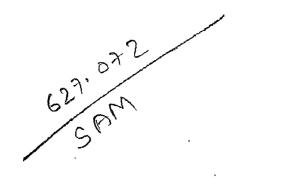
ANALYSIS OF CROPPING PATTERN AND WATER UTILIZATION IN CHAMBAL COMMAND


A DISSERTATION

Submitted in partial fulfillment of the requirements for the award of the degree of MASTER OF TECHNOLOGY in WATER RESOURCES DEVELOPMENT

By JAYA SAMPURNA

WATER RESOURCES DEVELOPMENT TRAINING CENTRE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE -247 667 (INDIA) December, 2002

ACKNOWLEDGEMENT

I wish to record my sincere thanks with a profound sense of gratitude to Prof. V.K.Bairathi and Prof. U.C.Chaube, WRDTC, Indian Institute of Technology (IIT) Roorkee for their valuable guidance and encouragement in preparation of this dissertation.

Thanks are also due to Profesor, D.Das, Professor and Head Department WRDTC for his interest & encouragement. Special thanks also due to my colleagues for their kind support and help.

I have no word to adequately express my most sincere and heart-felt gratitude to my mother, my parent in law, my brother, my wife and my daughter, Nur Azizah for their love and inspiration which are the cornerstone of my all achievements.

(JAYA SAMPURNA) Place : Roorkee

Date : December , 2002

ii

ABSTRACT

The work on the Chambal Project was started in 1953. The main storage dam is Gandhi Sagar and a diversionary barrage at Kota together with the principal canals were constructed and irrigation was started in year 1960 but project construction was completed in 1971.

The project was scheduled to provide full benefits by 1968. Very shortly after the commencement of irrigation, the Chambal Command faced many problems and irrigation potential could not be utilized as planned. Agriculture production in Chambal project area has not increased as envisaged at the time of construction of the irrigation project.

This dissertation work was taken up with the following objectives:

- Analysis of agroclimatic characteristics of the command area as relevant to irrigated agriculture.
- Analysis of changes in cropping pattern and growth of irrigation water demand over different period.
- > Analysis of irrigation demand and water utilization.

The main findings of the study are:

- 1. Monthly rainfall in the command area have high coefficient of variability in all months (more than 80 %).
- 2. The area is classified as semi arid with moderately deficit moisture availability. Rice and sugarcane crops are not suitable for the area. These high water consuming crops should not be grown in the command area.
- 3. Design cropping patterns have been revised several times having been influenced by actual development of cropping pattern. Actual cropping pattern as witnessed

over the past 40 years also show wide variation. It is necessary to critically examine such wide variation. Target crop areas are high but actual achievement are low.

- 4. The area under paddy and sugarcane have not achieved design target. Sorghum and maize have disappeared in recent years. Kharif cropping pattern has shown major short full in entire span of 40 years. Wheat area has shown rising trend from 1993-1994 onward, Soyabean in kharif and mustard in rabi are the major oilseed crops showing rising trend from 1982-1983 to 1993-1996 but declining afterward.
- 5. With change in cropping pattern, irrigation water demand has also been changing.
 - □ Water demand in recent years has significantly increased in all months particularly in rabi season.
 - □ Whereas RBC has adequate canal capacity, the capacity of LBC is found to be inadequate mainly in October.
 - □ Compared to available design capacity of RBC, the demand has been significantly low resulting in poor utilization of capacity.
- 6. Water availability at Kota barrage is governed by releases from upstream "carry over" reservoir. These releases are according to power generation schedule. Low water utilization in kharif and spillage occurring downstream of Kota barrage suggest that in certain critical months of kharif season (May,June) water available at Kota barrage is not as per irrigation requirement particularly in RBC resulting in decrease in paddy area.

iv

CONTENTS

		Page
CANDIDATE	'S DECLARATION	i
	DGEMENT	ii
ABSTRACT	· · · ·	iii
CONTENTS		v
LIST OF TAE	BLES	vii
LIST OF FIG	URES	ix
LIST OF NOT	TATION	x
CHAPTER-1	: INTRODUCTION	1-8
1.1	General	I-1
1.2	Chambal Command Area	I-1
1.3	Background of study	I-2
1.4	Objective of study	I-4
CHAPTER- 2	: ANALYSIS OF AGROCLIMATIC CHARACTERISTICS	5 1 - 24
2.1	General	II-1
2.2	Climatic Characteristic	II-2
2.3	Potential Evapotranspiration	II-3
2.4	Analysis of Rainfall	II-4
2.5	Agro climatic Classification	II-5
CHAPTER-3	: ANALYSIS OF CROPPING PATTERN	1-14
3.1	General	III-1
3.2	Cropping Pattern Before Project	III-1
3.3	Original Design Cropping Pattern	III-3
3.4	Development Of Cropping Pattern After Project	III-3
3.5	Analysis Of Changes in Cropping Pattern	III-4
	3.5.1 Change in Transition and Adaptation Period (upto 1970)	III-4

	3.5.2 Change in CAD Phase I Period (1974-1984)	III-5
	3.5.3 Change in Post CAD Phase II Period	III-5
	3.5.4 Change Over Entire Period	III-6
	3.5.5 Comparative Change in LBC & RBC Right Bank Canal	III-7
CHAPTER-4	CROP WATER REQUIREMENT FOR CHANGING CRO	PPING
	PATTERN	1-39
4.1	General	IV-1
4.2	Crop Water and Field Irrigation Requirement	IV-1
4.3	Gross Irrigation Requirement	IV-3
4.4	Monthly of Water Demand in RBC and LBC	IV-4
4.5	Discussion of Results	IV-4
CHAPTER-5	: WATER SUPPLY AND UTILISATION	1-8
5.1	Water Supply	V-1
5.2	Utilization of Water	V-3
5.3	Comparison of Water Demand and Canal Capacity	V-3
5.4	Comparison of Water Demand and Water Supply	V-4
CHAPTER 6	SUMMARY AND CONCLUSION	1-6
REFERENCI	E	

APPENDIX

.

LIST OF TABLES

No. Tab	de Title	Page No.
1.1	The Chambal Canal Irrigation System	I-5
2.1	Chambal Command Area Development-Climatic Data	II-10
2.2	Data for Estimated Reference Crop (Eto) for Kota Region	II-11
2.3	Modifield Penman Method	II-12
2.4	Monthly Consumptive Use Requirement for Crop	II-14
2.5	Mean Monthly Rainfall at Kota	1I-17
2.6	Estimate Reference Crop (Eto) for Kota Region	II-18
3.1	Pre Project Cropping Pattern	III-2
3.2	Comparative Index of Cropping Pattern	III-8
3.3	Irrigated Cropping Intensity in Chambal Command (Rajasthan)	111-9
3.4	Actual Irrigated Crop Area	111-10
3.5	Design Irrigated Crop Area	III-11
4.1	Chambal C.AComparative Index of Cropping Pattern	IV-6
4.2	Cropping Pattern in Left and Right Bank Canal Command	IV-7
4.3	Monthly Crop Water and Field Irrigation Req. for Paddy Crop	IV-8
4.4	Monthly Crop Water and Field Irr. Req. for sorghum & maize	IV-9
4.5	Monthly Crop Water and Field Irr. Req. for oilseeds crop	IV-10
4.6	Monthly Crop Water and Field Irr. Req. for vegetables crop	IV-11
4.7	Monthly Crop Water and Field Irr. Req. for pulses crop	IV-12
4.8	Monthly Crop Water and Field Irr. Req. for sugarcane	IV-13
4.9	Monthly Crop Water and Field Irr. Req. for other in kharif	IV-14
4.10	Monthly Crop Water and Field Irrigation Req. for wheat	IV-15
4.11	Monthly Crop Water and Field Irr. Req. for gram & pulses	ÍV-16

vii

4.12	Monthly Crop Water and Field Irrigation Req. for rabi oilseeds	IV-17
4.13	Monthly Crop Water and Field Irrigation Req. for coriander	IV-18
4.14	Monthly Crop Water and Field Irrigation Req. for barley	IV-19
4.15	Monthly Crop Water and Field Irr. Req. for other crops	IV-20
4.16	Crop Area Coefficient in Different Month	IV-23
4.17	Monthly Gross Irr. Req. for Original Design C.Pattern 1954	IV-24
4.18	Monthly Gross Irrigation Req. for Phase I RBC	IV-25
4.19	Monthly Gross Irrigation Req. for Phase I LBC	IV-26
4.20	Monthly Gross Irrigation Req. for Phase II	IV-27
4.21	Monthly Gross Irrigation Req. for av. 10 year	IV-28
4.22	Monthly Gross Irrigation Req. for Achievement 1988-89	IV-29
4.23	Monthly Gross Irrigation for Year 1995-1996	IV-30
4.24	Monthly Gross Irrigation for Year 1996-1997	IV-31
4.25	Monthly Gross Irrigation for Year 1997-1998	IV-32
4.26	Monthly Gross Irrigation for Year 1998-1999	IV-33
4.27	Monthly Water Demand As Per Report (IBRD 1974)	IV-35
4.28	Water Demand at Head of Left Bank Canal	IV-35
4.29	Water Demand at Head of Right Bank Canal for Rajasthan	IV-35
4.30	Comparative Field Irr.Requirement for Paddy	IV-36
4.31	Comparative Area for Paddy Crops	IV-37
5.1	Inflow at Barrage And Releases	V-6
5.2	Seasonal Water Supply to LBC and RBC	V-7
5.3	Inadequacy of Canal in LBC	V-4
5.4	Comparison of Water Supply and Demand	V-7

LIST OF FIGURES

No.Fig	Title	No.Page
1.1	Schematic Diagram of Major Project in Chambal	I-6
1.2	Chambal Command Area, Kota, Rajasthan, India	I-7
1.3	Canal Capacity Factor in Original Design	I-8
2.1	Mean Monthly Rainfall at Kota	II-19
2.2	Monsoon Rainfall Variation from Normal	II-20
2.3	Reference Crop Evaporation	II-21
2.4	Monthly Consumptive Use for Wheat	II-22
2.5	Monthly Consumptive Use for Sugarcane	II-23
2.6	Monthly Consumptive Use for Paddy	II-24
3.1	Pie. Diagram of Cropping Pattern in Difference Period	III-12
3.2	Yearly Variation in Intensity of Major Kharif Crops	III-13
3.3	Yearly Variation in Intensity of Major Rabi Crops	III-14
4.1	Comparative Irr. Requirement for Paddy	IV-38
4.2	Comparative Area Paddy Crops	1 V-3 9
5.1	Inflow at Barrage and Releases in Canal	V-8

LIST OF FIGURES

No.Fig	Title	No.Page
1.1	Schematic Diagram of Major Project in Chambal	I-6
1.2	Chambal Command Area, Kota, Rajasthan, India	I-7
1.3	Canal Capacity Factor in Original Design	I-8
2.1	Mean Monthly Rainfall at Kota	II-19
2.2	Monsoon Rainfall Variation from Normal	II-20
2.3	Reference Crop Evaporation	II-21
2.4	Monthly Consumptive Use for Wheat	II-22
2.5	Monthly Consumptive Use for Sugarcane	II-23
2.6	Monthly Consumptive Use for Paddy	II-24
3.1	Pie. Diagram of Cropping Pattern in Difference Period	III-12
3.2	Yearly Variation in Intensity of Major Kharif Crops	III-13
3.3	Yearly Variation in Intensity of Major Rabi Crops	III-14
4.1	Comparative Irr. Requirement for Paddy	IV-38
4.2	Comparative Area Paddy Crops	IV-39
5.1	Inflow at Barrage and Releases in Canal	V-8

LIST OF NOTATION

AD	= Agriculture Development
C	= Celsuis
CA	= Command Area
CCA	= Culturable Command Area
CWPRS	= Central Power Research Station
CSWCR & IT	= Central Soil & Water Conservation Research & Training Institute
CV	= Coefficient of Variation
CAD	= Command Area Development
CBIP	= Central Board of Irrigation and Power
CADA	= Command Area Development Authority
Cu	= Consumptive Use
ea	= Saturation Vapour Pressure
ed	= Actual Vapour Pressure
ЕТо	= Evapotranspiration
f(U)	= Wind function
FIR	= Field Irrigation Requirement
GIR	= Gross Irrigation Requirement
ha	= Hectare
Km	= Kilometre
LAT	= Latitude
LON	= Longitude
LBC	= Left Bank Canal
MCM or Mm ³	= Million Cubic Metre
MAI	= Moisture Adequacy Index
n	= Sunshine Duration
OFD	= On Farm Development
PET	= Annual Potential Evapotranspiration per month
Р	= Annual Precipitation

x

Rs	= Radiation
Rn	= Equivalent Evaporation
RBC	= Right Bank Canal
RH	= Relative Humidity
Т	= Temperature
U	= Wind Speed at 2 m height

.

.

CHAPTER 1

INTRODUCTION

1.1 GENERAL

Irrigation projects are planned and constructed with the objective to encourage efficient use of scarce water and to deliver fair, reliable and adequate supplies at the outlet. Supplying adequate water to meet the optimal crop water requirement for each farmer below outlet may appear desirable, but it is not always feasible.

It is diffucult to manage water distribution in irrigation system. Typically, systems are large and made up of many structures, controls and people. There are complex and dynamic interaction among the physical nature of the resource and the elements of the system. Between these and the environment, farmers and irrigation engineers who make formal and informal decisions at various levels, further influence these interactions. People are often uncertain about how much water is available which generates competition in sharing it. This leads to conflicts and some time malpractices.

1.2 CHAMBAL COMMAND AREA

The Chambal irrigation project is one of the major irrigation projects to have been built in India on priority basis soon after independence. Project construction began in 1953 and irrigation water was made available to farmers in 1960. The main features of the system (Shah 1990) are as under (Fig. 1.1).

- Gandhi Sagar Dam : a masonry structure 64 meters high with a reservoir storage capacity of 7.595 MCM and a reservoir area of 690 sq.km, the second largest in INDIA. The power station has a generation capacity of 120 megawatts
- Ranapratap Sagar Dam : a masonry structure 54 meters high with a live storage capacity of 1.556 MCM and an installed capacity of 172 megawatts. The water of Ranapratap Sagar are also used to cool the reactors of Rajasthan Atomic Power Project at Rawatbhata which has a generation capacity of 400 megawatts.

· [-]

Jawahar Sagar Dam: a 45 metre high concrete gravity structure with little storage and 100 megawatts of installed capacity. •

- Kota Barrage : an earthen dam with masonry gated spillway about 30 metre high with canal gates on either side to regulate water into the canal system.
- Canal Network: The canal system comprises of two main canals, which take off from the barrage. The Right Bank Canal (RBC) which runs for 124 km. In Rajasthan and further 179 km. in Madhya Pradesh to serve 127,000 ha and 280,000 ha respectively. The two main branches of the Left Bank Canal (LBC) total 168 km. In length and serve 102,000 ha in Rajasthan.

Command Area forms part of the South Eastern Plateau region of the state being situated 25.04° N to 25.50° N latitude and above mean sea level and is an elongated basin in the former alluvial plain of Chambal River. The area is nearly flat plain which slopes (above 0.08 %) gently to the north west direction. The general layout and salient features are shown in Fig. 1.2 and Table 1.1 respectively.

Intensive ravines have cropped up adjacent to the Chambal river and its major tributaries. Gully and sheet erosion is mostly common near the river and about 20 % of the area affected by it, is gradually becoming unproductive.

1.3 BACKGRAOUND OF STUDY

The work on the Chambal Project was started in 1953. The main storage dam is Gandhi Sagar and a diversionary barrage at Kota together with the principal canals were constructed and irrigation was started in year 1960 but project construction was completed in 1971.

The project was scheduled to provide full benefits by 1968. Very shortly after the commencement of irrigation, the Chambal Command faced many problems and irrigation potential could not be utilized as planned. Agriculture production in Chambal project area has not increased as envisaged at the time of construction of the irrigation project, for the following major reasons (CBIP 1987).

• Lack of irrigation distribution methodology and policy (operational plan & warabandi not implemented).

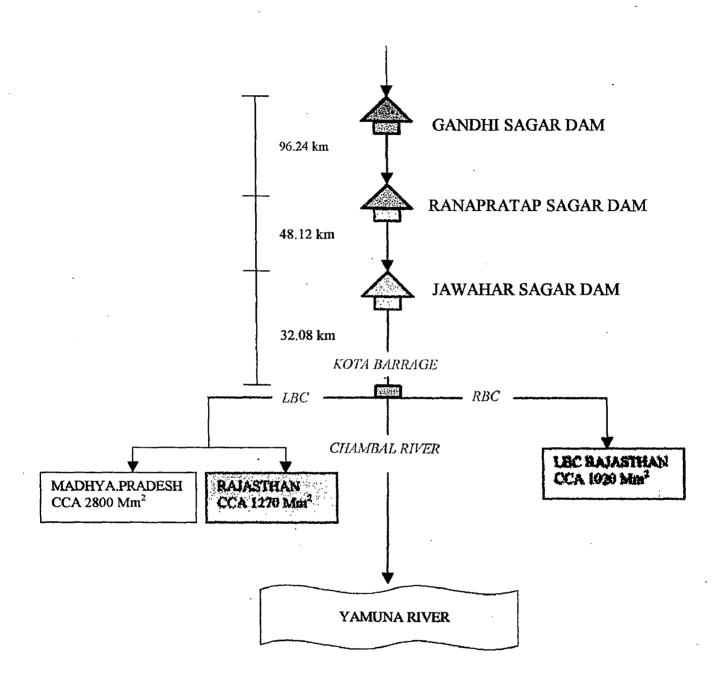
- Poor drainage condition arising out of over irrigation leading to water logging, flooding, yield reduction and a loss of some production land (presently 20,000 ha)
- A lack of on farm development, resulting in low yields and inefficient water use.
- In adequate road network, causing high transport costs (low kharif utilization).
- Gully erosion along banks of Chambal River which causes a loss of land estimated at about 1000 ha per year.
- In adequate service which is only partly effective, due to organizational problem and lack of training.
- Unsatisfactory maintenance of canal and drains, including severe problem of aquatic weed control.
- Shortage of essential farm inputs, mainly fertilizers.
- A lack of coordination between the government agencies responsible for the services to agriculture.

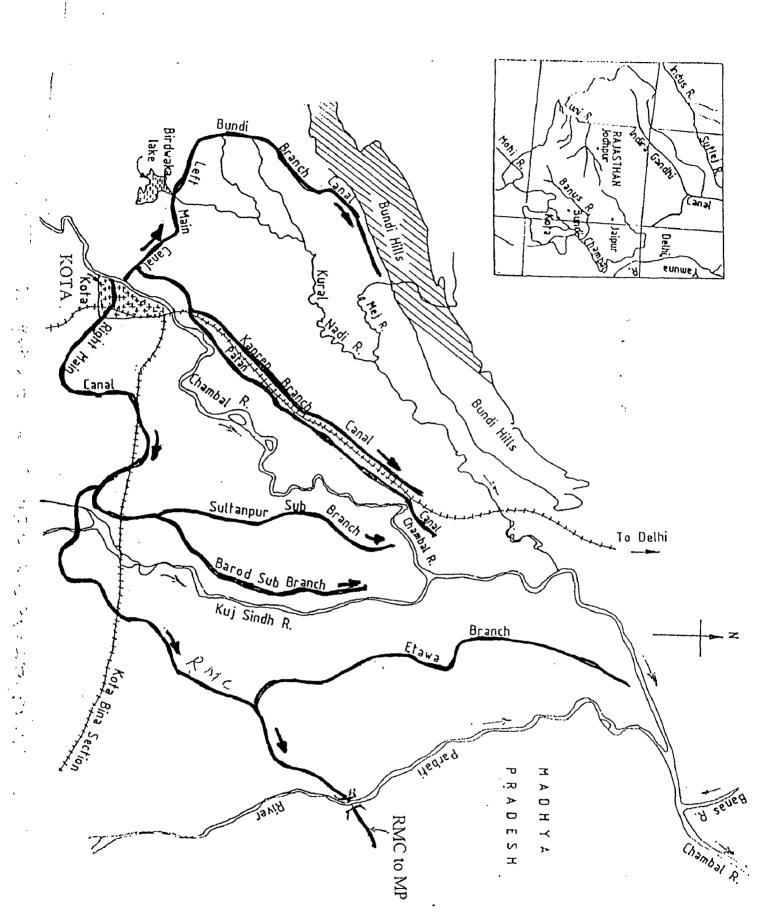
It was initially thought that by creating multidisciplinary infrastructure like systematic construction of water courses, and field channel, drainage, road mandis, extension services, credit societies etc. under one umbrella of Command Area Development Authority (CADA) is the best way to improve the performance of irrigation system. CADA were established in Rajasthan for major projects like, Chambal and Indira Gandhi Nahar Project in mid seventies. Intensive command area development works were taken up under internationally assisted and monitored programmes (CAD Chambal 1972-73). Improvements were noticed and On Farm Development (OFD) work were taken up in some problematic areas of old established of Ganga and Bhakra System. Under this programme huge amounts were spent on Chambal project to construct canal capacity works, outlets (APM'S) Warabandi was introduced for equitable distribution of adoption of warabandi. Financial water. Tall claims were made for successful allocations were also made in the five-year plans for construction of field channels and watercourses upto 6-8 ha blocks and introduction of warabandi in new area. Wide gap in yield were observed from head to tail area served by surface water schemes, and many of the problems stated earlier including malpractices in distribution of water still exist.

1.4 OBJECTIVES OF STUDY

The general objective of this study is to evaluate the progress and performance of irrigation in Chambal Command Area in different period of development such as period before Command Area Development Phase I and Command Area Phase II or post CAD period.

The specific objective of the study are :

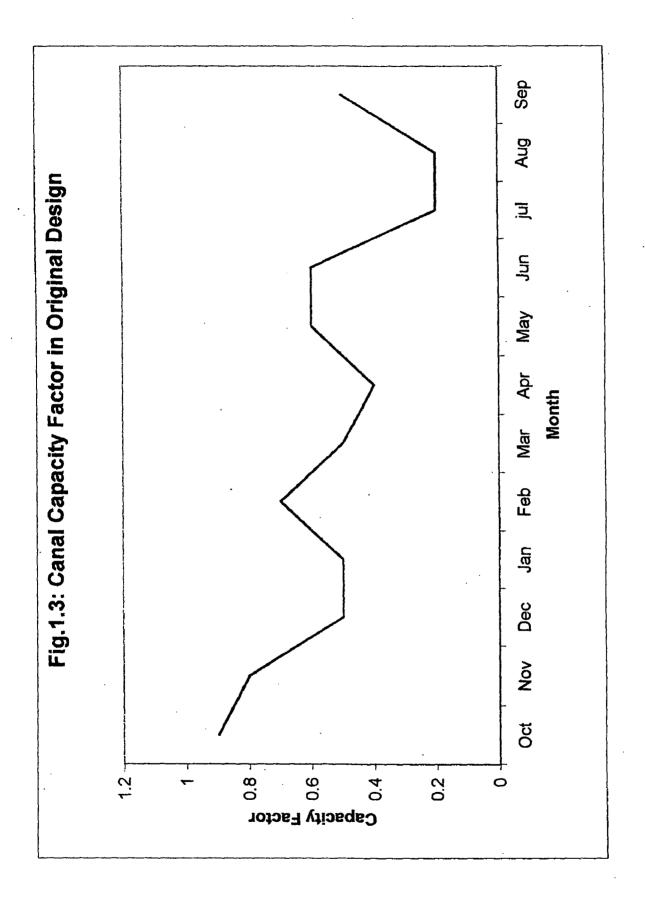

- Analysis of agroclimatic characteristics of the command area as relevant to irrigated agriculture.
- Analysis of changes in cropping pattern and growth of irrigation water demand over different period.
- > Analysis of irrigation water supply and water utilization.


1	Sources of Water Supply	: Kota Barrage	: FRL 260,36 (854')
1	· · · · · · · · · · · · · · · · · · ·	··• -	: SILL 254,88 (836')
2	Area (Rajasthan)		
[Service Area	: Left Bank	: 102,000 ha
		Right Bank	: 127,000 ha Total 229,000 ha
[Additional Area	: Left Bank	: 4,840 ha
1		Right Bank	: 35,500 ha
3	Canal Network	-	
1	Canal Length	: Left Bank	: 168 km
l		Right Bank	: 124 km (common carrier)
l			: 179 km (Madhya Pradesh portion)
	Canal Network	: Left Bank	: 1,060 km
		Right Bank	: 1,455 km
		Drains Approximate	
		5 tank also exist within I	· ·
4	Design Flow	: Left Bank	
		Right Bank	: 188.62 m ³ /sec (6,656 cusec)
1		RB. At Madya Pradesh	• •
1	Manning's (n)	:	: 0,02 unlined (as per original design)
l			: 0,018 lined (as per original design)
			: 0.026 - 0.044 (actual in lined)
1	Velocity	:	: 0,9 m/sec (unlined)
l			: 2,1 m/sec to 1,5 m/sec (lined)
	Bed Slope	: Right Bank	: 1 in 12,000 (unlined)
			: 1 in 3,800 and 1 in 5,280 (lined)
ł	Full Quante Darth	Left Bank	: 1 in 5,600
1	Full Supply Depth	: Left Bank	: 3.15 m for unlined
l	Eron Deerd	Right Bank	: 2.89 m (head portion)
ł	Free Board	: Left Bank Right Bank	: 1.20 m in tank portion
ļ		Right Bank LBC	:0.90 m in other portion :0.55 m (at head)
5	Water Allowance	: at head	: 0.55 m (at nead) : 6 cusec/400 ha - pre CAD
۲°	TANG ANOMANUC	. at neau	: o cusec/400 na - pre CAD : 7 cusec/400 ha - post CAD
	Water Quality	: Low furbidity (sodimost	: / cusec/400 na - post CAD t removal in U/S strorage)
6	Canal Capacity Factor	: Oct	: 0.9
آ ا	in Original Design	Nov	: 0.8
1		Dec	: 0.5
1		Jan	: 0.5
1		Feb .	. : 0.7
ł		Mar	: 0.5
		Apr	: 0.4
		May	: 0.6
1		Jun	: 0.6
l		jul	: 0.2
1		Aug	: 0.2
L		Sep	: 0.5

Tabel 2.1: THE CHAMBAL CANAL IRRIGATION SYSTEM RAJASTHAN SALIENT FEATURES

.

Figure 1.1: SCEMATIC DIAGRAM OF MAJOR PROJECTS IN CHAMBAL BASIN



.

ý

. I-7

ł

:

CHAPTER 2

ANALYSIS OF AGROCLIMATIC CHARACTERISTICS

2.1 GENERAL

The climate of the Chambal commond area is subtropical semi arid. The average annual rainfall is about 850 mm (1931-1961), 808 mm (1961-1985). About 90 % of this occur in the June-September monsoon season. There is high degree of variability from year to year. Short period high rainfall may be expected during the monsoon. For example in 1986, 195 mm rainfall in a 24 hour period of July and in the same week 631 mm rainfall was occurred. The total of entire season was 1,376 mm. The consequence of this was severe local flooding. There is no estimate available on the frequency and magnitude of flood events.

The air temperature varies from a maximum of 40 0 C or more in May and June to a minimum of 4 0 C in December and January. The climate provides 12 month growing season.

The kharif (wet crop season) spreads from May to October, Rabi (winter crop season) from November to April. Hot crop season or Zaid is from April to June but it is of little consequence in the Chambal Area.

The soil of the project area are fairly uniform clay loams (black cotton soils) and are classified as vertisols, which crack deeply into hard angular clods when dry. When wet they are plastic with very low infiltration rates and considerable swelling. Below 1,5 to 2 m, this soil merges with a yellowish brown heavy clay layer 10 to 30 cm in thickness, partly cemented with sodium carbonate.

Below that is a yellow silt clay (the murrum layer) continuing 20 m to 30 m to bed rock. The murrum layer has relatively high lateral permeability and often acts as a semiconfined aquifer.

The soils of the command area contain 50 % porosity, while moisture holding capacity varies from 35 % to 40 % and wilting point 17 % to 18 %. The permeability is from 1 cm to 5 cm. There is very low percentage (nearly 1.0%) of organic matter. Lime contents in the soils range between 1 % to 5 %.

Ground water table rose sharply from 1960 to create about 20.000 ha of water logged and saline alkaline soil. This area increased to 167.000 ha by the year 1973 and had a water table within 3 m of the surface. This rise was attributed to canal seepage and over irrigation. Generally these shallow ground water have Ec values greater than 1,5 mmhos/cm with recorded values as high as 20 mmhos/cm to 25 mmhos/cm. From a general description of the geology of the area, deep permeable quifers are not likely present. The 20 m to 30 m thickness of alluvium, overlying shale and Shaley lime stone, is composed of sand and silty clays and loams with lenses of sand and kanker. Gravel is seldom present and then only in thin lenses

2.2 CLIMATIC CHARACTERISTICS

Table 2.1 shows average monthly values of :

- Maximum, Minimum, Mean Temperature
- Maximum and Minimum relative humidity
- Pan Evaporation
- Rainfall
- Daily Sunshine Hours, Wind Speed

Average values are compared for the two periods i.e. average for 1931 to 1960 (Source World Bank Appraisal Report 1974) and for 1960 – 1987 (Source: Central Soil and Water Conservation Research and Training Institute Kota).

In general, there has been increase in monthly evaporation, particularly in the month of April, May and June. Average monthly rainfall in June, July, August, September has decreased, There is no significant change in maximum and minimum temperatures over the two periods of analysis.

2.3 POTENTIAL EVAPOTRANSPIRATION

On the basis of meteorological parameters reference crop evapotranspiration have been computed by five different methods viz. Blaney Criddle, Modified Penman, Radiation, Thornthwite and Pan Evaporation for the Chambal command area.

Data for computation of evaporation is given in Table 2.2. Eto computation by Modified Penman method is shown in Table 2.3.

