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SYNOPSIS 

This analytical and experimental investigation 

is carried out to study the dynamic behaviour of 

cylindrical shells without water and with water filled 

inside them. The shell model is tested to see its 

behaviour under shock type of loading at base. 

In the experimental study, two shells of diff-

erent length to radius ratios have been studied and 

the water depth is varied in stages, Free Vibration 

_ tests are conducted under condition of initial dis-

placement by pulling and releasing the shell itself 

and also by tapping the shell at different points. 

Forced vibration study is carried out by mounting a 

mechanical oscillator on the shaking table. 

The theoretical verification of the experimental 

results is done by analysing the shell as fixed at the 

base and free at the top. 

Some strange behaviour of the shell has been 

observed under forced vibrations and conclusions have 

been drawn which shall be helpful in further investi- 

gations. 
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CHAPTER - I  

INTRODUCT ION 

1,1 INTRODUCTORY  

The problem of dynamic interaction between 

liquid motions and elastic deformations of the walls 

of a container is of fundamental interest and import-

ance with respect to a variety of applications. For 

example, there is a problem of bending oscillations in 

long tubes containing static or flowing liquids as 

encountered in many piping systems, the effect of non-

rigid walls on the transmission of acoustic or pressure 

pulses in- liquids or gases in long tubes, 4nd the effect 

of a free surface on overall dynamic response of a 

liquid-tank system. 

Most of the concrete or steel tanks (water 

containers or fuel storage tanks) in civil engineering 

practices are fixed at the base and free at the top.- 

Much work has been done on the vibration charac-

teristics (frequencies and mode shapes under various 

combination of axial and circumferential waves) of 

circular cylinders similar to those used in large 

liquid-propellent rockets. But so far little attention 

has been paid to the type of tanks used in civil engineer-

ing works. The main aim of the thesis is to study the 
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dynamic characteristics of such containers so that 

their earthquake response ceuld be investigated. 

Different parameters involved in the earthquake 

engineering problem of a cylindrical container are as.  

follows:- 

(i) The ground motion record i.e. its amplitude 

and frequency characteristics. 

(ii) Geometrical properties of the shell i.e. 

length to radius ratio, radius to thickness 

ratio, end conditions at top and bottom. 

(iii) Physical properties of the material of the 

shell i.e. density and Poisson's ratio. 

(iv) Properties of the infilled liquid i.e. its 

density and level inside the shell. 

Complete vibration study involves the consider-

ation of all the above parameters. The present study is 

mainly concerned with shells clamped at base and free 

at top of two different L/a ratios, and also the 

influence of varying water depths. 

1.2 OBJECT AND SCOPE 

The investigations were made with the following 

objectives, 

(1) To derive a method for the determinatibn of 

the frequency of vibration of empty cylind_ 

rical shells having various boundary 
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conditions, fixed at the base and free 

at the top. 

(ii) To study the effect of filled fluid inside 

the shell, and 

(iii) To study the free vibrations and steady 

state Vibration of model tanks and to 

compare the results with those obtained 

from the theory under empty and water 

filled conditions.  

The energy method using basic functions for 

freely vibrating beams has been used and applied to 

the case of fixed end at bottom and free end at top. 

It can be applied similarly to other end conditions. 

The effect of water has been considered only in an 

approximate manner by making assumptions regarding its 

virtual mass. In the experimental investigations, the 

model could be tested only in the fundamental mode of 

vibration. Reaults for higher number of axial and circ-

umferential nodes could not be obtained because of limi-

tations of the equipment. 

1.3 OUTLINE OF THESIS  

This work has been divided mainly into four parts. 

ahapter II gives a historical review of the work done 

by the various other investigators in the past. The 

analytical approach and experimental techniques of some 

authors, which have a bearing on the present work have 
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been presented in more detail in this chapter. Theo-

retical derivation of frequency determinant based on 

Energy method has been given in Chapter III. Chapter IV 

includes the experimentation on the shell under free 

and forced vibration conditions. Finally all the results 

have been discussed in Chapter V and the main conclu-

sions are drawn therein. 

In the end a bibliography on the vibration of 

cylindrical shells haS been given. 
a 

Computer programmes for determination of freq-

uency has been given in the Appendix. 

1.4 NOT AT IONS  

a 	radius of the shell, 

c 	a factor in the expressiOn of Weingarten 
formula for frequency 

h2 
lc2 

= 12(1-0-2 ) a2-  1  
E 	Young's modulus of the elasticity of 

the material of the shell. 

acceleration due to gravity. 

thickness of the shell. 

h2  a factor in frequency determinant 11(= -- 
12a 

length of the shell. 

number of axial half waves 
- (number of axial nodes=m-1) 

g 

h 

K 

L 

m 
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n 	'number of circumferential.  waves 
'(number of circumferential nodes=2n) 

u 	shell displacement in longitudinal 
direction. 

shell disPlaOeme.nt in circumferential 
direction.. 

Shell displacement in radial direction. 

a fraction representing the ratio of water 
depth to total length of the shell. 

frequency parameter I _ 	02  ) co 2  
E g 

Poisson/s 

mass density of the material of the shell. 

mass denSity of the fluid inside the shell. 

frequency parameter 

=12 Q a4 (1_ c32  

in Weingarten expression 
(.02 
--7  
Eh 

Circular natural frequency of vibration 
of shell An radians per second. 

f 	frequency in cycles per second. 

All these notations and others used, if any, - 

have also been defined in the text wherever they appear 
first. 
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CHAPTER _II  

REVIEW OF PREVIOUS WORK 

2.1 HISTORICAL REVIEW IN GENERAL 

Most of the investigators in this field have 

confined themselves to the free vibration of empty 

cylindrical shells. Some have considered the influence 

of fluid sloshing in the structures similar to those 

used in the aircraft's fuel storage tanks. The boundary 

conditions in the water storage tanks resting on ground 

are somewhat different than these and very few investi-

gators have taken up this problem. The various methods 

used earlier for vibration analysis of cylindrical 

shells under different conditions are briefly reviewed 

-here. 

In the theoretical field Rayleigh(1894)111  

derived an expression for the frequencies of thin 

cylinders in which the motion of all cross-sections 

was identical. This corresponds to the fundamental 

axial form for a free-ended cylinder and is only of 

minor interest in the present problem. The general 

case of flexural vibrations of cylinders was later 

investigated by Love (1927)121  who included both bend-

ing and the extensional deformations, though he did 

not include frequency equations for any specified end 

conditions. Flugge (1934) by a similar approach 



succeeded in obtaining a frequency equation for a 

cylindrical with freely supported ends; The roots of 

his equation defined three natural frequencies for any 

given nodal pattern; each frequency had a unique arrange-

ment of amplitude ratios for the three component direc-

tions of strain X,Y and Z. 

The problem was further investigated by Arnold 

and Warburton (1949)131  in attempting to explain certain 

strange frequency phenomena observed in experiments with 

thin cylinders. It was found that the natural frequencies 

of thin cylinders with freely supported ends were arr-

anged in a somewhat unexpected order which had little 

relation to the complexity of the nodal pattern. 

Arnold and Warburton (193)141  further worked 

on the same lines as their work in 1949. Theoretical 

.expressions were developed for the natural frequencies 

of cylinders with freely-supported and fixed ends and 

a comparison was made with the frequencies obtained 

experimentally. To make possible the estimation of such 

frequencies, a method was devised in which an equivalent 

wave-length factor was used. This factor represented 

the wavelength of the freely-supported cylinders that 

would have the same frequency as the cylinder under 

consideration when vibrating in the same mode. The 

results of experimental- investigations with various 

end thicknesses and flange dimensions were recorded 

and from these the equivalent factors were derived. 



Sets of curves calculated for cylinders with freely—

supported ends and covering a range of cylinder 

thicknesses were given in their paper. From these it 

was possible to obtain close approximation to the 

frequencies of cylinders under other end conditions 

by the use of an appropriate factor. 

This approach started from the very fundamentals 

and, therefore, gave quite accurate results. The only 

assumption was made that radial deflection varied along 

the axis in the same form as that of the similarly end 

conditioned vibrating beam. But the time required to 

derive the expressions and thereafter the evaluation 

of the values of frequencies and modeshapes was very 

great. 

Recent investigations have Concentrated on 

simplifying the method of analysis of vibrating cylind-

rical shells. By means of a number of approximations, 

Yu(1955)151  was able to obtain a simple expression for 

the radial frequencies of a clamped or simply supported 

cylinder vibrating in a mode consisting of a number of 

circumferential waves that is large compared to the 

number of axial waves. Simplified frequency equations 

were also obtained by Vlasov(1958), Rreslayskii(1953) and 

Reissner(1955) by neglecting the circumferential and 

axial' inertia forces of the shell. Further, the simpli-

fications of Breslayskii and Yu were combined by 

Rapport(1960) to yield frequency equations for a shell 
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with various boundary conditions: A! method similar 

to Rapport has been used by Weingarten (1964 )161 . An 

experimental investigation of the frequency spectra 

and mode shapes of a clamped-free cylinder were also 

performed by. him. The experimental data are found to 

be in good agreement with theory. The results from this 

theory and that of Arnold and Warburton agreed quite 

closely at higher number of circumferential nodes. 

At lower nodes the difference was as greet as 15%. 

In the above mentioned investigations, no 

effort was made to include the effect of an internal 

liquid on the frequencies of the shell. Succeeding 

investigations have extended the studies of cylindrical 

shell vibration to include internal pressurization and 

improved measurement techniques . Fung, Sechler and 
Kaplan (1957 ) 171  studied pressurization effects using 

a loudspeaker as the excitation source and a number of 

capacitance probes mounted inside the cylinder to 

record wall displacements. Their results showed that 

the resonant frequencies and , particularly, the order 

in which the lowest resonant frequencies occur depend 

significantly upon the internal pressure . Berry and • 
Reissner (1958 ) 181-  had given a simplified expression 

for vibrating shell based on shallow shell theory 

Thereafter they added one more term known as apparant 

mass factor to take into account the effect of fluid 
)1 inside the shell.-  Gottenberg (1960 	extended the 



the resonant bending frequehcy of the tank as 

compared with the tank haVing the same total mass of 

liquid but with the sloshing suppressed. 

