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LIST OF SYMBOLS 

The following symbols are used in this dissertation 

C 	 = constant; 

e 	 = exponential 

d1. 	= downstream sheet piles; 

d2 	= upstream sheet piles; 

F(99, m) 	= incomplete elliptic integral of first kind with amplitude 9 and modulus m 

F(ic/2, m) 	_ complete elliptic integral of first kind with amplitude 9 and modulus m 

IE  = exit gradient; 

g = the gravitational acceleration; 

h = difference in total heads at upstream and downstream boundaries; 

i '= the imaginary unit(-1); 

k = coefficient of permeability; 

k,t, ky  = principal coefficient of permeability in the directions x and y, 

L1,L2,L3 = floor length; 

M = complex constants; 

N = complex constants; 

P = uplift pressure 

R = scour depth 

s1  = upstream sheet pile; 

s2 = downstream sheet pile; 

w = complex variable; 

t = transformation plane; 

r- 
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z ' 	= complex variable = x + iy; 

ZA, ZB, ZC 	= Z coordinate corresponding to point A, B, C respectively 

x 	 = horizontal co-ordinate; 

y 	 = vertical co-ordinate; 

a 	= sloping floor angle in units of it; in chapter iv, inclined sheet pile angle 

in units it in chapter III 

al, a2, a3, a4 = factor of velocity potential 

B 	= complete beta function; 

Bt 	= incomplete beta function; 

r 	= complete gamma function; 

7 	 = angle made by embedded length of sheet pile with downstream base, in 

unit of it in chapter III; 

yW  = the unit weight of water; 

u = velocity in x-direction; 

v = velocity in y-direction; 

q = quantity of seepage; 

b = clear distance between upstream and downstream floor 

= velocity potential function; and 

yr = stream function; 

A., µ = Cartesian coordinates; 

, A  
( kZ )112 

kpc 
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SYNOPSIS 

The techniques in the investigation of problem of flow of subsoil water below 

hydraulic structure are commonly employed for the solution of Laplace's equation. The 

technique consists of: 

1. Graphical method 

2. Hydraulic models 

3. Electrical analogy models 

4. Analytical method. 

The analytical method aims at the solution of Laplace's equation mathematically 

by Conformal Mapping transformation. In this method the parameters of transformation 

are obtained from the boundary conditions. 

An approximate analytical method of solution for any confined flow system with 

finite depth of porous medium, directly applicable to design, known as "METHOD OF 

FRAGMENTS" has been suggested by Pavlovsky, vide Harr, 1962 to solve the 

computation of seepage under weir with multiple pilling. 

The fundamental assumption of method of fragment is that equipotential lines at 

various critical parts of flow region can be approximated by straight vertical lines that 

divide the region into section or fragment. 

The accuracy of method of fragment depends on the shape of seepage region 

involved in the manner of fragmentation. Many of the practical working formulae 

available in the literature are worked out by the Method of Fragment. 

The accuracy of method of fragment in computation of seepage under hydraulic 

structure resting on finite depth is investigated with many types of conditions and the 

result of designing of hydraulic structure is compared with solution obtained by vigorous 

method such as stepped weir on permeable foundation of infinite depth, case of a sheet 

pile in finite depth, case of a weir with two sheet pile. 

It is found that the method of fragments is accurate and can be used conveniently 

for solving complex confined seepage under hydraulic structure founded on porous 

medium of finite depth. 

VI 
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CHAPTER -- I 

INTRODUCTION 

Design weir on permeable foundation involves diverse fields such as sub-surface 

flow, surface flow and economic consideration. The stability of weir demands an 

upstream sheet pile and downstream sheet pile, to prevent slipping of the soil under the 

weir to the anticipated scour holes at the upstream and downstream reaches. 

The present study was undertaken to develop an algorithm for optimal design of a 

weir using method of.fragments for seepage analysis under hydraulic structure such as 

weir with a slopping floor and having a number of sheet piles in various combinations. 

The safety requirement such as length of structure in Lane's theory and depth of 

sheet pile in scour depth calculation were expressed in the foram of constraints. 'I'he uplift 

pressure and the maximum exit gradient have been obtained using the Schwarz-

Christoffel conformal mapping. The transformation parameters have been evaluated 

solving the implicit transformation equation using method of fragments. 

The accuracy of method of fragments in computation of seepage under hydraulic 

structure resting on finite depth is investigated with many types of conditions and the 

result of designing of hydraulics structure is compared with solution obtained by rigorous 

method, such as: a stepped weir on permeable foundation on finite depth with two sheet 

pile and weir with an inclined sheet pile. 

In the process of study of method of fragments, we cannot avoid what we call 

`trial and error'. Due to many computations that must be done, it will consume long time 

if it is done manually. In this present study, based on the analytical solution using 

conformal mapping technique, FORTRAN Computer Programs aided for computation of 

seepage have been developed. 

I-1 
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CHAPTER -11 

REVIEW OF LITERATURE 

2.1 THEORY OF SEEPAGE. 

The discharge velocity is a quantity of fluid that percolates through a unit of total 

area of the porous medium in a unit time 

Q=mVA 	 (II.1.1) 

where: 

Q = quantity of seepage 

V = the seepage velocity 

m = Ar/A = effective ratio of the area of pores, Ap  to the total area 

my = discharge velocity 

From fluid mechanics, for steady flow of non-viscous incompressible fluids, Bernoulli's 

equation is: 

P V 2  +z+— = Constant = h 	 (II.1.2) 
Yw 

 
2g 

where: 

h = total head or hydraulic head 

V = seepage velocity 

p = pressure 

In ground water flow, to account for the loss of energy due to the viscous resistance 

within the individual pores Bernoulli's equation is taken as: 	. 
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hB  
ZA 	 Os 

Zo  

Arbitrary Datum 

Fig. (2.1) Ground Water Flow 

2 	 2 

PA+Z A +VA  = PB+Z B +VB  +Ah 
Yw 	2g yw 	2g 

where : 

A h = the total head loss (energy per unit weight of fluid) 

The ratio : i = — lim h  er-+o AS 

dh i=-- 
ds 

i = hydraulic gradient 

(II.1.3) 

C- 

In most ground water problems, the velocity heads (kinetic energy) are so small 

that, they can be neglected. Bernoulli's equation become: 

I1-2 
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PA  + z A  = PB +Z g  + Oh 	 (II.1.4) 
Yw 	r. 

and total head at any point in the flow domain, is 

h = P + z 	 (II.1.5) 
yw 

Darcy's Law 
The flow through porous media can be represent with equation: 

V = ki = —k dh 	 (11.1.6) 
ds 

This law is called Darcy's law. 
If demonstrates a linear dependency between the hydraulic gradient and discharge 

velocity, k = coefficient of permeability. 

The Darcy's law is applicable to laminar flow only. 

General Hydrodynamic Equation, Velocity Potential: 

x 

lent of Soil 

r 

11-3 
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u, v and w are the components of the discharge velocity at the point in the fluid A 

(x, y, z) at time t. 

From, Darcy's law: V = –k A 
ds
—,  

u=–k-; 

we obtain 

dh v = -k ; and w=–k— hdz y 

If the fluid and flow medium are both incompressible, the total gain of fluid per unit 

must be indentically zero. Hence, 

du dv dw _ 
dx + d + dz 0 	

(II.1.7) 
y 

This equation is the equation of continuity in three dimension. 

It is of the almost convenience in groundwater flow in to introduce the velocity 

potential (i), defined as: 

O(x, y, z) _ –k P + z + c = –kh +c 	 (II.1.8) 
yw 

where c is an arbitrary constant. If c = 0, 

0=—kh 

u=—k A, v--k- and w=—kA 
y 	 dz 

become 

u=81, v=o and 	w=~0 	 (II.1.9) 

Equation (II.1.1) and (I1.1.9) represent the generalized Darcy's law which provide 

the dynamical framework for all investigation into groundwater flow. 

ra 

11-4 
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Substituting (11.1.9)in (II.1.7) we obtain, the Laplace equation 

V20= a'O+a'O+ a2~ =0 	 (11.1.10) 
aV 2 ay 2 aZ2 

Equation (1I.1.10) indicates that for conditions of steady-state, laminar flow, the 

form of the groundwater motion can be completely determined by solving one equation, 

subject to the boundary condition of the flow domain for two dimensional flow equation: 

2 a%y 2 
	 (II.1.11) 

Graphically, equation (II.1.11) can be represented by two sets of curves that 

intersect at right angles. The curves are flowlines / streamlines and equipotential lines. 

The combine representation of two sets of line is called a flow net. 

Stream Function (W): 

Continuity equation (II.1.11) becomes 

au 	 (II.1.12) 
ax ay 

In groundwater flow literature the function v (x, y) is called the stream function, 

and is defined as 

ay 	 ax 

Combining equation (II.1.12) and (1I.1.13), we obtain 

a2yr_a2yr =0 	 (II.1.14) 
ax ay ay ax 

11-5 
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Equating the respective potential and stream functions of 4) & y 

00 
O -ay 	Ox 

Hence,Hence, 

axe 	aye 	 (11.1. 15) 

An important distinction between the 4) and w functions lies in the fact that the 4) 

functions exist only for irrotational flow. A particle of fluid is said to have zero net 

rotation or to be irrotational if the circulation, the line integral of the tangential velocity 

taken around the particle, is zero. 

If should be noted that within a given region of flow the streamlines and 

equipotential lines are unique. That is, considering the total differential. 

d1= dv+-dy Ox  
From the Cauchy - Rieman equations 

v= fC ±dy 1dxJ  

0= dx - dy Ox 
and 

(II.1.16) 

A combination of the function 4) and yr, called the complex potential and defined 

w=q5+iyr 	 (II.1.17) 

by 

11-6 
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BOUNDARY CONDITIONS 

In steady -state flow of groundwater through homogeneous soil, four types of 

boundaries are encountered. These are: 

1) 	Impervious Boundary 

> Upper surface of a soil stratum or rock 

(the lowest stream lines) such as: 

A-B in figure 2.3 

> The bottom contour of the impervious structure 

(Upper flow line) such as: 

1-4 in figure 2.3 

3 

A 	 B 
Impervious Base 

Fig. (2.3) Boundary Conditions in Weir with Vertical Sheet Pile 

II-7 
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2) Boundaries of the reservoirs 

E 

iii 	 B  

Impervious Base 
Fig. (2.4) Boundary Condition in Earth Dam 

Olin figure (2.3) and AG in figure (2.4) and 

AD and EB are equipotential lines. 

Along boundary AD pressure is: 

p = r,, (hl —y) 

and potential is: 0 _ — khl  +c 

3) Surface of seepage 
GE in figure (2.4) is surface of seepage. 
If represent a boundary where the seepage leaving the flow region enters a zone 
free of both liquid and soil. 
The pressure on this surface is both constant and atmospheric and the surface is 
neither an equipotential live nor a streamline. 

4) Line of seepage (free surface, depression curve) is a stream line: along this line. 
4) + ky = constant, DG is a phreatic line. 

Flow net 
Flow not is graphical representation of the family of streamlines and their 

corresponding equipotential lines within a flow region. If 
Nf = the number of flow channels, 
Ne = the number of equipotential drops along each of the channels, the 

quantity of seepage is given by 	q = Ne .kh 	 (I1.1.18) 

where h = total loss in head 
h = Ne. Oh 

G 

h, 

11-8 
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2.2 	Creep Theory 

• Bligh's Creep Theory 

Consider a horizontal floor of length (L) metre in fig. (2.5), impounding a depth 

H metre of water. The loss of head per metre of floor, H/L is called the hydraulic 

gradient. Bligh called it percolation coefficient. Mathematically this value is 

written as bellow. 

H 	 (II.2.1) 
C b1+2d1+b2+2d2+b3 

 

Percolation Line 

----1 

t 

b~ 	 b2 	 b 

(a) 

H 	 - - - _._~► Hydraulic Gradient 
- - _ 	Residual Head H(1-L1/L) 

------------------------------------------------------------- 
L1 

L 

(b) 

Fig (2.5) Bligh `s Creep Theory- Definition Sketch 
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The dissipation of the head at any point is supposed to be proportional to the 

length traveled. At a distance Lithe residual head would be H-(H/L) L1. 

Bligh presumed that percolation water creeps along the contact of the base profile 

of the structure with sub soil and losses head in proportion to the length of its travel. No 

discrimination was made by him in horizontal and vertical creeps in assessing their 

effectiveness against undermining or piping. Because of its simplicity, Bligh's theory 

found general acceptance. 

• Lane's Weighted Creep Theory 

Lane approached the problem by making a statistical examination of large number 

of structure on pervious foundations. He developed the weighted creep theory which in 

effect may be called `Bligh's Creep Theory corrected for vertical contacts" 

According to Lane's Weighted Creep Theory, the weighted creep length (LW) is 

given as 

LW=1/3N+V 
	

(II.2.2) 

where; 

N is the sum of the horizontal contacts and all the sloping contacts less than 45 degree. 

V is the sum of all the vertical contacts plus the sloping contacts greater than 45 degree. 

While Lane's weighted creep theory is an improvement over Bligh's creep theory, 

it too suffers from the limitations of an empirical approach. 

11-10 
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According to Lacey, the scour can be divided in four classes as given in Table 2.1. 

Class A Straight reach 1.25 R 
Class B Moderate bend 1.50 R 
Class C Severe bend 1.75 R 
Class D Right angled bend 2.00 R 

Table (2.1). Recommended Scour Depths 

Class `A' is likely to occur any where just below the loose aprons. Class `B' is 

likely to occur anywhere along the aprons of guide banks in the straight reach. Class `C' 

and `D' may occur at or below the noses of guide banks of loose aprons. 

For the design of piles it is sufficient to provide the upstream pile line to a depth 

from 1.0 R to 1.25 R and the downstream piles line to a depth from 1.25 R to 1.50R. 