Eto and Etcrop for wheat, sugarcane and paddy have been estimated by Modified Penman method, Blaney Criddle method and Pan Evaporimeter method as shown in Table 2.4. These have been compared with figures given in Project Chambal Report estimate as per report appear to be on higher side and these five in considered in analysis. The Eto values have been calculated by as per the procedure and guidelines laid down by Doorenbos and Pruitt (1977). Penman method is more realistic than other methods as it takes into account all meteorological parameters such as temperature, humidity, wind velocity, energy term. ETo values calculated by Penman and Pan Evaporation are close to each other in all the months. The computed Eto value are used further for computing ET crop values for all crop for determining crop water requirements in chapter III.

All the methods show peak values in the month of May and October (Fig. 2.3).

Computational explanatory notes on table 2.3, Computational explanatory notes on Modified Penman.

2.4 ANALYSIS OF RAINFALL

Rainfall is the parent source of water availability in a geographical region. Storage in reservoir and soil moisture saturation needs depend upon the behavior of rainfall pattern. By Shah (1990) The range and frequency distribution of various amounts about mean are necessary in planning land use and crop cultivation. The annual normal rainfall of the area is 808 mm, of which 687 mm (85 %) occurs during the south west monsoon season (June – September). During the post monsoon season (October to February) 89 mm (11 % of normal) and during hot weather (March to May) the average rainfall is 32 mm (4 % of normal rainfall). The monthwise distribution of rainfall is shown in Fig. 2.1. The rainfall pattern in the area is quite erratic having deviation of + 87 % to -45 % of the normal value (Fig. 2.2). the statistical characteristics mean, standard deviation and coefficient of variation (C.V) of rainfall value in Table 2.5 also indicates a 34 % variation in annual rainfall. The coefficient of variability varies from a maximum of 158 % during December to a minimum of 80 % in the month of March.

According to Indian Meteorological Department Criterion if the C.V for any month of monsoon is more than 50%, the rainfall is quite erratic, uncertain in nature. Therefore the rainfall can be classified as erratic in nature.

Dependable precipitation (P 75) is defined here as the 75 percent probability of occurrence. Precipitation probabilities of frequency determination are determined from the available data. The accuracy of the analysis depend upon the length of record than on method used. Various monthly precipitation amounts can be determined by using the ranking method and the equation.

The 75, 95, 50 and 5 percent dependable precipitation based on 25 year record are shown in Table 2.5. A generalized equation developed for estimating 5, 50, 75 and 95 percent probability of assured rainfall have been developed with regression analysis. These equations can be used to estimate probable precipitation, if data series is not know and only mean precipitation is known. The regression equations and corresponding coefficient of determination (\mathbb{R}^2) as given by Shah (1990) are :

	R^2 in %
= 148 + 1.36 Pm	86
= -20 + 1.0 Pm	99
= -40 + 0.80 Pm	96
= -63 + 0.62 Pm	91
	= -20 + 1.0 Pm = -40 + 0.80 Pm

Where Pm is mean monthly precipitation

Frequency in deficit of annual rainfall has been computed according to IMD criteria. The number of years and percentage of years when the annual rainfall is less than normal and less than 75 % dependable shown here.

II - 4

Frequency in deficit of annual rainfall has been computed according to IMD criteria. The number of years and percentage of years when the annual rainfall is less than normal and less than 75 % dependable shown here.

1.	Normal annual rainfall	808 mm
2.	75 % dependable	515 mm
3.	Total number of Years	25
4.	Number of years having rainfall less than normal	15 nos 60 %
5.	Number of year having rainfall less than 75 % dependable	8 nos 32 %

Thus it is included that rainfall pattern is highly erratic and % failure of normal rainfall is 60 % and % failure of 75 % dependable is 32 %

2.5 AGROCLIMATIC CLASSIFICATION

There are five accepted methods available for climatic classification and suitability of crop.

1. Thornthwaite's Classification:

With 75 % probability level of annual rainfall the Moisture Availability Index (MAI) for Thornthwaite's classification is given by :

$$MAI = \left(\frac{P}{PET} - 1\right) 100$$

Where :

 \mathbf{P} = annual precipitation at 75 % dependable level.

PET = annual potential evapotranspiration per month

For chambal command, P=515 mm from table 2.5 ; and PET=1164.26 mm/month from table 2.6

$$= \left(\frac{515}{1164.26} - 1\right) 100$$
$$= -55.77 \text{ say } -56$$

II - 5

Moisture Availability Index	Climatic Moisture Condition
≥ 100	Per humid
20 to 100	Humid
0 to 20	Moist humid
- 33.1 to 0	Moist sub humid
- 66.7 to - 33.1	Semi arid
- 100 to - 66.7	Arid

Thornthwaite's classification is as follows :

2. Krishnan and Singh Method :

in INDIA, Krishnan and Singh improved Thornthwaite's method suitable to . Indian condition. The classification reads as follows:

ZONES	MOISTURE AVAILABLE	MOISTURE CONDITION
	INDEX	· ·
1	< - 80 ·	Extremely dry
2	- 60 to -80	Semi dry
3	- 40 to -60	Dry
4	- 20 to - 40	Slightly dry
5	0 to - 20	Slightly moist
6	50 to 0	Moist
7	100 to 50	Wet
8	> 100	Extremely wet

TEMPERATURE ZONES	TEMPERATURE (°C)	CONDITION
A	> 28	Very hot
В	25 to 28	Hot

С	20 to 25	Mild
D	10 to 20	Cold
E	< 10	Very cold

3. Hargreaves Classification :

Hargreaves has classified the moisture condition in a different way. He has developed Moisture Adequacy Index (MAI) using Thorthwaite's potential evapotranspiration.

$$MAI = \frac{P}{PET}$$

Where P is 75 % dependable rainfall. The classification is as follow :

Moisture Adequacy Index (MAI)	Moisture Condition
0 to 0.33	Very deficit
0.34 to 0.67	Moderately deficient
0.68 to 1.00	Some what deficient
1.00 to 1.33	Adequate moisture
> 1.33	Excessive moisture

For Chambal command, MAI = $\frac{515}{1164.26}$

= 0.44

(as explained in para 2.5,1)

thus the command falls in category moderately deficient

4. World Bank's Classification :

Hargreaves later on improved his own index and also indicated suitability of crop. The classification is as follow :

II - 7

SI.	MOISTURE	CLIMATIC	COMMENT
NO	ADEQUATE	CONDITION	
	INDEX (MAI)		· · ·
1	All the months with MAI	Very hot	Not suitable even for
	ranging from 0 to 0.33		rainfall agriculture
2	One or two months with	arid	Limited suitability for
	MAI of 0.34 or above		rainfed crop
3	Three or four consecutive	Semi arid	Production possible for
	months with MAI of 0.34		crops 3 to 4 requiring
	or above		months duration.
4	Five or more consecutive	Wet dry	Production possible for
	months with MAI of 0.34		crops requiring good
ł	or above		supply of water
5	One or two months with	Some what wet	Natural or artificial
	MAI above 1.33		drainage required for
			cultivation
6	Three to five months with	Moderately wet	Good drainage system
	MAI as 1.33 or above		needed for cultivation
7	Five or more months with	Very wet	Very good drainage
	MAI above 1.33		system required

According to above table, chambal command falls in category number 3

5. National Commission on Agriculture's classification:

The National Commission on Agriculture suggested following classification :

- 1. Rainfall of 30 cm per month for at least three consecutive months, suitable for crops like paddy or high water requiring crop.
- 2. Rainfall between 20 40 cm per month for three consecutive months suitable for rice, maize, sorghum.

- 3. Rainfall between 10 20 cm per month for three consecutive months would be suitable for the cultivation of crop other than paddy.
- 4. Rainfall between 5 to 10 cm per month for about three months is just suitable for pulses, oilseeds.
- 5. Rainfall 5 cm per month for about 3 consecutive months not suitable for cultivation.

75 % dependable rainfall of Chambal command is given in table 2.5. according to it, there is no rainfall from January to May, very little in June and very good rainfall in July, Augustus, September and little in October. Therefore the area falls in category 3.

The climatic classification based on computed value of PET and method suggested above are as follows :

1.	As per Thornthwaite's	semi arid
2.	As per Krishnan and Singh method	semi dry
3.	Hargreaves classification	Moderately deficient
4.	World Bank method	semi arid
5.	National Commission on Agriculture's	semi arid (category 3)
	classification	

As per temperature requirement and National Commission on Agriculture, crop suitable in this type of climatic condition are maize, sorghum, wheat.

Therefore it can be concluded that area can be classified as sub tropic semi arid with moderately deficit moisture available.

The area is agro climatically suitable for crop like sorghum, maize, oilseeds except rice. Therefore rice and sugarcane may not be very much suitable for the area from the agro climatic point of view.

Table 2.1 : CHAMBAL COMMAND AREA DEVELOPMENT (RAJASTHAN) - CLIMATIC DATA

. Station - Kota Lat. - 25°13' N

MEAN MONTHLY RAINFALL 80 00 00 00 00 (uuuu) PAN.EVP. <u>8</u> 375 204 103 137 493 53 5 174 128 257 181 (mm) Long. - 75°52' E Alt. - 275 m AVERAGE WIND VEL. 1.72 4.75 3.45 6.16 8.35 6.6 3.02 4.44 3.7 2.17 1.78 2.37 (km/hr) AVERAGE 9.23 Rhmean SUNSHINE 9.52 9.22 10.47 8.88 5.36 9.27 8.8 10.1 7.57 4.91 8.91 (hr/day) 25.5 67.5 g 2 49 55 47 25 4 74 51 57 8 38 <u>φ</u> 5 9 3 ß 8 52 30 28 8 Rhmin **Relative Humidity** 2 AS PER (1960 - 1987) AVERAGE 35 ŝ 76 79 76 69 74 8 ន 35 78 81 RHmax 8 23.45 29.25 33.6 33.45 29.75 27.6 27.7 25.55 20.55 16.15 17.8 Tmean 15.05 ິຍ 25.3 23.8 22.2 11.2 14.4 27.1 25 16.8 7.2 Tmax (°C) Tmin (°C) 6.4 9.1 2 Temperature 26.5 32.5 29.9 37.5 41.9 39.8 34.5 31.4 33.2 34.3 25.1 23.7 268 132 088 S 19 309 15 9 4 ŝ Mean Monthly Rainfall 256 334 328 10 ĝ \$ 128 170 134 Av.Monthly 114 151 412 Pan.Evp. AS PER (1931-1960) AVERAGE Mean Rei Humadity Av Mont 69 58 34 29 35 25 18 13 16 35 8 34 RHmax Rhmin 8 AVERAGE | 33.26| 20.70| 33.421 SOURCE: (a) World Bark Appresist report (1974) (b) CSWCR and IT, kota 61 53.42 74 2 ន 8 24 28 47 64 5 ω 5 3 11.3 14.8 Mean Trmax (°C)|Trmin (°C) 13.1 18.5 29.5 26.4 24.4 24.7 21 10.6 24.4 29.7 34.5 30.8 28.5 42.6 40.3 33.3 31.7 33.1 26.7 33.26 8 34.1 24.5 8 8 28 31 g 31 8 31 3 3 ε DAY <u>5</u> MONTH 3 MAR 8 AUG 2 FEB 4 APR 5 MAY 10 OCT Ŋ 9<u>|S</u>EP 11 NOV 12|DEC JAN Ę N SI 9 N

249

259

114 26 38

õ ÷ 67

۲.

3

II-10

Table 2.2: DATA FOR ESTIMATED REFERENCE CROP EVAPOTRANSPIRATION (Eto) FOR KOTA REGION, AVERAGE (1960-1987)

						OW	MONTH					
4 1		222	AAM	APR	MAY		יור	AUG	SEP	OCT	NOV	DEC
Latitude (N)	25.13	25.13	25.13	25.13	25.13	25.13	25.13	25.13	25.13	25.13	25.13	25.13
Altitude (m)	257.00	257.00	257.00	257.00	257.00	257.00	257.00	257.00	257.00	257.00	257.00	257.00
T mean (°C)	15.05	17.80	23.45	29.25	33.60	33.45	29.75	27.60	27.70	25.55	20.55	16.15
.RH mean (%)	55.00	47.00	36.00	25.00	25.50	44.00	67.50	74.00	64.00	49.00	51.00	57.00
U mean (km/hr)	2.37	3.02	3.42	4.44	6.16	8.35	6.60	4.75	3.70	2.17	1.72	1.78
n mean (hr/day)	8.91	9.52	9.22	10.10	10.47	8.88	5.36	4.91	7.57	9.27	9.23	8.80
RH max (%)	78.00	66.00	53.00	35.00	35.00	56.00	76.00	79.00	76.00	69.00	74.00	81.00
U day (m/sec)	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
U day/U night	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50

Source : Vinod Shah (1990)

Table 2.3 : MODIFIELD PENMAN METHOD

•	ESTIMAT	ED REFI	ESTIMATED REFERENCE CROP EVAPOTRANSPIR	ROP EV	APOTRAN	SPIRATIC	ON (Eto)	ATION (Eto) FOR KOTA REGION	A REGION							
		ea	ed =	ea-ed				Rs≕(0.26+	(T)	f(ed)	(N/U))	Rn.1=f(T).	=nЯ	M	U	Eto=c(W.Rn+(1-W)
	MONTH	table 9 (mbar)	ea.RH/100 (mbar)	(mbar)	(1+U/100)	Table 10 (mm/day)	Table 11 (hr/day)	0.5n/N)*Ra (mm/day)	Table 12	Table 13	Table 14	f(n/N).f(ed) (mm/day)	0.75Rs-Rs.1 (mm/day)	Table 15	Table 16	f(U).(ea-ed) (mm/dav)
	Ŧ	2	3	4	6	6	7	8	6	10	ŧ	12	13	14	16	16
	JAN	17.10	9.41	7.70	0.42	10.00	10.70	6.66	14.10	0.16	0.18	0.41	4.59	0.63	0.95	2.61
	FEB	20.30	9.54	10.76	0.47	11.70	11.30	7.85	14.70	0.17	0.18	0.45	5.44	0.62	0.70	3.69
	MAR	28.70	10.33	18.37	0.49	13.80	12.00	8.75	15.20	1.19	0.17	3.07	3.49	0.54	0.94	5.68
	APR	40.50	10.13	30.38	0.56	15.35	12.70	9.94	16.60	0.22	0.17	0.62	6.84	0.80	0.88	7.82
	MAY	51.90	13.23	38.67	0.67	16.40	13.30	10.56	17.50	0.22	0.17	0.65	7.26	0.82	0.96	10.19
	NUL	51.80	22.79	29.01	0.81	16.65	13.70	9.56	17.50	0.18	0.16	0.50	6.66	0.81	0.96	9.45
	יערא	41.60	28.08	13.52	0.70	16.55	13.50	7.42	16.60	0.14	0.14	0.33	5.24	0.16	0.99	6.07
II-	AUG	36.40	26.94	9.46	0.58	15.75	13.00	6.91	16.30	0.12	0.14	0.27	4,91	0.56	0.95	4.34
	SEP	37.00	23.68	13.32	0.51	14.40	12.30	8.03	16.30	0.14	0.16	0.37	5.66	0.84	0.80	4.67
	oct	32.80	16.07	16.73	0.41	12.45	11.60	8.09	15.70	0.17	0.18	0.48	5.58	0.81	0.85	4.95
	NOV	24.50	12.50	12.01	0.38	10.50	10.90	7.07	14.60	0.16	0.18	0.42	4.88	0.82	0.69	3.33
	DEC	31.90	18.18	13.72	0.39	9.50	10.60	6.32	13.80	0.15	0.18	0.37	4.37	0.94	0.62	2.74

.

.

Computational explanatory notes on Table 2.3

MODIFIELD P	PENMAN METHOD for month of January
Column 2. ea	= Corresponding to T mean in table 2.2, 15.05 °C
	= 17.1 mbar from appendix.1a
Column 3. ed	= ea*(RH mean/100)
	= Corresponding to RH mean in table 2.2, 55 %
	= ea*(RH mean/100)
	= 17.1*(55/100)
	= 9.41 mbar
Column 4	= Col.2-Col.3
	= 17.1 - 9.41
	= 77 mbar
Column 5. f(U)	= 0.27(1 + Umean/100)
	= Corresponding to U mean in table 2.2, 56.88 km/hr
	= 0.27(1+56.88/100)
	= 0.42
Column 6. Ra	=10 mm/day from appendix.1a
	= Corresponding to Altitude table 2.2, 25.13 °N January
Column 7. N	=10.7 hr/day from appendix. 1b
	= Corresponding to Altitude table 2.2, 25.13 °N January
Column 8. Rs	= 0.25 + 0.5*(n/Col.7)*Ra
	= Corresponding to n mean in table 2.2, 8.91 hr/day
	= 0.25 + 0.5*(8.91/10.7)*10
	= 6.66 mm/day
Column 9. f(T)) = 14.1 from appendix 1b
	= Corresponding to T mean in table 2.2, 15.05 °C
Column 10.f.e	d = 0.16 from appendix.1b
	= Corresponding to column 3, 9.14 mbar
Column 11	= f(n/N), 0.18 from appendix.1b
	= Corresponding to n/N , (8.91/10.7=0.83)

II=13

Table 2.4 : MONTHLY CONSUNTIVE USE REQUIREMENT FOR WHEAT CROP USING VARIOUS METHOD

NONTH					LASS 'A		NODI			t t Ac Det Benert
MONTH	BLAN	EY-CRI	DULE	PANE	VAPOR/	ATION	MODI	IED PE	VIVIAN	As Per Report
	Eto	Kc	Cu	Eto	Kc	Cu	Eto	Kc	Cu	Cu
_	(mm)		(mm)	(mm)		(mm)	(mm)		<u>(mm)</u>	/ (mm)
1	2	3	4	5	6	7	8	9	10	11
NOVEMBER	153.00	0.17	26.01	108.00	0.16	17.28	99.90	0.16	15.98	100
DECEMBER	141.48	0.49	69.33	84.01	0.65	54.61	84.90	0.66	56.03	90
JANUARY	136.09	0.43	58.52	80.90	0.62	50.16	88.35	0.59	52.13	90
FEBRUARY .	126.00	0.71	89.46	108.92	0.70	76.24	103.32	0.92	95.05	125
MARCH	145.00	0.90	130.50	180.11	0.69	124.28	176.08	0.90	158.47	170
APRIL*	110.00	0.54	59.40	130.50	0.30	39.15	117.30	0.50	58.65	50
							.			

* only for two week

MONTHLY CONSUNTIVE USE REQUIREMENT FOR SUGARCANE CROP USING VARIOUS METHOD

			T	C	LASS 'A	V [فتيوي الأرجين إسترابي عدارات			* *
MONTH	BLAN	EY-CRI	DDEL	PAN E	VAPOR	ATION	MODI	FIED PE	NMAN	As Per Report
	Eto	Kc	Cu	Eto	Kc	Cu	Eto	Kc	Сц	Cu.
	(mm)		(mm)	_(mm)		(mm)	(mm)		(mm)	(mm)
1	2	3	4	5	6	7	8	9	10	11
NOVEMBER	153.00	0.43	65.79	108.00	0.32	34.56	99.90	0.42	41.96	120
DECEMBER	141.98	0.31	44.01	84.01	0.42	35.28	84.90	0.42	35.66	90
JANUARY	136.09	0.32	43.55	80.90	0.46	37.21	88.35	0.43	37.99	50
FEBRUARY	126.00	0.38	47.88	108.92	0.37	40.30	103.32	0.49	50.63	100
MARCH	145.00	0.32	46.40	180.11	0.15	27.02	176.08	0.32	56.35	100
APRIL	220.00	0.62	68.20	261.90	0.34	44.52	234.60	0.58	68.03	120
MAY	254.20	0.72	183.02	319.92	0.36	115.17	292.95	0.70	205.07	. 195
JUNE	225.00	0.76	171.00	317.10	0.37	117.33	272.10	0.85	231.29	210
JULY	71.30	0.78	. 55.61	187.86	0.56	105.20	171.74	0.96	164.87	180
AUGUST	66.03	0.67	44.24	131,13	0.65	8 5 .23	134.54	0.91	122.43	150
SEPTEMBER	104.40	0.57	59.51	147.00	0.46	67.62	140.10	0.63	88.26	165
OCTOBER	160.27	0.46	73.72	147.87	0.39	57.67	153.45	0.53	81.33	160

MONTHLY CONSUNTIVE USE REQUIREMENT FOR PADDY CROP USING VARIOUS METHOD

MONTH	BLAN	EY-CRII	DDEL		LASS 'A VAPORA		MODIF	IED PE	NMAN	As Per Report
	Eto	Kc	Cu	Eto	Kc	Cu	Eto	Kc	Сц	Сц
	(mm)	1	(mm)	(mm)		(mm)	(mm)		(mm)	(mm)
1	2	3	4	5	6	7	8	9	10	11
MAY	254.20	1.00	254.20	319.92	0.91	291.13	292.95	0.94	275.37	300
JUNE	225.00	1.15	258.75	317.10	1.10	348.81	272.10	1.10	299.31	275
JULY	71.30	1.30	92.69	187.86	1.22	229.19	171.74	1.12	192.35	220
AUGUST	66.03	1.25	82.54	131.13	1.30	170.47	134.54	1.30	174.90	180
SEPTEMBER	104.40	1.10	114.84	147.00	1.15	169.05	140.10	1.15	161.12	180
OCTOBER	160.27	0.90	144.24	147.87	0.88	130.13	153.45	0.88	135.04	160

Note : ** As per World Bank (1974). The consumptive use requirements as stated in the report are on higher side these applear to include overall losses and are gross irrigation requirements.

Computational explanatory notes on Modified Penman, Table 2.4

CONSUMPTIVE USE for Sugarcane Crop for month of November

Kc

Cu

= 0.42 from appendix.2b

= Corresponding to table 2.3. Col.16: 3.33 mm/day

= (3.33*no of days)*0.42

= (3.33*30)*0.42

= 41.96 mm

CONSUMPTIVE USE for Wheat Crop for month of November

Kc	= 0.16 from appendix.2b
	= Corresponding to table 2.3. Col.16: 3.33 mm/day
Cu	= (3.33*no of days)*0.16
	= (3.33*30)*0.16

= 15.98 mm

CONSUMPTIVE USE for Wheat Crop for month of May

Kc	= 0.94 from appendix.2b
	= Corresponding to table 2.3. Col.16: 10.19 mm/day
Cu	= (10.19*no of days)*0.94
	= (10.19*31)*0.94
	= 275.37 mm

Notes:

Column 1	= monthly consumptive use
Column 2	= evapotranspiration (Eto) from blaney-criddle
Column 3	= crop coefficient (Kc) from appendix.2c
Column 4	= consumptive use of crop
Column 5	= evapotranspiration (Eto) from pan evaporation

∏-15

Column 12	= Col. 9*Col.10*Col.11
	= 14.1*0.16*0.18
•	= 0.41 mm/day
Column 13	= 0.75 * Col.8-Col.12
• •	= 0.75*6.66-0.41
	= 4.59 mm/day
Column 14. W	= 0.63 from appendix.1c
	= Corresponding to T mean and Altitude in table 2.2
Column 15. C	= 0.64 from appendix.1c
	= Corresponding to RH max 78 %, Uday/Unight 1,5 Uday 3 table 2.2
	and Col.8
Column 16	= Col.15(Col.14*Col.15+(1-Col.14)*Col.5*Col.4)
	= 0.95(0.63*0.14+(1-0.63)*0.42*7.7))
	= 2.61 mm/day

					-	-	_	-	_	-	
			Anr	390	515		•		247.22	0.34	
			DEC	0	o	6	24	ω	13.33	1.58	
			VON	0	0	0	24	8	13.3	1.58	
			ост	0	4	0	125	26	30.38	1.39	
			AUG SEP OCT NOV	4			542		121	1.05	
	-1985)		AUG		1.79				111	0.44	
(0000 30	25 Year (1960-1985)		JUL	0/		230		259		0.54	
	25 Үеа		NUL	1	-16	34		67	58.85	0.88	
			MAY	0	0	0	45	11	11.8	1.7	
	ш		APR	0	0	o	21	10	13	1.3	
	Long : 75°51' E	Elev. : 257 m	FEB MAR APR MAY	0	0	0	3	7	9.34	0.8	
	: Fong	Elev.:	FEB	0	ō	0	22	80	15.8 11.21	1.4	
		z	NAL	0	S	S	42	13	15.8	1.22	
	Station : Kota	Latitude 25°12' N	PROBABILITY JAN	95	75	50	2 2	Mean (X)	s.D.	C.V.	
	v	-		Ľ				2	5	<u> </u>	

Table 2.5 : MEAN MONTLY RAINFALL AT KOTA (unit mm)

.

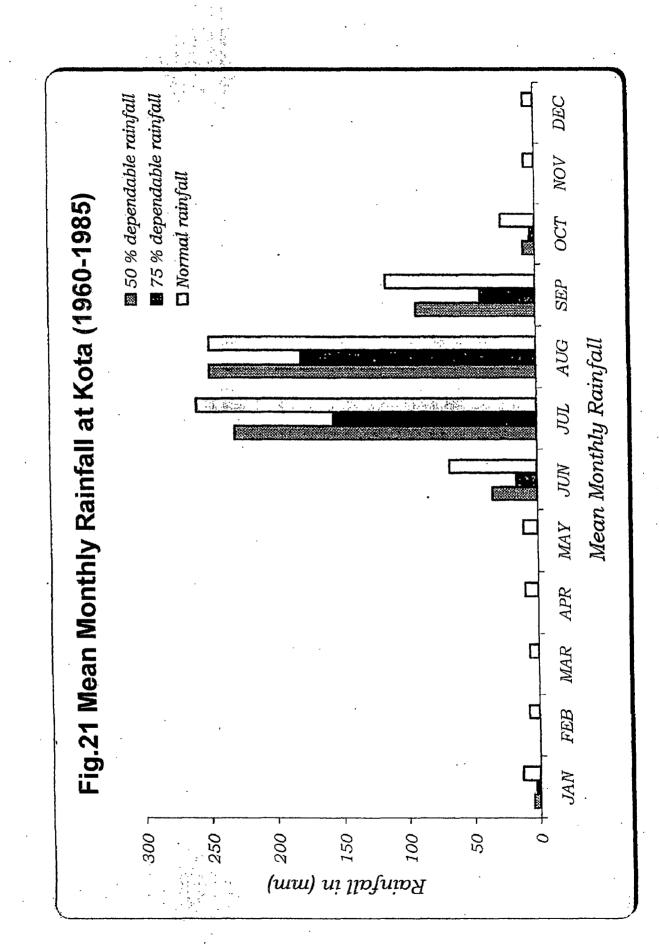
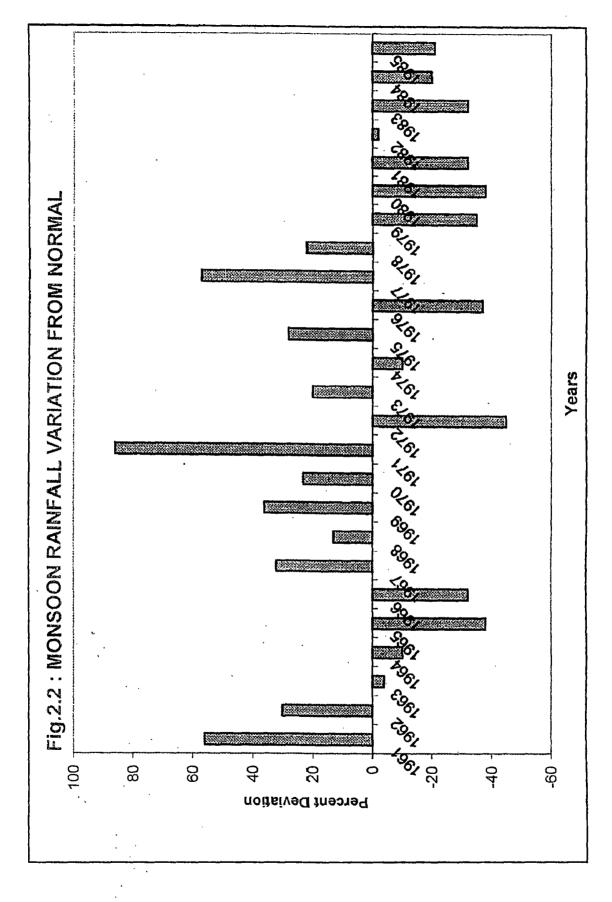
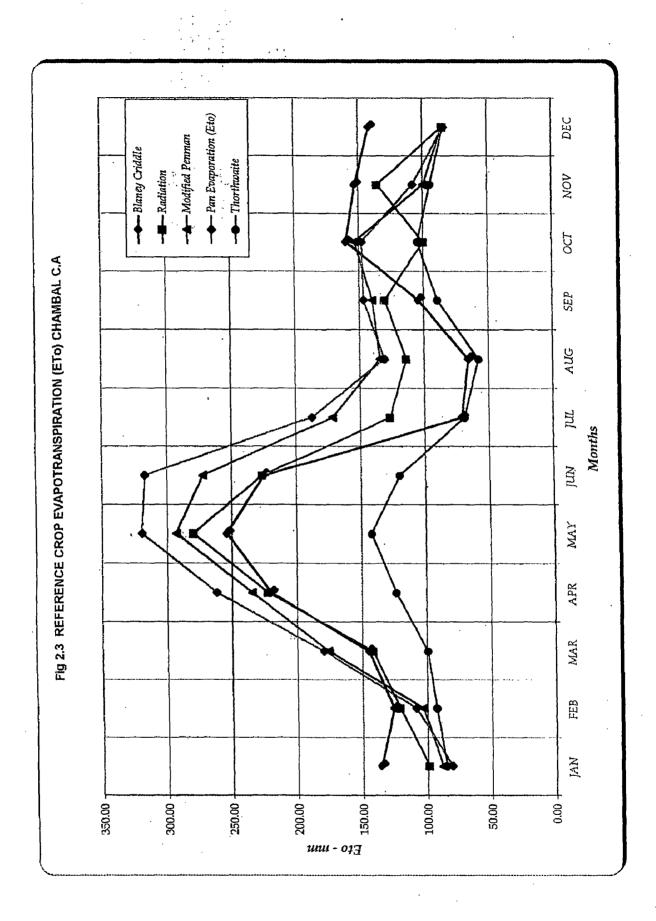

