
LOAD FLOW ANALYSIS OF WEAKLY MESHED
DISTRIBUTION SYSTEM

A DISSERTATION

submitted in partial fulfilment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
•WATER RESOURCES DEVELOPMENT

(Hydro-Electric System Engineering & Management)

ARUN KUMAR SINGH

WATER .RESOURCES DEVELOPMENT TRAINING CENTRE
• INDIAN INSTITUTE OF TECHNOLOGY, ROORKEE

ROORKEE - 247 667 (INDIA)
FEBRUARY, 2002

CANDIDATE'S DECLARATION

I do hereby certify that the work which is being presented in the

dissertation entitled "LOAD FLOW ANALYSIS OF WEAKLY MESHED

DISTRIBUTION SYSTEM" in partial fulfillment of the requirements for the

award of Degree of Master of Technology in Hydroelectric System

Engineering and Management submitted . in the Water Resources

Development Training Centre, Indian Institute. of Technology, Roorkee is

an authentic record of my own work carried out since July, 2001 to

February,2002, under the active guidance and supervision of Dr. Biswarup

• Das, Assistant Professor, Deptt. of Electrical Engineering and Prof.

Devadutta Das, Professor & Head, Water Resources Development Training

Centre, Indian Institute of Technology Roorkee, India.

I have not submitted the matter embodied in this dissertation for

award of any other degree or diploma

Place: -Roorkee
	 K JJ 	~I

Dated: - February , 2002. 	 (ARUN KUM R SINGH)

This is to certify that the above statement made by the candidate is

correct to the best of our knowledge.

cz 1OJ.1U,2 	 a4

(Dr. Biswarup Das) 	 (Devadutta Das)'
Assistant Professor 	 Professor & Head
Deptt. of Electrical Engg. 	 W.R.D.T.0
IIT, Roorkee, 247667 	 IIT, Roorkec, 247667

ACKNOWLEDGEMENT

My foremost & profound gratitude goes to my guides Dr. Biswarup Das,

Assistant Professor, Deptt. of Electrical Engineering and Shri Devadutta Das,

Professor and Head, WRDTC, Indian Institute of Technology, Roorkee, for their

proficient & enthusiastic guidance, useful encouragement & immense help. I have deep

sense of admiration for their innate goodness & inexhaustible enthusiasm. The valuable

hours of discussions and suggestions that 1 had with them have undoubtedly helped in

supplementing my thoughts in the right direction for attaining the desired objective of

completing the work in its present form. Working under their guidance will always

remain a cherished experience in my memory and I will adore it throughout my life.

My heartfelt gratitude & indebtedness goes to all the faculties of WRTDC group

who with their encouraging and caring words, constructive criticism & suggestions or by

simply doing their duty with sincerity & smile have contributed directly or indirectly in a

significant way towards completion of this report.

I am highly grateful to Dr. (Smt.) Sunita Devi, in-charge Computer laboratory,

WRI)TC, IIT, Roorkee, for providing the required facilities during the course of study.

I wish to express my gratitude and obligation to the Authority concern, Deptt. of

Power, Govt.of Arunachal Pradesh for enabling me to take up this course.

I would like to express my indebt ness and gratefulness and want to send my special

thanks to my dear friends Sri R.N. Jha and Sri N.R. Sen for their invaluable service

rendered to me.

Special & sincere thanks goes to my batch mates whose support & encouragement

has been a constant source of inspiration, guidance and strength.

Over and above, I would like to express my greatest appreciation to my lovely and

gracious wife Mrs.Shalini, who stands by my side night and day and my children Master

Karan and Miss Ankita for their forbearance during this work.

Place:- Roorkee
Dated: February (i ,2002

v 	p ~~ ,yp71

(ARUN KU AR SINGH)

0

It

ABSTRACT

In this thesis, an attempt has been made to develop an algorithm for load flow

solution of a weakly meshed (i.e. which contains a few loops) distribution system. In this

algorithm, initially the original meshed network is converted into an equivalent radial

network by breaking it at appropriate places. The effect of the mesh configuration is

taken into account by suitable amount of complex power injections at appropriate buses

in the radial network. Finally, the radial network is solved through standard

forward/backward sweep algorithm to obtain the load flow solution of the original

meshed network. The developed algorithm has been tested on two sample weakly meshed

distribution systems.

iii

CONTENTS

Page No.

Candidate's Declaration
. 	Acknowledgement ii

Abstract iii

Chapter 1. Introduction 1-2

Chapter 2. Solution Algorithm of a Meshed Distribution System 3-13

2.1 Basic Concept 3-5

2.2 Branch Numbering Scheme 5-7

2.3 Bus Ordering Scheme 7-8
2.4 Load Flow Equations , 8-10

2.5 Power Injections at the LBPs 10-12

2.6 Solution Algorithm 12-13

Chapter 3. Results and Discussion 14-20

Chapter 4. Conclusion 21

References 22-23

Appendix-A 24-25

Appendix-B 26-43

IV

Chapter-1

INTRODUCTION

One of the most fundamental tools for analyzing a power system is load-

flow. Essentially, a load-flow solution provides the steady-sate operating point of a power

system for given a network and load data in the system. The knowledge of the steady-

state operating point is necessary for ensuring the secured operation of a power system. If

any of the electrical quantities in the system (such as bus voltage, current and power flow

over the lines etc.) exceeds its respective limits, certain corrective actions must be taken.

to bring the out-of-bound quantities within their limits for ensuring secured operation of

the system. These corrective actions include switching of shunt capacitors and reactor

banks, adjustment of transformer tap settings etc. The nature and magnitude of such

corrective actions depend on the magnitudes of violation of the out-of-bound quantities.

As the magnitudes of violation are determined from the load-flow solution, the nature and

magnitudes of the necessary corrective actions are actually heavily dependent on load-

flow solution.

Therefore, for determining accurately.. the nature and magnitudes of the

necessary corrective actions, the load-flow solutions need to be quite. accurate. Moreover,

as the necessary corrective actions need to be implemented quickly for minimizing the

damage to the power system from insecure operation, the load-flow solution needs also to -

be obtained. very quickly. Previously, as the high voltage transmission grid used to carry

much more electrical power than a low voltage distribution system, a lot of attention had

been given to ensure secured operation of high voltage transmission grid. Towards this

end, a number of efficient load-flow algorithms have been developed for the solution of a

high voltage transmission grid. Among them prominent are Newton-Raphson Technique
[1], Fast Decoupled Load Flow Technique [2] and different improved versions of Fast
Decoupled Load Flow Technique [3-5].

However, presently due to increasing load demand, distribution system are

also carrying significant amount of electrical power. Consequently, the need for ensuring

secured operation of a distribution system has also been felt and towards this goal, the

need for efficient load-flow techniques for distribution system analysis has also been

identified. Now, power distribution networks, with their primarily radial configuration

and wide-ranging resistance and reactance values of the feeders, are inherently ill-

conditioned and hence, the load-flow techniques developed for transmission system

analysis are not suitable for the analysis of distribution system. As a result different load-

flow algorithms have been reported in the literatures for the analysis of radial distribution
system [6-8].

Although the above algoritlun [6-8] are quite efficient for solving a radial

distribution system, they are not suitable for solving weakly meshed distribution

networks (i.e. networks containing loops), which are not uncommon in distribution

systems. Consequently, different special algorithm has been developed for solving a

meshed distribution system. Goswami, S.K. and Basu, S. K. [9], presented a method

based on loop impedance matrix. In 110], a compensation based power-flow method has

been proposed for solving both radial. and meshed distribution systems. An efficient load-

flow method for large weakly meshed distribution system has been presented in [11].

Haque presented [12] a very simple method for solving a meshed distribution network.

In this thesis, a technique for solving a weakly meshed distribution system

has been developed. The work presented in this thesis is essentially in the same Iine as

that of [12]. In this method, the meshed network is first converted into an equivalent

radial configuration by breaking the loops. In this process, some new dummy buses are

added in the system. Next, the power injections at the loop break points (the nodes where

the loops in the original system have been broken) are computed by using a reduced order

bus impedance matrix. After the calculation of injection powers at the loop break points,

the equivalent radial system is solved to obtain the final solution.

This thesis is organized as follows. Chapter-2 discusses the load-flow

solution algorithm for analyzing a meshed distribution system in detail. Chapter-3

presents the main results of this work. In this work, the developed technique has been

applied to two different distribution systems. Finally, Chapter-4 gives the main
conclusions of this work. 	_

2

Chapter-2

SOLUTION ALGORITHM
OF A MESHED DISTRIBUTION SYSTEM

• In this chapter, algorithm for power flow solution of a meshed distribution system

is described in detail.

2.1 Basic Concept

Generally a distribution system draws power from a point (substation) and the

configuration of the system is normally radial. In a radial distribution system, the number

of lines and the number of buses are related as follows,

is _ 11b+1 	 (2.1)
Where is = number of buses and

nb = number of branches.

However, to increase the efficiency and reliability of the system, a distribution

system is sometimes operated in a weakly meshed (i.e. containing a . few loops) .

configuration. In case of a meshed network, number of buses in the system may be less

than or equal to the number of branches in the system. The number of loops 11LP of a

meshed network is given by, "

... (2.2)
As the power flow solution algorithm of a radial distribution system is well

established in this work the power flow solution algorithm of a . meshed distribution

system is developed on the basis of the power flow solution algorithm of a radial

distribution system. In this approach, a meshed distribution system, is first converted into

a radial system. The effect of the loop configuration is taken into account by calculating

complex power injections at appropriate nodes of the radial system. Finally, the radial

system obtained is solved to obtain the final solution of the original meshed distribution
system.

