
PERFORMANCE ANALYSIS OF FILTER- 
IN EARTH DAMS 

A DISSERTATION 

submitted in partial fulfilment of the 
requirements for the award of the degree 

of 
MASTER OF TECHNOLOGY 

in 
WATER RESOURCES DEVELOPMENT 

Arc-No...... •' 

RQQ 

LE QUOC HUNG 

WATER RESOURCES DEVELOPMENT TRAINING CENTRE 
INDIAN INSTITUTE OF TECHNOLOGY, ROORKEE 

ROORKEE - 247 667 (INDIA) 

JANUARY, 2002 



CANDIDATE'S DECLARATION 

I hereby certify that the work presented in the thesis report entitled, 

"PERFORMANCE ANALYSIS OF FILTER IN EARTH DAMS", in partial 

fulfillment of the requirements for the award of the degree of MASTER OF 
TECHNOLOGY in WATER RESOURCES DEVELOPMENT, submitted in 

Water Resources Development Training Centre, Indian Institute of 

Technology, Roorkee, is an authentic record of my own work carried out 

during the period from Julyl6th, 2001 to February, 2002 under the supervision 

of Dr. G.C.Mishra, Professor, WRDTC , and Dr. N.K.Samadhiya, Assistant 

Professor, Department of Civil Engineering, Indian Institute of Technology, 

Roorkee, India. 

The matter embodied in this thesis has not been submitted by me for 

the award of any other degree or diploma. 

Date: February 1, 2002 
	

(LE QUOC HUNG) 

Place: Roorkee 

CERTIFICATE 

This is to certify that the above statement made by the candidate is 
correct to' the best of my knowledge and belief. 

(Dr. N.K.Samadhiya) 
Asstt. Professor 
Deptt. of Civil Engineering, 
IIT Roorkee , Roorkee, 
INDIA 

(Dr. G.C.Mishra) 
Professor, 
WRDTC 
IIT Roorkee , Roorkee, 
INDIA 

(i) 



ACKNOWLEDGEMENT 

I gratefully acknowledge the eminent and precious guidance and 

encouragement given by Dr. G.C.Mishra, Professor, WRDTC, and 

Dr. N.K.Samadhiya, Asstt. Professor, Department of Civil Engineering, Indian 

Institute of Technology, Roorkee, under whose supervision, and guidance the 

present study was carried out. 

I am much grateful to Prof. Devadutta Das, Professor & Head as well 

as the teaching and non-teaching staff members of WRDTC, Indian Institute 

of Technology, Roorkee, and Government of India for providing me facilities 

for the study. 

I wish to tender my great thanks to my family and my friends in 

homeland, who gave me the moral support to avail the opportunity of 

attending the WRDTC course of Indian Institute of Technology, Roorkee. 

(LE. QUOC HUNG) 



SYNOPSIS 

The water seeping through the body of the earth dam and through the 

foundation of the earth dam may prove harmful to the stability of the dam by 

causing softening and sloughing of the slopes due to development of pore 

pressures. It may also cause piping either through the body or through the 

foundation, and thus resulting in the failure of the dam. 

For a homogeneous dam founded on a pervious foundation, seepage 

is expected to appear on the downstream face unless a cut off has been 

constructed through the pervious foundation, thus permitting the downstream 

portion of pervious foundation to act as a drain. Of course it is a simple matter 

to provide drainage so that the seepage does not reach the downstream face. 

The problem of seepage through an earth dam resting on a pervious 

foundation has been analyzed in the thesis. In addition, a horizontal toe drain 

(under filter) was located at the downstream portion of the dam, and the 

performance of filter in earth dam has been studied. The purpose of the drain 

is to control seepage through the dam and reduce the exit gradient in the 

downstream of the earth dam. 

The seepage flow to a filter of finite width in a homogeneous earth dam 

resting on a porous medium of finite thickness has been computed using 

potential theory and conformal mapping. The seepage water to the filter of 

finite width is drained by parallel pipes to the downstream. Depending on the 

hydraulic conductivity of the porous material in the drain pipe, spacing of the 

pipes and width of the filter, pore water pressure develops along the filter, 

which influences seepage through the foundation and exit gradient 

downstream. Provision of filter increases seepage but reduces the exit 

gradient hence reduces the harmful effect of the seepage force. 

Further the performance of upstream blanket in reducing seepage has 

been analyzed. 
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NOTATIONS 

Ad 	= area of the drain 

b 	= thickness of upstream blanket 

b1 	= distance from upstream to the starting point of filter 

b2 	= distance from upstream to the end of filter 

b3 	= base width of the dam. 

C 	= constant 

c,d,f, = value oft corresponding to C,D,F respectively 

F(~,m)= elliptic integral of the first kind 

H1,H2 = height of upstream and downstream water level 

H 	= hydraulic head different 

I E 	= exit gradient at the down stream 

i 	= imaginary unit 

k 	= coefficient of permeability of pervious foundation 

kb 	= coefficient of permeability of blanket material 

kf 	= coefficient of permeability of filter material 

Lb 	= length of the upstream blanket 

Ld 	= length of the cross drain 

m 	= modulus of elliptic integral 

M, N = complex constants 
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p 	= water pressure 

q1 	= quality of seepage 

Sd 	= spacing of the cross drains 

T 	= depth of pervious stratum 

t 	= r+is = complex variable representing semi in finite plane. 

u 	= discharge velocity in x direction 

v 	= discharge velocity in f direction 

Wf 	= width of the filter 

w 	= + iW = complex potential 

z 	= x+iy = complex variable representing physical plane. 

Greek Symbols 

y 	=. the unit weight of water 

= velocity potential function 

w 	= stream function 
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CHAPTER -1 

INTRODUCTION 

1.1 GENERAL 

The seepage of liquid through porous media has many practical 

applications in hydrologic, irrigation, sanitary, civil and petroleum engineering. 

Seepage takes place through earth dam, as all soil materials are pervious to a 

smaller or larger degree. Seepage is one of the major causes of the Earth 

dam failure. It is of fundamental importance to control the seepage through 

Earth dams not only to keep the water loss well within economic limits but 

also to take adequate measure to ensure the safety of the Dam. The 

understanding of the basic principle of seepage flow is essential for design 

and analysis of earth dam safety. 

Seepage through the Embankment as well as the foundation is 

controlled by two approaches, generally used in combination: The first 

approach involves reduction of the quantity of seepage, or keeping the water 

out as far as feasible. In the embankment, this requires provision of an 

impervious zone or impervious membrane of manufactured material. The 

second approach involves providing a safe outlet to water, which still enters 

the embankment or the foundation, in spite of measures taken in the first 

category. This requires provision of drainage arrangements downstream of 

the seepage barrier such that the seepage forces are not able to cause soil 

migration, and their magnitude and direction are such that they do not cause 

embankment sliding or sloughing or foundation blow out. 

1.2 OBJECTIVE OF STUDY 

The present investigation is primarily concerned with two-dimensional 

steady unconfined flow through foundation of an earth dam resting on a 

pervious foundation. In addition a horizontal toe drain filter is located at the 



downstream portion of the dam the Schwarz-Christoffel transformation is used 

for finding the solution to the problem. 

A drain system comprised of a filter not extending to the toe of the dam 

and provided with parallel pipe drains is economical. The performance of such 

drain system has not been studied yet. In this thesis the effect of width of the 

filter, location of the filter, the influence of the spacing area, and filing material 

of the drain pipe on seepage and exit gradient has been analyzed 

1.3 SCOPE OF STUDY 

In this study, an attempt has been made to study the effect of 

horizontal drain with different boundaries conditions. The cases with the 

following boundaries conditions have been studied 

(i) Flow under an earth dam without drain founded on permeable soi 

of finite depth (Chapter 3). 

(ii) Flow under an earth dam with drain founded on permeable soil of 

finite depth (Chapter 4). 

(iii) Flow through foundation of an earth dam with an upstream blanket 

and a filter drain system (Chapter 5). 

The solutions to the above cases have been obtained with the help of 

conformal mapping and numerical integration, Gaussian Quadrature method 

has been used to carry out the integration. A computer programming in 

'Fortran' has been developed. 

2 



CHAPTER -2 

REVIEW OF LITERATURE 

A literature review has been made on study of performance of drain in 

hydraulic structure. 

Meleshchenko (1936) and Numerov (1948) have provided solution for 
hydraulic structure with drainage holes, wherein they studied in effect of one 

or two drainage holes in the otherwise impervious floor. The effect of plane 

drainage connected to downstream bed in case of seepage below a flat apron 

or a single overfall founded on infinite depth of permeable soil was obtained 

by Zamarin (1931). Sangal (1964) determined the extent of reduction in 

pressure affected by a flat and deep filter of particular dimensions below the 

foundation of a barrage with the help of electrical analogy model. Using 

electrical analogue the effect of intermediate drainage filter on seepage 

pressure has been studied by Arumugam (1971). A case of a flat bottom weir 

resting on a porous medium of infinite depth has been considered. 

Chawla (1973) has used conformal mapping to find the performance of 

intermediate drain provided at the base of a hydraulic structure with two end 

sheet piles resting on a permeable foundation of infinite depth. Conformal 

mapping.technique has been used. 

Kumar has studied the effect of intermediate filter for the following 

boundary conditions (1995). 

(i) Flow under a weir with unequal partial cut-offs at both end of the 

floor and intermediate filter founded on permeable soil of finite 
depth. 

(ii) Flow under a weir with a partial cut-off at upstream end, a 

complete cut-off at downstream end of the floor and an 

intermediate filter founded on permeable soil of finite depth. 

3 



(iii) 	Flow under a weir with unequal partial cut-offs at both end of the 

floor and an intermediate filter founded on permeable soil 

underlain by a sloping impervious stratum. 

The solution of the problems of first two cases has been obtained with 

the help of conformal mapping. The transformation equations have been 

integrated numerically using Simpson's formula. The solution of the problem 

in the third case is obtained by solving the Laplace equation by finite element 

method. A computer program has been developed to compute the uplift 

pressure all along the floor and exit gradient at the end of the floor. The factor 

of safety against heave below the filter is also determined to study the safety 

against piping below the filter. 

Cl 



CHAPTER -3 

FLOW UNDER AN EARTH DAM WITHOUT FILTER 
FOUNDED ON PERMEABLE SOIL OF FINITE DEPTH 

3.1 INTRODUCTION 

In order to study the performance of filter in earth dam first we study 

the flow under the structure in the absence of the filter. We assume that the 

hydraulic conductivity of the compacted material is much less than the 

hydraulic conductivity of the soil foundation. For analyzing the flow through 

foundation, ,the body of the earth dam has been assumed to the impervious. 

3.2 STATEMENT OF THE PROBLEM 

A flat bottom earth dam resting on a homogeneous isotropic porous 

medium of finite depth is shown in Fig. 3.1. The flow through the body of the 

earth dam is neglected. The bottom width of the earth dam is b3, the thickness 

of the foundation soil layer is T. Seepage through foundation soil occurs 

because of seepage head, h (hydraulic head difference),. We intend to find the 

seepage flow rate as a function of b and T. 

3.3 ANALYSIS 

3.3.1 Mapping of the Flow Domain in z- Plane onto t- Plane: z= fl(t) 

The Schwarz—Christoffel transformation that gives the afore-mentioned 

mapping is 

dz M 
dt t—f 

or, 	 z= MJ  dt  +N 	 (3.1) 
t—f 

As one traverses in t - plane along a small circle of radius - r around 

point F (t=f) from 0 = it to 0 = 2n , there is a change of (-iT) in z plane. 

5 



Putting : t-f = r.e.iO ; 	dt = r.e.'O . id0, we have: 
2"  

iT=Mf r.e.i l0 .d9 =M~i 
I r.e. 

T 
or, 	 M = -•- 

Tt 

Inserting value of M into Eq. 3.1, we have 

z- - T J dt +N 
n t-f 

or, 	z= _T O dt+ N 
it 	t--f 

Hence, 	t = -TIn (f-t)+N 
Ir 

(i) 	At point B: t= 0, z = 0; hence, 0 = - 211n  (f - 0)+ N 
71 

and, 	N = T 1nf 
n 

Inserting value of N into Eq. 3.3, we have 

z=-TIn (f-t)+TIni' 
It 	 It 

or, 	z=--  ln f-t 
71 	f 

-"Z f - t and, e T = 
f 

-"z 
Hence, 	 t =f 1- e T 

Therefore, 	 f = 
---L 

1-e T 

c=f [1-e— T 

—7'Ld 
d = 

1
1-e T 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Ce 
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3.3.2 Complex Potential Plane: w = f2(t) 

The complex potential plane w, where w = ~+ii1i pertinent to the earth 

dam is shown in Fig. 3.1c. is the velocity potential function defined as: = -k 

(P/yw + y) + C. Let us assume C = kh2, accordingly along AB = -kh and ~ 

along EF = 0. We assume that BE is a streamline defined by y = q1. The 

imperious base AF is also a stream line defined by W = 0 

In the following operation the flow field in the w-plane, shown in 

Fig.3.1c, is transformed on to the semi-infinite t — plane, shown in fig.3.1b; 

the transformation of the polygon in w-plane on to the t-plane is given by: 

dw 
	

U 
dt 	—t 1—t f—t 

dt or, 	 w =M, J 	+N1 
—t 1—t f—t 

(3.9) 

This integration has been performed in various portions of the seepage 

boundaries: 

(a) 	Integration along the upstream floor AB (-co < t<O): 
(i) At point A: t = -co , w = -kh; hence : Ni = -kh 

(ii) At point B: t = 0, w = -kh + iqi 

Therefore, Eq. 3.9 becomes 

-kh +iq, = M f 	dt 	-kh 
—t 1—t f—t 

or, 	 iql = M $ 	
at 	 (3.10) 

_"' —t 1—t f —t 

Performing the integration (Byrd & Fried Man, 1971) Eq. 3.10 becomes: 

	

iq1 = M 2 F Tt 	f-1 

	

2 	f 
(3.11a) 

where, F 2 ,F
f 
	is elliptic Integral of the first kind, with modulus f f 1 

It 
F 	f —1 	

J 
— 2 	d8 	 If — I 

;m= 
2 	f 	o 1—n12 sin z 0 	f 



The elliptic integral is computed using Gaussian Quadrature as explained 
below: 

Putting: 	0 -i ~v+n ='(v+1) or dO= IC dv 
22 2 4 	 4 

so, 

f-1 	' 	4dv 
F 2 	= 

2'  f 
-' 	 sinn z 4(v+l) 

Therefore Eq. 3.11 a becomes: 

2 i  4 dv 
iq1 	= M 	J 	 (3.11 b) 

I 1-m2 sin z ~(v+1) 
4 

(b) 	Integration along floor BE (0< t < 1): 

(i) At point B: 	t = 0, w = -kh + iq1 Y N 

(ii) At point E: 

	

	t = 1, w = iqi 

Therefore, Eq. 3.9 becomes: 

dt iq1 = M J 	 - kh + iq, 
a -t 1-tf -t 

or, 

M 	dt 	
(3.12) 

o t -t f-t 

For the integrand the square root of the cubic, the integration reduces to 

elliptic integration of the first kind (Byrd and Friend Man, 1971) and Eq. (3.12) 

become: 

kh 	= M 2 	7 	1 
2 ' 	f 	

(3.13) 

M 2  4 dv 
or, 	.kh = 	f 	 (3.13b) 

-~ - 
 

~~sin 2  (v + 1) 

in which: 	m = 
f 
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(c) 	Integration along floor EF (1< t< f): 

(i) At point E: 	t = 1, w = iqi ; Hence , N, = iqi. 

