# A STUDY OF RIVER MORPHOLOGICAL ANALYSIS OF BRAHMAPUTRA RIVER FROM DIBRUGARH TO MAJULI ISLAND

# **A DISSERTATION**

submitted in partial fulfillment of the requirements for the award of the degree

of

MASTER OF ENGINEERING

in

WATER RESOURCES DEVELOPMENT

By

UMESH PRASAD GUPTA



WATER RESOURCES DEVELOPMENT TRAINING CENTRE UNIVERSITY OF ROORKEE ROORKEE-247 667 (INDIA) December 2000

### CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the dissertation entitled, "A STUDY OF RIVER MORPHOLOGICAL ANALYSIS OF BRAHMAPUTRA RIVER FROM DIBRUGARH TO MAJULI ISLAND", in partial fulfilment of the requirements for the award of Degree of Master of Engineering WRD (Civil) submitted in the Water Resources Development Training Centre, University of Roorkee, Roorkee is an authentic record of my own work carried out since 16<sup>th</sup> July, 2000 till the date of submission under the supervision of Dr. Nayan Sharma, Associate Professor, WRDTC; Er. A.D. Pandey, Assistant Professor, Earthquake Engineering Department and Dr. S.K. Ghosh, Assistant Professor, Civil Engineering Department, University of Roorkee, Roorkee, India.

The matter embodied in this dissertation has not been submitted by me for the award of any other degree.

が Dated: December 26,2000

(UMESH PRASAD GUPTA)

This is to certify that the above statement made by the candidate is correct to the best our knowledge.

(Er. A.D. PANDEY) Assistant Professor Earthquake Engg. Deptt. University of Roorkee Roorkee – 247667

(DR. NAYANSHARMA) Associate Professor W.R.D.T.C. University of Roorkee Roorkee - 247667

(DR. S.K. GHOSH) Assistant Professor, Civil Engineering Department University of Roorkee Roorkee – 247667

## ACKNOWLEDGEMENT

I wish to express my deep sense of gratitude to Dr. Nayan Sharma, Associate Professor, WRDTC, Er. A.D. Pandey, Assistant Professor, Earthquake Engineering Department and Dr. S.K. Ghosh, Assistant Professor, Civil Engineering Department, University of Roorkee, Roorkee for all the help and guidance provided by them during the preparation of this thesis. The valuable hours of discussions and suggestions that I had with them, have really helped in supplementing my thoughts in the right direction for attaining the desired objective of completing the work in its present form. Working under their guidance will always remain a cherished experience in my memory.

I express my sincere gratitude to **Prof. Devadutta Das**, Director, Water Resources Development Training Centre for providing all the facilities required during the course of this work.

I am highly grateful to **Prof. Gopal Chauhan**, Officer-in-Charge Computer and Dr. (Smt.) Sunita Devi, Computer Programmer, Water Resources Development Training Centre, University of Roorkee for providing the required computer facilities during course of this study.

I wish to express my gratitude to **Chairman**, Central Water Commission, New Delhi – 1110066 for giving me this opportunity to study this course.

I would like to express my greatest appreciation to my wife Smt. Binita Kumari Gupta and my son Master Abhinav for their forbearance during this work.

I appreciate the help and encouragement rendered to me by all my batch mates throughout this course.

Finally, I express my sincere thanks to Sri Yash Pal, Sri Mukesh Kumar and all the staff of WRDTC for their selfless help and cooperation.

Hampli

Dated: December 2,6,2000

(UMESH PRASAD GUPTA)

(ii)

# CONTENTS

| CHA | CHAPTERS                                        |                                                              |    |  |  |
|-----|-------------------------------------------------|--------------------------------------------------------------|----|--|--|
|     | CANDIDATE'S DECLARATION<br>ACKNOWLEDGEMENT      |                                                              |    |  |  |
|     |                                                 |                                                              |    |  |  |
|     | CONTENTS<br>LIST OF FIGURES                     |                                                              |    |  |  |
|     |                                                 |                                                              |    |  |  |
|     | LIST OF TABLES<br>LIST OF NOTATIONS<br>SYNOPSIS |                                                              |    |  |  |
|     |                                                 |                                                              |    |  |  |
|     |                                                 |                                                              |    |  |  |
| 1.  | INTRODUTION                                     |                                                              | 1  |  |  |
| 2.  | REVIEW OF LITERATURE                            |                                                              | 4  |  |  |
|     | 2.1                                             | General                                                      | 4  |  |  |
|     | 2.2                                             | Review of Characteristics of Braided Channels                | 4  |  |  |
|     | 2.3                                             | Review of Literature on River Bed Profile                    | 7  |  |  |
| 3.  | METHODOLOGY                                     |                                                              |    |  |  |
|     | 3.1                                             | General                                                      | 10 |  |  |
|     | 3.2                                             | Morphological Studies                                        |    |  |  |
|     | 3.3                                             | Shape Function in River Bed Profile Modelling                |    |  |  |
|     |                                                 | 3.3.1 Isoparametric Approach                                 | 16 |  |  |
|     | 3.4                                             | Modified Shape Function for Unequally Spaced Sampling Point  | 21 |  |  |
|     | 3.5                                             | Use of Shape Function for Spatial and Temporal Interpolation | 23 |  |  |
|     |                                                 | 3.5.1 Use of Shape Function for Spatial Interpolation        | 23 |  |  |
|     |                                                 | 3.5.2 Use of Shape Function for Temporal Interpolation       | 25 |  |  |
| 4.  | DEVE                                            | ELOPMENT OF SOFTWARE                                         | 28 |  |  |
|     | 4.1                                             | Development of Software                                      | 28 |  |  |
|     | 4.2                                             | Data and Results                                             | 29 |  |  |
| 5.  | SECTIONS ADOPTED FOR STUDIES                    |                                                              |    |  |  |
|     | 5.1                                             | General                                                      | 32 |  |  |
|     | 5.2                                             | The Reach of the River Under Studies                         | 33 |  |  |
|     |                                                 |                                                              |    |  |  |

|    | 5.3                                  | Data Available for Study Reach                               | 33         |
|----|--------------------------------------|--------------------------------------------------------------|------------|
|    | 5.4                                  | Sections Adopted for Detailed Studies                        | 3 <b>3</b> |
| 6. | DISCUSSION OF RESULTS                |                                                              | 34         |
|    | 6.1                                  | General                                                      | 34         |
|    | 6.2                                  | Morphological Discussion                                     | 34         |
|    | 6.3                                  | Results of spatio-Temporal Idealization Using Shape Function | 36         |
| 7. | CONCLUSIONS AND SCOPE OF FUTURE WORK |                                                              | 54         |
|    | 7.1                                  | Conclusions                                                  | 54         |
|    | 7.2                                  | Scope for Future Works                                       | 55         |
|    | REFERENCES                           |                                                              | 56         |
|    | MAP                                  |                                                              | 58         |
|    | APPENDIX – A                         |                                                              | 59         |

# LIST OF TABLES

| Table No. Description |                          |    |
|-----------------------|--------------------------|----|
|                       |                          |    |
| 6.1                   | Water Level              | 38 |
| 6.2                   | Flow Top – Width         | 38 |
| 6.3                   | Average Bed Level        | 39 |
| 6.4                   | Thalweg                  | 40 |
| 6.5                   | Waterway                 | 41 |
| 6.6                   | Cross-sectional Areas    | 42 |
| 6.7                   | Plan Form Index          | 43 |
| 6.8                   | Calculation of B/D Ratio | 45 |

## LIST OF FIGURES

| Fig. N | No. Description                                                   | Page No. |
|--------|-------------------------------------------------------------------|----------|
| 3.1    | Schematic Diagram of Braided River for Computation of             |          |
|        | Plan Form Index                                                   | . 12     |
| 3.2    | Schematic Diagram of Braided River for Flow Geometry Index        | 13       |
| 3.3    | Schematic Diagram of Braided River for Cross-Slope                | 14       |
| 3.4    | Schematic Diagram of Braided River for Cross-Sectional Areas      | 15       |
| 3.5    | Schematic Diagram of Braided River for Thalweg                    | 15       |
| 4.1    | Flow Chart of Program NORMAL.FOR                                  | 30       |
| 4.2    | Flow Chart of Program PROFILE.FOR                                 | 31       |
| 6.1    | Spatial and Temporal Changes in Flow Top-Width from CS44 to CS65  | 5 46     |
| 6.2    | Spatial and Temporal Changes of Average Bed Level                 | 47       |
| 6.3    | Variation of Thalweg Level from CS44 to CS65                      | 48       |
| 6.4    | Shifting of Thalweg from CS44 to CS65                             | 49       |
| 6.5    | Effect of Plan Form Character from CS54 to CS65                   | 50       |
| 6.6    | B/D Ratio vs PFI from CS54 to CS65                                | 51       |
| 6.7    | Comparison of Generation of CS50 for the years 1960, 1963 and 196 | 6 52     |
| 6.8    | Comparison of CS50 for the years 1968, 1970 and 1971              | 53       |

#### LIST OF NOTATIONS

- A Cross-sectional area
- B Top width of river
- x,y Cartesion co-ordinates of cross-section
- P<sub>r</sub> r<sup>th</sup> order orthogonal polynomial
- z<sub>b</sub> Bed level
- a<sub>r.n</sub> Coefficients of cross-section
- A<sub>r,n</sub> Coefficients of cross-section
- φ Function
- { } A column vector
- [] A row vector, or rectangular or square matrix
- []<sup>-1</sup> Inverse of square matrix
- $[]^{T}, \{\}^{T}$  Transpose of a matrix or a column vector
- N Shape function
- $\xi,\eta$  Natural co-ordinate
- l Chainage along the river
- t Time in year
- Q<sub>T</sub> Constant sediment load
- d Site of the material
- Q Water discharge<sup>-</sup>
- S Longitudinal slope
- P Stream power
- $\gamma$  unit weight of water

## SYNOPSIS

The braided alluvial streams have a complex geometry posing difficulties in flow situation. This study has attempted to describe the braiding phenomenon, alluvial erosion and deposition of the Brahmaputra river. Plan Form Index reflects the fluvial land form deposition and its lower value indicates higher degree of braiding. Cross-section no. 44 processes 21 numbers of sub-channels for the year 1957 which is the highest among the all sections in the study reach, which has the minimum, plan Form Index.

Alluvial river bed profile does not follow any certain rule with respect to time and space. Modeling of river bed profile has always a challenge to the engineers and research workers in the field of river engineering. The river cross-section profiles are irregular in shape and size making it quite difficult to represent mathematically. The use of shape function has been tried in the model for interpolating cross-section profile and found better representation of the complex profiles.

#### (viii)

# **INTRODUCTION**

The Brahmaputra river with its tributaries is the largest river system of North Eastern region. Out of the total length of 2800 Km of the Brahmaputra from its source in China to its confluence with the Ganga in Bangladesh, 918 Km is in Indian territory.

The average annual rainfall figures in the Brahmaputra basin varies between 2130 mm in Kamrup district of Assam and 4140 mm in Arunachal Pradesh.

Brahmaputra has been responsible for enormous damages year after year causing human miseries and severe damage to land and property.

The Brahmaputra valley is a narrow elongated valley surrounded by hills on all sides except in the west. The valley is oriented in a East –West direction. More than 80% annual rainfall occur in a five month period of May to September.

Maximum water level recorded at Dibrugarh has been 107.95m on 29.7.1982 and minimum 100.13 m on 18.1.1973, while at Pandu the maximum has been 49.76 on 29.8.1988 and the minimum has been 40.19 m on 10.3.1978.

The highest floods recorded so far in the years 1987 and 1988. The flood of 1988 with the highest stages experienced so far corresponds approximately to a return period of 15 –20 years.

It has generally been observed in the Brahmaputra river that the maximum observed stages of different sites did not occur in the same year. Similarly, the maximum

observed discharges of different sites were not in the same year. This variation indicates that,

- a) The recorded floods at a particular site were caused by one or more flood producing tributaries above the particular site.
- b) There was wide spread heavy rainfall in a year over a particular part of the catchment of the river without synchronization of peak runoff from other parts.

The floods in Brahmaputra are due to to two distinct hydrometeorological situations of Tibet and India and as such estimation of floods on a physical approach may be difficult. At each location, the better alternative will be statistical flood frequency approach.

The Brahmaputra, one of the largest rivers of the world, has been a problem river for long. Flowing through the Assam valley it has been causing great damage, year after year by eroding away valuable land besides spilling its bank on vast areas as well as creating drainage congestion.

Erosion along the course of the Brahmaputra on either side in the plains is a common phenomenon. It has braided channel at many reaches along its traverse through the plains of Assam. The constant shifting of the river course has been continuing through ages due to excessive sediment load, steep slope and high discharge. Again the causes of high sediment may be attributed to (i) fragile nature of Himalyas, (ii) high intensity of rainfall, (iii) major earthquake and (iv) frequent land slides.

(i) the instability of river, (ii) easily erodable nature of bank and (iii) concentration of the

flow in the channel adjacement to the bank. Some of the bank tributaries also show the braiding pattern. Modelling of stream bed profile has always posed a challenge to the Engineers and the Research Workers in the field of River Engineering. Stream bed profiles modelling is helpful in the calibration of river models used subsequently for various purposes as

(a) Study of morphology

(b) Flood propagation

(c) Navigation etc.

A river profile model will help in supplementing the intermediate computation points. The will also be very much helpful to the planner in studying the river behaviour trend while planning for (i) road networks, (ii) bridge location and (iii) other river hydraulic structures such as high levee, barrages, sluices etc.

In most of the cases the stream bed profiles are irregular in shape and size making it quite difficult to represent them mathematically by means of simple functions. The complexity of the mathematical representation increases in the cases where the sections are moderately or heavily braided (alluvial river).

The present study attempts to provide means of computing of erosion, deposition, braiding indices, Thalweg changes, B/D ratio, average bed level, water ways, flow top-width. Cross-sectional profile of a river at any location within the reach in which past records of cross-sectional data are available and for any year within the period for which the measured data are available.

A lot of study is required to transform the Brahmaputra from the river of sorrow to river of prosperity.

#### CHAPTER – 2

# **REVIEW OF LITERATURE**

#### 2.1 GENERAL

The channel pattern of a reach of an alluvial river reflects the flow dynamics within the channel and the associated channel process of sediment transport and energy expenditures. Adjustments of equilibrium channel pattern may occur over a widely varying time scale. The study of river morphology attempts to describe and explain typical features of rivers. These features are formed by a three-dimensional time dependent water movement over a mobile bed and because of the complex phenomena involved, they can not usually be explained in detail; their treatment is mainly of descriptive nature.

### 2.2 REVIEW OF CHARACTERISTICS OF BRAIDED CHANNELS

Braided steams have the large and variable discharges, heavy sediment load, steeper gradients with erodible banks. Braided rivers characterized by wide and shallow cross- sectional widths. Braided channel pattern is optimal for the dissipation of excess energy in high energy streams.

Braided rivers are characterized by 'having a number of alluvial channels with bars and islands between meeting and dividing again'. Braided rivers may be invisaged as a series of channel segments, which divide and rejoin around bars in a regular or repeatable pattern. The term 'braiding' is generally taken to mean splitting of channel around bars (island). A different type of channel splitting has also been recognized and

referred to as anastomosing (Lane,1957) or anabranching (Brice, 1964). Its definition is the union of one vessel with another or the rejoining of different branches which arising from a common trunk, from a networ. 'Successive division and rejoining with accompanying islands is the important characteristic denoted by the synonymous terms braided or anastomosing (anabranching) channel segments is that they are longer than a curved channel segment around a single braid or point bar and their flow pattern behave substantially of adjacent segments around bars. Nevertheless, many braided rivers appear to be both braided and anastomosing. Lepold and Wolman (1957) found that a bar of coarse sand diverts flow to cause erosion and positive feed back then accentnates bar development and widening.

Morphological studies focused on linking channel form and process. The hydraulic and sedimentary flow regime of the river was characterized using a dominant discharge analysis. This identified a dominant range of flows which were used as reference discharges and stages for the examination of the cross-sectional and plan form features of the channels.

