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ABSTRACT 

Flood Routing is a technique by which a flood hydrograph at any section in a 

channel is determined from. a known hydrograph at some upstream section in the same 

channel. It is important in flood forecasting, design of hydraulic structures estimation of 

sediment /pollution transport. In this work, reaches in Narmada River are attempted to 

perform the flood routing studies. For the purpose, a computer program for channel 

routing is used. The equations governing the flow are One-dimensional Saint Venant 

equations and this solved numerically by four point preissmann's scheme. However, the 

main limitation in the model is that the channel bed is assumed rigid. Required data for 

river cross-sections and observed hydrographs at different locations are collected from 

various sources. In the present study, first, the model parameters are calibrated using an 

indirect method for conservation of water flow. Flood routing in Narmada from Mortakka 

to Mandleswar is performed for five different flood events. The contributions to the flow 

from intermediate regions are considered by assuming four tributaries at equal intervals 

between the measurement sites. Flood routing computations show that the computed and 

observed hydrographs at Mandleswar match satisfactorily. In addition, generalized 

equations are derived for the peak discharge and time to peak discharge. These equations 

can predict well, the flood peaks and time to attain the peak at any place between 

Mortakka and Mandleawar, using the peak and time to peak values of hydrograph at 

Mortakka. In the study for the reach from Jamtara to Bermanghat, a methodology is 

developed to estimate the discharge hydrograph in two tributaries, Hiran and Sher using 

the observed hydrographs at Jamtara and Bermanghat. Taking the tributary discharges 

into account flood routing computations show the computed hydrograph and observed 

hydrograph at Bermanghat match satisfactorily. 



Chapter-1 

INTRODUCTION 

1.1 GENERAL 

Rivers are associated with human civilization since time immemorial. However, 

all rivers exhibit floods causing great losses to lives and properties. A flood is an 

unusually high stage in a river - normally the level at which the river overtops its banks 

and inundates the adjoining area (Subramanya 1998). Such an event may be generated by 

intense rainfall, snowmelt and/or collapse of dam. The general characteristics of a flood 

flow are: (a) high discharge, (b) flows in flood plains, (c) change of river course, (d) 

sediment transport, (e) three dimensional flow, and, (f) turbulence. It is important to 

analyze the flow in a river during floods. Flow computation during flood is very much 

essential for design of hydraulic structures, flood forecasting, preparing flood inundation 

maps, estimation of sediment and pollution transport and river channel improvements. 

The main concern to a hydraulic engineer is the modeling of the movement of abnormal 

amount of water along a river. 

Propagation of flood waves in rivers shows several distinctive phenomena; (a) 

translation, (b) attenuation, and (c) distortion. Translation of the flood is simply the 

recognition that the peak of the disturbance normally propagates in the downstream 

direction. This is coupled with the notion that the bulk of the water is also moving in the 

downstream direction. However, it is important to distinguish between the speed of 

propagation of the disturbance and the speed of the bulk of the water. The speed of the 
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flood wave depends on parameters such as depth, width and velocity of the flow. In, 

particular, a flood wave that is in-bank will travel faster than a flood that is over-bank and 

inundates a wide plain. Attenuation of a flood is a decrease in the peak between inflow 

and outflow. Moreover, it happens due to storage detention, withdrawal and roughness 

characteristics of channel. Generally, in-bank flood experiences less attenuation than 

over-bank flood. The peak discharge of outflow may be more than that of the inflow if 

there is considerable amount of lateral flows into the main channel. In this case, the slope 

and shape of the basin play an important role. Distortion refers to change in shape of the 

wave profile i.e. discharge hydrograph at upstream and downstream. It takes place due to 

storage between upstream and downstream, and, differences of wave speed in in-bank 

and out-bank. 

The computation of the height and velocity of a flood as it propagates in a body of 

water is referred to as flood routing (Chaudhary, 1993). Flood routing is a technique by 

which a. flood hydrograph at any section in a channel is• determined from a known 

hydrograph at some upstream section in the same channel. Based on the flow condition, 

there are two broad categories of routing, viz., (a) reservoir routing, and, (b) channel 

routing. In reservoir routing, the effect of a flood wave entering a reservoir is studied to 

propagate the variations of reservoir elevation and outflow with time. In channel routing, 

the change on the shape of hydrograph as it goes down a channel is studied. Information 

on the peak discharge attenuation and computing peak time are obtained by channel 

routing. In channel routing, the water surface slope is assumed non-zero whereas it is 

assumed zero in case of reservoir routing. 
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Channel .  routing can be performed in three methods; (i) experimental, (ii) 

analytical, and, (iii) numerical. The advantages and disadvantages of the above methods 

are given in Tablei•1 (Anderson et al. 1984). Analytical methods are only for highly 

idealized cases and generalized closed form solutions are not possible due to the 

complexities involved with the governing equations. Experimental studies are very 

helpful in a better understanding of the flow phenomenon. However, after the advent of 

fast computers and availability of robust numerical techniques, it becomes popular among 

the engineers to use numerical modeling for studies in flood routing. It may be noted here 

that numerical models can never replace experimental models. 

In most of the numerical models, channel routing is done solving the one-

dimensional Saint Venant equations. However, due to complexities of the Saint Venant 

equations, various simplified approximations of flood wave propagation are also in use. 

Ms. 	and Yevjevich (197{) have presented an excellent review of such methods. 

Weinmann, (1979) also, presented a review on approximate flood routing methods. The• 

simplified methods may be categorized as (a) empirical, (b) linearization of the Saint 

Venant equations, (c) hydrological, (d) simplified hydraulic and (e) complete hydraulic 

(Fread, 1985). Empirical methods are limited in application with sufficient observations 

of inflows and outflows to calibrate the essential coefficients. They require minimum 

computational resources. Some empirical models are; (a) lag models, and (b) gauge 

relations. In-  lag models, concept of lag, this is defined as the difference in time between 

inflow and outflow within the routing reach. In gauge relation, the flow, at a downstream 

point to that at an upstream station is related. It is based on flow, water elevations and 

combination of each. Linearized models ignore the least important terms of momentum 
3 



equation assuming that cross section is rectangular, bottom slope are constant, no lateral 

inflow and the friction slope term is linearized with respect to velocity and depth. 

