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ABSTRACT 

In this thesis, an attempt has been made to develop an algorithm for load flow 

solution of a weakly meshed (i.e. which contains a few loops) distribution system. In this 

algorithm, initially the original meshed network is converted into an equivalent radial 

network by breaking it at appropriate places. The effect of the mesh configuration is 

taken into account by suitable amount of complex power injections at appropriate buses 

in the radial network. Finally, the radial network is solved through standard 

forward/backward sweep algorithm to obtain the load flow solution of the original 

meshed network. The developed algorithm has been tested on two sample weakly meshed 

distribution systems. 
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Chapter-1 

INTRODUCTION 

One of the most fundamental tools for analyzing a power system is load-

flow. Essentially, a load-flow solution provides the steady-sate operating point of a power 

system for given a network and load data in the system. The knowledge of the steady-

state operating point is necessary for ensuring the secured operation of a power system. If 

any of the electrical quantities in the system (such as bus voltage, current and power flow 

over the lines etc.) exceeds its respective limits, certain corrective actions must be taken. 

to bring the out-of-bound quantities within their limits for ensuring secured operation of 

the system. These corrective actions include switching of shunt capacitors and reactor 

banks, adjustment of transformer tap settings etc. The nature and magnitude of such 

corrective actions depend on the magnitudes of violation of the out-of-bound quantities. 

As the magnitudes of violation are determined from the load-flow solution, the nature and 

magnitudes of the necessary corrective actions are actually heavily dependent on load-

flow solution. 

Therefore, for determining accurately.. the nature and magnitudes of the 

necessary corrective actions, the load-flow solutions need to be quite. accurate. Moreover, 

as the necessary corrective actions need to be implemented quickly for minimizing the 

damage to the power system from insecure operation, the load-flow solution needs also to - 

be obtained. very quickly. Previously, as the high voltage transmission grid used to carry 

much more electrical power than a low voltage distribution system, a lot of attention had 

been given to ensure secured operation of high voltage transmission grid. Towards this 

end, a number of efficient load-flow algorithms have been developed for the solution of a 

high voltage transmission grid. Among them prominent are Newton-Raphson Technique 
[1], Fast Decoupled Load Flow Technique [2] and different improved versions of Fast 
Decoupled Load Flow Technique [3-5]. 

However, presently due to increasing load demand, distribution system are 

also carrying significant amount of electrical power. Consequently, the need for ensuring 

secured operation of a distribution system has also been felt and towards this goal, the 



need for efficient load-flow techniques for distribution system analysis has also been 

identified. Now, power distribution networks, with their primarily radial configuration 

and wide-ranging resistance and reactance values of the feeders, are inherently ill-

conditioned and hence, the load-flow techniques developed for transmission system 

analysis are not suitable for the analysis of distribution system. As a result different load-

flow algorithms have been reported in the literatures for the analysis of radial distribution 
system [6-8]. 

Although the above algoritlun [6-8] are quite efficient for solving a radial 

distribution system, they are not suitable for solving weakly meshed distribution 

networks (i.e. networks containing loops), which are not uncommon in distribution 

systems. Consequently, different special algorithm has been developed for solving a 

meshed distribution system. Goswami, S.K. and Basu, S. K. [9], presented a method 

based on loop impedance matrix. In 110], a compensation based power-flow method has 

been proposed for solving both radial. and meshed distribution systems. An efficient load-

flow method for large weakly meshed distribution system has been presented in [11].  

Haque presented [12] a very simple method for solving a meshed distribution network. 

In this thesis, a technique for solving a weakly meshed distribution system 

has been developed. The work presented in this thesis is essentially in the same Iine as 

that of [12]. In this method, the meshed network is first converted into an equivalent 

radial configuration by breaking the loops. In this process, some new dummy buses are 

added in the system. Next, the power injections at the loop break points (the nodes where 

the loops in the original system have been broken) are computed by using a reduced order 

bus impedance matrix. After the calculation of injection powers at the loop break points, 

the equivalent radial system is solved to obtain the final solution. 

This thesis is organized as follows. Chapter-2 discusses the load-flow 

solution algorithm for analyzing a meshed distribution system in detail. Chapter-3 

presents the main results of this work. In this work, the developed technique has been 

applied to two different distribution systems. Finally, Chapter-4 gives the main 
conclusions of this work. 	_ 
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Chapter-2 

SOLUTION ALGORITHM 
OF A MESHED DISTRIBUTION SYSTEM 

• In this chapter, algorithm for power flow solution of a meshed distribution system 

is described in detail. 

2.1 Basic Concept 

Generally a distribution system draws power from a point (substation) and the 

configuration of the system is normally radial. In a radial distribution system, the number 

of lines and the number of buses are related as follows, 

is _ 11b+1 	 (2.1) 
Where is = number of buses and 

nb = number of branches. 

However, to increase the efficiency and reliability of the system, a distribution 

system is sometimes operated in a weakly meshed (i.e. containing a . few loops) . 

configuration. In case of a meshed network, number of buses in the system may be less 

than or equal to the number of branches in the system. The number of loops 11LP  of a 

meshed network is given by, " 

... (2.2) 
As the power flow solution algorithm of a radial distribution system is well 

established in this work the power flow solution algorithm of a . meshed distribution 

system is developed on the basis of the power flow solution algorithm of a radial 

distribution system. In this approach, a meshed distribution system, is first converted into 

a radial system. The effect of the loop configuration is taken into account by calculating 

complex power injections at appropriate nodes of the radial system. Finally, the radial 

system obtained is solved to obtain the final solution of the original meshed distribution 
system. 
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A meshed network having loops can be converted into an equivalent radial 

network by opening the loops. When a loop is opened, an extra dummy bus is created. 

Injecting appropriate amount of complex power at the loop breakpoints (LBI's) preserves 

the characteristics of the original meshed network. Thus, the number of dummy buses is 

equal to the number of loop 1Lp existing in the original meshed distribution system. An 

illustration of the above procedure is shown in Fig. 2.1. 

Fig. 2.1 shows an example of a meshed network in which the branch between a 

and b makes a loop. The equivalent radial network of Fig. 2.1 has been shown in Fig. 2.2 

in which the loop of the network is opened by adding a dummy bus a'. Thus, a LBP is 

created at bus a. 

Figure 2.1: A Mesh Network 

(P+jQ) 1 1- (P+jQ) 

Figure 2.2: Conversion of Mesh to radial Network by adding Dummy bus a' 

El 



To preserve the characteristic of the network after breaking, a compensatory 

power is injected to both sides of a break point as shown in Fig 2.2. This also reflects the 

power circulation in the original loop. The injected.power at the LBPs should be equal in 

magnitude with opposite in sign as shown in Fig. 2.2. 

Although the above procedure is quite simple to apply, a systematic procedure 
must be adopted to identify the nodes at which the loops are to be broken. This is 

achieved by numbering the branches in a systematic fashion. The ' procedure for 

numbering the branches is described in the following section. 

2.2 - Branch Numbering Scheme 
For branch numbering procedure, first the tree of the given network must be 

constructed. The tree consists of several layers and starts at the root node, where the 

power source is. connected. The root bus is also the slack bus of the network. The first 

layer consists of all the branches that are connected to the root bus. The next (second) 

layer consists of all the branches that are connected to receiving end bus of the branches 

in the previous (first) layer and so on. In this fashion all the branches of the network 

should be considered in the tree and they should appear only once. In this process, if it is 

observed that the receiving end bus of a newly added branch has already been considered 

in the tree then the newly added branch makes a loop in the network. The loop can be 

opened by introducing a dummy bus, which is numbered with a prime sign (`). The newly 

created dummy bus is assigned the role of receiving end bus of the newly considered 
branch instead of its original receiving end bus. 

A single line diagram of a 9-bus system [12] is shown in Fig. 2.3. In this system, 

`o' is root bus or slack bus. The tree diagram of the network is shown. in Fig. 2.4. The 

first layer of the tree consists of the branch o-a. The second layer consists of the branches 

a-b, a-c, a-f and a-h. The third layer consists of branches that are connected to buses b, c, 

f, or h but are not yet considered. This layer starts with branch b-c. Since the receiving 

end bus (bus c) of this branch has already been considered in the tree, a loop is created at 

this bus. This is opened by adding a dummy bus c'. This dummy bus c' is now assigned 

the role of receiving end bus of the branch b-c. Thus, the branch between buses b and c is 

now put between buses b and c'. The corresponding LBP (loop break point, i.e. where the 
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loop is broken) is c-c'. Similarly the other LBPs in this layer are h-h' and a-c' and the 

other branches in this layer are c-d, c-e, f-h', and f-g. By this same process, in the last 

(fourth) layer another LBP g-g' is created. Thus, the last layer consists of only one branch 

d-g'. Now, the total branches in the system that are numbered are o-a, a-b, a-c, a-f, a-h, 

b-c', c-d, c-e, f-h', f-e', f g and d-g'. 

e  d  12  

Figure 2.3: Single line diagram of a 9-bus network 

g' 

Layer 2 

f 

Layer 3 

Layer 4 

Figure 2.4: Tree diagram of the 9-bus network 
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Now according to the equation (2.2) there are four loops in the system. The total 

number of LBPs identified during the tree construction process is also 4 (four) and they 
are c-c', h-h', a-c', and g-g'. After the loops are broker' and the original mesh network is 
converted into radial network, for efficient load flow solution, all the buses (the original 
buses plus the dummy buses) are ordered in a particular fashion in this work. In,  the next 

section, the bus-ordering scheme is described in detail. 

