Vibration of Cyiind"ricaL Shells Partially
~or Completely Filled with Water

A Thesis - _ ,
submitted in partial fulfilment -
of the requirements for the Degree
of '
MASTER OF ENGINEERINGQ
.

Civil Engineering
with Specialization in
EARTHQUAKE ENGINEERING

8y )

"DEPARTMENT OF CIVIL ENGINEERING
UMIVERSITY OF ROORKEE .
ROORKEE . .-
(INDIA)
~ Octoover, 1968



Fro Vi <ol

o -

CERTIFICATE

Certified that the thesis entitled "Vibration of
Cylindrical Shells partieily or completely filled with water"
which is being submitted by Sri Atul Chandra Goyal in partial
fulfilment for the award of the Degree of Master of Sngineering
in Civil Engineering with specialisation in Earthquake'Engin—
eering of the University of Roorkee is a record of student's

own work carried out by him under our supervision and guidance.

. The matter embodled in® this the51s has not been submltted for

the award’ of ‘any other degree or dloloma.

_This‘is further to certify that he hasVWOrked‘for ‘
a period of seven months from February 1968 to July 1968 and
from September 1968 to October 1968 for preparlng this th951s

for Master of Englneerlng Degree at this Unlver51ty.

-

(S.K.Thakkar) o ceT (A S. Arya)

Lecturer, _ Professor and Asstt, Dlrector
School of Research and - - . - Schoo%nof Research and Training
Training in Earthquake Engg, - in Earthquake Engineering
Jniversity of Roorkee, ~University of Roorkee

Roorkee. Roorkee.



P, 1

ACKNOWLEDGEMENTS

‘The author takes great pleasure in expressing
his thanks to Dr. A.S.Arya, Professor and Assistaht
Director, Schodl of Research and Training in Earthquake“
Engineering fof his indispensable guidance, éonstant
encouragement and Iinvaluable aséisfance; without which

this werk could rnot have been satisfactorily accomplished.

The author is highly thankful to.Mr. S.K. Thakkar,
Iecturer, School of Research and Training in Barthquake
Engineeriné for his ready assistance and time to time
help.

The author is eXtremely grateful to the Director,
Schoolvof'Reséarch and Training in Earthquake Engineering
for providing the facilities of the Barthquake  School
labpratory and'workshops for conducting the experimental
work,

The author wishes to acknowledge with gratitude
the help rendefed by Mr. H.C.Dhiman, Technlcian of the
Earthquake School, in the fabrication and testing of
the model. The participation of other members of the
Earthquake School Laboratdry and'workshdp'whd assisted

the author in the various phases of the work is grate-

fully_acknowledged.



—iii-

SYNOPSIS

.- .

This analytical and experimental investigation
is carried out to study the dynamic behaviour of
cylindrical shells without water anﬁ with water filled
~inside them. The shell model is tested to see its

‘behaviour under shock type of loading at base.

In the experimental study, two shells of diff-
erent length to radius ratios have been studied and
the water depth is varied in stagés%,Free'Vibration
tests are conducted under condition of initial dis-
Placement by pulling and releasing the shell itself
and also by tapping the shell at different points.
Forced vibration study-is carried'out by mounting a

mechanical oscillator on the shaking table.

The theoretical verification of ' the- experimental
results is done by analysing the shell as fixed at the

base and free at the top.

Some strange behaviour of the shell has been
Observed under fOrced‘vibrat;ons and conclusions have
been drawn which shall be helpful in further investi-

gations.
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CHAFTER . T

INTRODUGT TON )

1,1 INTRODUCTORY

The problem of dynamic interaction between
liquid motions and elastic deformations of the walls
of a container is of fundamental 1nterest and import-
ance with respect to a variety of applicatlons. For |
example, there is a problem of bending oscillations in
long tubes containing static or flowing liquids as
enéountered in many piping systems, the effect of non-
rigid walls on the transmission of acoustic or pressure
pulses in liquids. or gases in long tubes, gnd the effect
of a free surface 5n overall dynamic responSe of a

liquid-tank system.

Most of the concrete or steel tanks (water
containers or fuel storage tanks) in civil engineering

practices are fixed at the base and free at the top.-

NMch work has been done on the vibratlon charac-
teristics(frequencies and mode shapes under various
-combination of axial and circumferential waves) of
circular cylinders similar to those used in 1érge
lliquid_propellent rockets. But so faf liftle attention
has been»paid to the type of tanks used in divil engineér~

ing works. The main aim of the thesis is to study the
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dynamic characteristics of such containers so that

 their earthquake response coeuld be investigated.

Different parametersinvolved in the earthquake

engineering problem of a cylindrical container are as

féllows:—

(1) The ground motion record i.e. its amplitude

and frequency characteristics. .

(11) Geometrical properties of the shell i.e.
length to radius ratio, radius to thickness

ratio, end conditions at top and bottom.

(iii)}Ehysical properties of the material of the

shell i.e. density and Poisson's ratio.

(iv) Properties of the infilled liquid i.e. its

densitj and level inside the shell.

Complete vibration study involves the consider—
'ation-of all the above parameters, The presént study is
mainly concerned with shells clamped at base and-free
at top of two differeht L/a ratios, and also the

influence of varying water dépths,

1.2 OBJECT AND SCOPB

The investigations were made with the following
objectives,

(1) To derive a method for the determination of

the'frequency of vibration of enpty cylind-

rical shells having various boundary.
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cond itions; fixed at the base and free

‘at the top.

" (i1) To study the effect of filled fluid inside
the shell, and

(1ii) To study the free vibrations and steady
state vibration of model tanks and to
coﬁpare the results with those obtained
from the theory under empty and water

filled conditions.

The-enérgylmethod using basic functions for

- freely vibrating beams has been used and applied 1o

the case of fixed end at bottom and free end at top.

It can be applied'similarly fo other end conditions.

The effect of Qater has been consideréd only in an

. approximate manner by making assumptions regardihg its
virtual mass. Tn the experimental investigations, the
model could be tested:bnly in the fundamental modé of
vibration. Results for higher number of axial and circ-
umferential nodes could not_he obtained because bfvlimi—

tations of the equipment.

1.3 OUTLINE OF THESIS

‘ This work has beenAdiﬁided mainly into four .-parts.
Chapter Ii gives a historicai re#iew of the work done |
by the various other inveétigators in the past. The
analytical approach and experimental techniques of some

authors, which have a bearing on the present work have



been presented in more detail in this chapter. Theo—
retical derivation of frequency determinant based on
‘ Ehergy method has been given in Chapter III. Chapter IV
includes the experimentation on the shell under free -
and forced vibration conditions. Finally all the results

have been discussed in Chapter V and the main conclu-

sions are drawn therein.

In the end a bibliography on the vibration of

cylindrical shells has been given.

-

Computer programmes for determination of fregq-

uency has been.given in the Appendix.

1.4 NOTAT IONS

a radius of the shell,
c - a factor in the expression of Weingarten

formula for frequency

|o® = 2 ‘1

c 12(1- <) a< ;
B ] Young's modulus of the elasticity of

the material of the shell.
g acceleratien due to gravity. ’
h thickness of the shell.

: h2

X a factor in frequency determinant |[K= 5.7 |
L length of the shell.
m ’ number of axial half waves

“(number of axial nodes=m-1)
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n “number of circumferential_waves
'(number of circumferential nodes=2n)

u ’ shell displacement in longitudlnal
direction. °
v shell displacement in c1rcumferent1al
direction.
W shell displacement in radial direction.
< a fraction representing the ratio of water
depth to total length of the shell.
. 2 2
VAN frequency parameter = 115 ;_)‘0
o " Poisson's ratio.
& mass density of the material of the shell.
¢ mass density of the fluid inside the shell.
Lo frequency parameter in “@1ngarten.expre881on
we
= 12()3.4(1- &) ——-2-
_ Eh
Co circular natural frequency of vibration

of shell &n radians per second.
f frequency in cvcles per second.
All these notatlons and others used if any,

have also been defined in the %text wherever they appear

flrst.
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CHAPTER _II

REVIEW OF PREVIOUS WORK

2.1 HISTORICAL REVIEW IN GENERAL

Most of the investigators in this field have
confined themselves to the free vibration of empty
cylindrical ehells.lSome have considered the influence
of fluid sleshing in the structures similar to those

used in the aircraft's fuel storage tanks. The boundery
conditions in the water storagebtanks resting on ground
are somewhat different than these and very few investi-
gators have taken up this problem. The various methods
used earlier for vibration analysis of cylindrical
shells under different conditions are briefly reviewed

- here .

In the theoretical field Rayleigh (1894)!1!
derived an expression for the frequencies of thin
cylinderS~inewhich the'motion-of all cross-sections
was i1dentical. This corresponds to the fundamental
axial form for a freerended cylinder and is only of
ﬁinor'interest in'the present problem. The general
case of flexural vibrafions of cylinders was later
investigated by Love-(lgzv)lgl who included both bend-
ing and the extensional deformations, though he did
'not include frequency equations for any specified end

conditions. Flugge(1934) by a similar approach



-7
succeeded in obtainihg a frequency equation for a -
cylindribal with ffeely sﬁppbrted ends., The roots of
his équatiqn defined three natural frequencies for any
given nodal pattern; each frequency had a unique arrange-

ment of amplitude ratios for the three component direc-

tions of strain X,Y and Z.

The problem was further investigated by Arnold
and Warburton (1949)'3| in attempting to explainAcertain
strange frequency phenomena observed in experiments with
thin cylinders., It was found that the natural frequencies
of'thiﬁ cylinders with freely supported ends were arr-
anged in a somewhat unexpected order which had 1ittle

relation to the complexity of the nodal-pattern.'