.3

!1 P+j Q

N

a'

I P+j Q

A meshed network having loops can be converted into an equivalent radial

network by opening the loops. When a loop is opened, an extra dummy bus is created.

Injecting appropriate amount of complex power at the loop breakpoints (LBI's) preserves

the characteristics of the original meshed network. Thus, the number of dummy buses is

equal to the number of loop 1Lp existing in the original meshed distribution system. An

illustration of the above procedure is shown in Fig. 2.1.

Fig. 2.1 shows an example of a meshed network in which the branch between a

and b makes a loop. The equivalent radial network of Fig. 2.1 has been shown in Fig. 2.2

in which the loop of the network is opened by adding a dummy bus a'. Thus, a LBP is

created at bus a.

Figure 2.1: A Mesh Network

(P+jQ) 1 1- (P+jQ)

Figure 2.2: Conversion of Mesh to radial Network by adding Dummy bus a'

El

To preserve the characteristic of the network after breaking, a compensatory

power is injected to both sides of a break point as shown in Fig 2.2. This also reflects the

power circulation in the original loop. The injected.power at the LBPs should be equal in

magnitude with opposite in sign as shown in Fig. 2.2.

Although the above procedure is quite simple to apply, a systematic procedure
must be adopted to identify the nodes at which the loops are to be broken. This is

achieved by numbering the branches in a systematic fashion. The ' procedure for

numbering the branches is described in the following section.

2.2 - Branch Numbering Scheme
For branch numbering procedure, first the tree of the given network must be

constructed. The tree consists of several layers and starts at the root node, where the

power source is. connected. The root bus is also the slack bus of the network. The first

layer consists of all the branches that are connected to the root bus. The next (second)

layer consists of all the branches that are connected to receiving end bus of the branches

in the previous (first) layer and so on. In this fashion all the branches of the network

should be considered in the tree and they should appear only once. In this process, if it is

observed that the receiving end bus of a newly added branch has already been considered

in the tree then the newly added branch makes a loop in the network. The loop can be

opened by introducing a dummy bus, which is numbered with a prime sign (`). The newly

created dummy bus is assigned the role of receiving end bus of the newly considered
branch instead of its original receiving end bus.

A single line diagram of a 9-bus system [12] is shown in Fig. 2.3. In this system,

`o' is root bus or slack bus. The tree diagram of the network is shown. in Fig. 2.4. The

first layer of the tree consists of the branch o-a. The second layer consists of the branches

a-b, a-c, a-f and a-h. The third layer consists of branches that are connected to buses b, c,

f, or h but are not yet considered. This layer starts with branch b-c. Since the receiving

end bus (bus c) of this branch has already been considered in the tree, a loop is created at

this bus. This is opened by adding a dummy bus c'. This dummy bus c' is now assigned

the role of receiving end bus of the branch b-c. Thus, the branch between buses b and c is

now put between buses b and c'. The corresponding LBP (loop break point, i.e. where the

5

loop is broken) is c-c'. Similarly the other LBPs in this layer are h-h' and a-c' and the

other branches in this layer are c-d, c-e, f-h', and f-g. By this same process, in the last

(fourth) layer another LBP g-g' is created. Thus, the last layer consists of only one branch

d-g'. Now, the total branches in the system that are numbered are o-a, a-b, a-c, a-f, a-h,

b-c', c-d, c-e, f-h', f-e', f g and d-g'.

e d 12

Figure 2.3: Single line diagram of a 9-bus network

g'

Layer 2

f

Layer 3

Layer 4

Figure 2.4: Tree diagram of the 9-bus network

R,

Now according to the equation (2.2) there are four loops in the system. The total

number of LBPs identified during the tree construction process is also 4 (four) and they
are c-c', h-h', a-c', and g-g'. After the loops are broker' and the original mesh network is
converted into radial network, for efficient load flow solution, all the buses (the original
buses plus the dummy buses) are ordered in a particular fashion in this work. In, the next

section, the bus-ordering scheme is described in detail.

2.3 Bus Ordering Scheme
Due to the addition of dummy buses, the number of buses in a tree is more than

the actual number of buses that existed before breaking the loops. Now, the buses so:

obtained are divided into three different sets, namely set-a, set-b and set-c..

Set-a: In this set, the original buses where LBPs are created during the tree construction

process are kept. As it contains the original buses, the number of buses is equal to

the number of loops (nLP) in the original system. As in Fig. 2.4, buses c, h, e and

g belong to this set. The order or sequence of the buses in this set is not important.

Set-b: This set consists of all the dummy buses created in the process of mesh to radial

conversion of the system by breaking the loops. Therefore, with reference to Fig.

2.4 buses c', h', e' and g' belong to this set. The order or sequence of the buses in

this set should be same as used in set-a.

Set-c: This set contains all the buses except the root bus that are not considered in set-a

and set-b. In fact, it consists of all the remaining buses except the root bus. Again,

the order or sequence of the buses in this set is not important.

It is assumed that the network is so meshed that there is only one loop at any bus..

The bus ordering process is essential in order to compute the power injections at the

LBPs, to take into account the effect of the meshed network.

Once the original meshed network is converted .into an equivalent radial network

and the buses are appropriately ordered, the radial network is solved by an iterative

backward/forward sweep algorithm. However, to proceed with the backward/forward.

sweep algorithm, the complex power injections at the LBPs need to be first calculated.

7

In the next section, the basic backward/forward sweep algorithm and in the

subsequent section the procedure for calculating complex power injections at the LBPs

are presented.

2.4 Load Flow Equations
As it is considered that the network is fed from a single source, the load flow

problem can be solved iteratively using two sets of recursive equations. These are known

as backward and forward recursive equations. The backward recursive equations are

applied to compute the power flows in the branches and forward recursive equations are

applied for computing the bus voltages. The procedure is illustrated as follows.

In Fig. 2.5, a branch i between buses k and m is shown. The branch i is modeled

as it (PI) equivalent network as shown in the Fig.2.5

k

J+ Q1

Y/2

Pkl +JQ
.

k

Rl 	X l

P, +M
r,12

1. 	1.

Figure 2.5: it (PI) circuit model of branch.

It is assumed that bus k is nearer to the root bus. The resistance and reactance of

the branch are R, & Xl respectively and the shunt charging admittance is denoted by yl.
The power flow through the series impedance can be written as,

Pi g = P,„L + P,n F P,„1 	 ... (2.3)

Qi' =Q, + QM - QM — V1mYi /2 	 ... (2.4)
Where Pl' and Qi are real & reactive power flow over the branch respectively.

The superscripts L, F, and I in P and Q represent the load, flow, and the injection

respectively. The flow Pm F (Q,,,F) is the sum of active (reactive) power flow through all

the down stream branches that are emanating from the bus m. The procedure for finding
the power injections (Pm ' and Qm1) at the LBPs is described in the next section. The
active power (Pr) and the reactive power (Q,) flow through the branch at bus k can be

written as,

P; = Pi' + Ri (PI 2 + Qr ' 2)/Vmz

12i = Q' +Xi(P1 2+Q; 2)/Vm2 - Vk1yf /2

... (2.5)

... (2.6)

The above equations (2.5) & (2.6) are applied in a backward direction to compute

the power flow through each branch in the tree. The equations are first applied to the last

branch of the tree and proceed in reverse direction until the first branch is reached. After

computing the power flow through each branch, the voltage magnitude and the angle at

each bus is obtained by another set of recursive equations in forward direction.

Assuming that the voltage angle at bus k is zero, the voltage at the bus m can be
written as (refer Fig.2.5):

Vm = Vk — I, Z1

= Vk — (Sr /Vk) (R, +jX)
=Vk_ (P, -jQi)/Vk (Ri+ jX)
=(Vk2-ll'r,.R,+Qr Xt)

/Vk J(Pl Xi-Q, Rt)/Vk

Where, S,'= P1 ,+ jQi
Pl .. = P1

Ql
0-

 Qi + Vk2y/2

and I, is the current flowing through the series impedance (R, +jXl).

...(2.7)

Now, from the equation (2.7), the expression for voltage magnitude at bus m can
be written as,

vm - V Vk 2 -`(I I? +Q•X,) +(I +Q 2)(R,2 +x,2)/ 2

... (2.8)
and the expression for voltage angle at bus m can be written as,

8,,, = - tan -'(aj/a2) 	 ... (2.9)

	

Where, a j _ (Pi . X,- Qr Ri)/Vk 	 and
a2 = Vk - (Pr.. R,+ Qi Xi)/Vk

Now, if the voltage at the bus k is Sk (instead of zero), the angle 5,,, becomes,

	

- tan -'(aj/a1) 	 ...(2.10)

6

Now, the equations. (2.8) and (2.10) are applied in forward direction i.e. they are

applied at the first node and proceeds in the forward direction till the last node is reached.

2.5_ Power Injections at the LBPs
In this algorithm, the voltage differences at the LBPs are calculated in each

iteration. After getting the voltage difference, the current and accordingly the power

injections at the LBPs are computed with the help of reduced order bus impedance matrix

Zred• The rank of Zfed is same as the number of loops nL1'. Further, it is assumed that the

root bus has constant terminal voltage with negligible internal resistance, is capable

enough to supply all the loads and losses in the system. The procedure is explained as
follows.

