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Abstract 

The movement of ground water is a basic part of soil mechanics. Its 

influence can be found in almost every area of civil engineering, including 

irrigation and reclamation. In addition, the elegance and logical structure of its 

theory renders it of interest to engineering scientists. It plays a vital role in 
Irrigation engineering for an irrigation engineer. 

Since, ancient times in irrigation engineering, weirs remain as the most 

extensively used control structures for the diversion of flow and for measurement 

of flow. Though the type and shape of weirs differ from place to place, depending 

on the available materials for construction, sub-soil condition and hydrology of 

the river, they are provided with one or more sheet piles when constructed in 

alluvial soils. Weirs are designed to satisfy the surface and sub-surface flow 

considerations. Where as the surface flow considerations decide the crest level, 

down stream floor length and minimum depths of upstream and downstream 

sheet-pile/cut-off, the sub-surface flow considerations at the maximum ponding 

condition requires more attention to protect the structure against heaving, 

roofing, piping and uplift. The parameters i.e. sheet-pile depth and floor length 

influence the uplift pressure at different points under the floor. The uplift 

pressures are counteracted by the weight of the floor. The weir generally consists 

of either a horizontal or sloping floor with sheet pile. 

Khosla et.al. have analysed the flow under a stepped weir considering it to 

be resting on the surface of a porous medium of infinite depth. They have 

presented design charts, which are extensively used by the field engineers. 

Khosla's concept of barrage or weir design for subsurface flow (Khosla 

et.al.1936) is based on the assumption that the thickness of floor is negligible 

and it is resting on the surface, the values of uplift pressure thus obtained refer to 

the bottom level of the floor, where in practical, structures are somewhat 

depressed into, acting as foundation. To remove the error in pressure distribution 



for neglecting floor thickness, a correction is being applied to the uplift pressure 

obtained according to Khosla's theory. This factor is being computed by 

interpolation assuming that there occurs a linear variation in the pressure along 

the depth of sheet-pile and the variation is equal to the variation in pressure 

distribution along the depth of depression. In fact, in order to achieve a tractable 

analytical solution, the depression of the hydraulic structure has been neglected. 

With such assumptions, the number of vertices taking part in the conformal 

transformation is reduced. 

Hence, the present study was undertaken to analyse the flow under a 

depressed-stepped weir using the conformal mapping technique to compare the 

solution with that of Khosla et.al and to develop an analytical solution using 

numerical methods for computation of pressure distribution which can be directly 

used as the equation for anticipated uplift pressure and there will be no need of 

applying a correction factor. 

********** 
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Chapter 1 

INTRODUCTION 

1.1 	General 

Since ancient times in irrigation engineering, weirs remain as the most 
extensively used control structures for the diversion of flow and flow 

measurement. Though the types and shapes of weirs differ from place to place, 

depending on the available materials for construction, sub-soil condition and 

hydrology of the river, they are provided with one or more sheet piles when 

constructed in alluvial soils. Weirs are designed to satisfy the surface and sub-

surface flow considerations. Where as the surface flow considerations decide the 

crest level, down stream floor length and minimum depths of upstream and 

downstream sheet-pile/cut-off, the sub-surface flow considerations, at the 

maximum ponding condition require more attention to protect the structure 

against heaving, roofing, piping and uplift. The parameters i.e. sheet-pile depth 

and floor length influence the uplift pressure at different points under the floor. 

The uplift pressures are counteracted by the floor thickness. A weir generally 

consists of either a horizontal or sloped floor with sheet piles. The sheet-pile in 

the upstream is provided to reduce the uplift pressures under the floor and to cut-

off the seepage-lines through permeable upper layers where as the provision of a 

down stream sheet-pile raises the uplift pressures under the floor. A down-

stream sheet-pile is necessary from scour consideration as well as to keep the 

exit gradient below the safe limit. This helps in mitigating the piping below the 

floor. The depression of the floor can replace the need of a sheet pile to certain 
extent. 

1.2 Back ground 

The sub-soil flow below weirs along with the hydraulic gradients and uplift-

pressures has been Widely recognised as the determining factor in design of a 
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weir on permeable foundation after the classic experiments that has been carried 

out by Col.Clibborns, the then Principal of Thomson Civil Engineering College, 

Roorkee in connection with the failure of Khanki Weir, in India during 1895-97. It 

was then concluded and accepted eventually by all over that the subject of sub-

surface flow is more complex than what the Bligh's creep theory indicated then. 

In.. 1934 Rai Bahadur A.N.Khosla,ISE presented a note on the 

observations and records of pressures below works on permeable foundations in 

publication No.8 of Central Board of Irrigation and Power. 

Khosia et.al have analysed the flow under a stepped weir considering it to 

be resting on the surface of a porous medium of infinite depth. They have 

presented design charts, which are extensively used by the field engineers. 

1.3 	Need for further studies 

As Khosla's concept of barrage or weir design for subsurface flow (Khosla 

et.al.1936)1  is based on the assumption that the thickness of floor is negligible 

and it is resting on the surface, the values of uplift pressure thus obtained refer to 

the bottom level of the floor, where in practice; structures are somewhat 

depressed .into, acting as foundation. In fact, in order to achieve a tractable 

analytical solution, the depression of the hydraulic structure has been neglected. 

With - such assumptions, four extra vertices, which should take part in the 

conformal transformation, are reduced and some part of the seepage head is lost 

through the foundation depth. To remove the difference due to floor thickness, a 

correction factor is applied to the uplift pressure obtained from Khosla's equation. 

This factor is being computed by interpolation assuming that, there occurs a 

linear variation in the pressure along the sheet-pile length. 

1.4 	Scope of present study 

The present study was undertaken to analyse the flow under a depressed 

stepped weir, using the conformal mapping technique to compare the solution 
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with that of Khosla et.al. The results so obtained can be directly used as the 

anticipated uplift pressure and there will be no need of applying a correction 

factor. 

1.5 	Objectives of Present Study 

Present study was undertaken to find an analytical solution which can 

quantify uplift pressure below the floor of depressed weir and to prepare a 

comprehensive comparison of the values of uplift pressure with that obtained, by 

using the equation of Khosla et.al.(1936). The comparison is to be carried for 

weirs with depression and with a sheet-pile at various positions. 

It is proposed to compare for the following depressed hydraulic structures: 

I. Depressed weir with sheet-pile positioned at various options. (Figure 1.1) 

II. Depressed-stepped weir without sheet-pile. (Figure 1.2) 

III. Depressed-stepped weir with a sheet-pile at the step. (Figure 1.3) 

Use of conformal mapping technique generally results in non-linear 

equations containing multivariable. The non-linear equations are not easily 

solvable. It is proposed to solve the set of non-linear equations by Newton-

Raphson technique2. The uplift pressure distribution and exit gradients are then 

determined. 



Figure 1.1 Case I. Depressed Floor with a Sheet Pile. 

