .040 .060 \mathbf{LF} \mathbf{LF} .010 .030 .000. 000. 000. 000 .010 .000 \mathbf{LF} CG .000 .000 .000 VCG .000.000.000 T.F .000 .000 .000 .000 .000 .000 .000.000.000 .000 \mathbf{LF} SC .000 .000 .000 .000 \mathbf{LF} \mathbf{LC} .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 \mathbf{LF} SB .000 .000 .000 .000 LF .000 MB .000 LF LB .000 .000 PF EXAMP 1.0 1.0 2048.0 1024.0 97.98 512.0 95.48 256.0 92.98 8.0 27.55 13.70 64.0 72.48 32.0 48.55 16.0 PFC128.0 86.98 9.35 2.0 8.01 1.0 7.44 0.5 7.17 0.25 4.29 PFC 4.0 0.062 PFC0.125 1.43 0.75 \$HYD **\$RATING** 0 0 3482.34 3484.85 3486.10 3487.25 3488.00 RC 25 7057.51 RC 3488.80 3489.58 3490.30 3490.96 3491.58 3492.18 3492.80 3493.30 3493.82 RC 3494.36 3494.82 3495.38 3495.80 3496.30 3496.75 3497.20 3497.60 3498.08 RC 3498.50 3498.90 PROFILE 1 = 2 YEAR RETURN PERIOD FLOOD * AB Q 28230. Т 60. W 1. AB PROFILE 2 = 500 YEAR RETURN PERIOD FLOOD * Q165850. т 60. W 1. \$\$END

APPENDIX-11 OUTPUT OF HEC-6 FOR SIMULATION OF BEAS RIVER WITH DIKES AND DIVERSION CHANNEL FOR 2 YEAR AND 500 YEAR FLOODS (MOBILE BED APPLICATION)

 SCOUR AND DEPOSITION IN RIVERS AND RESERVOIRS Version: 4.1.00 - OCTOBER 1993 INPUT FILE: MOBILE1.DAT OUTPUT FILE: MOBILE1.OUT RUN DATE: 31 MAY 04 RUN TIME: 17:03:47 	* * U.S. ARMY CORPS OF ENGINEERS * * * HYDROLOGIC ENGINEERING CENTER * * 609 SECOND STREET * * DAVIS, CALIFORNIA 95646687 * * (916) 756104 *
X X XXXXXXX	XXXXX XXXXX
x x x	X X X X
X X X	X X
XXXXXXX XXXX	
x x x	
x x x	x x x x
x x xxxxxxx	
*************************	******
* MAXIMUM LIMITS FOR THIS VERS	SION ARE: *
 * 10 Stream Segments (Mage) 	in Stem + Tributaries) *
* 500 Cross Sections	*
 200 Elevation/Station F 	Points per Cross Section *
* 20 Grain Sizes	*
* 10 Control Points	*
***************************************	*******
T2 WITH A RATING CURVE AT THE DOWNS	WITH DIKES AND DIVERSION CHANNEL. TREAM BOUNDARY. (EAR AND 500 YEAR RETURN PERIOD FLOODS
N values Left Channel Right (0.0450 0.0380 0.0450	Contraction Expansion 1.1000 0.7000
SECTION NO. 1.000 DEPTH of the Bed Sediment Control Vol	lume = 10.00 ft.
SECTION NO. 2.000 DEPTH of the Bed Sediment Control Vo.	Lume = 10.00 ft.
SECTION NO. 3.000 DEPTH of the Bed Sediment Control Vo	lume = 10.00 ft.
SECTION NO. 4.000 DEPTH of the Bed Sediment Control Vo	lume = 10.00 ft.
SECTION NO. 5.000 DEPTH of the Bed Sediment Control Vo	lume = 10.00 ft.
SECTION NO. 6.000 DEPTH of the Bed Sediment Control Vo	lume = 10.00 ft.
SECTION NO. 7.000 DEPTH of the Bed Sediment Control Vo	lume = 10.00 ft.
SECTION NO. 8.000 DEPTH of the Bed Sediment Control Vo	lume = 10.00 ft.
SECTION NO. 9.000 DEPTH of the Bed Sediment Control Vo	lume = 10.00 ft.

SECTION NO. 10.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 11.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 12.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. 13.000 SECTION NO. ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 14.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. 15.000 SECTION NO. ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 16.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. 17.000 SECTION NO. ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 18.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. SECTION NO. 19.000 ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. 20.000 SECTION NO. ... DEPTH of the Bed Sediment Control Volume = 10.00 ft. NO. OF CROSS SECTIONS IN STREAM SEGMENT= 20 NO. OF INPUT DATA MESSAGES = 0 TOTAL NO. OF CROSS SECTIONS IN THE NETWORK = 20 TOTAL NO. OF STREAM SEGMENTS IN THE NETWORK= 1 END OF GEOMETRIC DATA

T4 BEAS RIVER FROM CHAINAGE 0+000 TO 3+600 ALONG DIVERSION CHANNEL.

- T5 LOAD CURVE FROM GAGE DATA.
- T6 BED GRADATIONS FROM FIELD SAMPLES.
- T7 USE FULL RANGE OF SAND, GRAVEL, COBBLE AND BOULDER.
- T8 SEDIMENT TRANSPORT BY Yang'S STREAM POWER [ref ASCE JOURNAL (YANG 1971)]

MOBILE BED APPLICATION IN RIVER WITH DIKES AND DIVERSION CHANNEL. WITH A RATING CURVE AT THE DOWNSTREAM BOUNDARY. SIMULATION OF BEAS RIVER FOR 2 YEAR AND 500 YEAR RETURN PERIOD FLOODS

