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SYNOPSIS 

For a partially penetrating stream in an unconfined aquifer, the reach 

transmissivity increases with increase in depth of water in the stream, decreases with 

increase in length of aquifer boundary and increases tending to constant value with 

increase in stream width. 

A rigorous analytical solution for steady seepage from a trapezoidal stream/canal 

to an unconfined aquifer in which water table lies at a shallow depth has been derived 

using Zhukovsky function and Schwarz-Christoffel conformal mapping. 

Steady state seepage from a stream in a confined aquifer can be expressed as q = k 

F Ah = Fr  Ah in which k is hydraulic conductivity, Ah is hydraulic head difference 

measured at a piezometer in the vicinity of the stream, and F is a factor which depends on 

location of the piezometer i.e. distance of the piezometer from the stream bank and stream 

geometry i.e. cross section of the stream and depth of penetration of the stream. The 

above linear relationship between seepage and Ah is valid for steady state and confined 

flow condition. 

Aravin, Bouwer, Herbert, Morel-Seytoux and many other investigators have 

derived the factor F based on Darcy's law and Dupuit Ferchheimer flow condition at large 

distance from the water body. 

In the present dissertation, exact relation of the parameter Fr/k (i.e. seepage factor 

F) with distance of the piezometer and stream geometry including depth of penetration 

has been derived. 

Unsteady flow from a fully penetrating stream has been given by Carslaw and 

Jaeger for an analogous heat conduction problem. Partially penetrating stream, offers 

more resistance to flow than fully penetrating stream because of flow convergence near 

the stream. The sum of the resistance due to flow convergence and resistance due to 

fraction of the aquifer under the stream bed can be equated to the resistance of length AL. 

of the aquifer for uniform flow condition. This length AL is known as substitute length. 

In comparing the results with Herbert's formula, it is found that Herbert's formula 

is applicable for depth of penetration less than 30 % (the involved error < 10%) and width 

of the stream (B/T2) less than 0.2. 
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NOTATIONS 

B 1 	half width of the stream at bed level, (L) 

B2 	half width of the stream at the water surface, (L) 

Ds 	depth of penetration of the stream into the aquifer, (L) 

h1 	hydraulic head in the stream, (L)  

h2 	hydraulic head at the boundary of the finite aquifer, (L) 

hB 	hydraulic. head at a point B in the aquifer, (L) 

hM 	hydraulic head at a point M below the stream bed, (L) 

AhA  draw down at point A in the aquifer, (L) 

LhF draw down at point F below the stream bed, (L) 

k 	coefficient of permeability of the aquifer, (LTd ) 

Kyg 	unit step response function for flow, (L3T"'/L) 

LA 	aquifer length measured from the stream bank, (L) 

LB 	distance of piezometer from the stream bank, (L) 
q 	rate of seepage per unit length of the stream, (L2T-') 
Q 	rate of flow, (L3T"' ) 

Re 	aquifer resistance (T/L) Ra  = 1 L 
kA 

s 	rise in the-aquifer, (L) 

t 	time, (T) 

T, 	thickness of the aquifer below the stream bed, (L) 
Tz 	thickness of the aquifer, (L) 

v 	velocity of flow, (LT') 

an 	angle of inclination of the river bank over horizontal line 

hydraulic diffusivity of the aquifer, (L2T-1 ) 

S 	discrete a kernel for flow, (L3T4/L) . 
OL 	substitute length, (L) 

At 	size of uniform time steps, (T) 

yW 	unit weight of water 
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n,y 	indices denoting time-step 

(D 	storage coefficient of the aquifer 

6 	rise in the stream, (L) 

Fr 	reach transmissivity (L2/T) 
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CHAPTER I 

INTRODUCTION 

I.1 GENERAL 

Streams and rivers are important geological features, which are control the 

occurrence, distribution and quality of surface water as well as ground water. A river 

rarely penetrates the entire thickness to an aquifer. If bed width of the river is more than 

five times the depth of aquifer below the river bed, the river can be assumed to act as 

boundary between the adjoining aquifers. In such case the aquifers on either sides of the 

river do not influence each other directly i.e. the flow from one aquifer does not enter to 

the other aquifer under the river bed. For steady and confined flow condition, the 

exchange of flow between the river and aquifer is proportional to the difference in 

hydraulic heads at the river and in the aquifer near the river. The constant of 

proportionality is known as reach transmissivity which is a function of river width, depth 

of aquifer below the river bed, thickness of aquifer and hydraulic conductivity of the 

aquifer material. The reach transmissivity for a river with large width has been derived 

using conformal mapping by Mishra (2001). 

On this dissertation, using conformal mapping the reach transmissivity for a 

partially penetrating stream of finite width is derived as a function of depth of penetration 

of the stream, thickness of the aquifer, width of the stream, distance of piezometer from 

the stream bank and hydraulic conductivity of the aquifer materials. The substitute length, 

whose resistance is equal to the extra resistance arising due to convergence of flow, has 

been derived for the partially penetrating stream of finite width. Using substitute length, 

unsteady seepage is computed. 

L2 TWO-DIMENSIONAL STEADY FLOW OF GROUND WATER 

In many cases of ground water flow the liquid particles move in planes parallel to 

one another. The character of the flow is the same at all points of a straight line drawn at 

right angles to those planes. Such a flow is a two-dimension steady flow, and the 

corresponding seepage problem can be solved as a two-dimensional one. Since the liquid 

particles move in a plane, the velocity vectors also fie in that plane. Therefore, we choose 

any of the planes in which the motion takes place, and obtain a solution in that plane. In 

1-1 
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the solution, the length of the flow region in the direction normal to the plane of flow, is 

taken to be equal to unity. The total flow for the entire flow region is then obtained by 

multiplying the results of the plane problem by the actual length of the region. 

The assumption of two-dimensional flow means a great simplification. On the 

strength of it we can examine many, otherwise intractable cases, because a mathematical 

treatment of three-dimensional seepage flows is only feasible in few, very simple 

problems. Fortunately, the majority of practical problem are essentially cases of two 
dimensional flow; for example, the seepage through earth dam, canal, stream, etc., where 

one dimension of the structure exceeds by far all the other dimensions, and the flow takes 

place in a plane normal to that dimension. Sometimes a flow having a three-dimensional 

character can be converted to a two-dimensional flow with the help of a suitable scheme. 

In a steady two-dimensional seepage flow through a homogeneous and isotropic 

medium, all quantities depend on two coordinates only. The fundamental equations are 

and 

vX =
ax
~= ' --k 	 (1.1) 

ay 

V = a4 _—&4i = —k ah 	 (1.2) y ay ax 	ay 

where vx and vy are the components of discharge velocity in the direction of the 

coordinates axes, kr(x, y) is the stream function, and yp(x, y) = C, a constant, depicts locus 

of a stream line, 4 (x, y) is the velocity potential function defined as 

~=-kh. 	 (1.3) 

h(x,y) is the hydraulic head at the point (x, y) above a chosen reference plane. For the 

direction of the coordinate axes being considered positive down ward. 

h=---y 	 (1.4) 
Y ,, 

where p(x, y) is the water pressure at the point (x, y), C is a constant dependent on the 

choice of the reference plane used in the determination of the potential function . 

Since in the region of seepage the function 4(x, y) and tv(x, y) are conjugate 

harmonic function, we can introduce a new function, namely 

w=4+iit 
	

(1.5) 
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called the complex potential of seepage flow; in the region of seepage, which is an 

analytic function of the complex variable z, where 

z = x + iy  (1.6) 

i.e. a function of complex coordinate of a point in the region of seepage 

w (x, Y) + iw(x, Y) = w(z) = w(x + iy) 	 (1.7) 

In operations involving the complex potential w, the region of seepage is often referred to 
as the (z) region. 

We have thus converted the solution of the seepage problem to the solution of the 

problem of finding in the z region an analytical function w = w(z) that will satisfy the 

given boundary conditions, i.e. the known values of the function 	and tV on the 
boundaries of the region of seepage. 

If we know the complex potential w = w(z), separating it into its real and 

imaginary parts enables us to determine the potential function 4(x, y) as well as the 

stream function 1(x, y) 

~ = Real w(z) = ~(x, y) 
	

(1.8) 

ter = Imaginary w(z) = ti(x, y) 
	

(1.9) 

On establishing the function inverse to the function w = w(z), i.e. z = z(w) and separating 

it into its real and imaginary parts, we obtain the relations 

x = Real z(w) = x(4, yJ) 	 (1.10) 

y = Imaginary z(w) = y(4,') 	 (1.11) 

1.3 CONFORMAL MAPPING 

I.3.1 Determine of The Complex Potential 

The popular method of the available methods has been that based on the use of 

functions of a complex variable. By its application the solution of a seepage problem is 

converted to that of finding the complex potential of the seepage flow according to 

equation 1.7 in a way that will make it satisfy the pertinent boundary conditions. 

In the application, there is the task of determining a certain analytic function of 
the complex variable 4 

co=f( ) 
	

(1.12) 
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under the conditions that we know the shape of the region of the values of the complex 

variable as well as the shape of the region of the values of w corresponding to the 

various values of the variable 4, i.e. we know the shape of the boundary of the , and co 

regions and have to find the relation (1.12) which associates the value of co with the 

various value of 4. Naturally, relation (1.12) represents different functions depending on 

which of the methods is being used. 

L3.2 The Schwarz-Christoffel Transformation 

Theoretically, a transformation exists which will map any pair of simply 

connected regions conformally onto each other. This is assured by the Riemann mapping 

theorem; however, the determination of a general solution for the mapping problem has 

thus far defied discovery. At first this may appear somewhat disturbing; however, as in 

the case of the Zhukovsky functions, the use of appropriate auxiliary mapping techniques 

enables us to transform even complicated flow regions into regular geometric shapes. 

Generally these figures will be polygons having a finite number of vertices (one or more 

of which may be at infinity). Thus the method of mapping a polygon from one or more 

planes onto the upper half of another planes is of particular importance. 

c 0 

D 	
n —B 

= 	IB 	S o 
A 

x 	 a b e d 	r 

(a) 	(b) 
Fig. I.1 z and t Plane 

If a polygon is located in the z plane, then the transformation that maps it 

conformally onto the upper half of the 4 plane ( = r + is) is 

_ M f 	
d~ z 	

( — a)('-~vn>( —  (1.13) 

where M and N are complex constants, A, B......, are the interior angles (in radians) of 

' 	the polygon in the z plane (Fig. I.1 a), and a, b, ... (a < b < ...) are points on the real axis 
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of the 1; Olane :corresponding to the respective vertices A, 13, .... (Fig. Jib). We note, in 

particular, that the complex constant N corresponds to the point on the perimeter of the 

polygon that has its image at = 0: 

1.3.3 Zhukovsky Functions 

A special mapping technique, of particular value when dealing with unconfined 

flow problems, make use of an auxiliary transformation called Zhukovsky's function. 

Noting that relationship between the velocity potential and the pressure 

[4) = -k(p/y.,+ y)] can be written as —kp/7W  = 0 + ky, if we defined as 01 = -kp/y, then 

01=4)+ky 	 (1.14) 

01  is seen to be an harmonic function of x and y as V201= 	= 0. Hence, its conjugate is 

the function 

02=yr-kx 	 (1.15) 

Defining 0 = 01  + 02, we observe that 

0=01 +02 =w—ikz 	 (1.16) 

where w=4)+itv,andz=x+iy 

Definition (1.16) and any function with its real or imaginary part differing from it by a 

constant multiplier is called a Zhukovsky function. 

1.4 OBJECTIVES OF THE STUDY 

In the light of the status of the studies on the seepage from a partially penetrating 

stream having finite width, the objectives of the present study are : 

1. Computation rate of seepage from a stream through derivation of reach 

transmissivity for various depth of penetration and _width of the stream. 

2. Study of substitute length and its application for unsteady seepage condition. 

3. Study of distribution of seepage through stream bed and stream bank. 

The following assumptions have been made in study: 

i. The flow is two dimensional, 

ii. The river forms the boundary of a single layer of aquifer, 

iii. Symmetrical aquifer conditions on either sides of the aquifer, 
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iv. The soil is homogeneous and isotropic, 

v. The stream of finite width partially penetrates the aquifer. 

L5 ORGANIZATION OF THE DISSERTATION 

The presentation of the studies has been organized as follows: 

In chapter 1, a general introduction to the seepage from a partially penetrating 

stream in single aquifer has been presented. It includes the subject matters on two 

dimensional flow and conformal mapping. The objectives of the study have been 

identified here. 

Chapter 2 deals with the pertinent review of literature. It includes the subject 

matters on reach transmissivity, river resistance and substitute length. 

In chapter 3, analytical solution for seepage from a partially penetrating stream to 

confined aquifer having finite width and rectangular shape with semi infinite aquifers on 

either sides has been obtained. Results for various of stream width and depth of 

penetration are presented. 

In chapter 4, analytical solution for seepage from a partially penetrating stream to 

confined aquifer having finite width and trapezoidal shape with finite aquifer has been 

obtained. Results for various stream width and depth of penetration are presented. 

In chapter 5, analytical solution for seepage from a partially penetrating stream to 

unconfined aquifer having finite width and trapezoidal shape with finite aquifer has been 

obtained. Results for various stream width and depth of penetration are presented. 

In chapter 6, the important conclusions of the study have been summarized. 

I-6 
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CHAPTER II 

REVIEW OF LITERATURE 

A literature review on reach transmissivity and substitute length has been made in 

this dissertation. 

II.I REACH TRANSMISSIVITY 

It has been often assumed for a stream or a canal, which is hydraulically 

connected with an aquifer that, under steady state condition, the exchange flow rate 

between the stream and the aquifer is linearly dependent on the boundary potential 

difference causing flow (Aravin and Numerov 1965, Herbert 1970, Morel-Seytoux and 

Daly 1975, Besbes et al. 1978, Flug et al. 1980). Bouwer (1969) has reported that the 

seepage from a canal to a shallow unconfined aquifer is directly proportional to the 

difference in the water levels in the canal and in the aquifer in the vicinity of the canal. 

The constant of proportionality, which has been designated as reach transmissivity 

(Morel-Seytoux and Daly, 1975) depends on the hydraulic conductivity and stream cross 

section (Bouwer 1969). Considering an average flow path and an average flow area and 

using Darcy's law, Morel-Seytoux et al. (1979) have derived the following approximate 

expression for seepage from a partially penetrating stream of finite width in an 
unconfined aquifer: 

0.5w +e 
Q = L,k 	' 	~.h =I'h 

5w P + 0.5e (2.1) 

in which . Q = seepage through a reach of the stream of length Lr, k = hydraulic 
conductivity, wp = the wetted perimeter of the stream, e = the saturated thickness of the 

aquifer below the stream bed, and Ah = (h l — h u) = the difference in hydraulic heads in the 

stream reach and in an observation well which is located at a distance of 5wp from the 
center of the stream reach and Fr = the reach transmissivity. It is implied that the reach 

transmissivity constant would vary with distance of the observation well from the stream. 

Using Darcy's law for radial flow, Herbert (1970) has derived an approximate 

expression relating influent seepage from a partial penetrating stream with the potential 

difference between the strewn and the aquifer below the strewn bed at half the thickness 
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of aquifer from which the following expression for reach transmissivity for unit length of 

a stream can be found : 

nk  
1 r = 

In 
 0.5(e+hm) 

R 

(2.2) 

were e = saturated thickness of the aquifer below the bed of the stream, hm  = maximum 

depth of water in the stream, R = radius of the equivalent semicircular section of the 

stream equal to wp/n, w, = wetted perimeter of the stream. From the logarithm relation, it 

is obvious that the relation is valid for (e+hm )/2 > R. 

The reach transmissivity parameter could be known from the expressions relating 

seepage with boundary potential difference derived by several investigators for different 

stream aquifer geometry (Numerov 1954, Bouwer 1969, Halek and Svec 1979). The 

various formula derived by different investigators for computation of seepage and reach 

transmissivity are presented in detail in appendix A. 

There have been evidences that the process of stream aquifer interaction can be 

non-linear (Rushton and Redshaw 1979, Dillon 1983, 1984). Considering the fact that 

influent seepage from a canal (or a stream) is zero for zero potential difference and a 

finite quantity for infinite potential difference, the relationship between influent seepage 

and potential difference has to be non-linear in case of unconfined flow. Only in case of 

steady and confined flow, the relation between seepage and potential difference causing 

the flow can be linear. 

The reach transmissivity constant which depends on the location of piezometer, in 

case of a partially penetrating stream of large width has been derived by Mishra (2001). A 

stream having a width less than five times the thickness of the aquifer under its bed can 

be considered to have finite width. In many ground water basins such a stream forms the 

hydrologic boundary of the flow domain. In this dissertation, using conformal mapping, 

an analytical expression for seepage from a partially penetrating stream of finite width, in 

a homogeneous, isotropic, and confined aquifer is derived from which the pertinent reach 

transmissivity parameter is obtained. 

H.2 SUBSTITUTE LENGTH 

The resistance of the flow domain of a partially penetrating stream of finite width 

up to a distance L[3  from the stream bank can be decomposed into (i) the resistance of the 
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aquifer for length LB for rectilinear flow and (ii) an extra resistance component due to 

extension of the flow path resulting from curvilinear flow near the stream. The extra 

resistance is unevenly distributed in the aquifer. An approximate theoretical method 

known as the additional seepage resistance method was originally proposed by Numerov 

(1953) for solving complex seepage problem. Strelsova (1974) has applied the method to 

analyze flow to a multiple well system from a line source. In this method the distributed 

extra resistance is lumped at the stream bank by appending an extra length of aquifer, 

known as substitute length, whose resistance for rectilinear flow is equal to the extra 

resistance. 

(a) 

1l\%SSSSSSS . ti%SS%*SS%SS. ........  111 

(b) 

Fig. IL1 Principle of the method of substitute lengths 

The fragment shown in Fig. II. la contains a flow region near an influent reservoir. 

The water flows laterally into a collector system. The seepage is described by a 

curvilinear flow net which can be mapped conformally into a rectilinear net (Fig. II. lb). 

Near the dividing Iine between the fragments, the curvilinear net is almost rectilinear, and 

if we choose a suitable transformation, its shape will experience practically no change. 

The transformed flow region is characterized by the fact that its inlet profile is vertical 

and hence its shape is different from that of the original region. The main difference is 

seen to be in its length which has increased relative to the boundary of the original 

reservoir. The difference AL between the increased and the original length is called the 

substitute length. Considering electrical analogy, the resistance- of the whole fragment is 

readily found from the relation 

iI-3 
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R,  _  LIIT  AL 	 (2.3) 
T2  

Using conformal mapping Numerov (1953) has analyzed the two dimensional 

seepage into a partially penetrating open channel having finite width draining water from 

either sides of a confined aquifer. A partially penetrating stream with infinite width is a 

particular case for which the substitute length can be obtained from the results presented 

by Numerov. The substitute length is derived here independently from the conformal 

mapping solution using electrical analogy for a partially penetrating stream of finite 

width. 

11.3 UNSTEADY STATE FLOW FROM PARTIALLY PENETRATING 

STREAM 

Let us consider a stream that partially penetrates a homogeneous and isotropic 

confined aquifer of semi infinite area extent (Fig. IL2a). By introducing substitute length, 

AL, the partially penetrating stream converts to fully penetrating stream (Fig. II.2.b). 

Initially, the stream and the aquifer are assumed to be at rest in which the piezometric 

surface of the aquifer and the stream are at the same level. Let the stream-stage be 

suddenly increased by a and maintained at the new level. The partial differential, equation 

governing the transient flow of water in the aquifer is 

ah 	 h 	 (2.4) 

The initial and boundary condition are: 

h(x, 0) = 0 	 (2.5) 

h(0, t) = cr and h(co, t) = 0 	 (2.6) 

where h = h(x, t) = piezometric head in the aquifer measured from the initial piezometric 

surface, x = distance measured from the stream bank, (3 = hydraulic diffusivity of the 

aquifer, (L2T-1), 6 = step rise in the stream stage and t = time since the step rise. 