2.4 ANISOTROPIC POROUS MEDIA 

The theory of flow of fluids through anisotropic porous media is presented by 

Ferrandon (1948), Scheidegger (1957), Polubarinova-Kochina (1962)(9  , Harr (1962)(6)  

and Marcus (1962). 

Problems concerned with anisotropic porous media may be solved by 

transforming the actual anisotropic flow region into a fictitious isotropoc region by an 

appropriate co-ordinate transformation. The required scale for transformation of a two- 	r 

dimensional flow problem is obtained from the equation of continuity as follows 

(Harr,1962); 

The equation of continuity for a two-dimensional steady flow is 

—+—O 
8x ax ay 

in which 

(I1.4.1) 

u, v = discharge velocities in x and y directions, respectively. From the generalized 

I1-12 
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Darcy's law, 

ax 	
(11.4.2) 

and 

v=-ky  ay 
	 (II.4.3) 

in which 

k,,, ky  = principal coefficients of permeability in x and y directions, respectively , 

h=p+y; 
7 

p = pressure; 

yW  = unit weight of water; 

x,y = co-ordinates. 

Substituting the values of u and v in Eq. II.4.3, 

z 	 2 
kx 	h 	+ ky  h  = 0 	 (11.4.4) 

[k) J  

k •I/2 

Substitution of X = xI k 	reduce Eq. (II.4.4) 
x 

azh + a2h  2   
axe 	

0
aye 	 (II.4.5) 

tiz 

In a similar manner, substituting Y = y ky 	, it is found that 
v 

z a zh + ah =0  (II.4.6) 
axz 	2 

11-13 
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Thus, by choosing one of the above two scales of transformation, a homogeneous 

anisotropic region can be converted into a fictitious isotropic region for which the 

Laplace equation is valid. 

Examples of transformation of an anisotropic flow domain to an isotropic domain 

can be found in the books by Harr (1962)(6), Polubarinova-Kochina (1962)(9  , and De 

Wiest (1965)(5). The mathematical procedure for transformation follows the example of 

Polubarinova-Kochina and is given below. 

Fie. 2.7 Flat Bottomed Weir an Anisotropic Medium 

Fig. (2.7) represents in x, y plane a flat bottomed weir having a vertical sheet pile 

and resting on an anisotropoic porous medium. The direction of maximum coefficient of 

permeability makes an angle 0 with horizontal as shown. The direction of co-ordinate 

axes, µ and ? , are chosen to coincide with the directions of maximum and minimum 

coefficients of permeability, respectively. The correspondence between these co-ordinate 

systems in given by 

µ= x cos e- y sin 9 	 (II.4.7) 

X = x sin 6- y cos 0 	 (II.4.8) 

11-14 
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In order to transform the anisotropic flow region to isotropic one, an expansion in 

the direction of X is necessary. As stated earlier the co-ordinate in the direction of X 

(k._ uz  
should be expandedusing the multiplying factor  

k x  

in which 

kµ  and k principal coefficients of permeability in the directions of µ and ? , 

respectively. 

k  1/2 

Designating rl = k`` 	and replacing the value of X from Eq.(II.4.8) 
z 

k  112 

ri = N I (x sin 0 + y cos. 0) 	 (II.4.9) 
k2  

Thus, the physical anisotropic flow domain in x , y plane is to be transformed form x , 

y plane to fictitious isotropic flow domain in µ, rl plane by using Eqs. II.4.7 and II.4.9. 

The straight line y = 0 is transformed to a straight line in µ, rl plane, governed by the 

equation 

1/2 k`` 	tan 0 	 (II.4.10) 
p kt 

and the straight line x = 0 is transformed to a straight line given by the equation 

i/2 _ — k 	cot 0 	 (II.4.11) 
/1  . k2. 

if s is the length of a vertical sheet pile in anisotropic medium, its new length, s, in 

fictitious isotropic medium is given by 
k 	'/Z 

s= s sin e  9 + 	sine  9 	 (II.4.12) 
x 

ORAL LI R9 
to moo... 	;) 

t) 11.15 
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A horizontal blanket of width b in the physical flow domain is transformed in the 

fictitious isotropic flow domain to a blanket of width b which is given by 

k 	1/2 

b= b cos2O +! sin' B 
kA 

(II.4.13) 

A mathematical solution which considers the general anisotropic nature of the 

porous medium is available for the case of a single sheet pile embedded in a semi-infinite 

horizontal stratum. A vertical sheet pile in an anisotropic porous medium becomes 

inclined in the fictitious flow domain when the directions of the principal coefficients of 

permeability are other than vertical and horizontal. The solution to the problem of 

inclined sheet pile was obtained by Verigin (vide Harr, 1962). The mapping was 

achieved by making use of the transformation 

	

Z=Ce~san(at -t) a~ a, (a2 _t)a,-a 2...........(an - t)a l- a° 	 (II.4.14) 

which maps a region of radial slits in z plane to the upper half oft plane in fig. 2.8b 

A  E 

BD 

(a)  

a, a2 a3 an 

(b)  

Fig.2.8. Mapping of a Region with Radial Slits 

HE 
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C = constant ; 

itat, lta2, rza3...... = angles that the sides of the slits make with the abscissa ; 

iran 	 = particular angle of the slit ANFE (see in fig. 2.8a) 

al, a2, a3.............., an  = the image points on the real axis of t plane. 

The flow domain with a single inclined sheet pile shown in fig. 2.9a is a particular 

case of the generalized case discussed above and the governing relationship for 

conformal transformation is given by. 

Z = C (l +t)'i' (1-t) r 
	

(1I.4.15) 

h 

Ac 	 B 	 EGo 
D 

:....:... 	.:....r 	.....•........•...,.•... .,...,. •... 

A 
	

C 
(a) 
	

(b) 

L 

Ac.) 	B 	C 	D 	Eco 	B 	D 
	

0 

(c)  

A 
	
• Eco 

(d) 
Fig. 2.9 Steps of Mapping for Flow Domain with Inclined Sheet Pile 
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According to the Schwarz-Christoffel transformation, the mapping of the region 

A.. BCDEX, onto the lower half of the t plane is given by 

dz 
=Mt (1+t)-'"(t—a)(1—t)'-' 

dt 
(II.4.16) 

the vertices B, C and D being mapped onto -1, a and 1, receptively. Differentiating Eq. 

(II.4.15) and comparing it with Eq. (II.4.16), since they have to be identical, a is found to 

be equal to 1-2y. Applying the condition at the tip of the sheet pile for which t = a, and 

z=se`Y", 

~r 
C= 	s e 	 (II.4.17) 

(l+ a)'-r(1—a)' 

Hence, 
~-x 	y 

Z=s e1 I+t 	1—t 	 (II.4.18) 
(I+a) (1— a)  

The relationship between w and t planes is given by 

t = cos - 	 (II.4.19) 

in which 
w=~+ily; 

= -k (p/yw + y) ; and 

tV = Stream function 

from Eqs. II.4.18 and II.4.19 the pressure distribution along the sheet pile and exit 

gradient can be determined. 

II-18 
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CHAPTER - III 

FLOW UNDER WEIR WITH INCLINED SHEET PILE 

3.1. ANALYSIS 

FIG. 3.1 WEIR WITH AN INCLINED SHEET PILE 

A weir with a vertical sheet pile in an anisotropic domain is converted to a weir 

with an inclined sheet pile in the corresponding fictitious isotropic domain. An analytical 

solution based on conformal mapping for flow under hydraulic structure with inclined 

sheet pile has been given by Reddy et. al ( 1971) 10). 
The same problem has been solved here using the concept of method of fragments. 

The flow domain is decomposed into two parts by a sleet passing through the tip of the 

sheet pile and parallel to the sheet pile. The sleet divides the flow domain into two 

regions. 	Along the sleet boundary, the potential is assumed to be a constant 

ie. = -S k h. By such conceptualisation the number of vertices has been decreased from 

5 to 3. When the whole flow domain is considered the number of vertices = 5. When it is 

decomposed into two fragments the vertices for each fragments are 3. The complexity of 

the mapping function is considerably reduced when the problem is solved by method of 

fragments. The accuracy of the method of fragments is checked by comparing the flow 

characteristics obtained using method of fragments with exact solution. 
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Applying Schwarz - Christoffel transformation, the conformal mapping of the segment 1 in z -plane 

onto the auxiliary t - plane is given by  

di Z = M 
f 

(III.1.1) 

in which Br (a, l -a) is complete Beta function. 

For point C, t' = 0 and Z = Zc = 0. Hence, N = 0. 
For point A, t = 1 and Z = ZA = T cosec an ei(l+al" 

Hence, 

T cosec an e'(1+c )n  = M B(a, 1-a) 
=MF(a)I'(1-a) 

=M  Ir  
sin a7r 

Hence, M = T e 1  
if 

Thus the relationship between z and t plane is 

Z = T e'(t+° )̀" Bt(a, 1-a) 	 (III.1.3) 
Tr 

For point B, t' = b and Z = Z$ = S e'(I+°̀ )" 

S7r 7, = Bb  (a, 1—a) 	 (III.1.4) 

The parameter b is found by an iteration. 

ForpointD t=-dandZ =ZD-L 

Hence, 

d 	at -L=M 
(1 — t) a (t ),-a 

Assuming 	-t = u and dt = - du 

-L=M ( 	— du  
(1 +  
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or 	 L= 

L JL 
(_1)1 

J 	(1 + u)a (u) 

Noting that 	 / 

	

e i(l+a )rr 	e fir .e ra;r 

	

(-1)1 a 	(-1)(1-a) 

e1' .  e'°' 

• e' e°' 

e -ur era,: =1 

L=Tf 	du 

	

1r 	(l + u)" (u)'-a 

The improper integral is converted to proper integral substituting u = v8 and du = 8 v 7 dv. 

re __ T dir 8v 
L 	

8a ̀ dv 

 ?r 0 (1+v8)a 	 - 

The above substitution is applicable for a> 1/8 

Further substituting 

v = l d''8 (l + u) 	 a lower limit v = 0, u = -1 

dv = I d 1 f8du 	 and upper limit v = d ,u = 1 
Sa-I 

L 	8J -d"S(1+u) 	_r~d" 8l du ~ 

T —1 1 

	

	L 8 a J 
1+ Id II8 (1+u) 

we obtain the parameter.'d' by an iteration procedure. 
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Assuming that the common boundary is an equipotential boundary, and the 
potential 4 = -6 kh at this boundary, the complex potential plane, w, pertaining to 
segment I is drawn ( Fig 3.1) 

Applying Schwarz-Christoffel transformation, the conformal mapping of the in 
w-plane onto the auxiliary t-plane is given by 

dt w(t) = M ~~ (—d — t)vi (b —t)"2(1  — t)''2 — kh — iq 

=M2F(9,m)-kh-iq 

dv 
in which, F(9, m)  

0LsJjiim 2 sin 2 v 

9=sin1 FL,
d 

—t' 

m= 
1—b 

1+d 

For point D, t' = -d, w = -kh 

i _—M 	2 	F (,T , 1—b
q 	1+d 	2l+d 

i 
M= 	

q 
 

2 F X12, 1—b 

	

l+d 	I+d 
For 	-d < t' <b 

w(t') M  

9=siri1 
Fb+

b 
d 

and m= b+d 
l+d 

(I1I.1.5) 

For point B, t' = b and w = - Skh 
—Skh_ M(2 	F ~,b+d _kh 	 (III.1.6) 

il+d J 2 l+d 

Substituting M, from eq (III. 1.4) in (III.1.5) 

F1,  
' 1—b 

q = kh (1— d) 	~ 
2 1+ d) 

b 	
(III.1.7) F +d 

 

2 1+d 
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B. SEGMENT 2 
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The conformal mapping of segment 2 in z-plane onto t-plane is given by: 

_  dt z=
M (1—ty(t)'-a +N

(111.1.8) 

For t' = 0, Zc = (T Cosec a,r)e'(I+a)" 

Fort'= 1,ZA=0 

Applying these conditions 

d O=M 	
di' 
	+ (T Cosec a ~r) e'K'+a)r 

(1 — t) « (t) _a 

- [TCosec arc]e'('+a )'T =MB(a,1-a)=M 
sina7r 

— T ei(I+a)ir 
M = 	 (III.1.9) 

For t = b, ZB = S 

S e'('+° = M Bb (a, 1-a) + (T cosec a rr) e 

- (T cosec an - S) e i(1+«)" = M Bb (a, 1-a) 

Substituting M, 

'ti(cos eca' — TS = Bb (a, l — a) 	 (III.1.10) 
) 

By computer program we will get 'b' value 
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The complex potential for the second segment is shown in Fig. 3.1. Applying 

Schwarz-Christoffel transformation, the conformal mapping of the complex potential onto 

t-plane is given by 

( 	 dt wt) = M L(—t)"z(b_t)"2(1—t)"2 —Iq 

=M.2F(3,m)-iq 	(for oo<t'S0) 

in which 4 = sin 1r
~_Lt 

 

m= 1-b 

For point C, t'= 0 andw=- b-kh—iq 

Hence, 

kh(—S) M= 	 (111.1.11)
2F ~,1—b 

For 0 <— t'S b, the relation between w and t-plane is given by 

d (t')
f'(

t w 	M 	 —1)u/2(t)vz(b—t)IJ2(1_t)uu2 —iq—Skh 

= M2F(9,m)—iq-6kh 
i 

in which 	q = sin 16t, 

m=b 
For point B, t' = b and w = -8 kh 
Hence, 

q=-M2F(it/2, b) 	 (II1.1.12) 

Substituting M1 from (III.1.11) in (III.1.12) 

q = 8kh F(nr/2,b) 	 (III. 1.13) 
F(ir/2,1—b) 

Since out flow from fragment 1 in flow to fragment 2 
~z 1—b 

kh (1-6) F 2'1+d = 8kh F(ir/2,b) 
F b+d F(i/2,1-b) 

( 2 ' 1+d)  
Hence, S value we will get by computer program. 
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3.2 RESULT 

3.2.1 Variation of Quantity of Seepage with Length of Sheet Pile for a Weir with 

Upstream Blanket. 

