ANALYSIS OF SEEPAGE
UNDER A DEPRESSED STEPPED WEIR
WITH A SHEET PILE

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree
of
MASTER OF TECHNOLOGY
in
WATER RESOURCES DEVELOPMENT

By
B. SHYAM SUNDAR PATRO

WATER RESOURCES DEVELOPMENT TRAINING CENTRE
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE -247 667 (INDIA)

December, 2002



DECLARATION

I hereby declare that the dissertation titled “Analysis of Seepage Under a
Depressed Stepped Weir with a Sheet Pile” which is being submitted for partial
fulfilment of the requirements for the award of Master's of technology in Water
Resources Development (civil) at Water Resources Development Training Center
(WRDTC), Indian Institute of Technology, Roorkee is an authentic record of my own
work carried out during the period of 16.07.2002 to 30.11.2002 under the
supervision and guidance of Dr. B.N.Asthana, Professor Emeritus, WRDTC, IIT
Roorkee and Dr.G.C.Mishra., Professor WRDTC IIT Roorkee.

| have not submitted the matter embodied in this dissertation previously for

the award of any other degree.

Place: Roorkee ( B.Shyam sundar Patro )
Dated: 30.11.2002 46™ WRD, (Civil)

This is to certify that the above statement made by the candidate is correct to

the best of my knowledge and belief.

. ¢ ok "

( Dr.G.C.Mishra) ( Dr. B.N.Asthana )
Professor, Professor Emeritus,
WRDTC, lIT Roorkee. WRDTC, lIT Roorkee.

Jo. 1. 2002

External Examiner:



 ACKNOWLEDGEMENT

| take this opportunity to express my profound sense of gratitude and |
| grateful regards to Dr'.G.CA.Mishra, Professor, WRDTC, and Dr.B.N.Asthena,
" Professor Emeritus, WRDTC, Indian Institute of Technology, Roorkee for their
noble, talented and inspiring guidance, constant encouragement and persuasive
and ceaseless help during the period of this analysis. | am also thankful to them
for the pain taken by them in the process of scrutinizing this manuscript.

| am also greatly thankful to Prof. Devadutta Das, Professor and Head,
WRDTC,IIT, Roorkee for extending various facilities in completing this
dissertation. , ' '

| would like to express my sincere respects to all the faculty of WRDTC for ,
all their invaluable advice and the shower of their knowledge to me dlrectly or
indirectly during the period of my study in this center.

| am also grateful to the staff of WRDTC including all the staff of computer
laboratory for their extended Co- operatron during the period of this work.

| wish to express my sincere thanks to the Chief Engmeer Minor lrrigation
,Orissa for providing me an opportunlty to study M.Tech. in WRD at WRDTC_
Indian Institute of Technology, Roorkee.
| | cannot forget to express my profound sense of gratitude and -
indebtedness to my parents | also wish to record my love and affection to my
~ wife Ranjita, who even with her own inconvenience and difficulties, provided her
extensive moral support and encouragement throughout the period of study here. B

At the last, | wish to record all my thanks to my colleagues for their sincere

and memorable co-operation and encouragement during the course of stay here. ‘

Place: Roorkee | B.Shyam Sundar Patro.
Dated: 30.11.2002

i



Abstract

_ The movement of ground water is a basic part of soil mechanics. Its
influence can be found in almost every area of civil engineering, including
irrigation and reclamation. In addition, the elegance and logical structure of its
theory renders it of interest to engineering scientists. It plays a vital role in
Irrigation engineering for an irrigation engineer. |

Since ancient times in irrigation engineering, weirs remain as the most
extensively used control structures for the diversion of flow and for measurement
l of flow. Though the type and shape of weirs differ from place to place, depending
on the available materials for construction, sub-soil condition and hydrology of
the river, they are provided with one or more sheet piles when constructed in
alluvial soils. Weirs are designed to satisfy the surface and sub-surface flow
considerations. Where as the surface flow considerations decide the crest level,
| down stream floor length and minimum depths of upstream and downstream
sheet-pile/cut-off, the sub-surface flow considerations at the maximum pohding
condition requires more attention to protect the structure against heaving,
.rdoﬁng, piping and uplift. The parameters i.e. sheet-pile depth and floor length
influence the uplift pressure at different points under the floor. The uplift
pressures are counteracted by the weight of the floor. The weir generally consists
- of either a horizontal or sloping floor with sheet pile.

Khosla et.al. have analysed the flow under a stepped weir considering it to
be resting on the surface of a porous medium of infinite depth. They have
presented design charts, which are extensively used by the field engineers.
Khosla's concept of barrage or weir design for subsurface flow (Khosla
:et.al.1936) is b.ased on the assumption that the thickness of floor is negligible
and it is resting on the surface, the values of uplift pressure thus obtained refer to
the bottom level of the floor, where in practical, structures are somewhat

depressed into, acting as foundation. To remove the error in pressure distribution
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for neglecting floor thickness, a cbrrection is being applied to the uplift pressure
- obtained according to Khosla's theory. This factor is> being computed by
interpolation assuming th‘at there occurs a linear variation in the pressure along
the depth of sheet-pile and the variation is equal to the variation in pressure
| distribution along the depth of depression. In fact, in order to achieve a tractable
analytical solufion, the depression of the hydraulic; structure has been neglected.
With such assumptions, the number of vertices taking part in the conformal
transformation is reduced.

Henc':é,'the présent study was undertaken to analyse the flow under a
depressed-stepped weir using the conformal mapping technique to compare the
- solution with that of Khosla et.al and to develop an analytical solution using
* numerical methods for computation of pressure distribution which can be directly
used as the equation for anticipated upﬁft pressure and there will be no need of

“applying a correction factor.
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Chapter 1

INTRODUCTION

1.1 General

Since ancient times in irrigation engineering, weirs remain as the most
extehsively used control structures for the diversion of flow and flow
measdrement. Though the types and shapes of weirs differ from place to place,
depending on the available materials for construction, sub-soil condition and
hydrology of the river, they are provided with one or more sheet piles When
constructed in alluvial soils. Weirs are designed to satisfy the surface and sub-
'surface flow considerations. Where aé the surface flow considerations decide the
crest level, down stream floor length and minimum depths of upstream and
downstream sheet-pile/cut-off, the sub-surface flow considerations. at the
maximum ponding condition require more attention to protect the structure
against heaving, roofing, piping and uplift. The parameters i.e. sheet-pile depth
and floor lengthl influence the uplift pressure at different points under the floor.
The uplift pressures are counteracted by the floor thickness. A weir generally
éonsists of either a horizontal or sloped floor with sheet piles. The sheet-pile in
the upstream is provided to reduce the uplift pressures under the floor and to cut-
off the seépage-lines through permeable upper layers where as the provision of a
down stream sheet-pile raises the uplift pressures under the floor. A down-
- stream sheet-pile is necessary from scour consideration as well as to keep the
exit gradient below the safe limit. This helps in> mitigating the piping below the
floor. The depression of the floor can replace the need of a sheet pile to certain

extent.
12 Back ground

The sub-sail flow below weirs along with the hydraulic gradients and uplift-

pressures has been widely recognised as the determining factor in design of a



“weir on perméable foundation after the claesic experiments that has been carried
out by Col.Clibborns, the then Principal of Thomson Civil Engineering College,
Roorkee in connection with the failure of Khanki Weir, in India during 1895-97. It
was then concluded and accepted eventually by all over that the subject of sub-
surface flow is more complex than what the Bligh's creep theory indicated then.

 .n. 1934 Rai Bahadur A.N.Khosla,ISE presented a note on the

observations and records of pressures below works on permeable foundations in
~ publication No.8 of Central Board of Irrigation and Power.

Khosia et.al have analysed the flow under a stepped weir considering it to

be resting on the sﬁrface of a porous medium of infinite depth. They have

presented design charts, which are extensively used by the field engineers.

