
APPLICATIONS OF MATERIAL REQUIREMENTS PLANNING
MODEL (MRP) IN WATER RESOURCES PROJECTS

A DISSERTATION

. Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
WATER RESOURCES DEVELOPMENT

c

NIIIAR KANTI MISHRA

 pro......... 	*
off

-a 	{7T j11

WATER RESOURCES DEVELOPMENT TRAINING CENTRE
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE.

ROORKEE -247 667 (INDIA)
February, 2003

CANDIDATE'S DECLARATION

I hereby certify that the work presented in this dissertation titled

"APPLICATIONS OF MATERIAL REQUIREMENTS PLANNING MODEL

(MRP) IN WATER RESOURCES PROJECTS" which is submitted in the partial

fulfillment of the requirements for the award of the degree of Master of Technology

in Water Resources Development (Mechanical), of Indian Institute of Technology,

Roorkee, is an authentic record of my own work carried out during the period from

July 20.02 to February 2003 under the supervision of Prof. Gopal Chauhan, WRDTC,

and Associate Prof. Dr. Pradeep Kumar, Department of Mechanical and Industrial

Engineering.

The matter embodied in this dissertation has not been submitted by me for

award of any other degree or diploma.

Dated: Y. o2. 2-66 3 	 NIHAR KANTI MISHRA

ROORKEE

This is to certify that the above statement made by the candidate is correct to

the best of our knowledge and belief.

Dr. PRADEEP KUMAR

Associate Professor,

Department of Mechanical

& Industrial Engineering,

Indian Institute of Technology,

ROORKEE — 247 667,

INDIA.

PROF. GOPAL CHAUHAN

Professor,

Water Resources Development

Training Centre,

Indian Institute of Technology,

ROORKEE — 247 667,

INDIA.

i

ACKNOWLEDGEMENTS

It is my great pleasure to express my profound gratitude to

Prof. Gopal Chauhan, Professor, Water Resources Development Training Centre,

and Dr. Pradeep Kumar, Associate Professor, Department of Mechanical and

Industrial Engineering, for their timely guidance, valuable suggestions, constant

encouragement, moral support, and painstaking supervision which were my guiding

forces in completing this dissertation successfully.

I am very much thankful to Prof. U. C. Chaube, Professor and Head, Water

Resources Development Training Centre, for providing me all sorts of help right

through my entire training period in Roorkee.

My sincere thanks and appreciation are also due to all other faculty members

of Water Resources Development Training Centre for their valuable teaching,

guidance, assistance, and encouragement during my entire study period in Roorkee.

The cooperation and help extended by all the staff members of Water

Resources Development Training Centre, my fellow trainee officers, and friends in

preparing and finishing this work is greatly acknowledged.

I am thankful to my parent department, "Department of Water Resources,

Government of Orissa" for sponsoring me to this course in WRDTC. My sincere

thanks also go specifically to Sri B. K. Pattanaik, IAS, Commissioner-Cum-Secretary,

DOWR, Government of Orissa, and Er. B. B. Singhsamant, Engineer-in-Chief,

DOWR, Government of Orissa in this regard.

I am deeply indebted to my father Late Prof. Nrusingh Charan Misra,
mother Smt. Sarat Kumari Mishra, for their whole-hearted sacrifice, amazing

tolerance, blessings, and good wishes in successful completion of this work.

Finally, I would like to sincerely thank my wife Reena and daughter Avipsa,

for their love, sacrifice, and support in bringing out this work.

NIHAR KANTI MISHRA

CONTENTS
Page

CANDIDATE'S DECLARATION (i)

ACKNOWLEDGEMENTS (ii)
CONTENTS (iii)
ABBREVIATIONS (vi)

LIST OF FIGURES (vii)

LIST OF FORMS (viii)

LIST OF TABLES (ix)

SYNOPSIS (x)

CHAPTER 1 INTRODUCTION
1.1 MATERIALS MANAGEMENT 1

1.1.1 Materials for Water 3

Resources Projects

1.2.MATERIAL REQUIREMENTS 4

PLANNING MODEL

1.2.1 MRP System Prerequisites 6

and Assumptions

1.2.2.Regenerative System 6

1.2.3.Net Change System 7

1.3.SCOPE OF STUDY AND 7

THESIS ORGANIZATION

CHAPTER 2 	LITERATURE REVIEW

2.1 GENERAL 9
2.2 MRP SYSTEM BASICS 11

2.2.1 System Inputs 11

2.2.1.1 .Master Production Schedule 13

2.2.1.2.Bill of Materials 15

2.2.1.3. Inventory Status Records 21

2.2.2 Lot Sizing Techniques 21

2.2.3.Time Phased Order Point Technique 23

2.2.4.Role of Safety Stock 23

iii

CHAPTER 3

CHAPTER 4

2.2.5.System Outputs 24

2.2.5.1.Planned Order Receipts 24

2.2.5.2.Planned Order Releases 26

2.2.5.3.Exception Reporting 28

2.2.5.4. Performance Control 29
2.3.OBJECT-ORIENTED SOFTWARE

PARADIGMS
2.3.1 Abstraction 30
2.3.2.Encapsulation 30

2.3.3.Modularity 30
2.3.4.Hierarchy 31

2.3.5.Typing 	S 31
2.3.6.Concurrency 31
•2.3.7.Persistence 31

APPLICATIONS OF MRP TO WATER

RESOURCES PROJECTS
3.1.GENERAL 32
3.2.MRP SYSTEM FOR WATER RESOURCES 32

PROJECTS

3.3.SYSTEM CONTROLS. 	 5 37
3.4.COMPARISON WITH CURRENT INVENTORY 38

MODELS USED IN W.R. PROJECTS

3.4.1.Limitationsof Fixed Order Size System 38
3.4.2.Comparison with EOQ Model 39

3.5.SYSTEM INTEGRITY 39
3.6.TRAINING OF PROJECT PROFESSIONALS 40
DESIGN OF MRP SOFTWARE

4.1.DESIGN BASICS 41
4.2.METHODOLOGY AND 42

ARCHITECTURE

4.3.DESIGN PROCESS 42

4.4.OPERATING ENVIRONMENT 44
4.5.LIMITATIONS OF THE SOFTWARE 44

iv

CHAPTER 5 	CASE STUDIES

5.1 .GENERAL

5.2.CASE 1

5.2.1 Data Acquisition and Computations
5.2.2.Results and Discussions

5.3.CASE 2

5.3.1 .Data Acquisition and Computations
5.3.2.EOQ Model
5.3.3.MRP Model
5.3.4.Results and Discussions

CHAPTER 6 CONCLUSIONS

6.1.GENERAL
6.2.CASE STUDY 1
6.3.CASE STUDY 2
6.4.SCOPE FOR FUTURE RESEARCH

REFERENCES 	 68
APPENDIX: 	 71
SOFTWARE LISTING 	 72-117

45

45

45
49
50

50

53
53
54

66
66
67
67

v

ABBREVIATIONS

BOM Bill of Materials
CRP Capacity Requirements Planning

EGA Enhanced Graphics Adapter

EOQ Economic Order Quantity

EOT Electric Overhead Travelling Crane

GUI Graphical User Interface
JIT Just In Time

MPS Master Production Schedule
MRP Material Requirements Planning
MRP II Manufacturing Resources Planning
OOD Object-Oriented Design

OOP Object-Oriented Programming
VGA Video Graphics Array Adapter

VI

LIST OF FIGURES

S1.
No.

Figure
No.

Description Page

1 Fig. 1.1 Flow of Information in a Typical MRP System 5
2 Fig. 2.1 Typical Closed Loop MRP System 10
3 Fig. 2.2 Typical MRP System Inputs and Outputs 12
4 Fig. 2.3 Single Stage Planning Decision for a Horizon of One Period 14
5 Fig. 2.4 Flow Chart of a Standard MRP System 25
6 Fig. 4.1 MVC Architecture 43
7 Fig. 5.1 Inventory Levels for MRP Model for HSD Oil 52
8 Fig. 5.2 EOQ Model I for the Horizontal Girder 56
9 Fig. 5.3 EOQ Model 2 for the Rolled Steel Beams 57
10 Fig. 5.4 Inventory. Levels for the MRP Model for the Hz. Girder 64

1 Fig. 5.5 Inventory Levels for the MRP Model for the Rolled Steel
Beams

65

vii

LIST OF FORMS

S1.
No.

Form No. Description Page

I Form 2.1 Single Level Explosion Format 17
2 Form 2.2 Indented Explosion Format 17
3 Form 2.3 Summary Explosion Format 17
4 Form 2.4 Single Level Implosion Format 18
5 Form 2.5 Indented Implosion Format 18
6 Form 2.6 Summary Implosion Format 18
7 Form 2.7 Matrix Bill of Materials 20
8 Form 2.8 Comparative Bill of Materials 20
9 Form 2.9 Modular Bill of Materials 20
10 Form 2.10 Typical MRP Matrix 27

viii

LIST OF TABLES

Sl.
No.

Table No Description Page

1 Table 3.1 EOQ and MRP Comparison 39
2 Table 5.1 Demand Rates for HSD Oil 47
3 Table 5.2 .Master Production Schedule for HSD Oil 48
4 Table 5.3 Bill of Materials for HSD Oil 48.
5 Table 5.4 Inventory Status Record for HSD Oil 48
6 Table 5.5 Planned' Order Release for HSD Oil 49
7 Table 5.6 Inventory Levels for MRP Model for HSD Oil 51
8 Table 5.7 rnventory Levels in EOQ Model for Case 2 55
9 Table 5.8 Master Production Schedule for Level 1 58
10 Table 5.9 Bill of Materials for all Materials for Case 2 58
11 Table 5.10 Inventory Status Record for Level 1 58
12 Table 5.11 Inventory Status Record for Level 2 59
13 Table 5.12 Planned Order Release for Level 1 59
14 Table 5.13 Planned Order Release for Level 1 60
15 Table 5.14 Planned Order Release for Level 2 60
16 Table 5.15 Planned Order Release for. Level 2 61
17 Table 5.16 Master Production Schedule for Level 2 61
18 Table 5.17 Master Production Schedule for Level 2 62
19 Table 5.18 Master Production Schedule for Level 2 62
20 Table 5.19 Inventory Levels in MRP Model for Case 2 63

Ix

SYNOPSIS

The management of materials or inventory concerns their flow to, within, and

from the organization. The efficiency and efficacy of the flow can substantially

influence costs and revenue generation and thus hold serious implications. Material

Requirements Planning (MRP) is a computerized information processing system

designed to plan and control the flow of materials. MRP is designed to release

production and purchase orders in order to regulate the flow of raw materials, and in

process inventories necessary to meet the production schedules for end items. The

primary objectives of an MRP system are to determine gross and net requirements i.e.

discrete period demands for each item of inventory, so as to be able to generate

information needed for correct inventory procurement or production.

Now-a-days, the Water Resources Projects in most of the developing countries

are mainly using the primitive methods or models in order to manage materials,

though these projects involve huge material cost, which may be as high as 50% of the

total capital outlay on an average.

Through this dissertation, extensive study has been carried out to develop an

Object-Oriented software for the Material Requirements Planning (MRP) system,

which can be used in the Water Resources Projects. This software is paperless, and it

will operate in DOS mode, and also it has a user-friendly Graphical User Interface.

Flow of a large number, and volume of materials can be planned and controlled

through this software.

CHAPTER 1

INTRODUCTION

1.1 MATERIALS MANAGEMENT

An organization is a management concept that encapsulates the structure,

function, and objectives of any Water Resources Project. Materials Management is

the basic part of any organization that produces products or gives services of

economic value. The primary objective of the management of an organization is to

minimize the expenditure by controlling its system functionalities. The cost of

materials ranges from 10% to 80% of the capital expenditure depending on the

type of the organization, and in case of Water Resources -Projects, this cost
percentage is usually more than 50%. In fact, the huge cost of materials used in the

Water Resources Projects forces us to give a serious thought about it to develop an

efficient and transparent planning and controlling tool for these materials, because

in the present days, cost conscious organizations need to maintain minimum

inventory level so as to have minimum holding and ordering costs, and to make

efficient record system for the materials management department to avoid excess

inventory and deadly stock-outs. The major goals of materials management are to

minimize inventory investment, maximize customer service, and assure efficient

but low cost operation of the organization, and through this dissertation we

emphasize to achieve them by using a befitting planning and controlling tool

named `Material Requirements Planning'.

There are at least four reasons to hold inventories or materials for the
future, and they can be stated as,

1. to provide a quick response to the customers,
2. to provide safety against uncertainties,
3. to increase operating efficiency of the organization, and

4. to take advantage of the unusual pricing opportunities.

The variety of materials used in various organizations pose a very difficult

problem associated with the materials management. These materials can also be

further classified into three types:

(a) Independent Demand Items:

Demand for materials is considered independent when no relationship

exists between the demand for an item and any other item. Independent

demand customarily exhibits a continuous and . definable pattern but

fluctuates because of random influences from the marketplace. The demand

for independent items is subject to customer preferences and needs.
(b) Dependent Demand Items:

Demand is classified as dependent when a direct, mathematical

relationship exists between the demand for an item and another `higher

level' or `parent' item. Demand for dependent items is the result of the

requirements generated for their use in the production of another item, as in

the case of raw materials, parts, and subassemblies. Thus, the demand for

the final product may be continuous and independent, while the demand for

the subordinate items composing the product tends to be discrete, derived,
and dependent.

(c) Mixed Demand Items:

A given inventory item may be subject to both dependent and

independent demand. Such mixed demand arises in cases of parts used in
current production as well as spare-part service.

Every organization dealing with inventories has an inventory policy that

depicts the quantum of each material required either for purchasing, or for using, or

for selling from time to time. The various inventory policies can be broadly classified
as:

(1) Deterministic Models

In the deterministic models, which are applied to both uniform,

independent demand and time varying discrete demand conditions, all the

parameters and variables are known or can be calculated with certainty.

The demand rate for units, and the related inventory costs are assumed to

be known, and also the replenishment lead time is presumed to be constant,

and independent of demand. The optimum inventory policies of these

models are to determine economic lot sizes for the independent demand

items, or dependent demand items, whether they are purchased from a

supplier or produced in the organization itself because discrete demand

patterns can occur in either independent or dependent demand items. But in

2

actual practice, these models have been failed in determining the correct

quantity and correct time for inventories in use, production, and sell.

(2) Statistical Models

In statistical models, both the demand rate and the lead time are

treated as random variables, and the average demand is assumed to be

constant over time, and so the demand is stated in terms of probability

distribution. Here for both the discrete and continuous demand distribution,

the expected cost is minimized. Inventory of independent demand items

can be categorized into working stock and safety stock or buffer stock.

Working stock is that stock which is expected to be used in a given time

period, but the safety stock is determined directly from the forecast. The

random variations of the demand and lead time are absorbed by the safety

stock. The safety stock is the difference between the stock available at

which an order is triggered, or reorder point and the average demand during

this replenishment period.

(3) Material Requirements Planning Model

Material Requirements Planning model is a computer based system

designed to release production and purchase orders in order to regulate the

flow of inventories in an organization. Through `time phasing', it, enables

the organizations to maintain minimum levels of dependent demand items

and at the same time the production schedules for the independent items

can be met.

(4) Just in Time

This model attempts to virtually eliminate all costs that do not add value

to the products. Continuous improvement and attentionto any barrier

to product flow is the main concept behind JIT. Inventory is considered an

undesirable cost, and by lowering its level, quality and productivity

obstructions can be eliminated.

1.1.1 Materials for Water Resources Projects

Depending on the type of Project, use of materials will vary. We can

broadly classify these materials into three categories:

3

(a) Construction Materials:

Under this category, we can put cement, iron & steel, sand, and

crushed stone.

(b) Generating Equipment Materials:

Under this category, we can take spare parts and accessories of turbines,

hydro-generators, and control systems.

(c) Materials for Construction Plant and Equipment:

In this category, we can keep spare parts and accessories of heavy earth

moving equipment, welding machines, pumps, .EOTs, gates and valves,

cable systems, air compressors, drilling machines, lathe machines, milling

machines, grinding machines, shaping machines, plate bending machines,

tunneling equipment, belt-conveyor systems, and pile-driving equipment.

Also here we can put separately fuel and lubrication oil for related

equipment; chemicals and explosives for tunneling; welding rods,

acetylene, and oxygen gas for welding; and paints for paint shop.

The manufacturing activities that take place in a Water Resources

Project (may not be in the site) can be the manufacturing of different types

of gates, and steel ribs for tunnels.

1.2 MATERIAL REQUIREMENTS PLANNING MODEL

"Material Requirements Planning" is the new way of life in production and

inventory management, displacing older models in general and statistical inventory

control in particular(2U. An MRP system can be defined as a set of logically linked

item inventory records, coupled with a computer program that maintains these records

up to date (Fig. 1.1). This system enables organizations to develop realistic plans and

to coordinate resources to ensure the availability of materials, components, and

products for planned production and for customer delivery by maintaining minimum

levels of dependent demand items, yet simultaneously promising that production

schedules for the independent items can be met. It does so through proper timing of

order placement and hence it is also known as "Time-Phased Requirements

Planning"~z41

"Material Requirements Planning" systems entered the doors of materials

management departments of the organizations since 1961 slowly and steadily. In the

area of inventory and production management, the most successful innovation(2 was

0

Master Production Schedule
Product
Design

MRP System
BUM 	 Inventory
Data 	 Status Data

Purchasing 	I Product 	I 	Transporting 	Receiving
Scheduling

Fig. 1.1: Flow of Information in a Typical MRP System

5

the MRP system. Inventory and production management was traditionally giving

emphasis on two terms quantity, and timing. In MRP systems, timing was more

important and by introducing `time phasing' concept to the MRP, the system became
more refined'8) and effective than ever before.

1.2.1 MRP System Prerequisites and Assumptions

Every constructed system has several prerequisites and they reflect certain

fundamental assumptions. MRP system is no exception.

The prerequisites(21) are,

• A `Master Production Schedule' must exist,

• Ability of the `Master Production Schedule' to be stated in terms of bill of
material terms,

• Each and every inventory item must be unambiguously identified through a

unique code or part number,

• A bill of material exists at planning period, and it must be set in a

structured manner to reflect the design procedure of the products, and
• `Inventory Status Record' for all items under the system's control must

exist.

The assumptions (16) adopted are,

• MRP system file data pertaining to `Bill of Material' and `Inventory Status

Record' must be accurate, complete, and up to date for its effective and
useful operation,

• Lead times for all inventory items are known and can be supplied to the
system,

• Each and every inventory item goes into and out of stock,

• All of the components of an assembly are needed at the time of the

assembly order release,

• Discrete disbursement and usage of component materials, and

• Process independence of manufactured items.

1.2.2 Regenerative System

In this type of MRP system, the material requirements for all items or

components are recomputed periodically, usually weekly, based on the latest

master production schedule requirements. Here the MPS is broken down into time

C

phased requirements for every individual item.

Under these types of systems, every end item stated in the MPS must be

exploded; every bill of material must be retrieved; and the status of every active

inventory item must be recomputed. The main aim is to finish the explosion

process in one run of the MRP system as the MPS is periodically updated. During

this run, the gross and net requirements for each inventory item are recomputed

and its planned order schedule is recreated in a level by level fashion, starting

from the top level.

The frequency of replanning is a critical variable in the use and design of

an MRP system, and in this regenerative type, it is impractical to replan at a

frequency higher than once per week. The solution to more frequent replanning is

the net change approach.

1.2.3 Net Change System

Here, only additions and subtractions from the master production schedule

are entered, and the change in material requirements is then calculated, usually at

the end of each day, for only those items/components affected. This concept views

the MPS as one plan in continuous existence, rather than as successive versions of

it. The principle of net change also affects the inventory status record data, and

data in this record must be maintained up to date to effect the daily net change.

The concepts of `Record Balance', and `Interlevel Equilibrium'(16 of the inventory

status data characterize a net change MRP system. The inventory status record is

said to be in balance when the on hand quantities correspond to. existing projected

requirements and scheduled receipts, and when the planned order releases are

correctly calculated with respect to both quantity and timing. The principle of

`Interlevel Equilibrium' states that projected requirements for every item must

correspond at all times to the quantities and timing of planned order releases of its

parent items.

