CAPACITY EXPANSION OF A WATER RESOURCES SYSTEM

A THESIS

Submitted in fulfilment of the requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

HYDROLOGY

248389. Acc. No. ._..

By

M. L. WAIKAR

UNIVERSITY OF ROORKEE ROORKEE-247 667 (INDIA)

JULY, 1998

Galis

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled CAPACITY EXPANSION OF A WATER RESOURCES SYSTEM in fulfillment of the requirement for the award of the degree of Doctor of Philosophy and submitted in the Department of Hydrology, University of Roorkee, is an authentic record of my own research work carried out during a period from February 1995 to June 1998, under the supervision of Professor D.K. Srivastava.

The matter presented in this thesis has not been submitted by me for the award of any other degree of this or any other University.

Date: July, 07, 1998

(M.L. WAIKAR)

This is to certify that the above statements made by the candidate are correct to the best of my knowledge.

Date: July, **07**, 1998

(D.K.SRIVASTAVA)

Professor & Head

Department of Hydrology

University of Roorkee, Roorkee(INDIA)

The Ph.D. Viva-Voce examination of Mr. M.L.WAIKAR, Research Scholar, has been held on 29.-1.-1999

~ /m

Signature of Supervisor

and he

Signature of H.O.D.

Signature of External Examiner

ACKNOWLEDGEMENT

I wish to express my sincere appreciation and deep sense of gratitude to my research supervisor, Dr. D.K.Srivastava, Professor and Head, Department of Hydrology, University of Roorkee, Roorkee for his whole hearted cooperation, valuable guidance and perpetual encouragement which had a great influence in bringing this study to its logical and meaningful conclusion. Indeed, I remain ever indebted to him for the keen interest shown and moral support offered all through the pursuance of this work.

It gives me great pleasure to acknowledge the useful discussions and suggestions offered by all the scrutiny committee members of the University of Roorkee, Roorkee. My sincere thanks are due to Dr. B.S.Mathur, Dr. D.C. Singhal, Dr. Ranvir Singh, Dr. N.K. Goel, Dr. H. Joshi, and Dr. Arya, the esteemed faculty members of the Department of Hydrology, for their keen interest, sympathetic concern, valuable cooperation and encouragement throughout this work.

My sincere gratitude is extended to Principal B.M.Naik, Principal, Shri Guru Gobind Singhji College of Engineering and Technology, Nanded (M.S.), India, for providing me the opportunity by sponsoring me for Ph.D. Programme under Q.I.P. His enlightenment, unflinching support, constant encouragement and

extending all help and facility during the entire work deserve high appreciation on my part.

I am thankful to all of my friends and colleagues specially, Dr. A.K. Tiwari, Dr. M.Sadeghian, Dr. A. Kohistani, Dr. A. Tizro, Dr. M. Shakeel, Dr. R.S. Kurothe, Dr. Anupama Sharma, Dr. V.S. Katiyar, Mr. S.K. Mishra, Mrs. Sunita Devi, Mr. S.K. Tyagi, Mr. M.L. Gaur, Mr. B. Talukdar, and Mr. P.D. Dahe for their sincere help and cooperation during this work. The support and cooperation offered by the staff at New Computational Facility (NCF), Department of Hydrology, Quality Improvement Programme Centre, and Central Library, in University of Roorkee, Roorkee, is gratefully acknowledged.

The author would like to express his high regards, sincere thanks and profound gratitude to his parents, elder brothers for their constant encouragement, moral support and blessings. I remain indebted to each one of them for their everlasting affection and constant encouragement. The author wishes to express his special appreciation to his wife Sow. Yogita and son Chi. Ameya who bore all the difficulties and hardships of being at a far off place from our hometown and provided me the dynamic support for the completion of this work.

Finally, I thank one and all of them who directly or indirectly helped me completing this task.

Date:

(M. L. WAIKAR)

ABSTRACT

Comprehensive river basin water resources planning is a complex and very difficult task posing numerous social, economic, environmental, and engineering problems. While planning for the development of a big river basin it is always necessary to take into account the various aspects of long-term river basin planning. One such implied aspect is the determination of sequence of development of various reservoirs. The sequencing of various reservoirs should be such that the decisions taken on grounds of exigency and expediency do not lead to infructuous and wasteful investments in the long-run. Nowadays it is very much possible to carry out such studies using modern systems analysis techniques and computing facilities.

The specific problem in question is of obtaining a sequence of development of the reservoirs for capacity expansion of a multipurpose, multifacility system on the Narmada river in Central India, to meet current and forecasting growth in demand of water for irrigation and hydropower. The system consists of 30 major reservoirs, out of which, 10 are situated on the main river, the remaining 20 on nineteen tributaries, which include 2 in series on a tributary, and the other 18 are independent of each other and are situated on eighteen tributaries. The development is proposed in two Phases spread over 45 years as

stipulated in the Master Plan. The various alternative configurations are to be analysed, based on the various proposals and engineering considerations for obtaining the optimal water use targets from reservoirs and subsequently the optimal sequencing of the reservoirs over alternative planning horizons is to be obtained.

The approach is to arrive at a suitable methodology to identify the minimum cost sequencing of reservoirs in the river basin for its development subjected to technological, economical and policy constraints. In view of the large number of reservoirs being involved and the planning nature of the present study, the neighbouring similar reservoirs have been suitably clubbed. A detailed flexible simulation model is effectively used for fixing the annual irrigation targets of reservoirs with irrigation and also for quantifying the effect of upstream reservoir(s) on annual firm hydropower targets of reservoirs with hydropower on the basis of water use dependability criteria. For this 22 years flow data is used. Further, a deterministic backward dynamic programming process for tackling the reservoir sequencing problem, has been evolved and used in both the Phases. For analysis a few system demand patterns and planning periods in both the Phases have been formulated on the basis of data available.

Suitable computer programs have been developed for simulation and for sequencing. These programs are efficient, flexible, convenient and useful tools for obtaining sequencing of

multipurpose, multireservoir system.

Initially, assuming that all 30 reservoirs are existing in the system, the individual reservoir wise as well as combined simulation runs for all the 30 reservoirs were undertaken starting from upstream to downstream for fixing the final simulated irrigation targets of each of the irrigation reservoirs.

Secondly for 14 Phase I reservoirs the initial and the final simulated firm hydropower targets of hydropower reservoirs were determined. In each case, the irrigation targets were kept constant as obtained in the previous para. Further, sequencing of the Phase I reservoirs was done using the sequencing model.

Finally, 16 Phase II reservoirs were sequenced in similar fashion as in Phase I. Looking at the huge size of the problem due to the presence of a large number of reservoirs in both the Phases of development it was necessary to reduce the size of the problem by clubbing some of the small neighbouring reservoirs and calling the new system by projects.

In this study an attempt was made to blend the major advances of systems analysis by using simulation and sequencing models for capacity expansion. Dynamic programming has been used as an optimization technique for sequencing owing to obvious reasons of multistage sequential decisions involved in such problems. These models were effectively used for capacity

expansion of the Narmada river water resources system. The large multipurpose reservoirs are found insensitive to sequencing parameters such as demand patterns, allowances for shortage and excess and corresponding penalties, etc. and tend assume almost a fixed position in sequencing over the recommended planning horizon of 14 periods. However, small and moderate size reservoirs are found sensitive to the sequencing parameters.

Three categories of targets have been considered, namely mixed, simulation and master plan for analysis and the simulation target sequencing is preferred and suggested for implementation amongst the recommended sequences. Trend of existing development is found to be matching with recommended sequences. Tradeoff between irrigation supply area fulfilled and hydropower supply for recommended as well as no penalty sequences is also studied. The agroclimatic zonewise distribution of the sequenced projects for the preferred simulation category sequence indicated evenly spread and balanced development of the system with respect to space (three zones) and time (planning horizon).

The use of proposed strategy of exhaustive analysis of all possible reservoir combinations by detailed simulation model and subsequently sequencing by optimization(DP) suggests a promising scheme for capacity expansion of a multipurpose, multireservoir system. Such a strategy is likely to guarantee an optimal capacity expansion path. The approach is feasible and efficient within a reasonable amount of computing time and efforts.

CONTENTS

TITLE	Page No
CANDIDATE'S DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iv
CONTENTS	viii
LIST OF TABLES	xiv
LIST OF FIGURES	xvii
CHAPTER-1 INTRODUCTION	1
1.1 Problem Identification	2
1.2 Objectives of the Present Study	5
1.3 Assumptions of the Study	6
1.4 Approach	6
1.5 The Chapterwise Planning of the Thesis Report	7
CHAPTER-2 LITERATURE REVIEW	10
2.1 Introduction	10
2.2 Review of Analytic Sequencing Models	12
2.2.1 Review of Dynamic Programming(DP) Based Models	16
2.2.2 Review of Models in Combination with DP	18
2.2.3 Review of Models Based on LP, MIP, etc.	21
2.2.4 Review of Heuristic Models	22
2.3 Review of Multireservoir Simulation Models	24
2.4 Brief Description of Some Classical Sequencing and	34
Capacity Expansion Models	
2.4.1 General	3.4

TITLE	Page No
2.4.2 BHH Model	34
2.4.3 Kuiper and Ortolano Model	36
CHAPTER-3 SIMULATION MODEL	42
3.1 Introduction	42
3.2 Theory	43
3.2.1 System Design Variables and Parameters	43
3.2.1.1 Major Design Variables	44
3.2.1.2 Physical Functions, Parameters and Constants	44
3.2.1.3 Streamflow Data	44
3.2.1.4 Reservoir Evaporation Data	45
3.3 Operation of System	45
3.3.1 Individual Reservoir Operation	45
3.3.2 Reservoir Operation among Reservoirs	46
3.4 Results from Simulation	47
3.4.1 Reservoir Behaviour	47
3.4.2 Irrigation Analysis	47
3.4.3 Energy Analysis	48
3.5 Operation Policy for Reservoirs in Multireservoir	48
System	
3.6 Working Principle of Simulation Computer Program	49
List of Variables	53
CHAPTER-4 DYNAMIC PROGRAMMING CAPACITY EXPANSION	57
(SEQUENCING) MODEL	
4.1 Introduction	57
4.1.1 General	57
4.1.2 Definition	57

TITLE	Page No
4.1.3 Factors Affecting	58
4.1.4 Classification	61
4.2 Proposed Sequencing and Capacity Expansion Model	63
4.2.1 General	63
4.2.2 Problem Statement	64
4.2.3 Formulation	64
4.2.3.1 Objective	65
4.2.3.2 Terminology and Recursive Equation	65
4.2.3.3 The Constraints	67
4.3 Working Principle of Sequencing Computer Program	70
4.4 Illustrative Example	73
Additional Examples	78
List of Variables	81
CHAPTER-5 THE RIVER SYSTEM AND THE PROBLEM	92
5.1 Basin Description	92
5.2 Climate and Rainfall	93
5.3 Streamflow	94
5.3.1 Twenty Two Year Monthly Flow Data (1948-1969)	95
5.3.2 Sixteen Year Monthly Flow Data (1977-1993)	95
5.4 Basin Needs (Demands)	95
5.4.1 Irrigation Water Requirement	95
5.4.1.1 Cropping Pattern	96
5.4.1.2 Crop Water Requirement	96
5.4.2 Hydropower Requirement	97
5,5 River Development Plan	98
5.5.1 Phasing of Narmada Valley Development	9.8

TITLE	Page No
5.5.2 Existing Development	99
5.5.3 Development Potential	101
5.6 Statement Of The Problem	101
5.6.1 Assumptions	103
CHAPTER-6 COMPUTATIONS, RESULTS, AND DISCUSSION	160
6.1 General	160
6.2 Data Collection, Processing, and Presentation	161
6.2.1 For Simulation	162
6.2.1.1 Streamflow Data	162
6.2.1.2 Annual Targets	162
6.2.1.2.1 Usewise Downstream Annual Targets	162
6.2.1.2.2 Usewise Upstream Annual Targets	163
6.2.1.3 Monthly Requirements (Percentages)	163
6.2.1.3.1 Usewise Downstream Monthly Requirements	163
6.2.1.3.2 Usewise Upstream Monthly Requirements	164
6.2.1.4 Reservoir Capacity vs Elevation and Reservoir	164
Capacity vs Reservoir Area Curves and Relationsh	ips
6.2.2 For Sequencing	165
6.2.2.1 Planning Horizon	165
6.2.2.2 Targets of Project Combination (states)	166
6.2.2.3 Cost	166
6.2.2.4 Demand Patterns	167
6.2.2.5 Allowable Deficit, Excess and Penalty Costs	168
6.3 Steps in Combined Use of Simulation and Sequencing	168
Models	
6.4 Computations	170

TITLE	Page No
6.4.1 Strategy for Simulation Computations	170
6.4.1.1 Criteria for Finalisation of Targets	170
6.4.1.1.1 Reservoir by Reservoir Analysis	170
6.4.1.1.2 Necessity of Combining Reservoirs	172
6.4.1.2 Phase I Simulation Runs	174
6.4.1.3 Phase II Simulation Runs	175
6.4.2 Strategy for Sequencing Model	177
6.4.2.1 Annual Cost	177
6.4.2.2 Planning Horizons	178
6.4.2.3 Targets and Demand Patterns	179
6.4.2.4 Allowable Shortage, Excess and Penalty Cost	179
CHAPTER-7 ANALYSIS AND CONCLUSIONS	225
7.1 General	225
7.2 Simulation Model Results and Analysis	227
7.2.1 Important Features Different from Earlier Studies	227
7.2.2 Discussion of Simulation Model Results	229
7.2.2.1 Phase I Simulations	229
7.2.2.2 Phase II Simulations	231
7.3 DP Sequencing Model Results and Analysis	231
7.3.1 Important Features Different from Earlier Studies	231
7.3.2 Discussion of DP Model Results	233
7.3.2.1 Analysis of Phasewise Mixed Target Category	236
Sequencing	
7.3.2.2 Analysis of Phasewise Simulation Target Category	238
Sequencing	

TITLE	age No
7.3.2.3 Analysis of Phasewise Master Plan Target Category	239
Sequencing	
7.3.2.4 Discussion on Combined Phase I and Phase II	240
Sequencing	
7.4 Comparison of Results with Project and Master Plan	243
Provisions	
7.5 Conclusions	248
7.6 Suggestions for Future Work	254
REFERENCES AND BIBLIOGRAPHY	293
Appendix 3-I	314
Appendix 4-I	352
Appendix 6-I	370
	T
	0
7 2 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	
A SELECTION OF THE PARTY OF THE	d.
The state of the s	
S. C. B. LEGARA	
The state of the s	

LIST OF TABLES

TITLE	Page No
Table 2.1 Capacity expansion planning literature review	39
Table 4.1 Optimal sequence of states (at the end of r	78
stages to go) for illustrative example	
Table 4.2 Optimal sequence of states (at the end of r	79
stages to go) for example 1	
Table 4.3 Optimal sequence of states (at the end of r	80
stages to go) for example 2	
Table 4.4 Optimal sequence of states (at the end of r	80
stages to go) for example 3	1
Table 4.5 Optimal sequence of states (at the end of r	81
stages to go) for example 4	
Table 5.1 Information of principal tributaries of	106
Narmada river	
Table 5.2 Monthly flows at gauging sites (22 years)	107
Table 5.3 Monthly flow data at reservoir sites (22 year	s) 109
Table 5.4 Monthly flow data at reservoir sites (16 year	
Table 5.5 Zonewise cropping patterns	134
Table 5.6 Salient features of major reservoirs in	143
Narmada basin	
Table 5.7 Planwise demand pattern for Narmada basin	154
Table 5.8 Status of major reservoirs in Narmada basin	154
Table 6.1(a) Total and annual costs of major reservoirs	
in Narmada basin (Ps. Crores)	

		TITLE	Page No
Table	6.1(b)	Total and annual costs (fixed and OMR) in	186
		Rs. Crores of major reservoirs in Narmada	
		basin (as per Year 1978 estimates)	
Table	6.2 Co	emparative statement of individual reservoir	188
	si	mulation results	
Table	6.3 Li	st of projects and reservoirs	189
Table	6.4 In	formation of fixed and OMR costs of projects	190
Table	6.5 Si	mulation results of Phase I combinations	191
Table	6.6 Si	mulation results of Phase II combinations	203
Table	6.7 Co	omparative statement of targets for various	204
	ca	ategories	7 En
Table	6.8 Ty	pical demand patterns for various cases	205
Table	6.9(a)	Various commonly considered allowable	206
		deficits/excesses and penalty costs (options	s)
Table	6.9(b)	Finalised values and classes of allowances	207
	17	and penalties	
Table	6.10 T	The nomenclatures used in sequencing model	208
Table	6.11 8	Sequencing of Phase I projects	209
Table	6.12 5	Sequencing of Phase II projects	217
Table	7.1 St	tatement showing possible number of	256
	CC	ombinations for various cases of time	
	ph	nasing of Phase I reservoirs	
Table	7.2 Ra	ange of firm hydropower targets and releases	for 256
	se	eries Phase I reservoirs (from 22 year simula	tion)
Table	7.3 Ra	ange of firm hydropower targets and releases	for 256
	se	eries Phase II reservoirs (from 22 year simul	ation)

		TITLE	Page N
Table	7.4	Comparison of sequences for various cases	257
		(Next period demand as upper limit)	
Table	7.5	Narmada basin development information prior to	260
		award of Narmada Water Disputes Tribunal	
Table	7.6	Recommended sequences for various cases	261
		(Next period demand as upper limit)	
Table	7.7	Sequences for recommended planning horizons	262
Table	7.8	(a) Recommeded Sequences data	263
Table	7.8	(b) No penalty Sequences data	264
Table	7.9	Details of recommended sequences	265
Table	7.10	Compariosn of orders of development for	267
		capacity expansion of Narmada reservoir system	
Tabel	7.11	Abbreviations used for reservoirs in old	269
25		sequencing	
Table	7.12	Zonewise irrigation development (Mha) for	270
	13	capacity expansion of Narmada reservoir system	
1	3	(simulation target sequencing)	

Note: All the tables pertaining to a chapter are enclosed at the end of that chapter.

LIST OF FIGURES

TITLE	Page No
Fig. 3.1 General flowchart for simulation	54
Fig. 4.1(a) General flowchart for DP sequencing algorith	m 84
Fig. 4.1(b) Flowchart of subroutine DPALG	86
Fig. 4.1(c) Flowchart of subroutine OPTPA	87
Fig. 4.2 Transition feasibility of states for	88
illustrative example	
Fig. 4.3 Transition feasibility of states for example 1	89
Fig. 4.4 Transition feasibility of states for example 2	90
Fig. 4.5 Transition feasibility of states for	91
examples 3 and 4	
PLATE-I Map of Narmada basin	155
Fig. 5.1 Principal tributaries in Narmada river basin	156
Fig. 5.2 Line diagram of major reservoirs in Narmada sys	tem 157
Fig. 5.3 Line diagram of Phase I reservoirs (1979-2000)	158
Fig. 5.4 Line diagram of Phase II reservoirs (2000-2024)	159
Fig. 7.1(a) CASE-A1(T3) Sequencing for Phase I projects	271
for mixed targets (irrigation)	
Fig. 7.1(b) CASE-A1(T3) Sequencing for Phase I projects	271
for mixed targets (hydropower)	
Fig. 7.2(a) CASE-B1(T2) Sequencing for Phase II projects	272
for mixed targets (irrigation)	# P.E.
Fig. 7.2(b) CASE-B1(T2) Sequencing for Phase II projects	272
for mixed targets (hydropower)	

		TITLE	Page No
Fig.	7.3(a)	CASE-A2(T3) Sequencing for Phase I projects	273
		for simulation targets (irrigation)	
Fig.	7.3(b)	CASE-A2(T3) Sequencing for Phase I projects	273
		for simulation targets (hydropower)	
Fig.	7.4(a)	CASE-B2(T2) Sequencing for Phase II projects	274
		for simulation targets (irrigation)	
Fig.	7.4(b)	CASE-B2(T2) Sequencing for Phase II projects	274
		for simulation targets (hydropower)	
Fig.	7.5(a)	CASE-A3(T3) Sequencing for Phase I projects	275
	10	for master plan targets (irrigation)	43
Fig.	7.5(b)	CASE-A3(T3) Sequencing for Phase I projects	275
		for master plan targets (hydropower)	1
Fig.	7.6(a)	CASE-B3(T2) Sequencing for Phase II projects	276
	15	for master plan targets (irrigation)	
Fig.	7.6(b)	CASE-B3(T2) Sequencing for Phase II projects	276
	172	for master plan targets (hydropower)	
Fig.	7.7(a)	CASE-A1T3B1T2 Sequencing of projects for mixe	d 277
		targets (irrigation)	>
Fig.	7.7(b)	CASE-A1T3B1T2 Sequencing of projects for mixe	d 277
		targets (hydropower)	
Fig.	7.7(c)	Cumulative irrigation supply (Mha) for mixed	278
		target sequencing	
Fig.	7.8(a)	CASE-A2T3B2T2 Sequencing of projects for	279
		simulation targets (irrigation)	
Fig.	7.8(b)	CASE-A2T3B2T2 Sequencing of projects for	279
		simulation targets (hydropower)	

TITLE	Page No
Fig. 7.8(c) Cumulative irrigation supply (Mha) for	280
simulation target sequencing	
Fig. 7.9(a) CASE-A3T3B3T2 Sequencing of projects for	281
master plan targets (irrigation)	
Fig. 7.9(b) CASE-A3T3B3T2 Sequencing of projects for	281
master plan targets (hydropower)	
Fig. 7.9(c) Cumulative irrigation supply (Mha) for master	282
plan target sequencing	
Fig. 7.10 Tradeoff between irrigation and hydropower	283
supply for recommended sequences	
Fig. 7.11(a) CASE-A1T3B1T2 No Penalty sequencing of	284
projects for mixed targets (irrigation)	
Fig. 7.11(b) CASE-A1T3B1T2 No Penalty sequencing of	284
projects for mixed targets (hydropower)	
Fig. 7.12(a) CASE-A2T3B2T2 No Penalty sequencing of	285
projects for simulation targets (irrigation)	
Fig. 7.12(b) CASE-A2T3B2T2 No Penalty sequencing of	285
projects for simulation targets (hydropower)	
Fig. 7.13(a) CASE-A3T3B3T2 No Penalty sequencing of	286
projects for master plan targets (irrigation)	
Fig. 7.13(b) CASE-A3T3B3T2 No Penalty sequencing of	286
projects for master plan targets (hydropower)	
Fig. 7.14 Tradeoff between irrigation and hydropower	287
supply for No penalty sequences	
Fig. 7.15(a) Cumulative irrigation supply (Mha) for old	288
sequencing (Before Master Plan Revision)	

		TITLE	Page No
Fig.	7.15(b)	Cumulative irrigation supply (Mha) for	288
		mixed target sequencing	
Fig.	7.15(c)	Cumulative irrigation supply (Mha) for	288
		simulation target sequencing	
Fig.	7.15(d)	Cumulative irrigation supply (Mha) for	288
		master plan target sequencing	
Fig.	7.16(a)	Mixed target sequencing percentages	289
Fig.	7.16(b)	Simulation target sequencing percentages	290
Fig.	7.16(c)	Master plan target sequencing percentages	291
Fig.	7.17 Li	ne diagram for simulation target sequencing	292

Note: All the figures pertaining to a chapter are enclosed at the end of that chapter after the tables.

INTRODUCTION

It is a no denying fact that water is an extremely important constituent of the geosystem. It is a vital natural resource essential for the very existence of the life on this planet. It has been closely related to the development of different civilizations and in future also it will continue to play the same role. The population of the world is exploding at an alarming rate and is estimated to reach 10 to 16 Billions by the year 2050 (U.N., 1973). Due to this, there is an acute pressure on water resources, and in coming years this will mount further. It has therefore become necessary to give more emphasis on careful planning for conservation and use of water resources.

Over the last few decades, water resources planning has evolved from a relatively straight forward methodology to a complex procedure. Planning is now more broadly based. Instead of stressing for a single project to meet a specific defined requirement, nowadays, all needs and opportunities for water resources development are considered in a region such as a river basin, as a large water resources system. The large scale water resources systems are usually consisting of multiple and multipurpose reservoirs and hence complex. Integrated planning for such systems is obviously a difficult task primarily due to

the large number of possible development strategies which invariably require vast data handling and computational efforts for obtaining an optimal development plan. Despite these difficulties, it is being increasingly realised to have a comprehensive planning program that will determine an optimal development strategy because of the huge investment required in construction and operation of such large systems and also due to great potential for cost reduction through improved systems design. Systems analysis techniques can be effectively used to assist the planners and decision makers to accomplish these tasks.

Systems Analysis techniques have been well developed in theory as well as in practice. The tools of the systems analysis are therefore many but varied in their usefulness. Accordingly, it becomes necessary to first identify a set of the suitable techniques and then tailor them to suit a specific real life planning study.

1.1 PROBLEM IDENTIFICATION

The water resources planners usually aim at identification or development of possible water resources systems, designs or management plans and evaluation of their economic, ecological, environmental, and social impacts. In this, single or combined decisions are sought on selection, siting, sizing, target fixing, operation, capacity expansion, and financial planning etc. in

respect of a water resources system.

Rapid economic growth and population growth have led to spiraling of water demands and eventually capacity expansion planning has gained significant importance in water resource development. It was therefore decided to focus attention on capacity expansion planning of water resources system, in the present study. It essentially involves the determination of sequencing of different projects in the system for meeting forecasting water demand over time.

Since the late 1950s, systems methodology has been successfully used to develop various techniques for solving classical water resources systems planning problems and their extensions. However, it has been generally accepted that reallife applications are required to validate the efficacy and worthwhileness of certain techniques. World over a considerable number of real-life casestudies on capacity expansion of water resources systems, have been reported in the literature. Some of the notable studies amongst them are Butcher et al.(1969), Kuiper and Ortolano(1973), Becker and Yeh(1974a,b), O'laoghaire(1978), Major and Lenton(1979), Helm et al.(1984), and Mazzola(1992). Neverthless, the following observations on these and other earlier studies are noteworthy:

(i) Mostly, either water supply system or hydropower system was analysed. The casestudies on multipurpose water resources systems are very rare.

- (ii) Effect of interdependence of the reservoirs in the system on its expansion planning has been either ignored or grossly approximated.
- (iii) Mostly, bulk simulation model was used for operating the system. Very few cases reported use of detailed simulation model. And also a limited number of configurations (states) of reservoirs were simulated after using screening criterion.
- (iv) Generally sequencing of the reservoirs was tackled using forward dynamic programming process or mixed integer programming.
 - (v) Mostly, a reservoir was considered as a stage variable in case of dynamic programming. Very few cases considered time (period) as a stage.
- (vi) Casestudies on the capacity expansion of a system consisting of a large number of reservoirs are rare.

Further, India is a vast country having many large and important inter-State river basins such as Ganga, Bramhaputra, Mahanadi, Narmada, Godavari, Krishna, Kaveri etc., to name a few. So far, the potential of these basins is not harnessed fully due to many reasons(inter-State water disputes, paucity of funds, etc.) and water resources development in these basins is still in its initial stages of development. The situation is more or less similar in many of the underdeveloped and developing countries in the world.

Keeping in mind the above mentioned considerations and recognizing the need of a suitable approach in the context of river basin developments in general and for India, in particular the present study is directed to evaluate the different developmental alternatives, and further the following objectives were set as the scope of this work.

1.2 OBJECTIVES OF THE PRESENT STUDY

The basic objectives in the present thesis can be broadly defined as under:

- (i) To develop a backward dynamic programming process model for capacity expansion (sequencing) of reservoirs.
- (ii) To test above developed model by applying it to a real life large scale river basin system consisting of multiple, multipurpose reservoirs and subsequently obtain the best possible sequence of development.
- (iii) Before the sequencing model for capacity expansion is applied the following is to be investigated:
- (a) To apply detailed simulation model for deciding the annual targets which could be supplied by a reservoir and also for investigating the effect of the interdependency of reservoirs in the system on these targets.
- (b) To develop a methodology to simulate all the possible alternative configurations of reservoirs in the system in order to make use of this facility in the capacity expansion model also, in order to resemble and match it

- with the real life capacity expansion problem.
- (iv) To develop suitable computer codes for detailed simulation and backward dynamic programming models.
- (v) To draw suitable conclusions from the above results and the experience of applying the above simulation-optimization models for capacity expansion onto a large scale water resources system in order to use its full development potential in the best possible manner.

1.3 ASSUMPTIONS OF THE STUDY

- (i) The central focus of the study is on the sequencing aspect of the capacity expansion planning of the system.
- (ii) Models developed in the study are deterministic in nature.
- (iii) The study does not address the capital budgeting as well as financial planning aspects.
- (iv) As the real life system selected for application is still in the initial stages of development, it is considered to be a new system.

1.4 APPROACH

As proposed in the objectives, two models namely target fixing model and sequencing model are to be constructed. Both simulation and analytic models will be used to obtain best possible strategy of development of the Narmada river basin system, one of the important and largest water resources systems

in India. The simulation model is to be used to obtain the annual targets that can be met by the various reservoirs and also to analyse the effect of hydrological dependence on these targets. All the possible reservoir combinations in the system would be simulated and each simulation run would be carried out by adding a downstream reservoir one by one from upstream to downstream. Subsequently, a suitable backward dynamic programming algorithm will be developed and utilized for obtaining the sequence of development of the reservoirs at the minimum total cost.

Thus, this thesis is an attempt to combine the major advances of both simulation and optimization models. The planning, formulation, and solution procedure of this analysis in this dissertation is described as below.

1.5 THE CHAPTERWISE PLANNING OF THE THESIS REPORT

With reference to the above said objectives, this research work is reported in seven chapters.

Chapter 2

In this chapter a literature review is presented related to topics of multireservoir simulation and sequencing using dynamic programming(DP), mixed integer programming(MIP), etc. Literature survey was carried out by referring to the prestigious international journals like Journal of Water Resources Research (A.G.U.), Journal of Water Resources Planning and Management

(A.S.C.E.), Journal of Hydraulics Division (A.S.C.E.), Water Resources Bulletin (U.S.A.), Journal of Operations Research (U.S.A.), Journal of Management Science (U.S.A.), Journal of Hydrology (The Netherlands), Journal of Advances in Water Resources (The Netherlands), Journal of Computers and Industrial Engineering (U.K.), and I.E.E.E., etc. Some text and reference books were also studied for this purpose. A brief description of the research works of different researchers is presented in this chapter in chronological order as far as possible.

Chapter 3

This chapter presents the formulation of Simulation Model in the context of fixing annual irrigation targets and quantification of effect of upstream reservoir(s) on firm hydropower targets of reservoirs in the multipurpose and multireservoir system by taking into account the hydrological interdependence of reservoirs.

Chapter 4

This chapter describes the development of a Sequencing Model using backward dynamic programming process. An illustrative example is also presented to explain the use of the proposed model.

Chapter 5

The Narmada river basin system in India has been briefly described in this chapter. Further, the problem statement is

presented with respect to this system on which the proposed model(s) were applied.

Chapter 6

This chapter deals with the application of the above developed models to the Narmada river system keeping in mind the objectives as mentioned in Chapter 1. The results and discussions are also included in this chapter.

Chapter 7

Based on the results and experiences of the computations carried out, an analysis has been done and suitable conclusions have been drawn in this chapter. Lastly, some suggestions for future work are made.

LITERATURE REVIEW

2.1 INTRODUCTION

Modelling provides a way, perhaps the principal way, of predicting the future behaviour of existing or proposed water resource system. Over the past 40 years or so, we have witnessed advances in our abilities to model the engineering, economic, ecologic, hydrologic, and sometimes even the institutional or practical aspects of large complex multipurpose water resource systems. Applications of models to real systems have improved our understanding of such systems, and hence have often contributed to improved system design, management, and operation. Evaluation of the applications of numerous types of models has also taught us how limited our modelling skills remain (Loucks, 1992). Despite the many applications appearing in the literature, the mathematical programming techniques are not commonly applied in practice to complex environmental systems (Uber et al., 1992).

Water resources systems analysis has now been generally accepted to provide an efficient way of answering the numerous questions regarding planning of large scale water resources systems for which the conventional methods of analysis will be inadequate. The approach and appropriate technique will naturally

vary from problem to problem as the configuration, state of development of the system, and stage of decision making is likely to vary over a vast range (Maass et al., 1962; Hufschmidt and Fiering, 1966; Hall and Dracup, 1970; Haimes, 1977; Loucks et al., 1981; Chartuvedi and Srivastava, 1981; Stedinger et al., 1983; Marino and Mohammadi, 1983a and 1983b; Mohammadi and Marino, 1984a and 1984b; Marino and Mohammadi, 1984; Goodman, 1984; Buras, 1985; Loaiciga and Marino, 1986; Srivastava, 1976 and 1987; Chavez-Morales et al., 1987; Chaturvedi, 1987; Flynn and Marino, 1988 and 1989; Afshar et al., 1991; Chavez-Morales et al., 1992; Simonovic, 1992; Srivastava and Patel, 1992; Wurbs, 1993; Boney, 1993; Sadeghian, 1995; Assadullah, 1995; Sunita Devi, 1997).

methodology has been used to develop various methods to solve the classical capacity expansion problem and its extensions. Most of the works use dynamic programming, however, the use of other techniques such as Linear Programming(LP), Mixed Integer Programming(MIP), Simulation and Heuristic, etc. has also been reported in the literature. In this chapter some of the studies on capacity expansion planning and multireservoir operation problems using systems analysis and available in literature have been presented. At the end a few important studies have been presented alongwith the mathematical models. A critical review and present state of art related to the use of optimization and simulation models within the framework of multiple reservoir

planning and management, available in literature of water resources planning and management have been presented in three parts as follows.

2.2 REVIEW OF ANALYTIC SEQUENCING MODELS

It is common in the field of water resources to build supply capacity beyond what is needed to satisfy current demand. Water demand is met by both surface and groundwater supplies. The size of groundwater projects can be changed in small increments by the addition of pumps. However, due to the indivisibility or lumpiness of increments to capacity, surface water facilities are usually built with long design periods, that is, with sufficient capacity to meet projections of demand increases for many years into the future. The optimum sizing and sequencing of capacity expansion of surface water supply projects have been the focus of much research and many models for capacity expansion have been suggested. More recently, optimum pricing and its relation to optimum capacity expansion has become an important issue. In general, capacity expansion models rely upon demand projections and estimates of costs and potential capacities of supply alternatives (economies of scale factors) which are exogenously determined. The assumptions on which the model are based vary, but the general progression over time has been towards less restrictive and more realistic models. Details of the various models are presented in the following sections, but a brief summary of the evolution of these models is thought to be worth

mentioning and hence is given here (Haimes, 1977 and Fallon, 1986).

The early capacity expansion models were based on equality of maximum capacity and economies for all alternatives, linearity of demand growth with respect to time, and zero price elasticity of demand. In some cases it was also assumed that supply must always be greater than or equal to demand. Thus, the problem reduced to that of estimating the optimum design period. In other cases initial supply deficits were allowed under the restriction of immediate alleviation by supply expansion at the beginning of the planning period. The problem then became that of estimating the optimum excess capacity of the initial project and the optimum design period of the subsequent projects. In other models supply deficits were allowed to be satisfied temporarily by importation from other supply sources so as to avoid occurrence of initial capacity expansion at the beginning of the planning period. The decision variables in these models were the optimum waiting period during which there is importation, the optimum excess capacity of the initial expansion, and the optimum design period for subsequent expansions. A slight variation of this type of model was the case where supply deficits were allowed to go unsatisfied by imposing a penalty cost for not meeting existing demand in the place of the cost of importing.

Two of the assumptions of the early capacity expansion models, namely, equality of maximum capacity and economies of scale for all alternatives, and linearity of demand growth with

respect to time led directly to the optimal sequencing in order of increasing costs of the projects. Under the relaxation of either of these two, the optimum sequencing of the projects is more complicated and must be endogenously determined by the model as a function of the shape of the demand/time relationship, the interest rate, and the relative costs and capacities of the alternative projects.

Models have been suggested for sequencing of discrete projects with the sole objective of meeting water demand at a minimum present value of costs. An extension of this model was developed for the more general problem of scheduling, which involves selection and sequencing of alternative projects when only a subset of the alternative is needed to meet water demand. Models have also been developed to deal with project scheduling problem when projects must meet demands for multiple uses. In the early sequencing and scheduling models, the optimum sizing of alternative projects was determined exogenously.

Pricing traditionally has been ignored in capacity expansion models. The water demand forecasts used assume that water use will increase in some simple relation to the increase in population and economic activity. Pricing is an after-thought, and the only objective of which is to generate sufficient revenue to cover costs. Thus, capacity expansion planning and financial planning are entirely separate activities. Although a number of water demand studies suggest otherwise, the implicit assumption of the early capacity expansion models is that water price has no effect on water demand. A more recent development in capacity

expansion modelling involves the relaxation of the assumption that the demand for water is price inelastic. In these models, the optimum pricing as well as optimum sizing and timing of capacity expansion are considered and the problem is one of the maximization the present value of net benefits rather than minimization of present value of costs.

The original capacity expansion model was proposed by Chenery in as early as 1952 (Fallon, 1986) which was concerned with effects of technology, specifically economies of scale and indivisibilities of added capacity, on investment behavior. Chenery asserted that, when economies of scale exist, there is an optimum overcapacity that is a function of scale of economies, planning period, discount rate, and the rate of demand increase. Manne (1961, 1967) gave an in-depth review of Chenery's model and presented his own generalized extension of the model permitted accumulated backlogs of unsatisfied demand and a stochastic, rather than a deterministic , upward trend in demand. Manne (1967) and Erlenkotter (1967) analysed the situation where supply deficits within an area can be met by importation. Lauria et al.(1977) developed a similar model for capacity planning of water systems which considered the case where demand exceeds the capacity at t=0 and demand is allowed to go unsatisfied for an initial period before first expansion by imposing penalty cost. Scaroto(1969) was the first to apply the capacity expansion model to water resources in the analyses of optimum capacity of water pipelines and water treatment facilities.

Luss(1982) and Fallon(1986) reviewed the then existing literature on use of analytic models in capacity expansion planning and also highlighted the trends in modelling approach, solution strategy, and relevant application alongwith detailed listing of references covering a broad spectrum of capacity expansion problem.

2.2.1 Review of Dynamic Programming (DP) Based Models

Butcher et al.(1969) were the first to obtain optimum sequence of water supply projects using a DP technique which was further modified by Morin and Esogbue (1971) and Morin (1973a) as imbedded state approach for solving combined project selection and sequencing (i.e., scheduling) problem. Morin(1973b) also gave theoretical overview of prior development relevant to multidimensional sequencing problem, which is mostly encountered in the capacity expansion of water resources systems and the proper operation of which involves the conjunctive use of individual facilities to provide required amounts of outputs such as power production, and water for domestic, industrial and agricultural uses. Erlenkotter(1973a, 1973b) developed a DP model for sequencing of expansion projects and extended it sequencing of interdependent hydroelectric projects. Erlenkotter and Rogers (1977) tackled sequencing of the competitive expansion projects by a DP based technique. Erlenkotter et al.(1989) proposed a general DP model for water resource development under demand and supply uncertainty. Knudsen and Rosbjerg(1977)

developed a general DP algorithm incorporating chance constraints or penalty functions for yielding least cost schedules. Bogardi et al.(1978) determined optimal sequence of a multipurpose water supply system by DP and then by using sensitivity analysis established that the optimal development and sequencing depend largely upon economic losses and the discount rate.

A set of twelve interdependent hydroelectric projects on Ganga river basin in the Northern India has been optimally sequenced minimizing the costs involved using dynamic programming (Chara, 1982). Rubinstein and Ortolano(1984) used a forwardstepping DP algorithm for scheduling of projects to implemented from a given set of alternative supply augmentation and demand management projects. Two optimization criteria were considered (i) Minimization of the present value of the cost of implementing the projects, and (ii) Minimization of the expected value of the costs to cope with emergencies in supply of water. The tradeoffs between the two were examined by the Non-inferior Set Estimation Method. Fontane et al. (1989) used Objective Space DP (OSDP) with project costs as a state variable to develop multiple solutions for a range of funding levels and analyzed implementation strategies for salinity control projects in the Colorado river basin. Martin(1990) described a computational methodology based on DP algorithms for establishing the approximate minimum cost engineering design for a potential water conveyance pipe line in the San Antonio river basin in Texas.

2.2.2 Review of Models in Combination with DP

The DP approach was also used by Riordan(1971a, 1971b) alongwith the theory of welfare economics to solve joint sequencing-pricing problem. Kuiper and Ortolano(1973) analyzed the capacity expansion of a mixed hydrothermal power system by means of a DP-Simulation strategy in which a bulk simulation model was used. Nainis and Haimes(1974) formulated a capacity expansion planning model which used dynamic benefit-cost analysis to solve for a least cost schedule of projects that also maximizes the net benefits to the regional economy. A projectscheduling supply model first finds the minimum present value cost schedule to meet an initial fixed demand. A demand model then maximizes the value of possible outputs of various uses. Haimes and Nainis(1974) used a DP algorithm to schedule the projects and a Leontief input-output program to model response to project supplies in the coordination of water supply and demand planning models.

Becker and Yeh(1974a) presented a model for optimal sizing as well as timing and sequencing of single-purpose water facilities based on firm water rather than reservoir capacity. Becker and Yeh(1974b) also handled combined sizing, capacity expansion and operation formulation of a multiple facility, multipurpose water resources system. The procedure incorporated an iterative LP technique for optimization of sizing and operation with a DP algorithm for optimal sequencing and timing determination. These

models accounted for the fact that although it is firm water that is supplied, it is the reservoir capacity that is costed, and the relationship between the two is not simple nor is it independent of existing facilities in the same basin or recharge area. Kolo and Haimes (1977) presented an hierarchical approach aimed at coordinating several different models (incremental DP, NLP) in order to achieve optimal regional management of water resources and related land. The lower level of the model solved for the projected construction sequence which meets demands for both power and water at minimum cost. The higher level model examined resources allocation policies, which maximize return while subject to the constraint of meeting all demands. Moore and Yeh(1980) presented a dynamic programming model for water supply capacity expansion, the objective of which was to maximize net benefits. Benefits were calculated using a willingness-to-pay criterion and rationing by price was used as an alternative to project construction. Huges (1980) formulated the regional water supply planning problem as a generalized MIP to handle multiple sources and multiple service zones in which LP was used for screening and DP for investment timing.

Dandy et al.(1984, 1985) extended Riordan's work and used discrete dynamic programming for jointly determining the optimum annual price and capacity expansion schedule for a water supply system. They presented a general model for optimization of pricing and capacity expansion decisions constrained by the acceptable range of water price, the rate of price change, and

financial cost recovery. The basic problem is to choose the water price and supply capacity for each planning period so as to maximize the net present value of benefits minus costs. The maximization is solved using a forward moving discrete dynamic programming algorithm. An application of the model to the twin cities of Kitcherner-Waterloo, Ontario is presented in Dandy et al.(1985). Braga et al.(1985) developed a capacity expansion model based on monthly simulation model and forward dynamic programming to facilitate the planning and the optimal timing and sizing of a system consisted of series of reservoirs and pumping stations. Kim and Yeh(1986) developed a two-step heuristic procedure in which the shortest path DP was used for sequence generation step and a univariate direct search algorithm for capacity refinement. Wan et al. (1989) applied combination of DP-MIP and flow regulation submodels for optimal sequencing of development for hydropower stations in cascade.

Ong and Adams(1990) presented a simple yet effective two level approach for solving regional wastewater treatment system capacity expansion problem. The lower level treats the subproblems related to separate facilities of a regional treatment system using DP whereas the upper level coordinates the lower level subproblems and also updates using a random polyhedron search algorithm that identifies progressively superior solutions. Bector and Goulter(1995) proposed an integration of Stochastic DP (SDP) and Fuzzy Integer Goal Programming (FIGP) modelling framework to handle problems of

multiobjective-multicriteria sequential decision making under budgetary and socio-technical uncertainties inherent in water resources investment planning.

2.2.3 Review of Models Based on LP, MIP, etc.

O'Laoghaire (1978) formulated the capacity expansion problem of a water quality management system as 0-1 mixed integer programming and solved it by decomposing into a capital budgeting Little's branch and bound algorithm and a LP operational policy. Leighton and Shoemaker (1984) utilized MIP approach to identify attractive regionalisation plans for large wastewater and collection systems. Helm et al. (1984) presented a procedure based on mixed integer continuous linear programming with Benders' decomposition to select the reservoir sizing, timing of expansion and to establish operating policy for a multipurpose linked reservoir system receiving stochastic inflows. Moreau(1986) reported a LP based financial planning model for a publicly owned water and sewer utilities. Matsumoto et al. (1989) described a two MIP model to analyse longterm capacity level hierarchical expansion strategies for power generation systems consisting of hydrothermal plants and transmission lines and solved it by the Lagrangian relaxation. The objective was to determine the optimum capacity schedule that minimizes the present worth of capacity cost and operating cost, subject to meeting peak power demand and energy demand. Mazzola(1992) described the capacity expansion problem as a knapsack one and presented solution of the same by using iterative LP technique. BasagaoglaI and Yazicigil(1994) developed and tested three MIP based models for the optimal capacity expansion planning in a hypothetical multiaquifer system. Multiobjective analysis and sensitivity study of the capacity expansion policies are the other main features of this study.

2.2.4 Review of Heuristic Models

Tsou et al. (1973) presented a shortcut method for solving a sequencing problem and making a sensitivity test of the results. Sniedovich and Nielsen(1983) solved a joint reservoir control-capacity problem using a heuristic and recommended that more emphasis should in water resources literature be given to the heuristic procedures developed for difficult water resources management problems. Nakasima et al. (1986) used a twophase heuristic optimization technique for designing regional water supply wherein the linearly constrained nonlinear phase-I model was solved by MLST (multilevel solution technique) based on out-of-kilter algorithm and phase-II model was a linear program.

Carlsen(1986) developed a method to identify the optimum form of development of hydropower projects taking into account the effects of one project on another. The model can also include thermal power in the generation system and the method has been applied for the master-plan for the Rufiji basin in Tanzania. Some examples of uprating and refurbishment schemes for expansion

of existing hydropower stations on the Songhua and Yellow rivers in China are described by Xuemin(1992).

Goodman(1994) reported a detailed methodology for the integrated development of the Vardar/Axios international river basin which includes a system of projects scheduled to meet the Yugoslavia and Greece. needs and aspirations of guided the detailed methodology for considerations that formulating the master plan included: economic sector development (principally agricultural, municipal and industrial, and electric power); balanced regional development; engineering and economic feasibility of facilities; and compatibility with existing power and hydraulic systems. Grigg(1997) discussed three versions of systems techniques and compared their concepts with those of paper shows, through The planning processes. retrospective view of a systems dynamic modeling project, how quantitative analysis can be applied to an urban water supply system and growth management and how other systems techniques are used in the decision process and it argues that comprehensive models could provide better decision information and inspire greater public confidence in the decision process. Systems and model techniques can enable civil engineers to provide more leadership by fathoming the complexity of issues and explaining options more closely during the decision process.

The Table 2.1 presents information on some of the important features such as aim(s) of model, purpose(s) of system, type of

objective function, and systems analysis technique(s) employed etc. in respect of a few capacity expansion studies reported in earlier paragraphs.

2.3 REVIEW OF MULTIRESERVOIR SIMULATION MODELS

Simulation models are better suited to the modelling of a physical system for decision making as some of the approximations essential in an optimization model may not be necessary in a simulation model. However, simulation models are not able to directly generate optimal solutions except by exhaustive search of all possible alternatives scenario. As the computer developed in speed and capacity, it became possible to simulate the performance of large and complex river basin systems over extended periods of time (Sigvaldson, 1967). The application of systems analysis to water resources have increased rapidly since then.

Application of systems analysis techniques in the field of water resources planning and management can be considered to have begun in U.S.A. with Harvard Water Program in 1962. This program was the first to systematically present the modern, interdisciplinary systems analysis approach to water resources planning in which a simulation model was applied to the economic analysis of multipurpose multiproject system. Hufschmidt and Fiering(1966) presented a detailed analysis of their simulation model and discussed its use in the study of multipurpose planning

of Lehigh river basin.

The Corps of Engineers have also developed the simulation packages, the Hydrologic Engineering Centre, HEC-3, HEC-5, and SSARR (Streamflow Synthesis and Reservoir Regulation) models which have found wide international use for river flow simulation. The HEC-3 (US Army Corps of Engineers, 1974) program simulates the operation of a reservoir system for conservation purposes like water supply, navigation, recreation, low flow augmentation, and hydroelectric power. The various demands are supplied from reservoirs so as to maintain balances of storage in the reservoir system. While flood control operation can be handled in some respects, a more complete simulation is possible using HEC-5. The program can accept any configuration of reservoirs, diversions, power plants, and stream control points. However, the program while accepting system power demands that override individual power plant requirements, does not provide for percolation losses or channel routings. The HEC-5 program is for simulation of flood events to assist in sizing the flood conservation requirements for each control and recommended for the system. It can be used in studies to evaluate pre project condition and to show the effects of existing and/or proposed reservoirs on flows and damages in the system. It can also be used for indicating proper releases throughout the system during flood emergencies in order to minimize flooding while maintaining optimum balance of control storage among reservoirs. The above purposes are accomplished by simulating the sequential operation of a system of reservoirs of any configuration for short interval historical or synthetic floods or for long duration non-flood period or for combinations of the two (US Army Corps of Engineers, 1985).

The SSARR (US Army Corps of Engineers (USACE), 1986) model consists of the following three basic components:

- (a) A generalised watershed model for synthesizing runoff from rainfall and/or snowmelt,
- (b) A river system model for routing runoff downstream through channel and/or lake storage, and
- (c) A reservoir regulation model for evaluating various modes of reservoir operation.

This model is particularly useful in flood forecasting with realtime precipitation.

The Department of Civil Engineering, MIT have developed a series of river basin simulation models (McBean et al., 1973; Strzepek and Lenton, 1978; and Lenton and Strzepek, 1979). MITSIM-1 was developed as a part of the UNDP sponsored study of Vardar/Axios river basins in Yugoslavia and Greece. The model provides for detailed simulation of both the physical and economic performance of river basin including multipurpose surface as well as ground water projects. It is claimed that this model is sufficient for planning purpose where standard rules for reservoir operation are used. Another version of MITSIM-1 was

used by MIT to plan the Rio Colorado river basin in Argentina (Major and Lenton, 1979). The study consisted of screening, simulation and sequencing models. The number of issues like equity, shadow prices of inputs and outputs have been considered in this perhaps the most comprehensive planning study reported so far. There is however no information about the implementation of results by Government of Argentina. The MITSIM-1 has been updated by the International Institute for Applied Systems Analysis (IIASA), Austria to MITSIM-2 for water management studies of the South Western Skane Water Supply System in Sweden (Strzepek, 1981). This model has also undergone various revisions and a very versatile version of this was allowing simulation at variable time steps ranging from one week upward with an option to incorporate priorities for various releases.

Simulation models called MITTAMS and EXTG1 were used to evaluate the basin configuration in the integrated development of the 2400 sq. km. Vardar/Axios river basins in Yugoslavia and Greece (TAMS, 1978). These models accommodated a large number of projects and an enormous quantity of data and provided measures of performance in hydrologic and economic terms. They were also effective in accounting for the complementary purposes. The simulation models reproduced the interactions among the elements of the system and described the outcome of operating the system under a given set of inputs and operating assumptions. By successive and systematic runs of the models, the response to the variations in inputs or operating conditions or both were evaluated. When used in conjunction with engineering and economic

criteria, the results of these runs allowed (i) the systematic comparison of alternative configurations of water resource projects in the basin, and (ii) the evaluation of the effect of the upstream development on the flows at the border and the consequent downstream development.

In the early 1970s a set of models named Dynamic Economic Simulation (DES) was developed as a part of research for Texas Water Development Board (now named as Texas Department of Water Resources). The computerised models for large scale multibasin surface water resources system have been developed to formulate the Texas Water Plan. The three principal models are SIMYLD-II (Texas Water Board, 1972), SIM-V (Martin, 1982), and AL-V (Martin, 1984).

The SIMYLD-II analysis water storage and water transfer within a multireservoir or multibasin system. It can simulate the movement of water through a system of river reaches, pump canals, reservoirs, and non-storage river junctions. Water demand to be made on the system can be applied to either the storage or non-storage junctions and the option is available to reckon these demands as monthly values or as total annual demand which can be reduced to monthly demand as per a set of user supplied demand distributing factors. It also offers the ability to set priorities for meeting demands and maintaining reservoir storage at each reservoir. Further it determines the firm yield of s single reservoir within a multireservoir system. It has been used by TWDB for adjudication of water rights in the Cypress Creek

basin and for interbasin transfer connected with coastal canal and Nueces river basin.

SIM-V is a procedure designed to simulate the operation of a large complex surface water storage and transfer system. It allows individual network system elements to be introduced at any point of time in the simulation time span. It provides the option of investigating various pattern of construction schedules so that the least cost schedule can be selected for implementation. In this, capital costs are entered individually for each system (canal and reservoir) whereas system operating costs are computed by the model. In general, the movement of water via transfer links is done at a cost which is a known function of the quantity of water flowing and the pumping lift. It is the function of SIM-V to meet systems storage requirements, water demands and hydropower generation while minimizing cost of transportation within the system.

AL-V is a general hydrological optimization model to analyse the simulated multiperiod operation of any interconnected configuration of reservoirs, pump canals, and pipelines. It can be used (a) to find minimum cost operating plan for a system of reservoirs, river junctions, canals and river reaches, (b) to find minimum cost of sizing individual reservoirs, canals and closed conduits, (c) to determine the reservoir operating rules for use in related simulation models, and (d) to find the minimum cost of construction, sizing, and sequencing of a number of water storage and conveyance projects in a multipurpose river basin system.

TWDB is the first and perhaps the only agency to prepare a set of programs which are directed to all planning aspects of a river basin. However, it is understood that the models have been put to only limited use and Texas Water Plan could not make much headway. SIM-V and AL-V programs have been applied (Martin, 1983) to a large scale system comprising 27 reservoirs on the Arkansas-White-Red river system in the U.S.A.. The derived system operating policy computed a potential increase of approximately 8 percent in firm power production of the system over the previous study.

The model DWRSIM (Department of Water Resources Planning Simulation Model) is a generalised computer planning model for simulating monthly operation of the CVP-SWP (Central Valley Project and State Water Project) system consisting of surface reservoirs, groundwater reservoirs, conveyance facilities, pumping plants, and hydropower plants (Department of Water Resources, State of California, U.S.A., 1985 and 1986). Planning studies carried out involve determination of incremental yield resulting from the addition of each new reservoir into the existing system keeping in view the various constraints like the formula for sharing water between SWP and CVP. This can be effectively used for managing existing projects and to plan new facilities.

The Bureau of Reclamation studied Colorado River System, a very complex system in U.S.A. with numerous treaties and acts

constraining its water use. The computer package called Colorado River Simulation System. (US Department of Interior, Bureau of Reclamation, 1981 and 1986) has the Colorado River Simulation Model (CRSM) as its main component. It has been used to study changes in operation policies and alternate development strategies for the river basin. After the unprecedented flood of 1983 the model was used to review the operation policies and formulate alternate operation strategies that will increase the beneficial use of the water in excess of the existing project uses (purposes).

Maji and Heady(1980) constructed a simulation model to estimate the physical and economic performance of alternative river basin development. The paper shows how the problems of large scale water resources development were confronted and solved. Also a set of general guidelines which may be helpful in other simulation studies have been derived.

A generalised reservoir-system simulation model routinely used in the USACE South Western Division (SWD) is described by Hula (1981). The SWD model simulated the daily sequential regulation of a multipurpose reservoir system, performing generally the same types of hydrologic and economic simulation computations as HEC-5. The SWD model uses a one day computation interval whereas the HEC-5 allows a variable time interval.

MITSIM (Strzepek et al., 1989) provides the capability to evaluate the economic as well as hydrologic performance of a

river basin system involving hydroelectric power, irrigation, municipal and industrial water supply, and other purposes. The Water Rights Analysis Program (TAMUWRAP) simulates surface water management and reservoir system operation under a prior appropriation water rights permit system (Wurbs et al., 1993). Unlike many simulation models in which computations usually proceed from upstream to downstream, the TAMUWRAP is based on meeting water demands in accordance to a user specified priority.

The distinctive feature of the IRIS (Interactive River System Simulation) program is extensive use of interactive computer graphics for information transfer between machine and user. IRIS simulates a water supply conveyance system of any normal configuration and also has a limited hydroelectric power simulation features (Loucks et al., 1989, 1990). Another interactive graphics oriented River Simulation System (RSS) developed at the Centre for Advanced Decision Support for Water and Environment Systems (CADWES) allows the user to develop a model for a particular river system using preprogrammed objects and functions. The object-oriented program structure also facilitates altering the RSS software by a programmer to include additional objects for functions as needed for particular applications.

A system of six reservoirs in Narmada river basin in India was simulated to study the Narmada River Water Dispute for finalising the reservoir sizes and the annual project targets

(Srivastava, 1976). Buras(1985) formulated a stochastic dynamic programming model to derive a schedule of seasonal optimal reservoir releases and their respective probabilities of occurence. The model was applied to Navagam reservoir site on Narmada river in India.

Rogers and Hurst (1993) reported a water resources planning methodology with primary objective of giving insights into the linking of water sector investments and macroeconomic policies. The model optimizes the present value of investments for water resources development, while embedding a macroeconomic model into the framework to allow for an examination of the interactions between water investments, the growth in the agricultural sector, and the performance of the overall economy. A case of Bangladesh is presented. Sule and Olu(1994) reported reservoir operation studies, based on present and future withdrawl rates, showing that the system will experience reduction in potential evaporation, reduction in active storage, loss of fishing zone, reduction in available flow to the downstream areas due to the Ilorin water supply expansion programme designed to raise plant output to nearly four times its existing capacity. A study was carried out to analyse the developmental plan of the Karun river basin system in Iran, which included multi-irrigation areas (Sadeghian, 1995). The basic issue was of siting and sizing of reservoirs in the basin to cater for the future water requirements.

2.4 BRIEF DESCRIPTION OF SOME CLASSICAL SEQUENCING AND CAPACITY EXPANSION MODELS

2.4.1 General

The capacity expansion and optimum sequencing of projects involve multistage decisions over the planning horizon. The dynamic programming is one of the techniques capable of handling such problem of making multistage decisions, and yields optimum solution, which is not always possible with the heuristic procedure. However, the conventional dynamic programming suffers from the curse of dimensionality. The core storage and time requirements increase exponentially with increase of problem size. Several versions of this technique like state incremental dynamic programming, differential dynamic programming, discrete differential dynamic programming, successive approximation, and so forth have been evolved and have, to some extent, been successful in overcoming these drawbacks. However, for capacity expansion and project sequencing problems these versions, barring successive approximation, are not very popular (Haimes, 1977).

2.4.2 BHH Model

An important technique to solve the capacity expansion sequencing problem was proposed by Butcher et al.(1969) using dynamic programming. The number of projects considered was assumed to be the stage variable and state variable was the level of

capacity, q, that the subset of n projects at stage n could cumulatively satisfy. The state at stage n includes not only the level of capacity, but also implicitly the optimal sequence of n existing projects to supply the level of capacity. These projects must be known so that no project is chosen more than once. The return function of the BHH formulation as a multistage process, is given by

```
\begin{array}{l} v(q-q_n \ ; \ q_n) \ = \ \min \ \left\{ \ g^i(q_n) \ (1+r)^{-\psi} \ (q^-q_n) \ \right\} \\ \\ \text{subject to:} \\ \\ i \ \in \ \left\{ \ 1, \ ., \ ., \ ..., \ N \ \right\} \\ \\ i \ \notin k_{n-1} (q-q_n) \ \text{or} \ i \ = \ \emptyset \\ \\ \text{Where,} \\ \\ r \ = \ \text{Discount rate,} \\ \\ \text{$\circ$} \ = \ \text{Represents addition to the project sequence,} \\ \\ \text{$\circ$} \ = \ \text{"Null" (not build) project,} \\ \\ g^i(q) \ = \ A \ \text{function related to the construction cost of project i} \\ \\ = \ 0 \ \text{for} \qquad q \ = \ 0 \\ \\ = \ C_i \ \text{for} \qquad 0 \ < \ q \ \leq \ Q_i \\ \end{array}
```

 $k_{n-1}(q)$ = A sequence of n-1 projects providing the capacity to satisfy the demand upto the level q, and $\psi(q)$ = The inverse of $D(t)=D_t=q$, which implies that D_t must be strictly monotone increasing sequence.

= ∞ for

The following recursive equation can be used to link the adjacent stages in the DP formulation:

$$\mathtt{f}_{n}^{k_{n}\,(q)}\,(\mathtt{q}) = \min \; \left\{ \mathtt{f}_{n-1}^{k_{n-1}\,1}\,(\mathtt{q} - \mathtt{q}_{n}) \; (\mathtt{q} - \mathtt{q}_{n}) \; + \; \mathtt{g}^{\mathtt{i}\,\star}\,(\mathtt{q}_{n}) \; (\mathtt{1} + \mathtt{r}) \; {}^{-\psi}\,(\mathtt{q} - \mathtt{q}_{n}) \; \right\}$$

with

$$0 \leq q_n \leq q \leq \sum_{1}^{N} Q_{1} \qquad \qquad i^* \notin k_{n-1}(q-q_n)$$

also

$$k_n(q) = i^* \oplus k_{n-1}(q-q_n)$$

 $f_n^{k_n(q)}(q)$ = Minimum present value cost of supplying demand up to a quantity q with an optimal schedule k_n of n out of the N admissible projects from which to choose.

2.4.3 Kuiper and Ortolano Model

For a monotonically increasing demand function D(t), and N feasible projects having capacities Q_1 and Cost of development C_1 , 1 < i < N, the order and times at which the projects should be completed is determined with the objective of minimizing the discounted sum of project costs (Kuiper and Ortolano, 1973). The level of capacity is taken as state variable and number of years in planning horizon as stage variables. The constraint can be that at all times t, during the plan period, the cumulative capacity of projects already operative upto this time, must not be lesser than demand D(t). The objective may be to design the sequence of water resources developments that will satisfy the capacity requirements at the minimum total cost. The problem may

be solved by using dynamic programming to investigate all the alternative sequences of development that are feasible and to select optimum sequence among these alternative feasible solutions. The problem can be analyzed in stages, each representing one time period. In each stage a number of states are defined to represent the alternative combinations of plants that might exist in that stage.

The general dynamic programming algorithm, which involves an arbitrary number of states and stages, discounting of costs, and other constraints, is summarized in the following sections.

The states used in the dynamic programming algorithm correspond to alternative possible combinations of projects in each stage. Any possible combination can be represented by a state vector X defined as:

$$X = \{S_1, S_2, \dots, S_n\}$$

Where $S_{\mathbf{k}}$ represents the capacity of project \mathbf{k} and \mathbf{n} represents the number of different projects. Each of the $S_{\mathbf{k}}$ can have only a limited number of discrete values.

The dynamic programming algorithm may be used to determine a feasible sequence of states $X_{\dot{1}}$ that minimizes the total discounted cost

$$\sum_{t=1}^{T} A_{t} (X_{i})$$

Where T is the total number of time periods and $A_t(X_i)$ is the discounted annual cost of the water resources system X_i in time period t. This annual cost includes fixed annual capital costs and variable annual costs.

A feasible state X_{t} in time period t must satisfy the following constraints:

The capacity of X_i (t) must be greater than or equal to demand in time period t.

A feasible solution to the problem is a sequence of feasible states satisfying the continuity constraint ,i.e.,

$$X_i$$
 (t) $\geq X_j$ (t-1) for all t

Where the symbol ≥ is used to indicate that state i can be reached from state j. The following recursive equation may be used to determine the optimum sequence of expansion to each feasible state in every stage:

$$C_{t}(X_{i}) = A_{t}(X_{i}) + \min_{j \le i} \{C_{t-1}(X_{j})\}$$

Where $A_t(X_i)$ represents a discounted annual cost.

Table 2.1 - Capacity Expansion Planning Literature Review

AUTHOR (year)	AIM of MODEL								ITY	P	URPOSE	of FA	CILITY		TYPE o			ECTIVE SCTION		TECHNIQUES EMPLOYED							REMARKS
	Selection	Siting	Sizing	Sequen	Timing	Oper	Financial planning	Single	Multiple	Irriga tion	Water supply	Hydro Power	Flood Control		Determ	Stocha	Minimi zation of cost	Maximi zation of Benefits		LP	DP	MIP	NLP	Simul ation	Heuri stic	Others	
SCARATO (1969)			~	~	~			~			V		H	H	~	U	V									~	DIFFERENTIAL CALCULUS
BUTCHER et al. (1969)				~	~			1	V		V		Ш		~		~	6			~						
RIORDAN (1971a)							~		~		~				~			~	4		~						PRICING
RIORDAN (1971b)			V		~	1	D.		~		V				~			~			~						
ERLEN- KOTTER (1973)				~	~	Б	16	1	V			V			~		~		F		V						INTERDEPEND ENT PROJECTS
TSOU et al. (1973)	~			~	П				~						~				~						~	~	R-INDEX
MORIN (1973)		~		~	~				~		~	~	V	~	~		~				~						
KUIPER AND ORTOLANO (1973)				~	i	~			~			V			~	H	~	1			~			~			
BECKER & YEH (1974a)			~	~	V				V		V				~		~				V						
BECKER & YEH (1974b)			V	~	V	V	7	F.	V	I	V	V	~	~	V		~	1	1	H	~						POT. ENE LOSS MIN.

Table 2.1 - Capacity Expansion Planning Literature Review

AUTHOR (year)			AIM	of MC	DDEL			No. of FACIL		P	URPOSI	of E	CILITY		TYPE o			JECTIVE NCTION		Γ	TEC	REMARKS					
	Selec tion	Siting	Sizing	Sequen cing	Timing	Oper ation	Financial planning	Single	Multiple	Irriga tion	Water supply	Hydro Power			Determ		Minimi zation of cost	zation of	Oth	LP	DP	MIP	NLP	Simul ation	Heuri	Others	
HAIMES & NAINIS (1974)				V	V		.5	H	4		V			V	V	r o	V	V		V	V	H	-				
NAINIS & HAIMES (1975)		V	V		V	K		ß	~		V		B		V	K	~		t	V	~						DEMAND SUPPLY EQUILIBRIUM
HELM et al. (1977)			~	~	V	~	Œ	1	~	V						V	A	100	V	Ė	Ī	V					
BOGARDI et al. (1977)		-		V	I				V	V	V			V		~	V		r		V		V				
KOLO & HAIMES (1977)				~		V			V	~	V	V				~	~	V			V						COORDINATO
O'LAOGHAIRE (1978)		~	~	~	~	V	~		~		V					V	V			v		V	-				
OCANAS & MAYS (1981)				~	~				~		V				~		~									~	SUCCESSIVE LP
CHARA (1983)				~	1	V			V	V		~			V		V		H						~		
BRAGA et al. 1985)			V	V	V	1	X		V		V	P			v	á	V				V			~			
					•		15	Q					E	98 13	3												

Table 2.1 - Capacity Expansion Planning Literature Review

AUTHOR (year)	AIM of MODEL							No. of FACIL		PURPOSE of FACILITY					TYPE o		OBJECTIVE FUNCTION				TEC	HNIQ	REMARKS				
	Selec tion	Siting	Sizing	Sequen cing	Timing		Financial planning	Single	Multiple	Irriga tion	Water supply	Hydro Power	Flood Control			stic	Minimi zation of cost	Maximi zation of Benefits		LP	DP	MIP	NLP	Simul	Heuri stic	Others	
KIM & YEH (1986)		~	~	~	~				~	P	1	5	h		V	7	V								~		SHORTEST PATH DP & NLI
MOREAU (1987)			V		V		V		~	H	V			П	V	62	~	7	Ī		V						
MARTIN (1987)			V	~		V		B	V		~				V		H		þ		V					~	NETWORK OPTIMIZATION
FONTANE (1989)	~				~	K	~		V		E			~	~		~		ľ		V						SALINITY CONTROL
WAN et al. (1989)	~			~	1	V		1	V			~	V			~	V	r	~		~	V				~	FRM (FLOW REGULATION MODEL)
MAZZOLA (1992)				~					V		~				V				~	V		V					KNAPSACK

SIMULATION MODEL

3.1 INTRODUCTION

Simulation can be defined as reproducing the essence of a system without reproducing the system itself in reality. The essential characteristics of the system are usually reproduced in the simulation model. Simulation is perhaps the most widely used method for evaluating alternative water resource systems. The reason for its popularity primarily lies in its mathematical simplicity and versatility.

Simulation is not an optimizing procedure. Rather, it merely provides a rapid means of evaluating the anticipated performance of the system for any set of design and operating policy parameter values. It is necessary for the analyst to specify the trial design (or, equivalently, allow the computer to do so in accordance with some algorithm), whereupon the simulation model yields estimates of the economic, environmental or/and any other responses associated with the trial. Simulation methods do not identify the optimal design and operating policy, nevertheless, they are indeed an excellent means of evaluating the expected performance resulting from any design and operating policy. Hence they are often used to assist the water resources planners in

evaluating those designs and operating policies defined by simpler optimization models.

3.2 THEORY

The simulation problem considered for the present study can be stated as follows (Maass et al., 1962; Hufschmidt and Fiering, 1966; and Srivastava, 1976.)

Determine:

- (i) the 75% dependable annual target level of irrigation, and firm annual target levels of water supply and energy outputs,
- (ii) average annual deficits, average annual releases for various uses and average annual spill, and
- (iii) extent of effect of presence of upstream reservoirs and irrigation on the firm annual energy outputs.

Given:

- (i) a combination of reservoirs, their sizes, hydrological interdependence, etc.,
- (ii) monthly runoff values at reservoir sites, and
- (iii) an operating procedure for reservoirs for design purpose.

3.2.1 System Design Variables, and Parameters

In general, there are two classes of system components

(i) design variables which are free to change from one simulation

run to the next, and (ii) invariant physical functions and parameters of the water resources system under study.

3.2.1.1 Major design variables

- A. Major physical design variables in terms of their assumed ranges and unit of measurements
- (i) Target outputs: (a) annual firm target outputs for water supply, (b) annual 75% dependable target outputs for irrigation, and (c) annual firm target outputs for energy.

3.2.1.2 Physical functions, parameters and constants

- A. Components of the system: (a) gross and dead storage capacities of reservoir, and (b) power plant capacity, if any.
- B. Irrigation: (a) monthly irrigation requirements.
- C. Water supply: (a) monthly water supply requirements.
- D. Power Generation: (a) equation used for energy generation,
- (b) penstock capacities, (c) maximum head for power plants,
- (d) turbine and generator efficiencies, (e) tail water level and dead storage level, and (f) monthly hydropower requirements.
- E. Functions for each reservoir: (a) reservoir capacity vs. reservoir elevation relationship, and (b) reservoir capacity vs. reservoir area relationship.

3.2.1.3 Streamflow data

Cumulative monthly river flows at each reservoir site.

3.2.1.4 Reservoir evaporation data

Monthly reservoir evaporation values at each reservoir site.

3.3 OPERATION OF SYSTEM

Since the performance of the river basin system in terms of physical outputs is being measured by simulating the behaviour of the system on a digital computer, it is necessary to construct an operating procedure (a set of rules for storing and releasing water in reservoir and among reservoirs in a given period) in a form suitable for computer (Srivastava, 1992).

3.3.1 Individual Reservoir Operation

The reservoir will operate under the following basic constraints:

1. The volume of water released during any period can not exceed the contents of the reservoir at the beginning plus the inflow into the reservoir during the period, i.e.,

$$O_{i,t} \leq S_{i,t-1} + F_{i,t} + P_{i,t} + \bar{I}_{i,t} - El_{i,t} - Yd_{i}$$
 for all i and t (3.1)

2. The continuity constraint

$$S_{i,t}=S_{i,t-1}+F_{i,t}+P_{i,t}+\bar{I}_{i,t}-O_{i,t}-El_{i,t}-Yd_{i}$$
 for all i and t (3.2)

3. The contents of the reservoir at any period cannot exceed the capacity of the reservoir as well as the dead storage of the

reservoir puts a lower limit on the reservoir storage, such that $Yd_i \leq S_{i,\,t-1} \leq Y_i \qquad \qquad \text{for all i and t} \quad (3.3)$ Where

Eli, t= Reservoir evaporation for ith reservoir in time t,

 $F_{i,t}$ = Natural inflow from its own catchment plus contributions of all possible regulated flows from upstream reservoirs and return flows from upstream water uses at i^{th} reservoir in time t, $\bar{I}_{i,t}$ = Local inflow into i^{th} reservoir from surrounding areas in time t,

 $O_{i,t}$ = Total reservoir release from ith reservoir in time t, $P_{i,t}$ = Precipitation effect directly upon ith reservoir in time t, $S_{i,t-1}$ = Initial reservoir storage or content of ith reservoir in time t,

 $S_{i,t}$ = Final reservoir storage or content of i^{th} reservoir at the end of time t,

 Y_i = Gross storage capacity of the ith reservoir, and Y_i = Dead storage capacity of the ith reservoir.

3.3.2 Reservoir Operation among Reservoirs

In establishing an operating procedure among reservoirs for simulation the hydrological properties of the basin, the physical configuration of the basin, and the water use points are important. The relevant reservoir operation policy is discussed later in para 3.5.

3.4 RESULTS FROM SIMULATION

Each simulation run for monthly operation gives the following results and statistics for behaviour analysis of the system.

3.4.1 Reservoir Behaviour

- (i) Number of times the reservoir was full in a calendar month(12 element vector),
- (ii) Number of times the reservoir was empty in a calendar month (12 element vector),
- (iii) Number of times the reservoir was full in a calendar year,
- (iv) Number of times the reservoir was empty in a calendar year,
- (v) Final reservoir content at the end of every year,
- (vi) Average annual spill, and
- (vii) Average annual releases water usewise.

3.4.2 Irrigation Analysis

- (i) Monthly irrigation deficit in a calendar month (12 element vector),
- (ii) Number of monthly irrigation deficits in a calendar month (12 element vector),
- (iii) Average annual irrigation deficit,

- (iv) Average annual irrigation release, and
 - (v) Number of deficit years.

3.4.3 Energy Analysis

- (i) Monthly energy deficit in a calendar month (12 element vector),
- (ii) Number of monthly energy deficits in a calendar month (12 element vector),
- (iii) Average annual energy deficit,
- (iv) Average annual hydropower release, and
- (#v) Number of deficit years.

3.5 OPERATION POLICY FOR RESERVOIRS IN MULTIRESERVOIR SYSTEM

The reservoir operation policy adopted for the operation of different reservoirs in combination (Islam, 1991; Rath, 1991; and Srivastava, 1992) is as follows:

- The reservoir operation begins from the upstream most reservoir and continues sequentially to the next reservoir in downstream and so on to the next, in a given time period unit (in this case a month). The starting month in a water year is July.
- (ii) The individual reservoir operation policy is described in para 3.3.1.
- (iii) All water demands shall be met by various shares of water.

 Two types of water shares are defined. The share-1 meets

various upstream and downstream demands from the total monthly inflows reaching a reservoir. Share-2 then meets the deficits in various downstream water demands, if any, from the water available within the conservation storage.

- (iv) Any number of water uses can be considered in any sequence. The water among various uses will be shared on the basis of predecided priority of uses.
- (v) To meet the energy demand an option has been kept whether the nonhydropower releases, i.e., towards water supply and irrigation requirements can be put to power generation or not. Another option has also been put forth whether the spilled water can be put to power generation or not, in case power is generated at a canal power house.
- (vi) In case of all reservoirs, the total monthly inflow to a reservoir includes the return flows from various water users upstream of the reservoir under consideration plus the reservoir spills, if any from the upstream reservoirs contributing to the flow of reservoir under consideration.

 In present study ,100% of hydropower release, 50% of water supply release, and 10% of irrigation release are taken as contribution towards return flows.

3.6 WORKING PRINCIPLE OF SIMULATION COMPUTER PROGRAM

The computer program for the simulation of multireservoir system is a huge model (Garudkar, 1992; Dayaratne, 1992; and Jain, 1993). It comprises of as many as 16 subroutine subprograms

and 11 function subprograms alongwith the main program. The program works in accordance with the operation policy framed earlier (Appendix 3-I).

A general flowchart for simulation steps is presented in Fig.3.1. The functions of the various important subprograms are briefly enumerated below

1. SUBROUTINE NTFLO

This calculates the net monthly flow at the sites under consideration by deducting the flows at the immediate upstream sites.

2. SUBROUTINE STAT1

This instructs to make upstream subtractions and downstream releases from Share-1 and downstream releases from Share-2 as defined earlier.

3. SUBROUTINE WATER

This does the following

(i) Use of Share-1: Firstly, it makes the subtractions for upstream water uses from Share-1, then makes releases for downstream water uses from unutilized water of Share-1. Further, it calculates deficits in the upstream and downstream water demands, if any.

(ii) Use of Share-2: It makes releases for downstream water uses from Share-2, if there were any deficits as per previous calculations.

4. SUBROUTINE RELES

This calculates and defines the current net water available and deficits after every upstream subtractions and downstream releases.

5. SUBROUTINE POWER

This does the basic computations for energy generation.

6. SUBROUTINE CAL1

This subroutine calculates statistics for various upstream and downstream water demands (clubbed) for behaviour analysis.

7. SUBROUTINE CAL11

This subroutine calculates statistics for various upstream and downstream water demands (unclubbed) for behaviour analysis.

8. SUBROUTINE INTI1

This subroutine initialises the statistical variables for various upstream and downstream water demands (clubbed) under consideration to zero.

9. SUBROUTINE INIL1

This subroutine initialises the statistical variables for

various upstream and downstream water demands (unclubbed) under consideration to zero.

10. SUBROUTINE WRT11

This subroutine writes the statistics for various upstream and downstream (unclubbed) water demands.

11. SUBROUTINE WRT12

This subroutine writes the data used

12. SUBROUTINES WRTM and WRT

These write the intermediate calculations giving distribution of water shares among various upstream and downstream demands (clubbed) and their deficits for each time period.

13. SUBROUTINE WRRES

This writes the salient end results in required format.

14. SUBROUTINE RTNFL

This writes the return flow contributions at the site under consideration from the immediate upstream reservoirs.

15. FUNCTION AREA

This calculates the reservoir water spread area as a function of reservoir storage.

16. FUNCTION ELEVAT

This calculates the reservoir elevation as a function of reservoir storage.

LIST OF VARIABLES

- Eli.t = Reservoir evaporation for ith reservoir in time t,
- Fi,t = Natural inflow from its own catchment plus contributions of all possible regulated flows from upstream reservoirs and return flows from upstream water uses at ith reservoir in time t,
- $\bar{I}_{i,t}$ = Local inflow into i^{th} reservoir from surrounding areas in time t,
- Oi,t = Total reservoir release from ith reservoir in time t,
- Pi,t = Precipitation effect directly upon ith reservoir in time t,
- $S_{i,t-1}$ = Initial reservoir storage or content of ith reservoir in time t,
- $S_{i,t}$ = Final reservoir storage or content of i^{th} reservoir at the end of time t,
- Y_i = Gross storage capacity of the ith reservoir, and
- Ydi = Dead storage capacity of the ith reservoir.

Fig. 3.1. General flowchart for simulation

Fig.3.1. Concluded

DYNAMIC PROGRAMMING CAPACITY EXPANSION (SEQUENCING) MODEL

4.1 INTRODUCTION

4.1.1 General

Planning for the expansion of production capacity is of vital importance in water resources systems as it requires the commitment of substantial capital resources over long periods of time (Haimes, 1977). Rapid economic development and population growth have led to spiraling water demands for domestic, industrial, agriculture, hydropower, recreation and other purposes. As a consequence, optimal capacity expansion planning has become an extremely important concept in water resource development. It is however a complex and difficult task and, it is moreso when the system is multipurpose and multifacility. Task would undoubtedly become further intricate when the combined decisions on project selection, siting, sizing, target renewal, operation, financial planning etc. are sought alongwith capacity expansion.

4.1.2 Definition

The capacity expansion planning involves the selection of

suitable projects, and the decision regarding sequential order and commissioning time of these projects over and above any existing system to meet the future growth in demand. Generally the immediate requirements of additions are effected and the planning process is repeated at every specified interval of time. Each time, depending upon the prevailing conditions, the optimum mode of expansion is decided. At any time the decisions regarding first few projects are taken to meet the immediate requirements with certain degree of reliability; but it is necessary to ascertain that these decisions are compatible with longterm expansion decisions. This makes it necessary to consider the problem in its totality taking all candidate projects, each time when the planning process is repeated. The capacity expansion of a system on ad-hoc basis considering different projects in isolation or at the most considering the interdependent projects only, with a few decision and state variables, is likely to lead to economically inefficient planning. If the effect of timing of project is not analysed in its due detail, then in the long run, the static decisions taken at different times may not yield an optimal solution.

4.1.3 Factors Affecting

For economically efficient expansion planning the projects are to be selected, sequenced, and timed in such a manner that the demand is fully satisfied at all the points of the planning horizon, and the present value of total costs of the set of

selected projects is minimum. If the demand is a linear function of time and projects are of about same maximum capacity, then going by the effect of interest rate, the project with the lowest unit cost would be constructed first and projects with higher unit costs would be delayed as far as possible. But when the demand function is nonlinear, or when the capacities differ substantially, the sequence on the above criterion may not be the optimal.

An oversimplified example (Haimes, 1977) with a linear projected water demand function is useful to illustrate these effects. If the increase of water demand, D, is at the rate of 1/3 units per year, and a decision on the sequence of the construction of two water supply projects has to be made, and if the total supply under consideration is 10 units, the demand will reach this figure in 30 years. Let the annual discount rate, i, be 5%. Consider the following two cases:

Case-I: If the project 1 has the capacity, Q_1 , of 4 units and a cost, C_1 , of Rs.50,000, then unit cost is Rs.12,500 per unit. Similarly, if project 2 has a capacity, Q_2 , of 6 units and a cost, C_2 , of Rs.60,000, then its unit cost is Rs.10,000 per unit. The total present cost of building these two projects so as to always meet the water demand and when project 1 is constructed first is

 $C_1 + C_2(1+i)^{-t_1} = 50000 + 60000(1.05)^{-12} = Rs. 83408.$

Where $t_1=Q_1/D$. However, the total present cost when project 2 is constructed first is

 $C_2 + C_1(1+i)^{-t_2} = 60000 + 50000(1.05)^{-18} = Rs. 80775.$

Where $t_2=Q_2/D$. Hence , in this case the decision would be, using a criterion of minimum present cost, to build the larger project first.

Case-II: Consider a similar example to the above but with some of the data changed. If project 1 is the same as in Case I above but if project 2 has a capacity, Q_2 of 6 units and a cost, C_2 , of Rs.70,000, then the unit cost is Rs.11,667.

Under these circumstances the total project cost when project 1 is constructed first is

$$C_1 + C_2(1+i)^{-t_1} = 50000 + 70000(1.05)^{-12} = Rs. 89076.$$

In this case, the total present cost when project 2 is constructed first is

$$C_2 + C_1(1+i)^{-t_2} = 70000 + 50000(1.05)^{-18} = Rs. 90775.$$

Thus, in the second case, the optimal decision using the same criterion as above is to build the smaller project first, which, it might be noted, has the larger unit cost. In Case I, the project with smaller unit cost was the chosen project. Thus, unit cost is not a satisfactory criterion and it could be also shown that the choice of discount rate could also change the decisions in the above two cases.

Stated more generally, for a choice between the two possible sequences of constructions of two projects, the decision will be based on the relative magnitude of the two sides of the statement

below

$$\{ C_1 + C_2(1+i)^{-t_1} \} \stackrel{\geq}{\leq} \{ C_2 + C_1(1+i)^{-t_2} \}$$

The role that the slope of water demand curve plays in the decision making can also be illustrated as follows:

Consider now Case II with a different rate of increase in D2 of 1 unit per year. Under these circumstances, the total cost when project 1 is constructed first is

 $\begin{array}{l} {\rm C_1+C_2\,(1+i)}^{-t\,3} \! = \! 500000 \, + \, 70000\,(1.05)^{-4} \! = \! {\rm Rs.107589} \ \, {\rm where} \ \, t_3 \! = \! Q_1/D_2 \, . \\ {\rm Whereas \ the \ total \ cost \ when \ project \ 2 \ is \ constructed \ first \ is} \\ {\rm C_2+C_1\,(1+i)}^{-t\,4} \! = \! 70,000 \! + \! 50,000\,(1.05)^{-6} \! = \! {\rm Rs.1,07,310} \ \, {\rm where} \ \, t_4 \! = \! Q_2/D_2 \, . \end{array}$

Thus, the optimal decision would now be to construct the large project first.

The conclusion drawn is that the decision based on minimum present cost is influenced by the slope of the water demand curve, the discount rate applicable, and the relative costs and capacities of the facilities envisaged.

4.1.4 Classification

The capacity expansion can be handled as an independent problem or in combination with one or more of the other aspects of the water resource development such as project selection, siting, sizing, target renewal, operation, financial planning etc. Based on location the classes of sequencing models are single location and multilocation. The planning horizon may be singleperiod or multiperiod. The length of planning horizon may

be finite or infinite. The time value of money as expressed in the discount factor makes the problem of project selection dynamic. The dynamic sequencing problems can be further classified as: (i) continuous project size and continuous time; (ii) continuous project size and discrete time; (iii) discrete project size and continuous time; (iv) discrete project size and discrete time (Haimes, 1977).

The projects under consideration may be interdependent or independent. The possible interdependencies include political, financial, and physical or hydrological, which can be portrayed by using two types of interactions namely, eliminative or precedence. When the project size is fixed, the problem is capacitated one, while if for every project are stated only inferior or superior capacity bounds, the problem is uncapacitated one. The problem may be of single facility expansion or multiple facility expansion. The projects may be serving single purpose or multiple purposes. The cost functions may be linear or nonlinear. The cost may be fixed or combined fixed and OMR cost. It may be expressed as annuity or unit cost.

Demand may be linear or nonlinear with respect to time. It may be inelastic or elastic to price. It may be required to be satisfied always or some deficit may be permitted. Supply may be required to be always greater than or equal to demand or initial supply deficits may be allowed under certain conditions such as immediate alleviation of deficits by supply expansion at the

beginning of the planning period, or by importation from other sources of supply so that the initial capacity expansion need not occur at the beginning of planning period. Alternatively, the supply deficits may be allowed to go unsatisfied with a provision for a penalty cost for not meeting existing demand.

The objective function(s) may be the Minimization of present value of costs or the Maximization of present value of net benefits or otherwise.

4.2 PROPOSED SEQUENCING AND CAPACITY EXPANSION MODEL

4.2.1 General

The capacity expansion and optimum sequencing of projects involve multistage decisions over the planning horizon. The dynamic programming is one of the techniques capable of handling such problem of making multistage decisions, and yields optimum solution, which is not always possible with the heuristic procedure. However, the conventional dynamic programming suffers from the curse of dimensionality. The core storage and time requirements increase exponentially with increase of problem size. Several versions of this technique like state incremental dynamic programming, differential dynamic programming, discrete differential dynamic programming, successive approximation, and so forth have been evolved and have, to some extent, been successful in overcoming these drawbacks. However, for capacity

expansion and project sequencing problems these versions, barring successive approximation, are not very popular (Haimes, 1977).

4.2.2 Problem Statement

It is proposed to plan a river basin system consisting of a number of single/multipurpose reservoirs over the next few planning periods. Each reservoir is to be constructed only once and any combination of reservoirs may be built. The reservoirs are to be constructed to meet the increasing water demands. The usewise water demands in the basin are known and the minimum levels of cumulative demands should be met. However, some deficit in satisfying a demand may be permitted by incorporating suitable penalty in the relevant cost functions. Hydrological interaction among reservoirs may be taken into account by allowing a reservoir to be built and changing its target, if the interacting upstream reservoir(s) were built.

4.2.3 Formulation

The problem stated in the previous para, may be formulated as a dynamic programming problem since it involves sequential and multistage decision making. The use of backward process (initial value problem) of DP to examine alternative sequences of river basin development is considered in the following sections. First, the objective of the formulation is identified. Further, the recursive equation, which is the crux of a DP formulation, is

explained alongwith associated terminology and constraints. An illustrative example is also presented to explain the proposed solution methodology.

4.2.3.1 Objective

The objective is to design the sequence of river basin reservoir developments that will satisfy the water capacity requirements at the minimum total cost. Thus, all the alternative sequences of development that are feasible are to be investigated and the optimum sequence among these alternative feasible solutions is to be selected.

4.2.3.2 Terminology and recursive equation

In this, time period is considered a stage variable. It is represented in terms of the stages to go for backward dynamic programming process. For each stage to go, a number of states are defined to represent the alternative combinations of reservoirs that might exist.

The total target of a state (target that can be supplied by a state) is the sum of the target of each reservoir included in that state with due consideration to the reservoir interactions amongst the reservoirs appearing in the state. Similarly, the total cost of a state is the sum of the cost of each reservoir included in the state. The total cost of a sequence is the sum of

the total costs of the states included in that sequence. Generally these costs are taken as the annual cost of the reservoir.

The total number of possible states, $N_{\rm k}$ is given by equation

 $N_k = \prod_{j=1}^{np} L_j$

Where,

 Π = The Multiplication function,

 N_k = Total number of possible states,

 L_j = Total number of levels of target under consideration for reservoir j, for j = 1 to np, and

np = Total number of reservoirs.

e.g., if np=3 and each reservoir can be considered at its full capacity only, then it will have two levels, i.e., full or null. Thus $L_1=L_2=L_3=2$ and $N_k=2.2.2=8$. Further, say $L_1=L_2=2$ and say reservoir 3 can be built in phases so that it will have three levels of capacity, namely, null capacity, half capacity and full capacity. Thus, $L_3=3$ and $N_k=2.2.3=12$.

The recursive equation which can be used to determine the optimum sequence of expansion to each feasible state for any r stages to go is as follows

$$f_r(S_r) = \underset{O_r}{\text{Min }} \{g_r(S_r, O_r) + [(1/(1+i)^r) * f_{r-1}(S_{r-1})]\} \text{ for all } r \quad (I)$$

Where,

 $f_r(S_r)$ = The optimum minimum cost of the reservoir sequence

stemming out from the initial feasible state, S_{r} , for r stages to go so as to attain the corresponding connected resulting state, S_{r-1} ,

N = Total number time periods,

t = Any time period, t = 1, 2, ..., N,

r = Stages to go , r = 1, 2, ..., N,

r = N - t

i = Discount rate,

 S_r = Feasible state for r stages to go (a state variable)

 ${\rm O}_{r}$ = State (reservoir combination) to be added for r stages to go into initial state, ${\rm S}_{r}$, to attain the resulting (final) state, ${\rm S}_{r-1}$, (a decision variable),

 D_r = Cumulative demand for r stages to go,

 $g_r(S_r, O_r)$ = Cost function for adding the state (reservoir combination), O_r , into the state, S_r , for r stages to go for attaining the state, $S_{r-1} = C(S_r) + C(O_r) = C(S_{r-1})$.

 $C(S_r) = Cost$ of the initial feasible state, S_r , for r stages to go,

 $C(O_r)$ = Cost of the state (reservoir combination), O_r , added, and $C(S_{r-1})$ = Cost of the resulting state, S_{r-1} , for r stages to go.

4.2.3.3 The Constraints

The stated recursive equation is subjected to the following constraints.

a. Feasibility constraint:

The target, $X(S_r)$, of a feasible state, S_r , for r stages to

go must be greater than or equal to the cumulative demand on the system

$$X(S_r) \ge D_r$$
 for all r (4.1)

b. Transition feasibility / continuity constraint:

The feasible solution to the problem under consideration is a sequence of feasible states satisfying the constraint that

$$S_r \in S_{r-1}$$
 for all r (4.2) and
$$S_{r-1} = S_r \oplus O_r$$
 for all r (4.3)

The symbol \odot indicates addition of state (reservoir combination). The symbol \in indicates that the state, S_r , is included in the state, S_{r-1} , and hence the transition is feasible. For e.g., if the resulting state, S_{r-1} , contains the reservoirs A, B, and C and the corresponding initial state, S_r , contains the reservoirs B, and C then transition is feasible as state ABC can be reached from state BC. Whereas if state, S_{r-1} , is BC and state, S_r , is A then transition is infeasible since state BC cannot be reached from state A (A is not included in BC).

These constraints can be further generalized to accommodate

(i) multipurpose reservoirs catering to more than one water use,
and

(ii) allowable deficit in satisfying a water demand.

The modified constraints are

a. Feasibility constraint:

$$X_{\tilde{d}}(S_r) + A_{\tilde{d}}^r \ge D_{\tilde{d}}^r$$
 for all r (4.4)

Where

d = Water use or purpose number,

 $d = 1, 2, ..., N_d,$

Nd = Total number of purposes/water uses,

 $X_d(S_r)$ = Target of a feasible state, S_r , to satisfy d^{th} purpose/water use for r stages to go,

 A_d^r = Allowable deficit in satisfying d^{th} purpose/water use for r stages to go, and

 D_{d}^{r} = Cumulative demand for d^{th} purpose/water use for r stages to go.

b. Transition feasibility / continuity constraint:

It is same as stated earlier and is given by Eq.4.3.

The cost function in the recursive equation, in view of these modifications, will have the following form

$$g_r(S_r, O_r) = \sum_{d=1}^{N_d} [C_d(S_{r-1}) + \lambda_d(S_{r-1})]$$
 for all r

Where

 $d=1,\ldots,N_d$

 N_d = Number of purposes/water uses.

 $C_d(S_{r-1}) + \lambda_d(S_{r-1}) =$ The cost of resulting state, S_{r-1} , for d^{th} purpose/water use for r stages to go,

$$= [C_d(S_r) + \lambda_d(S_r)] + [C_d(O_r) + \lambda_d(O_r)]$$

 $C_d(S_r)$ = Cost of the initial feasible state, S_r , for d^{th} purpose/water use for r stages to go,

 $C_d(O_r)$ = Cost of the state (reservoir combination), O_r , added, for d^{th} purpose/water use for r stages to go,

 $\lambda_d(S_r)$ = The penalty cost for allowing deficit for the initial feasible state, $S_r,$ for \textbf{d}^{th} purpose/water use for r stages to go, and

 $\lambda_{d}(O_{r})$ = The penalty cost for allowing deficit for the added state (reservoir combination), O_{r} , for d^{th} purpose/water use for r stages to go.

4.3 WORKING PRINCIPLE OF SEQUENCING COMPUTER PROGRAM

The computer program for the sequencing of multipurpose, multireservoir system is a very complex program. It comprises of as many as 8 subroutine subprograms alongwith the main program. The program works according to the proposed mathematical model presented in earlier sections (Appendix 4-I).

A general flowchart for the steps in the sequencing is presented in Figs. 4.1(a), (b), and (c). The functions of the various important subprograms are briefly highlighted in the following sections.

1. SUBROUTINE CODE

This generates code in terms of 0 and 1 for representing the states (reservoir combinations). Two versions of this are developed. One operates at bit level which may not be supported by all compilers/computer machines whereas the other one makes

use of bytes and hence can be used with all compilers/computer machines.

2. SUBROUTINE STYLD

This calculates the usewise target and cost of each state.

3. SUBROUTINE ARRANG

This arranges the states in either descending or ascending order using total cost and total target of the states. Further it finds out the state codes to be used in further calculations. This may be useful and effective only for sequencing of single purpose reservoirs due to the following reasons:

- (a) Addition of reservoir(s) into a state results in increase in the capacity of a state facilitating the ordering of states.
- (b) Equal capacity states can be screened thereby causing reduction in the number of states to be considered in every stage for sequencing.
- (c) Sequencing can be considered beyond any initial state condition.

However, this subroutine may not be that useful and effective for sequencing of multipurpose reservoirs or also for reservoirs serving different purposes due to the following reasons:

(a) Addition of reservoir(s) into a state does not necessarily result in increase in the usewise capacity (target) of a state and hence not facilitating the ordering of states.

(This is moreso in case of hydropower reservoirs having irrigation or multipurpose reservoirs at the upstream).

(b) Sequencing can not be considered beyond any initial state condition as states can not be arranged in any order thus making it imperative to consider all the states in every stage for sequencing.

4. SUBROUTINE DPALG [Fig.4.1(b)]

This by making use of various subroutines finds the optimal paths of expansion of the given system for all feasible given initial states at every stages to go using the recursive equation.

5. SUBROUTINE FUNCT

This evaluates the total cost function of the feasible states at every stage.

6. SUBROUTINE CONNECT

This determines the feasibility as well as transition feasibility of a state.

7. SUBROUTINE OPTPA [Fig.4.1(c)]

This performs the forward tracing of the optimal path of expansion starting with time zero.

8. SUBROUTINE SERCH

This deciphers/retrieves the information about the optimal

path of expansion in terms of actual reservoir name codes and writes the reservoir code name(s) as per states added in every stage (period) along the optimal path of expansion.

This computer program has been thoroughly tested for the four projects-four period sequencing problem and also for the numericals presented in the following sections.

4.4 ILLUSTRATIVE EXAMPLE

A simple example of hydropower capacity expansion (sequencing) problem earlier solved by Kuiper and Ortolano(1973) using forward process of dynamic programming is again solved here using the backward dynamic programming approach in order to explain the proposed methodology. Consider a power system involving three independent hydropower projects, labeled A, B, and C, that can be constructed to meet an increasing capacity demand. Assume that no deficits are allowed and therefore the penalty cost is O(zero). The annual cost and capacity of each hydropower project are as follows

Project	Capacity	Annua l	Cost	Penalty cost	
Α	500	30	200	0	
В	1000	50	Chr	0	
C	1500	60		0	
The increase in periods is	the capac	ity requir	ed over	next three	time
Period	0	1	2	3	
Capacity required	0	1000	2000	3000	
The problem	can be	analyzed	in thr	ree stages,	each
representing one	time per	os boi	I-3 Ac	thoro are	+ hwa a

projects, each of which may have two capacity levels namely, either built at full capacity or not built at all, there are eight possible combinations of the projects that represent the various possible states for any stage to go. Thus, $N_k=2.2.2=8$.

The recursive equation states that the minimum total cost of attaining the resulting state, S_{r-1} , for r stages to go is equal to the cost of this state plus the minimum total cost of attaining the least expensive connected resulting state for the previous r-1 stages to go. Only those states satisfying the capacity requirements may be included in any sequence of expansion.

By using the recursive equation the minimum total cost of all the states in a stage to go can be calculated using only data on the minimum total costs in the previous stage to go. Once each stage to go has been completed, the next stage to go is examined, until all the costs in all stages to go have been calculated. Then the state for last N stages to go with the lowest total cost is selected as the optimum starting state and the sequence of expansion stemming out from this state becomes the optimum sequence of expansion.

At the end of the one stage to go, only state ABC satisfy the capacity requirement and is therefore feasible. The total cost of state ABC for one stage to go is equal to the cost of that state, since the total cost of the resulting state in the previous O(zero) stages to go is O(zero). At the end of the two stages to go, the states AC, BC, and ABC are feasible because they have capacity either equal or more than the required 2000

units of capacity. These states are included in the state ABC of the one stage to go and hence this can be attained from all of the states of the two stages to go. Further, at the end of the three stages to go, the states B, C, AB, AC, BC, and ABC are feasible as they have capacity either equal to or more than the required 1000 units of capacity. The states B, C, AB, AC, BC, and ABC are included in the state ABC of two stages to go; the states B, C, BC are included in the state BC of the two stages to go; and the states C, and AC are included in the state AC of the two stages to go. Ultimately, the 'null' state is included in all feasible states at the end of the three stages to go.

Also, at the end of the one stage to go, the minimum cost of the sequences stemming out from the from the states AC, BC, and ABC of the two stages to go is (140+0) each with resulting state as ABC and added states as B, A, and 'null' respectively. At the end of the two stages to go, the costs of the sequences BC, AC, and ABC stemming out form the the state C are ((110+0)+140), ((90+0)+140) and ((140+0)+140). Out of these, the sequence AC is the minimum cost sequence and added state is A. The minimum cost sequences stemming out from the remaining feasible states for two stages to go can be derived in similar manner. In each case, the state, its resulting state, the minimum cost, and the decision regarding state to be added are also recorded in the computations.

Lastly, at the end of the three stages to go, it is assumed that the starting state, from which the feasible sequences towards the feasible states for two stages to go are stemming

out, is the 'null' state. The optimum sequence of expansion stemming out from this 'null' state is shown in Table 4.1.

As per the data given in the example all the possible feasible states and their transition feasibilities (connections) for each r are shown in the Fig. 4.2.

Computation: Backward Dynamic Programming Process.

One Stage to go, r = 1: Initial feasible states $(S_r = S_1)$ are AC, BC, and ABC. Resulting (final) feasible state $(S_{r-1} = S_0)$ is ABC only. Transition feasibility is as follows

Resulting feasible state, S ₀	Included initial feasible state, S ₁	Added state,
ABC	AC	В
ABC	BC	A
ABC	ABC	NULL

The cost function $g_r(S_r, O_r) = g_1(S_1, O_1)$ = $C_1(S_0) + \lambda_1(S_0)$ = $[C_1(S_1) + \lambda_1(S_1)] + [C_1(O_1) + \lambda_1(O_1)]$

The recursive equation is $f_1(S_1) = Min_{O_1} \{ [C_1(S_0) + \lambda_1(S_0)] + f_0(S_0) \}$

	$[C_1(S_0) + \lambda_1(S_0)] + f_0(S_0)$	f ₁ (S ₁)	Resulting state	Added state, 0 ₁
S ₀ ⇒	ABC	I		1,000
S ₁ BC AC ABC	(140+0)+0 (140+0)+0 (140+0)+0	140 140 140	ABC ABC ABC	A B NULL

Two Stages to go, r = 2

Initial feasible states ($S_r = S_2$) are B, C, AB, AC, BC, and ABC. Resulting (final) feasible states, ($S_{r-1} = S_1$) AC, BC , and ABC.

Transition feasibility is as follows

Resulting feasible state, S_1	Included initial feasible state, S2	Added state, 02
AC AC BC BC BC ABC ABC ABC ABC ABC ABC A	C AC B C BC BC AC AC AB BC ABC ABC	A NULL C B NULL AC AB B C A NULL

The cost function $g_r(S_r, O_r) = g_2(S_2, O_2) = C_1(S_1) + \lambda_1(S_1) = [C_1(S_2) + \lambda_1(S_2)] + [C_1(O_2) + \lambda_1(O_2)]$ The recursive equation is $f_2(S_2) = Min_{O_2} \{ [C_1(S_1) + \lambda_1(S_1)] + f_1(S_1) \}$

5	[C ₁ (S ₁)+	$\lambda_1(S_1)$]+f ₁	(S ₁)	f ₂ (S ₂)	Resulting state	Added state
S ₁ ⇒	AC	BC	ABC			-
S ₂			70777777			
	***	110+0+140	140+0+140	250	BC	C
C	90+0+140	110+0+140	140+0+140	230	AC	2
AC	90+0+140	***	140+0+140	230	AC	A
AB	***	***	140+0+140	280	ABC	NULL
BC	***	110+0+140	140+0+140	250		C
ABC	***	***	140+0+140	280	BC ABC	NULL

Three stages to go, r = 3

Initial feasible state ($S_r = S_3$) is assumed to be NULL state. Resulting (final) feasible states ($S_{r-1} = S_2$) are B, C, AB, AC, BC, and ABC.

Transition feasibility is as follows

Resulting feasible state, S ₂	Included initial feasible state, S ₃	Added state
B C AB AC BC ABC	NULL NULL NULL NULL NULL	B C AB AC BC ABC

The cost function
$$g_r(S_r, O_r) = g_3(S_3, O_3)$$

 $= C_1(S_2) + \lambda_1(S_2)$
 $= [C_1(S_3) + \lambda_1(S_3)] + [C_1(O_3) + \lambda_1(O_3)]$
The recursive equation is
 $f_3(S_3) = Min_{O_3}$ { $[C_1(S_2) + \lambda_1(S_2)] + f_2(S_2)$ }

	$[C_1(S_2) + \lambda_1(S_2)] + f_2(S_2)$					f ₃ (S ₃)	Result ing state	Added state, O ₃	
S ₂ ⇒	В	C	AC	ВС	AB	ABC			
S ₃ null (0)	(50+0 +250) =300	+230)		+250)		(140+0 +280) =420	290	С	C

Table 4.1 Optimal sequence of states (at the end of r stages to go) for illustrative example.

Time	Period:S	tages to	go:	Composition	:Total capacity	: Total cost
	0 1 2 3	3 2 1 0		NULL C AC ABC	0 1500 2000 3000	0 60 150 290

ADDITIONAL EXAMPLES

EXAMPLE 1

In the illustrative example given above, consider a project D with capacity 2000 and annual cost 80. Solution to this four project sequencing problem is given in Table 4.2.

As per the data given in the example all the possible feasible states and their transition feasibilities (connections) for each r are shown in the Fig. 4.3.

Table 4.2 Optimal sequence of states (at the end of r stages to go) for example 1.

Time Period	Stages to	go: Composition	:Total capacity:	Total cost
0	3	NULL	1 0 1	
1	2	D	2000	80
2	1	D	2000	160
3	0	BD	3000	290

Alternative optimal sequence of states (at the end of r stages to go) for example 1 is also given below.

Time Period	Stages to go:	Composition	:Total capacity	Total cost
0	3	NULL	0	0
2	1	AC	1500	150
		ABC	3000	290

EXAMPLE 2

In an another example consider the following data

Project Cap	acity Annu	ual Cost Pen	alty cost
A	500	30	0
В 1	000	50	0
C 1	500	60	0
D 2	000	80	0

The increase in the capacity required over next four time periods is

Period	0	1	2	3	4
Capacity required	0	1000	2000	3000	4000

The solution to this problem is given in the Table 4.3.

As per the data given in the example all the possible feasible states and their transition feasibilities (connections) for each r are shown in the Fig. 4.4.

Table 4.3 Optimal sequence of states (at the end of r stages to go) for example 2.

Time Perio	d:Stages to go:	Composition :	Total capacit	y: Total cost
0	1 4	NULL	0	0
1	3	D	2000	80
2	2	D	2000	160
3	1	CD	3500	300
4	0	ACD	4000	470

EXAMPLE 3

The increase in the capacity required over next four time periods is

Period	0	1	2	3	4
Capacity required	0	1000	3000	4000	5000

Solution to this problem is given in the Table 4.4.

Table 4.4 Optimal sequence of states (at the end of r stages to go) for example 3.

Time	Period:	Stages to go	: Composition	:Total capacity:	Total cost
	0	4	NULL	0	0
	1	3	CD	1500 3500	200
	3	1	ACD	4000	370
	4	0	ABCD	5000	590

Alternative optimal sequence of states (at the end of ${\bf r}$ stages to go) for example 3 is also given below.

Time	Period:Sta	ges to go!	Composition :T	otal capacit	y: Total cost
	0	4	NULL	0	0
	1	3	В	1000	50
	2	2	BD	3000	180
	3	1	BCD	4500	370
	4	0	ABCD	5000	590

EXAMPLE 4

In the example given above, consider the increase in the capacity required over next four time periods as given below:

Period 0 1 2 3 4
Capacity required 0 3000 4000 4500 5000

Solution to this problem is given in the Table 4.5.

Table 4.5 Optimal sequence of states (at the end of r stages to go) for example 4.

Time Period	Stages to go	: Composition	Total	capacity!	Total	cost
0 1 2 3 4	4 3 2 1 0	NULL BD BCD BCD BCD ABCD	2	3000 4500 4500	0 130 320 510 730	

As per the data given in the examples 3 and 4 all the possible feasible states and their transition feasibilities (connections) for each r and the optimal expansion paths for both the examples are shown in the Fig. 4.5.

LIST OF VARIABLES

 Π = The Multiplication function,

 $N_{\rm K}$ = Total number of possible states,

 L_j = Total number of levels of target under consideration for reservoir j, for j = 1 to np,

np = Total number of reservoirs,

 $f_r(S_r)$ = The optimum minimum cost of the reservoir sequence stemming out from the initial feasible state, S_r , for r stages to go so as to attain the corresponding connected resulting state, S_{r-1} ,

N = Total number time periods,

t = Any time period, t = 1, 2,, N,

 $r = Stages to go , r = 1, 2, \ldots, N,$

r = N - t

i = Discount rate,

 S_r = Feasible state for r stages to go (a state variable),

 ${\rm O_r}$ = State (reservoir combination) to be added for r stages to go into initial state, ${\rm S_r}$, to attain the resulting (final) state, ${\rm S_{r-1}}$, (a decision variable),

 D_r = Cumulative demand for r stages to go,

 $g_r(S_r, O_r) =$ Cost function for adding the state (reservoir combination), O_r , into the state, S_r , for r stages to go for attaining the state, S_{r-1} ,

 $C(S_r) = Cost$ of the initial feasible state, S_r , for r stages to go,

 $C(O_r)$ = Cost of the state (reservoir combination), O_r , added, $C(S_{r-1}) = \text{Cost of the resulting state, } S_{r-1}, \text{ for } r \text{ stages to go.}$ $d = 1, \ldots, N_d,$

Nd = Number of purposes/water uses,

 $C_d(S_{r-1}) + \lambda_d(S_{r-1}) = The cost of resulting state, S_{r-1}$, for d^{th} purpose/water use for r stages to go,

$$= [C_{d}(S_{r}) + \lambda_{d}(S_{r})] + [C_{d}(O_{r}) + \lambda_{d}(O_{r})]$$

 $C_d(S_r)$ = Cost of the initial feasible state, S_r , for d^{th} purpose/water use for r stages to go,

 $C_{d}(O_{r})$ = Cost of the state (reservoir combination), O_{r} , added, for d^{th} purpose/water use for r stages to go,

 $\lambda_{d}(S_{r})$ = The penalty cost for allowing deficit for the initial

feasible state, S_{r} , for d^{th} purpose/water use for r stages to go, and

 $\lambda_d(O_r)$ = The penalty cost for allowing deficit for the added state (reservoir combination), O_r , for d^{th} purpose/water use for r stages to go.

Fig. 4.1(a). General flowchart for DP sequencing algorithm

READ PERIODWISE AND USEWISE DEMANDS. ALLOWABLE DEFICITS, AND PENALTY COSTS, ETC. READ PERMISSIBLE LOWER AND UPPER LIMITS ON STARTING INITIAL STATE, AT T = 0READ PERIODWISE PERMISSIBLE LOWER AND UPPERLIMITS ON FINAL (RESULTING) STATES READ COST FUNCTION VALUES FOR ALL STATES. PROJECT NAMES, NUMBER OF POSSIBLE INITIAL STATES IN THE BEGINING AND THEIR ORDER NUMBER CALL SUBROUTINE FOR STATE CODE GENERATION - CODE(NP)/CODE1(NP) CALL SUBROUTINE FOR CALCULATING STATE CAPACITIES AND COSTS STYLD(NP) INITIALISE STATE CODE USE VARIABLE COUSE(I) TO ONE CALL SUBROUTINE FOR FINDING FEASIBILITY OF STATES, TRANSITION FEASIBILITY OF STATES, STATES ON OPTIMAL EXPANSION PATH, AND FOR DECIPHERING/FORWARD TRACING OF OPTIMAL PATH STATES AND FOR PRINTING THE RESULTS STOP

Fig. 4.1(a). Concluded

Fig. 4.1(b) Flowchart of subroutine DPALG

Fig.4.1(c) Flowchart of subroutine OPTPA

Fig. 4.2 Transition feasiblility of states for illustraative example

Fig. 4.4 Transition feasibility of states for example 2.

Demand 4000

Demand 3000

Demand 3000

Demand 1000

Example 4

Example 3

0 Time period, $t \rightarrow$

Demand 5000

Demand 5000

Demand 4500

Demand 4000

Fig.4.5 Transition feasibility of states for examples 3 and 4.

THE RIVER SYSTEM AND THE PROBLEM

5.1 BASIN DESCRIPTION

As stated in Chapter 1, there are many pending inter State river basin development issues in India due to river water disputes. However, it has been decided to consider the Narmada river basin for the present study owing to the following reasons:

- (i) Tribunal awards for river water disputes for many inter State river basins are awaited, whereas the tribunal award for the Narmada river basin has already been given in 1979.
- (ii) Master Plan for the Narmada river basin development and relevant data were generally available.
- (iii) The river basin is large with multipurpose mega projects.
- (iv) It is an internationally known basin.
- (v) It is in the initial stages of development.

The Narmada basin (Master Plan, 1972) is located in central India. The Narmada is the largest west flowing and fifth largest river of India. It is an interstate river draining a large area in Madhya Pradesh besides some area in the States of Maharashtra and Gujarat. The Narmada basin lies between East longitudes $72^{0}32^{'}$ to $81^{0}45^{'}$ and North latitudes $21^{0}20^{'}$ to $23^{0}45^{'}$. The

Narmada rises from a spring at an elevation of 1057 m at Amarkantak in the Miakal hill in Shahdol district of Madhya Pradesh and flows through Madhya Pradesh, Maharashtra and Gujarat between Vindhya and Satpura ranges before falling into the Gulf of Cambay in the Arabian Sea about 10 km north of Bharuch. The total length of this west flowing river from its origin to its outfall into the sea is 1312 km. For the first 1079 km it runs in Madhya Pradesh and thereafter forms the common boundary between Madhya Pradesh and Maharashtra for 35 km, and Maharashtra and Gujarat for 39 km. In Gujarat State it stretches for 159 km.

There are 41 important tributaries to the Narmada river. Significant among them are Burhner, Banjar, Hiran, Tawa, Chhota Tawa, Orsang, and Kundi which are major tributaries having catchment area more than 3500 sq.km. The remaining tributaries are having catchment area ranging from 500 to 2500 sq.km. The catchment area, length, and elevation of the origin of the important tributaries are indicated in Table 5.1. The relative positions of the principal tributaries with respect to main Narmada river are shown in the line diagram Fig. 5.1.

5.2 CLIMATE AND RAINFALL

The climate in the basin is variable owing to topographic characteristics. However generally humid tropical conditions prevail in the basin as major part of the basin lies just below the Tropic of Cancer. In winter the minimum temperature varies

from 1.5°C to 9°C . The maximum temperature varies from 40°C to 49°C with the month of May as the hottest month. Temperature rises from east to the west.

The average annual rainfall in the Narmada basin is 1250 mm. The south west monsoon sets in by the middle of June and withdraws by middle of October. About 90 percent of total rainfall is received during the monsoon months, of which nearly 50 percent is received during the months of July and August. Rainfall is more in the eastern hills and goes on decreasing towards low western hills.

The basin has been suitably subdivided into three zones namely upper, middle, and lower. The upper zone is from origin of the river to Bargi Reservoir. The middle zone is between Bargi and Narmada Sagar. The lower zone is below Narmada Sagar.

5.3 STREAMFLOW

The storage reservoirs on the Narmada would generally fill during July to October and would be depleted from November to the following June. The monthly flow data are therefore given from July to June of the next year (water year). Two sets of monthly data were prepared due to availability of raw data in both cases. These are explained below.

5.3.1 Twenty Two Year Monthly Flow Data (1948-1969)

Monthly flow data in million cubic meters (Mcm) at four important gauging sites in the basin namely Jamtara, Tawa, Mortakka and Garudeshwar were readily available in the Master Plan Vol. V. (Master Plan, 1972). These were transferred to reservoir sites using catchment area proportions. The monthly flow data at gauging sites are given in Table 5.2. The transferred monthly flow data at reservoir sites are reproduced in Table 5.3.

5.3.2 Sixteen Year Monthly Flow Data (1977-1993)

Daily discharge data in cumecs at 11 important gauging sites in the basin namely Manot, Mohgaon, Jamtara, Belkeri, Gadarwara, Tawa, Mortakka, Chiddgaon, Ginnore, Kogaon and Garudeshwar were available in the 77 column coded format. These huge data were decoded and converted to monthly flows in Mcm. These were further transferred to the reservoir sites using catchment area proportions. These transferred monthly flow data at reservoir sites are given in Table 5.4.

5.4 BASIN NEEDS (DEMANDS)

5.4.1 Irrigation Water Requirement

The irrigation water requirement of the basin has been

assessed on the basis of water availability, annual irrigation intensity, cropping pattern, crop water requirement, and evaporation data etc. Most of the reservoirs in the Master Plan cater to the irrigation demand. It is stipulated to create irrigation facilities in an area of 2.755 Mha by constructing 29 major, 441 medium, and about 3000 minor schemes in Madhya Pradesh. Apart from the major, medium, and minor schemes referred to above, considerable irrigation development would also be expected from pumping schemes on streams all over the basin and on the numerous reservoirs to be created on the main river and tributaries.

5.4.1.1 Cropping pattern

Due to variations in climate, rainfall etc. various cropping patterns have been proposed for reservoirs in upper, middle and lower zones. The zonewise cropping patterns for major, medium, minor and pumping schemes are given in the Master Plan Vol. II (Master Plan, 1972). For some reservoirs the cropping patterns are given in their project reports. Some of the zonewise cropping patterns are given in Table 5.5.

5.4.1.2 Crop water requirement

Monthly crop water requirement depths for various crops in the upper, middle and lower zones are given in the Master Plan Vol. II (Master Plan, 1972). These are shown in the Table 5.5 alongwith the cropping pattern. Based on these, monthly irrigation water requirements (percentages) are obtained and the same are listed in Table 5.6.

5.4.2 Hydropower Requirement

The hydropower demand has been assessed on the basis of water availability and potential sites for hydropower generation. It is expected to augment the power supply from other sources such as thermal power stations etc..

The Narmada water provides a large scope for development of hydroelectric projects. The major reservoirs identified in the Narmada Valley, namely, Raghavpur, Rosra, Sitarewa, Maheshwar are purely hydel projects. Besides these, the multipurpose reservoirs Basania, Bargi, Narmada Sagar, Omkareshwar also have hydroelectric components. The aggregate total power potential of these projects is 1825 Mw. In addition, Madhya Pradesh has a share of 798 Mw (57%) in the installed capacity of 1400 Mw of Sardar Sarovar across the Narmada in Gujarat State. Thus, the total availability of hydel power in terms of the installed capacity will be about 2600 Mw which works out to be more than 30% of the total identified potential in the State of Madhya Pradesh.

The planwise demand pattern for Narmada basin as derived from Report of the Narmada Water Resources Development Committee

(1965) is given in Table 5.7.

5.5 RIVER DEVELOPMENT PLAN

The Narmada basin drains an area of 98800 sq. km. and has around 41 major tributaries feeding it. And on this river the State Governments of Madhya Pradesh and Gujarat have planned to build two mega reservoirs at Punasa (Narmada Sagar) and Navagam (Sardar Sarovar) respectively. Actually, these two form the focal point of a much larger development plan comprising of 30 major reservoirs, 441 medium schemes, and over 3000 minor schemes covering the entire basin. Out of these 30 major reservoirs (10 are on main river and 20 are on tributaries), 7 are multipurpose, 4 are purely hydel and 19 are purely irrigation reservoirs. This is really a gigantic and ambitious plan by any standards. The relative positions of the 30 major reservoirs with respect to main Narmada river are indicated in the line diagram Fig. 5.2. The locations of these 30 reservoirs are shown in the Plate I.

5.5.1 Phasing of Narmada Valley Development

In order to utilise its share of allocated surface water, Madhya Pradesh Government had prepared its Master Plan for development of Narmada water resources. It was proposed to develop the Narmada valley in two Phases over a span of 45 years between 1979 and 2024. In the Phase I (1979-2000) covering a period of 20 years it was planned

- (i) To complete the then ongoing Bargi, Matiyari, and Kolar reservoirs.
- (ii) To accelerate the then newly started reservoirs in the sixth plan under Narmada Sagar complex (comprising Narmada Sagar, Omkareshwar, and Maheshwar), Man and Jobat.
- (iii) To take up Upper Narmada, Bargi diversion and Chhota Tawa reservoirs.

The line diagram in Fig. 5.3 shows the relative positions of these reservoirs.

In the Phase II of development (2000-2024), the remaining 16 reservoirs were to be taken up so as to complete the development of the Narmada Valley by 2024. The line diagram in Fig. 5.4 shows the relative positions of these reservoirs.

On the basis of these Master Plan documents, project reports, and other State and Central Government publications a lot of information on salient features of the major reservoirs was meticulously extracted. A schedule to present this information was carefully designed. This schedule is presented in the form of Table 5.6.

5.5.2 Existing Development

To-date very little development has taken place in the basin thus providing a major opportunity for harnessing of the large

untapped water resources. The lack of development was mainly due to a water dispute that had arisen amongst the riparian States of Gujarat, Madhya Pradesh, and Maharashtra over the use, distribution, and control of the water of the interstate Narmada river. Rajasthan though not a co-riparian State became entitled to the share of the Narmada waters as a result of mutual agreement amongst the party States. The Government of India had set up the Narmada Water Disputes Tribunal (NWDT) in October 1969 to go into the various aspects of sharing of the Narmada waters amongst the riparian States. The Tribunal gave its award in August 1978. As per the stipulation of NWDT each State had to utilise its share within a period of 45 years commencing from the year of the final award in 1979.

In order to have a systematic development of Narmada basin various agencies such as Narmada Valley Development Authority, Narmada Control Authority, and Sardar Sarovar Narmada Nigam Limited have been constituted. However, out 14 reservoirs expected to be completed in ongoing Phase I, at present there is only one completed major multipurpose reservoir namely Bargi on main stem of Narmada river and four completed major irrigation reservoirs on different tributaries namely Matiyari, Barna, Tawa, and Sukta. Further, seven reservoirs namely, Kolar, Narmada Sagar, Omkareshwar, Maheshwar, Man, Jobat, and Sardar Sarovar are ongoing and many of them are still in initial stages of development. This implies slow pace of development. There are many reasons for this shortfall. The Narmada Sagar Complex

reservoirs are financially supported by the World Bank. The information available todate reveals that the Bargi reservoir is completed in 1971(2nd period) but the infrastructure development is still ongoing, the reservoirs Barna, Tawa are completed in 1978(3rd period) and Sukta is completed in 1984(4th period).

The overall position (status), catchment area etc. of the 30 reservoirs in the basin are tabulated in the Table 5.8.

5.5.3 Development Potential

As per the Table 5.8 and as mentioned in earlier para, there appears to be a lot of scope for further water resources development in the Narmada basin. It is evident that whereas some irrigation potential has been developed but development of hydropower potential has not been commensurate with its demand. Phase I potential is yet not fully developed eventhough its stipulated period will be over soon. There is going to be a carry over of many Phase I reservoirs into Phase II. And as such at its present level of development, the Narmada river basin, in question, can be still considered to be in its initial stages of development for the purpose of analysis.

5.6 STATEMENT OF THE PROBLEM

While planning for the development of such a big river valley it is always necessary to take into account the various aspects

of long-term river basin planning. One such implied aspect is the determination of sequence of development of various reservoirs. The sequencing of various reservoirs should be such that the decisions taken on grounds of exigency and expediency do not lead to infructuous and wasteful investments in the long-run.

Before the sequencing of reservoirs is done the alternative demand patterns may be developed from the available data to study various developmental strategies as the river system is still in the initial stages of development. This is due to the inter State river water dispute since long time, which has delayed the water resources development in the basin.

In view of this and as per the objectives set in the Chapter 1 it is proposed to follow the following steps in the combined use of simulation and sequencing models to analyse the problem of development of one of the most important and controversial Narmada river basin system.

Initially, assuming that all 30 reservoirs are existing in the system, the individual reservoir wise as well as combined simulation runs for all the 30 reservoirs would be undertaken starting from upstream to downstream for fixing the final simulated irrigation targets from each of the irrigation reservoirs.

Secondly, for 14 Phase I reservoirs the initial and the final

simulated firm hydropower targets from hydropower reservoirs would be determined. In each case, the irrigation targets shall be kept constant as obtained in the previous para. Further, sequencing of the Phase I reservoirs would be done using the sequencing model.

Finally, 16 Phase II reservoirs would be sequenced in similar fashion as in Phase I. Looking at the huge size of the problem due to the presence of a large number of reservoirs in both the Phases of development it may be necessary to reduce the size of the problem by clubbing some of the small reservoirs.

The detailed discussion on the proposed procedure is an important part of the next chapter.

5.6.1 ASSUMPTIONS

The given statement of problem is derived on the basis of the following assumptions:

- (i) The stream hydrologies are sufficiently well characterised by their historical monthly flow records, which quantify and contain the critical periods of subnormal streamflow.
- (ii) The stream-site configuration may be any parallel-series arrangement.
- (iii) The dimensions of the reservoir sites have been evaluated and total cost and annual cost at each site have been

estimated exogenously.

- (iv) Water demands are based on the potential of the system.
- (v) The water demand function is deterministic, and monotonically increasing with time and has no other constraints on its form.

To avoid the inclusion of other factors that although important in their own right, are secondary to the purpose of this research work, the following assumptions are also made:

- (i) The economic objective is the only one that needs to be investigated. Since a demand function is to be prescribed, the objective function will be to minimize the present worth of the total annual cost.
- (ii) Project costs are incurred as lump sums at the time of construction. Individual reservoir costs are separable and the construction period is taken as being small (one or two planning periods).
- (iii) The planning horizon is finite. (20,30,40 yrs for eath Phase)
- (iv) A project once constructed is operable over the finite planning horizon.
- (v) Price elasticity of demand is zero.
- (vi) Inflation effects are self-balancing and financial management considerations can be ignored.
- (vii) The social discount rate is constant.
- (viii) Each project is to be constructed only once and any combination of projects may be built.

(ix) Any project is constructed either to its full capacity or not constructed at all.

Further it is to be impressed here that

- (i) Master Plan preparation in India, is based on social water needs and not on the basis of optimal utilisation.
- (ii) Project cost estimates do not include environmental costs and social costs due to non-availability of reliable data.
- (iii) The main aim here is to use the economic objective as a vehicle only in order to establish the sequencing model as a tool for satisfying system water demands.

