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ABSTRACT

During last few decades, scientific and engineering community has acquired

extensive experience in developing and using soft computing techniques. Artificial neural

networks (ANNs) and fuzzy logic based systems have emerged as potential soft

computing techniques. In hydrological literature, a number of studies based on ANN have

been reported. However, use of fuzzy logic is a relatively new area of research in the field

of hydrology and water resources. In areas like stage-discharge relationship, stage-

discharge-sediment relationship, rainfall-runoff modeling and hydrological forecasting

etc., the fuzzy logic approach remains almost unattempted. Therefore, the present study

has been undertaken to explore the potential of fuzzy logic based approaches in these

areas and compare their performance with artificial neural network models. The

objectives of the present study can be summarized as follows:

i. To develop ANN, fiizzy rule-based and regression models for stage-discharge

relationships, andcompare their performance in modeling hysteresis,

ii. To develop and test ANN, fuzzy rule-based and regression models for deriving

stage-discharge-sediment relationships, and compare their performance for

estimation of river sediment load,

iii. To investigate potential of ANN and fuzzy rule-based approaches for modeling

rainfall-runoff relationships using different model structures and compare their

performance with linear transfer function based models.



iv. To develop fuzzy rule-based models for flood forecasting in order to provide

accurate enough forecasts for very short lead periods and compare their

performance with ANN models.

River discharge is one of the most important inputs in various hydrological

models and it is very important to estimate the discharge in a river reliably. Traditionally,

hydrologists use regression equation based rating curves for flow estimates. However,

this approach fails to model the non-linearity in the relationship and particularly in the

cases where hysteresis is present in the data. Focusing on the ANN and fuzzy rule based

models, different stage-discharge relationships were developed and compared using data

of Jamtara, Manot, Mandla, Satarana and Hirday Nagar gauging stations lying in

Narmada basin. Suitability of fuzzy modelling for substantially less data was also

verified. Furthermore, hypothetical data for loop rating curve were used to explore

hysteresis modelling capabilities of the models. The results show that the fuzzy modeling

approach is superior than the conventional and artificial neural network (ANN) based

approaches. Comparison of the models on hypothetical data set also reveals that the fuzzy

logic based approach models the hysteresis effect (loop rating curve) more accurately

than the ANN approach. In order to estimate bias of the fuzzy, ANN and curve fitting

models for different output ranges the testing data sets of all the gauging sites were scaled

so as to lie in the range of zero to ,one and than poled together. The average

underestimation and overestimation errors were computed and plotted for different

discharge ranges. The results indicates that fuzzy models provide a very accurate

estimation in all ranges of river discharges in the study area.
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Many practical problems in water resources require knowledge of the sediment

load carried by the rivers or the load the rivers can carry without danger of aggragadation

or degradation. Hence, the measurement of sediments being transported by a river is of

vital interest for planning and designing of various water resources projects. The

conventional methods available for sediment load estimation are largely empirical, with

sediment rating curves being the most widely used. The rating relationships based on

regression technique are generally not adequate in view of the inherent complexity of the

problem. ANN and fuzzy logic algorithm were developed using available data of two

gauging sites in the Narmada basin in India. The results suggests that the fuzzy model is

able to capture the inherent nonlinearity in the river gauge, discharge and sediment

relationship better than the ANN and conventional regression method, and is able to

estimate sediment concentration in the rivers more accurately. A comparative analysis of

predictive ability of these models in different ranges of flow indicates that the fuzzy

modeling approach is slightly better than the ANN. The models were also compared to

each other in estimation of total sediment load since it is important in water resources

management. It was found that the curve fitting approach poorly estimates the total

sediment load. While, the fuzzy logic model estimates were considerably better than the

ANN model. Comparison of results showed that the fuzzy rule based model could be

successfully applied for sediment concentration prediction as it significantly improves the

magnitude of prediction accuracy.

More applications and research is needed to support the utility of ANN and fuzzy

logic technique in the area of rainfall-runoff modelling and to help in establishing their

full practical use in dealing the real world problems. Therefore, in this study ANN, fuzzy
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rule based and linear transfer function models were constructed for estimating catchment

discharge by developing rainfall-runoff models for Manot sub-basin of Narmada River

system. Different model structures were constructed by considering eleven combinations

of input data vectors under four different categories: (i) only rainfall as input, (ii) rainfall

and antecedent moisture content as input, (iii) rainfall and runoff as input, and (iv)

rainfall, runoff and antecedent moisture content as input. The performance of the models

were examined using the model performances indices such as: root mean square error, the

correlation coefficient, model efficiency and volumetric error. The results indicate that

the fuzzy logic based approach is capable of modelling the rainfall-runoff process more

accurately in comparison to ANN and linear transfer function based modeling

approaches.

Another fundamental aspect of many hydrological studies is the problem of

forecasting the flow of a river in a given point of its course. Therefore, real time flood

forecasting models were developed using ANN and fuzzy logic methods. Finally, to

it'

improve the real time forecasting of floods, a modified Takagi Sugeno fuzzy inference

system termed as threshold subtractive clustering based Takagi Sugeno (TSC-T-S) fiizzy

inference system has been introduced using the concept of rare and frequent hydrological

situations. The proposed fuzzy inference systems provide an option of analyzing and

computing cluster centers and membership functions for two different hydrological

situations generally encountered in real time flood forecasting. Accurate forecasting of

floods at shorter lead periods is a very important task for flood management in Narmada

basin, Central India. The methodology has been tested on hypothetical data set and than

applied for flood forecasting using the hourly rainfall and river flow data of upper

iv
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Narmada basin upto Mandla gauging site. The available rainfall-runoff data has been

classified in frequent and rare events and suitable TSC-T-S fuzzy model structures were

suggested for better forecasting of river flows. The performance of the model during

calibration and validation was evaluated by model performance indices such as root mean

square error, NS model efficiency and coefficient of correlation. A new performance

index termed as peak percent threshold statistics was proposed to evaluate the

performance of flood forecasting model. The developed model was tested for different

lead periods using hourly rainfall and discharge data. Further, the proposed fuzzy model

results were compared with artificial neural network (ANN) and subtractive clustering

based T-S fuzzy model (SC-T-S fuzzy model). It was concluded from the study that the

proposed TSC-T-S fuzzy model provide reasonably accurate forecast with sufficient lead-

time.

The results presented in this thesis are highly promising and suggest that fuzzy

modeling is a more versatile and improved alternative to ANN approach. Furthermore,

fuzzy logic algorithm has the ability to describe the knowledge in a descriptive human

like manner in the form of simple rules using linguistic variables. The ANN and fuzzy

logic methodology presented in this thesis can provide a promising solution to various

hydrological modeling and forecasting problems. However, the analysis of the results

reported in this work leave sufficient scope and opens new dimensions for further

investigations, which couldnot be taken up owing to time constraint.
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CHAPTERS

INTRODUCTION

* -

1.1 GENERAL '''

Scientific and engineering community has acquired extensive experience in

developing and using soft computing techniques during last few decades. Artificial neural

networks (ANNs) and fuzzy logic based systems have emerged as potential soft

computing techniques. These methods offer several advantages over conventional

methods. Neural network technology has offered many promising results in the field of

hydrology and water resources simulation. Fuzzy logic is another soft computing

technique, which has very recently received attention in hydrology. Zadeh (1965)

introduced the basic concepts of fuzzy logic with a new theory called "Fuzzy Sets" and

opened a wide spectrum of applications inmany fields. It is a paradigm for analternative

design methodology which can be applied in developing both linear and non-linear

systems. The discipline of fuzzy logic, fuzzy systems, and fuzzy modeling has witnessed

its greatest success in real-world automatic control applications, including subway

control, autonomous robot navigation, auto-focus cameras, image analysis, and diagnosis

systems. In the fuzzy logic approach the Boolean logic is extended to handle the concept

ofpartial truth which implies that the truth takes avalue between a completely true value

and a completely false value.

Anumber ofstudies based on ANN have been reported in hydrological literature.

Modelling in hydrology and water resources using fuzzy logic is a relatively new area of

research although last decade has witnessed quite a few studies mainly in reservoir



operation and water resources management. In other important areas like stage-discharge

relationship, stage-discharge-sediment relationship, rainfall-runoff modeling and

hydrological forecasting etc., the fuzzy logic approach remain almost rarely attempted.

Therefore, the present study has been undertaken to explore the potential of fuzzy logic

based approaches in these areas and compare their performance with artificial neural

network models.

1.2 OBJECTIVES

The objectives of the present study can be summarized as follows:

i. To develop ANN, fuzzy rule-based and regression models for stage-discharge r |

relationships, and compare their performance in modeling hysteresis,

ii. To develop and test ANN, fuzzy rule-based and regression models for deriving

stage-discharge-sediment relationships, and compare their performance for

estimation of river sediment load,

iii. To investigate potential of ANN and fuzzy rule-based approaches for modeling v

rainfall-runoff relationships using different model structures and compare their

performance with linear transfer function based models,

iv. To develop fuzzy rule-based models for flood forecasting in order to provide

accurate enough forecasts for very short lead periods and compare their

performance with ANN models.

f

' 2



*

1.3 LAYOUT OF THE THESIS

Thework has been organised in the form of eight chapters as follows:

Chapter-1: It introduces the research work, its need and briefly describes the objectives

of the study.

Chapter-2: It presents a general review of the historical development of the techniques

developed in the field of fuzzy logic and its practical application in various

fields.

Chapter-3: It presents the details of the study area where fuzzy logic and ANN based
J

approaches have been applied. SWDES and HYMOS software are used to

deal .with the primary and secondary processing of the available surface

water data of the study areas.

Chapter-4: Focusing on the subtractive clustering based fuzzy rule based model, this

chapter explores the effect of varying length of data in modeling stage-

discharge relationship. Hypothetical data for loop rating curve have been

used to explore hysteresis modelling capabilities of the fuzzy model.

Furthermore, the fuzzy model results are compared with the ANN and

regression models. The ANN and fuzzy modeling description, explained in

meaningful and operative terms, is the foundation for the rest ofthe analyses

carried out in this thesis.

Chapter-5: This chapter presents another application of fuzzy rule based model in

development of stage-discharge-sediment relationship. Further, ANN and

conventional regression methods are developed and compared with the

results obtained from fuzzy models. Results of all the three models (ANN,



fuzzy logic and regression) are also compared in predicting river sediment

load.

Chapter 6: This chapter demonstrates a methods for constructing fuzzy rule based model

for rainfall-runoff modeling. Results are compared with the models

developed using ANN and linear transfer function based models.

Chapter 7: This chapter provides identification of a modified subtractive clustering

method to develop fuzzy model for real time flood forecasting by

considering frequent and rare events. The methodology is first tested on

hypothetical data set and then applied to actual observed flow data. New

performance evaluation criteria have also been developed and introduced for

testing the forecasting capability of the model. Further, ANN models are

developed and compared with the fuzzy models.

Chapter-8: This chapter summarises the findings of present study and scope for further

research.
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CHAPTER-2

REVIEW OF LITERATURE

2.1 INTRODUCTION

Over the past decade, there has been a widespread interest in the field of soft

computing. Soft computing techniques such as artificial neural networks and fuzzy logic

have rendered it possible to simulate human expertise in narrowly defined domain during

the problem solving by integrating descriptive knowledge, procedural knowledge, and

reasoning knowledge. Neural network technology has provided many highly promising

results in the field of hydrology and water resources. Fuzzy logic based techniques have

emerged as convincing alternatives to traditional procedures in the analysis and

prediction of various real world phenomena. If has also opened up new avenues to

hydrological modeling research. However, compared to ANNs, a few studies of fuzzy

model were applied in hydrology and water resource forecasting. A comprehensive

review of the application of ANN to hydrology can be found in the ASCE Task

Committee (2000a, 2000b) and in Maier and Dandy (2000). It is extremely important and

timely to review the development and applications of fuzzy logic based modeling

approaches. Therefore, this chapter deals with the review of literature on historical

development of fuzzy logic and its applications in various fields. Reviews pertaining to

the relevant aspects ofthe study problems are presented in the respective chapters.



2.2 SOFT COMPUTING

The term soft computing was proposed by Zadeh (1994) and further explained by

Kaynak and Rudas (1995) and Jang et al. (2002). Accordingly the soft computing is

defined as: "A collection of methodologies that aim to exploit the tolerance for

imprecision and uncertainty to achieve tractability, robustness, and low solution cost. Its

principal constituents are fuzzy logic, neural networks, and probabilistic reasoning

including genetic algorithms, chaos theory and parts of learning theory." Soft computing

is likely to play an increasingly important role in many application areas, including

software engineering. The role model for soft computing is the human mind. Each of

these constituent methodologies has its own strength, as summarized in Table 2.1 (Jang et

al., 2002). The interrelationship between these computing techniques is presented in

Figure 2.1.

SOFT COMPUTING

Figure 2.1: Intersection of Soft Computing Techniques

>
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Table 2.1: Strength of soft computing methods

Methodology

ANN

Fuzzy set theory

Genetic algorithm

Strength

Learning and adaptation

Knowledge representationvia fuzzy if-
then rules.

Systematic random search.

Zadeh (1994) pointed out that these soft computing methods are complementary

rather than competitive. Many researchers have proposed various forms of integration of

fuzzy logic and neural networks (Lin and Lee, 1996). Further, Malhotra and Malhotra

(1999) reported that the solutions derived from soft computing are generally more robust,

flexible, and economical than those provided by hard computing.

2.3 HISTORICAL DEVELOPMENT OF FUZZY LOGIC

The classical logic is referred to as bivalent and statements are said to be either

true or false. This is Aristotle's legacy. He stated that Aand not- Awas null, an empty

set. This was considered to be philosophically correct for over 2000 years. However, it is

also interesting to note that two centuries earlier Buddha held a very different world

view. Rather than a clear cut perspective of a black and white world, he saw a world

filled with contradictions. Buddha stated that arose, could be acertain degree completely

red, but also at the same time it was to a degree not red, i.e. the rose can be red and not

red at the same time. This is in clear contradiction with an Aristotle World view

(Gorman, 1998).

The idea of grade of membership, which is the concept that became the backbone

of 'fuzzy set theory' and 'fuzzy logic' was introduced by Zadeh (1965) as an extension of



Boolean logic to enable modelling of uncertainty. According to him the essential

characteristics of fuzzy logic are:

• In fuzzy logic, exact reasoning is viewed as a limiting case of approximate

reasoning.

• In fuzzy logic, every thing is to a matter of degree.

• Any logic system can be fuzzified.

• In fuzzy logic, knowledge is interpreted as a collection of elastic or equivalent

fuzzy constraints on a collection of variables.

• Inference is viewed as a process of propagation of elastic constraints.

Zadeh (1965) introduced fuzzy set theory as a mathematical discipline.

Subsequently, to establish the mathematical framework for computing with fuzzy sets, a >

number of properties of fuzzy sets have /been defined by various researchers. These

included the definition of the height, support, core, oc-cut, cardinality, normality and

convexity of a fuzzy set. Definitions of set-theoretic operations such as union and

intersection can be extended from ordinary set theory to fuzzy set. As membership degree

are no longer restricted to {0,1} but can have any value in the interval {0,1}, these v

operations can not be uniquely defined.

Zadeh (1973) introduced the concept of a linguistic variable, that is, a variable

whose values are words rather than numbers. The concept of a linguistic variable has

played and is continuing to play a pivotal role in the development of fuzzy logic and its

applications.

Mamdani and Assilian (1975) proposed a fuzzy inference system popularly

known as Mamdani fuzzy inference system. The Mamdani fuzzy inference system was

the first attempt to control a stream engine and boiler combination by a set of linguistic

control rules obtained from experienced human operators. In Mamdani's application, two

8
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fuzzy inference systems were used as two controllers to generate the heat input to the

boiler and throttle opening of the engine cylinder, respectively to regulate the stream

pressure in the boiler and the speed of the engine. Since the plant takes only crisp values

as inputs, therefore a defuzzifier has been used to convert a fuzzy set to a crisp value.

Tsukamoto (1979) proposed a fuzzy model in which the consequent of each fuzzy

if then rule is represented by a fuzzy set with a monotonical membership function. As a

result the inferred output of each rule is defined as a crisp value induced by the rule's

firing strength. Since each rule infers a crisp output, the Tsukamoto fuzzy model

aggregates each rule's output by the method of weighted average and thus avoids the time

consuming process of denazification. The Tsukamoto fuzzy model is not used often

since it is not as transparent as either the Mamdani or Sugeno fuzzy models.

Pedrycz (1984) presented the identification algorithm in fuzzy relational model.

Fuzzy relational models, which can be regarded as a generalization of the linguistic

model, encode associations between linguistic terms defined in the system's input and

output domains by using fiizzy relations.

Takagi and Sugeno (1985) developed a model where the consequent is a crisp

function of the antecedent variables rather than a fuzzy proposition. It can be seen as a

combination of linguistic and mathematical regression modeling in the sense that the

antecedents describe fuzzy regions in the input space in which the consequent functions

are valid.

A complete treatment of fuzzy set properties and operations is given by

Zimmermann (1996) and Klir and Yuan (199$. Table 2.2 summarizes the classes of

aggregation operators for fuzzy sets:



Table 2.2: Classification of aggregation operators
(Adopted from Zimmermann, 1996)

SI.

No.

Intersection Operators

t-norms

Union Operators

t-conorms

Averaging operators

1 Minimum algebraic product
Maximum algebraic
product

Bounded difference

Hamacher sum

2 Bounded sum

3 Hamacher product

4 Einstein product Einstein sum

5 Drastic product Drastic sum

6
Arithmetic mean,
Geometric mean

7
Symmetric summation
and difference

8
Hamacher intersection

operators

Hamacher union

operators

9 Yager intersection operators
Yager union
operators

Dubois union

operators
10

Dubois intersection

operators

11

"fuzzy and", "fuzzy or"
compensatory and, convex
combination of maximum

and minimum, or algebraic
product and algebraic sum

Jang (1993) proposed a class of adaptive networks that are functionally equivalent

to fuzzy inference systems. The proposed architecture is referred to as ANFIS which

stands for Adaptive Networkbased FuzzyInference System or semantically equivalently,

Adaptive Neuro Fuzzy Inference System. The proposed scheme also described how to

decompose the parameter set to facilitate the hybrid learning rule for ANFIS architectures

representing both the Sugeno and Tsukamoto fuzzy models. It was also demonstrate that

under certain minor constraints, the radial basis function network (RBFN) is functionally

10
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equivalent to the ANFIS architecture for the Sugeno fuzzy model. The effectiveness of

ANFIS with the hybrid learning rule was tested through four simulation examples: (i)

modeling of two input nonlinear function, (ii) modeling of three input nonlinear function,

(iii) on line identification of control system, and (iv) predicting chaotic time series.

Chiu (1994) presented an efficient method for estimating cluster centers of

numerical data. This method can be used to determine the number of clusters and their

initial values for initializing iterative optimization-based clustering algorithm. When

combined with linear least squares estimation, it provides an extremely fast and accurate

method for identifying fuzzy models. Further, Mathworks (1994) introduced "The Fuzzy

Logic Toolbox" for MATLAB as an add-on component to MATLAB in 1994

(MathWorks, 1994).

Jang and Mizutani (1996) presented the results of applying the Levenberg-

Marquardt method, a popular nonlinear least squares method, to the ANFIS architecture.

Through empirical studies, they discussed the strength and weakness of using such an

efficient nonlinear regression techniques for neuro fuzzy modeling and explained the

trade-offs between mapping precision and membership function interpretability.

Although the Levenberg-Marquardt method can achieve a better mapping precisions, it

also evolves the membership functions to an extent such that the linguistic interpretability

of the final membership functions become quite week. They referred to this situation as

the dilemma between precision and interpretability.

Zadeh (1998) mentioned that the status of fuzzy logic in 1998 is vastly different

from what it was in 1978. He further stated that the mathematical foundations offuzzy

logic are well established; the basic theory is in place; the impact of fuzzy logic on the

II



basic sources and especially on mathematics, physics and chemistry is growing in

visibility and importance; and fuzzy logic, based applications are extending in a wide

variety of directions.

Chen et al. (2000) proposed a new scheme to estimate the membership values for

fuzzy set. The scheme takes input from empirical experimental data which reflects the

expert's knowledge on the relative degree of belonging of the members. First, they

suggested an alternative (indirect) index for the expert(s) to submit. The index reflects the

expert's assessment on the comparison of the degree belonging of each pair of elements.

Second, based on the raw data which is generated via the use of the index, they proposed

an optimization framework for calibration. It is then suggested that the membership

values of the fuzzy set are the solution of this optimization problem.

Abonyi et al. (2002) introduced a new clustering algorithm, that can easily be

represented by an interpretable Takagi-Sugeno fuzzy model. Similar to other fuzzy

clustering algoriths, the proposed "modified Gath-Geva algorithm" is employed in search

of clusters. This new technique was demonstrated on the benchmark nonlinear processes. v^

It was found that the proposed technique improves the interpretability of the model.

Angelov (2004) developed and tested a recursive approach for adaptation of fuzzy

rule-based model. Cluster centers calculated using on-line clustering of the input-output

data with a recursively calculated spatial proximity measure are then used as prototypes

of the centres of the fuzzy rules. The recursive nature of the algorithm, used to design an

evolving fuzzy rule-base in on-line mode, adapts to the variations of the data pattern. It is

reported that the proposed algorithm is instrumental for on-line identification of Takagi-
/''

Sugeno models, exploiting their dual nature and combined with the recursive modified

12
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weighted least squares estimation of the parameters of the consequent part of the model.

Furthermore, the resulting fuzzy rule-based models have high degree of transparency,

compact form, and computational efficiency and making them strongly competitive

candidates for on-line modelling, estimation and control in comparison with the neural

networks, polynomial and regression models.

Table 2.3 describes the history of fuzzy logic after its initiation by Zadeh in 1965.

It is incomprehensive and includes just some events but canbe used for illustration of the

fuzzy logic development.

Table 2.3: Brief history ofdevelopment and practical applications of fuzzy logic

Year

1965

1966

1972

1973

1974

1977

1979

1980

1981

Development and applications of Fuzzy Logic

Concept of fuzzy sets theory byLotfi Zadeh (USA)

Fuzzy logic (P. Marinos, BellLabs.)

First working group onfuzzy systems inJapan byToshiro Terano
Fuzzy Measure(M. Sugeno, TIT)

Paper about Fuzzy algorithm byZadeh (USA)

Steam engine control byEbrahim Mamdani (UK)

First Fuzzy expert system for loan applicant evaluation by Hans Zimmerman
(Germany).

Hitachi was developing anew, automatic train for the Sapporo subway.
Fuji Electric applied fuzzy logic in waste water treatment plant.

Cement kiln control by F.L. Smith &Co. -Lauritz P. Holmblad (Denmark) -
the first permanent industrial application.

Fuzzy logic chess and backgammon program - Hans Berliner (USA)

Expert System "EXPERT" for Rheumatology, Ophtalmology (Weiss,
Kulikowski)

13



Year

1982

1982

1984

1985

1985

1985

1986

1987

1987

1988

1988

1988

1989

1989

1990

- 5-

Development and applications of Fuzzy Logic

Expert System "SPERIL" for Earthquake Engineering (Ishizukaet al.)

Control of cement kilns (Holmblad and 0stergaard)

Water treatment (chemical injection) control (Japan)

Subway Sendai Transportation system control (Japan)

First fuzzy chip developed by Masaki Togai and Hiroyuke Watanabe in Bell
Labs (USA)

Takage-Sugeno Fuzzy Model

Expert System "CADIAG-2" for Internal medicine (Adlassnig et al.)

Automatic train operation (Yasunobu and Miyamoto)

Fuzzyexpert systemfor diagnosis illnesses in Omron (Japan)

Container crank control, Tunnel excavation , Soldering robot, Automated
aircraftvehicle landing , Second IFSA Conference in Tokyo , Togai Infra
Logic Inc. - first fuzzy companyin Irvine (USA)

Expert System "FAULT" for Financial Accounting (Whalen et al.)

Kiln control by Yokogawa

First dedicated fuzzy controller sold - Omron (Japan)

Expert System "OPAL" for Job shop scheduling (Bensana et al.)

Expert System "EMERGE" for Chest painanalysis (Hudson, Cohen)

Creation of Laboratory for International FuzzyEngineering Research (LIFE)
in Japan

First Fuzzy Logic Air Conditioner

Expert System "ESP" for Strategic planning (Zimmermann)

Fuzzy TV set by Sony (Japan)

Fuzzy electronic eye by Fujitsu (Japan)

Fuzzy logic systems institute (FLSI) by Takeshi Yamakawa (Japan)

Intelligent system control laboratory in Siemens (Germany)

14
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Year

1991

1993

1993

1994

1994

1996

2004

Development and applications of Fuzzy Logic

Fuzzy Al Promotion Centre (Japan)

Educational kit by Motorola (USA)

Adaptive neuro fuzzy inference system (ANFIS)

Traffic systems (Hellendoorn)

Subtractive Clustering based TS fuzzy model

Fuzzy Logic Toolbox in MATLAB

Use of Levenberg-Marquardt method in ANFIS

Recursive approach for adaptation of fuzzy rule-based model

Source: Reznik, 1997; Zimmermann (1996) and Babuska(2001)

2.4 CONCLUDING REMARKS

From the above review it is evident that 'Soft Computing' techniques in various

forms are moving forward to model highly intricate systems. The mathematical

foundation of fuzzy logic is well established. Further, the fuzzy logic approach has been

tested, evaluated andapplied in the field of signal processing and in various other areas as

it suited to complex non linear models. Researchers have only begun evaluating the

potential of fuzzy logic approach in hydrologic modeling studies. Review of literature on

recent trends ofgauge-discharge modeling, gauge-discharge-sediment modeling, rainfall-

runoff modeling and flood forecasting using ANN and fuzzy rule based methods are

presented in the respective chapters.
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CHAPTER 3

STUDY AREA AND DATA USED

3.1 INTRODUCTION

Various methods/models developed in the study have been applied to the

Narmada river basin. The river Narmada is the fifth largest river of India and the largest

west flowing river in peninsular India. Hydrological data collected from various agencies

for this study have been computerized using SWDES software developed by the DHV

consultants underIndiaHydrology Project Phase-I (1996-2002). Further, the hydrological

time series data have been processed using HYMOS Software Package (HYMOS, 2001).

For the processing of the spatial and location specific data, digitization has been carried

out manually. The conversion process has been checked by GIS software Integrated Land

and Water Information System (ILWIS) by spatial data overlapping and comparing with

the original traces. The map layers of spatial data alongwith location of stations were

transferred to HYMOS software for further processing and analysis of hydrological data.

The processed hydrological data of the study areas have been used for the development of

hydrological models discussed and presented in chapters 4 to 7. This chapter presents the

description of study area, data collected and the methodology adopted in validation and

processing of hydrological data.

3.2 STUDY AREA

The Narmada river basin is bounded on the north by the Vindhyas, on the east by

the Maikala range on the south by the Satpuras and on the west by the Arabian Sea. Most



of the basin is at an elevation of less than 500 meters above mean sea level. A small area

around Pachmarhi is at a height of more than 1000 meters above mean sea level. The

Narmada basin extends over an area of 98,796 sq. km. and lies between longitudes 72°

32' E to 81° 45'E and latitudes 21° 20' N to 23° 45'N. Figure 3.1 shows the map of the

Narmada river basin.

The Narmada river rises in the Amarkantak Plateau of Maikala range in the

Shahdol district of Madhya Pradesh at an elevation of 1057 meters above mean sea level.

The river travels a distance of 1312 km before it falls into Gulf of Cambay in the Arabian

Sea near Bharuch in Gujarat. The first 1079 km are in Madhya Pradesh. In the next length

of 35 km, the river forms the boundary between the States of Madhya Pradesh and

Maharashtra. Again, in the next length of 39 km, it forms the boundary between

Maharashtra and Gujarat. The last length of 159 km. lies in Gujarat. The river has 41

tributaries of which 22 are on the left bank and 19 on the right.

The climate of the basin is humid tropical ranging from sub-humid in the east to

semi-arid in the west with pockets of humid or per humid climates around higher hill

reaches. The normal annual rainfall for the basin works out to 1,178 mm. South west

monsoon is the principal rainy season accounting for nearly 90% of the annual rainfall.

About 60% of the annual rainfall is received during July and August months. The

Narmada basin consists mainly of black soils and the different varieties are deep black

soil, medium black soil and shallow black soil. In addition mixed red and black soil, red

and yellow soil and skeletal soil are also observed in pockets.

17
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3.2.1 Hydrometeorological Data Observation Network

The number of raingauge stations in the basin was 21 in 1891 which has risen to

205 stations by 1980. Of these nearly 120 raingauge stations have data for more than 40

years. There are about 50 self recording raingauge stations (SRRG), maintained by either

India Meteorological Department or other agencies like the flood forecasting division of

Central Water Commission, State Irrigation Departments, etc. India Meteorological

Department is maintaining class II or class I observatories at 18 locations in and around

Narmada basin where the observations ofdew point, temperature are made twice aday at

0300 GMT (0830 1ST) and 1200 GMT (1730 1ST). Systematic observations ofgauge and

discharge were started in Narmada basin only in 1947 by the then Central Water Ways,

Irrigation and Navigation Commission.

3.2.2 Data Collection

Hydrometeorological and hydrological data of upper Narmada basin have been

collected from Water Resources Department, Bhopal (M.P.); Narmada Control Authority,

Indore; Chief Engineer, Narmada Basin, Central Water Commission, Bhopal and India

Meteorological Department. Daily and hourly rainfall, gauge/discharge and other

meteorological data have been collected from above departments. Further, daily values of

sediment concentration data have also been collected. Rainfall data are received as a

discrete time series on daily basis from above mentioned departments. The

hydrometeorological data usedin study aregiven in Table 3.1

18



Table 3.1: Inventory of data used in study

SI. No Station Data Type Frequency Period

1 Jamtara Gauge Hourly 1991-1995

2 Manot Gauge Hourly 1989-1998

3 Mandla Gauge Hourly 1991-1998

4 Satarana Gaugef Hourly 1989-1993

5 Hriday Nagar Gauge1 Hourly 1989-1993

6 Jamtara Discharge & Sediment Daily 1989-1993

7 Manot Discharge & Sediment Daily 1989-1993

8 Mandla Discharge & Sediment Daily 1989-1993

9 Satarana Discharge & Sediment Daily 1989-1993

10 Hriday Nagar Discharge & Sediment Daily 1989-1993

11 Narayanganj Rainfall Daily 1993-1998

12 Bichhia Rainfall Daily 1993-1998

13 Baihar Rainfall Daily 1993-1998

14 Palhera Rainfall Daily 1993-1998

15 Manot Rainfall Daily 1993-1998

16 Gondia Rainfall Daily 1993-1998

17 Nimpur Rainfall Daily 1993-1998

18 Jamtara Rainfall Hourly 1991-1995

19 Dindori Rainfall Hourly 1991-1995

20 Malankhand Rainfall Hourly 1991-1995

3.3 HYDROLOGICAL DATA PROCESSING

HYMOS is an information system for storage, processing and presentation of

hydrological and environmental data (HYMOS, 2001). It combines an efficient database

structure with powerful tools for dataentry, validation, completion, analysis, retrieval and

presentation. The HYMOS data base is time series oriented with common facilities for

spatial analysis. In combination with a GIS for comprehensive geographical data

analysis, it covers all data storage and processing requirements for planning, design and

operation of water management system.
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Figure 3.1: Index Map of Narmada Basin



Various physical characteristics of the study areas have been derived from

Geograhical Information System (GIS) software Integrated Land and Water Information

System (ILWIS) and stored in the HYMOS. Such geographical data have been organised

in different map layers so as to make it possible to use one or more such layers at any

time. Timeseries surface water data of the studyarea were first entered in Surface Water

Data Entry System (SWDES) software and then exported to HYMOS. Various operations

carried out for processing of rainfall, gauge and discharge data of the study area are

broadly classified as primary and secondary datavalidation.

