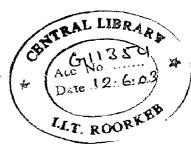
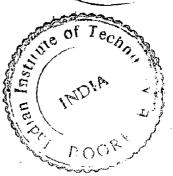
DEVELOPMENT OF A MODEL FOR EVAPOTRANSPIRATION

A DISSERTATION

Submitted in partial fulfillment of the requirements for the award of the degree

of


MASTER OF TECHNOLOGY


in

WATER RESOURCES DEVELOPMENT

By **SUYANTO**

WATER RESOURCES DEVELOPMENT TRAINING CENTRE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE -247 667 (INDIA)

December. 2002

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in this dissertation entitled "DEVELOPMENT OF Α MODEL EVAPOTRANSPIRATION", in partial fulfillment of the requirements for the award of the degree of Master of Technology in Water Resources Development (Civil), submitted in the Water Resources Development Training Centre, Indian Institute of Technology Roorkee, is an authentic record of my own work carried out from 16th July 2002 to 30th November 2002 under the supervision of Dr. U. C. Chaube, Professor, WRDTC, Indian Institute of Technology Roorkee.

The matter embodied in this dissertation has not been submitted by me for the award of any other degree.

Date

: December 02, 2002

Place: Roorkee

(SUYANTO)

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

(Dr. U. C. CHAUBE)

Of C. Cante

Professor

Indian Institute of Technology Roorkee

Roorkee-247 667

ACKNOWLEDGEMENT

I would like to express my sincere thanks and deep sense of gratitude to **Dr. U.C Chaube**, Professor, Water Resources Development Training Centre (WRDTC), Indian Institute of Technology, Roorkee for valuable and unlimited guidance throughout the preparation of this dissertation.

I also would like to extend my sincere thanks to Professor **Devadutta Das**, Head WRDTC, Indian Institute of Technology of Roorkee, and other staff for all facilities, cooperation and their kindness.

I also express my gratitude to my colleagues for their help and information toward the improvement of this dissertation.

I have no words to adequately express my most sincere gratitude to my Wife Sunarnik, my children Wildan Habibinata Shabri and Walid Mudafi Robani, and all other family members for their constant encouragement and assistance extended to me during the entire study period at Roorkee.

(SUYANTO)

CONTENTS

CANDIDATE'S DECLARATION	į
ACKNOWLEDGEMENT	ii
CONTENTS	iii
LIST OF TABLES	٧
LIST OF FIGURES	vii
LIST OF NOTATION	viii
ABSTRACT	×
CHAPTER 1 INTRODUCTION	
1.1General	1
1.2 Climate of Indonesia	2
1.3 Objective and Scope of Study	3
CHAPTER .2 STUDY AREA AND DATA	
2.1 Aceh Province	5
2.2 Principle River Systems	6
2.3 The Study Area	6
2.4 Agriculture	6
2.5 Centra Barisan Range	7
2.6 Irrigation Planning in Aceh	7
2.7 Hydrometeorological Data	8
CHAPTER .3 DEVELOPMENT OF GENERAL EVAPOTRANSPIRATION MODEL	
3.1 Introduction	9
3.2 Modified Penman Method	10
3.3 Development of Model	11
3.4 Input Data and Computation Algorithm	17
3.5 Summary Model and Computation Steps	19
3.6 Accuracy of Model	22

CHAPTER.4 APPLICATION STUDY OF GENERAL	
EVAPOTRANSPIRATION MODEL	
4.1 Calculation of ETo using General Model	25
4.2 Calculation of ETo using FAO-24 Tables	30
4.3 Comparison of the Results	32
CHAPTER 5 SIMPLIFIED MODEL FOR EVAPOTRANSPIRATION	
5.1 Introduction	43
5.2 Range of Climate Variation	43
5.3 Proposed Simplified Model	44
5.4 Relation between Weighing Factor (w) and Temperature	46
5.5 Relation between Extraterrestrial Radiation (Ra) and Latitude	47
5.6 Relation between Net Longwave Radiation (Rnl) & sunshine	48
5.7 Estimation of Adjustment Factor (c)	49
5.8 Simplified Model	50
5.9 Application Study of Simplified Model	5 1
5.10 Comparison of Simplified Model with General Model and FAO Procedure	54
CHAPTER .6 SUMMARY AND CONCLUSION	
6.1 Summary	79
6.2 Conclusion	82
REFERENCES	83
APPENDIX	84

LIST OF TABLES

Table	Description	Page
No		No
1.1	Data Requirement for Various Method	3
2.1	Mean monthly Climatic Data at Lhokseumawe	
	Meteorological Station.	8
3.1	Correlation between Roughness Height and Surface	
	Туре	12
3.2	Recommended Average Day for each month	
	(from Klein 1977) and values of n by Month	15
3.3	Adjustment Factor (c) in presented Equation	
	(Table 16-FAO-24)	17
3.4	Input Data for Equation in place Tables	18
3.5	Summary Model and Computation Steps	21
4.1	Summary of Climate Data Jambo Aye Irrigation Project	25
4.2	Estimation Evapotranspiration (ETo) by General Model	34
4.3	Estimation Evapotranspiration (ETo) by Modified	
	Penman Method using FAO-24 Tables	35
4.4	Comparison of Meteorological Variates for January	
	Month as per FAO tables and General Model	36
4.5	Comparison (Ra) by FAO Tables and General Model	37
4.6	Comparison of ETo by FAO-24 Tables and General	
	Model	38
4.7	Comparison of Eo by as per FAO-24 Tables and	
	General Model	38
4.8	Accuracy in estimation of Extraterrestrial Radiation by	
	General Model	39
4.9	Accuracy in estimation of evapotranspiration (ETo) by	
	General Model	40
4.10	Accuracy in estimation of evaporation (Eo) by General	
	Model	41

List of Tables Continued

Table	Description					
No	Description	No				
4.11	Accuracy in estimation Extraterrestrial Radiation by					
	Simplified Model	42				
5.5	Relation of Temperature between Weighing Factor	47				
5.6	Best Fit Coefficient for Linear Relation between Ra and	·				
	Latitude	48				
5.7	Linear Regression between (n/N) and RnI, Expressed;					
	$Rnl = A + B \cdot n/N$	49				
5.8	Computation Steps of ETo and Eo	50				
5.1	Mean monthly Rainfall of in Aceh Province, Indonesia	56				
5.2	Mean monthly Air Temperature of in Aceh Province,					
	Indonesia	57				
5.3	Mean monthly Air Relative Humidity in Aceh Province,					
	Indonesia	58				
5.4	Mean monthly Wind Run at 2 m above ground	59				
5.9	Estimation Evapotranspirstion (ETo) by Simplified Model	60				
5.10	Comparison results on January Month as per FAO-24					
]	tables and Simplified Model	61				
5.11	Comparison of (Ra) by General Model and Simplified					
	Model	61				
5.12	Comparison of (Ra) by FA)-24 tables and Simplified					
	Model	62				
5.13	Comparison ETo by General Model and Simplified					
	Model	62				
5.14	Comparison of ETo by FAO-24 tables and Simplified					
	Model	63				
5.15	Comparison of Eo by General Model and Simplified					
	Model	63				
5.16	Comparison of Eo by FAO-24 tables and Simplified	·				
	Model	64				
		L.,				

List of Tables Continued

Table	Description				
No					
5.17	Accuracy in estimation Extraterrestrial Radiation by				
	Simplified Model	65			
5.18	Comparison of Extraterrestrial Radiation by General	li .			
	Model and Simplified Model	66			
5.19	Accuracy in estimation of Evapotranspiration (ETo) by				
	Simplified Model	67			
5.20	Comparison of Evapotranspiration (ETo) by General				
	Model and Simplified Model	68			
5.21	Accuracy in estimation of Evaporation (Eo) by Simplified				
	Model	69			
5.22	Comparison of Evaporation (Eo) by General Model and				
	Simplified Model	70			

LIST OF FIGURES

No	Description	
	Description	No
5.1	Mean monthly Rainfall of in Aceh Province, Indonesia	56
5.2	Mean monthly Air Temperature of in Aceh Province,	1
	Indonesia	57
5.3	Mean monthly Air Relative Humidity in Aceh Province,	
	Indonesia	58
5.4	Mean monthly Wind Run at 2 m above ground	59
5.5	Relationship between Weighing Factor (w) and Altitude	ıı
	at different temperature	71
5.6	Relationship between Ra and Latitude for December to	
	March (Northern Hemisphere)	72
5.7	Relationship between Ra and Latitude for April to July	
•	(Northern Hemisphere)	73
5.8	Relationship between Ra and Latitude for August to	
	November (Northern Hemisphere)	74
5.9	Relationship between Ra and Latitude for December to	
	March (Southern Hemisphere)	75
5.10	Relationship between Ra and Latitude for April to July	
	(Southern Hemisphere)	76
5.11	Relationship between Ra and Latitude for August to	
	November (Southern Hemisphere)	77
5.12	Adjustment Factor (c) for $U_{day}/U_{night} = 1$ and RHmax =	78
	90%	

LIST OF NOTATIONS

= Fraction of Extraterrestrial Radiatio at n = 0 a.b = Fraction of Extraterrestrial Radiatio at clear days a + b= Saturation Vapour Pressure in mbar or kPa ea Actual Vapour Pressure in kPa ed С = Adjustment Factor Deficit of Saturation Vapour Pressure in kPa D Average Deficit of Saturation Vapour Pressure in kPa Day f(u) = Wind - Related Function J = Julian day number = Wind Speed at 2 m height above ground in meter U2 Uday = Day Time Wind Speed in m/sec Unight Night Time Wind Speed in m/sec Uday/Unight = Ratio of Day Time and Night Time n/N = Sunshine Hours = Extra Terrestrial Radiation in mm / day Ra Rs Solar Radiation in mm/day Net Extra Terrestrial Short wave Radiation in mm/day Rns Net Extra Terrestrial Long wave Radiation in mm/day Rnl Net Radiation in equavalent Evaporation in mm/day Rn Tk = Mean temperature in Degree Kelvin f(T)Temperature Function f(n/N)= Sunshine Function f(ed) Actual Vapour Pressure Function RH = Relative Humidity in % RHmax = Maximum of Relative Humidity in % Rhmean = Average of Relative Humidity in % T = Temperature in 0C p = Atmospheric Pressure in kpa Reference Crop Evapotranspiration in mm/day ETo Eo = Evaporation in mm/day n = Bright Sunshine Hours per day, h N = Total day length, h = Ratio of mean daily actual to maximum possible sunshine hours n/N = Weighing Factor w = Sunshine Hour Angle in Radians ws = Weighing Factor constant wa = Elevation (altitude) above mean Sea Level in meters Z α = The reflection Coeficient = Stefan Boltzmann constant σ Latent Heat of Vaporization of water λ = The Psychometric Constant in kPa °C-1 γ = The Psychometric Constant in kPa ⁰C⁻¹ γ* = Latitude of site φ δ Declination in Degree Centrigrade = Gradient of Saturated Vapor Pressure in kPa 0 C-1

ABSTRACT

Several methods, empirical as well as physical processes based have been proposed in literature for estimation of meteorological parameters and for estimation of evapotranspiration. Choice of using a particular method in most cases is dictated by availability and accuracy of input data.

Objective of this dissertation work is to develop models based on empirical correlations between climatic parameters (dependent variable) and other parameters (independent variable), which are generally known or can be easily measured. Thus, reference to various tables in FAO procedure (Doorenbos and Pruitt 1977) could be avoided and the procedure becomes simplified.

First, a general model is proposed by compiling as well as developing regression equations. Table 3.4 shows that reference to eleven tables (as per FAO Procedure) has been avoided by using a general model. Only one table has to be referred, in the proposed general model.

Keeping in view the limited range of climatic variation in Indonesia and particularly in Aceh Province, simple linear equations have been developed and a simplified model has been proposed. The model and input data are summarized in Table 5.8 (chapter 5). The simplified model has been applied to estimate ETo and Eo at Jambo Aye Project.

Accuracy of the general model and the simplified model in estimation of extraterrestrial radiation (Ra), evaporation (Eo) and Potential evapotranspiration (ETo) in terms of percent of variation, coefficient of determination (\mathbb{R}^2), bias (B) and variance (V) have been compared.

Extraterrestrial radiation (Ra) is estimated accurately in the general model as well as the simplified model. It is therefore not necessary to use complex mathematical expression given in the general model to estimate Ra.

Simplified model consisting of linear regression equations can be used for estimation of potential evapotranspiration in the limited range of variation for meteorological parameters as happens in Indonesia. Accuracy parameters of the simplified model are found to be better than those of the general model.

Simplified model has been developed specifically for limited range of variation in meteorological parameters in Indonesia. It is not applicable for other regions. General model is applicable for other regions also but accuracy has been compromised in consideration of general application.

CHAPTER 1 INTRODUCTION

1.1 GENERAL

Estimation of open water evaporation and potential evapotranspiration (PET) are required for the following studies and therefore is an important component of irrigation planning.

- 1. Assessment of rainfall deficit (Potential evapotranspiration minus effective rainfall) being an indicator of irrigation requirement to meet crop water demand.
- Assessment of moisture availability index (MAI) being an indicator of possible of rainfed crop cultivation. MAI is defined as the ratio of 80% probability rainfall to monthly potential evapotranspiration (PET)
- 3 Assessment of crop growth period and agro climatic condition for crop growth
 - 4. Assessment of average seasonal run off in ungaged catchments using climatic water balances techniques.

Annual run off = a (gross water surplus - Soil Moisture rechange)

Annual gross water surplus is defined as the sum of positive monthly differences between rainfall and potential evapotranspiration

5. Assessment of evaporation loss from lakes and reservoir

Reliable estimate of evaporation and potential evapotranspiration is necessary as error in estimation of these values may cause serious errors in planning and hydrologic design of irrigation project.

Several methods are employed in the determination and estimation of evapotranspiration. Direct measurements of evapotranspiration can be done by lysimeter but such experiments need extensive care, longer time, high cost and sufficient data, which is normally not practicable. Moreover, exact simulation of prototype field conditions in lysimeter is practically not possible and hence the results obtained may not be very accurate. Several methods for

estimating the evapotranspiration on the basis of correlation with climatic data have been developed, as listed below:

- 1. Jensen Method
- 2. Thornthwaite Method
- 3. Blaney-Criddle Method
 - Original
 - Modified (FAO)
- 4. Radiation Method
- 5. Pan-Evaporation Method
- Chistiansen Method
- 7. Penman Method
 - Original
 - Modified (FAO)

All these empirical equations estimate the potential evapotranspiration, by utilizing one or more climate measurement.

All these equations have been developed from observations in temperature climates. Hence these equations need through study, before being used in tropical region such as Indonesia, India, which have different climate than that of temperature region.

Choice of using method for evapotranspiration computation in most of the cases is limited with the data availability. Table 1.1 shows the data requirements for each method.

1.2. CLIMATE OF INDONESIA

Indonesia lies just north and south of the equator. The latitude range between 10⁰ N to 10⁰ S and maximum altitude at the irrigation field is around 2000 m above mean sea level.

The climate is tropical with medium to high rainfall. It may be range from to 5000 mm a year. The variation of mean daily temperature between the warmest and the coldest months is only between about 20°C to 30°C.

Temperature decreases with increasing altitude at about the rate of 1° C per 200 m. Otherwise temperature becomes somewhat high in the city areas.

The mean daily actual sunshine hours vary from about 30 % to 80 % of the maximum possible sunshine hours. Wind velocity varies with the maximum wind speed about 500 km/day. The wind velocity becomes somewhat less in the inland areas. The relation of day and night wind velocity varies from 1 to 3 and daytime wind may be maximum about 6 m/sec.

Table 1.1: Data Requirement for Various Methods

Method	Mean Temp	Max. & Min. Temp	Humi dity	Wind	Sun- shine	Radia- tion	Eva- pora- tion	Envi- ronment
1. Penman	,			ļ				
a. Original	*	-	*	*	*	(*)	_	_
b. Modified	*	-	*	*	*	(*)	-	. 0
2. Blaney Criddle			1	1				
a. Original	*	-	-	ļ -	-	-	-	-
b. Modified	*	-	0	0	0	-	-	0
3. Radiation	*	<u> </u>	0	0	*	(*)	-	0
4. Jensen.	*	-	-	-	1	-	-	
5. Pan-Evaporation	-	-	0	0		-	*	*
6. Thornwaite	*	-	-	-		-	<u> </u>	-
7. Cristiansen	*	-	*	*		*	-	-
							1	.

- Note: * = Measured data (observed)
 - 0 = Estimated data (assessed)
 - (*) = if available but not essential

1.3. OBJECTIVE AND SCOPE OF STUDY

Food and agriculture organization (Unites Nationals) has brought a publication entitled "Guidelines for Predicating Crop Water Requirements" Irrigation and Drainage paper - 24 (1977), authored by J. Doorenbos, and W.O. Pruitt. Several Procedures are discussed in this report for estimation of evapotranspiration. It is also recommended that modified Penman method should be used whenever possible for estimate of potential evapotranspiration.

However, in this method various tables have to be referred to obtain the values of climatical parameters some of which depend on location, latitude, altitude and some of which are interdependent.

Objective of this dissertation study is to develop models based on empirical correlations between climatic parameters (dependent variable) and other parameters (independent variable), which are generally known or can be easily measured. Thus reference to various tables can be avoided and the procedure becomes simplified. However, empirical relations may cause error if correlation is not very good. The proposed models can be useful in computerization of the estimation procedure and in sensitivity analysis of the potential evapotranspiration. In Indonesia, climatic variable such as radiation, temperature and wind speed occur in specific limited range. Therefore, it is proposed to further simplify the procedure for estimation of evapotranspiration.

Scope of the study is limited to geographic region of Indonesia for which latitude range is 10⁰ N to 10⁰ S. Further validity of correlation equations is checked for the location of Jambo Aye in Aceh Province in Indonesia where a multipurpose project is being planned.

CHAPTER 2 STUDY AREA AND DATA

2.1. ACEH PROVINCE

The special District of Aceh is a province of Indonesia and lies at the northern end of Sumatera between latitude 3° and 6° N (Figure 2.1. The total land area of 55,852 km² includes the island of Pulau Weh in the north and Simeulue and the Kepulauan Banyak group in the south – west coast.

Aceh province is mountainous, centring on the Bukit Barisan range, which runs the entire length of sumatera. The highest peaks are in the region of 3000 to 3400 m above sea level. Younger mountains formed from folded tertiary sediments make up the foothills of the north and east coasts. Three volcanoes of known recent activity exist. The recent laves and transported material from these volcanoes are of an acidic nature and are consequently of low facility.

Coastal plains are generally narrow (< 4 km) on the north and east but widening locally at the mouths of certain rivers, most notaly Kr. Baro and Kr.Pase, Kr.Keureutan. Tidal swamps occur at the mouths of the main rivers of the East Coast. On the West Coast, the coastal plain is generally much wider (up to 20 km) with active a gradation of sediments from both coastal and riverine sources. This deposition has led to the formation of peat beach swamps in most of the larger areas of coastal plain. However, stretches of the West Coast such as the Aceh Besar/Aceh Barat, border and the area around Tapak Tuan in Aceh Selatan have no coastal plain.

The climate is tropical with high humidity (80-90 %) and little variation in mean daily temperature $(25^0 - 27^0 C)$ throughout the seasons. Rainfall is generally high but subject to sharp regional variations due to the interaction of the prevailing monsoons and the central mountains. The West Coast is the

wettest with typically mountains. Annual rainfall decreases towards the north coast where it reduces in some areas to as little as 1200 m.

2.2. PRINCIPAL RIVER SYSTEMS

The principal rivers of Aceh province are shown in Figur.2.1. All rivers, except the Lawe Alas in the central rift valley, follow a normal course to the sea on either side of the central mountains.

Most rivers are characterized by steep boulder stream in upper catchments with dense primary forest cover, flattening into braided channels, then meandering in their lower reaches as they emerge from the foothills into the coastal plain. The profile and section of the river between the 25 meters contour and its mouth is of considerable significance in determining irrigation supply potential, flood risk and erosion protection requirements. This varies considerably between rivers such as the Kr.Samalanga (average slope 1 in 240) and the incised Simpang kiri (average slope 1 in 5000).