A structure with an upstream blanket, an inclined sheet pile is shown in Fig. 3.1. 

The seepage would reduce with increase with in length of sheet pile. The seepage would 

also decrease with increase in length of upstream blanket. 

1.1 
bR=O 

1 

0.9 

 

0.8  - 

bIT = 1/4 
0.7 

 

0.6  __ 

brr=1/2 

0.5 
brr=1 

q/kh 0.4 

0.3 

n~ 

u.1 

0 
0  0.2  0.4  0.6  0.8 

s/T 

Fig.3.2. Effect of Length of Sheet Pile and width of Blanket on Quantity of Seepage for 
a = 1/2 (ie. Vertical Sheet Pile) 
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• The results obtained for a weir having a vertical sheet pile using the method of 

fragments are shown in Fig. 3.2. These results compare with the results given by 

Polubarinova-Kochina. 	 - 

Table 3.1. q/kh for different b/T and s/T 
a=l/2 

s/T /kh 
b/T=0 J 	b/T=1/4  J 	b/T=1/2 b/T=1 

0.1 1.0297 0.6966 0.5167 0.3811 
0.2 0.8072 0.6229 0.4773 0.3595 
0.3 0.6747 0.5600 0.4422 0.3395 
0.4 0.5780 0.5024 0.4080 0.3194• 
0.5 0.5000 0.4483 0.3737 0.2983 
0.6 0.4325 0.3966 0.3386 0.2757 
0.7 0.3705 0.3455 0.3017 0.2509 
0.8 0.3097 0.2929 0.2613 0.2225 

The q/kh obtained from method of fragments are presented in Table 3.1. The 

results given by Pollubarinova-Kochina are shown Fig 3.2 and Fig 3.3. The results 

obtained by method of fragments are same as that which have been obtained by 

Pollubarinova- Kochina. 

The variation of q/kh with s/T for b/T = 0 ie the simple case of a vertical sheet pile 

embedded in a finite layer of porous medium, is shown in Fig. 3.3. The variation of 

seepage an upstream blanket is also shown is Fig 3.3. These, graphs are given by 

Pollubarinova-Kochina. From the present analysis by putting a = 1/2, the obtain these 

graphs from method of fragments. 

I1I-10 
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0. 
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• 0.1 
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amMEMO 1 
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Fig. 3.3 Variation in Quantity of Seepage with length of sheet pile 
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3.2.2 RESULT INCLINED SHEET PILE WITH VARIATION OF ANGLE 

1.4 

1.2 

1 

0.8 

q/kh 0.6 

0.4 

0.2 

0 

---------- 

0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 

s/T 

Fig.3.4 Effect of Length of Inclined Sheet pile with Blanket on 
Quantity of Seepage 

Variation of q/kh with length of an inclined sheet pile is shown in Fig 3.4. The 

results have been compared with the results obtained by analytical method given by Reddy 

et al (1971)(10). It is found that the variation of seepage with s/T is same as that given by 

Reddy et al(1971)(10~ 
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Table 3.2 Seepage for Different Length of Sheet Pile 

s/T 
/kh 

a = %=0.5 a = 2/3=0.667 a = 3/4=0.75 a = 5/6=0.833 
or 1/3=0.333 or 1/4 =0.25 or 1/6 

0.1 1.0297 1.0589 1.0958 1.1569 
0.2 0.8072 0.8355 0.8721 0.9235 
0.3 0.6747 0.7027 0.7395 0.7914 
0.4 0.5780 0.6064 0.6438 0.6969 
0.5 0.5000 0.5297 0.5682 0.6227 
0.6 0.4325 0.4646 0.5052 0.5616 
0.7 0.3705 0.4069 0.4504 0.5095 
0.8 0.3097 0.3534 0.4015 0.4637 
0.9 0.2428 0.3015 0.3566 0.4231 
1.0 0.2473 0.3144 0.3836 
1.1 0.1798 0.2734 0.3526 
1.2 0.2317 0.3214 
1.3 0.1856 0.2922 
1.4 0.2645 
1.5 0.2379 
1.6 0.2119 
1.7 0.1857 
1.8 0.1583 

The quantity of seepage corresponding to different length of sheet pile for b/T =0 

are presented in Table 3.2. The seepage quantity computed by method of fragments 

compare exactly with those obtained by rigorous Conformal Mapping method. 
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Y 

Sheet pile 

G 

- 	

Impervious boundary-,' 

Fig.3.5 Weir with Inclined Sheet Pile 

Fig. 3.6 Effect of Length of Inclined Sheet Pile on Quantity of Seepage 
From Reddy et al (1971)'° . 
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CHAPTER - IV 

APPLICATION OF METHOD OF FRAGMENTS ON FLOW UNDER 
A WEIR WITH TWO SHEET PILES 

4.1- INTRODUCTION 

The accuracy of method of fragments is checked in chapter - 3. The method of fragment 

reduces the complexity of application of conformal mapping to practical weir design. 

4.2 STATEMENT OF PROBLEM 

A weir resting on a permeable foundation of finite depth is. shown in Fig. 4.1. The 

depressed weir has depressed floor as well as has slopping base. There are two sheet piles, one at 

the upstream and another at the downstream end. It is required to compute the uplift pressure and 

the maximum exit gradient. 

Li 	12 	L3. 

HYDRAUUC Sit 
hl 

h 

...di: 
Si 	 i aI 

h2 
Ti 	I 	 II 	

::;:..:;a2 
 ................ 

3i 

~fy 4=-c4kh 	 III 	IV 	IS2  	T4 
4~~ 'a2lJl 	i 	 i 

 
V. 

4kh ~~ 4'aakh 
72 	i T3 	 i 

y IISlI::E It IOUS LA?IR  

Fig. 4.1 A Weir with Two Sheet Piles 
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4.3 ANALYSIS 

The flow domain is decomposed into five fragments as shown in the Fig. 4.1. The 

boundary between adjacent segment is assumed to be an equipotential boundary of unknown 

potential. The flow in each segment is analysed using conformal mapping. 

4.3.1 SEGMENT I 

We assume a convenient origin for each segment. 

R 

E 

K 

z ( = x + iy ) plane 

The velocity potential function is defined as: 

0=—k 	+y J  +c 
Yw 

in which 

k = coefficient of permeability, 

p = water pressure; 

y,„ = unit weight of water; 

y = elevation head, and 

c = a constant 

The complex potential plane w (= f + iyf) for segment I is shown below: 

The constant c is assumed such that 4 = -kh for the upstream boundary and 1 = 0 for the 

downstream boundary, h is hydraulic head difference that causes seepage. It is assumed that 4 
along AB is -a, kh and ai is unknown. 
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4' 

1.v11Lp1CA I V LVLILLCi1 w(_ (f + iyr ) plane 
S 

-oo 	t0 	b 	1 	r ....................................... 
::::::::::::::::::::*....:::::::::::;:::::::: 3:::::::;:::::::;::::::A:::::::::::;:::::::::::::::::::::::::;:::;:: : 

t(=r+is) plane 

Applying Schwarz — Christoffel transformation, the conformal mapping of the segment I 

in z plane onto the auxiliary t plane is given by 

di'  
z=MJtU2(1—t)v2 

+N 

Integrating 

z=2M sin-' 	+N 	 (4.1.1) 

For point C, t = 0, and z = 0; hence N = 0 

For point A, t = 1, and z = -iTI 

Applying these condition in equation (4.1.1) the constant M is found to be 

M= '  	 (4.1.2) 
7r 	 I  

Hence 

— 2iT, z = 	sin- 	 (4.1.3) 
Ir 

For point B, z = -i (dl + s1), and t = b 

q 

E 
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Hence, 

Tt +s 	z 
b = sin  

d 
 'T  (4.1.4) 

The Schwarz-Christoffel conformal mapping of the complex potential onto the t plane is 
given by: 

(' 	di 

W(t
'
) __ M

1 
 (-t)vz(b-t)tiz(1-t)"2  -iq - kh 

= M1 2F(19,,m,) — iq —kh 	(for -oo <t' S 0) 

in which 9 = sin-' 	1 
1—t 

m, =1—b 
F (9, m) = elliptic integral of the first kind with amplitude 9 and modulus m (Byrd and 
Friedman, 1971) 

F(19, m) du 

o1—msin Z u 

For point C, t' = 0 and w = -kh 
Hence, 

M1 =  iq  ( 

2F(7r/2,1 — b) 	
4.1.5

) 
 

ForOSt <—b, 

the relation between w and t plane is given by 

dt 

w(t)=M' J (-1)t~z(t)"2(b—t)"2(1—t)112 —kh 

= M' 2F(92 , m2) — kh 
i 

in which S2 = 
b 

and . m2 = b 
For point B, t' =bandw= - al kh 

Hence, 

	

—a,kh= 2M' F(7r/2,b)—kh 	 (4.1.6) 

IV-4 



A Study on Method of Fragments for Seepage Analysis under Hydraulic Structure 

Substituting MI from (4.1.5) in (4.1.6) 

FI2,1—b~ 
q=kh(1—a,) 

F( 2 ,b1 

For checking 

For b_<t' <_ 1 

the relation between w and t plane is given by 

dt 

W(t) 
= 

M' (1—t) iz(-1)''z(t_b)iiz(-1)iiz(t—c)iiz —a,kh 

_ —MgF(0,,ml )—a,kh 

in which 9 = sin-'F~l 
and m, =1—b 

For point A, w = -iq - ai kh, t'=1 and a = it/2 

- iq - a, kh = -MI 2 F (irl2, 1-b) - a, kh 

iq = MI 2 F (ir/2, 1-b) (This equation is same as 4.1.5) 

ForaSt'<_oo 

dt 

x'(t)=M' (_1)I/z(t-1)1Iz(-1)h12(t—b)h/2(-1)1I2(t-0)h12 +N 

_ — M gF(91 ,m,)—a,kh—iq 
i 

in which 92 = Sin 
t 

and m2 = b 

For point E, w = -iq - kh, t' = co and 9 = n/2 

Hence, 

kh = M' 2F (ir/2, b) + al kh 

2 MI F (n/2, b) = i kh (1-al) (This equation is same as 4.1.6) 
Hence further the duplicate equations have been omitted. 

(4.1.7) 
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4.3.2 SEGMENT II 

x 

..~.....,........ f segment II 
E 	 A 

z(=x+iy) plane 

9 

E 	 A 

Complex potential plane w (_ j + i yr) 

S 

- 	 0 	c 	b 	I  
............................................................................... 

t(=r+is) plane 
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Applying the Schwarz-Christoffel transformation, the conformal mapping of the segment 

II in z-plane onto the auxiliary t-plane is given by 

 dt 
z = ML(—t)1/2(b—t)vz(1-t)irz —Lt —iT? 

z=M2F(91,m1 )—L, —iT2 

in which 

9t = Sin-' fiii  
1—t 

m, =1—b 
For point D, z = -L1—iSl, t' _ -d 

—L, —iS, = M2F sin-'
J~+

d,1—b —L, —iT2 

or 	i(T2 —S,) = M2F sin-' Ld'1—b 	
(4.2.1) 

For point C, t=-LI,t' =0 
- Li=M2F ((/2,1—b)-Li—iT2 

M= 
	'Tz  

(4.2.2) 
2F(,r12,1— b) 

Substituting equation (4.2.1)) into (4.2.2) 

—S 
F sin-' +d,I —b- 	

1 TZ , 
T2 	F(7r / 2,1— b) 	

(4.2.3) 
—  

For05t—<b 

z = M 2F(%92,m2) — L, i 
in which 

u2 =sin' 

m2 =b 
For pint B,z=0,t'=b 
For pint C, z = -Ll 

Ll = M 2F(Tr/2,b) 	 (4.2.4) 
i 
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Substituting (4.2.2) in (4.2.4) 

L, =  F((rl2,b) 	 (4.2.5) 
TZ  F((r/2,1—b) 

The parameter be in eq.(4.2.5) in found by an iteration. Knowing b, d is found form eq 

(4.2.3) by iteration. The relationship between z and t plane for the second segment is completely 

defined after we have found constant M and parameters b. and d. 

The Schwarz-Christoffel transformation of the w-plane onto the t-plane isgiven by 

_ 	r( 	dt  
w(t') Mt  (t+d)1/2(t—b)t'2(t-1)1/2 

—a,kh—fq 

For -oo < t' —< -d 

w (t') = MI2F (9, m) 

in which, 9 = sin' l +d 
1— t' 

and m = 1 —b  
l+d 

For point D, t' = -d, w = a, kh 

Hence, 

—a,kh = 2M,FI 2r12, I —b1  — a,kh —iq 
l 	J 

M' 	iq  1—b 	 (4.2.6) 
2F ir

/2,1+d 

For—d <t' <b 

w(t') = M' 2F(,9, m) — a,kh 

IV 
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in which 

&= sin -' .11 
ffIl+d 

m= b+d  
I+d 

For point B, t' = b and w = -a2kh 

-a2kh= 	I+d)-
a,kh 

ikh(al -a2 )= M2F(;r Z I+d 

Substituting Mi 

iq 2F 7rI2, 
b+ d ikh(a, -a2 )= 

2F(2,1  
1+d)  

Hence, 

1+d)  q = kh(a, - a2  )  
F g/Zb+d 

(4.2.7) 
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4.3.3 SEGMENT III 
Y 

T2 

x 

Flow domain 

1T3 

= a2kh ~ = a3kh 

D 	 A 

Z(=x+iy) plane 

W 

Complex potential plane w (= 4 + iyr) 

-00 	t0 	b 	1  

t(=r+is) plane 
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Applying Schwarz-Christoffel transformation, the conformal mapping of the segment III 

in z plane onto t-plane is given by 

_ 	 dt  z M 
J(t-1)I /2(t— b)«(t)1-a +N 

At point C, t 0, Z = Zc 0 

Point B, t = b, 	Z = ZB  = L2 cosec an e i (3/2 +a)" L2 - i (T2 -T3) 

	

—iT —T M 	 dt  L 2 (2 s)= ( 1)I12(-1)«(1— t)t /2(b— t)a(t)t-« 

L2 cosec an= M 
/2 	

1 dt 	t +M  ,r 	1/2 dt 	=M(I1  +I2 ) 
(1— t) /2  (b — t)« 

 (t) -« 	/ 2  (1— t) (b — t)« 
	I«  (t) - 

The integration has been decomposed into two parts to convert the improper integral to 

proper one. 