CLAY IS PRESENT. MTCL SPGC PUCD UWCL CCCD 12 2 2.650 78.000 30.000 16.000 DEPOSITION COEFFICIENTS BY LAYER DEPOSITION THRESHOLD SHEAR LAYER STRESS NO. 1D/sq.ft ACTIVE LAYER 1 0.0585 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION COEFFICIENTS BY LAYER LAYER STRESS STRESS NO 1D/sq.ft 1D/sq.ft. 1D/sf/hr 1/hr 1/hr ACTIVE LAYER 1 0.1170 0.2640 6.8600 46.6667 93.3000 INACTIVE LAYER 2 0.1170 0.2640 6.8600 46.6667 93.3000 SILT IS PRESENT MTCL IASL LASL SGSL PUSDLB UWSDLE CCSDLB I3 2 4 4 2.650 82.000 65.000 5.700 DEPOSITION COEFFICIENTS BY LAYER DEPOSITION COEFFICIENTS BY LAYER DEPOSITION COEFFICIENTS BY LAYER DEPOSITION COEFFICIENTS BY LAYER DEPOSITION DIJ/sq.ft ACTIVE LAYER 1 0.0200 INNCTIVE LAYER 1 0.0200 EROSION COEFFICIENTS BY LAYER DEFOSITION THRESHOLD SHEAR LAYER STRESS NO. 1D/sq.ft ACTIVE LAYER 1 0.0200 EROSION COEFFICIENTS BY LAYER DEFOSITION COEFFICIENTS BY LAYER DEFOSITION COEFFICIENTS BY LAYER DEFOSITION COEFFICIENTS BY LAYER DEFOSITION THRESHOLD SHEAR LAYER STRESS NO. 1D/sq.ft ACTIVE LAYER 1 0.0200 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION EROS	SPI 11 10.	IBG 0	MNQ 1	SPGF 1.000	ACGR 32.174	NFALL IBSI 2	HER 1
12 2 2.650 78.000 30.000 15.000 DEPOSITION COEFFICIENTS BY LAYER DEPOSITION THRESHOLD SHEAR LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0585 EROSION COEFFICIENTS BY LAYER PARTICLE MASS SHEAR SHEAR SHEAR NO 1b/sq.ft 1b/sq.ft. 1b/sf/hr 1/hr 1/hr ACTIVE LAYER 1 0.1170 0.2640 6.8600 46.6667 93.3000 INACTIVE LAYER 1 0.1170 0.2640 6.8600 46.6667 93.3000 INACTIVE LAYER 2 0.1170 0.2640 6.8600 46.6667 93.3000 INACTIVE LAYER 1 0.1170 0.2640 6.8600 46.6667 93.3000 SILT IS PRESENT MTCL IASL LASL SGSL PUSDLE UWSDLE CCSDLE I3 2 4 4 2.650 82.000 65.000 5.700 DEPOSITION COEFFICIENTS BY LAYER DEPOSITION COEFFICIENTS BY LAYER NO. 1b/sq.ft ACTIVE LAYER 1 0.0200 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE BROSION PARTICLE MASS SHEAR SHEAR RATE BROSION EROSION EROSION EROSION EROSION EROSION LAYER STRESS	CLAY IS PRESI	ENT.		- 			
DEPOSITION THRESHOLD SHEAR LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0585 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION EROSION LAYER STRESS STRESS NO 1b/sq.ft 1b/sq.ft. 1b/sf/hr 1/hr 1/hr ACTIVE LAYER 1 0.1170 0.2640 6.8600 46.6667 93.3000 SILT IS PRESENT MTCL IASL LASL SGSL PUSDLE UNSDLE CCSDLE 13 2 4 4 2.650 82.000 65.000 5.700 DEPOSITION COEFFICIENTS BY LAYER DEPOSITION COEFFICIENTS BY LAYER DEPOSITION COEFFICIENTS BY LAYER LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0200 EROSION COEFFICIENTS BY LAYER DEPOSITION COEFFICIENTS BY LAYER LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0200 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION COEFFICIENTS BY LAYER DEPOSITION COEFFICIENTS BY LAYER DEPOSION EROSION EROSION PARTICLE BROSION EROSION EROSION PARTICLE MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION PARTICLE MASS							
LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0585 INACTIVE LAYER 2 0.0585 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION EROSION PARTICLE NO 1b/sq.ft 1b/sq.ft. 1b/sf/hr 1/hr 1/hr ACTIVE LAYER 1 0.1170 0.2640 6.8600 46.6667 93.3000 INACTIVE LAYER 2 0.1170 0.2640 6.8600 46.6667 93.3000 INACTIVE LAYER 2 0.1170 0.2640 6.8600 46.6667 93.3000 SILT IS PRESENT MTCL IASL LASL SGSL PUSDLE UMSDLE CCSDLE 13 2 4 4 2.650 82.000 65.000 5.700 DEPOSITION COEFFICIENTS BY LAYER DEPOSITION THRESHOLD SHEAR LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0200 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION COEFFICIENTS BY LAYER DEPOSITION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION PARTICLE MASS SHEAR STRESS STRESS LLINE=ERI LINE=ER2	DEPOSITION	COEFFIC	DEPOSIT: THRESHO:	ION LD		•	
INACTIVE LAYER 2 0.0585 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION LINE=ER1 LAYER STRESS STRESS NO Lb/sq.ft lb/sq.ft. lb/sf/hr 1/hr 1/hr ACTIVE LAYER 1 0.1170 0.2640 6.8600 46.6667 93.3000 INACTIVE LAYER 2 0.1170 0.2640 6.8600 46.6667 93.3000 SILT IS PRESENT MTCL IASL LASL SGSL PUSDLE UWSDLE CCSDLE I3 2 4 4 2.650 82.000 65.000 5.700 DEPOSITION COEFFICIENTS BY LAYER DEPOSITION COEFFICIENTS BY LAYER LAYER STRESS NO. lb/sq.ft ACTIVE LAYER 1 0.0200 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION COEFFICIENTS BY LAYER LAYER STRESS STRESS LINE=EROSION PARTICLE MASS RASS SLOPE OF SLOPE OF SLOPE OF SLOPE OF MASS EROSION EROSION EROSION EROSION PARTICLE MASS LAYER STRESS STRESS LINE=EROSION PARTICLE MASS LAYER STRESS STRESS LINE=EROSION PARTICLE MASS LOPE OF SLOPE OF MASS LAYER STRESS STRESS LINE=EROSION PARTICLE MASS LOPE OF MASS			STRES	S			
PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION EROSION LAYER STRESS STRESS ILNE=ERI NO L/Sq.ft 1//r 1/hr 1/hr ACTIVE LAYER 1 0.1170 0.2640 6.8600 46.6667 93.3000 INACTIVE LAYER 2 0.1170 0.2640 6.8600 46.6667 93.3000 SILT IS PRESENT MTCL IASL LASL SGSL PUSDLB UWSDLB CCSDLB 13 2 4 4 2.650 82.000 65.000 5.700 DEPOSITION COEFFICIENTS BY LAYER DEPOSITION THRESHOLD SHEAR LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0200 EROSION COEFFICIENTS BY LAYER DEPOSITION COEFFICIENTS BY LAYER SHEAR LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0200 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION COEFFICIENTS BY LAYER DEPOSION COEFFICIENTS BY LAYER DEPOSION COEFFICIENTS BY LAYER LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0200 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION ERO				·			
INACTIVE LAYER 2 0.1170 0.2640 6.8600 46.6667 93.3000 SILT IS PRESENT MTCL IASL LASL SGSL PUSDLE UWSDLE CCSDLE I3 2 4 4 2.650 82.000 65.000 5.700 DEPOSITION COEFFICIENTS BY LAYER DEPOSITION THRESHOLD SHEAR LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0200 INACTIVE LAYER 1 0.0200 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION EROSION LAYER STRESS STRESS LINE=ER1 LINE=ER2	EROSION CON	LAYER	PARTICLE EROSION SHEAR STRESS	MASS EROSION SHEAR STRESS	EROSION RATE	PARTICLE EROSION LINE=ER1	MASS EROSION LINE=ER2
MTCL IASL LASL SGSL PUSDLB UWSDLB CCSDLB 13 2 4 4 2.650 82.000 65.000 5.700 DEPOSITION COEFFICIENTS BY LAYER DEPOSITION THRESHOLD SHEAR LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0200 INACTIVE LAYER 2 0.0200 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION EROSION LAYER STRESS STRESS LINE=ER1 LINE=ER2							
I3 2 4 4 2.650 82.000 65.000 5.700 DEPOSITION COEFFICIENTS BY LAYER DEPOSITION THRESHOLD SHEAR LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0200 INACTIVE LAYER 2 0.0200 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION EROSION LAYER STRESS STRESS LINE=ER1 LINE=ER2	SILT IS PRESE	INT					
DEPOSITION THRESHOLD SHEAR LAYER STRESS NO. 1b/sq.ft ACTIVE LAYER 1 0.0200 INACTIVE LAYER 2 0.0200 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION EROSION LAYER STRESS STRESS LINE=ER1 LINE=ER2							
INACTIVE LAYER 2 0.0200 EROSION COEFFICIENTS BY LAYER PARTICLE MASS MASS SLOPE OF SLOPE OF EROSION EROSION EROSION PARTICLE MASS SHEAR SHEAR RATE EROSION EROSION LAYER STRESS STRESS LINE=ER1 LINE=ER2	DEPOSITION	LAYER	DEPOSIT THRESHOI SHEAR STRESS	ION LD 5			
PARTICLEMASSMASSSLOPE OFSLOPE OFEROSIONEROSIONEROSIONEROSIONPARTICLEMASSSHEARSHEARRATEEROSIONEROSIONLAYERSTRESSSTRESSLINE=ER1LINE=ER2						•	
LAYER STRESS STRESS LINE=ER1 LINE=ER2	EROSION COP	FFICIEN	PARTICLE EROSION	MASS EROSION	EROSION	PARTICLE	MASS
			STRESS	STRESS		LINE=ER1	LINE=ER2
ACTIVE LAYER 1 0.1170 0.2640 6.8600 46.6667 93.3000 INACTIVE LAYER 2 0.1170 0.2640 6.8600 46.6667 93.3000							

,

USING TRANSPORT CAPACITY RELATIONSHIP # 4, YANG GRAIN SIZES UTILIZED (mean diameter - mm)

	CLAY		0.003	MEDI	JM GRAVEL	1	1.314		
	COARSE SILT		0.045	COAR!	SE GRAVEL	2	2.627		
	VERY FINE S		0.088	VERY	COARSE G	RAVEL 4	5.255		
	FINE SAND			SMAL	L COBBLES	9	0.510		
	MEDIUM SAND			•	E COBBLES		1.019		
	COARSE SAND				L BOULDER		2.039		
	VERY COARSE	•••••			UM BOULDE		4.077		
	VERY FINE G				E BOULDER				
	FINE GRAVEL		5.657	1					
COEF	FICIENTS FC	R COMPU	TATION SCHI	EME WERE	SPECIFIE	D			
	DBI	DBN	XID	XIN	XIU	UBI	UBN	JSL	
т5	0.500	0.500	0.250	0.500	0.250	0.000	1.000	1	

