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SYNOPSIS  

An attemA is made here to present the 

bowl distribution analysis based Oa the Anisetropio 
Plate Theory as applied to modern grid beam bridge*, 

with special reference to edge stiffened and contin. 

uous bridges. 

As a basis for the subsequent work the *basic 

analytto theory as applied to simply supported grid 

beam bridges has been briefly indicated. Analytical 

approach as extended to edge stiffened and continuous 

bridges has boon presented. Approximate methods for 

ocatinaous bridges based on Equivalent Stiffness and 

misused defleoted shapes have been developed. At all 

places the result, have been compared with these 

obtained by other standard load distribution theoriess  

The analytical results have also been supp. 

lamented by suitable model tests* 

The model test results have been found to 

agree fairly well with the approximate solutions 

presented for the edge stiffened and continuous bridges. 

It is felt that these approximate solutionscan be safely 

used for design purposes, while at the same time making 

the analysis within easy reachof the Design Engineer's 



CHAPTER 

INTRODUCTiON,  

The magnitude of ooneentrateed loads of road 

vehioles increased continuously and considering these 

leading changes, it is necessary to consider how these 

changes affect the approach to the analysis and design 

problems. These days in many countries the heaviest 

vehicles are permitted only on separate or on particular 

lane and attempts are made by etructural designers to 

distribute these heavy loads in a bridge with several 

girders to all the girders in order to achieve an soon° 

steal struotors. 

Rigid transverse framing erf girders helps in 

t►he distribution of loads placed at this framed votes, 

called a grid and thus a grid beam, bridge is invariably 

adopted. In general a grid been bridge *ocelots of several 

parallel longitudinal beaus, eonneet•de  if neoessary, from 

place to place by arose beams and in addition, solidarised 

by the roadway generally made of reinforced oonerete slab. 

The longitudinal and transverse systems may have 

negligible torsional resistance or they may exert consi-

derable torsional resietanee. The beams are ordinarily 

equidistant but not always identical. Often it happens 



that the edge beams are stronger than the ttheks. Besides, 

the beams can be prismatic or of variable moment of inertia. 

As regards to their mode of support, the most frequent 

case is that of a simple support at the two ends but the 

oases of oanti,levsr and continuous beams on severel supports 

are Alashirodnd* Some-times the supporting abutments are 

inclined to the perpendicular at the longitudinal beams 

and the longitudinal and cross beams are not at right angles. 

This gives rise to the problem of skew. 

The importanee of these usually ste►tioaily in.dslte rw 

gloats systems of high degree, can be reoognised by the 

feat that between the first ideas of BMGESSIDI (1880) on the 

eubj eot and the present day, an extensive amount of literature 

hoe been published, out of which only a tee important works • 

are listed at the end. However, in many of these methods 

the amount of calculation is so much, that a structural 

designer hesitates to use then* For this reason the struotures 

which can be easily► analysed, though not always •oonaaioal, 

are often:-  used*  

It is hardly necessary to say that the best method 

ha■ nothing more than the merit of simplioity*  The simple 

methods are usually very optimistic but very dangerous and 

errors *omitted can be considerable. As such it has been 

all the time felt that a method of analysis which is simple . 

lin use for design and analysis and considers the actual 

behaviour of tete structure to the °lose, should be evolved. 



1,1 Atim ma awl or /axon  THE01......w 29 

Basle of various methods of elastic analysis 

of grid beam bridges oan be oonvoniently,  studied a000rdtng 

to assumptions made as regards to its oonstruotion*  So 

far mainly four types of equivalent constructions have been 

considered by the various research workers of this field 

for the analysis of this problee.These are. 

(t) Open grid work method. 

(ii) Central diaphrmm method, 
(Ili) Continuoue slab method*  and 
(iv) Plats Theory. 

(1) 922a 2a1 !o m•si.....19,11. 

In this method the bridge structure is 41 idol into 

individual longitudinal and transverse members each possess. 

Ing appropriate flexursl and torsional stiffness*  The problem 

is then solved either by flexibility method or by stiffness 

method*  Using fi Seib# l i ty method for eaoh point of tutor. 

section of the members*  equations of defies:Alan and slope 

compatibility are written in terms of unknown forces and 

moments and finally a set of governing simultaneous squat. 

ions ore solved to obtain the forces and accents directly. 

LAgAR/DES(1)(1052) has adopted a method of this type using 

ooeffieiente. He has further made use of 

symmetry and anti symmetry of loading and deformation* and , 

clearly shows the typical nature of oompatibility equations 

for bridge grillage*, 

4 



If the torsion of members is oat oonsidered, 

there are in general, as many equations as there are ' 

beam intersections; if torsion is considered, the equation* 

are three times of the equations for without torsion. By 

using symmetry and antisymmetry of loading and deformat. 

ions the number of simultaneous equations is reduced to 

less than half in many oases. 

Using the atiffness method, the • slope defleet.,  

ion gyration" equations for all the members are written; 

equilibrium equations are then set up In terms of deformau.  
ti one and slopes and finally solved. LIMITTOOT AND SAWK0(2)  

(igao)o  WARM AND fIERNADEZ (  )(1960) have adopted this 

method of analysis and with the help of eleetronle digital 
computers'  they have solved the problems of grid works 

eliminating a large amount of arithmetic work*  J033ONTUS(4)  

4940) has developed s relaxation approach for solving 

these equation** SWELL*  OKUBO AND ADRAM( 4952) employ 

an auxiliary force system for controlling vertical displace 

ments of the joints and use a moment and torque distribution 

process for transmission of the flisplaoesent streets. They 

also show that a horizontal gridwork of beams interseoting 

at right angles to one another yields a deflected surface 

similar to that of a slab when analysed under normal loads, 

and thus n transformation of the slab into comparable

gridwork is possible. BEZR AND 8ESINOZOS)(1954) have also •  

adopted moment torque distribution process for the solution 

of ridworks. 



. 
RA1041(1960) has divided the analysis of grid 

floors late two stages. Firstly*  the Joint displacements 

are worked out by considering' the floor as an anisotropto 

plate; the formulae for which are very simple to apply*  

In the second stage moment torque distribution is applied 

to find out (I) moments and torques in each member on 

consideration of no Joint 4ispleoement and (3) the sway 

each Joint amounting to values obtained as for an equivalent 

anisotropio plate* A comparison of results obtained by 

treating the floor as a pure plate and by considering it 

partly as a plate and pertly as an open grid work, show 

interesting accord; the different** in the average bending 

moment and twisting moment at different joints being very 

insignificant* 

The open gridwork solutions though appeak to be 

very elegant but involve a large number of variables to 

otart with and are extremely cumbersome* Further this 

method can not be generalised especially for the moving 

load problems* Hence*  it is difficult to produo0 a simple 

design procedure for the solution of grid beam bridges*  

based on this approach. 

(2) stew 2watt% iLetho,d,  

This method aimless that the entire transverse 

,system whether continuous in the form of slab*  or consisting 

of distinct cross boa** oast be replaced by a single equivalent 

member at midrtpos. The problem to than solved as an open 



gridwork. the solutions of shlob are easier and the distil. 

button factors can be easily derived. IAEONUARDT(8)(1938) 

replace, the transverse aedlua by a single member at aid 

span with zero torsional rigidityr. With the further develop. 

scent of this method LEOMUARDT AND ANDRA(9)(1950) have 

presented thie method in a comprehensive manner in their 

book 'The oalculation of grillage beasts". 

MUSSER (1889) replaoe* the transverse medium 

by an infinitely rigid central diaphram; thus the transverse 

diaphram always remains straight and the distribution factors 

can be obtained in the form of staple algebraic Impressions 

of number of longitudinal beams and their epee/pg. 

MALT800)(19158) replaces the transverse medium 

by three concentrated diaphracs ens at the centre and one 

oaob at the ends. Ile takes the stifinese of oontral diapbraa 

as half of the total transverse medium and solves the two 

and four girder oases with girders having infinite torsional 

rigidity, using numerical solutions. 

From this approach it Is obvious that the location 

of the (moss beam is mast effective at the mid.apaa for 

distributing the loads to different girders. The greatest 

defect of this method is as regards to its baste assumptions. 

Most of these assumptions are invalid in practical bridge 

structures where the torsional stiffness of diaphram. part. 

•teularly in reinforoe4 and prestressed oonorete bridges, 

say be eonsitterable. Extensions of this method for edge 



stiffening girder case and other support oonditions like 

cantilever and continuous beams on several supports are 

possibisi th7-ough extensions for skew systems may present 

some difficulty'  

(3) coi......01...5...mossu 	Ettatstu 

In this method the transverse system is replaced 

by uniformity spread equivalent slab*  "loft may or may not 

°over the full length of the span. PIPPARD AND deWAEL8(10  

(1938) have used this idea replacing the actual transverse 

system by a continuous transverse medium of equal Stiffness*  

extending over the entire length, They further assume that 

the floor system prevents the girders from tmtoting and 

oalculate the shearing foroes per unit length of the girder 

in terms of the deflection of the girder; formultIts 

certain differential equations which on solution give the 

defleotions. bending moments and shearing forces at any 

seotion of the girder due to a given position of load*  In 

the derivation*  use of symmetry and antisywaetvy of loads 

and deformations is made and cases of three and four girder 

are solved. SIITSNYI(12)(1938) assumes the grid detleotione 

in such a manner that there is no rotation of individual 

millibars at their intersections with other members and with 

this assumption he obtains a solution by using sine series 

to represent load end deflection of the structure in the 

direction of the longitudinals, This approaob is commonly 

known am fliarmonto Analysis'« 



PUIPARIPS approach is tedious and'oumbersome 

and superposition in ease of number of loads is tough in 

osloulatton. The aesuaptions require longitudinal, of 

infinite torsional rigidity rind these should be prevented 

from rigid body rotations at their ends., Moreover the app-

roach is no more general. INTENT/ fa work le valuable for 

his haraenic analysis approach but agein the defeat is 

as regards to its bseio assumption, 

mitinuy & JARMO ) (IMO) have used 'Mil method 

in most general fora replaoing transverse members by a 

uniform oontinuous *odium of equivalent stiffnese. Their 

approach is to write down differential equation for the 

loading on eaoh longitudinal member including, where 

necessary, the ()Moots of rotation and twisting; harmonic 
. 

analysis is then used to derive the amplitudes of deflection 

and bending moment for each longitudinal member. Thus, 

distribution coefficients applicable to many praotioal 

oases are deduced; the.00effloients have been derived for 

bridges with various number of girders, This particular 

approach is a considerable solvanoe on the previous method* 

in this category and can be applied to various types of 

boundary oondi tion generally met in bridge design. 

HUM AND JAEGER.* approach does not consider 

suitably the torsional stiffness of the transverse system 

and for each bridge having some definite number of girders 



10 

a set of distribution ooeffloient curves are. required. 

But using this approach the edge stiffening effects can 

be easily considered for the general cos* including the 

torsional stiffness* 

(4) X11111 121112.M. 

The last method covers those approaches which 

are baited on anisotropic plate theory. In this analysis 

the actual bridge structure is replaosd by an equivalent 

anisotrOpic plate which is then treated according to 

classical theory of plate. GUYON(14)(1946) is the first 

to develop this approach for grillage* with members of 

negligible torsional stiffness and subsequently he has 

t given a similar analysis for isotropic slabs (15) (19491. 

This approach is then generalised by MAS3ONNET(16)(950) 

to include the *fleets of torsion* extensions and develop • 

mints of GUYON'e and MASSON/M.4 work have been produced 

'by many others. These generalise the use of this method 

and thus a simple design procedure has boon formulated* 

The development of this method is discussed in Section 1.2 

as it has been taken as a basic theme of this dissertation 

work* 

Plate theory approaeh has the merit that 4 

single set of distribution ooetfiotents for the two 

**tramp oases of no torsion grillage and a full torsion 

slab enable the distribution behaviour of any type of 



11 

bridge strut, are to be found, rurther the lapilli:cations of 

the analysis can be easily seen by the designer and hence 

oaloulstions do not merely beoome a set of mathematioal 

formulae with no apparent physical meanfng. 

Turther it le also important that the results 

obtained by this approach and the harmonic analysis app- 

roach or any other suitable method will be virtually ldent. 

Leal provided that the assumptions are approximately valid 

for the structure cone dared, This has been clearly shown 

In the work of HAL00(")(1051) and (WPTA48)(1962); they 

have solved a simply supported bridge problem by various 

methods and have given this comparison'  However, it is felt 

that that design proosdare derived by plate theory is more 

easily appli *able than by any other approaches, 

After considering the sretbods based on elastic 

theory it should be pointed oat that the plastic theory 

apprca is also made for the analysis of grid beam bridges' 

HEY1y[AN(19  (1053) has given the plastic analysis of steel 

grillage*" 011YROLDS(41°)(105T) has given the ultimate load 

of prestressed concrete grillage bridges, GRANUOLM and 

R4WS(21)  have considered the ultimate load problem of skew 

slab bridges, 

There are at present very few works available 

gn ultimate load analysis and this analysis is of little 

use as distribution properties of a bridge beyond elastic 
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range are still unknown. Hence. there is lot 6f difficulty 
in developing a proper design procedure and suitable load 

factors. Although it is not possible et this stage to design 

a bridge etruoture on the ultimate load theory but it is 

useful to assess ultimate load for the following reasons4. 

(1) to give true safety of bridge under known 

loads. 

(i. I) to enable safe designs to be prepared for 

bridges where no rigorous and easily applied 

design procedure is available e.g. skew 

bridges, 

(iii) to eliminate ovordesign due to oonservative 

assumptions and, 

(iv) toimprove the economy of the bridge design 

through vropor nppreciation of the behaviour 

of bridge under load. 

1,2 DEWILO ENT alma or ammism. 

GUTON(14)(1040) is the first to conceive the idea 

of replacing a bridge structure by an anisotropio plate 

and has solved a case of simply supported grill age beams 

with negligible torsion. He has gtven the solution in terms 

of Fourier series and with the same analytical approach he 

has given another solution for an isotropic plate(15)(1049). 

4ASSONNET(1°)(105.) examined the poisibilities of extending 

GUYON,* work and thus hes succeeded in giving the general 

aPPraoch by ooneidor1ng the problem with torsion. Ile has 



also given the interpolation formulae for tin? 'distribution 

eeefficients for any particular value of torsional para-

meter. Due to the ohaos and troubles of the post-war 

period, these works did not find the consideration duo to 

them. 

It must be taken as a contribution of MORICE and 

LITTLE(22)(1954) that they adopted the method of GUYON and 

MASSONNET. A considerable amount of work has been flame  at 

the Research Station of the Cement and Conorete Asset:dation 

of England by NOU/CE, LITTLE and ROICE(23 to 30. The works 

have thus eon:trued the applicability of the method to a 

wide range of bridge types and have indiooted a high degree 

of accuracy. In original papers of GUYON and MAS9ONNET(141/5'16)  

a limited number of values for distribution eoeffloients are 

derived. However, in a later publication MASSONNC 07) T 	(1964) 

has presented some comprehensive tables giving the values 

of the distribution coetfiolente for wide ranges. Thus, this 

is the first phafe of development, from which the develop 

sent of solutions, statements on assumptions and ealmepti.. 

bility to errors eta. can be obtained.Work of HOFFMAN and 

VLUOT(38)(1956) shows the applicability of this theory 

to analysis and design. 

(9) # SATTLER. 	(1955) has presented the work of 

GUYON and MASSONNET in a comprehensive manner with graphs 

and shows the extension of this method far statioally 

indeterminate systems. He also shows that there is a good 



agreement in analytical and test result* of models 

of aany girders  suitispan balanced cantilever bridge and 

simply supported bridge. R4WE 3)(1955) oonsidere the 

effect of Poisson's ratio on the load distribution. 

MASSONNKT(4°)(19158) introduosa a new °coefficient for 

calculation of the torsional moments and suggests an Inter-

polation formula for this coefficient for say value of 

torsional parameter. Us also extends this theory to edge 

stiffened bridge without considering any torsional stiffness. 

The calculations for edge etiffened girder bridges to also 

, dealt by IITTLE 	M) and IOU 	tiO57). fn this work they have 

plotted the curves for different distribution coefficients 

due to edge moments acting on an anieotropic plate and have 

given the theoretionl solution to the problem. R4WE(252G) 

(l051) hne further given the load distribution theory for 

no torsion bridges with various support oonditions using 

eosin functions. SATTLER(41)(1059) palate out that inter.. 

potation formula for coefficient of transverse distribution 

given by MAI5O1 ET(16)  is not valid and recommend* two dirt. 

*rent interpolation formulae of distribution coefficients 

for different values of flexural parameter in two ranges. 

He further suggests an approximate method of osloalation 

of bridges with edge stiffened beams by using ombination 

of symmetry and antieymmetry components of distribution 

coefficients,. 

Taking se a point of departure in this theory 

NARUOKA AND OUURA(42.43)(1050) have given the olassicai 
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Mat BY 0125....)1110PLE P‘A.TR TIRCORY4  

Ordinary flexibility and stiffness methods of 

analysis of the system called *open grillage* beoose 

store conplionted if the number of beans is sore. Additionally 

these *Who*, become more and some difficult when torsional 
rigidity of the elements is oonsiderede  Further in the 
analysis of the bridge, a bridge 1* never an open grain 
beoause there is always a rolling slab. Therefore it is 
better to abandon the coneept of a construction of a bridge 

as discontinuous one and to consider it as a prootically 

equivalent continuous structure which will obey the lame 

of differential calculus. In section 2,1 the besio expressions 

derived from the thoory4anisetropie plote are given. 

3.1 ,BAstc  itxpiss.alis Eis, aumpzu Jil,  as TIM= 

2.1.1 ititt bum Ur d without  
Toro* 9E* , 
(a) GellerI e u ti n 	deft tion due to 

tallagAS tie 
Replace a real bridge by continuous grillage 

formed by an infinite nueber of longitudinal and cross 

bean* both not possessing any torsional rigidity (Pig#341) 



kg, 

Let, 

Pp • flexurs1 rigidity of longitddinal beams 
per unit width* 

and PE 0 flexural rigidity of cross beams per unit width. 

The bridge is simply supported at its two edge 

parallel to y axis and its other two edges are free, 

Mien the bridge is subjected to a sinusoidal load 

p • pi  'Max! (see tig40,1), all the longitudinal beams will 

undergo a sinusoidal deformation and the deflection at am 

point (zio y) can be oritten act 

C 	Y (4) sin 1T-7̀  
°c:1-  

ir00010 (2s1) 

where. T(7)  is the transverse deformation eatisfying all 

oonditions of equilibrium of longitudinal and areas beams, 

This transverse deformation T(y) *an be derived from the 

theory of beams on elastic foundation (45)  where..as 

OUTON(14)  determines the funotion T(y) by Fourier Series. 

Let q  be the intensity of interacting fermis 

at point (z,y) exerted by ores* beams on longitudinal beau 

and vioe.versa. Consider filamentary longitudinal boas of 

width dy and floxurai rigidity ET - 	(F11412162) and 

elementary cross beam of width d and flexural rigidity 

gl =fa  dm and calculate intensity q by el onentary theory 

If bending. Thus, 

p D4114)  Citi 	Ctin 
2x4  

= Pe  D41^1 clx T5441  
* • • 
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Equating the values of * from eqs,(a4) me 

obtain the differential equation of no torsion anisotropic 

plats in the unloaded portion as 

PP 
c~x4 

H, eE = 0 
'-e14 

Ito* (2,8) 

Equation (2.3) admits solution OM and 7(7) must satisfy 

the differential equation 

Pp 7r4 Y = 
cI 	Pe 1601-1 	 *la* (a 4) 

Equation (2.4) is similar to that of a ortwmatio 

bees of width II, resting on an ela tie foundation (P;14,2,3) 

whose modulus of foundation is K 

Gettf. 	13k 4 
the/ 	EI 4 

4.4" (2,6) 

The deformation of the finite beam ehown in Fig,24 

Is derived in the book, *Doane of Elastic Foundation* by 

IIETENT1(416) p.p. 04.519. The following formulae for the 40 
leotion and bending moment curves are for the portion AC of 
the bean, where * < a. The same formulae one be used for 

the portion BC where z<b, by measuring at from end 

and replacing a by b and b by e. 



 	2 cosk >,x.. cos >,:c. stilf) At cop >.a Cash b siht? 

A 4E7 

2.0 

o>,4 4 >,ct c_t% )th) t (eas4) 	sirOot 	sink ax eels >,".x) 

Pfilf) X (slh),ck  easy 	eos. >:t swig >,b) 	sin A (614)a egg -n:55'1›4t 

yin >b)] 	
• * * (.2 •8) 

M = P 
A 

 

2 sink XX. sin )0c. (sink Al Cos ) ci eta, 	s'inA2 cad) ),Gt sinf 2->L 

et's A6) + (ec>4) 	sit) 	)oc coy.. Ax)Esitili At (sin AGL cofsbAb ev,Act sink >,b) -1- 

stn A/ CsinAo  acs sAb — toRetn Ismsin Ab) 
40 OA' 0 0 41) 

*bore 

equations (8.4 and (2.5) 

7T 4 Qp 
eE 

0# 40 -0(2 	8) 
24-ka. 

The e (mentor r prose' boas' is 1• enttuiil to that 
of the prismatic beam 	width 	Kr so PE 4* and 

• 

— 

loaded with a concentrated load p 

pleoed an en elastic foundation of no 
• 

Transforming ovations (2.8) and (8a 
• 

sin ihr dx and 

us K ober, 
4
A* 

16.7 
for the etas, *holm 

• in rig* (3.4 in which span 	8b and the origin is at 
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oldpoint 0; matting suitable oubatituttone of above comparison 

and introducing 4 a h  b, the aoneral equation of deformation 

a(x„y) and transverse bending moment My for the portion, 

whore y< a to obtained • The same formula eon be used for 

the portion where yye, by replacing b by 	Thus, 
Pi  sib 11,2(- lm 160 4i + 	 11 to * (I÷-t) 0,3ef' sifihaq3 -51 r'.413  a b 

 

CsIrif)* 	c.6 ,E), 	s41 	et44-1(1 	.?s (71,-S)) 

(toh4-0) ( +t) 54) (i1-4) + 	(14" J ftz,  L 1 +1,)) CS'IrA 

SfrIq( 1 +1) eAC41,  (1'*-2-;)-* eois CH-S) strfhop (r-T-t)) -f- 

stn a q, 	(1 +1-) ftz$ (11) — eity4?1,  (1-1-  g) .51.11) 0- -t))]1 

*000(2  9) 

= Sih 11x, 
40- sfilA/ I44;-) sir ( 2,1) CsIbilb 

(sal,* ee.24 C 1 ) mogrhi)( 	ir) 	em,4-11, (141) ettgl) (I-I- )) 

	

÷ (co) tp (14 t.) a ill. 04- 	sialop ( 14-1-) etA9,  ( t+4.)) Egrof-7 

	

( HA) &dog,  (1- 	eo&q. (1+17, ) 	 *-5h)q.,i) 

edge)) ( 1-- 	crali q, 	) sin q, (i_s))ji 

o ft wo.(21,10) 

Guyon has used in place 1  , the "flexural parameter° 

Pe 	 •04,0(2•11) 
• 

"rtnae c, , A and & *an be related by simple relation 

• 



= Ab = Tr9  
42—  (3.12 ) 
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b. her meast ant o Sarato dietri ution 
.0 tzmul.......rse bendinsi  moment .221.1.911a/A0  "1 

Considering the practical side of the results 

obtained in equations (2.9) and (2.10), it 13 useful to 

compare the actual deflection w with the mean defleetion 

W. when the load p is spread optional. an the entire 

width 2b of the bridge (Pig.2.5), while remaining sinusoidal 

along longitudinal direction. The bridge sill then undergo 

a oylindrieal deformation given by 

H _ _ PI 16 04 
TI--  si t) 	 000 (2013) 

Rb pF, 74 	ga 

Introduci 1(0-1  hl as the dimensionless ratio, 

and from equations (2.9) and (2.13) the coefficient of trans. 
verse distribution go  can .be written as 

R  K0 
sin-qq. -sir? z+ 	c'eAr111:1 (1+1) e4)1. 1)(1+1 	n'"13 ecq (P41) 
mski ( 4- 	- 	REI)  eal 13  011120E+ ( I- 	(e6444 (14  1) giq 

(1-4)+ sth-17+ (14-4) ez24 (1+-4))E3irff,a4 (sib+(1+1) eaff4. (I- 1,) 

- Cob (I 4. -g) si h ( -4)) ± 31 n 24)(sitA (1+ eogq. 

ecith 1' ( 1 +-1-) s114 (I --E))ji 
(2.14) 

2us coefficient I% depends on the value of flexural 

parameter 0 or 4,  the relative ecoentrioity 1 of linear 
load p a pi  sin 2aand the relative ordinate * of the 



point under consideration. In short IL e K e 	1-.) o 	* 	* 
The further interest of taking into consideration K0  cones 

from the feet that the longitudinal bending omen Uz  

at any point can be written as 1,‘ %lila, where Nis  

is the mean bending moment produced in the transverse 

section at x of the bridge duo to uniformly spread sinu 
71e.  

soidal load p pi  sin rir *cross the width of the bridge* 

This can be derived as 

Mx= - PP 	= e 	 k0,__kj)  = kb PID a.1.1 =axe ‘252e2.  

**** (2.48) 

Thus, knowing go, one can find out 	 deflection 

ud ion itudinal bending moment In the given bridge. 

For the transverse bending moment U the elemen 

tory cross beau behaves like a beam on elastic foundation 

and It can be easily expressed as 

=,00 sin lrx 
2 

es*. (2.10) 

where, A0 is a dimensionless transverse bending moment 

coefficient which depends on 9 , 11.; 	and by (wowing 

act. (g,16) and (240) it can he obtained as 

Alb - ,g4,(stAi)-sir1224a) 
1 	

1- 	
sircA (1 +.1) sink (I+ ) 	riA co eo.sti>0+ 	coNhf 

(t- -T) - sin 24, e f 4 (i+1) e_04. (1--S 	(cosMcp (HI) sint (14. 

sit4  cf (4. 4) coo, 0+  k.t.)) E.pr& 2 cKsIrtp (14-S)e044. (1- 	cost (tft) 

sin.,41, -c) 	(5)64 ( I 4-..E) ebig el> ( I- 	— Carhet) (1-1-0 51000-Z0i 
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241,2 12,21,Lcatuz boir.itaataut, Beam Mg os 

As majority of bridges with several longitud. 

meal beams have a *lab flooring of rein:on:ad concrete 

in whiob the torsional stresses play a predominant role, 

the theory developed in ••otion 2.1.1 is, therefore, 

soaroely justified by reality. It one oould practically 

neglect the effect of torsion in bridges with steel 

grillage beano, it is •oarosly permissible to do so'in 

the ease of monolithic bridges ribbed with reinforoed 

ooncrete and still less'in the ease of bridges, reinforeed 

or prestressed elabs,the 04110 of which is more and more 

wide.epread. 

Any structure with several longitudinal and erode 

beams forming a system of gridwork and the solid slab 

forming the flooring, is a construotion intermediary bst. 

ween the anisotroplo plate and the open grid, The relative 

importance of two elements, grid beams and solid slob, 

varies e000rding to the plan of oonstruotlon adopted: the 

behaviour could be that of a oontinuous series of grid 

beams to a thin slab flooring of constant thickness. To 

assimilate the fundamental approach to the problem and 

implications of solution, it is briefly recollected from(48), 

the equations which govern the deformations of an anisotropio 

plate and grid beam system. 



a. plyorontittl miatilssau 

	 tkatet: 

This strese.etrain relationship* of ah anieo. 
tropic plate having zy  plane as middle piano, can be 

written in general torn* 

E'c Et tE ez;  

• 1111041 

whore*  

= 	 

	

t-vat.vy. 	vasx  
14.  E4.  

—VX4•11- 

Xv Esc 
I --Vx 

vx end ,vv. are the values of Poisson's ra t. for the 
induced strains ex and e in the anieotroplo materiel 

Pram the olaasical theory o: bending of plates the 

*train component* and *tree* omponents oan be wrtttt n 

no 
ex  aye OVA '1 1  xl - .2),  

(/# 	13,. 	 axz 

rrx.1  = - 2 G•tei  

Reale, the various bending mad to stingmoose e have the 
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dx 

c m„ + 6m.  ct.,, 
6),  

c 
 

M•ie)( 	MY X Cl\( 
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A 

dx 

   

    

y 

Tx ± aTx 
ax 
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ay 
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Pt 
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12 
PE. 