2.3 Bus Ordering Scheme 
Due to the addition of dummy buses, the number of buses in a tree is more than 

the actual number of buses that existed before breaking the loops. Now, the buses so: 

obtained are divided into three different sets, namely set-a, set-b and set-c.. 

Set-a:  In this set, the original buses where LBPs are created during the tree construction 

process are kept. As it contains the original buses, the number of buses is equal to 

the number of loops (nLP) in the original system. As in Fig. 2.4, buses c, h, e and 

g belong to this set. The order or sequence of the buses in this set is not important. 

Set-b:  This set consists of all the dummy buses created in the process of mesh to radial 

conversion of the system by breaking the loops. Therefore, with reference to Fig. 

2.4 buses c', h', e' and g' belong to this set. The order or sequence of the buses in 

this set should be same as used in set-a. 

Set-c:  This set contains all the buses except the root bus that are not considered in set-a 

and set-b. In fact, it consists of all the remaining buses except the root bus. Again, 

the order or sequence of the buses in this set is not important. 

It is assumed that the network is so meshed that there is only one loop at any bus.. 

The bus ordering process is essential in order to compute the power injections at the 

LBPs, to take into account the effect of the meshed network. 

Once the original meshed network is converted .into an equivalent radial network 

and the buses are appropriately ordered, the radial network is solved by an iterative 

backward/forward sweep algorithm. However, to proceed with the backward/forward. 

sweep algorithm, the complex power injections at the LBPs need to be first calculated. 
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In the next section, the basic backward/forward sweep algorithm and in the 

subsequent section the procedure for calculating complex power injections at the LBPs 

are presented. 

2.4 Load Flow Equations 
As it is considered that the network is fed from a single source, the load flow 

problem can be solved iteratively using two sets of recursive equations. These are known 

as backward and forward recursive equations. The backward recursive equations are 

applied to compute the power flows in the branches and forward recursive equations are 

applied for computing the bus voltages. The procedure is illustrated as follows. 

In Fig. 2.5, a branch i between buses k and m is shown. The branch i is modeled 

as it (PI) equivalent network as shown in the Fig.2.5 

k 

J+  Q1 
 

Y/2 

Pkl  +JQ
.  

k 

Rl 	X l  

P, +M 
r,12 

1. 	1. 

Figure 2.5: it (PI) circuit model of branch. 

It is assumed that bus k is nearer to the root bus. The resistance and reactance of 

the branch are R, & Xl  respectively and the shunt charging admittance is denoted by yl. 
The power flow through the series impedance can be written as, 

Pi g  = P,„L  + P,n F P,„1 	 ... (2.3) 

Qi' =Q, + QM - QM — V1mYi /2 	 ... (2.4) 
Where Pl' and Qi are real & reactive power flow over the branch respectively. 

The superscripts L, F, and I in P and Q represent the load, flow, and the injection 

respectively. The flow Pm  F  (Q,,,F ) is the sum of active (reactive ) power flow through all 



the down stream branches that are emanating from the bus m. The procedure for finding 
the power injections (Pm ' and Qm1) at the LBPs is described in the next section. The 
active power (Pr ) and the reactive power (Q,) flow through the branch at bus k can be 

written as, 

P;  = Pi' + Ri  (PI 2 + Qr ' 2)/Vmz 

12i =  Q' +Xi(P1 2+Q; 2)/Vm2 - Vk1yf /2 

... (2.5) 

... (2.6) 

The above equations (2.5) & (2.6) are applied in a backward direction to compute 

the power flow through each branch in the tree. The equations are first applied to the last 

branch of the tree and proceed in reverse direction until the first branch is reached. After 

computing the power flow through each branch, the voltage magnitude and the angle at 

each bus is obtained by another set of recursive equations in forward direction. 

Assuming that the voltage angle at bus k is zero, the voltage at the bus m can be 
written as (refer Fig.2.5): 

Vm = Vk  — I, Z1  

= Vk — (Sr  /Vk) (R, +jX) 
=Vk_ (P, -jQi )/Vk (Ri+ jX) 
=(Vk2-ll'r,.R,+Qr Xt)

/Vk J(Pl Xi-Q, Rt )/Vk 

Where, S,'= P1 ,+ jQi  
Pl .. = P1  

Ql 
0- 

 Qi + Vk2y/2 

and I, is the current flowing through the series impedance (R, +jXl ). 

...(2.7) 

Now, from the equation (2.7), the expression for voltage magnitude at bus m can 
be written as, 

vm - V Vk 2 -`(I I?  +Q•X,) +(I +Q 2 )(R,2  +x,2 )/ 2  

... (2.8) 
and the expression for voltage angle at bus m can be written as, 

8,,, = - tan -'(aj/a2) 	 ... (2.9) 

	

Where, a j _ (Pi .  X,- Qr  Ri )/Vk 	 and 
a2 = Vk - (Pr.. R,+ Qi Xi)/Vk 

Now, if the voltage at the bus k is Sk (instead of zero), the angle 5,,, becomes, 

	

- tan -'(aj/a1) 	 ...(2.10) 
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Now, the equations. (2.8) and (2.10) are applied in forward direction i.e. they are 

applied at the first node and proceeds in the forward direction till the last node is reached. 

2.5_ Power Injections at the LBPs 
In this algorithm, the voltage differences at the LBPs are calculated in each 

iteration. After getting the voltage difference, the current and accordingly the power 

injections at the LBPs are computed with the help of reduced order bus impedance matrix 

Zred• The rank of Zfed is same as the number of loops nL1'.  Further, it is assumed that the 

root bus has constant terminal voltage with negligible internal resistance, is capable 

enough to supply all the loads and losses in the system. The procedure is explained as 
follows. 

The node equations of the system can be written as, 

[11= [YJ [ VJ 	 ...(2.11) 

The root bus is not considered in equation (2.11) as it is connected to the 

reference bus through a negligible (or zero) impedance. In deriving the admittance 

matrix, the loads in the, system are replaced by constant shunt admittances at a nominal 
voltage of 1.0. p.u. i.e, 

1'ioaa = S'IO d 

The power injections to third set of the buses are zero because there is no LBP at 

these buses and the effect of loads have been considered in the Y-matrix. Hence we can 

eliminate the third set of the buses by Kron reduction [ 13] as shown below. 

From equation (2.11) we can write, 

'a"  Yoe Yab Yoc Ve 
Ih  - Yba 'bb Ybc Vb 	 ...(2.12) 

0 	Y. Ycb Y,c  

Or, 	 . IQ =YaaVa+YabVb+YQcV, 	 ...(2.13) 
IbYbaV.+YbbVb+YbcVc 	 ...(2.14) 

	

0 =YcaVa+YcbVb+YcVc 	 ...(2.15) 

From equation (2.15), we can write 

10 



Vc= -Ycc f  ('coVa+YcbVb) 	 ...(2.16) 

By substituting equation (2.16) in equation (2.13), we get, 

Ia=YaaVa+YabVb - Yac Ycc '('YcaV.+YcbVb) 	...(2.17) 

= (Yaa Yac Ycc 1  Yca) Va+(YabJ'ac Ycc'Ycb) Vb 

	

= YAAVa+YABVb 	 ...(2.18) 

where, 	YAA = Yaa  Yap Yccl  Yea  and 
i YAB = Yab-Yac 

If 
 1cb 

By substituting equation (2.16) in equation (2.14), we get 

Ib=YbaVa+YbbVb —  Ybc Ycc (caVa+YcbVb) 	...(2.19) 

_ (Yi,n-Ybc  Ycc 4Yaa) Va+(Y bb-Ybc Ycc 4Ycb) Vb 

	

= YBAVa+YBBVb 	 ...(2.20) 

where, YBA = Yba Ybc Ycc 1  Yea and 

YBB = Ybb-Ybc Ycc 4Ycb 

Finally, the reduced system consists of first two sets of buses (set-a and set-b) and 

hence the corresponding node equation becomes, 

	

1° = 
YAAYAB v° 	 ...(2.21) 

Ib 	LABiBB 	Vb 

or 

	

[
Va = Z' Z21 [1.] 	 ...(.2.22) 
Vb 	Z3  Z4 L'J  

Now, we can write the voltage difference [Va  Vb] _ [Vab] 

as 	[Vab] _ [Z1-Z3] [Is] +[Z2-Z41[J1j 	 ...(2.23) 

The current or power injection at the LBPs (set-a and set-b) are equal but 

opposite in sign i.e. 

[Ia] = -[lb) 	 ... (2.24) 

Therefore, we can write, 

[Vab] — [ZI-Z3-Z2t-Z4] [la] 

Or [Vab] _ [ Z ea ] [Ia] 	 ... (2.25) 

where, Zrcd = ZI-Z3-Z24Z4. 



