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Synopsis 

A rectangular channel in an isotropic and homogeneous porous medium is 

assumed. The seepage is computed for both effluent and influent cases using the 

method of fragments and Dupuit-Forchheimer assumptions. 

The methods of Herbert and of Aravin and Numerov assume that there is a 

linear relationship between the flow to the aquifer and the potential difference 

between the aquifer and the river. However, field evidence suggests a non-linear 

relationship (K.R. Rushton, 1978). Typical non-linear relationships, which appear to 

give a fair representation, are as follows: 

If h 2  

Q=C1 (13. 2  —h1 )+C2 11—exp[--C3 (h 2  

If h 2  <hi 

Q = 0.3C 2 lexp[C3 (11 2  — h 1 )] —1} 

Where C1, C2 and C3 are constants depending on field conditions. Q is the 

seepage. h1  and h2  are the groundwater potentials at the river boundary and at half of 

the aquifer depth below the river bed respectively. 

It is found that the non-linear relationship comes into picture for higher values 

of ratio of bed width of the river to depth of the aquifer below the riverbed. It is also 

found that there is a close agreement of seepage values computed by Dupuit-

Forchheimer assumption and the method of fragments. There is an error of 10% 

between the two for B/D =1. 

*** *** * ** 
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CHAPTER 1 
Introduction 

1.1 General 

Rivers passing through a region underlain by a phreatic aquifer (and in special 

cases even by a confined aquifer) may either contribute water to the aquifer or serve as its 

drain. Much of the low water flow in streams is derived from groundwater whose water 

table elevations in the vicinity of a stream are higher than the stream. Such streams are 

called effluent streams .On the other hand, when the water level in a stream is higher than 

the water level in the adjacent (or underlying) aquifer ,water will flow from the river to 

the aquifer .The river is then called an influent river. When a stream cuts through an 

impervious layer, establishing a direct contact with an underlying confined aquifer, the 

stream may be either an influent one or an effluent one depending on whether 

piezometric heads in the aquifer are above or below the water level in the stream. The 

same stream can be an influent one along one stretch and an effluent on another, or it can 

be both effluent and influent at the same point. 

Obviously, the entire discussion presented above is based on the assumption that 

the riverbed is not completely clogged and that water can flow freely through the 

riverbed. Otherwise, there is no hydraulic contact between the water in the river and the 

aquifer and no relationship exist between the two. It is possible that the profile of a 

stream is such that its deeper part accommodating for low flows is completely clogged, 

while above a certain level, the riverbed is pervious. 

The volume of water contributed to an aquifer by stream flow (or drained into a 

stream from an aquifer) is part of the regional water balance .In view of the different 

possible situations discussed above, the rivers may play several roles when solving a 

groundwater forecasting problem. 
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1.2 Two Dimensional Steady state flow of Groundwater 

In a steady two-dimensional seepage flow through a homogeneous and isotropic 

medium, all quantities depend on two co-ordinates only. The fundamental equations of 

this flow are obtained by modifying the general equations of seepage flow. The 

fundamental equations of the two-dimensional seepage flow in a homogeneous isotropic 

medium are, 

x ax ax  y 0,s1  ay 	 (1.2.1) 

Where vx  and vy  are the components of Darcy velocity in the direction of the co-

ordinate axes, and (p(x,y) is the potential of seepage flow. 

cp = —kh 	 (1.2.2) 

Figure 1. 2.1 Hydraulic head at the point M 

h(x,y) is the hydraulic head at the point (x,y) above the chosen reference plane. 

For the direction of co-ordinate axis being considered (Halek and Svec, J, 1979) 

(1.2.3) 

Where p(x,y) is the hydrostatic pressure at the point (x,y), C is a constant 

dependent on the choice of the reference plane used in the determination of the 

piezometric head, h . If we put this reference plane on the level of the axis x (Fig 1.2.1), 

C=0 

v 	an  v 	_1(  an 
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For two dimensional steady state flows the continuity equation is, 

aV x NY  =0 
ax ay 

(1.2.4) 

By substituting in eqn.(1.2.4) according to eqn.(1.2.1) or (1.2.2) we obtain Laplace's 

equation of the potential cp : 
a2m a2 rn  

• = 	+ 	= ax  2 ay2 

or of the hydraulic head h: 

• = 	 a2h + a2h 
	 =0 

axe 
ay e 

(1.2.5) 

(1.2.6) 

Hence both the potential cp and the hydraulic head h are harmonic functions of the 

co-ordinates of points in the region of seepage. Solving equation (1.2.5) or equation 

(1.2.6) under prevailing boundary conditions gives the magnitude of the potential 

cp=cp(x,y) or the hydraulic head h =h(x,y) in the region of seepage (except for an arbitrary 

additive constant ); all the remaining quantities in which we are interested ,v, , vy  and p 

can then be determined with the help of the above equations. 

1.3 unsteady state Flow 

The law of conservation of mass for transient (unsteady state) flow in a saturated 

porous medium requires that the rate of fluid mass flow into any elemental control 

volume be equal to the time rate of change of fluid mass storage within the element. With 

reference to Fig 1.3.1 the equation of continuity takes the form, 

Fig 13.1 Elemental control volume through Porous media. 
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0(PV x  ) a(PV y 	a(PV 		a(Pn) 

ax 	ay 	 az 	at 

Or, expanding the right —hand side, 

(1.3.1) 

a(pv) a(pvy) a(rov z ) a(pn)  _ n  ap p(an)  
ax ay az at at at 

(1.3.2) 

The first term on the right-hand side of Eq. (1.3.2) is the mass rate of water 

produced by the expansion of the water under a change in its densityp. The second term 

is the mass rate of water produced by the compaction of the porous medium as reflected 

by the change in its porosity n, the first term is controlled by the compressibility of the 

fluid 13 and the second term by the compressibility of the aquifer,a. 

