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SYNOPSIS

For a partially penetrating stream in dn unconfined aquifer, the reach
transmissivity increases with increase in depth of water in the stream, decreases with
increase in length of aquifer boundary and increases tending to constant value with
increase in stream width.

A rigorous analytical solution for steady seepage from a trapezoidal stream/canal
to an unconfined aquifer in which water table lies at a shallow depth has been derived
using Zhukovsky function and Schwarz-Christoffel conformal mapping.

Steady state seepage from a stream in a confined aquifer can be expressed as g =k
F Ah = Iy Ah in which k is hydraulic conductivity, Ah is hydraulic head difference
measured at a piezometer in the vicinity of the stream, and F is a factor which depends on
location of the piezometer i.e. distance of the piezometer from the stream bank and stream
geometry i.e. cross section of the stream and depth of penetration of the stream. The
above linear relationship between seepage and Ah is valid for steady state and confined
flow condition. _

Aravin, Bouwer, Herbert, Morel-Seytoux and Iﬁany other investigators have
derived the factor F based on Darcy’s law and Dupuit Ferchheimer flow condition at large
distance from the water body. _

In the present dissertation, exact relation of the parameter I'/k (i.e. seepage factor
F) with distance of the piezometer and stream geometry including depth of penetration
has been derived.

Unsteady flow from a fully penetrating stream has been given by Carslaw and
Jaeger for an analogous heat conduction problem. Partially penetrating stream, offers
more resistance to flow than fully penetrating stream because of flow convergence near
the stream. The sum of the resistance due to flow convergence and resistance due to
fraction of the aquifer under the stream bed can be equated to the resistance of length AL
of the aquifer for uniform flow condition. This length AL is known as substitute length.

In comparing the results with Herbert’s formula, it is found that Herbert’s formula
is applicable for depth of penetration less than 30 % (the involved error < 10%) and width
of the stream (B/T3) less than 0.2.

iii



Seepage from a partially penetrating stream of finite wiclth

CONTENTS
Page No.
Candidate’s Declaration . i
Acknowledgement ii
Synopsis iii
Contents v
Notations vi
List of Figures viii
List of Tables Xii
CHAPTERI : INTRODUCTION
L1 General ’ I-1
1.2 Two-Dimensional Steady Flow of Ground Water , I-1
[.3 Conformal Mapping -3
3.1 Determine of The Complex Potential 13
[.3.2 The Schwarz-Christoffel Transformation I-4
1.3.3 ZHukovsky Functions , I-5
1.4 Objectives of The Study I-5
1.5 Organization of The Dissertation I-6
CHAPTER II : REVIEW OF LITERATURE
1.1 Reach Transmissivity -1
11.2 Substitute Length 1I-2
I1.3 Unsteady State Flow from Partially Penetrating Stream - 114
CHAPTER 11I: SEEPAGE FROM A RECTANGULAR STREAM IN A SEMI
INFINITE AQUIFER
III.1 General ’ ' I11-1
II1.2 Statement of The Problem 1I-2

1I1.3 Analysis 11-3

iv



Seepage from a partial

CHAPTERIV:

CHAPTER V :

CHAPTER VI
REFERENCES
APPENDIX A

APPENDIX B :

enetrating stream of finite width

II1.3.1 Mapping of The Physical Flow Domain in z-Plane
to An Auxihiary &-Plane
[1.3.2 Mapping of The Complex Potential w-Plane to
The Auxiliary £€-Plane
IIL.4 Substitute Length
IIL.5 Unsteady State Flow

II1.6 Results and Discussions

SEEPAGE FROM A STREAM IN A FINITE AQUIFER
IV.1 General
IV.2 Analysis
IV.2.1 Mapping of The Flow Domain in z-plane to An
Auxiliary &-Plane
IV.2.2 Mapping of The Complex Potential w-Plane to The
Auxiliary £-Plane
1V.3 Substitute Length
IV.4 Results and Discussion
SEEPAGE FROM A STREAM IN UNCONFINED AQUIFER
V.1 General
V.2 Analysis
V.2.1 Mapping of Zhukovsky’s 0-Plane onto an auxiliary
&-Plane
V.2.2 Mapping of The Complex Potential w-Plane onto
The Auxiliary £-Plane
V.3 Substitute Length
V.4 Results and Discussion
CONCLUSIONS

X REACH TRANSMISSIVITY
COMPUTER PROGRAMMING

-7
111-10
I-12
111-16

V-9
Iv-13
IV-13

V-1
V-2

V-2

V-11
V-13
V-13
VI-1
R-1
A-1
B-1



Seepage from a partially penetrating stream of finite width

Ahy -

v -

NOTATIONS

half width of the stream at bed level, (L)

half width of the stream at the water surface, (L)

depth of penetration of the stream into the aqurfer (L)
hydrauhc head in the stream, (L)

hydraulic head at the boundary of the finite aquifer, (L)
hydraulic head at a point B in the aquifer, (L) |
hydraulic head at a point M below the stream bed, (L)
draw down at point A in the aquifer, (L)

draw down at point F below the stream bed, (L)
coefficient of permeabrlity of the aquifer, (LTh

‘unit step response function for flow, (L3 T/L)

aquifer length measured from the stream bank, (L)
distance of plezometer from the stream bank, (L)
rate of seepage per unit length of the stream, (L"T )
rate of flow, (L3T ) ‘

aquifer resistance (T/L) R,=——
kA

rise in the aquifer, (L) -

time, (T) '

thickness of the aquifer below the stream bed, (L)
thickness of the aquifer, (L)

velocity of flow, (LTh

angle of inclination of the river bank over horizontal line
hydraulic diffusivity of the aquifer, (L’T™)

discrete a kernel for flow, (L*T™/L) -

substitute length, (L) _

size of uniférm time steps, (T)

unit weight of water
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ny

indices denoting time-step
storage coefficient of the aquifer
rise in the stream, (L)

reach transmissivity (L%/T)
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CHAPTER 1
INTRODUCTION

L1 GENERAL

Streams and rivers are important geological features, which are control the
occurrence, distribution and quality of surface water as well as ground water. A river
rarely penetrates the entire thickness to an aquifer. If bed width of the river is more than
five times the depth of aquifer below the river bed, the river can be assumed to act as
boundary between the adjoining aquifers. In such case the aquifers on either sides of the
river do not influence each other directly i.e. the flow from one aquifer does not enter to
the other aquifer under the- river bed. For steady and confined flow condition, the
exchange of flow between the river and aquifer is proportional to the difference in
hydraulic heads at the river and in the aquifer near the river. The constant of
proportionality is known as reach transmissivity which is a function of river width, depth
of aquifer below the river bed, thickness of aquifer and hydraulic conductivity of the
aquifer material. The reach transmissivity for a river with large width has been derived
using conformal mapping by Mishra (2001).

On this dissertation, using conformal mapping the reach transmissivity for a
partially penetrating stream of finite width is derived as a function of depth of penetration
of the stream, thickness of the aquifer, width of the stream, distance of piezometer from
the stream bank and hydraulic conductivity of the aquifer materials. The substitute length,
whose resistance is equal to the extra resistance arising due to convergence of flow, has
been derived for the partially penetrating stream of finite width. Using substitute length,

unsteady seepage is computed.

L2 TWO-DIMENSIONAL STEADY FLOW OF GROUND WATER

In many cases of ground water flow the liquid particles move in planes parallel to
one another. The character of the flow is the same at all points of a straight line drawn at
right angles to those planes. Such a flow is a two-dimension steady flow, and the
corresponding seepage problem can be solved as a two-dimensional one. Since the liquid
particles move in a plane, the velocity vectors also lie in that plane. Therefore, we choose

any of the planes in which the motion takes place, and obtain a solution in that plane. In

I-1
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- the solution, the length of the flow region in the direction normal to the plane of flow, is
-taken to be equal to unity. The total flow for the entire flow region is then obtained by
. multiplying the results of the piane problem by the actual length of the region.

The assumption of two-dimensAional'ﬂow means a great simplification, On the
strength of it we can examine many, otherwise intractable cases, because a mathematical
treatment of three-dimensional seepage flows is only feasible in few, very simple
problems. Fortunately, the majority of practical problem are essentially cases of two-

dimensional flow; for example, the seepage through earth dam, canal, stream, etc., where

one dimension of the structure exceeds by far all the other dimensions, and the flow takes
place in a plane normal to that dimension. Sometimes a flow having a three-dimensional
character can be converied to a two-dimensional flow with the help of a suitable scheme.
In a steady two-dimensional seepage flow through a homogeneous and isotropic
medium, all quantities depend on two coordinates only. The fundamental equations are
vx=§%=%=—k% (1.1)

and

vV, =—=
Yooy ox oy

where v, and v, are the components of discharge velocity in the direction of the

% __ % _ 4o (1.2)

coordinates axes, Y(X, y) is the stream function, and y(x, y) = C, a constant, depicts locus
of a stream line, ¢ (x, y) is the velocity potential function defined as

¢ = - kh. ' (1.3)
h(x,y) is the hydraulic head at the point (%, y) above a chosen reference plane. For the

direction of the coordinate axes being considered positive down ward.

h=-—L__y (1.4)

Y w
where p(x, y) is the water pressure at the point (x, y), C i1s a constant dependent on the
choice of the reference plane used in the determination of the potential function ¢.
Since in the region of seepage the function ¢(x, y) and wy(x, y) are conjugate
harmonic function, we can introduce a new function, namely

w=0+ iy (1.5)
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called the complex potential of seepage flow; in the region of seepage, which is an

analytic function of the complex variable z, where

z=x+1iy (1.6)
i.e. a function of camplex coordinate of a point in the region of seepage
W= 0(X, y) + 1y(x, y) = w(z) = w(x + iy) (1.7)

In operations involving the complex potential w, the region of seepage is often referred to
as the (z) region.

We have thus converted the solution of the seepage problemi to the solution of the
problem of finding in the z region an analytical function w = w(z) that will satisfy the
given boundary conditions, i.e. the known values of the function ¢ and y on the

boundaries of the region of seepage.

If we know the complex potential w = w(z), separating it into its real and
imaginary parts enables us to determine the potential function ¢(x, y) as well as the
stream function y(x, y)

¢ = Real w(z)=4(x,y) (1.8)

v = Imaginary w(z) = y(x, y) (1.9)
On establishing the function inverse to the function w = w(z), i.e. z = z(w) and separating
it into its real and imaginary parts, we obtain the relations

| x = Real z(w) = x(¢, @) (1.10)

y = Imaginary z(w) = y(¢, W) (1.11)

13  CONFORMAL MAPPING
1.3.1 Determine of The Complex Potential

The popular method of the available methods has been that based on the use of
functions of a complex variable. By its application the solution of a seepz\xge problem is
converted to that of finding the complex potential of the seepage flow according to
equation 1.7 in a way that will make it satisfy the pertinent boundary conditions.

. In the applicatidn, there is the tas‘k of determining a certain analytic function of
the complex variable &

@ = f(€) (1.12)

[-3
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under the conditions that we know the shape of the region of the values of the complex
variable & as well as the shape of the region of the values of ® corresponding to the
various values of the variable &, i.e. we know the shape of the boundary of the & and
regions and have to find the relation (1.12) which associates the value of @ with the
various value of £. Naturally, relation (1.12) represents different functions depending on

which of the methods is being used.

L3.2 The Schwarz-Christeffel Transformation

Theoretically, a transformation exists which will map any pair of simply
connected regions conformally onto each other. This is assured by the Riemann mapping
theorem; however, the determination of a general solution for the mapping problem has
thus far defied discovery. At first this may appear somewhat disturbing; however, as in
the case of the Zhukovsky functions, the use of appropriate auxiliary mapping techniques
enables us to transform even complicated flow regions into regular geometric shapes.
Generally these figures will be polygons having a finite number of vertices (one or more
of which may be at infinity). Thus the method of mapping a polygon from one or more

planes onto the upper half of another planes is of particular importance.

\j
b
" v

(a) (b)
Fig, L.1 z and £ Plane

If a polygon is located in the z plane, then the transformation that maps it

conformally onto the upper half of the & plane (§ =r + is) is

dg
Z::MJ‘ (E _a)(l—Nﬂ)(E _ b)(l—Bln) ------ +N (1A13)
where M and N are complex constants, A, B, ....., are the interior angles (in radians) of

the polygon in the z plane (Fig. [.1a), and a, b, ... (a <b < ...) are points on the real axis

1-4



of the £ plane corresponding to the respective vertices A, B, .... (Fig. 1.1b). We note, in
paniculaf, that the complex constant N corresponds to the point on the perimeter of the

polygon that has its image at £ = 0.

1.3.3 Zhukovsky Functions

A special mapping technique, of particular value when dealing with unconfined
flow problems, make use of an auxiliary transformation called Zhukovsky’s function.

Noting that relationship between the velocity potential and the pressure
[¢ = -k(p/yw+ y)] can be written as —kp/yw = ¢ + ky, if we defined as 6, = -kp/yw, then

01 =¢ +ky (1.14)
0, is seen to be an harmonic function of x and y as V20, = V?) = 0. Llence, its conjugate is

the function

0, =y -kx (1.15)
Defining 6 = 0, + 0,, we observe that
9=91+92=W—ikZ (116)

where w=¢+ iy, andz=x + jy
Definition (1.16) and any function with its real or imaginary part differing from it by a

constant multiplier is called a Zhukovsky function.

14 OBJECTIVES OF THE STUDY

In the light of the status of the studies on the seepage from a partially penetrating
stream having finite width, the objectives of the present study are :
I. Computation rate of seepage from a stream through derivation of reach
transmissivity for various depth of penetration and width of the stream.
2. Study of substitute length and its application for unsteady seepage condition.

3. Study of distribution of seepage through stream bed and stream bank.

The following assumptions have been made in study:
i. The flow is two dimensional,
ii. The river forms the boundary of a single layer of aquifer,

1i. Symmetrical aquifer conditions on either sides of the aquifer,
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iv. The soil is homogeneous and isotropic,

v. The stream of finite width partially penetrates the aquifer.

LS ORGANIZATION OF THE DISSERTATION

The presentation of the studies has been organized as follows :

In chapter 1, a general introduction to the seepage from a partially penetrating
stream in single aquifer has been presented. It includes the subject matters on two
dimensional flow and conformal mapping. The objectives of the study have been

identified here.
Chapter 2 deals with the pertinent review of literature. [t includes the subject

matters on reach transmissivity, river resistance and substitute length.

In chapter 3, analytical solution for seepage from a partially penetrating stream to
confined aquifer having finite width and rectangular shape with semi infinite aquifers on
either sides has been obtained. Results for various of stream width and depth of
penetration are presented.

In chapter 4, analytical solution for seepage from a partially penetrating stream to
confined aquifer having finite width and trapezoidal shape with finite aquifer has been
obtained. Results for various stream width and depth of penetration are presented.

In chapter 5, analytical solution for seepage from a partially penetrating stream to
unconfined aquifer having finite width and trapezoidal shape with finite aquifer has been
obtained. Results for various stream width and depth of penetration are presented.

In chapter 6, the important conclusions of the study have been summarized.

I-6
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CHAPTER I
REVIEW OF LITERATURE

A literature review on reach transmissivity and substitute length has been made in

this dissertation.

ILT  REACH TRANSMISSIVITY
It has been often assumed for a stream or a canal, which is hydraulically

connected with an aquifer that, under steady state condition, the exchange flow rate
between the stream and the aquifer is linearly dependent on the boundary potential
difference causing ﬂow (Aravin and Numerov 1965, Herbert 1970, Morel-Seytoux and
Daly 1975, Besbes et al. 1978, Flug et al. 1980). Bouwer (1969) has reported that the
seepage from a canal to a shallow unconfined aquifer is directly proportional to the
difference in the water levels in the canal and in the aquifer in the vicinity of the canal.
The constant of proportionality, which has been designated as reach transmissivity
(Morel-Seytoux and Daly, 1975) depends on the hydraulic conductivity and stream cross
section (Bouwer 1969). Considering an average flow path and an average flow area and
using Darcy’s law, Morel-Seytoux et al. (1979) have derived the following approximate

expression for seepage from a partially penetrating stream of finite width in an

unconfined aquifer :

0.5w_ +

| Q=L,k—'~gAh =I" Ah (2.H)

5w, +0.5e

in which Q = seepage through a reach of the stream of length L, k = hydraulic
conductivity, w, = the wetted perimeter of the stream, e = the saturated thickness of the
aquifer below the stream bed, and Ah = (h, — hp) = the difference in hydraulic heads in the
stream reach and in an observation well which is located at a distance of 5w, from the
center of the stream reach and I'; = the reach transmissivity. It is implied that the reach
transmissivity constant would vary with distance of the observation well from the stream.

Using Darcy’s law for radial flow, Herbert (1970) has derived an approximate
expression relating influent seepage from a partial penetrating stream with the potential

difference between the streamn and the aquifer below the stream bed at half the thickness

-1



Seepage from a partially penetrating stream of finite width

of aquifer from which the following expression for reach transmissivity for unit length of

a stream can be found :

nk | 2.2)

I, =
In( 0.5(e+h_, ))
R

were e = saturated thickness of the aquifer below the bed of the stream; h; = maximum
depth of water in the stream, R = radius of the equivalent semicircular section of the
stream equal to w,/r, w, = wetted perimeter of the stream. From the logarithm relation, it
is obvious that the reiation is valid for (e+hp,)/2 > R.

The reach transmissivity parameter could be known from the expressions relating
seepage with boundary potential difference derived by several investigators for different
stream aquifer geometry (Numerov 1954, Bouwer 1969, Halek and Svec 1979). The
various formula derived by different investigators for computation of seepage and reach
transmissivity are presented in detail in appendix A.

There have been evidences that the process of stream aquifer interaction can be
non-linear (Rushton and Redshaw 1979, Dillon 1983, 1984). Considering the fact that
influent seepage from a canal (or a stream) is zero for zero potential difference and a
finite quantity for infinite potential difference, the relationship between influent seepage
and potential difference has to be non-linear in case of unconfined flow. Only in case of
steady and confined flow, the relation between seepage and potential difference causing
the flow can be linear.

The reach transmissivity constant which depends on the location of piezometer, in
case of a partially penetrating stream of large width has been derived by Mishra (2001). A
stream having a width less than five times the thickness of the aquifer under its bed can
be considered to have finite width. In many ground water basins such a stream forms the
hydrologic boundary of the flow domain. In this dissertation, using conformal mapping,
an analytical expression for seepage from a partially penetrating stream of finite width, in

a homogeneous, isotropic, and confined aquifer is derived from which the pertinent reach

transmissivity parameter is obtained.