As equation (2.25) is linear in nature, in terms of incremental quantities, equation 

(2.25) can be written as, 

[AVab] = [Zred] [Ala] 
	 ... (2.26) 

Now, the incremental voltage difference [AVab] is the difference between the 

specified and the calculated values. The specified voltage difference [Vab] at the LBPs is 

always zero. If the value of [AVab] is known during the iteration process, we can calculate 

the value of [AI8] from equation (2.26). 

Therefore, the changes in power injection at the first set of buses (set-a) 

can be found out by, 

[AS a] = [V8] [AIa]* 
	 ...(2.27) 

where, [Va] is a diagonal matrix. After each iteration p, the active and reactive power 

injections at loop break points can be updated as follows, 
P1

(+1) = P'(P) + 91(ASa  ) 	 ...(2.28) 

QI(P+ 1 ) - QI(P) +J (AS8) 	 ... (2.29) 

Where, 9I(.) and 3(.) denote the real and imaginary parts of the quantity (.) 

respectively. The power injection at buses lying in the second set (set-b) can be computed 

similarly with opposite sign. In the next section the step-by-step solution algorithm is 

shown in detail. 

2.6 . Solution Algorithm 

The steps involved for finding the load flow solution of a single source mesh 

network are given below: 

Step 1. 	Read the system data. 

Step 2. 	Create loop break points for mesh to radial conversion. Construct tree 

network in layers and number the branches. 

Step 3. 	Order the buses. Divide the buses into three sets; set-a, set-b and set-c. 

Step 4. 	Assume initial voltage for all the buses except the root bus. 

Step 5. 	Compute the matrix Yaa, Yom, Yap, Yba, Ybb, Yb,, YCe, Yob, and Yee. 

Step 6. 	Find the matrix [Zfed] using equations (2.21), (2.22) and (2.25). 

Step 7. 	Assume initial power injections at the LBPs equal to Zero. 

12 



Step 8. 	Set iteration count K=1. 

Step 9. 	Compute the active and reactive power flow through each branches of the 

tree network by equations (2.5) & (2.6) respectively. It is done in 

backward direction i.e. the computation starts at the last branch and stops 

at the first branch. 

Step 10. 	Compute the voltage magnitude at the buses by equation (2.8) in forward 

direction i.e. the computation starts at the first node and stops at the last 

node. Also, compute the voltage angle in the same fashion by using 

equation (2.10). 

Step 11. 	Compute the incremental voltage difference [AVab] at the LBPs. If the 

value of [AVab] is within the specified tolerance, then the load flow has 

converged. Hence, stop the iterations and print the results. Otherwise go to 

step 12. 

Step 12. 	Update the active and reactive power injections at the LBPs using 

equations (2.28) & (2.29) respectively. Increment the iteration count by I 

and go back to step 9. 

13 



Chapter-3 

RESULTS AND DISCUSSION 

In order to test the validity of the solution algorithm developed in Chapter-2, two 

mesh connected systems of different sizes were adopted from [14] and [15], namely, i) 23 

kV, 19-bus mesh system and ii) 12.66 kV, 22-bus mesh system. The system data for these 

two systems are given in Table A. 1 and Table A.2 in Appendix-A respectively. For 

convergence, a tolerance limit of 0.000001 p.u. on the voltage magnitude has been 

specified. Moreover, a flat voltage profile (i.e. voltage magnitude of 1.0 p.0 and the angle 
of zero degree) has been assumed as the initial value of all the bus voltages. 

The results obtained for both the systems i.e. 19-bus network and 22-bus network 

are summarized and presented in the following sections. 

3.1 23 kV, 19-bus mesh network 

The single line diagram of this system is shown in Fig. 3.1. Following the bus 

numbering scheme presented in Chapter-2, it was found that two LBPs are present at bus 

number 11 and 17. Thus, before solving the load flow problem, the meshed network is 

first converted into an equivalent radial network by opening the loops at bus number 11 

and 17. In this process, two additional dummy buses have been created. These additional 

dummy buses have been numbered as 19 and 20. The equivalent radial network is shown 
in Fig. 3.2. 

14 
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Figure 3.1: Schematic diagram of 19-Bus mesh network 
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Figure 3.2: Schematic diagram of equivalent radial network of Fig. 3.1 
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The voltage magnitude at the root bus was considered to be 1.0 p.u. The algorithm 

took 4 iterations to converge and results are shown Table 3.1.The system data are given 

in Table A.1 in Appendix-A. Table 3.1 shows the voltage magnitude for the remaining 

buses of the system. It is expected that the voltages at the two buses representing a LBP 

would be identical after finial solution of the system. From Table 3.1, it is observed that 

the voltage solutions of bus 11 and 19 (which are representing the LBP at bus 11 in the 

original meshed network) are identical. Similarly, the voltage solutions of bus 17 and 20 

(which are representing the LBP at bus 17 in the original meshed network) are also 

identical. Thus, the developed algorithm is able to provide satisfactory results for the load 

flow solution of the meshed network. 

Table 3.1: Load Flow Solution for 19-Bus System 

Bus 
No. 

Bus Voltage 

Magnitude 
.u. 

Voltage Angle 
de 

1 1 0 
2 0.996716 -0.50663 
3 0.995268 -0.50844 
4 0.9943 37 -0.50996 
5 0.993682 -0.51147 
6 0.993303 -0.51299 
7 0.992997 -0.51365 
8 0.9943 01 -0.51077 
9 0.993707 -0.51176 
10 0.993258 -0.51262 
11 0.992946 -0.51351 
12 0.992929 -0.51373 
13 0.991887 -0.5167 
14 0.9913 69 -0.51846 
15 0.994932 -0.51093 
16 0.993982 -0.51286 
17 0.993419 -0.51346 
18 0.991109 -0.51934 
19 0.992946 -0.51351 
20 0.993419 -0.51346 
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3.2 12.66 kV, 22-bus mesh network 
To verify the validity of the developed algorithm further, a 22-bus meshed 

network [15] has also been considered. The single line diagram of this system is shown 

in Fig.3.3.The system data are given in Table A.2 in Appendix-A. The corresponding 

equivalent radial network obtained after breaking the loops is shown in Fig. 3.4. Loop 

break points are created at bus number 14 and 21. The dummy buses added are bus 

number 22 and 23 (refer Fig. 3.4). 

The voltage magnitude at the root bus was considered to be 1.0 p.u. The algorithm 

took 5 iterations to converge and results are shown Table 3.2. From Table 3.2 it is 

observed that the voltage solutions of buses 14 and 23 (which are representing the LBP at 

bus 14 in the original meshed network) are identical. Similarly, the voltage solutions of 

buses 21 and 22 (which are representing the LBP at bus 21 in the original meshed 

network) are also identical. In this case also the developed algorithm has provided 

satisfactory results for the load flow solution of the meshed network. 

17 



Figure 3.3: Schematic Diagram of 22-Bus mesh network. 
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Figure 3.4: Schematic diagram of equivalent radial network of Fig 3.3 
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Table 3.2: Load Flow Solution for 22-Bus System 

Bus 
No. 

Bus Voltage 

Magnitude 
(P.u.) 

Voltage Angle 
(deg.) 

1 0.998636 -0.0017 
2 0.994535 -0.0129 
3 0.991736 -0.02142 
4 0.989208 -0.03297 
5 0.983563 -0.14397 
6 0.981481 -0.29345 
7 0.978717 -0.28722 
8 0.975983 -0.34245 
9 0.97559 -0.36451 
10 0.975706 -0.36811 
11 0.976272 -0.35827 
12 0.973207 -0.39732 
13 0.972234 -0.4283 
14 0.972026 -0.43945 
15 0.970735 -0.46015 
16 0.968824 -0.52888 
17 0.968251 -0.53741 
18 0.997543 -0.01897 
19 0.988896 -0.13601 
20 0.986665 -0.18289 
21 0.983243 -0.26473 
22 0.983243 -0.26473 
23 0.972026 -0.43945 



Chapter 4 

CONCLUSION 

In this dissertation, an effort has been made to develop an algorithm for load flow 

analysis of weakly meshed distribution system network. In this algorithm, the original 

meshed configuration is first converted to an equivalent radial configuration by breaking 

the loops. In this process, dummy buses are added to the LBPs, To preserve the original 

characteristics of the network after conversion, a compensatory power is injected to the 

both sides of a loop break point (LBP). The injected power at the LBPs should be equal 

in magnitude with opposite sign at the two buses of a LBP. The power injections at the 

LBPs are computed with the help of a reduced order bus impedance matrix. The solution 

algorithm has been tested on a 23 kV, 19-bus mesh distribution system and a 12.66 kV, 

22-bus mesh distribution system. It has been observed that this method bears an excellent 

convergence behavior and provides quite satisfactory results. 
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APPENDIX-A 

Table A.1: System Data for 19-Bus System 

Base Voltage = 23 kV, Base kVA = 500 kVA 

Line 
No. 

