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SYNOPSIS 

A machine foundation differs from any other 

type of foundation, because of the dynamic nature of loads. 

Till about 1930, a machine foundation was designed based 

upon emperical methods. These methods didnot take into 

account the properties of the underlying soil. In the 

years to follow, attempts have been made to understand the 

problem scientifically. 

Characteristics of the underlying soil strata 

affect the resonance of the system with the machine. The 

available literature on the subject islicattered and no 

systematic investigation, covering the present trend is 

available. The present investigation of the behaviour and 

design of machine foundation is intended to make a systematic 

study of available literature and is believed to lead to a 

better understanding of the problems connected. The various 

approaches to the design of machine fogndations are critically 

reviewed, compared with each other and their limitations 

discussed. A simple emprical equation for determination of 

resonant frequency of the system is developed. Suggestions 

for further research have also been made. 



CHAPTER - I 

INTRODUCTION  

1.1 GENERAL  

The function of a machine foundation similar to 

any other foundation, is to transmit the imposed loads safely on to 

the soil, on which it is placed. Its special feature, however, is 

that in addition to the satic load, due to the weight of machine, 

and the foundation, vibrating or pulsating forces varying with time 

have to be considered. Such forces may be of short duration, such 

as shock or impact forces in forging hammers or may vary periodica-

lly as in reciprocating and rotating machines with unbalance masses. 

As a result, waves or steady vibrations are set up in the foundation 

soil. If the natural frequency of the A  foundation soil system 

happens to coincide with or lie close to the frequency of the exciting 

forces generated by the machine, eXiissive vibration amplitudes may 

occur, which may lead to the structural damage or the operational 

failure of the machine. 

10 2 ROLE OF SOIL MECHANICS 

Problems connected with machine foundations, 

were not considered to be important till the advent of the thirties, 

when the greater use of heavy industrial plants, and consistent 

failure of machine foundations, attracted attention of designers 

(Tachebotarioff 1951). Before that, the design of machine founda-

tions was purely empirical, the simplest being to provide heavy 

foundation blocks. It was considered adequate to rest the machine 
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on a rigid foundation so as to avoid excessive amplitudes of vibration. 

It was believed that natural frequency of the rigid foundation would 

be higher than the operating frequency of the machine. But invariably 

the rigid foundation has to rest on the ground. The result is that 

rigid foundation transmits the vibrations to the ground, which is 

relatively elastic, so that danger of resonance is still there. The 

importance of this fact was realized, when even after the provision 

of rigid foundation, excessive vibrations due to resonance were 

caused, which led to operational failures of the machine. With the 

advent of soil mechanics, and the science of structural dynamics, the 

problem of machine foundation has been tackled more rationally and 

scientifically. The investigations, both theoretical and experimental 

have led to better understanding of the behaviour of machine foundae 

tions, resulting in economy. At the same time, the number of failures 

of machine foundations, which are mostly due to excessive amplitudes 

of vibrations, have been minimized. 

1.3 CONCEPT OF RESONANT FREQUENCY  s 

Experimental studies on the phenomena of ground 

vibrations, were first systematically conducted by Degebo (Deustche 

Gesells-a-ZA fur Bodenimechanik) organisation in Germany from 

1928 to 1939, Their earlier experiments were with a vibrator 

without any variations in dynamic force and static forces. Their 

results showed that soil at any site has a natural frequency or self 

frequency of vibrations, depending only on type of soil (Lorenz 

1934). This was further substantiated by Andrews and Crockett (1945) 



who independently determined the natural frequency by a study of 

resonance between heavy industrial plant, and the ground. At about 

the same time as the Degebols experiments with vibrator on the 

ground, Vios, the Institute for Engineering Foundation Research, 

performed similar tests in Russia (Barkan 1936). 

Later experimental and analytical studies 

(Lorenz /19344 1953$  Reissner 1936, Sung 1953, Quinlan 1953, 

Richart 1960, Tschebotarioti 1948) have shown that the natural 

frequency of soil as such is meaningless because the resonant 

frequency is not only dependent upon the type of underlzing soil, 

but also on the  area and shape of contact, magnitude of dynamic 

and static loads. Hence it will be proper to use the term,resonant 

frequency of the machinefoundation.2 
 

soil system, or simply the 
resonant frequency of the system. 