All these investigators noted a large number 

of resonant frequencles present and the need for 

careful identification of each resonance with the 

proper mode shape. This becomes increasingly difficult 

because the order of the resonant frequencies does 

not follow from the relative complexity of the mode shape 

i.e. a mode with a large number of circumferential 

nodes may have a lower resonant frequency than one 

with fewer circumferential nodes. 

For thiS reason, for a cylindrical shell, there 

occurred several resonant breathing frequencies lower 

than the fundamental bending frequency. 

All the work mentioned so far was more or 

less connected with vibration problems in large 

rocket propellents. 

Jacobsen and Ayre(1951)1131  presented, for the 
first time, a treatment for liquid filled rigid cylinders 
when subjected to impulse at the base. By mounting 

dynamometers at the base of the tank they found out 

the equivalent mass and overturning moment due to the 

fluid. Their study, however, dealt principally with 
the nature of wave profiles and the location of maximum 
wave heights. In 1962 Baron and Skalakl.141  presented. 
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an analytical treatment of the problem and 

studied the simply sunported-frect oylinders. The 

mode shapes of the empty shells were used as 

generalised coordinates of the shell fluid inter-

action problem.. This approach may be considered 

as the first step of an iterative solution. It per-

mits the evaluation of the influence of different 

heights of water inside the tank quite accurately. 

But the method is highly mathemtical and evaluation 

of the frequencies and mode shapes for different 

boundary conditions is a very tedious job. 

Perusal of the work done by all these and 

various other investigators, it becomes evident 

that little attention has been paid to the behaviour 

of the shells when subjected to a random motion at 

the base. This aspect needs further investigations. 

The details of some of the investigations 

which are closely related to the present problem 

are described in the following paragraphs. 

2,2 ARNOLD AND WARBURTON(1949)131  

For freely supported ends, they derived 

frequency eqUations based on strain relations due to 

Timoshenko (1940) and were able to verify the experi-

mental results with considerable accuracy. It was 

found, for example, that the natural frequencies of 

thin cylinders with freely supported ends were 
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arranged in a somewhat unexpected order which had 

little relation to the complexity of the nodal 

pattern. Thus, for' short cylinders with very thin 

walls the natural frequency may actually decrease 

as the number of circumferential nodes (2n) increases. 

This was shown theoretically to be due to the propor-

tion of strain energy contributed respectively by 

bending and stretching; the latter was sometimes 

predominant for the simpler nodal patterns. Typical 

curves illustrating this phenomenon have been drawn 

in which frequency factor irZS is plotted to a base 

of wave length factor 

It is observed from these non-dimenbional 

curves that for a cylinder in which 2\ is 3.0, the 

configuration with four nodes (n=2) has a frequency 

approximately 50 percent greater than that with 24 

nodes (n=12). 

2.3 ARNOLD AND WAR BURTON 1953)1  

With freely supported and fixed ends both 

the theoretical analysis follows a somewhat similar 

pattern. Mathematical expressions were first derived 

for the component strains of an element of cylinder 

situated at the middle surface in terms of its 

rectangular displacements, u, v and w in directions 

X,Y and Z. These relations ,defined the possible ways, 
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in which an element might deform elastically. 

Thereafter an attempt was made to find expressions 

for u,v and w which were not only _compatible with 

elastic strain but also satisfied the specified 

end conditions. This, unfortunately, was not always 

possible by the introduction of known simple funct-

ions, but provided the shape of the assumed vibration 

form was approximately correct and the end conditions 

were not violated, the resulting expression for 

frequency would be close to truth. This follows 

from Rayleigh principle. 

After the desired wave-forms had been 

obtained, the strain energy and kinetic energy of the 

cylinder were derived respectively in terms of dis-

placements and rate of change of displacement, the 

latter involving the unknown frequency. Lagrange's 

equations were then written for the three independent 

displacements u,v and w and after elimination of the 

arbitrary amplitude constants, a cubic equation was even-

tually obtained. The roots -of thib equation )efined 

frequencies associated with a given nodal arrangement. 

The frequency equation derived for freely-,  

supportef9 cylinder is of the form 

, 3 	2
- K2 	+K1K0  = 0 

where the coefficients Ko, Ki and K2 are constants 
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for a given cylinder under a given. nodal confi-

guration and the vibration frequency is given by - 

1 	g  
2 na 	0 ( -• ) 

Different curves were plotted connecting wavelength 

factor 	with frequency factor lir .es . 

To make possible to calculate the frequency 

of vibration of cylinders with different end cond-

itions from the same equation as for- freely supported 

ends, an equivalent wavelength factor 21 e  was defined-. 

The expression for ;"\e  is, 

IC 
(m+e) 

a 
 17- 

Where, 

m = number of axial half waves, 

c = a function of m, n and the 
cylinder dimension, 

a = radius of cylinder, 

L = length of cylinder. 

If the ends are flanged, then, 

e 
= m+0.3 e-q(h/d) !t!  

(2.2) 

where, 

q = constant, 

h = thickness of cylinder 

d = thickness at end. 
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2.4 LINDHOLM KANA AND ABRAMSON(1962) 1111  

They considered the shell simply supported 

Nat both ends. The frequency equation has been derived 

in the form, 

(;)/ 
	In ( m ) 

47  a E 
4, 

----- -1- mn 
2 2 Q 	9, 2 	. 11+  

h. 
, 
c;
...
. I' (7s, m 	) n in 

Chia )2  	2 	2 ( m + n. ) 

where 9 

12 (1-4Y- ) 

a = radius of the shell, 

= mass density of the shell, 

E = Young's modulus of elasticity 

fmn  frequency, 

h. = wall thickness, 

= mass density of the fluid, 

= modified Bessel's function of the 
first kind of order n, 

= characteristic root = m Tca  

= Poisson's ratio. 

From here it is evident that as either in 

or n increases i.e. as the effective wavelengths 

decrease- the contribution of the apparent liquid 

mass to the total vibrating mass decreases. Thus, 

the resonant frequencies of the higher order modes 

are decreasingly affected by the presence of the 

liquid. 
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Their experiments on shells (on which there 

was a radial restraint at the ends but no restraint _ 

axially) showed that the presence of liquid did not 

affect the symmetry of the circumferential wave form, 

as expected, but did diminish the amplitude response. 

The liquid level had a marked effect on mode shapes. 

In general, the position of the axial nodes and anti-

nodes got shifted towards the bottom or filled port- . 

ion of the shell, the shift being greater the lower the 

liquid level. However, when the level was very low , 

as in the 1/4-full case, the nodes in the upper or 

unfilled portion of the shell tended to return to their 

normal positions.. Also, the amplitude response of that 

portion of the shell in contact with the liquid was 

appreciably decreased..  

Based on their experimentation, the frequency 

transition from the empty shell to the full shell is 

indicated in figure 2.1. These curves clearly show 

that the order in which the resonances occur depends 

upon the fluid level. For instance, for the empty 

shell f1,2  is greater than f115  whereas this order 

is reversed for the full 

They also observed that large number of 

frequencies were possible for various combination 

of axial and circumferential nodes, and they lay 

very close to each other, Fig. (22 ). 
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2.5 WE INGARTEfir (1 964 ) 16 1  

He derived the frequency equation from the well 

known Donnell 's differential equation of a circular 

cylindrical shell. This equation involved a frequency 

parameter _Ca_ given by 

111_ 	12 a4  (1- e---? 	2 	kmn+112 )4+ 1 1:2 	k4nm  
Eh2  -A 2 	2 y2  

kmn-r n  

where , 

(7 = density of the shell material, 

= radius of the cylinder, 

CT-  = Poisson 's ratio of the material of 
the shell,  

= Natural frequency of vibration of the 
shell in radians per second 

E = Young 's modulus of cylinder material, 

h = thickness of the cylinder, 

n = number of circumferential waveq, 

h2 
c2 = geometry parameter = 

12(1 - er2 )a2 

'Xkmn= characteristic roots . 

Values of :A. 	were obtained by substituting the 

appropriate boundary conditions for a vibrating beam 

in equation 

„. (2.5) 
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w = (el sinA inn75,+ c2 cosA mn  + 03  sinhA rrin ., 

+ 04  cosh 'A inn- ; ) cos ne . s in t .. (2.6 ) 

where, 

- non-dimensional axial coordinate (x/a) 

11 
2.6 BARON AND  SKALAK  

Two sets of modes were considered consisting of 

three and five constants respectively. Three constant 

modes were of the form, 

U x u_(x,0) = Cn W 	a W • - . cos nO 

v(x,0) = Cn  W. .sin n95 

w(x,0) = Cn a' cos n0 

(2.7 ) 

and five-constant modes of the form 

 

U x X x2 3 L.x W. 
	+W (a-.7 	7--)  

 

  

u (x ,01 = Cn  cos n0 

  

  

V V (X ,O) = un kT . 
x  

w(x,0) = on  Y 
W 	- 2a cos nf15 

   

where, a is radius of the shell, Cn  is normalisation 

coefficient, L the height of shell, n the number of 

circumferential waves of a mode of vibration, 0 and x 

are cylindrical coordinates, U,V W,X,Y are coefficients 

sin n 
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depending on the mode shapes of .free vibrationof 

the shell. 

It was seen that whereas three-constant modes 

gave accurate values of the frequency -only, the five-

constant modes gave accurate frequencies.and-Mode 
shapes. both for use in forced vibration problems. 