From 
Bus 
(1) 

To 
Bus 
V~ 

Line Data Load at Bus (j) 
Resistance 

(ohm) 
Reactance 

(ohm) 
Active 

.u. 
Reactive 

(p.u.)  
• 1 0 1 0.00 0.00 0.0 0.0 

2 1 2 0.00 0.55 1.0 0.4 
3 2 3 0.30 0.12 1.0 0.4 
4 2 8 0.30 0.12 1.0 0.4 

• 5 2 15 0.40. 0.16 1.2 0.4. 
6 . 3 4 0.25 0.10 1.0 0.4 
7 4 5 0.25 0.10 1.0 0.4 
8 5 6 0.25 0.10 0.8 0.3 
9 6 7 0.25 0.10 0.9 0.3 
10 6 17 0.20 	• 0.08 1.2 0.4 
11 7 11 0.20 0.08 0.8 0.3 
12 8 	• 9 0.25 0.10 0.8 0.3 
13 8 	• 12 0.30 0.12 1.0 0.4 
14 9 10 0.30 0.12 0.8 0.3 
15 1.0 11 0.50 0.20 0.8 0.3 
16 12 13 0.30 0.12 0.8 0.3 
17 13 14 0.20 0.08 1.2 0.4 
18 • 14 18 0.20 0.08 1.2 0.4 
19 15 16 0.30 0.12 1.2 0.4 
20 16 17. 0.30 0.12 1.2 	. 0.4 
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Table A.2: System-Data for 22-Bus System 

Base Voltage = 12.66 kV, Base kVA =100 kVA 

Line 
No. 

From 
Bus 
(i) 

To 
Bus 
(j) 

Line data Load at Bus (j)  
Resistance 

.u. 
Reactance 

.u. 
Active 

.u. 
Reactive 

(p.u.)  
1 0 1 5.75E-05 5.75E-05 1.00 0.60 
2 1 2 0.000308 0.000155 0.90 0.40 
3 1 18 0.000102 9.77E-05 0.90 0.40 
4 2 3 0.000228 0.000116 1.20 0.80 
5 3 4 0.000238 0.000121 0.60 0.30 
6 4 5 0.000511 0.000441 0.60 0.20 
7 5 6 0.000117 0.000386 2.00 1.00 
8 6 7 0.000444 0.000147 2.00 1.00 
9 7 8 0.000643 0.000462 0.60 0.20 
10 8 9 0.000651 0.000462 0.60 0.20 
11 9 10 0.000123 0.000406 0.45 0.30 
12 10 11 0.000234 0.000772 0.60 0.35 
13 11 12 0.000916 0.000721 0.60 0.35 
14 11 21 0.001248 0.001248 0.90 0.40 
15 12 13 0.000338 0.000445 1.20 0.80 
16 13 14 0.000369 0.000328 0.60 0.10 
17 14 15 0.000466 0.00034 0.60 0.20 
18 15 16 0.000804 0.001074 0.60 0.20 
19 16 17 0.000457 0.000358 0.90 0.40 
20 18 19 0.000939 0.000846 0.90 0.40 
21 19 20 0.000255 0.000298 0.90 0.40 
22 20 21 0.000442 0.000585 0.90 0.40 
23 8 14 0.001248 0.001275 0.60 0.10 

4AL 
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APPENDIX-B 

// ***** PROGRAM FOR LOAD FLOW ANALYSIS OF WEAKLY MESHED 
DISTRIBUTION SYSTEM ***** // 
#include<stdio.h> 
#include<alloc.h> 
#include<conio.h> 
#include<math.h> 
#include<graphics.h> 
#def ne m 1 21 
#define N 21 
// ***** FUNCTION FOR MATRIX-ADDITION ***** 
void addition(float A[][N],float B[][N],float C[][N],int p,int q) 
{ 
int i,j; 
for(i=O;i<p;i++) 
for(j=0;j<q;j++) 
C [i] [j ]=(A [i ] [1 ]+B [i ] [1 ] ); 
} 
// ***** FUNCTION FOR MATRIX-SUBTRACTION ***** 
void subtraction(float A[][N],float B[][NJ,float C[][N],int p,int q) 
{ 
int i,j; 
for(i=0;i<p;i++) 
for(j=0;j<q;j++) 
C [ i] [j ] =(A [ i] [j ] -B [i] U]); 
} 
// * * * * * FUNCTION FOR MATRIX-MULTIPLICATION 
void mul(float A[][N],int n,float B[][N],int p,float C[][N],int q) 
{ 
int i,j,k; 
for(i=0;i<n;i++) 
for(j=0;j <p;j++) 
{ 
C[i][j]=0.00;  
for(k=O;k<q;k++) 
C[i] [1]+=(A[iJ [k] *fl  [k] [l]); 
} 
} 
// ***** FUNCTION FOR MATRIX-INVERSION ***** 
void inverse(float xx[][N],int n) 
{ 
int i,j,k,1; 
for(i=0; i <n;i++) 
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for(j =0 ;j  <n  ;j ++) 
for(k=0;k<n;k++) 
if((j!=i)&&(k!=i)) 
xx[j][k] -= xx[j][i]*xx[i][k]/xx[i][i]; 
xx[i][i] = -(1.0/xx[i][i]); 
for(1=0;1<n;l++) 
{ 
if(1==i) continue; 
xx[l] [i] *= xx[i] [i]; 
xx[i][1] *= xx[i][i]; 

} 
for(i=0;i<n;i++) 
for(j=0;j<n;j++) 
xx[i][j]= -xx[i][j]; 

// * * * * * FUNCTION FOR COMPLEX MATRIX-ADDITION * * * * * 
void complex_addition(float Ar[][N],float Ai[][N],float Br[][N],float Bi[][N],float 
Cr[][N],float Ci[][N],int p,int q) 
{ 
int i,j; 
for(i=0;i<p;i++) 
ford =0; j <q; j++) 
{ 
Cr[i] [j ]=(Ar[i] [j ]+Br[i] [j]); 
Ci [i] [j]=(Ai [i] [1]+Bi [i] [J]); 
} 
} 
// ***** FUNCTION FOR COMPLEX MATRIX-SUBTRACTION ***** 
void complex_subtraction(float Ar[][N],float Ai[][N],float Br[][N],float Bi[][N],float 
Cr[][N],float Ci[][N],int p,int q) 
{ 
int i,j; 
for(i=0;i<p;i++) 
for(j=0;j<q;j++) 
{ 
Cr[i][j]=(Ar[i][j]-Br[i][j]); 
Ci[i] [j](Ai[i] [J]-Bi[i] [1]); 
} 
} 
// ***** FUNCTION FOR COMPLEX MATRIX-MULTIPLICATION ***** 
void complex_mul(float Ar[][N],float Ai[][N],int n,float Br[][N],float Bi[][N],int p,float 
Cr[][N],float Ci[][N],int q) 
{ 
float Dr[N][N],Di[N][N]; 
mul(Ar, n, Br,p, Dr,q); 
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mul(Ai,n,B i,p,D i,q); 
subtraction(Dr,Di,Cr,n,p); 
mul(Ar,n,Bi,p,Dr,q); 
mul(Ai,n,Br,p,Di,q); 
addition(Dr,Di,Ci,n,p); 

}***** // ***** FUNCTION FOR COMPLEX MATRIX-INVERSION 
void complex_inverse(float A[][N],float B[][N],float C[}[N],float D[][N],int n) 
{ 
int i,j; 
float Ybl [N][N],YcI [N][N],Yc2[N][N]; 
for(i=0; i<n; i++) 
for(j=0;j<n;j++) 
Ybl [i][1]=B[i][1]; 
inverse(Yb l ,n); 
mul(Yb l ,n,A,n,Yc 1,n); 
for(i=0;i<n;i++) 
for(j=0;j<n;j++) 
Ycl [i]]]=-Ycl [ill]]; 
mul(A,n,Yc I ,n,Yc2,n); 
subtraction(Yc2,B,D,n,n); 
inverse(D,n); 
mul(Ycl,n,D,n,C,n); 

} ***** 	 *** // 	FUNCTION FOR SORTING AN ELEMENT FROM AN ARRAY 
int check_array(int a,int A[N],int n) 
{ 
int i,k; 
i=0; 
k=0; 
while(i<n) 
{ 
if(a!=A[i]) 
k++; 
i++; 
} 
i f(k==n) 
return(a); 
else 
return(-1); 
} 
// ***** FUNCTION FOR ARRANGING ARRAY-ELEMENTS IN INCREASING 
ORDER ***** 
void serial(int A[N],int n) 
{ 
int temp,i,j; 



for(i=1;i<n;i++) 
for(j=0;j<(n-i);j++) 
if(A[j]>A[j+1 ]) 
{ 
temp=A[j]; 
AU] =A[l+1  ]; 
A[j+l]=temp; 

// * * * * * FUNCTION FOR CALCULATION OF Y-MATRIX * * * * 
void calculate(float A[][7],int n,int B[N],int b,int C[N],int c,float D[][N],float E[][N]) 
{ 
float temp; 
int i,j ,k,ii,jj ,connection[m 1]; 
for(i=0;i<b;i++) 

for(j =0 ;j <c ;j++) 