Table 5.1 Information of principal tributaries of Narmada river

Sr.No.	Name of the Tributary	Elevation of Source	Catchment Area	Total Length from the
	TIIDUCALY	MSL (m)	(Sq.km.)	Source (km)
1.	Kharmer (L)	+	557	64
2.	Silgi (R)	. 2	531	65
3.	Burhner (L)	900	4228	177
4.	Banjar (L)	600	3282	183
5.	Balai (R)	-	531	46
6.	Temur (L)	550	892	54
7.	Gaur (R)	690	1107	79.5
8.	Soner (L)	I - had been	581	51
9.	Hiran (R)	500	4795	188
10.	Sher (L)	650	2903	129
11.	Biranjo (R)	10000000	1172	62
12.	Shakker (L)	900	2294	161
13.	Dudhi (L)	900	1542	129
14.	Sukhri (L)		609	39
15.	Tendoni (R)	500	1633	177
16.	Barna (R)	450	1789	105
17.	Tawa (L)	600	6338	172
18.	Hather (L)	-	645	37.5
19.	Kolar (R)	600	1348	101
20.	Ganjal (L)	700	1931	89
21.	Sip (R)	,00	879	45
22.	Jamner (R)	470	671	30
23.	Chankeshar (R)	600	1249	
24.	Anjal (L)	500		30
25.	Machak (L)	550	1203 1112	62.5
26.	Chhota Tawa (L)	400	5055	87.5
27.	Khari (R)	400		169
28.	Kenar (R)		754	41
29.	Kaveri (L)	The state of the s	1581	62.5
30.	Choral (R)		954	32.5
31.	Kharkia (L)		601	55
32.	Kundi (L)	900	1099	24
33.	Karan (R)	900	3973	120
34.	Board (L)		858	45
35.	Man (R)	EEO	866	62.5
36.	Deb (L)	550	1529	89
37.	Uri (R)	350	966	82.5
38.		200	2004	74
39.		800	1892	129
40.	Hatni (R)	350	1944	30
	Orsang (R)	300	3946	101
41.	Karjan (L)	200	1490	93

/ear		ARA													
	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow		
1948	2249.0	4439.0	2837.0	410.0	260.0	105.0	68.0	63.0	41.0	12.0	4.0	30.0	10518.0	7	30.4
949	738.0	4439.0	2837.0	759.0	169.0	57.0	49.0	51.0	64.0	27.0	7.0	26.0	9223.0		43.4
950	2837.0	4484.0	1364.0	171.0	56.0	49.0	39.0	25.0	14.0	57.0	9.0	41.0	9146.0		47.8
951	112.0	2622.0	1304.0	381.0	59.0	36.0	17.0	11.0	7.0	4.0	1.0	132.0	4686.0		86.9
952	2299.0	4500.0	2351.0	255.0	73.0	39.0	39.0	25.0	9.0	2.0	1.0	.0	9593.0		34.7
953	1842.0	2969.0	1225.0	243.0	74.0	41.0	25.0	11.0	5.0	4.0	1.0	21.0	6461.0		73.9
954	1291.0	2194.0	2726.0	354.0	90.0	33.0	27.0	21.0	10.0	4.0	1.0	506.0	7257.0		69.5
955	1395.0	3651.0	3919.0	1430.0	245.0	96.0	46.0	26.0	12.0	7.0	4.0	180.0	11011.0		26.0
956	4368.0	6673.0	1642.0	782.0	322.0	106.0	111.0	41.0	59.0	36.0	9.0	16.0	14165.0	2	8.
957	1977.0	4022.0	1494.0	221.0	68.0	36.0	22.0	15.0	30.0	9.0	1.0	5.0	7900.0		60.
958	2298.0	2115.0	1847.0	1303.0	212.0	75.0	59.0	46.0	14.0	9.0	4.0	4.0	7986.0		56.
959	2991.0	4612.0	3255.0	611.0	141.0	70.0	78.0	36.0	23.0	21.0	7.0	97.0	11942.0		17.
960	1681.0	4316.0	994.0	862.0	147.0	74.0	56.0	52.0	21.0	6.0	1.0	274.0	8484.0	12	
961	5853.0	5227.0	5395.0	1068.0	248.0	149.0	83.0	48.0	36.0	21.0	9.0	88.0	18225.0	1	4.
962	868.0	2245.0	1861.0	294.0	96.0	343.0	63.0	25.0	17.0	10.0	10.0	134.0	5966.0		78.3
963	1095.0	2985.0	3045.0	282.0	118.0	60.0	38.0	27.0	19.0	6.0	2.0	75.0	7752.0		65.
964	3084.0	5262.0	1797.0	550.0	130.0	70.0	46.0	28.0	17.0	28.0	4.0	118.0	11134.0		21.
965	486.0	641.0	1194.0	125.0	41.0	23.0	21.0	12.0	5.0	1.0	1.0	259.0	2809.0		95.
966	1233.0	2611.0	329.0	64.0	27.0	26.0	16.0	10.0	38.0	32.0	5.0	115.0	4506.0		91.
967	2968.0	5853.0	2963.0	400.0	104.0	152.0	217.0	80.0	48.0	12.0	7.0	63.0	12867.0		13.
968	1322.0	3502.0	693.0	228.0	74.0	44.0	37.0	12.0	7.0	4.0	1.0	2.0	5926.0		
969	1694.0	5422.0	1454.0	254.0	101.0	48.0	43.0	21.0	53.0	10.0	9.0	278.0	9387.0	9	39.
lean	2031.0	3853.8	2114.8	502.1	129.8	78.7	54.5	31.2	25.0	14.6	4.5	112.0	8952.0		
SITE	NAME TA	MA													
Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Pr
1948	1449.0	2647.0	1801.0	247.0	222.0	51.0	33.0	12.0	9.0	6.0	4.0	27.0	6508.0	3	13.
1949	565.0	649.0	2362.0	424.0	100.0	31.0	20.0	23.0	10.0	5.0	4.0	5.0	4198.0	7	30.
	1435.0	A 100 M													
		4/3 11	666.11	22.0	19.0	16.0	17.0	7.0	5.0	4.0	4.0	83.0	2731.0	15	65.
		475.0 1039.0	644.0 516.0		19.0	16.0	17.0	7.0	5.0	4.0	4.0	83.0 58.0	2731.0 1968.0		
1951	213.0	1039.0	516.0	95.0	12.0	7.0	9.0	7.0 11.0 5.0	5.0 4.0 4.0					21	65. 91. 86.
1951 1952	213.0 736.0	1039.0 1088.0	516.0 155.0	95.0 19.0	12.0	7.0 6.0	9.0 5.0	11.0	4.0	2.0	2.0	58.0	1968.0	21 20	91. 86.
1950 1951 1952 1953	213.0 736.0 549.0	1039.0 1088.0 1844.0	516.0 155.0 315.0	95.0 19.0 80.0	12.0 7.0 15.0	7.0 6.0 10.0	9.0 5.0 9.0	11.0 5.0 6.0	4.0 4.0 4.0	2.0 2.0 2.0	2.0	58.0 22.0	1968.0 2051.0 2854.0	21 20 14	91. 86.
1951 1952 1953 1954	213.0 736.0 549.0 533.0	1039.0 1088.0 1844.0 588.0	516.0 155.0 315.0 891.0	95.0 19.0 80.0 131.0	12.0 7.0 15.0 28.0	7.0 6.0 10.0 15.0	9.0 5.0 9.0 11.0	11.0 5.0 6.0 7.0	4.0 4.0 4.0	2.0	2.0 2.0 1.0	58.0 22.0 19.0	1968.0 2051.0 2854.0	21 20 14 18	91. 86. 60. 78.
1951 1952 1953 1954 1955	213.0 736.0 549.0 533.0 126.0	1039.0 1088.0 1844.0 588.0 1125.0	516.0 155.0 315.0 891.0 1300.0	95.0 19.0 80.0 131.0 870.0	12.0 7.0 15.0 28.0 42.0	7.0 6.0 10.0 15.0 25.0	9.0 5.0 9.0 11.0 15.0	11.0 5.0 6.0 7.0 7.0	4.0 4.0 4.0 4.0	2.0 2.0 2.0 2.0 2.0	2.0 2.0 1.0 2.0	58.0 22.0 19.0 41.0	1968.0 2051.0 2854.0 2253.0 3585.0	21 20 14 18 10	91. 86. 60. 78. 43.
1951 1952 1953 1954 1955 1956	213.0 736.0 549.0 533.0 126.0 802.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0	516.0 155.0 315.0 891.0 1300.0 422.0	95.0 19.0 80.0 131.0 870.0 74.0	12.0 7.0 15.0 28.0 42.0 150.0	7.0 6.0 10.0 15.0 25.0 27.0	9.0 5.0 9.0 11.0 15.0 31.0	11.0 5.0 6.0 7.0 7.0 10.0	4.0 4.0 4.0 4.0 6.0	2.0 2.0 2.0 2.0 2.0 2.0	2.0 2.0 1.0 2.0 2.0 4.0	58.0 22.0 19.0 41.0 65.0	1968.0 2051.0 2854.0 2253.0 3585.0	21 20 14 18 10 19	91. 86. 60. 78. 43. 82.
1951 1952 1953 1954 1955 1956 1957	213.0 736.0 549.0 533.0 126.0 802.0 146.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0 1151.0	516.0 155.0 315.0 891.0 1300.0 422.0 479.0	95.0 19.0 80.0 131.0 870.0 74.0 35.0	12.0 7.0 15.0 28.0 42.0 150.0	7.0 6.0 10.0 15.0 25.0 27.0 7.0	9.0 5.0 9.0 11.0 15.0 31.0 5.0	11.0 5.0 6.0 7.0 7.0 10.0 4.0	4.0 4.0 4.0 4.0 6.0 17.0 4.0	2.0 2.0 2.0 2.0 2.0 2.0 14.0	2.0 2.0 1.0 2.0 2.0 4.0 2.0	58.0 22.0 19.0 41.0 65.0 25.0	1968.0 2051.0 2854.0 2253.0 3585.0 2167.0	21 20 14 18 10 19 22	91. 86. 60. 78. 43.
1951 1952 1953 1954 1955 1956 1957	213.0 736.0 549.0 533.0 126.0 802.0 146.0 422.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0 1151.0 1125.0	516.0 155.0 315.0 891.0 1300.0 422.0 479.0 1586.0	95.0 19.0 80.0 131.0 870.0 74.0 35.0 242.0	12.0 7.0 15.0 28.0 42.0 150.0 11.0	7.0 6.0 10.0 15.0 25.0 27.0 7.0 27.0	9.0 5.0 9.0 11.0 15.0 31.0 5.0	11.0 5.0 6.0 7.0 7.0 10.0 4.0 6.0	4.0 4.0 4.0 6.0 17.0 4.0	2.0 2.0 2.0 2.0 2.0 14.0 2.0	2.0 2.0 1.0 2.0 2.0 4.0 2.0	58.0 22.0 19.0 41.0 65.0 25.0 26.0 73.0	1968.0 2051.0 2854.0 2253.0 3585.0 2167.0 1872.0	21 20 14 18 10 19 22 8	91. 86. 60. 78. 43. 82. 95.
1951 1952 1953 1954 1955 1956 1957 1958 1959	213.0 736.0 549.0 533.0 126.0 802.0 146.0 422.0 2250.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0 1151.0 1125.0 1807.0	516.0 155.0 315.0 891.0 1300.0 422.0 479.0 1586.0 3221.0	95.0 19.0 80.0 131.0 870.0 74.0 35.0 242.0 398.0	12.0 7.0 15.0 28.0 42.0 150.0 11.0 102.0 120.0	7.0 6.0 10.0 15.0 25.0 27.0 7.0 27.0 89.0	9.0 5.0 9.0 11.0 15.0 31.0 5.0 9.0	11.0 5.0 6.0 7.0 7.0 10.0 4.0 6.0 25.0	4.0 4.0 4.0 6.0 17.0 4.0 21.0	2.0 2.0 2.0 2.0 2.0 14.0 2.0 2.0	2.0 2.0 1.0 2.0 2.0 4.0 2.0 2.0	58.0 22.0 19.0 41.0 65.0 25.0 26.0	1968.0 2051.0 2854.0 2253.0 3585.0 2167.0 1872.0 3600.0	21 20 14 18 10 19 22 8 2	91. 86. 60. 78. 43. 82. 95. 34.
1951 1952 1953 1954 1955 1956 1957 1958 1959	213.0 736.0 549.0 533.0 126.0 802.0 146.0 422.0 2250.0 445.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0 1151.0 1125.0 1807.0 1875.0	516.0 155.0 315.0 891.0 1300.0 422.0 479.0 1586.0 3221.0 233.0	95.0 19.0 80.0 131.0 870.0 74.0 35.0 242.0 398.0 275.0	12.0 7.0 15.0 28.0 42.0 150.0 11.0 102.0 120.0 60.0	7.0 6.0 10.0 15.0 25.0 27.0 7.0 27.0 89.0 46.0	9.0 5.0 9.0 11.0 15.0 31.0 5.0 9.0 100.0 20.0	11.0 5.0 6.0 7.0 7.0 10.0 4.0 6.0 25.0 10.0	4.0 4.0 4.0 6.0 17.0 4.0 21.0	2.0 2.0 2.0 2.0 2.0 14.0 2.0 2.0 0	2.0 2.0 1.0 2.0 2.0 4.0 2.0	58.0 22.0 19.0 41.0 65.0 25.0 26.0 73.0 59.0	1968.0 2051.0 2854.0 2253.0 3585.0 2167.0 1872.0 3600.0 8090.0	21 20 14 18 10 19 22 8 2 13	91. 86. 60. 78. 43. 82. 95. 34. 8.
951 952 953 954 955 956 1957 1958 1959 1960	213.0 736.0 549.0 533.0 126.0 802.0 146.0 422.0 2250.0 445.0 1064.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0 1151.0 1125.0 1807.0 1875.0 2139.0	516.0 155.0 315.0 891.0 1300.0 422.0 479.0 1586.0 3221.0 233.0 5442.0	95.0 19.0 80.0 131.0 870.0 74.0 35.0 242.0 398.0 275.0 540.0	12.0 7.0 15.0 28.0 42.0 150.0 11.0 102.0 60.0 95.0	7.0 6.0 10.0 15.0 25.0 7.0 27.0 89.0 46.0 72.0	9.0 5.0 9.0 11.0 15.0 31.0 5.0 9.0 100.0 20.0 56.0	11.0 5.0 6.0 7.0 7.0 10.0 4.0 6.0 25.0 10.0 28.0	4.0 4.0 4.0 6.0 17.0 4.0 21.0 .0	2.0 2.0 2.0 2.0 2.0 14.0 2.0 2.0 0 0	2.0 2.0 1.0 2.0 2.0 4.0 2.0 2.0 0.0	58.0 22.0 19.0 41.0 65.0 25.0 26.0 73.0 59.0 19.0	1968.0 2051.0 2854.0 2253.0 3585.0 2167.0 1872.0 3600.0 8090.0 2983.0	21 20 14 18 10 19 22 8 2 13	91. 86. 60. 78. 43. 82. 95. 34. 8.
951 952 953 954 955 956 957 1958 1959 1960 1961	213.0 736.0 549.0 533.0 126.0 802.0 146.0 422.0 2250.0 445.0 1064.0 523.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0 1151.0 1125.0 1807.0 1875.0 2139.0 1146.0	516.0 155.0 315.0 891.0 1300.0 422.0 479.0 1586.0 3221.0 233.0 5442.0 2299.0	95.0 19.0 80.0 131.0 870.0 74.0 35.0 242.0 398.0 275.0 540.0	12.0 7.0 15.0 28.0 42.0 150.0 11.0 102.0 120.0 60.0 95.0	7.0 6.0 10.0 15.0 25.0 7.0 27.0 89.0 46.0 72.0 47.0	9.0 5.0 9.0 11.0 15.0 31.0 5.0 9.0 100.0 20.0 56.0 10.0	11.0 5.0 6.0 7.0 7.0 10.0 4.0 6.0 25.0 10.0 28.0 9.0	4.0 4.0 4.0 6.0 17.0 4.0 21.0 .0	2.0 2.0 2.0 2.0 2.0 14.0 2.0 2.0 0 0.0 20.0 4.0	2.0 2.0 1.0 2.0 2.0 4.0 2.0 2.0 0 .0 4.0	58.0 22.0 19.0 41.0 65.0 25.0 26.0 73.0 59.0 19.0 28.0	1968.0 2051.0 2854.0 2253.0 3585.0 2167.0 1872.0 3600.0 8090.0 2983.0 9507.0	21 20 14 18 10 19 22 8 2 13 1 6	91. 86. 60. 78. 43. 82. 95. 34. 8. 56.
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963	213.0 736.0 549.0 533.0 126.0 802.0 146.0 422.0 2250.0 445.0 1064.0 523.0 164.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0 1151.0 1125.0 1807.0 1875.0 2139.0 1146.0 1874.0	516.0 155.0 315.0 891.0 1300.0 422.0 479.0 1586.0 3221.0 233.0 5442.0 2299.0 1763.0	95.0 19.0 80.0 131.0 870.0 74.0 35.0 242.0 398.0 275.0 540.0 131.0	12.0 7.0 15.0 28.0 42.0 150.0 11.0 102.0 120.0 60.0 95.0 12.0 86.0	7.0 6.0 10.0 15.0 25.0 27.0 7.0 27.0 89.0 46.0 72.0 81.0	9.0 5.0 9.0 11.0 15.0 31.0 5.0 9.0 100.0 20.0 56.0 10.0 63.0	11.0 5.0 6.0 7.0 7.0 10.0 4.0 6.0 25.0 10.0 28.0 9.0 52.0	4.0 4.0 4.0 6.0 17.0 4.0 21.0 .0 19.0 33.0 37.0	2.0 2.0 2.0 2.0 2.0 14.0 2.0 2.0 0 0 20.0 4.0 23.0	2.0 2.0 1.0 2.0 2.0 4.0 2.0 2.0 0 .0 4.0 4.0	58.0 22.0 19.0 41.0 65.0 25.0 26.0 73.0 59.0 19.0 28.0 33.0 97.0	1968.0 2051.0 2854.0 2253.0 3585.0 2167.0 1872.0 3600.0 8090.0 2983.0 9507.0 4251.0	21 20 14 18 10 19 22 8 2 13 1 6 5	91. 86. 60. 78. 43. 82. 95. 34. 8. 56. 4.
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964	213.0 736.0 549.0 533.0 126.0 802.0 146.0 422.0 2250.0 445.0 1064.0 523.0 164.0 897.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0 1151.0 1125.0 1807.0 1875.0 2139.0 1146.0 1874.0 3333.0	516.0 155.0 315.0 891.0 1300.0 422.0 479.0 1586.0 3221.0 233.0 5442.0 2299.0 1763.0 418.0	95.0 19.0 80.0 131.0 870.0 74.0 35.0 242.0 398.0 275.0 540.0 131.0 97.0	12.0 7.0 15.0 28.0 42.0 150.0 11.0 102.0 120.0 60.0 95.0 12.0 86.0 49.0	7.0 6.0 10.0 15.0 25.0 27.0 27.0 89.0 46.0 72.0 81.0	9.0 5.0 9.0 11.0 15.0 31.0 5.0 9.0 100.0 20.0 56.0 10.0 63.0 41.0	11.0 5.0 6.0 7.0 7.0 10.0 4.0 6.0 25.0 10.0 28.0 9.0 52.0 28.0	4.0 4.0 4.0 6.0 17.0 4.0 21.0 .0 19.0 33.0 37.0 28.0	2.0 2.0 2.0 2.0 2.0 14.0 2.0 2.0 .0 20.0 4.0 23.0 26.0	2.0 2.0 1.0 2.0 2.0 4.0 2.0 2.0 0 4.0 4.0 19.0	58.0 22.0 19.0 41.0 65.0 25.0 26.0 73.0 59.0 19.0 28.0 33.0 97.0 65.0	1968.0 2051.0 2854.0 2253.0 3585.0 2167.0 1872.0 3600.0 8090.0 2983.0 9507.0 4251.0 4390.0 5045.0	21 20 14 18 10 19 22 8 2 13 1 6 5 4	91. 86. 60. 78. 43. 82. 95. 34. 8. 56. 4. 26. 21.
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	213.0 736.0 549.0 533.0 126.0 802.0 146.0 422.0 2250.0 445.0 1064.0 523.0 164.0 897.0 486.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0 1151.0 1125.0 1807.0 1875.0 2139.0 1146.0 1874.0 3333.0 295.0	516.0 155.0 315.0 891.0 1300.0 422.0 479.0 1586.0 3221.0 233.0 5442.0 2299.0 1763.0 418.0 1426.0	95.0 19.0 80.0 131.0 870.0 74.0 35.0 242.0 398.0 275.0 540.0 131.0 97.0	12.0 7.0 15.0 28.0 42.0 150.0 11.0 102.0 60.0 95.0 12.0 86.0 49.0 38.0	7.0 6.0 10.0 15.0 25.0 27.0 7.0 27.0 89.0 46.0 72.0 81.0 44.0 30.0	9.0 5.0 9.0 11.0 15.0 31.0 5.0 9.0 100.0 20.0 56.0 10.0 63.0 41.0	11.0 5.0 6.0 7.0 7.0 10.0 4.0 6.0 25.0 10.0 28.0 9.0 52.0 28.0	4.0 4.0 4.0 6.0 17.0 4.0 21.0 .0 19.0 33.0 37.0 28.0 10.0	2.0 2.0 2.0 2.0 2.0 14.0 2.0 2.0 .0 20.0 4.0 23.0 26.0 5.0	2.0 2.0 1.0 2.0 2.0 4.0 2.0 0 .0 4.0 4.0 19.0 19.0 4.0	58.0 22.0 19.0 41.0 65.0 25.0 26.0 73.0 59.0 19.0 28.0 33.0 97.0 65.0 2.0	1968.0 2051.0 2854.0 2253.0 3585.0 2167.0 1872.0 3600.0 8090.0 2983.0 9507.0 4251.0 4390.0 5045.0 2414.0	21 20 14 18 10 19 22 8 2 13 1 6 5 4	91. 86. 60. 78. 43. 82. 95. 34. 8. 26. 21. 73.
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	213.0 736.0 549.0 533.0 126.0 802.0 146.0 422.0 2250.0 445.0 1064.0 523.0 164.0 897.0 486.0 1663.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0 1151.0 1807.0 1875.0 2139.0 1146.0 1874.0 3333.0 295.0 1173.0	516.0 155.0 315.0 891.0 1300.0 422.0 479.0 1586.0 3221.0 233.0 5442.0 2299.0 1763.0 418.0 1426.0 218.0	95.0 19.0 80.0 131.0 870.0 74.0 35.0 242.0 398.0 275.0 540.0 131.0 97.0 91.0 26.0	12.0 7.0 15.0 28.0 42.0 150.0 11.0 102.0 120.0 60.0 95.0 12.0 86.0 49.0 38.0 6.0	7.0 6.0 10.0 15.0 25.0 27.0 7.0 27.0 89.0 46.0 72.0 47.0 81.0 44.0 30.0 6.0	9.0 5.0 9.0 11.0 15.0 31.0 5.0 9.0 100.0 20.0 56.0 10.0 63.0 41.0 17.0 5.0	11.0 5.0 6.0 7.0 7.0 10.0 4.0 6.0 25.0 10.0 28.0 9.0 52.0 28.0 10.0 4.0	4.0 4.0 4.0 6.0 17.0 4.0 21.0 .0 19.0 33.0 37.0 28.0 10.0 5.0	2.0 2.0 2.0 2.0 2.0 14.0 2.0 2.0 .0 20.0 4.0 23.0 26.0 5.0 2.0	2.0 2.0 1.0 2.0 2.0 4.0 2.0 .0 .0 4.0 4.0 19.0 19.0 4.0 2.0	58.0 22.0 19.0 41.0 65.0 25.0 26.0 73.0 59.0 19.0 28.0 33.0 97.0 65.0 2.0	1968.0 2051.0 2854.0 2253.0 3585.0 2167.0 3600.0 8090.0 2983.0 9507.0 4251.0 4390.0 5045.0 2414.0 3221.0	21 20 14 18 10 19 22 8 2 13 1 6 5 4 17	91. 86. 60. 78. 43. 82. 95. 34. 8. 56. 4. 26. 21. 73. 52.
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1966	213.0 736.0 549.0 533.0 126.0 802.0 146.0 422.0 2250.0 445.0 1064.0 523.0 164.0 897.0 486.0 1663.0 1349.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0 1151.0 1125.0 1807.0 1875.0 2139.0 1146.0 1874.0 3333.0 295.0 1173.0	516.0 155.0 315.0 891.0 1300.0 422.0 479.0 1586.0 3221.0 233.0 5442.0 2299.0 1763.0 418.0 1426.0 218.0 1046.0	95.0 19.0 80.0 131.0 870.0 74.0 35.0 242.0 398.0 275.0 540.0 131.0 97.0 91.0 26.0 74.0	12.0 7.0 15.0 28.0 42.0 150.0 11.0 102.0 60.0 95.0 12.0 86.0 49.0 38.0 6.0 5.0	7.0 6.0 10.0 15.0 25.0 27.0 27.0 89.0 46.0 72.0 47.0 81.0 6.0 53.0	9.0 5.0 9.0 11.0 15.0 31.0 5.0 9.0 100.0 20.0 56.0 10.0 63.0 41.0 17.0 5.0 19.0	11.0 5.0 6.0 7.0 7.0 10.0 4.0 6.0 25.0 10.0 28.0 9.0 52.0 28.0 10.0 4.0 10.0	4.0 4.0 4.0 6.0 17.0 4.0 21.0 .0 19.0 33.0 37.0 28.0 10.0 5.0	2.0 2.0 2.0 2.0 2.0 14.0 2.0 2.0 0 20.0 4.0 23.0 26.0 5.0 2.0	2.0 2.0 1.0 2.0 2.0 4.0 2.0 0 0 4.0 4.0 19.0 19.0 2.0 2.0	58.0 22.0 19.0 41.0 65.0 25.0 26.0 73.0 59.0 19.0 28.0 33.0 97.0 65.0 2.0 111.0 5.0	1968.0 2051.0 2854.0 2253.0 3585.0 2167.0 3600.0 8090.0 2983.0 9507.0 4251.0 4390.0 5045.0 2414.0 3597.0	21 20 14 18 10 19 22 8 2 13 1 6 5 6 4 77 12 9	91. 86. 60. 78. 43. 82. 95. 34. 8. 56. 4. 26. 21. 17. 73. 52. 39.
1951 1952 1953 1954 1955 1956	213.0 736.0 549.0 533.0 126.0 802.0 146.0 422.0 2250.0 445.0 1064.0 523.0 164.0 897.0 486.0 1349.0 966.0	1039.0 1088.0 1844.0 588.0 1125.0 591.0 1151.0 1807.0 1875.0 2139.0 1146.0 1874.0 3333.0 295.0 1173.0	516.0 155.0 315.0 891.0 1300.0 422.0 479.0 1586.0 3221.0 233.0 5442.0 2299.0 1763.0 418.0 1426.0 218.0	95.0 19.0 80.0 131.0 870.0 74.0 35.0 242.0 398.0 275.0 540.0 131.0 97.0 91.0 26.0 74.0	12.0 7.0 15.0 28.0 42.0 150.0 11.0 102.0 120.0 60.0 95.0 12.0 86.0 49.0 38.0 6.0 5.0	7.0 6.0 10.0 15.0 25.0 27.0 27.0 89.0 46.0 72.0 81.0 6.0 53.0 17.0	9.0 5.0 9.0 11.0 15.0 31.0 5.0 9.0 100.0 20.0 56.0 10.0 63.0 41.0 17.0 5.0 19.0 16.0	11.0 5.0 6.0 7.0 7.0 10.0 4.0 6.0 25.0 10.0 28.0 9.0 52.0 28.0 10.0 4.0	4.0 4.0 4.0 6.0 17.0 4.0 21.0 .0 19.0 33.0 37.0 28.0 10.0 5.0	2.0 2.0 2.0 2.0 2.0 14.0 2.0 2.0 .0 20.0 4.0 23.0 26.0 5.0 2.0	2.0 2.0 1.0 2.0 2.0 4.0 2.0 .0 .0 4.0 4.0 19.0 19.0 4.0 2.0	58.0 22.0 19.0 41.0 65.0 25.0 26.0 73.0 59.0 19.0 28.0 33.0 97.0 65.0 2.0	1968.0 2051.0 2854.0 2253.0 3585.0 2167.0 3600.0 8090.0 2983.0 9507.0 4251.0 4390.0 5045.0 2414.0 3221.0	21 20 14 18 10 19 22 8 2 13 1 1 6 5 6 5 6 17 17 12 9 9	91. 86. 60. 78. 43. 82. 95. 34. 8. 56. 4. 21. 17. 73. 52. 39. 69.

Year															
	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prob
1948	9464.0	14157.0	13928.0	2610.0	1643.0	801.0	472.0	331.0	268.0	164.0	111.0	301.0	44250.0	3	13.04
1949	4686.0	8384.0	13793.0	3978.0		516.0	310.0	216.0	271.0	175.0	134.0	157.0	33871.0	7	30.43
1950	8911.0	11368.0	8343.0		426.0	348.0	331.0	212.0	178.0	134.0	85.0	295.0	31866.0	9	39.13
1951	1866.0	7433.0	4643.0	1216.0	438.0	270.0	213.0	178.0	134.0	85.0	64.0	464.0	17004.0	20	86.96
1952	4649.0	13547.0	5045.0	872.0	364.0	253.0	218.0	186.0	136.0	86.0	59.0	76.0	25491.0	18	78.26
1953	5204.0	14368.0	4427.0	1020.0	400.0	266.0	210.0	147.0	96.0	73.0	58.0	138.0	26407.0	17	73.91
1954	3439.0	6322.0	15627.0	2800.0	877.0	438.0	280.0	191.0	110.0	74.0	57.0	593.0	30808.0	11	47.83
1955	2545.0	11183.0	19304.0	7345.0		576.0	368.0	244.0	179.0	131.0	99.0	957.0	44160.0	4	17.39
	12469.0	15140.0	5701.0	3057.0		702.0	606.0		324.0	308.0	153.0	521.0	41247.0	5	21.74
1956 1957	3393.0	10061.0	5750.0		447.0	292.0	232.0	169.0	176.0	100.0	73.0	223.0	21889.0	19	82.61
	4582.0	8166.0	10206.0		1270.0		322.0	232.0	170.0	105.0	75.0	173.0	30274.0	12	52.17
1958	11564.0	17211.0	16525.0		1051.0		546.0	306.0	241.0	163.0	127.0	336.0	52141.0	2	8.70
1959			3270.0	2673.0		516.0	353.0	271.0	201.0	141.0	105.0	630.0	31763.0	10	43.48
1960	5287.0	17540.0	26589.0	7052.0		794.0	559.0	376.0	308.0	237.0	148.0	111.0	61196.0	1	4.35
1961	10816.0	12721.0		1729.0	691.0	804.0	386.0		210.0	130.0	89.0	263.0	26474.0	15	65.22
1962	3296.0		12828.0	1597.0	569.0	375.0	259.0	190.0		111.0	85.0	418.0	26457.0		69.57
1963	1999.0	10380.0			662.0	381.0	279.0	170.0	136.0	121.0	73.0	176.0	33204.0	8	34.78
1964	6963.0	15686.0	6197.0	2360.0		153.0	132.0	99.0	70.0	51.0	46.0	54.0			95.65
1965	3111.0	2235.0	3916.0	574.0	208.0	171.0	121.0	84.0	69.0	111.0	44.0	355.0	16413.0		91.30
1966	3776.0	8332.0		376.0	199.0			222.0	207.0	100.0	65.0	78.0	30157.0		56.52
1967	4310.0		10234.0	1442.0	426.0	545.0	440.0	132.0	105.0	70.0	48.0	58.0	27068.0	5.5	60.87
1968	4084.0		4267.0	1336.0	407.0	271.0				113.0	79.0	1763.0	40482.0		26.09
1969	5849.0	21111.0	8335.0	1581.0	5/8.0	342.0	306.0	210.0	213.0	113.0	77.0				
Mean	5557.4	11787.0	9636.7	2446.2	786.5	448.5	325.3	216.8	180.6	126.5	85.3	370.0	31966.9		
SITE	NAME GAR	UDESHWAR											Н		
Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	
1948	10517.0	16958.0	18258.0	2885.0	1760.0	937.0	522.0	311.0	257.0	170.0	102.0	503.0	53180.0	4	17.39
1949					1634.0	669.0	717 0	318.0	282.0	185.0	125.0	148.0	41635.0	7	30.43
	4881.0	9291.0	1/400.0	0000.0		007.0	317.0	310.0							19.34.04
	15000		17455.0		792.0	492.0	456.0	232.0	191.0	181.0	128.0	278.0	40683.0		34.78
1950	8833.0	13441.0		2307.0	792.0		456.0				128.0 44.0	278.0 484.0		8	
1950 1951	8833.0 3304.0	13441.0 8872.0	13352.0 4888.0	2307.0 1237.0	792.0 453.0	492.0	456.0	232.0	191.0	181.0			40683.0	8 20	34.78
1950 1951 1952	8833.0 3304.0 4320.0	13441.0 8872.0 13879.0	13352.0 4888.0 5345.0	2307.0 1237.0 999.0	792.0 453.0 449.0	492.0 338.0 289.0	456.0 245.0 228.0	232.0 183.0	191.0 141.0	181.0 83.0	44.0	484.0	40683.0 20272.0	8 20 18	34.78 86.96
1950 1951 1952 1953	8833.0 3304.0 4320.0 4626.0	13441.0 8872.0 13879.0 15808.0	13352.0 4888.0 5345.0 4965.0	2307.0 1237.0 999.0 1401.0	792.0 453.0 449.0 480.0	492.0 338.0 289.0 340.0	456.0 245.0 228.0 274.0	232.0 183.0 174.0 137.0	191.0 141.0 125.0	181.0 83.0 69.0	44.0 41.0	484.0 628.0	40683.0 20272.0 26546.0	8 20 18 17 9	34.78 86.96 78.26 73.91 39.13
1950 1951 1952 1953 1954	8833.0 3304.0 4320.0 4626.0 4628.0	13441.0 8872.0 13879.0 15808.0 6620.0	13352.0 4888.0 5345.0 4965.0 22410.0	2307.0 1237.0 999.0 1401.0 1237.0	792.0 453.0 449.0 480.0 1441.0	492.0 338.0 289.0 340.0 698.0	456.0 245.0 228.0 274.0 455.0	232.0 183.0 174.0 137.0 294.0	191.0 141.0 125.0 101.0 107.0	181.0 83.0 69.0 60.0 73.0	44.0 41.0 39.0 52.0	484.0 628.0 184.0	40683.0 20272.0 26546.0 28415.0	8 20 18 17 9	34.78 86.96 78.26 73.91
1950 1951 1952 1953 1954 1955	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0	792.0 453.0 449.0 480.0 1441.0 1423.0	492.0 338.0 289.0 340.0 698.0	456.0 245.0 228.0 274.0 455.0 512.0	232.0 183.0 174.0 137.0 294.0 286.0	191.0 141.0 125.0 101.0 107.0 274.0	181.0 83.0 69.0 60.0 73.0 176.0	44.0 41.0 39.0 52.0 126.0	484.0 628.0 184.0 818.0 1084.0	40683.0 20272.0 26546.0 28415.0 38833.0	8 20 18 17 9 5	34.78 86.96 78.26 73.91 39.13
1950 1951 1952 1953 1954 1955 1956	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0	792.0 453.0 449.0 480.0 1441.0 1423.0 1649.0	492.0 338.0 289.0 340.0 698.0 698.0 617.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0	191.0 141.0 125.0 101.0 107.0 274.0 342.0	181.0 83.0 69.0 60.0 73.0 176.0 310.0	44.0 41.0 39.0 52.0	484.0 628.0 184.0 818.0 1084.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0	8 20 18 17 9 5 6	34.78 86.96 78.26 73.91 39.13 21.74 26.09
1950 1951 1952 1953 1954 1955 1956	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0 3209.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0 11590.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0 6254.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0 1261.0	792.0 453.0 449.0 480.0 1441.0 1423.0 1649.0 574.0	492.0 338.0 289.0 340.0 698.0 698.0 617.0 389.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0 316.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0 207.0	191.0 141.0 125.0 101.0 107.0 274.0 342.0 191.0	181.0 83.0 69.0 60.0 73.0 176.0 310.0 116.0	44.0 41.0 39.0 52.0 126.0 148.0 74.0	484.0 628.0 184.0 818.0 1084.0 775.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0 43561.0	8 20 18 17 9 5 6 1 9	34.78 86.96 78.26 73.91 39.13 21.74 26.09 82.61
1950 1951 1952 1953 1954 1955 1956 1957 1958	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0 3209.0 5182.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0 11590.0 8571.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0 6254.0 13180.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0 1261.0 5214.0	792.0 453.0 449.0 480.0 1441.0 1423.0 1649.0 574.0 682.0	492.0 338.0 289.0 340.0 698.0 698.0 617.0 389.0 257.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0 316.0 160.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0 207.0 107.0	191.0 141.0 125.0 101.0 107.0 274.0 342.0 191.0 78.0	181.0 83.0 69.0 60.0 73.0 176.0 310.0 116.0 47.0	44.0 41.0 39.0 52.0 126.0 148.0 74.0 27.0	484.0 628.0 184.0 818.0 1084.0 775.0 291.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0 43561.0 24472.0	8 20 18 17 9 5 6 6 19 13	34.78 86.96 78.26 73.91 39.13 21.74 26.09 82.61
1950 1951 1952 1953 1954 1955 1956 1957 1958	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0 3209.0 5182.0 8739.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0 11590.0 8571.0 21097.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0 6254.0 13180.0 24695.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0 1261.0 5214.0	792.0 453.0 449.0 480.0 1441.0 1423.0 1649.0 574.0 682.0 2170.0	492.0 338.0 289.0 340.0 698.0 698.0 617.0 389.0 257.0 1119.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0 316.0 988.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0 207.0 107.0 673.0	191.0 141.0 125.0 101.0 274.0 342.0 191.0 78.0 479.0	181.0 83.0 69.0 60.0 73.0 176.0 310.0 116.0 47.0 319.0	44.0 41.0 39.0 52.0 126.0 148.0 74.0 27.0 250.0	484.0 628.0 184.0 818.0 1084.0 775.0 291.0 73.0 845.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0 43561.0 24472.0 33578.0 66569.0	8 20 18 17 9 5 6 6 19 13 13 2	34.78 86.96 78.26 73.91 39.13 21.74 26.09 82.61 56.52 8.70
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0 3209.0 5182.0 8739.0 4772.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0 11590.0 8571.0 21097.0 18413.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0 6254.0 13180.0 24695.0 3768.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0 1261.0 5214.0 5195.0 6449.0	792.0 453.0 449.0 480.0 1441.0 1423.0 1649.0 574.0 682.0 2170.0	492.0 338.0 289.0 340.0 698.0 617.0 389.0 257.0 1119.0 395.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0 316.0 988.0 318.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0 207.0 107.0 673.0 274.0	191.0 141.0 125.0 101.0 107.0 274.0 342.0 191.0 78.0 479.0 265.0	181.0 83.0 69.0 60.0 73.0 176.0 310.0 116.0 47.0 319.0 180.0	44.0 41.0 39.0 52.0 126.0 148.0 74.0 27.0 250.0 93.0	484.0 628.0 184.0 818.0 1084.0 775.0 291.0 73.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0 43561.0 24472.0 33578.0 66569.0 36101.0	8 20 18 17 9 5 6 6 19 13 2 11	34.78 86.96 78.26 73.91 39.13 21.74 26.09 82.61 56.52 8.70
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0 3209.0 5182.0 8739.0 4772.0 11682.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0 11590.0 8571.0 21097.0 18413.0 14686.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0 6254.0 13180.0 24695.0 3768.0 33555.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0 1261.0 5214.0 5195.0 6449.0 11746.0	792.0 453.0 449.0 480.0 1441.0 1649.0 574.0 682.0 2170.0 639.0 1748.0	492.0 338.0 289.0 340.0 698.0 617.0 389.0 257.0 1119.0 395.0 709.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0 316.0 988.0 318.0 445.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0 207.0 107.0 673.0 274.0 316.0	191.0 141.0 125.0 101.0 107.0 274.0 342.0 191.0 78.0 479.0 265.0 241.0	181.0 83.0 69.0 60.0 73.0 176.0 310.0 116.0 47.0 319.0 180.0 173.0	44.0 41.0 39.0 52.0 126.0 148.0 74.0 27.0 250.0 93.0 121.0	484.0 628.0 184.0 818.0 1084.0 775.0 291.0 73.0 845.0 535.0 105.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0 43561.0 24472.0 33578.0 66569.0 36101.0 75527.0	8 20 18 17 9 5 6 6 19 13 2 11 1	34.78 86.96 78.26 73.91 39.13 21.74 26.09 82.61 56.52 8.70 47.83 4.35
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0 3209.0 5182.0 8739.0 4772.0 11682.0 3852.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0 11590.0 8571.0 21097.0 18413.0 14686.0 6297.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0 6254.0 13180.0 24695.0 3768.0 33555.0 15986.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0 1261.0 5214.0 5195.0 6449.0 11746.0 1908.0	792.0 453.0 449.0 480.0 1441.0 1649.0 574.0 682.0 2170.0 639.0 1748.0 671.0	492.0 338.0 289.0 340.0 698.0 617.0 389.0 257.0 1119.0 395.0 709.0 719.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0 316.0 160.0 988.0 318.0 445.0 326.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0 207.0 107.0 673.0 274.0 316.0 195.0	191.0 141.0 125.0 101.0 107.0 274.0 342.0 191.0 78.0 479.0 265.0 241.0 171.0	181.0 83.0 69.0 60.0 73.0 176.0 310.0 116.0 47.0 319.0 180.0 173.0 117.0	44.0 41.0 39.0 52.0 126.0 148.0 74.0 27.0 250.0 93.0 121.0 86.0	484.0 628.0 184.0 818.0 1084.0 775.0 291.0 73.0 845.0 535.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0 43561.0 24472.0 33578.0 66569.0 36101.0	8 20 18 17 9 5 6 6 19 13 2 11 15 15	34.78 86.96 78.26 73.91 39.13 21.74 26.09 82.61 56.52 8.70 47.83 4.35 65.22
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0 3209.0 5182.0 8739.0 4772.0 11682.0 3852.0 1917.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0 11590.0 8571.0 21097.0 18413.0 14686.0 6297.0 11608.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0 6254.0 13180.0 24695.0 3768.0 33555.0 11466.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0 1261.0 5195.0 6449.0 11746.0 1908.0 1415.0	792.0 453.0 449.0 480.0 1441.0 1649.0 574.0 682.0 2170.0 639.0 1748.0 671.0 599.0	492.0 338.0 289.0 340.0 698.0 617.0 389.0 257.0 1119.0 395.0 709.0 719.0 311.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0 316.0 988.0 318.0 445.0 326.0 328.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0 207.0 107.0 673.0 274.0 316.0 195.0 264.0	191.0 141.0 125.0 101.0 107.0 274.0 342.0 191.0 78.0 479.0 265.0 241.0 171.0	181.0 83.0 69.0 60.0 73.0 176.0 310.0 116.0 47.0 319.0 180.0 173.0 117.0	44.0 41.0 39.0 52.0 126.0 148.0 74.0 27.0 250.0 93.0 121.0 86.0 93.0	484.0 628.0 184.0 818.0 1084.0 775.0 291.0 73.0 845.0 535.0 105.0 588.0 431.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0 43561.0 24472.0 33578.0 66569.0 36101.0 75527.0 30916.0 28706.0	8 20 18 17 9 5 6 6 19 13 2 11 1 15 15 16	34.78 86.96 78.26 73.91 39.13 21.74 26.09 82.61 56.52 8.70 47.83 4.35 65.22 69.57
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0 3209.0 5182.0 8739.0 4772.0 11682.0 3852.0 1917.0 6608.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0 11590.0 8571.0 21097.0 18413.0 14686.0 6297.0 11608.0 15877.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0 6254.0 13180.0 24695.0 3768.0 33555.0 15986.0 11466.0 6994.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0 1261.0 5214.0 5195.0 6449.0 11746.0 1908.0 1415.0 2833.0	792.0 453.0 449.0 480.0 1441.0 1649.0 574.0 682.0 2170.0 639.0 1748.0 671.0 599.0 646.0	492.0 338.0 289.0 340.0 698.0 617.0 389.0 257.0 1119.0 395.0 709.0 719.0 311.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0 316.0 988.0 318.0 445.0 326.0 328.0 406.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0 207.0 107.0 673.0 274.0 316.0 195.0 264.0 216.0	191.0 141.0 125.0 101.0 107.0 274.0 342.0 191.0 78.0 479.0 265.0 241.0 171.0 148.0	181.0 83.0 69.0 60.0 73.0 176.0 310.0 116.0 47.0 319.0 180.0 173.0 117.0 126.0 109.0	44.0 41.0 39.0 52.0 126.0 148.0 74.0 27.0 250.0 93.0 121.0 86.0 93.0 91.0	484.0 628.0 184.0 818.0 1084.0 775.0 291.0 73.0 845.0 535.0 105.0 588.0 431.0 169.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0 43561.0 24472.0 33578.0 66569.0 36101.0 75527.0 30916.0 28706.0 34517.0	8 20 18 17 9 5 6 6 1 19 13 12 11 15 15 16 16 17 12	34.78 86.96 78.26 73.91 39.13 21.74 26.09 82.61 56.52 8.70 47.83 4.35 65.22 69.57 52.17
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0 3209.0 5182.0 8739.0 4772.0 11682.0 3852.0 1917.0 6608.0 3189.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0 11590.0 8571.0 21097.0 18413.0 14686.0 6297.0 11608.0 15877.0 3138.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0 6254.0 13180.0 24695.0 3768.0 33555.0 15986.0 1466.0 6994.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0 1261.0 5214.0 5195.0 6449.0 11746.0 1908.0 1415.0 2833.0 683.0	792.0 453.0 449.0 480.0 1441.0 1649.0 574.0 682.0 2170.0 639.0 1748.0 671.0 599.0 646.0 199.0	492.0 338.0 289.0 340.0 698.0 698.0 617.0 389.0 257.0 1119.0 395.0 709.0 719.0 311.0 419.0 143.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0 316.0 160.0 988.0 318.0 445.0 326.0 328.0 406.0 117.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0 207.0 107.0 673.0 274.0 316.0 195.0 264.0 216.0 88.0	191.0 141.0 125.0 101.0 107.0 274.0 342.0 191.0 78.0 479.0 265.0 241.0 171.0 148.0 149.0 67.0	181.0 83.0 69.0 60.0 73.0 176.0 310.0 116.0 47.0 319.0 180.0 173.0 126.0 109.0 41.0	44.0 41.0 39.0 52.0 126.0 148.0 74.0 27.0 250.0 93.0 121.0 86.0 93.0 91.0 30.0	484.0 628.0 184.0 818.0 1084.0 775.0 291.0 73.0 845.0 535.0 105.0 588.0 431.0 169.0 35.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0 43561.0 24472.0 33578.0 66569.0 36101.0 75527.0 30916.0 28706.0 34517.0 12380.0	8 8 1 20 18 17 9 9 15 6 6 6 10 19 11 15 16 16 16 16 17 16 17 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	34.78 86.96 78.26 73.91 39.13 21.74 26.09 82.61 56.52 8.70 47.83 4.35 65.22 69.57 52.17 95.65
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0 3209.0 5182.0 8739.0 4772.0 11682.0 3852.0 1917.0 6608.0 3189.0 3248.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0 11590.0 8571.0 21097.0 18413.0 14686.0 6297.0 11608.0 15877.0 3138.0 9838.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0 6254.0 13180.0 24695.0 3768.0 33555.0 15986.0 11466.0 6994.0 4650.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0 1261.0 5214.0 5195.0 6449.0 11746.0 1908.0 1415.0 2833.0 498.0	792.0 453.0 449.0 480.0 1441.0 1649.0 574.0 682.0 2170.0 639.0 1748.0 671.0 599.0 646.0 199.0 217.0	492.0 338.0 289.0 340.0 698.0 698.0 617.0 389.0 257.0 1119.0 395.0 709.0 719.0 311.0 419.0 143.0 171.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0 316.0 160.0 988.0 318.0 445.0 326.0 328.0 406.0 117.0 133.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0 207.0 107.0 673.0 274.0 316.0 195.0 264.0 216.0 95.0	191.0 141.0 125.0 101.0 107.0 274.0 342.0 191.0 78.0 479.0 265.0 241.0 148.0 149.0 67.0 78.0	181.0 83.0 69.0 60.0 73.0 176.0 310.0 116.0 47.0 319.0 180.0 173.0 117.0 126.0 109.0 41.0	44.0 41.0 39.0 52.0 126.0 148.0 74.0 27.0 250.0 93.0 121.0 86.0 93.0 91.0 30.0 49.0	484.0 628.0 184.0 818.0 1084.0 775.0 291.0 73.0 845.0 535.0 105.0 588.0 431.0 169.0 35.0 664.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0 43561.0 24472.0 33578.0 66569.0 36101.0 75527.0 30916.0 28706.0 34517.0 12380.0 19399.0	8 8 20 20 18 17 19 19 15 5 6 6 19 11 11 15 15 16 16 12 22 21 21 21 21 21 21 21 21 21 21 21	34.78 86.96 78.26 73.91 39.13 21.74 26.09 82.61 56.52 8.70 47.83 4.35 65.22 69.57 52.17 95.65 91.30
1950 1951 1952 1953 1954 1955 1956 1957 1958 1969 1961 1962 1963 1964 1965 1966 1967	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0 3209.0 5182.0 8739.0 4772.0 11682.0 3852.0 1917.0 6608.0 3189.0 3248.0 6097.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0 11590.0 8571.0 21097.0 18413.0 14686.0 6297.0 11608.0 15877.0 3138.0 9838.0 13867.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0 6254.0 13180.0 24695.0 3768.0 33555.0 15986.0 11466.0 6994.0 4650.0 4301.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0 1261.0 5214.0 5195.0 6449.0 11746.0 1908.0 1415.0 2833.0 498.0 1702.0	792.0 453.0 449.0 480.0 1441.0 1649.0 574.0 682.0 2170.0 671.0 671.0 699.0 1748.0 671.0 646.0 199.0 217.0 634.0	492.0 338.0 289.0 340.0 698.0 698.0 617.0 389.0 257.0 1119.0 395.0 709.0 719.0 311.0 419.0 143.0 171.0 685.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0 316.0 160.0 988.0 318.0 445.0 326.0 328.0 406.0 117.0 133.0 508.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0 207.0 107.0 673.0 274.0 316.0 195.0 264.0 95.0 261.0	191.0 141.0 125.0 101.0 107.0 274.0 342.0 191.0 78.0 479.0 265.0 241.0 171.0 148.0 67.0 78.0 250.0	181.0 83.0 69.0 73.0 176.0 310.0 116.0 47.0 319.0 173.0 117.0 126.0 109.0 41.0 107.0 112.0	44.0 41.0 39.0 52.0 126.0 148.0 74.0 27.0 250.0 93.0 121.0 86.0 93.0 91.0 30.0 49.0 69.0	484.0 628.0 184.0 818.0 1084.0 775.0 291.0 73.0 845.0 535.0 105.0 588.0 431.0 169.0 35.0 664.0 95.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0 43561.0 24472.0 33578.0 66569.0 36101.0 75527.0 30916.0 28706.0 34517.0 12380.0 19399.0 37604.0	8 8 1 20 18 17 18 19 15 5 6 6 19 11 11 11 15 16 16 17 17 17 18 19 19 11 11 11 11 11 11 11 11 11 11 11	34.78 86.96 78.26 73.91 39.13 21.74 26.09 82.61 56.52 8.70 47.83 4.35 65.22 69.57 52.17 95.65 91.30 43.48
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	8833.0 3304.0 4320.0 4626.0 4628.0 3010.0 12435.0 3209.0 5182.0 8739.0 4772.0 11682.0 3852.0 1917.0 6608.0 3189.0 3248.0 6097.0 2509.0	13441.0 8872.0 13879.0 15808.0 6620.0 10889.0 17610.0 11590.0 8571.0 21097.0 18413.0 14686.0 6297.0 11608.0 15877.0 3138.0 9838.0 13867.0 22025.0	13352.0 4888.0 5345.0 4965.0 22410.0 22712.0 5601.0 6254.0 13180.0 24695.0 3768.0 33555.0 15986.0 11466.0 6994.0 4650.0 4301.0	2307.0 1237.0 999.0 1401.0 1237.0 8761.0 3079.0 1261.0 5214.0 5195.0 6449.0 11746.0 1908.0 1415.0 2833.0 498.0 1702.0 1764.0	792.0 453.0 449.0 480.0 1441.0 1649.0 574.0 682.0 2170.0 639.0 1748.0 671.0 599.0 646.0 199.0 217.0 634.0 657.0	492.0 338.0 289.0 340.0 698.0 617.0 389.0 257.0 1119.0 395.0 709.0 719.0 311.0 419.0 171.0 685.0 413.0	456.0 245.0 228.0 274.0 455.0 512.0 595.0 316.0 160.0 988.0 318.0 445.0 326.0 328.0 406.0 117.0 133.0 508.0 249.0	232.0 183.0 174.0 137.0 294.0 286.0 400.0 207.0 107.0 673.0 274.0 316.0 195.0 264.0 95.0 261.0 159.0	191.0 141.0 125.0 101.0 107.0 274.0 342.0 191.0 78.0 479.0 265.0 241.0 171.0 148.0 149.0 67.0 78.0 250.0	181.0 83.0 69.0 73.0 176.0 310.0 116.0 47.0 319.0 173.0 117.0 126.0 109.0 41.0 107.0 112.0 104.0	44.0 41.0 39.0 52.0 126.0 148.0 74.0 27.0 250.0 93.0 121.0 86.0 93.0 91.0 30.0 49.0 69.0 56.0	484.0 628.0 184.0 818.0 1084.0 775.0 291.0 73.0 845.0 535.0 105.0 588.0 431.0 169.0 35.0 664.0	40683.0 20272.0 26546.0 28415.0 38833.0 49951.0 43561.0 24472.0 33578.0 66569.0 36101.0 75527.0 30916.0 28706.0 34517.0 12380.0 19399.0 37604.0 33449.0	8 8 1 20 18 17 18 19 19 15 16 16 11 11 11 11 11 11 11 11 11 11 11	34.78 86.96 78.26 73.91 39.13 21.74 26.09 82.61 56.52 8.70 47.83 4.35 65.22 69.57 52.17 95.65 91.30

1948 168.7 332.9 212.8 30.8 19.5 7.9 5.1 4.7 3.1 0.9 0.3 2.3 788.9 1949 55.3 332.9 212.8 56.9 12.7 4.3 3.7 3.8 4.8 2.0 0.5 2.0 691.8 11 1950 212.8 336.3 102.3 12.8 4.2 3.7 2.9 1.9 1.0 4.3 0.7 3.1 686.0 1 1951 8.4 196.6 97.8 28.6 4.4 2.3 7. 2.9 1.9 1.0 4.3 0.7 3.1 686.0 1 1951 8.4 196.6 97.8 28.6 4.4 2.7 1.3 0.8 0.5 0.3 0.1 9.9 351.5 2 1952 172.4 337.5 176.3 191.5 5.5 2.9 2.9 1.9 0.7 0.2 0.1 0.0 719.5 1953 138.1 222.7 91.9 18.2 5.6 3.1 1.9 0.8 0.4 0.3 0.1 1.6 484.6 1 1954 96.8 154.6 204.4 26.5 6.8 2.5 2.0 1.6 0.8 0.3 0.1 3.8 0.5 54.3 1 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 0.1 3.8 0.5 542.3 1 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 13.5 825.9 1555 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 13.5 825.9 1555 104.5 301.1 12.1 16.6 5.1 2.7 1.6 11.2 3 0.7 0.1 0.4 592.5 1 1958 172.4 158.6 138.5 97.7 15.9 5.6 4.4 3.5 1.0 0.7 0.1 0.4 592.5 1 1958 172.4 158.6 138.5 97.7 15.9 5.6 4.4 3.5 1.0 0.7 0.3 0.3 0.3 895.7 1 1959 124.3 345.9 244.1 45.8 10.6 5.3 5.8 2.7 1.7 1.6 0.5 7.3 895.7 1 1960 126.1 18.8 4 139.0 392.0 404.5 80.1 18.6 11.2 6.2 3.6 2.7 1.7 1.6 0.5 7.3 895.7 1 1960 126.1 18.8 4 139.5 22.2 2.0 7.2 2.5 7 4.7 1.9 1.3 0.8 0.8 0.8 10.1 447.5 11 1962 26.1 18.8 4 139.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 447.5 11 1962 26.1 18.8 4 139.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 447.5 11 1963 89.2 26.2 195.8 89.5 9.4 3.1 1.7 1.6 0.9 0.5 0.3 0.1 19.4 407.5 11 1965 36.5 48.1 89.5 9.4 3.1 1.7 1.6 0.9 0.5 0.3 0.1 19.4 407.5 11 1965 36.5 48.1 89.5 9.4 3.1 1.7 1.6 0.9 0.5 0.3 0.1 1.0 19.4 407.5 11 1965 36.5 48.1 89.5 9.4 3.1 1.7 1.6 0.9 0.5 0.3 0.1 1.7 1.7 1.8 10.7 1.9 1.9 1.3 0.8 0.2 1.0 1.9 1.4 407.5 11 1965 36.5 48.1 89.5 9.4 3.1 1.7 1.6 0.9 0.5 0.3 0.1 1.0 19.4 407.7 11 1965 42.5 195.8 48.1 89.5 9.4 3.1 1.7 1.6 0.9 0.5 0.3 0.1 1.0 19.4 10.7 12.0 19.5 10.0 1.9 1.0 19.0 7.6 3.6 3.2 1.0 9.0 0.5 0.3 0.1 1.0 19.4 10.7 12.0 19.5 10.0 19.0 10.0 1.9 1.0 19.0 10.0 1.0 19.4 10.0 19.0 10.0 1.0 19.4 10.0 19.0 10.0 1.0 19.4 10.0 19.0 10.0 1.0 19.4 10.0 19.0 10.0 1.0 19.4 10.0 19.0 10.0 1.0 1																
1949 55.3 332.9 212.8 56.9 12.7 4.3 3.7 3.8 4.8 2.0 0.5 2.0 691.8 1 1950 212.8 336.3 102.3 102.3 12.8 4.2 3.7 2.9 1.9 1.0 4.3 0.7 3.1 686.0 1 1951 8.4 196.6 97.8 28.6 4.4 2.7 1.3 0.8 0.5 0.3 0.1 9.9 351.5 2 1952 172.4 337.5 176.3 19.1 5.5 2.9 2.9 1.9 0.7 0.2 0.1 0.0 719.5 1 1953 138.1 222.7 91.9 18.2 5.6 3.1 1.9 0.8 0.4 0.3 0.1 1.6 484.6 1 1954 98.8 164.6 204.4 26.5 6.8 2.5 2.0 1.6 0.8 0.3 0.1 38.0 14 38.1 1 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 13.5 825.9 1 1955 327.6 500.5 122.2 58.7 24.1 7.9 8.3 5.1 4.4 2.7 0.7 1.2 1082.4 1 1957 148.3 301.6 112.1 16.6 5.1 2.7 1.6 1.1 2.3 0.7 0.1 0.4 592.5 1 1958 172.4 158.6 138.5 7.7 15.6 5.8 1.0 0.7 0.3 0.3 99.0 1 1959 224.3 345.9 244.1 45.8 10.6 5.3 5.8 12.7 1.6 1.1 2.3 0.7 0.1 0.4 592.5 1 1960 126.1 323.7 74.6 64.7 11.0 5.6 4.2 3.9 1.6 0.4 0.1 20.5 636.3 1 1964 291.3 392.0 40.6 80.1 18.6 11.2 6.2 3.6 2.7 1.6 0.7 0.5 0.3 13.6 1 1964 291.3 394.6 134.8 41.8 9.6 9.4 3.1 1.7 1.6 0.9 0.4 0.1 0.1 10.4 592.5 1 1965 227.6 33.9 4.6 138.5 7.7 4.6 64.7 11.0 5.6 4.2 3.9 1.6 0.4 0.1 20.5 636.3 1 1964 291.3 394.6 134.8 41.3 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1 1965 327.6 4.7 4.8 20.0 1.8 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 581.4 1 1964 291.3 394.6 134.8 41.3 41.8 1.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1 1965 327.6 4.7 4.8 20.0 2.0 1.2 0.0 2.8 2.8 2.0 1.4 0.4 0.2 5.6 581.4 1 1965 327.6 4.7 4.8 20.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 44.5 1 1966 92.5 195.8 24.7 4.8 20.0 2.0 1.2 0.0 2.8 2.8 2.0 1.4 0.4 0.2 5.6 581.4 1 1966 92.5 195.8 24.7 4.8 20.0 2.0 1.2 0.0 2.8 2.8 2.0 1.4 0.4 0.2 5.6 581.4 1 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.7 2.8 1.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 2.8 2.0 1.4 0.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.5 2.0 0.0 0.8 0.2 4.0 1.2 3.5 0.8 3.1 1 1969 127.1 408.6 109.1 19.0 7.6 3.6 3.5 2.0 0.0 0.8 0.2 9.4 1.3 3.3 2.8 1 1969 127.1 408.6 109.1 19.0 7.6 3.6 3.5 2.0 0.0 0.8 0.2 9.4 1.3 3.3 2.8 1 1969 127.1 408.6 109.1 19.0 7.6 3.6 3.5 2.0 0.0 0.8 0.2 9.4 1.3 3.3 2.8 1 1960 320.6 8.7 7 46.1 1.3 3.0 0.		Jul	Aug	Sep	0ct	Nov	Dec	Jan	Feb							
1950 212.8 336.3 102.3 12.8 4.2 3.7 2.9 1.9 1.0 4.3 0.7 3.1 686.0 1 1951 8.4 196.6 97.8 22.6 4.4 2.7 1.3 0.8 0.5 0.3 0.1 0.7 3.1 686.0 1 1952 172.4 337.5 176.3 19.1 5.5 2.9 2.9 1.9 0.7 0.2 0.1 0.0 719.5 1 1953 138.1 222.7 91.9 18.2 5.6 3.1 1.9 0.8 0.4 0.3 0.1 1.6 484.6 1 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 1.6 0.8 0.3 0.1 38.0 544.3 1 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 1.6 0.8 0.3 0.1 38.0 544.3 1 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 13.5 825.9 1 1958 327.6 500.5 123.2 58.7 24.1 7.9 8.3 3.1 4.4 2.7 0.7 1.2 1062.4 1 1959 124.3 301.6 112.1 16.6 5.1 2.7 1.6 1.1 2.3 0.7 0.1 0.1 0.5 2.3 1 1959 122.4 158.6 138.5 97.7 15.9 5.8 4.4 3.5 1.0 0.7 0.3 0.3 599.0 1 1959 224.3 345.9 244.1 45.8 10.6 5.3 5.8 8.7 1.0 0.7 0.3 0.3 599.0 1 1960 126.1 323.7 74.6 64.7 11.0 5.6 4.2 3.9 1.6 0.4 0.1 20.5 636.3 11 1964 439.0 392.0 404.6 80.1 18.6 11.2 6.2 3.6 2.7 1.6 0.7 6.6 1366.9 1 1964 231.3 394.6 134.8 9.8 2.2 2.0 1.4 0.4 0.2 5.6 581.4 11 1965 82.1 223.9 222.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 581.4 11 1965 82.1 233.3 394.6 134.8 8.0 9.4 3.1 1.7 1.6 0.9 0.4 0.1 1.0 1.9 4.7 11 1965 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.8 2.4 0.4 8.6 3.8 38.9 12.1 1965 36.5 43.1 88.6 9.4 3.1 1.7 1.6 0.9 0.4 0.1 1.0 1.9 4.7 11 1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.8 2.4 0.4 8.6 3.8 38.0 12 1.4 40.7 11.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.																30.43
1951 8.4 196.6 97.8 28.6 4.4 2.7 1.3 0.8 0.5 0.3 0.1 9.9 331.5 2 1952 172.4 337.5 176.3 19.1 5.5 2.9 2.9 1.9 0.7 0.2 0.1 0.0 719.5 1 1954 172.4 237.5 216.3 19.1 5.5 2.9 2.9 1.9 0.7 0.2 0.1 0.0 719.5 1 1955 138.1 222.7 91.9 18.2 5.6 3.1 1.9 0.8 0.4 0.3 0.1 1.8 44.6 1 1954 96.8 164.6 204.4 26.5 6.8 2.5 2.0 1.6 0.8 0.3 0.1 1.3 0.0 544.3 1 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 13.5 825.9 1 1956 327.6 500.5 123.2 58.7 24.1 7.9 8.3 3.1 4.4 2.7 0.7 1.7 1.0 106.2 4 1 1957 148.3 301.6 112.1 16.6 5.1 2.7 1.6 1.1 2.3 0.7 0.1 0.4 592.5 1 1958 172.4 158.6 138.5 9.7 15.9 5.6 4.4 3.5 1.0 0.7 0.7 0.3 0.3 99.0 1 1959 224.3 345.9 244.1 45.8 10.6 5.3 5.8 2.7 1.7 1.6 0.5 7,3 895.7 1 1959 126.1 323.7 74.6 64.7 11.0 5.6 4.2 3.9 1.6 0.4 0.1 20.5 638.3 1 1960 25.1 188.4 139.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 447.5 1 1964 231.3 394.6 134.8 41.3 9.8 12.6 2.8 2.0 1.4 0.4 0.2 2.5 658.3 1 1964 231.3 394.6 134.8 41.3 9.8 8.3 3.5 2.1 1.3 0.8 0.8 10.1 447.5 1 1964 231.3 394.6 134.8 41.3 9.8 8.3 3.5 2.1 1.3 0.8 0.7 0.5 98.85.1 1 1965 36.5 48.1 89.6 9.4 3.1 1.7 1.6 0.9 0.4 0.1 0.1 19.4 210.7 2 1966 22.2 4.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.8 38.0 2 1967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 4.7 1.6 0.4 8.8 338.0 2 1968 99.2 282.6 52.0 17.1 5.6 3.3 2.8 0.9 0.5 0.3 0.1 0.1 2.444.5 1 1951 121.4 499.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.8 5.7 2004.7 1 1959 127.1 406.6 19.1 19.0 7.6 3.6 3.3 2.8 0.9 0.5 0.3 0.1 0.2 244.5 1 1951 21.4 499.8 24.7 4.8 2.0 2.0 1.2 0.8 0.8 1.7 0.9 0.8 0.2 28.2 8 1951 22.4 499.0 222.6 52.0 17.1 5.6 3.3 2.8 0.9 0.5 0.3 0.1 0.2 244.5 1 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 21.1 3.3 0.8 0.2 28.2 28.2 28.9 1 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 21.1 3.3 0.8 0.2 28.2 883.1 2 1952 438.2 857.7 448.1 16.6 6.7 14.7 8.4 8.8 2.1 0.9 0.8 0.2 28.2 883.1 2 1953 351.1 505.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 29.4 41.3 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5																43.48
1952 172.4 337.5 176.3 19.1 5.5 2.9 2.9 1.9 0.7 0.2 0.1 0.0 719.5 1953 133.1 22.7 91.9 18.2 5.6 3.1 1.9 0.8 0.4 0.3 0.1 13.6 484.6 1 1954 96.8 184.6 204.4 26.5 6.8 2.5 2.0 1.6 0.8 0.3 0.1 30.0 1 18.6 484.6 1 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 1.6 0.8 0.3 0.1 33.0 1.3 36.0 14 38.0 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 13.5 825.9 1956 327.6 500.5 123.2 58.7 24.1 7.9 8.3 3.1 4.4 2.7 0.7 1.2 1062.4 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 13.5 825.9 1956 327.6 500.5 123.2 58.7 24.1 7.9 8.3 3.1 4.4 2.7 0.7 0.1 0.4 502.5 1958 172.4 158.6 138.5 97.7 15.9 5.6 4.4 3.5 1.0 0.7 0.3 0.3 0.3 599.0 1 1958 172.4 158.6 138.5 97.7 15.9 5.6 4.4 3.5 1.0 0.7 0.3 0.3 599.0 1 1959 224.3 345.9 244.1 45.8 10.6 5.3 5.8 2.7 1.7 1.6 0.5 7.3 895.7 1960 126.1 323.7 74.6 64.7 11.0 5.6 4.2 3.9 1.6 0.4 0.1 20.5 636.3 12 1962 45.1 188.4 139.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 447.5 11 1963 82.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 536.3 12 1962 45.1 188.4 139.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 447.5 11 1965 32.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 531.4 1965 32.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 531.4 1965 32.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 531.4 1965 32.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 531.4 1965 32.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 531.4 1965 32.5 48.1 89.6 9.4 3.1 1.7 1.6 0.9 0.9 0.4 0.1 0.1 19.4 0.4 0.2 1.0 19.4 0.4 0.2 1.0 19.4 0.4 0.2 1.0 19.5 0.4 0.4 0.4 0.2 5.6 531.4 1965 32.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.8 2.4 0.4 8.6 338.0 21 1965 36.5 48.1 89.6 9.4 3.1 1.7 1.6 0.9 0.5 0.3 0.8 5.7 200.7 20.9 704.0 5 1965 32.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.8 2.4 0.4 8.6 338.0 21 1965 36.5 48.1 89.6 9.4 5.1 1.5 6.3 3.2 1.0 1.0 1.0 19.4 0.4 0.2 0.0 1828.4 8 1995 127.1 406.6 109.1 19.0 7.6 3.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1965 127.1 406.6 109.1 19.0 7.6 3.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1995 127.1 406.6 109.1 19.0 7.6 3.6 3.6 3.2 1.0 0.9 0.5 0.3 0.8 5.7 7.9 10.9 1955 14.4 1																47.83
1953 138.1 222.7 91.9 18.2 5.6 3.1 1.9 0.8 0.4 0.3 0.1 1.6 484.6 1 1954 96.8 154.6 204.4 26.5 6.8 2.5 2.0 1.6 0.8 0.3 0.1 36.0 554.3 11 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 13.5 254.3 11 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 13.5 264.3 11 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 13.5 264.3 11 1957 148.3 301.6 112.1 16.6 5.1 2.7 1.6 1.1 2.3 0.7 0.1 0.4 552.5 11 1958 172.4 158.6 138.5 9.7 15.9 5.6 4.4 3.5 1.0 0.7 0.7 0.3 0.3 99.0 11 1959 224.3 345.9 244.1 45.8 10.6 5.3 5.8 2.7 1.7 1.6 0.5 7.3 895.7 1 1960 126.1 323.7 74.6 64.7 11.0 5.6 4.2 3.9 1.6 0.4 0.1 20.5 636.3 11 1961 439.0 392.0 404.6 80.1 18.6 11.2 6.2 3.6 2.7 1.6 0.7 6.6 10.7 6.6 10.9 1964 291.0 122.9 224.9 224.9 224.9 224.9 224.9 224.9 225.9 225.7 4.7 1.9 1.3 0.8 0.8 10.1 447.5 11 1963 82.1 223.9 228.4 221.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 581.4 11 1964 391.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 41.1 1964 291.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 41.1 1966 29.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 11 1965 195.2 489.0 222.2 30.0 7.8 11.4 1.6 3.6 0.9 0.5 0.3 0.1 10.2 444.5 11 1966 92.5 195.8 24.7 4.8 2.0 2.0 1.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 11 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 0 1980 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 0 1980 140.7 866.1 540.7 144.7 32.2 10.9 9.3 9.7 12.2 5.2 1.3 5.0 1757.9 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.7 4.8 2.7 10.9 1.7 7.8 173.2 11 1951 22.4 499.8 248.5 72.6 11.3 6.9 3.7 7.4 4.8 1.7 0.9 0.8 0.2 4.0 123.4 17 1959 540.7 854.7 20.0 32.6 40.7 1.3 8.8 5.0 2.3 1.6 4.0 0.8 0.7 20.9 704.0 0 1980 540.7 854.7 20.0 32.6 40.7 1.3 8.8 5.0 2.3 1.6 4.0 0.8 0.7 20.9 704.0 0 1950 540.7 854.7 20.0 32.6 40.7 1.3 8.8 5.0 2.3 1.3 0.8 0.2 4.0 123.4 17 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 4.0 123.4 17 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.9 0.8 0.2 40.1 23.4 17 1951 21.4 499.8 248.5 72.6 11.3 6.9 4.2 2.9 5.7 1.7 0.2 0.9 1505.7 14 1950 540.7 854.7 20.0 32.6 40.7																86.96
1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 1.6 0.8 0.3 0.1 38.0 544.3 1 1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 13.5 825.9 1 1956 327.6 500.5 123.2 58.7 24.1 7.9 8.3 3.1 4.4 2.7 0.7 1.2 1082.4 1 1957 148.3 301.6 112.1 16.6 5.1 2.7 1.6 1.1 2.3 0.7 0.1 0.4 592.5 1 1958 172.4 158.6 138.5 97.7 15.9 5.6 4.4 3.5 1.0 0.7 0.1 0.4 592.5 1 1958 172.4 158.6 138.5 97.7 15.9 5.6 4.4 3.5 1.0 0.7 0.1 0.4 592.5 1 1960 126.1 323.7 74.6 64.7 11.0 5.6 4.2 3.9 1.6 0.4 0.1 20.5 616.3 1 1961 439.0 392.0 404.6 80.1 18.6 11.2 6.2 3.6 2.7 1.6 0.4 0.1 20.5 616.3 1 1962 55.1 168.4 189.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 44.75 1 1963 82.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 581.4 1 1964 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1 1965 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.1 0.1 0.1 19.4 210.7 2 1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.1 0.1 0.1 19.4 210.7 2 1966 92.5 195.8 24.7 4.8 2.0 0.7 8 11.4 16.3 6.0 3.6 0.9 0.5 0.3 0.1 0.2 444.5 1 1967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 0.3 0.1 0.2 444.5 1 1968 99.2 262.6 52.0 17.1 5.6 3.3 2.8 0.9 0.5 0.3 0.1 0.2 444.5 1 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 Nean 152.3 289.0 158.6 37.7 9.7 5.9 4.1 2.3 1.9 1.1 0.3 8.4 671.4 1 1979 440.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7 1979 448.4 428.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7 1979 440.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7 1979 440.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 0.2 2.0 0.2 2.0 12.2 2.0 0.0 2.0 12.2 2.0 1.0 0.0 2.0 12.0 1																73.91
1955 104.6 273.8 293.9 107.3 18.4 7.2 3.5 2.0 0.9 0.5 0.3 13.5 825.9 1956 327.6 500.5 123.2 58.7 24.1 7.9 8.3 3.1 4.4 2.7 0.7 1.2 1062.4 1957 148.3 301.6 112.1 16.6 5.1 2.7 1.6 1.1 2.3 0.7 0.1 0.4 592.5 1 1958 172.4 158.6 138.5 97.7 15.9 5.6 4.4 3.5 1.0 0.7 0.3 0.3 599.0 1 1958 172.4 158.6 138.5 97.7 15.9 5.6 4.4 3.5 1.0 0.7 0.3 0.3 599.0 1 1959 124.3 345.9 244.1 45.8 10.6 5.3 2.7 1.6 1.7 1.6 0.5 7.3 895.7 1960 126.1 323.7 74.6 64.7 11.0 5.6 4.2 3.9 1.6 0.4 0.1 20.5 636.3 1 1961 439.0 392.0 404.6 80.1 18.6 11.2 6.2 3.6 2.7 1.6 0.7 0.8 0.8 10.1 44.7 5 11962 65.1 168.4 139.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 44.7 5 11963 82.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 581.4 1 1964 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1965 36.5 48.1 88.6 9.4 3.1 1.7 1.6 0.9 0.4 0.1 0.1 19.4 210.7 210.7 21966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 21967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 4.7 965.1 3 1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 21967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7																69.57
1956 327.6 \$00.5 123.2 \$58.7 \$24.1 \$7.9 \$8.3 \$3.1 \$4.4 \$2.7 \$0.7 \$1.2 \$1662.4 \$1957 \$148.3 \$301.6 \$112.1 \$16.6 \$5.1 \$2.7 \$1.6 \$1.1 \$2.3 \$0.7 \$0.1 \$0.4 \$959.5 \$1958 \$172.4 \$158.6 \$138.5 \$97.7 \$15.9 \$5.6 \$4.4 \$3.5 \$1.0 \$0.7 \$0.3 \$0.3 \$99.0 \$1.959 \$24.3 \$345.9 \$244.1 \$45.8 \$10.6 \$5.3 \$5.8 \$2.7 \$1.7 \$1.6 \$0.5 \$7.3 \$895.7 \$1950 \$126.1 \$333.7 \$74.6 \$64.7 \$11.0 \$5.6 \$4.2 \$3.9 \$1.6 \$0.4 \$0.1 \$20.5 \$636.3 \$1961 \$1961 \$439.0 \$392.0 \$404.6 \$80.1 \$18.6 \$11.2 \$6.2 \$3.6 \$2.7 \$1.6 \$0.4 \$0.1 \$20.5 \$636.3 \$1961 \$1962 \$65.1 \$168.4 \$139.6 \$2.0 \$7.2 \$25.7 \$4.7 \$1.9 \$1.3 \$0.8 \$0.8 \$0.1 \$47.5 \$11963 \$82.1 \$223.9 \$228.4 \$21.1 \$8.9 \$4.5 \$2.8 \$2.0 \$1.4 \$0.4 \$0.2 \$5.6 \$581.4 \$11963 \$82.1 \$223.9 \$228.4 \$21.1 \$8.9 \$4.5 \$2.8 \$2.0 \$1.4 \$0.4 \$0.2 \$5.6 \$581.4 \$11965 \$36.5 \$48.1 \$88.6 \$9.4 \$5.1 \$1.7 \$1.6 \$0.9 \$0.4 \$0.1 \$0.1 \$19.4 \$210.7 \$21.9 \$1.9 \$1.5 \$0.5 \$0.5 \$48.1 \$1.9 \$1.9 \$0.5 \$0.5 \$0.5 \$19.8 \$2.7 \$1.7 \$1.6 \$0.9 \$0.4 \$0.1 \$0.1 \$1.9 \$4.2 \$210.7 \$2.9 \$1.9 \$1.9 \$0.5 \$0.5 \$0.5 \$19.8 \$2.7 \$1.7 \$1.6 \$0.9 \$0.4 \$0.1 \$0.1 \$1.9 \$4.2 \$210.7 \$2.5 \$19.8 \$2.9 \$22.2 \$30.0 \$7.8 \$11.4 \$16.3 \$6.0 \$3.6 \$0.9 \$0.5 \$4.7 \$965.1 \$3.9 \$1.9 \$1.9 \$0.9 \$0.5 \$0.3 \$0.1 \$0.2 \$444.5 \$1.9 \$1.9 \$0.9 \$0.9 \$0.5 \$0.3 \$0.1 \$0.2 \$444.5 \$1.9 \$1.9 \$0.9 \$0.9 \$0.5 \$0.3 \$0.1 \$0.2 \$444.5 \$1.9 \$1.9 \$0.9 \$0.9 \$0.5 \$0.3 \$0.1 \$0.2 \$444.5 \$1.9 \$1.9 \$0.9 \$0.9 \$0.5 \$0.3 \$0.1 \$0.2 \$444.5 \$1.9 \$1.9 \$0.9 \$0.9 \$0.5 \$0.3 \$0.1 \$0.2 \$444.5 \$1.9 \$1.9 \$0.9 \$0.9 \$0.5 \$0.3 \$0.1 \$0.2 \$444.5 \$1.9 \$1.9 \$0.9 \$0.9 \$0.5 \$0.3 \$0.1 \$0.2 \$44.5 \$1.9 \$1.9 \$0.9 \$0.9 \$0.5 \$0.3 \$0.1 \$0.2 \$44.5 \$1.9 \$1.9 \$0.9 \$0.9 \$0.9 \$0.9 \$0.9 \$0.9 \$0.9 \$0																26.09
1957 148.3 301.6 112.1 16.6 5.1 2.7 1.6 1.1 2.3 0.7 0.1 0.4 592.5 1 1958 172.4 153.6 138.5 97.7 15.9 5.6 4.4 3.5 1.0 0.7 0.1 0.4 592.5 1 1959 224.3 345.9 244.1 45.8 10.6 5.3 5.8 2.7 1.7 1.6 0.5 7.3 895.7 1 1960 126.1 323.7 74.6 64.7 11.0 5.6 4.2 3.9 1.6 0.4 0.1 20.5 636.3 1 1961 439.0 392.0 404.6 80.1 18.6 11.2 6.2 3.6 2.7 1.6 0.4 0.1 20.5 636.3 1 1961 439.0 392.0 404.6 80.1 18.6 11.2 6.2 3.6 2.7 1.6 0.4 0.1 20.5 636.3 1 1962 65.1 168.4 139.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 44.7.5 1 1963 82.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.4 0.2 5.6 581.4 1 1964 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1 1965 36.5 48.1 89.6 9.4 3.1 1.7 1.6 0.9 0.4 0.1 0.1 19.4 2210.7 2 1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 2 1967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 4.7 965.1 3 1968 99.2 262.6 52.0 17.1 5.6 3.3 2.8 0.9 0.5 0.3 0.1 0.2 444.5 1 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 1 1988 152.3 289.0 158.6 37.7 9.7 5.9 4.1 2.3 1.9 1.1 0.3 8.4 671.4																8.70
1958 172.4 158.6 138.5 97.7 15.9 5.6 4.4 3.5 1.0 0.7 0.3 0.3 599.0 1 1959 224.3 345.9 244.1 45.8 10.6 5.3 5.8 2.7 1.7 1.6 0.5 7.3 895.7 1 1960 126.1 323.7 74.6 64.7 11.0 5.6 4.2 3.9 1.6 0.4 0.1 20.5 636.3 1 1961 439.0 392.0 404.6 80.1 18.6 11.2 6.2 3.6 2.7 1.6 0.7 6.6 1366.9 1 1962 65.1 168.4 139.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 447.5 11 1963 82.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 581.4 11 1964 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1 1965 36.5 48.1 89.6 9.4 3.1 1.7 1.6 0.9 0.4 0.1 0.1 19.4 220.7 2 1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 1 1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 1 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 Mean 152.3 289.0 158.6 37.7 9.7 5.9 4.1 2.3 1.9 1.1 0.3 8.4 671.4 Year 344 428.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7 1949 140.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7 1949 140.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7 1950 540.7 856.7 260.0 32.6 10.7 9.3 7.4 4.8 2.7 10.9 1.7 7.8 174.2 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 2.7 10.9 1.7 7.8 174.2 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 2.7 10.9 1.7 7.8 174.3 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 2.7 10.9 0.8 0.2 25.2 893.1 20 1953 540.7 856.6 56.8 42.1 13.0 6.9 4.2 2.9 5.7 1.7 0.2 0.9 1505.7 14 1955 260.9 695.9 747.0 272.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 4.0 1231.4 17 1955 540.6 69.8 50.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 9.4 1383.2 16 1955 483.0 403.1 352.0 248.4 40.1 13.0 6.9 4.2 2.9 5.7 1.7 0.2 0.9 1505.7 14 1956 485.7 870.0 28.3 5.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 9.4 1383.2 16 1956 482.6 189.5 164.3 28.0 14.1 10.7 9.9 4.0 1.1 0.2 52.2 1617.0 12 1956 50.1 870.6 67.5 17.1 6.3 5.2 1.0 1.9 1.9 25.5 1137.1 18 1958 200.7																60.87
1959 224.3 345.9 244.1 45.8 10.6 5.3 5.8 2.7 1.7 1.6 0.5 7.3 895.7 1950 126.1 323.7 74.6 64.7 11.0 5.6 4.2 5.9 1.6 0.4 0.1 20.5 636.3 11 1961 439.0 392.0 404.6 80.1 18.6 11.2 6.2 3.9 1.6 0.4 0.1 20.5 636.3 11 1962 65.1 168.4 139.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 447.5 11 1963 82.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 581.4 11 1964 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1966 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1966 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1966 32.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.0 1.4 0.4 0.2 5.6 581.4 11 1966 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 9.0 4.0 1.0 1.1 19.4 2210.7 22 1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.8 2.4 0.4 8.6 338.0 21 1967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 0.3 0.1 0.2 444.5 19 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 8 0.9 0.5 0.3 0.1 0.2 444.5 19 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 8 0.9 0.5 0.3 0.1 0.2 444.5 19 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 8 0.9 0.5 0.3 0.1 0.2 444.5 19 1950 540.7 864.1 540.7 144.7 32.2 10.9 9.3 9.7 12.2 5.2 1.3 5.0 1757.9 10 1950 540.7 854.7 960.0 32.6 10.7 9.3 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8 1953 351.1 565.9 233.5 46.3 14.1 4.8 6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 40.2 25.2 893.1 20 1954 246.1 481.2 545.1 481.4 48.6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 29.6 4 183.2 18 1955 526.5 965.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 0.2 40.0 231.4 1955 526.5 965.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 0.2 40.0 1231.4 17 1954 246.1 481.2 54.8 42.1 1.7 0.9 0.8 0.2 96.4 183.2 18 1955 506.8 95.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 0.2 40.0 1231.4 17 1954 246.1 48.8 252.0 65.9 18.3 104.9 16.1 40.9 2.2 9.5 4.4 18.5 2276.1 48.1 1956 320.4 322.6 189.5 141.3 32.0 14.9 1.0 9.9 4.0 1.1 0.2 52.2 1617.0 12 1956 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 0.9 9.0 2.0 96.4 1838.2 18 1955 500.1 879.0 620																56.52
1960 126.1 323.7 74.6 64.7 11.0 5.6 4.2 3.9 1.6 0.4 0.1 20.5 636.3 12.1961 439.0 392.0 404.6 80.1 18.6 11.2 6.2 3.6 2.7 1.6 0.7 6.6 1366.9 1961 1962 65.1 168.4 139.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 447.5 11.1963 82.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 581.4 11.1964 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1966 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1965 36.5 48.1 89.6 9.4 3.1 1.7 1.6 0.9 0.4 0.1 0.1 19.4 210.7 22.1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 21.1967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 4.7 965.1 3.1968 99.2 262.6 52.0 17.1 5.6 3.3 2.8 0.9 0.5 0.3 0.1 0.2 444.5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 8 0.9 0.5 0.3 0.1 0.2 444.5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5.1 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5.1 1950 540.7 854.7 260.0 32.6 10.7 1.5 0.9 0.3 1.6 4.0 0.8 0.7 20.9 704.0 5.1 1950 540.7 854.7 260.0 32.6 10.7 1.5 0.9 0.3 2.1 1.5 0.0 0.8 0.7 20.9 704.0 5.1 1950 540.7 854.7 260.0 32.6 10.7 1.5 0.0 32.6 10.9 9.3 9.7 12.2 5.2 1.3 5.0 1757.9 10.1 1950 540.7 854.7 260.0 32.6 10.7 9.3 7.4 4.8 2.7 10.9 1.7 7.8 1743.2 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.8 0.2 25.2 893.1 22.1 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 17 1954 246.1 489.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.9 0.8 0.2 40.0 1231.4 17 1954 246.1 488.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 40.0 1231.4 17 1954 246.1 488.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 40.0 1231.4 17 1954 246.1 488.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 40.0 1231.4 17 1954 426.1 488.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 40.0 1231.4 17 1954 246.1 488.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 40.0 1231.4 17 1954 426.1 488.2 519.6 67.5 17.1 6.3 5.2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0																17.39
1961 439.0 392.0 404.6 80.1 18.6 11.2 6.2 3.6 2.7 1.6 0.7 6.6 1366.9 1962 65.1 168.4 139.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 447.5 11 1963 82.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 581.4 11 1964 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1965 36.5 48.1 89.6 9.4 3.1 1.7 1.6 0.9 0.4 0.1 0.1 19.4 210.7 22 1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 21 1967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 4.7 965.1 3 1968 99.2 262.6 52.0 17.1 5.6 3.3 2.8 0.9 0.5 0.3 0.1 0.2 444.5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 195.8 24.7 4.8 2.0 2.0 1.3 0.8 0.9 0.5 0.3 0.1 0.2 444.5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 195.0 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 195.0 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.5 4.0 0.8 0.7 20.9 704.0 5 195.0 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.5 4.0 0.8 0.7 20.9 704.0 5 195.0 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.5 4.0 0.8 0.7 20.9 704.0 5 195.0 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.5 4.0 0.8 0.7 20.9 704.0 5 195.0 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.5 4.0 0.8 0.7 20.9 704.0 5 195.0 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.5 4.0 0.8 0.7 20.9 704.0 5 195.0 12.4 409.8 248.5 540.7 85.7 50.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7 195.0 12.4 499.8 248.5 72.6 11.3 6.9 3.7 4 4.8 2.7 10.9 1.7 7.8 1743.2 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20 1952 438.2 857.7 488.1 48.6 13.9 7.4 7.4 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 4.0 1231.4 17 1955 265.9 695.9 747.0 272.6 667.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 4.0 1231.4 17 1955 265.9 695.9 747.0 272.6 667.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 96.4 1383.2 16 1955 265.9 695.9 747.0 272.6 667.5 18.3 8.8 5.0 2.1 7.7 0.9 0.8 0.8 1522.1 13 1959 570.1 879.0 620.4 116.5 26.9 13.3 14.9 6.9 4.0 1.7 0.2 0.9 1505.7 14 1966 22.0																
1962 65.1 168.4 139.6 22.0 7.2 25.7 4.7 1.9 1.3 0.8 0.8 10.1 447.5 10.1963 82.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 581.4 11.1964 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1965 36.5 48.1 89.6 9.4 3.1 1.7 1.6 0.9 0.4 0.1 0.1 19.4 210.7 21.1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 21.1967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 4.7 965.1 3.1968 99.2 262.6 52.0 17.1 5.6 3.3 2.8 0.9 0.5 0.3 0.1 0.2 444.5 1968 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 9.1 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 9.1 19.4 19.4 19.4 19.5 19.4 19.4 19.5 19.4 19.4 19.5 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	1961	439.0	392.0	404.6	80.1											4.35
1963 82.1 223.9 228.4 21.1 8.9 4.5 2.8 2.0 1.4 0.4 0.2 5.6 581.4 11 1964 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 855.1 1 1965 36.5 48.1 89.6 9.4 3.1 1.7 1.6 0.9 0.4 0.1 0.1 19.4 210.7 22 1966 92.5 199.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 21 1967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 4.7 965.1 3 1968 99.2 262.6 52.0 17.1 5.6 3.3 2.8 0.9 0.5 0.3 0.1 0.2 444.5 18 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 3 Mean 152.3 289.0 158.6 37.7 9.7 5.9 4.1 2.3 1.9 1.1 0.3 8.4 671.4 SITE NAME RAGHAYPUR Year Jul Aug Sep Oct Nov Dec Jan Feb Har Apr Hay Jun Anflow Rar 1948 428.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7 1950 540.7 854.7 260.0 32.6 10.7 9.3 7.4 4.8 2.7 10.9 1.7 7.8 1743.2 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20 1952 438.2 857.7 448.1 68.6 13.9 7.4 7.4 4.8 2.7 10.9 1.7 7.8 1743.2 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 4.0 1231.4 17 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 5.3 2099.7 6 1956 320.4 822.6 189.5 164.3 28.0 149.1 61.4 20.2 21.2 7.8 11.3 0.8 0.2 96.4 1383.2 16 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 34.3 2098.7 6 1956 320.4 822.6 189.5 164.3 28.0 149.1 61.4 20.2 21.2 7.8 11.3 0.8 0.2 96.4 1383.2 16 1956 320.4 822.6 189.5 164.3 28.0 149.1 61.4 20.2 21.2 7.8 11.3 0.9 1.7 1.8 0.8 152.1 13 1960 20.4 822.6 189.5 164.3 28.0 141.1 10.7 9.9 4.0 1.1 10.2 52.2 1617.0 12 1961 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1 1960 20.4 822.6 189.5 164.3 28.0 141.1 10.7 9.9 4.0 1.1 1.0 2.5 52.5 1617.0 12 1961 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1 1962 165.4 427.9 344.7 56.0 18.3 65.4 12.0 4.8 3.2 1.9 1.9 25.5 1137.1 18 1963 200.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15 1964 250.0 67.5 132.1 43.5 14.4 8.4 7.1 2.3 1.3 0.8 0.2 0.	1962	65.1	168.4	139.6	22.0								-			78.26
1966 231.3 394.6 134.8 41.3 9.8 5.3 3.5 2.1 1.3 2.1 0.3 8.9 835.1 1965 36.5 48.1 89.6 9.4 3.1 1.7 1.6 0.9 0.4 0.1 0.1 19.4 210.7 22 1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 21 1967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 4.7 965.1 3 1968 99.2 262.6 52.0 17.1 5.6 3.3 2.8 0.9 0.5 0.3 0.1 0.2 444.5 19 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 5 1969 127.1 406.6 109.1 19.0 7.8 14.7 2.3 1.9 1.1 0.3 8.4 671.4 1968 12.3 1969 127.1 406.6 109.1 19.0 7.8 14.7 2.3 1.9 1.1 0.3 8.4 671.4 1968 12.3 1969 12.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1963	82.1	223.9													65.22
1965 36.5 48.1 89.6 9.4 3.1 1.7 1.6 0.9 0.4 0.1 0.1 19.4 210.7 22 1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.8 2.4 0.4 8.6 338.0 21 1967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 4.7 965.1 31 1968 99.2 262.6 52.0 17.1 5.6 3.3 2.8 0.9 0.5 0.3 0.1 0.2 444.5 11 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 9 704.0 9 704.0 9 704.0 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 9 704.0 9 704.0 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 9 704.0 9 704.0 127.1 406.6 109.1 19.0 7.8 2.3 1.9 1.1 0.3 8.4 671.4 1948 428.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7 1949 140.7 846.1 540.7 184.7 32.2 10.9 9.3 9.7 12.2 5.2 1.3 5.0 1757.9 10 1950 540.7 854.7 260.0 32.6 10.7 9.3 7.4 4.8 2.7 10.9 1.7 7.8 1743.2 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 4.0 1231.4 17 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 3.2 20.9 1955 33.5 1271.9 313.0 149.1 61.4 20.2 21.2 7.8 11.3 6.9 1.7 0.8 0.8 34.3 2098.7 6 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 96.4 1383.2 16 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 0.2 96.4 1383.2 16 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 0.2 25.2 13 13.0 149.1 61.4 20.2 21.2 7.8 11.3 6.9 1.7 0.2 0.9 1505.7 14 1968 438.0 403.1 352.0 248.4 40.4 14.3 11.3 8.8 2.7 1.7 0.8 0.8 1522.1 13 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 4.0 1231.4 17 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 0.2 4.0 1231.4 17 1956 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 0.2 4.0 1231.4 17 1956 265.9 67.	1964	231.3	394.6	134.8	41.3	9.8	5.3	3.5	2.1							21.74
1966 92.5 195.8 24.7 4.8 2.0 2.0 1.2 0.8 2.8 2.4 0.4 8.6 338.0 21 1967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 4.7 965.1 3 1968 99.2 262.6 52.0 17.1 5.6 3.3 2.8 0.9 0.5 0.3 0.1 0.2 444.5 19 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 9 704.0 9 704.0 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 9 70	1965	36.5	48.1	89.6	9.4	3.1	1.7	1.6	0.9							95.65
1967 222.6 439.0 222.2 30.0 7.8 11.4 16.3 6.0 3.6 0.9 0.5 4.7 965.1 3 1968 99.2 262.6 52.0 17.1 5.6 3.3 2.8 0.9 0.5 0.3 0.1 0.2 444.5 15 1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 9 19.0 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 9 19.0 158.6 37.7 9.7 5.9 4.1 2.3 1.9 1.1 0.3 8.4 671.4 19.0 19.0 158.6 37.7 9.7 5.9 4.1 2.3 1.9 1.1 0.3 8.4 671.4 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	1966	92.5	195.8	24.7	4.8	2.0	2.0	1.2	0.8	2.8	2.4	0.4				91.30
1969 127.1 406.6 109.1 19.0 7.6 3.6 3.2 1.6 4.0 0.8 0.7 20.9 704.0 9 Mean 152.3 289.0 158.6 37.7 9.7 5.9 4.1 2.3 1.9 1.1 0.3 8.4 671.4 SITE NAME RAGHAVPUR Year Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Anflow Rar 1948 428.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7 1949 140.7 846.1 540.7 144.7 32.2 10.9 9.3 9.7 12.2 5.2 1.3 5.0 1757.9 1 1950 540.7 854.7 260.0 32.6 10.7 9.3 7.4 4.8 2.7 10.9 1.7 7.8 1743.2 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 22 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 96.4 1383.2 16 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 0.2 96.4 1383.2 16 1958 438.0 403.1 352.0 248.4 40.4 14.3 11.3 8.8 2.7 1.7 0.8 0.8 1522.1 13 1959 570.1 879.0 620.4 116.5 26.9 13.3 14.9 6.9 4.2 2.9 5.7 1.7 0.8 0.8 1522.1 13 1960 320.4 822.6 189.5 164.3 28.0 14.1 10.7 9.9 4.0 1.1 0.2 52.2 1617.0 1 1961 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1 1962 165.4 427.9 354.7 56.0 18.3 65.4 12.0 4.8 3.2 1.9 1.9 25.5 1137.1 18 1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 2122. 5 1965 92.6 122.2 27.6 23.8 7.8 4.4 4.0 2.3 0.9 0.2 0.2 49.4 535.8 22.1 1966 235.0 467.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1967 555.7 1115.6 564.8 76.2 19.8 29.0 41.4 15.3 9.1 2.3 1.3 12.0 2452.5 3 1968 252.0 667.5 132.1 43.5 14.1 8.4 7.1 2.3 1.3 0.8 0.2 0.4 1129.5 19	1967	222.6	439.0	222.2	30.0	7.8	11.4	16.3	6.0	3.6	0.9	0.5	4.7	965.1		13.04
Mean 152.3 289.0 158.6 37.7 9.7 5.9 4.1 2.3 1.9 1.1 0.3 8.4 671.4 SITE NAME RAGHAVPUR Year Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Anflow Raf 1948 428.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7949 140.7 846.1 540.7 144.7 32.2 10.9 9.3 9.7 12.2 5.2 1.3 5.0 1757.9 10 1950 540.7 854.7 260.0 32.6 10.7 9.3 7.4 4.8 2.7 10.9 1.7 7.8 1743.2 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 4.0 1231.4 17 1955 265.9 695.9 74.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 34.3 2098.7 6 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 34.3 2098.7 6 1956 832.5 1271.9 313.0 149.1 61.4 20.2 21.2 7.8 11.3 6.9 1.7 3.0 2699.9 2 1957 376.8 766.6 284.8 42.1 13.0 6.9 4.2 2.9 5.7 1.7 0.2 0.9 1505.7 14 1958 438.0 403.1 352.0 248.4 40.4 14.3 11.3 8.8 2.7 1.7 0.8 0.8 1522.1 13 1959 570.1 879.0 620.4 116.5 26.9 13.3 14.9 6.9 4.4 4.0 1.3 18.5 2276.1 4 1960 320.4 822.6 189.5 164.3 28.0 14.1 10.7 9.9 4.0 1.1 0.2 52.2 1617.0 12 1961 1115.6 96.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1 1961 115.6 96.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 2122.2 5 1965 92.6 122.2 22.6 23.8 7.8 4.4 4.0 2.3 0.9 0.2 4.4 14.3 147.5 15 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 2122.2 5 1965 92.6 122.2 22.6 23.8 7.8 4.4 4.0 2.3 0.9 0.2 0.2 49.4 535.4 22.5 1966 59.2 64.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1967 565.7 1115.6 564.8 76.2 19.8	1968	99.2	262.6	52.0	17.1	5.6	3.3	2.8	0.9	0.5	0.3	0.1	0.2	444.5	19	82.61
Year Jul Aug Sep Oct Nov Dec Jan Feb Har Apr May Jun Anflow Rar 1948 428.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7.9 10.9 140.7 846.1 540.7 144.7 32.2 10.9 9.3 9.7 12.2 5.2 1.3 5.0 1757.9 10.9 1950 540.7 854.7 260.0 32.6 10.7 9.3 7.4 4.8 2.7 10.9 1.7 7.8 1743.2 11.951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20.1 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8.1 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 17.1 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 96.4 1383.2 16.9 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 34.3 2098.7 6.1 1956 832.5 1271.9 313.0 149.1 61.4 20.2 21.2 7.8 11.3 6.9 1.7 3.0 2699.9 2.1 1957 376.8 766.6 284.8 42.1 13.0 6.9 4.2 2.9 5.7 1.7 0.2 0.9 1505.7 14.9 1958 438.0 403.1 352.0 248.4 40.4 14.3 11.3 8.8 2.7 1.7 0.8 0.8 1522.1 13.1 1959 570.1 879.0 620.4 116.5 26.9 13.3 14.9 6.9 4.4 4.0 1.3 18.5 2276.1 4.1 1960 320.4 822.6 189.5 164.3 28.0 14.1 10.7 9.9 4.0 1.1 0.2 52.2 1617.0 12.1 1961 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1.1 1962 165.4 427.9 354.7 56.0 18.3 65.4 12.0 4.8 3.2 1.9 1.9 25.5 1137.1 18.1 1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15.1 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 212.2 5.5 1137.1 18.1 1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15.1 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 212.2 5.5 1137.1 18.1 1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15.1 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 212.2 5.5 1137.1 18.1 1965 235.0 497.7 62.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21.9 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21.9 1967 565.7 1115.6 564.8 76.2 19.8 29.0 41.4 15.3 9.1 2.3 1.3 12.0 2452.5 3.1 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21.9 1967 565.7 1115.6 564.8 76.2 19.8 29.0 41.4 15.3 9.1 2.3 1.3 12.0 2452.5 5.3 196	1969	127.1	406.6	109.1	19.0	7.6	3.6	3.2	1.6	4.0	0.8	0.7	20.9	704.0	9	39.13
Year Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Anflov Rar 1948 428.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 79.4 140.7 846.1 540.7 144.7 32.2 10.9 9.3 9.7 12.2 5.2 1.3 5.0 1757.9 10.9 1950 540.7 854.7 260.0 32.6 10.7 9.3 7.4 4.8 2.7 10.9 1.7 7.8 1743.2 11.951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20.9 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 81.953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 96.4 1383.2 16.9 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 34.3 2098.7 6.9 1955 376.8 766.6 284.8 42.1 13.0 6.9 4.2 2.9 5.7 1.7 0.2 0.9 1505.7 14.9 1958 438.0 403.1 352.0 248.4 40.4 14.3 11.3 8.8 2.7 1.7 0.8 0.8 1522.1 13.1 1959 570.1 879.0 620.4 116.5 26.9 13.3 14.9 6.9 4.4 4.0 1.3 18.5 2276.1 4.9 1960 320.4 822.6 189.5 164.3 28.0 14.1 10.7 9.9 4.0 1.1 0.2 52.2 1617.0 12.9 1961 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1.9 1962 165.4 427.9 354.7 56.0 18.3 65.4 12.0 4.8 3.2 1.9 1.9 25.5 1137.1 18.9 1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 147.5 15.9 1966 320.8 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 147.5 15.9 1966 320.8 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 147.5 15.9 1966 320.4 427.9 354.7 56.0 18.3 65.4 12.0 4.8 3.2 1.9 1.9 25.5 1137.1 18.9 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 122.2 5.9 1965 92.6 122.2 227.6 23.8 7.8 4.4 4.0 2.3 0.9 0.2 0.2 49.4 535.4 22.9 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21.9 1967 565.7 115.6 564.8 76.2 19.8 29.0 41.4 15.3 9.1 2.3 1.3 12.0 2452.5 3.1 1968 252.0 667.5 132.1 43.5 14.1 8.4 7.1 2.3 1.3 0.8 0.2 0.4 1129.5 19				158.6	37.7	9.7	5.9	4.1	2.3	1.9	1.1	0.3	8.4	671.4		
1948 428.7 846.1 540.7 78.2 49.6 20.0 13.0 12.0 7.8 2.3 0.8 5.7 2004.7 7 1949 140.7 846.1 540.7 144.7 32.2 10.9 9.3 9.7 12.2 5.2 1.3 5.0 1757.9 10 1950 540.7 854.7 260.0 32.6 10.7 9.3 7.4 4.8 2.7 10.9 1.7 7.8 1743.2 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 <t< td=""><td>2115</td><td>MARIE KAG</td><td>HAYFUK</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2115	MARIE KAG	HAYFUK													
1949 140.7 846.1 540.7 144.7 32.2 10.9 9.3 9.7 12.2 5.2 1.3 5.0 1757.9 10 1950 540.7 854.7 260.0 32.6 10.7 9.3 7.4 4.8 2.7 10.9 1.7 7.8 1743.2 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 96.4 1383.2 16 1955 265.9 695.9 747.0 272.6 46.7 <t< td=""><td>Year</td><td>Jul</td><td>Aug</td><td>Sep</td><td>Oct</td><td>Nov</td><td>Dec</td><td>Jan</td><td>Feb</td><td>Mar</td><td>Apr</td><td>May</td><td>Jun</td><td>Anflow</td><td>Rank</td><td>Prob</td></t<>	Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prob
1950 540.7 854.7 260.0 32.6 10.7 9.3 7.4 4.8 2.7 10.9 1.7 7.8 1743.2 11 1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 96.4 1383.2 16 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 34.3 2098.7 6 1956 832.5 1271.9 313.0 149.1 61.4 <t< td=""><td>1948</td><td>428.7</td><td>846.1</td><td>540.7</td><td>78.2</td><td>49.6</td><td>20.0</td><td>13.0</td><td>12.0</td><td>7.8</td><td>2.3</td><td>0.8</td><td>5.7</td><td>2004.7</td><td>7</td><td>30.43</td></t<>	1948	428.7	846.1	540.7	78.2	49.6	20.0	13.0	12.0	7.8	2.3	0.8	5.7	2004.7	7	30.43
1951 21.4 499.8 248.5 72.6 11.3 6.9 3.2 2.1 1.3 0.8 0.2 25.2 893.1 20 1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 96.4 1383.2 16 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 34.3 2098.7 6 1956 832.5 1271.9 313.0 149.1 61.4 20.2 21.2 7.8 11.3 6.9 1.7 3.0 2699.9 2 1957 376.8 766.6 284.8 42.1 13.0 6.9 4.2 2.9 5.7 1.7 0.2 0.9 1505.7 14 1958 438.0 403.1 352.0 248.4 40.4 14.3 11.3 8.8 2.7 1.7 0.8 0.8 1522.1 13 1959 570.1 879.0 620.4 116.5 26.9 13.3 14.9 6.9 4.4 4.0 1.3 18.5 2276.1 4 1960 320.4 822.6 189.5 164.3 28.0 14.1 10.7 9.9 4.0 1.1 0.2 52.2 1617.0 12 1961 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1 1962 165.4 427.9 354.7 56.0 18.3 65.4 12.0 4.8 3.2 1.9 1.9 25.5 1137.1 18 1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 2122.2 5 1965 92.6 122.2 227.6 23.8 7.8 4.4 4.0 2.3 0.9 0.2 0.2 49.4 535.4 22 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1967 565.7 1115.6 564.8 76.2 19.8 29.0 41.4 15.3 9.1 2.3 1.3 12.0 2452.5 3 1968 252.0 667.5 132.1 43.5 14.1 8.4 7.1 2.3 1.3 0.8 0.2 0.4 1129.5 19	1949	140.7	846.1	540.7	144.7	32.2	10.9	9.3	9.7	12.2	5.2	1.3	5.0	1757.9	10	43.48
1952 438.2 857.7 448.1 48.6 13.9 7.4 7.4 4.8 1.7 0.4 0.2 0.0 1828.4 8 1953 351.1 565.9 233.5 46.3 14.1 7.8 4.8 2.1 0.9 0.8 0.2 4.0 1231.4 17 1954 246.1 418.2 519.6 67.5 17.1 6.3 5.2 4.0 1.9 0.8 0.2 96.4 1383.2 16 1955 265.9 695.9 747.0 272.6 46.7 18.3 8.8 5.0 2.3 1.3 0.8 34.3 2098.7 6 1956 832.5 1271.9 313.0 149.1 61.4 20.2 21.2 7.8 11.3 6.9 1.7 3.0 2699.9 2 1957 376.8 766.6 284.8 42.1 13.0 6.9 4.2 2.9 5.7 1.7 0.2 0.9 1505.7 14 1958 438.0 403.1 352.0 248.4 40.4	1950	540.7	854.7	260.0	32.6	10.7	9.3	7.4	4.8	2.7	10.9	1.7	7.8	1743.2	11	47.83
1953	1951	21.4	499.8	248.5	72.6	11.3	6.9	3.2	2.1	1.3	0.8	0.2	25.2	893.1	20	86.96
1954	1952	438.2	857.7	448.1	48.6	13.9	7.4	7.4	4.8	1.7	0.4	0.2	0.0	1828.4	8	34.78
1955	1953	351.1	565.9	233.5	46.3	14.1	7.8	4.8	2.1	0.9	0.8	0.2	4.0	1231.4	17	73.91
1956 832,5 1271.9 313.0 149.1 61.4 20.2 21.2 7.8 11.3 6.9 1.7 3.0 2699.9 2 1957 376.8 766.6 284.8 42.1 13.0 6.9 4.2 2.9 5.7 1.7 0.2 0.9 1505.7 14 1958 438.0 403.1 352.0 248.4 40.4 14.3 11.3 8.8 2.7 1.7 0.8 0.8 1522.1 13 1959 570.1 879.0 620.4 116.5 26.9 13.3 14.9 6.9 4.4 4.0 1.3 18.5 2276.1 4 1960 320.4 822.6 189.5 164.3 28.0 14.1 10.7 9.9 4.0 1.1 0.2 52.2 1617.0 12 1961 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1 1962 165.4 427.9 354.7 56.0 18.									4.0		0.8	0.2			16	69.57
1957 376.8 766.6 284.8 42.1 13.0 6.9 4.2 2.9 5.7 1.7 0.2 0.9 1505.7 14 1958 438.0 403.1 352.0 248.4 40.4 14.3 11.3 8.8 2.7 1.7 0.8 0.8 1522.1 13 1959 570.1 879.0 620.4 116.5 26.9 13.3 14.9 6.9 4.4 4.0 1.3 18.5 2276.1 4 1960 320.4 822.6 189.5 164.3 28.0 14.1 10.7 9.9 4.0 1.1 0.2 52.2 1617.0 12 1961 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1 1962 165.4 427.9 354.7 56.0 18.3 65.4 12.0 4.8 3.2 1.9 1.9 25.5 1137.1 18 1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 2122.2 5 1965 92.6 122.2 227.6 23.8 7.8 4.4 4.0 2.3 0.9 0.2 0.2 49.4 535.4 22 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1967 565.7 1115.6 564.8 76.2 19.8 29.0 41.4 15.3 9.1 2.3 1.3 12.0 2452.5 3 1968 252.0 667.5 132.1 43.5 14.1 8.4 7.1 2.3 1.3 0.8 0.2 0.4 1129.5 19						-									6	26.09
1958 438.0 403.1 352.0 248.4 40.4 14.3 11.3 8.8 2.7 1.7 0.8 0.8 1522.1 13 1959 570.1 879.0 620.4 116.5 26.9 13.3 14.9 6.9 4.4 4.0 1.3 18.5 2276.1 4 1960 320.4 822.6 189.5 164.3 28.0 14.1 10.7 9.9 4.0 1.1 0.2 52.2 1617.0 12 1961 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1 1962 165.4 427.9 354.7 56.0 18.3 65.4 12.0 4.8 3.2 1.9 1.9 25.5 1137.1 18 1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15 1964 587.8 1002.9 342.5 104.8															2	8.70
1959 570.1 879.0 620.4 116.5 26.9 13.3 14.9 6.9 4.4 4.0 1.3 18.5 2276.1 4 1960 320.4 822.6 189.5 164.3 28.0 14.1 10.7 9.9 4.0 1.1 0.2 52.2 1617.0 12 1961 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1 1962 165.4 427.9 354.7 56.0 18.3 65.4 12.0 4.8 3.2 1.9 1.9 25.5 1137.1 18 1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 2122.2 5 1965 92.6 122.2 227.6 23.8 7.8						400,000										60.87
1960 320.4 822.6 189.5 164.3 28.0 14.1 10.7 9.9 4.0 1.1 0.2 52.2 1617.0 12 1961 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1 1962 165.4 427.9 354.7 56.0 18.3 65.4 12.0 4.8 3.2 1.9 1.9 25.5 1137.1 18 1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 2122.2 5 1965 92.6 122.2 227.6 23.8 7.8 4.4 4.0 2.3 0.9 0.2 0.2 49.4 535.4 22 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1967 565.7 1115.6					100										13	56.52
1961 1115.6 996.3 1028.3 203.6 47.3 28.4 15.8 9.1 6.9 4.0 1.7 16.8 3473.7 1 1962 165.4 427.9 354.7 56.0 18.3 65.4 12.0 4.8 3.2 1.9 1.9 25.5 1137.1 18 1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 2122.2 5 1965 92.6 122.2 227.6 23.8 7.8 4.4 4.0 2.3 0.9 0.2 0.2 49.4 535.4 22 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1967 565.7 1115.6 564.8 76.2 19.8																17.39
1962 165.4 427.9 354.7 56.0 18.3 65.4 12.0 4.8 3.2 1.9 1.9 25.5 1137.1 18 1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 2122.2 5 1965 92.6 122.2 227.6 23.8 7.8 4.4 4.0 2.3 0.9 0.2 0.2 49.4 535.4 22 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1967 565.7 1115.6 564.8 76.2 19.8 29.0 41.4 15.3 9.1 2.3 1.3 12.0 2452.5 3 1968 252.0 667.5 132.1 43.5 14.1																52.17
1963 208.7 568.9 580.4 53.8 22.5 11.4 7.2 5.2 3.6 1.1 0.4 14.3 1477.5 15 1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 2122.2 5 1965 92.6 122.2 227.6 23.8 7.8 4.4 4.0 2.3 0.9 0.2 0.2 49.4 535.4 22 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1967 565.7 1115.6 564.8 76.2 19.8 29.0 41.4 15.3 9.1 2.3 1.3 12.0 2452.5 3 1968 252.0 667.5 132.1 43.5 14.1 8.4 7.1 2.3 1.3 0.8 0.2 0.4 1129.5 19																4.35
1964 587.8 1002.9 342.5 104.8 24.8 13.3 8.8 5.3 3.2 5.3 0.8 22.5 2122.2 5 1965 92.6 122.2 227.6 23.8 7.8 4.4 4.0 2.3 0.9 0.2 0.2 49.4 535.4 22 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1967 565.7 1115.6 564.8 76.2 19.8 29.0 41.4 15.3 9.1 2.3 1.3 12.0 2452.5 3 1968 252.0 667.5 132.1 43.5 14.1 8.4 7.1 2.3 1.3 0.8 0.2 0.4 1129.5 19																78.26
1965 92.6 122.2 227.6 23.8 7.8 4.4 4.0 2.3 0.9 0.2 0.2 49.4 535.4 22 1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1967 565.7 1115.6 564.8 76.2 19.8 29.0 41.4 15.3 9.1 2.3 1.3 12.0 2452.5 3 1968 252.0 667.5 132.1 43.5 14.1 8.4 7.1 2.3 1.3 0.8 0.2 0.4 1129.5 19																65.22
1966 235.0 497.7 62.7 12.2 5.2 5.0 3.0 1.9 7.2 6.1 0.9 21.9 858.9 21 1967 565.7 1115.6 564.8 76.2 19.8 29.0 41.4 15.3 9.1 2.3 1.3 12.0 2452.5 3 1968 252.0 667.5 132.1 43.5 14.1 8.4 7.1 2.3 1.3 0.8 0.2 0.4 1129.5 19																21.74
1967 565.7 1115.6 564.8 76.2 19.8 29.0 41.4 15.3 9.1 2.3 1.3 12.0 2452.5 3 1968 252.0 667.5 132.1 43.5 14.1 8.4 7.1 2.3 1.3 0.8 0.2 0.4 1129.5 19																95.65
1968 252.0 667.5 132.1 43.5 14.1 8.4 7.1 2.3 1.3 0.8 0.2 0.4 1129.5 19																91.30
																13.04
4.0 10.1 1.7 1.7 33.0 1769.2 9																
***************************************			1055.4	2//.1	40.4	17.0	7.1	0.2	4.0	10.1	1.9	1./	55.0	1/07.2	,	39.13

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969	423.3 191.6 222.7 289.8 162.9 567.2 84.1 106.1 298.8 47.1 119.5 287.6 128.1 164.1	389.7 204.9 446.9 418.2 506.5 217.5 289.3 509.9 62.1 253.0 567.2 339.3 525.4	144.8 179.0 315.4 96.3 522.8 180.3 295.1 174.1 115.7 31.9 287.1 67.2 140.9	21.4 126.3 59.2 83.5 103.5 28.5 27.3 53.3 12.1 6.2 38.8 22.1 24.6	6.6 20.5 13.7 14.2 24.0 9.3 11.4 12.6 4.0 2.6 10.1 7.2 9.8	3.5 7.3 6.8 7.2 14.4 33.2 5.8 6.8 2.2 2.5 14.7 4.3 4.7	2.1 5.7 7.6 5.4 8.0 6.1 3.7 4.5 2.0 1.5 21.0 3.6 4.2	1.5 4.5 3.5 5.0 4.7 2.4 2.6 2.7 1.2 1.0 7.8 1.2 2.0	2.9 1.4 2.2 2.0 3.5 1.6 1.8 1.6 0.5 3.7 4.7 0.7 5.1	0.9 0.9 2.0 0.6 2.0 1.0 0.6 2.7 0.1 3.1 1.2 0.4	0.1 0.4 0.7 0.1 0.9 1.0 0.2 0.4 0.1 0.5 0.7 0.1	0.5 0.4 9.4 26.5 8.5 13.0 7.3 11.4 25.1 11.1 6.1 0.2 26.9	765.5 773.8 1157.2 822.1 1766.0 578.1 751.2 1078.9 272.2	14 13 4 12 1 18 15 5 22 21 3 19	17.39 52.17 4.35 78.26 65.22 21.74 95.65 91.30 13.04
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968	191.6 222.7 289.8 162.9 567.2 84.1 106.1 298.8 47.1 119.5 287.6 128.1	389.7 204.9 446.9 418.2 506.5 217.5 289.3 509.9 62.1 253.0 567.2 339.3	179.0 315.4 96.3 522.8 180.3 295.1 174.1 115.7 31.9 287.1 67.2	126.3 59.2 83.5 103.5 28.5 27.3 53.3 12.1 6.2 38.8 22.1	20.5 13.7 14.2 24.0 9.3 11.4 12.6 4.0 2.6 10.1 7.2	7.3 6.8 7.2 14.4 33.2 5.8 6.8 2.2 2.5 14.7	5.7 7.6 5.4 8.0 6.1 3.7 4.5 2.0 1.5 21.0	1.5 4.5 3.5 5.0 4.7 2.4 2.6 2.7 1.2 1.0 7.8	2.9 1.4 2.2 2.0 3.5 1.6 1.8 1.6 0.5 3.7 4.7	0.9 0.9 2.0 0.6 2.0 1.0 0.6 2.7 0.1 3.1 1.2	0.6 0.7 0.1 0.9 1.0 0.2 0.4 0.1 0.5	0.4 9.4 26.5 8.5 13.0 7.3 11.4 25.1 11.1 6.1	765.5 773.8 1157.2 822.1 1766.0 578.1 751.2 1078.9 272.2 436.6 1246.8	14 13 4 12 1 18 15 5 22 21 3	56.52 17.39 52.17 4.35 78.26 65.22 21.74 95.65 91.30 13.04
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	191.6 222.7 289.8 162.9 567.2 84.1 106.1 298.8 47.1 119.5 287.6	389.7 204.9 446.9 418.2 506.5 217.5 289.3 509.9 62.1 253.0 567.2	179.0 315.4 96.3 522.8 180.3 295.1 174.1 115.7 31.9 287.1	126.3 59.2 83.5 103.5 28.5 27.3 53.3 12.1 6.2	20.5 13.7 14.2 24.0 9.3 11.4 12.6 4.0 2.6	7.3 6.8 7.2 14.4 33.2 5.8 6.8 2.2 2.5	5.7 7.6 5.4 8.0 6.1 3.7 4.5 2.0 1.5	1.5 4.5 3.5 5.0 4.7 2.4 2.6 2.7 1.2	2.9 1.4 2.2 2.0 3.5 1.6 1.8 1.6 0.5 3.7	0.9 0.9 2.0 0.6 2.0 1.0 0.6 2.7 0.1 3.1	0.4 0.7 0.1 0.9 1.0 0.2 0.4 0.1	0.4 9.4 26.5 8.5 13.0 7.3 11.4 25.1	765.5 773.8 1157.2 822.1 1766.0 578.1 751.2 1078.9 272.2 436.6	14 13 4 12 1 18 15 5 22 21	56.52 17.39 52.17 4.35 78.26 65.22 21.74 95.65 91.30
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	191.6 222.7 289.8 162.9 567.2 84.1 106.1 298.8 47.1 119.5	389.7 204.9 446.9 418.2 506.5 217.5 289.3 509.9 62.1 253.0	179.0 315.4 96.3 522.8 180.3 295.1 174.1 115.7 31.9	126.3 59.2 83.5 103.5 28.5 27.3 53.3 12.1	20.5 13.7 14.2 24.0 9.3 11.4 12.6 4.0	7.3 6.8 7.2 14.4 33.2 5.8 6.8 2.2	5.7 7.6 5.4 8.0 6.1 3.7 4.5 2.0	1.5 4.5 3.5 5.0 4.7 2.4 2.6 2.7 1.2	2.9 1.4 2.2 2.0 3.5 1.6 1.8 1.6 0.5	0.9 0.9 2.0 0.6 2.0 1.0 0.6 2.7	0.4 0.7 0.1 0.9 1.0 0.2 0.4 0.1	0.4 9.4 26.5 8.5 13.0 7.3 11.4 25.1	765.5 773.8 1157.2 822.1 1766.0 578.1 751.2 1078.9 272.2	14 13 4 12 1 18 15 5	56.52 17.39 52.17 4.35 78.26 65.22 21.74 95.65
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	191.6 222.7 289.8 162.9 567.2 84.1 106.1 298.8 47.1	389.7 204.9 446.9 418.2 506.5 217.5 289.3 509.9 62.1	179.0 315.4 96.3 522.8 180.3 295.1 174.1 115.7	126.3 59.2 83.5 103.5 28.5 27.3 53.3	20.5 13.7 14.2 24.0 9.3 11.4 12.6	7.3 6.8 7.2 14.4 33.2 5.8 6.8	5.7 7.6 5.4 8.0 6.1 3.7 4.5	1.5 4.5 3.5 5.0 4.7 2.4 2.6 2.7	2.9 1.4 2.2 2.0 3.5 1.6 1.8	0.9 0.9 2.0 0.6 2.0 1.0 0.6 2.7	0.4 0.7 0.1 0.9 1.0 0.2 0.4	0.4 9.4 26.5 8.5 13.0 7.3	765.5 773.8 1157.2 822.1 1766.0 578.1 751.2 1078.9	14 13 4 12 1 18 15 5	56.52 17.39 52.17 4.35 78.26 65.22 21.74
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964	191.6 222.7 289.8 162.9 567.2 84.1 106.1 298.8	389.7 204.9 446.9 418.2 506.5 217.5 289.3 509.9	179.0 315.4 96.3 522.8 180.3 295.1	126.3 59.2 83.5 103.5 28.5 27.3	20.5 13.7 14.2 24.0 9.3 11.4	7.3 6.8 7.2 14.4 33.2 5.8	5.7 7.6 5.4 8.0 6.1 3.7	1.5 4.5 3.5 5.0 4.7 2.4 2.6	2.9 1.4 2.2 2.0 3.5 1.6 1.8	0.9 0.9 2.0 0.6 2.0 1.0 0.6	0.4 0.7 0.1 0.9 1.0 0.2	0.4 9.4 26.5 8.5 13.0 7.3	765.5 773.8 1157.2 822.1 1766.0 578.1 751.2	14 13 4 12 1 18 15	56.52 17.39 52.17 4.35 78.26 65.22
1955 1956 1957 1958 1959 1960 1961 1962 1963	191.6 222.7 289.8 162.9 567.2 84.1 106.1	389.7 204.9 446.9 418.2 506.5 217.5 289.3	179.0 315.4 96.3 522.8 180.3	126.3 59.2 83.5 103.5 28.5	20.5 13.7 14.2 24.0 9.3	7.3 6.8 7.2 14.4 33.2	5.7 7.6 5.4 8.0 6.1	1.5 4.5 3.5 5.0 4.7 2.4	2.9 1.4 2.2 2.0 3.5 1.6	0.9 0.9 2.0 0.6 2.0 1.0	0.4 0.7 0.1 0.9 1.0	0.4 9.4 26.5 8.5 13.0	765.5 773.8 1157.2 822.1 1766.0 578.1	14 13 4 12 1 18	56.52 17.39 52.17 4.35 78.26
955 956 957 958 959 960 961 962	191.6 222.7 289.8 162.9 567.2	389.7 204.9 446.9 418.2 506.5	179.0 315.4 96.3 522.8	126.3 59.2 83.5 103.5	20.5 13.7 14.2 24.0	7.3 6.8 7.2 14.4	5.7 7.6 5.4 8.0	1.5 4.5 3.5 5.0 4.7	2.9 1.4 2.2 2.0 3.5	0.9 0.9 2.0 0.6 2.0	0.4 0.7 0.1 0.9	0.4 9.4 26.5 8.5	765.5 773.8 1157.2 822.1 1766.0	14 13 4 12 1	56.52 17.39 52.17 4.35
955 956 957 958 959 960 961	191.6 222.7 289.8 162.9	389.7 204.9 446.9 418.2 506.5	179.0 315.4 96.3	126.3 59.2 83.5	20.5 13.7 14.2	7.3 6.8 7.2	5.7 7.6 5.4	1.5 4.5 3.5 5.0	2.9 1.4 2.2 2.0	0.9 0.9 2.0 0.6	0.4 0.7 0.1	0.4 9.4 26.5	765.5 773.8 1157.2 822.1	14 13 4 12	56.50 17.30 52.10
955 956 957 958 959 960	191.6 222.7 289.8	389.7 204.9 446.9	179.0 315.4	126.3 59.2	20.5	7.3 6.8	5.7 7.6	1.5 4.5 3.5	2.9 1.4 2.2	0.9 0.9 2.0	0.4	0.4	765.5 773.8 1157.2	14 13 4	56.5 17.3
955 956 957 958 959	191.6 222.7 289.8	389.7 204.9	179.0	126.3	20.5	7.3	5.7	1.5	2.9	0.9	0.4	0.4	765.5 773.8	14 13	56.5
955 956 957 958	191.6 222.7	389.7						1.5	2.9	0.9			765.5	14	
955 956 957	191.6		144.8	21.4	6.6	3.5	2.1				0.1	0.5			60 0
955 956											41/	4.0	10/2.0	4	0./
955	2 2 2 2	646.6	159.1	75.8	31.2	10.3	10.8	4.0	5.7	3.5	0.9	1.5	1372.6		8.7
	135.2	353.8	379.8	138.6	23.7	9.3	4.5	2.5	1.2		0.4	17.4	1067.0		26.0
700	125.1	212.6	264.1	34.3	8.7	3.2	2.6	2.0	1.0	0.4	0.1	49.0	703.2		
953	178.5	287.7	118.7	23.5	7.2	4.0	2.4	1.1	0.5	0.4	0.1	2.0	626.1		73.9
952	222.8	436.0	227.8	24.7	7.1	3.8	3.8	2.4	0.9	0.2	0.1	0.0	929.6		34.7
951	10.9	254.1	126.4	36.9	5.7	3.5	1.6	1.1	0.7	0.4	0.1	12.8	454.1	20	86.9
950	274.9	434.5	132.2	16.6	5.4	4.8	3.8	2.4	1.4	5.5	0.9	4.0	886.3	11	47.8
949	71.5	430.1	274.9	73.6	16.4	5.5	4.8	4.9	6.2	2.6	0.7	2.5	893.7	10	43.4
948	217.9	430.1	274.9	39.7	25.2	10.2	6.6	6.1	4.0	1.2	0.4	2.9	1019.2	7	30.4
ear	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Pro
SITE I		ER BURHNER		130.6	33.8	20.5	14.2	8.1	6.5	3.8	1.2	29.1	2328.4		
Mean	528.3	1002.4	550.1												
1969	440.6	1410.3		66.1	26.3	12.5	11.2	5.5	13.8	2.6	2.3	72.3	2441.6	9	82.6 39.1
1968	343.9	910.9	180.3	59.3	19.3	11.4	9.6	3.1	1.8	1.0	0.3	0.5	1541.3	3	13.0
1967	772.0	1522.4	770.7	104.0	27.0	39.5	56.4	20.8	12.5	3.1	1.8	16.4	3346.7	21	91.
1966	320.7	679.1	85.6	16.6	7.0	6.8	4.2	2.6	9.9	8.3	1.3	29.9	730.6	22	95.
1965	126.4	166.7	310.6	32.5	10.7	6.0	5.5	3.1	1.3	0.3	0.3	30.7 67.4	2895.9	5	21.
1964	802.2	1368.7	467.4	143.1	33.8	18.2	12.0	7.3	4.4	7.3	1.0	19.5	2016.3	15	65.
1963	284.8	776.4	792.0	73.3	30.7	15.6	9.9	7.0	4.9	1.6	0.5	34.8	1551.7	18	78.
1962	225.8	583.9	484.0	76.5	25.0	89.2	16.4	6.5	4.4	2.6	2.3	22.9	4740.3	1	4.
1961	1522.4	1359.5	1403.2	277.8	64.5	38.8	21,6	12.5	9.4	1.6	0.3	71.3	2206.7	12	52.
1960	437.2	1122.6	258.5	224.2	38.2	18.2	20.3	9.4	5.5	5,5	1.8	25.2	3106.1	4	17.
1959	778.0	1199.6	846.6	158.9	36.7	19.5	15.4	12.0	3.6	2.3	1.0	1.0	2077.2	13	56.
1958	597.7	550.1	480.4	338.9	17.7 55.1	9.4		3.9	7.8	2.3	0.3	1.3	2054.8	14	60.
1957	514.2	1046.1	388.6	57.5		27.6	28.9	10.7	15.4	9.4	2.3	4.2	3684.3	2	8.
1956	1136.1	1735.7	427.1	203.4	83.8	25.0	12.0	6.8	3.1	1.8	1.0	46.8	2864.0	6	26.
1955	362.8	949.6	1019.3	371.9	63.7	8.6	7.0	5.5	2.6	1.0	0.3	131.6	1887.5		69.
1954	335.8	570.7	709.0	92.1	23.4	10.7	6.5	2.9	1.3	1.0	0.3	5.5	1680.5		73.
.,,,	479.1	772.2	318.6	63.2	19.3	10.1	10.1	6.5	2.3	0.5	0.3	0.0	2495.1	8	34.
1953	598.0	1170.4	611.5	66.3	19.0		4.4	2.9	1.8	1.0	0.3	34.3	1218.8		86.
1952	29.1	682.0	339.2	99.1	14.6	12.7		6.5	3.6	14.8	2.3	10.7	2378.9		47.
1951 1952	737.9	1166.3	354.8	197.4	44.0	14.8	12.7	13.3	16.6	7.0	1.8	6.8	2398.9		43.
1950 1951 1952	585.0 191.9	1154.6	737.9	106.6	67.6	27.3	17.7	16.4	10.7	3.1	1.0	7.8	2735.7		
1951 1952		1154.6	Sep 737.9	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	c Pr