1.3 SCOPE OF STUDY AND THESIS ORGANIZATION

The ultimate developed tool in materials planning is MRP, and

therefore, through this dissertation, extensive study has been carried out to develop

a computerized MRP system for these projects. The main objectives of the present

7

work are,

1. To develop an efficient and transparent Material Requirements

Planning system by using Object-Oriented software tools so that it can

be used in the Water Resources Projects, and
2. To develop a user friendly GUI for the application using graphics tools

for operational ease of the user.

Material Requirements Planning system is the latest model used in most of
the organizations for efficient and transparent control of the flow of materials from,

to, and within the organization. But it is seen that the Water Resources Projects in

general are using the primitive models for planning and controlling the flow of huge

materials involved in the project sites.

Through this 'dissertation, research has beeri done to develop a software for a

typical MRP system which can be used in theWater Resources Projects, because the

cost of any commercial MRP software available in the market is sky high. The
software is designed in the OOP language, C++ because OOP is today's method of

choice for software design, and C++ is the language of choice, which is designed to
support OOP.

This dissertation documents the utility and development of an `Material

Requirements Planning' System for the Water Resources Projects. It is divided
into six chapters.

Chapter 1 includes introduction, definitions, objectives and the scope of

study. Chapter 2 describes the review of literature related to this topic. Chapter 3

discusses the applications of Material Requirements Planning system to the Water

Resources Projects. MRP is also compared with the primitive inventory control

systems. Chapter 4 describes the design procedure and methodology of developing

an Object-Oriented software for the Material Requirements Planning system to be

used in Water Resources Projects. Chapter 5 covers the case studies undertaken in

order to see how MRP can be applied to a Water Resources Project. Chapter 6

presents the conclusions followed by scope for further study.

Information supplemental to this dissertation is included in appendices.

Appendix A includes the `Software Listing'.

'3

CHAPTER 2

LITERATURE REVIEW

2.1 GENERAL
The bottom level of the balance sheet of an organization depends on many

factors. One of a major contributory factor to it, is the cost of materials involved.

Before 1960, the flow of materials to, within, and from any organization were planned

and controlled by conventional inventory and production control systems like,
1. Deterministic Models,

2. Statistical Models,

3. Conventional aggregate inventory management systems, and

4. ABC or VED inventory classification system.

Joseph Orlicky, 1961 (16) first innovated the MRP system for J. I. Case

Company, Inc., USA, based on file structures and records, where the item records are

logically linked with each other, - coupled with a huge computer program, that

maintains these records up to date, and with the advent of high speed computers

having huge data processing capacity, the use of the above mentioned conventional

systems became obsolete in organizations.

During early 1980s, closed loop MRP systems emerged as a - practical
scheduling system (6) 2)(24). But this closed loop MRP system (Fig. 2.1) was applied in
a range of situations for production of high to medium volume standard products. The

key features of this MRP system are to generate lower-level requirements, time

phasing requirements, planning of order releases, and rescheduling of orders to meet

realistic schedules. The closed loop system was extended to include feedback from

and control of customer orders.

Closed loop MRP systems were specifically designed to meet the needs of low

volume, job shop organizations during late 1980s, by controlling the engineering

design changes in the bill of materials, as in Simon's MRP system (62)

6

Production
Plan

Forecasts , 	t 	I Customer Orders

MPS 	
Capacity Planning

(Man, Machine)

Inventory
Status 	 Of
Records 	 MRP 	 Materials

Planned Order Release

No
Capacity Available ?

Yes

Purchase Orders

Storage 	I 	I Customers

Fig. 2.1: Typical Closed Loop MRP System (24)

in

Timon Chih-Ting Du and Philip M. Wolfe, 2000(27) suggested to build an
active, bucketless, and real time MRP system using hybrid architecture that includes
an object-oriented database, fuzzy logic controllers, and neuralnetworks, because an
object-oriented database combines the advantages of object-oriented technologies and
database technologies. The object-oriented technology provides: (1) superior complex
data structure manipulation; (2) rich object structure (classes, types, hierarchy etc.);
(3)- potential object-oriented architecture; and (4) data reusability (inheritance
mechanisms).

As per Lambrecht and Decalures'(27 opinions, there are three reasons behind
improper implementation of MRP systems at operational levels: (1) MRP ignores
capacity constraints; (2) MRP cannot compete with the dynamism of the shop floor;
and (3) safety stock'or fixed lead time result in rigid implementation of the system.

In the MRP literature, the basics of Orlicky's MRP system remain unchanged,
but MRP is applied in various situations with or without slight modifications suitable
to the organization concerned.

2.2 MRP SYSTEM BASICS
The prime objective(16 of an MRP system is to find gross and net

requirements i.e. to determine discrete period demands for each item of inventory in

order to generate information needed for correct inventory order action. The basic

function of an MRP system is to compute net requirements from gross requirements

so that the former should be covered by timely purchase orders or shop orders. The

net requirements are then covered by the planned order releases, and the order

quantities either match net requirements or are computed by using any one lot sizing

techniques. The outputs of an MRP system can serve as valid inputs to other computer

application systems in 'the production and inventory control, like purchasing systems,

shop scheduling systems, dispatching systems, shop floor control systems, and
capacity requirements planning systems.

2.2.1 System Inputs
The three basic inputs of an MRP system namely the `Master Production

Schedule', `Bill of Materials', and `Inventory Status Record' without which it cannot

exist, are diagrammed in Fig. 2.2, and are discussed in the following paragraphs.

11

Independent 	MPS 	Customer
Demand 	 Orders,

Forecasts &
Production

Plan

Inventory
Transacti 	Inventory I I MRP 	 BOM oils 	 Status Records 	System

Planned
Order

Receipts

Purchase Orders

Planned
Order

Exception Reports

	

R 	 CRP eleases

Performance Control

Fig. 2.2: Typical MRP System Inputs & Outputs

12

2.2.1.1 Master Production Schedule
This is stated in terms of end items, which may be either transportable

products or highest level assemblies of some other products. The planning horizon to
be covered by the MPS equals or exceeds the sum of procurement and manufacturing
lead time for components of the products considered. MPS actually describes what
materials we need, and when we need it.

MPS is a form of aggregate planning, which considers only finished products,
but not the individual components that constitute those end products. The objective of
the MPS is to develop an aggregate production schedule that will meet end item

requirements, and at the same time minimize the incremental costs incurred. Some

relevant costs may be the payroll costs, excess inventory costs, and cost of production
rate changes. MPS: as a total cost model (8) has been developed, where the above
mentioned cost components vary with the changes in the decision variables of the
model.

Here, MPS is represented by a single stage system (Fig. 2.3) in which the
planning horizon is one period long. The state of the system at the end of the previous

period is defined as: the aggregate work force size W0, the production rate Po, and the

inventory level Io . The ending state conditions for one period become the initial

conditions for the upcoming period. A forecast•of the end item requirements for the

upcoming period comes through some decision process that set the size of the work
force and production rate for the upcoming period. So, the inventory at the ending
state conditions will be(8):

l i =Io +P1 —F1, where
Fi is forecasted sales,

I1 is inventory level in the end of period one, and
P1 is production rate in the end of period one.

The MPS statement of the quantity of each item required is put into the MRP
system each week or more frequently. The MRP program references the inventory
status record, and the bill of material corresponding to the item in the MPS, and thus
material requirements are generated. The MPS actually drives the MRP system and,

consequently, the entire production and inventory management system X18).
The MPS is derived from the aggregate production plan based on demand

forecasts, customer orders, and capacity limitations. The MPS is divided into time

periods called time buckets. Each product has its own MPS, and there is also an

13

Forecast for Upcoming Period, Fl

Decisions
State of For
System at Decision Process Upcoming
end of last'' ' Period,
Period, Wo, Po, Io
Wo, Po, Jo

Costs Resulting from Decisions,
Inventory, Payroll etc.

Fig. 2.3: Single Stage Planning Decision for a Horizon of One Period

14

overall MPS that synthesizes the requirements for all products or a group of products

that share facilities X15).

The MRP parts explosion process assumes that the MPS is capacity feasible.

In closed loop MRP systems, the orders generated from the parts explosion process

are put into a capacity requirements planning routine to evaluate their feasibility. If

sufficient capacity is not available, the MPS should be revised or capacity should be

added until the MPS can be accomplished. The MPS must project a realistic plan of

production that is leveled to accommodate available capacity (23).

The MPS is developed from end item forecasts, but it is not exactly the same

as forecast. MPS and forecast may differ because,

(a) The forecast may exceed plant capacity,

(b) Inventory level may increase or decrease, and

(c) Organization concerned may decide to operate uniformly, using safety

stock against demand fluctuations.

2.2.1.2 Bill of Materials
It contains the relational information on all materials, components,

raw materials, subassemblies required to produce each end item. BOM is used to

derive the quantities of dependent components required to produce end items.

Moreover, the BOM is a structured list of dependent demand items which describes

the sequence of steps in manufacturing the product (24), and hence the BOM is

alternately called `Product Structure Tree'. These dependent demand items are placed

in levels in the BOM, representing the way they are actually placed in the

manufacturing process. The BOM should be updated as the products are redesigned,

new products are added, and product sequencing or assembly is changed. Information

on every component at every level of the BOM must include a unique part number for

the item, an item description, the quantity used per assembly, the next higher

assembly in the structure list, and the quantity used per end item. Each stage in the

manufacturing process of converting material into product is equivalent to a, level of

`Product Structure Tree'.

BOM is essential for the exact computation of gross and net requirements.

While determining net requirements for a low level inventory item, we calculate the

quantity that exists under its own identity; quantity of it, if it is behaving as a

component item of any other parent item; and quantity of it, if it is one of the parents

15

of any other parent item. The computation of net requirements proceeded in the

direction from top to bottom of the product structure tree in a level by level016)

fashion. The net requirement on the component item level can be computed only after

the net requirement on the parent item level is determined. The downward.progression

from one product level to another is called explosion, and the vice versa is called

implosion. The former is to establish all lower level component scheduling, and the

latter is required for identification of the parent item generating the requirement, when

scheduling problem exist at the component level (24)

Various formats or ways in which the BOM is displayed are:

(t) Single Level Explosion Format:

It displays the components used at a specific level of assembly (Form 2.1).

(2) Indented Explosion Format:

It lists components on all lower levels by indentation, signifying levels, under

their respective parents, i.e. the products are displayed in the manner in which

they are manufactured (Form 2.2).

(3) Summary Explosion Format:

This format lists all items which go into an end item along with their total

quantities, i.e. it includes all components of an end item, irrespective of level.

Summary explosion bill helps during purchasing of proper quantity of items

(Form 2.3). 	 _

(4) Single Level Implosion Format:

This displays the assemblies that directly use a component at the next higher

level, i.e. it indicates all the immediate parent items of an item (Form 2.4).

(5) Indented Implosion Format:

It indicates the usage of a component to all higher levels, and it is also

valuable in finding the parent that generated the component requirement

(Form 2.5).

(6) Summary Implosion Format:

This shows all higher level items which contain the component along with the

total quantity used in each (Form 2.6).

(7) Matrix Bill Of Materials:

This format is used to identify and group the common parts found on the

models in a family of items. This format is useful for products having many

common components among products (Form 2.7).

16

Assembly 	Component No. 	Qty. per Assembly 	Description

Form 2.1: Single Level Explosion Format

Part Number 	 Quantity 	 Unit of
Per 	 Measure

Level 1 	2 	3 	Description
	Assembly

Form 2.2: Indented Explosion Format

Component and Description 	Quantity 	Unit of
Subassemblies 	 Required 	Measure

Assembly

Form 2.3: Summary Explosion Format

17

Part 	Assembly 	Quantity Per
Number 	Used On 	 Assembly 	 Description

Form 2.4: Single Level Implosion Format

Component 	Assembly 	Quantity 	 Description
Part 	 Used
Number 	On

Form 2.5: Indented Implosion Format

Component 	Assembly 	Quantity 	 Description
Part 	 Used
	

Required
Number 	On

Form 2.6: Summary Implosion Format

LE,

(8) Comparative Bill Of Materials:

This bill defines a special product in terms of a standard product (especially

new or unique products), and specifies which components are to be added, and

which components are to be deleted (Form 2.8). This format cannot be used in

making forecasts, and is not used in MRP system (24)

(9) Modular Bill Of Materials:

These are used for complex products that have various configurations, and are

made from a number of common parts. This BOM is stated in modules from

which the final product is assembled (Form 2.9). The process of modularizing

breaks down the bills of products into lower level modules. The concept of
modularity (24) has two purposes, (i) to separate combinations of optional

product features by facilitating forecasting, and (ii) to isolate common parts

from unique parts, by minimizing inventory investment in components

common to optional units. Owing to modularity, BOM is abolished at the top

of the `Product Structure Tree', and lower level components are promoted to

end item status for MRP purposes.

(to)M-Bill:

It is the collection of all the individual modular BOM that are selected by a

customer, which states the options necessary to build a specific end item. This

bill though not a -direct part of the MRP system, can be integrated with the

MRP system by defining the items to be assembled against the final assembly

schedule (24)

(11)S-Bill:

While modularizing the bills, many components become end items, which will

increase the number of items to be forecasted and identified in the MPS. So, a

set of components in any related group is assigned an imaginary part number

to form a S=Bill. (Form 2.10). These artificial numbers are not actually

assembled, but are used in forecasting and MPS operations.

(12) K-Bill:

While building a product, a large number of loose parts are frequently used.

Without identifying each of the items individually, they are grouped together

under an imaginary part number called a kit (24) So, with one number an entire

group of components having similar features can be properly scheduled.

Component 	 Unit 	 Product
Part 	Description 	Of
Number 	 Measure One 	Two 	•Three

Form 2.7: Matrix Bill Of Materials

A 	B 	C 	D XI 	A- 	E+ 	F+

Form 2.8: Comparative Bill Of Materials

Level 2

Option 1
	

Option I
	

Option1
	

Option 1
Of P
	

Of Q
	

Of R
	

Of S

Form 2.9: Modular Bill Of Materials

20

2.2.1.3 Inventory Status Records

This record comprises the individual item inventory records containing the

status data (on hand and on order) required to find the net requirements in a time

phased format, by checking what inventory will be available to meet the production

schedule. This record must be kept up to date by posting inventory transactions (stock

receipt, issue, scrap etc.) accurately. These transactions update item status, which is
then modified in the MRP computation process.

Inventory status record also contains the `planning factors'(16) like lead time,
safety stock, lot sizing algorithms, scrap allowances, item description, demand history

etc., and if one of these factors will change, then the item status will change.

The data in this record must be kept up to date and accurate otherwise the
whole MRP system will go wayward.

2.2.2 Lot Sizing Techniques
The main purpose of this section is to know the methods of evaluating lot size

for ordering materials within an MRP framework. Usually MRP has been

implemented in a deterministic environment. The pattern of the demand in an MRP

system may follow constant or variable distribution. The constant demand pattern

implies an identical demand is needed over a known planning horizon. The variable

demand pattern indicates demand variability over a planning horizon similar to some
probabilistic distributions. The assumptions(16) on which the lot sizing decisions are
based, are as follows:

(ii) Demand is deterministic and time varying,

(ii) The product structure is multi-level, and demand for a product in one

'level depends on the demand of a product on another level,
(iii) The lead time is fixed and known,

(iv) The replenishment rate is finite,

(v) Shortages are not allowed, and

(vi) Lot splitting is not allowed.

The lot sizing heuristics proposed in an MRP framework for both single

level and multi-level (assembly type) systems are:

21

❑ Lot For Lot (LFL) (24)

❑ Economic Order Quantity (EOQ) (24),

❑ Modified Economic Order Quantity (EOQ2) (20),

❑ Periodic Order Quantity (POQ) (16),
❑ Least Unit Cost (LUC)' ,

❑ Least Total Cost (LTC)(,

❑ Modified Least Cost (LTC2)'16~,

❑ Part Period Algo J1(PPA)('6

❑ Silver-Meal Algorithm (SMA)(16' ,
❑ Silver-Meal Algorithm II(24), and
❑ Groff-Marginal Algorithm (GMA)(16).

In this dissertation, the first three lot sizing techniques are discussed.
(a) Lot For Lot Technique:

Here, a lot is created for each period in which there is demand. The holding

cost remains constant, and for certain future demand, zero inventory is carried

from one period to another. LFL technique is used under assumption that the

ordering cost is low and the :cost of inventory is high.

(b) Economic Order Quantity:

This technique was developed to minimize the cost for constant and

continuous demand. The Wilson Camp formula for determination of the
economic order quantity is,

EOQ = (2 * R * C / H) /2 , where,

R = average annual demand in units,

C = ordering cost per order, or set-up cost per batch,

H = inventory holding cost per unit per annum.

EOQ method is not optimal in MRP environment in the sense that the

assumption of constant demand is not met in a discrete demand environment.
(c) Modified Economic Order Quantity:

Mitra et ai X20) developed the modified economic order quantity formula for

discrete demand situations with a view to balance the two opposing costs, i.e.

inventory carrying cost and ordering / set-up cost. The EOQ2 determines the

22

lot sizes such that no period has items produced in two lots. Mitra et al (20)
adjusted the economic order quantity (EOQ) to cover demand during an

integral number of periods, to find EOQ2 . Here demand is accumulated until
cumulative demand approaches EOQ.

The modified economic order quantity is denoted as,
/l

Q, = 	di where Q i exceeds EOQ, and

n-I
Q2 = I di , where Q2 is less than EOQ, where,

!=k

Q1 and Q2 are order quantities,

k = Time period in which the order quantity is going to be determined,

i.e. the starting point,

d i = Demand in period i, and

ii = Total number of periods.

Then the modified order quantity is either Q' or Q2, depending on

whichever is nearer to the EOQ. If EOQ is exactly half way between Q, and
Q2, then the order quantity is chosen as Q2.

2.2.3 Time Phased Order Point Technique
It is an approach which allows the `time phasing' concept of the MRP system

to be used for planning and controlling independent demand items. The demand for

such items have to be forecasted, and their supply would be controlled by means of
order points.

Actually no time phased order point is computed by the MRP system, only the

replenishment order is issued by the system by lead time offset, when the quantity on

hand goes down below the safety stock, i.e. the system deals with the independent

demand items exactly the same way it treats any item for which safety stock is

specified.

2.2.4 Role of Safety Stock
While the primary function of safety stock is protection against the uncertainty

of demand, i.e. forecast error, a secondary function is to compensate for uncertainty of

supply. When safety stock is planned at the item level, the MRP system attempts to

23

conserve its quantity and to protect it from being used up, so that this quantity should

always be on hand. By the way, safety stock is carried by the system and never used

in the whole process, and create undesirable overstated material requirements.

Component-item demand is certain with respect to the master production

schedule, and so safety stock has no place in the estimate of material requirements
planning of it.

So, if required, safety stock can enter the MRP system through the MPS for

independent demand end item requirements planning, and planning and carrying
safety stock should be limited to the purchased items only.

Mather (1977)(2) has recommended the use of safety stock in conjunction with
firm planned orders. Bannerjee(1979)(2) indicated that safety stock do not produce
significant results under different scheduling policies (lot sizing). Candace Yano and
Robert Carlson (1987)(2) indicated that it is economical to use safety stock as
protection against demand variation, along with infrequent rescheduling.

However, there is a production priority problem with excessive safety stock
even if it is admissible. Excessive work-in-process component inventory destroys
priorities through increased queue time and can cause missed schedules (10(18) In
short, MRP system should have neither `too little' nor `too much' safety stock.

2.2.5 System Outputs

The outputs of a typical MRP system, which were depicted in Fig. 2.2, are
discussed in the following paragraphs.

2.2.5.1 Planned Order Receipts

In MRP computation process, the gross material requirements are converted to
net requirements by subtracting the available inventory from it, which is called

`netting'. Then the actual order quantity for an item is matched to a suitable lot size

by using appropriate lot sizing algorithm, or it may be equal to the net requirement

quantity. This order quantity is known as `Planned Order Receipt'(16X24), i.e. new

orders for the particular item scheduled for future release. The detail flow diagram
depicting the MRP computation process for a typical system is shown in Fig. 2.4.