1.2 SUBSTITUTE LENGTH

The resistance of the flow domain of a partially penetrating stream of finite width

up to a distance Ly from the stream bank can be decomposed into (i) the resistance of the
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aquifer for length Ly for rectilinear flow and (ii) an extra resistance component due to
extension of the flow path resulting from curvilinear flow near the stream. The extra
resistance is unevenly distributed in the aquifer. An approximate theoretical method
known as the additional seepage resistance method was originally proposed by Numerov
(1953) for solving complex seepage problem. Strelsova (1974) has applied the method to
analyze flow to a multiple well system from a line source. In this method the distributed
extra resistance is lumped at the stream bank by appending an extra length of acjuifer,

known as substitute length, whose resistance for rectilinear flow is equal to the extra

resistance.
(a)
T T
(b) _
> T2

e

» AL i« L >

Fig. 1.1 Principle of the method of substitute lengths

The fragment shown in Fig.Il. 1a contains a flow region near an influent reservoir.
The water flows laterally into a collector system. The seepage is described by a
curvilinear flow net which can be mapped conformally into a rectilinear net (Fig. IL.1b).
Near the dividing line between the fragments, the curvilinear net is almost rectilinear, and
if we choose a suitable transformation, its shape will experience practically no change.
The transformed flow region is characterized by the fact that its inlet profile is vertical
and hence its shape is different from that of the original region. The main difference is
seen to be in its length which has increased relative to the boundary of the original
reservoir. The difference AL between the increased and the original length is called the
substitute length. Considering electrical analogy, the resistance of the whole fragment is

readily found from the relation
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= L, +AL (2.3)
T

Using conformal mapping Numerov (1953) has analyzed the two dimensional

R

seepage into a partially penetrating open channel having finite width draining water from
either sides of a confined aquifer. A partially penetrating stream with infinite width is a
particular case for which the substitute length can be obtained from the results presented
by Numerov. The substitute length is derived here independently from the conformal
mapping solution using electrical analogy for a partially penetrating stream of finite

width.

IL3 UNSTEADY STATE FLOW FROM PARTIALLY PENETRATING

STREAM

Let us consider a stream that partially penetrates a homogeneous and isotropic
confined aquifer of semi infinite area extent (Fig. 11.2a). By introducing substitute length,
AL, the partially penetrating stream converts to fully penetrating stream (Fig. 11.2.b).
Initially, the stream and the aquifer are assumed to be at rest in which the piezometric
surface of the aquifer and the stream are at the same level. Lét the stream-stage be
suddenly increased by o and maintained at the new level. The partial differential equation

governing the transient flow of water in the aquifer is

éh _ 8°h

5 Poa | (2.4)
The initial and boundary condition are :

h(x, 0)=0 ' . (2.5)

h(0, t) = ¢ and h(eo, t) =0 2.6)

where h = h(x, t) = piezometric head in the aquifer measured from the initial piezometric
surface, x = distance measured from the stream bank, B = hydraulic diffusivity of the
aquifer, (L*T™), o = step rise in the stream stage and t = time since the step rise.

The above partial differential equation is a good approximation for an unconfined
aquifer if changes in the water table are small in comparison to the average saturated
depth of flow (Cooper and Rorabaugh 1963). The solution of equation (2.4) satisfying the
initial and boundary conditions, has been given by Carslaw and Jaeger (1959) for an

analogous heat conduction problem which is
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.~ ground surface

(a)

. aquifer ‘

(////////////////'////‘/////////////////////////////////f//‘/////’////////

»
. Impermeable boundaries

.~ ground surface

]
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(b)

. aquifer stream

AL

(f/f//////////.-’f///‘/‘f’///////f’f/f////////f.‘l’fﬁ///f///f/f///f/////f/////

. Impermeable boundaries

Fig. IL2 Schematic cross-section of a partially penetrating stream, converted to a fully
penetrating stream

h =0 erfc— A 2.7

248t
where erfc(.) = 1 — erf{.) = complementary error function. The error function is expressed

as

erf(x) = " du (2.8)

2 X
—=|e
ral ,
A partially penetrating stream can be replaced by a fully penetrating stream by
introducing substitute length. Carslaw and Jaeger solution can be applied conveniently to

analyze unsteady flow from partially penetrating stream.
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CHAPTER I11
SEEPAGE FROM A RECTANGULAR STREAM
IN A SEMI INFINITE AQUIFER

III.1 GENERAL

The section of a partially penetrating stream can be conveniently assumed as
triangular, rectangular or trapezoidal for computation of seepage by analytical method.
Trapezoidal section is adopted for canals conveying large discharge. For small
distributory, the Mehboob section adopted in India can be assumed to be triangular. The
mathematical complexity for computation of seepage is least for triangular section.

Approximate solution for computation of influent seepage to a partially
penetrating stream having rectangular section in an unconfined aquifer has been derived
by Aravin (1965). The flow domain has been decomposed into two regions; one region
above the bed level and the other one below the bed level. The flow domain below the
bed level has been treated as a confined flow domain and conformal mapping has been
applied to compute influent seepage through bed. Dupuit Farcheimer assumptions have
been used to compute part of influent seepage above bed level. Stretslove has analyzed
seepage from a rectangular canal partially penetrating a confined aquifef. It has been
assumed that prior to seepage water was flowing {rom -co to +oo.

Herbert, has considered a stream with semi circular cross section partially
penetrating a confined aquifer, has derived the expression of seepage in terms of stream
geometry, hydraulic conductivity and potential difference between the stream and below
the stream at half depth of aquifer below the bed.

If a solution is obtained for treating the aquifer as infinite, the seepage can be
computed only if the piezometric surface is measured at a piezometer near the stream.
The seepage is equal to q = I'.Ah; in which Ah is the potential difference coursing flow
and I' is the reach transmissivity constant. Approximate value of reach traﬁsmissivity can
be obtained from the formulae given by several investigator for computation of seepage.

The reach transmissivity constant for a river of large width (width more than 5
times depth of aquifer below the river bed) has been derived by Mishra (2001) using

conformal mapping.
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Seepage from a partially penetrating stream of finite width

[n this chapter the analysis of steady seepage from a partially penetrating stream
having finite width in a confined aquifer has been derived using conformal mapping. The
study helps in checking the validity of Herbert’s formula. Also the reach transmissivity

for stream having finite width has been obtained.

II.2. STATEMENT OF THE PROBLEM

A partially penetrating rectangular stream in confined aquifer is shown in Fig.
1IL.1. The flow is steady and symmetrical on either side of the stream. T, is thickness of
the aquifer below the stream bed, T; is thickness of aquifer and B is half width of the
stream. A piezometer is located at a distance Ly from the bank. The potential difference

Ah is measured. It is aimed to find the seepage and quantify the reach transmissivity

constant as a function of T/T,, B/T,, Lg/T; and k.

? Y
<+ LB —_—
v U I S
4 | Ah e
ALLPO A A 7Py j¢———— ZB —»
C ‘ B W=¢ A
h] D
f hg
T E
2 T, ql
" M
I N L A o
/////f///.f//////l//fz'///////////)’f‘/f////.f. F Pl F I T s X VAL PP AP LT A

Fig. 111.1 Physical flow domain in z-plane, z=x+iy

.
»

S
— 00 -b dA d 1 m f
C r D E M
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Fig.IIL2 E-plane (§=r+is)
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I1I.3 ANALYSIS

HIL.3.1 Mapping of The Physical Flow Domain in Z-Plane to An Auxiliary £-Plane

The vertices A, C, D, E and F in z plane (Fig. 11L.1) having been mapped onto
points -0, 0, d, 1 and f respectively of the &-plane (Fig. 111.2). The conformal mapping of
the flow domain in z plain onto the lower half an auxiliary & plane according Schwarz-

Christoffel transformation is given by:

(E _d)l/ZdE .
=M : 3.1
El/Z(E _f)l/2(§ _1)1/2 ( )

Substituting & = Re®, dt = iRe®® dO and applying the condition that as one transverses in

&-plane from 6 = 0 to 8 = & along a semi circle of radius R, R—c0, the jump in z-plane =
1T,
(Re® —d)*iRe™

Rei() )l/2 (ReiO _ Dl/l (Reio _1)]/2 d()

s

Lt.R —> o

or

. i(Reie)3/2(l— d )

i Re®
iT, = M| S o (3.2)

> (Re® ’2(1—-) (I—--

( € ) Relo Rem
LtR— o
The constant M is found to be
T, | '

M=-2 (3.3)

T

The parameter of ‘d” and ‘f” are found as follows :

For0 <&’ <d, zis given by:

T % r —d 172 '
i n_zg R (—t)‘”)(z SyE & BT -

For point D, &’ =d and Zp = B + iT;; hence,

nr-3
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T, ¢ —d)'"” .
B+iT,=-2
+1T] " (J;g B - DRE 17 dg +B+iT, or
n(h-T) _f_  (d-¢)"” 35
T2 __!;E IIZ(f_E )IIZ(I_E )1/2 dE ) ( ) )

Substituting & = v, dg = 2v dv, at the lower limit £ = 0, v = 0 and at the upper limit & =
d, v = ¥d, where v is a dummy variable, the improper integral above is converted to the
following proper integral:

vr(Tz—Tozz“f (d-v")"

3.6
T2 : (f— v2)1/2 ( 1 _ V2 )1/2 dV ( )

Substituting :
v=JE(1;)O and dv =i25—dx

where y is a dummy variable, the lower and upper limit of integration above are

cbnverted to—1 and 1 respectively, and equation (3.6) reduces to
] 7 122
r - d( X ) ]
"L-T)_ s j i 2

I

For d<& <1,zis givenby :

dy (3.7)

z dl/Z )
~*fg o ﬂ,,}@ e +BT, | (3.8)

For pointE, & =1 and Zg=1T); hence,

! 172
£ -d .
j.g 112 E - ( f)”z)(i )1/2 d¢ +B+1T,
d

© 98 A(F—£)2(1-£ )7
Substituting 1-& = v, d& = -2v dv, at the lower limit £ = d, v = V(1-d), and at the upper

T. | ST
B= [t (39)
d

limit £ = 1, v =0, where v is a dummy variable, the improper integral above is converted

to the following proper integral:
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V1-d v _ ]2 ' :
B=2-% I (2l |sz J 2512 dv (3.10)
oy (I=v)Y"(F=1+v°) ‘

Substituting :
v=\/1—dl—;—x and dv=———'12~ddx

where y is a dummy variable, the lower and upper limits of integrals above are converted

to -1 and 1 respectively, and equation (3.10) reduces to

2 1/2
[1—(1—d)(1—+l) —d]
Brn p 2
———=\/1—d_|'

k "l1-(1-4 ”—XT w\/f—1+(1_d)(1—’1)2
2 2

The integration appearing in equations (3.7) and (3.11) are carried out numerically

applying Gauss-quadrature formula. For a given value of B, T, and Tz, the parameters d

dy (3.11)

and [ arc obtained by an itcrative procedure. 1'he programming in C** has been developed

to obtain these parameters.

Consider a piezometer at point B at a distance Ly from the stream bank.

For -0 < &’ <0, the relationship between z and £’ is given by :

T. % & _d)1/2 _
_—_;ti:!'Em(E “HRE <1)7 dg +B+iT, (3.12)

For point B, & = -b and Zg = B+iT,+Lg; hence,

__ LY @-g)”
e Yo o e G5

Substituting & = -u, d§ = -du, at the lower limit § = 0, u = 0 and at the upper limit & = -
u=>b

fN'—-]

TC 1/2(f+u)l/2(}+u)l/2

JIZ (d+uw™ (3.14)
0

Substituting u = v, du=2vdv,atu=0,v=0and atu=b, v=b, where v is a dummy

variable, the improper integral above is converted to the following proper integral :

_ __j (d+v*)"™ | O (3.15)
s (F+v)2(1+ v

IlL-5
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Substituting
v= JE%X)— and dv=?dx

where y is 2 dummy variable, the lower and upper limits of integral above are converted

to ~1 and 1 respectively, and equation (3.15) reduces to

27 172
I 2

L 1
1{’“ -Jb ey (3.16)
2 f+b(-—1+x) I+b ——”Xj

2 L2

The above integration is carried out numerically applying Gauss-quadrature formula. For

a given value of Lg, the parameter b is obtained by an iterative procedure.

Consider a piezometer at point M at a distance Ty from the bottom of the aquifer.

The parameter & lies in the range from 1 to f. For 1 < &’ < f; the relationship between z

and &’ is given by :

T ¢ g ___d 12 .
- n_zjg Uz(g (___le'Z)(g _1)1/2 dE + l’]"l - (3 17)
1

For point M, & = m and zy = iTa; hence,

s _ m (E _d)lfl
i(T, —Ty) = (—( T)n '[E 2(f_g Y2 —1)° dg
(Tl - Tm)x f (E d)l/2
T, '!E 2(f_g )2 —1)2 dg (3.18)

The above improper integral is converted to proper integral by removing the singularity at
&=1. Besides, to improve the accuracy in numerical integration the range 1 to m is divided

into two parts | to (1+m)/2 and (1+m)/2 to m

1+m
m

(L-T,x _ 3 € -d)'? € -d)2
d
Tz ! E (f E )UZ(E ) E +—lil;—lg llz(f—E )1,‘2(E _1)1/2 dE (319)

Substituting £-1 = v?, d& = 2v dv, for first integral above, at the lower limit £ =1, v =10
and at the upper limit £ = (1+m)/2, v =V{[m - 1]/2} and substituting also f- &€ = v?,
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d& = -2v dv, for second integral, at the lower limit £ = (1+m)/2, v = V{[2f-m-1]/2} and at
the upper limit & = m, v = V(f — m). Where v is a dummy variable, the improper integral

above is converted to the following proper integral :

m-l 2f~m-1
3 F) 2, 1_ 2 \[—2 v gy
R =2 f 2 v 1:] d)z iz dv+2 f (zf uzv dz mdv (3.20)
T, o (V+1)(F-vE-1) i (E-vI)Y5(F-vi=1)

Making further substitution

V= —5—1(1+x) £,60); adv J 5 d2X for the first integral

and
2f-m-1 _Jf-m 2f-m-1 +Fom
¥ 2 2 = 1,003
2 2 . 2
2f ~m-1 _ m—
dv= 2 5 dy for the second integral above

where y is a dummy variable, the lower and upper limits of above integration are

converted to —1 and 1 respectively, and equation (3.20) reduces to :
. | §
(T, T _ [m=i; Weos-d
T, 2 AR+ E- £ ) -1
(VZf——m_l—ﬂﬁ A & (21
2 S - L2 00OHE- £760-1)

The above integration is carried out numerically applying Gauss-quadrature formula. For

a given value of Ty, the parameter m is obtained by an iterative procedure.

IIL3.2 Mapping of The Complex Potential w Plane to The Auxiliary £ Plane

The complex potential w corresponding to the flow domain is shown in Fig. 1I13.
w = ¢ + iy, where y is the stream function and ¢ is the velocity potential function,

defined as ¢ = -k(p/yw + y) + ¢. Constant ¢ has been assumed to be zero.
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The conformal mapping of the w-plane onto the lower half of the &-plane is givenby : -

dw M
dt ZE 2@ _1)A (3.22)

C B A
T <+«—— khy ———»] 0
q .0
ql
\ +- + >
E M F A
« k by » ¢

Fig. IIL3 w-plane (w=d+iy)

For 0 <&’ <1, the corresponding w is given by :

MC’ (12-1) (12-1) .
0
M :
=—B,(12,12) - kh, +iq (3.23)
1

in which Bz-(m,n) is incomplete Beta function. For point E, £ = 1 and w = -kh,, hence

-kh; =M Bg:anz,12) /t - khy + iq (3.24a)
in which Barz,172) is complete beta function, hence,
_4
M= (3.24b)
T
For -b £ &’ £ 0, the corresponding w is given by
-
q dg .
W=~ ——"———kh +i 3.25
e e v G2
For point B, £’ = -b and w = -khg + iq; hence,
—b
. d .
—khy+ig=3 [ _ih 1ig (3.26)

n SE 1/2(6 -1
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‘Substituting & = -v, d§ = -dv, at £ =0, v =0 and at £ = -b, v = b, and re-arranging the

equation (3.26)

b

k(h,—h 3.27

( 1 B) '('; 12(l+v)|12 ( )
Substituting 1+v = u? ,dv=2udu,atv=0,u=1 and at v = b,u= \/(Hb), where vis a
dummy variable, the improper integral above is converted to the following proper integral

VI b
k(h,—h,)=24 [ ~=— _d i, ~hg)="— 1n[u+Ju —1] f”’ (3.28)
T

1\/[1 -1

Hence,

nk(h | -hy) :
/T 5+ 4b) (3.29)

in which h; is head in the stream and hg is piezometric head at a distance Lp from the

stream bank and q is rate of seepage for half section of the stream.

Fordomain Eto F, i.e. 1< &’ < f, the corresponding w is given by

q £
4 —kh 3.30
e .!lg IIZ(E _1)1/2 1 ( )
For point M, £” = m and w = - khy; hence,
m d '
k(h, ~hy) = jgmge—)m | (3.31)

Substituting £ =v*, df =2vdv,at{=1,v=1landatE=m,v= Vm, where v is a dummy

'variable the integration leads to

2q T gy 2q 3 Jm
k(h,—hy)= =-2Injv++v° -1 3.32)
(h,—hy)= !Tz_ln [«f_ ]

Hence,

n k(h; —hy) 333
21n(\/_+\/—) (3:33)

in which hy is the head at a point located at a distance T from the bottom of the aquifer

and q is rate of seepage for half section of the stream.
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For domain D to E, i.e. 1 <&’ <d, the corresponding w is given by :

&
in '!-E 1/2(1 —f )1/2 !

1
—q dg
= —kh 3.34
w in ;[E m(l-—E )1/2 1 ( )
{ 5
_-9 € 1 ¥ - |
w in L’)‘g (1 g )" '.!E 1/2(1_&)1/2} 1
—q
W= E—L -B 5,(1/2,1/2)]—kh1 : (3.35)
For point D, & = d and w = -kh; + iy; hence,
b 12y & (3.36)
q T
Qi 2o Vd (3.37)
q T ,

in which q, is seepage through the stream bed for half section of the stream.

14 SUBSTITUTE LENGTH

The resistance of one half of the flow domain of a partially penetrating stream up
to a distance Ly from the stream bank can be decomposed into (i) the resistance of the
aquifer for length Lp for rectilinear flow and (ii) resistance pertaining to the curvilinear
flow near the stream. The resistance pertaining to curve linear flow is .unevenly
distributed in the aquifer. An approximate theoretical method known as the additional
seepage resistance method was originally proposed by Numerbv (1953) for solving
complex seepage problem. In this method the distributed extra resistance is lumped at the
stream bank by appending an extra Ieﬁgth of aquifer, known as substitute length, whose
resistance for rectilinear flow is equal to the extra resistance. Using conformal mapping
Numerov (1953) has analyzed the two dimensional seepage into a partially penetrating
open channel having finite width draining water from either sides of a confined aquifer.
Numerov has considered the case in which steady flow occurs from left side of the
confined aquifer to the right side and a partially penetrating stream interferes the flow.
The substitute length is derived here independently from the conformal mapping solution

using electrical analogy. The flow is symmetrical on either side of the stream.
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Let us consider the location of a piezometer at a distance Lj; form the stream bank.
The combined aquifer and stream resistance R;, up to length Ly from (3.29) is given by :
,= 2n{y1+ 1? +b) 58)
14

Let AL be the extra length, whose resistance is equal to the extra resistance owing to flow

R

convergence within length Lg. For uniform rectilinear flow, the aquifer resistance R, of
length Lg+AL is

R, = £B_'}.'..A_I‘_’ _ (3.39)
kT,

Since R, =R,, we get

AL _2in(yIxb+vb) Ly (3.40)
T, n T, .