After further simplification of Eq. (1.3.2) we obtain 

a k ahs + a k  al +  a ( k  ahs 
ax x ax, ay , ay 	az z az , — s ah  s at 

(1.3.3) 

Where ss  is the specific storage for transient flow through a saturated anisotropic 

medium. 

The solution h (x,y,z,t) describes the value of the hydraulic head at any point in a 

flow field at any time .A solution requires the knowledge of the three basic 

hydrogeological parameters, k, a and n , and the fluid parameters , p and 13(Freeze and 

Cherry, 1979). 

1.4 conformal Mapping 

1.4.1General 

A transformation that possesses the property of preserving angles of intersection 

and approximate image of small shapes is said to be conformal. The usefulness of 
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conformal mapping in two dimensional flow problems stems from the fact that solutions 

of Laplace equation remain solutions when subjected to conformal transformations. 

y 

Let w =4) + ivy = f(z) be the complex potential and let its real and imaginary 

parts satisfy Laplace's equation in the region R of the Z plane (fig 1.4.1.1), so that 
a2th 	 A, 

+
52t
; = =0 ax ay 

a214), 	52

y2

.4.1  = 0  

ax2 a 

Now suppose that there is a second analytic function z=F(t) , with t =r+is , which 

maps the region R into R1. The function w =f[F(t)] is an analytic function of an analytic 

function, which in turn is also analytic, and hence 
a24  a241  = 0 	52,41  82.4j. = 0  

are ase ' 	ar 2  ase 

The solution of groundwater problem could be reduced to one of seeking the 

solution of Laplace's equation subject to certain boundary conditions within a region R in 

the Z-plane. From the standpoint of an analytical solution to Laplace's equation, unless 

the region R is of very simple shape a direct approach to the problem is generally 

difficult. However, by means of conformal mapping, it is often possible to transform the 

region R into a simple region R1 wherein Laplace's equation can be solved subject to the 

transformed boundary conditions. Once the solution has been obtained in region R1, it 

can be carried back by the inverse transformation to the region R, the original problem. 

Hence the crux of the problem is finding a transformation that will map a region R 

conformally into a region R1 so that R1 will be of simple shape (Harr, 1962). 

5 



1.4.2 The Schwarz-Christoffel Transformation 

Theoretically the transformation exists which will map any pair of simply 

connected regions conformally onto each other. This is assured by Riemann mapping 

theorem; however the determination of a general solution for the mapping problem has 

thus far defied discovery. At first this may appear somewhat disturbing; however, 

appropriate auxiliary mapping techniques enable us to transform even complicated flow 

regions into regular geometric shapes. Generally these figures will be polygons having a 

finite number of vertices (one or more of which may be at infinity). 

If a polygon is located in the Z-plane, then the transformation that maps it 

conformally 	onto 	the 	upper 	half 	of 	t-plane 	(t=r+is) 	is 

z= M  
A  

dt 
+ N 	 (1.4.2.1) 

(t — a)' (t — 	(t — c)'- 7 

where A, B, C ... are the interior angles of the polygon in the Z-plane and a,b,c ...are the 

points on the real axis oft-plane corresponding to the vertices of the polygon in Z-plane. 

y 

A 

X 

a b e  

Fig 1.4.2.1 z plane. Fig 1.4.2.2 t-plane 

1.4.3 Zhukovsky Function 

A special mapping technique, of particular value when dealing with unconfined 

flow problems, makes use of an auxiliary transformation called Zhukovsky's function. 

Noting that the relationship between the velocity potential and the pressure 
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[4) . —k
( , 

l--= 
07. 

01  = 4 + ky 	 (1.4.3.1) 

01  is seen to be an harmonic function of x and y as V201  = V2 4) .---: 0 . Hence its conjugate 

is the function 02  = ur — kx 	 (1.4.3.2) 

Defining 01  + i0 2  = 0 , we observe that 

0 = 01  +102  = w — ikz 	 (1.4.3.3) 

w = + iyr 	z= x+iy 

Definition (1.4.3.3) and any function with its real or imaginary part differing from 

it by a constant multiplier is called Zhukovsky function. 

1.5 	Objective of the Study. 

In the light of the status of the studies on seepage from partially penetrating 

stream the objectives of the present study are: 

1. Computing the flow to or from an aquifer to a rectangular stream for different 

ratios of bed width of the river to depth of the aquifer below bed of the river. 

2. Determination of Rushton constants using the computed flows. 

The following assumptions have been made in the study: 

i) the flow is two dimensional. 

ii) symmetrical conditions exist on either side of the stream . 

iii) the soil is homogeneous and isotropic. 

iv) A stream of finite width partially penetrates the aquifer. 

v) The stream forms the boundary of a single layer of aquifer. 

* * * * * * * * * 

+ y\  
) 

— kp 	ky if 	define 01  be — kP  = 	, then can 	written as 	= 4 + 	we 
7. 7. 
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CHAPTER 2 

Literature Review 

2.1 General 

Stream aquifer interaction has been studied in greater details in recent years. 

