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SYNOPSIS

The water seeping through the body of the earth dam and through the
foundation of the earth dam may prove harmful to the stability of the dam by
causing softening and sloughing of the slopes due to development of pore
pressures. It may also cause piping either through the body or through the

foundation, and thus resulting in the failure of the dam.

For a homogeneous dam founded on a pervious-foundation, seepage
is expected to appear on the downstream face unless a cut off has been
constructed through the pervious foundation, thus permitting the downstream
portion of pervious foundation to act as a drain. Of course it is a simple matter

to provide drainage so that the seepage does not reach the downstream face.

The problem of seepage through an earth dam reéting on a pervious
foundation has been analyzed in the thesis. In addition, a horizontal toe drain
(under filter) was located at the downstream portion of the dam, and the
performance of filter in earth dam has been studied. The purpose of the drain

is to control seepage through the dam and reduce the exit gradient in the
downstream of the earth dam.

The seepage flow to a filter of finite width in a homogeneous earth dam
resting on a porous medium of finite thickness has been computed using
potential theory and conformal mapping. The seepage water to the filter of
finite width is drained by parallel pipes to the downstream. Depending on the
hydraulic conductivity of the porous material in the drain pipe, spacing of the
pipes and width of the filter, pore water pressure develops along the filter,
which influences seepage through the foundation and exit gradient
downstream. Provision of filter increases seepage but reduces the exit
gradient hence reduces the harmful effect of the seepage force.

Further the performance of upstream blanket in reducing seepage has
been analyzed.

(iii) -
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NOTATIONS

Aq = area of the drain

b = thickness of upstream blanket

b, = distance from upstream to the starting'point of filtef
b, = distance from upstream to the end of filter

bs = base width of the dam.

C = constant - |

cd,f, = value of t corresponding tq ‘C,D,I': respeétively
F(6,m) = elliptic integral of the first kind

H4,H2 = height of upst.ream and downstream water level
H = hydraulic head different g

le = exit gradient at the down stream

i = imaginary unit

k = coefficient of permeability of pervious foundation
Kp = coefficient of permeability of blanl%et rﬁaterial

ks = coefficient of permeability of filter material

Lp = length of the‘ upstream blanket

Lg = length of the cross drain

m = modulus of elliptic integral

M, N = complex constants
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a4

.Sd

= water pressure
= quality of seepage
= spacing of the cross drains

= depth of pervious stratum

r+is = complex variable representing semi in finite plane.

= disohérge velocity in x direction

= discharge velocity in f direction

= width of the filter

= ¢ + iy = complex potential

= x+iy = complex variable'representing physical plane.

Greek Symbols

I3

= the unit weight of water
= velocity potential function:

= stream function

(vii)



CHAPTER -1

INTRODUCTION

1.1 GENERAL

The seepage of liquid through porous media has many practical
applications in hydrologic, irrigation, sanitary, civil and petroleum engineering.
Seepage takes place through earth dam, as all soil materials are pervious to a
smaller or larger degree. Seepage is one of the major causes of the Earth
dam failure. It is of fundamental importance to control the seepage through
Earth dams not only to keep the water loss well within economic limits but
also to take adequate measure to ensure the safety of the Dam. The
understanding of the basic principle of seepage flow is essential for design .
and analysis of earth dam safety.

Seepage through the Embankment as well as the foundation is
controlled by two apprdaches, generally used in combination: The first
approach involves reduction of the quantity of seepage, or keeping the water
out as far as feasible. In the embankment, this requires provision of an
impervious zone or impervious membrane of manufactured material. The
second approach involves providing a safe outlet to water, which still enters
the embankment or the foundation, in spite of measures taken in the first
category. This requires provision of drainage arrangements downstream of
the seepage barrier such that the seepage forces are not able to cause soil
migration, and their magnitude and direction are such that they do not cause

embankment sliding or sloughing or foundation blow out.

1.2 OBJECTIVE OF STUDY

The present investigation is primarily concerned with two-dimensional
steady unconfined flow through foundation of an earth dam resting on a

pervious foundation. In addition a horizontal toe drain filter is located at the



downstream portion of the dam the Schwarz-Christoffe! transformation is used

for finding the solution to the problem.

A drain system comprised of a filter not extending to the toe of the dam
and provided with parallel pipe drains is economical. The performance of such
drain system has not been studied yet. In this thesis the effect of width of the
filter, location of the filter, the influence of the spacing area, and filing material

of the drain pipe on seepage and exit gradient has been analyzed

1.3 SCOPE OF STUDY

In this study, an attempt has been made to study the effect of
horizontal drain with different boundaries conditions. The cases with the

following boundaries conditions have been studied

(i) Flow under an earth dam without drain founded on permeable soil
of finite depth (Chapter 3).

(i) Flow under an earth dam with drain founded on permeablé soil of
finite depth (Chapter 4).

(i)  Flow through foundation of an earth dam with an upstream blanket

and a filter drain system (Chapter 5).

The solutions to the above cases have been obtained with the help of
conformal mapping and numerical integration, Gaussian Quadrature methed
has been used to carry out the integration. A computer programming in

‘Fortran’ has been developed.



CHAPTER - 2

REVIEW OF LITERATURE

A literature review has been made on study of performance of drain in

hydraulic structure.

Meleshchenko (1936) and Numerov (1948) have brovided solution for
hydraulic structure with drainage holes, wherein they studied in effect of one
or two drainage holes in the otherwise impervious floor. The effect of plane
drainage connected to downstream bed in case of seepage beiow a flat apron
or a single overfall founded on infinite depth of permeable soil was obtained
by Zamarin (1931). Sangal (1964) determined the extent of rec;uction in
pressure affected by a flat and deep filter of particular dimensions below the
foundation of a barrage with the help of electrical analogy model. Using
electrical analogue the effect of intermediate drainage filter on seepage
pressure has been studied by Arumugam (1971). A case of a flat bottom weir

resting on a porous medium of infinite depth has been considered.

Chawla (1973) has used conformal mapping to find the performance of
intermediate drain provided at the base of a hydraulic structure with two end
sheet piles resting on é permeable foundation of infinite depth. Conformal
mapping technique has been used. |

Kumar has studied the effect of intermediate filter for the following
boundary conditions (1995).

(i) Flow under a weir with unequal partial cut-offs at both end of the
floor and intermediate fiiter founded on permeable soil of finite
depth.

(i) Flow under a weir with a partial cut-off at upstream end, a
‘ complete cut-off at downstream end of the floor and an

intermediate filter founded on permeable soil of finite depth.



(i)  Flow under a weir with unequal partial cut-offs at both end of the -
floor and an intermediate filter founded on permeable soil

underlain by a sloping impervious stratum.

The solution of the problems of first two cases has been obtained with
the help of conformal mapping. The transformation equations have been
integrated numerically using Simpson’s formula. The solution of the problem
in the third case is obtained by solving the Laplace equation by finite element
- method. A computer program has been developed to compute the uplift
pressure all along the floor and exit gradient at the end of the floor. The factor
of safety against heave below the filter is also determined to study the safety
against piping below the filter.



CHAPTER - 3

FLOW UNDER AN EARTH DAM WITHOUT FILTER
FOUNDED ON PERMEABLE SOIL OF FINITE DEPTH

3.1 INTRODUCTION

In order to study the performance of filter in earth dam first we study
the flow under the structure in the absence of the filter. We assume that the
hydraulic conductivity of the compacted material is much less than the
hydraulic conductivity of the soil foundation. For analyzing the flow through

foundation, the body of the earth dam has been assumed to the impervious.

3.2 STATEMENT OF THE PROBLEM

A flat bottom earth dam resting on a homogeneous isotropic porous
medium of finite depth is shown in Fig. 3.1. The flow through the body of the
earth dam is neglected. The bottom width of the earth dam is bs, the thickness
of the foundation soil layer is T. Seepage through foundation soil occurs
because of seepage head, h (hydraulic head difference). We intend to find the

seepage flow rate as a functiqn ofband T.

3.3 ANALYSIS
3.3.1 Mapping of the Flow Domain in z- Plane onto t- Plane: z= fy(t)

The Schwarz—Christoffel transformation that gives the afore-mentioned
mapping is

dz

dt

M
t—f
dt
or, ' z= M{——+N ‘ ' ' 3.1
o=+ 6

As one traverses in t - plane along a small circle of radius - r around

point F (t=f) from 6 =1 to 6 = 2=, there is a change of (-iT) in z plane.



Putting: tf=re®; dt= re'®.ido, we have:

2n i0 :
ST =M [ 190 _ My
! rel
or, M = I
T
Inserting value of M into Eq. 3.1, we have
Z = __’1: _d_t + N
n't-1{
T dt '
or, z= —— |(-)—= +N
s I( )t~—f
Hence, t = —=In{f-t)+N
TC

()  AtpointB: t=0, z =0; hence, 0= L (f-0)+N

T

and, N = Ilnf
fL”

Inserting value of N into Eq. 3.3, we have

=L (f—t)+Iln17

TC 7T
T, f-—t
or, z=— —In ——
T f
and, eT _f-t
f
Hence, tzflil—e_#}
' 1
Therefore, - = -
——L
l-e T
' ry ]
c=fll-e T
A
I
d = {l—e T ¢

(3.2)

.(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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3.3.2 Complex Potential Plane: w = f,(t)

The complex potential plane w, where w = ¢+iy pertinent to the earth
dam is shown in Fig. 3.1c. ¢ is the velocity potential function defined as: ¢= -k
(Plyw +y) + C. Let us assume C = kh,, accordingly ¢ along AB = -kh and ¢
along EF = 0. We assume that BE is a streamline defined by v = g4. The
imperious base AF is alsd a stream line defined by yw = 0

In the following operation the flow field in the w-plane, shown in
Fig.3.1c, is transformed on to the semi-infinite t — plane, shown in fig.3.1b;
the transformation of the polygon in w-plane on to the t-plane is given by:

dw M

dt  JH)a-t)(f-t)

or,

+N, (3.9)
—t

' dt
MR e vy
This integration has been performed in various portions of the seepage
boundaries:
(a) Integration along the upstream floor AB (-0 < t<0):
(i) At point A:t =-0, w =-kh; hence : Ny =-kh
(i) AtpointB:t=0, w=-kh+iqs
Therefore, Eq. 3.9 becomes
“kh +igs = M| dt ~kh
o=t

JI-1)(E~1)

or,

(3.10)

o dt
=M ey

Performing the integration (Byrd & Fried Man, 1971) Eq. 3.10 becomes:

. 2 n {f-1 .
iqr =M —F|—, . [— 3.11a
a1 T [2 r ] ( )

where, F(g , ,‘/f—;—l)is elliptic Integral of the first kind, with modulus 1}%

1)’ -
2 f sv1-m’sin’ 0 f




The elliptic integral is computed using Gaussian Quadrature as explained

below:

Putting :

SO,

Therefore Eq. 3.11a becomes:

T
5 | — dv
iqr = Mﬁj 4 (3.11b)
'l\/l—m2 sin{ﬁ(v+l):|
4
(b)  Integration along floor BE (0< t < 1):
(i) AtpointB: t =0, w =-kh+ iq; = N
(ii)_ AtpointE: t =1, w =iqgy
Therefore, Eq. 3.9 becomes:
1
. dt .
igr = M — — kh + 1q,
J\/(_t) 1-t)E-1)
or,
M ! dt
kh "= _ (3.12)
S Ncen o

For the integrand the square root of the cubic, the integration reduces to
elliptic integration of the first kind (Byrd and Friend Man, 1971) and Eq. (3.12)

become:
kh
or, kh
in which:

=M 2 (r |1
e ﬁfr(z,@ (3.13)
'
L — dv
M 2 |
= == | 4 (3.13b)
R _'\/l—mzsinz[g(V+l)}
| 1
m = —_
f.



(c) Integration along floor EF (1< t< f):
(i) AtpointE: t =1, w = igy ; Hence, Ny = iqs.
(i) AtpointF: t=f w =0

Therefore, Eq. 3.9 becomes:

' dt
0 =M +iq
e R
or,
. ] dt
g = M 3.14
' ' i ,J-,/tit—lnf—tj ( )
Performing the integration (Byrd and friend man, 1971) Eq. 3.14 reduces to :
i = M% F [g f—f‘1] (3.15)

Thus the integration along the floor EF (i.e. 1< t < f) does not yield and
independent equation. A
Let M be equal to Myi, from Eq. 3.12

kh Jf

Q_FE’l
2 Vf

M, =

Substituting M in 3.11a.