(ii) At point F: 	t = f, w = 0. 

Therefore, Eq. 3.9 becomes: 

r 
0 = M j 

- 	
dt 	+ iq , t 1-t f-t 

or, 
' 	 r 

iq1 = MJdt tt_ f-t 	
(3.14) 

I 

Performing the integration (Byrd and friend man, 1971) Eq. 3.14 reduces to: 

iq, = M - . F '~  	 (3.15) 

Thus the integration along the floor EF (i.e. 1< t < f) does not yield and 

independent equation. 

Let M be equal to M1i , from Eq_ 3.12 

kh Ff 
2F 2 f 

Substituting M in 3.11 a. 

F2, J1-' 
q,=kh 

F  
2' f 

3.4 COMPUTATION OF POTENTIAL ALONG THE BASE: 

For floor base BE (0<_t'<-1) 

t, 

w(t~) = M 
i

dt 	-h + iq 
 tt--t f-t 

Performing the integration (Byrd and Fried Man, 1971) 

w(t') 	(t') + iql _ 	F (sin -' t~ 	- kh + iq, 

10 



{t') _ kh  
2F 	1 F (

sin ' t~  	— kh 

2 f 

-' t 

= 1- 
kh  2 F 1 

2' f 

where F (sin 	Jt- , I ) is incomplete elliptic integral of the first kind which 

is evaluated by Gauss quadrature as explained below: 

Let 	Sin-' Y = et, 

F sin-' t~ , 1 	— r 	dO 	m= 1 

	

j 	of 1— m 2 sin 2 0 

e ~r 
1  ,  dv 

or, 	F sin ' t~ , — 	J̀  	2 

	

J 	-' 	Z 
	

2 8, 11+v) 
1— m sin 	` 

2 

3.5 	EXIT GRADIENT: 

It is important to know the hydraulic gradient at the downstream end of 

the floor i.e. at point E and beyond we note that the gradient at any point in an 

isotropic flow region is 

	

I = dh/ds 
	

(3.5.1) 

in which h = the hydraulic head at any point along the floor and s= distance 

measured along the streamline passing that point. Eq. 3.5.1 can be written as 

= 1 # V 1 # dt dz 
k ds  k dt dz ds 

(3.5.2) 

Defining the angle between the direction of the streamline and the x axis as 0, 

we have dz/ds = cosO + isinO. Since the stream line at the critical exit point 

(point E in Fig. 3.1a) generally represent yi = constant (hence d~/dt = dw/dt) 

and intersects the tail water equi-potential boundary at 900 (0= 90°), Eq. 3.5.2 

will reduce to 	 - 

11 



i (dw  dt IE  _ 	- 
k dt dz 

dwdw dt _ 
In other words: 

dz 	dt d t 
 = u-iv = u-I(kIE) 

z 

As the downstream boundary is horizontal velocity u = 0 

Hence, 	dw = ikl E  
dz 

From analysis we have 

dz  T 1 
dt 	it1-f 

dw 	a 
dt 	(-t)(1-. t)(f - t) 

so, I _ 1 dw dt = 	M1 	n (f - t) 
E  ik dt dz .J(-t)(1 -  t) T 

Hence, I_ 

 

hhJF[7tTJ 

	f- 
E 	2 	2' f 	t fit -1) 

3.6 RESULTS AND DISCUSSION 
A computer program was developed for computation of potential along 

the base and exit gradient at the downstream side for various combination of 

the values of the variables involved. The calculations involve the use of elliptic 

function of first find, which were computed by a subroutine CEF and CIEF. 

The variation of gl/kh with b3/T, the bottom width of the dam is shown in Fig. 3.2. 

The distribution of potential along the base of the dam is shown in Fig. 3.3. 

The exit gradient in the downstream of the dam shown in Fig. 3.4, 

The exit gradient ,  is infinite at the toe of the dam. Therefore an 

invested filter has to be provided at this location. The exit gradient decreases 

with distance from the toe of the dam. The zone in which the exit gradient 

exceeds the critical value (critical exit gradient 1), the invested filter is to be 

provided in this zone. 

12 
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CHAPTER-4 

FLOW UNDER AN EARTH DAM WITH FILTER 

FOUNDED ON PERMEABLE SOIL OF FINITE DEPTH 

4.1 INTRODUCTION 

The stability of hydraulic structure founded on permeable soil has to be 

ensured for safety against uplift pressure and piping. Intermediate filters or 

drains are provided below hydraulic structures founded on permeable soil to 

reduce uplift pressure resulting in appreciable savings. Some times because 

of non availability of filter material (coarse grained soil) and for economy filter 

of finite width which does not extend up to the toe of the dam is provided. 

Parallel drain pipes are used to dispose the water that seeps into the filter. 

Solution to the seepage problem pertaining to such drainage system, shown 

in Fig. 4.1, is not yet available. In this chapter using conformal mapping and 

potential theory, the flow characteristics (i.e. quantity of seepage to the drain 

through filter, seepage to the downstream through foundation and exit 

gradient on the down stream side) have been quantified. 

4.2 LAYOUT OF BOUNDARY CONDITIONS 

AND METHOD OF SOLUTION 

Consider an impervious floor BE of length b3 founded on a homoge-

neous permeable soil of depth T. An intermediate filter CD of width wf is 

located at a distance b1 from the heel of the dam (from point B). The structure 

is founded on a permeable soil of depth T underlined by an impervious 

stratum AF. The profile is presented in the z plane (z = x + iy) as shown in Fig. 

4.2a. 

The steady seepage through the previous foundation of the structure 

that causes uplift is governed by the Laplace equation: 

a2 	= 0 	 (4.1) 
aY 
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in which: 	= velocity potential function defined as: 

where: 	C = constant, and k = hydraulic conductivity. 

Assuming C = kh2, along the upstream bed AB, f = -kh (h = h,-h2) and 

along the downstream bed EF, 4 = 0. Starting from some where at the 

upstream, a streamline tlr== q2, would meet some where the floor DE, at an 

unknown point R where it -would yet divided into two stream lines, one along 

RD emerging at D and other along RE emerging at E. The potential along the 

floor DE would be maximum at R. The impervious boundary BC forms another 

streamline i = q, in which q1 = total discharge seeping below the foundation. 

Along impervious stratum, y = 0. The complex potential is represented by 

w=~+iyj. The layout of various boundaries in the w-plane is shown in Fig. 4.2c. 

The seepage domain in the complex potential plane w is the area between the 

vertical lines AB (~= -kh), CD (4= -kad h) and EF (4=0), and horizontal lines 

AF (~, = 0), DRF (iii = q2) and BC (W = qi). Depending upon the head that 

would develop along the filter, an upstream part of the filter may act as a sink 

and the remaining down stream part of the filter would then act as a source. 

The corresponding complex potential plane is shown in Fig. 4.3. 

To obtain the solution, both the profiles of structure in the z-plane and 

in the complex potential w-plane have been transformed onto lower half of an 

auxiliary semi-infinite t-plane (t = ri + is1) using the Schwarts-Christoffel 

transformation. The following relations are thus obtained: 

z 	=f1(t) 	 (4.2) 

w 	= F(t) 	 (4.3) 

combining Eqs. 4.2 and 4.3 

z 	= f(t) = f1 ( F-' (w)) 	 (4.4) 

and 	w 	= F(t) = F( f"' (z)) 	 (4.5) 
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4.3 THEORETICAL SOLUTION 

4.3.4. First Operation z = f1 (t) 
,In this operation the profile of the hydraulic structure in the z-plane is 

transfouned onto the real axis of the t-plane. On the t-plane, the points B and 

E are located at 0 and 1 and the points C, D, N and F are mapped onto points 

at c, d, n and f, respectively. The values of these parameters are to be 

determined. The Schwars-Christoffel transformation that gives the afore-

mentioned mapping is 

dz _ M 
dt 	(1— t) 	

(4.6) 

As derived in Chapter 3. 

(4.7) 
-nZ 

t=f[1-e T ] 	 (4.8) 

f = 	1  n 	 (4.9) 
--63 

1-e T 

it 

c = f 1— e T b 	 (4.10) 

It 

d = f 1—e T bZ 	 (4.11) 

4.3.2 Second Operation w = F(t) 

In this operation, the flow field in the w-plane, shown in Fig. 4.2c is 

transformed onto the semi -infinite t-plane as shown Fig. 4.2b. The transfor-

mation of the polygon in w-plane onto the t-plane is given by: 

dw = 	M, (r - t) 
di' 

t 
or, 	w(t) = M, f 	

(r - t)dt  
_, -t c-t d-t 1-t f--t 

To find the parameters c, d, f, and r; constants M,, and N we carry out 

integration between consecutive vertices and find the required equations. 

-t c-t d -t 1-t f -t 
(4.12) 
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(a) Integration between vertices A and B (-co< t <0) 

(1) 	At point A : t = -Co, w = -kh; hence, N = -kh. 

(ii) 	At point B : t = 0; w = -kh + iql 

Applying these conditions we obtain: 
0 

iqi = M1 f 	(r - t)dt 
_J (XXXX ) f---t 

o 
= Mlr f 	dt 	 +M1 J ° 	(-t) dt 

_~ -t c-t d - t 1 - t f - t 	c-t d-t 1-t f-t 
= M7 [r. F1 + F2] ; 

°  dt where: 	F1 = f 
-t d -t 1 - t f - t 

° dt F2 = J 
_~ c=t d - t 1 - t f - t 

Let us assume M1 = M2 i 

so, 	q1 = M2 [rF1 + F2] 	 (4.13) 

Evaluation of F1 and F2 are given in appendix 1 and 2. 

(b) Integration between vertices B and C (0 < t < c) 

(i) At point B: 	t = 0, w = -kh + iqi, hence: N = -kh + iqi 

(ii) At point C: 	t = c, w = kad h + iql 

Therefore, 

C 	M,(r - t)dt 
kh(1 - ad) = f 

6(- tXc - tXd - tXl - tXf - t)  

=M i r f 	 dt 	
`$ 

t dt 
o -t c-t d -t 1-t f -t 

-MI 

of -t c-t d -t 1-t f -t 

- M 1 r C 	dt 	- M 1 `~ 	f di 
of t c—t d—t 1—t f—t 	gJ(c—tXd—tX1—tf—t )  

M 
_ 	 1 jr.F3 — Fa 

or, 

kh(1 - ad)= M2 (r. F3-F4) 
	

(4.14) 
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n which, 

C  dt F3 = J 
o t(c - t d-t 1 - t f - t 

C t dt F4 = J 
o c-t d-t 1-t f-t 

Evaluation of F3 and F4 are given in Appendix 3 and 4. 

(c) 	integration between vertices C and D (c< t < d) 

(i) At point C: t = c, w = -kcd h + iqi ; hence, N = -kad h + iq, 

(ii) At point D: t = d; w = -kad h + iq2 

Therefore, 

d 	 M,(r-t)dt I (q2--qi )  
-t (c-t) (d-t) (1-t) f-t 

d 	M1(r-t)dt 
I f(t-c)(d-t)(1-t)(f-t) t 

d 	dt 	 d  
=M jrf 	 -Ml f 

c t t-c (dt) (I-t f-t 	c t-c d-t (1tXf-t)  
= M1 [r. F5 -F6] 

or, 

q2 - q1 	= M2 [rF5-F6] 	 (4.15) 

where, 

d  dt F5 = f 
t (t-c) (d-t 1-t f-t 

d 
F6 = f 	~dt 

6 	t-c) (d-t) (1-t f-t c 

Evaluation of F5 and F6 are given in Appendix 5 and 6. 
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(d) Integration between vertices D and E (d<t<l) 

(i) At point D: t== d; w = -kad h + iq2, hence N = -kad h + iq2, 

(ii) At point E: t == 1, w = iq2 

Therefore, 

kad h = 	 M1 (r - dt ) 
e, —t c—t 	— 1—1 (f -t) 

= 1 	M,(r -dt) 
J tt-c)t-d 1-t f-t 

	

= M, r ` r 	dt 	 - M, ' r 	dt 
,J t t-c t-d 1-t (f -t) 	dJ t-c t-d 1-t (f -t) 

M, — 	1r.F 7 — F's] 

or, 

kad h = M 2 [- r.F, +F] 	 (4.16) 

in which, 	F7 = '  dt 

, t t- c t-d 1 - t f t)  

`  f dt 
F8

__ 

J (t-cXt-dX1-t)(f-t) 

Evaluation of F7 and F8 are given in Appendix 7 and 8. 