2.3 THE STUDY AREA

The study area for the present study is the Water Resources Development Area number 12 (WRDA – 12) where in the Jambo Aye basin and the Jambo Aye irrigation project lies

2.4AGRICULTURE

The north and east coastal plains and foothills contain a portion of WRDA 12. The mountains and valley of the central Barisan range contain the upper portion of the WRDA - 12.

The northeast coastal plains contain the most productive and highly developed sawah areas of Aceh. Intensive cropping is limited by the annual rainfall which averages between 1500 to 2000 mm, and the base river flows that drain the central high lands to northeast. The growing season coincides with a single peak during which only 50 % of the annual total rainfall may be

expected. This is barely sufficient for single rice crop. Irrigation is thus essential for a single or double rice crop.

On Jambo Aye river in Aceh Utara major irrigation schemes are being developed. However, these are not fully operational at the present time and it is estimated that overall only 20 % of the sawah area is currently double cropped with rice.

2.5 CENTRA BARISAN RANGE

The upper portion of the WRDA – 12 lies in the mountains and valleys of the Central Barisan range. The central up lands can be further devided into two sub-region; The Tangse / Gumpang region and the Takengon / Blang Kejeren region, using the criteria of the 600 m countur. Rice lands in the Tnge / Gumpang region are below the altitude limitation for double cropping and inded two crops of rice are some times grown in the Tangse scheme areas. The region in still typified as an upland area and the climate is modified by the hills encircling the Kr.Teunom headwaters. The Takengon / Blang Kejeren region is largely well above the 600 m contour (Taengon 1250 m) and cropping is presently constrained by varietal suitability to only one local variety rice crop each year.

Both sub-regions have well developed coffee crops, particularly the Takengon area where an strengthening project has been developing the C. arabica industry for export purposes. Vegetables too are well suited, as a second crop in these areas and with the expanding urban population of the coastal plains, the full potential of this industry has not yet been developed. With average rainfall at around 2000 mm there is still a marked dry season from late May to the end of August that necessitates good irrigation supplies for any intended intensive agriculture.

2.6 IRRIGATION PLANNING IN ACEH

Irrigation accounts for majority of water resources schemes in Aceh. More than 250 irrigation schemes are proposed to be taken by government.

Detailed data for these schemes are not available. Preliminary design of these schemes can be done through empirical studies only, for which simple models for estimation of evapotranspiration can be useful.

2.7 HYDROMETEOROGICAL DATA

Monthly rainfall data is available for four rain gauge stations in WRDA –

- Bireuen 1912 to 1983- Isaq / kotadah 1936 to 1979

- Julu Rayu 1953 to 1983

- Lhokseumawe 1894 to 1983.

Representative meteorological station for the WRD-12 irrigation development area is Lhokseumawe for which data is given in Table 2.1

Table 2.1 Mean Monthly Climatic Data at Lhokseumawe Meteorological Station.

Climatic Variable								
Month	Air Temp (⁰ C)	Relative maximum Humidity (%)	Relative minimum Humidity (%)	Wind speed 2 m above ground	Ratio sunshine	Sunshine Duration (%)		
Jan	24.9	85	82	177	0.45	67		
Feb	25.2	85 ,	81	177	0.42	63		
Mar	26.4	85	80	160	0.44	66		
Apr	26.4	8 5	82	125	0.37	57		
May	26.6	85	82	104	0.35	54		
Jun	26.3	85	80	101	0.38	59		
Jul	26.2	85	81	108	0.38	58		
Aug	25.8	85	73	121	0.36	55		
Sept	25.7	85	82	118	0.30	47		
Oct	25.5	90	84	104	0.31	47		
Nov	25.5	90	85	114	0.34	51		
Dec	25.3	90	86	135	0.24	36		

CHAPTER 3

DEVELOPMENT OF GENERAL EVAPOTRANSPIRATION MODEL

3.1. INTRODUCTION

Hydrologists, in search for true to life description of a physical process create complex models, which require high level of input data and specification of an extensive set of parameters. In developing countries, input data in the form of frequently sampled hydro meteorological variables is generally not available. Similarly extensive set of soil and vegetation parameters is neither available from experiments nor is it readily available in the literature. Therefore, such research-oriented models could not become "tools of the trade" for hydrologic practitioners. A large number of empirical techniques and physically based models for estimation of evaporation and evapotranspiration are available in literature. Instead of evaluating all such techniques and models, emphases are to select a few preferred methods (empirical relations). Two standard evaporation rates i.e. potential evapotranspiration (ETo) and evaporation rates are needed in water resource planning.

The modified Penman method is generally recommended for the estimation of potential evapotranspiration (ETo). Food and Agriculture Organization (Unites Nations) has brought out a publication entitled "Guidelines for Predicating Crop Water Requirements"- Irrigation and Drainage paper — 24 (1977), authored by J. Doorenbos, and W.O. Pruitt. Several Procedures are discussed in this report for estimation of evapotranspiration. It is also recommended that modified Penman method should be used whenever possible for estimation of potential evapotranspiration. However, in this method various tables have to be referred to obtain the values of climatical parameters, some of which depend on location, latitude, altitude and some of which are interdependent.

In this chapter, an effort has been made to minimize use of tables by compiling as well as developing empirical correlation equations between:

various variables for a specific region. It will thus be useful in computerization of the method and in sensitivity analysis of the ETo estimate with respect to climate variables.

3.2. MODIFIED PENMAN METHOD

Potential evapotranspiration is defined as the rate of evapotranspiration from an extensive surface of 8 to 15 cm tall green grass cover of uniform height, actively growing, completely shading the ground and not short of water.

Penman Method has been modified by Doorenbos and Pruitt (1977).. The equation is:

$$ET_o = c [w x R_n + (1 - w) x f(u) x (e_a - e_d)]$$

Where,

ET_o = Reference crop evapotranspiration (mm / day)

c = Adjustment factor to compensate for the effect of day and height

weather conditions which depend upon ratio U_{day} / $U_{nigh}t$, U_{day} , Rh_{max} and solar Radiation (Rs)

- w = Weighing factor which depends upon temperature and altitude (dimensionless)
- R_n = Net radiation as equivalent evapotranspiration depth in mm / day. It is

the difference between net shortwave radiation (Rns) and net long wave Radiation (Rn1).

- f(u) = Wind related function, which depends upon 24 hr wind run (km / day) at 2 m height
- (e_a-e_d) = Difference between the saturation vapour pressure at mean air temperature and the mean actual vapour pressure of the air, both in unit of Milli bar or Pascal's

Details of the method and examples and reference tables are given in Doorenboss & Pruitt (1977) and also in text book on hydrology.

3.3. DEVELOPMENT OF MODEL

In the following paragraphs some preferred empirical relations have been compiled / developed for estimation of open water evaporation and reference crop evapotranspiration. Effort has been made to minimize use of reference to tables and to provide insight into interdependency among various climate variables.

Step – 1: Saturation Vapour Pressure (e_a):

Instead of using table 5 given in Doorebos and Pruitt (1977) the empirical formula as suggested by Raud Kivi (1979) gives similar results

$$e_a = 0.6108 \exp [(17.27 \times T)/(237.3 + T)]$$

Where,

 e_a is in kilo Pascals ($Pa = N / m^2$) and T is in degrees Celsius .

Step-2: Actual Vapour Pressure (e_d) and ($e_a - e_d$):

Actual vapour pressure (e_d) can be found out using the mean humidity (Rh_{mean} in %) by equation:

$$e_d = e_a x (Rh_{mean} / 100)$$
 in unit of e_a

Actual vapour pressure (e_d) can also be calculated if dew point temperature (T_d) is given instead of relative humidity. The temperature at which air would just become saturated at a given specific humidity is its dew point temperature T_d (in degree centigrade), so

$$e_a = 0.6108 \exp [(17.27 \times T_d)/(237.3 + T_d)]$$

where e_d is in kilo pascals and T_d is dew point temperature in ${}^{\circ}$ Celsius.

Maidment (1993) states that computing vapour pressure deficit ($e_a - e_d$) at the measured maximum and minimum temperatures separately, and then taking the average of these deficit values provides a better estimate of the true daily average deficit rather than averaging temperatures (or relative humidities) first and then computing the deficit

$$(e_a)_{av} = (e_a \text{ at } T_{max} + e_a \text{ at } T_{min}) / 2$$

and vapour pressure deficit (\overline{D})

$$\overline{D} = (e_a) \times (1 - RH) / 100 \text{ or}$$
 $\overline{D} = (e_a)_{av} - e_a \text{ at } T_d$

Step. 3. Wind Function f (u)

The wind velocity in the boundary layer near earth's surface (up to about 50 m) is well described by the logarithmic profile law (Priestley 1959).

$$Uh / U^* = (1/k) \times Ln (h/ho), or$$

 $U^* = (k \times Uh) / Ln (h/ho)$

Where the shear velocity is:

$$U^* = \sqrt{\frac{\tau o}{P}}$$

το is the boundary shear stress and \mathbf{p} is the fluid density, \mathbf{K} is of the Von Karman's constant (≈ 0.4) and ho is roughness height of the surface.

Table 3.1 : Correlation between Roughness Height and Surface Type

Surface	Roughness height (h _o) cm
1	
Ice, mud flats	0.001
Water	0,01 — 0,06
Grass (up to 10 cm)	0,1 – 2,0
Grass (10 cm to 50 cm)	2,0 - 5,0
Vegetation (1 m to 2 m)	20
Trees (10 m - 15 m)	40 – 70

Given wind velocity at height h, wind velocity at 2 m height can be found by

$$U2 = Uh \left[\frac{Ln - Ln.ho + Ln_2 - Lnh}{Ln.h - Ln.h} \right]$$

Wind function as given in Maidment (1993) is adopted for open water evaporation

$$f(u) = 6.43x (1 - 0.536x U_2) / \lambda$$

and for reference crop evapotranspiration

$$f(u) = 900 \times U_2 / (T + 275)$$

U2 is wind speed in m / sec at 2 m height.

Where ⋋ is the latent heat of vaporization of water

Step. 4. Determination of weighting factor (w)

Instead of using table – 8 given in Doorebos and Pruitt (1977), the following equations have been used (Maidment 1993)

W =
$$\Delta / (\Delta + \gamma)$$

 $\Delta = (4098 \times e_a) / (237.3 + T)^2$, kpa / °C where e_a in kpa

 γ = is psychometric constant

$$\gamma = (Cp \times P) / (0.622 \times Lv)$$

Cp is specific heat of moist air = 1.013 kJ per kg per degree centigrade. Lv is latent heat of vaporization. It varies slightly with temperature, Lv = 2.501 – 0.002361 T in kilo Joules / kg. Where T is temperature in °C, A joule is an SI unit representing the amount of energy required to exert a force of 1 Newton through distance 1 meter. P is average air pressure. It varies with elevation (altitude) above mean sea level. Z is in meters.

$$P = 101.3 \left[(293 - 0.0065 \times Z / 293) \right]^{5.256}$$

where: .

Z = Elevation (altitude) above mean sea level in meters

T = Mean temperature in degree centigrade

P = Average air pressure in kpa

$$\gamma$$
 = (0.0016286 x P) / (2.501 – 0.002361 x T) in kpa / $^{\circ}$ C

Therefore weighting (w) can be estimated using mean temperature (or T_{max} and T_{min}) and elevation (Z) only, weight w for reference crop evaporation is modified as

we =
$$\Delta/(\Delta + \gamma^*)$$
 and wa = $\gamma/(\Delta + \gamma^*)$
 $\gamma^* = \gamma (1 + 0.33 \times U_2)$
Note that we + wa $\neq 1$

Whereas for open water evaporation

we =
$$\Delta/(\Delta + \gamma)$$
 and wa = $\gamma/(\Delta + \gamma)$
and we + wa = 1

Step. 5. Extraterrestrial radiation (R_a) .

Generally Equation for Extraterrestrial Radiation and Maximum Possible Day Light Hours:

Extraterrestrial radiation can be estimated using following equations

Ra
$$(mm / day) = 15.392 \times dr (ws. sinØ. sinL + cosØ. cosL. sinws)$$

where dr is relative distance between earth and the sun given by :

$$dr = 1 + 0.033 \cos((2\pi x J)/365 - 1.405)$$

Where:

J : Julian day number

Ø: Latitude of site (positive for Northern hemisphere, and negative for Southern Hemisphere)

&: Solar declination (in radiation) given by

 $\delta = 0.4093 \sin ((2\pi \times J/365) - 1.405)$

ws is the sunset hour angle (radians) given by

ws = arc cos (-tanØ.tanL)

Maximum Possible day light hours can be estimated by $N = 24 \times ws$

Therefore Ra and N at a location and on a particular day can be calculated from data on \emptyset & J only. Average Ra and N for month.: Ra = f_1 (\emptyset , J) and average N (hrs / day) for a month N = f_2 (\emptyset , J). In order to get

average Ra (mm / day) and average N (hrs / day) for a month,, following table can be used table.

Table3.2.Recommended Average Day for each month (from Klein 1977) and values of n by Month.

	n for ith Day of	For the Average Day of the Month				
Month	Month	Date	N, Day of year	∆. Declination		
January	i	17	17	-20.9		
February	31 + i	16	47	-13.0		
March	59 + i	16	75	-2.4		
April	90 + i	15	105	9.4		
May	120+i	15	135	18.8		
June	151+i	11	162	23.1		
July	181+i	17	198	21.2		
August	212+i	16	228	13.5		
September	243+i	15	258	2.2		
October	273+i	15	288	-9.6		
November	304+i	14	318	-18.9		
December	334+i	10	334	-23.0		

Source: Klein, S.A (1977) "Calculation of Monthly average Isolation on Tilled Surfaces" in Journal of Solar Energy, Vol. 19, page 325 (1977) USA.

The above procedure provides estimate of N and Ra which is good to about 0.1 hour and 0.1 mm/day, respectively (Maidment, 1993).

Step. 6 : Net Radiation (Rn)

Net radiation is the difference between all incoming and out going radiation.

$$R_n = R_{ns} - R_{n1}$$

Where:

 R_{ns} = net shortwave solar radiation in mm / day

 R_{n1} = net long wave solar radiation in mm / day . Earth surface is on average warmer, than atmosphere so there is net loss of energy as thermal energy from ground.

R ns =
$$(1-\alpha)R_s$$

Rs = $\left[a+b.\frac{n}{N}\right]Ra$
Rn1 = $f(T) \times f(ed) \times f(n/N)$
 $f(T) = \sigma(T_k)^4$
Net emissivity ($f(e_d)$)
 $f(e_d) = ae + be \sqrt{ed}$
for average conditions:
 $ae = 0.34$ and $be = -0.14$
 $\therefore f(ed) = 0.34 - 0.14 \sqrt{ed}$
 $f(n/N) = 0.10 + 0.90. n/N$

where:

Rs = Total incoming short wave radiation (mm/day)

Ra = Extra terrestrial radiation received at the top of the atmosphere which depends upon the latitude and month (see step 5).

α = Reflectiveness (or albedo) of surface, for most crops K is taken as
 0.25.For open water 0.08, for bare soil 0.1 (wet) to 0.35 (dry), for tall farm crop 0.18.

a,b = Constants depending upon local conditions, for practical purposes,

a = 0.29 cos ϕ where \varnothing is latitude. For average climate, a = 0.25 and b = 0.50

ae,be = for average condition ae = 0.34 and be = -0.14,for arid area ae = 1.35,be = -0.35 and for humid area ae = 1.0,be = 0.0

T_k = Mean temperature in degree Kelvin = 273 + T° C

 σ = Stephen - Bolzmann constant (4.903 x 10⁻⁹ MJ m⁻² K⁻⁴ day⁻¹)

n/N = Ratio of mean daily actual to maximum possible sunshine hours given in Table – 11 of Doorenbos and Pruitt (1977). Generally for practical

purpose in Indonesia, value of N can be taken as 12 hours (in case of observed data is not available).

Rn = $(0.25 + 0.5 \text{ n/N}) \times \text{Ra} - 4.903 \times 10^{-9} (273 + \text{T}^{-0}) \times (0.34 - 0.14 \sqrt{\text{ed}}) \times (0.1 + 0.9 \times \text{n/N})$ latitude (Ø),mean temperature and actual sunshine hours or cloud hour only.

Step. 7: Adjustment Factor (C)

C is the adjustment factor to compensate for the day and night weather conditions. The values of adjustment factor (c) for different conditions of maximum relative humidity (RH_{max}), solar radiation (R_s), day time wind (U_{day}) and ratio of day and night and velocity (U_{day} / U_{night}) are presented in Table 3.5.(table 16 – FAO-24) .

		. ,	•		`	
Rs mm/day	mm/day RHmax 60 % RHmax 90 %		RHmax 85 %			
Uday m/s	Uday / Unight = 1.0					
	6	9	6	9	6	9
0	0.98	1.05	1.06	1.10	-	-
3	0.86	0.94	0.92	1.01	-	-
1.5	0.92	0.995	0.99	1.055	0.955	1.025

Table 3.3: Adjustment Factor (c) in presented Equation (Table 16- FAO-24)

3.4 INPUT DATA AND COMPUTATION ALGORITHM

In this study for empirical determination of evapotranspiration and evaporation, the following data are necessary:

3.4.1. Basic necessary Data

Elevation (Z), Latitude(\emptyset), month or day,mean temperature (T),mean Relative humidity (RH) or Dew point Temp (T_d), average sunshine hours perday for the period, wind speed and height at which it is measured (Uh), type of evaporating surface (crop, open water).

3.4.2. Desirable Data

In addition to above mentioned basic data if following data is available, the estimate can be made more accurate. Mean Max temperature T_{max} and Mean. Minimum temperature for the period (T_{min}); climatic classification such

as arid area or humid area, experimentally determined correlation coefficients as, bs, ae, be. Table 3.4 shows how reference to various tables can be avoid by use of empirical / physical based equations.

Table 3.4. Input Data, for Equation in place of Tables

No		Reference to equation / table where data is used				
NO	Input Data.	As per General Model	As per tables In FAO- 24			
1.	Latitude	$R_a = f$ (latitude, month)	Tables 10 – 11			
2.	Altitude	w = f (T _{mean} , altitude)	Tables 8 – 9			
3.	Month	$R_a = f(latitude, month)$ N = (latitude, month)	Tables 10 – 11 Tables 11			
4.	Mean Temp(T _{mean})	$e_a = f(T_{mean})$ $w = f(T_{mean}, altitude)$ $R_{n1} = f(T_{mean}, n/N, ed)$	Tables 5,3, 9, 13			
5.	Mean rel.hum (RH _{mean})	e _d = f (RH _{mean} , e _a)	e _d = e _a x RH _{max}			
6.	Wind speed (U _{mean})	$U_2 = C_{fw} U_{mean} f(u)$	Tables – 7			
7.	U _{day} / U _{night} , U _{day} , Rh _{max}					
8	Height of wind measurement (h)	$C_{fw} = f(h)$	Table – Page 16			
9.	Ratio actual & max. possible sunshine	$R_s = f(n/N,Rs)$	Tables – Page17			
	hours(n/N)	$R_{n1} = f(T_{mean}, n/N, e_d)$	Table – 12			

Summary form of computational steps and input data at each step are given below.