3.4 COMPUTATION OF POTENTIAL ALONG THE BASE:

For floor base BE (0<t <1)

w(t) =

M j & _h+ig

J=1 Jtl=t)f-1)

Performing the integration (Byrd and Fried Man, 1971)
1

wit) = o) +igy = :/I‘_Azl F [sin"' N \/f} _kh+iq,

10



oty =S ‘H/-]

of: ﬂ

f F (sm"‘ Jt, ]

SRR O]

where F (sin ™ \/—f ) is incomplete elllptlc integral of the first kind which

Jf‘

is evaluated by Gauss quadrature as explained below:

Let Sin” Vi’ =9,

1 ‘ do 1
Fsin“\/t_’,—Jz m=——
( Ji 5[ 1-m?sin® 6 Vi

1 ——dv
or, F(sin“ \/t—’ %) = I 2

3.5 EXIT GRADIENT:

It is important to know the hydraulic gradient at the downstream end of
the floor i.e. at point E and beyond we note that the gradient at any point in an
isotropic flow region is

| =dh/ids ‘ (3.5.1)
in which h = the hydraulic head at any point along the floor and s= distance
measured along the streamline passing that point. Eq. 3.5.1 can be written as
Ldp _1dpdt dz

| = = —.
k ds k dt dz ds

(3.5.2)

Defining the angle between the direction of the streamline and the x axis as 6,
we have dz/ds = cos6 # isinf. Since the stream line at the critical exit point
(point E in Fig. 3.1a) generally represent y = constant (hence d¢/dt = dw/dt)
and intersects the tail water equi-potential boundary at 90° ( 8= 90°), Eq. 3.5.2

will reduce to



In other words: dw = dw dt _ u-iv. = u-l(klg)
: dz dt dz

As the downstream boundary is horizontal velocity u = 0

Hence, aw _ ikl
dz

From analysis we have

dz_ T 1
dt nl-f
dw M
dt J1-0¢E -1
SO, IEng‘_\X gz—_M‘__E (f_t)

ik dt ‘dz J(=n(a-9 T
hvf n\/T T f-t

Hence, I, =——F | —, .= | —
2 [2 f) t Jtt-1)

3.6 RESULTS AND DISCUSSION

A computer program was developed for computation of potential along

the base and exit gradient at the downstream side for various combination of
the values of the variables involved. The calculations involve the use of elliptic
function of first find, which were computed by a subroutine CEF and CIEF.

The variation of gy/kh with ba/T, the bottom width of the dam is shown in Fig. 3.2.

The distribution of potential along the base of the dam is shown in Fig. 3.3.

The exit gradient in the downstream of the dam shown in Fig. 3.4,.

The exit gradient is infinite at the toe of the dam. Therefore an
~ invested filter has to be provided at this location. The exit gradient decreases
with distance from the toe of the dam. The zone in which the exit gradient
exceeds the critical value (critical exit gradient =1), the invested filter is to be

provided in this zone.

12
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CHAPTER -4
FLOW UNDER AN EARTH DAM WITH FILTER
FOUNDED ON PERMEABLE SOIL OF FINITE DEPTH

4.1 INTRODUCTION

The stability of hydraulic structure founded on permeable soil has to be
ensured for safety against uplift pressure and piping. Intermediate filters or
drains are provided below hydraulic structures founded on permeable soil to
reduce uplift pressure resulting in appreciable savings. Some times because
of non availability of filter material (coarse grained soil) and for economy filter
of finite width which does not extend up to the toe of the dam is provided.
Parallel drain pipes are used to dispose the water that seeps into the filter.
Solution to the seepage problem pertaining to such drainage system, shown
in Fig. 4.1, is not yet available. In this chapter using conformal mapping and
potential theory, the flow characteristics (i.e. quantity of seepage to the drain
through filter, seepage to the downstream through foundation and exit

gradient on the down stream side) have been quantified.

4.2 LAYOUT OF BOUNDARY CONDITIONS
AND METHOD OF SOLUTION

Consider an impervious floor BE of length b; founded on a homoge-
neous permeable soil of depth T. An intermediate filter CD of width wy is
located at a distance by from the heel of the dam (from point B). The structure
is founded on a permeable soil of depth T underlined by an impervious

stratum AF. The profile is presented in the z plane (z = x + iy) as shown in Fig.
4.2a.

The steady seepage through the previous foundation of the structure
that causes uplift is governed by the Laplace equation:

2o = 070 000 _
V= gen =0 (4.1)

15



in which: ¢ = velocity potential function defined as:
b =k (rw-+y) +C
where: C = constant, and k = hydraulic conductivity.

Assuming C = kh,, along the upstream bed AB, ¢ = -kh (h = hy-h;) and
along the downstream bed EF, ¢ = 0. Starting from some where at the
upstream, a streamline y= gz, would meet some where the floor DE, at an
unknown point R where it would yet divided into two stream lines, one along
RD emerging at D and other along RE emerging at E. The potential along the
floor DE would be maximum at R. The impervious boundary BC forms another
streamline v = q1 in which g4 = total discharge seeping below the foundation.
Along impervious stratum, y = O The complex potential is represented by
w=¢+iy. The layout of varicus boundarles in the w-plane is shown in Fig. 4.2c.
The seepage domain in the complex potential plane w is the area between the
vertical lines AB (¢= -kh), CD (¢= -kog h) and EF (¢=0), and horizontal lines
AF (v = 0), DRF (y = g2) and BC (y = g4). Depending upon the head that
would develop along the filter, an upstream part of the filter may act as a sink
and the remaining down stream part of the filter would then act as a source.

The corresponding complex potential plane is shown in Fig. 4.3.

To obtain the solution, both the profiles of structure in the z-plane and
in the complex potential w-plane have been transformed onto lower half of an
auxiliary semi-infinite t-plane (t = ry + isy) using the Schwarts-Christoffel

transformation. The following relations are thus obtained:

z = f(t) , (4.2)
w = F(t) ' (4.3)
combining Egs. 4.2 and 4.3
z =f(t) =f (F'(w)) , (4.4)
and w =F{t) =F(f'(2)) (4.5)

16
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4.3 FHEORETICAL SOLUTION
4.3.% First Operation z = f4(t)

" In this operation the profile of the hydraulic structure in the z-plane‘is
transfojned onto the real axis of the t-plane. On the t-plane, the points B and
E are |ocated at 0 and 1 and the points C, D, N and F are mapped onto points
at ¢, d, n and f, respectively. The values of these parameters are {o be

determined. The Schwars-Christoffel transformation that gives the afore-
mentioned mapping is

dz M .
=L 2 | 46
& T=0) 4.6)
As derived in Chapter 3.

 M=-Tln | (4.7)
t=fl1-e7 ] (4.8)
fo= {Eb (4.9)

l-e T’

c = f l—e_?bl} - (4.10)
d=f 1-e"?"’} (4.11)

4.3.2 Second Operation w = F(t)
[n this operation, the flow field in the w-plane, shown in Fig. 4.2¢c is
transformed onto the semi -infinite t-plane as shown Fig. 4.2b. The transfor-

mation of the polygon in w-plane onto the t-plane is given by :

aw _ M, (r—t)
FANAN 0y sy 3y oSy ey @12
or, w(t') =M, ‘f (r — t)dt

+ N
aNE e —tYd -t —tXf —t)
To find the parameters ¢, d, f, and r; constants My, and N we carry out

integration between consecutive vertices and find the required equations.
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(a) Integration between vertices A and B (-oo< t <0)
(1) At pointA:t=-w, w=-kh; hence, N= -kh.
(i) At point B : t = 0; w =-kh + iq;

Applying these conditions we obtain:

o (r —t)dt
191 = M, .[ C t)(c —t)d - tX1 - t)f - t)
" f S e e MM N e o ey
= M1 [r.F1 + F3]; |
| _ dt
where: Fy = _£\/(_ thc - t){d — )1 - tff - t)
o J=t) dt

F, =
’ _L/@ TN M- tE-¢t)
Let us assume M = M, |
s0, Qi =M, [rF; + Fy | (4.13)

Evaluation of Fy and Fj are given in appendix 1 and 2.

(b) Integration between vertices Band C (0<t<c¢)
(i) AtpointB: =0, w=-kh +iqgq, hence: N = -kh + iq,

(in) Atpoint C: t=c¢,w =Kkagh +iqgy
Therefore,
M, (r - t)dt
1 - 1
@) = IJ O
y rI dt I tdr
s CO e-0@--2Xr=0) ' {JCXe=Nd-Ya—1X/ -1)
My f M, Vi di
T ile—Xa- t)(l Xf—1) V=13 Je=DNd-1Yi-{f )
- %[w -]
or,
kh(1 - ag)= M2 (r. F3-Fj) (4.14)
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In which,

€ dt
FT JJt(c—t)(d—t)(l—tXf—t)
¥ Jt dt

Rl Iy ey s oy ry

Evaluation of F3 and F4 are given in Appendix 3 and 4.

(c) Integration between vertices C and D '( c<t<d)
(i) AtpointC:t=c, w=-Kagh+igs; hence, N =-kogh +ig4
(i)  AtpointD:t=d; w=-kagh +iqp

Therefore,
T _ M, (r—t)dt
St )Y L 7 e e
_ ‘} M, (r - t)dt
cytlt-c)(d-t)(1-t)(f-t)
_ (}1 dt M (ji \/jcdt
R (RS I N Oy P3N R N RN PRV CRV Y
= M; [r.Fs —Fe] |
le—Q1 = Mz [rFs-Fg] (4.15)
where, .
¢ dt
o Cj\/t {t-c)(d-t)Q-t)f-1)
d Jtdt

o ey

Evaluation of F5 and F6 are given in Appendix 5 and 6.



(d} Integration between vertices D and E (d<t<1)
(i) At point D:  t=d; w=-Kog h +igz, hence N = -kag h + iqgz,
(i) Atpoint E: t=1,w=iqz

Therefore,
o _ M(r—dt)
oo = [T
,[ M, (r —dr)
f it =i = a)i-o)(f -1)
! Jiat
'[\/t(t (1 (f —1) \f—J\/(t c)e-d)i-0)(f 1)
—_ Ml n
_ﬁ[r-ﬁ;_ﬁs]
| kag h = M, [-r.F, + F,] (4.16)
_ , ! dr
N S () (0 £

_ Jr ar
S er e (e ey

Evaluation of F7 and Fs are given in Appendix 7 and 8.

(e) Integration between vertices E and F (1<t<f)

() AtpointE:t=1;,w=igy; hence N =iq;
(ii) AtpointF:t=f,w=20

Therefore, |
’I M, (r —t)dt
e CEN e (EnED)

- J- (r—t)dt
Pt =Xt —dft-1)f -t

I

-iqp

dt { Jods
M"lf g e L v e

- M1 [r. Fg - F1o]
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or qz = Mz[Fm -T. Fg] (4.17)

where,

ngfj- dt

P —c)e—d)e=1)7 —)

Fio= fJ~ Jedt
PVle—c)e—a)e~1)(f - 1)

Evaluation of F9 and F10 are given in Appendix 9 and 10.

()  Integration between vertices F and A (i<i< «):
(i) AtpointF:t=f,w=N=0
(1) At point A:t = ; w=-kh.

Therefore,

Kh = M, J- (r—1)dt

(N R RN () )

(r - t)dt

" fjx/?(t—c)(t—d)(t—l)(?—f)

T dt _Mm[ Jidt
P e e o R N o ) o Py

My [rlq —I2]

Mir

or kh = My[l-ri] (4.18)

dt

Rl 7 e ey gy

= ‘] Jidi
iNl=cXe=aXe-0i-7)

Evaluation of |, and |, are given in Appendix 11 and 12.

in which:
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The following relationships have been derived using w and t plane:

1 =Mz [rFy + F2)
kh(1-og] = Mz [rF3 — F4]
qt —Q2 =Mz [rFs — Fe]
khoug =My [Fs—r.Fs]
2 = M; [F 1o — rFe]
kh = My [l —r 11]

The value of aq4 is unknown. To solve the unknowns qi/kh, ga2/kh, o, T,

ag, and constant M, , the following procedure is followed:
From Eqgs. 4.14 and 4.16,

l-a, 1k -F,

oy F, —rF

7

hence, r= it F - F) (4.19)
ad(Fs_F7)+F7

We assume value of ag and get value of r from Eq. 4.19. If the
assumed value of a4 is correct then it would satisfy the following continuity

equations, i.e. the quantity of seepage entering into the filter is drained out

through cross drain.