; 0
IL

3 e (* 
g 9  
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valuos 
r 4/2 mx. = 1414,  6x .1i  4 = — ( ep t-3. +et 

clib. My  = j.fi  e2s-4 A = - (e 2 -Z)---°- + et 1-- ) 4,2- 

Pin = 1.+Clh- 	 1 11  c:1 5.  = 2 Y - -- 	 ,%4 ; 
.".94 

e,I-A3  
12 en  

*400,0(2.20) 

Y G P73  
12 

and h thlohn000 of tbo plat o. 

Oquilibriun ocimationo of an olonont du, coq of 

tbo plato load to oquationa (2,21 and 2,23) (Soo 

2,0(a) and 2,0(b) 

(1) VortiOal oquilibriun of Zorooo givIm 

75'rx  
16,c -1- 

= - pot,*) 
41041 0(3021) 

(3) Uononto about a and y 	too givo (noglootina 
hitsbor ardor quantitioe)  

Tx = --orrhe 	Pligx 
T 

 

5. = 15 	 *04,4202) 1 1111- ' Irl 
Zw- 	

-1- 	
iz. 

'61K- 
 

Conbinina actuations (01) and (3,32) and Gabe 

tituting tho vatmoo of Un, Uy  and Liar  from oq,(2,20) 

tbo tsonoral oquation of dofornation lo obtatnod, Tut, 



01 Myx 

FtG.2.7 Cb) 

F t c.2-7  (G) 
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equilibrium and deformation equation* are 

 

-erkix.d-  Olyx 	z52-fmk. 	-al-  ral avt- 	 t 		+ ---'" 	- 		= - p (x,11.) 
Dx2 	ZrA b v. 	-lb ,42-  -ex .-aL4. 

",(2.25) 

Ao  
-11- 2 H 	cA) 	 Ltj  

bx4 	 XL-612" 	 'a 
 j Cc 

(2 02 41) 

where, K 	Pe  + 2 1  and the equations of eheor forces 

Tx  and 	oan also be written from ego. (242) and 

(2.20) as 
3 

Tx 	 4-0 4. IA 	 04,74 
3  

-171-  
-D3 

= - 0  w  H  tA) ---  
-6 y3 	).e'Z ) • 

(it) Or d 

Consider the g*idwork shown in Fig (2,70 the 

longitudinal beams parallel to at and cross beams 

parallel to y axis are rigidly conneoted at their points 

of interseotion and resistant to torsion. Let I and IT  

and d and JT be the mouset of inertia, and torsional 

inertias of longitudinal and cross beaus spaced at b 

and al respootively$  The equivalent continuous grid 

having infinite nueber of bowls in both 41rootionn will 

have flexural rigidities per unit width in longitudinal 

and transverse directions as Qp = 1-1- . 	and PE = EIT  121 	cx, 



respeetively so that the unitary flexural moments 

produoed are 

zg 

Mx = — fp "a2.14 

ox.2  1113, = - 	12.1—liz  

Siallarly the equivalent oontinuous grid will 

have torsion .rigidities per unit width in longitudinal 

and transverse direotion. as Yp = 4-f- and 1E G  
Gl 

respectively and the unitary torsional moments produced 

are 

yr  7_bw ,.4.  Y 	-2;11-k.1  

27)  

Substituting Vae equivalent values of U* 	o rrlx..and 

In the equilibrium equations (2,23) and (2,22),*  the 

governing differential equation fór defleotion and vertical 

shearing of gadworkso  when treated as anisotropic plate, 

are obtained as 

Pp 
4 	 4_ 

	

(Yp +YE )  `-- 
-)1/4
"-"' 	PE 	= p b Der-4 	 Vf 

- ep -63LA 
-6)E3 

e E  -611.0 
s 

_ YE  -6W 

po -0 to  '3 

28)  

(iii) Conoarison‘  

equation 4.00 is of the sane to as equation 

(2.24). Introduoing the notation 



_ 
rbx.4 	 PP 
bt) 	2 4tA) 

-+ 	 • • • (a 4 aoo) 

2 

R H = 2 ( et  -t- 21) 	(Yp -FYE) = 2 c.( PpeE  
••• (2.30a) 

tho equations (2.30) and 0630 to 'Mc) form 

	

1 	, 	 .
4 

 ` 	 pPp
4 

20<WFE  ) 	-PE 6 k  	(gyv,)Zx 	 6xib1.2 
0 • a 

choro 000fflolon 	la known as tho torsional paramotor 

and la 3i Brae by 

p rE 
••■•■■• 
■ =m• 

G  J JT 
1/4,, 6, 	a, 

  

  

1) 
.2-j Pp PE E • * • 

Ct 

and 	varloo botmon 0. 

In tbo oquivalont arid tbo Poisson's ratio has boon noaleotod 

and Was Clio loads to Be 0 and oorroopondina rigidity et=° 

ret'on 	0 	and 	 tit° oq•  (3.30) roducoa to 

-64L0 9p le  4 
+ 9 , set  

641a- 4 
= 	(`)(-)j 

PP  
4 

	 +2 vp e, 	w 	4- PE 	 
-?x.'-ate 

4,.(2,30a) 

I (x-D. 

0 Pt 400 

For Isotropic Plato 4p=-PE  and 
• 
b000nos Lai-rams actuation 

Dtz.-1 ikon tho oquatIon (3,30) 
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For an isotropic plats, acsk 1 is irrespective of the 

value of Poisson's ratio. For en actual bridge, 0( has 

always a Value intermediary between 0 and i. nonoe, 

the study of Eq.(2,30) for entire range between 0 to I 

is nsoessery. 

Further it suet bo noted that the twisting 

"sent. I1 	and Prilac are equal and opposite in the 

case of anisutropto plate theory and these generally 

differ,  in equivalent continuous grid theory. neneei the 

expressions of the vertical, sheer forgers Tx and T i.e, 

3q. (3.3G) and (3.29) , are slightly different in two 

theories, Bquation (3,20 of antsotropic plate can be 

adopted without such error for the calculation of shear 

-Coro.* in bridges and e (2.11S)oam bs re—written, after 

putting H = 04fiwE  as 

3 

	

1"; = Pp 	 ,Ft  Ti -63w 	
axeP 	 and 

3bu  — 	 PE  	...(2•20e) 
b,13  

Eq. (2,29) is valid for all pract oat purposes 

as a largo resistance due to torsion is set with only by 

slab in reinforced concrete bridges due to its plate offeeto  

Thus, this leads to adopt 112 --dE 	and henoe eq.(3•294). 

without such error. 

75- 
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be.219.W.I.Conditions 

Referring to P1g•(2•Ta) and reoollecting that 

ft =- 0  for simplification, the boundary °conditions oan 

be written ne 

Along the simply su ported edges (At) nnd 9 

(1) The deflection*  w 	is zero*  1•44 

IA) = 	at X 	x-2 cc 	(2•32a) 

( 2) The bending moment Mx  * is sere 1011, 

-0 at 	& X=2Ca ,"(2•32b) 

Along t tree edge (AD & AD) 

(3) The bending moment • Ply-  le zero 

4 

'b 
	 -0  at 	v,= 	

040 (2020) 

(4) The reaction at the tree edges is zero 1,e•  

Fkj  = Tv  + 	 = 0 of 	1=± b 

Free equations C10200 and (am) 

	 + 2 o< 	9P 	-03w 	- 0 	Cit" = _6 60-0 (2,32d) 
bv3 	9E ' V 4 
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0* quara. o, oa on a dieii,11.14  
simply  sumo brl (Ws in thi-untoatil 
r1.201.%. 

Eaploying the Levy series for deflections, 

tA) 	= 	yrn  (to sin er)TTX 

(a. 33) 

the solution for homogeneous differential 

equation (8.30) for p(xy) 0 am be obtained, Where 

Ytn.  is a funotion of y only. Each tars of the aortae 

satisfies boundary conditions (2.32a) end (2020 along 

the simply supported edges.Substituting the expression 

(2.33) for w in the equation (2.30) for the unloaded 

portion, YrY1. suit satisfy the equation 

ym 	2-4 eiA2- 
fi 

+ -m4 A4  Yen 0 

where, 

     

`Pp 

  

 

eE 

 

2,35) 

The general *elution of the equation (2, ) to include all 
oases from mac= o to A:-.1 „ is given by 

f  Am Cop (rr9h- + f3I'v 	shl(mATT#-_ )1 

(Cm mot, (mit 4V 	7)1-9  	sin.(n) 

Yrn 	e 
rnATT--4< 

+e 

tp.,•#(2,35) 
where Ass  Ba, Cs & On are arbitrary oonstents, 



0 

2Q 

3 
	FIG. 2-8  

FIG. a •9 



d.0 r 	u on of de n of n 
ui 	 seg e 

	

am a. a 	

Consider an infinitely wide bridge of span 
rriTTX 

With a load 	= pm sln A ci 	eating along 
(rig* 20)* liar large "'Aimee of y, and considering only 
positive values of 7  of the portion, the equation (2,35) 
will 	y for unloaded region*  Etoirever, it is obvious 
that the deficotions, w and slopes 	-* tend to were 
as 	00 and hence equation (435) must be reduced to 

Yrn = Crn 	 chr eois (rA.1-3-) + 	 S)  n 	) 

10y 'c 

and the deflection of the bridge is expressed by 

= e 	
4  \ 

- MA 1SV%h yr cox (t-ri`a 	
/77 

 sIn.(rnis) sir) 'std 

Considering tag eyenetry at the deflection of the 
bridge it is obvious that the elope along x axis, 

{71-orr, 	=-_ 	which gives on einplifloation 

ern  1 +.0 

Again, oonsidering symmetry, ern is determined .frost the 
condition that the 'hearing force, 	along x axis 
is equivalent to half the load 1.04, iron efq.42•20a) 
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s, 	 irPrn 	Tri peb vum 	 -6514m 	 sin 
--A 	PE "Z13 	 Dx.2- 	2 	as 

Substituting the value of 
	

and solving for on , 

It tee obtained as 

ern  Pen 

 

Z 
	

FE r.n.  A3. 	 l0 00ta,3111 

rnnx 
When the load .p a pa  sin -3- note on a line 

parallel and eccentric, s from the s axle, the wine.- 

lion for wilt  is obtained by repleoing y by 7  ei 

The modulus value Is used to ensure symmetry of defleotion 

for both positive and negative values of S. Thus the 

equation for w becomes, 

t.orn  Cm 

_mkt  I -F..< 14-€1 eo7. (m)i,E3. :,:g-el)+7-_LTC: 	(m)►g--.°L  

sin tali 
as 
	0•* 1200 

e de sr 	f d t 	sla 
	h 20 w th 

=. pm sin trarat  game  
- _ _ 	tua1at...940.0 

For the bridgo of fin .6 width (fig, 24) the 

general equation may be found by superposing solutions 

to the two oases to and d) i.e. oombining equations 

(2,35) and (208), The equation thus obtained oan be more 

convent ent y written in terns of hype 	10 rune t ons i.e. 
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Wm = [A'rn ecvin( rnki i+279-c)fr (rnkrE-7-h- 
	sirA(tnkF_V_) 

C°)/s(IT) 	) + 

 

east? (m)d.) sin (tr)A,..FV).y.. 

 

2 

1_ 33)M sirfA(rn) sir) erkl .12 	) V -I- ern 

(Ci,p(rnAILII I 	idli—t7fz  0714 	 i 	 0)] sin"''x. 
aot. dp#A0*(2•39) 

The tour unknown constants Au  a' e,„ and Da  • 

oan be determined from the boundary condition. (2.32o) and 
(2.32d) along  the two tree edges.. For simplification, let 

71-td- _ to_t 	 1r e 
73 	 b 

where, 	and 	represent radian measure of the section 
and load eccentrioities respeotively. As the flexural 
parameter or parameter of transverse bean 0= lact 	;PE  

)■ could be expressed in the fora X = 74 and 

A ( b+e) 	 and 	7T (b-e) = G -ri - 

Further introduce n4, 
1? 	71-  19 

Y =e 	a 
	Cr = ‘4--) r-21—  

and solving  for the constants 	n • Cal and Da  fro* 
boundary conditions, it is obtained that 



3‘> 

Aim = 	(C041. - tlfre 43) fEoAli Li> 	n 	 eel?. 71) 

1./ sin  sit, 	eag,71 	t-2,-< sin  .r j)] x 	sirrk4 eus-q 

„Fitz 6tal itC;"711+ L164401(1) eb)s tPCX 	 ee'srri) 

- Gary 	gtp(*<chati 	1...77ca sin TO] xLI 	(i+.0  ecralq. ecwy/ 

.< 	IA 4, sir) 	
• • • (4 •40S ) 

13rn = con) (c.944.- ItIC)elp) {Esti& "I' y, Cog tS(}, 	sin 	cols rl) 

s 	call j 11 swl 	E.  e04474)  cogri 	 sr -4T si n 

+rsin'AIP ectS. CP(sirl f.,1 I - z e0s17) ce4111' sin g  ("41421 -1-1-7-72-  slhTql 

x DAC 	sinA ybecia) 	 eogft cp se ri 11 

	

4 	PC1-4) 

0 

vow* 
41.0% 

• • • 
e'r).] 	(corppA -,g444 )fis rirvo co 6y, (J 	all-) - 	ecurr) N 

.40b 

eogvr 	is (FF  ezx-r) 	_glerriA 7k pi 114 sirY9 +J r eakhcf,  eon] 

+pirifry kfr ecvs SY)  (A sin + 

 

c..041 )-cam r9sin 6 tK3/ elm - 	5'11170 

 

x 	cosAct, sin 1+ 	 51n4,e a 2 el 1  1.  1 
Te 7: 55 

4,0 • (2.40x) 



37, 

,1-1-_--7(Coalet,-51.11g4)*{FAYIPCinggT(41" 	sin/-4q-eell) M 2  

S1400 I sir) cS   CoR ral 	511-9)] [ecA tt 51 	5444 can] 

-I- [Cosh 	(nos Elk Cdsihr) +TT:72 cias9) sirAy sln Sip kees-ri -ST-7(2- 5ir, yij 

[1-  gs 0-60 sib-A + 61m1 + 	2 q,  

0-9 
cog) 4,  milli]. 

.*• (2.00 
Coro, 

M = (4A-4-0 1 2 	sinfl 	- (RA-1) 	sin 1 13Da  

= (2-k-1-)ri—;.7 	oadncl) + 	0 j I a .5)n ens) 

Tho comploto omprossion for orb may no bo 

obtained by substituting tn.° °aprons/ono for tour constants 

in tho equation (a.39). 

2*2 ARM 000N AL,V. AAM(11L"10PIC 
ARP  I Li SiniVOZ I 

From tho theory dovolopod in Sootion 2.1 it is 
posolblo to caloulato thoroughly the torcos in a bridgo 
for any distribution of load but the ozaot method loads 
to loprnotioablo calculation°, It is for this roason that 
an appronimatomothod of calculation ohich is oulttotontly 

acourato for practioal appliontlon is dovolopod. Under this 
for any moo of dotinito loadin6 it lo onftiolont to oatio 

m 0 1 in all tho tormalao 4orivo4 in sootion 2.1* 
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242,1ttaluAmat ea co•ft 

a. 22effiasa of transverse distribution !. 

It is useful to introduce the relationship 
between the aotual deflection, 	sad the mean 
datlootion, We 0  lie• the deflection produced if the 
applied loads are utsiforsly spread over the entire width 

as it has been done for the case in section 2.1.1 for 

a('-'° • The wean deflection Ws  is then written as 

1"Ini = Pr" 	16 ctif 	 in  mint 
 b 	ep m4 7r4 r

ct 
	2 et 

and if it is &soused 

rn  = 	1.13 Wtn. 	 ,,„, (2.41b) 
where Kon  is known as a transverse distribution 
eeeffiaient, then 	is obtained tree equations (2.39) 
end (2.40 as 

K.<rn  —  2bePrn4-rr4 Are cold rnle P e" P318  P t am 
5.14  rnY13  pm 16 a4  

C 1  
top rn(Spe 4 

rn colik rnYp 	rnE13 	'113 

sin M (V 4 Crn Ceeiki; 1-n1 	st.n4I rn1 1 13-Y 1l[e°4  

rn&q- 	1d sir) sir) rricS 13-Tg] 

• ill • 	(2•42) 
Hence Kekty, is dependent on Tr),q,g,p and * or in 

se** • (2•41a) 
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short 
	

i.<aern  = kc ( mn o< , 	
b 	 b ) 

So far only the nth tern in We Fourier aeries 

of the load has been considered, and therefore, the 

couplet* expreetsion for the defleotion of the bridge is a 

PoUrier series, namely 

= 	W + 1<.< z i'42. 	1<"<3 W3 	- 	• • ÷ 	M 14  rn • • 

•.0.41.4144310 

end the atitua neon deflection is 

••• (2.430 

The true dietributton coeffioient, 1<.(  is 
thereforeo given by 

	

2 14 2 + -

- 
• ÷ 	WM.4 • - • 

2_ 4 	N 	4 	ki r,-)  4 - - • 

Since Wis  is inversely proportional to a 
both ezprs*sions (2.43e and 2043b) are rapidly convergent, 

and for all practical applications it is sufficiently 

accurate to consider the first tent only; thus Kel 	tCc i  

The longitudinal bending moment II is given 
by (while negleeting Pt  ) 

-Pp "2.?'6  
2r_ 

 

* 0 0 4) 

Rix  



Considering the nth tern of the series 1.., vs  a Ka  Wa  
1( P  cu  mxm 	- rp 
bx-2.  

a. 
4C4m 	 n m-rrx 

tyy 2--ri 2- 	ga. 

-•••(3.413s) 

The swan longitudinal soment 	is obtained by using 
equation (2,410 0  Thus, 

Pl, 	4A2  sin Tr1/5"  
2 b 	yrixTr2 	a Ct- • • . • (2 • ma ) 

rron equations (2 5a) and (2•45b) 

tLm =_ k -Or) 	1 - n. 

Considering all terns, 

=- 	+ k-6.111+ 

  

k-crn rr). 

 

  

• • • • (2 .0450.) 

and 

al mewl" -=. 1151  +r12 + 

   

-+- relay" + • • • • • • (2 • 484 ) 

   

Thus the true distribution ooettioient K. • for longi 
udinal bending moments is obviously 

— r4lx- 
P1 mean  

ke‹, 	+ 	t - - - 	-I- 	tn  

 

MI  t Rr -+ • 	— 	1-417  1. • - 

 

• • • • MAO 

4-0 
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Sinoe 	is inversely proportional to mat  

both series in equations(2.45e)and(W.454)are oonvergent 

though not so rapidly as series in equation(2.44,1 flowever, 

for all praotical appileations it will be sufficiently 

accurate to °onside,* the first term only of each series. 

Thus kv-nt '<K t 	provided some inorease la bending mount 

so derived is assumed. For all design purposes equation 

(2.4I)ls usually adopted. 

P1% = I • I 14.41  rai 	 ...(2,47) 
Hence a single set of distribu ion ocofflotomt 

is sufficient to dotermine both the deflections and 

longitudinal moments in the bridge etruoture and it is 

common to denote k.(1 by K( • 
From equation (3.#8) K,K oan be determined for 

any values of the torsional parameter. In the two limiting 

oases les' °N-c) and oc=i s  the values of Kio  and Xi  can 

be oaloulated. The value of g
o has already been obtained 

( cut 2.14) and the value of El  is given by 

K1 = At---..red.  f (6* Crigh CA. Sin C000,4, xs.- si rdt es, 0 sirth f3,7„ 

E (dc  	A6  - si  rif-10-J  6)p SiI 9 

<swirl - 

x1( drxs-- 	e 	& tr 0 c 	 6)4,1 

[(ssin't 6 cresEoth 6") SA ep S PIA Cr) GI'ems 441 (513  1 
'3 .5(rrS d tokhce t 

 

rc 2.31-nfxr+6-cok,rt()s)r) 	6-- t9  if- ciokf, 0 911 
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where 	Tr- 1 p- tpf 	and 6-  - 71" e 

(16) 
Farther it has been shown by IIASSONNET that 

distribution coettioient tar any intermediate value of 

c< own be deterained with sufficient acouraoy from the 

interpolation formula 

K.(  = ko 	kOFI. 
*0,0 2.49) 

3ATTLER(40  bee later found that under oertain 

conditions, by wand equation(2,49) very large errors 

can crop up. Therefore, the following interpolation formulae 

are reoommended by him for the oase of 
0.05 

O<(54 '1 	1<.4 	+ Ki-ko) 
) 

0.1 < e < 
	R.& 	 Ko ) 

*** (2050) 

b. C effi. 	of 	bes2.11m moment/A 

The transverse bending moa nt, liy  s  is given 

by ftstvz---i )E .6,S and by substituting the value of w from 

(2.39) it own be *hewn that 

00 	 en111 X 
frb4 = 	ea 	b 	sin 	 ••• (241)Za  

where 	is dependent on 0  ek 	and t and 

pm  is the lead amplitude of the nth term in Fourier 

series. 

Alood/tA is known as coefficient of trwnsveree 

bending moment and in the two limiting cases the value 



43 

of 	for 	has already boon obtain od (oquatlon 3614) 

and for 

/al = 
41-esm-V6. 	3 asirei e‘osti 

X R5-elzA 	2 sirrfic) e.044-1 013 	19,12.sirvfn O f3J  

E(6c04d1-2 sirrg3-)sin-A6't - sinl cy' &11) coal Yj 
3 sirrfn co4f-m- 

[(34 comPto sin4 cop- 	®p eosAi d 

(eccofrfice - sirrAcr) cotrk Ox, - sirrA cr'did sln C9 ')01 

••410 (3•50) 

In thio oaao oleo it hao boon oho= by MA3TONN8Z(16)  

that for any valuo of 0( tho coefficient" can bo obtained 

from tho interpolation formulae 

At( = /-10 + ( Alf -,Leo4=74 
• •• (2.53) 

C. 22,Elflatimt 211121:....oistja msatat  

Tho toroional p000nto in the lonaltudinol and 

croon boom oan ho oaloulatod by tho formula 

x 
reff xcj 	T .&  bp cop 

Yp4YE 

2-YE 	 (a.o4) 
renm 	,;( b 	_(„p  -Tcx 

za 

uhoro 	to the 000ffioiont of toraional Docent 

end dopoudo on e • and-• Tho oaloulationa 

ii 	[(6co,41(-siefie)cegi 	- s(n41  
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carried out b,y ILA38O2+NET(311  show that the coeffiolentTok 
is represented with a sufficient preoision by the inter-

polation formula 

	

r = (1-1 	 55) 

	

where the value eri 	correspond, to the particular ease 

of an isotropic slob* 

d. BfrIvja isethed oflotgaiittlisat  

To find the influence statue • consider a 

coneentrated load P of coordinates x = a, y • s. The 
problen of finding different streesna duo to any load 

system in a bridgo, then can be completely solVed by 

making use of the principle of superposition The force 

P oan be replaced by a Fourier series 

op 

P L sin rY17Te' sly) 	x. 
ct. 

	

	 •2, 	 2 ct, 
m-1 0.11-• (2.55a) 

at an • acentrick ty C. In this series considering the nth 

term 	p m si n 12-1-7a 	where  • 

a  p 	crnw-e. gin 
2a. 

and corresponding flexural parameter OtYL= 7" ices  the 

cross beams behave as if they are a times more flexible 

than under the load pi  sir)..Ta  • Thus, the numerical 

*values of °aortic/onto K lo,u. and cr for fixed aC • el, 
• 

• y are different tor different terms end these vary according 

t.0 (Y1, 

4,44110445 b) 



Pb -'30. 	r  
r—ocrn ke,1) sin n171-  

2.ca. 
tr-) = I 

sin  irn7TX 

cL 

Prof the primly's of superposition the force' and 'laments 

in a bridge due to a oonoentrated load oan be written 

as given below 

(t) kilitelati 

ex 8 P 3  
(A) 	.2%-d ) 	

ct 
 

b ep r 
f<c<tyl  gi wrrirx.  

act 

(Li) Bending moment in la...ssit.44#411.. 	t. 

= 	Pct  
13 -10* Kim (e,/) sin 1417rx 4<x 

s-in  wire_ 
2n. 

*• 
	2 ,57h) 

(110 Dondlna, mosont, in tho caress #Amit &  MOM& 	milINMIONWOR 

*** (2.510) 

(iv) tailklmd Posente In the briftep  
to 

Zlp 	Pb 
•r-lf 	— 	to,n  ( e, 4) Si 11 .trr"-  Ctm "1-jr31  

IP +
YE 

 CL  

	

	 2 Ct 
m=1  

Ye ar =_- 
toes (205Td) 
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e. giagablim of 91111010124c**fttoloont* leasalubla, 

Era the equations derived In section 2,1 

and 2.2 , the distribution coefficients Kft At & (l- 

oan be *valuated for-speotflo Values of 0 and if necessary 	. 
?or simple presentation and use of the equations, curves 
have been plotted by dividing the width of the equivalent 

anisotroplo plate, 2b, into eight equal parts and labelling 

the nine points thus obtained as imb, 	0, t o  

at and b, Those points arc oceasionally referred to as the 
standard positions for e or oceasionally, as the reference 

stations for 170. 

(10) 
In the original papers of GUYON and WASSON/MT 

a limited number of values for K and AL are derived.  

However, in a later publication,. MASSONNET(37) has presented 

eons oonprebonsive tables giving the values; of X0  and X1  

These values are derived on slootronto computer for 

intervals of 0.05 for t varying frost 0 to 1 and at interval. 

of 0.1 for values of 0 between 1 and 2. The baste equations 

used are (3. 	for X0  and (2,48) for 	The The curves 

are then plotted for design office use Graphs 1 to 0 

given at the end are for X0  for Various reference stations, 

and load scoentriolties*  Similarly graph 	to 11 show the 

values of Xt, Since the liaxwells,  reolprooal theorem must 

be satisfied it follows that X Coco, 0,0= K (oc,e,b,a) for 
any reforest)* station say 	and load position say 	 1., 

must be identioal to X for referenoe station 
1  and 



load po tion 	, 

Distribution coefficients /to are ealoulated 

using eqe(2,1T As will be pointed out *elation 2.4.1, the 

Poisson's ratio has oonsiderabls effect on the eoeffloient 

• equation(20)is used with .2) 0 01615 which is 

applioable to reinforced and 0.estressed Qom:trete* The 

values of /u, are presented by 1101103)  and design curves 

for/  lo and /t/1  are given in graphs i2 to 21. 

f. ggiumdnattot 2L Rama= 0 gai 04 

(1) flizAtta. augsatt 9  * 
The value of 9 can be written as 

B = 	6 „ PP 	_ _Ja <1,  IL 
2 a 	'PE - 2 Cl  'ea POO) 

Where, 

2b 0 width of equivalent anisotro 	plate 

2. effeotive span. 

1-L and iT 	equivalent distributed mom t of inertia 
of longitudinal* end transversals per unit 
width respectively. 

In replaeing an aotusl structure by an equivalent 

anisetroplo plate the flexural stiffnessesof the actual 

longitudinal and transverse members are distributed acoord 

tug to their spacings Examples of various types of structure* 

are now considered. 
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(i) P.m arglifit_•*  (ig. aotori). 

If I and I are the moment of inertias and p and 

q the spaoings of individual longitudinal and arose beams, 

respectively then*  if the moment of inertia is distributed, 

the equivalent anisotropio plate boa an equivalent width 

214 given by 2b np and 	T - 

(a) 21.411, Bridge. Via* 2440 b) 

The equivalent widthobviously equals the aotual width 

and 	-7JT 2 

(3) To4108"40  =MEL WU 010o and d) 

In a T.beum bridge , the equivalent width and the actual 

width are identiohl Drovided the edge members have Slangs. 
which oantilever out tar half the beam wooing as shown in 

rig*  (2.10o). Swore this is not the caste*  the effective width 

is simply deduced from the ratio of the moment of -is:mortis* 

of an edge and an internal member as given by 

26 = (h-2)? + 2 Lex  
Tin 

IT  

	

= 1/1:3  5 	 as for open 
grillage* 

where* I and IT  aro moment of inertias of one of the Twamitaus 

with flange width s equal to the spacing p and q rerepeetively. 

and 
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In this conneotion, it should be noted that since the 

equivalent enisotropte plate is being derived, no 

restriotion on flange width applies; further with regard 

to the orose.beame it should always be assumed that oross 

beams are provided at the supports. These support diaphrams 

are essential ensuring distribution of load and in sustaining 

the bearing stresses; the presence of these support beams 

is implied in the previous theoretloal analysis*  

Thus the flexural parameter& is function o 

1) the plan dimensions of the bridge 1.e. b.a.p d q. 