3.5. SUMMARY MODEL AND COMPUTATIONAL STEPS

ETo = we x Rn + wa x f(u) x \overline{D}

Step 1. Saturation Vapour Pressure (ea)

Input data: T_{mean} in ⁰C

 $e_a = 0.6108 \exp \left[(17.27 \times T) / (237.3 + T) \right]$, or

Input data: T_{max}, and T_{min}

 $(e_a)_{av} = ((e_a) \text{ at Tmax} + (e_a) \text{ at Tmin}) / 2$, in kpa

Input data: RH, and Td

 $\overline{D} = (e_a) \times (1 - RH / 100)$, or

 $\overline{D} = (e_a)_{av} - (e_a)$ at T_d

Step 2. Estimate we and wa

Input data: Altitude (Z), and Wind speed (U)

$$\Delta = (4098 \times e_a) / (237.3 + T)^2$$

 $P = 101.3 ((293 - 0.0065 \times Z) / 293)^{5.526}$

 $A = 2.501 - 0.002361 \times T$

 $= (0.0016286 \times P)/9$

we = $\frac{\Delta}{(\Delta + \gamma)}$ for open water surface

wa = 1 - we

we = $\frac{\Delta}{(\Delta + \gamma^*)}$ for reference crop evapotranspiration

$$wa = \frac{\gamma}{(\Delta + \gamma *)}$$

$$h^* = \delta (1 + 0.33 \times U_2)$$

Step 3 Estimate of Extraterrestrial radiation (Ra)

Input data:

Latitude \emptyset , \emptyset is Positive ve for Northern hemisphere and \emptyset is negative ve for Southern hemisphere, month

For a given month get J and L from table 3.2

ws = arc cos (-tan \emptyset tan δ) in Radians

dr = 1 + 0.033 cos (
$$2\pi \times J/365$$
)
Ra = 15.392 x dr (ws x Sin Ø .Sin L + Cos Ø .Cos L . Sinws) in mm/day
N = ($24 \times ws$)/ π

Step 4. Net Radiation (Rn)

Input data:

Bright sunshine hours (n)

Rn = (
$$0.25 + 0.50.n / N$$
) x Ra - NTk^4 ($0.34 - 0.14\sqrt{ed}$) ($0.1 + 0.9.n/N$)

$$N = 0.510 \times 10^{-9}$$
 in mm/day k^4
Tk = 273 + T

Step 5. Estimation of Wind function f(u)

Input data:

Wind speed (U)

$$f1(u) = 6.43 ((1 + 0.536 \times U) / 9)$$
 for open water surface

$$f2(u) = (900.U) / (T + 275)$$
 for reference crop evapotranspiration

Step 6. Estimation of ETo and Eo

For reference crop evapotranspiration

ETo = we x Rn + wa x
$$f2(u)$$
 x \overline{D}

For open water surface

Eo =
$$w \times Rn + (1-w) \times f1(u) \times D$$

Table 3.5. Summary Model and Computation Steps

Step	Input Data	Formula
I. Estimate e _a or	$T \text{ or}(T_{\text{max}}, T_{\text{min}})$	$e_a = 0.6108 \exp((17.27 \times T) / (273.3 + T)), (kpa)$
$(e_a)_{av}$ and \overline{D}	RH or T _d	$(e_a)_{av} = ((e_a) \text{ at } T_{max} + (e_a) \text{ at } T_{min}) / 2, (kpa)$
(-a/av		$\overline{D} = (e_a)_{av \ x} (1 - RH / 100)$ (kpa)
,		$D = (e_a)_{av} - (e_a) \text{ at } T_d $ (kpa)
II. Estimate we and wa	Z and U m/sec	$\Delta = (4098 \text{ x ea}) / (237.3 + \text{T})^2$ (kpa/°C) P = 101.3 ((293 - 0.0065 x Z) / 293) ^{5.256} (kpa) $\lambda = 2.501 - 0.002361 \text{ x T}$ $\delta = (0.0016286 \text{ x P}) / 9$ for open water surface
		$we = \Delta/(\Delta + \gamma)$
		wa = 1 - w
		reference crop evapotranspiration
		$we = \Delta / (\Delta + \gamma^*)$
		$wa = \delta / (\Delta + \gamma *)$
		$\delta^* = \delta (1 + 0.33 \text{ x U}2)$
III.Estimate Ra	Ø, month Ø is + ve for Northern hemisphire and - ve for. Southern hemisphire	for a given month get J and L form table 3.2. ws = arcos (-tanØ.tanL), (radiation) dr = 1 + 0.033cos ((2 TM x J)/365) Ra = 15.392.dr (ws SinØ.SinL + CosØ CosL.Sinws)
IV.Estimate N	,	$N = (24 \times ws)/\pi$
V.Estimate Rn	actual	$Rn = (0.25 + 0.5 \times n/N) Ra - NTk^4 (0.34 -$
, institution in	sunshine hour	$0.14\sqrt{\text{ed}}$)($0.1 + 0.9 \times \text{n/N}$)
	n	$N = 0.510 \times 10^{-9} \text{ mm/day.k}^4$
VI.Estimate f(u)	U2	for open water surface $f1(u) = 6.43 (1 + 0.536 \times U2) /\lambda$ for reference crop $f2(u) = (900 \times U2) / (T + 275)$
VII.Estimate ETo		For reference crop evapotranspiration
and Eo		ETo = we Rn + wa f2(u) x \overline{D}
		For open water surface
		Eo = $w \times Rn + (1 - w) \times fl(u) \times D$

3.6 ACCURACY OF MODEL

In the present study main objective is to propose a model for estimation of evapotranspiration and evaporation on monthly basis so as to avoid reference to various tables in FAO procedure. Estimated evapotranspiration and evaporation by FAO procedure are considered as reference values to find accuracy of the Proposed model.

Percentage error of estimated value respect to reference value by FAO-24 tables is :

Percentage error for Evapotranspiration (ETo) =
$$\frac{ETo_r - ETo_f}{ETo_r} x100\%$$

Percentage error for Evaporation (Eo) =
$$\frac{\text{Eo}_{r} - \text{Eo}_{f}}{\text{Eo}_{r}} \times 100\%$$

Where:

ETr = Estimated values by FAO procedure of evapotranspiration and evaporation

ETm = Model estimation values of evapotranspiration by the proposed model Maidment (1993) has proposed the following parameters for model accuracy.

Estimation errors can be either systematic (recurring), or random due to case-specific conditions, such as errors in the meteorological estimation on which the ETo estimation is based. Estimation accuracy is best assessed by retrospective comparison of estimation actually made or that might have been made, and the values observed during the forecast period. Let $Q_f(i)$ be the model estimated value and $Q_o(i)$ be the FAO procedure based estimated value (taken as reference) of evapotranspiration or evaporation. Define M_f and M_o as the means of the model estimation and reference values, as follows:

$$M_{f} = \frac{1}{n} \sum_{i=1}^{n} Qf(i)$$

$$M_o = \frac{1}{n} \sum_{i=1}^{n} Qo(i)$$

Where n is the total number of values, (here n = 12 corresponding to months).

Bias: $B = M_f - M_o$

Mean squared error:

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} [Q_f(i) - Q_o(i)]$$

Root mean square error : RMSE = $(MSE)^{0.5}$

Variance : $V = MSE - B^2$

Relative bias : $RB = B / M_o$

Mean absolute error : (MAE):

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} [Q_f(i) - Q_o(i)]$$

Relative mean absolute error (RMAE):

$$RMAE = \frac{MAE}{M_0}$$

Model efficiency (E):

$$E = 1 - \frac{MSE}{V}$$

R squared (R2):

$$R^{2} = \left[\frac{\frac{1}{n} \sum_{i=1}^{n} Q_{o}(i) Q_{f}(i) - M_{o} M_{f}}{\left(\frac{1}{n} \sum_{i=1}^{n} Q_{o}^{2} - M_{o}^{2}\right) \left(\frac{1}{n} \sum_{i=1}^{n} Q_{f}^{2} - M_{f}\right)} \right]$$

Bias and relative bias are measures of systematic error in the estimation; that is over a period of many years, they measure the degree to

which the estimation is consistently above or below the actual value. Variance is a measure of the variability, or scatter, of a number of estimation about the true value, and is therefore a measure of the random error. Mean square error. root mean square error, mean absolute error, relative mean absolute error, and model efficiency are all measures that incorporate both systematic and random errors. A perfect estimation exists only if both the bias and the variance are zero, which occurs only when all estimated values are identical to the observations. R2 is the square of the correlation coefficient between the reference and estimated values. Although R2 is a widely used measure of model accuracy, care must be taken if appreciable bias is present, since R2 evaluates the accuracy of an estimation with respect to random error only. The highest value of R² , 1.0, can be achieved for cases where there is a constant bias in estimation; that is, the estimated value is equal to the reference value plus or minus a constant. For this reason, instead of using R², model accuracy is better assessed by using the bias and the variance, or the bias and the mean absolute error. MAE or RMAE is preferred to MSE because, when compared to squared error measures, absolute error measures are less dominated by a small number of large errors, and are thus a more reliable indicator of typical error magnitudes.

CHAPTER 4

APPLICATION STUDY OF GENERAL EVAPOTRANSPIRATION MODEL

The meteorological data for the Jambo Aye Irrigation Project in Aceh Province of Indonesia are summarized in Table .4.1.

Table 4.1 : Summary of Climate Data Jambo Aye Irrigation Project

Latitude : 5 ° N

Altitude: 500 m

Item	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
T _{mean} (°C)	24.9	25.2	26.4	26.4	26.6	26.3	26.2	25.8	25.7	25.5	25.5	25.3	25.8
RH _{mean} (%	82	81	80	82	82	80	81	73	82	84	85	86	73.17
Ratio	0.45	0.42	0.44	0.37	0.35	0.38	0.38	0.36	0.30	0.31	0.34	0.24	0.36
Sunshine Hours (n/N)						-							
U2	177	177	160	125	104	101	108	121	118	104	114	135	128.7
RH _{max} (%)	85	85	85	85	85	85	85	85	85	90	90	90	86.25
Sunshine	67	63	66	57	54	59	58	55	47	47	51	36	53.00
duration	"			,					"	''			35.40
(0.80–1600 h)	<u> </u>	<u> </u>	<u></u>	<u> </u>	L <u>.</u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>		

Note:

 $U_{day} = 1.5 \text{ m/sec}$

 $U_{\text{day}}/U_{\text{night}} = 1$

80% < RH < 90 %

4.1. CALCULATION OF ETO USING GENERAL MODEL

Given data:

- Altitude

 $= 500 \, \text{m}$

- Latitude

 $= 5^{\circ} N (0.0873 \text{ radian})$

- Declination (δ)

= -20.9 (from table 3.2 in chapter 3)

- Month = January (equivalen day J = 17 from table 3.2)

- Mean temperature $T_{mean} = 24.9^{\circ}C$

- Mean Relative humidity RH_{mean} = 82 %

- Max. Relative Humidity RH_{max} = 85 %

 Mean wind speed (U_{mean}) at 2 m = 177 km / day height of wind measurement

- Day time wind speed U_{day} = 1.5 m / sec

- Ratio U_{day} / U_{night} = 1.0

Ratio of actual to max, possible = 0.45
 sunshine hours (n/N)

Climate data for other months are given in table 4.1

Solution: Procedure calculation as the following steps:

Step. 1: Saturation Vapour pressure (ea)

$$e_a$$
 = 0.6108 exp (17.27 T / 237.3 + T)
= 0.6108 exp (17.27 x 24.9 / 237.3 + 24.9)
= 3.149 kpa
 \overline{D} = (e_a)_{av} x (1 - (RH / 100))
= 3.149 x 1 - (82 / 100)
= 0.567 kpa

Step. 2 : Actual Vapour Pressure (e_d)

$$e_d = e_a \times RH_{mean} / 100$$

= 3.159 x 82 / 100
= 2.582 kpa

Step. 3: Wind Funtion f(u)

Here observed wind speed at 2 m height in km / day (i.e. h = 2 m)

$$u_2$$
 = uh (Ln₂-Ln ho / Ln₂ - Ln ho)
= 177 (Ln₂-Ln 0.20 / Ln₂ - Ln 0.20)
= 177 km / day

=
$$177 \times 1000 / (24 \times 60 \times 60)$$

= 2.049 m/sec

for reference crop evapotranspiration

$$f(u) = (900 \times U_2) / (T + 275)$$

$$= (900 \times 2.049) / (24.9 + 275)$$

$$= 6.149$$

for open water surface

$$f(u) = 6.43 ((1 + 0.536 \times U_2) / 9)$$

$$= 6.43 \times ((1 + 0.536 \times 2.0486) / 2.442)$$

$$= 5.524$$

Step. 4: Weighting Factor (w)

P = 101.3 ((293 - 0.0065 x Z) / 2)
$$^{5.256}$$

= 101.3 ((293 - 0.0065 x 500) / 293) $^{5.256}$
= 95.532 kpa
 \Rightarrow = 2.501 - 0.00236 x T
= 2.501 - 0.00236 x 24.9
= 2.442 m J kg⁻¹
 \Rightarrow = (0.001628 x P) / 9
= (0.001628 x 95.532) / 2.442
= 0.064 kpa 0 C⁻¹
 \Rightarrow = \Rightarrow (1 + 0.33 x U₂)
= 0.064 (1+ (0.33 x 2.049))
= 0.1078
 \Rightarrow = (4098 x e_a) / (237.3 + T)²
= (4098 x 3.149) / (237.3 + 24.9)²
= 0.188 kpa 0 C⁻¹

for water surface

we =
$$\triangle/(\triangle+\delta)$$

= 0.188/(0.188 + 0.0637)
= 0.747

wa =
$$(1 - we)$$

= $(1 - 0.747)$
= 0.253
for reference crop
we = $\Delta / (\Delta + \gamma^*)$
= $0.188 / (0.188)$

$$= 0.188 / (0.188 + 0.1068)$$

$$= 0.637$$
wa = $\frac{\lambda}{(4 + \frac{\lambda}{5}^*)}$

$$= 0.0637 / (0.188 + 0.1068)$$

= 0.216

Step. 5 : Extra Terrestrial Radiation (Ra)

ws = arc cos (- tan
$$\emptyset$$
. tan L)
= arc cos (- tan 5° x tan -20.9°)
= 1.537 radian , or 88.09 °C.
dr = 1 + 0.033 cos (2^{7} x J / 365)
= 1.032

Latitude : 5 $^{\circ}$ N on January , use linear Regression equation :

Ra = 15.392 dr (ws x sin Ø x sin L + cos Ø x cos L x sin ws)
= 15.392 x 1.032 (1.537 x sin
$$5^0$$
 x sin -20.9^0 + cos 5^0 x cos -20.9^0 x sin 88.09)

= 14.02 mm/day

Step. 6: Net Radiation (Rn)

Rs =
$$(0.25 + 0.50. \text{ n / N}) \times \text{Ra}$$

= $(0.25 + 0.50. 0.45) \times 14.02$
= 6.655 mm/day
Rns = $(1 - \text{K}) \times \text{Rs}$
= $(1 - 0.25) \times 6.655$
= 4.991 mm/day
Tk = $273 + \text{T}^{\circ}\text{C}$

$$= 273 + 24.9$$

$$= 297.9 ^{\circ} K$$

$$f(T) = \sigma (Tk)^{4}$$

$$= 2.0075 \times 10^{-9} \times (297.9)^{4}$$

$$= 15.810$$

$$f(n/N) = 0.1 + 0.9 \times 0.45$$

$$= 0.505$$

$$f(e_{d}) = 0.34 - 0.14 \sqrt{ed}$$

$$= 0.34 - 0.14 \sqrt{2.582}$$

$$= 0.115$$

$$Rn1 = \sigma Tk^{4} (a3 - a4 \sqrt{ed}) (a5 + a6 n/N)$$

$$= f(T) \times f(n/N) \times f(ed)$$

$$= 15.810 \times 0.505 \times 0.115$$

$$= 0.918 \text{ mm / day}$$

$$Rn = Rns - Rn1$$

$$= 4.991 - 0.918$$

$$= 4.073 \text{ mm / day}$$

Step 7 . ETo Computation

For reference crop evapotranspiration

ETo = we.Rn +wa. f2(u)
$$\overline{D}$$

= 0.747 x 4.073 + (0.253 x 6.148 x 0.567)
= 3.924 mm / day
Eo = we x Rn + (1 - wa) x f(u) x D
= 0.747 x 4.073 + (1 - 0.253) x 5.524 x 0.567
= 5.378 mm/day

Similar procedure can be used for other months and calculation are shown in table 4.2.

4.2. CALCULATION OF ETO USING FAO-24 TABLES

Based upon the above given data, the procedures calculations as the following steps:

Step1. Determination of Saturation Vapour pressure (ea)

$$T_{mean} = 24.9$$
 °C,
Use Table 1 (Table 5 – FAO), we get is
 $e_a = 31.51$ m bar

Step 2. Actual Vapour Pressure (ed)

$$e_d$$
 = ea x Rh_{mean} / 100, where Rh_{mean} = 82 %
= 31.51 x 82 / 100
= 25.838 m bar
so, (ea - ed) = 31.51 - 25.838 = 5.672 m bar

Step. 3: Wind Function f (u):

$$U_{mean} = U_2 = 177 \text{ km / day}$$

Use table 2 (Table – 7 FAO), f (u) = 0.750

Step. 4: Weighting Factor (w):

$$T_{mean} = 24.9 \, ^{\circ}\text{C}$$
 Use table A-3 in Appendix A, w = 0.749 Altitude = 500 m

Step. 5 : Net Radiation (Rn)

a) Extraterrestrial radiation (Ra)

b) Solar radiation (Rs)

Rs =
$$(0.29 + 0.52 \text{ n/N})$$
 Ra, where $\text{n/N} = 0.45$, Ra = 14.10 mm/day

$$= (0.25 + 0.50 \times 0.45) 14.10$$

= 6.698 mm/day

c) Net short wave radiation (Rns)

n/N = 0.45, use Table A-5 in Appendix A

Rns = (1 - 0.25) Rs

= (1 - 0.25)6.698

= 5.030 mm/day

d) Net long wave radiation (Rn1)

 $T_{mean} = 24.9$ °C, use Table A-6 in Appendix A, f (T) = 15.625

ed = 25.838 m bar, use Table A-7 in Appendix A, f (u) = 0.12

n/N = 0.45, use table A- 8 in Appendix A, f(n/N) = 0.510

Rn1 = f(T) x f(ed) x f(n/N)

 $= 15.625 \times 0.12 \times 0.510$

= 0.956 mm/day

Rn = Rns - Rn1

= 5.030 - 0.956

= 4.070 mm / day

Step. 6 : Adjustment factor (c)

 $U_{day}/U_{night} = 1$

Uday = 1.5 m / sec , use Table 4.15 (Table – 16 FAO), C = 0.994

RHmax = 85 % (Interpolation same as Chapter 4.2.1, Step-7)

Rs = 6.707 mm/day

C = 0.994 from Table A-9 in Appendix A

Step.7 : Determination Of ETo

ETo = C(w x. Rn + (1-w) x f(u) x (ea - ed))

= $0.994 (0.749 \times 4.070 + (1 - 0.749) \times (0.750) \times (5.672)$

= 4.088 mm/day

Eo = C(w x. Rn + (1-w) x f(u) x (ea - ed))

 $= 0.994 (0.749 \times 5.205 + (1 - 0.749) \times (0.750) \times (5.672)$

= 4.933 mm / day

Similarly procedure has been used for calculations in other months as shown in Table 4.3. Meteorological variates as per General Model and as per FAO tables are summarized in Table 4.4 for January.

4.3. COMPARISON OF THE RESULTS

4.3.1 Percent Error in Estimation:

The results from modified Penman Method as per FAO tables were compared with those obtained from use of general model and it could be seen that evapotranspiration by using general model is similar to ETo obtained as per tables in FAO-24.

Extraterrestrial radiation (Ra) is the most important input variable. The comparison of Ra is shown in table 4.5. Percentage error with respect to FAO procedure ranges from 0.21% in September to 1.592% in December.

The comparison of the monthly ETo values are given in Table 4.6 Percentage error with respect to FAO procedure ranges from 0.310 % in December month to 8.791% in June month. Comparison of monthly Evaporation (Eo) values is shown in table 4.7. Percentage error in estimated Eo with respect to FAO procedure ranges from – 9.286% in August month to 5.672% in October month. It is important to note that percentage errors are less than 10% (small) in all months.

4.3.2 Model Accuracy

Maidment (1993) has given various parameters to test accuracy of a proposed model. These have been briefly explained in Chapter 3 section 3.6. Taking estimations as per FAO Procedure (Tables) to be reference values, the accuracy Parameters have been evaluated and are discussed below

4.3.2.1 Accuracy in estimation of extraterrestrial radiation :

Computation of various parameters is shown in table 4.8. Coefficient of determination R^2 is 0.9926. Bias (B) is only – 0.1226 and variance is 0.0029. Therefore estimation of extraterrestrial radiation can be considered to be accurate.

4.3.2.2 Accuracy in estimation of evapotranspiration (ETo):

Computation of various parameters is shown in Table 4.9. Coefficient of determination R^2 is 0.9476. Bias (B) is -0.2382% in month of June, which can be considered as acceptable being less then 10% (Maidtment 1993).

4.3.2.3 Accuracy in estimation of evaporation (Eo):

Computation of various parameters is shown in Table 4.10. Coefficient of determination is 0.8606. Bias (B) is 0.0392 and variance is 0.0565. Highest relative error is – 9.286% still within tolerable limit. Accuracy in estimation of evaporation is not as good as in estimation of evapotranspiration by the proposed general model.

It is necessary to Test the accuracy of the model under a variety of different climatic conditions before it can be recommended as an only general model. In the present study emphasis is on a general model applicable to Indonesia (10^o N to 10^o S latitude range).