(e) Integration between vertices E and F (1 <t<t) 

(i) At point E : t = 1; w = iq2 ; hence N = iq2 

(ii) At pointF:t=f;w=0 

Therefore, 

r
~V(- 	

M,(r-t)dt -iq2 =  
t c-t d -t 1-t f -t 

	

_ f 	M,(r-t)dt 

f t t--r t - d t - 1 f - t 

	

= r J M 	dt 	-MI fdt 
Jt(t-c t-d t-1 (f-t) 	,J (t-c t-d t -l)(f -t) 

= Mi [r. Fcj - Flo ] 
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or 	q2 = M2 [ Flo -r. F9 ] 	 (4.17) 

where, 

f  dt 

F9=j t t-c t-d t-1 f -t 

f 	fidt 
Flo 

_
f 

t-c t-d t-1 f -t 

Evaluation of F9 and F10 are given in Appendix 9 and 10 

(fl 	Integration between vertices F and A (f<Yt< co): 

(i) At point F: t = f; w = N = 0 

(ii) At point A: t = oo ; w = -kh. 

Therefore, 

(r — t)dt -kh = M, 
JV(-t c-t d -r 1 - t f - t 

(r - t)dt 
= M1 

= M'r 	
dt 	

—Tvil 	
fdt 

 
I-t—c t—d t-1 t—f 	~J — t—dXt-1 t—f) 

= M1 [r11 - 12] 

or 	kh = M2[12-rll] 

in which:  
dt 

~. t t-c t ,-d t-1 t - f 

°° 	dt 12= J 
t - c t - d i-1 t- f 

Evaluation of I, and 12 are given in Appendix 11 and 12. 

(4.18) 
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The following relationships have been derived using w and t plane: 

q, = M2 [IF, + F2] 

kh(1-ad] = M2  [rF3  -- F4] 

q, -q2  = M2  [rF5  - F6] 

khad = M2  [F8 - r.F7] 

q2  = M2  [rF10  - rF9] 

kh = M2  [12  -r I,] 

The value of ad is unknown. To solve the unknowns q1/kh, q2/kh, a, , r, 

ad, and constant M2 , the following procedure is followed: 

From Eqs. 4.14 and 4.16, 

1-ad  rF3  -F4  

	

ad 	F8  — rF7  

hence, 	
r= F$+a,,(F4 -F8) 	

(4.1.9) 
ad (F3  -F,)+F, 

We assume value of ad and get value of r from Eq. 4.19. If the 

assumed value of ad is correct then it would satisfy the following continuity 

equations, i.e. the quantity of seepage entering into the filter is drained out 

through cross drain. 

adh  
s (q, - qz) = k f L  A d  

a 

or, Fl  -Fd)  {rF, + F2  -Flo  +rF9}= kf Lh  Ad 

	

3 	4 	 d 

= M2  -ad ) a, 
rF3  -F4  

q, 	= M2 [r F, +F2] 

q2 	= M2 [F,o - r.F9] 
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4.4 E)~tT GRADIENT 

*t is important to know the hydraulic gradient at the downstream end of 

the floor i.e. at point E. we note that the gradient at any point in an isotropic 

flow region is 

= dh/ds 	 (4.20) 

in which h = the head at any point along the floor and s= distance measure 

along the streamline passing that point Eq. 4.20 can be written as: 

	

= 1 do - 1 do dt dz 	
(4.21) 

k ds  k dt dz ds 

Defining the angle between the direction of the streamline and the x 

axis a 0, we have dz/ds = cosO + isinO. Since the stream line at the critical 

exit point (point E in Fig. 4.2) generally represent kkV = constant (hence d~/dt = 

dw/dt) land interests the tail water equipotential boundary at 900 (0= 90°), 

Eq. 4.21 will reduce to 

I dw dt 

k dt dz 

dw dw dt 
Other words: — = — 	= u-iv = u-l(klE) 

. dz  dt dz 

As the downstream boundary is horizontal velocity u = 0. 

dw 
Hence, 	— = ikI 1, 

dz 

From analysis we have 

dz T 1 	dt ,c ( 
- 

dt 	t-1 or 
dz = - 1-t 

and 	dw = 	M,(r-t) 
dt 	-t c-t d -t 1-t (f -t 

Hence, 

nM,(r-t) 	 h(1-ad ) 	t(r - t) 
I s= 	 _ 

ik t t-c t-d t-1 f -t 	rF3 -F4 	 t(t-.c t-d t-1 f -t 
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4.5 RESULT AND DISCUSSION 

The hydraulic head that develops in the filter is governed by 

i) location of the filter, 

ii) width of the filter, 

iii) thickness of the foundation soil, 

iv) hydraulic conductivity of the foundation soil, 

v) spacing of cross draining pipe, 

vi) area of the pipe, and 

vii) hydraulic conductivity of the material in the pipe. 

A set of sample results is presented in Fig. 4.4a showing variation of ad 

width bi/T for different bottom widths of the dam. It could be seen that ad 

decreases as location of filter shifts towards downstream. 

From fig. 4.4b it is found that as width w increases ad  decreases. 

It can, be seen from Fig. 4.4c that as hydraulic conductivity of the filling 

material increases, ad decreases 

Variations of q2/kh (flow to the down stream side) is shown in Fig. 4.5a 

with different location of drain width of the dam. 

The variation of ql/kh (the seepage through foundation prior to 

interception by drain) with location of the filter is shown in Fig. 4.5a. Without 

filter, for b3/T = 2, the seepage, q, / (kh), is 0.35 (refer fig. 3.2). Thus a filter 

induces more seepage to occur. As the location of filter approaches towards 

the upstream end, seepage through foundation layer increases. Also as width 

of the filter increases, qi/(k:h) increases. 

Variation of seepage emerging at the downstream through foundation 

soil (q2/kh) is shown,  in Fig. 4.5b, which indicates that q2/kh decreases rapidly 

as bl/T increases. 

The distribution of exit gradient is shown in Fig. 4.6. Provision of filter 

reduces the distribution of exit gradient. However the exit gradient at the toe 

of the structure is infinite. Therefore, a zone near the toe is vulnerable to 

piping. Hence an inverted filter should be provided within the zone upto, which 

IE is greater than or equal to 1. 
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CHAPTER 5 

FLOW THROUGH FOUNDATION OF P N EARTHDAM WITH 

AN UPSTREAM BLANKET AND A FILTER DRAIN SYSTEM 

5.1 INTRODUCTION 

A horizontal upstream impervious blanket; which increase the 

horizontal length of the average flow path of under seepage, is more effective 

in controlling seepage through a homogeneous soil foundation than a partial 

vertical cut-off. If the blanket is very impervious compared to the natural 

foundation. so that relatively little seepage occurs through the blanket, the 

reduction in the seepage quantities and pressure at the downstream toe is 
directly related to the length of the blanket. 

5.2 STATEMENT OF THE PROBLEM 

An earth dam with an upstream blanket and a filter drain system is 

shown in Fig. 5.1. The soil under the earth darn structure is homogeneous 

isotropic and is of finite depth. For the purpose of analysis the flow domain is 

decomposed into three fragments. The flow through each fragment is 

analysed. 

5.3 ANALYSIS 

5.3.1 Fragment -1 

5.3.1.1 Mapping of the Flow domain in z-plane onto t plane: z = f1 (t) 

The Schwarz-ChristoffeI transformation that gives the afore 

mentioned mapping is: 

dz _ 	M 	M 
dt 	(t+l)z(l—t) 	1t2 
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XI 
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mz 

=kaah  =0 
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or, 	Z = M f dt +N 
1_t2 

= Msin-` t d-N 

►A 	
L 

(5.1) 

(a) z - Plane (z = x + iy) 

Fig. 5.1 - FLOW DOMAIN 

(i) For point L: t = 1; z = -iT 

From Eq. 5.1 	-iT = M 2 +N 	 (5.2) 

(ii) For point P; t = -1 ; z, = 0 

From Eq. 5.1 	0 = M (- 7 )+  N 

Here, 	M = -- and, 
Tt 

N— _ 
	iT 

TE 2 	2 

Therefore, 

z= — 	spin' (t) --- 	 (5.3) 

or, 	t = sin --- — 7 _ —sin z + 	=—cos -- 	(5.4) 
iT 2  iT 2  iT 
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(iii) For point J: t = j, and zj  = -lb 

bit 
so, 	j = -cos T  

5.3.1.2 Complex Potential Plane w = f2(t) 

The transformation of the polygon in w-plane onto the t-plane (Fig. 5.2) 

is given by: 

dw 	 M 
dt 	-1_t)'-"2 (j_t)12(1-t)"2 

r 
so 	w =M j dt 	+N1 	 (5.5) 

-CO -1-t j-t 1-t 

(a) Integration along flow boundary GP (-ac < t< -1): 

(i) At point G: t = -cc, w = -kh ; Hence N, = -kh 

(ii) At point P: t = -1  w = -kh + iq3 

Therefore 
-1 

iq3  = M$ -1-t dt  1-t 	
(5.6a) 

Performing the integration (Byrd & Fried man, 1971) 

7  1-j 
iq3 =M J2F 2> 2  

l+cosyb 
or, 	iq3  = M 	F 2, 	2  T 	 (5.6.b) 

(b) Integration along, floor boundary PJ (1 < t <f) 
(i) At point P: t = 1, w = -kh + iq3 

Hence, N1 = -kh+ iq3 

(ii) At point J: t = j , w = -kha1 + iq3 

Therefore, 

' 	dt kh(1-a1 ) = MJ 
-1-t j-t 1-t 

i M  M  	dt 	
(5.7a) 

+t (j - t)(1 
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Performing the integration (Byrd & Fried man - 1971) 

Kh (1-a1) _ 	F 	1 +j 
2' 	2 

_ 	F 	(5.7b) 

From Eq. 5.6b and 5.7b, we have 

M1 
_ 	Kh (1—a1) 
- 

~F 	1—cositb/T 
2' 	2 

and, 

F 1 , 

 

2 	2 
q3 = Kh (1— cO 	 (5.8a) 

F 1—cosTb/T 
2' 	2 

or, 

q3 = Kh (1-ai) 13 	 (5.8b) 

5.3.2 Fragment —[I 

In fragment II we assume that the flow through the blanket is vertical 
and in the foundation it is horizontal. Since the hydraulic conductivity of the 

blanket material is very much less than that of foundation soil, such 

assumption can be made. 

Definition of boundary conditions: 

Let the hydraulic head ha be defined as: 

ha = p/y,w + y. 

_ --k(P/YW + y) + C; C = kh2 

Let us choose the impervious bed as the datum and y is the measure 
from this datum. 

35 



y 

dq 

 

p  I  Bi 

b, Kb 

	

J 	 IB .. 

T 	I 	'11=93 	 .I - i ( P +) =(i - az) hz + a2h i " YW 

	

\ PYw y)-(1-ai)-hz+aihi- --- I- 	q f— 	-- o f +dq f 	1- I4= ka i h 	 -ka zh 

	

-I-- 	-- 

L 

	

 rdx- 	
A 

Fig. 5.3 - (Fragment II) 

(i) Along floor JL : 

~ = -kai h ; h == h1-h2 

or 

- kal h = -k (p/Yw +y) I JL + kh2 

(p/Y + Y)IJL = a1 (hi-h2) + h2 = aihi + (1-ai) h2 

so, 

4JL _ -k(p/yw +Y')IJL + C 

or 	JL _ -k[aihi +(1-a,) h2J + kh2 = -kalh1 - kh2 (1-ai ) + kh2 

= -ka1 (hi-h2) = -kalh 

(ii) 	Along floor BA: 

-ka2h 

Since, 

46A = -k(p/Yw + Y) IBA + kh2 

or 	-ka2h = - k (p/yw + Y)IBA + kh2 

or 	(p/Yw + Y)IBA = a2 (hi•-h2) + h2 = a2hi + (1-a2) h2 

Referring to Fig. 5.2, showing the seepage flow through the pervious 

foundation of the earth dam with upstream blanket of material which permits 

some leakage, the horizontal flow of in the pervious stratum under an 
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elemental length dx of the blanket is increased by are amount dqf equal to the 

vertical inflow dx qb(x) through the length dx of the blanket, so that: 

dgr(x) = q(x)  (5.9) 
dx 

or, 	 I—k(T—b) dhu 	= k` (h, —h„) 	
(5.1Oa) 

dxL  dx  b 

In which h„ is the hydraulic head under the blanket. 