- - -

I5	0.500	0.500	0.250	0.500	0.230	0.000	1.000	-

SEDIMENT LOAD TABLE FOR STREAM SEGMENT # 1

LOAD BY GRAIN SIZE CLASS (tons/day)

LQ		200.000	1000.00	10000.0	۵ 50000 D	100000.	200000.
LF	CLAY	0.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19	•	0.100000E-19
\mathbf{LF}	SILT	32.2000	195.000	1530.00	7250.00	27300.0	64800.0
\mathbf{LF}	VFS	51.7500	273.000	3570.00	18125.0	40040.0	34560.0
\mathbf{LF}	FS	17.2500	195.000	2244.00	14500.0	32760.0	51840.0
LF	MS	11.5000	62.4000	1020.00	10875.0	23660.0	64800.0
LF	CS	2.30000	39.0000	816.000	10875.0	21840.0	77760.0
LF	vcs	0.100000E-19	15.6000	612.000	7250.00	18200.0	51840.0
LF	VFG	0.100000E-19	0.100000E-19	306.000	2175.00	9100.00	43200.0
LF	FG		0.100000E-19		1450.00	7280.00	25920.0
LF	MG	1	0.100000E-19	0.100000E-19	0.100000E-19		12960.0
LF	CG	0.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19	0.10000E-19	
LF	VCG	10.100000E-19	0.100000E-19		0.100000E-19		0.100000E-19
LF	SC	10.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19
LF	LC	10.10000E-19	0.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19
LF	SB	10.10000E-19	10.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19
LF	MB	10 10000E-19	10.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19	 0.100000E-19
LF	LB	0.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19	0.100000E-19
	TOTAL	115.000	1 780.000	10200.0	72500.0	182000.	432000.

REACH GEOMETRY FOR STREAM SEGMENT 1

CROSS SECTION	REACH LENGTH	MOVABLE BED	INITIA LEFT SIDE	AL BEÐELEV THALWEG	ATIONS RIGHT SIDE			
NO.	(ft)	WIDTH	(ft)	(ft)	(ft)	(ft)	(miles)	
1.000	0.000	478.880	3503.700	3482.340	3503.660	0.000	0.000	
2.000	656.000	478.880	3510.300	3488.950	350.270	656.000	0.124	
3.000	656.000	478.880	3516.900	3495.550	3516.870	1312.000	0.248	
4.000	656.000	478.880	3523.500	3502.160	3523.480	1968.000	0.373	
5.000	656.000	478.880	3530.100	3508.770	3530.090	2624.000	0.497	
6.000	656.000	478.880	3536.700 3543.300	3515.370	3536.690	3936.000	0.745	
7.000	656.000	478.880	3549.900	3528.580	3549.900	4592.000	0.870	

	656.000						
9.000		478.880	3556.50	3535.190	3556.510	5248.000	0.994
	328.000						
10.000		478.880	3559.800	3538.490	3559.810	5576.000	1.056
	328.000						
11.000		478.880	3562.500	3541.140	3562.460	5904.000	1.118
	656.000						1.110
12.000		478.880	3569.300	3548.020	3569.340	6560.000	1.242
	656.000					0000.000	1.242
13.000		478.880	3576.900	3555.530	3576.850	7216.000	1.367
	656.000					,220.000	1.307
14.000		478.880	3580.100	3558.810	3580.130	7872.000	1.491
	606.800			00001010	55001150	/0/2.000	1.491
15.000		478.880	3583.400	3562.090	3583.410	8478.800	1.606
	656.000				55051410	0470.000	1.000
16.000		478.880	3589.400	3568.070	3589.390	9134.800	1.730
	656.000			5500.070	5565.550	JIJ4.000	1.730
17.000		478.880	3597.600	3576.300	3597.620	9790.800	1 054
	705.200		5557.000	3370.300	2227.020	9790.000	1.854
18.000		478.880	3602.600	3581.290	3620.610	10496.000	1 000
10.000	656.000	4701000	3002.000	5561.290	2020.010	10490.000	1.988
19.000	0301000	478.880	3609.500	3588.180	3609.500	11152.000	• • • •
19.000	328.000	4/0.000	3009.300	2200-100	2003.200	11152.000	2.112
20.000	520.000	470 000	2612 000	2501 600	2612 242		
20.000		478.880	3612.900	3591.620	3612.940	11480.000	2.174

BED MATERIAL GRADATION

SECNO	SAE	DMAX (ft)	DXPI (ft)	XPI	total Bed	BED MATERIAL FRACTIONS per grain size
1.000	1.000	6.719	6.719	1.000	1.000	CLAY 0.006 C SAND 0.003 M GRVL 0.138 L COBL 0.060 C SILT 0.002 VC SAND 0.006 C GRVL 0.210 S BLDR 0.025 VF SAND 0.007 VF GRVL 0.013 VC GRVL 0.229 M BLDR 0.025 F SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020 M SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020
2.000	1.000	6.719	6.719	1.000	1.000	CLAY 0.006 C SAND 0.003 M GRVL 0.138 L COBL 0.060 C SILT 0.002 VC SAND 0.006 C GRVL 0.210 S BLDR 0.025 VF SAND 0.007 VF GRVL 0.013 VC GRVL 0.239 M BLDR 0.025 F SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020 M SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020
3.000	1.000	6.719	6.719	1.000	1.000	CLAY 0.006 C SAND 0.003 M GRVL 0.138 L COBL 0.060 C SILT 0.002 VC SAND 0.006 C GRVL 0.210 S BLDR 0.025 VF SAND 0.007 VF GRVL 0.013 VC GRVL 0.239 M BLDR 0.025 F SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020 M SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020
4.000	1.000	6.719	6.719	1.000	1.000	CLAY 0.006 C SAND 0.003 M GRVL 0.138 L COBL 0.060 C SILT 0.002 VC SAND 0.006 C GRVL 0.138 L COBL 0.060 VF SILT 0.002 VC SAND 0.006 C GRVL 0.210 S BLDR 0.025 VF SAND 0.007 VF GRVL 0.013 VC GRVL 0.239 M BLDR 0.025 F SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020 M SAND 0.029 Image: Signal Si
5.000	1.000	6.719	6.719	1.000	.1.000	CLAY 0.006 C SAND 0.003 M GRVL 0.138 L COBL 0.060 C SILT 0.002 VC SAND 0.006 C GRVL 0.210 S BLDR 0.025 VF SAND 0.007 VF GRVL 0.013 VC GRVL 0.239 M BLDR 0.025 F SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020 M SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020
6.000	1.000	6.719	6.719	1.000	1.000	CLAY 0.006 C SAND 0.003 M GRVL 0.138 L COBL 0.060 C SILT 0.002 VC SAND 0.006 C GRVL 0.210 S BLDR 0.025 VF SAND 0.007 VF GRVL 0.013 VC GRVL 0.229 M BLDR 0.025 F SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020 M SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020
7.000	1.000	6.719	6.719	1.000	1.000	CLAY 0.006 C SAND 0.003 M GRVL 0.138 L COBL 0.060 C SILT 0.002 VC SAND 0.006 C GRVL 0.210 S BLDR 0.025 VF SAND 0.007 VF GRVL 0.013 VC GRVL 0.229 M BLDR 0.025 F SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020 M SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020
8.000	1.000	6.719	6.719	1.000	1.000	CLAY 0.006 C SAND 0.003 M GRVL 0.138 L COBL 0.060 C SILT 0.002 VC SAND 0.006 C GRVL 0.210 S BLDR 0.025 VF SAND 0.007 VF GRVL 0.013 VC GRVL 0.239 M BLDR 0.025 F SAND 0.029 F GRVL 0.043 S COBL 0.145 L BLDR 0.020 M SAND 0.029 I GRVL 0.043 S COBL 0.145 L BLDR 0.020