There are two aspects of the process: i) the exchange of flow between the stream and the 

aquifer during the passage of a flood wave; and ii) the effluent discharge during lean flow 

period. The groundwater flow during the passage of a flood wave remains in an unsteady 

state where as the flow during the lean flow can be regarded as steady. Solution of 

Laplace equation, which satisfies the boundary conditions prevailing at the flow domain 

boundaries, enables quantification of steady state seepage from an aquifer. Effluent or 

influent seepage can be evaluated using analytical approach only for idealized stream 

aquifer system. 

Partially penetrating rivers offer additional resistance against flow. Therefore, the 

effect of a partially penetrating river can be modeled as an applied potential with the flow 

from the river acting in a similar manner to leakage through an overlying stratum. An 

alternative graphical method of estimating the additional resistance was proposed by 

Numerov(Aravin and Numerov,1965). From detailed analyses of the sharply deformed 

seepage patterns, the additional resistance can be superimposed on the normal flow 

pattern. From graphical presentations contained in the above publications, values of the 

additional seepage resistance for different river cross-sections can be estimated. 

2.2 Dupuit-Forchheimer Assumptions. 

Dupuit based his assumptions on the observation that in most groundwater flows, the 
slope of the phreatic surface is very small. Slopes of 1/1000 and 10/1000 are commonly 
encountered (Bear, 1979). 

8 



L 

H1 	 H2 

• /Y 
Fig 2.2.1 One-dimensional flow in an unconfined aquifer. 

The total discharge through a section of length B (perpendicular to the plane 

drawn in fig) is Q = kB 	— H2 1 	2  

2L 
Although this formula has been derived by disregarding the variation of head with 

the vertical co-ordinate, and although the so-called seepage surface at the downstream 

boundary was not taken into consideration, the formula has been found to give excellent 

results, even when the length L is very small and the head difference (H1-112) is very 

large (Veruijt, 1982). 

Proof, that the Dupuit-Forchheimer can yield exact solutions for flow below 

mildly slopping water tables, was given by Charny (Polubarinova-Kochina, 1962) .The 

Dupuit-Forchheimer theory loses accuracy if the depth of the impermeable layer below 

the river bed increases, because of the increased importance of vertical flow. In 

comparing seepage rates based on the Dupuit-Forchheimer theory with solutions obtained 

with an electrical resistance network analog, which takes vertical flow components into 

account, Bouwer(1969) found that the Dupuit-Forchheimer theory gave reasonably 

accurate seepage values if the distance of the impermeable layer below the stream bottom 

was not more than twice the width of the water level in the stream. 

The Dupuit assumptions are probably the most powerful tool for treating 

unconfined flows. (Bear 1979). 



Piezometer 

E +co D W= -q 

CHAPTER 3 

Seepage from an Unconfined Aquifer to a Rectangular Channel. 

3.1 General 

Flow from an unconfined aquifer to a channel can be analyzed by different 

Methods. The direct method of attacking the problem is by using Zhukovsky function. 

There are also other approximate methods such as, graphical flow net, electrical 

analogue, Hele-shaw model, the method of fragments, etc. In the present study the 

method of fragments is used. 

3.2 	Statement of the Problem. 

A rectangular channel in an isotropic and homogeneous porous medium is 

assumed to receive steady state seepage. Symmetrical conditions are assumed on both 

sides of the stream. It is required to compute the flow from an aquifer to the channel. 

Then making use of the computed values, the Rushton constants would be determined for 

different ratios of width of the river to depth of the aquifer below the riverbed. 

L 

Y-axis 

Fig 3.2.1 Physical flow domain (Z plane) 
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W-plane 

-kh5 w.(1)+iy 

(1) —k(ri  + 
7w 

   

   

   

E 

  

+ c  

C 

P kv=-q D 

-kh4 

Fig 3.2.2 The complex potential plane. 

t=r+is 

Fig 3.2.3 Auxiliary Plane. 
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3.3 Analysis 

The problem is tackled by splitting the original problem into three segments. 

Dupuit-Forchheimer assumption is used for the portion of flow above the riverbed. That 

portion of flow, which is below the riverbed, is considered as confined flow and the 

method of conformal mapping is used for this portion. For some cases Dupuit-

Forchheimer assumption is used for the whole flow system and the result is compared 

with the previous method. 

Flows from aquifer to river and vice-versa have been calculated for different 
values of B/D ratio and different depth of water in stream and the result is tabulated 
below. Numerical values are assumed for hydraulic conductivity and bed width of the 
river. 

According to Schwarz-Christoffel transformation, the mapping of complex 

potential to the lower half of the auxiliary plane is given by 

dw  
dt 	—1);(t 

Integrating, w = Mf 	dt 	
+N 

Replacing t =Re i°  and dt = Re i  id0 
ReiO  idO W=Mf 	 +N 

(Re i°  — 1)2 Reie  — d)2 
(1) 

As one traverses on t-plane along a radius of infinity from rc to 2n, the corresponding 
change in w-plane is -iq 

2s 	Rele  id° Hence, —iq M 	 1 
(Reie  — i)2

, 	, 
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=M J 	1  

Re 
 (

1 	1 	(1  
Re ie 	Re ie  

	

2n 	Re ie  id0 

	

R-4cc M 5 	, , i 	, i 
n  (Reie  —1F IZeie  — dy 

Re' dO 

d `.• 

lim 

=Mi 2jRCIO = Mie I =Mist 

Hence, -iq = Min 

And, M= 	q  . Substituting M in (1), and noting that the constant N corresponds to the 

lower limit of integration, 

W q  f 	— iq 
/ 	\ 

1dt 	
1 d kt — 1)2 kt — C1)2 

Applying the condition at P where t= p and -w= -kha —iq, 
 

— kh4 — iq = 	J 	
dt 	

kh, — iq 
— 1)-2-  — dYi 

Equating the real parts, 

k(hl —h 4 )= —(4  P 	
dt 

J 
 

d 	— (1)-2 
Thus, 

itk(h 4  — h1 ) 
q —  	- 

ln 	  
Vp —1 + — d 

Aid —1 

Therefore total confined flow equals 2q —2 itk(h 4  — h1 ) 

In Vp —1 + —d ~  
c1-71. 