The limiting value of AL, Lj; —>o0, is the substitute length.

The substitute length is a measure of stream resistance to flow. The various of
substitute length with distance from the stream bank for different width of the stream are
presented in Fig. 3.10a through 3.10f. Since substitute length pertains to the curve linear
flow near the stream bed and bank, and flow paths are extended only within a limited
distance in the aquifer, AL/T, converges to a finite value as Lp/T> increases. With
increasing depth of penetration the curve linear flow tends to linear flow. Therefore
stream having higher depth of penetration will have lower substitute length. The stream
resistance is higher for stream having less width. Therefore as B/T, increases, the

substitute length decreases.
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II.5 UNSTEADY STATE FLOW

fo] T

) L)
river aquifer T,

//////////f/////fu’///////////’{//////////f//f////////f///f///////f///.

Fig. I11.4 Step rise in a river

The substitute length can be used to convert a partially penetrating stream into a
fully penetrating one by appending the substitute length to the aquifer at the interface of
the stream and aquifer. The solution of unsteady flow from fully penetrating stream to
aquifer derived earlier by Carslaw and Jaeger for an analogous heat conduction problem
can be conveniently used. The solution for unsteady flow from a partially penetrating
stream is derived in the following paragraphs.

Let us consider a step rise in the stream stage o, (Fig. 111.4). The rise at a distance

x from the stream bank at a time t after onset of change in stream stage is given by:

s(x, 1) =c[l—erf( J&_’;_{]J T (3.41)

in which

The error function exﬂX) = N f ~dv

B = hydraulic diffusivity = T/®

@ = storativity

T = transmissivity = kT,

k = hydraulic conductivity
The hydraulic gradient is given by:

Os 0 7]5” 2
- ™ du 3.42

6x T ox ° o 0 ( )
Mutltiplication of hydraulic gradient and coefficient of permeability k, gives the Darcy
velocity
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R b’ e 1 | 3.43
Vi (k){‘/n—oe \/477{} ( )

Multiplication of hydraulic gradient and transmissivity T, gives the rate of flow at section

x in the aquifer

Q 2 o vl (3.44)

X =Tfoc @

At a point x = 0, i.e. interface between the river and the aquifer, the rate of flow is

2 1
Q) =T—=0 — (3.45)
’ VviooW4gt
Let the step rise o be equal to 1 and the corresponding flow be designated as K(t)
K.M= 1o (3.46)

i

Let the change in stream stage follow a ramp instead of a step i.e. let the step rise linearly

from zero at t = 0 and attain a unit height at t = At after which let the stream stage remain

unchanged (Fig. II1.5)

tq —»

Y

0% T —he—t— ¢ g ’t

<+ At —¥
Fig. II1I.5 One rump rise

The response of an aquifer to a ramp perturbation, 84,(t) can be derived from the response

to a unit step perturbation using convolution technique.

5. (t)= j—K (t-7)dr

J- T(D J- tdo TcI) 1 (3.47)

\/ -7 Vt -7
Beyond time At, do/dt = 0, and within At do/dt is constant and is equal to 1/At. Let t =

n:At, where n is an integer

ToY |
)= —,f | Jn_m__ (3.48)
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Seepage from a pariially penetrating stream of finite width

Integrating

T(D

6, (0, At) = v
nAt—7

=§:\E§[’ N yvaey

1 JTo
“5la b

T o]

T

3, At) =2, /Z'I:—D[f ~ Vo] (3.49)
T

For variable stream stage the return flow at the end of n™ time step is given by

2JnAt At +2\/nAt]

T(,D dr

(nAt)j Y

Discretising the time domain into n steps and assuming that within each time step do/dt

(3.50)

remains constant but changes from time step to step

Q,(n,AY= I{°< At)tcr(O)}/ : ::_T

¢ ol A)—o((y —DAY [T dt

s +
Al
Forrreeene + o(nAf)—o ((n—1)At) jT® dr 3.51)
(n-1)At At T NnAt—r

Substituting 7=u + (y-1)Atand u = z- (y-1)At

1 [To
I

s T(DJ-
At (,,W‘/ t—7 Ac\f 2 /At — (y—l)At—

il ]
J(n-y +1)At u

=5(@m —y +1),A)

=2JZT(D[\[n—y +1 —Jn—y] (3.52)
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Thus

Q (nAY =380 —y +LANEE) —of -1} (3.53)

y =l

It may be noted that the substitute length has no storage effect. The flow through
substitute length takes place similar to that in pipe.

Let the unknown rise at the interface of substitute length and aquifer at the end of
the first time step be Ah,(1). The rise in the river stage be Ah,(1). Applying mass balance
at the end of the first step i.e. the flow rate leaving the substitute length enters to the

aquifer

N i U] RPN 3.54a)

L =Ah_(1)5(1,At) (3.

or

Ah (1)= ALT . (3.54b)

1+ =8 (1,At)
T

or

s, (1)= G'(Alz-c’(o) (3.54¢)

I+ —-8(1,At
T( )

Similarly applying mass balance at the end of nAt

16 m-a,m)
AL

=2{78(Y)—ca(y —1)}8(n—y +1,A1)
={HZ:{75('Y)“G,,(Y ~1)}5(n—y +1,At)}+ b m)—c (n-1)}5(1,A1)

or(n)—oa(n)=%‘i{i{ya(y)—oa(y ~1)}s(n -y +1,At)}+%L—{;a(n)—ou(n—l)}6(l,At)

o,(n)—é_fli{fj (-0, —D§dn—y +1,At)}+%£oa.(n-l)5(l,At)

y =l

o (n)=
1+%8(1,At)

Ga(n) can be solved in succession starting from time step 1. Once o,(n) are found. Q,(n)

can be computed using equation (3.53). For a unit step rise the seepage from a stream for
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Seepage from a partially penetrating stream of finite width

B/T; = 0.5 and T1/T; = 0.25, 0.5, and 0.999 is shown in Fig. 1I1.6. Also in the graph the

influent seepage for a fully penetrating stream is shown for the purpose of comparison.

9000 [ﬂlfr l‘ b cne u;cr TTI1Thmr T mTTriT
B/T=0.5
8000 @=0.1
T=200m*/day
7000
——}- 0129 ¥---~»— e f ] -
6000
A\
5000 \ N
Q)
m3/day/m 4000 Y
, : 431+ «-.r -
3000 -—}—{-FHl !
{Hits S N
2000 + N
] il \\\\
3 N
1000 s Al ?_wa\ e AL —
i me99 AU B 8 0t 1 I
0 i AR =L
0.001 0.01 0.1 1 10 100

Time (scconds)

Fig. 11L.6 Rate of seepage with time for B/T,=0.5

111.6 RESULTS AND DISCUSSION

For computing steady seepage from a stream or canal, whose section conforms to
a rectangular one, the parameters and data required are :

(1) the hydraulic conductivity, k,

(i)  the difference in piezometric level recorded at a piezometer in the vicinity

of the stream and water surface level in the stream,

(111)  distance of the piezometer from the stream bank,

(iv)  thickness of aquifer below the stream bed,

(v) thickness of aquifer beyond the stream bed and

(vi)  width of the stream
The seepage is given by

Q=F.k.Ah (3.56)
where F depends on the seepage factor stream geometry and distance of the piezometer
" from the bank. The seepage, q, has been expressed by Morel Seytoux as :
q=1TI}.Ah (3.57)
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Seepage from a partially penetrating stream of finite width

From equation (3.29) the reach transmissivity per unit length of strecam is given by

nk
I, = X (3.58)
2n(¥1+b +b)
Therefore the dimensionless factor
I
9 _‘« (3.59)

“kAh  k
I'; is a function of the distance of the piezometer from the stream bank for a particular
stream. This factor would change with charge in depth of penetration and width of the
stream. The relationship of seepage factor F or q/(kAh) or I'/k with Ly/T; for different
T1/T, and B/T, are presented in Fig. I11.7a through Fig. I11.7f. From the figures it could be
seen that for stream having comparatively large width (B/T, > 1), the seepage factor is
independent of the depth of penetration only if the piezometer is located beyond 5 T,. The
" reach is always dependent on Lg, the distance of the piezometer'where Ah is observed.
I'/k increases as depth of penetration of the stream increases i.e. lower the T/T5, higher
the I'/k. In accordance to law of resistance (Resistance is directly proportional to length
of the conductor and inversely proportional to area of the conductor) I'/k decreases with
Lp/T;. As B/T, increases i.e. stream cross section increases the reach transmissivity
increases.

The fraction of seepage through bed decreases as depth of penetration of the
stream increases. Incase of a canal running in a porous medium of large -depth, seepage
increases with increasing width of the canal when water table lies at infinite. From the
Fig. I11.9, it is seen that when the aquifer is confined, the seepage from the stream bed
tends to a limiting value. For T;/T, = 0.9 the fraction of seepage through bed does not
increase for B/T>>1. '

In ground water modeling, some times the séepage from a stream is linked to the
potential with the aquifer below the stream bed. The relationship of seepage with
potential difference are shown in Fig. IIl.11a through IIl.11c for T//T, = 0.1, 0.5 and
0.999 for various location of the piezometer below the stream.

Treating the stream cross section as semi circular one, Herbert has applied Darcy
law and obtained a logarithmic relationship between influent seepage and potential at
middle of the aquifer below the stream bed. Preserving the method perimeter stream of

any other shape can be converted to equivalent semi circular stream. The computation of

Inr- 17



Seepage from a partially pengtrating stream of fintite widlth

seepage by Herbert method is compared with the seepage estimated rigorously by
conformal mapping. The results are compared in Fig. 111.12 and Fig. 111.13. It could be
seen that for 10 % penetration, Herbert formula is only applicable up to B/T; = 0.2. The
difference between seepage computed from Herbért formula and conformal mapping for
depth of penetration equal to half width of stream (i.e. Ds = B) is shown as a function of
Ds/T,, Ds/T; < 0.5. The discrepancy of Herbert formula increases rapxdly for Ds/T> > 0.3.

The error involved in Herbert formula is more than 10 %.

The piezometric surface in the aquifer near the top impervious layer is shown in
Fig. 111.14, for T{/T, =0.9, B/T>, = 0.1, h)/T, = 1.1 and Ah = 0.025 at a distance Lp/T; = 1.
The piezometric surface falls below the impervious layer beyond Lg/T; > 5. The confined
condition imposed on the aquifer is no longer valid for Lg/T2 > 5.

For unsteady state flow, the rise in the piezometric surface at the interface of
substitute length and aquifer due to a step rise (1 m) in the strea;11, for T\/T,=0.5;
B/T,=0.5; ®=0.1 and T=200 mz/day‘ is shown in Fig. II.15. It is seen that the piezometric
surface does not tend to 1 because of head loss in the substitute length. The rise at the
interface at near steady state conditions will be less than unit. Therefore the rise as in the

case of a fully penetrating stream does not converse to the rise in case of a partially

penetrating stream.
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Seepage from a partially penetrating stream of finite width

CHAPTER IV

SEEPAGE FROM A STREAM IN A FINITE AQUIFER

IV.1 GENERAL

Seepage from a canal in a semi-infinite aquifer has been discussed in chapter I1L
For a piezometer located at a distance beyond 5 times of thickness of the aquifer from
center of the stream, the parameter b in & plane is found to attend very high value. That
height of the piezometer surface decreases with distance from the stream and falls below
the upper confining layer. Beyond this point, the aquifer would be unconfined. It is thus
physically not possible that steady flow takes place from a stream to a confined aquifer of
infinite length. For steady state flow, the flow at any section in the aquifer is constant, for
the flow to take place the hydraulic head has to decrease which will lead the piezometer
surface to fall below the upper boundary of the confined aquifer. In this chapter, steady
flow from a stream with more generalized section in a confined aquifer of finite length

has been analyzed using potential theory. The flow is assumed to be identical on either

side of the stream.

IV.2 ANALYSIS

\
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Fig. IV.1 Physical flow domain in z-plane (z=x+iy)
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Fig. IV.2 E-plane (E=r+is)
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Seepage from a partially penetrating stream of finite wiith

IV.2.1 Mapping of The Physical Flow Domain in Z-Plane to An Auxiliary &-Plane

The stream bank is inclined of angle am with horizontal. According to the
Schwarz—Christoffel transformation, the conformal mapping of the flow domain in z

plane onto the lower half an auxiliary & plane is given by :

% =M € +a)% (E(z —d 1) )2 € -H'"? *D
in which
tan™ T,-1,
__ B-B (4.2)
b

B is half width of the stream surface at the bottom of upper confining layer, B; is half of
the bottom width of the stream, T, and T, are thickness of aquifer below the stream bed
and thickness of aquifer beyond the stream bank. The vertices G, A, C, D, E and F in z
plane (Fig. IV.1) have been mapped onto points -0, -a, 0, d, 1 and f reépectively of the
g-plane (Fig. IV.2). The parameters a, d and f are found as follows:

For —a < &’ < 0; the corresponding z is given by :

z=MT € g 4B+, @3
o € +a) 2y € -1)?E -n"”

For point A, & =-a and Zx = B +La+ iT,; hence,

. 7 -ty .
B +L = -
+L, +iT, be(g TPy (EEa e yE & FBHT (4.4)

where L, is distance of the aquifer boundary from the stream bank. Substituting £=-u,

hence,
i (d+u)
L, =M d |
? ! @-w2uw (1+w)2(f+u)? (4.5a)
or
i (d+uy a (d+ ) |
bamM du + dub (4.5b
A {!).(a_U)mu"‘(l+u)”2(f+u)”2 u a_/[(a_u)1/2u¢(1+u)1/2(f+u)‘/2 Ll} ( )

1Iv-2



Seepage from a partially penetrating stream of finite width

Substituting u = v* for the first integral and a - u = v* for the second integral above,

where v is a dummy variable, the improper integral 4.5b is converted to the following

proper integral :

Va2 2y (1 22) Va2 2\

(d+v*) v (d+a—-v?)

L,\=M2j 2312 Nz 21/2dv+2_"— 2 s 2172 21/2dv
o @—Vv)Y T (1+v)““(f+v™) o (@a—vY (l+a—-v )y “(f+a—-v")

Substituting :

v=an ('";X) and dv=———vzfzdx

- where y is a dummy variable, the lower and upper limits of integral 4.6 are converted to

~1 and 1 respectively

( 2 |
:MJa/_ZJj [m%q [dﬂa/z)[%ﬂ J dy ¢+
(a0 =i

, -

: [d+a (a/2) 3 J }

M+/a/24 j dy
2 2
[a (a/2 1+~2‘- ‘/ 1+a—(a2) ';XJ J’:f+a (alz)( 1.*.21) J
...... 4.7)

For region 0 < &’ < d; the corresponding z is given by :

I € ~dy :

z=M - - >dé +B+iT. \ 4.8
!(& +a) gt € -D"*E - i (+8)

For point D, &’ =d and Z;, = B| + iT;; hence,

(-1 (d—E )
d 49
2 @ +a) €Y (1-8)(f—£)"? : 49

(B, - B)+(iT, —1T)—-~—J'

Equating the modulus of either side

_ 2 EEY RV ( (d-g)
VB-B)" (T, ~T)" <M S e (4.10)
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Seepage from a partially penetrating stregm of finite width

Substituting & = V2, dg = 2v dv, at the lower limit £ = 0, v = 0 and at the upper limit & =
dyv= Vd, where v is a dummy variable, the improper integral 4.10 is converted to the

following proper integral

vd 2\x 1-2x
(d—v7) (v)
JB-B ) +(T,~T,)’ - 2|M| !(VZ TRy (4.11)
Substituting :
v =4/d 1+ and dv = Jadx

2 2
where y 15 a dummy variable, the lower and upper limits of integral 4.11 are converted to

—1 and 1 respectively and equation 4.11 reduces to

1
J(B_B1)2+(T2—Tl)2 :M\/a_.[ 2 2 dx
_1\/[d(]+x] +a:”:[-—d[l<+XJ :I[i —d(lﬂ(] :l
2 2 2
...... 4.12)
For domain d < &’ <1, the corresponding z is given by :
il € —dy -
z=M - 5 d€ +B, +1T 4.13
!(& ra)%TE ~DPE -t e
Forpoint E, £ =1 and Zg=1iT; hence,
L
. € —dy .
T, =-M y , —d¢ +B, +iT,
. 5(5 v (g )R E)
or
I 43
B, :MJ( € -d) ¢ (4.14)
d

E +a)l/’2§ ", (l _E )I/Z(f_g )1/2
Substituting 1-& = v*, d& = -2v dv, at the lower limit & =d, v = V(1-d), and at the upper
limit £ = 1, v =0, where v is a dummy variable, the improper integral 4.14 is converted to

the following proper integral

Vi-d 2 .
[-v®—-d
Bl:zMI 2 1€2 _ 2».) _ 3z Y (4‘15)
o (1=-vi+a)?(1-v* ) (f-1+v*)"? "
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Seepage from a partially penetrating stream of finite width

Substituting

v=J1—dl—J;—x and dv = “;ddx

where y is a dummy variable, the lower and upper limits of integral above are converted

to -1 and 1 respectively and equation 4.15 reduces to

. Mﬂj‘ [1—(1—d)(1_";x_)2 —d]

O e e

3

...... (4.16)
For domain 1 < &’ <f; the corresponding z is given by
EJ
M € —dr -
M e e e i
For point F, £ = f and Zy = 0; hence,
r .
€ —dy |
T, =M dg (4.18)
| ! € +a)%" € -)"*(E-£)"
Re-writing equation 4.18 to convert the improper integral to the proper integral
1+f
2 o y o ‘
€ —d) € -d)
T, =M dg + d 4.19
‘ ! € ra)e @ —)PE—E )R i(ﬁ vayes @~ -gy - [
2

Substituting & - 1 = v* for the first integral and f - £ = v* for the second integral above,
where v is a dummy variable, the improper integral in equation 4.19 is converted to the

following proper integral :

| = 11
2 2 1 \[; 2 3
(v} +1-d) (f-v'—d)
T, =M{2 J' (v2+l+a)m(vz+1)’ (f—vz—l)m dv+2 (f—v2+a)”2(f—vz)’ (f_vz_l)uz
5 0

dvt (4.20)

Substituting :
1+ JE-1D2
v=AJf- 1)/2[7"} and dv = —(;—)/dx

where x is a dummy variable, the lower and upper limits of integral above are converted

to—1 and | respectively and equation 4.20 reduces to

V-5



The parameter a, d, f and constant M are solved from equation 4.7, 4.12, 4.16 and 4.21

using iteration procedure. The integration are carried out numerically applying Gauss-

quadrature formula.