24

Start
(n=0)

Find Gross Requirements G(t) for all level n items.
Top level Requirements come from the MPS

Find Net Requirements N(t) for level n items for time t
N(t) = G(t) — S(t) — H(t -1), If N(t)<=O, then N(t)=O

The Net Requirements are Lot Sized (Q) into PO
Receipts P(t). If N(t)>=Q, then P(t)= N(t); If N(t)=O,
then P(t)=O; If 0<N(t)<Q, then P(t)=Q

Find Projected On Hand H(t) for all level n items for t
H(t) = S(t) + P(t) + H(t — l)—G(t)- SS

No

	

Time Period Complete ? 	Replace t with
(t+1)

Yes

PO Receipts are offset by lead time for level n items to
get Planned 0 Releases, R(t). R(t - L) = P(t) .

	

Explosion Complete ? 	
Yes 	

Stop

Explode or Multiply Planned 0 Release Quantities by the
Qty Required for assembly of Lower level Components

Continue Iteration till the Lowest level is Completed

Fig. 2.4: Flow Chart of a Standard MRP System (24)

OR

2.2.5.2 Planned Order Releases
The timing of planned orders is based on scheduling order releases for the

purchase or the manufacture of component parts in a sequence which promises their

availability in tune to the total production process. Usually these orders are planned

much before to permit sufficient time for scheduled completion of the final product

without unnecessary queue of the materials. MRP time phases these orders by

offsetting the lead time (expressed in shop calendar units), i.e. by subtracting the lead

time value from the shop calendar date of `Planned Order Receipt' or order
completion.

In a shop calendar, weeks are usually given two-digit designations (from 00 to

99), and working days three-digit designations (from 000 to 999) 1161, and one week is
equal to five working days.

•For purchasing components, the lead time is the time interval between the

placement of the purchase order and its entry into the inventory system, and for

manufacturing items, it is the interval between the release of the work order and its

completion. In an MRP environment, the planned lead time may constitute the

operations such as queue (waiting to be worked on) time, running (machining,

fabrication, etc.) time, set-up time, queue (waiting for transportation) time, inspection

time, and move time. The formula to calculate the planned lead time for MRP
purposes is,

L = 2 * N + 6,.where,

L = Lead time in working days, and

N = Number of Operations.

Planned lead time is sometimes added with `safety lead time' or `safety time'

for completion of an order in advance of its real date of need, and here the MRP

system will plan both the order release and order completion dates, and the respective

scheduled receipt period would be moved back by the `safety time'. This `safety time'

is similar to `safety stock' in compensating the demand fluctuations. In actual

practice, this 'safety time' will create unnecessary work-in-process inventory (16).
Usually, all components to an assembly are planned to be available before the

start date, and so the `Planned Order Receipt' is moved back by the lead time to

output the `Planned Order Release', and usually the output is shown in a typical
horizontal format as shown in Form 2.10.

Item Code: 	 MRP MATRIX 	 Date:----/-----/---
Lead Time:

Safety Stock:
Weeks

PD 	1 	2 	3 	4 	5

Projected 'Requirements:

Scheduled Receipts:

Quantity On Hand:

Net Requirements:

Planned Order Receipts:

Planned Order Releases:

Form'2.10: Typical MRP Matrix

27

These-'Planned . Order Releases' provide the quantity of the item and the

relevant time period when the work orders are to be released to the workshop or

purchase orders placed with the suppliers. When this order is released, it changes

from being `planned' or `open' to being `scheduled' or `on order'.

The primary purposes of `Planned Order Release' are to generate material

requirements at the next lower level, and to project capacity requirements (24).

2.2.5.3 Exception Reporting
Outputs from an MRP system can be in the form of user's choice like reports,

or individual messages displayed in the computer screen. MRP system can keep order

priorities up to date by planning and replanning order due dates. It attempts to make

the due date and need date coincide at the time of planned order release, by computing

and recomputing net requirements, such that the operations proceed as planned while

inventory investment is minimized. The due date is defined as the present date

associated with the order, i.e. the expected date of order completion, and the need date

signifies the date when the order is actually needed X16). MRP is a priority planning

and controlling system, and it gives importance- to the valid open-order due dates,

which establishes the relative priority of the current order. The various exception

reports and messages produced from the MRP system can be like:

Projected or gross requirement input is beyond the planning horizon,

Number of digits in the projected requirement quantity field exceeds limit,

`Planned Order Receipt' moved back by the lead time but misplaced,

Number of digits in the `Planned Order Receipt' quantity exceeds limit,

Number of digits in the net requirement quantity field exceeds limit,

Number of digits in the `Planned Order Release' quantity exceeds limit,

Number of digits in `Scheduled Receipt' quantity overflows to the `On

. Hand Quantity' field,

• Due date of the planned order is outside the planning horizon,

Past-due projected requirement quantity has been included in the current

period,

Component / item part number does not exist,

Actual receipt quantity exceeds `Scheduled Receipt' quantity,
Order quantity released exceeds the `Planned Order Release' quantity,

Delay, or expedite, or cancel an order,

Mismatch of timing between demand and supply, and

D Launch a new order.

MRP system will simply print messages specifying exactly where the changes

are needed but the final decision to effect changes depends on the management
people.

2.2.5.4 Performance Control
Management monitors the performance of inventory planners, vendors, the

workshop, buyers, and financial matters of the organization, by reviewing the outputs
of an MRP system.

If the inventory data are stored along with the cost component, the on hand

quantity plus the planned order receipt quantity are costed out, and summarized by

item group to get the inventory investment level forecasts.

Open purchase orders recorded under valid due date can also be converted to a

purchase commitment report in a similar fashion.

2.3 OBJECT-ORIENTED SOFTWARE PARADIGMS
The concept of an object is central to anything object-oriented. Object-

Oriented Programming (OOP) language supports object-oriented software design

methods. OOP is an implementation method in which programs are organized as

cooperative collections of objects, and each of that object represents an instance of

some class, and whose classes are all members of a hierarchy of classes united
through inheritance relationships(9). Object-Oriented Design (OOD) is to refer to any

method that leads to object-oriented decomposition. For everything object-oriented,

the conceptual framework is the `Object Modej't ').

Materials managers should react quickly and effectively to the changing

scenarios of the activities going on inside or outside their organizations. These

changes are driven by an increasingly competitive global economy that forces

acquisition of new equipment and the introduction of new or improved processes.

Embracing these changes can be difficult for materials managers if they rely strictly

on the traditional systems. Systems which are flexible enough to allow organizations

to quickly react to the changes occurring in their enterprises need to be developed.

Not only must these tools be flexible, but also they must have sufficient clarity of

documentation that the mechanics of making these changes is relatively simple to

29

perform. Object-oriented technology has been proven to have the right `texture'(4) in

this regard. Systems designed based on object-oriented concepts are modular,

reusable, and less costly to maintain. The elements of the `Object Model' are,

(a) Abstraction,

(b) Encapsulation,

(c) Modularity,

(d) Hierarchy,

(e) Typing,

(f) Concurrency, and

(g) Persistence.

2.3.1 Abstraction
It is the essential characteristics of an object that distinguish it from all other

kinds of objects, and so provide finely defined conceptual boundaries, relative to the

user(). An abstraction shows the outside view of the object, and as such separate the

object's observable behavior from its implementation. In object-oriented design, the

main problem is to decide the correct set of abstractions for a given domain. The

abstractions are responsible , for the preliminary design decisions in designing an

`Object Model', and they should precede the decisions about their implementations.

2.3.2 Encapsulation
Encapsulation is the process of dividing the elements of an abstraction that

constitute its structure and behavior 91. Thus encapsulation clearly separates the

interface of an abstraction and its implementation. Encapsulation is achieved through

`data hiding', which is the process of hiding the structure of an object, and the

implementation of its functions.

2.3.3 Modularity
In OOP languages, classes and objects form the logical structure of a system,

and these abstractions are placed in modules to develop the physical architecture of

the system. In other words, modules are the physical containers, in which the logical

design of the classes and objects are declared. So, modularity can be defined as the

property of a system that has been decomposed into a set of cohesive and loosely

coupled modules or compartments

30

2.3.4 Hierarchy
Simply, hierarchy is an ordering of abstractions. In a complex system, there

are two types of hierarchies,

(a) "is a"(') hierarchy represents the class structure of the system, and the
suitable proposition of this type of hierarchy is inheritance, because
inheritance defines the relationship among classes, and

(b) "part of'(`') hierarchy represents the object structure of the system, which is

built upon the concept of level of abstraction.

2.3.5 Typing
Abstractions are expressed by typing so that the programming language in

which these abstractions are implemented can be made to enforce design decisions.

Strong typing prevents mixing abstractions. Typing can be defined as the enforcement

of the class of an object, such that objects of different types may not be interchanged.

2.3.6 Concurrency
Every computer program has at least one `thread of control' (26), i.e. a single

process responsible for occurrence of independent dynamic actions within the system.

But a system involving concurrency may have many such threads. Concurrency is a

property, which distinguishes active and inactive objects, because in object-oriented

design, each object represents one `thread of control'.

2.3.7 Persistence
Every object in a software system takes up some space and it survives

for a specified period of time. Persistence can be defined as the property of an object

through which the object continues to exist after its creator ceases to exist, and/or the

location of the object moves from the address space in which it was createdt9X26).

31

CHAPTER 3

APPLICATIONS OF MRP

TO WATER RESOURCES PROJECTS

3.1 GENERAL

The construction works of any Water Resources Project is highly time

consuming, and the materials required for the purpose of the construction varies

depending on the type of the project. Usually before start of any construction work,

complete survey is done, construction schedule is prepared, and effort is made to

fulfill that schedule. This schedule is prepared year wise and actual work is performed

month wise by dividing each year to twelve months. The requirements of the

materials will depend on the actual - work to be done, and as per the estimates

prepared.

3.2 . MRP SYSTEM FOR WATER RESOURCES PROJECTS

For a typical Water Resources Project, the construction works may be divided

in a year wise fashion as follows:

Year Construction Works

Preparatory 	Works; 	Purchase 	of 	Construction 	Plant 	and

Equipment; Construction of Machine shop, Weld shop, Paint

shop; Storing Facilities for various materials like, Cement, Steel,

1 S` Year Fuel, Lub. Oil, other spare parts of 	Machineries, and Heavy

equipment; River/Canal Diversion Works, and its Concreting

Works; Spillway Excavation, and its Concreting Works; Intake

Excavation, and its Concreting Works.

32

2 	Year

River/Canal Diversion Works; Construction of Coffer Dams; Main

Dam foundation Excavation, and Grouting Works; Intake

Excavation, and Concreting Works; Power House Excavation, and

Concreting Works.
Dam Embankment Works; Dam Foundation Treatment; Intake

Concreting Works; Penstock Concreting Works; Power House

3rd Year Substructure and Superstructure Works; Manufacturing of Gates;

Installation of Gates, and Valves for Intake and Spillway; Penstock

Pipe Installation; EOT Installation.

Installation of Hydro-Generators; Installation of Turbines;

4 h̀ Year Installation of Control Equipment; Installation of Sub-Station, and

Transmission Lines.

The construction plant and equipment to be used in the Project may be:

1. Stone Crushing Plant,

2. Batching and Mixing Plant,

3. Cooling Plant for cement,

	

.4. 	Aggregate Processing Plant,

5. Cement Handling Plant,

6. Tyre Retreading Plant,

7. Belt-Conveyor System, and

8. Saw Mill.

Heavy equipment related to the project may be the Dozers, Shovels, Dump

Trucks, Motor Graders, Cranes, Air Compressors, Drilling Machines, Jack Hammers,

Tunneling Equipment, Road Rollers, Sheep Foot Rollers, Tractor Trailers, Water

Pumps, Grouting Equipment, Concrete Pumps, Fuel and Water Tankers.

The machineries required for workshop and manufacturing of gates may be

the lathes, shapers, drilling machines, milling machines, plate bending machines,

welding machines, planing machines, grinding machines, air compressors etc.

So, a variety of materials are 'required in a Water Resources Project, i.e. from

independent demand items to mixed demand items. In this context, Material

Requirements Planning system comes into play for efficient planning and controlling

33

of materials in the project because sometimes it so happen that the scheduled

completion date of these projects are delayed and there is cost overrun due to
defective planning and controlling of materials.

The capacity of each of the construction plant and equipment, and heavy

equipment depends on the type of the Water Resources Project. Their capacity is

determined before the construction works actually starts. Depending on the capacities

of the Plants, the material requirements for processing can be adjudged.

The principal inventories that constitute the materials management department

of a Water Resources Project can be broadly listed under different demand item
categories as follows:

(i) Independent Demand Items

Cement, Steel, Explosives, Tires, Fuel and Lubricating Oil, Sand,

Quarry Stones, Aggregates for Concrete etc.,
(ii) Dependent Demand Items

Steel plates, girders, gears, pulleys, motors, chains, ropes, bearings,

welding rods, oxygen and acetylene gas, non-destructive testing

materials, rivets, nuts and bolts, brackets, arms, etc. for manufacturing

of gates along with the hoisting mechanisms; Cement, sand, and
aggregates in Batching and Mixing Plant; Timber, saw blades, gum,

and spirit in Saw Mill, and Used tires, raw rubber, and coal in Tyre
Retreading Plant,

(iii) Mixed Demand Items

Under this category, the spare parts and accessories for different heavy

equipment, machinery, and plant can be placed.

In order to apply the MRP system to any Water Resources Project, the
following criteria must be applied,

To fix the planning horizon:

The minimum planning horizon should be equal to or more than the

cumulative or stacked lead time. If it is less than . that, then MRP will be

unable to issue `Planned Order Release' for the items in the lower levels of

the product tree, and consequently, the issue of work orders and purchase

34

orders will be too late. This loss of horizon occurs in the lower levels

because the product structure is usually multileveled and the lead time is

successively offset. The visibility to the future reduces as the MRP system

proceeds from one level to another.

Owing to shorter horizons, some lot sizing techniques cannot be

applied to the lower level components because of the unavailability of the

net requirements quantity data.

So, for a typical Water Resources Project, the minimum planning
horizon can be fixed as four weeks or one month.

■ To fix the size of the time bucket in the system:

The fixation of the time buckets is balanced between the `accurate timing' of

the planning process, and the `huge cost' involved in managing large system

database. A time bucket size of one week is reasonably good enough for

efficient issue of `Planned Order Release' and computation of lot sizes.

For any project, the materials manger can fix one week as the `time
bucket'.

■ To classify the inventories:

ABC analysis is a basic analytical management tool which enables the top

management to classify inventories in order to reap the highest benefits.. This

technique tries to analyze the importance of distribution of items by money

value in order to find its priority. This classification system depends not only

on the cost value per unit, but also on the number of units consumed over a

yearly planning horizon. So if the cost of an item is increased or the quantity

of annual consumption is increased, then the annual consumption of the item

in money value will increase, and as such the class of that item may be

upgraded from lower to upper class, i.e. the lower class items are volatile.

In this ABC classification system, 20% of the total items ("A" class)

constitute nearly 80% of the total inventory cost, 30% of the total items ("B"

class) constitute 15% of the total inventory cost, and rest 50% items ("C"
• class) account for 5% of the total inventory cost. The prime purpose of this

technique is to review the upper class items more frequently, and order small

quantities of them than the lower class items in order to keep the inventory
investment lower.

35

Materials involved in the Water Resources Project can be classified

according to this ABC analysis technique, and if desired, only the upper

class items may be given treatment in the MRP system. But MRP has the

ability to process any item regardless of its classification.

In order to get the highest benefits from the MRP system, all materials

must be given equal 'treatment, because as MRP is a priority planning

system, all materials must be kept under its net to establish relative shop

priorities in a production process. To exemplify, sometimes the validity of a

"C" class item controlled by some other inventory policy is questionable if

excluded from the MRP system.

So, all the materials, of a Water Resources Project should be given

equal treatment in the MRP system.

■ To decide the frequency of replanning:

The frequency of replanning by an MRP system affects the system

performance, and this frequency if exceeds one week becomes impractical.

For frequently changing environment, the frequency of replanning can be

increased, and it can be once a day or when the user wants. This replanning

process can be either cyclic or continuous. In continuous replanning, the

validity of the inventory status deteriorates.

If the replanning is once a day or it is a net change MRP system, then

the system must be informed minute by minute about the inventory status

data. In such dynamic situations, the lot sizing technique used may be

unstable, and the lot sizes may move upward or downward as the forecast

signals' change in response to irregular demand. Due to this frequent

replanning, the system shows its reaction, and may become `Nervous', and

may initiate recomputation of MRP outputs.

■ To peg the requirements:

MRP computation process proceeds from top to bottom of the `Product

Tree' level by level. To identify the parent item that generated the dependent

item (component), it is traced upward through the `Product Tree', and this

process is _known as "Pegging". `Single Level Pegging' locates the

immediate parents, and `Full Pegging' locates the end items that generated

the component requirement. By following the `pegs' from one item record to

another, the ultimate source to the component demand can be traced to its

specified `time bucket' in the MPS.

If a component is delayed, then it is possible to find the impact on the

delivery of the end item to the customer through `Pegging'. Usually `Full

Pegging' is required in limited situations, and so its use is remote.

• To issue the 'Firm Planned Order':

This is the ability of the MRP system to solidify the quantity and / or the

timing of a `Planned Order Release' in a particular time bucket, in order to

adjust the coverage of the net requirements, because as the scheduling

process goes, these net requirements change, and over a period of time, they

. tend to change the `Planned Order Release' quantity before orders actually

mature for release.

This `Firm Planned Order' does not allow the normal MRP system to

compute net requirements from the gross requirements, and also not allow

the lead time offset to take place in order to expedite a past due order,

compress lead time, and lot size change.

This capability of the system should be used for selected situations

only depending on the need.

3.3 SYSTEM CONTROLS

The materials manager of a Water Resources Project is responsible for the

planning and controlling the inventory items in an MRP environment, by continuously

interacting with the system. He should take inventory order action based on the

outputs supplied by the system. He is the best person who can control the MRP

system, and thereby, plan the flow of inventories in the Project. He should be able to:

I. Issue `Planned Order Release' in the right quantity at the right time,
2. Place `Purchase Orders',

3. Change or cancel quantity of orders,

4. Change the timing or reschedule the open shop orders to make it match

with the date of actual need,

5. Request to reschedule the open purchase orders,

6. Handle items affected by engineering changes,

37

7. Monitor inventory for obsolescence and inactivity,
8. Locate and correct inventory status record errors,
9. Request to change the MPS if required,

10. Take punitive measures if found discrepancies between item requirements
and coverage, and

11. Act to count the inventory physically.

3.4 COMPARISON WITH CURRENT INVENTORY

MODELS USED IN W.R. PROJECTS

Material Requirements Planning system has numerous advantages over other

inventory planning and controlling systems. In the present days, the Water Resources

Projects in India are using either the `Deterministic Models' or the `Statistical

Models' for planning and controlling inventories in the Project. We have thrown some

lights here on the MRP system with a view to entering these Water Resources Projects

with an inventory planning and controlling tool named the `MRP'.

3.4.1 Limitations of Fixed Order Size System

`Fixed Order Size' systems under the roof of the deterministic inventory

models do not take any risks or uncertainties in their design and use. The limitations

of these `Fixed Order Size' systems are:

(a) Item demand is known, uniform, and continuous,

(b) Production rate is known, uniform, and continuous,

(c) Lead time is known and constant,

(d) Order or set-up cost is known and constant,

(e) Holding cost is known, constant, and linear,

(f) No resource (money and space) limitations,

(g) Infinite stock-out,

(h) Inventory analysis cost is neglected,

(i) Requires a huge inventory investment,

(j) Unreliable with varying demand pattern situations,

(k) Requires a huge investment in safety stock,

(1) Requires forecasts for all items,

(m)This system is based on past demand data, and hence not up to date, and

(n) Materials covered under this system likely to be obsolete very fast.