1.'3 'Need for further stddies

As Khosla's concept of barrage or weir design for subsurface flow (Khosla
et.al.1936)‘ is based on the assumption that the thickness of floor is negligible
and it .is'resting on the surface, the values of uplift pressure thus obtained refer to
the bottom level of the floor, where in practice; struclures are somewhal
- depressed into, acting as foundation. In fact, in order to achieve a tractable
analy'ﬁc_al,solution, the depression of the hydraulic structure has been neglected.
With - such assumptiohs, four extra vertices, which should take part in the
* conformal transformation, are reduced and some part of the seepage head is lost -
through the foendetion depth. To remove the difference due to floor thickness, a
* correction factor is applied to the uplift pressure obtained from Khosla's equation.
This fa_ctor is being computed by interpolation assuming that, there occurs a

linear variation in the pressure along the sheet-pile length.

1.4  Scope of present stUdy

The present study was undertaken to analyse the flow under a depressed

.stepped weir, using the conformal mapping technique to compare the solution



with that of Khosla et.al. The results so obtained can be directly used as the

anticipated uplift pressure and there will be no need of applying a correction

"~ factor.

1.5 Objectives of Present Study

Present study was undertaken to find an analytical solution which can
‘quantify uplift pressure below the floor of depressed weir and to prepare a
compréhensive comparison of the values of uplift pressure with that obtained, by
using the equation of Khosla et.al.(1936). The comparison is to be carried for
weirs with depréssion and with a sheet-pile at various positions.

It is proposed to compare for the following depressed hydraulic structures:

I. Depressed weir with sheet-pile positioned at various options. (Figure 1.1)
II. Depressed-stepped weir without sheet-pile. (Figure 1.2)

1. Depressed-stepped weir with a sheet-pile at the step. (Figure 1.3)

Use of conformal mapping technique generally results in non-linear
equations- containing multivariable. The non-linear equations are not easily
solvable. It is proposed to solve the set of noﬁ-linear equations by Newton-
~ Raphson technique®. The uplift pressure distribution and exit gradients are then
determined.

ek e e ke ke ke ok



Figure 1.1 Case I. Depressed Floor with a Sheet Pile.

Figure 1.3 Case lll. Depressed Stepped Floor with Pile at the Step



Chapter 2

LITERATURE REVIEW

21 General '

Khosla et.al. (1936)" found solutions to two-dimensional steady flow under
a number of simple profiles of weirs resting on a homogeneous and isotropic soil
of infinite depth using the Scwarz-Christoffel conformal transformation
technique®. Pressure heads; at key points (C, D, and E as shown in Figure.2.1) in
excess of the hydrostatic head at the downstream boundary have been
presented as a percentage of the seepage head in the form of charts, which are
widely in use for the sub surface design of hydraulic structure. Khosla et.al. have -
neglected the depth of depression to reduce the number of vertices taking part in
the conformal mapping. By reducing the number of vertices it was possible to
.carryout the integration required in solving the transformation. Numerical

integration is necessary in case of structures having vertices more than three.
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Figure. 2.1

2.2  Approximate Method for Accounting Depression:

In Khosla’s method' of analysis, the excess pressure head has been
derived, assuming that the thickness of floor is negligible and the structure is
resting on the surface. As the foundation has some thickness, a part of the
seepage head is lost along the foundation depth, which has to be accounted for.



To account for the head lost along the floor thickness, Khosla et.al. has
suggested a correction. This is being computed by interpolation under the
assumption that, the variation of hydraulic head is linear along the sheet-pile
depth and the rate 6f variation is equal to the variation along the depth of
depression. The correction for accounting depression for a flat-based weir
proposed by them is as follows:

The correction for pressure head* at point C in Figure.2.1 is

[—¢° d_ %o Jtmm which is subtracted from the value of ¢c. The correction for
1

pressure head at the point ‘E’ is (E%Jtmm which is added to the value of

1

de, where ¢c , op and ¢g are the pressure heads at points C, D and E
respectively which have been obtained by neglecting the depression and using
conformal mapping. '

It may be noted here that the nature of dissipation of head aiong the depth
6f depression and sheet-pile are not similar. Because, at point A, the flow velocity
is finite, where as, at point C the velocity is zero. Therefore, the corrections
proposed by Khosla needs an investgation.

In the present scientifically developed era, there is an advantage to the
present day researchers which the yester decades researchers did not have.
Now a days, it is possible to carryout numerical integration and solve non-linear

“equations easily using high speed computers. So instead of applying a correction
factor as proposed by Khosla, in this thesis, a solution has been given
accounting floor thickness below the ground level for direct computation of the

uplift pressure.

Figure. 2.2



Khosla has also suggested an emprical formula’ for computation of uplviﬁ
- pressure _under a flat bottom depressed weir, the type shown in Fig.2.2. The
formula is based on tests conducted on a scale model. The empirical formulais
.2 3
¢D = ¢p ‘—(¢c ‘¢D)+_

a4t

- in which ¢p and ¢c are pressures at D and C correspondlng to flgure 2.1 for N
which Khosla et.al. have given analytical solutlon.The parameter o is equal to |
‘ b/d d'p is the pressure at pomt D in figure 2.2. | |
Using the conformal mapping technique, Malhotra (1 962) has glven solution
for flow under a depressed h_ydraulrc structure havrng two sheet-piles one at each
end. . R » - _ o
Safety against piping for depressed structure can be lnvestrgated using
Lane’s weighted creep theory (Lane, 1935)

However no analytical solution are available for stepped-depressed weir.
2.3 Analytical Method for Accounting Depression:

Pavlovsky (1@22)‘ has given solution to a flat bottomed depressed weir
using Sewartz-christoffel; transformation. Analytical | s.olutions ‘forv the uplift
pressure under the roor'and the maximum exit gradient have been given
- Confomal mapplng techmque has been applled to compute upllft pressure _
and exit gradrent for a ﬂat depressed structure wrth two symmetncal row of plllng |

Von a permeable sorl of |nf|n|te depth (Harr, 1962) The solution has been given for'
_structure on foundatron of finite depth by Filchakov (Polubarlnova -Kochina 1962)

.The analytrcal solutron is not tractable as it contains elliptic integral of thrrd krnd

et



24 Conclusion

- Analytical solution for a stepped-dvepréésed weir is not available. In current
practice corrections are applied to the solution that has been obtained rieglecting

| de_'pressioh. Analytical s"olt..ltioin" fqr flat bottomed depfesséd floor resting on a soil |
| ._ of ’fihitev depih' is 'ai‘/a'ilable., HoWe'ver'up.l.if_t"pressuvre, exit gradient can not be -
computed easily as t-hAe‘ derived equations are highly non-linear and cbntain
'. '. '_.elliptic' integrél of third kind. Solution to flow under structure having vertices more
than three can be obtained usmg conformal mapping and applylng Newton-

Raphson techmque for solvmg the non-linear equatlon
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Chap'ter 3

~ANALYSIS
3.1 General

Weirs on permeable foundation are designed to safeguard against uplift
pressure and piping. The flow characteristics are determined assuming the flow

to be two dimensional and steady. For non-homogeneous sub-soil, numerical -
method is used to solve the two dimensional equation

5 oh) . @ oh)|
&{—k(x,y)&}+5y—{—k(x,y)5;}=O

satisfying the boundary conditions. For homogeneous, isotropic soil, the
governing equation is the Laplace equation, which can be solved analytically
using conformal mapping. ' o
Using the Scwartz-Christoffel confor_rhal mapping technique, Khosla et.al.
(1936) have obtained analyticél solutions for a stepped weir with a sheet pile.
provided at the step, resting on a homogeneous, isotropic porous medium of
infinite depth. They have neglected the depression so as to reduce the number of
vertices to arrive at a simple solution and suggested ‘a correction factor to
account for the depression. In this thesis, an analytical solution for the flow
around a depressed-stepped weir with a sheet-pile at the step has been obtained

using the Schwartz-Christoffel conformal mapping technique.
3.2 Statement of the Problem