To take the effect of water, a velocity potential 

function e was.chosen-such that: it satisfied the 

Laplace 's equation, 

ae a2e  oe  
-- + ::T. r. 	--72" — 7 	= 0 

art  • 	80 	ax 

and at the same time it also satisfied the following 

boundary conditions:: 

(i ) The radial velocity of the fluid to be equal 

the radial velocity of the shell on the 

surface r = 4, 

(ii) the vertical velocity at the bottom of the 

shell to be zero. 

(iii) the pressure on the free surface of the 

YL liquid at = 7- to be zero. 

Once the potential function 0 had been deter-; 

mined the K.E. of the fluid was evaluated from either 

Of the following relations, 

t'r n ae = _ 	j  Tfluid 	2j 
	dn.us  .. (2.9) 



E D • Ani
2 + 

1 . 	--=1 
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where, the integration is taken over all surface s 

of the fluid. and -8-1  is the derivative of B normal an 
to s. e is the mass density of the fluid. 

or 
e a 2n 

Tfluid = -7/ / / o o o 

 

t ae \ 2 4_ 180 \2 
`ar ' 	‘ax 

 

ao 2 
77.(7)  

rdrcifedz 	.„ (2.10) 

 

The potential function 0 was evaluated in three parts, 

the sum of which satisfied all requirements on 0. For 

this purpose, the functions 0k9  7=1,2,3 were defined 

where each function Ok could be expressed as summation 

of components in the nth modes, 

00 

= E 8k n=1 
1, ( 1109X1t) 	 . . (2 . 	)' 

Substituting the appropriate values of On  and 

its space derivatives into eq.(2.10) the kinetic energy 

of the fluid in the nth mode took the form 

	

2 	("° 

	

In fluid= D  qn 	Dli qn 	D2i qn Ani i=1 	i=1 

where D, Dii, D2i, D3i  are the quantities depending 

upon the shell dimensions and the water depth. 

qn(t)  and Ani  are the generalised coordinates 

of nth'mode. 
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.The kinetic and potential energies of the 

shell in the nth mode could also be written as 

_ 1 Mn.2 
Tn shell - 7 m qn 

1 -- 	2 
and Vnshell = 7  Kn qn 

(2.13) 

in which Mn  is the generalised mass of the empty' 

shell and 711.  is the elasticity coefficients of the 

empty shell. The equation of motion governing the 

generalised coordinates qn(t) and Ani (t) were then 

obtained from Lagrange 's equation. 

dt aqn ,aqn 
 - 

Qn 

d ( 	3V - Qni 
dt 71ci 	a ni  

., (2.14) 

where, T, the total kinetic energy of the system 

in nth mode was given by the sum of equations (2.10) 

and (2.13). 

Solution of these equations implies that the 

kinetic energy of the fluid in nth mode may be 

written as 

-2 
c 	L3 C? en  qn  (t Tnfluid .• (2.15) 

where En  is a virtual mass coefficient given by 



1 

L ni  anh 	- (ani  a-) 

  

. 	arilL 
6a2n 2a  tanh( ) 

1-7 	L 	2a 

i=17-1E—rn--"—F--"--  alai  4 L (ani _n2 

  

  

1 
En < n 

  

   

   

   

IL 6tanh(ani -) 00 	E.  
-  E 	  i=1 a

ni a 
.-ILL( 2 _n2 )  1- 

ni  

tanh(ani  7g) 
••••■••■••■••onw.......■.. 

L 	, -- 2a 	sinhka 	) ill a 	ni a 2ccni a 
IL 

(2 .16) 
Here, ani  are the roots of the equation Jn(ani )=0 

For convenience in forced vibration problems, 

the virtual mass was defined such that kinetic energy 

could be expressed as, 

m 	2n IL 2 
Tnfluid 

= 
2
vn  f • f ir n(xalt)adOax 	(2.17 ) 
0 0 

Here, mvn 	the mass per unit area due to water. 

Substituting the value of wn  and equating the 

result • to eq. (2.15 ) the virtual mass of the fluid 

in nth mode becomes; 

mvn 	n e 	 (2.18) 

The potential energy of the combined system 

is not affected by the fluid in the shell. 

1 
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The frequency'detertinant can now be evaluated 

using Rayleigh-Ritz method, 

The frequency of vibration is given by 

n 

where, lowest 

froth the determinant. 

Eh /2  1 

is 

-M 

the 

can be 

mass 

•••`# 

determined 

per unit 

2, 	2 
m a a 

frequency 	number 

Here m 

area of the empty shell. 

Problems investigated by above mentioned 

investigators are somewhat similar to the present 

problem. Hencel  use will be made of their results 

in the present paper wherever necessary. 
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CHAPTER 7111  

FREQUENCY DETERMINANT FOR .CYLINDERS  
FIXED AT BASE FREE AT TOP 

3.1 STEPS.  IN THE DERIVATION.  

For deriving the frequency determinant of the 

cylindrical containers with fixity at base and free 

end at top, the following steps have been taken: 

(i) To derive mathematical expressions for 

component strains of an element of cylinder 

situated at the middle surface in terms of 

u,v and w; 

(ii) to find expressions for u,v and w which are not 

only compatible with elastic strains but also 

satisfy end conditions; 

(iii) to derive kinetic energy and potential 

energy of the cylinder in terms of the 

displacements and their derivatives; 

(iv) to consider a virtual mass factor for taking 

into account the effect of water on the 

.vibrations of the shell; 

(v) to write Lagrange's equation for the three 

displacements u,v, and w; and 



(vi) to obtain a frequency determinant from 

the three equations derived in step(v 

3.2 DETAILS OF DERIVATION 

A cylindrical shell of length L, thickness h, 

and mean radius a, is considered, an element of which 

is shown in figure (3.1). This element is bounded by 

two parallel planes perpendicular to the axis and 

distance 6x apart, and by two radial planes subtend-

ing  an angle 69f at the axis. The direct stresdes 

acting on the element parallel to the X,T and Z axes 

are px, py  and pz  respectively; the shear stress 

acting  on the face perpendicular to the X axis in the 

direction Y is pxy ; the shear stresses pyx' Pzx' 

pyz  being  similarly defined. The corresponding direct 

strains are ex, ey  and e z  and the shear strainb y9 

eyz 	e zx• 

The total strain energy of the deformed shell, 

neglecting the trapezoidal form of the faces perpendir., 

cular to the X-axis may be written as , 

2n L h/2 , 
s= f 1 	j iPx ex+13YeY+  

Pxye ia d dx dz 
o o -h/2 

(3 .1 ) 

In this it is assumed that as is usual in the 

first approximation, the direct stresses pz and the 

shear strains 	andd ezx  are zero. 



6 z 
4 

FIG.3.1 _SMALL ELEMENT OF THE SHELL 
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Prom Hooke's law 

Px =  
1- cy--- 

E Py 	---z 	+ ex  ) 
1- 

p xY = 7777) exy 

.. (3.2) 

Thus, 

2t TJ 1-h/2 ,  E 	' 	1 2 s = ......."-r, f f f  ie.. + e2 + 20'.e e 
2(1- or--  ) o o.-h/2 1 x 	y 	x y 

1 +-(1-Cr)e2 adOdxdz 2 	xy 
.. (3.3) 

The following symbols refer to the middle 

surface, 

> strains in direction X and Y 
621 

K2 changes of curvature in direction X and T. 

1 shear .strain 
'7t-/  twist 

The strains at a distance Z from the middle 

surface of the deformed shell may then be expressed 
approximately, 

ex  

e xy 

= 

= 

= 

62  

1.  

- Z 

- •Z K.2 

2'Z 

> . •(3 4 ) 
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If Li l y, and w are the instantaneous displaceMents 

in the direction X,Y and - Z of a point on the middle 

surface, the strains and changes of curvature are given. 

in terms of the displacements and their derivatives by 

au 
ax 

6 	1 av w 
2 	F, 	- a- 

, 	a2,w 	1 a 2w 	, av 

	

— TR2 	K2 = 	
_,_ 

a02 ' :7 7 

	

. ay 	 = 4. 1 au 	7: 	1 a2w 	1 air 	.. (3.5) 

	

ax 	7 -0 	7 R 77 7 ax 

where, 0 defines the angular position of the point 

considered. 

A convenient. vibration form must now be assumed 

to satisfy the following end conditions, 

	

At x = 0 	 At x.= L 

	

u -0 	 a2w _ n  

	

V = 0 	 ax 
w = 0 a3w _ 0  - 
ow 	ax = 
ax Px = 0 

Pxrif = 

For this , the variation of w along  the axis of 

the cylinder is assumed to be of the same form as that 

of a cantilever beam during flexural vibrations. 

Thus we can choose, the axial, circumferential, 

and radial displacements as follows: 



(cosh "Ax + cos -Ax)-k(sinh?\ x+sin 

1-(V.n-W)- 	 (cosh Ax-cos x) a 	a 

ex  

ey  = 

W -7\2 cosn0 
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(sinhAx s inA x )—k (cosh-A x — c os) x ) 

(coshx - cosy) - k(sinhAx 	)kin n0 

(coshAx 	cos -\x ) 	k(sinh -f\x„sinAx ) cos n0 

(3.6) 

U = 

v = V 

w = W 

cosn0 

where U,V and W are function of time only and the 

constant k is given by 

cosh -AL + cos -AL 
k  sinh 	+ sin 

in which various values of 	are given by 

= 1.875, 4.694, 7.855, 10.996, 14.1317, 17.279 

corresponding  to order of axial modes, that is first, 

second, third etc. respectively. 