For region -b < &’ < 0; the corresponding z is given by :

i € —dy :
z=M [ T e O d¢ +B+iT, (4.22)
0 )

For point B, £’ =-b and Zg = B +Lg+ iT»; hence,

: T d-¢ ) .
B + LB + 1T2 = —_MJ‘ (E +a)l/2(__6()u. (1"")6 )I/Z(f —E )1/2 dE +B + 1T2 (4'23)
0 .

Substituting & = -u,

b
B (d+u)y 4.4
LB —M_([ (a__u)lfz u-x (1+u)l/2(‘f+u)li2 du ( '2 )

Splitting the limit into two parts, equation 4.24 is written as :

"f (d+uy Jb' (d+uy du} (4.25)

u
(a_u)llzua: (l+u)l/2(f+u)l/2 blz(a__u)I/Zua (1+u)l/2(f+u)l/2

LB=M{

0

Substituting u = v* for the first integral and a - u = v* for the second integral above,

where v is a dummy variable, the improper integral is converted to the following proper

integral
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Seepage fram a partially penetrating streant of flnite width

Vb2 2ye (1-2) Jaiob2 2y
Ly=M{2 | (d+v)v dv+2 __(dra-v) -

° (a—v)?(1+v3)2 (£ + )" i (@-viy(l+a-v7) (f+a-v")

...... (4.26)
Slibstituting :
V= w/b/2(l—-;)o— and dv= 2/2 dy
for the first part integral and substituting
a~b/2-ya—b a—b/2++ya-b Va-b2-+ya-b

v.—.‘/ 2‘/ X+J 2\/ = f{x ) and dv = 2J dyx

for the second integral, where y is a dummy variable, the lower and upper limits of

integral 4.26 are converted to —1 and 1 respectively resulting in

14y 147 1+x V[
[Jb/:z =X ] [d + (b/z)(-—l] }
) 2 2
L, =Mvb2{ [ _

| —l[a—(b/2{l—+1)} {1+(b/2)(1_ix_” [“(b/z)(l_ﬂ_ﬂ
\ 2 2 2

M2 =2 —a o) | ___lara-ra)t gl
e : ){I - o] i+a- a0l le+a- r260]” dx

+

=

For point M, which lies between E and F, the corresponding z is given by equation 4.17.
For point M), £ = m and Zy; = iTy; hence,

€ —dy
(E +a)m(§ )'1 (E _ 1)”2(f—g )1/2

T, - Ty = M| de (4.28)
1

Splitting the integration into two parts

l+m

ol € - d)" : € —dy
T, -Ty=M 124 a 172 172 12 12 12 d
e L v e

2
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Seepage from a partially penetrating stream of finite width

Substituting & - 1 = v* for the first integral and f - & = v* for the second integral above,

where v is a dummy variable, the improper integral in equation 4.29 is converted to the

following proper integral :
T, Ty, = M{2 ijj (7 +1-dy dv+2‘/z?-r (f—v’-dy dv
oM o (VHl+a)? (V1) (f -V -1)"? g E=Vi+a)?( -V y -V -1)"”
...... (4.30)
Further substituting :
,———4' J(m-=1)2
v=(m-1)2 %} and dv = (m#)dx for the first integral,
f—-m
V=
and dv = 2 dy = f{x ) for the second integral

where  is a dummy variable, the lower and upper limits of integration in equation 4.30

are converted to —1 and 1 respectively and it reduces to

SV R ¥ €
ARG ORI

Fiom ! I 26 -df }
[ 2 -fn[f—fZ(x)] TN [ I L |
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Seepage from a partiall retrating stream of finite width

1V.2.2 Mapping of The Compiex Potential w-Plane to The Auxiliary &-Plane

fi”

C B A
T <+«—— khp >
qaD Kby
ql i
v . .
E M, F G >
P [—— k hl PSR —— ¢

Fig. IV.3 w-plane (w=¢+iy)
The conformal mapping of the w-plane onto the lower half of the &-plane is given by :

dw M
— 2 4.32
¢ ¢ +2)"?@)"?E -1)"? (%:32)

For points Cto E, £=€” and 0 < &’ < 1, the corresponding w s given by :

% de .
=M —kh : 4.33
w 2‘!(& +a)l/‘2(g )1/2 (E _ 1))/2 1 +lq ( )

where h; is head at the stream and q is rate of seepage from half section of the stream.
For Point E, £’= 1 and wg = -kh;y; hence,
dg

—kh, =M ~kh, +i
I(‘g’ +a)”2(§ )1aJ—(1 E)wz 1 1q
or
1
M
q Zb[( +a)”2(E )1/2(1 Z )1/2
I
2 (1+akF |
=M F| sin” 4.34)
*V1+a ( £ +a \/1+aJ ( )
Applying the limit, hence,
2 s I
=M, —=F| —,—— ‘ 4.35
4= >Vl+a (2 JI+aJ (#33)
and

IvVv-9



Seepage from a partially penetrating stream of finite width

M, = q“”;‘ . ' (4.36)
zF(’i,m
2 Jl+a

where
s 1 T
Fl—,——|=F=,m 4.37
[2 w/1+a) (2 ') *3
is complete elliptic integral of first kind, i.e.
n /2
F(’L’m’)zj‘ d¢
2 o {/l-m?sin’p

The complete elliptic integral of the first kind is evaluated using Gauss quadrature as

(4.38)

described below:
Substituting @=n/4 (1+y), where x is a dummy variable, the lower and upper limits of the

elliptic integral are converted to —1 and 1 respectively and it reduces to:

F(n—,mlJ | A ’ (4.39)
2 z;_J:\/l—mzsinz(ﬂ——(HX ))
| 4

For point B to C, £&=£” and —b < &’ <0, the corresponding w is given by:

g’ dE ) .
W= Mz_J;(E o) )R E —1)? —kh, +iq | (4.40)

For point C, & = 0 and wc = -kh,+iq; hence,

. [ dE .
_khl +lq=M2_'[,(§ +a)”2(E )1/2@ _1)”2 _khB 14
or
0 dE
—h )=
by =h) =M, [P o
2 0
=M, =Fom,], .
in which
9 =sin™ Q—M .
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Seepage from a partially penetrating stream of finite width _

a o (4.43)

mf:—-——
1+a

For point B, £ = -b and

(1+a)b

3 =sin~"
a(l+b)

hence,

) I
K h")F(%’/ m) (4.44)
. 1 [(1+a)b .
F(Sm \[( by }(/l+a)J

in which q is seepage rate for half section of the stream.

q::

Applying the boundary condition at A. We derive in similar manner, the relation

k(h, -hz)F(’V’ /WJ
. _

or

)

Forpoint Dto E, £=£’ and d < &’ < 1, the corresponding w is given by

F(/é 1 f—“J _
q _r /(1+a (4.45)

£
w= MZ!(E +a)”2(2§ )uz € —1)"” —kh, +iq, (4.46)

For point E, & =1 and wg = -kh;; hence,

—kh, +i
‘!(& +a) )1aJ—(1 _z )2 114,

or

1
:!(E +a)l/2(g )1/2(] E)IIZ

- M, —2—F(3m,). (4.47)

2\/1+a :

IV -1t



Seepage from a partially penetrating stream of finite width

in which
g =sin"'Jl &
m? = ]
' J+a

Applying the limit, hence,

F[sin"'\/l—d, }i/mj
v

| F(ﬁ//2’/.4/(1 T a)J

in which q; is seepage through the stream bed.

94
q

Forpoint Eto F, £=£" and 1 <&’ <f, the corresponding w is given by
iy
w=M —kh
2_!(5 + a)l!l(g )1/2 (E _ 1)]/2 1

For point My, & = m, and wy = -khyy, where hy is head at point M;; hence,

m dE
-kh, =M > o
M e

1

or

’ m dE
k(hl "hm)zsz(E 4_3‘)1/2(E )1.-'2(E -2

2

2 JVi+a

=M F(g,m, |

in which

m’ =—
l+a

Applying the limit

Y,
q  _ F(T’[‘/z’\/} {”a))
k(h, -h_) a1 [(m=1)/ 7
] F(Sml (m /)’m’ jl"(l+a))

v-12
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Seepage from a partially penetrating stream of finite width

IV.3  SUBSTITUTE LENGTH

~ Let us consider the location of a piezometer at a distance Ly form the stream bank.
The combined aquifer and stream resistance R;, up to length Lp from equation 4.44 is

given by :

F(Sm_l (1+a)b [a7 J
. \/ A(Hb) J(1+a) 56

- kF(ﬂ/Z/’\/%1+a))

Let AL be the extra length, whose resistance is equal to the extra resistance owing to flow

convergence within length Lg. For uniform rectilinear flow, the aquifer resistance R, of

length Lp+AL is

R, —_-EB_"AL_ - (4.57)
kT,

Since R; = R,, we get

.1 [(1+a)b
AL F(Sml\/( +e) a(1+b)’ %+a) L,

T, (s ) T,

IV.4 RESULTS AND DISCUSSION

(4.58)

Influent seepage, reach transmissivity, and substitute length for stream in a finite
length of aquifer are presented. For length of aquifer greater than five times aquifer
thickness measured from center of the stream, the flow characteristic remain same as that
of semi-infinite aquifer.

From the relationship of reach transmissivity with distance of the point of
observation of piezometric head, it is seen that reach transmissivity increases with depth

of penetration of the stream bed and with increase in width of the stream.
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Fig.IV.4a  Variation of k or kAh with distance of piezometer from stream
bank for different depth of penetration of the stream, for B/T2=0.10
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Seepage from a partially penctrating stream of finite width

, . CHAPTER V
SEEPAGE FROM A STREAM IN AN UNCONFINED AQUIFER

V.1 . GENERAL

A river, comprising a boundary of flow, is encountered ip regional ground water
flow modeling. The _rivér reach can approximate a boundary of prescribed head, only
where it fully pénetrates an aquifer and has a large discharge as compared to the exchange
of flow between the river reach and the aqilifer. However, a situation is rarely seen where
a river cmhplelély penetrates the aquifer. In the case of a partially penetrating river of
large .discharge, the exchange of flow betw_eeﬁ the river and the aquifer, which acts in
éimila_r manner to leakage through an overlying stratum, has to be taken into account
besides treating the river as a boundary of prescribed head (Rushton and Redshaw, 1972).
Mishra and Seth has analyzed seépage from a river of large width.

In the present using Zhukovsky’s function and Séllwarz-Christoffel conformal

mapping technique, unconfined seepage from a stream of finite width has been analyzed

for a steady state condition.

\‘ % x
f’\ y=g!

o= )]
F AILLI SIS PP APl v G ///(:

S — 0 —— - — . — -

ML L L L L L AL PLLIAIIII I IV IIIIITIIT TR

Fig. V.1 Physical flow domain in z - plane

Figure V.] shows as a schematic cross section of stream in Z plane. The stream is
partially penetrating and has finite width. An impervious stratum is underlying at a depth
T ] belqw the streambed. If the width of streambed is less than 4T, the stream can be

V-1



Seepage from a partially penetrating stream of finite width

regarded to have finite width. This specification of finite width is based on the empirical
rule (Aravin and Numerov, 1965) followed in preparing the scale model ol a prototype
for seepage study in homogeneous soil. The depth of water in the stream is H. At a
distance L from the stream bank, the water table in the aquifer is at a depth AHA below

the level of water in the stream. It is required to find the quantity of water recharged by

stream to the aquifer.

V.2 ANALYSIS
The pertinent complex potential plane w, where w = ¢ + iy, is shown in figure

V.2, in which v is the stream function and ¢ is the velocity potential function defined as

(Harr, 1962)

o=k 1y)+c (5.1)

w

where k is the coefficient of permeability, p is the pressure, ¥, is the unit weight of water,

y is the elevation head, and c is an arbitrary constant which has been assumed to be zero.

$ Y

C A
qaDl K(H {aHA)
ql 4 - »
v
E M F G >
- —— kl,] et 4 e e e e an e - ¢
- .
k(H -A HF) ’1

Fig. V.2 w - plane

V.2.1 Mapping of Zhukovsky’s 0-Plane onto an auxiliary £-Plane
The flow domain consists of a phreatic line which is curvilinear and unknown a
priori. Conformal mapping can be applied to analyze the unconfined flow after

transforming the flow domain to Zhukovsky’s 6 plane (Zhukovsky, 1949). The pertinent

0 plane, in which
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iw
0=z+-—
k

=(x—q’—)+i(y+$) | (5.2)
k k '

is shown in Figure V.3. The loci of CD and FG are not known. CD and FG are idealized

as straight lines as shown.

¢
7 + —
YTk
q
A B,-— L
< "k X A e v
X - —
AT k
H
1 T, +H-All,
T, -AH,
v AH, - AH,
Fig. V.3 0-plane
S
_100 - a " I) d I m £ ‘;0
G A C D E M F G

Fig. V.4 & - plane

According to Schwarz-Christoffel transformation, the conformal mapping of the

polygon 0 plane onto upper the half of the auxiliary £ plane is gi\;en by (Harr, 1962).

- € —dy
’ 'Mf(z vayer @ —nre —p o TN o ¢

The vertices A, C, D, E, F, and G are mapped onto points —a, 0, d, 1, fand o respectively

on the real axis of the £ plane. M is complex constant to be evaluated.



Seepuge from_ a partially penetrating stream of finite width

Values of angle o, B and v in equation 5.3 refer to Figure V.3 and they are found to be

tan™ A :
q
bt 1)
o = (5.4)
n
tan -1 ({&_H“‘_L_—_'f.}.:{ F ] +1;_
B = By L, (5.5)
T
o T,+H-AH ,
9 .
y = k (5.6)

For a point between Ato C, £ =&’ and -0 <&’ <0

Atpoint A,0=0 , =(B2 +L, —E) and & = -a, and

at point C,6=280 . =(B2 —-E) and & =0.

Hence,
0
q (¢ —d) q
B,-*1=M d¢ +B, -1 +L
2k _[(E +a)y e (¢ -H"?E -nf e 'kJr A
or
I (d-¢)"
L,=-M : : = d 5.7
;[(EH)‘(-&)’(I-E)’ (f-£)° : ©7

Substituting £ = -u, and d€ = -du, where u is a dummy variable

(d+u)
a-u) u (1+w)"?(f+u)

L],
0

u =0 and u = a are singular points. Splitting the limit 0 toa into 0 to Y2a, and 2atoa



Seepage from a partially penetrating stream of finite width

a2 L4 a N
Ly=M I ; ,(d—HJ)l/z ?du+J‘ Y ”(d"'ll) 12 pdu}
o@a-wyu (1+uy“(f+u) ma—uwyu (1+u)“(f+u)
Substituting u = v? for the first integral and a-u = v” for the second integral, where v is a
dummy variable, the improper integral above is converted to the following proper

integral:

L, = M{m v (d+ v W vt (d4a-vR) }

+
V@ vy A+v R+ vy ) @iy (1va—v) P (f+a-viy

a
substituting v = \/%(HTX) and dv = ——2/2—dx R

where y is a dummy variable, the lower and upper limits of integrals above are converted

to—1 and 1 respectively and it reduces to

o
>

...... (5.10)
or La =MV(a/2) {I; + L)
The constant M in equation 5.7 is found to be
L
M=—A4 (5.11)

V%50, +1,)

For point between Band C, £ =&’ -b< &’ <0
Forpint B,6=10 =(B2 +Lg —%) and & = -b, and
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Seepage from_a partially penetrating streani of finite width

for point C, 0 =16 =(B2 —%) and £ =0
Hence,

=M

€ —dr d¢ +BZ-%+LB

B,—-2
? LE FayeT@E —1)2¢ —ff

q
k

c_'——-,:;

-b
(d-£r d ' 5.12
"Moot (-12)

Substituting & = -u, and d€ = -du

L (d+u)"

- MI e 12 p
o @-uw)yu* (1+u)“(f+u)

Dividing the integration into two parts

b2 o b o
L, =M{f (d+u) du+ | (d+u) du} (5.13)

s (a-u) u* (1+u)"?(f +u) (@~ u) u” (1+u)"”(f +u)’

Substituting u = v* for the first integral and a-u = v* for the second integral, where v is a
dummy variable, the improper integral above is converted to the following proper

integral:

b

a-—

vz 2v" 2 (d + v2)" vt 2V (dra-viYy
? (a-viY (1+v3)2(f +v?) s @-viy(Q+a-v)(f+a-v?)

Ly =M

b/
substituting v = ‘/g(lﬂ() fix) anddv= ;2 dy for first integral

T ‘/a—__m— - 1,60

substituting v =

and dv= 3 dy for second integral,

where y is a dummy variable, the lower and upper limits of integrals above are converted

to —1 and 1 respectively and it reduces to
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LB—MﬁI 6™ @+ PN pdx}
2 G- £260) A 17600 €+ £760)

5 I £ )™ (d+a- 71,76 JL
M ~-——+a-b 2 : 2 1/: "2 d (3.13)
" [Va 27V :Hiw-n(x»%l+a—£<XD (Fra=f76f

ForpointCtoD, =€ and 0<&’ <d
For pointC,0=0 . = [B —%) and & =0 and

for point D,6=16 , =(Bl ——ql—('—)—iH,and‘c’_,’ =d

Applying these conditions

€ —d) | q
d B
+a) e € -1 E -0 S BTy

d
B, -~ ~iH = M|
k €

or

d
q ., 9 (d-g)y
B, —B, — L H=M d
(' & k+k}+ !(&+a)Yz“(1-z)"2(f-Z)‘3 :

Equating the moduli on either side

\/((B ~B)- (ﬂ—q‘)) i d-2) de (5.16)
o € +a)y et (1-€)(f-¢ Y '.