Table 1.1 : Advantages and disadvantages of various methods of channel routing 

APPROACHES ADVANTAGES DISADVANTAGES 

Experimental 1. Capable of being most realistic. 1. Equipment's required. 

2. Scaling problems. 

3. Measurements difficulties. 

4. High operating cost 

5. Time consuming 

Analytical 1. It is handy and general 1. Restricted to simple 

information is in formula form, geometry and physics. 

2. Used for preliminary studies. 2. Usually restricted to linear 

3. Computers are not essential. problems. 

Numerical 1. No restriction to linearity. 1. Truncation errors. 

2. Complicated physics can be 2. Boundary condition 

treated. problems. 

3. Time evolution of flow can be 3. Computer cost. 

obtained. 

4. Less time for analysis. 

In hydrologic routing methods, conservation of mass (continuity equation) and an 

approximate relation between flow and storage is used. Following are some of the 

hydrological models (a) Muskingum model, (b) Muskingum-Cunge model, and (c) 

Kalinin-Milyukov model. 

Simplified hydraulic routing methods use the continuity equation and a simplified 

form of momentum equation. If the simplified momentum equation is the steady uniform 
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flow equation, the routing procedure is kinematic routing and if an additional term for the 

slope of the water surface is included, the method is called diffusion routing. In the 

complete hydraulic routing, all the terms of the momentum equation are used. Sometimes 

it is also referred as dynamic routing. The above routing methods are in increasing order 

of accuracy. 

For the numerical solution of the partial differential equations governing the flow, 

following methods may be used; (a) Method of Characteristics (MOC), (b) Finite 

Difference Method (FDM), (c) Finite Element Method (FEM), (d) Finite Volume Method 

(FVM), (e) Finite Analytic Method (FAM), and (f) Spectral Method (SM). In MOC, the 

governing equations are converted into a pair of ordinary difference equations and then 

are solved by finite difference. scheme. Iiii FDM, the governing equations are replaced by 

an equivalent set of algebraic equations and are then solved numerically. Of the various 

numerical methods, FDM have been used very extensively. It may be either explicit or 

implicit. In the explicit scheme, the differentials are expressed as a function of variables 

at known time level where as in the implicit scheme they are in terms of variables in- an 

unknown time-level.. In FEM, the system is divided into a number of elements and partial 

differential equations are integrated within the elements. FVM and FAM are variations of 

the FDM. SM is appropriate for problems with periodic boundary and studies using SM 

for channel routing show no significant benefits over other methods (Sinha et al., 1995). 

Out of the many computational models for channel routing, the channel routing 

model by Fread (1988) is widely used by field engineers and researchers. This uses one-

dimensional Saint Venant equations as the governing equations. The numerical solution 
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is based on the Four-point Preissmanr Scheme, an implicit Finite Difference Method. 

However, the points, that make• it different from other models are; ease in data 

preparation; consideration of field situations and computational efficiency. 

1.2 REVIEW OF LITURATURE 

In this section, a brief review on the earlier studies concerning flood routing is 

presented. In addition, previous works on Narmada- Basin are also given. As mentioned 

earlier, flood routing can be performed by any one of the three methods, viz., analytical, 

experimental and numerical. As the present work uses a numerical method, the following 

paragraphs are with respect to numerical studies only. 

1.2.1 Equations Used in Flood Routing 

The most important component of a numerical model is the mathematical 

equations used to represent the flow phenomena. As seen in the literature, there are a 

large number of equations available for channel routing. Three-dimensional Navier-

Stokes equations' provide a complete description of fluid flow at any Reynolds number. 

These are for unsteady flows and represent the most generalized equations. These 

' equations use the assumption of a Newtonian fluid. Direct solution of these equations can 

describe a turbulent flow. Due to lack of computer space and speed, these equations 

cannot be solved directly for large Reynolds numbers. Navier-Stokes equations can be 

simplified, to Reynolds equations where the velocity and pressure terms are divided into 

their average and fluctuating parts. In addition, some sort of turbulence modeling is 

performed to evaluate the Reynold stresses. Numerical solutions, for Navier-Stolkes 

equations, based on various techniques (Lagrangian approach, Eulerian approach, and, 
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Mixed Lagrangian-Eulerian approach) are available in the literature (Hyman 1984). 

Various turbulence models are described by Rodi (198 4). 

The theory that incorporates vertical accelerations, to a limited extent, in 

approximations to the horizontal motion equation is called Boussinesq Theory 

(Boussinesq. 1872). Many forms of tl e equations attributed to Boussinesq are found in 

literature. Variations are due to the order of accuracy of terms retained and methods of 

derivation. Boussinesq Equations are also known by various other names, such as Serrre 

Equation, Perigrine Equation. etc. Boussinesq theory can be applied to finite amplitude 

quasi-long waves propagating in shallow water. Some studies using Boussinesq equations 

are by Gharanzik and Chaudhry (1991), Carmo et al. (1993). 

Assuming the velocity to be 4uaiform along a vertical direction and integrating 

along the depth, two-dimensional Saint Venant Equations can be derived from three-

dimensional Navier-Stokes equations (Lai 19ft7). These equations can be further 

simplified to one-dimensional equations, neglecting the variations in transverse direction. 

Assuming a radial flow, Townson and $affl.i (1989) used one-dimensional Saint-Venant 

equations in "radial coordinates. Most of the numerical studies in flood routing use Saint-

Venant equations (Chaudhry 1993). Vertically Averaged Moment (YAM) Equations are 

depth averaged equations and can be derived by taking the moment of the momentum 

equations (Khan and Steffler 1996). As suggested by Paterson and Apelt *(1988) depth 

averaged equations can be derived by assuming various forms of distribution for the 

velocity in a vertical plane. For example, they have derived equations for four different 

types of assumptions. 
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1.2.2 Flood Routing 

Technical papers on flood routing are many in numbers. Only, some references, 

which are relevant to the. present work, are cited in the following paragraphs. 

Palaniappan et.al.,(1986),They have used a Muskingum-Cunge method for flood 

routing in Narmada river from Mortakka to Gurudeswar. 