Figure .1.2 Case II. Depressed Stepped Floor without Pile 

Figure 1.3 Case Ill. Depressed Stepped Floor with Pile at the Step 
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Chapter 2 
LITERATURE REVIEW 

2.1 	General 

Khosla et.al. (1936)1  found solutions to two-dimensional steady flow under 

a number of simple profiles of weirs resting on a homogeneous and isotropic soil 

of infinite depth using the Scwarz-Christoffel conformal transformation 

technique3. Pressure heads; at key points (C, D, and E as shown in Figure.2.1) in 

excess of the hydrostatic head at the downstream boundary have been 

presented as a percentage of the seepage head in the form of charts, which are 

widely in use for the sub surface design of hydraulic structure. Khosla et.al. have 

neglected the depth of depression to reduce the number of vertices taking part in 

the conformal mapping. By reducing the number of vertices it was possible to 

carryout the integration required in solving the transformation. Numerical 

integration is necessary in case of structures having vertices more than three. 

n 
A, A 	 G G. 

	

 

CE' 	F 

t 	•dj 
............ 	....'..... 

D 

Figure. 2.1 

2.2 Approximate Method for Accounting Depression: 

In Khosla's method of analysis, the excess pressure head has been 

derived, assuming that the thickness of floor is negligible and the structure is 

resting on the surface. As the foundation has some thickness, a part of the 

seepage head is lost along the foundation depth, which has to be accounted for. 

5 



To account for the head lost along the floor thickness, Khosla et.al. has 

suggested a correction. This is being computed by interpolation under the 

assumption that, the variation of hydraulic head is linear along the sheet-pile 

depth and the rate of variation is equal to the variation along the depth of 

depression. The correction for accounting depression for a flat-based weir 

proposed by them is as follows: 

The correction for pressure head4 at point C in Figure.2.1 is 

C — ~ D t min which is subtracted from the value of ~c. The correction for 
d, 

pressure head at the point 'E' is ~ D 	E 	min which is added to the value of 

where 	, ~D and 	E are the pressure heads at points C, D and E 

respectively which have been obtained by neglecting the depression and using 

conformal mapping. 

It may be noted here that the nature of dissipation of head along the depth 

of depression and sheet-pile are not similar. Because, at point A, the flow velocity 

is finite, where as, at point C the velocity is zero. Therefore, the corrections 

proposed by Khosla needs an investgation. 

In the present scientifically developed era, there is an advantage to the 

present day researchers which the yester decades researchers did not have. 

Now a days, it is possible to carryout numerical integration and solve non-linear 

equations easily using high speed computers. So instead of applying a correction 

factor as proposed by Khosla, in this thesis, a solution has been given 

accounting floor thickness below the ground level for direct computation of the 

uplift pressure. 

Figure. 2.2 

C 



Khosla has also suggested an emprical formula' for computation of uplift 

pressure under a flat bottom depressed weir, the type shown in Fig.2.2. The 

formula is based on tests conducted on a scale model. The empirical formula is 

in which ¢D and 4c are pressures at D and C corresponding to figure.2.1 for 

which Khosla et.al. have given analytical solution.The parameter a is equal to 

b/d. 4'D is the pressure at point D in figure 2.2. 

Using the conformal mapping technique, Ma(hotra (1962) has given solution 

for flow under a depressed hydraulic structure having two sheet-piles one at each 

end. 

Safety against piping for depressed structure can be investigated using 

Lane's weighted creep theory (Lane,1935) 

However no analytical solution are available for stepped-depressed weir. 

2.3 Analytical Method for Accounting Depression: 

• Pavlovsky (1922) has given solution to a flat bottomed depressed weir 

using Scwartz-christoffel transformation. Analytical solutions for the uplift 

pressure under the floor and the maximum exit gradient have been given. 

Confomal mapping technique has been applied to compute uplift pressure 

and exit gradient for a flat depressed structure with two symmetrical row of piling 

on a permeable soil of infinite depth (Harr,1962). The solution has been given for 

structure on foundation of finite depth by Filchakov (Po(ubarinova-Kochina,1962). 

. The analytical solution is not tractable as it contains elliptic integral of third kind . 

h 
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2.4 Conclusion 

Analytical solution fora stepped-depressed weir is not available. In current 

practice corrections are applied to the solution that has been obtained neglecting 

depression. Analytical solution for flat bottomed depressed floor resting on a soil 

of finite depth is available. However uplift pressure, exit gradient can not be 

computed easily as the derived equations are highly non-linear and contain 

elliptic integral of third kind. Solution to flow under structure having vertices more 

than three can be obtained using conformal mapping and applying Newton-

Raphson technique for solving the non-linear equation. 

• • 	 *********** 
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Chapter 3 
ANALYSIS 

3.1 General 

Weirs on permeable foundation are designed to safeguard against uplift 

pressure and piping. The flow characteristics are determined assuming the flow 
to be two dimensional and steady. For non-homogeneous sub-soil, numerical 

method is used to solve the two dimensional equation 

a  -k(x,y) ax  + a -k(x,y)ah  =0 
aY 	y 

satisfying the boundary conditions. For homogeneous, isotropic soil, the 

governing equation is the Laplace equation, which can be solved analytically 

using conformal mapping. 

Using the Scwartz-Christoffel conformal mapping technique, Khosla et.al. 

(1936) have obtained analytical solutions for a stepped weir with a sheet pile. 

provided at the step, resting on a homogeneous, isotropic porous medium of 

infinite depth. They have neglected the depression so as to reduce the number of 

vertices to arrive at a simple solution and suggested a correction factor to 

account for the depression. In this thesis, an analytical solution for the flow 

around a depressed-stepped weir with a sheet-pile at the step has been obtained 

using the Schwartz-Christoffel conformal mapping technique. 

3.2 Statement of the Problem 

The depressed-stepped weir with a sheet-pile at the step is shown in 

Figure.3.1 (a). The width of floor upstream to the sheet-pile is 'b1'. The width of 

down stream floor is 'b2'. The depth of the vertical sheet-pile is 's'. The depths of 

depression of the floor at the upstream floor, at the junction of sheet-pile and 

floor, and at the down stream floor are d1, d2, and d3 respectively. The heights of 

water above the upstream and downstream bed are h1 and h2 respectively and 

the difference in the total heads between the upstream and downstream 
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Figure. 3.1(a) : Physical Domain in z-plane 
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Figure.3.1(b) : Physical Domain Mapped onto t-plane 
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boundaries is 'h'. It is required to find the pressure distribution along the 

impervious base BCDEF of the structure and exit gradient along the downstream 

boundary GG1. 