The problem of determining the resonant frequency ,  
of the system has been tackled both by theoretical methods and 

empirical methods based on past data of resonance. The theoretical 

approaches which have been developed are based on the assumption of 

(a) soil as an elastic solid and (b) Soil as a spring, (usually 

elastic 

1.4 SEMI4NFINITE ELASTIC SOLID :- 

One of the theoretical approahhes is concerned with 

the "Dynamic Boussinesq's Problem"  This approach considers the 

machine foundations resting on the ground and oscillating on the 

surface of the semi infinite elastic, isotropic and homogeneous medtum. 

Prominent contributions based on this concept are those of Reissner, 

(1936), Quinlan (1953), Sunl(1953), for vertical vibrations and those t 



Arnold, Byeroft, and Warburton (1955), Bycroft (1959) and 

Eseih (1962) for other modes of vibration viz., horizontal and 

rotational modes. 

This analysis of course will necessitate the deter-

mination of the dynamic response of the ground in terms of dynamic 

soil constants that is modulus of elasticity or modulus of 

rigidity, and Poisson's ratio. Dynamic testing of soils 0 dons 

by measuring the velocities of propogation in the medium., 

Rayleigh (1865), Lamb (1944), Leet (1950) and others have' analysed 

the velocity of wave propagation in the semi-infinite eleS0.0 

homogeneous and isotropic medium. Bergstrom and Linderhalm 11646) 

Bernhard and Finelli (1953), Jones (1955, 1958) Bernhard (1950 

Vanderpool (1951), Nijboer,and Vdnderpoel (1953), Nijboer (1959) 

Houkelom and Foster, (1960) and many others have given the 

analysis applicable to soils for determining in-situ dynamic 

constants. 

1*5 MASS SPRING SYSTEM s 

The other theoretical approach is to assume the 

ground to be a spring, with or without, damping. In initial 

studies (Raaseh 1926) spring was assumed to be weightless and 

linear. But experimental studies by Degebo (Lorenz 1934), 

(Barkan 1936), and their subsequent analysis have shown that some 

soil mass also oscillates with the machine foundation. This mass 

of soil was found to be 4 to 10 times the vibrator mass by Degebo 

...) 

studies. Vios concluded it to be relatively insignificant and have 

neglected it to obtain the dynamic modulus of subgrade reaction, 



But indirectly it was accepted that soil mass could not be neglected 

and that its value must lie between 2/3 and It times that of founda- 
C,A,G.-4,LL ,  

tion. The above two statements seem to be contrary. Terzaghi (1943) 

recommends the soil mass to be 3 times the dynamic force transmitted 

to the ground. Anderews and Crockett (1945) Crockett 

(1947,44 49) suggested that mass of soil which vibrates with the 

foundation must bear some relation to the bulb of stress, which 

gives the stress distribution under a uniformly loaded area on in 
elastic medium. None of themgave any precise relationship. It 

was, however, regarded that this mass must vary with the area of 

contact and the dynamic unbalance forces. Balakrishnaltao.(1960, 

61, 62) further advanced the concept of stress bulb and hasi 

suggested that the mass oscillating should be taken as the mass 

of the soil within the pressure bulb of the sane intensity (lb. 

/sq.ft.) as the density of the soil (lb./tuft.). 

The value of the spring constant has been taken 

as the load required per unit reversible deflection (Barkan 19364 

Newcomb 1951); Lorenz (1934), has obtained 10 dynamic modulus ? 

of subgrade reaction and Ws  the soil weight, from the two —vibrator 

tests under different loading conditions and with different.areasi  

by assuming both k' and Ws  to be constant. But this assumption 

is not justified, as the tests have shown that both spring constant 

and soil weight vary with different vibrator sizes and loading conditions 

even on the same type of soil. 

Pow (1953) by assuming soil as truncated spring has 

given the expressions for spring factors and mass factors for different 

modes of vibration. 



1.6 USE OF EXPERIMENTAL BEHAVIOUR  : 

Another approach uses the past records of resonant 

frequencies observed. Empirical relations have been developed. 

Tschebotarioff (1948, 51, 53) has obtained logirthmic relationship 

between reduced natural frequency and the contact area. Newcomb' 

has plotted the resonant frequency versus the static pressures. 

Another approach which considers soil as sublinear 

spring, uses the resonance curves obtained from the test vibrator, 

to plot the sub-linear characteristic of soil, has been put forward 

by Lorenz (1953), and elpan (1961). 