Arnold and Warburton (1953)’4| further worked

on the same lines as their work in 1949. Theoretical
.expressions were developed er the nétural frequénciés_
of cylinders with~freely-supported and fixed ends and

a comparison was made with the frequencies obtained -
exberiméntally. To make possible the estimation of such
| freguencies, a method was devised in which an equivalent
Waveglength factor was used. This factor represented
the wavelength of the freely-supporied cylinders that
would have the same frequency as the cylinder under
coﬁSideration when vibrating in thé same mode. The
results of exnerimentalfinvestigations with various
end thicknesses and flange dimensions were recorded

and from these the equlvalent factors were derlved
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Sets'of-curyes.calculated for cylindefs with freely-
supported ends and covering a range oflcylinder
thicknesses Were.given in thsir paper;_Frdm these it
was posSsible to obtain close'approximation}to the
frequencies of cylinders~under other end conditions /

by the use of an appropriate. factor..

This approach started from the very fundamentals
.and, therefore, gave quite accurate_results. The only
assumpt ion ‘was made~that radial deflection varied along
the axis in the same form as that of fhe similarly end
conditioned vibrating beam.-But ths time reQuired to
derive the expressions and thereafter the svalﬁation
of the values‘of_frequenciss and_modeshaﬁes was very

'great.

Recsﬁt invsstigations have ¢oncentrated on
‘simplifying the method of analysis of vibrating cylind-
'rloal shells. By means of a number of approX1matlons,
Yu(1955}]5| was able to obtain a simple expression for
the radlal frequencies of g clamped or simply supported
cylinder vibfating in a mode consisting of a number of.
circumferential-wavss that is large compared to the
number of sxial waves. Simpiified frequency equations
Wers also obtained by Vlasov(1958), Bfesiavskii(19533 and
Reissner(1955) by neglesting the circumferential and
axial’inertia‘fofces of the shell. Further,stheAsimpli;

fications of Breslavskii.and Yu were combined by

Rapporﬁ(1960) to yield frequency equations for a shell
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with various boundary conditions. A methed_simiiar
~to Rapport has been used by Weingarten(1964)16!. An
experimental investigation of the frequency spectra
and mode shapes of a clamped;ffee cylinder were also
performed by him. The experimental data are fouﬁd to
.be in good agreement with theory. The results from this
theory and that of Arnold and Warburton agreed quite
closely at~higher number of:circumferential nodes. .

At lower nodes the difference was as great as 154.

In the above mentioned investigations, no.
‘effort was made to include the effect of an internal
liquid on the frequencies of the shell. Succeed ing
investigations‘have exterded the studies of cylindrical
she117Vibration to include internal pressurization and
improved measurement techniques. Fung, Secaler and
Kaplan (1957)17| ‘studied pressur17atlon effects using
a loudspeaker as the excitation source and = number of
capacitance probes mounted inside the eylinder to
record wall displacements. Their results showed that
the resonant frequencies and,- particularly, the order
in Whioh'the lowest resonant frequencies occur de pend
significantly upon the internal Pressure. Berry and
Reissner(1958)|8"had given a simplified expression
for vibrating shell based on shallow shell theory..
Thereafter they added one more term knowﬁ as ap?arant
mass factor to take into account the effect of fluid

~inside the shell. Gottenbers (1960)19f7eifended the



11—

the iesonant-bending frequency of the tank as
compared  with the tank having the same total mass of

liquid but with the sloshing suppressad.

All these ihVestigators nofed a large number
of resonant frequencies present and the need for
careful identification of each resonance with the
proper mode shape. This becomes increasingly difficult
because the order of the resonant frequencies does
not follow from fhe relative complexity ef_the mode shape
i.e. a mode with a large number of'circumferentiai
nodes may have a lower resonant frequency than one

with fewer c1rcumferent*al nodes. .

For this reason, for a cylindrical shell, there
occurred several resonant breasthing frequeﬁcies lower

than the fundamental bending frequency.

A1l the work mentioned so far was more or
less connected with vibration problems in large

rocket propellents.

Jacobsen and Ayre(1951)115| presented, for the
first time, a treatment for liquid filled rigid cylinders
when subjected to impulse at the base. By mounting
dynamomefers at the béee of the tank they found out
the equivelent‘mass and overturnihg moment due to the
fluid; The ir study, however, dealt principally with
the nature of wave profiles and the locatlon of max1mum

wave heights. In 1962 Baron and Skalak|14} presented
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an.anaiytical tréatment of the proﬁiem and

studied the simply suvnported-free cylinders. The
'mode shapes of the empty‘shells were used as
generalised cooﬁdinétes“of the shell fluid inter-
action problem. This approach mayrbe;cénsidered

as the first step of‘an”i%erative solution. It per-
mits the evaluation of the influeﬁca of different
heights of waterfinside the tank quite accurately.

- But the method 1is highly mathematical and evaluation
‘of the freguencies and mode shapes for different

boundary conditions 1is a very tedious job.

Perusal of the work done by all these and
various.othér investigators,‘it becomes evident
that little a2ttention has been paid to the behaviour
of the shells when subjected to a random motion at

the base. This aspect needs furthér_investigations.

The details of some of the investigations
which are closely related to the preéent problem’

are described in the following paragraphs.

5.2 ARNOTD AND WARRURTON (1929) %!

. .

For freely supporfed ends, they derived
frequency equations based on strain relations due %o
Timoshenko . (1940) and were able to'verify the eXperi;
'mental results with considerable accuracy. It was
found, for example, that'the natural f?gquenciesAof

thin-cylinders with ffééi& supported -ends were



13-
.arranged in a somewhat unexpected order which had
'iittle relation to the complexity of the nodal
‘pattern. Thus, fbr'short cylinders with very thin
walls the natural frequenéy may actually decrease
as the number of circumferential nodes (2n) increases.
This was shown theoreficaliy to be due to the propor;
tion of strain energy contributed respeotively'by
bending and stretching; the latter was sometimes
predominant for the simﬁler nodal patterns. Typical
curves illustrating this phenomenon have been drawn‘
in which frequency factor VA is plotted to a base

of wave length factor A .

~

Tt is observed from these non-dimensional
curves that for a cylinder in which A is 3.0, the
configuration with four nodes_(n=2)'has a frequency
approximately 50 percent greater than that with 24

-

nodes (n=12).

2.3 ARNOLD AND WARBURTON (1953) 4

With freely supportéd and fixed ends both
the theoretical analysis follows a somewhat,Similar
pattern. Mathematical expressions were first derived
for the éomponent strains of an element of cylinder .
situated at the middle surface in terms of its
réctangular displaéements, u, v and w in direotions

X,Y and Z. These relations -defined the possible wWays,



14~
.iﬁ‘whicﬂ an element might deform elastically.
Thereafter an attempt was made to find expressions
for u,v..and w which wefe not on1y~compatibie with
elastic strain but also satisfied the‘specified
end conditions. This,'unfoftunately, was not always
possible by the introduction of known simple funct-
~ions, but provided the shape of the a'ssumed %ibra%ion
form was approximately correct and the end conditions
were not violated,rthe resulting-expression for
fregquency would be close to truth. This follows

from Rayleigh principle.

After the desired wave-forms had been
Q@tained, the strain energy and kinetic energy of the
cylinder were derivedrrespectively in terms of dis- -
placementé’and rate of change of’diéplacement,'the
latter involving the unkﬁown'frequency, Iagrange‘s
equations were then written for the three independent
displaCements u,v and w and after elimination of the
arbitrary amplitude constants, a cubic equation was even-

tually obtained. The roots .of this equation defined

frequencies associated with a given nodal arrangement.

The frequency equation derived for freely-

supported cylinder is of the form

3 L2 '

whe re the coefficients Ko, K1 and Ko are constants
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for a given cylinder under a given nodal confi-

guration and the vibration frequency is given by

Different curves were plotted connecting wavelength

- factor with frequency factor | & .

To make possible to calculate the frequenqy
of vibration of cylinders with different end cond-
itions from the same equation as for freely supported
ends, an equivalent.wavelength factor A\, was defined.

The expression for A is,
Ao = (m+e) = I .. (2.2)

where,
m = number of axial half waves,

¢ = a function of m, n and the
cylinder dimension,

& = radius of cylinder,

L = length of cylinder.

If the ends are flanged, then,
Ne = me0.3 e~1(/2) T : .. (2.3)

where,
g = constant,
h = thickness of cylinder

d = thickness at end.
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5.4 LINDHOLM, KANA AND ABRAMSON (1962)!11]

They considered the shell simply supported

vat both ends. The frequency equation has been derived

in the form,

47‘:2&2 < f2 _ l+§'--§-/ In(./\m) -1
mn BT T I () .
2 A
1—@:&)—2_ (m,+ n2>2+ _—:—%-_é.gl
12 (1- & (A ZenP)

where,
2 = radius of the shell,
= mass density of the sheil,
B = Young's mddulus of elasgticity
'%m?fmmummy, '
h = wall thickness,
¢ = mass density of fhe fiuid,

T, = modified Ressel's function of the
' ~ first kind of order n, :

?\ﬁ = characteristic root = m%é-

- -

&~ = Poisson's ratio.

From here it is evident that‘as either m
‘or n increases i;e. as the effective Wavelengths
decrease- the contribution of the apparent liquid
mass-to the total vibrating mass decreases. Thus,
the resonant frequencies of the higher order modes

are decreasingly affected by the presence of the

liquid.
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 Their experiments on shells (6n which there
was a radial restraint at the ends but no restraint
axially) showed that the piesence of liguid did not
affect the symmetry of the circumferential wave form, .
'as expected, but did diminish the amplitude response..
The liquid level had a marked effect on mode shapes.
In'geheral, the position of the axial nodes and anti-
nodes got shifted towards the bottom or filled port-
ion of the shell, the shift being greater the lower the
- liquid level. However, when the level was very low ,
ag in the 1/4-full case, the nodes in the upper or
unfilled portion of the shell tended to return to their
normal positions. Also, the amplitude response of.that
poftion_bf the shell in contaétlwith the liquid_waé'

appreciably decreased..