- o h
s (41— 02) = k; Ld

‘%d
d

or, M%) g _F, )=k, 20,
rF, — F, _ L,
VI kh(l-a,)
? rFy, = F,
of =Mz [r Fq +F7]
g2 =My [F10 - 1.Fg]
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4.4 EXIT GRADIENT

#t is important to know the hydraulic gradient at the downstream end of
the fipor i.e. at point E. we note that the gradient at any point in an isotropic
flow region is

| = dh/ds (4.20)

in which h = the head at any point along the floor and s= distance measure

along the streamline passing that point Eq. 4.20 can be written as:

_Lldg _1dpdde 4.21)
k ds k' dt dz ds

Defining the angle between the direction of the streamline and the x
axis ag 0, we have dz/ds = cosb + isin8. Since the stream line at the critical
exit point (point E in Fig. 4.2) generally represent y = constant (hence d¢/dt =

dw/dt) sand interests the tail water equipotential boundary at 90° (6= 90°),
Eq. 4.21 will reduce to

=T % Cdr

Other words: @ _dwdt u-iv. = u-I(klg)

. dz dat dz

As the downstream boundary is horizontal velocity u = 0.

Hence, dw = ikl,
dz

From analysis we have

e_IT 1, d_7m4)
dt  zt-1 dz T
and dw _ Mylr 1)
& JCe-0@-0G-00 -1
Hence,
= M, (r—t) _h(l-ay) on(r-t)

ik Jtlt-c)(t-d)t-1)E-t) R -F tlt-c)t-a)t-1 (-1



4.5 RESULT AND DISCUSSION

The hydraulic head that develops in the filter is governed by
i) Iocatioh of the filter,
i)  width of the filter,
lii)  thickness of the foundation soil,
iv)  hydraulic conductivity of the foundation soil,
v)  spacing of cross draining pipe,
vi) area of the pipe, and

vii) hydraulic conductivity of the material in the pipe.

A set of sample results is presented in Fig. 4.4a showing variation of ogq
width b4/T for different bottom widths of the dam. It could be seen that og
decreases as location of filter shifts towards downstream.

From fig. 4.4b it is found that as width w increases o4 decreases.

It can be seen from Fig. 4.4c that as hydraulic conductivity of the filling
material increases, oq4 decreases,

Variations of>q2/kh (flow to the down stream side) is shown in Fig. 4.5a
with different location of drain width of the dam.

The variation of q¢/kh ‘ (the seepage through foundation prior to
interception by drain) with location of the filter is shown in Fig. 4.5a. Without
filter, for bs/T = 2, the seepage, q1 / (kh), is 0.35 (refer fig. 3.2). Thus a filter
induces more seepage to occur. As the location of filter approaches towards
the upstream end, seepage through foundation layer increases. Also as width
of the filter increases, q1/(kh) increases.

Variation of seepage emerging at the downstream through foundation
soil (gz2/kh) is shown in Fig. 4.5b, which indicates that q,/kh decreases rapidly
as b4/T increases. |

The distribution of exit gradient is shown in Fig. 4.6. Provision of filter
reduces the distribution of exit gradient. However the exit gradient at the toe
of the structure is infinite. Therefore, a zone near the toe is vulnerable to
piping. Hence an inverted filter should be provided within the zone upto, which

le is greater than or equal to 1.

27



0.50

l
0.45 +—X N a Kf=10Ks
0.40 \ E—_— w/T=0.1
\ T Ld/T=0.1
035 \ L ——b3/T=1 N
0.25 ' S
0.20 \ \\ \\
0.15
0.10 :
0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80
b4/T
0.50 1 _
0.45 - Kf=10Ks [
s
0.40 \E\Q Ld/ T=0.1 |—
0.35 B b/T=2
agq 0.30 \lN"‘Z’“:m
0.25 w=5 \\?‘\:\:‘“\
0.20 " welo T~ e
' w=15 \\'- N
0.15 \i
0.10 |
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80
by/T
0.50 !
0.45 +—=~ -
— w/T=0.1
S
0.40 ~ §\\ Ld/T= 0.1
0.35 e b/T= 2
" ‘.\\
Cp 0.30 BT \
S - > \
0.25 Kf=5Ks TN
0.20 Kf=10Ks B s g
0.15 = = = Kf=15Ks ~ s
0.10 | -
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80
b,/T

Fig.4.4- Influence location of filter on head developed at the filter

28




0.360

0.359 ~
0.358 . Kf=10Ks, b3/T=2,
0.357 =, B —
) N T
as/(kh) 0.356 D~
0.355 LTy
' —w/T=0.05 \\- -L
0.354 - = = wW/T=010 ~ s
0.353 : iy
0.352
0.000 0.250 0.500 0.750 1.000 1.250 1.500 1.750
b1/T
Fig.4.5a- Variation of q1/(kh) with location of the filter
0.346
0.344 = S
ey, Kf=10Ks, b3/T=2, Ld/T=0.1
0.342 x
\
0.340 I
qzl(kh) e
Dase ———WIT=0.05 \\
0.336 ST mwWiT=0.10 N
0.334 - : AN
~
0.332
0.000 0250 0500 0750 1.000 1.250  1.500  1.750
b1/T

Fig.4.5b- Variation of the q2/(kh) with location of the filter

29



1.50 \
with filter w/T=0.1
1.25 Ld/T=0.1
\ ) Kd=10Ks

1.00 \
IgT/h 0.75 \\‘

0.50 \\

0.25 e |

0.00 .

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
b,/T

a- Incase (x-b3)/IT =1

1.50
\ with filter w/T=0.1
1.25 Ld/T=0.1
Kd=10Ks

1.00 \
IeT/h 0.75

0.50 AN
\
0.25 T~

0.00 : o
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
by/T
b- Incase (x-b3)IT =2

Fig.4.6- Distribution of exit gradient in the D/s of the dam

30



CHAPTERS5

FLOW THROUGH FOUNDATION OF AN EARTHDAM WITH
AN UPSTREAM BLANKET AND A FILTER DRAIN SYSTEM

5.1 INTRODUCTION

A horizontal upstream impervious blanket, which increase the
horizontal length of the average flow path of under seepage, is more effective
in"controning seepage through a homogeneous soil foUndation than a partial
vertical cut-off. If the blanket is very impervious compared to the natural
foundation. so that relatively little seepage occurs through the blanket, the
reduction in 'the seepage quantities and pressure at the downstream toe is
directly related to the length of the blanket.

5.2 STATEMENT OF THE PROBLEM

An earth dam with an upstream blanket and a filter drain system is
shown in Fig. 5.1. The soil under the earth dain structure is homogeneous
isotropic and is of finite depth. For the purpose of analysis the flow domain is
decomposed into three fragments. The flow through each fragment is
analysed.

5.3 ANALYSIS

5.3.1 Fragment -1
5.3.1.1 Mapping of the Flow domain in z-plane onto t plane: z = f4(t)

The Schwarz-Christoffel transformation that gives the afore
mentioned mapping is: |
dz M M

dt )ia-s V1-0
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dt

or, Z =M f + N
Ji-t?
=Msin? t +N . (5.1)

e p—
_

1
=kh ma2 \v4
m‘ e
G NP , B1 v =31 =kowh \: =0
lvitV////,V//,l/ / C 4/ D R\E F
JI ‘BI Vv S AR X XX XX A 7
h1 I |
| I o
- -
(D @ 841y |
| |
l | )
1 il =0
R S S SR TR 7K 7R F

(@) z-Plane(z=x+1iy)

Fig. 5.1 - FLOW DOMAIN

(i) ForpointL:t =1, z =-T
From Eq. 5.1 AT =M +N (5.2)

(1) ForpointP;, t=-1,2, =20

From Eq. 5.1 0=M [—%)+N
Here, M = ——II and,
1
N = T _ _IT
2 2
Therefore,
z= - == sin” (1) T (5.3)
T 2



(i Forpointd: t =j,and z; = -ib
: bn
S0, j = -cos —
T
5.3.1.2 Complex Potential Plane w = f2(t)

The transformation of the polygon in w-plane onto the t-plane (Fig. 5.2)

is given by:
dw _ M
a T Cmg G -
' dt
SO ' w =M . - (5.5)
N ey e
| (a) Integration along flow boundary GP (-0 < t<-1):
(i) AtpointG: t =-o, w =-kh ; Hence N; = -kh
(i) AtpointP: t =-1, w =-kh +iqgs
Therefore :
(5.6a)

IJ(— 1-1) (J—t)(l—t)
Performing the integration (Byrd & Fried man, 1971)

: T [1-]
g =M V2 F | =, [—
ds J2 (2 2]

. 1+cos-1tE
or, gz =M 2 F = ——2—1 (5.6.b)

(b) Integration along floor boundary PJ (-1< t <})
(i) AtpointP: t =1, w =-kh+iq;
Hence, Nt =-kh+iqs
(i) Atpointd: t =j, w =-kha; +igs
Therefore,

_ J
kh(1-a1) = M| at

_{J(—l—tﬂj—%ﬁ

ety ol 72
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Fig. 5.2 - TRASFORMATION LAYOUT (Fragment |)
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Performing the ihtegration (Byrd & Fried man - 1971)

Kh (1-on) = V2 FE /-1-;—1]
- M n  [L-coszb/T
= i 2 F(Q, : J (5.7b)

From Eq. 5.6b and 5.7b, we have
M, = Kh (l—ocl)

) n |[1-cosnb/T
V2F [E\f 2 ]

and,
E T 1+cosmbh/T
2’ \/ 2
a3 = Kh (1~o,) (5.82)
t |1—cosmb/T
F —,,/———
[2 2 :
or,
ds =Kh (1-o4) I3 (5.8b)

5.3.2 Fragment -l

In fragment Il we assume that the flow through the blanket is vertical
and in the foundation it is horizontal. Since the hydraulic conductivity of the
blanket material is very much less than that of foundation soil, such

assumption can be made.
Definition of boundary conditions:
Let the hydraulic head h, be defined as:
ha Plyw T .
¢ k(Phw ty) + C; C=khy

Let us choose the impervious bed as the datum and y is the measure

tl

from this datum.



b, Kb
J] s |
T L w=q3 - L/’/’_' (—.Y—P; + y) =(1-a2) h2 + azhs
WU o] - -
( —PY + y) =(1-aryhz+ahs ] 5 __ | __Ggvdgp
v ld=—Ka 1h [ ¢=—Kat 2h
T o B e B
| X ——
v e —%X TR 7%
dx

Fig. 5.3 - (Fragment II)

(i) Along floor JL :
b = -koah ; h =hihy
or
-kath = K (P +y) | o+ kho
(Plyw + Y)low = a4 (hy-hz) + hz = aqhy + (1-04) ha
S0,
oo = -k(phyw ty)|le +C
or do. = -Klauhy +(1-cq) ha] +khy = —kayhy - khy (T-a ) + khy
= -kay (hq-hp) = -kaqh

(ii)  Along floor BA:
d =-kKazh
Since,
dsa = -K(Plyw +Y) Isa * khp
or -kazh = -k (plyw + Y)|sa + kha
or (Plyw * ¥)lea = oz (hy-hp) + ha = azhy + (1-02) ha
Referring to Fig. 5.2, shoWing the seepage flow through the pervious

foundation of the earth dam with upstream blanket of material which permits

some leakage, the horizontal flow gf in the pervious stratum under an
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elementst length dx of the blanket is increased by an amount dgr equal to the

vertical inflow dx qp(x) through the length dx of the blanket, so that:
dq, (x) _

dx q, (x) (5.9)
or, 4 [- k(T-b) dﬂ} =k, (b, =h,) (5.10a)
dx dx b
In which hy is the hydraulic head under the blanket.
Henge,
k(T -p)d _ky(h,~h,) (5.10b)
dx? b '
Putting hi—h, = H
d*h, d’H
or, - =
dx’  dx’
in Eq. 5.10b:
2
k(o) SH_K g
dx b
d’H H =0 5.10¢)
or . d—x? -B = (5.10c¢)
Here: B2 = __Kb
b.k(T-b)
H =Cie + Cre® . (5.11)

Cs and C, are to be evaluated applying condition at section P, and J

(i) AtpointJ : x =0, hylx=0 = athy + (1-at1) hy

Hence: H|x=0 = h1 — hu|x=0 = h1 - Ot1h1 - (1-(11) h2
or, Hix=o = (1-0u1) (h1 = hy)
So: (1-0(1) (h1 - hz) = C+0C, . (512)