Hence, 

z 
—k(T—b)d hu  k j(h, —h,) 	

(5.1Ob) 
dx2  b 

Putting 	hi — h u = H 

d z h t, d2 H or, 	- 	_ 
dxz dxz 

in Eq. 5.1Ob: 

k (T-b) d
z H — kb .H 

dxz b 

d2H 
or 	d 	—12H = 0 	 (5.1 Oc) 

Here: 132 c 	kb 
b.k(T—b) 

H = C1eOX + C2e-O” 	 (5.11) 

Ci and C2 are to be evaluated applying condition at section P, and J 

(i) 	At point J . x = 0, h,,IX=o = alh I + (1-ai ) h2 

Hence: 	HIx=o = h1 — h,,Ix=o = hi - alh1 — (1-(xi) h2 

or, 	Hjx=o = (1-ai) (h1 — h2) 

So : (1-a1 ) (h1 — h2) = C1 + Cz 	 (5.12) 

(i~) 	At point B : x = l; h,,Ix=i = a2 hl + (1-a2) h2 

or, 

HEX=, = hi — h,lx=i = hi - az h1 — (1-a2) h2 

So, 	(1-a2) (h1 — h2) 	= C1 epi + C2 e-ai 

and, (1-a2) (hi — h2) e-p' = C1 + C2e-R ' 	 (5.13) 
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From Eq. 5.12 and Eq. 5.13 

C1 _ (1 —a i )h(1— e-2p')— (1—a,)h+(l—az)ep'.h 	(5.14) 
— (1_ e_2 )  

and 	C2 = (h, — h, )e ¢~ [(1 — a, )— (l — oc,)e ¢' 	
(5.15) 

(1_ e_ 2 

We have 	: h,,=h1—H = h1 — C1 ea"—C2e 

ah„ 
— -C1.(3.efix + C2.R.e 	 (5.16) 

ax 

and, 	qf(x) = -k (T-b) [C2.R.e 	- C1 .R.ePx] 

At x = 0, qf (0) = k (T - b) R (C2 - C1 ) 

Since, qf (0) = q3 

k (T — b) R (C2 — Cl) == kh (1 - a1) 13 	 (5.17) 

Flow through the blanket, 

From Eq. 5.9: 

Qb = ~dqb(X)=  fb dx 
0  0 

1  —¢x 

or, 	Qb = b J(Clepx + Cze-px ix = Lb 
(Cleo' 

— CZe 	1 0 
o 	 U 	R 	R 	1 

Hence, 	Qb = kb [(Clep' — C2 e-p' )— (C, — c,)] 
R 

and, 	Qb =  (3.b 

Substituting C,, and C2, we have 

Qb = 	(1_e)(~—h2)[(1—a3)41—%)e~](1d1)( —h2)e[(1—a)—(1—e)e] 
Rb 	(1—e 	 1—e 

= kb(1— e-p')(hl —h 2
) 3.b(1 — e-Z¢'  

_ kb\ rh — h 2/l 11 _- 	/ e l a' 	 l _ 	 12-(a,+az)-[2-(a,+a2)]e-p'} 
13.b(1 — e 

k b (h, —h,X1—e '2—(a, +a,)J(l—e ) 
R.b I _ e-'-p' 
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or, 

Qb  = kb(h, —h2X1—e-a')[2 —(ai  +a.2)] 	 (5.18) 
p.b(1+e) -R` 

5.3.3 Fragment - III 
5.3.3.1 Mapping of the flow Domain in z- plane onto t-plane : z = f1 (t) 

The Schwarz-Christoffel transformation that gives the afore- 

mentioned mapping is 

dz _ M  
dt 	t12  (t —f) 

or 

z = MJ 	dt 	+ N 	 (5.19) 
tl'2  (t — f ) 

As one traverses in t- plane along a small circle of radius - r around 

point F (t= f) from 6 =7r to 0=2n, there isa change of(-iT)inz-plane. 

Putting: 	t- f =rei°  ,or t=f+re°  

or 	dt = r ei°  idO 	 V 

	

2i 	re i°  id0 we have 	idz=M i 
n (f + reie  )1/2  r eie 

Zg idO- 	Min or 	- iT = lim M V 
r —*o VL  ' ( 	ef f+ re' )z 

Ti"2  
or 	M = — 	 (5.20) 

it 

Inserting value M into the Eq. 5.19, we have 

T.fl /2 	dt z = — 	f 	+ N 
71 	tl/2 (t—f) 

Since, 

dt 1 	t1/2  — f'12  
$ t1/2(t—f) = f 1/2  loge  t1/2  +f1/2  

T 	t"2  —f1  
z = - 71  loge t1/2  + f1/2  -FN 	 (5.21 a) 
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(a) z - Plane (z = x + iy) 

S1 

Ar• 	g 	•y.~ • 	C ',. 	R' 	Eri 	F .4t 	q. 

(b) t - Plane (t = ri + isi) 

IJ 

qi 

q2 

I 
kazh 

f  -1 

(c)w-Plane (w=~+iyr) 

Fig. 5.4 - TRASFORMATION LAYOUT (Fragment III) - CASE 1 
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q3 

q2 

A 

y 

(a) z - Plane (z = x + iy) 

SI  

-co o r 	c r d 1 f +co 

A B C R D E F A 

(b) t - Plane (t = ri + isi) 
W 

(c)w-Plane (w=+ w) 

Fig. 5.5 - TRASFORMATION LAYOUT (Fragmentill) - CASE 2 
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(i) 	At point B: t = 0; zB = 0 . Hence, 

0 = -T log e(-1) + N = -T log ::''` + N 

or 	N =1T 

Setting value of N into Eq. 5.21 a we have 

t1/2 — fl/2 z = - 
it 

loge t
1
/2 + fl/2 + iT 	 (5.21 b) 

or, 

T 	f iiz _t»2 
z = = i log 	(–) tUz +f2 +iT 

T' 4 i/2 — tl/2 
_ - — loge a±l" ti/2 + fl/2 + iT 

it 	

T 	fl/2 — t1~2 
_ --loge  e ±'~ - longs t1/2 + fi/2 + iut 

Hence, 

T 	f "2 - t1'2  = - 	loge 
t"2 

+ f11z 	 (5.21 c) 

Let us find t as a function of z from Eq. 5.21c 

 —- z 	f 1 / 2 — t 1 / 2 
e T = t l /2 + f 1 / 2 

It 
or, 	 e -TZ(t1/ 2 + 	 - f 1/2) = f 1/2  

	

I 	 . 

_n 	_n 
or, t1/2 [i+ez j  = f 1/2 1 — e Tz 

2 
f 1 /2 1-e TZ 

Hence, 	 t = 	 (5.22) n --z 
l+e T 



(ii) At point E t =1, z = L ; Hence 

-rzL 
f 12  

1 = 
-L 

l+e T 

2 
-"L 

l+e T 
or 	f= 	- -L  

1—e T 

(5.23a) 

(iii) At point C t = c, z = Lc, Hence 
2 

f1/2  1—e T  

c= 	_nom 
	 (5.23b) 

1+e T 

(iv) At point d ,- t = d , z = Ld; Hence 

Ld 2 
f 1/2  1— e T 

d= 
-'—` Ld 

1+e T 

(5.23c) 

5.3.3.2 Complex Potential Plane : w = f2(t) 

In the following operation the flow field in the w-plane is 

transformed onto the semi-infinite t- plane, which are shown in 

Fig.5.1. The transformation of the polygon in w-plane onto the 

t-plane is given by: 

dw 	M 1(r — t) 

dt V(- t c--t d-t 1-t f-t 

or 

t
( 	(r - t)dt 

w = M1 
d -t c - t d - t  1 - t f - t + N

1 
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we have equation systems as: 

q, = M2  [rF, + F2] (a) 

kh(a2 - ad) = M2 [ r.F3 - F4] (b) 

q,- qZ  = M2 [r.F5 -F6] (c) 

khad  = M2  [F8  - r.F7] (d) 

q2 = M2 [ Flo - r.F91 (e) 

kha2 = M2[12 - r.li] (f) 

q3 = kh (1-a:,) 13  (g) 

Qb  kb (1-e a`) [2-(a, +u.z)] 
1+e  (h) 

The magnitude of F1, F2, F3, F4, F5, F6, F7, F3, F9, F,o, I,, 12  are the 

same as derived in Chapter 4. 

The unknowns are the complex constant M and the parameters r, a,, 

a2, ad. Since the equations involve multiplication of unknown parameter r, and 

complex constant M, the equations (a) to (f) are non-linear. We find the 

parameter following an iteration procedure. We assume values for a2 and ad. 

From (d) and (f). 

ad  _ 	 F$ -rF,  
a2   f 	1, - rl, 

or 

r= fl.z -F$  
f, I, -F7  

Hence, once az and ad are assumed, r is fixed. From equation (f) the 

constant M is fixed i.e. 

M2  =  aZ  kh 
1, -r11 



Once 	and r are fixed by assuming a2 and ad, the seepage quantity 

qi/kh and Q2/kh are fixed i.e. 

a2 	[rF, + F2 ] 	 (i) 
kh 12 — rI, 

qz = a2 [F o — rFj 	 a) kh 12 —r11 

q q2 _ a2 [rFF —F6 ] 	 (k) kh 	J 2 —r11 

It is found that equation (k) is not an independent equation since 

equation (k) can be obtained by subtracting equation (j) from equation (i). 

Since equation (b) can be obtained subtracting equation (d) from Eq. (f), 

equation (b) is also not an independent equation. 

Performing the mass balance for a steady flow condition, the inflow to 

the filter is equal to the out flow from the filter, which is in turn equal to inflow 

to the drain. 

Hence, 

S~[4 —qz]=k.r L
a~,h 

Air 
d 

or 	q, _ q2_ k1 	Ad a 
kh kh 	k Ld Sd ) 

or 	a2 [rF5 F6 ]= kf 	Ad a d  (I) 
I 2 —I1 	 k 	LdSd 

The assumed a2 and ad should satisfy Eq. (I). 

Using the relation q3 + Qb = q1, we obtain the following relation 

between al and a2 and ad (vide r). 
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K 1 —e
___ 
	K 	 rF +F 

a 1+ b 	= I+ 6 	(2—a }—a ` 2 	(m) ' 3 	k 1+e-Q1 	3 
	2 	Z I Z — r11 

Since, a2 is assumed, a, is known. 

Also the flow into the aquifer at the upstream end of the blanket (i.e. x = 0 in 

fragment II) is equal to the out flow from fragment I. 

Hence, 

K(T-b) fi (C2-C1)=Kh(1-a,) 

Substituting C2 and C1. 

[1—aj [h i —h Z ]— (h - 
—h2 2(1— a1)+ (h1 _pi 211 —a2 ]e ' ~3k(T—b)=k(1—a,)h'3 (n) 

1—e  1—e 

a, evaluated from (m) and (n) should match. 

5.4 RESULT AND DISCUSSION 

Numerical results depicting variation of total seepage through 

foundation soil before intercepted by filter is shown in Figs. 5.6 — 5.9. It could 

be seen that total seepage decreases with increasing length of blanket. The 

flow to the down stream side also decreases with increasing length of blanket. 

As blanket length increases total seepage through blanket would increase. 

The seepage -through blanket is insignificant in comparison to the seepage 

through upstream bed beyond the blanket. 
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CHAPTER -6 

CONCLUSIONS 

6.1 GENERAL 

Using potential theory, Kozeny (vide Har, 'i 962) has derived that the 

minimum required width of a filter wd  which would control the saturated zone 

in a homogenous earth dam resting on an impervious stratum is given by: 

Wd 	= 0..5 Jd2  + h2  - d/2 

in which, d is the horizontal distance of th.:; upstream Pnd of the filter 

from a vertical line through the intersection of upstream slope of 

embankment, and reservoir water table, and h ;a the depth of water in the 

reservoir. 

In practice, the width of the filter is extended to the down stream side. 

However because of economy and paucity of filter material, a filter of finite 

width with cross draining pipes is recommended. In many situations an earth 

dam is constructed under laying a porous mater;iil of finite soil layer. 

So far analytical solution for seepage thr-.lgh an earth dam with finite 

filter and cross draining pipes is not available. Also rigorous solution of 

seepage through earth dam with less pervious blanket is not there. In this 

thesis, solutions have been given for these two problems. 

6.2 CONCLUSIONS 

Analytical solutions have been obtained for the problem of two 

dimensional seepage flows below an earth •Jam structure founded on 

permeable soil of finite . depth with the help of conformal mapping for the 

following boundary conditions: 

(i) An earth dam with a horizontal filter of finite width located at .the base 

of the dam with cross draining pipes, 

(ii) An earth dam having a horizontal filter of finite, width with cross 

draining pipes and a less porous upstream blanket 
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The equations derived have been used for the computation of 

potential distribution, quantity of seepage and distribution of exit gradient. It 

is found that the head that develops in the filter depends on: 

i) location of the filter 

ii) width of the filter 

iii) length area and filling material of the cross draining pipes. 

iv) thickness and hydraulic conductivity of foundation soil. 

The head that develops in the filter is unknown and it has been 

quantified in this thesis. 

The effect of various parameters on the potential, quantity of seepage 

and exit gradient have been studied. 

A filter increases the quantity of seepage. Since it collects part of the 

seepage the exit gradient is reduced. The variation of exit gradient in the 

downstream side, that has been presented in thesis, would help in deciding 

the width of invested filter. 

Bennett (1946) has provided an approximate solution to analyze 

performance of upstream blanket in reducing seepage. In the thesis, a more 

rigorous solution has been obtained using method of fragments and 

conformal mapping. The upstream blanket is effective in reducing the 

seepage quantities. 

Future Scope of Study 

While deriving the solution for seepage through foundation of an earth 

dam, it was assumed that the hydraulic conductivity of the embankment 

material is small in comparison to that of the foundation soil. Such 

assumption has made it possible to decompose the unconfined seepage 

through the body of the earth dam from confined seepage through 

foundation soil and apply conformal mapping. The composite flow problem 

(flow through and below the earth dam) can only be solved using numerical 

methods, such as finite element method, for various combinations of 

parameters involved. 	 ~,ç AL Li 



6.3 - RECOMMENDATIONS 

Intermediate filter of finite width can be provided below the hydraulic 

structures to reduce the exit gradient and hence to reduces the harmful 

effect of the seepage forces. 

A horizontal blanket of impervious soil can be provided on the river 

bed on the upstream side to reduce the quantity of seepage through the 

pervious foundation under an earth dam. 

The impervious blanket increases the length of the path of seepage 

under the dam and thus reduces the velocity and quantity of seepage. 

However, it is necessary to provide a relief well near the downstream toe of 

the dam to collect water seeping through the foundation and to control the 

exit gradient which other wise is infinite. 
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APPENDIX -1 

At each of the vertices, the integrand tends to oo. Therefore all the 

integral is an improper integral. For their evaluation the improper integrals to 

proper integral are converted by splitting the limits of integration removing the 
singularity by substitution. 