3.3 	Analysis 

3.3.1 Mapping of z- plane onto t- plane: z = f (t) 

The conformal mapping of the flow domain, in z-plane onto the lower half 

of the auxiliary t-plane is given by: 

 -t 	t.+y x-t 
dt +N 	(3.3.1) 

V(t +R 1-t2 µ-t 

the vertices A1, A, B, C, D, E, F, G, G1 being mapped onto - co, ~3, y, -1, m, 

1, , µ and co respectively in the t-plane. M and.N are complex constants to.be 

determined. The constant N is governed by the lower limit of integration. To find 

the constants M and N, and the relationship between the transformation 

parameters and dimension of the structure we carryout integration between 

consecutive vertices. 

i). Integration between vertices D and E 	(m s t s 1) 

Applying the conditions 

at point D: t = m, 	for which z = -i(s + d2 ) 	and 

at point E: t = 1, 	for which z = -id2 

we obtain: 

1 
—id 2 =M 

~t—m 	t + y A—t 
dt — i(s + d 2 ) 

(t+R 1—t2 	 ) 

or 	—id 2 =M Jf,(t)1t —i(s+d2 ) 

or 	is = M I, 	where I, _ j f1 (tit 

or 	M (3.3.2) (3.3.2) 
1 
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ii). Integration between vertices E and F 	(1 < t 5 X ) 

Applying the conditions 

at point E: t = 1, 	for which z = -id2 and 

at point F: t = ~,, 	for which z = b2 -id2 

we obtain: 

b— id 	- M '`.(t— m 	t+ y ~, — t 	dt 	id 2 	2 	J, 	(t + 	t 2  — 1 	— t) 	' 	2 

IZ  is 12 or 	b 2 =M= I 	
i 

or 	b? = 1? 
s 	I, 

or F1 = s2 —'Z 	 (3.3.3) 

iii). Integration between vertices F and G 	( ?, <_ t <_ µ ) 

• Applying the conditions 

at point F.: t = 	for which z = b2 - id2 and 

at point G: t = µ, 	for which z =b2 - i(d2 - d3 ) 

we obtain 

b2 —i(d2 —d3)=M (t— m)/(t + y t—~ 
dt + b 2 — id 2 

(t+R t 2 —1 µ—t) 

or 	b2 —i(d2 —d3 )= M13 +b2 —id2 

d3 	1 3 
or  = 

s  I, 

or 	F2 = s3 — ~3 	 (3.3.4) 

iv). Integration between vertices D and C 	(-1 < t <— m ) 

Applying the conditions 

at point D: t = m, 	for which z = -i( s + d2 )and 

at point C: t=-1, 	for which z=0 

we obtain: 

12 



i(d 2 + s) = M fm 
(m - t)(t + r X - t 

dt + 0 

for integration with values of t -< 0 , we replace t with -T ; then the above 

equation becomes: 

or 	i(d2+s)=M~m' 
(m+T y- 2 X+T 	

dT 

	

(j3-T 1-T 	+T) 

i(d 2 '+ s)= MI 4 = 'IS I4 

dZ +s I 4 
or' 	

s 	I, 

d2 +s 14 
or F3 

=s - I 	
(3.3.5) 

1 

v). Integration between vertices C and B 	(-y < t 5 -1) 

Applying the conditions 

at point C: t = -1, 	for which z = 0 	and 

at point B: t = -y, 	for which z = -b1 

we obtain: 

0=M f ,(m —t 	t+y k.—t dt b, 

Replacing t with -T; 

0 =M i (m +T y—T ? +T dT b 

IS 	1 5 
or 	

0 = MI5 
 —b1=  

or 	b 
s 	I, 

b~ _ 15 
.or F4 = 	 (3.3.6) 

vi). Integration between vertices B and A 	(-13 5 t < -y ) 
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Applying the conditions 

at point B: t = -y, 	for which z = - b1 	and 

at point A: t = -(3, 	for which z = -b1 + id, 

we obtain : 

- b, = M f-Y 
(m - t) t + y 	- t dt - b, + id , 

a (t+P3 1-t2 µ-t) 

Replacing t with -T; 

0 = M f a (m + T' y - T ? + T 
dT + id 

1y (~3-T 1-T 2 	+T) 

id =M 
Y(m +T 	T -y 2 +T 

dT J  
a (~3-T T 2 -1 +T) 

or 	id, = MI 6 = is .I6 	 ord' = 6
S 	I, 

or F5 = 
S 	I, 

(3.3.7) 

The parameters 0, y, m, ? and are to be found for known values of 

d, 	d3 	d2 + s 
— — 

b, 	b2 
— — from Eqs. (3.3.3) to (3.3.7). The equations are non-linear. 

S A S. 	s ss 

Newton-Raphson technique has been used to find the solution and this has been 
explained in Appendix -II. The solution is given by the Jacobian matrix: 

aF1 aF,* aF1 aF,'. aF1 

a fi ay am aX aµ 
OF; OF; aF2 0F2 aF; R 

aR am ax aµ Ay 	F2 ( ,y * ,m* ,X*)l  

OF aF3 aF3 aF3 3F I
• 	• 	• 	• aR ay am ax aµ Am I= 	F3 ~3 , Y , m , 	, µ 

OF OF OF OF aF' A~' 	F4 R •,Y •,m•,~ ,µ 

~µ 	
[F5(,y,m,X t )J  ap ay am a7, aµ 

aF5 aF5 OF aF5 aF5 
aR ay am ax aµ 
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The integrals are improper and the singularities have been removed by using the 

Gaussian-Quadrature method of substitution. The Solution of the Jacobian matrix 

is done by using FORTRAN program. The FORTRAN program has been listed in 

Appendix-Ill. 

3.3.2 Mapping of w - plane onto t - plane: 

	

The complex potential w is defined as w 	+ iyi in which 

~ = velocity potential and yr = stream function. 

The velocity potential function is defined. as _ —k p + y + C 	(3.3.8) 
YW 

where C is a constant . 

The w-plane for the flow domain of Figure.3.1(a) is shown in Figure.3.1(c). 

If C = k ( h2 — d2 + d3), then the velocity potential at down-stream bed 1d = 0, and 

the velocity potential at up-stream bed 	= -kh 

A 	 G 

-kh  0 

Figure .3.1(c) w - plane 

Mapping of the complex potential plane onto the t —plane is given by 

	

w = M, f (t + ~3 )-o.s (µ — t)-o.5 dt + N, 	 (3.3.9) 

or 	w = M,.Sin-1 2t + R µ + Ni 	 (3.3.10) 
(3+µ 
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where M1 and N1 are complex constants. 

Applying the conditions at the points A, G in w -plane and t -plane, the 

constants M1, N1 is computed as under: 

i.AtpointG 	(w= 0,t=µ) 

Substituting w and tin the Eq. (3.3.10) we have: 

	

O=M Sin -' 2µ+R 	+N, 
R+µ 

= M,Sin -' (1.0)+ N, 

=M 1 2 + N, 

7t 
or N,=—M,.2 

ii. At point A 	(c 	-kh, t = -R ) 

Substituting co and tin Eq. (3.3.10) we have: 

kh =M.,Sin -' —2R+R —µ —Ml 

—M' 2 — M' 2 

	

or M,=kh 	 (3.3.11) 

and 	Ni = — 2h 	 (3.3.12). 