{(iy Atpoint B :x =1, hy|x=i = oz hy + (1-ap) hy

or,
Hlx=t = h1 — hylx=i = hy - 02 hy = (1-00) hy
So, (1-az) (hi—hy) =CieP+ Cye®
and, (1-az) (hi—hy)e® =Cy+ Cre™ (5.13)
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From Eq. 5.12 and Eq. 5.13 :
C“:ﬁ—mhﬁ—eﬂﬁ—o—aJh+o—aJﬂh

(1—e'2'“)
e P e V(1 -p
and C,= (hl hz)e [(] O—Lz) (] O‘l)e ]
(B
We have ‘hy=hi=H =h;{=Cy;e*=C,e®
%%=~cmﬁd“+cz&em
and, ai(x) = -k (T-b) [Co.p.e™ - Ci.p.e™

Atx=0,qr(0) =k (T-b)p (Cz-Cy)

Since, gs (0) = qs
k(T—b)B(CQ—C1)== kh (1 -OL1) |3

Flow through the blanket,
From Eq. 5.9 :

1 1 H
Qp = qub(x) = ka o dx

k ! | k., (CeP” Ce®
b b 6[( le 2e }ix b B B
k -
Hence, Qp = ﬁ—‘l’;[(cleﬁ' -C,e m)_ (C| —Cz)]
and, Qp = %[(1—3‘“')C2—(1—eﬂ')cl]

Substituting C4, and C,, we have

(5.14)

(5.15)

(5.16)

(5.17)

Bb
ky{l-e™)(b, ~h,)
Bb(l—e)

k,(h, —hz)(l_e—Bl)
B.b(l—e’zﬁ‘)

R (Ao e

B.b (l —e ™ )

(1 - )

{2—(011 +0‘-2)_[2_(0‘1 +a2)]e—m}
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or,

Qp = kb(hl —hz)(l—e"“)[Z—(a[ +Otz)]
B.ﬂl+e'm)

(5.18)

- 5.3.3 Fragment - Il
5.3.3.1 Mapping of the flow Domain in z- plane onto t-plane : z = f4(t)

The Schwarz-Christoffel transformation that gives the afore-
mentioned mapping is

dz M
dt £ (t—£)
or '
dt
=M|=—57——=+N 5.19
i It”z(t—f)+ ©19)

As one traverses in t- plane along a small circle of radius - r around

point F (t=f)from 6 == to 6= 2x, there is a change of (-iT ) in z - plane.

Putting: t-‘f:reie ,Ort=f+rei9
or dt=re" ide
2n 9
we have Jaz=M | re 11;129 |
% (f + re‘e) re®
. s
o T =y I M
r—0 x (f + reif) )’2' f
1/2
or M= — T.f (520)
T
Inserting value M into the Eq. 5.19, we have
T.f1/2 dt
R .[ 1/2 + N
o 2t~ )
Since,
dt 1 t1/2 _s1/2
.[ 1/2 =~ log.
t!/2(t-f) f /2 1172 | 1/2
_ T tl/2 _f1/2
27 ;bge WH\I (5.21a)
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777777777777 7777777777777 ‘ ’ —

kh !

(c)w-Plane (w=¢ +iy)

Fig. 5.5 - TRASFORMATION LAYOUT (Fragmentlll) - CASE 2
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(i) AtpointB: t =0; zg=0 .Hence,
0 = —Ilogc(—l)+ N:—I]_oge 'l'_g‘l"‘ + N
T o
or N =iT

Setting value of N into Eq. 5.21a we have

T (/2 _gl/2 . '
].Oge W+ iT (521b)

N
|

s
or,

T F12 _ 12 .
T ';1"%{‘*)W i

T . rin f1/2 _t1/2 .
- ;loge{e W + 1T

T o Ty fi/2 _¢l/2
= - —n—logee "'; Ongew+lﬂ

Hence,

T gU2 _qn2
2 = - ;loge W ‘ (521C)

Let us find t as a function of z from Eq. 5.21¢

e

) - -T—Z f] /2 _ tl /2
© - 72 L f172
or, e—:_z (t”2 " f1/2)= flr2 _ 412
x5, X
or, tH2114e T | =fY/2]1-¢ Tz]
- 12
T,
f”g{l—e T J
Hence, t = - (5.22)

-—z

l+e T
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(ii)

AtpointE: t =1, z =L : Hence

r N
172 (1 . e“?'“]

1 = S
iy

l+e 7

1 T
or I — (5.23a)
1——e-?b
(i) AtpointC:t =c¢, z=Lc, Hence
— ‘ . 12
fl/z(l—e—?m]
c = - (56.23b)
l+e T
(iv) Atpointd ;t=d,z=Ld; Hence
— ." T2
fuz(l_e-#d]
d— T

= | (5.23c)
) -—-Ld
' l+e T

5.3.3.2 Complex Potential Plane : w = f,(t)

In the following operation the flow field in the w-plane is
transformed onto the semi-infinite t- plane, which are shown in
Fig.5.1. The transformation of the polygon in w-plane onto the
t-plane is given by: _ '

dw M, (r - t)

N G e (B ey

or

@
w = Ml_[ (r _ tht + Ny

2JEDe—td -t -t)f - t)
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we have equation systems as:

ofl = Mgy [rFq + F2] (a)
kh(oz - ag) =Ma[r.Fz—F4] (b)
d1- g2 = Mz [r.Fs —Fé] (c)
khog =M, [Fs—r.Fs] . (d)
d2 =Mz [Fro—r.Fo] (e)
khoi = Ma[l — .14 | (f)
as - =kh (1-04) I3 . (9)
- o ) kb(l—e"ml) [2_—[“((;@l o)) ")
+e

The magnitude of Fq, Fy, F3, F4, Fs, Fg, F7, &3, Fg, Fio, 11, 12 are the
same as dérived in Chapter 4.

The unknowns are the complex constant M and the parameters r, a4,
o2, og. Since the equations involve multiplication -of unknown parameter r, and
complex constant M, the equations (a) to (f) are non-linear. We find the

parameter féllowing an iteration procedure. We assume values for o and og.
From (d) and (f).

o F, - rF.
_d=f|:’8_—7
a, 1, =
or
r= fllz—Fs
flII_F7

Hence, once oy and oy are assumed, r is fixed. From equation (f) the
constant M is fixed i.e.

a,
[, —rl

kh

M2=
l
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Once (%) and r are fixed by assuming o and ag4, the seepage quantity

q+/kh and qgz/kh are fixed i.e.

ql aZ 1 H
kI F +F |
kh 1, -7l v+ ) 0
4> @, ;
9 _ Ry —rF,
kh 12—r1,[ o =7 0
9 —4, &,
- F,-F k
T V] (k)

It is found that equation (k) is not an independent equation since
equation (k) can be obtained by subtracting equation (j) from equation (i).
Since equation (b) can be obtained subtracting equation (d) from Eq.‘ (M,
equation (b) is also not an independent equation.

Performing the mass balance for a steady flow condition, the inflow to

the filter is equal to the out flow from the filter, which is in turn equal to inflow

to the drain.
Hence,
: ah
Sd[ql_Q2]:ka_d'Ad
d
o O D (B A
kh kh k \L,S,
k.Y A
I, -1, k J\LgS,

The assumed o, and og should satisfy Eq. (1).

Using the relation ¢g3 + Qp = gy, we obtain the following relation

between a4 and a; and ogq (vide 1).
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K, {1-¢” K Y1-¢? *F + F.
I +=% =1, +| = 2~a,)-a,| ——2 m
a‘[ ok {l+e'ﬂ’}:| } [ k j{ne-/”; 2-a;)-e, I, —rl, (m)

Since, a3 is assumed, o is known,
Also the flow into the aquifer at the upstream end of the blanket (i.e. x = 0 in
fragment 11) is equal to the out flow from fragment |.

Hence,
K(T-b) B (Cz-Cq)=Kh (1-04)

Substituting C, and C;.

1—e#

{[1 —a,] [h, —hZ]— @, _hﬁf 2(1—o,) + (h, ~h, [l—ocz]e““}Bk(T—b)zk(l ~o)hl, (n)
: C1-¢?

aq evaluated from (m) and (n) should match.

5.4 RESULT AND DISCUSSION

Numerical resulis depicting variation of total seepage through
foundation soil before intercepted by filter is shown in Figs. 5.6 — 5.9. It could
be seen that total seepage decreases with increasing length of blanket. The
flow to the down stream side also decreases with increasing length of blanket.
As blanket length increases total seepage through blanket would increase.
The seepage through blanket is insignificant in comparison to the seepage

through upstream bed beyond the blanket.
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CHAPTER -6
CONCLUSIONS

6.1 GENERAL

Using potential theory, Kozeny (vide Har, 1962) has derived that the
minimum required width of a filter wyq which would control the saturated zone

in a homogenous earth dam resting on an impervious stratum is given by:

Wy =0.5 Vd*+h* - di2

in which, d is the horizontal distance of {az upstream gnd of the filter
from a vertical line through the intersection of upstream slope of

embankment, and reservoir water table, and b i3 the depth of water in the

reservoir.

In practice, the width of the filter is extended to the down stream side.
However because of economy and paucity of filter material, a filter of finite
width with cross draining pipes is recommended. In many situations an earth

dam is constructed under laying a porous mater..i of finite soil layer.

So far analytical solution for seepage thr.uyn an earth dam with finite
fiter and cross draining pipes is not availakie. Also rigorous solution of
seepage through earth dam with less pervious blanket is not there. In this

thesis, solutions have been given for these two problems.

6.2 CONCLUSIONS

Analytical solutions have been obtained for the problem of two
dimensional seepage flows below an earth Jam structure founded on
permeable soil of finite depth with the help of conformal mapping for the

following boundary conditions:
(i) An earth dam with a horizontal filter of finite width located at the base

of the dam with cross draining pipes,

(ii) An earth dam having a horizontal filter of finite. width with cross

draining pipes and a less porous upstream blanket
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The equations derived have been used for the computation of
potential distribution, quantity of seepage and distribution of exit gradient. It

is found that the head that develops in the filier depends on:

i} location of the filter
i) width of the filter
i) length ,area and filling material of the cross draining pipes.

iv) thickness and hydraulic conductivity of foundation soil.

The head that develops in the filter is unknown and it has been

quantified in this thesis.

The effect of various parameters on the potential, quantity of seepage

and exit gradient have been studied.

A filter increases the quantity of seepage. Since it collects part of the
seepage the exit gradient is reduced. The variation of exit gradient in the
downstream side, that has been presented in thesis, would help in deciding
the width of invested filter.

Bennett (1946) has provided an approximate solution to analyze
performance of upstream blanket in reducing seepage. In the thesis, a more
rigorous solution has been obtained using method of fragments and
conformal mapping. The upstream blanket is effective in reducing the

seepage quantities.

Future Scope of Study

While deriving the solution for seepage through foundation of an earth
dam, it was assumed that the hydraulic conductivity of the embankment
material is small in comparison to that of the foundation soil. Such
assumption has made it poésible to decompose the unconfined seepage
through the body of the earth dam from confined seepage through
foundation soil and apply conformal mapping. The composite flow problem
(flow through and below the earth dam) can only be solved using numerical
methods, such as finite element method, for various combinations of

parameters involved.
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6.3 - RECOMMENDATIONS

Intermediate filter of finite width can be provided below the hydraulic
structures to reduce the exit gradient and hence to reduces the harmful

effect of the seepage forces.

A horizontal blanket of impervious soil can be provided on the river
bed on the upstream side to reduce the quantity of seepage through the
pervious foundation under an earth dam.

The impervious blanket increases the length of the path of seepage
under the dam and thus reduces the velocity and quantity of seepage.
However, it is necessary to provide a relief well near the downstream toe of
the dam to collect water seeping through the foundation and to control the
exit gradient which other wise is infinite.
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APPENDIX -1

At each of the vertices, the integrand tends to «. Therefore all the
integral is an improper integral. For their evaluation the improper integrals to

~ proper integral are converted by splitting the limits of integration removing the

singularity by substitution.