The node equations of the system can be written as,

[11= [YJ [VJ 	 ...(2.11)

The root bus is not considered in equation (2.11) as it is connected to the

reference bus through a negligible (or zero) impedance. In deriving the admittance

matrix, the loads in the, system are replaced by constant shunt admittances at a nominal
voltage of 1.0. p.u. i.e,

1'ioaa = S'IO d

The power injections to third set of the buses are zero because there is no LBP at

these buses and the effect of loads have been considered in the Y-matrix. Hence we can

eliminate the third set of the buses by Kron reduction [13] as shown below.

From equation (2.11) we can write,

'a" Yoe Yab Yoc Ve
Ih - Yba 'bb Ybc Vb 	 ...(2.12)

0 	Y. Ycb Y,c

Or, 	 . IQ =YaaVa+YabVb+YQcV, 	 ...(2.13)
IbYbaV.+YbbVb+YbcVc 	 ...(2.14)

	

0 =YcaVa+YcbVb+YcVc 	 ...(2.15)

From equation (2.15), we can write

10

Vc= -Ycc f ('coVa+YcbVb) 	 ...(2.16)

By substituting equation (2.16) in equation (2.13), we get,

Ia=YaaVa+YabVb - Yac Ycc '('YcaV.+YcbVb) 	...(2.17)

= (Yaa Yac Ycc 1 Yca) Va+(YabJ'ac Ycc'Ycb) Vb

	

= YAAVa+YABVb 	 ...(2.18)

where, 	YAA = Yaa Yap Yccl Yea and
i YAB = Yab-Yac

If
 1cb

By substituting equation (2.16) in equation (2.14), we get

Ib=YbaVa+YbbVb — Ybc Ycc (caVa+YcbVb) 	...(2.19)

_ (Yi,n-Ybc Ycc 4Yaa) Va+(Y bb-Ybc Ycc 4Ycb) Vb

	

= YBAVa+YBBVb 	 ...(2.20)

where, YBA = Yba Ybc Ycc 1 Yea and

YBB = Ybb-Ybc Ycc 4Ycb

Finally, the reduced system consists of first two sets of buses (set-a and set-b) and

hence the corresponding node equation becomes,

	

1° =
YAAYAB v° 	 ...(2.21)

Ib 	LABiBB 	Vb

or

	

[
Va = Z' Z21 [1.] 	 ...(.2.22)
Vb 	Z3 Z4 L'J

Now, we can write the voltage difference [Va Vb] _ [Vab]

as 	[Vab] _ [Z1-Z3] [Is] +[Z2-Z41[J1j 	 ...(2.23)

The current or power injection at the LBPs (set-a and set-b) are equal but

opposite in sign i.e.

[Ia] = -[lb) 	 ... (2.24)

Therefore, we can write,

[Vab] — [ZI-Z3-Z2t-Z4] [la]

Or [Vab] _ [Z ea] [Ia] 	 ... (2.25)

where, Zrcd = ZI-Z3-Z24Z4.

As equation (2.25) is linear in nature, in terms of incremental quantities, equation

(2.25) can be written as,

[AVab] = [Zred] [Ala]
	 ... (2.26)

Now, the incremental voltage difference [AVab] is the difference between the

specified and the calculated values. The specified voltage difference [Vab] at the LBPs is

always zero. If the value of [AVab] is known during the iteration process, we can calculate

the value of [AI8] from equation (2.26).

Therefore, the changes in power injection at the first set of buses (set-a)

can be found out by,

[AS a] = [V8] [AIa]*
	 ...(2.27)

where, [Va] is a diagonal matrix. After each iteration p, the active and reactive power

injections at loop break points can be updated as follows,
P1

(+1) = P'(P) + 91(ASa) 	 ...(2.28)

QI(P+ 1) - QI(P) +J (AS8) 	 ... (2.29)

Where, 9I(.) and 3(.) denote the real and imaginary parts of the quantity (.)

respectively. The power injection at buses lying in the second set (set-b) can be computed

similarly with opposite sign. In the next section the step-by-step solution algorithm is

shown in detail.

2.6 . Solution Algorithm

The steps involved for finding the load flow solution of a single source mesh

network are given below:

Step 1. 	Read the system data.

Step 2. 	Create loop break points for mesh to radial conversion. Construct tree

network in layers and number the branches.

Step 3. 	Order the buses. Divide the buses into three sets; set-a, set-b and set-c.

Step 4. 	Assume initial voltage for all the buses except the root bus.

Step 5. 	Compute the matrix Yaa, Yom, Yap, Yba, Ybb, Yb,, YCe, Yob, and Yee.

Step 6. 	Find the matrix [Zfed] using equations (2.21), (2.22) and (2.25).

Step 7. 	Assume initial power injections at the LBPs equal to Zero.

12

Step 8. 	Set iteration count K=1.

Step 9. 	Compute the active and reactive power flow through each branches of the

tree network by equations (2.5) & (2.6) respectively. It is done in

backward direction i.e. the computation starts at the last branch and stops

at the first branch.

Step 10. 	Compute the voltage magnitude at the buses by equation (2.8) in forward

direction i.e. the computation starts at the first node and stops at the last

node. Also, compute the voltage angle in the same fashion by using

equation (2.10).

Step 11. 	Compute the incremental voltage difference [AVab] at the LBPs. If the

value of [AVab] is within the specified tolerance, then the load flow has

converged. Hence, stop the iterations and print the results. Otherwise go to

step 12.

Step 12. 	Update the active and reactive power injections at the LBPs using

equations (2.28) & (2.29) respectively. Increment the iteration count by I

and go back to step 9.

13

Chapter-3

RESULTS AND DISCUSSION

In order to test the validity of the solution algorithm developed in Chapter-2, two

mesh connected systems of different sizes were adopted from [14] and [15], namely, i) 23

kV, 19-bus mesh system and ii) 12.66 kV, 22-bus mesh system. The system data for these

two systems are given in Table A. 1 and Table A.2 in Appendix-A respectively. For

convergence, a tolerance limit of 0.000001 p.u. on the voltage magnitude has been

specified. Moreover, a flat voltage profile (i.e. voltage magnitude of 1.0 p.0 and the angle
of zero degree) has been assumed as the initial value of all the bus voltages.

The results obtained for both the systems i.e. 19-bus network and 22-bus network

are summarized and presented in the following sections.

3.1 23 kV, 19-bus mesh network

The single line diagram of this system is shown in Fig. 3.1. Following the bus

numbering scheme presented in Chapter-2, it was found that two LBPs are present at bus

number 11 and 17. Thus, before solving the load flow problem, the meshed network is

first converted into an equivalent radial network by opening the loops at bus number 11

and 17. In this process, two additional dummy buses have been created. These additional

dummy buses have been numbered as 19 and 20. The equivalent radial network is shown
in Fig. 3.2.

14

8

12

13

14

18

15

16

17 J

Figure 3.1: Schematic diagram of 19-Bus mesh network

8

12

13

14

18

15

16

20

17

Figure 3.2: Schematic diagram of equivalent radial network of Fig. 3.1

15

The voltage magnitude at the root bus was considered to be 1.0 p.u. The algorithm

took 4 iterations to converge and results are shown Table 3.1.The system data are given

in Table A.1 in Appendix-A. Table 3.1 shows the voltage magnitude for the remaining

buses of the system. It is expected that the voltages at the two buses representing a LBP

would be identical after finial solution of the system. From Table 3.1, it is observed that

the voltage solutions of bus 11 and 19 (which are representing the LBP at bus 11 in the

original meshed network) are identical. Similarly, the voltage solutions of bus 17 and 20

(which are representing the LBP at bus 17 in the original meshed network) are also

identical. Thus, the developed algorithm is able to provide satisfactory results for the load

flow solution of the meshed network.

Table 3.1: Load Flow Solution for 19-Bus System

Bus
No.

Bus Voltage

Magnitude
.u.

Voltage Angle
de

1 1 0
2 0.996716 -0.50663
3 0.995268 -0.50844
4 0.9943 37 -0.50996
5 0.993682 -0.51147
6 0.993303 -0.51299
7 0.992997 -0.51365
8 0.9943 01 -0.51077
9 0.993707 -0.51176
10 0.993258 -0.51262
11 0.992946 -0.51351
12 0.992929 -0.51373
13 0.991887 -0.5167
14 0.9913 69 -0.51846
15 0.994932 -0.51093
16 0.993982 -0.51286
17 0.993419 -0.51346
18 0.991109 -0.51934
19 0.992946 -0.51351
20 0.993419 -0.51346

16

3.2 12.66 kV, 22-bus mesh network
To verify the validity of the developed algorithm further, a 22-bus meshed

network [15] has also been considered. The single line diagram of this system is shown

in Fig.3.3.The system data are given in Table A.2 in Appendix-A. The corresponding

equivalent radial network obtained after breaking the loops is shown in Fig. 3.4. Loop

break points are created at bus number 14 and 21. The dummy buses added are bus

number 22 and 23 (refer Fig. 3.4).

The voltage magnitude at the root bus was considered to be 1.0 p.u. The algorithm

took 5 iterations to converge and results are shown Table 3.2. From Table 3.2 it is

observed that the voltage solutions of buses 14 and 23 (which are representing the LBP at

bus 14 in the original meshed network) are identical. Similarly, the voltage solutions of

buses 21 and 22 (which are representing the LBP at bus 21 in the original meshed

network) are also identical. In this case also the developed algorithm has provided

satisfactory results for the load flow solution of the meshed network.

17

Figure 3.3: Schematic Diagram of 22-Bus mesh network.

18

Figure 3.4: Schematic diagram of equivalent radial network of Fig 3.3

19

Table 3.2: Load Flow Solution for 22-Bus System

Bus
No.

Bus Voltage

Magnitude
(P.u.)