Ragan (1966) investigated the numerical flood routing technique for channels 

subject to lateral inflows, in laboratory. He faced one of the practical problems found 

with the numerical technique. The results were highly sensitive to the values of the 

Mannigs roughness coefficient used to describe the channel roughness. He described that 

as the percent error in the roughness co-efficient increased, the time required for the 

converge the actual hydrograph increased. 

Amein,.(19 jc) attempted to solve the unsteady flow equations by the method of 

characteristics and it was presented for stream flow routing. The procedure was applied to 

the routing of a flood hydrograph through a channel. He found from that the friction 

forces alone can reduce flood peak and flatten out the rising and recession limbs of the 

hydrograph. Moussa and Bocquillon (1996) developed a modified form of diffusive 

equation considering the two parameters of the equation. These parameters are celerity 

and diffusivity, which are the function of discharge. Keskin and Agiralioglu (1997) 

developed a simplified dynamic model with a new form of momentum equation 

consisting of cross sectional area and discharge to solve the Saint Venant equation for 

flood routing. The channel cross-section was assumed rectangular with a constant width 
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and an explicit finite difference formulation was used,. The results were compared with a 

dynamic model, which gave satisfactory results. Thus, they showed that the simplified 

dynamic model is easier to formulate and compute. 

Fread et al. (1997) developed an explicit numerical scheme for the solution of 

one-dimensional unsteady flow in natural rivers. It was tested with the implicit scheme, 

which gave accurate results. In some situations the scheme i.e. implicit and explicit 

multiple routing was introduced to incorpor e the advantages of using both the schemes. 

Ping et al. (1999) developed a hydraulic flood routing method for multibranch rivers 

based on the double sweeping method by means of imaginary channel length for the 

simultaneous solution of the implicit finite difference scheme of Saint Venant equations. 

The model provides an effective tool to handle the problem of flood routing for 

multibranch rivers and to treat the problem of weir control on flood routing. 

1.2.3 Narmada Basin 

In the comprehensive study of Narmada river basin, several studies of Narmada 

had been done at National Institute of Hydrology (NIB), for investigating the 

hydrological, hydrometrological and physical characteristics of the difference sub basins. 

The rating curve had also been developed for some of the gauging sites located in the 

Narmada River. Singh R.D., (1999). S.M.Seth et.al.(1985), They have evaluated rating 

curves for some of the gauging sites on Narmada River. 

Seth et al. (1990) applied the SHE model to Narmada Basin from its origin upto 

Mannot. All land phase components of hydrologic cycle were considered either by finite 
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difference representation of the partial differential equation of mass, momentum 

conservation form or in the form of empirical equations. Seth et al. (1990) has evaluated 

SHE model, which is also a deterministic, distributed and physically based 

hydrological modeling upto Barna basin. SETH et al. (1990) have evaluated a SHE 

model, a deterministic and physically based hydrological modeling to Hiran sub basin of 

Narmada which can make use of all available information i.e. topography, soil and land 

use and a new ideas on hydrological process. Jain et al. (1990) application of SHE model 

to Kolar sub-basin of river Narmada has been described. The SHE model is a 

deterministic and physically based model where in land phase components of hydrologic 

cycle mainly considered. Tripathi et. al.(1992) In this paper agriculture water quality 

issues on farm irrigation management, aquifer recharge and discharge, have been 

discussed. for Narmada basin. 

Choubey et al. (1995) carried out a land capability classification in a part of 

Narmada considering the texture, depth, permeability and salinity of the soil, which is 

very important for proper management of agricultural land. Jain et al. (1995) evaluated a 

fluvial geomorphologic characteristic of four sub-basins of upper Narmada for 

developing the hydrological models to simulate hydrological response of the basin, which 

was widely used for simulating hydrological response of ungauged basin. Goel et.al. 

(1998), have developed a systematic methodology for multivariate modeling of flood 

flows and application and validation of this methodology have been made by using daily 

flows of Narmada river in Garudeswar. 
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From review of papers related to Narmada river, it is seen that most of the work 

done so far is based on rainfall and runoff, stage-discharge rating relation, flood routing 

using Muskingum-Cunge method and etc. In this work, a numerical model using 

complete Saint Venant equations, used to route the flood and generalized equations for 

the peak discharge and time to peak discharge have been formulated. A methodology is 

also developed for finding out the tributary outflow using the observed flows at nearby 

places in the main river. 

OBJECTIVES AND ORGANIZATION OF STUDY 

The objectives of the present work are; (1) calibrating the parameters of the flood 

: 

	

	 routing model. (2) flood routing in Narmada from Mortaka to Mandleswar, (3) 

developing a generalized equation for peak discharge and time to peak and apply it for 

the above study reach, and (4) developed and apply a methodology for estimating the 

discharge hydrograph of tributaries (Hiran and Sher) from observed inflow and outflow 

hydrographs of a river reach( Narmada at Jamtara and Berminghat). 

Importance of flood routing and review of literature relevant to the present work 

was presented in this chapter. Mathematical model using the governing equations and 

their numerical solution is presented in chapter two. In chapter three, the study area is 

described. Results of the. present study are presented in chapter four and important 

conclusions and recommendations for future work are given in the last chapter. . 
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Chapter 2 

MATHEMATICAL MODELING. 

In the previous chapter, imp tance of flood routing in various engineering 

applications, review of literature and ohj.ectiv4s of the present study have been presented. 

In this chapter, mathematical modeling using partial differential equations governing the 

flow and their numerical solution is presented, 

2.1 GOVERNING EQUATIONS 

In the present work, one-dimensional Saint Venant equations in rectangular 

coordinate system are used as the governing equations. These equations are (Chaudhry 

1993): 

Continuity Equation: 

aA + ---q=_ 0 	 (1)  
at a 

.viomentum Equation: 

2 

7t 7x A 2 

In the above equations, x and t are the distance coordinate along the longitudinal 

direction and time coordinate, respectively. A is the cross-sectional area of flow, h is the 

flow depth, O the discharge of flow and q is the lateral inflow per unit length of the 
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channel. g is the acceleration due to gravity and 
So and Sf are the bed slope and friction 

to e respectively. A definition 
"sketch is presented in Fig.2.1  

s p, 

Equations I and 2 are obtained making the following assumptions (Chaudhry 1993). 