Wolman & Gerson (1978) extended the arguments concerning the effectiveness of sediment transport in doing work on the channel to include the morphological changes caused by erosion and deposition. Hey(1975) demonstrated that in a degrading channel the flow doing most erosion (rather than sediment transport) would be dominant flow, while an aggrading channel would adjust to the flow doing most deposition. Hence in dominant discharge calculation it is appropriate to use the flow doing most sediment transport to define the dominant discharge.

Since the salient morphological features of the channel, the bars and the chars, are composed mostly of sand (Halcrow, 1991), it is the erosion, transport and deposition of sand which is fundamental to hydraulic shaping of the channel. The silt may then be viewed as 'Wash Load' passing through the channel without playing a significant role informing it dominant discharge is rather less than bankfull in the Brahmaputra.

In the case of the Brahmaputra, the data do not support the conclusion that great floods play the major role in transporting sediment over the medium to long term. The main morphological features are adjusted to the dominant range of flows.

The most prominent and important sedimentary features of the channel are the island chars and braid bars, which give it its characteristic, multi-channel cross-section, its braided planform, and its shifting nature.

There are always two and sometimes there distinct but closely related processes involved in surface erosion of the soil: i) tearing loss of soil material; ii) transport or removal of the eroded material by sheet flow; iii) deposition of the material in transport or sedimentation. If (iii) does not occur, the eroded material will be carried into a stream.

The spots most vulnerable to erosion are the steeper portion of the hill or valley slopes, neither at the crest nor at the bottom of the hill but intermediate. All soil possess a certain resistivity to erosion, and the resitivity may be increased greatly by a vegetation cover, especially a good grass sod. The underlying soil may have a much smaller resistivity to erosion, and if the surface conditions are changed by cultivation or otherwise so as to destroy the surface resistance, erosion will begin on land which has not hither to been subjected to it. Erosion by aquous agencies involves three processes:

(i) dislodgment of tearing loose of soil material and setting it in motion (this is

called entrainment); (ii) transport of material by fluid motion; (iii) sedimentation or deposition of the transported material.

#### 2.3 REVIEW OF LITERATURE ON RIVER BED PROFILE

A Summary of Some of the Literature Available in as follows:

i) CHEN [5]

Chen's work was primarily concerned with the mathematical modelling of water and sediment routing in natural channels. However the lateral section computations required that a polynomial be fitted to the crosssection of Lower Mississippi for computation of flow depth. A power series was adopted for the representation of the river bed profile.

In order to evaluate the best fit polynomial, the least square technique was adopted. The resulting polynomials were:

(1) A = 
$$0.00826657 y^4 + 2.19563y^3 - 17.0103y^2 - 302.659y - 38.829$$
 to  
evaluate the cross-sectional area of representative cross-section.

(2) B = 
$$0.0192924y^4 + 1.04245y^3 - 10.7620y^2 + 69.8449y + 154.655$$
 to  
evaluate the top width of the representative cross-section.

#### 2) JANSEN [12]

Jansen's morphological studies on non tidal rivers emphasize the need for improving the approximation of the river bed profile by the use of orthogonal polynomials rather than simple polynomials. In order to achieve this objective the legendre polynomials were used.

Each measured cross-section were matched with a liner series of orthogonal polynomials, Pr(y) through least square method. In this y is measured

perpendicular to the river axis. Thus the bed leve  $Z_b(y)$  is expressed by:

$$Z_{b}(y) = a_{0}P_{0}(y) + a_{1}P_{1}(y) + a_{2}P_{2}(y) + \dots + a_{r}P_{r}(y) + \dots + a_{n}P_{n}(y).$$

Legendre polynomials are suitable in this respect as they are defined on a restricted interval (-1 to +1 usually). If y values are normalized by means of the width  $B_s$ , their shapes are adequate to describe the river cross-sections. The parameters  $a_r$  for any cross-section n are linked with the curvature C in a cross-section P upstream of n. A linear relation was assumed:

$$a_{r,n} = A_{o,r} + \sum_{p=1}^{P_n} A_{p,r} C_{n-p+1}$$

where the co-efficient  $a_{r,n}$  belong to a particular cross-section n, the co-efficient A apply to the whole river reach. Hence by determining the co-efficient A from the existing river geometry ( $Z_b$  and C), and by determining a with the help of these co-efficient, the value of  $Z_b$  can be obtained.

## 3) HARBHAJAN SINGH [13]

Subsequent to the earlier development in the direction of the riverbed profile modelling, Sri Harbhanjan Singh in his work examined the possibility of applying Fourier Approximation to the problem addressed. He examined the morphology of KOSI river bed.

The adopted section is heavily braided and therefore the approximation or the computed profile shows a poor agreement with the field measurement highlighting the fact that compromise has to be effected in numerical modeling with the order of acceptable error.

#### 4) TULUS PRIVADI [14]

In his special problem titled "Stream bed modeling using Legendre Polynomial" he has tried to approximate the measured cross-sectional profile of the river Brahmaputra with the help of Legendre Polynomial. In his work he showed that approximately eleventh order Legendre polynomial gives satisfactory representation of the cross sectional profile.

#### 4) **DAMBREAK MODEL[15]**

The DAM BREAK MODEL developed by U.S.Army Corps of Engineers which is comprehensive model for studying the effect of dam break in the down stream reach from the dam, still use linear interpolation for generating any intermediate cross section. The cross sectional interpolation procedure use by the model performs linear interpolation of elevation on width with distance between adjacent cross sections The manner of interpolation, while computationally simple may not give results close to the actual one due to the fact that the linear interpolation fails in providing smooth transition of section at measured location which is the case in the field.

#### 6) G.P.SINGH [16]

In his M.E. Dissertation titled "Spatio-Temporal Idealisation of Typical Cross Section of a Large Braided Alluvial River", he has tried to approximate the measured cross-sectional profile of the river Brahmaputra with the help of shape functions.

# **METHODOLOGY**

#### 3.1 GENERAL

Deposition in the bed is accompanied by channel widening, while channel bed erosion is usually associated with a reduction in channel width. The amount of sediment deposition or removal along the banks directly affects the width change.

For a gradually varied flow, the total stream power or the rate of total energy expenditure of a stream reach is given by

 $P = \int \gamma Q S dx$ 

The concept of minimum stream power criterion for a gradually varied flow, may be stated that the stream adjusts itself in such a way that its total stream power is minimised subject to certain physical constraints such as rigid banks, bed rock outcrops, sediment transport rate. In general braided streams are steeper, wider and shallower. An alluvial stream over a period of time attains an equilibrium condition, this is expressed as

 $S = Q_T d/Q$  (Lanes balance analogy)

Where,

 $Q_{\rm T}$  = constant sediment flow

d = size of the material

Q = water discharge

S =longitudinal slope

 $Q_T/Q$  can be considered as sediment concentration. In general, with increase in distance, this concentration decreases, also there is a decrease in sediment size d with distance as result of sorting and abrasion. Examination of stream profiles show that the slope is greatest near the source, decreasing more or less regularly as the river follows its course. Such reduction is slope corresponds to longitudinal profile which is concave upwards.

Braided pattern develops as a result of overloading of sediments. Consider a straight channel in which sediment load is increased for a given Q. As a result, slope and velocity will increase and depth will decrease. Increase in velocity will widen the channel which will further reduce the depth.

#### **3.2 MORPHOLOGICAL STUDIES**

From the available input data, the following parameters were evaluated for the concerned reach :

(i) Magnitude of Thalweg

(ii) Shifting of Thalweg

(iii) Change in cross-sectional area

(iv) Deposition / erosion

(v) Change in top width.

(vi) Average bed level

(vii) Width of water way

(viii) Longitudinal slope / Thalweg longitudinal slope.

(ix) Plan form Index

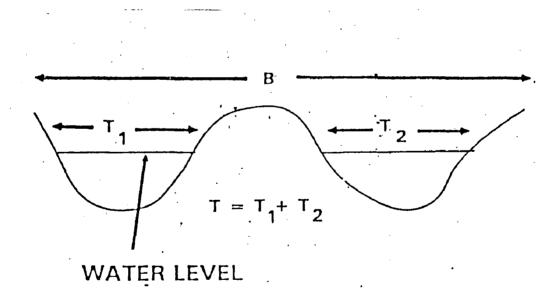
(x) B/D ratio.

### **COMPUTATION OF BRAID INDICATORS**

The braiding indices proposed by Sharma (1995) provide a better logical and quantitative description of the braiding phenomenon and can be computed as below :

#### Plan Form Index (PFI)

$$PFI = \frac{\frac{T}{B}x100}{N}$$


Where,

T = flow top width

B = overall river width

N = Number of braided channels.

Plan Form Index represents the percentage of actual flow width over the overall river width per braid channel. Its lower value is indicative of higher degree of braiding.





# FLOW GEOMETRY INDEX (FGI)

Its higher value indicates higher degree of braiding

$$FGI = \frac{\sum d_i * X_i}{R * T} * N$$

Where  $d_i$  and  $X_i$  are depth and width of submerged sub-channel.

T = flow top width of stream =  $\sum T_i$ 

R = hydraulic mean depth of the stream

= Number of braided channels.

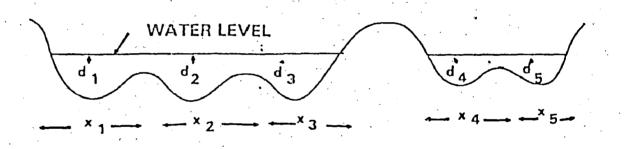
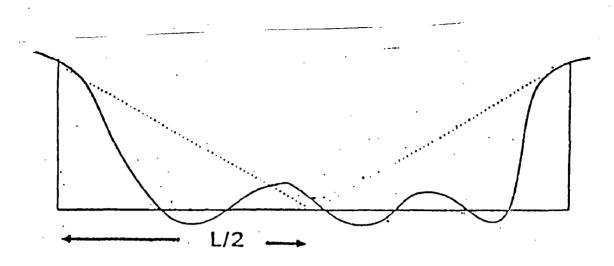
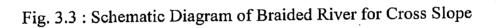



Fig. 3.2 : Schematic Diagram of Braided River for Flow Geometry Index


#### **Cross Slope**


Ν

Its higher value indicates higher braiding intensity

 $Cross slope = \frac{L/2}{Average bank level - Average bed level}$ 

Where, L = the channel bank width.





## **B/D** Ratio

Its higher value indicates higher degree of braiding

B = overall width

D = Average depth.

The following thresholds were identified by Sharma (1995) to provide a classification for Brahmaputra river.

| Parameter       | Range for Moderately<br>Braided | Range for highly braided |
|-----------------|---------------------------------|--------------------------|
| B/D             | $350 \le B/D \le 1000$          | B/D > 1000               |
| Plan Form Index | $4 \le PFI \le 19$              | PFI < 4                  |

# COMPUTATION OF CROSS-SECTIONAL AREAS

The water level in the Brahmaputra river assumed at the lowest reduced level at the ends of the cross-sectional profile. The areas between the water level and the crosssectional profile computed by the method of trapezoidal rule which has been shown in the shaded portion.

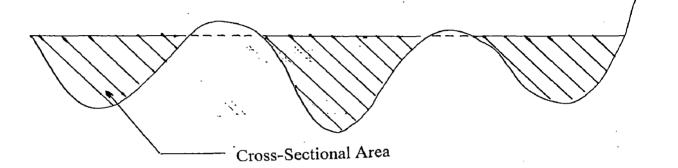



Fig. 3.4 : Schematic Diagram of Braided River for Cross-Sectional Area

#### THALWEG

The lowest reduced level of the cross-sectional profile gives the location of Thalweg and corresponding reduced level gives the reduced level of Thalweg.

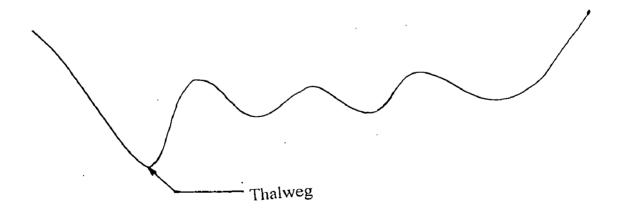
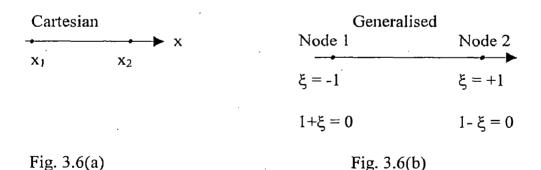



Fig. 3.5 : Schematic Diagram of Braided River for Thalweg

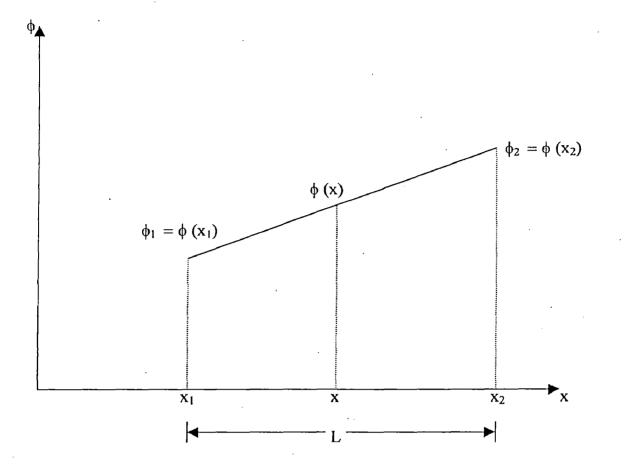
#### 3.3 SHAPE FUNCTIONS IN RIVER BED PROFILE MODELLING

### 3.3.1 Isoparametric Approach

The term "isoparametric means, same parameter". Because either displacements or coordinates can be interpolated from nodal values.


The principle of the isoparameteric is to map a `parent' element in the  $\xi$ - $\eta$  plane to the curvilinear element in x-y plane, the sides of which pass through the choosen nodes.

The popularity of isoparametric derives in part from the fact that, when one element has been thoroughly understood, it is not difficult to extend one's understanding to other isoparametric elements. Linear elements has straight sides but quadratic and higher order isoparametric elements may have either straight or curved sides which makes them very useful for modelling of curved structures.


Isoparametric co-ordinates are type of "intrinsic" or "natural" co-ordinate system.

#### **ONE DIMENSIONAL ELEMENT**

The simplest case is that of two noded element as shown in the fig. below



 $\xi$  = It is a natural or intrinsic coordinate. Ends of the line at  $\xi = \pm 1$ , regardless of the physical length L of the line.





$$\phi(x) = \phi(x_1) + \frac{\phi(x_2) - \phi(x_1)}{x_2 - x_1} x$$

$$= \phi(x_1) + \frac{\phi(x_2)}{L} x - \frac{\phi(x_2)}{L} x$$

$$= \left(1 - \frac{x}{L}\right) \phi(x_1) + \frac{x}{L} \phi(x_2)$$

$$= N_1 \phi(x_1) + N_2 \phi(x_2)$$

This satisfies the conditions: -

$$\sum \phi_i = 1$$
$$\phi_i (\mathbf{x}_j) = 0$$

$$\phi_i (\mathbf{x}_i) = 1$$
  
 $\therefore N_1(\xi) = \frac{1}{2} (1-\xi)$   
 $N_2(\xi) = \frac{1}{2} (1+\xi)$ 

Where,  $N_1, N_2$  are the shape functions. The function value  $\phi^e$  is given by

 $\phi^{e} = \phi(\xi) = N_{1}(\xi) \phi_{1} + N_{2}(\xi) \phi_{2}$ 

Where  $\phi_1$  and  $\phi_2$  are functional values at nodes 1 and 2.