Substituting various values as defined above in 

equation (3.4) we get,- 

xy 

-k (sinh`) x-sin 2\ x) cos n0 

Vin 	 - -(1- 
2 
 ) I a 	a a 

  

 

( cosh ,x—cos x) 

   

-k(sinhAx-sin x) loos n0 

Un 	3 	1  
a 	

2 	
r'*Wi 

-k(coShAx-cos7vx) 

V 

sin nO 

(s inh x+s in >\ x ) 
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(cosh
2 

\ X-COS2  ),X) 
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Substituting these values in the expression of 

strain energy (equation 3.1 ) we get, 

S = 	2 	ijj U2 	2 4 h3 Ea TC 

2 (1- cr f o 	+VV. 'A 7 

-k(sinh x+s in "x) 2  

(cosh ?x+cos 7x) 

h n 	\ vn-w)2   
a 

h3 	_ 2 \2 
12a' 

+ 	 ) 

  

  

 

(cosh?\ x-cos? x) 

  

- k (s inh )\x-sin'Xx) 

3 
+ -21-t T 

12a 
2, 	2\ -`;)), 	01-n-Wn 	) 

- k(sinh \x.cosh'Ax)-sinAx cos Ax 

+ sinh x.cosh x -. cos x.sin x) 

+ k2 (sinh2 /\ x-sin2  A x) + 	1  r̀. 2  ) 1 h  V2 )t. 
2 2 U2n2 4h3 2 	, 4 h

3
V- + b. '-- ---2-- n 
12a- 	a 	12a 

_  3  2 
 ant h  _  8h  
a 	 2 	n ?12VW il Qinh Ax+ sin )\ x) 

12a 
2 

k (c osh x- c os x ) > dx 	 (3.8) 

Since , 
h/2 	 h/2 	 h/2 

f dZ = h; 	f 	Zdz = 0 ; f 	Z 2d z  = 121  12 _h/2 	 _h/2 	 _h/2 
27E 2 	2TE , 

f cos nc?5 dO = f sin -n95d0 = 
0 

Taking h outside the integral sign in equation and 



h2 

12a
2 

E'rzah rL  
2 

2 (1-0-  ) 0 
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we get 

2 
a2 A2 (Ie. w2 

cosh?, x+cos A x) S 

K,  putting 

2 / 	
-n

2  2 
-k (sinh 	x+s in 	x ) 1  

a 
2 	kv'

„`"  
-2nVW) 

1 	2 2 	2 4 	3 
+-1-2-K (V n +W n -2n VW ) ( cosh  x—cos 	x) 
a 

   

-k (sinh 1x-sin i1 x) 
2-

+  1/-21  Vn-W )+ K 	2  
a 

   

(Vn-Wn2  ) (cosh2  x-cos2  1x)-2k(sinh ?,x,cosl a 

  

-cos  + k2  (sinh2  x-sin2  fix )11  

.iro 2 

+. (1.:----9.-)V2 2+4V2  2\2K+ 	+ 4K n2  A2  e 
a 

2 and  - 	2 1 _ 	 8K n 	VIATI (s ink Ax+sin ..x) 

2 1  
-k ( cosh x-cos -?\ x) > dx 

For the sake of convenience let us use the following 

notations , 

.9) 

• CC = 
sixth  2 ?\ L 

4 

cosh 2 L 
4 

sin 2 A  L 
4 

8 = cos 2 ":;■L 
4  

--g,= -.cosh -./11.cos L 

1 
(11 = -.cosh T.J.s in 

_ 1 
- -.sinh L. s in 1, 

_ 1 
- 	>\ L. cos L 

o. 	 ) 

Thus various integrals become, 
L 

f cosh
2
A x dx = + 

2 0 
a 



=I C 

= 717,  - 
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f Ls inh2 A x dx 
0 

= 2 

L 
f s inh x. cosh 1.x dx 
0 

= (3- 

f 	x dx + .1(  
o • 

2 f s . 	x dx 	2 - 
L 

f sin ?Nx. cos 	dx= -6 + 
0 

f s "Ax,,sinh A 
0 

dx = 21 - 

1 
4 

f sin Xx.coshx dx 
0 

f cos -Xx.sinh?\x dx 
O 

f cos ',x.cosia .)\ x dx 
0 

Also,  
L 

f 
0 

(cosh x+ cos 	)-k(sinhi`' x+s in x ) 
2 
dx 

L 

(L+ a+ I +ill+ .5 )+k2  (a,- +71J_ 	) 

- 2k ((3+' -6 ) 

= M1  (say ) 

coshA x- cos x )-k (sinh x-s in .?\ x ) 

(L+a+ 1 	)+k4 (a- -11+ 
-2k (0__( -s  ) 

= Lir2  ( s a y ) 
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(cosh2?\ x-cos2?\  x )--2k (sinh 1x. cosh )\ x-cosA x.sin)lx ) 
2, 	2 +k sinh x--s in2  A x) dx 

= (a-1( )-2k(13+5- 7)+k2 (a +1 -L) 

= 11/13 .( say ) 

, 2 (sink 	x )-k (cosh x-cos)\ x I 

= (a- + 	- 5) k2  (1D+a+ - _ 

-2k(B-C +5+ 1-77-) 2A, 
= M4  (say ) 

The terms Mi.  ,M2 , M3  and M4  have again been introduced 

for the sake of convenience . 

Substituting  all these values in equation (3.9) we get 

the expression for potent ial energy as follows, 

mail S E  
2 (1_ 

2 2 	(TT +W2  2 	1 P 2 , +W 	) 	+ 	V -1-J k1+K - 	- a 	 a 

+W2 (1 +Kn4  )- 2nVW (1 +Kn) 

+20- n 	
a 	

2 vw_Kri2 2/72 a UV- --UW + 

  

2 2 120' 
V
2 21 + 4 TK n  2  A 2 W2  - 

,1+4K)+  
a  

- 2n 
	 2 — UV - 8-Kn VW 

L 

0 

L 

0 

M 

. . (3,11 ) 
Kinetic Energy is given by 

2 TCILf 	

)

h au,2 	av ( au)2+( 
	441'21 T  2g 	 at o -h/2 	 at' dx dz 

e Trah - 2 M4 + U  = g  

  

2 ± 
(3.12) 
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Here, U, V and W represent the derivatives of U,V and 

W with respect to time. 

Since, U,V and W are independent variables, the 

La,grange i s equation is applicable, 

d ( aT )  aT = as  
dt \-571-  au 	aU .. (3.13) 

and two similar expressions in V and W. 

Pu.tting, 

U = A cos Got 

V = 1.3 cos ci..)t 

= C cos(..0t, 

and writing 

A11-_- 	); 
E g 

where , 	is the natural frequency in radians per second 

we get following three equations, 

M3 

1\114 A 

C = 

„ff  
"1 4 

0 

A + 

(3-  1227) nA 
M41B  -( M3  a 

2 n -7 J,A.. 
a 

2 	a 

12-e5: 2,_ 	_ ki+4K)ivi4  a 

1-Cr-  n2  
?\2111 + a 

-  a • 

cj-n ->\ 	1-(63-  
a 	m3 - 2 

   

2 	2 
n K )M2+ 0-1c 	n M3  + -4'M2 13+ n  (1 

a 

   

   

4 Kn. X2D.141C = 2 
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I 	ivr  
Lyez a 0 

a  1 cr 
(1.+n2K )1V12-4-c-  K -;\2n1/13  - 2-- 4K n 	1\1141B 

- a?  
a2 	1(1+n4K)M2-6- 2Kn \2M3  

a2 
1- (3-- 	2 )\ 2 

2-4Kri M4 

• 

C=0 

  

(3.13 ) 

From these equations (3.131 one may obtain 

the value of natural frequency of vibrat ion of the 

system by eliminating three constants .A.,13 and C. To 

take the effect of fluid inside the shell the 

approach similar to that given by Baron and Skalak 

(see Art .2.6 ) shall be used. 

It is convenient , for appl .cat ion to forced 

vibration problems to define a virtual mass of the 

fluid such that the kinetic energy of the fluid can 

be expressed in terms of the radial displacements of 

the shell only, that is, 

m 2 L 
Tnfiuid = 2 f 112  	/4-  o o 

a d0 dx 

m 
f _711 

2 Tc 
f 

0 

L 	2 w.  (cosh \x-cos 	x )-k (sinh )x 
2 

-sin 	cos2nO ad0 dx 
2 o 

• 2 .W .a7z IL 

2 
cosh 1 x-cos) x) 

2 
dx -k(sinh->tx-sin-A 

   

mvn 1\12 a 7  
11/15 	) . 	. (3.14) 2 
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Here mvn  is the virtual mass per unit area which 

has to be added to the mass per unit area of the 

shell to take the effect of fluid inside the shell 

into account. The virtual mass of the fluid may thus 

be considered to be an additional tank mass moving 

only in the radial direction. 

At this stage, an assumption is made that the 

virtual mass in case of clamped-free cylinder is not 

different from that of simply supported-free cylinder. 

This, in reality, will not be very far off from the 

actual conditions for higher modes, because of lesser 

influence of the boundary conditions, on the frequency 

of higher modes. For fundamental and other lower 

modes, however, the results will.have some inaccuracy 

due to this assumption. However,'with this assumption, . 

the kinetic energy of the fluid may directly be taken 

from Eq. (2.15) 

n 2 3 3. T
n fluid 6 Cn 	L n .. (3.15) 

where, en- is the virtual mass coefficient whose 

value may be taken up directly from equation (2.16) 

page 24 . Values of ani  occurring in that expression 

may be obtained from Table 3.1. 