_ The depressed-stepped weir with a sheet-pile at the step is shown in
Figure.3.1 (a). The width of floor upstream to the sheet-pile is ‘bs’. The width of
down stream floor is ‘by’. The d'epth of the vertical sheet—pile is ‘'s". The depths of
depression of the floor at the upstream floor, at the junction of sheet-pile and
- floor, and at the.dio{Nn stream floor are d4, d,, and dj respectivély. The heights of
water above the upstream and downstream bed are h; and h, respectively and

the difference in the total heads between the upstream and downstream



z-plane

Figure. 3.1(a) : Physical Domain in z-plane
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Figure.3.1(b) : Physical Domain Mapped onto t-plane
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boundaries is ‘h’. ‘It is required to find the preé.sure distribution along the
impervious base BCDEF of the structure and exit gradié_nt along the downstream
boundary GG;. ' ‘

3.3 Analysis
3.3.1 Mapping of z- plane onto t- plane: z=f (f)

The conformal mappmg of the flow domaln in z-plane onto the lower half

of the auxmary t-plane is given by:

(m — )/t + y )r - t) .\
Iy ety reany S

the vertices Aq, A, B, C, D, E, F, G, G4 being mapped onto -, B, y, -1, m,

(33.1)

1, A, u and o respectively in the t-plane. M and N are complex constants to be
determined. The constant N is governed by the lower limit of integration. To find
the constants M and N, and the relationship between the transformation
barameters and dimension of the struéture we carryout integration between
cdnsecuti've vertices. | -
i). Integration between vertices D and E (m<gt<1)

Applying the conditions

atpointD: t=m, forwhich z=-i(s+d,) and

atpointkE: t=1, for which z =-id;

we obtain:

- 1 (t m)\/(t+y)()\ t) -
N s e R R

or  —id, =M [ f,(t)dt - i(s +d,)

or is=Ml;  where |, = J: f,(t)dt

or M ='|i - | (3.3.2)
1

11



ii). Integration between vertices EandF =~ (1 <t <A )

Applying the conditions

Applying the condmons

at pointE_: t=1, for whivch z=-d, and
atpointF: t=2A,  forwhich z=b,-id, i
we obtain: : |
bz'— id, = MLx(t—m)\/G+ y XA - t) dt ~id,
| NE+ N2 - 1) - 1) V-1
L, s 1,
or b,=M—"2—==2.2
? V=1 i
or b_2 = '_2._
s I
or F, _b. L
s I
iii). Integration between vertices F and G (Arst<sp)
Applying the conditions
at point F: t=4, forwhich z= by-id, and
atpoint G: t=y, for which  z=bz-i(d2-d3)
we obtain |
' L/it Xt - ?»5 .
b, —i(d, d) Mf A +b, —id,
Vit + B)(f2 1)(1~l - ’f)
or b,-i(d,—d,)= MI +b, —id,
or _d_3‘v= .I.3_.
S 1
' d I
or F, = -2
s I
iv). Integration between verticesDandC (-1 <t<m)

- at point D: t= for Wthh z=-i(s+dy)and
atpointC: t= -'1",'  forwhich z=0

we obtain:

12

(3.33)

(3.3.4)



- t
i(d, +s)=M][ o - OV ) - )dt + 0
V-t e -
for integration with values.of t <0, we replace t with -T

equation becomes:

or  i(d,+s)=M[_ (m + TG - T)(“T)dT

JE-TX-T Xp+T)

i(d, +s)=M" = 'Ts—|4

Q.
™
qF
w
—

. Integration between vertices C and B («y <t <-1)

~ Applying the conditions
~at poinf C.t=-1, forwhich z=0 and
at point B: t=-y, for which z = -b4
we obtain:
o - I-1(m-t)\/(t+y)(x—t)dt_b1
SR (EEE) -9

Replacmg t with -T;

O_MLy(m+T)J(y—T)(k+T)dT b,

NG -TXT2 1) +T) i

Ml - is
Or 0= .5 1=_-'75—_ 1
i i
b I
or -——1-=__5_
: S |
or F‘1 = ﬁ._!s_
s 1

vi). Integration between vertices B and A (B <ts -~Y)

13
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Applying the conditions
at point B: t=-y, forwhich z=-by and
atpointA: t=-, forwhich z=-b¢+idy

we obtain : -

P e N () t) L
b1_MJBJ(t+BX1 e dt — b, +id,

Replacing t with -T;

(m+T)\/(Y—T)(7»+T) "
O_MI\/@—T)@ T2)u + T) ar +
oo DT - )+ T)
RN e T)(TZ—1X;,L+T)dT |
or |d1=|\/||6='i_|6 or d, |
) |.1 | N S

o F, = Stoo (3.3.7)
: 1

.
I

The parameters B, y, m, A and p are to be found for known values of

—d— igﬁ 9— Pl from Egs. (3.3.3) to (3.3.7). The'equations are non-linear.

- Newton-Raphson technique has been used to find the solution and this has been

_ expléined in Appendix-Il. The solution is given by the Jacobian matrix:

oF, oF, oF oF - oF,
B o om oh  du

oF, oF, oF, OF, OF | r[ap] TE@ v m )]

B o om A o Ay | R By m A

oF, oF, oF, &F;, oF, . U
Am = F3 B 1Y 1m 1}\' 7“'

B om A o | Ry

oF, oF, oF, OoF, oF, l e ; A ’x’“,)

B o om o op| LA LRBMLAR

oF. oF, oF, oF, oF,
B o om o op |

14



The integfals are impfoper and the singularities have been removed by using the
Gaussian-Quadrature method of substitution. The Solution of the Jacobian matrix
is done by using FORTRAN program. The FORTRAN program has been listed in

Appendix-Iil. ,
3.3.2 Mapping of © - plane onto t - plane:

The complex potential o is defined as w = ¢ + iy in which
¢ = velocity potential and y = stream function. |

The velocity potential function ¢ is defined as ¢ = —k[—Q— + y) +C (3.3.8)

where C is a constant .
The w-plane for the flow domain of Figure.3.1(a) is shown in Figure.3.1(c).
IfC=k( hz —dz + dg), then the velocity potential at down-stream bed ¢4 = 0, and

the velocity potential at up-étream bed ¢, = -kh

Figure .3.1(c) - plane

Mapping of the complex potential plane onto the t —plane is given by

o =M, [(t+B) (- t*°dt+N, | (3.3.9)

o o=MsSin| BB N | - (3.3.10)
1 ﬁ'f‘}l 1

15



where My and N4 are complex constants.

Applying the conditions at the pomts A Gino -plane and t plane the._
constants M4, Ny is computed as under: '
i. At point G (0=0,t=p)
Substituting  and t in the Eg. (3.3.10) we have:
0 = M,Sin 1(-2—“M) PN,

B+np |
=M,Sin'(1 O)+N

=M, —+N
12
or N =-MZE
‘ 1 12 |
ii. Atpoint A _ (o=-kh, t=-B )

Substituting ® and t in Eq. (3.3.10) we have:

—kh = M,Sin 4’(‘?‘3 +B“P)_M112‘-

B+p
=M, Z-MZ
2 12
or M, =X (3.3.11)
. TI:‘ ‘ 4 .'
and N1=—% - o (3.3.12)

Putting the value of M1 and Ny in Eq. (3.3.10) we have;

0_)‘:- ﬁ8|n'1(_—_2t +B HJ —~ @_ : ' i | (331 3)
s B+p 2

The Eq. (3.3.13) is the general equatlon which provides relation between
o-plane and t-plane. F_Qr boundary BCDEF, y = 0 and hence;
- o= ¢, so the Eq. (3.3.13) now becomes

o= Eﬂ{g Sin"(m],—1} : (3.3.14)
2 |\t B+p ) |

16



Now equating the value of ¢ from Eq. (3.3.8),we have;