-1 dt dt

- T e

o0

Setting:u =-t or du=-dt
we obtain
~du 0 —du

i ;[\/Kc+u)(d+u)(1+u)(f+uj+ f.‘\/”rc*““)(d’““)(H”XfJ"u)

Designating: Fi1 = 1_[ —du
o 2 Jule+ufd +vu)l+u)ff +u)

° —-du
Fi2= I
7 Jule + u)fd + ufl+ u)f +u)
Now, setting:u=1~  or du=-1n?dv
1 iZdV
Fia= _[ Y
e
v v Vv v v
- 1_[ Jvdv
5@+ cv)l+dv)l+ v)1+fv)
Substituting: v = é(x+l) and dv= %dx
1 1
—(x+1)2dx
. _ 1 2—\,/5 (X )2
1= = 1 -
‘1\/{1+ %(x + 1)}{1 + E(x + 1)H1 + —2—(x + 1)}{1 + E(x + 1)}
1
(x +1)2dx

A NP Fsy Ry o ey Ry
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and,

du

Fas J\/ﬁ(c+u)(d+u)(1+u)(f +1)

Setting: u=v*> and du = 2vdv

So that
E _1 2vdv
1.2 — J—
oyv2(c+v? d+v2X1+v2Xf+v?) :
! 2dv

6{\/(c+v2Xd+ v2X1+v2Xf+v2)

Substituting: v = %(xﬂ) and dv=%aix
So that
1
_ dx
fes e 1 1 1
“1\[{0+Z(x+1)2}{d+z(x+1)2}{1+Z(x+1)2}{f+z(x+1)2}
) .
F1_2 =16 I dx

—1\/{4c+(x+1)?}{4d+(x+1)2}{4+(x+1)2}{4f+(x+1)2}
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APPENDIX - 2

E, = j (-t )2 dt o (—_t)% dt
Je—tfd-t)i-tf—t) Jlc-t)d-tf1-tkf-t)
Putting:u=-t and du =-dt '
-) u;du (-) u;du

J‘\/(c+u)(7+uX1+u)(f+u) J‘\/(c+u)(d+u)(1+ﬁ)(f+u)

So

Setting

,[ )u;du |
2(c +u)(d+ u)1+u)f +u)

J- (-) %du

1 J(c+u)d +u)l + u)f +u)

Substituting : u = 1 or du= —dev

Foo=

<
<

dv

) 5[\/v (+cv) (+av)i+ Nl +v)

Putting v=u? and dv=2udu

2du

1
F =
3 (!\/ (1 + cu2) 6+ dule + fu2X1 + u2)

Putting : u=
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=16 IJ. dx —
—1\/{4+c(x+1)2}{4+d(x+1)2}{4+f(x+1ﬂ{4+(x+1)2}

1
u?du

) Umuxdwxua(f@
Substituting: u = %(xﬂ) and du = %dx
. 1! —2—\1/3(X+1)%dx
_1\/{C+%(x+1)}{d+—;—(x+1)}{1+%(x+1)}{f+-;—(x+1)}
(x+1)zdx

‘fIJ2c+(x+1)?{2d+(x+1)}{2f+(x+1)}{2+(x¥1)}
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APPENDIX -3

oj Jile—r)d - t)(l Xf -t _J‘ He—1)d - t)(l Nf -1)

Fs=F3s+F32

dt |
f o Jtle—td-t1-tXf-t)

Setting : t=u? and dt ‘= 2udu

We have Fi3q1=

¢
Flyy = J? 2udu
| 0 \/uQ(C~—u2Xd—u2X1—u2Xf—u2)
_ ‘ff 2du
0 \/(c—uZXd—uQX1—u2Xf—u2)
Substituting : u =% \E(xﬂ) and dus= —;—\/%‘dx
u’ = %c(x+l)2 = %Pl
Therefore

e 12"
_1[0_%])1:H:d—§}’:| {1—3}[#%3}

'64\EI.J80 T ][Sf P-7]

and
dt
Fa,=
> J Jt(c thd - tf1 - t)f - t)
Putting : c—t=u® and t=cu®; hence,.dt=-2udu
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o g\/;F(c —w?)la-fe-wfi-fo-u - -u?)

Substituting : u= = /= (x+1) and " du = 5
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APPENDIX - 4

¢ Jedt

R ey et o Gy
Putting: c-t = u? and‘ ' t=c-u®; hence, dt =-2udu
0
_ -~ (-Wc-u?2udu
So, F4= :
° ) \/Jé\/ug_d—(c—uQ)__l—(c—uQ)_{f—(c—uz)_
_ (j[ "~ 2Jc-u?du |
Jefld-le-u?Ji-le-v?Jlf - fc-u?
Substituting: u= = 1

= EJE(XH) and du= %Jg dx

c-u’= c——}‘:c(x+l)2 =%[4c—c(x+1)2]=%P3

1 %Ps Jedx

F4=__[' : 1 -
ffa-grfiim i ief
a \/{4d_P;}[{ZT_Pf§{4f—P3}

60



APPENDIX -5

die _
o= dt . ‘} dt
N o Gt T s Yy gy M A camry Y e gy gy
2
=Fs51+ Fs5 2
We have:
drc
fom ] dt
¢ Jt(t-c)(d-t) 1-tff-¢)
Putting: t-c =u? and t=c+u®; hence, dt=2udu
E .
2
Fyq= 2udu

N e ey g vy
. 2t |
I o | = o) | e
Substituting: u= é—\/?(xﬂ) and  du= L.|%7€ 4

2V 2

cu =c+%(d——c)(x+1)2 =%[8c+(d—c) (x+1)2]=%P4

Therefore,

1

d
Fsq = _[ 2
a1 1 1 1
—P, |d-=P, ||1-= - =
\/8 ‘*{ .8 4“ SP“Hf sp“}

_ d-c dx
) 645_{\54 [8d - P, ]8 - P, [8f - P,]

Fs o= f dt

d+c \/t (t-c)(d-t) L-t)f-1)
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Putting d+t =u® and t=d-u’; hencedt =-2udu
~2udu

F PR | o ey ey

Fs2=

& =)
I

. du
Jd-v?[d-u?)-c|[1-[d-u?)|[f - (d -u?)
Substituting u==1 -d—’ﬁ(xﬂ) and du= L [9=€ 4
| 2V 2 2V 2

d—112:d—-;—(d—c)(xﬂ)z:—;-[Sd—(d—c)(xﬂ)z]:%PS
e

Fs2 =
ERESIEDIE

=64 /d“clf dx
2 3P [Ps - 8c]8-P;]8f - P;]

Therefore,
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APPENDIX - 6

d+c

- 2{ Jtdt N df Jtdt
Tt QE-DA-0E-D e lt-0@- (I F-9

=Fe1 + Fs 2

Putting t-c =u® and t=c+u?, hence dt=2udu

F51-\/? 2 q+u2 udu _ _
© L T e T e T ]

JE 2Ve+u? du” |
\/[ c+u )J [l—(c+u2‘)J lf—(c+uﬂJ
Substltutlng u—% d2 (x+1) and duzé d;c

c+u? :c+é-(d—-c)(x+1)2 =%[8c+(d—c‘) (x+1)2]=éP6

. } (ps
\/[d‘épﬁ][l‘gpﬁ} 5%

— P6 dx
- +/3.0a- CJ JBT BT T 75

Therefore,

© dx

and
Jtdt
Fe 2= J
d_\/(1: c)(d-t) (1-t)f-t)
2
Setting
d—t =u? and t =d-u’: hence, dt =-2 udu

Fe , = (} (—pm udu
e ] oo ]

63




2 2Vd-u? du
e e =

u= L Jd=¢ (x+1) and du:l\/—ﬁdx
2V 2 B

2_ 1 —cHx 231 —d—-c)ix 221 |
d-u’ =c g(d )( +1) 8[8d (@ )(+1)] 8P7

Or, F62=

o

Therefore,
1 lp [d-¢ 4y
8 'V 2
F62=I 1 1 1
AR

—_ 1 \/E?—.dx
= 4J2/d-c _.[\/ﬁ:»7 ~8c][8 - P, [8f - P;]
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APPENDIX -7

Chdl
2

dt

=F7 +Frn
We obtain:
ﬂ
2
Fyq= J' dt
] J—eXe-a)i-0G -1
Putting: t-d =u? and t=d+u® ;hence, dt =2udu
So, ‘
l d
.2[ 2udu
7 J(d+u T +u?)-c]lu?]1- (d+u Nf=(a+u?)
—d
J} w
d \[d+u 1(d+u2)—cll—(d+u2)Jlf——(d+u2)J
Substituting,
(x+1 and du=+ 129
2 2

d+u’ —d+§ (1=d) (x+1)° :% 8 + (1-d) (x+1)?] =_‘8_p

8

Therefore,

1 =d

F71= I 2
War[an-e g llr-57)
*)L8°" 8 8
'= 64 ,f j
SJBIA - scIf B[8f-A]

and
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(,J, W (e = v

Putting: Tt =
So,

u? or t=1-u? and dt =-2udu

0

J, — 2udu

fJHu (i )= cf[T [l =0+

2 2du

5[ Jsa? fi+a2)-cf[T+2 ]| - (1+ 22

Substituting:  u = %Jl—:zi(xﬂ) and  du=+ 19k

Therefore,

SRR

N —7! dx
= 64 E_{\/Pé[g_gcﬂg—scﬂﬁf—%]
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APPENDIX - 8

F, = del Vi dr f Vi dr
i =c)e-afi-o)f -1) am/t(f cle—d)i-e)f ~1)
= Fg1 +Fs2
d2+1 | \/_dl

ol I e ey ey ey

. Putting t-d =u? and t=d-u? :; hence, dt =2udu

\Ff 2d o udu |
o ylld+u?)- cluleT—(dle)J [f‘@“‘zj}
‘2" 2@2 du

BRI e i iy o ey

Substituting:

u= =1 /ﬂ(xﬂ) and  du= L1294
2V 2 2V 2

d+u’ :d+% (1-d) (e+1) =% B+ (-a) (x+1)*]

Therefore,
| ‘1”P|o li
R o e
IJ[_ lo—cjl |:l—§ m}{f 8])10:|
! lde
= 4@(1“’5_[¢[30 5] [E;D—EO][Sf—Eo]
and

'J. Jedt
dil \/(t CX’ ( )( [)

Putting: 1-t = u? and or t=1-u?: : hence, dt=-2udu
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—2u1—udu

0
So, Feo= |

= li-w)-elfi—o)-all L - o)

241 —=udu

Therefore:

e

2

(0 —w)=a]ly (1)

- 13 f73) |

Feo= | 1 ] 1
n-e|[ba-a[r-1a]
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APPENDIX -9

d d

<

- Fet M[(,_c)(,—d)(,_l)(f_z)i

2 .

|

=Fg1 +Fg2

Putting: t-1=u® and t=1+u®; hence, dt=2udu

. %—_1 | 2udu
So, Fo1= (;[ \/[l+u2“(1+u2)—cj(1+u2)—duuzlf—(H“z)]
i Ij_z__] 2du

; \/[1 +u2“1(l +u2)—cl(1 +u2)—a’j_f—(l +u2)J

Substituting:  u= -;:_,}f—;l'(xﬂ) and du=% =g

1+u2=1+%(f—1) (x+1)° =%[8+( -1) (X+1)2] =%P@

Therefore
| f—ldx
Foq = .[ 1 1 - 1 1
\/|:§‘P12 :l [gplz _C:l l:gplz —d:H:f‘gPlz]
-1 dx
= 64
2 —JI.\/ P]Z[PIZ _SC] [plz ~8d] [8f—PlZ]
and '
s
Fo2= J- o

l%i\/t(t—c)(tfd)(t~1)(f—t)

2 and t=f-u?; hence, dt=-2udu

Putting: f—t =u
So,

0 —2ud
Fo2= | uau
f_

Tl\/(f“uz)ﬁ—f)—ﬂ( —uz)—d__( —uz)—l__uz_
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Or

foil = g (= Do41f =27~ =1 ] =2

Therefore :

| f,f_';ldx
2
(gpm/ 8p13 81713 81713

_ f-1 dx
o4 2 \[(pIB)[pIB - SC][pIB - 8d][p13 _8]
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APPENDIX -10

F 10 =

I 5 I
0 ) ) e M () e

= F10.1+ Fio2

Putting: -1 =u® and t=1+u?;hence, dt= 2udu
So,

=

E 101 = ? ‘ m2duu
0 \/Kl+u) cl(l+u ) dlu lf (1+u J

S

2\/1_-I—7du
(l+u) c_(1+u) ajf - (1+u2)

Substituting: u=l,/f—j—1(x+1 and du—lJ
2V 2 2

l+u? =14= (f Yx+1) = 8(8+(f—1)(x+l)2)=ép]4

1l
. o'—;Nl

Therefore
1 (-1
1 — Py ———dx
F10.1= | 8V 2
8 Pia g P 8p|4
= 42 _1l V Dradx
(ERly ey ) ey
s
F102= | i di