Putting the value of M1 and N1 in Eq. (3.3.10) we have; 

CO=khSin-' 
2t+(3—µ _kh 	 (3.3.13) 

it 	L(3+µ 	2 

The Eq. (3.3.13) is the general equation, which provides relation between 

w-plane and t-plane. For boundary BCDEF, yJ = 0 and hence; 

_ ~, so the Eq. (3.3.13) now becomes 

~ = kh 
?Sin-' 

2t+R µ 
—1 	 (3.3.14) 

2 is  

16 



Now equating the value of ik from Eq. (3.3.8),we have; 

—k p +y +k(h2  —d2  +d3)= kh 1 2 Sin-'  
YW 	 2 	R+µ 

which yields, 

P =7W h2 — d2 +d3 —y-2  (3.3.15) 

3.4 	The Pressure Distribution 

Eq. (3.3.15) is the general equation for seepage pressure under the floor. 

To find the pressure at various points below the floor, the ordinate of 'y' from z-

plane and the corresponding 't' from t-plane has to be entered in Eq. (3.3.15): 

i. AtpointA 	(y=d1,t=-(3) 

PA = YW.hl (3.3.1.6) 

ii. AtpointB (y=0,t=-Y) 

PB  =7W  hz —d2 +d3 —h 	—1 (3.3.17) 
2 	n 	(3+µ 

iii. AtpointC (y=0,t=-1 

PC =YW  h2 —d2 +d3 —h ?Sin-' R — µ-2  —1 (3.3.18) 
2it (3+µ 

iv. At point C (y = -(d2+s), t = m) 

Pp  =7W  h2 +d3 +s—h 2Sin-' R —µ-2  —1 (3.3.19) 
2 	n 	(i+µ 

v. At point E (y = -d2, t = 1 ) 

PE  = YW  h2  +d3  — 	2 Sin 	—1 2 	R  + µ (3.3.20) 

vi. At point F (y=-d2,t=X,) 

PF =% h2 +d3 -2  2Sin 	 —1 + (3.3.21) 
R 	µ 

17 



vii. At point G 	(y=-(d2—d3),tµ) 

PG = yW h2 	 (3.3.22) 

3.5 The Exit Gradient 

The exit gradient ( Harr 1962) can be expressed as: 

i (dw . dt 
IE k dt dz 

Using Eqs. (3.3.1),(3.3.2) and (3.3.13) in the above equation we have; 

= hl, f 	 t 2 —1 
E 	

7Ts (t—m 	t+y t—? 

Maximum exit gradient occurs at 'G', where t = µ; 

z 

' Emax — hl , 	 N — 1 	 (3.3.23) 
US(P — m~ N + Y P—_— 

3.6 	Results and Discussions 

Numerical results for pressure distribution and exit gradient are obtained 

for the following structures: 

i. flat based weir with a sheet-pile resting on the surface 

ii. stepped weir with a sheet-pile at the step resting on the surface 

iii. depressed weir with a sheet-pile 

iv. depressed-stepped weir with a sheet-pile at the step 

Case iv being the general one, the results for other cases can be obtained 

by manipulating the structure parameters appearing in the solution of case iv. 

The results of case 1 and case 11 obtained using the present method are 

compared with the analytical solution that have been given by Khosla.et.al. 

18 



The comparison is given in Table3.1.(a) and Table3.1.(b) and shown 

graphically in Figs.3.6.(a) to Fig: 3.6.(o). The present numerical method is free 

from error. The Newton-Raphson method therefore can be used conveniently in 

solving the non-linear equations appearing in conformal mapping technique, 

which involves more than three variables. 

The correction suggested by Khosla.et.al for accounting depression is 

checked for its accuracy by comparing the pressure at key points computed by 

the present method with those obtained using the method given by Khosla.et.al. 

The comparison is . given in Table3.2.(a) through Table3.2.(b) and shown 

graphically in Figs.3.7 (a) through Fig: 3.7(d). The pressure distribution obtained 

by the approximate method suggested by Khosla.et.al differs by 5.5% -8.4% from 

the results obtained by present rigorous method for the ratio, depth of depression 

to total base width of weir (d/b) =0.125 and s/b=0.5 for flat based depressed weir. 

For depressed stepped weir the deviation is of the order of 3.8% -34.5% in the 

down stream side of the sheet-pile and 2.8% - 3.9% in upstream side for the ratio 

d/b1= 0.25 and s/b1 = 1.0 and d/b=0.125 to 1.0. 

The variation of exit gradient has been shown in Figure 3.6(f). The 

variation of maximum 'exit gradient with the ratio, depth of depression to base 

width of weir (d/b) varies rapidly with the decrease in the ratio of d/b. 

Khosla's approximate method predicts higher value of pressure 

distribution for points down streamside and `lower value for upstream side of 

sheet-pile or step as compared to the present method. 

*********** 
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Case:1 (A) : Excess Hydrostatic Pressure at point C for Flat based Weir 
with a Sheet-pile without Depression 
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- As per Khosla 	Present Solution 

Figure: 3.6(a) 

Case-1 (A) : Excess Hydrostatic Pressure at point E for Flat Based 

Weir with a Sheet-pile without Depression 
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Case-III (A) : Excess Hydrostatic Pressure at point C for Stepped Weir 
with a Sheet-pile without Depression 
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Figure: 3.6(c) 

Case-III (A) : Excess Hydrostatic Pressure at point D for Stepped 
Weir with a Sheet-pile without Depression 
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Case-III (A) : Excess Hydrostatic Pressure at point E for Stepped Weir 

with a Sheet-pile without Depression 
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Exit Gradient 
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Case:1 (B) : Excess Hydrostatic Pressure at point E for Depressed 
Flat based Weir with a Sheet-pile 
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Case:1 (B) : Excess Hydrostatic Pressure at point C for Depressed Flat 
based Weir with a Sheet-pile 
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Case-III (B) : Excess Hydrostatic Pressure at point C for Depressed- 
Stepped Weir with a Sheet-pile. 
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Case-III (B) : Excess Hydrostatic Pressure at point E for Depressed- 
Stepped Weir with a Sheet-pile. 
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Conclusion 

An analytical solution using Scwarz-christoffel conformal mapping 

technique has been obtained for computing uplift pressure at key points for a 

depressed stepped weir with a sheet pile at the step. From the general solution 

result for stepped weir without depression can be obtained. It is found that the 

solution of non-linear equations relating the parameters of transformation and the 

dimensions of the structure can be determined applying Newton-Raphson 

technique. 

The pressure computed at salient points using the Scwarz-Christoffel 

transformation and Newton-Raphson technique compares well that of Khosla's 

solution for a stepped weir without depression. 

Khosla's approximate method underestimates the pressure on the 

upstream side and over estimates on the downstream side. Therefore Khosla's 

solution can be applied safely. The deviation from true value in Khosla's method 

on the upstream side varies from 2.8% to 3.9% and in the downstream side it 

varies from 3.8% to 34.5% for d/b ranging from 0.083 to 0.25. 