Let us assumed t = v8  to evaluate Ii, dt = 8v7  dv 

At the lower limit t = 0, v = 0 

And upper limit t = b/2, v = (b/2)"8  

/2' 	8vs«-ldv  

(1— V8)1/2 (b —V5)«  

Further are assume 
v = 1/2 (b12)"8  (1+u) 	v=0 	—>u=-1 
dv = 1/2 (b/2)''g  du 	v = (b/2) 8  -* u = 1 

Hence, 
s«-1 

8 2(b /2)' /8(1+u) 	(b /2)I'8 IJdu 
II = 	1 	 8  1/2 	1  	« 

1— 2(b /2)us(l+u) 	[[(b/2)h18(I+u))8  

I2= 	dt 
f 2 (l —t)t/ 2  (b —t)« (t)t-" 

Let us assume b-t=z2 ; t= b/2--+z= b/2;t=b — z=0 

t = b -z2  

iv-ti 
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dt = -2z dz 
__ 	b f Z 	2z1-2adz 

12 
	J1—b+zz vz b—z2 1-« 

o ( 	) ( 	) 
Further we assume v = 1/2 (b/2)12 (1+u); v = 0 u = -1; v = (b/2) "2 u = 1 

dv = 1/2 (b/2)''2 du 

l!-2« 
— , 	2 ! (b/2)ti2 (1+u)

J 	
2(b/2)112du 

12 — J  Z ]1/2  Z a-« 

1 1—b+ 2(b/2)"2(1+u) 	[b_b/2)112(1+u)J]  

M=. 
L 2 coseca,r 

I, + IZ 

For b5t'<l 

( 	 dt 
Z(t')=M J(_1)12(1_t)h/2(t_b)h/2(t)1 +ZR 

At 	t' =1 
Z=ZA=L2-iT2 

Substituting these is above and simplifying 

dt 
T3°M f b (1— t)" 2 (t — b)« tI-« 

l+b 

2 
 dt  '  dt 

=M J (1—t)112(t 
— b)a tt-« +M ,+6 

 

z 
=MI3+M I4 

Let us assume 

t-b=u2 	 t=b -~u=0 

t=u2 	 1—b +b 	t= I+b -4u=  
2 	V2 

dt = 2u du 

(4.3.1) 
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1—b 
2 	2u'-2adu 

13 	J(1—u2 —b)',2 u2 +b ) 1 a 
0 

Further assumed 

v2 

v=1/2 1 2b (l+u) 	v=0  

)1/2  )1/2 

dv= 1/2 1—b 	du 	v=(1—b  
2 

 1-2a

2 1 ,1212b)
1/2

I(1/2—b)hJZdu 
 

13 	f 	 2 	1J2 	 2 	t-a 
 

 1— 2(1/2—b)'J2(1+u 	[( (1/2_b)1l2 O+u)J)l —b 	+b 
J 

_ 	dt 

I4 — I(1_ t)h/2 (t _by(t)  
 I-a 

Assumed, 	1 - t =u2 

t = 1-u2 
dt = -2 z dz 

1=b 

	

__ 2 	2du 14 	f 
o (1—u 2 —b)a(1—u2 )'-a 

Assumed, 	v= 1/2 FY+-  (1+u) 

dv= 1/2 1+b du 
2  

att= 1/2--> u 

t= 1 --+u=0 

v=0  

v= 1—b  
2 

— 	 du 2.~ 12b 

1 	2a 	 2 1-a 
-I 

1— 	1+b (l +u) —b 1— 	 (1+u)Jj  
2 
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Hence, T3 = M (13 + I4) 

Substituting M, 

	

T3sina2_(I3+I4) 	 (4.3.2) 
L2 	('l'2) 

The Schwarz-Christoffel conformal mapping of the complex potential onto the t-plane is 

given by: 

r _  dt ti''(t') rL1-J(—t)112 (b—t)l/2 (1—t)u2 +N 

= M 2F (4,m) in which 4 = sin' 	1 

m= 1-b 

at t' = -oo, w = -a2kh - iq 

Hence, N = -a2kh - iq 

At t'=0, w=-a2kh 

Applying these conditions 

iq 

M-2F 	
( 

r/2, 1—b 	
4.3.3

) 
 

ForO<t' <—b 

—a3kh= 2M F(~12,lb)—aZ kh 

Substituting M, from eq. (4.3.3) in above 

_ kh(a2 — a3 )F 12, 1— b 
q 	F g/2,Fh 	

(4.3.4) 
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4.3.4 SEGMENT IV 

y 

T3  1s2 

 

IA 

z (= x+ iy) plane 

 

w(=4+iyf)plane 

t(=r+is) plane 
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Applying Schwarz-Christoffel transformation, the conformal mapping of the segment IV 

in z plane onto the auxiliary t plane is given by 

dt 
Z

_ M f 	 112(c-1)112(1—t)tiz L —iT3 

= 2MF(9,m)—L3 —iT3 

1 
in which & = sin' 1—t' 

m= 1-c 

For point D, z = -L3, t' = 0 

iT3 = 2M F('r/2,1— c) 

M = 	 4.4.1 iT3 	
( 	) 2F(,r/2,1—c) 

 

For 0<t5c 

Z = M/i 2F (S, m)-L3 

in which  
c 

m=c 

att'=c 

L3 = M 2F(7r l 2, c) 
i 

substituting M, 

L3 — F(z 12, c) 	
(4.4.2) 

T3 F(~/2,1—c) 

The parameter c is obtain by and iteration procedure. 
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For c<t<-1 

Z=M/i 2F(4,m) 

W( I
c

In which &=siri1 — c) 

m=1-c 

At r-1, z=-iT 
1 

-iT3  = M 2F(,r12,1-c)+0 
1 

_ 	T3  
M  2F(,r/2,1—c) 

For t' = c 

— iS2  = M 2F sin°'  b
\I(1—c)'  

 )  1—  

Substituting M 

2F sin-'  (b  — c)  1— c 
SZ 	b(1—c) '   
T3 	2F(, / 2,1— c) 

(4.4.3) 

The parameter b is obtained by an iteration after parameter c is obtained by iteration from 

eq. (4.4.2) 
The Schwartz-Christoffel conformal mapping of the complex potential onto the t plane is 

given by 

f
dtw(t')=M1 	

(t-0)ll2((— b)ciz(t_1)1/2 — a3kh —fq 

= M l 2F(9,m)— a3 kh—iq 
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in which 8 = sin-I 	1  
1—t' 

m=1-b 

For point D, t' = 0, w = - a3 kh 

iq = Mt  2F(ir / 2,1— b) 

Hence, M = 	tq  
2F r/2, 1—b 

For05t'Sb 

w(t') _ t  2F(9,m)—a3kh 

- in which 9 = sin' - 
b 

m=b 

For pointB,t'=b,w=-a4  kh 

Hence, — a4  kh = Mt  2F(t / 2, b) — a3  kh 

Substituting M, 	 • 

kh a a) F(7r12,1— b) •  • q 	( 3 	4  F(,r/2,b) 	• • 

(4.4.4) 

(4.4.5) 
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4.3.5 SEGMENT V 

Y 

A 

d2  

S2  T4  

C 	 E 

q 

C 

z(= x + iy) plane 

4 

Complex potential plane w (= 4 + iw) 

S 

co 	to 	b 
C:::::: .... :::::::::::f  .................................................................. 

t(=r+is) plane 
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Applying Schwarz-Christoffel transformation, the conformal mapping of the segment V in 

z plane on to the auxiliary plane is given by 

dt 
z=M,~t1/z(1—t)l/z +N 

Integrating 

z = 2Msin-' + N 	 (4.5.1) 

For point A, t= 1 and z=0 hence N=-itM 

For point C, t = 0 and t = -i T4 

Hence, M = IT4 	 (4.5.2) 

N = iT4 	 (4.5.3) 

and 	z = 2 T4 sin -' - — iT4 	 (4.5.4) 

For point B, z = -i(d2 + S2) and t = b 

Hence, 

b = sin 2 1— d2T sz 	 (4.5.5) 
4 
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The Schwartz-Christoffel conformal mapping of the complex potential onto t-plane is 

given by: 
dt 

w(P)=MI f (—t)v2(b_t)ti2(1—t)v2 -iq 

= My 2F(9, m) — iq 	(for -oo < t' _< 0) 

in which & = sin 1 	1  
1—t' 

m 1-b 

For point C, t'= 0, and w=-a4kh-iq 

Hence, 

MI,  = 	a4 
 

2F,r/2, 1—b 

For 0 <— t' <_ b, _ the relation between w and t plane is given by 

dt  
w(t) =M1  (-1)1 /2 (t)  v z (b  _ t)  v z (1— t) I z — iq — a4  kh 

M` 2F(,4,m)—iq—a4 kh 
I 

t' in which I = sin 1  - 
b 

m=b 

For point B, t' = b, w = -a4 kh 

Hence, 

q = —M;  2F(ir /2, b) 

Substituting MI 

q=kh(a4) F(,T /2,b) 
F(,r/2,1-b) 

(4.5.7) 
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4:3.,6 FORMULATION OF EQUATION FOR SOLVING al, a2, a3, a4  
The Following Equations have been derived considering the flow in each of the five 

	

fragments. 	 V 

From Segment I 

[1_bi ] 	 V  

q/kh=(1—a) 	r 	l  _ (1—a1 )A 	 (4.6.1) 
FI2,b,1 
	

- 

From Segment II 

	

F, 	1—b2   

	

/kh= 	 21+d2 
q 	a (, — aZ ) 	 _ (a1  — a2  )B 	 (4.6.2) 

F , it  b2  + d 2  
' 1+d2  

From Segment III 

F(g12, 3 ) -  q/kh = (a2  a3) 	
1—b

F(?z/2, b3) 	
(a2 —a3 )C 	 (4.6.3) 

From Segment IV 	 V 

. 	 = (a —a3 	4) 
 F(7r 2,1— b)  = (a3  — a4  )D 	 (4.6.4) 

V 	 VV 	q/kh  
F(rf2,b) 

From Segment V 	 - V 	
V 

	

F
2

,bs 	 . 
q / kh = a4 	= a4  E 	 (4.6.5) 

F 	,1 ,_ bs 	 , 

(bl is parameter b of segment 1 and b5 is parameter b of segment 5 and so for other parameters). 

Equating (4.6.1) and (4.6.2) 	
V 	V 	 - 

(A + B)at  — B a2  = A 	 V 	
V 	 (4.6.6) 	V 

Equating (4.6.2) and (4.6.3) 

Bat  — (B + C)a2  + Ca3  =0 	 V 	 (4.6.7) 
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Equating (4.6.3) and (4.6.4) 

a2C—a3 (C+D)+a4 D.0 	 (4.6.8) 

Equating (4.6.4) and (4.6.5) 

a3D — (D'— E)a4  =0 	 (4.6.9) 

In matrix notation 	, 

(A+B) -B 0 0 at  A 
B 	-(B± C) C: 	0 	a2  _ 0. 
0 	C (-C + D) D 	a3 

— 0  

0 	0 	D 	- (D + E) a4 	0 

Hence, 

ai 	(A+B) 	-B 	0 	0 	' A  

a2  B 	-(B+C) C 	0 0 
a3 	0 	C (-C + D) D 	0 
a4  0 	0 D -(D+E) 0 	 , 

4.3.7 COMPUTATION OF UPLIFT PRESSURE 

The uplift pressure can be computed using origin for the composite structure at a suitable 

point. Let us measure, the y-coordinate from the impervious stratum. The potential 4) is defined as 

4)=-k(P/yw+y)+C 

If 

C k (h2 + T4) 

along the downstream boundary =0 and 0 along the upstream boundary = -kh. 

Where h is the hydraulic head difference which causes the seepage to occur 

h=T1 +hi - T4 =h2. 
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Let us compute uplift pressure at point 2. 

At location 2 
_. 	 -a2kh,Y=T1-di 

—a2kh=—k p2 +T —d, +k(T4 +h2 ) 
Yw 

P2 ''W =a2h.+h2 +T4 +dl—T, 

Similarly uplift pressure can be computed knowing 4) at the desired point. 

4.3.8 COMPUTATION OF MAXIMUM EXIT GRADIENT 
The maximum exit gradient can computed from segment V. 

dw 

=u—iv 	 - 
dz 

Along the downstream 'horizontal boundary u = 0 

Hence, - = - i v 
dz 

From Darcy's law 
V=-kIE 

and dw dw dt = 	= -iv 
dz dt dz . 
dz. iT4 	. 1 . 

dt 	t1 /2(1— t)1 /2 

dw 	- a4kh  
dt. 	2F(n/2, 1-b) (—t)112(b.—t)112(1--t)1/2 

Hence, 

—a4kh  
k _ 

I 
IE  

7ctU2(1—t)li2 
i  

2F(rz/2, Ji—b) (_t)1/2(b—t)1/2(1—t)1/ 2 	iT4 

Exit gradient is maximum at point A in segment V for which t = 1. 
Substituting t.= 1 

..  	~a4h IE= 	 - 
(1-b5 )u2 2T4 F(,r/2,l—b5 ) 
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4.4 RESULT 
Uplift pressure is computed for the following dimension of the hydraulic structure: 

Case-I 

Li L2 - L3 

HYDRAULIC SIRUUAIRE 
hl 

I 

 2 
S1  

i 	 h2 

IV  I S2  T4 

'J' 	=-apkh 	c h 
i 12  

L1=10  L2=4  L3=10 
T1=10 T2=9 T3=5 T4=6 

d1=1  d2=1 

s1=4  s2=4 

h1=10  h2=2: 

Hence, the result: 

1  2  3• 
For a = 0.25 

ail =45° 

.385 

8.297866 
9.633791 

A~ , LIBRA 

4 
Uplift Pressure 

8.225624 
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Case II : 

Li 	L2 	L3 

T4 

L1=10 

i  i 	T  

L2=4 	L3=10 
T1=10 12=9 	T3=6.199 T4=7.199 
d1=1 d2=1 
s1=4 s2=4 
h1=10 h2=2 
Hence, the result: 

For a 
1 	2 

= 0.3056 
aii = 55° 

8.217454 

.726. 