1948 1949 1950 1951	96.9 31.8	191.3	122.3	17.7											
1950 1951	31.8	31.510			11.2	4.5	2.9	2.7	1.8	0.5	0.2		453.3		30.43
1951		191.3	122.3	32.7	7.3	2.5	2.1	2.2	2.8	1.2	0.3	1.1	397.5		43.48
	122.3	193.3	58.8	7.4	2.4	2.1	1.7	1.1	0.6	2.5	0.4	1.8	394.2		47.83
1050	4.8	113.0	56.2	16.4	2.5	1.5	0.7	0.5	0.3	0.2	0.0	5.7	201.9		86.96
1952	99.1	193.9	101.3	11.0	3.2	1.7	1.7	1.1	0.4	0.1	0.0	0.0	413.5	8	34.78
1953	79.4	128.0	52.8	10.5	3.2	1.8	1.1	0.5	0.2	0.2	0.0	0.9	278.5		73.9
1954	55.6	94.6	117.5	15.3	3.9	1.4	1.2	0.9	0.4	0.2	0.0	21.8	312.8		69.57
1955	60.1	157.4	168.9	61.6	10.6	4.1	2.0	1.1	0.5	0.3	0.2	7.8	474.6		26.09
1956	188.3	287.6	70.8	33.7	13.9	4.6	4.8	1.8	2.5	1.5	0.4	0.7	610.5		8.70
1957	85.2	173.4	64.4	9.5	2.9	1.5	0.9	0.6	1.3	0.4	0.0	0.2	340.5		60.87
1958	99.0	91.2	79.6	56.2	9.1	3.2	2.5	2.0	0.6	0.4	0.2	0.2	344.2		56.52
1959	128.9	198.8	140.3	26.3	6.1	3.0	3.4	1.5	1.0	0.9	0.3	4.2	514.7	4	17.39
1960	72.4	186.0	42.8	37.2	6.3	3.2	2.4	2.2	0.9	0.3	0.0	11.8	365.7	12	52.17
1961	252.3	225.3	232.5	46.0	10.7	6.4	3.6	2.1	1.5	0.9	0.4	3.8	785.5	1	4.35
1962	37.4	96.8	80.2	12.7	4.1	14.8	2.7	1.1	0.7	0.4	0.4	5.8	257.1	18	78.26
1963	47.2	128.6	131.2	12.1	5.1	2.6	1.6	1.2	0.8	0.3	0.1	3.2	334.1	15	65.22
1964	132.9	226.8	77.4	23.7	5.6	3.0	2.0	1.2	0.7	1.2	0.2	5.1	479.9	5	21.74
1965	21.0	27.6	51.5	5.4	1.8	1.0	0.9	0.5	0.2	0.0	0.0	11.2	121.1	22	95.65
1966	53.1	112.5	14.2	2.8	1.2	1.1	0.7	0.4	1.6	1.4	0.2	5.0	194.2	21	91.30
1967	127.9	252.3	127.7	17.2	4.5	6.6	9.4	3.5	2.1	0.5	0.3	2.7	554.6		13.0
1968	57.0	150.9	29.9	9.8	3.2	1.9	1.6	0.5	0.3	0.2	0.0		255.4		82.61
1969	73.0	233.7	62.7	10.9	4.3	2.1	1.9	0.9	2.3	0.4	0.4	12.0	404.6		39.13
Mean	87.5	166.1	91.1	21.6	5.6	3.4	2.4	1.3	1.1	0.6	0.2	4.8	385.8		
Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Pro
1948	1300.2	2566.2	1640.1	237.0	150.3	60.7	39.3	36.4	23.7	6.9	2.3	17.3	6080.5	7	30.43
1949	426.6	2566.2	1640.1	438.8	97.7	33.0	28.3	29.5	37.0	15.6	4.1	15.0	5331.8	10	43.48
1950	1640.1	2592.2	788.5	98.9	32.4	28.3	22.5	14.4	8.1	33.0	5.2	23.7	5287.3	11	47.83
1951	64.8	1515.8	753.8	220.3	34.1	20.8	9.8	6.4	4.1	2.3	0.6	76.3	2709.0	20	86.90
1952	1329.1	2601.4	1359.1	147.4	42.2	22.5	22.5	14.4	5.2	1.2	0.6	0.0	5545.7	8	34.78
1953	1064.9	1716.4		140.5	42.8	23.7	14.4	6.4	2.9	2.3	0.6	12.1	3735.1	17	73.9
1954	746.3	1268.3	1575.9	204.6	52.0	19.1	15.6	12.1	5.8	2.3	0.6	292.5	4195.3	16	69.5
1955	806.5	2110.6	2265.6		141.6	55.5	26.6	15.0	6.9	4.1	2.3	104.1	6365.4	6	26.0
1956	2525.1		949.2	452.1		61.3	64.2	23.7	34.1	20.8	5.2	9.3	8188.8	2	8.70
1957	1142.9	2325.1	863.7		39.3	20.8	12.7	8.7	17.3	5.2	0.6	2.9	4567.0	14	60.8
1958	1328.5	1222.7	1067.8	753.3	122.6	43.4	34.1	26.6	8.1	5.2	2.3	2.3	4616.7	13	56.5
1959	1729.1	2666.2	1881.7	353.2	81.5	40.5	45.1	20.8	13.3	12.1	4.1	56.1	6903.7		17.3
1960	971.8	2495.1	574.6	498.3	85.0	42.8	32.4	30.1	12.1	3.5		158.4	4904.6		
1961	3383.6	3021.7	3118.9	617.4	143.4	86.1	48.0	27.8	20.8	12.1	5.2	50.9	10535.9		4.3
			1075.8	170.0	55.5	198.3	36.4	14.4	9.8	5.8	5.8	77.5	3448.9		78.2
1962	501.8	1297.8		163.0	68.2	34.7	22.0	15.6	11.0	3.5	1.2	43.4	4481.4		
1963	633.0	1725.6	1760.3		75.2	40.5	26.6	16.2	9.8	16.2	2.3	68.2	6436.6		21.7
1964	1782.9	3042.0	1038.8	318.0		13.3	12.1	6.9	2.9	0.6	0.6	149.7	1623.9		
1965	281.0	370.6	690.3	72.3	23.7			5.8	22.0	18.5	2.9	66.5	2604.9		
1966	712.8	1509.4	190.2	37.0	15.6	15.0	9.3				4.1	36.4	7438.4		13.0
1967	1715.8	3383.6	1712.9	231.2	60.1	87.9	125.4	46.3	27.8	6.9		1.2	3425.8		
1968 1969	764.3 979.3	2024.5 3134.5	400.6 840.6	131.8	42.8 58.4	25.4	21.4	6.9	30.6	2.3	0.6 5.2	160.7	5426.6		39.1
3057						45.5				8.5			5175.2		

NAM	ITIY	

6000															
Year	Jul	Aug	Sep	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Pro
1948	21.6	42.6	27.2	3.9	2.5	1.0	0.6	0.6	0.4	0.1	0.0	0.3	101.0	7	30.4
1949	7.1	42.6	27.2	7.3	1.6	0.6	0.5	0.5	0.6	0.3	0.1	0.3	88.5	10	43.4
1950	27.2	43.0	13.1	1.6	0.5	0.5	0.4	0.2	0.1	0.6	0.1	0.4	87.8	11	47.8
1951	1.1	25.2	12.5	3.7	0.6	0.3	0.2	0.1	0.1	0.0	0.0	1.3	45.0	20	86.9
1952	22.1	43.2	22.6	2.5	0.7	0.4	0.4	0.2	0.1	0.0	0.0	0.0	92.1	8	34.7
1953	17.7	28.5	11.8	2.3	0.7	0.4	0.2	0.1	0.1	0.0	0.0	0.2	62.0	17	73.9
1954	12.4	21.1	26.2	3.4	0.9	0.3	0.3	0.2	0.1	0.0	0.0	4.9	69.7	16	69.5
1955	13.4	35.0	37.6	13.7	2.3	0.9	0.4	0.3	0.1	0.1	0.0	1.7	105.7	6	26.0
1956	41.9	64.1	15.8	7.5	3.1	1.0	1.1	0.4	0.6	0.3	0.1	0.2	136.0	2	8.7
1957	19.0	38.6	14.3	2.1	0.6	0.3	0.2	0.1	0.3	0.1	0.0	0.1	75.8	14	60.8
1958	22.1	20.3	17.7	12.5	2.0	0.7	0.6	0.4	0.1	0.1	0.0	0.0	76.7	13	56.5
1959	28.7	44.3	31.3	5.9		0.7	0.8	0.3	0.2	0.2	0.1	0.9	114.6	4	17.3
1960	16.1	41.4	9.5	8.3	1.4	0.7	0.5	0.5	0.2	0.1	0.0	2.6	81.4	12	52.1
1961	56.2	50.2	51.8	10.3	2.4	1.4	0.8	0.5	0.3	0.2	0.1	0.8	175.0	1	4.3
1962	8.3	21.5	17.9	2.8	0.9	3.3	0.6	0.2	0.2	0.1	0.1	1.3	57.3	18	78.2
1963	10.5	28.7	29.2		1.1	0.6	0.4	0.3	0.2	0.1	0.0	0.7	74.4	15	65.2
1964	29.6	50.5	17.3	5.3	1.3	0.7	0.4	0.3	0.2	0.3	0.0	1.1	106.9	5	21.7
1965	4.7	6.2	11.5	1.2	0.4	0.2	0.2	0.1	0.1	0.0	0.0	2.5	27.0	22	95.6
1966	11.8	25.1	3.2	0.6	0.3	0.3	0.2	0.1	0.4	0.3	0.1	1.1	43.3	21	91.3
1967	28.5	56.2	28.4	3.8	1.0	1.5	2.1	0.8	0.5	0.1	0.1	0.6	123.5	3	13.0
1968	12.7	33.6	6.7	2.2	0.7	0.4	0.4	0.1	0.1	0.0	0.0	0.0	56.9	19	82.6
1969	16.3	52.0	14.0	2.4	1.0	0.5	0.4	0.2	0.5	0.1	0.1	2.7	90.1	9	39.1
Mean	19.5	37.0	20.3	4.8	1.2	0.8	0.5	0.3	0.2	0.1	0.0	1.1	85.9		
SITE	NAME BAR	6I													
Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prol
1948	1974.8	3897.9	2491.2	360.0	228.3	92.2	59.7	55.3	36.0	10.5	3.5	26.3	9235.9	7	30.4
1949	648.0	3897.9	2491.2	666.5	148.4	50.0	43.0	44.8	56.2	23.7	6.2	22.8	8098.7	10	43.4
1950	2491.2	3937.4	1197.7	150.2	69.2	43.0	34.3	22.0	12.3	50.0	7.9	36.0	8031.1	11	47.8
1951	98.3	2302.4		771 4	E4 0	24 /	1/ 0			7 F	0.0				
1952	2010 0		1145.0	334.6	51.8	31.6	14.9	9.7	6.2	3.5	0.9	115.9	4114.8	20	86.96
	2018.8	3951.4	2064.4	223.9	64.1	34.3	34.3	22.0	7.9	1.8	0.9	0.0	4114.8 8423.6	20 8	34.78
1953	1617.5	3951.4 2607.1	2064.4 1075.7	223.9 213.4	64.1 65.0		34.3 22.0			1.8					
1953 1954	1617.5 1133.6	3951.4 2607.1 1926.6	2064.4 1075.7 2393.7	223.9 213.4 310.9	64.1 65.0 79.0	34.3	34.3	22.0 9.7 18.4	7.9 4.4 8.8	1.8	0.9	0.0	8423.6	8 17	34.78
1953 1954 1955	1617.5 1133.6 1224.9	3951.4 2607.1 1926.6 3205.9	2064.4 1075.7 2393.7 3441.3	223.9 213.4 310.9 1255.7	64.1 65.0 79.0 215.1	34.3 36.0 29.0 84.3	34.3 22.0 23.7 40.4	9.7 18.4 22.8	7.9 4.4 8.8 10.5	1.8	0.9 0.9 0.9 3.5	0.0 18.4 444.3 158.1	8423.6 5673.4	8 17	34.78 73.91 69.57
1953 1954 1955 1956	1617.5 1133.6 1224.9 3835.5	3951.4 2607.1 1926.6 3205.9 5859.6	2064.4 1075.7 2393.7 3441.3 1441.8	223.9 213.4 310.9 1255.7 686.7	64.1 65.0 79.0 215.1 282.8	34.3 36.0 29.0 84.3 93.1	34.3 22.0 23.7 40.4 97.5	22.0 9.7 18.4 22.8 36.0	7.9 4.4 8.8 10.5 51.8	1.8 3.5 3.5 6.2 31.6	0.9 0.9 0.9 3.5 7.9	0.0 18.4 444.3 158.1 14.1	8423.6 5673.4 6372.4 9668.7 12438.3	8 17 16	34.78 73.91 69.57
1953 1954 1955 1956 1957	1617.5 1133.6 1224.9 3835.5 1736.0	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9	223.9 213.4 310.9 1255.7 686.7 194.1	64.1 65.0 79.0 215.1 282.8 59.7	34.3 36.0 29.0 84.3 93.1 31.6	34.3 22.0 23.7 40.4 97.5 19.3	9.7 18.4 22.8 36.0 13.2	7.9 4.4 8.8 10.5 51.8 26.3	1.8 3.5 3.5 6.2 31.6 7.9	0.9 0.9 0.9 3.5 7.9 0.9	0.0 18.4 444.3 158.1	8423.6 5673.4 6372.4 9668.7	8 17 16 6	34.78 73.91 69.57 26.09
1953 1954 1955 1956 1957 1958	1617.5 1133.6 1224.9 3835.5 1736.0 2017.9	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7 1857.2	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9 1621.8	223.9 213.4 310.9 1255.7 686.7 194.1 1144.2	64.1 65.0 79.0 215.1 282.8 59.7 186.2	34.3 36.0 29.0 84.3 93.1 31.6 65.9	34.3 22.0 23.7 40.4 97.5 19.3 51.8	22.0 9.7 18.4 22.8 36.0 13.2 40.4	7.9 4.4 8.8 10.5 51.8 26.3 12.3	1.8 3.5 3.5 6.2 31.6 7.9 7.9	0.9 0.9 0.9 3.5 7.9 0.9 3.5	0.0 18.4 444.3 158.1 14.1 4.4 3.5	8423.6 5673.4 6372.4 9668.7 12438.3 6937.0 7012.5	8 17 16 6 2 14	34.78 73.91 69.57 26.09 8.70
1953 1954 1955 1956 1957 1958 1959	1617.5 1133.6 1224.9 3835.5 1736.0 2017.9 2626.4	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7 1857.2 4049.8	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9 1621.8 2858.2	223.9 213.4 310.9 1255.7 686.7 194.1 1144.2 536.5	64.1 65.0 79.0 215.1 282.8 59.7 186.2 123.8	34.3 36.0 29.0 84.3 93.1 31.6 65.9 61.5	34.3 22.0 23.7 40.4 97.5 19.3 51.8 68.5	22.0 9.7 18.4 22.8 36.0 13.2 40.4 31.6	7.9 4.4 8.8 10.5 51.8 26.3	1.8 3.5 3.5 6.2 31.6 7.9 7.9 18.4	0.9 0.9 0.9 3.5 7.9 0.9 3.5	0.0 18.4 444.3 158.1 14.1 4.4	8423.6 5673.4 6372.4 9668.7 12438.3 6937.0	8 17 16 6 2 14 13	34.78 73.91 69.57 26.09 8.70 60.87
1953 1954 1955 1956 1957 1958 1959 1960	1617.5 1133.6 1224.9 3835.5 1736.0 2017.9 2626.4 1476.1	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7 1857.2 4049.8 3789.9	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9 1621.8 2858.2 872.8	223.9 213.4 310.9 1255.7 686.7 194.1 1144.2 536.5 756.9	64.1 65.0 79.0 215.1 282.8 59.7 186.2 123.8 129.1	34.3 36.0 29.0 84.3 93.1 31.6 65.9 61.5	34.3 22.0 23.7 40.4 97.5 19.3 51.8 68.5 49.2	22.0 9.7 18.4 22.8 36.0 13.2 40.4 31.6 45.7	7.9 4.4 8.8 10.5 51.8 26.3 12.3	1.8 3.5 3.5 6.2 31.6 7.9 7.9 18.4 5.3	0.9 0.9 0.9 3.5 7.9 0.9 3.5 6.2 0.9	0.0 18.4 444.3 158.1 14.1 4.4 3.5 85.2 240.6	8423.6 5673.4 6372.4 9668.7 12438.3 6937.0 7012.5	8 17 16 6 2 14 13 4	34.78 73.99 69.57 26.09 8.70 60.87 56.52
1953 1954 1955 1956 1957 1958 1959 1960 1961	1617.5 1133.6 1224.9 3835.5 1736.0 2017.9 2626.4 1476.1 5139.5	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7 1857.2 4049.8 3789.9 4589.8	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9 1621.8 2858.2 872.8 4737.4	223.9 213.4 310.9 1255.7 686.7 194.1 1144.2 536.5 756.9 937.8	64.1 65.0 79.0 215.1 282.8 59.7 186.2 123.8 129.1 217.8	34.3 36.0 29.0 84.3 93.1 31.6 65.9 61.5 65.0 130.8	34.3 22.0 23.7 40.4 97.5 19.3 51.8 68.5 49.2 72.9	22.0 9.7 18.4 22.8 36.0 13.2 40.4 31.6 45.7 42.2	7.9 4.4 8.8 10.5 51.8 26.3 12.3 20.2	1.8 3.5 3.5 6.2 31.6 7.9 7.9 18.4 5.3	0.9 0.9 0.9 3.5 7.9 0.9 3.5 6.2	0.0 18.4 444.3 158.1 14.1 4.4 3.5 85.2	8423.6 5673.4 6372.4 9668.7 12438.3 6937.0 7012.5 10486.3	8 17 16 6 2 14 13 4	34.78 73.91 69.57 26.09 8.70 60.83 56.52 17.39
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962	1617.5 1133.6 1224.9 3835.5 1736.0 2017.9 2626.4 1476.1 5139.5 762.2	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7 1857.2 4049.8 3789.9 4589.8 1971.3	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9 1621.8 2858.2 872.8 4737.4 1634.1	223.9 213.4 310.9 1255.7 686.7 194.1 1144.2 536.5 756.9 937.8 258.2	64.1 65.0 79.0 215.1 282.8 59.7 186.2 123.8 129.1 217.8 84.3	34.3 36.0 29.0 84.3 93.1 31.6 65.9 61.5 65.0 130.8 301.2	34.3 22.0 23.7 40.4 97.5 19.3 51.8 68.5 49.2 72.9 55.3	22.0 9.7 18.4 22.8 36.0 13.2 40.4 31.6 45.7 42.2 22.0	7.9 4.4 8.8 10.5 51.8 26.3 12.3 20.2 18.4 31.6 14.9	1.8 3.5 3.5 6.2 31.6 7.9 7.9 18.4 5.3 18.4 8.8	0.9 0.9 0.9 3.5 7.9 0.9 3.5 6.2 0.9	0.0 18.4 444.3 158.1 14.1 4.4 3.5 85.2 240.6 77.3 117.7	8423.6 5673.4 6372.4 9668.7 12438.3 6937.0 7012.5 10486.3 7449.8	8 17 16 6 2 14 13 4 12	34.78 73.91 69.57 26.09 8.70 60.87 56.52 17.39 52.17
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963	1617.5 1133.6 1224.9 3835.5 1736.0 2017.9 2626.4 1476.1 5139.5 762.2 961.5	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7 1857.2 4049.8 3789.9 4589.8 1971.3 2621.1	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9 1621.8 2858.2 872.8 4737.4 1634.1 2673.8	223.9 213.4 310.9 1255.7 686.7 194.1 1144.2 536.5 756.9 937.8 258.2 247.6	64.1 65.0 79.0 215.1 282.8 59.7 186.2 123.8 129.1 217.8 84.3 103.6	34.3 36.0 29.0 84.3 93.1 31.6 65.9 61.5 65.0 130.8 301.2 52.7	34.3 22.0 23.7 40.4 97.5 19.3 51.8 68.5 49.2 72.9 55.3 33.4	22.0 9.7 18.4 22.8 36.0 13.2 40.4 31.6 45.7 42.2 22.0 23.7	7.9 4.4 8.8 10.5 51.8 26.3 12.3 20.2 18.4 31.6 14.9 16.7	1.8 3.5 3.5 6.2 31.6 7.9 7.9 18.4 5.3 18.4 8.8 5.3	0.9 0.9 0.9 3.5 7.9 0.9 3.5 6.2 0.9 7.9	0.0 18.4 444.3 158.1 14.1 4.4 3.5 85.2 240.6 77.3 117.7 65.9	8423.6 5673.4 6372.4 9668.7 12438.3 6937.0 7012.5 10486.3 7449.8 16003.4	8 17 16 6 2 14 13 4 12 1	34.78 73.91 69.57 26.09 8.70 60.87 56.52 17.39 52.17 4.35 78.26
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964	1617.5 1133.6 1224.9 3835.5 1736.0 2017.9 2626.4 1476.1 5139.5 762.2 961.5 2708.1	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7 1857.2 4049.8 3789.9 4589.8 1971.3 2621.1 4620.6	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9 1621.8 2858.2 872.8 4737.4 1634.1 2673.8 1577.9	223.9 213.4 310.9 1255.7 686.7 194.1 1144.2 536.5 756.9 937.8 258.2 247.6 483.0	64.1 65.0 79.0 215.1 282.8 59.7 186.2 123.8 129.1 217.8 84.3 103.6 114.2	34.3 36.0 29.0 84.3 93.1 31.6 65.9 61.5 65.0 130.8 301.2 52.7 61.5	34.3 22.0 23.7 40.4 97.5 19.3 51.8 68.5 49.2 72.9 55.3 33.4 40.4	22.0 9.7 18.4 22.8 36.0 13.2 40.4 31.6 45.7 42.2 22.0 23.7 24.6	7.9 4.4 8.8 10.5 51.8 26.3 12.3 20.2 18.4 31.6 14.9 16.7 14.9	1.8 3.5 3.5 6.2 31.6 7.9 7.9 18.4 5.3 18.4 8.8 5.3 24.6	0.9 0.9 0.9 3.5 7.9 0.9 3.5 6.2 0.9 7.9 8.8 1.8 3.5	0.0 18.4 444.3 158.1 14.1 4.4 3.5 85.2 240.6 77.3 117.7 65.9 103.6	8423.6 5673.4 6372.4 9668.7 12438.3 6937.0 7012.5 10486.3 7449.8 16003.4 5238.7 6807.0 9776.8	8 17 16 6 2 14 13 4 12 1 18 15 5	34.78 73.91 69.57 26.09 8.70 60.83 55.52 17.39 52.17 4.38 78.26 65.22 21.74
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	1617.5 1133.6 1224.9 3835.5 1736.0 2017.9 2626.4 1476.1 5139.5 762.2 961.5 2708.1 426.8	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7 1857.2 4049.8 3789.9 4589.8 1971.3 2621.1 4620.6 562.9	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9 1621.8 2858.2 872.8 4737.4 1634.1 2673.8 1577.9 1048.4	223.9 213.4 310.9 1255.7 686.7 194.1 1144.2 536.5 756.9 937.8 258.2 247.6 483.0 109.8	64.1 65.0 79.0 215.1 282.8 59.7 186.2 123.8 129.1 217.8 84.3 103.6 114.2 36.0	34.3 36.0 29.0 84.3 93.1 31.6 65.9 61.5 65.0 130.8 301.2 52.7 61.5 20.2	34.3 22.0 23.7 40.4 97.5 19.3 51.8 68.5 49.2 72.9 55.3 33.4 40.4 18.4	22.0 9.7 18.4 22.8 36.0 13.2 40.4 31.6 45.7 42.2 22.0 23.7 24.6 10.5	7.9 4.4 8.8 10.5 51.8 26.3 12.3 20.2 18.4 31.6 14.9 16.7 14.9 4.4	1.8 3.5 6.2 31.6 7.9 7.9 18.4 5.3 18.4 8.8 5.3 24.6 0.9	0.9 0.9 0.9 3.5 7.9 0.9 3.5 6.2 0.9 7.9 8.8 1.8	0.0 18.4 444.3 158.1 14.1 4.4 3.5 85.2 240.6 77.3 117.7 65.9	8423.6 5673.4 6372.4 9668.7 12438.3 6937.0 7012.5 10486.3 7449.8 16003.4 5238.7 6807.0 9776.8 2466.6	8 17 16 6 2 14 13 4 12 1 18 15 5 22	34.78 73.91 69.57 26.09 8.70 60.87 56.52 17.39 52.17 4.35 78.26 65.22 21.74
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	1617.5 1133.6 1224.9 3835.5 1736.0 2017.9 2626.4 1476.1 5139.5 762.2 961.5 2708.1 426.8 1082.7	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7 1857.2 4049.8 3789.9 4589.8 1971.3 2621.1 4620.6 562.9 2292.7	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9 1621.8 2858.2 872.8 4737.4 1634.1 2673.8 1577.9 1048.4 288.9	223.9 213.4 310.9 1255.7 686.7 194.1 1144.2 536.5 756.9 937.8 258.2 247.6 483.0 109.8 56.2	64.1 65.0 79.0 215.1 282.8 59.7 186.2 123.8 129.1 217.8 84.3 103.6 114.2 36.0 23.7	34.3 36.0 29.0 84.3 93.1 31.6 65.9 61.5 65.0 130.8 301.2 52.7 61.5 20.2 22.8	34.3 22.0 23.7 40.4 97.5 19.3 51.8 68.5 49.2 72.9 55.3 33.4 40.4 18.4	22.0 9.7 18.4 22.8 36.0 13.2 40.4 31.6 45.7 42.2 22.0 23.7 24.6 10.5 8.8	7.9 4.4 8.8 10.5 51.8 26.3 12.3 20.2 18.4 31.6 14.9 16.7 14.9 4.4 33.4	1.8 3.5 6.2 31.6 7.9 7.9 18.4 5.3 18.4 8.8 5.3 24.6 0.9 28.1	0.9 0.9 0.9 3.5 7.9 0.9 3.5 6.2 0.9 7.9 8.8 1.8 3.5	0.0 18.4 444.3 158.1 14.1 4.4 3.5 85.2 240.6 77.3 117.7 65.9 103.6 227.4 101.0	8423.6 5673.4 6372.4 9668.7 12438.3 6937.0 7012.5 10486.3 7449.8 16003.4 5238.7 6807.0 9776.8 2466.6 3956.7	8 17 16 6 2 14 13 4 12 1 18 15 5 22	34.78 73.91 69.57 26.09 8.70 60.87 56.52 17.39 52.17 4.35 78.26 65.22 21.74
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	1617.5 1133.6 1224.9 3835.5 1736.0 2017.9 2626.4 1476.1 5139.5 762.2 961.5 2708.1 426.8 1082.7 2606.2	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7 1857.2 4049.8 3789.9 4589.8 1971.3 2621.1 4620.6 562.9 2292.7 5139.5	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9 1621.8 2858.2 872.8 4737.4 1634.1 2673.8 1577.9 1048.4 288.9 2601.8	223.9 213.4 310.9 1255.7 686.7 194.1 1144.2 536.5 756.9 937.8 258.2 247.6 483.0 109.8 56.2 351.2	64.1 65.0 79.0 215.1 282.8 59.7 186.2 123.8 129.1 217.8 84.3 103.6 114.2 36.0 23.7 91.3	34.3 36.0 29.0 84.3 93.1 31.6 65.9 61.5 65.0 130.8 301.2 52.7 61.5 20.2 22.8 133.5	34.3 22.0 23.7 40.4 97.5 19.3 51.8 68.5 49.2 72.9 55.3 33.4 40.4 18.4 14.1 190.6	22.0 9.7 18.4 22.8 36.0 13.2 40.4 31.6 45.7 42.2 22.0 23.7 24.6 10.5 8.8 70.3	7.9 4.4 8.8 10.5 51.8 26.3 12.3 20.2 18.4 31.6 14.9 16.7 14.9 4.4 33.4 42.2	1.8 3.5 3.5 6.2 31.6 7.9 7.9 18.4 5.3 18.4 8.8 5.3 24.6 0.9 28.1 10.5	0.9 0.9 0.9 3.5 7.9 0.9 3.5 6.2 0.9 7.9 8.8 1.8 3.5 0.9	0.0 18.4 444.3 158.1 14.1 4.4 3.5 85.2 240.6 77.3 117.7 65.9 103.6 227.4 101.0 55.3	8423.6 5673.4 6372.4 9668.7 12438.3 6937.0 7012.5 10486.3 7449.8 16003.4 5238.7 6807.0 9776.8 2466.6	8 17 16 6 2 14 13 4 12 1 18 15 5 22 21	34.78 73.91 69.57 26.09 8.70 60.87 56.52 17.39 52.17 4.35 78.26 65.22 21.74
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968	1617.5 1133.6 1224.9 3835.5 1736.0 2017.9 2626.4 1476.1 5139.5 762.2 961.5 2708.1 426.8 1082.7 2606.2 1160.8	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7 1857.2 4049.8 3789.9 4589.8 1971.3 2621.1 4620.6 562.9 2292.7 5139.5 3075.1	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9 1621.8 2858.2 872.8 4737.4 1634.1 2673.8 1577.9 1048.4 288.9 2601.8 608.5	223.9 213.4 310.9 1255.7 686.7 194.1 1144.2 536.5 756.9 937.8 258.2 247.6 483.0 109.8 56.2 351.2 200.2	64.1 65.0 79.0 215.1 282.8 59.7 186.2 123.8 129.1 217.8 84.3 103.6 114.2 36.0 23.7 91.3 65.0	34.3 36.0 29.0 84.3 93.1 31.6 65.9 61.5 65.0 130.8 301.2 52.7 61.5 20.2 22.8 133.5 38.6	34.3 22.0 23.7 40.4 97.5 19.3 51.8 68.5 49.2 72.9 55.3 33.4 40.4 18.4 14.1 190.6 32.5	22.0 9.7 18.4 22.8 36.0 13.2 40.4 31.6 45.7 42.2 22.0 23.7 24.6 10.5 8.8 70.3 10.5	7.9 4.4 8.8 10.5 51.8 26.3 12.3 20.2 18.4 31.6 14.9 16.7 14.9 4.4 33.4 42.2 6.2	1.8 3.5 3.5 6.2 31.6 7.9 7.9 18.4 5.3 18.4 8.8 5.3 24.6 0.9 28.1 10.5 3.5	0.9 0.9 0.9 3.5 7.9 0.9 3.5 6.2 0.9 7.9 8.8 1.8 3.5 0.9 4.4 6.2 0.9	0.0 18.4 444.3 158.1 14.1 4.4 3.5 85.2 240.6 77.3 117.7 65.9 103.6 227.4 101.0 55.3 1.8	8423.6 5673.4 6372.4 9668.7 12438.3 6937.0 7012.5 10486.3 7449.8 16003.4 5238.7 6807.0 9776.8 2466.6 3956.7 11298.5 5203.6	8 17 16 6 2 14 13 4 12 1 18 15 5 22 21 3	34.78 73.91 69.57 26.09 8.70 60.87 55.52 17.39 52.17 4.38 78.26 65.22 21.74 95.68 91.30 13.06
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	1617.5 1133.6 1224.9 3835.5 1736.0 2017.9 2626.4 1476.1 5139.5 762.2 961.5 2708.1 426.8 1082.7 2606.2	3951.4 2607.1 1926.6 3205.9 5859.6 3531.7 1857.2 4049.8 3789.9 4589.8 1971.3 2621.1 4620.6 562.9 2292.7 5139.5	2064.4 1075.7 2393.7 3441.3 1441.8 1311.9 1621.8 2858.2 872.8 4737.4 1634.1 2673.8 1577.9 1048.4 288.9 2601.8	223.9 213.4 310.9 1255.7 686.7 194.1 1144.2 536.5 756.9 937.8 258.2 247.6 483.0 109.8 56.2 351.2	64.1 65.0 79.0 215.1 282.8 59.7 186.2 123.8 129.1 217.8 84.3 103.6 114.2 36.0 23.7 91.3	34.3 36.0 29.0 84.3 93.1 31.6 65.9 61.5 65.0 130.8 301.2 52.7 61.5 20.2 22.8 133.5	34.3 22.0 23.7 40.4 97.5 19.3 51.8 68.5 49.2 72.9 55.3 33.4 40.4 18.4 14.1 190.6	22.0 9.7 18.4 22.8 36.0 13.2 40.4 31.6 45.7 42.2 22.0 23.7 24.6 10.5 8.8 70.3	7.9 4.4 8.8 10.5 51.8 26.3 12.3 20.2 18.4 31.6 14.9 16.7 14.9 4.4 33.4 42.2	1.8 3.5 3.5 6.2 31.6 7.9 7.9 18.4 5.3 18.4 8.8 5.3 24.6 0.9 28.1 10.5	0.9 0.9 0.9 3.5 7.9 0.9 3.5 6.2 0.9 7.9 8.8 1.8 3.5 0.9 4.4 6.2	0.0 18.4 444.3 158.1 14.1 4.4 3.5 85.2 240.6 77.3 117.7 65.9 103.6 227.4 101.0 55.3	8423.6 5673.4 6372.4 9668.7 12438.3 6937.0 7012.5 10486.3 7449.8 16003.4 5238.7 6807.0 9776.8 2466.6 3956.7 11298.5 5203.6	8 17 16 6 2 14 13 4 12 1 18 15 5 22 21 3 19	34.78 73.91 69.57 26.09 8.70 60.87 55.52 17.39 52.17 4.38 78.26 65.22 21.74 95.68 91.30 13.06

CTTE	NAME	ATARIA
2115	NADE	AIAGIA

Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun		Rank	
1948	78.6	117.5	115.6	21.7	13.6	6.7	3.9	2.8	2.2	1.4	0.9	2.5	367.3		13.04
1949	38.9	69.6	114.5	33.0	10.4	4.3	2.6	1.8	2.3	1.5	1.1	1.3	281.1		30.43
1950	74.0	94.3	69.3	10.3	3.5	2.9	2.8	1.8	1.5	1.1	0.7	2.5	264.5		39.13
1951	15.5	61.7	38.5	10.1	3.6	2.2	1.8	1.5	1.1	0.7	0.5	3.8	141.1		86.96
1952	38.6	112.4	41.9	7.2	3.0	2.1	1.8	1.5	1.1	0.7	0.5	0.6	211.6		78.26
1953	43.2	119.3	36.7	8.5	3.3	2.2	1.7	1.2	0.8	0.6	0.5	1.1			73.91
1954	28.5	52.5	129.7	23.2	7.3	3.6	2.3	1.6	0.9	0.6	0.5	4.9	255.7		47.83
1955	21.1	92.8	160.2	61.0	10.2	4.8	3.0	2.0	1.5	1.1	0.8	7.9	366.5		17.39
1956	103.5	125.7	47.3	25.4	15.8	5.8	5.0	3.0	2.7	2.6	1.3	4.3	342.3		21.74
1957	28.2	83.5	47.7	8.1	3.7	2.4	1.9	1.4	1.5	0.8	0.6	1.9	181.7	19	82,61
1958	38.0	67.8	84.7	37.0	10.5	4.3	2.7	1.9	1.4	0.9	0.6	1.4	251.3	12	52.17
1959	96.0	142.9	137.2	29.3	8.7	4.5	4.5	2.5	2.0	1.4	1.0	2.8	432.8	2	8.70
	43.9	145.6	27.1	22.2	6.4	4.3	2.9	2.3	1.7	1.2	0.9	5.2	263.6	10	43.48
1960		105.6	220.7	58.5	12.3	6.6	4.6	3.1	2.6	2.0	1.2	0.9	507.9	1	4.35
1961	89.8	48.2	106.5	14.4	5.7	6.7	3.2	2.0	1.7	1.1	0.7	2.2	219.7	15	65.22
1962	27.4	86.2	85.5	13.3	4.7	3.1	2.2	1.6	1.4	0.9	0.7	3.5	219.6	16	69.57
1963	16.6		51.4	19.6	5.5	3.2	2.3	1.4	1.1	1.0	0.6	1.5	275.6	8	34.78
1964	57.8	130.2		4.8	1.7	1.3	1.1	0.8	0.6	0.4	0.4	0.4	88.4	22	95.65
1965	25.8	18.5	32.5		1.6	1.4	1.0	0.7	0.6	0.9	0.4	3.0	136.2	21	91.30
1966	31.3	69.2	23.0	3.1		4.5	3.7	1.8	1.7	0.8	0.5	0.6	250.3	13	56.52
1967	35.8	100.3	84.9	12.0	3.5	2.3	1.8	1.1	0.9	0.6	0.4	0.5	224.7	14	60.87
1968	33.9	133.4	35.4	11.1	3.4		2.5	1.7	1.8	0.9	0.7	14.6	336.0	6	26.09
1969	48.5	175.2	69.2	13.1	4.8	2.8	2.5	1.7	1.0						
Mean	46.1	97.8	80.0	20.3	6.5	3.7	2.7	1.8	1.5	1.0	0.7	3.1	265.3		
STIF N	AME CHIE	120													
SITE N			Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun		Rank	
Year	Jul	Aug	Sep 4646.4	0ct 870.7	Nov 548.1	Dec 267.2	Jan 157.5	Feb 110.4	Mar 89.4	54.7	37.0	100.4	14761.8	3	13.04
Year 1948	Jul 3157.2	Aug 4722.8	4646.4								37.0 44.7	100.4 52.4	14761.8 11299.4	3 7	13.04 30.43
Year 1948 1949	Jul 3157.2 1563.3	Aug 4722.8 2796.9	4646.4	870.7	548.1	267.2	157.5	110.4	89.4	54.7 58.4 44.7	37.0 44.7 28.4	100.4 52.4 98.4	14761.8 11299.4 10630.5	3 7 9	13.04 30.43 39.13
Year 1948 1949 1950	Jul 3157.2 1563.3 2972.7	Aug 4722.8 2796.9 3792.4	4646.4 4601.4 2783.2	870.7 1327.1	548.1 417.3	267.2 172.1	157.5 103.4	110.4 72.1	89.4 90.4	54.7 58.4	37.0 44.7 28.4 21.4	100.4 52.4 98.4 154.8	14761.8 11299.4 10630.5 5672.5	3 7 9 20	13.04 30.43 39.13 86.96
Year 1948 1949 1950 1951	Jul 3157.2 1563.3 2972.7 622.5	Aug 4722.8 2796.9 3792.4 2479.6	4646.4 4601.4 2783.2 1548.9	870.7 1327.1 412.0	548.1 417.3 142.1	267.2 172.1 116.1	157.5 103.4 110.4	110.4 72.1 70.7	89.4 90.4 59.4	54.7 58.4 44.7	37.0 44.7 28.4 21.4 19.7	100.4 52.4 98.4 154.8 25.4	14761.8 11299.4 10630.5 5672.5 8503.8	3 7 9 20 18	13.04 30.43 39.13 86.96 78.26
Year 1948 1949 1950 1951 1952	Jul 3157.2 1563.3 2972.7 622.5 1550.9	Aug 4722.8 2796.9 3792.4 2479.6 4519.3	4646.4 4601.4 2783.2 1548.9 1683.0	870.7 1327.1 412.0 405.7 290.9	548.1 417.3 142.1 146.1	267.2 172.1 116.1 90.1	157.5 103.4 110.4 71.1	110.4 72.1 70.7 59.4	89.4 90.4 59.4 44.7	54.7 58.4 44.7 28.4	37.0 46.7 28.4 21.4 19.7 19.4	100.4 52.4 98.4 154.8 25.4 46.0	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4	3 7 9 20 18 17	13.04 30.43 39.13 86.96 78.26 73.91
Year 1948 1949 1950 1951 1952 1953	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8	870.7 1327.1 412.0 405.7	548.1 417.3 142.1 146.1 121.4	267.2 172.1 116.1 90.1 84.4	157.5 103.4 110.4 71.1 72.7	110.4 72.1 70.7 59.4 62.0	89.4 90.4 59.4 44.7 45.4	54.7 58.4 44.7 28.4 28.7 24.4 24.7	37.0 44.7 28.4 21.4 19.7 19.6 19.0	100.4 52.4 98.4 154.8 25.4 46.0 197.8	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6	3 7 9 20 18 17	13.04 30.43 39.13 86.96 78.26 73.91 47.83
Year 1948 1949 1950 1951 1952 1953 1954	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2	870.7 1327.1 412.0 405.7 290.9 340.3 934.1	548.1 417.3 142.1 146.1 121.4 133.4 292.6	267.2 172.1 116.1 90.1 84.4 88.7 146.1	157.5 103.4 110.4 71.1 72.7 70.1 93.4	110.4 72.1 70.7 59.4 62.0 49.0 63.7	89.4 90.4 59.4 44.7 45.4 32.0	54.7 58.4 44.7 28.4 28.7 24.4 24.7	37.0 46.7 28.4 21.4 19.7 19.6 19.0 33.0	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8	3 7 9 20 18 17 11 4	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39
Year 1948 1949 1950 1951 1952 1953 1954 1955	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0	267.2 172.1 116.1 90.1 84.4 88.7 146.1	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4	89.4 90.4 59.4 44.7 45.4 32.0 36.7	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7	37.0 44.7 28.4 21.4 19.7 19.6 19.0	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0	3 7 9 20 18 17 11 4 5	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 4159.7	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3 1019.8	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7	37.0 46.7 28.4 21.4 19.7 19.6 19.0 33.0	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8 74.4	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0	3 7 9 20 18 17 11 4 5	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 4159.7 1131.9	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7 3356.4	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8 1918.2	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3 1019.8 324.6	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8 149.1	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2 97.4	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8 202.2 77.4	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7 108.1	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7	37.0 44.7 28.4 21.4 19.7 19.6 19.0 33.0 51.0	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8 74.4 57.7	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0 7302.2 10099.4	3 7 9 20 18 17 11 4 5 19	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 4159.7 1131.9 1528.6	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7 3356.4 2724.2	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8 1918.2 3404.7	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3 1019.8 324.6 1487.9	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8 149.1 423.7	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2 97.4 171.1	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8 202.2 77.4 107.4	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1 56.4 77.4	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7 108.1 58.7 56.7	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7 102.8 33.4	37.0 44.7 28.4 21.4 19.7 19.6 19.0 33.0 51.0 24.4	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8 74.4 57.7	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0 7302.2 10099.4 17394.3	3 7 9 20 18 17 11 4 5 19 12	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 6159.7 1131.9 1528.6 3857.8	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7 3356.4 2724.2 5741.6	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8 1918.2 3404.7 5512.7	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3 1019.8 324.6 1487.9 1177.6	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8 149.1 423.7 350.6	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2 97.4 171.1 180.5	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8 202.2 77.4 107.4 182.1	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1 56.4 77.4	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7 108.1 58.7 56.7	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7 102.8 33.4 35.0	37.0 44.7 28.4 21.4 19.7 19.6 19.0 33.0 51.0 24.4 25.0	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8 74.4 57.7	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0 7302.2 10099.4 17394.3 10596.1	3 7 9 20 18 17 11 4 5 19 12 2	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70 43.48
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 4159.7 1131.9 1528.6 3857.8 1763.7	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7 3356.4 2724.2 5741.6 5851.3	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8 1918.2 3404.7 5512.7 1090.9	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3 1019.8 324.6 1487.9 1177.6 891.7	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8 149.1 423.7 350.6 258.9	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2 97.4 171.1 180.5 172.1	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8 202.2 77.4 107.4 182.1 117.8	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1 56.4 77.4 102.1 90.4	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7 108.1 58.7 56.7 80.4	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7 102.8 33.4 35.0 54.4	37.0 44.7 28.4 21.4 19.7 19.4 19.0 33.0 51.0 24.4 25.0 42.4	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8 74.4 57.7	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0 7302.2 10099.4 17394.3 10596.1 20415.0	3 7 9 20 18 17 11 4 5 19 12 12 10 10	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 4159.7 1131.9 1528.6 3857.8 1763.7 3608.2	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7 3356.4 2724.2 5741.6 5851.3 4243.7	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8 1918.2 3404.7 5512.7 1090.9 8870.1	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3 1019.8 324.6 1487.9 1177.6 891.7 2352.6	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8 149.1 423.7 350.6 258.9 495.4	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2 97.4 171.1 180.5 172.1 264.9	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8 202.2 77.4 107.4 182.1 117.8 186.5	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1 56.4 77.4 102.1 90.4	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7 108.1 58.7 80.4 67.1	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7 102.8 33.4 35.0 54.4 47.0	37.0 44.7 28.4 21.4 19.7 19.6 19.0 33.0 51.0 24.4 25.0 42.4 35.0	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8 74.4 57.7 112.1 210.2 37.0 87.7	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0 7302.2 10099.4 17394.3 10596.1 20415.0 8831.7	3 7 9 20 18 17 11 4 5 19 12 12 10 10 11 11 11 12 11 12 11 11 11 11 11 11 11	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 65.22
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 4159.7 1131.9 1528.6 3857.8 1763.7 3608.2 1099.6	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7 3356.4 2724.2 5741.6 5851.3 4243.7 1936.6	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8 1918.2 3404.7 5512.7 1090.9 8870.1 4279.4	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3 1019.8 324.6 1487.9 1177.6 891.7 2352.6 576.8	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8 149.1 423.7 350.6 258.9 495.4 230.5	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2 97.4 171.1 180.5 172.1 264.9 268.2	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8 202.2 77.4 107.4 182.1 117.8 186.5 128.8	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1 56.4 77.4 102.1 90.4	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7 108.1 58.7 56.7 80.4 67.1 102.8	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7 102.8 33.4 35.0 54.4 47.0 79.1	37.0 44.7 28.4 21.4 19.7 19.6 19.0 33.0 51.0 24.4 25.0 42.4 35.0 49.4 29.7	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8 74.4 57.7 112.1 210.2 37.0 87.7 139.4	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0 7302.2 10099.4 17394.3 10596.1 20415.0 8831.7 8826.1	3 7 9 20 188 177 111 4 5 199 122 100 1 1 15 16 16 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 65.22 69.57
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 4159.7 1131.9 1528.6 3857.8 1763.7 3608.2 1099.6 666.9	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7 3356.4 2724.2 5741.6 5851.3 4243.7 1936.6 3462.8	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8 1918.2 3404.7 5512.7 1090.9 8870.1 4279.4 3437.4	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3 1019.8 324.6 1487.9 1177.6 891.7 2352.6 576.8 532.8	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8 149.1 423.7 350.6 258.9 495.4 230.5 189.8	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2 97.4 171.1 180.5 172.1 264.9 268.2 125.1	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8 202.2 77.4 107.4 182.1 117.8 186.5 128.8 86.4	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1 56.4 77.4 102.1 90.4 125.4 81.1	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7 108.1 58.7 56.7 80.4 67.1 102.8 70.1	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7 102.8 33.4 35.0 54.4 47.0 79.1 43.4	37.0 44.7 28.4 21.4 19.7 19.6 19.0 33.0 51.0 24.4 25.0 42.4 35.0 49.4 29.7 28.4	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8 74.4 57.7 112.1 210.2 37.0 87.7	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0 7302.2 10099.4 17394.3 10596.1 20415.0 8831.7 8826.1	3 7 9 20 18 17 11 4 5 5 19 12 2 10 0 1 1 15 16 8 8 8	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 65.22 69.57 34.78
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 4159.7 1131.9 1528.6 3857.8 1763.7 3608.2 1099.6 666.9 2322.9	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7 3356.4 2724.2 5741.6 5851.3 4243.7 1936.6 3462.8 5232.9	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8 1918.2 3404.7 5512.7 1090.9 8870.1 4279.4 3437.4 2067.3	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3 1019.8 324.6 1487.9 1177.6 891.7 2352.6 576.8 532.8 787.3	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8 149.1 423.7 350.6 258.9 495.4 230.5 189.8 220.8	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2 97.4 171.1 180.5 172.1 264.9 268.2 125.1 127.1	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8 202.2 77.4 107.4 182.1 117.8 186.5 128.8 86.4 93.1	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1 56.4 77.4 102.1 90.4 125.4 81.1 63.4	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7 108.1 58.7 67.1 102.8 70.1 56.7 45.4	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7 102.8 33.4 35.0 54.4 47.0 79.1 43.4 37.0	37.0 44.7 28.4 21.4 19.7 19.6 19.0 33.0 51.0 24.4 25.0 42.4 35.0 49.4 29.7 28.4 24.4	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8 74.4 57.7 112.1 210.2 37.0 87.7 139.4	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0 7302.2 10099.4 17394.3 10596.1 20415.0 8831.7 8826.1 11076.8 3552.5	3 7 9 20 18 17 11 4 5 5 19 12 12 10 11 15 15 16 16 18 17 11 11 12 14 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 65.22 69.57 34.78 95.65
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 4159.7 1131.9 1528.6 3857.8 1763.7 3608.2 1099.6 666.9 2322.9 1037.8	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7 3356.4 2724.2 5741.6 5851.3 4243.7 1936.6 3462.8 5232.9 745.6	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8 1918.2 3404.7 5512.7 1090.9 8870.1 4279.4 3437.4 2067.3 1306.4	870.7 1327.1 412.0 405.7 290.9 348.3 934.1 2450.3 1019.8 324.6 1487.9 1177.6 891.7 2352.6 576.8 532.8 787.3 191.5	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8 149.1 423.7 350.6 258.9 495.4 230.5 189.8 220.8 69.4	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2 97.4 171.1 180.5 172.1 264.9 268.2 125.1 127.1 51.0	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8 202.2 77.4 107.4 182.1 117.8 186.5 128.8 86.4 93.1 44.0	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1 56.4 77.4 102.1 90.4 125.4 81.1 63.4 56.7 33.0	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7 108.1 58.7 80.4 67.1 102.8 70.1 56.7 45.4 23.4	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7 102.8 33.4 35.0 54.4 47.0 79.1 43.4 37.0 40.4	37.0 44.7 28.4 21.4 19.7 19.6 19.0 33.0 51.0 24.4 25.0 42.4 35.0 49.4 29.7 28.4 24.4 15.4	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8 74.4 57.7 112.1 210.2 37.0 87.7 139.4 58.7	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0 7302.2 10099.4 17394.3 10596.1 20415.0 8831.7 8826.1 11076.8 3552.5 5475.4	3 7 9 9 20 18 17 11 4 5 19 12 10 11 15 16 18 8 8 8 5 22 14 21	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 65.22 69.57 34.78 95.65 91.30
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 4159.7 1131.9 1528.6 3857.8 1763.7 3608.2 1099.6 666.9 2322.9 1037.8 1259.7	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7 3356.4 2724.2 5741.6 5851.3 4243.7 1936.6 3462.8 5232.9 745.6 2779.6	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8 1918.2 3404.7 5512.7 1090.9 8870.1 4279.4 3437.4 2067.3 1306.4 925.7	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3 1019.8 324.6 1487.9 1177.6 891.7 2352.6 576.8 532.8 787.3 191.5 125.4	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8 149.1 423.7 350.6 258.9 495.4 230.5 189.8 220.8 69.4 66.4	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2 97.4 171.1 180.5 172.1 264.9 268.2 125.1 127.1 51.0 57.0	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8 202.2 77.4 107.4 182.1 117.8 186.5 128.8 86.4 93.1 44.0	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1 56.4 77.4 102.1 90.4 125.4 81.1 63.4 56.7 33.0 28.0	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7 108.1 58.7 56.7 80.4 67.1 102.8 70.1 56.7 45.4 23.4 23.6	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7 102.8 33.4 35.0 54.4 47.0 79.1 43.4 37.0 40.4 17.0	37.0 44.7 28.4 21.4 19.7 19.6 19.0 33.0 51.0 24.4 25.0 42.4 35.0 49.4 29.7 28.4 24.4 15.4	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8 74.4 57.7 112.1 210.2 37.0 87.7 139.4 58.7 18.0	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0 7302.2 10099.4 17394.3 10596.1 20415.0 8831.7 8826.1 11076.8 3552.5 5475.4	3 7 9 20 18 17 11 4 5 19 12 10 11 15 16 16 18 8 8 5 22 22 14 11 13	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 65.22 69.57 34.78 95.65 91.30 56.52
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 4159.7 1131.9 1528.6 3857.8 1763.7 3608.2 1099.6 666.9 2322.9 1037.8 1259.7 1437.8	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7 3356.4 2724.2 5741.6 5851.3 4243.7 1936.6 3462.8 5232.9 745.6 2779.6 4032.6	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8 1918.2 3404.7 5512.7 1090.9 8870.1 4279.4 3437.4 2067.3 1306.4 925.7 3414.1	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3 1019.8 324.6 1487.9 1177.6 891.7 2352.6 576.8 532.8 787.3 191.5 125.4 481.0	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8 149.1 423.7 350.6 258.9 495.4 230.5 189.8 220.8 69.4 66.4 142.1	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2 97.4 171.1 180.5 172.1 264.9 268.2 125.1 127.1 57.0 181.8	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8 202.2 77.4 107.4 186.5 128.8 86.4 93.1 44.0 40.4	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1 56.4 77.4 102.1 90.4 125.4 81.1 63.4 56.7 33.0 28.0 74.1	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7 108.1 58.7 56.7 80.4 67.1 102.8 70.1 56.7 45.4 23.4 23.0 69.1	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7 102.8 33.4 35.0 79.1 43.4 37.0 40.4 17.0 37.0 33.4	37.0 44.7 28.4 21.4 19.7 19.6 19.0 33.0 51.0 24.4 25.0 42.4 35.0 49.4 29.7 28.4 24.4 15.4 14.7 21.7	100. 4 52. 4 98. 4 154. 8 25. 4 46. 0 197. 8 319. 3 173. 8 74. 4 57. 7 112. 1 210. 2 37. 0 87. 7 139. 4 58. 7 18. 0 118. 4	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0 7302.2 10099.4 17394.3 10596.1 20415.0 8831.7 8826.1 11076.8 3552.5 5475.4 10060.4	3 7 9 20 18 17 11 4 5 5 19 12 2 2 100 1 15 16 18 8 8 5 22 21 1 13 9 14	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 65.22 69.57 34.78 95.65 91.30 56.52 60.87
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	Jul 3157.2 1563.3 2972.7 622.5 1550.9 1736.1 1147.3 849.0 4159.7 1131.9 1528.6 3857.8 1763.7 3608.2 1099.6 666.9 2322.9 1037.8 1259.7 1437.8 1362.4	Aug 4722.8 2796.9 3792.4 2479.6 4519.3 4793.2 2109.0 3730.6 5050.7 3356.4 2724.2 5741.6 5851.3 4243.7 1936.6 3462.8 5232.9 745.6 2779.6 4032.6 5363.3	4646.4 4601.4 2783.2 1548.9 1683.0 1476.8 5213.2 6439.8 1901.8 1918.2 3404.7 5512.7 1090.9 8870.1 4279.4 3437.4 2067.3 1306.4 925.7 3414.1 1423.5	870.7 1327.1 412.0 405.7 290.9 340.3 934.1 2450.3 1019.8 324.6 1487.9 1177.6 891.7 2352.6 576.8 532.8 787.3 191.5 125.4 481.0 445.7	548.1 417.3 142.1 146.1 121.4 133.4 292.6 410.0 635.8 149.1 423.7 350.6 258.9 495.4 230.5 189.8 220.8 69.4 66.4 142.1 135.8	267.2 172.1 116.1 90.1 84.4 88.7 146.1 192.1 234.2 97.4 171.1 180.5 172.1 264.9 268.2 125.1 127.1 57.0 181.8	157.5 103.4 110.4 71.1 72.7 70.1 93.4 122.8 202.2 77.4 107.4 186.5 128.8 86.4 93.1 44.0 40.4 146.8 71.1	110.4 72.1 70.7 59.4 62.0 49.0 63.7 81.4 120.1 56.4 77.4 102.1 90.4 125.4 81.1 63.4 56.7 33.0 28.0 74.1 44.0	89.4 90.4 59.4 44.7 45.4 32.0 36.7 59.7 108.1 58.7 56.7 80.4 67.1 102.8 70.1 56.7 45.4 23.0 69.1 35.0	54.7 58.4 44.7 28.4 28.7 24.4 24.7 43.7 102.8 33.4 47.0 79.1 43.4 37.0 40.4 17.0 33.4 23.4	37.0 44.7 28.4 21.4 19.7 19.6 19.0 33.0 51.0 24.4 25.0 42.4 35.0 49.4 29.7 28.4 24.4 15.4 14.7 21.7	100.4 52.4 98.4 154.8 25.4 46.0 197.8 319.3 173.8 74.4 57.7 112.1 210.2 37.0 87.7 18.0 118.4 26.0 19.4 588.1	14761.8 11299.4 10630.5 5672.5 8503.8 8809.4 10277.6 14731.8 13760.0 7302.2 10099.4 17394.3 10596.1 20415.0 8831.7 8826.1 11076.8 3552.5 5475.4 10060.4	3 7 9 20 18 17 11 4 5 5 19 12 10 1 1 15 16 6 8 8 8 5 22 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 65.22 69.57 34.78 95.65 91.30 56.52 60.87 26.09

ò	TT	C	NAM	E	SHER
Э	П	С.	MAL	IE:	SUEV

Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prot
1948	122.1	182.6	179.7	33.7	21.2	10.3	6.1	4.3	3.5	2.1	1.4	3.9	570.8	3	13.0
1949	60.5	108.2	177.9	51.3	16.1	6.7	4.0	2.8	3.5	2.3	1.7	2.0	437.0	7	30.4
1950	114.9	146.6	107.6	15.9	5.5	4.5	4.3	2.7	2.3	1.7	1.1	3.8	411.1	9	39.1
1951	24.1	95.9	59.9	15.7	5.7	3.5	2.8	2.3	1.7	1.1	0.8	6.0	219.4	20	86.9
1952	60.0	174.8	65.1	11.3	4.7	3.3	2.8	2.4	1.8	1.1	0.8	1.0	328.8	18	78.2
1953	67.1	185.4	57.1	13.2	5.2	3.4	2.7	1.9	1.2	0.9	0.8	1.8	340.7	17	73.9
1954	44.4	81.6	201.6	36.1	11.3	5.7	3.6	2.5	1.4	0.9	0.7	7.7	397.4	11	47.8
1955	32.8	144.3	249.0	94.8	15.9	7.4	4.8	3.2	2.3	1.7	1.3	12.4	569.7	4	17.3
1956	160.9	195.3	73.5	39.4	24.6	9.1	7.8	4.6	4.2	4.0	2.0	6.7	532.1	5	21.7
1957	43.8	129.8	74.2	12.6	5.8	3.8	3.0	2.2	2.3	1.3	0.9	2.9	282.4	19	82.6
1958	59.1	105.3	131.7	57.5	16.4	6.6	4.2	3.0	2.2	1.4	1.0	2.2	390.5	12	52.1
1959	149.2	222.0	213.2	45.5	13.6	7.0	7.0	4.0	3.1	2.1	1.6	4.3	672.6	2	8.71
1960	68.2	226.3	42.2	34.5	10.0	6.7	4.6	3.5	2.6	1.8	1.4	8.1	409.7	10	43.48
1961	139.5	164.1	343.0	91.0	19.2	10.2	7.2	4.8	4.0	3.1	1.9	1.4	789.4	1	4.3
1962	42.5	74.9	165.5	22.3	8.9	10.4	5.0	3,1	2.7	1.7	1.1	3.4	341.5	15	65.2
1963	25.8	133.9	132.9	20.6	7.3	4.8	3.3	2.5	2.2	1.4	1.1	5.4	341.3	16	69.5
1964	89.8		79.9	30.4	8.5	4.9	3.6	2.2	1.8	1.6	0.9	2.3	428.3	8	34.78
1965	40.1	28.8	50.5	7.4	2.7	2.0	1.7	1.3	0.9	0.7	0.6		137.4	22	95.6
1966	48.7	107.5	35.8	4.8	2.6	2.2	1.6	1.1	0.9	1.4		4.6	211.7	21	91.3
1967	55.6	155.9	132.0	18.6	5.5	7.0	5.7	2.9	2.7	1.3	0.8	1.0	389.0	13	56.5
1968	52.7	207.4	55.0	17.2	5.3	3.5	2.8	1.7	1.4	0.9	0.6	0.8	349.2	14	60.8
1969	75.4	272.3	107.5	20.4	7.5	4.4	4.0	2.7	2.8	1.5	1.0	22.7	522.2	6	26.0
Mean	71.7	152.1	124.3	31.6	10.1	5.8	4,2	2.8	2.3	1.6	1.1	4.8	412.4		
SITE A		HREWA		3			r	É							- 245
Year	Jul	Aug	Sep	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow		
Year 1948	Jul 65.7	Aug 98.3	96.7	18.1	11.4	5.6	3.3	2.3	1.9	1.1	0.8	2.1	307.1	3	13.0
Year 1948 1949	Jul 65.7 32.5	Aug 98.3 58.2	96.7 95.7	18.1 27.6	11.4	5.6 3.6	3.3	2.3	1.9	1.1	0.8	2.1	307.1 235.0	3 7	13.0
Year 1948 1949 1950	Jul 65.7 32.5 61.8	Aug 98.3 58.2 78.9	96.7 95.7 57.9	18.1 27.6 8.6	11.4 8.7 3.0	5.6 3.6 2.4	3.3 2.2 2.3	2.3 1.5 1.5	1.9 1.9 1.2	1.1 1.2 0.9	0.8 0.9 0.6	2.1 1.1 2.0	307.1 235.0 221.2	3 7 9	13.00 30.43 39.13
Year 1948 1949 1950 1951	Jul 65.7 32.5 61.8 12.9	Aug 98.3 58.2 78.9 51.6	96.7 95.7 57.9 32.2	18.1 27.6 8.6 8.4	11.4 8.7 3.0 3.0	5.6 3.6 2.4 1.9	3.3 2.2 2.3 1.5	2.3 1.5 1.5 1.2	1.9 1.9 1.2 0.9	1.1 1.2 0.9 0.6	0.8 0.9 0.6 0.4	2.1 1.1 2.0 3.2	307.1 235.0 221.2 118.0	3 7 9 20	13.00 30.4 39.1 86.9
Year 1948 1949 1950 1951 1952	Jul 65.7 32.5 61.8 12.9 32.3	Aug 98.3 58.2 78.9 51.6 94.0	96.7 95.7 57.9 32.2 35.0	18.1 27.6 8.6 8.4 6.1	11.4 8.7 3.0 3.0 2.5	5.6 3.6 2.4 1.9 1.8	3.3 2.2 2.3 1.5 1.5	2.3 1.5 1.5 1.2 1.3	1.9 1.9 1.2 0.9 0.9	1.1 1.2 0.9 0.6 0.6	0.8 0.9 0.6 0.4 0.4	2.1 1.1 2.0 3.2 0.5	307.1 235.0 221.2 118.0 176.9	3 7 9 20 18	13.00 30.43 39.13 86.90 78.20
Year 1948 1949 1950 1951 1952 1953	Jul 65.7 32.5 61.8 12.9 32.3 36.1	Aug 98.3 58.2 78.9 51.6 94.0 99.7	96.7 95.7 57.9 32.2 35.0 30.7	18.1 27.6 8.6 8.4 6.1 7.1	11.4 8.7 3.0 3.0 2.5 2.8	5.6 3.6 2.4 1.9 1.8 1.9	3.3 2.2 2.3 1.5 1.5	2.3 1.5 1.5 1.2 1.3	1.9 1.9 1.2 0.9 0.9 0.7	1.1 1.2 0.9 0.6 0.6 0.5	0.8 0.9 0.6 0.4 0.4	2.1 1.1 2.0 3.2 0.5 1.0	307.1 235.0 221.2 118.0 176.9 183.3	3 7 9 20 18 17	13.00 30.4 39.1 86.9 78.2 73.9
Year 1948 1949 1950 1951 1952 1953 1954	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9	96.7 95.7 57.9 32.2 35.0 30.7 108.6	18.1 27.6 8.6 8.4 6.1 7.1 19.4	11.4 8.7 3.0 3.0 2.5 2.8 6.1	5.6 3.6 2.4 1.9 1.8 1.9 3.0	3.3 2.2 2.3 1.5 1.5 1.5	2.3 1.5 1.5 1.2 1.3 1.0	1.9 1.9 1.2 0.9 0.9 0.7	1.1 1.2 0.9 0.6 0.6 0.5	0.8 0.9 0.6 0.4 0.4 0.4	2.1 1.1 2.0 3.2 0.5 1.0 4.1	307.1 235.0 221.2 118.0 176.9 183.3 213.8	3 7 9 20 18 17 11	13.06 30.43 39.13 86.96 78.26 73.93 47.83
Year 1948 1949 1950 1951 1952 1953 1954 1955	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0	3.3 2.2 2.3 1.5 1.5 1.5 2.5	2.3 1.5 1.5 1.2 1.3 1.0 1.3	1.9 1.9 1.2 0.9 0.9 0.7 0.8 1.2	1.1 1.2 0.9 0.6 0.6 0.5 0.5	0.8 0.9 0.6 0.4 0.4 0.4 0.4	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6	307.1 235.0 221.2 118.0 176.9 183.3 213.8	3 7 9 20 18 17 11 4	13.06 30.43 39.13 86.96 78.26 73.93 47.83 17.39
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.9	3.3 2.2 2.3 1.5 1.5 1.5 1.5 4.2	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5	1.9 1.9 1.2 0.9 0.9 0.7 0.8 1.2 2.3	1.1 1.2 0.9 0.6 0.6 0.5 0.5 0.9 2.1	0.8 0.9 0.6 0.4 0.4 0.4 0.4	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3	3 7 9 20 18 17 11 4 5	13.00 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.9 2.0	3.3 2.2 2.3 1.5 1.5 1.5 2.5 4.2	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5	1.9 1.9 1.2 0.9 0.9 0.7 0.8 1.2 2.3	1.1 1.2 0.9 0.6 0.6 0.5 0.5 0.5	0.8 0.9 0.6 0.4 0.4 0.4 0.7 1.1	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9	3 7 9 20 18 17 11 4 5	13.00 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5 31.8	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8 56.7	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9 70.8	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8 31.0	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2 3.1 8.8	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.9 2.0 3.6	3.3 2.2 2.3 1.5 1.5 1.5 1.9 2.5 4.2 1.6 2.2	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5 1.2	1.9 1.9 1.2 0.9 0.9 0.7 0.8 1.2 2.3 1.2	1.1 1.2 0.9 0.6 0.6 0.5 0.5 0.9 2.1 0.7	0.8 0.9 0.6 0.4 0.4 0.4 0.7 1.1 0.5	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9 210.1	3 7 9 20 18 17 11 4 5 19	13.00 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5 31.8 80.3	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8 56.7 119.4	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9 70.8 114.7	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8 31.0 24.5	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2 3.1 8.8 7.3	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.9 2.0 3.6 3.8	3.3 2.2 2.3 1.5 1.5 1.5 1.9 2.5 4.2 1.6 2.2 3.8	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5 1.2 1.6 2.1	1.9 1.9 1.2 0.9 0.7 0.8 1.2 2.3 1.2 1.2	1.1 1.2 0.9 0.6 0.5 0.5 0.7 0.7	0.8 0.9 0.6 0.4 0.4 0.4 0.7 1.1 0.5 0.5	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5 1.2	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9 210.1 361.8	3 7 9 20 18 17 11 4 5 19 12 2	13.04 30.43 39.13 86.96 78.26 73.93 47.83 17.39 21.74 82.63 52.17 8.76
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5 31.8 80.3 36.7	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8 56.7 119.4 121.7	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9 70.8 114.7 22.7	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8 31.0 24.5 18.5	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2 3.1 8.8 7.3 5.4	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.9 2.0 3.6 3.8 3.6	3.3 2.2 2.3 1.5 1.5 1.5 1.9 2.5 4.2 1.6 2.2 3.8 2.5	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5 1.2 1.6 2.1	1.9 1.9 1.2 0.9 0.7 0.8 1.2 2.3 1.2 1.2	1.1 1.2 0.9 0.6 0.6 0.5 0.5 0.7 0.7	0.8 0.9 0.6 0.4 0.4 0.4 0.7 1.1 0.5 0.9	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5 1.2 2.3 4.4	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9 210.1 361.8 220.4	3 7 9 20 18 17 11 4 5 19 12 2	13.04 30.43 39.13 86.96 78.26 73.93 47.83 17.39 21.74 82.63 52.13 8.76 43.48
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5 31.8 80.3 36.7 75.1	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8 56.7 119.4 121.7 88.3	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9 70.8 114.7 22.7 184.5	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8 31.0 24.5 18.5 48.9	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2 3.1 8.8 7.3 5.4	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.9 2.0 3.6 3.8 3.6 5.5	3.3 2.2 2.3 1.5 1.5 1.5 1.9 2.5 4.2 1.6 2.2 3.8 2.5 3.9	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5 1.6 2.1 1.9 2.6	1.9 1.9 1.2 0.9 0.7 0.8 1.2 2.3 1.2 1.2 1.7	1.1 1.2 0.9 0.6 0.6 0.5 0.5 0.9 2.1 0.7 0.7 1.1	0.8 0.9 0.6 0.4 0.4 0.7 1.1 0.5 0.9	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5 1.2 2.3 4.4 0.8	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9 210.1 361.8 220.4 424.7	3 7 9 20 18 17 11 4 5 19 12 2 10	13.04 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7 43.4 4.3
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5 31.8 80.3 36.7 75.1 22.9	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8 56.7 119.4 121.7 88.3 40.3	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9 70.8 114.7 22.7 184.5 89.0	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8 31.0 24.5 18.5 48.9 12.0	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2 3.1 8.8 7.3 5.4 10.3 4.8	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.9 2.0 3.6 3.6 5.5 5.6	3.3 2.2 2.3 1.5 1.5 1.5 1.9 2.5 4.2 1.6 2.2 3.8 2.5 3.9 2.7	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5 1.2 1.6 2.1 1.9 2.6 1.7	1.9 1.9 1.2 0.9 0.7 0.8 1.2 2.3 1.2 1.2 1.7 1.4	1.1 1.2 0.9 0.6 0.6 0.5 0.9 2.1 0.7 0.7 1.1 1.0 1.6	0.8 0.9 0.6 0.4 0.4 0.7 1.1 0.5 0.5 0.7	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5 1.2 2.3 4.4 0.8 1.8	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9 210.1 361.8 220.4 424.7 183.8	3 7 9 20 18 17 11 4 5 19 12 2 10 15	13.00 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7 43.4 43.4 65.2
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5 31.8 80.3 36.7 75.1 22.9 13.9	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8 56.7 119.4 121.7 88.3 40.3 72.0	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9 70.8 114.7 22.7 184.5 89.0 71.5	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8 31.0 24.5 18.5 48.9 12.0 11.1	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2 3.1 8.8 7.3 5.4 10.3 4.8	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.9 2.0 3.6 3.8 3.6 5.5 5.6 2.6	3.3 2.2 2.3 1.5 1.5 1.5 1.9 2.5 4.2 1.6 2.2 3.8 2.5 3.9 2.7	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5 1.2 1.6 2.1 1.9 2.6 1.7	1.9 1.9 1.2 0.9 0.7 0.8 1.2 2.3 1.2 1.2 1.7 1.4 2.1	1.1 1.2 0.9 0.6 0.6 0.5 0.9 2.1 0.7 0.7 1.1 1.0 1.6 0.9 0.8	0.8 0.9 0.6 0.4 0.4 0.7 1.1 0.5 0.5 0.7	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5 1.2 2.3 4.4 0.8 1.8 2.9	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9 210.1 361.8 220.4 424.7 183.8 183.6	3 7 9 20 18 17 11 4 5 19 12 2 10 15 16	13.04 39.13 86.90 78.26 73.99 47.83 21.76 82.61 52.17 43.48 43.48 65.22 69.55
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5 31.8 80.3 36.7 75.1 22.9 13.9 48.3	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8 56.7 119.4 121.7 88.3 40.3 72.0 108.9	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9 70.8 114.7 22.7 184.5 89.0 71.5 43.0	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8 31.0 24.5 18.5 48.9 12.0 11.1 16.4	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2 3.1 8.8 7.3 5.4 10.3 4.8 4.0	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.9 2.0 3.6 3.8 3.6 5.5 5.6 2.6	3.3 2.2 2.3 1.5 1.5 1.5 1.9 2.5 4.2 1.6 2.2 3.8 2.5 3.9 2.7 1.8 1.9	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5 1.6 2.1 1.9 2.6 1.7	1.9 1.9 1.2 0.9 0.7 0.8 1.2 2.3 1.2 1.2 1.7 1.4 2.1 1.5 1.2	1.1 1.2 0.9 0.6 0.6 0.5 0.9 2.1 0.7 0.7 1.1 1.0 1.6 0.9 0.8	0.8 0.9 0.6 0.4 0.4 0.7 1.1 0.5 0.5 0.7 1.0 0.6 0.6	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5 1.2 2.3 4.4 0.8 1.8 2.9	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9 210.1 361.8 220.4 424.7 183.8 183.6 230.4	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8	13.04 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7 64.3 65.2 69.5 34.7 8
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5 31.8 80.3 36.7 75.1 22.9 13.9 48.3 21.6	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8 56.7 119.4 121.7 88.3 40.3 72.0 108.9 15.5	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9 70.8 114.7 22.7 184.5 89.0 71.5 43.0 27.2	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8 31.0 24.5 18.5 48.9 12.0 11.1 16.4 4.0	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2 3.1 8.8 7.3 5.4 10.3 4.0 4.6 1.4	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.9 2.0 3.6 3.8 3.6 5.5 5.6 2.6 2.6	3.3 2.2 2.3 1.5 1.5 1.5 1.9 2.5 4.2 1.6 2.2 3.8 2.5 3.9 2.7 1.8	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5 1.2 1.6 2.1 1.9 2.6 1.7	1.9 1.9 1.2 0.9 0.7 0.8 1.2 2.3 1.2 1.7 1.4 2.1 1.5 1.2 0.9	1.1 1.2 0.9 0.6 0.5 0.5 0.7 0.7 1.1 1.0 1.6 0.9 0.8 0.8	0.8 0.9 0.6 0.4 0.4 0.7 1.1 0.5 0.9 0.7 1.0 0.6 0.6 0.5	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5 1.2 2.3 4.4 0.8 1.8 2.9 1.2 0.4	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9 210.1 361.8 220.4 424.7 183.8 183.6 230.4 73.9	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8 22	13.04 30.4 39.1 86.9 78.2 47.8 17.3 21.7 82.6 52.1 8.7 43.4 43.4 65.2 69.5 34.7 895.6
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5 31.8 80.3 36.7 75.1 22.9 13.9 48.3 21.6 26.2	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8 56.7 119.4 121.7 88.3 40.3 72.0 108.9 15.5 57.8	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9 70.8 114.7 22.7 184.5 89.0 71.5 43.0 27.2 19.3	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8 31.0 24.5 18.5 48.9 12.0 11.1 16.4 4.0 2.6	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2 3.1 8.8 7.3 5.4 10.3 4.6 1.4	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.9 2.0 3.6 3.8 3.6 5.5 5.6 2.6 1.1	3.3 2.2 2.3 1.5 1.5 1.5 1.9 2.5 4.2 1.6 2.2 3.8 2.5 3.9 2.7 1.8 1.9	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5 1.6 2.1 1.9 2.6 1.7 1.3 1.2 0.7	1.9 1.9 1.2 0.9 0.7 0.8 1.2 2.3 1.2 1.7 1.4 2.1 1.5 1.2 0.9 0.5	1.1 1.2 0.9 0.6 0.6 0.5 0.5 0.9 2.1 0.7 0.7 1.1 1.0 1.6 0.9 0.8 0.3 0.3	0.8 0.9 0.6 0.4 0.4 0.7 1.1 0.5 0.9 0.7 1.0 0.6 0.6 0.3	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5 1.2 2.3 4.4 0.8 1.8 2.9 1.2 0.4 2.5	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9 210.1 361.8 220.4 424.7 183.8 183.6 230.4 73.9 113.9	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8 22 21	13.04 39.1. 86.9 78.2 73.9 47.8 17.3 21.7 82.6 652.1 43.4 4.3 65.2 69.5 34.7 95.6 91.3
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5 31.8 80.3 36.7 75.1 22.9 13.9 48.3 21.6 26.2 29.9	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8 56.7 119.4 121.7 88.3 40.3 72.0 108.9 15.5 57.8 83.9	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9 70.8 114.7 22.7 184.5 89.0 71.5 43.0 27.2 19.3 71.0	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8 31.0 24.5 18.5 48.9 12.0 11.1 16.4 4.0 2.6 10.0	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2 3.1 8.8 7.3 5.4 10.3 4.8 4.0 4.6 1.4 1.4 3.0	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.0 4.9 2.0 3.6 5.5 5.6 2.6 2.6 1.1 1.2 3.8	3.3 2.2 2.3 1.5 1.5 1.5 1.5 1.9 2.5 4.2 1.6 2.2 3.8 2.5 3.9 2.7 1.8 1.9	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5 1.6 2.1 1.9 2.6 1.7 1.3 1.2 0.7 0.6 1.5	1.9 1.9 1.2 0.9 0.7 0.8 1.2 2.3 1.2 1.2 1.7 1.4 2.1 1.5 1.2 0.9	1.1 1.2 0.9 0.6 0.6 0.5 0.9 2.1 0.7 0.7 1.1 1.0 1.6 0.9 0.8 0.3 0.8	0.8 0.9 0.6 0.4 0.4 0.7 1.1 0.5 0.5 0.7 1.0 0.6 0.6 0.6 0.3	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5 1.2 2.3 4.4 0.8 1.8 2.9 1.2 0.4 2.5 0.5	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9 210.1 361.8 220.4 424.7 183.8 183.6 230.4 73.9 113.9 209.3	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8 22 21 13	13.04 39.13 86.96 78.26 73.9 47.83 17.3 21.76 82.66 52.11 8.70 43.44 4.33 65.22 69.5 34.78 91.30 56.55
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5 31.8 80.3 36.7 75.1 22.9 13.9 48.3 21.6 26.2 29.9 28.3	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8 56.7 119.4 121.7 88.3 40.3 72.0 108.9 15.5 57.8 83.9 111.6	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9 70.8 114.7 22.7 184.5 89.0 71.5 43.0 27.2 19.3 71.0 29.6	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8 31.0 24.5 18.5 48.9 12.0 11.1 16.4 4.0 2.6 10.0 9.3	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2 3.1 8.8 7.3 5.4 10.3 4.8 4.0 4.6 1.4 3.0 2.8	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.9 2.0 3.6 3.8 3.6 5.5 5.6 2.6 2.6 1.1 1.2 3.8 1.9	3.3 2.2 2.3 1.5 1.5 1.5 1.5 2.5 4.2 1.6 2.2 3.8 2.5 3.9 2.7 1.8 1.9 0.9 0.8 3.0 1.5	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5 1.2 1.6 2.1 1.9 2.6 1.7 1.3 1.2 0.7 0.6 1.5	1.9 1.9 1.2 0.9 0.7 0.8 1.2 2.3 1.2 1.7 1.4 2.1 1.5 1.2 0.9 0.5 0.5	1.1 1.2 0.9 0.6 0.6 0.5 0.9 2.1 0.7 0.7 1.1 1.0 1.6 0.9 0.8 0.8 0.3 0.8	0.8 0.9 0.6 0.4 0.4 0.7 1.1 0.5 0.5 0.7 1.0 0.6 0.6 0.6 0.5	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5 1.2 2.3 4.4 0.8 1.8 2.9 1.2 0.4 2.5 0.5	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9 210.1 361.8 220.4 424.7 183.8 183.6 230.4 73.9 113.9 209.3 187.8	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8 22 2 21 13 14	13.04 39.13 86.90 78.26 73.91 47.83 17.33 21.74 82.61 52.11 8.70 43.48 4.33 65.22 69.53 34.78 95.63 91.30 56.52 60.87
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960	Jul 65.7 32.5 61.8 12.9 32.3 36.1 23.9 17.7 86.5 23.5 31.8 80.3 36.7 75.1 22.9 13.9 48.3 21.6 26.2 29.9	Aug 98.3 58.2 78.9 51.6 94.0 99.7 43.9 77.6 105.1 69.8 56.7 119.4 121.7 88.3 40.3 72.0 108.9 15.5 57.8 83.9	96.7 95.7 57.9 32.2 35.0 30.7 108.4 134.0 39.6 39.9 70.8 114.7 22.7 184.5 89.0 71.5 43.0 27.2 19.3 71.0	18.1 27.6 8.6 8.4 6.1 7.1 19.4 51.0 21.2 6.8 31.0 24.5 18.5 48.9 12.0 11.1 16.4 4.0 2.6 10.0	11.4 8.7 3.0 3.0 2.5 2.8 6.1 8.5 13.2 3.1 8.8 7.3 5.4 10.3 4.8 4.0 4.6 1.4 1.4 3.0	5.6 3.6 2.4 1.9 1.8 1.9 3.0 4.0 4.0 4.9 2.0 3.6 5.5 5.6 2.6 2.6 1.1 1.2 3.8	3.3 2.2 2.3 1.5 1.5 1.5 1.5 1.9 2.5 4.2 1.6 2.2 3.8 2.5 3.9 2.7 1.8 1.9	2.3 1.5 1.5 1.2 1.3 1.0 1.3 1.7 2.5 1.6 2.1 1.9 2.6 1.7 1.3 1.2 0.7 0.6 1.5	1.9 1.9 1.2 0.9 0.7 0.8 1.2 2.3 1.2 1.2 1.7 1.4 2.1 1.5 1.2 0.9	1.1 1.2 0.9 0.6 0.6 0.5 0.9 2.1 0.7 0.7 1.1 1.0 1.6 0.9 0.8 0.3 0.8	0.8 0.9 0.6 0.4 0.4 0.7 1.1 0.5 0.5 0.7 1.0 0.6 0.6 0.6 0.3	2.1 1.1 2.0 3.2 0.5 1.0 4.1 6.6 3.6 1.5 1.2 2.3 4.4 0.8 1.8 2.9 1.2 0.4 2.5 0.5	307.1 235.0 221.2 118.0 176.9 183.3 213.8 306.5 286.3 151.9 210.1 361.8 220.4 424.7 183.8 183.6 230.4 73.9 113.9 209.3	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8 22 2 21 13 14	52.17 8.70

CIT	C	MAIA	=	eu	AK	ED
211		NAM	C .	อก	ለአየ	LL I

Year 1948 1949 1950															
1949 1950	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prob
1950	206.3	308.6	303.6	56.9	35.8	17.5	10.3	7.2	5.8	3.6	2.4	6.6	964.7	3	13.04
	102.2	182.8	300.7	86.7	27.3	11.3	6.8	4.7	5.9	3.8	2.9	3.4	738.4	7	30.43
	194.3	247.8	181.9	26.9	9.3	7.6	7.2	4.6	3.9	2.9	1.9	6.4	694.7	9	39.13
1951	40.7	162.0	101.2	26.5	9.6	5.9	4.6	3.9	2.9	1.9	1.4	10.1	370.7	20	86.96
1952	101.3	295.3	110.0	19.0	7.9	5.5	4.8	4.1	3.0	1.9	1.3	1.7	555.7	18	78.26
1953	113.4	313.2	96.5	22.2	8.7	5.8	4.6	3.2	2.1	1.6	1.3	3.0	575.7	17	73.91
1954	75.0	137.8	340.7	61.0	19.1	9.6	6.1	4.2	2.4	1.6	1.2	12.9	671.6	11	47.83
1955	55.5	243.8	420.8	160.1	26.8	12.6	8.0	5.3	3.9	2.9	2.2	20.9	962.7	4	17.39
1956	271.8	330.0	124.3	66.6	61.5	15.3	13.2	7.8	7.1	6.7	3.3	11.4	899.2	5	21.74
1957	74.0	219.3	125.3	21.2	9.7	6.4	5.1	3.7	3.8	2.2	1.6	4.9	477.2	19	82.61
1958	99.9	178.0	222.5	97.2	27.7	11.2	7.0	5.1	3.7	2.3	1.6	3.8	660.0		52.17
1959	252.1	375.2	360.2	76.9	22.9	11.8	11.9	6.7	5.3	3.5	2.8	7.3	1136.7	2	8.70
1960	115.3	382.4	71.3	58.3	16.9	11.3	7.7	5.9	4.4	3.1	2.3	13.7	692.4	10	43.48
1961	235.8	277.3	579.6	153.7	32.4	17.3	12.2	8.2	6.7	5.2	3.2	2.4	1334.1	1	4.35
1962	71.8	126.6	279.6	37.7	15.1	17.5	8.4	5.3	4.6	2.8	1.9	5.7	577.1	15	65.22
1963	43.6	226.3	224.6	34.8	12.4	8.2	5.7	4.1	3.7	2.4	1.9	9.1	576.8	16	69.57
1964	151.8	342.0	135.1	51.5	14.4	8.3	6.1	3.7	3.0	2.6	1.6	3.8	723.8	8	34.78
1965	67.8	48.7	85.4	12.5	4.5	3.3	2.9	2.2	1.5	1.1	1.0	1.2	232.1	22	95.65
1966	82.3	181.6	60.5	8.2	4.3	3.7	2.6	1.8	1.5	2.4	1.0	7.7	357.8	21	91.30
1967	94.0	263.5	223.1	31.4	9.3	11.9	9.6	4.8	4.5	2.2	1.4	1.7	657.4	13	56.52
1968	89.0	350.5	93.0	29.1	8.9	5.9	4.6	2.9	2.3	1.5	1.0	1.3	590.1		60.87
1969	127.5	460.2	181.7	34.5	12.6	7.5	6.7	4.6	4.7	2.5	1.7	38.4	882.5	6	26.09
Mean	121.2	257.0	210.1	53.3	17.1	9.8	7.1	4.7	3.9	2.8	1.9	8.1	696.9		
SITE NA	AME SITA	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Pant	
1948	28.4	42.5	41.8	7.8	4.9	2.4	1.4	1.0	0.8	0.5	0.3	0.9	132.7	3	ì
1949	14.1	25.1	41.4	11.9	3.8	1.5	0.9	0.6	0.8	0.5	0.4	0.5	101.6	7	30.
1950	26.7	34.1	25.0	3.7	1.3	1.0	1.0	0.6	0.5	0.4	0.3	0.9	95.6	9	39.1
1951	5.6	22.3	13.9	3.7	1.3	0.8	0.6	0.5	0.4	0.3	0.2	1.4	51.0	20	86.96
1952	13.9	40.6	15.1	2.6	1.1	0.8	0.6	0.6	0.4	0.3	0.2	0,2	76.5		78.26
			13.3	3.1	1.2	0.8	0.6	0.4	0.3	0.2	0.2	0.4	79.2	17	73.91
1953	15.6	43.1	46.9	8.4	2.6	1.3	0.8	0.6	0.3	0.2	0.2	1.8	92.4	11	47.83
1954	10.3	19.0		1.24			1.1	0.7	0.5	0.4	0.2	2.9	132.5		17.39
1955	7.6	33.5	57.9	22.0	3.7						0.5	1.6			21.74
1956	37.4	45.4	17.1	9.2	5.7	2.1	1.8	1.1	1.0	0.9			65.7		
1957	10.2	30.2	17.3	2.9	1.3	0.9	0.7	0.5	0.5	0.3	0.2	0.7			82.61
1958	13.8	24.5	30.6	13.4	3.8	1.5	1.0	0.7	0.5	0.3	0.2		90.8		
1959	34.7	51.6	49.6	10.6	3.2	1.6	1.6	0.9	0.7	0.5		1.0	156.4	2	8.70
1960	15.9	52.6	9.8	8.0	2.3	1.5	1.1	0.8	0.6	0.4	0.3	1.9			43.48
1961	32.5	38.2	79.8	21.2	4.4	2.4	1.7	1.1	0.9	0.7	0.4	0.3	183.6		4.35
	9.9	17.4	38.5	5.2	2.1	2.4	1.2	0.7	0.6	0.4	0.3	0.8		15	
1962	6.0	31.1	30.9	4.8	1.7	1.1	0.8	0.6	0.5	0.3	0.3	1.3			69.57
1963	20.9	47.1	18.6	7.1	2.0	1.1	0.8	0.5	0.4	0.4	0.2	0.5	99.6		34.78
1963 1964	9.3	6.7	11.8	1.7	0.6	0.5	0.4	0.3	0.2	0.2	0.1	0.2	31.9		95.65
1963 1964 1965			0 7	1.1	0.6	0.5	0.4	0.3	0.2	0.3	0.1	1.1	49.2		91.30
1963 1964 1965 1966	11.3	25.0	8.3						0 /	0.2	0.0				E/ EA
1963 1964 1965 1966 1967	11.3 12.9	36.3	30.7	4.3	1.3	1.6	1.3	0.7	0.6	0.3	0.2	0.2		13	
1963 1964 1965 1966 1967 1968	11.3 12.9 12.3	36.3 48.2	30.7 12.8	4.3	1.2	0.8	0.6	0.4	0.3	0.2	0.1	0.2	81.2	14	60.87
1963 1964 1965 1966 1967	11.3 12.9	36.3	30.7	4.3										14	

1966 1967 1968 1969	70.7 101.2	278.1 365.2	73.8	23.1	7.0	4.7 5.9	3.7 5.3	2.3	1.8	1.2	0.8	1.0 30.5	468.3		60.87
1967		278.1	73.8	23.1	7.0	4.7	3.7	2.3	1 8	1 2	0.8	1 0	160 2	14	60 07
													521.7	10	56.52
1966	74.6	209.1	177.1	25.0	7.4	9.4	7.6	3.8	3.6	1.7	1.1	6.1	283.9		91.30
	65.3	144.1	48.0	6.5	3.4	3.0	2.1	1.5	1.2	1.9	0.8	0.9	184.2		95.65
1965	53.8	38.7	67.8	9.9	3.6	2.7	2.3	1.7	1.2	2.1	1.3	3.0	574.4		34.78
1964	120.5	271.4	107.2	40.8	11.4	6.6	4.8	3.3	2.9	1.9	1.5	7.2	457.7		69.57
1963	34.6	179.6	178.3	27.6	9.8	13.9	6.7	4.2	3.6	2.3	1.5	4.6	458.0		65.22
1962	57.0	100.4	221.9	122.0	25.7	13.7	9.7	6.5	5.3	4.1	2.6	1.9	1058.7	1	4.35
1961	187.1	220.1	56.6 460.0	46.2 122.0	13.4	8.9	6.1	4.7	3.5	2.4	1.8	10.9	549.5		43.48
1960	91.5	303.4	-	61.1	18.2	9.4	9.4	5.3	4.2	2.8	2.2		902.0		8.70
1959	200.1	141.3	176.6	77.2		8.9	5.6	4.0	2.9	1.8	1.3	3.0	523.7		52.17
1958	58.7 79.3	174.1	99.5		7.7	5.1	4.0	2.9	3.0	1.7		3.9	378.7		82.61
1956 1957	215.7	261.9	98.6	52.9	33.0	12.1	10.5	6.2	5.6	5.3	2.7	9.0	713.6		21.74
1955	44.0	193.5		127.1	21.3	10.0	6.4	4.2	3.1	2.3	1.7		764.0		17.39
1954	59.5	109.4	270.4	48.4	15.2	7.6	4.8	3.3	1.9	1.3	1.0	10.3	533.0	11	47.83
1953	90.0	248.6	76.6	17.6	6.9	4.6	3.6	2.5	1.7	1.3	1.0	2.4	456.8	17	73.91
1952	80.4	234.4	87.3	15.1	6.3	4.4	3.8	3.2	2.3	1.5	1.0	1.3	441.0	18	78.26
1951	32.3	128.6	80.3	21.0	7.6	4.7	3.7	3.1	2.3	1.5	1.1	8.0	294.2	20	86.96
1950	154.2	196.7	144.3	21.4	7.4	6.0	5.7	3.7	3.1	2.3	1.5	5.1	551.3	9	39.13
1949	81.1	145.0	238.6	68.8	21.6	8.9	5.4	3.7	4.7	3.0	2.3	2.7	586.0	7	30.43
1948	163.7	244.9	240.9	45.2	28.4	13.9	8.2	5.7	4.6	2.8	1.9	5.2	765.5	3	13.0
Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prol
Mean SITE NA	66.1 AME BARN	140.1	114.6	29.1	9.4	5.3	3.9	2.6	2.1	1.5	1.0	4.4	380.1		
														6	26.0
1969	69.5	251.0	99.1	18.8	6.9	4.1	3.6	2.5	1.3	1.3	0.6	0.7	321.8 481.3	14	60.8
1968	48.6	191.2	50.7	15.9	4.8	3,2	2.5	2.6	2.5	1.2	0.8	0.9		13	56.5
1967	51.3	143.7	121.7	17.1	5.1	6.5	1.4	1.0	0.8	1.3	0.5	4.2	195.2	21	91.3
1965 1966	37.D 44.9	26.6	46.6	6.8	2.5	1.8	1.6	1.2	0.8	0.6	0.6	0.6	126.6	22	95.6
1964	82.8	186.5	73.7		7.9	4.5	3.3	2.0	1.6	1.4	0.9	2.1	394.8	8	34.7
1963	23.8	123.4	122.5	19.0	6.8	6.5	3.1	2.3	2.0	1.3	1.0	5.0	314.6	16	69.5
1962	39.2	69.0	152.5	20.6	8.2	9.6	4.6	2.9	2.5	1.5	1.1	3.1	314.8	15	65.2
1961	128.6	151.3	316.1	83.8	17.7	9.4	6.7	4.5	3.7	2.8	1.8	1.3	727.6	1	4.3
1960	62.9	208.6	38.9	31.8	9.2	6.1	4.2	3.2	2.4	1.7	1.3	7.5	377.7	10	43.4
1959	137.5	204.6	196.5	42.0	12.5	6.4	6.5	3.6	2.9	1.9	1.5	4.0	620.0	2	8.7
1958	54.5	97.1	121.3	53.0	15.1	6.1	3.8	2.8	2.0	1.3	0.9	2.1	360.0	12	52.1
1957	40.3	119.6	68.4	11.6	5.3	3.5	2.8	2.0	2.1	1.2	0.9	2.7	260.3		82.6
1956	148.3	180.0	67.8	36.3	22.7	8.4	7.2	4.3	3.8	3.7	1.8	6.2	490.4	5	21.7
1955	30.3	133.0	229.5	87.3	14.6	6.8	4.4	2.9	2.1	1.6	1.2	11.4	525.1	4	17.3
1954	40.9	75.2	185.8	33.3	10.4	5.2	3.3	2.3	1.3	0.9	0.7	7.1	366.3	11	47.8
1953	61.9	170.8	52.6	12.1	4.8	3.2	2.5	1.8	1.1	0.9	0.7	1.6	314.0	17	73.9
1952	55.3	161.1	60.0	10.4	4.3	3.0	2.6	2.2	1.6	1.0	0.7	0.9	303.1	18	78.2
1951	22.2	88.4	55.2	14.5	5.2	3.2	2.5	2.1	1.6	1.0	0.8	5.5	202.2	20	86.9
1950	105.9	135.2	99.2	14.7	5.1	4.1	3.9	2.5	2.1	1.6	1.0	3.5	378.9	9	39.1
1949	55.7	99.7	164.0	47.3	14.9	6.1	3.7	2.6	3.2	2.1	1.6	1.9	402.7	7	30.4
1948	112.5	168.3	165.6	31.0	19.5	9.5	5.6	3.9	3.2	Apr 2.0	May 1.3	Jun 3.6	Anflow 526.1	Rank 3	13.0

Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow		
1948	1449.0	2647.0	1801.0	247.0	222.0	51.0	33.0	12.0	9.0	6.0	4.0	27.0	6508.0		13.04
1949	565.0	649.0	2362.0	424.0	100.0	31.0	20.0	23.0	10.0	5.0	4.0	5.0	4198.0		30.43
1950	1435.0	475.0	644.0	22.0	19.0	16.0	17.0	7.0	5.0	4.0	4.0	83.0			65.22
1951	213.0	1039.0	516.0	95.0	12.0	7.0	9.0	11.0	4.0	2.0	2.0	58.0	1968.0		91.30
1952	736.0	1088.0	155.0	19.0	7.0	6.0	5.0	5.0	4.0	2.0	2.0	22.0	2051.0		86.96
1953	549.0	1844.0	315.0	80.0	15.0	10.0	9.0	6.0	4.0	2.0	1.0	19.0	2854.0		60.87
1954	533.0	588.0	891.0	131.0	28.0	15.0	11.0	7.0	4.0	2.0	2.0	41.0	2253.0		78.26
1955	126.0	1125.0	1300.0	870.0	42.0	25.0	15.0	7.0	6.0	2.0	2.0	65.0	3585.0		43.48
1956	802.0	591.0	422.0	74.0	150.0	27.0	31.0	10.0	17.0	14.0	4.0	25.0	2167.0		82.61
1957	146.0	1151.0	479.0	35.0	11.0	7.0	5.0	4.0	4.0	2.0	2.0	26.0	1872.0		95.65
1958	422.0	1125.0	1586.0	242.0	102.0	27.0	9.0	6.0	4.0	2.0	2.0	73.0	3600.0	8	34.78
1959	2250.0	1807.0	3221.0	398.0	120.0		100.0	25.0	21.0	0.0	0.0	59.0	8090.0	2	8.70
1960	445.0	1875.0	233.0	275.0	60.0	46.0		10.0	0.0	0.0	0.0	19.0	2983.0	13	56.52
1961	1064.0	2139.0	5442.0	540.0	95.0	72.0	56.0	28.0	19.0	20.0	4.0	28.0	9507.0	1	4.35
1962	523.0	1146.0	2299.0	131.0	12.0	47.0	10.0	9.0	33.0	4.0	4.0	33.0	4251.0	6	26.09
1963	164.0	1874.0	1763.0	131.0	86.0	81.0	63.0	52.0	37.0	23.0	19.0	97.0	4390.0	5	21.74
1964	897.0	3333.0	418.0	97.0	49.0	44.0	41.0	28.0	28.0	26.0	19.0	65.0	5045.0	4	17.39
1965	486.0	295.0	1426.0	91.0	38.0	30.0	17.0	10.0	10.0	5.0	4.0	2.0	2414.0		73.91
1966	1663.0	1173.0	218.0	26.0	6.0	6.0	5.0	4.0	5.0	2.0	2.0	111.0	3221.0	12	52.17
1967	1349.0	1010.0	1046.0	74.0	5.0	53.0	19.0	10.0	19.0	5.0	2.0	5.0	3597.0	9	39.13
1968	966.0	965.0	570.0	54.0	27.0	17.0	16.0	11.0	10.0	6.0	5.0	10.0	2657.0		69.57
1969	870.0	1615.0	860.0	44.0	19.0	11.0	9.0	5.0	12.0	5.0	4.0	69.0	3523.0	11	47.83
Mean	802.4	1343.4	1271.2	186.4	55.7	32.6	23.6	13.2	12.0	6.3	4.2	42.8	3793.9		
SITE	NAME KOL	AR													
Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	
1948	71.0	106.2	104.5	19.6	12.3	6.0	3.5	2.5	2.0	1.2	0.8	2.3	331.9	3	13.04
1949	35.2	62.9	103.4	29.8	9.4	3.9	2.3	1.6	2.0	1.3	1.0	1.2	254.0	7	30.43
1950	66.8	85.3	62.6	9.3	3.2	2.6	2.5	1.6	1.3	1.0	0.6	2.2	239.0	9	39.13
1951	14.0	55.8	34.8	9.1	3,3	2.0	1.6	1.3	1.0	0.6	0.5	3.5		20	86.96
1952	34.9	101.6	37.8	6.5	2.7	1.9	1.6	1.4	1.0	0.6	0.4	0.6	191.2	18	78.26
1953	39.0	107.8	33.2	7.7	3.0	2.0	1.6	1.1	0.7	0.6	0.6	1.0	198.1	17	73.91
1954	25.8	47.4	117.2	21.0	6.6	3.3	2.1	1.4	0.8	0.6	0.4	4.4	231.0	11	47.83
1955	19.1	83.9	144.8		9.2	4.3	2.8	1.8	1.3	1.0	0.7	7.2	331.2		
1956	93.5	113.6	42.8	22.9		5.3	4.6	2.7	2.4	2.3	1.1	3.9			21.74
1957	25.5	75.5	43.1	7.3	3.3	2.2	1.7	1.3	1.3	0,8	0.6	1.7	164.2		
1958	34.4	61.2	76.5	33.5	9.5	3.8	2.4	1.7	1.3	0.8	0.6				52.17
1959	86.7	129.1	123.9	26.5	7.9	4.1		2.3	1.8	1.2	0.9	2.5	391.0	2	8.70
1960	39.7	131.6	24.5	20.0	5.8	3.9	2.7	2.0	1.5	1.1		4.7			43.48
1961	81.1	95.4	199.4	52.9		5.9		2.8	2.3		1.1	0.8	459.0	1	4.35
1962	24.7	43.5	96.2	13.0	5.2	6.0	2.9	1.8	1.6	1.0	0.7	2.0			65.22
1963	15.0	77.8	77.3	12.0	4.3	2.8	1.9	1.4	1.3	0.8	0.6	3.1	198.4		69.57
1964	52.2	117.6	46.5	17.7	5.0	2.9	2.1	1.3	1.0	0.9	0.6	1.3	249.0		34.78
1965	23.3	16.8	29.4	4.3	1.6	1.1	1.0	0.7	0.5	0.4	0.3	0.4			95.65
1966	28.3	62.5	20.8	2.8	1.5	1.3	0.9	0.6	0.5	0.8	0.3	2.7			91.30
1967	32.3	90.7	76.8	10.8	3.2	4.1	3.3	1.7	1.5	0.8	0.5	0.6			56.52
1968	30.6	120.6	32.0	10.0	3.0	2.0	1.6	1.0	0.8	0.5	0.4	0.4			60.87
1969	43.9	158.3	62.5	11.9	4.3	2.6	2.3	1.6	1.6	0.9	0.6	13.2	303.6	6	26.09
Mean	A-1227 LESO.														

		MORAND	
TE:			
	NAME		

	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	
1948	144.8	216.6	213.1	39.9	25.1	12.3	7.2	5.1	4.1	2.5	1.7	4.6	677.0	3	13.04
1949	71.7	128.3	211.0	60.9	19.1	7.9	4.7	3.3	4.2	2.7	2.0	2.4	518.2	7	30.43
1950	136.3	173.9	127.7	18.9	6.5	5.3	5.1	3.2	2.7	2.0	1.3	4.5	487.5	9	39.13
1951	28.5	113.7	71.0	18.6	6.7	4.1	3.3	2.7	2.0	1.3	1.0	7.1	260.1	20	86.96
1952	71.1	207.3	77.2	13.3	5.6	3.9	3.3	2.8	2.1	1.3	0.9	1.2	390.0	18	78.20
1953	79.6	219.8	67.7	15.6	6.1	4.1	3.2	2.3	1.5	1.1	0.9	2.1	404.0		73.9
1954	52.6	96.7	239.1	42.8	13.4	6.7	4.3	2.9	1.7	1.1	0.9	9.1	471.4	11	47.8
1955	38.9	171.1	295.4	112.4	18.8	8.8	5.6	3.7	2.7	2.0	1.5	14.6	675.6	4	17.3
1956	190.8	231.6	87.2	46.8	29.2	10.7	9.3	5.5	5.0	4.7	2.3	8.0	631.1	5	21.7
1957	51.9	153.9	88.0	14.9	6.8	4.5	3.5	2.6	2.7	1.5	1.1	3.4	334.9	19	82.6
1958	70.1	124.9	156.1	68.2	19.4	7.8	4.9	3.5	2.6	1.6	1.1	2.7	463.2	12	52.17
1959	176.9	263.3	252.8	54.0	16.1	8.3	8.4	4.7	3.7	2.5	1.9	5.1	797.8	2	8.70
1960	80.9	268.4	50.0	40.9	11.9	7.9	5.4	4.2	3.1	2.2	1.6	9.6	486.0	10	43.48
1961	165.5	194.6	406.8	107.9	22.7	12.1	8.6	5.8	4.7	3.6	2.3	1.7	936.3	1	4.3
1962	50.4	88.8	196.3	26.5	10.6	12.3	5.9	3.7	3.2	2.0	1.4	4.0	405.0	15	65.2
1963 1964	30.6 106.5	158.8	157.6 94.8	36.1	8.7	5.7	4.0	2.9	2.6	1.7	1.3	6.4	404.8 508.0	16	69.5
1965	47.6	34.2	59.9	8.8	10.1	2.3	2.0	1.5	1.1	0.8	0.7	2.7	162.9	8 22	95.6
1966	57.8	127.5		5.8	3.0	2.6	1.9	1.3	1.1	1.7		0.8	251.1	21	91.30
1967	65.9	184.9	156.6	22.1	6.5	8.3	6.7	3.4	3.2	1.5	1.0		461.4	13	56.5
1968	62.5	246.0	65.3	20.4	6.2	4.2	3.3	2.0	1.6	1.1	0.7	0.9	414.2	14	60.8
1969	89.5	323.0	127.5	24.2	8.8	5.2	4.7	3.2	3.3	1.7	1.2	27.0	619.4	6	26.0
		020.0	121.5	24.2			4.7	0.2			1.2	27.0	017.4		20.0
Mean	85.0	180.3	147.4	37.4	12.0	6.9	5.0	3.3	2.8	1.9	1.3	5.7	489.1		
SITE N	AME GANJ	AL		3									L		
Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow		
Year 1948	Jul 60.6	Aug 90.6	89.1	16.7	10.5	5.1	3.0	2.1	1.7	1.0	0.7	1.9	283.2	3	13.04
Year 1948 1949	Jul 60.6 30.0	Aug 90.6 53.7	89.1 88.3	16.7 25.5	10.5	5.1 3.3	3.0	2.1	1.7	1.0	0.7	1.9	283.2 216.8	3 7	13.00
Year 1948 1949 1950	Jul 60.6 30.0 57.0	Aug 90.6 53.7 72.8	89.1 88.3 53.4	16.7 25.5 7.9	10.5 8.0 2.7	5.1 3.3 2.2	3.0 2.0 2.1	2.1 1.4 1.4	1.7 1.7 1.1	1.0 1.1 0.9	0.7 0.9 0.5	1.9 1.0 1.9	283.2 216.8 204.0	3 7 9	13.00 30.43 39.13
Year 1948 1949 1950 1951	Jul 60.6 30.0 57.0 11.9	Aug 90.6 53.7 72.8 47.6	89.1 88.3 53.4 29.7	16.7 25.5 7.9 7.8	10.5 8.0 2.7 2.8	5.1 3.3 2.2 1.7	3.0 2.0 2.1 1.4	2.1 1.4 1.4 1.1	1.7 1.7 1.1 0.9	1.0 1.1 0.9 0.5	0.7 0.9 0.5 0.4	1.9 1.0 1.9 3.0	283.2 216.8 204.0 108.8	3 7 9 20	13.00 30.43 39.13 86.90
Year 1948 1949 1950 1951 1952	Jul 60.6 30.0 57.0 11.9 29.8	Aug 90.6 53.7 72.8 47.6 86.7	89.1 88.3 53.4 29.7 32.3	16.7 25.5 7.9 7.8 5.6	10.5 8.0 2.7 2.8 2.3	5.1 3.3 2.2 1.7 1.6	3.0 2.0 2.1 1.4 1.4	2.1 1.4 1.4 1.1 1.2	1.7 1.7 1.1 0.9 0.9	1.0 1.1 0.9 0.5 0.6	0.7 0.9 0.5 0.4 0.4	1.9 1.0 1.9 3.0 0.5	283.2 216.8 204.0 108.8 163.1	3 7 9 20 18	13.00 30.43 39.13 86.90 78.20
Year 1948 1949 1950 1951 1952 1953	Jul 60.6 30.0 57.0 11.9 29.8 33.3	Aug 90.6 53.7 72.8 47.6 86.7 92.0	89.1 88.3 53.4 29.7 32.3 28.3	16.7 25.5 7.9 7.8 5.6 6.5	10.5 8.0 2.7 2.8 2.3 2.6	5.1 3.3 2.2 1.7 1.6 1.7	3.0 2.0 2.1 1.4 1.4 1.3	2.1 1.4 1.4 1.1 1.2 0.9	1.7 1.7 1.1 0.9 0.9 0.6	1.0 1.1 0.9 0.5 0.6 0.5	0.7 0.9 0.5 0.4 0.4	1.9 1.0 1.9 3.0 0.5 0.9	283.2 216.8 204.0 108.8 163.1 169.0	3 7 9 20 18 17	13.04 30.43 39.13 86.96 78.26 73.91
Year 1948 1949 1950 1951 1952 1953 1954	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5	89.1 88.3 53.4 29.7 32.3 28.3 100.0	16.7 25.5 7.9 7.8 5.6 6.5 17.9	10.5 8.0 2.7 2.8 2.3 2.6 5.6	5.1 3.3 2.2 1.7 1.6 1.7 2.8	3.0 2.0 2.1 1.4 1.4 1.3	2.1 1.4 1.4 1.1 1.2 0.9 1.2	1.7 1.7 1.1 0.9 0.9 0.6 0.7	1.0 1.1 0.9 0.5 0.6 0.5	0.7 0.9 0.5 0.4 0.4 0.4	1.9 1.0 1.9 3.0 0.5 0.9	283.2 216.8 204.0 108.8 163.1 169.0 197.2	3 7 9 20 18 17	13.04 30.43 39.13 86.96 78.26 73.91 47.83
Year 1948 1949 1950 1951 1952 1953 1954 1955	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6	16.7 25.5 7.9 7.8 5.6 6.5 17.9	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7	3.0 2.0 2.1 1.4 1.4 1.3 1.8 2.4	2.1 1.4 1.4 1.1 1.2 0.9 1.2	1.7 1.7 1.1 0.9 0.9 0.6 0.7	1.0 1.1 0.9 0.5 0.6 0.5 0.5 0.8	0.7 0.9 0.5 0.4 0.4 0.4 0.4	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6	3 7 9 20 18 17 11 4	13.04 30.43 39.13 86.96 78.26 73.91 47.83
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5	3.0 2.0 2.1 1.4 1.4 1.3 1.8 2.4 3.9	2.1 1.4 1.4 1.1 1.2 0.9 1.2 1.6 2.3	1.7 1.7 1.1 0.9 0.9 0.6 0.7 1.1 2.1	1.0 1.1 0.9 0.5 0.6 0.5 0.5 0.8 2.0	0.7 0.9 0.5 0.4 0.4 0.4 0.6 1.0	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0	3 7 9 20 18 17 11 4 5	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8 21.7	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9 64.4	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5 36.8	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0 19.6 6.2	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2 2.9	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5	3.0 2.0 2.1 1.4 1.3 1.8 2.4 3.9 1.5	2.1 1.4 1.4 1.1 1.2 0.9 1.2 1.6 2.3 1.1	1.7 1.7 1.1 0.9 0.9 0.6 0.7 1.1 2.1	1.0 1.1 0.9 0.5 0.6 0.5 0.5 0.8 2.0	0.7 0.9 0.5 0.4 0.4 0.4 0.6 1.0	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3 1.4	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0 140.1	3 7 9 20 18 17 11 4 5	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8 21.7 29.3	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9 64.4 52.3	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5 36.8 65.3	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0 19.6 6.2 28.5	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2 2.9 8.1	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5 1.9 3.3	3.0 2.0 2.1 1.4 1.4 1.3 1.8 2.4 3.9 1.5 2.1	2.1 1.4 1.4 1.1 1.2 0.9 1.2 1.6 2.3 1.1	1.7 1.7 1.1 0.9 0.9 0.6 0.7 1.1 2.1 1.1	1.0 1.1 0.9 0.5 0.6 0.5 0.5 0.8 2.0 0.6	0.7 0.9 0.5 0.4 0.4 0.4 0.6 1.0 0.5 0.5	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3 1.4	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0 140.1 193.7	3 7 9 20 18 17 11 4 5 19	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8 21.7 29.3 74.0	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9 64.4 52.3 110.2	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5 36.8 65.3 105.8	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0 19.6 6.2 28.5 22.6	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2 2.9 8.1 6.7	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5 1.9 3.3 3.5	3.0 2.0 2.1 1.4 1.4 1.3 1.8 2.4 3.9 1.5 2.1	2.1 1.4 1.4 1.1 1.2 0.9 1.2 1.6 2.3 1.1	1.7 1.7 1.1 0.9 0.9 0.6 0.7 1.1 2.1 1.1 1.5	1.0 1.1 0.9 0.5 0.6 0.5 0.8 2.0 0.6 0.7	0.7 0.9 0.5 0.4 0.4 0.4 0.6 1.0 0.5 0.5	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3 1.4 1.1 2.2	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0 140.1 193.7 333.7	3 7 9 20 18 17 11 4 5 19 12 2	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8 21.7 29.3 74.0 33.8	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9 64.4 52.3 110.2 112.3	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5 36.8 65.3 105.8 20.9	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0 19.6 6.2 28.5 22.6	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2 2.9 8.1 6.7 5.0	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5 1.9 3.3 3.5 3.3	3.0 2.0 2.1 1.4 1.3 1.8 2.4 3.9 1.5 2.1 3.5 2.3	2.1 1.4 1.4 1.1 1.2 0.9 1.2 1.6 2.3 1.1 1.5 2.0	1.7 1.7 1.1 0.9 0.9 0.6 0.7 1.1 2.1 1.1 1.5	1.0 1.1 0.9 0.5 0.6 0.5 0.8 2.0 0.6 0.7 1.0	0.7 0.9 0.5 0.4 0.4 0.4 0.6 1.0 0.5 0.5	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3 1.4 1.1 2.2 4.0	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0 140.1 193.7 333.7 203.3	3 7 9 20 18 17 11 4 5 19 12 2	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.70 43.48
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8 21.7 29.3 74.0 33.8 69.2	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9 64.4 52.3 110.2 112.3 81.4	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5 36.8 65.3 105.8 20.9 170.2	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0 19.6 6.2 28.5 22.6 17.1 45.1	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2 2.9 8.1 6.7 5.0 9.5	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5 1.9 3.3 3.5 3.3	3.0 2.0 2.1 1.4 1.3 1.8 2.4 3.9 1.5 2.1 3.5 2.3 3.6	2.1 1.4 1.4 1.1 1.2 0.9 1.2 1.6 2.3 1.1 1.5 2.0 1.7 2.4	1.7 1.7 1.1 0.9 0.9 0.6 0.7 1.1 2.1 1.1 1.5 1.3 2.0	1.0 1.1 0.9 0.5 0.6 0.5 0.8 2.0 0.6 0.7 1.0 0.9	0.7 0.9 0.5 0.4 0.4 0.6 1.0 0.5 0.5 0.7	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3 1.4 1.1 2.2 4.0	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0 140.1 193.7 203.3 391.6	3 7 9 20 18 17 11 4 5 19 12 2 10	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.76 43.48 4.35
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8 21.7 29.3 74.0 33.8 69.2 21.1	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9 64.4 52.3 110.2 112.3 81.4 37.2	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5 36.8 65.3 105.8 20.9 170.2 82.1	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0 19.6 6.2 28.5 22.6 17.1 45.1	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2 2.9 8.1 6.7 5.0 9.5	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5 1.9 3.3 3.5 3.5 3.5	3.0 2.0 2.1 1.4 1.3 1.8 2.4 3.9 1.5 2.1 3.5 2.3 3.6 2.5	2.1 1.4 1.1 1.2 0.9 1.2 1.6 2.3 1.1 1.5 2.0 1.7 2.4 1.6	1.7 1.7 1.1 0.9 0.6 0.7 1.1 2.1 1.1 1.5 1.3 2.0	1.0 1.1 0.9 0.5 0.6 0.5 0.8 2.0 0.6 0.7 1.0	0.7 0.9 0.5 0.4 0.4 0.6 1.0 0.5 0.5 0.7 0.9	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3 1.4 1.1 2.2 4.0 0.7 1.7	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0 140.1 193.7 333.7 203.3 391.6 169.4	3 7 9 20 18 17 11 4 5 19 12 2 10 15	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.76 43.48 4.35 65.22
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8 21.7 29.3 74.0 33.8 69.2 21.1 12.8	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9 64.4 52.3 110.2 112.3 81.4 37.2 66.4	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5 36.8 65.3 105.8 20.9 170.2 82.1 65.9	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0 19.6 6.2 28.5 22.6 17.1 45.1 11.1	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2 2.9 8.1 6.7 5.0 9.5 4.4	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5 1.9 3.3 3.5 3.5 3.5 1.5 2.2	3.0 2.0 2.1 1.4 1.3 1.8 2.4 3.9 1.5 2.1 3.5 2.3 3.6 2.5	2.1 1.4 1.4 1.1 1.2 0.9 1.2 1.6 2.3 1.1 1.5 2.0 1.7 2.4 1.6	1.7 1.7 1.1 0.9 0.9 0.6 0.7 1.1 2.1 1.1 1.5 1.3 2.0 1.3	1.0 1.1 0.9 0.5 0.6 0.5 0.8 2.0 0.6 0.7 1.0 0.9 1.5 0.8	0.7 0.9 0.5 0.4 0.4 0.6 1.0 0.5 0.5 0.7 0.9 0.6	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3 1.4 1.1 2.2 4.0 0.7 1.7 2.7	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0 140.1 193.7 333.7 203.3 391.6 169.4 169.3	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 43.48 4.35 65.22 69.57
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8 21.7 29.3 74.0 33.8 69.2 21.1 12.8 44.6	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9 64.4 52.3 110.2 112.3 81.4 37.2 66.4 100.4	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5 36.8 65.3 105.8 20.9 170.2 82.1 65.9 39.7	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0 19.6 6.2 28.5 22.6 17.1 45.1 11.1 10.2 15.1	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2 2.9 8.1 6.7 5.0 9.5 4.4 3.6 4.2	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5 1.9 3.3 3.5 3.5 3.3 5.1 5.2 2.4 2.4	3.0 2.0 2.1 1.4 1.4 1.3 1.8 2.4 3.9 1.5 2.1 3.5 2.3 3.6 2.5 1.7 1.8	2.1 1.4 1.1 1.2 0.9 1.2 1.6 2.3 1.1 1.5 2.0 1.7 2.4 1.6 1.2	1.7 1.7 1.1 0.9 0.9 0.6 0.7 1.1 2.1 1.1 1.5 1.3 2.0 1.3	1.0 1.1 0.9 0.5 0.6 0.5 0.8 2.0 0.6 0.7 1.0 0.9 1.5 0.8	0.7 0.9 0.5 0.4 0.4 0.6 1.0 0.5 0.5 0.7 0.9 0.6 0.5	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3 1.4 1.1 2.2 4.0 0.7 1.7 2.7 1.1	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0 140.1 193.7 333.7 203.3 391.6 169.4 169.3 212.5	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 43.48 4.38 65.22 69.57 34.78
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8 21.7 29.3 74.0 33.8 69.2 21.1 12.8 44.6 19.9	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9 64.4 52.3 110.2 112.3 81.4 37.2 66.4 100.4 14.3	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5 36.8 65.3 105.8 20.9 170.2 82.1 65.9 39.7 25.1	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0 19.6 6.2 28.5 22.6 17.1 45.1 11.1 10.2 15.1 3.7	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2 2.9 8.1 6.7 5.0 9.5 4.4 3.6 4.2 1.3	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5 1.9 3.3 3.5 3.5 3.5 2.4 2.4 1.0	3.0 2.0 2.1 1.4 1.3 1.8 2.4 3.9 1.5 2.1 3.5 2.3 3.6 2.5 1.7 1.8 0.8	2.1 1.4 1.4 1.1 1.2 0.9 1.2 1.6 2.3 1.1 1.5 2.0 1.7 2.4 1.6 1.2	1.7 1.7 1.1 0.9 0.6 0.7 1.1 2.1 1.1 1.5 1.3 2.0 1.3 1.1 0.9	1.0 1.1 0.9 0.5 0.6 0.5 0.8 2.0 0.6 0.7 1.0 0.9 1.5 0.8 0.7	0.7 0.9 0.5 0.4 0.4 0.6 1.0 0.5 0.8 0.7 0.9 0.6 0.5 0.5	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3 1.4 1.1 2.2 4.0 0.7 1.7 2.7 1.1	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0 140.1 193.7 333.7 203.3 391.6 169.4 169.3 212.5 68.1	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8 22	13.04 30.43 39.13 86.96 73.91 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 65.22 69.57 34.78 95.65
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8 21.7 29.3 74.0 33.8 69.2 21.1 12.8 44.6 19.9 24.2	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9 64.4 52.3 110.2 112.3 81.4 37.2 66.4 100.4 14.3 53.3	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5 36.8 65.3 105.8 20.9 170.2 82.1 65.9 39.7 25.1 17.8	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0 19.6 6.2 28.5 22.6 17.1 45.1 11.1 10.2 15.1 3.7 2.4	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2 2.9 8.1 6.7 5.0 9.5 4.4 3.6 4.2 1.3	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5 1.9 3.3 3.5 3.3 5.1 5.2 2.4 2.4 1.0 1.1	3.0 2.0 2.1 1.4 1.3 1.8 2.4 3.9 1.5 2.1 3.5 2.3 3.6 2.5 1.7 1.8 0.8	2.1 1.4 1.4 1.1 1.2 0.9 1.2 1.6 2.3 1.1 1.5 2.0 1.7 2.4 1.6 1.2	1.7 1.7 1.1 0.9 0.6 0.7 1.1 2.1 1.1 1.5 1.3 2.0 1.3 1.1 0.9	1.0 1.1 0.9 0.5 0.6 0.5 0.8 2.0 0.6 0.7 1.0 0.9 1.5 0.8 0.7	0.7 0.9 0.5 0.4 0.4 0.6 1.0 0.5 0.5 0.8 0.7 0.9 0.6 0.5 0.3	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3 1.4 1.1 2.2 4.0 0.7 1.7 2.7 1.1 0.3 2.3	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0 140.1 193.7 203.3 391.6 169.4 169.3 212.5 68.1 105.0	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8 22 21	13.04 30.43 39.13 86.96 73.93 47.83 17.39 21.74 82.63 52.17 43.48 4.33 65.22 69.53 34.78 95.63 91.30
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8 21.7 29.3 74.0 33.8 69.2 21.1 12.8 44.6 19.9 24.2 27.6	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9 64.4 52.3 110.2 112.3 81.4 37.2 66.4 100.4 14.3 53.3 77.4	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5 36.8 65.3 105.8 20.9 170.2 82.1 65.9 39.7 25.1 17.8 65.5	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0 19.6 6.2 28.5 22.6 17.1 45.1 11.1 10.2 15.1 3.7 2.4 9.2	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2 2.9 8.1 6.7 5.0 9.5 4.4 3.6 4.2 1.3 1.3 2.7	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5 1.9 3.3 3.5 3.5 3.3 5.1 5.2 2.4 2.4 1.0 1.1 3.5	3.0 2.0 2.1 1.4 1.3 1.8 2.4 3.9 1.5 2.1 3.5 2.3 3.6 2.5 1.7 1.8 0.8 0.8 2.8	2.1 1.4 1.1 1.2 0.9 1.2 1.6 2.3 1.1 1.5 2.0 1.7 2.4 1.6 1.2 1.1 0.6 0.5 1.4	1.7 1.7 1.1 0.9 0.6 0.7 1.1 2.1 1.1 1.5 1.3 2.0 1.3 1.1 0.9 0.4 0.4	1.0 1.1 0.9 0.5 0.6 0.5 0.8 2.0 0.6 0.7 1.0 0.9 1.5 0.8 0.7 0.8	0.7 0.9 0.5 0.4 0.4 0.6 1.0 0.5 0.5 0.7 0.9 0.6 0.5 0.5	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3 1.4 1.1 2.2 4.0 0.7 1.7 2.7 1.1 0.3 2.3 0.5	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0 140.1 193.7 203.3 391.6 169.4 169.3 212.5 68.1 105.0 193.0	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8 22 21 13	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.76 43.48 4.39 65.22 69.57 34.78 95.65 91.30 56.52
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	Jul 60.6 30.0 57.0 11.9 29.8 33.3 22.0 16.3 79.8 21.7 29.3 74.0 33.8 69.2 21.1 12.8 44.6 19.9 24.2	Aug 90.6 53.7 72.8 47.6 86.7 92.0 40.5 71.6 96.9 64.4 52.3 110.2 112.3 81.4 37.2 66.4 100.4 14.3 53.3	89.1 88.3 53.4 29.7 32.3 28.3 100.0 123.6 36.5 36.8 65.3 105.8 20.9 170.2 82.1 65.9 39.7 25.1 17.8	16.7 25.5 7.9 7.8 5.6 6.5 17.9 47.0 19.6 6.2 28.5 22.6 17.1 45.1 11.1 10.2 15.1 3.7 2.4	10.5 8.0 2.7 2.8 2.3 2.6 5.6 7.9 12.2 2.9 8.1 6.7 5.0 9.5 4.4 3.6 4.2 1.3	5.1 3.3 2.2 1.7 1.6 1.7 2.8 3.7 4.5 1.9 3.3 3.5 3.3 5.1 5.2 2.4 2.4 1.0 1.1	3.0 2.0 2.1 1.4 1.3 1.8 2.4 3.9 1.5 2.1 3.5 2.3 3.6 2.5 1.7 1.8 0.8	2.1 1.4 1.4 1.1 1.2 0.9 1.2 1.6 2.3 1.1 1.5 2.0 1.7 2.4 1.6 1.2	1.7 1.7 1.1 0.9 0.6 0.7 1.1 2.1 1.1 1.5 1.3 2.0 1.3 1.1 0.9	1.0 1.1 0.9 0.5 0.6 0.5 0.8 2.0 0.6 0.7 1.0 0.9 1.5 0.8 0.7	0.7 0.9 0.5 0.4 0.4 0.6 1.0 0.5 0.5 0.8 0.7 0.9 0.6 0.5 0.3	1.9 1.0 1.9 3.0 0.5 0.9 3.8 6.1 3.3 1.4 1.1 2.2 4.0 0.7 1.7 2.7 1.1 0.3 2.3	283.2 216.8 204.0 108.8 163.1 169.0 197.2 282.6 264.0 140.1 193.7 203.3 391.6 169.4 169.3 212.5 68.1 105.0	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8 22 21 13 14	13.04 30.43 39.13 86.96 78.26 73.91 47.83 17.39 21.74 82.61 52.17 8.76 43.48 4.35 65.22 69.57 34.78 95.65 91.30 56.52 60.87