The above partial differential equation is a good approximation for an unconfined 

aquifer if changes in the water table are small in comparison to the average saturated 

depth of flow (Cooper and Rorabaugh 1963). The solution of equation (2.4) satisfying the 

initial and boundary conditions, has been given by Carslaw and Jaeger (1959) for an 

analogous heat conduction problem which is 

1I-4 
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(a)  
- 

. stream . 
,,,,,,,,,,,,,,,,,,y',,,,,,,,,,i 

. aquifer 

. Impermeable boundaries 

~.~irirrirriiiirJirrrrJrrrir 

1 

.,_.....__...--..~r._._........ _...._.... 	.._...__..._._... 	....~ 	...... 	
..`` -~. _._:•~__.......~.~ 

;fir}J}JfJlrrJJ{JlJrrr,}rfr 

(b)  

. aquifer 	 stream 

{r 
~~ 	 AL 

Impermeable boundaries 

Fig. 11.2 Schematic cross-section of a partially penetrating stream, converted to a fully 
penetrating stream 

h = Q erfc x 	 (2.7) 
2 

where erfc(.) = 1 — erf(.) = complementary error function. The error function is expressed 

as 

erf(x) _ =Je2du 	 (2.8) 
o 

A partially penetrating stream can be replaced by a fully penetrating stream by 

introducing substitute length. Carslaw and Jaeger solution can be applied conveniently to 

analyze unsteady flow from partially penetrating stream. 
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CHAPTER III 

SEEPAGE FROM A RECTANGULAR STREAM 

IN A SEMI INFINITE AQUIFER 

111.1 GENERAL 

The section of a partially penetrating stream can be conveniently assumed as 

triangular, rectangular or trapezoidal for computation of seepage by analytical method. 
Trapezoidal section is adopted for canals conveying large discharge. For small 

distributory, the Mehboob section adopted in India can be assumed to be triangular. The 

mathematical complexity for computation of seepage is least for triangular section. 

Approximate solution for computation of influent seepage to a partially 

penetrating stream having rectangular section in an unconfined aquifer has been derived 
by Aravin (1965). The flow domain has been decomposed into two regions; one region 
above the bed level and the other one below the bed level. The flow domain below the 

bed level has been treated as a confined flow domain and conformal mapping has been 

applied to compute influent seepage through *bed. bupuit Farcheimer assumptions have 

been used to compute part of influent seepage above bed level. Stretslove has analyzed 

seepage from a rectangular canal partially penetrating a confined aquifer. It has been 

assumed that prior to seepage water was flowing from -co to +oo. 

Herbert, has considered a • stream with semi circular cross section partially 

penetrating a confined aquifer, has derived the expression of seepage in terms of stream 
geometry, hydraulic conductivity and potential difference between the stream and below 
the stream at half depth of aquifer below the bed. 

If a solution is obtained for treating the aquifer as infinite, the seepage can be 

computed only if the piezometric surface is measured at a piezometer near the stream. 

The seepage is equal to q = I'.Oh; in which Ah is the potential difference coursing flow 

and f is the reach transmissivity constant. Approximate value of reach transmissivity can 

be obtained from the formulae given by several investigator for computation of seepage. 
The reach transmissivity constant for a river of large width (width more than 5 

times depth of aquifer below the river bed) has been derived by Mishra (2001) using 
conformal mapping. 
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In this chapter the analysis of steady seepage from a partially penetrating stream 

having finite width in a confined aquifer has been derived using conformal mapping. The 

study helps in checking the validity of Herbert's formula. AIso the reach transmissivity 

for stream having finite width has been obtained. 

I11.2. STATEMENT OF THE PROBLEM 

A partially penetrating rectangular stream in confined aquifer is shown in Fig. 

III.1. The flow is steady and symmetrical on either side of the stream. T1  is thickness of 

the aquifer below the stream bed, T2  is thickness of aquifer and B is half width of the 

stream. A piezometer is located at a distance LB from the bank. The potential difference 

Ah is measured. it is aimed to find the seepage and quantify the reach transmissivity 

constant as a function of T1/T2, B/T2, LB/T2 and k. 

Y 
- L8___ 

Ah firrririirrir{rrirrrirrirf. 	2B  
= q 	A 

h' 	D 
E 	 ht3 

T2  

TMi  
rrrrrrrrrrrrrrrrrrrrrrrfrrfrrrrrrrrrrfrrr. 	f7 rrrrrrrrrrrrrr. 	X 	rrrrrrl'rrrr.'. 	A 

Fig. 111.1 Physical flow domain in z-plane, z=x+iy 

—  oo 	-b 	 d 	1 	m 	f 	 o0 a 	 ► 	 ► 

A 	B 	 C r D E M F 	 A 

Fig.III.2 t-plane (=r+-is) 
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II1.3 ANALYSIS 

111.3.1 Mapping of The Physical Flow Domain in Z-Plane to An Auxiliary 4-Plane 

The vertices A, C, D, E and F in z plane (Fig. I11.1) having been mapped onto 

points -w, 0, d, I and f respectively of the ,-plane (Fig. 111.2). The conformal mapping of 

the flow domain in z plain onto the lower half an auxiliary t plane according Schwarz- 

Christoffel transformation is given by: 
dz—M 	(( _ d)u2d~ 

I/2(  f)"2( _1)1 
	 (3.1) 

Substituting 4 = Re", d4 = iRe'° dO and applying the condition that as one transverses in 

~-plane from 0 = 0 to 0 = ir along a semi circle of radius R, R—>oo, the jump in z-plane 

iT2 

(Rei° — d)R iRe'° iT2 = M J (Re O )112 (R&° _ O1/2 (Re'° _ 1)1t2 d0 
0 

Lt.R —*oo 

or 

i(Rei° )3/2 1 — d 	a 

Rei° iT2 = M f 	 1/2 . 	1,2 d0 	 (3.2) 

J 
Lt.R —*oo 

The constant M is found to be 

M=T2 	 (3.3) 

The parameter of `d' and `fl are found as follows : 

For0S~' Sd,zisgivenby: 

T f' 	( —d)' 
z=?  t)( _I)vz d~ +B+iTZ 	 (3.4) 7C ° liz( _ ►l2~  

For point D, ,' = d and ZD = B + iTl; hence, 

111-3 
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B+iT, = T2 f ~~ 	d)'~ — 
	

d +B+iTz 	or 

j 	(d— )112 

T2 	JO ~ 112 (f — )v2(1— )ll2 d 

Substituting l = v2, d = 2v dv, at the lower limit = 0, v = 0 and at the upper limit l; _ 

d, v = Id, where v is a dummy variable, the improper integral above is converted to the 
following proper integral: 

(d—y2)112 

T2 	2,0 (f — v2)"2(1—v2)"2 dv 
(3.6) 

Substituting : 

v =i(1 2~ and dv= d dx 

where x is a dummy variable, the lower and upper limit of integration above are 

converted to —1 and 1 respectively, and equation (3.6) reduces to 
Z ,~2 

d—d j±x. 
it (T2 — Ti ) 	i 	 2 

	

~f 	 dx 	 (3.7) 
T2  -1 

2 

f —d(1 x 	i — d l+x 
2 

For d< ' < 1, z is given by: 
T  

z=?
(_d)"Z 

 d ~rz( Oh /2( 
	+B+iT, 	 (3.8) 71 	_n(E _1)h(2 

For point E, ' = I and ZE = iT1; hence, 

iT _ f 
T2 i 	(( — d),/2 	

d +B+iTl , 	 ((_ f)112 (( —1)U2  

I,z 
	(—d)"2 	 3.9 B= i 
f~ (f—~ )1/z(1—~ )'~ d 	 ( ) 

Substituting 1- 	v2, d = -2v dv, at the lower limit t = d, v = V(1-d), and at the upper 

limit , = 1, v = 0, where v is a dummy variable, the improper integral above is converted 

to the following proper integral: 

(3.5) 
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__ T r`' 	(1—v2 —d)"2     B 2 Z J 

n 	(lvz)Iiz(fI+V2)112 dv 

Substituting : 

v= I—d l+X and dv= 1d dX 
2  2 

(3.I0) 

where x is a dummy variable, the lower and upper limits of integrals above are converted 
to —1 and I respectively, and equation (3.10) reduces to 

[1 _ (1_ d) 1+x 2 d] 
1/2 

Bar = 1— d f 	 2 uz 2 	 2 dv 	(3.11) T2 
	1 	d 1—(1— 	I 2x 	f-1+(1—d) 12x 

The integration appearing in equations (3.7) and (3.11) are carried out numerically 

applying Gauss—quadrature formula. For a given value of B, T, and T2, the parameters d 

and fare obtained by an iterative procedure. The programming in C''" has been developed 
to obtain these parameters. 

Consider a piezometer at point B at a distance LB from the stream bank. 

For -oo <_ ' < 0, the relationship between z and i,' is given by: 

(—d)"2  

It 
z=? f 	 d~ +B+iT2 	 (3.12) o I/2 ( _ f)1iz(~ —1)in 

For point B, ' _ -b and ZB = B+iT2+LB; hence, 
L 	T -h 	(d —~ )1'2 

(3.13) 
B 	 0 ( 	)112(f —~ )(l— )1/2 

d 

Substituting i; _ -u, d4 = -du, at the lower limit = 0, u = 0 and at the upper limit i; _ -b, 

u=b 

T b 
Lt3 

= 7 (d+u)t"2 
u112 (f+u)' 2(l+u)"2 

du 
0 

(3.14) 

Substituting u = v2, du ="2v dv, at u = 0, v = 0 and at u = b, v = Ib, where v is a dummy 

variable, the improper integral above is converted to the following proper integral : 

T Nr 	(d+yz)"2 
L B = 2 

It O (f+v2)i"2(1+v2)1'z dv 
(3.15) 
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Substituting 

v  = F
1+ X) b 2 and dv = - dx 

where x is a dummy variable, the lower and upper limits of integral above are converted 

to —1 and 1 respectively, and equation (3.15) reduces to 
z t/2 

d+b 1+X 
)] 

Lin = 	f 	 z 	 z dx 	 (3.16) 

T2 	f+b 1+x 	l+b I+x 
2 	 2 

The above integration is carried out numerically applying Gauss-quadrature formula. For 

a given value of Ln, the parameter b is obtained by an iterative procedure. 

Consider a piezometer at point M at a distance TM from the bottom of the aquifer. 

The parameter i, lies in the range from I to f. For I <_ ' < f, the relationship between z 

and ' is given by : 

 

T  ( _ d)"n 

z = ? 
j 

~ vz 	~ 2 	vz d + iT1 	 (3.17) 

For point M, ' = m and zM = iTM; hence, 
T in (

_—d)'12 
 

z —i(Tl —TM )= (-1 	 ii2(f_)1n( 1)'izd~ 

(Ti_T.)rz _( 	((—d)~n 	
( J 	 ~ 

	

T2 	~ 112(f(f —~ )1/2(( —1)112 	 (3.18) d  

The above improper integral is converted to proper integral by removing the singularity at 

i;=1. Besides, to improve the accuracy in numerical integration the range 1 to m is divided 

into two parts Ito (1+m)/2 and (I+m)/2 to m 

1+m 
(Ti — Tm )2t 

	
2 	( — d)'2 	 m 	( —d)'2 

	

T2 Tz 	J 1 (f - )1/2 ( —1) tn d + 1  ~ "2(f—  f 	)irz ( —1)v2 d 	(3.19) 

2 

Substituting -1 = v2, d4 = 2v dv, for first integral above, at the lower limit 4 = 1, v = 0 

and at the upper limit = (I+m)/2, v =' f m — l]/2) and substituting also f- i; = v2, 
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d = -2v dv, for second integral, at the lower limit = (l+m)/2, v = f {[2f—m-1]/2} and at 

the upper limit = m, v = '/(f— m). Where v is a dummy variable, the improper integral 

above is converted to the following proper integral : 

(T` — Tm )I  =2 
T2  

m-1 

f 	(vz +l =d)1z 	dv+2 Jo (v2 +1)`n(f vz  —1)U 2 

r2f-m-1 

(f - v2 )u2 (f - v2  —1)l 2 dv (3.20) 
.j :':-  f-m  

Making further substitution 

_ m-1 l+x 
v 	22 	f (x )' dv=  Tm dx  _i  

2 2 
for the first integral 

and 

12f—rn1  _ f —m 
v= 	2  2 	x4 

2f—m-1 + f—m 
2 

2 

2f—m-1 

dv = 	2  2 	dx for the second integral above 

where x is a dummy variable, •the lower and upper limits of above integration are 

converted to —1 and 1 respectively, and equation (3.20) reduces to: 

(T, — TM )Jr  =  m—I' 	{J 2()+1 d} 

J{f2)+1){f dx + 
T2 	2 	 — f 2 (x) 1} 

2f —m-1  f 	t  IV—  f22(x) —d} 	
d 	3.21 2 	 J 	 x 	( 	) 

t {f — f22  (X )} {f _ f2 2  (x) 1} 

The above integration is carried out numerically applying Gauss-quadrature formula. For 

a given value of TM, the parameter m is obtained by an iterative procedure. 

M.3.2 Mapping of The Complex Potential w Plane to The Auxiliary i; Plane 

The complex potential w corresponding to the flow domain is shown in Fig. 1II.3. 

w = 4 + iw, where W is the stream function and 4 is the velocity potential function, 

defined as = -k(p/y, , + y) + c. Constant c has been assumed to be zero. 
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The conformal mapping of the w-plane onto the lower half of the a-plane is given by : 

dw 	M 
d~ - 1120 _1)1/2 (3.22) 

t 
q* 
ql 

Fig. IIL3 w-plane (w--4+iw) 

For 0 <_ ' S 1, the corresponding w is given by: 

M 4 w _ 	 f_ (,rz (1— )''"~-'Ids — kh1 + i
q i  

0 

= MB(1/2,1/2) —kh1 +iq 	 (3.23) 
i 

in which B~'(m,n) is incomplete Beta function. For point E, ' 1 and w = -kh1, hence 

-kh1 = M B~'(1i2,v2) /i -- kh1 + iq 	 (3.24a) 

in which B(112,1/2) is complete beta function, hence, 

M=- 	 (3.24b) 
7r 

For -b 5 4' < 0, the corresponding w is given by 

w=-'  f lrz ~ ~ 1 trz -- kh1 + iq 	 (3.25) 
2t  (  ) 

For point B, E' _ -b and w = -khB + iq; hence, 
-b 

—kh B +iq = q J lrz ( 	1)Irz — kh! +iq 	 (3.26) 
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Substituting 	-v, d4 = -dv, at 	0, v = 0 and at t = -b, v = b, and re-arranging the 

equation (3.26) 

b  dv k(h, —h B )= q f vUZ(l+v)ua (3.27) 

Substituting l+v = u2, dv = 2u du, at v = 0, u = 1 and at v = b, u ='I(1+b), where v is a 

dummy variable, the improper integral above is converted to the following proper integral 

k(h, —hB )= ~q J 	du k(hI —hB )= g ln[u+ u2 -1] f +b 	(3.28) 
u —1 it 

Hence, 

7rk(h I - h B ) 
q= 
	

(3.29) 
21n l+b+~ 

in which hi is head in the stream and hB is piezometric head at a distance LB- from the 

stream bank and q is rate of seepage for half section of the stream. 

For domain E to F, i.e. 1 < 4' S f, the corresponding w is given by 

W = q f uz ~ 1 uz — kh, 	 (3.30) 
R~  ( 

_l
) 

U2 

 point M, = m and w = - khM; hence, 

d~ k(h, — h M) = q f I/2 ( —1)v2 	 (3.31) 
r 

Substituting 4 = v2, d = 2v dv, at i; = 1, v = 1 and at = m, v = Im, where v is a dummy 

variable, the integration leads to 

Hence, 

O7 

k(h,—ham )_ ~~ f dv = q In{v+ v2 -1] 1 ~1 	 (3.32) 
v —1 

it k(h, — h M) 	 (3.33) 
q_ 2ln(+ m-1 

in which hM is the head at a point located at a distance TM from the bottom of the aquifer 

and q is rate of seepage for half section of the stream. 
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For domain D to E, i.e. 15 ' S d, the corresponding w is given by: 

w = -94 
  d~ 
i71i 112(1_~)i~z –k111 

w = —q J ~rz ds  (1–)viz – kh, 	 (3.34) 
 

d  d 
f 	 –kh w i7 

0 
I/2(1_ )I 	 ,!  

w=_-   q –1 ,(t/2,/2)]–kh1 	 (3.35) 

For point D, i;' = d and w = -khi + iqi; hence, 

4' ( I) i–-sin' 	 (3.36) 
q 

2 (3.37)  
q  it 

in which qi is seepage through the stream bed for half section of the stream. 

111.4 SUBSTITUTE LENGTH 

The resistance of one half of the flow domain of a partially penetrating stream up 

to a distance LB from the stream bank can be decomposed into (i) the resistance of the 

aquifer for length LB for rectilinear flow and (ii) resistance pertaining to the curvilinear 

flow near the stream. The resistance pertaining to curve linear flow is unevenly 

distributed in the aquifer. An approximate theoretical method known as the additional 

seepage resistance method was originally proposed by Numerov (1953) for solving 

complex seepage problem. In this method the distributed extra resistance is lumped at the 
stream bank by appending an extra length of aquifer, known as substitute length, whose 

resistance for rectilinear flow is equal to the extra resistance. Using conformal mapping 

Numerov (1953) has analyzed the two dimensional seepage into a partially penetrating 

open channel having finite width draining water from either sides of a confined aquifer. 

Numerov has considered the case in which steady flow occurs from left side of the 

confined aquifer to the right side and a partially penetrating stream interferes the flow. 

The substitute length is derived here independently from the conformal mapping solution 

using electrical analogy. The flow is symmetrical on either side of the stream. 
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Let us consider the location of a piezometer at a distance LB  form the stream bank. 

The combined aquifer and stream resistance Rr, up to length La  from (3.29) is given by: 

R  _ 2ln l+b + 	 (3.38) 
` 	irk 

Let AL be the extra length, whose resistance is equal to the extra resistance owing to flow 

convergence within length LB. For uniform rectilinear flow, the aquifer resistance Ra  of 

length LB+AL is 

R e  L  +  L 	 (3.39) 
kT2  

Since Rr  = R8, we get 

AL 21n 1+ b+ f  L B 	 (3.40) 
Ti 	 it 	 T2  

The limiting value of AL, L„ -- oo, is the substitute length. 

The substitute length is a measure of stream resistance to flow. The various of 

substitute length with distance from the stream bank for different width of the stream are 

presented in Fig. 3.1Oa through 3.1Of. Since substitute length pertains to the curve linear 

flow near the stream bed and bank, and flow paths are extended only within a limited 

distance in the aquifer, AL/T2 converges to a finite value as LB/T2  increases. With 

increasing depth of penetration the curve linear flow tends to linear flow. Therefore 

stream having higher depth of penetration will have lower substitute length: The stream 

resistance is higher for stream having less width. Therefore as B/T2  increases, the 

substitute length decreases. 
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11I.5 UNSTEADY STATE FLOW 

........................---.__. 

river 	 aquifer T2 

~f~r«tft~r~r~~i~iifrrrf~rrfrf~rrrrrf~rf~r~rtirrr~r~rrrffrrr~rr~. — x — 

Fig. 111.4 Step rise in a river 

The substitute length can be used to convert a partially penetrating stream into a 

fully penetrating one by appending the substitute length to the aquifer at the interface of 

the stream and aquifer. The solution of unsteady flow from fully penetrating stream to 

aquifer derived earlier by Carslaw and Jaeger for an analogous heat conduction problem 

can be conveniently used. The solution for unsteady flow from a partially penetrating 

stream is derived in the following paragraphs. 

Let us consider a step rise in the stream stage 6, (Fig. I11.4). The rise at a distance 

x from the stream bank at a time t after onset of change in stream stage is given by: 

s(x, t) = Q 1— erf 	t 	 (3.41) 
r 

in which 
x 

The error function erf(X) _ = f e-"2 dv 
o 

13 = hydraulic diffusivity = T/'.:i) 

r) = storativity 

T = transmissivity = kT2 

k = hydraulic conductivity 

The hydraulic gradient is given by: 
X 

f4 t 
(3.42) 

Multiplication of hydraulic gradient and coefficient of permeability k, gives the Darcy 

velocity 
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11 
vY = (—k)T 	a e 	 (3.43) 

Multiplication of hydraulic gradient and transmissivity T, gives the rate of flow at section 

x in the aquifer 

Q,; = T 2 6e ~~ t 1 	 (3.44) 

At a point x = 0, i.e. interface between the river and the aquifer, the rate of flow is 

Q0(t)=T---a 
1 
	 (3.45) 

Let the step rise 6 be equal to 1 and the corresponding flow be designated as Kgs(t) 

K4c(t)= T~ I 	 (3.46) 
n 

Let the change in stream stage follow a ramp instead of a step i.e. let the step rise linearly 

from zero at t = 0 and attain a unit height at t = At after which let the stream stage remain 

unchanged (Fig. III.5) 

a 

~♦ ti —-T t-i 	~t 
4— At = 

Fig. H1.5 One rump rise 

The response of an aquifer to a ramp perturbation, 8,,(t) can be derived from the response 

to a unit step perturbation using convolution technique. 