1.7 SCOPE OF STUDY t 

The problem of machine foundation has been receiving 

importance since the thirties of this century. The importance of 

underlying soil strata has been realized, in respect of the resonance 

phenomena. The available literature is scattered and no systematic 

investigation covering the present trend is available. It is felt 

that this investigation of the behaviour and design of machine 

foundation, based on a systematic study of available literature, will 

lead to better understanding of the problems connected. The nature 

of the problem consists of a system to be analysed (Alpan 1961). 

This system consists of the machine, the foundation and the soil, and 

involves the following procedure t- 

a) Weight and operating frequency of the machine 

and the magnitude of the dynamic forces, is given. 

b) The properties and the dynamic response of the 

foundation soil are to be determined, or assumed. 



a) The foundation is designed based on soil properties. 

I_ 

 The general shape and dimensions of which may be 

assumed for preliminary design. 

The type of the foundation considered in this investiga _ 

is massive block resting directly on the ground. Isolators and shock 

absorbers are not considered. 

Review of the available literature on resonant frequency)  

leads to an interesting observation. Spring constant in all the 

approaches can be expressed as a simpbe multiple of G rol  while the mass 

factor a simple multiple of p ro3 

where G is the modulus of rigidity of underlying soil)  

e is the mass density of underlying soil )  
and ro is the radius of the foundation base )  in contact with soil 

Out of the available approaches to resonant frequency 

determination)  the theory of vibrator resting on semi-infinite iso-

tropic,homogeneous)  elastic medium)  is recommended for use in cases where 

soil can be assumed to have fairly uniform modulus of elasticity. This)  

if coupled with Bseihis transformation )  gives easy way to calculate 

( resonant frequencies. For soils )  where modulus of elasticity can be 

assumed to increase linearly with depth Pauw's (1953) analysis is 

recommended. Limitations of the applicability of theoretical analysis 

to the machine problem have been discussed. 

Almost all the experimental investigation reported 

in literature have been carried out for vertical vibrations. The 

approaches already existing should be verified for other modes of 

vibrations as well. Pressure distribution under machine foundation have 



not been investigated. Information on effect of dynamic load on 

bearing capacity is not available. Based on these observations, 

suggestions for further research have been made 

It is felt that the dynamic behaviour of soil be evaluated 

by observing the resonant frequency of a test vibrator under different 

loading conditions, and contact areas. The information obtained then 

can be used for determination of resonant frequencies of the foundation 

soil system* 



C4PTER - 2. 

BEHAVIOUR OF MACHINE FOUNDATIONS 

2.1 GENERAL 

Machin) foundations are important substructtres. For the 

safety of operation of every factory, dependable foundations of its 

machines, are essential. If the foundation is not properly designed, 

not only the machine gets damaged but the adjoining structures may 

also be damaged. In addition for proper working conditions in a 

factory, the vibrations produced by the machine should be such as not 

to interfere with the worker's comfort. For a proper design of machine 

foundation it is essential that sits behaviour be understood. The 

discussion to follow has been prepared from evidence reported in 

literature from time to time. Also it is essential to know the magni-

tude of the dynamic forces and its frequency. The dynamic loads as 

produced by a reciprocating machine is dealt in detail. The other 

oases have been briefly referred to. Finally the requirements of 

machine foundation based on its behaviour are discussed. 

2.2 BEHAVIOUR OF A MACHINE FOUNDATION :- 

A machine foundation is different from other foundations, 

mainly because this is subjected to a dynamic load which is usually 

periodic. Under the influence of this load, the foundation starts 

vibrating. For every system, there is a natural frequency, which is 

defined as the frequency with which it will vibrate, when subjected to 

free vibrations. For a body with spring stiffness as k and mass mo  

the naturailfrequency 00  is given by (neglecting damping) 

coo
J  

 

olo s io 00000 so 00000 (201) 
ao 
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Under forced vibeations, as in machine foundations 

the phenomena of resonance occurs, if the operating frequency coincides 

with this natural frequency. For no danping, the amplitude at resonance 

tends to infinity. If damping is included in the system p the amplitude 

9 of vibration is sti124aximum close to resonanie7,though of finite 

value. The ratio of actual amplitude to free anplitude(the static 

deflection of spring due to dynamic load) is called magnification 

factor N1 (Denhartog 1947). At frequency ratio (the ratio of operating 

frequency to the resonant 'frequency) of 1.0, this magnification factor 

is maximum. 
The transmissibility is defined as the ratio of force 

transmitted to the dynamic force Applied. For small damping, transmiis 

ssibility is maximum at frequency ratio of 1.0. For the machines having 

dynamic loads independent of frequency, it is maximum at frequency 

ratio of 1.0, for large,damping as well. But for the machines having 
dynamic load proportion4 to the square of the frequency (which is 

true for rotating and reciprocating machines), transmissibility is 

maximum for higher frequency ratios and for large damping (Mykelsta4 

1956) . In such cases it is preferable to ieep'freqUencY ratio 

much lower than 1.0. 
In addition, at resonance, the power required to keep 

the system oscillating is maximum. This has been observed experimen.! 