CLAY 0.006 | C SAND 0.003 | M GRVL 0.138 | L COBL 0.060 9.000 1.000 6.719 6.719 1.000 1.000 | BLDR 0.025 C SILT 0.002 VF SAND 0.007 VC SAND 0.006 C VF GRVL 0.013 VC F GRVL 0.043 S C GRVL 0.210 VC GRVL 0.239 s M BLDR 0.025 0.029 COBL 0.145 L BLDR 0.020 SAND M SAND 0.029 0.006 C SAND 0.003 M GRVL 0.002 VC SAND 0.006 C GRVL 0.007 VF GRVL 0.013 VC GRVL 0.029 F GRVL 0.043 S COBL 0.060 CLAY 0.138 | L COBL 10.000 1.000 6.719 6.719 1.000 1.000 GRVL 0.210 S GRVL 0.239 M BLDR 0.025 C SILT VF SAND 0.002 BLDR 0.025 0.145 | L BLDR 0.020 SAND F 0.029 M SAND C SAND 0.003 | M GRVL 0.138 | L VC SAND 0.006 | C GRVL 0.210 | S VF GRVL 0.013 | VC GRVL 0.239 | M F GRVL 0.043 | S COBL 0.145 | L COBL 0.060 11.000 1.000 6.719 6.719 1.000 1.000 CLAY 0.006 1 C SILT BLDR 0.025 0.002 BLDR 0.025 VF SAND 0.007 BLDR 0.020 0.029 F SAND M SAND 0.029 1 0.138 | L 0.210 | S 0.239 | M 0.145 COBL 0.060 0.006 | C SAND 0.003 GRVL м 12.000 1.000 6.719 6.719 1.000 1.000 - 1 CLAY VC SAND 0.006 С GRVL BLDR 0.025 C SILT 0.002 VC GRVL 0.025 BLDR VF GRVL 0.013 F GRVL 0.043 VF SAND 0.007 0.145 i s COBL BLDR 0.020 F SAND 0.029 M SAND 0.029 - 1 M GRVL 0.138 | L C GRVL 0.210 | S VC GRVL 0.239 | M S COBL 0.145 | L COBL 0.060 | 0.006 | C SAND 0.003 CLAY 13.000 1.000 6.719 6.719 1.000 1.000 C SILT VF SAND 0.002 VC SAND 0.006 VF GRVL 0.013 0.025 BLDR BLDR 0.025 GRVL 0.043 BLDR 0.020 F SAND 0.029 F M SAND 0.029 0.138 | L 0.210 | S 0.239 | M 0.006 | C SAND COBL 0.060 CLAY 0.003 M GRVL 14.000 1.000 6.719 6.719 1.000 1.000 C GRVL VC GRVL GRVL 0.210 BLDR 0.025 0.002 VC SAND 0.006 C SILT VF GRVL 0.013 BLDR 0.025 VF SAND 0.007 0.020 S 0.145 | L BLDR SAND 0.029 F GRVL 0.043 COBL F M SAND 0.029 GRVL COBL 0.060 0.138 L 15.000 1.000 6.719 6.719 1.000 1.000 CLAY 0.006 C SAND 0.003 м 0.210 | S 0.239 | M 0.145 | L C SILT VC SAND 0.006 C GRVL BLDR 0.025 0.025 VC GRVL BLDR VF GRVL 0.013 F GRVL 0.043 v s VF SAND 0.007 0.013 BLDR 0.020 COBL 0.029 F SAND M I SAND 0.029 C SAND 0.003 | M GRVL VC SAND 0.006 | C GRVL VF GRVL 0.013 | VC GRVL F GRVL 0.043 | S COBL | L | S | M COBT. 0.060 0.138 0.006 16.000 1.000 6.719 6.719 1.000 1.000 | CLAY BLDR 0.025 C SILT 0.002 GRVL 0.210 0.239 0.025 BLDR VF SAND 0.007 0.029 0.145 | L BLDR 0.020 SAND F SAND 0.029 Ìм GRVL 0.138 | L COBL 0.060 0.006 С SAND 0.003 М 17.000 1.000 6.719 6.719 1.000 1.000 CLAY İs BLDR 0.025 C SILT 0.002 | VF SAND 0.007 | VC SAND 0.006 VF GRVL 0.013 C GRVL VC GRVL GRVL 0.210 0.239 M 0.145 L BLDR 0.025 GRVL 0.043 s COEL BLDR 0.020 SAND 0.029 F F I M SAND 0,029 0.003 | M GRVL 0.006 | C GRVL 0.006 SAND 0.138 L COBL 0.060 18.000 1.000 6.719 6.719 1.000 1.000 CLAY С VC SAND 0.006 C GRVL VF GRVL 0.013 VC GRVL F GRVL 0.043 S COBL 0.210 S BLDR 0.025 C SILT 0.002 0.239 | M 0.145 | L BLDR 0.025 VF SAND 0.020 P SAND 0.029 BLDR M SAND 0.029
 C
 SAND
 0.003
 M
 GRVL

 VC
 SAND
 0.006
 C
 GRVL

 VF
 GRVL
 0.013
 VC
 GRVL

 P
 GRVL
 0.043
 S
 COBL
 19.000 1.000 6.719 6.719 1.000 1.000 CLAY 0.006 0.138 | L COBL 0.060 1 s BLDR 0.025 C SILT 0.002 0.007 0.210 0.210 | S 0.239 | M 0.145 | L VF SAND BLDR 0.025 SAND 0.029 BLDR 0.020 F M SAND 0.029 0.138 | L 0.210 | S 0.239 | M 0.145 | L COBL 0.060 CLAY 0.006 С SAND 0.003 | M GRVL 20.000 1.000 6.719 6.719 1.000 1.000 VC SAND 0.006 | C GRVL VF GRVL 0.013 | VC GRVL C SILT 0.002 VF SAND 0.007 BLDR 0.025 BLDR 0.025 0.020 F GRVL 0.043 | S COBL BLDR F SAND 0.029 I M SAND 0.029

BED SEDIMENT CONTROL VOLUMES

SECTION NUMBER	LENGTH (ft)	WIDTH (ft)	DEPTH (ft)	VOL (cu.ft)	UME (cu.yd)
1.000	328.000	478.880	10.000	0.157073E+07	58175.1
2.000	656.000	478.880	10.000	0.314145E+07	116350.
3.000	656.000	478.880	10.000	0.314145E+07	116350.
4.000	656.000	478.880	10.000	0.314145E+07	116350.
5.000	656.000	478.880	10.000	0.314145E+07	116350.
6.000	656.000	478.880	10.000	0.314145E+07	116350.
7.000	656.000	478.880	10.000	0.314145E+07	116350.
8.000	656.000	478.880	10.000	0.314145E+07	116350.
9.000	492.000	478.880	10.000	0.235609E+07	87262.6
10.000	328.000	478.880	10.000	0.157073E+07	58175.1
11.000	492.000	478.880	10.000	0.235609E+07	87262.6
12.000	656.000	478.880	10.000	0.314145E+07	116350.
13.000	656.000	478.880	10.000	0.314145E+07	116350.
14.000	631.400	478.880	10.000	0.302365E+07	111987.
15.000	631.400	478.880	10.000	0.302365E+07	111987.
16.000	656.000	478.880	10.000	0.314145E+07	116350.
17.000	680.600	478.880	10.000	0.325926E+07	120713.
18.000	680.600	478.880	10.000	0.325926E+07	120713.
19.000	492.000	478.880	10.000	0.235609E+07	87262.6
20.000	164.000	478.880	10.000	785363.	29087.5

STREAM SEGMENT # 1: MOBILE BED APPLICATION IN RIVER WITH DIKES AND DIVERSION CHANNEL.

NO. OF INPUT DATA MESSAGES= 0 END OF SEDIMENT DATA

\$HYD

BEGIN COMPUTATIONS.