Depression should not be neglected. The difference in result for without. 

depression and with depression varies from 3.5% to 5.25% for d/b changing from 

0.083 to 0.25 and the difference is on the positive side i.e. with depression the 

pressure is lower than that without depression. In the down stream side the 

difference in pressure at the step without and with depression varies from 6.5% 

to 100% for d/b changing from 0.125 to 0.25. 

The depressed part of hydraulic structure functions as a downstream 

sheet pile, which reduces the exit gradient. The variation of maximum exit 

gradient with the ratio d/b (Fig:3.6(f)) shows that exit gradient varies rapidly with 

the decrease in d/b. From table 3.4 it is seen that, a depressed floor of 0.5m thick 

along with 1.4m deep sheet pile can replace a 4.Om deep sheet pile. This gives 

the idea of the contribution of depressed floor on exit gradient. 

Using the present solution a software is written in FORTRAN, which can 

be used in the computation of uplift pressure directly and can be further 
developed as per the requirement. 
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Appendix - 

General 

Most of the analytical method for the solution of two-dimensional 
groundwater problems is concerned with the determination of a function, which 

will transform a problem from a geometrical domain within which a solution is 

sought for into the one within which the solution is known. This chapter deals with 

the study of elementary functions and the manner in which these functions 

transform geometric figures from one complex plane to another. 

Conformal Mapping technique is a powerful tool for solving two-

dimensional Laplace equations. The method is used for solving the problems of 
flow under hydraulic structures. 

Conformal Mapping Technique 

It is generally known that for a weir with flat base and resting on the 

surface of ground, the ,  streamlines or lines of flow are confocal ellipses with their 

focci at '0'.as shown in, the Figure: A.1. The equation to these ellipses are given 
x 2 	 y 2 

by: 	 Z  + Z  = 1 
1—cosh s 	u 	b sink u 

2 	 2 

where u is streamline function. 

Consider the physical domain in the Z-plane (Figure: A.2). When a 
vertical obstruction like a sheet pile or the stepped depression is introduced, the 

configurations of the streamlines or the flow lines are distorted. 

By applying the Scwartz-Christoffel transformation technique, the 

distortion can be brought back to normal configuration. The streamlines that will 

be formed after the transformation are smooth ellipses with confocal points. 
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1 \ 	 I; 

Stream lines 	__  

Figure: Al Streamlines for flat base weirs on surface. 

Assuming the physical domain to be on the Z-plane where any point on 

this is given by the relation Z = x + iy, the transformed plane is known as t-plane 

where any point on this is described by = 4 + irl. 

In this process, the physical flow domains in z -plane as well as the 

complex potential. domain w are transformed onto a common platform known as 

the auxiliary t-plane from which .a direct relation between z-plane and ca-plane 

are obtained. As such the flow region in the z-plane is first mapped onto the 

lower half of an auxiliary t-plane. Then the complex potential plane is also 

mapped onto the lower half of the t-plane. From these two conformal mappings, 

the relationship between z and co is obtained. 

This transformation is given by the relation: 

_ 	r 	dt  ( ) 

where A1ic, 2127U , X3n , fan , ~.5n , Xsit , k7n are the changes in the angles 

at vertices at A ,B,C,D,E,F,G in the positive sense and a,, a2, a3, a4 ,a5, U5, a7 

are the ordinates at the points A, B, C, D, E, F, G in the t — plane on which the 

points A ,B,C,D,E,F,G of the Z — plane are mapped. 
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As seen (Figure.A.2) on Z – plane, the angles of turning at A, B, C, D, E, F, G 

are '—` ,– .'— , '— ,– n, '— ,– '— , '— respectively so that; 
2 	2.2 	2 	2 	2 

2 	or. 	~, = 2 

	

It 	 1 

	

2 	or 	a.2 = – 2 

• x,37 = 2 	or 	~,3 = 2 	and so on. 

The origin in the figure in Z –plane is at C, which has been chosen at a point 

midway between CE in t – plane. 

Now assuming 	ai= -R 	, a2= -y 	,a3= -1 	,a4= m 

a5= +1 	, a6= ? 	,a7=µ 

the equation of transformation reduces to; 

r  
Z=M J  	 +N 

z 	

dt 

 

Z =M 
(m —t) 	+y x—t dt +N or 	j 	 ...........(2) (t+p)1-t 2 µ-t) 

The equation above is the general equation for relation between Z-plane 

and t-plane obtained by Scwartz-Christoffel transformation technique for the 

physical domain shown in Figure.A.2 

Similarly by applying the same transformation technique the relation 

between w - plane and t = plane can be obtained as explained in Chapter 3 

(Figure .3.1(c)). The equation is read as: 

or 	w = M,.Sin -' 	+ N, 	 ..........(3) 
R+µ 

By equating equations (2) and (3) the parameter 't' can be eliminated and 

direct relation between Z – plane and w– plane can be obtained. 
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Z-Plane 

h' 
A, 	A 

`i. `~8:: C.i 
------------ --► G hz G 

d2 ;,  
E 	W = 0 '.;.,. 

cc 

[iiiii- 	
bi

--f b2 	liii 
cc 

Figure .A.2: Physical Domain in Z-plane 

t- Plane 

A, 	A . B C 	0 D E 	F G 

Figure .A.3: Physical Domain Mapped on t-plane• 
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Appendix - II 

General 

Often mapping steps result in a set of non-linear equations, which require 

• a suitable technique to compute the unknown parameters. The implicit nature of 

the non-linear equations restricts the range of its applicability. In this appendix a 
methodology for solving a set of highly non-linear equations is described which 

can be Used for solving two-dimensional flow problems in a complex domain with 

a great accuracy. The method described here is an iterative type popularly 

known as "Newton-Raphson Method for Non-linear systems of Equations". 

Newton-Raphson Method 

Chapter- 4 reveals that the problem consists of highly non-linear objective 

functions involving muitivariable, which makes it difficult to solve by analytically. 

The process of numerical application is explained below: 

The non-linear equations from (3.3.2) to (3.3.7) as in chapter- 3 are 

represented by: ' F '(X1, X2...........Xn ) 	= 0 , 	'where i = 1,2,3........n constitute 

the variables X1, X2;...........Xn . 

Let 'X' denote the entire, vector of values x;  and F denote the entire 

vector of functions F. . In the neighbourhood of X ,each of the functions F, can 
be expanded in Taylor series. 

• n 	aF...  