“{L’* y) +k(h; - d; +ds)= %{3 Sin‘(z%B_—”jJ}

Vw T +H
which yields, :
hi|2 .. 4(2t+B—pn
=y .|h,-d, +d, —y——<=Sin™"| /———= |-1 - (3.3.15
p AYW[ 2 2 3~y 2{71: ( B+p j }jl ( )

| 3.4 The Pressure Distribution

Eq. (3.3.15) is the general equation for seepage pressure under the floor.
" To find the pressure at various points below the floor, the ordinate of ‘y’ from z-
plane and the corresponding ‘t' from t-plane has to be entered in Eq. (3.3.15):

i. Atpoint A (y=dy, t=-3)

Pa = 7uhs | (3.3.16)
ii. AtpointB (y=0,t=)
P, = Yw{hz _d,+d, _E{E Sin—(ﬂ]_ﬂ (3.3.17)
2|n B+p .
iii. AtpointC . (y=0,t=-1)
- .
' h|2. 4B-p-2
P.=y,|h,—d, +d, ——<=Sin”| =—2—= | -1 3.
c=Y _2 2t U3 Z{R [ B+p j H (?’318)
iv. At point C (y=-(da+s),t=m) ‘
!— .
h|2. 4B-u-2
Py=7v,/h, +d; +s—-—{ZSin”| —— = | -1 3.
p=7 _2 3 2{n ( B+p J }:’ (3.3.19)
v. At point E (y=-da, t=1)
F _
P, =y, h2+d3_ﬁ{28in_1(m)_ﬂ (3.3.20)
el U )]
vi. At point F (y=-dat=2)
, h ~
2|n B+p

17



vii. At point G (y=-(d2—d3), t=p)

3.5

3.6

Pg = yw h2 ~ (3.3.22)

The Exit Gradient

- The exit gradient ( Harr 1962) can be expressed as:

bt Qﬂ_di)
£kl dt dz

Using Egs. (3.3.1),(3.3.2) and (3.3.13) in the above equation we have;

le

_hl1{ JETT) }
s | (t-m W+ y ) t-2)

Maximum exit gradient occurs at ‘G’, where t = y;

| hi, { Vit - 1) } (3.3.23)

" s | (w-m)J{+ v)E-A)

Results and Discussions

Numerical results for préssure distribution and exit gradient are obtained

for the following structures:

i.
i.
il

iv.

flat based weir with a sheet-pile resting on the surface
stepped weir with a sheet-pile at the step resting on the surface
depressed weir with a sheet-pile ‘

depressed-stepped weir with a sheet-pile at the step

Case iv being the general one, the results for other cases can be obtained

by manipulating the structure parameters appearing in the solution of case iv.

The results of case | and case |l obtained using the present method are

compared with the analytical solution that have been given by Khosla.et.al.

18



The comparison is given in Table3.1.(a) énd Table3.1.(b) and shown
graphically in Figs.3.6.(a) to Fig: 3.6.(e). Tho prosent humorical method is free
frdm error. The Newton—Raphson method therefore can be used convéniently in
solving the non-linear equations appearing in conformal mapping technique,
which involves more than three variables. |

The cbrréctidn suggested by Khosla.et.al for accounting depression is
checked for its accuracy by comparing the pressure at key 'points' computed by
the present method with those obtained uéing the method given by Khosla.et.al.
The comparison is . given in Table3.2.(a) through Table3.2.(b) and shown
graphically in Figs.3.7 (a) through Fig: 3.7(d). The pressure distribution obtained
by the approximate method suggested by Khosla.et.al differs by 5.5% -8.4% from
- the results obtained by preseht rigoroUs method for the ratio, depth of depression |
to total base width of weir (d/b) =0.125 a'nd s/b=0.5 for flat based depressed weir.
For depressed stepped weir the deviation is of the order of 3.8% -34.5% in the
down stream side of the sheet-pile and-2.8% - 3.9% in upstream side for the ratio
d/by= 0.25 and s/b; = 1.0 and d/b=0.125 to 1.0.

The variation of exit grédient has been shown in Figure 3.6(f). The
" variation of maximum exit gradient with the ratio, depth of depression to base
width of weir (d/b) varies rapidly with the decrease in the ratio of d/b. '

Khosla's approximate method predicts higher value of pressure
distribution for points down streamside and Tower value for upstream side of

sheet-pile or step as compared to the present method.

dedekodekokdkokkkk
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8pcliy,h) in %

Case:1 (A) : Excess Hydrostatic Pressure at point C for Flat based Weir
‘ with a Sheet-pile without Depression

0.2 03 04 05 06 0.7 0.8 0.9

b1/b
l" = = Asper Khosla ———— Present SolutionJ

Figure: 3.6(a)

dpe/(yoh) in %
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35 .-
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Case-1 (A) : Excess Hydrostatic Pressure at point E for Flat Based
Weir with a Sheet-pile without Depression

0.20 0.30 0.40 0.50 0.60 0.70 0.80

b1/b

= = = Asper Khosia =——=—Present Solution

- Figure: 3.6.(b)
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* Case-lll (A) : Excess Hydrostatic Pressure at point C for Stepbed Weir
with a Sheet-pile without Depression

3po/(y,h) in %

81 .
]
80 . - e _l..u._.m,_.“ - i R § !
2 80 fooren P,\ ! i :
.E 79 b -‘: o= 0 a-d-a-n prwal s : é «i
379_ . N IEOEOOCOO0T , : —
E R 5 R b s/ =1.0
< 781 ' LT dy/by =025
a ! |
77 | b '; ; ~» —.
e TR
76 ’ ‘ . ‘ . '. , : .
000 020 040 060 080 100 120 140 160 180 200
b,/b,
L— - = = = 'As per Khosla =—————Present Solution I
Figure: 3.6(c)
Case-lll (A) : Excess Hydrostatic Pressure at point D for Stepped
Weir with a Sheet-pile without Depression
50 .

|sby=1.0
d1/b2 =0.25
d1=d3=0.0
0.40 0.60 0.80 1.00
b,/b, A
t- = = = As per Khosla ———— Present Solution

Figure: 3.6(d) |
Page:i24




Case-lll (A) : Excess Hydrostatic Pressure at point E for Stepped Weir
with a Sheet-pile without Depression
25 f
;
|
|
20 11
2
£ 15
=
2
= 10 s/b1=1.0
2 d1/b2 =4.0
d1=d3=0.0
5
0 ’. o e - —— —-—
0.00 0.20 0.40 0.60 0.80 1.00
b,/b,
= = = AsperKhosla Present Solution

Figure: 3.6(e)

Exit Gradient
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exit gradient I
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-
(> INe)]
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d/b

$/b=0.5 =emmm=———s/b=0.5 = = = s/b=0.175

Figure: 3.6(f)
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Case:1 (B) : Excess Hydrostatic Pressure at point C for Depressed Flat
based Weir with a Sheet-pile

100 : !
090 £« .- :
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_E 80 ¥ e
= 70
&
& ’ sib=0.5 | , ;
SR ERCLECEC] S | T
40 ; i ,
0.00 0.20 0.40 0.60 0.80 1.00
o bi/b '
l- - - -.- ‘Ag per Khosla =—————Present Soln.
Figure: 3.7(a)
Case:1 (B) : Excess Hydrostatic Pressure at point E for Depressed
Flat based Weir with a Sheet-pile '
50 I , .
45 | R .. 1 ; f . —
' { - V.
® 35 2 L |db=0125""
.E 30 E | T e
£ 25 L
2 1 .
S 20 1
2 154
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0.00 020 0.40 0.60 - 0.80 ' 1.00
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I ----- As per Khosla ———— Present SoIn.J |

Figure: 3.7(b)
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3pcl(y,h) in %

Case-lll (B) : Excess Hydrostatic Pressure at point C for Depressed-
Stepped Weir with a Sheet-pile.
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- - - As per Khosla ——— Present Solution |

Figure: 3.7(c)

5pelly,h) in %

Case-lll (B) : E*cess Hydrostatic Pressure at point E for Depressed-
Stepped Weir with a Sheet-pile.
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Figure: 3.7(d)
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Conclusion

An analytical solution using Scwarz-christoffel conformal mapping
technique has been obtained for computing uplift pressure at key points for a
depressed stepped weir with a sheet pile at the step. From the general solution
result for stepped weir without depression can be obtained. It is found that the
solution of non-linear equations relating the parameters of transformation and the
dimensions of the structure can be determined applying Newton-Raphson
technique.