tsliy by Lorenz (1934),'Crockett and Hammond (1948) and analytically 

by Reissner (1936), Sung (1953), Quinlan (1953), It is seen that at 
- tqhmc 

resonance, the amplitude of vibration, the force transmitted, and the 

power input requirement of the machine, are maximum. Hence, resonance 

has to be avoided. 



In an attempt to avoid resonance, the foundation was made 

rigid and firm. The natural frequency of such a rigid body is very 

high. The value of spring constants of a rigid body like mass concrete 

foundation is very high. The equivalent spring constant (11) is 

(Timeshenko 1937) 

k ,c    (2.2) 

1 • 21 

where E is modulus of elasticity. 

and v is the Poisson's ratio. 

Values of E and y for the concrete are of the order 

2 to 5 x 10
6 

psi and 0.15 respectively. This would give a very high 

natural frequency of the foundation, with hardly any chance of resonance 

with machine's operating frequency. But it has been observed that even 

these massive foundations start vibrating and sometimes the amplitudes 

become quite large. The answer lies in the fact, that though the 

foundation is rigid in itself, it is resting on the ground. The ground 

is not so rigid and is relatively elastic. The value of & for soils 

is of the order of 10 to 15 x 103 lbs/sq.in., and poisson's ratio of 

0.3 to 0.4. This means that soil and foundation are in series (two 
17(_;'; 

springs in series), with the soil characteristic4 predbminating. That is 

why phenomena of resonance can be noticed even after providing rigid 

foundation. 	Therefore, the term resonant frequency should mean 

natural frequency of machine foundation and soil system. 

Consider a rigid, concrete foundatiin block, which supports 

a steam engine with speed of 250 r.p.m. resting on ground. Assumethat 

resonant frequency of the system is 300 r.p.m. This will lead Is fairly 

excessive amplitude of vibration, as the frequency ratio is close to 

unity. If this foundation is made 'stronger' by adding more concrete 



mass to the foundation block, the value of mo, increases. This 

will lead to the decreased resonant frequency of the system, and the 

frequency ratio approaches closer to unity leading to still more ware' 
0, 

V 

vibration amplitudes. This example shows that the OaLity of the foundw• 

tion does not necessarily improve with the mass of the foundation block. 

The forced vibrations are transmitted though the ground 

lieven after some distance, if sane adjoining foundation has a natural 

frequency equal to the frequency of transmitted vibrations, the resonance 

may occur, leading to its damage. For this reason, the foundation under 

heavy machines and forging hammers are isolated, and shock absorbers 

are used. The study of these shock absorbers and isolators is beyond 

the scope of this investigation* yeL)--,-e--)  

2.3 RKCIFROCATING MACEINES t 

The machines considered in this section are those which 

transform the rotational motion to, reciprocating motion and vice versa. cl 

The machine may be driven by the reciprocating motion, as an internal 

cumbustion engine, or by the rotational motion, as air compressor. The 

essential moving elements of such a machine are a piston, a crank, and 

the connection rod. Vibration of the machine may result from the gas 

pressure applied periodically to the piston, and from the inertia forces 

associated with the moving parts. It may be possible to balance the 

inertia forces, and couples in certain types of multi—cylinder machines, 

but this cannot be achieved in one or two cylinder machines. The gas 

pressure acting upon the piston reacts as the foundation of the machine 

in the form of a couple which is transmitted to its support*  

2.3.1 KINEKATICS t 

The Kinematics of the mechanism being considered is 

illustrated by Fig. 2.1. The crank rotates in a counter clockwise 
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direction with constant angular velocity to • The piston is const-

rained to move along a vertical line in a manner determined by the 

cm* radius r, and length of connecting rod t • The upper most 

position of the piston is taken as the co-ordinate reference, and down-

ward displacement yp  of the piston is taken as positive. The piston 

displacement is then given by ; 

yp  =r+e-rcos tot - 6  cos e  ..............(2.3) 
Now 	sin 	= --- sin co t. e 

cos e = / 1 (r/ e )2  sing t. 