F 1 = 	f 	 dt 	+ f 	 dt 
_L —t c—t d—t 1—t f—t U—tXc—tXd—tX1—tXf—t) 

Setting : u = -t or du = - dt 

we obtain 
I 

F = J 	.-du 	+°r 	 -du 
1 	 J 

u c+u d +u 1+u f +u ,Ju(c+uXd+uX1+uXf+u )  

' --- 

	

Designating: F1.1 = J 	
du 

 
u c+u d+u 1+u f +u 

	

°r 	- du 
F1.2= J uc+u d + u 1 + u f + u 

	

Now, setting : u = 1/v 	or du = -11v2 dv 

1 	 2 dv 
F1.1= J 	 v 

°1 c +l d+l 1+1 	f+l 
Jv( v v v v 

1 	- dv =f 

D 1 + cv l + dv 1 + v l+fv 

Substituting: v = !(x +1) 
2 

and 	dv = dx 
2 

1  1 2~(x+1)2dx 

1+-(x+ 	+d(x+ 	+-(x+i)}{1 + (x+l) 
2 	2 	2 	2 

1 
(x+1)2dx 

F1.1 = 	J 11 ~  
_1 2+c x+l 2+d x + 1 2 + f x+1 3+x 
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and, 

1r   
F1.2 

= 	

du 

o  u c + u d+u l+u f +u 

Setting : u = v2  and 	du = 2vdv 

So that 

1̀  	2vdv 
F1.2= J 

0 Jv2(c+v2 i+v2 1+v2 f +v2 )  

_ 1 	2dv 

0 C+V2  d-+-V2  1+V2  f +V2  

Substituting: v = 2 (x + 1) and dv = 2 dx 

So that i 
F1.2= J 

E 
c+ 1(x+1)2  d+ 1(x+1)2  1+ 1(x+1)2  f+ 1(x+1)2  

4 	4 	4 	4 

1 	 dx 
F12= 16J{}  

+(x+1)2  4d+(x+1)2  +(x+1)2  f+(x+1)2  

55 



APPENDIX -2 

F2= J 
-1 	(- t)2 dt 	+ °` 	(- t)2 dt 

	

_ c-t d-t 1-t f-t 	i s-t d-t l-t f-t 

Putting: u = -t and 	du = -dt 

So 	FZ  = J 	(-) u2du 	+° 	(-) u2du 
c+u d+u 1+u f+u Jl(+uXd+uX1+uXf+u)  

Setting 
i 

1   
F2.1= 	

(-) u2du  f 
c+u d+u l+u u)  

1 

	

0 	(-) u2du 
1  c+u d+u l+u f +u 

Substituting : u = 1  or du = 
v 	 v 

	

1 	1 	1 dv V2 
F21 = 

1+1  )(f+l 
v 	v 	v 	v 

dv 
O v 1+cv 1+dv 1+ fv 1+v 

Putting 	v = u2  and dv = 2udu 

1( 	 2du  
F2.1 = .i 0 1+cu2  l+ due  1+fug  1+u2  

Putting: 	U= lx+ 1  = 1(x+1) or du= ldx 
2 22 	 2 

	

1 	 21dx 
F2.1= J 

1+ - (x+1)2 }{i+ d(x +1)2  }{i+ 1  (x +1)2 }{i+ f (x+1)2  
4 	 4 	 4 	 4 



= 16 
1 	 dx  

-IV 4 +c(x +1)2  4+d(x +1)2  4+f(x+1)2  4+(x+1)2  

1 

_ 1 	u2  du 
0 c+u d+u 1+u 	 u)  

Substituting: u = 2 (x +l) and du = - dx 

1 
F22 = f 

1 	i 
2J 

  (x + 1)2 dx 

c+ 1  (x+l) d+ 1  (x+l) 1+ 1  (x + I f + 1  (x+l) 
2 	2 	2 	2 

1 	 1  ` 	 (x + 1) dx 
_I  2c+ x + 1 2d + x + 1 2f + x + 1 2+ x+l 
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APPENDIX -3 

C 

	

F3= 
Z~ 	dt 	 +`~ 	dt 

of t(c—t d—t 1—t f —t) .Jjt(c—tXd—tX1—tXf—t )  
2 

F3 = F3.1 + F3.2 

C 

2 	dt We have F3.1= f 
o tc- t d-t-t f-t 

Setting : t = u2 and dt = 2udu 

V 
2 	2udu F31= 
0 U2 C — U2 d — U2 1—U2 f — U2 

f~2c 
r 	2du 

= J 
o ~c- 2 d—u2 1—u2 f—u2 

	

Substituting: 	u = 1 c (x+1) and du = 1 	dx 
2 2 	 2 2 

U 2 = g c(x+1)2 = gPl 

Therefore 

~~C 
I. 
	 dx 

F3.1 = J 

[
c

1'[d !P, [1 1[ f 1  
JL 8 	8 	8 

dx 
= 64 C ~  

2 	8c—P, 8d—P~ 8f —P, 8—P, 

and 

dt 
• J.L 	J 

c tc—t d—t 1—t f—t 
2 

	

Putting : 	c — t = u2 and 	t = c-u2 ; hence, , dt = -2udu 
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° 	 — 2udu F3.2= 	 --- 
u2 c-u2~d- C-U2 I -~c -u2 /If - c-u2 /J 

2 

2 2du 
O C-U2 d- C-U2 1- C-U2 f- C_U2 

Substituting : 	u = 1 	(x+l) and 	du = 1 c dX 
2 2 	 2 2 

c-u2 = c-- c(x+1)2 = g [8c —c(x+l)2 ] = P2 

2
dr 

So, 	F3.2 ` 1 
—1 1P d-1P 1—IP f-1P 8 2 	8 2 	8 2 	8 2 

= 64 c J 	 dx 

21 P2 (8d—P2 (8—Pa ) 8f —P2 
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APPENDIX -4 

F4 = f . 
~dt 

o jitXdtX1tXft)  

Putting: c-t = u2 and t = c - u2 ; hence, dt = -2udu 

0 	(—)Jc—u22udu So, F4 = J 
f u2 d- C-U2 Z- C-U2 f- C-U2 

2iJcu2 du 
,/[d_ (c_u2 )I1_ (c_u2 )][f_ (c_u2 )]  

Substituting: u = = 2,~c(x + 1) and du = J dx 

c-u2= c--c(x+1)2 =4[4c—c(x+1)2 ]= P3 

1 	 4P3 
So, F4 = J 

d- 4 P3 I _ 4 P3 f _ 4 P3 

dx 

4d—P3 4—P3 4f —P3 



APPENDIX -5 

d+c  
2   

F5  = f 	 +
dt 

t t - c d - t 1 - t f-t 

= F51+F52 

We have: 

d 	dt 

d+C  Jt (t-c) (d-t) (1-t f -t 
2 

d+c  

	

2r 	dt 
F51 = I 

cJ  .t (t -c) (d -t) (1-t f-t 

Putting: 	t-c = u2  and t = c+u2  ; hence, dt = 2udu 

d=c . 
2 	 2udu  

F5 1 = 
J c+u z  u z  d- c+u z  1- c+u2  f- c+u 2  

d=c 
Z 	 2du  

of 	c+u 2  d —  c+u 2  1— c+u z  f— c+u 2  

Substituting: u= 1 
 fd_c 

 (x+1) 	and 	du = 
1  fd_c  dx  

2 2 	 2 2 

c+u 2  =c+ g (d -c)(x+1)2  = g [8c+(d -c) (x+1)2} = I 4  

Therefore, 

	

i 	 d-c  dx 

	

F51 = $ 	 2  
1 1 P4  [d.-  1  P4 

['- 1 [14]  
8 	•.8 	S 	8 

= 64 
d-c  f 	dx 

2 11J4  8d —r4  8 — P4  of—P4  

d 	dt 
F52 =  

d+c  jt t - c . d - t 1-t f-t) 
2 
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Putting 	d-t = u2 and t = d-u2 ; hence dt = - 2udu 

	

° 	 - 2udu 

	

F52= ~

df 	d -uz [(d --u 2 -a)] [u 2 ] [1-(d -u2)] [f -(d -u 2 )] 
V2 

d=c 

_  2du 

d-u2 d-u2 -c 1- d-u2 f- d-u2 

Substituting u = = 1 d-c (x+l) and du = Ird-
2 	2 	 2 

d-u2 =d-g(d-c)(x+1)2 =g [8d-(d-c) (x+1)2 ]=g P5 

Therefore, 

1 /d-c dx 
F5 2= J 	 2 

	

-z ZpS. [I 	c
] [1-

1P5 [f-iPs]  

	

-64 d--c' 	dx 
2 .Ji P5 P5 — Sc ][8 — P5 8f — P5 
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d+c 

	

Fs = j~ 	t dt 	+ dr 	A- dt 
cJ t—c d—t 1—t f—t dJ (t—c) (d—t) (1—t f—t 

2 

=F61 +F62 

Putting 	t-c = u2 and t = c+u2  hence dt = 2udu 
J-c 

IF61= 	
2 c+u 2 udu 

u 2 d— c+u2 L'—(2)if— c+uZ 

= j 	 2 c+u2 du 

CJ 	d— c+u Z 1— c+u z f— c+u z 

Substituting: u = 1 d — c (x +1~ and du = 1 d — c A 
2V2  2V 2 

c+u 2 = c+ I (d --c)(x+1)2 = [8c+(d —c) (x+1)2 ]= I p, 

Therefore, 

	

1 	1 P d—c dx 

	

F6 1 = f 	 S 6 	2 

f — 1 P6 

1 	 P6 dx 
= 4~. d—c J 

-1 8d --. P6 8 — P6 8f — P6 

and 

d 	 dt 
F62=  d+c t—c d—t 1—t f —t 

2 

Setting 

d — t = u2 and t = d-u2 ; hence, dt = -2 udu 

= 
° 	 (—)2 d — u2 udu 

Fs 2  
d-c d—u2 —c [U2][(l—(d—u2 ))} [f(d u2 )} 
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d-c 

f 2 d-u2 du 
Or, F62= f o 	d-u~Tc] [(1-(d-u2))] [f -(d-u2 )] 

Substituting 

u = 	-c (x+]) and du =-.i d -~ dx 
2V 2 	 2 2 

d -u 2 = c- (d-c)(x+l)' = g [8d-(d-c) (x+1)z ] = P7 

Therefore, 

1 	 l P d--c cix 

F62 = f 	$ 7 	2 

8P7-c 	 P71 f-8 P7 

1 	 P7 . dx = 4~. d-c f 
_i P7 -8c][8 -P7 8f-P7 
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cI+l 
F7_ 

J 
2  
~ t(r—cXt—dX1—tXf—t)dt(tcXtdX1—t)(f—t )  

z 

= F71 + F72 
We obtain: 

d+I 
2 
 dt 

F~~= 1 
t t-c t-d 1-r f -t 

Putting: 	t -d =u2 and 	t = d+u2 ; hence, dt = 2udu 
So, 

z  2udu 
Fri= 	 _ 

d+u2 d+u 2 -c u2 1- d+u z f- d+u 2 
_J 

_ z 	 2du 
~r 	d+u 2 d+u z -c 1- d+u Z f - d+u z 

Substituting, 

u_ 1F-d(x+l) and du = 1 1-ddx 
2  2 2 

d+u 2 =d+g (1-d) (x+1)2 =g [8d + (1-d) (x+1)2 ] = 1 p 

Therefore, 

1-d 
F7 1. _ I 	2 

'P8 1Pg-c 
[I- 	.f-1Ps 8 	8 	8 	8 

=64 
1-d'r

J 	
dx 

2 _~ P8 P8 -ac 8-Ps of -Ps 

and 
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F72 - J 
2 

Putting: 	 1 -t = u2 or t = 1-u2 and dt = -2udu 

So, 

° 
	

-2udu 
F72 J 

l+uZ l+u' -c 1 +u' u z f- 1+u 2 
N 

Z 	 2du 

~1+u2 1+u2 -c 1 +uz f - 1+u2 

Substituting: 	u = 
	FL-d(.+,)

and du = 
	
dx 

2 	2V 2 

Therefore, 

1-d 
 dx 

F72= J 	 2 
-I 1P9 

l P9 -c 1Pq -d f -1P9 8 	8 	8 	8 

' 	dx 
=64 

1-d~ 
2 Li P9 -8c P9 -8d 8f -P9 
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d+I 

F,$ 	2 	t dt 	+ 'r 	 dt 

I t—c t—d 1—t f—t d++,\/t(t — cXt — d)(1— tXf — t )  
z 

= F8.1 + F8.2 

c+I 

dt 

	

__ Z 	~ 

f t-c t-d 1-t f -t 

Putting 	t -d = u2 and t = d-u2 ; hence, dt = 2udu 

J 
2 d +u z udu 

F8.1= 
a 	d +u 2 -c u2 1- d +u2 f- d +u 2 

z 	 2 d+u 2 du 

= I 	 d +u 2 -c 1- d +u z f d +u 2 

Substituting: 

u = = 1F-d(x+l) 	and du = 1 1-ddx 
2 	22 

d+u 2 =d+g (1-d) (x+1)2 =8 { 8d+ (1-d) (x+1)2 J = 1 p 

Therefore, 

iJ 1 1 j1 _d dx  

F8.1 
1  1 

11
8Po cJ 1-g P0 .f - gP0 

= 4/ 1-d j 	
piodx 

-, P,o -8c 8-P,o 8 f -P,o 

and 

'r 	~ dt 

,,+ 
F8.2 = J , t - c t - d 1-t f-t 

a 

Putting: 1-t = u2 and or t = 1- u2 ; hence, dt = - 2udu 
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0 	 —2u 1—u 2 du 
So, 	F8.2 = J 

_ f 	 2 1-u z du 

o f  

Substituting, u = 1 JE:(x  + l)or du = 1 1— d dx 
22 	 2 2 

1—u 2  =1_ g  (1—d) (x+1)2  =g [ [8—  (1—d) (x+l)2 ] = g 

Therefore: 

	

F8.2= J 	 2 	8 

' 

gp l -c [ l Pjj -d][f- l Pjj ]  

py, dx 
_, P, -8c p„ -8d 8f -P„ 
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I+f 

F9 = I 	 dt 	+ I 	 dt 

	

t t-c t -d t -1 f -t 	t t-c t-d t-1 f -t 
2. 