*Source: Basic Rainfall series (1960-1985), irrigation Departement, Hydrology Wing Jaipur, Rajasthan

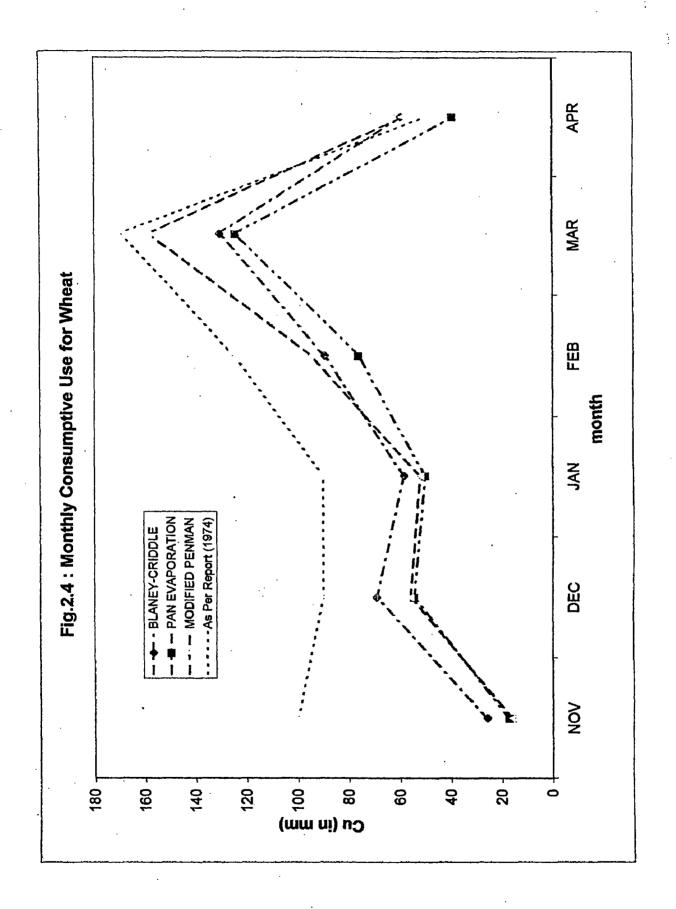
Table	Table 2.6 : ESTIMATED REFERENCE CROP EVAP	ATED REFE	RENCE CRC	PEVAPO	FRANSPIRA	FION (Eto) F	OR KOTA RI	OTRANSPIRATION (Eto) FOR KOTA REGION (Unit: mm)	nm)		
5	MONTH	BLANEY	BLANEY CRIDDLE	RADI	RADIATION	MODIFIED	MODIFIED PENMAN	PAN EVAPORATION (Eto)	RATION (Eto)	THORT	THORTHWAITE
ON		mm/day	mm/Month	mm/day	mm/Month	mm/day	mm/Month	mm/day	mm/Month	mm/day	mm/Month
-	JAN	4.39	136.09	3.19	98.89	2.85	88.35	2.61	80.90	2.75	85.20
<u></u>	FEB	4.50	126.00	4.33	121.20	3.69	103.32	3.89	108.92	3.32	92.97
ო	MAR	4.68	145.00	4.58	141.98	5.68	176.08	5.81	180.11	3.21	99.55
4	APR	7.33	220.00	7.41	222.30	7.82	234.60	8.73	261.90	4.12	123.67
- L C	MAY	8.20	254.00	9.03	279.93	9.45	292.95	10.32	319.92	4.60	142.45
0	NUL	7.50	225.00	7.54	226.20	9.07	272.10	10.57	317.10	4.01	120.32
~	JUL	2.30	71.30	4.10	127.10	5.54	171.74	6.06	187.86	2.29	69.09
8	AUG	2.13	•	3.68	114.08	4.34	134.54	4.23	131.13	1.87	58.07
თ 	SEP	3.48	104.40	4.34	130.20	4.67	140.10	4.90	147.00	2.98	89.50
10	OCT	5.17	160.27	3.23	100.13	4.95	153.45	4.77	147.87	3.38	104.65
	NON	5.10	153.00	4.52	135.50	3.33	99.90	3.60	108.00	3.15	94.47
12	DEC	4.58	141.98	2.74	85.00	2.74	84.90	2.71	84.01	2.72	84.32
	Total		1803.00		1783.00		1952.00		2073.00		1164.26
Note	Note . This table is based in table 2.4	ased in tabl	e 2.4			-	-				


Note : This table is based in table 2.4

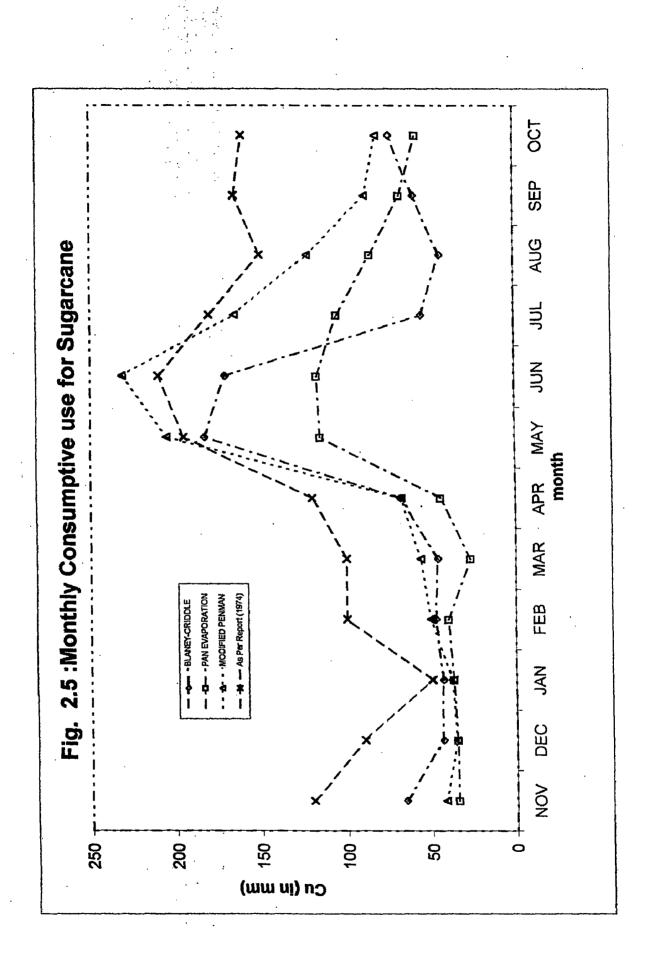
ANT.


₩=18

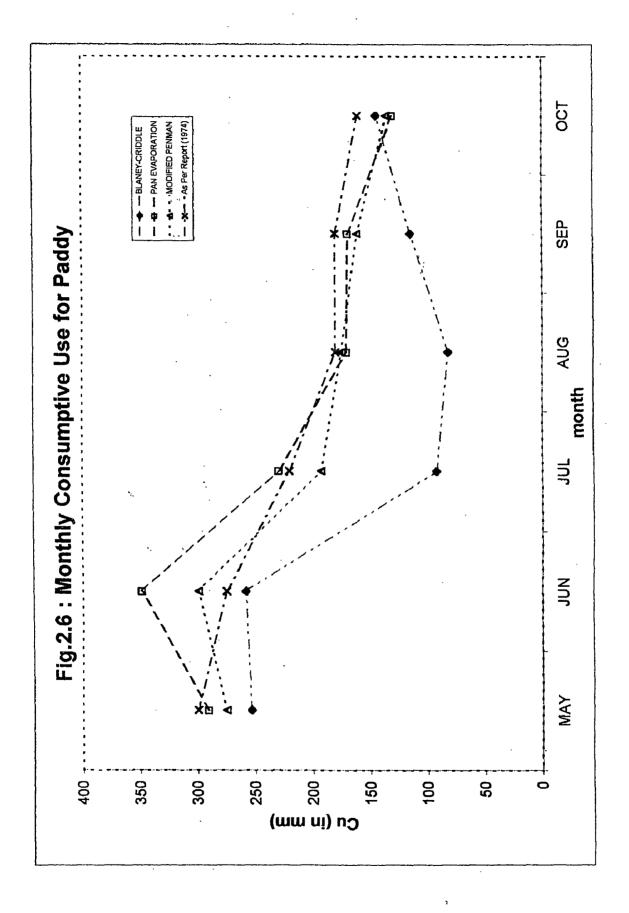
П-19



П-20



II-21


1. 17 + An

П-23

П-24

Ì.

CHAPTER 3 .

ANALYSIS OF CROPPING PATTERN

3.1 GENERAL

With the development of irrigation, cropping pattern also develops as per the suitability of land and availability of water and other inputs. The transformation from rainfed to irrigated agriculture occurs gradually. Adequacy, reliability and timely availability of water resources plays great role in implementation of design cropping pattern. The cropping pattern throughout the project area may not remain uniform because of several technical and economic reasons. Generally, farmers tend to adopt cash crops with increased reliability of water supply and availability of fertilizer, seeds, transportation and storage facility. Market prices also influence choice of crops

3.2 CROPPING PATTERN BEFORE PROJECT

Prior to the introduction of irrigation in the area, the crops were grown generally as rainfed (kharif) on the residual soil moisture of rainfall (rabi crop). The yields were generally very low. In the initial stage of irrigation, the transformation from rainfed farming to irrigated farming had been very slow. The agriculture technology level at that time was far from satisfactory

Crops grown during rainy season (kharif) under rainfed condition in the project area were mainly sorghum (Sorghum vulgare) and pulses. The main pulses grown were red gram usually mixed planted with sorghum and black and green gram. Gram was grown mostly on residual soil moisture and irrigated in a very small area of the project. A perusal of original cropping pattern given in 1954 Project Report (1954) shows :

CROPS	% OF SE	ASONAL	DELTA	mm
	CROP	PING		
	IRRIGATED	RAINFED	IRRIGATED	RAINFED
Kharif				
1. Sorghum	_	60.00	-	313
2. Til	-	8.00	-	188
3. Maize	0.33	3.00	753	500
4. Pulses	-	3.00	188	-
5. Cotton	-	1.00	-	125
6. Sun (hemp)	-	0.50	-	250
7. Groundnut	-	0.33	-	750
Rabi				
9. Wheat	1.00	29.00	750	188
10. Linseed	-	22.00	-	188
11. Barley	1.00	1.00	750	375
12. Gram	· -	11.25	-	188
13. Corriander	2.25	0.50	750	190
TOTAL	4.58	139.58		

Table 3.1 : Pre Project Cropping Pattern

It is evident from the above cropping pattern that before project, most of the crops were rainfed and irrigated crops were almost negligible. The irrigated crops were dependent upon local sources such as small ponds and wells. Sorghum was the main kharif rainfed crop with 60 % area of CCA and Wheat (29 %), Linseed (22 %) and Gram (11.25 %) were the main rabi crops which utilized soil moisture at end of kharif season for growth.

3.3 ORIGINAL DESIGN CROPPING PATTERN

Based on existing practices, the project was designed for 76 % irrigation intensity and kharif, rabi cropping pattern was proposed as shown in table 3.2 . 21 % irrigation intensity in kharif and 55 % in rabi was proposed. Main kharif crop was paddy (15 %) and main rabi crop was wheat (53 %).

The Chambal Project was implemented with this designed cropping pattern on CCA 229,000 ha and all water requirement and availability studies were based on this cropping pattern. This can be termed as base cropping pattern. The cropping pattern designed in original project report has undergone changes several times as discussed in following section.

3.4 DEVELOPMENT OF CROPPING PATTERN AFTER PROJECT

Table 3.2 shows cropping pattern in selected periods (actual and revised targets) cropping pattern for irrigated and unirrigated lands as well as seasonal and annual intensities are as shown in table 3.2. Crops grown during rainy season (kharif) under rainfed condition in the project area were mainly sorghum and pulses. The main pulses grown were red gram usually mixed planted with sorghum and green gram. Gram was grown mostly on residual soil moisture and as irrigated in a very small area of project. It is interesting to note that the total area under paddy was very small when irrigation was started in 1960. Wheat area during 1960 - 1961 was 15,289 ha in irrigated and 92,620 ha in unirrigated area respectively (table 3.2). Besides these corriander, linseed crops were also grown mostly on preserved soil moisture.. The area under sugarcane was 992 ha during the year 1960-1961. The intensity of irrigated crops in the initial year was about 14 % and the average yield were also far from satisfactory. After start of irrigation in 1960, more and more area were brought into cultivation and farmers switched over from rainfed to irrigated farming. Cropping pattern has undergone several times changes from 1960 onward. Unfortunately with start of irrigation, initially farmers were forced to take irrigation with only part of command area having conveyance network and this resulted in over irrigation and irregular distribution of irrigation water. This resulted in development of high water requiring crops in head portion of system and low water requiring crops in tail of system.

The transformation from rainfed to irrigated agriculture had been slow in the areas which were far away from the main canals resulting in imbalances in cropping pattern from head to tail (CBIP1987).

3.5 ANALYSIS OF CHANGES IN CROPPING PATTERN

For proper appreciation of change of cropping pattern it would be worth while to divide the period of development :

- 1. Cropping pattern in the initial year of irrigation 1960-1961
- 2. Cropping pattern after completion of network i.e. after a decade 1970-1971.
- 3. Cropping pattern in the base year of CAD phase I i.e. 1973-1974 designed
- 4. Cropping pattern after completion of project ie. 1983-1984
- 5. Cropping pattern as in the year 1988-1989
- 6. Cropping pattern in recent years 1995-1996 to 1998-1999

Table 3.2 shows the crop area as percent with respect to CCA for irrigated and unirrigated crops. Figure 3.1 showns pie diagram of important cropping pattern in different periods.

3.5.1 Change in Transition and Adaptation Period (upto 1970)

Design cropping pattern could not be developed fully at the end of transition period. Paddy area could be developed to 4.64 percent as against 15 % in design, showing the major shortfall whereas kharif pulses, or kharif oilseeds started increasing. These were not anticipated in the original design. Similarly irrigated gram and pulses increased to 16.38 percent as against 2 percent in rabi season. Corriander and rabi oilseeds also developed during this period. There was a transformation from wheat unirrigated to wheat irrigated. Unirrigated wheat reduced from 40.45 percent to 17.94 percent (Fig. 3.1). Cotton crop did not be develop as designed in original cropping pattern.

The transition period witnessed major dependence on unirrigated crops in spite of development of infrastructure and irrigation facility. Kharif unirrigated area was 58.17 percent and rabi unirrigated area was 44.50 percent of CCA (Table 3.2).Paddy, wheat and gram occupied the major percentage of cropped area during this period.

3.5.2. Changes in CAD Phase I Period (1974-1984)

Targets for CAD phase I project are shown in table 3.2 The changes of cropping pattern from base year and appraisal design estimate (phase I target) show reduction shortfall in paddy. The area could not be developed as envisaged but paddy area has certainly increased from 2.66 % in 1973-1974. Similarly in rabi season wheat, gram and pulses showed the achievement. During this period also rabi oilseed area had crossed the design area (Table 3.2.) As compared to original designed cropping pattern (1954) paddy and wheat area could not achieve the 15 percent and 53 percent target respectively but increase was noticed in oilseeds, corriander. The dominance of kharif oilseed, rabi oilseed, corriander as percent of cropped area had increased Dependence on rainfed cultivation had decreased on account of increased reliability of supply. The farmers have adopted cash crops in place of wheat and gram.

The percent deviation from design phase I at the end of 1983-1984 indicates shortfall in paddy (from 8.78 to 6.451), sorghum, maize(from 5.11 to 0.55%), whereas rabi crop achieved its design target

3.5.3 Changes in CAD Phase II Period.

CAD phase II target are shown in table 3.2. The change in post CAD phase area is similar to changes in CAD phase I. In kharif cropping pattern did not show encouraging trend. In rabi, gram and pulses area has decreased. Oilseed and other cash crops continued to rise. Rabi oilseed occupied 22.94 % percent of cropped area in the year 1988-1989 as compared to phase II target of 3.25 % and phase I target of 3.32 % where as in original design in 1954 oilseed was not proposed at all.

3.5.4 Change Over Entire Period.

Table 3.3 showns irrigated cropping intensity for 13 crops from 1974-1975 to 2000-2001 Figure 3.2 shows variation from year to year for paddy,

sorghum maize, oilseeda, sugarcane, vegetable, other. Figure 3.3 shows variation in intensity of major rabi crops (wheat, gram and pulses, barley, coriander, oilseeds and other) .The following major deviations took place during the entire period of analysis (upto 2001) for which data were obtained from Rajasthan Irrigation Department :

- The design cropping pattern had been revised three times from the original design cropping pattern of (1954). The revision took place in 1973(phase I of CAD), 1983 phase II of CAD, 1989 (Drainage Project), cropping pattern revision having been influenced by actual development which took place. However, no effort was made to critically examine reasons for wide variation in cropping pattern
- 2. The area under paddy has never achieved the original design target of 15 % except in 1974-1980. Therefore this has in turn reduced the net irrigation requirement but at the same time system efficiency has also gone down. Sugarcane crop also could not achieve substantial growth. Sorghum and maize have almost disappeared in recent years.
- 3. Kharif cropping pattern has shown major short fall in the entire span of 40 years.
- 4. The area under wheat has remained below original design in design target of 53 %. however in recent years it has shown increasing trend from 1993-1994 onward and exceeding the target from 1998-1999 onward.
- 5. Increase in rabi oilseed, was seen from 1982-1983 to 1993-1994 but afterward it has been declining. Oilseeds are low water requiring crops and farmers are getting higher net return. Soyabean in kharif and mustard in rabi are the major oilseed crops of the area now. These crops were not proposed in original cropping pattern. Gram and pulses have shown declining trend throughout.

3.5.5 Comparative changes in Left Bank & Right Bank Canal.

The 10 years (1980-1989) average cropping pattern in LBC and RBC indicate a major deviation in paddy and rabi oilseed. The LBC has witnessed rise in paddy cultivation whereas RBC has not shown the remarkable improvement in paddy cultivation. The RBC has witnessed increase in rabi oilseed as compared to LBC. The reason for this may be attributed to exercising regulatory control of LBC

Total CCA is 229 thousand ha, out of which LBC command area is 102 thousand ha and RBC command area is 127 thousand ha. Table 3.4 shows average cropping pattern over a 10 year period from 1980 to 1989 in the LBC and RBC command areas. Table 3.5 shows design cropping pattern in these two command area in the phase I of command area development programme.

3.5.6. Impact of Irrigation on Cropping Intensity

The impact of irrigation on cropping intensity is shown in table 3.3. Rabi intensity has shown rising trend from 60 % in 1974-1975 to nearly 90 % in recent years. Year 1979-1980 and 1980-1981 witnessed highest kharif intensity of 21 %. The rise and full of cropping intensity is influenced by changes in irrigated area. Dependence on rainfed cultivation in rabi has been decreasing. There has been failure in achieving kharif targets which have been revised from 21 % in 1954 to 23.68 % in CAD phase I, 59.5% in phase II and 39.2 % in drainage project. Target have been kept high while achievement in irrigated cropping intensities have continued to be low. Possible reasons for failure in achieving kharif irrigation target could be :

- Releases from upstream reservoirs are based on power generation requirement which may be in conflict with irrigation requirement particularly in May and June, July when kharif crops are sown and land has to be prepared.
 - ✓ Unreliable releases in canals in May, June, July might be discouraging the farmers to take up proposed kharif crops

CP PAREI FULTURE (11) AST ERF REGNINING (11) FUTURE (11) ATT ACT (11) ATT ACT ATT ACT <t< th=""><th></th><th>comparative much of of opping I among the persons</th><th></th><th></th><th>パーシン</th><th></th><th></th><th></th><th>L</th><th></th><th></th><th>L</th></t<>		comparative much of of opping I among the persons			パーシン				L			L
Operation Teal		PRE	AS PER	SEGINNINGE VEAR	EGINNING		FUTURE WITH	ACHIEVEMENT 1983-1984	-	ACHIEVEMENTACHIEVEMENT	ACHIEVEMENT 10 YEAR	FUTURE WITH DRAINAGE PROJECT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1964	1864	1960	1970		(PHASE I)		CAD		(1989-1999)	(1990-1995)
Tail Maize 0 15 0.36 4.54 2.56 8.78 6.56 ane 0 0 0 0 0 0.77 0.52 5.16 0.36	<u> Kharif - Infgated</u>											
m & Maize 3.33 0 0.47 0.24 0.52 5.11 0.55 1.67 3.48 0.55 0.64 0.57 0.58 0 <th0< th=""> <th0< th=""> <th0< t=""></th0<></th0<></th0<>	addy	0	10	0.36	4.64	-		0.95		9.89		÷
10 0 0 0 101 237 438 0 <th< th=""><th>Sorghum & Maize</th><th>3.33</th><th>ō</th><th>0.47</th><th>0.24</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Sorghum & Maize	3.33	ō	0.47	0.24							
and 0 0 10 1.3	oulses	0	0	0	0.17		_					
Image 0 0.5 0.48 0.03 0.17 1.02 0.03 0.14 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0	Dilšeeds	(o 		1.01						4.4	
Intermediation 0 0.35 1.67 2.48 0.00 0 0 0.14 W 4.33 2.1 3.41 1004 8.16 2.368 10.52 Refed m & Maize 8.3 0 1.21 2.46 0.78 1.22 2.18 2.21 N 0.0 3.47 0.78 1.22 2.18 2.22 2.18 2.22 N 0.0 0 0.33 0.46 0.31 0.36 0.306	Sugarcane	0 0			18.0	с С	-				9. H	
yr 4.33 21 3.41 1004 8.16 2.368 1052 m & Malze 60 0 48 45.38 12.16 0.188 1222 m & Malze 8.33 0 121 0.4 65.38 12.266 11.28 22.22 0 0 0.33 3.47 0.78 12.266 12.21 12.88 12.22 0 0.61 0.31 0.78 12.266 0.723 32.37 0.78 12.266 12.221 21.68 0 0.61 0.33 0.44 5.73 0.93 0.66 0.93 0.725 23.32 0 0.16 0.33 0.44 5.73 0.92 0.725 0.74 0.725 0 0.12 0.23 0.246 0.717 0.326 0.725 0 0.12 0.23 0.246 0.777 0.2266 0.7777	Vegatable	00		9 8 8				41.0				
V 4.33 21 3.41 1004 8.16 2.368 1052 refer m & Maize e0 0 46 45.39 12.66 11.88 22.2 m & Maize 3.3 0 1.21 0.4 3.3 0.78 11.88 22.2 n & Maize 3.3 0 1.21 0.4 0.31 0.0 0	Other	0	3.5	1.6/	2.48			5			A.N	¥.2
effect 60 0 48 45.39 12.86 11.88 22.2 ma Maize 3 0 3 3.47 0.78 11.28 22.2 s 0 0 1.21 0.4 5.78 0.31 1.88 1.29 2.16 y 0 0 0 3.13 0.78 1.122 2.16 y 71.83 61.65 58.17 13.76 15.59 29.37 fundamed 1 53 68.8 37.23 38.3 43.5 44.8 fundamed 1 53 68.8 37.23 38.3 43.5 44.8 fundamed 1 53 64.65 71.71 2.06 0 0 der 0 0 0.52 33.3 7.35 44.8 7.77 fulses 1 128 1.128 1.226 2.36 7.22 fulses 1 1.28 1.28 1.28	intensity	4.33	21	3.41	10.04	8.16		10.52	59.5	19.02	17.81	37.2
area area <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>												
$n_{\text{transferd}}$ $n_{$	<u>Unirmgated</u>	ŝ	Ċ	AA AA	45.30	12 66	•	222		22.22		11.3
s 8.33 0 1.21 0.4 0.31 1.88 1.93 0 <th0< th=""> <th0< th=""> <th0< th=""></th0<></th0<></th0<>	Dulgiuiri a marce	3 00	00	<u>i u</u>	3.47	0.79	-	2.18		_	N A.	0
0 <th>Diseeds</th> <th>8.33</th> <th>0</th> <th>1.21</th> <th>4.0</th> <th>0.31</th> <th></th> <th>1.83</th> <th>*-</th> <th>1.97</th> <th></th> <th>3.1</th>	Diseeds	8.33	0	1.21	4.0	0.31		1.83	*-	1.97		3.1
0 <th>Spices</th> <th>Ō</th> <th>Ō</th> <th>9.44</th> <th>5.78</th> <th>0</th> <th></th> <th>0</th> <th></th> <th></th> <th></th> <th>N.A.</th>	Spices	Ō	Ō	9.44	5.78	0		0				N.A.
0.5 0 0.313 0 0.61 0 Idanted 1 53 66.85 37.23 39.3 43.5 44.8 Idanted 1 53 6.88 37.23 39.3 43.5 44.8 Idanted 1 53 6.88 37.23 39.3 43.5 44.8 Idanted 1 2 0 0.18 1.28 1.21.4 1.21.4 1.55.9 28.37 Idantes 2.25 0 0.18 1.28 1.222 2.16 2.235 1 Idantes 1.28 1.28 1.22 2.16 2.737 6.4.66 77.17 Idantes 11.25 0 0.035 0.4.9 3.32 7.22 Idantes 11.25 0 0.533 57.37 6.4.66 77.17 Idantes 11.25 0.57.37 6.4.66 77.17 2.26 Idantes 11.25 0.57.37 6.4.66 77.17 2.26	Other	0	ō	0	Ó	0	o	3.06		N.N.		N.A.
71.83 61.85 58.17 13.76 15.59 29.37 ulses 1 23 6.68 37.23 39.3 43.5 44.8 ulses 1 2 0.12 16.38 14.14 12.14 15.55 14 r 0 0 0.18 1.22 2.16 2.23 43.5 44.8 r 0 0 0.18 1.22 2.16 2.23 47.8 r 0 0 0.18 1.22 2.16 2.23 47.8 r 0 0 0.18 1.22 2.16 2.23 7.22 ulses 1.12 0 0.33 0.46 3.32 7.22 7.22 ulses 11.26 0 0 0.55 1.7 1.88 4.78 ulses 11.25 0.46 1.79 3.32 3.54 6.26 77.17 ulses 11.26 0.46 1.78 0.367	fooder	0.5	0	0	3.13	O	0.61	0	0	3.06	N.A.	2.9
Intersect 1 53 6.68 37.23 39.3 43.5 44.8 ulses 1 2 0.12 16.38 14.14 12.14 15.5 1 r 0 0 1.8 1.28 1.22 2.16 2.23 r 0 0 1.8 1.28 1.72 2.16 2.23 r 0 0 0 0.33 0.40 3.32 7.22 0 0 0 0 0 0.33 0.40 3.32 7.23 eff 2.25 8.73 57.37 64.65 77.17 2.86 ulses 11.25 0 0.52 1.7 2.86 7.22 ulses 11.25 3.32 57.37 64.65 77.17 2.86 ulses 11.25 3.32 3.67 4.02 1.74 1.34 1.155 3.32 3.67 4.65 7.17 1.34 0		74 02	Ţ	Le Le	ER 17	13 7A		20.37	RE	3011	C	203
Identication 1 53 6.68 37.23 39.3 43.5 44.8 r 2.25 0 1.8 1.22 1.414 12.14 15.5 r 0 0 0.18 1.28 1.414 12.14 15.5 r 0 0 0.18 1.28 1.22 2.16 2.23 0 0 0 0.18 1.28 1.77 1.88 4.76 0 0 0 0.33 0.46 1.72 2.16 2.23 1 1.28 1.72 2.16 2.23 7.22 1 0 0 0 0.52 1.77 1.88 4.76 1.125 0.531 57.37 64.66 77.17 2.66 1 1 1.28 3.32 7.22 1.34 1 1 0 0.523 3.67 4.02 1 1 0 1.46 1.33 3.67		3		3.	3	2		2		3		
Ulses 1 53 6.68 37.23 39.3 43.5 44.8 r 0 0 1.1 1.2 0.12 16.38 14.14 12.14 15.5 14.8 r 0 0 1.8 1.22 2.16 2.23 4.78 0 0 0 0.18 1.28 1.22 2.16 2.23 0 0 0 0 0.33 0.49 3.32 7.22 1 4.25 55 8.78 56.31 57.37 64.65 77.17 ulses 11.25 0 21.03 12.53 3.32 3.367 4.02 ulses 11.25 0 21.03 12.53 3.32 3.67 4.02 1 0 1.63 0.99 0 0 0 0 0 0 1.48 13.13 0 0 0 1 22 0 1.48 1.34 0 0 1 22 0 1.48 1.48 1.34 1 22 0 1.48 1.48 1.49 1 0 1.69 0 0 0 0	Rab'l - Irrigated											
ulses 1 2 0.12 16.38 14.14 12.14 15.5 1 r 0 0 0.18 1.28 1.22 2.16 2.23 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 7.22 2.16 2.233 7.22	Wheat	-	8	6.03	37.23	30.3		44.8		45.07		50.2
1 2.25 0 1.8 1.22 2.16 2.23 0 0 0 0.18 1.09 1.7 1.83 4.78 0 0 0 0 0.33 0.49 3.32 7.22 1 4.76 1.09 0 0.52 1.7 1.83 4.76 1 4.25 55.31 57.37 64.65 77.17 2.86 1 0 0 0 0.52 1.77 2.86 4.78 1 0 1.63 55.31 57.37 64.65 77.17 1 0 1.63 3.32 3.67 4.02 1 0 1.734 3.67 4.02 65.68 1 0 1.734 3.67 4.02 65.68 65.23 1 1 0 1.464 13.13 0 0 0 0 1 1 1.464 13.13 0 0	Gram & Pulses	-	0	0.12	16.38	14.14	-	15.5		5.54		16.7
r 0 0.18 1.03 0.40 3.32 7.22 ed 4.25 55 8.78 55.31 57.37 64.65 77.17 ulses 11.75 0 0 0 0.52 11.7 2.66 r 0 0 0 0.52 11.7 2.66 r 11.25 0 4.65 3.32 7.22 ulses 11.25 0 4.65 3.67 4.02 r 0.5 0 1.53 3.54 6.28 11.25 0 1.48 1.4 1.34 11.25 0 1.48 1.48 1.4 1 0 1.63 0.9 0 0 r 0.55 0 1.48 1.313 0 1 0 1.48 1.313 0 0 0 0 0 0 0 0 1 1.4416 77.75 4455 4.89 1.4416 77.75 4.85 9.43 9.35 1.4416 77.75 0 0 0 0 1 0 1.48 1.45 0 0 1 <td< th=""><th>Barley</th><th>2.25</th><th>0</th><th>1.8</th><th>8</th><th>1.22</th><th>2.16</th><th>23</th><th></th><th>1.86</th><th>2.17</th><th>0.0</th></td<>	Barley	2.25	0	1.8	8	1.22	2.16	23		1.86	2.17	0.0
matrix u.v. <	Corriander	Ō		0.18	8	1.7	1.83	4.78		E S	5.61	20
matrix 1/2 1/2 1/2 1/2 1/1 200 matrix 4.25 55 8.78 55.31 57.37 64.65 77.17 2.06 matrix 1 0 40.45 17.94 4.63 3.67 4.02 1/1 2.06 matrix 1 0 1.63 0.23 3.67 4.02 1/17 2.06 matrix 1 0 1.63 0.23 3.32 3.67 4.02 1/17 2.06 matrix 0 1.253 3.32 3.67 4.02 4.02 1/17 2.06 0	Ollseeds	0	0	0	20		3.32			5.8	47.9 1.0	4 C
4.25 55.31 57.37 64.65 77.17 Met 28 8.78 56.31 57.37 64.65 77.17 Ulses 11.25 0 40.45 17.94 4.63 3.67 4.02 1 0 1.63 0.21.03 12.53 3.32 3.54 6.23 1 0 1.63 0.9 0 0 0 0 1 0 1.63 0.21.03 12.53 3.32 3.54 6.23 1 0 1.63 0.9 0 1.48 1.4 1.34 1 0 1.63 0 0 1.48 1.34 1.34 0 0 1.48 1.313 0 0 4.8 0 1 1.44.16 77.75 44.15 9.43 9.35 16.49 0 1 1.44.16 76.00 0 0 0 0 0 0 0 1.33.55	Other	0	0	0	ö "	0.52	1.7	2.00	•	87	C277	7.7
ed 220 0 40.45 17.94 4.63 3.67 4.02 ulses 11.25 0 21.03 12.53 3.32 3.67 4.02 1 0 1.63 0.9 0 0.6 0 0 1 0 1.63 0.21.03 12.53 3.32 3.54 4.02 1 0 1.63 0.9 0.9 0 0 0 0 0 1 0 1.63 0.367 1.48 1.1.4 1.34 1.34 1.34 0 0 1.48 13.13 0 0 4.0 0 0 0 0 0 0 4.1.34 1.34 </th <th>Intensity</th> <th>4.25</th> <th>8</th> <th>8.78</th> <th>56.31</th> <th>57.37</th> <th>64,65</th> <th>71.17</th> <th>75.5</th> <th>81.19</th> <th>75.29</th> <th>80.3</th>	Intensity	4.25	8	8.78	56.31	57.37	64,65	71.17	75.5	81.19	75.29	80.3
28 0 40.45 17.94 4.63 3.67 4.02 ulses 11.25 0 21.03 12.53 3.32 3.67 4.02 1 0 1.63 0.9 0 0 0 0 0 1 0 1.63 0.9 0 0 0 0 1 0 1.63 0.9 0 0 0 0 0 1.48 13.13 0 0 4.8 0 0 14.64 13.13 0 0 4.8 1.4416 13.13 0 0 0 4.8 1.4416 76.0 0 0 0.74 0 1.4416 76 1.55 9.43 9.35 16.49 1.4416 76 9.45 9.45 9.35 16.49	Unimicated							-				
Ulses 11.25 0 21.03 12.53 3.32 3.54 6.23 1 0 1.63 0.9 0 0 0 0 0 1 0 1.63 0.9 0 0 0 0 0 22 0 1.464 13.13 0 1.48 1.34 0 0 0 0 0 4.8 1.44.16 76 77.75 445 9.43 9.35 1.44.16 76 77.75 445 9.43 9.35 1.44.16 76 1.1327 11337 13355	Wheat	8	0	6 . 6	17.94	48	3.67	4.02	1.1	4.46	0	1.5
r 0 1.63 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gram & Pulses	11.25	0	21.03	12.53	3.32	3.54	6.23	3.75	6.64	0	5.7
n 0.5 0 0 0 1.48 1.4 1.34 22 0 14.64 13.13 0 0 4.9 22 0 14.64 13.13 0 0 4.9 23 0 0 0 0 0 4.9 66.75 0 77.75 44.5 9.43 9.35 16.49 144.16 76 168.07 86.77 113.27 133.55	Barley	-	0	8	0.0		0		07	5.2	5	51
22 0 14.04 13.13 0 4.8 0 0 0 0 0 4.8 0 0 0 0 0 0 4.8 63.75 0 77.75 44.5 9.43 9.35 16.40 14.4 16 76 168.07 88.77 113.27 133.55	Corriander	0.5	00		0,0	N.	<u>ל</u> נ	1.34	2:2			0.7
0 0	Ollseeds	8	0	14.64	13.13			4.9		94.49	50	00
63.75 0 77.75 44.5 9.43 9.35 16.49 1.144.16 76 151.59 169.07 88.77 113.27 133.55	Other	ō	0	ö	0		0.74	0	0		5	5
14416 76 15159 169001 88701 113271 13355	Sub Total	63.75	o	77.75	445			16.49		22.14		12.9
	Intensity	144.16	8	151.59	169.02		113.27	133.55			<u></u> 33.1	150.7
nod Shah (1990)	Source : Vinod Shah (1990)	K										