This can be expanded by the bionomal theorem as follows s-
2 

cos 0 = (1 - *(rie ) sing 
 
 w t - Y (r/e )4 sin4 wt + 	 

8 

Now sin2 t = *(1 - cos 2 tot), and dropping all powers of r/e 

greater than the second, equation (2.3) becomes, 

yp  = r(1 + r e 	4 
) 	r (cos cot + r t 

	
cos 2 co t) 

4  
(2.4) 

Expression for the velocity y and acceleration is yip of the piston 

are Si. 

yp = r W (sincin + IT sin 2 64) t) 	(2.5) 

t; = r w2  (cos a) t + r 	cos 2 0.1 0 	(2.6) 
e 

The crank pin moves in a circular path with the axis' of 

the crank shaft as a center. Taking the same system of co-ordinates 

equations that define the vertical and horizontal components of the 

crankpin motion are readily written as follows 

ye  = + r (1 - cos wt), 
• 
ye  = r to sin co t 	 (2.7) 
•• 	2 e Y0 = r 4.) 	t..os cot 
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xo  = r sinw t, 

xo  = rwcovot 
oct 
Xc = r(AF sin 0 t 

 

( 2. 8) 

 

where yo  and xo  are vertical and horizontal components, respectively, 

of the crank pin displacement. 

The motion of the connecting rod is rather complicated. 

A simplification which is usually adequate, is obtained by assuming the 

connecting rod to consist of (1) a concentrated mass whose motion 

corresponds to that of the piston and (2) a second concentrated mass, 

whose motion corresponds to that of the crank pins both the masses joined 

by a massless strut. Designating the mass of the piston and crank pin 

(including the connecting rod) by mp and me respectively. The vertical 

component Fy is obtained from the product of these masses and their 

respective accelerations as given by equations above. 

• • 
F 	= mp yp + me ye 

= (rap + me) rdo2  cos co t+ mp r (r/ t )4J2  cos att/t 

	 (2.9—a) 

The horizontal component Fx of the inertia force results 

only from the rotating mass me (crank pin + part of connecting rod) 

and is readily written as ;  
i/  

Fx = ma xe = simo r (.42 sin 	t 	(2.9 b) 

Thus we see that inertia forces Fy along the line of 

stroke consists of a force With a frequency of w (the same as that of 

rotation), called primary force, and a force with a frequency of 2 4/  

which is called secondary force. In addition there is an inertia force 

Fx, perpendicular to the line of stroke with a frequency of c.4) 



The crank shaft can be counter-balanced so that the mass 

mo  is substantially zero. Thus Fx (horizontal component of the inertia 

force) is eliminated, but the vertical force resulting from the single 

reciprocating piston is a source of severe unbalance. Therefore, 

equation (2.9a) becomes ; 

2 
F
Y 
 = MD r

12 cos sot + r (r/ t )  cos 2 ot 

= mp  r „„F (cos wt + ( r/t )cos 2 cot) 

Changing mp, in to the weight of the piston in lbs. taking r in inches, 

and 6.)  = 2 WN/50 where N is number of revolution per minutes, we get 

Fy = .0000284 itp  r N2(cos 0 + cos 2 10 r  ) .....(2.10-b) 

where 0 = w t. 

If higher terms of r/e  were not neglected, we would have obtained 

(Newcomb . 1951) 

F =• 0000284 W r N2(cos 0 + cos 2 0 + cos 4 0 

+C cos 60 ) 

= .0000284 Wp rN2  r (constant)  0000000 ,A2e10•0 

Higher harmonics, which are of usually negligible magnitude can be 

excluded without much effect on the unbalance dynamic forceo  

2,3,2 MULTI-CYLINDER ENGINE s 

In a multicylinder engine, some or all of the inertia 

forces and the couples resulting therefrom, may be balanced by proper 

arrangement of the cranks. The condition necessary for such balancing 

are indicated by reference to figure 2.2. The cranks are numbered, and 

the angular position of each is indicated by On  referred to the position 



16 

of crank O. The position of each crank along the shaft is indicated 

by the distance Ln from the crank 0. If the reciprocating and rotating 

mass for each cylinder are respectively equal, the following conditions 

for balance of inertia forces are obtained. 