3.3.1 Primary Validation of Data

Preliminary processing and scrutiny of the data is an essential task before the

analysis ofobserved data. The preliminary processing includes a number ofoperations on

raw data viz.: verification, valid status, reasonable report, quality of data, checking

against data limits and warning levels, adjustment of records. Primary processing of

available hydrological data of the study areas has been carried out using the

checks/operations available in SWDES and HYMOS. During the primary validation

4, various spurious errors and entries on wrong date were corrected.

3.3.2 Secondary Validation of Data

Specific tasks carried out in secondary data processing ofavailable rainfall data on

HYMOS includes:

• Screening of data series

• Scrutiny by multiple time series graphs
\

• Scrutiny by tabulations ofdaily rainfall series ofmultiple stations

• Checking against data limits for totals at longer durations

21



• Spatial homogeneity testing;,of rainfall (Nearest neighbour analysis)

• Long-term shift in rainfall data

• Correction and Completion of Rainfall Data

The quality and reliability ofa discharge series depends primarily on the quality

ofthe stage measurements. Various methods for secondary data processing offlow data

used in the present study include:

• Single station validation

• Multiple stationvalidation

• Comparison of streamflow and rainfall

The secondary data validation has been carried out for hourly, daily, monthly and

yearly rainfall data. The validation of compiled monthly and yearly rainfall totals helps in

bringing out those inconsistencies which are either due to a few very large errors or due

to small systematic errors which persist unnoticed for much longer durations. Missing

data and data identified as erroneous have been substituted from neighbouring stations

using suitable interpolation method. Depending on the type of error missing or erroneous

rainfall data of various stations have been corrected and completed using a suitable

operation/ procedure mentioned above and available in HYMOS.

After correction and completion of missing and erroneous data an important task

is to compile the data in various usable forms. Further, in HYMOS anumber of methods

are available for estimating areal rainfall from point rainfall. Thiessen polygons for

estimation of areal rainfall of the study area have been used in this study. Thiessen

polygon (Figure 3.2) has been developed by supplying the GIS map layers of the study

area and locations of the gauges in HYMOS.
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Figure 3.2: Area represented by each raingauge -Thiessen polygon method
(Narmada basin up to Mandla)
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3.4 CONCLUDING REMARKS

The hydrometeorological and hydrological data are subjected to primary and

secondary processing in order to ensure the quality of data and also bring them in the

appropriate form required for the purpose of hydrological modeling. As described in this

chapter, the data processing studies have been carried out for investigation of spurious

systemic errors, inconsistency in data etc. Filling of gaps and correction of spurious data

have been carried out from the surrounding stations data using the appropriate methods

such as interpolation, distance power method, normal ratio method etc.

It is important to note that the precipitation shows very high variability in short

interval data as compared to long interval data. The variability on daily basis is more as,

compare to ten daily basis or monthly basis. Therefore, in case of precipitation data

internal consistency and spatial consistency have been checked and corrected on the basis
y

of daily, ten daily and monthly data. After the primary and secondary validation of data,

all the data have been brought in a uniform manner.

The validated data of different gauging sites have been used for the development

gauge-discharge, gauge-discharge-sediment rating curve relationships using regression,

ANN and fuzzy logic based approaches andpresented in Chapter- 4 and 5. The processed

rainfall and discharge data have been used for the development of rainfall-runoff models

(Chapter-6) using linear transfer function, ANN and fuzzy logic based approaches.

Accurate foresting of floods at shorter lead periods is a very important task in Narmada

basin. Therefore, the available data have been used to develop a suitable flood forecasting

model using fuzzy and ANN techniques. This study is discussed in the subsequent

chapter (Chapter-7).
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CHAPTER 4

DEVELOPMENT OF STAGE-DISCHARGE

RELATIONSHIPS USING ANN AND FUZZY LOGIC

4.1 BACKGROUND

The correct assessment of discharge in a river using the rating curve is very

important as it serves the base information for hydrological modeling, forecasting and

planning of water resources. The present chapter provides a quantitative framework of

analysis based on conventional method, ANN and fuzzy logic principles, aiming to

address this issue and attempts to fill the gap of quantitative research that exists in the

area. Research findings of this chapter have been published in the form of a research

paper entitled "Takagi-Sugeno Fuzzy Inference System for Modeling Stage-Discharge

Relationship" in Journal of Hydrology (Vol. 331, pp. 146-160, 2006). Further, a reply of

the discussions on this paper has been published as "Reply to comments provided by Z.

Sen on Takagi-Sugeno Fuzzy Inference System for Modeling Stage-Discharge

Relationship" in Journal of Hydrology (Vol. 337, pp 244-247, 2007). This chapter is

organized as follows: First, the existing literature in the area is reviewed. Next, the

methodology and an overview of the data used in the study are provided. This is followed

by the interpretation of results and a section brings out conclusions.

4.2 INTRODUCTION

Stream flow information is important for effective and reliable planning and

management of various water resources activities and the assessment, management and



control of water resources can be effective if accurate and continuous information on

river-flow is available. Generally a network ofriver gauging stations provides continuous

information on river stage and sparse information of corresponding discharges. Thus, the

continuous discharge data corresponding to observed gauge can be obtained by
A

developing a stage discharge relationship and using this relationship to convert the

recorded stages into corresponding discharges. This relationship is determined by

correlating measurements of discharge with the corresponding observations of stage

(Maidment, 1992). However, under certain conditions (flatter gradients and constricted

channels) the discharge for a flood on a rising stage differs from that on the falling stage.

This phenomenon is called hysteresis and results in a looped stage-discharge curve ~f I

(Tawfik et al. 1997) for floods with different stage-discharge relations for rising and

falling water stages. Rating curve development approaches can be categorized into three

main groups: the single curve approach, the raising and falling approach, and the Jone's

approach (Tawfik et al. 1997). DeGagne et al. (1996) documented the process of

developing a decision support system for the analysis and use of stage-discharge rating >

curve while other possible models have been proposed by Gawne and Simonovic (1994)

and Yu (2000).

The functional relationship between stage and discharge is complex and can not

always be captured by the traditional modeling techniques (Bhattacharya and Solomatine,

2005). In the real world, stage and discharge relationship do not exhibit simple structure
1

and are difficult to analyze and model accurately. Therefore, it seems necessary that soft

computing methods e.g. artificial neural network (ANN) and fuzzy logic, which are

suited to complex non-linear models, be used for the analysis. There are several
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applications of ANNs in stage-discharge modeling. Jain and Chalisgaonkar (2000) used

three layer feed forward ANNs to establish stage discharge relationship. Bhattacharya

and Solomatine (2005) have found that the predictive accuracy of ANN model is superior

than the traditional rating curves. The effectiveness of an ANN with a radial basis

function was explored by Sudheer and Jain (2003). The ANN based approaches have also

provided promising results in modeling loop rating curves (Jain and Chalisgaonkar, 2000;

Sudheer and Jain 2003).

The purpose of this study is to investigate and explore the potential of an alternate

soft computing technique for stage discharge modeling based on fuzzy logic. The ability

of fuzzy logic to model nonlinear events makes it even more important to investigate its

ability to model stage discharge relationship. Uncertainty in conventional gauge-

discharge rating curves involves a variety of components such as measurement noise,

inadequacy of the model, insufficiency of river flow conditions, etc. Fuzzy logic based

modeling approach has a significant potential to tackle the uncertainty problem in this

field and to model nonlinear functions of arbitrary complexity. Other advantage of fuzzy

logic is its flexibility and tolerance to imprecise data (Zadeh, 1999). Fuzzy rule based

modeling is a qualitative modeling scheme where the system behavior is described using

a natural language (Sugeno and Yasukawa, 1993). The transparency of the fuzzy rules

provides explicit qualitative and quantitative insights into the physical behavior of the

system (Coppola et al. 2002). Fuzzy rule based modeling has been attempted in water

resources management, reservoir operation, flood forecasting and other areas of water

resources analysis (Bardossy and Duckstein, 1992; Fontane et. al., 1997; Kindler, 1992;
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Mujumdar and Sasikumar, 1999; Panigrahi and Mujumdar, 2000; Sasikumar and

Mujumdar, 1998; Deka and Chandramouli, 2003).

4.3 OVERVIEW OF FUZZY LOGIC

The classical theory of crisp sets can describe only the membership or non-

membership of an item to a set. While, fuzzy logic is based on the theory of fuzzy sets

which relates to classes of objects with unsharp boundaries in which membership is a
?'

matterof degree. In this approach, the classical notion of binary membership in a set has

been modified to include partial membership ranging between 0 and 1 (Zadeh, 1965).

The membership function is described by an arbitrary curve suitable from the point of

view of simplicity, convenience, speed, and efficiency. A sharp set is a sub set of a fuzzy

set where the membership function can take only the values 0 and 1 (Babuska, 1998).

The range of the model input values, which are judged necessary for the

description of the situation, can be portioned into fuzzy sets (Hellendoorn, et al., 1997).

The process of formulating the mapping from a given input to an output using fuzzy logic

is called the fuzzy inference. The basic structure of any fuzzy inference system is a model

that maps characteristics of input data to input membership functions, input membership

function to rules, rules to a set of output characteristics, output characteristics to output

membership functions, and the output membership function to a single-valued output or a

decision associated with the output (Jang et al. 2002). In rule based fuzzy systems, the

relationships between variables are represented by means of fuzzy if-then rules e.g. "7/"

antecedent proposition then consequent proposition". Depending on the particular

structure of the consequent proposition, three main types of fuzzy models are

distinguished as: (1) Linguistic (Mamdani Type) fuzzy model (Zadeh, 1973; Mamdani,
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1977) (2) Fuzzy relational model (Pedrycz, 1984; Yi and Chung, 1993) (3) Takagi-

Sugeno (TS) fuzzy model (Takagi and Sugeno, 1985). A major distinction can be made

between the linguistic model, which has fuzzy sets in both antecedents and consequents

of the rules, and the TS model, where the consequents are (crisp) functions of the input

variables. Fuzzy relational models can be regarded as an extension of linguistic models,

which allow for different degrees of. association between the antecedent and the

consequent linguistic terms. In the present work, the TS fuzzy model is employed to

develop stage discharge rating curve. These models are relatively easy to identify and

their structure can be readily analyzed.

4.4 TAKAGI-SUGENO FUZZY INFERENCE SYSTEM

A fuzzy rule-based model suitable for the approximation of many systems and

functions is the Takagi-Sugeno (TS) fuzzy model (Takagi and Sugeno, 1985). In the TS

fuzzy model, the rule consequents are usually taken to be either crisp numbers or linear

functions of the inputs

Ri: IF* is ,4,-THEN y,. =ajx +bi, i =1,2, M (4.1)

Where x e 9T is the antecedent and y, e 9* is the consequent of the zth rule. In the

consequent, at is the parameter vector and bt is the scalar offset. The number of rules is

denoted by Mand A\ is the (multivariate) antecedent fuzzy set ofthe z'th rule defined by

the membership function

",(x):9T >[0,1] (4.2)

The fuzzy antecedent in the TS fuzzy model is normally defined as an and-conjunction by

means of the product operator
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where xj is the /* input variable in the/'/? dimensional input data space, and /%• the

membership degree ofxj to the fuzzy set describing the f premise part of the i rule.

Hi(x) is the overall truth value ofthe ( rule.

For the input x the total output y of the TS model is computed by aggregating the

individual rules contributions:

M

y=I«,(x).y,. (4-4)
1=1

where was thenormalized degree of fulfillment of the antecedent clause of ruleRt

"/(*) =It { }

i'=l

The yt 's are called consequent functions of the Mrules and are defined by:

y, =w,0+waXl+wi2x2 + +wipxp (4-6)

where Wy-are the linear weights for the ith rule consequent function.

TS fiizzy models are quasi linear in nature. They result in smooth transition

between linear sub-models (Figure 4.1), which are responsible for separate sub-space of

states. This property ofthe TS fuzzy model allows separating the identification problem

into two sub-problems: (i) appropriate partitioning of the state space of interest by

clustering and; (ii) parameter identification of the consequent part.
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Local Models

Y2=w20+w2]Xj+w22x2+...w2pxp
Mn{x) Vi2(x) f*a(x)

3jXj+W32X2+...W3F)Cp

X

Figure 4.1: Takagi-Sugeno fuzzy model as a smooth piece-wise linear
approximation of non-linear function

4.4.1 Generation of TS Fuzzy Model

In general, TS fuzzy modeling involves structure identification and parameter

identification. The structure identification consists in initial rule generation after

elimination of insignificant variables, in the form ofIF-THEN rules and their fuzzy sets.

Parameter identification includes consequent parameter identification based on certain

objective criteria. In many situations, such rules are difficult to identity by manual

inspection and therefore are usually derived from observed data using techniques

collectively known as fuzzy clustering Hoppner et al. (1999). The basic purpose offuzzy,

clustering is to identify natural grouping of the data from a large data set, producing a

concise representation of a systems behaviour, similar to traditional clustering

procedures, a user can specify the expected number of clusters or let the system "find"

the likely number ofclusters from input data. Various method have been developed in the
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literature, such as K-means or C-means clustering (Krishnaiah and Kanal, 1982), fuzzy

C-means clustering (Bezdek, 1973, Jang et al., 2002), mountain clustering (Yager and

Filev, 1994), Gaustafron-kessel (GK) fuzzy clustering (Gustafson and Kessel, 1979), and

subtractive clustering (Chiu, 1994,1996).

Fuzzy C-means clustering method is an iterative technique that starts with a set of

cluster centers and generates membership grades, used to induce new cluster centers. In

this approach number of iterations depends on the initial values of the clusters' centers.

Mountain clustering method is based on grid of data space that computes the potential

value (mountain function) for each point on the grid on the basis of its distance to the

actual data point. The greatest potential point (one of the grid vertices) represents the first 4 j

cluster (highest point on the mountain). Subsequently, the potential for each grid point is

adjusted, allowing for the determination of all remaining clusters. Subtractive clustering

method (Chiu, 1994) is an extension of the mountain clustering method, where data

points (not grid points) are considered as the potential candidates for cluster centers. As a

result, clusters are elected from the system training data according to their potential. *

Therefore, in subtractive clustering method, the computation is simply proportional to the

number of data points and independent of the dimension of the problem under

consideration (Jang et al., 2002).

4.4.2 Subtractive Clustering

The subtractive clustering approach is used to determine the number of rules and

antecedent membership functions by considering each cluster center (A) as a fuzzy rule.

In this approach each data point of a set of N data points {xj, xn) in a/7-dimensional

space is considered as the candidate for cluster centers. After normalizing and scaling
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data points in each direction, a density measure at data point xt is computed on the basis

of its location with respect to other data points and expressed as:

A =ZexP» {

where ra is a positive constant called cluster radius.

A2V
. pt, - x,

^ \ra J
(4.7)

A data point is considered as a cluster center when more data points are closer to

it. Therefore, the data point (x[) withhighest density measure (£>') is considered as first

clustercenter. Now excluding the influence of the first cluster center, the density measure

of all other data points is recalculated as

A=A-A>0O (4.8)

/*(*/") = exp
x, - x

.112 ^\

(rJ2Y
(4.9)

where rb (rb>ra) is a positive constant that result^ in a measurable reduction in density

measures of neighborhood data points so as to avoid closely spaced cluster centers (Chiu,

1994).

After the density measure for each data point is revised (Equation 4.8), the data

point with the highest remaining density measure is obtained and set as the next cluster

center x* and all ofthe density measures for data points are revised again. The process is

repeated and the density measures of remaining data points after computation of kth

cluster center is revised by substituting the location (x'k) and density measure (D'k) ofthe

th

K cluster center in Equation (4.8). This process is stopped when a sufficient number of

33



cluster centers are generated. A sophisticated stopping criterion for automatically

determining the number of clusters is suggested by Chiu (1994, 1996).

The cluster center derived using the subtractive clustering approach represents a

prototype that exhibits certain characteristic of the system to be modeled. These cluster

centers (x*) can be reasonably used as the centers for the fuzzy rules' premise and

antecedent membership function that describes the system behaviour. For/ variable of

the input data vector x, the degree to which rule i is fulfilled is defined by Gaussian

membership functions:

A,(*,) = exp (4.10)

For every unique input vector a membership degree to each fuzzy set greater than

0 is computed, and therefore every rule in the rule base fires. This leads to the possibility

of generating only a couple of rules for describing the accurate relationship between input

and output data. r

4.4.3 Estimation of Linear Consequent Parameters

All linear consequent parameters can be estimated simultaneously using global

estimation approach. In the case of global estimation approach the regression matrixX

for N data samples becomes:

X=[XiX2...Xj XM] (4.11)

Where Mare number of rules in the system and
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X: =

«,(*(!)) xx(\)Mt{x{\)) x2(l).w,(x(l)) x,{\).ui{x{\)) x,Q)m,(x®)
u,(x(2)) x1(2).w,(x(2)) x2(2).u((x(2)) x3 (2)m, (x(2)) x,(2)ji,(x(2))
H,(x(3)) x1(3).«,(x(3)) x2(3).W,(x(3)) x3(3)*,(x(3)) xp (3).«( (x(3))

«((x(AO) *,(#>,•(*(#)) x2(N)uMX)) x,(N)u,(x(N)) x,(#)*,-WAO)

(4.12)

where «,- is the basis function defined in Equation (4.5), Xj(k) is the value of the j'h

variable in the kfh data point. With this the model output as defined in Equation (4.4)

becomes:

y = X.w (4-13)

where w is the parameter vector from Equation (4.6) containing only the linear weights

wy obtained from the membership degree through the multidimensional membership

functions. These linear parameters can beestimated by least square method.

4.5 ARTIFICIAL NEURAL NETWORK (ANN)

Artificial neural networks (ANNs) are simplified models of the biological neuron

system and as such they share some advantages that biological organisms have over

standard computational systems. A biological neuron consists ofa body (or soma), an

axon and a large number ofdendrites (Figure 4.2). The dendrites are inputs ofthe neuron,

while the axon is its output. The axon ofa single neuron forms synaptic connections with

many other neurons. It is a long, thin tube which'splits into branches terminating in little

bulbs touching the dendrites of other neurons. The small gap between such a bulb and a

dendrite of another cell is called a synapse.
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Dendrites

Axon

: Exciting Synapses

: Inhibiting Synapses

Figure 4.2: Structure of a typical neuron, or nerve cell

Mathematical models of biological neurons (called artificial neurons) mimic the

functionality of biological neurons at various levels of detail. A typical model is basically

a static function with several inputs (representing the dendrites) and one output (the

axon). Each input is associated with a weight factor (synaptic strength). The weighted

inputs are added up and passed through a nonlinear function, which is called the

activationfunction. The value of this function is the output of the neuron (Figure 4.3).

4.5.1 Neural Network Architecture

A typical ANN model consists of number of layers and nodes that are organised

to a particular structure (Mehrotra etal. 1997). There are various ways to classify aneural

network. Neurons are usually arranged in several layers and this arrangement is referred

to as the architecture of a neural net. Networks with several layers are called multi-layer

networks, as opposed tosingle-layer networks that only have one layer. The classification
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of neural networks is done by the number of layers, connection between the nodes of the

layers, the direction of information flow, the non linear equation used to get the output

from the nodes, and the method of determining the weights between the nodes of

different layers. Within and among the layers, neurons can be interconnected in two basic

ways: (1) Feedforward networks in which neurons are arranged in several layers.

Information flows only in one direction, from the input layer to the output layer, and (2)

Recurrent networks in which neurons are arranged in one or more layers and feedback is

introduced either internally in the neurons, to other neurons in the same layer or to

neurons in preceding layers. The commonly used neural network is three-layered feed

forward network due to its general applicability to avariety of different problems (Hsu et

al., 1995) and is presented in Figure 4.4.

x

Inputs

Propagation Function

n

f = Z-Wj-Xj + O
i=0

Output

Y

Activation Function

Y

Figure 4.3: Processing Element of ANN
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yy. OUTPUT LAYER

+ 0

Figure 4.4: A Typical Three-Layer Feed Forward ANN (ASCE, 2000a)

4.5.2 Learning

The learning process in biological neural networks is based on the change ofthe

interconnection strength among neurons. In artificial neural networks, various learning

concepts are used (Table 4.1). A comprehensive description of all these learning

algorithms can be found in Hecht-Nielsen (1991), Freeman and Skapura (1991).

Table 4.1: Basic learning algorithm

S.N Algorithm Initial weights Learning

1 Hebbian 0 Unsupervised

2 Perception Random Supervised

3 Delta Random Supervised

4 Widrow-Hoff Random Supervised

5 Correlation 0 Supervised

6 Winner-take-all Random(Normalized) Unsupervised

7 Outstar 0 Supervised

Amathematical approximation ofbiological learning, called Hebbian learning is

used, for instance, in the Hopfield network. Two different learning methods can be

cognized: supervised and unsupervised learning: In supervised learning the network isre>
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supplied with both the input values and the correct output values, and the weight

adjustments performed by the network are based upon the error of the computed output.

In unsupervised learning the network is only provided with the input values, and the

weight adjustments are based only on the input values and the current network output.

4.5.3 Multi-Layer Neural Network

A multi-layer neural network (MNN) has one input layer, one output layer and a

number of hidden layers between them. In a'MNN, two computational phases are

distinguished:

1. Feedforward computation. From the network inputs (xi, i = 1, . . . , n), the outputs of

the first hidden layer are first computed. Then using these values as inputs to the second

hidden layer, the outputs of this layer are computed, etc. Finally, the output of the

network is obtained.

2. Weight adaptation. The output ofthe network is compared to the desired output. The

difference ofthese two values called the error, is then used to adjust the weights first in

the output layer, then in the layer before, etc., in order to decrease the error. This

backward computation is called error backpropagation. The error backpropagation

algorithm was proposed by Werbos (1974) and Rumelhart, et al. (1986) and it is briefly

presented in the following section.

Feedforward Computation

In a multi layer neural network with one hidden layer (Figure 4.4), step wise the

feedforward computation proceeds as:
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/. Forward Pass

Computations at Input Layer

Considering linear activation function, the output of the input layer is input of

input layer:

0,=I, (4-14)

where, O, is the fh output of the input layer and I, is the /th input of the input layer.

Computations at Hidden Layer

The input to the hidden neuron is the weighted sum ofthe outputs of the input

neurons:

forp = 1,2,3, m

where, Ihp is the input to the/?* hidden neuron, ulpis the weight of the arc between /

input neuron to/?th hidden neuron and mis the number ofnodes inthe hidden layer.

Now considering the sigmoidal function the output of the/?th hidden neuron is given by:

1
ohP- (\ +e~lUhp~%))

(4.15)

(4.16)

where Ohp\s the output of the/1 hidden neuron, Ihp\s the input of the/1 hidden neuron,

6, is the threshold of the pth neuron and X is known as sigmoidal gain. A non-zero
hp »

/'

threshold neuron is computationally equivalent to an input that is always held at -1 and

the non-zero threshold becomes the connecting weight values as shown in Figure 4.5.
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Figure 4.5: Treating threshold in input layer

Computations at Output Layer
if -

• y
The input to the output neurons is the weighted sum of the outputs of the hidden

neurons:

lo, =wi<,Ohl+w2qOh2 + +wmqOhm (4.17)

for q = 1,2,3, ....n

where, I0q is the input to the qth output neuron, wmq is the weight of the arc between mth

hidden neuron to qth output neuron.

Considering sigmoidal function, the output ofthe qth output neuron is given by:

1

0°q (l +e-^-^) (4-18)

where, 00q\s the output of the q^ output neuron, Xis known as sigmoidal gain, 60 is the

threshold of the qth neuron. This threshold may also be tackled again considering extra 0a
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neuron in the hidden layer with output of -1 and the threshold value 00 becomes the

connecting weight value as shown in Figure 4.6.

Figure 4.6: Treating threshold in output layer

Computation of Error

The error inoutput for the rih output neuron isgiven by:

{'=\i(T0r-0or)2 (4.19)

i'jhwhere 00ris the computed output from the>r neuron and T0r is the target output.

Equation (4.19) gives the error function in one training pattern. Using the same technique

for all the training patterns the error function become

where, N is the number of input-output data sets.

(4.20)
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Training of Neural Network

Training is the adaptation ofweights in a multi-layer network such that the error

between the desired output and the network output is minimized.

II. Backword Pass

For kl output neuron, Ek is given by

^^-(Tk-Ookf (421)

where, Tk is the target output of the kth output neuron and Ook is the computed output of

the kth output neuron.

To compute—-^, apply chain rule of differentiation as:

a& _ azt do0k di0k
*»* M0k dl0k dwik (4-22)

~dO^ =~{Ti~°0k) (4-23)

and the output of the kth output neuron is given by

O 1
(1 +e-^7*-^)) .•• (4-24)

Hence,

~dC =A°0k(1~°0k) (4.25)

Hence, the derivative of the sigmoidal function is asimple function of outputs.
Now,

A* =wu •oH +w2k •ohH2 + +wmkohm (4 26)

It gives

43



dlOk _

dw;l
=a (4.27)

Hence,

dwa
= -X(Tk-00k)-00k (l-00k)-Ohi=-dk.Ohi (4.28)

where,

dk=X(TK-00k)Ok(\-0ok) (4.29)

Therefore, change ofweight for weight adjustment of synapses connecting hidden

neurons and output neurons is expressed as:

^lk=-TJ^-=-T}'Ohi-dk
owilr

(4-30)

where, 77 is learning rate constant

Learning rate coefficient determines the size of the weight adjustment made at

each iteration and hence influences the rate of convergence. Poor choice of the learning

coefficient can result in a failure in convergence. For a too large learning rate coefficient

the search path will oscillate and converge slowly. For a very small learning rate

coefficient the descent will progress in a small steps and thus significantly increase the

time of convergence.

Now we compute —^-by applying the chain rule of differentiation as:
duy

d%k = d$k d00k dl0k dOm dlhj
duy 800k dl0k dOM dIH] du9

It is already proved that

=-m-o0k)oOk(\-ook)=d£k d4k d00k

dl0k d°ok dl0k
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Nat
dOhi

= v%

sohi
-MP*,

dug '0,-1,

Hence,

dEk dOm dl,

(4.33)

(4-34)

(4.35)

SL.22Lm-wA
^"N~'^:r ikQk ' (4-36)

ff ={-w»^>•WPMy\-Ohl)}•{/..} (4 37)

Therefore, change of weight for weight adjustment of synapses connecting input

neurons and hidden neurons is expressed as:

H zs-V~-=-V[{-^dk}.{X{pu){\-Ofa)).{Iv}] (438)

The performance of the backpropagation algorithm depends on the initial setting

of the weights, learning rate, output function of the units (sigmoidal, hyperbolic tangent

etc.) and the presentation oftraining data. The initial weights should be randomized and

uniformly distributed in asmall range of values. Learning rate is important for the speed

of convergence. Small values of learning parameter may result in smooth trajectory in the

weight space but takes long time to converge. On the other hand large values may

increase the learning speed but result in large randoin fluctuations in the weight space. It

is desirable to adjust the weights in such away that all the units learn nearly at the same

rate. The training data should be selected so that it represents all data and the process

adequately. The major limitation of the backpropagation algorithm is its slow
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convergence. Moreover, there is no proof of convergence, although it seems to perform

well inpractice. Some times it is possible that result may converge to local minimum and

there is no way to reduce itspossibility. Another problem is that of scaling, which may be

handled using modular architectures andprior information about the problem.

4.6 RATING CURVE ANALYSIS

Rating curve is a useful tool to transfer observed stage to corresponding river

discharge. It simplifies the need for costly'and time consuming discharge measurements.

The river discharge is crucial in flood management, water yield computation and

hydrologic design. Rating curves are mostly ofthe form: ^

Q=a(H-Hoy (439)

where Qis the discharge (m3/s); H is the river stage (m); a and bare constant; and H0 is

the stage (m) at which discharge is nil. A first estimate of H0 is usually chosen after

examining the characteristics of the historical stage data and then by trial and error the

final value of H0 is chosen which gives the best fit i.e. the minimum sum of squares of

errors (SSE). In a flood event, the relationship between stage and discharge is not unique.

During the rising flood, the flood wave receives less hindrance in propagation than in a

falling flood. For the same stage this causes higher discharge during the rising flood than

during a falling flood. This effect is known as hysteresis; it results in a loop-rating curve

and justifies the premise that the relationship between stage and discharge isnot a one-to-

one mapping, but has the dependency of discharge on past stage and discharge values.

Sometimes the stage data is divided into rising and falling stages separately to take care

the hysterisis effect (Bhattacharya and Solomatine, 2005). Then separate regression

V I
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models (Equation 4.39) are developed for each set. This approach is not without

limitations as data separation is often subjective and therefore the use of rating curves

need expertise and is prone to errors. Artificial Neural Network (ANN) is a powerful

procedure for non linear function mapping. Various attempts have been made to establish

the applicability of ANN for gauge-discharge rating curve modeling (Jain and

Chalisgaonkar, 2000; Sudheer and Jain, 2003; Bhattacharya and Solomatine, 2005).

4.7 DATA USED

Data from discharge measuring stations in the upper catchment ofriver Narmada

in central India have been considered. The data considered for model calibration were a

mix of dry and wet periods, and the validation period was an average year. The data used

for analysis consisted of following six sets:

1. The daily stage and discharge record of the Jamtara gauging site on the Narmada

River. The catchment area at this site is 4,000 km2. Here 1281 pairs of gauge and

discharge were available. In this case, the first 900 pairs of data were used to fit the

conventional rating curve and to calibrate ANN and fuzzy based models, and the

remaining 301 for validation.

2. The daily stage and discharge record of the Narmada River at Manot gauging site.

The catchment area at this site is 4980 km2. Here 506 pairs of gauge and discharge

were available. In this case, the first 330 pairs of data were used to fit the

conventional rating curve and to calibrate ANN and fuzzy based models, and the

remaining 176 for validation.

3. The daily stage and discharge record of Narmada River at Mandla gauging site. The

catchment area at this site is 13120 km2. Here 522 pairs of gauge and discharge were
t
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available. In this case, the first 330 pairs of data were used to fit the conventional

rating curve and to calibrate ANN and fuzzy based models, and the remaining 192 for

validation.
/'

4. The daily stage and discharge record of the Kolar River (a tributary of the Narmada

River) at Satarana gauging site. The catchment area at this site is 820 km . Here 768

pairs of gauge and discharge were available. In this case, the first 600 pairs of data

were used to fit the conventional rating curve and to calibrate ANN and fuzzy based

models, and the remaining 168 for validation.

5. The daily stage and discharge record of the Banjar River (a tributary of the Narmada

River) at Hriday Nagar gauging site. The catchment area at this site is 1110 km .

Here 1494 pairs ofgauge and discharge were available. In this case (Case-I), the first

900 pairs ofdata were used to fit the conventional rating curve and to calibrate ANN

and fuzzy based models, andthe remaining 594 forvalidation.

6. A data set of 120 pairs of gauge and discharge data of Hirday Nagar gauging site

covering both very low and very high values offlow were used to verify suitability of

model for substantially less data. In this case (Case-II), the first 80 pairs of data were

used to fit the conventional rating curve and to calibrate ANN and fuzzy based

models, and the remaining 40 for validation.