38

3.4.2 Comparison With EOQ Model

The use of `Economic Order Quantity' inventory policy can cause serious

problems particularly when the demand is dependent and varying in nature, because

demand should not be forecasted when calculated, and demand for the dependent

demand items should be calculated from the BOM, whereas, demand for the

independent demand items must be forecasted. Use of MRP will substantially reduce

inventory investment in dependent demand items while improving operational

efficiency by eliminating the risk of shortages associated with the `EOQ' system,

because it is better to order components from product / item requirements and to

compel the component inventory to zero level between requirements. A comparison

table is prepared for comparing `EOQ' and `MRP', and shown in Table 3.1.

Table 3.1:EOQ and MRP Comparison

`EOQ' System `MRP' System

1. Every inventory item is included, Product / Component Oriented,
2. Used for Independent demand, Used for Dependent demand,
3. Used for continuous item demand, Used for discrete/lumpy demand,
4. Demand pattern is random, Calculated discrete demand pattern,
5. Continuous lead time demand, Zero lead time demand,
6. Orders based on reorder point, Orders based on `time phasing' rule,
7. Forecasts depend on past demand System computes future production

pattern, quantity and its timing;
8. Forecasting for all items, Items only in MPS are forecasted,
9. Here only quantity component is Both quantity and time components

calculated, are computed,
10. Safety stock is allocated for all Safety stock for end items only,

items

3.5 SYSTEM INTEGRITY

For effective and successful performance of the MRP system, the data

pertaining to inventory status record and bill of materials must be accurate, complete,

and up to date. MRP system presupposes that all inventory items under its arm are

39

going into and out of stock. So, if the inputted data are faulty, then MRP will produce

faulty outputs.

Also the validity of all data generated by an MRP system is relative to the

contents of the MPS. So, if the MPS does not reflect actually what will be produced,

then the order priorities derived from it by the system will not be realistic.

Otherwise, there may be `priority validity' (i.e. order due dates may match with actual

date of need) in the system but due to faulty data in the MPS, the `priority integrity'

is questionable in a priority planning system like MRP.

Therefore, it is very important to, have cooperation, and trust between all the

personnel involved in both the production control and inventory control of the

organization in order to get the real benefits of the MRP system.

3.6 TRAINING OF PROJECT PROFESSIONALS

For a system to be successful, the users must be involved and they must be

educated or in other words, the users must understand the system for its successful

and effective implementation. Therefore, the users of an MRP system must have

thorough training before they actually start working with the system.

Some selected professionals of the concerned Water Resources Project must

take at least one month training on the MRP system to actually understand and

successfully run the system such that the inventory planning and controlling will be

easy, thorough, and efficient.

' 	 40

CHAPTER 4

DESIGN OF MRP SOFTWARE

4.1 DESIGN BASICS

This software design is based on `Object Model'. Generally speaking,

Object-Oriented models view the world as a collection of objects that contain both

their data and their functions, and these objects communicate with each other using

their member functions. The present software is designed for MS-DOS operating

environment, where the screen display is of textual form. The software can be run by

the user to create and fill up records of various types, and save the data in `File' for

later retrieval either to read, or write. The various types of records the software is able

to create and display are:

1. Master Production Schedule,

2. Bill of Materials,

3. Inventory Status Records,

4. Purchase Order Receipts,

5. Planned Order Releases,

6. Net-Change Reports,

7. Regenerative Reports, and

8. Exception Notices.

The MRP system is developed and designed by using OOP language,

C++ because OOP is a new way of organizing software that is based on real-world

objects, and C++ supports it.

The system will take inputs through the records such as,

• Master Production Schedule,

• Bill of Materials, and

• Inventory Status Records,

whereas, it will produce the screen output through,

• Planned Order Receipts,

• Planned Order Releases, and

• Exception Reports.

A user friendly Graphical User Interface is provided in the software for

handling of the data and the software itself, and this GUI is designed in C++ graphics

tools through which, the user can enter, alter, delete, save, and retrieve the inventory

data, and as such efficiently handle the software system.

4.2 METHODOLOGY AND ARCHITECTURE

Ill this dissertation, the design methodology adapted is "top-down hierarchy

of functions controlling the system that uses object-oriented modules for its

functionality"(2 . Here the system is designed by using a top-down approach but the

modules are implemented using a set of interacting objects.

In the present case, the `MVC Architecture'(') (Fig. 4.1) is implemented for
the design of the software, where,

(a) The model (M) layer implements the functionality part of the application,

(b) The view (V) layer implements the graphical user interface (textual

representation), and

(c) The controller (C) layer implements the user interactions with the

application.

In applying the MVC architecture, the responsibilities of various objects in the

system are separated. The details of the application are hidden from the user interface

and also the user interface is broken down into two parts, with the presentation
handled by V and the interaction by C.

4.3 DESIGN PROCESS

The software is designed keeping in mind the following points,

■ The software lets the user open a screen, fill it (partially or fully), and save

the record in a disk file,

■ The data are stored in a file and the user can retrieve them, and modify

them, using a code number that is specific to each material used,
■ The storage scheme of the software maintains only one blank record at a

time but allows many instances of the filled in data for each record, .

42

Use

Fig. 4.1: MVC Architecture (1)

43

• The code numbers are stored in one file and the data in one separate file. In

this way, there will be a single copy of each blank record at a time but

multiple sets of data for each blank record to fill up the record,

• The code numbers are stored in 'Material.dat' file and the data are stored

in `Initial.dat' file,

• The material code numbers are automatically generated from the system,

and if it is the first code number, then the listed code number will be

1(one), and here also there is a validation checking for entering the name

of the material, which should not be more than a specified length,
• The software stores the system date as its own date automatically, and
• During data modification process, one record is replaced and the new one

is overwritten at the same place.

4.4 OPERATING ENVIRONMENT

The software is designed for MS-DOS operating environment, with a text

editor having either VGA or EGA graphics display adapter. The user must have

Borland C++ 2'. 1(or higher) compiler, minimum 8 MB of RAM, and 30 MB of hard

disk space in his system.

4.5 LIMITATIONS OF THE SOFTWARE

The various limitations of the software are,

1. It can generate and store 65534 code numbers for equivalent number of

materials,

2. MRP computations can be made for two levels of items of the `Product

Tree',

3. Here, the time periods or buckets have been taken as weeks, and the

planning horizon is up to a maximum of five weeks,

4. The maximum lead time assumed is three weeks,

5. The name of every material entered cannot exceed 20 characters,

6. The lot size of each material has been calculated by the .standard EOQ

• formula,

7. The software has been designed for both `lot for lot' and `fixed lot size'

ordering techniques.

44

CHAPTER 5

CASE STUDIES

5.1 GENERAL

For the purpose of case studies which reveal how MRP can be applied to

any typical Water Resources Project, we have chosen one independent demand item

having zero components, and another independent demand end item with one

dependent demand component. Due to unavailability of actual data, theoretical data

have been taken, and many parameters have been assumed.

For the first case, the material selected is HSD oil. CI engines consume HSD f7

oil; and the light vehicles, heavy vehicles, and the equipment used in the Water

Resources Projects, which are invariably CI engine driven, intake this HSD oil as fuel.

In the second case, we have chosen `Horizontal Girder' as an end item

fabricated from rolled steel beams. Further, these `Horizontal Girders' are used as

components in the manufacturing process of different types of gates. Gates are

hydromechanical control equipment and their purpose is to control the flow of water

in the Water Resources Projects. In my working place, these gates are designed by the

Department of Water Resources, Government of Orissa, Bhubaneswar, and

manufactured by the Orissa -Construction Corporation Limited, Bhubaneswar, a

subsidiary of Department of Water Resources, Governmeni of Orissa, Bhubaneswar.

5.2 CASE 1

5.2.1 Data Acquisition and Computations

The demand rate of HSD oil (considered for only one year of operation of the

project) are usually calculated based on the construction schedule, and using the

following formula:

Hourly demand / BHP = 0.15 * LF• litres, where,

LF = Load Factor.

45

In actual working conditions, an equipment may not run over and above 60% load

factor.

Specimen Demand Calculation for a 100 HP Bulldozer:

Brake Horse Power (BHP) = 100hp,

Load Factor 	 = 50%,

Monthly working hours 	= 200 hrs,

Monthly HSD oil consumption per Bulldozer = 0.15 * 0.50 * 100 * 200

= 1500 litres,

Total machine month 	= 20 (assumed)

So, total demand 	= 20 * 1500 = 30,000 litres.

Monthly, demand rates of HSD oil for some of the selected equipment used for a

typical Water Resources Project are shown in the Table 5.1. Period of time to

calculate the demand rate was adopted in weeks, and since the schedule of project

construction is usually expressed in months, the monthly demand is converted to

weekly demand by multiplying a factor 12/52 = 0.23.

The assumed constant lead time = I week.

The maximum capacity of a fuel tanker = 12,000 litres, and so we fixed the lot size to

be 12,000 litres (fixed order quantity lot sizing technique).

Number of orders in a week = 1,59,056 / 12,000 = 13.25 or say 14, and we clubbed all

these fourteen orders into one.

So, total order quantity per period, i.e. per week = 1,68,000 litres.

We fixed the bucket time to be I week, and the total planning horizon to be 52 weeks.

Safety stock assumed = 1,68,000 litres.

For planning and controlling the flow of HSD oil, which is an independent demand

item, we use the `Time Phased Order Point Technique'.

In this technique, demand is forecasted, and supply is usually controlled by means of
order points.

Order point = safety stock + (weekly demand forecast * lead time)

= 1,68,000 + (1,59,056 * 1) = 3,27,056 litres.

Storage tank capacity for HSD oil = 14 * 4 * 12,000 = 6,72,000 litres, where,

the storage tanks are designed for four weeks demand of HSD oil, and per week

fourteen tankers are to be arrived.

Quantity on hand i.e. quantity of HSD oil just before the start of the construction of
the project = 6,72,000 litres.

Now we run the MRP software in a weekly basis for finding the quantity and timing

of the 'Planned Order Releases' for the HSD oil. Results are shown in Table 5.2, 5.3,

5.4, and 5.5.

Table 5.1: Demand Rates for HSD oil

S1. Description BHP LF Monthly Monthly MM Total Weekly

No. Working HSD 	oil monthly Demand

hrs Consump. Demand In

in litres in litres litres

1. Bulldozer, 100 0.5 200 1500 20 30,000 6,900

BEML 	.

2. Hydraulic 235 0.5 200 3525 9 31,725 7297

Excavator,2m3
3. Power Shovel 160 0.6 200 2880 9 25,920 5961

1.17 m3
4. Terex Rear 880 0.4 250 13,200 30 3,96,000 91080

Dump Truck
5. TATA Hoe, 160 0.6 200 2880 9 25,920 5962

1.15 m3
6. Terex Scraper, 320 0.6 200 5760 9 51,840 11923

10.7 m3
7. BEML Wheel 145 0.5 200 2175 9 19,575 4502

Loader
8. Truck 	Crane, 250 0.4 200 3000 9 27,000 .6210

30T
9. Truck 	Crane, 200 0.4 150 1800 4 7,200 1656

20 T
10: Road 	Roller, 125 0.4 150 1125 12 13,500 3105

10T
Total 6,28,680 1,44,596
Add 10% contingencies 62,868 14,459

Grand Total 6,91,548 1,59,056.

Annual Demand in litres (for 52 weeks) 82,98,576

M

Table 5.2: Master Production Schedule

Lead Time: 1

Sstock: 1,68,000

Code#: I

MASTER PRODUCTION SCHEDULE

Date: 01/02/2003

WEEKS

1 2 3 4 5

Projected Requirement 1,59,056 1,59,056 1,59,056 1,59,056 1,59,056

Table 5.3: Bill of Materials

BILL OF MATERIALS

Date :0 1/02/2003

Description 	 Code # 	Level 	Quantity Reqd. Per End Item

1-ISD Oil 	 1 	1 	- Nil

Table 5.4: Inventory Status Record 	.

Lead Tine: I

Sstock: 1,68,000

Code#: 1

INVENTORY STATUS RECORD

Date:01/02/2003

WEEKS.

0 1 2 3 4 5

Scheduled

Receipt

On Hand Qty 6,72,000

Table 5.5: Planned Order Release

Lead Time: 1

Sstock: 168,000

Code#: 1

PLANNED ORDER RELEASE
Date: 01/02/2003

WEEKS

Balance 1 2 3 4 5

Projected

Requirement

1,59,056 1,59,056 1,59,056 1,59,056 1,59,056

Scheduled

Receipts

On Hand Qty. 6,72,000 5,12,944. 3,53,888 1,94,832 2,03,776 2,12,720

Planned 	Order

Receipt

168000 168000 168000

Planned 	Order

Release

168000 168000 168000

5.2.2 Results And Discussions
The forecast of HSD oil is projected over the entire planning horizon of 52

weeks, and represents the projected requirements. The quantity on hand of 6,72,000

litres, just before the start of the project goes below the safety stock level of 1,68,000

litres in week 4, and a replenishment order of 1,68,000 litres is planned to arrive at

that time. Offsetting for lead time, the `Planned Order Release' is scheduled for week

3, where the quantity on hand drops down the order point of 3,27,056 litres. Actually,

the replenishment order is triggered by the on hand quantity dropping down to the

safety stock level, and it has nothing to do with the order point. Then continuously up

to week 18, the quantity on hand remains below the safety stock level of 1,68,000

litres, and `Planned Order Receipt' quantities equal to the lot size are generated, and

subsequently offsetted against the lead time to produce `Planned Order Releases'.

During the whole 52 weeks, `Planned Order Receipts' are not generated in weeks 1, 2,

3, 19, and 38. The MRP system generates an entire schedule of planned replenishment

orders, using the time phased order point technique instead of one order at a time like

other inventory policies.

49

The calculated weekly data of the inventory levels for the HSD oil spread over

the entire planning horizon of 52 weeks are shown in the tabular form in Table 5.6,

and in the graphical form in Fig. 5.1.

5.3 	CASE 2

5.3.1 Data Acquisition and Computations
Horizontal girders are fabricated from rolled steel beams, and these rolled steel

beans are purchased from steel plants. We have assumed the following data for this

case study:

• Annual demand of the horizontal girders = 416 nos,

• Demand rate of the horizontal girders is fixed = 8 nos per week,

• Maximum planning horizon = 52 weeks,

• All the horizontal girders have same dimensions (ISMB 300),

• Average length of one horizontal girder = 2m,

• Unit purchase cost of horizontal girder

= (Weight per metre * Cost of steel per kg *length)

_ (44.2*27*2) = Rs. 2386.80 or say Rs. 2387.00,

• Length of rolled steel beams purchased

= 1:0m (i.e. equal to one long trailer truck length),

• Unit purchase cost of rolled steel beam = Rs. 11,934.00,

• Annual demand of rolled steel beams = 83.2 + 10% contingencies

= 91.52 or say 92 nos,

• Order/setup cost of horizontal girder = Rs. 700.00,

• Order cost of rolled steel beam per lot = Rs. 900.00,

• Lead time in weeks for the horizontal girder = 1,

• Lead time in weeks for the rolled steel beam = 3,

• Holding cost fraction for both end item and the component = 0.25,

• Zero stock-outs for both end item and the component,

• Safety stock for horizontal girder in units = 8 nos,

• Safety stock for rolled steel beam = 6 nos,

• The purchased components are delivered to the storeroom one week ahead of

itefl 	t,

C~1Ito

50

Table 5.6: Inventory Levels for MRP Model of HSD Oil

.Weeks Inventory Levels

In Litres

Weeks Inventory Levels

In Litres

1 512944 27 241488*

2 353888 28 250432*

3 194832 29 259376*

4 203776* 30 268320*

5 212720* 31 277264*

6 221664* 32 286208*

7 230608* 33 295152*

8 239552* 34 304096*

9 248496* 35 313040*

10 257440* 36 321984*

11 266384* 37 330928*

12 275328* 38 171872

13 284272* 39 180816*

14 293216* 40 189760*

15 302160* 41 1.98704*

16 311104* 42 207648*

17 320048* 43 216592*

18 328992* 44 225536*

19 169936 45 234480*

20 178880* 46 243424*

21 187824* 47 252368*

22 196768* 48 261312*

23 205712* 49 270256*

24 214656* 50 279200*

25 223600* 51 288144*

26 232544* 52 297088*

N.B.: * mark indicates generation of `Planned Order Receipts'.

51

MRP MODEL FOR HSD OIL

550000

500000

450000

y 400000

350000

300000

O 250000

200000

150000

100000

50000

0

nll~nllllDH011llO . 	_ 	~fn J 	r_~wnll"I1~~~11~~~~ E' ~ r
?_ -_ 	Ann nn tl Qll" {' 'll

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Weeks

Fig. 5.1: Inventory Levels for MRP Model for HSD Oil

52

• Horizontal girders are not.produced until the lot size of the rolled steel beams
is available, and

Economic Order Quantity (EOQ) for the end item

_ (2*416*700 / 2387*0.25)112

= 31.24 or say 32 nos,
Reorder point for the end item = (416* 1 / 52) = 8,

Economic Order Quantity (EOQ) for the component

= (2*92*900 / 1 1934*0.25)1/2

= 7.45 or say 8 nos,
Reorder point for the component = (92*3 / 52) = 5.31 or say 6 nos,

5.3.2 EOQ Model
An EOQ model for this case study has been developed, and compared with

the MRP model. The inventory levels of both the end item and the component are
calculated and are given in Table 5.7.

It is assumed that a week before the start of production, i.e. during week 0, the

following quantities of both the end item and the components are available:
Quantity of end item = 32 nos,

Quantity of components = 8 nos.

5.3.3 MRP Model
The demand rate of the horizontal girders is fixed, and was assumed to be

eight per week spread over the entire planning horizon of 52 weeks. In the `Product

Structure Tree', the position of the horizontal girder is fixed at `Level 1', and the

position of the rolled steel beam is fixed at `Level 2'. Now we will determine the
material requirements in a level by level fashion.

It is assumed that the MRP system is using lot for lot ordering technique for

the horizontal girders, and fixed lot size ordering technique for the rolled steel beams.

The projected gross requirements of the horizontal girders are fed into the system via
`Master Production System', the detail inventory position is also fed into the system

via the `Inventory status Record', and then the application software determined the

`Planned Order Releases' of the horizontal girders. It is assumed that no quantity of

the end item is expected to arrive during the whole 52 weeks.

53

5.3.4 Results and Discussions

The MRP system generates an entire schedule of planned replenishment orders
for the whole planning horizon of 52 weeks.

The detail material plan of the horizontal girders are shown in Table 5.8, 5.9, 5.10,

5.12, and 5.13. Its inventory levels are also calculated and shown in Table 5.19.

The detail material plan of the rolled steel beams are shown in Table 5.11,
5.14, 5.15, 5.16, 5.17, and 5.18.

The inventory levels of these rolled steel beams are calculated and are shown
in Table 5.19.

The inventory levels of the end item, i.e. the horizontal girder are zero after
week 3, whereas it varies in a saw tooth pattern in the EOQ model.

The inventory levels of the component, i.e. the rolled steel beam vary in a

regular fashion excepting when `Scheduled Receipts' are awaited,, whereas it

regularly increase in the EOQ model: In comparison to the EOQ model, the•

component inventory levels are much smaller in the MRP system.

Annual end item inventory level in EOQ system = 1040

Annual component inventory level in EOQ system = 606.8

Total annual cost of the rolled steel beams in the EOQ system

= purchase cost + order cost + holding cost

= (11934*92) + (13* 900) + (11934*0.25*606.8 / 52)
= Rs. 11,44,443.20

Annual end item inventory level in MRP system = 48

Annual component inventory level in MRP system = 262.4

Total annual cost of the rolled steel beams in the MRP system

= purchase cost + order cost + holding cost

= (11934*92) + (9*900) + (11934*0.25*262.4 / 52)
= Rs. 11,21,083.20

MRP cost savings in components = (EOQ annual cost — MRP annual cost)

= Rs. 11,44,443.20 — Rs. 11,21,083.20

= Rs. 23,360.00

54

Table 5.7: Inventory Level in EOQ Model for Case 2
Week End 	I End

Item 	Item
Demand 	Inv.