\$RATING

Downstream Bo	oundary Condi	tion - Rating	g Curve		
Elevation	Stage	Discharge	Elevation	Stage	Discharge
3482.340	3482.340	0.000	3493.820	3493.820	91747.630
3484.850	3484.850	7057.510	3494.360	3494.360	98805.140
3486.100	3486.100	14115.020	3494.820	3494.820	105862.650
3487.250	3487.250	21172.530	3495.380	3495.380	112920.160
3488.000	3488.000	28230.040	3495.800	3495.800	119977.670
3488.800	3488.800	35287.550	3496.300	3496.300	127035.180
3489.580	3489.580	42345.060	3496.750	3496.750	134092.690
3490.300	3490.300	49402.570	3497.200	3497.200	141150.200
3490.960	3490.960	56460.080	3497.600	3497.600	148207.710
3491.580	3491.580	63517.590	3498.080	3498.080	155265.220
3492.180	3492.180	70575.100	3498.500	3498.500	162322.730
3492.800	3492.800	77632.610	3498.900	3498.900	169380.240
3493.300	3493.300	84690.120			

TIME STEP # 1 PROFILE 1 = 2 YEAR RETURN PERIOD FLOOD AB MOBILE BED APPLICATION IN RIVER WITH DIKES AND DIVERSION CHANNEL. 0.000 ACCUMULATED TIME (yrs)..... --- Downstream Boundary Condition Data for STREM SEGMENT NO. 1 at Control Point # 1---DISCHARGE TEMPERATURE WATER SURFACE (deg F) (ft) (cfs) 3488.000 28230.000 60.00 ENERGY VELOCITY ALPHA TOP AVG AVG VEL (by subsection) **** DISCHARGE WATER 3 WIDTH BED 2 (CFS) SURFACE LINE HEAD 1.000 SECTION NO. 0.000 12.318 0.000 1.000 416.219 3482.494 **** 28230.000 3488.000 3490.358 2.358 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = SECTION NO. 2.000 0.000 2.164 0.000 100.000 0.000 1.000 416.502 3489.107 **** 28230.000 3494.679 3496.979 2.299 FLOW DISTRIBUTION (%) = 0.000 SECTION NO. 3.000 0.000 12.273 0.000 2.341 1.000 416.304 3495.701 **** 28230.000 3501.226 3503.567 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = SECTION NO. 4.000 0.000 12.205 0.000 1.000 416.432 3502.313 **** 28230.000 3507.867 3510.182 2.315 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = 5.000 SECTION NO. 416.334 3508.925 0.000 12.262 0.000 **** 28230.000 3514.455 3516.791 2.337 1.000 0.000 100.000 0000 FLOW DISTRIBUTION (%) = SECTION NO. 6.000 **** 28230.000 3521.099 3523.428 0.000 0.000 12.242 416.370 3515.560 1.000 2.329 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = 7,000 SECTION NO. 0.000 0.000 12.249 **** 28230.000 3527.721 3530.052 1.000 416.364 3522.185 2.332 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = SECTION NO. 8.000 0.000 12.209 0.000 416.436 3528.779 **** 28230.000 3534.332 3536.648 2.316 1.000 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = SECTION NO. 9.000 0.000 0.00 12.261 416.348 3535.393 1.000 **** 28230.000 3540.923 3543.259 2.336 0.000 100.000 FLOW DISTRIBUTION (%) = 0.000 10.000 SECTION NO. 0.000 12.145 0.000 1.000 416.558 3538.665 **** 28230.000 3544.245 3546.538 2.292 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = 11.000 SECTION NO. 418.802 3541.317 0.000 11.020 0.000 **** 28230.000 3547.434 3549.321 1.887 1.000 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = SECTION NO. 12.000 ** SUPERCRITICAL ** Using Critical Water Surface + 1.000 DAYS. SECTION NO. 12.000 TIME = CRITICAL TRIAL TRIAL COMPUTED WS NO. WS WS 3553.018 3552.921 3553.375 ο. 3553.419 3553.469 1. 0.000 0.000 12.809 415.415 3548.163 **** 28230.000 3553.469 3556.018 2.550 1.000 FLOW DISTRIBUTION (%) = 0.000 10.000 0.000 13.000 SECTION NO. 1.000 415.705 3555.643 0.000 12.609 0.000 **** 28230.000 3561.029 3563.500 2.471 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = 14.000 SECTION NO. 0.000 0.000 9.062 424.098 3559.082 1.000 **** 28230.000 3566.427 3567.704 1.276 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 15.000 SECTION NO. 0.000 0.000 10.108 **** 28230.000 3568.951 3570.538 1.000 421.033 3562.317 1.588 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = 16.000 SECTION NO. 0.000 0.000 12.956 415.148 3568177 1.000 **** 28230.000 3573.426 3576.034 2.609 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000

SECTION NO. 17.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 17.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS 3581.643 3581.467 3581.736 3581.320 3581.686 ο. 1. **** 28230.000 3581.736 3584.298 2.561 1.000 415.356 3576.442 0.000 12.838 0.00 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 18.000 **** 28230.000 3588.224 3589.768 1.544 421.407 3581.503 0.000 9.967 0.000 1.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 19.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 19.000 TIME = 1.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS NO. ws ws ws ws 0. 3593.533 3592.561 1. 3593.627 3592.498 3593.577 **** 28230.000 3593.627 3596.178 2.551 1.000 415.387 3588.323 0.000 12.813 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 20.000 **** 28230.000 3597.418 3599.669 2.251 **1.000 416.779 3591.790** 0.000 12.034 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 MOBILE BED APPLICATION IN RIVER WITH DIKES AND DIVERSION CHANNEL. ACCUMULATED TIME (yrs).... 0.003 FLOW DURATION (days)..... 1.000 UPSTREAM BOUNDARY CONDITIONS Stream Segment # 1DISCHARGESEDIMENT LOADTEMPERATURESection No.20.000(cfs)(tons/day)(deg F) _____ INFLOW | 28230.00 | 35512.55 | 60.00 TABLE SA-1. TRAP EFFICIENCY ON STREAM SEGMENT # 1 MOBILE BED APPLICATION IN RIVER WITH DIKES AND DIVERSION CHANNEL. ACCUMULATED AC-FT ENTERING AND LEAVING THIS STREAM SEGMENT
 TIME
 ENTRY *
 CLAY

 DAYS
 POINT *
 INFLOW
 OUTF

 1.00
 20.000 *
 0.00
 TOTAL=

 1.000 *
 0.00
 4
 4
 SAND * OUTFLOW TRAP EFF *
 CLAY
 *
 SILT
 *

 OUTFLOW
 TRAP
 EFF *
 INFLOW
 OUTFLOW
 TRAP
 EFF *
 INFLOW

 *
 2.95
 *
 15.47
 4.88***********
 2.95
 3.56
 -0.21
 *
 15.47
 53.38 -2.45 * TOTAL= 15.47 ****** TABLE SB-1: SEDIMENT LOAD PASSING THE BOUNDARIES OF STREAM SEGMENT # 1 SEDIMENT INFLOW at the Upstream Boundary: GRAIN SIZE LOAD (tons/day) | GRAIN SIZE LOAD (tons/day) CLAY..... 0.00 | MEDIUM GRAVEL.... 0.00 COARSE SILT..... 4172.18 | COARSE GRAVEL.... 0.00 10177.96VERY COARSE GRAVE7473.96SMALL COBBLES....4692.09LARGE COBBLES....4334.57SMALL BOULDERS...3013.17MEDIUM BOULDERS...LARGE BOULDERS... VERY FINE SAND.... 10177.96 | VERY COARSE GRAVEL 0.00 FINE SAND..... 0.00 MEDIUM SAND..... 0.00 COARSE SAND..... 0.00 VERY COARSE SAND.. 41/2. 31340.37 1083.78 LARGE BOULDERS.... VERY FINE GRAVEL.. FINE GRAVEL..... 564.85 _____ TOTAL = 35512.55

SEDIMENT OUTFLOW from the Downstream Boundary

GRAIN SIZE	LOAD (tons/day)	GRAIN SIZE	LOAD (tons/day)
CLAY	3190.93	MEDIUM GRAVEL	3636.87
COARSE SILT	5039.23	COARSE GRAVEL	9052.23
VERY FINE SAND	13777.66	VERY COARSE GRAVEL	15908.87
FINE SAND	22789.33	SMALL COBBLES	11482.34
MEDIUM SAND	20114.56	LARGE COBBLES	223.19
COARSE SAND	5689.75	SMALL BOULDERS	0.00
VERY COARSE SAND	4634.60	MEDIUM BOULDERS	0.00
VERY FINE GRAVEL	126.90	LARGE BOULDERS	0.00
FINE GRAVEL	691.89	1	
		-	
· · · · · · · · · · · · · · · · · · ·			116050 00