7. Ahypothetical data set (200 pairs) wherein the rating curve exhibits hysteresis. The

hypothetical data sets of serial number 1,3,5,... were used to calibrate the model and

data sets at serial number 2,4,6,.... were used to validated the model. The

hypothetical data set considered in this study is similar to one considered by Jain and

Chalisgaonkar, 2000.
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4.8 MODEL DEVELOPMENT

For each data set arating curve given by Equation 4.39 was fitted using the stage

and discharge data selected for model calibration. Observed zero of the gauge values

have been used for computing the water depths and subsequently the rating curves are

developed by least square method linearly relating the log of the water depth with the log

of the flow values. The rating curve regression equations developed have value of a as

85.041, 149.4, 21.90, 10.32, 42.704, 42.702; value ofHo as 360, 443.07, 430.82, 289.4,

436.85, 436.85 and value ofb as 1.796, 1.343, 3.139, 2.835, 2.0791, 2.0789 for Jamtara,

Manot, Mandla, Satarana, Hridya Nagar (case-I) and, Hridya Nagar (case-II) respectively.

The current discharge can be better mapped by'considering, in addition to the current

value of river stage, the stage and the discharge at the previous time steps (Jain and

Chalisgaonkar, 2000). Accordingly, the current study analyzed different combinations of

antecedent gauge and discharge values. Six TS fuzzy models were developed during the

analysis with the corresponding input vectors as follows:

Model l:0,= f(/f,)

Model2:G=f(#,,#,-;)

Model3:0,= fi7/,,e,.;)

Model 4: Qt=W, H,.,, Qul)

Model 5: Q,= f(Ht, H,.j, Ht.2i Qt.j)

Model 6: Qt= f(H„ H(.u H,2, Q,h Q,2)

where Q, and H, corresponds to the river flow and gauge at time /.

For the six input-output data vectors ANN models were also developed. The feed

forward back propagation ANN network used in this study consists of input neurons

r
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(gauge and discharge of previous time stepsjintiie input layer and asingle output neuron

(discharge) in the output layer with one hidden layer. The number of neurons in the

hidden layer of the network was finalized after many trials. The newff function available

in the Neural Network Toolbox of MATLAB was used to create ANN model. During

training the weights and biases of the network were adjusted using gradient descent with

momentum weight and bias learning function. The default performance function for feed

forward networks is mean square error (the average squared error between the network

outputs and the target outputs). In order to handle uncertainties of the randomly generated

initial weights and stopping criteria, a number of trials have been made (Faraway and

Chatfield 1998, Sahoo and Ray 2006) to see whether consistent results are obtained. The

developed model was simultaneously checked for its improvement on testing data on

each iteration to avoid over training.

The most significant factors, identified in the previous sections, were used to

develop a fuzzy model. This was carried out into two steps: (i) determining cluster

centers and hence the number of fuzzy rules and their associated membership functions

and (ii) optimizing the model utilizing TS fuzzy technique based on least square

estimation (LSE). The clustering partitions adata set into anumber of groups such that

the similarity within agroup is large than that among groups. Most similarity matrices are

sensitive to the range of elements in the input vectors, therefore the data set under

consideration has been normalized within the unit hypercube. The FIS of TS fuzzy model

is generated using subtractive clustering. Program codes were written in MATLAB for

different architectures including the fuzzy toolbox. In order to find out optimum cluster

centers and thus the optimum fuzzy model, the cluster radius (ra) of subtractive clustering
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algorithm was varied between 0.1 and 1 with steps of 0.02. The cluster centers and thus

the Gaussian membership function obtained for each case were used to compute

consequent parameters through a linear least square method and amodel was built. Using

the global model performance indices such as root mean square error (RMSE) between

the computed and observed discharge, the correlation coefficient and model efficiency

(Nash and Sutcliffe, 1970), the optimal parameter combination of the model was sought.

Once the optimization process is finished, the optimized membership functions for each

input variable and consequent parameters are defined for an optimized TS fuzzy model.

The process is repeated for each of the six data sets. Figure (4.7) shows the membership

functions for TS fuzzy model 5developed for Jamtara site. Nine optimized fuzzy rules

with nine membership functions for each variable are extracted (Table 4.2). It is evident

from Table 4.2 that the output ofthe TS fuzzy model for each rule is in the form oflinear

Equation. For every input vector amembership degree to each fuzzy set greater than 0 is

computed from the Gaussian membership function. Therefore, all the rules fires

simultaneously for each combination inputs and thus provides a crisp output value for a

given input data vector using Equation 4.4. The model performance indices and error

values (absolute and relative errors) were used to check the ability of the models during

the calibration and validation stage.

Rating curves can be more accurately modeled by adding more input information

in the form of stage as well as discharge values at previous time steps (Jain and

Chalisgaonkar, 2000) as represented by models 3to 6. In practice the discharge values of

previous time steps are not readily available. Therefore, the model calibrated using the
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Q(I-1)MF9 Q(t-1)MF8

2000 4000 6000

Input Variable Q(t-l)

160 200

Input Variable H(t-2)

Figure 4.7: Membership Functions of input variables for fuzzy model
Qt=f(H,,H«.i,Ht-2>Qt-i) at Jamtara site
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Table 4.2: Fuzzy rules for fuzzy model Qt=f(Ht,Ht.i,Ht-2,Qt.i) at Jamtara site

Rule

8

Rule Description

If (H(t-2) is H(t-2)mfl) and (H(t-l) is H(t-l)mfl) and (H(t) is H(t)mfl) and
(Q(t-l) is Q(t-l)mfl) then Q(t) is 65.86*H(t-2) - 61.85*H(t-l) +983.2*H(t) +
1146*Q(t-l) + 1952

If (H(t-2) is H(t-2)mf2) and (H(t-l) is H(t-l)mf2) and (H(t) is H(t)mf2) and
(Q(t-l) is Q(t-l)mf2) then Q(t) is 268.4*H(t-2) +492.7*H(t-l) +3589*H(t) +
3730*Q(t-l)-1357

If (H(t-2) is H(t-2)mf3) and (H(t-l) is H(t-l)mf3) and (H(t) is H(t)mf3) and
(Q(t-l) is Q(t-l)mf3) then Q(t) is 4887*H(t-2) + 5995*H(t-l)+96900*H(t) +
17400*Q(t-l) +53380

If(H(t-2) is H(t-2)mf4) and (H(t-l) is H(t-l)mf4) and (H(t) is H(t)mf4) and
(Q(t-l) is Q(t-l)mf4) then Q(t) is 9047*H(t-2)+10590*H(t-
l)+145400*H(t)+19540*Q(t-l)-76790

If(H(t-2) is H(t-2)mf5) and (H(t-l) is H(t-l)mf5) and (H(t) is H(t)mf5) and
(Q(t-l) is Q(t-l)mf5) then Q(t) is 785.2*H(t-2) +1270*H(t-l) +6190*H(t) +
485.6*Q(t-l)- 13410

If(H(t-2) is H(t-2)mf6) and (H(t-l) is H(t-l)mf6) and (H(t) is H(t)mf6) and
(Q(t-l) is Q(t-l)mf6) then Q(t) is -74.47*H(t-2) - 196.7*H(t-l) - 2137*H(t) -
158.l*Q(t-l)+1085

If (H(t-2) is H(t-2)mf7) and (H(t-l) is H(t-l)mf7) and (H(t) is H(t)mf7) and
(Q(t-l) is Q(t-l)mf7) then Q(t) is -16.5*H(t-2) - 7.963*H(t-l) - 140.7*H(t)-
4.747*Q(t-l) +76.07

If (H(t-2) is H(t-2)mf8) and (H(t-l) is H(t-l)mf8) and (H(t) is H(t)mf8) and
(Q(t-l) is Q(t-l)mf8) then Q(t) is 0.101'5*H(t-2) -0.2973*H(t-l) -2.965*H(t)-
0.8626*Q(t-l) + 2.92

If (H(t-2) is H(t-2)mf9) and (H(t-l) is H(t-l)mf9) and (H(t) is H(t)mf9) and
(Q(t-l) is Q(t-l)mf9) then Q(t) is 0.001763*H(t-2) - 0.1055*H(t-l) +
0.2319*H(t) + 0.3554*Q(t-l) + 0.5115
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known pairs ofgauge-discharge data sets was validated using computed discharge values

in input data vector. In this process one/two known values ofdischarges ofprevious time

steps were used to compute next one/two discharges as the case may be (one for models

3,4,5 and two for model 6). From the next step onwards the computed discharge values

were used as input for computation of discharge from Models 3 to 6 following the

procedure suggested by Sudheer and Jain (2003). Using computed discharge as input to

these models may cause the error to carry over from one step to another. However, such

carry over errors may not have any significant affect due to higher accuracy offuzzy and

ANN model (Sudheer and Jain 2003).

f'
- *

4.9 RESULTS AND DISCUSSION

Global model performance indices (Table 4.3) such as root mean square error

(RMSE) between the computed and observed discharge, the correlation coefficient and

model efficiency (Nash and Sutcliffe, 1970) were used to evaluate the performance ofthe

models. The fuzzy models are compared with the back propagation ANN model and

conventional curve fitting approaches using all the six data sets (Table 4.4-4.9). It can be

seen from these tables that the RMSE values are significantly higher for the ANN and

curve fitting approaches than the fuzzy approach. The fuzzy models also show higher

coefficient of correlation. However, a clear cut picture is not evident using only

coefficient ofcorrelation as a performance measure. Therefore, the model efficiency was

also used to evaluate the performance of various model structures. In general the curve

fitting approach shows very poor model efficiency. While, the fuzzy model shows better
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Table 4.3: Global performance evaluation criteria

N

Z(Qo-Q0)(Qp-QP)
Coefficient of Correlation = , =1'

jUQo-QorZtQp-Qp)2
N

Z(Qoi-QPiY
Root Mean Square Error =ŷ _

Nash Sutcliffe Efficiency =100x

N

Z(Qo-Qp)2
i=l
N _ 2
s(0o-eor

/=1

Where_N is the number of observations; Q0 is the observed flow; Qp is predicted
flow; Qo is the mean ofthe observed flow; and Qp is the mean ofthe predicted flow.

model efficiency in comparison to an equivalent ANN model. For the practical point of

view, the accurate estimation of discharge is in particular important for the low and high

flows. Therefore, the results were also compared using average absolute error (AAE =

-{Qo-Qc}) between observed and computed low flows and average absolute relative

error (AARE - -{(Qo-Qc)/Qo}*100) between observed and computed high flows.

Keeping in view the flow pattern in the selected rivers, top 10% flow values were used to

compute average relative errors and rest ofthe flow values were used to compute average

absolute errors. It may be noted from the results (Table 4.4-4.9) that the ANN performs

better than the conventional curve fitting models and the fuzzy model outperforms both

ANN and curve fitting models in both low flow and high flow region of rating curve. It is

also evident from computed errors that fuzzy Jogic models provide proper discharge
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estimates in situations where functional relationship between stage and discharge is

complex and can not be modeled very accurately by conventional rating curves. As more

and more information (input) is added to the model, generally the coefficient of

correlation improves and RMSE is reduced. This may be due to auto correlation and

cross correlation structure in the input data vector. Increase in inputs beyond a certain

limit in the model cause reduction in model performance. This is due to reduction in auto

correlation and cross correlation in the input data vector. From Table 4.4-4.9, it is also

apparent that model 5, which consists of three antecedent gauges and one discharge in

input, showed the highest coefficient of correlation, minimum RMSE and maximum

model efficiency, and it is selected as the best fit model for describing gauge-discharge

relationship of all the selected gauging sites. Figures 4.8 to 4.13, illustrate that the

estimated discharge values from fuzzy and ANN models are generally falls within ±10%

of observed discharges. However, the discharge computed by conventional curve fitting

approach in general showed more than 10% variation from observed discharges.

Furthermore, Figures. 4.8 to 4.13 illustrate that the discharges estimated by fuzzy logic

model are very close to observed discharge values. All the three (conventional rating

curve, fuzzy model and ANN model) models developed for data sets 1 to 6 are based on

varying data lengths from 80 to 900 gauge discharge pairs. This indicates that the

irrespective ofdata length the fuzzy models are always more accurate than the equivalent

ANN or conventional rating curve models developed for selected gauging sites.

A model with a minimum RMSE may not be sufficient to eliminate the

uncertainty in the model choice. In order to estimate bias of the Fuzzy, ANN and curve
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Table 4.4: Values of performance indices and error functions for Fuzzy, ANN and
conventional models - Calibration and validation data of Jamtara Site

Fuzzy/ANN Model

(Number of
Rules/Nodes in hidden

layer)

fiHW)

(5/7)

QrWJIh,)

(7/5)

Q,=m,Q,,)

(7/6)

QrmM-nQ,.,)

(8/6)

(9/8)

2)

(12/8)

Curve Fitting

Calibration Data

(a) Coefficient of
correlation

(b) RMSE (m3/s)

(c) Efficiency (%)

(a) 0.994(0.985)

(b) 125.6(135.7)

(c) 91.20(89.72)

(a) 0.996(0.987)

(b) 84.68(98.25)

(c) 95.99(94.61)

(a) 0.996(0.991)

(b) 82.67(93.71)

(c) 96.18(95.1)

(a) 0.997(0.994)

(b) 65.02(75.44)

(c) 97.64(96.82)

(a) 0.998(0.996)

(b) 66.38(73.52)

(c) 97.54(96.98)

(a) 0.998(0.996)

(b) 72.71(76.05)

(c) 97.05(95.77)

(a) 0.993

(b) 147.4

(c) 81.45

(a) AAE (m3/s)

(b) AARE(%)

(a) 39.81(43.48)

(b)4.85(5.'59)

(a) 35.32(37.23)

(b) 4.42(5.12)

(a) 29.49(33.41)

(b) 4.24(5.11)

(a) 29.22(31.12)

(b) 4.22(4.91)

(a) 28.15(29.33)

(b) 4.18(4.90)

(a) 30.84(30.97)

(b) 5.09(5.21)

(a) 67.39

(b) 11.32
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Validation Data

(a) Coefficient of
correlation

(b)RMSE (m3/s)

(c) Efficiency(%)

(a) 0.996(0.995)

(b) 91.40(99.91)

(c) 92.00(90.44)

(a) 0.996(0.996)

(b) 89.74(97.04)

(c) 92.28(90.98)

(a) 0.996(0.996)

(b) 83.72(93.45)

(c) 93.28(91.63)

(a) 0.996(0.993)

(b) 82.13(89.32)

(c) 93.54(92.36)

(a) 0.997(0.991)

(b) 78.87(87.19)

(c) 94.04(92.72)

(a) 0.995(0.989)

(b) 80.17(88.97)

(c) 93.84(92.41)

(a) 0.989

(b) 117.57

(c) 86.76

(a) AAE (m3/s)

(b) AARE (%)

(a) 42.62(47.72)

(b) 6.20(7.41)

(a)36.28(41.39)

(b) 5.96(6.23)

(a) 34.98(37.33)

(b) 4.81(5.83)

(a) 31.72(35.32)

(b) 4.54(4.82)

(a) 26.28(32.76)

(b) 4.72(4.81))

(a) 28.55(34.21)

(b) 6.26(6.25)

(a) 74.22

(b) 17.39



TABLE 4.5: Values ofperformance indices and error functions for Fuzzy, ANN and
conventional models - Calibration and validation data of Manot Site

Fuzzy/ANN Model

(Number of

Rules/Nodes in hidden

layer)

Calibration Data Validation Data

(a) Coefficient of
correlation

(b) RMSE (m3/s)

(c) Efficiency (%)

(a) AAE (m3/s)

(b) AARE(%)

(a) Coefficient of
correlation

(b) RMSE (m3/s)

(c) Efficiency (%)

(a) AAE (m3/s)

(b) AARE (%)

QrW)

(4/6)

(a) 0.961(0.946)

(b) 84.12(90.40)

(c) 92.2(90.99)

(a) 6.82(7.41)

(b) 10.74(10.76)

(a) 0.962(0.945)

(b) 44.76(57.83)

(c) 85.4(75.62)

(a) 7.49(8.11)

(b) 13.59(13.63)

(7/6)

(a) 0.963(0.954)

(b) 74.38(87.88)

(c) 93.9(91.48)

(a) 6.54(7.10)

(b) 9.22(9.14)

(a) 0.964(0.955)

(b) 42.35(51.32)

(c) 86.92(80.81)

(a) 7.23(7.83)

(b) 11.63(11.67)

QrW,Qt-i)

(8/7)

(a) 0.979(0.961)

(b) 73.09(78.14)

(c) 94.11(93.26)

(a) 5.57(6.44)

(b) 9.12(9.02)

(a) 0.975(0.960)

(b) 39.04(50.12)

(c) 88.89(81.69)

(a) 6.25(6.88)

(b) 9.15(9.39)

(8/6)

(a) 0.988(0.962)

(b) 70.18(76.18)

(c) 94.57(93.60)

(a) 4.26(5.31)

(b) 8.23(8.89)

(a) 0.987(0.962)

(b) 37.47(49.86)

(c) 89.76(81.88)

(a) 4.65(5.23)

(b) 8.25(8.27)

(9/8)

(a) 0.989(0.960)

(b) 70.14(80.26)

(c) 94.57(92.89)

(a) 3.07(3.49)

(b) 7.88(12.23)

(a) 0.988(0.964)

(b) 36.36(47.39)

(c) 90.37(83.63)

(a) 4.46(5.12)

(b) 7.59(15.13)

Q,=mM-M-2,Q,-i,Q,.

2)

(14/8)

(a) 0.986(0.961)

(b) 72.96(79.67)

(c) 94.13(93.00)

(a) 4.40(4.67)

(b) 8.10(12.51)

(a) 0.983(0.958)

(b) 38.61(48.03)

(c) 89.13(83.18)

(a) 4.89(5.03)

(b) 8.17(14.78)

Curve Fitting (a) 0.955

(b) 92.21

(c) 90.62

(a) 18.97

(b) 15.33

Ill

(a) 0.951

(b) 64.57

(c) 79.61

(a) 17.32

(b) 14.27
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TABLE 4.6: Values ofperformance indices and error functions for Fuzzy, ANN and
conventional models - Calibration and validation data of Mandla Site

Fuzzy/ANN Model

(Number of
Rules/Nodes in hidden

layer)

Calibration Data Validation Data

(a) Coefficient of
correlation

(b)RMSE (m3/s)

(a) AAE (m3/s)

(b) AARE (%)

(a) Coefficient of
correlation

(b)RMSE (m3/s)

(a) AAE (m3/s)

(b) AARE (%)

(c) Efficiency (%) (c) Efficiency (%)

Qrm) (a) 0.964(0.949) (a) 6.68(7.26) (a) 0.965(0.948) (a) 7.64(8.27)

(4/6) (b) 82.44(88.59)

(c) 93.95(92.72)

(b) 10.53(10.56) (b) 45.66(58.99)

(c) 87.02(77.06)

(b) 13.86(13.90)

QrWM (a) 0.967(0.958) (a) 6.38(6.92) (a) 0.968(0.959) (a) 7.35(7.96)

(7/6) (b) 72.52(95.43)

(c) 95.40(92.94)

(b)8.99(8.91) (b) 43.07(52.19)

(c) 88.31(82.10)

(b) 11.83(11.86)

QrW„Q,.j) (a) 0.983(0.962) (a) 5.38(6.2 y; (a) 0.979(0.963) (a) 6.34(6.98)
(8/7) (b) 70.53(75.41)

(c) 95.43(94.57)

(b) 8.80(8.70) (b) 39.63(50.87)

(c) 90.13(82.83)

(b) 9.29(9.54)

QrWJr,.hQ,.,) (a) 0.990(0.968) (a) 4.08(5.08) (a) 0.989(0.969) (a) 4.71(5.30)
(8/6) (b) 67.16(72.90)

(c) 95.80(94.82)

(b) 7.88(8.51) (b) 37.96(50.51)

©90.93(82.94)

(b) 8.36(8.39)

Qc*W,JI,.lfl,.J,Ql.1) (a) 0.991(0.972) (a)2.90(3.30) (a)0.990(0.971) (3)4.50(5.17)
(9/8) (b) 66.28(75.85)

(c) 95.61(93.91)

(b) 7.45(11.56) (b) 36.72(47.86)

(c) 91.36(84.55)

(b) 7.68(11.21)

Q^mji^ji^Q,.,^) (a) 0.989(0.969) (a) 4.20(4.46) (a) 0.986(0.970) (a) 4.96(5.10)
(14/8) (b)

69.68(76.087)

(c) 95.40(94.26)

(b) 7.74(11.95) (b) 39.15(48.70)

(c) 90.33(84.30)

(b) 8.27(10.99)

Curve Fitting (a) 0.957 (a) 18.59 (a) 0.952 (3) 17.67

(b) 90.37 (b) 15.03 (b) 65.86 (b) 14.56

(c) 91.51 (c) 81.34
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TABLE 4.7: Values ofperformance indices and error functions for Fuzzy, ANN and
conventional models - Calibration and validation data of Satrana Site

Fuzzy/ANN Model

(Number of

Rules/Nodes in hidden

layer)

Calibration Dat3 Validation Data

(a) Coefficient of
correlation

(b) RMSE (m3/s)

(c) Efficiency (%)

(a) AAE(m3/s)

(b) AARE(%)

(a) Coefficient of
correlation

(b) RMSE (m3/s)

(c) Efficiency (%)

(a) AAE(m3/s)

(b) AARE(%)

Qrm)

(4/5)

(a) 0.982(0.991)

(b) 41.14(32.21)

(c) 91.20(94.60)

(a) 2.97(1.11)

(b) 12.96(13.03)

(3)0.981(0.989)

(b) 24.03(23.91)

(c) 92.06(92.07)

(3)3.98(3.81)

(b) 13.15(13.87)

(6/8)

(a) 0.993(0.992)

(b) 27.06(29.23)

(c) 96.19(95.55)

(a) 2.09(2.31)

(b) 10.66(11.91)

(a) 0.992(0.989)

(b) 19.48(22.48)

(c) 94.74(92.99)

(3)2.56(3.01)

(b) 11.03(11.72)

QrWbQ,.i)

(6/5)

(a) 0.994(0.993)

(b) 26.29(30.01)

(c) 96.40(95.31)

(a)1.83(1.89)

(b) 9.46(9.75)

(a) 0.992(0.992)

(b) 19.12(21.19)

(c) 94.93(93.77)

(a)1.92(2.01)

(b) 9.86(9.02)

(8/6)

(a) 0.996(0.994)

(b) 23.73(27.48)

(c) 97.04(96.07)

(a)1.76(1.76)

(b) 8.86(9.01)

(a) 0.993(0.992)

(b) 18.89(20.17)

(c) 95.05(94.36)

(a) 1.73(1.77)

(b) 8.29(8.34)

(9/8)

(a) 0.997(0.995)

(b) 22.08(27.41)

(c) 97.46(96.09)

(3)1.75(2.10)

(b) 8.06(8.26)

(a) 0.995(0.994)

(b) 18.23(20.17)

(c) 95.39(94.35)

(a) 1.77(2.01)

(b) 8.05(8.21)

QI=WM-,J1,-2,Q,-,,Q<-

2)

(12/10)

(a) 0.996(0.995)

(b) 25.91(28.21)

(c) 96.50(95.86)

(a) 1.86(2.05)

(b) 8.44(8.91)

(a) 0.994(0.993)

(b) 18.24(20.94)

(c) 95.39(93.93)

(a) 1.93(2.17)

(b) 8.20(8.32)

Curve Fitting (a) 0.965

(b) 52.36

(c) 81.45

(a) 4.57

(b) 16.39

(a) 0.978

(b) 52.60

(c) 61.66

(a) 5.32

(b) 16.44
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TABLE 4.8: Values ofperformance indices and error functions for Fuzzy, ANN and
conventional models-Calibration and validation data of Hriday Nagar
Site (Case-I) 6

Fuzzy/ANN Model

(Number of

Rules/Nodes in hidden

layer)

Calibration Data Validation Data

(a) Coefficient of
correlation

(b) RMSE (m3/s)

(c) Efficiency (%)

(a) AAE(m3/s)

(b) AARE (%)

(a) Coefficient of
correlation

(b) RMSE (m3/s)

(c) Efficiency (%)

(a) AAE (m3/s)

(b) AARE(%)

QMtm

(4/5)

(a) 0.988(0.964)

(b) 40.37(49.27)

(c) 94.8(92.25)

(a) 3.57(4.32)

(b) 10.05(10.11)

(a) 0.986(0.961)

(b) 70.98(81.21)

(c) 85.40(75.62)

(a) 4.26(4.74)

(b) 11.12(12.03)

QrKH,JJ,.,)

(6/8)

(a) 0.989(0.964)

(b) 36.83(47.78)

(c) 95.67(92.71)

(a) 3.09(3.30)

(b) 10.00(10.12)

(a)0.981(0.960)

(b) 76.62(84.56)

(c) 82.98(80.81)

(a) 3.83(4.06)

(b) 10.89(11.10)

(6/5)

(a) 0.990(0.974)

(b) 40.03(49.01)

(c) 94.88(92.64)

(a) 3.04(3.05)

(b) 8.15(9.27)

(s) 0.985(0.972)

(b) 67.13(78.26)

(c) 86.94(82.25)

(a) 2.67(2.89)

(b) 8.03(9.01)

(8/6)

(a) 0.992(0.989)

(b) 33.76(37.77)

(c) 96.37(95.44)

(a) 2.95(3.48)

(b) 7.19(7.33)

(a) 0.988(0.982)

(b) 63.18(73.95)

(c) 88.43(84.15)

(a)2.16(2.82)

(b) 7.72(7.17)

&=f(/4#,./,//,-;,a-/)

(9/8)

(a) 0.992(0.990)

(b) 30.11(36.32)

(c) 97.11(95.79)

(3)2.94(3.03),
f •

(b)6.99(6il)

(a) 0.989(0.983)

(b) 57.32(69.41)

(c) 90.47(86.04)

(a) 1.98(2.23)

(b) 6.53(6.02)

QrWUlnJHn.QH,Q>2)

(12/10)

(a)0.991(0.989)

(b) 32.82(36.97)

(c) 96.56(95.63)

(a) 3.06(3.71)

(b) 7.01(7.39)

(a) 0.980(0.980)

(b) 59.28(72.55)

(c) 89.81(84.75)

(a) 1.77(2.13)

(b) 6.74(6.77)

Curve Fitting (3)0.961

(b) 76.23

(c) 81.45

(3)6.31

(b) 12.45

(a) 0.960

(b) 93.4

(c) 74.72

(a) 8.47

(b) 12.81
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TABLE 4.9: Values ofperformance indices and error functions for Fuzzy, ANN and
conventional models-Calibration and validation data of Hriday Nagar
Site (Case-II)

Fuzzy/ANN Model

(Number of

Rules/Nodes in hidden

layer)

Calibration Dats

Fuzzy(ANN)

Validstion Data

Fuzzy(ANN)

a) Coefficient of
correlation

(b) RMSE (m3/s)

(c) Efficiency (%)

(a) AAE (m3/s)

(b) AARE(%)

[a.) Coefficient of
correlation

(b) RMSE (m3/s)

(c) Efficiency (%)

(a) AAE (m3/s)

(b) AARE(%)

QrW)

(4/4)

(a)0.991(0.981)

(b) 38.72(41.76)

(c) 94.15(93.07)

(a) 5.045(5.67)

(b) 12.35(12.29)

(a) 0.979(0.979)

(b) 94.35(94.62)

(c) 84.40(87.32)

(a) 6.32(7.83)

(b) 12.19(12.55)

Qr-WAi)

(4/4)

(a) 0.984(0.982)

(b) 31.39(37.82)

(c) 96.15(94.42)

(a) 5.02(5.45)

(b) 11.21(11.33)

(a) 0.979(0.978)

(b) 92.11(93.31)

(c) 87.99(87.67)

(3)6.08(6.17)

(b) 11.01(11.82)

(5/4)

(a) 0.987(0.984)

(b) 27.22(35.19)

(c) 97.15(95.19)

(a) 4.94(5.07)

/(b) 9.78(9.02)

(a) 0.982(0.980)

(b) 89.39(92.88)

(c) 88.68(87.79)

(3) 5.71(5.77)

(b) 9.51(9.47)

(5/4)

(a) 0.987(0.985)

(b) 22.88(35.11)

(c) 97.95(95.19)

(a) 3.87(4.98)

(b) 8.73(8.84)

(a) 0.984(0.981)

(b) 85.11(91.23)

(c) 89.74(88.22)

(a) 5.13(4.79)

(b) 8.65(19.02)

QHHH,JIt.,fl,.2,Q,.i)

(5/4)

(a) 0.989(0.986)

(b) 20.03(35.02)

(c) 98.43(95.21)

(a) 3.09(4.43)

(b) 8.21(8.32)

(a) 0.984(0.982)

(b) 84.97(88.47)

(c) 89.78(88.92)

(a) 4.73(4.67)

(b) 8.46(8.54)

(5/5)

(a) 0.989(0.986)

(b) 20.49(35.89)

(c) 98.36(94.97)

(a)3.71(4.51)

(b) 8.33(8.03)

(a)0.981(0.981)

(b) 85.97(88.46)

(c) 89.83(88.92)

(a) 4.79(5.02)

(b) 8.83(8.08)

Curve Fitting (a) 0.965

(b) 94.5

(c) 86.60

(a) 24.62

(b) 14.81

(a) 0.964

(b) 111.63

(c) 82.36

(a) 27.77

(b) 13.78
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fitting models for different output ranges the testing data sets of all the gauging sites were

scaled so as to lie in the range of zero to one and than pooled together. Further, the scaled

and pooled data set was divided into two sets (i) data set with the data points for which

models generally underestimated discharge, and (ii) data set containing the points for

which discharge was overestimated. The pooled average relative underestimation and

overestimation errors (PARE) were computed and plotted for the following eight

discharge ranges: 0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, and 0.7-1.0

(Figure 4.14) using the following formula:

PARE=ymzm
ntt Qo,

(4.40)

where, Qct and Qot are computed and observed discharge and n is the number of data

points falling in each class.

20

15

-20 i-

—- o- - •TS Fuzzy Model {Underestimation)
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—a— Curve Fitting(Underestimation)

...... .js Fuzzy Model (Overestimation)
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—*—Curve Fitting (Overestimation)

Discharge (Scaled and Pooled)

Figure 4.14: Variation of over and under estimation error with ischarge
for. different models in pooled data set
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It is seen that in each range the overestimation and underestimation error offuzzy model

is more or less same and also generally less than the ANN and curve fitting models. This

indicates the absence of bias in fuzzy model in all ranges of discharges. The

underestimation error in the low flow is more for curve fitting approach and in high flow

region all the three models are very close to each other. However, the over estimation

error is in the same range for all the three models in low flow situation. While, in high

flow situation the over estimation error is very small for fuzzy model. In general fuzzy

model gave very accurate estimation for all the flow situations.

f •

J

4.9.1 Modeling Hysteresis

Using the curve fitting approach the modeling ofhysteresis is not possible as it

fits an average or steady state curve. Jain and Chalisgaonkar (2000) applied ANN to

model hysteresis considering a hypothetical case. In this study almost a similar loop

curve is modeled using both ANN and fuzzy logic based approach and the results are

presented in Table 4.10. The results indicate that the fuzzy model performs better than the

ANN approach for modeling hysteresis. Further, it is seen from this table that the models

utilizing more information ofprevious time periods are useful in estimating the hysteresis

more accurately. Here, in this case models 5 and 6 showed highest correlation and

minimum RMSE in comparison to other model structures. Figure 4.15 shows the

estimated discharges at various stages using curve fitting, ANN and fuzzy models. The

results clearly indicate that the conventional curve fitting approach failed to model the

hysteresis present in the data. Figure 4.15 shows a slight difference in the middle and

upper part ofthe estimated and hypothetical loops when ANN modeling approach was

applied. However, the fuzzy logic based modeling approach models the loop rating curve
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more accurately throughout entire data range and this can be better observed from Figure

4.16.