8 gy (t)= f
d
6K gg (t—r)dz 

0 

— rda Tcp I dz+ J 	
— 	 3.47da T 	l dz 

Jo dr 	t —r 	at dr 	7c 	t —r 
	 (3.47) 

Beyond time At, d6/di = 0, and within At d6/dr is constant and is equal to 1/At. Let t = 

n:_1t, where n is an integer 

8 g7 (n,At)= I ,— j•` dt 

At z Jo nAt—z 
(3.48) 
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Integrating 

S qY (n, At) = 1 TcI~ r 	dz 
At it ,o nAt—z 

Atlhtom` 2 nTt—z 

FIT(D  _ I 2 nat —At + 2 nat 

= TD 2[Vn— n-1] 
at 

8(n, et) = 2FIT [~n — n —1 ] 	 (3.49) 

For variable stream stage the return flow at the end of nth time step is given by 

dr QY (nAt) = Jr dz 	/t —r 
(3.50) 

Discretising the time domain into n steps and assuming that within each time step d6/dti 

remains constant but changes from time step to step 
At o f At) - 6(0) Tell 	dt 
Jo 	At 	jV it 	nAt — z 

	

+.........+ Yf t a(Y At) —a((y — I)At) 	di 
iif(y -1)Est 	At 	 n 	nAt — z 

nee a (nAt) —a ((n —1)At) 	di 	 (3.51) + .........+ 	$(n-i )ec 	At  

Substituting r= u + (y-1)At and u = z-- (y-1)At 

1 Tcp f` 	dz — 1 Tcp j 	du 
'. t it ( y. )At nAt — z 	At 	it Jo nit — (Y —1 )At — u 

1 	 du 
At i Jo (n-y ±1)At—u 

= S((n —y + 1), At) 

	

= 2V-T"[ n—y +1 —] 
	

(3.52) 
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Thus 
n 

QY (n, At) = E8(n —y + 1, At)Y(Y) —6(Y —1)} 	 (3.53) 
Y =1 

It may be noted that thesubstitute length has no storage effect. The flow through 

substitute length takes place similar to that in pipe. 
Let the unknown rise at the interface of substitute length and aquifer at the end of 

the first time step be Aha(I ). The rise in the river stage be Oh,(I ). Applying mass balance 

at the end of the first step i.e. the flow rate leaving the substitute length enters to the 

aquifer 

T Ah` Q h a (1) 
	

(3.54a) 

or 

Aha (1)= 

or 

T 

1+5(l,At) 
(3.54b) 

(3.54c) 
6 (1)-a (0) 68 /1)= r r 

1+ALS(1,At) 
T 

Similarly applying mass balance at the end of nit 

(Q (n)-6 (n)) _ " J- 

T I AL II 	
=IF.(Y)-6a(Y —1)}6(n—Y +1, At) 

y=1 

n-I 
—1)}8(n—Y +1,Ot) + ~ a (n)-6 a (n-1)}6(l,At) 

Y =1 

AL 
O r (n) —~ a (n)= 1., 	e (Y) —J 8 (Y —1)}S(n—y +1, At) + T Fa(n) —an(n -1)1S(l,At) 

Y =l 

—1)}S(n—Y +1, At) + T a a (n-1)S(l,At) 
6 8 (n) 	 Y =i 

1+ T 6(1, t) 

...... (3.55) 

aa(n) can be solved in succession starting from time step 1. Once 5a(fl) are found. Q(n) 

can be computed using equation (3.53). For a unit step rise the seepage from a stream for 
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B/'1'2  = 0.5 and T11F2 = 0.25, 0.5, and 0.999 is shown in Fig. 111.6. Also in the graph the 

influent seepage for a fully penetrating stream is shown for the purpose of comparison. 

9000 
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Q,(t) 

m3/day/m 4000 

3000 

2000 

1000 

0 
0.001  0.01 	0.1 	1 	10 	100 

Time (seconds) 

Fig. 111.6 Rate of seepage with time for B/T2=0.5 

111.6 RESULTS AND DISCUSSION 

For computing steady seepage from a stream or canal, whose section conforms to 

a rectangular one, the parameters and data required are: 

(i) the hydraulic conductivity, k, 

(ii) the difference in piezometric level recorded at a piezometer in the vicinity 

of the stream and water surface level in the stream, 

(iii) distance of the piezometer from the stream bank, 

(iv) thickness of aquifer below the stream bed, 

(v) thickness of aquifer beyond the stream bed and 

(vi) width of the stream 

The seepage is given by 

Q = F.k.Ah 	 (3.56) 

where F depends on the seepage factor stream geometry and distance of the piezometer 

from the bank. The seepage, q, has been expressed by Morel Seytoux as : 

q=F,.Oh 
	

(3.57) 

iir 
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From equation (3.29) the reach transmissivity per unit length of stream is given by 

~k  

` - 21n 1+b 	
(3.58) 3.58

) 
 

Therefore the dimensionless factor 

F= q = I 	 (3.59) 
kAh k 

Fr is a function of the distance of the piezometer from the stream bank for a particular 

stream. This factor would change with charge in depth of penetration and width of the 

stream. The relationship of seepage factor F or q/(kAh) or Fr/k with LB/T2 for different 

T1/T2 and B/T2 are presented in Fig. III.7a through Fig. I11.7f. From the figures it could be 

seen that for stream having comparatively large width (B/T2 >_ 1), the seepage factor is 

independent of the depth of penetration only if the piezometer is located beyond 5 T2. The 

reach is always dependent on LB, the distance of the piezometer where Ah is observed. 

Frk increases as depth of penetration of the stream increases i.e. lower the T1/T2, higher 

the Fr/k. In accordance to law of resistance (Resistance is directly proportional to length 

of the conductor and inversely proportional to area of the conductor) F1 /k decreases with 

LB/T2. As B/T2 increases i.e. stream cross section increases the reach transmissivity 

increases. 

The fraction of seepage through bed decreases as depth of penetration of the 

stream increases. Incase of a canal running in a porous medium of large depth, seepage 

increases with increasing width of the canal when water table lies at infinite. From the 

Fig. III.9, it is seen that when the aquifer is confined, the seepage from the stream bed 

tends to a limiting value. For T1/T2 = 0.9 the fraction of seepage through bed does not 

increase for B/T2> 1. 

In ground water modeling, some times the seepage from a stream is linked to the 

potential with the aquifer below the stream bed. The relationship of seepage with 

potential difference are shown in Fig. III.1Ia through III.1lc for TI/T2 = 0.1, 0.5 and 

0.999 for various location of the piezometer below the stream. 

Treating the stream cross section as semi circular one, Herbert has applied Darcy 

law and obtained a logarithmic relationship between influent seepage and potential at 

middle of the aquifer below the stream bed. Preserving the method perimeter stream of 

any other shape can be converted to equivalent semi circular stream. The computation of 
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seepage by Herbert method is compared with the seepage estimated rigorously by 

conformal mapping. The results are compared in Fig. II1.12 and Fig. 111.13. It could be 

seen that for 10 % penetration, Herbert formula is only applicable up to B/T2  = 0.2. The 

difference between seepage computed from Herbert formula and conformal mapping for 

depth of penetration equal to half width of stream (i.e. Ds = B) is shown as a function of 

Ds/T2, Ds/T2 < 0.5. The discrepancy of Herbert formula increases rapidly for Ds/T2 > 0.3. 

The error involved in Herbert formula is more than 10 %. 

The piezometric surface in the aquifer near the top impervious layer is shown in 

Fig. III.14, for T1/T2  = 0.9, B/T2 = 0.1, h 1 /T2  = 1.1 and Ah = 0.025 at a distance L13 /T2 = 1. 

The piezometric surface falls below the impervious layer beyond L3/T2 > 5. The confined 

condition imposed on the aquifer is no longer valid for LB/T2  > 5. 

For unsteady state flow, the rise in the piezometric surface at the interface of 

substitute length and aquifer due to a step rise (1 m) in the stream, for T1 /T2=0.5; 

B/T2=0.5; (D=0.1 and T=200 m2/day is shown in Fig. I1I.15. It is seen that the piezometric 

surface does not tend to I because of head Ioss in the substitute length. The rise at the 

interface at near steady state conditions will be less than unit. Therefore the rise as in the 

case of a fully penetrating stream does not converse to the rise in case of a partially 

penetrating stream. 
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Seepage from a parliallypenetrating stream of finile width 

CHAI''I'E14 IV 

SEEPAGE FROM A STREAM IN A FINITE AQUIFER 

IV.1 GENERAL 

Seepage from a canal in a semi-infinite aquifer has been discussed in chapter III. 

For a piezometer located at a distance beyond 5 times of thickness of the aquifer from 

center of the stream, the parameter b in plane is found to attend very high value. That 

height of the piezometer surface decreases with distance from the stream and falls below 

the upper confining layer. Beyond this point, the aquifer would be unconfined. It is thus 

physically not possible that steady flow takes place from a stream to a confined aquifer of 

infinite Iength. For steady state flow, the flow at any section in the aquifer is constant, for 

the flow to take place the hydraulic head has to decrease which will lead the piezometer 

surface to fall below the upper boundary of the confined aquifer. In this chapter, steady 

flow from a stream with more generalized section in a confined aquifer of finite length 

has been analyzed using potential theory. The flow is assumed to be identical on either 

side of the stream. 

IV.2 ANALYSIS 
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IV.2.1 Mapping of The Physical Flow Domain in Z-Plane to An Auxiliary i;-Plane 

The stream bank is inclined of angle an with horizontal. According to the 

Schwarz—Christoffel transformation, the conformal mapping of the flow domain in z 

plane onto the lower half an auxiliary 4 plane is given by : 

(d  )a 	
(4.1) 

d 	
(( +a)ri2~ ot (( _1)h12( _ fl,n 

in which 

tan' T2—T1  
13-131 = 

	

	
(4.2) 

it 

B is half width of the stream surface at the bottom of upper confining layer, BI is half of 

the bottom width of the stream, T1 and T2 are thickness of aquifer below the stream bed 

and thickness of aquifer beyond the stream bank. The vertices G, A, C, D, E and F in z 

plane (Fig. IV. 1) have been mapped onto points -oo, -a, 0, d, 1 and f respectively of the 

a-plane (Fig. IV.2). The parameters a, d and fare found as follows: 

For —a 5 ' 5 0; the corresponding z is given by : 

z=M 
 j1,~

(s) 
,. 	

—1)
( 	 d)a 

+a) 	
„2( —f) 

vz d~ +B+iT2 	 (4.3) 
o f 	(  

For point A, 4' = -a and ZA = B +LA+ iT2; hence, 

B +LA +iT2 =—MI 	(d ]_>4 ~~ 	,i2 d~ +B+iT2 	(4.4) +a of + a)(— 	( ~) (
f— 

) 

where LA is distance of the aquifer boundary from the stream bank. Substituting v=-u, 

hence, 

or 

a 	 (d + u)a 
LA =Mf (a--_u),i2ua(l+u),i2(f+u)vz du 

(4.5a) 

L A = M J,iz (d + u)a
,~z 	uz du + J 	,iz 

(d + u)
~,i2 	tiz du (4.5b) 

U (a—u) u (l+u) (f+u) 	a2(a—u) u (l+u) (f+u) 
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Substituting u = v2 for the first integral and a - u = v2 for the second integral above, 

where v is a dummy variable, the improper integral 4.5b is converted to the following 

proper integral : 

	

% ,;.;i 
	

(d+v2)av(l 2) 	- 	 (d+a—v1)' L = 	2 
f (a — vz )`2 (1+v2 ) ''2 (f+v2)"Z dv+2 J~ (a--v2)'(1+a—v2)'.2(f+a—v2)12 dv 

......(4.6) 
Substituting : 

and  
2 	

dv — 
2 
a/2 dx 

where x is a dummy variable, the lower and upper limits of integral 4.6 are converted to 
—1 and 1 respectively 

	

L A =M (a/2 f 	 dy + 

-I

2 	)2][f 	 z 

a — (a/2)2+ (a/2) zy 	+ (a/2) ! 2x 

i 
M a/2 J 

a — (a!2)[1±] a/2) 1 

[d±a_(a/2)d+a—(a/2) 
(~+X  Z ~ 

2 
dX 

)2][f 	 )2]   

2 
	 +a—(a/2)x 

...... (4.7) 

For region 0 5 ' S d; the corresponding z is given by: 

z=Mf (—d) 

±a)"2( 

	

a O ( + a) i "z~ « (y _1)1f2(  _ 0112 d +B+iT2  

For point D, ' = d and Zj) = BI + iT,; hence, 

(BE —B)+(iT1 —iT2 )= M d 	(-1)« (d—)" 	d~ iz J (~ +a)"2 ( )7 (1 	)"z (f — )1/2 

Equating the modulus of either side 

z 	z 	 j 	(d _ ) t 

(B—B, ) +(T2 —T1) =IMI 0(~ +a)"2(()~ (1 _~ )uz (f—~ )"2 

(4.9) 

(4.10) 
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Substituting i; = v2, d = 2v dv, at the lower limit = 0, v = 0 and at the upper limit = 

d, v = Vd, where v is a dummy variable, the improper integral 4.10 is converted to the 

following proper integral 

•a 	(d—v2)x (v)!-z~ 

	

(B—B,)z +(Tz —T,)z =21M1 f v z +a viz 1—v z ''Z f—vz ,,2 dv 	(4.11) 
of 	) ( 	) ( 	) 

Substituting: 

v = (1 2X) and dv = - dx 
2 

where x is a dummy variable, the lower and upper limits of integral 4.11 are converted to 

—1 and i respectively and equation 4.11 reduces to 

[1r1+ x1(l-zx)  d—d 	x 
d 

2 
(B—B,)2 +(T2 _T,)2 =MVd 

f 	 z 	 )2][ 	

J2] 

 

d~±x 	+a [—d'-+ x 	f — dl_�X  
J2 	 2 	2 

...... (4.12) 

For domain d < i;' S1; the corresponding z is given by: 

z = M f  
( +a) 

z 
( —1) 1/z ( 	

{~1iz d~ +B, +iT, 	 (4.13) 

	

d ~ 	~ 	—`l 

For point E, ' = 1 and ZL = iT1; hence, 

	

iT, =—M f 	 o 	 ,;z dl; +B, +iT, 
d ( +a)'

,,z 	
(1—~)1Y2 

(f—~) 

or 

B, = M (( — d)' 	 ( 	) 
d ( +a)"2 (1 —S )~~(f —s )tiz d 	 4.14 

Substituting 1- 	v2, d, = -2v dv, at the lower limit i, = d, v = J(1-d), and at the upper 

limit 	1, v = 0, where v is a dummy variable, the improper integral 4.14 is converted to 

the following proper integral 

0-d 	 (1—v 2 —d)ti 
B, = 2M 	z 	~fz 	z n 	z uz dv 	 (4.15) 

0 (1—v +a) (I—v) (f—1+v ) 
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Substituting 

v= 1-d l+x anddv= l-d 
2 dx 

2  

where x is a dummy variable, the lower and upper limits of integral above are converted 

to -1 and 1 respectively and equation 4.15 reduces to 

B, =M 1-d5  
x
)2]~ 

 -1 1-(1-d 	
2 

2 

	2 

[1_(1_d) J  12x _d 

2 	)2] 

1-(1-d) 12x +ajf_1+(1_d)J]  12x 

......(4.16) 

For domain 1 < ' S f; the corresponding z is given by 

z M f + a vz ( 
-d) 

	_vz d~ + iT1 	 (4.17) 

	

1 ( 	) 	(  

For point F, ' = f and 4=0; hence, 

r 

	

 T,=Mf 	( - d)x 	 ( 	) 

	

+a vz 	_ 1 2 v f _ v2 d 	 4.18 

Re-writing equation 4.18 to convert the improper integral to the proper integral 
1+f 

T, J M 2 	~n ( -d) irz 	~lz d~ + f 	irz ( - d)q ~iz 	uz d~ 	(4.19) 
I ( + a) 	( -1) (f - ) 	I+r (( +a) 	( -1) (f - ) 

i 

Substituting 	- I = v2 for the first integral and f - = v2 for the second integral above, 

where v is a dummy variable, the improper integral in equation 4.19 is converted to the 

following proper integral: 
f-1 	 r-1 

f 	(v2 +1 d)1 	 f dv+2 	 (f-v2 -d)~ 	 (4.20) T, =M 2 0 (v
2 +l+a)'n(v2 + l)' (f-v2-I)vz 	0 (f-v2 +a)U2(f-v2)R (f-vZ-1)112 dv 

Substituting 

v = (f -1)/2 1 +x and dv = (f -1)/2 
dx 

	

2 	 2 

where x is a dummy variable, the Iower and upper limits of integral above are converted 

to - I and I respectively and equation 4.20 reduces to 
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T _M f-1 
- 	2 -f f-1 l+x 

0212 

	

. 	2 

C f 
2J12) +1-d 

f-1 1+X. 1 Z +l+a f- 
( 
f-1 1+ Z 

	

2 J\ 2 J 	 2 ~ 2 J 

dx :. 

f=1  M 	t ,'  2 	i f f~ 1 ~ l+x ̀ z 
Il 	11 2 11 

s 
f -rf21Jl+X)Z -d 

l 	2 

f_(_ 

	}Z+a f—rf—lIl+y )2—] 
2)  l 2 	2 

dX 

......(4.21) 
The parameter a, d, f and constant M are solved from equation 4.7, 4.12, 4.16 and 4.21 

using iteration procedure. The integration are carried out numerically applying Gauss-
quadrature formula. 

For region -b < 4' S 0; the corresponding z is given by: 

z Mf +a vz ( d̀l~irz _ ,fz d +B+iTz 	 (4.22) 

For point B, ' _ -b and ZB = B +LB+ iT2; hence, 

B+L +iT = M f y~ 	 (d- )rc 	 d~ +B+iT2 	(4.23) n 	z-- 0(b +a)"2(— )a (1—~)I/2 (f 	)1/2 

Substituting , = -u, 

b 	 (d + u)a  

LB =Mf (a — u)U2 u '(1+u)"2(f+u)`2 du 
	 ( 4.24) 

Splitting the limit into two parts, equation 4.24 is written as: 

bz 	 (d+u)" 	 (d+u)  LB = M 	~~z 	in 	11z du+ f 	n 	v2 	vz du 	(4.25) 
o (a— u) u (1+u) (f+u) 	6,2(a—u) u (1+u) (f+u) 

Substituting u = v2 for the first integral and a - u = v2 for the second integral above, 

where v is a dummy variable, the improper integral is converted to the following proper 

integral 
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t72 	(d+y2)~yII_~~ 	 .~nrz 	(d+a—y2)' 
LB =M2 

I (a—v2)12(1+v2)1R(f+v2)'~ dv+2 f (a—v2)R(l+a—v2)'rz(f+a—v2)'~ dv 1 	 Jn 

...... (4.26) 

Substituting : 

v= b/2 (1 +'' and dv — b/2 dx 

	

2 	 2 

for the first part integral and substituting 

v— 1a — b/2 — ' - b + a — b/2+ a — b =~(x~ and dv= ;a — b/2 — a —
bdx 

2 	 2 	 2 

for the second integral, where x is a dummy variable, the lower and upper limits of 

integral 4.26 are converted to —1 and 1 respectively resulting in 

11 	
1+ 	('-2̀ ) 	1+ 	

Z a 

b/2 2x 	d + (b/2 2x 

	

L13 = M b/2 f 	

)2'] 

112 2 ,.z 	 2h/ 2 dx + 

	

1 	_ J] [1+(b/2 1  2x 	f + (b/2 1 2x 
 ) j [ 	)] 	 j 

M{ 	a—b f 	- 	t [d+a_f2(X)]1 	1
. 

dX 
, a—.f2(x) l+a—.f 2(X) 	f+a—./ 2(x) 

...... (4.27) 

For point M1, which lies between E and F, the corresponding z is given by equation 4.17. 