Ш-8

.

: Irrigated cropping Intensity in Chambal Command (Rajasthan) in % of CCA **Fable 3.3.**

Annual 229000 ha Total Rab'i • 4.3 7.6 9.2 9.2 Other A CO A **Oilseed** Barleycorriande 5.2 0.5 4.9 4.8 4.0 6.4 7.9 3.5 5.0 7.9 7.9 7.9 7.9 7.9 4.6 4.5 8 0 1.3 8 1.8 ā ເບີ ເບີ RA 22220000004000 4.0 3.1 4.10.0 0 8 Pulses ø Gram 44.7 54.1 56.2 64.2 Wheat Kharif Total Other (egetabl Igarcal 4.1.0.2.2.1.1. 1.0 0.7 Oilseeds KHAR Pulses Source : Data from Irrigation Circle CAD, Kota Sorghum & Maize 8008047007700888800004780706 Paddy 1986-1987 1987-1988 1988-1989 1989-1990 1991-1993 1992-1993 1992-1993 1994-1995 1995-1996 1974-1975 1975-1976 1976-1977 1977-1978 1978-1979 1978-1979 1979-1980 1983-1984 1985-1986 982-1983 997-1998 2001-2002 981-1982 998-1999 999-2000 996-1997 2000-2001 YEAR

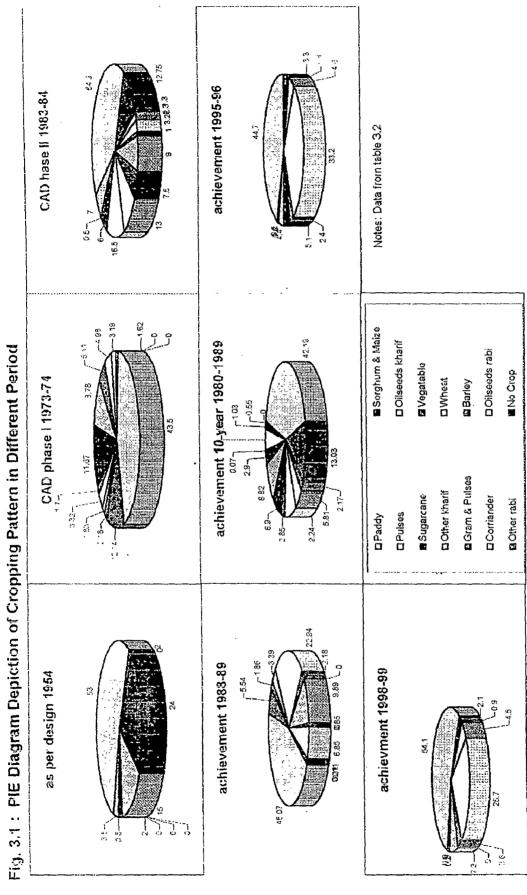
III-9

Table 3.4 : ACTUAL AVERAGE IRRIGATED CROP AREA YEAR 1980-1989

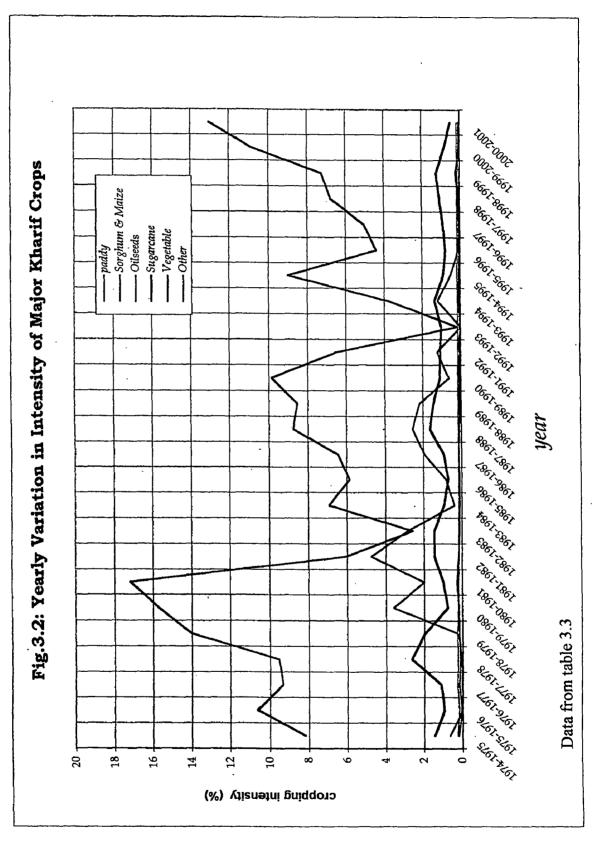
				CCA	RBC - 127	,000 ha
				·	LBC - 102,	000 ha
CROP	LBC		RBC		PROJECT	
	(1,000 ha)	% of CCA	(1,000 ha)	% of CCA	(1,000 ha)	% of CCA
Kharif - Irrigated						
Paddy	16.7150	16.3900	3.4830	2.7400	20.20 00	8.8200
Sorghum & Maize	1.5270	1.5000	5.1130	4.0300	6.6400	2.9000
Kharif Pulses	0.0430	0.0100	0.1160	0.0900	0.1600	0.0700
Kharif Oilseeds	2.0850	2.0400	8.0790	6.3600	10.1600	4.4400
Vegatable & Other	0.8740	0.8600	0.3970	0.3100	1.2700	0,5500
Sugarcane	2.3300	2.2800	0.0290	0.0200	2.3600	1.0300
TOTAL	23.574	23.08	17.217	13.55	40.79	17.81
Rabi - Irrigated						
Wheat	45.740	44.840	50.880	40.060	96.620	42.190
Gram & Pulses	11.659	11.430	18.190	14.320	29.850	13.030
Barley	2.820	2.760	2.150	0.169	4.970	· 2.170
Rabi Oilseeds	3.598	3.430	17.650	13.190	21.150	9.240
Corriander	2.585	2.530	10.712	8.430	3.300	5.810
Other (Vegetable)	3.000	2.940	. 1.300	0.100	4.300	1.880
Fodder	1.020	1.000	1.200	0.940	2.220	0.970
		}				
TOTAL	70.422	68.93	102.082	77.209	162.41	75.29

notes :Cropping Pattern is 10 years average from 1980-1989 after CAD Phase I

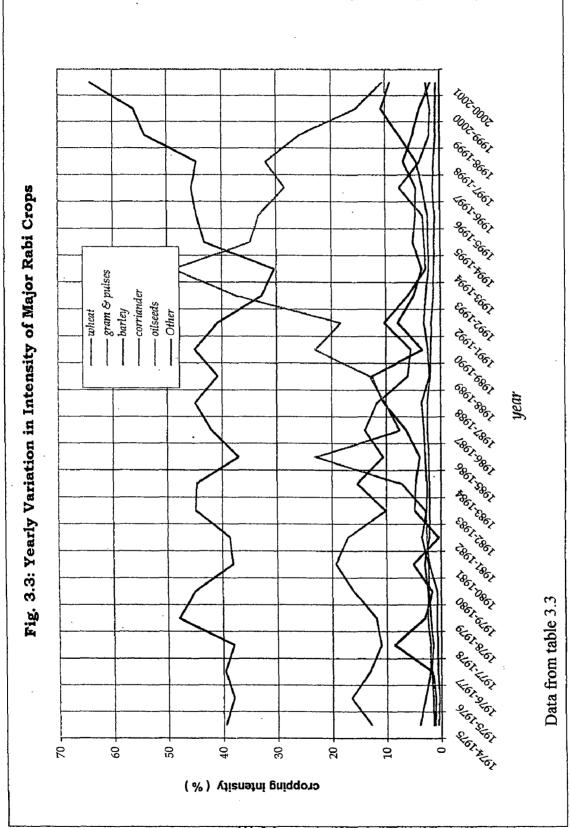
				,
			LBC - 102,	000 ha
	·		Unit - 1'00	0 ha
	LBC	% of CCA	RBC	% of CCA
Kharif - Irrigated				
Paddy	9,18	9.00	11.43	9.00
Sorghum & Maize	5.10	5.00	6.35	5.00
Kharif Pulses	5.10	5.00	6.35	5.00
Kharif Oilseeds	3.06	3.00	3.81	3.00
Sugarcane	2.04	2.00	2.54	2.00
		l.		
TOTAL	24.48	24	30.48	24
Rabi - Irrigated			· ·	
Wheat	44.37	43.50	55.25	43.50
Gram & Pulses	13.26	13.00	16.51	13.00
Barley	2.04	2.00	2.54	2.00
Rabi Oilseeds	4.08	4.00	5.08	4.00
Corriander	2.04	2.00	2.54	2.00
Other (Vegetable)	1.02	1.00	1.27	1.00
Fodder	1.02	1.00	1.27	1.00
· · ·				
TOTAL	67.83	66.5	84.46	66.5


Table 3.5 : DESIGN IRRIGATED CROP AREA (PHASE I) RBC - 127,000 ha

CCA


Proposed area (World Bank Appriasal estimate) Report No.430-IH with project

The ultimate area after improvement was envisaged at 57% kharif and 80 % rabi in post CAD Phase


ì

Ш-12

III-13

111-14

CHAPTER 4

CROP WATER REQUIREMENT AND IRRIGATION DEMAND FOR CHANGING CROPPING PATTERN

4.1 GENERAL

Analysis of changing cropping pattern has been presented in Chapter 3. With change in cropping pattern irrigation water demand has also changed. A large number of crops are grown in the command area. Also several changes have occurred in cropping pattern both in design as well as actual as shown in chapter 3. In order to analyse the impact of changing cropping pattern on irrigation demand, some significant periods of historical development and the present 4 years period as shown below have been considered in this chapter. Table 4.1 and Table 4.2 show the 13 crops, their crop area and crop percentages for the following conditions.

 \Box As per design in 1954

□ Phase I target for LBC and RBC

□ Phase II target

□ Achievement in 1988 - 1989

□ Average achievement (1980-1989) for LBC and RBC

 \Box Achievement in 1995 – 1996

□ Achievement in 1996 – 1997

 \Box Achievement in 1997 – 1998

□ Achievement in 1998 - 1999

4.2 CROP WATER AND FIELD IRRIGATION REQUIREMENT

Reference crop evapotranspiration has been computed by various methods as explained in Chapter 2. For computation of irrigation water demand in this chapter, Pan evaporation data and Hargreave's method has been adopted to find crop water requirement of the 13 crops. Computations are shown in Table 4.3 to Table 4.15.

While computing crop water requirement and field irrigation requirement in different months for kharif and rabi crops, following aspects have been kept in view:

IV - 1

4.2.1. Nursery Requirement and Percolation Loss

For Paddy percolation loss has been considered where as for other crops, percolation loss has been assumed to be zero. Similarly nursery requirement has been considered only for paddy

4.2.2. Efficiency

Under condition prevailing in 1960 to 1974 system efficiency was very low at 30 % due to leakage and seepage from canal system, inadequate maintenance of water courses and absence of on farm development and of rotational irrigation these losses contributed to waterlogging in some parts of command area. With proposed command area development phase I, it was expected that efficiencies would improve significantly as indicated below (IBRD Report 1974)

ltem	Pre CAD Phase I	Proposed in	CAD Phase I
		Condition 1	Condition 2
Field efficiency (%) Conveyance effeciency :	·60	80	65
Water course (%)	70	80	73
Canal system (%)	75	. 80	77
System efficiency (%)	30	50	35
rounded			

Source : Report World Bank 1974

Condition 1 : full control over water application, full development of on farm works and enforcement of warabandi, lining, weed control etc.

Condition2 : weed control, lining of some critical reaches and enforcement of warabandi

For the purpose of present study, field application efficiency of 80% and conveyance efficiency of 75% have been assumed reflecting average improvement situation.

- 4.2.3. Kharif Season has been assumed to extend from May to October keeping in view different sowing periods for same crop in the season. Similarly Rabi season has been assumed to extend from October to March.
- 4.2.4. Literature study (Shah 1990,IBRD 1974) shows that areas under a particular crop are different in different months as sowing/planting periods depend on

farmers choice, reliability of water, availability of ground water as alternative source and several other factors. Therefore instead of assuming area of a particular crop to be same in different months from sowing to harvesting crop area coverage have been used. Crop area coefficient have been worked out for thirteen selected crops based on past trends and are shown in Table 4.16.

4.3. GROSS IRRIGATION REQUIREMENT

Monthly gross irrigation requirement in volume unit have been computed for various cropping pattern in different years

	Cropping Pattern as per design I 1954	Table 4.17
	Cropping Pattern in phase I RBC	Table 4.18
	Cropping Pattern in phase I LBC	Table 4.19
	Cropping Pattern in phase II	Table 4.20
	Ten Year average Crop Pattern	Table 4.21
	Cropping Pattern in 1988 - 1989	Table 4.22
	Cropping Pattern in 1945 - 1996	Table 4.23
D .	Cropping Pattern in 1996 - 1997	Table 4.24
	Cropping Pattern in 1997 - 1998	Table 4.25
	Cropping Pattern in 1998 - 1999	Table 4.26

Table 4.17 to table 4.26 show computation of following monthly gross irrigation requirements in different years

✓ Monthly volume of water required at field level for entire command area

- ✓ Monthly volume of water required at canal head for entire
- ✓ Monthly volume of water required at head for RBC command

✓ Monthly volume of water required at head for LBC command Monthly water demand have also been worked out as per water allowance given IBRD Report (1974). (Table 4.27) These water allowances were based on following considerations:

- ➢ Field efficiencies is 80 %, water course and canal system conveyance efficiencies are 80 % each.
- > A year of average rainfall is considered.
- Blaney Criddle and Penman equation together with appropriate crop coefficients are used to estimate consumptive use
- ➢ A presowing irrigation of 100 mm for all crops except for paddy for which a consumptive use of 300 mm has been assumed in the first month for land preparation and nursery.
- \triangleright Crop area coefficients are same as shown in Table 4.16.
- An area of 50,000 ha was considered for estimating monthly water demands and water allowance. On proportional basis demend for project command of 229,000 ha was worked out and it is shown in table 4.27

4.4. MONTHLY OF WATER DEMAND IN RBC AND LBC

Water demand at head of RBC and LBC have been worked out on proportionate command area basis for design crop pattern, phase II actual in 1988 – 1989, 1995-1996, 1996-1997, 1997-1998, 1998-1999 as separate cropping pattern for these commands were not available. For phase I and 10 year average condition, cropping patterns were available for LBC and RBC separately.

Table 4.28 shows comparison of monthly water demand at head of LBC (Rajasthan) for various cropping pattern in different years.

Table 4.29 shows comparison of water demand at head of RBC (for Rajasthan area only) for various cropping pattern in different years.

4.5. DISCUSSION OF RESULTS

For designing capacities of right bank canal and left bank canal, cropping pattern was assumed to be uniform over the entire project area and it was assumed to be constant with time for entire life of the project.

IV - 4

Historical development of cropping pattern analysed in Chapter 3 has shown that cropping pattern is not constant with time. Detailed information on geographic variation of cropping pattern in the command area was not available. However data for phase I and 10 year average condition cropping pattern, in LBC command and RBC command show that area variation in cropping pattern has also taken place.

The comparison of water demend at head of LBC and RBC in different years is shown in table 4.28 and table 4.29.

4.5.1. Water demand at head of LBC

Design discharge capacity of LBC is 42.5 m³/sec. Which is equivalent to monthly volumetric supply capacity of 110.16 MCM (for 30 day month) and 113.83 MCM (for 31 day month) and 102.82 MCM (for 28 day month) table 4.28 shows that, canal capacity was in adequate mainly in October.

Comparison of demand in recent year (1995 to 1999) with demand in previous years shows that water demand has increased in September, October, November months.

Compared with original design (1954) demand in recent year have significantly increased in all months.

4.5.2. Water Demand at Head of RBC

Reserved design discharge capacity of RBC for Rajasthan command is 78.1 m^3 /sec out of actual capacity in any of the month which is equivalent to 202.43 MCM, 209.18 MCM in 30 day month, 31 day month and 28 day month respectively.

Demand corresponding to phase II target are higher than for other targets. Compared with original design (1954) demand in recent years have significantly increased in all months.

In contrast to capacity of LBC, the capacity of RBC is found to be significantly larger than the demand.

Table 4.1 ; CHAMBAL COMMAND AREA - COMPARATIVE INDEX OF CROPPING PATTERN

ACHIEVEMENT 1998 - 1999 54.1 25.7 5 7.6 0.9 0.9 9.10 N 4 0 A.N 7.3 0.2 0.2 % 229,000 ha ACHIEVEMENT 1997 - 1998 44.7 3.9 31.9 4.3 1.2 92.70 6.8 0.1 0.1 0.2 0.2 0.2 0.2 % Total CCA = ACHIEVEMENT 1996 - 1997 45.6 7.5 28.5 4.5 3.3 3.3 5.1 0.1 0.2 0.0 0.2 90.80 8 ACHIEVEMENT 1995 - 1996 0.1 0.1 0.8 0.8 0.8 0.2 0.2 44.7 33.2 33.2 2.4 2.4 2.4 1.1 89.30 % AV. ACHIEVEMENT 1980 -1989 42.19 13.03 9.24 5.81 1.88 2.17 74.32 8.82 2.90 2.90 0.55 0.55 N.A 7.81 % ACHIEVEMENT 1980 - 1989 79.18 1.11 0.21 19.02 45.07 5.54 22.94 9.89 0.85 6.85 0.11 N.A 1.39 2.39 1.85 8 **TARGET 1983** PHASE II 9.00 7.50 0.30 6.00 6.00 59.30 54.90 12.75 3.25 1.20 1.20 75.40 % **TARGET 1973** PHASE I 8.78 5.11 3.19 8.78 1.62 1.62 N.A 23.68 12.14 3.32 1.83 1.09 2.16 43.50 64.04 % DESIGN 1954 AS PER 15.00 N.A 0.50 53.00 55.00 55.00 55.00 21.00 21.00 N.A % Other (Vegetables) KHARIF (Irrigated) Sorghum (Maize) RAB'I (Irrigated) **Bram & Pulses** CROP /egetables Sugarcane Coriander Ollseeds Dilseeds Pulses Wheat OTAL Paddy Barley TOTAL Other

 Table 4.2 : CROP PATTERN IN LEFT AND RIGHT BANK CANAL COMMAND

 RBC =
 127,000 ha

 127,000 ha
 120,000 ha

				LBC =	102,000 ha	ha
CROP	CA	CAD PHASE I 1973	3	AV.ACHIE/	AV.ACHIEVEMENT 10 YEAR (1980-89)	(1980-89)
	LBC	RBC	TOTAL	LBC	RBC	TOTAL
<u></u>	8	%	%	%	%	%
Paddv	00.6	9.00	8.78	16.39	2.74	8.82
Somhum (Maize)	5.00	5.00	5.11	1.50	4.03	2.90
Collegede	3.00	3.00	3.19	2.04	6.36	4.44
Manatahlas	A N	A.N	N.A	0.86	0.31	0.55
	5.00	5.00	4.98	0.04	0.09	0.07
Curaciana	2.00	2.00	1.62	2.28	0.02	1.03
Other	AN	A N	N.A	N.A	N.A	N.A
	24.00	24.00	23.68	23.11	13.55	17.81
Wheat	43.50	43.50	43.50	44.84	40.06	42.19
Cram & Duleae	13.00	13.00	12.14	11.43	14.32	13.03
	4 00	4.00	3.32	3.43	13.19	9.24
Coriander	2.00	2.00	1.83	2.53	8.43	5.81
Other Manetahles)	1.00	1.00	1.09	2.94	0.10	1.88
Barley	2.00	2.00	2.16	2.76	0.17	2.17
TOTAL	65.50	65.50	64.04	67.93	76.27	74.32
						-

E	1able 4.3 : MUNIHLY CROP WATER AND FIELD IRRIGATION REQUIREMENT FOR PADDY CROP	VATERAL	VD FIELD IF	KIIGATIU	N KEQUIN	THEFT	FUK FAU	UY CKUP						
						KHARIF					RA	RAB'I		
No.	ITEM	W	MAY	JUN	JULY	AUG	SEPT	OCT	NOV	DEC	JAN	FEB	MAR	APR
		-	2											
ei	Number of days	15	16	30					30	31	31	28	31	30
م.	Pan Evaporation / day	10,32	10	10.57	6.06	4.23	4.90	4.77	3.60	2.71	2.61	3.89	5.81	8.73
ప	Percolation(mm/day)	1.5							1.5	1.5	1.5	1.5	1.5	1.5
-0	Field Applied Eff.	0.80	_	0.80					0.80	0.80	0.80	0.80	0.80	0.80
<u>v</u>	Normal Rainfall	5.50	5.50	67.00			-		8.00	8.00	13.00	8.00	7.00	10.00
		5 01 0C	100 - 001											
	Rice		ART - 01/16 - 50/10 : 00/24	<i>n</i>	·,								_ ,	
	1 No of Days	15	16	30	31	31	30					-		
	2 Mid Point	13	26	46	11	108	138							
	3 % Of Growing Season	8.15	14.13	25.00	41.85	58.70	75.00	91.85	—.					
-	4 Crop Coefficient (Kc)	. 0.93	66.0	1.10	1.22	1.30	1.15							
	5 Pan Evap. Loss (Ep) (mm)	154.80	165.12	317.10	187.86	131.13	147.00				,			
_	6 Consumptive Use (Kex Ep) (mm)	143.96	163.47	348.81	229.19	170.47	169.05	130.13						
	7 Nursery = 5% x (6) (mm)	7.20	8.17	0.00	0.00	0.00	00.00				_			
~	8 Total CU = (6+7) (mm)	151.16	171.64	348.81	229.19	170.47	169.05							
~	9 Eff. Rain Fall (Pe) (mm)	00.00	0.00	30.20	182.20	174.20	66.20					-		-
2	10 Pre-Irrigation Water Req(5%)	1.21	1.21	0.00	0.00	0.00	0.00							
=	11 For Transplantation (mm)	50	50	0		0	0		_					
1	[2] Percolation Loss (mm)	22.50	24.00	45.00	46.50	46.50	45.00				·			
13	13 NIR=(8+10+11+12-9) (mm)	224.87	246.85	363.61	93.49	42.77	147.85	•						
1	14 FIR=NIR/Eff. 0.8 (mm)	281.09	308.57	454.51	116.86	53,46	184.81							
							-					-	-	

Ĥ	Table 4.4 : MONTHLY CROP WATER		AND FIELD IRRIGATION REQUIREMENT FOR SORGHUM & MAIZE	D IRRIG	ATION	REQUIR	EMENT	FOR SOR	GHUM &	& MAIZE			
				KHARIF	RIF					RAB'I	B'I		
No.	D. ITEM	MAY	AUNE	JULY	AUG	SEPT	OCT	NON	DEC	NAU .	FEB	MAR	APRIL
	Number of days	31	0E	31	31		31	30	31	31	28	31	8
فر	Pan Evaporation / day	10.32	10.57	6.06	4.23	4.90	4.77	3.60	2.71	2.61	3.89	5.81	8.73
ට	Percolation(mm/day)	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
ď.	Field Applied Eff.	0.80	0.80	0.80	0.80		0.80	0.80	0.80	0.80	0.80	0.80	0.80
ຢ	Normal Rainfall	11.00	67.00	259.00	249.00	114.00	26.00	8.00	8.00	13.00	8.00	7.00	10.00
<u> </u>	SODCHIM & MAIZE	PEDIOD -	01/05 - 31/10 = 184 Dave	0= 184 Day									
	Group A				<u> </u>								
····	1 No of Days	31	30	31	31	30	31						
	2 Mid Point	16	46	77	108		169						-
	3 % Of Growing Season	8.70	25.00	41.85	58.70		91.85				-		
-	4 Crop Coefficient (Kc)	0.29	0.75	0.97	66.0		0.42						
	5 Pan Evap. Loss (Ep) (mm)	319.92	317.10	187.86	131.13	147.00	147.87						
	6 Consumptive Use (Kex Ep) (mm)	92.78	237.83	182.22	129.82	124.95	62.11						
	7 Nursery = 5% x (6) (mm)	0.00	0.00	0.00	0.00	0.00	0.00						
•	Total CU = (6+7) (mm)	92.78	237.83	182.22	129.82	124.95	62.11						
	9 Eff. Rain Fall (Pe) (mm)	0.00	30.20	182.20	174.20	66.20	5.60						
	10 Pre-Irrigation Water Req(5%)	3.75	00.00	0.00	0.00	0.00	00.00						
1	11 For Transplantation (mm)	75	0.00	00.00	0.00	0.00	0.00						
1	12 Percolation Loss (mm)	0.00	0.00	0.00	0.00	0.00	0.00						
	13 NIR=(8+10+11+12-9) (mm)	171.53	207.63	0.02	00.00	58.75	56.51						
-	14 FIR=NIR/Eff. 0.8 (mm)	214.41	259.53	0.03	0.00	73.44	70.63						
							-	-	1				