For three noded element as shown below:

Cartesian

## Generalised

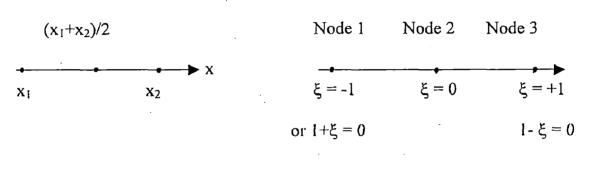
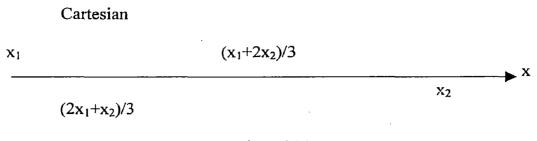



Fig. 3.8(a)


Fig. 3.8(b)

$$\phi(\xi) = N_1(\xi) \phi_1 + N_2(\xi) \phi_2 + N_3(\xi) \phi_3$$

 $\phi_1$ ,  $\phi_2$ ,  $\phi_3$  are functional values at nodes 1 and 2 and 3.

$$N_{1}(\xi) = \frac{\xi(1-\xi)}{-2}$$
$$N_{2}(\xi) = (1+\xi)(1-\xi)$$
$$N_{3}(\xi) = \frac{\xi(1+\xi)}{2}$$

## For Four Noded Element as shown in the Fig below



| Generalizied |                            |                                           |                                       |                           |
|--------------|----------------------------|-------------------------------------------|---------------------------------------|---------------------------|
|              | Node-1                     | Node-2                                    | Node-3                                | Node-4                    |
| or,          | $\xi = -1$<br>1+ $\xi = 0$ | $\xi = -1/3$ $\xi = 0$<br>$1/3 + \xi = 0$ | $\xi = +1/3$<br>or, 1/3- $\xi = 0$ or | $\xi = 1$<br>1- $\xi = 0$ |



The function  $\phi^{e} = N_{1}(\xi) \phi_{1} + N_{2}(\xi)\phi_{2} + N_{3}(\xi)\phi_{3} + N_{4}(\xi)\phi_{4}$ 

Where,  $\phi_1$ ,  $\phi_2$ ,  $\phi_3$  and  $\phi_4$  are function value at node 1, 2, 3, and 4.

$$N_{1}(\xi) = -\frac{9}{16}(1+\xi)(1/3-\xi)(1-\xi)$$
$$N_{2}(\xi) = \frac{27}{16}(1+\xi)(1/3-\xi)(1-\xi)$$
$$N_{3}(\xi) = \frac{27}{16}(1+\xi)(1/3+\xi)(1-\xi)$$
$$N_{4}(\xi) = \frac{(1+\xi(1+3\xi)(3\xi-1))}{16}$$

## Two –Dimensional element or plane isoparametric element :

Consideran element of arbitrary shape as shown in Figure as below :

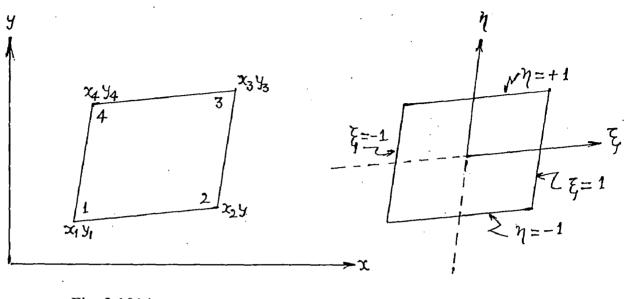



Fig. 3.10(a)

Fig. 3.10(b)

The element has a straight side but is otherwise of arbitrary shape and may be considered as a distortion of a parent rectangular element. Adopting mapping function as:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \\ \vdots \\ \vdots \\ \vdots \\ x_4 \\ y_4 \end{bmatrix}$$

where,

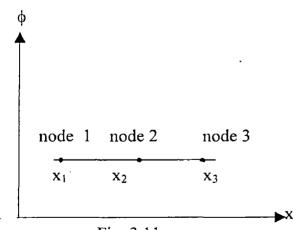
N<sub>1</sub> 
$$(\xi, \eta) = \frac{(1+\xi)(1-\eta)}{4}$$

$$N_{2}(\xi,\eta) = \frac{(1+\xi)(1-\eta)}{4}$$

$$N_{3}(\xi,\eta) = \frac{(1+\xi)(1+\eta)}{4}$$

$$N_{4}(\xi,\eta) = \frac{(1-\xi)(1+\eta)}{4}$$
so that  $N_{i} = 1$  for  $\xi_{j}, \eta_{j}$ 

$$= 0$$
 for  $\xi_{i}, \eta_{i}$ 


# 3.3 MODIFIED SHAPE FUNCTION FOR UNEQUALLY SPACED SAMPLING POINTS

It is not necessary that to define a shape function the nodes should be equi-spaced. When the nodes are un-equally spaced then shape function gets slightly modified.

 $\mathbf{i} = \mathbf{j}$ 

i≠j

For example considering three unequally spaced nodes as shown in the fig. below.

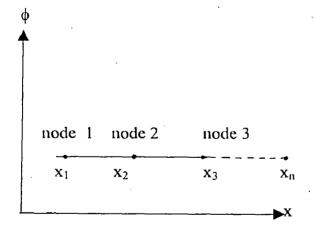




If the functional value of function  $\phi(x)$  at node 1 is  $\phi_1$ , at node 2 is  $\phi_2$  and at node 3 is  $\phi_3$  then the functional value at any point x can be expressed as :

$$\phi(\mathbf{x}) = \mathbf{N}_1 \,\phi_1 + \mathbf{N}_2 \,\phi_2 + \mathbf{N}_3 \,\phi_3$$

where  $N_1 N_2$  and  $N_3$  are the shape functions value at node 1, 2 and 3 corresponding to point x and are expressed as follows :


$$N_{1}(x) = \frac{(x - x_{2})(x - x_{3})}{(x_{1} - x_{2})(x_{1} - x_{3})}$$
$$N_{2}(x) = \frac{(x - x_{1})(x - x_{3})}{(x_{2} - x_{1})(x_{2} - x_{3})}$$

$$N_{3}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{3} - x_{1})(x_{3} - x_{2})}$$

Each of the N<sub>i</sub> is polynomial of degree two. It is clear from above that

$$N_i = 1$$
 for  $x = x_i$   
= 0 for  $x = x_j$  where  $i \neq j$ 

Taking n unequally spaced nodes :





Assuming that some function  $\phi(x)$  has known values at points  $(\phi_1, \phi_2, \phi_3 \dots, \phi_n)$ . The points or nodes are not uniformly spaced. Then  $\phi$  at any point x is given by :

 $\phi(\mathbf{x}) = N_1 u_1 + N_2 u_2 + N_3 u_3 + \dots + N_n u_n$ 

where,

$$N_{1}(x) = \frac{(x - x_{2})(x - x_{3})\dots(x - x_{n})}{(x_{1} - x_{2})(x_{1} - x_{3})\dots(x_{1} - x_{n})}$$

$$N_{2}(x) = \frac{(x - x_{1})(x - x_{3})\dots(x - x_{n})}{(x_{2} - x_{1})(x_{2} - x_{3})\dots(x_{2} - x_{n})}$$

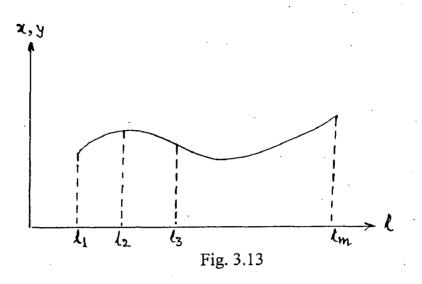
$$N_{3}(x) = \frac{(x - x_{1})(x - x_{2})\dots(x - x_{n})}{(x_{3} - x_{1})(x_{3} - x_{2})\dots(x_{3} - x_{n})}$$
.

$$N_{n}(x) = \frac{(x - x_{1})(x - x_{2})\dots(x - x_{n-1})}{(x_{n} - x_{1})(x_{n} - x_{2})\dots(x_{n} - x_{n-1})}$$

Each of the  $N_i$  is a polynomial of degree n - 1 and

 $N_i = 1$  for  $x = x_i$ 

= 0 for  $x = x_i$  where  $j \neq i$ 


#### 3.5 USE OF SHAPE FUNCTION FOR SPATIAL AND TEMPORAL

#### **INTERPOLATION**

#### 3.5.1 Use of Shape Function for Spatial Interpolation

The river cross-sections are generally measured during a particular year is normalized to n nos. of data points i.e.  $(x_1, y_1)$ ,  $(x_2, y_2)$ , ....  $(x_n, y_n)$ , then for spatial interpolation of value of  $x_1$  and  $y_1$  for i = 1, 2 .... n at any intermediate location can be determined by the use of shape functions.

The measured chainage can be expressed on one axis and x and y as function on another axis.



The function x(1) and y(1) can be expressed in terms of shape function, as well as the known values of function x(1) and y(1) at  $l_1, l_2, l_3 \dots l_m$  as explained in para 3.2.

 $\begin{aligned} y_1(1) &= N_1 y_{1,1} + N_2 \ y_{1,2} + N_3 y_{1,3} + \dots + N_m y_{1,m} \\ x_2(1) &= N_1 x_{2,1} + N_2 \ x_{2,2} + N_3 x_{2,3} + \dots + N_m x_{2,m} \\ y_2(1) &= N_1 y_{2,1} + N_2 \ y_{2,2} + N_3 y_{2,3} + \dots + N_m y_{2,m} \\ & \ddots \\ & \ddots \\ & \ddots \\ & x_n(1) &= N_1 x_{n,1} + N_2 \ x_{n,2} + N_3 x_{n,3} + \dots + N_m x_{n,m} \\ & y_n(1) &= N_1 y_{n,1} + N_2 \ y_{n,2} + N_3 y_{n,3} + \dots + N_m y_{n,m} \end{aligned}$ 

 $x_1(1) = N_1 x_{1,1} + N_2 x_{1,2} + N_3 x_{1,3} + \dots + N_m x_{l,m}$ 

or,

$$\mathbf{x}_{1}(1) = \sum_{j=1}^{m} \mathbf{N}_{j} \mathbf{x}_{i,j} \quad \& \mathbf{y}_{1}(1) = \sum_{j=1}^{m} \mathbf{N}_{j} \mathbf{y}_{i,j}$$

where; first subscript of x and y indicates the normalized coordinates point number and second subscript indicates the cross-section location number and  $N_1, N_2 \dots N_m$  are shape function given below :

$$N_{1} = \frac{(1 - l_{2})(1 - l_{3})....(1 - l_{m})}{(l_{1} - l_{2})(l_{1} - l_{3})....(l_{1} - l_{m})}$$

$$N_{2} = \frac{(1 - l_{1})(1 - l_{3})....(1 - l_{m})}{(l_{2} - l_{1})(l_{2} - l_{3})....(l_{2} - l_{m})}$$

$$N_{m} = \frac{(l-l_{1})(l-l_{2})....(l-l_{m-1})}{(l_{m}-l_{1})(l_{m}-l_{3})....(l_{m}-l_{m-1})}$$

Thereby using the above shape functions, the value of  $(x_i, y_i)$  at given location can be interpolated knowing the value of corresponding  $(x_i, y_i)$  at given location can be interpolated knowing the value of corresponding  $(x_i, y_i)$  at known locations.

#### 3.5.2 Use of Shape Function for Temporal Interpolation

The cross-section measured in different years at same location can be interpreted with use of time co-ordinate. The variation of  $x_i$  and  $y_i$  with respect to time at a particular location can be expressed as follows :

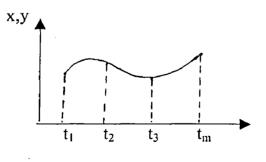



Fig. 3.14

Here  $t_1$ ,  $t_2$ ,  $t_3$  .....  $t_m$  are the years in which cross-sections have been measured in field.

If each cross-sectional data is noramlized into n number of data points i.e.  $(x_1,y_1)$ ,  $(x_2,y_2) \dots (x_n, y_n)$  then for temporal interpolation of value of  $x_i$  and  $y_i$  in any year t ( $t_i \le t \le t_m$ ) can be determined by expressing time on one axis and x or y on the other as a function of time t.

The value of the function x(t) and y(t) can be interpolated at any time t (year) with the help of shape function as well as the known value of the section at time  $t_1, t_2, t_3..., t_m$ .

Interpolating expression will be as follows

 $x_1(t) = N_1 x_{1,1} + N_2 x_{1,2} + \dots + N_m x_{l,m}$ 

 $y_1(t) = N_1 y_{1,1} + N_2 y_{1,2} + \dots + N_m y_{l,m}$ 

 $x_2(t) = N_1 x_{2,1} + N_2 x_{2,2} + \dots + N_m x_{2,m}$ 

 $y_2(t) = N_1 y_{2,1} + N_2 y_{2,2} + \dots + N_m y_{2,m}.$ 

 $x_n(t) = N_1 x_{n,1} + N_2 x_{n,2} + \dots + N_m x_{n,m}$ 

 $y_n(t) = N_1 y_{n,1} + N_2 y_{n,2} + \dots + N_m y_{n,m}.$ 

where, the first subscript is to indicate the ith point of the normalized data and second subscript is to indicate the time (year) in which cross-sections were measured.

 $N_1, N_2, N_3 \dots N_m$  are expressed below.

$$N_{1}(t) = \frac{(t - t_{2})(t - t_{3})....(t - t_{m})}{(t_{1} - t_{2})(t_{1} - t_{3})...(t_{1} - t_{m})}$$

$$N_{2}(t) = \frac{(t - t_{1})(t - t_{3})....(t - t_{m})}{(t_{2} - t_{1})(t_{2} - t_{3})....(t_{2} - t_{m})}$$

$$N_{m}(t) = \frac{(t - t_{1})(t - t_{2})....(t - t_{m-1})}{(t_{m} - t_{1})(t_{m} - t_{2})....(t_{m} - t_{m-1})}$$

Therefore by using these shape function and knowing the value of  $x_i$ ,  $y_i$  for known /ears, the values of  $x_i$ , and  $y_i$  for a given time t can be interpolated easily.