2) flexural stiffness in the longitudinal direction and 

3) flexural stiffnsss in the transverse direction. 

For most practioal bridge structures in concrete the flexural 

parameter 0 lies in the range 0.3 to 10. For a slab 

bridge a is equal. to r. since 

bridge e also equals 	since 

equal*  

iL 	
1, In a box section 

end iT are v rtually 

X11) I 	P 	4.1 
• 

The torsional parameter °( is given by 

1p 	 j1-4-j-r) — 	 
2 Nret77E 	E 	tLiT 

whimijii_ and sit is equivalent distributed torsional inertias 
of longitudinal* and transversals per 
unit width respectively* 
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(b)  I DEALISED  

— — 
(e)  PRACTICAL (f ) IDEALISED  

- 
(d) 

cis 
t 

/ \ 

(a) PRACTICAL  

• 
FIG.2.11 - PRACTICAL & IDEALISED SECTIONS FOR DERIVATION OF TORSIONAL 

PARAMETER  



Pox reinforced and prestressed oonorets, 

Poisson's ratio is taken as 0.151 hones-Elm 0.435. 

If the torsional inertia of the longitudinal and trans. 

verse sleabers are 41 and 41 respototIvaly e thos), 

j, = 	 eIT = 

In dotarainIng the torsional parameter 0( the 

main potables Iles in finding the values J and All  and 

approaloate values of 0( are used by using slaplified 

thaarlas.asamples of various typos of seat ions are now 

considered. 

(1) T-ktmeeeticsa(Pig.2.11a shove a praotical T.beso 

section and Fig 2.11b shows an idealised *notion cons. 

'sting Of-three rectangular areas. The torsional stiffness 

of a rectangular area of width as and length 2b is 

given by 

Torsional stiffness a k (203. 2b. 	(2 sal) 
where k le a (mutant depending on the value of ratio 

The values of k are given in Table 2.1 a 
1.4 I No *SA. 

bies k b/a k bile  k 

1.0 0.141 2.0 0.229 4.0 0.281 

1.2 0.166 2.25 0.240 5.0 0.291 

1.8 0.196 2.50 0.249 10.0 0.312 

1.615 0.212 3,0 0.263 00 0.333 
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In a seotion oomprising of a number of 

roc:Item*** It is logical that the overall torsional 

stiffness is equal to the sun of the torsional stiff' ....neases 

of individual reotangles. This le perfectly true but 

in load distribution procedure what is required is the 

equivalent torsional stiffness of anisotroplo plate and 

torsional. parameter 0( as function of *hie torsional stiff 

nesse  ilenott, it to not oorreot so isolate an individual 

T-beam in a T.-beam bridge and determine ft< in tries way; 

if this is done the value w so derived sill ha greater 

than unity, which is tupossible. This is due to the fact 

that the top flange of the T.beam s  which is a part of 

continuous siato does not satiety the cquation(200)en 

equation(240)assume, the shear flow in the section as 

shown in Pi (24104 It the shear stresses at ends of the 

rectangle which have a large lever arm aye neglected the 

value of the torsional stiffness will be half of that 

given by eq.(24641). 

in a T.bseu bridge, in each Individual ..beam 

only the shear stresses parallel, to the top surface can 

exist and it an individual T.beam is isolated, then top 

flange oontributes only 5001 of torsional stiffness or 

inertia found from equation(2014 Thus torsional inertia 

is given by 

2 — 
— I- k (20,f217 	K1 (202)

3
2bi-Uk3 (203)32-6,3 

Further in reducing a praottoal section to 

idealised 'motion, it Is suffloiently accurate to sake 
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the oonorsta slab in two dirsotions; lot Pp and e, 
are the flexural rigidities of an Isotropic+ slabs  inorsesed 

DP  In the ratio j== and ryl= PE respectively, mbar. 
13 

Eh3 D s 	2 • Neglecting torsional rigidities of i beams. 
WI .0 

oo eider equation (2.30e) 

Op + -YE) = 2 (2.1 + et) = 2-4,17eTE  
))111t3  

t va (I 05 
Substituting 

QC is given by 

re yo (ma rr  
in case of iiotrapr4  

ad 9p *.t om and 1"E  

a< 
iro,•• (2 4001) 

Bxpreseion ( 	) also o0 	ho 	of Poisson's 

ratio* 

practioal s 

fro. the abov* bro. oaees, f or almost all, 

os equation (2000) can he oonveniently used. 

the values of torsional parameters In ?-berme 

bridge are very lees due to suet or torsional stttfnes.e 
of T.000tjanoThe range of valuee of of is from 0000 to 

00160 The behaviour of box eootion is stsitar to that O 

en isotrovio slab and the values of c< are usually IA 

the range 000 to 0.8. 
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Met of 0 ►utat n t the allnivitutt 
11921.4.2.•  hearForce, end 

br 	due to Ao 
Pee4et, 

(1)tpja....tuciat Bending Moment 60 pqlrittprit,  

Consider 0 general case of R bridge loaded by a 

series of venicles in a line, and gall, P1  • P2 .0 P,1, as 
the concentrated wheel loads of axles in t elm* file 

situated at definite transverse section of the abscissa 
(Fig, 2.13) .. If a (z) is the bending moment at z in a 
simply supported bean of seam span as bridgo duo to 0. unit 
lead placed at the abscissa 	, then the glean bending 

nomont per unit width due a concentrated force PC,71) is 
equal to (x) 

2  P 
	01)  and the longitudinal bending 

b 
sowent itt section z of bean at y with been ',pacing 

p, is equal to 	la(z) Kfro/ P 	 )• The group 
of loads 9 to Pn in the sane the at absoissa 'C will then 

produce a bending sosent at it in a bees at y as 

Y1 +8 
MIC  

2 1:› 

414,••( 	3) 
Per obtaining attaisaan bending moment, the group 

of loads must be platted traneversely 011 the bridal in .a 

definite position. rig•(2•111 a) shows the position of loads 

Irbil* produce nazinua bending events in wastrel beans and 

Yugo  (2.12 b) snows the position of loads ich produce the 
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of venting, are thus preoively defined and can be related 

to the equivalent width 2b as 'mown in Vig,(2,13), The 

wheel loads do not, in general coincide with the standard 

positions; they are, therefore, replaced by equivalent 

loads at the standard positions so that the values of X0  

and Xi can be used oonvenientlys  This is done by simple 

assumption; for *mob wheel load the equivalent loads at 

the adjacent standard positions are the reaetions of 

simply supported beam of span T o  The loads are thus 
11 	n 

p,1 'pa! ofi'andr4 (rigs  a.130 where Z pm=  2: Fib = PA 
h=t 

and PA 
 is the total axle load 

In oaoh of the two tables prepared for X0  and 

i for particular referenoe station, the rows appropriate 

to equivalent loads are multiplied by the loodePti s fll  

p F4 • Since all these loads sot simultaneously, the 

four,  rows of coefficients so derived are added up to 

obtain IP0( • The resulting ooeffioients are appropriate 

to a single axle with total load. Pe Vat unit axle load 

the resulting ooefficients are divided by P• The inter-• 

polatton formula(2,40)is then applied to the nine values 

of No  and Xi  resulting from this pr000ss to obtain 

distribution coefficients PCK for a single axle load. 

If *Wier aide loads are noting along the 

longitudinal line of the bridge, %he distribution profile 

remains constant along the span and it only remains to 

consider the mean ,;otilmote caused by essuatng that eao 

axle load is replaoed by a line load uniformly distributed 



SS 

the bridge in almost all the eases, and therefore those 

ourves relevant to standard position 0 are required. 

The maximum value of My occurs when the load is applied 

near to the centre of the transverse section of the bridge . 

Tait is opposite to the ogee of the longitudinal moment which 

has its MAU= value whoa they load is at a position of 

ItaXtUUM eccentricity with respect to the longitudinal axis. 

Per 0 concentrated load P acting at C on a 

*imply sumrted, beam Fig. (2.14s) the load term pas sin 111:4  

As the oonvergeney in the case of transverse moments is not 

sufficient to allow an aoourate assessment to be made with 

only one term, the expression for My used, is 

P
CL 

(A (0)   sin  2«  sin —x 
 4"4(2) 

561 

 22 c
x sn 

Za. 

	 + (Tn) nsn7r 	rn"Trx- 
2- OE- 

11*0*(20,034) 

a 71 it 
The teams sin ► refers to, the transverse 

otion at W41011 the transverse moment 

critioal section is at mid span i.e„ x 

M. 	Pb  (I 	: 	 . 27re 
I ca.

40) so,„ 	— AA -4.(3) Sm.  Z3,. 

is required The 

ao  Thus 

+ /4.4(s) '51n .6-Tre.  2,c1. 

••••(203b) 
as even terms heave cancelled out. Further the coefficient g 
AL(  0s) is the value of/40(  for a bridge of flexural parameter 

s 0 from graphs i2 to 21. Thus the transverse bending moment 
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at mid span due to a concentrated load can be reeritteni 

as 

eL (A40( (9) Sin 2e 
E3L -'/AD((5(9)5 in 3.L....re m.c* lheAt4 (4) (gas sin tfrre  

2.eL 

ee0(201:10 

It is oufflOiently acourate to consider first these 

terms as for large valutie of 0,/t/.4  tends to *aro. 

If there aro two linos of load moving having posit.. 

ions 0 and c*, the rosultan value of 	► is found by 

superposition. Thus 

Inv 	7= ined (2?) ± r (c,") 	
eee(a eoda) 

For any velue ofcX using equations (2.83), (2.031 

and (.04a), the transvorse bonding moment is given by 

interpolation oltpreselon 

17510( = 	( 	- yo)..FC 	 •••• 0.6.ft) 

where, ilyo  and liyi  are caloulated from the values of 

Ao and ,tri  in graphs la to ale 

For distributed load* the Fourier series terms 

for various types of loading are given in Fig. (2.14 b to 4) 

and Ship calculations for these cases can bo done in the 

ease way as for concentrated loads.  

The details of calculation for concentrated loads 

are given for I.R.O. *less AA loading for wheeled vehiole 

in exampla 3 of section 2 



Go 

The procedure developed above le applicable only 

for the determination of maximum sagging transverse aoment. 

The maximum hogging transvorna moment °cow', for the 

*acentric positions of the vehicle but their magnitudes 

ore considerably lose than the maximum sagging soltent. Wang 
all graphs 12 to i9 for AL f  ROME and LITTLE (27)  have 

shown that for abnormal loading of Ministry of Transport 

En land the max. hogging moment does not exceed the value 

of 100 of the maximum sagging moment, After (tarrying out a 

detailed analyeia for transverse moment they have also 

shown for abnormal loading the approximate distribution of 

My along the transverse and longitudinal direotions.Por 

design purposes it is suggested that 

(1) for varyi ag positions of vsht al ss io  the maximum 

sagging treneverse momeutsin a transverse seot. 

ion approximately vary as shown in rig0 itii)and 

(2) for varying position of seotion along longitudinal 

direotion the maximum sagging transverse bend 

ing monent$approximaAely vary as shown in 

Pig, 2.4611 

viii  0.incibxiLlia of Sh r !Port)* gat jtimArt ca  

Taking the expressions of T and T from 

sq 2.29  and re-writing them as 

= ep 7) 	..41FI 	(- PE t) 
3 
14 

E  
4,41 (205) 



Consider first term of the Fourier series for the load, 

the deflection and transverse moment are written as 

16 a4 	Ps 	sin 7rx k 4 cA- ep  

, 
?IN 	

rE '6(4) 
 

' 7-x  AA = A 	I Sin —27; 

Therefore, equation 2686 oan be written as 

2- 7ra. 
1; 	= ct 	i< w • 4 0( o "0 0)) CO4 

b 

WOO 
,•••••• 

4ce-- 	cin*z Act E)p 	24' 

r 
L2, 71' 	c.< 	"1°(  og,  (0) 

S. 

whereto./  is the distribution coefficient for tho tr averse 

moments assuming Poisson's ratio as mar*, 

The complete expression for Tx is therefore co 
Tx' 	>  as 	tArn  erb  ,-0-071-2c 

2 b 
Kc(rr + 2 oc m G) ITt AA cr r olj a 1- 

7-1 

• (2.$d 
for 	zro 

oc 
= 	4 ct 	tIrlo 6104  -rn 7T x  

ran 7r 	2 b 
hi= I 

ko CmG).  

At supports ii.e* 

x 
is Oven by 

\ix  = Tx 	2) 01)0+ 	t.oftesue  

0 and sa • a Z DS ranouon 

bto 
D7c21' 



For the first term of the load series 

-br)1104- ..,_-__Nlie--z ( ... e -b2t.31  )  	c,(  fee 	7r  A 75-3e 	m V 2 	eE 	2.a 

fri 	
za   Pi (2.4   07-7T2    A3/41°0   eesirct.   ID 	71-2icix  	

.._ ... _ 
Tr   2 b 

and therefor*, 

Vx 	 - 	 4 .4 02-  71-2,ce.9 =-4.) 	71 26 

The complete series for iirx  is, therefore, given by 

IVX. L2C=-0 

00 

1.1n 7T a b 	 " CrnG) 	(rn,502.172-, 	Comm) A a 
m =I 

x act) 
Mrs 

For o< 0 

(eno) IT ti k  (mad 

The calculation of the shear forces and rear tions 

using the formula* derived above oan be done for aotuel 

vehlolo load** 

For shear P the two post ions produoing the 

maximum longitudinaland transverse bending sonents on a 

tr*nsverse seotion already discussed *bolt* are oritioal 

for oonoentrated load. vehiole Prom these two position 

distribution profile for Not andA are obtained, Fors 4-( 

the interpolation formula given by i SONNIST("0")  for/+' 



C3 

say be taken as ,610( 	(A4-3,-4-0) 11"---C 

Obviously a number of terms in the series given 

by equation (246) are oonsidered. 

The reaotion Vag  is derived directly from 

equation 2,07(b) using the two critical profiles for K 

(l/C-1'.< • For Vs  Upto 3 terms of the load series are 

normally considered. 

For shear 	Tv, as equation(2 05a)shows,7i 

cannot be obtained directly from the values of K. an4,e4(  

but depends on the differential with respect to y of the 

distribution profiles for 	andAat 	This differentiat 

ion is normally dons graphically. 

2.3« 131_10pla OF mint fit nnzopet.,  

Numerloal examples which are solved by 

using the graphs I to 21 indicate the validity and easy 

application of the anisetroplo plate theory developed 

in sections 2.1 and 2.2. Conaidering the extreme oases 

of open bridge grillage*. numerous examples for wide 

range of parameters are solved and a comparison of values 

thus obtained is made with ezeot values. In example I no 

torsion bridge grillage* with three, four and six main 

beams and one cross beam for 0 * 1. 0 0 0.5 and e m 0.23« 

and unit load applications at different beams are solved.  

In example 2 torsionally reeistant open grid beam bridges 

with our main beams and three cross beams for 9 • 1.0, 

m Q. d, ot se .04, and aC 0.04 are solved. Rumple 3 
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shows the method of oaloulation of bending wesents in long. 

itudinal and ores* bean* in a misply supported tour girder 

bridge of 40* span and 22' roadway with three arose boan44- 
The oaloulations are wade for z.a.c. °lase AA loading wheeled 

vehiole of 40 tons and the oritioal positions for naxinun 

longitudinal moment and maxims transverse nocent are indicated. 

2.3.1. tbganple on No TarMag fridie Grill en (0( la 0) 

Three oases of three, tour and tax girder bridge 
grillage. with one ores. bean are taken for analysis. Chang 

lug the relative sttffnnea of longitudinal and (moss-beans 
adequately to obtain, the flexural paraimer 0 defined by 

equation 2,58 as 101 0.6*  and 0,25 *  the ordinates of Ko  
are tabulated from graphs 1 to 5 for 6 a 1.0*  G a 0.5 and 
e a .25 in tables 2.2 to 2.4, Mlle tabulating the • value* 

+b  
Of Xi,. the Maxwell's theorems 1,e, Kid  a KJ( 	and j Kochd- =2-b 

-b 
are considered *  to gourd against any possible error in 

reading the graphs. 

(a) WAR gnaw wi th three Esta bea.Lou 
Consider a bridge grillage with three oath beans 

and one *roes bees at the centre as shown inrig.2.10(e), 
the diaeneions takon arc 2a • U.0 ft, p a 12.0 ft. 

• 
0 grab a up 

9 
36.0 

q 27.0 it. 

Let I and I are the nonent of inertias of 

Longitudinal and cross beans respectively. When the unit 



6 5 

lead is applied at 1 (fig. 34.160$  the distribution of 

load for this open grillage is found out exactly in torus 

of parameter )k (g f; by flexibility methodand using 

symmetry and antisymmetry of the load and deformations*  

The complete results, thus obtained, are shown in Table 30(*), 

While solving this probloa of open grillage by 
approximate method of anisotropio plats theory,. when 6' 

given by LA yp is 
1711, 

1.4•1 	 366 e a 1.0 ; 	• 36 and X is —gr- 
t  

16 0 0 04 	and  

OAS Trr  and ?■ 

It is interesting to note that for a pose of one 

cross 	der at the centres  

whore, 

h 	Sly 
0
4 

0 	 Ipoio .88) 

sbar of main beams 

thus for 	n 0 3 

an. # A • 01 

Also if A donotes the ratio of span and equivalant vidth 

of anisotropie plate l'oe  1.-1, than for a one° of one 

cross girder at the centre 

e  32  43  04 
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ir-ABLE 

VALUES  OF DisTRiBUrlON  CoEFFICtENTS Ko AND K L  FOR 0 =  1.O 

LOAD fREFERENcr. 

STAT1oN 

P 0 si TION 

-b -3 b/4 - b12. - b/4- 0 b/4 bR. 3 b/4- b . 

o -0-70 0.17 1.00 1.90 2.33 1.90 1 00 0-17 -0- 70 0.993 

b/4 -0.52. -0.14- 0.38 1.07 1-90 2 37 I •y:d. 0.4i6 -0.2.4 1.005 

we_ -0 35 -017 0- 01 0."58 1 - 00 i 	• 	I. 2.41 1 . 98 1.24 0 990 

51)/4 -0.07 -0.15 -0.17 - o- 14 0.17 a bu 1- yt, F;• 54 4 45 0.999 

b 0.16 -0- 07 -0-35 -0.52 0. 70 - 0 - 24 1 	24- 4.4-5 ..) • 00 1 001 

K1  

0 0- 4-7 0.64 0. 94 1 35 1 	6 2 1 	35 0 .)4 0 64 0.47 0'994 

h/4 0 24 0.56  0. 56 0 • t9 I. 	f)5 i•67 1.1/2 1.10 0-(65 0.995 

ba, 0-13 0-2.1 0. 55 0- 56  0. 94 1.4.5 1•t -1 1 - 77 1 • 55 0997 

3b/4. J- 07 0-12  0.21 0-36 0.64 1.10 1 . 77 2.4z  a-66 U-999 

b 0 0.5 0.07 0. 	15 0.24 0.47 0.5 1.55 ? - 6i, 4 .2o  0.992 

TABLE 2.3 

VALUES OF DISTRIbUTION COEFFICIENTS k0 AND K i  fOR O =0.5 

REFERENCE. 

STA-noN 

LOAD 	POsITIOtJ 

-b -61D/4 - b/ -b/4 0 b/4 blZ 3b/4 b 7  

i.<.0  

o 0 55 0-7435 1.01 1. 2.2. 1 - 325 1-2.4 l of 0.785 0'55 0993 

b/4 0. 00 0.505 0-65 0.96 1.22 1 -6?) 1 	4-2. i 40 1 -685 1.005 

b/2 - 0. 54 0. ve, o.22, 0.63 1 - QJ 1 .42 1.81 a-  075 a • 51 o 9435 

5b/4 -0 96 0-b5 -0-13 0-305 0.785 1 -40 2.0/5 ?..(135 5.5 1.000 

b -1.4- -0.0(5 -0.54 40. 00 0 55 1-3-85 2.31 -5.55 4 70 o.99a 

K1 

o 0- q.6 0.95 1.00 1•02)  1 -16 I • oft 1.00 0.95 0.436 1 003 

b/4 0.6'6 0.76 0.85 0.96 1- og 1 	15 1.15 1 	12 1 - c?) 0.05 

b/2 0.5-  0.63 0.75 0.85 1.00 1.15 1.29 1 35 1.58 0995 

3b14 0.45 0 54 0 63 0 - 76 0-93 1-12 1- .65 1.58 1./5 1'009 

b 0.543 0.45 0.55  0•68 U' b6 1.043, 1.545 1.75 2-16 0 993 



TABLE 2.•4  
• 

VALUES  or DISTRIBUTION  COEFFICIENT K0 FOR 0  

RE.FE.RE.NicE. 

5 TA-r lom 

. LOAD 	POSITION 

b I.V -h/a -1,14- 0 b/4.  b/2 3b/4 i2 

1(.3  

0 0- 90 0.96 0 97 1-05 1-015 1.05 0.97 0 96 0.90 0 997 

1 05 

0 97 

b/4- 0.22 041 0. 635 0-%56 1.21 1. 35 

i• 75 

1 54 1.70  

2 4 

1.001 

b/2 -0555 -0155 0.245 0.665 I 	5',; a-  10 0. 9y,2. 

3b14 -1 	17 	1-0. 64- -0-155 0-41 

0.a2 

0 96 

0.90 

1•54- 2.. 10 2.71 O•40 0.998 

b -1.34  -1.17 -0555 1.70 2- 148 5.2$ i 05 too/ 

Non! Z 	)c -t- v--1-6 [Kb  + K6  + 	 Ico  K 142 ) 	44 4115t, 4-  11,, 	Kja1 K6b )/ 

	

Tf- 4 	 -7t: 

TABLE 2..5 

(a) THREE GIRDER GRILLAGE  

lc, ic, lc(  

LOAD AT 
i 

SYr111. ASYMM. 5IvIrl. Abytim. 511 11M. A sYr1til. 

A -1- 	1 1 0 A+ I. 

0.(k) -I- 0 - 50 0 0 -0.50 
2.A4 5 1A+5 ZA +5 

1.0 _ 2A+1 L 0 
b(2.) . - --- - 

2A4- 3 2A+'5 2)0-3 

(b) FOUR GIRDER GRILLAGE  

Ku, Kb 

LOA D
e 

AT 5yr-ir7e I" RiCAL A sv pnr-1 ETRie Ai. 5-ernytETRicAt- NsvelrILTRICAL 

acil 
2.5A4 0-5 
_ . 	____ ___ 
5A+ 4 

I:5A +4.5 0.5 
- 

1.5 

3 A + 10 5A+2 5A +10 

b (2) 
0.5 1•5 

___ _ 
5A + 10 

1-5A + 0.5 1• 5 A+0.5 

5A 42 5A.1.2 -5A 410 

icc_ kd 

G() 
0.5 -1.5 2.5A1-4.5 1.5A 4.4.5 

___ 
5A+2 3A 110 .5A t 2 .5.A + 10 

b(.2) 
a-5A + 0-5 

__. 	...... 	_ 
5A 4. 2 

1.5A+0.5 
- _ _____ 	- 

0.5 
......_______ 
5A+ 2. 

1.5 
_- 

• 3A+10 3A + JO 
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TABLE 2. • 6 

ek) 	FoR 8  - 1.0 

BEA,, 
LOAD A 	AT .i., 	b -_-,-4 	b 

D I-- 	b Z. 
F 

0 -i b 
4 -3b 6 

5 
- 3, b 

-I- 

BEAM 

a 

5/4 b 
- 

3 340 - t • `) iSciO 0.1100 -0.17 __ 
- 

-O. 15 

Ii2. 	F-,  I 	9'600 - 2,4100 1 ,  0000 to. 01 _ -0. 16 

2/;b 

a/5 b 

2- (tSY,  67 2.1255 0.4467 - 0. 1100 - -0•I535 

- 2. 6522 - 0.4467 -- -0.15 'i.9 - - 

BEAM 

b 

0 0.17 1-00  2 55 1.00 - 0.17 

0 - 0.4467 2 55 0.4467 - 

(b) FOR 6 = 0 50 

BEAM 
LOAD 	AT 	°%-i' 4: - 	b 2 	b 

3 1  6 2 0 

	

-1 	k 

	

i 	s'.  
- .Z. b 

5 - A. ID 4- 

(311 

a 

3/4 b 2'4 _ 2.075 0. 785 -O. I8 - - o. 53 

172 b 7-. 075 _ _ I. (610 I . 0 10 40• 22 -0 tg 

2/5 b 2.5$50 ___ _ 1.9867 0.g6o -0.0467 _ _ 4155 -04133 

2 /31, -- 2.3856 - 0.4360 _ - 0 2911 _ _ 

4AM 

b 

0 0 75 1 . 010 1.. 525 1- 01 0. 7g5 

0 0 .%60 1 - 325 °.8e-0 - 

(c) FOR 0 	0.2.5 

13LNn 
LOAD AT 	AT 

5 	iz)  
4 

2 	b 
'5 

i 	k 
"2 	". 0 - 1 	b i 

2 - 	b 
t-  - -3-- 	b 

4 

BEAM 

d 

3/4b 2. 	71 2 10 O. 96 - 0.155 -0 	. 64 

112. b 2.- 10 I.  75 0. 9 7 -0 245 -- -0. 155 

2/56 2. 51 1.9767 0- )433 -0- I65 - -0 -47433 

2/5 b - 2.3323 -- - o• 9633 - 0.3$3 06 

1311 

b 

0 0.960 - G•Vi i 	o e 0.97 0.96 

0 - 6.96' (.t 0.7635  - 



TABLE 2.'7  

TeR,EE. GIRDE R GRILLAGE 

Lon) 

AT 

tz, IL(.. 
3 

0 = 1. 0 	A = 2. 66/g i 0 .-, 0'50 	A= i 6As 1 0 - o•25 	A= 	Val 

By CIUYON 

METHOD 
6 .1 	E )(ACT 

METH01) 

13 v 	GUsloN'S 

pi£THoo 

131 	EXACT 

METHOD 

81 	GlP/01,1 

METHOD 

13'si 	Es Act 

F1611400 

SEAM 

a 

fact 0 9023 0.9.464 O.sti 23 0.8527 0.7877 O. 8347 

izei 0. 14 53 0, 	1072 O. 2 $68 O. 2946 0.3 2 25 0. 5306 

ik,,,, -0.0476  - 0• 0536 -0. 0 991 -0.1475 -0. 1102 -0.1653 

SEAM 

b 

it(2,6  0 . 1 4 55 0. 	1 0 72 O. ?4368 
I 

0 • 294-6 0.5225 0.3506 
- 

kla b  0.70 94 0. 78 56 0 42 64 0.41 0E3 0.5550 0.5'588 

Itz.cb  0.1455 0. 107? 0. 28  " 0 . 2946 0•3225 0-3306 

TABLE 2. 0 

FOUR GIR DE R GRiLL,AGE 

LOAD 

AT 

i2 	
K. 