1					KHARIF				KHARIF R	RAB'I	81		
2	ILEM	MAY	JUNE	ATOL	AUG	SEPT	OCL	AON	DEC	JAN	FEB	MAR	APRIL
	Number of days	31	30	31		30		5	5	5	6	;	
è.	Pan Evaporation / day	10.32	10.57	6.06	4 23	4 90		360	10	10	22	5	5) (
ರ	Percolation(mm/day)	0.0	0.0	0.0	0.0	00		00.0	17.7	10.7	3.89	5.81	2.2
ų	Field Applied Eff.	0.80	0.80	0.80	0.80	0.80		0.0	0.0	0.0	0.0	0.0	0.0
e.	Normal Rainfall	11.00	67.00	259.00	249.00	114.00	26.00	8.00	8.00	13.00	8.00	7.00	10.01
	OII SEEDS	DEBLOD - 01%5 31/10 - 101 P	31.10		+			-			1		
_				- Sábur es									
-	No of Davs	31	30			- 00			-				
3	2 Mid Point	14	20										
~	3 % Of Growing Season	01 0		11 05	001	001	169			-			
4	4 Cron Coefficient (Ko)	0.00	00.07	C0.14	0/.90	00.67	58.16						
r v	S Dan Fuan 1 are (Fu)	210.02	0.0	1.6.0	66.0	0.85	0.42		_				
5	6 Constitutive [[se (Kere Bra) (mui)	76.610	01./ 10	18/.80	131.13	147.00	147.87						
5	$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right$	10.20	00.0	77.791	78.671	C4.921	62.11						
00	$\mathbb{S}[Total CU = (6+7) (mm)]$	0.00	727 62	100.00	0.00	0.00	0.00						
6	9 Bff. Rain Fall (Pe) (mm)	000	00.02	107 201	72.671	06.921	02.11						
10	10 Pre-Irrigation Water Ren(5%)	3.75	0000	07.701	0.00	07.00	09.0				<u> </u>		
11	11 For Transplantation (mm)	54	000	00.0	0000	0000	00.0						
12	12 Percolation Loss (mm)	000	0000		0.00	0000	0.00						
5	13 NJR=(8+10+11+12-0) (mm)	101 101	00.0	0.0	0.00	0.00	0.00						
		71.101	CO. 107	70'0	0.00	C/.8C	26.51						
1	14 FIKENIKUDI . U.S (mm)	226.41	259.53	0.03	0.00	73.44	70.63			_	_		

۴Ļ	Table 4.6 : MONTHLY CROP WATER		ND FIEL	DIKKIG	KHARIF	MUUM	EMIENT	AND FIELD IKKIGATION KEQUIKEMENT FOK KHAKIF VEGETABLES KHARIF	KIF VEC	ELLABLES RAB'I	31		
Ÿ.	o.	MAY	JUNE	JULY	AUG	SEPT	OCT	VOV -	DEC	JAN	FEB	MAR	APRIL
<u> </u>	Nimber of date	31	30	31	31	30		30	31	31	28	31	ଞ
غبة	Pan Fuendration / day	10.32	10.57	6.06	4.23	4.90		3.60	2.71	2.61	3.89	5.81	8.73
<u>i</u> e	[Percolation(mm/dav)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
1	Field Amlied Eff.	0.80	0.80	0.80	0.80	0.80		0.80	0.80	0.80	0.80	0.80	0.80
<u> </u>	Normal Rainfall	11.00	67.00	259.00	249.00	114.00	26.00	8.00	8.00	13.00	8.00	7.00	10.00
	BLES	PERIOD : $01/05 - 31/10 = 184$ Days	0 = 184 Day	93									
	Group C												
	l No of Davs	31	30	31	31		. 31						
	2 Mid Point	16	46	77	108	138	169	_		_			
	3 % Of Growing Season	8.70	25.00	41.85	58.70		91.85						
	4 Crop Coefficient (Kc)	0.18	0.45	0.58	09.0		0.26					_	
	5 Pan Evap. Loss (Ep) (mm)	319.92	317.10	187.86	131.13	147.00	-						
	6 Consumptive Use (Kex Ep) (mm)	57.59	142.70	108.96	78.7	74.97							
	7 Nursery = 5% x (6) (mm)	0.00	0.00	00.0	0.00	0.00	0.00						
- •	8 Total $CU = (6+7)$ (mm)	57.59	142.70	108.96	78.7	74.97	38.45						
	9 Eff. Rain Fall (Pe) (mm)	0.00	30.20	182.20	174.20	66.20	5.60						<u></u>
	10 Pre-Irrigation Water Req(5%)	3.75	00.00	0.00	0.00	0.00	0.00						
	11 For Transplantation (mm)	75	0.00	0.00	00.00	0.00	0.00				<u> </u>		
	12 Percolation Loss (mm)	0.00	0.00	0.00	0.00	0.00	0.00						
	13 NIR=(8+10+11+12-9) (mm)	136.34	112.50	0.00	0.0	00.00	32.85						
	14 FIR=NIR/Eff. 0.8 (mm)	170.42	140.62	0.00	0.00	0.00	41.06						

Table 4.7 : MONTHLY CROP WATER AND FIELD IRRIGATION REQUIREMENT FOR KHARIF PULSES

					KHARIF					RAB'I	B'I		
E	ITEM	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC	JAN	FEB	MAR	APRIL
Number of days		31	30	31					31	31		31	8
Pan Evaporation / dav	/ dav	10.32	10.57	6.06		4.90	4.77	3.60	. 2.71	2.61	3.89	5.81	8.73
Percolation(mm/dav)	dav)	0.0		0.0					0.0	0.0		0.0	0.0
Field Applied Eff.		0.80	-	0.80					0.80	0.80		0.80	0.80
Normal Rainfall	-	11.00		259.00	249.00		-		8.00	13.00		7.00	10.00
PULSES	L'ANALA .	- SUAU : UUNAA	- 31/10 = 124 Days	4 Days									
Group D		-											
No of Days		31			31	30	31	-					
2 Mid Point		16	46	77	108	138	169					-	
3 Of Growing Season	eason	8.70			58.70	75.00	91.85						
4 Crop Coefficient (Kc)	(Kc)	0.13			0.69	0.86	0.70						
5 Pan Evap. Loss (Ep) (mm)	Ep) (mm)	319.92			131.13	147.00	147.87						
Consumptive Us	6 Consumptive Use (Kcx Ep) (mm)	41.59			90.48	126.42	103.51						
Vursery = 5% x	(e) (mm)	0.00			0.00	00.00	0.00						
8 Total CU = $(6+7)$ (mm)	(uuu) (<i>l</i>	41.59			90.48	126.42	103.51						
9 Eff. Rain Fall (Pe) (mm)	e) (mm)	0.00			174.20	66.20	5.60						-
10 Pre-Irrigation Water Req(5%)	ater Req(5%)	3.75			0.00	0.00	0.00						-
1 For Transplantation (mm)	tion (mm)	75			00.00	0.00	0.00						•
12 Percolation Loss (mm)	(mm)	0.00			0.00	0.00	0.00				-		
.3 [NIR=(8+10+11+12-9) (mm)	+12-9) (mm)	120.34	_		0.00	60.22	16.79						
[4] FIR=NIR/Eff. 0.8 (mm)).8 (mm)	150.42			00.0	75.28	122.39						_ •

		APRIL	8	8.73	0.0	0.80	10.00 00		÷		Ŕ	ß	190.22	06.0	261.90	235.71	0.00	235.71	0.00	0.00	0.00	0.00	235.71	294.64
		MAR	31	5.81	0.0	0.80	7.00	 -			ઞ	319	173.37	0.90	180.11	162.10	0.00	162.10	0.00	0.00	0.00	0.00	162.10	202.62
al Crop)	L	FEB	28	3.89	0.0	0.80	8.00				5 8	8	157.61	06.0	108.92	98.03	0.00	98.03	0.00	0.00	0.00	0.00	98.03	122.54
(Perenni	RAB'I	JAN	31.	2.61	0.0	0.80	13.00		<u> </u>		ઝ	261	141.85	0.90	80.91	72.82	0.00	72.82	00.0	0.00	0.00	0.00	72.82	91.02
ARCANE		DEC	31	2.71	0.0	0.80	8.00					23		0.90	84.01	75.61	00.00	75.61	0.00	00.00	00.00	0.00	75.61	94.51
POR SUG		NOV	30	3.60	0.0	0.80	8.00				8	18	108.15	06.0	108.00	97.20	0.00	97.20	0.00	0.00	0.00	0.00	97.20	121.50
CMENT F		OCT	31	4.77	0.0	0.80	26.00				31	169	91.85	0.70	147.87	103.51	0.00	103.51	5.60	00.0	0.00	00.00	97.91	122.39
REQUIRI		SEPT		4.90	·						30	138	75,00	0.85	147.00	124.95	0.00	124.95	66.20	00.0	0.00	0.00	58.75	73.44
ATION I	KHARIF	AUG	31	4.23	0.0	0.80	249.00				31	108	58.70	1.00	131.13	131.13	0.00	131.13	174.20	0.00	0.00	0.00	0.00	0.00
D IRRIG		JULY	31	6.06	0.0	0.80	259.00		365 Days				41.85		-	1				0.00	0.00		0.00	0.00
ND FIEL		JUNE	30	10.57				•	1 - 31/12 = 365 Days		30	46			317.10			237.83			0.00		207.63	• •
VATER A		MAY	31	10.32	0.0	0.80	11.00		PERIOD: 01/3		31	16	8.70	. 0.58	319.92	185.55	0.00	185.55	0.00	3.75	75	0.00	264.30	330.38
Table 4.8 : MONTHLY CROP WATER AND FIELD IRRIGATION REQUIREMENT FOR SUGARCANE (Perennial Crop)		ITEM	Nimber of days	Pan Fvanoration / dav	Percolation(mm/dav)	Field Annlied Eff.	Normal Rainfall		ANE	Group G	No of Davs	2 Mid Point	3 % Of Growing Season	4 Crem Coefficient (Kc)	S Pan Evan. Loss (Ep) (mm)	6 Consumptive Use (Kcx Ep) (mm)	7 Nursery = 5% $x (6) (mm)$	8 Total CU = $(6+7)$ (mm)	9 Eff. Rain Fall (Pe) (mm)	10 Pre-Irrigation Water Req(5%)	11 For Transplantation (mm)	12 Percolation Loss (mm)	13 NIR=(8+10+11+12-9) (mm)	14 FIR=NIR/Eff. 0.8 (mm)
Tab		No.		i e	5 0	; -e	ંહ					· ~	. ~	. 4	· •	9	7	~	6	10	11	12	13	14

Table 4.9 : MONTHLY CROP WATER AND FIELD IRRIGATION REQUIREMENT FOR OTHER CROPS IN KHARIF (SPICES, COTTON) Table 4.9 : MONTHLY CROP WATER AND FIELD IRRIGATION REQUIREMENT FOR OTHER CROPS IN KHARIF (SPICES, COTTON) Table 4.9 : MONTHLY CROP WATER AND FIELD IRRIGATION REQUIREMENT FOR OTHER CROPS IN KHARIF (SPICES, COTTON)		VATER A	ND FIEL	D IRRIG	KHABIF	REQUIR	EMENT	FOR OTH	IER CRC	PS IN KHA RAB'I	HARIF (S B'I	PICES,C	OTTON
No. ITEM MAY JUNE JULY	JUNE			LLY	AUG	SEPT	OCT.	NON	DEC	JAN	FEB	MAR	APRIL
Niumber of date:			1	31	31	30	31	30	31	31	28	31	8
1 dav 10				6.06	4.23	4.90	4.77	3.60	2.71	2.61	3.89	5.81	8.73
0.0				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.80				0.80	. 0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
11.00				259.00	249.00	114.00	26.00	8.00	8.00	13.00	8.00	7.00	10:00
ОТНЕВ РЕВОЛ: 01/05 - 31/10 = 184 Davs	/05 - 31/10 = 184 Davs	= 184 Davs											
1 No of Days 31 30				31	31	30,	31.						
2 Mid Point 16 46				77	108	138	169						
3 % Of Growing Season 8.70 25.00				41.85	58.70	75.00	91.85					-	
4 Crop Coefficient (Kc) 0.18 0.45				0.58	0.60	0.51	0.26			_			
mm) 319.92				187.86	131.13	147.00	147.87						
6 Consumptive Use (Kcx Ep) (mm) 57.59 142.70				108.96	78.7	74.97	38.45						
7 Nursery = $5\% x (6) (mm)$ 0.00 0.00				0.00	0.00	0.00	0.00						-
57.59 1				108.96	78.7	74.97	38.45						
9 Eff. Rain Fail (Pe) (mm) 0.00 30.20				182.20	174.20	66.20	5.60			_			
(5%) 3.75				0.00	0.00	0.00	0.00				_		
11 For Transplantation (mm) 75 0.00	_	_		0.00	0.00	0.00	0.00						
0.00				0.00	0.00	000	0.00				-		
[3]NIR=(8+10+11+12-9) (mm) [36.34] 112.50	•	•		0.00	0.0	8.77	32.85						
14 FIR=NIR/Eff. 0.8 (mm) 170.42 140.62				0.00	0.00	10.96	41.06						
								-					

W

Table 4.10 : MONTHLY CROP WATER AND FIELD IRRIGATION REQUIREMENT FOR WHEAT

۲					KHARIF					RAB'I	BrI		
°ż	ITEM	MAY	JUNE	ATOC	AUG	SEPT	OCT	NON	DEC	JAN	FEB	MAR	APRIL
						I.							
e.	Number of days	31	30					30	31	31		31	8
م	Pan Evaporation / day	10.32	10.57					3.60	2.71	2.61		5.81	8.73
Ű	Percolation(mm/day)	0.0	0.0					0.0	0.0	0.0		0.0	0'0
ب	Field Applied Eff.	0.80	0.80	0.80			0.80	0.80	0.80	0.80	0.80	0.80	0.80
ಲ	Normal Rainfall	11.00	67.00		249.00	114.00		8.00	8.00	13.00		7.00	10.00
L													
	WHEAT PERIC	PERIOD: 01/10-3	30/03 = 212 Days	2 Days								_	
	Group D												
	1 No of Davs						31	8	3	ਕ	83	31	ଞ
	2 Mid Point		,				16	4	11	107	137	166	197
	3 % Of Growing Season						8.70	25.00	41.85	58.15	74.46	90.22	107.07
~	4 Crop Coefficient (Kc)		-				0.13	0.27	0.47	0.69	0.86	0.70	0.85
	5 Pan Evap. Loss (Ep) (mm)						147.87	108.00	84.01	80.91	108.92	180.11	261.90
_	6 Consumptive Use (Kcx Ep) (mm)						19.22	29.16	39.48	55.83	93.67	126.08	222.62
	7 Nursery = $5\% x (6) (mm)$						00.00	0.00	00.0	0.00	0.00	0.00	0.00
	8 Total CU = $(6+7)$ (mm)						19.22	29.16	39.48	55.83	93.67	126.08	222.62
	9 Eff. Rain Fall (Pe) (mm)						5.60	00.00	00.00	0.00	0.00	0.00	0.00
Ξ	10 Pre-Irrigation Water Req(5%)						3.75	0.00	0.00	0.00	0.00	0.00	0.00
	11 For Transplantation (mm)						75.00	0.00	00.00	0.00	0.00	0.00	0.00
1	12 Percolation Loss (mm)						00.0	0.00	00.00	0.00	0.00	0.00	0.00
1	13 NIR=(8+10+11+12-9) (mm)						92.37	29.16	39.48	55.83	93.67	126.08	222.62
-i 	14 FIR=NIR/Eff. 0.8 (mm)						115.47	36.45	49.36	69.78	117.09	157.60	278.27
			-					-					

IV-15

. .

Table 4.11 : MONTHLY CROP WATER AND FIELD IRRIGATION REQUIREMENT FOR GRAM & PULSES IN RAB'I

۳L	Table 4.11 : MUNTHLY CRUP WATER	WALER	ALVU FILL		KHARTE	ALVU FILLUD INVIGATION INCOMMENTANT FOR CONTINUE COMPANY				RAB'I	BI		
4	No.	MAY	JUNE	AJUL	AUG	SEPT	oct	VON	DEC	JAN	FEB	MAR	APRIL
				;	1		;		5	3	ĉ	3	8
to,	. Number of days	31	0 C	31	31		1			5	0, 0,	103	3 8
<u> </u>	Pan Evaporation / day	10.32	10.57	6.06	4.23		4.77		7.71	7.01	5.87	18.0	0.0
<u> </u>		0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0
<u>i 7</u>	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
ച് ഡ്	<u></u>	11.00	67.00	259.00	249.00	Π	26.00		8.00	13.00	8.00	7.00	10.00
	GRAM &PULSES PE	PERIOD: 01/10 - 31/03 = 182 Days	0 - 31/03 =	182 Days									
	Group D												
	1 No of Date						Э.			ઝ	28	3	
	1 140 01 Days						16			107	137	166	
	3 % Of Growing Season						8.70	25.00	•	58.15	74.46	90.22	
	4 Crm Coefficient (Kc)						0.13	0.27	0.47	0.69	0.86	0.70	
	5 Pan Evan. Loss (Ep) (mm)						147.87	108.00	84.01	80.91	108.92	180.11	
	6 Consumptive Use (Kcx Ep) (mm)		-				19.22	29.16	39.48	55.83	93.67	126.08	
	7 Nurserv = 5% x (6) (mm)					_	00.00	00.00	0.00	0.00	0.00	0.00	
-	[Total CU = (6+7) (mm)]						19.22	29.16	39.48	55.83	93.67	126.08	
	9 Eff. Rain Fall (Pe) (mm)	-					5.60	00.00	00.0	00'0	00'0	0.00	
	10 Pre-Irripation Water Rea(5%)					-	3.75	00.0	0.00	00.00	0.00	0.00	
	11 For Transplantation (mm)						75.00	0.00	0.00	0.00	0.00	0.00	
	12 Percolation Loss (mm)						0.00	0.00	00.0	00.00	0.00	0.00	
	13 NIR=(8+10+11+12-9) (mm)						92.37	29.16	39.48	55.83	93.67	126.08	
	14 FIR=NIR/Eff. 0.8 (mm)						115.47	36.45	49.36	69.78	117.09	157.60	
		-			-	_					-		

1

.

Ë	Table 4.12 : MONTHLY CROP WATER A	WATER	AND FIE	LD IRRI	GATION	ND FIELD IRRIGATION REQUIREMENT FOR RAB'I OILSEEDS	EMENT	FOR RA	B'I OILS	EEDS			ſ
L					KHARIF					KAB'I	B.I		
Ż	No.	MAY	JUNE	JULY	AUG	SEPT	OCT	NON	DEC	JAN	FEB	MAR	APRIL
<u> </u>	Nimher of date	31	30	31	31	30	31	30	31	31	28	31	ଞ
<u>4</u> -	Per Francration / day	10.32	10	6.06	4.23	4.90	4.77	3.60	2.71	2.61	3.89	5.81	8.73
i e	I all Every and a subset of any percentarion (market)	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5 10	Field Amfied Eff.	0.80		0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
ບ່	Normal Rainfall	11.00	v	259.00	249.00	114.00	26.00	8.00	8.00	13.00	8.00	7.00	10.00
1													
	OILSEEDS PEI Group A	PERIOD : 01/10	0 - 28/02 = 151 Days	151 Days									
	1 No. of Dave						Э.	8	ઞ	સ	28		
	o Mid Point						16	\$	1		137		
	3 % Of Growing Season						8.70	25.00	41.85		74.46		
	A from Coefficient (Kc)						0.29	0.75	0.97		0.85		
	5 Pan Evan. Loss (Fn) (mm)						147.87	108.00	84.01	80.91	108.92		
	6 Consumptive Use (Kcx Ep) (nm)						42.88	81.00	81.49	80.10	92.58		
	7 Nurserv = $5\% x (6) (mm)$						00.0	00.00	0.00	00.0	0.00		
	R Total CU = (6+7) (mm)						42.88	81.00	81.49	80.10	92.58		
	9 Eff. Rain Fall (Pe) (mm)						5.60	00.00	0.00	0.00	0.00		
	10 Pre-Imisation Water Red 5%)						3.75	00.00	0.00	00.0	0.00		•
	11 For Transmlantation (mm)				•		75.00	0.00	0.00	00.00	0.00		
	12 Percolation Loss (mm)		•				0.00	0.00	0.00	00.00	0.00		
	13 NTR=/8+10+11+13-9) (mm)						116.03	81.00	81.49	80.10	92.58		
	14] FIR=NIR/Eff. 0.8 (mm)						145.04	101.25	101.86	100.13	115.73		

ſ		APRIL	8	8.73	0.0	0.80	10.00																		
	ŀ	¥			0	0	<u></u>	-			Ŧ	ģ	3	2	1	S	0	<u>5</u>	0	0	ō	0	5	9	
		MAR				0.80								0.4	180.1	75.6	0.0	75.6	0.00	0.0	0.0	0.0	75.6	94.5	
	BrI	FEB	28	3.89	0.0	0.80	8.00				28	137	74.46	0.85	108.92	92.58	0.00	92.58	0.00	0.00	0.00	0.00	92.58	115.73	
	RAB'I	JAN	31	2.61	0.0	0.80	13.00				31	107	58.15	166.0	80.91	80.10	0.00	80.10	00.00	0.00	00.0	0.00	80.10	100.13	
RIANDE		DEC	31	2.71	0.0	0.80	8.00				3	77	41.85	0.97	84.01	81.49	0.00	81.49	0.00	0.00	0.00	0.00	81.49	101.86	
AND FIELD IRRIGATION REQUIREMENT FOR CORIANDER		VON				0.80					8	4	25.00	0.75	108.00	81.00	00.0	81.00	0.00	0.00	0.00	0.00	81.00	101.25	
LEMENT		OCT	31	4.77	0.0	0.80	26.00				31	16	8.70	0.32	147.87	47.32	0.00	47.32	5.60	3.75	75.00	0.00	120.47	150.59	
REQUIR		SEPT				0.80	11																		
GATION	KHARIF	AUG	31	4.23	0.0	0.80	249.00																		
LD IRRI		JULY	31	6.06	0.0	0.80	259.00		Days				_												
AND FIE		JUNE	30		0.0		•		31/03 = 182 Days												_				
		MAY	31	10.32	0.0	0.80	11.00		PERIOD : 01/10 -																
Table 4.13 : MONTHLY CROP WATER		ITEM	Nimber of davs	Pan Evanoration / dav	Percelation(mm/dav)	Field Annlied Eff.	Normal Rainfall		CORLANDER PERIO	Group A	No of Dave	2 Mid Point	3 % Of Growing Season	4 Cron Coefficient (Ko)	S Pan Evap. Loss (Ep) (mm)	6 Consumptive Use (Kcx Ep) (mm)	7 Nurserv = $5\% x (6) (mm)$	8 Total CU = $(6+7)$ (mm)	9 Eff. Rain Fall (Pe) (mm)	10 Pre-Irrigation Water Reg(5%)	11 For Transmlantation (mm)	12 Percolation Loss (mm)	13 NTP=(%+10+11+12-9) (mm)	14 FIR=NIR/Eff. 0.8 (mm)	
Table	┝	No.	<u>ź</u>			_		┿	Ö	U		N N	1 0	402	S Pa	U V	N N	Ľ.	9 Ef	10 Pr	11 120	12 Pe		14 FI	
	L		<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>			, u																		_

Table 4.14 : MONTHLY CROP WATER AND FIELD IRRIGATION REOUIREMENT FOR BARLEY

					KHARIF	KHARIF				RAB'I	B'I			
No.	ITEM	MAY	JUNE	AUUL	AUG	SEPT	OCT	NON	DEC	JAN	FEB	MAR	APRIL	
_~	Nimher of dave	31	30	31	17	30	31	30	31		36	31	8	
<u>.</u>				10	1,1	2		2					3 8	
<u>o'</u>	ran Evaporation / day	10.32		6.06	4.23	4.90	4.77	3.60	2.71		3.89	5.81	8.73	
ರ	Percolation(mm/day)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	
ਚ	Field Applied Eff.	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	
ປ	Normal Rainfall	11.00	67.00	259.00	249.00	114.00	26.00	8.00	8.00		8.00	7.00	10.00	· · ·
	BARLEY PERIOD	 PERIOD : 01/10 - 30/03	0/03 = 212 Days	Jays										
	Group D			•										
	I No of Davs	·					3	3				6	8	
6	2 Mid Point						16	. 9	14	107	137	166	197	
.m	3 % Of Growing Season			-			8.70	25.00				90.22	107.07	
4	4 Crop Coefficient (Kc)						0.13	0.27				0.70	0.85	
۲.	5 Pan Evap. Loss (Ep) (mm)						147.87	108.00				180.11	261.90	
ę	6 Consumptive Use (Kcx Ep) (mm)						19.22	29.16				126.08	222.62	
	7 Nursery = $5\% \text{ x} (6) (\text{mm})$						0.00	00.0				0.00	0.00	
	Total CU = (6+7) (mm)						19.22	29.16				126.08	222.62	
	9 Eff. Rain Fall (Pe) (mm)				••••		5.60	00.0		_		0.00	0.00	
2	10 Pre-Irrigation Water Req(5%)		_				3.75	00.0				0.00	0.00	
Ξ	I For Transplantation (mm)				· •		75.00	00.0				0.00	0.00	
=	12 Percolation Loss (mm)						0.00	0.00				0.00	0.00	
E1	13 NIR=(8+10+11+12-9) (mm)						92.37	29.16				126.08	222.62	
14	14 FIR=NIR/Eff. 0.8 (mm)						115.47	36.45			-	157.60	278.27	
										_			-	

Ë	Table 4.15 : MONTHLY CROP WATER	WATER .	AND FIELD IRRIGATION REQUIREMENT FOR OTHER CROPS (VEGETABLE etc)	LD IRRI	GATION	REQUIR	EMENT	FOR OT	HER CR	OPS (VE	GETABL	E etc)	ſ
					KHARIF					\$[KAB'I		
No.	o.	МАУ	JUNE	AUUL	AUG	SEPT	OCT	VOV	DEC	JAN	FEB	MAR	APRIL
<u> </u>	Niumber of dates	31	30	31	31	30	31	30	31	31	28	31	8
ع_ه	Den Evenvration / dev	10.32		6.06	4.23	4.90	4.77	3.60	2.71	2.61	3.89	5.81	8.73
<u>i</u> 0	Percolation(mm/dav)	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>.</u> –	Field Annlied Eff.	0.80		0.80	0.80	0.80	08.0	0.80	0.80	0.80	0.80	0.80	0.80
i <u>v</u> i	Normal Rainfall	11.00	ð	259.00	249.00	114.00	26.00	8.00	8.00	13.00	8.00	7.00	10.00
									}				
	OTHER (VEGETABLES) etc P Group C	PERIOD: 01/10 - 31/03 = 182 Uays	20/16 - 01/1	= 182 Days									
							3	ଞ	31	31	58	3	
				-			16	46	11	107	137	166	
	2 Muu Found 3 % OF Growing Coscor						8.70	25.00	41.85	58.15	74.46	90.22	
							0.18	0.45	0.58	0.60	0.51		
	5 Pan Fvan. I oss (Fa) (mm)						147.87	108.00	84.01	80.91	108.92	-	
	6 Consumptive Use (Kcx Ep) (mm)						26.62	48.60	48.73	48.55	55.55	46.83	
	7 Nurserv = $5\% x (6) (mm)$						00.0	0.00	0.00	0.00	0.00		
	8 Total CU = $(6+7)$ (mm)						26.62	48.60	48.73	48.55	55.55		
	9 Ref. Rain Fall (Pe) (mm)						5.60	0.00	0.00	0.00	0.00		
,	Deve Irright in Water Ren(5%)						3.75	0.00	0.00	0.00	0.00	•	
• •-	11 Ror Transmiantation (mm)			_			75.00	0.00	0.00	0.00	0.00		
• ř	Demolation I ass (mm)						0.00	0.00	0.00	0.00	0,00		
• ÷-	13 NTR=(8+10+11+12-9) (mm)						77.66	48.60	48.73	48.55	55.55		
·	14 FIR=NIR/Eff. 0.8 (mm)			_		_	124.71	60.75	60.91	60.68	69.44		
				<u> </u>		_	_						

Computational explanatory notes on Table 4.4

FIELD IRRI	GATION REQUIREMENT for Sorghum & Maize for month of May
<u>No. row</u>	
No. a	= Number of day, 31 day
No. b	= Corresponding in table 2.6, we get 10.32 mm/day
No. c	= Assume, we taken 0 mm/day
No. d	= Corresponding page IV-2, we get 80 %
No. e	= Corresponding in table 2.5, we get 11 mm
No. 1	= Number of day, 31 day
No. 2	= Row No.1/2
	= 31/2
	= 16 day
No.3	= (No.2/growth period)*100
	= (16/184)*100
	= 8.7 %
No.4	= Corresponding in table varsney, we get 0.29
No. 5	= No.1*No. b
	= 31*10.32
	= 319.92 mm
No. 6	= No.4*No.5
	= 0.29*319.92
	= 92.78 mm
No. 7	= 5 % * No.6
,	= 5 %*0
	= 0 mm
No. 8	= No.6 + No.7
	= 92.78+0
	= 92.78 mm
No. 8	= 92.78+0

No. 9	= Corresponding in formula if $P > 75$ mm/month we taken (0.8*P)-25, if
	P < 75 mm/month we taken (0.6*P)-10
	Corresponding in No. e, 11 mm
	= (0.6*11)-10
	$= -3.4 \sim 0$
No. 10	= assume, 150 mm for paddy, 75 mm non paddy
No. 11	= assume, 100 mm for paddy, 75 mm non paddy
No. 12	= No. c, 0
No. 13	= No.8 + No.10 + No.11 + No.12 - No.9
	= 92.78+3.75+75+0+0
	= 171.53 mm
No. 14	= No.13/No.d
	= 171.53/0.8
	= 214.41 mm