For point M1, ' = m and ZM = iTM; hence, 

	

Tl — TM=Mf 	) 	1)112(f - 2d 	 (4.28)  

Splitting the integration into two parts 
,+m 

C 	(~ — d)° 	 d)a 	9 T, — TK,t = M J 	,n a 	,iz 	IJ2 	+ 	a 	,n 	,/z d 

	

( + a) 	—1) (f — ) 	,+m +a)"2  ~ ( — t) (f — ) 
z 

...... (4.29) 
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Substituting 4 - I = v2 for the first integral and f - = v2 for the second integral above, 

where v is a dummy variable, the improper integral in equation 4.29 is converted to the 

following proper integral : 
m-1 	 2C-1-m 

T,—TM =M 2 J
2 +l+a)'((v2 ~ 1)a(f—v2-1)v2 dv+2 j ` (f—v2 +a)( (fv (v 	 v2)"(f—v2--1)U2 dv 0 	 f m 

...... (4.30) 

Further substituting : 

v = (m —1)/2 [1+ x and dv = 
(m —1)/2 

2 j 	 2 	
dX for the first integral, 

2f —1—m 	 2f-1—m 2 	— f— m 	----2 -- + f— m 
v= 	

2 	x + 	2 

2f-1—m f—m 
and dv = 	2 2 	dX = f(x) for the second integral 

where x is a dummy variable, the lower and upper limits of integration in equation 4.30 

are converted to —1 and 1 respectively and it reduces to 

Tl —TM=M 
m-1 I I 

2 -1 rm2 l~l+X

L D

2 
I\ 	2 

 12 	
T 

1'm-1Y1+ 2 	
J +1

— d 

+1 [m-1+x Z +l+a 1'2 f— m -1 Y1+ 2 
 C 2 	2) 	( 2—i 2) 

112 dX + 
—1 

M 2f-1—m f 	f 	 [f } —.f2(x)—di 	 d 
2 	 _' [f — f Z(x~J' [f -J2(x)  +a1~ ,2 [f —f 2(x)-1]1,2 x 

......(4.31) 
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IV.2.2 Mapping of The Complex Potential w-Plane to The Auxiliary a-Plane 

C 	 A 
a 	khp~~__ 

qADI 	 k h2 
~ 	 H 	 -  

l y i 
E  M,  F  G 

--- k h, ----.-.-.---------•P 

Fig. IV.3 w-plane (w—~+i p) 

The conformal mapping of the v-plane onto the lower half of the a-plane is given by: 

dw  Mz 
4.32) 

d 	( + a)irz (() irz (~ —l)' 
(  

For points C to E, A=E,' and 0:5 E' <_ 1, the corresponding wis given by: 

w — M2 	
+a 1z ) 	_ 1 h1z — kh l +iq 	 (4.33) 

where hl is head at the stream and q is rate of seepage from half section of the stream 

For Point E, '= I and WE = -khi; hence, 

d —kh l =M2 f ( +a)vz( )'(1 	)V2 —kh1 +iq 

or 

d 
q = Mz f ( +a)vz( )

U2 (1 _ )Uz 

= M2 2 F sin-' (1 +a 	I 	 (4.34) 

	

l+a 	~ +a 	l+a 
0 

Applying the limit, hence, 

_ 2 ~ 1 

	

q =M2 1+a 	

(

F 2~ l+a 	
4.35)  

and 
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M2= 	q l+a 	 (4.36) 
2F(  

2' l+a 

where 

F ", 1 	= 
+ 	

F '[ , mi J 	 (4.37) 
2 la 	2 

is complete elliptic integral of first kind, i.e. 

n 	_~ 
f 

"2 
	d 

F 2 , 
qi 

m1 
— 	

(4.38) 
1 — m 2sin2~ 

The complete elliptic integral of the first kind is evaluated using Gauss quadrature as 

described below: 

Substituting cp=n/4 (l+), where x is a dummy variable, the lower and upper limits of the 

elliptic integral are converted to —1 and 1 respectively and it reduces to: 

F —,m  ~ = 4 f 	dx 	( 4.39) 
-' 1—m2sin2 "(14x ) 

For point B to C, 4=~' and —b 5 4' < 0, the corresponding w is given by: 

9 	d 

~'~'=M2 ~( +a)"2( )112 —1)v2 —  kh B +iq 	 (4.40) 

For point C, 4' =0 and we = -khj+iq; hence, 

d 
— kh, + iq = Ma f ( +a)"2

()"2 (  _ 1)1iz — kh B +iq 

or 

d~ 
k(hI— h B )=M2 f ( +a)"2(0— )1/2(1—~)I/2 

=M2 2 l+a F(9, m, °b 	 (4.41) 

in which 

9 = sin 	 (4.42) 
a(1- 
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in 2 _ a 
l+a 

For point B, 	-b and 

/(i+a)b 
a(l+b) 

hence, 

k(hl 
q= 

F sin-' (1+ a)b/  
I+b)'J/(I+ 

in which q is seepage rate for half section of the stream. 
Applying the boundary condition at A. We derive in similar manner, the relation 

(4.43) 

(4.44) 

 

M 
k(hl 

or 

r F '!2/ 1 q 	r', (1+a) 
k(h l -hz

) k F476+)) (4 a(I ~+a)) 

For point D to E, 4=4' and d _< ' S 1, the corresponding w is given by 

d 

w=M2 d ( +a)"n( )uz ( _1)u2 —kh1 +iq1 

For point E, ' = 1 and wE = -kh1; hence, 

d~ —kh1 =M f ( +a)v2 ( )in 	(1 _~ )1l2 
—kh1 +iq i 

or 

q=MJ_`  d~ 

(4.45) 

(4.46) 

= M
z 

2 F(9, m )la  l+a 
(4.47) 
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in which 

= sin -' 	 (4.48) 

m' 	1 + a 	
(4.49) 

Applying the limit, hence, 

F sin-],,,[]— d, 
q, — 	 (l+a) 	

(4.50) 
q 	F ,I / 	 i 

/2 ' 	 (la) 

in which q j is seepage through the stream bed. 

For point E to F, i =t' and 1 S ' _5 f, the corresponding w is given by 

_ 	d~ w M2 
(~ +a)'12(( )I/2 (( _ 1)1.n — kh 1 	 (4.51) 

For point MI, E' = m, and wM = -khM, where hM is head at point M1; hence, 
rn 	 d 

—khM =Mz 1 (( +a)1rz (~ )i;2( _ l)v2 

or 

d 
k(h1 —hM)=M2f j +a)"2 (()tr2 (. _l)1/2 

=M2 2 F l+a (9,m, r 	 (4.52) 

in which 

,9=sin-' 	 I 1 	 (4.53) 

m2 = a 	 (4.54) 
1+a 

Applying the limit 

q F('2' TZ1 1 +a)) 
_ 	 (4.55) 

k(h1 -hm 	F sin-' (m—l)/, ~ (l +a) a./ 
~ m  
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IV.3 SUBSTITUTE LENGTH 

Let us consider the location of a piezometer at a distance LB form the stream bank. 

The combined aquifer and stream resistance RT, up to length LB from equation 4.44 is 

given by: 

_, ()6 	a/ F sin 	l + a
a(l+b)' /(l+a) 

R ~ - 
	

(4.56) 

kF( /2' 1(l+a)) 

Let AL be the extra length, whose resistance is equal to the extra resistance owing to flow 

convergence within length LB. For uniform rectilinear flow, the aquifer resistance Ra of 

length LB+OL is 

R$ = Lk AL 	 (4.57) 
z 

Since Rr = Ra, we get 

-i (l )b 	a QL F sin 	+ a bI+b)' +a L 
(4.58) 

T2 	 T2 F 9/' K+ a 	T2 

IV.4 RESULTS AND DISCUSSION 

Influent seepage, reach transmissivity, and substitute length for stream in a finite 

length of aquifer are presented. For length of aquifer greater than five times aquifer 

thickness measured from center of the stream, the flow characteristic remain same as that 

of semi-infinite aquifer. 

From the relationship of reach transmissivity with distance of the point of 

observation of piezometric head, it is seen that reach transmissivity increases with depth 

of penetration of the stream bed and with increase in width of the stream. 
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100 

10 

rr 

k 

I 

0.1 
0.01 	 0.1 	LB 	1 	 10 

T2 
Fr q 

Fig. IV.4a Variation of 	k or  kOh  with distance of piezometer from stream 
bank for different depth of penetration of the stream, for B/T2=0.10 

1I 

10 

Fr 

k 

1 

0.1 -1 	 i 	i 	i 	iiiii 	i 	1 	r 	111111 	I 	i 	i  

0.01 	 0.1 	LB 	1 	 10 

T2 

Fr q 
Fig. IV.4b Variation of k or  kL  h  with distance of piezometer from stream 

bank for different depth of penetration of the stream, for BIT2=I 
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Fig. IV.5 Variation of 	k A h with distance of aquifer boundary from stream 
bank for B/T2=1 
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_ClIAP"1'ER V 

SEEPAGE FROM A STREAM IN AN UNCONFINED AQUIFER 

V.1 . GENERAL 

A river, comprising a boundary of flow, is encountered in regional ground water 
flow modeling. The river reach can approximate a boundary of prescribed head, only 

where it fully penetrates an aquifer and has a large discharge as compared to the exchange 

of flow between the river reach and the aquifer. However, a situation is rarely seen where 
a river completely penetrates the aquifer. In the case of a partially penetrating river of 
large.discharge, the exchange of flow between the river and the aquifer, which acts in 
similar manner to leakage through an overlying stratum, has to be taken into account 

besides treating the river as a boundary of prescribed head (Rushton and Redshaw, 1972). 

Mishra and Seth has analyzed seepage from a river of large width. 

In the present using Zhukovsky's function and Schwarz-Christoffel conformal 
mapping technique, unconfined seepage from a stream of finite width has been analyzed 

for a steady state condition. 

Fig. V.1 Physical flow domain in z - plane 

Figure V. I shows as a schematic cross section of stream in Z plane. The-stream is 
partially penetrating and has finite width. An impervious straturn,is underlying at a depth 

T~ below the strearnbed. If the width of stream bed is less than 4Ti, the stream can be 
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regarded to have finite width. '['his specification of finite width is based on the empirical 

rule (Aravin and Numerov, 1965) followed in preparing the scale model of a prototype 

for seepage study in homogeneous soil. The depth of water in the stream is 1-1. At a 

distance LA from the stream bank, the water table in the aquifer is at a depth AI-IA below 

the level of water in the stream. It is required to find the quantity of water recharged by 

stream to the aquifer. 

V.2 ANALYSIS 

The pertinent complex potential plane w, where w =- ~ + i1;, is shown in figure 

V.2, in which ili is the stream function and 4) is the velocity potential Function defined as 

(Harr, 1962) 

_ —k(P +y)+c 	 (5.1) 
y «1 

where k is the coefficient of permeability, p is the pressure, 	is the unit weight of water, 

y is the elevation head, and c is an arbitrary constant which has been assumed to be zero. 

Vt 

C 	 A 

4i 
q, 	 k(H AHA) 
q+ 

E M F G 
. --- kH 	.. 	_...-. 

-.. 
k(H - HF) 

1 

Fig. V.2 w - plane 

V.2.1 Mapping of Zhukovsky's 9-Plane onto an auxiliary i-Plane 

The flow domain consists of a phreatic line which is curvilinear and unknown a 

priori. Conformal mapping can be applied to analyze the unconfined flow after 

transforming the flow domain to Zhukovsky's 0 plane (Zhukovsky, 1949). The pertinent 

0 plane, in which 
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IW 
0 =z+-- 

k 

= x— 	+i y+ 	 S 	 (5.2) 
k  k 

is shown in Figure V3. The loci of CD and FG are not known. CD and FG are idealized 

as straight lines as shown. 

y+ 
k 

	

Bz -9 	 L A 
x — - 

,•- C 	 A 	k 
H  yT 

aT 

	

F 	--•-----•---~- 	
- 	------ G 	AHA-ARF 

Fig. V.3 0 - plane 

s 

— oo  _ a  o  d  1  m  f  o0 

	

A 	 C D E M F 

Fig. V.4 t -plane 

According to Schwarz-Christoffel transformation, the contormal mapping of the 

polygon 0 plane onto upper the half of the auxiliary plane is given by (Harr, 1962). 

U = M f 	(  —d) 	d +N 
( +a)"*t,(( —1)112 ( —f), (5.3) 

The vertices A, C, D, E, F, and'G are mapped onto points —a, 0, d, 1, f and oo respectively 

on the real axis of the plane. M is complex constant to be evaluated. 
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Values of angle a, 1 and y in equation 5.3 relcr to Figure V.3 and they are found to be 

tan - --- --- -- -  
q  9, 

a = 

	

(5.4) 
R 

_i AH A —AH r it -- 	--- 	+ ---  
B2 +LA 	2 

R =  (5.5) 

tan  

71 

tan -' 
TE + H —iI-I A 

q 

Y =  k  (5.6) 

For a point between A to C, 4 = 4' and -o0 5 4' < 0 

At point A,0=0 A = B2 +L A —k and s'=-a, and 

	

at point C,0=0 c = B2 — 	and '=0. 

Hence, 

9_ 0 	( — d)a 	 9 Bz --=MJ 	 d~ +B — +L 
k 	-a(~ +a)~ a ( _1)u2( _ f)p 	z k 	n 

or 

e 	(d - )~ 	
( 	) L A 

--Mo(~ +a)'(-~)z
(I _ )h12 (f )P 	 5.7 

Substituting = -u, and d = -du, where u is a dummy variable 

n 	(d + u)° 
L A 

=M0 (a-u)'' uQ (l+u)I/2(f+u)p du 

u = 0 and u = a are singular points. Splitting the limit 0 to a into 0 to V2 a, and Y2 a to a 
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(d+u)" 	 j~ 	(d+u)" 
LA 

= 
M I 	du+12(a—u)'u"(1+u)2(f+u)R du 

...... (5.8) 

Substituting u = v2 for the first integral and a-u = v2 for the second integral, where v is a 

dummy variable, the improper integral above is converted to the following proper 
integral`: 

~z 	2v' (d + v2 )°` 
L A

=M f (a-v2)''(1+v2)12(f+v2)A dv+ 
f~2 - 	2v1-2Y (d+a—v2 )~ 

(a v2 )' (1+a—v2
)112(f 

+a—v2) 
dv

, 

...... (5.9) 

substituting v = a 1 +x 	and dv = ` d 
2 2 	 2 x, 

where x is a dummy variable, the lower and upper limits of integrals above are converted 

to —1 and 1 respectively and it reduces to 

[~a [f i+x 1 	d+ a l+x 2 x 

a ' 	2 	2 2 
LA =M 2 J 	 2 

	)2] R dx 

	

a- a l+x 	1+ a 1+x 	f+ a l+x 
2 2 	2 2 	2 2 Jj• 

[~a l+x 	 Z a 
d+a- 

ta' 	2 	 2 2 
+M 	f 

	)2]" 
	 2 v2 

	
)2]P  

dx 
. 	

a -(~+X 	l+a—a (L+X 	f+a—a '+x 

	

2 2 	2 2 	22 JJ  
......(5.10) 

or 	LA=M'I(a/2) {Ii+12) 

The constant M in equation 5.7 is found to be 

LA 
M= 

111 	21 

For point between B and C, , = ~', -b < ' < 0 

For pint B, 0 = 0 B =(B2 + L B — k and ~' = -b, and 

(5.11) 
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for point C,0=0 C = B2 —k and ,'=0 

Hence, 
d a 

9 	 ( — ) 	 Q B2 -- k =M b (~ +a)'' a( _1)v2( _f)P d +B2 — k +L B 

L B _ —M 

 

-b 

	 (d - )a 	dF 	 (5.12)    
o(( +a)''(-~)¢ (1- )`2(f-~ )P 

Substituting t _ -u, and d = -du 

L13 M f 	Y ~(d +u)°`I~ 
	du 

o (a-u) u (l+u) (f+u) 

Dividing the integration into two parts 

b d+u a 	 b 
L B = M f12 	( 	) 	du 	 u)' 	du' 	(5.13) 

o ~' 	b,2(a—u)'' ua(l+u) 2 (f+u)' 

Substituting u = v2 for the first integral and a-u = v2 for the second integral, where v is a 

dummy variable, the improper integral above is converted to the following proper 
integral: 

b 
r2 	2v' (d + v? )a 	('2 	2v '-2Y (d + a — v2 )" L B =M 301 ( 	2 )Y t 	2 )~~2 ( 	2)p dv+ fII ( 	2)a ( 	 2)UZ( 	 2)p dv 

a-v l+v f+v 	 a-v l+a—v f+a—v 

...... (5.14) 

substituting v = 	1 2x = f (x) and dv = 2 2 dx for first integral 

b a—b _2 	 2

J 

substituting v = I 	 + 	 = f2 (X ) 2 	 2 

_b 

and 
 

and dv = 	2 	dx for second integral, 

where x is a dummy variable, the lower and upper limits of integrals above are converted 

to —1 and I respectively and it reduces to 
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Seepage from a partials penetrating .stream of finite width 

b ' 	 J ,(x )'- (d + J I 	))a 

L — M 	dx B  

+MVa--b --ra--b  J
-I 
	
(

.fz( x)~ (d2+
(1a 

—J22(x)) 

2 	 (a-J22x)) (1+a—f2 x ))
11
2(f+a —f   

(
x ))~ 

dx (5.15) 

For point C to D, = ' and 0 <— i;' S d 

For point C,0=0 c = Bz —k ,and s'=0 and 

for point D, 0 = 0 D = B, — k — ill, and ' = d 

Applying these conditions 

B,---iH=Mf 	( — d) 
l,z 	d~ +BZ 

k 	o (( +a)' 	( —1) ( — 	k 

m 
d 

B1 —B2 — k'+k '+H=M1-  
o (~ 

(d-~ )a 
+a) 	(1- )vz (f-~)I 

d~ 

Equating the moduli on either side 
2 

(B2 B1)+Hz 
k k' 

= MJ 	(d - )x 	d~ (5.16) 

Substituting 	v2, d4 = 2v dv, where v is a dummy variable, the improper integral above 

is converted to the following proper integral: 

Z 	n 

	

(B2 — B j ) — (g — 	= 2M f z 	
v' (d - v2

) 	z dv 	(5.17) 
k k 	 o (v +af (l-vz )»2 (f-v )P 

substituting 

v=-jd l+x . and dv= -dx 
2 	2 

where x is a dummy variable, the lower and upper limits of integrals above are converted 
to —1 and 1 respectively and it reduces to 



Seep e irony a partially penelraling stream of finite width 

' 2a 	 1+ 	
2 a 

c 2 	 I 	2X 1 	d- d~ 2x 1 
4 ]i 	z 	 J 	 J 

	

( k — k ) +H =M~J 	Z 	,. 	Z )1/2(B2 — B,)- 2 dX 

-~d 1 2x J aJ 1-d(l 
J j Lf-d Xx 

 
(5.18) 

For point D to E, = t' and d <— t' <_ I 

For point D, 0 = H D =B1 — k _ iH , and ~' =d; and 

for point E, = = -iH, and ' = 1; hence, 

—iH=Mf 	( — d)« llz _ p d~ +B1 — k —iH 
d( +a)' ( —1) ( 

B
' 

9i =M
. 
I 	((—d)a 	~d 

k d ( +a)Y 4 (1_ )2(f - ) 
(5.19) 

Substituting 1-4 = v2, d = -2v dv, at E=d, v=V(1-d) and at =1, v=0, where v is a dummy 

variable, the improper integral above is converted to the i'ollowing proper integral: 

(1-v2 —d) 
B'

_ _ q' 2M f 	 dv 	 (5.20) 
k 	o (1-v22) (f-1+v2 )~ 

substituting 

v= l—d 1+x and dv= 1—d dx 2 	 2 

where x is a dummy variable, the lower and upper limits of integrals above are converted 

to —i and 1 respectively and it reduces to 

l2  a 

B1 — k` =M 1-d f  
1-(1-d) 1 2x +a [1(1d)1;xJ]  f-1+(1—d) 12x 

(5.21) 
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For point Eto17,i;= 'and I < '_<f 

For point E, 0 = OF = -iH, and ' = I and for point F, 0 = Or: = -i(Ti+H-AHI:), and ' = f, 

hence, 

I. —.i("C, + H - OH I: ) = M f 	(( —d) I;z 	f; d —it-1 

or 

d :~ 
T, -AH I; =MJ 	( in 	p d~ 

i (( +a)Y 	( — 1) (f - ) 

Splitting the integration into two parts 
i+r 

(— d)~ 	 f 	
( — d)~ 	r 

T, -UH F =N1' ( +a)' 2 ( —1)(f-l;)P d 
+M

i+r(~ +a)1 	( —1)"2(f- )~ d 
2 

...... (5.22) 

Substituting -1 = v2 in the first integral and f- 	v10 in the second integral, where v is a 

dummy variable, the improper integral above is converted to the following proper 

integral: 

r-~ 

T, - AH,: = 2M I 	z 	(v2 +z 	¢ dv 
 (v +l+a) (v ±1)(f-v2  -1) 

Io -i 
y91' (f-y10 —d)7 

o 

+IOM 	
(f-v'0 +a) (f-v'°)°(f-vt"-1z dv 

	 (5.23) 

The substitution is valid for 13 <_ 9/10. 