Equating equations (3.14) and (3.15), 

- 2 
3 ' 	-2 	mvn, IN a n L 	en  W = 

2 
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Table 3.1 

Values of ani (in equation 2;161 which are 
roots of e uation. JA(ani  _= 0 

n=0 
	1 	2 

	
3 
	

4 
	

5 
	

6 

i = 1 	3.832 	1.841 	3.053 	4.20 	5.31 	6.40 	7.50 

2 7.016 5.332 6.707 7.89 9.04 10.52 11.74 

	

3 10.17 	8.536 9.970 11.17 	12.33 13.99 	15.27 

	

4 13.32 11.710 13.170 14.37 	15.53 17.27 	18.60 

5 16.47 14.860 16.310 17.52 18.79 20.53 21.88 



_4n_ 

From where the expression for virtual mass is obtained 

as , 
3  L3  et  

mvn. 	3 a M5  
(3.16) 

The different curves of values of 6n  for different 

water heights and number of .circumferential modes for 

the experimental shell have been drawn in figure (3.2). 

Now the total kinetic energy of the shell-

fluid system becomes , 

T 
27E "'IL mvn f W2ad 2RL.2 .,,-2_142)ad0dx+ 2goo e 	(v- - 2 g 0  o 

dx 

Sub st itut ing the values in Lagrange 's equation 

d(11\ _ aT _ 	as 
dt 'aw' 	aw 	771 

we get, 

The122. 2W N[2  + 
2 g 

3L3  e Ten.  
3 a e hy5 	2W.Tr51 

E Tcah  
2 

2 (1- 	) 
2 "\. 4 a 	VI+ -2- 

a 
2 (1+n4K)W 

 

-2n (l+n2K)V kil0+2 	U 

+K 2  nV-2Kn2 2 W)M3 

+(8Kn2 2  W- 8.Kn N2V 1\5 > 2 	r̀  	-4 i 

or , 
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0- 
a 3  

, A+ 	 2 a+n2  K )M2  +0- K 2 n M 	2 	?'■2M4  k3 3 a 
1 t  a2 >\ 4Kmi  + 	ki+n4K )M2 - 6.- 2Kn22M3  

 

 

 

 

+      	
31,3aT 

2• 2›24-12 had_ 
 
6 ) 1 °  

The first two equations of eq. (3.13) will remain 

unaltered as the presence of water will only have 

a effect in radial displacement terms. 

Therefore, now the frequency determinant becomes, 

2 1-cn2 
C:5-T1)\ 	1- Cr n. „ j 	<L5-  >\ M1+ 2•"Z.M4-  '344 	 m a -2 'a 	 a 3 a 

o 

  

2 
rj-22-(1+K )M2+1-2 `=Y  
a. 

A 2 . (1+4K)M4  

A YI2 

  

0-n 	1- 
a M3̀ 2 'a 	4 

   

   

 

1-12  (1 +n2  K )M2  
a 

, 	2 +6K A2.  — • 4 Kn ;\ 

 

  

  

  

0 

    

    

    

M - a 3  - -42  (1+n-K )M2  
a 

-1-61 nM3  

 - 2-  '4Kn 2  M 

 

a.'/\4  KM, + 

   

  

+(1 +n4K )M2-26H 
a 

  

  

2 
A 
2 	2 1- cr n M3+  

. 4Kia2 ;\2 M4  

"12 ' 3ah 

   

(3.17 ) 



cosh L. cos L 

cosh L.siniN, L1 

s inh A L s in. L 

sinh L. cos) L 

1 
A 

 

1 
-)C 

 

  

-rf 1 
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Various terms occurring in determinant (3 .17 ) have 

the following values, 

_ sinh. 2 L 

	

a 	4 'A 

cosh 2 
4 A - 

sin 2 L 
4 

cos 2AL 

	

8 	4 

(1- 0"2  )ewP  (frequency K = E g 	parameter ) 

2 h_ 
19,a- 

k = cosh L+cos 1,  L 
sinh L+s in 

= (L+a± 	s )+k2  (a- + 

L = 1.875, 4.694, 7.855,10.996, 
14.137, 17.279 
corresponding to number 
of axial modes = 1,2,3,4,5, 

6,7,8 

_ )_2k (p+c)c 

M2 = (L+a+ -11-.5) )+k2  (a-1 -TIT+ )-2k (3- ''')‘ -6) 

= (a- I )-Ek2  (a+ 	- 2k (p+6- 2 A ) 

M4 = (a-1 +111.- 3) + k2  (L+a+ l - 	)-2k 	+ + 	) 

For given value s of , n, L, a , h and. 	, the 

lowest frequency parameter n , can be determined from 

the determinant 3.17 and the frequencies of vibration 

of the fluid filled shell calculated from the equation, 

= MT,  
-1  (1- ) 

.. (3.18) 
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in which h is the thickness of the shell. 

Once the frequencies are evaluated, the 

corresponding mode shape ratios may be evaluated 

from the system of homogeneous equations, the deter-

minant of which is given in Aq.3.17.Knowing frequ-

encies and mode shapes, the modal analysis of the 

shell may be carried out. 

3.3 NUMERICAL RESULTS  

Numerical results, from the derived -express-

ions for frequency and mode shapes, have been obtained 

for the shell which was used for experimental investi-

gations. This shell had the following characteristics. 

(For details see Chapter IV). 

Length of the shell 
	L = 60.2 cms. 

Radius of the shell 
	a = 13.725 ems. 

Thickness of the shell h.= 0.0795 cms. 

Poisson's ratio of 
the material of the 
shell 

= 0.345 

Young's modulus of 
elasticity of the mat- E = 7.2x10

5 kg/cm2 

erial 

Density of the 	= 8.0 gm/cm3  
material 

Density of the fluid 	= 1.0 gm/cm`' 

Thus for the shell, 

IA = 4.38 

a/h = 173 
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Numerical computation may be divided into 

three parts , 

(i) Evaluation of virtual mass coefficient, 

(ii) Evaluation of natural frequency of 
vibration, and 

(iii) Evaluation of mode shapes. 

We shall take these items one by one. 

(i) EValuation of virtual mass coefficients 

Equation (2.16) was used to obtain the values 

of en. A computer programme was made which has been 

given in Appendix (see A.2). The variation of en 

with various water depths and number of circumfer-

ential waves has been plotted in figure (3.2), page 41 

The computations include terms upto and includ-

ing i=4 in the summation in en. 

(ii) Evaluation of frequency of vibration  

To determine the frequency parameter 	from 

the determinant (Eq. 3.17) for known values of other 

variables and then the frecuency from .the equation 3.18, 

a computer programme was written as given in Appendix 

A.3. The procedure followed for evaluation of frequency 

is as follows. 

An approximate value of the frequency is ass-

umed and the value of the determinant is worked out. 

This is repeated with increments of frequency given_ 
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at regular intervals. The value of frequency at which 

the value of the determinant becomes zero gives the 

requency of vibration of the system. For a particular 

set of axial and circumferential nodes, there are 

_three possible frequencies at which the determinant 

is zero. Only the lowest of these will give the true 

natural frequency of vibration for the set of nodes as 

the other two frequencies will be far reloved from 

the lowest value. For any frequency , the computation 

is- stopped when the ratio of the difference between 

two consecutive frequencies for which the deter-

minant changes sign to one of them becomes less than 

the pre-specified accuracy. The accuracy in these 

computation's is 0.0001. 

Results obtained have been shown in Table 

3.2 and curves for first mode has been drawn in 

figure 3.3, where m is the number of half waves 

(nodes = m-1) in the axial direction and n is the 

number of waves (nodes = 2n) in the circumferential 

direction. 

Results for Weingarten method  

For comparison purpose, frequencies have also 

been calculated from the expression derived by 

Welngarten(Eq. 2.5). The results have been plotted 

in Fig. 3..3 and 3.4 for both the shells (L/a = 4.38 

and 2.63)., To show the effect of fixity at the base , 
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Table 3.2  

Fre uencies obtained theoretically 

length 
of the 
shell 

Number 
of axial 
half 
wave 

Number 
of cir- 
cumfer-
ential 
waves. 

Water 
depth 

(ams) 

Frequency of 
vibration by 
(Energy Method) 

(cps) 

Frequency of 
vibration by 
Weingarten 
method 

(cps) 

C 

m n 
4 
u 
ct 

4 

. m 
0 

o co 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

6 

3 

3 

3 

0 

0 

0 

0 

0 

0 

0.332 

0.535 

0.93 

383.20 

141.70 

83.65 

97.50 

148.60 

214.10 

58.150 

40.450 

33.120 

519.92 

148.79 

87.27 

106.14 

156.24 

222.40 

IMO 

NOM 
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curves for shell simply supported at base have also 

been drawn in the same figures . 

EVALUATION OF MODE SHAPES  

For known values of frequencyl  number of axial 

and circumferential nodes, properties_ of the shell, 

the fractional depth of water all the elements in 

equations( 3.13 	) are known except the constant 

terms 413 and C. By letting one of .them to unity, 

we can find out the values of other two by solving 

the equations simultaneously. Substituting back 

these values of constants in equation ( 3.13 	) the 

three displacements of the shell (u,v, and w) can be 

determined. These haVe bpen obtained for the eXperi7  

mental model of the shell for the first mode of 

vibration for 3 numbers of circumferential waves. 

The results obtained have been plotted in Figure 

3.5. The computer programme is given in Appendix A.3 

3.4 OBSERVATIONS ON TEE THEORETICAL RESULTS 

From figures 3.3 , 3.4 and 3.5 and tables 

3.1 9  3.2 following observations can be made: 

(1) Frequency of vibration is high at lower 

circumferential nodes (say at two or three). Its 

value diminishes as number of circumferential 

waves increases achieving a minimum value at certain 
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value of n, after which it again starts increasing 

with increase in n. 

(2) Frequency is lower for lower number of axial 

nodes and higher for larger number of have waves 

in the axial direction. 

(3) Except at m=1, the frequenCy curves for 

clamped-free shell and simply supported.-free shell 

follow each other closely. The difference is large 

(of the order of 16%) at lower nodes' and small 

(of the order of 4%) at higher nodes. 