Based on their experimentatibn, the frequency
transition from the empty shell to the full shell is
indicated in figure 2.1. These curves clearly show
that the order in which the resonaﬁces occur depends
upon the fluid lewel. For instance, for the empty-
shell f1,2 is greater than fl,s whereas this order

is reversed for the full} shell,

They also observed that large number of
'frequenoies were possible for various combination
of axial and circumferen®#ial nodes, and they lay

very close to each other, Fig. (22 ).
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2.5 WEINGARTEN ,(1964)16 |

He derived the frequency . equation from the well
‘known Donnell's differential equation of a circular
cylindrical shell. This equation_involqu a frequency

parameter (2. given by

' L2411 %4
o N 124?a4(1_C?2)4A£ _ (Akmn+n )| c2'2\knm'

b
~ 2 =
Eh (X 2 20

2 &

¢ = density of the shell material,
a- = radius of the cylinder,

A

(G = Poisson's ratio of the material of
the shell,

() = Natural frequency of vibration of the
shell in radians per second..

E = Young's modulus of cyiinder material,

h = thickness of the cylinder,

]
il

number of cilrcumferential wave§, -

2 h2
¢ = geometry parameter = 55
12(1 - ¢ )a

j\kmn= characteristic roots.
Values of A kmn Were obtained by substltutlng the

appropriate boundarv condltlons for a v1brat1ng beam

in equation,

(2.5)
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w = (cq Si.n)\mn’g"’ Co COS/\mﬁz:g + c3 sinh;\mn'g
+ ¢4 Cosh )\mﬂ?; ) cos nb. sinwt .. (2.8)
4

whe re,

”g - non-dimensional axial coordinate (x/a)

~ \ia
2.6 BARON AND SKALAK

Two sets of modes were considered consisting of
three and five constants respectively. Three constant

modes were of the form,

u(xyﬁ)»'—‘cn%-?.'cos ng )
vx,8) = Cy, -V%%.'S‘in n@ i .. (2.7)
w(x,8) = ¢ é{-.cos ng

and five-constant modes of the form

- |

| X L.x. |
u(e,@) = ol 2 (ﬁz - 2. %) leos ng
o a
| > .. (2.8)
V(X,¢):Cn%.§’sinn¢
| Y
W(X,Qf)=0nw+ %-—%—5 cos ng

where, a is radius of the shell, C, 1is normalisation
coefficient, L the height of shell, n the number of
, circumferéntial waves of a mode of vibration, ¢ and x

are cylindrical coordinat.és; U,V,W,¥,Y are coefficients
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. depending on the mode.shapes of free “vibration of

the shell,

It was seen that whereas three—constant modes
gave accurate values of the frequency -only, the five-
constant modes. gave accurate frequencies'and“mode
shapes. both for use in forced vibration problems.

- To take the effect of»water; a velocity potential

function 6 was chosen such that it satisfied the

_Laplace!s equation,

- 2 ' 2. .2
2, _ 078 1 00 .1 3% . 3°e
e .= e 4 e e ¢ &Y =
: arg r 3r - rg a¢2 _ ax2

and at the samé;time it also satisfied the folloﬁing

boundary conditions:

(i) The radidl velocity of the fluid 4o be equal
the radial velocity of the shell on the

surface r = a,

(11) the vertical velocity at the bottom of the

shell to be =zero.

(i1i) the pressure on the free surface of the

liquid at'x'#';éé to be zero.
Once the potential function @ had been deter=
mined the XK.E. of the fluid was evaluated from either

of the following relations,

1 .
- e 36 - :
Ttinia =~ 5/ 0 75 «d9s | .. (2.9)
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where, the integration is taken over all surface s

of the fluid and %% igs the derivative of 8 normal

t
to s. @ 1is the mass density of the fluid.

or | |
' }
Teinig ~ "ﬁ'g g £ l(ﬁf > (G
+ %Z(%%)girdrdgaz .. (2.10)

The potential function 6 was evaluated in three parts,
.fhe sum df which satisfied all requirements on 0. For
fhis purpose, the functions O1cs K=i,2,3 were defined
Wheré each function 6) could be expressed as summation

of components in the nth modes,

oo

O = T Oppe (1,8,%,%) .. (2.11)
n=1
Substituting the appropriate values of 8, and
its space derivatives into eq.(2.10) the kinetic energy

of the fluid in the nth mode +took the form

Tn f1uia= D 9n + 2 Dyy 9 + T Do; ap Ay
i=1 i=1
. DO . 2 . .

whe re D,‘Ihi, Déi9 Dz; are the quantities depending
upon the shell dimensions and the water depth.

A () and A,; are the generalised coordinates

of nth mode.
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The kinetic and potential energies of the
shell in the nth mode could also be written as

Tn Shell =

5
R

.o (2013)

Y El o
<

ot

o)

and  Vigpeyq T

50

in which M, 1is the generallsed mass of the empty
shell and ¥, 1is the elasticity coefficients of ‘the
empty shell., The equation of motion govérning the
generalised coordinates an (t) and A (%) weré then

obtained from Iagrange's equation.

> . (2.10)

Ry = Qni

where, T, the total kinetic energy of the system
in nth mode was given byrthe‘sum of equations (2.10)
and (2.13). | |

Solutlon of these equations implies that the
klnetic energy. of the fluid in nth mode may be

ertten as
_ o 243 .3 v .2 |
Tpeiuia = & Cnf T2 En () . (2.15)

where €, 1s a virtual masg coefficient given by



o, (L
6a°n|1_ —B2 _ anh (—52—)
v 1 ® ni‘/L
€n=<51"2 . ~
i=1 2/ 2 2
I T Opy 1 Tlag; -n™)
e
o  Btanh (o, ; 5—) 1
-7 - 1-
- TL.2 2 A
i=1 a,y g=(agy-n7) 2anl = aﬁh(anl "
1L :
+ — -
{L . 1L ¥L
Loy g - sinh (o, ; ;—) Ba, g =

’ 1
Here, a,4 are the roots of the equation Jn(ani)=o

For convenience in forced vibration problems,
the virtual mass was deflned such that kinetlc energy

could be expressed as,

N,, 27 {1

Tnfinia = { £ Wzb%%thﬂmx 5;(247)

Here, mVn is the mass per uhit area due to water.
Substitutingvthe value of L ‘and equating the
result to eq.(2.15) the virtual mass of the fluid

in nth mode becomes,

My, =€, € a | | .. (2.18)

The potential energy of the combined system
is not affected by the fluid in the shell.
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The frequency determinant can now be evaluated
using Rayleigh-Ritz method.

"The frequehcy of wvibration is giveh by

MEh 1/2

€ad = "
n m az(l-crg)

a,..(2.19)

where, lowest frequency rumber M can be determined
from the determinant. Here m is the mass per unit

area of the empty shell.

Problems investigated by above mentioned
investigators are somewhat similar to the present
problem. Hence, use wili be made of their results

in the present paper wherever necessary.
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CHAPTER _ITII

FREQUENCY DETERMINANT FOR CYTLINDERS
FIXED AT BASE FREE AT TOP

3.1 STEPS IN THE DERIVATTION

' Por deriving the frequency determinant of the
cylindrical containers with fixity at base and free

end at top, the following steps have been taken:

(1) To derive mathematical expressions for
component strains of an element of cylinder
situated at the middle surface in terms of

S u,v and wj;

(ii) to find expressions for u,v and w which are not
only compatible with elastic strains but also

satisfy end conditions;

(1i1) to derive kinetic energy and potential
energy of the cylinder in terms of the

displacements and their derivatives;

4

(iv) %o consider a virtual mass factor for taking
into account the effect of water on the

vibrations of the shell;

(v) to write Iagrange's equation for the three

displacements u,v, and w; and
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(vi) to'ob%ain a frequency determinant from
the three equations derived in step(v ).

5,2 DETAILS OF DERIVATION

A cylindrical shell of length L, thickness h,
and mean radius a, 1is considered, an element of which
is shown in figure (3.1). This element is boundeé by
two paraliel planes perperdicular to the axis and
distance - 6x apart, and by two radial planes subtend-
ing an angle &¢ at the axis. The direct stresses
~acting on the element parallel to the X,¥ and Z axes
a?e» D, py>a?d P, respectively; the shear stress
acting on the>face-pérpendicular to the X axis in the
\direct%on Y is pxy;-the shear stresses pyx’ Py
Pyg being similarly defined. The corresponding direct
strains are ey, €

Y
eyz al’ld eZX. : o

and e, and the shear strains exy,
The total strain energy of the deformed shell,
neglecting the trapezoidal form of the faces perpendi-.

cular to the X-axis may be written as ,

fzn th/z 1 | ’ |
S = [ =Py ©.+p,C+ e . la d@ dx dz
o o -h/2 RITX XYY Pxy“xy

.. (3.1)
In this it is assumed that , as is usual in the
first approximation, the direct stresses p, and the

shgar.gt?ains eyz and e,y are ZETO .
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-SMALL ELEMENT OF THE SHELL

FIG.31



Prom Hooke's law
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B
Py = ==z (eg + T, ey)
X 1o ot X Y
P, = -E—g-(e +0 e, )
y 1 y .X > o e

Thus,
= = e _
2{1-&") o
The
surface,
€4 l)
6 5
2
Y shear strain
?f twist

The straing at a

+ ZCfleXey

2

1
+ g(l—cr)exy

* 0

following symbols refer to the middle -

strains in direction X and Y

changes of curvéture in direction X and Y.

distance 2 from the middle

surface of the deformed shell may then be expressed

approximately,

x =8 -21K

Xy

>

=1 - 2270

ladgdxdz

. @

(3.2)

(3.3)

(3.4)
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If u,v, and w are the instantaneous displacements
in the direction X,Y and Z of a point on the middle
-surface, the strains and changes of curvature are given

in terms of the displacements and their derivatives by

1 x ! 2 2 af " a
2 ' |
_ %w _ 1 8w 1 oy
K T s Kz*;zggz*;zw'
; |
Y =y 18w p_13w 1 av ‘
ox a ¢ 3 o T a Bx - (3.5)

where, @ defines the angular position of the point

considered.

A convenient vibration form must now be assumed

to satisfy the following end conditions,

At x =0 At x =T
u =0 62w =0
v =0 ax2 '
w=0 ango
ow _ 6x§

—— == ()
ox _

.pX = 0

For this , the variation of w along the axis of
~the cylinder is assumed to be of the same form as that

of a cantilever beam during flexural vibrations.