Fy = 0 

2.Fx = 0 

y.cos On = 0 and Zcos 20n = 0 ) 
) .........(2.11-a) 
) 

On = 0 

In a multicylinder engine, the inertia forces defined 

by equations (2.9-a) and (2.9 -b) create couples about the horizontal 

and vertical transverse axes. For convenience, the couples are taken 

with respect to axes through the 0 crank as indicated in Fig. 2.4. The 

following conditions for balance of inertia couples are obtained, 

Elen Fy = 0  2:Ln cos On = 0 and On cos 20n = 0 

~Lp Fx =0  Ln sin On =0 
 11104111 66666 5 0111 00(20114) 

For example, consider the four cylinder engine, (Credit, 

1961) whose crank angles are 0, 90, 270, 180 degrees, and where cranks 

are spaced apart equal distances L along the shaft. Table 2.1 

is now established in accordance with equations (2.11-a) and (2.114) 

It is evident that the primary and secondary forces are balanced 

because  :cos 0 = :0013 20 =sin 0 = 0. Furthermore, the secondary 

couples are balanced because EL cos 2 0 = 0. However, g:11 cos 0 # 0, 

and ,EL sin 0 # 0, the primary couples are, therefore, not balanced. 

The engine will thus tend to vibrate in a rotational made about a 

transverse axis. 
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Table 2.2 gives the summary of unbalanced inertia forces 

and couples for different crank arrangements, as given by Newcomb, 

111951). 

2.4 PUNCH PRESS t 

Machinary used for forming metal by shearing, drawing 

or punching is a frequent source of disturbance in industrial plants. 

The machine most commonly used for these operations is the punch press 

illustrated in Fig. 2.3. Such a machine generally embodies a relatively 

heavy, rigid lower portion carrying the stationary platten, and a 

vertically reciprocating head carrying the moving platten. The moving 

platten is usually driven by a crank and connecting rod, and in some 

types of presses it moves in a line inclined to the vertical. 

A punch press is a machine of conservative momentum. 

There is no addition of momentum from an external source, and the 

machine cannot permanently acquire a velocity, although it may acquire 

a displacement. In other words, if the press were supported by same 

means that offered no constraint to its movement, it would move inter-

mittently with a short step at each cycle of operation. If supported 

a rigid foundation which prevents appreciable movement, the forces that 

tend to cease this stepwise displacement are transmitted directly to 

the foundation. The foundation in this case has to be rigid and capable 

of suffering impact ceased by the punching press (Barkan 1963). 

2,6 LOOMS t 

One of the most troublei ome machines with regard to 

vibration and shock is the cloth weaving loom. The principle features 

that cause vibration and shock are illustrated schematically in Fig.2.4. 
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They lay a relatively heavr member is driven with a horizontally red... 

procating motion by a pair of cranks and connecting rods. A shuttle 

travels alternately in opposite directions, across the lay, from one 

shuttle box to the other by means of a mechanism. 

The two principal sources of vibration 4and shock resulting 

from loom operation are 

a) The inertia forces created by the reciprocating motion of 

the lay is suitantial. This is almost a pure harmonic 

force acting in a horizontal direction, and the reaction 

upon the frame of the loom is at the crank shaft. When 

looms are installed on the upper floors of mills, the 

entire building may sway at the frequency of the lay 

motion. It is characteristic of textile mills that the 

amplitude of sway continually increases and decreases as 

the many looms operating nominally at the same but actually 

at slightly different speeds, change phase relations. There 

is sone evidence that the magnitude of sway is occasionally 

increased by resonance of the building with the looms (Crede 

1951). The floors that support the loans are caused to weave 

or bend under the influence of the moment resulting from the 

lay force acting upon the loom frame at the height of the 

crank shaft above the floor. 

b) The force that propels the shuttle is in the nature of an 

impact. The complexity of mechanism employed for this pur-

pose makes the exact nature and direction of this impact 

uncertain. Although the picking action occurs with the 

same period as the lay movement, the actual force is induced 



for only a small fraction of period. Since the 

period of application of picking force is smaller than 

the period of the lay force, the associated frequencies 

are higher. 