4-  

0=1.0 	A.---- 	1 0 0 -,- 0.50 	A---- 	I/16 ()=-- 	0.25 	A,.. 	1/2.56 

b'y 	G4..)--,,olis 

mi.-  THOD 

6.7 	E > A cl- 

VIETHOD 

9,Y 	CI VY C,r4 

v1E7%406 

13v EXACT 

METHOD 

PI '1 	G U-Yot45 

VIETI4 0 D 

By 	L-- .xAc-T 

METHOD 

BEAM 

kcq  0 $ 600 0.'690 1 0.7091 . 0.7347 0. 6737 0 , 7 0 25 

'b4 0 	21 -55 0 .1`ES 08 0 • 3474 0. 3635 0 .334 0.3974 

4., 
x ,,,,, -0. 0347 -O. 0440 0.0758 0 .0689 0 - 1020 0.097g 

kciA  -00386  -0-0-529 -0.1323 -0 • 1671 -0.15 01 -0.1977 

BEAK 

b 

kab 0 ' 21 	5 0 • 	1E,'ZS 0 ,3474 03635 36 -55 o.3854 0 - 5 974- 

ki,la  0 . 5659 0 - 5424- O. 5402. 0 • 	34-21 O. 3016 0. -5029 

keb 

1: 	4 ak 

O. 2555 o. 274$ o • 2366 0 	2255 0- 2 130 0. 2 019 

- 0 , 0'54-7 -00440 0. 075' 0 ,  06'89 0-1 020 • O. 0 978 
J 
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for 	n 	3 

and 	3 • "1r 
slob, 

equation 2.69 reduces to 1/1/0  a 36 A4. 

Since in the plate solution the main beams are 

at t 2/1b and 0, the values of ate  (from tsiblos 3.2 to 

2.4) for outer beams are linearly interpolated firstly 
2 

for beam position 	b from the values at 13 	and 
ii/4 and subsequently ones again the values obtained 

are linearly interpolated for load position . b and 0. 

The calculations for Q. 1, A a 6.8 and se 0.25 are shown 

in Tables 2.6 a, b and a. Dividing the values of Ke  
_ the  obtained in Tables 2.6 a, b and oby n a 3 0 	
" 

transverse distribution eoetfialeat keb, kbs *to. are 

Obtained. The values thus obtained are tabulated in Table 

2.7 and are compared with the skeet values. 

Drictice,  gathat with tour sea keilezu  

Considering a bridge with tour main byes and 

one oross beam at the centre as sho in fig. (B.16 b), the 

dimaaalano taken are 2a 0 54.09  

p 001  
• 
• • 	2b a up 

36.0 

qa 21.0 ft, 

s a 1.5 

For n a 4 	and //IT  • 8104 



BE AM  
GAD AT b 

6 9.00 	4.45-  1.24 -0.24 

5b 36 
4 4 

.3 

a 5' b/G 5 9667-  - 3.7100  1'7333  0.4933 
bit 4.45    	3.34 1.58 	o•86 1 

tEAM _ ___ __ _ _ 4 

5 bA - 	44621 - 1.7333 - 

     

     

6/2 1.24 - 1-98 2- 41  1.82-  
b 1  b/2 	 7 	1.7333 . 	2.410o - 

/4 -o-24 	- i 0.86 	1.82  	2'37 
 

0 -070 	0.17  1.00 1-90 
BEAM _ 

BEAM 1- 

• 0.2889 1.546'7' iG  - - -. __ 	i_____ 	1________L_ 	 i 	 

C 	bA, -0-3933 ' - 	06300 1'5467 2.2_131  
b 

TABLE 2. 9  
CO.) FOR 

0 

-O. ru 

b 	b 	b 	3b 	_ 56 
6 	- 

0. 17 	_ 	-0.14 	-0.1/ 	-0.15 	- 

	

____,______,_____ 	_ _ _ 
- 	-0•12 	- -0.2661 -0.2300 -0.1211 	_ 

_ 0.2.889 	- 	-0.2.i7a I 	- 	-0.2300 -0.0800 
- 	1.00 	-- 	0.38 	o- o 1 	-0.11 

1.5467 	- 	13,5-667 _ 	0.010Q 	- 	-0.2300  

b 
-- 
- 	1.90 	- 	1•07 	0.38 	-0.14 	-- 
 2-33 	 - 

 - 	1-90 	1.0o 	1-0-17 
--2.0433 	- 	1'3467, 0.586/ -00367 ' 	- 

2.1566 [ 	- 	1-.789 1 	- 	:o.5861 	- 	IT-0.2178 i 

• IC 

-0.07 
+0.000 

-0.35 
' 
-0-52 
-0,70 

-0.5800  
1 - 

(b) FOR e.o.so 

   

    

"-----.,p E AM 	56 	i 36 	! 	b 	; 	 ,o 	I I 	b r_ 6 	___ b 	36 	BE. 	1 
La A In • ---__AT 	b 

1 -,4, 	----6 	-b 
Ai- 	----, 	, T.  I 	4 	, -T: ! 	4 	 - 6 , 	4 	-2_ 

i 
1 385 b 4.70 	3.55  ‘ 	 0•55 	0-00 	 - 	-1.43 1 

2-31 	; .  

BEAM 3b/4  3.55 	2;84 2.075  ;1. 40 	0.785 	- 	0.305 -0.18 -0.53 	- 	-0.96 

	

0. ' 56/6 3.9333 - 	3 - 0433.2.153311 -395 	0•7061 	- 	0-2033 -0•3000'-0.6733 - _ 	 ■ 	-1.1167 
1--  

5 biG • - 	'3'3400' -- 12-15331 - 	1. 1 G54 	- 	0'3711 	-03000,I  -- 	-0-8211 
1 	- I- , 	  

b/2 • 2.31 	' 	-- 	. 2.• 075 I 1,  81 	1.42 	- 	-1. 01 	- 	0 •63 	0 •22. 	-0.18 	0.54  
BEAM _ 

, 2.1533 . - 	1. 8100 I - 	1.3167 0.2.200 ;  -- ..c1 .300,:j _ 
6 	02 ; 	 0,7567 

0 -.9C 0 ,6 3 10.305 	- 1 0.0 b b/4 1.385   - 1.40- 1.42 1.38 , 	. 	
- 	1.22 	_ 

0 	0•55 	_ 	0.785 1;01 11.2.2 	- 	1.325 • - 	1.22 	1 • 01 	1:5. -7'95 	- 	' 0.55 
SEAM . 	. 	L 	. 	, 	. 	. _ ...... . 	 . . _______ 	. 	, ._ 	. . .... . .. . 	., 	--- - 

C 	biC h.  1067 	• - 	1 • 1 950 1.2.833: 1.32671  - 	1,2550 	- 	1.0467 0'7567  0•4650 	- 	0.1833 
	 ,_ 

I- V6 	-1.165G 	-- 	1.2833, - 	1,3028 	-- 	1.1161 	- 10.7567? - 10.3711 	- 
_, 	... 	 1  

 • 

CO FOR 13=-0- 2F' 

LAo 	- - - J b 
 c-, 	 •=1 

3Eam 	56 	36 	
' 	

b 
A'T 

!   1 

	

b14. 05 , - 3.28 12.48 1.70 	0.30 - 0.22 

BEA"-'■ 36/4 3.28 : 

	

  ,..a. 71 	2.  - I0 	1.54 : - 	o• 96 	- 	0 .41 -o-155 -0.64 
. _ 	.. 	

•- 

	-1.17 

	

u- 5b16  3'5367__  -- 2.9000:2.2267 , 1.5933 	- 	o• 94 	- 	0.34E7 -0.28u-7 1'0-816 7' - - 
-

1-3933 
-t- 	-r--  

506 	- 	3.11a 2, 	- 	2-2267' ; - i  1-3755 	- 	0.5145 	- 	-02.81-1 ! - 	,-1-00.89 	- 
1 	! 	 r 	- -- -. .4- - - 	+ 	 ___ 	_ 	.. . 	_ .. _ 	. .,_ 	___,_ 

b/2. ,? • 4d 	-- I 2.•I0 	i• 73 	1' 35  I - 	0.97 	- 	o.635 0.245 : -0155' - 	- 	-0.535 
SEAN, 	 1 

t 	1 	i 	, 
b 	bk. 	-- 	1 2.22 67 j - 	!1.7300 , - 	' S.2233 i  - . 	1 0-7461 	=--- t  0.2450 	- 	 0.2817 ! _ _ 

- 	0.855.  1 0.635 o• 41 , -- 	0.22 - 
i 	 - 	1-  ° ;5 	 I 	 1  bM 1-70  ! - 	1,54 	i.65 1• 21 ____L. _ ___i___ 

0 	• C,  '90 	- 'o, 96 	0- 	1 -05- 	- 1 1 ,08 ' -- 	1'05 	0•97- 	0-96 1 	1 0•90 
L 	- 

c 	IDAS .1•4333 	- :1.3467 1  22z3 1.1567 	- ■ 1.0600 	- 	O' 9200 0.7467 . -3.5 U3-.5 ' - ' 0.4467 

	

- '0.5445; 	 ---1 15/b 1"--  --7:  _ 11 .3 75 6 t - __ i  1 • 2Z 33 	- L  1- 12 4 1 - 	0 .9 667 - 	0 .746 	 L._ 	L____ 	--i- 	1 	.1 

-0 54 -0.96 

I 6 36   _56 
: - --i_ 	- 2F- 	--6-  
-0535 -117 -1.84 
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TABLE 2;10  

StX c,IRDER GRILLAGE _ 

LOAD 

AT 
- 6 

Ko 
9-_,1•0 	A+= 	 6/, ,I 0-.0.50 	)\----- 	1/1 8 "z- o-2.5 	A- VI z.e 6 

By Guroms 
rctET1-10D 

eo.. 	Ex.aer 
M E T 14 CD 

BY 	covoN's 
NHL-Hien 

by 	E.-X Ati 
Nit --11-10D 

",/ 	G u 'it Ns 
ME -r Hon 

r4 ,y 	E.), Ae.T 
 VI EI i NOD 

REAM 

0 

kc.,,, 0.751 D.'n 1 4- 0.5694 0•,-i7 I 2 0•5194 0.527) 

1460. 0.2866 0 , 2952 0, 3630 O. 3674-- 0.7(-) 0 . 3•Sc.2. 

k e  a  0. Q4$6 0, 0?) 16 (-).1.0',(A 0.19c)3 C). 2 '503 0 , 2353 

kda - 0 066 • 0 . 0464 0.0624 0 .C) 619 0'0912 0.0027 

kea - 0. 0  3.K3 .-- 0 • 04on 0- 0 5 C•6 -0.0472  - (). 0475 - 0• D47 

k4.ct - 0 • 0 )F4 0.0118 (-) • ILI oo  -0.1526 • ' o • 	/60 -O. I.E,75 

P.?E,A m 

b 

k,,, 0.24366 0 - 2952 0.3630 0 71674 0 	3756 O. 3-E.02 

Lb 0.39 23 0-90t, 0 . - 061 0 . 	:', 094 0 . 2977 0 .a 	.5e 

kr u  0.2579 	0 - 25641 0 • 2 176 0. ?.I68 

o• 1244 

0 02061 a • 2 10 I 

kc_ki„ 0• 0079 	0 	0040 0. 1266 0 - 1 x.59 b • t 259 

k eb 0. 0 ,0 	6 	I 0 • o0 -56 O• 0 '373 0 - 0292 (-)• 0 422 0 - 037g 

1-crb - 0. 0 34'3 0. :)100 -0 0506  -0. 0472 -0.4475 -o • 0478 

k t, c  0. 0 1 ,F6 
1 

0. 0'516 0 • 0 58 0 • 	10()3 0 -2503 0 • 23 

kc 0. 25.9 	0 .  254- 0. 2 176 0 '2162 0 • 2061 0 • 7_101 

SCAM 
kc, 0 -  3650 	0 - - (-)44 6- 214-2 0 . 7167 o•lq, G4 O• 19,7)2 

C kct e  0. 2(72. 0 •Z7 12 0. 14;34 0• Ic09 () • k(m01 O• 154e 

kee 0. 0979 0 .0940 a - I25() O .  )244 0. 125 O. 1239 

_cc  0•0366 - 0.0461. 0 - 0624 O. 0619 0. 0912 0 • 0927 



when 

9 • 1 

9 • 0,5; 

  

• 27 	and 

ST X • and re 	at IT 

6/ 

 

ST and .X  a • 0  26; 7; 0 2" 

The values of K in this case oan be directly 

obtained from tables 2,2 to 2,4 for beam positions 	b 

and til and load positions b and 	multiplying the 

values of Ko  by ire to  the transverse distribution 

coefficients are obtained The values are tabulated in 
c:) 

Table 206 and (mewed with exaot values calculated from 

results given in table 2 b. 

(0) 81143*  	sin beam 

Considering a bridge with six is 	beams and one , 

cross bees at the centre as shown in Sig* 2,18o, the 

dimensions taken are 2a • 641 0  p • 600 

• 
• • 3b * np 

• 38.0 

q sm 270. 

• 105 
6 For 	* 6 	1 As Tr &4  and I 	• to 94  

when 0 at irr1/4  * 16 	A 	th 

I 	9 	
• I- is 0.6; 	• -gr.• it rib  

9 
9 • .35; 
	win and 



Again the ito  values are obtained using tables 

2.2 to 3.4 by linear interpolations for beam positions 

b. 	# and ± 	and load position, 	b b  and b  * 

The interpolated values are shown in Table 2.9a. b and e* 

Finally the Values are multiplied by k 	to obtain 

the distribution profile. The values thus obtained are 

compared with exact vanes in table 2.10* 

Tables 2 	3.8 and 3.i0 show the comparison 

of distribution coefficients for extreme oases of bridge 

grillage* obtained. by anisotroplo plate theory and exact 

analysis* 'rho following observations can be made by coaparM 

Ins the values of the coeffloients . 

a) The values of distribution 000ffloients 
obtained by anisotroplo plate theory and exact 
analyals are very aloe. to eaoh other. 

(2) Considering the absolute maximum values of 

distribution coefficients obtained by the 

methods. it is seen that the errors are 

5.0 in three girder case. 3.0 in four girder 

ease and 2.8% in eix girder ease. Thus, the 

assumption of anisotropio plate is better 

mot with for a bridge with litrge number of 

longitudinal, as it is evident from physical 

considerations. 

(3). The distribution of load in a bridge improves 

with the increase in the stiffness of trans. 

verse medium i.e. decrease In the value of 
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The negative distribution oeoffielents 

immense with the increase in the transverses 

stiffness and number of longitudivale. In 

the limit when the transverse stiffness 

becomes infinite it behaves as a rigid medium 

leading to linear variation distribution 

coefficients as in the ease of plane transverse 

section of a boam in bending. With this 

condition preValling the outer girders are 

more heavily leaded, than the ease when the 

medium is flexible. In a six girder ease the 

maximum negative value is about 38% of the 

maximum positive value for 9 0.25 

(4) The distribution of load obtained by anis° ropie 

plate theory is better than by exact method. 

This Is olsav from the fact that unlike as 

in the open grillage analysis theery, the 

anisatrople plate theory assumes additional 

end cross beams and rotations of longitudinal@ 

at the supports as sore. 

2,3.2  211112011X. 42121.el. Grid MIMI alAMJUt. 

A case of four girder torsionally resistant grid 

beam bridge is considered for flexural parameter 19 a 1.0 

and9 00.6. Considering the variation in torsional stiffness 

of the bridge two extreme values of torsional parameter 

04. a 0.04 and 40 0.64 are used in the oaloulation. For 

comparison, the transverse distribution profile due unit 



0 64, for es I 

3T , --go  for 

10 

load noting at the aid point of the longitudinal beam 

is derived for these oases by the method of Inarmonto 

Analysist413). In the analysis by anisotroplo plate 

theory it is always assumed that the end cross beams are 

provided at the supports. 

bat igjxjer. Ina gast LiLat Iamb. 

Considering a torsionally resistant four 

girder bridge with three cross beams equally *visaed. 

The dimensions are 

3a is 64# 	p 	.0. 
q 0 13.6 3b np AN 36.0. 

For three arose beam ease 

Iv 
	€44 3 	... (3.1o) 

for 	n 4 and IS m l p8, 

Taking the torsional stiffness of the arose beams 

J1 = 0 and 

by 

• 0.6 the torsional paraneter N is given.  

   

   

 

2. E- 

9, 

 

Substituting the value of 1, free squation(2•TO) 



n 

o< 
4,2is 2 0 * 0 • (2.71) 

64 	• 7.z 	0( 2  
IT 	-n 

It is interesting to note that 41/ la independent of 

number of again beams n• Thus for 

1.5 

a 
T 

4 0( 79-2, 

• 34 ot, e2 

Llano* for 

9 si 

and 0( at 0,64 

0( • 0.04 le — n— and 

260 • ma— and • i d.36 

• 0.90 

for 

a 	• 0.04 	• 900 and --f; • 0.24 

and ex so1,641 1024 
'—traba and  rT 

* 3.94 

Adopting the ratio f as deriVed abovo for QC a0.04 

and 0( •o.64 • the distribution 000ffiolents Ki  for oesi 

and Ko  for 0( • Oars obtained for beam positions ±3b/4  

and II 	and load positions 3b4 and b/4  from tables 

2.2 and 3.3. Subsequently the Values of IL(  are tabulated 



19- 

in table 3,i1. Multiplying Ite(  values by * 	the 

distribution profiles are obtained for the two load po 

it' on9 • 

The values thus obtained are compared with 

the values calculated by wilarlionic Analysis' (13) given 

in tables (243), la the method of *Harmonic Analysis* 

given by RENEW AND JACOM the parameter 0(14 is used to 

determine the ratio of span to spacing of longitudinal* 

and the ratio of traneverie and longitudinal 1,1.6=114 

rigidities, and it is written a 

0.4 	(L )3 hg17-  
71-4 \r -,/ 

harmonic distribution , where, 

for the first 

L the span of the bridge ( -3a in ease of 
plate theory) 

a w spacing of the main girders ( p in case 
of plate theory) 

s flexural rigidity of one main d  irders 

E1T  • flexural rigidity'` of one arose girder. 

and 	n no number of arose girder (say equal to U 
in plate beery) 

The coeffielent 64i of harmonic Analysis can be 

correlated with the flexural parameter & of plate theory 

by simple relation 

3 ni n4  
04H = 4  .n.2. ern-0 e4 	

IMO.. (202) 

whore, n number of main girders. 

Equation •  72) assures that in both oases there are end 



cross beams, Thus for a 0 5 and n 4, °(- 	
R40 

)-1 = 	6:34 

The second parameter 13 used in harmonic analysis 

is given by 

F 	
71

2 

(4)  " "17 a I r 

Thu* parasotsr 13 is a measure of the rel at iv* 
torsional rigidity of longitudinal@ and neglecting the 

torsional rigidity of the transverso system, it can be 

correlated with the torsional parameter c< of 'plate 

theory" by simple relation 

1671"2 
	 c< 
1111)2  

rib, a 0 5 and n 0 4 eq. 2.73 redu os to 

7.2" 	2  

rj< 9  

••• .0 0.73) 

The solution of a bridge for any value of 	by  

harmonic) analyst. can be easily obtained by using Inter. 

potation formula as tho eoeffioient of transverse distr. 

ibution N and (L  are derived for two extreme cases as 

regards to torsional rigidity of longitudinals, namely aoro 

and infinite torsional stiffness (i.e. 1=,  in 0 and 13=0.0 ). 

These derived values are given in the book 'The Analysis 

of Urid frame-works and Related Structures' by HENDRY and 

JAMMER, appendix 18 table 1. The interpolation formula 
used is 

Pp  = P,+ Po„ 
3+  13 



!ABLE 	 

LOAD 

AT 

laEAm 

AT 

K, 

-L-.. 	1.0 0- , 	0.50 

36/4 

3.34 

154 - ity,l, - 5b/4  
31,4  6/4 - b/4  _. 3% 

3b/4  

0.86 0.14 -0.15 2..84 1• 40 0.505 053 

Ki  2.42 1 • 	10 0. 36  0 .12 1.58 I , 	ia 0.76 0.54 

(K t -1<d) -0.94 0.24 0 50 

0.10 

0.40 

0. 27 

0.054 

0.216 

- t • 2.6 

-0252 

-0.28 

-0056 

0, 4-55 1.07 

NIZI (K,--K,) -0.184 

-0./36 

0.048 

0.192 

0.091 0.214 

vz-m(,-.10 -1 ,  Ooe, 3, 224 0.564 0.856 

K.4, 3.156 0.908 -0. 04 -0.096 2.588 1.344 0396 -0.316 

Ko 0,7890 0•2270 -0.0100  -0.02.40 0.6470 0.6560 00990 -00790 

Kk/ 2;604 1.052 0 • 46 0.o66 1.832 1.176 0 , 669 0 , 346 

K,(2 /4_ 0 6510 

0- 486 

0.2630 0.0650 0.3105 0.454,0 0. 2940 0.167-5 00815 

b14  

K, 2.37 1 	.07 0-14 1.40 1,39, 0 • 9b 0-305 

Ki  1•10 1.67 0 • 29 0 36 1. 12 1. 	) 5 0.9 6 0.76 

( V.,,-Ko) 0.74 -0.70 -0.1g 0.50 - 0. 28 _ 0.25 0 .00 0.455 

pr,(1 1-14) 13 - o4€ 0 14 -0 036 0. tO -0-056  -0-04-t 0, o 0 0.091 

,ri(lkt-1,0) 0.102 -0 56 -0144 0.4-0 -3-774 -0.1434 0.00 0-364 

ic 0.908 2.-2.3 1.034 -0-o4- 1. 5414 1 . 36+ 0.96 0•396 

le,44/4  0,22.70 05575 0.2555 o 0(00 0,5560 

t 	176 

0,3555 0.2400 0.0990 

K. 1.052 i . S) 0.926 0 . 26 1 , 196 0.96 06(-)9 

K4214- 0 ' 2.6730  (2-4525 0.2-515 00650 029443 0.2990 0.2400 O) 

NOTE 
	•(. 1  = 4.04 
	

.L2 ,0. 64-  



P a-7-4 Oh kit ning tho Cul tiplying fee tor 	 X 3t(310(ti 
in toms of the paranotoro of Al at o thoory, it to soon 

that 

74 

H 
4-3—  _ 	 C)< 

4 rin crn—, 
41 II 01.74) 

labor°, 

and 

°'?Pi d000too that floxural paranot ors 
of tho aarnoni e Anal yot to 

c( donotoo tho taro tonal paronotor of 
plate theory. 

It to intoroating to Moto that KFCI to ludo 

pondont of nurabor of coin bonrio and e and dirootly 

proportional to 0( . putting Q a 3 pos---(17 a 3,095 

and tho Qui fit pl ying tooter 

p 3. o9 G",‹ 
3+ 3.09eK 

0.740 

if or ow:14,mA° on of nunorioal vat ueo of vorlouo 

000fflotonto uood in • Plato Thoory ond friarnonio Anal to 

toOl o 2.12 	to gtv on. 

bl o 3.t23.  

No L a  TU WW 1 , t 	ON 	A SI 9 47.7.  -‹ H 13. 

a. t,o 0.04 0.8 2.404 1.3680 0.0300 
3. 0.3 0.04 o.3 39.40 0.01074 0.1091 
4, 0.0 0.04 0,8 39,40 0 .31.68 0.0308 



I ABLE 2.13 

CW.1 ,16UILON 
ClcrFic.iam 

= 	 2 464 

0 .21.263 

AY 4,4EP4OR'i 
•-1AEC,FR. 

ME-ttlOP 

4= 004 

FS', 661N/c:A 

NAAS-sot-4NET 

0.50 

- 0-01974 
try sHrt-.111c21 

JAC-<..ER 
METHOD 

.144 	"59-4 

= 0 64 

MAssOtil4E7 
METHOD 

13-  0.-5158 0.04 	F.007896 .4.=0.64 

Dy et) 1614 
MAsSONNE-1 

ME-'SHOD 

a‘i HE4ORy-
JAEGER 

ME-OHOD 
GUYON 

MASS (.) N NET 
METHOD 

E5 	Ht-t-zumi 
-JAEGER 
ME71-101::1 

kaa 0 8090 0.8447 0 6565 0.774-2 0 64-65 0.6523  0-4576 0.4859 

0.2105 Q• 2620 0•223 0.3341 6 3490 0.29311 0.3042 
KS.0. 0.2.255 

ke,a  - 0.0100 -0. 0214 0.064-8 0.014-9 0.0984 0.1015 O. 1672 0.1609 

-0- 0790 0. 1 028 0.0814 0. 0490 kap -0.0245  -0.0338 46.141 67 - 0.0194 

kat. 0.2255 0.2105 0.2620 0 2263 

0,505 

0.3341 

0.3300 

0. 3490 0.2938 0 3042, 

0. -5234 .29c)0 0. 2985 
k 11, b 0.5360 0.5398 0.4454 

cia 0.2485 0.2 -11 1 0.2278 2-556 0.2-575 0. 22.61 0.2400 0. 2364 

d -0.0100 - 0.0214 0.0648 0. O i49 0. 09€64 0. 1015 0.1672 0. I609 

-VABL E 2 14- 

(a) 	VALUES Or Ots-TRIBulloN 

0 

Pos1"-t- t.ot--1 

COEFFICIENTS 0 FOR 0 = 0,60 

REF- LoAtz,  
STATION 	  

-b _36 b - b b 
4 

b s6 
4 b 

0 0.31 0.67 .02. 

0 -62 

1.36 

1-02 

1.50  1 -35  

1.53 

1.0 2. 0.67 0 .31 

1.35 6/4 
• 

-0.1S 0.21 1 48 1. 31 1.07 

bl2. -0.56 -0.18 0.21 0 62 

o 21 

0.2. 1.'98 2 06 

9  -92 

2 	2.0 

-0.  t5!, 315/4. -0.47 O i•D .7 • 31 2.06 3.75 

b -1.04 -0 SO -0.53 -0-113 0.31 1.07 2.20 3-75 5.45 

(b) VALUES OF 01-STR1BU-1.10N CoeFrictc.N-rs 14,'FOR €5•=-0-Go 

REF. 

STATION 

LOAD 	POS1710N 

-6 -  b 
- 'T 

6 
7!" - 	

6 
7, 0 - 4 

15 1 2 
-s b -4--  b 

0 0.'Z,0 0 8c6 O•c)9 I • 	12 1 	111, 1. 	12 0.99 0.88 0 BO 

6/4. 0.53  o 67 0 So t 	12 1 	23 1.21 1.14 1-043 

bk. 0.43 cl.5a o.64 0-.60 0-99 t• 21 1.39  1.46 1 	4-7 

-56/4  0.33 0.41 0 .52 0 67 0 i6V.) 1.14 1.46 1.76 1.96 

b 0.28 0.33 0.45 0.5? 0-$0 I.0@ 1.4-7 1.96 2•50 
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Table 2413 shells the oomparison of distribution 

ooeffiolents for the extreme oases of torsional and flexural 

parameters obtained by the two theories, It is seen from 

table 2.t3 that the distribution of the load as calculated 

by *allotropic plate theory is *sways better*Tble is easily 

understandable when one compares the basio assumptions! 

made in these two theories* While as in the anisotroplo 

plate theory the torsional rotations of the longitudinal. 

at the supports are assumed as aeroi while as in hangout* 

analysis the torsional rotations of the longitudinal. at the 

ends are permitted, However, by incorporating the assueption 

that the torsional rotations of the longitudinal. at the 

ends are sera in the harmonic analysis, the distribution 

coeffloients can be obtained, in whloh ease they would compare 

better with the coeffloiente obtained by plate theory, the 

error being limited to the inherent errors of methods of 

approach. 

2,3.3, poouiation Lpisgti udinal  and T aiLatritm 
nendins Moment It  

Consider a T beam bridge with four main beams 

and three cross beams as shown la Fig,(2*114,) The dfitnile 

of the bridge are 

span • as 	11,40 	4 p 	se. TN 21, zip • ast q 1401  

c; 8 4. 4.17. 0.0 	c'‹ 	w 0 .09 JW=-0-3o 2E 

Loading: l eft ee. class AA wheeled vehicle, 
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Cs) titelmum  .....LonatnizedBendingasejt.tnt 

For load distribution analysis, the distribution 

coefficients It and K
1  are tabulated in tables 2.14* 

and 3.14b from graphs 1-11, for es 0.00. The arrangements 
of the wheeled Wohicle en the transverse eeotion of the 

bridge shown in fig. 2.1Tb is having maximum eccentricity 

from the longitudinal centre line. The olear distanos 

C of outer wheel edge from tbe kerb has been kept es 
$ 

4. 0 a000rdtng to I.R.C. Code. The ate ribution of wheel 

leads to standard positions is shown in fig. 2.11e. Table 

2.15a gives the distribution of loads for the given trans-► 

verse wheel position, and from this table the maximum 

bending moment taken by the beam are calculated. The max. 

imum distribution coeffloieut for beam at b/4 is 

Siumax  Is 1.360 

The maximum meen bonding moment per beam is 

caloulated from axle position shown in Fig.2.1,4 and 

Is equal to 

M(max)mean 

• 

10 x 192 0 	 -0 	ton ft. 