A= eNe=aXe— 17 -1

Putting: f-t =u’? and t=f-u®; hence, dt=-2udu

So,
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0 ()\//' u? 2udu

F10.2= j o

=N (o e =

q 2 4 f—ut du’
o 5 e e e

Substituting:  u= 5 T(XH)E\)TX and  du= > _f?_ dx

fou? = f~-:§(f~1)(x+1)2 :%(Sf (r IXX“L 1)’ )—gpls

Therefore,

1 /-1
1 , '8"P15 2—dx

F 10.2= .jx\/[%p,s ‘CE P —dﬁp'j —1}

- 4\/—\/—-”&) \En—dx

8c plS ][PIS _8]
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APPENDIX - 11

o0

_ J dt
PN (R ) (e ()

[4

Putting: t-f= u> and t==f+u’;hence, dt=2udu

’ =°-°[ 2udu
0 \/{f+u2}{f+u2 —c}‘{f+u2 —a’}{fwhu2 —1}{142}

0.

du

=2
o\/{f+uz}{f+u2 —c}{f+u2 —a?}{f+u2 —1} '

.

g du 0
J
X PR PR R e B

7 PR PR P

= 2[l41 + I42]

Where;:

. du
| =
" JJ{fmz}{fm_c}{fwz_d}{fﬂ,z_l}

du
W ewfrewt =y« ut - affr +u” 1}

e =

pp S—-

Substituting: u= lx+l=~l(x+1) and  du= ~dx
2 2 2 2

= £ (e lf = (ar + G+ 1)7)=

So,
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dx

- \/Pm (Pw - 4CXJ)IG - 49)(})”)‘ - 45

and
ly2 = °]- Z'du
i \/(f+u2Xf—c+u Xf—d+u2Xf~1+u2>
Putting: u=l and du:—-lz—dv
v v
0 . ——%dv
‘112 :J -
R e e
v Y V- v
=°_] ' vidu
A (- e 1N - a1 - +1)
S B O P
Substituting :v=—x+—-=—(x—-1) and du = —dx
2 2 2 2
,vzzé(x—l)z =?}p
1 1-
]12 :i'- . Zp_z_dx - |
N ) R rTan) [t ras) (Fatvas)
4 4 4 4

=9 lj- p.dx
N+ =c)p+a)(f - d)p + 4N/ -1)p +4)
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APPENDIX - 12

L = ‘] Jidt
’ P ) (Y (=)

Putting:t-f =u® and t=f+u®; hence, dt = 2udu

So, .
= “ Jf +u? 2udu +°] 0/ f+uldu
=
0 \/(f+u2 —ch+u2 ——a'Xf+u2 —lXuz) 0 \/(f+u2 —chJruz —de+u2 —1)
5 ] | [ +il.du +°} f+u’du
S+ —clf+id -df+id-1) W+ =c| f+ -d) £+ -1)
= 2(la1+ 122 ]
Where:
byt < lJ- N Sf+utdu

sJ(f+u? —c\f +u? —d)f +u? -1)

lj [ +u’.du
oJ(f+u2 —ch+u2 —de+u"‘ -—1)

loz =

Substituting: u = lx+l=l(x+l) or duzldx
2 2 2 2

u’ =%(x+ 1)2 or u’ = %P

. ]J @ %dx
O (e e

5 l'[ \m dx
IJ(E )+ p)(a(f - )+ pXa(f ~1)+p)
Putting: u= % or du =—v1—2dv
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And

()JFZ%j%cw
1\/(}r C)+_ d)+—v1 ]((.f—1)+ Vly‘)

! Idv

J\/(f cv +1if dv +1Xf lv +1)

substituting : v = lx+l=l(x+1) or dv=iagx
2 2 2 2

2

y? =l(x+1)2 or v? = lP
4 4
Therefore

S 1
J—- +1 —dx
_1 4p 5

'”_IJ@f OLpetf(r-a)l poa(r-nlpa)

J+4 dx

LKG clp+4)(f ~d)p+4X(f-1)p+4)
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INPUT DATA

125. 135.
3.14 0.1
160. 1.0
OUTPUT:

BASE WIDTH OF THE DAM = 200.
THICKNESS OF THE POROUS FOUNDATION = 100
DISTANCE OF THE DRAIN FROM UPSTREAM= 125
DRAIN WIDTH = 10.
K of filter/ K of foundation soil = 10.

b/T
1i/T
w/T
£
c
d = S.

i
o =

1.FROM
Fl =
F2 =

2.FROM
F3 =

3.FROM
F5 =
6

4 . FROM
F7 =
Fg8 =

5.FROM
F9 =
Fl0 =

6. FROM
Il =
I2 =

THE FIRST C
RESULT AFTE
9.957678
-7.599691
9.4418821
9.448821

APPENDIX - 13

200. 100. 12.

0.01 10.
0.001

PROGRAM FOR COMPUTATION OF
PERFORMANCE OF FILTER IN EARTH DAMS

2.00
1.25
0.1000

.00749°8
.311342E-01

51135%E-01

PCINT A TO B
1.639
1.593

POINT B TO C
43.68323
37.01600

POINT € TO D
52.47112
49.42336

POINT D TO E
98.47589
96.27065

POINT E TO F
50.83193
51.01646

POINT F TO A
54.79265
59.25465

YCLE STARTS
R THE FIRST CYCLE

E-01 9.954484E~01
E-06  -3.193971E-04
E-01 _

E-01 4.307031E-01

2.200006E-01

00

.00
.00

00
00

9.475494E~-02



THE SECOND CYCLE STARTS
RESULT AFTER THE SECOND CYCLE

9.954816E-01 9.954601E~01 2.220006E-~-01 9.561554E-02

4.912050E-0¢6 -2.150498E-05

9.448825E-01

9.448825E-01 4.306995E~01
THE THIRD CYCLE STARTS
RESULT AFTER THIRD CYCLE

9.954674E-01 9.954607E-01 2.221006E-01 9.565903E-02

~1.414587E-06 -6.676010E-06

9.448823E-01

9.448823E-01 4.307015E-01
LENGTH OF BLANKET 160.000000
THICKNESS OF BLANKET 1.000000
CONDUCTIVITY OF THE BLANKET 1.000000E-03
CONDUCTIVITY OF THE FOUNDATION SOIL 1.000000E-02
BK/AK 1.000000E-01 '
FLOW THROUGH BLANKET Qb/kh 7.728115E-02
Q3BYKH 1.599751E-02
OBBYKH 7.728115E-02
Q1BYKH 9.326667E-02
Q2BYKH 8.864567E-02
BLBYT 1.600000
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ok e ok ke ek ke ko ke ko ke ok ok ke ok ok ok e ok ko ok ok ok ok ok ok ke ok ok Rk R ok ok ok ok ok ok ok kK ko K Rk ok Rk kR
PROGRAMME FOR PERFORMANCE ANALYSIS OF FILTER IN EARTH DAMS

hhhkhkhkdkhkhkkhkdhkhkhkhhkhxkhkddhkdhhdbhhhbhhhhbhbhkhkdhhkhkdhkdhhbhhhbkhkhdhbdhhbdhbdhhdhhbhdhkhkkhhik

DIMENSION W(96),XX(96)
CHARACTER*12 input, output

WRITE (*,*) ' Please enter name of input file'
READ(*,100) input , ‘
WRITE (*,*) ' Please enter name of output file'

READ(*,100) output

OPEN (1, status='old',K FILE=input)

OPEN (3, status='old',FILE='HUNGNEW.DAT')

OPEN (2, status='unknown', FILE=output)

OPEN (1, status='old',FILE='AHUNGFN.DAT')

OPEN (3, status='old',K FILE='GAUSS.DAT')

OPEN (2, status="unknown', FILE='AFN.QUT')

READ (3,*) (W(I),I=1,96)

READ (3,*) (XX(I),I=1,96)
90 FORMAT (15X, 'PROGRAM FOR COMPUTATION OF')
91 FORMAT (10X, " PERFORMANCE OF FILTER IN EARTH DAMS')
1 FORMAT ('Wl=',6F7.3,5x, 'W36=",F7.3,5x, 'XX1=",F7.3,5x, 'XX96=",F7.3)

2 FORMAT(' C=',F7.3,5%,"' =',F7.3,5%,' F=',F7.3)
3 FORMAT (5X'1.FROM POINT A TO B'})

4 FORMAT(7X'Fl =',F7.3)

5 FORMAT(7X'F2 =',F7.3)

6 FORMAT (5X'2.FROM POINT B TO C') N

7 FORMAT (7X'F3 =',F15.5)

8 FORMAT (7X'F4 =',F15.5)

9 FORMAT (5X'3.FROM POINT C TO D')

10 FORMAT (7X'F5 =',F15.5)

11 FORMAT(7X'F6 =',F15.5)
12 FORMAT (5X'4.FROM POINT D TO E")
13 FORMAT (7X'F7 =',F15.5)

14 FORMAT (7X'F8 =',F15.3)
15 FORMAT (5X'5.FROM POINT E TO F')
16 FORMAT (7X'F9 =',F15.5)

17 FORMAT ({7X'F10 =',F15.5)

18 FORMAT (5X'6.FROM POINT F TO A')
19 FORMAT (7X'I1 =',F15.5)

20 FORMAT (7X'I2 =',F15.5)

100 FORMAT (a)

WRITE (2, 90)
WRITE (2, 91)
WRITE (2, *)
WRITE (2, *)'Wl =',W(l), ' W96 =',W({96)
WRITE (2, *) 'XX1=",XX(1)," AKX96=",7%4A(96)

READ (1, *)ALL,ALZ, AL, T, BT, 12
READ (1, *)DAREA, DK,AK, DSPAC
READ(1, *)BL, THICKB, BK
DWIDTH=AL2-AL1

DLENGTH=AL-ALZ

AKRATIO=DK/AK

WRITE(2,*) 'BASE WIDTH OF THE DAM='
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WRITE (2, 600)AL
WRITE(2,*) 'THICKNESS OF THE PORQOUS FOUNDATION='
WRITE(2,600)T
WRITE(2,*) 'DISTANCE OF THE DRAIN FROM UPSTREAM='
WRITE (2, 600)AL1 ‘
WRITE (2, *) '"DRAIN WIDTH="'
WRITE (2, 600) DWIDTH
WRITE(2,*) 'K of filter/ K of foundation scil="
WRITE (2, 600)akratio.
BBYT=AL/T
AL1BYT=AL1l/T
DWBYT=DWIDTH/T-
WRITE (2, *) 'b/T="
WRITE (2, 600)BBYT
WRITE(2,*)'11/T="
WRITE (2, 600)AL1BYT
600 FORMAT (F10.2)
WRITE(2,*) 'w/T='
WRITE (2,21) DWBYT

21 FORMAT (F10.4)
DALPHA=0.05
H=H1-H2
C
C COMPUTATION FOR C, D, F
C

PAI=3.14159265
TERM=EXP (~PAI*AL/T)
F=((1.+TERM)/ (1.-TERM))**2
V1=EXP (-PAI*AL1/T)
V2=EXP (-PAI*AL2/T)
C=F*((1.-V1)/(1.+V1))**2

T D=F*((1.-V2)/(1.+V2))**2
WRITE(2,*)' f=',F

WRITE(2,*)' c=',C ,° d=',D
CONM=-T/PAI
C COMPUTATION OF F1=F11+F12
C COMPUTATION OF F11
F11=0.
DO I=1,96
X=XX(I)

CALL CF11(C,D,F,X,FX11)
F11=F11+W(I)*FX11

END DO

F11=SQRT (2.)*F11

C COMPUTATION OF F12
F12=0.
DO I=1,96
X=XX(I)
CALL CF12(C,D,F, X%, FX12)
F12=F124W(I)*FX12 .
END DO
F12=16*F12
F1=F11+F12
WRITE (2, *)
WRITE (2, 3)
WRITE(2,4)F1

C . COMPUTATION OF F2,F3,F4,F5,F6,F7,F8,F9,F10
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F21=0.
F22=0.
F31=0.
F32=0.
F4 =0.
F51=0.
F52=0.
F61=0.
F62=0.
F71=0.
F72=0.
F81=0.
F82=0.
F91=0.
F92=0.
F101=0.
' F102=0.
FI11=0.
FI12=0.
FI21=0.
FI122=0.