Jplift Pressure 

'.075458 
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Case III .  

• 
L1  I2  13 

HYDRAULIC STRUCTURE 
hl. 	 _ 

h 

Si 

TI 	I 	 II  ........... 
3:  

4t =o kh 	W 	IV 	S2 	T4 

	

=a2k61 	i 	 ; 	V 
-h "kh  

	

i 	i 	 i 
'•.'A1:1:iERE:EiEcEi'EEE~E~€E~':`EEE?EE;:E:i?:E`?' 

L1=10  L2=4 .  L3=10 
T1=10 - . T2=9 	T3=6.69 T4=7.69 . 
d1=1  d2=1 

s1=4  s2=4 

h1=10 • h2=2  . 

Hence, the result: 	 . 

1  2  3  4 

Fora = 0.3334 	 Uplift Pressure 
arl = 60° 

6.709087 
6.7506 

8.23312 	 8.067455 
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Case IV 

Li L2  c 13 

T4 

L1=10 L2=4 	L3=10 
T1=10 T2=9 	13=7.13 	14=8.13 
d1=1 d2=1 
s1=4 s2=4 
h1=10 h2=2 
Hence, the result: 

1 	2 	3 	 4 
For a = 0.3612 
	

Uplift Pressure 
aII =65°  

6.416457 
7989 

7.72916 
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Result of quantity of seepage and exit gradient: 

Hydraulic 
Structure 

Case 1 
450 

 

Case 2 
550 

 

Case 3 
600  

Case 4 
65° 

q/kh 0.1516 0.1734815 0.18072 0.1866 

Exit Gradient 0.2057 0.20487 0.2039 0.202962 

Table 4.1. Variation of Angle on Quantity of Seepage and Exit Gradient 
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CHAPTER - V 

GENERAL DISCUSSION AND CONCLUSION 

5.1. DISCUSSION 

This chapter deals with the critical examination of the investigation reported in 

this thesis and the important'conclusion derived from these investigations. 

The conformal mapping technique is a powerful tool for solving two-dimensional 

Laplace's equation. The method is used for solving the problem of flow under hydraulic 

structures. Often the. mapping steps result in a set of non-linear equation, which require a 

suitable technique to fmd unknown parameters. The implicit nature of the non-linear 

equation restricts the range of the applicability of conformal mapping. A methodology for 

solving a set of highly non-linear equation is described which can be used for solving 

two-dimensional flow in a complex flow domain with a great accuracy. 

The aim of the present study is to investigate the accuracy on method of 

fragments as part of Analytical Method by Conformal Mapping for seepage analysis in 

two-dimensional steady ' confined through permeable foundation for various type of 

hydraulic structure. . 

Analysis of flow through anisotropic porous medium can be carried out by 

transforming the actual anisotropic flow domain with suitable coordinate transformation 

into fictitious isotropic flow domain for which the Laplace's equation is valid and 

conformal mapping technique are applicable. We can compute the discharge of seepage 

through anisotropic porous medium below hydraulic structure with vertical sheet pile. 
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After transformation into a fictitious isotropic flow region, the vertical sheet pile become 

inclined sheet pile. The method of fragments which is found to be accurate can be used to 

analyze flow under complex hydraulic structure. 

Applying for seepage analysis under hydraulic structure with two sheet piles 

using method of fragments has been done in chapter - IV. 

5.2 CONCLUSIONS 

Investigations were done in seepage analysis under hydraulic structure by 

conformal mapping using Method of Fragments. The agreement between the result 

obtained from computer program and those derived mathematically in all cases was very 

satisfactory. 

The flow characteristics (seepage quantity) computed using method of fragments 

match with those reported by Polubarinova-Kochina (9) and Reddy et.al (197l)('0~ 

The calculation of seepage analysis using Method of Fragments has some 

advantages: 

1. The method is suitable for permeable foundation in finite depth. 

2. The flow region is divided into number of tractable fragments, we can compute the 

seepage through each fragment which must be the same and this continuity equation 

enable solving composite complex structure with ease. 

3. After calculation of potential, we can compute uplift the seepage and uplift pressure 

in each segment and exit gradient automatically. 
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APPENDIX - A 

CONFORMAL MAPPING 

The transformation z = w2  provides a certain geometrical similarity between the z 

plane and the w plane; that is, the mapping function preserves the angles. of intersection 

and the approximate. geometric shapes between planes except at the origin. A 

transformation that possesses the property of preserving angles of inter section and the 

approximate image of small shapes is said to be conformal. In the present section we 

shall explain the behavior of conformal transformation and the conditions under which 

they fail. 

If w = 4 +i yr = f (z) is analytic within a region R its derivative f (z) is single-

valued; that is, 1(z) has only one value one value point in z. However, as z varies from 

point to point, 1(z) will in general be a function of z. In Fig. A-1, let C be a smooth 

Y 

c 
z+dz 

z 	dz  

T 

c 
w+dw 

w 	dw -- ---------- 

x 
z plane 	 w plane 

Fig. A-1 Conformal Mapping 
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curve through a point z, and let CI be its image through point w under the transformation 

w = f (z) when f(z) is analytic at z and f' (z)  ~ 0. As p (z) must be a complex number, say 

f (z) = A exp ia, then from the definition of a derivative 

f .' (z) = dw = lim Aw dz ez-+O Az 

we obtain the two equations 

a = arg f'(z) = limlarg 	l 	 (A.1.1) 

A =(z)I = lim ACO 	 (A.1.2) 
AZ—>o 1Z 

Now, as Az— O, the limit of the argument of Az approaches the angle 01. In a 

similar manner, as Ao) is the image of Az, the argument of At:c approaches the angle 02 as 

Az-+O. Hence from Eq. (A.1.1) 

a = arg f' (z) = 63 — 1 

or 	02 = a + 9t 	 (A.1.3) 

Thus in the transformation from the z plane to the w plane the direction tangent to 

a curve at point z is rotated through the angle a = arg f (z). Now, as f' (z)  has only one 

value at any point z, any two curves intersection at a particular angle at point z will, even 

after transformation, intersect at the same angle at w (the image of z); that is, the sides of 

the angle at w are rotated in the same direction by the same amount. 

Similarly, as Az—O, we conclude form Eq. (A. 1.2) that in the transformation from 

the z plane to the w plane, infinitesimal lengths in z are magnified at w by the factor A = 

mod f (z). Now as Az—>c> 0, Eq. (A. 1.2) becomes only approximate and hence there is 

some distortion in the length Aw, with the degree of distortion depending on the 
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magnitude of c. Thus large figures in the z plane may transform into shapes bearing little 

resemblance to the original but, it should be emphasized, the angles formed by 

corresponding intersecting curves in these planes are preserved exactly even for large 

figures (except where f' (z)  = 0). 

Points at which f (z) = 0 are said to be critical points of the transformation; that 

is, they represent points where angles are not preserved conformally. For example, the 

transformation w = z2 demonstrates that angles at the origin where fl (z) = 0 are doubled. 

For the function w = z3, angles at the origin are tripled. Indeed, it can be shown that for w 

= zn, angles at z = 0 are multiplied nfold. A function fl(z) is said to have nfold zeros when 

n is the number of derivatives which are zero for a particular z. In other words, for w = zz 

the derivative f (z) has one zero for z = 0, w = z3 has a double zero at the origin. Thus we 

can generalize that if f (z) has nfold zeros, angles are not preserved at the critical points 

but are multiplied (n+1) times (one greater that the number of zero derivatives). 

A.2. FUNDAMENTALS OF SOLUTIONS OF TWO-DIMENSIONAL FLOW 

PROBLEMS BY CONFORMAL MAPPING 

The usefulness of conformal mapping in two-dimensional flow problems stems 

form the fact that solutions of Laplace's equation remain solutions when subjected to 

conformal transformations. 

Let w = 0 + i yr = f(z) be the complex potential and let its real and imaginary 

parts satisfy Laplace's equation in the region R of the z plane (Fig. A.2 ), so that 

ago +aZ0 =0 	 a21~/ + a2V =0 

a x2 ay 2 	 ax2 ay2 

Now suppose that there is a second analytic function z = F(t), with t = r +. is, 

which maps the interior of the curve C into the interior of the curve C1 (Fig. A.2b). The 
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(a)  (b) 

Fig. A.2 Curve Transformation 

function of an analytic function, which in turn is also analytic and hence 

z  z  z  z a0 + a0_o 	a~+a~_0 
3r2 . as2  art  asz 

The solution of a two-dimensional ground water problem could be reduced to one 

of seeking the solution of Laplace's equation subject to certain boundary conditions with 

a region R in the z plane. A more- or less direct attack was provided by the graphical 

construction of flow nets. From the standpoint of an analytical solution to Laplace's 

equation, unless the region R is of a very simple shape a direct approach to the problem is 

generally ver difficult. However, by means of conformal mapping, it is often possible to 

transform the region R into 'a simpler region Rl wherein Laplace's equation can be solved 

subject to the transformed boundary conditions. Once the solution has been obtained in 

region RI, it can be carried back by the inverse transformation to the region R, the 

original problem. Hence the crux of the problem is finding a transformation (or series of 

transformations) that will map a region R conformally into a region Ri so that R, will be 

of a simple shape, such as a rectangle (whose sides may even extend to infinity) or a 

circle. 

A-4 - 
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APPENDIX - B 

THE SCHWARZ-CHRISTOFFEL TRANSFORMATION 

If a polygon is located in the z plane, then the transformation that maps it 

conformally onto the upper half of the t plane (t = r + is) is 

_ 	 dt  
z M J(t — a)l-r (t — b) ,r (t — c)i-ci,r .... ± N 	 (B.1 )  

where M and N are complex constants, A, B, C......:., are the interior angels (in 

radians) of the polygon in the z plane (Fig. B-l.a), and a, b, c;.......(a<b<c<.....)are 

Y 	 5 
D 

E H. 

t 	C 

z plane 
t plane 

points on the real axis of the t plane corresponding to the respective vertices A, B, 

C.......(Fig. B-1. b). We responding o the respective vertices A, B, C, .....(Fig. B-1). 
(a) 	 (b)  

Fig. B-1. Z-plane and t-plane 

We note, in particular, that the complex constant N corresponds to the point on 

the perimeter of the polygon that has its image at t = 0. Equation (B-1) is called the 

Schwarz-Christoffel transformation in honor of the two mathematicians, the German H. 
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A. Schwarz (1843-1921) and the Swiss E. B. Christoffel (1829-1900), who discovered it 

independently. 

The transformation can be considered as the mapping of a polygon form the z 

plane onto a similar polygon in the t plane in such a manner that the sides of the polygon 

in the z plane extend through the real axis of the t plane. This is accomplished by opening 

the polygon at some convenient point, say between A and E of Fig.(B-1) a, and 

extending one side to t = - oo and the other to t = + oo (Fig. 4-13 b). In this operation the 

sides of the polygon are bent into a straight line extending from t = -oo to t = + oo and are 

placed along the real axis of the t plane. The interior angle at the point of opening may be 

regarded as it (in the z plane) and, as noted in Eq. (B-1), takes no part in the 

transformation. The point of opening in the z plane is represented in the upper half of the 

t plane by a semicircle with a radius of infinity. Thus the Schwarz Christoffel 

transformation, in effect, maps conformally the region interior to the polygon ABC..... of 

the z plane into the interior of the polygon bounded by the sides ab, ac .....and a 

semicircle with a radius of infinity in the upper half of the t plane, or, more simply, into 

the entire upper half of the t plane. 

To demonstrate the mechanism of the Schwarz-Christoffel transformation we 

recall that a derivative of the form dz/dt could be considered as a complex operator that 

transforms an element of t, by rotation and magnification, into a corresponding element 

in z. Thus, writing eq. (B-1) as 

dt 	
M(t — a )Abr-t (t — b )ai>r-' (t — c)c"r-t ....... 	 (B.2) 

and taking the arguments of both sides, we find that any section of the real axis of t 

(where arg dt = 0) will be rotated in z by 
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arg dz = L + 4 —1 arg(t — a) + B —1 arg(t — b) + 	—1 arg(t — c) + ...... (B.3 ) 

where L = arg M is a constant. Let us now consider the rotation of elements along the real 

axis of t, excluding the terminal points a, b, c, ......For a <t < b, arg (t-a) = 0 since (t-a) 

is real and positive, and arg (t-b) = arg (t-c) = ....... = it since (t-b), (t-c) I........, are all 

real and negative. Thus, for a < t < b, arg dz is a constant equal to 

argdz= L+B-n+C- rV +...... 

which shows that this section of the t plane has its image in the z plane along a straight 

line (AB in Fig. B-l. a). In like manner, for b < t < c, we have 

argdz=L+C-rt+......... 

which will have its image along the straight line BC; that is, arg dz for b <t < c exceeds 

arg dz for a <t <b by the positive angle is-B, which is precisely the deflection angle at 

point B. as t moves form -oo to +oo along the real axis, it is seen that z completes its 

circuit through the total external angular change of 2n radians and hence encloses the 

polygon ABC.... The complex constants M and N of eg. (B.1) merely control the size 

and position of the polygon. 