• the maximum 0 1. 1 
longitudinal 	Cmax)moan 
bending moment 

• 135 ton ft. 

0 3630 Z 10 lb in 

If the eccentricity of the vehiols is increased 

and if the outerwheel is kept et It from the kerb it Is 

seen from the table 2.15 b) that Ko(stut  • 1.699 for 
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FIG. (2.19a) INFLUENCE CURVE FOR .A.A0  FOR REFERENCE STATION 0  
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outer bea-a and for beam at b/4 14/ 1.382. It can also 

be seen from table 2.15o that for beam at b/4 when one 

wheel load 6.25T is kept on the beam lc( 	for beam 

at b/4 is 1.33T. Thus, it is not always truo that for 

maxim's longitudinal bending moment, one of the heaviest 

wheel loads should come on the beam. The critical position 

of the loads must be determined. Normally for design 

purposes the outermost beam is analysed for maximum eceentrio 

position of theWhoel loads from the longitudinal centre 

line. 

(b) 	,bonding  

As indionted in emotion 2.2.2(i1) the 000 ficients 

of transverse bending sosent ,c and,o, are tabulated in 

Table 2.16 for ref erenos station 0, for es 0.6, 2.94.102„ 

30 s 1.8 and 4ew 2.4; tram graphs 12 and 13. The 

influence curves for Ate. and /of are drawn in Figs, 2,19(a) 

and 2.19(b). The two axle I.11.0. class AA wheeled vshiole 

as shown in the fig, 2.18a is plaosd symmetrically about 

the aid.--span as shown in Pig. 2.18 00 forobtaining maximum 

transverse bending moaent for aid.-span cross boom. for 

1/4 span arose beam the axle loads are arranged in 

Fig.(2018e)so that the longitudinal bending moment induced 

is maximum. The transverse position of the loads for both 

oases is shown in fig, 2.19(a) and 2.19(b) in whiob one 

heavier inner load ha* zero eccentricity. 

From figs, 2.19(a) and 2.19(b) for the wheel 

positions of an axis shown in those figures, the values 



TABLE '2 16  

VA1 tiES OF Alo AND dUl FOR REFERENCE STATIONO. 

LOAD 
AT 

Ako )(10
A 4,(1 X 104   

0 0 64 b/a "56/4 b 0 b/4 1:12. 6b/4 b 

0.6 2000 870 -75 - 4,90 -1670 14-25 495 0 -235 - -120 

1. 2 940 BO -150 - 180 - 120 760 80 -120 - 70 - 70 

1. S 650 - 70 -110 - 50 30 495 -- 	10 - 55 - 20 - 10 

2. 4 480 -100 -60 5 1'0 370 0 - 25 - 5 0 

TABLE 2 17 

6 
WHEEL POSITIONS Ak X p 	s)( 04  

( 3.751") ( 6-251) (6.251.) ( 5-75) I  
2 5 4- 

Alo 

0.6 400 .  950 2.000 1350 1500 5938 12500 5062 2.5000 

i • 2 - 110 

- 120 

120 

-50 

540 

65  4 

370 - 413 750 5875 1388 7600 

I • S 70 - 450 -513 

-62.5 

34135 

4063 

5000 

$906 

2.63 

-275 

3300 

3563 

iso6 2 , 4 -- 65 - t00 480 -60 -24 

6,56 

III - 

0 . 6 175 550 1425 8`60 163000 

1 • 	2 

1 . 8 

- 75 

-40 

105 

0 

760 

495 

300 

-%0 

-281 

-150 

-115 

656 

0 

C5 

11750 
- •-• • 

5090 

H 25 

300 

625 0 

3240 

2. 4 - 	-:'-.)Q 10 370 70 23)3 203 2526 

TABLE 2 - 18  

LOAD 

Po9Y too 
c 

4.  
C 

211 '11 -1C.---C- 
. 	2.a 

S il-‘21C za. 
,_ . 	;WC s 1.1 - -z-CI 

ARC 
9 yr% - 2a 5 on ',21.-C  za 

C, 18 • 0.450 0-9.'677 0-3090 - 0.%910 0.5876 0.7071 

C2  22 
1 

.0.550 0. 9277 - 0.3090 - 0•910 

-1, 75520 

-0.5878 
. ------- 

0 

0 7071 

'E 1 . 97 54 o I. 4142 

CI  10 0250 0.7071 1. 	0 0.7071 0 -07071 

(4  14 0350 0.912 0.83085 -0.1578 -0.9516 -0.'7053 

1 .598,3 1 • ? 085 0. 5 493 -0'9516 - 	1.4(26 



of ordinate:4,u°  and X are tabulated in table 2.1T; 

the ordinates are stultiplied by corresponding loads end 
2Ap is finally obtiiined. The values for the sine funotions 

for the axle positions shown in rigs 2•18a and 2.18b are 

given in Table 20,18•Equation 2.03(a) for finding Ity, at 
any point due to number of wheel loads sating in an axle 

oan be re -written as 

P1 = ct (E.,re-10(09) Pi sin— sin— 	 p 

sin. 27te 
2at 

371e. . 37rx.  gin -2.7r3c  + 	Ps ,.rat (319) 	Za. 	+ 2 

The sign 	denotes tho summation for all 

individual wheel loads in an anis positioned at C. If 

there are many axle loads on the span at el, 0. 	Cos 
then, the resultant value of X is found by superposition. 

Thus. 
fYi 	= ferlv (e,) 	fri4. 	- - - - +fri,cd Cep) 

Phor aid span transverse seotton lits• st al a the even toms 

are sero and 

	

7re. 	 • 3Tje 
a 	PI '<AA Pi  /U. (30) si°  

	

a. 	 2 Ck 

57re.. 
+ 	/0-( S(9) sin  z a. + 

The total transverse banding for mid span boas is obtained 

by multiplying iEy  La  by q the *pacing of the arose 
a 

bean Using Tables 403 and 41•18 the maxima transverse 

bending aoaents in the aid-span and 1/4 span cross beaus 
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are obtained. Trio details of macula n are given 

below: 

Mid span cross beast 

a an MO 	q 	100 

ro 	0.7 z 10 {2.5 z 1.4764 	• 34.58 (617 

•• 0.7 at 10 [1.63 x 10764] st 22.54 Corr it. 

U 	 Vt io UY• 	1 .04  

y.,4  = P14.0  @N I  - 	 F=7 C= 3o• 97 unr-- ) .tee' 

span cross be mat 

Since 
2 si n  = _• . I 071; 	Sit" 2'11"x 	l'o 2a. 	 20 

7T. 3
2a  

x 
= o•"7071 sin 4 "Tx- 6 nx 

= o sin 	7 °7  I 2_0. 	 2ct. 

YO 	al 0.7 x to L3.1 t.5483 at 03 :To i + 0.180 x 1.8085x1.0 
+ 0.3563 x 0.5493 x 0.7071] a 30.28 I-04 

* 047 z 10 11.63 z 1.5083 x 0.1071 • 0.625x 1.8085 
• 0. 3240 z 0.5403 z 0•1511j 	fie 21.71 ton 11 

• 
Id 	sik 27.71 tonat. YN 



So 

For the ealculation of mid-span cross beam 

only first term of load series is used. If the third 

term is considered the maximum transverse moment 

redacts' to 26.84 tan. ft. because it has a negative veluo• 

The fifth term has a positive value. There will, therefore, 

be a very slight reduction in the first term value of Sly  

if third and fifth terms are considered. Per considering 

higher terms, the values of Li for large values of g are 

required. 

Prom the caleala ions given above. it is found that 

the ovation. transverse bending moment is about 23% of the 

maximum longitudinal bending moment and the maximum 

transverse bending moment in the 1/4 span cross beam is 

about 90% of the maximum transverse bending moment of 

mid-span °rose beam' 

2.4 WNW/DINO atigaut  
After considering some main points of a simply 

supported bridge analysis in the sections 2.1 to 4,3 

are some secondary points. like offset of Poisson's ratio 

effeotivoness of transverse system and errors introduced 

by making the assumption that a bridge *en be analysed 

as an equivalent anisotropio plate. These require a corrcot 

understanding Partber it Is sheen that the anisotropic 

plate theory is of particular advantage in the preliminary 

design of bridges. In the shortest possible time, the results 

non be obtained for the most varied designs by varying the 

number of men be 	and arose beams, their dtmensions. 

the typo of oonettmotion eta, fence the moot economical 

63484 
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design eau be obtaitied rather *afoul?. 

2.444 iibelatelt!on!*„!4A, 

In the section 142 the distribution efficient* 

are derived for the limiting *ayes of (xed and 0‹, 1, In 

the derivation of these ocefficients the value of ?oilmen.* 

ratio 2) has been taken eqUal to *tiro, 'Or a how.torsion 

ATI114$0*  it is clear fro* section lot that Poisson's ratio 

has no effect on deflection or sonents in the strnotur*. 

In the italting case where olle I is** for full tlefelon #112*  

Poisson's ratio is of considerable loportance to the case 

of distribution caste cleat/al  . A etudy on this subject 

has boon carried It her SOU(  ) and the valae,,,<A1  to 

derived** 

	 CO-iv d&dicy- 	H.44 sib-A63 cossfi 	— (I—v) 5)4)6-  wsrpif,  tayl  
4 6 strrY-cr 	 (3-fq)) s. rift a-  eesrth er - 0-41 es 

X a( I-2J) 6' cowl, d - (3+20 sir& 	ep 	si 	ep al bpi 

[51-446ees416-1-2cirfAc3 sinA 	( v) sidA es. 19q ecgdn  tt 
1340) &WC' 6' ex4er" C 

x ( 1-a)) cfl sDtd s 	GP — I-10 SIPA Cr' Op e.02,1%  el; } 

[9-206-eckfn - 0+4.0 511A cr3 cogh 9 - CI-,D) sit-fAce 	sinA ex] 

*41 • 0 • 0•115) 
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Zquation(11#3) gives thee "slim of transverse bending 

aoasxst coofflolent for full torsion *lab when Poisson's 

ratio 	• 0 3  denoting this value as ,Le' and for.))  00•15 

as Ati 	tho governing values tar roferonoo station 0 

are oaloulated for two marine load positions 0 and b* 

The difforenoo in tine vsxoes of All and" for 

various values of & can be oloarly seen fro* U40401 

For load position at 0# largor positive values are 

obtainod it the Poisson's ratio is **not dorodoror es10#2#  

0 ■ 0#0 and 6 01 #2# the lacrosse in the values og,u1Ovor 

to about 200* 3 on4 13.0 respootively# For load 

position at be lessor negative,  values are obtained with 

0.tai the differs :me is shown in Fig(24414 

The valu * ofAhs to graphs tp to tii have been 

calculated using the oquation(2#78)with J) • 0,13 for 

conoreto structures. The effect of torsional porsaoto 

of the struotars can bo iapprOpr *tiny taken into conirldert► 

etion by **ins the sass intorpo ation formula as suggested 

by 1114,93010114T t sof, /CI 	= AA 0 + 	0) 

2.44,2 PAINA1reanit, TrAMMU. 310tellia.  

The oFltmcicis of detormining the o 4 sum 

worse stiffness is to Mid that Vela. which produ0e. fibs 

ohospost bridge. Such ortisrion is difficult to spoolty 

sine, it mill be influencedby man. factors„ such as poor*. 

nisetbler otruotoral dopth and in oertain oases the rslstiv 

oosto or precast and omit in situ oonoroto That the 
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relative sae* with which changes in both transverse 

*times• and torsional stiffness oan be investigated 

by anisotrople plats theory should make the °consider.• 

ation of several trial soheaest a possibility, Theoretically 

the best arrangement will be that which produoca equal 

load distribution to all beams for all positions of load 

4F 414 SO( 	IS i Tu a ideal load distribution is achievedetat 
when the bridge has the parameter* 9 • 0 and o< • 1. 

The value 9 0 0 oorresponds to a bridge whose 

arose beaus have inlinttely large flexural rigidity or 

width *b* is infinitely small, 

A bridge posses 1 g In Init. transverse rigidity 

will linearly de ors transversely and the deformation 

due to eocentrio sinusoidal load 	Ilan be 

written 00 

LI) = (Avi-E) sin 71-x 

t, 	A n 00;6  Tr x 
act rox.21 — 2o. 

It the torsional rigidities YID and IlEot the beans 

are infinitely .  large, than the amplitude A will be lariat 

telly small and the bridge is deformed by uniform lowering 

of all the cross beam* parallel to themselves; all the 

longltudlanto beams have, there ore, equal deformations 

or 	li b(  • 1. 

It is also known that torsionally rigid bridges 

with trough deoking are economically used, olosely eorreem,  

pond to a ease of go 0 and 0(e. 1. In an ordinary slab 
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boom brld3o tato oritorion to savor ochlovode  

Tho load distribution Ina 5/114 boom bridgo 

primrily dopondo upon tho paronotor G 17h1o4 is aloo 

hnovn ao parapotor of aroos boom* For a particular value 

of 0 , the ratio of flo=ur stiffn000 of longitudinal 

bean nod or000 boat) ono bo oritton as 

IT 

zboro, 

= 16A 84m1.1 
n. 

.e 6 (fitovo) 

'ounbor at Moo boom ono 	tho 

and orooe boom. 

Un alma tbo valuo of 4  t* o, opanifoldth ratio of CI bridao, 

the acount of tho tranovoroo stiffness to bo proVidod for 

a parttoolar yaw) of e ama any adoptod =tabor Of 

lonBitudinalo n and or000 boons m, eon be ooloulato4 

000tly from oquationC3,74It oan be soon from oquation 

(4,74that the coot offoottvo pooition of the or000 beam 

to at mi4 opan and in amoral the offoctivonoee rcuably 

corroopondo to sin R.  taro n to the distnnoo of crow 

boon frac one oupport•  

Maas a rogutrod amount of transvoroo otiffnoos 

is to be providodt  It te soon that tho Grano boom oatorial 

porformaa oftioiently op poselbloahus, aboro p000lblo, 

CIO full otrootural do?th obould ha utilised: *root) booms 

penolithio vita to olnb hay° obvious advantoc0 of proviei-

Ina grouter oupport to slob iteolf It to also soon that 
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the assumed transverse *meant of resistanee is not 

exceeded by the indwell sedans bending moments. 

r s introduced 112; 	ettfrLtjLign 
o continuant, sodium. 

Am sone bridges have only a email number 

of longitudinal beams and cross beams, it is important 

to take into at:mount the rror introduced by considers. 

ing an equivalent oontinuoue mediun along longitudinal 

as well as transverse direetion. 

Co ideri ng.first the longi udinal beam, t 

flexural 	t of whioh is distributed on either side 

of the beam equal to plU so that it covers the entire 

spacing p of the longitudinal*. The total width of the 

bridge thus booms.* 3b 0 np, Where atto le greater 

than the distance between the two outer beans of the 

actual bridge, 

This case is anal gous to cases of a beast on 

elastio foundation and of a beam on equidistant *once.. 

nitrated elastio supports. 11.0301M0040)  has soapared 

the results obtained for 3,4.5,6,7 spring supports with 

the equivalent oontinnons elastic eupoort for two 

flexural parameters, 6 e 0.089 and G • /4'493. The 
variation in the results obtained by the two aoneidar. 

ations are negligible. Therefore, the deformation of a 

beam on isolated elastic supports ootneides praetioally 

with that of a beam plaoed on equivalent continuous 

elastic foundation, If it is assumed that the beam and 
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the *testi* foundation are extended by a length p/ 

beyond the extreme supports 

?or a single °roes best oast, MASSONNET(4°)  

has shown that error is 100* 

In exemPl* 2,3*1 it is shown that for three 

girder open grillage with one cross beam at mid.epan$  

the tutuintin error is 5*8**Apnrt from theOreticol reunite/  

the experimental results (34/35/31,080) obtained at varione 

places have shown the validity of anisotropic plat* theory 

Therefore, it can be oonoluded that whatever may be the 

number of main beams and cross beams in 0 brides /the 

error introduced is insignificant whoa a bridge considered 

as an equivAent continuous medium* 

rzabligaz gala 11V4xvssltiaz.  

or preliminary bridge design it is useful to 

examine the range of values of flexural parameter 9  and 

torsional parameter 0( for various typos of bridge*true 

turft.rrom this range of values one can always adopt the 

probable maximum distribution ooefflotent Ito( and can 

determine the maximum longitudinal bendtng moment* In 

this way the initial structure which is an yowl in tills 

can be proportioned very aloe* to the final structure* 
time, 

Hence/  the de eignican be saved and most economical structure 

Can be obtained rather easily the to/lowing are the 

observations on the range of vaLuee for various types of 

•bridge structures, 
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19,A, natstE, brig a2. 

Tha behaviour of a box glrdor brldgo In 

otaila r to slob bridgoo ciao toroional por000tor 

ucluollY 17i botaoon 0.0 to 0.0. iho Divan length° 

lio bot000n 00 U. to 130 ft. and from tho atudloo 

oarrlod out by Ocaont and Uonoroto A0000lation Era CX 
lioo bot000n i.4 to 3.0 for abnormal loadingat to, 

thoroforo off. car that for any typo of loading, and any 

typo of bridgo„ tho folloaing prolialnary doolgn pr000dur0 

clan bo adoptod. 

(1) For tho known opan dorivo oamicua bonding monont any 

tihoro in to opan duo to glvon loading. 

(3) For tho known width dorivo 'moan,  bonding =mut. 

(3) Prom tho plan dicionalono of Cu) Weida(' and tho typo 

of bridgo to bo uood ootionto tho voluo of 0 and aioo tho 

nanlcum volts° of Z appronimatoly. 

(6) 3o1oot a oultablo emotion on tho Waal° of appro cxato 

pasicam longitudinal bonding momoat obtainod frock otopo 

Itaos 

(3) Analyoo tho Wald 	inally/swing tho Ciao r dcarr tlopod 

in ocotion 3.2. 



CHAPTER 3  

ARDIAELEERum stIMIUMEMBELIV 	 

In the previous ohapter it is a pro-rsq,uisitee  

for the use of graphs given by OUTON-IMASSONNET that all 

longitudinal beans have the sane neaent of inertia, In 

many cases the beams on the free sides have increased 

nougat of inertias and thus introdmos the edge stiffen• 

ing effect. The increase in etiffness of edge beaus 

can be true to the following reasons* 

1) Inoreese in depth of edge be 

raising of footpaths.  
2) Increase in 4epth due to the need to 

incorporate services of various types* 

3) Provision of a parapet to prevent acol onto 

The poiote raised against edge attlfening in 

the existing conventional design which does not consider 

the etteot of edge 6U:font:it& can be guarded off and 

its struotur ell advantege can be exploited. The various 

measures to sales edge beams sore effective are as 

follows t 

1) The parapet is monolithically oast ei,.th the 

slab and ores* bean* 

2) The parapet wall is properly loonted as +shown 

in rig*3*2 
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3) The overhanging slabs, which are not 

included Woolense it is a free edge, can 

be taken ae part of edge beam it the erase 

beim* are extended and the *peeing of the 

ores* beams is suffloiently olose.(PigiS.5b) 

The loon' effects at the junction of edge beam 

end the main strmeture due to neutral axle of 

edge hews not coinciding with the theoretical 

axis are considered and eui table reinforeement 

and fillets are provided. 

5) The edge beams are properly designed for its 

Zeroes. 

in view of aZi this in problems of edge stif e 

bridge are investigated. However, such bridge's have already 

been constructed. HOWE(60) has designed the bridges of the 

type shown inrig.(3.2) and slab bridges stiffened at  

its edges. 

The problem of analysis is essentially one of 

determining the effoot on an anisotropie plate of edge  

somata and edge shear forces& if this problem can be 

analysed then both the torsiomil and flexural stiffness°s 

of any edge member eau be included. 

(so) 
DSO E? 	(1050 has given a solution for 

dge stiffening beams at negligible toreloual stiffness. 



The extension to cover this particular problem in general 

Is given by L/T1146 1440 aows(300400. However, SATTLER(41/ 

(1980) develops an approximate methodsTo cheek the validity 

of Le method suggested by SATTIAlls  example covering 

wide ranges of edge stiffening and bridge parameters hear 

been solved here. 

34 II 	I 14 OF I Tit° 	2111 

Considering a bridge with edge stiffening beams 

as *noun in tig,(344a), tit* bridge can be replaced by an 

equivalent anisotroplo plate for bridge with all identical 

beams loaded by the sinusoidal load p(') pi sin 24"— 
and noted, upon by the edge shear forces and moments The 

edge shear forces and edge moments oen be °waned to be 

distributed sinusoidallY as Ohmen. ieFige* (3•1 b) and 

(3.1  0), The solution of the bridge can be obtained by 

using the results of previous chapter and the unknown sedge 

shear fore°. //I  and Pa  end edge moments lh and Ma  

are applied. These tomes and noaonts aro determined from 

***PetibilitYsequations for deflection and sloped at edges, 

The shear forces rI  and F2  n ua ordinarily be treated as 

applied loads and the deflection and slope at edges are writ 

For finding deflection and slopep 4uo to the edge moments at the 
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FIG.3.1 FORCES AND MOMENTS ON Ebcr._ STIFFENED BRIDGE.  
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FIG. 3.2 SYMMETRICAL AND ASYMMETRICAL EDGE MOMENTS 
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edges, the solution is &Wen in Oeotion 3.101* 

!ATTU; AND ROW 2(3°)  have written the sonvetib. 

ility equations for deflection and slope at the edges 

7 .b.  

3.1.1. !gat "a.nts on  a eattatua ulatt. 
The basics equations of importanoe are only given 

in this section*  The complete analysis has been given in 

reS*(30)* The notation used in this chapter is the same as 

in ohaptor 2, In the analysis tho edge moments are introduced 

as symmotrical and antisymmetrioal ooaponents. 

(a) S 	akaalumatitt. 

Consider the first harmonic oomponent of the 

symmetrioal edgo mosonte lisi  applied to the plate se *hewn 

in Fig (3,20, The doflection 461  at any point im given 

by 

Ms'  0 x 
PE 	

sin 207  4,,,‘  •40•001) 

tare, 

A 
600‹  = —.-z  [cook 	cu. eraFL-c.....(ssnil RE cap rrs- 

6 	 2 ' 

coAli  ___Tr7=',7 sin 	siryg. 013FL:C 2 1-c1( ° 2 	2 	2. 

6 sin's 	 0sin's14.< edg 11 	 o  41'( 	2- 
: l 2 a 

e** (3,2) 



po(+0 siacri  I+"(2‘  mG  r(2,(...1)1 4-a..z.c 

The slope at the 'die 7  b is stlifOrk by 

'Pis, la 
PE  

7TX v 
Sit') 2 a 

ooe (3.3) 

There 

A sinftep_ cohaff Li 	2 (i+.0 	oaz TN. • 2 

93 

Y, 

2c,t coA 
 p

+.t 2 J.+  
1.2 0--‹) 

[4:Ly. 	eocesT1- 	2 (1-f a0 e°41-&W a 

X sin , -J I  ---;*( 

• • • (3.4) 
The it ever.e bending *aim My, is given by 

Mtd. cog  = 	
7T x sin ---- T.(  2. el, 

*vie (3.z) 
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Wher411, 

4.,(  A 174 9 laff &bap -1a--  [(2.4+0 	A 	2, 

(2-(-1) E:Ele  eo+rho-Jj since 2 1 sir4 

gin fp] 	[(244-1 	si11314  I.A°<  eoib eiT,0( 

	

(Z-(40 C.0A, ce, 	sj ha-  j 

The I itudinal bending moment, 	is given by 

* • • (3.8) 

Mx — 	Pe ins, sir) 	(1.z  - FE. 
40hie 9 

1  o< .77. Al {cal ei5R. COS eftW• [111---13-:: Cal Cri_V-. 

•••• (3 7) 

sirrfi cr aZ." co!, cyJM — sir GI3F--1-1*  

sin op?? Ez4_7- W>4.0"),sr- sire o 
N4 2. 

ews.,,F4  2, .c  sin 6-3,11-7.Sii -1" 	 2. 

**411• (3.8) 

Using afoot/one (,2), (3.4) 	 3,0) and ( 3.$) 

to calculate the values of cp.<  • -ye4 	, 1/41,c4  and 10(  

oorresponding to the first hamonic odgo moment, for various 

values at torsional parameter N • LITTLE and HOW13(30)  have 
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stioun that, as in tho caso of tho diotribution 000ff. 

lotonts tt, and /u. • on intorpolation Sormila rioo ouffloiontly 

aoourato for doolgn purposos provIdod that for an isotropic 

!nab a Pol000nts ratio of 0.15 lams inoludod for roinforood 
and prostroosed oonoroto. Poa' tho ntoroodtato valuoo of 

04 tho intorpolation for la (3.0) holds good 

= Yo + (Yr- Yo) 	 •• (3r0) 

victor() Y io ropr000ntativo of 4 	-( • 4)  and 71 
Yo cz tho values of ( It, • 	• (1)  and 	for c< azt 0 

and Y1  et the rola*, of (4) • y •({) and irt. 	for 0( a 1 oith 

ei 0.15 

PrOn tho oquat1 ns obovo it £oliotn that fors( 0 
13 

cto = 2 -27z' feast' N3 eel. 	CsinfL)1/47'- 	sin 7,9 

+ 314 	sinA13. (sirig7Ova07T +each 71-/\ sin nA)j 
,CatleXe. 

	

sin-fl TV> eo.81170 + eel)t 7TH a•nr).-n- 	••• (3•10 

Yo = 
> 	

. p 
n n 

a 
7
, 

crr 	
st T-A e01.2.71" X t ezisf-t7TX sirif12'7TA 

.4110  11) 

060 ("1') 



Ta = tectsA ›j3 emAia. (sidt. 7rA cog 	eos-91. 	sin7TA) 

sin g )%12) sin X13 (e osfl. 71-1X sin 70■ - sirr1 7r), eag 7FA)j. 

•• • (.3s 12) 

= 13 tad-4 cois X13 (caAJTA zin 70, - sirfft 7TA co,s7 A) 

)41sin 3 (co? kr *rifr 7rA t coat7r air) TrA) 

• 0* 3.1 ) 

	

For 	Af =1 

ci) 	
6 

I 	
--4).) 

	 {E( I  4.-D) sirr 04 -(1-v) 6-  ookKajcksfi  

(1-4 :gin II. 6 (913 ginft 0131 

* • 0 

c3-No 	— 	cri 

2 sinh2 
 

0-.2)) cs 

(3.10 



t43 	) .4=0 
2.  PIA'12 	• nat. A; Sir) 20, 7 0 

'0410 (31018) PE 

Q L(3-1-4)) sidle - 0-4 d cogg,0-1 coal. &13 

(1-24 sinft, 	0913 sl 	013J 

0 1,41*0(34118) 

rt, 	Q (1-z)) {T.( ce collier - sinfnce) c osic-L 013 

s's 	 si n-A m01 

4,4., • (3 err) 
(b) frimapjagia 	Elatt.  