	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DES	JAN	FEB	MAR	APR
Paddy	0.50	0.80	1.00	1.00	0.80	0.30	-	-	-	-	-	-
Sorghum (Maize)	0.46	0.77	1.00	1.00	1.00	0.67	-	-	-	-	-	-
Oilseed	0.50	1.00	1.00	1.00	1.00	0.50	-	-	-	-	-	-
Vegetable	0.80	1.00	1.00	1.00	1.00	0.30	-	-	-	-	-	-
Pulses	0.17	1.00	1.00	1.00	1.00	0.17	-	-	-	-	-	-
Sugarcane	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50	0.50	0.50
Other	0.20	0.50	1.00	1.00	1.00	0.30	-	-	-	-	-	-
Wheat	-	-	-		-	0.32	0.67	1.00	1.00	1.00	0.80	0.33
Gram & Pulses	-	-	-	-	-	0.12	0.70	1.00	1.00	1.00	0.47	-
Oilseed	-	-	-	-	-	0.20	0.80	1.00	1.00	0.40	-	-
Coriander	-	-		-	-	0.50	0.40	1.00	1.00	1.00	0.25	-
Other (Vegetable)	-	-	-	-	-	1.00	1.00	1.00	1.00	1.00	1.00	-
Barley	-	<u> </u>	-		-	0.33	0.67	1.00	1.00	1.00	0.60	-

Table 4.16 : CROP AREA COEFFICIENT IN DIFFERENT MONTHS

				KHAKIF	1											
NEW	Ē	λVN	JUNE	7101	DNV	SEPT	S	Total Marif	VON	С Д	NAL	FE8	MAR	APR	Total rabi	Rabi+Kharif
- Area (ha) - F I R (mm)		17,175 589.66	27,480	34,350	34,350 53.46	27,480	220.78	1,620.09							١	1,620.09
- Q (MCM) Sorahum (Maiza)	9 	01.27	124.90	40.14	18.36	50.79	22.75									
Area (ha)		•			•		. :	1000								AIR OF
- FIR (mm) - 0 /MCM)		214.41	259.53	50.0	• •	£.,	59'n/	101010								
Olised				_												
- Area (ha)	 3	15 300		0.03	• •	73.44	70.63	630.04							•	630.04
mu) (m²/Monthiv)				}.	•											
Vegeteble																
- Area (he)	<u></u>	89.69	110.00	110.00	110.00	110.00	33.00	352 10			_				•	352.10
- FIR (mm) - O (MCM)		0,15	0.15	3.			0.01	01.300								
-																_
- Area (ha)	; 	. ;			•	- - -		26 7 14							•	417.36
- FIR (mm)		150.42	69.27	•••	• •	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	65.221									
- C (FILT) Sugarcane																
- Area (ha)		4 66	460	460	<u>8</u>	460	1		460	460	460	8	RT I	en r	20 200	1 712 67
- FIR (mm)	8	330.38	259.53	•	•	1	122.39	785.73	121.50	25.51	91.02	5.21	202.62	10.167	58,026	10.21/1
- Q (MCM) Other		1.52	61.1	•	•	 5 0	0.56		95.0	54.0	74.0	a7'n				
- Area (ha)		3.21	8.02	16.03	16.03	16.03	4.81									
- FIR (mm)		170.42	140.62	0,0	0.0	10.96	41.06	363.06		·					•	90.202
- Q (MCM)	-	0.01	10.0	•	•	00.0	 									-
6	-				-		36385	1	81318	121370	0/121	121370	92026	40052	100 54	004.04
- F I R (mm)					.		115.47	115.47	04-05 14-05	8. 8 8 8	69./8	11.041	153.02	111.45		10-1-0
- Q (MCM) Gram & Puises		_					3			20100	2					
6	<u>-</u> .					·	550	1	3206	4580	4580	4580	52			CAE 74
- F1R (mm)							115.47	115.47	1.17	2.26	3.20	5.36	6E.E			1
-			_								:					
- Area (ha)							145 04	145.06	101 25	101.86	100.13	115.73			418.97	564.01
- O (MCM)									•			•				
Corlander										- (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
<u>ا</u> ه	<u>.</u>						150.50	150.59	101.25	101.86	100.13	115.73	35.5		513.52	664.11
- Q (MCM)							,		•		•	•	•			
Other (Vegetable)			•						0	9	0		0			
FIR (mm)							124.71	124.71	n	60.91	60.68	69.44	- i		310.31	435.02
•							•		•	•	•	•				
6									2	0,0	0 p	0 4	0		430 JR	E45 74
- F I R (mm) - Q (MCM)							/9/CII	14.611		8.			, ,			
Universities (MCM)		00.45	126.26	40.14	18.36	51.13	68.81		31.37	62.60	1E.88	147.76	156.88	112.13		T
Volume at Head of LBC (MCM)		137.26	168.35 74.98	23.82	24.48	58.17 30.36	91.75. 40.87		41.82	83.46 37.18	117.75 52.45	197.01 87.75	209.17	149.51		
ed of RBC (76.12	93.36	29.68	13.58	37.80	50,88		23.19	46.29	65.30	109.20	116.00	B2.91		

IV-24

١

Annual	Rabi+Kharif		1,620.09	618.04	1 0.0Eà	01.52	417.36	1,712.57	363.06	824.01	545.74	564.01	695.63	435.02	388.15	
	Teta T		•	ł	•	•	ı	926.83	•	708.54	430.28	418.97	545.05	310.31	272.69	
		N-N						2,336 294.64 6.88		33,530 278,27 93.30						100.19 133.58 59.50
	NA0	MAK						2,336 202.62 4,73		81,286 157,60 128,10	14,272 157.60 22.49		1,168 126.08 1.47	2,336 58.54 1.37	2,803	158.17 210.89 93.93
TANG		E		· _ · · · _				2,336 122.54 2.86		101,607 117.09 118.97	30,365 117.09 35.55	3,737 115,73 4.33	4,672 115.73 5.41	2,336 69.44 1.62	4,672 117.09 5,47	174.21 232.28 103.46
	i	NV.						4,672 91.02 4,25		101,607 69.78 70.91	30,365 69.78 21.19	9,343 100.13 9.35	4,672 100.13 4.69	2,336 60.68 1.42	4,672 69.78 3.26	115.06 153.41 68.33
		DEC						4,672 94.51 4.42		101,607 49.36 50.15	30,365 49.36 1 4.99	9,343 101.86 9.52	4,672 101.86 4.76	2,336 60.91 1.42	4,672 49.36 2.31	87.56 116.74 52.00
		NOH		,				4,672 121.50 5.68		68,077 36.45 24.81	21,256 36.45 7.75	7,475 101.25 7.57	1,869 101.25 1.89	2,336 60.75 1.42	3,130 36.45 1.14	50.26 67.01 29.85
ſ		Total	1,620.09	618.04	630.04	352.10	417.36	785.73	363.06	115.47	115.47	145.04	150.59	124.71	115.47	
		Ş	7,344 220.79 16.21	7,825 70.63 5.53	3,504 70.63 2.47	41.06	1,985 122.39 2.43	4,672 122.39 5.72	0.00 41.06	32,514 115.47 37.54	3,644 115,47 4.21	1,869 145.04 2.71	2,336 150,59 3.52	2,336 124.71 2.91	1,542 115.47 1.78	82.60 110.14 49.06
EI-LBC		SEPT	7,344 18,81 13.57	11,679 73.44 8.58	7,007 73.44 5.15	· · · ·	11,679 75.28 8.79	4,672 73.44 3.43	0.00 10.96							30.73 40.97 19.25
for PHAS		AUG	9,180 53.46 53.46	11,679	7,007		11,679 0.00	4,672	0.00							4.91 6.54 2.91
REMENT	KHARIF	JULY	9,180 9,186 116.86 10.73	11,679 0.03 0.00	7,007 0.03 0.00		11,679 0.00	4,672	0.00			- 				14.31
ION REQU		JURE	7,344 454.51 33.38	8,993 259.53 23.34	7,007 259.53 18.19	140.62	11,679 69.27 8.09	4,672 259.53 12.12	0.00							87.03 116.04 51.69
Table 4.19 : MONTHLY GROSS IRRIGATION REQUIREMENT for PHASE I - LBC		AAM	4,590 589,66 27,07	5,372 214,41 11.52	3,504 226.41 7.93	170.42	1,985 150.42 2.99	4,672 330,38 15,43	0.00 170.42 -							61.95 82.60 36.79
4.19 : MONTHLY GROS		ITEM	Paddy - Area (ha) - F I R (mm) - Q (MCM)	Sorghum (Maize) - Area (ha) - F I R (mm) - Q (MCM)	Oliseed - Area (na) - F I R (nnn) - Q (10 ³ /m ³ /Mantrity)	Vegetable - Area (ha) - F I R (mm) - Q (MCM)	5, Puises - Area (ha) - F I R (mm) - Q (MCM)	Sugercane - Area (ha) - F I R (mm) - Q (MCM)	Other - Ares (ha) - F I R (mm) - O (MCM)	Witeat - Area (ita) - FI R (mm) - Q (MCM)	Gren & Pulses - Area (ha) - FIR (rmn) - Q (MCM)	Oliseed - Area (ha) - FIR (mm) - Q (MCM)	Contender - Area (he) - FIR (mm) - O (MCM)	Other (Vegetable) - Area (Ina) - FIR (Imm) - Q (MCM)	Barfay - Area (he) - F I R (mm) - Q (MCM)	Volume at Reid (MCN) Volume at Head (MCM) Volume at Head of LBC (MCM)
ğ	-	No.				•			<u>~ · · ·</u>	99 19	<u>o</u>	8	7	G	n	

.

.

,

죍	Table 4.20 : MONTHLY GROSS IRRIGATI	9 IRRIGAT	TON REQUIREMENT for PHASE II	IREMENT fo	for PHAS	H		ſ				RABT				Annual
									707	Let 1			MAD	ADE	Total	Rahl+Khert
£	TTEM	MAY		3017	AUG		5	therit		5	Ę				Ĩ	
-	Peddy - Area (ha) - FIR (mm) - O (MCM)	10,305 589.66 500.76	16,488 454.51 74,94	20,610 116.86 24,09	20,610 53,46 11.02	16,488 184.81 30.47	6,183 220.78 13.65	1,620.09							•	1,620.09
	Sorghum (Maize) - Area (ha) - F I R (mm) - Q (MCM)	7,898 214.41 16.93	13,221 259,53 34,31	071,71		17,170 73.44	11,50 4 70.63 8.13	618.04							•	618.04
	Oliseed - Area (ha) - FIR (nan) - Q (10 ² /m ² /Montrhy)	18,890 226.41 42.77	37,780 259.53 98.05	087,75 50,0 10.0	37,780	087,78 74.E7 47.72	18,890 70.63 13.34	630.04							•	630.04
*	Vegetabla - Area (ha) - F I R (mm) - Q (MCM)	920 170.42 1.57	1,150 140.62 1.62	1,150	1,150	1,150	345 41.06 0.14	352.10							•	352.10
~	5 Pulaes - Ares (ha) - F I R (mm) - Q (MCM)	5060.9 150.42 7.61	29770 69.27 20.62	29770 0.00	00.0	29770 75.28 22.41	5080.8 122.39 6.19	417.36			- <u></u>				•	417.36
	Sugarcane - Area (ha) - F I R (mm) - Q (MCM)	13,740 330,38 45,39	13,740 259.53 35.66	13,740	13,740	73.44	13,740 122.39 16.82	785.73	13,740 121.50 16.69	13,740 94.51 12.99	13,740 91.02 12.51	6,870 122.54 8.42	6,870 202.62 13.92	6,870 294.84 20.24	926.83	1,712.57
N	Other - Ares (he) - F I R (nnn) - Q (MCM)	3.21 170.42 0.01	8.02 140.62 0.01	16.03 0.00	16.03 0.00	16.03 10.96 0.00	4.81 41.06	363.06							•	363.06
10	Withurt - Area (ha) - F I R (mm) - Q (MCM)						40230 115.47 46.45	115.47	84232 36.45 30.70	125720 49.36 62.05	125720 69.78 87.73	125720 117.09 147.20	100576 157.60 158.50	41488 278.27 115.45	708.54	824.01
0	Gram & Pulsos - Area (he) - F I R (mm) - Q (MCM)		<u>.</u>	<u> </u>	·····		3504 115.47 4.05	115.47	20440 36.45 7.45	29200 49.36 14.41	29200 69.78 20.38	29200 117.09 34.19	13724 157.60 21.63		430.28	545.74
9	Ollaeed - Ares (ha) - FIR (rrm) - Q (MCM)						1488 145.04 2.16	145.04	5952 101.25 6.03	7440 101.86 7.58	7440 100.13 7.45	2976 115.73 3.44		,	418.97	564.01
11	Cortander - Ares (ha) - F I R (mm) - Q (MCM)						2635 150,59 3.97	150.59	2108 101.25 2.13	5270 101,86 5.37	5270. 100.13 5.28	5270 115.73 6.10	81E1 84.56 82.12		513.52	664.11
12	Other (Vegetable) - Area (ha) - F I R (mm) - Q (MCM)		·				2290 124.71 2.86	124.71	2290 60.75 1.39	2290 60,91 1.39	2290 60.68 1.39	2290 69.44 1.59	2290 58.54 1.34		310,31	435,02
61	Burley - Arcs (ha) - F I R (mm) - Q (MCM)						983 115.47 1.14	115.47	1997 36.45 0.73	2980 49.36 1.47	2980 69.78 2.09	2980 117.09 3.49	1788 157.60 2.82		430.28	545.74
2222	Volume at Field (MCM) Volume at Head (MCM) Volume at Head of IBC (MCM) Volume at Head of IBC (MCM)	167.43 223.25 99.44 123.81	244.59 326.12 145.26 180.86	24.10 14.25 14.31 18.71 18.71	11.02 14.69 6.54 8.15	80.92 107.89 48.06 59.83	112.69 150.28 66.93 83.33		48.43 64.58 28.76 35.81	222 222 228 228 228 228 228 228 228 228	124.31 165.74 73.87 91.92 29.19	196.02 281.38 116.41 144.94	61.761 91.011 91.011	115.45 163.93 68.56 85.37 85.37		

r**-27**

Annual I	0bi+Kherif		1,620.09	618.04	630.04	352.10	417.36	1,712.57	363.06	824.01	545.74	564.01	695,63	435.02	388.15	
		Ider	,	•	1	'	'	926.83		708.54	430.28	418.97	545.05	310.31	. 17.68	
	100V	XX		·				1,175 294.64 3.46		31851.60 278.27 88.63						25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 2
		ž	. `	· ·	-:			1,175 202,62 2.38		77216.00 157.60 121.69	14030		3325 126.08 4.19	4300 58.54 2.52	2982	252.58 26
		934		·				1,175		96520.00 117.09 113.01	29850 117.09 34.95	8460 115.73 9.79	13300 115.73 15.39	4300 69.44 2.99	4970 117.09 5.82	183.39 244.52 108.91 135.61
		NV		-				2,350 91.02 2.14		96520.00 69.78 67.36	29850 69.78 20.83	21150 100.13 21.18	13300 12.32 13.32	4300 60.68 2.61	076 1 87.63 3.47	130.90 174.53 77.74 96.79
		U B B						2,350 94.51 2.22		64668.40 96520.00 36.45 49.36 23.57 47.64	29850 49.36 14.73	21150	13300 101.86 13.55	4300 60.91 2.62	4970 49.36 2.45	104.76 139.67 62.21 77.46
		} ¥	•		·			2,350 121.50 2.86		64668.40 36.45 23.57	20895 36.45 7.62	16920 101.25 17.13	5320 101.25 5.39	4300- 60.75 2.61	36.45 36.45	60.39 35.85 14.55
AR		Totel Itharif	1,620.09	618.04	630.04	352.10	417.36	785.73	363.06	115.47	115.47	145.04	150.59	124.71	115.47	
AV. 10 YE		ţ	6,060 220.78 13.38	4,449 70.63 3.14	5,080 70.63 3.59	381 41.06 0.16	27.2 122.39 0.03	2,350	0.00 41.06	30886.40 115.47 35.66	3582 115.47	4230 145.04 6.14	6650 150.59 10.01	4300 124.71 5.36	1640 115.47 1.89	86.35 115.13 51.28 63.85
VEMENT		SEPT	16,160 194.81 29.87	6,640 73,44 4.88	10,160 73.44 7.46	1,270	160 75.28 0.12	2,350 73.44 1.73	0.00 10.96							43.93 58.57 26.09 32.48
for ACHIE		AUG	20,200 53,46 53,080	6,640	10,160	1,270	, 0.0 0.0	2,350	0.0					·		10.80 14.40 6.41 7.99
REMENT	KHARIF	JULY	20,200 116,86 23.61	6,640 0.03 0.00	10,160 0.03 0.00	1,270	0.00	2,350	0000	······			<u> </u>			23.61 31.48 14.02 17.46
ON REQUIREMENT for ACHIEVEMENT AV. 10 YEAR		JUNE	16,160 454.51 73.45	5,113 259,53 13.27	10,160 259,53 26.37	1,270 140.62 1.79	160 69.27 0.11	2,350 259,53 6.10	0.00							120.97 161.30 71.84 69.45
S IRRIGATI	·	MAY	10,100 589,66 59,565	3,054 214.41 6.55	5,080 226.41 11.50	1,016 170.42 1.73	27.2 150.42 0.04	2,350 330.38 7.76	0.00 170.42							87.10 16.13 51.73 64.41
Table 4.21 : MONTHLY GROSS IRRIGATI		JTEM	Paddy - Area (ha) - F I R (mm) - Q (MCM)	Sorghum (Maize) - Area (ha) - F I R (mn) - Q (MCM)	0iiseed - Arca (ha) - F1 R (nm) - Q (10 ³ /m ³ /Mant u v)	Vegetable - Area (ha) - FIR (mm) - Q (MCM)	2 Puteos - Arca (ha) - FIR (mm) - Q (MCM)	Sugercante - Area (ha) - F I. R. (mm) - Q. (MCM)	other - Arca (ha) - F I R (mm) - Q (MCM)	Wheat - Area (he) - F I R (mm) - Q (MCM)	Gram & Pulses - Area (ha) - F I R (mm) - Q (MCM)	0)15001 - Area (74) - F I R (mm) - Q (MCM)	Cortander - Area (he) - F I R (mm) - Q (MCM)	Other (Vegetable) - Area (ha) - F I R (mm) - Q (MCM)	Burley - Area (ha) - F I R (mm) - Q (MCH)	Volume at Reid (MCM) Volume at Head (MCM) Volume at Head of LBC (MCM) Volume at Head of RBC (MCM)
Tabl		No.				•	n		N	60		9 9	1		9	Volun Volun

Table +22 : MONTHLY GROSS IRRIGATI	OSS IRRIG	2	ITON REQU	ON REQUIREMENT for ACHEVEMENT 1988-1989 KHARIF	for ACHI	EVEMEN	[1988-1980					RABT				Annual
No. TTEM MAY JUNE JULY AU	JUNE JULY		┝┼╴	P	DUA	SEPT	망	Total Kheri	NOM	DEC	NAC	FE B	HAR	APR	Totel Totel	Rabl+itherif
Paddy 11,330 19,138 22,660 - Area (ha) 539,66 454,51 116,86 - FI R (mm) 539,66 454,51 116,86 - Q (MCM) 66,81 82.39 26,48	18,128 22,660 454.51 116.86 82.39 26.48	22,660 116.86 26.48	<u> </u>	ភ័ ^{នដ}	22,660 53,46 12,11	18,128 184.81 33.50	6,798 220.78 15.01	1,620.09								1,620.09
	1,509 1,960 259.53 0.03 3.92 0.00	1,960 0.03 0.00		1,96	0	1,960 73.44 1.44	1,313 70.63 0.93	618.04							·	618.04
	15,680 15,680 259,53 0.03 40,69 0.00	15,680 0.03 - 0.00		15,68 - -	0	15,680 73,44 11.52	7,840 70.63 5.54	630.04					<u> </u>		•	630.04
• Vegetable 132.00 240.00 24	240.00 240.00 140.62 -	240.00		240.0 -		240.00	72.00 41.06 0.03	352.10								01'ZSE
- Area (ha) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.00	0 0.00		0.0	00	75.28	122.39	417.36					<u>. </u>			417.36
	2,550 2,550 259,53 - 6.62 -	2,550		2,550 -		2,550 73.44 1.87	2,550 122.39 3.12	785.73	2,550 121.50 3.10	2,550 94.51 2.41	2,550 91.02 2.32	1,275 122,54 1.56	1,275 202.62 2.58	1,275 294.64 3.76	926.83	1,712.57
	235.00 470.00 140.62 0.00 0.33	235.00 470.00 140.62 0.00 0.33		470.0	00	470.00 10.96	141.00 41.06 0.06	363.06								363.06
8 Wheat - Area (ha) - Q (MCH)							33030 115.47 38.14	115.47	69157 36.45 25.21	103220 49.36 50.95	103220 69.78 72.03	117.09 117.09 120.86	82576 157.60 130.14	34063 278.27 94.79	708.54	824.01
9 Gram & Pulsar - Area (m) - FI (mm) - G (MCH)							1521.60 115.47 1.76	115.47	8876.00 36.45 3.24	12680.00 49.36 6.26	12680.00 69.78 8.85	12680.00 117.09 14.85	5959.60 157.60 9.39		430.28	545.74
40 Oliseed - Frace (ne) - P. 18 (mm) - Q. (mm)							10506.00 145.04 15.24	145.04	42024.00 101.25 42.55	52530.00 101.86 53.51	52530.00 100.13 52.60	21012.00 115.73 24.32			418.97	564.01
11 Contender - Area (he) - FIR (mm) - Q (her)							3885.00 150.59 5.85	150.59	3108.00 101.25 3.15	7770.00 101.86 7.91	7770.00 100.13 7.78	7770.00 115.73 8.99	1942.50 94.56 1.84		513.52	664.11
12 Other (Vegetable) - Area (ha) - P. 18 (hm) - Q (MCM)							5470.00 124.71 6.82	124.71	5470.00 60.75 3.32	5470.00 60.91 3.33	5470.00 60.68 3.32	5470.00 69.44 3.80	5470.00 58.54 3.20		310.31	435.02
13 Barley - Area (ne) - Q (MCM)							141.24 115.47 0.16	115.47	286.76 36.45 0.10	428.00 49.36 0.21	428.00 69.78 0.30	428.00 117.09 0.50	256.80 157,60 0.40		430.28	545.74
Volume at Field (MCM) 95.40 134.29 26.49 12.11 Volume at Head (MCM) 127.20 179.06 35.31 18.15 Volume at Head (MCM) 127.20 179.06 35.31 7.19 Volume at Head of IBC (MCM) 56.66 79.75 15.73 7.19 Volume at Head of RBC (MCM) 56.66 79.30 19.59 8.96	134.29 26.49 178.06 35.31 79.75 15.73 99.30 19.59	134.29 26.49 178.06 35.31 79.75 15.73 99.30 19.59		12.11 18.16 7.19 8.96	1	48.38 64.51 35.78 35.78	92.65 123.53 55.02 68.51		80.67 107.55 47,91 59.65	124.58 166.11 73.99 92.12	147.20 198.28 87.42 108.84	174.88 233.17 103.86 129.31	147.56 196.74 87.63 109.11	98.54 131.39 58.52 72.87		

Annual	ANNUAL OF	KADI+KNET	1,620.09	618.04	630.04	352.10	417.36	1,712.57	363.06	824.01	545.74	¥. 10'+95	664.11	435.02	545.74	
		rabi	1	1		•		926.83	1	709.54	430.28	418.97	513.52	310.31	430.28	
		¥¥						916 294.64 2.70		33780 278.27 94.00						96.70 128.83 57.43 71.50
	440	AAN I						916 202.62 1.86		81890 157.60 129.06	3552 157.60 5.60	<u> </u>	2634 94.55 2.49	5496 28.54 3.25	1511.40 157.60 2.38	144.60 192.80 85.88 106.92
Adir								916 122.54 1.12		102363 117.09 119.86	7557 117.09 8.85	30411 115.73 35.19	10534 115.73 12.19	5496 69.44 3.82	2519.00 117.09 2.95	183.98 245.30 109.26 136.04
	1	N.						1,832 91.02 1.67		102363 69.78 71.43	7557 69.78 5.27	76028 100.13 76.12	10534 100.13 10.55	5496 60.68 3.34	2519.00 69.78 1.76	170.14 228.85 101.04 125.81
		DEC						1,832 94.51 1.73		102363 49.36 50.52	7557 49.36 3.73	76028	10534 101.86 10.73	5496 60.91 3.35	2	148.75 188.33 88.34 109.99
		VON						1,832 121.50 2.23		68583 36.45 25.00	5290 36.45 1.93	60822 101.25 61.58	4214 101.25 4.27	5496 60.75 3.34	1687.73 36.45 0.62	98.96 131.94 58.77 73.17 73.17
		Total Kharlf	1,620.09	618.04	630.04	352.10	417.36	785.73	363.06	115.47	115.47	145.04	150.59	124.71	115.47	
		8	3,023 220.78 6.67	153.43 70,63 0.11	70.63	68.70 41.06 0.03	96.221	1,832 122.39 2.24	137.40 41.06 0.06	32756 115.47 37.82	907 115,47 1.05	15206 145.04 22.05	5267 150.59 7.93	5496 124.71 6.85	831.27 115.47 0.96	85.78 114.37 50.94 63.43
995-1996		SEPT	8,061 184,81 14,90	00,022 44,E7 71.0	- 44.ET -	0.00	75.28	1,832 73.44 1.35	458.00 10.96 0.05							16.46 21.95 9.78 12.17
Table 4.23 : MONTHLY GROSS IRRIGATION REQUIREMENT for year 1995-1996	H H	AUG	10,076 53.46 5.39	00.922		00.022		1,832	458.00 0.00							5.39 7.18 3.20 3.98
	KHARIF	JULY	10,076 116.86 11.77	229.00 0.03 0.00	0.03	229.00 0.00		1,832	458.00 0.00				<u> </u>			11.78 15.70 6.99 8.71
		JUNE	8,061 454.51 36.64	176.33 259.53 0.46	259.53	229.00 140.62 0.32	, 69.27	1,832 259.53 4.75	229.00 140.62 0.32							42.49 56.66 31.42 31.42
		MAY	5,038 589,66 29.71	105.34 214.41 0.23	- 226.41 -	183.20 170.42 0.31	150.42	1,832 330.38 6.05	91.60 170.42 0.16					·		36.45 21.65 26.96 26.96
e 4.23 : MONTHLY GROS		ITEM	Paddy - Area (ha) - F I R (mm) - Q (MCM)	Sorghum (Meize) - Area (ha) - F I R (mm) - Q (MCM)	- Area (he) - F I R (mm) - Q (10 ³ /m ³ /Monthly)	Vogetæble - Area (ha) - F I R (mm) - F Q (MCM) Pulse	- Area (ha) - F I R (mm) - Q (MCM)	Sugarcane - Area (ha) - F I R (mm) - Q (MCM)	Other - Area (ha) - F I R (mm) - Q (MCM)	Wineat - Area (ha) - FIR (mm) - Q (MCM)	Gram & Pulses - Area (he) - FIR (mm) - Q (MCM)	Oliseed - Area (ha) - F I R (mm) - Q (MCM)	Coriander - Area (he) - F I R (mm) - Q (MCM)	Other (Vagetable) - Area (ha) - F I R (mm) - Q (MCM)	Barley - Ares (ha) - F I R (mm) - Q (MCM)	Volume at Field (MCM) Volume at Head (MCM) Volume at Head of LBC (MCM) Volume at Head of RBC (MCM)
19 1		Ŷ.		N 7		ver			· · ·	co	a	9		<u>n</u>	<u>n</u>	Volum Volum Volum