The validity of the transformation at the points t = a, t = b, ....remains to be 

investigated. As t moves along the real axis through the point b, (t-b) changes from a 

negative to a positive number and arg (t-b) decreases from decreases from it to 0. Hence 

the third term in eq. (3) changes by (B/n-1) (-it) = it -B, which, as was noted previously, 

is the value of the positive deflection angle at the vertex B (Fig. B-2.a). In effect, 

ME 
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A 	B 

z plane t plane 
(a) 	 (b) 

Fig. B-2 Deflection Angle 

as z passes through the vertex B, its image in the t plane passes around an indented 

semicircle at point b (Fig. B-2.b), the radius of which (Jr — bl), can be made as small as we 

wish by adjusting 1MI . 

In many problems we shall place one or more vertices of the polygon in the z 

plane at infinity in the t plane. If, for example, a—>-oo, we can take the complex constant 

M to be of argument L and modulus C (-a) M"+l, so that eq. (B.2) becomes 

dz = Ce" (—a)1-Ain (t — a )A/,r-1 (t — b)air-I .... 
dt 

A I,r-1 
or 	dZ

— C
e  uL t a 	

— (t b) 81' ' 
at 	a 	

........ 

Now, as a—*-co, [(t-a)/-a]""'-+l, and hence we see that factors corresponding to 

verities at infinity in the t plane do not appear in the transformation. 

On the basis of the foregoing it follows that corresponding values of a, b, c, ... 

and A, B, C, ... can be chooses so that the polygons in their respective planes are similar. 

It can be shown [ 101 ] that any three of the values a, b, c, .. can be chosen arbitrarily to 

correspond to three of the vertices of the given polygon A, B, C,...... The (n-3) 

remaining values must then be determined so as to satisfy conditions of similarity. 

Whereas we shall often choose to map a vertex of the flow region (z plane) into one at 

infinity in the t plane, it is important to note that not only is this factor omitted from the 

transformation but the number of arbitrary values is reduced by 1. 
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APPENDIX - C 

METHOD OF FRAGMENTS 

An approximate analytical method of solution for any confined flow system of 

finite depth, directly applicable to design, was furnished by Pavlovsky in 1935. The 

fundamental assumption of this method called the method of fragments, is that 

equipotential lines at various critical parts of the flow region can be approximated by 

straight vertical lines that divide the region into section or fragments,in fig.C.1. 

 

;.;.1 :.:.::.:.::.:. :.:.:::: 

Fig. C.1 Weir with Three Sheet Piles 

Suppose, now that we can compute the discharge in the mth  fragment as 

kh 
q= 	m  m =1,2.........,n 

(D m 

(C.1) 

c-I 
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Where hm = head loss through fragment 

On, = dimensionless from factor* 

Then, since the discharge through all fragments must be the same 

~hm kh q=k= n 
Z(Dm 
m=t 

(C.2)  

Where h (without subscript) is the total loss through the section. By similar 

reasoning we find that the head loss in the mth fragment can be calculated from 

h = hI m 
m E (D 

(C.3)  

Once the head loss for any fragment has been determined the pressure distribution on the 

base of the structure and the exit gradient can be easily obtained. Thus the primary task is 

to implement this method by establishing a catalogue of typical from factors will be 

divided into types, and the characteristics of each type will be studied. Finally, the results 

will be summarized in tabular from for easy reference. 

Type I (Fig. C-1). The fragment of type I is a region of parallel horizontal flow 

between imperious boundaries. From Darcy's law, we have simply q = kah/L and hence 

the form factor is 

C-2 
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a 

dx 4 
I 

(a) 	 (b) 

Fig. C-2 Type I 

(C.4a) 
a 

For an elemental section (Fig. C-2.b), 

dcI= 	 • 	(C.4b) 
y 

obviously, the pressure distribution for the type I fragment is linear. 

Type II (fig. C.3), we find that the discharge for flow around a single sheetpile of 

embedments in a layer of thickness T (Fig. C.3a) is 

h 

S I T I 
(a) 
	

(b) 
	

(C) 

Fig. C-3 Type II 

khK 
q— 2K 
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with modulus m = sin (its /2T). considering the type II fragment ads either of the section 

in Fig. C-3b or c (b is an entrance condition, c an exit condition), we have for these cases 

q = k h K'/K, where h is taken as the head loss through the fragment. The modulus as 

given above can be obtained directly From fig 5-15, Page 118, ME. Harr . Hence the 

form factor is 

K ,r8 
0=-  ~ m sin 

2T 
(C.Sa) 

I 	h'r  m =sin'8 
E 2KTm 	 2T 

where h is again the head loss through the fragment. 

(C.5b) 

" H 

(a) 
	

(b) 
	

(C) 
Fig. C-4 Type III 

Type III (Fig. C-4). From Eq. (14c).(ME Harr) Sec. 5-5, the discharge for Fig. C-

3a is q = khK'/2K, where the modulus is given by Eq. (14b)(ME HArr), Sec. 5-5. Hence 

for either of the fragments of Fig (C-4.b) or c 

(D_ K 
K' 

(C.6.a) 

C-4 
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where the modulus 

,rS 	2 trb 	Z 	zi8 

	

m =cos 2T to 2b 	2T 	 (C.6 .b) 

can be obtained directly from Fig. 5-15. (M.E.Harr) 

Type IV (Fig. C-5). Pavlovsky considers the sessions shown in (Fig. C.5.a) as his 

type IV fragments. The exact solution for this fragment is 

c~ = g 

with the modulus 

m=Xsn -A,2 C 
where A = complete elliptic integral of first kind of modulus X 

A' = complete elliptic integral of first kind of complementary modulus '. 

A T 

A'b 

The method of solution will now be demonstrated by an example. 

To simplify the solution, Pavlovsky noted from his electrical analogue that the 

quantity of seepage above the streamline AB of (Fig. C-5b) was of small order and could 

be neglected. Hence he divided the flow region into two parts, labeled active an passive 

in Fig. C.5e, with the dividing 	 . 

C-5 
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iii 
b 

S 

................ 

(a) 

e b 	b 

(b) 	(C) 

~b~ 

<—~ 
X 

	

(d) 	 (e) 

Fig. C.5 Type IV 

Line EFo at an angle 0. On the basis of his analogue studies, Pavlovsky assumed 9 = 450. 

With this assumption, two conditions need to be considered for type IV fragments, 

depending in the ratio of b to s. 

1. 

	

	b _< s. For this case (Fig. C-5d), following Pavlovsky, we shall consider the 

active zone to be composed of element s of type I fragments of width dx. 

Hence 

b 	b dx 

0 y a+x 

and the form factor is 

(D=In 1+b 	 (C.7a) 
a 

2. 	b >_ s. For this case ( Fig. C-5e) 

g ds dx + 
a+x 	T 

C-6 
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and the form factor is 

(D= In I 1+Q 	T  I + bs 	 (C.7b) 

Type V (Fig. C.6). We see from Fig. C-6 that the form factor for the type V 

fragment is twice that of the Type IV fragment; hence for L _< 2s, 

0=21n 1+ L 	 S 	(C.8a) 
2a 

and for L>_2s 

(D= 21n1 1 + a) L  T2s 	 (C.8b) 

L 

S 

a IT 

Fig. C.6 Type V 

Type VI (Fig. C-7). Using the same approximations as for the type IV fragments, 

we see that two cases are to be considered. 

C-7 
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L 

 

L 

b ,<b" 

S„ 

(b) 

S 

a 
o' 

S 

T 
Ia 	a' 

o':j,  

 

(a) 

 

Fig. C-7 Type VI 

1. 	L >— s' + s". Noting in this case (Fig. C-7a) that 

	

(_ f 	+ I — + I 
o a'+x 	•s. T 	L- s., a"+L — x 

We obtain 

2. 

s" 	L — (s'+s") =1n 1"i
1(

1+ s' a' l+a~~ + T 

L < s' + s". For this case (Fig. C-7b), we have 

b' dx 	 dx + J 
o a'+x 	b a"+L — x 

Hence 

17 b' b" (D= 1n I I 1+— 1+- 
a' 	all 

(C-9a) 

(C.9b) 

where 

b, = L — (s'—s") 	b„ — L - (s'-s") 
2 	 2 

C-8 
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Table —C.: Summary of Fragment Types and Form Factors 

Fragment Type 	 .4- Form Factor (h is head loss through fragment) 

I. (D=L 
a 

L 

........................... 

a 

II. (D=K~;m=sin 

IE 2kTm 
(See Fig. 5-22,Harr) 

 

II[. 	 (D= K 
K' 

Its 	2 7th 	2 7s m = cos 27, tank 2T + tan 2T 

H H 

(See Fig. 5-15, Harr) 
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IV. 	 Exact solution ( see Example 6-1,Harr) : 
A T  = b  ; modulus = 

(D=  K'(na) ;m=Asn aA,A 
K(m) 	T 

Approximate solution: 
Szb: 

(D =1n r1
+b) l a 

S>:b: 

(D= 1n j  l+s +b—s 
a) T 

b 

....................... 	. 

S 
T 

a 

V. L < 2s: 

(D=21n 1+ L 
2a 

L<2s: 

0=21n 1+s +L-2s 
a T 

 

C-10 



'A Study on Method of Fragments for Seepage Analysis Under Hydraulic Structure 

VI. 	 L>s'+s": 

ci=1n 
[(

I+'Sk+s +L— s+s 
a'J an 	T 

L=s'+s": 

ci) in l+ s' l+s Q. 	aif►, 

L<s'+s": 

b' 	b" 
q)= 1n I I 1+ al l+ a~~ 

where 
L + (s'-s") 

2 
L — (s'—s") 

2 
L 

I`S't 

S' yl 
T 

. a„ 
a'  

L 

bE b' 	i 

SI 

H 

T 
at 	:::►::::=: 	all 

The various fragment types and pertinent relationships are presented in Table C 

for easy reference. To determine the pressure distribution on the base of a structure (such 

as that along C'CC". In Fig. (C-8), we shall assume that the head loss within the 

c-ii 
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fragment is linearly distributed along the impervious boundary. Thus, in Fig. C-8 if h,,, is 

the head loss within the fragment, the rate of loss along E' C'CC" E" will be 

R=  hm  
L + s'+s" 

(C.10) 

Once the total head is known at any point, the pressure can easily be determined. 

Fig C-8 

C-12 
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APPENDIX - D 

COMPUTER PROGRAM OF FLOW UNDER A- WEIR WITH 
INCLINED SHEET PILE 

DIMENSION W(96), XX(96) 
OPEN(UNIT=I,STATUS='OLD',FILE='SABL5.DAT') 
OPEN(UNIT=2,STATUS='UNKNOWN',FILE='SABL5.OUT') 
OPEN(UNIT=3,STATUS='OLD', FILE='GAD S S. DAT') 

C 	THIS PROGRAMME IS FOR S/T>1 
READ(1,*) S,AL,T,ALPHA 
READ(3,*)(W(I),I=1,96) 
READ(3,*)(XX(I),I=1,96) 

C 	SEGMENTI 
WRITE(2,200) 

200 FORMAT(5X,'AL',8X,'S',9X,'T',IOX,'ALPHA') 
WRITE(2,201)AL,S,T,ALPHA 

201 FORMAT(4F 10.4) 
C COMPUTATION OF B 

• CALL RAPHB 1(ALPHA,S,T,B,RESIDUE) 
WRITE(2,*)'B=', B 
WRITE(2, *)'RES IDUE=',RESIDUE 

C COMPUTATION OF D 
CALL RAPHD(W,XX,ALPHA,AL,T,D,RESIDUE) 
WRITE(2,*) 'D=', D 
WRITE(2,*)'RESIDUE=',RESIDUE 

C 	COMPUTATION FOR SEGM1 
C 	FOR AL=0,D=0. 
C 	D=O. 

AKS=(.1.-B)/(1.+D) 
CALL CEF(W,XX,AKS,CEF 1) 
TERM 1=CEF 1 

• AKS=(B+D)/(1.+D) 
WRITE(2, *)'AKS=',AKS 
CALL CEF(W,XX,AKS,CEF I) 
TERM2=CEF 1 
SEGM 1=TERM 1 /TERM2 
WRITE (2,*)'SEGM1=',SEGM1 

C SEGMENT II 
C COMPUTATION OF B 

CALL RAPHB2(ALPHA,S,T,B,RESIDUE) 
WRITE(2,*) 'B=', B • 
WRITE(2,*)'RESIDUE=',RESIDUE 
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C ' COMPUTATION FOR SEGM2 
AKS=B . 
CALL CEF(W,XX,AKS,CEF1) 
TERMI=CEF 1 
AKS=1.-B 
CALL CEF(W,XX,AKS,CEF1) 
TERM2=CEF 1 
SEGM2=TERM 1 /TERM2 
WRITE (2,*)'SEGM2=',SEGM2 
ALPHA 1=SEGM 1/(SEGM I +SEGM2) 
QBYKH 1=ALPHA 1*  SEGM2 
QB YKH2=(1. -ALPHA 1) * S EGM 1 
SBYT=S/T 
ALBYT=AL/T 
WRITE(2,202) 

202 FORMAT(8X,'AL/T',1 OX,'S/T',1 OX,'Q/KH') 
WRITE(2,203)ALBYT,SBYT,QBYKH 1 

203 FORMAT(F 10.2,5X,F 10.2,5X,F 10.4) 
STOP 
END 

SUBROUTINE RAPHB 1(ALPHA,S,T,B,RESIDUE) 
PAI=3.14159265 
BETAC=PAI/(SIN(PAI*ALPHA)) 
TERM 1 =S/T*SIN(ALPHA*PAI) 
P=ALPHA 
Q=1.-ALPHA 
I=1 
B=0.000001 
DELB=(0. 9999999-B)/100. 