Table 4.2 Estimation Evapotranspiration (ETo) by General Model Place : Jambo Aye Project

Latitude : 5 ° N
Altitude : 500 m

m bar January 3.149	m bar	m har	•	_		•	:	1	2	ZEES	Ž	2	=======================================			
		111 041	m bar					mm/day	mm/day	mm/day	mm/day	mm/day			mm/day	mm/dav
	2.582	0.567	0.567	0.747	0.253	0.637	0.216	14.010	6.655	4.991	0.918	4.073	5.524	6.148	3.924	/
February 3.206	2.597	0.609	0.609	0.749	0.251	0.641	0.214	14.799	808.9	5.106	0.868	4.238	5.525	6.142	4.113	869.5
March 3.442	2.753	0.688	0.688	0.761	0.239	0.664	0.209	15.371	7.224	5.418	0.862	4.556	5.254	5.530	4.377	6.217
April 3.442	2.822	0.620	0.620	0.761	0.239	0.683	0.215	15.354	6.679	5.009	0.732	4.277	4.681	4.320	3.894	5.460
May 3,483	2.856	0.627	0.627	0.763	0.237	0.697	0.217	14.858	6.315	4.736	0.694	4.042	4.339	3.592	3.617	5.156
June 3.422	2.737	0.684	0.684	0.760	0.240	0.695	0.220	14.478	6.370	4.778	0.772	4.006	4.288	3.492	3.618	5.273
July 3.401	2.755	0.646	0.646	0.759	0.241	0.690	0.219	14.586	6.418	4.814	0.765	4.048	4.402	3.735	3.654	5.231
August 3.322	2.425	0.897	0.897	0.755	0.245	0.678	0.220	15.045	6,469	4.852	0.828	4.024	4.613	4.190	3.959	6.164
September 3.302	2.708	0.594	0.594	0.754	0.246	0.679	0.221	15.267	6.107	4.580	0.648	3.932	4.564	4.088	3.563	5.012
October 3.263	2.741	0.522	0.522	0.752	0.248	0.685	0.225	14.887	6.029	4.522	0.654	3.868	4.334	3.605	3.377	4.613
November 3.263	2.774	0.490	0.490	0.752	0.248	0.679	0.224	14.146	5.941	4.456	0.691	3.765	4.497	3.952	3.311	4.489
December 3.225	2.773	0.451	0.451	0.750	0.250	0.665	0.221	13.679	5.061	3.796	0.537	3.259	4.840	4.683	2.973	4.086

Table 4.3 Estimation Evapotranspiration (ETo) by Modified Penman using FAO-24 Tables Place : Jambu Aye Project

Latitude : 5 ° N
Altitude : 500 m

Month	6	l P	6	Dav	We	Ra	Rs	Rrns	Rul	Rn	(n)	ETo	岛
	m bar	m bar	m bar	m bar		mm/day	mm/day	mm/day	mm/day	mm/day		mm/day	mm/day
January	31.510	25.838	5.672	5.672	0.749	14.100	869.9	5.076	0.956	4.120	0.748	4.125	4.933
February	32.080	25.985	6.095	6.095	0.752	14.900	7.575	5.185	0.904	4.281	0.748	4.408	3.767
March	34.500	27.600	6.900	6.900	0.764	15.450	8.015	5.500	0.895	4.605	0.540	4.499	5.964
April	34.440	28.241	6.199	6.199	0.764	15.450	7.453	5.068	0.748	4.320	0.540	4.134	5.515
May	3,483	2,856	0.627	0.627	0.763	14.858	6.315	4.736	0.694	4.042	4.339	3.617	5.256
June	3.422	2.737	0.684	0.684	092'0	14.478	6.370	4.778	0.772	4.006	4.288	3.618	5.264
July	3.401	2.755	0.646	0.646	0.759	14.586	6.418	4.814	0.765	4.048	4.402	3.654	5.256
August	3.322	2.425	0.897	0.897	0.755	15.045	6.469	4.852	0.828	4.024	4.613	3.959	3.640
September	3.302	2.708	0.594	0.594	0.754	15,267	6.107	4.580	0.648	3.932	4.564	3.563	5.021
October	3.263	2.741	0.522	0.522	0.752	14.887	6.029	4.522	0.654	3.868	4.334	3.377	4.890
November	3.263	2.774	0.490	0.490	0.752	14.146	5.941	4,456	0.691	3.765	4.497	3.311	4.741
December	3.225	2.773	0.451	0.451	0.750	13.679	5.061	3.796	0.537	3.259	4.840	2.973	4.058

Table 4.4: Comparison of Meteorological Variates for January Month as per FAO tables and General Model

Item	As per Table	es in FAO-24	As per Gene	eral Model
·	Values	unit	Values	unit
ea	31.510	mb	3.149	kpa
ed	25.838	mb	2.582	kpa
(ea - ed)	5.672	mb	0.567	kpa
. U2	177.000	km/day	2.049	m/sec
fl(u)	0.748		. 5.524	ļ
f2(u)	· -		6.148	
we (for open water surface)			0.747	
wa (for open water surface)	<u>-</u> ·		0.253	
we (for reference crop)	0.749		0.637	•
wa (for reference crop)	-		0.216	
` Ra	14.100	mm/day	14.010	mm/day
Rs	6.698	mm/day	6.655	mm/day
Rns	5.076	mm/day	4.991	· mm/day
Rnl	0.956	mm/day	0.918	mm/day
Rn	4.120	mm/day	4.073	mm/day
c	0.994		1.000	
ЕТо	4.125	mm/day	3.924	mm/day
Eo	4.933		5,378	mm/day

Table 4.5 : Comparison of (Ra) by FAO Tables and General Model

No		Calculation Extrater	rastrial Radiation (R	(a) in mm/day
No	Month	As per FAO Tables	As per General Model	Relative error (%)
1	January	14.100	14.010	0.639
2	February	14.900	14 799	0.678
3	March	15.450	15.371	0.514
4	April	15.450	15.354	0.624
5	May	15.000	14.858	0.948
6	June	14.550	14.478	0.495
. 7	July	14.750	14.586	1.109
8	August	15.150	15.045	0.695
9	September	15.300	15.267	0.216
10	October	15.050	14.887	1.081
11.	November	14,350	14.146	1.424
12	December	13.900	13.679	1.592

Table 4.6 : Comparison of ETo by FAO-24 tables and General Model

No	Month	Calculation Eva	potranspiration (ETc	o) in mm/day
- \ -		As per FAO-24	As per General	Relative Error
		tables	Model	(%)
·		•		
1	January	4.125	3.924	4.875
2	February	4.408	4.113	6.683
3	March	4.499	4.377	2.721
4	April	4.134	3.894	5.802
5	May	3.940	3.617	8.207
6	June	3.966	3.618	8.791
7	July	3.970	3.654	7.964
8	August	4.311	3.959	8.173
9	September	3.748	3.563	4.942
10	October	3.633	3.377	7.059
11	November	3.520	3.311	5.922
12	December	2.983	2.973	0.310
}	1			

Table 4.7 : Comparison of Eo by As per FAO-24 tables and General Model

No	Month	Calculation	Evaporation (Eo) in	mm/day
		As per FAO-24	As per General	Relative Error
		tables	Model	(%)
1	January	4.933	5.378	-9.029
2	February	5.767	5.698	1.191
3	March	5.964	6.217	-4.243
4	April	5.515	5.460	1.007
5	May	5.256	5.156	1.898
6	June	5.264	5.273	-0.176
7	July	5.256	5.231	0.471
8	August	5.640	6.164	- 9. 2 86
9	September	5.021	5.012	0.195
10	October	4.890	4.613	5.672
11	November	4.741	4.489	5.333
12	December	4.058	4.086	-0.670

TABLE 4.8 ACCURACY IN ESTIMATION OF EXTRATERESTRIAL RADIATION BY GENERAL MODEL

		Values of Ra	in mm/day						
No	Month	As per	As per	(Q ₁ - Q ₁)	(Q _f - Q _f) ²	Q _r x Q _r	Q _r ² -M _r ²	$Q_l^2 - M_l^2$	Relative Error
		FAO Tables	General Model	ļ	ļ	ĺ			(%)
		(Q _r)	(Q _i)						
1	January	14,100	14,010	-0.090	0.008	197.540	-21.094	-20.004	0.639
2	February	14.900	14.799	-0.101	0.010	220.505		2.728	
3	March	15.450	15.371	-0.079	0.006	237.476	18,798	19.973	
4	April	15.450	15,354	-0,096	0.009	237.212	18,798	19,449	
5	May	15,000	14.858	-0.142	0.020	222.867	5.096	4,472	
	June	14.550		-0.072	0.005	210.654	-8.202	-6.673	
	July	14.750		-0.164	0.027	215.149	-2.342	-3,520	
8	August	15.150	15.045	-0.105	0.011	227.928	9.618	10.061	0.695
	September	15,300	15.267	-0.033	0.001	233,585	14.186	16.798	
10	October	15.050		-0.163	0.026	224,054	6,598	5,349	1.081
	November	14,350	14.146	-0.204	0.042	202.95	-13.982	-16,183	
12	December	13.900		-0.221	0.049	190.135	-26,694	-29,174	ľ
	TOTAL	177.950	176.479	-1.471	0.215	2620.096	2.887	3.275	
			'	1		}			ļ

Mean of reference value :

 $M_{r} = \frac{1}{n} \sum_{i=1}^{n} Q_{r}(i)$ = 14.820

Relative Blas :

 $RB = \frac{B}{M},$

Mean of Estimanted value :

 $M_f = \frac{1}{n} \sum_{i=1}^n Q_f(i)$ 14.7066

Blas: $B = M_f - M_r$ = -0.1226

Mean Absolute Error:

 $MAE = \frac{1}{n} \sum \left| Q_f(i) - Q_r(i) \right|$ 0.1226

Relative Mean Absolute Error : $RMAE = \frac{MAE}{M},$ 0.0083

Mean Squared Error:

 $MSE = \frac{1}{n} \sum_{i=1}^{n} [Q_f(i) - Q_r(i)]^2$

Root Mean Squared Error: $RMSE = (MSE)^{0.3}$ = 0.1340

Variance: $V = MSE - B^2$ = 0.0029

R squared:

$$R^{2} = \left[\frac{\frac{1}{n} \sum_{i=1}^{n} Q_{r}(i) Q_{f}(i) - M_{r} M_{f}}{\left(\frac{1}{n} \sum_{i=1}^{n} Q_{r}^{2} - M_{r}^{2}\right) \left(\frac{1}{n} \sum_{i=1}^{n} Q_{f}^{2} - M_{f}^{2}\right)} \right]^{2}$$

$$= 0.9926$$

TABLE 4.9 ACCURACY IN ESTIMATION OF EVAPOTRANSPIRATION (ETo) BY GENERAL MODEL

		Values of E	To in mm/day						1
No	Month	As per	As per	(Q _f - Q _f)	$(Q_f - Q_f)^2$	o⁴o⁴	Q _r ² -M _r ²	$Q_f^2 - M_f^2$	kelative Erre
	ļ	FAO Tables	General Model						(%)
		(Q _r)	(Q _i)						
1	January	4,125	3.924	-0.201	0.040	16.184	1.518	1.717	4.875
2	February	4,408	4.113	-0.295	0.087	18.130	3.932	3.241	6.683
3	March	4.499	4.377	-0.122	0.015	19.694	4.749	5.481	2.721
4	April	4.134	3.894	-0.240	0.058	16.098	1.594	1.486	5.802
5	May	3,940	3.617	-0.323	0.105	14.250	0.028	-0.597	8.207
6	June	3.966	3.618	-0.349	0.122	14.350	0.237	-0.589	8.791
7	July	3.970		-0.316	0.100	14.508	0.268	-0.325	7.964
8	August	4.311		-0.352	0.124	17.070	3.093	1.997	8.173
9	September	3.748		-0.185	0.034	13.353	-1.449	-0.984	4.942
10	October	3.633	3.377	-0.256	0.066	12.267	-2,297	-2.276	7.059
11	November	3.520	3.311	-0.208	0.043	11.655	-3.107	-2.712	5.922
12	December	2.983	2.973	-0.009	0.000	8.869	-6.599	-4.836	0.310
	TOTAL	47.2374	44.3795	-2.8579	0.7936	176.4259	1.9672	1.6021	

Mean of reference value :

Relative Bias :

ive Bias . $RB = \frac{B}{M_{\ r}} \ . \label{eq:rb}$ -0.0605

Mean of Estimanted value :

 $M_f = \frac{1}{n} \sum_{i=1}^n Q_f(i)$ 3.6983 Mean Absolute Error:

$$MAE = \frac{1}{n} \sum_{i} |Q_f(i) - Q_r(i)|$$
= 0.2382

Bias : $B = M_f - M_f$ = -0.2382

Relative Mean Absolute Error:

blute Error:
$$RMAE = \frac{MAE}{M},$$

$$= 0.0605$$

Mean Squared Error:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} [Q_f(i) - Q_r(i)]^2$$
= 0.0661

Root Mean Squared Error :
$$RMSE = (MSE)^{0.5}$$
= 0.2572

Variance: $V = MSE - B^{2}$ = 0.0094

R squared:

$$R^{2} = \left[\frac{\frac{1}{n} \sum_{i=1}^{n} Q_{r}(i) Q_{f}(i) - M_{r} M_{f}}{\left(\frac{1}{n} \sum_{i=1}^{n} Q_{r}^{2} - M_{r}^{2}\right) \left(\frac{1}{n} \sum_{i=1}^{n} Q_{f}^{2} - M_{f}^{2}\right)} \right]^{2}$$

$$= 0.9476$$

TABLE 4.10 ACCURACY IN ESTIMATION OF EVAPORATION (Eo) BY GENERAL MODEL

		Values of E	o in mm/day						
No	Month	As per	As per	(Q _f - Q _f)	$(Q_r - Q_r)^2$	$Q_f Q_r$	Q _r ²-M _r ²	$Q_f^2 - M_f^2$	Relative Error
		FAO Tables	General Model						(%)
		(Q _r)	(Q _i)					,	
1	January	4.933	5.378	0.445	0.198	26,530	-2.626	1.558	-9.029
	February	5.767		-0.069	0.005	32,863	6.300	5.105)
	March	5.964	6.217	0.253			8.613	11,288	
4	April	5.515	5.460	-0,056	0.003	30.113	3.460	2.443	
5	May	5.256	5.156	-0.100	0.010	27.098	0.663	-0.783	1.898
6	June	5.264	5.273	0.009	0.000	27,761	0.753	0.442	-0.176
	July	5.256		-0.025		27.495	0.666	-0.002	0.471
8	August	5.640			0.274	34.762	4.849	10.622	-9.286
9	September	5.021	5.012				-1.745	-2.252	0.195
10	October .	4.890		-0.277	0.077	22.558	-3.045	-6.089	5.672
	November	4.741		-0.253	0.064	21.282	-4.478	-7.220	5,333
12	December	4.058			0.001			-10.676	-0.670
	TOTAL	62.3067	62.7766	0.4699	0.6968	329.2892	2.9212	4.4361	
	1	<u> </u>	1		i)		1	1

Mean of reference value:

$$M_{r} = \frac{1}{n} \sum_{i=1}^{n} Q_{r}(i)$$
= 5.1923

Mean of Estimanted value;

$$M_{f} = \frac{1}{n} \sum_{i=1}^{n} Q_{f}(i)$$
= 5.2314

Bias:
$$B = M_f - M_f = 0.0392$$

Mean Squared Error:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} [Q_f(i) - Q_r(i)]^2$$

Root Mean Squared Error:
$$RMSE = (MSE)^{0.5}$$

$$= 0.2410$$

Variance:
$$V = MSE - B^2$$
 = 0.0565

Relative Bias :

$$RB = \frac{B}{M} -$$

Mean Absolute Error:

$$MAE = \frac{1}{n} \sum |Q_f(i) - Q_r(i)|$$
= 0.0392

Relative Mean Absolute Error:

State Error:
$$RMAE = \frac{MAE}{M},$$

$$= 0.0075$$

R squared :

$$R^{2} = \left[\frac{\frac{1}{n} \sum_{i=1}^{n} Q_{r}(i) Q_{f}(i) - M_{r} M_{f}}{\left(\frac{1}{n} \sum_{i=1}^{n} Q_{r}^{2} - M_{r}^{2}\right) \left(\frac{1}{n} \sum_{i=1}^{n} Q_{f}^{2} - M_{f}^{2}\right)} \right]^{2}$$

0.8606

1.

TABLE 4.11 ACCURACY IN ESTIMATION EXTRATERESTRIAL RADIATION BY SIMPLIFIED MODEL

_		Values of F	Ra in mm/day			1)
No	Month	As per	As per	$(Q_f - Q_f)$	$(Q_f - Q_f)^2$	Q _f Q _r	Q _r ² -M _r ²	$Q_f^2 - M_f^2$	Relative Erro
		FAO Tables	Simplified Model	Ì	Ì]	1		(%)
		(Q _r)	(Q ₁)						
1	January	14,100	14.117	0.017	0.000	199,050	-21.094	-20.533	-0.121
2	February	14.900		-0,017	0.000	221,761	2.106	1.690	1
	March	15.450	15.467	0.017	0.000	238.957	18.798	19.390	-0.107
4	April	15.450	15.467	0.017	0.000	238.961	18.798	19.396	-0.108
5	May	15.000	14.967	-0.034	0.001	224.498	5.096	4.173	0.223
6	June	14.550	14.584	0.033	0.001	212.190	-8.202	-7.144	-0.230
7	July	14.750	14.717	-0.034	0.001	217.068	-2.342	-3.247	0.227
8	August	15.150	. 15.151	0.000	0.000	229.530	9.618	9.715	-0.003
9	September	15,300	15.300	0.000	0.000	234.090	14.186	14.267	0.000
10	October	15.050	15.050	-0.001	0.000	226.495	6.598	6.665	0.003
11	November	14.350	14.350	0.000	0.000	205.923	-13.982	-13.900	0.000
12	December	13,900	13.867	-0.033	0.001	192.751	-26.694	-27.529	0.237
	TOTAL	177.9500	177.9170	-0,0330	0.0056	2641.2735	2.8873	2.9434	

Mean of reference value :

 $M_r = \frac{1}{n} \sum_{i=1}^n Q_r(i)$ 14.8292

Mean of Estimanted value:

 $M_f = \frac{1}{n} \sum_{i=1}^n Q_f(i)$ 14.8264

Bias: $B = M_f - M_r = -0.0028$

Mean Squared Error:

 $MSE = \frac{1}{n} \sum_{i=1}^{n} [Q_f(i) - Q_r(i)]^2$ 0.0005

Root Mean Squared Error:

$$RMSE = (MSE)^{0.5}$$

 $= 0.0216$

 $V = MSE - B^2$ 0.0005 Relative Bias:

$$RB = \frac{B}{M_r}$$
= -0.0000

Mean Absolute Error:

$$MAE = \frac{1}{n} \sum |Q_f(i) - Q_r(i)|$$
= 0.0028

Relative Mean Absolute Error:

polute Error:
$$RMAE = \frac{MAE}{M},$$

$$= 0.0002$$

$$R^{2} = \left[\frac{\frac{1}{n} \sum_{i=1}^{n} Q_{r}(i) Q_{f}(i) - M_{r} M_{f}}{\left(\frac{1}{n} \sum_{i=1}^{n} Q_{r}^{2} - M_{r}^{2}\right) \left(\frac{1}{n} \sum_{i=1}^{n} Q_{f}^{2} - M_{f}^{2}\right)} \right]^{2}$$

0.9982

CHAPTER 5 SIMPLIFIED MODEL FOR EVAPOTRANSPIRATION

5.1 INTRODUCTION

A general model for estimation of open water evaporation and evapotranspiration was discussed in previous chapter as an alternative to the modified Penman Method given by Doorenbos and Pruitt (1977). Radiation, temperature and wind speed are the important climate variables influencing evaporation and evapotranspiration rates. In Indonesia, climate variables occur in specific limited range. Therefore an attempt has been made to further simplify the procedure by developing appropriate regression equations.

5.2 RANGE OF CLIMATE VARIATION

5.2.1 Climatic Variation Over Entire Country

Indonesia lies just north and south of the equator. The latitude range is between 10°S to 10°N and maximum altitude of the irrigated agriculture is around 2000 m above mean sea level.