Voltage Angle
(deg.)

1 0.998636 -0.0017
2 0.994535 -0.0129
3 0.991736 -0.02142
4 0.989208 -0.03297
5 0.983563 -0.14397
6 0.981481 -0.29345
7 0.978717 -0.28722
8 0.975983 -0.34245
9 0.97559 -0.36451
10 0.975706 -0.36811
11 0.976272 -0.35827
12 0.973207 -0.39732
13 0.972234 -0.4283
14 0.972026 -0.43945
15 0.970735 -0.46015
16 0.968824 -0.52888
17 0.968251 -0.53741
18 0.997543 -0.01897
19 0.988896 -0.13601
20 0.986665 -0.18289
21 0.983243 -0.26473
22 0.983243 -0.26473
23 0.972026 -0.43945

Chapter 4

CONCLUSION

In this dissertation, an effort has been made to develop an algorithm for load flow

analysis of weakly meshed distribution system network. In this algorithm, the original

meshed configuration is first converted to an equivalent radial configuration by breaking

the loops. In this process, dummy buses are added to the LBPs, To preserve the original

characteristics of the network after conversion, a compensatory power is injected to the

both sides of a loop break point (LBP). The injected power at the LBPs should be equal

in magnitude with opposite sign at the two buses of a LBP. The power injections at the

LBPs are computed with the help of a reduced order bus impedance matrix. The solution

algorithm has been tested on a 23 kV, 19-bus mesh distribution system and a 12.66 kV,

22-bus mesh distribution system. It has been observed that this method bears an excellent

convergence behavior and provides quite satisfactory results.

21

REFERENCES

1. TINNEY, W.G., and HART, C. E., `Power flow solutions by Newton's method',

IEEE Transactions on Power Apparatus and System, Vol-86, 1967, pp: 1449-

1457.

2. STOT, B., and ALSAC, 0., `Fast Decoupled Load Flow', IEEE Transactions on

Power Apparatus and System, Vol-93, 1974, pp: 859-869.
3. VAN AMERONGEN, R. A. M., `A general purpose version of the Fast

Decoupled Load Flow', IEEE Transactions on Power System, Vol-4, No-2, 1989,
pp: 760-766.

4. RAJICIC, D., BOSE, A., `A modification to the Fast Decoupled Power Flow for

networks with high R/X ratios', IEEE Transactions on Power System, Vol-3, No-

2, 1988, pp : 743-746.
5. HAQUE, M. H., `Novel Decoupled Load Flow Method', IEE Proc., Part-C, Vol-

140, No-3, 1993, pp: 199-205.
6. DAS, D., NAGI, H.S., and KOTHARI, D. P., `Novel method for solving radial

distribution networks', IEE Proc., Part C, Vol-141, No-4, 1994, pp :291-298.
7. PAPADOPOULUS, M., HATZIARGYRIOU, N.D., and PAPADAKIS, M.E.,

`Graphics aided interactive analysis of radial distribution networks', IEEE
Transactions on Power Delivery, Vol-2, October 1987, pp : 1297-1302.

8. RENATO, C.G., `New method for the analysis of distribution networks', IEEE
Transactions on Power Delivery, Vol-5, No-1, 1990, pp: 391-396.

9. GASWAMI, S.K., and I3ASU, S.K., `Direct solution of distribution systems', IEE
Proc., Part- C, Vol-138, No-1, 1991, pp: 78-88.

10. SHIRMOHAMMADI, D., HONG, H.W., SEMLYEN, A., and LUO, G. X.., `A

compensation-based power flow method for weakly meshed distribution and
transmission networks', IEEE Transactions on Power System ,Vol-3, No-2,
1988, pp : 753-762.

22

11, 	LUO,G. X.,' and SEMLYEN, A., `Efficient load flow for large weakly meshed
networks', IEEE Transactions on Power System, Vol-5, No-4, 1990, pp : 1309-
1326.

12. HAQUE, M. H., `Efficient load flow method for distribution systems with radial

or mesh configuration', IEE Proc., Part-C, Vol-143, No-2, January 1996, pp :33-
38

13. ANDERSON, P.M., and Fouad, A.A., `Power system control and stability',

(Iowa State University Press, Ames, Iowa, 1977).
14. BARAN, M.E., and WU, F. F., `Network reconfiguration in distribution systems

for loss reduction and load .balancing', IEEE Transactions on Power Delivery,
Vol-4, No-2, 1989, pp: 1401-1407.

15. SADHUKHAN, B.; `State Estimation in power distribution system', M. Tech,

Dissertation, Water Resources Development Training Centre, IIT, Roorkee,
2001.

23

APPENDIX-A

Table A.1: System Data for 19-Bus System

Base Voltage = 23 kV, Base kVA = 500 kVA

Line
No.

From
Bus
(1)

To
Bus
V~

Line Data Load at Bus (j)
Resistance

(ohm)
Reactance

(ohm)
Active

.u.
Reactive

(p.u.)
• 1 0 1 0.00 0.00 0.0 0.0

2 1 2 0.00 0.55 1.0 0.4
3 2 3 0.30 0.12 1.0 0.4
4 2 8 0.30 0.12 1.0 0.4

• 5 2 15 0.40. 0.16 1.2 0.4.
6 . 3 4 0.25 0.10 1.0 0.4
7 4 5 0.25 0.10 1.0 0.4
8 5 6 0.25 0.10 0.8 0.3
9 6 7 0.25 0.10 0.9 0.3
10 6 17 0.20 	• 0.08 1.2 0.4
11 7 11 0.20 0.08 0.8 0.3
12 8 	• 9 0.25 0.10 0.8 0.3
13 8 	• 12 0.30 0.12 1.0 0.4
14 9 10 0.30 0.12 0.8 0.3
15 1.0 11 0.50 0.20 0.8 0.3
16 12 13 0.30 0.12 0.8 0.3
17 13 14 0.20 0.08 1.2 0.4
18 • 14 18 0.20 0.08 1.2 0.4
19 15 16 0.30 0.12 1.2 0.4
20 16 17. 0.30 0.12 1.2 	. 0.4

24

Table A.2: System-Data for 22-Bus System

Base Voltage = 12.66 kV, Base kVA =100 kVA

Line
No.

From
Bus
(i)

To
Bus
(j)

Line data Load at Bus (j)
Resistance

.u.
Reactance

.u.
Active

.u.
Reactive

(p.u.)
1 0 1 5.75E-05 5.75E-05 1.00 0.60
2 1 2 0.000308 0.000155 0.90 0.40
3 1 18 0.000102 9.77E-05 0.90 0.40
4 2 3 0.000228 0.000116 1.20 0.80
5 3 4 0.000238 0.000121 0.60 0.30
6 4 5 0.000511 0.000441 0.60 0.20
7 5 6 0.000117 0.000386 2.00 1.00
8 6 7 0.000444 0.000147 2.00 1.00
9 7 8 0.000643 0.000462 0.60 0.20
10 8 9 0.000651 0.000462 0.60 0.20
11 9 10 0.000123 0.000406 0.45 0.30
12 10 11 0.000234 0.000772 0.60 0.35
13 11 12 0.000916 0.000721 0.60 0.35
14 11 21 0.001248 0.001248 0.90 0.40
15 12 13 0.000338 0.000445 1.20 0.80
16 13 14 0.000369 0.000328 0.60 0.10
17 14 15 0.000466 0.00034 0.60 0.20
18 15 16 0.000804 0.001074 0.60 0.20
19 16 17 0.000457 0.000358 0.90 0.40
20 18 19 0.000939 0.000846 0.90 0.40
21 19 20 0.000255 0.000298 0.90 0.40
22 20 21 0.000442 0.000585 0.90 0.40
23 8 14 0.001248 0.001275 0.60 0.10

4AL

25

APPENDIX-B

// ***** PROGRAM FOR LOAD FLOW ANALYSIS OF WEAKLY MESHED
DISTRIBUTION SYSTEM ***** //
#include<stdio.h>
#include<alloc.h>
#include<conio.h>
#include<math.h>
#include<graphics.h>
#def ne m 1 21
#define N 21
// ***** FUNCTION FOR MATRIX-ADDITION *****
void addition(float A[][N],float B[][N],float C[][N],int p,int q)
{
int i,j;
for(i=O;i<p;i++)
for(j=0;j<q;j++)
C [i] [j]=(A [i] [1]+B [i] [1]);
}
// ***** FUNCTION FOR MATRIX-SUBTRACTION *****
void subtraction(float A[][N],float B[][NJ,float C[][N],int p,int q)
{
int i,j;
for(i=0;i<p;i++)
for(j=0;j<q;j++)
C [i] [j] =(A [i] [j] -B [i] U]);
}
// * * * * * FUNCTION FOR MATRIX-MULTIPLICATION
void mul(float A[][N],int n,float B[][N],int p,float C[][N],int q)
{
int i,j,k;
for(i=0;i<n;i++)
for(j=0;j <p;j++)
{
C[i][j]=0.00;
for(k=O;k<q;k++)
C[i] [1]+=(A[iJ [k] *fl [k] [l]);
}
}
// ***** FUNCTION FOR MATRIX-INVERSION *****
void inverse(float xx[][N],int n)
{
int i,j,k,1;
for(i=0; i <n;i++)

26

for(j =0 ;j <n ;j ++)
for(k=0;k<n;k++)
if((j!=i)&&(k!=i))
xx[j][k] -= xx[j][i]*xx[i][k]/xx[i][i];
xx[i][i] = -(1.0/xx[i][i]);
for(1=0;1<n;l++)
{
if(1==i) continue;
xx[l] [i] *= xx[i] [i];
xx[i][1] *= xx[i][i];