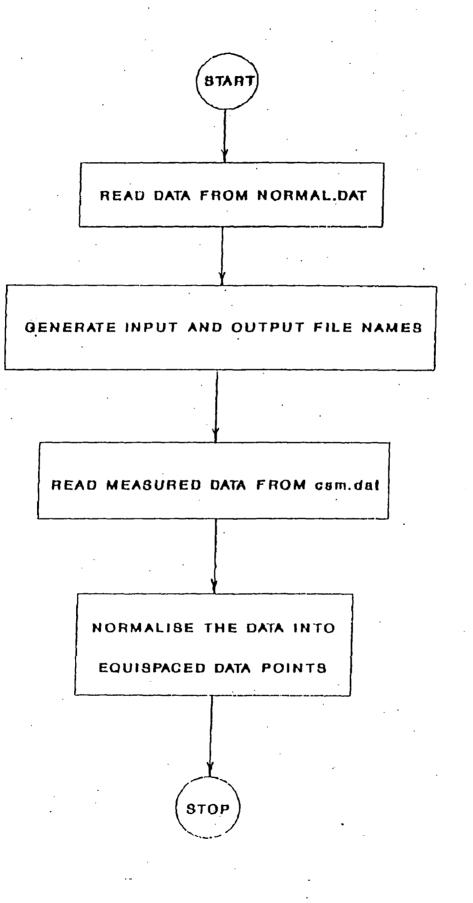
#### DEVELOPMENT OF SOFTWARE

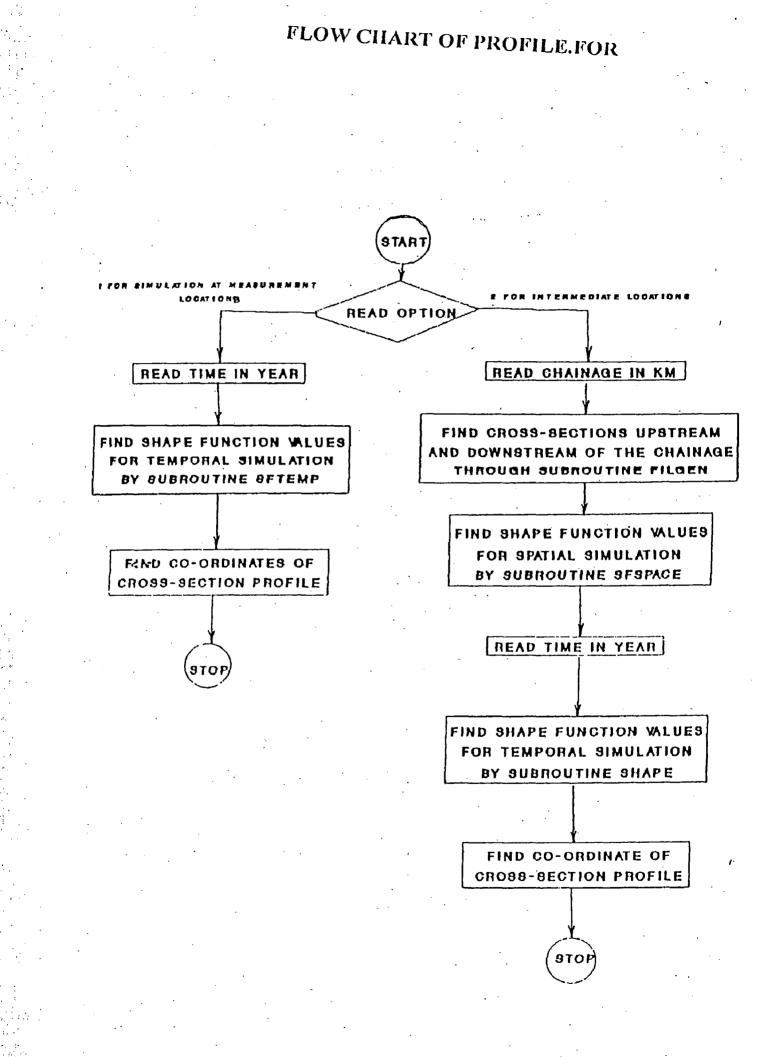
#### 4.1 DEVELOPMENT OF SOFTWARE

The software program NORMAL.FOR and PROFILE.FOR have been developed in FORTRAN programming language for the spatio-temporal simulation of cross section profile of river. The salient features of the program are discussed below :

#### NORMAL.FOR

NORMAL.FOR is the program which can be run on DOS and UNIX environments. This program reads the data from input file csm.dat and converts the data into desired number of equispaced data points. The output (results) from this program comes as nsm.dat. This program is used for computing the y co-ordinates corresponding to the normalized equispaced x co-ordinates. For finding value of y at any location other than the measured locations, it carries out Lagrangian interpolation.


#### **PROFIL.FOR**


PROFILE.FOR is also developed in FORTRAN language and can be run on DOS and UNIX environments. This program uses normalized data of cross sections which are obtained as output from the program NORMAL.FOR for computing the intermediate cross section profile. The input data files are nsm.dat for this program and it gives output in file named cross.shape.

#### 4.2 DATA AND RESULTS

The sample data is restricted so it has not been produced here. Result files are shown in Appendix -A.

#### FLOW CHART OF NORMAL.FOR





#### SECTIONS ADOPTED FOR STUDIES

#### 5.1 GENERAL

For the present studies and development of model the data of river Brahmaputra have been adopted. The Brahmaputra is one of the largest rivers in the world. It passes through Tibet, India and Bangladesh before its confluence with Bay of Bengal. The total watershed area is 5,80,000 sq.km of which 2,93,000 sq.km lies in Tibet (China), 2,40,000 sq.km in India and Bhutan and 47,000 sq.km in Bangladesh. Its total length is 2997 km out of which 1625 km is in Tibet, 918 km in India and 354 km in Bangladesh. Out of 918 km of its length in India, 640 km is in Assam.

The length of 640 km which lies in Assam begins at Dibrugarh and ends at Indo-Bangladesh Border. In this reach its width ranges from 3 km to 20 km. At most of the places it is highly braided. It will be highly expensive to measure the cross-section at close intervals. To avoid the foregoing difficulties, 64 typical locations were selected in the entire reach of 640 km based on the configuration and local peculiarity of the river. The distance between consecutive locations of cross-sections range from 5.5 km to 17 km. The detailed measurement of cross-section at these locations was done for the first time in 1957 followed by hydrographic surveys in 1971, 1977, 1981 and 1988. In an individual cross-section, the number of measurement points vary from 15 to 225. The zero chainage for all references to the sections lies in Bangladesh and all other chainage measurement have been done in the upstream direction from that point.

#### 5.2 THE REACH OF THE RIVER UNDER STUDIES

The reach of the River for the model application lies between Dibrugarh to Majuli Island covering an distance of 216.76 km along the length of the river from cross-section no. 65 to 44. Mostly, the river flows in braided channels between alluvial banks. During floods, the river becomes one sheet of water form bank to bank.

#### 5.3 DATA AVAILABLE FOR STUDY REACH

The data available in the form of chainage in m from the left bank of the Brahmaputra river and corresponding reduced level for the years 1957, 1971, 1977, 1981 and 1988. The distance between the cross-sections is also available. These data are restricted and obtained from Brahamaputra Board, Govt. of India for research purposes, therefore input data has not been produced here.

#### 5.4 SECTIONS ADOPTED FOR DETAILED STUDIES

For the purpose of carrying out detailed studies of Majuli Island ranging from cross-sections 44 to 54 and cross-sections 57, 61 and 65 in the upstream of it for the years 1957, 1971, 1977, 1981 and 1988. Year 1957 was taken as base year.

#### **DISCUSSION OF RESULTS**

#### 6.1 GENERAL

In order to carry out detailed analysis of river plan-form, the total length of the Brahmaputra from Dibrugarh to Majuli Island (216.76 km along river), has been considered. The Majuli Island is between the CS 44 and CS 54 which has been given the special attention for the analysis because it is under the constant attack of erosion and deposition by Brahmaputra river. Some lakhs of population are living on this island.

For the above defined reach, water level (Table 6.1), flow top-width (Table 6.2 and Fig. 6.1), average bed level (Table6.3 and Fig. 6.2); Thalweg (Table 6.4 and Fig. 6.3 and Fig. 6.4), water way (Table 6.5), cross-sectional area (Table 6.6), plan form index (Table 6.7 and Fig. 6.5), B/D Ratio (Table 6.8) and variation of PFI with B/D ratio have been studied for the years 1957, 1971, 1977, 1981 and 1988. Years 1957 taken as base year for comparison point of view.

In addition to the above study, shape function for the above reach has also been developed, through which we can predict the river bed profile within the reach for the years between 1957 and 1988.

#### 6.2 MORPHOLOGICAL DISCUSSION

From Fig. 6.1, flow top-width of CS 44 increases by about 3 km in the year 1988 from the year 1981 (Table 6.2 and Fig. 6.1). At this point PFI is also very high with 21 nos. of channels which suggests greater braiding tendency. The abrupt variation of flow top width also observed for cross-section 45 between the years 1957 and 1971, for cross-section 53 between the years 1957 and 1971.

for cross-section 53 between the years 1957 and 1971.

Cross-section 54 also abruptly widened in the year 1977 from 1971

In the upstream of Majuli Island at cross-section 57, the flow top-width abruptly decreases from the year 1977 to 1981. At the cross-section 61 (near Dibrugarh), the flow top-width abruptly decreases from 1957 to 1971

From the Fig. 6.2, it is clear that average bed level is almost not varying.

From the Fig. 6.3 and Table 6.4, it is observed that there is lowering of Thalweg level from upstream to downstream as expected. It is also observed that Thalweg level is almost the same except at cross-section 54 for the year 1977 which is due to heavy erosion in 1977 which is also supported by the Table 6.3.

From the Fig. 6.4, it is found that at different cross-section, Thalweg location is continuously and slowly changing. It may be due to alternate effect of erosion and deposition, braiding character etc. At cross-section 61 there is abrupt thalweg shift for all years.

Form the Table 6.6. It is clear that cross-sections 53 and 54 are under erosion, cross-section 50 is under deposition and rest cross-sections are either under deposition or erosion with reference to the base year 1957.

From the Fig. 6.5, it is found that the PFI values are very large for the crosssection 45 in the years 1971, 1981; cross-section 46 in the year 1971; for cross-sections 52,53; for the year 1971 and hence these cross-sections do not posses braiding tendency in those years.

The plot also indicates that CS 44 for the year 1988; CS 45 for the year 1988; CS 47 for the years 1971, 1988; CS 48 for the year 1988; CS 49 for the year 1988; CS 53 for

the year 1957 and CS 54 for 1957 are highly braided.

The graphical plot of plan Form Index with B/D ratio vide Fig. 6.6, which is exponential in nature for the Brahmaputra. With increasing width to depth ratio, plan Form Index displays a decreasing trend there by registering an increasing level of braiding.

The plot was prepared as show in the Fig. 6.6 and best fit line was drawn for obtaining the functional relationship as given below.

 $PFI = 5408.2 (B/D)^{-0.6315}$ 

Correlation coefficient =  $\sqrt{0.4863}$  = 0.697

Here, correlation coefficient is greater than 0.6, hence it indicates good relation.

PFI = plan Form Index

B/D = overall width / Av. Depth

Where,

It is an established fact that relatively steeper gradients are indicated in braided reaches and their magnitude registers increase with rise in intensity of braiding.

### 6.2 RESULTS OF SPATIO-TEMPORAL IDEALIZATION USING SHAPE FUNCTION

Spatio-temporal idealization is done to simulate a profile at any intermediate location and for any intermediate year between the years of survey. A few prifole have been simulated through this and have been plotted in Fig. 6.7 and 6.8 for the cross-section No. 50 for the years 1960, 1963, 1966, 1968, 1970, 1971 and we can see how the deposition is taking place at cross section 50 in the year 1971 with respect to year 1957. This result is also supported by Table 6.6.

The simulated profile shows a smooth transition between two section and it tries

to capture all the local peculiarity and undulation of the natural profile. The simulated profile appears to be very close to the natural profile.

The model being data based and is developed utilizing shape functions, it has got a big advantage of reproducing exactly the same profile as measured one when the input data, the chainage and the year are specified same as that of measured location and year.

#### TABLE 6.1

| Cross    |        | W      | ater level (met | tre)   |        |
|----------|--------|--------|-----------------|--------|--------|
| sections | 1957   | 1971   | 1977            | 1981   | 1988   |
| 44       | 76.26  | 74.355 | 73.455          | 77.06  | 76.68  |
| 45       | 77.357 | 81.485 | 81.025          | 81.1   | 78.62  |
| 46       | 80.223 | 85.3   | 82.65           | 82.4   | 82.2   |
| 47       | 83.698 | 79.8   | 83.05           | 84.61  | 81.15  |
| 48       | 85.65  | 82.6   | 82.6            | 82.6   | 83.25  |
| 49       | 83.79  | 86.35  | 83.65           | 86.25  | 83.21  |
| 50       | 86.11  | 87.31  | 84.15           | 84.6   | 84.25  |
| 51       | 87.11  | 90.57  | 87.23           | 88.34  | 56.79  |
| 52       | 90.62  | 90.315 | 90.31           | 90.31  | 88.71  |
| 53       | 84.94  | 93.75  | 94.18           | 88.8   | 90.4   |
| 54       | 90.625 | 92.31  | 94.6            | 96.6   | 94.1   |
| 57       | 99.66  | 98.06  | 96.55           | 97.2   | 101.4  |
| 61       | 107.8  | 107.86 | 109.8           | 110.2  | 109.8  |
| 65       | 118.95 | 122.14 | 122             | 122.37 | 114.65 |

#### WATER LEVEL

#### **TABLE 6.2**

#### FLOW TOP-WIDTH

| Cross –  |         | T       | op Width (met | re)   |        |
|----------|---------|---------|---------------|-------|--------|
| sections | 1957    | 1971    | 1977          | 1981  | 1988   |
| 44       | 10790   | 10140   | 10720         | 10300 | 13200  |
| 45       | 8704    | 6760    | 10000         | 9450  | 9688.5 |
| 46       | 12620.5 | 12400   | 12340         | 12270 | 12400  |
| 47       | 13205.6 | 13200   | 13300         | 13300 | 13425  |
| 48       | 7634    | 7600    | 8320          | 8260  | 10045  |
| 49       | 7659.6  | 7600    | 7655          | 7660  | 7760   |
| 50       | 6657    | 6640    | 6670          | 6670  | 6773   |
| 51       | 10628   | 10096   | 10980         | 10910 | 11270  |
| 52       | 9611    | 9690    | 12440         | 13010 | 12380  |
| 53       | 15244   | 11875   | 13800         | 15280 | 15470  |
| 54       | 9270    | 9520    | 11740         | 11610 | 11713  |
| 57       | 8820    | 10331.2 | 12850         | 10900 | 9500   |
| 61       | 11719   | 14926   | 14970         | 14480 | 13900  |
| 65       | 7949    | 8080    | 8084          | 8200  | 7200   |

#### TABLE 6.3

#### AVERAGE BED LEVEL

| Cross –  |       | Avera | ge Bed Level ( | metre) |        |
|----------|-------|-------|----------------|--------|--------|
| sections | 1957  | 1971  | 1977           | 1981   | 1988   |
| 44       | 73.7  | 72.5  | 73.5           | 74.6   | 76.9   |
| 45       | 75.6  | 78.7  | 79.2           | 78.9   | 78.6   |
| 46       | 78.6  | 80.7  | 79.9           | 79.9   | 77.6   |
| 47       | 80.6  | 80.8  | 80.6           | 81.1   | 81.4   |
| 48       | 83.1  | 80.3  | 80.6           | 81.3   | 82.6   |
| 49       | 82.2  | 83.2  | 82.3           | 83.2   | 83.5   |
| 50       | 82.4  | 83.5  | 83.7           | .83.3  | 81.8   |
| 51       | 85.3  | 88.2  | 85.8           | 85.5   | 85.9   |
| 52       | 87.1  | 86.2  | 87.6           | 87.0   | 87.4   |
| 53       | 87.7  | 88.4  | 88.5           | 88.4   | 91.6   |
| 54       | 90.5  | 90.6  | 90.4           | 89.5   | 92.5   |
| 57       | 97.   | 98.1  | 96.6           | 97.7   | 100    |
| 61       | 107.4 | 108.6 | 109.6          | 108.7  | 109    |
| 65       | 117.6 | 120.4 | 121            | 120.7  | 114.24 |

**BASE YEAR 1957** 

THALWEG

Table 6.4

-866/-2066 -2170.5 4924.87 1553.2 -3086 1988 3790 1502 (-)ve towards Right, (+)ve towards Left -4713 4145/ 3945 2100 2201 -974 254 182 Shifting of Thalweg (metre) 624.87 3753.2 -2074 -6366 -1732 -2366 **1981** 2890 -3086 7245 1932 -2753 -1827 -539 -802 1424.87 -3726.9 -1906 -7974 -8766/-9766 -5513 -6500 -3679 -1255 **1977** 1210 -2297 1332 -686 -902 -6750.2 224.87 2813.2 -62.36 -12026 **1971** -2910 4558 -1798 -1466 -5946 -4768 1605 2990 -864 -4.33 -6.04 -5.18 -3.74 -5.96 1988 3.64 3.59 0.15 -4.21 4.91 -2.4 27 1.4 1.4 Change in Thalweg (metre) (-)ve: increase, (+)ve: decrease 2.855 -3.19 -0.98 -1.24 -2.97 -3.43 1981 0.23 -0.4 -0.5 -1.31 2.77 1.34 0.87 Ξ -1.275 0.905 1.155 -0.68 -0.14 -5.34 -1.53 -2.07 -0.26 0.15 1977 3.04 -0.3 0.11 4 -1.963 -2.76 -0.17 -2.49 -0.85 -6.08 -1.38 -4.45 1.83 1971 -5.31 -1.8 3.24 0.91 ů. U 9288.5/72. 800/101.1 5200/95 2250/ 86.76 1988 2800/ 66.91 4000/ 70.05 1200/ 73.37 3700, 4900/ 73.55 4200, 4400/ 81.3 3900/ 69.51 8000/ 70.8 <u>5000/</u> 83.05 1100/ 108 34/ 83.34 35 500/ 80.25 3240/9 2.47 2.881/ 99.645 8200/7 2.05 5800/7 3.5 8500/8 2.1 4000/7 2.3 1900/7 4.5 5200/7 4.08 1100/7 6.5 6100/7 9.18 3700/ 62.35 8850/ 70.35 3840/ 116.1 CHAINAGE (metre)/ RL (metre) 1981 10900,1190 0/81.2 2000/79.4 3280/73.3 6000/89.3 7554/ 102.39 6980/ 114.185 THALWEG 61.675 9415/ 68.795 1100/ 59.02 7400/ 73.0 1600/ 70.6 74.2 4740/ 75.09 5380/ 9600/ 80.6 1977 7237.2/94. 4165/ 114.873 35 13080/ 101.59 1971 9500/ 60.75 1036/ 79.25 8080/ 79.3 7200/ 87.47 2560/ 7244 8600/ 74.0 6740/ 74.8 7150/ 70.4 4500/ 79.6 4300/ 77.71 6740/ 78.56 8824.87/73. 15 1054/102.5 \$87/89.04 9553.2/ 73 3301/ 112.91 1957 6590/ 62.58 7118/ 69.95 914/ 73.64 2702/ 73.52 2834/ 74.95 4026/ 77.87 2134/ 79.13 2432/ 83.02 8345/ 75.26 Year 44 50 23 53 54 57 5 46 48 49 51 61 65 47 CROSS-SECTIONS