100 CONTINUE 
CALL BETAIN(P,Q,B,BETAI) 
RESIDUE=TERM 1-BETAI/BETAC 
IF (ABS(RESIDUE).LT.0.00001) GO TO 500 
IF(B.GE.1.0000000) GO TO 600 
B=B+DELB 
I=1+1 
IF(I.GT.500) GO TO 600 
IF (RESIDUE.GT.0.0) GO TO 100 
BR=B-DELB 
BL=BR-DELB 

200 B=(BL+BR)/2. 
CALL BETAIN(P,Q,B,BETAI) 
RESIDUE=TERM 1 -BETAI/BETAC 
IF (ABS(RESIDUE).LT.0.00001) GO TO 500 
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I=I+1 
IF(I.GT.500) GO TO 600 
IF(RESIDUE.GT.O.) GO TO 300 
IF(RESIDUE.LT.O.) GO TO 400 

300 BL=B 
GO TO 200 

400 BR=B 
GO TO 200 

600 CONTINUE 
WRITE(2,*)'ITERATION HAS FAILED IN COMPUTING B IN SEGMENT I' 

500 CONTINUE 

t 

SUBROUTINE RAPHB2(ALPHA,S,T,B,RESIDUE) 
PAI=3.14159265 
BETAC=PAI/(SIN(PAI*ALPHA)) 
TERM 1=1.-S/T* SIN(ALPHA*PAI) 

C 	write(2,*)'term I =',term 1 
P=ALPHA 
Q=1.-ALPHA 
B=0.000001 
DBETA=(0.999999-0.00000 1)/10. 
I=1 

100 CONTINUE 
IF(B.GE.1.00000000) GO TO 600 
CALL BETAIN(P,Q,B,BETAI) 
RESIDUE=TERM 1-BETAI/BETAC 

	

c 	term2=betai/betac 

	

c 	write(2, * )i,b,term l ,term2,residue 
IF (ABS(RESIDUE).LT.0.00001) GO TO 500 
I=I+1 
IF(I.GT.500) GO TO 600 
B=B+DBETA 
IF (RESIDUE.GT.0.0) GO TO 100 
BR=B-DBETA 
write(2,*)'this point is crossed' 

	

c 	CALL BETAIN(P,Q,BR,BETAI) 

	

c 	RESIDUE=TERM I -BETAI/BETAC 

	

c 	WRITE(2,*)'BR=',BR,'RESIDUE=',RESIDUE 
BL=BR-DBETA 

	

c 	CALL BETAIN(P,Q,BL,BETAI) 
c 	RESIDUE=TERM 1-BETAI/BETAC 
c 	WRITE(2,*)'BL=',BL,'RESIDUE=',RESIDUE 

D-3 



A Study on Method of Fragments for Seepage Analysis Under Hydraulic Structure 

200 B=(BL+BR)/2. 
CALL BETAIN(P,Q,B,BETAI) 
RESIDUE=TERM 1-BETAI/BETAC 
IF (ABS(RESIDUE).LT.0.0001) GO TO 500 
I=I+1 
IF(I.GT.200) GO TO 600 
IF(RESIDUE.GT.O.) GO TO 300 
IF(RESIDUE.LT.O.) GO TO 400 

300 BL=B 
c 	write(2,*)'iteration entered 300' 

GO TO 200 
400 BR=B 
c 	write(2, *)'iteration entered 400' 

GO TO 200 
600 CONTINUE 

WRITE(2,*)'ITERATION HAS FAILED COMPUTING B IN SEGMENT II' 
500 CONTINUE 

RETURN 
END 
SUBROUTINE RAPHD(W,XX,ALPHA,AL,T,D,RESIDUE) 
DIMENSION W(96),XX(96) 
PAI=3.14159265 
BETAC=PAI/(SIN(PAI*ALPHA)) 
1=1 	- 
D=0.00001 
DELD=O. I 
TERM=AL/T* SIN(ALPHA*PAI) 

100 CONTINUE 
CALL AINT(W,XX,ALPHA,D,G) 
RESIDUE=TERM-GBETAC 
IF (ABS(RESIDUE).LT.0.00001) GO TO 500 
I=I+1 
IF(I.GT.500) GO TO 600 
D=D+DELD 
IF(RESIDUE.GT.0.0) GO TO 100 
DR=D-DELD 
DL=DR-DELD 

200 D=(DL+DR)/2. 
CALL AINT(W,XX,ALPHA,D,G) 
RESIDUE=TERM-G/BETAC 
IF(ABS(RESIDUE).LT.0.00001) GO TO 500 
I=I+1 
IF(I.GT.500) GO TO 600 
IF(RESIDUE.GT.O.) GO TO 300 
IF(RESIDUE.LT.O.) GO TO 400 
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300 DL=D 
GOTO200 

400 DR=D 
GO TO 200 

600 CONTINUE 
WRITE(2,*)'ITERATION HAS FAILED IN COMPUTING D' 

500 CONTINUE 
RETURN 
END 

SUBROUTINE AINT(W,XX,ALPHA,D,G) . 
DIMENSION W(96), .XX(96) 
SUM=0.0 
TERM=0.5*D**(1./8.) 

DO 101=1,96 
TERM 1=TERM*(1.+XX(I)) 
TERM2=TERM 1 * *(8. *ALPHA-1.) 
TERM3=(1.+TERM 1 * * 8)* *ALPHA 
TERM4=TERM2/TERM3 
SUM=SUM+W(I)*TERM4 

10 CONTINUE 
G=SUM*TERM*8. 
RETURN 
END 
SUBROUTINE CEF(W,XX,AKS,CEF1) 
DIMENSION W(96), XX(96) 
PAI=3.141592654 
SUM=0.0 
DO 101=1,96 
THETA=PAI/4. * (I .+XX(I)) 
TERM=0.25 *PA  I/SQRT(I.-AKS*SIN(THETA)*SIN(THET A)) 
SUM=SUM+TERM* W(I) 

10 CONTINUE 
CEF1=SUM 
RETURN 
END 
SUBROUTINE BETAIN(P,Q,X,BETAI) 
IF(Q.GT.1.) GO TO 100 
I=1 	 • 
C4=P 
C5=1.0-Q 

• C6=1.0+P 
• C7=1.0 

C9=1.0 
C10=1.0 
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7 	C9=C9*X*(C4/C6)*C5/C7 
C10=C10+C9 
C4=C4+1.0 
C5=C5+1.0 
C6=C6+1.0 
C7=C7+ 1.0 
I=1+1 
A=ABS(C9) 
IF(A. GT.0.0000001) GO TO 7 
BETAI=X**P*C10/P 
RETURN 

100 X=1.-X 
P 1=Q 
Q1=P 
C4=P1 
C5=1.0-Q1 
C6=1.0+P 1 
C7=1.0 
C9=1.0 
C10=1.0 

77 C9=C9*X*(C4/C6)*C5/C7 
C10=C10+C9 
C4=C4+1.0 
C5=C5+1.0 
C6=C6+1.0 
C7=C7+1.0 
A=DABS(C9) 
IF(A.GT.0.0000001) GO TO 77 
BETAI=X**P*C1O/P 
RETURN 
END 
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APPENDIX -E 

COMPUTER PROGRAM OF FLOW UNDER A WEIR 
WITH TWO SHEET PILES 

DIMENSION W(96),X(96) 
DIMENSION A(4,4),RCOL(4) 

OPEN (1,STATUS='OLD', FILE='GAUSS.DAT') 
OPEN (2,STATUS='UNKNOWN', FILE='SABM8.OUT') 
OPEN (3,STATUS='OLD',FILE='SABM8.DAT') 

READ(1,*) (W(I),I=1,96) 
READ(1,*) (X(I),I=1,96) 
READ(3,*)AL1,AL2,AL3 
READ (3, *) Ti, T2, T3, T4 
READ(3, *) DT1, DT2 
READ(3,*) Si, S2 
READ (3 , *) AL PA 
READ(3,*)hl,h2 
PAI=3.141592654 

C 	COMPUTATION OF DISCHARGE OF SEEPAGE IN SEGMENT I 
WRITE(2,*)'OUTPUT OF COMPUTER PROGRAM IN SEGMENT I' 

C 	COMPUTATION BT1 
BT1=(SIN((PAI/2)*((DT1+S1)/T1)))**2 
WRITE(2,*)'BT1= ',BT1 

C 	COMPUTATION SEGM1 
AKS=1.-BT1 
CALL CEF(W,X,AKS,CEF1) 
TER1=CEF1 
AKSI=BT1 
CALL CEF(W,X,AKS1,CEF2) 
TER2=CEF2 
SEGM1=TER1/TER2 
WRITE(2,*)'SEGM1=',SEGMl 

C 	COMPUTATION OF DISCHARGE OF SEEPAGE IN SEGMENT II 
WRITE(2,*)'OUTPUT OF COMPUTER PROGRAM IN SEGMENT II' 

C 	COMPUTATION B2 
CALL RAPHB2(W,X,AL1,T2,B2,RESIDUE) 
WRITE(2,*)'B2=', B2 

C 	COMPUTATION D2 
CALL RAPHD2 (W, X, T2, Si, B2, D2, RESIDUE) 
WRITE(2, *) 'D2=' , D2 
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C 	COMPUTATION SEGM2 
AKS=(1.0-B2)/(1.0+D2) 
CALL CEF(W,X,AKS,CEF1) 
TERM1=CEF1 
AKS1=(B2+D2)/(1.0+D2) 
CALL CEF(W,X,AKS1,CEF2) 
TERM2=CEF2 
SEGM2=TERM1/TERM2 
WRITE(2,*)'SEGM2=',SEGM2 

C 	COMPUTATION OF DISCHARGE OF SEEPAGE IN SEGMENT III 
WRITE(2,*)'OUTPUT OF COMPUTER PROGRAM IN SEGMENT III' 

C 	COMPUTATION 83 
CALL RAPHB3(W,X,ALPA,AL2,T3,B3,RESIDUE) 
WRITE(2, *) 'B3=' ,B3 

C 	COMPUTATION SEGM3 
AKS=1.0-B3 
CALL CEF(W,X,AKS,CEF1) 
TERM1=CEF1 
AKS1=B3 
CALL CEF(W,X,AKSI,CEF2) 
TERM2=CEF2 
SEGM3=TERM1/TERM2 
WRITE (2,*)'SEGM3=',SEGM3 

C 	COMPUTATION-OF DISCHARGE OF SEEPAGE IN SEGMENT IV 
WRITE(2,*)'OUTPUT OF COMPUTER PROGRAM IN SEGMENT IV' 

C 	COMPUTATION C4 
CALL RAPHC4(W,X,AL3,T3,C4,RESIDUE) 
WRITE (2, *) 'C4=' ,C4 

C 	COMPUTATION B4 
CALL RAPHB4(W,X,S2,T3,B4,C4,RESIDUE) 
WRITE(2,*)'B4=', B4 

C 	COMPUTATION SEGM4 
AKS=1.0-B4 
CALL CEF(W,X,AKS,CEF1) 
TERM1=CEF1 
AKS1=B4 
CALL CEF(W,X,AKSI,CEF2) 
TERM2=CEF2 
SEGM4=TERM1/TERM2 
WRITE(2,*)'SEGM4=',SEGM4 

C 	COMPUTATION OF DISCHARGE OF SEEPAGE IN SEGMENT V 
B5=(SIN((PAI/2)*(1-((DT2+S2)/T4))))**2 
WRITE(2,*)'OUTPUT OF COMPUTER PROGRAM IN SEGMENT V' 
WRITE (2, *) 'B5= ', B5 
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C 	COMPUTATION SEGM5 
AKS=B5 
CALL CEF(W,X,AKS,CEF1) 
TFRM1=CEF1 
AKS1=1.0-B5 
CALL CEF(W,X,AKS1,CEF2) 
TERM2=CEF2 
SEGM5=TERM1/TERM2 
WRITE(2,*)'SEGM5=',SEGMS 

C 	COMPUTATION OF MATRIX OF ALPHA(1,2,3,4,) 
Al=SEGM1 
B1=SEGM2 
C1=SEGM3 
D1=SEGM4 
E1=SEGM5 

RCOL (1) =A1 
RCOL(2)=0. 
RCOL (3) =0 . 
RCOL(4)=0. 

DO I=1, 4 
DO J=1, 4 
A(I,J)=0. 
END DO 	- 
EN D DO 
A(1, 1) =Al+B1 
A (1,.2) =-B1 

A(2, 1)=B1 
A(2,2)=-(B1+C1) 
A(2, 3)=C1 

A(3, 2)=C1 
A(3,3)=-(C1+D1) 
A(3, 4)=D1 

A(4, 3)=D1 
A(4,4)=-(D1+E1) 

MMM=4 
CALL MATIN(A,MMM) 

SUM1=0. 
SUM2=0. 
SUMS=0. 
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SUMO=0. 
DO 	J=1, 4 
SUM1=SUM1+A (1, J) *RCOL (J) 
SUM2=SUM2+A(2,J)*RCOL(J) 
SUM3=SUM3+A (3, J) *COL (J) 
SUM4=SUM4+A(4,J)*RCOL(J) 
END DO 
ALPHAI=SUM1 
ALPHA2=SUM2 
ALPHA3=SUM3 
ALPHA4=SUM4 

WRITE(2,*)'OUTPUT OF COMPUTER PROGRAM OF ALPHA' 
WRITE (2,*)'ALPHAI=',ALPHAI 
WRITE(2,*)'ALPHA2=',ALPHA2 
WRITE(2,*)'ALPHA3=',ALPHA3 
WRITE(2,*)'ALPHA4=',ALPHA4 

C 	COMPUTATION OF QUANTITY OF SEEPAGE 
QBKH=(1.-ALPHA1)*A1 
WRITE(2,*)'q/kh=',QBKH 

C 	COMPUTATION OF UPLIFT PRESSURE 
C 	SEGMENT II 

h= (hl+Tl) - (T4+h2) 
AKS= (B2+D2) /(-1.+D2)  
PHAI=ASIN(SQRT(D2/(B2+D2))) 
CALL CIEF(W,X,AKS,PHAI,CIEF1) 
TIM1=CIEF1 
AKS=(l.-B2)/(1.+D2) 
CALL CEF(W,X,AKS,CEF1) 
TIM2=CEF1 
TIM3=TIM1/TIM2 
PHIBKH=QBKH*TIM3-ALPHAI 
WRITE (2, *) ' PHIBKH2=' , PHIBKH 
P1BGW=-PHIBKH*h-T2+h2+T4 
WRITE(2,*)' (Pl/GW)=',PlBGW 