Year	Jul	Aug	Sep	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	
1948	65.3	97.7	96.1	18.0	11.3	5.5	3.3	2.3	1.9	1.1	0.8	2.1	305.3	3	13.04
1949	32.3	57.8	95.2	27.5	8.6	3.6	2.1	1.5	1.9	1.2	0.9	1.1	233.7	7	30.43
1950	61.5	78.4	57.6	8.5	2.9	2.4	2.3	1.5	1.2	0.9	0.6	2.0	219.9	9	39.13
1951	12.9	51.3	32.0	8.4	3.0	1.9	1.5	1.2	0.9	0.6	0.4	3.2	117.3		86.96
1952	32.1	93,5	34.8	6.0	2.5	1.8	1.5	1.3	0.9	0.6	0.4	0.5	175.9	18	78.26
1953	35.9	99.1	30.5	7.0	2.8	1.8	1.5	1.0	0.7	0.5	0.4	0.9	182.2	17	73.9
1954	23.7	43.6	107.8	19.3	6.1	3.0	1.9	1.3	0.8	0.5	0.4	4.1	212.6	11	47.83
1955	17.6	77.2	133.2	50.7	8.5	4.0	2.5	1.7	1.2	0.9	0.7	6.6	304.7	4	17.3
1956	86.0	104.5	39.3	21.1	13.1	4.8	4.2	2.5	2.2	2.1	1.1	3.6	284.6	5	21.7
1957	23.4	69.4	39.7	6.7	3.1	2.0	1.6	1.2	1.2	0.7	0.5	1.5	151.0	19	82.6
958	31.6	56.3	70.4	30.8	8.8	3.5	2.2	1.6	1.2	0.7	0.5	1.2	208.9	12	52.1
1959	79.8	118.8	114.0	24.4	7.3	3.7	3.8	2.1	1.7	1.1	0.9	2.3	359.8	2	8.7
1960	36.5	121.0	22.6	18.4	5.3	3.6	2.4	1.9	1.4	1.0	0.7	4.3	219.2	10	43.4
961	74.6	87.8	183.5	48.7	10.3	5.5	3.9	2.6	2.1	1.6	1.0	0.8	422.3	1	4.3
962	22.7	40.0	88.5	11.9	4.8	5.6	2.7	1.7	1.5	0.9	0.6	1.8	182.7	15	65.2
963	13.8	71.6	71.1	11.0	3.9	2.6	1.8	1.3	1.2	0.8	0.6	2.9	182.6	16	69.5
1964	48.0	108.2	42.8	16.3	4.6	2.6	1.9	1.2	0.9	0.8	0.5	1.2	229.1	8	34.7
965	21.5	15.4	27.0	4.0	1.4	1.1	0.9	0.7	0.5	0.3	0.3	0.4	73.5	22	95.6
966	26.0	57.5	19.1	2.6	1.4	1.2	0.8	0.6	0.5	0.8	0.3	2.5	113.2	21	91.3
1967	29.7	83.4	70.6	9.9	2.9	3.8	3.0	1.5	1.4	0.7	0.4	0.5	208.1	13	56.5
1968	28.2	110.9	29.4	9.2	2.8	1.9	1.5	0.9	0.7	0.5	0.3	0.4	186.8	14	60.8
1969	40.4	145.7	57.5	10.9	4.0	2.4	2.1	1.5	1.5	0.8	0.6	12.2	279.3	6	26.0
lean	38.3	81.3	66.5	16.9	5.4	3.1	2.2	1.5	1.2	0.9	0.6	2.6	220.6		
SITE	NAME CHOT	TA TAWA		Н											
	Jul	TA TAWA	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Pro
ear			Sep 310.6	0ct 58.2	Nov 36.6	Dec. 17.9	Jan 10.5	Feb 7.4	Mar 6.0	Apr 3.7	May 2.5	Jun 6.7	986.8	Rank 3	13.0
ear	Jul	Aug										- 1-8			13.0
rear 1948 1949	Jul 211.1	Aug 315.7	310.6	58.2	36.6	17.9	10.5	7.4	6.0	3.7	2.5	6.7	986.8 755.3 710.6	3 7 9	13.0 30.4
/ear 1948 1949	Jul 211.1 104.5	Aug 315.7 187.0	310.6 307.6	58.2 88.7	36.6 27.9	17.9 11.5	10.5	7.4	6.0	3.7	2.5 3.0	6.7 3.5	986.8 755.3	3 7 9	13.0 30.4 39.1
rear 1948 1949 1950	Jul 211.1 104.5 198.7	Aug 315.7 187.0 253.5	310.6 307.6 186.1	58.2 88.7 27.5	36.6 27.9 9.5	17.9 11.5 7.8	10.5 6.9 7.4	7.4 4.8 4.7	6.0 6.0 4.0	3.7 3.9 3.0	2.5 3.0 1.9	6.7 3.5 6.6	986.8 755.3 710.6	3 7 9 20	13.0 30.4 39.1 86.9
/ear 1948 1949 1950 1951 1952	Jul 211.1 104.5 198.7 41.6	Aug 315.7 187.0 253.5 165.8	310.6 307.6 186.1 103.5	58.2 88.7 27.5 27.1	36.6 27.9 9.5 9.8	17.9 11.5 7.8 6.0	10.5 6.9 7.4 4.8	7.4 4.8 4.7 4.0	6.0 6.0 4.0 3.0	3.7 3.9 3.0 1.9	2.5 3.0 1.9 1.4	6.7 3.5 6.6 10.4	986.8 755.3 710.6 379.2	3 7 9 20 18	13.0 30.4 39.1 86.9 78.2
/ear 1948 1949 1950 1951 1952	Jul 211.1 104.5 198.7 41.6 103.7	Aug 315.7 187.0 253.5 165.8 302.1	310.6 307.6 186.1 103.5 112.5	58.2 88.7 27.5 27.1 19.5	36.6 27.9 9.5 9.8 8.1	17.9 11.5 7.8 6.0 5.6	10.5 6.9 7.4 4.8 4.9	7.4 4.8 4.7 4.0 4.2	6.0 6.0 4.0 3.0 3.0	3.7 3.9 3.0 1.9	2.5 3.0 1.9 1.4 1.3	6.7 3.5 6.6 10.4 1.7	986.8 755.3 710.6 379.2 568.5	3 7 9 20 18	13.0 30.4 39.1 86.9 78.2 73.9
/ear 1948 1949 1950 1951 1952 1953 1954	Jul 211.1 104.5 198.7 41.6 103.7 116.1	315.7 187.0 253.5 165.8 302.1 320.4	310.6 307.6 186.1 103.5 112.5 98.7	58.2 88.7 27.5 27.1 19.5 22.8	36.6 27.9 9.5 9.8 8.1 8.9	17.9 11.5 7.8 6.0 5.6 5.9	10.5 6.9 7.4 4.8 4.9 4.7	7.4 4.8 4.7 4.0 4.2 3.3	6.0 6.0 4.0 3.0 3.0 2.1	3.7 3.9 3.0 1.9 1.9 1.6 1.6 2.9	2.5 3.0 1.9 1.4 1.3 1.3 2.2	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8	3 7 9 20 18 17 11 4	13.0 30.4 39.1 86.9 78.2 73.9 47.8 17.3
/ear 1948 1949 1950 1951 1952 1953 1954	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7	åug 315.7 187.0 253.5 165.8 302.1 320.4 141.0	310.6 307.6 186.1 103.5 112.5 98.7 348.5	58.2 88.7 27.5 27.1 19.5 22.8 62.4	36.6 27.9 9.5 9.8 8.1 8.9	17.9 11.5 7.8 6.0 5.6 5.9 9.8	10.5 6.9 7.4 4.8 4.9 4.7 6.2	7.4 4.8 4.7 4.0 4.2 3.3 4.3	6.0 6.0 4.0 3.0 3.0 2.1 2.5	3.7 3.9 3.0 1.9 1.9 1.6	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.6	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8	3 7 9 20 18 17 11 4 5	13.0 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7
/ear 1948 1949 1950 1951 1952 1953 1954 1955	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1	315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2	7.4 4.8 4.7 4.0 4.2 3.3 4.3 5.4	6.0 6.0 4.0 3.0 3.0 2.1 2.5 4.0	3.7 3.9 3.0 1.9 1.9 1.6 1.6 2.9	2.5 3.0 1.9 1.4 1.3 1.3 2.2	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8	3 7 9 20 18 17 11 4 5	13.0 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1 75.7	Aug 315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6 224.4	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5 127.1 128.2	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8 68.2 21.7	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4 42.5	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8 15.6	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2 13.5	7.4 4.8 4.7 4.0 4.2 3.3 4.3 5.4 8.0	6.0 6.0 4.0 3.0 3.0 2.1 2.5 4.0 7.2	3.7 3.9 3.0 1.9 1.6 1.6 2.9	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.6	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6 5.0	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8	3 7 9 20 18 17 11 4 5	13.0 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1 75.7	Aug 315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6 224.4 182.1	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5 127.1 128.2 227.6	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8 68.2 21.7	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4 42.5 10.0 28.3	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8 15.6 6.5	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2 13.5 5.2 7.2	7.4 4.8 4.7 4.0 4.2 3.3 4.3 5.4 8.0 3.8	6.0 6.0 4.0 3.0 3.0 2.1 2.5 4.0 7.2	3.7 3.9 3.0 1.9 1.6 1.6 2.9 6.9 2.2	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.4	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6 5.0	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8 488.1	3 7 9 20 18 17 11 4 5 19	13.0 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1 75.7 102.2 257.9	315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6 224.4 182.1 383.8	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5 127.1 128.2 227.6 368.5	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8 68.2 21.7 99.5 78.7	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4 42.5 10.0 28.3 23.4	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8 15.6 6.5 11.4	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2 13.5 5.2	7.4 4.8 4.7 4.0 4.2 3.3 4.3 5.4 8.0 3.8 5.2	6.0 6.0 4.0 3.0 3.0 2.1 2.5 4.0 7.2 3.9 3.8	3.7 3.9 3.0 1.9 1.6 1.6 2.9 6.9 2.2 2.3	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.4 1.6 1.7	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6 5.0 3.9	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8 488.1 675.1	3 7 9 20 18 17 11 4 5 19 12 2	13.0 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7
(ear 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1 75.7 102.2 257.9 117.9	Aug 315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6 224.4 182.1 383.8 391.1	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5 127.1 128.2 227.6	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8 68.2 21.7	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4 42.5 10.0 28.3	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8 15.6 6.5	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2 13.5 5.2 7.2	7.4 4.8 4.7 4.0 4.2 3.3 4.3 5.4 8.0 3.8 5.2 6.8	6.0 6.0 4.0 3.0 3.0 2.1 2.5 4.0 7.2 3.9 3.8 5.4	3.7 3.9 3.0 1.9 1.6 1.6 2.9 6.9 2.2 2.3 3.6 3.1	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.4 1.6 1.7 2.8	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6 5.0 3.9 7.5	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8 488.1 675.1 1162.7	3 7 9 20 18 17 11 4 5 19 12 2	13.0 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7 43.4
(ear 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1 75.7 102.2 257.9 117.9 241.2	Aug 315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6 224.4 182.1 383.8 391.1 283.7	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5 127.1 128.2 227.6 368.5 72.9 592.9	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8 68.2 21.7 99.5 78.7 59.6	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4 42.5 10.0 28.3 23.4 17.3	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8 15.6 6.5 11.4 12.1 11.5	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2 13.5 5.2 7.2 12.2 7.9	7.4 4.8 4.7 4.0 4.2 3.3 4.3 5.4 8.0 3.8 5.2 6.8 6.0	6.0 6.0 4.0 3.0 3.0 2.1 2.5 4.0 7.2 3.9 3.8 5.4	3.7 3.9 3.0 1.9 1.6 1.6 2.9 6.9 2.2 2.3 3.6 3.1	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.4 1.6 1.7 2.8 2.3	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6 5.0 3.9 7.5 14.1	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8 488.1 675.1 1162.7 708.3	3 7 9 20 18 17 11 4 5 19 12 2 10 1	13.0 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7 43.4 4.3
(ear 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1 75.7 102.2 257.9 117.9 241.2 73.5	Aug 315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6 224.4 182.1 383.8 391.1 283.7 129.4	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5 127.1 128.2 227.6 368.5 72.9 592.9 286.1	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8 68.2 21.7 99.5 78.7 59.6 157.3	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4 42.5 10.0 28.3 23.4 17.3 33.1	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8 15.6 6.5 11.4 12.1 11.5	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2 13.5 5.2 7.2 12.2 7.9 12.5	7.4 4.8 4.7 4.0 4.2 3.3 4.3 5.4 8.0 3.8 5.2 6.8 6.0 8.4	6.0 6.0 4.0 3.0 3.0 2.1 2.5 4.0 7.2 3.9 3.8 5.4 4.5 6.9	3.7 3.9 3.0 1.9 1.6 1.6 2.9 6.9 2.2 2.3 3.6 3.1 5.3	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.4 1.6 1.7 2.8 2.3 3.3	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6 5.0 3.9 7.5 14.1 2.5	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8 488.1 675.1 1162.7 708.3 1364.7	3 7 9 20 18 17 11 4 5 19 12 2 10 15	13.0 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7 43.4 4.3 65.2
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1959 1960 1961 1962 1963	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1 75.7 102.2 257.9 117.9 241.2 73.5 44.6	Aug 315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6 224.4 182.1 383.8 391.1 283.7 129.4 231.5	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5 127.1 128.2 227.6 368.5 72.9 592.9 286.1 229.8	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8 68.2 21.7 99.5 78.7 59.6 157.3 38.6	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4 42.5 10.0 28.3 23.4 17.3 33.1 15.4	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8 15.6 6.5 11.4 12.1 11.5 17.7	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2 13.5 5.2 7.2 12.2 7.9 12.5 8.6	7.4 4.8 4.7 4.0 4.2 3.3 4.3 5.4 8.0 3.8 5.2 6.8 6.0 8.4 5.4	6.0 6.0 4.0 3.0 3.0 2.1 2.5 4.0 7.2 3.9 3.8 5.4 4.5 6.9 4.7	3.7 3.9 3.0 1.9 1.6 1.6 2.9 6.9 2.2 2.3 3.6 3.1 5.3 2.9	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.4 1.6 1.7 2.8 2.3 3.3 2.0	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6 5.0 3.9 7.5 14.1 2.5 5.9	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8 488.1 675.1 1162.7 708.3 1364.7 590.4	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16	13.0.4 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7 43.4 4.3 65.2 69.5
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1 75.7 102.2 257.9 117.9 241.2 73.5 44.6 155.3	Aug 315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6 224.4 182.1 383.8 391.1 283.7 129.4 231.5 349.8	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5 127.1 128.2 227.6 368.5 72.9 592.9 286.1 229.8 138.2	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8 68.2 21.7 99.5 78.7 59.6 157.3 38.6 35.6 52.6	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4 42.5 10.0 28.3 23.4 17.3 33.1 15.4 12.7 14.8	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8 15.6 6.5 11.4 12.1 11.5 17.7 17.9 8.4	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2 13.5 5.2 7.2 12.2 7.9 12.5 8.6 5.8	7.4 4.8 4.7 4.0 4.2 3.3 4.3 5.4 8.0 3.8 5.2 6.8 6.0 8.4 5.4	6.0 6.0 3.0 3.0 2.1 2.5 4.0 7.2 3.9 3.8 5.4 4.5 6.9 4.7 3.8	3.7 3.9 3.0 1.9 1.6 1.6 2.9 6.9 2.2 2.3 3.6 3.1 5.3 2.9 2.5	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.4 1.6 1.7 2.8 2.3 3.3 2.0 1.9	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6 5.0 3.9 7.5 14.1 2.5 5.9 9.3	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8 488.1 675.1 1162.7 708.3 1364.7 590.4	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8	13.0.4 39.1. 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7 43.4 4.3 65.2 69.5 34.7
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1964	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1 75.7 102.2 257.9 117.9 241.2 73.5 44.6 155.3 69.4	Aug 315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6 224.4 182.1 383.8 391.1 283.7 129.4 231.5 349.8 49.8	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5 127.1 128.2 227.6 368.5 72.9 592.9 286.1 229.8 138.2 87.3	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8 68.2 21.7 99.5 78.7 59.6 157.3 38.6 35.6 52.6 12.8	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4 42.5 10.0 28.3 23.4 17.3 33.1 15.4 12.7 14.8 4.6	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8 15.6 6.5 11.4 12.1 11.5 17.7 17.9 8.4 8.5	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2 13.5 5.2 7.2 12.2 7.9 12.5 8.6 5.8 6.2	7.4 4.8 4.7 4.0 4.2 3.3 5.4 8.0 3.8 5.2 6.8 6.0 8.4 5.4 4.2 3.8	6.0 6.0 4.0 3.0 3.0 2.1 2.5 4.0 7.2 3.9 3.8 5.4 4.5 6.9 4.7 3.8 3.0	3.7 3.9 3.0 1.9 1.6 1.6 2.9 6.9 2.2 2.3 3.6 3.1 5.3 2.9 2.5 2.7	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.4 1.6 1.7 2.8 2.3 3.3 2.0 1.9 1.6	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6 5.0 3.9 7.5 14.1 2.5 5.9 9.3 3.9	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8 488.1 675.1 1162.7 708.3 1364.7 590.4 590.0 740.4	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8 22	13.0 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7 43.4 4.3 65.2 69.5 34.7 95.6
(ear 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1960 1961 1962 1964 1964 1965	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1 75.7 102.2 257.9 117.9 241.2 73.5 44.6 155.3 69.4 84.2	Aug 315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6 224.4 182.1 383.8 391.1 283.7 129.4 231.5 349.8 49.8 185.8	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5 127.1 128.2 227.6 368.5 72.9 592.9 286.1 229.8 138.2 87.3 61.9	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8 68.2 21.7 99.5 78.7 59.6 157.3 38.6 35.6 52.6 12.8 8.4	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4 42.5 10.0 28.3 23.4 17.3 33.1 15.4 12.7 14.8 4.6 4.4	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8 15.6 6.5 11.4 12.1 11.5 17.7 17.9 8.4 8.5 3.4 3.8	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2 13.5 5.2 7.2 12.2 7.9 12.5 8.6 5.8 6.2 2.9	7.4 4.8 4.7 4.0 4.2 3.3 5.4 8.0 3.8 5.2 6.8 6.0 8.4 5.4 4.2 3.8 2.2	6.0 6.0 4.0 3.0 3.0 2.1 2.5 4.0 7.2 3.9 3.8 5.4 4.5 6.9 4.7 3.8 3.0 1.6	3.7 3.9 3.0 1.9 1.6 1.6 2.9 6.9 2.2 2.3 3.6 3.1 5.3 2.9 2.5 2.7 1.1	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.4 1.6 1.7 2.8 2.3 3.3 2.0 1.9 1.6 1.0	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6 5.0 3.9 7.5 14.1 2.5 5.9 9.3 3.9 1.2	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8 488.1 675.1 1162.7 708.3 1364.7 590.4 590.0 740.4 237.5	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8 22 21	13.0 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7 43.4 4.3 65.2 69.5 795.6 91.3
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1 75.7 102.2 257.9 117.9 241.2 73.5 44.6 155.3 69.4 84.2 96.1	Aug 315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6 224.4 182.1 383.8 391.1 283.7 129.4 231.5 349.8 49.8 185.8 269.6	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5 127.1 128.2 227.6 368.5 72.9 592.9 286.1 229.8 138.2 87.3 61.9 228.2	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8 68.2 21.7 99.5 78.7 59.6 157.3 38.6 35.6 52.6 12.8 8.4	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4 42.5 10.0 28.3 23.4 17.3 33.1 15.4 12.7 14.8 4.6 4.4 9.5	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8 15.6 6.5 11.4 12.1 11.5 17.7 17.9 8.4 8.5 3.4 3.8 12.1	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2 13.5 5.2 7.2 12.2 7.9 12.5 8.6 5.8 6.2 2.9 2.7	7.4 4.8 4.7 4.0 4.2 3.3 5.4 8.0 3.8 5.2 6.8 6.0 8.4 5.4 4.2 3.8 2.2	6.0 6.0 4.0 3.0 3.0 2.1 2.5 4.0 7.2 3.9 3.8 5.4 4.5 6.9 4.7 3.8 3.0 1.6 1.5	3.7 3.9 3.0 1.9 1.6 1.6 2.9 6.9 2.2 2.3 3.6 3.1 5.3 2.9 2.5 2.7 1.1 2.5	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.4 1.6 1.7 2.8 2.3 3.3 2.0 1.9 1.6 1.0	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6 5.0 3.9 7.5 14.1 2.5 5.9 9.3 3.9 1.2 7.9	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8 488.1 675.1 1162.7 708.3 1364.7 590.4 590.0 740.4 237.5 366.0	3 7 9 20 18 17 11 4 5 19 12 2 10 1 15 16 8 22 21 13	13.04 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7 43.4 4.3 65.2 69.5 34.7 95.6 91.3 56.5
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969	Jul 211.1 104.5 198.7 41.6 103.7 116.1 76.7 56.8 278.1 75.7 102.2 257.9 117.9 241.2 73.5 44.6 155.3 69.4 84.2	Aug 315.7 187.0 253.5 165.8 302.1 320.4 141.0 249.4 337.6 224.4 182.1 383.8 391.1 283.7 129.4 231.5 349.8 49.8 185.8	310.6 307.6 186.1 103.5 112.5 98.7 348.5 430.5 127.1 128.2 227.6 368.5 72.9 592.9 286.1 229.8 138.2 87.3 61.9	58.2 88.7 27.5 27.1 19.5 22.8 62.4 163.8 68.2 21.7 99.5 78.7 59.6 157.3 38.6 35.6 52.6 12.8 8.4	36.6 27.9 9.5 9.8 8.1 8.9 19.6 27.4 42.5 10.0 28.3 23.4 17.3 33.1 15.4 12.7 14.8 4.6 4.4	17.9 11.5 7.8 6.0 5.6 5.9 9.8 12.8 15.6 6.5 11.4 12.1 11.5 17.7 17.9 8.4 8.5 3.4 3.8	10.5 6.9 7.4 4.8 4.9 4.7 6.2 8.2 13.5 5.2 7.2 12.2 7.9 12.5 8.6 5.8 6.2 2.9 2.7 9.8	7.4 4.8 4.7 4.0 4.2 3.3 5.4 8.0 3.8 5.2 6.8 6.0 8.4 5.4 4.2 3.8 2.2 1.9 4.9	6.0 6.0 4.0 3.0 3.0 2.1 2.5 4.0 7.2 3.9 3.8 5.4 4.5 6.9 4.7 3.8 3.0 1.6 1.5 4.6	3.7 3.9 3.0 1.9 1.6 1.6 2.9 6.9 2.2 2.3 3.6 3.1 5.3 2.9 2.5 2.7 1.1 2.5 2.2	2.5 3.0 1.9 1.4 1.3 1.3 2.2 3.4 1.6 1.7 2.8 2.3 3.3 2.0 1.9 1.6 1.0 1.0	6.7 3.5 6.6 10.4 1.7 3.1 13.2 21.3 11.6 5.0 3.9 7.5 14.1 2.5 5.9 9.3 3.9 1.2 7.9	986.8 755.3 710.6 379.2 568.5 588.9 687.0 984.8 919.8 488.1 675.1 1162.7 708.3 1364.7 590.4 237.5 366.0 672.5	3 7 9 20 18 17 11 4 5 19 12 2 2 10 1 15 16 8 22 21 13 14	13.04 30.4 39.1 86.9 78.2 73.9 47.8 17.3 21.7 82.6 52.1 8.7 43.4 4.3 65.2 69.5 34.7 95.6 91.3 56.5

Year	Jul	Aug	Sep	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Ran	k Prob
1948	8682.3	12987.6	12777.5	2394.	1507.3	734.8	433.0	303.7	245.9	150.4		276.1	40594.9		13.04
1949	4298.9	7691.5	12653.7	3649.	1147.7	473.4	284.4	198.2	248.6			144.0	31073.3		30.43
1950	8175.0	10429.0	7653.9	1133.0	390.8	319.3	303.7	194.5	163.3				29233.9		39.13
1951	1711.9	6819.0	4259.5	1115.6	401.8	247.7	195.4	163.3	122.9				15599.5		86.96
1952	4265.0	12428.0	4628.3	800.0	333.9	232.1	200.0	170.6	124.8			69.7	23385.4		
1953	4774.1	13181.2	4061.3	935.8	367.0	244.0						126.6	24225.8		
1954	3154.9	5799.8	14336.2		804.6				100.9			544.0	28263.3		
1955	2334.8	10259.3	17709.5	6738.3					164.2			878.0	40512.4		17.39
1956	11439.1	13889.4			1748.6				297.2			478.0	37840.0		21.74
1957	3112.7	9230.0			410.1				161.5	91.7			20081.0		
1958	4203.5	7491.5	9363.0		1165.1							158.7	27773.4		
1959	10608.8	15789.4	15160.0		964.2			280.7			116.5		47834.1		
1960	4850.3			2452.2						129.4	96.3	578.0	29139.4		
1961	9922.6	11670.3			1362.3							101.8	56141.2		4.35
1962	3023.8	5325.5		1586.2					192.6			241.3	24287.2		
1963	1833.9	9522.6		1465.1								383.5	24271.7		
1964	6387.9	14390.3	5685.1	2165.1	607.3	349.5	255.9	156.0	124.8	111.0	67.0	161.5	30461.4		34.78
1965	2854.0		3592.5	526.6	190.8	140.4	121.1	90.8		46.8	42.2		9769.4		
1966	3464.1	7643.8	2545.8										15057.3		
1967	3954.0	11089.5								91.7	59.6	71.6	27666.0		
1968		14749.0							96.3			53.2	24832.2		
1969	5365.9	19367.2	7646.5	1450.4	530.3	313.8	280.7	192.6	197.2	103.7		1617.4			26.09
													07100,2		20.07
Mean	5098.4	10813.4	8840.7	2244.1	721.5	411.5	298.4	198.9	165.7	116.1	78.3	339.4	29326.4		
SITE	NAME ON	CARESHWAR													
Year	Jul	Aug	Sep	0ct	Nov	Dec		Feb	Mar	Apr	May	Jun	Anflow	Rank	Prob
Year 1948	Jul 9138.4	Aug 13670.0	13448.9	2520.2	1586.5	773.5	455.8	319.6	258.8	158.4	107.2	290.6	Anflow 42727.8		Prob 13.04
Year 1948 1949	Jul 9138.4 4524.8	Aug 13670.0 8095.6	13448.9 13318.5	2520.2 3841.2	1586.5 1208.0	773.5 498.3	455.8 299.3	319.6 208.6	258.8 261.7	158.4 169.0	107.2 129.4	290.6 151.6	The second secon	3	13.04
Year 1948 1949 1950	Jul 9138.4 4524.8 8604.5	Aug 13670.0 8095.6 10976.9	13448.9 13318.5 8056.0	2520.2 3841.2 1192.5	1586.5 1208.0 411.4	773.5 498.3 336.0	455.8 299.3 319.6	319.6 208.6 204.7	258.8 261.7 171.9	158.4 169.0 282.0	107.2 129.4 128.4	290.6	42727.8	3 7	13.04 30.43
Year 1948 1949 1950 1951	Jul 9138.4 4524.8 8604.5 1801.8	Aug 13670.0 8095.6 10976.9 7177.3	13448.9 13318.5 8056.0 4483.3	2520.2 3841.2 1192.5 1174.2	1586.5 1208.0 411.4 422.9	773.5 498.3 336.0 260.7	455.8 299.3 319.6 205.7	319.6 208.6 204.7 171.9	258.8 261.7 171.9 129.4	158.4 169.0 282.0 82.1	107.2 129.4 128.4 61.8	290.6 151.6 284.9 448.0	42727.8 32705.9	3 7 9	13.04 30.43 39.13
Year 1948 1949 1950 1951 1952	Jul 9138.4 4524.8 8604.5 1801.8 4489.1	Aug 13670.0 8095.6 10976.9 7177.3 12994.1	13448.9 13318.5 8056.0 4483.3 4871.5	2520.2 3841.2 1192.5 1174.2 842.0	1586.5 1208.0 411.4 422.9 351.5	773.5 498.3 336.0 260.7 244.3	455.8 299.3 319.6 205.7 210.5	319.6 208.6 204.7 171.9 179.6	258.8 261.7 171.9 129.4 131.3	158.4 169.0 282.0 82.1 83.0	107.2 129.4 128.4 61.8 57.0	290.6 151.6 284.9 448.0 73.4	42727.8 32705.9 30968.7	3 7 9	13.04 30.43 39.13 86.96
Year 1948 1949 1950 1951 1952 1953	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7	2520.2 3841.2 1192.5 1174.2 842.0 984.9	1586.5 1208.0 411.4 422.9 351.5 386.2	773.5 498.3 336.0 260.7 244.3 256.9	455.8 299.3 319.6 205.7 210.5 202.8	319.6 208.6 204.7 171.9 179.6 161.9	258.8 261.7 171.9 129.4 131.3 92.7	158.4 169.0 282.0 82.1 83.0 70.5	107.2 129.4 128.4 61.8 57.0 56.0	290.6 151.6 284.9 448.0 73.4 133.3	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3	3 7 9 20 18	13.04 30.43 39.13 86.96
Year 1948 1949 1950 1951 1952 1953 1954	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8	773.5 498.3 336.0 260.7 244.3 256.9 422.9	455.8 299.3 319.6 205.7 210.5 202.8 270.4	319.6 208.6 204.7 171.9 179.6 141.9 184.4	258.8 261.7 171.9 129.4 131.3 92.7 106.2	158.4 169.0 282.0 82.1 83.0 70.5 71.4	107.2 129.4 128.4 61.8 57.0 56.0 55.0	290.6 151.6 284.9 448.0 73.4 133.3 572.6	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6	3 7 9 20 18 15	13.04 30.43 39.13 86.96 78.26 65.22 47.83
Year 1948 1949 1950 1951 1952 1953 1954 1955	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5	107.2 129.4 128.4 61.8 57.0 56.0 55.0 95.6	290.6 151.6 284.9 448.0 73.4 133.3 572.6	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3	3 7 9 20 18 15	13.04 30.43 39.13 86.96 78.26 65.22 47.83
Year 1948 1949 1950 1951 1952 1953 1954 1955	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5504.9	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4	107.2 129.4 128.4 61.8 57.0 56.0 55.0 95.6	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6	3 7 9 20 18 15 11 4	13.04 30.43 39.13 86.96 78.26 65.22 47.83
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5504.9 5552.2	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6	107.2 129.4 128.4 61.8 57.0 56.0 55.0 95.6 147.7 70.5	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9	3 7 9 20 18 15 11 4 5	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5504.9 5552.2 9854.9	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6 1226.3	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6	107.2 129.4 128.4 61.8 57.0 56.0 55.0 95.6 147.7 70.5 72.4	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1	3 7 9 20 18 15 11 4 5	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4 11166.2	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1 16618.9	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5504.9 5552.2 9854.9 15956.5	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6 3408.6	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6 1226.3 1014.8	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4 522.4	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9 527.2	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0 295.5	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1 232.7	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6 101.4 157.4	107.2 129.4 128.4 61.8 57.0 56.0 95.6 147.7 70.5 72.4 122.6	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1 21136.0	3 7 9 20 18 15 11 4 5 19	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4 11166.2 5105.1	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1 16618.9 16936.6	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5504.9 5552.2 9854.9 15956.5 3157.5	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6 3408.6 2581.1	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6 1226.3 1014.8 749.3	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4 522.4 498.3	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9 527.2 340.9	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0 295.5 261.7	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1 232.7 194.1	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6 101.4 157.4	107.2 129.4 128.4 61.8 57.0 56.0 95.6 147.7 70.5 72.4 122.6 101.4	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1 21136.0 29232.6	3 7 9 20 18 15 11 4 5 19 12 2	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61 52.17 8.70
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4 11166.2 5105.1 10443.9	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1 16618.9 16936.6 12293.0	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5504.9 5552.2 9854.9 15956.5 3157.5 25674.3	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6 3408.6 2581.1 6809.4	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1860.4 431.6 1226.3 1014.8 749.3 1433.9	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4 522.4 498.3 766.7	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9 527.2 340.9 539.8	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0 295.5 261.7 363.1	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1 232.7 194.1	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6 101.4 157.4 136.1 228.9	107.2 129.4 128.4 61.8 57.0 56.0 55.0 95.6 147.7 70.5 72.4 122.6 101.4 142.9	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1 324.4	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1 21136.0 29232.6 50347.4	3 7 9 20 18 15 11 4 5 19 12 2	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61 52.17 8.70
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4 11166.2 5105.1 10443.9 3182.6	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1 16618.9 16936.6 12293.0 5605.3	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5504.9 5552.2 9854.9 15956.5 3157.5 25674.3 12386.7	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6 3408.6 2581.1 6809.4 1669.5	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6 1226.3 1014.8 749.3 1433.9 667.2	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4 522.4 498.3 766.7 776.3	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9 527.2 340.9 539.8 372.7	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0 295.5 261.7 363.1 234.6	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1 232.7 194.1 297.4 202.8	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6 101.4 157.4 136.1 228.9 125.5	107.2 129.4 128.4 61.8 57.0 56.0 55.0 95.6 147.7 70.5 72.4 122.6 101.4 142.9 85.9	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1 324.4 608.3 107.2 253.9	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1 21136.0 29232.6 50347.4 30670.4 59100.5 25563.3	3 7 9 20 18 15 11 4 5 19 12 2 10 1 16	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 69.57
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4 11166.2 5105.1 10443.9 3182.6 1930.2	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1 16618.9 16936.6 12293.0 5605.3 10022.9	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5504.9 5552.2 9854.9 15956.5 3157.5 25674.3 12386.7 9949.5	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6 3408.6 2581.1 6809.4 1669.5 1542.1	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6 1226.3 1014.8 749.3 1433.9 667.2 549.4	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4 522.4 498.3 766.7 776.3 362.1	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9 527.2 340.9 539.8 372.7 250.1	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0 295.5 261.7 363.1 234.6 183.5	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1 232.7 194.1 297.4 202.8 164.1	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6 101.4 157.4 136.1 228.9 125.5 107.2	107.2 129.4 128.4 61.8 57.0 56.0 55.0 95.6 147.7 70.5 72.4 122.6 101.4 142.9 85.9 82.1	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1 324.4 608.3 107.2 253.9 403.6	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1 21136.0 29232.6 50347.4 30670.4 59100.5	3 7 9 20 18 15 11 4 5 19 12 2 10 1 16	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 69.57
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4 11166.2 5105.1 10443.9 3182.6 1930.2 6723.5	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1 16618.9 16936.6 12293.0 5605.3 10022.9 15146.4	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5504.9 5552.2 9854.9 15956.5 3157.5 25674.3 12386.7 9949.5 5983.8	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6 3408.6 2581.1 6809.4 1669.5 1542.1 2278.8	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6 1226.3 1014.8 749.3 1433.9 667.2 549.4 639.2	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4 522.4 498.3 766.7 776.3 362.1 367.9	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9 527.2 340.9 539.8 372.7 250.1 269.4	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0 295.5 261.7 363.1 234.6 183.5 164.1	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1 232.7 194.1 202.8 164.1 131.3	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6 101.4 157.4 136.1 228.9 125.5 107.2 116.8	107.2 129.4 128.4 61.8 57.0 56.0 55.0 95.6 147.7 70.5 72.4 122.6 101.4 142.9 85.9 82.1 70.5	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1 324.4 608.3 107.2 253.9 403.6 169.9	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1 21136.0 29232.6 50347.4 30670.4 59100.5 25563.3	3 7 9 20 18 15 11 4 5 19 12 2 10 1 16 17	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 69.57
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4 11166.2 5105.1 10443.9 3182.6 1930.2 6723.5 3004.0	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1 16618.9 16936.6 12293.0 5605.3 10022.9 15146.4 2158.1	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5552.2 9854.9 15956.5 3157.5 25674.3 12386.7 9949.5 5983.8 3781.3	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6 3408.6 2581.1 6809.4 1669.5 1542.1 2278.8 554.3	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6 1226.3 1014.8 749.3 1433.9 667.2 549.4 639.2 200.8	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4 522.4 498.3 766.7 776.3 362.1 367.9 147.7	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9 527.2 340.9 539.8 372.7 250.1 269.4 127.5	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0 295.5 261.7 363.1 234.6 183.5 164.1 95.6	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1 232.7 194.1 297.4 202.8 164.1 131.3 67.6	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6 101.4 157.4 136.1 228.9 125.5 107.2 116.8 49.3	107.2 129.4 128.4 61.8 57.0 56.0 55.0 95.6 147.7 70.5 72.4 122.6 101.4 142.9 85.9 82.1	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1 324.4 608.3 107.2 253.9 403.6 169.9 52.1	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1 21136.0 29232.6 50347.4 30670.4 59100.5 25563.3 25546.9 32061.8 10282.7	3 7 9 20 18 15 11 4 5 19 12 2 10 1 16 17 8 22	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 69.57 73.91 34.78
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4 11166.2 5105.1 10443.9 3182.6 1930.2 6723.5 3004.0 3646.1	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1 16618.9 16936.6 12293.0 5605.3 10022.9 15146.4 2158.1 8045.4	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5552.2 9854.9 15956.5 3157.5 25674.3 12386.7 9949.5 5983.8 3781.3 2679.5	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6 2581.1 6809.4 1669.5 1542.1 2278.8 554.3 363.1	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6 1226.3 1014.8 749.3 1433.9 667.2 549.4 639.2 200.8 192.1	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4 522.4 498.3 766.7 776.3 362.1 367.9 147.7 165.1	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9 527.2 340.9 539.8 372.7 250.1 269.4 127.5 116.8	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0 295.5 261.7 363.1 234.6 183.5 164.1 95.6 81.1	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1 232.7 194.1 202.8 164.1 131.3 67.6 66.6	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6 101.4 157.4 136.1 228.9 125.5 107.2 116.8 49.3 107.2	107.2 129.4 128.4 61.8 57.0 56.0 55.0 95.6 147.7 70.5 72.4 122.6 101.4 142.9 85.9 82.1 70.5 44.4 42.5	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1 324.4 608.3 107.2 253.9 403.6 169.9	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1 21136.0 29232.6 50347.4 30670.4 59100.5 25563.3 25546.9 32061.8 10282.7 15848.4	3 7 9 20 18 15 11 4 5 19 12 2 10 1 16 17 8 22 21	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 69.57 73.91 34.78
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4 11166.2 5105.1 10443.9 3182.6 1930.2 6723.5 3004.0 3646.1 4161.7	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1 16618.9 16936.6 12293.0 5605.3 10022.9 15146.4 2158.1 8045.4	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5552.2 9854.9 15956.5 3157.5 25674.3 12386.7 9949.5 5983.8 3781.3 2679.5 9882.0	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6 3408.6 2581.1 6809.4 1669.5 1542.1 2278.8 554.3 363.1 1392.4	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6 1226.3 1014.8 749.3 1433.9 667.2 549.4 639.2 200.8 192.1 411.4	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4 522.4 498.3 766.7 776.3 362.1 367.9 147.7 165.1 526.3	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9 527.2 340.9 539.8 372.7 250.1 269.4 127.5 116.8 424.9	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0 295.5 261.7 363.1 234.6 183.5 164.1 95.6 81.1 214.4	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1 232.7 194.1 297.4 202.8 164.1 131.3 67.6 66.6 199.9	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6 101.4 157.4 136.1 228.9 125.5 107.2 116.8 49.3 107.2 96.6	107.2 129.4 128.4 61.8 57.0 56.0 55.0 95.6 147.7 70.5 72.4 122.6 101.4 142.9 85.9 82.1 70.5 44.4 42.5 62.8	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1 324.4 608.3 107.2 253.9 403.6 169.9 52.1 342.8 75.3	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1 21136.0 29232.6 50347.4 30670.4 59100.5 25563.3 25546.9 32061.8 10282.7 15848.4 29119.6	3 7 9 20 18 15 11 4 5 19 12 2 10 1 16 17 8 22 21 13	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 69.57 73.91 34.78 95.65 91.30 56.52
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4 11166.2 5105.1 10443.9 3182.6 1930.2 6723.5 3004.0 3646.1 4161.7 3943.5	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1 16618.9 16936.6 12293.0 5605.3 10022.9 15146.4 2158.1 8045.4 11672.2 15524.0	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5552.2 9854.9 15956.5 3157.5 25674.3 12386.7 9949.5 5983.8 3781.3 2679.5 9882.0 4120.2	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6 2581.1 6809.4 1669.5 1542.1 2278.8 554.3 363.1 1392.4 1290.0	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6 1226.3 1014.8 749.3 1433.9 667.2 549.4 639.2 200.8 192.1 411.4 393.0	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4 522.4 498.3 766.7 776.3 362.1 367.9 147.7 165.1 526.3 261.7	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9 527.2 340.9 539.8 372.7 250.1 269.4 127.5 116.8 424.9 205.7	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0 295.5 261.7 363.1 234.6 183.5 164.1 95.6 81.1 214.4	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1 232.7 194.1 297.4 202.8 164.1 131.3 67.6 66.6 199.9 101.4	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6 101.4 136.1 228.9 125.5 107.2 116.8 49.3 107.2 96.6 67.6	107.2 129.4 128.4 61.8 57.0 56.0 95.6 147.7 70.5 72.4 122.6 101.4 142.9 85.9 82.1 70.5 44.4 42.5 62.8 46.3	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1 324.4 608.3 107.2 253.9 403.6 169.9 52.1 342.8 75.3 56.0	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1 21136.0 29232.6 50347.4 30670.4 59100.5 25563.3 25546.9 32061.8 10282.7 15848.4 29119.6 26136.9	3 7 9 20 18 15 11 4 5 19 12 2 10 16 17 8 22 21 13 14	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 69.57 73.91 34.78 95.65 91.30 56.52 60.87
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4 11166.2 5105.1 10443.9 3182.6 1930.2 6723.5 3004.0 3646.1 4161.7 3943.5 5647.8	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1 16618.9 16936.6 12293.0 5605.3 10022.9 15146.4 2158.1 8045.4	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5552.2 9854.9 15956.5 3157.5 25674.3 12386.7 9949.5 5983.8 3781.3 2679.5 9882.0 4120.2	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6 2581.1 6809.4 1669.5 1542.1 2278.8 554.3 363.1 1392.4 1290.0	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6 1226.3 1014.8 749.3 1433.9 667.2 549.4 639.2 200.8 192.1 411.4 393.0	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4 522.4 498.3 766.7 776.3 362.1 367.9 147.7 165.1 526.3 261.7	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9 527.2 340.9 539.8 372.7 250.1 269.4 127.5 116.8 424.9 205.7	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0 295.5 261.7 363.1 234.6 183.5 164.1 95.6 81.1 214.4	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1 232.7 194.1 297.4 202.8 164.1 131.3 67.6 66.6 199.9 101.4	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6 101.4 136.1 228.9 125.5 107.2 116.8 49.3 107.2 96.6 67.6	107.2 129.4 128.4 61.8 57.0 56.0 95.6 147.7 70.5 72.4 122.6 101.4 142.9 85.9 82.1 70.5 44.4 42.5 62.8 46.3	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1 324.4 608.3 107.2 253.9 403.6 169.9 52.1 342.8 75.3	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1 21136.0 29232.6 50347.4 30670.4 59100.5 25563.3 25546.9 32061.8 10282.7 15848.4 29119.6 26136.9	3 7 9 20 18 15 11 4 5 19 12 2 10 16 17 8 22 21 13 14	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 69.57 73.91 34.78 95.65 91.30 56.52
Year 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969	Jul 9138.4 4524.8 8604.5 1801.8 4489.1 5025.0 3320.7 2457.4 12040.1 3276.3 4424.4 11166.2 5105.1 10443.9 3182.6 1930.2 6723.5 3004.0 3646.1 4161.7 3943.5 5647.8	Aug 13670.0 8095.6 10976.9 7177.3 12994.1 14134.5 6104.5 10798.3 14619.2 9714.9 7885.1 16618.9 16936.6 12293.0 5605.3 10022.9 15146.4 2158.1 8045.4 11672.2 15524.0	13448.9 13318.5 8056.0 4483.3 4871.5 4274.7 14741.8 18639.9 5504.9 5552.2 9854.9 15956.5 3157.5 25674.3 12386.7 9949.5 5983.8 3781.3 2679.5 9882.0 4120.2 8048.3	2520.2 3841.2 1192.5 1174.2 842.0 984.9 2703.7 7092.3 2951.8 939.5 4306.6 3408.6 2581.1 6809.4 1669.5 1542.1 2278.8 554.3 363.1 1392.4 1290.0 1526.6	1586.5 1208.0 411.4 422.9 351.5 386.2 846.8 1186.7 1840.4 431.6 1226.3 1014.8 749.3 1433.9 667.2 549.4 639.2 200.8 192.1 411.4 393.0 558.1	773.5 498.3 336.0 260.7 244.3 256.9 422.9 556.2 677.8 282.0 495.4 522.4 498.3 766.7 776.3 362.1 367.9 147.7 165.1 526.3 261.7 330.2	455.8 299.3 319.6 205.7 210.5 202.8 270.4 355.3 585.2 224.0 310.9 527.2 340.9 539.8 372.7 250.1 269.4 127.5 116.8 424.9 205.7 295.5	319.6 208.6 204.7 171.9 179.6 141.9 184.4 235.6 347.6 163.2 224.0 295.5 261.7 363.1 234.6 183.5 164.1 95.6 81.1 214.4 127.5 202.8	258.8 261.7 171.9 129.4 131.3 92.7 106.2 172.8 312.9 169.9 164.1 232.7 194.1 297.4 202.8 164.1 131.3 67.6 66.6 199.9 101.4 207.6	158.4 169.0 282.0 82.1 83.0 70.5 71.4 126.5 297.4 96.6 101.4 157.4 136.1 228.9 125.5 107.2 116.8 49.3 107.2 96.6 67.6	107.2 129.4 128.4 61.8 57.0 56.0 55.0 95.6 147.7 70.5 72.4 122.6 101.4 142.9 85.9 82.1 70.5 44.4 42.5 62.8 46.3 76.3	290.6 151.6 284.9 448.0 73.4 133.3 572.6 924.1 503.1 215.3 167.1 324.4 608.3 107.2 253.9 403.6 169.9 52.1 342.8 75.3 56.0 1702.3	42727.8 32705.9 30968.7 16419.1 24527.2 25759.3 29400.6 42640.9 39828.1 21136.0 29232.6 50347.4 30670.4 59100.5 25563.3 25546.9 32061.8 10282.7 15848.4 29119.6 26136.9	3 7 9 20 18 15 11 4 5 19 12 2 10 16 17 8 22 21 13 14	13.04 30.43 39.13 86.96 78.26 65.22 47.83 17.39 21.74 82.61 52.17 8.70 43.48 4.35 69.57 73.91 34.78 95.65 91.30 56.52 60.87

Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prob
1948	9745.1	14577.5	14341.7	2687.5	1691.8	824.8	486.0	340.8	276.0	168.9	114.3	309.9	45564.2	3	13.0
1949	4825.2	8633.0	14202.7	4096.1	1288.2	531.3	319.2	222.4	279.0	180.2	138.0	161.7	34877.0	7	30.4
1950	9175.7	11705.6	8590.8	1271.7	438.6	358.3	340.8	218.3	183.3	300.7	136.9	303.8	33024.5	9	39.1
1951	1921.4	7653.8	4780.9	1252.1	451.0	278.0	219.3	183.3	138.0	87.5	65.9	477.8	17509.0	20	86.9
1952	4787.1	13856.7	5194.8	897.9	374.8	260.5	224.5	191.5	140.0	88.6	60.8	78.3	26155.4	18	78.2
1953	5358.6	15072.8	4558.5	1050.3	411.9	273.9	216.2	151.4	98.8	75.2	59.7	142.1	27469.3	15	65.2
1954	3541.1	6509.8	15720.4	2883.2	903.0	451.0	288.3	196.7	113.3	76.2	58.7	610.6	31352.3	11	47.8
1955	2620.6	11515.1	19877.3	7563.1	1265.5	593.1	378.9	251.3	184.3	134.9	101.9	985.4	45471.6	4	17.3
1956	12839.3	15589.7	5870.3	3147.8	1962.6	722.8	624.0	370.7	333.6	317.1	157.5	536.5	42472.0	5	21.7
1957	3493.8	10359.8	5920.8	1001.9	460.3	300.7	238.9	174.0	181.2	103.0	75.2	229.6	22539.1	19	82.6
1958	4718.1	8408.5	10509.1	4592.5	1307.7	528.2	331.6	238.9	175.1	108.1	77.2	178.1	31173.2	12	52.1
1959	11907.5	17722.2	17015.8	3634.8	1082.2	557.1	562.2	315.1	248.2	167.8	130.8	346.0	53689.6	2	8.7
1960	5444.0	18060.9	3367.1	2752.4	799.0	531.3	363.5	279.0	207.0	145.2	108.1	648.7	32706.4	10	43.4
1961	11137.2	13109.1	27378.7			817.6	575.6	387.2	317.1	244.0	152.4	114.3	63023.8	1	4.3
1962	3393.9	5977.4	13209.0		711.5	827.9	397.5	250.2	216.2	133.9	91.6	270.8	27260.3	16	69.5
1963	2058.4	10688.3	10610.0	1644.4		386.1	266.7			114.3	87.5	430.4	27242.8		73.9
1964	7169.8	16151.9		2430.1	681.7	392.3	287.3	175.1	140.0	124.6	75.2	181.2	34190.2		34.7
1965	3203.4	2301.4	4032.3		214.2	157.5	135.9	101.9	72.1	52.5	47.4	55.6	10965.3		95.6
1966	3888.1	8579.5		387.2		176.1	124.6		71.1	114.3	45.3	365.5	16900.5	21	91.3
1967	4438.0		10538.0	1484.8	438.6	561.2	453.1	228.6	213.1	103.0	66.9	80.3	31052.7		56.5
1968	4205.3	16554.5	4393.7	1375.7	419.1		219.3	135.9		72.1	49.4	59.7	27871.9		60.8
1969	6022.7			1628.0			315.1					1815.4	41684.4	6	26.0
1707	0022.7	21/30.0	0302.3	1020.0	373.2	332,2	313.1	210.2	221.4	110.4	01.5	1013.4	41004.4		20.0
Mean	5722.5	12146.0	9906.0	2518.8	809.9	461.9	334.9	223.2	186.0	137.7	90.1	381.0	32918.0		
	NAME UPP		0	0.4	Mau	Dan	lan	Eab	Man	400	May	Torr	Anflou	Dank	Dno
Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow 324.4	Rank	Pro 17.3
1948	64.2	103.4	111.4	17.6	10.7	5.7	3.2	1.9	1.6	1.0	0.6	3.1		4	30.4
1949	29.8	56.7	106.5	38.6	10.0	6.1	1.9	1.9	1.7	1.1	0.8	0.9	254.0		
1950	53.9	82.0	81.4	14.1	4.8	3.0	2.8	1.4	1.2	1.1	0.8	1.7	248.2	8	34.7
1951	20.1	54.1	29.8	7.6	2.8		1.5	1.1	0.9	0.5	0.3	3.0	123.7		86.9
1952	26.4	84.7	32.6	6.1	2.7	1.8	1.4	1.1	0.8	11 6					70 0
1953	28.2	96.4	30.3	8.6	2.9	2.1		0.0			0.3	3.8	161.9		
1954	28.2						1.7	0.8	0.6	0.4	0.2	1.1	173.3	17	73.9
1955		40.4	136.7	7.6	8.8	4.3	2.8	1.8	0.6	0.4	0.2	1.1 5.0	173.3 236.9	17 9	73.9 39.1
	18.4	66.4	138.5	7.6 53.4	8.8 8.7	4.3	2.8 3.1	1.8	0.6 0.6 1.7	0.4 0.4 1.1	0.2 0.3 0.8	1.1 5.0 6.6	173.3 236.9 304.7	17 9 5	73.9 39.1 21.7
1956	75.8	66.4 107.4	138.5 34.2	7.6 53.4 18.8	8.8 8.7 10.1	4.3 4.3 3.8	2.8 3.1 3.6	1.8 1.7 2.4	0.6 0.6 1.7 2.1	0.4 0.4 1.1	0.2 0.3 0.8 0.9	1.1 5.0 6.6 4.7	173.3 236.9 304.7 265.7	17 9 5 6	73.9 39.1 21.7 26.0
1956 1957	75.8 19.6	66.4 107.4 70.7	138.5 34.2 38.2	7.6 53.4 18.8 7.7	8.8 8.7 10.1 3.5	4.3 4.3 3.8 2.4	2.8 3.1 3.6 1.9	1.8 1.7 2.4 1.3	0.6 0.6 1.7 2.1	0.4 0.4 1.1 1.9 0.7	0.2 0.3 0.8 0.9 0.4	1.1 5.0 6.6 4.7 1.8	173.3 236.9 304.7 265.7 149.3	17 9 5 6 19	73.9 39.1 21.7 26.0 82.6
1956 1957 1958	75.8 19.6 31.6	66.4 107.4 70.7 52.3	138.5 34.2 38.2 80.4	7.6 53.4 18.8 7.7 31.8	8.8 8.7 10.1 3.5 4.2	4.3 4.3 3.8 2.4 1.6	2.8 3.1 3.6 1.9 1.0	1.8 1.7 2.4 1.3 0.6	0.6 0.6 1.7 2.1 1.2 0.5	0.4 0.4 1.1 1.9 0.7 0.3	0.2 0.3 0.8 0.9 0.4 0.2	1.1 5.0 6.6 4.7 1.8 0.4	173.3 236.9 304.7 265.7 149.3 204.8	17 9 5 6 19 13	73.9 39.1 21.7 26.0 82.6 56.5
1956 1957 1958 1959	75.8 19.6 31.6 53.3	66.4 107.4 70.7 52.3 128.7	138.5 34.2 38.2 80.4 150.6	7.6 53.4 18.8 7.7 31.8 31.7	8.8 8.7 10.1 3.5 4.2 13.2	4.3 4.3 3.8 2.4 1.6 6.8	2.8 3.1 3.6 1.9 1.0 6.0	1.8 1.7 2.4 1.3 0.6 4.1	0.6 0.6 1.7 2.1 1.2 0.5 2.9	0.4 0.4 1.1 1.9 0.7 0.3 2.0	0.2 0.3 0.8 0.9 0.4 0.2 1.5	1.1 5.0 6.6 4.7 1.8 0.4 5.2	173.3 236.9 304.7 265.7 149.3 204.8 406.1	17 9 5 6 19 13 2	73.9 39.1 21.7 26.0 82.6 56.5 8.7
1956 1957 1958 1959 1960	75.8 19.6 31.6 53.3 29.1	66.4 107.4 70.7 52.3 128.7 112.3	138.5 34.2 38.2 80.4 150.6 23.0	7.6 53.4 18.8 7.7 31.8 31.7 39.3	8.8 8.7 10.1 3.5 4.2 13.2 3.9	4.3 4.3 3.8 2.4 1.6 6.8 2.4	2.8 3.1 3.6 1.9 1.0 6.0	1.8 1.7 2.4 1.3 0.6 4.1 1.7	0.6 0.6 1.7 2.1 1.2 0.5 2.9 1.6	0.4 0.4 1.1 1.9 0.7 0.3 2.0	0.2 0.3 0.8 0.9 0.4 0.2 1.5	1.1 5.0 6.6 4.7 1.8 0.4 5.2 3.3	173.3 236.9 304.7 265.7 149.3 204.8 406.1 220.2	17 9 5 6 19 13 2	73.9 39.1 21.7 26.0 82.6 56.5 8.7 47.8
1956 1957 1958 1959 1960 1961	75.8 19.6 31.6 53.3 29.1 71.3	66.4 107.4 70.7 52.3 128.7 112.3 89.6	138.5 34.2 38.2 80.4 150.6 23.0 204.7	7.6 53.4 18.8 7.7 31.8 31.7 39.3 71.7	8.8 8.7 10.1 3.5 4.2 13.2 3.9 10.7	4.3 4.3 3.8 2.4 1.6 6.8 2.4 4.3	2.8 3.1 3.6 1.9 1.0 6.0 1.9 2.7	1.8 1.7 2.4 1.3 0.6 4.1 1.7	0.6 0.6 1.7 2.1 1.2 0.5 2.9 1.6 1.5	0.4 0.4 1.1 1.9 0.7 0.3 2.0 1.1	0.2 0.3 0.8 0.9 0.4 0.2 1.5 0.6	1.1 5.0 6.6 4.7 1.8 0.4 5.2 3.3 0.6	173.3 236.9 304.7 265.7 149.3 204.8 406.1 220.2 460.7	17 9 5 6 19 13 2 11	73.9 39.1 21.7 26.0 82.6 56.5 8.7 47.8 4.3
1956 1957 1958 1959 1960 1961 1962	75.8 19.6 31.6 53.3 29.1 71.3 23.5	66.4 107.4 70.7 52.3 128.7 112.3 89.6 38.4	138.5 34.2 38.2 80.4 150.6 23.0 204.7 97.5	7.6 53.4 18.8 7.7 31.8 31.7 39.3 71.7	8.8 8.7 10.1 3.5 4.2 13.2 3.9 10.7 4.1	4.3 4.3 3.8 2.4 1.6 6.8 2.4 4.3 4.4	2.8 3.1 3.6 1.9 1.0 6.0 1.9 2.7 2.0	1.8 1.7 2.4 1.3 0.6 4.1 1.7 1.9	0.6 0.6 1.7 2.1 1.2 0.5 2.9 1.6 1.5	0.4 0.4 1.1 1.9 0.7 0.3 2.0 1.1	0.2 0.3 0.8 0.9 0.4 0.2 1.5 0.6 0.7	1.1 5.0 6.6 4.7 1.8 0.4 5.2 3.3 0.6 3.6	173.3 236.9 304.7 265.7 149.3 204.8 406.1 220.2 460.7 188.6	17 9 5 6 19 13 2 11 1	73.9 39.1 21.7 26.0 82.6 56.5 8.7 47.8 4.3 65.2
1956 1957 1958 1959 1960 1961 1962 1963	75.8 19.6 31.6 53.3 29.1 71.3 23.5 11.7	66.4 107.4 70.7 52.3 128.7 112.3 89.6 38.4 70.8	138.5 34.2 38.2 80.4 150.6 23.0 204.7 97.5 69.9	7.6 53.4 18.8 7.7 31.8 31.7 39.3 71.7 11.6 8.6	8.8 8.7 10.1 3.5 4.2 13.2 3.9 10.7 4.1 3.7	4.3 4.3 3.8 2.4 1.6 6.8 2.4 4.3 4.4	2.8 3.1 3.6 1.9 1.0 6.0 1.9 2.7 2.0 2.0	1.8 1.7 2.4 1.3 0.6 4.1 1.7 1.9 1.2	0.6 0.6 1.7 2.1 1.2 0.5 2.9 1.6 1.5 1.0	0.4 0.4 1.1 1.9 0.7 0.3 2.0 1.1 1.1 0.7	0.2 0.3 0.8 0.9 0.4 0.2 1.5 0.6 0.7 0.5	1.1 5.0 6.6 4.7 1.8 0.4 5.2 3.3 0.6 3.6 2.6	173.3 236.9 304.7 265.7 149.3 204.8 406.1 220.2 460.7 188.6 175.1	17 9 5 6 19 13 2 11 1 15 16	56.5 8.7 47.8 4.3 65.2 69.5
1956 1957 1958 1959 1960 1961 1962 1963 1964	75.8 19.6 31.6 53.3 29.1 71.3 23.5	66.4 107.4 70.7 52.3 128.7 112.3 89.6 38.4	138.5 34.2 38.2 80.4 150.6 23.0 204.7 97.5 69.9 42.7	7.6 53.4 18.8 7.7 31.8 31.7 39.3 71.7 11.6 8.6 17.3	8.8 8.7 10.1 3.5 4.2 13.2 3.9 10.7 4.1 3.7 3.9	4.3 3.8 2.4 1.6 6.8 2.4 4.3 4.4 1.9 2.6	2.8 3.1 3.6 1.9 1.0 6.0 1.9 2.7 2.0 2.0 2.5	1.8 1.7 2.4 1.3 0.6 4.1 1.7 1.9 1.2 1.6 1.3	0.6 0.6 1.7 2.1 1.2 0.5 2.9 1.6 1.5 1.0 0.9	0.4 1.1 1.9 0.7 0.3 2.0 1.1 1.1 0.7 0.8	0.2 0.3 0.8 0.9 0.4 0.2 1.5 0.6 0.7 0.5 0.6	1.1 5.0 6.6 4.7 1.8 0.4 5.2 3.3 0.6 3.6 2.6 1.0	173.3 236.9 304.7 265.7 149.3 204.8 406.1 220.2 460.7 188.6 175.1 210.6	17 9 5 6 19 13 2 11 1 15 16 12	73.9 39.1 21.7 26.0 82.6 56.5 8.7 47.8 4.3 65.2 69.5 52.1
1956 1957 1958 1959 1960 1961 1962 1963	75.8 19.6 31.6 53.3 29.1 71.3 23.5 11.7	66.4 107.4 70.7 52.3 128.7 112.3 89.6 38.4 70.8	138.5 34.2 38.2 80.4 150.6 23.0 204.7 97.5 69.9	7.6 53.4 18.8 7.7 31.8 31.7 39.3 71.7 11.6 8.6	8.8 8.7 10.1 3.5 4.2 13.2 3.9 10.7 4.1 3.7	4.3 4.3 3.8 2.4 1.6 6.8 2.4 4.3 4.4	2.8 3.1 3.6 1.9 1.0 6.0 1.9 2.7 2.0 2.0 2.5 0.7	1.8 1.7 2.4 1.3 0.6 4.1 1.7 1.9 1.2 1.6 1.3 0.5	0.6 0.6 1.7 2.1 1.2 0.5 2.9 1.6 1.5 1.0 0.9 0.9	0.4 1.1 1.9 0.7 0.3 2.0 1.1 1.1 0.7 0.8 0.7	0.2 0.3 0.8 0.9 0.4 0.2 1.5 0.6 0.7 0.5 0.6	1.1 5.0 6.6 4.7 1.8 0.4 5.2 3.3 0.6 3.6 2.6 1.0	173.3 236.9 304.7 265.7 149.3 204.8 406.1 220.2 460.7 188.6 175.1 210.6 75.5	17 9 5 6 19 13 2 11 1 15 16 12 22	73.9 39.1 21.7 26.0 82.6 56.5 8.7 47.8 4.3 65.2 69.5 52.1 95.6
1956 1957 1958 1959 1960 1961 1962 1963 1964	75.8 19.6 31.6 53.3 29.1 71.3 23.5 11.7 40.3	66.4 107.4 70.7 52.3 128.7 112.3 89.6 38.4 70.8 96.8	138.5 34.2 38.2 80.4 150.6 23.0 204.7 97.5 69.9 42.7	7.6 53.4 18.8 7.7 31.8 31.7 39.3 71.7 11.6 8.6 17.3	8.8 8.7 10.1 3.5 4.2 13.2 3.9 10.7 4.1 3.7 3.9	4.3 3.8 2.4 1.6 6.8 2.4 4.3 4.4 1.9 2.6	2.8 3.1 3.6 1.9 1.0 6.0 1.9 2.7 2.0 2.0 2.5	1.8 1.7 2.4 1.3 0.6 4.1 1.7 1.9 1.2 1.6 1.3	0.6 0.6 1.7 2.1 1.2 0.5 2.9 1.6 1.5 1.0 0.9 0.9	0.4 1.1 1.9 0.7 0.3 2.0 1.1 1.1 0.7 0.8 0.7 0.3	0.2 0.3 0.8 0.9 0.4 0.2 1.5 0.6 0.7 0.5 0.6 0.6	1.1 5.0 6.6 4.7 1.8 0.4 5.2 3.3 0.6 3.6 2.6 1.0 0.2 4.1	173.3 236.9 304.7 265.7 149.3 204.8 406.1 220.2 460.7 188.6 175.1 210.6 75.5	17 9 5 6 19 13 2 11 1 15 16 12 22 21	73.9 39.1 21.7 26.0 82.6 56.5 8.7 47.8 4.3 65.2 69.5 52.1 95.6 91.3
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	75.8 19.6 31.6 53.3 29.1 71.3 23.5 11.7 40.3 19.5	66.4 107.4 70.7 52.3 128.7 112.3 89.6 38.4 70.8 96.8 19.1	138.5 34.2 38.2 80.4 150.6 23.0 204.7 97.5 69.9 42.7 28.4	7.6 53.4 18.8 7.7 31.8 31.7 39.3 71.7 11.6 8.6 17.3 4.2	8.8 8.7 10.1 3.5 4.2 13.2 3.9 10.7 4.1 3.7 3.9	4.3 3.8 2.4 1.6 6.8 2.4 4.3 4.4 1.9 2.6 0.9	2.8 3.1 3.6 1.9 1.0 6.0 1.9 2.7 2.0 2.0 2.5 0.7	1.8 1.7 2.4 1.3 0.6 4.1 1.7 1.9 1.2 1.6 1.3 0.5	0.6 0.6 1.7 2.1 1.2 0.5 2.9 1.6 1.5 1.0 0.9 0.9	0.4 1.1 1.9 0.7 0.3 2.0 1.1 1.1 0.7 0.8 0.7 0.3 0.6	0.2 0.3 0.8 0.9 0.4 0.2 1.5 0.6 0.7 0.5 0.6 0.2 0.3	1.1 5.0 6.6 4.7 1.8 0.4 5.2 3.3 0.6 3.6 2.6 1.0 0.2 4.1	173.3 236.9 304.7 265.7 149.3 204.8 406.1 220.2 460.7 188.6 175.1 210.6 75.5 118.3 229.4	17 9 5 6 19 13 2 11 1 15 16 12 22 21 10	73.9 39.1 21.7 26.0 82.6 56.5 8.7 47.8 4.3 65.2 69.5 52.1 95.6 43.4
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	75.8 19.6 31.6 53.3 29.1 71.3 23.5 11.7 40.3 19.5 19.8	66.4 107.4 70.7 52.3 128.7 112.3 89.6 38.4 70.8 96.8 19.1 60.0	138.5 34.2 38.2 80.4 150.6 23.0 204.7 97.5 69.9 42.7 28.4 26.2	7.6 53.4 18.8 7.7 31.8 31.7 39.3 71.7 11.6 8.6 17.3 4.2 3.0	8.8 8.7 10.1 3.5 4.2 13.2 3.9 10.7 4.1 3.7 3.9 1.2	4.3 3.8 2.4 1.6 6.8 2.4 4.3 4.4 1.9 2.6 0.9	2.8 3.1 3.6 1.9 1.0 6.0 1.9 2.7 2.0 2.0 2.5 0.7 0.8	1.8 1.7 2.4 1.3 0.6 4.1 1.7 1.9 1.2 1.6 1.3 0.5 0.6	0.6 0.6 1.7 2.1 1.2 0.5 2.9 1.6 1.5 1.0 0.9 0.4 0.5 1.5	0.4 1.1 1.9 0.7 0.3 2.0 1.1 1.1 0.7 0.8 0.7 0.3 0.6	0.2 0.3 0.8 0.9 0.4 0.2 1.5 0.6 0.7 0.5 0.6 0.2 0.3	1.1 5.0 6.6 4.7 1.8 0.4 5.2 3.3 0.6 3.6 2.6 1.0 0.2 4.1 0.6 0.7	173.3 236.9 304.7 265.7 149.3 204.8 406.1 220.2 460.7 188.6 175.1 210.6 75.5 118.3 229.4 204.0	17 9 5 6 19 13 2 11 1 15 16 12 22 21 10 14	73.9 39.1 21.7 26.0 82.6 56.5 8.7 47.8 4.3 65.2 69.5 52.1 95.6 91.3 43.4 60.8
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	75.8 19.6 31.6 53.3 29.1 71.3 23.5 11.7 40.3 19.5 19.8 37.2	66.4 107.4 70.7 52.3 128.7 112.3 89.6 38.4 70.8 96.8 19.1 60.0 84.6	138.5 34.2 38.2 80.4 150.6 23.0 204.7 97.5 69.9 42.7 28.4 26.2 81.3	7.6 53.4 18.8 7.7 31.8 31.7 39.3 71.7 11.6 8.6 17.3 4.2 3.0 10.4	8.8 8.7 10.1 3.5 4.2 13.2 3.9 10.7 4.1 3.7 3.9 1.2 1.3 3.9	4.3 3.8 2.4 1.6 6.8 2.4 4.3 4.4 1.9 2.6 0.9 1.0 4.2	2.8 3.1 3.6 1.9 1.0 6.0 1.9 2.7 2.0 2.0 2.5 0.7 0.8 3.1	1.8 1.7 2.4 1.3 0.6 4.1 1.7 1.9 1.2 1.6 1.3 0.5 0.6	0.6 0.6 1.7 2.1 1.2 0.5 2.9 1.6 1.5 1.0 0.9 0.9 0.4 0.5	0.4 1.1 1.9 0.7 0.3 2.0 1.1 1.1 0.7 0.8 0.7 0.3 0.6	0.2 0.3 0.8 0.9 0.4 0.2 1.5 0.6 0.7 0.5 0.6 0.2 0.3	1.1 5.0 6.6 4.7 1.8 0.4 5.2 3.3 0.6 3.6 2.6 1.0 0.2 4.1	173.3 236.9 304.7 265.7 149.3 204.8 406.1 220.2 460.7 188.6 175.1 210.6 75.5 118.3 229.4	17 9 5 6 19 13 2 11 1 15 16 12 22 21 10 14	73.9 39.1 21.7 26.0 82.6 56.5 8.7 47.8 4.3 65.2 69.5 52.1 95.6 43.4

Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	
1948	102.0	164.5	177.1	28.0	17.1	9.1	5.1	3.0	2.5	1.6	1.0	4.9	515.8	4	17.3
1949	47.3	90.1	169.3	61.4	15.9	6.5	3.1	3.1	2.7	1.8	1.2	1.4	403.8	7	30.4
1950	85.7	130.4	129.5	22.4	7.7	4.8	4.4	2.3	1.9	1.8	1.2	2.7	394.6	8	34.7
1951	32.0	86.1	47.4	12.0	4.4	3.3	2.4	1.8	1.4	0.8	0.4	4.7	196.6	20	86.9
1952	41.9	134.6	51.8	9.7	4.4	2.8	2.2	1.7	1.2	0.7	0.4	6.1	257.5	18	78.2
1953	44.9	153.3	48.2	13.6	4.7	3.3	2.7	1.3	1.0	0.6	0.4	1.8	275.6	17	73.9
1954	44.9	64.2	217.4	12.0	14.0	6.8	4.4	2.8	1.0	0.7	0.5	7.9	376.7	9	39.13
1955	29.2	105.6	220.3	85.0	13.8	6.8	5.0	2.8	2.7	1.7	1.2	10.5	484.5	- 5	21.7
1956	120.6	170.8	54.3	29.9	16.0	6.0	5.8	3.9	3.3	3.0	1.4	7.5	422.6	6	26.09
1957	31.1	112.4	60.7	12.2	5.6	3.8	3.1	2.0	1.9	1.1	0.7	2.8	237.4	19	82.6
1958	50.3	83.1	127.8	50.6	6.6	2.5	1.5	1.0	0.8	0.5	0.3	0.7	325.7	13	56.52
1959	84.8	204.6	239.5	50.4	21.0	10.9	9.6	6.5	4.7	3.1	2.4	8.2	645.7	2	8.70
1960	46.3	178.6	36.5	62.6	6.2	3.8	3.1	2.7	2.6	1.8	0.9	5.2	350.2	11	47.83
1961	113.3	142.4	325.5	113.9	17.0	6.9	4.3	3.1	2.3	1.7	1.2	1.0	732.6	1	4.3
1962	37.4	61.1	155.1	18.5	6.5	7.0	3.2	1.9	1.7	1.1	0.8	5.7	299.9	15	65.22
1963	18.6	112.6	111.2	13.7		3.0	3.2	2.6	1.4	1.2	0.9	4.2	278.4	16	69.5
1964	64.1	154.0	67.8	27.5	6.3	4.1	3.9	2.1	1.5	1.1	0.9	1.6	334.8	12	52.17
1965	30.9	30.4	45.1	6.6	1.9	1.4	1.1	0.9	0.6	0.4	0.3	0.3	120.1	22	95.65
1966	31.5	95.4	41.7	4.8	2.1	1.7	1.3	0.9	0.8	1.0	0.5	6.4	188.2	21	91.30
1967	59.1	134.5	129.2	16.5	6.2	6.6	4.9	2.5	2.4	1.1	0.7	0.9	364.8	10	43.48
1968	24.3	213.6	50.9	17.1	6.4	4.0	2.4	1.5	1.4	1.0	0.5	1.2	324.5	14	60.87
1969	61.1	249.7	132.6	15.7	6.7	3.7	3.2	2.6	2.1	1.5	0.7	43.0	522.5	3	13.0
Mean	54.6	130.6	120.0	31.1	8.9	4.9	3.6	2.4	1.9	1.3	0.8	5.9	366.0		
SITE N		R GOI			U										
Year	Jul	Aug	Sep	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prot
1948	131.5	212.0	228.2	36.1	22.0	11.7	6.5	3.9	3.2	2.1	1.3	6.3	664.8	4	17.39
1949	61.0	116.1	218.2	79.1	20.4	8.4	4.0	4.0	3.5	2.3	1.6	1.9	520.4	7	30.43
1950	110.4	168.0	166.9	28.8	9.9	6.2	5.7	2.9	2.4	2.3	1.6	3.5	508.5	8	34.78
1951	41.3	110.9	61.1	15.5	5.7	4.2	3.1	2.3	1.8	1.0	0.6	6.1	253.4	20	86.96
1952	54.0	173.5	66.8	12.5	5.6	3.6	2.8	2.2	1.6	0.9	0.5	7.8	331.8	18	78.26
1953	57.8	197.6	62.1	17.5	6.0	4.3	3.4	1.7	1.3	0.8	0.5	2.3	355.2	17	73.91
1954	57.8	82.8	280.1	15.5	18.0	8.7	5.7	3.7	1.3	0.9	0.6	10.2	485.4		39.13
1955	37.6	136.1	283.9	109.5	17.8	8.7	6.4	3.6	3.4	2.2	1.6	13.6			21.74
1956	155.4	220.1	70.0	38.5	20.6	7.7	7.4	5.0	4.3	3.9	1.9	9.7	544.5		26.09
1957	40.1	144.9	78.2	15.8	7.2	4.9	4.0	2.6	2.4	1.5	0.9	3.6	305.9		
1958	64.8	107.1	164.8	65.2	8.5	3.2	2.0	1.3	1.0	0.6	0.3	0.9	419.7		56.52
1959	109.2	263.7	308.7	64.9	27.1	14.0	12.4	8.4	6.0	4.0	3.1	10.6	832.1		8.70
1960	59.7	230.2	47.1	80.6	8.0	4.9	4.0	3.4	3.3	2.3	1.2	6.7	451.3		
	146.0	183.6	419.4	146.8	21.9	8.9	5.6	4.0	3.0	2.2	1.5	1.3	944.1		4.35
1961	100		199.8	74 0	8.4	9.0	4.1	2.4	2.1	1.5	1.1	7.3	386.5	15	
1962	48.2	78.7		23.9								F /			
1962 1963	24.0	145.1	143.3	17.7	7.5	3.9	4.1	3.3	1.9	1.6	1.2	5.4	358.8		
1962 1963 1964	24.0 82.6	145.1 198.5	143.3 87.4	17.7 35.4	7.5 8.1	5.2	5.1	2.7	1.9	1.4	1.1	2.1	431.5	12	52.17
1962 1963 1964 1965	24.0 82.6 39.9	145.1 198.5 39.2	143.3 87.4 58.1	17.7 35.4 8.5	7.5 8.1 2.5	5.2 1.8	5.1	2.7	1.9	1.4	1.1	2.1	431.5 154.8	12 22	52.17 95.65
1962 1963 1964 1965 1966	24.0 82.6 39.9 40.6	145.1 198.5 39.2 123.0	143.3 87.4 58.1 53.8	17.7 35.4 8.5 6.2	7.5 8.1 2.5 2.7	5.2 1.8 2.1	5.1 1.5 1.7	2.7 1.1 1.2	1.9 0.8 1.0	1.4 0.5 1.3	1.1 0.4 0.6	2.1 0.4 8.3	431.5 154.8 242.5	12 22 21	52.17 95.65 91.30
1962 1963 1964 1965 1966 1967	24.0 82.6 39.9 40.6 76.2	145.1 198.5 39.2 123.0 173.3	143.3 87.4 58.1 53.8 166.6	17.7 35.4 8.5 6.2 21.3	7.5 8.1 2.5 2.7 7.9	5.2 1.8 2.1 8.6	5.1 1.5 1.7 6.3	2.7 1.1 1.2 3.3	1.9 0.8 1.0 3.1	1.4 0.5 1.3 1.4	1.1 0.4 0.6 0.9	2.1 0.4 8.3 1.2	431.5 154.8 242.5 470.0	12 22 21 10	52.17 95.65 91.30 43.48
1962 1963 1964 1965 1966 1967 1968	24.0 82.6 39.9 40.6 76.2 31.4	145.1 198.5 39.2 123.0 173.3 275.3	143.3 87.4 58.1 53.8 166.6 65.6	17.7 35.4 8.5 6.2 21.3 22.0	7.5 8.1 2.5 2.7 7.9 8.2	5.2 1.8 2.1 8.6 5.2	5.1 1.5 1.7 6.3 3.1	2.7 1.1 1.2 3.3 2.0	1.9 0.8 1.0 3.1 1.8	1.4 0.5 1.3 1.4 1.3	1.1 0.4 0.6 0.9 0.7	2.1 0.4 8.3 1.2 1.5	431.5 154.8 242.5 470.0 418.1	12 22 21 10 14	52.17 95.65 91.30 43.48 60.87
1962	24.0 82.6 39.9 40.6 76.2	145.1 198.5 39.2 123.0 173.3	143.3 87.4 58.1 53.8 166.6	17.7 35.4 8.5 6.2 21.3	7.5 8.1 2.5 2.7 7.9	5.2 1.8 2.1 8.6	5.1 1.5 1.7 6.3	2.7 1.1 1.2 3.3	1.9 0.8 1.0 3.1	1.4 0.5 1.3 1.4	1.1 0.4 0.6 0.9	2.1 0.4 8.3 1.2	431.5 154.8 242.5 470.0	12 22 21 10 14 3	52.17 95.65 91.30 43.48 60.87 13.04

222		TABLT
SITE	NAME	JOBAT

ar	Jul	Aug	Sep		27.0						May	Jun 4.2	Anflow R 446.7		17.39
48	88.3	142.4	153.4	24.2	14.8	7.9	4.4	2.6		1.4	0.9	1.2	349.7	7	30.43
149	41.0	78.0	146.6	53.2	13.7	5.6	2.7	2.7	2.4	1.5	1.0	2.3	341.7	8	34.78
50	74.2	112.9	112.2	19.4	6.7	4.1	3.8	2.0	1.6	1.5	1.1	4.1		20	86.96
951	27.8	74.5	41.1	10.4	3.8	2.8	2.1	1.5	1.2	0.7	0.4	5.3		18	78.26
952	36.3	116.6	44.9	8.4	3.8	2.4	1.9	1.5	1.0	0.6	0.3	1.5		17	73.91
953	38.9	132.8	41.7	11.8	4.0	2.9	2.3	1.1	0.9	0.5	0.3	6.9	326.2	9	39.13
954	38.9	55.6	188.2	10.4	12.1	5.9	3.8	2.5	0.9	0.6	0.4		419.6	5	21.74
955	25.3	91.5	190.8	73.6	11.9	5.9	4.3	2.4	2.3	1.5	1.1	9.1	365.9	6	26.09
956	104.4	147.9	47.0	25.9	13.9	5.2	5.0	3.4	2.9	2.6	1.2		205.6	19	82.61
957	27.0	97.4	52.5	10.6	4.8	3.3	2.7	1.7	1.6	1.0	0.6	2.4	282.1	13	56.52
958	43.5	72.0	110.7	43.8	5.7	2.2	1.3	0.9	0.7	0.4	0.2	0.6	559.2	2	8.70
959	73.4	177.2	207.4	43.6	18.2	9.4	8.3	5.7	4.0	2.7	2.1	7.1	303.2	11	47.83
960	40.1	154.7	31.6	54.2	5.4	3.3	2.7	2.3	2.2	1.5	0.8	4.5	634.4	1	4.35
961	98.1	123.4	281.9	98.7	14.7	6.0	3.7	2.7	2.0	1.5	1.0	0.9	259.7	15	65.22
962	32.4	52.9	134.3	16.0	5.6	6.0	2.7	1.6	1.4	1.0	0.7	4.9		16	69.57
	16.1	97.5	96.3	11.9	5.0	2.6	2.8	2.2	1.2	1.1	0.8	3.6	241.1		52.17
963	55.5	133.4	58.8	23.8	5.4	3.5	3.4	1.8	1.3	0.9	0.8	1.4	290.0	12	
964	26.8	26.4	39.1	5.7	1.7	1.2	1.0	0.7	0.6	0.3	0.3	0.3	104.0	22	95.65
1965	27.3	82.6	36.1	4.2	1.8	1.4	1.1	0.8	0.7	0.9	0.4	5.6	163.0	21	91.30
1966	51.2	116.5	111.9	14.3	5.3	5.8	4.3	2.2	2.1	0.9	0.6	0.8	315.9		43.48
1967		185.0	44.1	14.8	5.5	3.5	2.1	1.3	1.2	0.9	0.5	1.0	281.0		60.87
1968 1969	21.1 53.0	216.2	114.8	13.6	5.8	3.2	2.8	2.2	1.8	1.3	0.6	37.2	452.5	3	13.04
Mean	47.3	113.1	103.9	26.9	7.7	4.3	3.1	2.1	1.6	1.1	0.7	5.1	317.0		
SITE N	Jul	Aug	AR Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow 52377.0	Ran	
1948		16701.9	17982.3	2841.4	1733.4	922.8	514.1	306.3	253.1	167.4	100.5	495.4	41006.3		
1949	4807.3	9150.7	17191.4	6234.4	1609.3	658.9	312.2	313.2	277.7	182.2	123.1	145.8	40068.7		37 23
1950	8699.6	13238.0	13150.4	2272.2	780.0	484.6	449.1	228.5	188.1	178.3	126.1	273.8	19965.9		
1951	3254.1	8738.0	4814.2	1218.3	446.2	332.9	241.3	180.2	138.9	81.8	43.3	476.7	26145.2		
1952	4254.8	13669.4	5264.3	983.9	442.2	284.6	224.6	171.4	123.1	68.0	40.4	618.5	27985.9		
1953	4556.1		4890.0	1379.8	472.8	334.9	269.9	134.9	99.5	59.1	38.4	181.2	38246.6		
1954		Total Control	/	1218.3	1419.2	687.5	448.1	289.6	105.4	71.9	51.2	805.7			21.7
1430			220,2,0		1/01 5	687 5	504 3	281.7	269.9	173.3	124.1	1067.6	49196.7		
			22369.1	8628.7	1401.0	00110	304.0			1000		7/7 7	/2003	2	20.0
1955			220/1.6 22369.1 5516.4	7070 5	1626 1	611///	580.U	374.0	330.0	00010	****	1000			
1955 1956		17344.1	5516.4 6159.6	3032.5	1624.1	383.1	311.2	203.9	188.1	114.3	72.9	286.6	24102.	5 1	9 82.6
1955 1956 1957	12247.2 3160.5	17344.1 11415.0	5516.4 6159.6	3032.5	1624.1 565.3	383.1	311.2	203.9	188.1	114.3	72.9	286.6 71.9	24102.5 33071.0	5 1 0 1	9 82.6 3 56.5
1955 1956 1957 1958	12247.2 3160.5 5103.8	17344.1 11415.0 8441.6	5516.4 6159.6 12981.0	3032.5 1242.0 5135.3	1624.1 565.3 671.7	383.1 253.1	311.2 157.6 973.1	203.9 105.4 662.8	188.1 76.8 471.8	114.3 46.3 314.2	72.9 26.6 246.2	286.6 71.9 832.2	24102.5 33071.6 65563.	5 1 0 1 8	9 82.6 3 56.5 2 8.7
1955 1956 1957 1958 1959	12247.2 3160.5 5103.8 8607.0	17344.1 11415.0 8441.6 20778.4	5516.4 6159.6 12981.0 24322.1	3032.5 1242.0 5135.3 5116.6	1624.1 565.3 671.7 2137.2	383.1 253.1 1102.1	311.2 157.6 973.1 313.2	203.9 105.4 662.8 269.9	188.1 76.8 471.8 261.0	114.3 46.3 314.2 177.3	72.9 26.6 246.2 91.6	286.6 71.9 832.2 526.9	24102.5 33071.6 65563. 35555.	5 1 0 1 8 9 1	9 82.6 3 56.5 2 8.7 1 47.8
1955 1956 1957 1958 1959 1960	12247.2 3160.5 5103.8 8607.0	17344.1 11415.0 8441.6 20778.4	5516.4 6159.6 12981.0 24322.1	3032.5 1242.0 5135.3 5116.6	1624.1 565.3 671.7 2137.2	383.1 253.1 1102.1	311.2 157.6 973.1 313.2 438.3	203.9 105.4 662.8 269.9 311.2	188.1 76.8 471.8 261.0 237.4	114.3 46.3 314.2 177.3 170.4	72.9 26.6 246.2 91.6 119.2	286.6 71.9 832.2 526.9 103.4	24102.5 33071.6 65563. 35555. 74386.	5 1 0 1 8 9 1 5	9 82.6 3 56.5 2 8.7 1 47.8 1 4.3
1955 1956 1957 1958 1959 1960 1961	12247.2 3160.5 5103.8 8607.0 4699.9 11505.6	17344.1 11415.0 8441.6 20778.4 18135.0 14464.2	5516.4 6159.6 12981.0 24322.1 3711.1 33048.3	3032.5 1242.0 5135.3 5116.6 6351.6 11568.6	1624.1 565.3 671.7 2137.2 629.3 1721.6	383.1 253.1 1102.1 389.0 698.3 708.1	311.2 157.6 973.1 313.2 438.3 321.1	203.9 105.4 662.8 269.9 311.2 192.1	188.1 76.8 471.8 261.0 237.4 168.4	114.3 46.3 314.2 177.3 170.4 115.2	72.9 26.6 246.2 91.6 119.2 84.7	286.6 71.9 832.2 526.9 103.4 579.1	24102.5 33071.6 65563. 35555. 74386. 30449.	5 1 0 1 8 9 1 5 2 1	9 82.6 3 56.5 2 8.7 1 47.8 1 4.3 5 65.2
1955 1956 1957 1958 1959 1960 1961 1962	12247.2 3160.5 5103.8 8607.0 4699.9 11505.6 3793.8	17344.1 11415.0 8441.6 20778.4 18135.0 14464.2 6201.9	5516.4 6159.6 12981.0 24322.1 3711.1 33048.3 15744.6	3032.5 1242.0 5135.3 5116.6 6351.6 11568.6 1879.2	1624.1 565.3 671.7 2137.2 629.3 1721.6 660.9	383.1 253.1 1102.1 389.0 698.3 708.1 306.3	311.2 157.6 973.1 313.2 438.3 321.1 323.0	203.9 105.4 662.8 269.9 311.2 192.1 260.0	188.1 76.8 471.8 261.0 237.4 168.4 145.8	114.3 46.3 314.2 177.3 170.4 115.2 124.1	72.9 26.6 246.2 91.6 119.2 84.7 91.6	286.6 71.9 832.2 526.9 103.4 579.1 424.5	24102.5 33071.6 65563. 35555. 74386. 30449. 28272.	5 1 0 1 8 9 1 5 2 1 5 1	9 82.6 3 56.5 2 8.7 1 47.8 1 4.3 5 65.2 6 69.5
1955 1956 1957 1958 1959 1960 1961 1962 1963	12247.2 3160.5 5103.8 8607.0 4699.9 11505.6 3793.8 1888.1	17344.1 11415.0 8441.6 20778.4 18135.0 14464.2 6201.9 11432.7	5516.4 6159.6 12981.0 24322.1 3711.1 33048.3 15744.6	3032.5 1242.0 5135.3 5116.6 6351.6 11568.6 1879.2	1624.1 565.3 671.7 2137.2 629.3 1721.6 660.9	383.1 253.1 1102.1 389.0 698.3 708.1 306.3	311.2 157.6 973.1 313.2 438.3 321.1 323.0	203.9 105.4 662.8 269.9 311.2 192.1 260.0	188.1 76.8 471.8 261.0 237.4 168.4 145.8 146.8	114.3 46.3 314.2 177.3 170.4 115.2 124.1 107.3	72.9 26.6 246.2 91.6 119.2 84.7 91.6 89.6	286.6 71.9 832.2 526.9 103.4 579.1 424.5 166.4	24102.5 33071.1 65563.3 35555.74386.30449.28272.33995.	5 1 0 1 8 9 1 5 2 1 5 1 8 1	9 82.6 3 56.5 2 8.7 1 47.8 1 4.3 5 65.2 6 69.5 2 52.1
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964	12247.2 3160.5 5103.8 8607.0 4699.9 11505.6 3793.8 1888.1 6508.2	17344.1 11415.0 8441.6 20778.4 18135.0 14464.2 6201.9 11432.7	5516.4 6159.6 12981.0 24322.1 3711.1 33048.3 15744.6 11292.9 6888.4	3032.5 1242.0 5135.3 5116.6 6351.6 11568.6 1879.2 1393.6 2790.2	1624.1 565.3 671.7 2137.2 629.3 1721.6 660.9 590.0 636.3	383.1 253.1 1102.1 389.0 698.3 708.1 306.3 412.7	311.2 157.6 973.1 313.2 438.3 321.1 323.0 399.9	203.9 105.4 662.8 269.9 311.2 192.1 260.0 212.7 86.7	188.1 76.8 471.8 261.0 237.4 168.4 145.8 146.8 66.0	114.3 46.3 314.2 177.3 170.4 115.2 124.1 107.3 40.4	72.9 26.6 246.2 91.6 119.2 84.7 91.6 89.6 29.5	286.6 71.9 832.2 526.9 103.4 579.1 424.5 166.4 34.5	24102.5 33071.1 65563. 35555. 74386. 30449. 28272. 33995. 12193.	5 1 0 1 8 9 1 5 1 5 1 8 1 1 2 1	9 82.6 3 56.5 2 8.7 1 47.8 1 4.3 5 65.2 6 69.5 2 52.1
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965	12247.2 3160.5 5103.8 8607.0 4699.9 11505.6 3793.8 1888.1 6508.2 3140.9	17344.1 11415.0 8441.6 20778.4 18135.0 14464.2 6201.9 11432.7 15637.3 3090.6	5516.4 6159.6 12981.0 24322.1 3711.1 33048.3 15744.6 11292.9 6888.4 4579.8	3032.5 1242.0 5135.3 5116.6 6351.6 11568.6 1879.2 1393.6 2790.2	1624.1 565.3 671.7 2137.2 629.3 1721.6 660.9 590.0 636.3 196.0	383.1 253.1 1102.1 389.0 698.3 708.1 306.3 412.7 140.8	311.2 157.6 973.1 313.2 438.3 321.1 323.0 399.9 115.2	203.9 105.4 662.8 269.9 311.2 192.1 260.0 212.7 86.7 93.6	188.1 76.8 471.8 261.0 237.4 168.4 145.8 146.8 66.0 76.8	114.3 46.3 314.2 177.3 170.4 115.2 124.1 107.3 40.4	72.9 26.6 246.2 91.6 119.2 84.7 91.6 89.6 29.5 48.3	286.6 71.9 832.2 526.9 103.4 579.1 424.5 166.4 34.5 654.0	24102.5 33071.1 65563. 35555. 74386. 30449. 28272. 33995. 12193. 19106.	5 1 0 1 8 9 1 5 1 5 1 8 1 1 2 1 1 2 1	9 82.6 3 56.5 2 8.7 1 47.8 1 4.3 5 65.2 6 69.5 2 52.1 12 95.6
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	12247.2 3160.5 5103.8 8607.0 4699.9 11505.6 3793.8 1888.1 6508.2 3140.9 3199.0	17344.1 11415.0 8441.6 20778.4 18135.0 14464.2 6201.9 11432.7 15637.3 3090.6 9689.5	5516.4 6159.6 12981.0 24322.1 3711.1 33048.3 15744.6 11292.9 6888.4 4579.8 4236.0	3032.5 1242.0 5135.3 5116.6 6351.6 11568.6 1879.2 1393.6 2790.2 672.7 490.5	1624.1 565.3 671.7 2137.2 629.3 1721.6 660.9 590.0 636.3 196.0	383.1 253.1 1102.1 389.0 698.3 708.1 306.3 412.7 140.8 168.4	311.2 157.6 973.1 313.2 438.3 321.1 323.0 399.9 115.2 131.0	203.9 105.4 662.8 269.9 311.2 192.1 260.0 212.7 86.7 93.6	188.1 76.8 471.8 261.0 237.4 168.4 145.8 146.8 66.0 76.8	114.3 46.3 314.2 177.3 170.4 115.2 124.1 107.3 40.4 110.3	72.9 26.6 246.2 91.6 119.2 84.7 91.6 89.6 29.5 48.3 68.0	286.6 71.9 832.2 526.9 103.4 579.1 424.5 166.4 34.5 654.0 93.6	24102.5 33071.1 65563. 35555. 74386. 30449. 28272. 33995. 12193. 19106. 37036.	5 1 0 1 8 9 1 5 1 5 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1	9 82.6 3 56.5 2 8.7 1 47.8 1 4.3 5 65.2 6 69.5 2 52.1 12 95.6 11 91.3
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	12247.2 3160.5 5103.8 8607.0 4699.9 11505.6 3793.8 1888.1 6508.2 3140.9 3199.0 6004.9	17344.1 11415.0 8441.6 20778.4 18135.0 14464.2 6201.9 11432.7 15637.3 3090.6 9689.5 13657.6	5516.4 6159.6 12981.0 24322.1 3711.1 33048.3 15744.6 11292.9 6888.4 4579.8 4236.0 13122.8	3032.5 1242.0 5135.3 5116.6 6351.6 11568.6 1879.2 1393.6 2790.2 672.7 490.5	1624.1 565.3 671.7 2137.2 629.3 1721.6 660.9 590.0 636.3 196.0 213.7 624.4	383.1 253.1 1102.1 389.0 698.3 708.1 306.3 412.7 140.8 168.4 674.7	311.2 157.6 973.1 313.2 438.3 321.1 323.0 399.9 115.2 131.0 500.3	203.9 105.4 662.8 269.9 311.2 192.1 260.0 212.7 86.7 93.6	188.1 76.8 471.8 261.0 237.4 168.4 145.8 146.8 66.0 76.8 246.2	114.3 46.3 314.2 177.3 170.4 115.2 124.1 107.3 40.4 110.3	72.9 26.6 246.2 91.6 119.2 84.7 91.6 89.6 29.5 48.3 68.0 55.2	286.6 71.9 832.2 526.9 103.4 579.1 424.5 166.4 34.5 654.0 93.6 120.2	24102.5 33071.1 65563.3 35555.74386.30449.28272.33995.12193.19106.37036.32943.	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 82.6 3 56.5 2 8.7 1 47.8 1 4.3 5 65.2 6 69.5 2 52.1 12 95.6 11 91.3 10 43.4
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	12247.2 3160.5 5103.8 8607.0 4699.9 11505.6 3793.8 1888.1 6508.2 3140.9 3199.0 6004.9	17344.1 11415.0 8441.6 20778.4 18135.0 14464.2 6201.9 11432.7 15637.3 3090.6 9689.5 13657.6	5516.4 6159.6 12981.0 24322.1 3711.1 33048.3 15744.6 11292.9 6888.4 4579.8	3032.5 1242.0 5135.3 5116.6 6351.6 11568.6 1879.2 1393.6 2790.2 672.7 490.5	1624.1 565.3 671.7 2137.2 629.3 1721.6 660.9 590.0 636.3 196.0 213.7 624.4	383.1 253.1 1102.1 389.0 698.3 708.1 306.3 412.7 140.8 168.4 674.7	311.2 157.6 973.1 313.2 438.3 321.1 323.0 399.9 115.2 131.0 500.3	203.9 105.4 662.8 269.9 311.2 192.1 260.0 212.7 86.7 93.6	188.1 76.8 471.8 261.0 237.4 168.4 145.8 146.8 66.0 76.8 246.2	114.3 46.3 314.2 177.3 170.4 115.2 124.1 107.3 40.4 110.3	72.9 26.6 246.2 91.6 119.2 84.7 91.6 89.6 29.5 48.3 68.0 55.2	286.6 71.9 832.2 526.9 103.4 579.1 424.5 166.4 34.5 654.0 93.6 120.2	24102.5 33071.1 65563.3 35555.74386.30449.28272.33995.12193.19106.37036.32943.	5 1 1 0 1 1 8 8 9 1 1 5 5 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1	9 82.6.5 3 56.55 2 8.7 1 47.8 1 4.3 5 65.2 6 69.5 2 52.1 12 95.6 11 91.3 10 43.4 14 60.8 3 13.6

~	NAME (JPPER NARM	ADA												
Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Pro
1977	226.0	423.7	194.1	47.3	24.4	11.5	7.1	12.1	7.4	1.6	.3	62.8	1018.1		23.5
1978	217.1	269.8	104.5	23.1	12.6	17.2	8.0	10.2	4.1	1.1	. 4	5.3	673.3		70.5
1979	58.8	141.4	24.7	9.8	3.8	2.3	2.2	1.0	. 5	.5	.0	32.4	277.4		94.1
980	292.8	375.8	407.0	41.5	20.9	6.3	5.8	2.9	1.9	.6	.6	13.2	1169.3		5.1
1981	173.9	194.8	79.8	32.0	7.3	5.1	4.7	4.8	1.5	.6	. 9	6.2	511.6		76.
982	29.8	287.5	136.2	22.1	9.6	4.3	2.4	2.5	1.2	.4	. 2	4.8	501.0		82.
983	119.7		263.2	69.3	14.9	9.0	30.6	12.5	4.3	1.7	.7	4.7	768.1		64.
984	82.8	556.8	132.9	21.8	6.9	4.9	9.9	10.8	1.9	1.0	.3	3.2	833.1		41.
985	258.5	533.5	104.0	30.2	10.3	6.5	4.2	9.0	4.7	1.0	.5	47.8	1010.1	5	29.
986	527.7	220.4	93.3	28.5	8.8	9.0	8.7	6.9	5.6	1.5	.7	9.5			
987	119.9	251.3	527.1	75.2	24.9	11.3	9.1	5.3	3.9	1.3			920.5	6	35.
											.7	57.4	1087.3		11.
988	160.1	489.6	90.7	29.0	10.9	6.5	4.6	2.2	2.2	1.1	.2	13.4	810.4	9	52.
989	53.5	174.2	88.3		6.7	6.2	4.0	3.6	1.7		3.1	130.4	491.8		88.
990	223.8	166.7	467.6	109.2	23.1	12.3		4.6	3.5	1.8	.7		1025.2		17.
991	196.5	460.0	99.6	18.1	7.7	5.9	4.6	2.6	1.7	1.4	1.0	. 8	799.8	10	58.
992	81.8	322.7	220.2	18.8	7.9	5.8	4.0	2.1	2.5	. 9	.2	144.4	811.4	8	47.
an	176.4	319.1	189.6	37.2	12.5	7.8	7.4	5.8	3.0	1.1	.7	33.7	794.3		
- MIII	170.4	V1711	107.0	0/.2	12.0	7.0	-/	7.0	0.0	1.1	. /	33.7	774.5		
	NAME RAG											80.00	O.		
977	574.0		493.0	120.2	61.9	29.1	17.9	30.7	18.9	4.0	. 8	159.6	2586.4	4	23.
978	551.4	685.3	265.5	58.6	32.2	43.6	20.2	25.9	10.5	2.8	1.1	13.4	1710.4	12	70.
979	149.3	359.3	62.7	24.9	9.6	5.9	5.6	2.7	1.3	1.2	. 1	82.4	704.8	16	94.
980	743.9	954.5	1033.9	105.5	53.1	16.0	14.6	7.5	4.8	1.5	1.6	33.6	2970.5	1	5.
981	441.6	494.8	202.8	81.3	18.6	13.1	11.9	12.1	3.8	1.5	2.3	15.9	1299.7		76.
982	75.7		345.9	56.1	24.4	10.8	6.1	6.3	3.1	1.1	.5	12.3	1272.8		82.
983	304.2	603.3	668.7	175.9	38.0	22.9	77.7	31.7	10.8	4.3	1.8	12.0	1951.2		64.
984	210.2	1414.6	337.5	55.3	17.6	12.5	25.1	27.5	4.8	2.7	.7	8.0	2116.4	7	41.
985	656.8	1355.3	264.3	76.7	26.0	16.4	10.6	22.8	12.0	2.6	1.2	121.3	2565.9		
986	1340.6	559.8	236.9	72.4	22.5	22.8	22.0	17.5						5	29.
987	304.7	638.3	1338.9	191.0	63.2	28.6	23.0		14.1	3.8		24.2	2338.3	6	35.
988	406.8							13.5	9.9	3.3	1.8	145.8	2762.0	2	11.
		1243.8	230.3	73.6	27.7		11.6	5.5	5.5	2.7	.5	34.0	2058.7	9	52.
989	135.9	442.5	224.2	50.0	16.9	15.7	10.2	9.1	4.3	1.3	7.9	331.4	1249.3		88.
990	568.6	423.5		277.3	58.6		23.1			4.6		7.0			
991	499.1	1168.5	253.0				11.6		4.3			2.1	2031.8	10	58.
992	207.8	819.8	559.4	47.8	20.0	14.8	10.3	5.3	6.4	2.2	. 5	366.8	2061.2	8	47.
an	448.2	810.6	481.6	94.5	31.9	19.7	18.9	14.8	7.7	2.7	1.7	85.6	2017.7		
			100			Ti.			10-						
77	NAME ROS	1468.9	672 0	164.1	01.1							017.0	7500 7	,	41
778												217.8			
79	752.5	935.2	362.3						14.3			18.2			
	203.8	490.3	85.6			8.1			1.7			112.4	961.8		
089	1015.2	1302.6	1410.9		72.5	21.9		10.2	6.5			45.9			
81	602.7	675.3		111.0	25.4	17.8	16.3	16.6	5.2	2.0		21.6	1773.8		
82	103.3		472.1	76.6	33.3	14.7	8.3	8.6	4.3		.7	16.7	1737.0		
83	415.1	823.3	912.5	240.1	51.8		106.0		14.7	5.8	2.5	16.4	2662.8	11	64.
84	286.9	1930.5	460.6	75.5	24.0	17.0	34.3	37.5	6.5	3.6	1.0	10.9	2888.3	7	41.
85	896.3		360.6	104.7	35.5	22.4	14.5	31.1	16.3	3.5	1.6	165.5	3501.7	5	29.
86	1829.5	764.0	323.3	98.8	30.6	31.0	30.1	24.0	19.3	5.2		33.0	3191.1		
87	415.8	871.0	1827.2	260.6	86.3	39.0	31.4	18.5	13.5	4.5		199.0			
88	555.2	1697.4	314.3		37.8	22.6		7.6	7.5	3.7	.7	46.4	2809.4	9	
89	185.4	603.9	306.0		23.1	21.4	13.9	12.4	5.8	1.7		452.2	1705.0		
90	775.9	578.0	1621.1		80.0	42.8	31.5		12.1	6.3		9.6		3	
91	681.1		345.3			20.5			5.8	4.7					
92	283.5	1118.8		65.3	27.3	20.2	14.0	7.2	8.8	3.0	.7	2.9 500.6	2772.8 2812.9		47.
														~	7
an	444.4	1106.3								3.7		116.8			

124

SITE	NAME UP	PER BURHNE	R												
Year		Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prob
1977	227.1	344.6	153.5	42.4				6.7	3.2	1.3	.3		862.9		41.18
1978	227.1	344.6	153.5	42.4				22.9	2.8	.4	.1		854.4	9	52.94
1979	48.7	122.3	21.2	8.8	1.8			.3	.0	.0	.0		276.9		94.12
1980	353.1	438.5	353.1	36.2				2.6	2.1	.3	.1		1235.3		11.76
1981	198.5	208.4	108.1	34.9				5.2	1.4	. 2	.0		580.0		82.35
1982	41.4	385.3	136.8	15.4	7.1			5.8	.7	.1	.1		610.8	13	76.47
1983	157.9	294.9	252.9	90.4	11.8			9.2	2.1	1.2	.3		855.0	8	
1984	71.1	661.0	126.3	22.3				17.9	1.2	.5	.2		939.3	5	47.06
1985	268.6	507.9	153.0	54.4	10.0			30.0	6.5	.9	.2		1096.5		29.41 17.65
1986	479.2	204.8	60.2	24.2				3.9	2.8	.2	.2		825.9	3 10	
1987	129.9	92.1	329.1	88.7				3.5	7.3	.3	. 2		723.5		58.82
1988	197.4	584.7	114.8	36.2				1.5	1.0	.7	.1			12	70.59
1989	48.5	196.5	123.6	14.7	4.9			1.9	.7	.2			967.2	4	23.53
1990	380.1	158.3	559.5	135.8		12.3		3.7	3.2	1.3	2.0		561.6	15	88.24
1991	189.4	466.1	81.2	15.1	8.0			1.1	.5			1.3	1285.4	1	5.88
1992	92.9	399.1	285.6	37.9	6.3			1.1		. 4			771.8	11	64.71
	,,,,		200.0	37.7	0.0	0.0	2.2	1.1	1.1	.3	.1	56.5	886.9	6	35.29
Mean	194.4	338.1	188.3	43.7	11.3	7.2	6.8	7.3	2.3	.5	.3	33.1	833.3		
SITE	NAME HAL	ON	7	324	100					74.		60 Y	3		
1977	101.1	153.4	68.3	18.9	4.8	10	2.4	2.0	4.1			Ar a		4	
1978	101.1	153.4				4.8		3.0	1.4	.6	.1	25.2	384.0	7	41.18
1979	21.7	54.5	68.3	18.9	4.8	12.4	6.7	10.2	1.2	.2	.0	3.1	380.3	9	52.94
1980	157.1		9.4	3.9	.8	. 4	.5	.1	.0	.0	.0	31.9	123.2	16	94.12
		195.2	157.2	16.1	4.9	1.7	2.3	1.2	. 9	.2	.1	13.0	549.8	2	11.76
1981	88.3	92.8	48.1	15.5	3.3	2.4	2.6	2.3	.6	.1	.0	2.1	258.1	14	82.35
1982	18.4	171.5	60.9	6.8	3.2	2.0	1.1	2.6	.3	.1	.1	4.9	271.8	13	76.47
1983	70.3	131.2	112.6	40.3	5.3	3.3	9.0	4.1	.9	. 5	.1	3.0	380.5	8	47.06
1984	31.6	294.2	56.2	9.9	3.6	1.8	8.6	8.0	.5	. 2	, 1	3.3	418.1	5	29.41
1985	119.6	226.1	68,1	24.2	4.4	2.5	1.6	13.4	2.9	. 4	-1		488.1	3	17.65
1986	213.3	91.1	26.8	10.8	15.5	3.0	2.9	1.7	1.2	. 1	.1	1.0	367.6	10	58.82
1987	57.8	41.0	146.5	39.5	7.5	3.4	2.6	1.6	3.3	.2	. 1		322.0	12	70.59
1988	87.9	260.2	51.1	16.1	4.4	2.5	1.4	.6	. 4	. 3	.0	5.4	430.5	4	23.53
1989	21.6	87.5	55.0	6.6	2.2	1.7	1.1	. 9	. 3	.1	. 9	72.3	250.0	15	88.24
1990	169.2	70.5	249.0	60.5	9.9	5.5	3.2	1.7	1.4	.6	.1	.6	572.1	1	5.88
1991	84.3	207.4	36.2	6.7	3.6			.5	. 2	. 2	. 1				64.71
1992	41.3	177.6	127.1	16.9	2.8	1.7	1.0	.5	.5	.1	.0	25.2	394.7	6	35.29
Mean	86.5	150.5	83.8	19.5	5.0	3.2	3.0	3.3	1.0	.2	.1	14.7	370.9		
				170											
	NAME BAS		200000	Aller St.		-085			400						
1977	1745.2	3272.4	1499.0	365.5			54.5				2.3		7863.6	4	23.53
1978	1676.5		807.2	178.1			61.5			8.4			5200.3		
1979	454.0		190.6	75.6	29.1	18.1		8.1			.3		2142.8		
1980	2261.7	2902.1	3143.3	320.8	161.4	48.7	44.4	22.8	14.6	4.5	4.9	102.3	9031.4		5.88
1981	1342.8	1504.4	616.6	247.3	56.6	39.7	36.2	36.9	11.6	4.5	6.8	48.2	3951.7		
1982	230.1	2220.8	1051.7	170.6	74.2	32.8	18.5	19.2	9.5	3.3	1.6	37.3	3869.7		
1983	924.7	1834.2	2032.9	534.9		69.7	236.2	96.3	32.8	13.0	5.6	36.5	5932.2		64.71
1984	639.1	4300.8	1026.1	168.2	53.4	38.0	76.4	83.5		8.1	2.2	24.4	6434.6		47.06
1985	1996.8	4120.5	803.4	233.3	79.1	49.9	32.3	69.2	36.4	7.9	3.6	368.8	7801.3		29.41
1986	4075.8	1702.0	720.3	220.2	68.3	69.2	67.0	53.4	42.9	11.6	5.1	73.5	7109.2		35.29
1987	926.3	1940.5	4070.7	580.7		86.9	70.0	41.2	30.0	9.9	5.5	443.4	8397.3		11.76
1988	1236.8	3781.6	700.2	223.7	84.3	50.3	35.2	16.9		8.3	1.6	103.4	6259.0		52.94
1989	413.1		681.7	152.0	51.5	47.7	31.0	27.7	13.0	3.8		1007.4	3798.4		
1990	1728.6	1287.6	3611.6	843.1		95.3	70.1	35.5	27.0	14.0	5.4	21.4	7917.7		17.65
1991 1992	1517.3		769.3			45.6	35.4	20.1		10.4		6.5	6177.3		
	631.7	2492.5	1/00.8	145.4	60.7	45.1	231.2	16.1	19.6	6.8	1.6	1115.2	6466.7	7	41.18
Mean	1362.5	2464.6	1464.1	287.4	96.9	59.9	69.8	44.9	23.4	8.2	5.1	260.3	6147.1		

SITE	NAME MA	ATIYARI													
Year		Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Tues			
1977	31.7	39.0	25.7									Jun	Anflow		
1978	13.9	25.2	6.7	1.2	5										
1979			1.8	.5	.1								0.244		
1980		42.0	22.1	2.8								2,00	7.0		
1981	19.6	14.2	6.8	3.4											
1982		33.6	7.2	2.0	. 6										
1983		20.2	19.6	7.0	1.3										
1984		34.6	4.3	1.1	.3										47.0
1985			8.1	3.7	.6								43.4		
1986	44.4	29.2	4.6	1.6	.3	.5	.5						43.4 81.6		
1987	3.4	2.4.3	9.9	2.8	.8	. 3							28.1	4	23.53
1988	27.5		12.4	4.4	.7	.3	.1					.2	81.1	15	88.24
1989	3.0		14.6	1.5	-4	.3	. 3					7.2	49.0	5	29.41
1990	38.8	21.8	41.6	14.4	1.8	.6	.6					.0	120.3		58.82
1991	12.2		7.7	2.0	.3	.2	.1	.1				.0	63.6	1	5.88
1992	6.2	25.1	16.0	1.1	. 2	.1	.0	.0				14.0	62.7	6	35.29 41.18
Mean	14.9	26.6	13.1	3,4	.9	. 4	.3	. 3	.1	.0		2 /			
CITE	NAME OF	.007		3.1.			10			.0	.0	2.4	62.4		
SITE 1977		RGI	4344.3	142 -						200		т.			
1978	2219.9	4137.7	1711.8	492.0	229.2	106.8	61.9	102.2	60.4	17.9	6.6	285.8	9432.4	4	23.53
1979	474.4	3546.7	921.1	203.9	106.1	159.7	76.8	113.1	30.9	10.1	4.9	26.3	7296.7	10	58.82
1980	2792.9		202.8	57.0	23.6	18.4	15.1	7.8	3.2	1.2	. 4	486.1	3041.3	15	88.24
1981	1308.4	4325.9	2885.0	306.4	102.6	54.4	45.8	23.9	17.4	6.6	2.1	139.3	10702.1	2	11.76
1982	261.8	1494.3	582.0	327.7	83.8	46.3	42.5	43.0	16.4	4.5	3.4	26.6	3979.2	14	82.35
1983	1120.4	3795.9	1595.2	157.6	91.6	43.0	26.5	30.9	10.7	3.8	1.1	19.9	6037.9	12	70.59
1984	577.1	3111.3	3524.2	1135.5	141.4	69.6	116.6	96.9	30.2	11.4	9.2	30.6	9397.3	5	29.41
1985	1247.0	6495.9 4096.8	1685.0	296.9	78.8	48.6	106.6	135.2	20.3	8.6	4.7	11.4	9469.0	3	17.65
1986	3023.0	2344.3	1366.0	993.5	355.5	51.1	28.8	106.9	58.5	12.4	5.1	252.7	8574.2	6	35.29
1987	45.0	944.3	1018.3	655.7	169.9	77.1	75.8	47.6	53.8	10.0	2.8	1.8	7480.1	9	52.94
1988	1898.6	4934.3	3117.3 877.9	466.0	146.8	62.7	50.3	25.0	28.5	2.9	3.3	322.5	5214.6	13	76.47
1989	306.7	568.8	226.5	203.3	221.8	170.5	47.9	38.8	29.8	16.6	3.5	67.3	8510.4	7	41.18
1990	2203.8	1896.3	3282.0	886.1	220.7	191.2	127.3	50.0	68.7	73.2	79.8	283.9	2491.0	16	94.12
1991	718.0		1186.9		373.7	340.4	188.3	209.6	475.8	400.7	218.0	346.9	10821.5	1	5.88
1992	235.9		1660.5	318.6			76.8	197.4	125.6	129.2	107.9		8075.9		47.06
									108.9			1125.2	6148.8	11	64.71
Hean	1283.1	3035.9	1615.2	461.7	203.5	138.6	80.5	89.5	71.2	62.2	28.4	222.2	7292.0		
SITE N	AME ATAR	PIA	200						10			-7			
1977	25.6	25.2	6.2	3.8	2.2	1.5	7 6	7 4			100				
1978	25.6	25.2	6.2	3.8	2.2	1.5	3.5	3.6		1.1	. 7	1.2	76.1		
1979	25.6	. 3	2.8	1.5	1.2	1.5		3.6	1.5	1.1	.7	1.2			82.35
1980	57.7	144.3	102.7	16.3	5.9	3.8	3.0	. 6	.5	.3	. 2	10.1	45.3		
1981	25.6	25.2	6.2	3.8	2.2	1.5	3.5	3.6	2.0	1.8	.9	2.8			11.76
1982	4.1	90.0	65.3	11.7	4.8	3.1	2.3	1.9	1.5	1.1	.7	1.2			88.24
1983	22.7	44.9	135.9	63.2	12.0	4.3	4.0	2.9	2.0	1.0	.7	1.5	187.8		17.06
1984	5.2	84.7	60.1	11.0	4.7	2.5	2.8	2.1	1.6	1.2	. 9	4.0	298.0		17.65
1985	22.1	113.3	25.8	23.3	12.9	3.7	2.5	5.2	3.5	1.1	.7	. 9	177.4		
1986	19.5	35.5	10.9	4.8	2.3	1.8	2.3	1.5	1.5	1.3	1.0	6.7	221.4		1.18
1987	7.3	59.7	104.5	26.3	9.3	3.6	2.8	2.0	1.8	1.2	.7	.6	82.2		
1988	17.9	123.1	19.0	10.0	4.9	2.8	1.9	1.2	1.1		1.0	6.3	225.8		5.29
1989	9.6	28.2	16.3	5.5	1.6	1.0	.8	.8	.6	.9	.6	1.9	185.3		2.94
1990	87.9	93.4	158.1	43.5	7.6	3.5	2.8	1.8	2.2	1.5	1.0	36.0	101.5		
1991	28.3	171.9	42.1	7.1	4.0	2.4	1.6	.9	.7	.9	1.0	2.2			5.88
1992	12.9	82.6	129.3	18.1	8.9	2.0	1.3	.8	1.2	.8	1.1	.8		5 2	3.53 9.41
Mean	24.8	71.7	55.7	15.8	5.4	2.5	2.5	2.2	1.5	1.0	.8	4.8	188.9		

SITE	NAME	CHINKI													
Year	Jul	Aug	Sep	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prob
1977	3139.0	6639.9	2539.0	1561.2	450.5	252.5	121.3	173.9	91.4	46.2	29.8	294.4	15339.0	1	5.88
1978	2527.4	5227.5	1684.8	398.4	179.6	257.3	124.3	169.2	71.4	54.4	49.5	70.5	10814.1	5	
1979		2338.6	201.9	81.3	39.7	38.5	27.1	21.7	19.5	14.7	11.3	579.6	3882.0		94.12
1980		5927.3	3795.2	445.2	145.1	89.4	84.7	45.4	35.7	26.9	23.1	316.8	14012.3		17.65
1981	1736.3	2353.8	701.8	458.6	121.1	78.4	82.6	76.5	38.4	22.0	15.9	42.5	5728.0		82.35
1982		3891.5	2221.8	300.0	145.0	74.2	48.5	54.5	37.0	23.2	19.6	29.5	7106.0		70.59
1983		2955.1	5525.4		248.5	104.5	137.4	114.2	39.6	18.4	11.6	40.0	11697.8		23.53
1984		6972.7	1979.2	322.7		68.5	127.4	142.6	34.0	26.6	17.0	69.9	10324.4		47.06
1985		5227.0	1463.3	980.8	336.7	107.3	78.2	188.2	112.2	39.8	29.5	216.5	10034.0		52.94
1986		2561.9	827.8	643.3	214.3	97.8	104.2	69.4	70.3	25.3	17.0	17.9	7225.1		64.71
1987		1146.0	3615.5	612.9	218.4	100.0	79.7	43.3	37.6	16.6	15.5	370.7	6391.9		76.47
			1037.7	328.2	271.2	221.8	80.8	91.5	47.6	26.7	11.8	168.0	10676.3		35.29
1988		6149.6		372.8		298.4		111.7			.0	715.9	4363.0		88.24
1989		1145.5	451.7												
1990		2883.8	4615.5	1487.5	411.1	367.1	206.9		419.6	348.7		338.7	14667.6		11.76
1991		5701.2	1836.7		473.4		122.5		158.0	130.4	131.5	82.4	10674.7		41.18
1992	552.3	2513.5	2935.9	457.4	367.0	3/5.8	217.1	208.8	11/.8	279.0	14.9	1646.8	9666.1	10	58.82
Mean	1495.7	3977.2	2214.6	658.2	253.0	180.7	119.2	120.8	92.9	75.5	37.5	312.5	9537.6		
SITE	NAME	SHER	100		15								3		
1977		331.2	67.5	57.4	38.2	10.1	3.8	5.1	1.9	1.3	1.2	9.5	712.1	2	11.76
1977		251.1	36.9	8.8	3.9	5.6	3.6	5.4	2.6	2.0	1.8	12.3	460.8	4	23.53
				3.3	2.4	1.7	1.7	1.5	1.6	1.3	.7		274.4		82.35
1979		180.1	12.1									34.9	390.9		47.06
1980		230.0	74.4	7.9	3.2	1.5	1.9	.7	. 9	. 9	.8	11.3	370.6		52.94
1981		175.5	57.4	14.1	2.8	1.6	1.7	1.9	1.4	1.0	1.0				
1982		132.8	258.7	16.1	7.1		1.6	1.2	.8	.6	.6	2.7	440.9		29.41
1983		111.8	188.6	52.3	12.6	1.7		1.5	1.2	. 9	.8	2.9	414.4		41.18
1984		755.3	37.5	6.1	2.0	1.4	4.0	2.0	1.0	. 8	.8.	10.2	838.6		5.88
1985		193.9	32.5	35.2	5.9	2.8	2.0	8.5	6.4	. 9	.6	16.7	364.4		58.82
1986	141.3	188.7	12.2	4.0	5.8	1.1		1.5	2.0	1.7		2.3	363.3		64.71
1987	20.7	22.4	53.3	10.7	4.3	1.7		1.2	. 8		.5	20.7	139.9		94.12
1988	125.3	132.5	35.5	11.1	2.3	1.0	. 8	.6	. 7	. 6	. 5	26.6	337.7		70.59
1989	15.2	160.7	57.7	5.9	1.8	2.2	1.5	. 8	. 8	.6		75.9			76.47
1990	212.0	178.6	138.6	41.0	5.0	3.9			2.5	1.3		8.3	597.2		17.65
1991	24.2	176.4	40.0	5.3	2.2	1.0	.9	. 8	. 8	.7	.7	9.7	262.8		88.24
1992	76.2	243.1	9.1	9.2	4.3	1.4	.9	.7	. 8	, 6	.6	67.6	414.6	6	35.29
Mean	77.2	216.5	69.5	18.0	6.5	2.6	2.1	2.2	1.6	1.0	.8	21.0	419.1		
				AU):	- "					1	9.7		•		
SITE 1977	NAME 98.8	MACHREW 177.1	A 36.1	30.7	20.4	5.4	2.0	2.7	1.0	.7	.6	5.1	380.7	2	11.76
1978		134.2	19.7	4.7		3.0				1.0			246.3		23.53
1979		96.3	6.5	1.8	1.3	.9		. 8	. 8	.7					82.35
1980		122.9	39.8	4.2	1.7			. 4	.5	.5					47.06
1981		93.8	30.7		1.5			1.0		.6					52.94
1982		71.0	138.3		3.8	1.3		.6	.4	.3					29.41
1983		59.8	100.8		6.7				.6	.5					41.18
			20.0	3.3	1.1										5.88
1984		403.8			3.2										58.82
1985		103.7	17.4	18.8											64.71
1986		100.9	6.5	2.1	3.1			.6							94.12
1987		12.0	28.5	5.7						.3					70.59
1988		70.8	19.0	5.9						. 3					76.47
1989		85.9	30.9		1.0				1.4	. 3					17.65
1990		95.5	74.1		2.7										
1991		94.3 130.0	21.4		1.2					.3					88.24 35.29
	. 40.7	100.0	4.7	4.7											
Mean	41.3	115.7	37.1	9.6	3.5	1.4	1.1	1.2	. 9	.5	.5	11.2	224.1		

SITE	NAME	SHAKKER													
Year	Jul	Au	Sep Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow		Prob
1977	245.	7 734	.1 310.3	208.0	74.7	27.9	13.5	17.6	8.5	5.0	4.0	21.1	1670.4		5.88
1978	328.	7 712	2 106.0	20.5	11.3	12.8	14.1	13.3	6.2	5.0	4.8	29.0	1264.0	3	17.65
1979	43.	4 230	.0 23.1	7.0	5.4	6.2	4.8	3.7	3.6	3.2	2.7	52.1	385.0		88.24
1980	75.	4 353	.0 119.7	17.0	7.5	7.7	6.9	4.3	4.3	3.1	3.0	72.3	674.2	11	64.71
1981	142.	8 166	.0 117.7	36.0	10.5	8.5	8.6	7.4	3.7	2.9	2.5	11.8	518.5		76.47
1982	32.	0 543	.5 250.9	23.9	15.0	8.5	6.0	4.4	4.3	3.2	3.1	18.8	913.5	6	35.29
1983	51.	1 326	.8 577.9	105.2	25.5	14.8	12.5	10.0	7.8	5.2	4.3	5.1	1146.1	4	23.53
1984	40.	8 844	.0 61.0	15.9	7.8	6.9	9.5	5.2	4.2	4.1	3.1	17.4	1019.9	5	29.41
1985	62.	7 245	1 101.5	54.3	15.4	7.5	5.8	14.3	10.9	5.3	5.2	11.9	539.9	12	70.59
1986	416.	7 374	.8 57.4	15.6	8.8	5.6	6.8	8.7	5.6	4.2	3.7	5.1	912.9	8	47.06
1987	19.	8 86	.4 120.3	26.0	7.3	5.4	5.5	3.6	2.8	2.2	2.1	38.3	319.6	16	94.12
1988	153.	7 525	.3 106.8	44.3	11.9	9.0	6.5	3.8	3.4	2,7	2.0	44.2	913.5	7	41.18
1989	58.	6 401	.3 83.5	13.7	5.8	5.3	4.8	3.6	3.1	2.7	2.5	96.6	681.5	10	58.82
1990	257.	9 365	.6 526.7	108.5	19.5	14.4	10.8	6.7	5.9	3.3	2.5	20.9	1342.7	2	11.76
1991	63.	0 283	.7 51.5	10.5	5.7	4.1	4.0	4.3	3.4	2.3	2.2	11.3	446.0	14	82.35
1992	111.	1 420	.5 118.2	31.3	6.8	5.4	4.7	3.6	3.8	3.0	2.5	99.2	810.2	9	52.94
Mean	131.	5 413	.3 170.8	46.1	14.9	9.4	7.8	7.2	5.1	3.6	3.1	34.7	847.4		
SITE	NAME	SITAREWA	760	100								жэ			
1977		5 100	1 42.3	28.4	10.2	3.8	1.9	2.4	1.2	.7	.6	2.9	227.7	1	5.88
1978				2.8	1.5	1.7	1.9	1.8	.9	.7	.7	4.0	172.3		17.65
1979			.4 3.1	.9	.7	. 8	.6	.5	.5	. 6	.4	7.1	52.5		88.24
1980				2.3	1.0	1.0	. 9	.6	.6	.4	. 4	9.9	91.9		64.71
1981				4.9	1.4	1.2	1.2	1.0	, 5	. 4	. 3	1.6	70.7		76.47
1982				3.3	2.0	1.1	.8	.6	.6	. 4	. 4	2.6	124.5		41.18
1983				14.3	3.5	2.0	1.7	1.4	1.1	.7	.6	.7	156.2		23.53
1984				2.2	1.1	.9	1.3	.7	.6	.6	.4	2.4	139.0		29.41
1985			.4 13.8	7.4	2.1	1.0	. 8	2.0	1.5	.7	.7	1.6	73.6		70.59
1986				2.1	1.2	. 8	.9	1.2	.8	.6	.5	.7	124.4		47.06
1987				3.5	1.0	.7		.5	. 4	.3	.3	5.2	43.6		94.12
1988				6.0	1.6	1.2	. 9	.5	. 5	. 4	.3	6.0	124.5		35.29
1989			.7 11.4	1.9	.8	.7	.6	.5	. 4	. 4	.3	13.2	92.9		58.82
1990				14.8	2.7	2.0	1.5	. 9	.8	. 4	.3	2.8	183.0		11.76
1991				1.4	.8		.5	.6	.5	.3	.3	1.5			82.35
1992		1 57					.6	.5							52.94
Mean	17.	9 56	.3 23.3	6.3	2.0	1.3	1.1	1.0	.7	.5	. 4	4.7	115.5		
ette	NAME	DIIDHT	200	ю,						45		œ			
1977			.0 169.5	113 6	40.8	15.2	7.4	9.6	4.7		2.2	11.5	912.5	1	5.88
1978				11.2	6.2	7.0		7.3	3.4	2.7		15.9	690.5		17.65
1979					2.9	3.4	2.6	2.0	2.0	1.7		28.4			88.24
1980				9.3		4.2	3.8	2.4	2.4	1.7	1.6	39.5	368.3		64.71
1981					5.7	4.7	4.7	4.1	2.0	1.6	1.4	6.5			76.47
1982				13.0	8.2	4.6	3.3	2.4	2.4	1.8	1.7	10.3	499.0		41.18
1983				57.5	13.9	8.1	6.8	5.4	4.3	2.8	2.3	2.8	626.1		23.53
1984				8.7	4.3	3.8	5.2	2.8	2.3	2.2	1.7	9.5	557.2		29.41
1985				29.6	8.4	4.1	3.2	7.8	6.0	2.9	2.9	6.5			70.59
1986				8.6	4.8	3.1	3.7	4.7	3.1	2.3	2.0	2.8	498.7		47.06
1987				14.2	4.0	2.9	3.0	1.9	1.5	1.2	1.1	20.9			94.12
1988				24.2	6.5	4.9	3.6	2.1	1.9	1.5	1.1	24.1	499.0		35.29
1989				7.5	3.2	2.9	2.6	2.0	1.7	1.5	1.4	52.8			58.82
1990				59.3	10.6	7.8	5.9	3.7	3.2	1.8		11.4	733.5		11.76
1991				5.7	3.1	2.2	2.2	2.3	1.8	1.3	1.4	6.2			82.35
1992				17.1	3.7	3.0	2.5	2.0	2.1	1.7	1.3	54.2	442.6		52.94