· 40

Table 6.5

WATERWAY

**BASE YEAR 1957** 

|                                       |                                  | 1    | Τ     | T     | T     | Τ     | T    | T     | 1    |       | 1-    | <b>T</b> |       |      | <u> </u> | 1    |
|---------------------------------------|----------------------------------|------|-------|-------|-------|-------|------|-------|------|-------|-------|----------|-------|------|----------|------|
| 'ay (metre                            | screase                          | 1988 | 2567  | 2135  | -1735 | 6766  | 1390 | 1980  | 941  | 692   | -594  | -2518    | -7964 | 48   | -2195    | 5292 |
| Change in length of water way (metre) | (-)ve: increase, (+)ve: decrease | 1981 | -1006 | -1477 | 717   | -317  | -85  | -3130 | 3363 | -1119 | -3186 | -7763    | -8860 | 5865 | 3543     | -674 |
| in length                             | e: increase                      | 1977 | 3654  | -72   | 284   | 170   | -580 | 526   | 3702 | 64    | -2241 | -12638   | -8963 | 4065 | 43       | 2404 |
| Change                                | 9V(-)                            | 1971 | 2497  | 1347  | -1570 | 11605 | -165 | -3017 | -527 | -708  | -110  | -10713   | -5212 | 4456 | 2448     | 2067 |
| RE)                                   |                                  | 1988 | 4285  | 5526  | 12374 | 6064  | 5660 | 2389  | 5172 | 8614  | 10127 | 3680     | 10688 | 8369 | 2006     | 1171 |
| VY (MET                               |                                  | 1981 | 7858  | 9138  | 9902  | 13147 | 7135 | 7499  | 2750 | 10502 | 12719 | 8925     | 11584 | 2456 | 9254     | 7137 |
| LENGTH OF WATER WAY (METRE)           |                                  | 1977 | 3198  | 7733  | 10335 | 12660 | 7630 | 3843  | 2411 | 9319  | 11774 | 13800    | 11687 | 4256 | 5754     | 4059 |
| TH OF W                               |                                  | 1971 | 4355  | 6314  | 12189 | 1225  | 7215 | 7386  | 6640 | 10001 | 9643  | 11875    | 7936  | 3865 | 3263     | 4396 |
| LENC                                  |                                  | 1957 | 6852  | 7661  | 10619 | 12830 | 7050 | 4369  | 6113 | 9383  | 9533  | 1162     | 2824  | 8321 | 5711     | 6463 |
|                                       |                                  | Year | 44    | 45    | 46    | 47    | 48   | 49    | 50   | 51    | 52    | 53       | 54    | 57   | 61       | 65   |
|                                       |                                  |      |       |       |       | s     | NC   |       |      | IS-   | ss    | оя       | С     |      |          |      |

TABLE -6.6

# **CROSS-SECTIONAL AREAS**

# **BASE YEAR 1957**

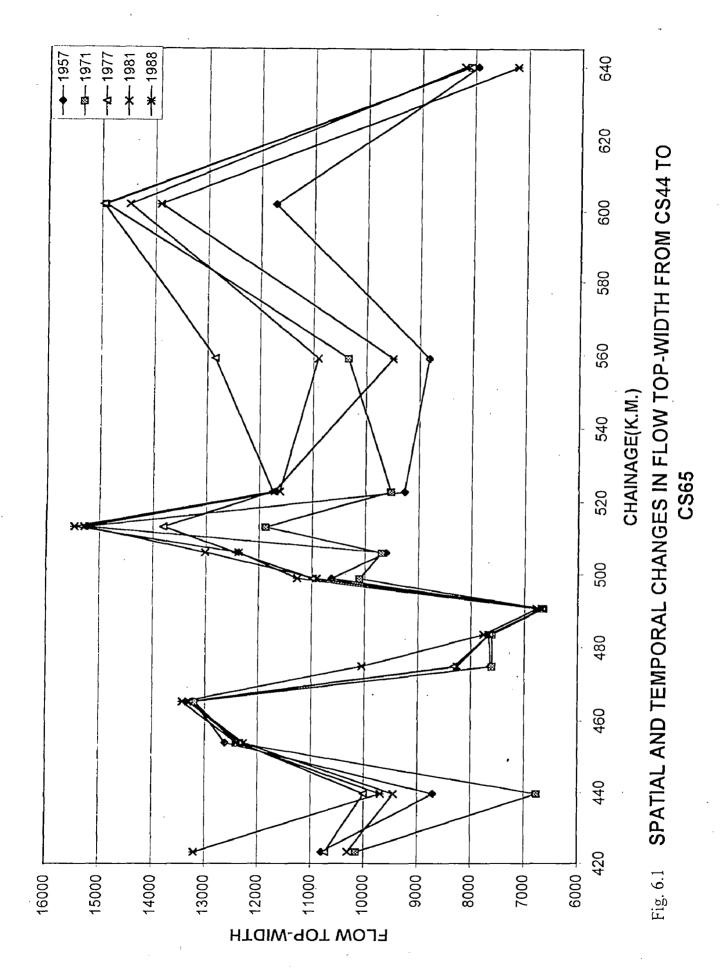
| (m.ps)                                 | <b>u</b> o                      | 1988 | 4922  | 16894 | -7596  | 25500  | 7753  | -3115 | 8301      | 2032    | 8930   | -3160  | -13992 | 5104  | -3647  | -1923 |
|----------------------------------------|---------------------------------|------|-------|-------|--------|--------|-------|-------|-----------|---------|--------|--------|--------|-------|--------|-------|
| Change in cross-sectional areas (sq.m) | (-)ve Erosion, (+)ve Deposition | 1981 | -6457 | 1746  | 5601   | -24469 | 5947  | 6903  | 18319     | -16611  | -16614 | -16749 | -74513 | 15517 | -17272 | -4764 |
| n cross-sect                           | Erosion, (+)                    | 1977 | 12780 | -826  | -64031 | 21204  | -3043 | 10099 | 21515     | -2296   | -7680  | -78934 | -37885 | 10343 | -2344  | -217  |
| Change i                               | (-)ve                           | 1971 | 5837  | 22716 | -20616 | 36596  | 6056  | -6273 | 5142      | -25422  | -6114  | -64848 | -7136  | 14329 | 1306   | -3234 |
|                                        |                                 | 1988 | 17131 | 8437  | 29666  | 13641  | 9847  | 6969  | 20247     | 13975   | 21981  | 4469   | 23701  | 13938 | 12041  | 10838 |
| -e <sup>2</sup> )                      |                                 | 1981 | 28510 | 23585 | 16469  | 63610  | 11653 | 19046 | 10229     | 32618   | 47525  | 18058  | 84222  | 3525  | 25666  | 13679 |
| areas (in metre <sup>2</sup>           |                                 | 1977 | 9273  | 26157 | 86101  | 17937  | 20643 | 14296 | 7033      | 18303   | 38591  | 80243  | 47594  | 8699  | 10738  | 9132  |
| Cross-sectional ar                     |                                 | 1971 | 16216 | 2615  | 42686  | 2545   | 11544 | 23405 | 23406     | 41429   | 37025  | 66157  | 16845  | 4713  | 7088   | 12149 |
| Cross-                                 |                                 | 1957 | 22053 | 25331 | 22070  | 39141  | 17600 | 17132 | 28548     | 16007   | 30911  | 1309   | 9709   | 19042 | 8394   | 8915  |
|                                        |                                 | Year | 44    | 45    | 46     | 47     | .48   | 49    | 50        | 51      | 52     | 53     | 54     | 57    | 61     | 65    |
|                                        |                                 |      |       |       |        | N      | 01    | <br>  | <br>9.E.Q | <br>5-S | so     | <br>   | )      |       | ]      |       |

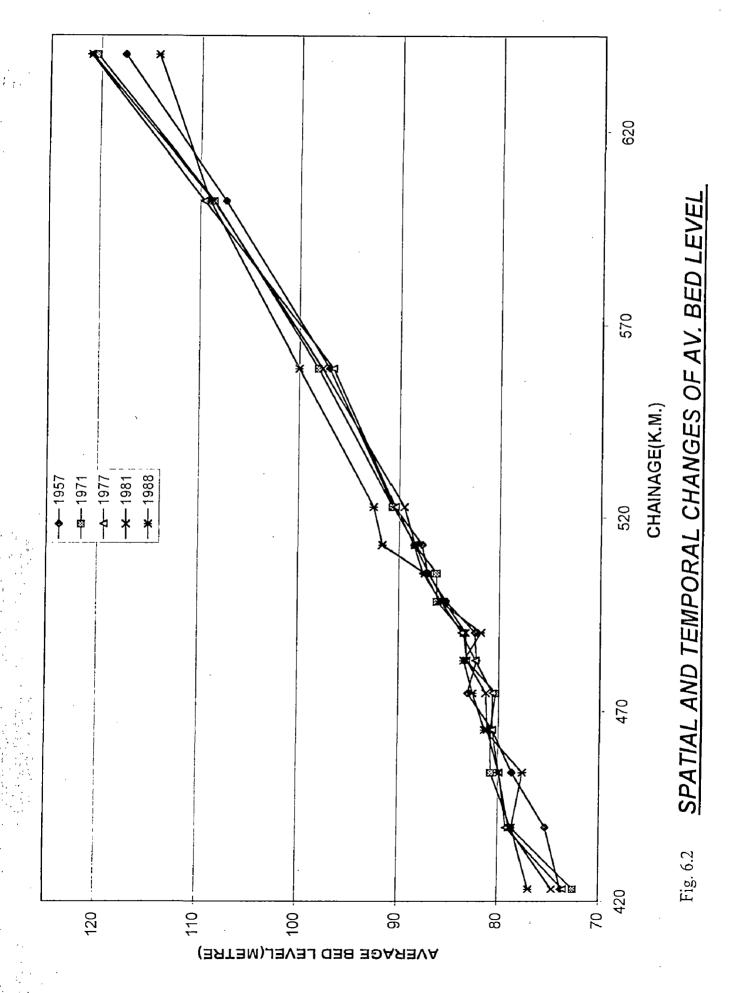
| C/S Nos. | YEAR | B(metre) | T(metre) | N  | PFI=(T/B)*1/N*100 |
|----------|------|----------|----------|----|-------------------|
| 44       | 957  | 10790    | 6852     | 9  | 7.055915972       |
| 1        | 971  | 10140    |          | 5  | 8.58974359        |
| 1        | 977  | 10720    | 3198 5   | 5  | 5,96641791        |
| ]        | 981  | 10300    | 7858 6   | 5  | 12.71521036       |
| I        | 988  | 10200    | 4285 2   | 21 | 2.000466853       |
| 15 1     | 957  | 8704     | 7661 5   | 5  | 17.60340074       |
| 1        | 971  | 6760     | 6314     | 1  | 93.40236686       |
| 1        | 977  | 10000    | 7733 3   | 3  | 25.77666667       |
| 1        | 981  | 9450     | 9138 1   | 1  | 96.6984127        |
| 1        | 988  | 9689     | 5526 1   | 11 | 5.184886328       |
| 6 1      | 957  | 12621    | 10619 5  | 5  | 16.82750971       |
| I        | 971  | 12400    | 12189 1  | l  | 98.2983871        |
| 1        | 977  | 12340    | 10335 3  | 3  | 27.91734198       |
| 1        | 981  | 12270    | 9902 6   | ó  | 13.45014942       |
|          | 988  | 12400    | 12374 2  | 2  | 49.89516129       |
| 7 1      | 957  | 13205    | 12830 2  | 2  | 48.5800833        |
|          | 971  | 13200    | 1225 2   | 2  | 4.640151515       |
|          | 977  | 13300    | 12660 5  |    | 19.03759398       |
|          | 981  | 13300    | 13147 3  |    | 32,94987469       |
|          | 988  | 13425    | 6064 7   |    | 6.452779995       |
|          | 957  | 7634     | 7050 5   |    | 18.47000262       |
|          | 971  | 7600     | 7215 2   |    | 47.46710526       |
|          | 977  | 8320     | 7630 2   |    | 45.85336538       |
|          | 981  | 8260     | 7135 6   |    | 14.39669088       |
|          | 988  | 10045    |          | 4  | 4.024745787       |
|          | 957  | 7660     | 4369 4   |    | 14.25913838       |
|          | 971  | 7600     | 7386 3   |    | 32,39473684       |
|          | 977  | 7655     | 3843 6   |    | 8.36708034        |
|          | 981  | 7660     | 7499 2   |    | 48,94908616       |
|          | 988  | 7760     | 2389 7   |    | 4,398011782       |
|          | 957  | 6657     | 6113 4   |    | 22.9570377        |
|          | 971  | 6640     | 6640 1   |    | 100               |
|          | 977  | 6670     | 2411 5   |    | 7.229385307       |
|          | 981  | 6670     | 2750 5   |    | 8.245877061       |
|          | 988  | 6773     | 5172 8   |    | 9.545253211       |
|          | 957  | 10628    | 9383 5   |    | 17.6571321        |
|          | 971  | 10096    | 10091 1  |    | 99,95047544       |
|          | 977  | 10980    | 9319 4   |    | 21.21812386       |
|          | 981  | 10910    | 10502 2  |    | 48,13015582       |
|          | 988  | 13975    | 8614 5   |    | 12.32772809       |
|          | 957  | 9611     | 9533 3   |    | 33.06280997       |
|          | 971  | 9690     | 9643 1   |    | 99.51496388       |
|          | 977  | 12440    | 11774 2  |    | 47.32315113       |
|          | 981  | 13010    | 12719 1  |    | 97.76325903       |
|          | 988  | 12380    | 10127 4  |    | 20.4503231        |
| 1.       |      | 12300    | 10127 4  |    | Contd/ Tabl       |