Substituting & = v*, d& = 2v dv, where v is a dummy variable, the improper integral above

is converted to the following proper integral:

2 . Jd 1- @
J((B;;—BJ—(%—%)) +H? =2M [ v (d-v) —dv  (5.17)
0

(v:+ay (1-v)'"?(F-v?)
substituting
v=Jc_11+TX. and dv:l/-z—‘iqx

where ¥ is a dummy variable, the lower and upper limits of integrals above are converted

to—1 and 1 respectively and it reduces to
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2 1
‘/((Bz—Bl)—(%—%‘)] +H? =Mvd | , T 5 dx
"(d(-——”x) +aJ (1-d(ﬂj J [f-d(lilj J
2 2 2
...... (5.18)
ForpointDtoE, E=& andd <&’ <1
Forpoint D,6 =0 =[B,—&J iH,and &’ =d; and
for point E, =6 =-iH, and &’ = 1; hence,
1
, € —-dy Q.
—-iH=M d¢ +B, ——-+—iH
1 :!(E +a) e ¢ -1)"€ -0° B kK
1
q, € —dy
B, ——=M dg (5.19)
'k !(z+a)vz“(1-z)”2(f-s)"

Substituting 1-£ = v2, d€ = -2v dv, at £=d, v=N(1-d) and at §=1; v=0, where v is a dummy
variable, the improper integral above is converted to the following proper integral:

Vi .
(1-v*-d)
o (1-v2+a) (1-v2y (f-1+v?)P (5.20)

B,- L _om
k

substituting

Vi-d

v=\/]—dl%x— and dv=—2——dx

where y is a dummy variable, the lower and upper limits of integrals above are converted

to —1 and 1 respectively and it reduces to

dy
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ForpointEtoF,£=¢and 1 <& <f
For point E, 8 = 0 = -iH, and £’ = 1 and for point F, © = 0 = -i(T,+H-AH}), and £ = f,

hence,
r a
- € —d) :
~ oAM= dz —iH
i(T, + H-AH,) bﬁ!@ T e )P D £ ~i
or
£ \ :
€ —d)
T -AH, =M d
B e P

Splitting the integration into two parts

1+f
2
|

€ ~dy g M | € -dr d
. ; 12
ErayEr€ DALY £z+wv@—wm%f

2

ﬂ-Mh=MT

Substituting &-1 = v* in the first integral and f-£ = v'° in the second integral, where v is a
dummy variable, the improper integral above is converted to the following proper
integral:

f-1
T, - AH =2wyf (v> +1-dy
’ ' b (vEl+a) (Vi) (F-vE-])

%[2 9108 co 10 g\a
+10M J- 10 - : ¢ 1‘:) . 9 10 12 dv
o (F-vi+ay (f-v')y(@f-v'-1)

(5.23)

The substitution is valid for § < 9/10.

Substituting
f—1

f—1(1+y 2 : o
v=,——|—=]and dv= dy in the first integral and

2 2 2

Fo1(1 5

~-1{1+

V=1 T(_2_X—) and dv = 22 dy in the second integral,

where y is a dummy variable, the lower and upper limits of integrals above are converted

to —I and 1 respectively and equation 5.23 reduces to
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9-103 10
(l le(l;XD (f_fz-l(lng de
f 1
+5Ml§, £ ]I ; i X
* f_i—_l,(m]‘la f_f‘l(_lil)m f_z—_l,(z_tx]”_l
2 2 2 2
...... (5.24)
Forpoint EtoM,(=&"and 1 £ <m<f
For pointE, 8 =0z =-iH,and &’ = 1
For point M, 6 = 0y = -i(TytH-AHpy), and &* = m
: b € —d) :
—i(Ty +H-AH,)=M _ , —dg —iH
M M) _l[(g +a))ga(g _l)lZ(E_D_
' T € -dy
Ty -AH,, =M dg
S !(z +a) et @€ D" (F £
Splitting the integration into two parts
I+m
2 x m .
' € -d) € —dy
Iy -AH =M y d¢ +M | - ; dg
e ! € +ayE @€ -1)"*(f-g) J,,l(e +a) £ € -1)"*(f-£ )
2
...... (5.25)

Substituting &-1 = v* for the first integral and f-€ = v'° for the second integral, where v is

a dummy variable, the improper integral above is converted to the following proper

integral:
i
2 oy 2 _ ”.
T-AHy=2M [ R g,
s (VVH1+a)y (vE+1y (F-v?-1)
WETE '
V2 9-10p 10 o
v P (f-v' —d)
+IOM (f v]() +'l)‘ r 10 yer 10 172 dv (5.26)
T - ay (F-v'y(-v =1)

V-10
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Substituting

m-—1
V= Jm — 1(] X ) and dv= 2 dy for the first integral and
2 2 2
(.O/Zf_;z"_‘:_l _fm m) (, ._25:.;:_._1_ + 'g/f‘_—,;J
V= + = f(x) and
> X B J&)

; lmj

dy for the second integral

| m-1(1+y Y ’
| ({122 =)
m-1
[ . —

T, -AH, =M

+ SM[l M - Vf - m)j. fgﬁwp -(Z)(f — fm L) dT 12 dy (5.27)
V2 CE- o +a) E- o) E- 700 -1) |

V.2.2 Mapping of The Complex Potential w-Plane onto The Auxiliary &-Plane

The conformal mapping of the w-plane onto the lower half of the &-plane is given

by :

dw M, -
¢ +a)?@) e -1" , 29

The complex potential for the confined flow domain dealt in chapter 1V, and the potential

for the unconfined flow domain is simtlar with that confined flow.

Using conditions at points C and E, constant M, is found to be :

M, = V¥ ? (5.29)
2F(’-‘-,—_-.]
2 Ji+a

V-1l
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Using conditions at points A and C

{ [
kAHAr(KT , (l+a))

q =
/. jas
F(’f/z’\//(l + a))

in which q is seepage rate for half section of the stream.

Using conditions at points B and C

sty /(35 [V )

q= :
P (1 4+ a)b/ ya
F(S’“ NN 7

Using the relationship at points D and E

] _ A 1/
1 F(sm vi-d, /(l+a))

{55 Yiva)

in which q; is seepage through the streambed.

4
q

Using the relationship at points E and F

kAH F(sin“'Jm’MJ

. [(f=-1)/ ’ )
qF(sm \/( } , }(/Ha)J
.l_(~ y[.f" ./

F(\/ 2 ,/I'(I+a)j

or

AH, =

Using the relationship at points E and M

o s lfaea)

kAH,, (. o fm-D/ [o7
F[S"’ \/(m /)'fn’\/%ua))

or

V-12
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(5.31)

(532)

(5.33)
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o g F[sin‘l \/(m——l}Z’\/}(/T:)J
SR ()

(5.34)

The ten unknowns M, a, d, f, q, qi, AHF, o, 3, and y can be found from equation

(5.4), (5.5), (5.6), (5.11), (5.18), (5.21), (5.24), (5.32), (5.34), and (5.35).

V.3 SUBSTITUTE LENGTH

The equation of seepage discharge is

1/
k F(%>\//(1 + a))

= AH

/|
.F(n/2’ %l+a)}
Hence the resistance of the stream aquifer system is found to be
a
. F[%’\/ s a))
. [
k F(%’ %l + a))

The equivalent resistance of substitute length and aquifer

R (L, +AL)
* k(T +H-05AH,)

Since R; =R, , we get

(/\//l—mj [H+T -05H, |-L,
o4 Jiro)

in which AL 1s the substitute length.

AL =

V.4  RESULTS AND DISCUSSION

(5.35)

(5.36)

(5.37)

Numerical values for the stream and aquifer dimensions By, By, Ty, La and depth

of water in the stream H and the head difference AH, are assumed. The parameter ‘a’, ‘d’

and ‘f’ are assumed considering in which these parameter are located in the auxiliary &

plane (i.e. a> 0; 0<d<lI; f3)). g/k is computed from equation (5.30). qy/k is estimated from

V-13
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(5.32) and AHg is found from (5.33). a, B and y are computed from equations (5.4), (5.5)
and (5.6) respectively after computing q/k, qi/k and AHy. Constant M is computed from
equation (5.11). If parameters a, d and f have been correctly chosen they should satisfy
equations (5.18), (5.21) and (5.24). Using Newton Raphson iteration procedure a, d and f
are searched which satisfy equations (5.18), (5.21) and (5.24) with reasonable accuracy.
Variation of q/(kAH,) with distance of aquifer boundary from stream bank, LA/T)
for different B,/T, is presented in Fig. V.5. g/(kAHa) or I'/k decreases with increasing
La/Ty. T/k is higher for a stream with large width. However when By/T, > 2, width of
stream has little influence on reach transmissivity. In other word, all other parameter

remaining unchanged, the seepage does not increase as By/T) increases beyond 2.0.

N
+ &, I
1 N \ | —0—B1/T1=2.0 —0—B1/T1=0.5 —A—B1/T1=0.1
05 * : l
\\‘giﬁﬁ?hﬂ\\——d == r— _:.}_ir
0 T ? LA T
0 0.5 1 1.5 2 2.5 3 3.5 4 45 5 55
La
T

Fig. V.5 Variation of q/(kAH,) with distance of aquifer boundary from the stream bank (LA/T,),
for H/Ty=0.1; AH,/T;=0.01 and B,=B,+0.1

The variations of non dimensional seepage from the stream and seepage through
stream bed with Ls/T, for a particular value of AHA/Ty (=0.01 and 0.1) are presented in
Fig. V.6a through V.6¢c. g/(kAHA) or ['/k is the dimensionless reach transmissivity
corresponding to length Ln and the dimension of the stream cross section. Reach
transmissivity being inverse of the resistance of stream aquifer system, it decreases with

increase in La. The decrease is monotonic beyond LA/T1 > 4. The results are presented in

V-14
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table V.1 and V.2. The computed a., B, v and parameters a, d, f are presented including
AHF/Tl, q/(kAHA) and qll(kAHA) for given B]/T], Bz/Tl, H/Tl, AHA/Tl and LAle.

15

-t
| —

q
KAH
05
—
0 I—
0 1 2 3 4 5 6
La
T,

Fig. V.6a Variations of q/(kAH,) and q;/(kAH,) with L.,/T; for B;/T,=0.1; B,/T;=0.2;
H/T1=0.1 and AHA/T 1=0.01

15

0.5

ql
\ \\-\

R —

0 1 2 3 4 5 6
L, ‘
T, -

Fig. V.6b Variations of q/(kAH,) and q;/(kAH,) with L,/Ty for By/T;=0.1; B,/T;=0.2;
H/T;=0.1 and AH,/T;=0.1
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\
—
0 , ,
0 1 2 L A 3 4 5
T

Fig. V.6¢ Variations of q/(kAH,) and q,/(kAH,) with L,/T; for B,/T1=2; B,/Ty=2.1;
H/T1=0.I and AHA/T1=0.01

The variation of q/(kAHA) and ql/(kAHA) with B]/T] for AHA/T1:O.1, H/T1=02

and La/T=5 are shown in Fig. V.7. As B, increases seepage through bed and total

seepage increase. For B,/T; > 1, the increase in seepage is in significant.

0.25

0.2

0.15 - ql

0.1

0.05 -

Fig, V.7 Variations of q/(kAH,) and q;/(kAH;\%)‘\iﬁJ;h B,/T; for AH,=0.1; H/T,=0.2;
B2=B1; and LA/T1=5
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The variation of q/(kAHA) with H/T; for different LA/T; and particular values of
B,, B, and AH, are presented in Fig. V.8. It is seen that reach transmissivity increases

with increase in depth of water in the stream. The increase is linear for LA/T; > 1.

16
1 LA/Ty=0.25
14
05
12 —~

! 0.8
kAH 1
0.6 ;
0.4 -
0.2 -
0 T T T T T T T T T T
0 0.1 02 0.3 04 0.5 0.6
H
T

Fig. V.8 Variation of q/(kAH,) with H/Ty for B{/T,=0.1; B,/T{=0.2 and AH,/T;=0.1

The variation of q/(kAHA) with AHA/T; for different L,/T, are presented in fig.

V.9. It is seen that as LA/T| = 4 the reach transmissivity is independent of draw down

AHj,
14 - e
1.2
1 ~ \—‘\
T Laf1=0.25
08 T
‘N\\N
qQ 06| —0 I——
T B e N
kAH, | w\-—~‘~ !
—2
02— —_— 4
0 v T M T T T T T v
0 0.1 02 0.3 04 0.5
AH
T

Fig. V.9 Variation of q/(kAH,) with AH,/T; for B,/T,=0.1; B,/T{=0.2 and H/T,=0.1
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The variation of substitute length with width of rectangular stream is shown in
Fig. V.10. The substitute length decreases with increasing stream width since the

curvature of the flow lines will reduce with increase in bed width. Beyond B > T, there is

no further of reduction.

0.8
0.7 1
0.8

0.5
AL/T,

0.3 1

0.2 -

0.1 4

By/T,;

Fig. V.10 Variation of substitute length with width of stream for AH,/T;=0.1; H/T;=0.2 ; B,=B,
and LA,TI=5

The distribution of vertical down ward velocity with depth from the stream bed is
presented in Fig. V.11. As the fluid approaches the lower impervious bed, the velocity

decreases and tends to zero at y/T =1 as expected.

0.006
B/T=0.5
0.005 - BJ/Ti=0.6
WI=0.1
0.004 -1 L;\[r|=l
vy 0.003 4
0.002 - \
0.001 - N
0 . - ' S
0 0.2 04 0.6 0.8 1

-y/T,

Fig. V.11 Distribution of velocity down ward
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The locus of phreatic line at the entry through bank is magnified and shown in
Fig. V.12a and d V.12b. As seen from the figure, the phreatic line which is a stream line

and the stream bank which is an equipotential line and orthogonal.

1 / Y e A

——
1 N P o e g ey e _‘“,- _-; ‘”X_“'.","' TP Ty —

42 0440 01 02 03 04 05 0607 08 09 1
02 - X,

04 -
05 -
06 -
0.7 1
08 ]
0.9 ]

4

S

Fig. V.12a Locus of the phreatic line, for B,/T,=2; B,/T,=2.1; H/T,=0.1; AH/T,=0.1; L,/T=1

01027 / ST

~—
\\‘
viTy )
\\‘\\
SRR 1 0 O
-0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01
' T,

Fig. V.12b Locus of the phreatic line at entry through stream bank
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Seepage from a partially penetrating stream of finite width

CHAPTER VI
CONCLUSIONS

Using conformal mapping and Zhukovsky function, seepage from a partially

penetrating stream has been obtained for the following hydro geological conditions :

(i) a partially penetrating rectangular stream in a semi infinite confined aquifer,

(i)  a partially penetrating stream with trapezoidal section in a finite confined aquifer,
and

(iiil) a partially penetrating stream with trapezoidal section in a finite unconfined
aquifer.

Steady state seepage ﬁom a stream in a confined aquifer can be expressed as :

q=kFAh=TI;Ah
in which :

k = hydraulic conductivity,

Ah = hydraulic head difference measured at a piezometer in the vicinity of the

stream,
and F is a factor which depends on location of the piezometer i.e. distance of the
piezometer from the stream bank and stream geometry i.e. cross section of the stream and
depth of penetration of the stream. The above linear relationship Between seepage and Ah
is valid for steady state and confined flow condition.

Aravin, Bouwer, Herbert, Morel-Seytoux and many other investigators have
derived the factor F based on Darcy’s law and Dupuit Ferchheimer flow condition at large
distance from the water body.

In the present thesis, exact relation of the parameter I'/k (i.e. seepage factor F)
with distance of the piezometer and stream geometry including depth of penetration has -
been derived. It is found that the reach transmissivity increases with increase in stream
width, depth of penetration and hydraulic conductivity and it decreases with increase in
distance of observation point from the stream bank. Unlike seepage from a trapezoidal
canal in an unconfined aquifer of infinite depth, the total seepage and seepage through
bed of a stream in a confined or unconfined aquifer of finite depth tend to constant value
for B/T, greater than 1. The fraction of seepage through bed decreases as depth of

penetration increases.
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Unsteady flow from a fully penetrating stream has been given by Carslaw and
Jaeger for an analogous heat conduction problem. Partially penetrating stream, offers
more resistance to flow than fully penetrating stream because of flow convergence near
the stream. The sum of tl\le resistance due to flow convergence and resistance due to
fraction of the aquifer under the stream bed can be equated to the resistance of length AL
of the aquifer for uniform flow condition. This length AL is known as substitute length.
The substitute length increases with increase in distance of observation well from fhe
stream bank and decreases with increase of width of the stream and depth of penetration.
The substitute length tends to a finite value as distance of observation well increases. In
the application substitute length for unsteady flow, it is seen that the rise piezometric
surface in the aquifer for a unit step rise in the stream, is less than 1 due to the head loss
along substitute length.

In comparing the results with Herbert’s formula, it is found that Herbert’s formula
is applicable for depth of penetration less than 30 % (the involved error < 10%) and width
of the stream (B/T3) less than 0.2.

For a partially penetrating stream in an unconfined aquifer, the reach
transmissivity increases with increase in dépth of water in the stream, decreases with
increase in length of aquifer boundary and increases tending to constant value with
increase in stream width.

A rigorous analytical solution for steady seepage from a trapezoidal stream/canal
to an unconfined aquifer in which water table lies at a shallow depth has been derived

using Zhukovsky function and Schwarz-Christoffel conformal mapping.
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APPENDIX A
REACH TRANSMISSIVITY

The use of reach transmissivity has been introduced by Morel-Seytoux and Daly
(1975), for solving unsteady state stream-aquifer interaction problem. The reach
transmissivity has been defined as the constant of proportionality between the return flow
from a river and the difference of potentials at the periphery of the river and in the aquifer
in the vicinity of the river. The constant of proportionality has been obtained analytically
by various investigators, e.g., Hammad (1959), Ernst (1962) Aravin and Numerov (1965),
Bouwer (1965), Herbert (1970) and Streltsova (1974), for different aquifer and river
geometry. According to Muskat (1946), and Bouwer (1969), an unsteady state can be
treated as a succession of steady states. The validity of this assumption has been reasoned
out by Muskat in detail [Muskat (1946), pp.621-625]. Based on the above principle, the
reach transmissivity constant, though has been derived on the assumption of steady flow
condition, has been used for analysis of unsteady state problems by Morel-Seytoux
(1975). The reach transmissivity constant derived by various investigators for different
canal and aquifer geometry has been reviewed in the following paragraphs :

The geometry of a channel constructed in an aquifer on finite depth, which is
underlain by impermeable layer is shown in Figure A.1. The channel is hydraulically
connected with the aquifer. F 6r a specific case in which the channel is rectangular and the

bottom of the channel extends to the impermeable layer, the seepage loss is given by

(Bouwer, 1965).

2k(Hy —0.5D
Q= (Hy w)Pw (A1)
(L-0.5W,)
The reach transmissivity for a fully penetrating canal of reach length L, , therefore, is
given by :
2kL,(Hy —0.5D
I = r( w W) (A2)

r (L - 0. 5Wb )
L can be regarded as the distance of the observation well where the draw down Dw is

observed.
Approximate expression for seepage from a partially penetrating channel shown in

Figure A.1 is given by (vide Bouwer, 1969).
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impermcable

Fig. A.1 Geometry for channels in soil underlain by impermeable material

o = 2(Hy +D; 05Dy, )Dy, (A3)
(L—0.25W, —0.25W,) '

Hence, the approximate expression for reach transmissivity for a canal conforming to the
configuration depicted in Figure A.1 is,

_2KL,(Hy +D; —0.5Dy,) Ad)
" (L-0.25W, —-0.25W,) '

According to the Bouwer (1969), the above expression is not exact and the error in I'; will
increase with increasing D;. The error in equation A4 is due to the curvature and

divergence of the streamlines in the vicinity of the channel.

T T

Fig. A.2 Division of flow system in regions I and II for Dachler’s-analysis

Dachler (1936) had divided the flow system on the basis of model studies into a
region with curvilinear flow (region 1) and the other with Dupuit Forchheimer flow
(region II) {Fig. A.2], the dividing line being at a distance, L, from the center of the
canal, where

=Ws+hlw+Di (A.5)
3 .