Thevpressure computed at salient points using the Scwarz-Christoffel
~ transformation and Newton-Raphson technique compares well that of Khosla's
solution for a stepped weir without depression. |

Khosla's épproximate method underestimates the pressure on the
upstream side and over estimates on the downstream side. Therefore Khosla's
solution can be applied safely. The deviation from true value in Khosla's method
on the upstream side varies from 2.8% to 3.9% and in the downstream side it
varies from 3.8% to 34.5% for d/b ranging from 0.083 to 0.25.

Depression should not be neglected. The difference in result for without.
depression and with depression varies from 3.5% to 5.25% for d/b changing from
0.083 to 0.25 and the difference is on the positive side i.e. with depression the
pressure is lower than that without depression. In the down stream side the
difference in pressure at the step without and with depression varies from 6.5%
to 100% for d/b changing from 0.125 to 0.25.

The depressed part of hydraulic structure functions as a downstream
sheet pile, which reduces the exit gradient. The variation of maximum exit
gradient with the ratio d/b (Fig:3.6(f)) shows that exit gradient varies rapidly with
the decrease in d/b. From table 3.4 it is seen that, a depressed floor of 0.5m thick
along with 1.4m deep sheet pile can replace a 4.0m deep sheet pile. This gives
the idea of the contribution of depressed floor on exit gradient.

Using the present solution a software is written in FORTRAN, which can
be used in the computation of uplift pressure directly and can be further
developed as per the requirement..

28



REFERENCES:

1.

Khosla.R.B.A.N, Bose.N.K, Taylor.E.McK, "Design of Weirs on Permeable
Foundations.” CBIP, India, publication No.12. (1962).
William.H.P, William.T.V, Saul.A.T, Brain.C.F., "Numerical Recipes in
Fortran,The Art of Scientific Computing”, Cambridge University Press
(1993).,pp-372. ‘ :

3. Harr.M.E.,"Ground Water and. Seepage.” McGraw-Hill Book Company (1962).

4. Garg.N.K, Bhagat.S.K, Asthana.B.N, “Optimal Barrage Design based on

Subsurface Flow Considerations”., Journal of Irrigation and drainage
Engineering, ASCE(July/Aug.2002).pp-253.

Polubarinova-Kochina.P.Ya, “Theory of Ground Watef Movement”,
Princeton University Press (1962). pp (93-1 05).

Leliavsky.S, "lrrigation & Hydraulic Design®, Vol.l, Chapman & Hall Lid,
London (1959). pp-90.

Byrd.PauI.'F, Friedman.Morris.D, "Hand Book of Elliptic Integrals for

‘Engineers and Scientists.” Spriger-Verlag, Newyork (1971).

Bowman.F, “Introduction to Elliptic Functions”., English University Press.
London (1953).

Rk ok dedkekkk

30



Appendix - |

General

Most of the analytical method for the solution of two-dimensional
groundwater problems is concerned with the determination of a function, which
will transform a problem from a geometrical domain within which a solution is
sought for into the one within which the solution is known. This chapter deals with
- the study of elementary f_unctions' and the manner in which these functions
transform geometric figures from one complex plane to another.

Conformal Mapping technique is a powerful tool for solving two-
~dimensional Léplace equations. The method is used for solving the problems of

flow under hydraulic structures.
Conformal Mapping Technique

It is generally known that for a weir with flat base and resting on the
surface of ground, the streamlines or lines of flow are confocal ellipses with their

focci at ‘O"as shown in.the Figure: A.1. The equation to these ellipses are given

2 2
by : X + y =1

2 2
(b—cosh u) (P—sinh u )
2 2

where u is streamline function.

Consider the physical domain in the Z-plane (Figure: A.2). When a
verticaliobstruction- like a sheet pile or the stepped depression is introduced, the .
configurations of the streamlines or the flow lines are distorted. |

By applying the Scwartz-Christoffel transformation technique, the
distortion can be brpught back to normal configuration. The streamlines that will

be formed after the transformation are smooth ellipses with confocal points.
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Figure: A1 Streamlines for flat base weirs on surface.

~ Assuming the physical domain to be on the Z-plane whe‘re any point on

thls is given by the relation Z = x + iy, the transformed plane is known as t-plane
- where any point on this is described by { =& +in.
- In this process; the physical flow domains in z -plane as well as the
; cor"np!ex‘ potential domain o are trénsformed onto a common platform known as
the aUiniary t-plane from which a direct rélaﬁdn betwéen z-plane ahd wo-plane
are obtained. As such the flow region in the z-plane is first mapped onto the
lower -half of an auxiliary t-p-)I'ane. Then the complex potential pléné is also
mapped onto the lower half of the t-plane. From these two conformal mappings,
the relationship between z and w is obtained.
This transformation s given by the relation:
_ , : dat .

G o o o o e e

where A7, Agm , AaTt, A4, AsTt, AT, A7m are the changes in the angles

at vertices at A ,B,C,D,E,F,G in the positive sense ‘and.ou, o2, O3, Ol4 ,0l5, Olg, OL7
are the ordinates at the points A, B, C, D, E,F, G in the t— plane on which the
;;i;ints A B,C,D,E,F,G of the Z - plane are mapped.
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As seen (Figure.A.2) on Z — plane, the angles of turning at A, B, C, D, E, F,'G.

are — = z ) z ,— T, T ,— T , T respectively so that;
2 2 -2 2 2 2 , -
T 1
A= — or. Ay =—
1 > 13
n 1
At =—— or A, = ——
2T 5 2 5
A==  or A= I and S0 on.
.2 2

The origin in the figure in Z —plane is at C, which has been chosen at a pomt
- midway between CE in t — plane
Now assuming  a4=-f ‘ ,.oc2= Y 3= -1 | ,04= M
os5= +1 , 0lg= A LO7=H
| the equation of transformation reduces to ;
Z=M[- ‘ S N 4N

(t+ B)% (t+ 'y)‘% (t+ 1_)% (m-t)"(1- t)% (A - t)‘%(u - t)%

(n - OVTT TN -
°V I T mv +NO

T_he equatio_n_above is the general equation for relation between Z-plane

and t-plane obtained by Scwartz-ChristoffeI transformation technique for the
physical domain shown in Figure.A.2 '

Similarly by applylng the same transformatlon technique the relation
between o - plane and t - plane can be obtained as explained in Chapter 3

(Figure .3.1(c)). The equation is read as: |
o o= M1.Sin"(2t;ﬁ)+ N, S 3) .

By ‘equating equations (2) and (3) the parameter ‘t' can be eliminated and

direct relation between Z — plane and o— plane can be obtained.
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Fibure .A.3 : Physical Domain Mapped on t-plane
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Appendix -1l

General

Often mappung steps result in a set of non-linear equations, which reqwre |

’a surtable technique to compute the unknown parameters The implicit nature of -

the non-linear equations restricts the range of its applicability. In this appendix a- ’

ethodology for solvmg a set of highly non-linear equatlons is described which

“can be used for sotvrng two- dlmenSIonat flow problems in a complex domain WIth

.a great accuracy. The method described here is an iterative type popularly
known as "_Newten-Raphson Method for Nen-linea_r sy'st'ems of Equations‘".