The parameters p and d are unknown, they are to be found from the relation between Z 
and t plane. 
The unconfined flow is calculated using Dupuit-Forchheimer assumption.Thus q„ 

(h2 
— h2 

=K  4 
	1  where L is the distance between the bank of the river and the piezometer. 
2L 

In this case L=4B 
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itk(h 4  - h1 ) Therefore total flow from aquifer to river equals 2 +K ( h 24  
4B ln[ Vp -1  + 	d 

Aid -1 

Similarly the mapping of Z-plane to the lower half of the auxiliary plane gives, 
dz 	M 
dt 	>1 

t 2 	t 2  (1- t) 

Substituting t-sin20 and dt = 2sinecosede, 
-Ft = SinO and 0 = 

For point C, Z=iD and t=1 Hence, iD== 2M-71 . Therefore, M= iD 
2 	 it 

Thus for 0 t 1 , 	i2D sin-1 
 
Vi  and 

it 

I 

For t..1 Z=Mf  1 dt +iD 
t 2  — 

For Point D, 

B Thus, 	= 
2 

Therefore, 

. Z= - + ID and 
2 

D d 	dt 
f 

t= d, hence, 

■ 

+ 	— 1 

h 

B 	. 	d  - + 	- iD 	dt —f 	+iD 
2 	IT 	1 	1 	1 

	

t 2 	— t) 

d 
} 

1 

1 

TE 
t 2  (t 

-B = -D 
2 	n 

2 ln 

1 

( 	1 

t 2  

After further Simplification, 
Bit 

C1:2-  + (CI 	= e  4D 

B71 	Bit 

Finally the parameter d is found to be;  d = 1+ 2e 2D + e D 
Bn 

4e 2D 
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1" 
2 -B + L - D 

2 
dt 	- 2  1 - - (t 2  

1l 
t)2  

P  
= -D  

Tr 
In 

( 
p 

t 2 (t-1)2 
2 

Similarly for point P, Z =-B 
+ L + iD and t =p, 

D 	
1 
 dt 

1  
P 

2 
Then, -B 

+ L + iD = - f 

	

	 +iD. Equating the real parts, 
7I 1  

t 2 (t -1)5 

Hence,-1(-1-3- + L) = 
D 2 

p 	 Vp  2 p  

 

= 142p -1+ 42  
1 

2 

  

     

a(11+L) 
Then, eD 2 = 2p -1+ 2-‘1132  -p 

TE(B+1) 
4eD 2  ) 

Numerical values are assumed for bed width of the river and the hydraulic conductivity of the 
medium. The seepage is calculated and tabulated below. 

Table 3.3.1 calculation of flow for BM =5 and h1  =5m 

B/D 
=5 
and 
h1 
=5m 

h4 
(m) 

Groundw 
ater 
potential 
difference 
(h4-h1) 
(m) 

confined 
flow 
(m3/s/m) 
x10-6 

unconfi 
ned 
flow 
(m3/s/m 
) x10-6 

Total 
flow 
(m3/s/m) 
x10-5 

h2 
(m) 

x10-5 

h2-hl 
(m) 
x 10-5  

5 0 0 0 0 0 0 
5.1 0.1 9.78 5.05 1.48 8.68 8.68 
5.2 0.2 19.57 10.2 2.98 17.4 	• 17.4 
5.3 0.3 29.35 15.5 4.49 26 26 
5.4 0.4 39.13 20.8 5.99 34.7 34.7 
5.5 0.5 48.92 26.3 7.52 43.4 43.4 
5.6 0.6 58.7 31.8 9.05 52.1 52.1 
5.7 0.7 68.48 37.5 10.6 60.7 60.7 
5.8 0.8 78.27 43.2 12.1 69.4 69.4 
5.9 0.9 88.05 49.1 13.7 78.1 78.1 
6 1 97.84 55 15.3 86.8 86.8 

n(B+L ) 	(B+L ) 
1 + 2e

D
2 hi_eD27r0 ) 

Therefore, p = 

15 



Table 3.3.2 Calculation of flow for B/D =5 and h1  =10m 

B/D 
=5 
and 
h1 
=10 
m 

h4 
(m) 

Groundw 
ater 
potential 
difference 
(h4-h1) 
(m) 

confined 
flow 
(m3/s/m) 
x10-6 

unconfin 
ed 	flow 
(m3/s/m) 
x10-6 

Total 
flow 
(m3/s/m 
) x10-5 

h2 
(m) 

x10-5 

h2-h1 
(m 	) 
x10-5  

10 0 0 0 0 0 0 
10.1 0.1 9.78 10.05 1.98 8.68 8.68 
10.2 0.2 19.57 20.2 3.98 17.4 17.4 
10.3 0.3 29.35 30.45 5.98 26 26 
10.4 0.4 39.13 40.8 7.99 34.7 34.7 
10.5 0.5 48.92 51.25 10.0 43.4 43.4 
10.6 0.6 58.7. 61.8 12.1 52.1 52.1 
10.7 0.7 68.48 72.45 14.1 60.7 60.7 
10.8 0.8 78.27 83.2 16.1 69.4 69.4 
10.9 0.9 88.05 94.05 18.2 78.1 78.1 
11.0 1 97.84 105 20.2 86.8 86.8 

Table 3.3.3 Calculation of flow for B/D =1 and hl =5m. 