Substituting 

f-1 
f_ill+x  v= 	
22 
	and dv = _

2
d 	in the first integral and 

r0 2 
 

2 1 1 2x 
and dv = 	dx in the second integral, 

where x is a dummy variable, the lower and upper limits of integrals above are converted 

to —1 and 1 respectively and equation 5.23 reduces to 

UM 



5 ageJi-om a pm- fiallv penetrating .stream of linife width 

TI-AHI,=M 	
J 

f-1 

2 2 2- 

f1 l+x 2 	ry +l —d 
2 2 

f-1 l+x Z 	rt 	
f -1 l+x z 

+1+a 	----- I 	I +1 	If - --- - 	-- 
2 2 	22 

dX 
1 

((2
-1 l+X 91 f f-1 1+X to—d 

+ SM 

t.. 

	

lo f j 	2 	22 
2 	 v 	 to 	 to 	»2 dX 

f-1(1+x 10 	f-1(1+ 	f-1 1+x +a f— 	 f-- -- 
2 	

1 
2 2 	 2 	 2 2 

...... (5.24) 

For point E to M, 	and 15 i;' <m <f 

For point E, 6 = = -iH, and ' = 1 

For point M, 0 = AM = -i(TM+H-AH), and E' = m 

—i(T +H-AH )=Mf 	( —d)x 	d~ —iH 

	

M 	M 

x TM - OHM=MJ 	( — d) 	d l( +a)"  

Splitting the integration into two parts 
I+m 

T AH =M 2( 	(— d)x 	d+ M m( 
	

( —d)  
M 	M 

	( +a) a ( —1)"2(f- )p 	l+m(( +a)' 	( _1)112 (f- )P 
2 

...... (5.25) 

Substituting -1 = v2 for the first integral and f- = v1° for the second integral, where v is 

a dummy variable, the improper integral above is converted to the following proper 

integral: 

J Z 	(v2 +l— d)" T AH 2M 	 dv M - 	M = = 	(v2+l+a)"(v2+l)~(f-v2-l)p 

io 2f m-I 	 _ 

 v9 (f - v
lo _ d)7 

+IOM 	
(f-v10 +a)' (f-v'°)'(f-v'o-1)I!z dv 

	 (5.26) 
.o• . 
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Substituting 

m-1 

in v = 	2 1
( 

1 2X• and dv = 	dX for the first integral and 
) 

[I Ii I1_ 'f_ m J (i :+ i9 2— 

v= 2 	x + 	2 	=( fx) and 

f Vim- 1 -1° f -m 
dv = 	2 	dx for the second integral 

Tht -~H~1 =M m-1 f 
2 1 

-2- 2- 

- m1 l+x 2 
+1-d 22) 

dX 
Z 	Z 

	

+l+a --- 	— +1 f- -- 	- -1 

 

2  2  2  2 

+ SM i 2f - m -1 - ~o f - m f 	.f 9-1°P (.Z')(f - f'° (.Z') - d) 	viz dx 	(5.27) 
2 	 '(f - .f1° (x)+aJ (f - f I° (x)y(f - f'°(x)-1) 

V.2.2 Mapping of The Complex Potential w-Plane onto The Auxiliary a-Plane 

The conformal mapping of the w-plane onto the lower half of the a-plane is given 

by : 

dw 	M 2 - 
d~ 	( +a)'12(

( 
)I/2( _1)112 

(5.28) 

The complex potential for the confined flow domain dealt in chapter IV, and the potential 

for the unconfined flow domain is similar with that confined flow. 

Using conditions at points C and E, constant M2 is found to be : 

M= q l+a 
2 

1_ 
2F 2, l+a 

(5.29) 
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Using conditions at points A and C 

kAHAF~n 2' i (l+) 
q = 
	

(5.30) 
F !2' a, + a)) 

in which q is seepage rate for half section of the stream. 

Using conditions at points B and C 

kOH B F(~ 2, ~~l +a)) 
(5.31) q =  

F sin'VO+ a)h
a(l+b)' a(l +a) 

Using the relationship at points D and E 

1, 
F(sin-' 1– d, l~l +~t)) 

_ 	 (5.32) 

q 	F ~' I//(J a))  

in which q, is seepage through the streambed. 

Using the relationship at points E and F 

q = 	F(. ~1 + a))  
kAH F 	 –l) 	a ; F sin,f, 	(l+a) 

or 

F sin-' (f –1%, 	l + a) 
= k 	 – 	 (5.33) 

i r- , 

Using the relationship at points E and M 

q 	F ~2' /1+a)) 

kAHM F sin -' (m – l )/~ a ;. a))  

or 
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Seepage from a partially penetrating stream of finite width 

F sin-' (m /m, /(l+a) 
_ q 	 (5.34) 

M k 1 
F( 	/(l+a)) 

The ten unknowns M, a, d, f, q, qj, AHF, a, (3, and y can be found from equation 

(5.4), (5.5), (5.6), (5.11), (5.18), (5.21), (5.24), (5.32), (5.34), and (5.35). 

V.3 SUBSTITUTE LENGTH 

The equation of seepage discharge is 

k F('9/' %(l+a)) 
q = 

	

	 An 
F1t 2'  

Hence the resistance of the stream aquifer system is found to be 

R r = 	 (5.35) 
kF(T 	1(l+ a)) 

The equivalent resistance of substitute length and aquifer 

(LA +AL) e 	 ( R 	k TI +H-0.5AHA 	
(5.36 )  

SinceRr =Ra , we get 

F(9/' (l + a) J 
AL _ 	 [H+TI —0.5AHA ]—LA 	 (5.37) 

F(~/' Xl+a)J 

in which AL is the substitute length. 

V.4 RESULTS AND DISCUSSION 

Numerical values for the stream and aquifer dimensions B1, B2, T1, LA and depth 

of water in the stream H and the head difference AMA are assumed. The parameter `a', `d' 

and `f' are assumed considering in which these parameter are located in the auxiliary 4 

plane (i.e. a> 0; 0<d<l; f>. q/k is computed from equation (5.30). q1/k is estimated from 

V-13 



S'eepege from a parliallypenchating strernnr ofIlnite width 

(5.32) and AHt, is found from (5.33). a, 13 and y are computed from equations (5.4), (5.5) 

and (5.6) respectively after computing q/k, ql/k and AHE;. Constant M is computed from 

equation (5.11). If parameters a, d and f have been correctly chosen they should satisfy 

equations (5.18), (5.21) and (5.24). Using Newton Raphson iteration procedure a, d and f 

are searched which satisfy equations (5.18), (5.21) and (5.24) with reasonable accuracy. 

Variation of q/(kAHA) with distance of aquifer boundary from stream bank, LA/TI 

for different B1/T1  is presented in Fig. V.5. q/(kAHA) or F,/k decreases with increasing 

LA/T1. I'r/k is higher for a stream with large width. However when B1/T1  >_ 2, width of 

stream has little influence on reach transmissivity. In other word, all other parameter 

remaining unchanged, the seepage does not increase as B 1 /T1 increases beyond 2.0. 

3 

2.5 

2 

1.5 

q 
kAH A  1 

0.5 

0 

—O—B1rr1=2_0 -0B1/rl=0_5 --A—B1iT1=0.1J 

0 	0.5 	1 	1.5 	2 	2.5 	3 	3.5 	4 	4.5 	5 	5.5 

LA  

T, 
Fig. V.5 Variation of q/(kAHA) with distance of aquifer boundary from the stream bank (LA/Ti), 

for H/T1=0.1; AHA/TI=0.01 and B B,+0.1 

The variations of non dimensional seepage from the stream and seepage through 

stream bed with LA/T1  for a particular value of Al-IA/TI (=0.01 and 0.1) are presented in 

Fig. V.6a through V.6c. q/(kAHA) or Fr/k is the dimensionless reach transmissivity 

corresponding to length LA  and the dimension of the stream cross section. Reach 

transmissivity being inverse of the resistance of stream aquifer system, it decreases with 

increase in LA. The decrease is monotonic beyond LAIF I > 4. The results are presented in 
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Seepage fro ,n a partially penetrating stream of nite width 

table V.1 and V.2. The computed a, Ji, y and parameters a, d, f are presented including 

AHF/T1 , q/(kAHA) and q1/(kAHA) for given B1/T1 , B2/T1, HIT1 , AHA/T1  and LA/TI. 

1.5 

q 

1 

q  
k4HA  

0.5 
q 

01 	I 	 I 	I 	I 	-I 
0 	1 	2 L  3 	4 	5 	6 

A  
Tl  

Fig. V.6a Variations of q/(kt HA) and ql/(kAHA) with LA/T1  for B1/T1=0.1; B2/TI=0.2; 
H/T1=0.1 and AHA/T1=0.01 

1.5 

q 

1 

q  
kAH A  

0.5 
ql 

0 	1 	2 L 3 	4 	5 	6 
A 

Tl  . 

Fig. V.6b Variations of q/(kAHA) and ql/(kAll) with LA/Ti  for B1/T1 0.1; B2/T1=O.2; 
H/T1=0.1 and AHA/Ti-0.1 

V-15 



Seepage from a partially penetratingstream pffinite width 

3 

2.5 

q 	2 

kAHA 
1.5 

1 

0.5 

	

01 	 I 	 I 	 I  

	

0 	1 	2 	LA 	3 	4 

Tl 
Fig. V.6c Variations of q/(kAHA) and ql/(kAHA) with LA/Ti for B1/T1=2; B2/T1=2.1; 

H/T1=0.1 and AHA/T1=0.01 

The variation of q/(kAHA) and ql/(kAHA) with B1/T1 for AHA/T1=0.1, H/T1=0.2 

and LA/T1=5 are shown in Fig. V.7. As B1 increases seepage through bed and total 

seepage increase. For B1/T1 > 1, the increase in seepage is in significant. 

0.25 

0.2 

q 
0.15 	 q1 

kAH A 0.1 

0.05 

0 	0.5 	1 B 1.5 	2 	2.5 

1 

T1 
Fig. V.7 Variations of q/(kAHA) and q1/(kAH~ - cvih B1/T1 for AHA=0.1; H/T1=0.2; 

B2=B1; and LA/T1=5 

Iw 

1 
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The variation of q/(kAHA) with I-UT1 for, different LA/Ti and particular values of 

B1, B2 and AHA are presented in Fig. V.8. It is seen that reach transmissivity increases 

with increase in depth of water in the stream. The increase is linear for LA/Ti > 1. 

1.6 

1.4 

12 

1 

q 	0.8 
kAH A 

0.6 

0.4 

0.2 

0 
0 	V.1 	VL 	V.J 	V.Y 	VV 	V.V 

H 
T, 

Fig. V.8 Variation of q/(kAHA) with H/T1 for B1/T1=0.1; B2fT1=0.2 and AHA/T,=0.1 

The variation of q/(kIHA) with AHA/TI for different LA/T1 are presented in fig. 

V.9. It is seen that as LA/TI >_ 4 the reach transmissivity is independent of draw down 

OHn. 

1.4 

1.2 

1 

0.8 

q 	0.6 
k~H n 0.4 

0.2 

0 

LA/i'1=0.25 

2 

_-- — -- -- 4 

0 	0.1 	0.2 	0.3 	0.4 	0.5 
AHA 
T, 

Fig. V.9 Variation of q/(kAHA) with OHA/Tl for B1/T,=0.1; B2/T1=0.2 and HIT 0.1 
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The variation of substitute length with width of rectangular stream is shown in 

Fig. V.10. The substitute length decreases with increasing stream width since the 

curvature of the flow lines will reduce with increase in bed width. Beyond B >_ T1 , there is 

no further of reduction. 

0.8 

0.7 

0.6 

0.5 

AUTI 0.4 

0.3 

0.2 

0.1 

0 I 	 I -- 

0 	0.5 	1 	1.5 	2 	2.5 
B,/T I  

Fig. V.10 Variation of substitute length with width of stream for AHA/TI=0.1; H/T1=0.2 ; B2=B1 

and LA/T1=5 

The distribution of vertical down ward velocity with depth from the stream bed is 

presented in Fig. V.11. As the fluid approaches the lower impervious bed, the velocity 

decreases and tends to zero at y/T1 =1 as expected. 

0.006 

0.005 

0.004 

vy  0.003 

0.002 

0.001 

0 
0 0.2 	0.4 	0.6 

_y/T, 

f3i / r1={).5 
a jrr,=0.c 
tUr =o.i 
LArrI=i 

0.8 	1 

Fig. V.11 Distribution of velocity down ward 
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The locus of phreatic line at the entry through hank is magnified and shown in 

Fig. V. 12a and d V. 12b. As seen from the figure, the phreatic line which is a stream line 

and the stream bank which is an equipotential line and orthogonal. 

 

0.2  /~~'/r%~1. ~ i.'//; J ~/ ~!~ Vii" ~ f s~/rte ~/i;!/. •s/ :~~ Fi..'r 

 

.-0.10.1  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 

-0.2 
 

xII, 

-0.3 

-0.4 

-0.5 

-0.6 -

-0.7 

-0.8 

-0.9 

1///Jt'iJ!/i~!!!!.•": ~i~{!1/..•~~`~}rr~r3i~:`Ii'~J~J~!frr~.:rffl.:: 

Fig. V.12a Locus of the phreatic line, for B1/T1=2; B2/T,=2.1; U1f1=0.1; Al-1,.,/T1=0.1; LA/T1=1 

0.102 

y/T, 	-`~~ 
0.096 

I-- —~ — —, 0:094 I —,- - - 	- 	—• I 
-0.006 -0.004 -0.002 	0 	0.002 0.004 0.006 0.008 0.01 

Fig. V.12b Locus of the phreatic line at entry through stream bank 
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Seepage from a partially penetrating stream of /mite width 

CHAPTER VI 

CONCLUSIONS 

Using conformal mapping and Zhukovsky function, seepage from a partially 

penetrating stream has been obtained for the following hydro geological conditions: 
(i) a partially penetrating rectangular stream in a semi infinite confined aquifer, 

(ii) a partially penetrating stream with trapezoidal section in a finite confined aquifer, 

and 

(iii) a partially penetrating stream with trapezoidal section in a finite unconfined 

aquifer. 

Steady state seepage from a stream in a confined aquifer can be expressed as: 

q=kFAh=I'r Ah 

in which: 

k = hydraulic conductivity, 

Ah = hydraulic head difference measured at a piezometer in the vicinity of the 

stream, 

and F is a factor which depends on location of the piezometer i.e. distance of the 

piezometer from the stream bank and stream geometry i.e. cross section of the stream and 

depth of penetration of the stream. The above linear relationship between seepage and Ah 

is valid for steady state and confined flow condition. 

Aravin, Bouwer, Herbert, Morel-Seytoux and many other investigators have 

derived the factor F based on Darcy's law and Dupuit Ferchheimer flow condition at large 

distance from the water body. 

In the present thesis, exact relation of the parameter Fr/k (i.e. seepage factor F) 

with distance of the piezometer and stream geometry including depth of penetration has 

been derived. It is found that the reach transmissivity increases with increase in stream 

width, depth of penetration and hydraulic conductivity and it decreases with increase in 

distance of observation point from the stream bank. Unlike seepage from a trapezoidal 

canal in an unconfined aquifer of infinite depth, the total seepage and seepage through 

bed of a stream in a confined or unconfined aquifer of finite depth tend to constant value 

for B/T2 greater than 1. The fraction of seepage through bed decreases as depth of 

penetration increases. 
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Seepage from a partiallyppenetrating stream of finite width 

Unsteady flow from a fully penetrating stream has been given by Carslaw and 

Jaeger for an analogous heat conduction problem. Partially penetrating stream, offers 
more resistance to flow than fully penetrating stream because of flow convergence near 

the stream. The sum of the resistance due to flow convergence and resistance due to 

fraction of the aquifer under the stream bed can be equated to the resistance of length AL 

of the aquifer for uniform flow condition. This length AL is known as substitute length. 

The substitute length increases with increase in distance of observation well from the 
stream bank and decreases with increase of width of the stream and depth of penetration. 

The substitute length tends to a finite value as distance of observation well increases. In 

the application substitute length for unsteady flow, it is seen that the rise piezometric 

surface in the aquifer for a unit step rise in the stream, is less than 1 due to the head loss 
along substitute length. 

In comparing the results with Herbert's formula, it is found that Herbert's formula 
is applicable for depth of penetration less than 30 % (the involved error < 10%) and width 

of the stream (B/T2 ) less than 0.2. 

For a partially penetrating stream in an unconfined aquifer, the reach 

transmissivity increases with increase in depth of water in the stream, decreases with 

increase in length of aquifer boundary and increases tending to constant value with 

increase in stream width. 

A rigorous analytical solution for steady seepage from a trapezoidal stream/canal 

to an unconfined aquifer in which water table lies at a shallow depth has been derived 

using Zhukovsky function and Schwarz-Christoffel conformal mapping. 
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APPENDIX A 

REACH TRANSNIISSIVITY 

The use of reach transmissivity has been introduced by Morel-Seytoux and Daly 

(1975), for solving unsteady state stream-aquifer interaction problem. The reach 

transmissivity has been defined as the constant of proportionality between the return flow 

from a river and the difference of potentials at the periphery of the river and in the aquifer 

in the vicinity of the river. The constant of proportionality has been obtained analytically 

by various investigators, e.g., Hammad (1959), Ernst (1962) Aravin and Numerov (1965), 

Bouwer (1965), Herbert (1970) and Streltsova (1974), for different aquifer and river 

geometry. According to Muskat (1946), and Bouwer (1969), an unsteady state can be 

treated as a succession of steady states. The validity of this assumption has been reasoned 

out by Muskat in detail [Muskat (1946), pp.621-625]. Based on the above principle, the 

reach transmissivity constant, though has been derived on the assumption of steady flow 

condition, has been used for analysis of unsteady state problems by Morel-Seytoux 

(1975). The reach transmissivity constant derived by various investigators for different 

canal and aquifer geometry has been reviewed in the following paragraphs : 

The geometry of a channel constructed in an aquifer on finite depth, which is 

underlain by impermeable layer is shown in Figure A. 1. The channel is hydraulically 

connected with the aquifer. For a specific case in which the channel is rectangular and the 

bottom of the channel extends to the impermeable layer, the seepage loss is given by 
(Bouwer, 1965). 

Q = 2k(H~, — 0.5DW )DW 
(L-0.5Wb ) 

(A.1)  

The reach transmissivity for a fully penetrating canal of reach length Lr , therefore, is 
given by: 

2k.L r (HW —0.5D W ) 
(L-0.5Wb) 

(A.2)  

L can be regarded as the distance of the observation well where the draw down Dw is 
observed. 