TOTAL = 116358.33

. .:⁻

TABLE SB-2: STATUS OF THE BED PROFILE AT TIME = 1.000 DAYS

SECTION	BED CHANGE	WS ELEV	THALWEG	Q	TRANSPORT R	ATE (tons/d	ay)
NUMBER	(ft)	(ft)	(ft)	(cfs)	CLAY	SILT	SAN
20.000	-3.76	3597.42	3587.86	28230.	47.	4185.	43763.
19.000	-1.96	3593.63	3586.22	28230.	207.	4228.	63108
18.000	-0.09	3588.22	3581.20	28230.	319.	4259.	64230
17.000		3581.74	357.5.31	28230.	554.	4323.	77566
16.000		3573.43	3567.87	28230.	772.	4382.	7993(
15.000		3568.95	3563.30	28230.	883.	4412.	6421
14.000		3566.43	3559.00	28230.	944.	4429.	6170
13.000		3561.03	3554.37	28230.	1153.	4486.	7689
12.000		3553.47	3547.31	28230.	1366.	4543.	8597
11.000		3547.43	3541.50	28230.	1477.	4574.	8223
10.000		3544.25	3538.02	28230.	1574.	4600.	8520
9.000		3540.92	3534.62	28230.	1721.	4640.	90696
8.000		3534.33	3528.34	28230.	1916.	4693.	9366
7.000		3527.72	3521.77	28230.	2113.	4746.	9615
6.000		3521.10	3515.16	28230	2309.	4800.	98635
5.000		3514.45	3508.58	28230.	2506.	4853.	10087
4.000		3507.87	3501.97	28230.	2701.	4906.	10306
3.000		3501.23	3495.36	28230.	2898.	4960.	105257
2.000		3494.68	3488.76	28230.	3091.	5012.	10749
1.000		3488.00	3482.22	28230.	3191.	5039.	10812

====					*****		********	
TIM	E STER	* #	2					
*	AB	PROFILE	2 =	500	YEAR	RETURN	PERIOD	FLOOD

[Downstream	Boundary	DI	Data for SCHARGE (cfs) 5850.000	TEMPER (deg	ATURE	WATER (f	at Contr SURFACE t) 98.700	ol Point	:# 1	
****	DISCHARGE (CFS)	WATER SURFACE	ENERGY LINE	VELOCITY HEAD	ALPHA	TÓP WIDTH	AVG BED		VEL (by 2	subsection 3	}
** CF	CON NO. RITICAL WAT 165850.000				1.000	000 AT T 461.557 DISTRIBU	3483.	525 0.00	DAYS.***)0 22.6 00 100.0		

SECTION NO. 2.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 2.000 TIME = 2.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL TRIAL TRIAL WS NO. WS WS ٥. 3505.855 3505.042 3505.899 3505.949 3505.091 1. **** 165850.000 3505.949 3513.860 7.910 1.000 461702 3490.028 0.000 22.562 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 3.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 3.000 TIME = 2.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL. NO. WS WS WS Ο. 3512.458 3511.516 3512.552 3511.530 3512.502 1. **** 165850.000 3512.552 3520.463 7.911 1.000 461.710 3496.631 0.000 22.562 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 4.000 ** SUPERCRITICAL ** Using Critical Water Surface + 2.000 DAYS. SECTION NO. 4.000 TIME = COMPUTED CRITICAL TRIAL TRIAL NO. WS WS WS 0. 3519.099 3518.124 3519.193 3518.150 3519.143 1. **** 165850.000 3519.193 3527.073 7.880 1.000 461.848 3503.246 0.000 22.518 0 000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 5.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 5.000 TIME = 2.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL NO. WS WS WS 0. 3525.000 3524.724 3524.738 3525.730 **** 165850.000 3525.780 3533.679 7.898 1.000 461.778 3509.849 0.000 22.544 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 6.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 6.000 TIME = 2.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL WS NO. WS WS 3532.275 3531.335 ο. 3532.369 1. 3531.351 3532.319 **** 165850.000 3532.369 3540.262 7.893 1.000 461.746 3516.432 0.000 22.537 0.000 0.000100.000 0.000 FLOW DISTRIBUTION (%) = SECTION NO. 7.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 7.000 TIME = 2.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL NO. WS WS WS 3537.917 ο. 3538.886 3538.980 3537.932 3538.930 1. **** 165850.000 3538.980 3546.870 7.890 1.000 461.768 3523.040 0.000 22.533 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = SECTION NO. 8.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 8.000 TIME = 2.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL NO. WS WS WS 3544.520 0. 3545.429 3545.523 3545.473 3544.534 1. **** 165850.000 3545.523 3553.437 7.915 1.000 461.569 3529.601 0.000 22.568 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 9.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 9.000 TIME = 2.000 DAYS. COMPUTED TRIAL TRIAL CRITICAL NO. 0. WS WS WS 3551.742 3551.088 3551.836 1. 3551.107 3551.786 **** 165850.000 3551.836 3559.739 7.903 1.000 460.689 3535.872 0.000 22.550 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000

SECTION NO. 10.000 ** SUPERCRITICAL ** Using Critical Water Surfæe + 10.000 TIME = 2.000 DAYS. SECTION NO. COMPUTED CRITICAL TRIAL TRIAL WS NO. WS WS 3554.50 3554.608 ο. 3555.120 3555.164 3555.214 1. 1.000 460.907 3539.276 0.000 22.577 **** 165850.000 3555.214 3563.135 7.922 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 11.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 11.000 TIME = 2.000 DAYS. COMPUTED TRIAL CRITICAL TRTAT. NO. WS WS WS 3558.610 3557.999 ο. 3558.704 3558.062 3558.654 1. 0.000 **** 165850.000 3558.704 3566.566 7.862 1.000 463.531 3542.75 0.000 22.492 FLOW DISTRIBUTION $(b) = 0.000 \ 100.000$ 0.000 SECTION NO. 12.000 ** SUPERCRITICAL ** Using Critical Water Surface + SECTION NO. 12.000 TIME = 2.000 DAYS. TRIAL TRIAL COMPUTED CRITICAL WS NO. WS WS 3564.423 3564.209 0. 3564.223 3564.517 3564.467 1. 1.000 460.265 3548.559 0.000 22.582 0.000 **** 165850.000 3564.517 3572.441 7.925 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 SECTION NO. 13.000 ** SUPERCRITICAL ** Using Critical Water Surface + 2.000 DAYS. SECTION NO. 13.000 TIME = TRIAL TRIAL COMPUTED CRITICAL WS WS WS NO. 3570.067 3570.081 3571.483 3571.577 Ο. 3571.527 1. 1.000 458.807 3555.588 0.000 22.609 0.000 **** 165850.000 3571.577 3579.521 7.944 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = SECTION NO. 14.000 **** 165850.000 3578.026 3584.358 6.332 SECTION NO. 0.000 20.185 0.000 1.000 470.409 3560.559 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = 15.000 SECTION NO. 0.000 20.979 0.000 1.000 471.174 3564.790 **** 165850.000 3581.569 3588.408 6.839 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = 16.000 SECTION NO. 1.000 465.485 3569.257 0.000 21.278 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 **** 165850.000 3586.002 3593.038 7.036 FLOW DISTRIBUTION (%) = SECTION NO. 17.000 ** SUPERCRITICAL ** Using Critical Water Surface + 17.000 TIME = 2.000 DAYS. SECTION NO. COMPUTED CRITICAL TRIAL TRIAL NO. WS 0. 3592.457 3592.550 WS WS 3590.444 3592.500 3590.464 3592.550 1.000 459.532 3576.545 0.000 22.550 0.000 **** 165850.000 3592.550 3600.453 7.902 FLOW DISTRIBUTION (%) -0.000 100.000 0.000 SECTION NO. 18.000 0.000 463.003 3582.523 0.000 22.225 **** 165850.000 3598.640 3606.317 7.677 1.000 0.000 100.000 0.000 FLOW DISTRIBUTION (%) = 19.000 SECTION NO. 1.000 459.218 3587.495 0.000 21711 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 **** 165850.000 3604.129 3611.455 7.325 FLOW DISTRIBUTION (%) = SECTION NO. 20.000 1.000 461.090 3589.319 0.000 19.572 0.000 FLOW DISTRIBUTION (%) = 0.000 100.000 0.000 **** 165850.000 3607.697 3613.650 5.953 FLOW DISTRIBUTION (%) =