Level

Compo.

Demand
Compo.

Inv.

Level

Week End

Item

Demand

End

Item.

Inv.

Level

Compo.

Demand
Compo.

Inv.

Level

1 8 24 0 8 27 8 8 6.4 11.2
2 8 16 0 8 28 8 32* 0 11.2
3 8 8 6.4 1.6 29 8 24 0 11.2
4 8 32* 0 1.6 30 8 16 0 17.2
5 8 24 0 1.6 31 8 8 6.4 10.8
6 8 16 0 9.6 32 8 32* 0 10.8
7 8 8 6.4 3.2 33 8 24 0 10.8
8 8 32* 0 3.2 34 8 16 0 18.8
9 8 24 0 3.2 35 8 8 6.4 12.4
10 8 16 0 11.2 36 8 32* 0 12.4
11 8 8 6.4 4.8 37 8 24 0 12.4
12 8 32* 0 4.8 38 8 16 0 20.4
13 8 24 0 4.8 39 8 8 6.4 14
14 8 16 0 12.8 40 8 32* 0 14
15 8 8 6.4 6.4 41 8 24 0 14
16 8 32* 0 6.4 42 8 16 0 22
17 8 24 0 6.4 43 8 8 6.4 15.6
18 8 16 0 14.4 44 8 32* 0 15.6
19 8 8 6.4 8 45 8 24 0 15.6
20 8 32* 0 8 46 8 16 0 23.6
21 8 24 0 8 47 8 8 6.4 17.2
22 8 16 0 16 48 8 32* 0 17.2
23 8 8 6.4 9.6 49 8 24 0 17.2
24 8 32* 0 9.6 50 8 16 0 25.2
25 8 24 0 9.6 51 8 8 6.4 18.8
26 8 16 0 17.6 52 8 32* 0 18.8

N.B.: * marks indicate `Planned Order Receipt' Generation

55

EOQ MODEL I

35

30
N

25

a)
--~ 20

0 15

~ 10

5

n

I y 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Weeks

Fig. 5.2: EOQ Model I For the Horizontal Girder

56

30

25

5

0

EOQ MODEL 2

i y 11 15 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Weeks

Fig. 5.3: EOQ Model 2 For Rolled Steel Beams

y1, AL LI k

(Ac y~

57

Table 5.8: Master Production Schedule for Level 1 of Case 2
Lead Time: 1

Sstock: 8

Code#: 2

MASTER PRODUCTION SCHEDULE

Date: 01/02/2003
WEEKS

1 	2 3 4 5
Projected Requirement 8 	8 8 8 8

Table 5.9: Bill of Materials for all Items Considered in Case 2

BILL OF MATERIALS

Date: 01 /02/2003
Description I Code# Level. Quantity. Reqd. Per End Item
Horizontal Girder 2 1 Nil
Rolled Steel Beam 3 2 0.2

Table 5.10: Inventory Status Record for Level I Item
Lead Time: I

Sstock: 8
INVENTORY STATUS RECORD

Date: 01/02/2003

Code# : 2
WEEKS

0 1 2 3 4 5
Scheduled

Receipt

On Hand Qty 32 24 16 8 0 0

m

Table 5.11: Inventory Status Record for Level 2 Item

Lead Time: 3 INVENTORY STATUS RECORD
Sstock: 6 Date: 01/02/2003

WEEKS
Code# : 3

0 1 2 3 4 5
Scheduled 8

Receipt

On Hand Qty 8 8 8 6.4 12.8 11.2

Table 5.12: Planned Order Release for Level 1 Item

Lead Time: I PLANNED ORDER RELEASE
Sstock: 8 Date: 01/02/2003

Code# : 2 WEEKS
Balance 1 12 3 4 5

Projected 8 8 8 8 8
Requirement

Scheduled

Receipts

On land Qty. 32 24 16 8 0 0
Net 	, 8

Requirement

Planned Order 8

Receipt

Planned Order 8 8

Release

Table 5.13: Planned Order Release for Level 1 Item
Lead Time: 1 PLANNED ORDER RELEASE
Sstock: 8 Date: 01/02/2003

Code #: 2 WEEKS
Balance 6 7 8 9 10

Projected 8 8 8 8 8
Requirement

Scheduled

Receipts

On hand Qty. 0 0 0 0 0 0
Net 8 8 8 8 8
Requirement

Planned Order 8 8 8 8 8
Receipt

Planned Order 8 8 8 8 8

Release

Table 5.14: Planned Order Release for Level 2 Item
Lead Time: 3 PLANNED ORDER RELEASE
Sstock: 6 Date: 01/02/2003

Code#: 3 WEEKS
Balance 1 2 3 4 5

Projected 1.6 •1.6
Requirement

Scheduled

Receipts

On hand Qty. 8 8 8 8 6.4 4.8
Net

Requirement

Planned Order

Receipt

Planned Order

Release

Table 5.15: Planned Order Release for Level 2 Item
Lead Time: 3 PLANNED ORDER RELEASE -
Sstock: 6 Date: 01/02/2003

Code# : 3 WEEKS
Balance 6 7 8 9 10

Projected 1.6 1.6 1.6 1.6 1.6
Requirement

Scheduled

Receipts

On hand Qty. 4.8 3.2 1.6 0 6.4 4.8
Net 1.6
Requirement

Planned Order 8

Receipt

Planned Order 8

Release

Table 5.16: Master Production Schedule for Level 2
Lead Time: 3 MASTER PRODUCTION SCHEDULE
Sstock: 6 Date: 01/02/2003

WEEKS
Code # : 3

1 2 3 4 	5
Projected Requirement 1.6 	1.6

M

Table 5.17: Master Production Schedule for Level 2
Lead Time: 3

Sstock: 6

Code#: 3

I 	MASTER PRODUCTION SCHEDULE

Date: 01/02/2003
WEEKS

6 7 8 9 10
Projected Requirement 1.6 1.6 1.6 1.6 1.6

Table 5.18: Master Production Schedule for Level 2
Lead Time: 3

Sstock: 6

Code #: 3

MASTER PRODUCTION SCHEDULE

Date: 01/02/2003
WEEKS

11 12 13 14 15
Projected Requirement 1.6 1.6 1.6 1.6 1.6

62

Table 5.19: Inventory Level in MRP Model for Case 2
Week I End

item

Demand

End

Item

Inv.

Level

Compo.

Demand

Compo.

Inv.

Level

Week End

Item

Demand

End

Item

Inv.

Level

Compo.

Demand

Compo.

Inv.

Level

1 8 24 0 8 27 8 0 1.6 3.2
2 8 16 0 8 28 8 0 1.6 1.6
3 8 8 0 8 29 8 0 1.6 6.4*
4 8 0 1.6 6.4 30 8 0 1.6 128SR
5 8 0 1.6 4.8 31 8 0 1.6 11.2
6 8 0 1.6 3.2 32 8 0 1.6 9.6
7 8 0 1.6 1.6 33 8 0 1.6 8
8 8 0 1.6 6.4* 34 8 0 1.6 6.4
9 8 0 1.6 4.8 35 8 0 1.6 4.8
10 8 0 1.6 3.2 36 8 0 1.6 3.2
11 8 0 1.6 1.6 37 8 0 1.6 1.6
12 8 0 1.6 6.4* 38 8 0 1.6 6.4*
13 8 0 1.6 4.8 39 8 0 1.6 4.8
14 8 0 1.6 3.2 40 8 0 1.6 3.2
15 8 0 1.6 96SR 41 8 0 1.6 1.6
16 8 0 1.6 8 '42 8 0 1.6 6.4*
17 8 0 1.6 6.4 43 8 0 1.6 4.8
18 8 0 1.6 4.8 44 8 0 1.6 3.2
19 8 0 1.6 3.2 45 8 0 1.6 1.6
20 8 0 1.6 1.6 46 8 0 1.6 6.4*
21 8 0 1.6 6.4* 47 8 0 1.6 4.8
22 8 0 1.6 4.8 48 8 0 1.6 3.2
23 8 0 1.6 3.2 49 8 0 1.6 1.6
24 8 0 1.6 1.6 50 8 0 1.6 6.4*
25 8 0 1.6 6.4* 51 8 0 1.6 4.8
26 8

AT "

0
,

1.6 4.8 52 8 0 1.6 3.2
lr.11.: 	irnuieates cneaulecl Receipt', and * mark indicates `Planned Order
Receipt' at Component Level

63

MRP MODEL 1

30

25

d
d 20
J

15
-O

y 10

C
5

0

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Weeks

Fig. 5.4: Inventory levels for MRP Model of the Horizontal Girder

64

MRP MODEL 2

14

12

N
10

d
J 8

O 6
C
N
> •4 C

2

0
i s o / 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Weeks

Fig. 5.5: Inventory Levels for Rolled Steel Beams

65

CHAPTER 6

CONCLUSIONS

6.1 GENERAL

Inventory systems develop as the inventory control needs of an organization

evolve. The signal for greater inventory control and installation of new systems can

come from many sources. If the organization concerned loses orders, does not

adequately indicate inventory status, causes too many stock-outs, accumulates

excessive and surplus inventory, does not serve the purposes of the users, fails in

production process, fails in timely completion of the work, or simply loses

performance, then time has stepped in to rethink for developing a new inventory

system or for overhauling the existing inventory system.

Water Resources Projects are invariably failing in completion of the project in

due dates, and one of the major causes of it is failure in the adopted inventory

planning and controlling systems. In this computer age, for smooth and sound

management of huge quantum of materials in these projects, they must adopt the

`Material Requirements Planning' system. MRP system can be applied in Water

Resources Projects for almost all materials irrespective of their type, quantity, and

nature. To illustrate the use of MRP in Water Resources Projects, two case studies

have been covered in this .dissertation, and the conclusion of these case studies are

presented in the following paragraphs.

6.2 CASE STUDY 1

The behavior of the HSD oil as an inventory in W.R. Projects has been studied

through the application of MRP system to it. MRP generated periodical `Planned

Order Releases' for the entire planning horizon considered at the planning level, but

in other inventory policies, the planning can be done period by period and only one at

a time. So using MRP, the materials managers can better plan and control the flow of

inventories. Like HSD oil, MRP can also be applied to all other independent demand

items, such as, Petrol, Lubricating Oil, Cement, Steel, and Tires using the `Time

Phased Order Point Technique'.

6.3 CASE STUDY 2

In the second case study, which covers the fabrication aspects of the Water

Resources Projects, a typical case of horizontal girders for, vertical lift gates, and their

raw materials, i.e. rolled steel beams have been studied. It is found that using MRP,

the inventory levels of the horizontal girders have been reduced drastically in

comparison to the EOQ model, and in the component level, the inventory level is also

very low in comparison to the EOQ model, where its inventory level is gradually

increasing, and the plateaus in the EOQ model graph for the components indicate that

inventory lies dormant in the storeroom. Also use of MRP system over the EOQ

system is cost beneficial. Similarly, MRP system can be used for all other fabricated

materials like all the components of a gate, and the steel ribs for the tunnels.

From the case studies conducted, it is found that `Material Requirements

Planning' system is best suited for planning and controlling all types of materials in a

Water Resources Project.

6.4 SCOPE FOR FUTURE RESEARCH

Actual data and parameters may be obtained from any Water Resources

Project, and similar studies may be conducted for all the materials like, Petrol,

Lubricating Oil, Cement, Tires, production of steel ribs for tunnels, all the

components of `Vertical Lift Gates', and `Radial Gates'.

A MRP system may be designed having an object database management

system (ODBMS), and this database may be connected to the MRP application

designed in any object-oriented programming language.

A full fledged MRP system may be constructed with at least five levels in the

`Product Tree', planning horizon up to 10 weeks, low level coding facilities, facilities

to apply all the `lot sizing techniques' and `pegging' facilities etc.

67

REFERENCES

1. Bertrand Meyer (1997), "Object-Oriented Software Construction", Prentice
Hall PTR, New York.

2. Candace Arai Yano and Robert C. Carlson (1987), "Interaction Between

Frequency of Rescheduling and the Role of Safety Stock in Material

Requirements Planning Systems", International Journal of Production
Research, Vol. 25, No.2(pp 221-232).

3. Chrwan-Jyh Ho (1989), "Evaluating the Impact of Operating Environments on

MRP System Nervousness", International Journal of Production Research,
Vol. 27, No.7 (pp 1115-1135).

4. D. H. Noorie, et al, (1990), "Object-Oriented Management Planning Systems

for Advanced Manufacturing", 'International Journal of Computer Integrated

Manufacturing, Vol. 3, No. 6, (pp 373-378).
5. D. J. Bragg, et al, (1999), "The Effects of Partial Order Release and

Component Reservation on Inventory and Customer Service Performance in

an MRP Environment", International Journal of Production Research, Vol. 37,
No. 3, (pp 523-538).

6. D. McAreavey, et al (1988), "Designing the Closed Loop Elements of a

Material Requirements Planning System in a Low Volume, Make-to-Order
Company (with Case Study)", International Journal of Production 'Research,
Vol. 26, No.7 (pp 1141-1159).

ti. 	7 Ellis Horowitz et al,. (1999), "Computer Algorithms/C++", Galgotia
Publications Pvt. Ltd., New Delhi.

8. George Chryssolouris (1992), "Manufacturing Systems, Theory & Practice",
Springer-Verlag, New York.

9. Grady ' Booch (2001), "Object-Oriented Analysis & Design with

Applications", Pearson Education Asia, New Delhi.
10. Harlan C. Meal, et a1,(1987), "Material Requirements Planning in Hierarchical

Production Planning Systems", International Journal of Production Research,
Vol. 25, No.7 (pp 947-956).

1<

M

6R

11. Herbert Schildt (1999), "C++: The Complete Reference, Third Edition", Tata

McGraw-Hill Publishing Company Limited, New Delhi.
12. J. Hoey, et a] (1986), "Designing a Material-Requirements-Planning System

to Meet the Needs of Low-volume, Make-to-Order Companies (with Case

Study)", International Journal of Production Research, Vol. 24, No.2 (pp 375-
386).

13. J. Miltenburg (2001), "Production Planning Problem where Products have

Alternate Routings and Bill Of Material", International Journal of Production
Research, Vol. 39, No. 8, (pp 1755-1775).

14. John A. Havers and Frank W. Stubbs, Jr (1971), "Handbook of Heavy

Construction", McGraw-Hill Book Company, New York.
15. John G. Wacker (1985), "A Theory of Material Requirements Planning

(MRP): An Empirical Methodology to Reduce Uncertainty in MRP Systems",

International Journal of Production Research, Vol. 23, No. 4 (pp 807-824).

J 16. Joseph Orlicky (1975), "Material Requirements Planning", McGraw-Hill

Book Company, New York.

17. Joseph S. Martinich (1999), "Production & Operations Management", John
Wiley & Sons, Inc., New York.

18. Khalid Sheikh (2001), "Manufacturing Resource Planning (MRP II)", Tata

McGraw-Hill Publishing Company Limited, New Delhi.
19. Michael J. Folk, et al (1998), "File Structures, An Object-Oriented Approach

with C++", Pearson Education Asia, Inc., New Delhi.
20. Mitra et al (1986), "A Re-examination of Lot Sizing Procedures for

Requirement Planning System: Some Modified Rule", International Journal of
Production Research, Vol. 21, No. 4 (pp 471-478).

21. Oliver W. Wight (1974), "Production & Inventory Management in the

Computer Age", Canners Books International, Inc., Massachusetts.
22. R. L. Peurifoy and W. B. Ledbetter (1985), "Construction Planning,

Equipment, and Methods", McGraw-Hill Book Company, New York.
23. Richard B. Chase and Nicholas J. Aquilano (1977), "Productions &

Operations Management", Richard D., Irwin, Inc., Illinois.
24. Richard J. Tersine (1988), "Principles of Inventory & Materials Management",

North-Holland, New York.

:S~

25. Robert Lafore (2000), "Object-Oriented Programming in Turbo C++",
Galgotia Publications Pvt. Ltd, New Delhi.

26. Shari Lawrence Pfleeger (2001), "Software Engineering, Theory and

Practice", Pearson Education Asia, Inc., New Delhi.
27. Timon Chih-Ting Du and Philip M. Wolfe (2000), "Building an Active

Material Requirements Planning System", International Journal of Production
Research, Vol. 38, No.2 (pp 241-252).

APPENDIX

SOFTWARE LISTING

71

Application of Material Requirements
model in Water Resources Projects
DETAIL SOFTWARE IN A FLOPPY DISK
File: mrp.cpp

#include <iostream.h>
#include <fstream.h>
#include <process.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
#include <conio.h>
#include <dos.h>
#include <stdlib.h>
#include <iomanip.h>
#include <graphics.h>
#include <math.h>

Planning (MRP)

typedef char option [20] ;
const int ROW = 2.0,COL =20;
option a[1={

"NEW ITEM CODE",
"INPUT DATA",
"CLOSE CODE",
"DISPLAY CODES",
"MODIFY DATA",
"RECORDS",
"EXIT"

option b[]=
{

"INV.STA.RECORD",
"MAS.P.SCHEDULE",
"BILL OF MAT.",
"PLA.OR.RECEIPT",
"PLA.OR.RELEASE",
"DAILY REPORT",
"WEEKLY REPORT",
"EXCEP. NOTICE",
"EXIT"

};
class entry_menu
{
private:

int i,done;
public:

void box(int xl,int yl,int x2,int y2);
char menu();
void main menu();
void control menu();
char re_ menu ();
void screen();

};
class shape
{
public:

void box(int,
};
items

int, int, int, char);

72

class initial

public:
void add_ to_file(unsigned int,char iname[20],
unsigned int,unsigned int,unsigned int,unsigned int,
unsigned int,unsigned int,unsigned int,unsigned int)
void add_data(unsigned int,unsigned int,unsigned
int,unsigned int,unsigned int,unsigned int,unsigned
int,unsigned int,unsigned int,unsigned int,unsigned
int,unsigned int,unsigned int,unsigned int,unsigned
int,unsigned int,unsigned int);
void modify (void);
char *return_name(unsigned int);
void input(unsigned int);
void input_data(void);
void display_code_list(void);
void display(unsigned int);
void delete_code(unsigned int);
unsigned int last_code(void);
unsigned int search_code(unsigned int);
int recordno(unsigned int);
unsigned int compute nrl(unsigned int cno);
unsigned int compute nr2(unsigned int cno);
unsigned int compute nr3(unsigned int cno);
unsigned int compute nr4(unsigned int cno);
unsigned int compute nr5(unsigned int cno);
unsigned int compute ohl(unsigned int cno);
unsigned int compute oh2(unsigned int cno);
unsigned int compute oh3(unsigned int cno);
unsigned int compute oh4(unsigned int cno);
unsigned int compute oh5(unsigned int cno);
unsigned int compute_pol(unsigned int cno);
unsigned int compute_po2(unsigned int cno);
unsigned int compute'po3(unsigned int cno);
unsigned int compute_po4(unsigned int cno);
unsigned int compute_po5(unsigned int cno);
unsigned int compute__plol(unsigned int cno);
unsigned int compute__plo2(unsigned int cno);
unsigned int compute _plo3(unsigned int cno);
unsigned int compute,,plo4(unsigned int cno);
unsigned int lot_sizing(unsigned int);
unsigned int compute_ rp(unsigned.int);
void display _isr(void);
void display_mps(voit);
void display_bom(void);
void display _porl(void);
void display _por2(void);
void daily_report(void) ;
void weekly_report(void);
void excep_notice(void);

private:
void modify_code(unsigned int,char i_name[20),
unsigned int,unsigned int,unsigned int,unsigned int,
unsigned int,unsigned int,unsigned int,unsigned int,
unsigned int,unsigned int,unsigned int,unsigned int,
unsigned int,unsigned int,unsigned int,unsigned int,
unsigned int,unsigned int,unsigned int);
unsigned int codeno;char name [20];
unsigned int ademand,hcost,ocost;//add_ to file
unsigned int prof_regl,proj_reg2,proj_req3,proj_req4,