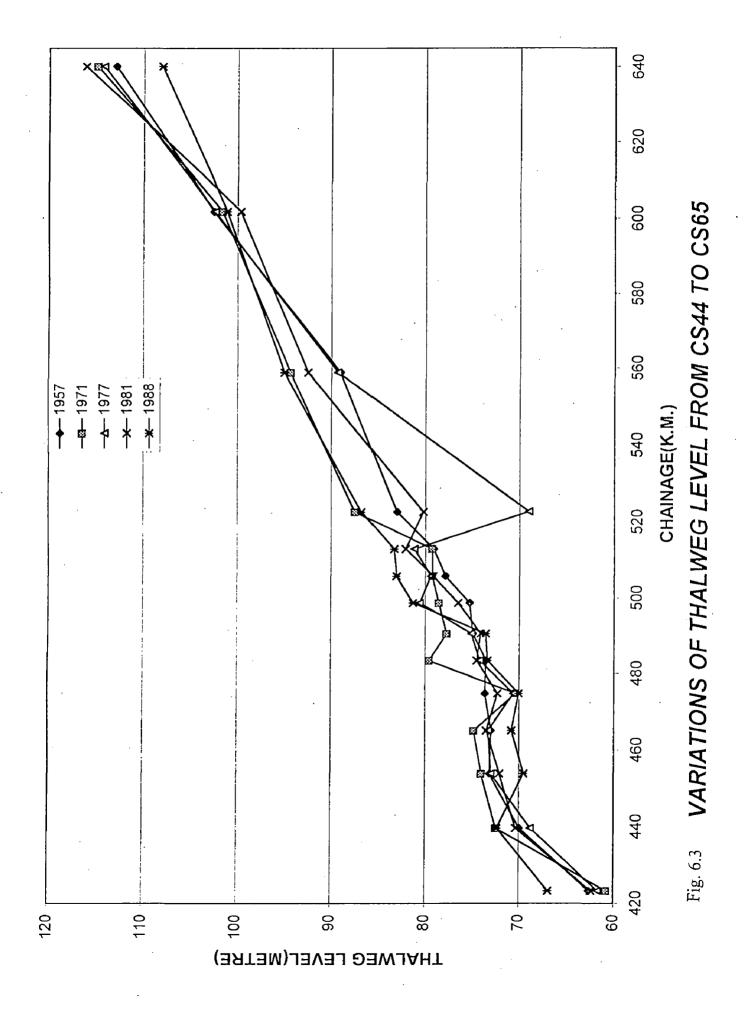
Table 6.7 : Plan Form Index

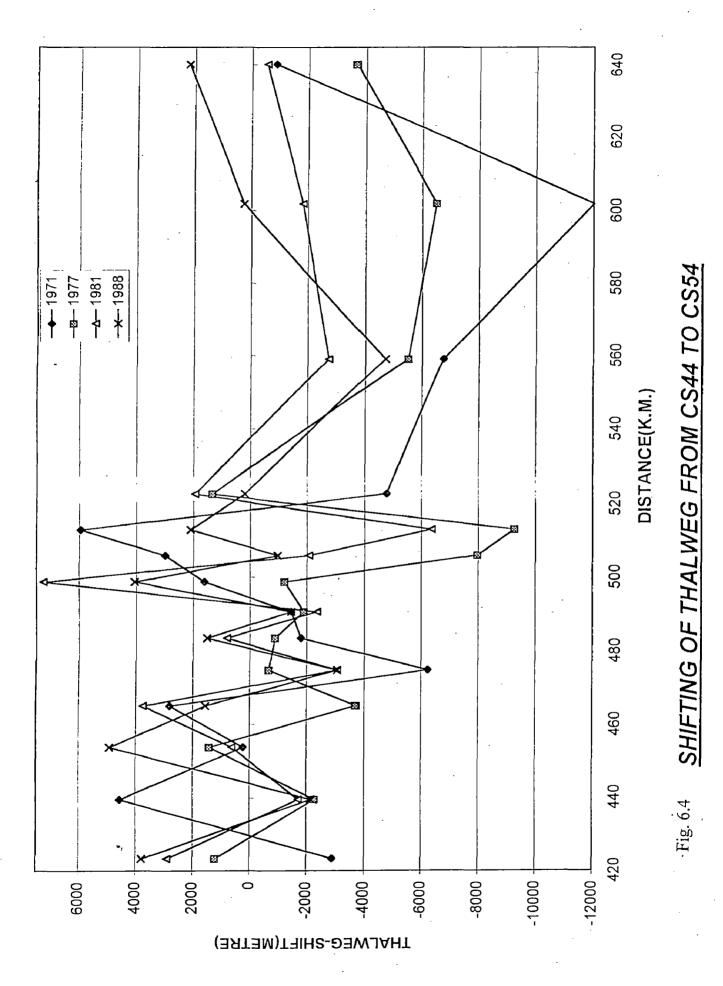
Contd/-- Table 6.7

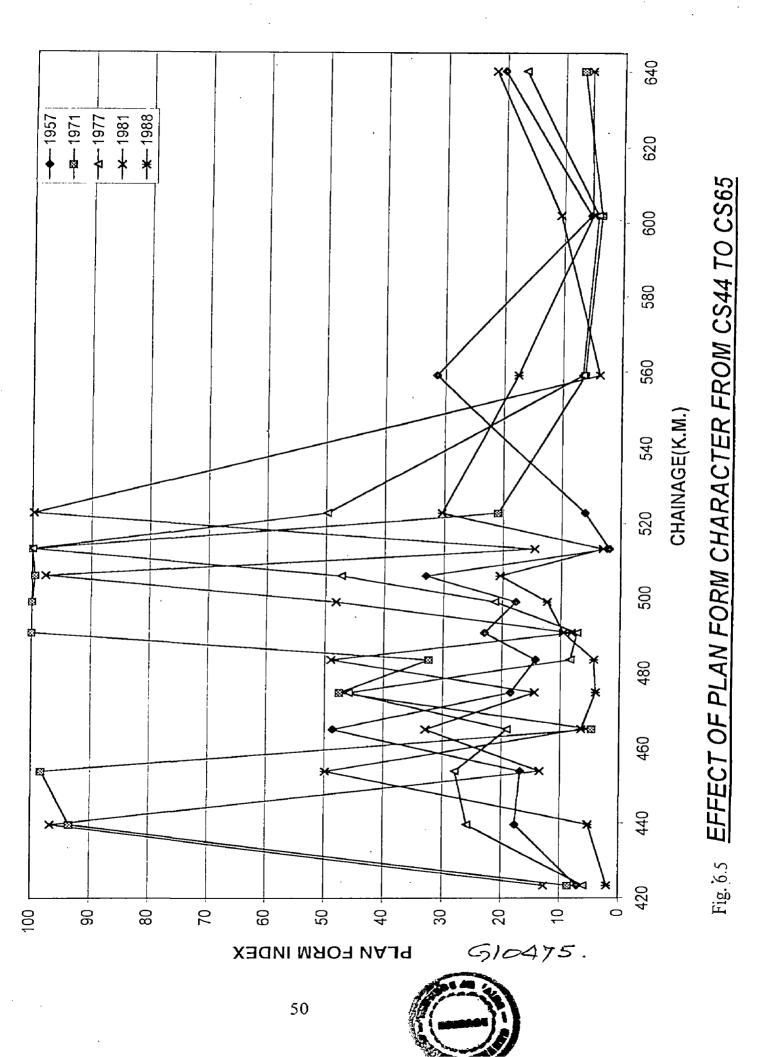
.

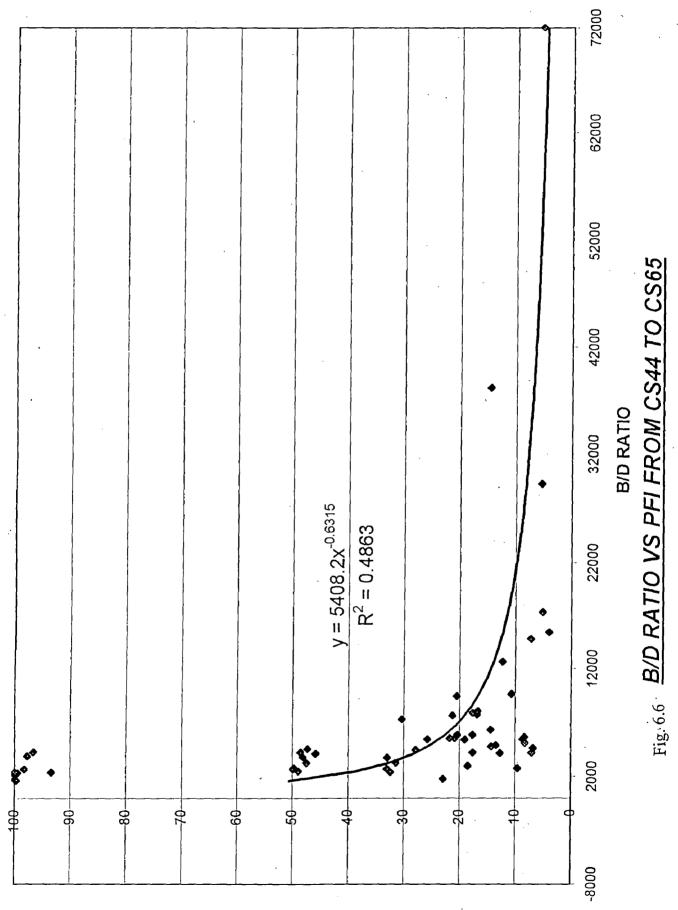

| C/S | Nos. YEAR | B(metre) | T(metre) | )N | PFI=(T/B)*1/N*100 |
|-----|-----------|----------|----------|----|-------------------|
| 53  | 1957      | 15244    | 1162     | 4  | 1.905667804       |
|     | 1971      | 11875    | 11875    | 1  | 100               |
|     | 1977      | 13800    | 13800    | I  | 100               |
|     | 1981      | 15280    | 8925     | 4  | 14.60242147       |
|     | 1988      | 15470    | 3680     | 8  | 2.973497091       |
| 54  | 1957      | 9270     | 2824     | 5  | 6.092772384       |
|     | 1971      | 9520     | 7936     | 4  | 20.84033613       |
|     | 1977      | 11740    | 11687    | 2  | 49.77427598       |
|     | 1981      | 11610    | 11584    | 1  | 99.77605512       |
|     | 1988      | 11713    | 10688    | 3  | 30.41634651       |
| 57  | 1957      | 8820     | 8321     | 3  | 31.44746788       |
|     | 1971      | 10331.2  | 3865 (   | 6  | 6.235158226       |
|     | 1977 .    | 12850    | 4256 3   | 5  | 6.624124514       |
|     | 1981      | 10900    | 2456 0   | 6  | 3,755351682       |
|     | 1988      | 9500     | 8369 5   | 5  | 17.61894737       |
| 61  | 1957      | 11719    | 5711 9   | 9  | 5.414758559       |
|     | 1971      | 14926    | 3263 (   | 6  | 3,643530305       |
|     | 1977      | 14970    | 5754 9   | 9  | 4.27076375        |
|     | 1981      | 14480    | 9254 (   | 5  | 10.6514733        |
|     | 1988      | 13900    | 7906     | 11 | 5.170699804       |
| 65  | 1957      | 7949     | 6463 4   | ł  | 20.32645616       |
|     | 1971      | 8080     | 4396 8   |    | 6.800742574       |
|     | 1977      | 8084     | 4059 3   |    | 16.73676398       |
|     | 1981      | 8200     | 7137 4   |    | 21,75914634       |
|     | 1988      | 7200     | 1171 3   |    | 5,421296296       |


Table 6.7 (Contd/-)