B/D 
=1 
and 
h1 
=5m 

h4 
(m) 

Groundw 
ater 
potential 
difference 
(h4-h1) 
(m) 

confined 
flow 
(m3/s/m) 
x10-6 

unconfi 
ned 
flow 
(m3/s/m 
) x10-6 

Total 
flow 
(m3/s/m) 
x10-5 

h2 

(m) 

5+ 

h2-hl 

(m) 

5 0.  0 0 0 0 0 
5.1 0.1 43.75 5.05 4.88 

.01 .01 
5.2 0.2 87.5 10.2 9.77 .02 .02 
5.3 0.3 131 15.5 14.6 .03 .03 
5.4 0.4 175 20.8 19.6 .04 .04 
5.5 0.5 218 26.3 24.4 .05 .05 
5.6 0.6 262 31.8 29.4 .06 .06 
5.7 0.7 306 37.5 34.4 .07 .07 
5.8 0.8 350 43.2 39.3 .08 .08 
5.9 0.9 394 49.1 44.3 .09 .09 
6 1 438 55 49.3 .10 .10 
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Table 3.3.4 Calculation of flow for BID =1 and hl =10m 

B/D 
=1 
and 
h1 
=10 
m 

h4 
(m) 

Groundw 
ater 
potential 
difference 
(h4-h1) 
(m) 

confined 
flow 
(m3/s/m) 
x10-6 

unconfined 
flow (m3/s/m) 
x10-6 

Total flow 
(m3/s/m) 
x10-5 

- 

h2 

• (m) 

10+ 

h2-hl 

(m ) 

10 0 0 0 0 0 0 
10.1 0.1 43.75 10.05 5.38 .01 .01 
10.2 0.2 87.5 20.2 10.8 .02 .02 
10.3 0.3 131 30.45 16.1 .03 .03 
10.4 0.4 175 40.8 21.6 .04 .04 
10.5 0.5 218 51.25 26.9 .05 .05 
10.6 0.6 262 61.8 32.4 .06. .06 
10.7 0.7 306 72.45 37.8 .07 .07 
10.8 0.8 350 83.2  43.3 .08 .08 
10.9 0.9 394 94.05 49.2 .09 .09 
11.0 1 438 105 54.3 .10 .10 

Table 3.3.5 Calculation of flow for B/D 0.2 and hi =5m 

B/D 
=0.2 
and 
h1 
=5m 

h4 
(m) 

Groundw 
ater 
potential 
difference 
(h4-h1) 
(m) 

Confined 
flow 
(m3/s/m) 
x 10-5  

unconfi 
ned 
flow 
(m3/s/m 
) x10-6 

Total 
flow 
(m3/s/m) 
x10-5 

h2 

(m) 

5+ 

h2-h1 

(m) 

5 0.0 0.0 0.0 0.0 0.0 0.0 
5.1 0.1 9.5 5.05 10.0 .07 .07 
5.2 0.2 19 10.2 20.0 .14 .14 
5.3 0.3 28.5 15.5 30.1 .21 .21 
5.4 0.4 38 20.8 40.1 .28 .28 
5.5 0.5 47.5 26.3 50.1 .35 	. .35 
5.6 0.6 57 31.8 60.2 .42 .42 
5.7 0.7 66.5 37.5 70.3 .49 .49 
5.8 0.8 76 43.2 80.3 .56 .56 
5.9 0.9 85.5 49.1 90.4 .63 .63 
6 1 95 55 101 .70 .70 

17 



Table 3.3.6 Calculation of flow for B/D 0.2 and hl =10 
B/D 
=0.2 
and 
h1 
=10 
m 

h4 

(m) 

Groundw 
ater 
potential 
difference 
(h4-h1) 
(m) 

confine 
d 	flow 
(m3/s/ 
m) 
x10-6 

unconfin 
ed 	flow 
(m3/s/m) 
x10-6 

Total flow 
(m3/s/m) 

x10-5 	- 

h2 

(m) 

10+ 

h2-
hi 

(m ) 

10 0 0.0 0 0.0 0 0.0 
10.1 0.1 9.5 	• 10.05 10.5 .07 .07 
10.2 0.2 19.0 20.2 21.0 .14 .14 
10.3 0.3 28.5 30.45 31.5 .21 .21 
10.4 0.4 38.0 40.8 42.1 .28 .28 
10.5 0.5 47.5 51.25 52.6 .35 .35 
10.6 0.6 57.0 61.8 63.2 .42 .42 
10.7 0.7 66.5 72.45 73.7 .49 .49 
10.8 0.8 76.0 83.2 84.3 .56 .56 
10.9 0.9 85.5 94.05 - 94.9 .63 .63 
11.0 1 95.0 105 106 .70 .70 

• 

The graphical presentation of the seepage values is given below. 



... 

20 

15 

10 

5 

--- 1 -801 -60  -40 -20 - 	0 20 40 60 80 1C 

-5 

-10 

-15 

-20 

n 

0 
x 

-1 
0 

for h1=5m 

o 	
— flow for h1=10m  

Fig 3.3.1 Flow from aquifer to river or vice-versa for BID =5 

Groundwater Potential difference (m) x10*5  

19 



01J 

40- 

20 

0,I 
15 -0.1 -0.05 

/— 

511 
/ -,1 

-26 

-40  

0 	0.05 0.1 0. 