The climate is tropical with medium to high rainfall. It may range from 1000 to 5000 mm in a year. The mean daily temperature in the warmest and the coldest months is only about 30°C to 20°C of the daytime. Temperature decreases with increasing altitude at about the rate of 1°C per 200 m. Also temperature becomes somewhat high in the city areas.

The mean daily actual sunshine hours vary from about 30 % to 80 % of the maximum possible sunshine hours. Wind velocity varies up to the maximum wind speed of about 500 km/day. The wind velocity becomes somewhat less in the inland areas. The ratio of day and night time wind velocity varies from 1 to 3 and day time wind may be maximum about 6 m/sec.

5.2.2. Climatic Variation Over Aceh Province

Meteorological data for five stations in Aceh Province shows geographic variation and monthly variation as discussed below.

Rainfall: Table 5.1, give mean monthly values of rainfall. Takengon being located at 1250 m altitude compared to other from rainfall stations in coastal region receives higher rainfall. Fig. 5.1, shows graphical comparison of monthly rainfalls. Monthly rainfall in coastal region ranges from 50 mm to 100 mm in June and 200 to 364 mm in December.

Temperature: Table 5.2, gives mean monthly temperature. Fig. 5.2, shows comparison of temperature and variation from month to month. Temperature is an important climate variable. Variation in mean monthly temperature is in a limited range between 25 °C to less than 28 °C in the coastal region. Temperature varies between 20.5 °C to 19 °C. Therefore in the present study a range of 20 °C to 30 °C has been considered.

Relative Humidity: Relative Humidity varies in the range of 70 to 90 % at all the five stations and over all months except in May and July at Lhokseumawe, which does not appear to be realistic. Table 5.3, and Fig. 5.3, shows the variation in relative humidity.

Wind Run: Table 5.4, and Figure. 5.4, show the variation in mean monthly values of wind run. The range of variation is 50 to 250 km/day in Aceh Province

5.3 PROPOSED SIMPLIFIED MODEL

The Penman Method equation as modified by Doorenbos and Pruitt (1977) is

ETo =
$$c[w \times Rn + (1 - w) \cdot f(u) \cdot (ea - ed)]$$

5.3.1 Adjustment Factor (c)

It is dimensionless. It is required to compensate for effect of day and night weather conditions characterized by ratio of day and night wind speed (U_{day} / U_{night}), day time wind speed at 2 m height (U2) in m / second, maximum relative humidity RH_{max} (%) and solar radiation Rs measured in equivalent water depth of evaporation per day (mm/day). If is proposed to develop:

$$c = fn(U)$$
 for $U \le 6 m/sec$

for specific values of RH_{max} , (U_{day}/U_{night}) and R_s which are found to vary in limited range .

5.3.2 Weighting Factor (w)

It is dimensionless. Basically it depends on rate of variation of saturation vapour pressure with temperature, atmospheric pressure and latent heat of vaporization. Study of interrelation among the variables in previous chapter shows that w can be related with altitude (Z) in meter and mean air temperature (T_{mean}) in ^{0}C . Since variation in T_{mean} is 20 ^{0}C to 30 0 C in Indonesia, w has been related with Z for different values of T_{mean} .

5.3.3 Extraterrestrial Radiation (Ra)

Ra'in mm/day depends on latitude (Ø) and calendar day. Since in the present study, monthly. ETo and Eo are being analyzed. Ra is related to Latitude in degrees for different months.

5.3.4 Net Long wave Radiation (R_{nl})

 R_{nl} (mm/day) depends on T_{mean} , ratio of actual to max possible sunshine hours averaged for the month (n/N) and actual vapour pressure (e_d) in milli bar unit ed is a function of RH and T_{mean} . Since RH and T_{mean} vary in limited range in Indonesia and particularly in Aceh Province, e_d also varies in limited range. Therefore R_{nl} has been related to n/N for specific combination of mean and e_d.

Since ed is already computed, and T_{mean} is input data, it is easy to estimate R_{nl} form relation between R_{nl} and (T_{mean} , e_d).

Graphical linear regression analysis for above mentioned terms c, w, R_a , R_{ne} , have been carried out using data from tables in FAO publication (Doorenbos & Pruitt 1977). Linear equations are found to be best fits.

5.4 RELATION BETWEEN WEIGHING FACTOR (w) AND TEMPERATURE

$$w = \frac{(\text{dea/dT})}{(\text{dea/dT}) + \gamma} = \frac{\Delta}{\Delta + \gamma} = \frac{1}{1 + \frac{\gamma}{\Delta}}$$

$$\Delta = \frac{(40454\text{ea})}{(2373 + \text{T})^2}$$

$$\gamma = \frac{0.386.\text{P}}{\text{L}}$$

$$P = 1013 - 0.1055.\text{Z}$$

$$L = 595 - 0.51 \text{ T}$$

$$\therefore \gamma = \frac{0.386 * [1013 - 0.1055.\text{Z}]}{595 - 0.51.\text{T}} = \frac{391.018 - 0.0407.\text{Z}}{595 - 0.51\text{T}}$$

where:

Z: Elevation in meter

P: atmospheric pressure in mbar

ட்: Latent heat vaporization calorie / gram

 δ : Phychrometer constant in unit of Δ

Therefore w is a function of altitude (Z) and mean temperature T. It is a complicated function of T. For different values of T as a parameter, relation between w and Z was attempted. It is found that relationship is linear. In Indonesia, mean temperature varies from 20°C to 30°C and altitude range is 0 to 2000 m. In this range following linear relations have been developed as shows in Table 5.5. Figure 5.5 shows that for most accurate estimation of w for given altitude two different linear relationships can be used in the range of 0 to 1000 m altitude and 1000 m to 2000 m altitude.

Tables 5.5 Relation of Temperature between Weighing Factor

Temperature in ⁰ C	Weighing Factor in %
T = 20	w = 0.002410.Z + 68.270
T = 21 .	w = 0.002350.Z + 69.420
T = 22	w = 0.002900.Z + 70.540
T = 23	w = 0.002250.Z + 70.610
T = 24	w = 0.002190.Z + 72.650
T = 25	w = 0.002130.Z + 73.670
T = 26	w = 0.002080.Z + 74.640
T = 27	w = 0.002020.Z + 75.595
T = 28	w = 0.001965.Z + 76.515
T = 29	w = 0.001905.Z + 77.405
T = 30	w = 0.00185.Z + 78.260

5.5 RELATION BETWEEN EXTRATERRESTRIAL RADIATION AND LATITUDE

Entire Indonesia lies between 10° N latitude and 10° S latitude. Extraterrestrial radiation Ra in mm/day depends on latitude and months. Regression analysis shows that linear equations can be fitted between Ra and latitude (Ø in degrees) for different months and separately for Northern hemisphere (Northern latitudes) and for Southern hemisphere (Southern latitudes). Figures 5.6. to 5.8. show linear variation of Ra with northern latitude in different months. Figures 5.9. to 5.11. show variation of Ra with southern latitude in different months. The expression is:

Ra =
$$A + B \cdot \emptyset$$

Ø is latitude in degrees.

Best fit coefficient are shown in Table 5.6.

Table 5.6 Best-Fit Coefficients for Linear Relation between Ra and Latitude

	Northern h	nemisphere	Southern her	nisphere
Month	Α	В	Α	В
January	15.0238	-0.18143	14.9905	0.1386
February	15.5333	-0.13000	15.5143	0.0771
March	15.6809	-0.0429	15.7143	-0.0229
April	15.2667	0.0400	15.3238	-0.1114
May	14.4095	0.1114	14.4143	-0.1629
June	13.8905	0.1386	13.9095	-0.1886
July	14.0952	0.1243	14.0762	-0:1686
August	14.7857	0.0729	14.7905	-0.1314
September	15.3000	0.0000	15.3000	-0.0500
October	15.4143	-0.0726	15.4000	0.0500
November	15.1000	-0.1500	15.0857	0.1128
December	14.8129	-0.1890	14.8190	0.1428

For maximum Possible Sunshine Hours following relationship as given in Chapter 4 is recommended

$$N = \frac{24}{\pi}$$
 ws in hours

Where ws is the sunset hour angle (radians)

5.6 RELATION BETWEEN NETLONGWAVE RADIATION AND SUNSHINE HOUR

RnI =
$$2.0 \times 10^{-9} \times (Tk)^4 \times (0.1 + 0.9.n/N) \times (0.34 - 0.14 \sqrt{ed})$$

= $f(T) \times f(n/N) \times f(ed)$

Since ed is a function of T & RH and for a given latitude (Ø), N depends on month only; Rnl can be expressed as a fn of T, RH, n, Ø and average day (δ) of month as given in table 4.2 of chapter 4.

Alternately Rnl can be expressed as fn. of Rh, T and n/N. Since variation in T is only in the range of 20°C to 30°C and Rn varies in the range 60 to 90 %, these can be used as a parameter and relation between Rnl and n/N can be attempted. Temperature and relative humidity affect actual vapour pressure. Since actual vapour pressure computation is required to find vapour pressure deficit therefore here Rnl is made a fn of T, n/N, and ed in this study

$$RnI = A + B.n/N$$

Best fit coefficients are shown in table 5.7

Table 5.7 Linear Regression between (n/N) and RnI. Expressed; RnI = A + B (n/N)

ed	20 n	n bar	22 n	nbar	24 r	nbar	26	mbar	28m	bar	30 n	nbar
Ţ	A	В	Α	В	Α	B	Ā	В	Α	В	Α	В
20	0.2110	1.9000	0.1975	17732	0.1828	1.6509	0.1710	1,5330	0.577	1.4224	0.1459	1.3148
22	0.2166	1.9528	0.2030	1.8225	0.1879	1.6968	0.1757	1.5756	0.1621	1.4620	0.1500	1.3514
24	0.2225	2.0057	0.2085	1.8719	0.1929	1.7427	0.1805	1.6182	0.1665	1.5015	0.1540	1.3860
26	0.2285	2.0598	0.2141	1.9224	0.1982	1.7898	0.1854	1.6619	0.1710	1,5421	0.1582	1.4254
28	0.2348	2.1165	0.2200	1,9753	0,2036	1.8390	0.1905	1.7077	0.1757	1.5845	0.1626	1.4647
30	0.241	2.1733	0.2259	2.0283	0.2091	1.8883	0.1956	1.7 5 34	0.1669	1.5039	0.1669	1.5039

5.7 ESTIMATION OF ADJUSTMENT FACTOR (C)

Adjustment factor c depends on Rs, RH_{max}, U_{day} and ratio U_{day}/U_{night} . Value of c increases with increases in value of Rs, RH_{max}, and ratio U_{day}/U_{night} but decreases with increases in U_{day} .

In Aceh Province Rh varies from 80 % to 90 %. Radiation Rs varies between 5 to 8 mm/day ratio U_{day} / U_{night} is nearly one. Max wind speed is 275 km / day (~ 3 m / sec).

Keeping in view the above-mentioned information following linear relationships can be adopted for Aceh Province. It is assumed that Rhmax is in range 60% to 90%, $U_{day}/U_{night} = 1$, and Uday varies for 0 to 6 m/sec.

Different linear relations exist between C and U_{day} for U_{day} range from 0 to 6 m/sec and from 6 to 9 m/sec as seen in figures 5.12 and figure 5.13. For accurate estimation of C these different relations can be used depending on value of U_{day} .

for Rs = 3 mm/day

 $c = 1.02 - 0.0567 U_{day}$, RHmax = 90%

 $c = 0.9567 - 0.05674 U_{day}$ RHmax = 60%

for Rs = 6 mm/day $c = 1.06 - 0.0467 U_{day}$ RHmax = 90% $c = 0.98 - 0.04 U_{day}$ RHmax = 60%for $Rs = 9 \, mm / day$ $c = 1.100 - 0.030 U_{day}$ RHmax = 90% $c = 1.0483 - 0.035 U_{day}$ RHmax = 60%for Rs = 12 mm / day

 $c = 1.098 - 0.0157 U_{day}$ RHmax = 90% $c = 1.05 - 0.02 U_{day}$ RHmax = 60%

5.8 SIMPLIFIED MODEL

Table 5.8. Computation Steps of ETo and Eo

Step	Input	Equation
1	Elevation (Z) in meter	W = A + B.Z
11	Latitude (Ø) in degrees &	Ra = A + B.Ø, get A, B from table 4.2
	month	$N = \frac{24}{\pi} * ws$
111	Actual Sunshine hours n	Rs = [0.25 cos Ø + 0.5 x n/N] x Ra
IV	Reflection coefficient (K) =	Rns = (1 – K). Rs
	0.25 for most crop and	
}	= 0.08 for water	
V	T mean (⁰C) and RH %	
VI	T _{mean} and Computed ed	ea = 6.11 exp [17.27 T / 237.3+T]
		ed = ea x RH / 100
		Rnl = A + B.n/N, get A, B from table 5.3
		for specific T, ed
}		Rn = Rns - Rnl
VII	Wind speed U2 (m/sec)	f(u) = a (b + c.U2)
VIII	For $U_{day}/U_{night} = 1$	RnI = A + B.n/N, get A, B from table 5.3 for specific T, ed Rn = Rns - RnI f(u) = a (b + c.U2) Adjusment factor C = A + B.U
	U _{day} < 6 m/sec	C = A + B.U
	Computed Rs <12 mm/day	C = A + B.U
	Rhmax 60 to 90%	
iX	Computed ETo & Eo	ETo = c [w.Rn + (1 – w).f₁(u).(ea – ed)]
		Eo = c [w.Rn + (1 - w).f ₂ (u).(ea - ed)]

5.9 APPLICATION STUDY OF SIMPLIFIED MODEL

Jambo Aye Irrigation Project

Given data:

Latitude (\emptyset) = 5 0 N

Elevation (Z) = 500 meter

Month = January

Tmean = 24.9 °C

Rhmean = 82 %

Rhmax = 85 %

 $U_{day} = 1.5 \text{ m/sec}$

 $U_{day}/U_{night} = 1$

n/N = 0.45

Step 1. For Z = 500 m, $T = 24.9 \, ^{\circ}\text{C}$

We need interpolation value of w between 24 °C and 25 °C so that, we get as follow:

at T =
$$24^{\circ}$$
C
w (%) = $0.00213 \times Z + 72.72$
= $0.00213 \times 500 + 72.72$
= 73.78%
at T = 25° C
w (%) = $0.00213 \times Z + 73.73$
= $0.00213 \times 500 + 73.73$
= 74.765%
at T = 24.9° C
w (%) = $(((24.9 - 24) / (25 - 24)) \times (74.765 - 73.765)) + 73.78$

Step 2. For
$$\emptyset = 5$$
 ⁰N & January month

= 74.667 %

Ra = -0.1814 Ø + 15.024

and (1 - w) = 0.2533

= 14.117 mm/day

since n/N is given so N is not computed

Step 3. For
$$\emptyset = 5$$
 0 N, n/N = 0.45 and computed Ra =14.117
Rs = (0.25 cos \emptyset + 0.50 .n/N). Ra
= 6.6921 mm/day

Step 4. For rice crop
$$= 0.25$$

Rns =
$$(1 - \alpha) \times Rs$$

 $= 5.0191 \, \text{mm/day}$

For surface water $\alpha = 0.08$

Rns =
$$(1 - \emptyset) \times Rs$$

= 6.160 mm/day

Step 5. For Tmean =
$$24.9^{\circ}$$
C and Rhmean = 82%

ea =
$$6.11 \exp((17.27 \times T)/(237.3 + T)$$

= 31.5 m bar, and

 $ed = ea \times RH / 100$

= 25.83 m bar, and

$$(ea - ed) = 31.50 - 25.83$$

 $= 5.67 \, \text{m bar}$

Step 6. For Tmean =
$$24.9^{\circ}$$
C and Computed ed = 25.83 m bar and n/N = 0.45 Rnl = A + B.n/N

To determine value of RnI we have to interpolation between t = 24 $^{\circ}$ C and 26 $^{\circ}$ C

Rni (T = 24, ed = 26) =
$$0.1805 + 1.6182.n/N$$

= 0.9087 mm/day

RnI (T = 26, ed = 26) =
$$0.1854 + 1.6619.n/N$$

= 0.9333 mm/day

so the value of

RnI =
$$0.9087 + ((24.9 - 24) / (26 - 24)) \times (0.9333 - 0.9087)$$

= 0.9197 mm/day

$$Rn = Rns - Rnl$$

= 4.0994 mm/day

$$f(u) = a7(a8 + a9 \times U2)$$
$$= 0.27 (1 + 0.01 \times 117)$$
$$= 0.7479$$

Step 8 Adjustment Factor (c)

Here RHmax = 85 %; Rs = 6.6921 mm/day; U_{day}/U_{night} = 1 and U_{day} = 1.5 m/sec

For Rhmax = 90%, C =
$$1.0692\text{-}0.0428 \times U_{day}$$

= 1.005
For Rhmax = 60% , C = $0.9958\text{-}0.0388 \times U_{day}$
= 0.9375
So, Adjustment factor (C) for Rhmax = 85% is
C = $0.9375 + (25/30 \times (1.005 - 0.9375))$
= 0.9938

Step 9. ETo computation

ETo = c [w x Rn + (1 – w).
$$f_1(u)$$
.(ea-ed)]
= 0.9938 x [(0.74667 x 4.0994) + (0.2533 x 0.7479 x 5.67)]
= 4.1094 mm/day

Similar computations were made for other months and estimated reference crop potential evapotranspiration using the simplified model is shown in table 5.9. Potential evapotranspiration and evaporation using Modified Penman method and FAO Tables as given in Doorenbos and Pruitt (1977) have already been estimated in chapter 4 for Jambo Aye Project. Meteorological variates for January month as per simplified model and as per FAO tables are summary rise in table 5.10

5.10 COMPARISON OF SIMPLIFIED MODEL WITH GENERALL MODEL AND FAO PROCEDURE

5.10.1 Extraterrestrial Radiation (Ra)

As already discussed in chapter 4, Ra is the most important input variable. Accuracy in estimation of Ra with reference to estimated Ra by FAO Procedure is analyzed by computation of several accuracy parameters as shown in table 5.11

Percentage error range from 0.000% in November to 0.227% in July Compared to Ra estimation by general model (Table 4.8 in chapter 4), the error is greatly reduced. Similarly coefficient of determination R² is higher, bias (B) and variance V are less.

	Simplified Model (Table 5.11)	General Model (Table 4.8)
% error in Ra	0.000 to 0.227	0.216% to 1.592%
Bias (B) in Ra	- 0.0028	- 0.1226
Variance in Ra	0.0005	0.0029
Coeff. of determination	0.9982	0.9926
in Ra		

It is therefore recommended that linear regression between Ra and Latitude for different months can be used instead of complicated nonlinear sinusoidal relation in General Model.

Table 5.12 shows accuracy of terms of various parameters. General model is applicable for complete range of Latitude.

5.10.2 Accuracy in Estimation of ETo

Table 5.13 shows computation of accuracy parameters of simplified model with reference to the FAO Procedure. Table 5.14 shows comparison of simplified model with reference to general model. Accuracy parameters of simplified model and general model with reference to FAO procedure are compared below:

	Simplified Model	General Model
	(Table 5.13)	(Table 4.9)
% error in ETo	- 3.651 to 2.013	0.310% to 8.791%
Bias (B) in Eto	- 0.0098	- 0.2382
Variance in ETo	0.0041	0.0094
Coeff of determination	0.9771	0.9476
in ETo		

It is clear that simplified model performs better than the general model. Performance of simplified model with reference to general model (Table 5.14) is also satisfactory as.