SITE	NAME BA	RNA													
Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prob
1977	104.6	202.0	326.8	47.7	11.8	34.9	2.3	3.8	1.3	1.3	.9	45.3	782.6	2	11.76
1978	247.6	516.7	113.7	54.4	.6	.7	.5	2.7	.3	.2	.2	2.9	940.6	1	5.88
1979	21.1	102.3	4.7	.3	.5	2.1	. 2	.2	.1	.1	.1	44.8	176.5		70.59
1980	34.4	111.2	59.9	.3	. 2	.3	.3	.3	.3	.1	.2	3.4	210.8	11	64.71
1981	108.3	82.4	1.1	1.1	1.8	1.5	.8	4.1	.2	.1	.1	65.7	267.3	9	52.94
1982	4.0	132.1	22.8	2.8	2.3	.6	.3	.2	.2	.2	.1	.1	165.7		76.47
1983	5.3	115.8	198.4	23.0	27.0	.5	6.4	.9	.5	.3	.1	.2	378.5		41.18
1984	.6	366.2	1.6	,5	.5	.5	.5	.4	.5	.2	.2	.3	371.9	8	47.06
1985	. 4	1.1	.6	73.4	.6	.5	.6	.4	.6	.3	. 2	.5	79.2		88.24
1986	296.4	183.8	.6	.5	.6	. 8	5.7	1.3	.4	.3	.3	.3	491.0	5	29.41
1987	.5	.6	1.0	.5	. 3	.3	. 4	.4	.3	.3	.2	.3	5.0		94.12
1988	.6	143.5	1.7	14.2	.3	.4	.3	.2	.2	.2	.1	.1	161.8	14	82.35
1989	.3	180.4	57.8	. 4	. 4	. 4	.3	. 4	. 4	.2	.3	1.2	242.4		58.82
1990	3.9	272.2	193.9	52.4	. 4	. 4	. 4	. 4	.3	.2	.1	.6	525.2	4	23.53
1991	.5	44.1	326.8	47.7	11.8		.3	. 6	.4	.2	.3	1.2	468.5	6	35.29
1992	3.9	272.2	193.9	52.4	.4	.4	.3	. 6	.6	.5	. 4	33.0	558.4		17.65
												33.0	330.4		17,03
Mean	52.0	170.4	94.1	23.2	3.7	4.9	1.2	1.0	. 4	.3	.2	12.5	364.1		
SITE	NAME TA	MA.	6.75										× 3		
1977	532.4	1027.7	1662.9	242.6	60.0	177.6	11.8	19.4	6.6	6.5	4.5	230.5	3982.4	2	11.76
1978	1260.0	2628.9	578.6	276.9	3.2	3.8	2.6	13.6	1.3	1.2	1.2	15.0	4786.0	1	5.88
1979	107.2	520.5	23.8		2.5	10.6	1.1	1.0	.7	.6	.7	228.1	898.0		70.59
1980	175.1	565.8	304.8	1.3	1.1	1.3	1.4	1.4	1.4	.7	.8	17.5	1072.6	11	64.71
1981	550.8	419.4	5.7	5.8	9.2	7.4	4.1	20.7	1.0	.7	.6	334.5	1359.9	9	52.94
1982	20.4	672.4	115.8	14.0	11.7	2.9	1.5	1.1	1.2	.8	.5	.5	842.9	13	76.47
1983	27.1	589.5	1009.4	117.2	137.2	2.5	32.7	4.6	2.4	1.7	.7	.9	1925.9	7	41.18
1984	2.8	1863.3	8.4	2.4	2.5	2.6	2.5	2.2	2.4	1.1	.9	1.4	1892.4	8	47.06
1985	2.3	5.5	3.0	373.6	3.2	2.7	2.8	2.0	2.8	1.5	1.2	2.3	402.9		88.24
1986	1508.3	935.4	3.0	2.8	3.1	3.8	29.2	6.6	2.0	1.6	1.4	1.5	2498.6	5	29.41
1987	2.3	3.3	4.9	2.3	1,5	1.7	2.1	2.1	1.4	1.3	. 9	1.6	25.5		94.12
1988	2.8	730.3	8.7	72.2	1.3	2.0	1.3	1.2	1.2	1.0	.6	.7	823.2		82.35
1989	1.8	917.8	294.0	2.0	1.9	2.0	1.8	1.8	1.8	1.0	1.4	6.2	1233.5		58.82
1990	20.0	1385.1	986.6	266.5	2.1	2.1	2.1	1.9	1.8	.9	.6	2.9	2672.6	4	23.53
1991	2.5	224.2	1662.9			177.6	1.8		1.8	1.0	1.4	6.2	2383.8		
1992		1385.1				2.1	1.8	1.8	3.3	2.5			2841.6		
	20.0	1303.1	700.0	200.3	2,1	2.1	1.0	1.0	3,3	2.3	1.7	167.9	2041.0		17.00
Mean	264.7	867.1	478.7		18.9		6.3	5.2	2.1	1.5	1.2	63.6	1852.6		
SITE	NAME KO	I AR	70		45)						di.				
1977	21.6	104.3	252.8	15.8		5.0	3.7	3.6	2.8	2.2	2.1	8.8	429.1	6	35.29
1978	107.8	148.1	66.5	20.5	14.7	15.3	14.2		13.2	12.8	12.6	12.9	453.6		17.65
1979	37.9	132.3	20.3	14.8	13.4	14.6	13.1	12.7	12.6	12.5	12.5	18.5	315.3		52.94
1980	39.5	121.4	50.9	16.1		13.4	13.8	13.2	13.1	12.9	12.7	17.9	338.4		41.18
1981	53.2	112.0	30.0	18.9	14.7	13.8	13.5	14.0	13.0	12.9	12.8	13.6	322.3		47.06
1982	18.0	117.1	44.6	16.6	14.8	13.6	13.3	13.0	12.9	12.8	12.7	12.6	301.8		
1983	17.0	103.8	263.3	29.8	14.8	14.2	16.4	13.7	13.1	12.9	12.7	14.6	526.4		11.76
1984	15.5	394.3	30.7	17.5	14.0	13.4	13.4	13.3	13.1	12.7	12.6	2.2	552.6	1	
1985	4.6	64.3	16.7	16.0	3.6	1.6	1,1	1.9	1.2	.4	.3	3.6	115.4		
1986	251.5	154.0	18.4	4.1	1.6		3.2	1.9	1.1		.5	2.5	440.3		
1987	4.8	27.3	24.5	4.6	1.5	1.0	.9	.7	.6		.3	12.2	78.8		
988	46.3	114.2	38.8	20.3	2.2	1.1	1.0	.7	.6	. 4		28.3	254.8		
1989	13.1	123.6	32.4			1.5					. 4	32.7	210.7		
1990	82.8	236.2	83.9	3.4	1.3	1.0	1.0	.7	.7	. 4	.4		448.2		23.53
1991	35.2	50.8		26.4	6.3	3.1	2.4	2.2	1.0	.7	. 4	2.8	111.2		
1992	9.8	75.5	13.5	5.5	1.1	.9	. 4	. 3	.3	.2	.1	3.1	111.2		
Mean	47.4	129.9	62.8	14.6	7.8	7.1	7.0	6.7	6.2	5.9	5.8	11.8	313.2		

Year 1977	Jul	RAND													
		Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prob
	44.3	213.7	518.0	32.3	13.4	10.3	7.5	7.3	5.8	4.5	4.3	18.1	879.4	6	35.29
1978	220.9	303.5	136.3	42.0	30.1	31.3	29.0	31.0	27.0	26.2	25.8	26.5	929.6		17.65
1979	77.7	271.1	41.6	30.3	27.5	29.9	26.8	26.1	25.9	25.7	25.6	38.0	646.2		52.94
1980	80.9	248.7	104.2	33.0	28.1	27.4	28.3	27.0	26.9	26.4	26.1	36.6	693.5		41.18
1981	109.0	229.5	61.5	38.7	30.2	28.3	27.8	28.7	26.6	26.3	26.3	27.8	660.5	8	47.06
1982	36.8	239.9	91.5	34.0	30.4	27.8	27.1	26.6	26.3	26.1	26.0	25.9	618.6		58.82
1983	34.9	212.6	539.6	61.0	30.4	29.2	33.6	28.1	26.9	26.3	26.1	30.0	1078.8	2	11.76
1984	31.7	808.0	62.8	35.8	28.7	27.4	27.4	27.2	26.9	26.1	25.8	4.4	1132.3	1	5.88
1985	9.3	131.8	34.2	32.8	7.5	3.4	2.2	4.0	2.4	.9	.7	7.4	236.4	13	76.47
1986	515.3	315.6	37.6	8.4	3.4	2.2	6.5	4.0	2.2	1.1	1.0	5.1	902.3	5	29.41
1987	9.8	56.0	50.1	9.4	3.0	2.3	1.8	1.4	1.1	. 8	.7	25.1	161.6	16	94.12
1988	95.0	234.1	79.4	41.6	4.5	3.2	2.0	1.4	1.2	.9	. 8	58.0	522.1	11	64.71
1989	26.8	253.3	66.4	7.0	2.6	2.0	2.0	1.5	1.4	. 9	.9	66.9	431.7		70.59
1990	169.6	484.0	172.0	54.1	13.0	6.3	4.9	4.5	2.0	1.4	.8	5.8	918.5	4	23.53
1991	72.2	104.0	27.6	11.3	2.2	1.9	. 9	.5	.5	.3	. 2	6.3	227.9		88.24
1992	20.1	154.7	37.8	5.5	2.2	1.2	1.0	.8	1.1	.6	.3	6.4	231.7		82.35
Mean	97.2	266.3	128.8	29.8	16.1	14.6	14.3	13.8		12.2	12.0	24.3	641.9		
							14.0	10.0	12.0	12.2	12.0	24.0	041.7		
SITE		NJAL	40.00							1		100			
1977	18.5		216.5	13.5	5.6	4.3	3.1	3.0	2.4	1.9	1.8	7.6	367.5	6	35.29
1978	92.3	126.8	57.0	17.6	12.6	13.1	12.1	13.0	11.3	10.9	10.8	11.1	388.5	3	17.65
1979	32.5	113.3		12.7	11.5	12.5	11.2	10.9	10.8	10.7	10.7	15.9	270.0	9	52.94
1980	33.8	103.9	43.5	13.8	11.8	11.4	11.8	11.3	11.2	11.0	10.9	15.3	289.8	7	41.18
1981	45.5	95.9	25.7	16.2	12.6	11.8	11.6	12.0	11.1	11.0	11.0	11.6	276.0	8	47.06
1982	15.4	100.3	38.2	14.2	12.7	11.6	11.4	11.1	11.0	10.9	10.9	10.8	258.5	10	58.82
1983	14.6	88.8	225.5	25.5	12.7	12.2	14.0	11.7	11.2	11.0	10.9	12.5	450.8	2	11.76
1984	13.3	337.7	26.3	15.0	12.0	11.4	11.5	11.4	11.2	10.9	10.8	1.9	473.2	1	5.88
1985	3.9	55.1	14.3	13.7	3.1	1.4	.9	1.6	1.0	. 4	. 3	3.1	98.8	13	76.47
1986	215.4	131.9	15.7	3.5	1.4	.9	2.7	1.6	. 9	. 4	. 4	2.1	377.0	5	29.41
1987	4.1	23.4	21.0	3.9	1.3	1.0	. 8	.6	. 5	. 3	.3	10.5	67.5	16	94.12
1988	39.7	97.8	33.2	17.4	1.9	1.3	.9	.6	. 5	. 4	. 3	24.2	218.1	11	64.71
1989	11.2	105.8	27.8	2.9	1.1	.9	. 8	.6	. 6	. 4	. 4	28.0	180.4	12	70.59
1990	70.9	202.3	71.9	22.6	5.4	2.6	2.1	1.9	. 8	.6	.3	2.4	383.8	4	23.53
1991	30.2	43.5	11.6	4.7	.9	. 8	.4	. 2	.2	.2	.1	2.6	95.2	15	88.24
1992	8.4	64.7	15.8	2.3	.9	.5	.4	.3	,5	.2	.2	2.7			82.35
Mean	40.6	111.3	53.8	12.5	6.7	6.1	6.0	5.7	5.3	5.1	5.0	10.1	268.3		
SITE N	AME SUK	TA		g_{D}			_			M.	- 8				
1977	7.0	75.8	132.8	6.1	1.9	1.3	.6	.5	. 2	.0	.0	2.4	228.4	6	35.29
1978	34.1	213.2	25.8	5.1	1.7	1.6	1.0	.8	.3	. 0	.0	40.7	324.5	1	5.88
1979	38.7	102.8	12.3		6.1	4.5	1.2	.5	.1	.0	.0	35.2	205.6	8	47.06
1980	19.5	101.9	39.1	2.8	1.3	2.4	1.2	.2	, 2	.0	.0	2.8	171.3	10	58.82
1981	35.5	99.6	34.0	9.8	4.8	1.4	2.3	3.5	. 4	.0	.0	.0	191.2		52.94
1982	18.0	16.3	10.6	2.6	1.4	.3	.1	.0	.0	.0	.0	6.4	55.6		94.12
1983	48.8	106.1	107.2	18.8	2.8	1.7	1.8	.6	.3	.0	.0	.4	288.4		11.76
1984	2.8	199.1	8.8	4.7	1.7	.7	.6	.2	.0	.0	.0	1.5	220.0		41.18
1985	22.8	29.3	8.5	6.1	1.4	.4	.2	.2	. 2	.0	.0	3.0	72.0		82.35
1986	92.4	121.4	8.5	1.8	.5	.3	.4	. 2	.1	.0	.0	9.1	234.7		29.41
1987	22.2	23.4	12.6	1.8	2.4	.5	.2	.1	.0	.0	.0	10.7	73.9		76.47
1988	117.0	53.6	46.7	30.3	3.7	1.6	.9	. 4	. 3	.2	.0	27.9	282.5		17.65
1989	22.2	54.2	28.8	2.8	.5	.4	.4	. 2	.1	.0	.0	8.4	117.9		64.71
1990	24.5	132.6	46.6	21.9	3.7	1.6	.9	.5	.5	.3	.2	10.4	243.6		23.53
1991	39.5	37.7	4.9	.6	.1	.1	.0	.0	.0	.0	.0	.8	83.7		
1992	1.6	33.0	16.9	1.6	.1	.0	.0	.0	.0	.0	.0	3.9	57.1		
Mean	34.2	87.5	34.0	7.6	2.1	1.2	.7	.5	.2	.0	.0	10.2	178.2		

SITE	NAME C	HOTTA TANA	A .												
Year	Jul	Aug	Sep	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Anflow	Rank	Prob
1977	22.8	244.8	428.9	19.7	6.0	4.1	1.9	1.5	.6	.0			737.8	6	35.29
1978	110.2	688.6	83.4	16.6	5.6	5.0	3.3	2.7	1.1	.1			1048.1	1	5.88
1979	125.1	332.2	39.6	13.2	19.6	14.4	4.0	1.7	. 4	.0			664.0	8	47.06
1980	63.0	329.1	126.3	9.0	4.0	7.8	4.0	.7	.5	.0	.0		553.3	10	58.82
1981	114.6		109.8	31.7	15.4	4.6	7.3	11.1	1.2	.1	.0	.0	617.5	9	52.94
1982	58.2		34.3	8.3	4.7	. 8	.3	.0	.0	.0	.0	20.7	179.7	16	94.12
1983	157.6		346.1	60.7	8.9	5.6	5.8	2.1	1.0	.0	.0	1.2	931.6	2	11.76
1984	8.9		28.5	15.1		2.2		.7	.1	.0	.0	4.8	710.6	7	41.18
1985	73.6		27.5	19.6		1.2	.7	. 8	.5	.0	.0	9.6	232.6	14	82.35
1986	298.4		27.5	5.9		1.0	1.2	.6	. 3	.0	.0	29.3	758.2	5	29.41
1987	71.6		40.8	5.9			.7	.2	,0	.0		34.7	238.8	13	76.47
1988	377.8		150.9	97.9		5.2		1.4	1.0	. 5		90.0	912.5	3	17.65
1989	71.8		93.0	9.1	1.5		1.2	.6	.2	.0	.0	27.1	380.8	11	64.71
1990	79.1	428.3	150.5	70.7		5.2		1.6	1.5	1.1		33.5	786.8	4	23.53
1991	127.7		15.8	2.0		.2	.0	.0	.0	.0		2.5	270.4	12	70.59
1992	5.1	106.6	54.6	5.1	.3	.0	.0	.0	.0	.0	.0	12.6	184.3	15	88.24
Mean	110.3	282.6	109.8	24.4	6.9	3.8	2.4	1.6	.5	.1	.0	33.0	575.4		
SITE	NAME I	NARAMADA S	ACAD	334	100		X								
1977	5328.1		13382.2	2750.0	810.1	ono n	356.5	777 0	277 0	10/ 0	4E/ 0	FOI F	7070/ /	^	
1978	9381.3		4851.0		451.2				277.9	194.2		591.5	39384.4	2	11.76
1979	1695.4	9608.5	786.8	364.0			174.5		136.9	220.1 113.4	192.2	1097.6 2572.4	36646.3		17.65
1980	5467.7	12794.3		1002.6	419.5	295.6		170.0	353.5	167.3	141.4	564.2	16318.1	15	88.24
1981	4754.2	9971.5	2180.1	1299.1	522.5	302.2	296.9	405.5	191.7	119.5	102.5	728.4	31306.2 20874.1	9	41.18
1982	1287.3	9829.0	4989.5		607.3		244.6	182.3	145.8	101.4	85.4	169.9	18732.4	12	70.59
1983	1662.1	9094.9	14825.0	3509.8		404.0		328.1	222.7		112.0	202.6	31789.1	5	29.41
1984	801.2		3565.4		394.3	292.3	310.2	324.0	208.2	117.2	83.7	156.7	32452.8	4	23.53
1985	1627.4	9615.9	3365.7	2958.2	747.0	331.6	253.6	349.8	309.6	133.9	90.3	506.2	20289.2	11	64.71
1986	13065.8	13300.7	1843.3	1120.9	568.5		399.8	247.4	276.0	117.9	92.6	388.8	31702.6	6	35.29
1987	906.0	4640.8	5713.6	2742.9	968.2	330.2	226.1	183.1	162.3	77.1	50.6		16288.2		94.12
1988	6155.9	11368.1	3774.4	2056.2	538.8	486.9	229.2	234.2	198.1	121.8	49.4	519.5	25732.6	8	47.06
1989	2279.3	8000.5	2340.1	612.9	424.4	476.4	520.5	275.5		180.0	239.8	1465.5	17145.8		82.35
1990	6983.1	12459.8	11559.2	3845.4	841.5	720.1	482.6	424.6	614.5	536.9	336.8	989.0	39793.7	1	5.88
1991	2810.2	9792.9	3857.1	876.4	676.8	652.6	309.3	382.0	323.9	206.6	199.7	265.2	20352.7	10	58.82
1992	815.3	7464.6	4549.3	798.0	467.7	560.8	404.6	354.7	280.5	324.1	306.9	2385.3	18711.9	13	76.47
		11570.5								181.4	145.6	805.6	26095.0		
SITE	NAME	OMKARESH	UAR												
1977		14998.5								204 4	164.2	622 6	41449 9	2	11.76
1978		18457.9													
1979		10112.4											17173.9		
1980		13465.3											32948.0		41.18
1981		10494.4											21968.8		52.94
1982		10344.5		843.4									19714.8		
1983	1749.3	9571.9											33456.3		29.41
1984	843.2	26728.7		845.0									34154.8		23.53
1985	1712.7	10120.2	3542.2	3113.3	786.2	349.0	266.9	368.1	325.9	141.0	95.0	532.8	21353.2	11	64.71
1986	13751.0	13998.3	1940.0	1179.7	598.3	295.7	420.8	260.3	290.4	124.1	97.5	409.1	33365.3	6	35.29
1987	953.5	4884.2											17142.4	16	94.12
1988	6478.7	11964.3											27082.2	8	47.06
1989	2398.9	8420.0										1542.4	18045.1		
1990		13113.3													
1991		10306.5													
		7856.1													
		12177.3													

Year Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May 1977 5980.1 15995.0 15019.8 3086.5 909.3 1020.3 400.1 424.0 311.9 217.9 175. 1978 10529.3 19684.3 5444.7 1537.0 506.4 600.8 323.6 475.8 334.2 247.1 215. 1979 1902.9 10784.3 883.0 408.5 320.0 383.3 195.8 166.7 153.7 127.3 102. 1980 6136.8 14360.0 10848.6 1125.3 470.8 331.8 296.7 190.8 396.7 187.8 158. 1981 5336.0 11191.7 2446.9 1458.1 586.4 339.2 333.2 455.1 215.1 134.1 115. 1982 1444.9 11031.8 5600.1 899.5 681.6 323.9 274.5 204.6 163.6 113.8 95.	1 663.9 7 1231.9 2 2887.2 7 633.3 0 817.6 8 190.6 7 227.4 9 175.9 3 568.2 9 436.3 8 322.5 4 583.1 1 1644.8	41130.8 18315.0 35137.2 23428.5 21024.7 35679.3 36424.1 22772.0 35582.1 18281.4	2 3 15 7 9 12 5 4 11	11.76 17.65 88.24 41.18 52.94 70.59 29.41 23.53 64.71
1978 10529.3 19684.3 5444.7 1537.0 506.4 600.8 323.6 475.8 334.2 247.1 215. 1979 1902.9 10784.3 883.0 408.5 320.0 383.3 195.8 166.7 153.7 127.3 102. 1980 6136.8 14360.0 10848.6 1125.3 470.8 331.8 296.7 190.8 396.7 187.8 158. 1981 5336.0 11191.7 2446.9 1458.1 586.4 339.2 333.2 455.1 215.1 134.1 115. 1982 1444.9 11031.8 5600.1 899.5 681.6 323.9 274.5 204.6 163.6 113.8 95. 1983 1865.5 10207.9 16639.1 3939.3 900.2 453.4 511.6 368.3 249.9 190.9 125. 1984 899.2 28504.6 4001.8 901.1 442.5 328.0 348.2 363.7 233.7 131.6 93. 1985 1826.5 10792.6 3777.5 3320.2	7 1231.9 2 2887.2 7 633.3 0 817.6 8 190.6 7 227.4 9 175.9 3 568.2 9 436.3 8 322.5 4 583.1 1 1644.8	44203.9 41130.8 18315.0 35137.2 23428.5 21024.7 35679.3 36424.1 22772.0 35582.1 18281.4	2 3 15 7 9 12 5 4 11	11.76 17.65 88.24 41.18 52.94 70.59 29.41 23.53
1978 10529.3 19684.3 5444.7 1537.0 506.4 600.8 323.6 475.8 334.2 247.1 215. 1979 1902.9 10784.3 883.0 408.5 320.0 383.3 195.8 166.7 153.7 127.3 102. 1980 6136.8 14360.0 10848.6 1125.3 470.8 331.8 296.7 190.8 396.7 187.8 158. 1981 5336.0 11191.7 2446.9 1458.1 586.4 339.2 333.2 455.1 215.1 134.1 115. 1982 1444.9 11031.8 5600.1 899.5 681.6 323.9 274.5 204.6 163.6 113.8 95. 1983 1865.5 10207.9 16639.1 3939.3 900.2 453.4 511.6 368.3 249.9 190.9 125. 1984 899.2 28504.6 4001.8 901.1 442.5 328.0 348.2 363.7 233.7 131.6 93. 1985 1826.5 10792.6 3777.5 3320.2	7 1231.9 2 2887.2 7 633.3 0 817.6 8 190.6 7 227.4 9 175.9 3 568.2 9 436.3 8 322.5 4 583.1 1 1644.8	41130.8 18315.0 35137.2 23428.5 21024.7 35679.3 36424.1 22772.0 35582.1 18281.4	3 15 7 9 12 5 4 11	17.65 88.24 41.18 52.94 70.59 29.41 23.53
1979 1902.9 10784.3 883.0 408.5 320.0 383.3 195.8 166.7 153.7 127.3 102. 1980 6136.8 14360.0 10848.6 1125.3 470.8 331.8 296.7 190.8 396.7 187.8 158. 1981 5336.0 11191.7 2446.9 1458.1 586.4 339.2 333.2 455.1 215.1 134.1 115. 1982 1444.9 11031.8 5600.1 899.5 681.6 323.9 274.5 204.6 163.6 113.8 95. 1983 1865.5 10207.9 16639.1 3939.3 900.2 453.4 511.6 368.3 249.9 190.9 125. 1984 899.2 28504.6 4001.8 901.1 442.5 328.0 348.2 363.7 233.7 131.6 93. 1985 1826.5 10792.6 3777.5 3320.2 838.4 372.2 284.6 392.6 347.5 150.3 101. 1986 14664.7 14928.3 2068.9 1258.1	2 2887.2 7 633.3 0 817.6 8 190.6 7 227.4 9 175.9 3 568.2 9 436.3 8 322.5 4 583.1 1 1644.8	18315.0 35137.2 23428.5 21024.7 35679.3 36424.1 22772.0 35582.1 18281.4	15 7 9 12 5 4 11	88.24 41.18 52.94 70.59 29.41 23.53
1980 6136.8 14360.0 10848.6 1125.3 470.8 331.8 296.7 190.8 396.7 187.8 158. 1981 5336.0 11191.7 2446.9 1458.1 586.4 339.2 333.2 455.1 215.1 134.1 115. 1982 1444.9 11031.8 5600.1 899.5 681.6 323.9 274.5 204.6 163.6 113.8 95. 1983 1865.5 10207.9 16639.1 3939.3 900.2 453.4 511.6 368.3 249.9 190.9 125. 1984 899.2 28504.6 4001.8 901.1 442.5 328.0 348.2 363.7 233.7 131.6 93. 1985 1826.5 10792.6 3777.5 3320.2 838.4 372.2 284.6 392.6 347.5 150.3 101. 1986 14664.7 14928.3 2068.9 1258.1 638.0 315.4 448.8 277.6 309.7 132.4 103. 1987 1016.8 5208.7 6412.8 3078.5	7 633.3 0 817.6 8 190.6 7 227.4 9 175.9 3 568.2 9 436.3 8 322.5 4 583.1 1 1644.8	35137.2 23428.5 21024.7 35679.3 36424.1 22772.0 35582.1 18281.4	7 9 12 5 4 11	41.18 52.94 70.59 29.41 23.53
1981 5336.0 11191.7 2446.9 1458.1 586.4 339.2 333.2 455.1 215.1 134.1 115. 1982 1444.9 11031.8 5600.1 899.5 681.6 323.9 274.5 204.6 163.6 113.8 95. 1983 1865.5 10207.9 16639.1 3939.3 900.2 453.4 511.6 368.3 249.9 190.9 125. 1984 899.2 28504.6 4001.8 901.1 442.5 328.0 348.2 363.7 233.7 131.6 93. 1985 1826.5 10792.6 3777.5 3320.2 838.4 372.2 284.6 392.6 347.5 150.3 101. 1986 14664.7 14928.3 2068.9 1258.1 638.0 315.4 448.8 277.6 309.7 132.4 103. 1987 1016.8 5208.7 6412.8 3078.5 1086.6 370.6 253.8 205.5 182.1 86.6 56. 1988 6909.2 12759.2 4236.3 2307.9 604.8 546.5 257.3 262.9 222.3 136.8 55. 1989 2558.3 8979.5 2626.5 <td>0 817.6 8 190.6 7 227.4 9 175.9 3 568.2 9 436.3 8 322.5 4 583.1 1 1644.8</td> <td>23428.5 21024.7 35679.3 36424.1 22772.0 35582.1 18281.4</td> <td>9 12 5 4 11</td> <td>52.94 70.59 29.41 23.53</td>	0 817.6 8 190.6 7 227.4 9 175.9 3 568.2 9 436.3 8 322.5 4 583.1 1 1644.8	23428.5 21024.7 35679.3 36424.1 22772.0 35582.1 18281.4	9 12 5 4 11	52.94 70.59 29.41 23.53
1982 1444.9 11031.8 5600.1 899.5 681.6 323.9 274.5 204.6 163.6 113.8 95. 1983 1865.5 10207.9 16639.1 3939.3 900.2 453.4 511.6 368.3 249.9 190.9 125. 1984 899.2 28504.6 4001.8 901.1 442.5 328.0 348.2 363.7 233.7 131.6 93. 1985 1826.5 10792.6 3777.5 3320.2 838.4 372.2 284.6 392.6 347.5 150.3 101. 1986 14664.7 14928.3 2068.9 1258.1 638.0 315.4 448.8 277.6 309.7 132.4 103. 1987 1016.8 5208.7 6412.8 3078.5 1086.6 370.6 253.8 205.5 182.1 86.6 56. 1988 6909.2 12759.2 4236.3 2307.9 604.8 546.5 257.3 262.9 222.3 136.8 55. 1989 2558.3 8979.5 2626.5 687.9 476.3 534.7 584.2 309.2 371.5 202.0 269.	8 190.6 7 227.4 9 175.9 3 568.2 9 436.3 8 322.5 4 583.1 1 1644.8	21024.7 35679.3 36424.1 22772.0 35582.1 18281.4	12 5 4 11	70.59 29.41 23.53
1983 1865.5 10207.9 16639.1 3939.3 900.2 453.4 511.6 368.3 249.9 190.9 125. 1984 899.2 28504.6 4001.8 901.1 442.5 328.0 348.2 363.7 233.7 131.6 93. 1985 1826.5 10792.6 3777.5 3320.2 838.4 372.2 284.6 392.6 347.5 150.3 101. 1986 14664.7 14928.3 2068.9 1258.1 638.0 315.4 448.8 277.6 309.7 132.4 103. 1987 1016.8 5208.7 6412.8 3078.5 1086.6 370.6 253.8 205.5 182.1 86.6 56. 1988 6909.2 12759.2 4236.3 2307.9 604.8 546.5 257.3 262.9 222.3 136.8 55. 1989 2558.3 8979.5 2626.5 687.9 476.3 534.7 584.2 309.2 371.5 202.0 269.	7 227.4 9 175.9 3 568.2 9 436.3 8 322.5 4 583.1 1 1644.8	35679.3 36424.1 22772.0 35582.1 18281.4	5 4 11	29.41 23.53
1984 899.2 28504.6 4001.8 901.1 442.5 328.0 348.2 363.7 233.7 131.6 93. 1985 1826.5 10792.6 3777.5 3320.2 838.4 372.2 284.6 392.6 347.5 150.3 101. 1986 14664.7 14928.3 2068.9 1258.1 638.0 315.4 448.8 277.6 309.7 132.4 103. 1987 1016.8 5208.7 6412.8 3078.5 1086.6 370.6 253.8 205.5 182.1 86.6 56. 1988 6909.2 12759.2 4236.3 2307.9 604.8 546.5 257.3 262.9 222.3 136.8 55. 1989 2558.3 8979.5 2626.5 687.9 476.3 534.7 584.2 309.2 371.5 202.0 269.	9 175,9 3 568.2 9 436.3 8 322.5 4 583.1 1 1644.8	36424.1 22772.0 35582.1 18281.4	11	23.53
1985 1826.5 10792.6 3777.5 3320.2 838.4 372.2 284.6 392.6 347.5 150.3 101. 1986 14664.7 14928.3 2068.9 1258.1 638.0 315.4 448.8 277.6 309.7 132.4 103. 1987 1016.8 5208.7 6412.8 3078.5 1086.6 370.6 253.8 205.5 182.1 86.6 56. 1988 6909.2 12759.2 4236.3 2307.9 604.8 546.5 257.3 262.9 222.3 136.8 55. 1989 2558.3 8979.5 2626.5 687.9 476.3 534.7 584.2 309.2 371.5 202.0 269.	3 568.2 9 436.3 8 322.5 4 583.1 1 1644.8	22772.0 35582.1 18281.4	11	
1986 14664.7 14928.3 2068.9 1258.1 638.0 315.4 448.8 277.6 309.7 132.4 103. 1987 1016.8 5208.7 6412.8 3078.5 1086.6 370.6 253.8 205.5 182.1 86.6 56. 1988 6909.2 12759.2 4236.3 2307.9 604.8 546.5 257.3 262.9 222.3 136.8 55. 1989 2558.3 8979.5 2626.5 687.9 476.3 534.7 584.2 309.2 371.5 202.0 269.	9 436.3 8 322.5 4 583.1 1 1644.8	35582.1 18281.4		64./1
1987 1016.8 5208.7 6412.8 3078.5 1086.6 370.6 253.8 205.5 182.1 86.6 56. 1988 6909.2 12759.2 4236.3 2307.9 604.8 546.5 257.3 262.9 222.3 136.8 55. 1989 2558.3 8979.5 2626.5 687.9 476.3 534.7 584.2 309.2 371.5 202.0 269.	8 322.5 4 583.1 1 1644.8	18281.4	6	
1988 6909.2 12759.2 4236.3 2307.9 604.8 546.5 257.3 262.9 222.3 136.8 55. 1989 2558.3 8979.5 2626.5 687.9 476.3 534.7 584.2 309.2 371.5 202.0 269.	4 583.1 1 1644.8		1212	35.29
1989 2558.3 8979.5 2626.5 687.9 476.3 534.7 584.2 309.2 371.5 202.0 269.	1 1644.8			94.12
				47.06
1990 7837 6 13986 5 12973 8 6316 0 966 5 808 3 561 6 676 6 689 7 602 6 378	0 1110.0	19244.0	14	82.35
		44663.3	1	5.88
1991 3154.1 10991.3 4329.1 983.6 759.6 732.5 347.1 428.8 363.6 231.9 224.	1 297.6	22843.3	10	58.82
1992 915.0 8378.1 5106.0 895.7 524.9 629.4 454.1 398.1 314.9 363.8 344.	5 2677.2	21001.7	13	76.47
Mean 4561.1 12986.4 6400.9 1887.7 668.1 505.6 366.0 337.5 303.8 203.6 163.	5 904.2	29288.3		
SITE NAME UPPER BEDA	W/V			
	1 72 1	254 /	7	17 /5
1977 43.7 83.1 66.7 7.3 4.3 2.1 .8 .6 .5 .2 .				17.65
	1 42.1			23.53
	1 31.3			47.06
	1 1.5			70.59
	3 .3		6	35.29
1982 12.9 15.4 5.6 1.8 1.9 .4 .1 .0 .0 .0 .				82.35
	1 2.0	124.4		41.18
	1 2.7	80.9	10	58.82
1985 11.3 19.9 2.5 9.1 .9 .2 .1 .0 .0 .0 .	0 9.9	53.9	13	76.47
1986 13.9 64.1 8.8 1.7 .3 .1 .1 .0 .0 .0 .	0 4.2	93.2	9	52.94
1987 5.6 11.0 1.3 .5 .1 .0 .0 .0 .0 .0 .	0 7.2	25.8	16	94.12
1988 44.4 41.3 95.7 80.1 6.2 1.8 .5 .1 .4 .2 .	0 17.3	288.0	2	11.76
1989 18.0 145.3 63.7 6.7 1.6 .5 .3 .0 .0 .0 .	6 5.6	242.4	5	29.41
	2 13.7			5.88
	1 12.8			64.71
	0 12.8			88.24
Mean 21.1 57.5 30.5 13.2 3.7 1.1 .6 .3 .2 .1 .	1 13.1	141.5		•••••
SITE NAME MAN	N.			
	1 67.0	300 0	7	17.65
	2 49.7			47.06
1980 21.3 46.3 17.8 3.7 1.5 1.8 1.4 .4 .4 .1 .				70.59
1981 24.1 198.1 34.9 17.9 33.7 3.2 2.9 2.5 .9 .6 .				35.29
1982 20.5 24.6 8.9 2.8 2.9 .6 .2 .0 .0 .0 .				82.35
1983 36.7 45.3 54.4 40.3 10.2 3.6 2.4 .9 .6 .4 .				41.18
1984 16.6 68.7 21.2 11.7 2.6 1.2 .9 .4 .3 .6 .				58.82
1985 17.9 31.6 4.0 14.4 1.4 .4 .1 .1 .0 .0 .				76.47
1986 22.1 101.8 13.9 2.7 .5 .2 .2 .0 .0 .0 .				52.94
1987 8.9 17.5 2.1 .7 .2 .1 .0 .0 .0 .0 .			16	94.12
1988 70.6 65.7 152.2 127.4 9.8 2.9 .8 .1 .7 .3 .	1 27.5	458.0	2	11.76
1989 28.6 231.1 101.3 10.6 2.6 .8 .5 .0 .0 .1 .	9 8.9	385.4	5	
1990 51.4 226.3 122.1 66.7 9.5 4.0 2.4 .9 .4 .3 .	3 21.8	506.0	1	5.88
1991 47.7 48.2 6.8 .9 .4 .4 .2 .0 .0 .0 .	2 20.4	125.2		
1992 3.9 7.4 9.3 7.3 .2 .0 .4 .0 .0 .0 .			15	
Mean 33.5 91.4 48.4 21.0 5.8 1.8 1.0 .5 .3 .2 .	2 20.8	225.0		

SITE N	AME LOW	ER GOI									Contract of the Contract of th	2.0		WOOD A	
/ear	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun		Rank	
977	89.8	170.9	137.2	14.9	8.8	4.4	1.6	1.2	1.0	.3	.2	86.7	517.1	3	17.65
978	89.8	170.9	137.2	14.9	8.8	4.4	1.6	1.2	1.0	.3	.2	86.7	517.1	4	23.53
979	35.4	110.3	18.3	7.7	4.9	3.4	1.6	1.0	.8	. 4	.2	64.3	248.3	8	47.06
980	27.5	60.0	23.0	4.8	2.0	2.3	1.8	.6	.5	.2	.1	3.0	125.8	12	70.59
981	31.2	256.3	45.2	23.2	43.5	4.1	3.8	3.3	1.2	.8	.6	.7	413.7	6	35.29
982	26.5	31.8	11.5	3.6	3.8	. 8	. 3	.0	.0	.0	.0	7.6	85.8	14	82.35
1983	47.5	58.6	70.4	52.1	13.2	4.7	3.1	1.2	.7	. 5	.1	4.0	255.9	7	41.18
1984	21.5	88.8	27.4	15.1	3.3	1.5	1.1	.5	. 4	. 7	.3	5.5	166.3	10	58.82
1985	23.2	40.9	5.2	18.7	1.8	. 5	. 1	.1	.0	.0	.0	20.4	110.8	13	76.47
1986	28.6	131.7	18.0	3.5	.7	.3	. 2	.0	.0	.0	.0	8.7	191.8	9	52.94
1987	11.5	22.6	2.7	1.0	. 3	. 1	.0	.0	.0	.0	.0	14.9	53.0	16	94.12
1988	91.3	85.0	196.8	164.8	12.7	3.8	1.0	.2	.9	. 4	. 1	35.5	592.4	2	11.76
1989	37.0	298.9	131.1	13.7	3.3	1.1	.6	.0	.0	.1	1.2	11.5	498.5	5	29.41
1990	66.5	292.7	157.9	86.3	12.3	5.2	3.1	1.1	.6	. 4	.3	28.1	654.5	1	5.88
1991	61.7	62.3	8.8	1.1	.6	.5	.3	.0	.0	.0	. 3	26.4	161.9	11	64.71
1992	5.1	9.6	12.0	9.4	.2	.0	.6	.0	.0	.0	.0	26.4	63.3	15	88.24
	43.4	118.2	62.7	27.2	7.5	2.3	1.3	.6	. 4	.3	.2	26.9	291.0		
1ean		- /"	02.7			2.0						10			
SITE N		BAT				2.4			2	.3	.1	61.2	365.1	3	17.65
1977	63.4	120.7	96.9	10.5	6.2	3.1	1.1	.8	.7		.1	61.2	365.1	4	23.53
1978	63.4	120.7	96.9	10.5	6.2	3.1	1.1	.8	.5	.3		45.4	175.3		47.06
1979	25.0	77.8	12.9	5.5	3.5	2.4	1.1	.7		.3	.1	2.1		12	70.59
1980	19.4	42.3	16.3	3.4	1.4	1.6	1.2	. 4	. 3	.1	. 4	.5	292.1		35.29
1981	22.0	181.0	31.9	16.4	30.8	2.9	2.7	2.3	.9	.6		5.4	60.6		82.35
1982	18.7	22.4	8.1	2.5	2.7	.6	.2	.0	.0	.0	.0	2.8	180.7		41.18
1983	33.5	41.3	49.7	36.8	9.3	3.3	2.2	. 8	.5	. 4	.1	3.9	117.5		58.82
1984	15.2	62.7	19.4	10.7	2.3	1.1	. 8	. 4	.3	.5		4	78.3		76.47
1985	16.4	28.9	3.7	13.2	1.3	. 3	.1	.1	.0	.0	.0	14.4	135.4		52.94
1986	20.2	93.0	12.7	2.5	.5	.2	.2	.0	.0	.0	.0	6.1	37.4		94.12
1987	8.1	16.0	1.9	.7	. 2	.0	.0	.0	.0	.0	.0	10.5	418.3		11.76
1988	64.5	60.0	139.0	116.3	8.9	2.7	.7	.1	.6	.3	.1	25.1	351.9		29.41
1989	26.1	211.0	92.6	9.6	2.3	. 8	.5	.0	.0	.1	. 8	8.1	462.1		5.88
1990	46.9	206.7	111.5	60.9	8.7	3.7	2.2	.8	. 4	.3	.2	19.9	114.3		
1991	43.5	44.0	6.2	. 8	. 4	. 3	. 2	. 0	.0	.0	.2	18.6			
1992	3.6	6.8	8.4	6.7	.1	.0	. 4	.0	.0	.0		18.6	44./	15	00.24
Mean	30.6	83.5	44.2	19.2	5.3	1.6	. 9	.5	.3	.2	.2	19.0	205.5		
SITE	NAME SA	RDAR SARO	VAR	200	200					100			4,1,4		
1077	7752 0	18532 0	19892 7	3595 8	940.3	1221.8	388.5	413.2	352.6	212.5	139.2	/9/.6	54240.1	1	3.8
1978	11738 3	19560 8	8298.8	2219.6	586.2	691.5	369.6	510.3	413.7	267.8	231.7	1668.6	4655/.1		17.0
1979	2621.1	11718.8	1312.0	581.7	370.9	698.3	250.7	173.4	106.0	69.6	46.0	3024.4	209/2./	15	00.2
1980	6006 6	12210 6	11895.9	1282.7	556.1	352.2	348.3	205.5	367.9	178.3	129.0	529.5	34062.8	5 /	41.1
1981	6069.5	13974.3	3437.2	1790.2	715.5	404.5	324.8	430.7	197.7	117.4	92.7	822.3	283/6.8	3 4	52.9
1982	1632.4	10591.3	6097.2	1038.9	739.3	347.4	250.3	189.6	160.7	116.1	75.1	295.9	21534.1	14	82.3
1983	2628.2	11070.1	17829.0	5254.3	1250.8	554.0	529.7	391.7	271.4	187.6	91.5	220.4	402/8.		
1984	1078 3	30710.8	5037.5	1254.5	532.0	385.2	362.5	427.9	226.7	128.5	75.5	141.4	40360.8		
1985	1776.0	12076.6	3530.2	2969.9	1024.7	385.8	286.5	339.6	349.8	162.2	83.8	622.4	23607.3	11	04.7
1986	13787 D	14647 0	2103.2	1381.8	844.6	331.4	494.7	254.5	311.4	148.7	76.1	743.0	35123.	5 6	35.2
1987	1011.5	3475.7	6656.5	1311.4	676.1	372.3	234.6	163.4	160.6	138.2	81.3	343.7	14625.	1 10	94.1
1988	6284 5	14340 1	5599.8	3662.8	709.8	586.0	328.8	293.8	278.9	215.0	122.3	502.2	32923.	4 8	4/.0
1989	3165.6	10214.2	4430.2	1040.0	643.5	672.4	616.0	422.7	355.6	258.1	375.1	1311.0	23504.	5 12	70.5
1990	7197.3	16590.5	15383.6	5651.0	1128.2	895.9	574.0	488.2	671.9	634.2	397.3	1289.8	50901.	5 2	11./
1991	3248 6	12259 N	4672 3	1018 4	736.7	713.0	362.5	393.4	383.6	238.0	217.6	528.0	24//0.	9 10	58.8
1992		8487.9							442.0	487.8	463.2	2063.7	22301.	0 13	/0.4
Mean	4780.8	13778.8	7613.7	2216.0	759.4	590.9	399.3	356.8	315.6	222.5	168.6	931.5	32133.	8	

Table 5.5 Zonewise cropping patterns.

CROPPING PATTERN FOR UPPER ZONE MAJOR RESERVOIRS (IRRIGATION INTENSITY = 120%)

Crop Name	Area(Ha)			20324		Wate	r Dep	th at	Fiel	d in	m m		5055
		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
												7	
KHARIF													
Paddy HYV	25	318		131	37								35
Paddy HYV	20	231		92									186
Paddy Line	10	11		76								35	347
Soyabin	7												107
Maize	5	58						77					
RABBI			96	Eb.	'nθ			411					
Wheat OMV	15				60	68	101	109	9				
Wheat HYV	15				-	116	51	111	132				
Wheat HYV	10					138	87	116	56				
Peas	5					121	95	108		-			
Mustard	5				60	78	103	111	28				
Berseem	1					188	85	116	136				
Vegetables	2					141	78	109	23	4-			

CROPPING PATTERN FOR UPPER ZONE MAJOR RESERVOIRS (IRRIGATION INTENSITY = 195%)

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	m m		
1	150	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
												75.00	
KHARIF									70				
Paddy	43	76		203								51	152
Jowar	20			76	76								
Pulses	12			102									
Vegetables	2	76	51	152	76								
Groundnut	7			102									
Fodder	2			102			100	+1					
Sugarcane	7	44		152	152	152			330	305	305	305	229
	100	100						- 7					
RABBI													
Wheat HYV	43				102	152	76	152	76				
Wheat local	15					76	76	76	76		76		
Peas	4					102	102	102					
Berseem	7				203	152	152	152	152	305	203		
Gram	8						76	76					
Vegetables	2				76	152	229	152	152			77	
HOT WEATHER													
Pulses	17										229	229	
Fodder	7									152	229	229	152
Vegetables	2						++	44	76	152	229	229	76

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	m m		
		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun
				22200						-,-,-			
CHARIF												20	200
Paddy	30	76		229								52	229
Hy Jowar	20			76	76								
Cotton	5			76	152	76						178	152
Groundnut	10			152									
Pulses	10			102				10.01					
Vegetables	2	76	76	152	102								
Fodder	1			102									
Sugarcane	3			152	152	152	76	254	229	305	305	305	229
RABBI	- 40	341		933				177	60	W.)			
Wheat HYV	46				102	152	76	152	127				
Wheat Local		4.1				102	76	76	102	51			
	4					102	127	102					
Peas	5				203	152	152	152	152	304	204		
Berseem					76	152	229	204	152				
Vegetables Gram	2						76	76			140		

CROPPING PATTERN FOR MIDDLE ZONE MAJOR RESERVOIRS (IRRIGATION INTENSITY = 193%)

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	mm 		
	13	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
									12.000		1199		
KHARIF	A 190												
Paddy	40	76		229								51	229
Jowar	20			76	76				44				
Cotton	5			76	152	76				1		178	152
Groundnut	4			152									
Pulses	10			102				44					
Vegetables	2	76	152	102				-					76
Fodder	2		-21	102									
Sugarcane	7		10-	152	152	152	76	254	229	305	305	305	229
RABBI													
Wheat HYV	50		-		102	152	76	152	127				
Wheat Local	10					102	76	76	102	51			
Gram	4						76	76					
Berseem	7				203	152	152	152	152	304	203		
Vegetables	2				76	152	229	203	152				
HOT WEATHER													47
Pulses	17										254	178	76
Fodder	7									152	229	278	152
Vegetables	2								76	152	229	278	76

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	m m		
		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun
KHARIF									1				
Paddy	40	76	24	229				77				51	229
Jowar/Maize	20			76	76			77					
Cotton	5			76	152	76						178	152
Groundnut	4			152									
Fodder	2			102									
Vegetables	2	76	152	102									76
Sugarcane	7			152	152	152	76	254	229	305	305	305	229
RABBI	100	3.7			ŧФ				к.,				
Wheat HYV	50				102	152	76	152	127		22		
Wheat Local				704		102	76	76	102	51			
Peas	4					102	127	102			4.0		
Gram	4						76	76					
Berseem	7				203	152	152	152	152	304	203		
Vegetables	2				76	152	229	203	152				
HOT WEATHER	305 /						100				2.5		
Pulses	17										254	178	76
Fodder	7									152	229	278	152
Vegetables	2								76	152	229	278	76

CROPPING PATTERN FOR MIDDLE ZONE MAJOR RESERVOIRS (IRRIGATION INTENSITY = 161%)

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	m m		
100	1 15	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
KHARIF								with.					
Paddy	30	76	1	229								52	229
Hy Jowar	20			76	76	~~							
Cotton	5			76	152	76		25	-			178	152
Groundnut	10			152									
Pulses	10			102									
Vegetables	2	76	76	152	102								
Fodder	2			102									
Sugarcane	5	25		152	152	152	76	254	229	305	305	305	229
RABBI													
Wheat HYV	50		-		102	152	76	152	127				
Wheat Local	10					102	76	76	102	51		m =	
Peas	4					102	127	102					
Berseem	7				203	152	152	152	152	304	204		
Vegetables	2				76	152	229	204	152				
Gram	4						76	76					

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	mm	31.51.5	63355
		Ju1	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
CHARIF													
Paddy	22	76		229								52	229
Hy Jowar	10	+-		76	76								
Cotton	5			76	152	76						178	152
Groundnut	3			152									
Pulses	6			102									
Vegetables	2	76	152	102									76
Fodder	2		40	102		44							
RABBI	100	w				ш			. 3	JA,			
Wheat HYV	46		144		102	152	76	152	127				
Wheat Local	10	-5.				102	76	76	102	51			
Peas	6					102	127	102					
Berseem	7	-10			203	152	152	152	152	304	204		
Vegetables	2				76	152	229	204	152				
Gram	4						76	76					

CROPPING PATTERN FOR MIDDLE ZONE MAJOR RESERVOIRS (IRRIGATION INTENSITY = 138%)

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	m m		
T	- 1	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun
KHARIF	* 70.												
Paddy	30	76		229								51	229
Jowar/Maize	15			76	76	-							
Cotton	5			76	152	76						178	152
Groundnut	5			152									
Pulses	5			102									
Fodder	2			102									
Vegetables	1	76	152	102				-					76
Sugarcane	4			152	152	152	76	254	229	305	305	305	229
		- 1	w 7										
RABBI													
Wheat HYV	30	-			102	152	76	152	127				
Wheat Local	25					102	76	76	102	51			
Peas	2					102	127	102					
Gram	7			C			76	76					
Linseed	2					51	51						
Vegetables	1				76	152	229	203	152				
HOT WEATHER													
Pulses	2							22			254	178	76
Fodder	1								55	152	229	278	152
Vegetables	1			1					76	152	229	278	76

CROPPING PATTERN FOR LOWER ZONE MAJOR RESERVOIRS (IRRIGATION INTENSITY = 158%)

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	m m		
		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
KHARIF	-2	- 25	100										
Paddy	20	76	152	229								52	305
Hy Jowar	15		76	76	76								
Cotton	25				76	152	76					178	152
Groundnut	5			152									
Pulses	7			152									
Vegetables	2	76	76	152	102								
Fodder	2			102									
Sugarcane	5		~-	152	152	76	254	229	279	305	305	305	229
RABBI	15 M	160	ĠΞ.				173	75%	3	7			
Wheat HYV	40	-	2.5	**	102	152	76	152	76	51			
Wheat Local	10					152	76	102	127				
Peas	2					102	152	152					
Berseem	7				254	152	229	152	229	305	203		
	2				152	229	229	229	152				
Jowar	15							178	127	229	152		

CROPPING PATTERN FOR LOWER ZONE MAJOR RESERVOIRS (IRRIGATION INTENSITY = 152%)

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	m m		
		Jul	Aug	Sep	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
KHARIF	81								13	F.			
Paddy	30	76	152	229								52	305
Jowar	20		76	76	76								
Cotton	5	-	-		76	152	76					178	152
Groundnut	10			152									
Pulses	10			152					-				
Vegetables	2	76	76	152	102								
Fodder	1			102									
Sugarcane	3			152	152	76	254	229	279	305	305	305	229
RABBI			-				7						
Wheat HYV	46				102	152	76	152	76	51			
Wheat Local	10					152	76	102	127				
Peas	4					102	152	152					
Berseem	5				254	152	229	152	229	305	203		
Vegetables	2				152	229	229	229	152				
Gram	4						102	127					

CROPPING PATTERN FOR LOWER ZONE MAJOR RESERVOIRS (IRRIGATION INTENSITY = 131%)

Crop Name	Area(Ha)				- 4 - 2 - 3	Water	Depi	th at		in m			
		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
CHARIF	45	- 4	450	220	-	2.0				2.2		52	305
Paddy	15	76	152	229	76					4.2			
Jowar	10		76	76	76	152	76					178	152
Cotton	25			450	70	152	70	-					
Groundnut	5			152									
Pulses	3			152									
Vegetables	2	76	76	152	102								
Fodder	2			102	1			000	270	305	305	305	229
Sugarcane	8	75	-77	152	152	76	254	229	279	303	303	000	
RABBI	10 100				102	152	76	152	76	51	4.		
Wheat HYV	40					152	76	102	127				
Wheat Local						102	152	152					
Peas	2				254	152	229	152	229	305	203	log-	
Berseem	7						229	229	152				
Vegetables	2				152	229	227	227	102				

CROPPING PATTERN FOR UPPER ZONE MEDIUM RESERVOIRS AND PUMPING SCHEMES (IRRIGATION INTENSITY = 154%)

rop Name	Area(Ha)		ur)			Water	r Dept	th at	Field	d in m	n m		
		Jul	Aug	Sep	0ct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun
HARIF	33							90	1	d		51	152
addy	40	76		203	7/		7.5			4- 1			
owar/Maize	15			76 102	76								
ulses	10	7/	51	152	76				4.0				
egetables	2	76	51	102							17		
roundnut	5			102									
Fodder Sugarcane	5			152	152	152		7	330	3.05	305	305	229
RABBI			47		102	152	76	152	76				
Wheat HYV	40				102	76	76	76	76		76		
Wheat local						102	102	102					
Peas	4				203	152	152	152	152	305	203		
Berseem	0						76	76					
Gram	8				76	152	229	152	152				
Vegetables Linseed	3					51	51						

CROPPING PATTERN FOR MIDDLE ZONE MEDIUM RESERVOIRS AND PUMPING SCHEMES (IRRIGATION INTENSITY = 161%)

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	m m 		عا عاد د
		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
										7,222	20255	31/32/2	
KHARIF													
Paddy	30	76		229							9.5	52	229
Hy Jowar	20			76	76								
Cotton	5			76	152	76						178	152
Groundnut	10			152									
Pulses	10			102									
Vegetables	2	76	76	152	102								
Fodder	2			102									
Sugarcane	5			152	152	152	76	254	229	305	305	305	229
0424, 34110		-0.						are.					
RABBI	100												
Wheat HYV	50				102	152	76	152	127				
Wheat Local						102	76	76	102	51			
Peas	4					102	127	102					
Berseem	7				203	152	152	152	152	304	204		
Vegetables	2		44		76	152	229	204	152				
Gram	4				-		76	76		-			

CROPPING PATTERN FOR LOWER ZONE MEDIUM RESERVOIRS AND PUMPING SCHEMES (IRRIGATION INTENSITY = 158%)

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	m m		
		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
KHARIF	76				re			75	ø	-5			705
Paddy	20	76	152	229								52	305
Hy Jowar	15		76	76	76								
Cotton	25				76	152	76					178	152
Groundnut	5			152									
Pulses	7			152]]								
Vegetables	2	76	76	152	102								
Fodder	2			102									
Sugarcane	5			152	152	76	254	229	279	305	305	305	229
RABBI									250	40			
Wheat HYV	40		22		102	152	76	152	76	51			77
Wheat Local	10					152	76	102	127				
Peas	2					102	152	152					
Berseem	7				254	152	229	152	229	305	203		
Vegetables	2				152	229	229	229	152				
Jowar	15		200		-			178	127	229	152		

CROPPING PATTERN FOR UPPER ZONE MINOR RESERVOIRS (IRRIGATION INTENSITY = 116%)

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	m m		
		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
KHARIF					11100								
Paddy	35	76		203								51	152
Jowar/Maize	11			76	76								
Pulses	5			102									
Vegetables	2	76	51	152	76								
Groundnut	5			102									
Fodder	2			102									7.7
RABBI													
Wheat HYV	30				102	152	76	152	76				
Wheat local				-4		76	76	76	76		76		
Berseem	7				203	152	152	152	152	305	203		
Gram	5						76	76					
Vegetables	2				76	152	229	152	152				

CROPPING PATTERN FOR MIDDLE ZONE MINOR RESERVOIRS (IRRIGATION INTENSITY = 125%)

Crop Name	Area(Ha)					Wate	r Dep	th at	Fiel	d in	m m		
		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
WARTE													
CHARIF	22	76		229					-2			52	229
Paddy	10			76	76								
ly Jowar Cotton	5			76	152	76						178	152
Froundnut	3			152									
Pulses	6			102									
/egetables	2	76	76	152	102					4-			
Fodder	2			102									
RABBI		W.,									-		
Wheat HYV	46		-		102	152	76	152	127				
Wheat Local						102	76	76	102	51			
Peas	6					102	127	102					
Berseem	7				203	152	152	152	152	304	204		
Vegetables	4				76	152	229	204	152				
Gram	4						76	76	*-				

CROPPING PATTERN FOR LOWER ZONE MINOR RESERVOIRS (IRRIGATION INTENSITY = 123%)

Crop Name	Area(Ha)	V.				Wate	r Der	th at	Fiel	d in	mm		
		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
KHARIF										~~~~			
Paddy	15	76	152	229							1.5	52	705
Hy Jowar	10		76	76	76							52	305
Cotton	25				76	152	76					178	
Groundnut	5			152								1/0	152
Pulses	3			152								185	
Vegetables	2	76	76	152	102								
Fodder RABBI	2		-	102	7.	44		-					
Wheat HYV	40				102	152	76	152	76	51			
Wheat Local	10					152	76	102	127			22	
Peas	2					102	152	152					
Berseem	7				254	152	229	152	229	305	203		
Vegetables	2	7.5			152	229	229	229	152				

Table 5.5 Concluded

Table 5.6 Salient features of major reservoirs in Narmada basin.

S.N.	Name of Reservoir, River, Guaging Site, Purpose(s) Status, Dist (Km) from River/Irib (1)	@ dam site, @ guaging site,Their ratio & Submergence	Reference Year.	evapo-	River bed level, DSL & GSL (RL in m)		Reservoir Elevation Capacity Relation Coeffi- cients.	Reservoir Area Capacity Relation Coeffi- cients.		Irrigation Requirement		Monthly Hydro- Power Requir- ements. (%)	Installed Capacity (Mw), Ann- ual Firm Power(Mw) & Firm Energy (Mkwh) TWL (m) (13)		Supply & Hydro Power Project Evapo- ration
1.	UPPER NARMADA, NARMADA, JAMTARA, IRRIGATION, PROPOSED, 77	1244 16576 0.0750 3638	7.25 (1971) 18.2 (1978) 52.88 (1990)	42 0.144 0.142 0.147 0.141 0.121 0.105 0.113 0.130 0.174 0.210 0.253 0.176	701.04 720.85 731.82 (MP) 701.04 720.24 725.47 (PR)	338 85 253 (MP) 155 70 85 (PR)	701.276 0.471 -0.0039 1.70E-5 -3.57E-8 2.85E-11	0.1697 0.1297 -0.0002 4.62E-7	18616 - 195 (MP) 13482 14144 120 (PR)	26.47 0.00 11.99 4.34 11.44 8.94 12.02 6.12 0.00 0.00 0.71 17.99		5		201.6 4.58 0.15 18.45 11.71 12.97 8.98 11.91 9.21 4.94 17.38 4.57 9.95	7.3 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8
2.	RAGHAVPUR, NARMADA, JAMTARA, HYDROPOWER, PROPOSED, 135	16576 0.1906	2.70 (1971) 5.15 (1978)	28 0.144 0.142 0.147 0.141 0.121 0.105 0.113 0.130 0.174 0.210 0.253 0.176	597.14 630.94 648.00	319 67 252	597.056 0.78 -0.006 2.25E-5 -4.68E-8 4.9E-11 -2.05E-14	-0.29 0,0985 -6.47E-5	100	18	5	8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33	20 4 31.5 598.93		

	3.	NARMADA,	(2) 4312 16576 0.2601 3199	(3) 4.7 (1971) 9.01 (1978)	(4) 41 0.144 0.142 0.147 0.141 0.121 0.105 0.113 0.130 0.174	(5) 499.87 529.74 551.08	(6) 559 62 497	(7) 508.301 0.325 -0.001 1.5E-6 -9.9E-10 2.45E-13	(8) -0.031 0.056 -2.43E-6 5.52E-9 -6.4E-13	(9)	(10)	(11)	(12) 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.3	(13) 35 7 61.32 499.87	(14)
144	4.	UPPER BURHNER, BURHNER, JAMTARA, IRRIGATION, PROPOSED	1606 16576 0.0969 8256	4.55+1.8 (1971) 68.97 (1978)	0.210 0.253 0.176 102 0.144 0.142 0.147 0.141 0.105 0.113 0.130 0.174 0.210	580.64 609.6 619.35	969 377 592	580.919 0.139 -0.0002 2.618E-7 -1.55E-10 4.37E-14 -3.42E-18	0.10699 0.056 0.00016 -3.47E-7 4.116E-10 -2.73E-13 7.52E-17	10117 - 195	3.51 0.104 13.82 8.93 10.8 7.13 10.33 8.46 5.79 10.94 10.56 9.609	3	8.33 8.33		177 4.661 0.156 18.423 11.562 12.946 9.045 12.09 9.127 4.828 15.84 4.419
	5.	HALON, HALON, JAMTARA, IRRIGATION PROPOSED, 109	715 16576 0.0431 , 2307	5.5 (1971) 18.08 (1978)	0.253 0.176 25 0.144 0.142 0.147 0.141 0.105 0.113 0.130 0.174 0.210 0.253 0.176	595.58 612.95 624.23	197 39 158	596.381 0.783915 -0.01205 9.77E-5 -3.78E-7 5.51E-10	-0.0481 0.09714 0.0009 -9.27E-6 3.05E-8 -2.88E-11	11376	3.51 0.104 13.82 8.93 10.8 7.13 10.33 8.46 5.79 10.94 10.56 9.609	55	7		9.948 185 4.536 0.149 18.46 11.795 12.99 8.95 11.79 9.26 5.011 18.32 9.95

6.	(1) BASANIA, (SIGARPUR) NARMADA, JAMTARA, W/S & H.P. PROPOSED, 251	(2) 9583 16576 0.5781 14201	(3) 5.0+9.7 (1971) 114 (1978)	(4) 160 0.144 0.142 0.147 0.141 0.121 0.105 0.113 0.130 0.174 0.210 0.253 0.176	(5) 435.56 462.08 481.89	(6) 1911 112 1799	(7) 445.902 0.085 -6.84E-5 -1.72E-08	(8) -0.14 0.075 4.6E-5 -6.8E-8 3.63E-11 -8.73E-15 7.73E-19	(9)	(10)		(12) 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.3	(13) 60 20 175.20 437.08	(14)
7.	MATIYARI, MATIYARI, JAMTARA, IRRIGATION, COMPLETED,	158.75 16576 0.0096 679	6.14 (1971) 20.25 (1978) 44.30 (1991)	0.144 0.142 0.147 0.141 0.121 0.105 0.113 0.130 0.174 0.210 0.253 0.176	471.76 484.94 497.43	56.8 5.68 51.12	476.639 0.922 -0.013 6.18E-5	0.426 0.145 -6.96E-7	10120 13662 135	3.51 0.104 13.82 8.93 10.8 7.13 10.33 8.46 5.79 10.94 10.56 9.609	000	1555		
8.	BARGI, NARMADA, JAMTARA, IRRIGATION W/S,H.P. COMPLETED, 378		(1971) 262.9 (1978) 566.34 (1982)	308 0.146 0.231 0.147 0.156 0.122 0.105 0.112 0.131 0.177 0.208 0.247 0.174	366.98 403.56 422.76	3920 740 3180	367.45 0.084 -6.44E-5 2.56E-8 -4.9E-12 3.58E-16	0,0255 0.1072 -2.05E-5 2.65E-9	157000 (192000) 219800 (271000) 194 (140)	3,77 3,03 8,85 16,44 15,70 5,61 7,92 6,13 10,82 5,18 6,33 10,22	54 (170) 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.3	8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33	80+15 50(INI) 7 (FIN) 438(INI) 61 (FIN) 368.2	2506.74 537.3 4.335 12.283 0.142 22.536 17.373 14.225 10.833 7.477 12.352 5.967 8.511 5.587 11.549 5.247 8.931 5.300 5.140 5.193 15.013 5.141 6.052 4.943 7.448 6.077

9.	(1) ATARIA, HIRAN, MORTAKKA, IRRIGATION, PROPOSED, 148	(2) 554 67190 0.0083 2671	(3) -4.5 (1971) -21.44 (1978)	(4) 26 0.063 0.058 0.079 0.102 0.079 0.067 0.071 0.094 0.185 0.295 0.396 0.196	(5) 386.18 (384.04) 400.51 (398.98) 409.65 (409.04)	(6) 141 (110) 17 (8) 124 (103)	(7) 393.205 0.27264 -0.0012 2.009E-6	(8) -0.0015 0.2847 -0.00055 -5.48E-6 3.16E-8 4.25E-11	(9) 12950 19685 152	(10) 3.327 0.647 14.676 10.863 12.589 7.985 12.446 10.719 4.748 4.388 6.690 11.007	(ii)	(12)	(13)	(14) 120 2.641 0.358 12.902 11.377 14.460 10.35 15.019 12.32 4.344 2.899 3.923 9.410
10	CHINKI, NARMADA, MORTAKKA, IRRIGATION, PROPOSED, 489	22414 67190 0.3336 7649	22 (1971) 76.57 (1978)	94 0.137 0.122 0.136 0.141 0.104 0.082 0.092 0.113 0.171 0.200 0.243 0.201	316.99 340.77 343.81	623 413 210	317,164 0.094 -0,00011 4.475E-8 3.82E-11	0.0138 0.1161 2.01E-5 -1.5E-8 -3.34E-12	68799	2.92 0.278 12.960 9.165 10.46 6.33 10.90 9.60 5.63 9.09 9.69 12.98	100	5555		2002.6 43.139 2.7142 8.33 0.3496 8.33 13.4398 8.33 11.1517 8.33 13.83 8.33 9.50 8.33 14.31 8.33 11.83 8.33 4.60 8.33 3.60 8.33 4.63 8.33 9.99 8.33
11	. SHER, SHER, MORTAKKA, IRRIGATION, PROPOSED, 53	881 67190 0.0129 2752	COST OF PRJ.NOS 11+12+13 = 31.00 (1971) = 93.23 (1978)	28 0.137 0.122 0.136 0.141 0.104 0.082 0.092 0.113 0.171 0.200 0.243 0.201	381 401.22 415.44	255 32 223	383.439 0.808 -0.01 5.77E-5 -1.49E-7 1.42E-10	-0.37 0.122 -5.91E-5	COMBINED CCA FOR PRJ. NOS. 11,12,13 = 64752 COMMON IRRG. INT	2.124 0.139 5.928 11.70 5.41 3.97 5.59 4.95 4.97 12.22 18.27 24.71	55			116 2.606 0.359 12.61 11.37 14.623 10.663 15.22 12.448 4.24 2.805 3.804 9.232

	12.	(1) MACHREWA, MACHREWA, MORTAKKA, IRRIGATION, PROPOSED, 55	(2) 471 67190 0.00694 728	(3)	(4) 9 0.137 0.122 0.136 0.141 0.104 0.082 0.092 0.113 0.171 0.200 0.243 0.201	(5) 387.1 401.42 419.4	(6) 100 17 83	(7) 390.14 0.689 -0.0058 1.86E-5	(8) -0.127 0.084 -0.00012	(9)	(10) 2.124 0.139 5.928 11.70 5.410 3.97 5.59 4.95 4.97 12.22 18.27 24.71	(11)	(12)	(13)	(14) 105 2.599 0.359 12.555 11.387 14.653 10.723 15.261 12.472 4.225 2.787 3.782 9.199
147	13.	SHAKKAR, SHAKKAR, MORTAKKA, IRRIGATION, PROPOSED,	1479 67190 0.0218 2428		26 0.137 0.122 0.136 0.141 0.104 0.082 0.092 0.113 0.171 0.200 0.243 0.241	366.67 413 447.45	440 47 393	369.395 1.790 -0.024 0.000168 -6.31E-7 1.29E-9 -1.35E-12 5.73E-16	0.04125 0.048 0.00026 -2.85E-6 1.28E-8 -2.49E-11 1.77E-14		2.124 0.139 5.928 11.70 5.41 3.97 5.59 4.95 4.97 12.22 18.27 24.71	100	355		187 2.527 0.36 11.956 11.38 14.988 11.366 15.678 12.735 4.037 2.594 3.538 8.834
	14.	SITAREWA, SITAREWA, MORTAKKA, HYDROPOWER, PROPOSED, 71	202 67190 0.0030 , 992	2.5 (1971) 4.51 (1978)	9 0.137 0.122 0.136 0.141 0.104 0.082 0.092 0.113 0.171 0.200 0.243 0.201	657.76 680.62 690.98	104 30 74	659.448 1.0359 -0.0122 4.87E-5	-0.085 0.096 5.36E-6	P. S.	5	55	8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33	15.0 4.0 31.5 459.64	

15.	(1) DUDHI,	(2) 808	(3)	(4) 28	(5) 356.01	(6) 203	(7) 356.695	(8) -0.167	(9) 50588	(10) 2.85	(11)	(12)	(13)	(14) 85
	DUDHI,	67190	(1971)	0.137	374.6	28	1.42	0.126	-	0.36				2.548
	MORTAKKA,	0.01189	42.36	0.122	386.18	175	-0.036	-8.82E-5	161	14.61				0.36
	IRRIGATION,	2333	(1978)	0.136			0.00047			11.37				12.135
	PROPOSED,			0.141			-3.31E-6		E 27774	13.51				11.379
	71			0.104			1.25E-8			8.52				14.888
				0.082		100	-2.42E-11			13.83				11.174
				0.092	100	O 14	1.899E-14			11.57				15.55
				0.113			163.51		1000	4.87				12.656
				0.171		. 10				3.45				4.093
				0.200		B. G.			-	6.62	200			2.652
				0.243	. 0%					10.45				3.611
				0.201	1.50	1		31.35		1	Sec. 5.	in.		8.944
16.	BARNA,	1176	2.1	78	313.94	529	312.915	-0.13	549.5	4.065	700-			57
	BARNA,	67190	(1971)	0.155	338.02	74	0.50	0.0089	60512	4.065	U 1554			2.39
	MORTAKKA,	0.0173	14.88	0.146	348.39	455	-0.00328	0.0023	121	13.375				0.363
	IRRIGATION,		(1978)	0.155			1.095E-5	-1.297E-5		15.328				10.825
	COMPLETED,		15.27	0.163			-1.91E-8	3.22E-8		14.108				11.384
	29		(1980)	0.132			1.67E-11	-3.63E-11		11.484				15.62
				0.116				1.52E-14		13.588				12.58
				0.121						10.12				16.46
				0.179						7.90				13.23
				0.186						0.00				3.68
				0.220	25 1					0.788				2.229
				0.252	100 h					5.08				3.078
				0.199	76.7					1				8.145
17.	TAWA,	5983	-	747	309.07	2311	312.965	0.0489	242820	4.68	80.0			833
	TAWA,	5983	(1971)	0.155	332.84	225	0.088	0.054	332915	4.46				2.4
	BAGRATAWA,	1.00	91.42	0.146	355.4	2086	-9.01E-5	7.4E-5	125 & 138	11.55	100			0.362
	IRRIGATION,	20056	(1978)	0.155	7		4.56E-8		(RBC&LBC)	13.34				11.63
	COMPLETED,			0.163	76.7			8.64E-12		11.44				11.38
	32			0.132			9.34E-16			8.95				15.37
				0.116		5. C				11.85				12.1
				0.121			1 100			8.09				16.16
				0.179						7.58				13.04
				0.186						3.00				3.82
				0.220						4.197				2.37
				0.252						10.84				3.26
				0.199										8.415
				4127										0.740

L		3	
1	•		
۰	۲	-	
	ċ	٦	
١,	÷	-	

		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	18.	KOLAR,	508	7.25		420.93	270	425.024	0.14	45087	4.828	56.6			27
		KOLAR,	67190	(1971)	0.200	431.33	5	0.820000	0.165000	60867	7.388	8.33			2.509
		MORTAKKA,	0.0075	38.4	0.120	462.20	265	-0.01000	-0.00066	134	0.403	8.33			0.361
		IRRIGATION	1882	(1978)	0.120			6.60E-05	1.780E-06	(121)	8.680	8.33			11.813
		WATERSUPPLY	,(2500)	133.14	0.120			-1.89E-7	-1.91E-09		11.98	8.33			11.38
		ONGOING,		(1990)	0.100			1.99E-10			17.7	8.33			15.068
		74		165.40	0.080				See a		18.185	8.33			11.52
					0.090		J. 1996.	1 20			16.385	8.33			15.778
					0.120						11.485	8.33			12.798
					0.190	100					3.105	8.33			3.992
					0.230		100	2000			0.00	8.33			2.548
					0.370						0.00	8.33			3.48
					0.280	100									8.747
						u 1806					N. 10				
	19.	MORAND,	1041	COST OF	35	319.43	293	322.744	-0.0274	COMBINED	2.196				90,
		MORAND,	67190	PRJ. NO.S		346.86	35	0.91	0.0999	CCA	0.366				2.348
		MORTAKKA,	0.0153	19+20	0.136	367.89	258	-0.0088	-6.5E-05	0F 19+20	9.217	- 170			0.363
		IRRIGATION,		16.00	0.146			4.01E-05	1.05E-07	52206	11.389				10.475
		PROPOSED,	2.77	(1971)	0.160			-8.31E-08	5.27E-10	-	16.518				11.385
4		63		64.10	0.127			6.36E-11		125	14.309				15.815
0				(1978)	0.116			31002 11		160	17.587				12.957
				(21) 0)	0,120						13.938				16.710
					0.137						3.176				13.385
					0.179						1.711				3.571
					0.211						2.423				2.117
					0.240						7.165				2.935
					0.286	75 1					71100				7.931
					0.100										7.701
	20.	GANJAL,	435		35	333.15	136	348.588	-0.06		2.196				17,
		GANJAL,	67190		0.133	359.05	16	0.60088	0.098		0.366				2.196
		MORTAKKA,	0.0064		0.136	375.51	120	-0.00489	-0.001		9.217				0.366
		IRRIGATION,			0.146			1.382E-05	2.23E-05		11.389				9.217
		PROPOSED,			0.160			111011	-1.37E-07		16.518	100			11.389
		61			0.127		200		2.76E-10		14.309				16.518
		3.			0.116	76.7	S. 11		21102 20	10000	17.587				14.309
					0.120						13.938				17.587
					0.137		50.00				3.176				13.938
					0.179						1.711				3.176
					0.211						2.423				1.711
					0.240						7.165				2.423
					0.286						7,100				7.165
					3,200										7,100

	H	_	
		-	
	-		
	C	\supset	

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(1	(4)
21.	SUKTA,	469	-	17	381.62	89.3	382.815	-0.02	17643	4.105	4.24	,,	3.47	11	. 4)
	SUKTA,	67190	(1971)	0.141	399.97	11.3	2.890	0.12	19533	4.105	8.33			2.196	
	MORTAKKA,	0.0069	8.7	0.146	410.55	78	-0.157	-0.00098	110	12.575	8.33			0.366	
	W/S, IRRIG.		(1978)	0.144			0.0041	0.00011		15.28	8.33			9.217	
	COMPLETED,	(1206)	11.9	0.166			-5.33E-05	-3.42E-06		14.37	8.33			11.389	i.
	86		(1982)	0.137	70 m		3.380E-07	4.36E-08		11.63	8.33			16,518	
				0.123	1000		-8.31E-10	-2.49E-10		13.71	8.33			14.309	
				0.131				5.29E-13		10.09	8.33			17.59	
				0.149						7.97	8.33			13.94	
				0.209	** J.				100	0.00	8.33			3.18	
				0.227						0.895	8.33			1.711	
				0.254						5.257	8.33				
				0.191						0.207	0.00			2.423	
											100 m			7.165	
22.	CHHOTA TAWA	4,1515		27	273.41	269	276.758	-0.1545	20000	4.105				057	
	CHHOTA TAWA		(1971)	0.141	294.74	59	0.432847	0.152	-	4.105				253	
	MORTAKKA,		31.6	0.146	302.36	210	-0.0023964			12.575				2.667	
	IRRIGATION,		(1978)	0.144	002.00	210	4.16E-06	-6.37E-07	103					0.315	
	PROPOSED,		(277.07	0.166			4.102-00	2.31E-10		15.28				9.217	
	45			0.137				2.312-10		14.37				11.39	
				0.123						11.63				16.52	
				0.131						13.71				14.31	
				0.149						10.09				17.59	
				0.209	5-1					7.97				13.94	
				0.207						0.00	54 L			3.18	
										0.895				1.711	
				0.254	2000					5.26				2.423	
				0.191	1000			7.00						7-165	
27	MADMADA	11/10		4476	(7/ 70	(0000	100.00		GIV.						
20.	NARMADA	61642	(4074)	1136	176.78	12220	176.95	-5.262	123000	2.245	0.06MAF	8.33	1000	11594	261.27
	SAGAR,	67190	(1971)	0.141	243.23	2470	0.05739	0.122585	169000	2.325	8.33	8.33	226(INI)	2.744	8.98
	NARMADA,	0.9174	332.8	0.146	262.13	9750	-1.8E-05	2.26E-05	206	6.49	8.33	8.33	100(FIN)	0.3121	11.56
	MORTAKKA,	91348	(1978)	0.144			2.7E-09	-1.99E-08		11.1	8.33	8.33	1980(INI)	13.36	9.54
	IRRIGATION		1993.67	0.166	- 4		-1.9E-13	4.12E-12	100	11.58	8.33	8.33	876 (FIN)	10.08	8.16
	HP & W/S,		(1988)	0.137		70 T	5.3E-18	-3.3E-16		3.73	8.33	8.33	197.51	12.34	7.8
	ONGOING,			0.123				9.58E-21		12.05	8.33	8.33		8.28	7.74
	845			0.131						5.74	8.33	8.33		12.79	7.7
				0.149						12.73	8.33	8.33		10.7	7.69
				0.209						7.29	8.33	8.33		5.06	7.68
				0.227						12.64	8.33	8.33		6.14	7.65
				0.254						12.08	8.33	8.33		6.99	7.63
				0.191							34.0			11.20	7.86
															7.00

	24.	(1) (2) OMKARESHWAR, 64880 NARMADA, 89345 GARUDESHWAR, 0.7262 IRRIGATION 9393 HYDROPOWER, ONGOING, 899	(3) - (1971) 182.8 (1978) 788.03 (1990) 1784.29 (1993)	(4) 172 0.141 0.146 0.144 0.166 0.137 0.123 0.131 0.149 0.202 0.227 0.254 0.191	(5) 160.63 193.54 196.6	(6) 987 688 299	(7) 160.504 0.134 -0.0003 4.39E-07 -3.34E-10 9.77E-14	(8) -1.189 0.059 0.00018 -2.81E-07 1.35E-10	(9) 146800 283324 203	(10) 14.02 5.0 11.91 11.71 9.9 10.0 4.85 1.36 3.18 4.79 8.28 15.5	(11)	(12) 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.3	(13) 520 131.2(INI) 61.6(FIN) 1149(INI) 540 (FIN) 162.76	(14 492.81 1.75 4.495 8.98 10.98 14.93 10.03 11.46 8.5 6.67 3.34 7.28 11.53	
151	225,	MAHESHWAR, 69184 NARMADA, 89345 GARUDESHWAR, 0.77435 HYDROPOWER, 4856 ONGOING, 941	(1971) 73.3 (1978) 465.63 (1990)	100 0.146 0.138 0.147 0.141 0.127 0.109 0.116 0.135 0.180 0.215 0.254 0.177	138.99 162.2 176.76	483 445 28	139.85 0.089 -0.00011 5.9E-08	0.65 0.0575 0.00015 -1.15E-07			5	8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33	400 93.9(INI) 48.6(FIN) 823 (INI) 426 (FIN) 139.29		
	26.	UPPER BEDA, 544 BEDA, 89345 GARUDESHWAR, 0.0061 IRRIGATION, 1497 PROPOSED, 72	4.0 (1971) 20.84 (1978)	21 0.146 0.138 0.147 0.141 0.127 0.109 0.116 0.135 0.180 0.215 0.254 0.177	287.73 297.18 312.42	160 17 143	288.689 0.62952 -0.01171 0.0001197 -5.59E-07 9.52E-10	-0.0155 0.109015 -0.00121 2.02E-05 -1.2E-07 2.37E-10	10927	2.17 6.96 13.73 9.86 12.43 8.5 12.55 8.45 6.37 2.84 3.73 11.84	5			33 1.745 4.44 8.74 11.23 15.52 10.20 11.57 8.45 6.42 3.01 7.21 11.45	

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
27.	MAN,	865	5.00	25	226.46	267	232.736	0.04357	16722	1.76				28
	MAN,	89345	(1971)	0.139	251.46	33	0.52273	0.061443	26993	4.56				1.723
	GARUDESHWAR		19.9	0.123	273.41	234	-0.0022	3.24E-05	158	9.28				4.258
	IRRIGATION,	1829	(1978)	0.164		(MP)	3.33E-06	-1.17E-07		10.7				7.9
	ONGOING,		44.01	0.157		145.03			12950	14.23				12.04
	37		(1990)	0.127		19.16				9.83				17.51
				0.108		125.87	CONTRACTOR		-	11.35				10.76
				0.114		(PR)			(PR)	8.55				11.9
				0.131						6.97				8.298
				0.176		- 100				3.74				5.57
				0.209	57.7					7.37				1.895
				0.239						11.634				6.958
				0.194	300	117		40,70		100,10	S. C.			11.17
28.	LOWER GOI,	1119	6.00	21	260.3	213	263.126	-0.012	10927	2.9	FO. 7	3		123
	GOI,	89345	(1971)	0.146	284.38	26	0.96	0.0446		7.11				1.742
	GARUDESHWAR		22.79	0.138	304.19	187	-0.01	0.0011	139	12.92				4.42
	IRRIGATION,		(1978)	0.147			5.15E-05	-9.38E-06		6.7				8.62
	PROPOSED,		(2,1,2)	0.141			-1.17E-07	2.2E-08		12.26		-		11.84
	53			0.127			9.96E-11	12/25/17		8.53				15.8
				0.109			77,02,11			11.64				10.28
				0.116						8.65				11.61
				0.135						4.8				8.43
				0.180						3.48				6.3
				0.215						6.92				2.86
				0.254	20 N					14.08				7.17
				0.177						14.00				11.411
				0.177						- 1				
29,	JOBAT,	790	3.5	21	232.56	155	239.25	0.29	13760	1.397				120
	HATNI,	89345	(1971)	0.145	252.98	23	0.746	0.087	-	2.63				1.74
	GARUDESHWAR,	0.0084	14.2	0.129	268.53	132	-0.0091	0.00039	4	9.77				4.43
	IRRIGATION,	1554	(1978)	0.143		(MP)	5.75E-05	-2.99E-06	(MP)	13.13				8.68
	ONGOING,		30.93	0.153	10.75	77.84	-1.72E-07	5.12E-09	11250	12.79				11.28
	58		(1990)	0.111		12.16	1.96E-10	1777	14858	8.86				15.65
				0.099		65.16			131	11.63				10.23
				0.106		(PR)			(PR)	9.14				11.59
				0.124						7.15				8.44
				0.181						4.18				6.36
				0.232						8.28				2.94
				0.287						11.04				7.19
				0.223										11.433
				0.220										12.400

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
SA NA GA IF WA	ARDAR AROVAR, ARMADA, ARUDESHWAR RRIGATION /S & HP, NGOING, 163	88000 89345 0.9849 2,37590	(1971) 1500 (1978) 6406 (1986)	600 0.145 0.129 0.143 0.153 0.111 0.099 0.106 0.124 0.181 0.232 0.287 0.223	18 110.64 138.68	9500 3700 5800	18.014 0.0376 -4.19E-06 1.65E-10	3.23 -0.014 4.025E-05 -1.17E-08 1.58E-12 -1.00E-16 2.44E-21	2120000 1792000+ 73000 203	14.02 5.0 11.91 11.71 9.9 10.0 4.85 1.36 3.18 4.79 8.28 15.5	1.06MAF 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.3	8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33	1450 415(INI) 59(INTMED) 0 (FIN) 3635(INI) 517(INTMED) 0 (FIN) 24.38	

Abbreviations:

MP - Master Plan

PR - Project Reports

INI - Initial

INTMED - Intermediate

FIN - Final

MAF - Million acre-feet

Mcm - Million cubic meters

Mkwh - Million kilo-watt hours

CCA - Culturable command area

DSL - Dead storage level

GSL - Gross storage level

TWL - Tail water level

Cr - Rs. Crores

RL - Reduced level

Table 5.6 Concluded

Table 5.7 Planwise demand Pattern for Narmada basin.

	Period e Yearly)	Irrigation Demand (Mcm)	Hydropower Demand Installed Capacity (Mw)
IV	(65-70)	=	
V	(70-75)	4813	1276
VI	(75-80)	11044	2085
VII	(80-85)	19004	1803
VIII	(85-90)	24865	1384
IX	(90-95)	28937	1190
	(3)	of a transfer of	J-3

Table 5.8 Status of major reservoirs in Narmada basin.

Sr.No	. Name of the reservoir	Name of River/ Tributary	Catchment Area (sg.km.)	Status of the reservoir
100		TIIDucary	(sq.kiii.)	reservoir
1.	Upper Narmada	Narmada	1243	Proposed
2.	Raghavpur	Narmada	3160	Proposed
3.	Rosra	Narmada	4312	Proposed
4.	Upper Burhner	Burhner	1606	Proposed
	Halon	Halon	715	Proposed
6.	Basania (Sigarpur)	Narmada	9583	Proposed
7.	Matiyari	Matiyari	158	Completed
8.	Bargi	Narmada	14556	Completed
	Ataria	Hiran	554	Proposed
	Chinki	Narmada	22414	Proposed
11.	Sher	Sher	881	Proposed
12.	Machrewa	Machrewa	471	Proposed
13.	Shakker	Shakker	1479	Proposed
	Sitarewa	Sitarewa	202	Proposed
15.	Dudhi	Dudhi	808	Proposed
16.	Barna	Barna	1170	Completed
17.		Tawa	5983	Completed
	Kolar	Kolar	508	Ongoing
	Morand	Morand	1041	Proposed
	Ganjal	Ganjal	435	Proposed
	Sukta	Sukta	469	Completed
	Chhota Tawa	Chhota Tawa	1515	Proposed
23.	Narmada Sagar	Narmada	61642	Ongoing
	Omkareshwar	Narmada	64880	Ongoing
	Maheshwar	Narmada	69184	Ongoing
26.	Upper Beda	Beda	544	Proposed
27.		Man	865	Ongoing
	Lower Goi	Goi	1119	Proposed
29.	Jobat	Hatni	790	Ongoing
30.	Sardar Sarovar	Narmada	88000	Ongoing

PLATE I : MAP OF NARMADA BASIN

Fig. 5.1 Principal tributaries in Narmada river basin

Fig. 5.2. Line diagram of major reservoirs in Narmada system

Fig. 5.3 Line diagram of Phase -I reservoirs (1979-2000)

Fig. 5.4 Line diagram of Phase II reservoirs (2000-2024)

COMPUTATIONS, RESULTS, AND DISCUSSION

6.1 GENERAL

Both, namely simulation and analytical models were employed for fixing the targets and sequencing of 30 major reservoirs in the Narmada River Basin system. The simulation model was used to obtain the usewise targets that can be met by the reservoir and also to analyse the effect of the presence of upstream reservoir(s) on the performance of the corresponding immediate downstream reservoir. There were obvious difficulties in the computations owing to a large number of reservoirs in the system. In order to tackle these, as envisaged in the Master Plan, two Phases of basin development were considered. In Phase I, 14 major reservoirs were included, whereas in Phase II the remaining reservoirs were considered. Further, in Phase I, the number 14 was brought down to a smaller number by clubbing some of the neighbouring reservoirs. combination of clubbed and un-The clubbed reservoirs were now called projects. The Phase I had 9 projects. Similarly, the 16 Phase II reservoirs were clubbed into 9 projects. In Phase I and Phase II, all (29=512) project combinations were simulated and each simulation run was carried out from upstream to downstream in a given systematic project

combination and all the reservoirs included in a combination were simulated. Subsequently, a suitable backward dynamic programming algorithm was evolved to obtain the sequence of development of the projects at the minimum total annual cost for both Phase I and Phase II in order to study the effects of demand patterns, planning horizons, allowable deficits in meeting demands and relevant penalty cost on the sequencing.

6.2 DATA COLLECTION, PROCESSING, AND PRESENTATION

Since the complete system involved as many as 30 major reservoirs, significant amount of efforts and time were required to be devoted for collection, processing, and presentation of data. The basic data were meticulously derived from the Master Plan Reports, Project Reports, and other numerous State as well Central Government publications (Master Plan, as Volumes I, IA, II, V, VII, 1972; Project Reports (Matiyari, Bargi, Ataria, Tawa, Kolar, Narmada Sagar, and Omkareshwar etc.); Report of the Narmada Water Resources Development Committee, 1965). These data were further processed to make them amenable for presentation and computer program usage. The schedules for presentation were carefully designed so as to make the information both complete as well as compact. This naturally called for a lot of trials and efforts.

6.2.1 For Simulation

6.2.1.1 Streamflow data

Simulation model considered monthly flows starting from July. Two sets of monthly flows namely, 16-years and 22-years, were considered (Tables 5.3, 5.4). In case of 16-years flow data, daily flows at 11 gauging sites were available in 77 column coded format. It involved a large number of values (11*16*365) and hence a computer program was developed to read and decode these values. Monthly flows were further calculated and transferred to the reservoir sites in the ratio of catchment areas (catchment area of reservoir site to catchment area of the nearest similar gauging site) using the programs developed for the purpose. In case of 22-years flow data, monthly flows at 4 important gauging sites were readily available in the Master Plan Report which were then transferred to various reservoirs using the same criterion which was used for effecting the transfer in the case of 16-years flow data.

6.2.1.2 Annual targets

6.2.1.2.1 Usewise downstream annual targets:

Initial trial values of the downstream annual irrigation requirements for simulation were decided on the basis of 75%

dependable annual flow criterion using the annual flow series at each reservoir site obtained above. The annual flow series values were arranged in the descending order and were ranked for selecting the 75% dependable annual flow value. However, the initial trial values of downstream annual water supply and hydropower requirements were directly extracted from the Master Plan and Project Reports.

6.2.1.2.2 Usewise upstream annual targets:

The data on water use upstream of a reservoir by minor and medium schemes, pumping schemes and evaporation were available in the Master Plan Report. The initial trial value for annual irrigation requirement upstream of a reservoir was arrived at by adding the the relevant values for minor schemes, medium schemes and pumping schemes which are situated at the immediate upstream of the reservoir under consideration. The upstream use for water supply and hydropower were combined into one value. The initial trial value of annual water supply upstream of a reservoir was taken as relevant value corresponding to evaporation.

6.2.1.3 Monthly requirements (percentages)

6.2.1.3.1 Usewise downstream monthly requirements (percentages):

The downstream monthly irrigation requirements for a few

reservoirs were available in the Project Reports and were used for these reservoirs. For the remaining reservoirs, these percentages were calculated using Master Plan data on cropping pattern, annual intensity, and monthly crop water requirements. This involved a lot of data handling and repetitive computations and hence a computer program was developed to handle this task. The downstream monthly water supply as well as hydropower requirements were assumed to be uniform and were taken as 8.33% for all the months.

6.2.1.3.2 Usewise upstream monthly requirements (percentages):

The monthly irrigation requirements for minor and medium schemes, and pumping schemes located at the immediate upstream of a given reservoir, were calculated using relevant cropping patterns and monthly crop water requirements. These were suitably combined and represented for three months of July, August, and September because upstream use is only for these three months. The upstream monthly water supply and hydropower requirements were assumed to be uniform.

6.2.1.4 Reservoir capacity vs. elevation and reservoir capacity vs. reservoir area curves and relationships

Development of these relationships and curves for as many as 30 reservoirs was undoubtedly a huge task. It involved tabulation

of the reservoir levels, reservoir capacities, and reservoir areas corresponding to all the 30 reservoirs from various Project Reports and other sources. These values were then fed into a Computer Grapher package for obtaining the best fit curves and equations. After a lot of trials based on visualisation and engineering judgment, only those curves and equations were selected which were observed to be smooth and befitting in the desired range of capacity values. The equations thus selected were further scrutinized for monotonic gradual increase to avoid oscillation, high jump etc. by a computer program. These were then included in the function subprograms AREA and ELEVAT of the simulation program (Appendix 6-I).

6.2.2 For Sequencing

6.2.2.1 Planning horizon

As per revision in Master Plan, Phase I was to be developed in 20 years (four 5-year plans) and Phase II was to be developed in 25 years (five 5-year plans). Thus, total system was to be developed in 45 years (nine 5-year plans). Accordingly, planning horizon consisted of a number of planning periods. Each planning period was taken equal to a five year plan period. Various planning horizons such as 20 years, 30 years, and 40 years were selected. Thus, there were 4, 6, and 8 five year plan periods under consideration in each Phase.

6.2.2.2 Targets of project combination (states)

The final simulated targets for each project appearing in the the various states were obtained from the corresponding simulation runs undertaken with due consideration given to the effect of upstream reservoir(s) as explained in the earlier sections. The usewise capacity of each state was then calculated by summing up the final simulated usewise target for each project appearing in that state.

6.2.2.3 Cost

The capital costs of the various reservoirs in the system were available in the documents such as Master Plan, project reports and seminar reports, etc.. The usewise break-up of the capital costs were also available for Unit-I (Reservoir and Dam cost), Unit-II (Irrigation cost) and Unit-III (Hydropower cost) at 1978 price level. The annual cost of each reservoir was then derived by taking into account the following components of the annual cost.

- (i) Annual interest on the capital cost @12%
- (ii) Annual depreciation cost
- (a) Unit-II @1%
- (b) Unit-III @2%

(iii) Annual operation and maintenance cost

(a) Unit-I @0.6%

(b) Unit-II @1%

(c) Unit-III @2%

Alternatively, for Table 6.1(b) depreciation cost was also found by using sinking fund method. The same has been used for sequencing program. Accordingly, Table 6.1(a) and Table 6.1(b) give the usewise, capital and annual costs of the major reservoirs in the Narmada basin.

6.2.2.4 Demand patterns

Data on irrigation and firm hydropower demands on the system for various five year plan periods were available in the Master Plan(1972) and Report of the Narmada Water Resources Development Committee(1965). The cumulative values of these were plotted on ordinary graph by considering a dimensionless time scale. Using this plot and other considerations, the alternative cumulative demand patterns for Phase I and Phase II were derived for the purpose of study. Various total planning horizons, i.e., Phase I planning horizons, and Phase II planning horizons were tried. For Phase II sequencing computations, it was assumed that Phase I development was fully achieved and hence the demands at the end of Phase I planning horizon were deducted from the demands of Phase II and the demand pattern for Phase II was obtained for sequencing of Phase II projects.

6.2.2.5 Allowable deficit, excess, and penalty cost

In the absence of any information available to consider the penalty which should be superimposed in case there is a shortfall or excess in the supply, in order to make a particular development state either infeasible or inefficient, the allowable deficit and excess for Phase I were taken in the interval of 100 Mcm to 2000 Mcm for irrigation and 10 Mw to 100 Mw for firm hydropower whereas for Phase II these were taken as 100 Mcm to 1000 Mcm for irrigation and 0 Mw to 10 Mw for firm hydropower. The penalty cost for not meeting the demand was taken arbitrarily as 0.001 to 0.15 Rs. Crores per Mcm for irrigation and 0.1 to 1.65 Rs. Crores per Mw for firm hydropower for the purpose of analysis. (1 crore = 10⁷)

6.3 STEPS IN COMBINED USE OF SIMULATION AND SEQUENCING MODELS

The steps followed in combined use of simulation and sequencing models can be broadly recapitulated as follows:

Initially, line diagram showing relative locations of all the 30 major reservoirs in the river basin was prepared (Fig. 5.2). Then, assuming that all reservoirs are existing in the system, each individual reservoir was simulated starting from the uppermost reservoir and by adding the immediate downstream reservoir in parallel or in series by also accounting for the

upstream effects for fixing the final simulated irrigation targets from every reservoir with irrigation.

Secondly, Phase I reservoirs were isolated and the line diagram showing the relative locations of the 14 Phase I reservoirs only was prepared(Fig. 5.3). From this, it was possible to combine some of the similar neighbouring reservoirs and representing the system by calling them projects, totally nine in numbers only for limiting the size of the problem. The simulation runs were to be undertaken for all possible 512(actually 375) project combinations resulting from these 9 projects starting from upstream to downstream by adding a project one by one in a systematic manner for finding the final simulated firm hydropower target from every reservoir with hydropower in each project combination. In each case, the irrigation targets were kept constant as obtained in the previous para. Further, sequencing of the Phase I projects was done using the sequencing model.

Finally, Phase II reservoirs were isolated and the line diagram showing relative locations of the 16 Phase II reservoirs only was prepared(Fig. 5.4). From this, it was possible to combine some of the similar neighbouring reservoirs and representing the system again by nine projects. Then simulation runs were to be undertaken for all the possible 512(actually 17) combinations as explained for Phase I for finding the final

simulated firm hydropower target from every reservoir with hydropower in each project combination. In each case, the Phase I projects located at the upstream of the projects appearing in the Phase II combinations were assumed to be present and hence were included in the simulation runs of the corresponding Phase II combinations. Further, sequencing of the Phase II projects was obtained using the sequencing model.

6.4 COMPUTATIONS

6.4.1 Strategy for Simulation Computations

6.4.1.1 Criteria for finalisation of targets

The upstream and downstream usewise targets for every reservoir are arrived at by iteratively carrying out simulation runs with modifications in the target values until the following project dependability criteria, in terms of the number of successful years, are satisfied as per the priority of the uses, i.e.,

- (i) 100% for water supply, (ii) 75% for irrigation, and
- (iii) 100% for hydropower(firm power).

6.4.1.1.1 Reservoir by reservoir analysis:

To begin with, the reservoir by reservoir analysis of all the

30 reservoirs is carried out using a flexible simulation model developed for the purpose. This exercise is undertaken starting from the uppermost reservoir, mainly for fixing the irrigation targets of the reservoirs. It is also possible to have an insight into the initial and final firm power targets of various purely hydropower and multipurpose reservoirs. One by one every immediate downstream reservoir is added and before adding a downstream reservoir, the targets of all the upstream reservoirs were already simulated and finalised.

Two available sets of monthly flow data having record lengths of 16-years and 22-years are used for simulation. The operation policies for individual reservoir operation and for reservoirs in combination are as explained in Chapter 3. The results obtained are compared with the project provisions as per Master Plan. The comparative statement of the simulation results with the Master Plan provisions is presented in Table 6.2. It can be seen from this table that the values of the targets in every reservoir in each project combination of the 22-year simulation are closely matching with the Master Plan provisions for most of the reservoirs. The targets for the reservoirs in series below Omkareshwar (including itself) are observed to be not matching. It is understood that these reservoirs are expected to receive regulated flows from the upstream Narmada Sagar reservoir. This could not be ascertained as the operation policy of Narmada Sagar reservoir has not yet been decided.

Finalisation of irrigation target of each reservoir is done by considering the 75% project dependability criterion and target proposed in the Master Plan. The minimum is taken as final irrigation target. In case of a multipurpose reservoir, first irrigation target is finalised and then firm power target is fixed on the basis of 100% project dependability criterion. The initial firm power target is decided by assuming the absence of all the upstream reservoirs, whereas, the final firm power target decision assumes presence of all the upstream reservoirs. For the reasons mentioned in earlier para, the targets for the reservoirs below Omkareshwar (including itself) are taken as per the Master Plan/ project report provisions.

6.4.1.1.2 Necessity of combining reservoirs:

The State Governments of Madhya Pradesh and Gujarat have planned to build two reservoirs at Punasa (Narmada Sagar) and Navagam (Sardar Sarovar) respectively, which are actually the focal point of a much larger and ambitious river development plan. The present study has been applied to the complete system of 30 major reservoirs. There were obvious difficulties in this application owing to the large size of the system, a large number of reservoirs and variations in sizes of these reservoirs. As stated in the Chapter 5, the development is envisaged in two Phases resulting in distribution of 30 reservoirs into 14 Phase I and 16 Phase II reservoirs. It is decided to take advantage of

this available decomposition criterion for the benefit of application of proposed methodology. The system is thus divided into two sub-systems consisting of Phase I and Phase II reservoirs respectively. However, since it is proposed to simulate all the possible reservoir combinations, and the number of these combinations increases in geometric progression with every additional reservoir added to the system, it became imperative to club some of the similar neighbouring reservoirs to reduce the total number of reservoirs which will include a set of unclubbed and clubbed reservoirs in the resulting representative system in each Phase. This has scaled down the total number of combinations, efforts, time and memory requirements of sequencing the computer program.

The reservoirs are suitably clubbed by applying the following guidelines.

- (i) As far as possible, the reservoirs in series are not clubbed and considered individually because targets of these reservoirs are affected by the presence of upstream reservoirs.
- (ii) Reservoirs situated across the tributaries are independent of each other (parallel reservoirs) and hence considered suitable for the purpose of clubbing.
- (iii) Reservoirs having small targets (size) are considered suitable for clubbing so that the sizes of the projects in

the resulting system are comparable.

(iv) Reservoirs which are neighbouring and hydrologically similar are considered suitable for clubbing.

The list of the code of the projects (clubbed reservoirs) and the reservoirs included therein for both the Phases is given in the Table 6.3. Further, the Table 6.4 gives the information of various costs of the projects (clubbed reservoirs).

6.4.1.2 Phase I simulation runs

The list of 14 major reservoirs considered in Phase I is already given in the Table 6.3. By applying the guidelines as mentioned earlier the 14 reservoirs in Phase I system are converted to a nine projects system. This has resulted in scaling down the number of project combinations to be simulated from 2¹⁴ to 2⁹. All the project combinations are identified in terms of project name codes by using a computer program. Further since the projects(clubbed reservoirs) namely, TSC, BKL and MAJ are parallel projects this number 512 could be brought down to 375 because of the fact that the parallel projects are independent and as such their targets do not get affected by presence or absence of any other reservoir(s) in the system. These 375 combinations out of total 512 are identified using a computer program developed for the purpose. Accordingly, 375 data files are painstakingly prepared for undertaking simulation runs using

the simulation computer program. It was indeed an herculean task to prepare such data files.

By virtue of reservoir by reservoir analysis the 75% dependable irrigation targets are already known. The main aim of carrying out Phase I simulation runs is therefore to obtain the simulated firm power targets of series reservoirs by taking into account the effect of upstream reservoirs. The 22 year monthly flow data are used and the operation policies for individual reservoir operation and for reservoirs in combination are as explained in Chapter 3. The irrigation and firm hydropower targets and corresponding average annual releases for the Phase I project combinations as obtained from the simulation runs are presented in Table 6.5. This table gives these values for all the 512 combinations in place of 375 combinations. It is clearly seen that for parallel projects TSC, BKL, and MAJ these values are unchanged.

6.4.1.3 Phase II simulation runs

The list of 16 major reservoirs considered in Phase II is already given in the Table 6.3. By applying the guidelines as mentioned earlier these 16 reservoirs in Phase II system are converted to 9 projects system. This has resulted in scaling down the number of project combinations to be simulated from 2^{16} to 2^9 . All the project combinations are identified in terms of

project name codes by using a computer program. Further, since the projects (clubbed reservoirs) namely, UBH, SMS, STD, MGL, UBL are parallel projects, this number 512 could be brought down to 34 because of the fact that the parallel projects are independent. The reasons for this number being so small are as below:

- a) Series projects namely, RGV, ROS, BAS, CHN are situated at the upstream portion of the system.
- b) Most of the projects added at the downstream portion of the system are parallel projects and thus unaffected by the presence or absence of any other projects in the system.
- c) Further, the series project CHN being only irrigation project, it is not required to undertake all the corresponding runs for studying the effect on firm hydropower target. This has further brought down the number of simulations to 17.

These 17 combinations out of total 512 are identified using a computer program developed for the purpose.

As was done for Phase I simulation runs, the simulated irrigation and firm hydropower targets and corresponding average annual releases for the 17 Phase II project combinations as obtained from the simulation runs are presented in Table 6.6.

6.4.2 Strategy for sequencing Model

The sequencing and capacity expansion model considers the targets that can be met by various project combinations taking into account hydrological interdependence of the projects, various usewise demand patterns for different planning horizons, and usewise annual cost of the project combinations. It is also tried to incorporate the aspects such as the allowable deficit in meeting demand and pertaining penalty cost on account of this. A backward dynamic programming process is then applied in which states are defined by the project combinations and stages to go (stages in forward process) are defined by the number of periods in the planning horizon.

In Phase I nine projects (representing 14 reservoirs) are considered whereas in Phase II again nine projects (representing the remaining 16 reservoirs) are sequenced at the minimum total annual cost. The list of major reservoirs and projects considered in Phase I and Phase II is already given in the Table 6.3.

6.4.2.1 Annual cost

The information regarding fixed annual cost, design OMR (Operation and Maintenance) cost, total annual cost, and design release (Mcm) for the individual reservoirs and projects(clubbed reservoirs) is presented in the Table 6.1(b) and Table 6.4

respectively. The depreciation cost has been found by sinking fund method. A computer program is developed for this purpose. The usewise design target is taken as per the provisions in the Master Plan (termed as the design target) and the usewise design release (obtained earlier in simulation) is then equal to the release (termed as design release) which would have been required to satisfy this design target. The OMR cost component of the annual cost of a state (project combination) in the sequencing program is assumed to be a variable and function of the average annual release corresponding to the target as obtained from simulation. This cost is found by multiplying the design annual OMR cost per unit of design release (Mcm) corresponding to design target (as envisaged in Master Plan) by actual release corresponding to the actual target. The usewise annual cost of each state is obtained by adding individual usewise annual cost of the projects included in that state.

6.4.2.2 Planning horizons

Eventhough Phase I period is coming to an end by 2000 A.D., the development of the system is still in its initial stages. From this, it is evident that the planning horizons of 20 years and 25 years for Phase I and Phase II respectively considered in the Master Plan are not sufficient for full development of the system. Keeping this in mind, it is proposed to try sequencing by considering extended planning horizons. Planning horizons of 20,

30, and 40 years with 4, 6, and 8 five-year planning periods are tried for each Phase.

6.4.2.3 Targets and demand patterns

The usewise targets are considered in three categories such as (i) Master Plan targets, (ii) 22-year simulation targets, and (iii) Mixed targets. Comparative statement of these categories is presented in Table 6.7. Accordingly, usewise demand patterns for the three planning horizons are derived by comparing the demand forecast given in the Master plan and total target that can be supplied in each of the category. As far as possible it is tried to spread the demands uniformly over the planning horizon. These typical demand patterns for various cases are presented in the Table 6.8.

6.4.2.4 Allowable shortage, excess, and penalty cost

Penalty cost for shortage in meeting demand and also for supplying excess capacity beyond upper limit is considered for analysing the effect on sequencing. As mentioned earlier, the allowances are decided on the basis of judgment and total capacity of the system. In view of this, the allowable deficit and excess for Phase I are taken in the interval of 100 Mcm to 2000 Mcm for irrigation and 10 Mw to 100 Mw for firm hydropower whereas for Phase II these are taken as 100 Mcm to 1000 Mcm for

irrigation and 0 Mw to 10 Mw for firm hydropower. The increment in these intervals is decided on the basis of trials carried out using the sequencing computer program.

The penalty cost for not meeting the demand within allowable shortage and for supplying within allowable excess beyond upper limit is taken arbitrarily in the interval of 0.001 to 0.15 Rs. Crores per Mcm for irrigation and 0.1 to 1.65 Rs. Crores per Mw for hydropower for the purpose of analysis. The increment in these intervals is decided on the basis of trials carried out using the sequencing computer program. It is also attempted to study the effect of application of variable penalty cost for different slabs in given allowances. Further, periodwise (stagewise) variation in the penalty cost is also considered.

The upper limits on supply are considered in two ways such as (i) Uniform upper limit as total system capacity for all planning periods, and (ii) Next period demand as upper limit in current period. Various values of allowances and penalty costs are tried for the purpose of analysis. The information (options) of various pairs of usewise allowable shortages and allowable excesses considered and corresponding pairs of usewise penalty costs levied for Phase I and Phase II is presented in the Table 6.9(a). Out of these the finalised values and classes of allowances and penalties are indicated in the Table 6.9(b).

For Phase II sequencing computations, it is assumed that Phase I development was fully achieved. The nomenclatures used are given in the Table 6.10. The sequences obtained for various categories for different penalty conditions are given in Table 6.11 for Phase I, and in Table 6.12 for Phase II.

Table 6.1(a) Total and annual costs of major reservoirs in Narmada basin (Rs. Crores)

Sr.	Name of the	Total Cost	Unit	Unit	Unit	Annual C	ost					
No.	Reservoir	and Year	1	2	3	Interest	Deprec	iation	OMR Co	st		Total
						on Total	Unit	Unit	Unit	Unit	Unit	Annua.
		170	3.00			Cost	2	3	1	2	3	Cost
			388	100		@ 12%	@ 1%	@2%	@0.6%	@ 1%	@ 2%	
1.	Upper Narmada	7.25(1971)	4.19	3.06		.87	.031	Y 3	.025	.031		.96
		18.2(1978)	10.5	7.61	-	2.18	.076		.063	.076	-	2.40
		52.88(1990)				6.35	.224	20.00	.183	.224		6.98
2.	Raghavpur	2.70(1971)				9337		22 C			.026	.384
		5.15(1978)	2.67		2.45	.618	7. T. Y	.05	.016	-	.05	.733
3.	Rosra	4.70(1971)									.045	.669
		9.01(1978)	4.67		4.34	1.081	1	.087	.028	.=	.087	1.28
4.	Upper Burhner	6.35(1971)		2.68			.0268	-	.0022		400	.818
		68.97(1978)	39.85	29.13	14 11	8.277	.291	-	.239	.292	-	9.10
5.	Halon		3.18									.72
		18.08(1978)	10.44	7.64		2.170	.0764	10° 44	.063	.0764		2.39
6.	Basania (Sigarpur)						-13	194				2.09
		114 (1978)	59.12	-	54.88	13.68	1.65	1.098	.355	-	1.098	16.2
7.	Matiyari		3.56	2.58	-	.736	.0259	OF.	.0213	.0259	-	.81
		20.25(1978)								.0854		2.67
		44.30(1990)	7		8 TF	CHRIST	CV			.1868	-	5.84
8.	Bargi	75 (1971)	6.75				1.3			.410		10.3
		263 (1978)								1.438		36.2
		566 (1982)	191.3	309.8	65.2	67.96	3.098	1.304	1.15	3.098	1.304	77.9

Table 6.1(a) Continued

1	
8	
Lit	

	Name of the		Unit		Unit	Annual Co		inhion	OMIL CO.	a F		Total
No.	Reservoir	and Year	1	2	3	Interest on Total Cost @ 12%		Unit 3 @2%	Unit 1 @0.6%	Unit 2	Unit 3 @ 2%	Annua
9.	Ataria	7.22(1981) 21.44(1978)				.866 2.573	.0305	3	.025	.0305		.952
11. 12.	Chinki (Sher+ Machrewa+ Shakker)	22 (1971) 76.57(1978) 31 (1971) 93.23(1978)				2.64 9.19 3.72 11.188	.3234	3	.2654	.093 .3234 .3937	-	2.79 10.1 4.09 12.3
14.	Sitarewa	2.5 (1971) 4.51(1978)	2.33) -	2.17	.541	.0434	.014	E	~	.043	.356 4 .642
15.	Dudhi	18 (1971) 42.36(1978)	24.4	7 17.89) -	2.16 5.083	.1789	-	.1468	.1789	-	2.37 5.59
16.	Barna	9.2 (1971) 14.88(1978) 15.27(1980)		5.98		1.104 1.786 1.832	.0598	91	.0557	.0598	- 4	1.21 1.96 2.01
17.	Tawa	40 (1971) 98.6(1978)	30.3	2 68.25	5 -	4.8	.6825	9.5	.1819	.6825		4.58 12.4
18.	Kolar	7.25(1971) 38.4(1978) 133.14(1990	38.4	3.52	Dr.	.87 4.61 15.977	.0352	5.	.0224	.0352	-	.963 5.1 17.7

•				
			_	
ζ	C	X,	J	
		ď		
۲	ē	2	4	

Sr.	Name of the	Total Cost	Unit	Unit		Annual Co						
	Reservoir	and Year	1	2	3	Interest on Total Cost @ 12%		Unit _3	OMR Co Unit 1 @0.6%	Unit 2	Unit 3 @ 2%	Total Annua Cost
	(Morand+ Ganjal)	16 (1971) 64.1(1978)	37.03	27.07	- 4	1.92 7.692	.2707	3	.2222	.2707	-	2.11
21.	Sukta	5.0 (1971) 8.7 (1978) 11.9(1982)	9.6	2.29		.6 1.044 1.428	.0229	3	.0576	.0229	-	.643 1.12 1.53
22.	Chhota Tawa	6.5 (1971) 31.6(1978)	18.26	13.34	338	.78 3.792	.1334	-	.1095	.1334	. 5	.857 4.17
23.	Narmada Sagar	107 (1971) 332.8(1978) 1993.7(1988)	832.3	542	619.4	12.84 39.94 239.24	5.4198	12.39	4.99	.2908 .9047 5.42	.665 2.07 12.39	15.0 46.6 279.4
24.	Omkareshwar	75.0(1971) 182.8(1978) 788.0(1990)	191.	4 325.	3 271.	9.0 21.94 4 95.56	3.2531	5.427	1.15	.3096 .7546 3.25	.517 1.26 5.43	10.8 26.2 113.1
25.	Maheshwar	19.0(1971) 73.3(1978) 465.6(1990)		5 -	224.	2.28 8.796 2 55.876	6	4.483	1.449	2	.059 .228 1.45	9.96
26.	Upper Beda	4.0 (1971 20.8(1978)		4 8.8	DF.	.48 2.501	.088	ν.	.0722	.088	-	.528 2.75

1	۰	-	-	
1				
ı	۴	٦	r	٦
1	١,	ø	٠,	ı

	Name of the Reservoir	Total Cost 1	Unit Unit	Unit	Annual Co	Deprec:	iation	OMR Co	st		Total
NO.	Reservoir	and rear	J. 110	(fin	on Total Cost @ 12%	Unit 2 @ 1%	Unit 3 @2%	Unit 1 @0.6%	Unit 2 @ 1%	Unit 3 @ 2%	Annual Cost
27.	Man	5.0 (1971) 19.9(1978)	\$70		.6 2.388	1	R	-7.			.652 2.56
		44.0(1990)	30.12 13.8	19 -	5.281	.1389	100	.1807	.1389	-	5.74
28.	Lower Goi	6.0 (1971)			.72		(328.)				.791
		22.79(1978)	13.17 9.62	24 -	2.735	.0962	1	.0789	.0962		3.01
29.	Jobat	3.5 (1971)			.42						.458
		14.2(1978) 30.93(1990)	19.96 10.9	7 -	1.704 3.712	.1097	2	.1198	.1097	-	1.86
30.	Sardar Sarovar	(1971)						lan.			<u> </u>
	7 27	6406 (1990)	936.1 4406	980	768.7	44.07	19.6	5.617	44.07	19.6	901.7

Table 6.1(a) Concluded

Table 6.1(b) Total and annual costs (fixed and OMR) in Rs. Crores of major reservoirs in Narmada basin (as per year 1978 estimates).

Sr.	Name of the	Total	Unit	Unit	Unit	Annual	Cost			Design	Release
	Reservoir, Life (Years)	Cost	1	2	3	Fixed Cost		(per Mcm)	Total		
	Tile (lears)	1	20	300		COBC	2	3		2	
1.	Upper Narmada(50)	18.2	10.5	7.61	4	2.58	0.00037	0.00	2.68	287	
2.	Raghavpur (50)	5.15	2.67	- 1	2.45	0.75	386.0	0.00015	0.82	-	335
3.	Rosra (50)	9.01	4.67	4	4.34	1.31	E 11.5"	0.00013	1.45	-	652
4.	Upper Burhner(50) Halon (50)	68.97 18.1	39.9 10.44	29.1 7.64	-	9.82 2.57	0.00162 0.00059		10.22		
6.	Basania (50)	114.0	59.12	39.1	54.88	16.62	1.50	0.00063	18.31	4	1755
	Matiyari (50) Bargi (100)					2.88	0.00269 0.00034	0.00014	3.00	44 2641	4198
	Ataria (50) . Chinki (50)								3.18		-
12	. (Sher+ . Machrewa+ . Shakker) (50)	93.23	53.86	39.37		13.27	0.00073	3	13.81	736	-
14 15	. Sitarewa (50) . Dudhi (50)	4.51 42.36	2.339	17.89		0.66		0.00065	0.72		69

Table 6.1(b) Continued

Sr. Name of the	Total	Unit	Unit	Unit	Annual	Cost			Design	Release
No. Reservoir, Life (Years)	Cost	0	2	3	Fixed	OMR Cos Unit 2	Unit	Total Annual Cost	Unit 2	(cm) Unit 3
16. Barna (50)	14.9	9.05	5.83		2.14	0.00023	200	2.23	385	
17. Tawa (50)	98.6	30.3	68.25	Say	13.0	0.00015	13970	13.31	2021	~
18. Kolar (50)	38.4	19.8	18.64	J.	5.37	0.00111	1 600	5.57	178	-
19. (Morand+ 20. Ganjal) (50)	64.1	37.0	27.07		9.13	0.00090	1-1	9.50	413	
21. Sukta (50) 22. Chhota Tawa (50)	8.7 31.6				1.32 4.50	0.00063		1.39	111 236	-
23.Narmada Sagar(100)	332.8	139	90.5	103	42.94	0.00063	0.00013	46.39	2220	15361
24. Omkareshwar(100)	182.8	44.4	75.5	63	22.99	0.00016	0.00008	24.70	2790	15410
25. Maheshwar (50)	73.3	38.01	-	35.3	10.69	-1-10	0.00004	11.77		15286
26. Upper Beda (50)	20.8	12.04	8.8	-	2.97	0.00082	18 4	3.09	147	÷
27. Man (50)	19.9	13.62	6.28	-	2.92	0.00060	0.01	3.05	227	
28. Lower Goi (50)	22.8	13.17	9.6	78 0	3.24	0.00077	(2)	3.38	172	-
29. Jobat (50)	14.2	9.15	5.05	-	2.06	0.00083	2-	2.15	110	~
0.Sardar Sarovar(100)	1500	250	1000	250	185.6	0.00024	0.00032	193.1	10357	15622

Table 6.1(b) Concluded

Table 6.2 Comparative statement of individual reservoir simulation results.

SN	Name of Reservoir				Targets			
	Reservoir		Mast	er Plan	16 Year	Simulation	22 Year	Simulation
		Use	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream
	Upper	W/S	7.3	-	7	4	1	
	Narmada	IR	201.6	280(320)	115.6	312	120	301
2.	Raghavpur	HP	-	35040 Mwh	-	35040 Mwh	+	35040 Mwh
3.	Rosra	HP	9	61320 Mwh	4	58520 Mwh	-	61320 Mwh
4.	Upper	IR	177	150(253)	137	150	157	253
	Burhner					Street, and		
5.	Halon	IR	185	175(200)	63	195	70	190
6.	Basania	W/S		100	- 1	100		100
		HP	41	175200 Neh	-	140360 Mwh	-	175200 Mwh
7.	Matiari	IR	173.7			44		44
-	Bargi	W/S	537.3	100		0	537	50
	00.01	IR		3530(3830)	-	3010	1657	3540
	- 4	HP	2	61320 Mwh		0 Mwh		61320 Mwh
9	Ataria	IR	120	150(176)	10	95	50	140
	Chinki	W/S	43.14			7	43	a better
	CHILINA		2003	1130(1220)		400	103	820
11	Sher	IR	116	1	42	240	79	238
-	Machrewa	IR	105	()980(1043)	22	97	40	105
	Shakker	IR	187	17700(1040)	102	443	135	443
	Sitareva	HP	107	35040 Muh	~	32340 Mwh	23.	32340 Muh
	Dudhi	IR	85	645(683)	55	208	70	212
	Barna	IR	57	404 (482)	1.75	209	57	415
		IR	833	2390(2656)	10	1116	590	2116
	Tawa	W/S	-	2370 (2030)	10	56.6	-	0
18.	Kolar		27	205(231)	24	147	27	189
	M	IR	- 80	205(251)	50	300	90	300
19.	Morand	IR	90	11457(504)	20	300	70	300
	0	10	4.2	1)457(506)	20	130	17	143
	Ganjal	IR	17		20		17	3.54
21.	Sukta	W/S		400(404)	40.0	4.54	2 33	110.5
	ALCON	IR	11	109(126)	10.8	66.92	1/7 0	
22.	Chhota	IR	253	226(263)	35	200	147.9	250
	Tava		100	and the second		197	000	
23.	Narmada	W/S	261.27	(2220)	0	74	220	74
	Sagar	IR	11594	2220(3300)	1894	2220	4100	2220
		HP	7.0	876000 Mvh	-	499000 Mwh	100	968000 Mwh
24.	Omkare-	W/S	354.9	T	682.81		355	0740
	shwar	IR	492.8	2790(3010)	-	557	493	2710
		HP	-	540000 Myh	-	13600 Mwh	-	243200 Myh
	Maheshvar		-	426000 Muh	17	5000 Myh	0	55000 Mwh
	UpperBeda		33	155(176)	10.8	90	33	160
	Man	IR	28	211(236)	17	145	28	236
	Lower Goi		123	170(191)	21	155	119	176
	Jobat	IR	120	112(133)	15	105.25	80	112
30.	Sardar	IR	-	10357	-	4812		7300
	Sarovar	HP	4	0 Muh	-	147000 Mwh	-	1173800 M

Notes: 1. All values are in Mcm unless specified.

^{2.} Value in bracket is Gross Irrigation.

^{3.} W/S : Water supply, IR : Irrigation, HP : Hydropower.

Table 6.3 List of projects and reservoirs.

Sr.No.	Code of the Project (clubb	Name(s) of the ed) Reservoirs included
Phase	I	
1.	UPN	Upper Narmada
2.	BRG	Matiyari AND Bargi
3.	TSC	Tawa, Sukta AND Chhota Tawa
4.	BKL	Barna AND Kolar
5.	NSG	Narmada Sagar
6.	OMK	Omkareshwar
7.	MAH	Maheshwar
8	MAJ	Man AND Jobat
9.	SSP	Sardar Sarovar
Phase	11 / 10	
	RGV	Raghavpur
	ROS	Rosra
3.	UBH	Upper Burhner AND Halon
4.		Basania (Sigarpur)
	CHN	Ataria AND Chinki
	SMS	Sher, Machrewa, AND Shakker
	STD	Sitarewa AND Dudhi
8.	MGL	Morand AND Ganjal
9.	UBL	Upper Beda AND Lower Goi

Table 6.4 Information of fixed and OMR costs of projects

Sr.No.	Code of the	Fixed Cost	Design OMR Per Mcm	Cost
	Project		Unit 2	Unit 3
Phase	I		¥	
1.	UPN	2.58	0.00037	
2.	BRG	36.23	0.00303	0.00014
3.	TSC	18.82	0.00156	
4.	BKL	7.51	0.00135	
5.	NSG	42.94	0.00063	0.00013
6.	OMK	22.99	0.00016	0.00008
7.	MAH	10.69	- 1 - 2 - 1	0.00004
8	MAJ	4.97	0.00143	H -
9.	SSP	185.60	0.00024	0.00032
Phase	11		12.00	M
1.	RGV	0.75		0.00015
2.	ROS	1.31		0.00013
3.	UBH	12.39	0.00222	
4.	BAS	16.62		0.00063
5.	CHN	13.95	0.00149	
6.	SMS	13.27	0.00073	
7.	STD	6.69	0.00123	0.00065
8.	MGL	9.13	0.00090	0.00000
9.	UBL	6.21	0.00159	

Table 6.5 Simulation results of phase I combinations

No. Project combination	Annual target		Average Annual Release	
	IRRG (Mcm)	HP (MW)	IRRG (Mcm)	HP (Mcm)
1 0/	0.	0.	0.	0.
2 UPN/ 3 BRG/ 4 UPN/BRG/ 5 TSC/ 6 UPN/TSC/ 7 BRG/TSC/ 8 UPN/BRG/TSC/	301. 3284. 3284. 2480. 2480. 2480. 2480.	0. 50. 42. 0. 0. 0.	287. 3240. 3240. 2368. 2368. 2368.	0. 4198. 3528. 0. 0. 0.
9 BKL/ 10 UPN/BKL/ 11 BRG/BKL/ 12 UPN/BRG/BKL/ 13 TSC/BKL/ 14 UPN/TSC/BKL/ 15 BRG/TSC/BKL/ 16 UPN/BRG/TSC/BKL/	604. 604. 604. 604. 604. 604. 604.	0. 0. 0. 0. 0. 0. 0.	563. 563. 563. 563. 563. 563. 563.	0. 0. 0. 0. 0. 0.
17 NSG/ 18 UPN/NSG/ 19 BRG/NSG/ 20 UPN/BRG/NSG/ 21 TSC/NSG/ 22 UPN/TSC/NSG/ 23 BRG/TSC/NSG/ 24 UPN/BRG/TSC/NSG/ 25 BKL/NSG/ 26 UPN/BKL/NSG/ 27 BRG/BKL/NSG/ 28 UPN/BRG/BKL/NSG/ 30 UPN/TSC/BKL/NSG/ 31 BRG/TSC/BKL/NSG/ 32 UPN/BRG/TSC/BKL/NSG/	2274. 2274. 2274. 2274. 2274. 2274. 2274. 2274. 2274. 2274. 2274. 2274. 2274. 2274. 2274. 2274.	226. 221. 164. 164. 161. 161. 148. 148. 190. 188. 163. 162. 159. 156. 146.	2257. 2256. 2280. 2280. 2291. 2291. 2254. 2265. 2284. 2283. 2280. 2280. 2289. 2290. 2249. 2254.	15361. 14997. 11125. 11125. 10939. 10939. 10047. 10085. 12886. 12762. 11055. 10978. 10823. 10590. 9930. 9969.
33 OMK/ 34 UPN/OMK/ 35 BRG/OMK/ 36 UPN/BRG/OMK/ 37 TSC/OMK/ 38 UPN/TSC/OMK/ 39 BRG/TSC/OMK/	2790. 2790. 2790. 2790. 2790. 2790. 2790.	132. 132. 131. 131. 131. 131.	2541. 2541. 2541. 2541. 2541. 2541. 2541.	15411. 15397. 15309. 15309. 15309. 15309. 15309.

Table 6.5 Continued

No.	Project combination	Annual	target	Average Annua Release	
		IRRG (Mcm)	HP (MW)	IRRG (Mcm)	HP (Mcm)
10	UPN/BRG/TSC/OMK/	2790.	129.	2541.	15108.
	BKL/OMK/	2790.	135.	2541.	15739.
	UPN/BKL/OMK/	2790.	132.	2541.	15376.
	BRG/BKL/OMK/	2790.	130.	2541.	15243.
		2790.	130.	2541.	15243.
	UPN/BRG/BKL/OMK/				15309.
5	TSC/BKL/OMK/	2790.	131.	2541.	
6	UPN/TSC/BKL/OMK/	2790.	130.	2541.	15243.
7	BRG/TSC/BKL/OMK/	2790.	129.	2541.	15096.
8	UPN/BRG/TSC/BKL/OMK/	2790.	129.	2541.	15096.
9	NSG/OMK/	2790.	119.	2541.	13934.
0	UPN/NSG/OMK/	2790.	119.	2541.	13934.
1	BRG/NSG/OMK/	2790.	120.	2541.	13982.
2	UPN/BRG/NSG/OMK/	2790.	120.	2541.	13975.
3	TSC/NSG/OMK/	2790.	119.	2541.	13908.
4	UPN/TSC/NSG/OMK/	2790.	120.	2541.	13982.
5	BRG/TSC/NSG/OMK/	2790.	120.	2541.	13982.
6	UPN/BRG/TSC/NSG/OMK/	2790.	120.	2541.	14021.
	BKL/NSG/OMK/	2790.	120.	2541.	13982.
8	UPN/BKL/NSG/OMK/	2790.	120.	2541.	13975
	BRG/BKL/NSG/OMK/	2790.	120.	2541.	13973.
	UPN/BRG/BKL/NSG/OMK/	2790.	120.	2541.	13973.
1	TSC/BKL/NSG/OMK/	2790.	120.	2541.	13975.
	UPN/TSC/BKL/NSG/OMK/	2790.	119.	2541.	13934
	BRG/TSC/BKL/NSG/OMK/	2790.		2541.	13973
	UPN/BRG/TSC/BKL/NSG/OMK/	2790.	120.	2541.	14049
		2750.			
	MAH/	0.	94.	0.	15286
	UPN/MAH/	0.	94.	0.	15286
	BRG/MAH/	0.	93.	0.	15156
	UPN/BRG/MAH/	0.	93.	0.	15156
	TSC/MAH/	0.	93.	0.	15183
	UPN/TSC/MAH/	0.	93.	0.	15175
	BRG/TSC/MAH/	0.	92.	0.	14924
	UPN/BRG/TSC/MAH/	0.	92.	0.	14924
	BKL/MAH/	0.	94.	0.	15268
	UPN/BKL/MAH/	0.	94.	0.	15268
	BRG/BKL/MAH/	0.	93.	0.	15138
	UPN/BRG/BKL/MAH/	0.	93.	0.	15138
7	TSC/BKL/MAH/	0.	94.	0.	15230
	UPN/TSC/BKL/MAH/	0.	94.	0.	15230
	BRG/TSC/BKL/MAH/	0.	93.	0.	15170
0	UPN/BRG/TSC/BKL/MAH/	0.	93.	0.	15170
1	NSG/MAH/	0.	90.	0.	14571
12	UPN/NSG/MAH/	0.	90.	0.	14571.