DO I=1,96
X=XX(I)

CALL CF21(C,D,F,X, FX21)
F21=F21+W(I) *FX21

CALL CF22(C,D,F,X,FX22)
F22=F22+W(I)*FX22

CALL CF31(C,Db,F,X,FX31)
F31=F31+W(I)*FX31

CALL CF32(C,D,F,X,FX32)
F32=F32+W(I)*FX32

CALL CF4(C,D,F,X, FX4)
FA=F4+W(I) *FX4

CALL CFKF51(C,D,F,X,FX51)
F51=F51+W(I)*FX51

CALL CF52(C,D, F,X, FX52)
F52=F52+W(I)*FX52

CALL CF61(C,D,F,X,FX61)
F61=F61+W(I)*FX61

CALL CF62(C,D,F,X,FX62)
F62=F62+W(I) *FX62

CALL CF71(C,D,F,%,FX71)
F71=F71+W(I)*F%71

CALL CF72(C,D,F,X,FX72)
F72=F72+W(I)*FX72

CALL CFr81(C,D,F,X,FX81)
F81=F81+W(I)*FX81
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CALL CF82(C,D,F, X, FX82)
F82=F82+W(I)*FX82

CALL CF91(C,D,F,X, FX91)
FO91=FOI1+W(I)*FX91

CALL CF¥FO92(C,D,F,X,FX92)
F92=F92+W (I) *FX32

CALL CF101(C,D,F,X,FX101)
F101=F101+W(I)*FX101

CALL CF102(C,D,F,X,FX102)
F102=F102+W(I)*FX102

CALL CFI11(C,D,¥F,X,FIX11)
FI11=FI11+W(I)*¥FIX11

CALL CFI12(C,D,F,X,FIX12)
FI12=FI12+W(I)*FIX12

CALL CFIZ21(C,D,F,X,FIX21)
FI21=FI21+W(I)*FIX21

CALL CFI22(C,D,F,X,FIXK22)
FI22=FI22+W(I)*FIX22

END DO

F21=16*F21
F22=SQRT (2.) *F22
F2=F21+F22

F31=64*SQRT (C/2.)*F31
F32=64*SQRT (C/2.) *F32
F3=F31+F32

F4=4*SQRT (C) *F4

F51=64*SQRT ( (D-C) /2.) *F51
F52=64*SQRT ((D~C) /2.)*F52
F5=F51+F52

F61=4*SQRT (2.*(D-C)) *F6l
F62=4.*SQRT (2.* (D-C) ) *F62
F6=F61+F62

F71=64*SQRT((1-D)/2.)*F71
F72=64*SQRT ((1-D)/2.)*F72
F7=F71+F72

*F81
) *F82

F81=4*SQRT (2.* (1-D)
F82=4.*SQRT (2.*(1-D
F8=F81+F82

~—

F91=64*SQORT ( (F-1)/2.)*F91
F82=64*SQRT ((F-1)/2.)*F92
FO9=F91+F92

F101=4*SQRT (2. *(F-1)) *F101
F102=4.*SQRT (2.* (F-1))*F102
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22

23

F10=F101+F102

FI11=8+*FI1l
FI12=2*FI12
FI1=2* (FI11+FI12)

FI21=2*FI21
FI22=2*FI22
FI2=2* (FI21+F1I22)
WRITE (2,5)F2
WRITE (2, *)

WRITE (2, 6)
WRITE(2,7)F3
WRITE(2,8)F4
WRITE (2, *)
WRITE (2, 9)
WRITE (2, 10)F5
WRITE (2, 11)F6
WRITE (2, *)
WRITE (2, 12)
WRITE (2, 13)F7
WRITE(2,14)F8
WRITE (2, *)
WRITE(2,15)
WRITE (2,16)F9 -
WRITE(2,17)F10

WRITE (2, *)
WRITE (2,18)
WRITE(2,19)FI1
WRITE(2,20)FIZ2

AKS=0.5* (1.+COS (PAI*THICKB/T})
CALL CEF(W,XX,AKS,CEF1)

TERM1=CEF1

AKS=0.5* (1.-COS(PAI*THICKB/T) )
CALL CEF (W, XX,AKS,CEF1)

FI3=TERM1/CEF1

BETA=SQRT (BK/ (THICKB*AK* (T-THICKB) ) )
AF3=1-2./(1.-EXP({-2.*BETA*BL) ) -FI3/ (BETA* (T-THICKB))
AF4=2.*EXP(-BETA*BL)/ (1.-EXP(-2.*BETA*BL))

WRITE (2, *) 'THE FIRST CYCLE STARTS'
ALPHA2=0.9
CONTINUE

ALPHAD=0.01
DALPHAD=0.05
INDEX=1.-
CONTINUE

f £1=ALPHAD/ALPHAZ
R=(EEI*FI2~-F8) /{EEL1*FI1-F7)
CM2BYKH=ALPHA2/ (FI2~R*FI1)
Q1BYKH=CMZ2BYKH* (R*F1+F2)
Q2BYKH=CMZ2BYKH* (F10~R*F9)
ALPHADN= (Q1BYKH-Q2BYKH) * (AK/DK) * (DLENGTH*DSPAC) /DAREA

RESIDUE1=ALPHADN-ALPHAD
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26

32

33

25

122

index=index+1

if (index.gt.200) go to 999
IF(ABS(RESIDUEL).LT.0.00001) GO TO 25
ALPHAD=ALPHAD+DALPHA

IF (RESIDUE1.GT.0.0) GO TO 23

ALPHADR=ALPHAD-DALPHA
ALPHADL=ALPHADR-DALPHA

ALPHAD= (ALPHADR+ALPHADL} *0.5

f£1=ALPHAD/ALPHAZ2
R=(££1*FI2-F8)/ (££f1*FI1-F7)
CM2BYKH=ALPHA2/ (FI2-R*FI1)
Q1BYKH=CM2BYKH* (R*F1+F2)
Q2BYKH=CM2BYKH* (F10-R*FS)

ALPHADN= (Q1BYKH-Q2BYKH) * (AK/DK) * (DLENGTH*DSPAC) /DAREA

RESIDUE1=ALPHADN-ALPHAD
IF(ABS(RESIDUELl)-.LT.0.00001) GO TO 25
index=index+1

if (index.gt.200) go to 999

IF (RESIDUE1.GT.0.0) GO TO 32
IF(RESIDUEl.LT.0,0) GO TO 33
ALPHADL=ALPHAD

GO TO 26

ALPHADR=ALPHAD
GO TO 26

CONTINUE

RIGHT=ALPHA2/ (FI2-R*FIl) * (R*F1+F2)

TERM1= (BK/RK) * (1.-EXP (-BETA*BL) ) / (1.+EXP (-BETA*BL) )
ALPHAl1=(FI3+TERM1* (2.~ALPHA2)~RIGHT)/(FI3+TERM1)

ALPHA12= (AF3+AF4~-AF4*ALPHA2) /AF3
RESIDUEZ=ALPHAl12~ALPHAll

ALPHA2=ALPHA2-0.01
IF{RESIDUEZ2.GT.0.0) GO TO 22
ALPHA2=ALPHA2+0.01

WRITE (2, *) '"RESULT AFTER THE FIRST CYCLE'
WRITE (2, *)ALPHA11l, ALPHA12, ALPHA2, ALPHAD
WRITE (2, *) RESIDUEL, RESIDUE2

WRITE (2, *)R

ff1=ALPHAD/ALPHA2
R=(ff1*FI2-F8)/(ff1*FI1-F7)
WRITE (2, *)R, FF1

WRITE(2,*) 'THE SECOND CYCLE STARTS'
ALPHA2=ALPHA2+0.01

CONTINUE

ALPHAD=0.0i

DALPHAD=0.05
INDEX=1
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123

126

132

133

125

CONTINUE

ff1=ALPHAD/ALPHA2
R=(ff1*FI2~-F8)/(ff1*FI1-F7)
CM2BYKH=ALPHA2/ (FI2-R*FI1)
Q1BYKH=CM2BYKH* (R*F1+F2)
Q2BYKH=CM2BYKH* (F10-R*F9)

ALPHADN=(QlBYKH—QZBYKH)*(AK/DK)*(DLENGTH*DSPAC)/DAREA
RESIDUE1=ALPHADN-ALPHAD

index=index+1

if (index.gt.200) go to 999

IF(ABS (RESIDUEL1l).LT.0.00001) GO TO 125
ALPHAD=ALPHAD+DALPHA

IF(RESIDUE1.GT.0.0) GO TO 123

ALPHADR=ALPHAD-DALPHA
ALPHADL=ALPHADR-DALPHA

ALPHAD= (ALPHADR+ALPHADL) *0.5

£ff1=ALPHAD/ALPHAZ2

R=(f£f1*FI12-F8)/(ff1*FI1-F7)

CM2BYKH=ALPHA2/ (FI2-R*FI1)

Q1BYKH=CM2BYKH* (R*F1+F2)

Q2BYKH=CM2BYKH* (F10-R*F9)

ALPHADN= (Q1BYKH-Q2BYKH) * (AK/DK) * (DLENGTH*DSPAC) /DAREA

RESIDUE1=ALPHADN-ALPHAD :
IF(ABS(RESIDUE1l) .LT.0.00001) GO TO 125
index=index+1

if(index.gt.200) go to 9989
IF(RESIDUE1.GT.0.0) GO TO 132
IF(RESIDUE1.LT.0.0) GO TO 133
ALPHADL=ALPHAD

GO TO 126

ALPHADR=ALPHAD
GO TO 126

CONTINUE

RIGHT=ALPHAZ/ (FI2~R*FI1)* (R*F1+F2)

TERM1=(BK/AK) *(1.-EXP(-BETA*BL) )/ (1.+EXP(~-BETA*BL))
ALPHAll=(FI3+TERM1* (2.-ALPHA2)-RIGHT)/ (FI3+TERM1)
ALPHA12=(AF3+AF4-AF4*ALPHA2) /AF3

RESIDUEZ=ALPHA12-ALPHA1l1l

ALPHA2=ALPHA2-0.001
IF (RESIDUE2.GT.0.0) GO TO 122

ALPHAZ=ALPHA2+0.001

WRITE (2, *) '"RESULT AFTER THE SECOND CYCLE'
WRITE (2, *) ALPHAll, ALPHAL12, ALPHA2, ALPHAD
WRITE (2, *) RESIDUEl, RESIDUE2

WRITE(2,*)R

f£1=ALPHAD/ALPHA2
R=(££1*FI2~F8) / (££1*FI1-F7)
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1122

1123

1126

1132

1133

1125

WRITE (2, *)R, FF1
WRITE(2,*)'THE THIRD CYCLE STARTS'

ALPHA2=ALPHA2+0.001

CONTINUE

'ALPHAD=0.01

DALPHAD=0.05
INDEX=1

CONTINUE

f£1=ALPHAD/ALPHA2
R=(f£f1*FI2-F8)/ (ff1*FI1-F7)
CM2BYKH=ALPHA2/ (FI2-R*FI1)
QlBYKH=CMZ2BYKH* (R*F1+F2)
02BYKH=CM2BYKH* (F10-R*F9)

ALPHADN=(Q18YKH—QZBYKH)*(AK/DK)*(DLENGTH*DSPAC)/DAREA

RESIDUE1=ALPHADN-ALPHAD

index=index+1

if (index.gt.200) go to 999
IF(ABS(RESIDUE1l).LT.0.00001) GO TO 1125
ALPHAD=ALPHAD+DALPHA
IF(RESIDUE1.GT.0.0) GO TO 1123

ALPHADR=ALPHAD-DALPHA
ALPHADL=ALPHADR-DALPHA

ALPHAD=(ALPHADR+ALPHADL) *0.5

£f1=ALPHAD/ALPHA2

R=(ff1*FI2~F8) / (££1*FI1-F7)

CM2BYKH=ALPHA2/ (FI2-R*FI1)

Q1BYKH=CMZBYKH* (R*F1+F2)

Q2BYKH=CM2BYKH* (F10~R*F9)
ALPHADN=(Q1BYKH-QZBYKH) * (AK/DK) * (DLENGTH*DSPAC) /DAREA

RESIDUE1=ALPHADN-ALPHAD
IF(ABS(RESIDUEL1) .LT.0.00001) GO TO 1125
index=index+1

if(index.gt.200) go to 999
IF(RESIDUE1.GT.0.0) GO TO 1132
IF(RESIDUE1.LT.0.0) GO TO 1133
ALPHADL=ALPHAD

GO TO 1126

ALPHADR=ALPHAD

GO TO 1126

CONTINUE

RIGHT=ALPHAZ/ (FIZ2-R*FIL1)* (R*T1+F2)
TERM1=(BK/AK) * (1.-EXP (-BETA*BL) )/ (1.+EXP(-BETA*BL) )
ALPHAll=(FI3+TERM1l* (2.-ALPHA2)-RIGHT)/ (FI3+TERM1)
ALPHA12=(AF3+AF4-AF4*ALPHAZ2) /AF3
RESIDUE2=RALPHA12-ALPHAll

ALPHA2=ALPHA2-0.0001
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999

1000

IF(RESIDUE2.GT.0.0) GO TO 1122

ALPHA2=ALPKA2+0.0001

WRITE (2, *) '"RESULT AFTER THIRD CYCLE'
WRITE (2, *) ALPHA11l,ALPHA12, ALPHA2, ALPHAD
WRITE (2, *) RESIDUEL, RESIDUE2

WRITE (2, *)R _

f£1=ALPHAD/ALPHA2
R=(ff1*FI2-F8)/(ff1*FI1-F7)
WRITE(2, *)R, FF1

ALPHAl= (ALPHA11+ALPHA12) *0.5

WRITE (2, *) 'LENGTH OF BLANKET',BL .