(a) Channel bed slope is small. 
section is hydrostatic along vertical direction. This is true if 

(b) Pressure distribution at a sec 	 gradual. 
the vertical acceleration is small, i.e., the water surface variation is 

(c) The friction losses 
in unsteady flows may be computed using formulas for the steady 

state friction losses. 

(d) The velocity 
t distribution at a channel cross section is uniform. 

(e) The channel is straight and prismatic. 
Interim.catclunent runoff 

....;, WATER SURFACE 

•--+ FLOW 	FLOW 
DEPTH 

RIGID BED 

re 2.1 Definition sketch for flow in a channel 
Flbcr u 

ons are valid for most of the gradually varied flow situations. 

	

The above assumptl 	 which arise 
governing equations do not account for the effective stresses, 

However, the g 
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due to (i) laminar viscous stresses, (ii) turbulent stress and (iii) stress due to depth 

averaging. 

Extra turbulent stress-like terms appear while depth averaging the momentum 

equations because of the non-uniformity of the velocity in the vertical direction. Based on 

experiments in the laboratory channels, Odggrd and Bergs (1988) have shown that the 

error introduced by uniform velocity assumptions is negligible. Flokstra .(1977) also 

showed that away from walls the effective stresses are dominated by the bottom stress. 

However, it should be noted that these effective stresses should be considered while 

simulating circulating flows (Flokstra 1977). Few :  models are available simulating 

effective stresses using turbulence closure iodels. However, these methods as applied in 

open channels (Rastogi and Rodi 1978) are at best successful for fixed bed channels. In 

addition, their application may be required only if one is interested in three-dimensional 

flow structure and actual sediment movement. 

The friction slope Sf used in Eq.2 is calculated using the Manning's equation. 

n2Q2  
*5.1= 	4 

A'R 3. 

(3) 

In Eq. 3, n is Manning's roughness coefficient and R is the hydraulic radius 

represented by the ratio of area and wetted perimeter. 

2.2 NUMERICAL SOLUTION 

The governing equations for unsteady channel flows as discussed in the previous 

section constitute a set of non-linear hyperbolic partial differential equations (Lyn 1987, 
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Chaudhary 1993). Analytical solution for these equations is available only for highly 

idealized cases. Therefore, they are solved numerically.. In this section, a numerical 

scheme is presented for the solution of the above one-dimensional Saint Venant 

equations. In the present work, a method developed by Preissman (1961) and earlier 

adopted by Fread (1988) has been used. This method uses the weighted four point 

' Preissman implicit scheme, a finite difference method, for the numerical solution of the 

governing equations. The solution strategy is presented in Fig. 2.2. 

The Saint Venant equations are hyperbolic partial differential equations having 

two independent variables, x and t; and, two dependent variables, A and 0. The remaining. 

terms are either functions of x, 1, h, and/or Q, or they are constants. Eqs. 1 and 2 are 

solved numerically by performing two basic steps. First, the partial differential equations 

are represented by a corresponding set of finite difference, algebraic equations and 

second, the system of algebraic equations is solved in conformance with prescribed initial 

and boundary conditions. 

Equations 1 and 2 can be solved by either explicit or implicit finite difference 

techniques (Liggett and Cunge, 1975). Explicit methods, although simpler in application, 

are restricted by mathematical stability considerations to very small computational time 

steps. Such small time steps cause the explicit methods to be very inefficient. Implicit 

methods, on the other hand, have no restriction on the size of the time step due to 

mathematical stability (Preissmann 1961, Amein and Fang 1970, 
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Figure 2.2 Flow chart for the numerical solution 
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Strelkoff 1970) However, convergence considerations may, require its size to be 

limited (Fread, 1974). 

Of the various implicit schemes, weighted four-point scheme used by earlier 

researchers (Preissmann 1961, Chaudhary and Contractor 1973 and Fread and Lewis 

1988) appears most advantageous. Because, it can readily be used with unequal distance 

steps and its stability — convergence properties can be conveniently controlled. In this 

• scheme, the continuous x-t region is represented by a rectangular grid of discrete points. 

The grid points are determined by the intersection of line drawn parallel to the x and t 

axes. Those .parallels to the t-axis represent locations of cross, sections and they have a 

spacing of zX, which need not be constant. Those parallels to the x- axis represent time 

lines and they have spacing of zlt, which also need not be constant (Fig. 2.3). 

t 

j+1 

j-1 

x 
i-2 	.i-1 	i 	i+1 	i+2 

Figure 2.3 Numerical grid in x and t directions 
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Each point in the numerical r&tangular grid can be identified by a subscript], and 

I, which designates the x-position and particular time level. The time derivatives are 

approximated by a forward difference approximation centered between the its' and i+l`~' 

points along the x-axis, i.e. 

5K=K+l +Kii'— K, — Kr 
at 	20ti 
	 (4) 

Where K represents any variable O, or A. The spatial derivatives are approximated by a 

forwarded finite difference approximation positioned between two adjacent time lines 

according to weighting factors of 0 and 1-8. 

a 	A 	dr; 
i=61 ' K,+i , 19r', t -Ki 
- 	+(1- 	 (5) 

Variables other than derivatives are approximated at the time level when the spatial 

derivatives are evaluated by using the same weighting factors i.e. 

In the above equations 6 is a weighting factor and selection of 9 is important. 

K= 	J]2 	 2 
	 (6) 

B = 0 is fully explicit and 6 = I is fully implicit. For 0.55 < 8 < I the scheme is stable. 

When the finite-difference operators, defined by Eqs. 4-6, are used to replace the 

derivatives and other variables in Eqs. 1-2, the following weighted, four—point implicit, 

finite difference equations are obtained: 

is 



eAi;+I +A . 
	A,f + A,1 + e 

0; +' i   
2 	 2 	 2 

	

+ (1 _ e) Qt 	q _ 0 
2 

p;+1
+o,+~' o,i+o« 	(o2/A};

+'+(02/A)'+' 
6 	2 	2 	+9 	2 	+(1-6) 

(Q 2 IA)' +(Q2  / A)' 	+ A;+'  
, 

2  2  2 

A +A+, 9A(So—Sf)=0 
2 

(8) 

In the above equations (Eqs. 7-8), the.terms associated with the j I' time are for a 

known time level and j+ltl' is the unknown time level. In the beginning of the program, j 

refers to the initial conditions. The equations stated above cannot be solved in an explicit 

or direct manner for the unknowns since there are four unknowns and only two equations. 