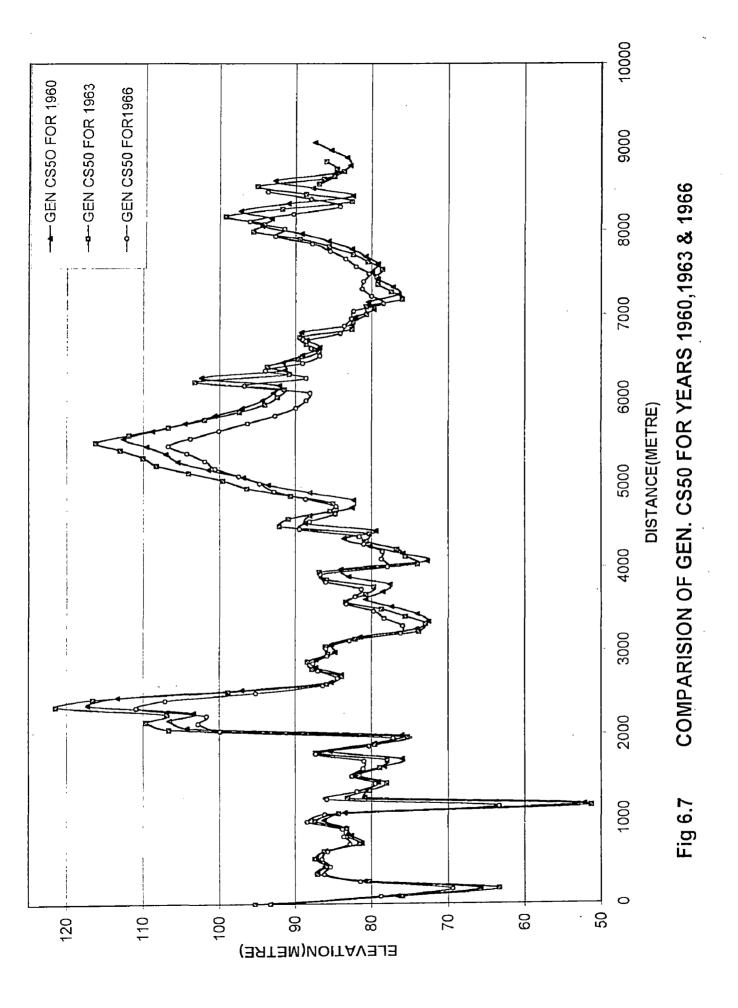

TABLE 6.8: CALCULATION OF B/D RATIO

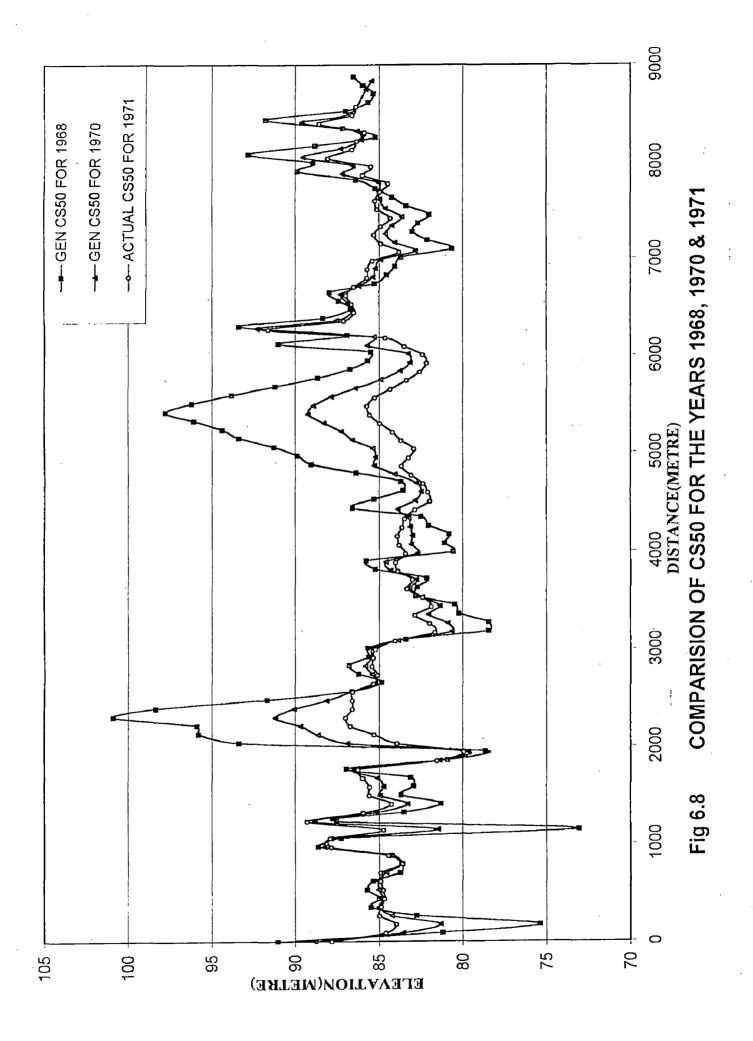

| Г        | -     |         |          |         | T       | $\top$   | 1       |         | T       | <b>T</b> - |         |         | _      | Т        |         | 1       |          |          | -r       |         |
|----------|-------|---------|----------|---------|---------|----------|---------|---------|---------|------------|---------|---------|--------|----------|---------|---------|----------|----------|----------|---------|
|          | U/d   |         | Intintry | 5479.45 | 76 7844 | 17.1011  | 14.0240 | 4160    | 2670 37 | C CC0V1    | 7.22041 | 7678 32 | 45004  | 4.0204   | 2429.58 | 2795 24 | Infinity | 74050    | 14000    | 8084    |
| 1077     |       |         | >        | 1.825   | 275     | 24.2     | C + . 7 | 7       | 1 35    | 0.45       | 0.4.0   | 1.43    | 120    | 2.71     | 0.00    | 4.7     | 20       | 200      | 7.0      | 1       |
|          | ď     | 0000    | 10/20    | 10000   | 17340   | 010221   | nncr1   | 8320    | 7655    | 6670       | 0100    | 10980   | 12440  | 00001    | 00001   | 11740   | 12850    | 14070    | N/ (11   | 8084    |
|          | R/D   | 51662 2 | C.CU0+C  | 2427.29 | 2695.65 | Infinity | 2001.01 | 5504.34 | 2412.7  | 1742 78    | 0       | 2310.29 | 2354 8 | 22010    | 70'6177 | 5567.25 | Infinity | Infinity | 10,10,00 | 4043.68 |
| 1971     |       | 1 855   | 10001    | 2.785   | 4.6     | C        |         | 2.5     | 3.15    | 3.81       | 12.2    | 4.37    | 4115   | 5.25     |         | 1.71    | 0        | C        |          | 1./4    |
|          | 8     | 10140   | 01101    | 6760    | 12400   | 13200    |         | /000    | 7600    | 6640       | 2.22    | 10096   | 0690   | 11875    | C/011   | 9520    | 10321.2  | 14926    | 0000     | 8080    |
|          | B/D   | 47148   |          | 423.4   | 7776.03 | 4262.47  |         | 21.0442 | 4817.35 | 1794.34    |         | 5871.82 | 2730.4 | Infinity |         | 74160   | 3315.8   | 29297.5  | 5000 14  | 10000 H |
| 1957     | D     | 2.56    | 7 057    | 1 CU.2  | 1.623   | 3.098    | 25 6    | CC.7    | 1.59    | 3.71       |         | ·1.81   | 3.52   | C        |         | 0.125   | 2.66     | 0.4      | 1 25     | CC.1    |
|          | B     | 06201   | VUL0     | 0/04    | 12620.5 | 13205.16 | 7634    |         | 7659.6  | 6657       | 10/20   | 87001   | 9611   | 15244    | 0200    | 0/76    | 8820     | 11719    | 7040     |         |
| Chainage | (k.m) | 423.31  | 120.62   |         | 453.91  | 465.13   | 474 82  | 10.     | 483.49  | 490.63     | 100 0   | 490.0   | 505.94 | 513.08   | 11 003  | 11.220  | 558.98   | 601.82   | 640.07   | 10:010  |
| S        |       | 44      | 45       |         | 46      | 47       | 48      |         | 49      | 50         | 17      | 5       | 52     | 53       | 1       | 5       | .57      | 61       | 65       | 2       |


|          |       | -r       | 7       | T       | 1        | T       | -        | -       | - T     |         | _        | -       |          | -      | -       |
|----------|-------|----------|---------|---------|----------|---------|----------|---------|---------|---------|----------|---------|----------|--------|---------|
|          | B/D   | Infinity | 484425  | 2695.65 | Infinity | 15453.8 | Infinity | 2764 5  | 12662.9 | 9450.4  | Infinity | 7320.6  | 79167    | 17375  | 72000   |
| 1988     |       | 0        | 0.02    | 4.6     | 0        | 0.65    | 0        | 2.45    | 0.89    | 1.31    | 0        | 1.6     | 1.2      | 0.8    | 0.1     |
|          | B     | 13200    | 9688.5  | 12400   | 13425    | 10045   | 7760     | 6773    | 11270   | 12380   | 15470    | 11713   | 9500     | 13900  | 7200    |
|          | B/D   | 4186.99  | 4295.45 | 4908    | 3789.17  | 6353.85 | 2511.48  | 5130.77 | 3841.55 | 3930.51 | 38200    | 1635.21 | Infinity | 9653.3 | 5578.23 |
| 1981     | D     | 2.46     | 2.2     | 2.5     | 3.51     | 1.3     | 3.05     | 1.3     | 2.84    | 3.31    | 0.4      | 7.1     | 0        | 1.5    | 1.47    |
|          | B     | 10300    | 9450    | 12270   | 13300    | 8260    | 7660     | 6670    | 10910   | 13010   | 15280    | 11610   | 10900    | 14480  | 8200    |
| Chainage | (k.m) | 423.31   | 439.63  | 453.91  | 465.13   | 474.82  | 483.49   | 490.63  | 498.8   | 505.94  | 513.08   | 522.77  | 558.98   | 601.82 | 640.07  |
| S        |       | 44       | 45      | 46      | 47       | 48      | 49       | 50      | 51      | 52      | 53       | 54      | 57       | 61     | 65      |










#### ХЭОИ МЯОЯ ИАЛЯ





#### **CONCLUSIONS AND SCOPE OF FUTURE WORK**

#### 7.1 CONCLUSIONS

The major conclusions that emerged from the present study are summarized below :

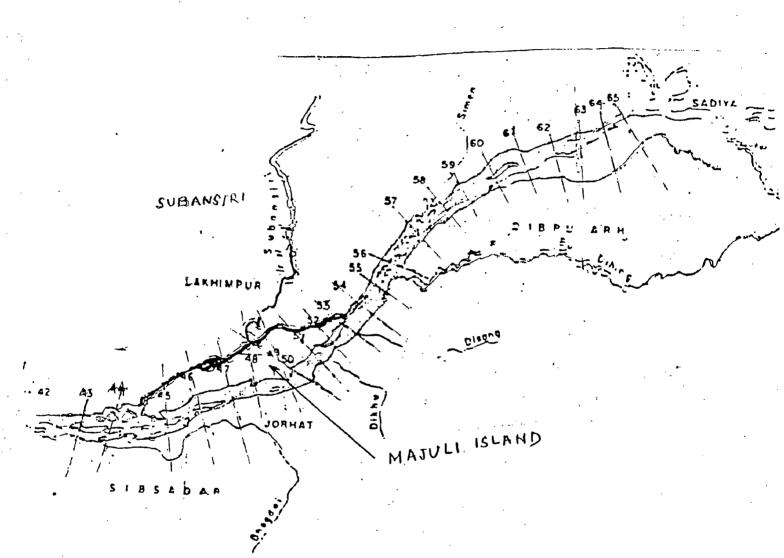
- 1. Majuli Island ranging from cross section 44 to 54 is under both the effect of erosion and depsoition.
- 2. The upstream reach of Majuli Island is also under the continuous effect of erosion and deposition.
- 3. Thalweg may shift its course and its levels are varying in nature mostly at crosssection 54.
- 4. PFI and B/D follow the equation  $PFI = 5408 (B/D)^{-0.6315}$ . From this equation if two values are known, then third one can be calculated for rough prediction.
- 5. Average bed level is almost constant.
- 6. Flow top-width are varying in nature mostly at cross section 57.

7. River is under braiding from Dibrugarh to Majuli Island.

- 8. It is fairly established that the shape functions can be gainfully used to interpolate the braided channel geometry.
- 9. The use of shape functions provide flexibility to start with a linear interpolation (two nodded shape function) to more complex non-linear forms afforded by higher order shape functions.

- The data-base model with normalized data and use of shape functions, provides fairly accurate simulation even in the case of heavily braided rivers.
- 11. The data based package developed in capable of simulating profile of the Brahmaputra River at any points within the reach under consideration and for any year from 1957 to 1988.
- 12. For supplementing, any missing data only temporal interpolation should be used as the spatial interpolation fails to produce the profile close enough to be accepted except for crude preliminary estimates.

#### 7.2 SCOPE FOR FUTURE WORK


- Study should be based on complete and latest data required for the purpose. Both the pre-monsoon and post-monsoon data for the same study year should be used identify seasonal and permanent variation.
- 2. Study of morphological behaviour of the Brahmaputra should be done with satellite and hydrographic data by developing mathematical model.
- 3. The present study has been restricted in scope to the goal of simulating the river cross-section profile through interpolation within the reach and the time for which measured data are available. Extrapolation beyond these limit will be desirable feature in forecasting the morphological pattern in future.
- 4. With the advent of "EXPERT SYSTEM, ARTIFICIAL INTELLIGENCE AND ARTIFICIAL NEURAL NETWORK", it becomes necessary to utilize the potential of these tools for providing interpolation and extrapolation.

#### REFERENCES

- BEST J.L.& BRISTOW C.S.(editors) "Braided Rivers", Geological Society Special Publication No. 75.
- 2. LEOPOLD, L.B and WOLMAN, M.G. (1957), "River Channel Pattern", A chapter in 'Rivers and River Terraces' by Dury, G.H. (ed 1977) published by Macmillan and CO. Ltd., Little Essex Street London.
- 3. JOURNAL OF INDIAN WATER RESOURCES SOCIETY; Volume 19(5), Number 3, July' 1999
- 4. GRADE, R.J. AND RANGA RAJU K.G. "Mechanics of Sediment Transportation and Alluvial Stream Problems".
- 5. CHEN, YUNG HAI (1973) "Mathematical Modeling of Water and Sediment Routing in Natural Channel". Ph.D. Dissertation, Colorado State University, Fort Collins, Colorado, U.S.A.
- SARMA, NAYAN (1995) "Modeling of Brandied Alluvial Channels" Ph.D.
   Dissertation, WRDTC, University of Roorkee, Roorkee India.
- 7. COOK, ROBERT D.(1973) "Concept and Applications of Finite Element Analysis", John Wiley & Sons Inc. ns Inc.
- 8. CUNGE J.A. HOLY, F.M. AND VERWEY, Jr. A. (1980) "Practical Aspects of Computational River Hydraulics", Pitman Publishing Limited, U.S.A. S.A.
- 9. HUEBNER K.H. (1982) "The Finite Element Method For Sngineers"
- 10. BURNETT D.S. (1987). "Finite Element Analysis".

- MARTIN, HAROLD C AND CAREY, CRAHAM F. (1975) "Introduction to Finite Element Analysis".
- JANSEN, et al. (1979) "Principles of River Engineering: The Non Tidal River", Pitman Publishing Limited U.S.A.
- SINGH, HARBHAJAN (1990) "Morphology Facies Analysis of Sediments of Kosi Megafan, India and Nepal", Ph.D. Dissertation, University of Roorkee, Roorkee, India.
- PRIBADI, TULUS (1992) "Stream Profile Modelling Using Legendre
   Polynomial", A Special Problem submitted in WRDTC, University of Roorkee,
   Roorkee.
- DAMBREAK (1981) "The NWS Dam Break Flood Forecasting Model, Users Manual" by U.S. Army Crops of Engineers, California U.S.A.
- G.P. SINGH (1995) "Spatio-temporal Idealization of Typical Cross Sections of A Large Braided Alluvial River".M.E. Dissertation at WRDTC, University of Roorkee, Roorkee.

## MAP FROM DIBRUGARH TO MAJULI ISLAND



MCKOKCNUNG

# APPENDIX – A

#### NORMALISED SECTION

| CROS  | S SECTI | ON     | NO 50 |        |       |        |       |        |       |
|-------|---------|--------|-------|--------|-------|--------|-------|--------|-------|
| CHAII | NAGE 4  | 90.630 |       |        |       |        |       |        |       |
| 57    |         | 71     |       | 77     |       | 81     |       | 88     |       |
|       | 84.89   |        | 84.31 |        | 84.15 |        | 84.6  |        | 87.75 |
|       |         | 65.7   |       |        | 84.52 | 66     |       |        | 86.03 |
|       |         | 131.5  |       |        |       | 132.1  | 84.99 | 134.1  |       |
| 195   |         | 197.2  |       | 198.1  |       | 198.1  |       |        | 85.22 |
| 260   |         | 263    | 84.93 |        | 84.92 | 264.2  | 84.88 |        | 84.2  |
| 325   |         | 328.7  | 85.02 | 330.2  |       | 330.2  | 82.23 |        |       |
| 390   | 81      | 394.5  | 82.93 |        | 79.88 | 396.2  | 78.84 |        | 83.45 |
| 455   |         | 460.2  | 82.97 | 462.3  |       | 462.3  | 81.22 |        | 83.22 |
| 520   | 93.67   |        | 85.42 | 528.3  |       | 528.3  |       |        |       |
| 585   | 90.29   | 591.7  | 85.2  | 594.4  | 84.87 | 594.4  | 84.96 | 603.5  | 83.89 |
| 650   | 85.92   | 657.4  | 85.1  |        |       | 660.4  | 84.75 | 670.6  |       |
| 715   | 85.54   | 723.2  |       | 726.4  |       | 726.4  | 84.62 | 737.7  |       |
| 780   | 85.05   | 788.9  |       |        | 84.91 | 792.5  | 84.73 | 804.7  | 85.41 |
| 845   | 84.97   | 854.7  | 85.1  |        | 84.92 | 858.5  |       | 871.8  | 84.08 |
| 910   | 85.05   | 920.4  |       |        | 85.04 | 924.6  |       |        | 81.72 |
| 975   | 85.45   | 986.1  |       |        | 85.43 | 990.6  |       |        |       |
| 1040  | 86.13   | 1051.9 |       | 1056.6 |       | 1056.6 |       |        | 85.28 |
| 1105  | 86.45   | 1117.6 |       | 1122.7 |       |        |       |        | 84.74 |
| 1170  | 86.08   | 1183.4 |       | 1188.7 |       | 1188.7 |       |        |       |
| 1235  | 85.55   | 1249.1 |       | 1254.8 |       |        |       |        |       |
| 1300  | 85.91   |        |       | 1320.8 |       | 1320.8 |       |        |       |
| 1365  | 86.68   | 1380.6 |       | 1386.8 |       |        |       |        |       |
| 1430  | 86.67   | 1446.3 |       | 1452.9 |       |        |       |        |       |
| 1495  | 86.19   |        |       | 1518.9 |       |        |       |        |       |
| 1560  | 85.65   | 1577.8 |       | 1585   |       |        |       |        |       |
| 1625  | 85,28   |        |       | 1651   |       |        |       |        |       |
| 1690  | 84.95   |        |       | 1717   |       |        |       |        |       |
| 1755  | 84,78   |        |       |        |       | 1783,1 |       |        |       |
| 1820  |         | 1840.8 |       | 1849.1 |       |        |       | 1877.7 |       |
| 1885  |         | 1906.5 | 84.77 | 1915.1 | 85.9  | 1915.1 |       | 1944.7 |       |
| 1950  | 85.13   | 1972.3 | 84.79 | 1981.2 | 85.57 | 1981.2 |       | 2011.8 |       |
| 2015  | 85.45   | 2038   | 84.74 | 2047.2 | 85.13 | 2047.2 |       | 2078.8 |       |
|       | 85.64   | 2103.8 | 84.73 | 2113.3 | 84.97 | 2113.3 | 84.89 | 2145.9 | 84.69 |
| 2145  |         | 2169.5 |       |        |       |        |       | 2213   |       |
| 2210  | 85.88   | 2235.2 | 84.73 | 2245.3 | 84.64 | 2245.3 | 84.77 | 2280   | 84.73 |
| 2275  | 85.92   | 2301   | 84.75 | 2311.4 | 84.4  | 2311.4 | 84.85 | 2347.1 | 84.75 |
| 2340  | 85.98   | 2366.7 | 84.76 | 2377.4 | 84.61 | 2377.4 | 84.75 | 2414.1 | 84.69 |
| 2405  | 86.07   | 2432.5 | 84.76 | 2443.5 | 84.76 | 2443.5 | 84.67 | 2481.2 | 84.67 |
| 2470  | 86.08   | 2498.2 | 84.71 | 2509.5 | 84.64 | 2509.5 | 84.65 | 2548.3 | 84.43 |
| 2535  | 85.98   | 2564   | 84.47 | 2575.5 | 84.61 | 2575.5 | 84.71 | 2615.3 | 84.04 |
| 2600  | 85.77   | 2629.7 | 84.21 | 2641.6 | 84.49 | 2641.6 | 84.74 | 2682.4 | 84.63 |
| 2665  | 85.41   | 2695.4 | 84.21 | 2707.6 | 84.26 | 2707.6 | 84.68 | 2749.4 | 85.09 |
| 2730  | 84.91   | 2761.2 | 84.35 | 2773.7 | 84.54 | 2773.7 | 84.69 | 2816.5 | 85.25 |
| 2795  | 85.11   | 2826.9 | 84.47 | 2839.7 | 84.77 | 2839.7 | 84.71 | 2883.6 | 85.83 |
| 2860  | 85.75   | 2892.7 | 84.26 | 2905.7 | 84.58 | 2905.7 | 84.68 | 2950.6 | 84.93 |
| 2925  | 86.19   | 2958.4 | 83.95 | 2971.8 | 84.21 | 2971.8 | 84.66 | 3017.7 | 82.69 |
| 2990  | 86.13   | 3024.2 | 83.56 | 3037.8 | 83.99 | 3037.8 | 84.65 | 3084.7 | 80.94 |
| 3055  | 85.91   | 3089.9 | 83.16 | 3103.9 | 84.24 | 3103.9 | 84.66 | 3151.8 | 80.03 |
| 3120  | 85.86   | 3155.6 | 83.24 | 3169.9 | 83 71 | 3169.9 | 84.61 | 3218.9 | 79.84 |
| 3185  | 85.83   | 3221.4 | 83.69 | 3235.9 | 83.3  | 3235.9 | 84.55 | 3285.9 | 78.82 |
| 3250  | 85.96   | 3287.1 | 83.95 | 3302   | 83.76 | 3302   | 84.5  | 3353   | 77.35 |
| 3315  | 86.23   | 3352.9 | 84.05 | 3368   | 84.08 | 3368   | 84.46 | 3420   | 75.73 |
|       |         |        |       |        |       |        |       |        |       |