WRITE (2, *) 'THICKNESS OF BLANKET', THICKB

WRITE (2, *) 'CONDUCTIVITY OF THE BLANKET', BK
WRITE(2,*) 'CONDUCTIVITY OF THE FOUNDATION SOIL',AK
RATIO=BK/AK .

WRITE (2, *) 'BK/AK', RATIO

QBBYKH=BK/AK* ( {1.-EXP(-BETA*BL)) /( (l1.+EXP(-BETA*BL))))*
1  (2.-ALPHA1-ALPHA2)

WRITE (2, *) 'FLOW THROUGH BLANKET Qb/kh', OBBYKH
Q1BYKH=CM2BYKH* (R*F1+F2)

Q2BYKH=CM2BYKH* (F10-R*F9)

Q3BYKH=(1.-ALPHAl) *FI3

WRITE (2, *) "Q3BYKH', Q3BYKH

WRITE (2, *)'QBBYKH', OBBYKH

WRITE (2, *) "Q1lBYKH', QlBYKH

WRITE (2, *) 'Q2BYKH', Q2BYKH

BLBYT=BL/T

WRITE(2,*) 'BLBYT', BLBYT

GO TO 1000

CONTINUE
WRITE(2, *) "ITERATION FAILED'
CONTINUE

STOP

END

SUBROUTINE CF11(C,D,F,X, FX11)

U=1.+X

TERM=SQRT { (2+U*C) * {24+U*D) * (2+U*F) * (2+0))
FX11=(U**0.5) /TERM

RETURN

END

SUBROUTINE CF12(C,D,F,X,FX12)

U=1.+X

TERM=SQRT ( (4*C+U**2) * (4*D+U**2) * (4*F+U**2) * (4+U**2))
FX12=1/TERM

RETURN

END

SUBROUTINE CF21(C,D,F,¥,FX21)

U=(1.+X)**2

TERM=SQRT ((4.4C*U)* (4.+D*U) * (4 . +F*U) * (4.+U))
FX21=1/TERM

RETURN

END

SUBROUTINE CF22(C, D, F, X, FX22)
U=1.+X
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TERM=SQRT{ (2*C+U)* (2*D+U) * (2*F+U) * (2+U) )
FX22=(U**0.5) /TERM

RETURN

END

SUBROUTINE CF31(C,D,F,X,FX31)

=(1.4X)**2

P1=C*U

TERM=SQRT ( (8 . *C=P1) * (8. *D=PLl)* (8.~P1)* (8.*F-P1) )
FX31=1/TERM

RETURN

END

SUBROUTINE CF32(C,D,F,X,FX32)

U=1.+X

P2=8.*C-C*U**2

TERM=SQRT (P2* (8*D-P2) * (8-P2) * (8*F-P2))
FX32=1/TERM

RETURN

END

SUBROUTINE CF4(C,D,F, X, FX4)
U=1.+X

P3=4*C-C*U**2 :
TERM=(4*D-P3) * (4~P3) *(4*F-P3)
FX4=SQRT (P3/TERM)

RETURN

END

SUBROUTINE CF51(C,D,F,X,FX51)
U=X+1. ' -
P4=(8*C+ (D-C) *U**2)

TERM=SQRT (P4* (8*D~P4) * (8~P4) * (8*F~P4) )
FX51=1/TERM '

RETURN

END

SUBROUTINE CF52(C,D,F,X,FX52)

U=1.+X

P5=(8*D~ (D-C) *U**2)

TERM=SQRT (P5* (P5-8*C) * (8*F~-P5) * (8§-P5) )
FX52=1/TERM

RETURN

END

. SUBROUTINE CF61(C,D,F,X,FX61)
U=X+1. ,
P6=(8*C+ (D-C) *U*+2)

TERM= (8*D-P6) * (8*F-P6) * (8~P6)
FX61=SQRT (P6/TERM) _
RETURN

END

SUBROUTINE CF62(C,D,F,X,FX62)
U=1.+X

P7=(8*D- (D-C) *U**2)
TERM=SQRT ( (P7-8*C) * (8*F-P7)* (8-P7))
FX62=SQRT (P7) /TERM

RETURN

END
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SUBROUTINE CF71(C,D,F,X,FX71)

U=X+1.

P8=(8*D+ (1-D) *U**2) _

TERM=SQRT (P8* (P8-8*C) * (8-P8) * (8*F-P8) )
FX71=1/TERM

RETURN

END

SUBRQUTINE CF72(C,D,F,X, FX72)

U=1.+X

P9=(8-(1-D) *U**2]

TERM=SQRT (P9* (P9-8*C) * (P9-8*D) * (8*F-P9) )
FX72=1/TERM

RETURN

END

SUBROUTINE CF81(C,D,F,X, FX81)

U=X+1.

P10=(8*D+ (1=D) *U**2)

TERM=SQRT ( (P10-8*C) * (8-P10) * (8*F-PL0Q) )
FX81=SQRT (P10) /TERM

RETURN

END

SUBROUTINE CF82(C,D,F,X,FX82)
U=1.4X

P11=(8-(1-D) *U**2)
TERM=(P11-8*C) * (P11-8*D) * (8*F-P11)
FX82=SQRT (P11/TERM)

RETURN :

END

SUBROUTINE CF91(C,D,F, X, FX91)
U=X+1. :

P12=(8+ (F-1)*U**2)

TERM=SQRT (P12* (P12-8*C)* (P12-8*D) * (8*F-P12) )
FX81=1/TERM

RETURN

END

SUBROQUTINE CF92(C,D, F,X,FX92)

U=1.+X

Pl3=(8*F-(F-1)*U**2)

TERM=SQRT (P13* (P13-8*C) * (P13-8*D) * (P13-8) )
FX92=1/TERM

RETURN

END

SUBROUTINE CF101{C,D,F,¥,FX101)
U=X+1.

P14=(8+(F-1)*U**2)

TERM= (P14-8*C) * (P14-8*D)* (8*F-P14)
FX101=SQRT (P14 /TERM)

RETURN

END

SUBROUTINE CFl102(C,D,F,X,FX102}

U=1.+X
P15=(8*F- (F-1) *U**2)
TERM=-SQRT ((P1L-82C) * (P1H=84D) * (P1H=8) )
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10

10

EX102=SQRT (P15) /TERM
RETURN
END

SUBROUTINE CFI11(C,D,F,X,FIX11)
U=(X+1.)**2

P16=(4*F+0U)

TERM=SQRT (P16* (P16-4*C)* (P16-4*D)* (P16-4))
FIX11=1/TERM

RETURN

END

SUBROUTINE CFI12(C,D,F,X,FIX12)
P=(X+1.)**2.

TERM=SQRT ( (F*P+4)* ((F-C)*P+4) * ((F-D) *P+4)* ((F-1)*P+4})

FIX12=P/TERM
RETURN
END

SUBROUTINE CFI21(C,D,F,X,FIX21)

P=(X+1.)**2.

TERM=SQRT ( (4* (F-C)+P) * (4* (F-D)+P) * (4* (F-1)+P))
FIX21=SQRT (4*F+P) /TERM

RETURN

END

SUBROUTINE CFI22(C,D,F,X,FIX22)

P=(X+1.)**2,

TERM=SQRT ( ( (F-C) *P+4) * ( (F-D) *P+4) * ((F-1) *P+4))
FIX22=SQRT (F*P+4) /TERM

RETURN

END

SUBROUTINE CEF (W, XX,AKS,CEF1)
DIMENSION W(96), XX(96)
PAI=3.141592654
SUM=0.0
DO 10 I=1,96
THETA=PAI/4.* (1.+XX(I))
TERM=0.25*PAI/SQORT (1.~AKS*SIN (THETA) **2)
SUM=SUM+TERM*W (T}

CONTINUE
CEF1=5UM
RETURN
END

SUBROUTINE CIEF (W, XX,AKS, PHAI,CIEF1)
DIMENSION W(96), XX(96)
PAI=3.141592654
SUM=0.0
DO 10 I=1, 96
THETA=PHAI/2.* (L. +XX (1))
TERM=0.5*PHAI/SQRT (1.-AKS*SIN (THETA) **2)
SUM=SUM+TERM*W (I)

CONTINUE

CIEF1=SUM

RETURN
END
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leReoReRleReReReRleReRoNoRoNoNololoNoNolleNoloNoRolloje oo oo o)

-0
-0
-0
-0
-0
-0
-0
-0
-0
l)

.0325506144
.0320344562
.0306713761
.0284874110
.0255700360
.0219666444
.0177825023
.0131282295
.0081268769
.0029107318
.0325506144
.0320344562
.0306713761
.0284974110
.0255700360
.0219666444
.0177825023
.0131282285
.0081268769
.0029107318
.0812974954
.1780968823
.3352085228
.4834579739
.6189258401
.7380306437
.8376235112
.9150714231
.9683268284
.9955818429
.0162767448
.1780968823
.3352085228
.4834579739
.6189258401
.7380306437
.8376235112
.9150714231
.9683268284
.9959818429

OOOOOOOOOOOO>OOOOOOOOO'OOOOOOOOO

.0325161187
.0318287588
.0302999154
.0279700076
.0249006332
.0211729398
.0168854798
.0121516046
.0070964707
.0018539607
.0325161187
.0318287588
.0302999154
.0279700076
.0249006332
.0211729398
.0168854798
.0121516046
.0070964707
.0018539607
.1136958501
.2100313104
.3656968614
.5116941771
.6441634037
.7596023411
.8549590334
.9277124567
.9759391745
.9983643758
.0488129851
.2100313104
.3656968614
.5116941771
.6441634037
.7596023411
.8549590334
-0.
-0.
-0.

9277124567
9759391745
9983643758

APPENDIX - 15

[eNoN=NeReReReRoReoNoNoNoNoNoNsNoNoNoNoNoNeoNoNole ool No e o)

GAU.DAT

.0324471637
.0315893307
.0298963441
.0274129627
.0242048417
.0203567971
.0159705629
.0111621020
.0060585455
.0007967820
.0324471637
.0315893307
.0298963441
. 0274129627
.0242048417
.0203567971
.0159705629
.0111621020
.0060585455
.0007967920
.1459737146
.24174315061
.3957976498
.5393881083
.6687183100
.7803690438
.8713885059
.9393703397
.9825172635
.9996895038
.0812974954
.2417431561
.3957976498
.5393881083
.6687183100
.7803690438
.8713885059
.9393703397
.9825172635
.9996895038
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OO OO0 OOO

[eNeoNoNeNoNeNeNelo o]

[eNeoNoNolNeNo ol

.0323438225
.0313164255
.0294610899
0268268667
.0234833990
.0195190811
0150387210
.0101607705
0050142027

.0323438225
.0313164255
.0294610899
. 0268268667
.02348339%0
.0195190811
.0150387210
.0101607705
.0050142027
162767448

.2731988125%
.4254789884
.5665104185
.6925645366
.8003087441
.8868945174
.9500327177
.9880541263

.1136958501
.2731888125
.4254789884
.5665104185
.6925645366
.8003087441
.8868945174
. 9500327177
.9880541263

[eNeNeNeNoNoNo o N/

(o NeoNeNelolollololloa]

OO 0O O0OO0OO0O

.0322062047
.0310103325
.0289946141
.0262123407
.0227370696
.0186606796
.0140909417
.0091486712
.0039645543

.0322062047
.0310103325
.0289946141
.0262123407
.0227370696
.0186606796
.0140909417
.0091486712
.0039645543
.0488129851

.3043649443
.4547094221
.5930323647
.7156768123
.8194003107
.9014606353-
.9596882914
.9925439003

0.1459737146

-0.
-0.
-0.
-0.

-0

-0

3043649443
4547094221
5830323647
7156768123

.8194003107
-0.
-0.

9014606353
9596882914

.9925439003
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