TABLE 4.10: Values of performance indices and error functions for Fuzzy, ANN
and conventional models-calibration and validation of hysteresis
(hypothetical case)

Fuzzy/ANN Model

(Number of

Rules/Nodes in hidden

Calibration Data Validation Data

(a) Coefficient of
correlation a) AE (m3/s)

(a) Coefficient of
correlation » AE(m3/s)

layer) (b) RMSE (m3/s)

(c) Efficiency (%)

b) RE(%)
(b) RMSE (m3/s)

(c) Efficiency (%)

b) RE(%)

Q<=m) (a) 0.939(0.926) (a) 132.08(141.31) (a) 0.936(0.919) (a) 130.13(132.23)

(4/4) (b) 141.1(155.3) (b) 9.7(9.9) (b) 144.2(160.7) (b) 9.1(10.16)

- (c) 91.21(89.35) (c) 90.37(89.67)

CHWAi) (a)0.991(0.981) (a)90.42(93.21) (a) 0.987(0.979) (a)110.43(111.56)

(5/2) (b) 122.32(150.69) (b) 7.50(7.90) (b) 134.5(155.1) (b) 7.65 (8.23)

(c) 93.39(89.97) (c) 92.32(89.06)

Q,=m,Q,-j) (a) 0.997(0.995) (a) 85.21(89.10) (a) 0.997(0.996) (3) 97.56 (100.53)

(6/3) (b) 81.54(98.61)

(c) 97.06(95.70)

(b) 6.19(6.62)) (b) 86.39(95.23)

(c) 95.09(93.77)

(b) 6.21 (7.25)

QrWhfin,Qn) (a) 0.998(0.998) (a)73.10(75.31) (a) 0.998(0.997) (3) 74.78(80.00)

(6/8) (b) 26.81(33.51)

(c) 97.11(95.81)

(b) 6.14(6.52) (b) 27.44(32.29)

(c) 97.38(95.70)

(b) 6.10(6.87)

Qrf(HM-,^,2,Q,.,) (a) 0.999(0.999) (3)71.25(71.89) (a) 0.999(0.999) (3)72.46(73.58)

(8/8) (b) 14.76(19.93)

(c) 98.81(96.70)

(b) 6.08(6.28) (b) 15.83(21.25)

(c) 98.78(96.69)

(b) 6.05(6.88)

QrtiLH,flnJi,.2,Ql.,,Qt.i) (a) 0.999(0.999) (302.38(73.1) (a) 0.999(0.998) (3)75.15(75.34)

(8/8) (b) 14.98(20.19)

(c) 98.24(95.89)

(b) 6.74(6.80) (b) 15.57(21.48)

(c) 98.07(95.61)

(b) 6.35(6.81)

Curve Fitting (a) 0.843

(b) 161.21

(c) 85.52

(a) 139.42

(b) 7.24

(a) 0.841

(b) 164.93

(c) 84.35

(a) 139.41

(b) 7.24
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4.10 CONCLUSIONS

Any attempt to improve the modeling of gauge-discharge rating curves is

significantly important for rainfall-runoff modeling and flood forecasting. In this study, a

fuzzy logic algorithm is developed to estimate the discharge from measured gauge data.

The satisfactory estimation of the discharge by the proposed fuzzy models from the 7

different data sets indicates that gauge-discharge modeling can reliably employ the fuzzy

model. Also, in this study, the fuzzy model is tested against both the ANN and

conventional curve fitting approach. The fuzzy models estimate the discharge more

accurately both in case of actual observed data sets of various lengths and hypothetical

data set. The ANNs can be synthesized without making use of the detailed and explicit

knowledge of the underlying physics and a fuzzy logic algorithm has the ability to

describe the knowledge in a descriptive human-like manner in the form of simple rules

using linguistic variables. The fuzzy model proposed herein may be concluded to be

appropriate for modeling of rating curves.
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CHAPTER 5

ANN AND FUZZY LOGIC IN DERIVING STAGE-

DISCHARGE-SEDIMENT CONCENTRATION

RELATIONSHIPS

5.1 BACKGROUND

Correct assessment of sediment volume carried by a river is of vital interest due to

its importance in the design and management of water resources projects. This chapter

attempts to derive stage-discharge-sediment concentration relationship using

conventional regression method, ANN and fuzzy logic. Research findings of this chapter

have been published in the Hydrological Sciences Journal (Deriving stage-discharge-

sediment concentration relationship using fuzzy logic, Hydrological Sciences Journal

(2007) 52(4), 793-807). This chapter is organized as follows: First, the existing literature

in the area is reviewed in some detail. Next, the development of models and an overview

ofthe data used in the study are provided. This is followed by the interpretation ofresults

and a section on conclusions.

5.2 INTRODUCTION /

The assessment ofvolume ofsediments being transported by a river is important

for estimation of sediment transport in rivers, design of dams, reservoirs and channels,

environmental impact assessment and determination of the efficacy of watershed

management and other catchment treatment. Sediment rating curves based on regression

analysis are widely used to estimate the sediment load being transported by a river. The
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regression and curve-fitting techniques are not adequate in view of the complexity of the

problem (Kisi, 2005). A problem inherent in the rating curve technique is the high degree

of scatter, which may be reduced but not eliminated (Jain, 2001). Ferguson (1986)

pointed out that the rating curve method, or the duration curve method, using a log-log
4

rating curve, can underestimate sediment loads up to 50% even when the full time series

of concentration is available and proposed a simple correction factor based on statistical

considerations to remove most of the bias and to improve the accuracy of estimates of

river load. Phillips et al. (1999) used high frequency suspended sediment concentration

and discharge data to determine the accuracy and precision of suspended sediment flux

estimates. The error correction procedure described in their study appears to offer some 4.
ir

potential for suspended sediment flux infrequent concentration data. Asselman (2000)

applied sediment rating curve method to four different locations along the river Rhino

and its main tributaries and pointed out that the rating curves obtained by least square

regression on logarithmic transformed data tend to underestimate sediment transport rates

by about 10% to more than 50%. Samtani et al. (2004) reported the sediment transport

characteristics of Tapi river, India. Sediment rating curves relating instantaneous

sediment flux to discharge were established by Van Dijk et al. (2005) for suspended, bed

load and total sediment by fitting power equation to all water discharge-sediment

discharge data pairs, and no extra variation in sediment load was explained by runoff

stage (i.e. raising or falling) and therefore a single curve was used.

Various studies carried out to compare actual and predicted suspended

concentration indicate that conventional rating curves can substantially under predict

actual sediment concentrations (Walling and Webb, 1988; Asselman, 2000). A number of

>-
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attempts have been made to discuss statistical inaccuracies related to the curve fitting,

and different methods have been proposed for refining the conventional sediment rating

curves by applying various statistical correction factors, using non-linear regression, or

classifying the discharge and sediment data into different groups (Duan, 1983; Jansoon

1985; Ferguson, 1986, 1987; Walling and Webb, 1988; Singh andDurgunoglu, 1989; De

Vries and Klavers, 1994; Phillips, et al., 1999; Asselman, 2000).

The ANNs concept and its applicability to various problems of water resources

have been amply demonstrated by various investigators (ASCE Task Committee, 2000a,

2000b). The ANN approach for modelling sediment-discharge process has already

. produced very encouraging results. Rosenbaum (2000) has demonstrated the applicability

of the ANN technique in predicting sediment distribution in Swedish harbors. In order to

assess the water quality of the lake Kasumigaura in Japan, Baruah et. al. (2001)

developed ANN models of lake surface chlorophyll and sediment content estimated from

Landsat TM imagery. Through this study, the authors confirmed that back propagation

^ neural network with only one hidden layer could model both the parameters better than

conventional regression techniques. In another study, Jain (2001) applied the ANN

approach to establish an integrated stage-discharge-sediment concentration relation for

two sites on the Mississipi River. It was pointed out that the bias correction approach

proposed by Ferguson (1986) does not yield results better than those obtained by means

of ANNs. Nagy et al. (2002) also used neural network to estimate the natural sediment

discharge in rivers in terms of sediment concentration and addressed the importance of

choosing an appropriate neural network structure pd providing field data to that network

for training purpose. Tayfur (2002) applied ANNs and physically based models to

*
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simulate experimentally observed nonsteady-state sediment discharge data and observed

that the ANN models perform better than the physically based models for simulating

sediment loads from different slopes and different rainfall intensities. Multilayer

perceptrons (MLPs) were also successfully applied by Cigizoglu (2004) to simulate the

suspended sediment process in rivers for forecasting of daily suspended data where

explicit knowledge of internal sub proces/is notrequired. Kisi (2004a) found that a MLP

with Levenberg-Marquardt training algorithm generally gives better suspended sediment

concentration estimates than the generalized regression neural networks (GRNN), radial

basis function (RBF) techniques and multi-linear regression (MLR). Furthermore,

comparison of results revealed that the RBF and GRNN showed better performance in

estimation of total sediment load. Lin and Namin (2005) reported that an integrated

approach which utilizes the advantages of both deterministic methods and ANNs, has the

potential to give more reliable predictions of suspended sediment transport under

practical and complex conditions. Agarwal et al. (2005) developed generalizedbatch and

pattern learned back propagation artificial neural network based sediment yield models

considering high level of iteration and cross validation as criteria to terminate the process

of learning. Tayfur and Guldal (2006) developed a three layer feed forward ANN model

using back propagation algorithm to predict daily total suspended sediment in rivers by

testing several cases of different data lengths of Tennessee basin, in order to obtain

optimal period for training ANNs. Further, it was observed that the ANN model shows

better performance than the linear black-box model, based on two dimensional unit

sediment graph theory (2D-UGST). Applying k-fold partitioning in training data set,

Cigizoglu and Kisi (2006) showed that superior sediment estimation performance can be
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4

4

>_



t

obtained with quite limited data, provided that the sub-training data statistics are close to

those of whole testing data set. These studies pointed out that, in general the ANN

approach gives better results compared to several commonly used formulas of sediment

discharge. Raghuwanshi et al. (2006) demonstrated the ANN capabilities in runoff and

sediment yield modeling.

Fuzzy rule based approach introduced byZadeh (1965) is being widely utilized in

various fields of science and technology. It is a qualitative modeling scheme inwhich the

system behavior is described using a natural language (Sugeno and Yasukawa, 1993).

The transparency in formulation offuzzy rules offers explicit qualitative and quantitative

insights into the physical behavior ofthe system (Coppola etal. 2002). The application of

fuzzy logic as a modelling tool in the field ofwater resources is a relatively new concept,

although some studies have been carried out to some extent in the last decade and these

studies have generated lots ofenthusiasm. Bardossy and Duckstein (1992) applied fuzzy

rule based modeling approach to a Karstic aquifer management problem. Bardossy and

^ Disse (1993) used fuzzy rules for simulating infiltration. Fontane et al. (1997) and

Panigrahi and Mujumdar (2000) applied fuzzy logic for reservoir operation and

management problems. The fuzzy modeling approach has also been successfully applied

for water quality management (Sasikumar and Mujumdar, 1998; Mujumdar and

Sasikumar, 1999). Use of multiobjective fuzzy linear programming for sustainable

irrigation planning and optimal land-water-crop planning has been demonstrated by

Srinivasa Raju and Duckstein (2003) and Sahoo et al. (2006) respectively. Few attempts

have been made to demonstrate the applicability of fuzzy rule based approach in river

flow forecasting (Xiong etal. 2001; Chang and Chen, 2001; Lohani etal., 2005a; Lohani
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et al., 2005b; Nayak et al., 2005a, 2005b) and modeling stage discharge relationship

(Lohani et al., 2006, Lohani et al., 2007). Kisi (2004b) developed nine different fuzzy

differential evaluation (fuzzy_DE) models to estimate sediment concentration from

streamflow. Based on comparison of results, it was concluded that the fuzzy_DE model

may provide a superior alternative to the conventional rating curve approach. Another

study carried out by Kisi (2005) indicated that the neuro-fuzzy model gives better

estimates of suspended sediment than the neural networks and conventional sediment

rating curve. Similarly, fuzzy rule-based models using triangular membership functions

for sediment concentration forecasts also produce much better results than rating curve

models (Kisi et al.,-2006).

This study demonstrates the applicability of fuzzy rule based approach in

developing gauge-discharge-sediment relationship. The study also aims at an evaluation

of fuzzy rule based model with ANN and conventional rating curve for computation of

sediment using daily gauge and discharge data of Manot and Jamtara gauging sites in

Narmada basin, India.

5.3 FUZZY INFERENCE SYSTEM

Figure 5.1 shows block diagram of a typical fuzzy inference system for setting up

stage-discharge-sediment relationship. The premise (IF part) of each rule describes a

certain input data situation. The inference system evaluates all premises and calculates a

truth value for each rule out of the membership values of the fuzzy sets contained in the

premise. The consequent (THEN part) of all rules are calculated where the truth value of

the premise is greater than zero. The results of each consequent are then used to compute

the overall result, weighted by the truth-value of the rule. As discussed in Chapter 4, TS
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fuzzy model (Takagi and Sugeno, 1985), where the consequents are (crisp) functions of

the input variables, has two important aspects involving: (i) structure identification and,

(ii) parameter identification.

For deriving stage-discharge-sediment model structure using subtractive

clustering, each cluster centre Dt is considered as a fuzzy rule that describes the system

behaviour. The cluster centers are identified on the basis of the potential value (Py)

assigned to each data point xt of a set of N data points in a p- dimensional space of

Fuzzy

Ht X.

Qt H

Crisp/Fuzzy

HMZ==£>
| Crisp/Fuzzy

#
Crisp/Fuzzy

QMZ
Crisp/Fuzzy

SMX $>
Crisp/Fuzzy

St-2^
f|y

Crisp/Fuzzy

Rule 1: IF Ht is Au and HM is
A12...and Qt is Bu and QM B12
and St-1 is Cn and S,.2 is C12...
THEN S, is D,

Rule 2: IF Ht is A21 and HM is
A22...and Q, is B21 and Q,.., B22
and SM is C21 and St.2 is C22...
THEN S, is D2

Rule 3: IF Ht is A31 and HM is
A32...and Q, is B31 and Q,., B32
and St-1 is C31 and St-2 is C

THEN St is D3
32"

Rule K: IF Ht is AK1 and HM is
A^.-.and Q, is BK1 and Q,., B,^
and SM is CK1 and St2 is C^...
THEN St is DK

E-^>
Iossl

AGGREEGATION

DEFUZZIFICATION t——!>>Y
1Crisp v

Figure 5.1: Fuzzy Inference System for modeling gauge-discharge-sediment
relationship

input vectors constituting current and previous values of gauge and discharge and

previous sediment values:

f

^=Z>p
112 A

-4.
\\x. - X.

(5.1)
K

where, ra ( > 0 ) and ||x. -jcJ are cluster radius and Euclidean distance respectively.
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The data point with highest potential (P*) is considered as first cluster center Dj.

Further, the potential of the remaining data points is modified by subtracting the

influence of first cluster center. Again, the point with highest modified potential is

considered as second cluster center (D2) and the process is repeated to compute other

cluster centers. Therefore, the modified potential of the data points after computation of

they',/, cluster center is expressed as:

f ii H^

P;=^.-P,*exp (5.2)

where n ( rb> ra> 0 ) is the radius that results measurable reduction in potential of

neighborhood data points and avoids closely spaced cluster centers. The process is

repeated until a sufficient clusters are generated and finally the process is stopped

considering the criterion suggested by Chiu (1994). These cluster centers (£>,*, i=l,k) can

be used as the centers of the fuzzy rules' premise of input data vector x and the degree to

which rule i is fulfilled is defined by Gaussian membership function:

( ii *\\i\\\x-D,
4)/",00 = exp

K
\

(5.3)

A linguistic fuzzy model has fuzzy sets in both antecedents and consequents of

the rules. Whereas, in Takagi-Sugeno (TS) fuzzy model the consequents are expressed as

(crisp) functions of the input variables (Takagi and Sugeno, 1985). A TS Fuzzy model

consists of a set of rules Ri, i—l,...,k :

Rt: IF Ht is Au AND Ht.j isAa ANDHt.u is Aiu+j AND Q, is Aiu+2 AND Q,.i is Aiu+3

AND Q,.v \sAiu+v+2 AND 51,./ is/4,u+v+j AND Q,^ isAiu+v+w+2
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THEN S, =f(Ht,Hn,....Q„ Q,., ....St.t.S,2 ) (5.4)

where H,, Ht.j, .... Qt, Qt.i .... St.i, St-2.... are the antecedents and S, is the consequent,

Ay are fuzzy sets andfl(H,, H,.j,.... Qt, Qt.i .... St.i,S,.2 .....) is linear.

f(Ht,H,-i, ...Q,, Qui ...St-i,St.2 ....) = aiHt + a2Hul +..ajQt + ay+;g,.; + anSt.w+an+i (5.5)

The output of the 7^ fuzzy model is computed by:

m

y =yZf.(H,'H,-i> •Q.-Q,! ••••s,.l,sl_2 ).o,.(x) (5.6)

where, Mis the number of fuzzy rules, ^.(x)are called basis functions, which normalize

the degree of rule fulfillment by using the product t-norm:

. '.- a(x)

J3(x) P>/J

where,

p

Mx) =TlMxj) (5.8)

M

^W =E^/(Jf) - (5.9)
J

where, xj is they',A element in current data vector in ap dimensional input data vector, juy

is the membership degree ofXj to the fuzzy set describing the;,A premise part of the ith

rule.

The cluster analysis assigns a set of rules and antecedent membership functions

that models the data behaviour. Then using global linear least square estimation, the

consequent equation (5.6) of each rule is determined. The advantage of this method is

that it generates Gaussian membership functions (Equation 5.3) as fuzzy sets, which

have, by nature, infinite support, therefore for every special input vector a membership
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degree (> 0) to each fuzzy set is computed. Thus the relationship between input and

output channels is described through a couple of rules.

5.4 CONVENTIONAL SEDIMENT RATING CURVES

The sediment rating curve is a relation between the river discharge and sediment

load. Such curves are widely used to estimate the sediment load being transported by a

river. Generally, a sediment-rating curve may be plotted showing average sediment

concentration or load as a function of discharge averaged over daily, monthly, or other

time periods. Using the rating curve, the records of discharge are transformed into

records of sediment concentration or load. Mathematically, a rating curve may be

constructed by log-transforming all data and using a linear least square regression to

determine the line of best fit. The relationship between sediment concentration (or load)

and discharge is of the form: ,

S = aQb (5.10)

The log-log transformation of equation (5.10) is:

log S = log a + b log (Q) (5.11)

Where, S and Q are suspended sediment concentration (or load) and discharge

respectively, a and b are regression constants.

A typical sediment-rating curve is a straight-line plot on log-log paper and a

regression equation minimizes the sum of squared deviations from the log-transformed

data. This is not the same as minimizing the sum of squared deviations from the original

dataset. Therefore, this transformation introduces a bias that underestimates the sediment

concentration (or load) at any discharge and it may result in underestimation by as much

as 50% (Ferguson, 1986). Ferugson and others have suggested bias correction factors, but
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their appropriateness is uncertain (Walling and Webb, 1988). Further, depending upon

the channel characteristics, two or more curves may be fitted to the data. A major

limitation of this approach, however is that it is not able to take into account the

hysteresis effect that gives a loop rating curve (Jain, 2001). Therefore, as such, the

conventional rating curve technique is not adequate in view of the complexity and

importance ofthe problem and, hence, there remains a scope for further improvement.

5.5 STUDY AREA AND DATA USED

Data from discharge measuring stations in the upper catchment of river Narmada

in central India have been considered. The data used for analysis consisted ofdaily stage,

discharge and sediment records for the following two gauging sites:

1. Manot gauging site: The catchment area at this site is 4980 km2. The average (20

year) annual total suspended sediments at Manot site is 5.82 x 106 tones (Gupta and

Chakrapani, 2005). Here, 831 pairs of gauge and discharge were available for the

monsoon period 1993-1998. The first 500 pairs of data were used to fit the

conventional rating curve and to calibrate ANN and fuzzy based models, and the

remaining 331 were used for validation.

2. Jamtara gauging site: It is located down stream of Manot site on the Narmada River.

The catchment area at this site is 17157 km2. The average annual total suspended

sediments at Jamtara site is 3.32 x 106 tones/The Bargi Dam upstream of Jamtara

traps a substantial amount of River Narmada suspended sediment (Gupta and

Chakrapani, 2005). Here, 406 pairs ofgauge, discharge and sediment were available

for the monsoon period 1993-1995. The first 250 pairs of data were used to fit the
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conventional rating curve and to calibrate fuzzy based models, and the remaining 156

were used for validation.

In this study care was taken to have the training data consisting of two extreme

(minimum and maximum observed values )input patterns. To insure that the developed

models are capable of whole data set, about 60% of the total samples were used for the

calibration and rest of the data set for the validation. The statistical parameters of data

sets of two stations are shown in Table 5.1.

Table 5.1: Statistical parameters of data set for the two stations

Data

set Station/Data type Minimum Maximum Mean
Standard

Deviation

Coefficie

nt of

Skewness

Manot Site (500 data)

Gauge (m) 443.0 455.6 444.6 1.3 3.1

a Discharge( m3 s"1) 0.4 2997.0 273.4 387.7 4.0

Sediment (mg 1" ) 7.0 6168.0 785.4 1024.7 4.3

*cd
Jamtara Site (250 data)

U Gauge (m) 363.5 374.4 365.8 2.3 3.4

Discharge( m3 s"1) 31.4 7800.0 977.6 1411.9 4.3

Sediment (mg l"1) 6.0 1371.0 151.8 142.7 4.1

Manot Site (331 data)

Gauge (m) 443.0 450.0 444.4 0.9 2.3

Discharge( m3 s" ) 0.4 2060.0 200.0 281.8 3.9

Sediment (mg l"1) 7.0 5888.0 484.9 749.9 3.6

a
Jamtara Site (156 data)

o Gauge (m) 364.1 371.6 365.1 1.6 2.0

32 Discharge( m3 s"1) 45.0 4781.0 555.1 1142.8 2.3

> Sediment (mg 1" ) 7.0 725.0 101.4 141.8 2.6

82



«

*

5.6 MODEL DEVELOPMENT

5.6.1 Conventional Rating Curve Analysis

The rating curves were fitted for two locations in the Narmada river system by

least square regression on the logarithms of discharge and sediment concentration data.

The rating curves based on least square regression of the log-transformed data seem to

underestimate concentration values at high discharges. The degree of underestimation

decreases when the bias correction factor is used (Asselman, 2000). A bias correction

factor suggested by Ferguson (1986) has been applied to improve the accuracy of

sediment concentration estimates from the rating curve. The correlation coefficients and

root mean square error (RMSE)-of the fitted curves are given in Table 5.2 and 5.3. The

developed regression equation was used to compute discharge considering adifferent set

of discharge values (validation data) and the sediment concentration so computed was

compared with the observed sediment concentration values.

5.6.2 ANN Models

5. 6.2.1 Model inputs

Identification of inputs and outputs variables is the first step in developing an

ANN model. Various researchers have shown that the current sediment load can be

mapped better by considering, in addition to the current value of discharge, the sediment,

discharge and gauge at the previous time steps (Jain, 2001; Cigizoglu and Alp, 2006).

Therefore, in addition to Qt, i.e., discharge at time step t, other variables such as Q,.h Qt_2,

and S,.i, Sn, were also considered in the input. In the present study, the following five

combinations ofinput data ofstage, discharge and sediment were considered:
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Table 5.2: Coefficient of correlation and RMSE for ANN, Fuzzy and conventional
models at Jamtara Site

Fuzzy Model Nodes

in

hidden

layer

Number of

Rules/

Gaussian

membership
functions

Calibration /Training
Data

Validation/Test Data

/'ANN
' 4

Fuzzy ANN Fuzzy

R
RMSE

(mg l'1) R
RMSE

(mgr1)
R

RMSE

(nig I4)
R

RMSE

(mgr1)

SrtHAi, Qt. Q.-i
and S,.i)

5 4 0.612 116.1 0.624 101.4 0.613 113.6 0.630 109.79

St=f(Ht, Ht.i, H,.2, Qt,
Qt-i and SM)

5 4 0.784 95.1 0.794 84.6 0.790 85.94 0.797 85.57

S,=f(H,, HM, Ht.2,Qt,
Om.0,-2 and SM)

5 4 0.790 84.9 0.802 85.6 0.809 83.79 0.812 83.1

St=f(Ht,H,„ Qt, Q.-i,
Q,.2,Sm and S,.2)

5 7 0.813 84.13 0.815 82.83 0.813 83.12 0.815 82.22

St=f(Ht, Ht-i, Ht-2, Qt)
Qt-i, Qt-2, S,.i and
s,.2)

6 5 0.781 106.2 0.797 92.84 0.798 96.37 0.794 95.68

Curve Fitting with

bias correction

R 0.524 0.562

RMSE (mg1') 161.1 141.9

Table 5.3: Coefficient of correlation and RMSE for ANN, Fuzzy and conventional
models at Manot Site

Fuzzy Model Nodes

in

hidden

layer

Number of

Rules/

Gaussian

membership
functions

Calibration /Training
Data

Validation/Test Data

ANN Fuzzy ANN Fuzzy

R
RMSE

(mgr1)
R

RMSE

(mgr')
R

RMSE

(mgr1)
R

RMSE

(mgr*)

S,=f(Ht,H,.,,Qt, Q,., and
Sm)

4 5 0.608 789.73 0.617 732.32 0.599 859.43 0.602 780.23

St=f(Ht, H,_i, H,_2, Qt, Qt-i
and St-i)

4 5 0.775 685.54 0.779 663.83 0.772 685.35 0.777 683.09

St=f(H,, Ht.i, Ht.2, Qt, Qt-
i, Qtj and SM)

4 6 0.792 665.89 0.794 642.31 0.785 671.49 0.795 660.21

S,=f(H„ HM, Q„ Q,.„ Qt.
2, Sm and St.2)

5 7 0.796 659.53 0.797 642.78 0.793 668.12 0.798 656.13

St=f(Ht( Ht-i, Ht.2 Qt, Qt-
u Qt-2, St-i andS,.2)

5 6 0.784 665.63 0.794 642.35 0.791 670.07 0.794 663.37

Curve Fitting with bias

correction

R 0.558 0.615

RMSE (mg I"') 1168.1 971.73
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1. S, =f(H,,, H„ Qt.i, Qt, Sui)

2. S, =f(Hu2, Hui, Ht, Qui, Qt, St.,)

3. St =f(Ht.2, Hut, H, Qt.2, Qui, Qt, St.,)

4. S, =f(Ht.,, Ht, Qt.2, Qt.,, Qt, St.2, S,.,)

5. St =f(Ht.2, Hui, H, Qt.2, Qt.,, Qt, S,2, S,,)

Where, St, Ht and Qt are the sediment concentration, gauge and discharge at time t,

respectively.

5.6.2.2 Training of ANN models

The feed-forward back propagation ANN/network used in this study consists of

input neurons (gauge, discharge and sediment of previous time steps) in the input layer

and a single output neuron (sediment) in the output layer with one hidden layer. The

input and output data were scaled between 0 and 1. In the trial runs, the number of

neurons in the hidden layer was varied between 2 and 10. After many trials, the number

of neurons in the hidden layer of the network was finalized and they vary from 4 to 6.

The initial weights were randomly assigned and the activation functions such as sigmoid

and linear functions, were used for the hidden and output nodes, respectively. The mean

square error (average squared error between the network outputs and the target outputs)

was used to measure the performance of a training process. During training, the weights

and biases of the network were adjusted using gradient descent with momentum weight

and bias learning function. To confirm the consistency in the results, a number of trials

have been made and the developed model was simultaneously checked for its

improvement on testing data oneach iteration to avoid over training.
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5.6.3 Fuzzy Model

Five input data vectors considered for ANN models were also applied for the TS

fuzzy model development. The most significant factors, identified in the previous

sections, were used to identify a TS fuzzy model. The model identification was carried

out in two steps: (i) determining the number of fuzzy rules and their associated

membership functions using fuzzy clustering approach and (ii) optimizing the TS fuzzy

model through least square estimation. The fuzzy clustering partitions a data set into a

number of groups in such a way that the similarity within a group is larger than that

among groups. The similarity matrices are generally highly sensitive to the range of

elements in the input vectors. Therefore, the input-output data sets have been normalized

within the unit hypercube. The subtractive clustering approach has been applied for

computation of rule base and membership functions. The optimum model structure was

determined after trials. In the trials, the cluster radius (ra) of subtractive clustering

algorithm was varied between 0.1 and 1 with steps of 0.02. The cluster centers and thus

the Gaussian membership function identified for each case were used to compute

consequent parameters through a linear least square method and finally a TS fuzzy model

was developed. Each fuzzy model has a different number of rules (between 4 and 7). For

every input vector a membership degree to each fuzzy set greater than 0 is computed

from the Gaussian membership function. Therefore, all the rules fires simultaneously for

each combination inputs and thus provides a crisp output value for a given input data

vector using equation (5.6). Performance indices such as root mean square error (RMSE)

between the computed and observed discharge and the correlation coefficient were used

to finalize the optimal parameter combination of the model.
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5.7 RESULTS AND DISCUSSION

The value of performance indices for the estimation of sediment concentration of all the

models are presented in Table 5.2 for Jamtara site and in Table 5.3 for Manot site. The

correlation statistics, which evaluate the linear correlation between the observed and

computed sediment concentration, is consistent during the calibration and validation

period for all of the models. The correlation coefficients for the conventional rating curve

are low in case of both calibration and validation data sets. The conventional sediment

curves developed by Asselman (2000) for numerous stations also showed a low value of

correlation coefficient between observed and computed sediment. The ANN model

shows a significant improvement in estimation ofsediment concentration, as indicated by

increased correlation coefficient, varying from 0.612 to 0.813 for calibration data sets

and 0.613 to 0.813 for validation data sets of Jamtara site, and from 0. 608 to 0.796 for

calibration data sets and 0.599 to 0.793 for validation data sets of Manot site (Table 5.2

and 5.3). Further, slightly better correlation is observed with the TS fuzzy model in the

case of both Jamtara (0.624 to 0.815 calibration data and 0.630 to 0.815 for validation

data) and Manot (0.617 to 0.797 calibration data and 0.602 to 0.798 for validation data).