Thus we can choose the axial, circumferential,

and radlal displacements as follows:
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Cu = U“ (sinhAX +sin)AX )-k(coshAx —cosAx )|cosnd
v = V| (coshXx - cosAx ) - k{sinhAXx -sinAx )|sin nf
w =W (oosh)\X - cosAX ) - k(sinhAX.-sin)\X Y{cos nd
‘e e (5.6)

‘where U,V and W are function of time only and the

constant k is giVén by

cosh AL + cos AL

K = ST 5T 7 sin %

in which various values of are given by
AL = 1.875, 4.694, 7.855, 10.996, 14,137, 17.279

cofresponding to order of axial modes; that is first,
second, third etc. respectively.
Substrituting various values as defined above in

equation (3.4) we get,

ey = ‘!U?\'—Z W7\2'

(cosh Ax + cos Ax)-k(sinh Ax+sin Ax)|cosn@

2

|}é(v.n_W)_ L (cw.n

+V.n3:
a

ey (cosh Ax-cos Ax)

_k(sinh D x—sin ) x)|cos n@¥

(cosh ) X-cos A\ x)

- | %2a- Ly ¥ '%2>{

~k(sinh Ax-sin A x) }oos n@

lV )(l—'——*)- Un &é.’n. )\.Wi i (sinh A x+sin A x)

il

a a a

~k{cosh Ax-cos »x)|sin ng - —» . (3.7)
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Substituting these values in the expression of

strain energy (equation 3.1) we get,

Ba m LJ o % ' _
> :, 5?1-_@2) ‘({ | IUZ A n i 7\4 I'll—z-' . (cosh Ax+cos Ax)

%(Vn-W)z

-k(sinh Ax+sin %x)tg +
a

(cosh Ax—cosA x)

3

h 2 2’
+ S (Vn-wn")

12a

. 5 }
- k(sinh %X,Sin?\x)’ +26"U-§£(Vn-W)

3
+ _1.1_2_ W “,Z\z (Vn-wn®) ‘

(cosh2 N\ X-cos® AX)
129

- k(sinh Ax.cosh Ax)-sin AX cos Ax

+ sinh Xx.cosh X - cos X.8in X)

+ oK (sinh AX-sin ,\X)l+ !h Ve ?\2
3 2 2.2 3 _
,'+4 @ +h'U2n 4+ 415 ng;b\gW?’
12a” a 12a )
3
. 2Wnd gy 8, ;\ng‘ s1nh Ax+ sinAx)
a i2a ' ‘ . ‘
: | _
- k(cosh \x-cos Ax\‘ S dx .. (3.8)
| l
Since,
h/?, : h/2 h/?, o hg .
dz = h; [ zdz = 0 5 f z%dz = J5
-h/2 - -h/2 -  Zn/2 ,
27 ‘
S cos nﬁ ag = f Sln n¢d§25
o)

Taking h outside the integral sign in equation and
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h2
putting —— = K, we get
12a

2(1 o") o

2 o :
agg\z(% W ;fK)‘(cosh) X+cos A x)
a
—k(sinh},x+sin?\x)l2 + 1“—2~ (V2n2+W2-2nVW)
: a

|
+j-'-2-‘ K(V n2+W2n4-2n3VW),} . (cosh A\ X-cos A X)
a .

_/

.y 2 . )
~k(sinh Ax-sin /\x)l? + 257 ’[-L/- (Vn-W)+K w ~

a

(Vn-.an ) { (coshg/\ Yecos© AX)-2k (sinh ZX.cosh A\ X

—cosNx.sinAx) + X°(sinh® A X-sin” }x)l|
o 2 :
+(l=£)‘ “rav® Ak TB 4 4x n® 32 R
a
1

: 2
-k (cosh A X-cos >\x)l > ax

- ETInA - 8K n \PVW| | (sinh Axtsin Ax)

For the sake of convenience let ug use the following

notations,

¢ = SEb —*—-—-——-42>\‘ L . > T = 1—.cosh>\L'.cos?\L
- osh 2R ¥ =L cosh T.sin T
4 ? S .. (3.10)
- : 3 4"' L C\/
{ = -_—3—1—2—1—-?-‘-—\- ; X=L sinhAT.sin ML
A ' | -
8§ = Cosf Lo, T o= L Simh AT.cosAT

Thus various integrals become,

L
2 L
{cosh )\rxdx =3 +a



L
5 s'inh2>\ X dx = o - %
5 .
L : 1
S sinh Ax.cosh Ax dx = B- !
o . A
L
S cosghx dx = -21-’ w1
.
L :
[ sin® ) x ax = -2;-‘/
o
Lo 1
J sin AX.cos Ax dx= -8 + Y
o) . 2\
L - 1
S sinAx.sinh Ax dx = §|W - "ifi;, |
o
L . >\ ‘)\ - — 1 ¢ A 1
; é‘ sin Ax.cosh Ax dx = -2-}}._>§_+ 5 |
T ) .
' ‘C{‘coskx..sinh%x dx =§-!‘,¢'; +K - R_'
L . - 1 N
J cosAx.coshAx dx = |G + T|
- | 515
Also,
L i BERL:
cos X+cos AX =K (sl AXHsinAX X
J { (cosh A Ax)=k(sinh/ inAx)| d
0 _ :

= (L+a+7 +¢f'§ )+k2 (a— Y +T— z)
- 2k (B+X -8)
= My (say)
fL (cosh A x—cos A X‘)—k(sinh Ay—-sin Ax) lzdx
o : _ B :
= (Trat¥ U= T )+ (am )
2k (B= X =8)
Mg(say_)

i
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J (coshz}\ X_-cosz7\ X\-Zk(sinhAX.COSh)X—COSA X.sinkx)

+k2(sinh2/\ X-_sinz}\ x){dx

= (a=¥ )=2%k (B+&- %—-;-\)+k2(oc_+Y—L)

Il

M ( say )
L

J [ {sinh Ax+gin A x)-k(cosh ) x-cos ) x) ,2
o ° !

= (oc__‘f+ Al _'§‘)+k2 (T o+ _Y'_}::_ W)
' > 1__
-21{(8-9 + 6+ 2;&)
= M4__ (SaY)
The terms M19M29M3 -and M4 have again beeh introduced -

for the sake of convenience.

Substituting all these values in cquation (3.9) we get

the expression for potential energy as follows,

S = ‘-E-T—@'-}l—-—J‘ >\ (—g +W >\ K).l’\/ —g’v n (1+K)

2(1—0*) |

W (1+Kn4)_2nvw(1+KnZ)fmg

126 na’\ Uv- %UW + K APAVW-Rn® A 2R (Mz
1-5|v2 2. ‘U2n2 2.9
+ —5 ' N (1+47%))+ <= + 4Kn A”Wz
a
;o
5V - AT 10, >
a | | ~ |
eo (3.11)
Kinetic Energy is given by
€ 2n L h/2 du L a ow | l
T = == S G+ (== )+—- adgdxdz
%€ 5 o nsel oF ot |
- Cran_ 7w+ (1% + W )m R | (3.12)
T 2g 4 el ' ' S . .
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Here, U, ﬁ and W represent the deri#atives of U,V and

W with respect to time.

Since, U,V and W are independent variables, the

Tagrange's equation is applicable,

_  8s -
(—ﬁ)- = -5 | .. (3.13)

L

and two similar expressions in V.and W.

Putting,
‘II#A<bswt
V =18 coswt
W= C costwt,

and writing

. .2
A = L= %.—2)@9

where, ¢ is the natural frequency in radians per second

we get following three equations,

2 o -
2 l_ern I n A 1JT n)
\)\ Mo+ S5 P —AM4lA+l g = ( S5 25 My (B
o, |
,—‘ = MS‘C = 0
O n A 1.6~ nA 1-C CT 2 |
‘——g——— Mz - == . 3 .M4\A + I —g 1+K)M2+ 5= (1+4K)M4
..AleB-F-;iz(lnhn K)M2+o‘k 7\ n M5 +

+ l:gzl 4 Kn )?M&‘c = 0
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' 2 . <2 _(3-*> o
\_crga MB\A + e_ 32 (140 K)M2+O'g A M= - 12‘ 4Kﬁ? ?»M4|B

+|a® A% + L5(1+n4K)M2-5'2Kn2 MM + lggzéxn?,xzwzlc=o
a

———

.. (3.13)
From Jc—hess.e equations (3.13) one may obtain .
4he velue of natural frequency of vibration of the
system by eliminating three constants A,B and C; To
take the effect of fluid inside the shell the

approach simiiar to that given by Baron and Skalak

(see Art.2.6) shall be -used,

It is convenient , for application to forced
vibration problems to define a virtual mass of the
f1uid such that the kinebtic ensrey of the fluid can
be e‘x"presse'd in terms of the radial displacements of
the shell only, that is, |

m ZTE“(L o

. o vn ' 45 )
Tneiuid ~ B £ ,gi w” a dg dx
mv}:l on VL o : . '
= g S [ wo{(cosh Ax-cos Ax)-k(sinh Ax
o O

2

-8in Ax) cos®ng adg ax

mvn.";Vz.an iL

cosh A X-cos Ax)
2 .0

12
_k(sinhXx.-sin"%:;c)' ax

= Zvn 5 M5 (zay) . .. (3.14)
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Here my, is the virtual mass pér unit area which
nas to be added to the mQSS’per unpit area of the
shell to take the effect of fluid inside the shell
into account. The virtual méss of the-fluid may thﬁs
 be considered to be an additional tank mass moving

only in the radial direction.

At this stage, an assumption is made that the
virtual mass in case of clamped-free cylinder 1s not
different from'fhat of simply supported-free cylinder.
This, in reality, will not be very far off from the
actual conditions for higher>modes, because Qf lesser
influence of the boundary conditions,-on the frequenoy
of highér modes. For fundamental and other lower
mddes; however, the results will have scome inaccuracy
due to this assumption. However, with this'assumption,_
the kinetic enermy of the fluid may directly be taken
from Eq.(2.15) - |

’ I | 1 2 3 3. 0 . )
n fluyid ~ g n ¥ L &, W .. (3.15)

T
where, €,- is the virtual mass coefficient whose

value may be taken up directly from eQuation (2.16)
page 24 . Values of O, occurring in that expression
may be obtained from Table 3.1.