Lt
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The flow in regioﬁ [ was analyzed with an approximate equation for the potential and the
stream line distribution under a plain source of finite width. A factor ‘F’ has been
determined to estimate flow in region 1 as :

Q=2 Fk AH (A.6)
where AH is the vertical distance between the water surface in the canal and the ground

water table at the dividing line between the two flow regions. Values of F given by

Dachler are presented in Figure A.3.

hallow channels Wg/Wp >0.9

5
1.0 1.0 -
LIS 0.8 AN 02
2% 0NN N o8
=" 0.6 \({Z\QN\G e
35 0.5 1 5 2

Deep channels Ws/Wp <0.9

1.0

SEINN AN

0.8 &\\\Xix :;’ —

oS

0.5 05°0.6 07 08
0 0.5 1 1.5 2

Curve parameter F Wg/(Dj+Hy)

Fig. A.3 Dachler’s values of F for shallow and for deep channels

The flow in region II has been expressed with Dupuit Forchheimer theory as :

2k(Dy, —A
_ 2Dy H)[Di+HW—O.5AH—O.5DW] (A.7)

QII

L,

Since it is required to calculate the seepage for a given value of Dy at a distance (L;+L,)
from the ch‘anne] center, AH will not be kndwn fm'tially. AH is found by trial and error
which satisfies the condition Q=Qy;. The reach transmissivity for a canal reach of length
L; will be given by:

_ ?_kL,(l ALl

I,
L,

J(Di +Hy, —0.5AH - 0.5Dy,) (A.8)

w
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Bouwer (1969) has applied Ernst’s approach to analyze seepage from a canal
constructed in a porous medium of finite depth underlain by an impervious layer.
Following Ernst’s approximate solution for potential distribution pertaining to tlow to a

line sink, the head loss, h,, due to radial flow in the vicinity of the canal, has been

expressed by Bouwer as:

.+ H
hr = % log{%) (A.9)

P

Hence, reach transmissivity for a canal reach of length L, is given by

I o= nk L, (A.10)

logc(D‘ +Hw]
WP

The head loss, hy, due to horizontal flow in the region away from the canal has been

expressed by Bouwer as

hy _Q L (A.11)
2k (D, +H,, —0.5D,)

Since Dy = h,+ hy,, Bouwer has combined equations A.9 and A.11 to obtain the relation :

KDy | (A.12)

1logc(Df +Hw]+ 0.5L

T W D, +H, —0.5D,,

p

The reach transmissivity for a canal reach of length 1, from equation A.12 can be

obtained as :

r - kL, (A.13)

T D, +Hy 0.5L
~log,| =¥ |4 - -
n D, +H, —0.5D,,

Equation A.9 was developed for semi circular channels of radius r, where the
wetted perimeter W, is nr. The equation according to Bouwer (1969) can be used for
channels of other shapes by substituting the actual wetted perimeter as shown in the
above equation. For shallow channels (Wg>>Hw), the seepage rate can be more

accurately estimated by the following expression :
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. 5 h (A.14)
[40i +Hy J
log, | =i W

n W
Hence, the reach transmissivity for a canal reach of length L; by Ernst modified formula

would be given by :

r = kn L, (A.15)

F T 4D. + H
10gc(__:_f.MLV_J
T Wy

C=5Wp

C=5Wp

- . Zone of

influence
R e  Er e e s R T T T T XSS T

Fig. A.4 Schematic view of a s tream in hydraulic connection with an aquifer and definition of

teminology

Using a simple potential theory Morel-Seytoux et al (1979) have derived the
following expression of reach transmissivity for a canal in a porous medium underlain by
an impervious layer (Fig. A.4):

_TL, 0.5W +e
© e SW +0.5¢

(A.16)
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in which,
L, = length of canal reach,
T = transmuissivity of the aquifer,
W, = wetted perimeter of the canal, and

e = saturated thickness below the canal bed.

\ Aquifer

TTT77 7777777777777 TITIITITIIIT

Fig. A.5 Representation of partially penetrating river

Herbert (1970) has the related the flow from a partially penetrating river, having

semicircular cross section (Fig. A.5), to the potential difference between the river and in

the aquifer below the river bed. The expression is given by :

Q, an k(h, =h,) (A17)
(O.SmJ
log, | =

in which,

L, =length of river reach,

h, = potential at the river boundary,

hy = potential in the aquif'er below the river bed,
m = saturated thickness of the aquifer, and

r, =radius of the semicircular river cross section.

The reach transmissivity, which could be obtained from equation A.17, is

ALY S (A.18)
(0.5mj
log,
rl"

For a rectangular channel shown in Fig. A.6, Aravin (1965) has derived the

following expression for flow to the channel :
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_kH+)H-h) k(H-h) (A.19)

° - L- B L1 log sinh(7T B)
2 2[, T bc - 4,{1

Fig. A.6 Flow to a rectangular ditch

The reach transmissivity for a canal reach of length L, could be written as :
kL (H+h
T s = (A.20)
L-0.5B L 1 (7B
0.5—=—--log [ sinh| ----
T = 4T

-

Dp I L : g

S & - o g .
r -3 6‘0‘0‘-.}’." U"‘ ’ &3 _Oo-qJ.o‘-‘—.; ‘...' ::

“* Permeable

Fig. A.7 Geometry and symbols for channels in soil underlain by permeable material

Seepage flow from a canal embedded in a porous medium of finite depth,
underlain by a highly pervious layer, Fig.A.7, has been analyzed for simplified canal
geometry by Hammad (1959). The analysis is valid for the situation in which the
piezometric head in the underlying highly pervious layer is very near the canal water

level. According to Hammad,

2K
=kD —1 A2l
Q=KD = (A21)
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in which, K; and K | are the complete elliptic integral of the first kind corresponding to

modulus K, and complementary modulus K | respectively. The moduli are defined as :

. 2 172
K, =08 s | Vs o 2
2 | 4

K, =(-k)"
The other constants are
c-Hw
K,

Hy = tar{——iﬂﬂ—} , forHw <D,

2(Hy +D,)
and
: W,
W, = 2tanh| ———5— |, forHy <D,
4Hy +D))

The reach transmissivity for a canal reach of length L, can be writien as :

ro-k | 25 (A.22)

T r Kl _ C

Fig. A.8.  Seepage from a canal with shallow water depth embedded in a porous medium underlain

by a highly permeable layer

Aravin (1965) has analyzed the seepage from a canal which has very shallow water depth
in it. The water table lies above the highly permeable layer as shown in Fig. A.8. The
analysis has been carried out using zhukovsky’s function and conformal mapping. The
seepage quantity is given by,

Q= k(T—H)% ' (A.23)

1
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in which, K, is the complete elliptical integral of first kind with modulus

-9

2H

K =exp

K, is complete elliptic integral of first kind with modulus K, where K is given by

K'=+1-K?

when K is very near to zero, the seepage rate is given by :

_ k(T - H)(b +0.882H)

Q T
Thus,
- kL (b +T0.882H) (A24)

Impermeable

Fig. A.9 Canal in a two layered seoil system

The case of seepage from a canal in two layered soil Fig. A.9, underlain by an
impermeable layer, has been analyzed by Ernst (vide Bouwer, 1969). Following Ernst’s
solution, the reach transmissivity pertaining to a two layered soil system can be written
as: | '

T = kL,

' 0.5k L +lm(9‘__(ﬁ_w_f_D_12]
k,(D, +Hy —0.5Dy)+k,D, =

(A.25)

P
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i which ki and k; are permeabilities of the top and bottom layer respectively. The

parameter o given by Van Beer (vide Bouwer, 1969), is shown in Fig. A.10.

20[- ~o :
10 5&‘\\ y
5 P E
T el B = /7///
112':7 0,25
. / . D
/&/ Curve parameter F—j;m
1
111 | I | P S I W 1t L1 ) | T W A 13 Ly y_( 1 1€
0.1 0.203 05 1 2 4 10 20 304050 |
K27 Ky
Fig. A 10

Parameter a for calculating seepage loss from a canal in a two layered soil system
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APPENDIX B

B.1  Computer Programming for Seepage in Confined Aquifer

#include<iostream.h>
#linclude<math.h>
#include<iomanip.h>
#include<process.h>
#include<conio.h>
const int n=48,;

const int m=48;
const int u=2;

const int v=2;

const int w=2;

const int x=1;

void main()

cirscr();

long double d.f,dcd,dde,gcd,gecdt,gcd2,gde,gde1,gde2,gca,gcal,gca2,sel self seld,f1,d1,f2,d2;
long double ycd1,yde1,ycat,ycd2,yde2,yca2,b,bca,e,z,d0,f0,dd,df, Fd0f0,GdOfO;

long double Fdf0,FdOf,Gdf0,GdOf gcda,ycd1a,ycd2a,ged2a,gcd1a,gdea,ydela;

long double yde2a,gde1a,gde2a,gcdb,ycd1b,ycd2b,gcd2b,gcd1b,gdeb,yde1b,yde2b;
long double gde1b,gde2b,dfpdd,dfpdf,dgpdd,dgpdf,ap,iap,ap2,iap2;

float t1,t2 ts,wb,wb1,lb,pi,q_by kdh;

intiq,jkrst;

long double ss,50,51,52,gefa,gefat,gefa2,gefb,gefb1,gefb2,gefc,gefc1,gefc2,q by kdh2;
long double yef1,yef2 yef01,yef02,yef11,yef12,e2,ds,fs,fs0,fs1,dipdstes ts_by t1;

char cont_g;int cont_s;

long double
xi[mj={.016276744849602969579,.048812985136049731112,.081297495464425558994,.113695850110665920911,.145

973714654896941989,.178096882367618602759,
.210031310460567203603,.241743156163840012328,.273198812591049141487,.304364944354496353024,.33520852

2892625422616,.36569686 1472313635031,
.395797649828908603285,.425478988407300545365,.454709422167743008636,.483457973920596359768,.51169417

7154667673586,.539388108324357436227,
.566510418561397168404,.593032364777572080684,.618925840125468570386,.644163403784967106798, 66871831

0043916153953,.692564536642171561344,
.715676812348967626225,.738030643744400132851,.7596002341176647498703,.780369043867433217604,.80030874

4°39140817229,.819400310737931675539,
.837623511228187121494,.854959033434601455463, 871388505909296502874 .886894517402420416057,.90146063

5315852341319, 915071423120898074206
927712456722308690965,.939370339752755216932,.950032717784437635756, 959688291448742539300 96832682

8463264212174,.9759391 74585 136466453,
.982517263563014677447,.988054126329623799481,.992543900323762624572,.995981842987209290650,.99836437

5863181677724,.999689503883230766828};

long double
wiln]={.032550614492363166242,.032516118713866835987,.032447163714064269364,.032343822568575928429,.032

206204794030250669,.032034456231992663218, v
.031828758894411006535,.031589330770727168558,.031316425596861355813,.031010332586313837423,.03067137

6123669149014,.030299915420827593794,
.029896344136328385984,.029461089958167905970,.028994614 15055523654 3,.028497411065085385646,.02797000

7616848334440,.027412962726029242823,
-026826866725591762198,.026212340735672413913,.025570036005349361499,.0249006332224 8361 0288,.02420484

1792364691282,.023483399085926219842,
.022737069658329374001,.021966644438744349195,.021172939892191298988,.020356797154333324595,.01951908

1140145022410,.018660679627411467385,
.017782502316045260838,.016885479864245172450,.015970562902562291381,.015038721026994938006,.01409094

1772314860916,.013128229566961572637,
.012151604671088319635,.011162102099838498591,.010160770535008415758,.009148671230783386633,.00812687

6925698759217,.007096470791 153865269,
.006058545504235961683,.005014202742927517693,.003964 5543 38444686674,.002910731817934946408,.00185396

0788946921732,.000796792065552012429},

clrser();

cout<<” SEEPAGE FROM PARTIALLY PENETRATING STREAM IN CONFINED AQUIFER"<<endl<<endl;
do{//for total

do{//for case 1

clrscr();
cout<<" Input thickness of aquifer T2 = ",cin>>t2;cout<<endl;
cout<<" Input half width of top level of aquifer B = ";cin>>wb;cout<<endl;
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cout<<" Input half width of stream bed B1 = "cin>>wb1;cout<<end|;
cout<<" Input thickness of bed T1 ="cin>>t1;cout<<endl;

cout<<" Input distance of piezometric L =",cin>>lb;cout<<endl<<end|,
cout<<" input aptoximate value of 0<d<1 = ";cin>>d2;cout<<end];
cout<<" Input aproximate value of f>1 = ",cin>>f2;cout<<endl;

dd=0.0000000001;df=(f2-1)/100000000000;
pi=3.141592654;
if((wb-wb1)<0.000001) ap=0.5;else ap=(atan({t2-t1)/(wb-wb1})}/pi;
ap2=1.-2."ap;
do
{

d0=d2;

fo=f2;

d =d2+dd;

f =f2+df;

gcd=0;

for(i=0;i<n;i++) /fcoresponding F (d0,f0)

yed1=sqrt(sqrt(pow(d0,2)))*(1+xilil)/2;
ycd2=sqri(sqrt{(pow(d0,2)))*(1-xi[i])/2;
ged1=wili*pow(ycd1,ap2)“pow((d0-pow(ycd1,2)),ap)/((sqrt(sqrt(pow((f0-
pow(ycd1,2)),2))))*(sqrt(sqrt(pow((1-pow(ycd1,2)),2))))):
ged2=wii]*pow(ycd2,ap2)*pow((d0-pow(ycd2,2})),ap)/((sqrt{sqart(pow((f0-
pow(ycd2,2)),2))))*(sqri(sqrt(pow{(1-pow(ycd2,2)).2))));
gcd=gcd+(gcd1+gcd2);

}
FdOfo=sqrt(sqrt(pow(d0,2)))* gcd-pi*sqri{pow({wb-wb1),2)+pow((2-t1),2))/t2;

gde=0;
for(q=0;q<m;q++) //corresponding G (d0,0)
{

yde1=(sqri(sqrt(pow((1-d0),2))))2*(1+xi(ql);
yde2=(sqri(sqrt(pow((1-d0),2))))/2*(1-xi[q));

gde1 =wi[q]* pow((1-pow(yde1,2)-d0),ap)/({pow((1-pow(yde1,2)),ap))*(sart(sari(pow((f0-
1+pow(yde1,2)),.2)))); '

gde2=wi[q]* pow((1-pow(yde2,2)-d0),ap)/((pow((1-pow(yde2,2)),ap))*(sart(sqrt(pow((f0-
1+pow(yde2,2)),2))));

gde=gdet+gdei+gde2;

}
Gd0f0=sqrt(sqrt{pow((1-d0),2)))*gde-wb1*pi/t2;//1-p ow((wb*pi/({2* gde)),2)-d0;

gcda=0;
for(j=0;j<n;j++) //Comesponding F(d0+dd,f0)

{

ycd1a=sqri{sqri(pow(d,2)))*(1 +xi[i})/2;

ycd2a=sqri{sqrt{pow(d,2)))*( 1-xi[j])/2;
gcd1a=wilj]*'pow(ycdia,ap2)*pow((d-pow(ycdia,2)),ap)/((sqri{sqri(pow((f0-
pow(ycd1a,2)),2)}))"(sqri(sqrt(pow((1-powl(ycdia,2)).2));

ged2a=wili]’ pow(ycd2a,ap2)* pow((d-pow(ycd2a,2)),ap)/((sqri(sart{pow((f0-
pow/(ycd2a,2)),2)))*(sart(sqrt(pow((1-pow(ycd2a,2)),2))));
geda=geda+(gedia+ged2a);

}
Fdfo=sqri(sqit{pow(d,2)))* gcda-pi*sqrt(pow((wb-wb1),2)+pow((t2-11),2))/t2;

gdea=0;
for(k=0;k<m;k++)//Corresponding G(d0+dd,{0)
{

ydeta=(sqri(sqrt(pow((1-d},2))))/2*(1+xi[K});

yde2a=(sqrt(sqri{pow((1-d),2))))/2°(1-xilk]);
gdela=wilk]*pow((1-pow(ydeia,2)-d),ap)/((pow((1-pow(yde1a,2)),ap))*(sqrt(sqri(pow((f0-
1+pow(yde1a,2)),2))));
gde2a=wilk]“pow((1-pow(yde2a,2)-d),ap)/((pow((1-pow(yde2a,2)),ap))*(sqri(sqrt(pow((fD-
+pow(yde2a,2)),2)))));

gdea=gdea+gdela+gde2a;

}
Gdfo=sqrt(sqrt{pow((1-d),2)))* gdea-wb1*pi/t2;//1-pow((wb*pi/(t2* gdea)),2)-d;

gedb=0;
for(s=0;s<n;s++} //{Corresponding F(dO0,f0+df)

yed1b=sqrt(sqri{pow(d0,2)))*(1+xi[s])/2;
ycd2b=sqrt(sqrt(pow(d0,2)))* (1-xi[s})/2; “'

‘ 'Appendix -B-2



Seepage from a partially pencurating stream_of finite swidth

hbhhdd Ahdh ikt EXT RS TR 2282 11 .
<<end!;

cout<<endl<<" ****
else {clrscr(); cout<<endl<<” APROXIMATION OF VALUE OF 'f or "d' HAVE TO BE CHANGED"<<endl;getch();exit(0);}

cout<<endl<<" Repeat for different value of B, T1, L ? (PRESS : 1)",
cout<<endl<<" Continue for different potential head ? (PRESS : 2)";
cout<<endi<<" Terminate this programe ............... ? (PRESS : 3)"'<<endl;
cout<<endi<<” YOUR CHOICE NUMBER : ";cin>>cont_s;}

while (cont_s==1);

if (cont_s==3) exit(0);
if (cont_s==2)