The RMSE values obtained for Manote site are generally very high in comparison to

those obtained for the Jamtara site (Table 5.2 and 5.3). This is mainly due to very low

sediment concentration in the river water at Jamtara. The fuzzy model has the lowest

RMSE value when compared with ANN and conventional rating curves. The observed

discharge and sediment concentration data of the two sites showed a decrease in the

sediment values with the increasing flows after some turning points. This characteristic is

known as hysteresis and the higher performance ofANN and fuzzy models is basically
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due to their capability in capturing this phenomenon. This capability of the ANN and

fuzzy model was investigated by plotting sediment concentration estimates versus the

observed flows (Figure 5.2 and 5.3) for the periods where hysteresis is present in the data

set. This illustration clearly represents that the ANN and fuzzy models reproduce a

hysteresis though slightly different from the observed hysteresis. Both ANN and fuzzy

models approximated the shape of the hysteresis curve in general with some under- and

overestimation. However, the fuzzy model estimates the sediment concentrations more

accurately than the ANN models in such conditions.
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Figure 5.2: The hysteresis regeneration by ANN and Fuzzy Models (St=f(Ht, Ht-i,
Qt, Qt-i, Qt-2, St-i and St-2)) for the Jamtara Site -Validation data
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Figure 5.3: The hysteresis regeneration by ANN and Fuzzy Models (St=f(H„ Ht.i,
Qt, Qt-i, Qt-2, S,.i and St-2) for the Manot Site -Validation data

The estimations of sediment concentration for the validation period are compared

with the observed sediment concentration values in the form of sediment hydrograph in

Figure 5.4 and 5.5. The sediment hydrographs show that the deviations (under- and

overestimation) from the observed sediment concentration are in general not very high in

the case of the ANN and fuzzy modeling approach. It is also seen from the graph that the

conventional approach significantly underestimates the peaks. Further, the recession

behaviour is not properly modeled by the conventional curve fitting approach. The

calibration and validation results (Table 5.2 and 5.3) indicate that the increase in

information in the form of gauge, discharge and sediment of previous time steps

89



improves the model results, which confirms the results obtained by Jain (2001).

However, further increase in such information in the input structure shows a declining

trend in model output. This may be due to decrease in autocorrelation and cross-

correlation after certain lags.

Scatter plots between observed and estimated sediment data with ±20% error

band are shown in Figure 5.6 for Jamtara site and in Figure 5.7 for Manot site. These

scatter plots indicate that the fuzzy and ANN model can estimate high values of sediment

more accurately than the conventional approach. Figure 5.6 illustrates that most of
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Curve Fitting
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Figure 5.4: Estimated sediment concentration hydrograph by curve fitting,
ANN and Fuzzy models (St=f(H», Ht-i, Qt, Qt-i, Qt-2, St-i and St.2)
for the Jamtara Site - Validation data
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Figure 5.5: Estimated sediment concentration hydrograph by curve fitting,
ANN and Fuzzy models (S,=f(Ht, HM, Qt, Qt-i, Q,-2, St.i and S,.2j
for the Manot Site - Validation data
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Figure 5.6: Scatter plotcomparing estimated and observed sediment concentration
with ± 20% error band for the Jamtara Site using - Validation data
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Figure 5.7: Scatter plot comparing estimated and observed sediment concentration
with ± 20% error band for the Manot Site -Validation data

the measured sediment values in the high range (>500 mg l"1) of the sediment are

estimated more accurately than with the conventional curve fitting approach. In the lower

and lower-middle region of error band, the variation is generally more than 20% which is

mainly because of narrow band width in that region. The validation result for Manot site

(Figure 5.7) also indicates that high sediment concentration values (>3000 mg 1") are

well estimated by fuzzy and ANN models within the ±20% error band.

The models' performance in estimation of total sediment load is also compared,

since it is important in water resources management. The total estimated sediment

amounts for the gauging sites in the validation periods are given in Table 5.4. The total

sediment load estimates for the Manot site by the fuzzy, ANN and curve fitting models
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are, respectively, 3.52, 5.18 and 21.04 % lower than the observed value and those for

Jamtara site are, respectively, 2.63, 4.05 and 23.19% lower than the observed value. The

curve-fitting approach poorly estimates the total sediment load. The fuzzy logic model

estimates areconsiderably better than those of the ANN model.

Table 5.4: Estimated sediment load during testing period by curve fitting, ANN and
fuzzy models (S,=f(Hb H,.,, Qt, QM, Qt.2, S,., and S,.2))

Gauging
Site

Observed

Sediment

Load

xl04tons

Model Results

Fuzzy logic ANN Curve Fitting

Sediment

Load

xlO4 tons

Relativ

e Error

(%)

Sediment

Load

XlO4tons

Relativ

e Error

(%)

Sediment

Load

XlO4 tons

Relativ

e Error

(%)

Jamtara 151.69 147.70 2.63 145.54 4.05 116.51 23.19

Manot

....

526.57 507.99 3.52

—

499.27 5.18 415.77 21.04

For the practical point of view, the accurate estimation of sediment concentration

is in particular important for entire spectrum of river sediment concentration conditions

(or river flow situations). Generally, a model with a minimum RMSE may not be

sufficient to eliminate the uncertainty in the model choice. In order to estimate the bias of

the models for different output ranges, observed and computed data of two gauging sites

were scaled in the range of 0 to 100 and than pooled together. Further, the scaled and

pooled data set was divided into two sets: (i) data set consisting of data points for which
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models generally underestimates, and (ii) data set consisting of data points for which the

model overestimates. The pooled average/relative underestimation and overestimation

errors (PARE (%)) were computed and plotted for the following eight sediment

concentration classes: 0-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-100 (Figure

5.8) using the following formula:

PARE(%)=l-f}SCi S0>) (5-12)
n m So,

where, Sct and So, are computed and observed sediment concentration and n is the

number of data points falling in each class.

It is seen that in each class, the overestimation and underestimation error of fuzzy

and ANN models are more or less uniform and do not show any strong deviation. This

indicates the absence of bias in fuzzy and ANN models in all ranges of sediment

concentration. The overestimation and underestimation error in very low sediment

concentration are markedly high for curve fitting approach. Similarly, in the high

sediment region, the underestimation error for curve fitting approach is always greater

than that for the fuzzy and ANN models. In general, the fuzzy model gives slightly more

accurate estimates than the ANN model for both overestimated and underestimated data

sets and in almost all the river stages.
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Figure 5.8: Variation of over and under estimation error with sediment
concentration for different models in pooled data set

5.8 CONCLUSIONS

Many practical problems in water resources require knowledge of the sediment

load carried by the rivers or the load the rivers can carry without danger ofaggragadation

or degradation. Hence, the measurement ofsediments being transported by a river is of

vital interest for planning and designing of various water resources projects. The

conventional methods available for sediment load estimation are largely empirical, with

sediment rating curves being the most widely used. The rating relationships based on

regression technique are generally not adequate in view ofthe inherent complexity ofthe

problem. In this study, ANN and fuzzy logic techniques are applied to model stage-

95



discharge-sediment concentration relationship. The data of two gauging sites in the

Narmada basin have been used to compare the performance of fuzzy, ANN and

conventional curve fitting approaches. Performance of the conventional sediment rating

curves, neural networks and fuzzy rule based models was evaluated using coefficient of

correlation, root mean square error and pooled average relative underestimation and

overestimation errors (PARE) of sediment concentration. Both ANN and fuzzy models

were found to be considerably better than the conventional rating curve method. This is

explained by the fact that fuzzy and ANN approaches can successfully capture the

hysteresis phenomenon. It is noted that in the fuzzy and ANN approaches, several

explanatory variables for past times were used to predict sediment concentration in

present time, whereas, the conventional method uses a single explanatory variable, the

current discharge. Therefore, the performance of the conventional sediment rating curve

is poor in comparison to fuzzy and ANN models. The study suggests that the fuzzy

model is able to capture the inherent nonlinearity in the river gauge, discharge and

sedimentrelationship better than the ANN, and is able to estimate sediment concentration

in the rivers more accurately. A comparative analysis of predictive ability of these

models in different ranges of flow indicates that the fuzzy modeling approach is slightly

better than the ANN. The results of the study are highly promising and suggest that fuzzy

modeling is a more versatile and improved alternative to the corresponding ANN

approach for developing stage-discharge-sediment concentration relationships.
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CHAPTER 6

RAINFALL-RUNOFF MODELLING USING

ANN AND FUZZY LOGIC BASED MODELS

6.1 BACKGROUND

As mentioned in the previous chapters, little formal research has been devoted to

a quantitative investigation of the fuzzy logic based models in hydrological modeling.

Therefore, the present study aims to enhance the recent research works on fuzzy logic

based rainfall-runoff modeling. Rainfall-runoff modelling, from daily time scale point of

view, is now explored with different input model structures, using the linear transfer

function, ANN and fuzzy logic. Using the available rainfall-runoff data of the upper

Narmada basin, a suitable modeling technique with appropriate model input structure is

suggested on the basis of various model performance indices. Research findings of this

chapter have been accepted for presentation in the International Conference on Water,

Environment, Energy and Society (WEES) y 2009, New Delhi, India.

6.2 INTRODUCTION

The rainfall-runoff process is highly nonlinear, time-varying, spatially distributed,

and not easily described by simple models. Therefore, the problem of transformation of

rainfall into runoff has been a subject ofscientific investigations throughout the evolution

of the subject of hydrology. Hydrologists are mainly concerned with evaluation of

catchment response for planning, development and operation of various water resources

schemes. A number of investigators have tried to relate runoff with the different



characteristics which affect it (Dooge, 1959; Rodriguez-Iturbe and Valdes, 1979;

Stedinger and Taylor, 1982; Chow et al, 1988; Van der Tak and Bras, 1990; Bevan et al.,

1995; Muzik, 1996; Bevan, 2000; Sikka and Selvi, 2005). Various attempts have been

made to address this modelling issue either using knowledge based models or data-driven

models. A knowledge based model aims to reproduce the system and its behaviour in a

physically realistic manner and are generally called physically-based model. The

physically based models generally use a mathematical framework based on mass,

momentum and energy conservation equations in a spatially distributed model domain,

and parameter values that are directly related to catchment characteristics. For the

purpose of rainfall-runoff process simulation, conceptual and physical based models are

widely used. However, simulating the real-world relationships using these rainfall-runoff

models is not a simple task since the various hydrological processes that involve the

transformation of rainfall into runoff are complex and variable. Many of the conceptual
/'

models widely used in rainfall-runoff modeling are lumped one and the factors in

generating runoff are not represented clearly by these models. The time required to

construct these models is enormous and thus an alternative modelling technique is sought

when detailed modelling is not required in cases such as streamflow forecasting. The

linear regression or linear time series models such as ARMA (Auto Regressive Moving

Average) have been developed to handle such situations because they are relatively easy

to implement. However, such models donot attempt to represent the non-linear dynamics

inherent in the hydrologic processes, and may not alwaysperform well. In recentyears,

data-driven technique e.g. Artificial Neural Network (ANN) has gained significant

attention. Many rainfall-runoff models using ANN have been reported in the literature.

*
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This study presents the development of intelligence models based on ANNs and fuzzy

logic for prediction ofrunoff. The fuzzy relations between the input and output variables

were inferred from the measured data and they are laid out in the form of IF-THEN

statements. The performance of the developed models is compared with linear transfer

based models.

>

6.3 LITERATURE REVIEW

6.3.1 ANN Based Models

In modeling the hydrological processes, ANNs have proven to be good in

simulating complex, non-linear systems (Halff et al., 1993; Karunanithi et al., 1994; Hsu

et al., 1995; Minns and Hall, 1996; ASCE Task Committee, 2000; Dawson and Wilby,

2001; Anctil et al., 2004; Jain and Srinivasulu, 2004; Rajurkar et al., 2004; Agarwal et al.

2004; Agarwal and Singh, 2004). Daniel (1991), ASCE (2000a, 2000b), and Maier and

Dandy (2000) reported comprehensive review and some of the applications ofANN in

hydrology and water resources. Hsu et al. (1995) used three layered feed forward neural

network with Linear Least Square Simplex (LLSSIM) for the training and compared its

performance with the ARMAX model and conceptual SAC-SMA (Sacramento soil

moisture accounting) model and found that ANN model gave better results than the other

two models. Smith and Eli (1995) presented the ability ofa three-layer ANNs to relate
Yy '

spatially and temporally varying rainfall excess to the runoff response of a simple

synthetic watershed. Raman and Sunilkumar (1995) developed ANN model with back

propagation algorithm to synthesize inflows into reservoirs and found that ANN gave

better results than autoregressive model. Dawson and Wilby (1998) developed flood

forecasting system with three layered feed forward neural network with back propagation
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algorithm and compared with conventional flood forecasting system and found that the

flood forecasting system by ANN performed better than the other one. Fernando and

Jayawardena (1998) used Radial Basis FunctionNetwork (RBFN) with Orthogonal Least

Square (OLS) algorithm to model runoff forecasting from rainfall patterns. They found

that the training was faster in RBFN with OLS algorithm and RBFN performed better

than the network with Back propagation algorithm and the ARMAX model. Tokar and

Johnson (1999) employed an Artificial Neural Network (ANN) methodology to forecast

daily runoff as a function of daily precipitation, temperature, and snowmelt for the Little

Patuxent River watershed in Maryland. The sensitivityof the prediction accuracy to the

content and length of training data was investigated. Thirumalaiah and Deo (2000)

constructed an ANN model for hourly flood runoff and daily river stage. They used Back

Propagation algorithm, Conjugate gradient algorithm, Cascade Correlation algorithm for

the training of the model and the results are compared with Multiple Regression model

and found that ANN performed better than the Multiple regression model. Sajikumar and

Thandaveswara (1999) used temporal back propagation neural network to model monthly

rainfall-runoff process and they compared the results with Volterra type Functional Series

Model. They found that TBP NN performed better than the other model. Elshorbagy et al

(2000) used Feed Forward ANN with Back propagation algorithm to predict spring

runoff and found that the ANN results were better than the linear and nonlinear regressive

model. Tokar and Markus (2000) applied ANN technique to model watershed runoff with

back propagation algorithm for the training of the neural network and compared with the

results of conceptual models. The results indicate that ANNs can be powerful tools in

modeling the rainfall-runoff process for various time scale, topography, and climatic
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patterns. Zhang and Govindaraju (2000) used modular neural network structure to model

the rainfall-runoff process. Bayesian concepts were utilized in deriving the training

algorithm. Average monthly rainfall ofcurrent and previous months and average monthly

temperatures were treated as network inputs, and monthly runoff was treated as output. It

was reported by them that modular neural networks predict extreme events of runoff

better than the singular neural network models. Sudheer et al. (2001) used ANN

technique with back propagation algorithm for the development of rainfall-runoff model.

The statistical properties of the data series such as auto, partial and cross correlation

values were used to select an appropriate input vector for the model development. The

ANN model developed based on this approach performed effectively. Sudheer, et al.

(2002) presented a new approach for designing the network structure in an artificial

neural network (ANN)-based rainfall-runoff model. They utilized the statistical properties

such as cross-, auto- and partial-auto-correlation ofthe data series in identifying aunique

input vector that best represents the process for the basin, and a standard algorithm for

training. Jain and Indurthy (2003) carried out a comparative analysis of deterministic,

statistical, and artificial neural networks for event based rainfall-runoff modeling.

Agarwal and Singh (2004) developed multi layer back propagation artificial neural

network (BPANN) models to simulate rainfall-runoff process considering three time

scales viz. weekly, ten daily and monthly. They suggested that the variability and

uncertainty ofdata have animpact on the development ofgeneralized BPANN model.

In most of the studies reported above, three-layered feed forward neural network

with Back Propagation algorithm were used for the training and validation of the model.
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Therefore, three-layered feed forward network and Back Propagation algorithm have

been used for training the network in this study also.

6.3.2 Fuzzy Logic Based Models

Zhu and Fujita (1994) compared ihe performance of three-layered feed forward

neural network with back propagation algorithm to forecast the discharge for 1-hr, 2-hr,

3-fir lead-time with fuzzy inference method.

Hundecha et al. (2001) demonstrated the applicability of a fuzzy logic based

approach to rainfall-runoff modelling. Individual processes involved in producing runoff

from precipitation in a watershed were modeled and their applicability was investigated

by incorporating them in a modular conceptual model HBV (Hydrologiska Byrans

Vattenbalansavdelning, Bergstrom, 1972, Bergstrom and Forsman, 1973). Four different

processes taking place in a watershed system i.e. snowmelt, evapotranspiration, runoff

and basin response were identified and a fuzzy rule based routine was formulated for

each of the modules independently. Daily time series of precipitation, mean temperature

and discharge values obtained from different gauging stations in the catchment of the

river Neckar in South West Germany were used. Performance of each of the fuzzy rule

based modules was found to be almost similar to equivalent HBV module. However, the

fuzzy rule based routine for snowmelt showed the best performance. Development of a

fuzzy rule basedroutine for the basin response module was found to be the most difficult.

In totality the entire fuzzy logic based model was found to reproduce the observed

discharge well with the knowledge of the factors that influence a process.

Han et al. (2002) described a novel attempt to use a fuzzy logic approach for river

flow modelling based on fuzzy decision tree (FDT). Daily rainfall and river flow data of

t
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Bird Creek catchment were used to calibrate and validate the fuzzy model. From these

data a set of classification rules were generated using MA-ID3 algorithm developed by

Baldwin et al. (1998). Features were selected on the basis of maximising the expected

information gain as quantified by Shamnon's measure of entropy. Further, an iterative

method was applied for ranking the features according to their effectiveness in

partitioning the set of defined classes. The calibration data set was classified in five fuzzy

sets with adegree of overlap of 0.65 and adecision tree was created. Critically examining

the full decision tree, it was depicted that the points; tends to cluster in the very low fuzzy
,i

sets have a tendency to bias towards zero due to high occurrence ofzero rainfall values.

The-FDT model with only five fuzzy labels performed reasonably well. The performance

of the model was not as good as the neural network model in test case. It is reported that

the neural network models are black box models which lake the see through ability;

while, glass box nature of the fuzzy model could provide some useful insight about the

hydrological processes.

Sen and Altunkaynak (2003) proposed fuzzy system modelling, an alternative to

the classical regression approach, to determine rainfall-runoff relationships. The

conventional linear regression fitted to scatter of rainfall-runoff data ignores the dynamic

behaviour of the rainfall-runoff process. The study presented the application of fuzzy and

regression methods on monthly rainfall-runoff data of two different drainage basins on

the European and Asian sides of Istanbul. The rainfall-runoff data were divided into five

subgroups namely "low", "medium low", "medium", "medium high", and "high" with

triangle membership functions for the three middle classes and trapeziums membership

for the most left (i.e. low) and most right (i.e. high) classes. Considering the direct

103



f
•r

proportionality features of the rainfall-runoff relationship, five rules were formulated to

compute output from fuzzy model. Centroid defuzzification method (Ross, 1995; Sen,

2001) was used to compute crisp output from fuzzy set. The study concluded that the

fuzzy system approach provided the runoff estimates more accurately than a regression
i

approach. The runoff estimation accuracy obtained by fuzzy model was within an

acceptable relative error of less than 10%.

Ozelkan and Duckstein (2001) proposed a fuzzy conceptual rainfall-runoff(CRR)

framework to deal with those parameter uncertainties of conceptual rainfall-runoff

models that are related to data and/or model structure. For developing a fuzzy conceptual

rainfall-runoff framework, they fuzzified the conceptual rainfall-runoff system and then

different operational models are formulated using fuzzy rules. Finally, the parameter

identification aspect is examined using fuzzy regression techniques. The model was

developed for the Lucky Hills sub-watershed of the Walnut Gulch experimental

watershed located south-east of Tucson, Arizona USA. Bi-objective and tri-objective

fuzzy regression models are applied in the case of linear conceptual models. The results

indicated that the fuzzy CRR models using fuzzy least square regression yielded more

stable parameters estimates than those obtained using fuzziness of the rainfall-runoff.

Tayfur and Singh (2003) presented two intelligence models i.e. artificial neural

networks (ANNs) and fuzzy logic for predicting runoff due to rainfall. They considered

infiltration rate and rainfall intensity as input variables and discharge as output variable

for developing a fuzzy logic based model. All the input and output variables intuitively

fuzzified considering triangular fuzzy membership functions and the fuzzy relations in

the form of IF-THEN statements were infered between the input and output variables.
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The model was tested using experimental peak discharge data and runoff hydrographs

and the results were compared with physically based model. They reported that the

intelligence models can predict discharge from rainfall events and simulate runoff

hydrographs satisfactorily.

Vernieuwe et al. (2005) demonstrated three different methods for constructing

fuzzy rule based models of the Takagi-Sugeno type for rainfall-runoff modeling. Three

fuzzy clustering methods namely grid partitioning, subtractive clustering and Gustafson-

Kessal (GK) clustering identification were applied on rainfall and runoff data of Zwalm

catchment, Belgium. Hourly precipitation (disaggregated from daily observations) and

discharge values of a complete year were used to build the model so as to cover different

hydrological conditions observed within the different seasons ofthe year.

Recent developments and use of fuzzy logic in hydrological modeling indicates

that more applications and research is needed to support the utility offuzzy technique in

the area ofdaily rainfall-runoff modelling and to help in establishing their full practical

use in dealing the real world problems.

6.4 DATA USED FOR THE STUDY

Validated and processed data of Narmada catchment up to Manot gauging site

covering an area of 4300 sq. km. have been selected for rainfall-runoff modeling.

Validated and processed data ofdaily rainfall at Narayanganj, Bichhia, Baihar, Palhera,

Manot, Gondia and Nimpur stations and daily discharge at Manot gauging site have been

considered. The available data were divided into two sets, one for calibration and other

for validation. The daily rainfall and discharge data from June to September (monsoon
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period) of the years 1993 and 1996 were used for calibration of the ANN model because

these four years of data represent the extreme values of rainfall and discharge. The data

of year 1997 and 1998 were used for the validation of the model.

6.5 DEVELOPMENT OF RAINFALL-RUNOFF MODELS

6.5.1 Fuzzy Model for Rainfall-Runoff Dynamics

Selection of the input and output variables is the first step in development of a

fuzzy rule based rainfall-runoff model. Runoff at the outlet of a catchment is a function of

previous rainfall and runoff values, as well as of the meteorological, topological, and soil

and vegetative conditions of the catchment. Theoretically, a non linear and time varying

storage function may be useful to express the rainfall-runoff process. There are inherent

difficulties in defining such functions particularly when sufficient data are not available

and estimation of catchment response is only relying on available rainfall data. Therefore,

in the case of a rainfall-runoff model with minimum available data, the output variable

describes the runoff that is to be predicted and possible input variables are measured

rainfall and runoff data.

In daily rainfall-runoff modeling, proper accounting of loss rate plays an

important role. Some researchers use the term loss rates and infiltration rates

interchangeably. This led to the idea that stream flow occurs only when infiltration

capacities are exceeded and therefore, result entirely from surface runoff. Perhaps, a more

appropriate definition of losses would include precipitation that is stored on vegetative

surface (interception), in the soils (where soil moisture deficit occur), as detention

storage, or water that percolates to ground or is otherwise delayed.
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The initial abstraction consists mainly of interception, infiltration, and surface

storage, all ofwhich occur before runoff begins (Ponce and Hawkins, 1996). Aspecified

percent of the potential maximum retention is the initial abstraction which is the

interception, infiltration and surface storage occurring before the runoff begins. The

remaining percent ofthe potential maximum retention is mainly the infiltration occurring

after the runoff begins. This letter infiltration is controlled by the rate of infiltration at the

soil surface or by the rate of transmission in the soil profile or by the water-storage

capacity of the profile, which ever is the limiting factor. A quick succession of storm

reduces the magnitude of potential maximum retention each day because the limiting

factor does not have the opportunity to completely recover its rate or capacity through

weathering, evapotranspiration, or drainage (Ponce and Hawkins, 1996). During such a

storm period the magnitude ofpotential maximum retention remains virtually the same

after the second or third day even if the rains are large so that there is a lower limit to

potential maximum retention for a given soil-cover complex. There is a practical upper

limit to potential maximum retention, again depending on the soil-cover complex, beyond

which the recovery cannot take potential maximum retention unless the soil-cover

complex is altered. Change in potential maximum retention is based on the antecedent
/

moisture condition (AMC) determined by the total rainfall in the 5day period preceding a

storm (Ponce and Hawkins, 1996). Therefore, in addition to daily rainfall values, the

AMC is also introduced in the input vector ofa daily rainfall-runoff model. The number

of preceding day's rainfall suitable for the computation of AMC has been decided by the

cross correlation analysis of runoff at Manot site and AMC(h) values computed for

preceding ndays. The correlation matrix between runoff and AMC(n) is developed for n
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= 3 to 9 days. The correlation analysis (Figure 6.1) between AMC and runoff suggests

that AMC values computed using 7 days rainfall shows maximum value of correlation

i.e. 0.835 and can be suitably considered in the input vector of daily rainfall-runoffmodel

of Manot catchment. The following eleven combinations of input data vectors have been

considered:

1. Only rainfall as input

Ml Qt=AP»Pn,Ph4,Ph4)

2. Rainfall and AMC as input

M2 Q,=f(.P„Pt-l,P,-1,Pt-3,AMC)

3. Rainfall and Runoff as input

M3 Qt=f{Pt,P^Pt-2,L>Qt-d

M4 Q, = f(.P„PlA,Prt,Pt**Q*>Qrt)

M5 Qt=f(Pl,P„,P,*,Pu*,Qn,QhvQri)

4. Rainfall, Runoff and AMC as input

M6 Q,=AP„PlA,Ph,i,Pu4,Qt4,AMC)

M7 Qt=AP„Q,-i,AMC)

M8 Qt=KPt,Pt^P,-2^,Q^Q,-2^MC)

M9 Q,=f(PnQt^Q,-2,AMC)

M10 a =AP,,P,A>Pt-i>Pt^Q<-x>Qt-i>Q.-i>AMC)

where Q, andP, are the runoffand precipitation at time t respectively.
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The evaluation of a set of fuzzy rules (or rule base) in a fuzzy rule based model

for the determination ofthe runoff value is an important task. The basis offuzzy logic is

to consider hydrologic variables in a linguistically uncertain manner, in the form of

subgroups, each of which is labeled with successive fuzzy word attachments such as

"low", "medium", "high" etc. In this way, the variable is considered not as a global and

numerical quantity but in partial groups which provided better room for the justification

of sub-relationship between two or more variables on the basis of fuzzy words (Sen,

2003). Since rainfall-runoff relationship in general, has a direct proportionality feature, it

is possible to write the following rule base for the description ofTakagi-Sugeno fuzzy

rainfall-runoff model.
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Figure 6.1: Correlation coefficient between AMC(n) and runoff

1. Only rainfall as input

Ml Rule R,: IF(Pt,P,_x,Pt_2,Pt_z) is C, THEN
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Qt = auP, +a2lPtA + avP,_2 + aMP,_3 + c,

2. Rainfall and AMC as input

M2 Rule Rt :IF(P„PlA, P,_2, P,_3, AMC) is Ct THEN

Qt = %P, +<h,P,-i +avP,-2 +'aJU +a5iAMC + ct

3. Rainfall and Runoffas input

M3 Rule R, :IF{P„PlA,Pt_2,PfJ,Qt_x)\sC, THEN

Q, = auP, +a2iPtA +a2iPt_2 +aMPt_3 +aitQlA +c,

M4 Rule R, :IF(P^P^P^P^Q^,Q,_2)is C( THEN

Q, = auPt +a2iPtA + a3iP,_2 + aMPt_3 + aSiQ,A + a6lQ,_2 +c,

M5 Rule R, :IF(Pl,PlA,Pl.2,Pt.3>Q,.uQl.2Ml_3)isClTHEli

Qt = aUP, +a2iP,-l + aVP,-2 +«4^-3 + a5iQ,A + <*uQt-l
+ aliQ,_i+ci

4. Rainfall, Runoffand AMC as input

M6 Rule R,: IF(P,, PtA, 7^_2, Pt^, &_,, ,4MC) is Ct THEN

fi = auP, + a2iPtA +a3lP„2 + aMPt_3 + aSiQt_x +a6iAMC +c,

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

M7 Rule R, :IF(P,, QtA, AMC) is C, THEN

Qt = auP, +««Gm +"it AMC +c, (6.7)

M8 Rule R,:IF(P,, PtA, Pt.2, P,_3,2,-!, Qt-2, AMC) is C, THEN

Qt =^ +«2^-i +«A +«A +auQ,-x +aM,-2 +°nAMC +c,. (6.8)

M9 Rule R,: IF(Pt, QtA, g,_2, ^MC) isC, THEN

G, = auP, + a2iQ,_x + a3iQ,_2 +a^AMC +c,
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M10 Rule Ri:IF(Pl,P,_l,Pl_2,Pl_3,Q,_l,Q^2,Qi_J,AMC)isCiTKEN

(6.10)

Ml1 Rule Rf :IF{Pt, Qt_x, Qt_2, g,_3, AMC) is C, THEN

fi« =«ii^ +avPt-i +a3tPt-2 +a^P-i +««G_i +a6iQ,_2 +
aliQ,_3+aiiAMC + ci

Qt = auP< +°2iQt-x +^tQt-2 +a*iQ,-3 +a5iAMC +c, (6.11)

where ap and ct are the parameters of the consequent part of rule Rt.

Using the linear consequent part of the fuzzy rainfall-runoff model, subtractive

clustering based identification method has been applied. The model performance is

examined by means of NS efficiency (Nash and Sutcliffe, 1970) and Root Mean Square

-j Error (RMSE) criteria. In order to find the optimal model, the parameters of the

subtractive clustering algorithm were finalized after a number of trial runs. In the trials,

the parameters ofsubtractive clustering were varied from 0.5 to 2for quash factor and o.l

to 1for the cluster radius (ra), accept ratio and reject ratio with steps of0.01. The cluster

centers and thus the Gaussian membership function identified for each case were used to

compute consequent parameters through a linear least square method and finally a TS

fuzzy model was developed. The developed model gives crisp output value for a given

input data. Fuzzy model developed form the actual data sets have different rules ranging

from 4 to 7. Performance indices such as root mean square error (RMSE) between the

computed and observed runoff, correlation coefficient and NS efficiency were used to

finalize the optimal parameter combination of the model. The effect of error in peak and

low observations are taken care by the criteria viz. correlation coefficient and NS

efficiency. The error in time to peak is another criterion which is not considered here as it

is normally considered in storm studies. In rainfall-runoff modeling, accurate estimation

-A
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of total volume is an important aspect. Therefore, another criterion known as volumetric

f
error (Kachroo and Natale, 1992) has/been considered in this study to hydrologically

evaluate the performance of the models under consideration. The volumetric error (Ver) is

expressed as:

V„=&—n xlOO (6.12)
la,
1=1

where Qci, Qoi and n are computed runoff, observed runoff and number of data sets.

6.5.2 Network Architecture for ANNs Model

Three-layered feed forward neural network was considered for the design of the

ANN model for the rainfall-runoff process in this study. The network structure is

formulated by considering single output neuron in output layer corresponding to the

predicted runoff at time t. As described through equation 6.1 to 6.11, computed areal

rainfall, preceding runoffat Manot gauging site and antecedent moisture content (AMC)

constitutes the input neurons in the input layer. The data are normalised between 0 and 1

before the start of the training of the ANN model. The learning algorithm adopted here

was error back propagation algorithm based on the generalised delta rule. After the

normalization of data the next step in the development of ANN model was the

determination of the optimum number of neurons in the hidden layer. The optimum

number of neurons in the hidden layerwas identified using a trial and error procedure by

varying the number of neurons in the hidden layer from 2 to 10. A number of trial runs
('

' -Y

were made before the finalization of the number of neurons in the hidden layer of the

network. The number of neurons in the hidden layer of the networks of models Ml to
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A

Mil was finalized and they vary from 4 to 6. In the process ofmodel development the

initial weights were randomly assigned and the activation functions such as sigmoid and

linear functions were used for the hidden and output nodes, respectively. The mean

square error (average squared error between the network outputs and the target outputs)

was used to measure the performance ofa training process. During training the weights

and biases of the network were adjusted using gradient descent with momentum weight

and bias learning function. As discussed in the previous chapters, a number of trials have

been made until consistent results are obtained. Furthermore, the developed model was

simultaneously checked for its improvement on testing data on each iteration to avoid

over training. Therefore, an ANN with n input neurons, khidden neurons and 1output

neurons (n-k-l) was adopted as the best structure combination to capture the rainfall-

runoff relationship inherent in the data sets under consideration. Optimized values of

hidden neurons (k) are presented in Table6.1.