(4) Frequencies obtained from the energy method 

and from the Weingarten method agree quite closely 

with each other. At n=1, the difference between the 

two is nearly 23% . But at higher number of ciro,, 

umferential waves, the difference is only 8% or 

even less. 

(5) The effect of water is to reduce "the natural 

freqUency of vibration_ 

(6) The virtual mass coefficient varies greatly 

with depth of water at lower number of circumferential 

waves. At higher values of n, the variation in 

6n  isvery little with increasing water depths. 

It means that at higher nodes, the frequency will 

not alter appreciably with different.water depths. 
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CHAPTER - IV 

EXPERIMENTAL INVESTIGATIONS 

4.1 THE MODEL USED IN EXPERIMENTAL 
INVESTIGATIONS (See Fig. 4.7 )  

The model was made by rolling a thin brass sheet 

sheet of thickness 0.0795 cms. over a wooden form-

work. The main fabrication was done in Earthquake 

Engineering School Workshop and the joint along the 

axial length was silver soldered in Mechanical 

Engineering Workshop. The diameter of the cylinder 

was 27.45 ems and the length 60.2 cms. Top end 

was kept free while the bottom one was clamped. 

The clampness was provided by tigtening the cylinder 

at its lower end with several screws passing all around 

its periphery as is clear from a look on figure 

(4.7 ). A brass plate of 3/8" thickness of the 

size 46 cms x 46 cms was used as a base for this 

model. Some important features of the model are as 

follows:- 

Material of the shell 	Brass 

Density of the material of 
the shell (()) 8.0 gms. /cm3  

Poisson's ratio ((5-- ) 	.0.345 - 

Young's modulus of Elasticity 
of the material (E). 	7.2x105  kg/cm 2 



Fig. 4.1, The General View of the Ndel 

1, Brass cylinder;2.Rrass 
base pl?te, 3. Straingag , es 
4. Wooden blocks for fixing 
picAlps. 
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Density of the fluid(water) 
which was filled inside the 
shell ( 

Radius of the cylinder (a) 	13.725 icms.  

The minimum diameter measured 
was 27.25 ems and the maximum 
diameter Wa8 27.65 Cms. The 
average valUe was 27.45 cms. 
Thus a discrepancy of about 
+ 0.20 ams in diameter from 
the mean value was present 
in the shell. 

Length of the cylinder (L) 

Experiments were done with 
two different lengths 

(i) L=60.2 cms. 	L/a = 4.38 	a/h = 173 

(ii) L=36;1 cmsi 	L/a = 2.63, 	a/h = 173 

The value of E was found from the vibr-

ation test on a cantilever beam of the brass (some 

specimen as used for model). A brass strip of 

2.55 cms. width, 12.8 cms. length and .0795 ems 

thickness, fixed at the base and free at the top 

was pulled with hand and then released. The 

natural frequency of vibration of the beam was 

measured from the pen recorder record of the 

vibration. The value of E was then obtained from 

the well known formula for the vibration of 

cantilever beam 

1 	3.516 	/7 I g f = 27.  • L2 	A Q  • 

/ 1:0 gmicm3  * 
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The cylinder was made water tight at the 

bottoi by a rubber solution and after that with 

an application of Araldite on inside and outside 

both. This arrangement was very successful and no 

problem of the leaking of water was faced during 

the experiment. 

4.2 EXPERIMENTAL PROCEDURE 

The experimental work was conducted under 

various sets of conditions as follows: 

(A) Free Vibration. Test  

(a) By pulling and releasing, 

(b) By tapping the model at various places. 

Records were taken with empty shell and with 

varying water depths. 

(B) Forced Vibration Test 

Model was mounted on shaking table and 

vibration records, for steady state forced vibrations, 

.were taken with Miller pickup at various positions 

along the length of the shell as well as around the 

circumference. The resonance records were obtained 

without water and with. varying water depths. 

The details of each one of tests are given 

below: 



(A) Free Vibration Test  

Free vibration test 'was .Conducted under 

different ways e.g. by pulling and releasing arrange-

ment and by tapping 'on the" model with hand, to see the 

behaviour of the shell under these conditions. The 

aim was to obtain the natural frequency of vibration 

in each case and to 'see if there was any discrepancy 

in various records of vibration of the shell. 

An other method by-  :radialpulling and releas-

ing was also tried but it did not give any good record 

fram which any conclusion could be drawn and, there-

fore, was abandoned. 

The strain gages were pasted at different 

points on the shell to know the nature of strains 

produced and to calculate from' their records, the 

natural frequency of vibration. At one or two places, 

in some cases, Miller pickup was mounted on a wooden 

block of 1/2" thickness and the records were taken 

in the same manner as with strain-gages. 

The records were obtained on Brush ink writing 

oscillograph by connecting the pick-up (or strain 

gages as the case may be with D.C. Amplifier and 

recorder. 

The general set-up of the experiment -appears 

in Fig. (4.3). 



_62- 

(a) Free Vibration Test by Pulling  
and Releasing  

Because of the flexibility of the shell, 

the clutch system which is most widely used in 

earthquake engineering practices for conducting 

the free vibration tests was found to be inconven-

ient and unreliable under present circumstances. 

A light cotton tape was wound all around the peri-

phery and on its one end was placed a' hanger over 

which weights could be placed. This tape was made 

to pass over a pulley to ensure the horizontal 

loading (See Fig. 4.2 	)7  

The condition of sudden releasing was achieved 

by burning the tape near its end with a gas burner. 

The flame of the burner was kept bright enough so that 

no slackness in the tension in the tape occurs during 

the burning. 

-Three loads of 5 kg, 7 kg and 9 kg were -put 

on the hanger successively and the records were taken 

with various strain gages, The aim was to see the 

effect of initial strain level on the vibration cond-

itions. Loads were not increased beyond these values 

because of the danger of permanent deformations near 

the top. 

(b) Tapping the Cylinder. 

Cylinder was tapped with a blow by hand at 

• different heights in the axial direction and also 
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around the circumference. The.records were obtained 

with several strain gages to study the behaviour of 

the shell. 

(b) Forced Vibration Test 

The model was subjected to steady state 

vibrations on shaking table with the help of Lazan 

oscillator. The later was driven by a d.c. motor, the 

speed of which could be varied with the help of 

speed control unit. Varying the eccentricity of 

the masses in the oscillator or and the speed of the 

motor any desired amount of sinusoidal force within 

the limits of each instrument, could be given. The 

specifications of oscillator and the motor were as 

follows. 

Lazan Oscillator 

Capacity ± 1600 lb. at 1800 rpm. 

or 

4000 inch-lbs.at 1800 rpm. 

Maximum speed = 3600 rpm. 

D.C. Motor  

H.P. 	3 

Volts 	220 

Amps 	13 

Phase 	D.C. 

R.P.M. 	2000 

Wooden blocks were pasted on the shell at 
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different places (see figure 4.8) in order to enable 

the pickups to be screwed at different positions. 

The aim was to have a relative idea of the ampli-

tudes occurring at various points and also to have 

an idea of the behaviour of shell in one particular 

direction when it is subjected to a motion in the 

same or in some other direction. The output of the 

pickup was fed to universal amplifier circuit and 

vibration records were obtained from the pen recorder. 

Two sets of amplifier and pen recorders were needed-

one for pickup of the model and the other for the 

pickup on the shaking table. The latter gave an idea 

of the magnitude of the base acceleration. Thus the 

ratio of model acceleration to base acceleration 

could be obtained at any stage of vibration. 

Experimental setup for this case can be seen 

in figures 4.4 ,4.5 and 4.6. 

The experiment was started with a low 

frequency of the order of 5 cycles per second and 

the corresponding vibraton records from the pick- 

up on model and on shaking table were taken simul, 

taneously by putting the recorder at on or off 

position at the same instant; Thus, frequency measured 

from both the records will be same ant their calibrated 

amplitudes will give us the acceleration to which 

they have been subjected by the forced vibrations. 
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Slowly the frequency was increased with the help 

of speed control unit and the corresnonding vibration 

records taken every time. As an average the frequency 

was increased by 0.5 cps every time. At some frequency 

for a particular condition the amplitudes measured 

were very large an after it they subdided again. 

This indicates the occurrence of resonance and this 

frequency will be the natural frequency of vibration. 

However, the various limitations of this will be 

discussed later. The maximum frequency which could 

be reached with the available instruments was between 

35 and 40 cps, though in some cases higher frequency 

of even 48 cps was achieved. 

Near resonance_, there occurred vertical 

vibrations of the table which interfered with the 

natural mode of vibration. To remedy this a heavy 

weight was tied down en the table (Rig-4.4 ) and this 

solved the problem to a great extent._ 

Similar to free vibration -tests, this test 

was also carried out for two lengths of the cylinder 

(T 60.2 cms. and L=36.1 cms). In each case the records 

were obtained with varying water depths. Miller 

pickups' position was also varied as has already 

been explained in article 4.2. Table 4.1 summarises 

the way in which the test was conducted. 



Table 4.1  

Statement filoyLingpLosedure for 
forced vibration test 

5777177---  • 

Length "Ratio of Depth of Ratio of Pick=up positions 
of length water ins- water on which records 
cylin- to radius ide the depth to were taken * 
der of the cylinder length of 
(ems cylinder ems) the cylinder 

0 0 1,2,3,4,6,7 

60.2 L/ =4.38 20.0 0.332 1,2,3,7 
CMS. 

32.2 0.535 1,3,7 

0 0 2,3,5 

36.1 
cms. 

L/a=2.63 17.80 0.494 2, 

31.60 0.875 2,5,8 

* For various pickup positions please 
see figure 4.8. 
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4.3 EXPERIMENTAL RESUTMS 

(A) Free Vibration Tests 

(a) By pulling and Releasing_:  

Following observations have been recorded in 

this case:- 

1. Vibration of empty shell, 

2. Vibration of shell with varying water 

depths. 