|   |      |       |        |       |             |       |        |       | •      |       |
|---|------|-------|--------|-------|-------------|-------|--------|-------|--------|-------|
|   | 57   |       | 71     |       | 77          |       | 81     |       | 88     |       |
|   | 3380 | 86.23 | 3418.6 | 83.99 | 3434.1      | 84.33 | 3434.1 | 84,44 | 3487.1 | 75.09 |
|   | 3445 | 85.35 | 3484.4 | 83.92 | 3500.1      | 84.35 | 3500.1 | 84.42 | 3554.1 | 74.72 |
|   | 3510 | 83.9  | 3550.1 | 83.79 | 3566.1      | 84.14 | 3566.1 | 83.94 | 3621.2 | 74.38 |
|   | 3575 | 81.71 | 3615.8 | 83.62 | 3632.2      | 83.61 | 3632.2 | 83.58 | 3688.3 | 73.69 |
|   | 3640 | 80.47 | 3681.6 | 83.49 | 3698.2      | 82.58 | 3698.2 | 84.06 | 3755.3 | 74.07 |
|   | 3705 | 80.3  | 3747.3 | 83.6  | 3764.3      | 82.15 | 3764.3 | 84.23 | 3822.4 | 75.04 |
|   | 3770 | 81.61 | 3813.1 | 83.96 | 3830.3      | 81.84 | 3830.3 | 84.03 | 3889.4 | 74.27 |
|   | 3835 | 79.21 | 3878.8 | 83.89 | 3896.3      | 81.66 | 3896,3 | 82.75 | 3956,5 | 74.15 |
|   | 3900 | 76.8  | 3944.6 | 83,56 | 3962.4      | 82.14 | 3962,4 | 82.13 | 4023.6 | 74.67 |
|   | 3965 | 78.06 | 4010.3 | 82.93 | 4028.4      | 82.83 | 4028.4 | 81.8  | 4090.6 | 75    |
|   | 4030 | 80.21 | 4076   | 81.17 | 4094.5      | 83.08 | 4094.5 | 81.07 | 4157.7 | 76.02 |
|   | 4095 | 80.46 | 4141.8 | 79.11 | 4160.5      | 83.22 | 4160.5 | 80,95 | 4224.7 | 77.54 |
|   | 4160 | 80.04 | 4207.5 | 77.91 | 4226.5      | 83.23 | 4226.5 | 80,93 | 4291.8 | 78.89 |
|   | 4225 | 79.38 | 4273.3 | 77.64 | 4292.6      | 83.08 | 4292.6 | 79.93 | 4358.9 | 79.53 |
|   | 4290 | 80.63 | 4339   | 77.67 | 4358.6      | 82.96 | 4358.6 | 79.8  | 4425.9 | 79.35 |
|   | 4355 | 82.42 | 4404.8 | 79.4  | 4424.7      | 82.52 | 4424.7 | 80.2  | 4493   | 78.22 |
|   | 4420 | 83.49 | 4470.5 | 80.09 | 4490.7      | 80.85 | 4490.7 | 80.11 | 4560   | 78.35 |
|   | 4485 | 83.11 | 4536.2 | 80.09 | 4556.7      | 78.73 | 4556.7 | 79,36 | 4627.1 | 78.89 |
|   | 4550 | 82.37 | 4602   | 78,66 | 4622,8      | 76,86 | 4622.8 | 78.3  | 4694.2 | 77.71 |
|   | 4615 | 82.39 | 4667.7 | 78,26 | 4688,8      | 75,66 | 4688,8 | 78,15 | 4761,2 | •     |
|   | 4680 | 82,47 | 4733.5 | 78.39 | 4754.9      | 75    | 4754,9 | 78,31 | 4828.3 | 74,98 |
|   | 4745 | 82.43 | 4799.2 | 78,99 | 4820.9      | 75    | 4820.9 | 78.68 | 4895.3 | 73.64 |
|   | 4810 | 82.34 | 4865   | 80.13 | 4886.9      | 75.6  | 4886.9 | 79.01 | 4962.4 | 75.34 |
|   | 4875 | 82.5  | 4930.7 | 80.83 | <u>4953</u> | 76.83 | 4953   | 77.4  | 5029.5 | 77.3  |
|   | 4940 | 82.9  | 4996.4 | 80.82 | 5019        | 78.43 | 5019   | 74,56 | 5096.5 | 74.3  |
|   | 5005 | 82.69 | 5062.2 | 83.82 | 5085        | 79,34 | 5085   | 75.27 | 5163.6 | 74.94 |
|   | 5070 | 81,35 | 5127.9 | 86.16 | 5151.1      | 79.7  | 5151.1 | 75.23 | 5230.6 | 76.62 |
|   | 5135 | 80.4  | 5193.7 | 85.76 | 5217.1      | 79.71 | 5217.1 | 74.13 | 5297.7 | 75.61 |
|   | 5200 | 78.87 | 5259.4 | 85.33 | 5283.2      | 80,44 | 5283.2 | 75.26 | 5364.8 | 76.24 |
|   | 5265 | 67.08 | 5325.1 | 84.95 | 5349.2      | 81.6  | 5349.2 | 76.47 | 5431.8 | 78.06 |
|   | 5330 | 75.1  | 5390.9 | 84.98 | 5415.2      | 83.16 | 5415.2 | 77.64 | 5498.9 | 85.74 |
|   | 5395 | 77.65 | 5456.6 | 85.03 | 5481.3      | 84.94 | 5481.3 | 81.17 | 5565.9 | 87.31 |
| • | 5460 | 79.2  | 5522.4 | 85.06 | 5547.3      | 85.73 | 5547.3 | 84.21 | 5633   | 84.64 |
|   | 5525 | 79.12 | 5588.1 | 85.07 | 5613.4      | 85.2  | 5613.4 | 85.61 | 5700   | 84.65 |
|   | 5590 | 78.91 | 5653.9 | 85.01 | 5679.4      | 85.32 | 5679.4 | 85.45 | 5767.1 | 84.33 |
|   | 5655 | 78.88 | 5719.6 | 84.92 | 5745.4      | 85.34 | 5745.4 | 84.96 | 5834.2 | 84.03 |
|   | 5720 | 78,93 | 5785.3 | 84.91 | 5811.5      | 85,11 | 5811.5 | 84.81 | 5901.2 | 84.05 |
|   | 5785 | 78.93 | 5851.1 | 84.88 | 5877.5      | 84.85 | 5877.5 | 84.84 | 5968.3 | 83.9  |
|   | 5850 | 78.9  | 5916.8 | 84.82 | 5943.6      | 84.72 | 5943.6 | 84.92 | 6035.3 | 83.68 |
|   | 5915 | 78.86 | 5982.6 | 84.78 | 6009.6      | 84.8  | 6009.6 | 84.95 | 6102.4 | 83.39 |
|   | 5980 | 78.87 | 6048.3 | 84.76 | 6075.6      | 84.74 | 6075.6 | 84.92 | 6169.5 | 83.33 |
|   | 6045 | 78.93 | 6114.1 | 84.76 | 6141.7      | 84.67 | 6141.7 | 84.87 | 6236.5 | 83.31 |
|   | 6110 | 79.01 | 6179.8 | 84.86 | 6207.7      | 84.65 | 6207.7 | 84.79 | 6303.6 | 83.19 |
|   | 6175 | 79.11 | 6245.5 | 84.76 | 6273.8      | 84.68 | 6273.8 | 84.6  | 6370.6 | 83.09 |
|   | 6240 | 79.23 | 6311.3 | 84,58 | 6339.8      | 84.65 | 6339.8 | 84.51 | 6437.7 | 83.02 |
|   | 6305 | 79.13 | 6377   | 84.53 | 6405.8      | 84.5  | 6405.8 | 84.68 | 6504.8 | 83,01 |
|   | 6370 | 78.95 | 6442.8 | 84.54 | 6471.9      | 84.57 | 6471.9 | 84.54 | 6571.8 | 83.24 |
|   | 6435 | 78.83 | 6508.5 | 84.55 | 6537.9      | 84.64 | 6537.9 | 84.37 | 6638.9 | 83.36 |
|   | 6500 | 78.71 | 6574.3 | 84.58 | 6604        | 84.52 | 6604   | 84.47 | 6705.9 | 82.87 |
|   |      |       |        |       |             |       |        |       |        | /     |

| Out<br>GEN<br>CHA  | gram : Prof<br>put file: Cro<br>NERATED (<br>AINAGE= 4<br>AR 1983 | ss.Shape<br>CROSS S |        |      |     |
|--------------------|-------------------------------------------------------------------|---------------------|--------|------|-----|
| ********           |                                                                   | ******              | ****** | **** |     |
| .00                | 88.208                                                            |                     |        | ,    |     |
| 86.24              | 87.150                                                            |                     |        |      |     |
| 172.63             | 84.098                                                            |                     |        |      |     |
| 258.97             | 88.459                                                            |                     |        |      |     |
| 345.31             | 87.830                                                            |                     |        |      |     |
| 431.54             | 86.560                                                            |                     |        |      |     |
| 517.80             | 86.454                                                            |                     |        |      |     |
| 604.20             | 86.323                                                            |                     |        |      |     |
| 690.52             | 84.404                                                            |                     |        |      |     |
| 776.94             | 82.267                                                            |                     |        |      |     |
| 863.19             | 79.331                                                            |                     |        |      |     |
| 949.54             | 80.418                                                            |                     |        |      |     |
| 1035.76            | 81.539                                                            |                     |        |      |     |
| 1122.06            | 86.799                                                            |                     |        |      |     |
| 1208.44            | 82.672                                                            |                     |        |      |     |
| 1294.72            | 83.565                                                            |                     |        |      |     |
| 1381.10            | 83.748                                                            |                     |        |      |     |
| 1467.34            | 83.919                                                            |                     |        |      |     |
| 1553.66            | 83.551                                                            |                     |        |      |     |
| 1640.06            | 83.353                                                            |                     |        |      |     |
| 1726.34            | 84.260                                                            |                     |        |      |     |
| 1812.71            | 78.976                                                            |                     | · · .  |      | • • |
| 1898.94            | 72.590                                                            |                     | ٠      |      |     |
| 1985.38            | 82.167                                                            |                     |        |      |     |
| 2071.60            | 81.946                                                            |                     | .*     |      |     |
| 2157.86            | 78.209                                                            |                     |        |      |     |
| 2244.29            | 90.272                                                            |                     |        |      |     |
| 2330.53            | 92.240                                                            |                     |        |      |     |
| 2416.92            | 86.743                                                            |                     |        |      |     |
| 2503.17            | 84.240                                                            |                     |        |      |     |
| 2589.40            | 84.961                                                            |                     |        |      |     |
| 2675.84            | 86.367                                                            |                     |        |      |     |
| 2762.11            | 86.811                                                            |                     |        |      |     |
| 2848.56            | 86.454                                                            |                     | •      |      |     |
| 2934.80            | 85.943                                                            |                     | •      |      |     |
| 3021.15            | 85.021                                                            |                     | · -    |      |     |
| 3107.37            | 83.098                                                            |                     |        |      |     |
| 3193.67            | 82.043                                                            |                     |        |      |     |
| 3280.11            | 83.543                                                            |                     |        |      |     |
| 3366.35            | 87.121                                                            |                     |        |      |     |
| 3452.70            | 89.391<br>86.058                                                  |                     |        |      |     |
| 3538.95            | 86.058<br>84.845                                                  |                     |        |      |     |
| 3625.19            | 84.845<br>85.821                                                  |                     |        |      |     |
| 3711.66<br>3797.92 | 85.821<br>84.349                                                  |                     |        |      |     |
| 5171.92            | 04.343                                                            |                     |        |      |     |

n n 1947 -V Th

(12) 900) 220) -

t eet de stati

.

-773

ia et La terra

artir Zazi

(A, t).

jurs. Altr

0. •

et ave.

ر ۲۰۰۰ ۲۰۰۶

÷.

; ,

,

:: ;

• • •

.

• \

4. 1

· · ``

:...

· ·

| 3884.31 | 78.220 |   |
|---------|--------|---|
| 3970.57 | 78.335 |   |
| 4056.92 | 79.305 |   |
| 4143.29 | 81.909 |   |
| 4229.52 | 82.895 |   |
| 4315.90 | 90.640 |   |
| 4402.11 | 91.495 |   |
| 4488.49 | 88.252 |   |
| 4574.71 | 86.180 |   |
| 4661.08 | 86.085 |   |
| 4747.44 | 86.463 |   |
| 4833.70 | 87.135 |   |
| 4920.09 | 88.441 |   |
| 5006.35 | 89.469 |   |
| 5092.81 | 90.169 | • |
| 5179.06 | 90.496 |   |
| 5265.31 | 90.693 |   |
| 5351.66 | 89.607 |   |
| 5437.90 | 88.521 |   |
| 5524.33 | 87.891 |   |
| 5610.63 | 87.011 |   |
| 5696.85 | 87.022 |   |
| 5783.21 | 87.067 |   |
| 5869.45 | 86.822 |   |
| 5955.90 | 87.879 |   |
| 6042.17 | 85.222 |   |
| 6128.61 | 83.949 |   |
| 6214.83 | 84.862 |   |
| 6301.09 | 84.260 |   |
| 6387.48 | 84.262 |   |
| 6473.72 | 84.793 |   |
| 6560.15 | 86.534 |   |
| 6646.40 | 85.452 |   |
| 6732.63 | 85.142 |   |
| 6819.07 | 85.175 |   |
| 6905.30 | 84.793 |   |
| 6991.67 | 84.535 |   |
| 7077.95 | 84.296 |   |
| 7164.35 | 84.293 |   |
| 7250.67 | 84.268 |   |
| 7336.91 | 84.107 |   |
| 7423.29 | 83.967 |   |
| 7509.57 | 84.902 |   |
| 7595.94 | 85.744 |   |
| 7682.24 | 86.548 |   |
| 7768.47 | 86.821 |   |
| 7854.82 | 87.135 |   |
| 7941.07 | 86.356 |   |
| 8027.48 | 82.006 |   |
| 8113.81 | 84.350 |   |
| 8200.21 | 83.774 |   |
|         |        |   |

.

•

;

| 8286.47 | 83.446 |
|---------|--------|
| 8372.70 | 83.084 |
| 8459.04 | 83.385 |
| 8545.38 | 83.933 |
| 8631.76 | 84.031 |

í :