}
for(i=0;i<n;i++)
for(j=0;j<n;j++)
xx[i][j]= -xx[i][j];

// * * * * * FUNCTION FOR COMPLEX MATRIX-ADDITION * * * * *
void complex_addition(float Ar[][N],float Ai[][N],float Br[][N],float Bi[][N],float
Cr[][N],float Ci[][N],int p,int q)
{
int i,j;
for(i=0;i<p;i++)
ford =0; j <q; j++)
{
Cr[i] [j]=(Ar[i] [j]+Br[i] [j]);
Ci [i] [j]=(Ai [i] [1]+Bi [i] [J]);
}
}
// ***** FUNCTION FOR COMPLEX MATRIX-SUBTRACTION *****
void complex_subtraction(float Ar[][N],float Ai[][N],float Br[][N],float Bi[][N],float
Cr[][N],float Ci[][N],int p,int q)
{
int i,j;
for(i=0;i<p;i++)
for(j=0;j<q;j++)
{
Cr[i][j]=(Ar[i][j]-Br[i][j]);
Ci[i] [j](Ai[i] [J]-Bi[i] [1]);
}
}
// ***** FUNCTION FOR COMPLEX MATRIX-MULTIPLICATION *****
void complex_mul(float Ar[][N],float Ai[][N],int n,float Br[][N],float Bi[][N],int p,float
Cr[][N],float Ci[][N],int q)
{
float Dr[N][N],Di[N][N];
mul(Ar, n, Br,p, Dr,q);

27

mul(Ai,n,B i,p,D i,q);
subtraction(Dr,Di,Cr,n,p);
mul(Ar,n,Bi,p,Dr,q);
mul(Ai,n,Br,p,Di,q);
addition(Dr,Di,Ci,n,p);

}***** // ***** FUNCTION FOR COMPLEX MATRIX-INVERSION
void complex_inverse(float A[][N],float B[][N],float C[}[N],float D[][N],int n)
{
int i,j;
float Ybl [N][N],YcI [N][N],Yc2[N][N];
for(i=0; i<n; i++)
for(j=0;j<n;j++)
Ybl [i][1]=B[i][1];
inverse(Yb l ,n);
mul(Yb l ,n,A,n,Yc 1,n);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
Ycl [i]]]=-Ycl [ill]];
mul(A,n,Yc I ,n,Yc2,n);
subtraction(Yc2,B,D,n,n);
inverse(D,n);
mul(Ycl,n,D,n,C,n);

} ***** 	 *** // 	FUNCTION FOR SORTING AN ELEMENT FROM AN ARRAY
int check_array(int a,int A[N],int n)
{
int i,k;
i=0;
k=0;
while(i<n)
{
if(a!=A[i])
k++;
i++;
}
i f(k==n)
return(a);
else
return(-1);
}
// ***** FUNCTION FOR ARRANGING ARRAY-ELEMENTS IN INCREASING
ORDER *****
void serial(int A[N],int n)
{
int temp,i,j;

for(i=1;i<n;i++)
for(j=0;j<(n-i);j++)
if(A[j]>A[j+1])
{
temp=A[j];
AU] =A[l+1];
A[j+l]=temp;

// * * * * * FUNCTION FOR CALCULATION OF Y-MATRIX * * * *
void calculate(float A[][7],int n,int B[N],int b,int C[N],int c,float D[][N],float E[][N])
{
float temp;
int i,j ,k,ii,jj ,connection[m 1];
for(i=0;i<b;i++)

for(j =0 ;j <c ;j++)

D[i][j]=0.00;
E[i]b]=0.00;
if(B[i]!=C[j])
{
for(k=0;k<n;k++)
if(((A[k] [1]=B [i])&&(A[k] [2]=C[j]))11((A[k] [2]=B [i])&&(A[k] [1]=C[j])))
{
temp=pow(A[k] [3],2)+pow(A[k] [4],2);
D [i] [j]=(-A[k] [3]/temp);
E[i] U]=(A[k] [4]/temp);

else

ii1;
connection[0]=B[i];
for(k=0;k<n;k++)
{
if((A[k] [1]=B[i]))
if(check_array(int(A[k] [2]),connection,ii)!=-1)
{
connection [ii]=int(A [k] [2]);
ii++;
}
if((A[k] [2]==B[i]))
if(check_array(int(A[k] [1]),connection,ii)!=-1)
{
connection[ii]=int(A[k] [1]);

29

ii++;
}
}//
for(j j=1;j j <ii;j j++)
{
for(k=0;k<n;k++)
if(((A[k] [1]==connection[O])&&(A[k] [2]=connection[j j]))!l((A[k] [2]=connection[O])
&&(A[k] [1]==connection[jj])))
{
temp=pow(A[k] [3],2)+pow(A[k] [4],2);
D[i] [j]+=(A[k] [3]/temp)+A[k] [5];
E[i] Ii] +(-A [k] [4]/temp)+A[k] [6];
}
}
}
}
}
}
void check for connection(float A[][7],int n,int a,int B[Nj,int *b)

int i,k,ii;
B[0]=a;
for(i=1;i<ml ;i++)
B[i]=-1;
ii=1;
for(k=0;k<n;k++)
{
i f((A [k] [1]==a))
if(check_array(int(A[k] [2]),B,ii)!=-1)
{
B[ii]=int(A[k][2]);

*b=ii-1;
}
}
void node position(float A[][7],int n,int a,int *b

int k,ii; .
for(k=0;k<n;k++)
if((A [k] [0]=a))
*b=k;
}
void main()
{
float branch —data[m1][7],node_data[m1][7],ternp,Ylr[N][N],Yl i[N][N],Y2r[N][N],

30

Y2i[N][N],Y3r[N][N],Y3i[N][N];
float Yaar[N][N],Yaai[N][N],Yabr[N][N],Yabi[N][N],Yacr[N][N],Yaci[N][N];
float Ybbr[N][N],Ybbi[N][N],Ybcr[N][N],Ybci[N][N],Yccr[N][N],Ycci[N][N];
float YAAr[N][N],YAAi[N][N];
float Ykronr[N][N],Ykroni[N][N],Zkronr[N][N],Zkroni[N][N];
float Zredr[N] [N],Zredi [N] [N];
float P_ flow,Q_flow,diff V [ml],pi,max,tolerance=0.000001,Sb,Vb;
int no_branch,no_buses,root,flag[m 1] ,seta[N] , setb[N],setc[N],setc I [N],no_seta,no_setb,
no_setc,connection[N],no_fconnection,bconnection I ,bconnection2,root_connection,
layer[N] [N],no_layer;
int i,j,k,iix jj,kk,iii jjj,kkk;
FILE *fl,*t2,*f3;
char s l [15];
clrscr();
pi=4*atan(l);
printf("\n 	******** WELCOME TO MY DISSERTATION *********")
printf("\n This Program is developed assuming Inital Bus Voltages and Bus Loadings are
in p.u. form but you can enter Branch Data either in p.u. form or in actual form");
printf("\n\nlf Branch-data are already in p.u.form then enter 1000 else enter base-kVA:-");
scanf("%f',&Sb);
printf("\nIf Branch-data are already in p.u.form then enter 1.00 else enter base-kV:-");
scanf("%f',&Vb);
printf("Enter Input File Name : ");
scanf("%s",s 1);
f 1=fopen(s 1,"r");
printf("Enter Output File Name :");
scanf("%s",s 1);
f2=fopen(s 1,"w");
// ***** DATA INPUTTING FROM FILE *****
fscanf(fl.,"%d %d %d",&no_buses,&no_branch,&root);
fprintf(f2, "\t* * * * * * LINE TOPOLOGY BEFORE BREAKING THE
LOOPS******\n")•
for(j=0;j <no_branch;j++)
{
fscanf(f1,"%f %f %f %f %f %f
%f',&branch_data[j] [0],&branch_data[j] [1] ,& branch_data[j] [2],&branch_data[j] [3],&bra
nch_data[] [4],&branch_data[j] [5],&branch_data[j] [6]);
branch_ data[j][3]/=(Vb*Vb* I000/Sb);
branch data[j][4]/=(Vb* Vb* 1000/Sb);
branch_ data[j][5]*=(Vb*Vb* 1000/Sb);
branch_data[j] [6] *=(Vb* Vb* 1000/Sb);
i f(branch_d ata[j] [1]>branch_data[j] [2])
{
temp=branch_data [j] [1];
branch _data[j] [1]=branch_data[j] [2];
branch_data[j] [2]=temp;