= F9.1 + F9•2 
Putting: t-1 = u2 and t = 1 + u2 ; hence, d t = 2udu 

 

2  2udu So y 9.1- 	I 

	

o 	l+u z 1+u2 -c 1+u z -d u2 f- 1+u 2 

	

V 2 
 2du 

1+u z 11+u 2 -c 1+u z -d - l+uZ 

	

~, 	 f 

Substituting: 	u = 1 F(x + 1) and du - 	f 	I ' ctx
2  2V 2 

1+u 2 =1±1 (f -1) (x+1)2 =1 {8 + (f -1) (x+1)2 = 'p 

Therefore 

ff_1d x 

F91 	; 	1 	1 	2 1 	1 
g P12 	8Plz -C [PI2 d J 

{' 

-P~2 

= 64 f-1 	 dx 

-8c 	~, - 8d] [8 f- 

and 

	

J~ 	 dt 
Fs.z= J 

+j t(XdXX ) f-t 
2 

Putting: f - t = u2 and t = f - u2 ; hence, dt = - 2udu 

So, 

F9.2= 
0 	 - 2udu 



Or 

r-I 
2du 

F 9.2 = 
 

0 	f -u z f -u 2 -c f -u2 d f -u2 -1 

Substituting 
2 2 
 and du  

f-u 2 =f-g(f-1Xx+1)2 =[8f-(f-1Xx+1)2 ]=gP13 

Therefore : 

I 	 f-lam 
F92=  2 

1 ~ 1in 	1 
8P13] gP13 -C 8Pl3 -d 	 Pl3 -1 

= 64 f-1 
'J (p,3)[p,3 	

dx 

2 	- EC PI3 - Ed p13 -8]  
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2 

F10= f 	di 	 + f 	 dt 

t—c t—d t-1 f —t , f t—c t—d t-1 f —t 
2 

= F1o.1 + F10.2 

Putting: t-1 = u2 and t = 1+ u2 ; hence, dt = 2udu 

So, 

2 

F 10.1 = 	J 	 1+u 2 2duti 

0 	1+u 2 — c 1+u z — d u 2 f — l+u z 

= 	j 	 2 1+u2 du 

of 	1+u2 —c 1+u2 —d f — l+u z 

Substituting: u= 1 f-1(x+l) and du= 1 
/f_i 

dx 
22 	 2V2 

1+u2 =1+ (f —1Xx+1)' = (8+(f —1Xx+1)')= 1 p,4 

Therefore 

$pia f 2 1 dx 
F 10.1= 

1  1  1 
81P14 — c I P14 — d .f —I P14 

i 
= 4~ f —1 1 	Pia dx 

p,4 — 8c p,4 —8d][8f—p 41  

F10.2= 
J 	,1dt 

t—c t—d t-1 f —t 
2 

Putting: f - t = u2 and t = f - u2 ; hence, dt = - 2udu 

So, 
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F 10.2 = 	f (-) f_ uz 2rrdtu
— 

\/1 f—u'~—c f—u 2 —d 	 uz)1Iu2] 

_ j 	2 	u f — at'` d 
o 7~f —uz —c f —u2 —d f —u2 —1 

1 f-1 	1
r2 xSubstituting: u= 2 2 

	2 	and 	du = 1 If—i dx 
2 2 

f-u 2 	= f _ (.f _ IXx + 1)2 = (8 f - (.T - IXx + 1y )= P~5 

Therefore, 

1 	f 2 1 dx 

F 10.2= 
_, 	1 	1 	1 

gPi5 -c gP15 -d gP15 -1 

= 4~ f -1 j Pisdx 
,5 -8c p,s -8d P15 -8 
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1  _°° 	di  
t t-c t - d t-1 - f) f 

Putting: 	t- f = u 	and t = = f+u2  ; hence, 	dt = 2udu 

2udu 
1 	= f 

o f +u2  f +u 2  — c f +u2  — d f +u ' — 1 u z  

du  
= 

0 f+u Z  f+u 2 —c f+u z —d f+u 2 -1 

Sa 

00 	 du 	 GO  du 

f +u2  f +u2 -c f +u2 -d f +u2 -1 +1  f +u2  f +u2 -c f +u2 -d f +u2 -1 

= 2[1 11 + 1 12 

Where: 

du  
111 

o f +u 2  f +u 2  —c f +u 2  —d f - +u 2  —1 

du 
1 12 	= 

 

i 	f+t,2  .f+u'—c f+112.—d f+u 2 -1 

Substituting: u= 1  x+— =-1  (x+1) and du = 1  dx 
2 22 	 2 

f+u2= f +4(x+1)z  =4(4f +(x+1)')= 4p16 

So, 
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I 
x 

4 P,,, 4 Pi  — c 	r, — 1 

~  dx 
=8 f 

-i P( ( 6 — 4c P,6 —4dXP16-4 )  

and 

du 
I1.2 = 

f +u z f -c+u 2 f -d+u z f -1+u 2 

Putting: u= 1 	and du = - 1 dv 
v  vz 

o 	 — lz dv 
lu— i. 

v 

r  v'du 

J fv2 +1 (f - c)v2 +l (f -d)v2 +1 (f 1)v2 1)  

Substituting : v=  x + 1 = 1 (x -1) and 	du = 1 dx 
2 22 	 2 

V = 	 p (x-1) =4 

 

1  1 pdx 
112 - f 

4 	4 	4 	4 

=2 
'  p.dx 

fp + 4 f — c)p + 4 f — d p + 4 f —1)p +4 

rL! 
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dt 
Iz = f 

) ,J(t — cXt — dXt -1Xr — f)  

Putting: t - f = u 	and 	t = f+ u2  ; hence, 	dt = 2udu 

So, 

12- 	f +u 2 .2udu 	+ f 	21f +u z .du 

" f +u2  —c +u Z  —d f +u2 _1(u2)  of  f +u2  —c +u2  —d f +u2  —1 

— 2 	 f +uz.du 	+ f 	 f +u2 .du 
+u2  —c +u2 _d /+u2 —1 1  f +u2  —c +u2  —d f +u2  —i)  

= 2[I21+1221 

Where: 

121  

'r 	f +u 2 .du 
o  f 

 

J+u —c f +u 2  —d f +u2  i)  

Ir 	 f + u' .du 
122  = 	, f +u2  —c f +u z  — d f +uz  —1 

Substituting: u = 1  x + 1  = 1  (x + 1) or du = 1  dx 
2 22 	 2 

u' =4 {x+1)   or- u' _ -P 

f+pdx 
So 	1, - 

{fc)+4P {[ — d)+4p (,f —1)+4p 

4f±p clx 

_, 4 f —c +p 4 f —d +p 4 f —1 +p 

Putting : u= 1  or du = - 1, dv 
v 	 v 
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And 

-) f + 1 ~ --1 - dv 
1.1 2 = 	

y v 

— 'r 	 ti fv 	dv 

of ~f —c)v 2 +1 ((f —d)v' +1~(f —l)v' +i )  

substituting: v =  x + 1 =  (x + 1) or dv = 1 dx 
2 22 	 2 

v=—(x+1)2'    	or v 2 = 4 P 
4 

Therefore 

4p+1 2dx 

—21 	
fp+4 dx 

f —c +4)((f —d)p+4X(f —1)p+4) 
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INPUT DATA 

125. 	135. 	200. 	100. 	12. 	2 
3.14 0.1 0.01 10. 
160. 1.0 0.001 

OUTPUT: 

PROGRAM FOR COMPUTATION OF 
PERFORMANCE OF FILTER IN EARTH DAMS 

BASE WIDTH OF THE DAM 	= 	200.00 
THICKNESS OF THE POROUS FOUNDATION = 	100.00 
DISTANCE OF THE DRAIN FROM UPSTREAM= 	125.00 
DRAIN WIDTH 	 = 	10.00 
K of filter/ K of foundation soil = 	10.00 

b/T 	= 2.00 
li/T = 1.25 
w/T 	= 0.1000 
f 	= 1.007498 
c 	= 9.311342E-01 
d 	= 9.511359E-01 

1.FROM POINT A TO B 
Fl = 1.639 
F2 = 1.593 

2.FROM POINT B TO C 
F3 = 	43.68323 
F4 = 	37.01600 

3.FROM POINT C TO D 
F5 = 	52.47112 
F6 = 	49.42336 

4.FROM POINT D TO E 
F7 = 	98.47589 
F8 = 	96.27065 

5.FROM POINT E TO F 
F9 = 	50.83193 
F10 = 	51.01646 

6.FROM POINT F TO A 
Il = 	54.79265 
I2 = 	59.25465 

THE FIRST CYCLE STARTS 
RESULT AFTER THE FIRST CYCLE 

	

9.957678E-01 	9.954484E-01 	2.200006E-01 	9.475494E-02 

	

-7.599691E-06 	-3.193971E-04 
9.448821.1:-01 

	

9.448821E-01 	4.307031E-01 



THE SECOND CYCLE STARTS 
RESULT AFTER THE SECOND CYCLE 

	

9.954816E-01 	9.954601E-01 	2.220006E-01 
4.912050E-06 -2.150498E-05 
9.448825E-01 

	

9.448825E-01 	4.306995E--01 
THE THIRD CYCLE STARTS 
RESULT AFTER THIRD CYCLE 

	

9.954674E-0 	9.954607E-01 	2.221006E-01 

	

-1.414587E-06 	-6.676010E-06 
9.448823E-01 

	

9.448823E-01 	4.307015E-01 
LENGTH OF BLANKET 	160.000000 
THICKNESS OF BLANKET 	1.000000 
CONDUCTIVITY OF THE BLANKET 	1.000000E-03 
CONDUCTIVITY OF THE FOUNDATION SOIL 	1.000000E-02 
BK/AK 1.000000E-01 
FLOW THROUGH BLANKET Qb/kh 	7.728115E-02 
Q3BYKH 1.599751E-02 
QBBYKH 7.728115E-02 
QIBYKH 9.326667E-02 
Q2BYKH 8.864567E-02 
BLBYT 	1.600000 

9.561554E-02 

9.565903E-02 
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C ******************************************************************* 
C 
C 
	

PROGRAMME FOR PERFORMANCE ANALYSIS OF FILTER IN EARTH DAMS 
C 
C 
C 

DIMENSION W(96),XX(96) 
CHARACTER*12 input,output 

	

C 
	

WRITE (*,*) ' Please enter name of input file' 

	

C 
	

READ(*,100) input 

	

C 
	

WRITE (*,*) '. Please enter name of output file' 

	

C 
	

READ(*,100) output 

	

C 
	

OPEN (1, status='old',FILE=input) 

	

C 
	

OPEN (3, status='old',FILE='HUNGNEW.DAT') 

	

C 
	

OPEN (2, status='unknown',FILE=output) 
OPEN (1, status='old',FILE='AHUNGFN.DAT') 
OPEN (3, status='old',FILE='GAUSS.DAT') 
OPEN (2, status='unknown',FILE='AFN.OUT') 
READ (3,*)  (W(I), I=1, 96) 
READ (3,*)  (XX(I) , I=1, 96) 

90 FORMAT(15X,'PROGRAM FOR COMPUTATION OF') 
91 FORMAT(10X, PERFORMANCE OF FILTER IN EARTH DAMS') 
1 FORMAT('W1=',F7.3,5x,'W96=',F7.3,5x,'XX1=',F7.3,5x, 
2 FORMAT(' C=',F7.3,5x,' D=',F7.3,5x,' 	F=',F7.3) 
3 FORMAT(5X'l.FROM POINT A TO B'). 
4 FORMAT(7X'F1 =',F7.3) 
5 FORMAT(7X'F2 =',F7.3) 
6 FORMAT(5X'2.FROM POINT B TO C') 
7 FORMAT(7X'F3 =',F15.5) 
8 FORMAT (7X' F4 =',F15.5) 
9 FORMAT(5X'3.FROM POINT C TO D') 
10 FORMAT(7X'F5 =',F15.5) 
11 FORMAT(7X'F6 =',F15.5) 
12 FORMAT(5X'4.FROM POINT D TO E') 
13 FORMAT(7X'F7 =',F15.5) 
14 FORMAT(7X'F8 =',F15.5) 
15 FORMAT(5X'5.FROM POINT E TO F') 
16 FORMAT(7X'F9 =',F15.5) 
17 FORMAT(7X'F10 =',F15.5) 
18 FORMAT(5X'6.FROM POINT F TO A') 
19 FORMAT(7X'Il =',F15.5) 
20 FORMAT(7X'I2 =',F15.5) 
100 FORMAT (a) 

WRITE (2, 90 ) 
WRITE (2, 91) 
WRITE(2, *) 

	

c 
	WRITE(2, *)'W1 =',;W(1), ' 	W96 =',W(96) 

	

c 
	WRITE(2,*)'XX1=',XX(1),' 	XX96=',XX(96) 

r<r.I\r)(1,') All ,nr.2,Al, r; Ill., 112 
READ (1 , `) DAREA, DK, AK, DS PAC 
READ(1,*)BL,THICKB,BK 
DWIDTH=AL2-AL1 
DLENGTH=AL-AL2 
AKRATIO=DK/AK 
WRITE(2,*)'BASE WIDTH OF THE DAM=' 

'XX96=',F7.3) 
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WRITE(2,600)AL 
WRITE(2,*)'THICKNESS OF THE POROUS FOUNDATION=' 
WRITE(2,600)T 