P2BGW=ALPHA2*h-T2+h2+T4 
WRITE (2, *) ' (P2/GW) =' , P2BGW 

SEGMENT III 
P3BGW=ALPHA3*h-T3+h2+T4 
WRITE (2, *) ' (P3 /GW) =' , P3BGW 

SEGMENT IV 
AKS=B4 
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PHAI=C4/B4 
CALL CIEF(W,X,AKS,PHAI,CIEF1) 
TEM1=CIEF1 
AKS=(1.-B4) 
CALL CEF(W,X,AKS,CEFl) 
TEM2=CEF1 
TEM3=TEM1/TEM2 
PHIBKH=QBKH*TEM3-ALPHA3 
WRITE.(2, *) ' PHIBKH4=' , PHIBKH 
P4BGW=-PHIBKH*h-T3+h2+T4 
WRITE(2,*)'(P4/GW)=',P4BGW 

C 	COMPUTATION OF EXIT GRADIENT 
C 	SEGMENT V 

AKS=1.0-B5 
CALL CEF(W,X,AKS,CEF1) 
TERM5=CEF1 
h=hl-h2 
AIE=ALPHA4*(PAI*h/(2.*T4))/(TERM5*(l.-B5)**0.5) 
WRITE (2, *) ' IE=' , AIE 
STOP 
END 

SUBROUTINE RAPHB2(W,X,AL1,T2,B2,RESIDUE) 
U2=AL1/T2- 
BINI=0.01 
DELB=0.01 
B2=BINI 

1 B2=B2+DELB 
AKS=B2 
CALL CEF(W,X,AKS,CEF1) 
TEM1=CEF1 
AKS1=1.0-B2 
CALL CEF(W,X,AKS1,CEF2) 
TEM2=CEF2 
RESIDUE=U2-(TEM1/TEM2) 
IF(RESIDUE.GT.0.00) GO TO 1 
BR=B2 
BL=BR-DELB 

2 B2= (BR+BL) /2 . 0 
AKS=B2 
CALL CEF (W, X, AKS, CEF1) 
TEM1=CEF1 
AKS1=1.-B2 
CALL CEF(W,X,AKS1,CEF2) 
TEM2=CEF2 
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RESIDUE=U2-(TEM1/TEM2) 
IF(ABS(RESIDUE).LT.0.0001) GO TO 5 
IF(RESIDUE.GT.0.0) GO TO 4 
IF(RESIDUE.LT.0.0) GO TO 3 

3 BR=B2 
GO TO 2 

4 BL=B2 
GO TO 2 

5 CONTINUE 
RETURN 
END 

SUBROUTINE RAPHD2(W,X,T2,Sl,B2,D2,RESIDUE) 
I=1 
V2= (T2-S1) /T2 
D2=0.0001 
DELD=0.01 

6 CONTINUE 
I=I+1 
AKS1=1.-B2 
CALL AIEF(W,X,B2,D2,AIEFK) 
TIMI=AIEFK 
AKS1=1.-B2 
CALL CEF(W,X,AKS1,CEF2) 
TIM2=CEF2 	-  
RESIDUE= (TIMl/TIM2)-V2 
IF(ABS(RESIDUE).LT.0.00001)GO TO 10 
D2=D2+DELD 

-IF(RESIDUE.GT.0.00) GO TO 6 
DR=D2-DELD 
DL=DR-DELD 

7 D2= (DR+DL) /2 . 0 
I=I+1 
AKS1=1.-B2 
CALL AIEF(W,X,B2,D2,AIEFK) 
TIM1=AIEFK 
AKS1=1.-B2 
CALL CEF(W,X,AKSI,CEF2) 
TIM2=CEF2 
RESIDUE= (TIM1/TIM2) -V2 
IF(ABS(RESIDUE).LT.0.0001) GO TO 10 
IF(I.GT.100) GO TO 10 
IF(RESIDUE.GT.0.0) GO TO 9 
IF(RESIDUE.LT.0.0) GO TO 8 

8 DR=D2 
GO TO 7 
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9 DL=D2 
GO TO 7 

10 CONTINUE 
RETURN 
END 

SUBROUTINE RAPHB3(W,X,ALPA,AL2,T3,B3,RESIDUE) 
PAI=3.141592654 
U3=T3/AL2*SIN(ALPA*PAI) 
BINI=0.01 
DELB=0.01 
B3=BINI 

11 B3=B3+DELB 
CALL AINA(W,X,ALPA,B3,AINA1) 
TEM1=AINA1 
CALL AINB(W,X,ALPA,B3,AINB1) 
TEM2=AINB1 
CALL AINC(W,X,ALPA,B3,AINC1) 
TEM3=A INC 1 
CALL AIND(W,X,ALPA,B3,AIND1) 
TEM4=AIND1 
TEM5=(TEM3+TEM4) /(TEM1+TEM2) 
RESIDUE=TEM5-U3 
IF(RESIDUE.GT.0.00) GO TO 11 
BR=B3 
BL=BR-DELB 

12 B3=(BR+BL)/2.0 
CALL AINA(W,X,ALPA,B3,AINA1) 
TEM1=AINA1 
CALL AINB(W,X,ALPA,B3,AINB1) 
TEM2=AINB1 
CALL AINC(W,X,ALPA,B3,AINC1) 
TEM3=AINC1 
CALL AIND(W,X,ALPA,B3,AIND1) 
TEM4=AIND1 
TEM5=(TEM3+TEM4)/(TEM1+TEM2) 
RESIDUE=TEM5-U3 
IF(ABS(RESIDUE).LT.0.0001) GO TO 15 
IF(RESIDUE.GT.0.0) GO TO 14 
IF(RESIDUE.LT.0.0) GO TO 13 

13 BR=B3 
GO TO 12 

14 BL=B3 
GO TO 12 

15 CONTINUE 
RETURN 
END 
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SUBROUTINE RAPHC4(W,X,AL3,T3,C4,RESIDUE) 
V4=AL3/T3 
CINI=0.01 
DELC=0.01 
C4=CINI 

16 C4=C4+DELC 
AKS=C4 
CALL CEF(W,X,AKS,CEF1) 
TIM1=CEF1 
AKS1=1.-C4 
CALL CEF (W, X, AKS1, CEF2 ) 
TIM2=CEF2 
RESIDUE=V4-(TIMl/TIM2) 
IF(RESIDUE.GT.0.00) GO TO 16 
CR=C4 
CL=CR-DELC 

17 C4=(CR+CL)/2.0 
AKS=C4 
CALL CEF(W,X,AKS,CEF1) 
TIMI=CEF1 
AKS1=1.-C4 
CALL CEF(W,X,AKS1,CEF2) 
TIM2=CEF2 
RESIDUE=V4-(TIMl/TIM2) 
IF(ABS(RESIDUE).LT.0.0001) GO TO 20 
IF(RESIDUE.G_T.0.0) GO TO 19 
IF(RESIDUE.LT.0.0) GO TO 18 

18 CR=C4 
GO TO 17 

19 CL=C4 
GO TO 17 

20 CONTINUE 
RETURN 
END 

SUBROUTINE RAPHB4(W,X,S2,T3,B4,C4,RESIDUE) 
I=1. 
U4=S2/T3 
B4=C4+0.001 
DELB=0.01 

21 CONTINUE 
I=I+1. 
AKS=1.-C4 
PHAI=(B4-C4)/(B4*(1.-C4)) 
CALL CIEF(W,X,AKS,PHAI,CIEF1) 
TEMI=CIEF1 
AKS=1.0-C4 
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CALL CEF(W,X,AKS,CEF1) 
TEM2=CEF1 
RESIDUE=(TEMl/TEM2)-U4 
IF(ABS(RESIDUE).LT.0.00001) GO TO 25 
B4=B4+DELB 
IF(RESIDUE.GT.0.00) GO TO 21 
BR=B4-DELB 
BL=BR-DELB 

22 B4= (BR+BL) /2 
I=I+1. 
AKS=1.-C4 
PHAI=(B4-C4)/(B4*(1.-C4)) 
CALL CIEF(W,X,AKS,PHAI,CIEF1) 
TEM1=CIEF1 
AKS=1.0-C4 
CALL CEF(W,X,AKS,CEF1) 
TEM2=CEF1 
RESIDUE= (TEM1/TEM2) -U4 
IF(ABS(RESIDUE).LT.0.00001) GO TO 25 
IF(I.GT.100)GO TO 25 
IF(RESIDUE.GT.0.0) GO TO 24 
IF(RESIDUE.LT.0.0) GO TO 23 

23 BR=B4 
GO TO 22 

24 BL=B4 
GO TO 22 - 

25 CONTINUE 
RETURN 
END 

SUBROUTINE MATIN (A,MMM) 
DIMENSION A(4,4),B(4),C(4) 
NN=MMM-1 
A(1,1)=1./A(1,1) 
DO 8 M=1,NN. 
K=M+1 
DO 3 I=1,M 
B(I)=0.0 
DO 3 J=1,M 

3 	B(I)=B(I)+A(I,J) *A(J,K) 
D=0.0 
DO 4 I=1,M 

4 	D=D+A (K, I) *B (I ) 
D=--D+A (K, K) 
A(K,K)=1./D 
DO 5 I=1,M 
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5 	A(I,K)=-B(I) *A(K,K) 
DO 6 J=1, M 
C(J)=0.0 
DO 6 I=1,M 

6 	C(J)=C(J)+A(K,I)*A(I,J) 
DO 7 J=1,M 

7 	A(K,J)=-C(J) *A(K,K) 
DO 8 'I=1, M 
DO 8 J=1,M 

8 	A(I,J)=A(I,J)-B(I)*A(K,J) 
RETURN 
END 

• SUBROUTINE CEF(W,X,AKS,CEF1) 
DIMENSION W(96), X(96) 
PAI=3.141592654 
SUM=0.0 
DO 10 I=1,96 
THETA=PAI/4.*(1.+X(I)) 
TERM=0.25*PAI/SQRT(l.-AKS*SIN(THETA)**2) 
SUM=SUM+TERM*W(I) 

10 CONTINUE 
CEFI=SUM 
RETURN 
END 

SUBROUTINE AIEF(W,X,B2,D2,AIEFK) 
DIMENSION W(96),X(96) 
AKS1=1.-B2 
SUM=0.0 
PHI1=ASIN(SQRT(1./(1.+D2))) 
DO 10 I=1,96 
TERM1=(1.0-AKS1*SIN(0.5*PHI1*(1.0+X(I)))**2.0)**0.5 
TERM2=W(I)*0.5*PH11/TERM1 
SUM=SUM+TERM2 

10 CONTINUE 
AIEFK=SUM 
RETURN 
END 

SUBROUTINE AINB(W,X,ALPA,B3,AINB1) 
DIMENSION W(96), X(96) 
SUM=0.0 
DO 10 I=1,96 
TERM=0.5*(B3*0.5)**0.5*(l.+X(I)) 
TERM1= (TERM) ** (1. -2. *ALPA) 
TERM2= (1 . -B3+ (TERM) **2 .) **0. 5 
TERM3=(B3-(TERM)**2.)**(1.-ALPA) 
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TERM4=TERM1/(TERM2*TERM3) 
SUM=SUM+W(I)*TERM4 
CONTINUE 
AINBI=SUM*(B3*0.5)**0.5 
RETURN 
END 
SUBROUTINE AINA (W, X, ALPA, B3', AINA1) 
DIMENSION W(96), X(96) 
SUM=0.0 
DO 10 1=1,96 
TERM=0. 5* (B3*0. 5) ** (l. /8.) * (1.+X (I) ) 
TERM1=(TERM)**(8.*ALPA-1.) 
TERM2=(1.-(TERM)**8.)**0.5 

• TERM3=(B3-(TERM)**8.)**ALPA 
TERM4=TERM1/(TERM2*TERM3) 
SUM=SUM+W(I)*TERM4 

10 CONTINUE 
AINA1=SUM*4.*(B3*0.5)**(1./8.) 
RETURN 
END 

SUBROUTINE AINC(W,X,ALPA,B3,AINC1) 
DIMENSION W(96), X(96) 
SUM=0.0 
DO 10 I=1,96 
TERM=0.5.* (0.5* (1.-B3)) **0.5* (1.+X(I) 
TERM1=(TERM)**(1.-2.*ALPA) 
TERM2= (1. - (TERM) **2. -B3) **0. 5 
TERM3=((TERM)**2.+B3)**(1.0-ALPA) 
TERM4=TERM1/(TERM2*TERM3) 
SUM=SUM+W(I)*TERM4 
CONTINUE 
AINCI=SUM*(0.5-B3)**0.5 
RETURN 
END 

SUBROUTINE AIND(W,X,ALPA,B3,AIND1) 
DIMENSION W(96), X(96) 
SUM=0.0 
DO 10 1=1,96 
TERM=0.5*(0.5*(1.+B3))**0.5*(1.+X(I)) 
TERM1=(1.-(TERM)**2.-B3)**ALPA 
TERM2= (1 . - (TERM) **2 .) ** (1. 0-ALPA) 
SUM=SUM+W (I) / (TERM1*TERM2) 

10 CONTINUE 	 ' 
AIND1=SUM*(0.5)**0.5 
RETURN 
END 
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SUBROUTINE CIEF(W,X,AKS,PHAI,CIEF1) 
DIMENSION W(96), X(96) 
PAI=3.141592654 
SUM=0.0 
DO 10 I=1,96. 
THETA=PHAI/2.*(1.+X(I)) 
TERM=0.5*PHAI/SQRT(1.-AKS*SIN(THETA)**2.) 

• SUM=SUM+TERM*W(I) 
• 10 CONTINUE 	• 

CIEFI=SUM 
• RETURN..,

•• END' 	 -• 
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