73

proj_reg5,sche_regl,sche_reg2,schereq3,schereq4,
sche_reg5,on_hand0,ltime,level,quantity,num com,sstock;
unsigned int on_hands, on_hand2,on_hand3,on_hand4,
on_hand5,net_regl,net_reg2,net_req3,net_req4;
net_reg5,puorl,puor2,puor3,puor4,puor5,pinol,pino2,
pino3,pino4,pino5,weekO,weekl,week2,
week3,week4,week5,lotsize,rpoint;

class material

public:
void new code (void);
void close_code(void);
void display code(void);
void delete_code(unsigned int);
void add_data (char f_type [10]) ;

private:

void box for_display(int);
unsigned int no_of_days(unsigned int, unsigned int,
unsigned int, unsigned int,unsigned int,
unsigned'int);
void add_ to_file(unsigned int,unsigned int,
unsigned int,unsigned int, char f_type[10]);
char file _n [10] ;
unsigned int codeno;//add to file
unsigned int dd, mm, yy;

void entry_menu::normalvideo(int x,int y, char *str)
{

gotoxy(x,y);
cprintf("%s",str);

}
void entry_menu::reversevideo(int x,int y,char *str)
{

textcolor-(5+.143)
textbackground(WHITE);
gotoxy(x,y);
cprintf ("%s" , str)
textcolor(GREEN);
textbackground(BLACK);

}
void entry_menu::box(int xl,int yl,int x2,int y2)
{

for(int col=xl;col<x2;col++)
{
gotoxy(col,yl);
cprintf (" %c", 196)
gotoxy(col,y2);
cprintf("%c",196);

}
for(int row=yl;row<y2;row++)

{
gotoxy(xl,row);
cprintf("%c",179);
gotoxy(x2,row);'
cprintf("%c",179);

gotoxy(xl,yl);
cprintf ("%c" , 218) ;
gotoxy(xl,y2);

74

cprintf("%c",192);
gotoxy(x2,yl);
cprintf("%c",191);
gotoxy(x2,y2);
cprintf("%c",217);

}
void entry_menu::control_menu()
{

char choice;
material ma;initial in;
do
{
choice = menu();
clrscr();
switch (choice)

{
case '1':
_setcursortype(_NORMALCURSOR);
box(3, 1, 75, 24);
box(5, 2, 73, 23);
ma. new code ();
break;
case '2':
_setcursortype(_NORMALCURSOR);
box(3, 1, 75, 24);
box(5, 2, 73, 23);
in. input_dataC);
break;
case '3':
_setcursortype(_NORMALCURSOR);
box(3, 1, 75, 24) ;
box(5, 2, 73, 23);
ma.close_code();
break;
case '4':
_setcursortype(_NORMALCURSOR);
box(3, 1, 75, 24) ;
box(5, 2, 73, 23);
in.display_ code _list C);
break;
case '5':
_setcursortype(_NORMALCURSOR);
box(3, 1, 75, 24) ;
box(5, 2, 73, 23) ;
in.modify();
break;
case '6':
setcursortype(NORMALCURSOR);

box(3, 1, 75, 24) ;
box(5, 2, 73, 23);
main menu Q; ;
break;
case '7':
exit (0)
}

}
while(choice!=6);

}
void entry_menu::mainmenu()
{

char choice;initial ib;

75

do
{
choice = re_menu();
clrscr();
switch (choice)

{
case '1':
box(3, 1, 75, 24);
box(5, 2, 73, 23);
ib.display_isr();
break;
case '2':
box(3, 1, 75, 24) ;
box(5, 2, 73, 23);
ib.display_mps();
break;
case '3':
box(3, 1, 75, 24);
box(5, 2, 73, 23);
ib . display_bom 0;.
break;
case '4':
box(3, 1, 75, 24);
box(5, 2, 73, 23);
ib.display_porl();
break;
case '5':
box(3, 1, 75, 24);
box(5, 2, 73, 23);
ib.display_por2();
break;
case '6!:
box(3, 1, 75, 24);
box(5, 2, 73, 23);
ib.daily_report();'
break;
case '7':
box(3, 1, 75, 24) ;
box(5, 2, 73, 23);
ib.weekly_report();
break;
case '8':
box(3, 1, 75, 24) ;
box(5, 2, 73, 23);
ib.excep_ notice ();
break;
case '9':
return;
}

}while (choice != 8);
}
void entry_menu: :screen (void)
{

driver = DETECT;
initgraph(&driver, &mode, ");
setbkcolor(10);
setcolor(5);
settextstyle(0,0,2);
outtextxy(50,50," PA P E R L E S S ");
settextstyle(0,0,5);
outtextxy(50,100,"MATERIAL");

rj1

outtextxy (50,200, "REQUIREMENTS");
outtextxy(50,300,"PLANNING ");
settextstyle(0,0,3);
outtextxy(50,370,"SYSTEM");
delay(5000);closegraph();
initgraph(&driver,&mode,"");
setbkcolor (10)
setcolor(1);
settextstyle(0,0,2);
outtextxy(50, 100, "A");
outtextxy(50, 150, "DISSERTATION");
outtextxy(50,200,"GUIDED BY:");
outtextxy(50,250,"PROF. GOPAL CHAUHAN,
outtextxy(50,275,"&");
outtextxy(50,300,"DR. PRADEEP KUMAR,
outtextxy(50,340,"IIT ROORKEE,");
outtextxy(50,365,"ROORKEE -247 667,
delay(5000);closegraph();
initgraph(&driver,&mode,"");
setbkcolor(10);
setcolor(4);
settextstyle(0,0,2);

WRDTC,");

M&IED,");

INDIA");

outtextxy(30,30,"SUBMITTED IN PARTIAL FULFILLMENT OF");
outtextxy(30,80,"THE REQUIREMENTS FOR THE AWARD OF 	");
outtextxy(30,130,"THE DEGREE OF ");
outtextxy(30,180,"MASTER OF TECHNOLOGY");
settextstyle(0,0,1);
outtextxy(30,230,"IN");
settextstyle(0,0,2);
outtextxy(30,280,"WRD(MECHANICAL)");
delay (5000); 	z
closegraph();

}
void material: :new code(void)

gotoxy(3,3);
for (i = 1; i<= 76; i++)
cprintf (" ")
textbackground(BLACK);
textcolor(BLACK+BLINK);
textbackground(WHITE)) ;
gotoxy(30,3);
cprintf("OPEN NEW ITEM CODE");
textcolor(LIGHTGRAY);
textbackground(BLACK);
int dl, ml, yl;
struct date d;
getdate(&d);

d1 = d.da_day;mi = d.da_mon;yl = d.da_year;
unsigned int cno;
cno = ini.last_code();
cno++;
if (cno ==1)
{
ini.add_to_file(cno,"abc",1,1,1,1,1,1,1,1);
ini.delete_code(cno);
gotoxy(2,2);
cout<<"Press Enter";
getch () ;
add_to_file(cno, 1, 1, 2003, "INITIAL");
delete_code(cno);

77

}
char. i_name [20] ;unsigned int ad,t_ad,
hc,t_hc,oc,t_oc,lt,t_lt,lv,t_lv,q,t_q,nc,t nc,
ss,t_ss;char swap[l0]
gotoxy(2,3);
cout«°Date: 	°«dl<<' /' <<ml<<' /' <<yl;
gotoxy(2,5);
cout<<°Item Code# : "<<cno;
gotoxy(55,6);
cout<<"Input Parameters";
gotoxy(55,7);
coutcc ============---- "
gotoxy(2,9);
cout<<"Item Name . " .
gotoxy(2,10);
cout<<"Annual Demand(in Units) ."
gotoxy(2, 11)
cout<<"Holding Cost(Rs. per unit per Year) •"•
gotoxy(2,12);
cout<<"Ordering Cost(Rs. per Order) • "
gotoxy (2.,.13) ;
cout<<"Safety Stock (in Units) • " .
gotoxy(2,14);
cout<<"Lead Time (in Weeks) . "
gotoxy (2 , 15). ;
cout<<"Level in Product Tree (Top Level 1) •"•
gotoxy(2,16);'
cout<<"Quantity Required for Upper Level Item:";
gotoxy(2,17);
tout «°No. of Components(if end item) :"
do '
{
valid = 1;
clear (55, 9)
gotoxy(55,9);
gets(i_name);
strupr(i_name);
if 	(1 name [0] 	== 	' 0')
return;
if 	(strlen(i_name) 	==O 	strlen(i name) > 20)

valid = 0;
gotoxy(2, 	22);
cprintf("Name must not be greater than 20");
getch();

}
}
while 	(!valid);
do
{
valid = 1;
clear(55,10);
gotoxy(55,10);
gets(swap);
t_ad=atoi(swap);
ad=t_ad;
if 	(swap[0] 	== 	'0')

{
valid = 0;

}

}
while (!valid);
do
{
valid = l;
clear(55,11);
gotoxy(55,11);
gets(swap);
t_hc=atoi(swap);
he=t_hc;
if (swap[0] == '0')

{
valid = 0;
}

}
while (!valid);
do
{
valid = 1;
clear(55,12);
gotoxy(55,12);
gets(swap);
t_oc=atoi(swap);
oc=t_oc;
if (swap[0] == '0')

{
valid = 0;

}
}
while (!valid);
do
{
valid = 1;
clear(55,13);
gotoxy(55,13);
gets(swap);
t_ss=atoi(swap);
ss=t_ss;
if (swap [0] __ 1 0 1)

{
valid = 0;

}
while (!valid) ;
do
{
valid = 1;.
clear(55,14)j
gotoxy(55,14);
gets(swap);
t_lt=atoi(swap);
It=t_lt;
if (swap[0] __ '0')

{
valid = 0;
}

}
while (!valid)
do
{
valid = 1;

79

clear(55,15);
gotoxy(55,15);
gets(swap);
t_lv=atoi(swap);
lv=t_lv;
if (swap [O] __ ' 0')

{
valid = 0;

}
}
while (!valid);
do
{
valid = 1;
clear(55,16);
gotoxy (55, 16) ;
gets(swap);
t_q=atoi(swap);
q=t_q;
if (swap[0] __ '0')

{
valid = 0;
}

}
while (!valid);
do
{
valid = 1;
clear (55, 17)
gotoxy(55,17);
gets(swap);
t_nc=atoi(swap);
nc=t_nc;
if (swap [0] __ ' 0')

{
valid = 0;

}
}
while (!valid);

do
{
clear(2, 24);
valid = 1;
gotoxy(2, 24);
cout << "Want to save the record <Y/N> ?";
ch=getche();
if(ch=='0')
return;
ch = toupper(ch);.
}

while (ch != 'N' && ch !=
if (ch == 'N')
return;
unsigned int lot,rp;char f_type[10];
strcpy(f_type, "INITIAL");
ini.add_to_file(cno, i_name,ad,hc,oc,ss,lt,lv,q,nc);
add_to_file(cno, dl, ml, yl, f_type);

}
void, initial: :input _data (void)
{

80

gotoxy(3,3);
for (j = 1; j<= 76;j++)
cprintf (" ")
textbackground(BLACK);
textcolor(BLACK+BLINK);
textbackground(WHITE);
gotoxy(35, 3);
cprintf("INPUT DATA");
textcolor(LIGHTGRAY);
Lextbackground(BLACK);
int dl, ml, yl;
struct date d;
getdate(&d);
dl = d.da day;ml = d.da_mon;yl = d.da_year;
unsigned int cno;
cno =last code();
if (cno ==1)
{
add data(1,1,1,1,1,1,3.,1,1,1,1,1,1,1,1,1,1)
delete _code (cno);
gotoxy (2, 1)
cout << "Press Enter";
getch () ;
mi.add_data("INITIAL");
mi.delete_code(cno);

}
char i_name [20] ;char swap [10] ;
unsigned int prl,pr2,pr3,pr4,pr5,srl,sr2,
sr3,sr4,sr5,oh0;
gotoxy(2,6);
cout<<"Date: "<<d1<<,/'<<m1<<,/,<<y1;
display(cno);
gotoxy(2,5);
cout « °Code# : " <<cno ;
gotoxy(2,7);
cout<<"Item Name: ;.'<<i_name;
gotoxy(1,9);
for(j=l;j<=79;j++)
cout << "="
gotoxy(2,10);
cout<<"PERIOD:";
gotoxy(28,10);
cout<<"Week0 Weekl Week2 Week3
gotoxy(1,11);
for(j=l;j<=79;j++)

gotoxy(2,12);
cout<<"Put Week Values:";
gotoxy(1,13);
for (j=1;j<=79;j++)
cout << "="
gotoxy(2,14);
cout<<"Projected Requirement:";
gotoxy (2 , 15)
cout<<"Scheduled Receipt
gotoxy(2,16);
cout<<"Quantity On Hand
gotoxy(1,18);
for (j=1;j<=79;j++)
cout << "_":
unsigned int t_wO,t_wl,t_w2,t_w3,t_w4,t_w5,

Week4 	Weeks";

wk0,wkl,wk2,wk3,wk4,wk5;
unsigned int t_prl , t_pr2 , t_pr3 , t_pr4 , t_pr5 ,
t_srl,t_sr2,t_sr3,t_sr4,t_sr5,t_ohO;
unsigned int nrl,nr2,nr3,n'r4,nr5,pol,po2,
po3,po4,po5,plol,plo2,plo3,plo4,plo5;

mi.clear(28,12);
valid = 1;
gotoxy (28, 12)
gets(swap);
t_wO=atoi(swap);
wkO=tw0;
if (swap [0] == ' 0')

valid = 0;
}

}while (!valid);

mi.clear(39,12);
valid = 1;
gotoxy(39,12);
gets(swap);
t_wl=atoi(swap);
wkl=twl;
if (swap[0] == '0')

valid = 0;
}

}while (!valid);

mi.clear(47,12);
valid = 1;
gotoxy(47,12);
gets(swap);
t_w2=atoi(swap);
wk2=t w2;
if (swap [0] == ' 0')

{
valid = 0;
}

}while (!valid);
do
{
mi.clear(56,12);
valid = 1;
gotoxy(56,12);
gets(swap);
t_w3=atoi(swap);
wk3=t w3;
if (swap [0] == ' 0')

valid = 0;
}

}while (!valid);

mi.clear(65,12);
valid = 1;
gotoxy(65,12);
gets(swap);
t_w4=atoi(swap);
wk4=tw4;
if (swap[O] == '0')

valid = 0;
}

}while (!valid);

mi.clear(75,12);
valid = 1;
gotoxy(75,12);
gets(swap);
t_w5=atoi(swap);
wk5=tw5;
if (swap [0] == ' 0')

valid = 0;
}

}while (!valid);

mi.clear(39,14). ;
valid = 1;
gotoxy(39,14).;
gets(swap);
t_prl=atoi(swap);
prl=t_prl;
if (swap [0] == ' 0')

valid = 0;
}

}while (!valid);

mi.clear(47,14);
valid = 1;
gotoxy(47,14);
gets(swap);
t_pr2=atoi(swap);
pr2=t_pr2;
if (swap [0] == ' 0')

{
valid = 0;
}

}while (!valid);
do
{
mi.clear(56,14);
valid = 1;
gotoxy (56, 14)

gets(swap).;•
t_pr3=atoi(swap);
pr3=t_pr3;,
if (swap [0] == ' 0')

{
valid = 0;
}

}while (!valid);

mi.clear(65,14);
valid = 1;
gotoxy(65,14);
gets(swap);
t pr4=atoi (swap) ;
pr4=t_pr4;
if .(swap[0] == '0')

valid = 0;
}

}while (!valid);

mi.clear(75,14);
valid = 1;
gotoxy(75,14);
gets(swap);
t_pr5=atoi(swap);
pr5=t_pr5;
if (swap [0] == ' 0')

valid = 0;
}

}while (!valid);

mi.clear(39,15)
valid = 1;
gotoxy(39,15);
gets(swap);
t_srl=atoi(swap);
srl=tsrl;
if (swap[0] == '0')

{
valid = 0;
}

}while (!valid);
do
{
mi.clear(47,15);
valid = 1;
gotoxy (47, 15)
gets(swap);
t_sr2=atoi(swap);
sr2=tsr2;
if (swap [0] __ ' 0')

valid = 0;

}
}while (!valid);

mi.clear(56,15);
valid = 1;
gotoxy(56,15);
gets(swap);
t_sr3=atoi(swap);
sr3=t_sr3;
if (swap [0] == 1 0 1)

valid = 0;
}

}while (!valid);

do
{
mi.clear(65,15);
valid = 1;
gotoxy(65,15);
gets(swap);
t_sr4= atoi(swap);
sr4=t_sr4;
if (swap [O] == l 0 w)

{
valid = 0;
}

}while (!valid);
do
{
mi.clear(75,15);
valid = 1;
gotoxy(75,15);
gets(swap);
t_sr5= atoi(swap);
sr5=t_sr5;
if (swap [0] == '0.')

{
valid = 0;
}

}while (!valid);
do
{
mi.clear(28,16);
valid = 1;
gotoxy (28, 16)
gets(swap);
t_oh0= atoi(swap);
oho=t_oh0;
if (swap[0] == l0w)

{
valid = 0;
I .

}while (!valid);
do
{
mi.clear(2,24);
valid = i;

:7

gotoxy(2,24);
cout << "Do you want to save the record <Y/N> ? ";
ch = getche();
if (ch == '0')
return;
ch = toupper(ch);

}while (ch != 'N' && ch !=
if (ch == 'N')
return;
char f_type [10]
strcpy(f_type; "INITIAL");
add_data(prl,pr2,pr3,pr4,pr5,srl,sr2,
sr3,sr4,sr5,oh0,wkO,wkl,wk2,wk3,wk4,wk5);
mi.add_data(f_type);

unsigned int initial::lot sizing(unsigned int cno)
{

fstream file;
file.open("INITIAL.'dat"; ios::in);
file.seekg(0, ios::beg);
unsigned int lot;
while (file.read((char *)this, 'sizeof (initial)))
{

if (codeno == cno)
{

lot=sgrt(2*ademand*ocost/hcost);
lotsize=lot;
break;

}
}
file. close ();
return lotsize;

}
void material::close_code(void)
{

clrscr();
char i_cno[10];char ch;
unsigned int t,cno;
gotoxy(70, 1);
cout << "<0>= EXIT";
gotoxy(2,6);
cout << "Enter the Code#:";
gets(i_cno);
t=atoi(i_cno);
cno=t;
if (cno == 0)
return;
clrscr();
initial ini;
if (!ini.search_code(cno))

{
gotoxy(2,8);
cout << "Code not found! ";
getch();
return;
}

gotoxy(70,1);
tout<<"<O>=EXIT";
gotoxy(3, 3);
textbackground(WHITE);

Rc

for (int i = 1; i <= 76; i++)
cprintf(° ");
textbackground(BLACK);
textcolor(BLACK+BLINK);
textbackground(WHITE);
gotoxy (34 ,. 3) ;
cprintf("CLOSE CODE");
textcolor(LIGHTGRAY);
textbackground(BLACK);
int dl, ml, yl;
struct date d;
getdate(&d);
dl = d.da_day;ml = d.da_mon;yl = d.da_year;
gotoxy(2,6);
cout<<"Date: "<<dl<<"/"<<ml<<"/"<<yl;
ini.display(cno);
do

{
clear(2,22);
gotoxy(2,22);
cout << "Close this Code <YjN> ?";
ch = getche();
if (ch == '0')
return;
ch = toupper(ch);

while (ch != 'N' && ch !-
if (ch == 'N')
return;
ini.delete_code(cno);
delete_code(cno);
gotoxy(2, 23);
cout << "Item Code Deleted";
gotoxy(2, 24);
cout < "Press any key to continue..."
getch();

}
void initial::display(u±signed int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(0, ios:beg);
while (file.read(:{char *)this, sizeof(initial)))

if (cno == codeno)

gotoxy(2,5);
cout << "Code#:" << codeno;
gotoxy(2,7);
cout .< "Item Name:";
puts (name) ;
break;

}
}
file.close();