Approximate expression for seepage from a partially penetrating channel shown in 
Figure A. 1 is given by (vide Bouwer, 1969). 
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Seepage from a partially penetrating stream of finite width 

Hw 	 Dw 
a 	 r  

k 
Di 	 L — — 

77777777777=7777.4 T17:Tn7777T, .7rT:77: Tm , i 77777,4, 7 
impermeable 

Fig. A.1 Geometry for channels in soil underlain by impermeable material 

_ 2k(Hw  +Di  —0.5Dw )Dw  
Q 	(L-0.25Wb  —0.25WS ) 

(A.3)  

Hence, the approximate expression for reach transmissivity for a canal conforming to the 

configuration depicted in Figure A. 1 is, 

2kL r (Hw  +Di  —0.5DW ) 
(L-0.25Wb  —0.25W) 

(A.4)  

According to the Bouwer (1969), the above expression is not exact and the error in Fr  will 

increase with increasing Di. The error in equation A.4 is due to the curvature and 

divergence of the streamlines in the vicinity of the channel. 

Fig. A.2 Division of flow system in regions I and II for Dachler's -analysis 

Dachler (1936) had divided the flow system on the basis of model studies into a 

region with curvilinear flow (region I) and the other with Dupuit Forchheimer flow 

(region II) [Fig. A.2], the dividing line being at a distance, L1, from the center of the 

canal, where 

L1= Ws +HW  +Di  
2 

(A.5)  
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The flow in region I was analyzed with an approximate equation for the potential and the 

stream line distribution under a plain source of finite width. A factor `F' has been 

determined to estimate flow in region I as : 

QI=2FkAH 
	

(A.6) 

where AH is the vertical distance between the water surface in the canal and the ground 

water table at the dividing line between the two flow regions. Values of F given by 

Dachler are presented in Figure A.3. 

Shallow channels Ws / Wo >0.9 
1.0 

_ 	-0.9 
o + 0.8 

Ts0.7 
0.6 
0.51 

U W. U 	i 	I.;.,  c 

Deep channels Ws/ WD <0.9 

0.5 	1 	1.5 	2 
Curve parameter F Ws/ (D I+H w) 

Fig. A.3 Dachter's values of F for shallow and for deep channels 

The flow in region 11 has been expressed with Dupuit Forchheimer theory as : 

2k(D W —D H) 
Q„ = 	[Di +H~, —0.5AH-0.5DW ] 

I, Z (A.7) 

Since it is required to calculate the seepage for a given value of Dw at a distance (L,+L2) 

from the channel center, AH will not be known initially. AH is found by trial and error 

which satisfies the condition QI=QiI. The reach transmissivity for a canal reach of length 
Lr will be given by: 

1_, r = 2LL I — DI )(Di +H ~, — 0.5AH — 0.5D ) 	 (A.8) 
z  w 

1.0 

0.~ 
O.E 
0.7 

0.6 

0.5 
0 
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Bouwer (1969) has applied Ernst's approach to analyze seepage from a canal 

constructed in a porous medium of finite depth underlain by an impervious layer. 

Following Ernst's approximate solution for potential distribution pertaining to flow to a 

line sink, the head loss, hr, due to radial flow in the vicinity of the canal, has been 

expressed by Bouwer as: 

hr = Q logy 
D• +H 
	 (A.9) 
JIrk 	 WP 

Hence, reach transmissivity for a canal reach of length Lr is given by 

nk L, 	
(A.10) 

D; + H 
logy W 

P 

The head loss, hl,, due to horizontal flow in the region away from the canal has been 

expressed by Bouwer as 

_  L 
h" 2k (D; +H W —0.5D,) 

(A.11)  

Since Dw= hr + h1,, Bouwer has combined equations A.9 and A.11 to obtain the relation: 

LIZ 
kD 

1 to Di + H W + 	0.5L 
7 gc 	W,, 	D1 +HW —0.5DW 

(A.12)  

The reach transmissivity for a canal reach of length Lr from equation A. 12 can be 

obtained as : 

Fr _ 
kL, 

1 (D. +H 	0.5L 
—log 	+ ----- -------. 
rc 	WP, 	D; +H W —0.5D W 

(A.13) 

Equation A.9 was developed for semi circular channels of radius r, where the 

wetted perimeter W, is itr. The equation according to Bouwer (1969) can be used for 

channels of other shapes by substituting the actual wetted perimeter as shown in the 

above equation. For shallow channels (Ws>>Hw), the seepage rate can be more 

accurately estimated by the following expression : 
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km 	h r 	 (A. 14) 
4D1 ±H 

log, - 
ws 

Hence, the reach transmissivity for a canal reach of length L1 by Ernst modified formula 

would be given by: 

Fr 
i 	k" L, 	 (A.15) 

` 	4D1 + f1 

~ Ws 

I 

Lr 

h 	 e 

C=5Wp 	 C=5W 

Zone of 
influence 

Fig. A.4 Schematic view of a s tream in hydraulic connection with an aquifer and definition of 

teminology 

Using a simple potential theory Morel-Seytoux et al (1979) have derived the 

following expression of reach transmissivity for a canal in a porous medium underlain by 

an impervious layer (Fig. A.4): 

TL 0.5W~, +e F = 	, 	_ 	 (A. 16) 
e 5W1 +0.5e 
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in which, 

Lr =length of canal reach, 

T = transmissivity of the aquifer, 

WF, = wetted perimeter of the canal, and 

e = saturated thickness below the canal bed. 

hr 

Fig. A.5 Representation of partially penetrating river 

Herbert (1970) has the related the flow from a partially penetrating river, having 

semicircular cross section (Fig. A.5), to the potential difference between the river and in 

the aquifer below the river bed. The expression is given by: 

Qr — 
-KI, r k(h r —he) 	 (A.17) 

0.5m 
loge 0. --- 

r 

in which, 

Li = length of river reach, 

hr = potential at the river boundary, 

h0 = potential in the aquifer below the river bed, 

m = saturated thickness of the aquifer, and 

rr = radius of the semicircular river cross section. 

The reach transinissivity, which could be obtained from equation A. 17, is 

itL k (A.18) 

1oJO.Sm 
rr 

For a rectangular channel shown in Fig. A.6, Aravin (1965) has derived the 

following expression for flow to the channel : 
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Q — k(H + h)(H — h) + 

1_ B 
2 

k(H —h) 

	

L 	1 logy si B flu  

	

2"1 	71 	4"1' 

(A.19) 

L 

Fig. A.6 Flow to a rectangular ditch 

The reach transmissivity for a canal reach of length Lr could be written as 

(H + h) + 	 kL, 
` L--0.513 	L 1 	n13 

---log,, Binh ---- 
T it 	4T 

(A.20) 

\ 	Hw 	 Dw 

b~ O 

DP ~~ 	 L 

v• r. f1 •v 	• d O 	 r 	a s va 	r a a• v ., v w • V r v r r r O i• r S 
Permeable 

Fig. A.7 Geometry and symbols for channels in soil underlain by permeable material 

Seepage flow from a canal embedded in a porous medium of finite depth, 

underlain by a highly pervious layer, Fig.A.7, has been analyzed for simplified canal 

geometry by Hammad (1959). The analysis is valid for the situation in which the 

piezometric head in the underlying highly pervious layer is very near the canal water 

level. According to Hammad, 

2K, 
Q = kDW 

K~ —C 
(A.21) 
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in which, K, and K1 are the complete elliptic integral of the first kind corresponding to 

modulus K1 and complementary modulus K '1 respectively. The moduli are defined as : 

z 	I z̀ 

K, = 0.5 Zs + 45 	- 2Hw 2 

2"' K, = (1— K, 

The other constants are 

C= Hw 
K, 

H . tan 	n llw 	forHw<D 
w 	2(H W +D) 

and 

Ws= 	
4(H 

2tanh 	Ws 	, for HW < Dp 
W +DP ) 

The reach transmissivity for a canal reach of length Lr can be written as : 

1, = 1_2K1
kL 

 
` 	K,—C 

(A.22) 

Fig. A.8. 	Seepage from a canal with shallow water depth embedded in a porous medium underlain 

by a highly permeable layer 

Aravin (1965) has analyzed the seepage from a canal which has very shallow water depth 

in it. The water table lies above the highly permeable layer as shown in Fig. A.8. The 

analysis has been carried out using zhukovsky's function and conformal mapping. The 

seepage quantity is given by, 

Q = k(T — H) K' 
	

(A.23) 
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in which, K1 is the complete elliptical integral of first kind with modulus 

— b+Q 
K = exp 	k 

2H 

K1 is complete elliptic integral of first kind with modulus K, where K is given by 

K'= 1—K 2 

when K is very near to zero, the seepage rate is given by: 

Q — k(T — H)(b + 0.882H) 
T 

Thus, 

kL,(b+0.882H) 
T 

(A.24) 

Hw 	Dw 

O 

02 

Impermeable 

Fig. A.9 Canal in a two layered soil system 

The case of seepage from a canal in two layered soil Fig. A.9, underlain by an 

impermeable layer, has been analyzed by Ernst (vide Bouwer, 1969). Following Ernst's 

solution, the reach transmissivity pertaining to a two layered soi-I system can be written 

as 

Fr = 	 kiLr 	 (A.25) 
0.5k L 	 1 	a (H + ) ) 

k,(D, +HW —0.5D W )+k2D2 	 W~, 
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in which k i and k2 are permeabilities of the top and bottom layer respectively. The 

parameter a given by Van Beer (vide Bouwer, 1969), is shown in Fig. A. 10. 

Fig. A.10 	Parameter a for calculating seepage loss from a canal in a two layered soil system 
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APPENDIX 13 

B.1 	Computer Programming for Seepage in Confined Aquifer 

#include<iostream.h> 
#include<math.h> 
#include<iomanip.h> 
#include<process.h> 
#include<conio.h> 
const int n=48; 
const int m=48; 
const intu=2; 
const int v=2; 
const int w=2; 
const int x=1; 

void main() 
{ 

clrscr(); 
long double d,f,dcd,dde,gcd,gcd t ,gcd2,gde,gdel ,gde2,gca,gca I ,gca2,sel,self,seld,fl ,di ,f2,d2; 
long double ycd l ,ydel ,yca l ,ycd2,yde2,yca2,b,bca,e,z,dO,fO, dd,df,FdOfO,GdOfO; 
long double FdfO,FdOf,GdfO,GdOf,gcda,ycdl a,ycd2a,gcd2a,gcdl a,gdea,ydela; 
long double yde2a,gde1a,gde2a,gcdb,ycdlb,ycd2b,gcd2b,gcdlb,gdeb,ydetb,yde2b; 
long double gdelb,gde2b,dfpdd,dfpdf,dgpdd,dgpdf,ap,iap,ap2,iap2; 
float ti ,t2,ts,wb,wb I ,Ib,pi, q_by_kdh; 
int i,q,j,k,r,s,t; 
long double ss,sO,s1,s2,gefa,gefal,gefa2,gefb,gefbl,gefb2,gefc,gefcl,gefc2,q_by_kdli2; 
long double yell, yef2,yefOl ,yefO2,yef 11,yefl2,e2,ds,fs,fsO,fsl,dfpds,tesi,ts_by_t1; 
char cont_q;int cont s; 

long double 
xijm]={.016276744649602969579,.048812985136049731112,.081297495464425558994,.113695850110665920911,.145 
973714654896941989,.178096882367618602759, 
.210031310460567203603,.241743156163840012328,.2731 98812591049141487,.304364944354496353024,.33520652 
2892625422616,.365696861472313635031, 
.395797649828908603285,.425478986407300545365,.454709422167743008636,.483457973920596359768,.51169417 
7154667673586,.539388108324357436227, 
.566510418561397168404,.593032364777572080684,.618925840125468570386..644163403784967106798,.66871831 
0043916153953,.692564536642171561344, 
.715676812348967626225,.738030643744400132851,.759602341176647498703,.780369043867433217604,.80030874 
4'39140817229,.819400310737931675539, 
.837623511228187121494,.854959033434601455463,.871388505909296502874,.886894517402420416057,.90146063 
5315852341319,.915071423120898074206, 
.927712456722308690965,.939370339752755216932,.950032717784437635756,.959688291448742539300,.96832682 
8463264212174,.975939174585136466453, 
.982517263563014677447,.988054126329623799481,.992543900323762624572,.995981842987209290650,.99836437 
5863181677724,.999689503883230766828}; 
long double 
wi[n]={.032550614492363166242,.032516118713868835987,.032447163714064269364,.032343822568575928429,.032 
206204794030250669,.032034456231992663218, 
.031828758894411006535,.031589330770727168558,.031316425596861355813,.031010332586313837423,.03067137 
6123669149014,.030299915420827593794, 
.029896344136328385984.029461089958167905970.0289946141 50555236543.028497411065085385646.02797000 
7616848334440,.027412962726029242823, 
.026826866725591762198,.026212340735672413913,.025570036005349361499,.024900633222483610288,.02420484 
1792364691282,.023483399085926219842, 
.022737069658329374001,.021966644438744349195,.021172939892191298988,.020356797154333324595,.01951908 
1140145022410,.018660679627411467385, 
.017782502316045260838,.016885479864245172450,.015970562902562291381,.015038721026994938006,.01409094 
177231 4860916,.01 3128229566961572637, 
.012151604671088319635,.011162102099838498591,.010160770535008415758,.009148671230783386633,.00812687 
6925698759217,.007096470791153865269, 
.006058545504235961683,.005014202742927517693,.003964554338444686674,.002910731817934946408,.00185396 
0788946921732,.000796792065552012429}; 

clrscr(); 
cout<<" SEEPAGE FROM PARTIALLY PENETRATING STREAM IN CONFINED AQUIFER"«endl«endl; 
do{//for total 
do{//for case I 
clrscro; 
cout«" Input thickness of aquifer 	T2 = ';cin>>t2;cout<<endl; 
cout«" Input half width of top level of aquifer B = "cin>>wb;cout<<endl; 
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cout<<" Input half width of stream bed 	B1 = ";cin>>wbl;cout<<endl; 
cout<<" Input thickness of bed 	T1 = ";cin>>tl;cout<<endl; 
coutc<" Input distance of piezometric 	L = ";cin>>Ib;cout<<endl«endl; 
cout<<" Input aproximate value of 	0<d<1 = ";cin >d2;cout<<endI; 
cout«" Input aproximate value of 	f>1 = ";cin>>f2;cout<<endl; 
dd=0.0000000001;df=(f2-1 )II 00000000000; 
pi=3.141592654; 
if((wb-wbi)<0.000001) ap=0.5;else ap=(atan((t2-t1 J/(wb-wb1)))/pi; 
ap2=1.-2.'ap; 
do 

{ 
dO=d2; 
fO=f2; 
d =d2+dd; 
f =f2+df; 
gcd=0; 
for(i=0;i<n;i++) //coresponding F (dO,fO) 

{ 
ycd1=sqrt(sgrt(pow(dO2)))*(1  +xi[I])/2; 
ycd2=sqrt(sgrt(pow(dO,2)))`(1-xi[l])/2; 
gcdl =wi[ij*pow(ycdl ,ap2)`pow((dO-pow(ycdl ,2)),ap)/((sgrt(sqrt(pow((f0-
pow(ycd 1,2)),2))))'(sqrt(sgrt(pow((1-pow(ycdl ,2)),2))))); 
gcd2=wi[i J'pow(ycd2, a p2)'p ow((d0-pow(ycd2, 2)), ap)/((sgrt(sqrt(p o w((fO- 
Pow(ycd2,2)),2))))*(sgrt(s(pow((1-pow(ycd2,2)),2))))); 
gcd=gcd+(gcdl+gcd2); 

FdOfO=sq (sgrt(pow(dO,2)))*gcd-pi`sgrt(pow((wb-wb1),2)+pow({t2-tl),2))/t2; 

gde=O; 
for(q=0;q<m;q++) //corresponding G (d0,fO) 

{ 
ydel =(sqrt(sgrt(pow((1-d0),2))))/2'(1+xi[gl); 
yde2=(sgrt(sqrt(P ow((1-d0),2))))/2'(1-xi[q]); 
gdel =wi[q]' pow((1-pow(yde 1,2)-dO),ap)1((pow((1-pow(yde l ,2)),ap))'(sgrt(sqrt(pow((f0- 
1+Pow(yde 1.2)),2))))); 
gde2 wi[q]*Pow((1-pow(yde2,2)-d0),ap)/((pow((1-pow(yde2,2)),ap))'(sgrt(sqrt(pow((f0- 
1 +pow(yde2,2)),2))))); 
gde=gde+gdel+gde2; 
} 

G dOfO=sgrt(sqrt(pow((1-d0),2)))*gde-wb 1'p i/l2;//1-p ow((wb`pil(t2*gde)),2)-d0; 

gcda=0; 
for(j=0;j<n;j++) //Corresponding F(dO+dd,f0) 

{ 
ycdl a=sgrt(sqrt(pow(d,2)))'(1 +xi[j])/2; 
ycd2a=sqrt(sgrt(pow(d,2)))'(1-xi(j1)/2; 
gcdl a=wi[j]'pow(ycdl a,ap2)'pow((d-pow(ycdl a,2)),ap)/((sgrt(sqrt(pow((fO- 
pow(ycdl a,2)),2))))"(sgrt(sqrt(pow((1-pow(ycd l a,2)),2))))); 
gcd2a=wi[ j]'p ow(ycd2 a, ap2)' po w((d-pow(yc d2 a ,2)), a p)/((sq rt(sgrt(p ow((fO- 
pow(ycd2a,2)),2))))`(sqrt(sgrt(pow((1-pow(ycd2a,2)),2))))); 
gcda=gcda+(gcdla+gcd2a); 
) 

Fdf0=sqrt(sqit(pow(d,2)))'gcda-pisqrt(pow((wb-wb1 ).2)+pow((t2-tl ),2))/t2; 

gdea=0; 
for(k=0;k<m;k++)//Corresponding G(dO+dd,fO) 

yde1a=(sqrt(sgrt(pow((1-d),2))))12`(1+xi[kf ; 
yde2a=(sgrt(sqrt(pow((1-d),2))))/2'(1-xi[k]); 
gdel a=wi[kJ'pow((1-pow(ydel a ,2)-d),ap)/((pow((1 -pow(ydel a,2)),ap))•(sgrt(sqrt(pow((fO-
1+pow(ydel a,2)),2))))); 
gde2a=wi[kJ'pow((1-pow(yde2a,2)-d),ap)/((pow((1-Pow(yde2a,2)),aP))*(sgrt(sqrt(pow((fD-
1 +pow(yde2a,2)),2))))); 
gdea=gdea+gdela+gde2a; 
I 

GdfO=sgrt(sqrt(pow((1-d),2)))`gdea-wb1 `pi/t2 J/1-pow((wb•pi/(t2•gdea)),2)-d; 

gcdb=0; 
for(s=0;s<n;s++) //Corresponding F(dO,fO+df) 

{ 
ycdl b=sgrt(sqrt(pow(dO,2)))`(1 +xi[s1)/2; 
ycd2 b=sgrt(sqrt(pow(dO, 2)))' (1-xi[sj)/2; 
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cout<<endl<<" k+kkHkHkiikkkkk...NkkkiiikfHkki* kk4MNkMkkkkkkk.*..**"<<endl;} 
else {clrscr(); coutc<endl<<" APROXIMATION OF VALUE OFT or d' HAVE TO BE CHANGED"<<endl;getch();exit(0);} 

cout<<endl«" Repeat for different value of B, T1, L? (PRESS : 1)"; 
cout<<endl<<" Continue for different potential head ? (PRESS : 2)"; 
cout<<endl<<" Terminate this programe ...............? (PRESS : 3)"«endl; 
cout<<endl<<" 	 YOUR CHOICE NUMBER : ';cin»cont_s;} 
while (cont_s==1); 

if (cont_s==3) exit(0); 
if (cont_s==2) 
{ 
//Calculation of seepage for different potential head 
cout<< Value of Ts (maximum Ts=T1) =';cin>>ts;cout<<endl; 
cout«" Aproximate value of s 	= " <f-ts•(f-1)/t1 <<endl; 
tout«" Input aproximate value of s = ';cin>>ss; 
tout<<endl; 
ds=(ss-1 )ti 00; 
do 