2.6 BLECTRIC MOTORS I 

An electric motor is comprised of two principal parts, 

a startor, and a rotor. The torque delivered by the motor results 

from the attraction of a magnetic field on current - carrying conduc-

tors of the rotor. The magnetic field is created by electric current 

flowing through the winding of the startor. Any variation in the 

current is reflected in the strength of the field, and consequenbh 

in the torque. In a single phase 60-cycle alternating current motor 

for example, the current in the windings of the startor passes through 

zero 120 times per second. There is thus variation in torque at a 

frequency of 120 c.p.s, 

The vibration created by the operation of an electric 

motor may result from t- 
a) the periodic variation in the strength of the magnetic 

field and 

b) inertia forces associated with unbalanced rotating parts. 

The power output of a motor is manifested in a torque applied to the 

motor shaft, and an equal and opposite torque reaction is exerted upon 

the startor. The motor support (foundations) thus experiences, in 

the form of Vibration, the periodic fluctuation in the strength of 

the magnetic field. This disturbance is fundamentally torsional in 

nature. Vibrations resulting from the unbalance of rotating parts 

should be treated in the same manner (i.e. these are of the same 

nature) as the vibration of any rotating machine. 
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2.? FANS AND BLOWERS s 	 4 

The term fan is used to designate a machine having 

a rotor with several blades arranged to cause a flow of air gas 

axially of the fan, the term blower designates the so called squirrel-

cage blower in which the air flows into the blower in an axial direction 

and out in a radial direction. Machines of these types operate at 

many different speeds, depending upon the size and the type of the 

service. In general, the operating speed decreases as the size of the 

fan or blower increased. Predominant sources of the vibration are rotor 

balance, bearing, gear, and belt forces, motor impulses and aero-

dynamic forces. 

2.8 PUMPS s 

This class of equipment is comprised of both centri-

fugal and reciprocating pumps. The former usually includes a multi... 

vane rotor which operates at a relatively high speed. Vibration may 

be expected at the rotational frequency, as a result of mass unbalance 

of the rotor, at the vane frequency, because the moving vanes pass in 

close proximity to the fixed vanes, and at the random frequencies 

usually relatively high, as a result of forces created by turbulent 

flow of liquid within the pump. 

Reciprocating pumps are used for causing a flow of 

fluid, for the compressing air and gas, and for creating a vacuum. 

These are characteristically low speed machines, and the number of 

cylinders is usually small. Unbalanced rotating and reciporcating 

parts and torsional or torque impulses associated with the work being 

done as the fluid are predominant sources of vibration. Minor sources 
; 
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of vibrations are gears and bearings, motor impulses and aerodynamic 

or hydrodynamic forces resulting from turbulent flow of fluids through 

and around structural member of the pump. 

2.9 FORGING HAMMERS  s 

The term forging banner is used to designate a machine 

in which a relatively heavy hammer is caused to fell freely against. 

an anvil, According to Anderews and Crockett (1945) the largest unit 

in operation at that time had a 25 ton hammer (tup) and the foundation 

weighed 3000 tons. The principal problem from the stand point of shock 

arised from the fact that the momentum of the falling hammer is trans- 
to 

ferred to the body of the machine. The machine thus tends,, acquire a 

downward velocity and to carry its foundations with it (Crockett 

and Hammond 1958, Harken 1963). 

2.10 CLASSIFICATION OF DYNAMIC MAX s 

From section 2.3 to 2.9, some of the important classes If 

machinery have been considered. The nature of vibrations and dynamic 

forces associated with these machine types have been shown. In 

general the dynamic loads can be classified as 1- 

a) Shock: loads occuring at regular intervals e.g. vertical 

loads as in punching press, forging hammers and horizontal 

shock loads, as in looms. 

b) Vibratory loads, which repeat after a particular period 

and are cyclic in nature. These may include the vibrations 

caused in any of the six degrees of freedom (for a single 

mass) that is three translatory load and three rotational 
torques (Fig. 2.5). 
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Figure 2.5 indicates the possible six modes of vibration 

for a foundation. These include three translatory vibrations, 

viz, vertical, longitudinal and lateral along three coordinate 

axes, xt  yl  Z and three rotational vibrations. Rotation 

about vertical axis (z-axis) is called ya wing, while rocking 

is rotation about longitudinal axis (y - axis) and pitching is 

rotational about lateral axis (x - axis). For symmetrical 

foundations, vertical vibrations and ya wing can exist 

independently, but rocking is associated with lateral vibrations 

and pitching is associated with longitudinal vibrations. 

In most of the machine foundations, the vibrations/ 

occur in vertical direction, or in rocking. 