'Newton-R-aphson Method

| Chapter- 4 reveals that the problem consists of highly non-linear objeétive
functions involving multivariable, which makes it difficult to solve by analytlcally

The process of numerlcal application i is explalned below:

The non-linear equations from (3.3. 2) to (3.3.7) as in chapter- 3 are -
- represented by: 'Fi (X1, Xg,......;...Xn) 0. 'wnere i =1,2,3,......n constitute
the variables Xi, Xayeoinroren X - | ' h

Let ‘X' denote the entire vector of values x; and F den.otetthe entire
vector of functions F; . In the nelghbourhood of X ,each of the functions F, can

be expanded in Taylor series.

DR & OF, .
F(X + 8x) = F(X) + _ E(—'—ij + 08x?
. - j=1 ]
In' matrix notation, the above equation can be written as:
F,(X+6x) F(X)+J Ax, +06x '

Now neglectmg the terms of the order 5x° and hlgher and settlng
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Fi( X+8x)=0,
we have ! J.Ax =- F(X) is an equatlon of matrix of a set of non- llnear equations.
This matrix equatlon can be solved by LU decomposutton and corrections

. are then added to the solution vector as Xnew = Xoig + AX

. where J is known as the Jacobian matrix and is represented as:

[ 9F, oF, oF,
axl ' 8X2. | axn
| oF,
J = ax,
oF . oF,
KAY dX .
where
oF, - Fl(x],xz, X, + Ah, ..., Xn) - Fl(xl b S X oo Xn)
ox. N Ah

and Ax =-FJ]"
or Xi - Xi +AX| .

This X represents the varlables in the non- Imear equations.

Wtk hkkk
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Appendix Il

FORTRAN PROGRAM
*jk***ki*******:k******;***t**‘******;**************‘**;***’********‘****i"**i{*i:*v

| This PROGRAM is a part of the M.Tech thesis for WRDTGC,1.I.T.Roorkee,
! developed by B.Shyam Sundar Patro,M.Tech,WRD(civil)2002.

"1 This source code is only intended as a supplement to the thesis

| See these sources for detailed mformatlon regardlng the |nput flles
I and dependencies.

l**************************************************t***ﬁ*******************

]
]

S
I "Analysis of seepage under a stepped depressed weir with a sheet pile" !
]
]

|B1 BASE1,B2=BASE2,D1=DEPTHH1, D2 DEPTH2, D3 DEPTH3S PILEDEPTH
PROGRAM WEIRP - )
- DIMENSION WW(96), XX(96)

OPEN (Unlt-1 flle-'WEIRP dat' ,STATUS='old")
OPEN (Unit=2file="WEIRP.out,STATUS= "Unknown')
OPEN (Unit=3,file="GAUSS.dat',STATUS="old") -

READ (3,%) (WW(I),I=1,96)
READ (3.%) (XX(1),I=1,96) :
READ (1,°) B1,82,01,02,03,8 H1,H2

WRITE(2,")PROGRAM RESULT FOR UPLIFT PRESSURE'
WRlTE( *)l****ﬁ***iﬁ*******************i*t***i*******‘k*ti*******l )
5 FORMAT(8F7 2) :
©UWRITE@2,Y) B2 D1 D2 D3 S H1 H2'
WRITE(2,5)B1, BZ D1,02,03,8,H1,H2

WRITE(2 )l*********************************i********************l

6 FORMAT(SF? 3)

‘INDEX~1Ji],,i i S
B=B1+B2. SN

SM0= 0.1

GAMAO0=1.1+b1/b

BETAO= GAMAO+01

CLMDAO0=1.1+b2/b oY
CMUO CLMDAO+O1

10 CONTINUE ‘
- . WRITE(2 *) BETAO GAMAO SMO CLMDAO CMUO B1 B2 B1/B'
WRITE(2 6)BETAO GAMAD,SMO, CLMDAO,CMUO,B1,B2,(B1/B) -

CALL MAIN(WW;XX.BETAO,GAMAO,SMO,CLMDAO.CMUO.
Res1,Res?,Res3,Res4,Res5,Res6,81,82,01,02,03,S,
FAFB,EC,FD,FE,FF1,FF2,FF3,FF4,FF5,

DBETAO DGAMAO DELSMO DLMDAO DELMUO)

WRN =
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' ante(2 *Yvalue of Res1=',res1

. * li****ttt*t*'**i*ttﬁ*t*************i****l
write(2,*) *

CALL PHI(D1, D2 D3 H1,H2, S : ' o
1 BETAO GAMAO,SM0,CLMDAO, CMUO PC, PD PE PF)

WRITE@2*) PC PD PE PF
WRITE(2,Y) -
WRITE(2,36)PC,PD,PE,PF -

36 FORMAT(7F8.2) :

WRITEQ2 -
WR'TE(Z )u********t* END OF RESULT *********i*l

STOP
END PROGRAM WEIRP

. ************************************************************

I SUBROUTINE MAIN (Solutlon of Jacobian Matnx)
SUBROUTINE MAIN(WW XX,BETA0,GAMAQ,SMO, CLMDAO CMUO,
1 Res1,Res2,Res3,Res4,Res5,Res6,81,82,01,02,03,S, . :
2 FAFB,FC,FD,FE,FF1,FF2,FF3,FF4,FF5,.
3 DBETAO DGAMAO,DELSMO0,DLMDAGQ, DELMUO)
"~ DIMENSION WW/(96),XX(96)
DIMENSION AA(5 5), CC(5) '

EPSILON 0. 00001

5 N FORMAT(5F8 5)
10 CONTINUE ]
CALL BX(WW, XX,BETAO, GAMAO SMO0,CLMDAO CMUO,
1 Res1,Res2,Res3,Res4,Res5,Res6,81,82,01,02,D3,S,
2 FAFB,FC, FD,FE,FF1,FF2,FF3, FF4,FF5)
CC(1)—-FF1
CC(2)=-FF2
CC(3)=-FF3
CC(4)=-FF4
CC(5)=-FF5

C ’ R T e Y

DBETA=EPSILON
DGAMA=EPSILON
DELSM=EPSILON
DLMDA=EPSILON
DELMU=EPSILON

C Fek K dekkdkkdokk

BETA1= BETAO+DBETA

CALL BX(WW ,XX,BETA1,GAMAQ,SM0,CLMDAO, CMUO
1 * Res1,Res2,Res3, Res4 Resb5,Res6,B1,B2,01,02,D3,S,
2 FAFB,FC,FD,FE,FF11, FF22 FF33,FF44 FF55)

AA(1 1)= (FF11 FF1)/DBETA
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AA(2,1)=(FF22-FF2)/DBETA
AA(3,1)=(FF33-FF3)/DBETA
AA(4,1)=(FF44-FF4)/DBETA
AA(5,1)=(FF55-FF5)/DBETA

GAMA1=GAMAO+DGAMA

CALL BX(WW XX,BETA0,GAMA1,SM0,CLMDA0,CMUO,
Res1,Res2,Res3,Res4,Res5,Res6,81,82,01,02,03,S,
FA,FB,FC,FD,FE,FF11,FF22,FF33,FF44,FF55)

AA(1,2)=(FF11-FF1)/DGAMA
AA(2,2)=(FF22-FF2)/DGAMA
AA(3,2)=(FF33-FF3)/DGAMA
AA(4,2)=(FF44-FF4)/DGAMA
AA(5,2)=(FF55-FF5)/DGAMA

SM1=SMO0+DELSM

CALL BX(WW.,XX,BETA0,GAMAO,SM1,CLMDA0,CMUO,
Res1,Res2,Res3,Res4,Res5,Res6,81,82,01,02,D03,S,
FAFB,FC,FD,FE,FF11,FF22,FF33,FF44,FF55)

AA(1,3)=(FF11-FF1)/DELSM
AA(2,3)=(FF22-FF2)/DELSM
AA(3,3)=(FF33-FF3)/DELSM
AA(4,3)=(FF44-FF4)/DELSM
AA(5,3)=(FF55-FF5)/DELSM
CLMDA1=CLMDAO0+DLMDA