	Table 4.24: MONTHLY GROSS IRRIGATION REQUIREMENT for year 1996-1997	8H	IRRIGAT	TON REQU	JIREMENT (for year 15	94-1997					11	L'ava				Annual
LLF79 59:94 3.50h (450.06) (450	TTEM MAY JUNE	H	JUNE		- YJUL	BUA	SEPT	Ъ S	Total	VON	DEC	NVT	669	MAR	APR	Total Iden	Rabi+Kharif
23 73.44 70.55 618.04 1 200 12.55 </td <th></th> <th></th> <td>9,343 15,451</td> <td></td> <td>11,679 116.86 13.65</td> <td>11,679 53,46 53,46</td> <td>9,943 194.81 194.81</td> <td>3,504 220.78 7 74</td> <td>1,620.09</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1,620.09</td>			9,343 15,451		11,679 116.86 13.65	11,679 53,46 53,46	9,943 194.81 194.81	3,504 220.78 7 74	1,620.09								1,620.09
Z33 Z33 L15 GB004 E8004 L1031 L1031 <thl1031< th=""> <thl1031< th=""> <thl1031< t<="" td=""><th>- Q (Muth)</th><th></th><td>259.53</td><td></td><td></td><td></td><td>, ET .</td><td>70.63</td><td>618.04</td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td>618.04</td></thl1031<></thl1031<></thl1031<>	- Q (Muth)		259.53				, ET .	70.63	618.04							,	618.04
229.00 65.70 65.70 65.70 65.70 75.25 11.031 <	Olisect 115 229 - Area (ha) 115 229 - F (10 ³ hr) Mourthy) 0.26,41 259.33 0.26 (10 ³ hr) Mourthy) 0.26 0.59		229 259.53 0.59		0.03 0.03	677	229 71.0	115 70.63 0.08	630.04							,	. 630.04
75.38 175.38 417.36 417.36 2.061 2.061 2.061 2.061 1.031	bis hal) [183.20 mm) 170.42 M) 3.12				229.00		229.00									•	352.10
2,061 2,061 2,061 2,061 2,061 2,061 1,031 1,031 1,031 1,031 1,031 1,031 1,031 1,031 1,031 1,031 1,031 1,031 2,061 2,061 2,061 2,061 2,061 2,061 1,044,40 1,254 2,203 2,4453 2,061 2,044,40 1,254 2,203 2,4453 2,061 2,061 2,061 1,154 2,550 5,514 7,247 1,12,62 2,7453 2,7453 2,7453 2,7453 2,7453 2,7453 2,7453 2,7453 2,7453 2,745 2,745 2,745 2,745 2,745 2,745 2,745 2,745 2,746 2,765 2,746 2,765 2,746 2,765 2,746 2,766 2,765 2,766 2,7	5 Puters - Area (he) - 6 (htts) - 0 (htts)		- 10				75.28		417.36							`	417.36
458.00 137.40 363.06 341.06 363.06 344.54 1044.24.0 1044.24.0 1044.24.0 1044.24.0 1044.24.0 1044.24.0 1044.24.0 1044.24.0 1044.24.0 1044.24.0 1044.24.0 1044.24.0 117.02 115.67 344.53 344.53 115.47 115.47 115.47 36.45 49.36 60.73 117.02 117.02 117.02 117.05 117.60 278.27 344.53.9 278.27 344.53.9 278.27 344.53.9 345.56 344.56 417.27 117.02 117.75.00 157.60 278.27 344.53.9 278.27 344.53.9 278.27 344.53.9 377.60 377.60 377.60 377.60 377.60 377.60 377.60 377.66 378.27 367.76 377.66 378.27 367.60 367.60 367.60 367.60 367.60 377.60 377.66 377.66 377.66 377.66 377.66 377.66 377.66 377.66 377.66 377.66 377.66 377.66 377.66 377.66<	Sugarcana Sugarcana 2,061 2,061 - 4raa (ma) 330,38 259,33 - 6 (htm) 330,38 559,33 - 9 (htm) 6,81 5,35		2,061 259.53 5.35		2,061	2,061	2,061 73.44 1.51	2,061 122.39 2.57	785.73	2,061 121.50 2.50		2,061 91.02 1.68	1,031	1,031 202.62 2.09	150,1 19.192 10.E	926,83	1,712.57
39415.7 115.47 15.46 104474.0 104474.0 104474.0 10575.0 111.57 115.47 115.47 36.45 49.56 69.78 111.72 111.65 55.62 55.64 56.76 57.60 17175.00 111.75 100 10775.00 10775.00 10775.00 10775.00 10775.00 10775.00 10775.00 10775.00 10775.00 10775.00 10775.00 10775.00 10775.00 10775.00 10775.00 10777.00	Other 91.60 229.00 - Area (ma) 91.64 229.00 - Area (mm) 170.42 140.62 - Q (McM) 0.16 0.32		229.00 140.62 0.32		458.00	458.00	458.00 10.96 0.05									•	363.06
2061.00 115.47 12022.50 1775.00 1775.00 1775.00 1775.00 157.60 115.47 115.47 36.45 49.36 11.99 20.11 12.72 145.04 145.04 56.45 65.46 65.06.00 115.76 157.66 13052.05 145.04 120.25 10.166 26.11 12.72 13053.00 145.04 10.126 10.160 115.73 276.25 13053.01 150.15 10.166 10.055 115.73 2.44 7.76 150.15 10.365.00 10365.00 1575.25 150.15 121.71 10.56 10.37 115.73 2.44 7.76 124.71 10.56 10.365.00 1357.66 3.45 115.73 124.71 10.56 10.23 115.73 2.44 2.44 115.73 124.71 124.71 10.56 1.57.70 7.46 4.42 115.73 14.60 155.70 7557.00 7557.00	Wheat - Area (Tra) - F I ((mm) - Q ((NGM)					·····		33415.7 115.47 38.58	115.47	69964.1 36.45 25.30	ទ	104424.0 69.78 72.67		157.60	34459.9 278.27 95.89		824.01
13053.00 45.04 5211.00 65265.00 65106.00 115.73 145.04 145.04 32.16 60.13 115.73 30.21 13033 5152.50 100.125 100.125 100.13 115.73 5152.50 150.59 150.59 100.135 105.55 30.21 776 5152.50 150.50 10305.00 10305.00 2576.25 77.76 150.59 150.50 10305.00 7557.00 7557.00 7557.00 7557.00 7557.00 7557.00 7557.00 7557.00 7557.01 134.71 114.71 0.557 60.56 5.54 4.55 9.450 105.31 115.73 34.55 4.59 5.54 4.55 1057.98 115.47 2149.02 2156.00 1275.00 157.56 137.60 137.60 115.47 115.47 214.60 125.60 137.56 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03	Gram & Pulses - Area (Pe) - F (Rm) - P (HCH)							2061.00 115.47 2.39		12022.50 36.45 4.38	17175.00 49.36 8.48	17175.00 69.78 11.99		8072.25 157.60 12.72		430.28	545.74
5152.50 150.59 150.59 150.59 150.59 150.50 10335.00 10335.00 1055.25 94.56 24 55 24 55 24 55 24 55 24 55 24 55 24 55 24 55 24 55 24 55 24 55 34.56 115.73 34.56 24 32 34.56 34.55 34.56 34.55 34.56 34.55 34.56 34.55 34.56 34.55 34.56 34.56 34.42 34.56 <th>Oliseed - Area (ha) - FI R (nm)</th> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13053.00 145.04 18.93</td> <td></td> <td>52212.00 101.25 52.86</td> <td>65265.00 101.86 66.48</td> <td>65265.00 100.13 65.35</td> <td></td> <td></td> <td></td> <td>418.97</td> <td>564.01</td>	Oliseed - Area (ha) - FI R (nm)							13053.00 145.04 18.93		52212.00 101.25 52.86	65265.00 101.86 66.48	65265.00 100.13 65.35				418.97	564.01
7557.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 <t< td=""><th>Cortander - Area (tw) - FI (trum) - FI (trum)</th><th></th><td></td><td></td><td></td><td></td><td></td><td>5152.50 150.59 7.76</td><td></td><td>4122.00 101.25 4.17</td><td></td><td>00.305.00 51.001 10.32</td><td></td><td>2576.25 94.56 2.44</td><td></td><td>513.52</td><td>664,11</td></t<>	Cortander - Area (tw) - FI (trum) - FI (trum)							5152.50 150.59 7.76		4122.00 101.25 4.17		00.305.00 51.001 10.32		2576.25 94.56 2.44		513.52	664,11
1057.38 115.47 115.47 2148.02 3206.00 3206.00 157.60 115.47 115.47 36.45 49.36 69.78 117.05 157.60 1.22 1.23 0.78 1.54 7.36 59.78 117.05 157.60 8.24 19.00 88.96 94.80 1.58 2.74 3.73 3.03 8.32 2.53 118.44 128.40 183.60 185.63 98.93 3.71 11.28 2.54 156.12 169.22 154.78 156.36 98.93 3.71 11.28 2.54 166.20 165.29 161.92 156.71 208.47 131.80 3.71 11.28 52.94 55.39 166.19 100.50 115.61 27.86 58.75 3.71 11.28 105.00 1107.31 1155.13 131.80 52.96 58.75 4.62 14.65 65.79 70.10 107.31 135.13 73.15 73.15 73.15	Other (Vegetable) - Area (ha) - F I (mm) - F I (mm)							7557.00 124.71 9.42		7557.00 60.75 4.59		7557.00 60.68 4.59	7557.00 69.44 5.25	7557.00 58.54 4.42		310.31	435.02
6.2.4 19.00 98.96 94.80 145.13 169.22 154.76 156.36 8.32 2.5.33 118.84 126.40 183.50 225.83 156.36 8.37 11.28 52.94 56.30 86.19 100.50 115.62 3.71 11.28 52.94 56.30 86.19 100.50 115.62 4.62 14.05 65.79 70.10 107.31 125.13 144.03 115.62	Burley - Area (ha) - P. R. (rinn) - Q. (MCN)		·					1057.98 115.47 1.22		2148.02 36.45 0.78		3206.00 69.78 2.24	3206.00 117.09 3.75	1923.60 157.60 3.03			545.74
	Volume at Reid (HCM) (4.78 51.95 Volume at Head (MCM) 59.71 89.27 Volume at Head of LBC (HCM) 26.59 30.85 Volume at Head of LBC (HCM) 26.59 30.85		51.95 89.27 30.85 38.42	1	13.65 18.20 8.11 8.11	6.24 8.32 3.71 4.62	19.00 26.33 11.28 14.05	1		94.80 128.40 56.30 70.10			194.78 259.71 115.68 144.03	156.36 208.47 92.86 115.62	98.93 131.90 58.75 73.15		

Table 4.25 : MONTHL/Y GROSS IRRIGATION REQUIREMENT for year 1997-1998	Ϊß	S IRRIGAT	TON REQU	IREMENT 6 KHARI	for year 1. IF	997-1998					- I i	RABT				Annuel
ITEM MAY JURE	╟	R	ly W	ATT	ÐNG	SEPT	SCI	Total	VOH	DEC	JAN		MAR	APR	into Part Part	Rabi+Kherif
7,786 589.66 45.91		1 44.	12,458 454.51 56.62	15,572 116.86 18.20	15,572 53.46 8.32	12,458 184.81 23.02	4,672 220.78 103.14	1,620.09								1,620.09
Sorghum (Maize) 105 - Area (na) 105 - F IR (nm) 214:41 - Q (MCM) 0.23		2	176 259.53 0.46	229 0.00	. 229	229 73.44 0.17	153 70.63 0.11	618.04						-		618.04
115 226.41 0.26	115 226.41 0.26	~	229	229 0.03 0.00	229	229 73.44 71.0	115 70.63 0.08	630,04							•	630.04
Vagetzbie 4 Area (he) - F R (mm) - C (MCM) 3.12	183 170.42 3.12		229 140.62 3.22	222 0.00	229	0.00	69 41.06 0.28	352.10					·		•	352.10
Pulses - F 1R (mm) - F 1 R (mm) - Q (MCM)	150.42		- 69.27 -			75.28	122.39	417.36			<u>.</u>				•	417.36
Sugarcane Area (na) - F I (mm) - C (MCN) 8.32	2,519 330.38 8.32		2,519 259.53 6.54	2,519	2,519	2,519 73.44 1.85	2,519 122,39 3,08	785.73	2,519 121.50 3.06	2,519 94.51 2.38	2,519 91.02 2.29	1,260 122.54 1.54	1,260 202.62 2.55	1,260 294.64 3.71	926.83	1,712.57
Other 92 Area (ra) 92 F R (mm) 170.42 - Q (MCM) 0.16	92 170.42 0.16		229 140.62 0.32	458 0.00	458	458 10.96 0.05	137 11.06 0.06	363,06				<u></u>			,	363.06
Wheat Area (na) - F. R. (mm) - Q. (MCM)						,	32,756 115.47 37.82	115.47	68,583 36.45 25.00	102,363 49.36 50.52	102,363 69.78 71.43	102,363 117.09 119.86	81,890 157.60 129.06	33,780 278.27 294.00	708.54	824.01
Groom & Pulkes - Area (na) - F I. (nnn) - Q (MCM)			·				1,044 115.47 1.21	115.47	6,091 36.45 2.22	8,702 49.36 4.29	8,702 69.78 6.07	8,702 117.09 10.19	4,090 157.60 6.45		430.28	545.74
Ollaeed - Arca (he) - Q (MCM)			<u> </u>		<u> </u>		14,610 145.04 21,19	145.04	58,441 101.25 59.17	73,051 101.86 74.41	73,051 100.13 73.14	0.00			303.24	448.28
Cartender - Arca (ha) - Q (HCM)							7,786 150.59 11.72	150.59	6,229 101.25 6.31	15,572 101.86 15.86	15,572 100.13 15.59	15,572 115.73 18.02	3,893 94.56 3.68		513.52	664.11
I Otter (Vegetabio) - Area (Na) - 2 (MCM)			· ·	,·			9,847 124.71 12.28	124.71	9,847 60.75 5.98	9,847 60.91 6.00	9,847 60.68 5.98	9,847 44.63 44.63	9,847 58.54 5.76		310,31	435.02
Burtay Area (ma) - Fi R (mm) - Q (MCN)	<u> </u>		<u></u>	<u> </u>			907 115.47 1.05	115.47	1,841 36,45 0.67		2,748 69.78 1.92		1,649 157.60 2.60		430,28	545.74
Volume at field (MCM) 58.00 Volume at Head (MCM) 77.33 Volume at Head of LBC (MCM) 34.44 Volume at Head of RBC (MCM) 42.89	58.00 77.33 24.44		67.75 80.34 60.24 50.10	18.20 24.26 10.81 13.46	8.32 11.10 6.16	25.26 33.68 15.00 16.68	192.02 256.03 114.04		102.41 136.55 60,82 75.73	154.82 206.43 91.95 114.48	176.43 235.24 104.78 130.46	159.66 212.89 94.82 118.06	150.10 200.13 89.14 110.99	97.71 130.28 58.03 72.25		
			1					1			1					

		Rebj+Kherif	1,620.09	618.04	630.04	352.10	417.36	1,712.57	363.06	824.01	545.74	448.28	664.11	435.02	545.74	
l	Ţ		•	,	•	•	•	68'926	•	708.54	430.28	303.24	513.52	310.31	430.28	
		APR						1,374 294.64 4.05		40,883 278.27 113.77						117.81 157.09 69.97 87.12
		MAR		, _				1,374 202.62 2.78		99,111 157.60 156,20	2,260 157.60 3.56		2,863 94.56 2.71	17,404 58.54 10.19	1,237 157.60 1.95	177.38 238.51 105.35 131.17
-	KABT	8						1,374		123,889 117.09 145.06	4,809 117.09 5.63	145'EZ	11,450 115.73 13.25	17,404 69,44 12.08		180.12 240.18 106.97 133.19
	i	NVE						2,748 91.02 2.50		123,889 69.78 86.46	4,809 69.78 3.36	58,853 100.13 58,93	11,450 100.13 11.46	17,404 60.68 10.56	2,061 69.78 1.44	174.70 232.94 103.75 129.18
		DEC						2,748 94.51 2.60		123,889 49.36 61.15	4,809 49.36 2.37	58,853 101.86 59.95	11,450 101.86 11.66	17,404 60.91 10.60	2,061 49.36 1.02	149.35 188.13 88.70 110.43
		ЛОН	-			-		2,748 121.50 3.34		83,006 36.45 30.26	3,366 36.45 1.23	47,082 101.25 47.67	4,580 101.25 4.64	17,404 60.75 10.57	1,391 36,45 0.50	98.21 130.94 58.32 72.62
		Total Iduarii	1,620.09	618.04	630.04	352.10	417.36	785.73	363.06	115.47	115.47	145.04	150.59	124.71	115,47	
		CT 0CT	5,015 220.78 11.07	307 70.63 0.22	229 70.63 0.16	41.06	- 122.39	2,748 122.39 3.36	137 41.06 0.06	39,644 115.47 45.78	577 115.47 0.67	[1,771 145.04 17.07	5,725 150.59 8.62	17,404 124.71 21.70	680 115.47 0.79	109.50 145.99 65.03 80.97
998-1999		SEPT	13,374 184.81 24.72	458 73.45 0.34	458 73.44 0.34	0001	75.28	2,748 73.44 2.02	458 10,96 0,05							27,46 36.61 16.31 20.30
ION REQUIREMENT for year 1998-1999	ЦF	BUA	16,717 53.46 8.94	458	458	0.0		2,748	458 0.00		<u>-</u>			<u>,</u>		8.94 11.92 5.31 6.61
IREMENT	KHARIF	JULY	16,717 116,86 116,86	458 0.03 0.00	458 0.03 0.03	0.00		2,748	458 0.00		<u> </u>					19.54 26.05 11.60
ION REON		JUNE	13,374 454.51 60.78	353 259.53 0.92	458 259.53 1.19	140.62	69.27	2,748 259.53 7.13	229 140.62 0.32						÷	70.34 93.79 41.78 52.01
S IRRIGAT		МАУ	8,359 589.66 49.29	211 214,41 0.45	229 226,41 0.52	170,42	150.42	2,748 330.38 9.08	92 170.42 0.16							59.49 79.32 35.33 4 3.9 9
Table 4.26 : MONTHLY GROSS IRRIGAT		LTEM	Peddy - Area (ha) - F I R (mm) - Q (MCM)	Sorghum (Maiza) - Area (ha) - FI R (mm) - Q (MCM)	Oliseed - Area (na) - FIR (nan) - FIR (nan)	- Ares (hs) - F1 R (mm) - Q (MCM)	- FLR (mm) - FLR (mm) - Q (MCM)	Sugarcana - Area (ha) - FIR (mm) - Q (MCM)	Other - Ares (ha) - F I R (mm) - Q (MCM)	Wheat - Area (ha) - F I R (mm) - Q (MCM)	Gram & Pulsee - Ares (ha) - F I R (mm) - Q (MCM)	Olfsaed - Area (ha) - F1 R (mm) - Q (MCM)	Cortander - Area (ha) - F I R (mm) - Q (MCH)	Other (Vegstable) - Area (ha) - F1 R (mm) - Q (MCM)	Berlay - Area (ha) - F I R (mm) - Q (MCM)	Volume at Reid (NCM) Volume at Head (NCM) Volume at Head of LBC (NCM) Volume at Head of RBC (NCM)
Table		ů,			m 4	•	<u>, , , ,</u>				<u>o</u>	2			A	Volum Volum Volum

Computational explanatory notes on Table 4.17

GROSS IRRIGATION REQUIREMENT, for Paddy_for month of May

Area(ha) .	= Corresponding in t	table 3.2, we get 15%
	= Corresponding Cre	opping Area Coefficient in table 4.16, we get 0.5
	= (15%*229,000)*0	.5
	= 17,175 ha	
FIR(mm)	= Corresponding in	table 4.3, we get $186.61 + 201.29 = 387.90 \text{ mm}$
Q (MCM)	= Area*FIR	
	$=(17,175*10^4)*(38)$	7.90/10 ³)/10 ⁶
	= 66.62 MCM	
Volume at Fie	ld ·	= a sum Q in may, 68.30 MCM
Volume at He	ad	= Volume at Field/Conveyance Efficiency
		= 60.30 MCM/0.75
		= 9.06 MCM
Volume at LB	С	= Volume at Head*(Area LBC/CCA)
		= 9.06 MCM*(102,000 ha/229,000 ha)
		= 40.56 MCM
Volume at RE	BC	= Volume at Head*(Area RBC/CCA)
		= 9.06 MCM*(127,000 ha/229,000 ha)
		= 50.50 MCM

Table 4.27 : MONTHLY WATER DEMAND AS PER REPORT (IBRD 1974)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
Water Allawance (I/sec/ha)	0.27	0.39	0.47	0.20	0.53	0.47	0.08	0.03	0.22	0.35	0.35	0.32
Water Demand m3/sec in RBC command (127,000 ha)	34.29	49.53	59.69	25.4	67.31	59.69	10.2	3.81	27.9	44.45	44.45	40.64
Water Demand m3/sec in LBC command (102,000 ha)	27.54	39.78	47.94	20.4	54.06	47.94	8.16	3.06	22.4	35.7	35.7	32.64
Water Demand m3/sec in Project command (229,000 ha)	61.83	89.31	107.6	45.8	121.4	107.6	18.3	6.87	50.4	80.15	80.15	73.28

Table 4.28 : WATER DEMAND AT HEAD OF LEFT BANK CANAL

Canal Capacity : 42.5 M³/Sec (110.16 MCM in 30 day month and 113.83 MCM in 31 day month)

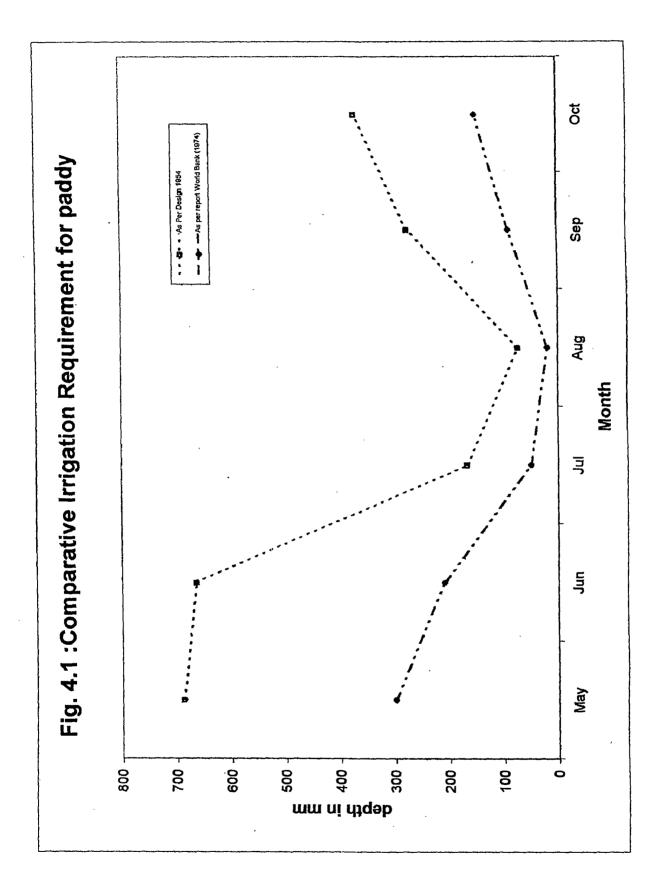
CONDITION	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
As Per Design 1954 (MCM)	40.56	74.98	23.84	10.91	30.36	40.87	18.63	37.18	52.45	87.75	93.17	66.59
Phase I Target 1973 (MCM)	31.29	51.69	6.37	2.91	18.25	49.06	29.85	52.00	68.33	103.46	93.93	59.50
Phase II Target 1984 (MCM)	87.09	145.3	14.31	6.54	48.06	66.93	28.76	54.80	73.82	116.4	110.2	68.56
Achievement 1988-1989 (MCM)	43.08	79.75	15.73	7.19	28.73	55.02	47.91	73.99	87.4	103,9	87.63	58.52
Av.Achievement 10 year (MCM)	39.63	71.84	14.02	6.41	26.09	51.28	35.86	62.21	77.7	108.9	90.80	54.69
Achievement 1995-1996 (MCM)	15. 6 1	25.24	6.99	3.20	9.78	50.94	58.77	88.34	101.0	109.3	85.88	57.43
Achievement 1996-1997 (MCM)	19.60	30.85	8.1 1	3.71	11.28	52.84	56.30	86.19	100.5	115.7	92.86	58.75
Achievement 1997-1998 (MCM)	31.27	50.10	13.46	6.16	18.68	141.99	75.73	114.5	130.5	118.1	111.0	72.25
Achievement 1998-1999 (MCM)	25.32	41.78	11.60	5.31	16.31	65.03	58.32	88.7	103.8	107.0	105.3	69.97
As per IBRD 1974 (MCM)	27.5	39.80	47.9	20.4	54.06	47.90	8.16	3.06	22.40	35.70	35.70	32.60

Table 4.29 : WATER DEMAND AT HEAD OF RIGHT BANK CANAL FOR RAJASTHAN

Canal Capacity : 78.1 m3/sec (202.43 MCM in 30 day month and 209.18 MCM in 31 day month)

CONDITION	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
As Per Design 1954 (MCM)	50.50	93.36	29.68	13.6	37.80	50.88	23.2	46.3	65.3	109.3	116.0	82.91
Phase Target 1973 (MCM)	30.42	52,30	9.88	4.52	19,39	32.29	20.2	35.2	46.3	70.05	65.2	40.28
Phase II Target 1984 (MCM)	108.4	180.9	17.82	8.15	59.83	83.33	35.8	68.2	91.9	144.9	137.2	85.37
Achievement 1988-1989 (MCM)	53.64	99.30	19.59	8.96	35.78	68.51	59.6	92.1	· 109	129.3	109:1	72.87
Av Achievement 10 year (MCM)	49.34	89.45	17.46	7.99	32.48	63.85	44.7	77.5	.96.8	. 135.6	113.1	68.10
Achievent 1995-1996 (MCM)	19.44	31.42	8.71	3.98	12.17	63.43	73.2	1 10 .0	125.8	136.0	106.9	71.50
Achievenent 1996-1997 (MCM)	24.40	38.42	10.09	4.62	14.05	65.79	70.1	107.3	125.1	144.0	115.6	73.15
Achlevement 1997-1998 (MCM)	25.11	40.24	10.81	4.94	15.00	114.04	60.82	91.95	104.8	94.82	89.14	58.03
Achievement 1998-1999 (MCM)	31.52	52.01	14.45	6.61	20.30	80.97	72.6	110.4	129	133.2	131.2	87.12
As per IBRD 1974 (MCM)	34.30	49.50	59.70	25.40	67.31	59,7	10.2	3.81	27.90	44.50	44.50	40.60

~`.,


Note : Capacity of RBC at head is 188.62 m³/s and of which capacity at boarder with M.P. for irrigation in M.P is 110.52 m³/s

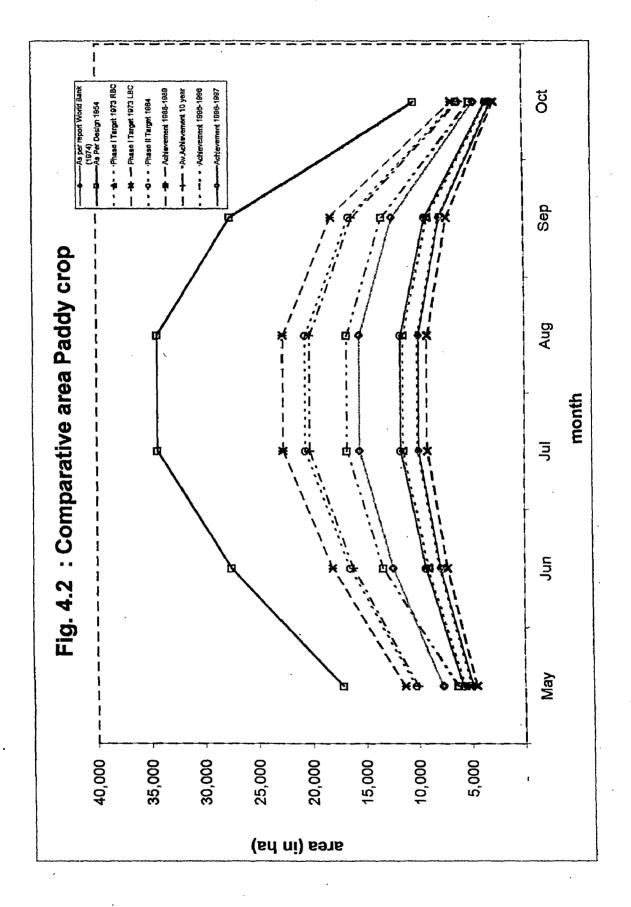

CONDITION	Мау	Jun	Jul	Aug	Sep	Oct
As per report World Bank (1974)	300.00	210.00	50.00	20.00	90.00	150.00
As Per Design 1954	387.9	454.51	116.86	53.46	184.81	220.78
Phase I Target 1973	387.9	454.51	116.86	53.46	184.81	220.78
Phase II Target 1984	387.9	454.51	116.86	53.46	184.81	220.78
Achievement 1988-1989	387.9	454.51	116.86	53.46	184.81	220.78
Av.Achievement 10 year	387.9	454.51	116.86	53.46	184.81	220.78
Achievement 1995-1996	387.9	454.51	116.86	53.46	184.81	220.78
Achievement 1996-1997	387.9	454.51	116.86	53.46	184.81	220.78
Achievement 1997-1998	387.9	454.51	116.86	53.46	184.81	220.78
Achievement 1998-1999	387.9	454.51	116.86	53.46	. 184.81	220.78
Note : Data from table.IV-8 to IV-20						

Table 4.30 : COMPARATIVE FIELD IRRIGATION REQUIREMENT FOR PADDY CROPS (in mm)

CONDITION	Мау	Jun	Jul	Aug	Sep	Oct
As per report World Bank (1974)	5,000	8,000	10,000	10,000	8,000	3,000
As Per Design 1954	17,175	27,480	34,350	34,350	27,480	10,305
Phase I Target 1973 RBC	5,715	9,144	11,430	11,430	9,144	3,429
Phase I Target 1973 LBC	4,590	7,344	9,180	9,180	7,344	2,754
Phase II Target 1984	10,305	16,488	20,610	20,610	16,488	6,183
Achievement 1988-1989	11,330	18,128	22,660	22,660	18,182	6,798
Av.Achievement 10 year	10,100	16,160	20,200	20,200	16,160	6,060
Achievement 1995-1996	5,038	8,061	10,076	10,076	8,061	3,023
Achievement 1996-1997	5,840	9,343	11,679	11,679	9,343	3,504
Achievement 1997-1998	7,786	12,458	15,572	15,572	12,458	4,672
Achievement 1998-1999	6,359	13,374	16,717	16,717	13,374	5,015
Note : Data from table_IV-24 to IV-33		······	L		•	

Table 4.31 : COMPARATIVE AREA FOR PADDY CROPS (in ha)

CHAPTER 5

WATER SUPPLY AND UTILISATION

5.1. WATER SUPPLY

The water supply for Chambal command is derived from its three storage reservoirs. Ground water developed by shallow dug wells is used throughout the project area but mainly for domestic purposes. Little attention has been paid for conjunctive use of surface and groundwater in the command area. The reservoirs as originally envisaged were constructed with the assumption of carryover affect of storage.

Since the Jawahar Sagar has no storage, canal water at barrage is drawn from discharges after power generation from Gandhi Sagar & Ranapratap Sagar (figure – 1.1. chapter 1).

Table 5.1. shows annual inflows at Kota barrage and canal diversion from 1979 - 1980 to 1988 - 1989 for which data were available on annual basis. Water availability is much more than annual releases or allocation. Figure 5.1. is graphical depiction of data in table 5.1. Actual canal diversion as percentage of inflow at Kota barrage in different years are also shown in table 5.1. It was lowest in the year 1984 - 1985 (69%) and highest in 1980 - 1981 (94%).

Annual diversion capacities of canal are :

□ Left Bank Canal (Rajasthan) 42.5 cumecs = 1340.28 MCM/year

□ Right Bank Canal (Rajasthan) 78.1 cumecs = 2462.96 MCM/year

□ Right Bank Canal (M.P) 110.52 cumecs = 3485.36 MCM/year

Capacity utilization on annual basis for each of these canals are also shown in table 5.1.