--a—Flow for h1=5m ; 

5 	flow for h2=10m 

Fig 3.3.2 Flow from aquifer to river or vice-versa for B/D =1 

Groundwater potential difference (m) 

20 



MCI- 

100 - 

50 - 

0. 

110°.  

00"  

il#  

'
"."

..-.'". 

.8 -0.6 

....i  OP"  
ill.'  

-0.4 -0.2 

...---- 

0 

-50 - 

-100  - 

(MI__ 

0.2 

• 

0.4 	0.6 0 

E 

E 

0 
LL 

8 

—1—flow for h1 =5m 

—ii---flow for h1=10m  

Fig 3.3.3 Flow from aquifer to river or vice-versa for B/D =0.2 

Groundwater potential difference (m) 

21 



lav- 

60 - . 
/ 

/ / 

40 - 
#.'/ 

'''' 

20 - ,.., 
% 

0 , 

1.5 -1 -0.5 . .. 0 0.5 1 1 
/ 

._. -20 - 
/ 

/ 

-40 - 

-60 - 

$11a-_,--- 

5 

Method of fragments 

Dupuit's Method 

Fig 3.3.4 Comparison of flow using Dupuit's Method and the method of fragments for BID =1 

Groundwater potential difference (m) 

22 



Fig 3.3.5 Comparison of flow using the method of fragments and Dupuit's Assumption for BID=2 
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Fig 3.3.8 Variation of Rushton's Constant C1 with B/D ratio for h1=10m and h2-hl =0.01m 
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Fig 3.3.9 Variation of Rushton's Constant Cl with hi for BID =1 
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Fig 3.3.10 Variation of Rushton's constant Cl with average slope of the phreatic surface for BID =2 
and h1 =10m 
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3.4 	Results and Discussion 

It is found that the exponential relationship, which is suggested by Rushton based 

on field evidence, comes into picture, when the ratio of bed width of the river to depth of 

the aquifer below the riverbed becomes larger. In cases which are considered presently, 

that is, when B/D 	it is observed that linear trend can fairly represent the relationship of 

groundwater potential difference and flow. On the other hand, it is seen that Dupuit's 

assumption and the method of fragments yielded approximately close results (with an 

error of 10% for B/D =1). 

********************** 
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CHAPTER 4 

Seepage from Rectangular Channel to an unconfined aquifer. 
4.1 General 

If groundwater levels are below water levels in streams, canals, lakes, or 

reservoirs, water will seep into the ground from these surface waters .The rate of seepage 

from streams or canals depends on channel geometry, conductivity of bottom material 

and underlying soil layers, and depth of groundwater table at some distance from the 

channel. Flow velocity in the channel has no direct effect on seepage (Bouwer,1978) , but 

it could affect seepage indirectly because fine particles and other sediments have more 

chance to accumulate on the bottom of stagnant or slow-flowing channels than in rapid 

streams. 

4.2 Statement of the Problem. 

A rectangular channel in isotropic and homogeneous porous medium is assumed 

to feed the aquifer. Symmetrical conditions are assumed on both sides of the stream. It is 

required to compute the flow from the channel to an aquifer. Then making use of the 

computed values the Rushton constants are determined for different ratios of width of the 

river to depth of the aquifer below the river bed. 
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p' 	P 	a' 	1 	d 	p >  r 

Fig 4.2.3 Auxiliary Plane. 

4.3 Analysis 

The problem is tackled by splitting the original problem into three segments. 

Dupuit-Forchheimer assumption is used for the portion of flow above the riverbed. That 

portion of flow, which is below the riverbed, is considered as confined flow and the 

method of conformal mapping is used for this portion. For some cases Dupuit-

Forchheomer assumption is used for the whole flow system and the result is compared 

with the previous method. The analysis is similar to the reverse case therefore for figures 

chapter three can be referred. 

Using the Schwarz-christoffel transformation, the mapping of the complex 

potential onto the lower half of the auxiliary plane is, 

dw 	M 
dt (t -1)z(t—d)21  

dt 
After integrating, w =M  	N, Where, M and N are arbitrary complex constants. 

0 —1120 — 

Substituting t =Re ie  and dt = Re le  WO, 

Relict  idO w=m1 	 +N 
(Re — 1)2 1;Z.e1(3  — d)2 

S 
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As one traverse on t-plane along a radius of infinity from it to 2n, the 
corresponding change in w-plane is iq 

	

2. 	Re' id() Thus, iq = M 	„1 
(Rele  — 1)2 peie — d)2 

lim 
27c 	Rei°  id0 R— cc M f 	,1 

(Re ie  —1 2  (Re ie  — 

M  Re i°  dO  25n 

	

I 	I 
it 1  

	

Re le  (1 — 	 2 1 	
d 2 

 
Re j 	" Re i°  

=Mi ?de = Mi0 j =Min 

Therefore, M= -q- 
n 

Then, w= q  f 	
dt 	

1 kh 1 — iq 
d — 1)-1  — 

2 

For point P where t=p and w = -kh4, 

dt  
kha icl = 	PS 

d (t — 1)—(t — d)2 kh 1
—  iq 

2 

P 	dt 	— al, ri 	 
Hence, lqh, — h4 	

q 
= f  	' FiNt —1 + — dt 

d  (t — 1)-
2 
 — 

= 2q 	Vp-1+Vp—d  
TC 	Vd —1 
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Then, q 	rck(hl- h4) 

	