CALL BX(WW XX,BETA0,GAMAO,SM0,CLMDA1,CMUO,
Res1,Res2,Res3,Res4,Res5,Res6,81,82,01,02,D3,S,
FA,FB,FC,FD,FE,FF11,FF22,FF33,FF44 FF55)

AA(1,4)=(FF11-FF1)/DLMDA
AA(2,4)=(FF22-FF2)/DLMDA
AA(3,4)=(FF33-FF3)/DLMDA
AA(4,4)=(FF44-FF4)/DLMDA
AA(5,4)=(FF55-FF5)/DLMDA

CMU1=CMUO+DELMU

CALL BX(WW XX,BETA0,GAMA0O,SM0,CLMDAO,CMU1,
Res1,Res2,Res3,Res4,Res5,Res6,81,82,01,02,D03,S,
FA,FB,FC,FD,FE,FF11,FF22,FF33,FF44,FF55)

AA(1,5)=(FF11-FF1)/DELMU

AA(2,5)=(FF22-FF2)/DELMU

AA(3,5)=(FF33-FF3)/DELMU I
)

AA(4.5)=(FF44-FF4)/DELMU SNTRAL LiBg s
" AA(5.5)=(FF55-FF5)/DELMU C/.-"/\‘\\_ﬁ\
ek e e ek e e e e e ok e ek e e ok ok l ¢ .i\\ : .‘._
MM=5 \ {\ TR Bt
CALL MATRIXIN(AA,MM) i
e e e e e e e e e e e e e ke ke e ek ek ek ok \"[-.7‘. E‘O—()*‘;kky
SUM=0 o, SRR
DO J=1,5

SUM=SUM+AA(1,J)*CC(J)
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20

30

ENDDO
DBETAQ=SUM

SUM=0
DOJ=15 . =~

SUM=SUM+AA(2, yrecw) : :
ENDDO '
DGAMAO=SUM

SUM=0
DO J=1,5 .
SUM=SUM+AA(3, J)*CC(J)
ENDDO

DELSM0=SUM

SUM=0

DO J=16
SUM=SUM+AA(4, J)*CC(J)
ENDDO .

DLMDA0=SUM

SUM=0
DO J=1,5
SUM=SUM+AA(S, J)*CC(J)
ENDDO .
DELMUO=SUM
BETAO=DBETAO+BETA0
GAMAO=DGAMAO+GAMAQ
SMO=DELSMO0+SM0
CLMDAO=DLMDAO+CLMDAOQ
CMUO=DELMUO+CMUO
INDEX=INDEX+1
IF(INDEX.GT.10)GOTO 20

IF(ABS(DBETAQ).GT.0. 000001)GOTO 10.
IF(ABS(DGAMAO).GT.0.000001)GOTO 10
IF(ABS(DELSMO0).GT.0.000001)GOTO 10
IF(ABS(DLMDAD).GT.0.000001)GOTO 10
IF(ABS(DELMUO).GT.0. 000001)GOTO 10

- GOTO 30

CONTINUE

WRITE(2,*)ITERATION HAS FAILED'
"GOTO 40 :

CONTINUE

WRITE(2,*) : ‘ _

WRITE(2 *)NUMBER OF ITERATIONS “INDEX

WRITE(2,*) '

WRITE(2,*)’VALUES OF THE FUNCTIONS AFTER ITERATIONS'
WRITE(2,*) '

write(2,5)cc(1),cc(2),cc(3),cc(4),cc(5)

WR|TE(2 *)I*********************************t*****l

WRITE(2,")" BETA GAMA SM CLMDA CMU"
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WRITE(2 5)BETA0,GAMAO,SM0,CLMDAO,CMUO.

WRITE(2 *)l************i**************************l

40 CONTINUE

RETURN
END

Fehddkdehhh kR A Ak AR Akhhkkhk Ak Ahh ik kkkAhhdkdkkkkhhhhikhhrhhihkikhkk

! SUBROUTINE MATRIXINV (LU decomposition)

KEAKKKKKRRAARRKRKAAIARRAARRAAAKRRAKARARRRA KR KRR AR A A RN AR ARAKAKN

SUBROUTINE MATRIXIN(AA,MM)
DIMENSION AA(5,5),8(5),C(5)

NN=MM-1
AA(1,1)=1JAA(1,1)
DO 8 M=1,NN
K=M+1
DO 31=1M
B(1)=0.0
DO 3 J=1,M
3 B()=B(1)+AA(1,J)*AAJK)
D=0.0
DO 4 I=1,M
4 D=D+AA(K,1)*B(])
D=-D+AA(K K).
" AA(KK,K)=1./D
DO 51=1,M
5 AA(LK)=-B(I)*AA(K,K)
DO 6 J=1,M
C(J)=0.0
DO 6 I=1,M
6 C(J)=C(J)+AAK,)*AA(l,J)
DO 7 J=1,M
7 AA(K,J)=-C(J)*AA(K,K)
DO 8 1=1,M
DO 8 J=1,M
8 AA(LJ)=AA®J)-B()*AAK,J)

. RETURN
- END

*******************i************itﬁi**i*******i***ii***i**

! SUBROUTINE PRESSURE (Calculates Upilift pressure)

**i***************************************************i***

SUBROUTINE PHI(D1,D2,D3,H1,H2,S,

1 BETAO,GAMAO,SM0,CLMDAO,CMUO,PC,PD,PE, PF)
PI=3.141592654

H=H1+D1+D2-D3-H2

TERM2=ASIN((BETAO-CMUO-2. )/(BETAO+CMUO)) (2./P1)
TERM22=(H*0.5*(TERM2-1.))
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PC= H2 D2+D3-TERM22*100 /H

TERM3=ASIN(((2. 0*SMO)+BETAO CMUO)/(BETAO+CMUO)) @/Pl)
TERM33=(H*0.5*(TERM3-1.)) . |
PD=-4.98+H2+D3+S-TERM33*100.H .

‘ TERM4-ASIN((BETAO CMUO+2 )/(BETAO+CMUO))*(2 /PI)
TERM44=(H*0.5*(TERM4-1.)) -
- PE=H2+D3-1.-TERM44*100.H

‘TERMS-ASIN((BETAO-CMUO+(2 0*CLMDAO))/(BETAO+CMUO)) 2./P1)
 TERM55=(H*0.5*TERM5-1.)) - | .
‘ PF-H2+D3-TERM55*100 H

_ RETURN
“END
o SUBROUTINE BX (Grouplng of Subroutines) -
SUBROUTINE BX(WW XX, BETAO GAMAO,SMO, CLMDAO CMUO,

1 Res1Res2Res3,Res4,Res5Res6,81,82,01,02,03,,
2 . FAFB,FC/FD,FEFF1,FF2,FF3,FF4, FF5)

CALL Fx1(WW, XX BETAO GAMADQ, SMO CLMDAO CMUO Res1)
CALL Fx2(WW ,XX,BETA0,GAMA0,SM0,CLMDAO,CMUO,Res2)
CALL Fx3(WW XX,BETA0Q,GAMA0,SM0,CLMDAO,CMUO,Res3)
‘CALL Fx4(WW ,XX,BETA0,GAMAQ,SMO0,CLMDAO,CMUO,Res4)
CALL Fx5(WW, XX,BETA0,GAMAO,SM0,CLMDAO,CMUO,Res5)
CALL Fx6(WW XX, BETAO GAMAO SMO, CLMDAO CMUO ResG)

‘ FA—RES2/RES1-"- R
‘FB=RES3/RES1 .. - -
FC=RES4/RES1 - .
FD=RES5/RES1
FE=RES6/RES1 -

FF12(B2/S)-FA
FF2=(D3/S)}-FB -
FF3=((D2+S)/S)-FC
FF4=(B1/S)}-FD.
-~ FF5%(D1/S)-FE

RETURN;
. END ..