V - 1

Capacity utilization in LBC :

It ranges from 44.36 % in 1982 - 1983 to 72.21 % in 1987 - 1988.

CHITRAL LIDRAR ALC M.I.T. ROOP!

Capacity utilization in RBC (Rajasthan) :

It ranges from 28.08 % in 1981 - 1982 to 48.77 % in 1986 - 1987. In general the capacity utilization shows increasing trend but compared to LBC the capacity utilization in RBC has been significantly lower.

Capacity Utilization in RBC (M.P):

It ranges from 31.85 % in 1982 - 1983 to 67.43 % in 1986 - 1987. In general the capacity utilization shows increasing trend. Capacity utilization in (M.P) is higher than in Rajasthan for the Left Bank Canal.

Water Availability at Kota Barrage :

Data on storage in upstream reservoir show that Gandhi Sager has never filled to its live storage capacity during 1971 to 1989 and Ranapratap Sagar could fill upto live storage capacity only in 4 years at the end of monsoon season each year. And yet as seen from table 5.1, there has been spillage from Kota barrage which could be power release only.

The average diversion into canals in the nine years of study period is 3520.63 MCM. The main reasons for lower supply of water for irrigation could be.

- Conflict in operational requirements for power generation and irrigation.
- Reservoirs planned as carryover storage scheme mainly for power generation.

Pond level of Kota barrage was raised by 0.6 m in 1986-1987 to increase the supply in canals, mainly to RBC which was not able to take its full share of carrying capacity. As seen in figure 5.1 diversion increased compared to previous years after raising of pond level. Data for water availability at Kota barrage and actual releases into canals after 1988 – 1989 are not available to analyse the water release pattern.

As seen figure 5.1 and table 5.1 there has been considerable spillage downstream of Kota barrage. Average annual spillage was 887.52 MCM of which 500 MCM occurred in kharif season mainly on account of power releases not being fully utilized for diversion into canal.

5.2. UTILISATION OF WATER

Table 3.3 in chapter 3 depicts historical development of irrigation in terms of percent area (of CCA) of different crops placed under irrigation from 1974 – 1975 to 2000 – 2001. The results are not encouraging, seldom exceeding planned target as compared to ultimate irrigation intensity planned (Govt. of Rajasthan 1981). Extremely low utilization during kharif throughout the period has been seen while utilization during rabi is generally satisfactory.

Table 5.2 shows design water allocation in rabi and kharif seasons in original design (1954) phase I (1973) and phase II (1984). Average water supply during 1980-1989 shows that phase II target have been met in terms of supply. Seasonal water allocation have been revised in 1973, and 1984 in consideration of revision in cropping pattern. Compared to original design, allocation in phase I were significantly increased for rabi season both in RBC and LBC. However these were reduced in phase II target. There might have been further revisions particularly in Chambal command drainage project component. Allocation in 1995 and 1999 are based on estimated data (Shah 1990). Kharif targets in RBC and LBC have been enhanced. Average performance in terms of seasonal water supply during 1980-1989 suggests that kharif targets can be met only through proper regulation of power releases.

5.3. COMPARISON OF WATER DEMAND AND CANAL CAPACITY

Monthly water demand at head of LBC and RBC have been worked out in chapter 4 for different cropping pattern. These demands were compared with carrying capacity of the canals in monthly volume units (Table 4.28 and Table 4.29 in chapter 4).

Capacity of RBC (Rajasthan)is found to be significantly larger than the demand in all months and in all the years. On the other hand capacity of LBC is found to be inadequate to meet increased demand in recent years during rabi season. Inadequacy of capacity with respect to demand based in results on table 4.28 and table 4.29 of chapter 4 are given below for the LBC.

		Feb	Jun	Aug	Oct
1984	Demand (MCM)	145.3	-	-	116.4
	Capacity (MCM)	102.8	-	-	113.8
1996-1997	Demand (MCM)	-	-	-	115.7
	Capacity (MCM)	-	-	-	113.8
1997-1998	Demand (MCM)	-	141.9	114.5	118.1
	Capacity (MCM)		110.2	113.8	113.8
	<u> </u>				

 Table 5.3 : INADEQUANCY OF CANAL CAPACITY IN LBC

Rabi demand in recent years has increased

Conjunctive use of groundwater or irrigation priority releases from upstream reservoirs in deficit months is necessary so as to increase irrigated crop area.

5.4. COMPARISON OF WATER DEMAND AND WATER SUPPLY

Seasonal water supply/allocation to RBC and LBC in different years are shown in table 5.2. These have been compared with demand in table 5.4.

5.4.1. Comparison for LBC

Kharif supply/allocation is more than demand. Rabi supply/allocation is significantly higher than demand. Demand has increased in recent years and so is the allocation.

5.4.2. Comparison for RBC

Kharif supply/allocation is more than demand except in phase II and average 1980-1984 target. Rabi supply is more than demand.

Water utilization is better in rabi season compared to kharif season. Reduction in paddy area in RBC as compared to LBC is a clear evidence of water supply shortage in RBC.

The reason of failure to utilize irrigation during kharif are

- > Releases in the month of May, June insufficient to meet demand.
- Inability of system to respond effectively to kharif needs at the time of peak demands.

V-4

- > Lack of economic incentives from the farmer's point of view.
- Farm management difficulties such as non availability of labour, difficulty of communication and transport during monsoon season.

Kharif irrigation demand is expected to increase in the future as new technologies become available and the farmers have more suitable crops. The need of the area is to grow lesser water requiring crop in kharif. Paddy and sugarcane needs to be restricted to certain limits so as to prevent land from waterlogging.

The apparent discrepancies between water supply and demand emphasize the need to refine estimates of losses and base crop water requirements on modified PENMAN equation and realistic estimate of effective rainfall. Operational efficiency (canal release as percentage of river inflow) also plays an important roll in managing irrigation system, (table 5.1).

The following conclusions can be draw from the analysis.

- □ Actual water deliveries at allocations have not met design target in rabi season in RBC and LBC
- Precise demand estimation for future is unpredictable due to variation in cropping pattern.
- □ Crop development is not as planned. This has affected water utilization and systematic growth.
- Capacity utilization in RBC (Rajasthan) is significantly low.
- □ There appears to be incompatibility in operational requirements for power generation and irrigation.
- Capacity of LBC is found to be inadequate to meet, increased demand in recent years during rabi season.
- Conjumtive use of ground water in October, November and February are necessary.

V - 5

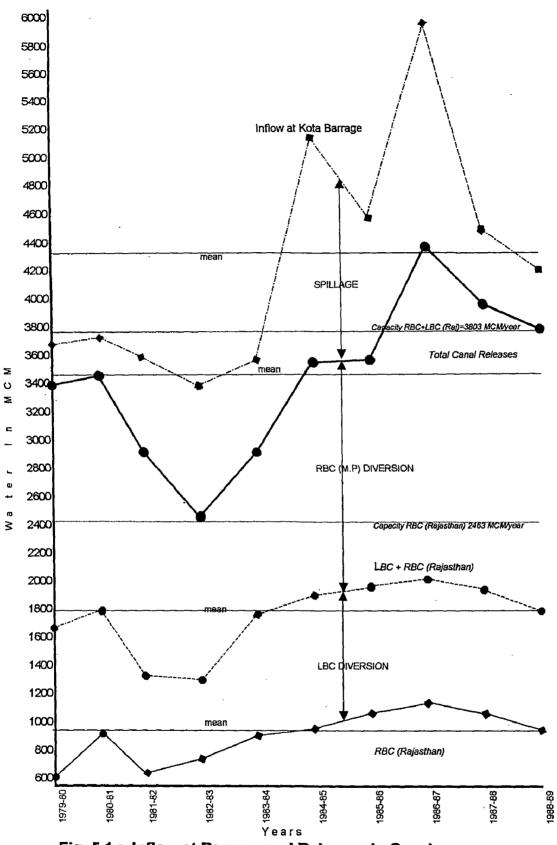
Table 5.1 : INFLOW AT BARRAGE AND RELEASES (unit - Mm^3)

IJ,		TOTAL		LBC (Raj)	RBC (Raj)	RBC (M.P.)	TOTAL	CANAL REL-	CAPA	CAPACITY UTILISATION	TION
	VEAR	INFI OW	SPILLAGE	DIVERTION	DIVERTION	DIVERTION	RELEASES	EASEAS %	LBC	RBC	RBC
i							·	OF INFLOW	(Rajasthan)	(Rajasthan)	(M.P.)
	Design	4587.25									
	estimate										
~	1980-1981	3572.09	53.04	887.24	945.57	1686.24	3519.05	94	66.19		48.38
	2 1981-1982	3452.68	575.03	717.83	690.66	1469.16	2877.65	62	53.56	28.04	42.15
1 0	3 1982-1983	3708.48	1237.00	594.54	766.97	1109.97	2471.48	72	44.36	31.14	31.85
> 4	4 1983-1984	3685.34	654.58		935.66	1242.56	3030.76	83	63.61	37.99	35.65
- u	5 1084-1985	5241 24	1583.92		1002.24	1741.79	3657.32	69	68.14	40.69	49.97
2	8 1085-1086	4626 89	985.56	901.93	1146.51	1592.89	3641.33	78	67.29	46.55	45.70
7 (7 1086 1087	6075 77	2470.92		1201.08	2350.11	4504.85	78	71.15	48.77	67.43
- a	8 1087-1088	4373 18	269.95		1151.26	1984.22	4103.23	61	72.21	46.74	56.93
ס	9 1988-1989	4043.13	152.71	843.54	997.31	2049.57	3890.42	91	62.94	40.49	58.80
10	1011989-1990	1									
国語	AVERAGE	4408.76	886.97	848.04	981.92	1691.83	3521.79				
	Command Area Davialation (Ralacthan)	- Otale Carl		Alanmant Ardh	a Hota / Ba	lacthan)					

Annual diversion capacities are 1340.28 MCM for LBC (Raj), 2452.96 MCM for RBC (Raj) and 3485.36 MCM for RBC (MP) Source : Report of Canal Circle, Command Area Development Authourity, Kota (Rajasthan) Canal Capacities are 42.5 m³/sec for LBC (Raj), 78.1 m³/sec for RBC (Raj) and 110.52 m³/sec for RBC (M.P)

V-6

Table 5.2 : SEASONAL WATER SUPPLY TO LBC AND RBC (MCM)


		Original	Phase I	Phase II	Average		
	· · · · · · · · · · · · · · · · · · ·	1954	1973	1984	1980-89	1995*	1999*
1	Inflow at Barrage	3947	4687	4687	4687	4687	4687
2	Available at Barrage	3947	4687	3643.4	3643.4	4342	4342
	Alocation to Rajasthan Seasonal Allocation/Diversion :	1973.5	2000	1821.7	1828.8	2171	2171
a.	Right Bank Canal (RBC)						
	(i) kharif	318	263.5	226	236	242	401
	(ii) rabi	880	1074.5	710	746.51	854	768
b.	Left Bank Canal (LBC)				[
	(i) kharif	221	218	320	326.4	363	465
	(ii) rabi	495	876.3	532	534.5	763	613

(*) Taken as estimated in shah 1990 as actual data not available

Table 5.4 : COMPARISON OF WATER SUPPLY AND DEMAND (MCM)

	Original 1954	Phase I 1973	Phase II 1984	Average 1980-89	1995*	1999*
LEFT BANK CANAL	T					
Kharif Supply	221	218	320	326.6	363	465
Kharif Demand	221.52	159.57	368.19	209.27	111.76	165.34
Rabi Supply	495	876.3	532	534.5	763	616
Rabi Demand	355.76	407.07	452.55	430.22	500.72	533.06
RIGHT BANK CANAL						
Kharif Supply	318	263.5	226	236	242	401
Kharif Demand	275.81	148.8	458.43	260.57	139.15	205.86
Rabi Supply	880	1079.5	710	746.5	854	768
Rabi Demand	442.96	277.22	563.47	535.67	623.44	663.71

Note : Demand for 1954, 1973, 1984 corespond to design water requirement as per design cropping pattern

V-8

5

CHAPTER 6

SUMMARY AND CONCLUSIONS

The Chambal Project on river Chambal in India consists of Gandhi Sagar, Ranapratap Sagar and Jawahar Sagar dams for power generation and Kota barrage for irrigation in left bank and right bank command areas. The right bank canal supplies irrigation water to command area in Madhya Pradesh and Rajasthan whereas left bank canal serves command area in Rajasthan only.

The project construction began in 1953 and irrigation water was made available to farmers in 1960. In the present study only irrigation aspect of the project corresponding to command area in Rajasthan has been considered.

The project was scheduled to provide full benefits by 1968. However very shortly after commencement of irrigation in 1960, the Chambal command faced many problems and irrigation potential could not be utilized as planned.

This study was taken up with the following objectives.

- Analysis of agroclimatic characteristics of the command area as relevant to irrigated agriculture.
- Analysis of changes in cropping pattern and growth of irrigation water demand over different period.
- > Analysis of irrigation supply and water utilization.

Agroclimatic Study :

Average monthly climatic parameters were compared for two periods 1931 to 1960 and 1960 to 1987. There has been increase in monthly evaporation particularly in the month of April, May and June. Average rainfall in monsoon months has decreased.

Reference crop evapotranspiration and for wheat, sugarcane, paddy crops have been computed by five different methods viz Blaney Criddle, Modified Penman, Radiation, Thornthwaite and Pan Evaporation. All these methods show peak values in May and October. Rainfall pattern is erratic according to IMD Criteria. Coefficient of variability is 158 % in December (maximum) and 80 % in March (minimum).

Agroclimatic densification of the Chambal command according to different criteria is as shown below:

1.	Thornthwaite's Classification	Semi arid
2.	Krishnan and Singh's method	Semi dry
3.	Hargreaves classification	Moderately deficient moisture
4.	World Bank method	Semi arid

The area is agroclimatically suitable for crops such as sorghum, maize, oilseeds. Rice and sugarcane are not suitable in the area.

Analysis of Cropping Pattern :

Prior to introduction of irrigation in 1960, generally sorghum, maize, til (oilseed), groundnut etc. were grown in kharif and wheat, linseed, gram were grown in rabi season. Design cropping pattern in 1954 required paddy as main kharif crop (15%) and wheat as main rabi crop (53%) CCA of Chambal project is 229000 ha. The design cropping pattern has been revised three times since the original design cropping pattern in 1954. the revision look place in 1973 (phase I of CAD), 1983 (phase II of CAD) and 1989 (Drainage Project). Cropping patterns in different periods have been compared in table 3.2. The major deviation during entire period of analysis (upto 2001) are shown below :

- 1. The design cropping pattern had been revised three times from the original design cropping pattern of (1954). The revision took place in 1973(phase I of CAD), 1983 phase II of CAD, 1989 (Drainage Project), cropping pattern revision having been influenced by actual development which took place. However, no effort appears to have been made to critically examine reasons for wide variation in cropping pattern
- 2. The area under paddy has never achieved the original design target of 15 % except in 1974-1980. Therefore this has in turn reduced the net irrigation requirement but at the same time system efficiency has also gone down. Sugarcane crop also could not achieve substantial growth. Sorghum and maize have almost disappeared in recent years.

- 3. Kharif cropping pattern has shown major short fall in the entire span of 40 years.
- 4. The area under wheat has remained below original design target of 53 %. However in recent years it has shown increasing trend from 1993-1994 onward and exceeding the target from 1998-1999 onward.
- 5. Increase in rabi oilseed was seen from 1982-1983 to 1993-1994 but afterward it has been declining. Oilseeds are low water requiring crops and farmers are getting higher net return. Soyabean in kharif and mustard in rabi are the major oilseed crops of the area now. These crops were not proposed in original cropping pattern. Gram and pulses have shown declining trend throughout.

Comparative changes in Left Bank & Right Bank Canal :

The 10 years (1980-1989) average cropping pattern in LBC and RBC indicate a major deviation in paddy and rabi oilseed. The LBC has witnessed rise in paddy cultivation whereas RBC has not shown the remarkable improvement in paddy cultivation. The RBC has witnessed increase in rabi oilseed as compared to LBC. The reason for this may be attributed to exercising regulatory control of LBC

Total CCA is 229 thousand ha, out of which LBC command area is 102 thousand ha and RBC command area is 127 thousand ha. Table 3.4 shows average cropping pattern over a 10 year period from 1980 to 1989 in the LBC and RBC command areas. Table 3.5 shows design cropping pattern in these two command area in the phase I of command area development programme.

Crop water requirement and Irrigation Demand :

Reference crop evapotranspiration has been computed by various methods as explained in Chapter 2. For computation of irrigation water demand in this chapter, Pan evaporation data and Hargreave's method has been adopted to find crop water requirement of the 13 crops. Computations are shown in Table 4.3 to Table 4.15.

Literature study (Shah 1990,IBRD 1974) shows that areas under a particular crop are different in different months as sowing/planting periods depend on farmers choice, reliability of water, availability of ground water as alternative source and several other factors. Therefore, instead of assuming area of a particular crop to be same in different

VI - 3

months from sowing to harvesting, crop area coefficients have been used. Crop area coefficient have been worked out for thirteen selected crops based on past trends and are shown in Table 4.16.

Monthly gross irrigation requirement in volume unit have been computed for various cropping pattern in different years.

	Cropping Pattern as per design I 1954	Table 4.17
٥	Cropping Pattern in phase I RBC	Table 4.18
۵	Cropping Pattern in phase I LBC	Table 4.19
	Cropping Pattern in phase II	Table 4.20
	Ten Year average Crop Pattern	Table 4.21
ū	Cropping Pattern in 1988 - 1989	Table 4.22
۵	Cropping Pattern in 1945 - 1996	Table 4.23
۵	Cropping Pattern in 1996 - 1997	Table 4.24
ū	Cropping Pattern in 1997 - 1998	Table 4.25
a	Cropping Pattern in 1998 - 1999	Table 4.26

Water demand at head of RBC and LBC have been worked out on proportionate command area basis for design crop pattern, phase II actual in 1988 – 1989, 1995-1996, 1996-1997, 1997-1998, 1998-1999 as separate cropping pattern for these commands were not available. For phase I and 10 year average condition, cropping patterns were available for LBC and RBC separately.

Comparison of demand in recent years (1995 to 1999) with demand in previous years shows that water demand has increased in September, October, November months.

Compared with original design (1954) demand in recent years have significantly increased in all months.

Demand corresponding to phase II target are higher than for other targets. Compared with original design (1954) demand in recent years have significantly increased in all months.

In contrast to capacity of LBC, the capacity of RBC is found to be significantly larger than the demand.

Water Supply and Utilization :

Annual water availability at Kota barrage and water supply / allocation to RBC and LBC have been analysed. Water demand as worked out in chapter 3 water compared with canal capacity and with water supply / allocation.

- Actual water deliveries and allocations have not met design target in rabi season in RBC and LBC
- Precise demand estimation for future is unpredictable due to variation in cropping pattern.
- Crop development is not as planned. This has affected water utilization and systematic growth.
- Capacity utilization in RBC (Rajasthan is significantly low.
- □ There appears to be incompatibility in operational requirements for power generation and irrigation.
- Capacity of LBC is found to be inadequate to meet increased demand in recent years during rabi season. Conjunctive use of ground water in October, November and February are necessary

CONCLUSIONS:

- 1. Monthly rainfall in the command area have high coefficient of variability in all months (more than 80 %).
- The area is classified as semi arid with moderately deficit moisture availability.
 Rice and sugarcane crops are not suitable for the area. These high water consuming crops should not be grown in the command area.
- 3. Design cropping patterns have been revised several times having been influenced by actual development of cropping pattern. Actual cropping pattern as witnessed over the past 40 years also show wide variation. It is necessary to critically examine such wide variation. Target crop areas are high but actual achievement are low.

- 4. The area under paddy and sugarcane have not achieved design target. Sorghum and maize have disappeared in recent years. Kharif cropping pattern has shown major short full in entire span of 40 years. Wheat area has shown rising trend from 1993-1994 onward, Soyabean in kharif and mustard in rabi are the major oilseed crops showing rising trend from 1982-1983 to 1993-1996 but declining afterward.
- 5. With change in cropping pattern, irrigation water demand has also been changing.
 - Water demand in recent years has significantly increased in all months particularly in rabi season.
 - Whereas RBC has adequate canal capacity, the capacity of LBC is found to be inadequate mainly in October.
 - □ Compared to available design capacity of RBC, the demand has been significantly low resulting in poor utilization of capacity.
- 6. Water availability at Kota barrage is governed by releases from upstream "carry over" reservoir. These releases are according to power generation schedule. Low water utilization in kharif and spillage occurring downstream of Kota barrage suggest that in certain critical months of kharif season (May,June) water available at Kota barrage is not as per irrigation requirement particularly in RBC resulting in decrease in paddy area.
- 7. Water utilization is better in rabi season compared to kharif season.

REFERENCES

- 1. Govt. of Rajasthan (1981,1983,1988), Project Reports of the Phase II for Command Area Development, Chambal (Raj.).
- 2. Central Board of Irrigation and Power (1987), "History of Chambal Project", Publication No.181, New Delhi.
- Command Area Development, "Basic Statistics for Command Area Development ", 1972-73 (third report), Chambal, Govt. of Rajasthan, Kota.
- 4. Food and Agriculture Organisation, "Guidelines for Predicting Crop Water Requirement", publication no.24, Rome.
- 5. World Bank (1974), "Report No.LN.1011-IN, Appraisal of the Chambal Command Area Development Project (Rajasthan) in India, South Asia Projects Department, Washington, D.C.
- Vinod Kumar Shah (1990), "Evaluation of Chambal Command Area Development in Rajasthan", a Dissertation Supervised By Dr.U.C. Chaube and C.P. Sinha WRDTC, University of Roorkee.

•	
Saturation Vapour Pressure (ea) in mbar as Function of Mean Air Temperature (T) in ^o C <u>Y</u>	
<u>منہ</u>	

Appendix.1a

stion of Maximum Possible Sunshine Hours (N) for Different Months and Latitudes ¢ Ŕ

						ې د					
	Aj	ppe	ndix.1b	<i>.</i>				••••		• •:	
t	Dec	June	20010111110 200101111111111111111111111	•	4 36	- -	9	· ·	95 1.0	'	•
	Nov	May	10.00 11111110.00 120.00 1111111110.00 100.000 100.00000000		32 34 17.2 17.	·	.36 38 .08 .07	، ((بھر)		7.91	
	O O	Apr	11.2		28 30 6.3*16.7		34.	Radiation (Rul)	8	.82*.	¢-
	Sept	Mar	12223334	n (Rnl)	1 26 2 15.9 16	Radiation (Rnl)	30 32		75 7	. 23	·
	gny	Feb	13.7 12.6 12.6 12.6 12.6 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7	ongwave Rediation	22 24 1	ongwaye Rad	26 28 .12 .11	ور المالية 1 - 1 - 1			•
Mune Hours	July	Jan	12.0369255 12.0369255 12.0369255		s 20 .2 14.6	f(ed) on Lor	22 ~ 24	, , , , , , , , , , , , , , , , , , , 			
Sun <u>S</u>	June	Dec	15.0 13.3 13.3 12.4 12.0 12.7	ure f(T) on	16 1	Pressure f(20			2-197 27.	
<u>mum Possibl</u>	May	Nov	14.4 13.3 13.3 12.8 12.0 12.3 12.3 12.3 12.3	Temperature	12 14 3.1 13.5	of Vapour P	16 18 .16 .19			^{c. c2} 33 .37 ^z	/ (
n of Maximum	Apr	Oct	13.3 13.1 12.6 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	Effect of	10	Effect of	12 14 19 .18	•		•. •	
Daily Duration	Mar	Sept	1144444444		6 8 12.0 12.		8 10 22, 20			05 •1 •1	
Mean Dail	Feb	Aug	10.7 11.0 11.0 11.0 11.0 11.0 11.0 11.0	•	2 4 1.4 11.7		60.23_ •			0.10	
	Jan J	July	001100 11000 11000 11000 11000 1000 10	•	0 11.0 1		0.044 Ved		LIIE.	N/¤6.0	
Table 11	Northern	Southern	Lantuaes 3350 155 055 055	Table 12	T ^o C f(T) = δTk ⁴	Table 13	ed mbar K(ed) - 0.34 -		Table 14	n/N f(n/N) = 0.1 +	

Appendix.1c

1

3 1.10 1.15 1.06 1.32 1.10 1.28 1.22 1.18 ដ g Values of Weichting Factor (W) for the Effect of Radiation on ETo at Different Temperatures and Altitudes 36 5 1.10 11.18 1.10 RHmax = 905σ ខ្លួខ្លួខ្លួខ្លួខ្លួ R 828888 33 1.06 1.10 1.06 88.84 ە 8 2.65 8.69 8.62 1.02 .79 .71 1.02 94 86 28 3 <u>Adjustment Factor (c) in Presented Penman Equation</u> 26 1.05 1.05 95 1.19 1.121.05 12 712 24 2 4.0 3.0 2.0 Uday/Unight - 1.0 727277 102 22. 97 1.05 1.05 1.05 1.02 .88 R.H.max = 60% Uday/Unight = ł) N 69 Uday/Unight Uday/Unight 20 1 66 73 73 18 8668 6686 67 8588 9 *3088*5 19 8.61.00% 888 K 65 96 18 19 3 38899 Z 882238 2 1.00 76,823 76 8988 8228 27 ល្រស់ស្ទុធ្មន្ទ 20 827.52 1.00 87 78 g 1.00 51 51 72 អង្គស្រួនទ ω თ RHmax = ខំរុះមូរមូរបំ S 892.984 1967.984 8218 8588 9 989565 4 523, 52 523, 52 523, 52 86 55 55 55 នទំនម 2 86 61 61 З ő 1 W at altitude m 0 500 1 000 2 000 3 000 Temperature Uday m/sec mm/day \cdot Table 16 0000 Table 15 0000 0000 Rs.

2008

28886

1.02 52.25 52.25

8828

8828

88.62

8433

212568

0000

FAO

S2285

Table 2: Monthly crop coefficient (K) to obtain consumptive use estimate from USWB class 'A' pan evaporation value (semi-arid region).

....

.....

:

. .

Crop	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Berseem	0.71	0.77	0.66	0.59		1]	1		-	0.60	0.61
Cotton	Ι	ļ	l	0.09	0.13	Ĺ	ļ	1		ł	1	1
Maize	I	1	1	ł	١])	ļ	ł	ł	ļ	ł
Onion	0.42	0.45	0.72	0.51	0.18	0.33	l	1	1	l	ļ	ł
Pea	0.50	ļ	ł)	ł	.	I	ļ	ł
Potato	1.21	0.37	1	1	I	-	ļ	ł	ł	0.14	0.29	1.42
Paddy (dry)		ļ	!	I	l	l	1.09	1.48	1.36	1.13	ļ	ł
Paddy (wet)	1	1	!	ł	l	ļ	0.95	0.79	0.11	0.00	I	I
Sugar cane	0.46	0.37	0.15	0.34	0.36	0.37	0.56	0.65	0.46	0.39	0.32	1
Tobacco	I	I	0.15	0.49	0.27		1	1	Ì	ļ	ļ	ł
Tomato	***	1	l	0.31	0.31	. 0.26	0.31		I	}	ļ	!
Wheat (D)	0.62	0.70	0.69	0.30	I]	}	1	I	I	ļ	0.65
Wheat (T)	0.83	0.75	0.85	T	I	J	1	1	I	1	0.16	0.54
Sunflower	0.75	0.70	0.49	0.18	ł]	ł	Ì	1	I	0.36	0.38
Safflower	0.83	0.65	0.43	0.20		-	}	1	İ		0.11	0.61
Linseed	1.33	1.00	0.49	!	I	ļ	ł	[ļ	I	0.16	0.58
Mustard	1.12	0.82	-0.17	I	1	ļ	ł	[I	ļ	0.27	0.69
Lentil	0.54	0.52	0.55	ł	ł	ļ		1	ł	1	0.20	0.38

Appendix.2a

Table 3: Monthly crop coefficient (K) to obtain consumptive use estimate by Blaney-Criddle equation (semi-arid region)

. .

Appendix.2c

Crop	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	
Berseem	0.49	0.79	0.86	1.08	0.74	ł	ł	ł	1	1	0.77	0.46	PP ·
Cotton		I	I	0.16	0.26	0.67	l	l	ł	1	ļ	ļ	
Maize	1	I	f	ł	1	ł	0.68	0.89	0.67	ļ	ļ		
Onion	0.29	0.46	0.95	0.93	0.37	1	·]	ł	ł	ł)		-
Potato	0.83	0.38	1	1		ł	ţ	1	}	0.17	0.31	1.06	
Sugar cane	0.31	0.38	0.32	0.62	0.72	0.76	0.78	0.67	0.57	0.46	0.34	0.31	
Tobacco	ļ	ļ	0.32	06'0	0.55	1	ļ	l	ł	ł	1]	
Tomato	l	ļ	l	0.57	0.62	0.54	0.29	1	ł	}	ł	Ι	
Wheat (D)	0.43	0.71	0.90	0.54	l		ł	l	ł	1	ļ	0.49	
Wheat (T)	0.57	0.76	1.11	İ	ł	ļ	١	I	ļ	ł	0.17	0.40	
Sunflower	0.51	0.71	0.64	0.33	I	. 1			ł	1	0.39	0.46	•
Safflower	0.57	0.66	0.56	0.36	1	۱ _. .	l	1	ł	ł	0.12	0.46	
Linseed	0.91	1.02	0.64	I	ł	Į,	 .,	ł	1	1	0.17	0.43	
Mustard	0.77	0.84	0.22	I	`.' '`'		۱ • • •	ł	ł	}	0.29	0.51	
Lentil	0.37	0.53	0.72	ł	3 . .		- F 	i	1	1	0.22	0.29	
Re	Reference : Crop Water Management Research by Th.J. Bredero Oxford & IBH	Crop Wate	r Managen	nent Resea	rch by Th	.J. Bredero) Oxford	¢ IBH	-				

51

32

Publishing Co. New Delhi 1991