Eguating equations (3.14) and (3.15),

o 43,3 ] - 2 ; fyp W am
z 171 ¢ e, W = == M




Values of

~39_

Table 3.1

o« : (in equation 2.16) which are

roots of

equation. Jﬁ(“ni)—: 0

=0 1 2 3 4 5 6

1 3.832 1.841 3,053 4.20 5.3l 6 .40 7 .50
2 7,016 5.332  6.707 7.89 9.04 10,52 11.74
3 10.17 8.536  9.970 11.17 12.33  13.99 15.27
4 13.32 11,710 13.170 14.37  15.53 17,27 18.60
5 16.47 14.860 16.310 17.52 18.79  20.53

21 .88
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From where the expression-for virtual mass 1s obtained

as,

Ty — - 73 aﬁl\ﬁg— €n : N .. (3.186)

The different curves of values of €, for different
water heights and number of . circumferential modes for

the experimental shell have been drawn in figure (3.2).

Now the total kinetic energy of the shell-

fluid system becomes,

_ €

o5

D0

YL o
f f (U2+V +N2)ad¢dx+ wld f f Wzad‘efax
g 0 o] Q 0] .

Substituting the values in TLagrange's equation

a_ @y _of - _ &
d 0 T oW 0w
we get,
3.3 6'¢ o
nehalsy Y°L" €. °n |
= - Bmeh %2a XKy -2-’2(1+n*K)W
2 (1-o)

-2n(1+n K)VMZ+2 & (- )-;-

+K A2nv-2Kn® ) FW)ug
‘ o
126-(8Kn2 >?WL8Kn‘>fV)M4 >

or,
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VIRTUAL MASS COEFFICIENT - €

0.2

0 c.2 0-4 0.6 0.8 1.0
RATIO OF WATER DEPTH TO LENGTH OF SHELL _ {

FIG. 3.2 - VARIATION OF VIRTUAL MASS COEFFICIENT €,
WITH THE DEPTH OF WATER IN THE TANK
TAKING 1=1T04 FOR L/a = 4.38
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A 1 2
+!a2_ oy + by (L, - 6 2xn® ‘}'\ZMB
a .
: 313"
L 1= 2.2 1°1°8 -
+ 455 4xn® ) M, - ot 5p=—7 €,)(0 0

The first two equations of eq.(3.13) will remain
unaltered as the presence of water will only have
a effect in radial displacement terms.

Therefore, now the frequency determinant becomes,

I
15h Wn 1(an
;15222 n2(1+K = - (1+n%K)m, ,
3 o .a-‘o 4 'a'é- } )Mz 5" 2\ n M I ;
| | ) o |
3\ 2. (L+ax)M, 5% 'A Nl 5T 4Kn;\vM4{ j
_AM2{ \
G~ A ) -
— 1\/[3, !' ;2\-“1’1 KM a ,\4}&1\/1j +
5% Ky + =5 (LK )My -6
a
1 2 ’
- =Z=.4Kn XM 5 2 1o
2 A n >‘MS+ -—2—,,
2.2
4K N M4
- /3:[;3 &
- Al A T
At =2y o Gn)”
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Various terms occurring in determinant (3.17) have

»

the following values,

sinh 2AL = 1 | | |
-— 3 = e—— ah
a T s 5‘“ cosh ) L.cosp L
cosh 2N\L - R A -
frae - = il 1 \ R
B 2 3| cosh AL.sin AL
sin 2 AL : 1 . » .
AT e s caee————— — — 7 L. '
Y C>§ 3 sinh A sln%L.
_cos 2AL < - L A
5 = 7Y 5= 3 sinh AT. cosAL
2 = 2 ‘ L2
A= Ll”Ec g) Y (frequency X = “""“h‘f'w
: S parameter) 1%2a

_ coshA Itcos AT o . |
k = Sinh NI+sina L L=1.875, 4£.694, 7.865,10.996,

14,137, 17.279

corresponding to number
of axial modes = 1,2,3,4,5,
6,7,8

(L+oc+¥ +J+ 7 )41 (0m f +([I_ )2k (B+K ;.6.)

=
ey
il

Mo = (T+a+y -¢-’§)+k2(oc_ ! _qr+.§)_2k(5; X =8)

l\')i}—-‘

Nz = (on-”{ )+k2(oc+wf‘-L) - 2k (B+6- 5 )

M:4: = ((x_.. { +[‘f_ ;) + kz (L+OL+ ~/ - “:::"W )"‘21{ (B"‘% +5+ é—‘i )

For given values of A,n, L, 2, h and ¥ , the
lowest frequency parameter A , can be ‘determined from
the déterminant 3.17 and the frequencies of vibration

of the fluid filled shell calculated from the equation,

D = Lbg . o .. (3.18
o —/Q(l-s—z) )
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in which h is the thicknéss of the shell.

~ Once the frequencies are evaluated, the
corresponding mode shape ratios may be eﬁaluated
frbm'the system of homogeneous equations, the deter-
‘minant of which is given in Eq.sﬁlv.Knowing frequ-
encies and mode shapes, the modal analysis of the

shell may‘be carried out.

3.3 NUMERICAL RESULTS

Nume rical results, froﬁ the derived express-’
ions for frequency and mode shapes, have been obtained
for the shell which was used for experimental inveSti;
gations. This shell had the folleowing characteristics.

(For details see Chapter IV).

1!

Iength of the shell L 0.2 cms.

Radius of the shell a

i

13.725 cms.
Thickness of the shell h.

Il

0.0735 cms.

Poisson's ratic of

the material of the = 0,345

shell

Ydung's modulus of 5 o
elasticity of the mat- E = 7.2x10 kg/cm
erial . ' »

Density of the _ .3
material 8.0 gm/cm
Density of the fluid = 1.0 gm/cm”

Thus for the shell, -
L/a = 4.38

a/h = 173
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Numerical eomputation may be divided iﬁto
three parts , |
(i) Evaluation of virtual mass coefficient.
(ii) Evaluation of natural frequency of
vibration, and
(iii) Evaluation of mode shabpes.

We shall take these items one by one.

(i) Evaluation of virtual mass cocfficients

Equation (2.16) was used to obtain the values
of €,. A computer programme wag made Which'hes beehn
given in Appendix (see A.2). The variation of €,
with various water depths_and number of circumfer;

ential waves has been plotted in figure (3,2), page4l
The computations include terms upto and inciud-

'

ing i=4 in the summation in €.

(i1) Evaluation of frequency of vibration

To determine the frequency. parameter /. from
" the determinant (Bq. 3.17) for known values of other
variables and then the freouehcy from the equation 3.18,
a computer programme was written as glven in Appendlx

A3. The procedure followed for eveluatlon of frequcncy

is as follows.

An approximate value of the frequency is ass—
umed and the value of the determinant is worked out.

This is repeated with increments of frequency given



a6
at regular intervals. The value of frequency at which
the value of the determinant becomes zero gives'tﬁe
reqﬁency of vibration of the system. For a particular
set of axial ahd circumferential nodes, there are
three possible frequencies at which the determinant
is zero. Only the lowest of these will give the true
natural frequency of vibration for the set of nodes as
the other two frequencies will be far reﬂoved,from
the lowest value. For any frequency , the computation
is  stopped when the ratio of the difference between
two consecutive frequencies for which the deter-
minant changes éign to one of them becomes less than
the pre-specified accuracy. The accuracy in these

computatiors is 0.0001.

Results obtained have been shown in Tabie
3.2 and curves for first mode has been érawn in
figure 3.3, where m is the number of half waves
(nodes = m-i) in the axial direction ahd n is the

number of waves (nodes = 2n) in the circumferential

direction. .

Results for Weingarten method

For comparison purpose, frequencies nave also
" been calculated from thelexpression derived by
Weingarten(Eq.‘Z.S). The results have been plotted

in Pig. 3.3 and 3,4 for both the shells (L/a = 4.38

and 2.63). To show the effect of fixity at the base ,
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Table 3.2

Frequencies obtained theoretically

lengtn|Number |Number | Water | Frequency of Frequency of
of the|of axial|of cir-| depth vibration by vibration by
shell |half cunfer-| (Energy Method)|Weingarten
wave ential . me thod
waves
. )
(1) (m) (n) (cm§)~ (cps) (cps)
-1 1 0 383,20 519.92
© _
o 1 2 0] 141.70 148.79
d-{ B
) 1 3 0 83 .65 87 .27
g 1 4 0 97.50 106.14
. 1 5 0 148,60 156.24
[6))] .
g 1 6 0 214.10 222.40
- _
e 1 3 0.332 58.150 -
1 3 0.535 40,450 -
1 3 0.93 33.120 -
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curves for shell simply supported at base have also

been drawn in the same figures.

_BEVATLUATION OF WMODE SHAPES

For known values of frequency, number of axial
and circumferential nodes, properties,of thé shell,
the fractional depth of water, all the elements in
equations( 3,13 ) are known except the constant
terms A,B and C. By letting one of them to unity,
we can find out the values of other two by solving
the equations simﬁltaheouslyﬁ Substituting back
these values of constants in equation ( 3.13 ) the
three dis@lacements of the shell (u,v, and w) can be
determined. These have been obtained-for the experi-
mental model of the shell for the filrst mode of
vibration for 3 numbers of circumferenﬁial waves.
The results obtained have been plbtted in F%gure

3.5. The computer programme is given in Appendix A.3

2.4 ORSERVATIONS ON THE THEORETICAL RESUILS

From figures 3.3 5, 3.4 and 3.5 and tables

3.1 , 3.2 following observations can be made :

(1) Frequency of vibration is high at lower
circumferential nodes (say at two or three). Its
value diminishes as number of circumferential

waves increases achieving a minimum value at certain
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value of n, after which it again starts increasing

with increase in n.

(2) Frequency is lower for lower number of axial
nodes and higher for larger number of have waves

in the axial direction.

(3) Except at m=1, the frequenéy'curvesvfor
‘clamped~free shell and simply suvported-free shell
follow each other closely. The difference is large
(of the order of 162) at lower nodes and small

(Qf the order of 4%) at higher nodes.