1 SUBROUTINE Fx1 - .
SUBROUTINE Fx1(WW,XX, BETAO GAMAO,SMO, CLMDAO CMUO,Res 1)
DIMENSION WW(96) XX(96) |

- SUM=0
‘DO I=1,96
U XX(I) . -
V=(U+1.)4(SQRT(1 -SMO))/2
FIN=(1- V2 SMO)*SQRT(( V**2+GAMAO)*(CLMDAO 1+v**2))
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F1D=SQRT((1-V**2+BETAQ)*(2-V**2)*(CMUO- A+V*2)
F1=FIN/F1D -

SUM=SUM+WW(I)*F1

ENDDO .

Res1=SUM*SQRT(1.-SM0)

RETURN
END.

SUBROUTINE Fx2
SUBROUTINE Fx2(WW XX BETAO0,GAMA0,SM0,CLMDAQ,CMUO ,Res2)
DIMENSION WW(96),XX(96)

SUM=0
DO 1=1,96
U=xX()
V=(U+1.)*(SQRT(CLMDAO-1.))/2. -
F2N=(1+V**2-SMO)*SQRT((1+V**2+GAMAO)*(CLMDAO-1-V**2))
F2D= SQRT((1+V”’2+BETAO)"(2+V**2)*(CMUO-1 v**z))
F2=F2N/F2D.
SUM=SUM+WW(I)*F2
ENDDO
Res2=SUM*SQRT(CLMDAO-1.)

RETURN
END

SUBROUTINE Fx3
SUBROUTINE Fx3(WW XX,BETAO,GAMAO,SM0,CLMDAD, CMUO |Res3)
DIMENSION WW/(96),XX(96)

SUM=0
DO I=1,96
U=XxX(1)
V=(U+1.)*(SQRT(CMUO-CLMDAO))*(0.5)
F3N=(CMUO-V**2:SM0)*SQRT((CMUO-V**2+ GAMAO)*(CMUO-V**2-CLMDAO))
F3D=SQRT((CMUO-V**2+BETA0)*(1+CMUQ-V**2)*(CMUO-V**2-1))
F3=F3N/F3D | |
SUM=SUM+WW(I)*F3
ENDDO
Res3=SUM*SQRT(CMUO-CLMDAO)

RETURN
END

SUBROUTINE Fx4
SUBROUTINE Fx4(WW XX,BETAO,GAMAO,SMO, CLMDAO CMUO ,Res4)
DIMENSION WW(96) XX(96)

SUM=0
DO 1=1,96
U=XX(1)
V=(U+1.)*(SQRT(1.+SMO))/2. |
FAN=(SMO+1-V**2)*SQRT((V**2-1+GAMAOQ)*(CLMDAO+1-V**2))
FAD=SQRT((V**2-1+BETAQ)*(2-V**2)(CMUO-V**2+1))
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F4=F4N/F4AD
SUM=SUM+WW(I)*F4
ENDDO © . _
Res4=SUM*SQRT(1.+SM0) -

RETURN
END

! SUBROUTINE Fx5
SUBROUTINE Fx5(WW XX, BETAO GAMAQ,SM0,CLMDAO0,CMUQ ,Res5)

* DIMENSION WW(96),XX(96)

SUM=0
DO 1=1,96
U=XX())

V=(U+1.)(SQRT(GAMAO-1.))/2.
FEN=(1+V**2+SM0)*SQRT((GAMAQ-1-V**2)*(1+V**2+CLMDAO))
F5D=SQRT((BETA0-1- V**2)*(2+V**2)*(CMUO+1+V**2))
F5=F5N/F5D -

SUM=SUM+WW(I)*F5
ENDDO
Res5=SUM*SQRT(GAMAO-1.)

RETURN
END

! SUBROUTINE Fx6
SUBROUTINE Fx6(WW,XX,BETA0,GAMAO,SM0,CLMDA0,CMUO ,Res6)
DIMENSION WW(96),XX(96)

SUM=0 '
DO 1=1,96
U=XX(1)
V=(U+1.)SQRT(BETAO- GAMAO)) (0.5)

- F6N=(SMO+BETA0:V**2)*SQRT((BETAO-V**2-GAMAQ)*(CLMDAO+BETAQ-V**2))
F6D=SQRT((BETA0-V**2-1)*(BETAQ-V**2+1)*(CMUO+BETA0-V*2))
F6=F6N/F6D /
SUM=SUM+WW(I)*F6
ENDDO
Res6=SUM*SQRT(BETA0-GAMAO)

RETURN
END

Fe 3k o o & gk ok e ok e ek A ok
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Data E
*m..,,.,? "y Procedures: ( weir parameters to be ente

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ red as per below)
s h1  h2

ARAREAAARARARIA AR AR AAA AR ARR R AR AR khhhhhhdhkhik

Sample Result Output:

PROGRAM RESULT FOR UPLIFT PRESSURE
Wi R dr R d e dededede Ak R de i drdrde R A dede e R i de g R drdede dedrd drdede ke drde e e
B1 B2 D1 D2 D3 S H1 H2
200 6.00 .04 .00 .04 4.00 3.00 1.00

Y Y 2232322222222 2222 2222222 £ 22222222ttt sl issd

BETA0 GAMAO SMOCLMDAO CMUO B1 B2 B1/B
1.450 1.350 .100 1.850 1.950 2.000 6.000 .250

NUMBER OF ITERATIONS= 6
VALUES OF THE FUNCTIONS AFTER ITERATIONS

.00000 .00000 .00000 .00000 .00000

iititttiiitt*iﬁt*ti*iiﬁﬁitt.**t*iﬂﬁ"ht

BETA GAMA SM CLMDA CMU
1.12739 1.12447 .00119 1.81432 1.81962

*t**tt****ﬁ**t****ﬁ**ﬁ**t*******ttt***t

value of Res1= 9.946941E-01
PC PD PE PF
87.71 57.58 3540 3.74

Ahkhkhhkhkhk END OF RESULT (2222222222
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Fedededed Ak d kA dedod Adede sk e e de e e At e de A de A o de ok e de e ek

Data Entry Procedures: { weir parameters to be entered as per below)

FARAAAKKARKARRTRTR IR KRR AR ARk ok dedr e ek ke ek dede kA hdeke

b1 b2 d1 d2 d3 s h1 h2

khkdeh gtk de Rk hh Ak kKol ki ik de ko ok doded sk deok ke ded deke

Sample Result Output:

PROGRAM RESULT FOR UPLIFT PRESSURE
Fede oo de vk dedede dede e dede de v e de e e e e e ke dededededede e dede e ek e ke kel ekl ook Aok
Bt B2 D1 D2 D3 S Ht H2
200 6.00 .04 .00 .04 4.00 3.00 1.00

Khkhkhkkkkkhhkhkhkkhhkhhkkkkhkhrhkkkkhhhhkhhdhkhhhkhhhhhkhkkkkhitd

BETA0O GAMAO SMOCLMDAO CMUO B1 B2 B1/B
1.450 1.350 .100 1.850 1.950 2.000 6.000 .250

NUMBER OF ITERATIONS= 6
VALUES OF THE FUNCTIONS AFTER ITERATIONS

.00000 .00000 .00000 .00000 .00000

RRKRHARR R HIIKIARAIKIIR ARk RRRATEER R

BETA GAMA SM CLMDA CMU
1.12739 1.12447 .00119 1.81432 1.81962

hkhhkhkkhhhkkkhhhkhkhkhkhkhkhkhhhhhhkhhkhhkhhkihk

value of Res1= 9.946941E-01

Je Je 3 % Fe de % dr de e v de e s e vk de e e v e v sk ok e o ok ke ok kR ok ok e ok
PC PD PE PF

87.71 57.58 3540 3.74

Jede & ek k& hedode ke END OF RESULT Kekkkddkdokdk ok
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