	

FI (X + Sx) = F(X) + Y 	Ax e  + OSx 2  
;_1 axe 

In matrix notation, the above equation can be written as: 

F1(X+Sx) = F;(X) + J. \x +08x2  

Now neglecting the terms of the order 8x2  and higher and setting 

35 



FI(X+ .x) = 0, 

we have: J.Ax = - F(X) is an equation of matrix of a set of non-linear equations. 
This matrix equation can be solved by LU decomposition and corrections 

are then added to the solution vector as Xnew = XoId + Ox 

where J is known as the Jacobian matrix and is represented as: 

aF~ 	aF~ 	aF l 
aX , 	aX 2 	... 	ax n  
aF 2 
aX, 

aF n 	 aF n 
axl 	

... 	... 	axn. 

where 

F. 	Fl(x,, x 2 ,.... x j 	+ Lh....., 	x n ) — Fl (x 1 , x z ,.... x 1 .... 	X) 
ax - 	 Lh 

and tx; _ -F.[ J ]' 

or XI = X1 +&1 

This Xi represents the variables in the non-linear equations. 
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- Appendix II! 

FORTRAN PROGRAM 

This PROGRAM is a part of the M.Tech thesis for WRDTC,I.I.T.Roorkee, 	! 
developed by B.Shyam Sundar Patro,M.Tech,WRD(civil)2002.  
This source code is only intended as a supplement to the thesis 	 I 
"Analysis of seepage under a stepped depressed weir with a sheet pile" 
See these sources:for detailed information regarding the input files  
and dependencies.  

!B1=BASE1,B2=BASE2,D1=DEPTH1,D2=.DEPTH2,D3=DEPTH3,S=PILEDEPTH 
PROGRAM WEIRP  
DIMENSION WW(96),XX(96) 

OPEN (Unit=l,file='WEIRP.dat',STATUS='old') 
OPEN (Unit=2,file='WEIRP.out',STATUS='Unknown') 
OPEN (Unit=3,file='GAUSS.dat',STATUS='old') 

READ (3,*) (WW(l),1=1,96) 
READ (3,*) (XX(l),1=1,96) 
READ (1,*) B1,B2,D1,D2,D3,S,H1,H2 

WRITE(2,*)'PROGRAM RESULT FOR UPLIFT PRESSURE' 
W RITE(2,*)I******************************************************I 

5 	FO.RMAT(8F7.2), 
1NRITE(2;")' ` B1 B2 D1 D2 D3 	S H1 H2' 
W RITE(2,5)B1,B2,D 1,D2,D3,S,H 1,H2 
W.RITE,(2,*)****************************************************** 

6 	FORMAT(8P7.3) 

INDEX=1 
B=B1+B2. 

 

SM0=0.1 
GAMAO=1.1+b1/b, 
BETAO=GAMA0+0.1 
CLMDAO=1.1±b2/b  
CMUO=CLMDAO+0.1 

10 CONTINUE 
WRITE(2,*)' BETAO GAMAO SMO CLMDAO CMUO B1 B2 B1/B' 
WRITE(2,6)BETAO,GAMAO,SMO,CLMDAO,CMUO,B1,B2,(B1/B) 

CALL MAIN(WW,XX,BETAO,GAMAO,SMO,  CLMDAO ,CMUO , 
1 Res1,Res2,Res3,Res4,Res5,Res6,B1,B2,D1,D2,D3,S, 
2 FA,FB,FC,FD,FE,FFI,FF2,FF3,FF4,FF5, 
3 DBETAO,DGAMAO,DELSMO,DLMDAO,DELMUO) 
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Write(2,*)'value of Res1=',res1 

CALL PHI(D1,D2,D3,H1,H2,S, 
1 	BETAO,GAMAO,SMO,CLMDAO,CMUO,PC,PD;PE,PF) 

W RITE(2,*) PC PD • PE PF 
W RITE(2,*)'  
W RITE(2,36)PC,PD,PE,PF 

36 FORMAT(7F8.2).  

W RITE(2,*)' 	' 
WRITE(2,*)'*********** END OF RESULT  

STOP 
END PROGRAM WEIRP 

SUBROUTINE MAIN 	(Solution of Jacobian Matrix). 
++++++++++++++++++++++*+++++++++*++++++*++++*+++++++++++++++ 

SUBROUTINE MAIN(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO, 
1 Rest,Rest,Res3,Res4,Res5,Res6,B1,B2,D1,D2,D3,S, 
2 FA,FB,FC,FD,FE,FFI,FF2,FF3,FF4,FF5, 
3 DBETAO,DGAMAO,DELSMO,DLMDAO,DELMUO) 

DIMENSION WW(96),XX(96) 
DIMENSION AA(5,5),CC(5) 

EPSILON=0.00001 

5 	FORMAT(5F8.5) 
• 10 	CONTINUE 	 • 

CALL BX(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO, 
• 1 Res1,Res2,Res3,Res4,Res5,Res6,B1,B2,D1,D2,D3,S, 

2 FA,FB,FC,FD,FE,FF1,FF2,FF3,FF4,FF5) 
CC(1)=-FF1 
CC(2)=-FF2 
CC(3)=-FF3. 
CC(4)=-FF4 
CC(5)=-FF5 • 

C 	*++++++*+*++ 

DBETA=EPSILON 
DGAMA=EPSILON 
DELSM=EPSILON 
DLMDA=EPSILON 	• 
DELMU=EPSILON 

C 	++*+++++++++ 
BETAI=BETAO+DBETA 
CALL BX(WW,XX,BETAI,GAMAO,SMO,CLMDAO,CMUO, 

1 Rest,Res2,Res3,Res4,Res5,Res6,B1,B2,D1,D2,D3,S, 
2 •FA,FB,FC,FD,FE,FF1 1 ,FF22,FF33,FF44,FF55) 

• AA(1,1)=(FF11-FFI)/DBETA 
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AA(2, 1 )=(FF22-FF2)/DBETA 
AA(3, 1 )=(FF33-FF3)/DBETA 
AA(4, 1 )=(FF44-FF4)/DBETA 
AA(5, 1 )=(FF55-FF5)/DBETA 

C 
GAMAI=GA,vIAO+DGAMA 
CALL BX(WW,XX,BETAO,GAMA1,SMO,CLMDAO,CMUO, 

1 	Rest,Rest,Res3,Res4,Res5,Res6,B1,B2,D1,D2,D3,S, 
2 FA,FB,FC,FD,FE,FF11,FF22,FF33,FF44,FF55) 

AA(1 ,2)=(FF1 1-FF1 )/DGAMA 
AA(2,2)=(FF22-FF2)/DGAMA 
AA(3,2)=(FF33-FF3)/DGAMA 
AA(4,2)=(FF44-FF4)/DGAMA 
AA(5,2)=(FF55-FF5)/DGAMA 

C 
SM1=SMO+DELSM 
CALL BX(W W ,XX,BETAO,GAMAO,SM 1,CLMDAO,CMUO, 
Rest,Res2,Res3,Res4,Res5,Res6,B1,B2,D1,D2,D3,S, 
FA,FB,FC,FD,FE,FF11,FF22,FF33,FF44,FF55) 