/ICalculation of seepage for different potential head

cout<<" Value of Ts (maximum Ts=T1) = ";cin>>ts;cout<<endl;
cout<<" Aproximate value of s = "<<f-ts*(f-1)/t1 <<end};
cout<<" Input aproximate value of s = ";cin>>ss;

cout<<endl;

ds=(ss-1)/100;

do
{
s0=ss5-ds;
si1=ss+ds;
gefa=0;

for(r=0;r<n;r++)//corresponding s0

yef01=sqri(sqrt(pow((s0-1),2)))* (1 +xi[r])/2;
yef02=sqrt(sqrt(pow{(s0-1),2)))*(1-xi[r])/2;
gefal=wilr]*"pow((1-d+pow(yef01,2)),ap)/(sart(sqrt(pow((f-1-
pow(yef01,2)),2)))*pow((1+pow(yef01,2)),ap));
gefa2=wilr]*pow((1-d+pow(yef02,2)),ap)/(sqri{sqri{pow((f-1-
pow(yef02,2)),2)))"pow(( 1 +pow(yef02,2)),ap));

gefa =gefa+(gefal+gefa2),
}
fsO=sqgrt(sqrt{pow((s0-1),2)))*gefa-{t1-ts)*pit2;

gefb=0;
for(r=0;r<n;r++)//corresponding s1

yefl 1=sqri(sqrt(pow{(s1-1),2)))* (1 +xi[r})/2;
yefl2=sqrt(sqrt(pow((s1-1),2)))* (1-xi[r])/2;
gefb1=wi[r]*pow((1-d+pow(yef11,2)).ap)/(sqrt{sqrt(pow((f-1-
pow(yef11,2)),2))) pow((1+pow(yef11,2)),ap));

gefb2=wilr]* pow((1-d+pow(yef12,2)),ap)/(sqrt(sqrt(pow((f-1-
pow(yef12,2)),2)))*pow((1+pow(yef12,2)),ap));

gefb =gefh+(gefb1+gefb2);
}
fs1=sqgri(sqrt(pow((s1-1),2)))*gefb-(t1-ts)*pi/t2;

gefc=0;
for(r=0;r<n;r++)/{corresponding s

yef1=sqri(sqrt(pow((ss-1),2)))*(1+xir})/2;

yef2=sqrt(sqrt(pow((ss-1),2)))*(1-xi[r])/2;
gefcl=wir]*pow((1-d+pow(yef1,2)),ap)/(sqri(sqrt(pow((f-1-pow(yef1,2)),2)))* pow((1 +pow(yef1,2)) ,ap));
gefc2=wilr]*pow((1-d+pow(yef2,2)),ap)/(sqrt(sqrt(pow((f-1-pow(yef2,2)),2)))"pow((1+pow(yef2,2)) ap));

gefc =gefc+(gefct+gefc2);
}
fs=sqrt(sqrt(pow{(ss-1),2)))* gefc-(t1-ts)*pi/t2;
dfpds=(fs1-fs0)/(ds"2,);cout<<" s0 = "<<s0<<" s1 = "<<s1;tes1=sqrt(pow(dfpds,2));
if (tles1>3.4e-4900) {ss=ss-fs/dfpds;ds=-fs/dfpds:}
else if (ss<1) ss=1;
else {ss=ss:;ds=0;}
coute<" ds = "<<ds<<" = "<<ss;
if(ds>0)
e2=ds;else

e2=-ds;
}
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gedib=wi[s]*pow(ycd 1b,ap2}’ pow({d0-pow(ycd1b,2)),ap)/{{sqrt(sqri(pow((f-
pow(ycd1b,2)),2))))*(sqrt(sqrt(pow((1-pow(ycd1b,2)) 2))));
ged2b=wi[s]“pow(ycd2b,ap2) pow((d0-pow(ycd2b,2)),ap)/((sqrt(sqrt(pow((f-
pow(ycd2b,2)),2))))*(sart(sgri{pow((1-pow(ycd2b,2)),2))));
gcdb=gcdb+({gcd1b+ged2b);

}
Fdof=sqrt(sqrt(pow(d0,2)))*gcdb-pi*sqri(pow((wb-wb1),2)+pow((t2-t1),2))/t2;

gdeb=0;
for(t=0;t<m;t++)//Corresponding G(d0,f0+df)

{

yde1b=(sqrt(sqrt(pow((1-d0),2))))/2*(1+xi[t]);

yde2b=(sqrt(sqrt(pow((1-d0).2)))/2*(1-xi[t]);
gde1b=wi[t]*pow((1-pow(yde1b,2)-d0),ap)/((pow((1-pow(yde1b,2)),ap))* (sart(sqrt(pow((f-
1+pow(yde1b,2)),2)))));

gde2b=wi[t]* pow((1-pow(yde2b 2)-d0),ap)/((pow((1-pow(yde2b,2)),ap))* (sart(sqrt(pow((f-
1+pow(yde2b,2)),2)))));

gdeb=gdeb+gde1b+gde2b;

}
Gdof=sqrt{sqrt(pow((1-d0),2)))*gdeb-wb1*pi/t2;//1-pow((wb*pi/(t2* gdeb)) 2)-d0;

dfpdd=(Fdf0-Fd0f0)/dd;
dfpdf=(FdOf-Fd0f0)/df:
dgpdd=(Gdf0-Gdof0)/dd;
dgpdf=(GdOf-GdOf0)/df;

long double det=1./(dfpdd*dgpdf-dfpdf*dgpdd);
d1=d-det*(Fd0f0* dgpdf-dfpdf*Gd0f0); :
f1=f-det*(dfpdd*Gd0f0-Fd0f0*dgpdd);
d2=(d1+d)/2;

f2=(f1+)/2;

dd=d2-d;

df=f2-f;

cout.precision(12);

cout<<" d = "<<d<<" f = "<<f<<" F(d0,F0) = "<<Fd0f0<<" G(d0,f0) = "<<Gd0f0<<endl;

cout<<" F(d,f0) = "<<Fdf0<<" G(d,f0) = "<<Gdf0<<" F(d0 f) = "<<Fd0f<<" G(d0,f) = "«<Gd0f<<end|;
cout<<" dF/dd = "<<dfpdd<<" dF/df = "<<dfpdf<<" dG/dd = "<<dgpdd<<" dG/df = "<<dgpdf<<end;
cout<<" df = "<<df<<" dd = "<<dd<<" d0 = "<<d0<<" f) = "<<fQ<<endl;

if (df<0) self=-df;else self = df;
if (dd<0) seld=-dd;else seld = dd;

}
while(self>1e-18&&seld>1e-18);

bca=.1;

do
{
gca=0;
b=bca;

for(r=0;r<n;r++)

ycal=sqrt(b)*(1+xir])/2;

yca2=sqrt(b)*(1-xi[r])/2;
gcal=wilr]*'pow(ycal,ap2)*pow{(d+pow(yca1,2)),ap)/(sqrt(f+pow(ycal,2))*sqrt(1+pow(ycal, 2)));
gca2=wilt]’pow(yca2,ap2)‘pow((d+pow(yca2,2)),ap)/(sqrt(f+pow(yca2, 2))'5qrt(1+pow(ycaz 2)));
gca=gcat+{gcai+gcal),

}
bca=pow((Ib*pi/(t2*gca)),2);
if (b>bca} e=b-bca;else e=bca-b;

while(e>1e-12);

clrscr();cout<<end];

cout.precisfon(4);cout.preclsion(4): :

cout<<" T2 : "<<f2<<" T :"<<ti<<" B:"<<wb<<" B{ ="<<wbi<<" L :"<<lb<<endl;

q by_ kdh—pll(2’log(sqrt(1+b)+sqrt(b))) cout. premsmn(12) if (0<=d&&d<18&&f>=1) {

cout<<endl<<" terine<end|

<<endi<<endi<<setw(6)<<" d = "<<setw{20)<<d<<setw(14)<<" delta dd = "<<setw(20)<<dd<<endl<<setw(6)<<" f =
"<<setw(20)<<f<<setw(14)<<" delta df = "<<setw(20)<<df<<endi;

cout<<setw(6)<<" b = "<<setw(20)<<b<<setw(14)<<" delta db = "<<setw(20)<<e<<endl<<end];

cout<<setw(20)<<" g/(k dh) = "<<setw(20)<<setprecision(6)<<q_by kdh<<endi;
cout<<setw(20)<<" q(bed)/q(total) = "<<setw(20)<<setprecision(6)<<2*asin{sqrt(1-d))/pi<<endl;
cout<<setw(20)<<" dLUT2 = "<<setw(20)<<setprecision(6)<<2.*log(sqrt(1+b)+sqrt(b))/pi-Ib/t2<<endl<<endl;
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while(e2>1e-14);

g _by_kdh2=pi/(2.*log(sqrt(ss-1)+sqgrt(ss)));

cirscr();

cout.precision(4);

cout<<endi<<endl<<" * * * "<<endl<<endl;
coute<" T2 ="<<t2<<" B ="<<wb<<" T1 ="<<t{<<" Ts = "<<ts<<endl;
cout.precision(12);

cout<<" g = "<<gs<<" ds = "<<ds<<endl<<endi<<end|

<<" qflk(h1-hs)] = "<<q_by_kdh2<<endi<<end];

cout<<” "<<end|<<end|;

getch();

else{cout<<endl<<" Your choice is beyond this program ",getch();exit(0);}
cout<<" Continue for another data (Y/N) : ";cin>>cont_g;

}
while (cont_g=="y'||cont_q=="Y");
}
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B.2 Computer Programming for Seepage in Unconfined Aquifer

#include<iostream.h>
#inciude<math.h>
#include<iomanip.h>
#include<process.h>
#include<conio.h>
#include<string.h>
#include<fstream.h>

const int m=48;//number of x-gauss coefficient

const int n=48;//number of wi-gauss coefficient

long double fkce(long double);

long double fkie(long double ,long double );

iong double gbyk(float ,long double );

long double q1byk(float ,long double , long double };

long double dhf(float ,long double ,long double );

long double m1(long double ,long double ,long double ,float ,long double ,long double ,long double );

long double cd(long double ,Jong double ,long double ,float ,long double ,long double ,long double float ,float float ,float );
long double de(long double ,long double ,long double ,float ,long double ,long double ,long double ,float ,float );

long double ef(long double ,long double ,long double ,float ,long double ,long double ,Jong double ,float ,float );

long double dhb(float ,long double ,long double );

long doubte be(long double \long double ,long double float ,float ,long double ,long double ,long double ,Jong double );

long double dhm{float ,jong double ,jong double ),
long double em(long double ,long double ,long double ,float ,long double ,long double ,long double ,float ,float ,long double

)
void main()

{

ofstream outfile ("cs3-m01.cpp”);

float wb1,wb2,la,Ib,t1,dha,pi,h tm;

long double a,a0,a1,b,b0,b1,d,d0,d1 f f0.f1,da,db,dd, df mm,mm0,mm1,dm;

long double ap,bt,gm,conap;

long double fcd,fcda0,fcdal,fedb0,fcdb1,fcdd0,fcdd1,fedfO, fedf1;

long double fde,fdea0,fdea1,fdeb0,fdeb1,fded0,fded,fdefO,fdef1;

long double fef fefa0,fefa1, fefb0,fefb1,fefd0, fefd1, feff0 feff?;

long double fbe,fbeb0,fbeb1,dbepdb,corb;

long double fem,femm0 femm1,dempdm,corm;

long double det,co_a,co_d,co_f,er_a,er_d,er_fsum_er;

long double dcdpda,dcdpdd,dcdpdf,ddepda,ddepdd,ddepdf,defpda,defpdd,defpdf;
long double qperk,q1perk,delhf,delhb,delhm;

long double ksc,fk1,fk2,dl;

char Ianjut,preatlc finis1,finis2,potential;

outfile<<" T1 "<<" B1 nekn B2 "<<" H "<<" dha "<<" La "<<" a "<<" d "<<" f "<<" dhf "<<" alpha "<<" betha "<<" gamma "<<"

ag/(k*dha) "<<" q1/(k*dha) "<<" dL "<<endI;

de
{ //another data

clrscr();
cout<<endl<<" SEEPAGE FROM PARTIALLY PENETRATING STREAM IN UN-CONFINED

AQUIFER"<<endl<<endl;
pi=3.141592654;

cout<<” Input thickness of aquifer below stream bed T1 = "¢cin>>t1;
cout<<" Input half width of streambed 81 ="icin>>wbi1;
cout<<" Input half width of top of water level B2 = ":cin>>wb2;
cout<<” Input depth of water in the stream H ="cin>>h;
cout<<" [nput drawdown in observation well dha = ";cin>>dha;
cout<<" Input distance of piezometer from the stream bank La = ";cin>>la;
cout<<endl;

cout<<" Input approximate value of a (a>0) = ";cin>>a;
cout<<" [nput approximate value of d (d0<d<1) = ";cin>>d;
cout<<" Input approximate value of f (f>1) = ";cin>>f;

da=a/1000;

dd=d/1000;

df=f/1000;

do
{ /literation
al=a-da;at=a+da;
d0=d-dd;d1=d+dd;
fO=f-df;f1=f+df;
conap=(wb2-qbyk(dha.a))-(wb1-q1byk(dha,a.d));
if (conap<0) conap=-conap; else {conap=conap;}
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if (conap<0.00000001) ap=0.5;else ap=atan(h/((wb2-qbyk(dha,a))-(wb1-q1byk(dha,a,d))))/pi;

if (((dha-dhf(dha,a,f))/(wb2+1a))<0.00000001) bt=0.5;else bt=(atan({dha-dhf{(dha,a.f))/(wb2+la))+pi/2)/pi;
if(qbyk(dha,a)<0.0000001) gm=0.5;else gm=atan((tf+h-dha)/qbyk(dha,a))/pi,

fcd=cd(ap,bt,gm,la,a,d fwb2,wb1,h,dha);

fcdaO=cd(ap,bt.gm,la,a0,d,f.wb2,wb1,h,dha);

fcda1=cd(ap,bt,gmla,at,d,fwb2,wb1,h,dha);

fcddO=cd(ap,bt,gm,la,a,d0,fwb2,wb1,h,dha);

fcdd1=cd(ap,bt,gm,la,a,d1 fwb2,wb1,h,dha);

fedf0=cd(ap,bt,gm la,a,d,f0,wb2,wb1,h,dha);

fedft=cd(ap,bt,gm la,a,d,f1,wb2,wb1,h,dha);

fde=de(ap,bt,gm,la,a,d,fiwb1,dha);
fdeaO=de(ap,bt,gm la,a0,d,fwb1,dha);
fdeal=de(ap,bt,gm fa,a1,d.fwb1,dha);
fded0=de(ap,bt,gm la,a,d0.fwb1,dha);
fded1=de(ap,bt,gm,la,a,d1 fwb1,dha);
fdef0=de(ap,bt,gm,la,a,d,f0,wb1,dha);
fdef1=de(ap,bt,gm la,a,d.f1,wb1,dha);

fef=ef(ap,bt,gm la,a,d,f,t1,dha);
fefaO=ef(ap,bt,gm la,a0,d {11 ,dha);
fefal=ef(ap,bt,gm,la,at,d.f,t1,dha);
fefdO=ef(ap,bt,gm,la,a,d0 f,t1,dha);
fefd1=ef(ap,bt,gm,la,a,d1,f,t1,dha);
feff0=ef(ap,bt,gm la,a,d,f0t1,dha);
feffi=ef(ap,bt,gm la,a,d,f1,t1,dha);

dedpda=(fcda1-fcda0)/(2*da);
dcdpdd=(fcdd1-fcdd0)/(2* dd);
dedpdf=(fcdf1-fcdf0)/(2°df);

ddepda=(fdeai-fdea0)/(2*da);
ddepdd=(fded1-fded0)/(2*dd);
ddepdf=(fdef1-fdef0)/(2*df);

defpda=(fefai-fefa0)/(2*da);
defpdd=(fefd1-fefd0)/(2* dd);
defpdf=(feff1-feff0)/(2*df);

det=1./((dcdpda*ddepdd*defpdf+dcdpdd* ddepdf* defpda+dcdpdf*ddepda*defpdd)-
(dcdpdf*ddepdd* defpda+ddepdf*defpdd*dcdpda+defpdf* dcdpdd*ddepda));

*  co_a=(fcd*ddepdd*defpdf+dcdpdd*ddepdf* fef+dcdpdffde* defpdd)-
(dcdpdf*ddepdd*fef+ddepdf*defpdd*fcd+defpdfdcdpdd* fde);
co_d=(dcdpda*fde*defpdf+fcd*ddepdf*defpda+dcdpdf*ddepda*fef)-
(dcdpdf*fde*defpda+ddepdf*fef*dcdpda+defpdf*fcd*ddepda);
co_f=(dcdpda*ddepdd*fef+dcdpdd*fde*defpda+fcd*ddepda*defpdd)-
(fcd*ddepdd*defpda+fde* defpdd*dcdpda+fef*dcdpdd*ddepda);

a=a-det*co_a;
d=d-det‘co_d;
f=f-det*co_f;

da=-det'co_a;
dd=-det*co_d,;
df=-det‘ca_f;

if(da>0) er_a=da;else er_a=-da;
if(dd>0) er_d=dd;else er_d=-dd;
if(df>0) er_f=df;else er_f=-df;
sum_er=er_a+er_d+er_f;

cout<<" "<<da;
}/lend do iteration
while (sum_er>1e-10);

gperk=gbyk(dha,a);
qiperk=q1byk(dha,a,d);
delhf=dhf(dha,a,f);
ksc=1./(1+a);

fk1=fkce(ksc);

ksc=a/(1+a);

fk2=tkce(ksc);
dl=fk2*(t1-+h-0.5"dha)/fk1-la;
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cout<<endi<<endi<<" a= "<<g<<" d= "<<d<<" f= "<<fe<endl;

cout<<" ap= "<<ap<<" bt= "<<bt<<” gm= "<<gm<<end|;

cout<<" g/k= "<<qgperk<<" g1/k= "<<qiperk<<" dhf= "<<delhf<<endl<<endl;

‘outfile<<” "<<t] <<" "<<wh1<<" "<ewb2<<" "<<h<<" "<<dha<<" "<<la<<" "<<ga<<" "<<de<" "<<f<<" "<<delhf<<"
"<<gp<<” "<<bte<” "<<gm<<" "<<qperk/dha<<" "<<qiperkidha<<" "<<dl<<end};

lIstarting of preatic line (b)
cout<<" Continue for preatic line (Y/N)...? ";cin>>preatic;

if (preatic=="y'||preatic=="Y")
{

do
{/istar do preatic line
cout<<" Input diatance of a point from stream bank Lb = ";cin>>Ib;

cout<<” Input approximate value of b (O<b<a) b =";cin>>b;
db=b/1000;

do

{//star do iteration preatic

b0=b-db;

b1=b+db;

fbc=bc(ap,bt.gm,la lb,a,d f,b);
fbcbQ=bc(ap,bt,gm la,lb,a,d,f,b0);
fbch1=bc(ap,bt,gm la,ib,a,d,f,b1);

dbcpdb=(focb1-fbcb0)/(2*db);
b=b-fbc/dbcpdb;
db=-fhc/dbcpdb;
corb=sgrt(pow(db,2));
cout<<" "<<db;

Ylend do iteration preatic
while(corb>1e-10);

delhb=dhb(dha,a,b);
cout<<endl<<endl<<" Lb = "<<|b<<" b = "<<b<<" dhb = "<<delhb<<endl<<end|;

outfile<<” Lb= "<<lb<<" b= "<<b<<" dhb= "<<delhb<<end!;
cout<<" Continue for different Lb (Y/N)............... ? ".cin>>finis1;
Yfend do preatic line

while (finis1=="y'||finis1=="Y");

}

/lending of preatic line

/19999
listarting of potential head (m)
cout<<" Continue for different potential head (Y/N)...? ";cin>>potential;

if (potential=="y'||potential=="Y")
{

do
{//star do potential
cout<<" Input distance of a point below stream bed Tm = ";cin>>tm;

cout<<" Input approximate value of m (1<m<f) =";cin>>mm;
dm=mm/1000;

do

{//star do iteration potential

mmO=mm-dm;

mmi=mm-+dm;