{ 
sO=ss-ds; 
sl=ss+ds; 
gefa=0; 
for(r=0;r<n;r++)//corresponding s0 

{ 
yefo l =sgrt(sqrt(pow((s0-1),2)))'(1 +xi[r})/2; 
yef02=sgrt(sqrt(pow((sO-1),2)))'(1-xi[r})/2; 
gefa 1=wi f r)'pow((1-d+pow(yef01,2)), a p)/(sgrt(s grt(p ow((f-1-
pow(yef01,2)),2)))kpow((1 +pow(yef01,2)),ap)); 
gefa2=wi[r]'pow((1-d+pow(yefO2,2)),ap)/(sgrt(sqrl(pow((f-1- ' 
p ow(yef02,2)),2)))*pow((I +pow(yefO2,2)),ap)); 

gefa =gefa+(gefal+gefa2); 
} 

fs0=sgrt(sqrt(pow((s0-I ),2)))`gefa-(t1-ts)*pi/t2; 

gefb=O; 
for(r=0;r<n;r++)//corresponding sl 

{ 
yell l=sqrt(sqrt(p ow((si -1),2)))' (1 +xi[r])/2; 
yefl2=sgrt(sqrt(pow((sl -1),2)))'(1-xi[r])/2; 
gefb 1=wi(r]'pow((1-d+pow(yef11,2)),a p)/(sgrt(s grt(pow((f-1- 
pow(yef 11,2)),2)))•pow((1 +pow(yef 11,2)),ap)); 
gefb2=wi[r]' pow((1-d+pow(yefl 2,2)), a p)1(sgrt(sqrt(p ow((f-1- 
pow(yefl2,2)),2)))'pow((I +pow(yefi 2,2)),ap)); 

gefb =getb+(gefbl+gefb2); 
} 

fsl =sgrt(sqrt(pow((s 1-1),2)))`gefb-(tl -ts)'p11t2; 

gefc=O; 
for(r=0;r<n;r++)//corresponding s 

{ 
yell =sgrt(sqrt(pow((ss-1),2)))'(1 +xi[r])/2; 
yef2=sqrt(sqrt(pow((ss-1),2)))`(1-xi[r])/2; 
gefcl =wi[r]•pow((I -d+pow(yef l ,2)),ap)/(sgrt(sqrt(pow((f-1 -pow(yefl ,2)),2)))•pow((1 +pow(yefl ,2)),ap)); 
gefc2=wi[r]`pow((1-d+pow(yef2,2)),ap)f(sgrt(sqrt(pow((f-1 -pow(yef2,2)),2)))`pow((1 +pow(yef2,2)),ap)); 

gefc =gefc+(gefcl+gefc2); 
} 

fs=sgrt(sqrt(pow((ss-l),2)))'gefc-(ti -ts)'pi/t2; 

dfpds=(fst-fs0)/(ds'2.);cout<<s0 = "<<s0«" sl = "<<sl;tesl=sgrt(pow(dfpds,2)); 
If (tesl>3.4e-4900) {ss=ss-fs/dfpdc;ds=-fs/dfpds:} 
else if (ss<1) ss=1; 
else {ss=ss;ds=0;} 

tout<<" ds = "<<ds<<" s= "<<ss; 

if(ds>0) 
e2=ds;else 
e2=-ds; 
} 
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gcdl b=wi[s]'pow(ycd I b,ap2)'pow((dO-pow(ycd 1 b,2)),ap)/((sqrt(sqrt(pow((f-
pow(ycd l b,2)),2))))'(sgrt(sgrt(pow((1-pow(ycdlb,2)),2))))); 
gcd2b=wi[s['pow(ycd2b,ap2)'pow((dO-pow(ycd2b,2)),ap)/((sgrt(sqrt(pow((f-
pow(ycd2b,2)),2))))'(sgrt(sqrt(pow((1-pow(ycd2b,2)),2))))); 
gcdb=gcdb+(gcd1b4gcd2b); 
} 
FdOf=sgrt(sgrt(pow(dO,2)))'gcdb-pi'sgrt(pow((wb-wb1),2)+pow((t2-tl ),2))/t2; 

gdeb=0; 
for(t=0;t<m;t++)//Corresponding G(dO,fO+df) 

{ 
ydel b=(sgrt(sqrt(pow((1-dO),2))))/2`(1+xi[t]); 
yde2b=(sgrt(sqrt(pow((1-dO),2))))12'(1-xi[t]); 
gdel b=wi[t]`pow((1-pow(ydel b,2)-dO),ap)/((p ow((1-pow(ydel b,2)),ap))`(sgrt(sqrt(pow((f- 
1+pow(ydel b,2)),2))))); 
gde2b =wi[t]'p ow((1-pow(yde2b,2)-d0), ap)/((pow((1-pow(yde2b,2)),ap))'(sgrt(sqrt(pow((f- 
1 +pow(yde2b,2)),2))))); 
gdeb=gdeb+gdelb+gde2b; 
} 

G dOf=sq rt(sgrt(pow((1-dO),2)))`gdeb-wb 1'pi/t2;1/1-pow((wb'pi/(t2`gdeb)),2)-d0; 

dfp d d=(FdfO-FdOfO)/dd; 
dfp df=(FdOf-FdOfO)Idf; 
dgpdd=(GdfO-GdOf0)/dd; 
dgpdf=(GdOf-GdOfO)/df; 

long double det=1./(dfpdd'dgpdf-dfpdf'dgpdd); 
dl =d-det(FdO1Odgpdf-dfpdf'GdOfO);  
f1=f-det (dfpdd'GdOfO-FdOfO'dgpdd); 
d2=(d1+d)12; 
f2=(f 1 +0/2; 
dd=d2-d; 

df=f2-f; 
cout.precision(12); 
cout<<" d = "<<d«" f= "<<f«" F(dO,FO) _ "<<FdOfO<<" G(dO,f0) _ "<<GdOfO<<endl; 
cout<<" F(d,fO) = "<<FdfO«" G(d,fO) = "<<GdfO<<" F(dO,f) = "<<FdOf«" G(dO,f) = "«GdOf<<endl; 
cout<<" dF/dd = "<<dfpdd<<" dF/df = "<<dfpdf<<" dG/dd = "<<dgpdd<<" dG/df = „«dgpdf«end/; 
cout«" df = "<<df«" dd = "<dd«" dO = "<<d0«" t0 = "«f0«endl; 

if (df<O) self=-df;else self = df; 
if (dd<O) seld=-dd;else seld = dd; 
} 

while(self> 1 e-1 8&&seld> 1 e-I 8); 

bca= 
do 

gca=0; 

b=bca; 
for(r=0;r<n;r++) 

{ 
ycal =sqrt(b)*(i+xi(r])/2; 
yca2=sgrt(b)'(I-xi[r])/2; 
gca 1=wl[r]'pow(ycal ,ap2)`pow((d+pow(yca 1,2)),ap)/(sgrt(f+pow(yca 1,2))'sgrt(I+pow(yca 1,2))); 
gca2=wi[r]'pow(yca2,ap2)'pow((d+pow(yca2,2)),ap)/(sgrt(f+pow(yca2,2))'sgrt(1 +pow(yca2,2))); 
gca=gca+(gcal+gca2); 
} 

bca=pow((Ib`p i/(t2'gca)),2); 
if (b>bca) e=b-bca;else e=bca-b; 

while(e>l a-12); 

clrscrO;cout<endl; 
tout.precision(4);cout.precision(4); 
tout«" T2 : "<<t2<<" TI : '«t1<' 8 ; ~'<<wb«" 61 = '<<wwb1«" L. : "«lb<<endl; 
q_by_kdh=pi/(2'log(sgrt(1 +b)+sgrt(b)));cout.precision(12);if (0<=d&&d<1 &&f>=1) { coutccendl«" ..............«««.....................«.....,..............."--end/ 
<endl<<endl<<setw(6)<<" d = "<<setw(20)<<d<<setw(14)<<" delta dd = "<<setw(20)<cdd<<end/«setw(6)<<" f = 
"«setw(20)«f«setw(14)<<" delta df = "<<setw(20)«df<<endl; 
tout<<setw(6)<<" b = "<<setw(20)<<b<<setw(14)«" delta db = "«setw(20)<<e<<endl«ends; 
tout<<setw(20)<<" ql(k dh) 	= "<<setw(20)<<setprecision(6)«q_by_kdh<<endi; 
tout<<setw(20)<<" q(bed)/q(total) = "<<setw(20)<<setprecision(6)<<2'asin(sgrt(1-d))/pi<<endl; 
tout<<setw(20)«" dUT2 	= "<<setw(20)<<setprecision(6)<2.'Iog(sgrt(1+b)+sqrt(b))/pi-lb/t2<<endl<<endl; 
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while(e2>1 e-1 4); 

q_by_kdh2=pi/(2.'Iog(sgrt(ss-l)+sgrt(ss))); 
clrscr(); 
cout.precision(4); cout<<endl«endl«.. .......................................... "<<endl<<endl; 
cout<< T2  = <<t2<<" B  = "<<wb<<   T1  = '.<<t1  << Is = <<ts<<endl; 
cout.precision(12); 
tout<<" s = "<<ss<<" ds = "<<ds«endI<endl«endl 
«" gqk(hl-hs)] = "<<q_by_kdh2<<endl«eridl; tout«" ....................................«.... "c<endl«en dl; 
getch(); 
} 
else(cout<<endI—" Your choice is beyond this program ';getch();exit(0);} 
tout«" Continue for another data (YIN) : ";cin>>cont q; 
} 
while (cont q=='ycont q=='Y'); 
} 
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11.2 Computer Programming for Seepage in Unconfined Aquifer 
#inchide-lostrenm.h> 
#Include<ninth.h> 
#include<iomanip.h> 
#include<process.h> 
#Include<conio.h> 
#include<string.h> 
#include<fstream.h> 

const int m=45;I/number of x-gauss coefficient 
const int n=48;//number of wi-gauss coefficient 
long double Ikce(long double); 
long double fkie(long double ,long double); 
long double qbyk(float ,long double ); 
long double ql byk(float ,long double , long double); 
long double dhf(float ,long double ,long double ); 
long double m1(long double ,long double ,long double ,float ,long double ,long double ,long double); 
long double cd(long double ,long double long double ,float ,long double ,long double ,long double float ,float ,float float); 
long double de(long double ,long double ,long double float ,long double ,long double ,long double ,float ,float); 
long double ef(long double ,long double ,long double float ,long double ,long double ,long double ,float ,float); 
long double dhb(float ,long double ,long double ); 
long double bc(long double long double ,long double ,float ,float ,long double ,long double ,lung double ,long double); 
long double dhm(float ,long double ,long double ); 
long double em(long double ,long double ,long double ,float ,long double ,long double ,long double ,float ,float ,long double 

void main() 
{ 
ofstream outfile ("cs3-m0l.cpp"); 
float wbl ,wb2,Ia,lb,tl,dha,pi,h,tm; 
long double a,aO,al,b,bO,bl,d,dO,dl,f,fO,fl,da,db,dd,df,mm,mm0,mml,dm; 
long double ap,bt,gm,conap; 
long double fcd,fcda0,fcdal,fcdb0,fcdb1,fcdd0,fcddl,fcdf0,fcdf1; 
long double fde,fdea0,fdeaf ,fdeb0,fdebl ,fdedO,fdedl ,fdefO,fdef l ; 
long double fef,fefa0,fefa 1,fefb0,fefbl ,fefd0,fefdl ,feff0,feff1; 
long double fbc,fbcb0,tbcbl,dbcpdb,corb; 
long double fem,femm0,femml,dempdm,corm; 
long double det,co_a,co_d,co_f,er_a,er d,er_f,sum_er; 
long double dcdpda,dcdpdd,dcdpdf,ddepda,ddepdd,ddepdf,defpda,defpdd,defpdf; 
long double qperk,q 1 perk,deihf,delhb,delhm; 
long double ksc,fkl,fk2,dl; 
char lanjut,preatic,finisl,finis2,potential; 

f outle<<' TI ,.< BI << „ B2  << H ." < dha „<<" La  <' a ,I<< d "<<" „ <" 	"<< 	~« 	« 	«" f 	dhf 	 alpha 	" betha 	" gamma  
gl(k`dha) "«" gll(k'dha) "—" dL "<<endl; 

(//another data 
clrscr(); 
cout<<endl<<" SEEPAGE FROM PARTIALLY PENETRATING STREAM IN UN-CONFINED 
AQUIFER"c<endl<<endl; 
pi=3.141592654; 
coutc<" Input thickness of aquifer below stream bed T1 	= ';cin»tl ; 
tout<<" Input half width of streambed 	B1 = ";tin»wb1; 
tout<<" Input half width of top of water level 	B2 = ";cin>>wb2; 
coutc< Input depth of water in the stream 	H 	";cin>>h; 
tout«" Input drawdown in observation well 	dha = ";cin>>dha; 
tout<< Input distance of piezometer from the stream bank La = ';cin>>Ia; 
cout<<endl; 
tout<<" Input approximate value of a (a>0) = ";cin>>a; 
tout<<" Input approximate value of d (d0<d<1) = ";cin>>d; 
tout«" Input approximate value off (f>1) = ";cin»f; 

da=a/l 000; 
dd=d/1 000; 
df=f/l 000; 
do 

(I/iteration 
aO=a-da;a l =a+da; 
dO=d-dd;d l =d+dd; 
f01-df;fl=f+df; 
conap=(wb2-qbyk(dha.a))-(wb I -q 1 byk(dha,a,d)); 
if (conap<0) conap=-conap; else (conap=conap;) 
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if (conap<0.00000001) ap=0.5;else ap=atan(h/((wb2-qbyk(dha,a))-(wb1-gibyk(dha,a,d))))lpi; 
if (((dha-dhf(dha,a,f))/(wb2+Ia))<0.00000001) bt=0.5;else bt=(atan((dha-dhf(dha,a,f))/(wb2+la))+pil2)lpi; 
if(gbyk(dha,a)<0.0000001) gm=0.5;else gm=atan((ti+h-dha)lgbyk(dha,a))lpi; 
fcd=cd(ap,bt,gm,la,a,d,f,wb2,wb1,h,dha); 
fcdaO=cd(ap,bt.gm,la,aO,d,f,wb2,wbl ,h,dha); 
fcdal =cd(ap,bt,gm,la,al ,d,f,wb2,wbi ,h,dha); 
fcddO=cd(ap,bt,gm,la,a,dO,f,wb2,wb 1,h,dha); 
fcddl =cd(ap,bt,gm,la,a,dl ,f,wb2,wbl ,h,dha); 
fcdfO=cd(ap,bt,gm,la,a,d,fO,wb2,wbl ,h,dha); 
fcdfl=cd(ap,bt,gm,Ia,a,d,fl,wb2,wbl,h,dha); 

fde=de (ap,bt,gm,la,a,d,f,wbl,dha); 
fdea0=de(ap,bt,gm,la,aO,d,f,wbf ,dha); 
Ideal =de(ap,bt,gm,la,al ,d,f,wbl ,dha); 
fdedO=de(ap,bt,gm,Ia,a,dO,f,wb1,dha); 
fdedl =de(ap,bt,gm,Ia,a,dl ,f,wb 1,dha); 
fdefO=de(ap,bt,gm,la,a,d,fO,wb1,dha); 
fdef I de(ap,bt,gm,ia,a,d,fl,wb f ,dha); 

fef=ef(ap,bt,gm,Ia,a,d,f,tl,dha); 
fefaO=ef(ap,bt,gm,la,aO,d,f,tl ,dha); 
fefal =ef(ap ,bt,gm, la,a I ,d,f,tl ,dha ); 
fefd0=ef(ap,bt,gm,la,a,dO,f,tl ,dha); 
fefdl=ef(ap,bt,gm,fa,a,dl,f,tl,dha); 
feffO=ef(ap,bt,gm,la,a,d,fO,tl ,dha); 
feff l =ef(ap, bt,gm,la,a,d,fi ,tl ,dha); 

dcdpda =(fcda 1-fcdaO)/(2'da); 
d cdpd d=(fcdd l -fcddO)/(2' dd); 
dcdpdf=(fcdll -fcdfO)l(2'df); 

ddepda=(fdeal -fdeaO)/(2*da); 
ddepdd=(fdedl -fdedO)/(2`dd); 
ddepdf=(fdefl -fdefO)/(2* df); 

defpda=(fefa 1-fefaO)/(2*da); 
defpdd=(fef d l -fe fdO)/(2' dd); 
de fp df=(feff i -feff 0)/(2' df) ; 

det=l ./((dcdpda'ddepdd'defpdf+dcdpdd'ddepdf'defpda+dcdpdf'ddepda'defpdd)-
(dcdpdf*ddepdd'defpda+ddepdrdefpdd*dcdpda+defpdf'dcdpdd'ddepda)); 
co_a=(fcd'ddepdd'defpdf+dcdpdd`ddepdf fef+dcdpdf fde'defpdd)-
(d cdpdf' d dep dd' fe f+dd ep dt' d e fpdd `fcd+d efp dr d cdp dd' fde); 
co_d=(dcdpda'fde'defpdf+fcd'ddepdf'defpda+dcdpdf"ddepda`fef)-
(dcdpdf`fde'defpda+ddepdf fef`dcdpda+defpdf'fcd'ddepda); 
co_f=(dcdpda' dd epdd`fef+d cdpdd'fde`de fp da+fed`ddepda`defpdd)-
(fcd`ddepdd' defpda+fde* defydd*dcdpda+fef' dodpdd*ddepda); 

a=a-det'co_a; 
d=d-det'co_d; 
f=f-det'co_f; 

da=-det'co_a; 
dd=-detco_d; 
df=-det`ca_f; 

if(da>O) er_a=da;else er a=-da; 
if(dd>O) er_d=dd;else er d=-dd; 
if(df>O) er_f=df;else er f=df; 
sum_er=er_a+er_d+er f; 

cout<<" '<<da; 
)//end do iteration 

while (sum_er>le-10); 

qperk=qbyk(dha,a); 
q1 perk=ql byk(dha,a,d); 
delhf=dhf(dha,a,f); 
ksc=1.1(1 +a); 
fk 1=fkce(ksc); 
ksc=a/(l +a); 
fk2=fkce(ksc); 
dl=fk2`(tl +h-0.5'dha)lfkl -la; 
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cout«endl«endl«" a= "<<a«" d= "<<d<<" fr "«f<<endt; 
cout<<" ap= "<<ap<<" bt= " <bt<< gm= "«gm<<endl; 
cout<<" qlk= "<<gperk<<" q1 /k= " <glperk<<" dhf= "<<delhf<<endl«endl; 
outfile<<" "<<tl <<" "<<wbl <<" "<<wb2<<" "<<h<<" "<<dha«" "<<la<<" "<<a<<" "<<d<<" "<<f<<" "<<delhf<<" 
"<<ap<<"'<<bt<<" "<<gm<<" "<<gperk/dha«" "«glperk/dha<<" "«dl«endl; 

//starting of preatic line (b) 
cout<<" Continue for preatic line (YIN)...? ";cin>>preatic; 
if (preatic=='y'Ilpreatic=='Y') 
{ 
do 
{//star do preatic line 
cout«" Input diatance of a point from stream bank Lb = ";cin>>Ib; 

	

cout<<" Input approximate value of b (0<b<a) 	b =';cin»b; 
db=b/1 000; 
do 
{/lstar do iteration preatic 
bO=b-db; 
b1=b+db; 

fbc=bc(ap,bt,gm,Ia,lb,a,d,f,b); 
fbcbQ=bc(ap,bt,gm, la,lb, a,d,f,b0); 
fbcbl =bc(ap,bt,gm,la,lb,a,d,f,b1); 

dbcpdb=(fbcbi -fbcb0)/(2'db); 
b=b-fbc/dbcpdb; 
db=-fbcldbcpdb; 
corb=sgrt(pow(db,2)); 
coot«" "<<db; 

}//end do iteration preatic 
while(corb>1 e-1 0); 

delhb=dhb(dha,a,b); 
cout<<endl«endl«" Lb = "<<Ib<<" b = "<<b<<" dhb = "<<delhb<<endl<<endl; 
outfile«" Lb= "<<Ib<<" b= "<<b«" dhb= "<.delhb<<endl; 
cout<<" Continue for different Lb (YIN) ...............? ";cin>>finisl ; 
}//end do preatic line 
while (finisl=='y fltiinisl=='Y'); 
} 
//ending of preatfe line 

//9999 
//starting of potential head (m) 
tout«" Continue for different potential head (Y/N)...?';cin»potential; 
if (potential=='y'J~potentiaI=='Y) 
{ 
do 
{//star do potential 
tout«" Input distance of a point below stream bed Tm =';cin>>tm; 