D[i][j]=0.00; 
E[i]b]=0.00; 
if(B[i]!=C[j]) 
{ 
for(k=0;k<n;k++) 
if(((A[k] [ 1  ]=B [i])&&(A[k] [2]=C[j]))11((A[k] [2]=B [i])&&(A[k] [ 1  ]=C[j]))) 
{ 
temp=pow(A[k] [3],2)+pow(A[k] [4],2); 
D [i] [j]=(-A[k] [3 ]/temp); 
E[i] U]=(A[k] [4]/temp); 

else 

ii1; 
connection[0]=B[i]; 
for(k=0;k<n;k++) 
{ 
if((A[k] [1 ]=B[i])) 
if(check_array(int(A[k] [2]),connection,ii)!=-1) 
{ 
connection [ii]=int(A [k] [2] ); 
ii++; 
} 
if((A[k] [2]==B[i])) 
if(check_array(int(A[k] [ 1 ]),connection,ii)!=-1) 
{ 
connection[ii]=int(A[k] [1]); 
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ii++; 
} 
}// 
for(j j=1;j j <ii;j j++) 
{ 
for(k=0;k<n;k++) 
if(((A[k] [ 1 ]==connection[O])&&(A[k] [2]=connection[j j ]))!l((A[k] [2]=connection[O]) 
&&(A[k] [ 1 ]==connection[jj]))) 
{ 
temp=pow(A[k] [3],2)+pow(A[k] [4],2); 
D[i] [j]+=(A[k] [3]/temp)+A[k] [5]; 
E[i] Ii] +(-A [k] [4]/temp)+A[k] [6]; 
} 
} 
} 
} 
} 
} 
void check for connection(float A[][7],int n,int a,int B[Nj,int *b) 

int i,k,ii; 
B[0]=a; 
for(i=1;i<ml ;i++) 
B[i]=-1; 
ii=1; 
for(k=0;k<n;k++) 
{ 
i f((A [k] [ 1 ]==a)) 
if(check_array(int(A[k] [2]),B,ii)!=-1) 
{ 
B[ii]=int(A[k][2]); 

*b=ii-1; 
} 
} 
void node position(float A[][7],int n,int a,int *b 

int k,ii; . 
for(k=0;k<n;k++) 
if((A [k] [0]=a)) 
*b=k; 
} 
void main() 
{ 
float branch —data[m1][7],node_data[m1][7],ternp,Ylr[N][N],Yl i[N][N],Y2r[N][N], 
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Y2i[N][N],Y3r[N][N],Y3i[N][N]; 
float Yaar[N][N],Yaai[N][N],Yabr[N][N],Yabi[N][N],Yacr[N][N],Yaci[N][N]; 
float Ybbr[N][N],Ybbi[N][N],Ybcr[N][N],Ybci[N][N],Yccr[N][N],Ycci[N][N]; 
float YAAr[N][N],YAAi[N][N]; 
float Ykronr[N][N],Ykroni[N][N],Zkronr[N][N],Zkroni[N][N]; 
float Zredr[N] [N],Zredi [N] [N]; 
float P_ flow,Q_flow,diff V [ml ],pi,max,tolerance=0.000001,Sb,Vb; 
int no_branch,no_buses,root,flag[m 1] ,seta[N] ,  setb[N],setc[N],setc I [N],no_seta,no_setb, 
no_setc,connection[N],no_fconnection,bconnection I ,bconnection2,root_connection, 
layer[N] [N],no_layer; 
int i,j,k,iix jj,kk,iii jjj,kkk; 
FILE *fl,*t2,*f3; 
char s l [ 15]; 
clrscr(); 
pi=4*atan(l ); 
printf("\n 	******** WELCOME TO MY DISSERTATION *********") 
printf("\n This Program is developed assuming Inital Bus Voltages and Bus Loadings are 
in p.u. form but you can enter Branch Data either in p.u. form or in actual form"); 
printf("\n\nlf Branch-data are already in p.u.form then enter 1000 else enter base-kVA:-"); 
scanf("%f',&Sb); 
printf("\nIf Branch-data are already in p.u.form then enter 1.00 else enter base-kV:-"); 
scanf("%f',&Vb); 
printf("Enter Input File Name : "); 
scanf("%s",s 1); 
f 1=fopen(s 1,"r"); 
printf("Enter Output File Name :"); 
scanf("%s",s 1); 
f2=fopen(s 1,"w"); 
// ***** DATA INPUTTING FROM FILE ***** 
fscanf(fl.,"%d %d %d",&no_buses,&no_branch,&root); 
fprintf(f2, "\t* * * * * * LINE TOPOLOGY BEFORE BREAKING THE 
LOOPS******\n")• 
for(j=0;j <no_branch;j++) 
{ 
fscanf(f1,"%f %f %f %f %f %f 
%f',&branch_data[j] [0],&branch_data[j] [1] ,&  branch_data[j] [2],&branch_data[j ] [3],&bra 
nch_data[] [4],&branch_data[j] [5],&branch_data[j] [6]); 
branch_ data[j][3]/=(Vb*Vb* I000/Sb); 
branch data[j][4]/=(Vb* Vb* 1000/Sb); 
branch_ data[j][5]*=(Vb*Vb* 1000/Sb); 
branch_data[j] [6] *=(Vb* Vb* 1000/Sb); 
i f(branch_d ata[j ] [ 1 ]>branch_data[j ] [2] ) 
{ 
temp=branch_data [j] [1];  
branch _data[j ] [ 1 ]=branch_data[j ] [2]; 
branch_data[j ] [2]=temp; 

31 



} 
fprintf(f2,"\nNode %d <---Line no %d,Z=%f+j(%f) and Y=%f+j(%f)---> Node 
%d,",int(branch_data[j] [ 1 ]),int(branch_data[j] [0]),branch_data[j][3] ,branch _data[j] [4],bra 
nch_data[j] [5] ,branch _data[j] [6],int(branch_data[j ] [2])); 
} 
for(i=1;i<no_buses;i++) 
{ 
fscanf(fl,"%f %f %f %f 
%f',&node_data[i] [0],&node_data[i] [ 1 ],&node_data [i] [2], &node_data[i] [5],&node data 
[i] [6]); 
node_data[i] [2]=pi*node_data[i] [2]/ 180; 
node_data[i] [3 ]=0.00; 
node data [i] [4]=0. 00; 
} 
flag[0]=-1; 
node_data[0] [0]=root; 
node_data[0] [ 1 ]=node data[ 1] [1 ]; 
node_data[0] [2]=node data[ 1 ] [2]; 
node data [0] [3}0. 00; 
node _data[0] [4]=0.00; 
node_data[0] [5]=0.00; 
node_data[0] [6]=0.00; 
for(i=1;i<no_buses;i++) 
flag[i]=0; 
// ***** CREATION OF LOOP BREAK POINTS,CALCULAITON OF SET-A & SET- 
B AND NUMBERING OF DUMMY BUSES ***** 
k=0; 
fprintf(f2,"\n\n"); 
for(j =0; j <no_ branch ; j++) 
if(flag[branch_data[j][2]]=-1) 

seta[k]=int(branch_data[j] [2]); 
setb[k]=k+no_buses; 
branch_data[j] [2]=float(setb[k]); 
node_data[seta[k] ] [3]=node_data[seta[k]] [3 )/2; 
node _data[seta[k] ] [4]=nodedata[seta[k] J [4]/2; 
node_data[seta[k]] [5]=nodedata[seta[k]] [5]/2; 
node_data[seta[k]] [6]=no de_data [seta [k]] [6]/2; 
node _data[k+no_buses] [0]=float(setb[k]); 
node _data[k+no_buses] [ 1 ]node _data[seta[k]] [1];  
node_data[k+no_buses] [2] =node_data[seta [k] 1  [2]; 
node_data[k+no_buses] [3]=node_data[seta[k]] [3]; 
node _data[k+no_buses] [4]=node_data[seta[k]] [4]; 
node _data[k+no_buses] [5]=node_data[seta[k]] [5]; 
node_data[k+no_buses] [6]=node_data[seta[k]] [6]; 
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fprintf(f2,"\nLoop breakpoint created at Bus no-%d is Dummy bus no-
%d",seta[k],setb[k]); 
k++; 

else 
flag[branch_data[j ] [2]]=- 1; 
no_seta=k; 
no setb=k; 
fprintf(f2, "\n\n\n\t* * * * * * LINE TOPOLOGY AFTER BREAKING THE 
LOOPS******\n"); 
ford 0;j <no_branch; j++) 
{ 
fprintf(f2,"\nNode %d <---Line no %d,Z=%f+j(%f) and Ysh=%f+j(%f)---> Node 
%d,",int(branch_data[j ] [ 1 ]),int(branch_data[j ] [0]),branch_data[j] [3],branch_data [j] [4],bra 
nch_data[ ] [5] ,branch _data[j ] [6],int(branch_data[j ] [2] )); 
} 
// ***** CALCULAITON OF SET-C ***** 
k=0; 
for(j= I ;j <no_buses+no_seta;j ++) 
{ 
if(check_array(node_data[j] [0] ,seta,no_seta) ! =- 1) 
{ 
setc 1 [k]=node_data[j ] [0]; 
k++; 
} 
} 
i=0; 
for(j=0;j<k;j++) 
if(check_array(setc 1 [j ],setb,no_setb)!=-1) 
{ 
setc[i]=setcl [j]; 
i++; 
} 
no_setc=i; 
fprintf(f2,"\n\nNo of buses in set a=%d",no_seta); 
fprintf(f2, "\n\n\t\t* * * * * * SET A * * * * * * \n"); 
for(i=0;i<no_ seta; i++) 
fprintf(f2,"\nSet A[%d]=%d",i+l,seta[i]); 
fprintf(f2,"\n\nNo of buses in set b=%d",no_setb); 
fprintf(f2, "\n\n\t\t * * * * * * SET B ******\j);  
for(i=0; i<no_setb; i++) 
fprintf(12,"\nSet B[%d]=%d",i+1,setb[i]); 
fprintf(f2,"\n\nNo of buses in set c=%d",nosetc); 
fprintf(f2,"\n\n\t\t* * * * * * SET C * * * * * *\n"); 
for(i=0;i<no_setc;i++) 
fprintf(f2,"\nSet C[%d]=%d",i+ 1 ,setc[i]); 
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// ***** LAYERS CREATION ***** 
for(i=0;i<N;i++) 
for(j=0;j<N;j++) 
layer[i][j]=0; 
check_for_connection(branch_data,no_branch,root,connection,&root_connection); 
layer[O] [0]=root_ connection; 
for(i= 1 ;i<=layer[O] [0];i++) 
{ 
for(j=0; j <no_branch; j++) 
if((branch_data[j] [1 ]=root)&&(branch_data[j][2] =connection[i])) 
layer[O] [i]=branch_data[j] [0]; 
} 
ii=layer[0] [0]; 
no_layer=l; 
kk=0; 
while(ii<no_branch) 
{ 
jj=1; 
for(i=1;i<=Iayer[kk] [0];i++) 