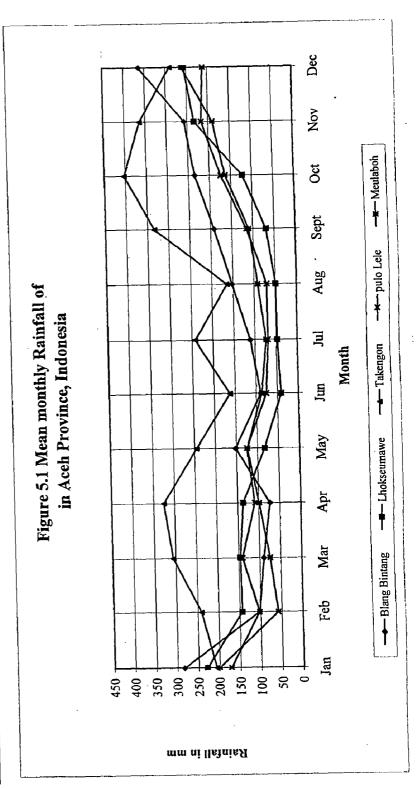
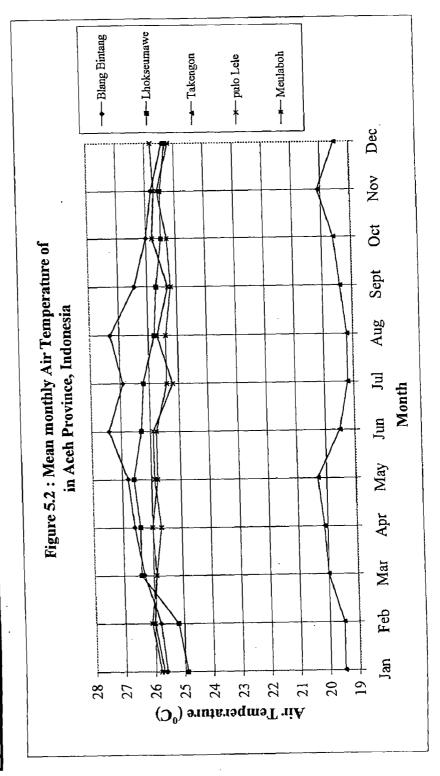
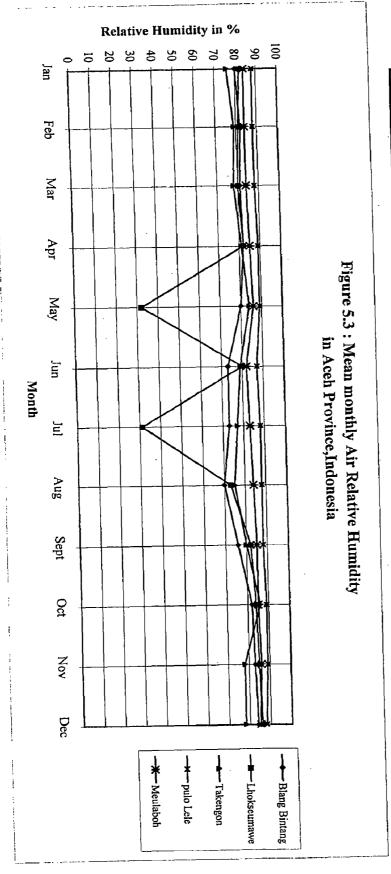

5.9.3 Accuracy in estimation of Evaporation (Eo)

Table 5.15 shows computation of accuracy parameters of simplified model with reference to FAO Procedure. Table 5.16 shows comparison of simplified model with reference to general model. The accuracy parameters of simplified model and general model with reference to FAO Procedure are compared below:


	Simplified Model	General Model
	(Table 5.13)	(Table 4.9)
% error in Eo	- 0.419% to 11.274%	- 9.286% to 5.672%
Bias (B) in Eo	- 0.4643	0.0392
Variance in Eo	0.0233	0.0565
Coeff of determination	0.9045	0.8606
in Fo		


Performance of simplified model and general model are satisfactory. Simplified model seems to be more accurate then the general model. Simplified model is able to provide better accuracy as it has been develop specifically for limited range of variation in meteorological parameters; a typical characteristic for Indonesia region. It is not applicable for other regions. Generalized model is applicable for all possible ranges of meteorological parameters. Accuracy has therefore been compromised in consideration of general application.

Dec 256 250 2511 2511 257 233 364 216 190 235 122 403 173 163 192 69 334 1115 152 49 164 70 91 47 242 69 73 Rainfall (mm) Jun 89 41 162 76 87 Table 5.1 Mean Monthly Rainfall (mm) in Aceh Province 152 83 245 125 124 73 137 326 109 99 90 146 306 141 75 103 144 241 103 Jan 284 229 207 172 200 Biang Bintang Lhokseumawe Location Maulaboh Takengon Puio lele

25.4 25.3 19.5 25.8 25.2 Nov 25.8 25.5 20.1 25.7 25.6 26 25.5 19.6 25.8 Sept 26.44 25.7 19.4 25.3 25.2 Aug 27.3 25.8 19.2 25.7 25.7 25.7 25.4 26.9 26.2 19.2 25.2 25.4 Temperature (⁰ C) Jun 27.4 26.3 19.5 25.9 25.8 Table 5.2 Mean Monthly Air Temperature (0C) in Aceh Province May 26.8 26.6 20.3 25.9 25.8 26.6 26.4 20.1 25.7 26.7 25.8 25.2 19.5 Jan 25.6 24.9 19.5 25.7 25.8 Biang Bintang hokseumawe **Takengon** Maulaboh Pulo lele

Table 5.3 Mean Monthly Relative Humidity (%) in Aceh Province	Monthly	Relativ	e Humid	ity (%)	in Aceh	Provinc	Ö					
Y		,		Me	Mean Relative Hun	ive Hum	nidity (%	<u></u>				
Location		1			May	ן מנול ו		Alla	Sept	Oct Oct	Nov	Dec
Station	Jan	rep	Mar	197	Iviay	֓֞֜֜֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	3	700	7,	3	23	84
Biang Rintang	80	83	<u>8</u>	83	80	73	/3	6	0	102	ָ נ	> -
Summer Strong) (2	ŝ	3	? C	8	<u></u>	73	8 2	42	8	86
Lhokseumawe	22	10	00	90	ľ	. (1) 1	3	70	70	78
	76	70	78	<u>×</u>	84 4	79	77	7	80	00	ò	ò
Lakengon	2) (3	00	00	××	80	89	<u></u>
Dulo lele	88	88	×	89	89	0/	00				? !	0
1 0.0.0	0	2	84	۲ ا	86	82 2	జ	84	8	8	80	٥٥
Maulabon	100	ç	٤	,								

Dec 240 135 69 240 161 210 114 66 210 161 210 104 60 210 161 240 118 71 240 161 Aug 275 275 121 79 275 275 129 Mean Monthly Wind Run (km/day 240 240 240 129 Jun 240 101 80 240 Table 5.4. Mean Monthly Wind Run at 2 m above Ground May 210 104 73 210 240 160 78 240 161 240 177 98 240 161 hokseumawe. Biang Bintang Location akengon Maulaboh ulo lele

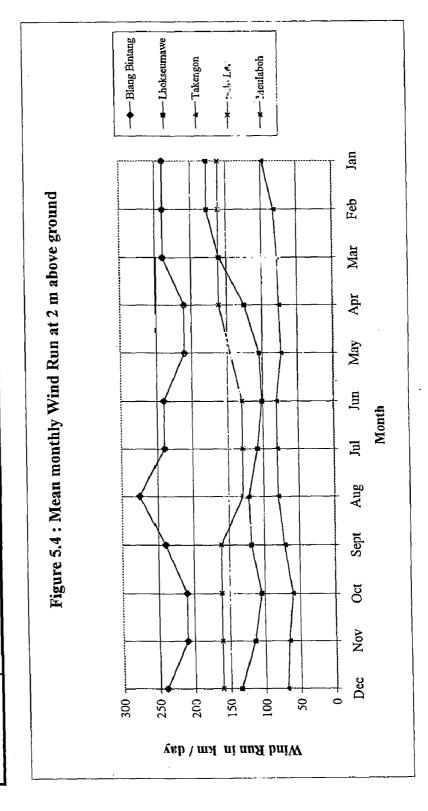


Table 5.9 Estimation Evapotranspiration (ETo) by Simplified Model Place: Jambo Aye Project

Latitude: 5 0 N

Altitude: 500 m

8 August 9 September 10 October 11 Nopember	8 August 9 Septer	7 July 8 August	7 July 8 Augus	7 July	_	6 June	5 May	4 April	3 March	2 February	1 January	 	Nonth	Latitude : 5
25.8 nber 25.7 ar 25.5 hber 25.5	<u>er</u>			_	26.2	26.3	26.6	26.4	26.4	ıry 25.2	у 24.9	┼	# 	: 5 ⁰ N : 500 m
5 5 84 85 84			.7 82	73	<u>i2</u> 81	. <u>3</u> 80	.6 82	82	80	.2 81	82		공	
_ <u>0</u>		90	2 85	<u>3</u> 85	 1 85	0 85	2 85	85	85	- 1 85	85	%	R R	
	ارد ا	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	m/sec		!
						<u>د.</u>	ــــــــــــــــــــــــــــــــــــــ					Unight	U_{day}	
	0.34	0.31	0.30	0.36	0.38	0.38	0.35	0.37	0.44	0.42	0.45	+	Z Z	<u>}</u>
	114	104	118	121	108	101	104	125	160	177	177	km/day	Ç	-
	114 0.752 0.248	104 0.757 0.243	118 0.754 0.246	121 0.755 0.245	108 0.759 0.241	101 0.760 0.240	104 0.763 0.237	125 0.761 0.239	160 0.761 0.239	177 0.750 0.250	177 0.747 0.253	┵—	 ≶	
	0.248											┽	1-₩ 	
	14.350	15.050	15.300	15.151	14.717	14.584	14.967	15.467	15.467	14.883	14.117	nm/day	R a	
	6.013	6.081	6.105	6.500	6.461	6.403	6.347	6.713	7.255	6.832	6.692	mm/day	Ŗ	
		4.561	4.579	4.875	4,846	4.802	4.760	5.035	5.441	5.124	5.019	mm/day mm/day mm/day	Rns	
33 350	4.510 32.644 27.748	32.644 27.421	33.034 27.088				34.837		34.429			15	 ea	
2 828 22 250 27 7/3	27.748	27.421	27.088	33.230 24.258	34.025 27.560	34.226 27.381	28.566	34.429 28.232	34.429 27.543	32.068 25.975	31.500 25.830	m bar	e d	
) K	0.697	0.659	0.653	0.832	0.772	0.778	0.700	0.739	0.869	0.874	0.920		골	
3	3.813	3.902	3.926									mm/day mm/day	Z Z	
3 207 n 635 n 037	3.813 0.578 0.990	3.902 0.551 0.992	3.926 0.589 0.981	4.043 0.597 0.989	4.074 0.562 0.989	4.024 0.543 0.930	4,059 0.551 0.986	4.296 0.608 0.938	4.572 0.702 1.006	4.250 0.748 0.941	4.099 0.748 0.994	1-	 Ĉ	
227	0.990	0.992	0.981	0.989	0.989	0.930	0.986	0.938	1.006	0.941	0.994		ი	
3	3.535	3.617	3.747	4.318	3.922	3.900	3.861	4.145	4.664	4.313	4.109	mm/day mm/day	<u>n</u>	
9	4.296	4.389	4.515	5.144	4.746	4.716	4.672	5.008	5.514	5.181	4.954	mm/da	m O	

Table 5.10: Comparison results on January Month As per FAO tables and Simplified Model

• Item	As per Table	s in FAO-24	As per Simplif	fied Model
	Values	unit	Values	unit
ea	31.510	m bar	31.500	m bar
ed	25.838	m bar	25.830	m bar
(ea - ed)	5.672	m bar	5.670	m bar
U2	177.000	km/day	177.000	km/day
f1(u)	0.748		0.748	1
f2(u)		÷	-	
we (for open water surface)			-	
wa (for open water surface)	-			
we (for reference crop)	0.749		0.747	
wa (for reference crop)	-] -	
Ra	14.100	mm/day	14.117	mm/day
Rs	6.698	mm/day	6.692	mm/day
Rns	5.076	mm/day	5.019	mm/day
Rnl	0.956	mm/day	0.920	mm/day
Rn	4.120	mm/day	4.099	mm/day
c	0.994	_	0.994	
ЕТо	4.125	mm/day	4.109	mm/day
Eo	4.933	mm/day	4.954	
		<u></u> _	<u> </u>	Ĺ .

Table 5.11: Comparison of (Ra) by General Model and Simplified Model

.,	3.6 .1	Calculation Extrate	rrastrial Radiation (Ra) in mm/da
No	Month	As per	As per	Relative error
		General Model	Simplified Model	(%)
				(,,,
1	January	14.010	14.117	-0.764
2	February	14.799	14.883	≈ 0.570
3	March	15.371	15.467	-0.624
4	April	15.354	15.467	-0.737
5	May	14.858	14.967	-0.731
6	June	14.478	14.584	-0.729
7	July	14.586	14.717	-0.892
8	August	15.045	15.151	-0.703
9	September	15.267	15.300	-0.216
10	October	14.887	15.050	-1.090
11	November	14.146	14.350	-1.444
12	December	13.679	13.867	-1.376
[

Table 5.12: Comparison of (Ra) by FAO Tables and Simplified Model

No	Month	Calculation Ext	raterrastrial Radiation	(Ra) in mm/day
NO	WOILLI	As per	As per	Relative error
		FAO Tables	Simplified Model	(%)
	Iomyomi	14.100	14.117	-0.121
1 1	January	1	1	1
2	February	14.900	14.883	0.112
3	March	15.450	15.467	-0.107
4	April	15.450	15.467	-0.108
5	May	15.000	14.967	0.223
6	June	14.550	14.584	-0.230
7	July	14.750	14.717	0.227
8	August	15.150	15.151	-0.003
9	September	15.300	15.300	0.000
10	October	15.050	15.050	0.003
11	November	14.350	14.350	0.000
12	December	13.900	13.867	0.237
			<u></u>	

Table 5.13: Comparison ETo by General Model and Simplified Model

		Calculation E	Evapotranspiration (E	To) in mm/day	
No	Month	As per General	Simplified Model	Relative Error	
		Model (mm/day)	(mm/day)	(%)	
1	January	3.924	4.109	-4.734	
2	February	4.113	4.313	-4.859	
3	March	4.377	4.664	- 6.550	
4	April	3.894	4.145	-6.445	
5	May	3.617	3.861	-6.747	
6	Juny	3.618	3.900	-7.791	
7	July	3.654	3.922	-7.340	
8	August	3.959	4.318	- 9.065	
9	September	3.563	3.747	-5.181	
10	October	3.377	3.617	-7.132	
11	November	3.311	3.535	-6.740	
12	December	2.973	2.989	-0.516	

Table 5.14: Comparison of Eo by FAO Tables and Simplified Model

No	Month	As per FAO-24	Simplified Model	Relative Error
		tables (mm/day)	Eo (mm/day)	(%)
			4.053	0.410
1	January	4.933	4.954	-0.419
2	February	5.767	5.181	10.167
3	March	5.964	5.514	7.545
4	April	5.515	5.008	9.196
5	May	5.256	4.672	11.107
6	Juny	5.264	4.716	10.412
7	July	5.256	4.746	9.694
8	August	5.640	5.144	8.797
9	September	5.021	4.515	10.085
10	October	4.890	4.389	10.259
11	November	4.741	4.296	9.391
12	December	4.058	3.601	11.279
			<u> </u>	<u> </u>

Table 5.15: Comparison Eo by General Model and Simplified Model

No	Month	As per General	Simplified Model	Relative Error
ļ		Model (mm/day)	(mm/day)	(%)
1	January	5.378	4.954	7.897
2	February	5.698	5.181	9.084
3	March	6.217	5.514	11.308
4	April	5.460	5.008	8.273
4 5	May	5.156	4.672	9.387
6	Juny	5.273	4.716	10.569
7	July	5.231	4.746	9.267
8	August	6.164	5.144	16.547
9	September	5.012	4.515	9.909
10	October	4.613	4.389	4.863
11	November	4.489	4.296	4.287
12	December	4.086	3.601	11.870

Table 5.16: Comparison of ETo by FAO Tables and Simplified Model

No	Month	As per FAO-24	Simplified Model	Relative Error
		tables (mm/day)	ETo (mm/day)	(%)
			<u> </u>	(70)
] 1	January	4.125	4.109	0.372
2	February	4.408	4.313	2.149
3	March	4.499	4.664	-3.651
4	April	4.134	4.145	-0.268
5	May .	3.940	3.861	2.013
6	Juny	3.966	3.900	1.685
7	July	3.970	3.922	1.209
8	August	4.311	4.318	-0.152
9	September	3.748	3.747	0.017
10	October	3.633	3.617	0.430
11	November	3.520	3.535	-0.419
12	December	2.983	2.989	-0.205

TABLE 5.17 ACCURACY IN ESTIMATION EXTRATERESTRIAL RADIATION BY SIMPLIFIED MODEL

		1 1					_		•
١	l		Rain mm/day					T	
No	Month	As per	As per	$(Q_f - Q_r)$	$(Q_f - Q_r)^2$	Q, Q,	Q _r ² -M _r ²	Q _f ² -M _f ²	Relative Error
		FAO Tables	Simplified Model	,,	"] -, -,		(-1111	i
		(Q _r)	(Q _i)					ĺ	(%)
									
	January	14.100	14.117	0.017	0.000	199,050	-21.094	-20.533	-0.121
	February	14.900	14.883	-0.017	0.000		2.106		
	March	15.450	15.467	0.017	0.000	238.957	18.798		
	April	15.450	15,467	0.017	0.000	238,961	18.798	19,396	
	May	15.000	14.967	-0.034	0.001	224,498	5.096	4.173	0.223
	June	14.550		0.033	0.001	212.190		-7.144	
	July	14.750	14.717	-0.034	0.001	217,068		-3.247	0.227
	August	15.150		0.000	0.000	229.530		9.715	-0.003
	September	15,300		0.000	0.000	234,090		14.267	0.000
	October	15.050	15.050	-0.001	0.000	226,495	6.598	6.665	0.003
	November	14.350	14.350	0.000	0.000	205,923		-13.900	0,000
	December	13.900	13,867	-0.033	0.001	192,751	-26,694		0.237
	TOTAL	177.950	177.917	-0.033	0.006	2641.273	2.887	2.943	0.237
لـــــــــــــــــــــــــــــــــــــ					1				

12

 $M_r = \frac{1}{n} \sum_{i=1}^n Q_r(i)$

Relative Bias:

Mean of Estimanted value :

Mean Absolute Error:

 $MAE = \frac{1}{n} \sum |Q_f(i) - Q_r(i)|$

Bias: $B = M_f - M_r$ -0.0028

Relative Mean Absolute Error:

Mean Squared Error:

 $MSE = \frac{1}{n} \sum_{i=1}^{n} [Q_f(i) - Q_r(i)]^2$ = 0.0005

Root Mean Squared Error : $RMSE = (MSE)^{0.5}$

Variance : $V = MSE - B^2$ = 0.0005

 $R^{2} = \left| \frac{\frac{1}{n} \sum_{i=1}^{n} Q_{r}(i) Q_{f}(i) - M_{r} M_{f}}{\left(\frac{1}{n} \sum_{i=1}^{n} Q_{r}^{2} - M_{r}^{2} \right) \left(\frac{1}{n} \sum_{i=1}^{n} Q_{f}^{2} - M_{f}^{2} \right)} \right|^{2}$

0.9982

TABLE 5.18 COMPARISON OF EXTRATERESTRIAL RADIATION BY GENERAL MODEL AND SIMPLIFIED MODEL

		Values of F	Rain mm/day						· ·
No A	Month	As per General Model (Q _r)	As per Simplified Model (Q _i)	(Q _f - Q _f)	(Q _f - Q _f) ²	a, a,	Q _r ²-M _r ²	Q _r ²-M _r ²	Relative Error
1 Janna Jann	ruary ch l st ember ober ember	14.010 14.799 15.371 15.354 14.858 14.478 14.586 15.045 15.267 14.887 14.146 13.679	14.117 14.883 15.467 15.467 14.967 14.584 14.717 15.151 15.300 15.050 14.350 13.867	0.107 0.084 0.096 0.113 0.109 0.106 0.130 0.106 0.033 0.162 0.204 0.188	0.011 0.007 0.009 0.013 0.012 0.011 0.017 0.001 0.006 0.042 0.035	220.258 237.730 237.469	-20.004 2.728 19.973 19.449 4.472 -6.673 -3.520 10.0b1 16.798 5.349 -16.183 -29.174	-20.533 1.690 19.390 19.396 4.173 -7.144 -3.247 9.715 14.267 6.665 -13.900 -27.529	-0.764 -0.570 -0.624 -0.737 -0.731 -0.729 -0.892 -0.703 -0.216 -1.090 -1.444 -1.376

 $M_r = \frac{1}{n} \sum_{i=1}^n Q_r(i)$

14.7066

Mean of Estimanted value:

14.8264

Bias: $B = M_{f} - M_{f}$ 0.1199

Mean Squared Error :