Therefore, total confined flow equals 2q = 2 
	7-ck(h, h4)  

In 	
Vd -1 

	

dz 	dt 	dt  S imil arl y, 	= M 	 M 

	

dt 	1 	 1 
t 2  (t -1)5, 	t 2  - t) 

Substituting t= sin2O and dt = 2sinOcosOdO, 
-■,/f = Sine and 0 = sin-1t 

Z= 52 sin 0 cos 0d0 
- 2M0 =2Msin-1  0 sin 0 cos 0 

	

For point C, Z=iD and 	Hence, iD= 2M —7t and M= iD 

	

2 	it 

Thus for 0 S t < 1 , Z- i2D sin-1 -\Ft 
it 

, 
For t._ 1 Z= Mtf dt  

+iD 1 	1 	1  
t 2  (1 - tli 

	

. 	 B . 	iD d 	dt 

	

For point D, Z= — +ID and t= d. Hence, —+ =—f 	+iD 2 	 2 	71 1 	1 	1 
t 2 (1-t) 

B ,iD d 	dt 	D d 	dt Then, — = —f -   2 	7C 1 	 n 1 - t 2, 
	 1  
- 	t 2 (t- 1) 

1.9 

in[Vp -1 + -d 
Vd -1 
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( 1 
d 2  ± – 

( 
= 2 In + – 	– 210 + 0) . Then, an  = In 

4D 

BIT 	Bit 
1 ± 2e 2D e D Therefore, d = 

Similarly at point P where Z =—B  + L + iD and t =p 
2 

B 
2 

= in 

(p_ 

——f 
dt 	D P 	dt = D P 	 +iD – 

7t 	1 
t 2  – 

1 	7t 
1)2 

142p –1+ 

f 	1 	1 
t2- (t-1)2 

2 
± vp2 	p  

2Vp2 	p) 

2 
a(L3 +L) 	27cB 

Therefore, p = 	  1+2e1 2 	+ e D 
( 

 

a( 
4eD2 

137z 
4e 2D 



Numerical Values are assumed for the hydraulic conductivity and bed width of 
the river and the results are tabulated below. 

Table 4 3.1 Calculation of flow for B/D= 5 and h1 =5m. 
B/D 
=5 
and 
h1 
=5m 

h4 
(m) 

Groundw 
ater 
potential 
difference 
(h4-h1) 
(m) 

confined 
flow 
(m3/s/m) 
xl 0-6 

unconfi 
ned 
flow 
(m3/s/m 
) x10-6 

Total 
flow 
(m3/S/m) 
x10-5 

h2 
(m) 	. 

x10-5 

h2-h1 
(m) 
x 10-5  

4.9 -0.1 9.78 4.95 1.47 8.68 8.68 
4.8 -0.2 19.57 

9.8 
2.94 17.4 17.4 

4.7 -0.3 29.35 14.6 4.4 26 
26 

4.6 . -0.4 39.13 19.2 5.83 34.7 34.7 
4.5 -0.5 48.92 23.8 7.27 43.4 43.4 
4.4 -0.6 

58.7 
28.2 8.69 52.1 52.1 

4.3 -0.7 68.48 32.6 10.1 60.7 60.7 
4.2 -0.8 78.27 36.8 11.5 69.4 69.4 
4.1 -0.9 88.05 41 12.9 78.1 	• 78.1 
4 -1 97.84 45 14.3 86.8 86.8 

TAble 4.3.2 Calculation of flow for B/D =5 and h1=10m. 

B/D 
=5 
and 
h1 
=10 
m 

h4 
(m) 

Groundw 
ater 
potential 
difference 
(h4-h1) 
(m) 

confined 
flow 
(m3/s/m) 
x10-6 

unconfin 
ed 	flow 
(m3/s/m) 
x10-6 

Total 
flow 
(m3/s/m 
) x10-5 

h2 
(m) 

x10-5 

h2-h1 
(m 	) 
x10-5  

9.9 -0.1 9.78 9.95 1.97 -8.68 -8.68 
9.8 -0.2 19.57 19.8 3.94 -17.4 -17.4 
9.7 -0.3 29.35 29.6 5.89 -26 -26 
9.6 -0.4 39.13 39.2 7.83 -34.7 -34.7 
9.5 -0.5 48.92 48.8 9.77 -43.4 -43.4 
9.4 -0.6 58.7 58.2 11.7 -52.1 -52.1 
9.3 -0.7 68.48 67.6 13.6 -60.7 -60.7 
9.2 -0.8 

78.27 
76.8 15.5 -69.4 -69.4 

9.1 -0.9 88.05 86.0 17.4 -78.1 -78.1 
9.0 -1 97.84 95 19.3 -86.8 -86.8 
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Table 4.3.3 Calculation of flow for B/D =1 and h1 =5m. 

B/D 
=1 
and 
h1 
=5m 

h4 
(m) 

Groundw 
ater 
potential s  
difference 
(h4-h1) 
(m) 

confined 
flow 
(m3/s/m) 
x10-6 

unconfi 
ned 
flow 
(m3/s/m 
) x10-6 

Total 
flow 
(m3/s/m) 
x10-5 

h2 

(m) 

5+ 

h2-h1 

(m) 

4.9 -0.1 43.75 4.95 4.87 -.01 -.01 
4.8 -0.2 87.5 9.8 9.73 -.02 -.02 
4.7 -0.3 131 14.6 14.6 -.03 -.03 
4.6 -0.4 175 19.2 19.4 -.04 -.04 
4.5 -0.5 218 23.8 24.2 -.05 -.05 
4.4 -0.6 262 28.2 29.0 -.06 -.06 
4.3 -0.7 306 32.6 33.9 -.07 -.07 
4.2 -0.8 350 36.8 38.8 -.08 -.08 
4.1 -0.9 394 41 43.5 -.09 -..09 
4 -1 438 45 48.3 -.10 -.10 

Table 4.3.4 Calculation of flow for B/D =1 and h1 =10m. 