However, if Eqs. 7-8 is applied to each of the N-1 nodes, a total of 2N-2 equations with 

2N unknowns will be formulated. Here, N denotes the -total number of nodes locations 

where computations are performed to find the flow variables. Then, the other two 

equations are obtained from boundary conditions in order to get a solution. These 2N 

(7) 
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non-linear equations are solved iteratively by a fast converging Newton- Raphson method 

(Chaudhry 1993). 

BOUNDARY CONDITIONS: 

Upstream Boundary Condition: In the present mathematical model, the upstream 

boundary condition plays an important role in the solution of the governing equations. In 

most of the cases, this information is obtained from the specified hydrograph i.e. Qi= QI 

(t). In which the flow at section I (the most up stream cross section), and QI (t) represents 

the specified flow at time (t). The upstream flow should not be zero and the time 

specification should not be less than the required time of flood routing. 

Down stream boundary condition: In case of down stream boundary condition, the 

model uses one of the following four conditions. (i) Specified stage hydrograph, (ii) 

single valued rating curve, (iii) critical flow condition. (iv) generated dynamic loop rating 

curve. 

Initial Condition: The flow conditions are also specified at the beginning of the 

unsteady flow conditions, which is known as initial condition. The initial condition (flow 

at t=0) are specified by assuming a steady. non-uniform flow. The flow depth (h) is 

specified by numerically integrating the steady state gradually varied flow equation. 

Presence of any internal boundary requires special treatment, as governing equations are 

not valid at these locations. In such cases, established empirical formula or relations 

replace momentum equation. 

STABILITY: Although an implicit formulation is used which requires no stability 

criteria, a small time step is used in the model to obtain results with small truncation 

error. The time step, At is calculated by, 

A.l 



L t< 0.075Ctr(Z/D)o.5  

where C =Wave celerity = gh 

g = gravitational force. 

h= water depth. 

t.= time of rise of hydrograph 

Z=(1-c2)/[492 E 2 —(29-2)2  f 

In. which 6 is the permissible error ratio (0.90<6<0.99) and 0 is the weighting 

factor. 

DATA REQUIREMENT: 

In this work, following data are required. 

(1) Inflow hydrograph ordinates and corresponding time interval. 

(2) Total computational time. 

(3) Cross-section at observed inflow and outflow stations and their location. 

(4) Elevation corresponding to each top width of cross-section 

(5) Top width corresponding to each elevation of-cross-section 

(6) Manning's roughness coefficient. 

(7) Expansion and Contraction coefficient between the cross-section. 

(8) Computational distance( A x) 

(9) Initial size of time step. (A t) 

(10) Down stream boundary parameter. 
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LIMITATIONS: 

The limitations of the model constitute the assumptions used in the derivation of 

governing equations. Some of the limitations are: 

(1) The model assumes one-dimensional flow, but there are some instances where the 

flow is more nearly two-dimensional than one-dimensional. In many cases where 

the wide flood plain is bounded by rising topography, the significance - of 

neglecting the transverse velocities and water surface variations is confined to a 

transition reach in which the flow changes from one dimensional to two 

dimensional and back to one dimensional along the x- direction. 

(2) The model assumes a rigid bed channel, but during floods it can cause significant 

scour i.e. degradation of alluvial channels. This enlargement in channel cross 

sectional area is neglected in model since the equation for the sediment transport 

and channel bed armoring are not included in the governing equations. 

(3) Bed roughness is a complex function of various flow and bed characteristics. The 

uncertainty associated with the selection of the Mannings n can be quite 

significant for the floods due to (i) the great magnitude of the flood produces flow 

in portions of floodplains which are very infrequently or never before inundated; 

this necessitates the selection of the n value without the benefit of previous 

evaluations of n from measured elevation/ discharges or the use of calibration 

techniques for determining the n values; 	(ii) The effect of transported debris 

can also alter the Mannings n. However, the model assumes a constant value of 

Mannings roughness coefficient n all time level. 
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Chapter 3 

THE STUDY AREA 

The governing equations and their numerical solution to perform the flood routing 

for specific reaches in the Narmada River were presented in the previous chapter. The 

study area and available data for the present study have been described in the following 

sections. 

3.1 NARMADA BASIN 

The Narmada River situated in Central India is a west flowing river. It originates 

from Maikala hills at Amarkantak in Madhya Pradesh at an elevation of 1058 m and 

flows through Madhya Pradesh, Maharastra and Gujarat. Total length of the river is 1312 

Km and the basin area is about 98796 Km2. The basin is bounded on the north by the 

Vindhyas, on the east by the Maikala range, on the south by the Satpuras, and on the west 

by the Arabian Sea (Fig. 3.1). The river has 41 tributaries penetrating the catchment in 

notrh-south directions. Some of the major tributaries are Hiran, Sher, Shakkar, Tawa, 

Burner, Chotta tawa and Kundi. The Narmada basin is of elongated shape. Topography of 

the Narmada basin is hilly with forest cover in the upper reaches, lower reaches are flat 

with abundance of farmland. Major part of the Narmada basin consists of variety of black 

soils with a large content of clay. Mixed red and black soil, red and yellow soil and 

skeletal soil are observed at isolated areas. The vegetation in the Narmada catchment 

includes a variety of agricultural crops on the plains and forest of varying density in the 

upland areas. The climate is humid tropical ranging from sub-humid in the east to semi- 
23 
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arid in the west. The average annual rainfall is 1230 mm. The Southwest monsoon is the 

main source accounting for 90% of toe annual rainfall, of which 60% falls during the 

months of July and August. There are seven important gauging sites (Mannot, Jamtara, 

Bermanghat, Hosangabad, Mortaka, Mandleswar and Gurudeswar) in the main river. For 

. 

	

	this dissertation work, the specific reach considered is from Mortaka to Mandleswar for 

five different events. In addition, the reach from Jamtara to Bermanghat, which contains 

two major tributaries, is also attempted for one flooding event. 