WRITE(2,*)'DISTANCE OF THE DRAIN FROM UPSTREAM=' 
WRITE (2, 600) AL1 
WRITE(2,*)'DRAIN WIDTH=' 

WRITE(2,600)DWIDTH 
WRITE(2,*)'K of filter/ K of foundation soil=' 
WRITE(2,600)akratio 
BBYT=AL/T 
ALIBYT=AL1/T 
DWBYT=DWIDTH/T. 
WRITE(2, *) 'b/T=' 
WRITE(2,600)BBYT 

WRITE(2,*)'11/T=' 
WRITE(2,600)ALIBYT 

600 	FORMAT(F10.2) 
WRITE(2,*) 'w/T=' 
WRITE(2,21) DWBYT 

21 	FORMAT(F10.4) 
DALPHA=0.05 
H=H1-H2 

C 
C 	COMPUTATION FOR C, D, F 
C 

PAI=3.14159265 
TERM=EXP(-PAI*AL/T) 
F=((l.+TERM)/(1.-TERM))**2 
V1=EXP(-PAI*AL1/T) 
V2=EXP(-PAI*AL2/T) 
C=F*((1.-V1)/(1.+V1))**2 
D=F*((1.-V2)/(1.+V2))**2 
WRITE(2,*)' f=',F 
WRITE(2,*)' c=',C ,' 	d=',D 

CONM=-T/PAI 

C 	COMPUTATION OF F1=F11+F12 
C 	COMPUTATION OF Fil 

F11=0. 
DO I1,96 
X=XX(I) 
CALL CF11 (C, D, F, X, FX11) 
F11=F11+W(I)*FX11 
END DO 
F11=SQRT(2.)*Fll 

C 	COMPUTATION OF F12 
F12=0. 
DO 1=1,96 
X=XX (I) 
CALL CF12(C,D,F,X,FX12) 
F12 =F12+W(I)*FX12. 
END DO 
F12=16*F12 
F1=F11+F12 
WRITE (2, k) 

WRITE (2,3) 
WRITE (2,4) Fl 

C 
C 	COMPUTATION OF F2, F3, F4, F5, F6, F7, F8, F9, Fl0 
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F21=0. 
F22=0. 
F31=0. 
F32=0. 
F4 =0. 
F51=0. 
F52=0. 
F61=0. 
F62=0. 
F71=0. 
F72=0. 
F81=0. 
F82=0. 
F91=0. 
F92=0. 

F101=0. 
F102=0. 
FI11=0. 
FI12=0. 
F121=0. 
FI22=0. 

DO 1=1,96 
X=XX (I) 

CALL CF21 (C, D, F, X, FX21) 
F21=F21+W(I)*FX21 

CALL CF22 (C, D, F, X, FX22 ) 
F22=F22+W(I)*FX22 

CALL CF31 (C, D, F, X, FX31) 
F31=F31+W(I)*FX31 

CALL CF32 (C, D, F, X, FX32 ) 
F32=F32+W(I)*FX32 

CALL CF4 (C, D, F, X, FX4 ) 
F4=F4+W(I)*FX4 

CALL CF51 (C, D, F, X, FX51) 
F51=F51+W(I)*FX51 

CALL CF52 (C, D, F, X, FX52 ) 
F52=F52+W(I)*FX52 

CALL CF61 (C, D, F, X, FX61) 
F61=F61+W(I)*FX61 

CALL CF62 (C, D, F, X, FX62) 
F62=F62+W(I)*FX62 

CALL CF71 (C, D, F, X, FX71) 
F71.=F71+W(I)IFX71 

CALL CF72 (C, D, F, X, FX72 ) 
F72=F72+W(I)*FX72 

CALL CF81 (C, D, F, X, FX81) 
F81=F81+W(I)*FX81 
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CALL CF82 (C, D, F,X, FX82) 
F82=F82+W(I)*FX82 

CALL CF91 (C, D, r_ , X, FX91) 
F91=F91+W(I)*FX91 

CALL CF92 (C, D, F,X, FX92) 
F92= F92+W (I) *FX92 

CALL CF101 (C, D, F,X, FX101) 
F101=F101+W(I)*FX101 

CALL CF102 (C, D, F,X, FX102) 
F102=F102+W(I)*FX102 

CALL CFI11(C,D,F,X,FIX11) 
FI11=FI11+W(I)*FIX11 

CALL CFI12(C,D,F,X,FIX12) 
FI12=FI12+W(I)*FIX12 

CALL CFI21 (C, D, F, X, FIX21) 
FI21=FI21+W(I)*FIX21 

CALL CFI22 (C, D, F I X, FIX22 ) 
FI22=FI22+W(I)*FIX22 

END DO 

F21=16*F21 
F22=SQRT(2.)*F22 
F2=F21+F22 

F31=64*SQRT(C/2.)*F31 
F32=64*SQRT(C/2.)*F32 
F3=F31+F32 

F4=4*SQRT(C)*F4 

F51=64*SQRT((D-C)/2.)*F51 
F52=64*SQRT((D-C)/2.).*F52 
F5=F51+F52 

F61=4*SQRT(2.*(D-C)) *F61 
F62=4 . *SQRT (2. * (D--C)) *F62 
F6=F61+F62 

F71=64*SQRT((1-D)/2.)*F71 
F72=64*SQRT((1-D)%2.)*F72 
F7=F71+F72 

F81=4*SQRT(2.*(1-D)) *F81 
F82=4.*SQRT(2.*(1-D))*F82 
F8=F81+F82 

F91=64*SQRT((F-1)/2.)*F91 
F92. 64*SQRT((F-1)/2.)*F92 
F9=F91+F92 

F101=4*SQRT(2.*(F-1)) *F101 
F102=4.*SQRT(2.*(F--1))*F102 



F10=F101+F102 

FI11=8*FI11 
FI12=2*FI12 
FI1=2*(FI11+FI12) 

FI21=2*FI21 
FI22=2*FI22 
FI2=2*(FI21+FI22) 

WRITE (2, 5) F2 
WRITE (2, *) 
WRITE (2, 6) 
WRITE (2,7) F3 
WRITE(2,8)F4 
WRITE (2,*) 
WRITE (2, 9) 
WRITE(2, 10) F5 
WRITE (2, 11) F6 
WRITE(2,*) 
WRITE(2,12) 
WRITE (2, 13) F7 
WRITE (2, 14) F8 
WRITE(2,*) 
WRITE(2,15) 
WRITE (2, 16) F9 
WRITE(2,17)F10 

WRITE (2,*) 
WRITE(2,18) 
WRITE (2, 19) F11 
WRITE (2, 20) FI2 

AKS=0.5*(1.+COS(PAI*THICKB/T)) 
CALL CEF(W,XX,AKS,CEFI) 

TERM1=CEF1 
AKS=0.5*(1.-COS(PAI*THICKB/T)) 
CALL CEF(W,XX,AKS,CEFI) 

FI3=TERM1/CEF1 

BETA=SQRT(BK/(THICKB*AK*(T-THICKB))) 
AF3=1-2./(1.-EXP(-2.*BETA*BL))-FI3/(BETA*(T-THICKB)) 
AF4=2.*EXP(-BETA*BL)/(1.-EXP(-2.*BETA*BL)) 

WRITE(2,*)'THE FIRST CYCLE STARTS' 
ALPHA2=0. 9 

22 	CONTINUE 

ALPHAD=0.01 
DALPHAD=0.05 
INDEX=1. 

23 	CONTINUE 

f. f I =A1.,PHAD/AI,PHA2 
R=(ff1*1I2-F8)/(ff1FII-F7) 
CM2BYKH=ALPHA2/(FI2-R*FI1) 
QIBYKH=CM2BYKH*(R*Fl+F2) 
Q2BYKH=CM2BYKH*(F10-R*F9) 

ALPHADN=(QIBYKH-Q2BYKH)*(AK/DK)*(DLENGTH*DSPAC)/DAREA 

RESIDUE1=ALPHADN-ALPHAD 
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index=index+l 
if(index.gt.200) go to 999 
IF(ABS(RESIDUEI).LT.0.00001) GO TO 25 
ALPHAD=ALPHAD+DALPHA 
IF(RESIDUE1.GT.0.0) GO TO 23 

ALPHADR=ALPHAD-DALPHA 
ALPHADL=ALPHADR.-DALPHA 

26 	ALPHAD=(ALPHADR+ALPHADL)*0.5 

ffl=ALPHAD/ALPHA2 
R=(ffl*FI2-F8) / (ffl*FI1-F7) 
CM2BYKH=ALPHA2/(FI2-R*FI1) 
QIBYKH=CM2BYKH*(R*F1+F2) 
Q2BYKH=CM2BYKH*(F10-R*F9) 
ALPHADN=(QIBYKH-Q2BYKH)*(AK/DK)*(DLENGTH*DSPAC)/DARER 

RESIDUE1=ALPHADN-ALPHAD 
IF(ABS(RESIDUEI)•.LT.0.00001) GO TO 25 
index=index+l 
if(index.gt.200) go to 999 
IF(RESIDUE1.GT.0.0) GO TO 32 
IF(RESIDUE1.LT.0.0) GO TO 33 

32 	ALPHADL=ALPHAD 
GO TO 26 

33 ALPHADR=ALPHAD 
GO TO 26 

25 	CONTINUE 

RIGHT=ALPHA2/(FI2-R*FI1)*(R*F1+F2) 
TERM1=(BK/AK)*(l.-EXP(-BETA*BL))/(1.+EXP(-BETA*BL)) 
ALPHA11=(FI3+TERNI1*(2.-ALPHA2)-RIGHT)/(FI3+TERM1) 
ALPHAl2=(AF3+AF4-AF4*ALPHA2)/AF3 

RESIDUE2=ALPHAl2-ALPHAII 

ALPHA2=ALPHA2-0.01 
IF(RESIDUE2.GT.0.0) GO TO 22 
ALPHA2=ALPHA2+0.01 

WRITE(2,*)'RESULT AFTER THE FIRST CYCLE' 
WRITE(2,*)ALPHA11,ALPHAl2,ALPHA2,ALPHAD 
WRITE (2, *) RESIDUE]., RESIDUE2 
WRITE (2, *) R 
f f 1=ALPHAD/ALPHA2 
R=(ffl*FI2-F8)/(ffl*FI1-F7) 
WRITE (2, *) R, FF1 

WRITE(2,*)'THE SECOND CYCLE STARTS' 

ALPHA2=ALPHA2+0.01 

122 CONTINUE 

ALPHAD=0.01 
DALPHAD=0.05 
INDEX=1 



123 	CONTINUE 

ff1=ALPHAD/ALPHA2 
R=(ffl*FI2-F8) / (ffl*FI1-F7) 
CM2BYKH=ALPHA2/(FI2-R*FI1) 
QIBYKH=CM2BYKH*(R*Fl+F2) 
Q2BYKH=CM2BYKH*(F10-R*F9) 

ALPHADN=(QIBYKH-Q2BYKH)*(AK/DK)*(DLENGTH*DSPAC)/DAREA 

RESIDUE1=ALPHADN-ALPHAD 
index=index+l 
if(index.gt.200) go to 999 
IF(ABS(RESIDUEI).LT.0.00001) GO TO 125 
ALPHAD=ALPHAD+DALPHA 
IF(RESIDUEI.GT.0.0) GO TO 123 

ALPHADR=ALPHAD-DALPHA 
ALPHADL=ALPHADR-DALPHA 

126 ALPHAD=(ALPHADR+ALPHADL)*0.5 

f f 1=ALPHAD/AL PHA2 
R=(ffl*FI2-F8)/(ffl*FIl-F7) 
CM2BYKH=ALPHA2/(F12-R*FI1) 
QIBYKH=CM2BYKH*(R*F1+F2) 
Q2BYKH=CM2BYKH*(F10-R*F9) 
ALPHADN=(QIBYKH-Q2BYKH)*(AK/DK)*(DLENGTH*DSPAC)/DAREA 

RESIDUE1=ALPHADN-ALPHAD 
IF(ABS(RESIDUEI).LT.0.00001) CO TO 125 
index=index+l 
if(index.gt.200) go to 999 
IF(RESIDUEI.GT.0.0) GO TO 132 
IF(RESIDUEl.LT.0.0) CO TO 133 

132 ALPHADL=ALPHAD 
GO TO 126 

133 ALPHADR=ALPHAD 
GO TO 126 

125 CONTINUE 

RIGHT=ALPHA2/(FI2.-R*FI1)*(R*Fl+F2) 
TERM1=(BK/AK)*(1.-EXP(-BETA*BL))/(1.+EXP(-BETA*BL)) 
ALPHA11=(FI3+TERM1*(2.-ALPHA2)-RIGHT)/(FI3+TERM1) 
ALPHAl2=(AF3+AF4-AF4*ALPHA2)/AF3 

RESIDUE2=ALPHAl2-ALPHAll 

ALPHA2=ALPHA2-0.001 
IF(RESIDUE2.GT.0.0) GO TO 122 

ALPHA2=ALPHA2+0.001 
WRITE(2,*)'RESULT AFTER THE SECOND CYCLE' 
WRITE (2, *) ALPHA1 1, ALPHAl2, ALPHA2, ALPHAD 
WRITE(2,*)RESIDUE1,RESIDUE2 
WRITE(2,*)R 

ffl=ALPHAD/ALPHA2 
R=(ffl*FI2-['8) / (ffl.*F11-F7) 
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WRITE(2, *)R,  FF1 
WRITE(2,*)'THE THIRD CYCLE STARTS' 

ALPHA2=ALPHA2+0.001 

1122 CONTINUE 

ALPHAD=0.01 
DALPHAD=0.05 
INDEX=1 

1123 CONTINUE 

ff1=ALP'HAD/ALPHA2 
R=(ff'l*FI2-F8) / (ffl*FIl-F7) 
CM2BYKH=ALPHA2/(FI2-R*FI1) 
QIBYKH=CM2BYKH*(R*Fl+F2) 
Q2BYKH=CM2BYKH*(F10-R*F9) 