Table 6.1: Optimum number of neurons in hidden layer

ANN Model No. of Inputs No. of neurons in

hidden layer No. of outputs

Ml 3 4

M2 4 4

M3 4 4

M4 5 4

M5 6 4

M6 5 4

M7 3 4

M8 6 5

M9 4 4

M10 7 6

Mil 5 4
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6.5.3 Linear Transfer Function Model

Box and Jenkins (1976) described a linkage between two time dependent

variables of a discrete linear system by the following mathematical expression:

il/asZt=easXt (6.13)

where X,, Z, are inputand output variables at time t. as is back shift operator. y/as and

sas arepolynomials of order (\-axasl -a2as2....apasp) and (60 +bxasX +b2as2....bqasq).

Equation (6.13) can be rewritten as,

(l-axasX-a2as2....apasp)-Z,=(b0 +bxasX+b2as2....bq/3sq)-Xt (6.14)

or

(l-a.Z,., -a2Zt_2....apZt_p) ={b0Xl+bxX,_x +b2X,_2....bqXl_q) (6.15)

or

k=\ k=0

Shifting the basetime forvariable Xfrom 1 to q, the Equation (6.16) canbe expressed as:

Zt^ak-Zt_k^bk-X,.M (6-17)
*=I *=1

-+

wherep and <? are time memory or responsp for input(Xt) and output (Z,)variables, a, 6

are parameters or constants.

Equation (6.17) produces a setof'/' linear equations tobe solved for (p + q)

numberof constants. The linear equations can be represented in matrix formas:

Z= Y-M +%m (6-18)

where Z = output vector =[Z,, Z2,... .Z, ]T (6.19)

Y= input matrix
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A

0 0 0

Zi 0 0

^2 z. 0

z, z, z,

^4 z.

0

0

0

0

a, X.,

0

0

X,

0 X, X, X,

^5-p -^5 ^4 X,

Z/-l Z,-2 Z,-3 • • Zt_p Xt X,_, X,_2

M- time memory vector

=[a„a2,...^,Z>„62, bq]T

£% = error vector

0

0

0

^4-?+I

^5-9+l

Xt-q+\_

(6.20)

(6.21)

=[ex,e2,....et]T (6 22)

The least square method which minimizes the sum of square of difference

between observed and estimated values is used to solve the set ofabove defined Y linear

equations.
•v •

/

Now, instead of finding the exact solution ofEquation (6.18), a search is to be

made for M=Mwhich minimizes the sum of squared error defined by:

E(M) =YJ(Zi-mfM)2=(Z-M-Y)T(Z-M-Y)
i=i

(6.23)

where £„ =Z-Y-M is the error vector produced by aspecific choice of M. E(M) has a

quadratic form and has a unique minimum at M=M. The squared error in Equation

(6.23) is minimized when M=M, called the least square estimator which satisfies the

normal equation:

r-Y-M =r-z (6_24)
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or

M = [YT -YYl-YT Z (6.25)

6.6 RESULTS AND DISCUSSION

Runoff prediction models for the rainfall-runoff hydrological process have been

developed using linear transfer function, artificial neural networks and fuzzy rule based

modeling system for Manot catchmentusing different combinations of input data vectors.

The model performance evaluation has been carried out through statistical and

hydrological performance evaluation criteria, viz. root mean square error (RMSE),

correlation coefficient, Nash Sutcliffe efficiency and volumetric error (Ver).

6.6.1 Linear Transfer Function Runoff Prediction Model

The linear transfer function modejs have been developed for the prediction of

runoff. The linear transfer function models are trained using the same input data set as

used for the ANN and fuzzy rule based models, to enable a direct comparison.

Considering various combinations of input vectors (Equation 6.1 to Equation 6.11)

eleven separate models have been developed and mathematically expressed as:

Only rainfall as input

g,= 10.42^ +5.89^+3.35^+ 2.5^.3 (6.26)

Rainfall and AMC as input

Qt =8.95^ +3.04/^+0.68/^ +0.07/^3 +1.15AMC (6.27)
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Rainfall and Runoff as input

a =7.99/? +1.12PM +l.ll/>.2 +0.52/J_3 -0.610,., (6.28)

Q, =6.34/; +0.1 \PlA +0.063/J_2 +0.03/^3 +0.5470,., +0.08£,_2 (6.29)

2, =6.32/J +0.10^_, +0.03/?_2 +0.001P_3 +0.528gM +0.09e,_2 +0.07^.3 (6.30)

Rainfall, Runoff and AMC as input

Q, =6.30/; +0.07/J., +0.02/;., +0.007/;_3 +0.5220,., +0.67^MC (6.31)

Q, =1.16P, +0.5260,., +0.68AMC. (6.32)

Q, =4.67/; +0.28/;., +0.15/;.2 +0.02^_3 +0.520,., +O.O40,_2 +0.67^MC (6.33)

Q, =7.34/; +0.51 10,_, +O.290,_2 +0.63^MC (6.34)

Q, =lA5Pt +0.51P,., +0.11/>,_2 +0.09/>,_3 +0.5140,., +O.1O0,_2
+O.O20,_3 +0.34^MC (6-35)

Q, =0.75/;+ 0.532j2_, +0.1 10,_2 +O.220,.3+O.3 IAMC (6.36)

Performance indices of the linear transfer function models developed in the form

of mathematical equations 6.26 to 6.36 are presented in Table 6.2. Acomparison of the

developed model has been carried out on the basis of model performance indices viz.

RMSE, coefficient ofcorrelation and NS efficiency. The linear transfer function runoff

prediction models for Manot basin show the values ofcoefficient ofcorrelation and NS

efficiency in the range of 0.54 to 0.766 and 0.400 to 0.658 respectively for the developed

models during calibration. Values of coefficient of correlation and NS efficiency vary in
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the range of 0.539 to 0.758 and 0.347 to 0.584 during the model validation. Root mean

square error varies from 163.0 to 284.8 during calibration and 128.6 to 299.5 during

validation. An improvement in the model performance is observed by including AMC in

the input vector of the linear transfer function models. In the models where only rainfall

is the input, Model M2 is the best model with the values of correlation coefficient, NS

efficiency and RMSE as 0.563, 0.473, 266.8 respectively during calibration and 0.565,

0.402, 281.0 respectively during validation. Models M3 to M5 with only rainfall and

runoff as inputs show that the model M4 performs better than the other two models. The
i''

correlation coefficient, NS efficiency and RMSE of Model M4 are 0.702, 0.592, 189.4

respectively during calibration and 0.631, 0.522, 154.4 during validation. It is observed

that the inclusion of 3 day previous runoff in the model M5 reduces the model

performance. Models M6 to Mil consider rainfall, runoff and AMC in the model input

vector. In this category of models, M8 is the best model with values of coefficient of

correlation, NS efficiency and RMSE as 0.766, 0.658, 163.0 respectively during

calibration and 0.758, 0.584, 128.6 respectively during validation. In general, the

performance indices of model calibration and validation indicate that inclusion of Qt-3 in

the model input vector reduces the model performance. Figure 6.2 to 6.12 illustrates the

time series of observed runoff and model predicted runoff for the eleven linear transfer

function models for the validation period 1997 and 1998. It is observed that the model

Ml and M2 estimates zero runoff values when there is no rainfall during the periods

selected in the input model structure. Inclusion of previous day discharge values in the

input model structure hasdirect impact on the model performance.
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Table 6.2: Statistical performances indices of Linear Transfer Function Models

Model

Calibration Validation

Coefficient

of

Correlation NS RMSE Ev

Coefficient

of

Correlation NS RMSE Ev

Only rainfall as input

1 0.540 0.400 284.8 35.5 0.539 0.347 299.5 37.7

Rainfall and AMC as input

2 0.563 0.473 266.8 33.8 0.565 0.402 281.0 35.8

Rainfall and Runoff as input •;.

3 0.698 0.575 193.7 27.2 0.627 0.451 156.7 -29.0

4 0.702 0.592 189.4 -26.9 0.631 0.522 154.4 -28.7

5 0.700 0.589 190.3 -27.0 0.629 0.508 155.3 -28.9

Rainfall, Runoff and AMC as input

6 0.699 0.588 192.4 -27.1 0.628 0.501 156.0 -29.0

7 0.693 0.564 193.4 -27.7 0.615 0.500 157.0 -29.5

8 0.766 0.658 163.0 -21.1 0.758 0.584 128.6 -22.7

9 0.764 0.656 163.6 -21.3 0.755 0.582 134.5 -22.9

10 0.761 0.656 163.6 -21.5 0.754 0.580 131.4 -23.2

11 0.761 0.655 164.0 -21.5 0.753 0.581 132.7 -23.2
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Figure 6.2: Timeseriesof Observed Runoffand Model Predicted Runoff
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Figure 6.4: Time series ofObserved Runoff and Model Predicted Runoff
- Linear Transfer Function Model (M3)

120

r



2000

„" 15 0 0

3 1000

500

1 01

Time (Day)

Figure 6.5: Time series of Observed Runoff and Model Predicted Runoff
- Linear Transfer Function Model (M4)
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Figure 6.6: Time series of Observed Runoff and Model Predicted Runoff
- Linear Transfer Function Model (M5)
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Figure 6.7: Time series of Observed Runoff and Model Predicted Runoff
- Linear Transfer Function Model (M6)
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Figure 6.8: Time series ofObserved Runoff andModel Predicted Runoff
- Linear Transfer Function Model (M7)
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Figure 6.9: Time series ofObserved Runoff and Model Predicted Runoff
- Linear Transfer Function Model (M8)
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Figure 6.10: Time series of Observed Runoff and Model Predicted Runoff
- Linear Transfer Function Model (M9)
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Figure 6.11: Time series ofObserved Runoff and Model Predicted Runoff
- Linear Transfer Function Model (M10)
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Figure 6.12: Time series ofObserved Runoff and Model Predicted Runoff
- Linear Transfer Function Model (Mil)

6.6.2 ANN Runoff Prediction Model

All the eleven models (Ml to Ml 1) having different input vectors were trained by

providing the inputs to the model, computing the output, and adjusting the

interconnection weights until the desired output is reached. The error back propagation

algorithm has been used to train the network, using the mean square error (RMSE) over

the training sample as the objective function. In the process of model development
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several network architectures with different number of input neuron in input layer, and

different number of hidden layer with varying number of hidden neurons have been

considered to select the optimal architecture of the network. A trial and error procedure

based on the minimum RMSE criterion is used to select the best network architecture.

Table 6.3 presents the performance indices of all the eleven models developed

using artificial neural networks. Model performance evaluation criteria RMSE,

coefficient of correlation and NS efficiency were used to evaluate the performance of the

developed model. It is observed that the values of coefficient of correlation and NS

efficiency vary in the range of 0.661 to 0.884 and 0.569 to 0.770 respectively for the

developed models during calibration. During the model validation, values ofcoefficient

ofcorrelation and NS efficiency vary in the range of 0.671 to 0.868 and 0.563 to 0.745.

Root mean square error varies from 133.2 to 241.2 during calibration and 94.2 to 217.9

during validation. ANN models developed for three different cases i.e. (i) only rainfall in

the input vector, (ii) rainfall and AMC in the input vector, and (iii) rainfall, runoff and

AMC in the input vector. Models developed under these three classes show distinct

performance. The model result indicates that the antecedent moisture content values

considered in the input vector show an improvement in the daily rainfall-runoff model

performance. Model Ml with only rainfall in the input vector show the values of

coefficient ofcorrelation, NS efficiency and RMSE values as 0.661, 0.569, 241.2 during

calibration and 0.671, 0.563, 217.9 during validation respectively. Model M2 is defined

by including antecedent moisture content in the input vector of model Ml. Model M2

show the values of coefficient of correlation, NS efficiency and RMSE values as 0.672,

0.572, 218.6 during calibration and 0.678, 0.574, 216.2 during validation respectively.
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This indicates that the inclusion ofantecedent moisture content in the input vector has a

direct relation with the performance of the model. Now, improvement of model Ml by

inclusion ofpreceding day runoff is very obvious and this is confirmed by the Models

M3, M4 and M5. Inclusion ofpreceding three days ofrunoff in the input vector, trim

down the model performance. Values of coefficient of correlation, NS efficiency and

RMSE of model M4 (i.e. 0.869, 0.635, 173.6) are better than the model M5. This

indicates that only previous two runoff values are required to predict runoff. Model M6 to

M8 are same as Model M3 to M5 except the term antecedent moisture content in the

input vector. Model M6 to M8 show an improvement in the model performance by the

inclusion of antecedent moisture content. It is depicted from the performances indices of

Models M3 to M5 that the values of coefficient of correlation, NS efficiency and RMSE

varies in the range of 0.801 to 0.838; 0.649 to 0.662 and 113.3 to 114.7 respectively

during validation. Slightly better performance is obtained from the models M6, M8 and

M10. For these three models (M6, M8 and M10) values of coefficient of correlation, NS

efficiency and RMSE are found in the range of 0.822 to 0.868; 0.654 to 0.745, and 94.2

to 115.1 respectively during validation. In case of model M6, M8 and M10 the

performance of the model M10 decreases when compared with model M8. Further, it is

found from model M6 and M9 that instead of previous day rainfall values previous day

runoff values have more effect on model performance. This may be due to the fact that

the preceding day runoff and antecedent moisture contents provide sufficient memory to

the daily rainfall runoff model which is otherwise associated with rainfall values. Another

important criterion i.e. volumetric error (Ver) also indicates a pattern in tune with the

correlation coefficient. Figure 6.13 to 6.23 illustrates the time series of observed runoff
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and model predicted runoff for the eleven ANN models for the validation period 1997

and 1998.

Table 6.3: Statistical performances indices - ANN models

Calibration Validation

Coefficient Coefficient

of of

Model Correlation NS RMSE Ev Correlation NS RMSE Ev

Only rainfall as innut

1 0.661 0.569

is input

0.572

241.2

218.6

25.7

19.8

0.671 0.563 217.9 23.1

Rainfall and AMC s

2 0.672 0.678 0.574 216.2 21.2

Rainfa 1and Runoff as input

3 0.854 0.612 174.3 14.1 0.801 0.649 114.7 10.9

4 0.869 0.635 173.6 -12.8. 0.838 0.662 113.3 -9.7

5 0.862 0.631 174.1 -J3.4 0.834 0.656 114.5 -10.3

Rainfa 1,Runoff and AMC as input

6 0.858 0.629 176.3 -13.8 0.822 0.654 115.1 -10.6

7 0.854 0.620 179.2 -14.1 0.819 0.649 118.4 -10.9

8 0.884 0.770 133.2 -11.4 0.868 0.745 94.2 -8.6

9 0.878 0.767 136.0 -11.7 0.860 0.742 98.6 -8.8

10 0.883 0.769 137.5 -11.6 0.860 0.743 99.4 -8.7

-8.6
11 0.885 0.767 137.6 -11.5 0.858 0.742 100.1

6.6.3 Fuzzy Logic Runoff Prediction Model

Fuzzy rule based models developed using model structures presented through

Equation 6.1 to Equation 6.11 were compared using various statistical model

performance indices e.g. RMSE, coefficient of correlation, NS efficiency and volumetric

error. Table 6.4 presents these performance indices of all the eleven model structure

defined as Ml to Mil. The models classified in three different groups were evaluated

within the same group and than compared with the models of other group. Inclusion of

AMC in the input vector Model Ml results a new model M2. Model results
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Figure 6.15: Time series ofObserved Ru/off and Model Predicted Runoff
- ANN Model (M3)
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- ANN Model (M5)
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Figure 6.18: Time series of Observed Runoff and Model Predicted Runoff
- ANN Model (M6)
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Figure 6.20: Time series ofObserved Runoff and Model Predicted Runoff
- ANN Model (M8)
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Figure 6.21: Time series ofObserved Runoff andModel Predicted Runoff
- ANN Model (M9)
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Figure 6.22: Time series ofObserved Runoff and Model Predicted Runoff
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Figure 6.23: Time series ofObserved Runoff and Model Predicted Runoff
-ANN Model (Mil)
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(Table 6.4) show that the model M2 performs better than Ml model both during

calibration (Ml: 0.672, 0.584, 237.2; M2: 0.696, 0.583, 206.4) and validation (Ml: 0.683,

0.577, 214.1; M2: 0.693, 0.585, 208.5). Model M3 to M5 were developed for different

combinations ofprecipitation and runoff and they show coefficient ofcorrelation in the

range of0.823 to 0.842, NS efficiency in the range of0.663 to 0.675, RMSE in the range

of 108.7 to 109.4 and volumetric error in the range of-9.66 to 10.3 during validation. A
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comparison of fuzzy rule based runoff prediction models M3 to M5 indicates that the

model M4 is the best model in this group with coefficient of correlation 0.842, NS

efficiency 0.675, RMSE 108.7 and volumetric error -9.66. Models M6 to Mil falling in

the fourth group also have AMC term in the input vector. Statistical performance indices

ofthese models i.e. coefficient ofcorrelation, NS efficiency, RMSE and volumetric error

varies in the range of 0.827 to 0.876; 0.662 to 0.755; 86.9 to 111.6 and -7.42 to -10.9

respectively. These values of performance indices are always higher than the

performance indices ofgroup 3models i.e. models M3 to M5. This also confirms that the

model performance improves when the AMC is also included in the input vector of fuzzy

rule based runoff prediction models. Further, acomparison ofall the eleven models show

that the model M8 is the best fuzzy rule based mo'del for the catchment ofNarmada up to

Manot with coefficient of correlation 0.876, NS efficiency 0.755, RMSE 86.9 and

volumetric error -7.5 during validation. Figure 6.24 to 6.34 illustrates the time series of

observed runoff and model predicted runoff for the eleven ANN models for the validation

period 1997 and 1998.

6.6.4 Comparison of Different Methods

In order to assess the ability offuzzy rule based runoff prediction models relative

to that of neural network and linear transfer function models, ANN and linear transfer

function models were also developed using the same input vectors to that of fuzzy

models. The performance of ANN, linear transfer function and fuzzy models are

compared in terms of the performance indices of the developed models. Plots of
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Figure 6.26: Time series of Observed Runoff and Model Predicted Runoff
- Fuzzy Model (M3)
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Figure 6.29: Time series of Observed Runoff and Model Predicted Runoff
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Figure 6.31: Time series of Observed Runoff and Model Predicted Runoff
- Fuzzy Model (M8)
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Figure 6.32: Time series of Observed Runoff and Model Predicted Runoff
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Figure 6.34: Time series of Observed Runoff and Model Predicted Runoff
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correlation coefficient (Figure 6.35 and Figure 636), NS efficiencies (Figure 6.37 and

Figure 6.38), and RMSE (Figure 6.39 and Figure 6.40) of the developed ANN, fuzzy
logic (Model Ml to Mil) and linear transfer function models are compared. It is

observed from these figures that the inclusion of AMC in the input vector has direct

impact on model performance. From the performance indices it is depicted that the linear
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transfer function model-M8, ANN model-M8 and the fuzzy model-M8 are the best

models in their respective groups. Further, a close comparison of the ANN models and

the fuzzy models indicates that the fuzzy M8 model is best rainfall-runoff model for the

catchment ofNarmada upto Manot gauging site. Figures 6.35 to 6.40 and Table 6.2 to 6.4

suggests that though the performance of both the ANN and the fuzzy models are similar

during training and validation, the fuzzy models shows a slight improvement over the

ANN. It is also evident from these figures that the fuzzy and the ANN models outperform

the linear transfer function models. Asignificant improvement is observed for the fuzzy

model in the runoffvolume computation compared to ANN.

Table 6.4: Statistical performances indices - Fuzzy models

Model

Calibration Validation

Coefficient

of

Correlation NS RMSE Ev

Coefficient

of

Correlation NS RMSE Ev

Only rainfall as input

1 n fY7? n SP.4 I'M 7 23.6 0.683 0.577 214.1 21.2

is inputRainfall and AMC s

2 0.696 0.583 206.4 17.6 0.693 0.585 208.5 19.0

Rainfa 1 and Runoff as input

3

4

5

0.870 0.634 170.1

0.878 0.647 168.7

0.871 0.642 169.3

11.7

-11.0

-11.6

0.823

0.842

0.838

0.663

0.675

0.672

109.2

108.7

109.4

10.3

-9.66

-10.2

Rainfall. Runoff and AMC as input
0.838

0.827

0.876

0.871

0.870

0.869

6

7

8

9

10

11

0.868 0.640 172.1

0.863 0.631 172.8

0.906 0.776 130.5

0.896 0.770 133.9

0.897 0.772 134.2

0.901 0.771 134.5

-11.9

-12.4

-8.7

-8.6

-8.9

-8.7

0.671

0.662

0.755

0.752

0.753

0.752

110.2

111.6

86.9

94.2

94.2

95.7

-10.5

-10.9

-7.5

-7.42

-7.75

-7.58
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Figure 6.35 : Comparison of correlation coefficients of ANN, Fuzzy and
Linear Transfer Function Models - Calibration Data
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Figure 6.36: Comparison of correlation coefficients of ANN, Fuzzy and
Linear Transfer Function Models - Validation Data
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Figure 6.37: Comparison of NS Efficiency of ANN, Fuzzy and Linear
Transfer Function Models - Calibration Data
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Figure 6.40: Comparison of RMSE of ANN, Fuzzy and Linear Transfer
Function Models-Validation Data
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6.7 CONCLUSIONS

In this study, linear transfer function, ANN and fuzzy rule based techniques have

been used to develop models for the prediction of runoff using rainfall-runoff models for

Narmada catchment upto Manot gauging site. Potential of fuzzy rule based technique for

modeling of rainfall-runoff process is investigated by comparing results of fuzzy logic

based rainfall-runoff models with the three-layered feed forward neural network and

linear transfer function based models developed using the same input vectors. The daily

rainfall and runoff data of the monsoon season (Mid June to September) from 1993 to

1998 were considered for the development (calibration and validation) of models. The

rainfall and runoff data required for the study were processed using HYMOS software.

The concept of antecedent moisture content in the fuzzy rule based daily rainfall runoff

modeling has been introduced. Through correlation analysis between antecedent moisture

content of different periods and runoff, asuitable structure of antecedent moisture content

is decided. Rainfall-runoff models developed for 4 major inputs. Further, a detailed

analysis and comparison of the models of the same group, models of different groups and

the models developed using different modeling techniques have been carried out. The

analysis of results indicates that the introduction of antecedent moisture content is very
useful for daily rainfall runoff modeling as it improves the performance of the models.

The study suggests asuitable daily rainfall-runoff model structure for the study area and

concludes that the fuzzy rule based approach outperforms both the ANN and linear

transfer function approaches.
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CHAPTER 7

FLOOD FORECASTING USING ANN AND FUZZY RULE

BASED MODELS

7.1 BACKGROUND

The thesis now goes one step further in the development of a framework for real

time flood forecasting. Real time flood forecasting, from a non structural flood

management point of view, is now explored in two different ways, using the discharge

values estimated from measured gauges as described in Chapter-4 as a starting point:

first, by selecting the model structures using the ANN and subtractive clustering based

Takagi-Sugeno fuzzy modeling approach discussed and described in Chapter-4.

Secondly, by proposing and developing a modified Takagi Sugeno (T-S) fuzzy inference

system termed as threshold subtractive clustering based Takagi Sugeno (TSC-T-S) fiizzy

inference system by introducing the concept of rare and frequent hydrological situations

-4 in fuzzy modeling system and quantifying the accuracy of the inferences made by the

proposed model in real time flood forecasting. The current research reveals that the latter

has an edge onexisting methodology and provides more promising flood forecasts. Some

of the results of this study have been presented and published in the form of research

papers entitled "Real time flood forecasting using fuzzy logic", Hydrological

Perspectives for Sustainable Development Vol. 1, Allied Publishers Pvt. Ltd., NewDelhi
i

and "Development of Fuzzy Logic Based Real Time Flood Forecasting System For River

Narmada In Central India", International Conference on "Innovation, advances and



implementation of flood forecasting technology, 9-13 October 2005, Bergen-Tromso,

Norway".

The chapter is organized in the following manner: Initially, review of the exiting

literature on flood forecasting is presented. Modified method i.e. threshold subtractive

clustering for computation of clusters is then proposed and mathematically derived in the

next section, where its main advantages over the subtractive clustering are summarised.

Next sections outline the rationale for proposing the modified fuzzy model as a principle

model for data real time flood forecasting. The chapter is then closed by a section on

general conclusions.

7.2 INTRODUCTION

Real time flood forecasting systems are used to provide timely warning to people

residing in flood plains to prepare the evacuation plan. Experience has shown that loss of

human life and property etc. can be reduced to a considerable extent by giving reliable

advance information about the floods. Flood forecasting also provide useful information

to water management personnel for making optimal decisions related to flood control

structures and reservoirs operation.

India, which is traversed by a largenumber of river systems, experiences seasonal

floods. It has been the experience that floods occur almost every year in one part or the

other of the country. The rivers ofNorth and Central India are prone to frequent floods

during the south-west monsoon season, particularly in the month of July, August and

September. Besides structural measures, the real time flood forecasting is one ofthe most

effective non- structural measures for flood management.
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The effectiveness of real time flood forecasting systems in reducing flood damage

depends uponhow accurately the estimation of future stages or flow of incoming flood at

selected points along the river is predicted. The techniques available for real time flood

forecasting may be broadly classified in three groups: (i) deterministic modeling, (ii)

stochastic and statistical modeling and (iii) computational techniques like Artificial

Neural Network (ANN) and fuzzy logic. Depending on the availability of hydrological

and hydro-meteorological data, basin characteristic, computational facilities available at

the forecasting stations, warning time required and purpose of forecast, different flood

forecasting techniques are being used in India. In India, most of the techniques for

formulating the real time flood forecast are based on statistical approach. For some pilot

projects, network model and multi-parameter hydrological models are used. While, the

recent techniques like ANN and fuzzy logic are being currently used by the academicians

and researchers for the development and testing. In this chapter brief review of the ANN

and fuzzy logic based flood forecasting models and their applications is presented.

Further, in order to improve the real time forecasting of floods, this chapter proposes a

modified Takagi-Sugeno (T-S) fuzzy inference system termed as threshold subtractive

clustering based Takagi-Sugeno (TSC-T-S) fuzzy'inference system by introducing the

concept of rare and frequent hydrological situations in fuzzy modeling system. The

proposed modified fuzzy inference systems provide an option of analyzing and

computing cluster centers and membership functions for two different hydrological

situations generally encountered in real time flood forecasting. The methodology has

been tested on hypothetical data set and than applied for flood forecasting using the

hourly rainfall and river flow data ofupper Narmada basin, Central India. Furthermore, a
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comparative study of proposed method with subtractive clustering based Takagi-Sugeno

and ANN approaches has also been carried out to test its applicability for real time flood

forecasting.

7.3 LITERATURE REVIEW

Floods are natural phenomena and are inherently complex to model. Conventional

methods of flood forecasting are based on either simple empirical black box models

which do not try to mimic the physical processes involved or use complex models which

aim to recreate the physical processes and the concept about the behaviour of a basin in

complex mathematical expressions. In between these two broad categories of models

there is a wide variety of models e.g., deterministic and stochastic, lumped and

distributed, event driven and continuous or their combinations (Nielsen and Hansen,

1973; Box and Jenkins, 1976; Lundberg, 1982; Yakowitz, 1985; Wood and Connell,

1985; Burn and McBean, 1985; Yapo et al., 1993; Vogel et al. 1999; Solomatine and

Price, 2004), which are the basis of conventional flood forecasting system. Existing flood

forecasting models are highly data specific and complex and make various simplified

assumptions (Hecht-Nielsen, 1991). For a reliable forecast Singh (1989) has listed three

basic criteria i.e. accuracy, reliability, and timeliness. Timeliness of forecasting is

extremely important and this can beachieved by simple and robust forecasting models.

Recently there has been a growing interest in soft computing techniques viz.

artificial neural networks (ANNs) and fuzzy logic. ANNs are basically data driven

approach and are considered as black box models (Bishop, 1994) in hydrological context.

These models are capable of adopting the non-linear relationship (Hecht-Nielsen, 1991,
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4,

Flood and Kartam, 1994) between rainfall and, runoff as compared to conventional
,i

techniques, which assume a linear relationship between rainfall and runoff. AANs have

strong generalization ability, which means that once they have been properly trained, they

are able to provide accurate results even for cases they have never experienced before

(Imrie et al., 2000). Previous studies have shown that ANNs are capable of reproducing

unknown rainfall-runoff relationship adequately (ASCE 2000a, ASCE, 2000b). ANN is

also a powerful tool insolving complex nonlinear river flow forecasting problems (Hsu et

al., 1995, 2002; Thirumalaiah and Deo,1998a; Thirumalaiah and Deo,1998b; Zealand et

al., 1999; Atiya et al., 1999; Campolo et al., 1999; Uvo et al., 2000; Birkundavyi et al.,

2002) and in particular when the time required to generate a forecast is very short. Sahoo

and Ray (2006) demonstrated that the ANN can outperform rating curves for discharge

forecasting. Suitability of some deterministic and statistical techniques along with an

ANN to model an event based rainfall-runoff process have been investigated by Jain and

Indurthy (2003). There investigation on ANN with varying architecture, training rules

and error back propagation establishes the suitability of ANN in flow forecasting. A

comprehensive review of the ANN application in prediction and forecasting of water

resources variables can be found in works by Maier and Dandy (2000).

Fuzzy rule based method is a qualitative modeling scheme where the system

behaviour is described using natural language (Sugeno and Yasukawa, 1993). Dubois et

al. (1998) state that the real power of fuzzy logic lies in its ability to combine modeling

(constructing a function that accurately mimics the given data) and abstracting

(articulating knowledge from the data). See and'Openshaw (1999, 2000) indicated that

the fuzzy logic can be used with a combination of soft computing technique to create
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sophisticated river level monitoring and forecasting system. Hundecha et al. (2001) have

demonstrated the applicability of fuzzy logic approach in rainfall-runoff modeling. Rule

based fuzzy logic modeling techniques for forecasting water supply was investigated by

Mahabir et al. (2003). Luchetta and Manetti (2003) have developed a fuzzy logic based

approach to the forecasting of hydrological levels, particularly suitable to cope with

extreme situations, by setting different rules for trivial and rare situations. Neurofuzzy

technique based on the combination of b|/ckpropogation and least square error methods

for the parameter optimization is applied in short term flood forecasting by Nayak et al.

(2005b) and pointed out that the number of parameters grows exponentially with the

number of membership functions resulting in large training time. Takagi-Sugeno (T-S)

fuzzy technique has been applied to rainfall-runoff modeling and flood forecasting by

various researchers (Xiong et al.; 2001; Vernieuwe et al.; 2005 and Jacquin and

Shamseldin; 2006). The T-S fuzzy structure identification is obtained directly by fuzzy

clustering approach (Chiu, 1994).