MOBILE BED APPLICATION IN F ACCUMULATED TIME () FLOW DURATION (days	/rs)	0.005	CHANNEL.	
UPSTREAM BOUNDARY CONDITIO				
Stream Segment # 1 Section No. 20.000	DISCHARGE (cfs)	SEDIMENT LOAD (tons/day)	TEMPERATURE (deg F)	
		331060.03	60.00	
ACCUMULATED AC	PLICATION IN R C-FT ENTERING	IVER WITH DIKES A AND LEAVING THIS	STREAM SEGME	NT
TIME ENTRY * CL DAYS POINT * INFLOW OU 2.00 20.000 * 0.00 TOTAL= 1.000 * 0.00	AY * TFLOW TRAP EFF * 4.88********	SILT INFLOW CUTFLOW TRAP 39.19 39.19 39.80 -	* EFF * INFLOW * 153.59 0.02 * 153.59	SAND * OUTFLOW TRAP EFF * 228.69 -0.49 *
TABLE SB-1: SEDIMENT LOAN	PASSING THE	BOUNDARIES OF ST	REAM SEGMENT	# 1
SEDIMENT INFLOW at the G GRAIN SIZE LOAN	Jpstream Bound) (tons/day)	ary: GRAIN SIZE	LOAD (ton:	s/day)
CLAY COARSE SILT VERY FINE SAND FINE SAND MEDIUM SAND	0.00	MEDIUM GRAVEL	76	26.37
COARSE SILT	51306.01	COARSE GRAVEL	• • •	0.00
VERY FINE SAND	35961.68	VERY COARSE GRA	VEL	0.00
FINE SAND	45795.65	SMALL COBBLES	• • •	0.00
MEDIUM SAND	49360.64	LARGE COBBLES		0.00
COARSE SAND	55180.24	SMALL BOULDERS.		0.00
VEDV COADSE SAND	20072 27 1	MENTIM BOULDEDS	512	06 01
VERY FINE GRAVEL FINE GRAVEL	28363.67 18393.41	LARGE BOULDERS.	••• 2797	54.02
SEDIMENT OUTFLOW from th			L = 3310	60.03
GRAIN SIZE LOAN	D (tons/day)	GRAIN SIZE	LOAD (ton:	s/day)
CLAY	0.00	MEDIUM GRAVEL	70	53.25
COARSE SILT	51306.01	COARSE GRAVEL	192	17.23
VERY FINE SAND	35942.48	VERY COARSE GRA	VEL 397	19,60
FINE SAND	45706.70	SMALL COBBLES		58.27
MEDIUM SAND	48101.89	LARGE COBBLES		81.43
COARSE SAND	55270.92	SMALL BOULDERS.		35.55
VERY COARSE SAND	33101.02	MEDIUM BOULDERS		0.00
VERY FINE GRAVEL FINE GRAVEL	225.60 1272.47	LARGE BOULDERS.	• • •	0.00
		ጥበጣል	T. = 4063	 92 <i>4</i> 1

TOTAL = 406392.41

dav)	RATE (tons/d	TRANSPORT	0	THALWEG	WS ELEV	BED CHANGE	SECTION
SAND	SIT		(cfs)	(ft)		(ft)	NUMBER
	51306.		165850.			9.21	20.000
		0.			3604.13	-2.33	19.000
		0.	165850.	3580.11	3598.64	-1.18	18.000
	51306.	0.		3573.99	3592.55		17.000
	51306.			3566.57	3586.00		16.000
332039	51306.	0.	165850.	3560.07	3581.57	-2.02	15.000
35128	51306.	0.	165850.	3557.50	3578.03	-1.31	14.000
348732	51306.	0.	165850.	3554.56	3571.58	-0.97	13.000
351884	51306.	0.	165850.	3547.08	3564.52	-0.94	12.000
368391	51306.	0.	165850.	3539.84	3558.70		11.000
35242	51306.	0.	165850.	3540.42	3555.21	1.93	10.000
350793	51306.	0.	165850.	3534.78	3551.84	-0.41	9.000
35546	51306.	0.	165850.	3527.98	3545.52	-0.60	8.000
356854	51306.	0.	165850.	3521.67	3538.98	-0.31	7.000
35785	51306.	0.	165850.	3515.09	3532.37	-0.28	6.000
35897	51306.	0.	165850.	3508.50	3525.78	-0.27	5.000
359734	51306.	Ο.	165850.	3501.92	3519.19	-0.24	4.000
36026	51306.	0.	165850.	3495.32	3512.55	-0.23	3.000
36093	51306.	0.	165850.	3488.71	3505.95	-0.24	2.000
355086	51306.	0.	165850.	3483.10	3499.37	0.76	1.000

.

\$\$END

0 DATA ERRORS DETECTED.

TOTAL	NO.	OF	TIN	ie s	TEPS	READ	-	2	
TOTAL	NO.	OF	WS	PRO	FILE	s =		2	
ITERA	FIONS	S IN	I EZ	(NER	EQ	-		400	

COMPUTATIONS COMPLETED RUN TIME = 0 HOURS, 0 MINUTES & 0.00 SECONDS APPENDIX-12, SILT OBSERVATION RECORD OF BEAS RIVER AT BHUNTAR (IN HACTARE METER)

.