These observations were made for two lengths 

of the shell (L=60.2 cms. and 1=36.1 ems). 

Typical records have been shown in Fig.(4.9A) 

(b) By Tapping: 

Observations were made for the same conditions 

as with pulling and relesing. Object was also to 

compare the records taken with these two different 

methods of•free vibration. Typical records 'have been 

shown in Figures (4.913, 4.10 	and 4.11 	). 

The variation of frequency with depth of water 

is given in Table (4.2). 

(B) Forced Vibration Tests 

Records have been obtained for the following 

observatjons:- 

1. Vibration of empty shell with pick-up at 

various location. 
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Table 4.2 

Frecuencies observed in Free Vibration 
test with various water de the 

Length of the Ratio of water - Frequency of 
shell (ems) 	depth to length vibrations 

(L) _ 	of  the cylinder 	(cps) 

60.2 

36.1 
cms.• 

0.0 

0.270 

0.388 

0.491 

0.611 

O.708 

O.786 

0.924 

0.0 

0.345 

0.570 

0.717 

O.93 

51.5 

48.0 

44.5 

40.5 

35.5 

31.0 

27.5 

22.5 

62.5 

58.5 

49.0 

38.8 

27.5 
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2. Vibration of the shell with varying 

water depths, with pickup at various 

locations. 

Typical records are shown in Fig.(4.13). 

Resonance. curves have been drawn taking model accel-

eration as ordinate and frequency as abscissa. ,These 

are shown from Figure 4.14 to 4.19 for different 

conditions. 

4.4. OBSERVATIONS ON EXPERIMENTAL RESULTS 

(A) Free Vibration Tests  

From the vibration records of figures 

4.9 , 4.10 , 4.11 and 4.12 , following observations 

can be made. 

1. Records with circumferential strain gages 

were better than those taken with axial strain gages 

perhaps because the strains in circumferential gauges. 

were more than those in axial gauges. 

2. Vibration records with strain gages near 

the bottom were very poor (Fig.4.9A iii). They did 

not give any idea of the frequency of vibration. 

Strains in the circumferential gages will be small at 

this level because of restraint on the deformation 

of the section and therefore local high frequency 

components were being superimposed on the fundamental 

frequency. Perhaps the noise of the instrument was 

as important as these vibrations resulting in 
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unclear records. 

3. Frequency obtained from all the records, for 

example from all the gages with pulling and releasing 

and from tapping at different points, was nearly the 

same. The average value may be taken as 51.5 cps. 

It shows that each time the shell was vibrating in 

the same mode. 

4. In some cases, in records with tapping, some 

sort of beat phenomenon was observed (Fig.4.10-1). 

It may be due to the fact that depending upon the 

position of the place where the shell was tapped 

and the magnitude of the force, two frequencies 

lying very close to each other were excited. 

5. Frequency of vibration reduces as the water 

depth increases. This is the type of behaviour which 

is expected in a vibrating system dile to added virt-

ual mass. 

6. The vibration records became more distinct 

as the depth of water inside the shell increased. 

7. Calculating the values of the virtual mass 

from the expression already derived we get the 

values shown in Table 4.3 

It shows that whole of the weight of the 

water is not effective in producing stresses in the 
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Table 4..3 

Variation of Virtual mass with water depth 

FraCtionaVirtual Virtual wt. of virtual mass 
water mass coeff mass water expressed 
depth -icient as percentage 

L en (kg) (i< )-) of total water 
wei-ht 

0 0 0 0 0 

0.2 0.18565 0.595 7.12 8.35 

0.3 0.22077 2.400 10_72 22.35 

0.4 0.24339 5.400 14.25 37.90 

0.5 0.25879 9.300 17.80 52.30 

0.6 0.26981 13.520 21.37 63.50 

0.7 0.27805 17.650 24.90 70.90 

0.8 0.28443 21.750 28.50 76.40 

0.9 0.28949 25.600 32.05 79.90 

1.0 0.29362 29.500 35.55 83.20 
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shell during the vibration: As the water depth goes 

on increasing, percentage contribution of the total 

water weight also increases. 

(B) Steady State Vibration Tests  

Behaviour of shell during steady state vibrat-

ion conditions was observed to be very peculiar. 

Following are the observations made from the figure s 

4.13 	to 4.19 . 

The nature of vibration throughout the freque-

ncy range waa not uniform. (See Fig. 4,13). At the 

lower imparted frequency of say 15 cps the amplitudes 

observed were very small and the motion of the shell 

was more or less a rigid body motion.For this forcing 

frequency on other very high frequency of the order 

of 140 cps was also observed to have occurred,- 

(Fig. 4.13 ix) simultaneously. This phenomenon was 

more pronounced in the shorter shell. 

2. 	At some stages the records were very smooth 

(Fig. 4.13-ii) while at some stages there appears 

to have occurred superposition of some more number of 

modes. At some value of frequencies some strange records 

were obtained(Pig.4.13-v and x) where even under the steady 

conditions, the amplitude varied sinusoidally at the 

same frequency. The possible explanation for this 

behaviour may be the shape of the shell. 73eing circular 
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in plan there were not only the flexural vibrations 

but vibrations of some other kind also. 

The general character of the various mode 

shapes is indicated in Figure 4.20. In vibrating 

shells two type of nodal patterns exist together. 

The circumferential nodal pattern denoted by letter 

n(n=number of circumferential waves; circumferential 

nodes=2n) and the axial nodal pattern denoted by 

letter m(m is number of half waves in axial direction; 

axial nodes are m-1). Occurrence of these two type 

of waves will affect the vibration behaviour of the 

shell to a great extent. 

-3. 	Vibration record of the pick-up on shaking 

table was very smooth throughout the frequency 

range.(Fig. 4.13-x, xi, xii 	). Frequency could be 

measured very accurately at any stage. This shows 

that motion was entirely sinusoidal. Any irregularity 

or pecularity in the record of the pick-up on model 

was due to some peculiar behaviour of the model itself 

and not due to some haphazard motion of the shaking 

table. 

4. 	In some cases, the resonance peaks could not 

be obtained because of the high frequency of vibration 

of the shell. The maximum frequency which could be 

reached by the mechanical oscillator was 45 cps. 
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5. 	For any one given case of a shell having the 

same water depth, the resonance peak was observed 

to have occurred at different frequencies (Table 4.4, 

and Figs. 4.14 to 4. 19) when recorded at different 

points of the shell.This may be explained with the 

help of the manner in which a shell vibrates(Fig.4.20' 

From Fig. (2.2 ), it is seen that for various 

combinations of axial and circumferential modes there 

are possible several resonant frequencies. For one 

particular mode, say fundamental mode, the frequency 

of vibration will change with the number of circum-

ferential nodes. In a vibrating shell it is very 

difficult to say which -of the combinations of these 

modes is present at the time of resonance. 

Due to the limitations of the availability of 

instrumentation, only one pick-up could be used at 

a time on the model. Hence, for one particular case 

the experiment had to be repeated as many number of 

times as were the pick-up locations desired on the 

shell. Therefore, it was not possible to bring the-

same conditions every time. Under these conditions, 

it was possible that at one time some combination of 

nodal lines was occurring while at other time some 

other combination was occurring. This might have shifted 

the peak sometime at lower frequency and sometimes 

at higher frequency. 
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Another very interesting phenomenon was also 

observed. There occurred not only one resonance peak 

but several peaks in the frequency range of the 

experiment. These peaks varied from three to four 

in number. However, there was one general peak at 

which the amplitude was maximum of all other ones 

and this was assumed to represent actual resonant 

frequency. Sometimes the smaller peaks were formed 

before this peak and sometimes after it and sometimes 

one or two were before the main peak and one or two 

after it. The relative amplitudes of these diff-

erent peaks can be seen in figures 4.14 to 4.19. 

-There does not seem to be some definite 

reasoning behind this behaviour of the shell. 

However, two explanations may be advanced as follows 

(i) Because of the various combinations of axial 

and circumferential modes, large number of resonances 

may occur close to each other. Importance of exact 

location of different ncdes axially and circumfer-

entially both has been mentioned by the other 

authors also. It is rather a very difficult task and 

more sensitive instruments will have to be deve2mped. 

(ii)As desribed in article 4.1 , the model could not 

be made to exact circular shape. Also, the material 

is never homogeneous and of the same density as we 

assume in theory. These all deviations from the 
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ideal conditions play a very important role in the 

vibration conditions of the structure. This has been 

explained by TobiasI151  is some details. According to 

him these different peaks are the result of initial 

imperfections or deviation from the rotational symm-

etry of the circular cylinders, such as variation 

in radius, wall thickness, or physical properties 

of the shell. If we are concerned with varying 

forces, problem of fatigue arises and then the 

dimensional or surface imperfections will make a 

considerable difference between the calculated and 

practical results. He observed that for any vibrat-

ing.surface of revolution, there occurred two planes 

such that, if the body was made to vibrate in 

those directions, only one peak will occur. These 

planes have been named as preferential planes. .If the 

exciting force acts outside the preferential plane 

then both configurations are excited at the same 

time and the amplitudes we measure are due to the 

superimposition of both preferential configurations 

with regard to their phase angles relative to the 

exciting force. This is the more probable reason 

for several peaks occurring in the resonance tests. 

7. 	Resonance curves for empty shell are comparat- 

ively smooth (with only one peak or two) while the 

amplitude fluctuates from one value to other in 

the case of shell with water. This may be due to the 
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sloshing of water in the latter case. 

8. Amplitude of vibration at resonance was 

more at top and less at bottom. The reason is quite 

obvious as the shell was fixed at base and free at 

the top. 

9. The acceleration to which the model was 

subjected at resonance varied with the height of the 

cylinder and water depth. The acceleration was 

obserVed to be less when water was filled inside the 

shell. 