Table 6.5 Continued

No. Project combination	Annual target		Average Annual Release	
	IRRG (Mcm)	HP (MW)	IRRG (Mcm)	HP (Mcm)
83 BRG/NSG/MAH/	0.	90.	0	14571
84 UPN/BRG/NSG/MAH/	0.	90.	0.	14571.
85 TSC/NSG/MAH/	0.	90.	0.	14571.
86 UPN/TSC/NSG/MAH/	0.	90.	0.	14571. 14571.
87 BRG/TSC/NSG/MAH/	0.	90.	0.	14571.
88 UPN/BRG/TSC/NSG/MAH/	0.	90.	0.	14571.
89 BKL/NSG/MAH/	0	90.	0.	
90 UPN/BKL/NSG/MAH/	0.	90.	0.	14571.
91 BRG/BKL/NSG/MAH/	0.	90.	0.	14571. 14571.
92 UPN/BRG/BKL/NSG/MAH/	0.	90.		14571.
93 TSC/BKL/NSG/MAH/	0.	90.	0.	14571.
94 UPN/TSC/BKL/NSG/MAH/	0.	90.	0.	
95 BRG/TSC/BKL/NSG/MAH/	0.	90.	0.	14571. 14571.
96 UPN/BRG/TSC/BKL/NSG/MAH/	0.	90.	0.	14571.
97 OMK/MAH/	0.	89.	0.	14571.
98 UPN/OMK/MAH/	0.	89.	0.	14524.
99 BRG/OMK/MAH/	0.	89.	0.	14524.
100 UPN/BRG/OMK/MAH/	0.	89.	0.	14524.
101 TSC/OMK/MAH/	0.	89.	0.	14524.
102 UPN/TSC/OMK/MAH/	0.	89.	0.	14524.
103 BRG/TSC/OMK/MAH/	0.	89.	0.	14524.
104 UPN/BRG/TSC/OMK/MAH/	0.	89.		
105 BKL/OMK/MAH/		89.	0.	14524. 14524.
106 UPN/BKL/OMK/MAH/	0.	89.	0.	14524.
107 BRG/BKL/OMK/MAH/	547	89.		
108 UPN/BRG/BKL/OMK/MAH/	0.	89.	0.	14524. 14524.
109 TSC/BKL/OMK/MAH/	0.	89.		14524.
110 UPN/TSC/BKL/OMK/MAH/	0.	89.	0.	14524.
111 BRG/TSC/BKL/OMK/MAH/	0.	89.	0.	14524.
112 UPN/BRG/TSC/BKL/OMK/MAH/	0.	89.	0.	14524.
113 NSG/OMK/MAH/	0.	89.		14524.
114 UPN/NSG/OMK/MAH/	0.		0.	14516.
115 BRG/NSG/OMK/MAH/	0.	89. 89.	0.	14516.
116 UPN/BRG/NSG/OMK/MAH/	0.	89.	0.	14516.
117 TSC/NSG/OMK/MAH/	0.	89.	0.	14516.
118 UPN/TSC/NSG/OMK/MAH/	0.	89.	0.	14516.
119 BRG/TSC/NSG/OMK/MAH/	0.	89.	0.	14516.
120 UPN/BRG/TSC/NSG/OMK/MAH/	0.	89.	0.	14516.
121 BKL/NSG/OMK/MAH/	0.	89.	0.	14516.
122 UPN/BKL/NSG/OMK/MAH/	0.	89.	0.	14516.
123 BRG/BKL/NSG/OMK/MAH/	0.	89.	0.	14516.
124 UPN/BRG/BKL/NSG/OMK/MAH/	0.	89.	0.	14516.
125 TSC/BKL/NSG/OMK/MAH/	0.	89.	0.	14516.
126 UPN/TSC/BKL/NSG/OMK/MAH/	0.	89.	0.	14516.

No.	Project combination	Annual	Annual target		Average Annual Release	
		IRRG (Mcm)	HP (MW)	IRRG (Mcm)	HP (Mcm)	
	BRG/TSC/BKL/NSG/OMK/MAH/ UPN/BRG/TSC/BKL/NSG/OMK/MAH/	0.	89. 89.	0.	14516. 14516.	
129	MAJ/	348.	0.	337.	0.	
	UPN/MAJ/	348.	0.	337.	0.	
	BRG/MAJ/	348.	0.	337.	0.	
	UPN/BRG/MAJ/	348.	0.	337.	0.	
	TSC/MAJ/	348.	0.	337.	0.	
	UPN/TSC/MAJ/	348.	0.	337.	0.	
	BRG/TSC/MAJ/	348.	0.	337.	0.	
	UPN/BRG/TSC/MAJ/	348.	0.	337.	0.	
	BKL/MAJ/	348.	0.	337.	0.	
138	UPN/BKL/MAJ/	348.	0.	337.	0.	
	BRG/BKL/MAJ/	348.	0.	337.	0.	
	UPN/BRG/BKL/MAJ/	348.	0.	337.	0.	
141	TSC/BKL/MAJ/	348.	0.	337.	0.	
142	UPN/TSC/BKL/MAJ/	348.	0.	337.	0.	
143	BRG/TSC/BKL/MAJ/	348.	0.	337.	0.	
144	UPN/BRG/TSC/BKL/MAJ/	348.	0.	337.	0.	
145	NSG/MAJ/	348.	0.	337.	0.	
146	UPN/NSG/MAJ/	348.	0.	337.	0.	
147	BRG/NSG/MAJ/	348.	0.	337.	0.	
148	UPN/BRG/NSG/MAJ/	348.	0.	337.	0.	
149	TSC/NSG/MAJ/	348.	0.	337.	0.	
150	UPN/TSC/NSG/MAJ/	348.	0.	337.	0.	
151	BRG/TSC/NSG/MAJ/	348.	0.	337.	0.	
152		348.	0.	337.	0.	
153		348.	0.	337.	0.	
	UPN/BKL/NSG/MAJ/	348.	0.	337.	0.	
	BRG/BKL/NSG/MAJ/	348.	0.	337.	0.	
	UPN/BRG/BKL/NSG/MAJ/	348.	0.	337.	0.	
	TSC/BKL/NSG/MAJ/	348.	0.	337.	0.	
	UPN/TSC/BKL/NSG/MAJ/	348.	0.	337.	0.	
	BRG/TSC/BKL/NSG/MAJ/	348.	0.	337.	0.	
	UPN/BRG/TSC/BKL/NSG/MAJ/	348.		337.	0.	
	OMK/MAJ/	348.	0.	337.	0.	
	UPN/OMK/MAJ/	348.	0.	337.	0.	
	BRG/OMK/MAJ/	348.	0.	337.	0.	
	UPN/BRG/OMK/MAJ/	348.	0.	337.	0.	
	TSC/OMK/MAJ/	348.	0.	337.	0.	
	UPN/TSC/OMK/MAJ/	348.	0.	337.	0.	
	BRG/TSC/OMK/MAJ/	348.	0.	337.	0.	
	UPN/BRG/TSC/OMK/MAJ/	348.	0.	337.	0.	
109	BKL/OMK/MAJ/	348.	0.	337.	0.	

Table 6.5 Continued

No.	Project combination	Annual	target	Average Annua Release	
		IRRG (Mcm)	HP (MW)	IRRG (Mcm)	HP (Mcm)
170	UPN/BKL/OMK/MAJ/	348.	0.	337.	0.
171	BRG/BKL/OMK/MAJ/	348.	0.	337.	0.
	UPN/BRG/BKL/OMK/MAJ/	348.	0.	337.	0.
173	TSC/BKL/OMK/MAJ/	348.	0.	337.	0.
174	UPN/TSC/BKL/OMK/MAJ/	348.	0.	337.	0.
	BRG/TSC/BKL/OMK/MAJ/	348.	0.	337.	0.
	UPN/BRG/TSC/BKL/OMK/MAJ/	348.	0.	337.	0.
177	NSG/OMK/MAJ/	348.	0.	337.	0.
	UPN/NSG/OMK/MAJ/	348.	0.	337.	0.
	BRG/NSG/OMK/MAJ/	348.	0.	337.	0.
	UPN/BRG/NSG/OMK/MAJ/	348.	0.	337.	0.
	TSC/NSG/OMK/MAJ/	348.	0.	337.	0.
	UPN/TSC/NSG/OMK/MAJ/	348.	0.	337.	0.
	BRG/TSC/NSG/OMK/MAJ/	348.	0.	337.	0.
	UPN/BRG/TSC/NSG/OMK/MAJ/	348.	0.	337.	0.
	BKL/NSG/OMK/MAJ/	348.	0.	337.	0.
	UPN/BKL/NSG/OMK/MAJ/	348.	0.	337.	0.
	BRG/BKL/NSG/OMK/MAJ/	348.	0.	337.	0.
	UPN/BRG/BKL/NSG/OMK/MAJ/	348.	0.	337.	0.
	TSC/BKL/NSG/OMK/MAJ/	348.	0.	337.	0.
	UPN/TSC/BKL/NSG/OMK/MAJ/	348.	0.	337.	0.
	BRG/TSC/BKL/NSG/OMK/MAJ/	348.	0.	337.	0.
	UPN/BRG/TSC/BKL/NSG/OMK/MAJ/	348.	0.	337.	0.
	MAH/MAJ/	348.	0.	337.	0.
	UPN/MAH/MAJ/	348.	0.	337.	0.
	BRG/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/MAH/MAJ/	348.	0.	337.	0.
	TSC/MAH/MAJ/	348.	0.	337.	0.
198	UPN/TSC/MAH/MAJ/	348.	0.	337.	0.
	BRG/TSC/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/TSC/MAH/MAJ/	348.	0.	337.	0.
	BKL/MAH/MAJ/	348.	0.	337.	0.
	UPN/BKL/MAH/MAJ/	348.	0.	337.	0.
	BRG/BKL/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/BKL/MAH/MAJ/	348.	0.	337.	0.
	TSC/BKL/MAH/MAJ/	348.	0.	337.	0.
	UPN/TSC/BKL/MAH/MAJ/	348.	0.	337.	0.
	BRG/TSC/BKL/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/TSC/BKL/MAH/MAJ/	348.	0.	337.	0.
	NSG/MAH/MAJ/	348.	0.	337.	0.
210	UPN/NSG/MAH/MAJ/	348.	0.	337.	0.
	BRG/NSG/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/NSG/MAH/MAJ/	348.	0.	337.	0.
213		348.	0.	337.	0.

No.	Project combination	Annual t	arget	Average Relea	
		IRRG (Mcm)	HP (MW)	IRRG (Mcm)	HP (Mcm)
214	UPN/TSC/NSG/MAH/MAJ/	348.	0.	337.	0.
	BRG/TSC/NSG/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/TSC/NSG/MAH/MAJ/	348.	0.	337.	0.
	BKL/NSG/MAH/MAJ/	348.	0.	337.	0.
	UPN/BKL/NSG/MAH/MAJ/	348.	0.	337.	0.
	BRG/BKL/NSG/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/BKL/NSG/MAH/MAJ/	348.	0.	337.	0.
	TSC/BKL/NSG/MAH/MAJ/	348.	0.	337.	0.
	UPN/TSC/BKL/NSG/MAH/MAJ/	348.	0.	337.	0.
223	BRG/TSC/BKL/NSG/MAH/MAJ/	348.	0.	337.	0.
224	UPN/BRG/TSC/BKL/NSG/MAH/MAJ/	348.	0.	337.	0.
225	OMK/MAH/MAJ/	348.	0.	337.	0.
226	UPN/OMK/MAH/MAJ/	348.	0.	337.	0.
227	BRG/OMK/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/OMK/MAH/MAJ/	348.	0.	337.	0.
	TSC/OMK/MAH/MAJ/	348.	0.	337.	0.
	UPN/TSC/OMK/MAH/MAJ/	348.	0.	337.	0.
	BRG/TSC/OMK/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/TSC/OMK/MAH/MAJ/	348.	0.	337.	0.
	BKL/OMK/MAH/MAJ/	348.	0.	337.	0.
	UPN/BKL/OMK/MAH/MAJ/	348.	0.	337.	0.
	BRG/BKL/OMK/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/BKL/OMK/MAH/MAJ/	348.	0.	337.	0.
	TSC/BKL/OMK/MAH/MAJ/	348.	0.	337.	0.
	UPN/TSC/BKL/OMK/MAH/MAJ/	348.	0.	337.	0.
	BRG/TSC/BKL/OMK/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/TSC/BKL/OMK/MAH/MAJ/	348.	0.	337.	0.
	NSG/OMK/MAH/MAJ/	348.	0.	337.	0.
	UPN/NSG/OMK/MAH/MAJ/	348.	0.	337.	0.
	BRG/NSG/OMK/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/NSG/OMK/MAH/MAJ/	348.	0.	337.	0.
	TSC/NSG/OMK/MAH/MAJ/	348.	. 0.	337.	0.
	UPN/TSC/NSG/OMK/MAH/MAJ/	348.	0.	337.	0.
	BRG/TSC/NSG/OMK/MAH/MAJ/ UPN/BRG/TSC/NSG/OMK/MAH/MAJ/	348.	0.	337.	0.
	BKL/NSG/OMK/MAH/MAJ/	348.	0.	337.	0.
	UPN/BKL/NSG/OMK/MAH/MAJ/	348.	0.	337.	0.
	BRG/BKL/NSG/OMK/MAH/MAJ/	348.	0.	337.	0.
	UPN/BRG/BKL/NSG/OMK/MAH/MAJ/	348.	0.	337.	0.
	TSC/BKL/NSG/OMK/MAH/MAJ/	348.	0.	337.	0.
	UPN/TSC/BKL/NSG/OMK/MAH/MAJ/	348. 348.	0.	337.	0.
	BRG/TSC/BKL/NSG/OMK/MAH/MAJ/	348.	0.	337. 337.	0.
	UPN/BRG/TSC/BKL/NSG/OMK/MAH/MAJ/	348.	0.	337.	0.

No.	Project combination	Annual	target	Average Annual Release		
		IRRG (Mcm)	HP (MW)	IRRG (Mcm)	HP (Mcm)	
257	SSP/	7300.	415.	6820.	15623.	
258	UPN/SSP/	7300.	414.	6820.	15580.	
259	BRG/SSP/	7300.	407.	6813.	15322.	
260	UPN/BRG/SSP/	7300.	407.	6813.	15322.	
261	TSC/SSP/	7300.	408.	6817.	15366.	
	UPN/TSC/SSP/	7300.	410.	6812.	15451.	
	BRG/TSC/SSP/	7300.		6764.	15171.	
	UPN/BRG/TSC/SSP/	7300.	403.	6764.	15171.	
	BKL/SSP/	7300.	414.	6819.	15580.	
	UPN/BKL/SSP/	7300.	413.	6818.	15560.	
	BRG/BKL/SSP/	7300.	405.	6813.	15257.	
	UPN/BRG/BKL/SSP/	7300.	405.	6813.	15257.	
	TSC/BKL/SSP/	7300.	407.	6816.	15322.	
	UPN/TSC/BKL/SSP/	7300.	408.	6813.	15343.	
	BRG/TSC/BKL/SSP/	7300.	402.	6749.	15128.	
	UPN/BRG/TSC/BKL/SSP/	7300.	402.	6749.	15128.	
	NSG/SSP/	7300.	226.	6674.	8510.	
	UPN/NSG/SSP/	7300.	226.	6674.	8510.	
	BRG/NSG/SSP/	7300.	226.	6688.	8510.	
	UPN/BRG/NSG/SSP/	7300.	226.	6688.	8510.	
	TSC/NSG/SSP/	7300.	243.	6665.	9133.	
	UPN/TSC/NSG/SSP/	7300.	231.	6669.	8682.	
	BRG/TSC/NSG/SSP/	7300.	171.	6682.	6447.	
	UPN/BRG/TSC/NSG/SSP/	7300.		6679.	6469.	
	BKL/NSG/SSP/	7300.	251.	6661.	9434.	
	UPN/BKL/NSG/SSP/	7300.		6664.	9133.	
	BRG/BKL/NSG/SSP/	7300.	226.	6684.	8489.	
	UPN/BRG/BKL/NSG/SSP/	7300.	226.	6677.	8510.	
	TSC/BKL/NSG/SSP/	7300.	238.	6667.	8962.	
	UPN/TSC/BKL/NSG/SSP/	7300.		6669.	8747.	
	BRG/TSC/BKL/NSG/SSP/	7300.	130.	6676.	4901.	
	UPN/BRG/TSC/BKL/NSG/SSP/	7300.	130.	6664.	4901.	
	OMK/SSP/	7300.	388.	6829.	14613.	
	UPN/OMK/SSP/	7300.	388.	6829.	14591.	
	BRG/OMK/SSP/	7300.	380.	6829.	14312.	
	UPN/BRG/OMK/SSP/	7300.	380.	6829.	14312.	
	TSC/OMK/SSP/	7300.	384.	6792.	14462.	
	UPN/TSC/OMK/SSP/	7300.	383.	6791.	14419.	
	BRG/TSC/OMK/SSP/	7300.	379.	6756.	14277.	
	UPN/BRG/TSC/OMK/SSP/	7300.	379.	6756.	14277.	
	BKL/OMK/SSP/	7300.	386.	6829.	14548.	
	UPN/BKL/OMK/SSP/	7300.	386.	6829.	14526.	
	BRG/BKL/OMK/SSP/	7300.	380.	6826.	14290.	
	UPN/BRG/BKL/OMK/SSP/	7300.	380.	6826.	14290.	

No.	Project combination	Annual	target	Average Annual Release		
		IRRG (Mcm)	HP (MW)	IRRG (Mcm)	HP (Mcm)	
301	TSC/BKL/OMK/SSP/	7300.	381.	6791.	14355.	
	UPN/TSC/BKL/OMK/SSP/	7300.	383.	6790.	14419.	
	BRG/TSC/BKL/OMK/SSP/	7300.	377.	6756.	14204.	
	UPN/BRG/TSC/BKL/OMK/SSP/	7300.	377.	6756.	14204.	
	NSG/OMK/SSP/	7300.	212.	6674.	7973.	
	UPN/NSG/OMK/SSP/	7300.	212.	6675.	7973.	
	BRG/NSG/OMK/SSP/	7300.	218.	6676.	8210.	
	UPN/BRG/NSG/OMK/SSP/	7300.	218.	6679.	8210.	
	TSC/NSG/OMK/SSP/	7300.	236.	6664.	8896.	
	UPN/TSC/NSG/OMK/SSP/	7300.	222.	6671.	8338.	
	BRG/TSC/NSG/OMK/SSP/	7300.	156.	6647.	5862.	
	UPN/BRG/TSC/NSG/OMK/SSP/	7300.	151.	6644.	5674.	
	BKL/NSG/OMK/SSP/	7300.	245.	6660.	9220.	
	UPN/BKL/NSG/OMK/SSP/	7300.		6663.	9112.	
	BRG/BKL/NSG/OMK/SSP/	7300.	198.	6659.	7436.	
	UPN/BRG/BKL/NSG/OMK/SSP/	7300.	192.		7243.	
	TSC/BKL/NSG/OMK/SSP/	7300.	213.	6671.	8016.	
	UPN/TSC/BKL/NSG/OMK/SSP/	7300.	205.	6673.	7715.	
	BRG/TSC/BKL/NSG/OMK/SSP/	7300.	130.	6589.	4901.	
	UPN/BRG/TSC/BKL/NSG/OMK/SSP/	7300.	130.	6581.	4901.	
	MAH/SSP/	7300.	394.	6822.	14849.	
	UPN/MAH/SSP/	7300.	394.	6822.	14828.	
	BRG/MAH/SSP/	7300.	389.	6821.	14634.	
	UPN/BRG/MAH/SSP/	7300.		6821.	14634.	
	TSC/MAH/SSP/	7300.	387.	6821.	14570.	
	UPN/TSC/MAH/SSP/	7300.		6821.	14548.	
	BRG/TSC/MAH/SSP/	7300.	358.	6817.	13478.	
	UPN/BRG/TSC/MAH/SSP/	7300.	358.	6817.	13478.	
	BKL/MAH/SSP/	7300.	394.	6822.	14828.	
	UPN/BKL/MAH/SSP/	7300.	393.	6821.	14806.	
	BRG/BKL/MAH/SSP/	7300.	388.	6821.	14591.	
	UPN/BRG/BKL/MAH/SSP/	7300.	388.	6821.	14591.	
	TSC/BKL/MAH/SSP/	7300.	385.	6820.	14505.	
	UPN/TSC/BKL/MAH/SSP/	7300.	385.	6820.	14505.	
	BRG/TSC/BKL/MAH/SSP/	7300.		6816.	13258.	
	UPN/BRG/TSC/BKL/MAH/SSP/	7300.	352.	6816.	13258.	
	NSG/MAH/SSP/	7300.	208.	6730.	7823.	
	UPN/NSG/MAH/SSP/	7300.	208.	6730.	7823.	
	BRG/NSG/MAH/SSP/	7300.	208.	6738.	7823.	
	UPN/BRG/NSG/MAH/SSP/	7300.	208.	6738.	7823.	
	TSC/NSG/MAH/SSP/	7300.	208.	6730.	7823.	
	UPN/TSC/NSG/MAH/SSP/	7300.	208.	6730.	7823.	
	BRG/TSC/NSG/MAH/SSP/	7300.	200.	6706.	7544.	
	UPN/BRG/TSC/NSG/MAH/SSP/	7300.	200.	6704.	7544.	

Table 6.5 Continued

No.	Project combination	Annual t	arget	Average Annual Release		
		IRRG (Mcm)	HP (MW)	IRRG (Mcm)	HP (Mcm)	
	BKL/NSG/MAH/SSP/	7300.	208.	6730.	7823.	
346	UPN/BKL/NSG/MAH/SSP/	7300.	208.	6730.	7823.	
347	BRG/BKL/NSG/MAH/SSP/	7300.	208.	6738.	7823.	
348	UPN/BRG/BKL/NSG/MAH/SSP/	7300.	208.	6738.	7823.	
349	TSC/BKL/NSG/MAH/SSP/	7300.	208.	6730.	7823.	
350	UPN/TSC/BKL/NSG/MAH/SSP/	7300.	208.	6730.	7823.	
	BRG/TSC/BKL/NSG/MAH/SSP/	7300.	200.	6688.	7541.	
	UPN/BRG/TSC/BKL/NSG/MAH/SSP/	7300.	198.	6679.	7457.	
	OMK/MAH/SSP/	7300.	390.	6854.	14677.	
	UPN/OMK/MAH/SSP/	7300.	390.		14677.	
	BRG/OMK/MAH/SSP/	7300.	382.	6848.	14376.	
	UPN/BRG/OMK/MAH/SSP/	7300.	382.	6848.	14376.	
	TSC/OMK/MAH/SSP/	7300.	382.	6821.	14376.	
	UPN/TSC/OMK/MAH/SSP/	7300.	378.	6820.	14226.	
	BRG/TSC/OMK/MAH/SSP/	7300.	330.	6813.	12421.	
	UPN/BRG/TSC/OMK/MAH/SSP/	7300.	330.	6813.	12421.	
	BKL/OMK/MAH/SSP/	7300.	389.	6853.	14656.	
	UPN/BKL/OMK/MAH/SSP/	7300.	389.	6853.	14634.	
	BRG/BKL/OMK/MAH/SSP/	7300.	382.	6837.	14376.	
	UPN/BRG/BKL/OMK/MAH/SSP/	7300.	382.	6837.	14376.	
365	TSC/BKL/OMK/MAH/SSP/	7300.	376.	6820.	14140.	
366		7300.	373.	6819.	14053.	
367	BRG/TSC/BKL/OMK/MAH/SSP/	7300.	321.	6812.	12099.	
		7300.	321.	6812.	12099.	
	NSG/OMK/MAH/SSP/	7300.	204.	6689.	7672.	
370	UPN/NSG/OMK/MAH/SSP/	7300.	204.	6674.	7672.	
371	BRG/NSG/OMK/MAH/SSP/	7300.	204.	6683.	7672.	
	UPN/BRG/NSG/OMK/MAH/SSP/	7300.	204.	6683.	7672.	
	TSC/NSG/OMK/MAH/SSP/	7300.	208.	6698.	7823.	
	UPN/TSC/NSG/OMK/MAH/SSP/	7300.	204.	6691.	7672.	
	BRG/TSC/NSG/OMK/MAH/SSP/	7300.	165.	6659.	6211.	
	UPN/BRG/TSC/NSG/OMK/MAH/SSP/	7300.	165.	6656.	6211.	
	BKL/NSG/OMK/MAH/SSP/	7300.	205.	6698.	7715.	
	UPN/BKL/NSG/OMK/MAH/SSP/	7300.	204.	6685.	7672.	
	BRG/BKL/NSG/OMK/MAH/SSP/	7300.	204.	6683.	7672.	
	UPN/BRG/BKL/NSG/OMK/MAH/SSP/	7300.	204.	6681.	7672.	
	TSC/BKL/NSG/OMK/MAH/SSP/	7300.	220.	6666.	8274.	
	UPN/TSC/BKL/NSG/OMK/MAH/SSP/	7300.	204.	6695.	7672.	
	BRG/TSC/BKL/NSG/OMK/MAH/SSP/	7300.	140.	6610.	5266.	
	UPN/BRG/TSC/BKL/NSG/OMK/MAH/SSP/	7300.	140.	6599.	5266.	
	MAJ/SSP/	7300.	414.	6820.	15580.	
		7300.	407.	6819.	15322.	
	UPN/MAJ/SSP/	7300.	406.	6812.	15279.	
	BRG/MAJ/SSP/	7300.	406.	6812.	15279.	
308	UPN/BRG/MAJ/SSP/	7300.	400.	0012.	10210.	

No.	Project combination	Annual	target	Averag Rele	e Annual ase
		IRRG (Mcm)	HP (MW)	IRRG (Mcm)	HP (Mcm)
389	TSC/MAJ/SSP/	7300.	409.	6814.	15407.
	UPN/TSC/MAJ/SSP/	7300.	409.	6811.	15407.
	BRG/TSC/MAJ/SSP/	7300.	402.	6750.	15150.
	UPN/BRG/TSC/MAJ/SSP/	7300.	402.	6750.	15150.
	BKL/MAJ/SSP/	7300.	413.	6819.	15537.
	UPN/BKL/MAJ/SSP/	7300.	412.	6817.	15515.
	BRG/BKL/MAJ/SSP/	7300.		6812.	15236.
	UPN/BRG/BKL/MAJ/SSP/	7300.	405.	6812.	15236.
	TSC/BKL/MAJ/SSP/	7300.	406.	6815.	15300.
	UPN/TSC/BKL/MAJ/SSP/	7300.	409.	6811.	15386.
	BRG/TSC/BKL/MAJ/SSP/	7300.	401.	6746.	15085.
	UPN/BRG/TSC/BKL/MAJ/SSP/	7300.	401.	6746.	15085.
	NSG/MAJ/SSP/	7300.	200.	6668.	7544.
	UPN/NSG/MAJ/SSP/	7300.		6668.	7544.
	BRG/NSG/MAJ/SSP/	7300.	200.	6682.	7544.
	UPN/BRG/NSG/MAJ/SSP/	7300.	200.		
	TSC/NSG/MAJ/SSP/	7300.	228.	6663.	8596.
	UPN/TSC/NSG/MAJ/SSP/	7300.	227.	6666.	8553.
	BRG/TSC/NSG/MAJ/SSP/	7300.	130.	6639.	4901.
	UPN/BRG/TSC/NSG/MAJ/SSP/	7300.	130.	6638.	4901.
	BKL/NSG/MAJ/SSP/	7300.	237.	6658.	8919.
	UPN/BKL/NSG/MAJ/SSP/	7300.	228.	6664.	8596.
	BRG/BKL/NSG/MAJ/SSP/	7300.	200.	6671.	7544.
	UPN/BRG/BKL/NSG/MAJ/SSP/	7300.		6665.	7544.
	TSC/BKL/NSG/MAJ/SSP/	7300.	208.	6665.	7844.
414	UPN/TSC/BKL/NSG/MAJ/SSP/	7300.		6666.	7844.
415	BRG/TSC/BKL/NSG/MAJ/SSP/	7300.	130.	6617.	4901.
416	UPN/BRG/TSC/BKL/NSG/MAJ/SSP/	7300.	130.	6611.	4901.
417	OMK/MAJ/SSP/	7300.	386.	6830.	14548.
	UPN/OMK/MAJ/SSP/	7300.	386.	6830.	14540.
419	BRG/OMK/MAJ/SSP/	7300.	378.		14248.
420	UPN/BRG/OMK/MAJ/SSP/	7300.	378.	6828.	14248.
421	TSC/OMK/MAJ/SSP/	7300.	383.	6791.	14419.
	UPN/TSC/OMK/MAJ/SSP/	7300.	382.	6791.	14376.
423	BRG/TSC/OMK/MAJ/SSP/	7300.		6756.	14226.
	UPN/BRG/TSC/OMK/MAJ/SSP/	7300.	384.	6749.	14441.
425	BKL/OMK/MAJ/SSP/	7300.	386.	6830.	14514.
426	UPN/BKL/OMK/MAJ/SSP/	7300.	385.	6830.	14497.
427	BRG/BKL/OMK/MAJ/SSP/	7300.	378.	6816.	14248.
428	UPN/BRG/BKL/OMK/MAJ/SSP/	7300.	378.	6816.	14248.
429	TSC/BKL/OMK/MAJ/SSP/	7300.	381.	6789.	14333.
430	UPN/TSC/BKL/OMK/MAJ/SSP/	7300.	382.	6780.	14376.
431	BRG/TSC/BKL/OMK/MAJ/SSP/	7300.	376.	6753.	14161.
	UPN/BRG/TSC/BKL/OMK/MAJ/SSP/	7300.	376.	6753.	14161.

Table 6.5 Continued

No.	Project combination	Annual t	Annual target		Average Annual Release		
		IRRG (Mcm)	HP (MW)	IRRG (Mcm)	HP (Mcm)		
433	NSG/OMK/MAJ/SSP/	7300.	181.	6666.	6826.		
434	UPN/NSG/OMK/MAJ/SSP/	7300.	183.	6666.	6877.		
435	BRG/NSG/OMK/MAJ/SSP/	7300.	192.	6674.	7221.		
436	UPN/BRG/NSG/OMK/MAJ/SSP/	7300.	159.	6654.	5996.		
437	TSC/NSG/OMK/MAJ/SSP/	7300.	218.	6654.	8210.		
438	UPN/TSC/NSG/OMK/MAJ/SSP/	7300.	162.	6655.	6100.		
439	BRG/TSC/NSG/OMK/MAJ/SSP/	7300.	130.	6558.	4901.		
440	UPN/BRG/TSC/NSG/OMK/MAJ/SSP/	7300.	130.	6554.	4901.		
441	BKL/NSG/OMK/MAJ/SSP/	7300.	213.	6643.	8016.		
	UPN/BKL/NSG/OMK/MAJ/SSP/	7300.	196.	6651.	7393.		
443	BRG/BKL/NSG/OMK/MAJ/SSP/	7300.	148.	6634.	5588.		
	UPN/BRG/BKL/NSG/OMK/MAJ/SSP/	7300.	130.	6627.	4901.		
445	TSC/BKL/NSG/OMK/MAJ/SSP/	7300.	184.	6653.	6920.		
446		7300.	172.	6654.	6469.		
447	BRG/TSC/BKL/NSG/OMK/MAJ/SSP/	7300.	130.	6539.	4901.		
448	UPN/BRG/TSC/BKL/NSG/OMK/MAJ/SSP/	7300.	130.	6527.	4901.		
449	MAH/MAJ/SSP/	7300.	395.	6813.	14866.		
450	UPN/MAH/MAJ/SSP/	7300.	394.	6813.	14828.		
451	BRG/MAH/MAJ/SSP/	7300.	389.	6812.	14634.		
452	UPN/BRG/MAH/MAJ/SSP/	7300.	389.	6812.	14634.		
453	TSC/MAH/MAJ/SSP/	7300.	387.	6812.	14570.		
454	UPN/TSC/MAH/MAJ/SSP/	7300.	386.	6812.	14548.		
455	BRG/TSC/MAH/MAJ/SSP/	7300.	354.	6807.	13323.		
456	UPN/BRG/TSC/MAH/MAJ/SSP/	7300.	354.	6807.	13323.		
457	BKL/MAH/MAJ/SSP/	7300.	394.	6813.	14832.		
458	UPN/BKL/MAH/MAJ/SSP/	7300.	393.	6813.	14806.		
459	BRG/BKL/MAH/MAJ/SSP/	7300.	388.	6812.	14591.		
460	UPN/BRG/BKL/MAH/MAJ/SSP/	7300.	388.	6813.	14591.		
	TSC/BKL/MAH/MAJ/SSP/	7300.	385.	6812.	14484.		
	UPN/TSC/BKL/MAH/MAJ/SSP/	7300.	385.	6812.	14475.		
	BRG/TSC/BKL/MAH/MAJ/SSP/	7300.	348.	6807.	13108.		
	UPN/BRG/TSC/BKL/MAH/MAJ/SSP/	7300.	348.	6807.	13108.		
	NSG/MAH/MAJ/SSP/	7300.	208.	6692.	7840.		
	UPN/NSG/MAH/MAJ/SSP/	7300.	208.	6692.	7840.		
	BRG/NSG/MAH/MAJ/SSP/	7300.	208.	6701.	7840.		
	UPN/BRG/NSG/MAH/MAJ/SSP/	7300.	208.	6701.	7840.		
	TSC/NSG/MAH/MAJ/SSP/	7300.	208.	6702.	7840.		
	UPN/TSC/NSG/MAH/MAJ/SSP/	7300.	208.	6698.	7840.		
	BRG/TSC/NSG/MAH/MAJ/SSP/	7300.	188.	6680.	7092.		
	UPN/BRG/TSC/NSG/MAH/MAJ/SSP/	7300.	188.	6677.	7092.		
	BKL/NSG/MAH/MAJ/SSP/	7300.	208.	6702.	7840.		
	UPN/BKL/NSG/MAH/MAJ/SSP/	7300.	208.	6702.	7840.		
	BRG/BKL/NSG/MAH/MAJ/SSP/	7300.	208.	6701.	7840.		
	UPN/BRG/BKL/NSG/MAH/MAJ/SSP/	7300.	208.	6701.	7840.		

No.	Project combination	Annual t	target	Average Annua Release	
		IRRG (Mcm)	HP (MW)	IRRG (Mcm)	HP (Mcm)
477	TSC/BKL/NSG/MAH/MAJ/SSP/	7300.	208.	6701.	7840.
	UPN/TSC/BKL/NSG/MAH/MAJ/SSP/	7300.	208.	6700.	7840.
	BRG/TSC/BKL/NSG/MAH/MAJ/SSP/	7300.	188.	6661.	7092.
480		7300.	174.	6661.	6555.
481		7300.	390.	6845.	14677.
	UPN/OMK/MAH/MAJ/SSP/	7300.	390.	6845.	14677.
	BRG/OMK/MAH/MAJ/SSP/	7300.	382.	6831.	14372.
	UPN/BRG/OMK/MAH/MAJ/SSP/	7300.	382.	6831.	14372.
	TSC/OMK/MAH/MAJ/SSP/	7300.	378.	6811.	14248.
	UPN/TSC/OMK/MAH/MAJ/SSP/	7300.	374.	6810.	14097.
	BRG/TSC/OMK/MAH/MAJ/SSP/	7300.	325.	6803.	12240.
488	UPN/BRG/TSC/OMK/MAH/MAJ/SSP/	7300.	325.	6803.	12240.
	BKL/OMK/MAH/MAJ/SSP/	7300.	389.	6845.	14634.
	UPN/BKL/OMK/MAH/MAJ/SSP/	7300.	388.	6845.	14591.
	BRG/BKL/OMK/MAH/MAJ/SSP/	7300.	381.	6821.	14355.
	UPN/BRG/BKL/OMK/MAH/MAJ/SSP/	7300.	381.	6821.	14355.
	TSC/BKL/OMK/MAH/MAJ/SSP/	7300.	381.	6812.	14355.
	UPN/TSC/BKL/OMK/MAH/MAJ/SSP/	7300.	379.	6811.	14260.
	BRG/TSC/BKL/OMK/MAH/MAJ/SSP/	7300.	331.	6804.	12451.
	UPN/BRG/TSC/BKL/OMK/MAH/MAJ/SSP/	7300.	331.	6804.	12451.
	NSG/OMK/MAH/MAJ/SSP/	7300.	204.	6658.	7689.
	UPN/NSG/OMK/MAH/MAJ/SSP/	7300.	204.	6658.	7689.
	BRG/NSG/OMK/MAH/MAJ/SSP/	7300.	204.	6668.	7689.
	UPN/BRG/NSG/OMK/MAH/MAJ/SSP/	7300.	204.	6668.	7689.
	TSC/NSG/OMK/MAH/MAJ/SSP/	7300.	204.	6674.	7689.
	UPN/TSC/NSG/OMK/MAH/MAJ/SSP/	7300.	204.	6660.	7689.
	BRG/TSC/NSG/OMK/MAH/MAJ/SSP/	7300.	134.	6623.	5029.
	UPN/BRG/TSC/NSG/OMK/MAH/MAJ/SSP/	7300.	134.	6620.	5029.
	BKL/NSG/OMK/MAH/MAJ/SSP/	7300.	204.	6663.	7689.
	UPN/BKL/NSG/OMK/MAH/MAJ/SSP/	7300.	204.	6652.	7689.
	BRG/BKL/NSG/OMK/MAH/MAJ/SSP/	7300.	183.	6652.	6877.
	UPN/BRG/BKL/NSG/OMK/MAH/MAJ/SSP/	7300.	183.	6649.	6877.
	TSC/BKL/NSG/OMK/MAH/MAJ/SSP/	7300.	203.	6649.	7629.
	UPN/TSC/BKL/NSG/OMK/MAH/MAJ/SSP/	7300.	198.	6650.	7457.
	BRG/TSC/BKL/NSG/OMK/MAH/MAJ/SSP/	7300.	134.	6568.	5047.
512		7300.	134.	6557.	5047.

Note : Hydropower targets are firm.

Table 6.5 Concluded

Table 6.6 Simulations results of Phase II combinations

Pro	ject combination		Downstream	most project	
		Tar	get	Rele	ase
		(Mcm)	Hydropower (MW)	Irrigation (Mcm)	Hydropower (Mcm)
1.	RGV	95	4.00	421	313.80
2.	ROS		7.00	1.4	506.67
3.	RGV/ROS	7.0	7.00		506.67
4.	UBH	443		421.34	
5.	BAS		20.00	10	1744.58
6.	RGV/BAS	44	20.00		1744.58
7.	ROS/BAS		20.00	Territoria de la compansa del compansa de la compansa del compansa de la compansa	1744.58
8.	RGV/ROS/BAS		19.20		1641.32
9.	UBH/BAS	0.09853333	20.00	See No. 1	1726.71
10.		134	16.46	1900	1401.89
11.	ROS/UBH/BAS		14.17		1203.28
12.	RGV/ROS/UBH/BAS		16.24	76. 10.	1373.16
13.	CHN	960		933	
14.	SMS	786		736	300 30
15.	STD	212	4.00	199	69
16.	MGL	443		413	
17.	UBL	336	3-	319	lae'i

Table 6.7 Comparative statement of targets for various categories.

SN	Name of	Targets									
	Clubbed Project	Master F	Plan	Mixe	d	22 Year Sim	ulation				
	1103000	Irrigation (Mcm)/(Mha)	Hydro- power (Mw)	Irrigation (Mcm)/(Mha)	Hydro- power (Mw)	Irrigation (Mcm)/(Mha)	Hydro- power (Mw)				
PHA	ASE-I	Elected District				701 (0010)					
1.	UPN	320(0.019)	_	301(0.019)	-	301(0019)					
2.	BRG	3574(0.23)	50	3284(0.23)	50	3584(0.23)	50				
3.	TSC	2762(0.28)	Floor	2480(0.25)	(3)	2480(0,25)	-				
4.	BKL	609(0.106)	0.0	604(0.106)	31	604(0.106)	\prec				
5.	NSG	2294(0.12)	226	2294(0.12)	226	2294(0.12)	226				
6.	OMK	2790(0.15)	132	2790(0.15)	132	2790(0.15)	132				
7.	МАН	3/4 3	94		94	9. 3	94				
8.	MAJ	348(0.03)	-	348(0.03)	4 -1	348(0.03)	-				
9.	SSP	10357(2.12)	415	10357(2.12)	415	7300(1.49)	415				
	XIMUM RGETS	23054(3.06)	917	22434(3.02)	517	19701(2.40)	540				
PH.	ASE-II RGV	133	4		4	577	4				
2.	ROS	4 3	7		7	5 5	7				
3.	UВН	453(0.021)	-	443(0.021)	15	443(0.021)	_				
4.	BAS	305	20	- 1	20	0.7-	20				
5.	CHN	1280(0.082)	I no	645(0.041)	A	960(0.061)	-				
6.	SMS	980(0.065)	-	786(0.052)	D:	786(0.052)	-				
7.	STD	645(0.051)	4	212(0.017)	4	212(0.017)	4				
8.	MGL	457(0.052)	-	443(0.052)	-	443(0.052)	-				
9.	UBL	346(0.022)	=	336(0.022)	1, 7,	336(0.022)	-				
	XIMUM RGETS	4161(0.293)	35	2865(0.205)	31	3180(0.225)	31				

Table 6.8 Typical demand patterns for various cases.

S.N.	Period		Mixed T	argets		Si	mulation	Target	s	Ma	ster Pl	an Targ	ets
		Pha	se I	Phas	e II	Pha	se I	Phase	II	Pha	se I	Phas	e II
							Hydro- power						
T1	1	4350	70	350	10	4350	70	350	10	4350	70	1000	5
	2	8700	100	800	20	8700	100	350	10	8700	300	2000	20
	3	16500	320	1600	30	16500	320	1500	30	16500	620	3100	25
	4	22438	490	2865	31	19700	510	3180	30	23054	910	4161	35
T2	1	2350	30	350	10	2350	30	350	10	2350	30	350	10
	2	4350	70	800	20	4350	70	800	20	4350	70	800	20
	3	7350	90	1200	25	7350	90	1200	25	7350	90	1200	25
	4	9700	100	1700	30	9700	100	1700	30	9700	100	1700	30
	5	16500	320	2265	30	16500	420	2265	30	16500	320	2565	30
	6	22438	490	2865	31	19700	490	3180	31	23054	910	4161	31
T3	1	2350	30	350	10	2350	30	350	10	2350	30	350	10
	2	4350	70	600	15	4350	70	600	15	4350	70	800	15
	3	7350	90	900	20	7350	90	900	20	7350	90	1200	20
	4	9700	100	1200	25	9700	100	1200	25	9700	100	1700	25
	5	11700	150	1700	27	11700	150	1700	27	11700	150	2700	27
	6	16500	220	2065	30	13500	420	2065	30	16500	420	3065	30
	7	19700	350	2265	30	15700	450	2265	30	19700	650	3565	30
	8	22438	520	2865	31	19700	510	3180	31	23054	910	4161	31

Table 6.9(a) Various commonly considered allowable deficits/excesses and penalty costs (Options)

Def	ficit	Exc	cess	Pena	lty	Remarks
Irri- gation (Mcm)	Hydro- power (Mw)	Irri- gation (mcm)	Hydro- power (Mw)	Irri- gation	Hydro- power	
0	0	0	0	0.00	0.00	No penalty
100	10	100	10	0.15	1.65	
100	5	100	5	0.01	0.50	
200	10	200	10 15	0.02	1.00	
300	15 20	300 400	20	0.005	0.25	
500	25	500	25	0.0025	0.50	
700	35	700	35	0.009	0.45	
900	45	900	45	0.025	1.10	
1000	50	1000	50	0.03	1.25	
1200	60	1200	60	0.001	0.10	
1300	6.5	1300	65		. 100	
1500	75	1500	75		N. 1964	3,52
2000	100	2000	100		17.73	0.00
slabs	100					1 1
(i) Two						
100	5	300	15			400
500	25	800	40			
	ree slabs					
100	5	100	5			
500	25	500	25			
1000	50	1000	50			

Note: Penalty is in Rs. Crores per unit of Mcm for irrigation and per unit of Mw for hydropower.

Table 6.9(b) Finalised values and classes of allowances and penalties

Notation for	Deficit	Deficit/excess Notation Penalty		Remarks			
	Irri- s gation	Hydr powe		for type of penalty		Hydro- power	
ADEO, AEXO	0	0		PNO	0.00	0.0	
ADE1, AEX1	100	5 or	10	PN1	0.01	0.5	
ADE2, AEX2	200	5 or	10	PN2	0.02	1.0	
ADE3, AEX3	300	15 or	30	PN3	0.03	1.25	
ADE4, AEX4	400	10 or	20	PN4	0.15	1.65	
ADE5, AEX5	500	25 or	50	177 1			
ADE6, AEX6	800	40 or	80	her had i			
ADE7, AEX7	1000 5	0 or 1	00				
ADE8	ADE1 ar	nd ADE5		PN5	PN1 and	PN3	2 slabs
AEX8	AEX1 ar	nd AEX5			N. W.	No.	2 slabs
ADE9	ADE3 ar	d ADE6		PN6	PN2 and	PN4	2 slabs
AEX9	AEX3 ar	nd AEX6				100	2 slabs
ADE10	ADE1, ADE5	and A	DE7	PN7	PN1, PN2	and PN4	3 slabs
AEX10	AEX1, AEX5	and A	EX7	1. 107			3 slabs


```
A - Phase I,
B - Phase II,
1 - Mixed targets,
2 - Simulation targets,
3 - Master plan targets,
T1 - 4 planning periods,
T2 - 6 planning periods, and
T3 - 8 planning planning periods.
Thus, CASE-A1(T1) indicates Phase I, mixed targets and 4 planning
periods.
Likewise,
                       Phase I,
CASE-A1(T2) indicates
                                 mixed targets and 6 planning
periods.
                       Phase I, mixed targets and 8 planning
CASE-A1(T3) indicates
periods.
CASE-A2(T1) indicates Phase I, simulation targets and 4 planning
periods.
CASE-A2(T2) indicates Phase I, simulation targets and 6 planning
periods.
CASE-A2(T3) indicates Phase I, simulation targets and 8 planning
periods.
CASE-A3(T1) indicates Phase I, master plan targets and 4 planning
periods.
CASE-A3(T2) indicates Phase I, master plan targets and 6 planning
periods.
CASE-A3(T3) indicates Phase I, master plan targets and 8 planning
periods.
CASE-B1(T1) indicates Phase II, mixed targets and 4 planning
periods.
CASE-B1(T2) indicates Phase II, mixed targets and 6 planning
periods.
CASE-B1(T3) indicates Phase II, mixed targets and 8 planning
periods.
CASE-B2(T1) indicates Phase II, simulation targets and 4 planning
periods.
CASE-B2(T2) indicates Phase II, simulation targets and 6 planning
periods.
CASE-B2(T3) indicates Phase II, simulation targets and 8 planning
periods.
CASE-B3(T1)
                       Phase II, master plan targets and 4
           indicates
planning periods.
CASE-B3 (T2)
            indicates
                       Phase
                              II,
                                   master plan targets and 6
planning periods.
CASE-B3 (T3)
            indicates Phase II, master plan targets and 8
planning periods.
```

Table 6.11 Sequencing of Phase I projects.

	Period	Dema	nd	Sequence of	Total	Capacity
limit, deficit,		Irri-	Hydro-	-	Irri-	Hydro-
excess & penalties		gation	power	added	gation	power
CASE-A1: Phase I proj	ects fo	or mixed	target	s.		
CASE-A1(T1) [i]						
Next period demand	1	4350	70	TSC/OMK	5270	131
as upper limit, with	2	8700	100 U	PN/BKL/NSG/MAJ	8797	275
ADEO-PNO and	3	16500	320	SSP	19154	447
AEXO-PNO; FMIN=810.5	4	22438	490	BRG/MAH	22438	532.
				4.7		
[j] Same sequencing a[k] Same sequencing a	nd FMII	N as abo	ve for	ADE4-PN4 and A	EX2-PN2	2.
[1]	na Prizi	v as abo	VE 101	ADEO FNO and A	DAJ-FIVO	, .
Last period demand	1	4350	70	TSC/OMK	5270	131
as upper limit, with	2	8700		PN/BKL/NSG/MAJ		275
ADEO-PNO and	3	16500	320	SSP	19154	447
AEXO-PNO; FMIN=810.5	4	22438	490	BRG/MAH	22438	532.2
AEAU-FNU, FMIN=810.5	4	22430	490	BRG/ PIAIT	22430	332
<pre>[m] Same sequencing a [n]</pre>	nd FMII	N as abo	ve for	ADE-PN4 and AE	X2-PN2.	
Next period demand	1	4350	70	TSC/OMK	5270	131
as upper limit, with	2	8700	100	UPN/BRG	8855	171.
ADE10-PN7 and	3	16500	320	SSP	19212	550.
AEX10-PN7; FMIN=787.1		22438		KL/NSG/MAH/MAJ		532.
[0]	4	22430	490 B	KL/NSG/MAH/MAO	22430	332.
Next period demand	1	4350	70	TSC/OMK	5270	131
as upper limit, with	2	8700	100	UPN/BRG	8855	171.3
	3		420*	SSP	19212	550.6
ADE10-PN7 and	70	16500				532.2
AEX10-PN7; FMIN=787.1	4	22438	490 B	KL/NSG/MAH/MAJ	22430	534
CASE-A1(T2) [i]				10 10		
Next period demand	1	2350	30	BRG	3284	50
as upper limit, with	2	4350	70	UPN/OMK	6375	173
	2		90		8855	171.3
ADEO-PNO and	2	7350		TSC	11129	310.4
AEXO-PNO	5 :	9700	100			
FMIN=1045.2		16500	320	SSP SSP	21486 22438	461. 532.
6.21	6	22438	490	BKL/MAH/MAJ	22438	534.
[j]	7	2250	2.0	OMZ	2700	101
Last period demand	1	2350	30	OMK	2790	131.
as upper limit, with	2	4350	70	TSC	5270	131
ADE0-PN0 and	3	7350	90	BRG	8855	179.
AEXO-PNO	4	9700	100	UPN/BKL/MAJ	9807	171.
FMIN=975.2	5	16500	320	NSG/SSP	22438	439.3 532.3
	6	22438	490	MAH	22438	

Note: FMIN is the present worth of total annual cost of the sequence.

Table 6.11 Continued

Details of upper	Period	Dema	ind	Sequence of		Capacity
limit, deficit,		Irri-	Hydro-	project(s)	Irri-	Hydro-
excess & penalties		gation	power	added	gation	power
[k]						
Next period demand	1	2350	30	BRG	3284	50
as upper limit, with	2	4350	70	UPN/OMK	6375	173
ADE1-PN4 and	3	7350	90	BKL/MAJ	7327	172.5
AEX1-PN4	4	9700	100	TSC	9807	171.2
FMIN=1022.3	5	16500	320	NSG/SSP	22438	439.1
- Mark and a second		22438	490	MAH	22438	532.2
[1] Same sequencing a	and FMI	N as abo	ve for	ADE4-PN4 and A	AEX2-PN2	2.
[m] Next period demand	1	2350	30	BRG	3284	50
as upper limit, with	2	4350	70	UPN/OMK	6375	173
ADE8-PN5 and	3	7350	90	BKL	6979	172.5
AEX9-PN6	1	9700	100	TSC	9459	171.2
FMIN=1023.2	5	16500	320	NSG/SSP	22090	439.1
FMIN=1023.2		22438	490	MAH/MAJ	22438	532.2
[n]	0	22430	490	MAN/MAO	22430	552.2
Next period demand	1	2350	30	TSC	2480	
as upper limit, with	1 2	4350	70	OMK	5270	131
	3	7350	90	BRG	8554	179.3
ADE10-PN7 and	4				10828	317.5
AEX10-PN7		9700	100	NSG		
FMIN=1035.2		16500 22438	320 490 T	SSP JPN/BKL/MAH/MA	21185 J 22438	473.2 532.2
CASE-A1(T3)		22130	150 ,		22130	33411
[i]	1	2250	20	OMY	2790	131.9
Last period demand	1	2350	30	OMK	5270	131.0
as upper limit, with	2	4350	70	TSC		
ADEO-PNO and	3	7350	90	BRG	8855	179.3
AEXO-PNO	4	9700	100	UPN/BKL/MAJ	9807	171.3
FMIN=1475.3		11700	150	NSG	12081	308.9
5 TO 100		16500	220	SSP	22438	439.1
The State of the S	7	19700	350	14311	22438	439.1
	8	22438	520	MAH	22438	532.2
<pre>[j]Same sequencing ar [k]Same sequencing ar [1]</pre>						
Last period demand	1	2350	30	OMK	2790	131.9
as upper limit, with	2	4350	70	TSC	5270	131.0
ADE8-PN5 and	3	7350	90	BRG	8855	179.3
AEX9-PN6	4	9700	100	UPN/BKL	9459	171.3
FMIN=1461.9		11700	150	NSG	11733	308.9
I TILLY-I TOIL, J		16500	220	SSP	22090	439.1
		19700	350	555	22090	439.1
	8	22438	520	MAH/MAJ	22438	532.2
	0	42730	320	PIAIT/ PIAO	22430	334.2

Period	Demand		Sequence of	Total	Capacity
	Irri- gation	Hydro- power	project(s) added	Irri- gation	Hydro- power
	- 619 0				-0.1
1	2350	30	OMK	2790	131.9
2	4350	70	TSC	5270	131.0
3	7350	90	NSG	7544	280
4	9700	100	BRG	10828	317.5
5	11700	150	UPN/BKL	11733	308.9
6	16500	220	SSP	22090	439.1
7	19700	350	-	22090	439.1
8	22438	520	MAH/MAJ	22438	532.2
jects f	or simul	ation ta	argets.	5	
	1 2 3 4 5 6 7 8	1 2350 2 4350 3 7350 4 9700 5 11700 6 16500 7 19700 8 22438	Trri- Hydro- gation power 1 2350 30 2 4350 70 3 7350 90 4 9700 100 5 11700 150 6 16500 220 7 19700 350 8 22438 520	1 2350 30 OMK 2 4350 70 TSC 3 7350 90 NSG 4 9700 100 BRG 5 11700 150 UPN/BKL 6 16500 220 SSP 7 19700 350	Trri- Hydro- project(s) Trri- gation power added gation 1 2350 30 OMK 2790 2 4350 70 TSC 5270 3 7350 90 NSG 7544 4 9700 100 BRG 10828 5 11700 150 UPN/BKL 11733 6 16500 220 SSP 22090 7 19700 350 - 22090 8 22438 520 MAH/MAJ 22438

CASE-A2(T1)	20			1 1 10	12	
Next period demand	1	4350	70	TSC/OMK	5270	131
as upper limit, with	2	8700	100	UPN/BKL/NSG/MAJ	8817	275
ADEO-PNO and	3	16500	320	SSP	16117	447
AEX0-PN0; FMIN=810.1	4	19702	510	BRG/MAH	19701	540.1
Last period demand as upper limit, with ADEO-PNO and AEXO-PNO; FMIN=810.1	1 2 3 4	4350 8700 16500 19702	70 100 320 510	UPN/BKL/NSG/MAJ SSP	5270 8817 16117 19701	131 275 447 540.1

[j] Same sequencing and FMIN as above for ADE4-PN4 and AEX2-PN2. [k] Same sequencing as above for ADE8-PN5 and AEX9-PN6 with FMIN=822.7 [1] 70 TSC/OMK 5270 Next period demand 4350 131 8854 179.3 as upper limit, with 2 8700 100 BRG 320 UPN/BKL/NSG/MAJ/SSP 19701 447 ADE4-PN4 and 16500 540.1 510 MAH 19701 AEX2-PN2; FMIN=842.4 4 19702 [m]TSC/OMK 5270 131 70 4350 Next period demand 179.3 8854 100 BRG 2 8700 as upper limit, with 447.7 18796 3 16500 320 NSG/MAJ/SSP ADE10-PN7 and 510 UPN/BKL/MAH 19701 540.1 AEX10-PN7; FMIN=831.3 19702 [n]70 TSC/OMK 5270 131 4350 Next period demand 179.3 100 BRG 8854 2 8700 as upper limit, with 447.7 420* NSG/MAJ/SSP 18796 ADE10-PN7 and 3 16500 540.1 UPN/BKL/MAH 19701 AEX10-PN7; FMIN=831.3 19702 510 4

Details of upper	Period	Dema		Sequence of	Total Capaci	
limit, deficit, excess & penalties		Irri- gation	Hydro-	project(s) added	Irri- gation	Hydro- power
CASE-A2(T2)						
[i]				20.5.2	0000	171 (
Next period demand	1	2350	30	OMK	2790	131.
as upper limit, with	2	4350	70	TSC	5270	131
ADEO-PNO and	3	7350	90	BRG	8855	171.
AEXO-PNO	4	9700	100	UPN/BKL	9759	179.
FMIN=924.2	-	16500	420	SSP	17509	556.
FMIN=924.2		19700	490	NSG/MAH/MAJ	19701	540.
[j]	-0.0			mb a	2504	50
Next period demand	1	2350	30	BRG	3584	
as upper limit, with	2	4350	70	UPN/BKL/MAH	4489	143
ADE4-PN4 and	3	7350	90	TSC/MAJ	7317	143.
AEX2-PN2	4	9700	100	NSG	9611	286.
FMIN=1065	5	16500	420	SSP	16911	460.
FMIN-1003	6	19700	490	OMK	19701	540.
[k]	70.1	2250	20	DDC	3584	50
Next period demand	1	2350	30	BRG	4188	50
as upper limit, with	2	4350	70	BKL	6978	180.
ADE8-PN5 and	3	7350	90	OMK		179.
AEX9-PN6	4	9700	100	UPN/TSC	9759	
FMIN=1029.1	5	16500	420	NSG/SSP	19353	447.
	6	19700	490	TAM/HAM	19701	540.
[1]	-	2250	30	TSC	2480	-
Next period demand	+	2350		OMK	5270	181
as upper limit, with	2	4350	70		8854	179
ADE10-PN7 and	3	7350	90	BRG	9759	179
AEX10-PN7	4	9700	100	UPN/BKL		447
FMIN=1013.7	5	16500	420	NSG/SSP	16353	
F 33. 1	6	19700	490	MAH/MAJ	19701	540
CASE-A2(T3)			929	12	9 7-5	
[i]				1000000	0.000	
Next period demand	1	2350	30	OMK	2790	131
as upper limit, with	2	4350	70	TSC	5270	131
ADEO-PNO and	3	7350	90	BRG	8855	179
AEXO-PNO	4	9700	100	UPN/BKL	9759	179
FMIN=1468.7	5	11700	150	NSG	12053	316
	- 6	13500	420	SSP	19353	447
	7	15700	450	MAH	19353	546
				MAJ	19701	540
	8	19700	510	LAM	19701	54

Details of upper	Period	Dema	ınd	Sequence of	Total	Capacity
limit, deficit, excess & penalties		Irri- gation	Hydro- power		Irri- gation	Hydro- power
[j]						
Last period demand	1	2350	30	OMK	2700	171 0
as upper limit, with	2	4350	70	BRG	2790	131.9
ADEO-PNO and	3	7350	90		6374	181
AEXO-PNO	4	9700	100	UPN/BKL/MAJ	7627	180.5
FMIN=1646.1		11700		NSG	9921	331.1
11111-1010.1			150	SSP	17221	461.3
		13500	420		17221	461.3
		15700	450	- mag / 1447 44	17221	461.3
[k]	8 .	19700	510	TSC/MAH	19701	540.1
Next period demand	1	2250				
	1	2350	30	BRG	3584	50
as upper limit, with	2	4350	70	OMK	6374	181
ADE4-PN4 and	3	7350	90	UPN/BKL	7279	180.5
AEX2-PN2	4	9700	100	TSC	9759	179.2
FMIN=1611.3		11700	150	NSG	12053	316.9
Phys. (200)		13500	420	SSP	19353	447.1
		15700	450		19353	447.1
207	8	19700	510	MAH/MAJ	19701	540.1
[1]					100 AL	
Last period demand	1	2350	30	OMK	2790	131.9
as upper limit, with	2	4350	70	TSC	5270	131
ADE4-PN4 and	3	7350	90	BRG	8854	179.3
AEX2-PN2	4	9700	100	UPN/BKL	9759	179.2
FMIN=1462.1	5 1	1700	150	NSG	12053	316.9
	6 1	3500	420	SSP	19353	447.1
the state of the s		5700	450		19353	546
La sel		9700	510	MAH/MAJ	19701	540.1
[m] Same sequencing a	s above	for AD	E10-PN7	and AEX10-PN	7 with F	MIN=1475
[n] Next period demand	1	2250	2.0	DDG.	255	
	1	2350	30	BRG	3584	50
as upper limit, with	2	4350	70	OMK	6374	181
ADE8-PN5 and	3	7350	90	UPN/MAJ	7023	181
AEX9-PN6	4	9700	100	TSC	9503	179.3
FMIN=1609.6		1700	150	NSG	11797	318.4
		3500	420	SSP	19097	448.6
		5700	450		19097	448.6
	8 1	9700	510	BKL/MAH	19701	540.1

Details of upper	Period	Dema	nd	Sequence of	Total	Capacity
limit, deficit,		Irri-	Hydro-		Irri-	Hydro-
excess & penalties		gation	power	added	gation	power
[0]						
Last period demand	1	2350	30	OMK	2790	131.9
as upper limit, with	2	4350	70	TSC	5270	131
ADE8-PN5 and	3	7350	90	BRG	8854	179.
AEX9-PN5	4	9700	100	UPN/MAJ	9508	179.
FMIN=1459.6	5	11700	150	NSG	11797	
		13500	420	SSP	19097	
		15700	450		19097	
		19700	510	BKL/MAH	19701	
[p]					1-6 (1.00)	
Next period demand	1	2350	30	TSC	2480	-
as upper limit, with		4350	70	OMK	5170	131
ADE10-PN7 and	3	7350	90	BRG	8854	179.
AEX10-PN7	4	9700	100	UPN/BKL	9759	179.
FMIN=1515.6	5	11700	150	NSG	12053	
		13500	420	SSP	19353	
3 74 (5.7		15700	450	MAH	19353	
No. (25-7)		19700	510	MAJ	19701	
CASE-A3: Phase I proc CASE-A3(T1)	jects f	or maste	r plan	targets.	- 1	
[i]						
Next period demand	1	4350	70	TSC/OMK	5552	131.9
as upper limit, with		8700		JPN/BKL/NSG/MA		357.9
ADE0-PN0 and		16500	620	SSP	19132	772.9
AEX0-PN0; FMIN=811.6	4	23054	910	BRG/MAH	23054	916.8
Last period demand	1	4350	70	TSC/OMK	5552	131.9
as upper limit, with	2	8700		JPN/BKL/NSG/MAJ		357.9
ADEO-PNO and		16500	620	SSP	19132	
AEXO-PNO; FMIN=811.6		23054	910	BRG/MAH	23054	916.8
[1:1 Camp and and all and a second a second and a second	THE THE TA					220.0

[k] Same sequencing and FMIN as above for ADE4-PN4 and AEX2-PN2.

4350

8700

16500

23054

2

3

Next period demand

ADE1-PN4 and

as upper limit, with

AEX1-PN2; FMIN=794.5

70

300

620

TSC/OMK

BRG

SSP

910 UPN/BKL/NSG/MAH/MAJ 23054 916.

Table 6.11 Continued

5552

9126

19483

131.9

181.9

596.9

[[]m] Same sequencing and FMIN as above for ADE4-PN4 and AEX2-PN2.

[[]n] Same sequencing as above for ADE8-PN5 and AEX9-PN6 with FMIN=792

^[0] Same sequencing as above for ADE10-PN7 and AEX10-PN7 with FMIN=884.

Details of upper	Period	Dema	ind	Sequence of	Total	Capacity
limit, deficit, excess & penalties		Irri- gation	Hydro- power		Irri- gation	Hydro-
CASE-A3(T2)						
[i] Next period demand	4	2250	2.0	220	2554	
as upper limit, with	1 2	2350	30	BRG	3574	50
ADEO-PNO and	3	4350 7350	70	UPN/BKL/MAH	4503	143.9
AEXO-PNO and	4	9700	90	TSC/MAJ	7613	143.9
FMIN=1016.3		16500	100 320	OMK SSP	10403	275.8
PMIN-1010.5		23054	890		20760	690.8
[j]	0	23054	890	NSG	23054	916.8
Next period demand	1	2350	30	BRG	3574	50
as upper limit, with		4350	70	UPN/BKL/MAH	4503	143.9
ADE1-PN4 and	3	7350	90	TSC TSC	7265	
AEX1-PN2	4	9700	100	OMK	10055	143.9
FMIN=1012.6		16500	320	SSP		275.8
FMIN-1012.6	1.00				20412	690.8
14/30	0	23054	890	NSG/MAJ	23054	916.8
[k] Same sequencing an $[1]$	nd FMIN	as abov	e for Al	DE4-PN4 and A	EX2-PN2	
Next period demand	1	2350	30	BRG	3574	50
as upper limit, with	2	4350	70	UPN/MAJ	4242	50
ADE8-PN5 and	3	7350	90	OMK	7032	181.9
AEX9-PN6	4	9700	100	TSC	9794	181.9
FMIN=985.2		16500	320	SSP	20151	596.9
		23054	890	BKL/NSG/MAH	23054	916.8
[m]		23031	030	DKH/NGG/PAH	23034	210.0
Next period demand	1	2350	30	TSC	2762	-
as upper limit, with	2	4350	70	OMK	5552	131.9
ADE10-PN7 and	3	7350	90	BRG	9126	181.9
AEX10-PN7	4	9700	100	UPN/MAJ	9794	181.9
FMIN=975.2		16500	320	SSP	20151	596.9
		23054	890	BKL/NSG/MAH	23054	916.8
C) CE 12/E2)				100	_ >	
CASE-A3(T3) [i]	200	-		100		-12
Next period demand	1	2350	30	BRG	3574	50
as upper limit, with	2	4350	70	UPN/BKL/MAH	4503	143.9
ADEO-PNO and	3	7650	90	TSC/MAJ	7613	143.9
AEXO-PNO	4	9700	100	OMK	10403	275.8
FMIN=1593.8		L1700	150	NSG	12697	501.8
		L6500	420	SSP	23054	916.8
		0700	CEO		23054	916.8
	7	L9700	650 910	-	23034	210.0

Table 6.11 Continued

Details of upper	Period	Dema	nd	Sequence of	Total	Capacity
limit, deficit, excess & penalties		Irri- gation	Hydro- power	project(s) added	Irri- gation	Hydro- power
[j]						
Last period demand	1	2350	30	OMK	2790	131.9
as upper limit, with	2	4350	70	TSC	5552	131.9
ADEO-PNO and	3	7650	90	BRG	9126	181.9
AEXO-PNO	4	9700	100	UPN/MAJ	9794	181.9
FMIN=1465.9		11700	150	NSG	12088	407.9
C. COPILINI		16500	420	SSP	22445	822.9
		19700	650	-	22445	822.9
		23054	910	BKL/MAH	23054	916.8
[1] Same sequencing as [m] Next period demand as upper limit, with	s above	2350 4350	30 70	OMK TSC	2790 5552	131.9 131.9
ADE4-PN4 and	3	7650	90	BRG	9126	
AEX2-PN2	4	9700	100	UPN/MAJ	9794	181.9
FMIN=1466.2	5	11700	150	NSG	12088	407.9
FMIN=1400.2	6	16500	420	SSP	22445	822.9
		19700	650	~~~	22445	822.9
		23054	910	BKL/MAH	23054	916.8
[n]	O	23031	177	41.00		
Last period demand	1	2350	30	OMK	2790	131.9
as upper limit, with	2	4350	70	TSC	5552	131.9
ADE8-PN5 and	3	7650	90	BRG	9126	181.9
AEX9-PN6	4	9700	100	UPN	9446	181.9
FMIN=1476.1	5	11700	150	NSG	11740	407.9
11111-111011	6	16500	420	SSP	22097	822.9
1 2 2 2 3	7	19700	650	A CONTRACTOR	22097	822.9
F 186	8	23054	910	BKL/MAH/MAJ	23054	916.8
544.35						

Table 6.11 Concluded

Table 6.12 Sequencing of Phase II projects.

	riod Demand		Sequence of	Total Capaci		
	Irri-	Hydro-	project(s)	Irri-	Hydro	
		gation	power	added	gation	power
jects	for mixe	ed targe	ts.			
1	350	10	RGV/ROS/MGL	443	11	
					27.2	
					27.24	
4	2865	31	UBL/CHN/STD	2865	31.2	
1	350	10	RGV/ROS/LIBI	336	11	
					11	
					30.2	
					31.24	
	2005		0211/ 0111/ 012	2005	32.2	
s abov	e for Al	DE3-PN2	and AEX3-PN2	with FM	IN=17 1 .8	
1	350	10	RGV/ROS/UBL	336	11	
2	800	20	STD/MGL	991	15	
3	1500	20*	SMS	1777	15	
4	2865	31	UBH/BAS/CHN	2865	31.24	
1	350	10	RGV/ROS		11	
				786	11	
3					30.2	
4	2865	31	UBH/CHN/STD	2865	31.24	
1	350	10	RGV/ROS/UBL	336	11	
			The second secon		11	
					30.2	
4	2865	31			31.24	
0.0			100	01		
			Lat. 139			
1	350	10	BAS/SMS	786	20	
2		20			20	
					28	
					34.2	
					34.2	
					31.24	
	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 3	1 350 2 800 3 1500 4 2865 1 350 2 800 3 1500 4 2865 as above for Al 1 350 2 800 3 1500 4 2865 1 350 2 800 3 1500 4 2865 1 350 2 800 3 1500 4 2865	1 350 10 2 800 20 3 1500 25 4 2865 31 1 350 20 3 1500 25 4 2865 31 1 350 10 2 800 20 3 1500 25 4 2865 31 1 350 10 2 800 20 3 1500 20* 4 2865 31 1 350 10 2 800 20 3 1500 20* 4 2865 31 1 350 10 2 800 20 3 1500 30 4 2865 31 1 350 10 2 800 20 3 1500 30 4 2865 31	1 350 10 RGV/ROS/MGL 2 800 20 UBH/BAS 3 1500 25 SMS 4 2865 31 UBL/CHN/STD 1 350 20 MGL 2 800 20 MGL 2 800 20 MGL 3 1500 25 BAS/SMS 4 2865 31 UBH/CHN/STD as above for ADE2-PN2 and AEX2-PN2 as above for ADE3-PN2 and AEX3-PN2 1 350 10 RGV/ROS/UBL 2 800 20 STD/MGL 2 800 20 STD/MGL 3 1500 20* SMS 4 2865 31 UBH/BAS/CHN 1 350 10 RGV/ROS 2 800 20 SMS 3 1500 30 BAS/MGL/UBL 4 2865 31 UBH/CHN/STD 1 350 10 RGV/ROS 2 800 20 SMS 3 1500 30 BAS/MGL/UBL 4 2865 31 UBH/CHN/STD 1 350 10 RGV/ROS/UBL 2 800 20 SMS 3 1500 30 BAS/MGL/UBL 4 2865 31 UBH/CHN/STD 1 350 10 RGV/ROS/UBL 2 800 20 SMS 3 1500 30 BAS/MGL/UBL 3 1200 20 SMS 3 1500 30 BAS/MGL 4 2865 31 UBH/CHN/STD 1 350 10 RGV/ROS/UBL 5 RGV/STD 1 350 10 ROS/MGL 6 RGV/STD 1 350 10 ROS/MGL 7 ROS/MGL	1 350 10 RGV/ROS/MGL 443 2 800 20 UBH/BAS 886 3 1500 25 SMS 1672 4 2865 31 UBL/CHN/STD 2865 1 350 10 RGV/ROS/UBL 336 2 800 20 MGL 779 3 1500 25 BAS/SMS 1565 4 2865 31 UBH/CHN/STD 2865 As above for ADE2-PN2 and AEX2-PN2 with FM: As above for ADE3-PN2 and AEX3-PN2 with FM: As above for ADE3-PN2 and AEX3-PN2 with FM: A 350 10 RGV/ROS/UBL 336 2 800 20 STD/MGL 991 3 1500 20* SMS 1777 4 2865 31 UBH/BAS/CHN 2865 1 350 10 RGV/ROS 2 800 20 STD/MGL 991 3 1500 20* SMS 1777 4 2865 31 UBH/BAS/CHN 2865 1 350 10 RGV/ROS 2 800 20 SMS 786 3 1500 30 BAS/MGL/UBL 1565 4 2865 31 UBH/CHN/STD 2865 1 350 10 RGV/ROS/UBL 336 3 1500 30 BAS/MGL/UBL 1565 4 2865 31 UBH/CHN/STD 2865	

Details of upper	Period					Capacity
limit, deficit, excess & penalties		Irri- gation	Hydro- power	project(s) added	Irri- gation	Hydro- power
[j]						
Next period demand	1	350	10	RGV/ROS/SMS	786	11
as upper limit, with		800	20	-	786	11
ADE2-PN4 and	3	1200	25	BAS/MGL	1229	30.2
		1700	30	STD/UBL	1777	34.2
AEX2-PN2	4			CHN	2422	34.2
FMIN=305.7	5	2265 2865	30	UBH	2865	31.2
[k] Same sequencing a	and EMI	N as abo	ove for	ADE4-PN4 and	AEX2-PN	2
[1] Same sequencing	as abov	e for AI	E10-PN7	and AEX10-PN	7 with	FMIN=326
[m]	1	250	1.0	DCW/DOC		11
Next period demand	1	350	10	RGV/ROS	786	11
as upper limit, with		800	20	SMS		
ADE8-PN5 and	3	1200	25	UBL	1122	11
AEX9-PN6	4	1700	30	BAS/CHN	1767	30.2
FMIN=301.4	5	2265	30	MGL	2210	30.2
100	6	2865	31	UBH/STD	2865	31.2
CASE-B1(T3)						7
Last period demand	1	350	10	RGV/ROS/SMS	786	11
as upper limit, with	2	600	15	STD	998	15
ADEO-PNO and		900	20	BAS	998	34.2
AEXO-PNO	3	1200	25	UBL	1334	34.2
		1700	27	MGL	1777	34.2
FMIN=412,1	5		30	CHN	2422	34.2
		2065		CHIV		34.2
See 25 1	7	2265	30	11011	2422	
2.11	8	2865	31	UBH	2865	31.2
[j]	1	250	1.0	DOLL /DOG /ONG	700	11
Next period demand	1	350	10	RGV/ROS/SMS	786	11
as upper limit, with	2	600	15		786	11
ADE2-PN4 and	3	900	20	MGL	1229	11
AEX2-PN2	4	1200	25	BAS	1229	30.2
FMIN=409.2	5	1700	27	CHN	1874	30.2
	6	2065	30	UBL	2210	30.2
7.0	7	2265	3.0	STD	2422	34.2
	8	2865	31	UBH	2865	31.2
[k] Same sequencing		D	A	ADE4-PN4 and		2

Details of upper	Period	Demand		Sequence of	Total	Capacity
limit, deficit,		Irri-	4		Irri-	Hydro-
excess & penalties		gation	power	added	gation	power
[1]						
Next period demand	1	350	10	ROS		7
as upper limit, with		600	15	SMS	786	7
ADE8-PN5 and	3	900	20	5715	786	7
AEX9-PN6	4	1200	25	BAS/MGL	1229	27
FMIN=399.6	5	1700	27	UBL	1565	27
	6	2065	30	RGV/CHN	2210	30.2
	7	2265	30	RGV/ CIIIV	2210	30.2
	0	2865	31	UBH/STD	2865	
[m]		2005	31	ODD/SID	2005	31.2
Next period demand	7	350	10	RGV/ROS/MGL	443	11
as upper limit, with	2	600	15	UBH	886	11
ADE10-PN7 and	3	900		ndu		
AEX10-PN7 and	3		20	DAC /IIDI	886	11
FMIN=464.1	4	1200	25	BAS/UBL	1222	27.2
FM1N=464.1	5	1700	27	SMS	2008	27.2
67.65		2065	30	STD	2220	31.2
	7	2265	30	CYYYY	2220	31.2
	8	2865	31	CHN	2865	31.2
CASE-B2: Phase II pro CASE-B2(T1) [i] Next period demand		350	10	RGV/ROS/MGL	443	11
as upper limit, with	2	800	20	UBH/BAS	886	27.24
ADEO-PNO and	3	1500	30	SMS/STD	1884	31.2
AEXO-PNO; FMIN=202.8	4	3180	31	UBL/CHN	3180	31.2
[j]		3233	7.	ona, cin.		
Next period demand	1	350	10	RGV/ROS/UBL	336	11
as upper limit, with		800	20	MGL	779	11
ADE2-PN4 and	3	1500		BAS/SMS	1565	30.2
AEX2-PN2; FMIN=182.8	4	3180	31	UBH/CHN/STD	3180	31.2
[k] Same sequencing a [l] Same sequencing a	and FMII	N as abo	ve for	ADE4-PN4 and	AEX2-PN2	
[m]	1	350	10	RGV/ROS/UBL	336	11
Next period demand	7		10			11
as upper limit, with	2	800	20 20*	CHN	1296	15
ADE4-PN4 and	3	1500		STD	1508	
AEX2-PN2; FMIN=175	4	3180	31 U.	BH/BAS/SMS/MG	TI STON	31.2

Period			Sequence of		Capacity
	Irri-	Hydro-	project(s)	Irri-	Hydro-
	gation	power	added	gation	power
1		10		50.0	11
		20			11
3	1500				30.2
4	3180	31 (UBH/STD/MGL/UBL	3180	31.24
1	350	10	RGV/ROS/CHN	960	11
2	800	20	BAS	960	30.2
3	1500	30	SMS	1746	30.2
2 4	3180	31 (31.24
1	350	10	RGV/ROS/SMS	786	11
2	800	20	100		11
3	1500	25*	BAS/CHN	1746	30.2
4	3180	31	UBH/CHN/STD	3180	31.24
			22.U.J.	375	
1	350	10	BAS/SMS	786	20
2	800	20	UBL	1122	20
3	1200	25	RGV/STD	1334	28
4	1700	30	ROS/MGL	1777	34.2
5	2265	30	CHN	2737	34.2
6	3180	31	UBH	3180	31.24
1	350	1.0	DCV /DOC /CMC	706	11
			RGV/ROS/SMS		11
			DAC/CUN		30.2
			BAS/ CHIN		30.2
			CED /IIDI		
6	3180	31	UBH/MGL	3180	34.2 31.24
and FMI	N as abo	ove for	ADE4-PN4 and A	EX2-PN	2.
1	350	10	RGV/ROS		11
2				960	11
3					11
4			BAS/SMS		30.2
-					30.2
6	3180	31	UBH/STD/MGL	3180	31.24
	2 3 4 1 2 3 4 1 2 3 4 5 6	gation 1	1 350 10 2 800 20 3 1500 30 4 3180 31 1 1 350 10 2 800 20 3 1500 30 3 1500 30 3 1500 30 3 1500 30 3 1500 30 3 1500 30 3 180 31 1 350 10 2 800 20 3 1500 25* 4 3180 31 1 350 10 2 800 20 3 1200 25 4 1700 30 5 2265 30 6 3180 31 1 350 10 2 800 20 3 1200 25 4 1700 30 5 2265 30 6 3180 31 and FMIN as above for 1 350 10 2 800 20 3 1200 25 4 1700 30 5 2265 30 6 3180 31 and FMIN as above for	gation power added 1 350 10 RGV/ROS 2 800 20 SMS 3 1500 30 BAS/CHN 4 3180 31 UBH/STD/MGL/UBL 1 350 10 RGV/ROS/CHN 2 800 20 SMS 3 1500 30 SMS 2 4 3180 31 UBH/STD/MGL/UBL 1 350 10 RGV/ROS/SMS 2 800 20 3 1500 25* BAS/CHN 4 3180 31 UBH/CHN/STD 1 350 10 BAS/SMS 2 800 20 UBL 3 1200 25* RGV/STD 4 1700 30 ROS/MGL 5 2265 30 CHN 5 2265 30 CHN 6 3180 31 UBH 1 350 10 RGV/ROS/SMS 2 800 20 4 1700 30 FOS/MGL 5 2265 30 CHN 3 1200 25 BAS/CHN 4 1700 30 STD/UBL 3 1200 25 BAS/CHN 5 2265 30 STD/UBL 3 1200 25 BAS/CHN 6 3180 31 UBH/MGL 8 1 350 CHN 9 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gation power added gation 1 350 10 RGV/ROS - 2 800 20 SMS 786 3 1500 30 BAS/CHN 1746 4 3180 31 UBH/STD/MGL/UBL 3180 1 350 10 RGV/ROS/CHN 960 2 800 20 BAS 960 2 4 3180 31 UBH/STD/MGL/UBL 3180 1 350 10 RGV/ROS/SMS 786 2 800 20 - 786 3 1500 25* BAS/CHN 1746 4 3180 31 UBH/CHN/STD 3180 1 350 10 BAS/SMS 786 2 800 20 UBL 1122 3 1200 25* RGV/STD 1334 4 1700 30 ROS/MGL 1777 5 2265 30 CHN 2737 6 3180 31 UBH 3180 1 350 10 RGV/ROS/SMS 786 2 800 20 UBL 3122 3 1200 25 RGV/STD 1334 4 1700 30 ROS/MGL 1777 5 2265 30 CHN 2737 6 3180 31 UBH 3180 1 350 10 RGV/ROS/SMS 786 2 800 20 - 786 3 1200 25 BAS/CHN 1746 4 1700 30 - 1746 5 2265 30 STD/UBL 2294 6 3180 31 UBH/MGL 3180 and FMIN as above for ADE4-PN4 and AEX2-PN 1 350 10 RGV/ROS - 2 800 20 CHN 960 3 1200 25 - 960 3 1200 25 - 960 3 1200 25 - 960 3 1200 25 - 960 3 1200 25 - 960 3 1200 25 - 960

Details of upper limit, deficit, excess & penalties	Period	Demand		Sequence of	Total	Capacity
		Irri- gation	Hydro- power		Irri- gation	Hydro- power
[m]						
Next period demand	1	350	10	RGV/ROS/SMS	786	11
as upper limit, with	2	800	20	1007/105/5115	786	11
ADE10-PN7 and	3	1200	25	BAS/MGL	1229	30.2
AEX10-PN7	4	1700	30	CHN	2189	30.2
FMIN=322.8	5	2265	30	UBL	2525	
	6	3180	31	UBH/STD	3180	30.2 31.24
CASE-B2(T3)		17			2222	02.0.
[i]	0.00	MED C	10 20	1 7 7 L		
Last period demand	1	350	10	RGV/ROS/CHN	960	11
as upper limit, with	2	600	15	BAS	960	30.2
ADEO-PNO and	3	900	20		960	30.2
AEXO-PNO	4	1200	25	UBL	1296	30.2
FMIN=389.4	4	1700	27	SMS	2082	30.2
	6	2065	30	0110	2082	30.2
3.77 (32.1)	7	2265	30	STD	2294	34.2
19 60 1	8	3180	31	UBH/MGL	3180	31.24
[j]		3100	3.4	OBII/TIGE	3100	31.21
Next period demand	1	350	10	RGV/ROS/SMS	786	11
as upper limit, with	2	600	15		786	11
ADE2-PN4 and	3	900	20	UBL	1122	11
AEX2-PN2	4	1200	25	BAS	1122	30.2
FMIN=395.2	5	1700	27	CHN	2082	30.2
211211-33312	6	2065	30	CIIIV	2082	30.2
and the	7	2265	30	STD	2294	34.2
	8	3180	31	UBH/MGL	3180	31.24
Data diamental				Solid Land		
[k] Same sequencing a	and FMIN	as abo	ve for A	ADE4-PN4 and	AEX2-PN2	2 ,
Next period demand	1	350	10	ROS	1734	7
as upper limit, with	2	600	15	SMS	786	7
ADE8-PN5 and	3	900	20		786	7
AEX9-PN6	4	1200	25	BAS/MGL	1229	27
FMIN=393.4	5	1700	27	Disc, GGE	1229	27
-,,,,,,,	6	2065	30	RGV/CHN	2189	30.2
	7		30	KGV/CHN		
	-0	2265		IIDII / COPP / IIDI	2189	30.2
	8	3180	31	UBH/STD/UBL	3180	31.24

Details of upper	Period			Sequence of	Total	Capacity
limit, deficit,		Irri-	Hydro-	project(s)	Irri-	Hydro
excess & penalties		gation	power	added	gation	power
[m]						
Next period demand	1	350	10	RGV/ROS/MGL	443	11
as upper limit, with	2	600	15	STD	655	15
ADE10-PN7 and	3	900	20	UBH	1098	15
AEX10-PN7	4	1200	25	-	1098	15
FMIN=464.6	5	1700	27	BAS/CHN	2058	31.2
	6	2065	30		2058	31.2
	7	2265	30	UBL	2394	31.2
	8	3180	31	SMS	3180	31.2
			444.44			
CASE-B3: Phase II pro	ojects :	for mast	er plan	targets.	2	
[i]	0.00			N. C. W.	Y	
Last period demand	1	1000	5	ROS/CHN	1280	7
as upper limit, with	2	2000	20	BAS/SMS	2260	27
ADEO-PNO and	3	3100	25	STD/UBL	3251	31
AEXO-PNO; FMIN=216.2	4	4161	35	RGV/UBH/MGL	4161	35
[j] Same sequencing $[k]$	as above	e for AD	E10-PN7	and AEX10-PN7	with 1	FMIN=229
Next period demand	1	1000	5	RGV/STD/UBL	991	8
as upper limit, with	2	2000	20	ROS/CHN	2271	15
ADE2-PN4 and	3	3100	25	SMS	3251	15
AEX2-PN2; FMIN=206.6	4	4161	35	UBH/BAS/MGL	4161	35
[1] Same sequencing a	and FMI	N as abo	ve for i	ADE4-PN4 and A	AEX2-PN	2.
[m]	- 1	4000			St. F	7
Next period demand	1	1000	5	ROS/CHN	1280	7
as upper limit, with		2000	20	RGV/STD	1925	15
ADE3-PN2 and	3	3100	25	SMS	2905	15
AEX3-PN2; FMIN=189.6	4	4161	35 UI	BH/BAS/MGL/UBI	4161	35
[n] Same sequencing a	as above	e for AD	E8-PN5 a	and AEX9-PN6 w	ith FM	IN = 211
CASE-B3(T2)	y 29	TE US	TECH	W. CA		
Next period demand	1	350	10	BAS/MGL	457	20
as upper limit, with	2	800	20	UBL	803	20
ADEO-PNO and	3	1200	25	RGV/STD	1448	28
AEXO-PNO	4	1700	30	ROS/UBH	1901	35
FMIN=318.5	5	2565	30	SMS	2881	35
	6	4161	35	CHN	4161	3.5

Details of upper limit, deficit, excess & penalties	Period	Demand		Sequence of	Total	Capacity
		Irri- gation	Hydro- power		Irri- gation	Hydro- power
					-	-
[j]						
Next period demand	1	350	10	ROS/STD	645	11
as upper limit, with	2	800	20	RGV/UBL	991	15
ADE2-PN4 and	3	1200	25	MGL	1448	15
AEX2-PN2	4	1700	30	BAS/CHN	2728	35
FMIN=285.3	5	2565	30	-	2728	35
	6	4161	35	UBH/SMS	4161	35
<pre>[k] Same sequencing a [1]</pre>	and FMIN	N as abo	ve for A	ADE4-PN4 and	AEX2-PN2	2.
Next period demand	1	350	10	ROS/STD	CAF	1.7
as upper limit, with	2	800	20		645	11
ADE8-PN5 and	3	1200	25	RGV	645	15
AEX9-PN6	4	1700	30	UBL	991	15
FMIN=271.7	5	2565		BAS/CHN	2271	35
FMIN-271.7	6		30	MGL	2728	35
[m]	6	4161	35	UBH/SMS	4161	35
Next period demand	1	350	10	ROS/STD	645	11
as upper limit, with	2	800	20	RGV/UBL	991	15
ADE10-PN7 and	3	1200	25	MGL	1448	
AEX10-PN7	4	1700	30	UBH/BAS		15
FMIN=319.5	5	2565	30		1901	35
211211-515.5	6	4161	35	SMS	2881	35
	Q	4101	3.5	CHN	4161	35
CASE-B3(T3)						
[i]		4.00				
Last period demand	1	350	10	ROS/STD	645	11
as upper limit, with	2	800	20	RGV/CHN	1925	15
ADEO-PNO and	3	1200	20	BAS	1925	35
AEXO-PNO	4	1700	25	17 50	1925	35
FMIN=402.7	5	2700	27	SMS	2905	35
4 14	6	3065	30	UBL	3251	35
2.00	7	3565	30	MGL	3708	35
	8	4161	35	UBH	4161	35
4.7		777		Table 6	.12 Cont	inued
	100		PP-LL.	Table 6	. 12 CONC	Inued
	W7			CAN		
	100					

Details of upper	Period	Dema	nd	Sequence of	Total	Capacity
limit, deficit,		Irri-	Hydro-	project(s)	Irri-	Hydro-
excess & penalties		gation	power	added	gation	
[j]						
Next period demand	1	350	10	ROS/STD	645	11
as upper limit, with		800	20	RGV	645	15
ADE2-PN4 and	3	1200	20	SMS	1625	15
AEX2-PN2	4	1700	25	-	1625	15
FMIN=411.9	5	2700	27	BAS/CHN	2905	35
	6	3065	30	UBL	3251	35
	7	3565	3.0	MGL	3708	35
	8	4161	35	UBH	4161	35
[k] Same sequencing $[1]$	and FMII		ve for 2	3.500	AEX2-PN2	2.
Next period demand	1	350	10	RGV/STD	645	8
as upper limit, with	2	800	20	700.47	645	8
ADE8-PN5 and	3	1200	20	UBL	991	8
AEX9-PN6	4	1700	25	BAS/CHN	2271	28
FMIN=418.2	5	2700	27		2271	28
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	3065	30	ROS/SMS	3251	35
	7	3565	30	MGL	3708	35
	8	4161	35	UBH	4161	35
[m]					- 1	
Next period demand	1	350	10	ROS/STD	645	11
as upper limit, with	2	800	20	RGV	645	15
ADE10-PN7 and	3	1200	20	SMS	1625	15
AEX10-PN7	4	1700	25		1625	15
FMIN=460.3	5	2700	27	CHN	2905	15
The second second	6	3065	30	BAS/UBL	3251	35
- 12 To 1	7	3565	30	MGL	3708	35
E 184 3	8	4161	35	UBH	4161	35
1645 (Start)				2.51	7.4.7.4	7.7

Table 6.12 Concluded

ANALYSIS AND CONCLUSIONS

7.1 GENERAL

The analysis in this chapter is primarily based on the models formulated in the Chapters 3 and 4. These models were applied to the Narmada river system in India described in Chapter 5. The Chapter 6 gives computational procedure and other data needed. The proposed, ongoing and existing major reservoirs were considered and were numbered sequentially from upstream to downstream. In all 30 major reservoirs were taken into account for analysis out of which, 10 are situated on the main river (in series with each other on main river), the remaining 20 on nineteen tributaries, which include 2 in series on a tributary, and the other 18 are independent of each other and situated on eighteen tributaries (in parallel). Thus, it is a series-parallel configuration. The computations were basically done in the following manner.

Initially, line diagram showing relative locations of all the 30 major reservoirs in the river basin was prepared. Then, assuming that all reservoirs are existing in the system, each individual reservoir was simulated starting from the uppermost reservoir and by adding the immediate downstream reservoir in

parallel or in series by also accounting for the upstream effects for fixing the final simulated irrigation targets from every reservoir with irrigation.

Secondly, Phase I reservoirs were isolated and the line diagram showing the relative locations of the 14 reservoirs only was prepared. From this, it was possible to combine some of the similar neighbouring reservoirs and representing the system by calling them projects, totally nine in numbers only, for limiting the size of the problem. The simulation runs were then undertaken for only 375 combinations (due to presence of some parallel projects) out of all the 512 combinations resulting from these 9 projects possible starting from upstream to downstream by adding a project one by one in a systematic manner for finding the final simulated firm hydropower targets from every reservoir with hydropower in each project combination. In each case, the irrigation targets were kept constant as obtained in the previous para. sequencing of the Phase I projects was done using the sequencing model.

Finally, Phase II reservoirs were isolated and the line diagram showing relative locations of the 16 Phase II reservoirs only was prepared. Like in Phase I, it was again possible to combine some of the similar neighbouring reservoirs and representing the system again by nine projects. Then simulation runs were undertaken for only 17 combinations (due to presence of

some parallel projects) out of all the possible 512 combinations as explained for Phase I for finding the final simulated firm hydropower target from every reservoir with hydropower in each project combination. In each case, the Phase I projects located at the upstream of the projects appearing in the Phase II combinations were assumed to be present and hence were included in the simulation runs of the corresponding Phase II combinations. Further, sequencing of the Phase II projects was obtained using the sequencing model.

7.2 SIMULATION MODEL RESULTS AND ANALYSIS

7.2.1 Important Features Different from Earlier Studies

The important features of the detailed simulation model runs in this work which are noteworthy and different from earlier studies carried out by others are as follows:

- (i) Reservoir by reservoir analysis was carried out using detailed simulation model. A total system consisting of a large number of reservoirs(30) was analysed for deciding annual irrigation targets of reservoirs with irrigation and initial and the final annual firm hydropower targets for reservoirs with hydropower.
- (ii) The effect of the presence of upstream reservoir(s) on the performance of the downstream reservoir, especially on the firm hydropower targets of reservoirs with hydropower has

been analysed and quantified by considering multireservoir, multipurpose operation policy for reservoirs.

- (iii) All the possible alternative reservoir combinations were simulated using detailed simulation model for the purpose of reservoir/project sequencing model to be used later on. Hence no scope for missing any prospective alternative and also no need for any criteria for discontinuing simulations as specified in some earlier approaches used in sequencing (Kuiper and Ortolano, 1973).
- the potential reservoir sites in a particular river system can be read only once into a file. This stored data can be later on used to determine the intermediate catchment flow (net flow) contribution for every reservoir in a set of reservoirs of any given alternative reservoir combinations to be simulated with ease (here 512 combinations). This reduces the difficult and herculean task of data handling. The subroutine NTFLO computes the net flow at a given site.
- (v) Further, individual variable input data files can be prepared for each reservoir and can be appended easily for any reservoir configuration/combination.
- (vi) Similarly a large number of function subprograms are an essential part for reservoir storage-area-elevation curves in the multireservoir simulation program. In this simulation program, these curves for all the potential

reservoir sites are given in function subprograms (one each for curves of reservoir storage-area, reservoir storage-elevation). These curves can be picked up for any reservoir in a particular reservoir combination. This also reduces the herculean task in simulation.

- (vii) There were obvious difficulties in identification of the project combinations and their constituents due to a large number of these possible combinations. Hence a computer program was prepared to handle this task.
- (viii) It is required to carry out simulation runs only for a less number of project combinations out of total 2ⁿ, due to the presence of some parallel reservoirs in the system.

 The particular combinations for which it was required to carry out actual simulation runs could be identified using a computer program developed for this purpose.
- (ix) In general, it is felt that the developed program is a feasible, efficient, flexible, convenient and useful tool for undertaking simulation studies on a multipurpose and multireservoir system.

7.2.2 Discussion of Simulation Model Results

7.2.2.1 Phase I simulations

The detailed simulation model was applied to various alternative configurations of projects (combinations) of Phase I. The results of the Phase I simulations indicating constituents of

the project combinations, usewise simulated targets, and usewise releases are already given in the Table 6.5. In this Phase I a total number of 375 simulation runs were required out of the total 512 project combinations due to presence of some parallel projects. In this Phase I system most of the series reservoirs, namely Narmada Sagar, Omkareshwar, Maheshwar, and Sardar Sarovar are located at the downstream portion of the system and hence the number of combinations for actual simulation runs was found to be very large.

The time phasing of the individual mega reservoirs could not be considered because such consideration would have increased the number of possible combinations enormously. It also would have rendered a lot of difficulties in the preparation of pertaining data files. The Table 7.1 gives insight into the possible number of reservoir combinations for various cases of time phasing of the individual reservoirs, namely, Bargi, Narmada Sagar, Omkareshwar, and Sardar Sarovar. As the concerned series projects are located at the downstream portion of the system this number has become so large.

The effect of presence of upstream reservoir(s) on the downstream reservoir was realised in terms of the variations in the annual firm hydropower targets and average annual releases and also in terms of the number of deficit years for both irrigation and hydropower. Table 7.2 shows the range of firm hydropower targets and releases for series reservoirs.

7.2.2.2 Phase II simulations

The detailed simulation model was applied to various alternative configurations (combinations) of Phase II projects. The results of the Phase II simulations indicating constituents of the project combinations, usewise targets, and usewise releases are already tabulated in the Table 6.6. In this Phase II system all the series reservoirs, namely Raghavpur, Rosra, Basania, and Chinki are located at the upstream portion of the system and hence the number of combinations for actual simulation runs is found to be very small. It was required to carry out simulation runs only for 17 project combinations out of total 512 due to presence of some parallel projects in the system. For this case, it was not required to consider any time phasing of individual reservoirs owing to small sizes of the reservoirs. The effect of presence of upstream reservoir(s) on the downstream reservoir was realised in terms of the variations in the annual firm hydropower targets and average annual releases and also in terms of the number of deficit years for both irrigation and hydropower. Table 7.3 shows the range of firm hydropower targets and releases for such downstream series reservoirs.

7.3 DP SEQUENCING MODEL RESULTS AND ANALYSIS

7.3.1 Important Features Different from Earlier Studies

The important features of DP sequencing model in this work

which are noteworthy and different from earlier studies carried out by others are as follows:

- (i) Identification of possible states (project combinations/configurations) and their constituents for computations of DP sequencing by computer program was a herculean task as the number of possible states increases geometrically with every additional project. The subroutines CODE(NP) and CODE1(NP) have been developed and found to be very effective in handling this task.
- (ii) Since time is involved in sequencing, it is essentially a backward dynamic programming process, and the same has been followed.
- (iii) Multiple facility system and multiple uses of water have been considered in the analysis.
- (iv) All possible states (project combinations) are investigated in every period hence the optimality is guaranteed.
- (v) The annual OMR cost estimates of the reservoir, irrigation works, and hydropower at a site are based on their respective average annual release (yield) from the reservoir as obtained in simulation.
- (vi) A penalty cost for allowing the system demand to go unsatisfied when the total capacity (target supplied) provided is less than the required demand in every period within allowable shortage has been included in the model.
- (vii) An upper limit above the system demand upto which an

additional capacity may be provided has been incorporated. A provision for allowing the total capacity provided being exceeded over this upper limit at every period, within an allowable value has also been incorporated. A penalty cost for supplying within this allowable excess of upper limit is considered.

- (viii) Variation in penalty is considered in two ways, (a)
 periodwise and (b) by considering different slabs of
 allowance and applying different penalty in each slab.
- (ix) Once fixed input data (such as targets, releases, costs, etc.) for a particular system are read separately then the program can be used repetitively without hesitation as the number of variable input data (such as demands, upper limits, allowable shortages/excesses, penalty costs, etc.) is small and as such the program can be considered less data intensive.
- (x) The subroutine SERCH writes the results in the form of projects added and total capacity attained by the system at the end of every period.
- (xi) In general, it is felt that the developed program is a feasible, efficient, flexible, convenient and useful tool for obtaining sequencing.

7.3.2 Discussion of DP Model Results

The targets have been considered in three different categories as explained below. First, the simulation category, in

which targets and releases as obtained after relevant simulation runs are considered. Second, the Master Plan category, in which targets are taken purely as per Master Plan provisions and releases are assumed to be equal to targets. Thirdly, the mixed category, in which targets and releases for the three series reservoirs/projects Omkareshwar, Maheshwar and Sardar Sarovar are taken as per Master Plan (for the reasons mentioned in para 6.4.1.1.1) and for the remaining reservoirs as per simulation.

For mixed targets of Phase I, the effect of change in shortage/excess and penalty cost on sequences with short interval of 100 Mcm units in the range (0 Mcm to 2000 Mcm) for irrigation and 10 Mw units in the range (0 Mw to 100 Mw) for hydropower on sequencing was studied in detail. Based on this, the final classes of allowances and penalties for the purpose of analysis were decided and shown in the Table 6.9(b).

Although categorization of the targets and classification of allowances and penalties has been done to develop various expansion scenarios in the absence of the required data available, it is felt that such categorization and classification is adequate for the preinvestment capacity expansion analysis.

Phase I sequencing

The DP sequencing model was applied to 9 Phase I projects and the results were given in the Table 6.11.

Phase II sequencing

The DP sequencing model was applied to 9 Phase II projects and the results were given in the Table 6.12.

The DP sequencing model was made more realistic and practicable by introducing some constraints depicting a few policy and practical aspects, as mentioned in 7.3.1. The comparative statement of sequences for various cases in both the Phases is shown in Table 7.4. Eventhough Phase II system appears to be relatively small in size compared to Phase I system, no attempt was made to deviate from this in order to keep the problem more realistic and close to real life situation in the Narmada river system.

The Table 6.11 and the Table 6.12, gave sequencing of the projects, capacity attained at each period and minimum cost for various cases whereas the Table 7.4 gives the comparison of sequences. After scrutinizing the various planning scenarios arising out of the sequences obtained for various cases, the minimum cost sequences in each target category are selected and recommended. The recommended periodwise sequences of development, total capacity attained and minimum total cost of such recommended sequences for each target category are indicated in the Table 7.6 alongwith the shortage/excess type and the penalty class for the three planning horizons. As more capacity is to be supplied in Phase I the number of planning periods should be kept more than that for Phase II. Accordingly, 8 and 6 planning

periods are suggested respectively for Phase I and Phase II developments keeping in mind the slow pace of ongoing development of Narmada river basin. The Table 7.7 gives the sequences for these recommended planning horizons for each target category and for each Phase. The Table 7.8(a) indicates the details of these sequences. The Figs. 7.1(a),(b); 7.2(a),(b); 7.3(a),(b); 7.4(a),(b); 7.5(a),(b); and 7.6(a),(b) show the schematic representations of these sequences with respect to demand and supply for irrigation and hydropower.

7.3.2.1 Analysis of Phasewise mixed target category sequencing

The Figs. 7.1(a) and (b) present the details of the minimum total annual cost (FMIN=Rs. 1461.9 Crores) mixed target category Phase I sequence at Deficit-Penalty class of ADE8-PN5, i.e., allowable irrigation deficit in the range 100 to 500 Mcm and allowable hydropower deficit in the range 5 to 25 Mw and the penalty in the range 0.01 to 0.03 Rs. Crores per Mcm for irrigation and in the range 0.5 to 1.25 Rs. Crores per Mw for hydropower; and Excess-Penalty class AEX9-PN6, i.e., allowable irrigation excess beyond the upper limit in the range 300 to 800 Mcm and allowable hydropower excess beyond the upper limit in the range 15 to 40 Mw and the penalty in the range 0.02 to 0.15 Rs. Crores per Mcm for irrigation and in the range 1.0 to 1.65 Rs. Crores per Mcm for hydropower. These figures indicate almost full irrigation supply by 6th period only, because of appearance of large reservoirs, namely, Omkareshwar, Tawa, Bargi, Narmada Sagar

and Sardar Sarovar in the sequence by that time. The rate of irrigation supply is observed to be uniform and matching with demand upto 5th period beyond which there is a surplus irrigation supply till last period. The hydropower supply is fully achieved by the end of the Phase I planning horizon (8th period) at an almost uniform rate with no addition during 2nd, 4th, and 7th periods in which only irrigation reservoirs are added. The sequence shows surplus in hydropower supply throughout the Phase I planning horizon of 8 periods.

The Figs. 7.2(a) and (b) present the details of the minimum total annual cost (FMIN=Rs. 305.7 Crores) mixed target category Phase II sequence at Deficit-Penalty and Excess-Penalty classes of ADE4-PN4 (allowable irrigation deficit of 400 Mcm with penalty of Rs. 0.15 Crores per Mcm and allowable hydropower deficit of 10 Mw with penalty of 1.65 Crores per Mw) and AEX2-PN2 (allowable irrigation excess beyond the upper limit of 200 Mcm with penalty of Rs. 0.02 Crores per Mcm and allowable hydropower excess beyond the upper limit of 5 Mw with penalty of 1.0 Crores per Mw) respectively. These figures indicate uniform rate of irrigation supply and matching with demand beyond 2nd period. The hydropower supply is observed to be erratic due to less number and small size of Phase II hydropower projects. It also shows 2 no addition periods, i.e., 2nd, and 5th. The reduction in hydropower supply in the last period is due to addition of UBH irrigation project which is situated at the upstream of the BAS hydropower project. The sequence shows almost matching supply and demand throughout

the Phase II planning horizon of 6 periods except for surplus irrigation upto 2^{nd} period and shortage in hydropower during 2^{nd} and 3^{rd} periods.

7.3.2.2 Analysis of Phasewise simulation target category sequencing

The Figs. 7.3(a) and (b) depict the details of the minimum total annual cost (FMIN=Rs. 1468.7 Crores) simulation target category Phase I sequence at Deficit-Penalty and Excess-Penalty classes of ADEO-PNO and AEXO-PNO respectively, i.e., no allowances and no penalty. The Fig. 7.3(a) shows that the availability of full irrigation supply, the rate and the surplus irrigation supplies match with the mixed target category results. The hydropower supply is fully achieved by 7th period at an almost uniform rate with no addition during 2nd and 4th periods in which only irrigation reservoirs are added. The sequence shows surplus in hydropower supply throughout the Phase I planning horizon as in mixed target category result.

The Figs. 7.4(a) and (b) depict the details of the minimum total annual cost (FMIN=Rs. 287.0 Crores) simulation target category Phase II sequence at Deficit-Penalty and Excess-Penalty classes of ADE8-PN5 and AEX9-PN6 respectively (the details of these classes already explained in the previous case). The irrigation as well as hydropower supply is observed to be erratic due to delayed additions of reservoirs such as SMS, UBH

(irrigation) and BAS (hydropower). It also shows 3 no addition periods, i.e., 2nd,3rd, and 5th for hydropower. The sequence shows shortage of irrigation and hydropower supply.

7.3.2.3 Analysis of Phasewise master plan target category sequencing

The Figs. 7.5(a) and (b) present the details of the minimum total annual cost (FMIN=Rs. 1466.2 Crores) master plan target category Phase I sequence at Deficit-Penalty and Excess-Penalty classes of ADE4-PN4 and AEX2-PN2 respectively (the details of these classes already explained in the mixed category case). From Fig. 7.5(a) it is found that the availability of full irrigation supply, the rate and the surplus irrigation supplies also match with mixed target and simulation target categories as seen earlier. The hydropower supply is fully achieved by the end of 8th period at a non-uniform rate with no addition during 2nd, 4th, and 7th periods in which only irrigation reservoirs are added. The surplus in hydropower supply in Phase I planning horizon is similar as obtained earlier.

The Figs. 7.6(a) and (b) present the details of the minimum total annual cost (FMIN=Rs. 285.3 Crores) master plan target category Phase II sequence at Deficit-Penalty and Excess-Penalty classes of ADE4-PN4 and AEX2-PN2 respectively (the details of these classes already explained in the mixed category case). These figures indicate uniform rate of irrigation supply matching

with demand but erratic hydropower supply. The shortage in hydropower supply from 2nd to 5th period is due to delayed appearance of BAS(20 MW) in the sequence. It also shows 3 no addition periods, i.e., 3rd, 5th, and 6th. The sequence shows matching supply and demand with no shortage for irrigation throughout the Phase II planning horizon for surplus irrigation and shortage in hydropower from 2nd to 4th period.

7.3.2.4 Discussion on Combined Phase I and Phase II sequencing

Sequencing with allowances and penalties

After combining the results for Phase I and Phase II and thereby considering the total planning horizon of 14 periods, the Table 7.9 gives the names of the reservoirs to be added in each planning period for the complete system of 30 reservoirs. For a hydropower reservoir, it is possible to use its full potential until the upstream reservoir(s) affecting this potential appear in the sequencing of the system. The Table 7.9 also indicates the hydropower potential, and its availability period for hydropower reservoirs. Figs.7.7(a), (b), and (c); Figs.7.8(a), (b), and (c); and Figs.7.9(a), (b), and (c) show the schematic representation of the combined Phase I and Phase II developments for all the three target categories over the total planning horizon of 14 periods with respect to irrigation(Mcm) demand and supply, hydropower(Mw) demand and supply, and irrigation area(Mha) supply.

Figs. 7.7(a), and (b) present the combined Phase I and Phase

II sequence for mixed target category with total annual cost, FMIN of Rs. 1777.6 Crores over combined planning horizon of 14 periods which includes 8 of Phase I and 6 of Phase II. Figs. 7.8(a), and (b) present the combined Phase I and Phase II sequence for simulation target category with total annual cost, FMIN of Rs. 1755.7 Crores over combined planning horizon of 14 periods. Figs. 7.9(a), and (b) present the combined Phase I and Phase II sequence for master plan target category with total annual cost, FMIN of Rs. 1751.5 Crores over combined planning horizon of 14 periods. For these sequences, barring the time spell between 5th and 8th periods wherein SSP, a large project has been added, the irrigation supply and demand are observed to matching. Hydropower supply is found to be in surplus throughout the planning horizon because of excess supply carried over from Phase I. The Phase I series projects catering to hydropower are going to be affected by those Phase II projects which are located upstream of them. This may result in reduction in subsequent hydropower supply from these projects and adjust the excess supply carried over from Phase I. Demarcation of the two Phases is indicated clearly in each figure. It is to be noted here, that due to the scale effect the Phase II development may not be properly reflected in the combined representations. The Figs. 7.7(c), 7.8(c), and 7.9(c) show the periodwise irrigation supply area fulfilled (in Mha) from the above mentioned sequences alongwith the existing development. The variations are same.

The tradeoff between irrigation and hydropower supply from

all the above mentioned sequences is analysed to study the relation between these water uses. The combined presentation is made in Fig. 7.10 for the recommended sequences. It reveals that the horizontal portion of the tradeoff curve indicates addition of purely irrigation project whereas the vertical portion of such curve reflects addition of purely hydropower project in the given sequence. The figure shows that the trend in tradeoff is almost similar upto the 5th or 6th planning periods. Upto this period reservoirs with medium supply are added. Thereafter there is a sudden large addition of irrigation and hydropower supply due to the presence of SSP in the next period. After this period reservoirs with small supply are added.

Sequencing without allowances and penalties (No Penalty)

In case no allowances are permitted in practice, the Table 7.8(b) gives the sequencing data for the abovementioned categories for no penalty. Figs. 7.11(a), and (b) present the combined Phase I and Phase II sequence for mixed target category with total annual cost, FMIN of Rs. 1804.6 Crores over combined planning horizon of 14 periods which includes 8 of Phase I and 6 of Phase II. Figs. 7.12(a), and (b) present the combined Phase I and Phase II sequence for simulation target category with total annual cost, FMIN of Rs. 1798.9 Crores over combined planning horizon of 14 periods. Figs. 7.13(a), and (b) present the combined Phase I and Phase II sequence for master plan target category with total annual cost, FMIN of Rs. 1784.4 Crores over combined planning horizon of 14 periods. The mixed and simulation

target sequences are almost similar. Phase I development in all the three sequences is similar whereas the Phase II development is varying. The Irrigation demand and supply are found to be matching in case of all sequences except for a short spell, i.e., from 5th to 7th period due addition of the SSP reservoir. The hydropower demand and supply are matching only in case of master plan category sequencing and for the remaining two categories the supply is in surplus.

The combined presentation of tradeoff between irrigation area and hydropower supply is made in Fig. 7.14. The trend is similar to the tradeoff of the recommended sequences with allowances and penalties except that the variation in tradeoff is uniform in Phase II.

7.4 COMPARISON OF RESULTS WITH PROJECT AND MASTER PLAN PROVISIONS

The Provisions

The information pertaining to the development of the Narmada river basin prior to the award of the Narmada Water Disputes Tribunal is obtained from various sources and is presented in the form of the Table 7.5. This includes data on proposed water utilization for irrigation(Mcm), irrigation(Lakh acres), hydropower (Mw of installed capacity) at 60% load factor in every plan period from IVth five year plan(1965-1970) to IXth five year plan(1990-1995) and the names of the reservoirs to be added in

every plan period (total seven periods) from IVth five year plan(1965-1970) to Xth five year plan(1995-2000). This development assumed beginning of preliminary construction works in 1965, i.e, prior to the preparation and revision of Master Plan.

Nevertheless, after the award of the Tribunal there were revisions in the Master Plan for obvious reasons and it was proposed to develop the Narmada valley in two Phases over a span of 45 years between 1979 and 2024. In the first Phase (Phase I, 1979-2000) covering a period of 20 years, it was planned (i) to build facilities for utilising the irrigation potential created by the already completed reservoirs, namely, Barna, Tawa, and Sukta, (ii) to complete the then ongoing Bargi, Matiyari, and Kolar reservoirs, (iii) to accelerate the then newly started in the VIth plan under Narmada Sagar complex reservoirs (comprising Narmada Sagar, Omkareshwar, Maheshwar), Man and Jobat, and (iv) to take up Upper Narmada, Bargi diversion and Chhota Tawa reservoirs and Sardar Sarovar in Gujarat. The line diagram in Fig. 5.3 shows the relative positions reservoirs. In the Phase II of development (2000-2024), the remaining 16 reservoirs were to be taken up so as to complete the development of the Narmada valley by 2024. The line diagram in Fig. 5.4 shows the relative positions of these reservoirs. The phasing due to revision in the Master Plan, however, did not indicate the planwise addition of reservoirs. Further, as stated earlier, the pace of development is very slow and as such there

is further scope for rearrangement in the order of reservoirs to be added and also for extension of the existing planning horizon.

Existing development

The information available to date reveals that the Bargi reservoir is completed in 1971(2nd period) but the infrastructure development is still ongoing, the reservoirs Barna, and Tawa are completed in 1978(3rd period) and Sukta is completed in 1984(4th period).

The Figs. 7.7(c), 7.8(c) and 7.9(c) schematically showed the recommended sequences and existing development in terms of irrigation supply (Mha) fulfilled. The comparison of the recommended sequences (14 periods) with the existing development of the system (as stated earlier) shows that

- (i) Bargi which was expected to come in the 2nd period, appears in the 3rd period,
- (ii) Tawa, and Sukta which were expected to come in the 3rd period, appear in the 2nd period, and
- (iii) Barna, which was expected to come in the $3^{\rm rd}$ period, appears in the $4^{\rm th}$ period.

Thus, the study shows that there are insignificant deviations in the periods of appearance of abovementioned projects.

Old sequencing (before Master Plan revision)

7.10 gives the comparison of the various sequences (orders) of development for capacity expansion of the Narmada reservoir system. In order to facilitate comparison with old sequencing, two periods of the recommended sequences are merged into one period and accordingly results are shown in the Table 7.10. Table 7.11 gives the abbreviations used for reservoirs in old sequencing. Figs.7.15(a),(b),(c),and (d) schematically show these orders of development with respect to irrigation area (Mha) supply. The mega projects such as Narmada Sagar (NSG) and Sardar Sarovar (SSP) are found to be appearing early in the sequences whereas small and moderate size projects are appearing towards the later part of the planning horizon. (seven periods, in this case). For old sequencing each period is of 5 years whereas for the recommended sequences each period should be of 10 years, thereby recommending the planning horizon of 70 years. Looking at the present pace of actual development in the Narmada basin, this extension of planning horizon appropriate and hence necessary.

The Figs. 7.16(a),(b), and (c) show the recommended sequences, percentage demand and supply for both irrigation(Mcm) and hydropower for each of the target category. In terms of the percentages, the irrigation supply and demand for the recommended sequences are observed to be matching throughout the planning horizon except for the 3rd period whereas for the hydropower, demand and supply are parallel throughout the planning horizon

with surplus supply upto $4^{\rm th}$ period. The 80% of the total sequence cost is required by $3^{\rm rd}$ period. The figures clearly show the dominance of Phase I projects in overall development.

The sequencing for actual implementation

Ultimately, the simulation category sequencing is preferred and suggested for implementation due to the following reasons:

- (a) The usewise targets that can be supplied by the various projects have been obtained by using the detailed simulation model developed for this purpose.
- (b) The effect of the upstream projects on the hydropower targets has been quantified using relevant multireservoir operation policy in the detailed simulation model. The same has been duly accounted and used in sequencing model.
- (c) The OMR cost of the project is considered as function of the actual release in simulation category sequencing only thereby making this category sequencing more realistic.
- (d) The major portion of sequence (Phase I) falls under the No allowances-No penalty class. Thus, development follows the demand pattern more closely.

The Table 7.12 shows the zonewise (agroclimatic) development of the basin for the simulation target sequencing (suggested for implementation) alongwith irrigation supply in Mha in each zone. The Upper Zone projects appear in the 3rd, 4th, 9th, 12th, and 14th periods; the Middle Zone projects appear in the 2nd, 4th, 5th, 10th, 12th, and 14th periods; and the Lower Zone projects

appear in the 1st, 6th, 7th, 8th, and 13th periods. By and large, the zonewise distribution of projects as per sequencing appears to be balanced and as per usual expectations in overall development. However, in lower zone there is no addition of any project(s) for 5 periods after appearance of Omkareshwar in the very first period. Lower zone development is almost complete by 8th period because most of the projects are included in Phase I development. For the remaining two zones, the development is evenly spread all over the planning horizon.

A line diagram indicating locations and the period of appearance of the reservoirs for simulation target sequencing (suggested for implementation) is given in Fig. 7.17.

7.5 CONCLUSIONS

In this study an attempt was made to apply the major advances in systems analysis by employing a blend of simulation and sequencing models. These models were effectively used for analysing a complex water resources system successfully.

The problem addressed in this study was of obtaining a sequence of development of the reservoirs in a multipurpose, multifacility system consisting of 30 major reservoirs on the Narmada river in Central India, to meet current and forecasted growth in the demands of water for irrigation and hydropower. The various alternative configurations of these reservoirs were

analysed based on the project proposals and engineering considerations for obtaining the optimal reservoir targets and subsequently the optimal sequencing of these reservoirs.

The approach was to arrive at a suitable methodology to identify the minimum cost sequence of river basin reservoirs subjected to technological, economical and policy constraints. The development has been envisaged in two Phases as stipulated in the Master Plan. The Phase I and the Phase II consisted of 14 and 16 reservoirs respectively. In view of the large number of reservoirs being involved and the planning nature of the present study, the neighbouring similar reservoirs have been suitably clubbed into 9 each and were called projects in both the Phases. A deterministic backward dynamic programming process which is suitable for tackling the sequencing problem, has been adopted in both the Phases. Computer programs were suitably developed and modified and were used for simulation as well as for sequencing of the system.

The final recommended optimal sequences of development, i.e., the capacity expansion path of reservoirs for the Narmada river basin system, the targets (capacity) that can be supplied at every stage (time period), minimum cost of sequence alongwith the shortage/excess type and the penalty class were shown in the Table 7.6, Table 7.7, and Table 7.8(a), and also in the Figs. 7.1 to 7.6. The Table 7.9 gave the names of the reservoirs to be added in each of the total 14 planning periods for the complete

system of 30 reservoirs. It also indicated the hydropower potential, and its availability period for hydropower reservoirs. The Figs.7.7(a),(b),and (c), Figs.7.8(a),(b),and (c), and Figs.7.9(a),(b),and (c) showed the schematic representation of the combined Phase I and Phase II developments and existing development. The Fig.7.10 showed the tradeoff between irrigation and hydropower supply for the recommended sequences. The details of the sequences with no allowances and penalties for the three target categories were enlisted in the Table 7.8(b) and the Figs. 7.11(a), (b); 7.12(a), (b); and 7.13(a), (b) showed these no penalty sequences schematically. The Fig. 7.14 presented the tradeoff between irrigation (Mha) and hydropower supply for these no penalty sequences.

As per the Figs. 7.7(c), 7.8(c), and 7.9(c), the comparison of the sequences with the existing development showed that there are insignificant deviations in the periods of appearance of the existing projects, namely, Bargi, Tawa, Sukta, and Barna. After merging two periods of the recommended sequences into one for the sake of comparison, the Table 7.10 gave the comparison of the various sequences(orders) of development for capacity expansion of the Narmada reservoir system and the Figs. 7.15(a),(b),(c),and (d) schematically showed these orders of development. The Figs. 7.16(a),(b),and (c) showed the recommended sequences, percentage demand and supply for both irrigation(Mcm) and hydropower for each of the target category.

The Table 7.12 showed the agroclimatic zonewise development of the basin for the simulation target sequencing (suggested for implementation) alongwith irrigation supply in Mha in each zone. The zonewise distribution of projects as per sequencing appears to be balanced and as per usual expectations in overall development. The Fig. 7.17 presented the simulation target sequencing (suggested for implementation) in the form of line diagram.

The following observations are noteworthy:

- (i) A detailed simulation model can be effectively used for fixing the annual irrigation targets and also for quantifying the effect of upstream reservoir(s) on annual firm hydropower targets.
- (ii) Presence of an irrigation or a multipurpose reservoir at the upstream reduces the annual firm hydropower target of a given downstream reservoir.
- (iii) Presence of a purely hydropower reservoir at the upstream increases the annual firm hydropower target of a given downstream reservoir.
- (iv) Sequencing is found to be sensitive to the annual cost, mainly operation and maintenance cost (as the annual capital cost is fixed), demand rate, allowable shortage in meeting the demand, upper limit on supplying in excess without penalty, upper limit on allowable excess with penalty, penalty costs for these allowances and the number of planning periods considered.

- (v) The effects of these factors are more pronounced in case of 6 and 8 planning periods as compared to 4 periods.
- (vi) Most commonly, small reservoirs are exchanged in the modified sequence due to changes in these factors.
- (vii) Most commonly, multipurpose reservoir is replaced by another multipurpose reservoir while effecting the modification in the sequence due to changes in these factors.
- (viii) Reservoirs (like Narmada Sagar and Sardar Sarovar)

 are observed to be less sensitive to the changes in

 various factors and tend to occupy almost a fixed position

 in a sequence.
- (ix) The comparison of the recommended sequences with the existing development showed that there are insignificant deviations in the periods of appearance of existing projects, namely, Bargi, Tawa, Sukta, and Barna.
- (x) The simulation target category sequencing is preferred and suggested for implementation.
- (xi) The zonewise distribution of projects as per sequencing suggested for implementation appears to be balanced and as per usual expectations in overall development.

At last to summarize the outcomes of this study, the following conclusions may be drawn:

(i) The Simulation - Optimization models have been applied to a real life water resources system which is under initial stages of development at present.

- (ii) All the possible reservoir combinations are simulated and subsequently considered in the sequencing. This allows to consider all the possible new configurations (possible states) at every stage which can be formulated by adding all the remaining unsequenced prospective reservoirs/projects one by one and selecting among them the most economically feasible reservoir/project which can be sequenced. Hence, the analysis is likely to guarantee the optimal solution.
- (iii) Due to availability of fast and large computing systems, it was possible to simulate all possible reservoir combinations using a big flexible simulation program and further it was also possible to consider all the states (project combinations) in the sequencing program.
- (iv) Due to the incorporation of the aspect of quantification of the effect of the presence of upstream reservoir(s) on the target(s) of the immediate downstream reservoir, the results obtained are more realistic.
- reservoirs are planned on an individual basis. Even in integrated planning of water resources by conventional methods, the choice is limited to a few alternatives which the planner could conceive from his intuition, experience and judgment. Since exhaustive analysis of all the possible combinations of reservoirs involves huge computations, such analysis was seldom attempted in the past. However, nowadays it is very much possible to carry

- out such analysis using modern computing facilities and techniques within reasonable limits of time and efforts.
- (vi) It is felt that the developed programs are efficient, flexible, convenient and useful tools for obtaining sequencing of a large multipurpose, multireservoir system.
- (vii) As stated in Chapter 5, only economic objective has been considered and used as a vehicle only in order to establish the sequencing model as a tool for satisfying the water needs. In this, only capital cost has been accounted although social and environmental costs may have considerable weightage for the Narmada system, in particular, which is in the limelight of controversies nowadays.
- (viii) Based on the conclusions mentioned so far, it can thus be finally concluded that the approach used in the present study is feasible and can be adopted to analyse such similar large and complex river basin planning expansion and sequencing problems as carried out for Narmada river basin.

7.6 SUGGESTIONS FOR FUTURE WORK

- (i) This study provides further scope of applying other techniques like Mixed Integer Programming, LP-DP combination, Heuristic approach etc.
- (ii) The multiobjective criteria of evaluation may be incorporated.

- (iii) The chance-constrained problem may be formulated and solved.
- (iv) The price elasticity of demand may be taken into consideration.
- (v) The operation of the system may be considered at different hydropower load factors. For a hydropower reservoir, it is possible to use its full potential until the upstream affecting reservoirs appear in the sequencing of the system.
- In case of major reservoirs such as Bargi and Omkareshwar, and reservoirs such as Narmada Sagar and Sardar Sarovar, the time phasing of individual reservoirs may be considered. A lot of efforts may be required to prepare a code for identifying the constituent reservoirs of the combinations, the scale of the constituent reservoirs and for preparation of pertaining data files for simulations. Keeping track of all the combinations, their constituents, and level/stage of development of the constituents (in case of time phasing) may be a major impediment in this endeavor. An attempt can be made to overcome this.
- (vii) Planning period wise availability of funds for development can be considered as a constraint and problem can then be solved as a capital budgeting problem using a suitable model and optimization technique.
- (viii) The strategy may be applied to many of the pending real life planning problems, new or in initial stages of development.

Table 7.1 Statement showing possible number of combinations for various cases of time phasing of Phase I reservoirs

Sr.No.	Project	Cas	e I	Cas	e II	Case	III	Addit	ional
	Code	NLEV	NCOMB	NLEV	NCOMB	NLEV	NCOMB	-11	111
1.	UPN	2	2	2	2	2	2	0	0
2.	BRG	2	4	2	8	3	6	0	2
3.	TSC	2	8	2	8	2	12	0	4
4.	BKL	2	16	2	16	2	24	0	8
5.	NSG	2	32	3	48	3	72	16	40
6.	OMK	2	64	2	96	3	216	32	152
7.	MAH	2	128	2	192	2	432	64	304
8.	MAJ	2	256	2	384	2	864	128	608
9.	SSP	2	512	3	1152	3	2592	640	2080

Note : Case I : No time phasing of any reservoir.

Case II : Time phasing of NSG and SSP.

Case III: Time phasing of BRG, NSG, OMK, and SSP. NLEV : Number of levels of capacity.