(4) Frequencieé'obtaﬁned fr@ﬁ the energy method

- and from the Weingarten methoa agree quite closely
with eaéh'other. At n=1, the difference between the
two is neafly 237, . But at highér number of circ-
umferential waves, the difference is only«éz or

even less.

(5) The_effect of water is to reduce the natural

frequency of vibration.

(6> The virtual mass coefficient varies greatly
with depth of water at lewer mumber of circumferential
waves. At higher values of n, the variation in

€, 1Is very little with incréaSing water depths.

It means that at higher‘nodes; the fréqﬁency Wili

not alter appreciably with different water depths.
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CHAPTER ~ IV

EXPERIMENT AL INVESTIGAT IONS

4,1 THE MODEL USED IN EXPERIMENTAL
INVEST IGATIONS (See Fig. 4.7 )

The model was made by rolling a thin.brass sheet
sheet df thickness 0.0795 cms. over a wooden form-
work., The main fabrication was done in Earthquake
Engineering School Workshop and the joint along the
axial length was silver soldered in Mechanical
Engineering Workshop. The diameter.of‘the cylinderA
was 27.45 cms and the length 60.2 cms. Top end
was kept free while the bottom oneiwas clamped.

The clampness was provided by tigtening the cylinder

at its lower end with several screws passing all around
its periphefy as is clear from a look on figure

(4.7 ). A brass plate of 3/8" thickness of the

size 46 cms x 46 cms was used as a base fér this

model. Some important features of the model are as

follows:—

Material of the shell Brass
Density of the material of o %
the shell (%) 8.0 gms./cm
Poisson's ratio (¢35 ) o o 0.345

Young's modulus of Elasticity : 5 >
of the material (E). ' 7.2x10Y kg/cm”
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Fig, 4.1, The Gemeral Tiew of the Model

1, Brass cylinder: 2, Rrass
base plate, 3, Strain gages,

4. Wooden blocks fop fixing
Pickups,
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4.2 Test Arrangement FoOors Prrae. i1bHreo.
tigm By palling and mBeleasing.

1. ModeXs o8 Cobtbon tLape-.
S. Triangulse Taaiinas T rame
4. Toading hanger,

S Unidvergal Smp Ll ey

s

4 .35 Genexrak setbaite By btha  Pree
Vibratilion TeatG




+ 4.4 Arrangement for Steady State
Vibrations.
.Model, 2.Iazan Oscillator,3. -D.C.
otor, 4.Shaking Table,5. Wooden
locks for pick-ups,6.Speed Control
it,7.Universal Amplifiers,8.Brush
en recorders.9.Transformer,10.Weight
0r counteracting vert.vibrations.

)

Fig.4.6-Details on Shaking
Table
1-Model; 2-Lagzan Oscillator;
3-Motor;4-Weight to counter-
act vertical vibrations

Fig. 4.5 Instrumentation for Stead
State Test.

il Spged Control Unit,2.Transforme

ds . niversal Amplifiers,
£28€Y rocorders,
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Density of the fluid (water)

which Wa§}filled'inside the o E
shell (& ) : 1:0 gm/cm
.Radiué bf fhe-éYiinder (a) 13;725tcms,
The mlnlmum dlameter measured

was 27.25 cms and the max i mum

dlameter WaS 27 .85 cms The

average value was 27 45 cms.

Thus a dlscrepancy of about

+ 0:280 cms in diameter from

the mean value was present

in the shell. |

Iength of the cylinder (L)

Experiments were done with
two different lengths

i

4.38 , a/n

Il

(i) T=60.2 e¢ms. = L/a 173

(i1) 1=36:1 cms;: - I/a

fl
i

2.63, . a/h = 173

The value of E was found from the vibr-
ation test on a cantilever beam of the brass (sonme
- specimen as used for model)i A brass s%rip of
2.55 cms. width, 12.8 cms. length and .0795 oms
thickness, fixed at the base and free at the top
was pulled with hand and then released. The
natural frequency of vibration of the beam was
measured from the pen recorder record of the
vibration. The value of E was then obtained from
the well xnown formula for the vibration of

cantilever beam
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The cylinder was made water tight &t the
bottom by a rubber solution and after that with
an application of Araldite on inside énd outside
both. This arrangement was very. successful and no
problem of the leaking of water was faced during

the experiment.

4.2 BXPERIMENTAL PROCEDURE

The experimental work was conducted under

various sets of conditions as follows:

(A) Free Vibration Test

(a) By pulling and releasing,
" (b) By tapping the model at various places.

'Records were taken with empty shell and with

varying water depths.

(B) Forced Vibration Test

Model was mounted on shaking table and
vibration records, for steadv state forced vibrétions,
~were taken with Miller pickup at various'positions
along the length ef the shell as well as around the
circumference. The resonance records were obtained

without water and with varying water depths.

The details of each one of tests are given

below:
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. (A) Pree Vibration'Test‘

Free v1bratlon test was conducted under
different ways e. g by pulllng and releasing arrange—'
ment and by tapmlng on the’ model with hand, to see the
behaviour of the 'shell under these oondltlons. The
aim was to obtaln the natural frcquency of vibration
ih_each case acditc:sée if>the¥e was aﬂy discrepancy

in various records of vibration of the shell.

An other method bygradial-pulling and releas-
Ting WaS»also,tfied but it did not givé any good record
*ficm'which any_conclusion;could be drawn and, there-

fore, was abandoned.

The strain gages were pasfed at different
pOihié on the shell to know the nature of strains
produced and to calculate from their rccords, the
.natural frequenpy of v1bratlon. ‘At omne orv two placcs,
in ‘some cases, Miller p1ckup was mounted on a Wooden
block of .1/2" thickness and the records/were taken

in the same mammer as with strain.gages.

-’

" The records were obtained on Brush ink writing
oscillograph by connecting the pick-up (or strain
‘gages as the case may be) with D.C. Amplifier and

recorder.

The general set-up of the experiment appears

in FPig. (4.3).
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(a) Pree Vibration Test by Pulling
and Releasing

‘Because of the flexibility of the shell,
the clutch syétem which is most widely used in
earthquake engineering practiceé for conducting
the free vibration tests was found to be inconven-
ient and unreliable under present circumstances.

A light cotton tapé wag wound all around the peri;A
phery and on its one end was placed a hanger over
which weights could be placed. This tape was made
to pass over a pulley to ensure the horizontal

loading (See Fig. 4.2 ).

Thekcondition,of sudden releasing was achieved
by burning the tape near its end with a gas burnér.
The flame of thé burner was kept dbright enough so that
no slackness in the tension in the fape occurs during

the burning.

-Three loads of 5 kg, 7 kg and 9 kg were put
on the hanger successively and the records were taken
with various strain gages. The aim waé to see the |
effect Qf initial strain level on the vibration cond-
itions., Leads were not increased beyond these values
because of the danger of permanent deformations near

the top.

(b) Tapping the Cylinder

Cylinder was tapped with a blow by hand at

. different heights in the axial direction and also
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around the circumference. The records were obtained
with several strain gages to study the behaviour of

the shell.

(b) Porced Vibration Test

The model was subjected to steady st%te
vibrations on shaking table with ﬁhe help of Lazan
ogscillator. Thé later was driven by a d.c. motor, the
speed of which couid be varied with the help of
speed control unit. Varying the eccentricity of
the masses in the oscillator or and the gpeed of theA
motor any desired amoﬁnt of sinusoidal force within
the limits of each ingtrument, could be given. The

specifications of oséillator and the motor were as

follows.

Tazan Oscillator
Capacity + 1600 1b. at 1800 rpm.

or

4000 inch-1bs.at 1800 rpm.

Maximum speed = 3600 rpm.

D.C. Motor
H.P. 3
Volts 220
Amps 13
Phase D.C.-
R.P.M, 2000

Wooden blocks were pasted on the shell at
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different places (see figure 4.8) in order to enable
the pickups to be screwed at different positions.
The aim was to have a relative idea of the ampli-
tudes oc-urring at various points and also to have
an idea of the behaviour of shell in one particular
direction when it 1is subjected té a motion in the
same or in some other directioﬁ. The output of the
pickup was fed to universal amplifier circuit and
vibration records were obtained from the pen recorder.
Two sets of amplifier'and pen recorders were needed-
one for pickup of the model and the other for the
pickup on the shaking tahle. The latter gave an idea
of the magnitude of the base acceleration. Thus the
ratio of model aqceleration to base accéleration

could be obtained at any stage of vibration.

Experimental setup for this case can be seen

in figures 4.4 ,4.5 and 4.6.

The experiment was started with -a low
frequency of'the order of & cycles per second and
the correSanding-vibraﬁon "records from the pick-
. up gn'model and on:shaking table were taken simul-
taneously gy putting the recorder at on or off
'posifioh at the same Instant. Thus, fréquenoy measured
from both the records will be same ané their calibrated
amplitudes will giﬁe us the aCCelefation to which

~ they have been subjected by the forced vibrations.
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Slowly the freéuency was increased with the help

of speed control unit and the corresnonding vibration
records taken every time. As an average the frequency
was increased by 0.5 cps every time, At some frequency
for a particular condition the amplitudes measured
were»very large and after it they subdided again.

This indicates the occerrence of resonance and this
frequency will be the natural frequencv of vibration.
However, the various limitations of this‘willvbe
discussed later. The maximum frequency which could

be reaéhed with the available instruments was between
35 and 40 cps, thdugh in some cases higher ﬁrequendy

~

of even 48 cps was achieved.

Near reSonance,‘there oecurred verticai
vibrations of the table Which inferfered with the
nafural mode‘ofrvibration. To.remedy this a heavy
weight was tied down en the table (Pig.4 .4 ) and this

solved the problem’to a gfeat extent.