Consider the asymumetrioal eds. moments MAI  
applied to plate as shown in rue (3•210•Am for symmetrical 
edge moments, the interpolation formula given by equation 

(3.9) is applicable therefore the equations for tormiona 
parameter w 0 and •w,i are oonstdered•  
Thus 

0)7 

(u A 1 ).= 	=   S I ^1 	 7a 4:  -1 
	2ct 	 I 

oh sm. r)  

1-  
+0' = 	siPA 13 cep X13 (CO grt 7TA eop7iX - 	sin lc 

it 7[ 

cosft X13 sinX13 (c0,47 -7q eepr)► + sinil 7TX s'in 701 

• - • • (3'19) 



hB 

and 1) — 	1 
Binh TrA ecsfn  Tr > - sin 	eos AA 

eP   E0+44 Casper - C  1-20 csink sin' Bp  

whore 

4- (I-v)c 6. op meal, 0131 

 

I 

  

 

E(3÷.2))sinha- e.oss-L6+ 

 

• • • • (3 0  20 ) 

bWt 	= - PlA t  b 	71-.2c cit =o 	 stn
2a e) \ 	/ 1 /4j=b 

rbWAI 	40Y 00-.1 .1 oI 
- M A 6 	lrx 
	 sin 2a  t I 

PE  e6 	It) 

shers4 

f D  eoskIAn eca2A7r+sink2A7N siri-AA 
A 7 • • * e (3 • 22 ) 

	 2 rash 
0 	CS 2-  

• • 3 3) 

The transverse bending assent 

1.614 1  sin 7ri  _2 at 
▪ * (3.24) 

4J P1,41  sin as za. 



whore, 

410 = D {Sir11 	cojs )1 (cost. 71" + sinft 7N-X sin AA) 

1 — cask t3 sir) Als (cos.& 7rA co 7c--A - sirA 7c/1 si n 7r),) 

•.• • 0,25) 

= R C( 3+v) cosA 6' + (i-2)) ( 	slat 0" r  + 

((- 1,1) coo cr.  „ 613 eesfz. pf3}. 

so • 13.20 

The longitudinal bending nossent 

S•9 

('P  eE 
MA, 

3c 	7  71- 	gr.)  Sin  
2.ck o ..• 	(3,2?) 

and 11111  loz7-1 Tx.  
MA/  sin — a 	I J 

where. 

sin.; >13 e07. 	(sink 7A sin TA '  

Cosh 7.0■ cop 7r A) — coal 	sink J3 

(ea/A 71)1 03.8 71)1 + sillf-)70% 	nA) 

**4 0.28) 



-6to, 	1604  
`'Pi 	— 7-4  ee 2b 

si 	a < ,r) 

k ov  

R 	t[(cr-sale-c_eAcr) 

cr.13 cosg 013.1 	•41. (3•20) 

3.1,2 *  3Wa IAA of 	 tatt 
atilt 

The defleotion at any point in an anisotropio 
plate due to applied load p(z) so pi,  sin lit is given by 

16q4 
"31 	 Ki< 7-4 c,o, 	2 b 

Then the slope at the edge of the plates  y 0 b is 
given by 

By differentiation of eq. (3.42) the slope at the 
edge y re b oan be derived; thus 

PI ck 1r L  , sir 
,j e r  e 

a JO •• 	rho) 

Again 11, 0(  is found to ooaply with the inter. 
poiation formula. given by equation (3.9) atleaet to a 
sufficient degree of 0o:tourney for epraotical deaid.n plrposes• 
Therefore, only the values for KO  for c< at 0 and Ri  for 
0< is t need be oonsidereds those are given by 



I0  

2 	
ctsft .({[Co7.),1, (sin 7r- ea? A 7r) 

-sirrg X71-  

5in'fq tf,  sin 	(s in A 7r-)-cop, A 70 L (sitA2)7r cod A 71" -÷ 
co,1A2A7r 	Ee-04ti A (pecsaAkp ecx&A4 + 5 i 	4' 

sin A I,  sin Awl Esiryft A7recaliA71-  — 61h ›t7r CO.& 741 

A7r eog-tx7r 	sine\ 7r eo.s. A7r 	
ffs'inivAt 

co", 4, (sin ,\7T- eos  A7-0 _ aosli Ate &MAI)  csin A7T+copATOJ 

p coz,vpg ■k (ceshiA7r-  coA2A 71 + sibb2Air siriA79j_f_ [sin .>  

•cospr + cost" A* sin A * sl n A7g Did" 1M cosfil ATI+ sib A 71 Coze\O 

1 
X 

	

	  
sirrti A-rr cos, A77 — sib Ar co&AV 

	

(sir 	7r _I- cost-) ,\7r) [sinA A f 7T- 	cosfl ,\ I Tr- (pg 	7T-4,1 

soo• 0431) 

 {EC1-2)ecasivr' 

	

icoah 3A--K
2t? 
	 si 	, 	 14fe 	v)in 

 

be's  6(nAo  

	

71snc 	 [(344.)gimleees4,(3. -(1--2)c3 (1-2) 

 

+ [C.  1-.2)) 43-' + ( 1+i)) si n4),,y-) coal d 

{  E (i_a.)6-052410,  +2_ sivAcr_i girlfl 04)  - (1---2)) sii41cri DM) ct sat 194  

C(33i-z) sirvfl cr. cooth.G" + 0-19crj (1---)3) 

)— c:1)  cosh & 644101' + sirrk 6-- 04' coleft 6'' 

• • (3 .32 ) 

.X 
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Let the span of tee bridge be 2a, the width of 

uniform seetion of equivalent anisotrupio plate of the 

bridge (l*e*  exoluding width of edge beam') by 3b1  the 

stiffness of transverse and longitudinal emotion per unit 

length of the *cottons be Pe  and gE respeotively and 

the flexural and torsional rigidities of edge be Si 

and Gil respectively*  

The bridge oan Co analysed using the re i to 

of previous sections end the unluiown shear forces Ft  and 

V2  and edge moments 14 end 142  leterained from the 

oompatibility equations for dofleotion emend elf po at the 

edges y D 	b. 

The Shear forage. Et  and yt  can be treated 

as applied loads on the badge and hone* the deflection 

at the edge y b due to all applied leads eon be written 

sthlr--  L(2.  V, 	k b+F; i‹.1,) 2.11 	2 a 

400 ••(3433) 

where pt  is the amplitude of fire tore of Fourier 

series for the applied loads* 

The edge moment bii  and M oun be oonsi 

by superposing ovum:Arleta and asymmetrioal edge moments 

and thus enabling the use of the coeffiolents4 Mu* 

the deflection at the edgey w b duo to the edge momenta 

101 



Q2 
gpea  

b 	sir) -7rx prirf-i21).y6 2 Pe 	2a  

-6(.4J) 
'24 =b  

sin -IF:ct  [(y.. iP • K'17) - (F, 	+.F= b 

10 '3 

can be wilttent 

1,4 =_ b sin  71-x  ( Pri  
E 	

2d 	2- 
rri,- 

b 

(3.34) 
Thir total deflection then isnot be equal tot at of the edge 

7rx beau 	y • b uater the action of P 	zt i  sin 	. Writing the 
conpatibility equation' 

16 04 

EIE 71-4-  
l e 

 

(F1 K1,-I-Fo.k'd 7r4 PP 	b 

Hro12)+1, (P1,-(171?) 2 et 

(3.33) 
y at y 

16 of4 	F2  
_4 El- .a. E 

t6 a4 

7r4  ep )e  
(2. 	Kb) — (F 	P a• 1<b)j 

E' pli-t-P4)+1, ((q-rail) e  

The total elope at edge y • b is given ae 
0 0 0 

41 4.. (3 • 37 ) 
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Considering the torsion of the edge beam subjected to a 

twisting moment varying sinusoidal,' over the span, the 

angle of twist at any point may be determined by consider 

tug the equilibrium condltion of the adds beta with 

restraining couples applied et its junotion with the 

support dtapbr*re. Thus the rotation at a distance x from 

the support can be equated with slope at y b 

G 2=  	 ( 

L c 121  " f)11) 	+ 011-112,j )1b1  

• • • 	.38) 

Similarly at y • 

  

4 eeeF 

b 	ItirWY (r212:1111)Yp7 	
• • ir (3.30 



The unknown edge effects P1,  2 UI and lit2 for 
any given position of the loads win be determined by solv-
ing equations (3.35),  (300), OM) and (309) For this . 
purpose it is sufficient to oonsider the add sPan /motion 
of the bridge i.e. X • a* The values of the deflections*  
the longitudinal transverse bonding noment at any point of 
the bridge , and the bonding and torsional moments at any 
point at the edge bean 00,11 then be determined by super 
posing the variots offsets 

To obtain a fully rigorous solution it geoid  

neoess y to consider the various terns in the Fourier 
series for the load; this would imply using values of 

"etti "en" Kt", 	10 0', 	 •Y e  (I)  and 4-)2  appropriate 
to values of the flexural parameter 0  • 2(9  * 3 eta. This 
involves eolving the oompatibility equation for eaoh tors*  
However, sufficient **cursor *an be obtained by oonsidering 
only the :trot tensor the Pourier series and by applying 
correcting faotors*The curves  ton 	o  
Ya y,' 	, 4,1 	4-116„ 	, 	K, using equations 
(3.10). (3.14) (3.10), (3.20), (3010, (3.18) (3032)* (3.23) 
(3•12)„ (3•10), (3.30, (3,28), (3031) and (3032 respectively 
have been given by LITTLE and ROWS: (24, 30, 33) for various 
values of e and reference stations or load positions as the 
Oftie say be, The coefficients for 0? • I have been plotted 
with Poisson.. ratio 4) • 0,15 for reinforced and prestressed 
concrete bridges, 
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If the afoot of edge moments is negleoted 

than only two compatibility equatioas are required to 

find the edge forcee Pi and F. Thais rewriting equations 

045) and (3.36) for the deflections at the edges With 

iti  M * 0 it is obtained that 

E IE  
-2  b ep L(2- 171 kb) 	( kb tFykbd 

(S-4o 09 

F2 	EIE 
b ep  

• • • • (3,40b) 

Equations CI 5, 3,3d, 3,30 it  3,39, 3.40) have been 

derived for edge benne at 	b; therefore, these equations 

aro valid only for the ease of a bridge having edge beams . 

looatad at t b of equivalent anisotropto plate, It is tams 

aeon that Wow° equations roan only be used for the edge 

stiffened slab bridges or the bridges of the type shown in 

rig*  (3,1a). 

Far the 042110trtA0t1On of 	 type *hero inrigi,(3.3e 

3.,3b) the equations (3,40a) and (3,40b) are to be modified 

if the edge beams are at 	bo from the centre line of the 

bridge. Thus neglecting the edge moments again the equations 

for edge foram* F, and F are obtained as 

-1--E (Z 1), 4<.(e)b)) 	ic( 	Ko.e...b7)2.7 	(3.41a) 

F, 

• • 
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= R 1-(2. K(e,-b9 - 

ober() 
2D Pe  

— Of- 

and - 0  1 d 

FP K t b;-b') Fik g,);) )-] 

-n 

SIP • (341. 41b 

4, 4,11, 4, (3.43 

rI 

Per einusoidal lead 
7rx. 

si n a. a at an eeeentrieity 3430 $  

the ihfluenee (weftit iant for ado Zeroes V and 	can 

be obtained f era equations (3.43a) and 	 b).  

K e ,b'j 	k (1,'„ W.)1 	ce, 	k  
a_ 

1<<IDAdd K c b3, 
43a) 

F2 
k (il,t)')1 .1< (e,b') 

ER l< 	2  (b'oo'Ll — 1< 2.(1,-g) 

••• (3.43b) 

ti1 and 	the transtre o distribution eooffietent 

of an odao a tiff ottod brittGo can be trrittaiti as 

= e  (Fs 	Fa 

• 0 • (3e 44) 

• bo solution 1Ven in 3eation 3 1 io the b general 
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in epproaoh but require tour compatibili y equations to 

be framed for obtaining the edge forces for a partioaler 

position of load; then superpose the offeets of edge foray,s 

and loads on the equivalent anisotropie plate to obtain the 

forces in the edge stiffened bridge, In general for solving 

a moving load problem, distribution profiles or influenoe 

line for a partioalar girder are required to be calculated*  

The oaloulation of caoh influenoe line is a problem in 

itself as the values can not be obtained directly either by 

tables or graphs e  It any boss, the oritioni load positions 

arm known then tho problem can be solved in one 03*010 of 0a. 

loulation of simultaneous equations and superposition of 

different ofteots, By solving the problem in this manner 

one le unaUle to understand the phyeloai behaviour of the 

bridge. 

Using the resultsobtained in Chapter 2 an approz 

teats method is derived whieb is Simiple in use end is batted 

on elementary prinoiples of struetural analysi 

In this analysis the ordinates k 	of the 

tr nevem, distribution influence lines are used instead 

of the distribution sooftloisnt M4 where n is the 

number of longitudinal beams* 

3.2.1. N t r r# nod St ft red girl. 1 at ilti.ocio 0) 

Con 
	

Ig#0404). it 10 a established 	t 

that for the g r.11 l.age A with f >r l the load group 
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101  noting at oid.opan °rope section producoa oqual dofloottons 

ecitSi=c of all boom:, For than grillage 8 pith Is  t3 yi 

oith load group La  nit ilar oqual dofloottono 662  = c 

aro obtained and tho *reels boom romains horizontal* 8001d00 

thio, for tho grill ago D,, tho load group L3  pith. 1/c — V b„ 

a olopina pooition of oroos boar to obtainod and tho or 

boas romains ontlrely straight,. Those aro tho elementary 

banto prim:tip/on uood an starting point for the folio -mina 

derivation* 

/I tho load group La  acts on tho art ,tago A, tho 

defleetion A62  an oho= in Fig MA f) to obtotnod for odgo 

boom aw If the load group 	acts on grillage fl the 

doflootion eqs, is obtataad 

A0 por MAXI10141, own ThooroM 

A(5) 	P,g) 

s SL 

(a) T 	o &t,t xL i 	 uo 

fu QC 

A6.1 • IF 	I 41(3 • 45 ) 

is Fig 0,6a) the ordinate of tranovoroo 

ibution Influenco lino of tho odgo bona a, for grillago A 
C (i) and grill o B(Cat)aro shoots, If Use load group I. 

is aotin3 on wriilago A thou 

As,= cIkQ  sires 	kac = 1 
r"4-ry) 

If the load group Lo  Is aoting on grillage A than 
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A6, 	e-  Lr't 	÷ -rn 

where it 	repr omits the sumot the ordinates of the 

two edge boam load posit one (i.e. kaGt kote. ) and 	kat; 
represents the sum of the ordinates of all inner beasr 

load positions. 	 Lai is used to express the sum of the 
Y -4- tn. 

ordinate of all bean load positions Similarly by using 
the influence lines for grillage 

Bs, 	e 
	 "N. at: 
	d 

"L-Fm. 

— ----• EY 2.  -1-R. al + 	-1:k 
11 	Y 	hi 

There 

Y Z.... 1.--<-  a i --1-- >  I etc 
1'  3r  46a) 

Prom equatio (3.46 	ows that 

'‘z 

 

• I1 • • 

 

"r+)77 	 2E kaT +>.  L. 

Therefore the sun of all the ordinates for the edge beam 
a of the grillage 	) can be calculated from equation 

46), if the ordinates for grillage A (yviI ) are 
known. Thus. it only r•emai s to find the form of the 
line < ,:xi. • For determining this all tho ordinates a the 
known k line are resolved into a sysmetrioal component 

"z3rei  i and asymmetric °exponent QL * Referring to fig. (3.5b) 



	 15,01. 	 = 	; 
>  

*4 in 	9t +tn. 

ai = 

 

o ' 
T 4-r11) 

Xi 

7  ) 6(31-  4 X t: 

3/ Qui 4 19"-cak. tohece 

I It 

end (3•5o) it is obtained that 

tRiar:C+ 04) t 2 

_L Chtxt, 4404 5 

.1 ( 	+ 4=1  Gie 

It is found that the symmetrioal oomponent 

of the griliago D ar, linearly related to those 

of grillage A 1 A 41. 

= UGL 
(3.411b) 

tb e loa d group 	on the gr age 

than 
Lta. 	35 0.bYttr) 

5- lg. 
Y.-141). 

Qnee. 	 Qi = 
	 uct. = zca- 

sat 4 rn 

For the as 	trio ooapanent i t is found 

a000 dii,g to Pig 3.5e the following bol.de. good 

(3.4 

t 	• 
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tt the load ;rot 	 is noting on griling It (Vig•304) 
the component of lead *hared by edge beam 'a' must be • 
Therefore 	is determined from equation (3.49) 

10 

	LIcti xits'a)] =1  

**(3.41)) 

After determining the only unknown Va troot 
equstio (3.40) the or 	'k c; 1, can be calculated 
Thus *  

4- /
•;„ 

acct m Ufa c.1 ,3 	' as 	2%1 	and 

+ irod 

(b) Tr n r 	t ib t 	a 

Acoording to MAXIM 'S reotyruohi theorem 

= y 	t ; 2) .0. 	
3 

- 	 ca, = 

• SO) 
Pros eq* (3050) the t edge ordinates eon be determined for 
any inner beam* Taking boats b, as -Eat, and -hoe  are already 
known*  the edge ordinates are obtained as 

44-ba. ;fa ab  fa.  1417.- 	ae 

ba s cob 



IC the load Group La  is aoting en grillaa° II 0  the load 

taken up by boom b must be i. Moreton) 

- 	 - 

	

?no 	- 	 ,(3•51a) 

ahem the sari* 	denotes the load pas tiono 

Similarly for load area)? 	actints en arilla4* P 

- 7 , 

	

2  1. ba + 2_ Is 	74-bj, 
° 	14m 

trot N041(3014) and (3 alb) the into a all the ordinate° 

for beam b Zto  can be calculated* Thus 

t13  

= 	4Q_ 
y+en 

b
d 

= 	{Y-I) 3-ba. 

"(tin 

01* 3 

Knowing zi 0  tor the 3 main bean grillame and 4 main beam 

arillase the ordinate° bbb can be easily determined frock 

oqs C3053) and (3050) 

For Ilia bb 

ZS 

- 
bb Far = D.G ( I -2 	) (=Lb 

Far n main beams, atter tindln the aua of the ordinate° 

Zt 
	

the symrsetrical, component tOr inner beams can be taken 

as parabolle in shop* as °boon in Fta 4, (308a), Thns 

- 5 

bj: 	 C /- Vt) 
• * 3053) 
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The value of the unknown 4 oau be evaluated from tho equation 

03.34) when the load group L4  le 'meting on grillage B. 'hus 

T-1-1T1 1- 	
zb 	n 721ba, + Lib r;-1,  Ci 7e;) 

="" /1  bct 	Ltb [Ch - 	
fp) 	 • (3•54) 

For detorat ing as atria components the esperioal relation 

(303) holds good. 

IJ 
1-1 

= 	174' -3. 	bo, 	+ 0.450 	- (a own 

o Quotes are finally obtained as 

113:1 + -35 bi 	42. tij. 	4 
* • (3.5u) 

3a .3 f ed fled 

  

vor torsi onaly resist 	dot (04o) with Y*1 • 
the equations become sere oomplt.ate4 ainee the elementary 

baffle equations developed in *option 34,24 are either no 
more valid or are only valid approzileately•  XI one assumes 

that for the edge begins, the torsional stiffne • if Solbows 
the relation 

Je 
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then the following approsamate formulae:.Oan be used for 

wide range of values 0 4.0(<„ 	° <0 <1 , 	Y< to 
upto 10 girder brldge• 

(a) 	 ti o n I ntiU0n00MII 
WAIfoot ;9. 

For the bridge hav rig equal befogs ( 	1) and the 
parameter 0 alai 	• the ordinates 41ctio( oan be easily 
calculated as illustrated in examples 3.3.3w These ordinates 

are resolved corresponding to equation (3.4U) into their 

symmetrical and asymmetrioal components, 	Ect i.,,( 	and get pc 

Corr** e ding to equation* 3,46 and 304T the 
Val US 

Y E.4;zrai.<.+Yrzaccik. rn. 

is 4 termlne 	thereby the value 

Act. — (A-taoc ) oat< 
••••(3•58) 

For an edge stt famed bridge 	n aqua to (30 to 5) 
a 	d rn. 

and for n ••• (3.50) 

tieing the values of Act. and 	the symmetrical °camp* 
nests of the ordinates eon be determined from the following 



eqUati 	• 
5/0act,,,( =7- C2110."X 	-11C1. 	LA 040424. 

and 	~S arc = 	"I- 21 /11' 	 .(300) 

For determining the asymmetrioal oomponent* of the ordinates 
I I 

aeok. 	the values of X-rok and 15-otc4 are determined 
from squat i on (3.81) 

r13‘700(, = 
21.S 1 + Ec • ) • Eg 	e 	, 	

+0.i 'TO -1]. rt—l x 1. % 

* (3 61) 
US 	yes 	al component* are given by 

rtY-.0( V . 	.0( 
IP 

sckt.k 

(b) 

The edge ordina 	ran ere.. distribution 
influence line for the inner 	 oan be detemined by 
MAXWELL /3 Theorem* Thus, 

= 
± 	" -ICct{‹:7-yl iall ie,(000(3003) Ct l 0( 3 

AnniMegAgengamlot of. 1)!A PT041111191, 

Correspendi ng to equation (303) the volt 

Zbe( 	1- 2(Y- )) 	bao(. 

Z Lo( 	= I - 2 (7-0 Iict „‹ 
*0 



are determined. 

Although ZbK can not be sum of the ordinates 

as detarmined In Seetion 3.201 there yet oantinues to 

'list for the internal beams approximately the same ratio 

of the individual sums between each other. Thus. 

zZ 
	Z 9 

■■•••••■•• 

2_ z j; 	 40, 111,410,(3,84b) 

*here. 	1. 	is the Retool 
	

ordinates for beau I.  

and mT for the beam 	0  It the load group L4 is noting 

on the bridge then sum of all ordinates must yield the value 

n. Consequently. 

=- a >  Iocuf0( 
	

0040) 

and from equation (3.84b) 

117 

.11111 
•Nom i3.1: (n-2, 

w.th) ..• 	0 04) 

If again a parabola is assumed for the shape of influence lino 

2-e1 4,,,,(, 	of the internal beam then for the beam b similar 

to equation (3.54) 

1,„0(  + ubcd, 2. C.1 — '142) 
17) 4'. (3-04) 

Iron which (A„ oan be determined. 



TABLE 3-1- ,SYndfAIETRiCAL AND ASYM/%41-TRICA4 CoMPONEN7,5 OF 

Lo4D oisrmatir/oN cocci-feu-Airs FOR S/X GIRDER EDGE 
STIFFENED GRILLAGE. 

LOAD a(1) b(a) c(3) 
A-r 

6EAm Syrorie-ralcAL. A SYPIrle TRICAL SYMMETRICAL A.5Y11mE 7 R%C AL SYMMETRICAL ASYMMETRICAL 

Q  
ISA2I4S9AY+1 timtv 46S AY +25T I( 11A4 I ) .r( 7A+15) T( l--(2T) 1( 5 - 6 A) 

1)2 
1., DL  1)1  uz  2)1 

( IIA+ 1 	) ( 7A + 15 ) 
b ......__ 

19Atri-iiAT46›.+1 11 >•21.-1- 45AY-1, 5X4-9 (17.AY-1-1) ( 251 r+ 5 ) 

1)2. Di  Dz  T.1  Dz Di 

C 
( 1 - 6A) ( 5 - 6A) (17),14.4 ) ( 25 AI 4-3) 19).11 +2.8"of45?, 4.1 11 )..2. r+. 20 Ar+3A+ 1 

"Di  la  Di  Da  -Dr 3)2. 

DI = 	2 ( i9ALT + 59,,,r t 5A ÷ r+2 ) 	; 	Dz  :,--2 ( 11A1T 4 65A1 + sx + zsi + io) 	-dn- 

TABLE -3.a,  

LOAD 

AT 

X= fb/el 	0 =. 1..0 A= 1/al 	19=0.50 X -,-.. 1/I2s0 	0=0.25 

lf -,1 7=5 Y=5 Y=10 Y=1 r= 3 Y=5 Y=10 Y=1 1=3 'Y Y=-:10 

Q 

17,,ro, 0-7714 0.9101 Q.9437 0.9712 0,5712 0.7844- 0 .8552 0.9203 0.5271 0 -74-46 0.8229 0- 8993 

Te,,,,,,, 0.295?. 0.1159 0.0722 0.0571 0:5674 0.1755 0.1141 0.0617 ubsoz 01871 0.1260 0.0698 

1,,,,., 003(8 0.023 0.0079 o .0059 

-0.0059 

-0.0045 

0 -1995 

0,0619 

-0.0472 

0.0992 

0.0428 

+0.0009 

0.0665 

0.0311 

0.0057 

0.0366 

0,01$2 

0.0055 

0-2353 

0.0927 

...0.0478 

0.1270 

0.06134 

0•0109 

0.oggi 

Q .051i 

0.0150  

0.0501 , 
--I 

0.0309' 

00122 

icau. -0.046/- -0.0181 F01011 2 

11,-ect. -0.04-00 -0-0147 -0.0090 

14-4  -0.01113 -0.0055 -0.0033 -0.00r8 -0.1526 -0.1008 -0•0726 -0.0425 -0.1875 -0.1580 --0.!051 -0.0625 

b 	 

1(.46  04 n52. 0.-5479 0.360g 	0:5711 0.3674 0.5203 0.570x, 0.6173 0.-5Z02 0.5613 O-629g o-c978 

k t,b  0.3908 0.3210 0:5040 	p.2904 0:5094- 0.1746 0.1542 0.4997 0.295$3 0.1545 0.1070 047621 

Tkc  0.2564 0.2473 0.2457 	0.2441 0.2168 0•t475 0.1245 0•,050 0.2101 0 .1206 0.0$59 0.0521 

14.,, 0.0940 0.105g 0•1085 	0,1109 0-1244 0.1027 0.0917 0.0802 0.1259 0.04840 '0.063( 0'0599 

k eb  0.0036 0.0216 0.025$ 	0.0290 0.0292 0.0522 0.050 o•04-53. 0.0378 00475 0.0592 0.Q265 

IC ; b  -0, 0400 -0'0-441  -0.044s -0.0455 -0.0472 0.0027 6.02412 0.0545 0-0478 0.0327 0-0750 0•12)$A, 

C. 

1,..c  0.0316  0.0367 0.03S4 , 0.0390 0.1993 0.2977 0.3527 0.3645 ,8 0-2 53 0.'51311 0.4401 0.5004- 

k,3L  0.2564 0.24-78 0.2457 0.2441 0'216E' 0-1475 C2•1241 0'1050  1 0 '2101  01200 0.0'09 0. 0521 

kcc 0 3940 0.390t 0.3903 0.-58%7 0.2161 0.1719 0.1561 C)•14), I1 0.1832 0 -1111 0.081'7 0'0.517 

kdc 
_ 

02712 0-2.'r34 0.2739 0.2145 0-t%09 0.15%5 0,197 0.1279 0.1543 0.0987 0.0757 6.0473 

ec  0.9940 0-105g 0.1085 0.1109 

4-- 
0.1244 6.102'7 0.0917 6-0802 

_...4. 
0. 1820 

0 ' 12;59 
____ _ 

0 -0927 

0.0840 
• _ 

0. 06 	I 0 •0/599 

030$6  kfc -0,0464 -0 ,6545 -0,0%4 	--0-0580 	0.0619 
i 

0 • 128,7 0.1555 0.205(1 0'2555  

• 



LtErmitjAsLcamspeijt,  

I% r end ordinates of the influenoe line oan 

be determined from MAXWELL's Theorem 1.0, 

ao( 
m 1_ 

o ato( 

For the inner ordinates an emporioal •equation similar 

to equation 006) oan be -need*  Thus, 
I 	 I/ PI 

.26 	 = bpi 	bac( • 	+ 0.45 65 cci 	j-)_ 	y.; xj, Jo  

41- bef,A + • ■■••• (3.65) 

Finally*  

lay( 	= 	big( +Isbjc( 

To at 	applioat 	• appro 

method developed in 	 tion 362, a eim*gir4or edge etif rued 

open grillage with one *roes beam at the mid-span is 

consideredaho grillage is also analysed by flexibility 

method and the symmetrical and asymmetrical *components of 

the load distributed on each girder are tabulated in Table 361 

for unit load applioation at stitio•span point of the beams 

atbs  a Lei a (Fig. 3.4 b). The hishiyets is gensroa end the 

Values are Liven in tents of).,11-1-T  and - E  IE  
E 



LOAD 

AT 

0 = 1'0 e =0-5 6r. 0.25 
K .5 '  '3' 

Ol  
K $ ' 3 ,,,, K 

1  

II 

3  

a 

as 0.7511 

0 2886 

0 36885 

0.12515 

0.38225 

-1- 0.16345 

0 5694 0.2.147 0.354 .7 0 5184 0.1752 0.3432 
o.6 03630 0.1562 0•20€8 0,1756 0.16405 0•21156 
ac 0.0486 o•oo6o0 0-0426o 0.1g5/3 0.12.91 0.0667 0.2303 0.16075 0.06555 
ad 

0.E 

-0 03 66 

-0.0383 

0.0060o 

0.12515 

-0-04260 

-0.16345 

0.0624 

-0.0506 

0.1Z,91 

0.1562 

-0.0667 0.0912. 0.16075 -0.065.5- 5 

70• 21155  -0.2068 --0 0475 0.16405 

CLic -0.0134 o•36885 -0.3822.5 -0.1400 0.2147 -0.3547 -0.1G80 0.1152 - 0.3432 
10 4  0.2886 012515 0.16345 0.3630 0 - 1562. 0.2.06g 0..3756 0.16405 0.21155  

66 
_ 

6c 

0.3923 
_ 

019 696 0-19535 0.3061 0 . 1717 0  '344 0.2977 0.16,55 0.1277'5.  