AA(1 ,3)=(FF1 1-FF1 )/DELSM 
AA(2,3)=(FF22-FF2)/DELSM 
AA(3,3)=(FF33-FF3)/DELSM 
AA(4,3)=(FF44-FF4)/DELSM 
AA(5,3)=(FF55-FF5)/DELSM 

CLMDAI=CLMDAO+DLMDA 
CALL BX(WW,XX,BETAO,GAMAO,SMO,CLMDA1,CMUO, 
Resl,Res2,Res3,Res4,Res5,Res6,B1,B2,D1,D2,D3,S, 
FA,FB,FC,FD,FE,FFI1,FF22,FF33,FF44,FF55) 

AA(1 ,4)=(FF1 1-FF1 )/DLMDA 
AA(2,4)=(FF22-FF2)/DLMDA 
AA(3,4)=(FF33-FF3)/DLMDA 
AA(4,4)=(FF44-FF4)/DLMDA 
AA(5,4)=(FF55-FF5)/DLMDA 

CMU 1=CMUO+DELMU 
CALL BX(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMU1, 
Res1,Rest,Res3,Res4,Res5,Res6,B 1,B2,D 1,D2,D3,S, 
FA,FB,FC,FD,FE,FF1 1 ,FF22,FF33,FF44,FF55) 

AA(1,5)=(FF1 1-FF1)/DELMU 
AA(2,5)=(FF22-FF2)/DELMU 
AA(3,5)=(FF33-FF3)/DELMU 
AA(4,5)=(FF44-FF4)/DELMU 
AA(5,5)=(FF55-FF5)/DELMU 

MM=5 
CALL MATRIXIN(AA,MM) 

C ........+ ............. 
SUM=O 
DO J=1,5 
SUM=SUM+AA(1,J)*CC(J) 
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ENDDO 
DBETAO=SUM 

SUM=0 
DO J=1,5 
SUM=SUM+AA(2,J)*CC(J) 
ENDDO 
DGAMAO=SUM 

SUM=0 
DO J=1,5 

• SUM=SUMIAA(3,J)*CC(J) 
ENDDO 
DELSMO=SUM 

SUM=0 
DO J=1,5 
SUM=SUM+AA(4,J)*CC(J) 

• ENDDO 
DLMDAO=SUM 

SUM=O 
DO J=1,5 
SUM=SUM+AA(5,J)*CC(J) 
ENDDO 
DELMUO=SUM 

C 
BETAO=DBETAO+BETAO 

GAMAO=DGAMAO+GAMAO 
SMO=DELSMO+SMO 

CLMDAO=DLMDAO+CLMDAO 
CMUO=DELMUO+CMUO 

C 
INDEX=INDEX+1 
IF(INDEX.GT.10)GOTO 20 

IF(ABS(DBETAO).GT.0.000001)GOTO 10. 
JF(ABS(DGAMAO).GT.0.000001 )GOTO 10 
IF(ABS(DELSMO).GT.0.000001)GOTO 10 
IF(ABS(DLMDAO).GT.0.000001)GOTO 10 
IF(ABS(DELMUO).GT.0.000001)GOTO 10 
GOTO 30 	• 

20 CONTINUE • • 
WRITE(2,*)IITERATION HAS FAILED' 
GOTO 40 

30 CONTINUE • 	 • 

WRITE(2,*)I 	, 	. . - 	 • 	• 
WRITE(2,*)NUMBER OF ITERATIONS=',INDEX 
WRITE(2,*)'  
WRITE(2,*)'VALUES OF THE FUNCTIONS AFTER ITERATIONS' 
WRITE(2,*)'  
write(2,5)cc(1 ),cc(2),cc(3),cc(4),cc(5) 
W RITE(2,*)i***************************************! 
WRITE(2,*)" BETA GAMA SM CLMDA CMU" 

N- '  
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WRITE(2,5)BETAO,GAMAO,SMO,CLMDAO,CMUO. 

40 	CONTINUE 

RETURN 
END 

SUBROUTINE MATRIXINV (LU decomposition) 

SUBROUTINE MATRIXIN(AA,MM) 

DIMENSION AA(5,5),B(5),C(5) 

NN=MM-1 
AA(1,1)=1./AA(1,1) 
DO 8 M=1,NN 
K=M+1 
DO 3 I=1,M 
B(I)=0.0 
DO 3 J=1,M 

3 	B(I)=B(I)+AA(I,J)*AA(J,K) 
D=0.0 
DO 4 1=1,M 

4 	D=D+AA(K,I)*B(I) 
D=-D+AA(K,K)_ 
AA(K,K)=1./D 
DO 5 I=1,M 

5 	AA(I,K)=-B(I)*AA(K,K) 
DO 6 J=1,M 
C(J)=0.0 
DO 6 I=1,M 

6 	C(J)=C(J)+AA(K,I)*AA(I,J) 
DO 7 J=1,M 

7 	AA(K,J)=-C(J)*AA(K,K) 
DO 8 I=1,M 
DO 8 J=1,M 

8 	AA(I,J)=AA(I,J)-B(I)*AA(K,J) 

RETURN 
END 

! 	SUBROUTINE PRESSURE (Calculates Uplift pressure) 

SUBROUTINE PHI(D1,D2,D3,H1,H2,S, 
1 	BETAO,GAMAO,SMO,CLMDAO,CMUO,PC,PD,PE,PF) 
PI=3.141592654 

H=H1+D1+D2-D3-H2 

TERM2=ASIN((BETAO-CMU0-2.)/(BETAO+CMUO))*(2./PI) 
TERM22=(H*0.5*(TERM2-1.)) 
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PC=H2-D2+D3-TERM22*100./H 

TERM3=ASIN(((2.0*SM0)+BETAO-CMUO)/(BETAO+CMUO))*(2./PI) 
TERM33=(H*0.5*(TERM3-1.)) 
PD=-4.98+H2+D 3+S-TERM33* 100./H 

TERM4=ASIN((BETAO-CMU0+2.)/(BETAO+CMUO))*(2./PI) 
TERM44=(H*0.5*(TERM4-1.)) 
PE=H2+D3-1.-TERM44*100./H 

TERM5=ASIN((BETAO-CMUO+(2.0*CLMDAO))/(BETAO+CMUO))*(2./PI) 
TERM55=(H*0.5*(TERM5-1.)) 
PF=H2+D3-TERM55* 100./H 

RETURN 
• END 

SUBROUTINE BX (Grouping of Subroutines) 

SUBROUTINE BX(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO, 
1 	 Resl,Res2,Res3,Res4,Res5,Res6,B1,B2,D1,D2,D3,S, 
2 	 FA,FB,FC,FD,FE,FFI,FF2,FF3,FF4,FF5) 

• CALL Fxl (WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO,Res 1) 
CALL Fx2(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO,Res2) 
CALL Fx3(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO,Res3) 
CALL Fx4(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO,Res4) 
CALL Fx5(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO,Res5) 
CALL Fx6(WW,XX,BETAO,GAMA0,SM0,CLMDAO,CMUO,Res6) 