NCOMB : Number of possible combinations (cumulative)

Table 7.2 Range of firm hydropower targets and releases for series Phase I reservoirs (From 22 year simulation)

Sr. No	. Reservoir Code	Annual fa	irm hydro- rget(Mw)	Average annual Release(Mcm)		
	736	Maximum	Minimum	Maximum	Minimum	
1.	BRG	50.00	42.00	4198.0	3528.0	
2.	NSG	226.00	146.00	15361.0	9930.0	
3.	OMK	131.90	119.00	15397.0	13980.0	
4.	MAH	93.90	89.00	15286.0	14516.0	
5.	SSP	415.00	134.00	15263.0	10057.0	

Table 7.3 Range of firm hydropower targets and releases for series Phase II reservoirs (From 22 year simulation)

Sr. No.	Reservoir Code	Annual fi	irm hydro- rget(Mw)		Average annual Release(Mcm)		
		Maximum		Maximum	Minimum		
1.	RGV	4.00	4.00	313.0	313.0		
2.	ROS	7.00	7.00	507.0	507.0		
3.	BAS	20.00	14.17	1745.0	1203.0		

Table 7.4 Continued

Table 7.4 Comparison of sequences for various cases (Next period demand as upper limit)

ADE0-PI	NO, and AEXO-PNO.					
Period 1 2 3 4 MIN	CASE-A1(T1) TSC/OMK UPN/BKL/NSG/MAJ SSP BRG/MAH 810.5	CASE-A2(T1) TSC/OMK UPN/BKL/NSG/MAJ SSP BRG/MAH 810.1	CASE-A3 (T1) TSC/OMK UPN/BKL/NSG/MAJ SSP BRG/MAH 811.6	CASE-B1(T1) RGV/ROS/MGL UBH/BAS SMS UBL/CHN/STD 202.3	CASE-B2(T1) RGV/ROS/MGL UBH/BAS SMS/STD UBL/CHN 202.8	CASE-B3 (T1) ROS/CHN BAS/SMS STD/UBL RGV/UBH/MGL 216.2
eriod 1 2 3 4 5 6 MIN	CASE-A1 (T2) BRG UPN/OMK TSC NSG SSP BKL/MAH/MAJ 1045.2	CASE-A2(T2) OMK TSC BRG UPN/BKL SSP NSG/MAH/MAJ 924.2	CASE-A3 (T2) BRG UPN/BKL/MAH TSC/MAJ OMK SSP NSG 1016.3	CASE-B1 (T2) BAS/SMS UBL RGV/STD ROS/MGL CHN UBH 329.3	CASE-B2 (T2) BAS/SMS UBL RGV/STD ROS/MGL CHN UBH 330.2	CASE-B3 (T2) BAS/MGL UBL RGV/STD ROS/UBH SMS CHN 318.5
eriod 1 2 3 4 5 6 7 8 MIN DE4-PN	CASE-A1(T3) OMK TSC BRG UPN/BKL/MAJ NSG SSP - MAH 1475.3	CASE-A2 (T3) OMK TSC BRG UPN/BKL NSG SSP MAH MAJ 1468.7	CASE-A3 (T3) BRG UPN/BKL/MAH TSC/MAJ OMK SSP NSG	CASE-B1 (T3) RGV/ROS/SMS STD BAS UBL MGL CHN - UBH 412.1	CASE-B2 (T3) RGV/ROS/CHN BAS - UBL SMS - STD UBH/MGL 389.4	CASE-B3 (T3) ROS/STD RGV/CHN BAS - SMS UBL MGL UBH 402.7
eriod	CASE-A1(T1) TSC/OMK UPN/BKL/NSG/MAJ	CASE-A2(T1) TSC/OMK BRG PN/BKL/NSG/MAJ/SS MAH 842.4	CASE-A3 (T1) TSC/OMK UPN/BKL/NSG/MAJ P SSP BRG/MAH 811.6	CASE-B1(T1) RGV/ROS/UBL MGL BAS/SMS UBH/CHN/STD 182.3	CASE-B2 (T1) RGV/ROS/UBL MGL BAS/SMS UBH/CHN/STD 182.8	CASE-B3 (T1) RGV/STD/UBL ROS/CHN SMS UBH/BAS/MGL 206.6

Period 1	CASE-A1(T2) BRG	CASE-A2(T2) BRG	CASE-A3(T2) BRG	CASE-B1(T2) RGV/ROS/SMS	CASE-B2(T2) RGV/ROS/SMS	CASE-B3(T2) ROS/STD
2	UPN/OMK	UPN/BKL/MAH	UPN/BKL/MAH	-	-	RGV/UBL
3	BKL/MAJ	TSC/MAJ	TSC	BAS/MGL	BAS/CHN	MGL
4	TSC	NSG	OMK	STD/UBL		BAS/CHN
5	NSG/SSP	SSP	SSP	CHN	STD/UBL	-
6	MAH	OMK	NSG/MAJ	UBH	UBH/MGL	UBH/SMS
FMIN	1022.3	1065.0	1012.6	305.7	296.1	285.3
Period	CASE-A1(T3)	CASE-A2(T3)	CASE-A3(T3)	CASE-B1 (T3)	CASE-B2(T3)	CASE-B3 (T3)
1	OMK	BRG	OMK	RGV/ROS/SMS	RGV/ROS/SMS	ROS/STD
2	TSC	OMK	TSC		and a	RGV
3	BRG	UPN/BKL	BRG	MGL	UBL	SMS
4	UPN/BKL/MAJ	TSC	UPN/MAJ	BAS	BAS	-
5	NSG	NSG	NSG	CHN	CHN	BAS/CHN
6	SSP	SSP	SSP	UBL		UBL
7	-	775-43621 A	Christophy Committee	STD	STD	MGL
8	MAH	MAH/MAJ	BKL/MAH	UBH	UBH/MGL	UBH
FMIN	1475.3	1611.3	1466.2	409.2	395.2	411.9
ADE8-PN	N5, and AEX9-PN6.					
	vo, and Abro ino.					
Period	CASE-A1(T1)	CASE-A2(T1)	CASE-A3(T1)	CASE-B1(T1)	CASE-B2(T1)	CASE-B3(T1)
			CASE-A3(T1) TSC/OMK	CASE-B1(T1) RGV/ROS	CASE-B2(T1) RGV/ROS	CASE-B3 (T1) ROS/CHN
Period	CASE-A1(T1)	CASE-A2(T1)	TSC/OMK			
Period 1	CASE-A1(T1) TSC/OMK	CASE-A2(T1) TSC/OMK	TSC/OMK	RGV/ROS	RGV/ROS	ROS/CHN
Period 1 2	CASE-A1(T1) TSC/OMK UPN/BKL/NSG/MAJ	CASE-A2(T1) TSC/OMK UPN/BKL/NSG/MAC	TSC/OMK BRG	RGV/ROS SMS	RGV/ROS SMS	ROS/CHN RGV/STD SMS
Period 1 2	CASE-A1(T1) TSC/OMK UPN/BKL/NSG/MAJ SSP	CASE-A2(T1) TSC/OMK UPN/BKL/NSG/MAC	TSC/OMK BRG SSP	RGV/ROS SMS BAS/MGL/UBL	RGV/ROS SMS BAS/CHN	ROS/CHN RGV/STD SMS
Period 1 2 3 4 FMIN	CASE-A1(T1) TSC/OMK UPN/BKL/NSG/MAJ SSP BRG/MAH 810.5	CASE-A2(T1) TSC/OMK UPN/BKL/NSG/MAC SSP BRG/MAH 822.7	TSC/OMK BRG SSP UPN/BKL/NSG/MAH/MAJ 792.0	RGV/ROS SMS BAS/MGL/UBL UBH/CHN/STD	RGV/ROS SMS BAS/CHN UBH/STD/MGL/UBL	ROS/CHN RGV/STD SMS UBH/BAS/MGL/UBL 211.2
Period 1 2 3 4	CASE-A1(T1) TSC/OMK UPN/BKL/NSG/MAJ SSP BRG/MAH	CASE-A2 (T1) TSC/OMK UPN/BKL/NSG/MAC SSP BRG/MAH	TSC/OMK BRG SSP UPN/BKL/NSG/MAH/MAJ	RGV/ROS SMS BAS/MGL/UBL UBH/CHN/STD 179.9	RGV/ROS SMS BAS/CHN UBH/STD/MGL/UBL 180.0	ROS/CHN RGV/STD SMS UBH/BAS/MGL/UBL 211.2 CASE-B3(T2)
Period 1 2 3 4 FMIN Period 1	CASE-A1 (T1) TSC/OMK UPN/BKL/NSG/MAJ SSP BRG/MAH 810.5 CASE-A1 (T2) BRG	CASE-A2 (T1) TSC/OMK UPN/BKL/NSG/MAC SSP BRG/MAH 822.7 CASE-A2 (T2) BRG	TSC/OMK BRG SSP UPN/BKL/NSG/MAH/MAJ 792.0 CASE-A3(T2)	RGV/ROS SMS BAS/MGL/UBL UBH/CHN/STD 179.9	RGV/ROS SMS BAS/CHN UBH/STD/MGL/UBL 180.0 CASE-B2(T2)	ROS/CHN RGV/STD SMS UBH/BAS/MGL/UBI 211.2
Period 1 2 3 4 FMIN Period 1 2	CASE-A1 (T1) TSC/OMK UPN/BKL/NSG/MAJ SSP BRG/MAH 810.5	CASE-A2 (T1) TSC/OMK UPN/BKL/NSG/MAC SSP BRG/MAH 822.7 CASE-A2 (T2)	TSC/OMK BRG SSP UPN/BKL/NSG/MAH/MAJ 792.0 CASE-A3(T2) BRG	RGV/ROS SMS BAS/MGL/UBL UBH/CHN/STD 179.9 CASE-B1(T2) RGV/ROS	RGV/ROS SMS BAS/CHN UBH/STD/MGL/UBL 180.0 CASE-B2(T2) RGV/ROS	ROS/CHN RGV/STD SMS UBH/BAS/MGL/UBL 211.2 CASE-B3(T2) ROS/STD
Period 1 2 3 4 FMIN Period 1 2 3	CASE-A1 (T1) TSC/OMK UPN/BKL/NSG/MAJ SSP BRG/MAH 810.5 CASE-A1 (T2) BRG UPN/OMK BKL	CASE-A2 (T1) TSC/OMK UPN/BKL/NSG/MAC SSP BRG/MAH 822.7 CASE-A2 (T2) BRG BKL	TSC/OMK BRG SSP UPN/BKL/NSG/MAH/MAJ 792.0 CASE-A3(T2) BRG UPN/MAJ	RGV/ROS SMS BAS/MGL/UBL UBH/CHN/STD 179.9 CASE-B1(T2) RGV/ROS SMS UBL	RGV/ROS SMS BAS/CHN UBH/STD/MGL/UBL 180.0 CASE-B2(T2) RGV/ROS CHN	ROS/CHN RGV/STD SMS UBH/BAS/MGL/UBI 211.2 CASE-B3(T2) ROS/STD RGV UBL
Period 1 2 3 4 FMIN Period 1 2 3 4	CASE-A1 (T1) TSC/OMK UPN/BKL/NSG/MAJ SSP BRG/MAH 810.5 CASE-A1 (T2) BRG UPN/OMK	CASE-A2 (T1) TSC/OMK UPN/BKL/NSG/MAC SSP BRG/MAH 822.7 CASE-A2 (T2) BRG BKL OMK	TSC/OMK BRG SSP UPN/BKL/NSG/MAH/MAJ 792.0 CASE-A3(T2) BRG UPN/MAJ OMK	RGV/ROS SMS BAS/MGL/UBL UBH/CHN/STD 179.9 CASE-B1(T2) RGV/ROS SMS	RGV/ROS SMS BAS/CHN UBH/STD/MGL/UBL 180.0 CASE-B2(T2) RGV/ROS	ROS/CHN RGV/STD SMS UBH/BAS/MGL/UBI 211.2 CASE-B3(T2) ROS/STD RGV
Period 1 2 3 4 FMIN Period 1 2 3	CASE-A1 (T1) TSC/OMK UPN/BKL/NSG/MAJ SSP BRG/MAH 810.5 CASE-A1 (T2) BRG UPN/OMK BKL TSC	CASE-A2 (T1) TSC/OMK UPN/BKL/NSG/MAC SSP BRG/MAH 822.7 CASE-A2 (T2) BRG BKL OMK UPN/TSC	TSC/OMK BRG SSP UPN/BKL/NSG/MAH/MAJ 792.0 CASE-A3(T2) BRG UPN/MAJ OMK TSC	RGV/ROS SMS BAS/MGL/UBL UBH/CHN/STD 179.9 CASE-B1(T2) RGV/ROS SMS UBL BAS/CHN	RGV/ROS SMS BAS/CHN UBH/STD/MGL/UBL 180.0 CASE-B2(T2) RGV/ROS CHN BAS/SMS	ROS/CHN RGV/STD SMS UBH/BAS/MGL/UBL 211.2 CASE-B3(T2) ROS/STD RGV UBL BAS/CHN

Table 7.4 Continued

-						
Period	CASE-A1(T3)	CASE-A2 (T3) BRG	CASE-A3 (T3)	CASE-B1(T3) ROS	CASE-B2(T3) ROS	CASE-B3 (T3)
2	TSC	OMK	TSC	SMS	SMS	KGV/ SID
3	BRG	UPN/MAJ	BRG	OPID	SPIS	UBL
4	UPN/BKL	TSC	UPN	BAS/MGL	BAS/MGL	
5	NSG	NSG	NSG	UBL	BAS/MGL	BAS/CHN
6	SSP	SSP	SSP		DOW/OWN	DOG /0110
7	-	SSE	355	RGV/CHN	RGV/CHN	ROS/SMS
8	MAH/MAJ	BKL/MAJ	DVI /MAII /MA T	TTDY / 0.000	****** / 0 == 0 / 1 == 0	MGL
FMIN	1461.9	1609.6	BKL/MAH/MAJ	UBH/STD	UBH/STD/UBL	UBH
LITITI	1461.9	1609.6	1476.1	399.6	393.4	418.2
ADE10-	PN7, and AEX10-PN	7	A CONTRACTOR OF THE PARTY OF TH	- 1 - N D		
ADEI0-	PN/, and AEAIU-PN	· / / / /		2000	0.36%	
Period	CASE-A1(T1)	CASE-A2 (T1)	CASE-A3(T1)	CASE-B1(T1)	CASE-B2 (T1)	CASE-B3 (T1)
1	TSC/OMK	TSC/OMK	TSC/OMK	RGV/ROS/UBL	RGV/ROS/CHN	ROS/CHN
2	UPN/BRG	BRG	BRG	SMS	BAS	BAS/SMS
3	SSP	NSG/MAJ/SSP	SSP	BAS/MGL	SMS	STD/UBL
4	BKL/NSG/MAH/MAJ	UPN/BKL/MAH	UPN/BKL/NSG/MAH/MAJ	UBH/CHN/STD	UBH/STD/MGL/UBL	RGV/UBH/MGL
FMIN	787.1	831.3	884.3	201.0	195.2	229.3
Danis	G3 GD 34 (mg)				A STATE OF THE PARTY OF THE PAR	227.0
Period		CASE-A2(T2)	CASE-A3(T2)	CASE-B1 (T2)	CASE-B2 (T2)	CASE-B3 (T2)
1	TSC	TSC	TSC	RGV/ROS/SMS	RGV/ROS/SMS	ROS/STD
2	OMK	OMK	OMK	100		RGV/UBL
3	BRG	BRG	BRG	BAS/MGL	BAS/MGL	MGL
4	NSG	UPN/BKL	UPN/MAJ	STD/UBL	CHN	UBH/BAS
5	SSP	NSG/SSP	SSP	CHN	UBL	SMS
6 T	JPN/BKL/MAH/MAJ	MAH/MAJ	BKL/NSG/MAH	UBH	UBH/STD	CHN
FMIN	1035.2	1013.7	975.2	326.3	322.8	319.5
			Co. T. State of the Co.	320.5	322.0	319.5
Period	CASE-A1(T3)	CASE-A2 (T3)	CASE-A3(T3)	CASE-B1(T3)	CASE-B2(T3)	CASE-B3 (T3)
1	OMK	TSC	OMK	RGV/ROS/MGL	RGV/ROS/MGL	ROS/STD
2	TSC	OMK	TSC	UBH		
3	NSG	BRG	BRG	UDI	STD	RGV
4	BRG	UPN/BKL	UPN/MAJ	BAS/UBL	UBH	SMS
5	UPN/BKL	NSG			D 2 0 / C	-
6	SSP	SSP	NSG SSP	SMS	BAS/CHN	CHN
7	335		SSP	STD		BAS/UBL
8	MAH/MAJ	MAH	Dur /	-	UBL	MGL
FMIN		MAJ	BKL/MAH	CHN	SMS	UBH
PLITIA	1487.2	1611.3	1509.6	464.1	464.6	460.3

Table 7.5 Narmada basin development information prior to award of Narmada Water Disputes Tribunal.

(Assuming that preliminary construction works start in 1965)

Plan period(5 yr)	IV	V	VI	VII	VIII	IX	X
A. Order of devel Names of the reservoirs to be added			*Bargi	*Harinphal	*8asania +Ataria +Chinki	@Sitarewa +Morand +Ganjal +Chhota Tawa +Upper Beda +Lower Goi	
Plan period(5 yr) IV	V	VI	VII	VIII	IX	
*B. Cumulative w	ater ut	ilization	for irrigation (Mcm)	St. 10 3, 103		
Madhya Pradesh			4936	8947	12957	17029	
Guiarat		2345	6108	10057	11908	11908	
Total	-	4813	11044	19004	24865	28937	
*C. Irrigation (Lakh ac	res)			1 1/a . 1 L		
Madhya Pradesh	-	10	20	35	50	65	
Gujarat	-	10	25	40	46	46	
Total	-	20	4.5	75	96	111	
Total (Mha)		0.8	1.8	3.0	3.84	4.44	
*D. Hydropower (Mw) of	60% LF	8/1/2/20		25-7-29	6	
Madhya Pradesh			1832	1592	1229	1076	
Gujarat		234	253	211	155	114	
Total	- 1 t	1276	2085	1803	1384	1190	

^{*} Source: Report of the Narmada Water Resources Development Committee, Govt. of India, Ministry of Irrigation and Power, September 1965, headed by Dr. A.N. Khosla.

Note: 1. From the VIII Plan onwards the load factor will go on decreasing and full capacity of installation utilized progressively as a peaking station. The load factor may drop down to 30% or even lower.

2. Symbols for reservoir type: + irrigation; @ hydropower; * multipurpose.

Table 7.6 Recommended sequences for various cases (Next period demand as upper limit).

[i]						
Period	CASE-A1 (T1)	CASE-A2(T1)	CASE-A3(T1)	CASE-B1(T1)	CASE-B2 (T1)	CASE-B3 (T1)
1	TSC/OMK	TSC/OMK	TSC/OMK	RGV/ROS	RGV/ROS	RGV/STD/UBL
	UPN/BKL/NSG/MAJ	UPN/BKL/NSG/MA		SMS	SMS	ROS/CHN
3	SSP	SSP	SSP	BAS/MGL/UBL	BAS/CHN	SMS
4	BRG/MAH	BRG/MAH	UPN/BKL/NSG/MAH/MAJ	UBH/CHN/STD	UBH/STD/MGL/UBL	UBH/BAS/MGL
FMIN	787.1	810.1	792.0	179.9	180.0	206.6
DEFICIT		ADE0	ADE8	ADE8	ADE8	ADE4
PENALTY		PNO	PN5	PN5	PN5	PN4
EXCESS	AEX10	AEX0	AEX9	AEX9	AEX9	AEX2
PENALTY	PN7	PNO	PN6	PN6	PN6	PN2
[j]		10 ml 150	A STATE OF THE REAL PROPERTY.		1.00	
Period	CASE-A1(T2)	CASE-A2(T2)	CASE-A3(T2)	CASE-B1(T2)	CASE-B2 (T2)	CASE-B3 (T2)
1	BRG	OMK	TSC	RGV/ROS/SMS	RGV/ROS	ROS/STD
2	UPN/OMK	TSC	OMK		CHN	RGV/UBL
3	BKL/MAJ	BRG	BRG	BAS/MGL	1 1	MGL
4	TSC	UPN/BKL	UPN/MAJ	STD/UBL	BAS/SMS	BAS/CHN
5	NSG/SSP	SSP	SSP	CHN	UBL	-
6	MAH	NSG/MAH/MAJ	BKL/NSG/MAH	UBH	UBH/STD/MGL	UBH/SMS
FMIN	1022.3	924.2	975.2	305.7	287.0	285.3
DEFICIT		ADE0	ADE10	ADE4	ADE8	ADE4
PENALTY		PN0	PN7	PN2	PN5	PN4
EXCESS	AEX2	AEX0	AEX10	AEX4	AEX9	AEX2
PENALTY	PN2	PNO	PN7	PN2	PN6	PN2
[k]		- 100 m			All Electrical	2.1.2
Period	CASE-A1(T3)	CASE-A2 (T3)	CASE-A3(T3)	CASE-B1(T3)	CASE-B2(T3)	CASE-B3 (T3)
1	OMK	OMK	OMK	RGV/ROS/SMS	RGV/ROS/CHN	ROS/STD
2	TSC	TSC	TSC		BAS	RGV/CHN
3	BRG	BRG	BRG	MGL		BAS
4	UPN/BKL	UPN/BKL	UPN/MAJ	BAS	UBL	-
5	NSG	NSG	NSG	CHN	SMS	SMS
6	SSP	SSP	SSP	UBL	_	UBL
7	-	MAH	7 LLC 9-449 1869	STD	STD	MGL
8	MAH/MAJ	MAJ	BKL/MAH	UBH	UBH/MGL	UBH
FMIN	1461.9	1468.7	1466.2	409.2	389.4	402.7
DEFICIT	ADE8	ADE0	ADE4	ADE4	ADE0	ADE0
PENALTY	PN5	PN0	PN4	PN4	PNO	PNO
EXCESS	AEX9	AEX0	AEX2	AEX2	AEX0	AEX0
PENALTY	PN6	PNO	PN2	PN2	PNO	PNO

767

Table 7.7 Sequences for recommended planning horizons.

Phase I (Planning horizon of 8 planning periods).

Period	CASE-A1 (T3)	CASE-A2(T3)	CASE-A3(T3)
1	OMK	OMK	OMK
2.	TSC	TSC	TSC
3	BRG	BRG	BRG
4	UPN/BKL	UPN/BKL	UPN/MAJ
5	NSG	NSG	NSG
6	SSP	SSP	SSP
7		MAH	-
8	MAH/MAJ	MAJ	BKL/MAH
FMIN	1461.9	1468.7	1466.2
DEFICIT-PENALTY	ADE8-PN5	ADE0-PN0	ADE4-PN4
EXCESS-PENALTY	AEX9-PN6	AEX0-PN0	AEX2-PN2

Phase II (Planning horizon of 6 planning periods).

Period	CASE-B1 (T2)	CASE-B2(T2)	CASE-B3 (T2)
1	RGV/ROS/SMS	RGV/ROS	ROS/STD
2		CHN	RGV/UBL
3	BAS/MGL	The state of the s	MGL
4	STD/UBL	BAS/SMS	BAS/CHN
5	CHN	UBL	The second second
6	UBH	UBH/STD/MGL	UBH/SMS
FMIN	305.7	287.0	285.3
DEFICIT-PENALTY	ADE4-PN4	ADE8-PN5	ADE4-PN4
EXCESS-PENALTY	AEX2-PN2	AEX9-PN6	AEX2-PN2

Details of upper	Period		nd	Sequence of		Capacity
limit, deficit,		Irri-	Hydro-	project(s)	Irri-	Hydro
excess & penalties		gation	power	added	gation	power
CASE-A1: Phase I pro	iects	for mixe	d target	ts. CASE-A1(тзі	
Last period demand	1	2350	30	OMK	2790	131.9
as upper limit, with		4350	70	TSC	5270	131.0
ADE8-PN5 and	3	7350	90	BRG	8855	179.3
AEX9-PN6	4	9700	100	UPN/BKL	9459	171.3
FMIN=1461.9		11700	150	NSG	11733	308.9
		16500	220	SSP	22090	439.1
		19700	350	-	22090	439.1
		22438	520	MAH/MAJ	22438	532.2
CASE-B1: Phase II pro			ed targe	ote CASE-R1	(T2)	334.4
Next period demand	1	350	10	RGV/ROS/SMS	786	11
as upper limit, with	2	800	20	KGV/KOS/SMS		
ADE2-PN4 and	3	1200	25	DAC /MOT	786	11
AEX2-PN2	1	1700	30	BAS/MGL	1229	30.2
FMIN=305.7	5	2265		STD/UBL	1777	34.2
21.2N-303.7	6		30	CHN	2422	34.2
CASE-A2: Phase I proj	oata i	2865	31	UBH	2865	31.24
Next period demand		or simu.	lation t	argets. CAS		
as upper limit, with	1	2350	30	OMK	2790	131.9
ADEO-PNO and	2	4350	70	TSC	5270	131
AEXO-PNO and	3	7350	90	BRG	8855	179.3
	4	9700	100	UPN/BKL	9759	179.2
FMIN=1468.7		1700	150	NSG	12053	316.9
		3500	420	SSP	19353	447.1
		.5700	450	MAH	19353	546
0100 00 01	8 1	9700	510	MAJ	19701	540.1
CASE-B2: Phase II pro			ulation	targets. CAS	SE-B2 (T2)
Next period demand	1	350	10	RGV/ROS	-	11
as upper limit, with	2	800	20	CHN	960	11
ADE8-PN5 and	3	1200	25	100	960	11
AEX9-PN6	4	1700	30	BAS/SMS	1746	30.2
FMIN=287.0	5	2265	30	UBL	2082	30.2
1 To	6	3180	31	UBH/STD/MGI	3180	21 21
CASE-A3: Phase I proj	ects f	or maste	er plan	targets. CAS	E-A3(T3)
Next period demand	1	2350	30	OMK	2790	131.9
as upper limit, with	2	4350	70	TSC	5552	131.9
ADE4-PN4 and	3	7650	90	BRG	9126	181.9
AEX2-PN2	4	9700	100	UPN/MAJ	9794	181.9
FMIN=1466.2		1700	150	NSG	12088	407.9
		6500	420	SSP	22445	822.9
1.0		9700	650	001	22445	
		3054	910	BKL/MAH		822.9
CASE-B3: Phase II pro	iects	for mast	er nlan	targets C	23054	916.8
Next period demand	1	350	10	ROS/STD		
as upper limit, with	2	800	20		645	11
ADE2-PN4 and		1200		RGV/UBL	991	15
AEX2-PN2		1700	25	MGL	1448	15
FMIN=285.3			30	BAS/CHN	2728	35
		2565	30	-	2728	35
	0	4161	35	UBH/SMS	4161	35

	eriod			Sequence of		
limit, deficit,		Irri-	-			Hydro
excess & penalties		gation	power	added	gation	power
CASE-A1: Phase I proj	ects f	or mixe	d target	s. CASE-A1(T3)	
Last period demand	1	2350	30	OMK	2790	131.
as upper limit, with	2	4350	70	TSC	5270	131.
ADEO-PNO and	3	7350	90	BRG	8855	179.
AEXO-PNO	4	9700	100	UPN/BKL/MAJ		171.
FMIN=1475.3	5 1	1700	150	NSG	12081	308.
	6 1	16500	220	SSP	22438	439.
		19700	350		22438	439.
		22438	520	MAH	22438	532.
CASE-B1: Phase II pro						3,7,5
Next period demand	1	350	10	BAS/SMS	786	20
as upper limit, with	2	800	20	UBL	1122	20
ADEO-PNO and	3	1200	25	RGV/STD	1334	28
AEX2-PN2	4	1700	30	ROS/MGL	1777	34.2
FMIN=329.3	5	2265	30	CHN	2422	34.2
	6	2865	31	UBH	2865	31.24
CASE-A2: Phase I proj	ects f					~ ~ ,
Next period demand	1	2350	30	OMK	2790	131.
as upper limit, with	2	4350	70	TSC	5270	131
ADEO-PNO and	3	7350	90	BRG	8855	179.
AEXO-PNO	4	9700	100	UPN/BKL	9759	179.
FMIN=1468.7		1700	150	NSG	12053	316.
	6 1	3500	420	SSP	19353	447.
the same of the sa		5700	450	MAH	19353	546
10.4		9700	510	MAJ	19701	540.3
CASE-B2: Phase II pro						3.0
Next period demand	1	350	10	BAS/SMS	786	20
as upper limit, with		800	20	UBL	1122	20
ADEO-PNO and	3	1200	25	RGV/STD	1334	28
AEXO-PNO	4	1700	3.0	ROS/MGL	1777	34.2
FMIN=330.2	5	2265	30	CHN	2737	34.2
MIN-330.2	6	3180	31	UBH	3180	31.24
CASE-A3: Phase I proj						51.2
Next period demand	1	2350	30	OMK	2790	131.9
as upper limit, with		4350	7.0	TSC	5552	131.
ADEO-PNO and	3	7650	90	BRG	9126	181.9
AEXO-PNO	4	9700	100	UPN/MAJ	9794	181.9
FMIN=1465.9		1700	150	NSG	12088	407.9
THIN-140J. J		6500	420	SSP	22445	822.9
		9700	650	DDF	22445	822.9
	-	3054	910	BKL/MAH	23054	916.8
CASE-B3: Phase II pro						210.0
Next period demand		350	10	BAS/MGL	457	20
	1			UBL	803	20
as upper limit, with	2	800	20			
ADEO-PNO and	3	1200	25	RGV/STD	1448	28
AEXO-PNO	4	1700	30	ROS/UBH	1901	35
FMIN=318.5	5	2565	30	SMS	2881	35
	6	4161	35	CHN	4161	35

Table 7.9 Details of recommended sequences.

	Names of reservoir(s) added	Supply (Demand)		Remarks
		Irri- gation	Hydro- power	
<i>i</i>]			X 1 2 1 1 1 1 1 1	
	CASE-A1: Phase I proje			
1	Omkareshwar	2790 (2350		1. Bargi can supply 50
2	(Tawa, Sukta, Chhota Tawa)	5270 (4350		Mw power from 3rd to
	(Matiyari, Bargi)	8855 (7350		8th period.
	Upper Narmada, (Barna, Kolar)			2.Narmada Sagar can
	Narmada Sagar	11733 (1170		supply 146 Mw from
	Sardar Sarovar		0) 439 (220)	5th to 8th period.
7			0) 439 (350)	3.Omkareshwar can
8	Maheshwar, (Man, Jobat)	22438 (2243	8) 532(520)	supply 119 Mw from 1st to 8th period.
	CA 4000	Stabil 1	1800	4.Maheshwar can suppl 89 Mw only for 8th
	GIGT DI Diese II enel	anta fan mi	usa bawasta	period.
9	CASE-B1: Phase II proj Raghavpur, Rosra,		8) 543 (530)	
9	(Sher, Machrewa, Shakker)	23224 (2210	01 243 (230)	supply 134 Mw for 8
10	(Shel, Machilewa, Shakkel)	23224 (2323	8) 543 (540)	
	Basania, (Morand, Ganjal)			6.Basania can supply
	(Sitarewa, Dudhi), (Upper Beda, Lower Goi)		8) 566 (550)	16 Mw from 11th to 13th period.
13	(Ataria, Chinki)	24860 (2470	3) 566 (550)	rs perrou.
	(Upper Burhner, Halon)		3) 563 (551)	7.FMIN=(1461.9+305.7)
[j]	Photo Control of the			and the second second
	CASE-A2: Phase I proje			
1	Omkareshwar	2790 (2350		
2	(Tawa, Sukta, Chhota Tawa)	5270 (4350		
3	(Matiyari, Bargi)	8855 (7350		
4	Upper Narmada, (Barna, Kolar) 179(100)	
5	Narmada Sagar	12053 (1170		
7	Sardar Sarovar Maheshwar	19353 (1350		3.Omkareshwar can
8	(Man, Jobat)	19353 (1570 19701 (1970		supply 119 Mw from
0	(Mail, DODAL)	19/01(19/0	0) 240(210)	1st to 8th period.
	12 Br		133	4.Maheshwar can supp 89 Mw for 7 th and 8
	The same of the same		440.5	periods.
0	CASE-B2: Phase II proj			
	Raghavpur, Rosra	19701 (2005		5. Sardar Sarovar can
	(Ataria, Chinki)	20661 (2050		
11	Pagania	20661 (2090		and 9 th period.
12	Basania,	21447 (2140	0) 570 (540)	6.Basania can supply 16 Mw from 12th and
12	(Unner Reda Lover Coi)	21702/2106	E) E70/E40)	13 th period
	(Upper Burhner, Halon), (Sitarewa, Dudhi),		0) 571 (541)	7.FMIN=(1468.7+287.0
			5) 570(540) 0) 571(541)	13 th period

Per-	Names of	Supply (Dema	and)	Remarks			
iod	reservoir(s)	Irri-	Hydro-				
100	added	gation power					
[k]							
	CASE-A3: Phase I projects for master plan targets. CASE-A3(T3)						
1	Omkareshwar	2790 (2350)	132 (30)	1.Omkareshwar can			
2	(Tawa, Sukta, Chhota Tawa)	5552 (4350)	132 (70)	supply 139 Mw			
3	(Matiyari, Bargi)	9126 (7650)	182 (90)	throughout the			
4	Upper Narmada, (Man, Jobat)	9794 (9700)	182 (100)				
5	Narmada Sagar	12088 (11700)	408 (150)				
6	Sardar Sarovar	22445 (16500)	823 (420)				
7			823 (650)	planning horizon			
8	(Barna, Kolar), Maheshwar	23054 (23054)	917 (910)				
	1000	mark	100	3.Narmada Sagar can			
	10 To			supply 226 Mw			
	VC VC 30000			throughout the			
	- N O.A.			planning horizon			
	10 St. St. St. St.		100	beyond 5 th period.			
	CASE-B3: Phase II proj	ects for mast	er plan t	argets. CASE-B3(T2)			
9	Rosra, (Sitarewa, Dudhi)	23699 (23404)					
10	Raghavpur,	24045 (23854)	932 (930)				
	(Upper Beda, Lower Goi)			throughout the			
	(Morand, Ganjal)	24502 (24254)					
12	Basania, (Ataria, Chinki)	25782 (24754)					
13	E Comments of the Comments of	25782 (25619)		5.Maheshwar can supply			
14	(Upper Burhner, Halon),	27215 (27215)	952 (945)				
	(Sher, Machrewa, Shakker)			planning horizon			
	and the latest terms of th			beyond 8th period.			
				6.Basania can supply			
	The second secon			20 Mw throughout the			
	THE RESERVE TO A SECOND P. LEWIS CO., LANSING, MICH. 400, AUG. 100, AUG. 100			planning horizon			
				beyond 8th period.			
				7.FMIN=(1466.2+285.3)			

Note: (i) Eventhough firm power targets supplied by Phase I hydropower reservoirs will go on decreasing progressively beyond the 8th period it expected to meet the shortfall arising out of this alternatively from thermal power or otherwise.

(ii) Firm hydropower demands are assumed monotonically increasing for

making it suitable for sequencing algorithm.

Table 7.9 Concluded

Table 7.10 Comparison of orders of development for capacity expansion of Narmada reservoir system

	ach) I	II III	IV	47 6	V	VI	VII
Names of the reservoirs to be added		Tawa *Bargi Sukta *Narmada: +Jalsindi	sagar @Maheshwa ni *Harinpha *Navagam	1 +Ata +Chi arovar) +Kol +Dud *Omk	ania ría nki ar hi areshwar	@Sitarewa	
Cumulative wa	ter utilizatio	on for irrigation	(Mcm)	+Man	NOW.		
oumulative wa		64(0.32) 10394(0.		4) 2682	0(3.17)	7956(3.28)	29510(3.37)
Cumulative Hy	dropower insta	alled capacity (MI	W)				
	200 11	140 1310	1565	- 1	635	1635	1635
			1000000				
		commended in the		400			3/6-2
Period(10 yr	each) I	II	III	IV	V	VI	VII
(1) Sequencin	a for mixed to	argets (Case: AlT	3B1T2)			Annual Control	
		1.Matiyari		2. Maheshwar	1. Raghavp	ur 1.Basania	1.Ataria
reservoirs			2. Sardar Sarovar		1.Rosra	1.Morand	1.Chinki
	2.Sukta	2. Upper Narmada		2. Jobat	1.Sher	1.Ganjal	2. Upper Burhner
to be added	2 Chatha Taux					4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 11-1-1
to be added	Z. LIIULLA I dwa	2.Barna			1. Machrewa	2.Sitarewa	Z. Halon
to be added		2.Barna 2.Kolar			1.Machrewa 1.Shakker		2. maion
to be added			Java V				
to be added			350	E 5		2.Dudhi	da
to be added Cumulative wa			(Mcm)	5		2.Dudhi 2.Upper Be	da
		2.Kolar on for irrigation	(Mem) 22090(3.0)	22438(3.03	1.\$hakker	2.Dudhi 2.Upper Be 2.Lower Go	da
Cumulative wa	ter utilizatio	2.Kolar on for irrigation 9459(0.75)		22438(3,03	1.\$hakker	2.Dudhi 2.Upper Be 2.Lower Go	da i

Period(10 yr	each) I	II	III	IV	V	VI	VII
(2) Sequencin	g for simulati	on targets (Case	: A2T3B2T2)				
Names of the	1.0mkareshwar	1.Matiyari	1.Narmadasagar	1. Maheshwar	1.Raghavpur	2.Basania	1.Upper Beda
			2. Sardar Sarovar				
		2. Upper Narmada					2. Upper Burhner
	2. Chotta Tawa		of a street of the	5.000	2.Chinki		
		2.Kolar	C-2012/04/01/E-				2.Sitarewa
			16311		W. N.		2.Dudhi
							2.Morand
		25 J. St. 7.		10000	1000		2.Ganjal
Cumulative us	ter utilizatio	n for irrigation	(Mcm)		20.7		2.0011301
cumulative wa			19353(2,37)	10701(0 /	20441(2 51)	21//7/2 57	22881(2.68)
Cumulativa Ei	rm Hydropower		17555(2,57)	19/01(2.4)	20001(2.51)	2144/(2.5/)	22881 (2.68)
cumurative ri			(17(170)	F10(1F1)	554(510)	F70(F64)	*******
(2) 0		179(129)		540(451)	551(540)	5/0(551)	5/1(566)
		lan targets (Case			. 2		
			1.Narmadasagar				
	2. Tawa		2. Sardar Sarovar				2. Halon
to be added		2. Upper Narmada		2.Maheshwar			
	2. Chotta Tawa	2.Man			2.Raghavpur	2.Ataria	2. Machrewa
		2. Jobat			2. Upper Beda	2. Chinki	2.Shakker
					2. Lower Goi		
Cumulative wa	ter utilizatio	n for irrigation	(Mcm)				
	5552(0.43)	9794(0.71)	22445(2.95)	23054(3.05)	24045(3.14)	25782(3.28)	27215(3.36)
Cumulative Fi	rm Hydropower						
	132		823	917	932	952	952

Note: 1. Values in bracket for irrigation indicate area in Mha. 2. Symbols for reservoir type: + irrigation; @ hydropower; * multipurpose. 3. Jalsindhi and Harinphal reservoirs deleted during Master Plan revision.

^{4.} Reservoirs with serial number 1 in the recommended sequences are to be taken up in first five years, and with serial number 2 are to be taken up in next five years of a period of ten years. 5. Values in bracket for hydropower indicate modified previous period hydropower supply due to addition of reservoirs in the upstream of already sequenced hydropower reservoirs.

Table 7.11 Abbreviations used for reservoirs in old sequencing

Sr.No.	Code of the Reservoir	Name of the Reservoirs
1.	UPN	Upper Narmada
2.	BRN	Barna
	BAG	Bargi
	MTY	Matiyari
	TSK	Tawa and Sukta
	CHT	Chhota Tawa
	KLR	Kolar
	NSG	Narmada Sagar
9.	OMK	Omkareshwar
	MAH	Maheshwar
	MAN	Man
12.	JBT	Jobat
13.		Jalsindhi
14.	HPL	Harinphal
15.	SSP	Sardar Sarovar
16.	RGV	Raghavpur
17.		Rosra
18.	UPB	Upper Burhner
19.	HAL	Halon Basania(Sigarpur)
	BAS	Ataria AND Chinki
	CHN	Sher, Machrewa, AND Shakker
22.	SMS	Sitarewa
	STR	Dudhi
	DUD	Morand AND Ganjal
25. 26.	MGL UBL	Upper Beda AND Lower Goi

Table 7.12 Zonewise irrigation development (Mha) for capacity expansion of Narmada reservoir system (simulation target sequencing)

Phase I				Phase II		
Zone	Period	Project added	Irri- gation	Period	Project added	Irri- gation
Upper	3	Bargi, Matiyari	0.2299	9	Raghavpur, Rosra	-
Zone	4	Upper Narmada	0.0190	12	Basania	\pm
				14	Upper Burhner,	
					Halon	0.0215
		Total	0.2489		Total	0.0215
Middle	2	Tawa, Sukta,	LECT.	10	Ataria, Chinki	0.0613
Zone		Chhota Tawa	0.2518	12	Sher, Machrewa,	
	4	Barna, Kolar	0.1056		Shakker	0.0519
	5	Narmada Sagar	0.1230	14	Sitarewa, Dudhi,	
					Morand, Ganjal	0.0688
		Section of the second			N. 10.	
	100	Total	0.4804		Total	0.1820
Lower	1	Omkareshwar	0.1468	13	Upper Beda,	
Zone	6	Sardar Sarovar	1.4942		Lower Goi	0.0219
	7	Maheshwar	-			
	8	Man, Jobat	0.0305			
				No.	Comment of the last	
		Total	1.6715		Total	0.0219

Fig.7.1(a) CASE-A1(T3):Sequencing for Phase I projects for mixed targets

Fig.7.1(b) CASE-A1(T3):Sequencing for Phase I projects for mixed targets

Fig.7.2(a) CASE-B1(T2): Sequencing for Phase II projects for mixed targets

Fig.7.2(b) CASE-B1(T2):Sequencing for Phase II projects for mixed targets

Fig.7.3(a) CASE-A2(T3): Sequencing for Phase I projects for simulation targets

Fig.7.3(b) CASE-A2(T3): Sequencing for Phase I projects for simulation targets

Fig.7.4(a) CASE-B2(T2):Sequencing for Phase II projects for simulation targets

Fig.7.4(b) CASE-B2(T2):Sequencing for Phase II projects for simulation targets

Fig.7.5(a) CASE-A3(T3):Sequencing for Phase I projects for master plan targets

Fig.7.5(b) CASE-A3(T3):Sequencing for Phase I projects for master plan targets

Fig.7.6(a) CASE-B3(T2):Sequencing for Phase II projects for master plan targets

Fig.7.6(b) CASE-B3(T2):Sequencing for Phase II projects for master plan targets

Fig.7.7(a) CASE-A1T3B1T2 Sequencing of projects for mixed targets

Fig.7.7(b) CASE-A1T3B1T2 Sequencing of projects for mixed targets

Fig.7.7(c) Cumulative irrigation supply(Mha)

Fig. 7.8(a) CASE-A2T3B2T2 Sequencing of projects for simulation targets

Fig.7.8(b) CASE-A2T3B2T2 Sequencing of projects for simulation targets

Fig. 7.8(c) Cumulative irrigation supply(Mha)

Fig.7.9(a) CASE-A3T3B3T2 Sequencing of projects for master plan targets

Fig.7.9(b) CASE-A3T3B3T2 Sequencing of projects for masterplan targets

Fig.7.9(c) Cumulative irrigation supply(Mha)

Fig.7.10 Tradeoff between irrigation and hydropower supply

Fig.7.11(a) CASE-A1T3B1T2 Sequencing of projects for mixed targets

Fig.7.11(b) CASE-A1T3B1T2 Sequencing of projects for mixed targets

Fig.7.12(a) CASE-A2T3B2T2 Sequencing of projects for simulation targets

Fig.7.12(b) CASE-A2T3B2T2 Sequencing of projects for simulation targets

Fig.7.13(a) CASE-A3T3B3T2 Sequencing of projects for master plan targets

Fig.7.13(b) CASE-A3T3B3T2 Sequencing of projects for master plan targets

Fig.7.14 Tradeoff between irrigation and hydropower supply

Fig.7.16(a) Mixed target sequencing percentages

Fig.7.16(b) Simulation target sequencing percentages

Fig.7.16(c) Master plan target sequencing percentages

Fig. 7.17. Line diagram for simulation target sequencing

Note: Number in bracket indicates period of appearance of reservoir in the sequence

REFERENCES AND BIBLIOGRAPHY

Afshar, A., Marino, M.A., and Abrishamchi, A. (1991). Reservoir planning for an irrigation district. ASCE(WRPM), Vol.117, No.1., pp74-75.

Akileswaran V., Hazen, G.B. and Morin, T.L. (1983). Complexity of the project sequencing problem. Jou. of Operations research, Vol.31, pp611.

Armstrong, R.D. and Willis, C.E. (1977). Simultaneous investment and allocation decisions applied to water planning. Jou. of Management Science, No.10, pp1080.

Armstrong, R.D. and Willis, C.E. (1979). Investment sequencing and allocation in water resource system design: A note on alternative algorithm. Wat. Resou. Res., Vol.15, No.5, pp1273.

Assadullah, K. (1995). Integrated planning and operation of a reservoir. Ph.D. Thesis. Department of Hydrology, Univ. of Roorkee, Roorkee, India.

Basagaoglal, H. and Yazicigil, H. (1994). Optimal capacity expansion planning in multiaquifer systems. ASCE(WRPM), Vol.126, No.6, pp836-856.

Becker, L. and Yeh, W.W-G. (1974a). Optimal timing, sequencing, and sizing of multiple reservoir surface water supply facilities.

Wat. Resou. Res., Vol.10, No.1, pp57.

Becker, L. and Yeh, W.W-G. (1974b). Timing and sizing of complex water resources systems. ASCE (Hydraulics Division), Vol.100, No. (HY10), pp1457-1470.

Bector, C.R. and Goulter, I. (1995). Multiobjective water resources investment planning under budgetory uncertainty and fuzzy environment. European Jou. of Opreational Research, Vol.82, No.3, pp556-591.

Bogardi, I., Szidarovszky, F. and Duckstien, L. (1978). Optimal sequencing for a multipurpose water supply system. Jou. of Advances in water resources, Vol.No.5.

Boney, M. (1993). Technoeconomic and management approach to river basin planning. Ph.D. thesis. WRDTC, University of Roorkee, Roorkee, India.

Braga, B.P.F., Jr., Conejo, J.G.L., Becker, L. and Yeh, W.W-G. (1985). Capacity expansion of Sao Paulo water supply.

ASCE(WRPM), Vol.111, No.2.

Buras, N. (1972). Scientific allocation of water resources.

American Elsevier Environmental Science Series.

Buras, N. (1985). An application of mathematical programming in planning surface water storage. Water Resou. Bulletin, Vol.21, No.6, pp1013-1020.

Butcher, W.S., Haimes, Y.Y, and Hall, W.A. (1969). Dynamic programming for the optimal sequencing of water supply projects.

Wat. Resou. Res., Vol.15, No.6, pp1196.

Carlsen, A.J. (1986). Optimal sequencing of hydropower stations. Water Power & Dam Construction (GB), Vol.38, No.10, pp22-24.

Chara, A.M. (1982). Optimal sequencing and operating policies of multipurpose multireservoir river basin projects. Dept. of Elect. Engg., University of Roorkee, Roorkee, India.

Chaturvedi, M.C. and Srivastava, D.K.(1981). Study of a complex water resources system with screening and simulation models. Wat.

Resou. Res., Vol. 8, No. 3, pp311-328.

Chaturvedi, M.C. (1987). Water resources planning and management. Tata McGraw Hill, New Delhi.

Chavez-Morales, J., Marino, M.A., and Holzaphel, E.A. (1987). Planning model of irrigation district, ASCE (Irrigation and Drainage), Vol.113, No.4, pp549-564

Chavez-Morales, J., Marino, M.A., and Holzaphel, E.A. (1992).

Planning simulation model of irrigation district, ASCE

(Irrigation and Drainage), Vol.118, No.1, pp74-87.

Chenery, H.B. (1952). Overcapacity and the acceleration principle. Econometrica, Vol.20, No.1.

Ciricacy-Wantrup, S.V. (1961). Projections of water requirements in the economics of water policy. Jou. of Farm Economics, Vol.XLIII.

Dandy, G.C., Mcbean, E.A. and Hutchinson, B.G. (1984). A model for constrained optimum water pricing and capacity expansion. Wat. Resou. Res., Vol.20, No.5, pp511-520.

Dandy, G.C., Mcbean, E.A. and Hutchinson, B.G. (1985). Pricing & expansion of a water supply system. ASCE(WRPM), Vol.111, No.1, pp24.

Dayaratne, T.S. (1992). Simulation study of kirindi Oya irrigation system, Sri Lanka. M.E. Dissertation, International Hydrology Course, Dept. of Hydrology, Univ. of Roorkee, Roorkee, India.

Department of Water Resources, State of California. (1985). The Department of water resources planning simulation model for California.

Department of Water Resources, State of California. (1986).

Operation criteria applied in Department of water resources

planning simulation model.

Erlenkotter, D. (1967). Optimal plant size with time-phased imports. In Manne, A.S. (1967). Investments for capacity expansion: size, location, and time phasing. MIT press, Cambridge.

Erlenkotter, D. (1973a). Sequencing of interdependent hydroelectric projects. Wat. Resou. Res., Vol.9, No.1, p21.

Erlenkotter, D. (1973b). Sequencing of expansion projects. Jou. of Operations Research, Vol.21, No.2, p542.

Erlenkotter, D., and Robert R. Trippi. (1976).Optimal investment scheduling with price sensitive dynamic demand. Jou. of Management Science, Vol.23, No.1.

Erlenkotter, D., and Rogers Scott, J. (1977). Sequencing competitive expansion projects. Jou. of Operations Research, Vol.25, No.6, p937.

Erlenkotter, D. (1989). Planning for surprise: water resources development under water demand & supply uncertainty. Jou. of Management Science, Vol.35, No.2, pp149-163.

Fallon, L.A. (1986). A review of literature on capacity expansion planning. North China Water Project's study report, East-West center, Honolulu, Hawaii.

Flynn, L.E. and Marino, M.A. (1988). Joint reservoir and aqueduct design and operation. ASCE(WRPM), Vol.114, No.2, pp179-196.

Flynn, L.E. and Marino, M.A. (1989). Aqueduct and reservoir capacities for distribution systems. ASCE(WRPM), Vol.115, No.5, pp547.

Fong, C.O. and V. Srinivasan(1981a). The multiregion dynamic capacity expansion problem, part I. Jou. of Operations Research,

Vol.29, No.4, p787.

Fong, C.O. and V. Srinivasan(1981b). The multiregion dynamic capacity expansion problem, part II. Jou. of Operations Research, Vol.29, No.4.

Fong, C.O. and V. Srinivasan(1986). The multiregion dynamic capacity expansion problem: an improved heuristic. Jou. of Management Science, Vol.32, No.9, p1140.

Fontane, D.G, Labadie, J.W., Loftis, B. and Merritt, D.H. (1989). Implementation strategies for salinity projects. ASCE(WRPM), Vol.115, No.5, p671.

Garudkar, A.S. (1992). Simulation for Mula irrigation project in Maharashtra State, India. M.E. Dissertation, International Hydrology Course, Dept. of Hydrology, Univ. of Roorkee, Roorkee, India.

Goodman, A.S. (1984). Principles of water resources planning.

Prentice Hall, Inc., Englewood Cliffs, New Jersey.

Goodman, Alvin S. (1994). Integrated planning for international river basin. Proceedings of the 1994 ASCE National conference on Hydraulic Engineering, Buffalo, NY, USA. pp130-134.

Grigg, Neil S. (1997). Systematic analysis of urban water supply and growth management. ASCE(Urban planning & development), Vol.123, No.2, pp23-33.

Haimes, Y.Y. & Macko, D. (1973). Hierarchical structures in water resources systems. IEEE, SMC-3.

Haimes, Y.Y.(1977). Hierachical analyses of water resources systems. McGraw Hill Inc., U.S.A.

Haimes, Y.Y and Nainis, W.S. (1974). Coordination of regional water resource supply and demand planning models Wat. Resou.

Res., Vol.10, No.6, p1051.

Hall, W.A. and Dracup, J.A. (1970). Water resources systems engineering. McGraw Hill Inc., NewYork.

Helm, J.C., Curry, G.L. and Hogg, G.L. (1984). Capacity expansion of linked reservoir system. Jou. of Computers & Industrial Engg., pp119-128.

Huges (1980). A generalized integer programming model for regional water supply planning. Proceedings of the ORAGWA international conference, Jerusalem, ed. Taperio, North Holland publishing Co. Hufschmidt, M.M., and Fiering, M.B. (1966). Simulation techniques

for design of water resources systems, Harward Univ. press, Mass., Cambridge.

Hula, R.L. (1981). South Western Division reservoir regulation simulation model. Proc. National workshop on reservoir system operations. G.H. Toebes and A.A. Sheppard, ASCE, New York, NY.

Islam, N. (1991). Simulation of multipurpose reservoir - a case study. M.E. Special problem, International Hydrology Course, Dept. of Hydrology, Univ. of Roorkee, Roorkee, India.

Jain, R.K. (1993). A study of Kalisind-Chambal river link by simulation. M.E. Dissertation, International Hydrology Course, Dept. of Hydrology, Univ. of Roorkee, Roorkee, India.

Kim, K.S. and Yeh, W.W-G. (1986). A heuristic solution procedure for expansion sequencing problem. Wat. Resou. Res., Vol.22, No.8, pp1197-1206.

Kolo, D.E. and Haimes, Y.Y. (1977). Capacity expansion & operational planning for regional water resources systems. Jou. of Hydrology, Vol.32, No.3/4.

Knudsen, J. and Rosbjerg, D. (1977). Optimal scheduling of water supply projects. Nordic Hydrology, Vol.8, No.3, pp171-192.

Kuiper, J. and Ortolano, L. (1973). A dynamic programming-simulation strategy for the capacity expansion of hydroelectric power systems. Wat. Resou. Res., Vol.9, No.6, p1497.

Lauria, D.T., Donald L. Schlenger, and Roland W. Wentworth (1977).

Models for capacity planning of water systems. Jou. of the

Environmental Engg. Div., ASCE.

Leighton, J.P. and Shoemaker, C.A. (1984). An integer programming analysis of the regionalisation of large wastewater treatment and collection systems. Wat. Resou. Res., Vol.20, No.6, pp671-681.

Lenton, R.L. and Strzepek, K.M. (1979). Theoretical and practical characteristics of MIT river basin simulation model. Technical report No.225, Ralph M. Parsons Laboratory for water resources and hydrodynamics, MIT.

Loaiciga, H.A. and Marino, M.A. (1986). Risk analysis for reservoir operation. Wat. Resou. Res., Vol.22, No.4, pp483-488.

Loucks, D.P. (1968). Computer models for reservoir regulation.

ASCE (Sanitary Engg.), Vol.94, No. SA4, pp657.

Loucks, D.P. (1969). Stochastic methods for analysing river basin systems. Research project technical completion report, OWRR, Project No.16, Cornell University, Water Resources and Marine Science Center, Ithaca, N.Y.

Loucks, D.P. (1992). Water resources systems models: their role in planning. ASCE(WRPM), Vol.118, No.3, pp214-223.

Loucks, D.P., Stedinger J.R., and Haith D.A. (1981). Water resource systems planning and analysis. Pretice Hall, Englewood Cliffs, New Jersey, 1981.

Loucks, D.P. et al. (1989). IRIS: An interactive river system simulation model, General introduction and description. Cornell University, Ithaca, N.Y.

Loucks, D.P. et al. (1990). IRIS: An interactive river system simulation programme, User' Manual. Cornell University, Ithaca, N.Y.

Luss, H. (1982). Operations research & capacity expansion problems: A survey. Jou. of Operations Research, Vol.30, No.5, pp907-947.

Maass, A., Hufschmidt, M.M., Dorfman, R., Thomas Jr., H.A., Marglin, S.A., and Fair, G.M. (1962). Design of water resources systems. Harward Univ. press, Cambridge.

Maji, C.C. and Heady, E.O. (1980). Optimal reservoir management and crop planning under deterministic and stochastic inflows.

Wat. Resou. Bulletin, Vol.16, No.3, pp438.

Major, D.C., and Lenton, R.L. (1979). Applied water resource systems planning. Prentice-Hall Inc. Englewood Cliffs, N.J.

Marino, M.A. and Mohammadi, B. (1983a). Reservoir management: a reliability programming approach. Wat. Resou. Res., Vol.19, No.3, pp613-620.

Marino, M.A. and Mohammadi, B. (1983b). Reservoir operation by linear and dynamic programming. ASCE(WRPM), Vol.109, No.4, pp303-319.

Marino, M.A. and Mohammadi, B. (1984). Multipurpose reservoir operation, 1. monthly model for a single reservoir. Jou. of Hydrology, Vol.69, pp1-14.

Master Plan(1972) for development of water resources of the Narmada in Madhya Pradesh, Govt. of Madhya Pradesh, India.

Volumes I, IA, II, V, VII.

Manne, A.S. (1961). Capacity expansion and probabilistic growth. Econometrica, Vol.29, No.4.

Manne, A.S. (1967). Calculations for a single producing area. In Manne, A.S. (1967). Investments for capacity expansion: size, location, and time phasing. MIT press, Cambridge.

Martin, Q. (1982). Multireservoir simulation and optimization model: SIM-V, program documentation and user's manual. Texas Department of Water Resources, Austin, Texas.

Martin, Q. (1983). Optimal operation of multiple reservoir system.

ASCE(WRPM), Vol.109, No.1, pp58-74.

Martin, Q. (1984). Surface water resources allocation model AL-V, programme documentation and user's manual. Texas Department of water resources, Austin, Texas.

Martin, Q.W. (1990). Linear water supply pipeline capacity expansion model. ASCE(HY), Vol.116, No.5, pp675-690.

Matsumoto J., Fahlbusch, F.E., and Stiffler, P.E. (1989). A capacity expansion model for hydrothernmal power systems.

ASCE (WRPM), Vol.115, No.2, pp165-185.

Mazzola, R. (1992). Solution of the capacitated expansion sequencing problem by iterative linear programming. IAHR/AIRH proceedings 4, water resources management: modern techniques ed. Benedini, Andah, Harboe.

McBean, E.A., Lenton, R.L., Vicens, G., and Schaake, L.C. (1973).

A general purpose simulation model for analysis of surface water allocation using a large time increments. Technical report No. 160, Ralph M. Parsons Laboratory for water resources and hydrodynamics, MIT.

Mohammadi, B. and Marino, M.A. (1984a). Reservoir operation, choice of objective functions, ASCE(WRPM), Vol.110, No.1, pp15-29.

Mohammadi, B. and Marino, M.A. (1984b). Multipurpose reservoir operation 2. Daily operation of a multiple reservoir system, Jou. of Hydrology, Vol.69, pp15-28.

Moore, N.Y. and Yeh, W.W-G. (1980). Economic model for reservoir planning. ASCE (WRPM), Vol.106, No.2, pp383-400.

Moreau, D. (1986). Financial planning model & its application.

ASCE(WRPM), Vol.112, No.4, p439.

Morin, T.L. (1973a). Pathology of a dynamic programming sequencing algorithm. Wat. Resou. Res., Vol.9, No.5, p1178.

Morin, T.L. (1973b). Optimal sequencing of capacity expansion projects. ASCE(Hyd.Div.), Vol.99, No. (HY9).

Morin, T.L. and Esogbue, A.M.O. (1971). Some efficient dynamic programming algorithms for optimal sequencing and scheduling of water supply projects. Wat. Resou. Res., Vol.7, No.3.

Morin, T.L. (1974). Optimality of a heuristic sequencing technique. ASCE(Hyd.Div.), Vol.100, No. (HY8), pp1195-1202.

Morin, T.L. and Martsen, R.E. (1976). Branch & bound strategies for dynamic programming. Jou. of Operations research, Vol.24, pp611-627.

Nainis, S. W. and Haimes, Y.Y. (1974). Multilevel approach to planning for capacity expansion in water resource systems. IEEE, SMC-5, No. 1, pp53-63.

Nakasima, M., Wenzel, H.G., Jr., and Brill, E.D., Jr. (1986). Water supply system models with capacity expansion. ASCE(WRPM), Vol.112, No.1, p87.

Ocans, G. and Mays, L.W. (1981). A model for water reuse planning. Wat. Resou. Res., Vol.17, No.1, pp25-32.

O'Laoghaire, D.T. (1978). A coded algorithm for capacity expansion of a water quality management system. Wat. Resou. Bulletin, Vol.14, No.4.

Ong, S.L. and Adams, B.J. (1990). Capacity expansion for regional wastewater systems. ASCE(Env. Engg.), Vol.116, No.3, pp542-560.

Paranjpye, V. (1990). Studies in ecology and sustainable development-3. High dams on the Narmada, a holistic analysis of the river valley projects. INTACH Publications, New Delhi.

Rao, R.C. and Rutenberg, D.P. (1977). Multilocation plant sizing & timing. Jou. of Management Science, Vol.23, No.11, pl187.

Rath, S.N. (1991). Study of Icha reservoir in Subernrekha river basin system. M.E. Special Problem, International Hydrology Course, Dept. of Hydrology, Univ. of Roorkee, Roorkee, India.

Report of the Narmada water resources development committee (1965). (chairman, Dr. A.N.Khosla), Ministry of Irrigation and Power, Govt. of India, Sept. 1965.

Riordan, C. (1971a). General multistage marginal cost dynamic programming model for the optimization of a class of investment-pricing decisions. Wat. Resou. Res., Vol.7, No.2, p245.

Riordan, C. (1971b). Multistage marginal cost model of investment pricing decisions: Application to water supply treatment facilities. Wat. Resou. Res., Vol.7, No.3, p463-478.

Rogers, P. and Hurst, C. (1993). Water resources planning in a strategic context: linking the water sector to national economy. Wat. Resou. Res., Vol.29, No.7, pp1895-1906.

Rubinstein, J. and Ortolano, L. (1984). Water conservation and capacity expansion. ASCE(WRPM), Vol.110, No.2, pp220-237.

Sadeghian, M.S. (1995). Systems analysis of a complex water resources system. Ph.D. Thesis. Department of Hydrology, Univ. of Roorkee, Roorkee, India.

Scarato, R.F. (1969). Time capacity expansion urban water systems.

Wat. Resou. Res., Vol.5, No.5.

Sigvaldson, T. (1967). A simulation model for operating multipurpose, multireservoir system. Wat. Resou. Res., Vol.12, No.2, pp263-278.

Simonovic, S.P. (1992). Reservoir system analysis: closing gap between theory and practice. ASCE(WRPM), Vol.118, No.3.

Sniedovich, M. and Nielsen, P.A. (1983). A heuristic solution procedure for a joint reservoir control-capacity expansion problem. Wat. Resou. Res., Vol.19, No.1, pp15-20.

Srivastava, D.K. (1976). Optimization of complex water resources system by screening - simulation model. Ph.D. Dissertation, I.I.T. Delhi, India.

Srivastava, D.K. (1987). Preliminary screening simulation models in water resources project evaluation. Proc. First National Water Convention, Vol.IV, Central Board of Irrigation and Power, Malcha Marg, Chanakyapuri, New Delhi.

Srivastava, D.K., and Patel, I.A. (1992). Optimization-simulation models for the design of irrigation project. Jou. of Wat. Resou. Mgt. (The Netherlands). Vol.6, pp315.

Srivastava, D.K. (1992). Multipurpose reservoir operation - an algorithm for computer programs. Seminar on applications in assessment, development and management of water resources. Centre

for water resources development and management, Kunnamangalam(MBR), Kozikode, Kerala, India.

Stedinger, J.R., Sule, B.F., and Pie, D. (1983). Multiple reservoir system screening models. Wat. Resou. Res., Vol.19, No.6, pp1383-1393.

Strzepek, K.M., and Lenton, R.L. (1978). Analysis of multipurpose river basin systems: guidelines for simulation modeling. Technical report No. 236. Ralph M. Parsons Laboratory for water resources and hydrodynamics, MIT.

Strzepek, K.M. (1981). A user manual for MITSIM-II: A planning and operational river basin simulation model.

Strzepek, K.M. (1981a). MITSIM-II: A simulation model for planning and operational analysis of river basin systems. Lecture notes, International workshop on systems analysis of problems in irrigation, drainage, and flood control. Central Board of Irrigation and Power, Malcha Marg, Chanakyapuri, New Delhi.

Strzepek, K.M. et al., (1989) MITSIM-II river basin simulation model, user manual. Centre for advanced division support for water and environmental systems. University of Colorado, Boulder, Colorado.

Sule, B.F. and Olu, O.E.A. (1994). Impact of Ilorin water supply expansion on the Asa river catchment. AQUA. Vol.43, No.5, pp246-251.

Sunita Devi(1997). Solution of large size problems and their applications. Ph.D. Thesis. Department of Mathematics, Univ. of Roorkee, Roorkee, India.

TAMS(Tippets-Abbett-McCarthy-Stratton, New York, and MIT, Cambridge)(1978). Integrated development of the Vardar/Axios

river basin - Yugoslavia, Greece, United Nations.

Texas Water Board, Austin, Texas(1972). Economic optimization and simulation techniques for management of regional water resources, river basin simulation model SIMYLD-II, programme description and User's manual.

Tsou, C.A., Mitten, L.G. and Russel, S.O. (1973). Search technique for project sequencing. ASCE(Hyd. Div.), HY(5), p833.

Uber, J.G., Brill Jr., E.D., and Pfeffr, J.T. (1992). Use of mathematical programming methods for complex systems. ASCE(WRPM), Vol.118, No.3, pp281-294.

U.N. (1973). United Nations Concise report on the world population situation, 1970-1975 and its longterm implications, New York.

US Army Corps of Engineers, Davis, CA(1974). Reservoir system analysis for conservation, HEC-3, Users manual.

US Army Corps of Engineers, Davis, CA(1985). Simulation of flood control and conservation systems, HEC-5C, Users mannual.

US Army Corps of Engineers, North Pacific Division (1986). Stream flow synthesis and reservoir regulation, Users manual.

US Department of Interior, Bureau of Reclamation (1981). Colorado river simulation systems and, an exclusive summary.

US Department of Interior, Bureau of Reclamation (1986). Colorado river - alternate operating strategies for distributing surplus water and avoiding spills.

Wan, Y., Huang, S. and Marino, M.A. (1989). Optimal sequencing of development for hydropower stations in cascade. ASCE(WRPM), Vol.115, No.3, p379.

Wurbs, R.A. (1993). Reservoir system simulation and optimization models. ASCE(WRPM), Vol.119, No.4.

Wurbs, R.A., Dunn, D.D., and Walls, W.B. (1993). Water Rights Analysis Program (TAMUWRAP), model description and user's manual. Technical report No.146, Texas Water Resources Inst., college station, Texas.

Wurbs, R.A. (1996). Modeling and analysis of reservoir system operations. Prentice Hall PTR, Upper Saddle River, NJ07458.

Xuemin, C. (1992). Expansion of existing hydropower stations in China. Water Power & Dam Construction(GB), Vol.44, No.5, pp27-29.

LIST OF Ph.D. THESES

Bogle, M.G.V. (1979). Stochastic optimization of water supply planning. University of Auckland, Australia.

Cardenas, M. (1971). The systems approach to investment planning in the electrical industry. Doctoral Dissertation, UCLA, Los Angeles.

Chankong, Vira(1976). Multiobjective decision making analysis: the interactive Surrogate worth trade-off (ISWT) method. Ph.D. Dissertation, Systems Engineering Department, Case Western University, Cleveland.

Chara, A.M. (1982). Optimal sequencing and operating policies of multipurpose multireservoir river basin projects. Dept. of Elect. Engg., University of Roorkee, Roorkee, India.

Craig, J.A. (1976). A decomposition approach to the capacity expansion problem. M.S. Thesis, Systems Engineering Department, Case Western Reserve University, Cleveland, March, 1976.

Das, P. (1976). Hierachical mutiobjective approach in the planning and management of water and related land resources. Ph.D.

dissertation, Case Western Reserve University, Cleveland, Ohio.

Erlenkotter, D. (1970). Preinvestment planning for capacity expansion: a multilocation dynamic model. Graduate school of

business, Stanford Univ., Stanford California.

Foley, J.W. (1974). Regional modeling, planning and management of a water quality system. Ph.D. Dissertation, System Engineering Dept., Case Western University, Cleveland, Ohio.

Fong, C.O. (1974). The multiregion dynamic capacity expansion problem: exact and heuristic approaches. Graduate school of management, University of Rochester, Rochester, New York.

Frankel, R. J. (1965). Water quality management: an engineering-economic Economic model for domestic waste disposal. Ph.D. Dissertation, University of California, Berkeley.

Hung, H.K. (1973). A heuristic algorithm for the multiperiod facility location problem. Ph.D. dissertation, University of Massachusetts, Amherst, Mass.

Kaplan, M. A. (1975). Multiobjective analysis in resources planning and management: a framework for policy evaluation. Ph.D. dissertation, Systems Engineering Department, Case Western Reserve University, Cleveland.

Morin, T.L. (1971). Optimal scheduling of one-shot projects. Ph.D. Dissertation, Dept. of Operations research, Case Western Reserve University, Cleveland.

Muhich, A.J. (1966). Capacity expansion of waste treatment facilities. Ph.D. Dissertation, Harvard University, Cambridge, Mass.

Nainis, W.S. (1973). Multilevel approach for regional planning and capacity in water resource systems. Ph.D. dissertation, Systems

Engineering Department, Case Western Reserve University, Cleveland.

Neih, B. (1979). A probalistic optimisation model for water resources capacity expansion with price sensitive seasonal demand. Ph.D. dissertation, School of Engineering and Applied Science, California University, Los Angeles.

Rarig, H. (1976). Two new measures of performance and parameter sensitivity in multiobjective optimization problems. M.S. Thesis, Systems Engg. Dept., Case Western Reserve University, Cleveland, Ohio.

Rogers, J.S. (1970). A dynamic model for planning capacity expansion: an application to plant reliability in electric power systems, Stanford University.

Shipley, R.S. (1976). Stochastic Capacity expansion models. Ph.D. dissertation, Operations research Dept., Stanford University, Stanford, California.

Sunita Devi(1997). Solution of large size problems and their applications. Ph.D. Thesis. Department of Hydrology, Univ. of Roorkee, Roorkee, India.

Thomas, A. (1977). Models for optimal capacity expansion. Ph.D. dissertation, Graduate school of Organization and Management, Yale University, New Haven, Conn.

Tsou, C.A. (1972). Solution for a class of combinatorial problems with emphasis on project sequencing in water resource planning. The University of British Columbia.

Windsor, J.S. (1970). Mathematical model of a farm irrigation system. Ph.D. Dissertation, University of Illinois, Urbana, Champaign, Illinois.

LIST OF BOOKS

Bellman, R., and Dreyfus, S. (1962). Applied dynamic programming. Princeton University press, Princeton, N.J.

Biswas, A.K. ed. (1976). Systems approach to water management. McGraw-Hill, New York.

Buras, N. (1972). Scientific allocation of water resources.

American Elsevier Environmental Science Series.

Clark, J.J., Hindelang, T.J., and Pritchard, R.E. (1979). Capital Budgeting: planning and control capacity expansion. Prentice Hall, Englewood Cliffs, New Jersey.

Cohon J.L. (1978). Multiobjective programming and planning. Academic press, NewYork.

Deneufville and Stafford(1971). Systems analysis for engineers and managers. McGraw Hill, New York.

Deneufville and Marks (1974). Systems planning and design: case studies in modeling optimization and evaluation. Prentice Hall Inc., Englewood Cliff, N.J.

Dorfman, R. (1962). Mathematical models: the multistructure approach design of water resources systems. Cambridge, Mass: Harvard University press.

Dym C.L., Ivey E.S. (1980). Principles of mathematical modeling.

Academic press, NewYork.

Eckstien, O., and Krutilla, J.V. (1958). Multiple purpose river development. Johns Hopkins Press, Baltimore.

Esogbue, A.O. (1989). Dynamic programming for optimal water resources sytems analysis. Englewood Cliffs, Prentice Hall.

Freidenfields, J. (1981). Capacity expansion: analysis of simple models with applications. Elsivier North Holland, NY.

Haimes, Y.Y., Hall, W.S., and Freidman, A.I. (1975).
Multiobjective optimization in water resources systems. Elsevier,
NewYork.

Haimes, Y.Y. (1977). Hierachical analyses of water resources systems. McGraw Hill Inc., U.S.A.

Haimes, Y.Y. (1990). Hierachical multiobjective analysis of large scale systems. Hemisphere publishing Co., New York.

Hall, W.A., and Dracup, J.A. (1970). Water resources systems engineering. Mcgraw-Hill, New York.

Hiller, F.S., and Lieberman, G.J. (1967). Introduction to Operations research. San Francisco: Holden-Day.

Howe, C.W. (1971). Benefit-cost analysis for water system planning. Washington, D.C., American Geophysical Union, water resources monograph 2.

Hufschmidt, M.M., Fiering, M.B. (1966). Simulation techniques for design of water resources systems. Cambridge, Mass: Harward University press.

Isard, W. (1960). Introduction to regional analysis. MIT press, Cambiridge, Mass.

James, L.D., Lee, R.R. (1971). Economics of Water resources planning. McGraw-Hill, NewYork.

Karamouz, M. (1992). Water resources planning and management : saving a threatened resource - In search of solutions.

Kottegoda, N.T. (1980). Stochastic water resources technology. John Wiley , New York.

Ladson, L. (1970). Optimization theory for large systems. Macmillan, NewYork.

Larson, R.E. (1968). State increment dynamic programming. American Elsevier, NewYork.

Loucks, D.P., Stedinger J.R., and Haith D.A. (1981). Water resource systems planning and analysis. Pretice Hall, Englewood Cliffs, New Jersey.

Maass, A., Hufschmidt, M.M., Dorfman, R., Thomas Jr., H.A., Marglin, S.A., and Fair, G.M. (1962). Design of water resources systems. Harvard University press, Cambridge.

Major, D.C. (1977). Multiobjective water resource planning. Washington, D.C., American Geophysical Union, Water resources Monograph 4.

Major, D.C., and Lenton, R.L. (1979). Applied water resource systems planning. Prentice-Hall Inc., Englewood Cliffs, N.J.

Manne, A.S. (1967). Investment for capacity expansion : size, location, and time phasing. Cambridge, MIT press.

Marglin, S.A. (1963). Approaches to dynamic investment planning.

North-Holland, Amsterdam.

Meredith, D.D., Wong, K.W., Woodhead and Wortman (1973). Design and planning of engineering systems. Prentice Hall, Englewood Cliffs, New Jersey.

Mesarovic, M., Macko, D., and Takahara (1970). Theory of multilevel hierachical systems. Academic press, New York.

O'Laoghaire, D.T., and Himmelblau, D.M. (1974). Optimal expansion of a water resources system. Academic press, New York.

Wiener, A. (1972). The role of water in development. McGraw-Hill, New York.

Wurbs, R.A. (1995). Water management models: a guide to software. Engelwood Cliffs, Prentice Hall, NJ.

Wurbs, R.A. (1996). Modeling and analysis of reservoir system operations. Prentice Hall PTR, Upper Saddle River, NJ07458.


```
**********
C
          PROGRAM FOR SIMULATION OF MULTIRESERVOIR, MULTIPURPOSE
C
                         WATER RESOURCES SYSTEM.
C
                         PREPARED BY M.L. WAIKAR
C
                       SUPERVISOR DR. D.K.SRIVASTAVA
C
C
        CHARACTER*7 FNAM
        CHARACTER*11 FILE1, FILE2, FILE3, FILE4, FILE5, FILE6,
        FILE7, FILE8, FILE11
        CHARACTER*20 SITENAMO(30), SITENEW(30)
        DIMENSION CRLDT1(30,12,10), ISITE(33), NFYRE(30)
        DIMENSION AVREU(33), AVRED(33), XXXX(33), YYYY(33)
         DIMENSION XXII(30,4), YYII(30,4), ARIIU(30,4), ARIID(30,4)
         DIMENSION XXXII(30), YYYII(30), PPPII(30), QQQII(30)
         DIMENSION S(30,13), FLOW(30,25,12), P(30,25,12)
         DIMENSION AREQ1(30,10), NTREQ(30,10), PREU1(30,12,10)
         DIMENSION REOD1 (30, 12, 10), RENE1 (30, 12, 10)
         DIMENSION PREQ1(30,12,10), AREU1(30,10), NTREU(30,10)
         DIMENSION REQU1(30,12,10), SHARE(4,30,3), AVANS(4,30,1)
         DIMENSION DUDT1 (30, 12, 10), RLDT1 (30, 12, 10), DDDT1 (30, 12, 10)
         DIMENSION SUPT1 (30, 12, 10), AWACS (30), AWWCS (30), SPILL (30, 12)
         DIMENSION NREMT(30,12), NRFUT(30,12), AVSPT(30,12)
         DIMENSION ANSPL(30,25), AASPL(30), TUSUT(30,12)
         DIMENSION AVDD1(30,12,10), AVUD1(30,12,10)
         DIMENSION CUSR1(30, 25, 10), CUUS1(30, 25, 10), AADD1(30, 10)
         DIMENSION AAUD1(30,10), ANDD1(30,25,10), ANUD1(30,25,10)
         DIMENSION NADD1 (30, 10), NAUD1 (30, 10), NDDD1 (30, 12, 10)
         DIMENSION NDUD1(30,12,10),0(30,12),CUMEL(30),CUMF(30),CUMP(30)
         DIMENSION NURCF(30), NTRCF(30,13), DSRFL(30,10), UPRFL(30,10)
         DIMENSION IUMRE(30), UPRFC(30), DSRFC(30), TFLOW(30,12)
         DIMENSION IWRT(6), EVAPO(30, 12), IWRTS(30,6)
         DIMENSION NUSRE(30,10), ARU1(30,10), PRU1(30,12,10)
         DIMENSION DUD1(30,12,10), SUP1(30,12,10), REU1(30,12,10)
         DIMENSION NDSRE(30,10), ARD1(30,10), PRD1(30,12,10)
          DIMENSION DDD1 (30, 12, 10), RLD1 (30, 12, 10), RED1 (30, 12, 10)
          DIMENSION AVD1(30,12,10), AVU1(30,12,10), CUR1(30,25,10)
          DIMENSION CUS1(30, 25, 10), AAD1(30, 10), AAU1(30, 10)
          DIMENSION ANU1(30,25,10), NAD1(30,10), NAU1(30,10)
          DIMENSION NDU1 (30, 12, 10), NSTAT (30), AND1 (30, 25, 10)
          DIMENSION REOV1(30), QMAX(30), REQA1(30), ADNC1(30), REGE1(30)
          DIMENSION ENER1 (30), ADNV1 (30), ADND1 (30), IREQ1 (30, 10)
          DIMENSION IEN01(30,10), ELE(30), PHMIN(30,12), ENERG(30,12)
          DIMENSION HE(30), PPEFF(30), TWL(30), PPC(30), ENERG1(30,10)
          DIMENSION FRATN(30,10), ISPPO(30), REQE1(30,12), DEFE1(30,12)
          DIMENSION DUME1(30,12), AMDE1(30,12), NMDE1(30,12), AADE1(30,25)
          DIMENSION AMDU1(30,12), NMDU1(30,12), AADU1(30,25)
          DIMENSION SUM4(30), SUM5(30), SUM6(30), ANLEN(30, 25), SPILC(30)
          DIMENSION ISHRE(30,3), NDD1(30,12,10), YMIN(30,12), YMAX(30,12)
          DIMENSION SUM(25,12), DFLOW(30,25,12), F(30,25,12), ILOC(30),
          NUSSI(30,13), NOUSI(30), IOPPN(30), IPCON(30)
          DIMENSION SUM1(30,25,12), SUM2(30,25,12), SUM3(30,25,12)
          COMMON/OPT1/IWDT1
          COMMON/OPT2/ISTAR
          COMMON/OPT3/IWEN1
          COMMON/OPT4/IWWT1
          COMMON/OPT5/IWAT
          COMMON/OPT6/ICOMT
          COMMON/OPT7/IELEV
```

COMMON/OPT8/IWRTN COMMON/BLK1/FLOW. TFLOW COMMON/BLK2/NMONT COMMON/BLK3/SHARE COMMON/BLK5/NTREQ, NTREU COMMON/BLK6/AVANS COMMON/BLK8/NSTAT COMMON/BLK9/AWACS, AWWCS COMMON/BLK10/I, J, JJ, NSHRE, IT COMMON/BLK11/SUM1, SUM2, SUM3 COMMON/BLK21/SUM4, SUM5, SUM6, NFYRE COMMON/BLK12/S, P, YMAX, YMIN COMMON/BLK13/NUSRE.NDSRE COMMON/B11/DUDT1, RLDT1, DDDT1, SUPT1 COMMON/B12/AVDD1, AVUD1, CUSR1, CUUS1 COMMON/B121/AADD1, AAUD1, ANDD1, ANUD1 COMMON/B13/NDDD1, NDUD1, NADD1, NAUD1 COMMON/B131/XXXII, YYYII COMMON/B14/AVD1, AVU1, CUR1, CUS1 COMMON/B141/AAD1, AAU1, AND1, ANU1 COMMON/B15/NDD1, NDU1, NAD1, NAU1 COMMON/B16/DUD1, RLD1, DDD1, SUP1 COMMON/B161/PPPII, QQQII COMMON/B17/RED1, REU1 COMMON/B18/ARU1, PRU1, AREU1, PREU1, REQUI COMMON/B19/ARD1, PRD1, AREQ1, PREQ1, REQD1 COMMON/B20/REQV1, QMAX, REQA1, ADNC1, REGE1, ENER1, ADNV1, ADND1, IENO1, ELE, PHMIN, FRATN COMMON/B21/IREQ1 COMMON/BLK22/SITENAMO, SITENEW COMMON/BLK23/XXXX, YYYY COMMON/BLK24/XXII, YYII COMMON/BLK25/ISITE, IUMRE COMMON/BLK26/AASPL COMMON/BLK27/AADE1 COMMON/BLK55/IPCON COMMON/BLK56/NTRCF COMMON/BLK57/NURCF COMMON/BLK58/CRLDT1 COMMON/BLK60/NOUSI, NUSSI COMMON/BLK61/ILOC COMMON/BLK65/F OPEN (UNIT=12, FILE='BCM.LIST') OPEN (UNIT=9, FILE='ALLFLOW3.DAT', STATUS= READ(9, *) MSITE, NYEAR, NMONT 111 FORMAT (A20) DO 160 I=1, MSITE READ(9,111) SITENAMO(I) READ(9,*) ILOC(I) DO 161 JJ=1, NYEAR READ(9, *)(F(I, JJ, IT), IT=1, NMONT) 161 CONTINUE 160 CONTINUE 6174 READ(12, 10, END=6175) FNAM write(*,10)FNAM 10 FORMAT (7A) CALL NAME(FILE1, FILE2, FILE3, FILE4, FILE5, FILE6, FILE7, FILE8 , FILE11, FNAM)

```
OPEN(UNIT=1, FILE=FILE1)
        OPEN(UNIT=2, FILE=FILE2, STATUS='UNKNOWN')
        OPEN(UNIT=3, FILE=FILE3, STATUS='UNKNOWN')
        OPEN(UNIT=4, FILE=FILE4, STATUS='UNKNOWN')
        OPEN(UNIT=5, FILE=FILE5, STATUS='UNKNOWN')
        OPEN(UNIT=6, FILE=FILE6, STATUS='UNKNOWN')
C
        OPEN(UNIT=7, FILE=FILE7, STATUS='UNKNOWN')
        OPEN(UNIT=8, FILE=FILE8, STATUS='UNKNOWN')
        OPEN(UNIT=11, FILE=FILE11, STATUS='UNKNOWN')
        WRITE(2,111)'FILE NAME=',FILE2
        CALCULATE THE TOTAL UPSTREAM FLOW BY SUMMING UP THE MONTHLY
C
        FLOWS AT THE U/S SITES
C
        READ(1, *)NSITE
        READ(1, *) IWDT1, ISTAR, IWEN1, IWWT1, IWAT, ICOMT, IELEV, IWRTN
        DO 550 I=1, NSITE
        READ(1, *)ISITE(I)
        READ(1, *) IUMRE(I)
        IF (IUMRE(I).EQ.1) GO TO 550
        READ(1, *)NOUSI(I)
        READ(1, *)(NUSSI(I, IK), IK=1, NOUSI(I))
        CONTINUE
        CALL NTFLO(NSITE, NYEAR)
         READ(1,*) KYEAR
         READ(1, *)(NSTAT(I), I=1, NSITE)
         READ(1, *)CCF
         IF(IWDT1.EQ.1) WRITE(2,*)CCF
         DO 1 I=1, NSITE
         READ(1, *) ISITE(I)
         READ(1, *)S(I,1)
         IF(IWDT1.EQ.1) WRITE(2,200)S(I,1)
         FORMAT(/5X, 'INITIAL STORAGE='F10.3)
  200
          DO 2 JJ=1, NYEAR
C
         KK=JJ+KYEAR
          KKK=KK+1-1900
          READ(1, *)(FLOW(I, JJ, IT), IT=1, NMONT)
          IF (IWDT1.EQ.1)WRITE(2,457)KK,KKK, (FLOW(I, JJ, IT), IT=1, NMONT)
          FORMAT(//5x, 'MONTHLY FLOW DATA, YEAR; '14, '-', 12,
                 //3X,6F10.3/3X,6F10.3)
         CONTINUE
        DO 558 JJ=1, NYEAR
         DO 558 IT=1, NMONT
         P(I,JJ,IT)=0.
  558
         CONTINUE
        READ(1, *)IOPPN(I)
         IF (IOPPN(I).NE.1) GO TO 55
         DO 3 JJ=1, NYEAR
         KK=JJ+KYEAR
         KKK=KK+1-1900
         READ(1, *)(P(I, JJ, IT), IT=1, NMONT)
         IF (IWDT1.EQ.1)WRITE(2,40)KK,KKK,(P(I,JJ,IT),IT=1,NMONT)
         FORMAT (//5x, 'MONTHLY PRECIPITATION , YEAR: ', 14, '-', 12,
   40
      1 //3X,6F10.3/,3X,6F10.3)
         CONTINUE
     3
         READ(1,*)(YMIN(I,IT),IT=1,NMONT)
   559
         IF (IWDT1.EQ.1)WRITE (2,50)(YMIN(I,IT),IT=1,NMONT)
         FORMAT (//5x, 'MINIMUM CAPACITY:',
    50
      1 //.3X,6F10.3/3X,6F10.3)
         READ(1,*)(YMAX(I,IT),IT=1,NMONT)
```

```
IF (IWDT1.EQ.1)WRITE (2,60)(YMAX(I,IT),IT=1,NMONT)
 60
      FORMAT(//5X, 'MAXIMUM CAPACITY:'
              //3X,6F10.3/3X,6F10.3)
       READ(1,*)(NTREQ(I,J),J=1,NSTAT(I))
       DO 17 J=1, NSTAT(I)
     IF (J.NE.1)GO TO 17
       READ(1, *)(AREQ1(I, II), II=1, NTREQ(I, 1))
       DO 4 II=1, NTREQ(I,1)
       READ(1, *)(PREQ1(I, IT, II), IT=1, NMONT)
      DO 4 IT=1, NMONT
       REOD1(I, IT, II) = AREO1(I, II) * PREO1(I, IT, II) / 100.0
      CONTINUE
 17
      CONTINUE
       READ(1,*)(NDSRE(I,J),J=1,NSTAT(I))
      DO 810 J=1, NSTAT(I)
      IF (J.NE. 1) GO TO 810
      READ(1, *)(ARD1(I, II), II=1, NDSRE(I, 1))
      DO 812 II=1, NDSRE(I,1)
      READ(1, *)(PRD1(I, IT, II), IT=1, NMONT)
      DO 812 IT=1, NMONT
      RED1(I, IT, II) = ARD1(I, II) *PRD1(I, IT, II)/100.0
812 CONTINUE
      CONTINUE
810
      READ(1, *)(NTREU(I, J), J=1, NSTAT(I))
      DO 14 J=1, NSTAT(I)
      IF (J.NE. 1) GO TO 14
      READ(1, *) (AREU1(I, II), II=1, NTREU(I, 1))
      DO 8 II=1, NTREU(I,1)
      READ(1,*)(PREU1(I,IT,II),IT=1,NMONT)
      DO 8 IT=1, NMONT
      REQU1(I, IT, II) = AREU1(I, II) * PREU1(I, IT, II) / 100.0
      CONTINUE
      CONTINUE
 14
      READ(1, *)(NUSRE(I, J), J=1, NSTAT(I))
      DO 710 J=1, NSTAT(I)
      IF (J.NE.1) GO TO 710
      READ(1, *)(ARU1(I, II), II=1, NUSRE(I, 1))
      DO 712 II=1, NUSRE(I,1)
      READ(1, *)(PRU1(I, IT, II), IT=1, NMONT)
      DO 712 IT=1, NMONT
      REU1(I, IT, II) = ARU1(I, II) * PRU1(I, IT, II) / 100.0
712
      CONTINUE
710
      CONTINUE
      IF (IUMRE(I).EQ.1)GO TO 603
      READ(1, *) NURCF(I)
      READ(1,*)(NTRCF(I,LL),LL=1,NURCF(I)
      DO 602 J=1, NSTAT(I)
603
      READ(1,*)(UPRFL(I,II),II=1,NTREU(I,J))
602
      CONTINUE
      DO 601 J=1, NSTAT(I)
      READ(1, *)(DSRFL(I, II), II=1, NTREG(I, J))
601
      READ(1, *)(EVAPO(I, IT), IT=1, NMONT)
      READ(1,*)(IWRTS(I,LL),LL=1,6)
      READ(1, *) IPRT
      READ(1, *)PPEFF(I), PPC(I), TWL(I)
      READ(1, *)(PHMIN(I, IT), IT=1, NMONT)
      READ(1, *)ISPPO(I)
```

```
DO 3000 J=1, NSTAT(I)
         IF(J.NE.1)GO TO 3000
         READ(1, *)(IRE01(I, II), II=1, NTREQ(I, J))
         READ(1,*)(IEN01(I,II),II=1,NTREQ(I,J))
         READ(1, *)(FRATN(I, II), II=1, NTREQ(I, 1))
         READ(1, *) ISHRE(I,1)
 3000
         CONTINUE
         CONTINUE
    1
          READ(1,*)(IPCON(I), I=1, NSITE)
C
         CLOSE (1)
          INITIALIZATION OF VARIABLE TO ZERO
C
         IF (IELEV.EQ.1) WRITE (7,8086)
         FORMAT(9X, 'SITE STORAGE AREA EV. DEPTH
                                                      EV. VOL.
                                                                 ELEVATION')
  8086
         DO 701 I=1, NSITE
         UPRFC(I)=0.
         DSRFC(I)=0.
         CONTINUE
         CALL INTI1 (NSITE, NYEAR)
         CALL INIL1 (NSITE, NYEAR)
         DO 401 I=1, NSITE
          AASPL(I)=0.0
          SUM4(I)=0.0
         SUM5(I)=0.0
         SUM6(I)=0.0
         NFYRE(I)=0
         DO 401 JJ=1, NYEAR
          ANSPL(I,JJ)=0.0
          AADE1(I, JJ) = 0.0
          AADU1(I, JJ)=0.0
          ANLEN(I, JJ)=0.0
          DO 401 IT=1, NMONT
          NREMT(I, IT)=0
          NRFUT(I, IT)=0
          AVSPT(I, IT)=0
          CONTINUE
          DO 786 I=1, NSITE
          XXXX(I)=0
          YYYY(I)=0
          DO 788 II=1, NTREQ(I,1)
          XXII(I,II)=0.
          CONTINUE
          DO 789 II=1, NTREU(I.
          YYII(I,II)=0.
   789
          CONTINUE
          CONTINUE
    786
          DO 7 JJ=1, NYEAR
          DO 787 I=1, NSITE
          AVREU(I)=0.
          AVRED(I)=0.
          DO 790 II=1, NTREQ(I,1)
          ARIID(I, II)=0.
    790
          CONTINUE
          DO 791 II=1, NTREU(I,1)
          ARIIU(I, II)=0.
    791
          CONTINUE
    787
          CONTINUE
          IF(ISTAR.EQ.1)WRITE(*,1500)JJ
   1500
          FORMAT(1X, 'NYEAR='I5)
```

```
DO 11 IT=1, NMONT
          IF(ISTAR.EO.1) WRITE(*,1501)IT
  1501
         FORMAT(1X, 'NMONT='13)
         IJ=1
         DO 12 I=1, NSITE
         DO 9004 J=1, NSTAT(I)
         DO 9005 II=1, NTREQ(I, J)
         IF(J.NE.1) GO TO 9005
         CRLDT1(I, IT, II)=0
  9005
         CONTINUE
  9004
         CONTINUE
 C
         ENERGY COMPUTATION
         REGE1(I, IT)=0.
         DEFE1(I,IT)=0.
         DUME1(I, IT)=0.
         AMDE1(I, IT) = 0.0
         NMDE1(I, IT) = 0.0
         AMDU1(I, IT)=0.0
         NMDU1(I, IT)=0.0
         REQV1(I)=0.
         REQAI(I)=0.
         ADNV1(I)=0.
         ADNC1(I)=0.
         ADND1(I)=0.
         REGE1(I)=0.
         ENER1(I)=0.
         ENERG1(I, IT)=0.
         ELE(I) = ELEVAT(ISITE(I), S(I, IT))
         HE(I)=ELE(I)-TWL(I)
         CF=3600.*24*365./(12.*CCF)
         FACTR=9.8*HE(I)*PPEFF(I)*24*30.4
         IF (PPC(I).NE.O) QMAX(I)=PPC(I)*1000.*CF/(9.8*HE(I)*PPEFF(I))
         IF(ISTAR.EQ.1) WRITE(*,1501)IT
         IF(ISTAR.EQ.1) WRITE(*,1502)I
 1502
         FORMAT(1X, 'NSITE='13)
         SPILL(I, IT)=0.0
         DO 1001 NSHRE=1,4
        DO 1001 J=1.NSTAT(I)
 1001
         SHARE (NSHRE, I, J) = 0
         DO 2000 J=1, NSTAT(I)
         DO 2001 II=1, NTREG(I, J)
         IF(J.NE.1)GO TO 2001
C
         +++++++++++++
C
        OPTION FOR ENERGY
        ++++++++++++++
        IF(IREQ1(I, II).EQ.1)RENE1(I, IT, II)=CF*(REQD1(I, IT, II)*1000.)/
     1 FACTR
        IF(IREQ1(I, II).EQ.1)DDDT1(I, IT, II)=RENE1(I, IT, II)
        IF(IREQ1(I, II).NE.1)DDDT1(I, IT, II)=REQD1(I, IT, II)
        IF(IREQ1(I, II).EQ.1)REQV1(I)=RENE1(I, IT, II)
        IF(IREQ1(I, II).EQ.1)REQE1(I, IT)=REQD1(I, IT, II)
 2001
        CONTINUE
        DO 2002 II=1, NTREU(I, J)
        IF(J.EQ.1)DUDT1(I, IT, II) = REQU1(I, IT, II)
 2002
        CONTINUE
        DO 2003 II=1, NDSRE(I, J)
        IF(J.EQ.1)DDD1(I,IT,II)=0.
 2003
        CONTINUE
```

```
DO 2004 II=1, NUSRE(I, J)
        IF(J.EO.1) DUD1(I,IT,II)=0.
 2004
        CONTINUE
        CONTINUE
 2000
        IF(IUMRE(I).EO.1)TFLOW(I,IT)=FLOW(I,JJ,IT)+UPRFC(I)
        IF(IUMRE(I).NE.1)TFLOW(I,IT)=FLOW(I,JJ,IT)+SPILC(I)+UPRFC(I)+
     1 DSRFC(I)
        NSHRE=1
        IF (ISHRE(I,1).NE.1) AVANS(1,I,1)=TFLOW(I,IT)
        IF (ISHRE(I,1).NE.1) GOTO 2010
        SHARE (1, I, 1) = TFLOW(I, IT)
        USE WATER FROM SHARE1
C
        DO 5002 J=1, NSTAT(I)
        DO 5000 II=1, NTREU(I, J)
        IF (J.EQ. 1) SUPT1 (I, IT, II) = 0.0
        CONTINUE
 5000
        DO 5001 II=1,NTREG(I,J)
        IF (J.EQ.1)RLDT1(I,IT,II)=0.0
 5001
        CONTINUE
        CONTINUE
 5002
        DO 20 J=1, NSTAT(I)
        IF(ISTAR.EQ.1) WRITE(*,1501)IT
        IF(ISTAR.EQ.1) WRITE(*,1503)
        FORMAT(1X, 'CALL STAT1 *1* ')
 1503
        IF(J.EQ.1)CALL STAT1(I, JJ, IT, NSHRE)
        IF(IPRT.EQ.1)CALL WRTM(IJ)
        CONTINUE
   20
        DO 9006 II=1, NTREQ(I,1)
        CRLDT1(I, IT, II) = RLDT1(I, IT, II)
 9006
        CONTINUE
        SUMX=D
 2010
        DO 13 J=1, NSTAT(I)
        SUMX=SUMX+AVANS(NSHRE, I, J)
        CONTINUE
         XXX = 0
         YYY=0
         PPP=0
         000=0
         DO 808 II=1, NTREQ(I,1)
         XXXII(II)=0.
        PPPII(II)=0.
        CONTINUE
  808
         DO 809 II=1, NTREU(I, 1
       YYYII(II)=0.
         000II(II)=0.
  809
        CONTINUE
         ICAL=1
        IF(ISTAR.EQ.1) WRITE(*,1504)ICAL
        FORMAT(1X, 'ICAL *2*='13)
 1504
        CALL CALI(XXX, YYY, ICAL, NYEAR)
        IF (ISTAR.EQ.1) WRITE (*, 1505)
        FORMAT('CALL CAL11 *3*')
 1505
        CALL CAL11(PPP, QQQ, ICAL, NYEAR)
 1009
        DO 5005 J=1, NSTAT(I)
        DO 5006 II=1, NTREQ(I, J)
        IF (J.EO.1)RLDT1(I,IT,II)=0.0
         CONTINUE
 5006
 5005
        CONTINUE
```

```
ZZZ=AREA(ISITE(I),S(I,IT))
        EL=ZZZ*EVAPO(I,IT)
        IF (IELEV. EQ. 1) WRITE (7, 8087) I, S(I, IT), ZZZ, EVAPO(I, IT), EL, ELE (I)
 8087
        FORMAT (5X, 12, 2X, 4F10.5, 3X, F10.3)
        P(I,JJ,IT)=ZZZ*P(I,JJ,IT)
        X=S(I,IT)+SUMX+P(I,JJ,IT)-EL-YMIN(I,IT)
        IF(X.LE.O.0)GO TO 1002
        USE WATER FROM SHARE 2
        NSHRE=2
        SHARE (2, I, 1) = X
        DO 5003 J=1, NSTAT(I)
        DO 5004 II=1, NTREQ(I, J)
        IF (J.EQ.1)RLDT1(I, IT, II)=0.0
 5004
        CONTINUE
        CONTINUE
 5003
        DO 28 J=1, NSTAT(I)
        IF (ISTAR. EQ. 1) WRITE (*, 1506)
        FORMAT(1X, 'CALL STAT1 *4*')
 1506
        IF (J. EQ. 1) CALL STAT1 (I, JJ, IT, NSHRE
        IF (IPRT. EQ. 1) CALL WRIM (IJ)
   28
      CONTINUE
        DO 9008 II=1, NTREQ(I,1)
        CRLDT1(I, IT, II) = CRLDT1(I, IT, II) + RLDT1(I, IT, II)
 9008 CONTINUE
        SUMX=D.
        DO 46 J=1.NSTAT(I)
        SUMX = SUMX + AVANS (NSHRE, I, J)
   46
        CONTINUE
        X=SUMX
        YY=X-YMAX(I,IT)+YMIN(I,IT)
        IF(YY.LE.O.O)AWACS(I)=O.
        IF(YY.GT.O.O)AWACS(I)=YY
        IF(AWACS(I).GT.O.O)AWWCS(I)=YMAX(I,IT)-YMIN(I,IT)
        IF(X.LT.0.0)X=0.0
        IF(YY.LT.O.O)AWWCS(I)=X
        WRITE(2,*)EL,S(I,IT),SUMX,X,YY,AWACS(I),AWWCS(I)
        IF (AWACS(I).GT.O.O)SPILL(I,IT) = AWACS(I)
        IF(AWACS(I).LE.O)SPILL(I,IT)=0
        GO TO 405
 1002
        SPILL(I, IT)=0.0
        SUMX=X
C
        ++++++++++++++++++++++++++++++
        CALCULATION FOR FINAL RESERVOIR BEHAVIOUR
C
        +++++++++++++++++++++++++++++++++++++
C
        IF(J.EQ.1)CALL DIST1(I, IT)
  405
        ICAL=2
        IF(ISTAR.EQ.1) WRITE(*,1507)
        FORMAT(1X, 'ICAL=2*5* ')
 1507
        IF(ISTAR.EQ.1) WRITE(*,1508)
 1508
        FORMAT(1X, 'CALL CAL1*6*')
        CALL CAL1 (XXX, YYY, ICAL, NYEAR)
        IF (ISTAR. EQ. 1) WRITE (*, 1509)
        FORMAT(1X, 'CALL CAL11 *7*')
 1509
        CALL CAL11(PPP, QQQ, ICAL, NYEAR)
        SUM1(I,JJ,IT)=0.
        DO 32 II=1.NTREU(I,1)
        SUM1(I, JJ, IT) = SUM1(I, JJ, IT) + UPRFL(I, II) *SUPT1(I, IT, II)
   32
        CONTINUE
```

```
UPRFC(I)=SUM1(I,JJ,IT)
         SUM2(I,JJ,IT)=0.
         SUM3(I,JJ,IT)=0.
         IF (IUMRE (I). EQ. 1) GO TO 47
         DO 35 IU=1, NURCF(I)
         IUREN=NTRCF(I, IU)
         SUM3(I, JJ, IT) = SUM3(I, JJ, IT) + SPILL(IUREN, IT)
         DO 36 II=1, NTREQ(IUREN, 1)
         SUM2(I, JJ, IT) = SUM2(I, JJ, IT) + DSRFL(IUREN, II) * CRLDT1(IUREN, IT, II)
   36
         CONTINUE
   35
         CONTINUE
   47
         DSRFC(I)=SUM2(I,JJ,IT)
         SPILC(I)=SUM3(I,JJ,IT)
         O(I,IT) = XXX
         TUSUT(I, IT)=YYY
         AVREU(I) = AVREU(I) + YYY
         AVRED(I) = AVRED(I) + XXX
         DO 886 II=1, NTREU(I,1)
         ARIIU(I, II) = ARIIU(I, II) + YYYII(II
  886
         CONTINUE
         DO 887 II=1, NTREQ(I,1)
         ARIID(I, II) = ARIID(I, II) + XXXII(II)
  887
         CONTINUE
         +++++++++++++++++++++++++++++++
         CALCULATE FINAL RESERVOIR CONTENT
         IF(SPILL(I, IT). NE. O.)S(I, IT+1)=YMAX(I, IT)
        IF(SPILL(I,IT).EQ.O.)S(I,IT+1)=YMIN(I,IT)+SUMX
         ++++++++++++++++++++++++++++++++
C
Ċ
                 FOR ENERGY COMPUTATION
        IF(ISPPO(I).EQ.1.AND.SPILL(I,IT).LT.ADNC1(I))
        ADNC1(I)=SPILL(I,IT)
        IF(ISPPO(I).EQ.1)ENER1(I)=ENER1(I)+ADNC1(I)
        ENER1(I)=ENER1(I)/CF
        ENER1(I) = ENER1(I) * 9.8 * HE(I) * PPEFF(I)
        ENER1(I)=ENER1(I)*24.0*365.0/12.0
        ENERG(I, IT) = ENER1(I)/1000.0
        ANLEN(I, JJ) = ANLEN(I, JJ) + ENERG(I, IT)
        IF (IWEN1.EQ.1) WRITE (2,1516)
        FORMAT (2X, 'ENERGY')
        IF (IWEN1.EQ.1) WRITE (2, *) ENER1 (1), ENERG (1, IT), ADNC1 (1),
        SPILL(I, IT), REGE1(I)
        IF(ENERG(I, IT).LT.REGE1(I, IT))GO TO 6001
        IF(ENERG(I, IT). GT. REQE1(I, IT)) GO TO 6002
        IF(ENERG(I,IT).EQ.REQE1(I,IT))60 TO 6003
6001
        DEFE1(I, IT) = REQE1(I, IT) - ENERG(I, IT)
        AMDE1(I, IT) = AMDE1(I, IT) + DEFE1(I, IT) / FLOAT(NYEAR)
        NMDE1(I,IT) = NMDE1(I,IT) + 1
        AADE1(I, JJ) = AADE1(I, JJ) + DEFE1(I, IT)
        GO TO 6003
6002
        DUME1(I, IT) = ENERG(I, IT) - REGE1(I, IT)
        AMDU1(I, IT) = AMDU1(I, IT) + DUME1(I, IT) / FLOAT(NYEAR)
        NMDU1(I,IT)=NMDU1(I,IT)+1
        AADU1(I, JJ) = AADU1(I, JJ) + DUME1(I, IT)
        IF (IWEN1.EQ.1) WRITE (2, *) ENERG (I, IT), REQE1 (I, IT), DEFE1 (I, IT),
6003
    1 DUME1(I, IT), AADE1(I, JJ), AADU1(I, JJ)
        CALCULATE STATISTICS FOR RESERVOIR BEHAVIOUR
```

```
C
         IF(S(I, IT+1).LE.YMIN(I, IT))NREMT(I, IT)=NREMT(I, IT)+1
         IF(S(I, IT+1).EQ. YMAX(I, IT))NRFUT(I, IT)=NRFUT(I, IT)+1
         AVSPT(I, IT) = AVSPT(I, IT) + SPILL(I, IT) / FLOAT(NYEAR)
         ANSPL(I, JJ) = ANSPL(I, JJ) + SPILL(I, IT)
         IF (IT. EQ. 1) CUMF (I) = 0
         IF(IT.EQ.1)CUMP(I)=0
         IF (IT.EQ. 1) CUMEL (I) =0
         IF(IT.EQ.1.AND.JJ.EQ.1)AASPL(I)=0
 C
         CALCULATE TOTAL EVAPORATION
         CUMEL(I) = CUMEL(I)+EL
 C
         CALCULATE TOTAL RESERVOIR INPUT
         CUMF(I) = CUMF(I) + TFLOW(I, IT)
         CUMP(I) = CUMP(I) + P(I, JJ, IT)
         CONTINUE
   12
    11
         CONTINUE
         DO 23 I=1, NSITE
         IF (AADE1(I, JJ).NE.O.)NFYRE(I)=NFYRE(I)+1
    23
         CONTINUE
         DO 703 I=1, NSITE
         IF (IWWT1.EQ. 1) WRITE (2,705)
         DO 704 IT=1, NMONT
         IF(IWWT1.EQ.1)WRITE(2,706)I, JJ, IT, S(I, IT), FLOW(I, JJ, IT),
    1 TFLOW(I, IT), TUSUT(I, IT), O(I, IT), SPILL(I, IT), S(I, IT+1)
   705
         FORMAT(1X, 'SITE', 2X, 'YEAR', 2X, 'TIME', 2X, 'INI. STORE', 4X,
         'INFLOW', 2X, 'TOTAL FLOW', 2X, 'U/S SUB.', 2X, 'RES. REL.', 5X,
         'SPILL', 2X, 'FINAL STORE.')
   706
         FORMAT(I5, I6, I6, F12.3, F10.3, F12.3, F10.3, F11.3, F10.3, F13.3)
  704
         CONTINUE
         XX=CUMF(I)+CUMP(I)
         YY=AVRED(I)+AVREU(I)+CUMEL(I)+ANSPL(I,JJ)
         CHECK WATER BALANCE OF RESERVOIR
         T=S(I,NMONI+1)-S(I,1)
         B=XX-YY
         IF((T-B).GE.(-0.00001).OR.(T-B).LE.O.00001)GO TO 400
         IF (IWWT1.EQ.1) WRITE (2,96)
         IF(ISTAR.EQ.1) WRITE(*,1510)
  1510
         FORMAT(1X, 'WATER BALANCE FOUND INCORRECT *8*')
    96
         FORMAT (//5X, 'WATER BALANCE FOUND INCORRECT')
         STOP
         IF (IWWT1.EQ.1) WRITE (2,91)
         IF(ISTAR.EQ.1) WRITE(*,1511)
 1511
         FORMAT (1X, 'WATER BALANCE FOUND OK *9*')
         FORMAT (//5x, 'WATER BALANCE FOUND OK')
    91
         S(I,1)=S(I,NMONT+1)
         ICAL=3
         IF (ISTAR. EQ. 1) WRITE (*, 1512)
 1512
         FORMAT(1X, 'ICAL=3 *10*')
         IF(ISTAR.EQ.1) WRITE(*,1513)
 1513
         FORMAT(1X, 'CALL CAL1 *11* ')
         CALL CAL1(XXX, YYY, ICAL, NYEAR)
         IF (ISTAR. EQ. 1) WRITE (*, 1514)
 1514
         FORMAT(1X, 'CALL CAL11 *12*')
         CALL CAL11 (PPP, QQQ, ICAL, NYEAR)
         AASPL(I) = AASPL(I) + ANSPL(I, JJ) / FLOAT (NYEAR)
         SUM4(I)=SUM4(I)+AADE1(I,JJ)/FLOAT(NYEAR)
         SUM5(I)=SUM5(I)+AADU1(I,JJ)/FLOAT(NYEAR)
         SUM6(I)=SUM6(I)+ANLEN(I, JJ)/FLOAT(NYEAR)
```

```
IF(IWWT1.EQ.1)WRITE(2,*)SUM4(I),SUM5(I),SUM6(I)
        YYYY(I)=YYYY(I)+AVREU(I)/FLOAT(NYEAR)
        XXXX(I)=XXXX(I)+AVRED(I)/FLOAT(NYEAR)
        DO 888 II=1.NTREU(I,1)
        YYII(I, II)=YYII(I, II)+ARIIU(I, II)/FLOAT(NYEAR)
  888
        CONTINUE
        DO 889 II=1, NTREQ(I,1)
        XXII(I, II) = XXII(I, II) + ARIID(I, II) / FLOAT(NYEAR)
  889
        CONTINUE
        CONTINUE
  703
        CONTINUE
    7
        DO 501 I=1, NSITE
        DO 8990 LL=1,6
        IWRT(LL) = IWRTS(I, LL)
 8990
        CONTINUE
        DO 500 J=1, NSTAT(I)
        IF (ISTAR.EQ.1) WRITE (*, 1515)
        FORMAT(1X, 'CALL WRT1 *13* ')
 1515
        IF (J. EO. 1) CALL WRT1 (NYEAR, NSITE, J, IWRT, NSHRE, I)
        IF (J. EQ. 1) CALL WRT11 (NYEAR, NSITE, J, IWRT, NSHRE, I)
        CONTINUE
  500
        CONTINUE
  501
        FORMAT (4F10.3)
  100
         IF (IWWT1.EQ.1) WRITE (2,902)
        DO 901 I=1, NSITE
        DO 901 IT=1, NMONT
         IF (IWWT1.EQ.1) WRITE (2,903) I, IT, AVSPT (I, IT), NREMT (I, IT),
        NRFUT(I, IT)
        FORMAT (1X, 'SITE', 2X, 'TIME', 2X, 'AVE. SPILL', 2X,
  902
         'NO. OF TIMES RES. EMPTY', 2X, 'NO. OF TIMES RES. FULL
  903
         FORMAT(15, 16, F12, 3, 125, 124)
        CONTINUE
  901
         IF (IWWT1, EQ. 1) WRITE (2, 904)
        DO 905 I=1, NSITE
        DO 905 JJ=1, NYEAR
         IF (IWWT1.EQ.1) WRITE (2,906) I, JJ, ANSPL (I, JJ)
        FORMAT(1X, 'SITE', 2X, 'YEAR', 2X, 'ANNUAL SPILL'/
  904
  906
        FORMAT(15, 16, F14.3)
  905
        CONTINUE
         IF (IWWT1.EQ.1) WRITE (2,907)
        DO 908 I=1, NSITE
         IF(IWWT1.EQ.1)WRITE(2,909)I, AASPL(I
        FORMAT(1X, 'SITE', 2X, 'AVE. ANNUAL
  907
         FORMAT(15, F19.3)
  909
        CONTINUE
  908
         DO 6004 I=1, NSITE
         DO 6004 IT=1, NMONT
         IF (IWWT1.EQ.1) WRITE (2, *) I, IT, AMDE1 (I, IT), NMDE1 (I, IT),
     1 AMDU1(I, IT), NMDU1(I, IT)
        CONTINUE
 6004
         CALL WRRS1 (NSITE, NYEAR)
         CALL RINFL (NSITE, NYEAR)
          CALL FLUSH(MSITE, NSITE, NYEAR)
C
         GO TO 6174
         STOP
6175
         END
```

```
C
C
         SUBROUTINE STATI(I.JJ.IT.NSHRE)
         DIMENSION DUDT1 (30, 12, 10), DDDT1 (30, 12, 10), AVANS (4, 30, 1)
         DIMENSION NTREQ(30,10), NTREU(30,10), SHARE(4,30,3)
         DIMENSION RLDT1 (30, 12, 10), SUPT1 (30, 12, 10), FRATN (30, 10)
         DIMENSION REQV1(30), QMAX(30), REQA1(30), ADNC1(30), REGE1(30)
         DIMENSION ENER1 (30), ADNV1 (30), ADND1 (30), IREQ1 (30, 10)
         DIMENSION IEN01(30,10), ELE(30), PHMIN(30,12), ENERG(30,12)
         COMMON/OPT2/ISTAR
         COMMON/OPT5/IWAT
         COMMON/BLK3/SHARE
         COMMON/BLK5/NTREQ. NTREU
         COMMON/BLK6/AVANS
         COMMON/B11/DUDT1, RLDT1, DDDT1, SUPT1
         COMMON/B20/REQV1, QMAX, REQA1, ADNC1, REGE1, ENER1, ADNV1, ADND1,
                     IEN01, ELE, PHMIN, FRATN
         COMMON/B21/IREQ1
         GO TO(10, 20, 30) NSHRE
         U/S USE AND D/S RELEASES FROM SHARE1 AT SITE I IN TIME T FOR
C
C
        STATE 1
   10
        AVANS(1, I, 1) = SHARE(1, I, 1)
         IF(ISTAR.EQ.1) WRITE(*,1516)
        FORMAT (1X, 'STAT1 *1.1 *')
 1516
        CALL WATER (AVANS(1, I, 1), DUDT1, RLDT1, DDDT1, SUPT1, NTREG(I, 1),
         NTREU(I.1), I.IT, NSHRE, REGV1, GMAX, REGA1, ADNC1, REGE1, ENER1, ADNV1,
         ADND1, IREQ1, IENO1, ELE, PHMIN, FRATN)
         IF (ISTAR. EQ. 1) WRITE (*, 1517)
         FORMAT(1X, 'CALL WATER 1*1.2*')
 1517
         RETURN
C
         D/S RELEASES FROM SHARE2 AT SITE I IN TIME T FOR
         STATE 1
         AVANS(2, I, 1) = SHARE(2, I, 1)
   20
        CALL WATER(AVANS(2, I, 1), DUDT1, RLDT1, DDDT1, SUPT1, NTREQ(I, 1),
     1 NTREU(I,1), I, IT, NSHRE, REQV1, QMAX, REQA1, ADNC1, REGE1, ENER1, ADNV1,
     2 ADND1, IREQ1, IENO1, ELE, PHMIN, FRATN)
        IF(ISTAR.EQ.1) WRITE(*,1518)
        FORMAT(1X, 'CALL WATER 2 *1.3*')
 1518
         RETURN
        D/S RELEASES FROM SHARE3 AT SITE I IN TIME T FOR STATE 1
         AVANS(3, I, 1) = SHARE(3, I, 1)
         CALL WATER (AVANS (3, I, 1), DUDT1, RLDT1, DDDT1, SUPT1, NTREQ (I, 1),
        NTREU(I,1), I, IT, NSHRE, REQV1, QMAX, REQA1, ADNC1, REGE1, ENER1, ADNV1,
        ADND1, IREQ1, IENO1, ELE, PHMIN, FRATN)
         IF (ISTAR.EQ.1) WRITE (*, 1519)
         FORMAT(1X, 'CALL WATER 3 *1.4*'
 1519
         FND
C
C
                    WATER
C
         SUBROUTINE WATER (AVANW, DUDT, RLDT, DDDT, SUPT, NTREO, NTREU, I, IT,
                    NSHRE, REQV, QMAX, REQA, ADNLC, REGEN, ENERG, ADNLV, ADNLD,
     1
                    IREQ, IENO, ELE, PHMIN, FRATN)
     2
         DIMENSION DUDT (30, 12, 10), RLDT (30, 12, 10), DDDT (30, 12, 10),
                    SUPT(30,12,10), REOV(30), GMAX(30), REGA(30), ADNLC(30),
     1
                    REGEN(30), ENERG(30), ADNLV(30), ADNLD(30), IENO(30,10),
     2
```

```
ELE(30), PHMIN(30,12), IREQ(30,10), FRATN(30,10)
     3
        COMMON/OPT2/ISTAR
        COMMON/OPT5/IWAT
        IF (NSHRE.NE.1)GO TO 3
        DO 1 II=1.NTREU
        IF (ISTAR. EQ. 1) WRITE (*, 1520)
        FORMAT(1X, 'WATER *1.5*')
 1520
        CALL RELES(AVANW, DUDT(I, IT, II), SUPT(I, IT, II))
        IF (ISTAR. EQ. 1) WRITE (*, 1521)
        FORMAT(1X, 'CALL RELES1 *1.6*')
1521
        LLLL=1111
        IF (IWAT.EQ. 1) WRITE (2, *) LLLL, AVANW, DUDT (I, IT, II),
     1 SUPT(I.IT, II), ELE(I), PHMIN(I, IT)
        CONTINUE
    1
        DO 2 II=1.NTREO
       IF(IREQ(I, II). NE. 1) CALL RELES(AVANW, DDDT(I, IT, II), RLDT(I, IT, II))
        IF (ISTAR. EQ. 1) WRITE (*, 1522)
        FORMAT(1X, 'CALL RELES 2 *1.7*')
 1522
        LLLL=2222
        IF (IWAT. EQ. 1) WRITE (2, *) LLLL, AVANW, DDDT (I, IT, II),
        RLDT(I.IT, II), ELE(I), PHMIN(I, II)
        CALCULATE ENERGY GENERATED FROM OTHER RELEASES
        ______
        IF (IREQ(I, II).NE.1.AND.IENO(I, II).EQ.1)REGEN(I)=REGEN(I)+
                                         RLDT(I, IT, II) *FRATN(I, II)
        IF (IREQ(I, II). NE. 1. AND. IENO(I, II). EQ. 1) ENERG(I) = REGEN(I)
        IF ((IREQ(I.II).NE.1.AND.IENO(I.II).EQ.1).AND.(ENERG(I).GT.
        QMAX(I)))ENERG(I)=QMAX(I)
        LLLL = 4444
        IF(IWAT.EQ.1)WRITE(2,*)LLLL, REGEN(I), RLDT(I, IT, II),
     1 FRATN(I, II), IREQ(I, II), IENO(I, II)
        IF(ELE(I).LT.PHMIN(I,IT))GO TO 2
        IF(IREQ(I, II).NE.1)GO TO 2
        CALCULATE ADDITIONAL POWER RELEASES
        CALL POWER(AVANW, REGV(I), QMAX(I), REGA(I), ADNLC(I), REGEN(I).
                   ENERG(I).ADNLV(I).ADNLD(I).RLDT(I,IT,II))
        IF (ISTAR.EQ.1) WRITE (*, 1523)
        FORMAT (1X, 'CALL POWER *1.8*')
        LLLL=3333
        IF (IWAT.EQ.1)WRITE(2,*)LLLL, AVANW, REOV(I), GMAX(I), REGA(I),
        ADNLC(I), REGEN(I), ENERG(I), ADNLV(I), ADNLD(I), RLDT(I, IT, II),
       ELE(I), PHMIN(I, IT)
     2
        CONTINUE
        RETURN
        END
C
C
C
        SUBROUTINE RELES (AVANW. DEFCT, RLS)
        IF (AVANW. LT. DEFCT) RLS = AVANW
        IF (AVANW. GE. DEFCT) RLS=DEFCT
        AVANW=AVANW-RLS
        IF (RLS.LT.DEFCT) DEFCT=DEFCT-RLS
        IF(RLS.EQ.DEFCT)DEFCT=0
        RETURN
        END
```

```
C
C
                  POWER
C
         SUBROUTINE POWER (AVANW, REQV, QMAX, REQA, ADNLC, REGEN, ENERG.
      1
                             ADNLV, ADNLD, RLDT)
         IF (REOV. GE. QMAX) REQA = QMAX
         IF (REQV. GE. QMAX) ADNLC=0
         IF (REQV. LT. OMAX) REQA = REQV
         IF (REQV. LT. QMAX) ADNL C=QMAX-REQV
         IF (REGEN. GE. REGA) ENERG=REGA
         IF (REGEN. GE. REQA) ADNL V=0
         IF (REGEN. LT. REGA) ENERG=REGEN
         IF (REGEN.LT.REGA) ADNLV=REGA-REGEN
         IF (ADNLV.NE.O)GO TO 9007
         IF (ADNLV.EQ. O. AND. ADNLC. NE. O. AND. (REGEN-REQA). LE. ADNLC)
      1 GO TO 9001
         ENERG=REQA+ADNLC
         ADNLC=0
         REGEN=ENERG
         GO TO 2
 9001
         ENERG=REGEN
         ADNLC=QMAX-REGEN
         GO TO 2
 9007
         IF (AVANW. EQ. D) GO TO 2
         IF (AVANW. LT. ADNLV) ADNLD=AVANW
         IF (AVANW. GE. ADNLV) ADNLD = ADNLV
         ADNLV=ADNLV-ADNLD
         AVANW=AVANW-ADNLD
         ENERG=ENERG+ADNLD
         REGEN=ENERG
         IF (ADNLV. NE. O. ) ADNLC=0.0
         RLDT=ADNLD
    2
         RETURN
         END
C
C
C
         SUBROUTINE CAL1(XXX, YYY, ICAL, NYEAR)
         DIMENSION NTREQ(30,10), NTREU(30,10)
         DIMENSION DUDT1 (30, 12, 10), RLDT1 (30, 12, 10), DDDT1 (30, 12, 10)
         DIMENSION SUPT1 (30, 12, 10), AVDD1 (30, 12, 10), AVUD1 (30, 12, 10)
         DIMENSION CUSR1 (30, 25, 10), CUUS1 (30, 25, 10), AADD1 (30, 10)
         DIMENSION AAUD1 (30, 10), ANDD1 (30, 25, 10), ANUD1 (30, 25, 10)
         DIMENSION NADD1(30,10), NAUD1(30,10), NDDD1(30,12,10)
         DIMENSION NDUD1(30,12,10), XXXII(30), YYYII(30)
         COMMON/BLK5/NTREQ, NTREU
         COMMON/BLK10/I, J, JJ, NSHRE, IT
         COMMON/B11/DUDT1, RLDT1, DDDT1, SUPT1
         COMMON/B12/AVDD1, AVUD1, CUSR1, CUUS1
         COMMON/B121/AADD1, AAUD1, ANDD1, ANUD1
         COMMON/B13/NDDD1, NDUD1, NADD1, NAUD1
         COMMON/B131/XXXII, YYYII
         GO TO(10,20,30)ICAL
         DO 100 II=1, NTREQ(I,1)
         WRITE(2, *) I, ICAL, II, IT, RLDT1(I, IT, II)
  100
        CONTINUE
C
         CALCULATE TOTAL D/S RELEASES DEMANDWISE
   10
        DO 3 II=1, NTREQ(I,1)
```

```
CUSR1(I, JJ, II) = CUSR1(I, JJ, II) + RLDT1(I, IT, II)
         XXX=XXX+RLDT1(I,IT,II)
         XXXII(II) = XXXII(II) + RLDT1(I, IT, II)
    3 CONTINUE
         RETURN
C
         CALCULATE STATISTICS FOR D/S DEMAND
         DO 1 II=1, NTREQ(I,1)
   20
         IF(DDDT1(I,IT,II).GT.O.O)NDDD1(I,IT,II)=NDDD1(I,IT,II)+1
         AVDD1(I, IT, II) = AVDD1(I, IT, II) + DDDT1(I, IT, II) / FLOAT(NYEAR)
         ANDD1(I,JJ,II) = ANDD1(I,JJ,II) + DDDT1(I,IT,II)
        CONTINUE
C
         CALCULATE STATISTICS FOR U/S DEMAND
         DO 2 II=1, NTREU(I,1)
         IF(DUDT1(I,IT,II).GT.O.O)NDUD1(I,IT,II)=NDUD1(I,IT,II)+1
         AVUD1(I, IT, II) = AVUD1(I, IT, II) + DUDT1(I, IT, II) / FLOAT(NYEAR)
         ANUD1(I, JJ, II) = ANUD1(I, JJ, II) + DUDT1(I, IT, II)
         CONTINUE
        CALCULATE TOTAL D/S RELEASES DEMANDWISE
         DO 7 II=1, NTREO(I,1)
         CUSR1(I, JJ, II) = CUSR1(I, JJ, II) + RLDT1(I, IT, II)
         XXX=XXX+RLDT1(I,IT,II)
         XXXII(II)=XXXII(II)+RLDT1(I,IT,II)
         CONTINUE
         CALCULATE TOTAL U/S SUBTRATION DEMANDWISE
         DO 4 II=1, NTREU(I,1)
         CUUS1(I, JJ, II) = CUUS1(I, JJ, II) + SUPT1(I, IT, II)
         YYY=YYY+SUPT1(I,IT,II)
        YYYII(II)=YYYII(II)+SUPT1(I,IT,II)
        CONTINUE
        RETURN
   30
        DO 5 II=1, NTREQ(I,1)
        IF (ANDD1 (I, JJ, II). GT. O.) NADD1 (I, II) = NADD1 (I, II) +1
        AADD1(I, II) = AADD1(I, II) + ANDD1(I, JJ, II) / FLOAT(NYEAR)
        CONTINUE
        DO 6 II=1.NTREU(I,1)
        IF (ANUD1 (I, JJ, II). GT. O. D) NAUD1 (I, II) = NAUD1 (I, II) +1
        AAUD1(I, II) = AAUD1(I, II) + ANUD1(I, JJ, II) / FLOAT(NYEAR)
        CONTINUE
        RETURN
        END
                 INTI1
        ******************
        SUBROUTINE INTI1 (NSITE, NYEAR)
        DIMENSION AVDD1(30,12,10), AVUD1(30,12,10)
        DIMENSION CUSR1 (30, 25, 10), CUUS1 (30, 25, 10), AADD1 (30, 10)
        DIMENSION AAUD1 (30, 10), ANDD1 (30, 25, 10), ANUD1 (30, 25, 10)
        DIMENSION NADD1(30,10), NAUD1(30,10), NDDD1(30,12,10)
        DIMENSION NDUD1 (30, 12, 10), NTREG (30, 10), NTREU (30, 10)
        COMMON/BLK2/NMONT
        COMMON/BLK5/NTREQ.NTREU
        COMMON/B12/AVDD1, AVUD1, CUSR1, CUUS1
        COMMON/B121/AADD1, AAUD1, ANDD1, ANUD1
        COMMON/B13/NDDD1, NDUD1, NADD1, NAUD1
        DO 1 I=1.NSITE
        DO 2 JJ=1, NYEAR
        DO 3 IT=1, NMONT
        DO 4 II=1, NTREQ(I,1)
```

```
NDDD1(I,IT,II)=0
       AVDD1(I,IT,II)=0.
       ANDD1(I, JJ, II) = 0.
       CUSR1(I,JJ,II)=0.
       NADD1(I, II)=0
       AADD1(I,II)=0.
      CONTINUE
       DO 5 II=1, NTREU(I,1)
       NDUD1(I, IT, II)=0
       AVUD1(I,IT,II)=0.
       ANUD1(I,JJ,II)=0.
       CUUS1(I,JJ,II)=0.
      NAUD1(I, II)=0
       AAUD1(I, II) = 0.
      CONTINUE
  5
  3
      CONTINUE
  2
      CONTINUE
       CONTINUE
  1
       RETURN
       SUBROUTINE WRT1 (NYEAR, NSITE, J, IWRT, NSHRE, I)
       DIMENSION S(30,13), FLOW(30,25,12), P(30,25,12)
       DIMENSION AREQ1 (30, 10), NTREQ (30, 10), REQ1 (30, 12, 10)
       DIMENSION PREQ1 (30, 12, 10), AREU1 (30, 10), NTREU (30, 10)
       DIMENSION PREU1 (30, 12, 10), REQU1 (30, 12, 10)
       DIMENSION SHARE (4,30,3), AVANS (4,30,1), YMIN (30,12), YMAX (30,12)
       DIMENSION DUDT1 (30, 12, 10), RLDT1 (30, 12, 10), DDDT1 (30, 12, 10)
       DIMENSION AWACS(30), AWWCS(30), NSTAT(30), SUPT1(30, 12, 10)
       DIMENSION AVDD1(30, 12, 10), AVUD1(30, 12, 10)
       DIMENSION CUSR1(30, 25, 10), CUUS1(30, 25, 10), AADD1(30, 10)
       DIMENSION AAUD1 (30, 10), ANDD1 (30, 25, 10), ANUD1 (30, 25, 10)
       DIMENSION NADD1 (30, 10), NAUD1 (30, 10), NDDD1 (30, 12, 10)
       DIMENSION NDUD1 (30, 12, 10), TFLOW (30, 12), IWRT (6), SUM4 (30), SUM5 (30)
       DIMENSION SUM1 (30, 25, 12), SUM2 (30, 25, 12), SUM3 (30, 25, 12)
       COMMON/BLK1/FLOW, TFLOW
       COMMON/BLK2/NMONT
       COMMON/BLK3/SHARE
       COMMON/BLK5/NTREG, NTREU
       COMMON/BLK6/AVANS
       COMMON/BLK8/NSTAT
       COMMON/BLK9/AWACS, AWWCS
       COMMON/BLK11/SUM1, SUM2, SUM3
       COMMON/B11/DUDT1, RLDI1, DDDT1, SUPT1
       COMMON/B12/AVDD1, AVUD1, CUSR1, CUUS1
       COMMON/B121/AADD1, AAUD1, ANDD1, ANUD1
       COMMON/B13/NDDD1, NDUD1, NADD1, NAUD1
      FORMAT(1X,30('*'),/)
100
101
      FORMAT(/,10('-'))
       FORMAT(1X, 'SHARE NO. =', 14, 4X, 'WATER SHARE =', F10.3/)
210
 50
       IF (IWRT(1).NE.1)GO TO 51
       WRITE (4,213)
       DO 28 II=1, NTREU(I,1)
       DO 29 IT=1, NMONT
       WRITE(4,214)I, J, II, IT, AVUD1(I, IT, II), NDUD1(I, IT, II)
      FORMAT(1X, 'SITE', 2X, 'STATE', 2X, 'U/S DEMAND', 3X, 'TIME', 2X,
213
```