The above discussion reveals that the core of the T-S-fuzzy structure

identification method is in the clustering and the projection. A limitation of the clustering

based T-S-fuzzy model is that if any data point falls away from the cluster or outside the

clusters the model performance may not be satisfactory (Nayak et al; 2005a). Particularly

innon-structural flood management a slight improvement in the accuracy of the real time

flood forecasts has many direct advantages. In order to improve the real time forecasting

offloods, the concept ofthreshold subtractive clustering based Takagi Sugeno (TSC-T-S)

fuzzy inference system has been introduced in fuzzy modeling system. In the proposed

method the input-output data space is classified into frequent and rare events to preserve
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generalization capability of the T-S fuzzy model with improved forecasting. The results

of the proposed TSC-T-S fuzzy model are evaluated with the forecast from ANN and SC-

T-S (or interchangeably used as TS or T-S fuzzy model) fuzzy model at different lead

periods.

<t •

7.4 FUZZY STRUCTURE IDENTIFICATION7

Data driven fuzzy identification is an effective tool for the approximation of

uncertain non-linear systems (Hellendoom and Driankov, 1997). As discussed in Section

4.4.1, the core of the fuzzy structure identification method is in the clustering and the

projection. First, the output space is partitioned using a fuzzy clustering algorithm.

Second, the partitions (clusters) are projected onto the space of the input variables. The

output partition and its corresponding input partitions are the consequents and

antecedents, respectively. Then by projecting each cluster onto each input variable,

temporary clusters in the input space are obtained. This may be implemented by using the

^ subtractive clustering method that automatically determines the number of cluster. The

subtractive clustering method uses the following formula to express the potential as a

sum ofcontribution ofEuclidean distance between a given point and all other data points

(Chiu, 1994):

A«5>, (7.1)

d,=e*^, Ul,2, N (7.2)
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where Dt is the potential of the data point xt to be a cluster centre, dg denotes the

contribution of every single distance, N is the number of training data samples and
- *

a =4/ r] ; ra is the clusterradii.

7.5 THRESHOLD SUBTRACTIVE CLUSTERING

In short term flood forecasting application, the number of input-output data pairs

is very large. The input data vectors, which are used to train and build the T-S fuzzy

model, do not have all the same importance. Particularly, in small to medium size

catchments, the river flow shows a very high rate of rise and fall in shorter spells due to

upstream rain and such high spikes in the time series of flow data do not show any

periodicity. In such cases the time series of river flow values contains both low to

medium (frequent events) as well as high to very high flows (rare events). In general the

high flow values are very few in numbers but important in forecasting. The main purpose

ofany flood forecasting model is to predict 'rare events' or catastrophic events (Luchetta

and Manetti, 2003). In subtractive clustering approach, an adequate choice of the cluster

radius (Ra) matches the input-output pairs to a given accuracy. Generally, Ra value is

determined by trial and error and it lies always between 0 and 1. Small value ofRa results

in more number of clusters i.e. granular partition with minimum matching error. But this

reduces the generalization capability of a fuzzy model. While, a higher value of Ra

reflects a rough partition of the input space in separate clusters and hence a separate

fuzzy sets (Abonyi et al, 2002). The parameter Ra is used as an input parameter for the

generation of subtractive clustering based T-S fuzzy inference system and the same value

ofcluster radius (Ra) is used for defining: membership functions ofinput variables. Such
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subtractive clustering based T-S fuzzy model when applied to real time flood forecasting

model, try to mimic varying hydrologic situation with similar non-linear membership

functions. Furthermore, the clusters obtained from the input (rainfall and/or runoff) are

generally biased towards frequent events. Clusters with different radius of influence and

thus with different Gaussian membership function widths may serve a better input-output

mapping of continuous short interval rainfall-runoff data originating from mixed

population. This can be achieved by proposed TSC-T-S fuzzy inference system which

deals with the frequent and rare events separately during estimation of cluster and

membership functions. By carefully examining the available input-output data pairs,

threshold values for each input variable can be decided which subdivides the data into
# •

two classes (i) frequent events (Nf) and, (ii) rare events (Nr). Let there are TV input-output

data pairs in n dimensional data space then

Nf+Nr =N (73)

and

N,
IT*1 (7-4)

In the subtractive clustering the data points have to be normalized in each

direction within a unit hypercube. Following the previous definition the normalized data

vector is subdivided as acollection of frequent events Nf of data points {xf,... xfh... .xfNf)

and rare event Nr ofdata points {xr,,... xr,,....xrNr) in n dimensional data space. Since

each data point is considered as apotential cluster centers, adensity measure at data point

Xk of frequent events is defined as:
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Dfk = Zexp

f \

xfk - xfj,
2

(WS
2

V I 2 v y

Similarly, density measure at data point x, of rare events

-v,

Dr, = £exp

/ A

II II2

per, - xr'J
2

V n. 2 , /

(7.5)

(7.6)

whereRfa and i?ra are the radius of influence of clusters in frequent and rare events.

The data points with highest density measure, denoted by Df'k and Dr' are

considered as first cluster centers in frequent (xf' ) and rare events (xr*). In case of both

rare and frequent events the density measure is then recalculated for all other points

excluding the first clustercenters by the following formula:

For frequent events

Dfk=Dfk-Df;.£exV
J/'1

2

xfu - xf'„
( „V>f \rjRf,

\ \ z J )•/'

For rare events

Dr, =Dr, -Dr,*.£exp

V

fr\Rr^

( \

xr, - xr

\ A J J
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where 7 is a positive constant and rjRfa and T]Rra is the radius defining the

neighborhood that has measurable reductions in potential. Further,

W.ZXf. (7.9)

VRra>Rra (7.10)

Again, the data point with highest density measure is considered as the next

cluster centre. This process is repeated until a sufficient number of cluster centers are

generated. A sophisticated stopping criterion using density measures and minimal

distance between clusters given by Chiu (1994, 1996) is generally applied (Vernieuwe et

al., 2005). After computing the clusters, both frequent and rare events clusters are pooled

together.

Further, it may be possible that the highest cluster center in the frequent events

and lowest cluster center in the rare event are close enough. Therefore, the two clusters

may be clubbed together so as to reduce the closely spaced clusters and thus to improve

the generalization capability of the fuzzy model. In subtractive clustering approach

proposed by Chiu (1994), when maximum potential ratio lies in between accept and

reject ratios a new cluster center is accepted if

P.+d >1
r min (7.11)

or

dmi^l-Pr (7.12)

where Pr = maximum potential ratio and dmin = minimum distance from previously

found clusters
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Now, in the modified TSC-T-S fuzzy inference system, the two nearest clusters

from both frequent and rare event groups (i.e. highest one from the frequent events and

lowest one from the rare events) are accepted for developing fuzzy rules when

Dmin^-Pr (7.13)min r v /

where Dmin- minimum distance between frequent and rare even clusters. Here, maximum

potential ratio is considered as accept ratio so as to accept most closely spaced clusters

from two different groups.

Therefore, to verify the spacing between two cluster centers of two different

groups the following check is applied:

(*/,*,/ ~*/;*.,) l_A ratiQ and (xr^-/ I xrJ^ >i_Accept rati0 (7.14)
Rf. &.

If the above check is satisfied than the cluster centers of the entire data vector i.e.

including both frequent and rare events of/h data set are:
/'

where x* represents total Cclusters in the data set, xf' represents total C/clusters in the

frequent events and, xj*. represents total Cr clusters in the rare events. Therefore, the

total clusters in the data set are defined as:

C=Cf+Cr (7-16)

If the check defined by equation (16) is not satisfied than club the two closely

spaced cluster center together and replace with a new cluster center defined as:

- ^XfM°*f ~XrjMinr) r-j ]J\
^Revised ~ ~ \ ' J
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where, x*R(.vised is the revised cluster center and this reduces the closely spaced cluster

centers and thus the number of rules in the fuzzy inference system. Therefore, the revised

cluster centers in this case are:

**=[<. xr*]r. x*JUM\ (7.18)

where, xf*, are the cluster centers in frequent events excluding the highest cluster center

and xr,*. are the cluster centers inrare events excluding the lowest cluster center.

Therefore, the total clusters are defined as:

c = (c;+c;-i) (7-19)

where C* = Cf -1 are revised clusters in the frequent events and, C* = Cr -1 are

revised clusters in the rare events.

The above cluster centers defined by equation 17 and 20 reveals certain

characteristics related to frequent and rare situations of the system to be modeledand can

bereasonably used as the centers for the fuzzy rules' premise and antecedent membership

function that describes the system behavior. To generate rules, the cluster centers (x*)

are used as the centers for the premise sets and the membership of input xj to the /*

premise part of the i rule is defined by the Gaussian membership function:

MfiJ(xJ) = e

xrxti

when /sC, (7.20)

MriJ(*j) =e{ when i e C (7-21)
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•thwhere Xj is they variable of the input data vector, x'p is the i cluster center of they•th

input variable, Raj is the cluster radius of the r1 cluster and i (= 1 ... Q is the cluster

radius index or number of rules. The shape of the Gaussian membership function defined

by (eqn. 22 and 23) indicate that for every input vector a membership degree to each

fuzzy set greater than zero is obtained and all the rules in the rule-base fires

simultaneously. Therefore, this leads to the possibility of generating only a few rules for

describing the accurate relationship between input and output.

The input membership function matrix of the TSC-T-S fuzzy model can be

f'
represented as: , t

" Mn Ma - M(c/-n Mi* Mm - M\(Cr-\)

p2i {l» - Mi{cf-\) MlR /j22 ... MuCrA)

M(„-i)i M(„~\)i .•• M(n-\)(cr-\) M(„-\)R M(„-\)i

Mm Mn2 - Mn(Cf-X) M„R Mn2

On-lKCr-1

Mn{Cr-l)

(7.22)

7.6 TSC-T-S FUZZY MODEL

Fuzzy relational models can be regarded as an extension of linguistic models,

which allow for different degrees of association between the antecedent and the

consequent linguistic terms. A major distinction can be made between the linguistic

model, which has fuzzy sets in bothantecedents and consequents of the rules, and theT-S

model, where the consequents are (crisp) functions of the input variables. Consider the
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identification of following unknown nonlinear hydrological system based on some

available input-output data sets xk-[x\k,xu, x„Jr and yk (for

k = \,....N, and N = Nf + Nr), respectively:
J

y = f(x) .. (7.23)

A model to describe the above unknown non linear system using a Takagi-Sugeno

Fuzzy model (Takagi and Sugeno, 1985) for a n dimensional input space and single

output consists of a set of rules /?,, i = 1,...,C as given below:

Ri: ifx, is p:n and ifx2 is ju.2 and ... and ifx„ is p:.m

THENy=f(x,,x2,...,xn) (7.24)

wherex,rx2,...^n are the antecedents andyis the consequent, jun, pi2, ... /i,„ are fuzzy

sets andf(xl^c2,...^c„) is a linear function of the form:

f(x,jc2,...j;n) =a0i+ anx, +a2ix2+...+ anixn (7.25)

with a0i, au ani the parameters of the consequent partof rule Rt.

The total output of the proposed TSC-T-S fuzzy model of the nonlinear system

represented by C = Cf + Cr -1 cluster centers is computed by

1r -
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Cj-\ cr-\
X//,//;(x1,x2,....xn)+^.ev,€,/;(x,,x2,....x„)+y;Ar/.(x,,x2,....x„)

y" cr\ c,-\
LMf+MmM + LM'

(7-26)

Similarly, the total output ofthe proposed TSC-T-S fuzzy model ofthe nonlinear

system represented by C=Cf +Cr cluster centers is computed by

l4Hftfl(xl,x2,...xn) +YdnrJl(xlix1,....xH)

2m!+1m;
r'.i i=i

where ju, e [0,1] is the degree at which the antecedent ofrule Rt holds.

For Hdimensional input vector, the over all truth value of the i rule in the

proposed TSC-T-S fuzzy model isdefined by means ofproduct operator:

ft((x) =tlMiix.) when ieC, (7-28)
/-i

//;(x) =Tl//;(x.)when/GCr (7-29)

where x,- is the/ input variable in the ndimensional input vector, and p'% or ^ is the

membership degree of Xj to the fuzzy set describing the / premise part of the i rule

describing frequent or rare events.

Now the parameters (cr, **[an,an, aK]) of the consequent part of the proposed

TSC-T-S fuzzy model output (v =[y1,v2, .yNY ) given by equation (28) can be

computed by global least square method by solving in following form:

v = x.a
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or

yi ~< vL-*» •• Vn-Xu < V(c, -xn •• P,c,-*i. y'u <-xu -
y2

—

vi Vn*n •• vi-xu < Vic, -*ll •• ¥k,*u wi y/'u.xu ...

y». yU Vm*m •• V'm-X,. fie, Vic, •**. - ¥ic,X\n K Vm-Xm •••

Xko °11 <*U ai0 °JI °U aC0 aC> aCn\

where

r'iWH
^K) when isC,

5>,'(**)

^(**) = 5(XJ when i6Cr

Vu-X„ Vic, Ko-*Jl - Vio-Xl.

Vu-Xu V»C, V«Cr-X»l - V,C-XU

(7.30)

(7.31)

(7.32)

and k= 1...N; / =1....C with TV =number of data points and z' = number of rules.

In the proposed fuzzy clustering model the threshold subtractive clustering assign

a set of rules and antecedent membership functions for rare and frequent situations that

models the data behavior. Than using global linear least square estimation each rules

consequent equation (Equation 31) is determined. The advantage of this method is that it

generates Gaussian membership functions (Eq. 22 and Eq. 23) for frequent and rare

situations as fuzzy sets, which have, by nature, infinite support, therefore for every

special input vector a membership degree to each fuzzy set greater than 0 is computed,

and hence every rule in the rule-base fires. This leads to the possibility of generating only

a couple of rules, describing the relationship between input and output channels accurate

enough. Figure 7.1 illustrates the components of the proposed model and its data flow.
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Figure 7.1: Flow Chart of theTSC-T-S Fuzzy Model Algorithm
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7.7 STUDY AREA AND DATA USED

The developed model was tested andapplied on the following datasets:

(1) A hypothetical hydrograph consisting of 140 values of discharge was considered to

test the model. The data set consists of low discharge values as frequent events and

high discharge values as rare event. The statistical properties of the hypothetical

data set are presented in the Table 7.1.

(2) In the present study the upper Narmada basin upto Mandla G&D site covering the

catchment area of 13120 sqkm has been selected for flood forecasting (Figure 7.2).

The hourly rainfall data for Jamtara, Dindori and Malankhand, hourly stage and

daily discharge data at Mandla and Manot is available from 1991 to 1995. The

hourly discharge values used in this study have been computed from hourly gauge

data using the fuzzy logic based model as discussed in Chapter 4. For development

of a real time flood-forecasting model at''Mandla site, river discharge data and

rainfall for the monsoon period have been used. Areal rainfall computed by

Thiessen polygon method serves as the input to the forecasting model.

Table 7.1: Statistical properties of hypothetical data

Frequent Events Rare Events

Minimum

Value

Maximum

Value

Minimum

Value

Maximum

Value

Calibration

Data

Validation

Data

0.01

0.02

6.72

9.93

8.15

10.15

20.65

21.25
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Figure 7.2: Index map of study area
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7.8 MODEL INPUT SELECTION

The input vector is selected generally by trial and error method (Maier and

Dandy, 2000). Determination of the number of antecedent rainfall and discharge values

involves the computation of lags of rainfall and discharge values that have significant

influence on the forecasted flow. These influencing values corresponding to different lags

can be identified through statistical analysis of the data series by avoiding the trial and

error procedure. The statistical parameters such as auto correlation function (ACF),

partial auto correlation function (PACF) and cross correlation function (CCF) can be used

for this purpose. Therefore, on the basis ofPACF and CCF of the data series, the input

vector have been selected for the flood forecasting model in the present study.

Auto Correlation Function (ACF) plot of river flow at Mandla reveals that the

runoff series at Mandla is autoregressive (Figure 7.3). The Partial Auto Correlation
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Function (PACF) of flow series at Mandla (Figure 7.3) with 95% confidence level gives

potential antecedent runoff values that have influence on the runoff value at the current

period. It can be seen from the Figure 7.3 that the runoff series up to 6 lags should be

included in the input vector. Furthermore, cross correlation function (CCF) between the

hourly runoff series at Mandla and average areal rainfall of the basin suggest the input

rainfall vector to the fuzzy model. Similarly, CCF between the hourly runoff series at

Mandla and Manot sites suggests the model input vector offlow series ofManot gauging

site. The cross correlation between the spatially averaged rainfall and runoff at Mandla

(Figure 7.4) indicates that the rainfall at 16, 17 and 18 lags influence the runoff. It is also

evident from Figure 7.4 that the flow of Manot gauging site at 3 and 4 lags influence the

runoff at Mandla. Thus, the following two models structures have been considered:

I. Model M:

Considering basin rainfall and antecedent discharge atMandla gauging sites

QMandla.t = f(Rt-16, Rt-17, Rt-18, QMandla,t-l, QMandla,t-2, QMandla,t-3, QMandla.t-4,
QMandla,t-5 and QMandla.t-6)- (7.33)

II. Model MM:

Considering basin rainfall, antecedent discharge at Mandla and Manot gauging

sites

QMandla.t = f(Rt-16, Rt-17, Rt-18, QMandla.t-1, QMandla,t-2, QMandla,t-3, QlvIandla.M,
QMandIa,t-5 and QMandla,t-6, QManot,t-3, QManot,t-4). (7.34)

where, QMandia,t-i is observed discharge ofMandla gauging site at t-1 hour, QManot,t-3 is

observed discharge ofManot gauging site at t-3 hour, Rt.16 is spatially averaged rainfall

values at t-16hour, and t is lead time (hours).
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Figure 7.3: Auto-correlation and partial auto correlation ofDischarge at Mandla
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7.9 RESULTS AND DISCUSSION
J

7.9.1 ANN Model

The flood forecasting model has also been developed through a feed forward

neural network with one hidden layer, considering the discharge as target variable to be

forecasted. The feed forward hierarchical architecmre is the most commonly used neural

network structure (Maier and Dandy, 2000). As discussed in previous section and

presented in Equations 7.33 and 7.34, 9 and 11 input variables have been identified for

developing the real time flood forecasting models at Mandla site. The output layer has

one neuron corresponding to the forecasted discharge at time t in the ANN architectures

of 9-iV-land 11-/V-1. For developing ANN model a sigmoid activation function was used

for the hidden layer, and a linear transfer function was used for the output layer. Further,

the optimal number ofneuron (TV) in the hidden layers have been identified using a trial

and error procedure by varying the number ofhidden neurons from 2 to 10 with 1point

on each successive increment. Further, the ANN model was trained using the training

algorithm and procedure described inChapter-4 and the optimal network architecture was

selected based on the one with minimum root mean square error (RMSE). ANN structure

consisting of9input neurons, 4hidden neurons and 1output neurons (9-4-1) and 11 input

neurons, 4 hidden neurons and 1 output neurons (11-4-1) have been adopted as the best

flood forecasting model structures for the models represented by Equations 7.33 and

7.44.

7.9.2 Fuzzy Model /

For the development of subtractive clustering based TS fuzzy model, the

procedure described in Chapter 4 has been applied. Further, the threshold subtractive
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clustering algorithm is employed together with the global least square method to identify

T-S fuzzy model on the training data sets of both hypothetical and observed discharge

data. A suitable transformation in the hydrologic series aids in improving the model

performance (Sudheer et al., 2003). Before developing the model, logarithmic

transformation as suggestedby Nayak et al. (2005b) is applied to the data. The clustering

partitions a data set into a number of groups such that the similarity within a group is

larger than that among groups. Most similarity metrics are sensitive to the range of

elements in the input vectors and may have an influence on the performance of the

clustering algorithm (Babuska, 1998; Hoppner et al., 1999). Therefore, the transformed

data set is additionally standardized as:

X=£Z£ (7.35)
CT

— 1 "where, x (= —Yxt) is the mean and a is the standard deviation of training data set.
n f-i

Further, the standardized data sethasbeen normalized within the hypercube.

Total six parameters (r],ra/,rar,e,£,r) influence the number of rules in the

proposed threshold subtractive clustering approach. Values of 7 =1.5 , s =0.5 and

£ =0.15 (Chiu, 1994) are often used in subtractive clustering approach. The value of

threshold parameter (z ) varies from 0 to 1. Value of z =0or 1 indicate that the data set

is considered as a singular series without dividing it in rare and frequent events. The

subtractive clustering algorithm (Chiu, 1994) is a special case ofthe proposed threshold

subtractive clustering algorithm when r =0or 1 and raf =r r. For the computation ofthe

value of threshold parameter (r ), the training data set was sorted in ascending order. A
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plot of the data sorted in ascending order provides a basis for classification of data set

into rare and frequent event and thus help in deciding the value of threshold parameter

(z ). In order to find out optimum cluster centers and thus the optimum fuzzy model, the

threshold subtractive clustering algorithm is initially used as subtractive clustering

algorithm (considering r = 0or1 and raf = rar) and the cluster radius was varied between
Y^ -

0.1 and 1 with steps of0.02. These cluster centers and thus the Gaussian membership

function obtained from training data set were used to compute consequent parameters

through a linear least square method and a model was built. Evaluating the model by the

global model performance indices such as root mean square error (RMSE) between the

computed and observed discharge, the correlation coefficient and model efficiency (Nash

and Sutcliffe, 1970), the optimal parameter combination of the model was sought. Once

the optimization process is finished, the optimized membership functions for each input

variable and consequent parameters are defined for an optimized T-S fuzzy model. This

provides a conventional T-S fuzzy model (or SC-T-S fuzzy model).

For developing TSC-T-S fuzzy model, the graphically selected value ofz along

with the value of 77 =1.5, e =0.5 and £ = 0.15 were considered. For training the TSC-

T-S fuzzy model the values of rar and raf were varied with steps of0.02 between 0.1 and

1 while, the value of other parameters (viz. 77, s,s) were fixed. The number of rules

obtained for the respective parameter values and a large influence is observed for r and

rm .Further, smaller values ofradius ofinfluence ofclusters (rar and raf) results in model

with higher number of rules.
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Since the model subdivides the entire data set in two sets, a better representation

of rare events is obtained through revised/(cluster centers. The hard boundary between

frequent and rare events considered for independently clustering the data of two separate

groups is removed and the cluster centers obtained for frequent and rare events are

clubbed together. Further, the membership function is computed at each cluster center

using equation 7.20 and 7.21. These membership function show an overlapping and

therefore the input data falling in the frequent events have some membership in rare event

and vis a vis the input data falling in rare event has membership in frequent event. The

algorithm gives equal weights to rare and frequent events by independently computing

the cluster centers in two different data sets. Therefore, it improves the performance of

the model particularly for rare events and thus the overall modal performance also

increases. Varying the value of i in the steps of 0.1 on both lower and higher side

(r±0.1) and again computing the clusters and thus the T-S fuzzy model an optimal

threshold value which provides a best fuzzy model can be obtained. The performance of

the model may further be improved by considering an optimal combination (V^rJ of

cluster radiuses for frequent and rare events. To achieve this optimal combination, values

of ra and r are varied in the steps of 0.02 to obtain a best combination ofparameters

that produces the TSC-T-S fuzzy model with best performance indices. Different values

ofcluster radius in rare and frequent events results in membership functions ofdifferent

widths. This indicates more linguistic relevance of the model.

Further, using the methodology explained earlier, these cluster centers were used

in consequent parameter computation. Training the model with different cluster radius
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and threshold values, an optimal combination of r., rar and r which produces a best

TSC-T-S fuzzy model is figured out. The process is repeated for each data set separately.

The model performance indices such as correlation coefficient, NS efficiency and

RMSE indicate the over all model performance statistics. For describing the model

performance throughout the calibration and validation period and to test the robustness of

the developed model, performance evaluation criteria such as average absolute relative

error (AARE) and threshold statistics (Jain and Ormsbee, 2002, Nayak et al., 2005a) have

been employed in literature extensively. The AARE statistic provides overall

performance index in term of absolute relative error between observed and predicted flow

(absolute prediction error). While threshold statistic (TS) provides the distribution of

absolute prediction error in terms of number of data points considered in calibration and

validation. These statistics can be calculated using the following equations:

AARE =-Y)£\ (7.36)
i=l

Q° -Q"
in which £; =—•—^-xlOO (7.37)

Where ^ = Relative error between observed and predicted flow in %, Q° = observed

flow and Q*= predicted flow.

re,=^xl00 (7.38)

where v; is the number of stream flows (out of total N computed stream flows) for which

absolute relative error between computed and observed flows is less thany"%.
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It is clear from the definition that higher values of TS and lower values of AARE

would indicate better model. In flood forecasting, it is very important to know the

performance of flow forecasting model in predicting higher magnitude flows. The above

described performance criteria do not express the prediction ability of the model

preciously from higher to low flow region. Therefore, it is felt to introduce herein a new

model performance criteria termed as peak percent threshold statistics of prediction

between top w% and /% data (PPTS(iM)). The term PPTS(i,u) is the average absolute

relative error in prediction of flows lying in the band of top u% and /% data. For

computation of the PPTS(i,U), the observed data are arranged in descending order and the

following equation is used:

"^-ftdboli*' (739)

in which k. = and k = — (7.40)
100 100

where, / and u are respectively lower and higher limits in percentage, N is the number of

data and £ is the average relative error of the il data. This statistics can map the

performance of the model in various magnitude ranges of the data. When the value of

w=100%, the PPTS(i,u) can be represented as PPTS(U0o) or simplyPPTS(,;. Further, PPTS(l)

indicates the peak percent threshold statistics of top /% data. Similarly, the same

statistics can be used for evaluating the model performance in low flow modeling by

smallest /% data from descending series.
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7.9.3 Modeling Hypothetical Data Set

Compolo et. al. (1999) suggested that the capacity of a basin to respond to a

perturbation is more accurate when recent discharge values are used. Results of the study

carried out by Nayak et.al. (2005a) also verifies that flow forecasting model developed

using discharge information of precious time steps provides predictions in good

agreement with observed flows. Therefore, particularly in case of hypothetical data,

forecasting models have been developed using the data of previous time steps so as to

precisely verify the performance of proposed TSC-T-S fuzzy model. For deciding the

number of previous time step data in the input structure, auto correlation analysis as

suggested by Sudheer et al. (2002) hasbeen carried out. The analysis suggested that input

data of previous two time steps for hypothetical cases provide best autocorrelation. Using

a sigmoid activation function for the hidden layer and a liner transfer function for the

output layer, 2 input neurons, 3 hidden neurons and 1 output neurons were adopted as

optimum network architecture for forecasting model. The three models ANN, SC-T-S

fuzzy model and TSC-T-S fuzzy model developed using hypothetical data set were

compared.

In flow forecasting the model performance for 1-step ahead forecast is generally

for better then the forecasting of higher lead periods (Nayak et al., 2005a). Therefore, the

performance of the proposed TSC-TS fuzzy model is checked through the 1-step ahead

forecasts from the hypothetical data set. For the development of TSC-T-S fuzzy model,

thevalue of x has been computed by plotting the ascending series of hypothetical data as

shown inFigure 7.5. From this Figure a threshold value has been chosen so as to classify
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Figure 7.5: Plot of calibration and validation data set arranged in ascending
order (Hypothetical data)

the training data set into frequent and rare events. Threshold parameter value for training

data sets of hypothetical cases was chosen as 0.73 (44/60). Using the selected values of x

and optimal values of radius of influence of clusters for frequent and rare events, TSC-T-

S fuzzy models have been developed. In order to verify the superiority of the proposed

TSCTS fuzzy model, SC-T-S fuzzy model and ANN models were also developed for the

hypothetical case. The performance indices of the models that provided best results both

in calibration and validation are presented in Table 7.2.

The residual variance between observed and forecasted values is generally

expressed by RMSE with optimal value equivalent to zero. The value of RMSE is found

to vary considerably between 1.339 and 1.469 during calibration and validations of
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different models. The correlation, which measures the divergence of the actual observed

values from forecasted values, is found to be constantly more than 0.96 for different

models. It is evident that all the three models have comparable value of coefficient of

correlation. The NS model efficiency which measures the capability of the model in

Table 7.2: Performance Indices of 1 h Lead Period Models (Hypothetical Data)

Calibration Results Validation Results

SC-T-S TSC-T-S SC-T-S TSC-T-S

Fuzzy Fuzzy Fuzzy Fuzzy
ANN Model Model ANN Model Model

Correlation 0.9658 0.966 0.9702 0.9702 0.974 0.975

NSEff 0.9327 0.943 0.944 0.9405 0.942 0.944

RMSE 1.433 1.419 1.339 1.469 1.443 1.441 >

AARE 193.4375 184.593 179.8274 121.0737 118.228 115.113
TS1 1.714 1.724 1.742 0 0.000 1.6949
TS2 3.414 3.448 3.4483 0 1.695 5.0847
TS5 6.8966 7.172 10.3448 11.8644 11.864 11.9
TS10 16.2414 17.069 18 27.8136 28.119 28.8136
TS20 36.2069 35.586 36.7069 43.7627 44.678 45.7627
TS50 56.8966 56.448 60.3448 65.7966 66.102 69.4915
PPTS(2) 24.0726 15.793 14.0816 11.2109 10.058 8.2063
PPTS(3) 15.4844 14.800 10.9169 17.1504 17.020 7.753
PPTS(5) 12.3779 11.600 9.5019 13.8144 13.531 8.3312

PPTS(IO) 10.9704 11.800 10.1671 10.5463 10.324 10.09
PPTS(20) 10.0016 10.400 9.4581 9.2707 8.471 8.2592

predicting the runoff values away from the mean shows optimum efficiency equivalent to

one when there is a perfect match between observed and estimated values. Perfectly zero

value of the NS efficiency indicates that the model prediction is as good as no-knowledge

model. While, negative value of NS efficiency is an indicator of the model worst than the

no-knowledge model (Beven, 2000, Verniuwe, et al., 2005). The value of efficiency is

found to be more than 93% with highest one obtained as 94.4% in case ofTSC-T-S fuzzy

model. The three global model efficiency criteria i.e. correlation coefficient, RMSE and
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efficiency indicates that the TSC-T-S fuzzy model provides better forecast in comparison

to both ANN and SC-T-S fuzzy models.

When mapping the model performance for different error ranges through

threshold statistics and AARE, consistently similar results were obtained from all the

models. The value of AARE varies from 115.11 to 193.43 in hypothetical data modeling.

The smaller values of AARE are obtained in case of TSC-T-S fuzzy model both for

calibration and validation data sets. Furthermore, the values of threshold statistics

computed from the forecasted flows obtained from different models are closely

associated for higher errors. However, the numbers of data showing same range of error

are slightly different for different models in case of smaller error ranges between

computed and observed data. Another criteria i.e. PPTS statistics, proposed in this paper,

clearly indicate the performance ofdifferent models in forecasting ofhigh floods. Table

7.2 indicates that the PPTS value for TSC-T-S fuzzy model is always lower than the one

obtained for SC-T-S and ANN models. The flow series forecasted through TSC-T-S

fuzzy model reproduce the higher flow values more accurately in comparison to other

two models.

Critical examination of all the performance indices revels that the TSC-T-S fuzzy

model show betters performance in comparison to ANN and SC-T-S fuzzy models.