FA=RES2/RES1 
FB=RES3/RES1 
FC=RES4/RES.I 
FD=RES5/RES1 
FE=RES6/RES1 

FF1=(B2/S)-FA 
FF2=(D3/S)-FB 

• FF3=((D2+S)/S)-FC 
FF4=(Bl/S)-FD 
FF5=(D 1/S)-FE 

RETURN, 
END 

SUBROUTINE Fxl 
SUBROUTINE Fxl(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO,Resl) 
DIMENSION WW(96),XX(96) 

SUM=O 
DO 1=1,96 	 • 
U=XX(I) 	 • 
V=(U+'1.)*(SQRT(1.-SM0))/2: 
Fl N=(1-V**2-SMO)*SQRT((l-V**2+GAMAO)*(CLMDAO-1+V**2)) 
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F1 D=SQRT((1-V**2+BETAO)*(2-V**2)*(CMUO-1+V**2)) 
F1=F1N/F1D 
SUM=SUM+WW(I)*F1 
ENDDO 
Rest =SUM*SQRT(1.-SMO) 

RETURN 
END 

SUBROUTINE Fx2 
SUBROUTINE Fx2(WW ,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO ,Rest) 
DIMENSION WW(96),XX(96) 

SUM=O 
DO 1=1,96 
U=XX(I) 
V=(U+1.)*(SQRT(CLMDAO-1.))/2. 
F2N=(1 +V**2-SMO)*SQRT((1+V**2+GAMAO)*(CLMDAO-I-V**2)) 
F2D=SQRT((1+V**2+BETAO)*(2+V**2)*(CMUO-1-V**2)) 
F2=F2N/F2D. 
SUM=SUM+WW(I)*F2 
ENDDO 
Res2=SUM*SQRT(CLMDAO-1.) 

RETURN 
END 

SUBROUTINE Fx3 
SUBROUTINE Fx3(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO ,Res3) 
DIMENSION WW(96),XX(96) 

SUM=O 
DO I=1,96 
U=XX(I) 
V=(U+1.)*(SQRT(CMUO-CLMDAO))*(0.5) 

F3N=(CMUO-V**2-SM0)*SQRT((CMUO-V**2+GAMAO)*(CMUO-V**2-CLMDAO)) 
F3D=SQRT((CMUO-V**2+BETAO)*(1+CMUO-V**2)*(CMUO-V**2-1)) 
F3=F3N/F3D 
SUM=SUM+WW(I)*F3 
ENDDO 
Res3=SUM*SQRT(CMUO-CLMDAO) 

RETURN 
END 

SUBROUTINE Fx4 
SUBROUTINE Fx4(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO ,Res4) 
DIMENSION WW(96),XX(96) 

SUM=O 
DO 1=1,96 
U=XX(I) 
V=(U+1.)*(SQRT(1.+SMO))/2. 
F4N=(SMO+1-V**2)*SQRT((V**2-1+GAMAO)*(CLMDAO+1-V**2)) 
F4D=SQRT((V**2-1+BETAO)*(2-V**2)*(CMUO-V**2+1)) 
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F4=F4N/F4D 
SUM=SUM+WW(I)*F4 
ENDDO 
Res4=SUM*SQRT(1.+SMO) 

RETURN 
END 

SUBROUTINE Fx5 
SUBROUTINE Fx5(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO ,Res5) 
DIMENSION WW(96),XX(96) 

SUM=O 
DO 1=1,96 
U=XX(I) 

V=(U+1.)*(SQRT(GAMAO-1.))/2. 
F5N=(1 +V**2+SMO)*SQRT((GAMAO-1-V**2)*(1 +V**2+CLMDAO)) 
F5D=SQRT((BETAO-1-V**2)*(2+V**2)*(CMUO+1 +V**2)) 
F5=F5N/F5D 
SUM=SUM+WW(I)*F5 
ENDDO 
Res5=SUM*SQRT(GAMAO-1.) 

RETURN 
END 

SUBROUTINE Fx6 
SUBROUTINE Fx6(WW,XX,BETAO,GAMAO,SMO,CLMDAO,CMUO ,Res6) 
DIMENSION WW(96),XX(96) 

SUM=O' . . 
DO 1=1,96 
U=XX(I) 

V=(U+1:)*(SQRT(BETAO-GAMAO))*(0.5) 
F6N=(SMO+BETAO=V**2)*SQRT((BETAO-V**2-GAMAO)*(CLMDAO+BETAO-V**2)) 

F6D=S'QRT((BETAO-V**2-1)*(BETAO-V**2+1)*(CMUO+BETAO-V**2)) 
F6=F6N/F6D 
SUM=SUM+WW(I)*F6 
ENDDO 
Res6=SUM*SQRT(BETAO-GAMAO) 

RETURN 
END 
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*************************************** 

Data Entry Procedures: 
(weir parameters to be entered as per below) 

bl b2 dl d2 d3 s 	h1 h2 

Sample Result Output: ..................................................................... . 

PROGRAM RESULT FOR UPLIFT PRESSURE 

B1 62 01 02 03 S H1 H2 
2.00 6.00 .04 .00 .04 4.00 3.00 1.00 

****************************************************** 
BETAO GAMAO SMO CLMDAO CMUO B1 B2 B1/B 
1.450 1.350 .100 1.850 1.950 2.000 6.000 .250 

NUMBER OF ITERATIONS= 	6 

VALUES OF THE FUNCTIONS AFTER ITERATIONS 

.00000 .00000 .00000 .00000 .00000 
*************************************** 

BETA GAMA SM CLMDA CMU 
1.12739 1.12447 .00119 1.81432 1.81962 
*************************************** 

value of Rest = 9.946941E-01 
*************************************** 

PC PD PE PF 

87.71 57.58 35.40 3.74 

*********** END OF RESULT  
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Data Entry Procedures: ( weir parameters to be entered as per below) 

b1 b2 d1 d2 d3 s h1 h2 

********************************************** 
Sample Result Output: ............................................u. •.. •.. •.. • • •• • • • • • •• • . 

PROGRAM RESULT FOR UPLIFT PRESSURE 

B1 B2 D1 D2 D3 S H1 H2 
2.00 6.00 .04 .00 .04 4.00 3.00 1.00 

****************************************************** 
BETAO GAMAO SMO CLMDAO CMUO B1 B2 B1/B 
1.450 1.350 .100 1.850 1.950 2.000 6.000 .250 

NUMBER OF ITERATIONS= 	6 

VALUES OF THE FUNCTIONS AFTER ITERATIONS 

.00000 .00000 .00000 .00000 .00000 
*************************************** 

BETA GAMA SM CLMDA CMU 
1.12739 1.12447 .00119 1.81432 1.81962 

S .  *******************************#******* 
value of Res 1= 9.946941E-01 
*************************************** 

PC PD PE PF 

87.71 57.58 .35.40 3.74 

*********** END OF RESULT *********** 
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