check_ for_connection(branch_data,no—branch,int(branch_data[Iayer[kk] [i] - 
1] [2]),connection,&no_fconnection); 
for(k=1;k<=no_fconnection;k++) 
{ 
for(j =0 ;j <no_b ranc h; j ++) 

if((int(branch_data[Iayer[kk] [i]- 
1] [2])=branch_data[j] [1] )&&(connection[k]==branch data[j]  [2])) 

layer[kk+1 ] [j j]=branch_data[j] [0]; 
jj++; 
ii++; 
} //if 
} //j 
} //k 
layer[kk+l ] [0]+=no_fconnection; 
} //for i 
no_layer++; 
kk++; 
}// end of while 
fprintf(f2, "\n\n\t\t* * * * * * * * * * * * LAYERS CREATED * * * * * * * * * * * *\n") 
fprintf(f2,"\n\t\tNUMBER OF L[NES\t\tLINE NUMBERS\n"); 
for(i=0; i<no_l ayer; i++) 
{ 
fprintf(f2,"\nLAYER NO. -%d\t\t%d\t\t",i+l ,layer[i][0]); 
for0=1;j<=layer[i] [0];j++) 
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fprintf(f2," %d",layer[i][j]); 

fprintf(f2,"\n\nNUMBER OF LAYERS CREATED = %d",no_layer); 
// * * * * * CALCULATION OF Y-MATRIX 
calculate(branch_data,no_branch,seta,no_seta,seta,no_seta,Yaar,Yaai); 
calculate(branch_ data, no_branch,seta,no_seta, setb,no_setb,Yabr, Yabi); 
calculate(branch data,no_branch,seta,no_seta,setc,no_setc,Yacr,Yaci); 
calculate(branch__data,no_branch,setb,no_setb,setb,no_setb,Ybbr,Ybbi); 
calculate(branch data,no_branch,setb,no_setb,setc,no_setc,Ybcr,Ybci); 
calculate(branch_h  data, no_branch, setc,no_setc,setc,no_setc,Yccr,Ycci); 
// * * * * * PRINTING OF Y-MATRIX * * 
fprintf(f2,"\n\n\t\t************ Yaa *************\n"); 
for(i=0 ; i<no_seta; i++) 
{ 
fprintf(f2,"\n"); 
for(j=0;j<no_sata;j++) 
fprintf(f2,"%.4f+(%.4f)j ",Yaar[i][j],Yaai[i][j]); 
} 
fprintf(f2,"1n\n\n\t\t************ Yab *************1n"); 
for(i=0;i<no_seta;i++) 
{ 
fprintf(f2,"fin"); 
for(j =0;j <no_setb;j ++)  
fprintf(f2,"%.4f+(%.4f)j ",Yabr[i][j],Yabi[i][]); 
} 
fprintf(f2,"\n\n\n\t\t************ Yac *************1n"); 
for(i=0;i<no_seta;i++) 
{ 
fprintf(f2,"\n"); 
for(j=0;j<no_setc;j++) 
fprintf(f2, "%.4f+(%.4f)j ",Yacr[i] [j],Yaci [i] [j]); 
} 
fprintf(f2,"1n\n\n\t\t************ Yba *************fin); 
for(i=0;i<no_setb;i++) 
{ 
fprintf(f2,"\n"); 
for(j=0;j<no_seta; j++) 
fprintf(f2,"%.4f+(%.4f)j ",Yabr[j][i],Yabi[j][i]); 
} 
fprintf(f2,,"\n\n\n\t\t************ Ybb *************\n"). 
for(i=0;i<no_setb;i++) 
{ 
fprintf(f2, "\n"); 
for(j=0;j <no_setb;j++) 
fprintf(f2,"%.4f+(%.4f)j ",Ybbr[i][j],Ybbi[iJUJ); 
} 
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fprintf(f2,"\n\n\n\t\t************ Ybc *************\n"); 
for(i=0;i<no_setb;i++) 
{ 
fprintf(f2,"\n"); 
for(j =0 ;j <no_setc;j ++) 
fprintf(f2,"%.4f+(%.4f)j ",Ybcr[i] [j],Ybci[i] [j]); 
} 
fprintf(f2,"\n\n\n\t\t************ Yca *************\nu'); 
for(i=0;i<no_setc; i++) 
{ 
fprintf(f2,"\n"); 
for(j=0;j<no_seta;j++) 
fprintf(f2,"%.4f+(%.4f)j ",Yacr[j] [i],Yaci[j] [i]); 
} 
fprintf(f2,"\n\n\n\t\t************ Ycb ************\n"); 
for(i=0;i<no_setc;i++) 
{ 
fprintf(f2,"\n"); 
for(,j=0;j<no_setb;j++) 
fprintf(f2,"%.4f+(%.4f)j ",Ybcr[j] [i],Ybci[j ] [i]); 
} 
fprintf(f2,"\n\n\n\t\t************ Ycc *************1n"); 
for(i=0; i<no_setc; i++) 
{ 
fprintf(f2,"\n"); 
for(j=0;j <no_setc;j++) 
fprintf(f2,"%.4f+(%.4f)j ",Yccr[i] [j],Ycci [i] [j]); 
} 
// ***** CALCULATION AND PRINTING OF Y-KRON ***** 
complex_inverse(Yccr,Ycci,Y I r,Y 1 i,no_setc); 
complex_mul(Yacr,Yaci,no_seta,Y 1 r,Y I i,no_setc,Y3r,Y3 i,no_setc); 
for(i=0;i<no_satc;i++) 
for(j=0;j<no_seta;j++) 
{ 
Y l r[i] [j]=Yacr[j ] [i]; 
Yli[i][j]=Yaci[j][i]; 
} 
complex_mul(Y3r,Y3i,no_seta,Y I r, Y I i,no_seta,Y2r,Y2i,no_setc); 
complex_subtraction(Yaar,Yaai,Y2r,Y2i,YAAr,YAAi,no_seta,no_seta); 
for(i=0;i<no_seta;i++) 
for(j=0;j<no_seta;j++) 
{ 
Ykronr[i] [j]=YAAr[i] [t]; 
Ykroni [i] [j]=YAAi [.i] (j]; 

fprintf(f2,"\n\n\n\t\t************ YAA *************\n"); 
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for(i=0;i<no_seta;i++) 

fprintf(f2,"\n"); 
for(j=0;j <no_seta;j++) 
fprintf(f2,"%.4f+(%.4f)j ",YAAr[i][j],YAAi[i][j]); 
} 
complex_inverse(Yccr,Ycci,Y 1 r,Y 1 i,no_setc); 
complex_mul(Yacr,Yaci,no_seta,Y 1 r,Y 1 i,no_setc,Y3r,Y3i,no_setc); 
for(i=0; i <no_setc; i++) 
for(j=0;j <no_setb;j++) 
{ 
Ylr[i][j]=Ybcr[j][i]; 
Yli[i][j]=Ybci[j][i]; 
} 
complex_mul (Y3 r, Y3 i ,no _seta,Y I r,Y 1 i,no_setb,Y2r,Y2i,no_setc); 
complex_subtraction(Yabr,Yabi,Y2r,Y2i,YAAr,YAAi,no_seta,no_setc); 
for(i=0; i<no_setb;i++) 
for(j =0; j <no_seta; j++) 
{ 
Ykronr[i] [+no_seta]=YAAr[i] [j]; 
Ykroni[i] (j+no_seta]=YAAi[i] [j]; 
} 
fprintf(f2,"\n\n\n\t\t************ YAB *************fin"); 
for(i=0; i<no_seta; i++) 
{ 
fprintf(f2,"\n"); 
for(j=0; j <no_setb;j +-I-)  
fprintf(f2,"%.4f+(%.4f)j ",YAAr[i]UI,YAAi[i][j]); 
} 
complex_inverse(Yccr,Ycci,Y 1 r,Y 1 i,no_setc); 
complex_ mul(Ybcr,Ybci,no_setb,Y 1 r,Y 1 i,no_setc,Y3r,Y3i,no_setc); 
for(i=0; i<no_setc;i++) 
for(j=0;j <no_seta;j++) 
{ 
Y l r[i] [j ]=YacrU ] [i]; 
Yl i[i] []=Yaci [j] [i]; 
} 
complex_mul(Y3 r,Y3 i ,no _setb,Y 1 r,Y 1 i,no_seta,Y2r,Y2i,no_setc); 
for(i=0; i <no_se t b; i++) 
for(j =0; j <no_s eta; j++) 
{ 
Y l r[i] [j ]=YabrU ] [i]; 
Yli[i](j]=Yabi[][i]; 
} 
complex_subtraction(Y 1 r,Y 1 i,Y2r,Y2i,YAAr,YAAi,no_setb,no_seta); 
for(i=0; i<no_se tb; i++) 
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for(j=0;j <no_seta;j++) 