B/D 
=1 
and 
hi 
=10 
m 

h4 
(m) 

Groundw 
ater 
potential 
difference 
(h4-h1) 
(m) 

confined 
flow 
(m3/s/m) 
x10-6 

unconfined 
flow (m3/s/m) 
x10-6 

Total flow 
(m3/s/m) 
x10-5 

h2 

(m) 

10+ 

h2-hl 

(m ) 

9.9 -0.1 43.75 9.95 5.37 -.01 -.01.  
9.8 -0.2 87.5 19.8 10.7 -.02 -.02 
9.7 -0.3 131 29.6 16.1 -.03 -.03 
9.6 -0.4 175 39.2 21.4 -.04 -.04 
9.5 -0.5 218 48.8 26.7 -.05 -.05 
9.4 -0.6 262 58.2 32.0 -.06 -.06 
9.3 -0.7 306 67.6 37.4 -.07 -.07 
9.2 -0.8 350 76.8 42.7 -.08 -.08 
9.1 -0.9 394 86.0 48 -.09 -.09 
9.0 -1 438 95 53.3 -.10 -.10 
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Table 4.3.5 Calculation of flow for 113/D =0.2 and h1  =5m 

B/D 
=0.2 
and 
h1 
=5m 

h4 
(m) 	" 

Groundw 
ater 
potential 
difference 
(h4-h1) 
(m) 

Confined 
flow 
(m3/s/m) 
x 10-5 

unconfi 
ned 
flow 
(m3/s/m 
) x10-6 

Total 
flow 
(m3/s/m) 
x10-5 

h2 

(m) 

5+ 

h2-h1  

(m) 

4.9 -0.1 9.5 4.95 9.99 -.07 -.07 
4.8 -0.2 19 9.8 20.0 -.14 -.14. 
4.7 -0.3 28.5 14.6 30.0 -.21 -.21 

. 4.6 -0.4 38 19.2 39.9 -.28 -.28 
4.5 -0.5 47.5 23.8 49.9 -.35 -.35 
4.4 -0.6 57 28.2 59.8 -.42 -.42 
4.3 -0.7 66.5 32.6 69.8 -.49 -.49 
4.2 -0.8 76 36.8 79.7 -.56 -.56 
4.1 -09 85.5 41 89.6 -.63 -.63 
4 -1 95 45 99.5 -.70 -.70 

Table 4.3.6 Calculation of flow for B/D 0.2 and h1 =10m. 

B/D 
=0.2 
and 
hi 
=10' 
m 

h4 

(m) 

Groundw 
ater 
potential 
difference 
(h4-h1) 
(m) 

confine 
d 	flow 
(m3/s/ 
m) 
x10-6 

unconfin 
ed 	flow 
(m3/s/m) 
x10-6 

Total flow 
(m3/s/m) 

x10-5 

h2 
. 

(m) 

10+ 

h2-
h1 

(m ) 

9.9 -0.1 9.5 9.95 10.5 -.07 -.07 
9.8 -0.2 19.0 19.8 20.9 -.14 -.14 
9.7 -0.3 28.5 29.6 31.5 -.21 -.21 
9.6 -0.4 38.0 39.2 

41.9 
-.28 -.28 

9.5 -0.5 -47.5 48.8 52.4 -.35 -.35 
9.4 -0.6 57.0 -58.2 62.8 -.42 -.42 
9.3 -0.7 66.5 67.6 73.3 -.49 -.49 
9.2 -0.8 76.0 76.8 

83.7 
-.56 -.56 

9.1 -0.9 85.5 86.0 94.1 -.63 -.63 
9.0 -1 95.0 95 105 -.70 -.70 
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4.3 Results and Discussion 

It is found that the exponential relationship which is suggested by Rushton based 

on Field evidence comes into picture, when the ratio of bed width of the river to depth of 

the aquifer below the river bed becomes larger. In the cases which are considered 

presently, that is, when B/D 5 it is observed that linear trend can fairly represent the 

relationship of groundwater potential difference and flow. Moreover, it is seen that 

Dupuit's assumption and the method of fragments yielded approximately close results 

(with an error of 10% for B/D =1). 

**************** 
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CHAPTER .5 

Conclusion 

It has been observed that different values of Rushton constants can be obtained 

for a given channel geometry and dimensions .The main factor upon which the values of 

these parameters depend is the ratio of bed width of the channel to depth of the 

impervious layer below it. Besides this, depth of water in the channel is the other 

condition which affects these parameters .0n the other hand it is found that the non-linear 

relationship of flow and groundwater potential difference becomes significant when the 

slope of the phreatic surface is higher. There is also a tendency of non-linearity for higher 

water depth for a given slope of the phreatic surface. Moreover, real field situations are 

complex and there may be so many factors which affect the flow from river to aquifer or 

vice-versa in different ways. The most notable are non-homogeneity, anisotropy, 

irregular geometry of river cross-section and sediment deposition in river bed. 

It is also found that the flow rates computed by Dupuit-Forchheimer assumption 

and the method of fragments were approximately same (there is an error of 10% between 

Dupuit's assumption and the method of fragments for B/D =1) 

******************** 
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