0•2579 0.1779 0.0800 0. 2.I74 0'1741 0.0455 cy2061 0.1660 0.040) 

6a 0.0975 	0.1779 -o oeoo 0.1260 o-ria , -0•04455 0-1265 0.1660 -°• 04 °I 

be 0. 0016 	0 .19695 - 0.19535 00373 

-0.0506 

0.1117 

6,1562 

o.13 44 

-0 .2068 

0.0422. 

'0.0475 

0 *16955--"2-176  

bf '0.0383 0.12515 
1--
; -0%3+5 a .IC4°5 -0.21155  

C 

c Q. 

c b 

1' 0. 0486 0.0600 0.0426 01558 0.12.91 0.0667 0.2303 

0.Z06) 

0.16076 	0.06355 

0.1660 	+0•0401 0- 2579 0.177 9 0-0800 0.2176 0.1721 0-o455 

cc 

c ct 

0.3650 0.3161 0.0489 0.2.142 0 '1988 0.01054 018 64 017325 	0•01315 

0.2.672 03161 -0.0489 6 .1834 0.1988 - 0.0154 0•16o) 0-1732-5 	-o-01315 
ct 0.0979 0.1775 -0.0800 0 ,1266 0.1121 -0-0455 0.12.59 0.1660 -00401 
of -o•0366 0.0600 -0-0426 0.062,4 0 •1 X 31 -0-06 67 0 .0c)12_ 0 ,16075-o -06955 

TABLE 3.3 - SYMMETRICAL AND  ASYMMETR/CAL COMPONENT FOR  r.,1 



where. 
p * Spacing the main beams, 

aa 

 

a span length* 

El * Plezural ri ittity of inner beam. 

is Pi erexral rigidity of cross beams 

SIB 
	Flexural rigidity of edge beam* 

Using the  results obtained in table 3.1, the 

nutter cal values of va ous distribution coeffielents are 

tabulated in table 3.2 for r u 1. r a 3, r 5 and r *10 

and x - 	"!) at "fmr and X * ar The values 

of X correspond to t4444 values of flexural parameter t) of 

equiValent a/Asa-tropics plate equal to t 60, 065 and 0.25 

roepooti vsly, 

For &Marling the grillage by approximate methtod  

developed in sooti on 3.2, the distribution coefficients 

obtained frost graphs i to 0 and their systmetrio components 

two and asymmetric ao*pononts is are tabulated in t4ble 3.3 

for b. 	0 (S. co 00 and 6 is 0.25 • Using equations (3646) 

to (340 of section 362 the influenao line ordinntes for 

transverse distribution of loads for edge beast and inner 

beans b *ad o are calculated for It 3, r is 6 and r 	0 

and the value* are tabulated in Table 3.4* 

comparison of values obtained by the two methods 

is given table 3,5. It is 100041 from the table 3„t that the 
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values obtained by approximate method are very close to 

the values obtained by exam' method. The variation is due 

to the assumption made in plate theory, If the values of 

k in table 3.2 for r se 1 instead of the values given 

in table 3.3, are considered in the analysis of *motion 3,2 

then the influence ordinates for beam a exactly ooincide 

with the exact values, A small amount of error is introduced 

is ease influence ordinates for inner beams b and 

beeauee of the assumption made in dmapo of influence diasrams 

for symmetric and nesymmistric comporionte according to 

equations 0,53) and 0.50, Also it is evident that due to 

assumptions made in the shape of influence diagrams the 

UAXITELL 's reeiprocal theorem is vielated at some points 

but the difference is very smal 

The above example, t eroto • proves the utit ty 

of approx. method for wide range of values, Moreover, the 

lathed le oleo appliosblo for certain cases of bridges 

with torsional rosiotanost  Considering the further advantage 

of the method of , sectioh.,, 3,3 it is seen that in the inter• 

mediate steps of oaloulations of influence lines, the values 

of Z. and 	are determined aim:lording to equations (3,40 and 

(3,52). Ttjoso values or za  end zL Oorrompond to (Wed load 

distribution ooeffioionte of edge ntiffonad bridges when 

equal loads are applied on all beams, The values of Z 

oaleulated in the above example for 8 s l,4, & *00, 0 60:425) 



TABLE 3.4 - DISTRIBUTION COEFFICIENTS FOR SIX GIRDER EDGE STIFFENED 
BRIDGE.  

I.L Porz 
BEAM COEFF. 

01ST  6 = 1.0 G = 0.5 0 =- 25 
), =3 y = 5 r = 10 t = 3 r =5 X =10 .. 	r-,--3 2r----5 r=10 

kac4 0-9045 0.9404 0.3693 0-7893 0.8591 0.9228 o•7518 o-82e9 0.9021 
f:0 6 0.3473 0.3609 0.3718 o-5io 3 0.5580 0.6018 0.5623 0'6263 0 '6311 
kac 0.0583 0.0604 0.0621 0.2917 0.3248 0.3559 0.3733 0.4283 0.4848 

iod. -0.0437 -0.0452 .0463 0.i251 0 . 1502 0.1749 0-1339 0.2411 0-2897 

iCae 
.... 

-0• 0435-0•0441 -0-0442 -00061 00168 0.0404 0.0165 0•0567 0.0989 
k cif -0.0105 -0-0068 -0-0037 --.0.096 -00691 -0.04 00 -0. 1338 -0-0973 -0.0665 

b 

14.:4 0.1158 0.0722 -t0.0372 01701 0-1116 0.0602 0.1874 0.1252 0.0691 
Tc1D13 03093 0'2823 0.2590 0.1996 0.1523 0.1093 0.1788 0.1233 0.0705 
kbc 0.2824 0.2787 0.2747 0.1633 0.1387 0-1157 0.1319 0.0973 0.0625 

0.0478 
icba 
... 

0-1160 0.1186" 01223 0.100G 0.0934 0.0860 0.0822 0.0662 

k6e _0-007 0.0036 0.0166 0.032• 0.0407 0 .0466 0- 027Z 0.0312 0. 0294 
1<13f -0.0146-0-0088 -0.0044 -0.0020' 0.0034 0.0040 0.0055 0.0113 0.0099 
j(cq 0.0194 0.0121 0.00E2 0-0972 0-0650 0.0356 01244 0.0857 0.04184 
icc 10 0.3056 0.3078 0.3079 0.1648 0.1410 0.1184 0.1306 0.0956-  (>0608 

c  kcc 0:3€35 0-36E4 0.3680 0.17'57 o.160E1 0.1464 0. 1197 0'0916 0.0632 

0.05'68 
kcci 0.2268 0.2238 0.2223 01462 0.1362 0-1246 0.1022 0.0801 

1(0e 0- 0896 0 -08e7 0.0861 0.0963 0.0881 0.0800 0-d804 0.0636 0-0450 
14c-f -0.0146 -0.0090-o-004g 0.0417 0 - 0300 0.0176 0.0646 0-44.82 0.0290 

TABLE 3-6- DEAD L OAD DISTRIB Ur/ON /N A .SiX GIRDER E OCE STIFFENED 
BRIDGE. 

SEAM 
Dui" 

COL Ff. 
0=0•5" 0-25 

Y=3 5 21=5 1 0 .1= 3 b=5 r=lo 
z, 2.119 1'2656 1.3090 1.6139 1.8399 2.0657 1.7639 2.0819 2-4o76 
Z 0. 79 78 0-7466 0- 7052 0.6639 0 -5401 0-4 2. 20 0-6142 046-41 0-2.890 

C Zc  0.903 0.9876 0-5858 0.7222 0'6200 0.5223 0 '62-19 0.4-64o 0.3034 
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end / • 3 r * 	10 are tabulated in Table 3,6 

from which load distribution for dead load can be 

obtained it is thus seen that in case of edge stiffened 

bridges the inner beams are relieved by as much as TO% of its 

dead load for r 0 10 and 9 w 0,25, 

Considering the live load effeots on edge 

stiffened bridges it is seen that the influent)e line 

ordinates for inner beams ere oonetdorebly less than 

of an ordt.ner bridge whereas the ordinates for edge 

are oonsiderably mere, The values of influence ordinates 

for inner beams go on decreasing with increase in the stiff 

sees of edge beams and for edge beams those values inerease 

with the Increase in the stiffness, Also the transverse 

bending moments in cross beams immense with tfte increase 

in stiffness, of edge beam*, It is, therefore, realised that 

there is  elweVe on Wink= edge 'stiffening, The optimum 

edge stiffening primarily depends upon width of the bridge 

and the leads caning on it. abnever, it is 4iffieult to 

arrive at the Optimum ratio of the moment of inertia of 

edge beam to inner beam sinco it depends upon many.vartables. 



12,2- 

CHAPTER 4  

Oft.M.411,o rt3 

Load distribution analysis of right bridges 

with simplo support conditions, has boon •derived in 

Chapter 2 and 3 employing Fourier series for various 

loads, shear forces, moments and deflections. The basic 

function' aro employed by nows(40  to dertve a load die. 

tributton analysts for bridges with various support oond 

Won*, The general equations of deformation, longitudinal 

bending moment and transverse bending moment are derived 

for no.torsion bridges with prismatio longitudinal and 

transverse beams, No analytical method is available for 

finding the distribution properties of a bridge with 

indotorninato support conditions and considering the effect 

of torsional itiftnoss of various members* 

Approximate method of analysis IR developed 

for continuous bridges) analysing the equivalent simply 

supported span between points of ooatra-flexure for the 

mean effects which are known from moment distribution 

analysis. An approximate analysis is also developed for 
• 

continuous bridges with priamatio and non..prissotio main 

beams on the bast* of equivalent long tudinal stiffness 

of simply supported bridge for the derivation of fleAnrml 
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and torsional parameters,' The bridge to then analysed as 

a simply span having derived equivalent stiffnass*The 

equivalent stiffness for various easea of continuous 

bridges has been derived by using moment distribution 

analysts. 

4.1 	f t ~ 3TfIfUTION 
N 

Nom. 0 OAANAORS 

As the deftootion of a beamwith various support 

conditions can be expressed in terms of basie Ululation 

series for any loading on the bec'anae. the problem can be treated 

in a manner siniIor to the Fourier Series analysts. The load 

p(x) per unitjength of a beam le expressed in the torn 

00 

• 

where* the general numerleal 000tti t nt dtpois found eiei,lar 

to Fourier series analysts and .1,„(x) is the Basle function 

given by 

1„„ (IQ 	egssklz,,, x — Cask„x] [sW,k.,„x — sbolz,,,xj 
(4.1b) 

vh re, fa and lila are oonstant* determined trop the 

support *auditions of the beam* 

Considering a particular case of a load P at 

any given section x • a * c4 	, the loading can be 

expressed in terms of Rasta function series 

x-) 

S 1 1[F, ("La -.21.fac. 
- - - Oslo) 
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For a bean fixed at both ends, the dermal &tors are given 

as (5e) 
SI  [- Ft( 42-d-a = 1.035q 

1  [ (x)j , 	oot 	and the !Iasi° tunotion 
-12- 

series for a conoentrated load on fixed beam is 

	

Fi ce) F, 60 	F.:).(c)F2.(K) 	Fs(-10  
1.o3s9 	4- c -95 S.4-. 	c.) I 

4040E0* (4,1) 
the vat foe of thento functions 	and CAfr,(9 can be 
evaluated fro* th tables given in ref. (25). 31 ilarly 

Basic function aeries can be derived for various support 

*omit tens. 

Consideri.LL,!, a no oral= grillage represented 
by an anisotropio plate (fig, 4.1) with the effective width 

	

b np•  length 2a•  i, 	l/p • ir  Tiici 0  the longitudinal 

and transverse flexural rigidities r()  and fe:  respectively* 

With the coordinate axes as shown in Figs (4.1) 
as 

the bond ‘oc.x) 	(kw. ehn ( X ) is applied on the elementary 

strip • ae , at an eocentrielty e. The lead intensity 

le given by 
• 

P ova 

cte 	111 --Ia 1.5 

Writing the governing diff rent al equation of 
b 

flexural of no-torsion anisotrop o plate is written as 

r 
L 	=_0.995s4. 

= 



c''3  A w% C;w1PQ 	 rYv C - 1+ 2. 4-k47 	()E 	 (-}1 
?rX-# 	D94- ey•A---i "").-b 

(4.3) 

?ho solution of difforont al equation (4,9) has boon 

obtained in two porta (a) and (b) 0,3 aiv on b01 Gas 

(a) For 
ZA-U3 	ea 110 

Vt i) 	E 
)1(4  

The °elution is 

A,r4Cryyt  ()4-) 

Pw) GAA ).0 

 

 

2-1:3 ktf. S.. (4413) 

t7horo t  Wrw,iG tho moan doflooti on oorroopondina to 

torta of tho Dasio function load oorioo and k 

tbo th root multiplier dopondina upon the typo of support 

(wadi tiona • 

co (b) Ef'er 	 NIA 
(1-LL)  4 )E 2‘I'L) 	

A 	
b 	 " --1)1  

tho oolution to of to fore (i3r1„, = )(1,,,:114,,,phers io  Xn6.4 to 

the funotion of x satisfying tho oupport condition and 

\AAA  is the function of 7 oatiofyina the boundary oond-

iti ona at the f roo edam.. Thus solvins tho equation, 
• 

is obtained that 

(-A.) b+ ,yvN ;AA. 



A  

Cat k 	 L;," afv- -13 	-D C55 A-44,i3) 	CPA, ,vv. 13 

C4Z5SnA(P -It) lin p ers + 
Mme{ 014+ ef14. ) 

where CI  Of  r. 0 are arbitrary constants which areoevidiaatogl,, 

from the boundary conditions at the free edges and 

* • (111 i# 

Thus %ft. is a parmne ter defining the relative flexural 

stiffness end the support conditions* & oan bo considered 

as the flexural parameter 8 used in the load distribution 

analysis of vight simply supported bridges multiplied by 
2  4 k(-1.0 a factor 	 whieh depend* on the actual support 

conditions or the bridge* The appropriate value of L. is 

found frost Basic lunation,' for deflection of a beam with 

varicas support *audition** 000  20)* Combining the solutions 

(a) and (b) and applying the boundary conditions at the 

free edges the deflection at any point can be written in 

the tons 

t.0 A F(x)  K  
26 fp k4 **slit 5) 

where K is distribution coefficient and is given by 



2'7 

(ek;sh>,13 simXia. Gash ).7r 	+ Stu.INA13 ea;-sAta St'AAkAir easSAA 
Cask 7S SiAAVN A — ei5sX7 s (AA T 7C ) 

a0 	-11 	e...arSfr, 
z  7141 	CPA 	2 811 	rnIC.-1 ) 	,r1 4.  + 6,4.)  

x ri 	frt ) 	 rinv.11  
(11=t 	(r114-  +6141 	Cash An sZpAkxrt 	Cds-bR stysMr) 

Cord,. 13 Ces 	&six X 7c 56mAN- S.tAnk Alt ces A A) 	st,4,x 

( Cos tn. X -F SCA,  XA 	S CA"t^ ?s 7  darsA70i +2-814 	CgX14. (4f4 )) 1.11 
aPo 

0.49 

	

K.‘ 	4 ( e s  VID 	eqb 

The ooe, to * rico for the a etiootian is tvon by 

A, Fi  (x) 	A2 	( 	/k b  F-5 (X)10.  
(A) 	 K4 	k24 

k+ 	 

	

26 [ 	 • 
1 	 ks4 3 

(4.7) 

*noh t lvidual tern t re is n nique 

Yalu f IL and he 	the flexural paraneter et  and 

dietribu on coeftiolont K. Rowevere  for deflootions 

the 1st t rn of equation (46T) givoe en aoouraoy of about 

3% and for 3 terms the accuracy is within 066%s 

Lonit 	bonding moment* 

Si nos 
1.41% 

• Prow loqUattitua (4.7)  the value of 

derived and Mx can be written as 
is 

Thu 

2b 
A,ck (x), 

itta 1'1  
(3112.2x) 

K24 
/k 	cx) 

lz  
2- 
	 Kt-- 

4-4=1 

.11111- (4.8) 



I a 

Tjber0. ADI (X) 	 °to.are cooplenentary baelo 

fu dons to F1 01) 	17-2  00 otos  cavort by 

(tyv,  Cx-.3
d and 	$ 	etc. are the 

dicitribution coefficients for defleotion 	tten in (44,4,7 

O'er ealculatins M1 the Ztrot three terms give cutfloient 

accuracy.,  

Trgezmultaimiceat 

Since 
	

(61-w  
Prat) 0 tiati On (4,8) M eon be vritten in the torn 

A 	FE  

4 6 0  

viler* AA- is diotribution 000Uto.toat for trancivoroc, hundina 

moment and to equal to 
(cos6 >, -xsimvirs 51,,,V■ T aeac A ? — s WI k A citssA neeshAps64))11) 

cez  t4  A -lc <• cknIA A 	C-45-v  )\7\- 	1`1‘ .)\1-.\-‘  
c::40 

oo 

VY1 41' +Wt.) czst,, 7- iti,"11 AA C.e3A7( S A-IC 

	

[S CA,„ t„ 	s tt:il 	( eiss In -A.  skir% 	St );AA  AT\c 6:1A 

Clysin  

4 

 

	

,a 	 m2
Cos C fa-4,  ) 

	

ON+ +&/4-) 	— •. (211.--V 



Tbo ooni,loto onprecoion for tbo tram; rue.bondina motlent, 

tly  • lo than 

	

a F. 	A , 
 F, 
	11 	11,1  4_ A-3 PC-x-iii;  4_ 

a — 	—6, 	ki 	 tz2- 	3  

21 

(4 - cz.) 

Tbo calculation of tranovcroo bending moment lo 

carried out in VI° sato oar an for italoationl and ional 

tunnal bandinz 0000ato*  T40 first tbroo term in ognation 

(440) (3117 sutfitciently aecurato Valuo of M 

Tho yaluoo of dit trfbubion coofti 1.00 o It and 

,U for various valooa of II oxnral parlinoter &' aro aivon 

by' ROUE) (26)  to two tom or accign curve° for no.toroion 

Grilloao olml air to earVn0 of 044aptor 2 10 application 

of tho anat ye o io aboTtn in onam)lo 4*381* 

4,3*  41 1!ROXit 

Since no rianrOns ax aly 	10 availablo- for 

torsionally renistant continuous bride ; °vino Iona of 

approximate anal seats baoo4 upon Wan thoont dotrolopod in 

proviotte abaptoro to slooga m114.074%20 ftPi:word mote cot4040  

have boon dovolopotl 	they flataior e  'Mono have been mod 

an Callous, 

Equivialunt t# ftueoo oat 

2) EVA19111.0" "CiPlY ouPPortod ripen notliods 
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4.2..i UIV 	IF 

The deflections on loading a span of a twin.. 

nuous beam, are lesser than that of a simply supported 

span of same moment of inertia and span length The 

continuity of main beam, thus stiffens the bridge in 

longitudinal direotion and produoes a different load 

distribution than that of a simply supported bridges 

Taking the deflection of a oontinuoms beam into consider.. 

anon, an equivalent stiff simply supported span eon be 

derived and the use of distribution coefficients as obta 

fined in Chapter 2 can be modes 

Una sus prismatio bean of moment of 

inertia I is subjooted to a concentrated load P at tt e 

middle of the span 2a oausing a deflection 	at the point 

of applioattou of the loads  Let 

V0.3  _ 
Et C 

Liet 10  be the mom t of inertia of equi ral ent 

simply supported beam of span 2a. When load P is applied 

at mid-span they mid.span defloo ion go t* equal to or 

co = P 	 00.3  
fo 	C Et 

to  Y1 then C 
so.04,0(40ii) 

For determining the load distribution in the loaded span 

2a of the continuous bridge, the new value Toz -ei is 



Isubotituted instead of in tbe equation (2.58) for 

finding the flexural parameter 0°  . Thus 

e° = 4.\I ?o 
TT ID .*(4,I2) 

mbar*, 

e -- 13 VT' 7-4- 
a 	ir  

Knowing the value of 0°  the eoef io nts of transverse 

distribution elan be obtained using graphs I to ii. In ease 

of no-torsion brides the distribution of Ioad in unloaded 

*Pan at any Use assn be taken approximately the sane as for 

the loaded span in eutob the eorrespending loads are present. 

Tho distribution eoefficionte, thus obtained, are then used 

with the influenee line for *ean effect* en one 'continuous 
main bean. 

to sion ly resistant continuous brid, e, 

the value of 0°:: 6 	is firstly determined. The lac ulvalent 

value of 	Y1 to then used to determine the 'new torsional 

parameter ce given by equation (2050) Thus 

ye 	TD  

2E 	16/P “'AL 
	

rT 
	01.4.(40.3) 

• 

The pa musters 00  and ,(° are used in the same manner as 

indicated in Chapter 2 and the interpolation termite MO) 

K is considered as valid. Thus, the values of K.4 eau be 

1:31  



easily obtained for loaded span. For 'the load clietribOtion 

in the unleaded sian it has been shown experimentally 

bg MORICK AND LITTLE CU) that all the beams chars loads 

equally. This can be explained by the notion of torsionally 

resistant arose be 	present ever the continuous supports. 

It can therefore, be assumed that for unloaded spans&  In 

ease of torsionally resistant continuous bridges with cross 

beams over the support', all the main beams share loads 

equally, whether the loading in the loaded spans is control 

or omen rio to the longitudinal axis of the bridge, 

From above, it is clear that knowing ev  and 00 

the probisa oan be easily saved using the results of 

Chapter 24 For the determination of rand 00 „ the add 

Mortal value T is determined by ordinary methods of 

finding deflection in a continuous beam, £o* continuous 

bridges with prismatio or non.prismatio stain beams and 

varying span lengths, it is obvious that thsTe will be 

separate Vslues of 1, 0, 6° and efor each span. The 

additional values of Y , 15 and 	are, therefore, 

calculated for onirtistuovas bridges with (a) prismatie mein 

beams and (b) nonwprismatic main beamsahe number of spans 

and tke r ties between ins different spans are also varied 
• 

according to practical oases of construction, 



TABLE _ 4.1 

S. NO. SYSTEM RELATIVE 

DIMENSIONS 
C Y 4 FY r-- 

1 6 I _ C 1.0 I .0 1.0 f....— 2a ---.1 

2 1  1 , : 	al. 
c1 	: 	1 

6. 3 4 9 I.3915 1.0861 1.180 14-- 2.a., —*Lk— 2g1.--4 

3 : : 	a'4:- 41  2 at 	3 : 2 7-970  1.328 1-0736 I. 15Z 
20

i  
t.- 	, -.e- 202-110-201 J 

4 
I. al : a2: 613 

2.3:2 12-49 2080    .201  1.44 2. 
. 	24, __...t.._ 202- -----Z2,3--4-1' 

4 
(1 
2 r: 

: 
2-
az
5: 2 

; C13 
e"2 28 1- 37! ►-062 1-17) A 

1.-2 ct ,  , -— -1l  2 a-2 	2 ar 

6 a,  :611:c13 2% 2-5: 2, 11-74 4 1.957 I. 1 83 I. 39.9 
t- 2a, _i_ so.. 120) 

1. r  cicli a3c''t 2%2..2:2 9•590 t.432. .094 t. I97 7 
I4-2,1, -1-20,--1.-20,--4-2c4--4 

8 . a,..ait Ci 3 C14 

2: 2: 2: 2 
II-  228  1-871  

- 176 1•3e 
t-24, --..-.-f' 2etz-12.,7--L-2,1,--.1 

, — 24 4.0 I- 414 2.o ; 20. 

TABLE-4-2. 

S.No. SYSTEM RELATIVE 
D/MENSI4N5 Zao 

.)1 /...: 	a. 
010 

1 AdMINIIIMum......._ 2: 2 32 a  
(9 I. 1275- -‘14111161V 

2 .41111■- 2:2.5:2 I. 69501 I. I 75 -4•11111/ 	 31111."' 

3 2 *. 2.S" .. 2 1.348 a  1- 483 . f.-===,...- 

4 z 	.. 3.- 2 1. 7 I '7 a. 1 .165 
t 

5 2.. 3 : 2. 1. 308 a 1.53 

6 '4111.111.11.— 
 2:2:2: Z 1.661 	a. 

• 
1.2o- ,......ali... 

--"Ill' 

7 —...iimi■ 	.116.. 2: 2: 2:2 1•385oa 
. 

1. 443 NI 4113111/1" 

6' lia...  ....... — a 2. (.., 'mai/ 



(a) PirjAlatttuezktitegej4 

?ha evaluation of value r according to eq* (4 
is carried out by moment distribution matitoi and the values 

17 and 4-7( ars tabulated in table 44 for various 

oases. For azasple. according to Pig. (4.2) of a continuoas 

boas with the *pan length ratio el  a2  s 63  as 22332, 
for outer span and middle span rija  a 1.4,3a8 and ra3  m2.060 
have been nalculabed and aro shown in Table 4.1 for oasoe 

3 end 4. In case 3,  the 1°4%04 mid point of the outer span 

is Oven an unknown dleplaoement J and by introduoing a taw. 
porary support the moment distribution for tho tndaoo4 

placement effect is oarriad oat; then the roaction value at 

the temporary support is equated to the applied load P to 

obtain Co_ trots 	94 '13EL * Similarly for ease 4#  Ca3 is el2_  
determined*  Amongst the nine oases tabulated in Tatilo 444 #the 
ac re= value of 'Y a 4.0 for the fixed bona of ease 0. 

(b) Nar...AsisAlsaltagstp  

A particular case of three span contint outs bean 

halting varying moment of inertia as shown in Flisi#3 ia 

considered. The results are used for the load distribution 
analysis of model of 5.3. 

fixo depth of the oontinua o beau s ahown in la.440 3 
has otraight line variztion with d aa do th at A, $, and 
and toe 4 as 1114/Cirtria depth at supports 2 and 34 U I is the 

133 



nomont of inertia at A, B and C, then the 4efieotlen 

at A due to a oonoentrated load P applied at A is 

calculated by moment distribution method; the dello:Alen 

B due to load 

being equal to P ct% 

P at II 	equal to 
ti-In6 El 
	Similarly the defleation at 

P 	'"2 , CA)3 

Therefore, 
143 9 ET 

ig 0 i *12$ 	0 1,204 \f—ii 	0 1.10T 

23 	F  023 0 1S*0 	3*1$ 	S:3 	1.333 

The stittnesses and -a rry.over factors for 

members with varying moment of inertial are obtained from 

Table 3 and TWA* 4 of the book(54) 	Analysis of Stati 

*ally indeterminate Structures' by PAROKL and MOORMAN 

pp. 218.4so 

AgaSALeal.tseeiLlite riustt444.,.......• 

In a continuous bridge structure it is possible 

to us. the moment distribution method or elope-delleation 

method to determine the mean bonding moment diagrams prod 

uoed by any loading, Thus certain points of contra.410luro 

can be located is the primary dealt struoturo*  Assuming 

that the longitudinal deflection and bending moment prof *. 

lies duo to distribution of load remain of the MAO form 

for all Iongltudinal *cottons, it follows that the points 

of contra.tlexure for lines in the plan parallel to the 

supports * Although these lines of °entre:10=re wilt 

In teat have some transverse ourvatures  they cans  for the 



purpose of an approximate analysis', be oonsidored as simple 

supports. [fence it is possible to analyse that portion of 

the etruoture between the points of contraflexure as a 

*imply supported span of appropriate length and width and 

with a flexural parameter and torsional paraseter deter. 

mined acoording to equations C2058) and (2.80)6 

For tho equivalent simply supported epanbetween 

points of oontraflexure the mean effects are known from 

moment distribution analysis and the distribution coeffic-

ients K are derived according to theory developed in 

Chapter 20  Thu*, a solution to a epeeifia portion of the 

continuous bridge man be obtained For point* outside the 

equivalent *imply supported span analysed as above, it is 

reasonable to samee that the distribution of accent will 

bo 641110 as that in the equivalent ataply aupported span in 

Osier at bridges having negligible torsional resistance 

and equal load distribution in ease of torsionally resistant 

bridges with heavy torsionally roams tent transverse beam 

at the continuous supports. 