}
void initial::modify code(unsigned int cno, char i_name[20],
unsigned int ad,unsigned int hc,unsigned int oc,unsigned int
ss,unsigned int lt,unsigned int lv,unsigned int q,unsigned
int nc,unsigned int prl;unsigned int pr2,unsigned int pr3,
unsigned int pr4,unsigne'd int pr5,unsigned int srl,unsigned

M

int sr2,unsigned int sr3,unsigned int sr4,unsigned int sr5,
unsigned int oho)
{

int recno;recno=recordno(cno);
fstream file;
file.open("INITIAL.dat", ios::outlios::ate);
strcpy(name, i_name);
ademand=ad;hcost=hc;ocost=oc;sstock=ss;
ltime=lt;level=lv;quantity=q;num_com=nc;
proj_reql=prl;proj_reg2=pr2;proj_reg3=pr3;
proj_reg4=pr4;proj_reg5=pr5';sche_regl=srl;
sche_reg2=sr2;sche_reg3=sr3;sche_reg4=sr4;
sche_reg5=sr5;on_handO=oho;
int location;
location = (recno-1) * sizeof(initial);
file.seekp(location);
// Overwrites the modified record into INITIAL.dat data file
file.write((char *)this, sizeof(initial));
file. close ();
return;

}
unsigned int initial: :last_code (void)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(0, ios::beg);
int count = 0;
// Finds the last code#
while (file.read((char *)this, sizeof(initial)))
count = codeno;
file.close();
return count;

}
unsigned int initial: :compute_nrl (unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(0, ios::beg);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==1) && (weekl==2))
{

net_reql=proj_reql-sche_regl-on_handO;
if (net _regl<=0)
{
net_reql=O;
}
break;

}
if((codeno == cno) && (level==2) && (weekl==2))
{

net_reql=proj_reql-sche_reql-on_hand0;
if(net_regl<=0)
{
net_regl=0;
}
break;

}
file.close();

return net_regl;
}
unsigned int initial: :compute _nr2(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(0, ios::beg);
on handl=compute_ohl(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==l) && (week2==3))
{

net_reg2-proj_reg2-sche_reg2-on_handl;
if(net_reg2<=o)
{
net_reg2=0;
}
break;

}
if((codeno == cno) && (level==2) && (week2==3))
{

net _reg2=proj_reg2-sche_reg2-on_handl;
if(net_reg2<=0)
{
net_reg2=0;
}
break.;

}

}
file. close ();
return net_reg2;

}
unsigned int initial::compute_nr3(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(0, ios::beg);
on hand2=compute_oh2(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level ==1) && (week3==4))
{

net_reg3=proj_reg3-sche_reg3-on_hand2;
if(net_reg3<=0)
{
net_reg3=0;
}
break;;

}
if((codeno == cno) && (level==2) && (week3==4))

net_reg3=projreg3-schereg3-on_hand2;
if(net_reg3<=0)
{
net_reg3=0;
}
break;

}

file.close();
return net_req3;

}
unsigned int initial::compute_nr4(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(0, ios::beg);
on hand3=compute_oh3(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==1) && (week4==5))
{

net _reg4=proj_reg4-sche_reg4-on_hand3;
if(net_reg4<=0)
{
net_reg4=0;
}
break;

if((codeno == cno) && (level==2) && (week4==5))
{

net_reg4=proj_reg4-sche_reg4-on_hand3;
if(net_reg4<=0)
{
net_reg4=0;
}
break;

}

}
file.close();
return net_req4;

}
unsigned int initial::compute_nr5(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(0, ios::beg);
on hand4=compute_oh4(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==1) && (week5==6))
{

net_reg5=proj_reg5-sche_reg5-on_hand4;
if(net_reg5<=0)
{
net_reg5=0;
}
break;

}
if((codeno == cno) && (level==2) && (week5==6))
{

net_reg5=proj_reg5-sche_reg5-on_hand4;
if(ne.t_reg5<=0)
{
net_reg5=0;
}
break;

}

file.close();
return net_reg5;

}
unsigned int initial::compute_pol(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(O, ios::beg);
lotsize=lot_sizing(cno);
net _regl=compute_nrl(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==1) && (weekl==2))
{

if(net_regl>=lotsize)
{
puorl=net_reql;
}

else if((net_regl<lotsize) &&(net_regl>0))
{
puorl=lotsize;
}

else if (ne;t_regl==0)
{
puorl=O;
}
break;

}
if((codeno == cno) && (level==2) && (weekl==2))
{

if(net_regl>=lotsize)
{
puorl=net_reql;
}

else if((net_regl<lotsize) &&(net_regl>0))
{
puorl=lotsize;
}

else if(net_regl==0)
{
puorl=O;
}
break;

}

}
file, close ();
return puorl;

}
unsigned int initial::compute_po2(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(0, ios:::beg);
lotsize=lot_sizing(cno);
net_reg2=compute nr2(cno);

91

while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==1) && (week2==3))
{

if(net_reg2>=lotsize)
{
puor2=net_reg2;
}

else if((net_reg2clotsize) &&(net reg2>0))
{
puor2=lotsize;
}

else if(net_reg2==0)
{
puor2=0;
}
break;

}
if((codeno == cno) && (level==2) && (week2==3))
{

if(net_reg2>=lotsize)
{
puor2=net_req2;
}

else if((net_reg2<lotsize) &&(net reg2>0))
{
puor2=lotsize;
}

else if(net_reg2==0)
{
puor2=0;
}
break;

}

}
file.close();
return puor2;

}
unsigned int initial::compute_po3(unsigned int cno)
{

fstream file;
file.open('IINITIAL.dat", ios::in);
file.seekg(o, ios::beg);
lotsize=lot_sizing(cno);
net _reg3=computenr3(cno);
while (file.read((char *)this, sizecf(initial)))
{

if((codeno == cno) && (level= =1) && (week3==4)) {
if(net_reg3>=lotsize)
{
puor3=net_reg3;
}

else if((net_reg3<lotsize) &&(net reg3>0))
{

92

puor3=lotsize;
}

else if (net _reg3==0)
{
puor3=0;
}
break;

}
if((codeno == cno) && (level==2) && (week3==4))
{

if(net_reg3>=lotsize)
{
puor3=net_req3;
}

else if((net_reg3<lotsize) &&(net_reg3>0))
{
puor3=lotsize;
}

else if (net _reg3==0)
{
puor3 =.0 ;
}
break;

}
file.close();
return puor3;

}
unsigned int initial::compute_po4(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(O, ios::beg);
lotsize=lot_ sizing (cno);
net_reg4=compute_nr4(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==1) && (week4==5))
{

if(ne;t_reg4>=lotsize)
{
puor4=net_reg4;
}

else if((net_reg4<lotsize) &&(net_reg4>0))
{
puor4=lotsize;
}

else if (ne.t_reg4==0)
{
puor4=0;
}
break,;

}
if((codeno == cno) && (level==2) && (week4==5))
{

93

if(net_reg4>=lotsize)
{
puor4=net_reg4;
}

else if((net_reg4<lotsize) &&(net reg4>0))
{
puor4=lotsize;
}

else if(net_reg4==0)
{
puor4=0;
}
break;

}

}
file.close();
return puor4;

unsigned int initial::compute po5(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(0, ios::beg);
lotsize=lot_sizing(cno);
net_reg5=compute_nr5(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==1) && (week5==6))
{

if(net_reg5>=lotsize)
{
puor5=net_reg5;
}

else if((net_reg5<lotsize) &&(net reg5>0))
{
puor5=lotsize;
}

else if (net _reg5==0)
{
puor5=0;

break;
}
if((codeno == cno) && (level==2) && (weeks= =6)) {

if (net _reg5>=lotsize)
{
puor5=net_reg5;
}

else if((net_reg5<lotsize) &&(net reg5>0))
{
puor5=lotsize;
}

else if(net_reg5==0)

94

{
puor5=0;
}
break;

}

}
file.close();
return puor5;

unsigned int initial::compute_ohl(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(O, ios::beg);
puorl=compute pol(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==l) && (weekl==2))

on_handl=sche_regl+puorl+on_handO-proj_reql;
break;

if((codeno == cno) && (level==2) && (weekl==2))
{

on_handl=sche_regl+puorl+on_handO-proj_regl;
break;

}

}
file.closeo ;
return on_handl;

}
unsigned int initial::compute_oh2(unsigned int cno)
{

fstream file;
file.open("INITIPL.dat", ios::in);
file.seekg(0, ios::beg);
puor2=compute po2(cno);
on handl=compute_ohl(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==1) && (week2==3))
{

on_hand2=sche_reg2+puor2+on_handl-proj_reg2;
break;

}
if((codeno == cno) && (level==2) && (weekl==2))
{

on_hand2=sche_reg2+puor2+on_handl-proj_reg2;
break;

}

}
file.close();
return on_hand2;

}
unsigned int initial::compute_oh3(unsigned int cno)
{

95

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(0, ios::beg);
puor3=compute_po3(cno);
on hand2=compute_oh2(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==1) && (week3==4))
{

on_hand3=sche_reg3+puor3+on hand2-proj_reg3;
break;

}
if((codeno == cno) && (level==2) && (week3==4))
{

on_hand3=sche_reg3+puor3+on hand2-proj_reg3;
break;

file.close();
return on_hand3;

}
unsigned int initial::compute_oh4(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(o, ios::beg);
puor4=compute_po4(cno);
on hand3=compute_oh3(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==l) && (week4==5))
{

on_hand4=sche_reg4+puor4+on hand3-proj_reg4;
break;

}
if((codeno == cno) && (level==2) && (week4==5))
{

on_hand4=sche_reg4+puor4+on hand3-proj_reg4;
break;

}

Le.close();
-•urn on_hand4;

nt initial: : Compute _oh5(unsigned int cno)

aam file;
open("INITIAL.dat", ios::in);
seekg(o, ios::beg);
=compute po4 (cno) ; -
nd4=compute_oh4(cno);
(file.read((char *)this, sizeof(initial)))

if((codeno == cno) && (level= =1) && (week5==6)) {
on_hand5=sche_reg5+puor5+on hand4-proj_reg5-;
break;

}
if((codeno == cno) && (level==2) && (week5==6))
{

on_hand5=sche_reg5+puor5+on_hand4-proj_rec
break;

}

}
file.close();
return on_hand5;

}
unsigned int initial::compute plol(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(O, ios::beg);
puor2=compute_po2(cno);
puor3=compute_po3(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) &&.(level==1) && (weekl==2) &&
(ltime==1))

{
pinol=puor2;
break;

}
if((codeno == cno) && (level==l) && (weekl==2) &&

(ltime==2))
{

pinol=puor3;
break;

}
if((codeno == cno) && (level=~2) && (weekl==2) &&

(ltime==1))
{

pinol=puor2;
break;

if((codeno == cno) && (level==2) && (weekl==2) &&
(ltime==2))

{
pinol=puor3;
break;

}

}
file.close();
return pinol;

}
unsigned int initial::compute_plo2(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(O, ios::beg);
puor3=compute po3(cno);
puor4=compute_po4(cno);
while (file.read((char *)this, sizeof(initial)))
{

97

if((codeno == cno) && (level==1) && (week2==3) &&
(ltime==1))

{
pino2=puor3;
break;

}
if((codeno == cno) && (level==1) && (week2==3) &&

(ltime==2))
{

pino4=puor4;
break;

}
if((codeno == cno) .&& (level==2) && (week2==3) &&

(ltime==1))
{

pino2=puor3;
break;

if((codeno == cno) && (level==2) && (week2==3) &&
(ltime==2))

{
pino2=puor4;
break;

}

}
file. close ();
return pino2;

}
unsigned int initial:;compute plo3(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(0, 105: :beg)
puor4=compute_po4(cno);
puor5=compute_po5(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==1) && (week3==4) &&
(ltime==1))

{
pino3=puor4;
break;

}
if((codeno == cno) && (level= =1) && (week3==4) && (ltime==2))
{

pino3=puor5;
break;

}
if((codeno == cno) && (level==2) && (week3==4) &&

(ltime==1))
{

pino3=puor4;
break;

if((codeno == cno) && (level==2) && (week3==4) &&
(ltime==2)),

98

pino3=puor5;
break;

}
}
file.close();
return pino3;

}
unsigned int initial::compute_plo4(unsigned int cno)
{

fstream file;
file.open("INITIAL.dat", ios::in);
file.seekg(O, ios::beg);
puor5=compute_po5(cno);
while (file.read((char *)this, sizeof(initial)))
{

if((codeno == cno) && (level==1) && (week4==5) &&
(ltime==1))

pino4=puor5;
break;

}

if((codeno == cno) && (level==2) && (week4==5) &&
(ltime==1))

{

}

pino5=puor5;
break;.

}
file.closeO;
return pino5;

}
void initial::display_isr(void)
{

fstream file;
gotoxy(30,1);
cout<<"INVENTORY STATUS RECORD";
int dl, ml, yl;
struct date d;
getdate(&d);
dl=d.da_day;ml=d.damon;yl=d.da_year;
gotoxy(65, 2);
cout<<"Date: "<<dl<<"/"<<ml<<"/"<<yl;
gotoxy(1, 2);
Gout«"Lead Time: "<<ltime;
gotoxy(1,3);
cout<<"SStock 	: "<<sstock;
gotoxy(18,3);
for (j = 18; j- <= 79; j++)
cout«"=" •
gotoxy(42,4);
cout<<°Weeks';
gotoxy(18,5);
for (j = 18; j <= 79; j++)
cout<<''="
gotoxy(1, 4);
cout<<"Code# : "<<last_code () ;
gotoxy(18,6);

ii

cprintf("Balance 	1 	2 	3 	4

gotoxy(1, 7);
for (j = 1; j <=79; j++)
cout << "="
gotoxy(1,9);
cout<<"Sche. Receipt:";
gotoxy(1,10);
for (j = 1; j <= 79; j++)
cout << "=11 ;

gotoxy (1, 11)
cout «°On Hand Qty :°;
gotoxy(1,12);
for (j = 1; j <= 79;.j++)
cout << 11=11

unsigned int ohO,srl,sr2,sr3,sr4,sr5;
file.open("INITIAL.dat", ios::in);
file.seekg(o, ios::beg);
while (file.read((char *)this, sizeof(initial)));
{ 	if(codeno==cno)

{
on_hand0=oho;
sche_reql=srl;sche_reg2=sr2;
sche_reg3=sr3;sche_reg4=sr4;
sche_reg5=sr5;
}
gotoxy(col,il);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<on_hand0;
col=32;
gotoxy(col,9);
cout<<setw(5) <<setprecision(0)
<<setiosflags (ios::left)
setiosflags(ios::fixed)<<sche_regl;

col=43;
gotoxy(col,9);
cout<<setw(5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosf lags (ios:: fixed) <<sche reg2;
col=54;
gotoxy(col,9);
cout <<setw (5) <<setprecisibn (O)
<<setiosflags (ios::left)
<<setiosflags(ios::fixed)<<sche reg3;
col=65;
gotoxy(col,9);
cout<<setw (5) <<setprecision (0)
<<setiosflags (ios::left)
<<setiosflags(ios::fixed)<<sche reg4;
col=75;
gotoxy(col,9);
Gout<<setw(5) <<setprecision(o)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<sche reg5;
if (col > 79)
{

flag = 1;
col = 20;
gotoxy(2, 24);
cout << "Press any key to continue....

5 ")

100

getch();
clrscr();

if (col > 79)

flag = 1;
col = 20;
gotoxy(2, 24);
cout << "Press any key to continue.... ";
getch ()
clrscr();

}
file.close();
if (!flag)
{

gotoxy(2, 24);
cout << "Press any key to continue...";
getch ()

}
void initial:: display _mps(void)
{

fstream file;
gotoxy(30, 1) ;
cout" MASTER PRODUCTION SCHEDULE";
int dl, ml, yl;
struct date d;
getdate(&d);
dl = d.da_day;ml = d.da_mon;yl = d.da_year;
gotoxy(65, 2);
cout<<"Date: "<<dl«"/"«ml<<"/"«yl;
gotoxy(l, 2);
cout<<"Lead Time: !'<<ltime;
gotoxy(1,3);
cout<<"SStock 	: !'<<sstock;
gotoxy(18,3);
for (j = 18; j <= 79; j++)
cout << "=";
gotoxy(42,4);
cout<<"Weeks";
gotoxy(18,5);
for (j = 18; j <= 79; j++)
cout << "="
gotoxy(1, 4);
cout << "Code#:"<<last_code();
gotoxy(18,6);
cprintf("Balance 	1 	2

5")
gotoxy(l, 7);
for (j = 1; j <=79; j++)
cout << "="
gotoxy(1,9);
cout<<"Projected Req: ";
gotoxy(1,10);
for (j = 1; j <=79; j++)
cout << '="
file.open("INITIAL.dat", ios::in);
file.seekg(0, ios::beg);
int col;unsigned int prl,pr2,pr3,pr4,pr5;

3 	4

1®

while (file.read((char *)this, sizeof(initial)));
{ 	// Checks the code no

if 	(codeno == cno)
{
proj_reql=prl;proj_reg2=pr2;
proj_reg3=pr3;proj_reg4=pr4;
proj_reg5=pr5;

}

gotoxy(col,9);
cout <<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags(ios:: fixed) <<proj_regl;
col=43;
gotoxy(col,9);
cout <<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<proj_reg2;
col=53;
gotoxy(col,9);
cout <<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<proj_reg3;
col=63;
gotoxy(col,9);
cout <<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<proj_reg4;
col=74;
gotoxy(col,9);
cout <<setw (5) <<setprecision (0)
<<setiosflags (ios::left)
<<setiosflags (ios :: fixed) <<proj_reg5;

if (col > 79)
{

flag = 1;
col =20;
gotoxy(2, 24);
cout << "Press
getch();
clrscr();

}
file, close ();
if (!flag)
{

any key to continue.... "

gotoxy(2, 24);
cout << "Press any key to continue...";
getch();

}
void initial::display_bom(void)
{

fstream file;
gotoxy(30,1);
cout<<"BILL OF MATERIALS";
int dl, mi, yl;
struct date d;

102

getdate(&d);
dl = d.da day;ml = d.da_mon;yl = d.da_year;
gotoxy(65, 2)
cout<<"Date: "«dl« T'/ 11 «ml«"/u!«y1;
gotoxy(1,4);
for (j = 1; j <= 79; j++)
cout << "= 1' •

gotoxy(2, 6);
cout<<"Code Nos";
gotoxy(20,6);
cout<<°Item Name";
gotoxy(35,6);
cout<<"Level";
gotoxy(42,6);
cout<<"Quantity";
gotoxy(57,6);
cout<<°Lead Time";

file.open("INITIAL.dat", ios::in);
file.seekg(0, ios::beg);
int row=7;

while (file.read((char *)this, sizeof(initial)));
{

gotoxy (2, row)
cout<<codeno;
gotoxy(20,row);
puts(name);
gotoxy(37,row);
Gout«level;
gotoxy(44,row);
cout<<num_com;
gotoxy(59,row);
Gout<<ltime;
if (row > 23)
{

flag = 1;
row = 7;

gotoxy(2, 24);
cout « "Press
getch_() ;
clrscr();

}
gotoxy(l, row);
for (j = 1; j <= 79; j++)
cout << 'I _ TI
row++;

file.close();
if (!flag)
{

any key to continue.... I~

gotoxy(2, 24);
cout << "Press any key to continue...";
getch() ;

void initial: :display _por2(void)
{

fstream file;
gotoxy(30,1);
cout<<"PLANNED ORDER RELEASE";
int dl, ml, yl;