	

tout<<" Input approximate value of m (1 <m<f) 	_ ";cin>>mm; 
dm=mm/1000; 
do 
{//star do iteration potential 
mm0=mm-dm; 
mml=mm+dm; 

fem=em(ap,bt,gm,la,a,d,f,tm,dha,mm); 
femm0=ern(ap,bt,gm,la,a,d,f,fm,dha,mmo); 
femm 1=em(ap,bt,gm,la,a,d,f,tm,dha,mm 1); 

dempdm=(fem m 1-fe mm0)/(2"dm); 
mm=mm-fem/dempdm; 
dm=-fem/dempdm; 
corm=sgrt(pow(dm,2)); 
tout«" "<<dm; 

)/lend do iteration potential 
while(corm> 1 e-10); 

delhm=dhm(dha,a,mm); 
tout<<endl<<endl«° Tm = "<<tm<< m = "<<mm<<" dhm = "<<delhm<<endl«endl; 
outfile«" Tm= "<<tm<< m= "<<mm<<" dhm= "<<delhrn<<endl; 
tout«" Continue for different Tin (YIN) ...............? ";cin>>finis2; 
}//end do potential head 
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while (finis2=='y'IItiinis2=='Y'); 
} 
I/ending of potential 
cout«" Continue for another data (YIN) .? ';cin>>lanjut; 
)I/end do another data 

while (lanjut=='ylanjut=='Y'); 
}//end void main 

long double 
xi[m]={.016276744849602969579,.048812985136049731112,.081297495464425558994,.113695850110665920911,.145 
973714654896941989,.178096882367618602759, 
.210031310460567203603,.241743156163840012328,.273198812591049141487,.304364944354496353024,.33520852 
2892625422616,.365696861472313635031, 
.395797649828908603285,.425478988407300545365,.454709422167743008636,.483457973920596359768,.51169417 
7154667673586,.539388108324357436227, 
.566510418561397168404,.593032364777572080684,.618925840125468570386,.644163403784967106798,.66871831 
0043916153953,.692564536642171561344, 
.715676812348967626225,.738030643744400132851,.759602341176647498703,.780369043867433217604,.80030874 
4139140817229,.819400310737931675539, 
.837623511228187121494,.854959033434601455463,.871388505909296502874,.886894517402420416057,.90146063 
5315852341 319.915071423120898074206, 
.927712456722308690965,.939370339752755216932,.950032717784437635756,.959688291448742539300,.96832682 
8463264212174,.975939174585136466453, 
.982517263563014677447,.988054126329623799481,.992543900323762624572,.995981842987209290650,.99836437 
5863181677724,.999689503883230766828}; 

long double 
wi[n]={.032550614492363166242,.032516118713868835987,.032447163714064269364,.032343822568575928429,.032 
206204794030250669,.032034456231992663218, 
.031828758894411006535,.031589330770727168558,.031316425596861355813,.031010332586313837423,.03067137 
6123669149014,.030299915420827593794, 
.029896344136328385984,.029461089958167905970,.028994614150555236543,.028497411065085385646,.02797000 
7616848334440,.027412962726029242823, 
.026826866725591762198,.026212340735672413913,.025570036005349361499,.024900633222483610288,.02420484 
1792364691282,.023483399085926219842, 
.022737069658329374001,.021966644438744349195,.021172939892191298988,.020356797154333324595,.01951908 
1140145022410,.018660679627411467385, 
.017782502316045260838,.016885479864245172450,.015970562902562291381..015038721026994938006,.01409094 
1772314860916,.013128229566961572637, 
.012151604671088319635,.011162102099838498591,.010160770535008415758,.009148671230783386633,.00812687 
6925698759217,M07096470791153865269, 
.006058545504235961683,.005014202742927517693,.003964554338444686674,.002910731817934946408,.00185396 
0788946921732,.000796792065552012429}; 

float pi=3.141592654; 

//first kind complete elliptic integral 
long double fkce(long double ksc) 
{ 
long double yfk,yfkp,yfkn,fk; 
yfk=0; 

for (int ifk=0;ifk<m;ifk++) 

yfkp=wi[ifk]/sgrt((1-Pow((sin(pi*(1+xi[ifk})14)),2)'ksc)); 
yf kn=wi[ifk]lsgrt((1-pow((sin(pi`(1-xi[i fk])/4)),2) ksc)); 
yfk=yfk+(yfkp+yfkn); 
} 
fk=pi'yfk/4; 
return fk; 

} 

//first kind in-complete elliptic integral 
long double fkie(long double pai,long double ks) 
{ 
long double yfk,yfkp,yfkn,fk; 
yfk=0; 

for (int ifk=0;ifk<m;itk++) 

yfkp=wi[ifk]/sgrt(1-ks`pow((sin (pa i`(1 +xi[ifk])12)),2)); 
yfkn=wi[ifk]lsgrt(I -ks'pow((sin(pai'(1-xi[ifk])12)),2)); 
yfk=yfk+(yfkp+yfkn); 
} 

fk=pai' yfk/2; 
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return fk; 
) 

/1H;-plane A to C 
long double qbyk(float dha,long double a) 
{ 
long double ks,pai,gperk,ksc,fkl,fk2; 
ksc=1 /(1 +a); 
fkl =fkce(ksc); 
ksc=a/(1 +a); 
fk2=fkce(ksc); 
gperk=dha'fkl/fk2; 
return qperk; 
I 

//w-plane C to B - preatic line 
long double dhb(tloat dha,long double along double b) 
{ 
long double ks,pai,gperk,ksc,fkl,fk2,delhb; 
ksc=1 /(1 +a); 
fkl=fkce(ksc); 
ks=al(1 +a); 
pai=asin(sgrt(((1+a)`b)/(a`(1 +b)))); 
fk2=fkie(pai, ks); 
delhb-gbyk(dha,a)`fk2/fk1; 
return delhb; 
) 

//w-plane D to E 
long double q1 byk(float dha,long double a, long double d) 
{ 
long double ks,pai,qlperk,ksc; 
pai=asin(sgrt(1-d)); 
ks=1./(1 +a); 
ksc=1.1(1+a); 
ql perk=qbyk(dha,a)'fkie(pai,ks)/fkce(ksc); 
return glperk; 
} 

1/w-plane E to F 
long double dhf(floatdha,long double along double f) 
{ 
long double ks,pai,delhf,ksc; 
pa i=asin(sgrt((f-1)/f)); 
ks=a/(1 +a); 
ksc=1.1(1 +a); 
d elhf=qbyk(dha , a)*fki e(pai,ks)/fkce(ksc); 
return defhf; 
) 

//w-plane E to M 
long double dhm(float dha,long double along double mm) 
{ 
long double ks,pai,delhm,ksc; 
pai=asin(sgrt((mm-1)!mm)); 
ks=a/(1 +a); 
ksc=1./(1 +a); 
delhm=gbylc(dha,a)`fkie(pai,ks)/fkce(ksc); 
return delhm; 
) 

l/z-plane A to C ... constant m 
long double ml(long double ap,long double bt,long double gm,ftoat la,long double along double d,long doublet) 
{ 
long double yac,yacp,yacn,fxp,fxn,mz; 
yac=0; 
for (int iac=0;iac<m;iac++) 

{ 
fxp=sgrt(a/2)`(1 +xi[iac])12; 
fxn=sgrl(a/2)'(1-xi[iac])!2; 
yacp=wi[iac)*pow(fxp,(1-2'ap))* pow((d+pow(fxp,2)),ap)/(pow((a- 

p ow(fxp,2)),gm)'sgrt(1  +pow(fxp.2))*pow((f+pow(fxp,2)).bt))+ 
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wi[iac]"pow(fxp,(1-2'gm))'pow((d+a-pow(fxp,2)),ap)l(p ow((a-pow(fxp,2)),ap)'sgrt(1 +a-pow(fxp,2))"pow((f+a- 
pow(fxp,2)),bt)); 
yacn=wi[iac]'pow(fxn,(1-2'ap))'pow((d+pow(fxn,2)),ap)/(pow((a- 
pow(fxn,2)),gm)*sgrt(1 +pow(fxn,2))`pow((f+pow(fxn,2)),bt))+ 
wi[iac]'pow(fxn,(1-2`gm))*pow((d+a-pow(fxn,2)),ap)/(p ow((a-pow(fxn,2)),ap)'sgrt(1 +a-pow(fxn,2))'pow((f+a-
pow(fxn,2)),bt)); 

yac=yac+(yacp+yacn); 
} 

mz=la/(sq rt(a/2) `yac); 
return mz: 

//z-plane from C to D 
long double cd(long double ap,long double bt,Iong double gm,float la,long double along double d,long double f,float 
wb2,float wbi,float h,float dha) 
{ 
long double fxp,fxn,ycd,ycdp,ycdn,fcd,fxps,fxns; 
ycd=0; 
for (int icd=0;icd<m;icd++) 

{ 
fxp=sgrt(d)'(1+xi[icd])/2; fxps=pow(fxp,2); 
fxn=sgrt(d)•(1-xi[icd])12; fxns=pow(fxn,2); 
ycdp=wijicdj pow(fxp,(1-2`ap))'pow((d-fxps),ap)/(pow((fxps+a),gm)'sgrt(1-fxps)'pow((f-fxps),bt)); 
ycdn=wi[icdj*pow(fxn,(1-2`ap))'pow((d-fxns),ap)/(pow((fxns+a),gm)"sgrt(1-fxns)'pow((f-fxns),bt) ); 
ycd=ycd+(ycdp+ycdn); 
} 

fcd=m 1 (a p,bt,gm, la,a,d,f)'sgrt(d)`ycd-sq rt(pow((wb2-wb 1-gbyk(dha,a)+q 1 byk(dha,a,d)),2)+pow(h,2)); 
return fcd; 
} 

//z-plane 0 to E 
long double de(long double ap,long double bt,long double gm,float la,long double along double d,long double f,float 
wbl,float dha) 
{ 
long double fxp,fxn,yde,ydep,yden,fde; 
yde=0; 
for (int ide=0;ide<m;ide++) 

{ 
fxp=sgrt(1-d)*(1 +xi[ide])/2; 
fxn=sgrt(1-d)'(1-xi[ide])/2; 
ydep=wi[idejpow((1-pow(fxp,2)-d),ap)/(pow((1-pow(fxp,2)+a),gm)'pow((1-pow(fxp,2)),ap)*pow((f-1 +pow(fxp,2)),bt)); 
yden=wi[ide]'pow((1-pow(fxn, 2)-d),a p)/(pow((1-pow(fxn,2)+a), g m)*pow((1-pow(fxn,2)),ap)'pow((f-1 +pow(fxn,2)),bt)); 
yde=yde+(ydep+yden); 
} 

fde=m1(ap,bt,gm,la,a,d,f)'sgrt(1-d)'yde-wbl+q1 byk(dha,a,d); 
return fde; 
} 

//z-plane E to F 
long double ef(long double ap,long double bt,long double gm,float la,long double along double d,long double f,float tl ,float 
dha) 
{ 
long double fef,yefl,yef2,yefpl,yefp2,yefnl,yefn2,fxpl,fxp2,fxnl,fxn2; 
yef1=0;yef2=0; 
for (int ief=0;ief<m;ief++) 

{ 
fxp l =sqrt((f-1)/2)'(1 +xi[ief])/2; 
fxnl=sqrt((f-1)/2)*(1-xi[ief])/2; 
f xp2=pow(((t-1)/2),0.1)'(1 +xijief])/2; 
fxn2=pow(((f-1)/2),0.1)'(1-xi[ief])/2; 
yefp I =wi[ief]'pow((Pow(fxp1,2)+1-d),ap)/(pow((pow(lxpl ,2)+1+a),gm)'pow((pow(fxp1,2)+1),ap)'pow((f-pow(fxp1,2)- 

1),bt)); 
yefp2=wi[ie f]'pow(fxp2, (9-10'bt))*pow((f-pow(fxp2,10)-d),ap)/(Pow((f-pow(fxp2,10)+a),gm)`pow((f- 

pow(fxp2,10)),ap)`sgrt(f-pow(fxp2,10)-1)); 
yefnl =wijief]'pow((pow(fxn 1,2)+1-d),ap)/(pow((pow(fxn1,2)+1+a),gm)`pow((pow(fxn1,2)+1),ap)*pow((f-pow(fxn1,2)- 

1),bt)); 
yefn2=wi[ief]`pow(fxn2,(9-10' bt))'pow((f-pow(fxn2,10)-d),ap)/(p ow((f-pow(fxn2,1 0)+a),g m)`pow((f- 

pow(fxn2,10)),ap)'sgrt(f-pow(fxn2,10)-1)); 
yefl =yefl+(yefpl+yefnl ); 
yef2=yef2+(yefp2+ye f n2); 
} 

fef=m1(ap,bt,grn,la,a,d,f)'sqrt((f-1)12)`yefl+5`m1(ap,bt,gm,la,a,d,f)'pow(((f-1)12),.1)'yef2-tl +dhf(dha,a,f); 
return fef; 
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//z-plane B to C 
long double bc(long double ap,long double bt,long double gm,float la,float lb,long double a,long double d,long double 
f,long double b) 
{ 
long double fbc,ybcl,ybc2,ybcpl,ybcp2,ybcnl,ybcn2,fxpl,fxp2,fxnl,fxn2; 
ybcl=0;ybc2=0; 
for (int ibc=0;ibc<m;ibc++) 

fxpl=sgrt(b/2)'(1 +xl[ibc})12; 	 fl 

fxnl=sgrt(b/2)•(1-xi[ibc])/2; 
fxp2=(sgrt(a-b/2)-sgrt(a-b))/2' xi[ibc]+(sgrt(a-b/2)+sgrt(a- b ))/2; 
fxn2=-(sqrt(a-b/2)-sqrt(a-b))/2'xi[ibc]+(sqrt(a-b/2)+sgrt(a -b))/2; 
ybcp 1=wi[ibc]'pow(fxp 1,(1-2'ap))*pow((d+pow(fxp1,2)), ap)/(pow((a- 

pow(fxpl ,2)),gm)*sgrt(1 +pow(fxpl ,2))*pow((f+pow(fxpl ,2)),bt)); 
ybcp2=wi[ibc]'pow(fxp2,(1-2*gm))•pow((d+a-pow(fxp2,2)),ap)/(Pow((a-pow(fxp2,2)),ap)•sgrt(1+a- 

pow(fxp2,2))*pow((f+a-pow(txp2,2)),bt)); 
ybcnl =wif ibc]'pow(fxn 1,(1-2*ap))*pow((d+pow(fxn 1,2)),ap)f(pow((a- 

pow(fxnl , 2)),gm)*sgrt(1 +pow(fxn l ,2))`pow((f+pow(fxn l ,2)),bt)); 
ybcn2=w1[ibc]•pow(fxn2,(1-2'gm))`pow((d+a-pow(fxn2,2)),ap)I(pow((a-pow(fxn2,2)),ap)`sgrt(1+a- 

pow(fxn2, 2))'pow((f+a-pow(fxn2,2)), bt)); 
ybcl=ybcl+(ybcpl+ybcnl); 
ybc2=ybc2+(ybcp2+ybcn2); 
} 

fbc=ml (ap,bt,gm,la,a,d,f)*sgrt(b/2)*ybcl +m1(ap,bt,gm,la,a,d,f)*(sqrt(a-b/2)-sqrt(a-b))`ybc2-Ib; 
return fbc; 
} 

//z-plane E to M 
long double em(long double ap,long double bt,long double gm,floatla,long double along double d,long double f,float 
tm,float dha,long double mm) 
{ 
long double fem,yeml,yem2,yempl,yemp2,yemnl,yemn2,fxpl,fxp2,fxnl,fxn2; 
yeml=0;yem2=0; 
for (int iem=0;iem<m;iem++) 

{ 
fxpl =sqrt((mm-1)/2)'(1 +xi[iem])/2; 
fxnl=sgrt((mm-1)/2)•(1-xi[iem])/2; 
fxp2=(pow(((2'f-mm-1)/2),0.1)-Pow((f-mm),0.1))`xi[iem]/2+(pow(((2*f-m m-1)/2),0.1)+pow((f-mm),0.1))/2; 
fxn2=-(pow(((2'f-mm-1)/2),0.1)-pow((f-mm),0.1))*xi[iem]/2+(pow(((2*f-mm-1)/2),0.1)+pow((f-m m),0.1))12; 
yempl =wi[iem]'pow((pow(fxp 1,2)+1-d),ap)/(pow((pow(fxp 1,2)+1 +a),gm)'pow((pow(fxpl ,2)+1),ap)`pow((f-pow(fxp l ,2)- 

1),bt)); 
yemp2=wi[iem]`pow(fxp2,(9-10'bt))•pow((f-pow(fxp2,10)-d),ap)/(pow((f-pow(fxp2,10)+a),gm)`pow((f- 

pow(fxp2,10)),ap)•sgrt(f-pow(fxp2,10)-1)); 
yemn 1=wi[iem]'pow((pow(fxnl ,2)+1-d),ap)/(pow((pow(fx n 1,2)+l +a),gm)*pow((pow(fxn 1,2)+1),ap)*pow((f-pow(fxn1,2)- 

1),bt)); 
yemn2=wi[iem) pow(fxn2,(9-10'bt))'pow((f-pow(fxn2,10)-d),ap)l(pow((f-pow(fxn2,10)+a),gm)'pow((f- 

pow(fxn2,10)),ap)•sgrt(f-pow(fxn2,10)-1)); 
yeml=yem1+(yempl+yemn1); 
ye m2=ye m2+(yem p2+ye m n 2); 
} 

fem=m 1(ap,bt,gm,la,a, d,f)'sgrt((mm-1)/2)`yeml +5'm1(ap,bt,gm,la,a,d,f)*(pow(((2'f-mm-1)12),.1 )-pow((f-mm),.1))*yem2-
tm+dhm(dha,a,mm); 
return fern; 
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S' Ce pu 	i om el uarlialh. ene~tra i!e slrenm of unite width~ 

B.3 Computer Programming for Unsteady State Flow 
#include<iostream.h> 
#include<math.h> 
#include<iomanip.h> 
#include<process.h> 
#include<conio.h> 
#include<graphics.h> 
#include<string.h> 
#include<fstream.h> 

const int m=1000; 

void main Q 
{ 
ofstream outfile ("uns03.cpp"); 
clrscr(); 
float dL,T,Zr,k,St,dt,beta,t1,t2,b,bl,pi; 
float Za[m],d[m],q[m]; 
long double sum,suml; 
int in; 

cout<<endl; 
tout«" Input step rise in the river : ";cin>>Zr; 
tout«" Coefficient of permeability 	: ";cin>>k; 
tout«" Coefficient of storage 	: ";cln>>St;• 
tout<<" Thickness of aquifer below stream bed : ';cin>>tl ; 
tout<<" Thickness of aquifer 	: ";cin>>t2; 
tout«" Half width of stream 	: ';cin»b; 
tout«" Substitute Length dL 	: ';cin>>dL; 
tout<<" Delta time dt 	 : ';cin>>dt; 

pi=3.141592654; 
outfile<<" B= °<<b«° Zr= "<<Zr<<endl«° T1= "«tl «° T= "—T<<endk<' T2= °<<t2—" dL= "<<dL<<endl«" dt= 
'<<dt«" St= "«St<<endl«endl; 
outfile<<" n"«" nxdt"«" Za[n]"«" q[n]"<<endl; 

for (n=1;n<=m;n++) 
{ 
sum=0; 
Za [-1 ]=0; 
Za[0]=0; 
for (i=1 ;i<=n-1 ;i++) 

{ 
d[n-i+1]=2•sgrt((T'St)/(dt pi))`(sgrt(n-i+1)-sqrt(n-i)); 
sum 1=(Za[i]-Za[i-1])'d[n-i+1]; 
sum=sum+suml; 
} 

d[i ]=2"sgrt((T`St)/(dt`pi)); 
Za[n]=(Zr-dL/T`su m+dL/T'Za[n-1 j'd[1 ])/(1 +dLIT'd[ 1 ]); 
q[n]=T`(Zr-Za [n])/d L; 

tout<<" t: ..<<dt.n<< Za[„<<n<< ]: „«Za[nj<< d["<<n<< J: ”<<d[n]«endl; 
outfile<<"' n«" ̂ «n•df«° ̂ «Za[n)«" "<<q[n]«endI; 

if (Za[n]>(0.99`Zr)){getch(); exit(0);} 

}//looping za[n] 

getcho); 
}!lend 
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