31

}
fprintf(f2,"\nNode %d <---Line no %d,Z=%f+j(%f) and Y=%f+j(%f)---> Node
%d,",int(branch_data[j] [1]),int(branch_data[j] [0]),branch_data[j][3] ,branch _data[j] [4],bra
nch_data[j] [5] ,branch _data[j] [6],int(branch_data[j] [2]));
}
for(i=1;i<no_buses;i++)
{
fscanf(fl,"%f %f %f %f
%f',&node_data[i] [0],&node_data[i] [1],&node_data [i] [2], &node_data[i] [5],&node data
[i] [6]);
node_data[i] [2]=pi*node_data[i] [2]/ 180;
node_data[i] [3]=0.00;
node data [i] [4]=0. 00;
}
flag[0]=-1;
node_data[0] [0]=root;
node_data[0] [1]=node data[1] [1];
node_data[0] [2]=node data[1] [2];
node data [0] [3}0. 00;
node _data[0] [4]=0.00;
node_data[0] [5]=0.00;
node_data[0] [6]=0.00;
for(i=1;i<no_buses;i++)
flag[i]=0;
// ***** CREATION OF LOOP BREAK POINTS,CALCULAITON OF SET-A & SET-
B AND NUMBERING OF DUMMY BUSES *****
k=0;
fprintf(f2,"\n\n");
for(j =0; j <no_ branch ; j++)
if(flag[branch_data[j][2]]=-1)

seta[k]=int(branch_data[j] [2]);
setb[k]=k+no_buses;
branch_data[j] [2]=float(setb[k]);
node_data[seta[k]] [3]=node_data[seta[k]] [3)/2;
node _data[seta[k]] [4]=nodedata[seta[k] J [4]/2;
node_data[seta[k]] [5]=nodedata[seta[k]] [5]/2;
node_data[seta[k]] [6]=no de_data [seta [k]] [6]/2;
node _data[k+no_buses] [0]=float(setb[k]);
node _data[k+no_buses] [1]node _data[seta[k]] [1];
node_data[k+no_buses] [2] =node_data[seta [k] 1 [2];
node_data[k+no_buses] [3]=node_data[seta[k]] [3];
node _data[k+no_buses] [4]=node_data[seta[k]] [4];
node _data[k+no_buses] [5]=node_data[seta[k]] [5];
node_data[k+no_buses] [6]=node_data[seta[k]] [6];

32

fprintf(f2,"\nLoop breakpoint created at Bus no-%d is Dummy bus no-
%d",seta[k],setb[k]);
k++;

else
flag[branch_data[j] [2]]=- 1;
no_seta=k;
no setb=k;
fprintf(f2, "\n\n\n\t* * * * * * LINE TOPOLOGY AFTER BREAKING THE
LOOPS******\n");
ford 0;j <no_branch; j++)
{
fprintf(f2,"\nNode %d <---Line no %d,Z=%f+j(%f) and Ysh=%f+j(%f)---> Node
%d,",int(branch_data[j] [1]),int(branch_data[j] [0]),branch_data[j] [3],branch_data [j] [4],bra
nch_data[] [5] ,branch _data[j] [6],int(branch_data[j] [2]));
}
// ***** CALCULAITON OF SET-C *****
k=0;
for(j= I ;j <no_buses+no_seta;j ++)
{
if(check_array(node_data[j] [0] ,seta,no_seta) ! =- 1)
{
setc 1 [k]=node_data[j] [0];
k++;
}
}
i=0;
for(j=0;j<k;j++)
if(check_array(setc 1 [j],setb,no_setb)!=-1)
{
setc[i]=setcl [j];
i++;
}
no_setc=i;
fprintf(f2,"\n\nNo of buses in set a=%d",no_seta);
fprintf(f2, "\n\n\t\t* * * * * * SET A * * * * * * \n");
for(i=0;i<no_ seta; i++)
fprintf(f2,"\nSet A[%d]=%d",i+l,seta[i]);
fprintf(f2,"\n\nNo of buses in set b=%d",no_setb);
fprintf(f2, "\n\n\t\t * * * * * * SET B ******\j);
for(i=0; i<no_setb; i++)
fprintf(12,"\nSet B[%d]=%d",i+1,setb[i]);
fprintf(f2,"\n\nNo of buses in set c=%d",nosetc);
fprintf(f2,"\n\n\t\t* * * * * * SET C * * * * * *\n");
for(i=0;i<no_setc;i++)
fprintf(f2,"\nSet C[%d]=%d",i+ 1 ,setc[i]);

33

// ***** LAYERS CREATION *****
for(i=0;i<N;i++)
for(j=0;j<N;j++)
layer[i][j]=0;
check_for_connection(branch_data,no_branch,root,connection,&root_connection);
layer[O] [0]=root_ connection;
for(i= 1 ;i<=layer[O] [0];i++)
{
for(j=0; j <no_branch; j++)
if((branch_data[j] [1]=root)&&(branch_data[j][2] =connection[i]))
layer[O] [i]=branch_data[j] [0];
}
ii=layer[0] [0];
no_layer=l;
kk=0;
while(ii<no_branch)
{
jj=1;
for(i=1;i<=Iayer[kk] [0];i++)

check_ for_connection(branch_data,no—branch,int(branch_data[Iayer[kk] [i] -
1] [2]),connection,&no_fconnection);
for(k=1;k<=no_fconnection;k++)
{
for(j =0 ;j <no_b ranc h; j ++)

if((int(branch_data[Iayer[kk] [i]-
1] [2])=branch_data[j] [1])&&(connection[k]==branch data[j] [2]))

layer[kk+1] [j j]=branch_data[j] [0];
jj++;
ii++;
} //if
} //j
} //k
layer[kk+l] [0]+=no_fconnection;
} //for i
no_layer++;
kk++;
}// end of while
fprintf(f2, "\n\n\t\t* * * * * * * * * * * * LAYERS CREATED * * * * * * * * * * * *\n")
fprintf(f2,"\n\t\tNUMBER OF L[NES\t\tLINE NUMBERS\n");
for(i=0; i<no_l ayer; i++)
{
fprintf(f2,"\nLAYER NO. -%d\t\t%d\t\t",i+l ,layer[i][0]);
for0=1;j<=layer[i] [0];j++)

34

fprintf(f2," %d",layer[i][j]);

fprintf(f2,"\n\nNUMBER OF LAYERS CREATED = %d",no_layer);
// * * * * * CALCULATION OF Y-MATRIX
calculate(branch_data,no_branch,seta,no_seta,seta,no_seta,Yaar,Yaai);
calculate(branch_ data, no_branch,seta,no_seta, setb,no_setb,Yabr, Yabi);
calculate(branch data,no_branch,seta,no_seta,setc,no_setc,Yacr,Yaci);
calculate(branch__data,no_branch,setb,no_setb,setb,no_setb,Ybbr,Ybbi);
calculate(branch data,no_branch,setb,no_setb,setc,no_setc,Ybcr,Ybci);
calculate(branch_h data, no_branch, setc,no_setc,setc,no_setc,Yccr,Ycci);
// * * * * * PRINTING OF Y-MATRIX * *
fprintf(f2,"\n\n\t\t************ Yaa *************\n");
for(i=0 ; i<no_seta; i++)
{
fprintf(f2,"\n");
for(j=0;j<no_sata;j++)
fprintf(f2,"%.4f+(%.4f)j ",Yaar[i][j],Yaai[i][j]);
}
fprintf(f2,"1n\n\n\t\t************ Yab *************1n");
for(i=0;i<no_seta;i++)
{
fprintf(f2,"fin");
for(j =0;j <no_setb;j ++)
fprintf(f2,"%.4f+(%.4f)j ",Yabr[i][j],Yabi[i][]);
}
fprintf(f2,"\n\n\n\t\t************ Yac *************1n");
for(i=0;i<no_seta;i++)
{
fprintf(f2,"\n");
for(j=0;j<no_setc;j++)
fprintf(f2, "%.4f+(%.4f)j ",Yacr[i] [j],Yaci [i] [j]);
}
fprintf(f2,"1n\n\n\t\t************ Yba *************fin);
for(i=0;i<no_setb;i++)
{
fprintf(f2,"\n");
for(j=0;j<no_seta; j++)
fprintf(f2,"%.4f+(%.4f)j ",Yabr[j][i],Yabi[j][i]);
}
fprintf(f2,,"\n\n\n\t\t************ Ybb *************\n").
for(i=0;i<no_setb;i++)
{
fprintf(f2, "\n");
for(j=0;j <no_setb;j++)
fprintf(f2,"%.4f+(%.4f)j ",Ybbr[i][j],Ybbi[iJUJ);
}

35

fprintf(f2,"\n\n\n\t\t************ Ybc *************\n");
for(i=0;i<no_setb;i++)
{
fprintf(f2,"\n");
for(j =0 ;j <no_setc;j ++)
fprintf(f2,"%.4f+(%.4f)j ",Ybcr[i] [j],Ybci[i] [j]);
}
fprintf(f2,"\n\n\n\t\t************ Yca *************\nu');
for(i=0;i<no_setc; i++)
{
fprintf(f2,"\n");
for(j=0;j<no_seta;j++)
fprintf(f2,"%.4f+(%.4f)j ",Yacr[j] [i],Yaci[j] [i]);
}
fprintf(f2,"\n\n\n\t\t************ Ycb ************\n");
for(i=0;i<no_setc;i++)
{
fprintf(f2,"\n");
for(,j=0;j<no_setb;j++)
fprintf(f2,"%.4f+(%.4f)j ",Ybcr[j] [i],Ybci[j] [i]);
}
fprintf(f2,"\n\n\n\t\t************ Ycc *************1n");
for(i=0; i<no_setc; i++)
{
fprintf(f2,"\n");
for(j=0;j <no_setc;j++)
fprintf(f2,"%.4f+(%.4f)j ",Yccr[i] [j],Ycci [i] [j]);
}
// ***** CALCULATION AND PRINTING OF Y-KRON *****
complex_inverse(Yccr,Ycci,Y I r,Y 1 i,no_setc);
complex_mul(Yacr,Yaci,no_seta,Y 1 r,Y I i,no_setc,Y3r,Y3 i,no_setc);
for(i=0;i<no_satc;i++)
for(j=0;j<no_seta;j++)
{
Y l r[i] [j]=Yacr[j] [i];
Yli[i][j]=Yaci[j][i];
}
complex_mul(Y3r,Y3i,no_seta,Y I r, Y I i,no_seta,Y2r,Y2i,no_setc);
complex_subtraction(Yaar,Yaai,Y2r,Y2i,YAAr,YAAi,no_seta,no_seta);
for(i=0;i<no_seta;i++)
for(j=0;j<no_seta;j++)
{
Ykronr[i] [j]=YAAr[i] [t];
Ykroni [i] [j]=YAAi [.i] (j];

fprintf(f2,"\n\n\n\t\t************ YAA *************\n");