Ykronr[i+no_seta] [j]=YAAr[i] [j]; 
Ykroni [i+no_seta] [j ]=YAAi [i] [j]; 
} 
fprintf(f2,"\n\n\n\t\t************ YBA *************\n9); 
for(i=0; i<no_setb; i++) 

fprintf(f2, "\n"); 
ford =0; j <no_set a; j ++) 
fprintf(f2,"%.4f+(%.4f)j ",YAAr[i][j],YAAi[i] [j]); 
} 
complex_inverse(Yccr, Ycci, Y 1 r,Y 1 i,no_setc); 
complex_mul(Ybcr,Ybci,no_setb,Y 1 r,Y 1 i,no_setc,Y3r,Y3 i,no_setc); 
for(i=0;i<no_setc;i++) 
fo r(j =0; j <no_s etb; j++) 
{ 
Y l r[i] [j]=Ybcr[j ] [i]; 
Yl i[i] [j]=Ybci[j][i]; 
} 
complex_mul(Y3 r,Y3 i,no_setb,Y I r,Y 1 i,no_se tb,Y2r,Y2i,no_setc); 
complex_subtraction(Ybbr,Ybbi,Y2r,Y2i,YAAr,YAAi,no_setb,no_setb); 
for(i=0; i<no_setb; i++) 
for(j=0;j <no_s etb;j ++) 
{ 
Ykronr [i+no_se ta] [j+no_seta]=YAAr [i ] [ii; 
Ykroni [i+no_seta] [j+no_seta]=YAAi [i] [j ]; 
} 
fprintf(f2,"\n\n\n\t\t************ YBB ****+ ********\n");  
for(i=0; i<no_setb; i++) 
{ 
fprintf(f2,"\n"); 
for(j=0;j <no_setb ;j ++) 
fprintf(f2,"%.4f+(%.4f)j ",YAAr[i][j],YAAi[i]Li]); 
} 
fprintf(f2,"\n\n\n\t\t************ Y Kron ************* I ); 
for(i=0; i<no_seta+no_setb; i++) 
{ 
fprin tf(f2, "\n"); 
for(j =0; j <no_seta+no_setb; j ++) 
fprintf(f2,"%.4f+(%.4f)j ",Ykronr[i] Li]  ,Ykroni [i][ii); 
} 
// ***** CALCULATION AND PRINTING OF Z-KRON ***** 
complex_inverse(Ykronr,Ykroni,Zkronr,Zkroni,(no_seta+no_setb)); 
fprintf(f2,"\n\n\n\t\t************ Z Kron *************\n); 
for(i=0;i<no_seta+no_setb;i++) 
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{ 
fprintf(f2,"\n"); 
for(j=0;j <no_seta+no_setb;j++) 
fprintf(f2,"%.4f+(%.4f)j ",Zkronr[i] [j],Zkroni[i] [j]); 
} 
for(i=0; i<no_s eta; i++) 
for(j=0; j <no_seta;j ++) 
{ 
Y1 r[i] [j]=Zkronr[i] []; 
Y1 i[i] [j]=Zkroni[i] [j]; 

for(i=0; i<no_seta;i++) 
for(j=0;j <no_setb; j ++) 
{ 
Y2r[i] (j ]=Zkronr[i] [j+no_seta]; 
Y2i [i] U]=Zkroni[i] [j+no_seta]; 

complex_subtraction(Y 1 r,Y 1 i,Y2r,Y2i,Y3r,Y3i,no_seta,no_seta); 
for(i=0; i<no_setb;i++) 
for(j=0; j <no_seta;j++) 
{ 
Y 1 r [i] [j ]=Zkronr[i+no_seta] [j ] ; 
Y1 i[i] U]=Zkroni[i+no_seta] [j]; 

complex _subtraction(Y3r,Y3 i,Y 1 r,Y 1 i,Y2r,Y2i,no_seta,no_seta); 
for(i=0;i<no_setb;i++) 
fo r(j =0; j <no_s etb; j ++) 

Y3 r[ij [j]=Zkronr[i+no_seta] [j+no_setaj; 
Y3 i [i] [j ]=Zkroni [ i+no_seta] [j+no_seta]; 

complex_addition(Y2r,Y2i,Y3 r,Y3 i,Zredr,Zredi,no_seta,no_seta); 
fprintf(f2,"\n\n\n\t\t************ Z Reduced *************\n"); 
for(i=0; i <no_seta; i++) 
{ 
fprintf(f2,"\n"); 
for(j=0; j <noseta; j++) 
fprintf(f2,"%.4f+(%.4f)j 
} 

",Zredr[i] [j ],Zredi [i] [j] ); 

complex_inverse(Zredr,Zredi,Y2r,Y2i,no seta); 

for(i=0; i<no_branch; i++) 

Ybbr[i] [0]=0; 
Ybbr[i] [ 1 ]=0; 
Ybbr[i] [2]0; 

39 



Ybbr[i][3]=0; 
Ybbr[i] [4]=0; 
Ybbr [i] [5 ]=0; 
} 
for(j=0;j <no_buses+no_seta;j++) 

Yccr[j] [0]=node_data[j] [1];  
Yccr[j] [ 1 ]=node_data[j] [2]; 
Yccr[j] [2]=node_data[j] [1];  
Yccr[j] [3] =node _data[j] [2]; 
} 
kkk=1; 
do 
{ 
//***** CALCULATION OF POWER FLOWS IN BACKWARD SWEEP ***** 
fprintf(f2,"\n\n\t * * * * * * * RESULT AFTER ITERATION %d * * * * * * *\n",kkk); 
fprintf(f2,"\n\t******* CALCULATION OF POWER FLOWS IN BACKWARD 
SWEEP *******\n); 
fprintf(f2,"\nFROM TO P 1 \t Q 1 \t P\t Q\t P2\t Q2\n"); 
for(j=(no_layer-1);j>=0;j--) 
{ 
for(i=1;i<=layer[j ] [0];i++) 
{ 
check_for_connection(branch_data,no_branch, int(branch_data[Iayer[j ] [i]- 
1 ] [2]),connection,&no_fconnection); 
if(no_fconnection== 0) 

node position(node_data,no_buses+no_seta, 
int(branch_data[layer[j] [i]-1 ] [2]),&bconnection 1); 
Ybbr[layer[j][i]-1 ] [2]=node_data[bconnecti on I ] [5]-node_data[bconnection 1 ] [3] 
+pow(Yccr[bconnection l ] [2],2)* branch_data[layer[j J [i]-1 ] [5]; 
Ybbr[layer[j][i]-1 ][3J=node_data[bconnection 1] [6]-node_ data[bconnection 1] [4]  
-pow(Yccr[bconnection 1 ] [2],2)* branch _data[layer[j] [i]- 1 ] [6]; 
node position(node_data,no_buses+no_seta, 	_ 
int(branch_data[layer[j] [i]-1 ][ I ]),&bconnection2); 
Ybbr[layer[j ] [i]-1 ] [0]=Ybbr[layer[j J [i]-1 ] [2J+(pow(Ybbr[layer[j] [i]-1 } [2],2) 
+pow(Ybbr[layer[j][i]-1 ][3],2))*branch_ data[layer[j][i]-1 ][3] 
/pow(Yccr[bconnection 1 ] [2],2) 
+pow(Ycer[bconnection2] [2],2) * branch_data[layer[j] [i]- 1 ] [5]; 
Ybbr[layer[j ] [i]- 1 ] [ 1 ]=Ybbr[layer(j] [i]- 1 ] [3]+(pow(Ybbr[layer[j] [i]- 1 ] [2],2) 
+pow(Ybbr[layer[j] [i]-1 ] [3],2))*branch_data[layer[j] [ij- I ] [4] 
/pow(Yccr[bconnection 1 J[2],2) 
-pow(Yccr[bconnection2][2],2)* branch _data[layer[j] [i]- I ] [6]; 
Ybbr[Iayer[j] [i]- 1 ] [4]=Ybbr[layer[j] [i]- 1 ] [0] 
-pow(Yccr[bconnection2] [2],2) * branch_data[layer[j] [i]-1 ] [5]; 
Ybbr[layer[j][i]-1 ][5]=Ybbr[layer[j] [ij-I ][1 ] 
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+pow(Yccr[bconnection2] [2],2) *branch  _data[layer[j ] [i]-1] [6];  
fprintf(f2,"%d\t%d\t%.4f\t%.4f\t%.4f\t%.4f\t%.4f\t%.4f\n", 
int(branch data[layer[j][i]-1][1]),int(branch data[layer[j][i]-1][2]), 
Ybbr[layer[j][i]-I][2],Ybbr[layer[]][i]-1][3], 
Ybbr[layer[j] [i]-1 ] [0],Ybbr[layer[j] [i]- 1 ][ I], 
Ybbr[layer[j] [i]- 1 ] [4],Ybbr[layer[j] [i]-1 J[5]); 

else 
{ 
P_flow=0.00; 
Q_fl ow=0.00; 
for(k=1;k<=no_fconnection;k++) 
for(kk=0; kk<n o_branch; kk++) 
if((int(branch_data[layer[j] [i]- 1 ] [2])=int(branch_data[kk] [ 1 ])) 
&&(connection [k]==int(branch_data [kk] [2]))) 