4.5 COMPARISON OF THEORETICAL AND  
EXPERIMENTAL RESULTS 

Theoretical and experimental results have been 

compared in Table 4.4. From this table we observe 

the following. 

1. Difference between the analytical and experi-

mental natural frequency of vibration in fundamental 

node is 38 per cent. 

2. For partially full or completely full shell 

the difference between the. theoretical and analytical 

frequency is relatiVely small (of the order of 21%). 

The difference reduced to 10% when the water depth 

was increased still more. 

3. It has been proved both theoretically and 

experimentally that frequency decreases as water depth 

increases. 



Table 4.4  

Experimental results and their oomDarison 
with Theory  

Reson Natural Freq. Frequency Frequency 
Radi- Length Fract Pickup ant fre freque- from from from Wei- 
us to to ional Posi- quency cy obt- Energy We ingar- ngarten 
thick radius water tion obtaine ained Method ten met method for 
ness ratio depth (see from st from (Eq. od 	(Eq. simply su- 
ratio-

a/h L 

fig. eady st 
ate vib. 
test 

(cps) 

free vib 
test. 

(cps) 

3.18) 

(cps ) 

2,5 for 
clamped-
free 
shell, • 

pported 
free shell 

(cps) 

173 

4.38 

2,63 

0 

0.332 

0.535 

0.494 

0.875 

1 
2 
3 
4 
6 
7 

1 
2 
3 
7 

1 
3 
7 

2 
3 
5 

2  

2 
5 
8 

1 

42.5 
45.0 
42.0 
40.5 
43.0 

43.3 
43.0 
42.2 
38.2 

32.2 
35.8 
32.2 

- 

32.5 

35.5 

32.5 
29.6 
32.0 

51.5 

46.5 

38.5 

62.5 

53.75 

30.75 

83.20 	87.27 

58.15 

40.45 

.146,48 

6.129 

6.129 
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CHAPTER -V 

CONCLUSIONS  

On the basis of the results reported in the 

previous chapters, the following conclusions can 

be drawn. 

1. The energy method used here is fairly 

accurate for predicting the frequencies of a vibr-

ating shell. The results agree with those of other 

investigators. 

The method may be applied to any set of 

boundary conditions by properly selecting the basic 

.functions. 

2. The effect of mass of water can be taken into 

consideration by considering a virtual mass deter-

mined .1POM -7, 
 the mode shapes considered either experi-

mentally or from analysis. 

3. Analytical results indicate that frequency of 

vibration will increase with decrease in length to 

r4dius ratio of the shell. Also, the frequency 

decreases with increase in water depth. 

4. • The frequencies at the higher order modes • 

are decreasingly affected by the presence of the 

liquid. 
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5. Percentage contribution of the water mass 

increases with water depth. When the tank is 

fully filled the contribution of water mass is 

83 per cent. 

6. Behaviour of the shell under forced vibration 

conditions is a peculiar one and occurrence of 

several peaks is observed. Further detailed 

study is needed to investigate into the character-

istics of the various peaks. 

7. Results from the .experiment and analysis 

agree closely at higher water.depths. 
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APPENDICES  

A.1 Notations used in computer programmes 

AL 	- length of the shell (L) 

GL 	- Height of water inside the shell ( -IL) 

A 	- Radius of the shell (a) 

H 	 - Thickness of the cylinder (h) 

ROH. 	- Density of the material (C.- ) 

ROHD 	- Density of the fluid 	) 

GAMA 	- Ratio of the .water depth to length of 
the shell ('{ ) 

AN 	- Number of circumferential waves (n) 

M 	 - Number of axial waves (m) 

ALEMD 	- Characteristic root ( ) 

ABSIE 	- Virtual mass coefficient (en) 

ALPHN 	- The root ani  used in the expressions. 

CIG-4 MA. 	- Poisson's ratio of the material (6-) 

YM 	- Young's modulus of elasticity (E) 

FREQ 	- Frequency of vibrations( E 



-102- 

(A ) PROGRAMME FOR EVALUATION OF  
FREQUENCIES AND MODE SHAPES  

C C EVALUAT ION OF DET ERIUNANT ATUL UOR Z 
READ 1 ALEMD, AN, Al3SLN, GL 
READ 2,AL, CIGMA,A, G,ROH,ROHD,H 
READ 9,TM 
READ 300 FREQ, CEREQ, ACC 

1 	FORMAT 4F10.0 ) 
2 	FORMAT 7F 9 . 0 ) 
9 	FORMAT F10.0 ) 
300 	FORMAT 3F10.0 ) 
100 	RT1=0. 
101 	RT2=0 
102 	FRE Q1=FREQ 

SAN =AN* AN 
S 	MD=ALEMD*ATRMD 
X=ALEIVCD*AL 
XN=2 *ALEMD* AL 
EX=EXPF (X ) 
EXN=EXPF (XN ) 
Y=1. /EX 

.
/RIO

EXN  
Z=1 . 	  
SA=A*A 
CK= (H*H )/ (12 . * SA ) 
P= (EX+Y )+2 . *CO SF ) 
Q= (EX-Y )+2 .*S INF X ) 
AK=P/Q 
SAK=AX*AK 

10 	ALPHA= .125* (EXN-YN)*Z 
BET A-= .125* (EXN+YN ) *Z 
GAMA= . 25*S INF (XN )* Z 
DELTA= . 25* COSF (177 )* 
ZAI= .5* (EX+Y )* COSF(X )* Z 
SAT= .5* (EX+Y )* S INF (X )* 
AKAI= .5* (EX-Y )*S TNT (X )* Z 
ZETA=.5* (EX-Y)*COSF (X )*Z 

11 	X1=ALPHA+GAYA+SAI+ZETA 
X2= ALPH A-G AMA+ SA I- ZETA 
X3=BET A+ AKAI-DELTA 
X4=ALPHA+GAMA- SA I- ZET A 
X5=ALPHA-GAMA-SAI+ ZETA 
X6=BETA-AKAT-DELTA 
X7 =AL PHA-GAMA 
X8= ALPHA+ GAMA-AL 
X9=BETA+DETJT A-0 .5* Z 
Xi 0=ALPHA-GAMA+S A I- Z t+,1 A 
X11 =AL+ALPHA+ GAMA- SA I- ZET A 
X12=-R ETA- ZAI+ DE LTA+0 .5* Z 
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12 	AM1=AL+X1+SAK*X2-2.*AK*X3 
AM2=AL+M+S AK* X5 2 . * AK*X6 
AM3=X7+SAK*X8-2.*AK*X9 
AM4.7.X10+SAK*X11-2.*AK*X12 
CDELT=((1.-CIGMA*CIGMA)*ROH*FREQ1*FREQ1)/(YM*G) 

13 	Al1=STRMD*AM1+(1.-CIGMA)*0.5*SAN*AM4/SA 
A LISA LL- ODE TT *A M4 
Al2=(ALEMD*AN*(CIGMA*AM3-0.5*(1.-CIGMA)*AM4))/A 
A13=(-CIGMA*ALEMD*AM3)/A 
A221=(SAN*(1.+CK)*AM2)/SA 
A221=A221+0.5*(1.-CIGMA)*SLEMD*(1.+4.*CK) AM 
A222=-CDELT*AM2 
A22=A221+A222 
A231=(-AN*(1.+SAN*CK)*AM2)/SA 
A231=A231+CIGMA*STEMD*AN*CK*AM3 
A232=-2.*(1.-0IGMA)*SLEMD*A7*CK*AM4 
A23=A231+A232 
A331=SA*STRMD*SLEMD*CK*AM1+((1.+SAN*SAN*CK)*AM2)/SA 
A332=-2.*CIGMA*CK*SAN*SLEMD*AM3 
A332=A332+c.*(1.-CIGMA)*CK*SAN*SLEMD*AM4 
A333=(GL**3).)*ROHD*ABSLN/3*ROH*H*A) 
A333=AM2+A333 
A333=-0DETI1'*A333 
A33=A331+A332+A333 
DET1=A11*(A22*A33-A23*A23)-Al2*(Al2*A33-A13*A23) 
DET2=A13*(Al2*A23-A13*A22) 
DET=DET1+DET2 

59 	IY(DET)60,66,61 
60 RT1=EET 

Q1=FREQ 
GO TO 62 

61 RT2=BET 
Q2=FREQ 

62 	IF(RT1)63,64164 
63 	IY(RT2)64,64,65 
64 FREQ=FREQ=CFREQ 

GO TO 102 
65 	FREQ=Q1+RT1*(Q2-Q1)/(RT1-RT2) 

FREQ1=ABSF(FREQ-FREQ1) 
IF(FREQ2LACCM0t66,102 >FREQ2=FREQ1/FREQ. 

66 	F=0.5*FREQ/3;14159265 
AW(A11*A22-Al2*Al2) 
IF(AW)350,320,350 

350 A=(A23*Al2-A13*A22)/AW 
B=-(A13+All*A)/Al2 
DO? LX=1,61,2 
AX =IX 
ALX=ATPMD*AX 
ELX=EXPF(ALX) 
ELXI=1./ELX 
SHLX=0.5*(ELX-ELXI) 
COLX=0.5*(ELX+ELXI) 
SLX=SINF(ALX) 
CLX=COSF(ALX) 
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U=A* ( (SHLX+SLX ) -AK* (COLX- CLX ) ) 
W= ( ( COLX-CLX )-AK-* (SHLX-SLX ) ) 
PUNCH 310 ,AX IU,V, W 

310 FORMAT (4E16.8 ) 
7 	CONT INUE 
320  PUNCH 40 1 F , CDELT ,DET 

GO TO 5 
200 FORMAT (2E16.8 ) 
40 FORMAT (3E16.8 ) 

STOP 
END 


	105110.pdf
	Title
	Synopsis
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Bibliography
	Appendix