36

for(i=0;i<no_seta;i++)

fprintf(f2,"\n");
for(j=0;j <no_seta;j++)
fprintf(f2,"%.4f+(%.4f)j ",YAAr[i][j],YAAi[i][j]);
}
complex_inverse(Yccr,Ycci,Y 1 r,Y 1 i,no_setc);
complex_mul(Yacr,Yaci,no_seta,Y 1 r,Y 1 i,no_setc,Y3r,Y3i,no_setc);
for(i=0; i <no_setc; i++)
for(j=0;j <no_setb;j++)
{
Ylr[i][j]=Ybcr[j][i];
Yli[i][j]=Ybci[j][i];
}
complex_mul (Y3 r, Y3 i ,no _seta,Y I r,Y 1 i,no_setb,Y2r,Y2i,no_setc);
complex_subtraction(Yabr,Yabi,Y2r,Y2i,YAAr,YAAi,no_seta,no_setc);
for(i=0; i<no_setb;i++)
for(j =0; j <no_seta; j++)
{
Ykronr[i] [+no_seta]=YAAr[i] [j];
Ykroni[i] (j+no_seta]=YAAi[i] [j];
}
fprintf(f2,"\n\n\n\t\t************ YAB *************fin");
for(i=0; i<no_seta; i++)
{
fprintf(f2,"\n");
for(j=0; j <no_setb;j +-I-)
fprintf(f2,"%.4f+(%.4f)j ",YAAr[i]UI,YAAi[i][j]);
}
complex_inverse(Yccr,Ycci,Y 1 r,Y 1 i,no_setc);
complex_ mul(Ybcr,Ybci,no_setb,Y 1 r,Y 1 i,no_setc,Y3r,Y3i,no_setc);
for(i=0; i<no_setc;i++)
for(j=0;j <no_seta;j++)
{
Y l r[i] [j]=YacrU] [i];
Yl i[i] []=Yaci [j] [i];
}
complex_mul(Y3 r,Y3 i ,no _setb,Y 1 r,Y 1 i,no_seta,Y2r,Y2i,no_setc);
for(i=0; i <no_se t b; i++)
for(j =0; j <no_s eta; j++)
{
Y l r[i] [j]=YabrU] [i];
Yli[i](j]=Yabi[][i];
}
complex_subtraction(Y 1 r,Y 1 i,Y2r,Y2i,YAAr,YAAi,no_setb,no_seta);
for(i=0; i<no_se tb; i++)

37

for(j=0;j <no_seta;j++)

Ykronr[i+no_seta] [j]=YAAr[i] [j];
Ykroni [i+no_seta] [j]=YAAi [i] [j];
}
fprintf(f2,"\n\n\n\t\t************ YBA *************\n9);
for(i=0; i<no_setb; i++)

fprintf(f2, "\n");
ford =0; j <no_set a; j ++)
fprintf(f2,"%.4f+(%.4f)j ",YAAr[i][j],YAAi[i] [j]);
}
complex_inverse(Yccr, Ycci, Y 1 r,Y 1 i,no_setc);
complex_mul(Ybcr,Ybci,no_setb,Y 1 r,Y 1 i,no_setc,Y3r,Y3 i,no_setc);
for(i=0;i<no_setc;i++)
fo r(j =0; j <no_s etb; j++)
{
Y l r[i] [j]=Ybcr[j] [i];
Yl i[i] [j]=Ybci[j][i];
}
complex_mul(Y3 r,Y3 i,no_setb,Y I r,Y 1 i,no_se tb,Y2r,Y2i,no_setc);
complex_subtraction(Ybbr,Ybbi,Y2r,Y2i,YAAr,YAAi,no_setb,no_setb);
for(i=0; i<no_setb; i++)
for(j=0;j <no_s etb;j ++)
{
Ykronr [i+no_se ta] [j+no_seta]=YAAr [i] [ii;
Ykroni [i+no_seta] [j+no_seta]=YAAi [i] [j];
}
fprintf(f2,"\n\n\n\t\t************ YBB ****+ ********\n");
for(i=0; i<no_setb; i++)
{
fprintf(f2,"\n");
for(j=0;j <no_setb ;j ++)
fprintf(f2,"%.4f+(%.4f)j ",YAAr[i][j],YAAi[i]Li]);
}
fprintf(f2,"\n\n\n\t\t************ Y Kron ************* I);
for(i=0; i<no_seta+no_setb; i++)
{
fprin tf(f2, "\n");
for(j =0; j <no_seta+no_setb; j ++)
fprintf(f2,"%.4f+(%.4f)j ",Ykronr[i] Li] ,Ykroni [i][ii);
}
// ***** CALCULATION AND PRINTING OF Z-KRON *****
complex_inverse(Ykronr,Ykroni,Zkronr,Zkroni,(no_seta+no_setb));
fprintf(f2,"\n\n\n\t\t************ Z Kron *************\n);
for(i=0;i<no_seta+no_setb;i++)

38

{
fprintf(f2,"\n");
for(j=0;j <no_seta+no_setb;j++)
fprintf(f2,"%.4f+(%.4f)j ",Zkronr[i] [j],Zkroni[i] [j]);
}
for(i=0; i<no_s eta; i++)
for(j=0; j <no_seta;j ++)
{
Y1 r[i] [j]=Zkronr[i] [];
Y1 i[i] [j]=Zkroni[i] [j];

for(i=0; i<no_seta;i++)
for(j=0;j <no_setb; j ++)
{
Y2r[i] (j]=Zkronr[i] [j+no_seta];
Y2i [i] U]=Zkroni[i] [j+no_seta];

complex_subtraction(Y 1 r,Y 1 i,Y2r,Y2i,Y3r,Y3i,no_seta,no_seta);
for(i=0; i<no_setb;i++)
for(j=0; j <no_seta;j++)
{
Y 1 r [i] [j]=Zkronr[i+no_seta] [j] ;
Y1 i[i] U]=Zkroni[i+no_seta] [j];

complex _subtraction(Y3r,Y3 i,Y 1 r,Y 1 i,Y2r,Y2i,no_seta,no_seta);
for(i=0;i<no_setb;i++)
fo r(j =0; j <no_s etb; j ++)

Y3 r[ij [j]=Zkronr[i+no_seta] [j+no_setaj;
Y3 i [i] [j]=Zkroni [i+no_seta] [j+no_seta];

complex_addition(Y2r,Y2i,Y3 r,Y3 i,Zredr,Zredi,no_seta,no_seta);
fprintf(f2,"\n\n\n\t\t************ Z Reduced *************\n");
for(i=0; i <no_seta; i++)
{
fprintf(f2,"\n");
for(j=0; j <noseta; j++)
fprintf(f2,"%.4f+(%.4f)j
}

",Zredr[i] [j],Zredi [i] [j]);

complex_inverse(Zredr,Zredi,Y2r,Y2i,no seta);

for(i=0; i<no_branch; i++)

Ybbr[i] [0]=0;
Ybbr[i] [1]=0;
Ybbr[i] [2]0;

39

Ybbr[i][3]=0;
Ybbr[i] [4]=0;
Ybbr [i] [5]=0;
}
for(j=0;j <no_buses+no_seta;j++)

Yccr[j] [0]=node_data[j] [1];
Yccr[j] [1]=node_data[j] [2];
Yccr[j] [2]=node_data[j] [1];
Yccr[j] [3] =node _data[j] [2];
}
kkk=1;
do
{
//***** CALCULATION OF POWER FLOWS IN BACKWARD SWEEP *****
fprintf(f2,"\n\n\t * * * * * * * RESULT AFTER ITERATION %d * * * * * * *\n",kkk);
fprintf(f2,"\n\t******* CALCULATION OF POWER FLOWS IN BACKWARD
SWEEP *******\n);
fprintf(f2,"\nFROM TO P 1 \t Q 1 \t P\t Q\t P2\t Q2\n");
for(j=(no_layer-1);j>=0;j--)
{
for(i=1;i<=layer[j] [0];i++)
{
check_for_connection(branch_data,no_branch, int(branch_data[Iayer[j] [i]-
1] [2]),connection,&no_fconnection);
if(no_fconnection== 0)

node position(node_data,no_buses+no_seta,
int(branch_data[layer[j] [i]-1] [2]),&bconnection 1);
Ybbr[layer[j][i]-1] [2]=node_data[bconnecti on I] [5]-node_data[bconnection 1] [3]
+pow(Yccr[bconnection l] [2],2)* branch_data[layer[j J [i]-1] [5];
Ybbr[layer[j][i]-1][3J=node_data[bconnection 1] [6]-node_ data[bconnection 1] [4]
-pow(Yccr[bconnection 1] [2],2)* branch _data[layer[j] [i]- 1] [6];
node position(node_data,no_buses+no_seta, 	_
int(branch_data[layer[j] [i]-1][I]),&bconnection2);
Ybbr[layer[j] [i]-1] [0]=Ybbr[layer[j J [i]-1] [2J+(pow(Ybbr[layer[j] [i]-1 } [2],2)
+pow(Ybbr[layer[j][i]-1][3],2))*branch_ data[layer[j][i]-1][3]
/pow(Yccr[bconnection 1] [2],2)
+pow(Ycer[bconnection2] [2],2) * branch_data[layer[j] [i]- 1] [5];
Ybbr[layer[j] [i]- 1] [1]=Ybbr[layer(j] [i]- 1] [3]+(pow(Ybbr[layer[j] [i]- 1] [2],2)
+pow(Ybbr[layer[j] [i]-1] [3],2))*branch_data[layer[j] [ij- I] [4]
/pow(Yccr[bconnection 1 J[2],2)
-pow(Yccr[bconnection2][2],2)* branch _data[layer[j] [i]- I] [6];
Ybbr[Iayer[j] [i]- 1] [4]=Ybbr[layer[j] [i]- 1] [0]
-pow(Yccr[bconnection2] [2],2) * branch_data[layer[j] [i]-1] [5];
Ybbr[layer[j][i]-1][5]=Ybbr[layer[j] [ij-I][1]