3.2 RIVER REACH FROM JAMTARA TO BERMANGHAT 

The sites Jamtara and Bermanghat on the main river are located at 399 Km and 

510 Km away, respectively, from the source at Amarkantak. Both the sites are in Madhya 

Pradesh. The major tributaries - Hiran and Sher, between Jamtara and Berminghat, join 

the main river at a distance of 461 and 494 Km, respectively, from the source. The Hiran 

joins the main river from right side, whereas the Sher is from the left. The lengths of 

these tributaries are 187 Km and 128 Km, respectively and their catchment areas are 

4480 and 2867 sq. Km. In between Jamtara and Berminghat, there are five ordinary rain 

gauge stations (Narsingpur, Lakhandon, Ghansore, Chhindwara and Patan) and two self 

recording rain .gauge stations (Jabalpur and Adhartal). The reach between Jamtara and 

Berminghat is in the upper plain region. Major part of this area consists of black soils 

with clay and about 40% of which are under forest and remaining 60% is under 

agricultural, grass and wasteland. 
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3.3 RIVER REACH FROM MORTAKKA TO MANDLESWAR 

The sites Mortaka and Mandleswar are situated in the main river Narmada at 886 

• Km and 926 Km away from the source. Between these two sites, there are 10 ordinary 

rain gauge stations (Khargone, Bhikangaon, Lachore, Kasrawad, Maheswar, Mandu, 

Manpur, Bagaud, Choral and Patalpani). This reach is situated in the middle plain region 

of the basin. This reach mainly contains black soils and mixed red yellow soils. The 

vegetation in the region is an agricultural crop in the plains and forest of varying density. 

3.4 AVAILABLE DATA 

The Narmada basin has been studied extensively, covering various aspects of 

hydrology, at National Institute of Hydrology (NIH), Roorkee. The data, which have been 

used in this study, are, (1) observed flood hydrographs at Mortakka and Mandleswar for 

five cases, and data adopted from Seth et. al. (1985),Vol.2 of Final report, and (2) river 

cross-sections at Mortakka and Mandleswar have been extracted from Seth and 

Palanippan (1985),(CS-6). In addition, for the study on river reach from Jamtara to 

Bermanghat, one observed hydrograph at Jamtara and Baramanghat for the one event and 

cross-sections were also taken from the same references stated above. 
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Chapter 4 

RESULTS AND DISCUSSION 

.. The study area and the available data have been described in chapter three and 

results for flood routing at two reaches of Narmada are presented in this chapter. The 

results of the present work are presented in four parts. In the first part, calibration 

showing determination of various model parameters such as, roughness coefficient (ii) 

and distance step size (zix) in the numerical grid is presented. Results of flood routing 

from Mortakka to Mandleswar for five different events are presented in the second part. 

The third part constitutes derivation of generalized equations from cases of studies in part 

2, for peak outflow at any intermediate location and time to achieve this value, as 

functions of inflow parameters and length. In the last part, flow hydrographs in the 

tributaries (Hiran and Slier) using observed hydrographs at Jamtara and Bermanghat in 

the Narmada River, are determined. Before discussing the results, the used input data for 

the present study is presented in the following section. 

4.1 INPUT DATA 

In the present analysis of flood routing from Mortakka to Mandleswar in the 

Narmada River, the inflow hydrographs at Mortakka are prescribed as the measured 

discharges at that place. These values are adopted from Seth et al. (1985). Different 

events have been considered for the purpose. The cross-section details at Mortakka and 

Mandleswar have been extracted from Seth and Palaniappan (1985). These two cross-

sections are presented in Fig. 4.1. As seen from this figure, the cross-sections are not 
27 
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defined at higher elevations. Thus, the present study is limited to the flow in the main 

river only and higher flows involving the flood plains cannot be analyzed using these 

cross-sections. 

Further, three more cross-sections at equal intervals between Mortakka to 

Mandleswar are also used. These cross-sections are obtained using linear interpolations, 

as no measured values are available. The river bed friction characteristics is defined by 

the Manning's roughness coefficient, n and its value for the specific reach from Mortakka 

to Mandleswar is 0.03. In the section for calibration, it will be shown that this value gives 

a better match with the observed outflow hydrograph. The incremental step size, Ax = 1 

Kin is used in this study. As the width of the cross-sections are approximately of the same 

order, used values of expansion/contraction coefficients are zero. The lateral inflows due 

to the contribution from the intermediate catchment area are determined by deducting the 

observed hydrographs at Mandleswar and Mortakka. An input data file used for the 

computer program is presented in Appendix-1. 

. 4.2 CALIBRATION 

The model parameters, such as distance step size, Ax, and Manning's roughness 

coefficient, n, are calibrated for the reach from Mortakka to Mandleswar. on Narmada 

river. As the flood waves moves downstream, the peak discharge is reduced and the 

shape of the hydrograph is flattened. However, if there is considerable amount of lateral 

flow from the intermediate catchment area, the flood peak at a downstream location may 
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be more as compared to that at a station located upstream. In the present case as seen 

from the measured discharges, the lateral inflow from the area between Mortakka and 

Mandleswar is significant and therfore, the peak discharge at Mandleswar is higher than 

•that at Mortakka. In the absence of any information about lateral inflow, it is difficult to 

calibrate the model parameters. Therefore, an indirect method is adopted to calibrate the 

Manning's roughness coefficient. 

4.2.1 Determination of Manning's n 

Let A and C, be two stations, on the main river. Observed hydrographs at A 

and C (Q,, and QC)  are available. Cross-sections at A and C are known. An 

intermediate station B which is located at mid point of A and C is assumed. The 

cross-section at B is determined using linear interpolation of values for cross-

section at A and C. The observed hydrograph at B is assumed as the average of the 

observed hydrographs at A and C. Using the above information and assuming a 

'arbitrary n values, two flood routings, first from A to C and then from B to C are 

performed. The first set of results gives the computed hydrographs at station B 

(QCA-B)  and at C (Q,.A-c) due to. observed hydrograph at A. The second set of results 

gives the computed hydrograph at C (Q,B-C) due to the observed hydrograph at B. 