Furthermore, both SC-T-S fuzzy model and TSC-T-S fuzzy models out performs

corresponding ANN model. For management of floods, predication ofpeak floods is an

important task. Performance of the models can be best compared through error in peak

flow predication. Although the coefficient of correlation, NS-efficiency of TSC-T-S

fuzzy model is slightly higher than the corresponding values obtained for SC-T-S fuzzy
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model. However, the slight improvement in PPTS indicates a significant impact on

forecasting of higher magnitude flows. The value of PPTS(2), PPTS(3), PPTS(5),

PPTS(IO) and PPTS(20) indicated that the TSQT-S fuzzy model shows a significant

improvement in forecasting higher magnitude values. Figure 7.6 and 7.7 shows the

calibration and validation results of hypothetical and forecasted hydrographs.

7.9.4 Modeling Observed Flow Data

7.9.4.1 Forecasting at very short time (1 hour lead time)

In case of observed flow data of Mandla Gauging site, the forecasting models (Equation

7.33 and Equation 7.44) have been calibrated and validated for six different data sets

(Table 7.3) in order to verify the robustness of the forecasting models developed using

data of different periods and lengths. In the first five cases (i.e. M8990 to M9394 and

MM8990 to MM9394) two years ofdata were used for model calibration and one year of

data for model validation and in the sixth case (M8994 or MM 8994), six years of data

were used for calibration and one year of data for validation. Varying length for

calibration period is also useful in verifying the effect of input data length on model

development and performance. Furthermore, the input data were divided into two

regimes, namely frequent and rare events by putting them in ascending order. It is

observed that the flow data of the river Narmada at Mandla and Manot sites are

composed of about 76% to 80% frequent events and 24% to 20% rare events during

different selected periods. After the classification of input data set into two classes the

value of x is considered as 0.76 to 0.80 for different cases. Using these values of x and
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Table 7.3: Statistical properties of the data selected for modeling

Model

No.

Calibration period Validation perioc
Rare Period Qmin Qmax SD Period Qmin Qmax SD

events

(%)

M8990/

MM8990
21 1989-90 8.86 2097.4 282.1 1991 5.76 4257.0 1051.6

M9091/

MM9091
23 1990-91 5.76 4257.0 792.8 1992 2.64 4354.5 513.6

M9192/

MM9192
24 1991-92 2.64 4354.5 513.6 1993 5.30 3379.3 350.5

M9293/

MM9293
24 1992-93 2.64 4354.5 436.7 1994 3.15 6330.4 944.1

M9394/

MM9394
24 1993-94 3.15 6330.4 735.4 1995 4.37 3730.4 417.3

M8994/

MM8994
25 1989-94 2.64 6330.0 677.4 1995 4.37 3730.4 417.3

varying radius ofinfluences for frequent and rare events in between 0.1 to 0.9 with step

size of 0.01, TSC-T-S fuzzy models were developed. Furthermore, using each data set

ANN, SC-T-S fuzzy model and TSC-T-S fuzzy models were developed to predict river

flows for 1hour lead period. The values ofperformance indices ofthe models developed

using two different model input structures (Equation 7.33 and Equation 7.34) considering

the calibration period 93-94 and 89-94 and forecast of 1 hr lead period at Mandla site are

presented in detail in Table 7.4 and Table 7.5. Further, the correlation coefficients for

different models developed using six different data sets and two different input model

structures (Models M and MM) are illustrated in Figure 7.8 and Figure 7.9. The plotted
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values of correlation coefficient indicate a definite improvement in forecasting of flow

series through proposed model in comparison to SC-T-S fuzzy model and ANN model.

The correlation coefficients of validation results of TSC-T-S fuzzy models M8990,

M9091, M9192, M9293, M9394, M8994 are found to be 0.9905, 0.9915, 0.9910, 0.9921,

0.9915, 0.9905 and for models MM8990, MM9091, MM9192, MM9293, MM9394,

MM8994 are found to be 0.9941, 0.9930, 0.9920, 0.993, 0.9927, 0.9926 respectively for

one hour ahead forecast.

The RMSE value of SC-T-S fuzzy model is lower than ANN model in all the

models developed using two different input structures and six different datasets. Further

more, the TSC-T-S fuzzy model shows a further reduction in RMSE in comparison to

SC-T-S fuzzy model as demonstrate by the model results shown in Table 7.4 and Table

7.5. The value of AARE and TS statistics which maps the performance of the models in

terms of error, indicate that fuzzy models and in particular SC-T-S fuzzy model is better

than ANN model in predicting more number of flow values accurately. Lower values of

PPTS statistics and in general the values ofPPTS(2), PPTS(3), PPTS(5) etc. indicate the

capability ofa model in forecasting higher flow values. The values ofthese statistics are

presented in Table 7.4 and Table 7.5. The lower values ofPPTS statistics (Table 7.4 and

Table 7.5) confirms that the proposed TSC-T-S fuzzy model is capable in forecasting the

higher flow values more accurately than the corresponding ANN and SC-T-S fuzzy

models.
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Table 7.4: Performance Indices of 1 hour Lead Models (Model M - Equation 7.34)

M9394 M8994

Calibration Validation Calibration Validation

TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN

Correlation 0.9911 0.9828 0.9760 0.9915 0.9830 0.9771 0.9901 0.9828 0.9732 0.9905 0.9840 0.9740

Efficiency 96.3102 95.8045 95.2321 96.5286 95.8888 95.6092 96.3721 95.6424 95.4762 96.4545 95.8153 95.5161

RMSE 88.731 90.452 95.447 88.689 89.919 94.749 84.002 84.452 85.539 83.830 84.931 85.429

AARE 3.789 3.924 4.102 3.756 3.803 4.061 3.623 3.663 3.928 3.546 3.595 3.842

TS1 46.280 45.525 45.503 49.316 47.832 47.219 49.021 45.924 44.731 49.125 47.733 45.805

TS2 54.123 53.633 52.164 55.115 54.030 53.627 56.549 53.723 52.679 56.668 53.801 52.730

TS5 78.481 76.749 73.263 80.784 79.542 76.778 82.531 81.912 80.997 82.620 82.057 80.312

TS10 93.318 91.227 90.193 94.083 92.610 92.020 93.631 92.457 91.552 93.884 92.741 90.953

TS20 96.746 95.206 94.761 98.598 97.689 97.509 99.104 97.224 96.233 99.293 98.379 97.555

TS50 99.071 98.414 97.110 96.684 99.056 99.836 98.354 97.812 96.564 99.083 99.121 98.734

PPTS(2) 3.181 3.421 6.684 3.310 3.246 3.563 2.801 2.983 3.457 2.842 3.035 3.593

PPTS(3) 5.415 5.844 6.717 4.913 5.750 6.648 3.481 3.544 4.327 3.537 3.630 4.450

PPTS(5) 8.937 9.621 9.992 8.877 9.454 9.897 7.902 7.772 7.903 7.976 7.881 8.124

PPTS(IO) 6.221 6.742 7.102 6.019 6.527 6.909 6.104 6.256 6.667 6.335 6.392 6.719

PPTS(20) 5.896 5.637 6.704 4.866 5.444 5.569 5.003 5.312 5.497 5.078 5.375 5.581



Table 7.5: Performance Indices of 1- hour Lead Models (Model MM - Equation 7.33)

M9394 M8994

Calibration Validation Calibration Validation

TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN

Correlation 0.9931 0.9894 0.9834 0.9927 0.9874 0.9823 0.9927 0.9887 0.9819 0.9926 0.9882 0.9815

Efficiency 96.8500 96.5700 96.4800 96.5800 95.9700 95.6900 97.5000 97.1000 96.5000 96.7300 96.0200 95.5400

RMSE 83.324 84.721 89.962 .88.123 88.552 93.578 80.283 82.455 85.534 82.127 83.726 84.323

AARE 3.567 3.782 4.040 3344 3.880 4.139 5.501 5.577 6.073 3.582 3.669 3.915

TS1 47.221 46.389 46.167 49.832 48.660 48.110 50.538 45.956 45.532 49.265 47.870 45.840

-J
-0

TS2 56.548 56.429 56.253 55.474 54.840 53.670 58.534 56.181 55.945 57.512 54.910 53.600

TS5 83.869 83.385 81.228 82.736 80.240 76.842 84.325 83.620 82.982 82.820 82.210 81.130

TS10 93.729 93.671 92.789 94.225 93.290 92.181 94.137 93.327 93.270 94.397 93.420 91.740

TS20 98.069 97.954 97.156 98.867 97.890 97.793 99.392 97.418 97.200 99.330 98.530 98.330

TS50 99.442 99.213 98.575 99.171 99.710 99.861 99.082 99.065 99.057 99.610 99.520 99.230

PPTS(2) 3.162 3.419 6.563 3.205 3.121 3.516 2.618 2.815 3.261 2.833 3.022 3.573

PPTS(3) 5.085 5.067 5.794 4.832 5.579 6.249 3.367 3.388 4.151 3.527 3.614 4.426

PPTS(5) 5.079 5.095 6.403 8.241 9.188 9.415 7.647 7.504 7.634 7.952 7.846 8.079

PPTS(IO) 6.128 6.292 6.751 5.920 6.212 6.233 5.511 5.651 6.089 6.316 6.363 6.683

PPTS(20) 5.434 5.485 6.036 4.722 4.969 5.216 4.110 4.536 4.685 5.063 5.351 5.551
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7.9.4.2 Forecasting at >1 hour lead time J

The short term forecast for several hours provides a clear guide in project

operation or a warning to people going to be affected by inundation or alert the teams for

keeping a vigil on embankments and levees etc. along rivers. A forecasting model needs

meteorological data from the catchment, river flow data in reaches or stretches of river at

the analysis point at the earliest. It is understood that in case of forecasting offlow athigh

lead periods, generally the accuracy of flood forecasting decreases when forecasting time

increases (Nayak et al., 2005a). For real time forecasting it is necessary to have a model

that can operate within the adaptive mode (Wood and Connell, 1985). Forecasting at lead

periods more than one hour (>lhr) can be more accurately modeled by adding more input

information at previous time steps. In practice the discharge values ofprevious time steps

(Equation 7.33 and Equation 7.34) are not readily available. Therefore, a simple recursive

algorithm isused to obtain forecast for successive lead time. In this process known values

of inputs were used to forecast Qt+. at Mandla gauging site and thus in turn will serve to

predict Qt+2. This procedure is thus repeated until the computation of the spectrum of

forecasted values ranging from Qt+1 to Qt+6 is obtained. Similarly, the model input

represented by Equation 7.34 indicates that the forecasted values ofManot gauging sites

(fore lead period 1hr and 2hr) are required for forecasting discharge at Mandla gauging

site at lead periods 5 hr and 6 hr. Therefore, the flow values of Manot site forecasted

from the previous three flow values were supplied as an input to the model by

incorporating a suitable subroutine in the flood forecasting model developed for Mandla

gauging site. Using computed discharge as input to these models may cause the error to

carry over from one step to another. However, such carry over errors may not have any
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significant effect due to higher accuracy of fuzzy and ANN models (Sudheer and Jain,

2003).

Results showing the performance statistics of all models at different lead periods

are presented in Table 7.6 and Table 7.7. Further, the performance of the models in terms

of correlation between the forecasted and observed values of flows is presented in Figure

7.8 and Figure 7.9. All the three models indicate reduction in correlation coefficient with

increase in forecasting lead period. Further, it is apparent from these figures that the

correlation statistic of TSC-T-S fuzzy model is superior to the other models at all lead

periods.

The RMSE values with different lead times are presented in Figure 7.10 and

Figure 7.11. It is depicted from Figure 7.10 and Figure 7.11 that the value of RMSE

increases with forecasting lead period in all the models. However, it is evident that the

rate of rise of RMSE with lead time is smaller in case of TSC-T-S fuzzy model. The

TSC-T-S fuzzy model for M8994 forecasted the flows with aRMSE of 278.321 m3/s at 6

hours, and the SC-T-S and ANN model forecasted the flows with RMSE of 284.98 and

292.385 m3/s respectively. Similarly, the TSC-T-S fuzzy model for MM8994 forecasted

the flows with a RMSE of 277.30 m3/s at 6 hours, and the SC-T-S and ANN model

forecasted the flows with RMSE of 283.977 and 290.000 m3/s respectively.

Furthermore, the efficiency of the forecasting model along the all lead periods is

improved when TSC-T-S fuzzy model is used (Figure 7.12 and Figure 7.13). The value

of correlation coefficient and efficiency indicate a continuous falling trend. The rate of

reduction of correlation coefficient and efficiency is highest in case of ANN model.

However, the TSC-T-S fuzzy model indicates a comparatively lower rate ofreduction of
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Table 7.6: Performance Indices of >1 h Lead Models (Validation Results Model-M)

M8994

2Hr 3Hr 4Hr 5Hr 6Hr

TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN

Correlation
0.9854 0.9745 0.9690 0.9744 0.9687 0.9587 0.9598 0.9587 0.9575 0.9483 0.9466 0.9422 0.9157 0.9129 0.9082

Efficiency
91.2600 91.1900 90.9800 89.2200 89.0200 88.4400 86.5100 86.1400 85.3900 83.5800 83.1500 81.9100 78.6300 77.5600 76.6600

RMSE
115.770 117.300 122.141 152.420 152.645 155.239 191.864 196.270 208.334 236.264 238.350 242.760 278.321 284.980 292.385

AARE

TS1

5.485 5.555 5.724 7.373 9.441 9.709 11.673 12.254 12.811 12.453 14.974 15.586 18.369 18.562 19.669

OO 25.780 25.260 24.070 23.230 22.790 21.350 10.090 8.910 6.790 8.240 7.240 6.050 5.370 4.640 4.480

TS2
37.420 37.220 36.360 33.360 32.460 32.300 18.570 18.450 14.270 14.130 13.790 13.130 11.130 10.790 10.100

TS5
61.610 61.500 61.390 57.830 57.760 54.780 36.970 36.960 35.140 29.680 29.690v - ^28.450 24.540 24.480 23.530

TS10
84.990 84.120 82.560 72.420 72.010 71.600 62.550 62.110 61.670 59.630 58.750 58.320 42.920 42.650 40.740

TS20
94.200 94.150 94.280 88.790 88.770 87.130 83.380 83.320 81.690 77.910 77.700 77.820 71.750 71.530 71.140

TS50
99.260 99.210 99.260 97.520 97.330 97.380 96.600 96.190 95.290 94.830 94.810 94.160 92.900 92.730 92.190

PPTS(2)
6.120 6.630 7.040 8.560 9.330 11.050 11.760 12.560 13.130 14.180 15.790 16.790 17.200 18.180 18.940

PPTS(3)
6.810 7.660 8.380 10.770 11.680 13.130 14.680 14.770 16.970 18.370 20.900 23.450 23.360 25.190 26.610

PPTS(5)
15.320 15.870 16.280 23.270 24.060 24.170 28.200 30.040 31.790 31.620 34.140 37.600 38.140 38.440 39.110

PPTS(IO)
11.540 11.670 11.510 16.940 17.380 17.910 22.090 22.680 24.780 25.980 26.690 28.300 29.420 30.610 31.720

PPTS(20)
9.260 9.310 9.280 14.310 14.490 14.540 19.260 19.250 20.810 22.940 23.080 23.170 26.400 26.580 27.180



Table 7.7: Performance Indices of >1 h Lead Models (Validation Results Model-MM)

M8994

2Hr 3Hr 4Hr 5Hr 6Hr

TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN TSC-T-S SC-T-S ANN

Correlation 0.9880 0.9770 0.9720 0.9820 0.9690 0.9610 0.9760 0.9640 0.9590 0.9660 0.9560 0.9480 0.9520 0.9430 0.9320

Efficiency 92.1590 91.5104 91.1919 90.0897 89.3313 88.6480 87.3560 86.4448 85.5860 84.4039 83.4451 82.1000 79.4016 77.8324 76.8333

RMSE 115.765 117.298 121.460 152.123 152.270 154.700 191.558 196.267 207.100 235.940 237.352 242.756 277.300 283.977 290.000

M
AARE

5.430 5.444 5.581 7.299 9.252 9.466 11.556 12.009 12.491 12.328 14.674 15.197 18.185 18.191 19.177

LO -

CnTSI 26.033 25.346 24.128 23.459 22.869 21.397 10.187 8.939 6.807 8.319 7.263 6.065 5.422" ' 4.651 4.493

TS2 37.783 37.350 36.445 33.691 32.577 32.376 18.751 18.520 14.305 14.269 13.835 13.159 11.242 10.826 10.122

TS5 62.217 61.713 61.528 58.394 57.965 54.907 37.330 37.089 35.225 29.969 29.794 28.514 24.775 24.569 23.581

TS10 85.822 84.416 82.751 73.131 72.265 71.768 63.160 62.325 61.807 60.215 58.955 58.456 43.342 42.795 40.833

TS20 95.123 94.481 94.497 89.663 89.081 87.330 84.199 83.610 81.883 78.671 77.969 77.995 72.457 71.779 71.302

TS50 100.235 99.563 99.491 98.480 97.670 97.601 97.551 96.534 95.512 95.761 95.149 94.376 93.811 93.056 92.399

PPTS(2) 5.944 6.348 6.674 8.309 8.927 10.481 11.413 12.021 12.451 13.762 15.109 15.926 16.692 17.399 17.964

PPTS(3) 6.612 7.329 7.949 10.455 11.174 12.454 14.251 14.138 16.100 17.826 20.005 22.239 22.670 24.108 25.238

PPTS(5) 14.867 15.186 15.436 22.588 23.022 22.921 27.368 28.753 30.153 30.692 32.675 35.664 37.018 36.786 37.094

PPTS(IO) 11.196 11.166 10.915 16.444 16.637 16.986 21.444 21.705 23.504 25.212 25.545 26.842 28.558 29.291 30.085

PPTS(20) 8.984 8.908 8.803 14.257 13.864 13.792 18.697 18.425 19.736 22.268 22.089 21.976 25.620 25.442 25.779
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both correlation coefficient and efficiency with lead period. Furthermore, it is also

observed that the correlation and efficiency static is consistently in the same order during

calibration and validation for TSC-T-S fuzzy model, which confirms a good

generalization capability of the model.

Values of AARE and threshold statistics also indicate a reduction in prediction

accuracy with increased lead period (Table 7.6 and Table 7.7). The TS statistics of the

models indicates that less number of data can be accurately forecasted while increasing

the forecasting lead period. These values indicate that all the models show comparable

performance in terms of AARE for different lead periods, while the threshold statistics

indicate that the number of data points falling under different error ranges is quite

different for different models. The model validation results (Figure 7.14 and Figure 7.15)

indicate that between 32% to 49% of flow values are predicted at 1 hr lead period by

TSC-T-S fuzzy model with 1% error compared to 31.5% to 48.6% for SC-T-S fuzzy

model and 24.12% and 48.1% for ANN. It is also depicted from the Figure 7.14 and

Figure 7.15 that the number of flow values predicted at threshold statistics 1 (i.e. 1%

error range) get drastically reduced when predicting the flow at higher lead periods. At

higher threshold level i.e. at 20% (TS20) the difference in threshold statistics of 1hr lead

period and 6 hr lead period forecasts is small as compared to lower threshold statistics.

The threshold statistics indicates the number of'data points forecasted with desired value

of accuracy. However, due to large variation in continuous river flow data series

consisting of both high and low flow values, the TS statistics hardly provide any

significant information about modelperformance.



The PPTS criterion discussed in the previous section was used to verify the model

performance at high floods. For this purpose PPTS values for highest 2%, 3%, 5%, 10%

and 20% flows have been computed. It is depicted from Figure 7.16 and Figure 7.17 that

the PPTS reduces with the increase in lead period. Furthermore, the TSC-T-S fuzzy

model illustrates its preeminence over other models in predicting high flow values. This

can further be verified from the low numerical values of the PPTS statistics for TSC-T-S

fuzzy model presented inTable 7.6 and Table 7.7. However, in other flow region all the

models show comparably similar performance. The PPTS statistics indicates different

patterns for different cases (M8990 to M8994 and MM 8990 to MM 8994). This indicates
f

that in different data sets, variation in PPTS statistics is different and this can serve as an

alternative criterion for critically selecting a suitable flood forecasting model.

It is also observed that the forecasting models developed using input structure

represented by Equation 7.34 are superior than the one developed using input structure

represented by Equation 7.33. This is due to inclusion of upstream discharge into the

forecasting model has a direct impact on model performance. Furthermore, the models

developed using long term data i.e. 1989-1994 (Model M8994 and MM8994) shows

nearly average kind of model performance indices. However, models developed using

small data lengths have varying model performance. It is also to be noted that in general

the model developed from different data lengths show almost similar performance

indices.
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Figure 7.14: Variation of TS-statistics along the forecast time horizon for
different data sets of river, Narmada at Mandla gauging site
(Validation result Model-M)
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Figure 7.15: Variation of TS-statistics along the forecast time horizon for
different data sets of river Narmada at Mandla gauging site
(Validation result Model-MM)

191

>



5°

-TSCTS (1 Hr)
-ANN(1 Hr)
TS(2Hr)
-TSCTS (3 Hr)
-ANN(3Hr)
•TS (4 Hr)
-TSCTS (5 Hr)
-ANN(5Hr)
TS (6 Hr)

•TS(1Hr)
-TSCTS (2 Hr)
-ANN (2Hr)
• TS(3Hr)
-TSCTS (4 Hr)
-ANN(4Hr)
TS(5Hr)

-TSCTS (6 Hr)
-ANN(6Hr)

4a

—♦—TSCTS (1 Hr) •••*-• -TSHHr)
-TSCTS (2 Hr)-■♦■-ANN(1 Hr) —*—

•--*•-• TS (2 Hr)
—•— TSCTS (3 Hr)

--*•

••-•-•

-ANN(2Hr)
•TS (3 Hr)
-TSCTS (4 Hr)-•• -ANN(3Hr) —m—

- •* TS(4Hr)
—o— TSCTS (5 Hr)
-o -ANN(5Hr)

-••• -ANN (4Hr)

X—

•TS(5Hr)
-TSCTS (6 Hr)

•x-TS(6Hr) — •ft- -ANN(6Hr)

p-~:-z^^* -S^v
S^j*-...

PPTS(2) PPTS(3) PPTS(5) PPTS(10) PPTS(20)
Peak Percent Threshold Statistics (M9091)

PPTS(2) PPTS(3) PPTS(5) PPTS(10) PPTS(20)
Peak Percent Threshold Statistics (M8990)

40

4fl

-+— TSCTS (1 Hr)
•♦•-ANN(1 Hr)
•*—TS(2Hr)
-»— TSCTS (3 Hr)
• -ANN(3Hr)
* -TS(4Hr)

-o— TSCTS (5 Hr)
•o -ANN(5Hr)

TS (6 Hr)

• TS (1 Hr)
-TSCTS (2 Hr)
-ANN(2Hr)

TS(3Hr)
-TSCTS (4 Hr)
-ANN(4Hr)
•TS(5Hr)

-TSCTS (6 Hr)
-ANN(6Hr)

jt

40 -

-TSCTS (1 Hr)
-ANN(1 Hr
TS (2Hr)

-TSCTS (3 Hr)
-ANN(3Hr)
TS(4Hr)

-TSCTS (5 Hr)
-ANN(5Hr)
• TS (6 Hr)

- ♦•■•TS(1 Hr)
—*— TSCTS (2 Hr)
-•«-ANN(2Hr)
•••••• TS (3 Hr)
—•— TSCTS (4 Hr)
- -••-ANNMHr)
•o TS(5Hr)

-TSCTS (6 Hr)
•h-ANN (6Hr)

PPTS(2) PPTS(3) PPTS(5) PPTS(10) PPTS(20)PPTS(2) PPTS(3) PPTS(5) PPTS(10) PPTS(20)
Peak Percent Threshold Statistics (M9192) Peak Percent Threshold Statistics (M9293)

-TSCTS (1 Hr)
-ANN(1 Hr)
•TS(2Hr)

-TSCTS (3Hr)
-ANN(3Hr)

• TS(4Hr)
-TSCTS(5Hr)
-ANN(5Hr)

TS (6 Hr)

TS (1 Hr)
-TSCTS (2 Hr)
-ANN(2Hr)
TS (3 Hr)

-TSCTS (4 Hr)
-ANN(4Hr)

TS (5 Hr)
-TSCTS (6 Hr)
-ANN (6Hr) 4£

-*— TSCTS (1Hr)
♦ --ANN(1 Hr)

•A--TS(2Hr)
-^-TSCTS(3Hr)
•••-ANN(3Hr)
•••••TS(4Hr)
-o—TSCTS(5Hr)
•o-ANN (5Hr)
•x—TS(6Hr)

TS (1 Hr)
-TSCTS (2 Hr)
-ANN(2Hr
TS (3Hr'

h»—TSCTS (4 Hr)
-ANNMHr)

•o---TS(5Hr)
-«—TSCTS (6 Hr'
x--ANN(6Hr)

P>TS(2) PPTS(3) PPTS(5)PPTS(10) PPTS(20) PPTS(2) PPTS(3) PPTS(5) PPTS(10) PPTS(20)
Peak Percent Threshold Statistics (M9394) Peak Percent Threshold Statistics (M8994)

Figure 7.16: Variation of PPTS -statistics along the forecast time horizon for
different data sets of river Narmada at Mandla gauging site
(Validation result Model M)
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Figure 7.17: Variation of PPTS -statistics along the forecast time horizon for
different data sets of river Narmada at Mandla gauging site
(Validation result Model MM)
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7.10 SUMMARY AND CONCLUSIONS

In order to improve the real time forecasting of floods, this study proposes a

modified Takagi-Sugeno (T-S) fuzzy inference system termed as threshold subtractive

clustering based Takagi-Sugeno (TSC-T-S) fuzzy inference system by introducing the

concept of rare and frequent hydrological situations in fuzzy modeling system. The

proposed modified fuzzy inference systems provide an option of analyzing and

computing cluster centers and membership functions for two different hydrological

situations generally encountered in real time flood forecasting. The methodology has

been tested on hypothetical data set and than applied for flood forecasting using the

hourly rainfalLand river flow data of upper Narmada basin, Central India. The available

rainfall-runoff data has been classified in frequent and rare events and suitable TSC-T-S

fuzzy model structures have been suggested fof better forecasting of river flows. The

performance of the model during calibration and validation is evaluated by performance

indices such as root mean square error (RMSE), model efficiency and coefficient of

correlation (R). A new performance index termed as peak percent threshold statistics is

proposed to evaluate the performance of flood forecasting model. The developed model

has been tested for different lead periods using hourly rainfall and discharge data.

Further, the proposed fuzzy model results have been compared with artificial neural

network (ANN) and subtractive clustering based T-S fuzzy model (SC-T-S fuzzy model).

The proposed approach is a superset of the classical subtractive clustering based

T-S fuzzy inference system (SC-T-S) and serves as a useful tool for developing flood

forecasting models. A comparison with ANN and SC-T-S fuzzy models has shown a

better performance of the proposed technique. Although all of the fuzzy and ANN based
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models performed almost equally well with both actual and hypothetical data sets, the

advantage of the proposed fuzzy model is that they may forecast high flows more

accurately, which is the most important task in flood forecasting. Practical application of

the model takes only seconds for execution in Pentium processor based computer.

Therefore, the proposed fuzzy algorithm enables and supports the creation and execution

of real time flood forecasting model. Additional research could be carried out in order to

establish the suitability of the proposed model in various regions.
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CHAPTER 8

CONCLUSIONS AND SCOPE FOR FURTHER RESEARCH

8.1 CONCLUSIONS

The main results related to the firm objectives in which the thesis was organized

are listed below:

A relationship between stages and corresponding measured discharges is usually

derived using various graphical and analytical methods. Under certain conditions the

discharge for a flood on a rising stage, differs from that on the falling stage and this

phenomenon is called hysteresis. Hysteresis is a hard non-linearity and complex to

model. The satisfactory estimation of the discharge by the proposed fiizzy models from

different data sets indicates that gauge-discharge modeling canreliably employ the fuzzy

model. Comparison of fuzzy model with ANN and conventional curve fitting approaches

indicate that the estimation of discharge from fuzzy model is more accurate both in case

of actual observeddata sets of various lengths and hypothetical data set.
y^ *

. . <>
Similarly, the gauge-discharge sediment relationship derived using fuzzy logic

performs better than the ANN and regression method. The study suggests that the fuzzy

model is able to capture the inherent nonlinearity in the river gauge, discharge and

sediment relationship better than the other two. A comparative analysis of predictive

ability of these models in different ranges of flow indicates that the fuzzy modeling

approach is slightly better than the ANN.



A relationship of the rainfall-runoff process is one of the important relationships

in water resources where an engineer needs this relationship to predict the future runoff

values given the rainfall values. Because of fast development in the computing facility, in

the later period of 20th century ANNs found there way in rainfall-runoff modeling. In the

study various model structures have been tested for linear transfer function, ANN and

fuzzy logic based models. The results of the study indicate that the ANN and fuzzy logic

techniques are useful soft computing techniques in rainfall-runoff modeling. The results

obtained from fuzzy logic based models were superior to other models.

The main potential areas of application of rainfall-runoff model is in short term

real time forecasting of streamflows, where forecasts from such models form the basis of

decisions pertaining to flood warning, flood control or river regulation. With this in view

a new fuzzy modeling technique i.e. threshold subtractive clustering based Takagi-

Sugeno model is proposed. The proposed approach is a superset of the classical

subtractive clustering based T-S fuzzy inference system (SC-T-S) and serves as a useful

tool for developing flood forecasting models. The proposed technique was first tested on >

hypothetical data sets. Further, detailed comparison of the forecasts made using ANN,

SC-TS fuzzy model and TSC-TS fuzzy models indicates that the proposed method (TSC-

T-S fuzzy model) which considers the rare and frequent hydrological situations in

hydrological modeling is a better model. The results presented in this thesis are highly

promising and suggest that fuzzy modeling is a more versatile and improved alternative

to ANN approach. Furthermore, fuzzy logic algorithm has the ability to describe the

knowledge in a descriptive human-like manner in the form of simple rules using

linguistic variables.

A
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8.2 SCOPE FOR FURTHER RESEARCH

The ANN and fuzzy logic methodology presented in this thesis can provide a

promising solution to various hydrological modeling and forecasting problems. However,

the analysis of the results reported in this work leave sufficient scope and opens new

dimensions for further investigations, which could not be taken up owing to time

constraint and are briefly presented as follows:

1) The gauge-discharge relationship is developed for different gauging sites of

Narmada basin. The study can be further extended for other gauging sites in the

same basin or in the other basins and studying the capability of these models in

different channel controls.

2) The ANN and fuzzy model were developed to model hypothetical loop rating

curves. However, it is always useful to develop a model for actual observed data

sets showing the hysteresis.

3) The study related to development of gauge-discharge-sediment relationship can

also be extended to other gauging sites of Narmada basin and other basins to

establish the superiority of soft computing based models over conventional

regression methods.

4) Rainfall-runoffmodeling is one of the important areas of research. Similar studies

should be carried out on basins located in different climatic and geographic

regions to investigate the potential of the ANN and fuzzy rule based models.
Y, '

Further, more investigations are needed By introducing the other runoff producing

hydrological variables and catchment characteristics inANN and fuzzy rule based

rainfall-runoff models.
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5) Real time flood forecasting models using ANN, fuzzy rule based approaches and

proposed threshold subtractive clustering basedTakagi-Sugeno method havebeen

tested on hypothetical and observed data base. The study can be further extended

in different climatic and geographic regions and for different spatial scales.

6) Using data driven approach the desirable accuracy of identified fuzzy model can

be increased substantially. However, in sacrificing a small amount of

interpretability in fuzzy inference the model accuracy may be increased. A
('

satisfactory tradeoff between model accuracy and interpretability may be a

debatable issue and offers further research work.
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