40

+pow(Yccr[bconnection2] [2],2) *branch _data[layer[j] [i]-1] [6];
fprintf(f2,"%d\t%d\t%.4f\t%.4f\t%.4f\t%.4f\t%.4f\t%.4f\n",
int(branch data[layer[j][i]-1][1]),int(branch data[layer[j][i]-1][2]),
Ybbr[layer[j][i]-I][2],Ybbr[layer[]][i]-1][3],
Ybbr[layer[j] [i]-1] [0],Ybbr[layer[j] [i]- 1][I],
Ybbr[layer[j] [i]- 1] [4],Ybbr[layer[j] [i]-1 J[5]);

else
{
P_flow=0.00;
Q_fl ow=0.00;
for(k=1;k<=no_fconnection;k++)
for(kk=0; kk<n o_branch; kk++)
if((int(branch_data[layer[j] [i]- 1] [2])=int(branch_data[kk] [1]))
&&(connection [k]==int(branch_data [kk] [2])))

P_flow+=Ybbr[kk] [0];
Q_flow+=Ybbr[kk] [1];
}
node position(node_data,no_buses+no_seta,
int(branch_data[layer[j] [1]-!] [2]),&bconnection 1);
Ybbr[layer[j] [i]- 1] [2]=P_flow+node_ data[bconnection 1] [5]
-node _data[bconnection 1] [3]
+pow(Yccr[bconnection I] [2],2)* branch_data[layer[j] [i]- 1] [5];
Ybbr[layer[j] [i]-1] [3]=Q_flow+node_data [bconnection 1] [6]
-node data[bconnection 1] [4]
-pow(Yccr[bconnection 1] [2J,2)*branch_ data [layer[j] [i]-1] [6];
node position(node_data,no_buses+no_seta,
int(branch_data[layer[] [i j- I] [I]),&bconnection2);
Ybbr[layer[j] [i]- 1] [0]=Ybbr[layer[j] [i]- 1] [2]
+(pow(Ybbr[layer[j] [i]- i] [2],2)
+pow(Ybbr[layer[j] [iJ- I] [3],2))* branch_data[layer[j] [i]- I] [3]
/pow(Yccr[bconnection 1] [2],2)
+pow(Yccr[bconnection2] [2],2)* branch_data[layer[j] [i]-1] [5];
Ybbr[layer[j][i]-1][1]=Ybbr[Iayer[j][i]-1] [3]
+(pow(Ybbr[layer[j] [i]-1] [2],2)
+pow(Ybbr[layer[j] [i]-1] [3] ,2))* branch_data[layer[j] [i]-i} [4]
/pow(Yccr[bconnection l] [2],2)
-pow(Yccr[bconnection2] [2],2)* branch_data[layer[j] [i]- 1] [6];
Ybbr[layer[j][i]-1][4]=Ybbr[layer[j][i]-1][0]
-pow(Yccr[bconnection2] [2],2)*branch_data[layer[j] [i]- 1][5];
Ybbr[Iayer[j][i]-I][5]=Ybbr[layer[j][i]-1][I]
+pow(Yccr[bconnection2] [2],2)*branch_d ata[layer[j] [i]- 1] [6];
fprintf(f2,"%d\t%d\t%.4 flt%.4 flt%.4f\t%.4flt%.4f\t%.4fln",
int(branch_data[Iayer[j] [i]- 1][1]),int(branch_data[Iayer[j][i]-1][2]),
Ybbr[layer[j] [i]- I] [2],Ybbr[layer[j] [i]- 1] [3],Ybbr[layer[j] [i]- 1] [0],

41

Ybbr[layer[j][i]-I][1],Ybbr[layer[j][i]-1][4],Ybbr[layer[j][i]-1][5]);

}
}
//***** CALCULATION OF NODE-VOLTAGES IN FORWARD-SWEET' *****
max=0.00;
fprintf(f2,"fin\t******* CALCULATION OF NODE-VOLTAGES IN FORWARD-
SWEEP *******\);
fprintf(f2,"\n\tNODE NO\t MAGNITUDE\t\t ANGLE\n");
fo r(j =0; j <no_l ay er; j++)

for(i=1;i<=layer[j] [0];i++)

node_position(node_data,no_buses+no_seta,
int(branch_data[layer[j] [i]-1] [1]),&bconnection 1);
node_position(node_data,no_buses+no_seta,
int(branch_data[layer[j] [i]-1] [2]),&bconnection2);
Yccr[bconnection2] [2]=sgrt((pow(Yccr[bconnection I] [2],2))
-2*((Ybbr[layer[j][i]-1][4]*branch_data[layer[j][i]- I][3])
+(Ybbr[layer[j] [i]-1] [5] * branch_data[layer[j] [i]-1] [4]))
+((pow(Ybbr[layer[j] [i]- 1] [4],2)
+pow(Ybbr[layer[j][i]-1][5],2))*(pow(branch_data[layer[j][i]-1][3],2)
+pow(branch_data[layer[j] [i]- I] [4],2))/(pow(Yccr[bconnection 1] [2],2))));
Yccr[bconnection2] [3]=Yccr[bconnection 1] [3]
-atan2((Ybbr[layer[j][i]-1][4]*branch_data[layer[jI[i]-1] [4]
-Ybbr[layer[j] [i]-1] [5] * branch_data[layer[j] [i]- 1] [3])/Yccr[bconnection 1] [2],
Yccr[bconnection1] [2]-(Ybbr[layer[j][i]-I][4]*branch_data[layer[j][i]-1][3]
+Ybbr[layer[j][i]- 1][5]*branch_data[layer[j][i]-1][4])/Yccr[bconnection1] [2]);
diffV [bconnection2]=fabs(Yccr[bconnection2] [O]-Yccr[bconnection2] [2]);
Yccr[bconnection2] [0]=Yccr[bconnection2] [2];
Yccr[bconnection2] [1]=Yccr[bconnection2] [3];
if(diff V [bconnection2]>max)
max=diff V[bconnection2];
fprintf(f2,"\n\t%d\t %f\t\t %f',int(branch_data[layer[j][i]-1][2]),
Yccr[bconnection2][2], 180*Yccr[bconnection2][3]/pi);

}
kkk++;
for(i=0;i<no_seta;i++)

node position(node_data,no_buses+no_seta,seta[i],&bconnection1);
node position(node_data,no_buses+no_seta,setb[i],&bconnection2);
Yaar[i] [0]=node_data[bconnection 1] [1] *cos(node_data[bconnection 1] [2)
-Yccr[bconnection 1] [2] *cos(Yccr[bconnection 1] [3])
-node data[bconnection2] [1] * cos(node data[bconnection2] [2])
+Yccr[bconnection2] [2] *cos(Yccr[bconnection2][3]);

42

Yaar[i] [1]=node data[bconnection 1] [1] * sin(node_data[bconnectionl] [2])
-Yccr[bconnection 1] [2] * sin(Yccr[bconnection 1] [3])
-node_data[bconnection2] [1] *sin(node_data[bconnection2] [2])
+Yccr [bconnection2] [2] * sin(Yccr[bconnection2] [3]);
}
for(i=0;i<no_seta;i++)

node_position(node_data,no_buses+no_seta,seta[i],&bconnection 1);
node_position(node_data,no_buses+no_seta,setb[i],&bconnection2);
Yaar[i] [2]=0;
Yaar[i][3]=0;
for(j=0;j <no_seta;j++)

Yaar[i] [2]+=(Y2r[i] [j] *Yaar[j] [0]-Y2i[i] [j] * Yaar[j] [1]);
Yaar[i] [3]+=(Y2r[i] [j] *Yaar[j] [1]+Y2i[i] [j] *Yaar[j][0]);
}
Yaar[i] [3]=-Yaar[i] [3];
Yaar[i] [4]=Yaar[i] [2] *Yccr[bconnection 1] [2] *cos(Yccr[bconnection 1] [3])-
Yaar[i] [3] * Yccr[bconnection 1] [2] * sin(Yccr[bconnection 1] [3]);
Yaar[i] [5]=Yaar[i] [2] *Yccr[bconnection 1] [2] *sin(Yccr[bconnection1] [3])+
Yaar[i] [3] * Yccr[bconnection 1] [2] * cos(Yccr[bconnection 1] [3]);
// ***** POWER INJECTION TO SET-A AND SET-B BUSES *****
node_ data[bconnection 1] [3]+=Yaar[i] [4];
node_data[bconnection 1] [4]+=Yaar[i] [5];
node_data[bconnection2] [3]-=Yaar[i] [4];
node data[bconnection2][4]-=Yaar[i][5];

while(max>tolerance);

43

	WRDMG10845.pdf
	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	References
	Appendix