The contributions from A to B, B to C, and A to C are calculated separately. A 

Check is made to verify the contribution from A to C equals the combination of 

contribution from A to B and B to C. The procedure is repeated with different n 

values . till the above condition is satisfied. The calibration strategy to determine 

' . optimum n values is presented in figure 4.2. 
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Two cases for the reach Mortakka and Mandleswar have been considered 

to do the calibration, following the procedure mentioned above. It may be noted 

here that, A refers to Mortakka and C to Mandleswar. An imaginary station, I, is 

considered as B. The calibrated value of Manning's n is 0.030. Results of the 

above numerical study are presented in Figures 4.3, 4.4, 4.5 and 4.6. In these 

Figures the contributions from Mortakka (A) to Mandleswar(C) and combinations 

of contributions from Mortakka to I and I to Mandleswar are presented. The 

comparison shows a good match between the two hydrograph. 
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• 4.2.2 Effect of Distance Time Step  

The present model has been studied to see the effect of distance step size (Ax) on 

the results. For this purpose, the mod $) has been executed using different Ax values 

(Ax=1.OKm, 2.0 Km and 5.0 Km). It is observed that as Ax reduces the results become 

closer (Figure 4.7). In rest of the studies, all the results have been obtained using Ax=1 

km. 
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Figure 4. 7 Computed hydrograph at Mandleswar for different AX values 
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4.2 FLOOD ROUTING FROM MORTAKKA TO MANDLESWAR 

• In the present study, flood routing have been performed from Mortakka to 

• Mandleswar for six events. The Cress-sections at Mortakka and Mandleswar are 

presented in Figure 4.1(a),(b). Observed inflow hydrographs at Mortakka for different 

cases are presented in Figures 4.8, 4.10, 4.12, ' 4.14, and 4.16. Summary of this 

hydrograph are presented in Table 4.1. 

TABLE-4.1 SUMMARY OF INFLOW HYDRO GRAPHS AT MORTAKKA 

• Cases Peak discharge(Cumecs) Time to peak (Hr) 

Case 1 5679 4 

Case 2 5243 13 

Case 3 8824 29 

Case 4 20813 4 

Case 5 18477. 21 

Results obtained from the mathematical model for the above cases are presented 

in Figures. 4.9, 4.11, 4.13, 4.15, and 4.17. In these Figures, the outflow hydrograph at 

Mandleswar as computed, by the model are .shown. In addition, the observed hydrograph 

at Mandleswar are also presented. For all the cases the match is satisfactory. The 

summary of outflow hydrographs at Mandleswar is given in Table' 8. The results show 

that it is important to consider the contribution from the intermediate catchments. One 

case (Case 1) is also studied without considering the lateral inflow from the intermediate 

catchment. The computed hydrograph at Mandleswar (Figure 4.18) is underestimated 

when compared with • the observed hydrograph at that place. 
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Table 4.8: Computed and Observed Peak Outflow and Time 

Cases Computed peak 

discharge(Cumecs) 

Computed peak 

time(Hr) 

Observed peak 

discharge(Cumecs 

Observed peak 

tirr 	(Hr) 

Casel 6800 12.6 	- 6776 9 

Case2 6296 22.80 6295 18 

Case3 10335 36.55 10406 32 

Case4 22767 10.4. 22706 7 

Case5 19931 23.10 20090 18 
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4.3 • GENERALIZED EQUATIONS: 

• As the flood wave moves downstream in a channel, the flood peak and time to 

• flood peak are changed. These values are complicated functions of distance, channel 

• roughness, bed slope and inflow characteristics. These values can be accurately found out 

using a good flood routing model. However, it is easier to use some simple equations. 

• Also, these relationships are helpful to field engineers. In the present study, simple 

equations for peak discharge and time to attain this value, as a function of inflow 

characteristics and distance, are derived for flows from Mortakka to Mandleswar. These 

- generalized equations are based on non-linear regression analysis of the result obtained in 

the previous section. For this purpose three intermediate sections are considered at 10 

• Km., 20Km. and 30 Km., respectively. The Cross-sections at these places are obtained 

• using linear interpolation between cross-sections at Mortakka and Mandleswar. Outflow 

hydrographs have;, been computed at Mandleswar and all the intermediate sections, The 

derived equations are given below. 

02 =1.106(L,. )o.os (tr )-0.009 	 (9)• 
Ol 

t2—ti  
• ' 	 tl 	

= 0.823(Lr )o.54 (Qr)-'
• (10) 

Where, L,.= L/40, tr=(tl*Q1)/(40)3  and Q1.=(tl*Q1)/(40)3  

• L is the distance from Mortakka, in Km. Q1 is the peak discharge in cumecs at Mortakka. 

and ti is the time to peak discharge at Mortakka. Q2 and t2 is the future peak discharges 

• and time to peak to be finding out using the quation. 
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A comparison between the values obtained using equations (9) and (10) are presented 

against those obtained from the mathematical model (Figures 4.19,4.20). The comparison 

shows that the equations can predict peak discharge and time to attain this value at any 

place between Mortakka to Mandleswar for a known hydrograph at Mortakka. Here it 

• may be noted that the effects of cross-sections, bed slope and roughness are included in 

the constant terms in the right hand side of the equations (9) and (10). It is important to 

mention here that these equations are limited for flows confined to the main rivers as very 

high. flood values are not considered in the derivation of the equations. 

4.3 ESTMATION OF DISCIIAR4E FROMA TRIBUTARY 

Unlike the reach from Mortakka to Mandleswar, the reach between Jamtara and 

Bermanghat has two major tributaries (Sher and Hiran) of Narmada River. Generally, the 

measurement sites are established on the main river and the flows from the tributaries 

remain ungauged. In this section, an - attempt has been made to estimate discharge 

hydrograph for Hiran and Sher using the observed hydrograph at Jamtara and 

Bermanghat. The procedure for this purpose is described below. 

The cross sections at Jamtara and Bermanghat are given in the figures 4.21(a) and 

(b). The Manning's roughness coefficient used in this reach is 0.060. First, the volume 

contribution from both the tributaries (Hiran and Sher) is calculated by deducting the 

upstream hydrograph (Jamtara) from downstream hydrograph (Bermanghat). This total 

volume is shared in the ratio of the areas for the Catchments of the tributaries. The shape 



• of the hydrograph for a tributary is calculated based on the weitage factors for each time 

interval. The weitage=factor is determined using the inverse square law for distances from 

the observed sites(Jamtara and Bermanghat). The procedure is explained systematically 

through on the following steps. 