Similar to free vibration .tests, this test
was also carried éut for two lengths of the cylinder
(I£60.2 cms. and I=36.1 cms). In:each case the records
. wefe obtained with varying water dépths. Miller
pickups' position was also varied és has already
been explained in article 4.2. Table 4.1 summarises

~the way. in which the test was conducted.
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Table 4.1

Statement showing procedure for
forced vibration test

(a/h=173)
Iength|Ratio of |Depth of Ratio of Picktup positions
of length water ins-|water - |on which records
~cylin-|to radius|ide the depth to were taken *
der of the cylinder length of
(cms) leylinder (cms) the cylinder
0 0 1,2,3,4,6,7
60.2 I/a=4.%8  20.0 0.332 1,2,3,7
cms . '
32.2 0.535 1,3,7
0 0 243,45
36.1 L/a=2.83 17.80 0.494 2,
cms . '
21.60 0.87% - 2,5,8

¥ Tor various pickup positions please
see figure 4.8.
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4.3 EXPERLMENTAL RESUITS

- -

(A) Free Vibration Tests

(2) By_pulling and Releasing:

Foilowing observations have been recorded in

thls case:-
1. Vibration of empty shell,
5. Vibration of shell with varying water
depths. |

These observations were made for two lengths

of the shell (I=60.2 cms. and 1=36.1 cms).
TPypical records have been shown in Fig. (4.9A)

‘(b) By Tapping:

Cvservations were‘made for tﬁe same conditions
ag with pulllng and relea81ng Object was dlso to
compare the records taken w1th these two different
methods of free vibration. Typical records have been

shown in Figures (4.9B, 4,10 and  4.11 ).

The variation of frequency with depth of water

ig given in Table (4.2).

(B) Forced Vibration Tests

Records have been obtained for the following

obgervations:-

1. Vibration of empty shell with pick-up at

various location.
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FIG.4.12 - VARIATION OF THE NATURAL FREQUENCY OF

VIBRATION OF THE SHELL WITH VARYING
WATER DEPTHS INSIDE THE SHELL
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Table 4.2

Freaquencies obgerved in Free Vibration
test with various water depths

Length of the| Ratio of water 1 Frequency of
shgll (cms ) depth to length | vibrations

(1) of the cylinder (cps)

0.0 51.5

0.270 48.0

0.388 44 .5

60.2 0.491 40.5

0.611 35.5

0.708 . 31.0

0.786 | - 27.5

0.924 22.5

0.0 . 62.5

0.345 '~ 58.5

| 0.570 49.0

36.1 0.7 ~ 38.8
cms.,

0.93 | 27.5




~81-

2. Vibration of the shell with varying
water depths, with pickup at'various

locations.

Typical records are shown in Fig. (4.13).
Resonance. curves have been drawn taking model accel-
- eration as ordinate and frequehcy-as abscissa.. These
are shoWn from Figure 4.14 to 4.19 for different

conditions.

4.4, OBSERVATIONS ON EXPERTIMENTAL RESULTS

(L) Pree Vibration Tests
From the vibration records of figures
4.9, 4.10 , 4,11 and 4.12 , following observations

can be made.

1. ‘Records with circumferential strain gages
were better than those taken with axial strain gages
rerhaps because the strains in circumferential gauges

were more than those in axial gauges.

2. Vibration records with strain gages near

the bottom were very poor (Fig.4.9A iii). They aid

not give any idea of the frequencv of vibration.
Strains in the circumferential gages will be small at
this level because of restraint on the deformation

of fhe séction and therefore local high frequency
components were being superimposed én_fhe fundamental
ffequency. Perhaps the noise of the instrument was

as important as these vibrations resulting in
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unclear records.

3. Frequency obtained from all the records, for
example from all the gages with pulling and releasing
~and from tapping at different points, was nearly the
same. The average value may be taken as H51.5 cps.

It shows that each time the shell was vibrating in

the same mode.

4.  In some cases, in records with fapping, some
sort of beat phenomenon was observed (Fig.4&0ai).
 It may be due to the fact fhaﬁ depending upon thé
position of the place where the shell was tapped
and fhe magnitude of the force, two frequencies

lying very close to each other were excited.

5. ‘Prequency of vibration reduces as the water
depth increases. This is the type of behaviour which
is expected in a vibrating system due to added virt--

ual mass.

6. The vibration records became more distinct

as the depth of water inside the shell increased.

7. Calculatirig the values of the virtual mass
from'the expression already derived we get the

values shown in Table_4.3

Tt shows that whole »f the weight of the

water is not effective in producing stresses in the
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Table 4.3

Variation of Virtual mass with water depth

FractiondllVirtual Virtual wt. of virtual mass

water |mass coeff4mass water expressed
depth icient - as percentage
L €, (kg) (e of total water
) .
weight
0 0 0 0 0
0.2 0.18565  0.59 7.12 ~ 8.35
0.3 0.22077 2.400 10.72 22.35
0.4  0.24339 5,400  14.25  37.90
0.5 0.25879 9.300 17.80 52,30
0.6  0.26981 13.520 21 .37  63.50.
0.7 - 0.27805  17.650 24.90 70.90
0.8 0.28443 21.750  28.50 76 .40
0.9 0.28949  25.600 32.05 - 79.90
1.Q

0.29362 29.800  35.855 - B83.20
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shell during the vibration. As the water depth goes
on increasing,vpercenfage contribution of the total

water Wéightvalso incréases.

(B) Steadyv State Vibration Tests

Behaviour of shell during steady state vibrat-
ion conditiéns was observed to be very peculiar.
Following are the observations made from the figﬁre s

4,13  to 4.19 .

1. The nature of vibration throﬁghout the freque-
ncy range was. not uniform. (See Fig; 4,13). At the
lower lmparted frequency of sav'15 cps the amplitudes
observéd.Were-very small and.the motionvof the shéll
was more or less a rigid bodv motion.For this forcing
frequency on other very high frequency of the order
of 140 cps Waé also oﬁserved to have bécurred;‘

(Fig. 4.13 ix) éimultaneously. Tﬁis phenomenon Was

more pronounced in the shortér shell.

2. At some stages the records were very smooth

(Fié. 4.13-ii) while at some stages there appears

ﬁo have occﬁrred superposition of some more number of
modes. At Some value of f;%quencies some strange records
were ébtained(Fig.4.13*V'ahd;x)‘Nhere even under the steady
copditions, the amplitude wvaried sinusoidally at the

same frequency. The possible explanation for this

 behaviour may be the shape of the shell. Being circular
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in plan-there were not only the flexural vibrations

but vidbrations of some other kind also.

The general character of the various mode
shapes 1s indicated in Pigure 4.20. in'vibfating
shells two type of nodal patterns exié% together.
The oircumferehﬁial nodal pattern denoted by letter
n(n=number of circumferential waves; circumferential
nodes=2n) and the éxial nodal pattern denoted by |
letter m(m is number of half waves in axial direction;
axial nodes are m-1). Occurrence of these two type
of waves will afféct the vibration behaviour of the

shell to a great extent.

3. Vibration record of the pick-up en shaking

" table was very smooth throughout the frequency _
range. (Flg., 4.13-x, x1, xii ‘). Prequency could be

| measuredvvéry accurately at any stage. This shows

that metion was entirely siﬂusoidal. Any irregularity
or pecularity in the record of the pick-up on model
was due to some peculiar beheviour of the model itself

and not due to some haphazard motion of the shaking

“table.

4, In some cases, the resonance peaks could not
be obtained because of the high frequency of vibration
of the shell. The maximum frequency which could be

reached by the mechanical oscillater was 45 cps.
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5. For any one given case of a shell having the
same water deptﬁ, the resonance peak was observed

to have occurred at different frequencies(Table 4.4,
anleigs. 4.14 t0 4.19) when recorded at different
points of the shell.This may be explained With'the
help of the manner in which a shell vibrates(Fig.4.20°
fFrom Fig. (2.2 ), it is seen that for various
combinations of axial and circumferential modes there
are possible several resonant frequencies; For one
rarticular mode; say funﬁamental mode, the frequency-
of vibration will change With the number of circum—
ferential nodes. In a vibrating shell it is very |
difficult to say which 'of the combinations of these

modes is present at the time of resonance.

Due to the limitations of the availability of
instrumenfation, only one pick-up could be used at
a- time on the model. Henée; for one particular case
the experiment had to be repeated as many number of
times ags were the pick-up 1oaations deSiréd on the
shell. Therefore, it was not possible to bring‘the-
same conditions evefy time. Under these conditions,
it Was possible that at one time some combination of
nodal lihes was occurring while at other time some
other oombination‘wésioccuiriﬁg. This mighﬁ have shifted
the peak sometime at lewer frequency and somet imes

at higher frequency.
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- Another very interesting phénomenon was also
observed. There occurred not only one resonance peak
but several peaks in the frequency range of the
experiment. These peaks varied from three to four
in number. Héwever, there was one general peak at
which the amplitude was maximum‘of_all other ones
and this'ﬁas agssumed to represent adtual resonant
freguency. Sometimes the smaller peaks were formed
before this peak and sometimes after it and sometimes
one or two were before the ﬁain peak and one or two
after 1t. The relative amplitudes of these Aiff-

erent peaks can be seen in figures 4,14 to 4.19.

-There does not seem to be some definite
reasoning behind this behaviour of the shell.

However, two explanations may be advanced as follows:

(i) Becausé of the various combinations of axial
and circumferential modes, large number of resonances
may occur close to each other. Importaﬁce of exact
location of different ncdes axially and circumfer-
entially both has been mentioned by the other
authors also. It ié rather a very diffioult'task and -
mofe sensitive instruments will have to be develsped.

(ii)As desribed in article 4.1‘, the model could not
be made to eiact circular‘shape.}Aléo, the material
is never homogeneous énd.of the same density as we

assume in theory. These all deviations from the
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jdeal conditions play a very impertant role in the
vibration conditions of the structure. This has been
explained by Tobiasl15| is some details. Acéording to
him these different peaks are the result of initial
imperfections dr deviation from the rotational Sy mm-
etry of the circular cylinders, such as variation

in radius, wall thickness;‘of physical prbberties

of the shell. If we are concerned with varying
forces, problem nf fatigue arises and then the
dimensionai or surface imperfections will make a
considerable difference between the calculated and
praoticaljresuits. He obserﬁed-that for any vibfat—
ing surface of revolution, there occurred two planes
such that, if the body was made to Vibrate in

those directions, only one peak will occuf. These
planes have been némed aé prefefential planes. I the
exciting force acts outside the preferential plane
then both configurations are excited at the same

T ime and the amplitudes we measure are due to the
superimposition of both preferential oonfigurations
with regard to their phase angles relative to the

exciting force. This is the more probable reason

for several peaks occurring in the resonance tests.