 $MSE = \frac{1}{n} \sum_{i=1}^{n} [Q_f(i) - Q_f(i)]^2$ 0.0164

Root Mean Squared Error : $RMSE = (MSE)^{0.5}$ =

Variance: $V = MSE - B^2$ = 0.0020

Relative Bias:

$$RB = \frac{B}{M_{r}}$$

$$= 0.0081$$

Mean Absolute Error:

$$MAE = \frac{1}{n} \sum |Q_f(i) - Q_r(i)|$$
= 0.1199

Relative Mean Absolute Error:

 $RMAE = \frac{MAE}{\cdot}$

R squared:

$$R^{2} = \left[\frac{\frac{1}{n} \sum_{i=1}^{n} Q_{r}(i) Q_{f}(i) - M_{r} M_{f}}{\left(\frac{1}{n} \sum_{i=1}^{n} Q_{r}^{2} - M_{r}^{2} \right) \left(\frac{1}{n} \sum_{i=1}^{n} Q_{f}^{2} - M_{f}^{2} \right)} \right]^{2}$$

0.9952

TABLE 5.19 ACCURACY IN ESTIMATION OF EVAPOTRANSPIRATION (ETo) BY SIMPLIFIED MODEL

	ŀ	Values of E	To in mm/day						
No	Month	As per	As per	$(Q_f - Q_f)$	$(Q_{l} - Q_{r})^{2}$	Q,Q,	Q _r ²-M _r ²	$Q_f^2 - M_f^2$	Relative Error
		FAO Tables	Simplified Model			' '		-1 (ell	
		(Q,)	(Q _i)						(%)
1	January	4.125	4.109	-0.01 5	0.000	16.950	1.518	4.450	
2	February	4.408		-0.095	0.009	19.010		1.468	0.37
3	March	4,499		0.164	0.003	20.984	3.932	3.183	2.14
4	April	4.134		0.011	0.000		4.749 1.594	6.332	-3.65
5	May	3.940		-0.079	0.006	15.211	0.028	1.762	-0.26
6	June	3,966		-0.067	0.004	15.467	0.028	-0.513	2.01
7	July	3.970		-0.048	0.002	15.573		-0.212	1.68
8	August	4.311	4.318	0.007	0.002	18.617	0.268	-0.034	1.20
9	September	3.748		-0.001	0.000	14.045	3.093	3.227	-0.15
10	October	3,633	3.617	-0.016	0.000	13.142	-1.449	-1.376	0.01
11	November	3.520	3,535	0.015	0.000	12.441	-2.297	-2.333	0.43
_12	December	2.983		0.006	000.0	8.914	-3.107	-2.926	-0.41
	TOTAL	47.2374	47.1197	-0.1177	0.0499		-6.599	-6.486	
	·		47.1157	- 5.1177	0.0499	107.4901	1.9672	2.0931	

$$M_r = \frac{1}{n} \sum_{i=1}^{n} Q_r(i)$$

= 3.9365

Relative Bias:

$$RB = \frac{B}{M_r}$$
= -0.0025

Mean of Estimanted value :

Mean Absolute Error:

$$MAE = \frac{1}{n} \sum |Q_f(i) - Q_r(i)|$$

Bias: $B = M_f - M_f$ -0.0098

Relative Mean Absolute Error:

$$RMAE = \frac{MAE}{M},$$

$$= 0.0025$$

Mean Squared Error :

$$MSE = \frac{1}{n} \sum_{i=1}^{n} [Q_f(i) - Q_r(i)]^2$$
= 0.0042

Root Mean Squared Error:
$$RMSE = (MSE)^{0.5}$$

$$= 0.0645$$

Variance:
$$V = MSE - B^2$$
= 0.0041

R squared:

$$R^{2} = \left[\frac{\frac{1}{n} \sum_{i=1}^{n} Q_{r}(i) Q_{f}(i) - M_{r} M_{f}}{\left(\frac{1}{n} \sum_{i=1}^{n} Q_{r}^{2} - M_{r}^{2} \right) \left(\frac{1}{n} \sum_{i=1}^{n} Q_{f}^{2} - M_{f}^{2} \right)} \right]^{2}$$

0.9771

TABLE 5.20 COMPARISON OF EVAPOTRANSPIRATION (ETo) BY GENERAL MODEL AND SIMPLIFIED MODEL

No Month	As per General Model (Q _r)	To in mm/day As per Simplified Model (Q _r)	(Q ₁ - Q ₁)	(Q _f - Q _f) ²	Q, Q,	Q _r ² -M _r ²	Q _f ² -M _f ²	Relative Error
1 January 2 February 3 March 4 April 5 May 6 June 7 July 8 August 9 September 10 October 11 November 12 December	3.924 4.113 4.377 3.894 3.617 3.618 3.654 3.959 3.563 3.377 3.311 2.973	4.313 4.664 4.145 3.861 3.900 3.922	V	0.034 0.040 0.082 0.063 0.060 0.079 0.072 0.129 0.034 0.058 0.050 0.000	16.124 17.740 20.413 16.141 13.963 14.108 14.333 17.096 13.351 12.214 11.704 8.887	1.717 3.241 5.481 1.486 -0.597 -0.589 -0.325 1.997 -0.984 -2.276 -2.712 -4.836	1.468 3.183 6.332 1.762 -0.513 -0.212 -0.034 3.227 -1.376 -2.333 -2.926 -6.486	

$$M_r = \frac{1}{n} \sum_{i=1}^n Q_r(i)$$
= 3.60

Mean of Estimanted value :

$$M_f = \frac{1}{n} \sum_{i=1}^{n} Q_f(i)$$

= 3.926

Bias :
$$B = M_f - M_f = 0.2283$$

Mean Squared Error:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} [Q_f(i) - Q_r(i)]^2$$
= 0.0585

Root Mean Squared Error:

$$RMSE = (MSE)^{0.5}$$

= 0.2418

$$V = MSE - B^2$$

= 0.0063

Relative Bias:

$$RB = \frac{B}{M_{,}}$$
= 0.0617

Mean Absolute Error:

$$MAE = \frac{1}{n} \sum |Q_f(i) - Q_r(i)|$$
= 0.2283

Relative Mean Absolute Error:

$$RMAE = \frac{MAE}{M},$$
= 0.0617

R squared:

$$R^{2} = \left[\frac{\frac{1}{n} \sum_{i=1}^{n} Q_{r}(i) Q_{f}(i) - M_{r} M_{f}}{\left(\frac{1}{n} \sum_{i=1}^{n} Q_{r}^{2} - M_{r}^{2}\right) \left(\frac{1}{n} \sum_{i=1}^{n} Q_{f}^{2} - M_{f}^{2}\right)} \right]^{2}$$

$$= 0.9767$$

TABLE 5.21 ACCURACY IN ESTIMATION OF EVAPORATION (Eo; B / SIMPLIFIED MODEL

		Values of E	o in mm/day						
No	Month	As per	As per	(Q _f - Q _r)	(Q ₁ - Q _r) ²	Q _f Q,	Q, ² -M, ²	$Q_{i}^{2}-M_{i}^{2}$	Relative Error
 	,	FAO Tables	Simplified Model			ļ			(%)
		(Q _r)	(Q _i)						
١,	January	4.933	4.954	0.021	0.000	24 435	-2.626	2.184	-D.419
	February	5.767	·	-0,586	0.344		6.300	4,487	
	March	5.964		-0.450	0.202	32,889	8.613	8.054	
1	April	5,515		-0,507	0.257	27.622	3,460		
	May	5.256	4.672	-0.584	0.341	24.554	0.663	-0.526	ľ
6	June	5.264	4.716	-0.548	0.300	24.826	0.753	-0.112	10.412
7	July	5.256	4.746	-0.510	0.260	24.947	0,666	0,175	9,694
8	August	5.640	5.144	-0.496	0.246	29 010	4.849	4.104	8.797
9	September	5.021	4.515	-0.506	0.256	22.671	-1.745	-1.968	10.085
10	October	4.890		-0.502	0.252	21.461	-3.045	· -3,094	10.259
11	November	4.741	4.296	-0.445	0.198	20,370	-4.478	-3,897	9.391
12	December	4.058		-0.458	0.210	14.612	~10.489	-9.389	11.279
	TOTAL	62.3067	56.7352	-5.5715	2.8668	297.2759	2.9212	2.7472	
<u>L</u> _	1	<u>. </u>	1		1	1		}	ł .

12

Mean of reference value :

$$M_r = \frac{1}{n} \sum_{i=1}^{n} Q_r(i)$$

Mean of Estimanted value :

$$M_f = \frac{1}{n} \sum_{i=1}^{n} Q_f(i)$$

= 4.7279

Bias:

$$B = M_f - M_f$$
 -0.4643

Mean Squared Error:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} [Q_f(i) - Q_r(i)]^2$$
= 0.2389

Root Mean Squared Error :
$$RMSE = (MSE)^{0.5}$$

$$= 0.488$$

Variance:

$$V = MSE - B^{2}$$
= 0.0233

Relative Bias:

$$RB = \frac{B}{M}$$
= -0.0894

Mean Absolute Error:

$$MAE = \frac{1}{n} \sum_{i} |Q_{f}(i) - Q_{r}(i)|$$

Relative Mean Absolute Error :
$$RMA\vec{E} = \frac{MAE}{M}$$
= 0.0894

R squared:

$$R^{2} \cdot \left[\frac{\frac{1}{n} \sum_{i=1}^{n} Q_{r}(i) Q_{f}(i) - M_{r} M_{f}}{\left(\frac{1}{n} \sum_{i=1}^{n} Q_{r}^{2} - M_{r}^{2} \right) \left(\frac{1}{n} \sum_{i=1}^{n} Q_{f}^{2} - M_{f}^{2} \right)} \right]^{2}$$

$$= 0.9045$$

TABLE 5.22 COMPARISON OF EVAPORATION (Eo) BY GENERAL MODEL AND SIMPLIFIED MODEL

		Values of E	o in mm/day						
No	Month	As per	As per	(Q _f - Q _f)	(Q _f - Q _f) ²	۵٫۵٫	Q _r ²-M _r ²	$Q_f^2 - M_f^2$	Relative Erro
		General Model	Simplified Model				l	•	(%)
		(Q _r)	(Q;)						(10)
1	January	5.378	4.954	-0.425	0.180	22.044			
2	February	5.698	5.181	-0.423		26.641	1.558	2.184	7.89
	March	6.217	5.514		0.268	29.522	5.105	4.487	9.08
4	April	5.460	5.008	-0.703	0.494	34.284	11.288	8.054	11.30
	May	5.156		-0.452	0.204	27.344	2.443	2.728	8.27
- 1	June	5.273	4.672	-0.484	0.234	24.088	-0.783	-0.526	9.38
	July	5.231	4.716	-0.557	0.311	24.870	0.442	-0.112	10.569
	August	6,164	4.746	-0.485	0.235	24.830	-0.002	0.175	9.267
	September	1	5.144	-1.020	1.040	31.704	10.622	4.104	16.547
	October	5.012	4.515	-0.497	0.247	22.627	-2.252	-1.968	9.909
	November .	4.613	-4.389	-0.224	0.050	20.244	-6.089	-3.094	4.863
		4.489	4.296	-0.192	0.037	19.283	-7.220	-3.897	4,287
	December	4.086	3.601	-0.485	0.235	14.710	-10.676	-9.389	
	TOTAL	62.7766	56.7352	-6.0414	3.5358	300,1478	4.4361	2.7472	11.870
							1001	2.1412	

$$M_{r} = \frac{1}{n} \sum_{i=1}^{n} Q_{r}(i)$$
= 5.2314

Relative Bias :

$$RB = \frac{B}{M_r}$$
= -0.0962

Mean of Estimanted value :

$$M_f = \frac{1}{n} \sum_{i=1}^{n} Q_f(i)$$

= 4.7279

Mean Absolute Error:

$$MAE = \frac{1}{n} \sum |Q_f(i) - Q_r(i)|$$
= 0.5034

Bias: $B = M_f - M_r$ = -0.5034

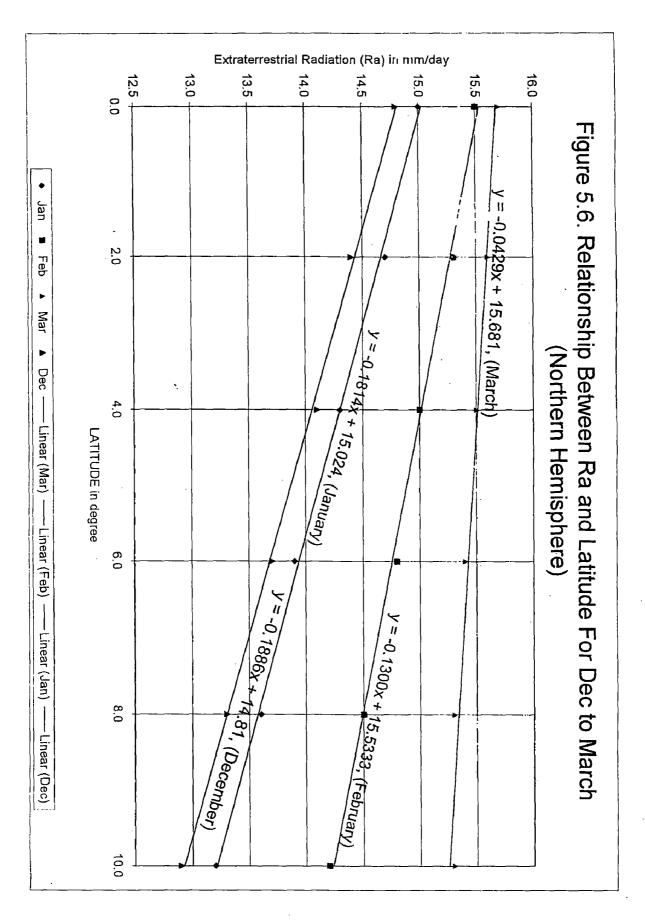
Relative Mean Absolute Error:

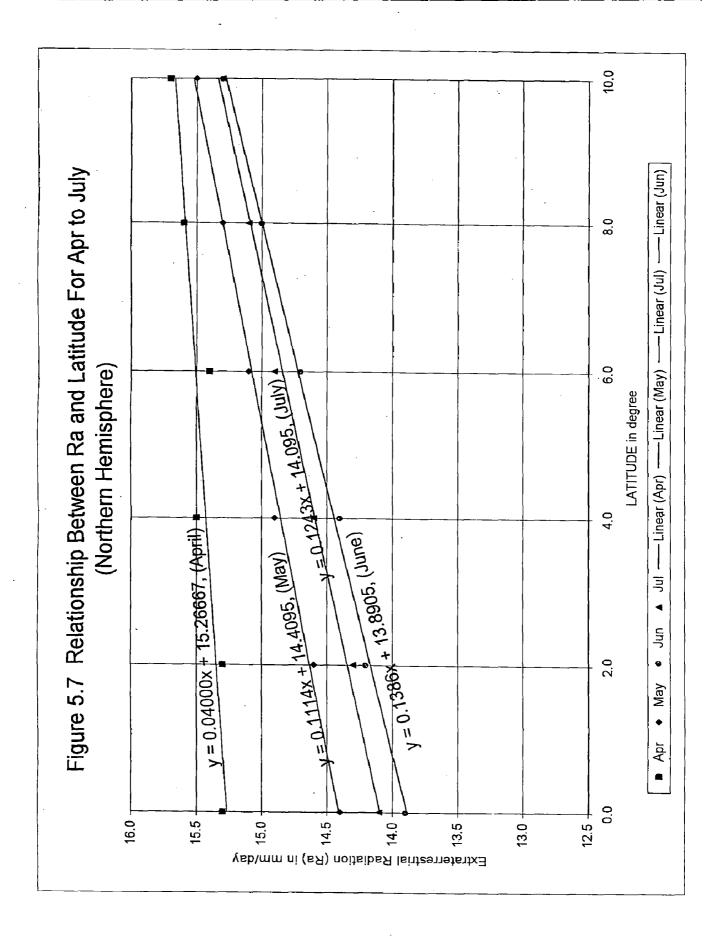
$$RMAE = \frac{MAE}{M},$$

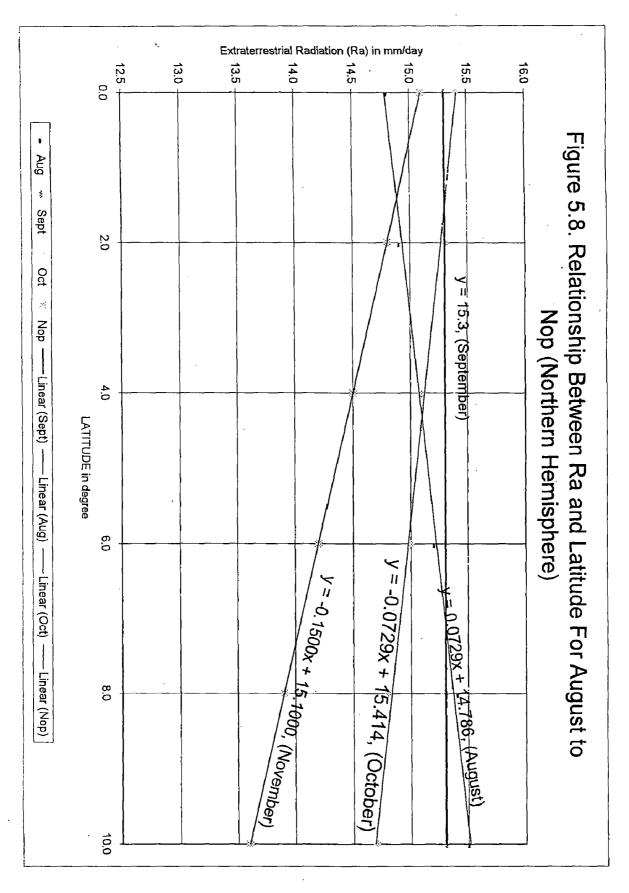
Mean Squared Error:

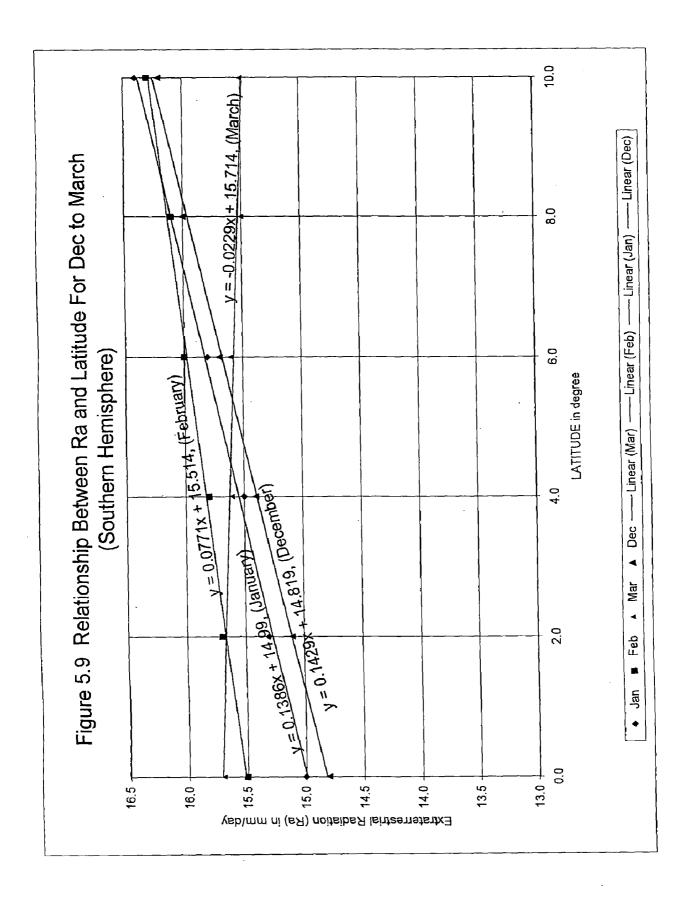
$$MSE = \frac{1}{n} \sum_{i=1}^{n} [Q_f(i) - Q_r(i)]^2$$
= 0.2946