ALPHADN=(QIBYKH-Q2BYKH)*(AK/DK)*(DLENGTH*DSPAC)/DAREA 

RESI DUE 1=ALPHADN-ALPHAD 
index=index+l 
if(index.gt.200) go to 999 
IF(ABS(RESIDUEI).LT.0.00001) GO TO 1125 
ALPHAD=ALPHAD+DALPHA 
IF(RESIDUEI.GT.0.0) GO TO 1123 

ALPHADR=ALPHAD-DALPHA 
ALPHADL=ALPHADR-DALPHA 

1126 ALPHAD=(ALPHADR+AL1?HADL)*0.5 

ffl=ALPHAD/ALPHA2 
R=(ffl*F12-F8) / (ff'1*FI1-F7) 
CM2BYKH=ALPHA2/(FI2-R*FI1) 
QIBYKH=CM2BYKH*(R*Fl+F2) 
Q2BYKH=CM2BYKH*(F10-R*F9) 
ALPHADN=(QIBYKH-Q2BYKH)*(AK/DK)*(DLENGTH*DSPAC)/DAREA 

RESIDUE1=ALPHADN-ALPHAD 
IF(ABS(RESIDUEI).LT.0.00001) GO TO 1125 
index=index+l 
if(index.gt.200) go to 999 
IF(RESIDUEI.GT.0.0) GO TO 1132 
IF(RESIDUEI.LT.0.0) GO TO 1133 

1132 ALPHADL=ALPHAD 
GO TO 1126 

1133 ALPHADR=ALPHAD 
GO TO 1126 

1125 CONTINUE 

RIGHT=ALPHA2/(FI2-R*FIl)*(R*'Fl+F2) 
TERM1=(BK/AK)*(1.-EXP(-BETA*BL))/(1.+EXP(-BETA*BL)) 
ALPHA11=(FI3+TERM1*(2.-ALPEA2)-RIGHT)/(FI3+TERM1) 
ALPHAl2=(AF3+AF4-AF4*ALPHA2)/AF3 

RESIDUE2=ALPHAl2-ALPHAII 

ALPHA2=ALPHA2-0.0001 
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IF(RESIDUE2.GT.0.0) GO TO 1122 

ALPHA2=ALPHA2+0.0001 
WRITE(2,*)'RESULT AFTER THIRD CYCLE' 
WRITE(2,*)ALPHA11,ALPHAl2,ALPHA2,ALPHAD 
WRITE(2,*)RESIDUE1,RESIDUE2 
WRITE (2, *) R 
ff1=ALPHAD/ALPHA2 
R=(ffl*FI2-F8)/(ffl*FIl-F7) 
WRITE (2, *) R, FF1 
ALPHA1=(ALPHA11+ALPHAl2)*0.5 

WRITE(2,*)'LENGTH OF BLANKET',BL 
WRITE(2,*)'THICKNESS OF BLANKET',THICKB 
WRITE(2,*)'CONDUCTIVITY OF THE BLANKET',BK 
WRITE(2,*)'CONDUCTIVITY OF THE FOUNDATION SOIL',AK 
RATIO=BK/AK 
WRITE(2,*)'BK/AK', RATIO 
QBBYKH=BK/AK*( (1.-EXP(-BETA*BL)) /( (1.+EXP(-BETA*BL))))* 
1 	(2.-ALPHAI-ALPHA2) 
WRITE(2,*)'FLOW THROUGH BLANKET Qb/kh',QBBYKH 
QIBYKH=CM2BYKH*(R*F1+F2) 
Q2BYKH=CM2BYKH*(F10-R*F9) 
Q3BYKH=(1.-ALPHA1)*FI3 
WRITE(2,*)'Q3BYKH', Q3BYKH 
WRITE(2,*)'QBBYKH', QBBYKH 
WRITE(2,*)'QIBYKH', QIBYKH 
WRITE(2,*)'Q2BYKH', Q2BYKH 
BLBYT=BL/T 
WRITE(2,*)'BLBYT', BLBYT 

GO TO 1000 
999 CONTINUE 

WRITE(2,*)'ITERATION FAILED' 
1000 CONTINUE 

STOP 
END 

SUBROUTINE CF11(C,D,F,X,FX11) 
U=1.+X 
TERM=SQRT ((2+U*C)*(2+U*D)*(2+U*F)*(2+U)) 
FX11=(U**0.5)/TERM 
RETURN 
END 

SUBROUTINE CF12 (C, D, F, X, FX12 ) 
U=1.+X 
TERM=SQRT((4*C+U**2)*(4*D+U**2)*(4*F+U**2)*(4+U**2)) 
FX12=1/TERM 
RETURN 
END 

SUBROUTINE CF21 (C, D, F, X, FX21) 
U=(1.+X)**2 
TERM=SQRT((4.+C*U)*(4.+D*U)*(4.+F*U)*(4.+U)) 
FX21=1/TERM 
RETURN 
END 

SUBROUTINE CF22 (C, D, F, X, FX22 ) 
U=1.+X 

87 



TERM=SQRT( (2*C+U)*(2*D+U)*(2*F+U)*(2+U) 
FX22=(U**0.5)/TERM 
RETURN 
END 

SUBROUTINE CF31 (C, D, F, X, FX31) 
U=(1.+X)**2 
P1=C*U 
TERM=SQRT((8.*C-P1)*(8.*D-P1)*(8.-Pl)*(8.*F-P1) 
FX31=1/TERM 
RETURN 
END 

SUBROUTINE CF32 (C, D, F, X, FX32 ) 
U=1.+X 
P2=8.*C-C*U**2 
TERM=SQRT(P2*(8*D-P2)*(8-P2)*(8*F-P2)) 
FX32=1/TERM 
RETURN 
END 

SUBROUTINE CF4 (C, D, F, X, FX4 ) 
U=1.+X 
P3=4*C-C*U**2 
TERM= (4*D-P3)*(4-•P3) *(4*F-P3) 
FX4=SQRT(P3/TERM) 
RETURN 
END 

SUBROUTINE CF51 (C, D, F, X, FX51) 
U=X+1. 
P4= (8*C+(D-C)*U**2) 
TERM=SQRT(P4*(8*D-P4)*(8_P4)*(8*F-P4) 
FX51=1/TERM 
RETURN 
END 

SUBROUTINE CF52 (C, D, F, X, FX52 ) 
U=1.+X 
P5=(8*D- (D-C) *U**2) 
TERM=SQRT (P5*(P5-8*C)*(8*F-P5) *(8-P5) 
FX52=1/TERM 
RETURN 
END 

SUBROUTINE CF61 (C, D, F, X, FX61 ) 
U=X+1. 
P6=(8*C+(D-C)*U**2) 
TERM=(8*D-P6) *(8*F-P6) *(8-P6) 
FX61=SQRT(P6/TERM) 
RETURN 
END 

SUBROUTINE CF62 (C, D, F, X, FX62 ) 
U=1.+X 
P7=(8*D-(D-C)*U**2) 
TERM=SQRT((P7-8*C)*(8*F-P7)*(8-P7)) 
FX62=SQRT(P7) /TERM 
RETURN 

END 

88 



SUBROUTINE CF71 (C, D, F, X, FX71) 
U=X+1. 
P8=(8*D+(1-D)*U**2) 
TERM=SQRT(P8*(P8-8*C)*(8-P8)*(8*F-P8) 
FX71=1/TERM 
RETURN 
END 

SUBROUTINE CF72(C,D,F,X,FX72) 
U=1.+X 
P9=(8-(1-D)*U**2) 
TERM=SQRT(P9*(P9-8*C)*(P9-8*D)*(8*F-P9) 
FX-72=1/TERM 
RETURN 
END 

SUBROUTINE CF81 (C, D, F, X, FX81) 
U=X+1. 
P10=(8*D+(1-D) *U**2) 

TERM=SQRT((P10-8*C)*(8-P10)*(8*F-P10) 
FX81=SQRT(PlO)/TERM 
RETURN 
END 

SUBROUTINE CF82(C,D,F,X,FX82) 
U=1.+X 
Pll=(8-(1-D)*U**2) 
TERM=(Pl1-8*C)*(Pl1-8*D)*(8*F-P11) 
FX82=SQRT(P11/TERM) 
RETURN 
END 

SUBROUTINE CF91 (C, D, F, X, FX91) 
U=X+1. 
P12=(8+(F-1)*U**2) 
TERM=SQRT(P12*(P12-8*C)*(P12-8*D)*(8*F-P12) 
FX91=1/TERM 
RETURN 
END 

SUBROUTINE CF92 (C, D, F, X, FX92) 
U=1.+X 
P13=(8*F-(F-1)*U**2) 
TERM=SQRT(P13*(P13-8*C)*(P13-8*D)*(P13-8) 
FX92=1/TERM 
RETURN 
END 

SUBROUTINE CF101(C,D,F,X,FX101) 
U=X+1. 
P14=(8+(F-1)*U**2) 
TERM= (P14-8*C)*(P14-8*D)*(8*F-P14) 
FX101=SQRT(P14/TERM) 
RETURN 
END 

SUBROUTINE CF102(C,D,F,X,FX102). 
U=1.+X 
P15=(8F-(F-1)U**2) 
•I'I•:IRM--:QRI'((l'1 	"(:) " (11  P.3-0 D) " (P15-8 ) 
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FX102=SQRT(P15)/TERM 
RETURN 
END 

SUBROUTINE CFI11 (C, D, F, X, FIX11) 
U=(X+1.)**2 
P16=(4*F+U) 
TERM=SQRT(P16*(P16-4*C)*(P16-4*D)*(P16-4)) 
FIX11=1/TERM 
RETURN 
END 

SUBROUTINE CFI12 (C, D, F, X, FIX12 ) 
P=(X+1.)**2. 
TERM=SQRT((F*P+4)*((F-C)*P+4)*((F-D)*P+4)*((F-1)*P+4)) 
FIX12=P/TERM 
RETURN 
END 

SUBROUTINE CFI21 (C:, D, F, X, FIX21) 
P=(X+1.)**2. 
TERM=SQRT((4*(F-C)+P)*(4*(F-D)+P)*(4*(F-1)+P)) 
FIX21=SQRT(4*F+P)/TERM 
RETURN 
END 

SUBROUTINE CFI22 (C:, D, F, X, FIX22 ) 
2=(X+1.)**2. 
TERM=SQRT(((F-C)*P+4)*((F-D)*P+4)*((F-1)*P+4)) 
FIX22=SQRT(F*P+4)/TERM 
RETURN 
END 

SUBROUTINE CEF(W,XX,AKS,CEFl) 
DIMENSION W(96), XX(96) 
PAI=3.141592654 
SUM=0.0 
DO 10 1=1,96 
THETA=PAI/4.*(1.+XX(I)) 
TERM=0.25*PAI/SQRT(1.-AKS*SIN(THETA)**2) 
SUM=SUM+TERM*W(I) 

10 	CONTINUE 
CEF1=SUM 
RETURN 
END 

SUBROUTINE CIEF(W,XX,AKS,PHAI,CIEF1) 
DIMENSION W(96), XX(96) 
PAI=3.141592654 
SUM=0.0 
DO 10 I=1,96 
THETA=PHAI/2.*(1.+XX(I)) 
TERM=0.5*PHAI/SQRT(l.-AKS*SIN(THETA)**2) 
SUM=SUM+TERM*W(I) 

10 	CONTINUE 
CIEF1=SUM 
RETURN 
END 



APPENDIX -15 

GAU.DAT 

0.0325506144 
0.0320344562 
0.0306713761 
0.0284974110 
0.0255700360 
0.0219666444 
0.0177825023 
0.0131282295 
0.0081268769 
0.0029107318 
0.0325506144 
0.0320344562 
0.0306713761 
0.0284974110 
0.0255700360 
0.0219666444 
0.0177825023 
0.0131282295 
0.0081268769 
0.0029107318 
0.0812974954 
0.1780968823 
0.3352085228 
0.4834579739 
0.6189258401 
0.7380306437 
0.8376235112 
0.9150714231 
0.9683268284 
0.9959818429 

-0.0162767448 
-0.1780968823 
-0.3352085228 
-0.4834579739 
-0.6189258401 
-0.7380306437 
-0.8376235112 
-0.9150714231 
-0.9683268284 
-0.9959818429 

0.0325161187 
0.0318287588 
0.0302999154 
0.0279700076 
0.0249006332 
0.0211729398 
0.0168854798 
0.0121516046 
0.0070964707 
0.0018539607 
0.0325161187 
0.0318287588 
0. 0302999154 
0.0279700076 
0.0249006332 
0.0211729398 
0.0168854798 
0.0121516046 
0.0070964707 
0.0018539607 
0.1136958501 
0.2100313104 
0.3656968614 
0.5116941771 
0.6441634037 
0.7596023411 
0.8549590334 
0.9277124567 
0.9759391745 
0.9983643758 

-0.0488129851 
-0.2100313104 
-0.3656968614 
-0.5116941771 
-0.6441634037 
-0.7596023411 
-0.8549590334 
-0.9277124567 
-6.9759391745 
-0.9983643758 

0.0324471637 
0.0315893307 
0.0298963441 
0.0274129627 
0.0242048417 
0.0203567971 
0.0159705629 
0.0111621020 
0.0060585455 
0.0007967920 
0.0324471637 
0.0315893307 
0.0298963441 
0.0274129627 
0.0242048417 
0.0203567971 
0.0159705629 
0.0111621020 
0.0060585455 
0.0007967920 
0.1459737146 
0.2417431561 
0.3957976498 
0.5393881083 
0.6687183100 
0.7803690438 
0.8713885059 
0.9393703397 
0.9825172635 
0.9996895038 

-0.0812974954 
-0.2417431561 
-0.3957976498 
-0.5393881083 
-0.6687183100 
-0.7803690438 
-0.8713885059 
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