7.  Resonance curves for empty shell are comparat-
ively smooth (with only one peak or two) while the
amplitude fluctuates from one value to other in

the case of shell with water. This may be due to the
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sloshing of water in the latter case.

8.  Amplitude of vibration at resonance was
more at top and less at bottom. The reason is quite
obvious as the shell was fixed at base and free at

the top.

9. The acceleration to which the model was
‘subjected at resonance varied with the height of the
cyliﬁder and water depth. The acceleration was
vobserﬁed to betless when water was filled inside the
shell. |

4,5 COMPARISON OF THEORETICAL AND
EXPERTMENTAL RESULTS

Theoretical and experimental results have been
compared in Table 4.4, From this table we observe'

the following.

1, Difference between the analytical and experi-
mental natural frequency of vibration in fundamental

node is 38 per cent.,

2. For partially full or completely full shell

the difference between the theoretical and analyticél
frequency is rélatiVely small (of the order of 212).
The difference reduced to;lOZ when the water depth

" was increased still more.

3. It has been proved both theoretically and

experimentally that frequency decreases as water depth

increases,



Table 4.4

Experimental results and their oomparison

with Theory

Reson |NaturallFreq. Frequency| Frequency
Radi-|Length|¥ract|Pickuplant fre4freque- from from from Wei-
us tolto ional |Posi- |quéncy Icy obt-|Energy |Weingar-|ngarten
thick|radius|water|tion |obtainedained |Method |ten methimethod for
ness |ratio |depth|(see [from St |from | (Eq. od (BEq. |simply su-
ratiol ' | fig. |eady st|free vibf 3.18) |2.5 for |pported

ate vibJtest. clamped-|free shell

test free
a/h L/a |Y: (cps) (cps) (cps) shell, (eps)
_ (cps)
1 42.5
2 45.0
A 3 42.0 .
0 4 40.5 51.5 83,20 87.27 6.129
6 43.0
i -
: 1 43.3
2 2 43.0
4,38 0,332 3 499 -46.5 58.15 - -
7 38.2 '
1 32,2 _
a4 - 0.535 3 35.8 0 38.5  40.45 - -
e ' 7 2.2 '
AN - .
0 3 - 62.5 - 146.48 6.129
_ ) 32.5 ‘ '
2,63 |
- 0.494 2 35 .5 53.75 - - -
2 32.5 :
0.875 5 29.6  30.75 - - -
8 0
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CHAPTER _V

CONCLUSTIORNS

On the basis of the results reported in the

previous chapters, the following conclusions can

be drawn.

1. The energy method used here is fairiy
accurate for predicting the frequencies of a vibr- .

ating shell. The results agree with those of other

investigators.

The method may be applied to any set of

boundary conditions by properly selecting the basic

.functions.

2. The effect of mass of water can be taken into
consideration by considering a virtual mass deter-
mined for the mode shapes considered either experi-

mentally or from analysis.

3. Analytical results indicate that frequency of

vibration will increase with decrease in length %o
radius ratio of the shell, Also, the frequency

decreases With increase in water depth.

4., - The frequencies at the higher order modes

are decreasingly affected by the presence of the

liguid.
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5. Peroentage contribution of the water mass
increases with water depth. When the tank is
fully filled the contribution of water mass is

83 per cent.

6. Behaviour of the shell under forced vibration
donditions igs a peculiar one and occurrence of
several peaks is observed. Purther detailed

study 1is needed to investigate into. the chafacter—

istics of the various peaks.

7. Results frém the . experiment and analysis

agree clesely at higher water depths.
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APPENDICES

A.1l Notations used in computer programmes

AL - length of the shell (L)
- GL _ Height of water inside the shell (Y T)
A — Radius of the shell (a)
H —_Thickness of the cylinder ()
ROH . - Density of the material (€ )
ROHD - Densitj of the fluid (@f)
GAMA - - Ratio of the water depth to length of
the shell ()
AN _ Number of circumferential ﬁaves(n\
M - Number of axial waves (m)
ALEND - Characteristic root (A)
 ABSIN _ Virtuazl mass coefficient (€y)
ALPHN -~ The root oy, 4 ﬁsed‘in the expressions.
CIGMA - Poisson's ratio of the material (O)
YM — Young's modulus of eiasticity (E)

FREQ - Prequency of vibrations( ¥ )
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- FORMAT 7F9.0§

-102-

(A.3) PROGRAMME FOR EVAIUATION OF
FREQUENGCIES AND MODE SHAPES

 BEVALUATION OF DETERMINANT ATUL UCR

READ 1,ALEMD, AN, ABSIN,GL
READ 2,AT,CIGMA,A,G,ROH,ROHD,H
READ 9,¥YM '
READ 300,FREQ, CFREQ, ACC
FORMAT (4F10,0)
FORMAT (F10..0
FORMAT (3710,0)
RT1=0.
RT2=0
FREQ1=FREQ
SAN=AN* AN .
SIEMD=ATEMD*ATEMD
X=ATEMD*AT,
XN=2,* ATEMD* AT,
EX=EXPF (¥X)
EXN=EXPF (XN )
Y=1./EX
YN=1.,/EXN
7=1./ATENVD
SA=A%A
CK=(H*H)/ (12.%SA)
P= gEXJrY %+2 . ¥COSF gx,)

BEX-Y )+2 ,*SINF (X )
AK=P/Q
SAK=AK*AK
ALPHA=,125% (EXN-YN)*7Z
BET A=,125* (EXN+YN)*7Z
GAMA=,25%S INF (XN )* 7
DELT A=, 25* COSF (XN )*7
ZAI=‘5*%EX+Y)*GOSF£X)*Z
SAT=,5% (EX+Y )*STNF (X )*7
AKAI=.5*§EX~Y)*SINF€X)*Z
ZETA=,5% (EX-Y )*COSF (X)*7
X1=ATPHA+GANMA+SAT+ZETA
X2=ATPHA-GAMA+SAT—-ZETA
X3=BETA+AKAT-DELTA
X4=ALPHA+GAMA—~SAT-ZET A
X5=ATPHA~GAMA-SAT+ZETA
X6=BETA-AKAT-DELTA
X7=ALPHA-GAMA
X8=ATPHA+GAMA~AT
X9=BETA+DEIT A-O0.5%7
X10=ALPHA-GAMA+SAT~ZETA .
X11=AT+ATPHA+GAMA—~SAT-Z2ET A
X12=RETA~ZAT+DETTA+0 5% 7

—
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CAML=ATAX1+SAK¥*X2-2 . ¥ AK*¥X3

AMZ=AT+X4+S AK*X5-2 , * AK*X6

AMB=X7+SAK*¥XB-2 . ¥ AK*X9

AMA=X10+SAR*X11-2, *ARK*X12

CDEIT= ((1.—CIGMA*CIGMA)*ROH*FREQl*FREQl)/(YM*G)
A1 1=STEMD*AM1+(1.-CIGMA)*O. 5*8AN*AM4/SA
ALL=ATL-CDEIT *AM4

A12= (ATEMD* AN* (CIGMA*ANM3-0. B* (1. -CIGMA)*AIM))/A |
A13= (~CIGMA*ALEMD*AM3 ) /A

A221=(SAN* (1,+CK)*AM2 ),/SA

A221=A221+40, 5*(1.—CIGMA)*SIEMD*(1 +4 ¥ 0K )* AM
A222=_CDEILT* AM2

A22=A221+A222

A231=(_AN* (1, +SAN*CK )*AM2 )/SA
A231=A231+CIGMA*STEMD* AN*CK* AM3

2232=_2 % (1 ,-CICGMA )*STEMD* AN* CK* AM4
A2B=A231+A232

AZ31=8SA*STEMD* STEMD* CK* AM1+ ( (1. +SAN*SAN*CK)*AM2)/SA
AB32=.2 , * CIGMA* CK* SAN*S LEMD* AM3

CAB32=A332+c.* (1,~CIGMA )* CK*S AN*STLEMD* AM4

A333=(GI**3), Y*ROHD* ABSTIN/3 , ¥ ROA*H*A )
A333=AM2+A333
A333=mCDEIT*A333 |
A33=A331+AB32+A333
DETi‘All*EA22*A33—A23*A23\-Alz*(Al?*ASB—A13*A23)
DET2=A13% (A12% A23-A13%A22)
DET=DET 1+DET2
IF (DET )60,66,61
RT 1. =DET
QL=FREQ
GO TO 62
RT2=DET
Q2=FREQ
IF (RTi)63,84,64
IF (RT2 )64 ,64,65
FREQ=FREQ=CFREQ
GO TO 102
FREQ= Q1+RT%*(Q2 -Q1)/ (RT1-RT2)
FREQL=ARSF (FREQ-FREQ1
IF (FREQ2-ACC J60,66 IG%—' > FREQ2 =FREQL /FREQ.
P=0.5*FREQ/3: 14159265 '
N*(All*A?Z A12%A12)
F (AW)350,320,350
A—(A23*A12 A13*A29)/AW
B=- (A13+A11%A)/A12
DO7 I¥=1,61,2
AX=IX
ATX=ATEMD*AX
EILX=EXPF (AIX)
BIXI=1./EIX
SHLX=O.5*EEIK;EEXI)
COIX=0,5% (BIX+EIXT)
SLX=SINF§ALX)
CLX=COSF (ALX)
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U=A* ((SHLX+SLX )~AK* (COTX~CIX) )
W= ( (COLX—CLX )-AK* (SHIX-STX))
PUNCH 310, AX,U,V,W

FPORMAT (4E16.8)

CONT INUE

PUNCH 40,F,CDEIT,DET
GO TO 5
FORMAT{2E16.8)
FORMAT{3E16,8)

STOP

END
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