P_flow+=Ybbr[kk] [0]; 
Q_flow+=Ybbr[kk] [ 1 ]; 
} 
node position(node_data,no_buses+no_seta, 
int(branch_data[layer[j] [1]-!] [2]),&bconnection 1); 
Ybbr[layer[j ] [i]- 1 ] [2]=P_flow+node_ data[bconnection 1 ] [5] 
-node _data[bconnection 1 ] [3 ] 
+pow(Yccr[bconnection I ] [2],2)* branch_data[layer[j ] [i]- 1 ] [5]; 
Ybbr[layer[j ] [i]-1 ] [3 ]=Q_flow+node_data [bconnection 1 ] [6] 
-node data[bconnection 1 ] [4] 
-pow(Yccr[bconnection 1 ] [2J,2)*branch_ data [layer[j] [i]-1 ] [6]; 
node position(node_data,no_buses+no_seta, 
int(branch_data[layer[] [i j- I ] [ I ]),&bconnection2); 
Ybbr[layer[j] [i]- 1 ] [0]=Ybbr[layer[j] [i]- 1 ] [2] 
+(pow(Ybbr[layer[j] [i]- i ] [2],2) 
+pow(Ybbr[layer[j ] [ iJ- I ] [3],2))* branch_data[layer[j] [i]- I] [3] 
/pow(Yccr[bconnection 1 ] [2],2) 
+pow(Yccr[bconnection2] [2],2)* branch_data[layer[j] [i]-1] [5]; 
Ybbr[layer[j][i]-1 ][ 1 ]=Ybbr[Iayer[j][i]-1] [3]  
+(pow(Ybbr[layer[j] [i]-1 ] [2],2) 
+pow(Ybbr[layer[j] [i]-1 ] [3] ,2))* branch_data[layer[j] [i]-i} [4] 
/pow(Yccr[bconnection l ] [2],2) 
-pow(Yccr[bconnection2] [2],2)* branch_data[layer[j ] [i]- 1 ] [6]; 
Ybbr[layer[j][i]-1][4]=Ybbr[layer[j][i]-1][0] 
-pow(Yccr[bconnection2] [2],2)*branch_data[layer[j] [i]- 1 ][5]; 
Ybbr[Iayer[j][i]-I ][5]=Ybbr[layer[j][i]-1][ I] 
+pow(Yccr[bconnection2] [2],2)*branch_d ata[layer[j] [i]- 1 ] [6]; 
fprintf(f2,"%d\t%d\t%.4 flt%.4 flt%.4f\t%.4flt%.4f\t%.4fln", 
int(branch_data[Iayer[j] [i]- 1][ 1 ]),int(branch_data[Iayer[j][i]-1 ][2]), 
Ybbr[layer[j] [i]- I] [2],Ybbr[layer[j] [i]- 1 ] [3 ],Ybbr[layer[j] [i]- 1 ] [0], 
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Ybbr[layer[j][i]-I ][1],Ybbr[layer[j][i]-1 ][4],Ybbr[layer[j][i]-1][5]); 

} 
} 
//***** CALCULATION OF NODE-VOLTAGES IN FORWARD-SWEET' ***** 
max=0.00; 
fprintf(f2,"fin\t******* CALCULATION OF NODE-VOLTAGES IN FORWARD- 
SWEEP *******\); 
fprintf(f2,"\n\tNODE NO\t MAGNITUDE\t\t ANGLE\n"); 
fo r(j =0; j <no_l ay er; j++) 

for(i=1;i<=layer[j] [0];i++) 

node_position(node_data,no_buses+no_seta, 
int(branch_data[layer[j ] [i]-1 ] [ 1 ]),&bconnection 1); 
node_position(node_data,no_buses+no_seta, 
int(branch_data[layer[j ] [i]-1 ] [2]),&bconnection2); 
Yccr[bconnection2] [2]=sgrt((pow(Yccr[bconnection I ] [2],2)) 
-2*((Ybbr[layer[j][i]-1 ][4]*branch_data[layer[j][i]- I ][3]) 
+(Ybbr[layer[j] [i]-1 ] [5] * branch_data[layer[j ] [i]-1 ] [4])) 
+((pow(Ybbr[layer[j ] [i]- 1 ] [4],2) 
+pow(Ybbr[layer[j][i]-1][5],2))*(pow(branch_data[layer[j][i]-1 ][3],2) 
+pow(branch_data[layer[j ] [i]- I ] [4],2))/(pow(Yccr[bconnection 1 ] [2],2)))); 
Yccr[bconnection2] [3]=Yccr[bconnection 1 ] [3] 
-atan2((Ybbr[layer[j][i]-1 ][4]*branch_data[layer[jI[i]-1 ] [4] 
-Ybbr[layer[j] [i]-1 ] [5] * branch_data[layer[j ] [i]- 1 ] [3])/Yccr[bconnection 1 ] [2], 
Yccr[bconnection1] [2]-(Ybbr[layer[j][i]-I ][4]*branch_data[layer[j][i]-1][3] 
+Ybbr[layer[j][i]- 1][5]*branch_data[layer[j][i]-1 ][4])/Yccr[bconnection1 ] [2]); 
diffV [bconnection2]=fabs(Yccr[bconnection2] [O]-Yccr[bconnection2] [2]); 
Yccr[bconnection2] [0]=Yccr[bconnection2] [2]; 
Yccr[bconnection2] [ 1 ]=Yccr[bconnection2] [3]; 
if(diff V [bconnection2]>max) 
max=diff V[bconnection2]; 
fprintf(f2,"\n\t%d\t %f\t\t %f',int(branch_data[layer[j][i]-1][2]), 
Yccr[bconnection2][2], 180*Yccr[bconnection2][3]/pi); 

} 
kkk++; 
for(i=0;i<no_seta;i++) 

node position(node_data,no_buses+no_seta,seta[i],&bconnection1); 
node position(node_data,no_buses+no_seta,setb[i],&bconnection2); 
Yaar[i] [0]=node_data[bconnection 1 ] [ 1 ] *cos(node_data[bconnection 1 ] [2) 
-Yccr[bconnection 1 ] [2] *cos(Yccr[bconnection 1 ] [3]) 
-node data[bconnection2] [1] * cos(node data[bconnection2]  [2]) 
+Yccr[bconnection2] [2] *cos(Yccr[bconnection2][3]); 
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Yaar[i] [ 1 ]=node data[bconnection 1 ] [ 1 ] * sin(node_data[bconnectionl ] [2]) 
-Yccr[bconnection 1 ] [2] * sin(Yccr[bconnection 1 ] [3 ] ) 
-node_data[bconnection2] [ 1 ] *sin(node_data[bconnection2] [2]) 
+Yccr [bconnection2] [2] * sin(Yccr[bconnection2] [3]); 
} 
for(i=0;i<no_seta;i++) 

node_position(node_data,no_buses+no_seta,seta[i],&bconnection 1); 
node_position(node_data,no_buses+no_seta,setb[i],&bconnection2); 
Yaar[i] [2]=0; 
Yaar[i][3]=0; 
for(j=0;j <no_seta;j++) 

Yaar[i] [2]+=(Y2r[i] [j] *Yaar[j] [0]-Y2i[i] [j] * Yaar[j] [1]);  
Yaar[i] [3]+=(Y2r[i] [j] *Yaar[j] [ 1 ]+Y2i[i] [j] *Yaar[j][0]); 
} 
Yaar[i] [3]=-Yaar[i] [3]; 
Yaar[i] [4]=Yaar[i] [2] *Yccr[bconnection 1 ] [2] *cos(Yccr[bconnection 1 ] [3])- 
Yaar[i] [3] * Yccr[bconnection 1 ] [2] * sin(Yccr[bconnection 1 ] [3]); 
Yaar[i] [5]=Yaar[i] [2] *Yccr[bconnection 1 ] [2] *sin(Yccr[bconnection1 ] [3])+ 
Yaar[i] [3] * Yccr[bconnection 1 ] [2] * cos(Yccr[bconnection 1] [3]); 
// ***** POWER INJECTION TO SET-A AND SET-B BUSES ***** 
node_ data[bconnection 1] [3]+=Yaar[i] [4]; 
node_data[bconnection 1 ] [4]+=Yaar[i] [5 ]; 
node_data[bconnection2] [3 ]-=Yaar[i] [4]; 
node data[bconnection2][4]-=Yaar[i][5]; 

while(max>tolerance); 
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