103

struct date d;
getdate(&d);
dl = d.da_day;ml = d.da_mon;yl = d.da_year;
gotoxy(65, 2);
cout << "Date:" << dl << "/" << ml << 	<< yl;
gotoxy(1, 2);
cout<<"Lead Time: "<<ltime;
gotoxy(1,3);
cout«"SStock 	: "<<sstock;
gotoxy(18,3);
for (j = 18; j <= 79; j++)
tout << "="•
gotoxy(42,4);
cout<<"Weeks";
gotoxy(18,5);
for (j = 18; j <= 79; j++)
cout << "_"
material mi;
gotoxy(1, 4);
cout << "Code#:"<<last_code();
gotoxy(18,6);
cprintf("Balance 	1 	2 	3

gotoxy(1, 7);
for (j = 1; j <=79; j++)
cout << "="
gotoxy(l,9);
cout<<"Projected Req :",
gotoxy(1,10);
for (j = 1; j <=79; j++)
cout << "="
gotoxy(1,11);
cout<<"Sche. Receipt :";
gotoxy(1,12);
for (j = 1; j <= 79; j++)
tout << °_"
gotoxy(1,13);
cout<<"On Hand Qty 	:";
gotoxy(1,14);
for (j = 1; j <= 79; j++)
tout << "_"
gotoxy(1,15);
tout<<"Net Req Qty 	:";
gotoxy(1,16);
for (j = 1; j <= 79; j++)
cout << "_"
gotoxy(1,17);
cout<<"Pla.O.Receipt :";
gotoxy(1,18);
for (j = 1; j <= 79; j++)
cout << 11=11;

gotoxy(1,19);
cout<<"Plan.O.Release:";
gotoxy(1,20);
for (i = 1; j <= 79; j++)
cout << "_"
file.open("INITIAL.dat", ios::in);
file.seekg(o, ios::beg);
int col;unsigned int prl,pr2,pr3,pr4,pr5,srl,sr2,
sr3,sr4,sr5,oh0;unsigned int cno;
while (file.read((char *)this, sizeof(initial)));

5")

104

if(codeno==cno)

proj_reql=prl;proj_reg2=pr2;proj_reg3=pr3;
proj_reg4=pr4.;proj_reg5=pr5;sche_regl=srl;
sche_reg2=sr2; ache _reg3=sr3;sche_reg4=sr4;
sche_reg5=sr5;on_handO=oho;

flag = 0;delay(1);
if(week0==1)

col=20;
gotoxy(col,13);
cout <<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<on handO;
}
if(weekl==2)
{
col=33;
gotoxy(col,9);
Gout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<proj_regl;
col=33;
gotoxy(col,11);
cout<<setw(5)<<setprecision(0)
<<setiosf lags (ios::left)
<<setiosflags(ios::fixed)<<sche_regl;
col=33;
gotoxy(col,13);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags(ios:: fixed) <<compute ohl(cno);
Col=33;
gotoxy(col,15);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<compute nrl(cno);
col=33;
gotoxy(col,17);
cout<<setw(5)<<setprecis' ion (0)
<<setiosflags(ios::left)
<<setiosf lags (ios: : fixed) <<compute_pol (cno);
col=33;
gotoxy(col,19);
cout <<setw(5)<<setprecision(o)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<compute_plol(cno);

if(week2==3)
{
col=44;
gotoxy(col,9);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<proj_reg2;
col=44;
gotoxy(col,l1);
cout<<setw(5)<<setprecision(o)

105

<<setiosflags(ios::left)
<<setiosflags(ios:: fixed) <<sche_reg2;
Col=44;
gotoxy(col,13);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<compute_oh2 (cno)
col=44;
gotoxy(col,15);
cout<<setw (5) <<setprecision (o)
<<setiosflags(ios::left)
<<setiosflags(ios: :fixed)<<compute_nr2 (cno);
col=44;
gotoxy(col,17);
cout<<setw(5) <<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios: :fixed) <<compute po2 (cno) ;
col=44;
gotoxy(col,19);
cout<<setw (5) <<setprecision (0)
<<setiosflags (ios::left)
<<setiosflags (ios:: fixed) <<compute_plo2 (cno) ;

if (week3==4)

col=55;
gotoxy(col,9);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<proj_reg3;
col=55;
gotoxy(col,ll);
tout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosf lags (ios ::fixed) <<sche_reg3 ;
col=55;
gotoxy(col,13);
cout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios :: fixed) <<compute_oh3 (cno) ;
col=55;
gotoxy(col,15);
cout<<setw (5) <<setprecilion (o)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<compute_nr3 (cno)
col=55;
gotoxy(col,17);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios :: fixed) <<compute_po3 (cno)
col=55;
gotoxy(col,19);
cout<<setw (5) <<setprecision (0)
<<setiosflags (ios::left)
<<setiosflags (ios :: fixed) <<compute_plo3 (cno)

if(week4==5)

col=65;
gotoxy(col,9);
cout <<setw (5) <<setprecision (o)

<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<proj_reg4;
col=65;
gotoxy(col,11);
cout<<setw (5) <<setprecisIon (0)
<<setiosflags(ios::left)
<<setiosflags (ios ::fixed) <<sche_reg4 ;.
col=65;
gotoxy(col,13);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<compute_oh4 (cno) ;
col=65;
gotoxy(col,15);
cout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios :: fixed) <<compute_nr4 (cno)
col=65;
gotoxy(col,17);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<compute_po4(cno);
col=65;
gotoxy(col,.19);
tout<<setw(5)<<setprecision(0)
<<setiosflags (ios::left)
<<setiosflags (ios::fixed) <<compute plo4 (cno)
}
if(week5==6)
{
col=74;
gotoxy(col,9);
cout<<setw (5) <<setprecision (0)
<<setiosflags (ios::left)
<<setiosflags (ios::fixed) <<proj_reg5;
Col=74;
gotoxy(col,11);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios :: fixed) <<sche_reg5;
col=74;
gotoxy(col,13);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<compute_oh5 (cno) ;
col=74;
gotoxy(col,15);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<compute nr5 (cno)
col=74;
gotoxy(col,17);
tout<<setw (5) <<setprecision (o)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<compute_po5 (cno)
}
if (col > 79)
{

flag = 1;
col =10;
gotoxy(2, 24);

107

cout << "Press any key to continue....
getch () ;
clrscr();

file. close ();
if 	(!flag)
{

gotoxy(2, 	24);
cout << "Press any key to continue...";
getch();

}

}
void initial::daily_report(void)
{

fstream file;
gotoxy(30,1);
cout<<"NET CHANGE REPORT";
int dl, 	ml, 	yl;
struct date d;
getdate(&d);
dl = d.da_day;ml = d.da_mon;yl = d.da_year;
gotoxy(65, 	2);
cout << "Date:" << dl << "/" << ml << "I" << yl•
gotoxy(l, 	2);
cout<<"Lead Time: "«ltime;
gotoxy(1,3);
cout«°SStock 	: "<<sstock;
gotoxy(18,3); 	,
for 	(j 	= 18; 	j 	<= 79; 	j++)
cout <<
gotoxy(42,4);
cout'<<"Weeks";
gotoxy(18,5);
for 	(j 	= 	18; 	j 	<= 	79; 	j++)
cout <<
material mi; mi;
gotoxy(l, 	4);
cout << 	"Code## : "<<last_code ()
gotoxy(18,6);
cprintf("Balance 	1 2 	3 	4 5")

gotoxy(1, 7);
for (j = 1; j <=79; j++)
cout << "= I

gotoxy(1,9);
cout<<"Projected Req :"
gotoxy(1,10);
for (j = 1; j <=79;. j++)
cout << '1_"
gotoxy(1,11);
cout<<"Sche. Receipt :°
gotoxy(1,12);
for (j = 1; j <= 79; j++)
cout << "_"
gotoxy(1,13);
cout<<"On Hand Qty 	:"
gotoxy(1,14);
for (j = 1; j <= 79; j++)

1:

tout- << 11=11;

gotoxy(1, 15)
cout<<"Net Req Qty 	:";
gotoxy(1,16);
for (j = 1; j <= 79; j++)
cout <<
gotoxy(1,17);
cout<<"Pla.O.Receipt :";
gotoxy(1,18);
for (j = 1; j <= 79; j++)
cout << "="
gotoxy(1,19);
cout<<"Plan.O.Release:";
gotoxy(1,20);
for (j = 1; j <= 79; j++)
cout <<
file.open("INITIAL.dat", ios::in);
file.seekg(0, ios::beg);
int col;unsigned int cno;
unsigned int prl,pr2,pr3,pr4,pr5,srl,sr2,
sr3 , sr4, sr5, ohO;
while (file.read((char *)this, sizeof(initial)));
{ 	if(codeno==cno)

{
proj_reql=pri;proj_reg2=pr2;proj_reg3=pr3;
prof_reg4=pr4;proj_reg5=pr5;sche_regl=sri;
sche_reg2=sr2;sche_reg3=sr3;sche_reg4=sr4;
sche_reg5=sr5;on hand0=oho;

}
{
col=20;
gotoxy(co1,13);
cout <<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<on handO;
}
if(weekl==2)

col=34;
gotoxy(col,9);
cout<<setw(5) <<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<projregl;
col=34;
gotoxy(col,11);
cout<<setw(5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<sche regl;
col=34;
gotoxy(co1,13);
Gout<<setw(5) <<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<compute ohl (cno) ;
col=34;
gotoxy(col,15);
Gout<<setw(5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed) «compute nrl(cno);
col=34;

109

gotoxy(col,17);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosf lags (ios ::fixed) <<compute_pol (cno)
col=34;
gotoxy(col,19);
cout <<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) «compute_plol (cno) ;

if(week2==3)

col=44;
gotoxy(col,9);
cout<<setw (5) <<setprecision (0)
<<setiosflags (ios::left)
<<setiosf lags (ios ::fixed) <<proj_reg2 ;
col=44;
gotoxy(col,il);
cout<<setw(5) <<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<sche_reg2;
col=44;
gotoxy(col,13);
cout<<setw (5) <<setprecision (0)
<<setiosflags (ios::left.)
<<setiosflags(ios:: fixed) <<computeoh2(cno);
col=44;
gotoxy(col,15);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags(ios:: fixed) <<compute_nr2(cno);
col=44;
gotoxy(col,17);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<compute po2 (cno) ;
col=44;
gotoxy(col,19);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<compute plot (cno) ;
}
if(week3==4)

col=54;
gotoxy (col , 9)
cout<<setw (5) <<setprecision (0)
<<setiosflags (ios::left)
<<setiosflags (ios:: fixed) <<proj_reg3;
col=54;
gotoxy(col,il);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<sche reg3;
col=54;
gotoxy(col,13);
cout<<setw(5) <<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags(ios:: fixed) <<computeoh3(cno);
col=54;

110

gotoxy(col,15);
cout<<setw(5) <<setprecision (0)
<<setiosflags (ios::left)
<<setiosflags (ios:: fixed) <<compute_nr3 (cno)
col=54;
gotoxy(col,17);.
cout<<setw(5) <<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<compute_po3 (cno)
col=54;
gotoxy(col,19);
cout<<setw (5) <<setprecision (0)
<<setiosflags (ios::left)
<<setiosflags (ios::fixed) <<compute plo3 (cno)

if(week4==5)

col=65;
gotoxy (col, 9)
cout<<setw (5) <<setprecision (0)
<<setiosflags (ios-::left)
<<setiosflags (ios::fixed) <<proj_reg4;
col=65;
gotoxy (col, il) ;
cout<<setw (5) <<setprecision (0)
<<setiosflags (ios:':left)
<<setiosflags (ios:: fixed) <<sche_reg4;
col=65;
gotoxy(col,13);
cout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<compute_oh4 (cno) ;
col=65;
gotoxy(col,15);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<compute_nr4 (cno)
col=65;
gotoxy(col,17);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed) «compute—po4(cno);
col=65;
gotoxy(col,19);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<compute plo4(cno);
}
if(week5==6)

col=74;
gotoxy(col,9);
cout<<setw (5) <<setprecision { 0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<proj_reg5;
col=74;
gotoxy(col,11);
cout<<setw (5) <<setprecis ion (0)
<<setiosflags(ios::left)
c<setiosflags (ios::fixed) <<sche_reg5;
col=74;

gotoxy(col,13);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<compute_oh5 (cno)
col=74;
gotoxy(col,15);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<compute_nr5 (cno)
col=74;
gotoxy(col,17);
cout<<setw (5) <<setprecision (0)
<<setiosflags (ios::left)
<<setiosflags (ios::fixed) «compute_po5 (cno)
}
if (col > 79)
{

gotoxy(2, 24);
cout << "Press any key to continue.... ";
getch();
clrscr();

}

file. close ();
if (!flag)
{

gotoxy(2, 24);
cout << "Press any key to continue...";
getch () ;

}
void initial: :weekly_report (void)

fstream file;
gotoxy(30,1);
cout<<"REGENERATIVE REPORT";
int dl, ml, yl;
struct date d;
getdate(&d);
dl = d.da_day;ml = d.da_mon;yl =.d.da_year;
gotoxy(65, 2);
cout << "Date:" < dl << "/" << mi << "I" << yl;
gotoxy(l, 2);
cout<<"Lead Time: "<<ltime;
gotoxy(1,3);
cout<<"SStock 	: "<<sstock;
gotoxy(18,3);
for (j = 18; j <= 79; j++)
cout << "= 11

gotoxy(42,4);
cout<<"Weeks";
gotoxy(18,5);
for (j = 18; j <= 79; j++)
cout <<
material mi;
gotoxy(1, 4);
cout << °Code#:"<<last_code();
gotoxy(18,6);

112

cprintf("Balance 	1 	2 	3 	4

gotoxy(1, 7);
for (j = 1; j <=79; j++)
Gout <<
gotoxy(1,9);
cout<<"Projected Req :"
gotoxy(1,10);
for (j = 1; j <=79; j++)
Gout <
gotoxy(1,11);
cout<<"Sche. Receipt :"
gotoxy(1,12);
for (j = 1; j <= 79; j++)
cout << 11=11;

gotoxy(1,13);
cout «°On Hand Qty :°;
gotoxy(1,14);
for (j = 1; j <= 79; j++)
cou t << "="
gotoxy(1,15);
cout<<"Net Req Qty 	:";
gotoxy(1,16);
for (j = 1; j <= 79; j++)
Gout < "_"
gotoxy(1,17);
Cout<<"Pla.O.Receipt :"
gotoxy(1,18);
for (j = 1; j <= 79; j++)•
Gout <<
gotoxy(1,19);
cout<<" Plan .O. Release : ";
gotoxy(1,20);
for (j = 1; j <= 79; j++)
Gout <
file.open(°INITIAL.dat", ios::in);
file.seekg(o,ios::beg);
i-nt col;unsigned int cno;
unsigned int prl,pr2,pr3,pr4;pr5,srl,sr2,
sr3,sr4,sr5,oh0;
while (file.read((char *)this, sizeof(initial)));
{ 	if(codeno==cno)

{
proj_reql=prl;proj_reg2=pr2;proj_reg3=pr3;
prof_reg4=pro;proj_reg5=pr5;sche_regl=srl;
sche_reg2=sr2;sche_reg3=sr3;sche_reg4=sr4;
sche_reg5=sr5;on_handO=oho;

if(week0==1)

col=20;
gotoxy(col,13);-
cout <<setw(5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<on hand0;

if(weekl==2)
{

5")

113

col=33;
gotoxy(col,9);
cout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<proj_regl;
col=33;
gotoxy(col,ll);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<sche_regl;
col=33;
gotoxy(col,13);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<compute_ohl (cno)
col=33;
gotoxy(col,15);
cout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<compute_nrl(cno);
col=33;
gotoxy(col,17);
cout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<compute_pol (cno)
col=33;
gotoxy(col,19);
cout <<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
< setiosflags(ios::fixed)<<compute_plol(cno);

if(week2==3)

col=44;
gotoxy(col,9);
cout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<proj_reg2;
col=44;
gotoxy(col,ll);
cout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosf lags (ios ::fixed) <<sche_reg2 ;
col=44;
gotoxy(col,13);
cout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<compute_oh2 (cno)
col=44;
gotoxy(col,15);
cout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags (ios :: fixed) <<compute_nr2 (cno)
col=44;
gotoxy(col,17);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios :: fixed) <<compute_po2 (cno)
col=44;
gotoxy(col,19);
cout<<setw (5) <<setprecision (0)

114

<<setiosflags (ios::left)
<<setiosflags (ios::fixed) <<compute plot (cno)
}
if(week3==4)

col=55;
gotoxy(col,9);
cout<<setw (5) <<setprecision (o)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<proj_reg3;
Col=55;
gotoxy(col,11);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) <<sche reg3;
c01=55;
gotoxy(col,13);
.Gout<<setw(5) <<setprecision(0)
<<setiosflags (ios::left)
<<setiosflags (ios :: fixed) <<compute_oh3 (cno) ;
Col=55;
gotoxy(col,15);
cout<<setw (5) <<setprecision (0)
<<setiosflags (ios::left)
<<setiosflags (ios:: fixed) <<compute nr3 (cno)
col=55;
gotoxy(col,17);
cout<<setw (5) <<setprecision (0)
<<setiosf lags (ios ::left)
<<setiosflags (ios :: fixed) <<compute_po3 (cno) ;
col=55;
gotoxy(col,19);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios ::fixed) <<compute_plo3 (cno)
}
if (week4==5;)
{
col=65;
gotoxy(col,9);
Gout<<setw (5) <<setprecision (0)
<<setiosflags (ios::left)
<<setiosflags (ios ::fixed) <<projreg4 ;
Col=65;
gotoxy (col,.l1)
tout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<sche reg4;
col=65;
gotoxy(col,;13) ;
Cout<<setw (:5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios::fixed) «compute oho (cno) ;
Col=65; 	 -
gotoxy(col,15);
Cout<<setw (5) <<setprecision (0)
<<setiosflags (ios:: left)
<<setiosflags (ios ::fixed) <<compute nr4 (cno) ;
Col=65; 	 -
gotoxy (col, 17) ;
cout<<setw(5) <<setprecision(0)

115

setiosflags(ios::left)
<<setiosflags(ios::fixed)<<compute_po4(cno);
col=65;
gotoxy(col,19);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags (ios:: fixed) <<compute__plo4 (cno) ;

if(week5==6)

col=74;
gotoxy(col,9);
cout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<proj_reg5;
col=74;
gotoxy(col,ll);
cout<<setw(.5)<<setprecision(0)
<<setiosflags (ios::left)
<<setiosf lags (ios:: fixed) <<sche_reg5;
col=74;
gotoxy(col,13);
cout<<setw (5) <<setprecision (0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<compute_oh5(cno);
col=74;
gotoxy(col,15);
tout<<setw(5)<<setprecision(0)
<<setiosflags (ios::left)
<<setiosflags (ios ::fixed) <<compute_nr5 (cno)
col=74;
gotoxy(col,17);
cout<<setw(5)<<setprecision(0)
<<setiosflags(ios::left)
<<setiosflags(ios::fixed)<<compute_po5(cno);
}

if (col > 79)
{

gotoxy(2, 24);
cout << "Press
getch();
clrscr();

any key to continue....

file.close();
if (!flag)
{

gotoxy(2, 24);
cout << "Press any key to continue...";
getch () ;

}
void Initial: :excep_ notice (ioid)
{

fstream file;
gotoxy(30,1);
cout<<"EXCEPTION NOTICES";
int dl, ml, yl;

116

struct date d;
getdate (&d) ; 	 •-
dl = d.da_day;ml = d.da_mon;yl = d.da_year;
gotoxy(65, 2);
cout << "Date:" << dl << °/" << ml << "/° << yl;
gotoxy(l, 5) ;
cout<<"Lead Time: "«ltime;
gotoxy(1,6);
cout«°SStock :"<<sstock;
material mu;
gotoxy(l, 7);
cout << "Code#:"<<last_code();
gotoxy(1,8);
for (j = 1; j <= 79; j++)
Gout << "="
file.open("INITIAL.dat", ios::in);
file.seekg(o, ios::beg);
unsigned int prl;
unsigned int cno;
while (file.read((char *)this, sizeof(initial)));
{ 	if(codeno==cno)

{
proj_reql=prl;

gotoxy(2,10.);
cout <<"Print Notice:"<<proj_regl;

}
file.closeO;
if (!flag)
{

gotoxy(2, 24);
cout << "Press any key to continue...";
getch () ;

}
// Main
void main(void)
{

entry menu m_menu;
initgraph(&gdriver, &gmode, "");
m_menu.screen();c,losegraph(); 	...
m_menu.control_menu();

}

75

117

	WRDMG11045.pdf
	Title
	Synopsis
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