The transverse sements oan be derived in the same 

way as for a simply supported b die. The Fourier series 

for load* on the equivalent span are then derived and the 

analysis of *option 202, can be applied. If the equiValent 

*imply supported span is 2AD and the loaded span is 2a then 

for deriving the dietribation coefficients K and A the 

rsC 
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modified flexural parameter 	= 1' 8 	where 	-- Q 
 

ett, 
and 	i 	".(1614) v 

The values of /1  for various cases of oontinuous 

beams are tabulated in Table 4.2 for a oonoentrated load 

applied at middle point of tho leaded span. 

4.3 EDEMA 

To examine the aocuraey of to approx mato methods 

developed in 3cotion 402 r  two examples of tour girder 

grillage are Oonsidsred* n esample 4.3.1 a tear girder gri. 

liage (fig. 4 4) fixed at i s two supports is analyeed by 

theory developed in maim 4.t and a comparison of values 

thus obtained is made with the values obtained by approximate 

mothod of analysis developed in seotions 4.2.1 and 4.aa 

Accuracy obtained by using 3 terms of basic lunation serios 

is also shown*  In example 403.2 a tea span continuous open 

bridge grillage 014.4.5) is analysed exactly end a aempar 

igen et values thus obtained is made with the values obtained 

by approximate method of.analysis developed in sections 

4.3.1 and 4.2.3,  

4.3.1 ;lax 	di 	Tmolio s. 

A our girder grillage fixed at two supports with 

three cross beams, is conaidared. The dimensions are 

2ct= 54 ; 	ID -1: 91 	2b= -561 1.5-51 



Aoo rding to equation ca.mit) Q * 048 

Dacia tanotion sort*. tor unit conooatrated load: 

When the unit load is at X m a trots table 4.3 

the sertea is written as 

1317 

(x) 
t r  toles 

I 1.0so 

item.*  
1.0145 

---------- 
54,0..030 

.4059 
A3 * 	NMIN...PPO~NIVIODA 

1.0002. 

#.1..• (404a) 

when the unit load is at 	x a/2 

p x) 

	

f 0.0634 	1.4430 
(x) 

	

1.0559 	0.9984 

Renee A w 0.8034 

	
I .4430 
	

1.3/09 

1.0350:454 	.0084 It 54 
	

t 0001x54 

.041.4poo...(4k 	b) 

For fixed and condition r  the 	three 

roots of Basta function, series aro 

2ak 0 4.13004 honoo k 
3004 

et. units. 
54 



K.1 	0. 753 

b/4 3b/4 

-().34 

1 • 0 9 o• 04 

1.82  

1.12  

1 • 0 175 

36/4. 

b /4 

0.04 

1 .1 2. 

3.09 

0'9775 

14„5 6); -2. 1.75 

b/4 	3 6/4 

-0.18 	-0.04 	-0.12 

0.30 

.91 

0.26 

1 .0875  

7',18.4 -  4.5  

-361.4 

514 

Ka 192 I•ZS 

b/4 	313/4 

0.85 

2.97 

0.  64 

0/00 

-0. 153 

0 .64 

-5. 59 

1.9025 

- 0.12 

0. 2.6 

4.26 

I.1000 

7118LE 4.3" BASIC FUNCTION VALUES FOR FIXED 13EAIsl 

x 0 (1/2 a 3a/2 2c4 

F,(x) 0 0.86 34 I .  61 E) 5 O. 8634- 0 

F2cx> 0 i• 44-39 o -1- 4439 0 

I F5(x) 0 I• 3 70 9 -1.4059 1 • 5 709 - _ - 0 

4,(X)  2.0356 -0.2119 	-1,  23 74- - 0. 2 11 9 2 -  0356-  

I t i-  
! +a (x) 1--1. 1 . 99534 	16 85 Io 1.16435 ---1 • 9984 

4,5 c%) a• °col 	-1.2424- I. 4426 -I• 2424 	2-0001 

TABLE 4.4-  D/STRI8 TIC", COE.FFICIEINITS FOR VARIOUS V4 L 1JE-5 or  

IT 

AP 

1 

EAM 

1. 

arl 

DIST- 

CoEST 

LOAD AT 7C= 04 L OAD 	AT 	?C.:: 042 A PP Rox, -rHEoRy 

0 EPIECTION 
Al 

x..z..- 	CI, 

	

F3•.M 	AT 
A. 7.- 	0.. 

Ps, vi. AT 
X. 7-2,a. Iry 0 

PLF""QP6  
A/ 

N. 7 4.1A 

0.8338 

0.2.345 

-0.0061 

-0.0621 

0.2345 

0.5-557 

0-2360 

84.1 . AT 
X.= ct 

.._ 	. 	_ 

0.7027 

0. 4025 

0.0306 

-0. 1351i5 

0-4025 

0. 1931 
_ 	_ 

0.3738 

17 . ret . Al 
X=  0 

0.8564 

0 • 2056 

--0.0131  

-0.0489 

0.2056 

0.5944 

B. m. AT 
X -. 2Q 

0.7794- 

0 2.981 

0.0420 

-0.1195 

0.2981 

0 •41 91 

e . -4, 0•707 
Eci.-STscc-Nks.l. 

Plc.' rtiO D 

001  -,.- 	1.0 
Eca 	s 	$. 	S9/•r,  

Ma TH017 

keta 0.8013 0.8244 0.7631 

0.3243 

0.0174 

-0.1048 

0.-5245 

0.3540 

0.3043 

0.7726 

O. 2997 

0.0250 

I -0.0973 

0• V.09 7 

0.  4154- 

0.8600 

0. 2.1 3.5 
_ 

-0.034-7 

-0.0386 

0.2.133 

0.5659 
_ 

kb4 0-2750 0.2451 
._ 

0.004-0 

-0.0735 j 

i 	0.2451 

0.5169 

kto 0.0090 

-00853 

0.2750  

0•4555 

kclo 

ko.A,  

Ici,l, 

kcb 0  26(35  0.254-0 0.21 31  0.2.4-o8 0.2(009 0.2555 

Ica b b • 0090 0.064-0 0.0174 1-0-0062 

1 

	

-3. 666 

0.0306 

- LI-'43bio 

-0.0134 0.0420 • 0.0250 -0.0547 

ERR0R 
DUE 

THREE 
mr-is OP B.E. 

-0.6510  -17.9 % 	- 5- 1 % +3.410 4 I 0 ' 2..3 _____ __. 



2ak2  5 
144540 

hence k 	----------- ft. units4; 
44 

13$ 

• 100958 
2ak3  mi 104946 ofIIMBIMMWOMNIONewmall•-  

54 
ft. units. 

and the cor  corresponding first three tare fl ral pare*etera  
Liven by ems* (4.4) ere: 

2 8 	a k' = 	i  & - 0- 755 7T 

at - 2Q k2 A  u 	i . 2s _ _ - 7C 

031 - 	 - 	2 a L3 0 :__. 	"7 5 
.. 

10••• @OA) 

The dis triboti on ooeffielent X for various values at 
obtained frost graphs (25) are tabulated in table 44 4 

for load potation* -6-41)- and la and be 	 _§. an positions + 3  
and ± - 

4- 

Using equations (4.?) and (4.8) the dis 
Sautero for lead at x 'IL a and x a44/2 are derived for long-
itudinal defleoti ons and bonding cents and the values aro 

tabulated in Table 4,4. The errors introduoed by using first 
three to 	of Basin function eerie* are also tabulated in 
Table 4.5.. 

Considering the apooxistate method of analysis the 
nelitiled flexural parameters O and 8°  are derived frost 



a 	 

b 	 

C 	 

d 	 
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2a - 4-1 

   

    

1"/ G. 4 . 4 FOUR GIRDER  GR/LL AGE F/XED AT 807h1  ENDS. 

5 a 

3 7 

8 F•r- 	- a — )-14  

1 	2a 
d 

(a) 

A 	  

I A 	
a 

2 b A 

A 
3 ° C 

A 
4 -71 

(6) 

f/G. 4.5 TWO SPAN FOUR GIRDER CONT/NUOUS BRIDGE GRILLAGE 

6-85;7  Pa 3
r  x 

 

A IP 6e 
A--- - 	 — -- 2K- a 

uAA-  
VC - -- i 41-3  

 
6 E I )( 'zi- 

F/G. 4 - 6" 



IS, 

equations 4.1a and 4.14 and using the values of /. nd 1 
• 

from tables 4.1 and 44 . They are O p  a 0.70T and 

00  s 1.0. Prom graphs 1 to 0 the distribution of loads 

for unit load applied at boas a and b aro oaloulated 

and tabulated in Table 4.3. 

Ater comparing the results obtained in Table 4.5 

the foliosi.nf ebservr ttens can be scrods. 

The Yalu** of distribution ooefficients obtained 

by equivalent stiffness method aro very °lose in most of 

the oases of loading and transverse seotion to those °btu.• 

tilled by theory of 4.10  The vide differenoe la the values 

obtained by egnivolent simply supported span mothod from 

theory of 4ot is due to the transverse ourvatars at the 

potato of oon raflexur* 

2 	Ths ditforencs is also due to the oonolderation 

of only first torn of sins series in approximate theory and 

3 erns of Basic function series in theory of 4.1. 

3. 	The rors admitted in the bending moments by 

Basle functions are suffloiently high as indicated in the 

Table 4,5. Suitable corrections aro therefore necessary 

when the bending moments ars Oa oulated by using Oasio 

function series. 
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4,3,2, 	 an Caatinuexa 	a, 

The oontinuous bridle irtilage9 shown in 

Fig. 4.t4 and 4,511b are analyse by flexibility method, 

The symmetrical and asyseeetrioal eonpenents of leads 

distributed at different junctions of cress beaus and 

longitudinale due to unit load applied at points I and 2 

are tabulated in Table 4,6 in terns of parameters A and 

influence eoo fielents i and -t • The paremeter A is equal 

to (12-t  )3 	; r and t are such that when a Toad 

is applied at A (rig, 4,6), the deflections are 

Eor two equal span continue us beau eba un in 

r 	1.381.3 and t 3 5 

Nusaerical values of loada distributed at (lift-

erent Joints duo to unit load applied at points is and 2 are 

tabulated in table 4,7 for Aft I 	1/13 and A 44 11256 

the values correspond to tho values of flexural parameter* 

e 	1.0, & ix 0,5 and 0 Is 0,25 respeetively of equiv.. 

client anteetropie plate when loaded span is treated simply 

supportell. To find the offset of arose bean 5678 in the 

unloaded span the grillage shown in fig,..5(b) without 

aesber 5678 is also analysed, 
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N 4-2. 

(1) whionA0 1 	 is 1,0 	1.080 ; et) * 1,188 

(2) when 	fori 	 • 0.5 	0 0.543 i b. w 0.594 
(3) when i■440.s'o 	1 	0 is 0.83 ; 	0,02 ; at; a 0.397 

From graphs 1 to 0 the distribution •coeftiolonts 
Ko 4 for bees positions • 3/4 b and 	b/4 and load 

position 3/4 b and b/4 are calms ated and the values are 
tabulated in Table 4.8,, 

after comparing the results obtained in Table 4.8 
the following observations oan be made. 

I , 	The difference in the values of distribution coo:. 
*latent* by the two approximate methods is not much. The 
errors dos to transverse curvature at the point contras. 
flexure Is little because the point contra.flexure is near 
to the middle support. 

a. 	The values of distribution ooeffleie to oalculated 

by approximate methods are *lose to values by exact method 

The difference is due to Open grillage analysis and assumed 
equivalent. Last° analysis as.  it has a ready been Indicated 
in Chapter, 2, 

3, 	The eta of of transversal 60T8 on distribution 
Y 00 Off tOi Onts is small and is ate to tho factor 1.-17;311  • The 

predominant effect of transversal 5018 is seen on the die.. 
tribution coefficients for suppert moment.; the distribution 



is poorer with *saber Me. 10 a count for this poor 

distribution at the oontinuous support the values of e° 

should be increased by about 10% in the approximate 

*tithed of analysis and a different sat of distribution 

coefficients should be obtained for support memento 

4) 	It is easily undorstandabls that the equivalent 

stiffness method is better and oan be adopted for coati 

mums bridges with non-prisnatio main beams', 

'43 
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MATTAL..2. 

SEMAEEAL.AINE. 

As various approximate theories haVe boon 

proposed in Chapters 3 and 4 for edge stiffened and 

oontiuuaus fridges, 1t is intended here to 'verity the 

errors introduced by those approximate oaloulations• 

Models of ne.toroion bridge grillagos have boon construe 

tad and deflection measurements era token to obtain tran 

averse distribution pretties of various systems, Following 

models have been tested* 

s4,1,1 Steel model of six girder edge stiffened 	liege 

with e .0 0030 and 1' • 24. 

$.l.2. Perepez model of eiX girder edge stiffened grillage 

with 0 0 0 015 -rip so 

Steel model of four girdertwo span oontinuous 

bridge grillage with prl matio main beams and four 

sots of °rose beams• 

Perspex model of tour girder tbree span bridge 

grillage with non.prismatio main beams and two 

Sets of cross beams* 



A 

/45.85mmy. 7.6o mm 6 5. 

A 
/5 .85 mm x 5.85 mm C.5 

d =10Crn 
r*-  

C 

a A 	 

e a---- 

I 

I 

5 

f 	 
I 	6 q --:12 cm 

6.4 rnmX 20 mrn c.s.  

6 
6.4 mm x io rn rn.c.s. 

b 
I 

48 cm 

81 

-21 

—21 r 

:75cm 

3  
IOMM X3.05111M 

C.S. 
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CROSS BEAM 

HEM SPHERICAL WAstiER. 

2mm4 BRASS 
r Ys/ I I  

(b) 

2.2 I 

(a) SitEL MODEL OF SIX GIRDER GRILL AGE  

(b) PERSPEX MODEL OF 51Y. GIRDER GRILLAGE_  

FIG. 5.1 

BRASS SCREw 

ri,_MAIN BEAM 

-HEMI SPHERICAL 
WASHER 

CROSS BEAM 

-•.-HooK 

HoLE- 

(a) 
	

FIG. 5.2 
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5.1. Mg.T.U.FM.wiLalLatati 

Two grillage* have bean tested. The Slexeral 

parameter e of the steel grillage as shown in rig. (5 in) 

is 0,050 and is 2.3. The flexural parameter 8 of 

perepaz grillage air shown in Fig.(5.1 b) is o.615 and 

r 	84110,0 

5. 	43 13, 

The dr31 age oonsi d of 0 mai 'beams of 
40 on. spent  4 inner main beams of 5,$4 mem. 5.03 mem, 

and the two edge hew of 5.05 *,*. sw 7.50 mom. mild steel 
emotion end spaced at 5 e.m. eentree.(111g. 5.1a). The var- 
iation of 	0.05 mos. in the aeational dimensions was 
permitted. Three cross beams of the else 5.85 m.m. z 3.50 et* 

wore used and placed as shown in Pig (5.1a) 

To ensure that the drillsge  was freo from torsion, 
the ores. beams in the span were oon.neoted to main bowie 

at the bottom face, by means of a Join shown in Vig.(5.2a). 

In this joint a nos, dia. brass sore* pose's through a 
hole drilled centrally through the ores* boas and main 

bean ul tb a hemispherical washer Inserted in between 

these two,A bracket typo book with a hole for the euspen 

ding leading hanger, le fitted et bottomot t e sorest. 

The den aotione at points i 3 3,40, and 6 were 
measured by di. al gausee of 0.0001* least count*  A 3 kg 1oot 



load was applied at different points. To avoid. lifting 

of the beams each beam was initially loaded by A.0 lbp. 

weight. * far every leading the initial and final readings 

were noted and the reading were taken at an interval 

of 30 minutes to minimise/ creep effects. The experimental 

sot up is ehown in photogrsPh to 

observed 4datleeotione are tabulated in tabs 

king the average of the two readings obtained 

by loading two symmetrical point 

14.9.9.1"1.9.221. 

The dimensions and other slime 	of thee grillage are 

2a a40 cm., 41, m 10 as V 	$ es; 111 a e 

l/IT  

	

( 5'25 j3  = 4 - 67 	i 2b---  trit)7 50  

	

1,41 ral pa 'a meter 	= 4o 
114.-ox 	.656 

IE 	7-60 ‘5  ) 	= 2 • 2 
ratio 	= 5.85 

Ko -- tor boa The values of distri 	eceftioients 	6 

pees 'Lions ittc_,t 	± 	and lt IL and lead positions 56  

And .i3- for 9 40 0,850 have been tabulated in table 

6.2 (as per 	2.3.1e) and the symmetric and asymmetric 

00Op04461441 1)% and yare determined aeoording to equet 

ion (3.47a). 



UsIna equations (3.46) and (3.41) and (3, 

the symmetrical components Y are obtainad as 

14--/ 

= 

 

2.2 

 

- 1.3442 
2.2 ( • 6299 — o*oq9 ) O '4-694 

Q-0. 	
7- - o. 35 66 

L-6 	')" Ct. e = 
o-1991 

C 	 0' II63 ke_ 	4 4

- 

a

- . 

 

AS per equations 	(3,48) and (3,  ). 	1.0; 
M 7 55 

o• '3646 6 - 5 4 
. et 3 is- e= - x..ct 	z o 1 73 2. 

3 it. 

6 	IS 	9 	T c- 	is- 

'I 'AS.- 2. (o • 36 g 19-0,) 
	

0-1975B-1-0- 641$1 	(ib.163isi-oi732-111/46 

o O C05 I 
	 •=7  2 2 

and the asymmetri oal eseuponente are 

- - 0- 4197 

'tae - O 2322) 

-7. 6 • 0 744 

( s- 2 

Adding einneetric and a y et c components as 
obtained from actuations (8 1) an (5* 2) the ordinates for 
edge bean a are tabulated in table 5.3, 



C) 4(64- ° 

-_-.11,cci;743.-21963( 5 4 ) 

For inner beams b and n the eta ordinates 

na per equation (3.50) are obtained as 

-1 	- _ I 
r-26 ca 	c -- 0 'OS 245 C 

_ 

6 	6 s 	o • io s 2501 <5 .613'82_ 

ite per equation (30 ) z6 

***15.3) 

0 0.7828 and -Zc  0.8731* Using 

equation (304) the values of 2.1_6 and "ac are &Itemized from 

14-S 

2 
O.T$33t 0 	*0908 L.414 	) 

0.3731 0 	+ .0 3 +4_ [ 	4)2 
Therefore. 	0 007494 and4L0 00.151 

0.63) the eymmotrioal 

	

t
-al be = ° VICM4 	 t43  

6 e  7- 1-ej 	:7: v - 16 244- 	3 '7?)  

Ae per equation 

Tho asymmotrioal oom enents ae per equation (3*  

obtained as 

5 II 	o,t01.44- 
13, 13 	b e 

) ere 

--4 —11 11 

b.1 °'°4's 
i f  
ec_ —1- cct 7:0 -)2695 

5) 

Adding tho symnotrie and asymnetrie component* 

obtained from equations (1/4:1,4,3)*  (0 4) and (o) the 

• 
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The experiaental set.up was similar to one 

of 5.1.1. All girders were initial', loaded by 1/4 lb. 

weights and the defleotions were measured by applying 

1.0 lb load at different points. Average values of 

defleetions from two symmetrical loading are recorded 

in table 5.1. 

Using similar ealculation procedure as given 

in 54.1. the value, in the tables 5.3. 5,3 and 5.4 are 
recorded. A oomparison_ between 'the theirretical and oil) 

erinental values is made. As per table 5.4 a good agree, 

meat between theoretical and ciporipeatal values is 

obtained. Prom :tables 5.1 and 5.4 it ca.a also be seen 
that th• behaviour steel grillage is better than pa* ex 

grillage. Creep safoote in peripen grillage are preda 

atnant as the variation in the total deflations is more 

when dit.forent bowls are leaded. Also the negative Values 

at the edges of the bridge are not in very good accord. 

Little discrepancies in the EMIL os rootprocel theorem 
are due to creep effeets.#  though the readings were taken 
at an interval of 30 minutes*  

• The grillage consisted of four main beans. 

oontinuous over two equal span* of 40 cm. each and 

spnoed at 8.0 on. (Pig 5.3), Main beams were stride of 

►co 



1.2 n.m dia. mild stool bars. Following four sets of 

arose beams made of slid steel bars were used to test the 

grillage having wide range of parameters. 

Six cross beams of 0.35 nn. dia•I threo i>a each span 

plaoed at equal spacing i  q.,10 10 cm 

11 	Two °roes beans of 5.35 m 0  d1 a., one in era oh span 

placed la the m .14 e; cList 20 

I n4  Six cross beams of 4.0 eve dla, throe in eaoLt span 

placed at equal spaolngs 
	

ci 10 Om. 

IV 	Two °rose beams of A„0 um dia.,ons in each s AU 

placed in the id+ o i  dip 20 00. 

To dour that, the ri ilago was free from tor. 

eion the joint show 	Fig. (502b) was used to oonneot 

the arose beans and viai.n beams. The defleetions at elate 

1 to $ (Fig, 5.3) were measured by applying 2 kg and .3 kg 

loads at differont points , All points 1 to 8 were init. 

tally loaded by 1.0 lb. we hts to avoid lifting o 

beams. 

The perinental set up is shown in photo, rapt 2. 

The initial and final readings were taken at 

an titer 1 of 30 minutoe to ninlmise the creep effects. 

The average of tour routings is obtained by loading four 

symmetrical points i.e. 1.4.5 and 8 and 203.6 and Y and 



S 

the observed deflections are tobalated for 	nate of 

cress beams. 

gaL0411  Jetsam. 
Full dimensions and the flexural parameters for 

four nets of °roes beams ore given in table 5,6, The pare 

motors 	. Awarding to equivalent stiffne a method 

of 4,2. (Table 4.1) for the four oases are determined 

Using, grapho 1 to 0 the dietribution eoefficients 

for leaded span for four values as  e aro determined. 

values are tabulated la table n o7 and the theoretical values 

are coejarod with the experimental va men obtained from 

table 5.5. A, very good at 	betseen theoretioal and 

experimental values le obtained espooleliy elnoc the 

negotiVe values at the edges of the brick° are in sec* 

6 3 num 	 WITH NO 
UMW 

The tour faaill beoOS of th 
	

lege bailing 

depth Varying according to Pits. (6.4 a 	out o t from 

a perspez sheet at 6.2 cm. thickness 	depth increaSes 

linearly from 10 zma at old.apen to 16 m.o. at the inner 

supports .t and g Ihelengths of the outer spans and 

inner span a ore kept as 20v0 om and 45,0 om. The main. 

beams Iwo Spaced at 5.0 ce. and the folleving to Sete 

of *roes beans mere oennected by means of joint shown 

inelg. sa* 
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LOAD AT l 
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LOAD AT2 	I L oAD AT5 L OAD AT 6 

	

1 770 259 5 701 24-1 	B51 

- 	r 
254 	437 	6 	253 I 4-29 	2 	2 39 
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LOAb AT5 LOAD AT 

742 	2 41 
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CASE.  

1  L oAb AI 1 i  LOAD AT 2 
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54 	2 25 

.897 

38 4 

1 065 

245 

508 

0.44581K4,6  

02441 1 1(76  

0.0075  D) 

0 ,4785 

0.2107 

0.0423 

TA8LE 5•8 08SERvED ME/1N DEFL.E.cTiONS FOR THREE -SPAN 
' CONTINUOUS PERSPEX BRIDGE MODEL 

TABLE 5.9- BRIDGE PARAMETERS 

cA.st 	SPAN 	e 	tri 	1 . 	e° 
- 	- 4-   -4 	 

e4 	0.664- 	1.167 	, 0.775 
I 

f 1 	0. 56 	1. 352 	0.746 

ef 	0.78,9 	1.167 	0.92 

	41 	0. wi 	1.332 	01389 

TABLE 5.10- THEoRET/CAL ,.IND ExPERinIENT4L vALuE,s OF 

0ASTRiBU7I 0 N C °Er,/ crh-  NTS 

C• 	
f 

ASE I 	 A -SE 

fret  = 0. 775 	! 	1:13  = 0 746 	 8nei  ,.. 0-92 	1 

r..XPT. 	THEnRY 	I  EX r -T. ! THEORY , 	
I 
' EXPT. -r  "THEORY I- I 	

I-  

0.7257 0.7951 	ks5  0.7045 I 0.7855 k„ 	74317 0.8548 '1(, 

14'2_1 0.2'594 L 0.2826 11(65 0 • 2543 0.2898 k21  0.2248 0.2368 k6  

It 

L> S
_ 

• I1V4 

EXP-T. I, 'THEORY 

0.7876 08274 

0.2690 0.2471 

kza  0.4510 

0.0545 0.0175 1‘.51 ,  0.0038 -0 0200 

-0.0928 ka1 , -0.0103 -0.0516 

0•2898 	0•2431  0•2568 

0-4'536 k." 0.504-0 0•5181 1(44  o 6006 	05032 

0.2591 kyz 0.2450 0.2651 
	

2576 	0.2648 

0 0175 1  k421 ().007' 1  - O Ozec) 44  -0 ,0149 	-0.0150 
I - 

0.2'522 

k42 0 0495 

1(31 0.0509 	0 00 75 1(76  

".0.016 LO 065Z kss  -00131 

1(,, 0.2675 0.2826 ksk, 0.2687 

k75 -0.0159 

1<15  -0.0308 

1(66  0.2767 

-0.0595 

-0.0150 

'?„4-1 
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Nine cross beams of cross section 10 see wide a 3.23 las 

deep. three in egoh span placed at equal spacing; 

An a 9.0 om and 	141 0 titan o*. 

II— Three areas beam of cross section 10 as A 2,25 ssi 

one in 4013.01 span placed in the middle; 1.4  a i,8„4 ea 

nd 9,41, de 22.5 Om. 

The deflection, at points 1 to 12 (Ffic.6•4) 

were 	 ure by pplytna a 2 lb. load at different points 

All po ate wore initially leaded by 1/4 Lb. weight*. The 

experimental set up is show* in photograph 3. 

The avers Values of the observed detle 

(Alen, of the outer and middle spans are tabulated in 

table 3. 

The flexural parameters 8 for two sets 

of cross beams aed two spans 4 and fl are tabulated 

in table 5.9. The parameters &°, according to equivalent 

stiffness method 4.2.1 (b) for these eases are determined. 

Using graph 1 to 6 the distribution coefficients 

for loaded spans of and icj. are obtained for various 

values of V. These theoretical Valuoa of the distribt 

coeffiatents are tabulated in table 6.19 for comparison 

with the values obtained from table 6.6 

A single main boom of the grillage was 

tested alone to find the total deflections duo to a 2 lb. 
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load applied at different points. The been was tested 

to cheek the total deflootion of the grillege.at a 

transverse section. 

It i• seen that the oreep *Stotts are more 

in the middle ■pan no the residual upward defleotton, 

could not be removed, 

From tahl 5.10 tt is seen that the theore-

tioa/ values are quit* olo** to experimental values 

exoep the negative value* at the edgoe of the bridgo 



CONC1 VST 013 

It is seen that the load distribution analysis 

based on the anisotropio plate theory is elegant and 

versatile tool to evolve design *harts and (Duryea *  It 

pereite oonvoniont parameter variation study so that 

with the help of a oomputor suitable design charts 

can be developed*  Ono may note that this soothed ha 

been aeoepted and adopted by most of the oonttnentai 

Bridge Design Organisation*, 

Of courso*Cho analytioal expressions are highly 

involved and without the aid of oosputing eaohines their 

applioations may not be possible The merit of the 

method oan only be appreeiated if this faoility is 

available else, other loatb distribution theories may 

work bettor*  The real merit Iles is as much as it permits 

design charts and tables evolved once for all and 

subsequently used in the routine design work. 

‘s- S- 
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