Flood rouing taking the hydrographs from, both the tributaries (Hiran and Sher) 

produces a better match of hydrographs (Observed versus Computed) at the downstream 

station on the main river Narmada shown in the figure 4.24. 

The observed discharge is 4056 cumecs and time to peak 26 hr. and computed 

• discharge is 4071 cumecs and time to peak is 26 hr. The computed tributaris peak 

discharge.for Hiran and Sher is 719.86 and 574.06 cumecs and time to peak 7 hr. (both). 

• The hydrographs for Jamtara and Bermanghat (observed) and hydrographs for Hiran and 

Sher are given, in figure 4.22 and 4.23 respectively. 

STEP: 

1) Vi and V2 is the volume computed at Jamtara (station 1) and Bermanghat 

(station 2). 

2) ' Volume from tributaries, (VT) = V2-V1 

3) Distribution of VT to the each tributary in the ratio of individual catchment 

area of Hiran(AT 1) and Sher(AT2). 

VT 1=(AT 1 *VT)/(AT l+AT2) 	• 

VT2=(AT2 * VT)/(AT I+AT2) 

Where, VTl ,and VT2 is the volume of tributaries Hiran and Sher. and AT1 

and AT2 is the catchment'area of Hiran and Sher. 
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4) From the Observed hydrograph at station 1 and 2, compute percentage of area, 

01 and 02.for Jamtara and Bermanghat. i.e. 01= Oil  /EOinl, and 

02=0i2/FOin2, where Oil, Oil is the value(each) of ordinate of hydrograph at 

Jamtara.and Bermanghat and EOinl, EOin2 is the total value of ordinates for 

Jamtara and Bermanghat. 

5) Distribute the percentage of area (01 and 02) inversely proportional to the 

square of distance of tributaries from the station 1 and 2.for each ordinates. 

• OT1=(D12 *01)/(D12  +D22) +(D22  *02)/(D12  +D22) 

OT2=(D12  *O1)/(D12  +D22) +(D22  *02)/(D12  +D22) 

Where D1 and D2 is the confluence distances of tributaries from Jamtara and 

Bermanghat. OTl and OT2 is the distribution of observed hydrographs 

ordinates (each) for Jamtara and Bermanghat 

6) Compute the hydrograph ordinates of tributaries Hiran(QTH) and Sher(QTS) 

i.e. 

• QTH= (OT1 *VT1)/EOT1 	• 

QTS= (OT2*VT2)/EOT2 

Where OT1 and OT2 is the distribution of observed hydrograph ordinates 

(each) , VT1 and VT2 is the volume of tributaries Hiran and Sher and EOT1 and EOT2 is 

the total, distribution of observed hydrograph ordinates. • 
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Chapter 5 

CONCLUSION 

• In this study, specific reaches in the river Narmada was attempted for flood 

routing. For the above purpose, a computer model for channel routing (Fread, 1988) 

using one — dimensional: Saint Venant equations was used. Different model parameters 

were calibrated using an indirect technique for water flow conservation. 

The important conclusion of the present study are given below: 

	

1. 	In the flood routing study from Mortakka to Mandleswar, the computer 

hydrograph matches well with the observed hydrograph at Mandleswar. 

Although the peak discharges are approximately equal, the time to peak values 

obtained by the computational model are always higher. 

	

2.' 	• The considerations for the intermediate cows are important. These can not be 

neglected. 

3. Derived generalized equations can predict the flood peak and time to attain these 

values at any intermediate location, using the information at Mortakka. 

4. The derived generalized equations are not valid for very high flows. 

5. In •the flood routing . studies from Jamtara to Bermanghat, a procedure is 

• developed to estimate the discharges in the two tributaries present between these 

two stations. 	 . 

• 6.. 	Taking the tributary flows into account the computer hydrograph at Bermanghat 

matches satisfactory with the observed hydrograph at that place. 
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• RECOMMENDATIONS 

The following recommendations as listed below for future studies': 

1. An inverse technique, using optimization method, to determine the contribution 

from the intermediate catchment area, should be development. 

2. A criteria, to choose whether the intermediate contributions are significant or not, 

have to be developed. 	 . 

3. • Effect of sediment flows in flood routing studies for specific reaches in Narmada 

• needs to be performed. 

	

4. 	A methodology to extent the results obtained with limited data, for higher flood 

values is to be developed. 
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APPENDIX - I 

Narmada river 
b.saha 

	

9.0 	•0 	3 	48 	0 	0 	1 

	

1 	48 
.1603 .1832 2151 .2493, 2880 3314 3553 3602 
3602 3529 3480 3432 3353 3243 3132 3014 
2792 2683 2860 2917 2329 2269 2249 2230 

	

2170 	2093 	2093 	2074 	2074 2055. 2036 1998 
1960 1942 1923 1886 1850 1813 1796 1742 
1671 1620 1586 1552 1485 1436 1404 1387 

	

2 	6 	2 	0 	0 	02 	0 

	

1 	2 
0.0 

	

364.0 	368.0 ` '.372.0 	376.0 	380.0 	381.8 

	

251.3 	275.6' 288.1 	340.5 	462.1 • 472.9 

	

0.0 	0.0 	0.0 	' 0.0 	0.0 . 	0.0 
111.0 
318.7 322.0 324.0 326.0 .328.0 331.3 

	

315.78 	328.4 ;.,404.2 	433.6 	528.8. 568.4 

	

0.0 	0.0 	0.0 	0.0 	0.0 	0.0 
0.060 0.060 0.060 0.'060 0.060 0.060 

1.0 

	

0 	• 0 . 

	

0.0 	0.0 	0.0 

	

63 	96 
388 426 479 535 606 677 710 720 

	

710 	708 	705 696 692, 658. 682 640 
651 686 712 628 624 625 623 615 
603 603 601 598 594 587 577 568 
563 557 547 538 527 520 509 493 
482 472 464 450 437 428 413 417 
258 294 345 399 460 528 566 574 
562 555 547 535 518 502 484 448 
432 461 470 378 369 366 363 354 

	

342 	342 	339 ' 339 ' 336 332 326 320 
317 314 308 302 296 293 285 273 

	

265 	260 ' 254 243 236 230 227 227 
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