198519861987198819881989199019911992199319931994Jan 0.249 0.200 0.210 0.120 0.123 0.503 0.173 0.237 0.241 0.335 0.180 0 Feb 0.186 0.213 0.208 0.219 0.123 0.237 0.241 0.335 0.180 0 Mar 0.430 0.943 0.777 2.764 6.417 6.621 3.286 3.065 1.145 0.403 0.779 Apr 0.631 2.214 1.760 2.939 2.811 2.934 5.128 3.055 3.790 3.790 Apr 0.631 2.214 1.760 2.939 2.811 2.934 5.128 3.6761 3.790 3.790 Apr 0.6511 5.9702 4.000 7.058 12.903 4.021 8.097 5.397 25.392 25.436 3.790 Jun 8.112 16.472 12.777 40.247 22.360 4.6321 12.942 14.569 25.530 4.9411 17.7 Aug 65.260 38.265 30.406 97.054 39.347 45.220 25.446 5.7761 25.392 25.436 37.607 Aug 65.226 38.265 30.406 97.054 39.347 45.220 26.640 50.761 12.677 47.677 Aug 65.226 38.2654 39.247 45.220 25.640 50.761 <	Month						Year			-		
0.249 0.200 0.210 0.123 0.503 0.173 0.241 0.236 0.180 0.335 0.180 0.186 0.213 0.298 0.219 0.439 1.318 1.877 0.417 0.250 4.000 0.430 0.943 0.777 2.764 6.417 6.621 3.286 3.065 1.145 0.403 0.631 2.214 1.760 2.939 2.811 2.934 5.128 4.635 2.381 3.790 0.631 2.214 1.760 2.939 2.811 2.934 5.128 4.635 2.381 3.790 3.992 6.597 4.000 7.058 12.903 4.621 12.942 3.790 3.756 3.992 6.597 4.000 7.058 12.903 4.621 12.942 3.790 5.6121 59.608 40.409 293.270 2.7013 48.301 65.702 55.761 25.332 25.436 56.121 59.608 40.409 293.270 29.347 45.220 25.761 23.5530 149.411 17 56.121 59.608 40.409 293.270 29.347 45.220 25.436 31.202 25.436 31.202 56.121 59.608 30.406 297.61 12.940 50.761 15.330 135.250 44.011 11.387 11.446 10.745 198.170 10.064 17.902 $0.26.90$ 0.787 0.180 0.180 <tr< th=""><th></th><th>1985</th><th></th><th>1987</th><th>1988</th><th>1989</th><th>1990</th><th>1991</th><th>1992</th><th>1993</th><th>1994</th><th>1995</th></tr<>		1985		1987	1988	1989	1990	1991	1992	1993	1994	1995
0.186 0.213 0.298 0.219 0.439 1.318 1.877 0.417 0.250 4.000 0.430 0.943 0.777 2.764 6.417 6.621 3.286 3.065 1.145 0.403 0.430 0.943 0.777 2.764 6.417 6.621 3.286 3.065 1.145 0.403 1 0.631 2.214 1.760 2.939 2.811 2.934 5.128 4.635 2.301 3.730 3.992 6.597 4.000 7.058 12.903 4.021 8.097 5.397 5.010 3.736 3.992 6.597 4.000 7.058 12.903 4.021 8.097 5.397 25.436 3.790 56.121 59.608 40.409 293.270 27.013 48.301 65.702 55.761 25.392 25.436 3 62.260 38.265 30.406 97.372 25.761 25.530 149.411 17 62.260	Jan	0.249		0.210	0.123	0.503	0.173	0.237	0.241	0.335	0.180	0.178
0.430 0.943 0.777 2.764 6.417 6.621 3.286 3.065 1.145 0.403 0.631 2.214 1.760 2.939 2.811 2.934 5.128 4.635 2.381 3.790 3.992 6.597 4.000 7.058 12.903 4.021 8.097 5.397 5.010 3.758 18.112 16.472 12.777 40.247 22.360 46.321 12.942 14.569 25.543 3.758 56.121 59.608 40.409 293.270 27.013 48.301 65.702 55.761 22.6530 149.411 1 56.121 59.608 40.409 293.270 27.013 48.301 65.702 55.761 22.532 25.436 62.260 38.265 30.406 97.054 39.347 45.220 26.640 50.761 15.320 135.250 11.387 11.446 10.745 198.170 10.064 17.902 12.245 74.677 3.120	Feb	0.186		0.298	0.219	0.439	1.318	1.877	0.417	0.250	4.000	0.185
0.631 2.214 1.760 2.939 2.811 2.934 5.128 4.635 2.381 3.790 3.992 6.597 4.000 7.058 12.903 4.021 8.097 5.397 5.010 3.758 18.112 16.472 12.727 40.247 22.360 46.321 12.942 14.569 25.392 25.436 56.121 59.608 40.409 293.270 27.013 48.301 65.702 55.761 226.530 149.411 1 62.260 38.265 30.406 97.054 39.347 45.220 26.400 50.761 15.330 135.250 11.387 11.446 10.745 198.170 10.064 17.902 12.245 74.677 3.120 21.607 1 1.203 0.610 0.916 1.885 0.571 0.620 0.875 1.040 0.780 0.480 1.203 0.312 0.312 0.219 0.2245 74.677 3.120 21.607 1	Mar	0.430		0.777	2.764	6.417	6.621	3.286	3.065	1.145	0.403	0.549
3.992 6.597 4.000 7.058 12.903 4.021 8.097 5.397 5.010 3.758 18.112 16.472 12.727 40.247 22.360 46.321 12.942 14.569 25.392 25.436 56.121 59.608 40.409 293.270 27.013 48.301 65.702 55.761 226.530 149.411 1 62.260 38.265 30.406 97.054 39.347 45.220 26.640 50.761 15.330 135.250 11.387 11.446 10.745 198.170 10.064 17.902 12.245 74.677 3.120 21.607 1 11.203 0.610 0.916 1.885 0.571 0.620 0.875 1.040 0.780 0.480 0.295 0.312 0.517 0.2245 0.3761 15.330 135.250 11.607 1 0.295 0.310 0.519 0.571 0.620 0.875 1.040 0.780 0.480 0.295 0.312 0.514 0.220 0.278 0.173 0.173 0.173 0.291 0.312 0.184 0.240 0.240 0.278 0.173 0.173 0.291 0.312 0.312 0.214 0.278 0.173 0.173 0.173 0.291 0.312 0.314 0.240 0.278 0.173 0.173 0.197 0.291 0.312 0.240 0.240 0.291 0.173 </th <th>Apr</th> <td>0.631</td> <td>2.214</td> <td>1.760</td> <td>2.939</td> <td>2.811</td> <td>2.934</td> <td>5.128</td> <td>4.635</td> <td>2.381</td> <td>3.790</td> <td>1.510</td>	Apr	0.631	2.214	1.760	2.939	2.811	2.934	5.128	4.635	2.381	3.790	1.510
18.112 16.472 12.727 40.247 22.360 46.321 12.942 14.569 25.392 25.436 56.121 59.608 40.409 293.270 27.013 48.301 65.702 55.761 226.530 149.411 1 62.260 38.265 30.406 97.054 39.347 45.220 26.640 50.761 15.330 135.250 11.387 11.446 10.745 198.170 10.064 17.902 12.245 74.677 3.120 21.607 1 1.203 0.610 0.916 1.885 0.571 0.620 0.875 1.040 0.780 0.480 1.203 0.510 0.916 1.885 0.571 0.620 0.875 1.040 0.780 0.480 0.295 0.301 0.212 0.216 0.278 0.173 0.173 0.173 0.210 0.312 0.184 0.214 0.240 0.204 0.278 0.173 0.310 0.312 0.184 0.240 0.204 0.278 0.173 0.310 0.312 0.184 0.214 0.240 0.204 0.181 0.197 155.176 137.241 102.652 644.672 122.901 173.980 137.406 211.064 280.748 345.654	May	3.992	6.597	4.000	7.058	12.903	4.021	8.097	5.397	5.010	3.758	6.802
56.121 59.608 40.409 293.270 27.013 48.301 65.702 55.761 226.530 149.411 1 62.260 38.265 30.406 97.054 39.347 45.220 26.640 50.761 15.330 135.250 135.250 11.387 11.446 10.745 198.170 10.064 17.902 12.245 74.677 3.120 21.607 1 11.203 0.610 0.916 1.885 0.571 0.620 0.875 1.040 0.780 0.480 0.295 0.301 0.617 0.220 0.591 0.259 0.209 0.173 0.278 0.173 0.295 0.310 0.214 0.270 0.278 0.173 0.173 0.173 0.210 0.312 0.184 0.240 0.204 0.181 0.179 0.173 0.310 0.312 0.184 0.240 0.204 0.181 0.197 1.166 155.176 137.241 102.652 644.672 122.901 173.980 137.406 280.748 345.654 345.654	Jun	18.112		12.727	40.247	22.360	46.321	12.942	14.569	25.392	25.436	33.592
62.260 38.265 30.406 97.054 39.347 45.220 26.640 50.761 15.330 135.250 11.387 11.446 10.745 198.170 10.064 17.902 12.245 74.677 3.120 21.607 1 1.203 0.610 0.916 1.885 0.571 0.620 0.875 1.040 0.780 0.480 0.295 0.361 0.916 1.885 0.571 0.620 0.875 1.040 0.780 0.480 0.295 0.361 0.220 0.509 0.259 0.309 0.173 0.278 0.173 0.295 0.312 0.184 0.434 0.214 0.240 0.204 0.181 0.197 1.166 0.310 0.312 0.184 0.436 173.980 137.406 280.748 345.654 <t< th=""><th>Jul</th><td>56.121</td><td>:</td><td>40.409</td><td>293.270</td><td>27.013</td><td>48.301</td><td>65.702</td><td>55.761</td><td>226.530</td><td>149.411</td><td>172.970</td></t<>	Jul	56.121	:	40.409	293.270	27.013	48.301	65.702	55.761	226.530	149.411	172.970
11.387 11.446 10.745 198.170 10.064 17.902 12.245 74.677 3.120 21.607 12 1.203 0.610 0.916 1.885 0.571 0.620 0.875 1.040 0.780 0.480 0.295 0.361 0.220 0.509 0.259 0.309 0.173 0.320 0.780 0.480 0.295 0.310 0.212 0.509 0.259 0.309 0.173 0.320 0.778 0.173 0.310 0.312 0.184 0.434 0.214 0.240 0.204 0.181 0.173 0.310 0.312 0.184 0.434 0.214 0.240 0.204 0.181 0.197 1.166 155.176 137.241 102.652 644.672 122.901 173.980 137.406 280.748 345.654 38	Aug	62.260		30.406	97.054	39.347	45.220	26.640	50.761	15.330	135.250	43.766
1.203 0.610 0.916 1.885 0.571 0.620 0.875 1.040 0.780 0.480 0.295 0.361 0.220 0.509 0.259 0.309 0.173 0.378 0.480 0.310 0.312 0.184 0.509 0.214 0.240 0.173 0.278 0.173 0.310 0.312 0.184 0.434 0.214 0.240 0.181 0.197 1.166 155.176 137.241 102.652 644.672 122.901 173.980 137.406 211.064 280.748 345.654 38	Sep	11.387	11.446	10.745	198.170	10.064	17.902	12.245	74.677	3.120	21.607	125.840
0.295 0.361 0.220 0.509 0.259 0.309 0.173 0.378 0.173 0.310 0.312 0.184 0.434 0.214 0.240 0.204 0.181 0.197 1.166 155.176 137.241 102.652 644.672 122.901 173.980 137.406 211.064 280.748 345.654 38	Oct	1.203		0.916	1.885	0.571	0.620	0.875	1.040	0.780	0.480	0.628
0.310 0.312 0.184 0.434 0.214 0.240 0.104 0.197 1.166 155.176 137.241 102.652 644.672 122.901 173.980 137.406 211.064 280.748 345.654 38	Nov	0.295	0.361	0.220	0.509	0.259	0.309	0.173	0.320	0.278	0.173	0.273
155.176 137.241 102.652 644.672 122.901 173.980 137.406 211.064 280.748 345.654	Dec	0.310	0.312	0.184	0.434	0.214	0.240	0.204	0.181	0.197	1.166	0.195
	Sum	155.176	137.241	102.652	644.672	122.901	173.980	137.406	211.064	280.748	345.654	386.488

Source: Irrigation and Public Health Department, Kullu

.