CCC

```
1 'AVE. DEFICIT IN TIME', 2X, 'NO. OF DEFICITS'/)
 214
       FORMAT(I5, I7, I12, I7, F22, 3, P17)
  29
       CONTINUE
  28 CONTINUE
       WRITE(4,101)
       WRITE(4,100)
       IF (IWRT(2).NE.1)GO TO 52
  51
       WRITE(4,215)
     DO 31 II=1.NTREU(I,1)
       DO 32 JJ=1.NYEAR
       WRITE(4,216)I, J, II, JJ, ANUD1(I, JJ, II)
 215
       FORMAT(1X, 'SITE', 2X, 'STATE', 2X, 'U/S DEMAND', 2X, 'YEAR', 2X,
       'ANNUAL DEFICIT')
 216
       FORMAT(15, 17, 112, 16, F16.3)
  32 CONTINUE
  31 CONTINUE
       WRITE (4, 101)
       WRITE (4, 100)
 52
       IF (IWRT (3). NE. 1) GO TO 53
       WRITE (4, 217)
       DO 34 II=1, NTREU(I,1)
       WRITE(4,218) I, II, AAUD1(I, II), NAUD1(I, II)
       FORMAT(1X, 'SITE', 2X, 'U/S DEMAND', 2X, 'AVE. ANNUAL DEFICIT'.
       2X, 'NO. OF ANNUAL DEFICIT'/)
  - 1
 218
       FORMAT(15, 112, F20.3, 122)
 34
       CONTINUE
       WRITE (4, 101)
       WRITE (4,100)
  53
       IF (IWRT (4) . NE . 1) GO TO 55
       WRITE (4, 201)
       DO 14 II=1, NTREQ(I,1)
       DO 15 IT=1, NMONT
       WRITE(4,202)I, J, II, IT, AVDD1(I, IT, II), NDDD1(I, IT, II)
       FORMAT(1X, 'SITE', 2X, 'STATE', 2X, 'D/S DEMAND', 3X, 'TIME', 2X,
201
       'AVE. DEFICIT IN TIME', 2X, 'NO. OF DEFICITS'/
202
      FORMAT(15, 17, 112, 17, F22, 3, 117)
       CONTINUE
       CONTINUE
       WRITE (4,101)
      WRITE (4,100)
       IF (IWRT (5). NE. 1) GO TO 56
       WRITE (4, 203)
       DO 17 II=1, NTREQ(I,1)
       DO 18 JJ=1, NYEAR
      WRITE(4,204)I, J, II, JJ, ANDD1(I, JJ, II)
203
      FORMAT(1X, 'SITE', 2X, 'STATE', 2X, 'D/S DEMAND', 2X, 'YEAR', 2X,
      'ANNUAL DEFICIT')
204
      FORMAT(15, 17, 112, 16, F16.3)
 18
      CONTINUE
 17
      CONTINUE
      WRITE(4.101)
      WRITE (4,100)
 56
      IF (IWRT (6). NE. 1) GO TO 57
      WRITE(4,207)
      DO 20 II=1, NTREQ(I,1)
      WRITE(4,208)I, II, AADD1(I, II), NADD1(I, II)
207 FORMAT(1X, 'SITE', 2X, 'D/S DEMAND', 2X, 'AVE. ANNUAL DEFICIT',
  1 2X, 'NO. OF ANNUAL DEFICIT'/)
```

```
208
          FORMAT(15, 112, F20.3, 122)
    20
          CONTINUE
          WRITE (4, 101)
    57
          RETURN
          END
 C
 C
 C
          SUBROUTINE WRTM(IJ)
          DIMENSION S(30,13), FLOW(30,25,12), P(30,25,12)
          DIMENSION YMIN(30,12), YMAX(30,12)
          DIMENSION AREO1 (30,10), NTREQ (30,10), REQD1 (30,12,10)
         DIMENSION PRE01(30,12,10), AREU1(30,10), NTREU(30,10)
         DIMENSION PREU1 (30, 12, 10), REQU1 (30, 12, 10)
         DIMENSION SHARE(4, 30, 3), AVANS(4, 30, 1), DUDT1(30, 12, 10)
         DIMENSION RLDT1(30,12,10), DDDT1(30,12,10), SUPT1(30,12,10)
         DIMENSION ANNLF (30, 3), DFM75 (30, 12), AWACS (30), AWWCS (30)
         DIMENSION NSTAT(30), TFLOW(30, 12), IWRT(6), SUM4(30), SUM5(30)
         DIMENSION SUM1(30,25,12), SUM2(30,25,12), SUM3(30,25,12)
         COMMON/BLK1/FLOW, TFLOW
         COMMON/BLK2/NMONT
         COMMON/BLK3/SHARE
         COMMON/BLK5/NTREO, NTREU
         COMMON/BLK6/AVANS
         COMMON/BLK8/NSTAT
         COMMON/BLK9/AWACS, AWWCS
         COMMON/BLK10/I, J, JJ, NSHRE, IT
         COMMON/BLK11/SUM1, SUM2, SUM3
         COMMON/B11/DUDT1, RLDT1, DDDT1, SUPT1
         IF (J. NE. 1) GO TO 1
         IF (NSHRE.NE.1)GO TO 10
         DO 4 II=1, NTREU(I,1)
         I1=1
         CALL WRT (SHARE (NSHRE, I, 1), DUDT1 (I, IT, II), SUPT1 (I, IT, II),
                   II, I1, IJ)
    4
         CONTINUE
   10
         DO 5 II=1, NTREQ(I,1)
         CALL WRT(SHARE(NSHRE, I, 1), DDDT1(I, IT, II), RLDT1(I, IT, II), II
     1
                   I1, IJ)
    5
         CONTINUE
         RETURN
        END
C
C
C
        SUBROUTINE WRT (SHARE, X1, X2, II, I1, IJ)
        COMMON/BLK10/I, J, JJ, NSHRE, IT
        COMMON/OPT6/ICOMT
        IF(IJ.EQ.1.AND.ICOMT.EQ.1)WRITE(3,100)
        IJ = IJ + 1
        FORMAT(1X, 'SITE', 2X, 'YEAR', 2X, 'TIME', 2X, 'SHARE NO.', 2X,
  100
        'STATE', 4X, 'SHARE', 2X, 'USE NO.', 5X, 'DUDT', 5X, 'SUPT', 5X, 'DDDT',
         5X, 'RLDT'/)
 101
        FORMAT(15, 16, 16, 111, 17, F9. 2, 19, 2F9. 2)
 102 FORMAT(15,16,16,111,17,F9.2,19,18X,2F9.2)
        IF(I1.EQ.1.AND.ICOMT.EQ.1)WRITE(3,101)I, JJ, IT, NSHRE,
    1 J, SHARE, II, X1, X2
```

```
IF(I1.EQ.2.AND.ICOMT.EQ.1)WRITE(3,102)I, JJ, IT, NSHRE,
      1 J, SHARE, II, X1, X2
         RETURN
         END
 C
 C
                       FUNCTION AREA
 C
         ************
         FUNCTION AREA(I.X)
C
         AREA IN M. SOM. AND CAPACITY IN M. CU. M.
         GO TO(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
         ,21,22,23,24,25,26,27,28,29,30)I
C
         UPPER NARMADA
         AREA = .169793 + .1297995*X - .000211911*(X**2)
     1
      1
                + 4.620022E-07*(X**3)
         RETURN
C
         RAGHAVPUR
         AREA = -.29 + .0985*X -6.47E-05*(X**2)
         RETURN
 C
         ROSRA
         AREA = -. 031+.056*X+2.43E-06*(X**2)+5.52E-09*(X**3)
        -6.42E-13*(X**4)
         RETURN
        UPPER BURHNER (BURHNER)
         AREA=.10699+.0564409*X+.000161317*(X**2)-3.47482E-07*(X**3)+
         4.11661E-10*(X**4)-2.7253E-13*(X**5)+7.52987E-17*(X**6)
         RETURN
         HALON (HALON)
    5 AREA=-. D48197+. D971459*X+. D0D965141*(X**2)-9. 27033E-6*(X**3)+
     1
            3.05036E-08*(X**4)-2.88024E-11*(X**5)
        RETURN
C
       BASANIA
        AREA=-.14+.075*X+4.59E-05*(X**2)-6.79E-08*(X**3)
     1 +3.63E-11*(X**4)-8.73E-15*(X**5)+7.73E-19*(X**6)
        RETURN
        MATIYARI
        AREA=.426+.145*X-.0004*(X**2)-6.96E-07*X**3
        RETURN
        BARGI
        AREA=.0255+.1072*X-2.056E-5*X**2+2.653E-9*X**3
        RETURN
        ATARIA
        AREA=-.00150858+.284737*X-.000553647*(X**2)-5.48299E-6*(X**3)
        +3.16051E-08*(X**4)-4.25355E-11*(X**5)
        RETURN
C
        CHINKI
   10
        AREA = .01384620+.116194*X+2.01486E-5*(X**2)-1.50262E-8*(X**3)
     1 +3.34357E-12*(X**4)
        RETURN
        SHER
  11
      AREA = -.37 + .122*X - 5.91E - 5*(X**2)
        RETURN
C
        MACHREWA
        AREA = -0.127+.084*X-0.00012*X**2
   12
        RETURN
        SHAKKER (SHAKKER)
  13
        AREA=0.0413+.048*X+.00026*(X**2)-2.85E-6*(X**3)
    1 +1.28E-08*(X**4)-2.49E-11*(X**5)+1.77E-14*X**6
        RETURN
```

```
C
        SITAREWA (SITAREWA)
   14
        AREA = -. 085+. 096 * X+5. 336E-6 * X * * 2
        RETURN
C
        DUDHI (DUDHI)
        AREA=-,167772+,126684*X-8,82259E-5*(X**2)
   15
        RETURN
C
        BARNA (BARNA)
        AREA=-,013+,0089*X+.0023*(X**2)-1,297E-5*(X**3)
  16
     1 +3.22E-08*(X**4)-3.63E-11*(X**5)+1.52E-14*X**6
        TAWA (NARMADA TRIBUTARY)
C
       AREA=.0489072+.054494*X+7.40008E-5*X**2-4.59715E-08*(X**3)
   17
     1
               +8.64504E-12*(X**4)
        RETURN
        KOLAR (KOLAR)
C
        AREA=.14+.165*X-.00066*(X**2)+1
   18
    1 -1.91E-D9*(X**4)
        RETURN
        MORAND (MORAND)
C
        AREA = -. 0274137+.09990080*X-6.
                                       5212E-5*(X**2)+1.05499E-7*(X
   19
        +5,20699E-10*(X**4)
        RETURN
C
        GANJAL (GANJAL)
        AREA = -0.006+.098*X-.001*(X**2)+2.23E-5*(X**3)
   20
     1 -1.37E-07*(X**4)+2.76E-10*(X**5)
        RETURN
C
        SUKTA (SUKTA)
        AREA=-.02+.12*X-.00098*X**2+.00011*X**3-3.427E-6*X*
        4.36E-8*X**5-2.49E-10*X**6+5.29E-13*X**7
        RETURN
C
        CHHOTA TAWA (CHHOTA TAWA)
        AREA = -. 1545+. 152*X+. 0003195*(X**2)-6.37E-7*(X**3)
         +2.31E-10*(X**4)
     1
        RETURN
        NARMADA SAGAR (NARMADA)
C
        AREA = -5.26261 +.12258500 * X + 2.26702E - 05 * (X * 2) - 1.99152E - 8 * (X * 3)
   23
     1 +4.12183E-12*(X**4)-3.35597E-16*(X**5)+9.58359E-21*(X**6)
        RETURN
        OMKARESHWAR (NARMADA)
C
        AREA=-1.189580+.05908640*X+.000184448*(X**2)-2.8143E-7*(X**3)
        +1.35434E-10*(X**4)
        RETURN
C
        MAHESHWAR
                   (NARMADA)
        AREA=.65+.0575*X+.00015*(X**2)-1.15E-7*(X**3)
   25
        UPPER BEDA (BEDA)
C
        AREA=-.0155457+.10901500*X-.00121645*(X**2)+2.02511E-5*(X**3)
   26
         -1.20972E-07*(X**4)+2.379920E-10*(X**5)
        RETURN
C
        MAN (MAN)
        AREA=.04357080+.06144370*X+3.24515E-5*(X**2)-1.17409E-7*(X**3)
   27
        RETURN
C
        LOWER GOI
        AREA=-.0121156+.04460590*X+.00115617*(X**2)-9.38102E-6*(X**3)
   28
         +2.196E-08*(X**4)
        RETURN
C
        JOBAT (HATNI)
```

```
29
          AREA=. D29+. 087*X+. 00039*(X**2)-2.99E-6*(X**3)
           +5.12E-09*(X**4)
          RETURN
          SARDAR SAROVAR (NARMADA)
        AREA=3.23-.014*X+4.025E-5*X**2-1.17E-8*X**3+1.58E-12*X**4
     30
           -1.00000E-16*(X**5)+2.44000E-21*(X**6)
          RETURN
          END
C
  C
                        FUNCTION ELEVATION
  C
          FUNCTION ELEVAT(I,X)
  C
          ELEVAT IN M. AND CAPACITY X IN MCUM.
          GO TO(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
           ,21,22,23,24,25,26,27,28,29,30)I
          UPPER NARMADA
          ELEVAT=701.276+.471*X-.0039*X**2+1.7E-05*X**3-3.57E-8*X**4
      1 +2.85E-11*X**5
          RETURN
          RAGHAVPUR
         ELEVAT=597.056+.78*X-.0057*(X**2)+
         2.25E-5*(X**3)-4.68E-8*(X**4)+4.9E-11*(X**5)-2.05E-14*(X**6)
          RETURN
          ROSRA
         ELEVAT=508.301+.325*X-.001*(X**2)+1.5E-06*(X**3)
              -9.98E-10*(X**4)+2.45E-13*(X**5)
          RETURN
         UPPER BURHNER (BURHNER)
         ELEVAT=580.919+.139158*X-.000246775*(X**2)+2.61813E-07*(X**3)
          -1.55956E-10*(X**4)+4.37495E-14*(X**5)-3.41847E-18*(X**6)
          RETURN
         HALON (HALON)
         ELEVAT=596.381+.783915*X-.012057900*(X**2)+9.77388E-5*(X**3)-
              3.78194E-07*(X**4)+5.51664E-10*(X**5)
         RETURN
         BASANIA (NARMADA)
         ELEVAT=445.902+.0851929*X-6.84283E-05*(X**2)+1.72372E-08*(X**3)
         RETURN
         MATIYARI (MATIYARI)
         ELEVAT=476.64+0.922*X-.013*(X**2)+6.18E-5*(X**3)
         RETURN
         BARGI
         ELEVAT=367.45+.084*X-6.44E-5*X**2+2.556E-8*X**3-4.9E-12*X**4
         +3.58E-16*X**5
         RETURN
         ATARIA
         ELEVAT=393.205+.2726400*X-.001200000*(X**2)+2.00900E-6*(X**3)
         RETURN
 C
         CHINKI
         ELEVAT=317.1640+.094000*X-.000110000*(X**2)+4.47500E-8*(X**3)
    10
      1 +3.82000E-11*(X**4)
         RETURN
 C
         ELEVAT=383.439+.808*X-,01*(X**2)+5.77E-5*(X**3)
    11
           -1.49E-7*(X**4)+1.42E-10*(X**5)
         RETURN
         MACHREWA
         ELEVAT=390.14+0.689 *X-.006*(X**2)+1.86E-5*(X**3)
   12
```

```
C
         SHAKKER (SHAKKER)
         ELEVAT=369.395+1.79*X-.024*(X**2)+.000168*(X**3)-
    13
     1 6.31E-7*(X**4)+1.289E-9*(X**5)-1.35E-12*(X**6)+5.73E-16*X**7
         RETURN
C
         SITAREWA (SITAREWA)
       ELEVAT=659.448+1.0359*X-.0122464*X**2+4.86733E-5*X**3
    14
         RETURN
C
         DUDHI (DUDHI)
    15
         ELEVAT=356.695+1.42*X-.036*(X**2)+.00047*(X**3)
     1 -3.315E-6*X**4+1.25E-8*X**5-2.43E-11*X**6+1.899E-14*X**7
         RETURN
 C
         BARNA (BARNA)
    16
        ELEVAT=312.915+.5*X-.00328*(X**2)+1.095E-5*(X**3)-
     1 1.91E-08*(X**4)+1.66813E-11*(X**5)-5.71E-15*X**6
         RETURN
         TAWA (TAWA)
        ELEVAT=312.965+.088*X-9.01E-5*(X**2)+4.56E-08*(X**3)
     1 -1.06E-11*(X**4)+9.34E-16*(X**5)
        RETURN
C
       KOLAR (KOLAR)
   18
        ELEVAT=425.024+.82*X-.01*(X**2)+6.6E-5*(X**3)
     1 -1.89E-07*(X**4)+1.99E-10*X**5
        RETURN
C
       MORAND (MORAND)
        ELEVAT=322.74+D.91*X-.0088*(X**2)+4.01E-5*(X**3)
     1 -8.31E-08*(X**4)+6.36E-11*(X**5)
        RETURN
C
        GANJAL (GANJAL)
   20
        ELEVAT=348.588+0.6008*X-.00489770*(X**2)+1.38239E-5*(X**3)
        RETURN
C
        SUKTA (SUKTA)
        ELEVAT=382.815+2.89432*X-.157262*(X**2)+.00409659*(X**3)
   21
     1 -5.33671E-05*(X**4)+3.38265E-07*(X**5)-8.30686E-10*(X**6)
        RETURN
C
        CHHOTA TAWA (CHHOTA TAWA)
   22
        ELEVAT=276.758+.432847*X-.0023964*(X**2)+4.15971E-6*(X**3)
        RETURN
C
        NARMADA SAGAR (NARMADA)
   23
       ELEVAT=176.95+.0571398*X-1.80293E-05*(X**2)+2.77667E-9*(X**3)
     1 -1.98994E-13*(X**4)+5.32033E-18*(X**5)
        RETURN
C
        OMKARESHWAR (NARMADA)
   24
        ELEVAT=160.504+.134*X-.0003*(X**2)+4.39E-07*(X**3)
         -3.34E-10*(X**4)+9.77E-14*X**5
        RETURN
C
        MAHESHWAR (NARMADA)
   25
        ELEVAT=139.85 +.089*X-.000113*(X^*2)+5.9E-8*(X^*3)
        RETURN
C
        UPPER BEDA (BEDA)
   26
        ELEVAT=288.689+.629528*X-.01171880*(X**2)+.000119718*(X**3)
    1
       -5.59723E-07*(X**4)+9.527130E-10*(X**5)
        RETURN
C
        MAN (MAN)
        ELEVAT=232.736+.522736*X-.00229595*(X**2)+3.33160E-6*(X**3)
        RETURN
C
        LOWER GOI
```

RETURN

```
ELEVAT=263.126+.96*X-.01*(X**2)+5.1E-5*(X**3)-
    28
     1 1.17E-7*X**4+9.96E-11*X**5
         RETURN
         JOBAT (HATNI)
         ELEVAT=239.25+0.746*X-.0091*(X**2)+5.75E-5*(X**3)
          -1.72E-D7*(X**4)+1.96E-10*X**5
        RETURN
        SARDAR SAROVAR (NARMADA)
       ELEVAT=18.0143+.0376265*X-4.19623E-06*(X**2)+1.65195E-10*(X**3)
         RETURN
         END
 C
 C
 C
         *******************
         SUBROUTINE CAL11 (PPP, QQQ, ICAL, NYEAR)
         DIMENSION NDSRE(30,10), NUSRE(30,10), PPPII(30), QQQII(30)
         DIMENSION DUD1(30,12,10), RLD1(30,12,10), DDD1(30,12,10)
         DIMENSION SUP1(30,12,10), AVD1(30,12,10), AVU1(30,12,10)
         DIMENSION CUR1 (30, 25, 10), CUS1 (30, 25, 10), AAD1 (30, 10)
         DIMENSION AAU1 (30, 10), AND1 (30, 25, 10), ANU1 (30, 25, 10)
         DIMENSION NAD1 (30, 10), NAU1 (30, 10), NDD1 (30, 12, 10), NDU1 (30, 12, 10)
         COMMON/BLK10/I, J, JJ, NSHRE, IT
         COMMON/BLK13/NUSRE, NDSRE
         COMMON/B14/AVD1, AVU1, CUR1, CUS1
         COMMON/B141/AAD1, AAU1, AND1, ANU1
         COMMON/B15/NDD1, NDU1, NAD1, NAU1
         COMMON/B16/DUD1, RLD1, DDD1, SUP1
         COMMON/B161/PPPII, QQQII
         GO TO(10,20,30) ICAL
         CALCULATE TOTAL D/S RELEASES DEMANDWISE
         DO 3 II=1, NDSRE(I,1)
         CUR1(I, JJ, II) = CUR1(I, JJ, II) + RLD1(I, IT, II)
         PPP=PPP+RLD1(I, IT, II)
         PPPII(II)=PPPII(II)+RLD1(I, IT, II)
         CONTINUE
         RETURN
         CALCULATE STATISTICS FOR U/S DEMAND
        DO 1 II=1, NDSRE(I,1)
         IF (DDD1 (I, IT, II).GT.O.O) NDD1 (I, IT, II) = NDD1 (I, IT, II) +1
         AVD1(I, IT, II) = AVD1(I, IT, II) + DDD1(I, IT, II) / FLOAT(NYEAR)
         AND1(I, JJ, II) = AND1(I, JJ, II) + DDD1(I, IT, II)
         CONTINUE
        CALCULATE STATISTICS FOR U/S DEMAND
        DO 2 II=1, NUSRE(I,1)
        IF(DUD1(I, IT, II).GT.O.O)NDU1(I, IT, II)=NDU1(I, IT, II)+1
        AVU1(I, IT, II) = AVU1(I, IT, II) + DUD1(I, IT, II) / FLOAT(NYEAR)
        ANU1(I, JJ, II) = ANU1(I, JJ, II) + DUD1(I, IT, II)
        CONTINUE
        CALCULATE TOTAL D/S RELEASES DEMANDWISE
       DO 7 II=1, NDSRE(I,1)
        CUR1(I, JJ, II) = CUR1(I, JJ, II) + RLD1(I, IT, II)
       PPP=PPP+RLD1(I,IT,II)
        PPPII(II)=PPPII(II)+RLD1(I,IT,II)
    7 CONTINUE
C
        CALCULATE TOTAL U/S SUBTRATION DEMANDWISE
        DO 4 II=1, NUSRE(I,1)
        CUS1(I, JJ, II) = CUS1(I, JJ, II) + SUP1(I, IT, II)
        000=000+SUP1(I.IT.II)
```

```
000II(II)=000II(II)+SUP1(I,IT,II)
          CONTINUE
     4
          RETURN
    30
          DO 5 II=1, NDSRE(I,1)
          IF(AND1(I, JJ, II).GT.O.)NAD1(I, II)=NAD1(I, II)+1
          AAD1(I, II) = AAD1(I, II) + AND1(I, JJ, II) / FLOAT(NYEAR)
          CONTINUE
          DO 6 II=1, NUSRE(I.1)
 C
          IF(ANU1(I, JJ, II).GT.O.)NAU1(I, II)=NAU1(I, II)+1
          IF(ANU1(I, JJ, II).GT.O.O)NAU1(I, II)=NAU1(I, II)+1
          AAU1(I, II) = AAU1(I, II) + ANU1(I, JJ, II) / FLOAT(NYEAR)
          CONTINUE
          RETURN
          END
 C
 C
 C
          SUBROUTINE INIL1 (NSITE, NYEAR)
                                             DIMENSION AVD1 (30, 12, 10), AVU1 (30, 12, 10)
          DIMENSION CUR1(30,25,10), CUS1(30,25,10), AAD1(30,10)
          DIMENSION AAU1(30, 10), AND1(30, 25, 10), ANU1(30, 25, 10)
          DIMENSION NAD1 (30, 10), NAU1 (30, 10), NDD1 (30, 12, 10)
          DIMENSION NDU1 (30, 12, 10), NUSRE (30, 10), NDSRE (30, 10)
          COMMON/BLK2/NMONT
          COMMON/BLK13/NUSRE, NDSRE
         COMMON/B14/AVD1, AVU1, CUR1, CUS1
         COMMON/B141/AAD1, AAU1, AND1, ANU1
         COMMON/B15/NDD1, NDU1, NAD1, NAU1
         DO 1 I=1, NSITE
         DO 2 JJ=1, NYEAR
         DO 3 IT=1, NMONT
         DO 4 II=1, NDSRE(I,1)
         NDD1 (I, IT, II) = 0
         AVD1(I, IT, II)=0.
         AND1(I, JJ, II) = 0.
         CUR1(I,JJ,II)=0.
         NAD1(I, II)=0
         AAD1(I,II)=0.
         CONTINUE
     4
         DO 5 II=1, NUSRE(I,1
         NDU1(I, II, II)=0
         AVU1(I,IT,II)=0.
         ANU1(I, JJ, II)=0.
         CUS1(I, JJ, II)=0.
         NAU1(I, II)=0
         AAU1(I, II)=0.
     5
         CONTINUE
     3
         CONTINUE
     2
         CONTINUE
         CONTINUE
         RETURN
C
C
C
         SUBROUTINE WRT11 (NYEAR, NSITE, J, IWRT, NSHRE, I)
         DIMENSION S(30,13), FLOW(30,25,12), P(30,25,12)
         DIMENSION YMIN(30,12), YMAX(30,12)
```

```
DIMENSION ARD1(30,10), NDSRE(30,10), RED1(30,12,10)
       DIMENSION PRD1(30,12,10), ARU1(30,10), NUSRE(30,10)
       DIMENSION PRU1 (30, 12, 10), REU1 (30, 12, 10)
       DIMENSION SHARE (4, 30, 3), AVANS (4, 30, 1)
       DIMENSION DUD1 (30, 12, 10), RLD1 (30, 12, 10), DDD1 (30, 12, 10)
       DIMENSION AWACS(30), AWWCS(30), NSTAT(30), SUP1(30, 12, 10)
       DIMENSION AVD1 (30, 12, 10), AVU1 (30, 12, 10)
       DIMENSION CUR1(30,25,10), CUS1(30,25,10), AAD1(30,10)
       DIMENSION AAU1 (30, 10), AND1 (30, 25, 10), ANU1 (30, 25, 10)
       DIMENSION NAD1 (30, 10), NAU1 (30, 10), NDD1 (30, 12, 10)
       DIMENSION NDU1 (30, 12, 10), TFLOW (30, 12), IWRT (6), SUM4 (30), SUM5 (30)
       DIMENSION SUM1 (30, 25, 12), SUM2 (30, 25, 12), SUM3 (30, 25, 12)
       COMMON/BLK1/FLOW, TFLOW
       COMMON/BLK2/NMONT
       COMMON/BLK3/SHARE
       COMMON/BLK6/AVANS
       COMMON/BLK8/NSTAT
       COMMON/BLK9/AWACS, AWWCS
       COMMON/BLK11/SUM1, SUM2, SUM3
       COMMON/BLK12/S, P, YMAX, YMIN
       COMMON/BLK13/NUSRE, NDSRE
       COMMON/B14/AVD1, AVU1, CUR1, CUS1
       COMMON/B141/AAD1, AAU1, AND1, ANU1
       COMMON/B15/NDD1, NDU1, NAD1, NAU1
       COMMON/B16/DUD1, RLD1, DDD1, SUP1
100
       FORMAT(1X,30('*'),/)
       FORMAT(/, 10('-'))
101
210
       FORMAT(1X, 'SHARE NO. = ', I4, 4X, 'WATER SHARE
 50
       IF (IWRT(1).NE.1)GO TO 51
       WRITE (5, 213)
       DO 28 II=1, NUSRE(I,1)
       DO 29 IT=1, NMONT
       WRITE(5,214)I, J, II, IT, AVU1(I, IT, II), NDU1(I, IT, II)
       FORMAT(1X, 'SITE', 2X, 'STATE', 2X, 'U/S REQUIR', 3X, 'TIME', 2X,
213
      'AVE. DEFICIT IN TIME', 2X, 'NO. OF DEFICITS'/)
214
       FORMAT(15, 17, 112, 17, F22.3, 117)
 29
       CONTINUE
 28
       CONTINUE
       WRITE (5, 101)
       WRITE (5, 100)
      IF (IWRT (2) . NE. 1) GO TO 52
       WRITE(5, 215)
      DO 31 II=1, NUSRE(I,1)
      DO 32 JJ=1, NYEAR
      WRITE(5,216)I, J, II, JJ, ANU1(I, JJ, II)
      FORMAT(1X, 'SITE', 2X, 'STATE', 2X, 'U/S REQUIR', 2X, 'YEAR', 2X,
215
      'ANNUAL DEFICIT')
      FORMAT(15, 17, 112, 16, F16.3)
216
 32
      CONTINUE
 31
      CONTINUE
      WRITE(5, 101)
      WRITE(5, 100)
 52
      IF (IWRT (3). NE. 1) GO TO 53
      WRITE (5, 217)
      DO 34 II=1, NUSRE(I,1)
      WRITE(5,218)I, II, AAU1(I, II), NAU1(I, II)
     FORMAT(1X, 'SITE', 2X, 'U/S REQUIR', 2X, 'AVE. ANNUAL DEFICIT'.
   1 2X, 'NO. OF ANNUAL DEFICIT'/)
```

```
FORMAT(15, 112, F20.3, 122)
218
 34
      CONTINUE
      WRITE(5, 101)
      WRITE(5,100)
      IF(IWRT(4).NE.1)GO TO 55
 53
      WRITE(5,201)
      DO 14 II=1, NDSRE(I,1)
      DO 15 IT=1, NMONT
      WRITE(5, 202) I, J, II, IT, AVD1(I, IT, II), NDD1(I, IT, II)
      FORMAT(1X, 'SITE', 2X, 'STATE', 2X, 'D/S REQUIR', 3X, 'TIME', 2X,
201
      'AVE. DEFICIT IN TIME', 2X, 'NO. OF DEFICITS'/)
      FORMAT(15, 17, 112, 17, F22.3, 117)
202
      CONTINUE
 15
 14
      CONTINUE
      WRITE(5,101)
       WRITE(5,100)
      IF (IWRT (5) . NE. 1) GO TO 56
 55
      WRITE(5,203)
      DO 17 II=1, NDSRE(I,1)
       DO 18 JJ=1, NYEAR
       WRITE(5,204) I, J, II, JJ, AND1(I, JJ, II)
       FORMAT(1X, 'SITE', 2X, 'STATE', 2X, 'D/S REQUIR', 2X,
203
      'ANNUAL DEFICIT')
   1
       FORMAT(15, 17, 112, 16, F16.3)
204
 18
       CONTINUE
       CONTINUE
 17
       WRITE(5,101)
       WRITE(5,100)
       IF (IWRT (6), NE. 1) GO TO 57
 56
       WRITE(5,207)
       DO 20 II=1, NDSRE(I,1)
       WRITE(5,208)I, II, AAD1(I, II), NAD1(I, II)
       FORMAT(1X, 'SITE', 2X, 'D/S REQUIR', 2X, 'AVE. ANNUAL DEFICIT',
207
       2X, 'NO. OF ANNUAL DEFICIT'/)
   1
       FORMAT (15, 112, F20.3, 122)
208
       CONTINUE
 20
       WRITE(5,101)
 57
       RETURN
                           DIST1
       SUBROUTINE DIST1(I, IT)
       DIMENSION RED1 (30, 12, 10), DDD1 (30, 12, 10), REU1 (30, 12, 10)
       DIMENSION DUD1 (30, 12, 10), DDDT1 (30, 12, 10), DUDT1 (30, 12, 10)
       DIMENSION SUPT1 (30, 12, 10), RLDT1 (30, 12, 10), RLD1 (30, 12, 10)
       DIMENSION SUP1 (30, 12, 10)
       COMMON/B11/DUDT1, RLDT1, DDDT1, SUPT1
       COMMON/B16/DUD1, RLD1, DDD1, SUP1
       COMMON/B17/RED1, REU1
       DDD1(I,IT,1)=DDDT1(I,IT,1)
       DDD1(I,IT,2)=DDDT1(I,IT,2)
       DDD1(I,IT,3)=DDDT1(I,IT,3)
       DDD1(I, IT, 4) = DDDT1(I, IT, 4)
       DDD1(I, IT, 5) = DDDT1(I, IT, 5)
       DDD1(I, IT, 6) = DDDT1(I, IT, 6)
       DDD1(I, IT, 7) = DDDT1(I, IT, 7)
       DUD1(I, IT, 1) = DUDT1(I, IT, 1)
```

C

C

```
RETURN
        END
C
C
C
        SUBROUTINE WRT12(I, J)
        DIMENSION NUSRE(30,10), NTREU(30,10), ARU1(30,10), PRU1(30,12,10)
        DIMENSION REU1(30,12,10), PREU1(30,12,10), REOU1(30,12,10)
        DIMENSION AREU1 (30, 10), AREQ1 (30, 10)
        DIMENSION NDSRE(30,10), NTREQ(30,10), ARD1(30,10), PRD1(30,12,10)
        DIMENSION RED1 (30, 12, 10), PREQ1 (30, 12, 10), REQD1 (30, 12, 10)
        COMMON/BLK2/NMONT
        COMMON/BLK5/NTREQ, NTREU
        COMMON/BLK13/NUSRE, NDSRE
        COMMON/B17/RED1. REU1
        COMMON/B18/ARU1, PRU1, AREU1, PREU1, REQU1
        COMMON/B19/ARD1, PRD1, AREQ1, PREQ1, REQD1
        WRITE(6,1008)
        DO 1005 II=1, NUSRE(I,1)
        WRITE(6,1009)I, J, II, ARU1(I, II)
1005
        CONTINUE
        FORMAT(1X, 'SITE', 2X, 'STATE', 2X, 'U/S REQUIR ACTUAL'
 1008
        , 'ANNUAL VALUE'/)
 1009
        FORMAT(15, 17, 119, F14.3)
        WRITE(6, 1002)
        DO 1000 II=1, NTREU(I,1)
        WRITE(6,1001)I, J, II, AREU1(I, II)
1000
        CONTINUE
        FORMAT (//, 1X, 'SITE', 2X, 'STATE', 2X, 'U/S DEMAND CLUBED', 2X
1002
        , 'ANNUAL VALUE' /)
1001
        FORMAT(15, 17, 119, F14.3)
        DO 1017 II=1, NUSRE(I,1)
        WRITE(6,1015)
        DO 1018 IT=1, NMONT
        WRITE(6, 1016)I, J, II, IT, PRU1(I, IT, II), REU1(I, IT, II)
1018
        CONTINUE
1017
       CONTINUE
        FORMAT(//, 1X, 'SITE', 2X, 'STATE', 2X, 'U/S REQUIR ACTUAL', 2X, 'TIME',
1015
        2X, 'PERCENT REQUIR', 6X, 'REQUIR'/)
1016
        FORMAT(15, 17, 119, 16, F16.3, F12.3)
        DO 1021 II=1.NTREU(I.1)
        WRITE(6, 1020)
        DO 1022 IT=1, NMONT
        WRITE(6,1023)I, J, II, IT, PREU1(I, IT, II), REQU1(I, IT, II)
1022
        CONTINUE
1021
        CONTINUE
        FORMAT(//, 1X, 'SITE', 2X, 'STATE', 2X, 'U/S DEMAND CLUBED', 2X,
1020
        'TIME', 2X, 'PERCENT DEMAND', 6X, 'DEMAND'/)
1023
        FORMAT(15, 17, 119, 16, F16.3, F12.3)
        WRITE(6,2008)
        DO 2005 II=1, NDSRE(I.1)
        WRITE(6,2009)I, J, II, ARD1(I, II)
2005
       CONTINUE
        FORMAT(1X, 'SITE', 2X, 'STATE', 2X, 'D/S REQUIR ACTUAL', 2X
2008
        , 'ANNUAL VALUE'/)
2009
       FORMAT(15, 17, 119, F14.3)
       WRITE(6,2002)
        DO 2000 II=1, NTREQ(I,1)
```

```
WRITE(6,2001)I, J, II, AREQ1(I, II)
 2000
        CONTINUE
        FORMAT(//,1X,'SITE',2X,'STATE',2X,'D/S DEMAND CLUBED',2X
 2002
       , 'ANNUAL VALUE'/)
     1
        FORMAT(15, 17, 119, F14.3)
 2001
        DO 2017 II=1, NDSRE(I,1)
        WRITE(6,2015)
        DO 2018 IT=1, NMONT
        WRITE(6,2016)I, J, II, IT, PRD1(I, IT, II), RED1(I, IT, II)
 2018
        CONTINUE
 2017
        CONTINUE
        FORMAT (//, 1x, 'SITE', 2x, 'STATE', 2x, 'D/S REQUIR ACTUAL', 2x,
 2015
       'TIME', 2X, 'PERCENT REQUIR', 6X, 'REQUIR'/)
     1
 2016
        FORMAT(15, 17, 119, 16, F16.3, F12.3)
        DO 2021 II=1, NTREQ(I,1)
        WRITE (6, 2020)
        DO 2022 IT=1, NMONT
        WRITE(6,2023)1, J, II, IT, PRE01(I, IT, II), REQD1(I, IT, II)
 2022
        CONTINUE
 2021
        CONTINUE
        FORMAT(//, 1X, 'SITE', 2X, 'STATE', 2X, 'D/S DEMAND CLUBED', 2X
2020
     1 'TIME', 2X, 'PERCENT DEMAND', 6X, 'DEMAND'/)
        FORMAT(15, 17, 119, 16, F16.3, F12.3)
 2023
        RETURN
        END
        (17) SUBROUTINE NAME
C***************
        SUBROUTINE NAME (FILE1, FILE2, FILE3, FILE4, FILE5,
     1 FILE6, FILE7, FILE8, FILE11, FNAM)
        CHARACTER*7 FNAM
        CHARACTER*11 FILE1.FILE2.FILE3.FILE4.FILE5.FILE6.
     1 FILE7, FILE8, FILE11
        OPEN(UNIT=10, FILE='NAME.INT')
        DATA 01,02,03,04,05,06,07,08,09/'.dat','.ot2','.ot3'
       '.ot4','.ot5','.ot6','.ot7','.ot8','.ot9'/
        WRITE(*, *)'ENTER THE FIRST NAME OF DATA FILE'
        WRITE(10,20) FNAM, 01
        WRITE(10, 20) FNAM, 02
        WRITE(10,20) FNAM, 03
        WRITE(10,20)FNAM,04
        WRITE (10, 20) FNAM, 05
        WRITE (10, 20) FNAM, 06
        WRITE (10, 20) FNAM, 07
        WRITE (10, 20) FNAM, 08
       WRITE(10,20)FNAM,09
  20 FORMAT(1X,7A,4A)
       CLOSE (UNIT=10)
        OPEN(UNIT=10, FILE='NAME. INT', STATUS='OLD')
        READ(10,30) FILE1
        READ(10,30)FILE2
        READ(10,30) FILE3
        READ(10,30)FILE4
       READ(10,30) FILE5
        READ(10,30)FILE6
       READ(10,30)FILE7
        READ(10,30) FILE8
       READ(10,30)FILE11
```

```
CLOSE (UNIT=10)
   30
        FORMAT(1X,11A)
        RETURN
        FND
C
C
         (18) SUBROUTINE NTFLO(NSITE, NYEAR)
C
        SUBROUTINE FOR COMPUTING NET FLOW AT THE SITES
        SUBROUTINE NTFLO(NSITE, NYEAR)
        CHARACTER*20 SITENAMO(30), SITENEW(30)
        DIMENSION ISITE(33), NFYRE(30), NSTAT(30)
        DIMENSION FLOW(30, 25, 12), TFLOW(30, 12), IUMRE(30)
        DIMENSION SUM(25,12), DFLOW(30,25,12), F(30,25,12), ILOC(30),
     1 NUSSI(30,13), NOUSI(30)
        COMMON/OPT1/IWDT1
        COMMON/BLK1/FLOW, TFLOW
        COMMON/BLK2/NMONT
        COMMON/BLK8/NSTAT
        COMMON/BLK22/SITENAMO, SITENE
        COMMON/BLK25/ISITE, IUMRE
        COMMON/BLK60/NOUSI, NUSSI
        COMMON/BLK61/ILOC
        COMMON/BLK65/F
        DO 550 I=1, NSITE
        IF (IUMRE (I). EQ. 1) GO TO 503
        DO 551 JJ=1, NYEAR
        DO 552 IT =1, NMONT
        SUM(JJ. IT)=0.
  552
        CONTINUE
  551
        CONTINUE
        DO 162 IK=1, NOUSI(I)
        DO 163 JJ=1, NYEAR
        DO 164 IT=1, NMONT
        K=ILOC(NUSSI(I, IK))
        SUM(JJ, IT) = SUM(JJ, IT) + F(K, JJ, IT)
        CONTINUE
  163
        CONTINUE
  162
       CONTINUE
  CALCULATE NET MONTHLY FLOW AT THE PROJECT SITE UNDER CONSIDERATION
        DO 165 JJ=1, NYEAR
        DO 166 IT = 1, NMONT
        DFLOW(ISITE(I), JJ, IT) = F(ISITE(I), JJ, IT) - SUM(JJ, IT)
        IF(DFLOW(ISITE(I), JJ, IT).LE.D) DFLOW(ISITE(I), JJ, IT)=0
        FLOW(I, JJ, IT) = DFLOW(ISITE(I), JJ, IT)
        SITENEW(I) = SITENAMO(ISITE(I))
 166
       CONTINUE
 165
       CONTINUE
       GO TO 550
 503
       DO 504 JJ=1, NYEAR
       DO 504 IT =1, NMONT
       FLOW(I, JJ, IT) = F(ISITE(I), JJ, IT)
       SITENEW(I) = SITENAMO(ISITE(I))
 504
       CONTINUE
 550
       CONTINUE
       DO 555 I=1, NSITE
       IF(IWDT1.EO.1)WRITE(2,111) SITENEW(I)
 111
       FORMAT (A20)
       DO 556 JJ=1, NYEAR
```

```
IF (IWDT1.EQ.1) WRITE (2.15) (FLOW (I, JJ, IT), IT=1, NMONT)
   15
        FORMAT(1X,12(F9.2.1X))
  556
        CONTINUE
  555
        CONTINUE
        RETURN
        END
C
               SUBROUTINE WRRS1 (NSITE, NYEAR)
        SUBROUTINE FOR WRITING RESULTS IN FILE8/FILE2
        SUBROUTINE WRRS1 (NSITE, NYEAR)
        CHARACTER*20 SITENAMO(30), SITENEW(30)
        DIMENSION ISITE(33), NFYRE(30), XXXX(33), YYYY(33)
        DIMENSION XXII (30,4), YYII (30,4), AREQ1 (30,10), NTREQ (30,10)
        DIMENSION PRE01 (30, 12, 10), REOD1 (30, 12, 10), IUMRE (30)
        DIMENSION AREU1 (30, 10), NTREU (30, 10), PREU1 (30, 12, 10)
        DIMENSION REQU1 (30, 12, 10), SPILL (30, 12), AASPL (30)
        DIMENSION AADD1(30,10), AADE1(30,25)
        DIMENSION AAUD1 (30, 10), ANDD1 (30, 25, 10), ANUD1 (30, 25, 10)
        DIMENSION NADD1 (30, 10), NAUD1 (30, 10), NDDD1 (30, 12, 10)
        DIMENSION NOUD1 (30, 12, 10), IUMRE (30), IWRT (6), IWRTS (30, 6)
        DIMENSION NUSRE (30, 10), ARU1 (30, 10), PRU1 (30, 12, 10), REU1 (30, 12, 10)
        DIMENSION NDSRE(30,10), ARD1(30,10), PRD1(30,12,10), RED1(30,12,10)
        DIMENSION NSTAT(30), SUM4(30), SUM5(30), SUM6(30), IRE01(30,10)
        DIMENSION SUM1 (30, 25, 12), SUM2 (30, 25, 12), SUM3 (30, 25, 12)
        COMMON/BLK2/NMONT
        COMMON/BLK5/NTREQ.NTREU
        COMMON/BLK8/NSTAT
        COMMON/BLK10/I, J, JJ, NSHRE, IT
        COMMON/BLK11/SUM1.SUM2.SUM3
        COMMON/BLK21/SUM4, SUM5, SUM6, NFYRE
        COMMON/BLK13/NUSRE, NDSRE
        COMMON/B121/AADD1, AAUD1, ANDD1, ANUD1
        COMMON/B13/NDDD1, NDUD1, NADD1, NAUD1
        COMMON/BLK17/RED1. REU1
        COMMON/B18/ARU1, PRU1, AREU1, PREU1, REQU1
        COMMON/B21/IREQ1
        COMMON/819/ARD1, PRD1, AREQ1, PREQ1, REQD1
        COMMON/BLK22/SITENAMO, SITENEW
        COMMON/BLK23/XXXX, YYYY
        COMMON/BLK24/XXII, YYII
        COMMON/BLK25/ISITE, IUMRE
        COMMON/BLK26/AASPL
        COMMON/BLK27/AADE1
        DO 77 I=1, NSITE
        WRITE(2, *)'SITE NAME=', SITENEW(I)
        WRITE(2, *)'SITE CODE NUMBER=', ISITE(I)
       WRITE(2,3)
       FORMAT(9X, 'USE NO. U/S TARGET', 5X, 'RELEASE', 8X, 'DEFICIT',
    1 11X, 'YR. (DEF)')
        WRITE(2, *)(II, AREU1(I, II), YYII(I, II), AAUD1(I, II), NAUD1(I, II)
    1
       , II=1, NTREU(I.1))
       WRITE (2,4)
       FORMAT(9X, 'USE NO. D/S TARGET', 5X, 'RELEASE', 8X, 'DEFICIT',
      11X, 'YR. (DEF)')
       WRITE(2,*)(IK, AREQ1(I, IK), XXII(I, IK), AADD1(I, IK), NADD1(I, IK)
   1 , IK=1, NTREO(I, 1))
       WRITE(2. *)
```

```
DO 88 MM=1.NTREQ(I.1)
         IF (IREQ1(I, MM). NE.1) GO TO 88
         WRITE(2, *)'FIRM POWER IN MW=', AREQ1(I, MM)/8760
         IF(AREQ1(I, MM). EQ. 0) GO TO 88
         WRITE(2, *)'% AGE AV. ANNUAL ENERGY DEFICIT=',
      1 (SUM4(I)/AREO1(I,MM))*100
   88
       CONTINUE
         WRITE(2,1542)I, SUM6(I), SUM5(I), SUM4(I)
1542
         FORMAT (/1X, 'SITE', 12, /2X, 'AVERAGE ANNUAL GENERATED ENERGY=',
      1 F10.2,1X, 'MW.HR', /2X, 'AVERAGE ANNUAL DUMP ENERGY=', F10.2,
        'MW.HR', /2X, 'AVERAGE ANNUAL ENERGY DEFICIT=', F10.2, 'MW.HR')
         WRITE(2,*)'GENERATED, DUMP & DEFICIT POWER IM MW'
         WRITE(2,*)(SUM6(I)/8760),(SUM5(I)/8760),(SUM4(I)/8760)
         WRITE(2, *) 'NUMBER OF YEARS OF DEFICITS='
         WRITE(2, *)NFYRE(I)
         WRITE(2, *)'ANNUAL DEFICITS (AADE1(I, JJ)='
         WRITE(2, *)(AADE1(I, JJ), JJ=1, NYEAR)
         WRITE(2, *)'ANNUAL SPILL=', AASPL(I)
         CONTINUE
         RETURN
         END
              SUBROUTINE FOR WRITING CONTRIBUTIONS FROM THE
         RETURN FLOWS FROM UPSTREAM RESEVOIRS
         RINFL (NSITE, NYEAR)
         SUBROUTINE RINFL (NSITE, NYEAR)
         CHARACTER*20 SITENAMO(30), SITENEW(30)
         DIMENSION CRLDT1 (30, 12, 10), ISITE (33), NTREQ (30, 10)
         DIMENSION NTREU(30,10), NURCF(30), NTRCF(30,13)
         DIMENSION NSTAT(30), IPCON(30), IUMRE(30)
         DIMENSION SUM1 (30, 25, 12), SUM2 (30, 25, 12), SUM3 (30, 25, 12)
         COMMON/BLK2/NMONT
         COMMON/BLK5/NTREQ, NTREU
         COMMON/BLK8/NSTAT
         COMMON/BLK11/SUM1, SUM2, SUM3
         COMMON/BLK22/SITENAMO, SITENEW
         COMMON/BLK25/ISITE, IUMRE
         COMMON/BLK55/IPCON
         COMMON/BLK56/NTRCF
         COMMON/BLK57/NURCF
        COMMON/BLK58/CRLDT1
        COMMON/OPT8/IWRTN
        WRITE(11,9016)
 9016
        FORMAT(1x, 'RETURN FLOW CONTRIBUTIONS'/
        DO 9012 I=1, NSITE
        IF (IPCON(I).NE.1)GO TO 9012
        WRITE(11,9015)SITENEW(I)
        FORMAT(1X, 'SITE NAME=', 2X, A20)
 9015
        WRITE(11,9010)
        FORMAT(/1X, 'SITE', 2X, 'YEAR', 2X, 'MONTH', 20X, 'IUREN'/1x, 70('-'))
 9010
        WRITE(11,9017)(NTRCF(I,IU),IU=1,NURCF(I))
 9017
        FORMAT(24X,5(12,9X)/1X,70('-'))
        DO 9013 JJ=1, NYEAR
        DO 9013 IT=1, NMONT
        IF (IWRTN. EQ. 1) WRITE (11, 9011) I, JJ, IT, ((CRLDT1
       (NTRCF(I, IU), IT, II), II=1, NTREG(NTRCF(I, IU), 1)), IU=1, NURCF(I))
9011 FORMAT(2X, 12, 4X, 12, 5X, 12, 5X, 5(F6.3, 5X))
```

```
9013
       CONTINUE
9012
       CONTINUE
       WRITE(11,9002)
       FORMAT(/1X, 'SITE', 2X, 'YEAR', 2X, 'MONTH', 5X, 'SUM1', 5X, 'SUM2', 9X,
9002
    1
       'SUM3',/)
       DO 9000 I=1, NSITE
       IF(IPCON(I).NE.1)GO TO 9000
       DO 9001 JJ=1, NYEAR
       DO 9001 IT=1, NMONT
       IF(JJ.NE.1) GO TO 9001
       IF (IWRTN.EQ.1) WRITE (11,9003) I, JJ, IT, SUM1 (I, JJ, IT),
       SUM2(I, JJ, IT), SUM3(I, JJ, IT)
9003
       FORMAT(2X, 12, 4X, 12, 5X, 12, 2X, F8.3, 2X, F8.3, 4X, F9.3)
9001
       CONTINUE
9000
       CONTINUE
       RETURN
       END
       (21) SUBROUTINE FOR INITIALIZING READ
       SUBROUTINE FLUSH (MSITE, NSITE, NYEAR)
       SUBROUTINE FLUSH (MSITE, NSITE, NYEAR)
       DIMENSION PRE01(30,12,10), AREU1(30,10), NTREU(30,10)
       DIMENSION REQU1 (30, 12, 10), ISITE (33), IUMRE (30)
       DIMENSION S(30,13), FLOW(30,25,12), P(30,25,12)
       DIMENSION AREQ1(30,10), NTREQ(30,10), PREU1(30,12,10)
       DIMENSION REOD1 (30, 12, 10), RENE1 (30, 12, 10)
       DIMENSION NURCF (30), NTRCF (30, 13), DSRFL (30, 10), UPRFL (30, 10)
       DIMENSION IUMRE(30), UPRFC(30), DSRFC(30), TFLOW(30,12)
       DIMENSION IWRT(6), EVAPO(30,12), IWRTS(30,6)
       DIMENSION NUSRE (30, 10), ARU1 (30, 10), PRU1 (30, 12, 10)
       DIMENSION REU1 (30, 12, 10), RED1 (30, 12, 10), FRATN (30, 10)
       DIMENSION NDSRE(30,10), ARD1(30,10), PRD1(30,12.10), ISPPO(30)
       DIMENSION REQV1(30), QMAX(30), REQA1(30), ADNC1(30), REGE1(30)
       DIMENSION ENER1 (30), ADNV1 (30), ADND1 (30), IRE01 (30, 10)
       DIMENSION IEN01(30, 10), ELE(30), PHMIN(30, 12)
       DIMENSION HE(30), PPEFF(30), TWL(30), PPC(30)
       DIMENSION ISHRE(30,3), YMIN(30,12), YMAX(30,12)
       DIMENSION NUSSI(30,13), NOUSI(30), IOPPN(30), IPCON(30)
       COMMON/OPT1/IWDT1
       COMMON/OPT2/ISTAR
       COMMON/OPT3/IWEN1
       COMMON/OPT4/IWWT1
       COMMON/OPT5/IWAT
       COMMON/OPT6/ICOMT
       COMMON/OPT7/IELEV
       COMMON/OPT8/IWRTN
       COMMON/BLK2/NMONT
       COMMON/BLK5/NTREQ, NTREU
       COMMON/BLK12/S, P, YMAX, YMIN
       COMMON/BLK13/NUSRE, NDSRE
       COMMON/B17/RED1, REU1
       COMMON/B18/ARU1, PRU1, AREU1, PREU1, REQU1
       COMMON/B19/ARD1, PRD1, AREQ1, PREQ1, REQD1
       COMMON/B20/REOV1, QMAX, REQA1, ADNC1, REGE1, ENER1, ADNV1, ADND1,
    1 IENO1, ELE, PHMIN, FRATN
       COMMON/B21/IREQ1
      COMMON/BLK25/ISITE, IUMRE
```

COMMON/BLK55/IPCON COMMON/BLK56/NTRCF COMMON/BLK60/NOUSI, NUSSI COMMON/BLK57/NURCF IWDT1 = 0 ISTAR=0 IWEN1=0 IWWT1=0 IWAT=0 ICOMT=0 IELEV=0 IWRTN=0 DO 1 I=1, NSITE ISITE(I)=0 DO 1000 IK=1, NOUSI(I NUSSI(I, IK) =0 1000 CONTINUE S(I,1)=0 IOPPN(I)=0 DO 1001 IT=1, NMONT YMIN(I,IT)=0YMAX(I,IT)=0 EVAPO(I, IT)=0 PHMIN(I, IT)=0 1001 CONTINUE DO 4 II=1, NTREQ(I,1) AREQ1(I, II)=0 DO 4 IT=1, NMONT PREQ1(I, IT, II) =0 REOD1(I, IT, II) = 0.0 CONTINUE DO 812 II=1, NDSRE(I,1) ARD1(I, II)=0 DO 812 IT=1, NMONT PRD1(I, IT, II)=0 RED1(I, IT, II) = 0.0 CONTINUE DO 8 II=1, NTREU(I,1) AREU1(I,II)=0 DO 8 IT=1, NMONT PREU1(I,IT,II)=0 REQUI(I, IT, II) =0 CONTINUE DO 712 II=1, NUSRE(I, ARU1(I, II)=0 DO 712 IT=1, NMONT PRU1(I, IT, II)=0 REU1(I, IT, II) = 0.0 712 CONTINUE DO 603 LL=1, NURCF(I) NTRCF(I,LL)=0 603 CONTINUE DO 602 II=1, NTREU(I,1) UPRFL(I, II)=0 602 CONTINUE DO 601 II=1, NTREQ(I,1) DSRFL(I,II)=0 CONTINUE 601

```
DO 150 LL=1,6
       IWRTS(I,LL)=0
  150 CONTINUE
        IPRT=0
        PPEFF(I)=0
        PPC(I)=D
        TWL(I)=0
        ISPPO(I)=0
        DO 155 II=1, NTREQ(I,1)
        IRE01(I, II)=0
        IEN01(I, II)=0
        FRATN(I, II)=0
  155
        CONTINUE
       ISHRE (I.1)=0
        NTREQ(I,1)=0
        NDSRE(I.1)=0
        NTREU(I,1)=0
        NUSRE (I, 1) = 0
        NURCF(I)=0
        NOUSI(I)=0
        IUMRE(I)=0
    1 CONTINUE
        NSITE=0
        RETURN
C
           ABBREVIATIONS USED
C*********************
        I
C
             =I TH SITE
           =TIME T(MONTH)
C
        IT
C
        II = II TH WATER USER
        JJ
C
           =YEAR
       J
C
            =STATE
    FIOW VALUES ARE CUMULATIVE IN CASE OF SERIES PROJECTS
C
    CRLDT1 = CUMULATIVE D/S RELEASES FOR CALCULATING SUM2
C
C
    IWDT1 = OPTION TO PRINT DATA (-1) DO NOT PRINT (1) PRINT
    ISTAR = OPTION TO PRINT STMTS ON SCREEN (-1) DO NOT PRINT
C
C
         (1) PRINT
C
    IWEN1 = OPYION TO PRINT 'ENERGY RELATED WRITE STATEMENTS
C
           (-1) DO NOT PRINT (1) PRINT
    IWWT1 = OPTION TO PRINT WORKING TABLE (-1) DO NOT PRINT
C
C
           (1) PRINT
C
          = OPTION TO PRINT STATEMENTS IN THE SUBROUTINE WATER
C
          (-1) DO NOT PRINT (1) PRINT
    ICOMT = OPTION TO PRINT STATEMENTS IN THE SUBROUTINE WRT
C
C
        (-1) DO NOT PRINT (1) PRINT
C
    IELEV = OPTION FOR WRITING, ELEVATION, AREA & EVAPORATION
C
         LOSSES ETC. (-1) DO NOT PRINT (1) PRINT
C
   USUAL CONVENTION
    'I' SITE NO.
C
C
    'JJ' NO. OF YEARS
C
   'IT' NO. OF MONTHS
C
   MSITE = TOTAL NUMBER OF PROJECT SITES IN THE RIVER NETWORK
C
   NSITE = TOTAL NUMBER OF PROJECT SITES UNDER CONSIDERATION
C
         FOR THE SIMULATION
C
    NOUSI = NUMBER OF PROJECTS AT THE IMMEDIATE UPSTREAM OF GIVEN
C
          PROJECT (ON MAIN & TRIBUTARY(S))
C
   FLOW = MONTHLY FLOW VALUE USED IN SIMULATION PROGARM
```

```
NUSCO = PROJECT SITE INDEX UNDER CONSIDERATION (LAST IN SERIES)
 C
     NUSSI = INDEX OF THE UPSTREAM PROJECT SITE
 0
     ILOC = LOCATION INDEX OF THE PROJECT SITE
 C
 C
          = MONTHLY FLOW VALUE AS PER 'ALLFLOW.DAT'
     DFLOW = NET MONTHLY FLOW AT THE SITE UNDER CONSIDERATION AFTER
 C
 C
           DEDUCTING FLOWS AT THE IMMEDIATE UPSTREAM PROJECT SITES
          = TEMPORARY VARIBLE FOR CALCULATING THE SUM OF THE MONTHLY
 C
 C
           FLOWS AT THE UPSTREAM PROJECT SITES
 C
     SITENAMO = ORIGAINAL SITE NAME
     SITENEW = TEMPORARY VARIABLE FOR STORING SITE NAME
 C
 C
           = OPTION FOR READING PRECIPATION DATA
 C
             1 READ
 C
            -1 DO NOT READ
     AVREL =AVERAGE RELEASE FOR GIVEN SITE (SUM OF ANNUAL RELEASES
 C
     DIVIDED BY NYEAR. MAY BE CONSIDERED FOR RESERVOIR YIELD CALCULATIONS
 C
 C
     ISITE = SITE OR PROJECT INDEX
     NFYRE = NUMBER OF FAILURE YEARS
 C
     RENE1 = REQUIREMENT
 C
     IPCON = OPTION FOR WRITING SUM1, SUM2, SUM3 RELATED TO
   U/S , D/S USE AND SPILL CONTRIBUTIONS OF U/S PROJECTS, IF ANY.
 C
 C
        ANDD1 = ANNUAL DEFICIT FOR D/S REQUIREMENT
 C
         AADD1 = AVERAGE ANNUAL DEFICIT FOR D/S
C
       AAUD1 = AVERAGE ANNUAL DEFICIT FOR U/S
 C
         AVANW=NET WATER AVAILABLE
 C
         AVDDT = AVERAGE DEFICIT FOR DOWNSTREAM DEMAND IN TIME
 C
         AVUDT = AVERAGE DEFICIT IN UPSTREAM DEMAND
 C
         AVSPT = AVERAGE SPILL IN TIME T
 C
         ANSPL = ANNUAL SPILL
 C
         AASPL= AVERAGE ANNUAL SPILL
 C
         ARD1 =TOTAL D/S RETURN FROM UNCLUBBED DEMANDS
 C
         AS =WATER SPREAD AREA(MILLION SQURE METRE)
 C
         AREQ1=ANNUAL D/S REQUIREMENT (CLUBBED)
 C
         AREU1=ANNUAL U/S REQUIREMENT (CLUBBED)
 C
         AVANS=AVAILABLE NET SHARE
C
         AWACS=AVAILABLE WATER ABOVE CONSERVATION STORAGE
 C
         AWWCS=AVAILABLE WATER WITHIN CONSERVATION STORAGE
         AVDD1=AVERAGE DEFICIT IN D/S DEMAND (CLUBBED)
 C
         AVUD1=AVERAGE DEFICIT IN U/S DEMAND (CLUBBED)
 C
 C
         ANUDI = ANNUAL DEFICIT U/S (CLUBBED) -
C
         ARU1 = ANNUAL U/S REQUIREMENT (UNCLUBBED)
C
         AVD1 =AVERAGE D/S DEFICIT FOR UNCLUBBED DEMAND
         AVU1 = AVERAGE U/S DEFICIT FOR UNCLUBBED DEMAND
C
C
         AAD1 = AVERAGE ANNUAL D/S DEFICIT FOR UNCLUBBED DEMAND
C
         AAU1 =AVERAGE ANNUAL U/S DEFICIT FOR UNCLUBBED DEMAND
 C
         AND1 = ANNUAL D/S DEFICIT FOR UNCLUBBED DEMAND
C
         ANU1 = ANNUAL U/S DEFICIT FOR UNCLUBBED DEMAND
C
         ADNLC=ADDITIONAL TURBINE CAPACITY AVAILABLE ABOVE REQV
C
         ADNLV=ADDITIONAL VOLUME NEEDED FOR GENERATING REQUIRED ENERGY
         ADNLD=ADDITIONAL VOLUME OF WATER REQUIRED TO MEET ENERGY DEMAND
C
C
         AMDE1 = AVERAGE MONTHLY ENERGY DEFICITS
        AMDU1 = AVERAGE MONTHLY DUMP ENERGY
C
C
        AADU1 = TOTAL ANNUAL DUMP ENERGY
C
       AADE1=TOTAL ANNUAL ENERGY DEFICIT
C
        ANLEN=ANNUAL GENERATED ENERGY
C
        CUMP = CUMMULATIVE PRECIPITATION
C
        CUMF = CUMMULATIVE INFLOW TO RESERVOIR
C
       CUMEL=CUMMULATIVE EVAPORATION
        CUSR1=TOTAL D/S RELEASES DEMANDWISE (CLUBBED)
```

```
CUUS1=TOTAL U/S SUBTRACTION (CLUBBED)
         CUR1 = TOTAL D/S RELEASES (UNCLUBBED)
C
C
         CUS1 =TOTAL U/S SUBTRACTION (UNCLUBBED)
             =CONVERSION FACTOR (MCM TO CUB.M = 10**6)
0
         CF
              =CONVERSION FACTOR (CUMEC TO MCM)
         DDDT = DEFICIT FOR DOWNSTREAM DEMAND
C
         DUDT = DEFICIT FOR U/S DEMAND
C
         DSRFL=D/S RETURN FLOW IN PERCENTAGE RATIO
C
         DUDT1=DEFICIT FOR U/S DEMAND FOR CLUBBED DEMAND
C
         DDDT1=DEFICIT FOR D/S DEMAND FOR CLUBBED DEMAND
C
         DSRFC=D/S RETURN FLOW CONTRIBUTION
         DUD1 =DEFICIT IN U/S DEMAND FOR UNCLUBBED DEMAND
C
C
         DDD1 =DEFICIT IN D/S DEMAND FOR UNCLUBBED DEMAND
         DEFE1 = ENERGY DEFFICIENCY
C
C
         DUME1 = DUMP ENERGY
C
              =EVAPORATION IN METRE
C
             =ELEVATION IN METRE
         ELE
C
         EVAPO=MONTHLY EVAPORATION VALUES
         ENERG=TOTAL ENERGY GENERATED
         FLOW = INFLOW TO RESERVOIR IN MILLION CUBIC METRE
C
         FACTR=FACTOR (CUMEC*FACTOR=KW. HR/MONTH)
C
         FRATN=FRACTION(FRACTION OF R.B. CANAL SUPPLY TO TOTAL)
C
        HOURS=NO. OF HOURS CONSIDERED IN YEAR
C
           =EFFECTIVE TURBINE HEAD
        IUMRE=OPTION-FOR UPPERMOST RESERVOIR(1) AND FOR OTHER
C
         IWRT =OPTION FOR PRINT(1,1,1,1,1,1)
C
               IWRT(1)=U/S DEMANDS AVERAGE DEFICITS
C
               IWRT(2)=U/S DEMANDS ANNUAL DEFICITS
C
               IWRT(3)=U/S DEMANDS NO. OF ANNUAL DEFICITS
C
               IWRT(4)=D/S DEMANDS AVERAGE DEFICITS
C
               IWRT(5)=D/S DEMANDS ANNUAL DEFICITS
               IWRT(6) = D/S DEMANDS NO. OF ANNUAL DEFICITS
C
C
        IPRT = OPTION FOR PRINT (1-UNIT 3, KUMA2, OUT, CALLING SUBROUTINE
C
               WRTM)
        IREQ1=OPTION FOR WATER RELEASE USE
C
               1-HYDROPOWER RELEASES
C
C
                 O-NON HYDROPOWER RELEASES
C
        IEN01=OPTION FOR POWER GENERATION FROM RELEASES
C
                 1-IRRIGATION WATER (OTHER USES) ALSO CAN BE
                                                            USED FOR
C
                  HYDROPOWER
C
                 O-RELEASES OTHER THAN HYDROPOWER
C
        ISPPO=OPTION FOR SPILL WATER FOR POWER GENERATION
C
                 1-SPILL WATER CAN BE USED FOR POWER
        KYEAR=STARTING YEAR
C
C
        NSITE=NUMBER OF SITES
C
        NYEAR=NUMBER OF YEARS
C
        NMONT=NUMBER OF MONTHS CONSIDERED IN A YEAR
C
        NDDDT=NO. OF DEFICITS (REQUIREMENTS) FOR DOWNSTREAM DEMAND IN
C
              TIME T
        NDUDT=NO. OF DEFICIT ( REQUIREMENT) FOR UPSTREAM DEMAND IN
C
C
              TIME T
C
        NADD1=NO. OF DEFICIT FOR D/S REQUIREMENT
C
        NAUD1=NO. OF DEFICIT FOR U/S REQUIREMENT
C
        NREM1=NO. OF TIMES RESERVOIR EMPTY AT THE END IN TIME T
C
        NRFUL=NO.OF TIMES RESERVOIR FULL/SPILL IN TIME T
C
        NTREG=NO. OF REQUIREMENT FOR D/S
C
        NTREU=NO. OF REQUIREMENTS FOR U/S
        NUSRE=NO. OF (UNCLUBBED) U/S REQUIREMENT
```

```
NDSRE=NO. OF (UNCLUBBED) D/S REQUIREMENT
        NURCF=OPTION-HOW MANY U/S RESERVOIR CONTRIBUTE FLOW
C
        NTRCF=OPTION-WHAT ARE THOSE NOS.
C
C
        NREMT=NO. OF TIME RESERVOIR EMPTY AT THE END OF THE TIME
        NRFUT=NO. OF TIME RESERVOIR FULL AT THE END OF THE TIME
        NADD1=NO. OF D/S ANNUAL DEFICIT FOR CLUBBED DEMAND
C
        NAUD1=NO. OF U/S ANNUAL DEFICIT FOR CLUBBED DEMAND
C
        NDDD1=NO.OF DEFICIT OF D/S REQUIREMENT (CLUBBED)
C
         NDUD1=NO. OF DEFICIT OF U/S REQUIREMENT (CLUBBED)
        NAD1 = NO. OF ANNUAL D/S DEFICIT (UNCLUBBED)
C
        NAU1 =NO. OF ANNUAL U/S DEFICIT (UNCLUBBED)
C
C
        NDD1 = NO. OF D/S DEFICIT (UNCLUBBED)
        NDU1 = NO. OF U/S DEFICIT (UNCLUBBED)
        NSTAT=NO. OF STATE
C
C
        NSHRE=SHARE NUMBER
C
        NMDE1=NUMBER OF MONTHLY ENERGY DEFICITS
        NMDU1=NUMBER OF MONTHLY DUMP ENERGY
        0 = OUTFLOW FROM RESERVOIR(MCM)
C
            =PRECIPITATION IN RESERVOIR(IN M)
C
        P
        PREGI=PERCENTAGE D/S REQUIREMENT FOR CLUBBED DEMANDS
C
C
        PREU1=PERCENTAGE U/S REQUIREMENT FOR CLUBBED DEMANDS
C
        PRU1 = PERCENTAGE U/S REQUIREMENT FOR UNCLUBBED DEMANDS
        PRD1 = PERCENTAGE D/S REQUIREMENT FOR UNCLUBBED DEMANDS
C
        PPEFF=POWER PLANT EFFICIENCY
C
C
        PPC = POWER PLANT CAPACITY
C
        PHMIN=MINIMUM MONTHLY WATER LEVEL THAT POWER CAN BE GENERATED
C
        QMAX = MAXIMUM TURBINE DISCHARGE
        REGEN=WATER FOR ENERGY GENERATION AVAILABLE FROM D/S RELEASE
C
C
        REQV = ACTUAL WATER NEEDED FOR REQUIRED ENERGY GENERATION
        REGA = AVAILABLE WATER FOR GENERATING POWER
C
C
        REQD1=MONTHLY D/S REQUIREMENT FOR CLUBBED DEMANDS
C
        REQUI=MONTHLY U/S REQUIREMENT FOR CLUBBED DEMANDS
C
        RED1 = D/S RETURN FLOW FROM UNCLUBBED DEMANDS
C
        REU1 = MONTHLY U/S REQUIREMENT FOR UNCLUBBED DEMANDS
        RLDT1=D/S RELEASE FOR CLUBBED DEMANDS
C
        RLD1 = D/S RELEASE FOR UNCLUBBED DEMANDS
C
        REGET = ENERGY DEMAND
            =INITIAL STORAGE IN RESERVOIR (MCUM)
C
         SPILL = AMOUNT OF SPILL IN TIME T
C
         SHARE = SHARE
C
        SUPT1=U/S SUBTRACTION FOR CLUBBED DEMANDS
C
        SUP1 =U/S SUBTRACTION FOR UNCLUBBED DEMANDS
C
        SUM4 = AVERAGE ANNUAL DEFICIT IN ENERGY
C
        SUM5 = AVERAGE ANNUAL DUMP ENERGY
C
        SUM6 = AVERAGE ANNUAL GENERATED ENERGY
C
        TUSUT = TOTAL U/S SUBSTRACTION IN TIME T
C
        UPRFL=U/S RETURN FLOW IN PERCENTAGE RATIO
C
        YMAX = MAXIMUM CAPACITY OF RESERVOIR (MCUM)
C
        YMIN =MINIMUM CAPACITY OF RESERVOIR (MCUM)
C
        SUM1 = RETURN FLOW FROM THE UPSTREAM USE OF THE
C
                ITH RESERVOIR (i.e. RESERVOIR UNDER CONSIDERATION
C
                FOR SIMULATION
C
        SUM2 = RETURN FLOW FROM THE DOWNSTREAM USE OF THE RESERVOIRS
C
                UPSTREAM OF THE Ith RESERVOIR
```

SUM3 = RETURN FLOW DUE TO SPILL FROM THE UPSTREAM RESERVOIR(S)

C

```
*******************
C
        SUBPROGRAMS
        *******************
        SUBROUTINE SUBPROGRAMS
C
        ------
        INTI1 -INITIALIZE THE STATISTICS TO ZERO FOR CLUBBED DEMANDS
C
       INIL1 -INITIALIZE THE STATISTICS TO ZERO FOR UNCLUBBED DEMANDS
C
      STAT1 -CALCULATE U/S SUBTRACTION & D/S RELEASES FROM SHARE 1 &
C
              D/S RELEASES FROM SHARE 2
      WATER -CALCULATE DEFICITS & D/S SUBTRACTION AFTER MEETING U/S &
C
C
              D/S DEMANDS, ADDITIONAL POWER RELEASES, ENERGY GENERATE
C
              FROM OTHER RELEASES
        RELES -CALCULATE NET WATER AVAILABLE AND DEFICITS
C
      CAL1 -CALCULATE STATISTICS FOR U/S & D/S DEMANDS
C
C
      WRT1 -WRITE THE STATISTICS FOR SHARE U/S & D/S DEMANDS
       WRT -WRITE THE INTERMEDIATE CALCULATION GIVING SHARE U/S &
C
C
             D/S DEFICITS FOR EACH MONTH
       CALL11-CALCULATES STATISTICS FOR U/S & D/S DEMAND WHEN THEY
C
C
             ARE UNCLUBBED
C
       WRTM -CALCULATE THE INTERMEDIATE RESULTS OF SHARE U/S & D/S
             DEFICITS FOR EACH MONTH
C
C
       WRT11 -FOR FORMATING OF RESULTS
C
       DIST1 -DISTRIBUTE THE WATER DEFICITS OF THE CLUBBED ANNUAL
          DEMANDS TO UNCLUBBED DEMANDS
C
       WRT12 -WRITES THE ANNUAL REQUIREMENT & MONTHLY REQUIREMENT OF
C
C
             VARIOUS DEMANDS IN CLUBBED & IN UNCLUBBED
C
       POWER -CALCULATES STATISTICS OF POWER GENERATION
C
       WRRS1 - WRITES IMPORTANT RESULTS IN FILE '*. 012'
       RTNFL - WRITES CONTRIBUTIONS FROM UPSTREAM RESERVOIRS
C
C
       FUNCTION SUBPROGRAMS
C
C
       AREA -TO COMPUTTE WATER SPREAD AREA CORRESPONDING TO WATER
C
          CONTENT IN RESERVOIR
C
       ELEVAT -TO COMPUTTE ELEVATION CORRESPONDING TO WATER CONTENT
C
C
          IN RESERVOIR
C
       ------
       UNIT NUMBERS OF INPUT AND OUTPUT FILES
C
C
       UNIT 1=INPUT DATA
C
C
       UNIT 12 - MAIN PROGRAMME, NAMES OF THE DATA FILES FOR
C
                WHICH SIMULATION PROGRAM IS TO BE RUN.
C
       UNIT 2=MAIN PROGRAM & SUBROUTINES OF
C
              STAT1, WATER, RELES, POWER, CAL1, INTI1, INIL1
C
       UNIT 3=SUBROUTINES OF WRTM, WRT
C
       UNIT 4=SUBROUTINE OF WRT1
C
       UNIT 5=SUBROUTINE OF WRT11
C
       UNIT 6=SUBROUTINE OF WRT12
C
       UNIT 8 - SUBROUTINE OF WRRS1
C
       UNIT 9-FLOW DATA AT ALL SITES IN THE RIVER NETWORK
C
      UNIT 11 - SUBROUTINE RINFL FOR WRITING CONTRIBUTIONS FROM
C
               UPSTREAM RESERVOIRS
```

```
**********************************
C
        * PROGRAM FOR SEQUENCING OF MULTIRESERVOIR, MULTIPURPOSE
C
                        WATER RESOURCES SYSTEM.
C
                        PREPARED BY M.L. WAIKAR
C
                      SUPERVISOR DR. D.K. SRIVASTAVA
C
        ************
C
        TOTCA = TOTAL TARGET SUPPLIED BY A STATE
C
        TOTCO = TOTAL USEWISE OMR COST OF A STATE
C
        COSTMT = USEWISE TOTAL OMR COST OF A STATE
C
        COSTMI = USEWISE OMR COST PER MCM
C
        FXCOST = FIXED COST OF A PROJECT
C
        RELES = USEWISE RELEASE FROM A PROJECT
C
        REYLD = USEWISE TARGET THAT CAN BE SUPPLIED BY A PROJECT
 C
        PLSTI = PERMISSIBLE LOWER LIMIT ON INITIAL STATE AT 'T'
 C
        PUSTI = PERMISSIBLE UPPER LIMIT ON INITIAL STATE AT 'T'
 C
               = PERMISSIBLE LOWER LIMIT ON FINAL STATE AT 'T'
        PLSTF
 C
        PUSTF = PERMISSIBLE UPPER LIMIT ON FINAL STATE AT 'T'
 C
        PLSII = PERMISSIBLE LOWER LIMIT ON INITIAL STATE FOR
 C
                'ISTGO' STAGES TO GO
           C
         PUSII = PERMISSIBLE UPPER LIMIT ON INITIAL STATE FOR
 C
C
               "ISTGO" STAGES TO GO
               = PERMISSIBLE LOWER LIMIT ON FINAL STATE FOR
C
C
                'ISTGO' STAGES TO GO
                = PERMISSIBLE UPPER LIMIT ON FINAL STATE FOR
 C
                 'ISTGO' STAGES TO GO
 C
              = COST FUNCTION IN TERMS OF COST OF THE STATES
 C
         ISTGO = STAGES TO GO
 C
              = FUNCTION VALUE AT THE END OF 'N'TH TIME PERIOD
 C
         FOT
              = FUNCTION VALUE AT O STAGES TO GO
 C
               = OPTIMAL OBJECTIVE FUNCTION VALUE AT
 C
                 INITIAL STATE
 C
               = MINIMUM VALUE OF OBJECTIVE FUNCTION
 C
         FMIN
         FIMI1 = MINIMUM OBJECTIVE FUNCTION VALUE AT PREVIOUS STAGE
 C
               = CURRENT DECISION AT 'I'TH INITIAL STATE (IN TERMS
          OF CONNECTION WITH FIANL RESULTING 'II'TH STATE)
               = OPTIMAL DECISIONS AT 'I'TH INITIAL STATE (IN TERMS
         OF CONNECTION WITH FIANL RESULTING 'II'TH STATE)
                = NUMBER OF DECISIONS
         NOI
               = NUMBER OF TIME PERIODS
 0
               = NUMBER OF TIME PERIODS
         OIMIN = DECISION REGARDING STATE (RESULTING STATE)
 C
         COELE = BINARY CODE OF A STATE (PROJECT COMBINATION)
 C
         COEFF = CODE OF THE PROJECT COMBINATION
C
                  NUMBER OF THE PROJECTS
 C
         NP =
                = 1 FOR DESCENDING ORDER ARRANGEMENT
 C
                2 FOR ASCENDING ORDER ARRANGEMENT
 C
         IOPT2 = OPTION FOR USING DISCOUNT FACTORS ETC.
 C
                  -1 == NOT TO BE USED
                  1 == TO BE USED
 C
              -- OPTION FOR CODE GENERATION SUBROUTINE
 C
         IGEN
                  1 -- CALLS SUBROUTINE CODE1(NP)
 C
                  2 -- CALLS SUBROUTINE CODE(NP)
 C
         IARNG -- OPTION FOR ARRANGING (TO BE USED ONLY IF ARRANGING
 C
                  IN ANY ORDER IS USEFUL)
 C
 C
                  1 -- ARRANGE AS PER IOPT
                  2 -- SKIP ARRANGING
 C
 C
         ISG
               -- NO. OF THE STARTING INITIAL STATES CONSIDERED
                  FOR EXPANSION PLANNING
 C
```

```
C
 C
 C
 C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
```

```
DR
          = DISCOUNT RATE
          = PLANNING PERIOD IN YEARS (STAGE LENGTH)
    IPL
          = PRESENT WORTH FACTOR (DISCOUNT FACTOR) i.e. P/F
    PA
          = ANNUITY PRESENT WORTH FACTOR i.e. A/P
    DEMDI, DEMDT = USEWISE DEMAND ON THE SYSTEM
    NOPNT, NOPNI = NUMBER OF PENALTY RANGES
    ASHOI, ASHOT = ALLOWABLE SHORTAGES IN MEETING THE DEMAND
   PNLTI, PNLTT = PENALTY COSTS FOR NOT MEETING THE DEMAND
    UPLMI, UPLMT = UPPER LIMIT ON TARGET
   AEXEL, AEXET = ALLOWABLE EXCESS BEYOND UPPER LIMIT ON TARGET
   PXLTI, PXLTT = PENALTY FOR ALLOWABLE EXCESS BEYOND
                  UPPER LIMIT ON TARGET
   ISG = POSSIBLE NUMBER OF STARTING STATES AT 'T=0'
   STATE = INDICES OF THOSE POSSIBLE STARTING STATES
            AT 'T=0'
   STATE = INITIAL STARTING STATE AT 'ISTGO=N'
   STATE = OPTIMAL RESULTING STATE FOR 'ISTGO=N'
   NOINS = NUMBER OF DECISION FOR 'ISTGO'
   NOFLS = NUMBER OF OPTIMAL RESULTING STATES
   NCCUI = NUMBER OF CONNECTING CUMULATIVE INITIAL STATE
   NCCUF = NUMBER OF CONNECTING CUMULATIVE FINAL STATE
   PROJT = PROJET NAME (A CHARACTER VARIABLE)
   CHARACTER*20 FN1, FN2, FN3
   CHARACTER*5 PROJT
   INTEGER COUSE, COEFF, COELE, PLSTI, PUSTI, PLSTF, PUSTF
   INTEGER STATE, STATE, STATE
   DIMENSION SUMCA(1024), SUMCO(1024)
   DIMENSION PROJT(10), NOPNT(10), NOPNI(10)
   DIMENSION COUSE(1024), COEFF(1024, 10), COELE(1024, 10)
   DIMENSION REYLD(1024, 10, 2), TOTCA(1024, 2), TOTCO(1024, 2)
   DIMENSION FOT (1024), FOI (1024), OIMI (16, 1024, 1024)
   DIMENSION F(16, 1024), STATG(1024)
   DIMENSION PLSTI(16), PUSTI(16), PLSTF(16),
1 PUSTF(16), NOI(16, 1024), COSTMI(10, 2), FXCOST(10)
   DIMENSION DEMDI(16,2), DEMDT(16,2)
   DIMENSION ASHOI (16, 10, 2), ASHOT (16, 10, 2)
   DIMENSION PNLTI(16, 10, 2), PNLTT(16, 10, 2)
   DIMENSION RELES(1024, 10, 2), COSTMT(1524, 10, 2)
  DIMENSION UPLMT(16,2), PXLTT(16,10,2), AEXET(16,10,2)
  DIMENSION UPLMI(16,2), PXLTI(16,10,2), AEXEI(16,10,2)
  DIMENSION NCCUI(10, 1024, 1024), NCCUF(10, 1024, 1024)
  DIMENSION STATI(16,16), STATF(16,16)
  COMMON/BLK1/NOPNI, NOPNI
  COMMON/BLK33/NCCUI, NCCUF
  COMMON/BLK34/STATI, STATE
  COMMON/BLK3/COUSE
  COMMON/BLK4/GI
  COMMON/BLK5/COELE
  COMMON/BLK6/COEFF
  COMMON/BLK7/F
  COMMON/BLK8/NOI, OIMI
  COMMON/BLK9/STATG
  COMMON/BLK12/REYLD
  COMMON/BLK14/SUMCA, SUMCO
  COMMON/BLK14/TOTCA, TOTCO
  COMMON/BLK16/DEMDI
  COMMON/BLK17/PNLTI, PXLTI
```

STATG -- INDEX OF THOSE STARTING STATES

```
COMMON/BLK18/ASHOI. AEXEI
       COMMON/BLK19/FOT
       COMMON/BLK2D/PLSTI, PUSTI, PLSTF, PUSTF
       COMMON/BLK21/PROJT
       COMMON/BLK22/RELES
       COMMON/BLK23/COSTMI
       COMMON/BLK24/COSTMT
       COMMON/BLK25/FXCOST
       COMMON/BLK27/UPLMI
       COMMON/BLK28/PF, PA
       COMMON/BLK29/IOPT2
       WRITE(*,*) 'ENTER THE INPUT fixed data FILENAME ='
       READ(*, 100) FN1
       WRITE(*,*) 'ENTER THE INPUT variable data FILENAME ='
       READ(*, 100) FN3
       FORMAT (A20)
 100
       WRITE(*, *) 'ENTER THE RESULT FILENAME = "
       READ(*,100) FN2
       OPEN (1, FILE=FN1, STATUS='OLD')
       OPEN (2, FILE=FN2, STATUS='NEW')
       OPEN (3, FILE=FN3, STATUS='OLD')
       READ(3,*)IOPT2
       IF (IOPT2.NE.1) GO TO 200
       READ(3, *) DR, IPL
       CALL FACTORS (DR. IPL)
       READ(1,*)NP, NDEMD, IGEN, IARNG, IOPT
       READ (3, *) N
       DO 11 J=1, NP
       READ(1, *) FXCOST(J), (COSTMI(J, ID), ID=1, NDEMD)
       NCODE=2**NP
       INP=1
       MCOMB=2**(INP-1)
       DO 10 ID=1, NDEMD
       READ(1, *)(REYLD(I, INP, ID), I=1, MCOMB)
       READ(1, *) (RELES(I, INP, ID), I=1, MCOMB)
       CONTINUE
       INP=INP+1
       IF (INP.LE.NP) GO TO 1
       DO 97 IT=1, N
       READ(3, *)(DEMDT(IT, ID), ID=1, NDEMD)
       READ(3, *) (UPLMT(IT, ID), ID=1, NDEMD)
       CONTINUE
       READ(3, *)(NOPNT(IT), IT=1, N
       DO 98 IT=1, N
       DO 99 KK=1, NOPNT(IT)
       READ(3, *)(ASHOT(IT, KK, ID), ID=1, NDEMD)
       READ(3, *) (PNLTT(IT, KK, ID), ID=1, NDEMD)
       READ(3, *)(AEXET(IT, KK, ID), ID=1, NDEMD)
       READ(3, *)(PXLTT(IT, KK, ID), ID=1, NDEMD)
 99
       CONTINUE
 98
       CONTINUE
       IF (NDEMD.GT.2) GO TO 667
       DO 332 IJ1=1, N
      IF(NOPNT(IJ1).GT.1) GO TO 667
332
      CONTINUE
       WRITE(2,555)
 555 FORMAT(1X, 'PERIOD', 2X, 'IRR DM/ULT', 2X, 'POW DM/ULT',
```

```
1 2X, 'IRR DF/EX', 2X, 'POW DF/EX', 3X, 'IRPNLT', 5X, 'POWPNLT')
        DO 556 IT=1, N
       WRITE(2,557)'DEM', IT, DEMDT(IT, 1), DEMDT(IT, 2), ASHOT(IT, 1, 1),
    1 ASHOT(IT,1,2), PNLTT(IT,1,1), PNLTT(IT,1,2)
       WRITE(2,557)'ULT', IT, UPLMT(IT, 1), UPLMT(IT, 2), AEXET(IT, 1, 1),
    1 AEXET(IT,1,2), PXLTT(IT,1,1), PXLTT(IT,1,2)
      CONTINUE
 556
      FORMAT(A3, 1X, I2, 4X, 4(F8.2, 3X), F8.4, 3X, F8.4)
 557
        GO TO 668
        DO 666 IT=1, N
 667
       WRITE(2,*)IT, DEMANDS:', (DEMDT(IT, ID), ID=1, NDEMD)
        DO 558 ID=1, NDEMD
       WRITE(2,889)'SHTs US No.', ID, (ASHOT(IT, KK, ID), KK=1, NOPNT(IT))
       WRITE(2,888)'PNTs US No.', ID, (PNLTT(IT, KK, ID), KK=1, NOPNT(IT))
 558
       CONTINUE
       WRITE(2,*)IT,' UPLMTS:',(UPLMT(IT,ID),ID=1,NDEMD)
        DO 559 ID=1, NDEMD
       WRITE(2,889)'EXSS US No.', ID, (AEXET(IT, KK, ID), KK=1, NOPNT(IT))
       WRITE(2,888)'PXTs US No.', ID, (PXLTT(IT, KK, ID), KK=1, NOPNT(IT))
 559 CONTINUE
       WRITE(2, *)
888
       FORMAT(A11, I1, 1X, 6(F7.4, 2X))
889
       FORMAT (A11, I1, 1X, 3(F7.1, 2X), 3(F5.1, 3X)
666
668
       ISTG0=N
       DO 401 IT=1.N
       NOPNI(ISTGO) = NOPNT(IT)
       DO 402 ID=1, NDEMD
       DEMDI(ISTGO, ID) = DEMDT(IT, ID)
       UPLMI(ISTGO, ID) = UPLMT(IT, ID)
   variable penalty costs
       DO 403 MM=1, NOPNT(IT)
       ASHOI(ISTGO, MM, ID) = ASHOT(IT, MM, ID)
       PNLTI(ISTGO, MM, ID) = PNLTT(IT, MM, ID)
       AEXEI (ISTGO, MM, ID) = AEXET (IT, MM, ID)
       PXLTI(ISTGO, MM, ID) = PXLTT(IT, MM, ID)
403
       CONTINUE
402
       CONTINUE
       ISTG0=ISTG0-1
401
       CONTINUE
       READ(3, *)PLSTI(1), PUSTI(1)
       READ(3,*)(PLSTF(IT),IT=1,N)
       READ(3,*)(PUSTF(IT),IT=1,N)
       MAXNS=NCODE
       READ (1,*) (FOT(I), I=1, MAXNS)
       READ(1,444)(PROJT(KK),KK=1,NP)
444
       FORMAT(10(A5,1X))
       READ(1, *) ISG
       READ(1, *)(STATG(IL), IL=1, ISG)
       IF (IGEN. EQ. 1) CALL CODE1 (NP)
       IF (IGEN. EQ. 2) CALL CODE (NP)
       CALL STYLD (NP, NDEMD)
       IF (IARNG.EQ.1) CALL ARRNG (NP. NDEMD, IOPT)
       IF (IARNG.EQ.1) GO TO 4
       DO 2 I=1, NCODE
       COUSE(I)=1
       DO 3 KK=1 , NP
       COELE(I, KK) = COEFF(I, KK)
```

```
3
        CONTINUE
        CONTINUE
        CALL DPALG(ISG, NP, N, NDEMD)
        END
        end of main program
C This subroutine of code generation can be used with
          pc as well as mainframe.
        SUBROUTINE CODE1(NP)
        INTEGER COEFF
        DIMENSION COEFF (1024, 10
        COMMON/BLK6/COEFF
        NCODE=2**NP
        DO 1 I=1, NCODE
        DO 1 J=1, NP
        COEFF(I,J)=0
        CONTINUE
        INP=1
        NCOMB=2**INP
        COEFF (2,1)=1
        MCOMB=NCOMB
        INP=INP+1
        NCOMB=2**INP
        I=MCOMB
        DO 3 K=1, MCOMB
        I = I + 1
        DO 4 J=1.NP
        COEFF(I, J) = COEFF(K, J)
        CONTINUE
        COEFF(I, INP)=1
        CONTINUE
        IF (INP.LT.NP) GO TO 5
        RETURN
        END
C USE THIS SUBROUTINE IN CASE THE COMPUTER SUPPORTS BIT MANIPULATION
      SUBROUTINE CODE (NP)
       SUBROUTINE CODE (NP)
        INTEGER B(1024), COEFF (1024, 10)
        COMMON/BLK6/COEFF
        NBITS=NP
        NCODE=2**NP
        M=LSHIFT(1.NBITS-1)
        DO 10 I=1, NCODE
        MASK=M
        DO 20 J=1.NBITS
        B(J)=0
        IF(AND(I-1, MASK)) B(J)=1
        COEFF(I, J)=B(J)
        MASK=RSHIFT (MASK, 1)
   20
      CONTINUE
   10
      CONTINUE
        RETURN
```

```
FND
SUBROUTINE FOR CALCULATING THE YIELD OF A STATE
      SUBROUTINE STYLD (NP. NDEMD)
      SUBROUTINE STYLD (NP. NDEMD)
      INTEGER COEFF
      DIMENSION COEFF (1024, 10), TOTCA (1024, 2), REYLD (1024, 10, 2)
      DIMENSION TOTCO (1024, 2), COSTMI (10, 2)
      DIMENSION RELES(1024, 10, 2), COSTMT(1524, 10, 2)
      COMMON/BLK6/COEFF
      COMMON/BLK12/REYLD
      COMMON/BLK14/TOTCA, TOTCO
      COMMON/BLK22/RELES
      COMMON/BLK23/COSTMI
      COMMON/BLK24/COSTMI
      NCODE = 2 * * NP
      DO 1 I=1, NCODE
      DO 2 ID=1, NDEMD
      TOTCA(I, ID)=0
      TOTCO(I,ID)=0
      DO 3 J=1, NP
      COSTMT(I, J, ID) = 0
  3 CONTINUE
  2
      CONTINUE
      CONTINUE
  1
      DO 91 ID=1, NDEMD
      DO 31 I=1, NCODE
      DO 41 J=1, NP
      IF(COEFF(I, J). EQ. 0) GO TO 41
      NCOMB=2**J
      MCOMB=2**(J-1)
      DO 51 KK1=MCOMB+1, NCOMB
      DO 61 KK2=1, J
      IF(COEFF(I, KK2). EQ. COEFF(KK1, KK2)) GO TO 61
      GO TO 51
 61
      CONTINUE
      IYES=KK1
 51
      CONTINUE
      L=IYES-MCOMB
      COSTMT(L, J, ID) = COSTMI(J, ID) * RELES(L, J, ID)
      TOTCA(I, ID) = TOTCA(I, ID) + REYLD(L, J, ID)
      TOTCO(I, ID) = TOTCO(I, ID) + COSTMT(L, J, ID)
 41
      CONTINUE
 31
      CONTINUE
 91
      CONTINUE
      RETURN
   SUBROUTINE DPALG(ISG, NP, N, NDEMD)
  SUBROUTINE FOR FINDING OPTIMAL PATH (DYNAMIC PROGRAMMING)
       SUBROUTINE DPALG(ISG, NP. N, NDEMD)
      CHARACTER*5 PROJT
      INTEGER COELE, SI, PLSTI, PLSTI, PUSTI, PUSTI, PLSTF, PLSTF, PUSIF,
   1 PUSTF, OIMI, OIMIN, OI, O. SIMI1, STATE, COUSE, STATI, STATE
      DIMENSION COELE(1024, 10), FOT(1024), FOI(1024)
       DIMENSION F (16, 1024), STATG (1024)
```

```
DIMENSION OIMI(16, 1024, 1024), DEMOT(16, 2)
      DIMENSION PLSTI(16), PLSTI(16), PUSTI(16), PUSTI(16), PLSTF(16).
   1 PLSIF(16), PUSTF(16), PUSIF(16), NOI(16, 1024), COUSE(1024)
      DIMENSION TOTCA (1024, 2), DEMDI (16, 2), TOTCO (1024, 2)
      DIMENSION ASHOI(16,10,2), ASHOT(16,10,2), PNLTI(16,10,2),
   1 PNLTT(16,10,2), NOPNT(10), NOPNI(10)
      DIMENSION REYLD(1024, 10, 2), PROJT(10), FXCOST(10)
      DIMENSION UPLMT(16,2), PXLTT(16,10,2), AEXET(16,10,2)
      DIMENSION UPLMI(16,2), PXLTI(16,10,2), AEXEI(16,10,2)
      DIMENSION NCCUI(10, 1024, 1024), NCCUF(10, 1024, 1024)
      DIMENSION STATI(16,16), STATF(16,16)
      COMMON/BLK1/NOPNT, NOPNI
      COMMON/BLK33/NCCUI, NCCUF
      COMMON/BLK34/STATI, STAT
      COMMON/BLK3/COUSE
      COMMON/BLK4/GI
       COMMON/BLK5/COELE
      COMMON/BLK7/F
      COMMON/BLK8/NOI, OIMI
      COMMON/BLK9/STATG
      COMMON/BLK12/REYLD
      COMMON/BLK14/TOTCA, TOTCO
      COMMON/BLK16/DEMDI
      COMMON/BLK17/PNLTI, PXLTI
      COMMON/BLK18/ASHOI, AEXEI
      COMMON/BLK19/FOT
      COMMON/BLK20/PLSTI, PUSTI, PLSTF, PUSTE
      COMMON/BLK21/PROJT
      COMMON/BLK25/FXCOST
      COMMON/BLK27/UPLMI
      COMMON/BLK28/PF, PA
      COMMON/BLK29/IOPT2
      NCODE = 2 * * NP
      MAXNS=NCODE
      IF(N.EQ.1)GO TO 510
      DO 502 IT=2, N
      PLSTI(IT) = PLSTF(IT-1)
      PUSTI(IT)=PUSTF(IT-1)
      CONTINUE
510
      WRITE(2, 126)
126
      FORMAT(2X, 'THE PERMISSIBLE
                                   STATES ARE'
      DO 100 I=1, MAXNS
      FOI (I)=FOT(I)
100
      CONTINUE
      IT=N
      ISTG0=1
      DO 400 I=1, MAXNS
      F(ISTGO, I) = -1
      DO 4 K=1, MAXNS
      OIMI(ISTGO, I, K) = -1
      CONTINUE
400
      CONTINUE
      PLSII(ISTGO)=PLSTI(IT)
      PUSII(ISTGO) = PUSTI(IT)
      PLSIF(ISTGO)=PLSTF(IT)
      PUSIF(ISTGO)=PUSTF(IT)
      SI=PLSII(ISTGO)
      I=SI
```

```
IF(COUSE(I).EQ.O) GO TO 1000
       II=PLSIF(ISTGO)
       NOI(ISTGO, I)=0
       FMIN=100000.
       IF(II.LT.I) GO TO 19
       IF(COUSE(II).EQ.0) GO TO 19
   2
       IF(PLSIF(ISTGO).NE.PUSIF(ISTGO))GO TO 20
       CALL CONNECT(ISTGO, NP, ICONT, MATCH, I, II, NDEMD, NOFEA)
       IF (NOFEA. EQ. -1) GO TO 19
       SIMI1=PUSIF(ISTGO)
       IMI1=II
       OI=II
       CALL FUNCT(I, IT, ISTGO, NP, II, NDEMD)
       IF(ISTGO.EQ.1)FIMI1=FOI(IMI1)
       IF (ISTGO.GT.1)FIMI1=F(ISTGO-1, IMI1)
       IF (IOPT2.NE.1) X=GI+FIMI1
       IF(IOPT2.EQ.1)X=GI*PA+FIMI1*PF
       NOI(ISTGO, I)=1
       FMIN=X
       OIMI(ISTGO, I, NOI(ISTGO, I)) = 01
       GO TO 1
  20
       CALL CONNECT (ISTGO, NP, ICONT, MATCH, I, II, NDEMD, NOFEA)
       IF (NOFEA. EQ. -1) GO TO 19
       SIMI1=II
       IMI1=II
       OI=II
       CALL FUNCT(I, IT, ISTGO, NP, II, NDEMD)
       IF(ISTGO.EQ.1)FIMI1=FOI(IMI1)
       IF (ISTGO.GT.1) FIMI1=F (ISTGO-1, IMI1)
       IF (IOPT2.NE.1) X=GI+FIMI1
       IF (IOPT2.EQ.1) X=GI*PA+FIMI1*PF
       IF(X.LT.FMIN)GO TO 16
       IF (X.EQ.FMIN) GO TO 17
       GO TO 19
  16
       NN=NOI(ISTGO, I)
       NOI(ISTGO, I)=D
       FMIN=X
       OIMIN=OI
       NOI(ISTGO, I) = NOI(ISTGO, I) +1
       DO 18 N1=1, NN
       OIMI(ISTGO, I, N1)=0
  18
       CONTINUE
       OIMI(ISTGO, I, NOI(ISTGO, I)) = OIMIN
       GO TO 19
  17
       NOI(ISTGO, I) = NOI(ISTGO, I)+1
       OIMI(ISTGO, I, NOI(ISTGO, I)) = OI
  19
       II=II+1
       OI=II
       IF(II.LE.PUSIF(ISTGO))GO TO 2
   1
       F(ISTGO, I) = FMIN
1000
       I = I + 1
       SI=SI+1
       IF(I.LE.PUSII(ISTGO))GO TO 3
       IT=IT-1
       ISTG0=ISTG0+1
       IF(ISTGO.LE.N)GO TO 5
        ISTG0=0
        WRITE(2,103)
```

C

C

```
103 FORMAT(4X,70('=')/,10X,'ISTGO',9X,'I'.8X.
    1 'F',17X,'NOI',9X,'OIMI'/,4X,70('-')//)
C
        DO 40 KJ=1.N
       ISTG0=ISTG0+1
         write(*,*) 'ISTGO=',ISTGO
        SI=PLSII(ISTGO)
C
       I=SI
    41 IF(NOI(ISTGO, I).EQ.O)WRITE(2,*)'ISTGO=', ISTGO, 'I='.I.
C
C
      1 'INFEASIBLE'
        IF (NOI (ISTGO, I). NE. O) WRITE (2, *) ISTGO, I,
C
     1 F(ISTGO, I), NOI(ISTGO, I),
C
    2 (OIMI(ISTGO, I, KKK), KKK=1, NOI(ISTGO, I))
C
         SI=SI+1
C
         I=SI
C
         IF (I.LE.PUSII(ISTGO))GO TO 41
C
   40 CONTINUE
C
         WRITE(2,135)
   135 FORMAT(2X, 'STARTING INITIAL STATES TO BE CONSIDERED AT T=O FOR
  1 OPTIMAL DECISIONS'/)
        CALL OPTPA(ISG, N, MAXNS, NP, NDEMD)
        RETURN -
        END
    SUBROUTINE FUNCT(I, IT, ISTGO, NP, II, NDEMD)
        SUBROUTINE FUNCT(I, IT, ISTGO, NP, II, NDEMD)
        INTEGER COELE(1024,10)
        DIMENSION FXCOST(10), NOPNT(10), NOPNI(10)
        DIMENSION TOTCA(1024,2), DEMDI(16,2), TOTCO(1024,2)
        DIMENSION PNLTI(16,10,2), PXLTI(16,10,2), UPLMI(16,2)
        DIMENSION ASHOI(16, 10, 2), AEXEI(16, 10, 2)
        COMMON/BLK1/NOPNT, NOPNI
        COMMON/BLK4/GI
        COMMON/BLK5/COELE
        COMMON/BLK14/TOTCA, TOTCO
        COMMON/BLK16/DEMDI
        COMMON/BLK17/PNLTI, PXLTI
        COMMON/BLK25/FXCOST
        COMMON/BLK18/ASHOI, AEXEI
       COMMON/BLK27/UPLMI
        GI=0.
       DO 402 ID=1, NDEMD
       IF (TOTCA (II, ID). GT. DEMDI (ISTGO, ID)) THEN
       IF(TOTCA(II, ID).LE.UPLMI(ISTGO, ID)) GO TO 403
       EX=TOTCA(II, ID)-UPLMI(ISTGO, ID)
        DO 405 MM=1, NOPNI(ISTGO)
       IF(EX.GT. AEXEI(ISTGO, MM, ID)) GO TO 405
       GI=GI+TOTCO(II, ID)+EX*PXLTI(ISTGO, MM, ID)
 405
       CONTINUE
       GO TO 402
       ENDIF
       X=DEMDI(ISTGO, ID)-TOTCA(II. ID)
        DO 406 MM1=1, NOPNI(ISTGO)
       IF(X.GT.ASHOI(ISTGO, MM1, ID)) GO TO 406
       GI=GI+TOTCO(II, ID)+X*PNLTI(ISTGO, MM1, ID)
 406 CONTINUE
       GO TO 402
 403 GI=GI+TOTCO(II, ID)
```

```
402
        CONTINUE
        DO 404 J=1.NP
        IF (COELE(II, J).NE.O) GI=GI+FXCOST(J)
  404
        CONTINUE
        RETURN
        END
   SUBROUTINE CONNECT (ISTGO, NP, ICONT, MATCH, I, II, NDEMD, NOFEA)
                   ***********************
C SUBROUTINE CONNECT FOR FINDING CONNECTED STATES
        SUBROUTINE CONNECT(ISTGO, NP, ICONT, MATCH, I, II, NDEMD, NOFEA)
        INTEGER COELE (1024, 10)
        DIMENSION TOTCA(1024,2), DEMDI(16,2), TOTCO(1024,2)
        DIMENSION ASHOI (16, 10, 2), UPLMI (16, 2), AEXEI (16, 10, 2)
        DIMENSION NOPNT (10), NOPNI (10)
        COMMON/BLK1/NOPNT, NOPNI
        COMMON/BLK5/COELE
        COMMON/BLK14/TOTCA, TOTCO
        COMMON/BLK16/DEMDI
        COMMON/BLK18/ASHOI, AEXEI
        COMMON/BLK27/UPLMI
        MATCH=0
        ICONT=0
        DO 32 KL=1, NP
        IF (COELE (I, KL). EG. 1) ICONT=ICONT+1
   32
        CONTINUE
        DO 30 KL=1, NP
        IF (COELE(I, KL), EQ, O)GO TO 30
        IF (COELE (I, KL). NE. COELE (II, KL)) GO TO 30
        MATCH=MATCH+1
   30
        CONTINUE
        IF (ICONT. NE. MATCH) NOFEA =- 1
        IF (ICONT. NE. MATCH) RETURN
        DO 401 ID=1, NDEMD
        IF ((DEMDI(ISTGO, ID)-TOTCA(II, ID)).GT.
     1 ASHOI(ISTGO, NOPNI(ISTGO), ID))GO TO 1
        IF (TOTCA(II, ID). GT. UPLMI (ISTGO, ID)) THEN
        IF ((TOTCA(II, ID)-UPLMI(ISTGO, ID)).GT.
     1 AEXEI (ISTGO, NOPNI (ISTGO), ID)) GO TO 1
        ENDIF
  401
        CONTINUE
        NOFEA=1
        RETURN
    1
        NOFEA =- 1
        RETURN
        END
         SUBROUTINE OPTPA (ISG, N, MAXNS, NP, NDEMD)
            ****************
C
        SUBROUTINE FOR FINDING THE OPTIMAL PATH
        SUBROUTINE OPTPA(ISG, N, MAXNS, NP, NDEMD)
        CHARACTER*5 PROJT
        INTEGER STATG, STATI, STATF, OIMI
        DIMENSION COELE(1024, 10), PROJT(10)
        DIMENSION F(16, 1024), NOI(16, 1024), OIMI(16, 1024, 1024)
        DIMENSION STATG(1024), STATI(16, 16), STATF(16, 16)
        DIMENSION NOINS(16)
        DIMENSION NOFLS(16), TOTCO(1024,2), TOTCA(1024,2)
```

```
DIMENSION NCCUI(10, 1024, 1024), NCCUF(10, 1024, 1024)
      COMMON/BLK33/NCCUI, NCCUF
      COMMON/BLK34/STATI, STATE
      COMMON/BLK5/COELE
      COMMON/BLK7/F
      COMMON/BLK8/NOI, OIMI
      COMMON/BLK9/STATG
     COMMON/BLK14/TOTCA, TOTCO
     COMMON/BLK21/PROJT
     DO 33 IL=1, ISG
     IT=1
     ISTG0=N
     K2=0
     STATI(ISTGO, 1) = STATG(IL)
     I=STATI(ISTGO,1)
     FMIN=F(ISTGO, I)
     WRITE(2, *)'FMIN=',FMIN
     IF(NOI(ISTGO, I).NE.D) NOINS(ISTGO)=1
     IF(NOI(ISTGO, I).EQ. D) NOINS(ISTGO) = D
     IF(NOINS(ISTGO).EQ.O) GO TO 33
     DO 22 K1=1, NOINS(ISTGO)
     I=STATI(ISTGO, K1)
     DO 21 N1=1, NOI (ISTGO, I)
     K2=K2+1
     STATF(ISTGO, K2) = OIMI(ISTGO, I, N1)
     NOFLS(ISTGO)=K2
     CONTINUE
22
     CONTINUE
     NOINS (ISTGO-1) = NOFLS (ISTGO)
     DO 23 K1=1, NOFLS(ISTGO)
     STATI(ISTGO-1, K1) = STATF(ISTGO, K1)
     CONTINUE
     IT = IT + 1
     ISTGO=ISTGO-1
     K2=0
     IF (ISTGO. NE. 1)GO TO 25
     IT=1
     ISTGO=N
     WRITE(2,410)
    FORMAT(1X,70('=')/,8X,'IT',5X,'ISTGO',5X,'STATI'
    2X, 'NCCUI', 6X, 'OIMI', 5X
                                       ,2X, 'NCCUF' / .1X.
     70('-')//)
    K5=0
    K6=MAXNS
    K55=K5
    K66=K6
    DO 42 IJ=1.N
    DO 50 K1=1, NOINS(ISTGO)
    I=STATI(ISTGO, K1)
    K5=K5+I
    DO 51 N1=1, NOI (ISTGO, I)
    STATF(ISTGO, N1) = OIMI(ISTGO, I, N1)
    II=STATF(ISTGO, N1)
    K6=K6+II
    NCCUI(ISTGO, I, II) = K5
    NCCUF(ISTGO, I, II) = K6
   WRITE(2,600)IT, ISTGO, STATI(ISTGO, K1), NCCUI(ISTGO, I, II),
 1 OIMI(ISTGO, I, N1), STATF(ISTGO, N1), NCCUF(ISTGO, I, II)
```

```
600 FORMAT(2X,7(17,2X))
      CALL SERCH(I, II, IADD, NP, ISTGO, NDEMD)
      CONTINUE
 51
      K5=K55
      CONTINUE
 50
      K5=IT*MAXNS
      K6=(IT+1) *MAXNS
      K55=K5
      K66=K6
      IT = IT + 1
      ISTG0=ISTG0-1
      CONTINUE
 42
      CONTINUE
 33
      RETURN
       SUBROUTINE SERCH(I, II, IADD, NP, ISTGO, NDEMD)
   SUBROUTINE WRITES INITIAL & FINAL STATES IN
   & ALSO THE NAMES OF PROJECTS ADDED.
       SUBROUTINE SERCH(I, II, IADD, NP, ISTGO, NDEMD
       INTEGER COELE
       CHARACTER*5 PROAD, PROJT
       DIMENSION COELE (1024, 10), IADDL (10)
       DIMENSION PROAD (10), PROJT (10), F(16, 1024)
       DIMENSION TOTCA (1024,2), TOTCO (1024,2)
      COMMON/BLK5/COELE
      COMMON/BLK7/F
       COMMON/BLK14/TOTCA, TOTCO
      COMMON/BLK21/PROJT
       IADD=0
     WRITE(2,50)'INITI STATE', (COELE(I,L), L=1, NP)
       WRITE(2,50)'FINAL STATE', (COELE(II, L), L=1, NP)
       FORMAT (A11, 2X, 22(I1, 1X))
 50
       DO 5 KL=1, NP
       IADDL (KL) = 0
       CONTINUE
   5
       DO 1 KL=1, NP
       IF(COELE(II, KL).EQ.Q) GO TO 1
       IF (COELE (II, KL) . NE. COELE (I, KL)) GO TO
       GO TO 1
       IADD=IADD+1
   2
       IADDL(IADD)=KL
       CONTINUE
  1
       IF(IADD.EQ.O) WRITE(2,*)'NO PROJECT IS ADDED
       IF(IADD.EQ.O)WRITE(2,*)(TOTCA(II,ID),ID=1,NDEMD)
       IF (IADD. EQ. D) RETURN
       DO 3 KL1=1, IADD
       DO 4 KL =1, NP
       IF (IADDL (KL1) . NE . KL) GO TO 4
       PROAD(KL1)=PROJT(KL)
       GO TO 3
       CONTINUE
   4
   3
       CONTINUE
       WRITE (2,444) (PROAD (KL1), KL1=1, IADD)
       FORMAT ('PROJECTS ADDED ARE', 5X, 9(A5, 1X))
 444
       WRITE(2, *)(TOTCA(II, ID), ID=1, NDEMD)
```

```
RETURN
         FND
 C*****SUBROUTINE FACTORS(DR, IPL)**************
         SUBROUTINE FACTORS (DR, IPL)
         COMMON/BLK28/PF, PA
         Z1=(1+DR) ** IPL
         PF=1/Z1
         PA = (Z1-1)/(DR*Z1)
 C
          PF=1/((1+DR)**IPL)
 C
          PA=(((1+DR)**IPL)-1)/(DR*((1+DR)**IPL))
         WRITE(2, *)'PF, PA ARE', PF, PA
         RETURN
         END
 TO BE USED ONLY WHEN ARRANGEMENT (RANKING) OF STATES IS
 C
         FEASIBLE AND USEFUL FOR SEQUENCING WITH SLIGHT MODIFICATION
 C
         IN THE SUBROUTINE STYLD AND MAIN PROGRAM.
 C
         SUBROUTINE ARRNG (NP, NDEMD, 10PT)
 C
        SUBROUTINE FOR ARRANGINING THE STATES
 C*****************
         SUBROUTINE ARRNG (NP, NDEMD, IOPT)
 C
         SUMCA(I) = SUM OF CAPACITIES FOR ITH COMBINATION
 C
         SUMCO(I) = SUM OF COSTS FOR ITH PROJECT COMBINATION
 C
         NNBIG = RANK OF THE VALUE OF CAPACITY
 C
         BIGN = VALUE OF THAT CAPACITY
         NBINE = NUMBER OF CODES HAVING SINGLE UNEQUAL CAPACITY
 C
 C
         VBINE = VALUE OF THAT SINGLE UNEQUAL CAPACITY
 C
         NBIEG = NUMBER OF SETS OF CODES HAVING EQUAL CAPACITY
 C
         NOBEQ = NUMBERS OF CODES IN A PARTICULAR SET OF
 C
                EQUAL CAPACITY
 C
         VBIEG = VALUE OF THAT PARTICULAR EQUAL CAPACITY
 C
         XMIN = MINIMUM COST EQUAL CAPACITY IN A SET
 C
         IMIN = RANK OF THE CODE OF THAT MINIMUM COST EQUAL
 0
               CAPACITY IN THAT SET
 C
         CONOT = CODES NOT TO BE USED (WITH EQUAL CAPACITY)
 C
        COUSE = CODES TO BE USED (WITH SINGLE CAPACITY)
 C
               HAVING RANK (I-1)
 C
         CODEU = CODES TO BE USED (WITH SINGLE CAPACITY)
 C
               HAVING RANK (NBINE)
C
         COELE(I, KL) = NEW REARRANGED BINARY CODE OF PROJECT
 C
                      COMBINATION
 C
         (AFTER ARRANGEMENT IN DESCENDING OR ASCENDING ORDER)
        INTEGER COUSE, CONOT, COELE, COEFF, CODEU, COUS1, COEL1
        DIMENSION SUMCA(1024), SUMCO(1024), CAP(10), COST(10), NNBIG(1024)
        ,BIGN(1024), NOBEQ(1024), VBIEQ(1024), COUSE(1024), CONOT(1024, 50),
        COELE(1024, 10), COEFF (1024, 10), CODEU(1024), VBINE(1024), KBIG(1024)
         , XMIN(1024), IMIN(1024), BIGK(1024), SUCA1(1024), SUCO1(1024),
      3
        COEL1(1024, 10), NNBI1(1024), ISCOE(1024, 50), COUS1(1024)
         DIMENSION RYILD(1024, 10), TYILD(1024), S1(1024), S2(1024)
         DIMENSION REYLD(1024, 10, 2), TOTCA(1024, 2), TOTCO(1024, 2)
         DIMENSION DCOST (10,2)
         DIMENSION S3(1024,2), S4(1024,2)
C
         COMMON/BL1/COST
C
         COMMON/BL2/CAP
         COMMON/BLK3/COUSE
         COMMON/BLK5/COELE
         COMMON/BLK6/COEFF
```

```
C
            COMMON/BL12/RYILD, REYLD
           COMMON/BLK12/REYLD
           COMMON/BLK13/SUMCA, SUMCO
           COMMON/BLK14/TOTCA, TOTCO
 C
            COMMON/BL15/DCOST
 C
         FINDING TOTAL CAPACITY & TOTAL COST OF A CODE
          NCODE = 2 ** NP
 C
           WRITE(2,200)
 C 200
           FORMAT(5X, 'ORIGINAL CODE NO.', 5X, 'CAPACITY', 10X, 'COST')
          DO 1 I=1, NCODE
 C
           WRITE(2,304) I , SUMCA(I), SUMCO(I)
 C 304
           FORMAT(10X, I4, 12X, F12.3, 5X, F12.3)
     1
        CONTINUE
          WRITE(2.*)
 C
          ARRANGING CODES IN DESCENDING OR ASCENDING
 C
          CAPACITY
          LARGE = NCODE
          IP1=2
          J=0
          NBIG=1
          BIG=SUMCA(1)
          DO 3 I=IP1, NCODE
         IF(J.EQ.0)GO TO 7
          DO 4 K=1, J
          IF(I.EQ.NNBIG(K))GO TO 3
          CONTINUE
          IF((IOPT.EQ.1).AND.(SUMCA(I).LT.BIG))GO TO 3
          IF ((IOPT.EQ.2), AND. (SUMCA(I).GT.BIG))GO TO 3
         NBIG=I
          BIG=SUMCA(I)
     3
          CONTINUE
         J=J+1
         NNBIG(J)=NBIG
          BIGN(J)=BIG
          WRITE(2,700) J, LARGE, NNBIG(J), BIGN(J)
 C
 C
          FORMAT(2X, 'J=', I3, 3X, 'LARGE=', I3, 3X, 'NNBIG=', I3
    700
          ,3X, 'BIGN=',F12.3)
          LARGE=LARGE-1
          IF (J.LT. NCODE) GO TO 8
          DO 5 I=1, NCODE
          DO 601 K=1, J
          IF (I.EQ. NNBIG(K))GO TO
   601
         CONTINUE
          NBIG=I
          BIG=SUMCA(I)
          IP1=I+1
          GO TO 6
          CONTINUE
 C
          SORTING EQUAL CAPACITY CODES COMBINATION & MAKING THEM
 C
          INFEASIBLE INITIALLY
 C
          MAKING SINGLE CAPACITY CODES FEASIBLE
 C
          STORING OF SUMCA, SUMCO, TOTCA, TOTCO IN TEMPORARY ARRAYS
 C
          51,52,53,54
          DO 606 ID=1, NDEMD
          DO 602 I=1, NCODE
         IF(ID.EQ.1)S1(I)=SUMCA(NNBIG(I))
         IF(ID.EQ.1)S2(I)=SUMCO(NNBIG(I))
         S3(I, ID) = TOTCA(NNBIG(I), ID)
```

```
S4(I, ID)=TOTCO(NNBIG(I), ID)
         00 602 KL=1, NP
         IF(ID.E0.1)COELE(I,KL)=COEFF(NNBIG(I),KL)
  602
       CONTINUE
  606
       CONTINUE
C
         BINARY CODES AFTER REARRANGEMENT
C
         REPLACING OF ARRAY ELEMENTS OF $1,52,53 & $4 INTO
         SUMCA, SUMCO, TOTCA, TOTCO
C
        DO 607 ID=1.NDEMD
        DO 603 I=1, NCODE
         IF(ID.EQ.1)SUMCA(I)=S1(I)
         IF(ID.E0.1)SUMCO(I)=S2(I)
        TOTCA(I, ID) = S3(I, ID)
        TOTCO(I, ID) = $4(I, ID)
  603
        CONTINUE
  607
        CONTINUE
        X=SUMCA(1)
        COUSE(1)=0
        KL = -1
        NBINE = 0
        NBIEQ=0
        DO 16 I=2, NCODE
        IF(X.EQ.SUMCA(I))GO TO 2D
        IF (KL.EQ.-1) NBINE=NBINE+1
        IF (KL.EQ.-1) COUSE (I-1)=1
        IF (KL.EQ.-1) VBINE (NBINE) = X
        IF (KL.EQ.-1) CODEU(NBINE)=I-1
        X=SUMCA(I)
        COUSE(I)=0
        KL=-1
        IF (I.EQ. NCODE) THEN
        NBINE = NBINE + 1
        VBINE (NBINE) = X
        CODEU(NBINE) = I
        COUSE(I)=1
        ENDIF
        GO TO 16
        IF(KL.EQ.1)GO TO 21
        NBIEG=NBIEG+1
        VBIEQ(NBIEQ) = X
        NOBEQ(NBIEQ)=2
        COUSE(I)=0
        CONOT (NBIEQ. 1) = I-1
        CONOT(NBIEG, 2) = I
        KL=1
        ISCOE(NBIEQ, 1)=0
        ISCOE(NBIEG, 2)=0
       DO 800 KK=1, NP
       IF (COELE(I-1, KK).EQ.1)ISCOE(NBIEQ, 1)=ISCOE(NBIEQ, 1)+1
       IF(COELE(I,KK).EQ.1)ISCOE(NBIEQ,2)=ISCOE(NBIEQ,2)+1
 800
       CONTINUE
       GO TO 16
  21
       NOBEQ (NBIEQ) = NOBEQ (NBIEQ)+1
       CONOT(NBIEG, NOBEQ(NBIEG))=I
       COUSE(I)=0
       ISCOE(NBIED, NOBEQ(NBIEQ))=0
       DO 801 KK=1, NP
       IF(COELE(I,KK).EQ.1)ISCOE(NBIEQ,NOBEQ(NBIEQ))=
```

```
1 ISCOE(NBIEO, NOBEQ(NBIEQ))+1
 801
       CONTINUE
       KL=1
  16
       CONTINUE
       ISUM=NBINE
       DO 14 K=1.NBIEQ
       ISUM=ISUM+NOBEQ(K)
 14
       CONTINUE
       IF (ISUM. EQ. NCODE) GO TO 15
       WRITE(2.701)
       FORMAT(2X, 'ISUM NOT EQUAL TO NCODE')
 701
        STOP
     ARRANGING EQUAL CAPACITY CODES IN DESCENDING ORDER IN TERMS
     OF TOTAL NUMBER OF PROJECTS IN A CODE
        DO 802 I=1, NBIEQ
     ARRANGING IN DESCENDING ORDER
       LARGE = NOBEQ (I)
       IP1=2
        JJ=0
        NBIG=1
        BIG=ISCOE(I,1)
 906
       DO 903 IL=IP1, NOBEQ(I)
       IF(JJ.EQ.0) GO TO 907
       DO 904 K=1,JJ
       IF (IL.EO.KBIG(K)) GO TO 903
 904
       CONTINUE
       IF (ISCOE(I, IL).LT.BIG) GO TO 903
 907
        NBIG=IL
        BIG=ISCOE(I, IL)
 903 CONTINUE
       JJ=JJ+1
        KBIG(JJ)=NBIG
        BIGK(JJ)=BIG
        LARGE=LARGE-1
        IF(JJ.LT.NOBEQ(I)) GO TO 908
        DO 905 IL=1, NOBEQ(I)
 908
        DO 920 K=1, JJ
        IF(IL.EQ.KBIG(K)) GO TO 905
 920
        CONTINUE
        NBIG=IL
        BIG=ISCOE(I, IL)
        IP1=IL+1
        GO TO 906
  905
        CONTINUE
  802
          SOLVING THIS NEW SEQUENCE IN A NEW SET OF VARIABLES
C
        DO 810 I=1, NBIEQ
        DO 803 J=1, NOBEQ(I)
        KL=CONOT(I, KBIG(J))
        SUCA1(J)=SUMCA(KL)
        SUCO1(J)=SUMCO(KL)
        COUS1(J)=COUSE(KL)
        DO 804 KK=1, NP
        COEL1(J, KK) = COELE(KL, KK)
        CONTINUE
  804
        NNBI1(J)=NNBIG(KL)
        CONTINUE
      REPLACING THIS NEW SEQUENCE FOR USE IN ORIGINAL ARRAY
C
```

```
JJ=NOBEQ(I)
         DO 805 J=1, NOBEQ(I)
         KL=CONOT(I,J)
         SUMCA(KL)=SUCA1(JJ)
         SUMCO(KL)=SUCO1(JJ)
         COUSE(KL)=COUS1(JJ)
         DO 806 KK=1, NP
         COELE(KL, KK) = COEL1(JJ, KK)
  806
         CONTINUE
         NNBIG(CONOT(I, J))=NNBI1(JJ)
         JJ = JJ - 1
  805
       CONTINUE
  810
         CONTINUE
         SORTING MINIMUM COST-CAPCITY FOR ABOVE EQUAL CAPACITY
C
C
         COMBINATION AND MAKING THE LOWEST COST CODE AS
C
         FEASIBLE FINALLY
         DO 22 I=1, NBIEO
         XMIN(I)=SUMCO(CONOT(I,1))
         IMIN(I)=1
         DO 23 J=2, NOBEQ(I)
         IF (XMIN(I).LE.SUMCO(CONOT(I,J)))GO
         XMIN(I)=SUMCO(CONOT(I,J))
         IMIN(I)=J
   23
         CONTINUE
         COUSE(CONOT(I, IMIN(I)))=1
         CONTINUE
         MAKING THE REMAINING EQUAL CAPACITY EQUAL COST
C
         CODES FEASIBLE
         DO 24 I=1, NBIEQ
        DO 25 J=1, NOBEQ(I)
         IF (XMIN(I).NE.SUMCO(CONOT(I,J))) GO TO 25
         COUSE(CONOT(I, J))=1
   25
        CONTINUE
         CONTINUE
   24
        WRITE(2, 201)
        FORMAT(1X, 'REARRANGED', 5X, 'CAPACITY', 5X, 'COST', 5X
         'ORIGINAL', 5X, 'COUSE', 3X, 'BINARY CODE'/2X, 'CODE NO.'
         , 28X, 'CODE NO.')
        DO 26 I=1, NCODE
        WRITE(2,202)I, SUMCA(I), SUMCO(I), NNBIG(I), COUSE(I).
         (COELE(I, J), J=1, NP)
  202
        FORMAT (3X, 14, 4X, F12.3, 4X, F12.3, 2X, 14, 4X, 14, 2X,
        10(I1))
   26
        CONTINUE
        RETURN
C MODIFIED SUBROUTINE FOR CALCULATING THE YIELD OF A STATE
     TO BE USED WHEN SUBROUTINE FOR RANKING THE STATES IS
C
     PROPOSED TO BE USED.
        SUBROUTINE STYLD (NP, NDEMD)
        SUBROUTINE STYLD (NP, NDEMD)
        INTEGER COEFF
        DIMENSION COEFF(1024, 10), TOTCA(1024, 2), REYLD(1024, 10, 2)
        DIMENSION TOTCO(1024,2), COSTMI(10,2)
        DIMENSION RELES(1024, 10, 2), COSTMT(1524, 10, 2)
        COMMON/BLK6/COEFF
```

```
COMMON/BLK12/REYLD
      COMMON/BLK13/SUMCA, SUMCO
      COMMON/BLK14/TOTCA, TOTCO
      COMMON/BLK22/RELES
      COMMON/BLK23/COSTMI
      COMMON/BLK24/COSTMT
      NCODE = 2 ** NP
      DO 1 I=1, NCODE
      DO 2 ID=1, NDEMD
      TOTCA(I, ID)=0
      TOTCO(I, ID)=0
      DO 3 J=1, NP
      COSTMT(I, J, ID)=0
  3 CONTINUE
     CONTINUE
  2
      CONTINUE
      DO 91 ID=1, NDEMD
      DO 31 I=1, NCODE
      DO 41 J=1, NP
      IF(COEFF(I, J). EO. 0) GO TO 41
      NCOMB=2**J
      MCOMB=2**(J-1)
      DO 51 KK1=MCOMB+1, NCOMB
      DO 61 KK2=1, J
      IF(COEFF(I, KK2). EQ. COEFF(KK1, KK2)) GO TO 61
      GO TO 51
      CONTINUE
61
      IYES=KK1
      CONTINUE
51
      L=IYES-MCOMB
      COSTMT(L, J, ID) = COSTMI(J, ID) * RELES(L, J, ID)
      IF(ID.EQ.1)SUMCA(I, ID)=SUMCA(I, ID)+REYLD(L, J, ID)
      IF(ID.EO.1)SUMCO(I, ID)=SUMCO(I, ID)+COSTMT(L, J, ID)
      TOTCA(I, ID) = TOTCA(I, ID) + REYLD(L, J, ID)
      TOTCO(I, ID)=TOTCO(I, ID)+COSTMT(L, J, ID)
 41
      CONTINUE
 31
      CONTINUE
      CONTINUE
 91
      RETURN
      END
```