. fem=em(ap,bt,gm,la,a,d,f,tm,dha,mm);
femmO=erm(ap,bt,gm la,a d f tm,dha,mm0);
femm1=em(ap,bt,gm la,a,d,ftm,dha,mm1);

dempdm=(femm1-femm0)/(2*dm);
mm=mm-fem/dempdm;
dm=-fem/dempdm;
corm=sqrt(pow(dm,2));

cout<<" "<<dm;

}//end do iteration potential
while(corm>1e-10);

delhm=dhm(dha,a,mm);
cout<<endl<<endi<<" Tm = "<<tm<<" m = "<<mm<<" dhm = "<<delhm<<endi<<endl;

outfile<<" Tm= "<<tm<<" m= "<<mm<<" dhm= "<<delhm<<endl:
cout<<" Continue for different Tm (Y/N)............... ? ".cin>>finis2;
Y/end do potenfial head
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while (finis2=="y'[|finis2=="Y");

/fending of potential
cout<<" Continue for another data (Y/N)...............7 ";cin>>lanjut;
Y/lend do another data

while (lanjut=="y'|llanjut=="Y");

}/end void main

long double
xi[m}={.016276744849602969579,.048812985136049731112,.081297495464425558994,.113695850110665920911,.145

97371465489694 1989,.178096882367618602759,
.210031310460567203603,.241743156163840012328,.273198812591049141487,.304364944354496353024,.33520852

2892625422616,.365696861472313635031,
.395797649828908603285,.425478988407300545365,.454709422167743008636,.483457973920596359768,.51169417

7154667673586,.539388108324357436227,
.566510418561397168404,.593032364777572080684,.618925840125468570386,.644163403784967106798,.66871831

0043916153953,.6925645366421716561344,
.715676812348967626225,.738030643744400132851,.759602341176647498703,.78036904 3867433217604, 80030874

4139140817229,.819400310737931675539,
.837623511228187121494,.854959033434601455463,.871388505909296502874,.886894517402420416057,.90146063

5315852341319,.915071423120898074206,
.927712456722308690965,.939370339752755216932,.950032717784437635756,.959688291448742539300,.96832682

8463264212174,.975939174585136466453,
.982617263563014677447,.988054126329623799481,.992543900323762624572,.995981842987209290650,.99836437

5863181677724,.999689503883230766828};

long double
wi[n]={.032550614492363166242,.032516118713868835987,.032447163714064269364,.032343822568575928429,.032

208204794030250669,.032034456231992663218,
.031828758894411006535,.031589330770727168558,.031316425596861355813,.031010332586313837423,.03067137

6123669149014,.030299315420827593794,
.029896344136328385984,.029461089958167905970,.028994614 15055523654 3,.02849741 1065085385646,.02797000

7616848334440,.027412962726029242823,
.026826866725591762198,.026212340735672413213,.025570036005349361499,.024900633222483610288,.02420484

1792364691282,.023483399085926219842,
.022737069658329374001,.021966644438744349195,.021172939892191298988,.020356797154333324595,.01951908

11401450224 10,.018660679627411467385,
.017782502316045260838,.016885479864245172450,.015970562902562291381,.0150387210269949838006,.01409094

1772314860916,.013128229566961572637,
.012151604671088319635,.011162102099838498591,.010160770535008415758,.009148671230783386633,.00812687

6925698759217,.007096470791 153865269,
.006058545504235961683,.005014202742927517693,.003964554338444686674,.002910731817934946408,.00185396

0788946921732,.000796792065552012429};
float pi=3.141592654;

/ffirst kind complete elliptic integral
long double fkce(long double ksc)

{
long double yfk,yfkp,yfkn fk;
yfk=0;
for (int ifk=0;ifk<m;ifk++)
{ .
yfkp=wi[ifk]/sqrt((1-pow((sin{pi*(1+xi[ifk])/4)),2)*ksc));
yfkn=wififk}/sqrt((1-pow((sin(pi*(1-xi[ifk])/4)),2)* ksc));
;'fk=yfk+(yfkp+yfkn);

fk=pi*yTk/4;

return fk;

}

/first kind in-complete elliptic integral
long double fkie(long double pai,long double ks)

{
long double yfk,yfkp,yfkn,fk;

f;r (int ifk=0;ifk<m;itk++)

{
yfkp=wi[ifk}/sqrt(1-ks*pow((sin(pai*(1+xi[ifk])/2)),2));
yftkn=wi[ifk}/sqrt(1-ks*pow((sin(pai*(1-xi[ifk]}/2)),2));
yfk=yfk+(yfkp+yfkn);

fk=pai‘yfk/2;
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return fk;

}

/lw-plane A to C
long double gbyk(float dha,long doubie a)

{

long double ks,pai,qperk ksc,fk1,fk2;
ksc=1/(1+a),

fk1=tkce(ksc);

ksc=al/(1+a);

fk2=fkce(ksc);

gperk=dha*fk1/fk2;

return gperk;

}

fiw-plane C to B - preatic line
long double dhb(float dha long double a,long double b)

long double ks,pai,qperk ksc,fk1,fk2,delhb;
ksc=1/(1+a);

fk1=fkce(ksc);

ks=a/(1+a);

pai=asin(sqrt({(1+a)*b)/(a*(1 +b)))),
fk2=fkie(pai,ks);
delhb=gbyk(dha,a)*fk2/fk1;

return delhb;

}

/fiw-plane D to E
long double q1byk(float dha,long double a, long deuble d)

{

long double ks,pai,qiperk,ksc;
pai=asin(sqrt(1-d});

ks=1./(1+a);

ksc=1./(1+a);

q1perk=qbyk(dha,a)*fkie(pai ks)/fkce(ksc);
return qlperk;

}

/iw-plane Eto F
long double dhf{float dha,long double a,long double f)

{

long double ks,pai,delhf ksc;
pai=asin(sqrt{(f-1)/f));

ks=al(1+a);

ksc=1./(1+a);
delhf=gbyk(dha,a)*fkie{pai,ks)/fkce(ksc);
return delhf;

}

liw-plane E to M
long double dhm(float dha,long double a,long double mm}

long double ks,pai,delhm ksc;
pai=asin{sqrt{(mm-1)/mm));

ks=a/(1+a);

ksc=1./(1+a);
delhm=qgbyk(dha,a)*fkie(pai,ks)/fkce(ksc);
return delhm;

}

/iz-plane A to C ... constant m
long double m1(long double ap,long doubie bt,long double gm,float la,long doubte a long double d,long double f)

{

long double yac,yacp,yacn,fxp,fxn,mz;
yac=0;

for (int iac=0;iac<m;iac++)

{

fxp=sqrt(a/2)* (1 +xifiac])/2;

fxn=sqrt(a/2)*(1-xifiacl)/2;

yacp=wiliac]*pow(fxp,(1-2*ap))* pow((d+pow(fxp,2)),ap)/(pow((a-
pow(fxp,2)),gm)’sart(1+pow(fxp,2))*pow((f+pow(fxp,2)) b))+
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wiliac}*pow(fxp,(1-2*gm))*pow((d+a-pow(fxp,2)),ap)/(pow((a-pow(fxp,2)) ap)*sqrt(1+a-pow(fxp,2)) " pow({f+a-
pow(fxp,2)),bt));
yacn=wi[iac]*pow(fxn,(1-2*ap)) pow((d+pow(fxn,2)),ap)/(pow((a-
pow(fxn,2)},gm)*sqrt(1+pow(fxn,2))*pow((f+pow(fxn,2)),bt))+
wiliac]*pow(fxn,( 1-2*gm))*pow((d+a-pow(fxn,2)),ap)/(pow((a-pow(fxn,2)),ap)*sqrt(1+a-pow(fxn,2)) pow({{+a-
pow(fxn,2)),bt));

yac=yac+(yacp+yacn);

mz=la/(sqrt(a/2)*yac);
return mz;

}

l{z-plane from C to D
long double cd(long double ap,long double bt,long double gm,fleat la,long double a,long double d,long double f float

wb2 float wb1,float h,float dha)

{

long double fxp,fxn,ycd,ycdp,ycdn fcd fxps,fxns;
ycd=0;

for (int icd=0;icd<m;icd++)

{

fxp=sqrt(d)*(1+xificd])/2; fxps=pow(fxp,2);

fxn=sqrt(d)*(1-xi[licd])/2; fxns=pow(fxn,2);
yedp=wilicd]*pow(fxp,{1-2ap))*pow((d-fxps),ap)/(pow((fxps+a),gm)*sqrt(1-fxps)*pow((f-fxps).bt));
yedn=wilicd]*pow(fxn (1-2*ap))* pow((d-fxns),ap)/(pow((fxns+a),gm)*sqrt(1-fxns)*pow((f-fxns),bt));
ycd=ycd+(ycdp+ycdn);

}
fcd=m1(ap,bt,gm,la,a,d,f)*sqrt(d)*ycd-sqri(pow((wb2-wb1-gbyk(dha,a)+q1byk(dha,a,d)),2)+pow(h,2)};
return fcd;

}

ffz-plane Dto E
long double de(long double ap,long double bt,long double gm,float la,jong double a,long double d,long double f,float

wb1 float dha)

{

long double fxp,fxn,yde,ydep,yden,fde;
yde=0;

for (int ide=0;ide<m;ide++)

{

fxp=sqrt(1-d)*(1+xi[ide])/2;

fxn=sqrt(1-d)*(1-xi[ide])/2;
ydep=wilide]*pow((1-pow(fxp,2)-d),ap)/(pow((1-pow(fxp,2)+a),gm)*pow((1-pow(fxp,2)),ap)*pow((f-1+pow(fxp,2)),bh);
yden=wifide]*pow((1-pow(fxn,2)-d),ap)/(pow((1-pow(fxn,2)+a),gm)"pow((1-pow(fxn,2)),ap) pow((f-1+pow(fxn,2)) bt));
yde=yde+(ydep+yden);

}
fde=m1(ap,bt,gm,la,a,d,f)*sqrt(1-d)*yde-wb1+q1byk(dha,a,d);
return fde;

X

Hlz-plane Eto F
long double ef(long double ap,long double bt,long double gm,float 1a,long double a,long double d,long double f,float t1,float

dha)

{

long double fef,yef1 ,yef2,yefp1,yefp2,yefnt,yefn2 fxpt,fxp2,fixni,ixn2;
yef1=0;yef2=0;

for (int ief=0;ief<m;ief++)

{

fxp1=sqrt((f-1)/2)*(1+xifief]}/2;

fxn1=sqri((f-1)/2)*(1-xi[ief])/2;

fxp2=pow(((1-1)/2),0.1)"(1 +xilief])/2;

fxn2=pow(((f-1)/2),0.1)*(1-xilief])/2;

yefp1=wilief]* pow((pow(fxp1,2)+1-d),ap)/(pow((pow{fxp1,2)+1+a),gm)*pow({(pow(fxp1,2)+1),ap)*pow((f-pow(fxp1,2)-
1).bY);

yefp2=wilief]*pow(fxp2,(9-10*bt))*pow((f-pow(fxp2,10)-d),ap)/(pow((f-pow(fxp2,10)+a),gm)*pow((f-
pow(fxp2,10)),ap)*sqrt(f-pow(fxp2,10)-1));

ye)fn1 =wifief]* pow((pow(fxn1,2)+1-d),ap)/(pow((pow(fxn1,2)+1+a),gm)*pow((pow(fxn1,2)+1),ap)*pow((f-pow(fxnt,2)-
1).6b);

yefn2=wi[ief]‘pow(fxn2,(9-10*bt))*pow((f-pow(fxn2,10)-d},ap)/(pow({f-pow(fxn2,10)+a),gm)*pow((f-
pow(fxn2,10)),ap)*sqrt(f-pow(fxn2,10)-1));

yefl=yefl+(yefpi+yein1),

yef2=yef2+(yefp2+yefn2),

}
fef=m1(ap,bt,gm la,a,d,H*sqrt((f-1)/2)*yeft+5*m1(ap,bt,gm la,a,d,f) pow(((f-1)/2),.1)* yef2-t1 +dht(dha,a,f);
return fef;
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}

llz-plane Bto C C
long double bc(long double ap,long double btlong double gm,float a,float Ib,long double a,long double d,long double

f,long double b)

{ .
long double fbe,ybe1,ybe2,ybep1,ybep2,ybent,yben2, fxp1,fxp2,fxn1,fxn2;
ybc1=0;ybc2=0; .

for (int ibc=0;ibc<m;ibc++)

{ .

fxp1=sqrt(b/2)*(1+xi{ibe})/2;

fxn1=sqri(b/2)*(1-xi[ibc])/2;

fxp2=(sqrt(a-b/2)-sqrt(a-b))/2* xi[ibc]+(sqrt(a-b/2)+sqrt(a-b))/2;

fxn2=-(sqrt(a-b/2)-sqrt(a-b))/2*xi[libc]+(sqri(a-b/2)+sqrt(a-b))/2;

ybep1=wi[ibc]* pow(fxp1,(1-2*ap))*pow((d+pow(fxp1,2)),ap)/(pow((a-
pow(fxp1,2)),gm)*sqrt(1+pow(fxp1,2))* pow((f+pow(fxp1,2)),bt));

ybcp2=wifibc]*pow(fxp2,(1-2*gm))*pow((d+a-pow(fxp2,2)),ap)/(pow((a-pow(fxp2,2)).ap)*sqrt(1 +a-
pow(fxp2,2))*pow((f+a-pow(fxp2,2)).bt));

yben1=wi[ibc]*pow(fxn1,(1-2*ap))*pow((d+pow(fxn1,2)),ap)/(pow((a-
pow(fxn1,2)),gm)*sqrt(1+pow(fxn1,2))*pow((f+pow(fxn1,2)),bt));

yben2=wi[ibc}*pow(fxn2,(1-2*gm))*pow((d+a-pow(fxn2,2)),ap)/(pow((a-pow(fxn2, 2)) ap)*sqrt(1 +a-
pow(fxn2,2))*pow({f+a-pow(fxn2,2)),bt));

ybc1=ybc1+(ybcpt+ybent);

ybc2=ybc2+(ybcp2+ybcn2);

¢

}
fbc=m1(ap,bt,gm la,a,d,f)*sqri(b/2)*ybci +m1(ap,bt,gm,ia,a,d f)'(sqrt(a-blZ)—sqn(a b))* ych -1b;
return fbc; .

}

//z-plane EtoM ) .
long double em(long double ap,long double bt,long double gmfloat Ia,long double a,long double d Iong double f,float .

tm,float dha,long double mm)

{
long double fem,yem1,yem2,yemp1,yemp2,yemn1,yemn2, fxp1 ,fxp2,fxn1 ,fxn2;
yem1=0,yem2=0;
for (int iem=0;iem<m;iem++)
{
fxp1=sqrt((mm-1)/2)*(1+xifiem])/2;
fxn1=sqrt((mm-1)/2)*(1-xiliem])/2;
fxp2=(pow({(2*f-mm-1)/2),0.1)-pow((f-mm),0. 1))*m[lem]/2+(pow(((2'f mm-1)/2),0.1)+pow((f-mm),0.1))/2; .
fxn2=-(pow(((2*f-mm-1)/2),0.1)}-pow((f-mm),0.1))*xifiem]r2+(pow(((2*f-mm-1)/2),0.1)+pow((f-mm),0.1))/2; o
yemp1=wiliem]*pow((pow(fxp1,2)+1-d),ap)/(pow((pow(fxp1,2)+1+a), gm)‘pow((pow(fxp1 ,2)+1),ap)*pow((f-pow(fxp1,2)-
1).by);
yemp2=wi[iem]*pow(fxp2,(9-10*bt))* pow((F-pow(fxp2,10)-d),ap)/(pow((f- pow(fxp2 10)+a),gm)*pow((f- -
pow(fxp2,10)),ap)*sqrt(f-pow(fxp2,10)-1));
yemn1=wiliem]*pow((pow(fxn1,2)+1-d),ap)/(pow((pow(fxn1,2)+1+a),gm)*pow((pow(fxn1,2)+1), ap)'pow((f-pow(fxm 2)
1).bt));
yemn2=wifiem]*pow(fxn2,(9-10"bt))*pow((f-pow(fxn2,10)-d), ap)/(pow((f—pow(fxnz 10)+a) gm)‘pow((f—
pow(fxn2,10)),ap)*sqrt(f-pow(fxn2,10)-1));
yemi=yem1+(yemp1+yemn1);
yem2=yem2+(yemp2+yemn2);

fem=m1(ap,bt,am,la,a,d,f)*sqrt((mm-1)/2)*'yem1+5*m1(ap,bt,gm la,a,d,f)* (pow(((2*f-mm-1)/2),.1)-pow((f-mm), 1))‘yem2-
tm+dhm(dha,a,mm); .
“return fem;

}
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B.3  Computer Programming for Unsteady State Flow

#include<iostream . h>
#include<math.h>
#include<iomanip ,h>
#linclude<process.h>
#include<conio.h>
#include<graphics.h>
#include<string.h>
#include<fstream.h>

const int m=1000;
void main ()

ofstream outfile ("uns03.cpp");
clrscr();

float dL, T,2r k,St,dt,beta,t1,t2,b,b1,pi;
float Za[m),d[m],q[m];

long double sum,sum1;

inti,n;

cout<<endi;

cout<<" Input step rise in the river : ";cin>>2Zr;

cout<<" Coefficient of permeability ; ";cin>>k;

cout<<" Coefficient of storage 1 "cin>>St;

cout<<" Thickness of aquifer below stream bed : “;cin>>t1;
cout<<" Thickness of aquifer : "cin>>12;
cout<<" Half width of stream : "cin>>b;
cout<<" Substitute Length dL ; "icin>>dL;
cout<<" Delta time dt . :"cin>>dt;

pi=3.141592654;
outfile<<" B= "<<b<< Zr= "<<Zr<<endl<<" T1= "<<t] <<" T= "<<T<<endl<<" T2= "<<t2<<" dL= "<<dL<<endl<<" dt=

"<<dt<<" St= "<<St<<endl<<endl;
outfile<<" n"<<" nxdt"<<" Za[n]"<<" q[n]"<<endI;

for (n=1;n<=m;n++)
{
sum=0;
Zal-1]=0;
Za[0]=0;
for (i=1;i<=n-1;i++)
{
din-i+1}=2*sqrt((T* St)/(dt*pi))*(sgrt(n-i+1)-sqrt(n-i));
sum1=(Zafi}-Za[i-1])*d[n-i+1];
sum=sum+sumf;
}
d[1]=2*sqrt((T*St)/(dt*pi));
Zafn]=(Zr-dL/T ‘sum+dUT"Za[n 11d[1 /(1 +dT*d[1]);
q{n}=T*(Zr-Za[n))/dL;

cout<<"f: "<<dt*n<<" Za["<<n<<"]: "<<Za[nj<<" d['<<n<<"]: "<<d[n]<<endl;
outfile<<™ "<<n<<" "<<n*dt<<" "<<Za[n]<<" "<<qgjn}<<endl;

if (Za[n]>(0.99*Zr)){getch(); exit(0);}
}hooping za[n]

getch();
* Wend

Appendix -B - 13



	WRDMG10665.pdf
	Title
	Synopsis
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix