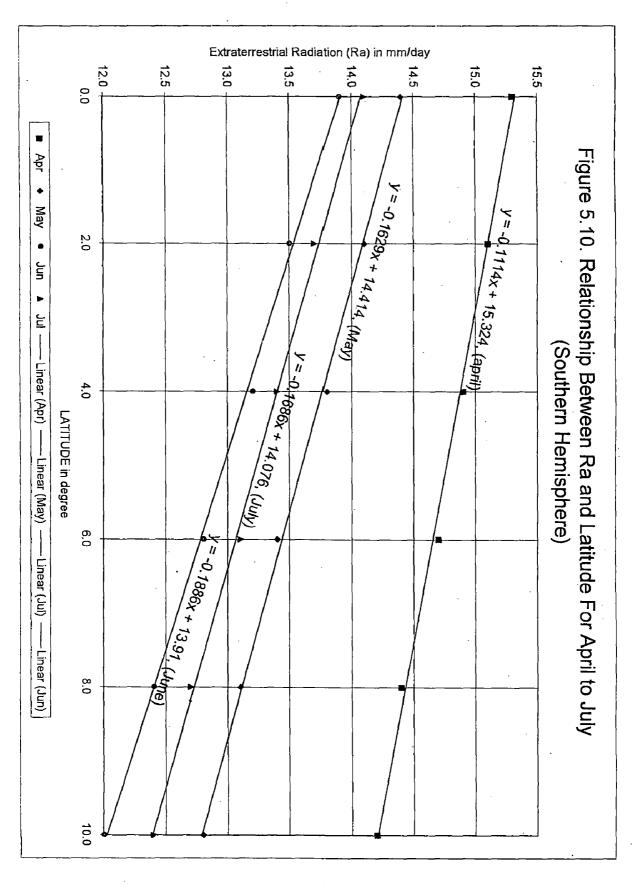

Root Mean Squared Error:
$$RMSE = (MSE)^{\circ .5}$$

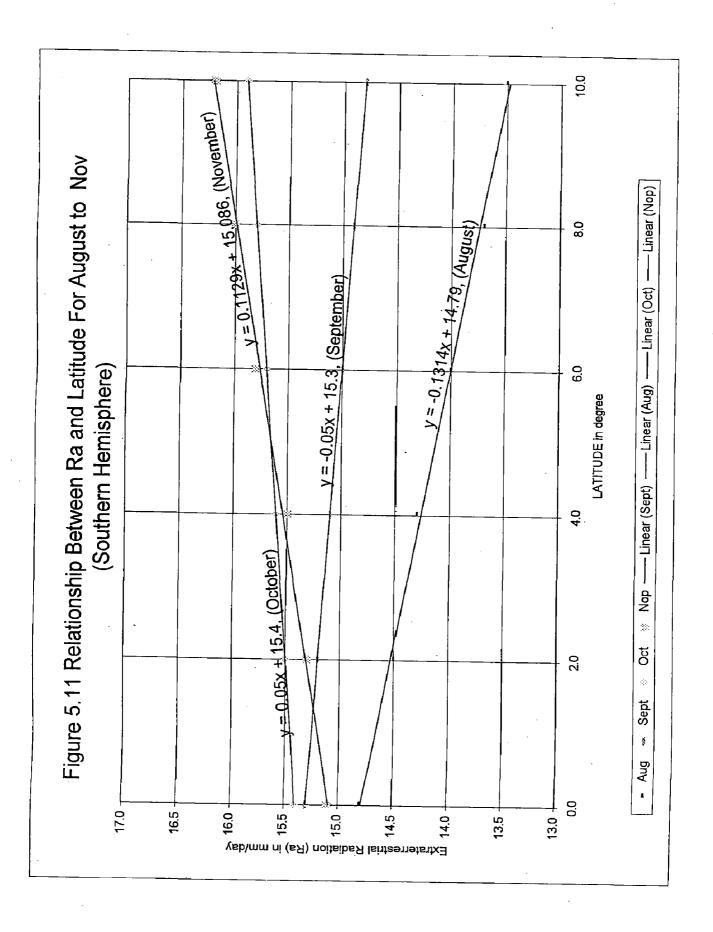

$$= 0.5428$$

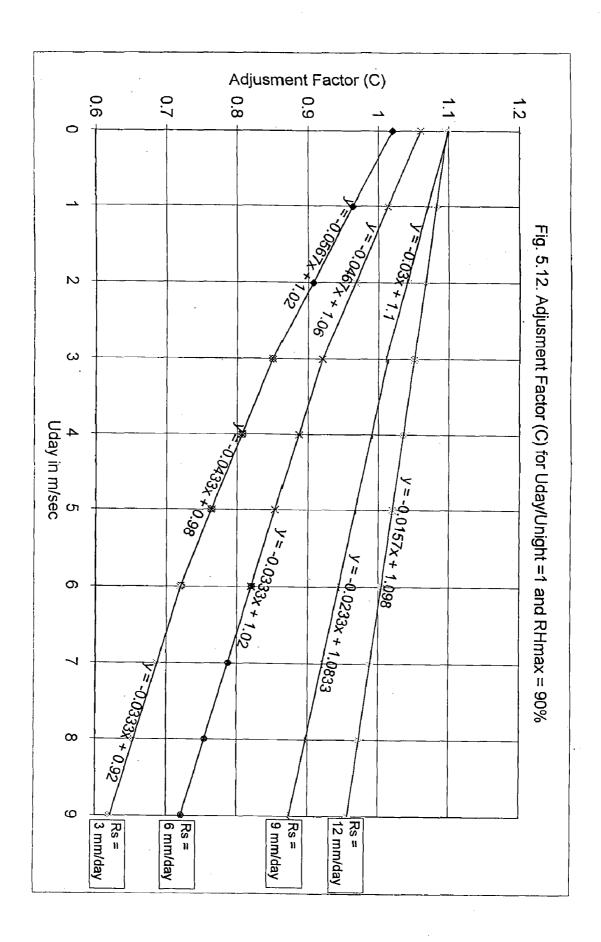

$$R^{2} = \left[\frac{\frac{1}{n} \sum_{i=1}^{n} Q_{r}(i) Q_{f}(i) - M_{r} M_{f}}{\left(\frac{1}{n} \sum_{i=1}^{n} Q_{r}^{2} - M_{r}^{2}\right) \left(\frac{1}{n} \sum_{i=1}^{n} Q_{f}^{2} - M_{f}^{2}\right)} \right]^{2}$$


0.9179


Variance: $V = MSE - B^2$ = 0.0412







CHAPTER 6 SUMMARY AND CONCLUSIONS

6.1 SUMMARY

Estimation of potential evapotranspiration and open water evaporation are required for several studies such as assessment of rainfall deficit, moisture availability index, assessment of crop growth period, assessment of seasonal water availability and most importantly in estimation of irrigation water requirement and evaporation losses. Therefore reliable estimate of evaporation and evapotranspiration are necessary. Error in estimation of these values may cause serious errors in planning and hydrologic design of water utilisation Projects.

Several methods, empirical as well as physical process based have been proposed in literature for estimation of meteorological parameters and for estimation of evapotranspiration Choice of using a particular method in most cases is dictated by availability and accuracy of input data.

Hydrologists in search for true to life description of evaporation or evapotranspiration process create complex models requiring high level of input data and specification of extensive set of parameters. Food and Agriculture Organization (United Nations) has brought out a publication (Doorenbos and Pruitt, 1977) in which several procedures are discussed for estimation of evapotranspiration and evaporation. It is also recommended that modified Penman method should be used whenever possible for estimation of potential evapotranspiration. However, in this method, various tables have to be referred to obtain the values of climatical parameters, some of which depend on location, latitude, altitude and some of which are interdependent.

Objective of this dissertation was to develop models based on empirical correlations between climatic parameters (dependent variable) and other parameters (independent variable), which are generally known or can be easily measured. Thus reference to various tables in FAO Procedure could be avoided and the procedure becomes simplified. However empirical relations

may cause error if correlation is not very good. The proposed models can be useful in computerization of the estimation procedure and in sensitivity analysis of the potential evapotranspiration. In Indonesia, climatic variables such as radiation, temperature and wind speed occur in specific limited range. Therefore it was proposed to further simplify the procedure for estimation of evapotranspiration.

A large number of empirical techniques and physically based models for estimation of evaporation and evapotranspiration are available in literature. Instead of evaluating all such techniques and model, emphasis is to select a few preferred methods (empirical relations).

First, a general model is proposed by compiling as well as developing regression equations Table 3.4 shows that reference to eleven tables (as per FAO Procedure) has been avoided by using a general model. Only one table has to be referred, in the general model.

Summary form of the general model and input data are shows in table 3.5. The model consists of linear, nonlinear and sinusoidal mathematical expressions. Maidment (1993) has suggested that an error of 10% to 15% is usual in estimation of ETo and proposed several parameters for testing accuracy of a model. In addition to coefficient of determination (R²) other parameters such as bias (B) and variance (V) are also necessary for checking accuracy of model.

The general model was applied to test its accuracy for estimation of evaporation and evapotranspiration at a location in Indonesia (Jambo Aye Project). Indonesia lies just north and south of the equator. The latitude range is between 10^oS to 10^oN and maximum altitude of the irrigated agriculture is around 2000 m above mean sea level.

The climate is tropical with medium to high rainfall. It may range from 1000 to 5000 mm in a year. The mean daily temperature in the warmest and the coldest months is only about 30°C to 20°C. Temperature decreases with increasing altitude at the rate of about 1°C per 200 m. Also temperature becomes somewhat high in the city areas.

The mean daily actual sunshine hours vary from about 30 % to 80 % of the maximum possible sunshine hours. Wind velocity varies up to the maximum wind speed of about 500 km/day. The wind velocity becomes somewhat less in the inland areas. The ratio of day and night time wind velocity varies from 1 to 3 and day time wind may be maximum about 6 m / sec.

Keeping in new the limited range of climatic variation in Indonesia and particularly in Aceh Province, simple linear equations have been developed and a simplified model has been proposed. The model and input data are summarized in Table 5.8 (chapter 5). The simplified model was applied to estimate ETo and Eo at Jambo Aye Project.

Accuracy of general model and simplified model in estimation of extraterrestrial radiation (Ra) evaporation (Eo) and Potential evapotranspiration (ETo) in terms of percent of variation, coefficient of determination (R²), bias (B) and variance (V) are compared in table 6.1, below:

Input data required in the general model and the simplified model are more or less same i.e.: month specification, latitude (ϕ), altitude (Z), mean monthly temperature (T), Relative humidity (RH), actual sunshine hour (n), Wind speed (u),

In addition, simplified model requires adjustment factor (c) for which RHmax has to be specified.

Table 6.1 Accuracy of Model with Reference FAO Tables

		Accuracy of Ra		Accuracy of Eo		Accuracy of ETo	
No.	Item	General	Simplified	General	Simplified	General	Simplified
No	nem	Model	Model	Model	Model	Model	Model
1	Percent of	0.216 to	0.00 to	-9.30 to	-0.42 to	0.310 to	-3.650 to
'	Variation (%)	1.590	0.227	5.670	11.300	8.700	2.010
2	Coef. Of Determination (r ²)	0.9926	0.9982	0.8606	0.9045	0.9476	0.9771
3	Bias (B)	-0.1226	-0.0028	0.0392	-0.4643	-0.2382	-0.0098
4	Variance (V or S ²)	0.0029	0.0005	0.0565	0.0233	0.0094	0.0041

6.2 CONCLUSION:

- i) Extraterrestrial radiation (Ra) is estimated accurately in the general model as well as simplified model. It is therefore not necessary to use complex mathematical expression given in the general model to estimate Ra.
- ii) Simplified model consisting of linear regression equations can be used for estimation of potential evapotranspiration in the limited range of variation for meteorological parameters as happens in Indonesia. Accuracy parameters of the simplified model are better than those of general model as seen in table 6.1.
- iii) Estimation of evaporation by general as well as simplified models is not so accurate as that of evapotranspiration.
- iv) Coefficient of determination (R²) is more in case of simplified model compared to general model but it also has higher bias in estimation of evaporation (Eo). Further, percent of variation in estimate with reference to estimate by FAO procedure is also highest (11.3%) for simplified model. Further study is needed to decide relative preference of one model over the other for estimation of evaporation.
- v) Simplified model has been developed specifically for limited range of variation in meteorological parameters in Indonesia. It is not applicable for other regions. General model is applicable for other regions also but accuracy has been compromised in consideration of general application.
- vi) It is necessary to compare the accuracy of proposed models with reference to field observations also and also for different locations.

REFERENCES

- Aceh Design Unit, 1988. Provincial Water Resources Development Plan and Inventory of Water Resources Scheme, Department of Public Works, Indonesia
- Doorenbos, J and WO Pruitt, 1977. Guidelines for Predicting Crop Water Requirement' Irrigation and Drainage Paper – 24, United Nations (FAO), Rome
- 3. Klein, S.A, 1977. Calculation of Monthly Average Insolation on Tilted Surfaces, Journal of Solar Energy, Vol 19, Page 325 (1976) USA.
- Maidment R.D., 1993. Handbook of Hydrology, editor: David R,
 Maidment Mc Graw-Hill, United States of America.
- Priestley, C. H. B., 1959. Turbulence Transfer in the Lower Atmosphere,
 University of Chicago as given in Maidment, 1993.
- 6. Raudkivi A. J., 1979. Hydrology, Pergamon Press Oxford (UK), 1979.
- 7. Rizal. S, 1995. Regional Graphic Procedure for Irrigation Project
 Planning A Case Study of Indonesia M.E Dissertation WRDTC Univ.
 of Roorkee, Roorkee India.
- 8. Sosrodarsono, Ir. S; Kensaku Takeda, 1980. Hydrology for Water Resources, Seventh Reprint by Gramedia, Indonesia.

APPENDIX - A: FAO TABLES

Table A- 1 Saturation Vapoure Pressure (e_a) mbar as Function of Air Temperature (T) ^oC (Table 5 FAO)

T	har Tomporet	
Temperature e _a n	nbar Temperat (T) ⁰ C	
	_\\\ _/	
0 6.	I I	23.4
1 6.	1 1	24.9
2 7.	1 1	26.4
3 7.	1 1	28.1
4 8.	1 24	29.8
5 8.	7 25	31.7
I I	3 26	33.6
7 10	.0 27	35.7
	.7 28	37.8
9 11	.5 29	40.1
10 12	30	42.4
11 13	31	44.9
12 14	.0 32	47.6
13 15	5.0 33	50.3
14 16	34	53.2
15 17	'.0 35	56.2
16 18	36	59.4
17 19	0.4 37	62.8
18 20).6 38	66.3
19 22	2.0 39	69.9

Also actual vapour (e_d) can be obtained from this table using available T dew point data

(Example: T dew point is 18 °C; ed is 20.6 mbar)

Table A-2 Value of Wind Function f (u) = 0.27 (1 + U2/100) for Wind Run at 2 m height in km/day (Table 7, FAO)

Wind Km/day	0	10	20	30	40	50	60	70	80	90
ļ										
	_	0.30	0.32	0.35	0.38	0.41	0.43	0.46	0.49	0.51
100	0.54	0.57	0.59	0.62	0.65	0.67	0.70	0.73	0.76	0.78
200	0.81	0.84	0.86	0.89	0.92	0.94	0.97	1.00	1.03	1.05
300	1.08	1.11	1.13	1.16	1.19	1.21	1.24	1.27	1.30	1.32
400	1.35	1.38	1.40	1.43	1.46	1.49	1.51	1.54	1.57	1.59
500	1.62	1.65	1.67	1.70	1.73	1.76	1.78	1.81	1.84	1.90
600	1.89	1.92	1.94	1.97	2.00	2.02	2.05	2.08	2.11	2.15
700	2.16	2.19	2.21	2.24	2.27	2.29	2.32	2.35	2.38	2.40
800	2.43	2.46	2.48	2.51 °	2.54	2.56	2.59	2.62	2.64	2.65
900	2.70			ŀ						

Table A-3 Values of Weighting Factor (w) for the Effect of Radiation on ETo at Different Temperatures and altitudes (Table 9, FAO)

Temperature			W at Al	titude m		
	0	500	1000	2000	3000	4000
			·			
2	0.43	0.44	0.46	0.49	0.52	0.54
4	0.46	0.48	0.49	0.52	0.55	0.58
6	0.49	0.51	0:52	0.55	0.58	0.61
8 .	0.52	0.54	0.55	0.58	0.61	0.64
10	0.55	0.57	0.58	0.61	0.64	0.66
12	0.58	0.60	0.61	0.64	0.66	0.69
14	0.61	0.62	0.64	0.66	0.69	0.71
16	0.64	0.65	0.66	0.69	0.71	0.73
18	0.66	0.67	0.69	0.71	0.73	0.75
20	0.69	0.70	0.71	0.73	0.75	0.77
22	0.71	0.72	0.73	0.75	0.77	0.79
24	0.73	0.74	0.75	0.77	0.79 [.]	0.81
26	0.75	0.76	0.77	0.79	0.81	0.82
28	0.77	0.78	0.79	0.81	0.82	0.84
30	0.78	0.79	0.80	0.82	0.84	0.85
32	0.80	0.81	0.82	0.84	0.85	0.86
34	0.82	0.82	0.83	0.85	0.86	0.87
36	0.83	0.84	0.85	0.86	0.87	0.89
38	0.84	0.85	0.86	0.87	0.88	0.90
40	0.85	0.86	0.87	0.88	0.89	0.90

Table A-4 Extraterrestrial Radiation (Ra) expressed in equivalent evapotranspiration in mm/day

		Northern Ho		Southern Hemisphere		
No	Month	Latitude	e in ⁰ C	Latitude in ⁰ C		
		4	6	4	6	
1 2	January	14.3	13.9	15.5	15.8	
	February	15.0	14.8	15.8	16.0	
3	March	15.5	15.4	15.6	15.6	
4	April	15.5	15.4	14.9	14.7	
5	May	14.9	15.1	13.8	13.4	
6	June	14.4	14.7	13.2	12.8	
7	July	14.6	14.9	13.4	13.1	
8	August	15.1	15.2	14.3	14.0	
9	September	15.3	15.3	15.1	15.0	
10	October	15.1	15.0	15.6	15.7	
11	November	14.5	14.2	15.5	15.8	
12	December	14.1	13.7	15.4	15.7	

Table A-5 Conversion Factor for Extra-Terrestrial Radiation (Ra) to Net Solar Radiation (Rns) for a given Reflection K of 0.25 and Different Ratio of Actual to maximum Sunshine Hours (1-K)(0.29+0.52)

n/N) , (Table 12, FAO)

n/N), (Table 12, FAO)	
N/N	(1 - K) (0.25 + 0.50 n/N)
0.00	0.19
0.05	0.21
0.10	0.22
0.15	0.24
0.20	0.26
0.25	0.28
0.30	0.30
0.35	0.32
0.40	0.34
0.45	0.36
0.50	0.37
0.55	0.39
0.60	0.41
0.65	0.43
0.70	0.45
0.75	0.47
0.80	0.49
0.85	0.51
0.90	0.52
0.95	0.54
1.00	0.56

Table A-6 Effect of Temperature f (T) on Longwave Radiation (Rn1),

(Table 13 , FAO)

Temperature (T) °C	$f(T) = NTk^4$
0	11.0
2 .	11.4
4	11.7
6	12.0
8	12.4
10	12.7
12	13.1
14	13.5
16	13.8
18	14.2
20	14.6
22	15.0
24	15.4
26	15.9
28	16.3
30	16.7
32	17.2
34	17.7
36	18.1

Table A-7 Effect of Vapour Pressure f (ed) on longwave Radiation (Rn1), (Table 14, FAO)

(KIII), (Table 14, FAU)	
e _d mbar	$F(ed) = 0.34 - 0.044 \sqrt{ed}$
6	0.23
8	0.22
10	0.20
12	0.19
14	0.18
16	0.16
18	0.15
20	0.14
22	0.13
24	0.12
26	0.12
28	0.11
30	0.10
32	0.09
34	0.08
36	0.08
38	0.07
40	0.066

TableA-8 Effect of The Ratio Actual and Maximum Bright Sunshine Hours f (n/N) on Longwave Radiation (Rn1), (Table 15, FAO).

n/N	f(n/N) = 0.1 + 0.9 n/N
0.00	0.10
0.05	0.15
0.10	0.19
0.15	0.24
0.20	0.28
0.25	0.33
0.30	0.37
0.35	0.42
0.40	0.46
0.45	0.51
0.50	0.55
0.55	0.60
0.60	0.64
0.65	0.69
0.70	0.73
0.75	0.78
0.80	0.82
0.85	0.87
0.90	0.91
0.95	0.96
1.00	1.00