2011 REQUIREMENTS OF MACHINE FOUNDATIONS  

A properly designed foundation for a machine must first 

of all meet the general requirements for all foundation for the 

particular load transmitted to the ground. These are as 

follows ( Tschebotarioff 1951) 1- 

1. The loads of the structure should be transferred 

to soil layers capable of supporting them without 

a shear failure. 

2. The deformation of the soil layers underlying the 

foundation should be compatible with those which 

the foundation itself in super structure, as well 

as adjoining existing structures can safely undergo. 

3. The construction operations should not endanger 

•djoining existing structures. 
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Usually static loads play only a minor part as compared 

with the dynamic loads proddced by the moving parts of the 

machinery. 

Besides these, the machine foundation must meet the 

following additional requirements, which are characteristics 

of dynamic loading :- 

a) Vibrational Amplitude : 

It is not possible to eliminate the osi w Latin motion 

completely from a foundation which is subjected to significant 

dynamic impulses. The designer can only attempt to reduce the 

foundation vibration to a magnitude which is tolerable at the 

operating frequency for the design conditions. In general, the 

permissible amplitude of vibration A decreases as the frequency 

of operation increases (Richart 1960). Thus no value of allow-

able amplitude should be considered as design criterion, unless 

the frequency of operation is also specified. Again the 

amplitude of vibration may be limited by the other machines 

' acting on the same ground nearby. In many cases, some fine 

milling machines with low toleiance limits have to stand idle, 

while nearby forging hammer is operating which produces vibra-

tions in ground, and as such the accurate milling machine cannot 

function to the required degree of tolerande. (Crockett & 

Hammond 1958). 

In the absence of the design specifications for limiting 

vibrations, either of the following recommendations may be used 

as a guide. One of these is originally suggested by Rausch, 

(1936) and reported in English by Converse (1962). According 
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to this, the permissible amplitude is given by ; 

Permissible amplitude = 9 . 54 
 

for, frequencies less 
f 

than 1800 r .p •m• 

17,600 
=  for frequencies more 

than 1800 r.p.m. 

 (2.12) 

Richert (1960) has recommended the use of curves to 

obtain permissible amplitude of vibration. These were obtained 

by him on the basis of published records of machine foundations, 

and given in figure 2.6, which is self explanatory. 

The vibration amplitude which is designated as the limit 

for machines and machine foundation is approximately 100 times 

that which is barely perceptible or noticeable to human beings. 

114 Resonanace  t 

It is necessary to avoid resonance between machine and 

the foundation soil system. Resonance phenomena will usually 

lead to excessive amplitudes of vibrations, larger loads 

transmitted to foundations. Hence resonant frequency of the 

system, should be far from the operation frequency of the 

machine. 

a) Ohm* Loads s- 	The force occurs at equal time intervals, 

even though it is actually applied but for a fraction of the 

loading cycle. The entire machine experiences vibrations of 

large amplitudes if the time interval between successive strokes 

of the machine equals the resonant period, of the machine founda- 

tion soil system. This is a condition of resonance even though 



the exciting force is not harmonic. 

b) Low Frequency Machines  : 	In order to avoid resonance, 

and to control the amplitude of vibration, the frequency of 

operation of machine must be considerably lower than the resonant 

frequency of the system. The suggested frequency ratio is 0.5, 

in order to ensure small amplitudes of vibration. The exact 

ratio may depend upon the accuracy with which resonant frequency 

of the system, can be predicted° 

c) High Frequency Machines s In order to avoid resonance, 

the resonant frequency of the system should be substantially '0 

lower than the operating frequency of operation of machine° The 

frequency ratio suggested in this case for frequency ratio is 2.0 

or more. These types of machine will usually have to pass tough 

the resonance condition which should last for as small time 
f\_ 

as possible. 

3. Height 	Base Ratio 

In the case of machines subjected to rotary motion Is in 

a compressor, foundation is subjected to rocking. In such a 

case it may be necessary to control amplitudes of rocking so as 

to avoid damage to the machine. This can be achieved by deorieasin 

the ratio of height to base dimension in the direction of rocking 

(Newcomb 1951) resulting in increase of general stability of 

the foundation block. This implies that the rocking machine 

should be as near to the foundatiorCor ground, as possible. 



CHAPTER - 3.  

RESONANT FREQUENCY.  

3.1 GENERAL t 

In the previous chapter, it has been stated as to 

why it is necessary to avoid resonance for the satisfactory 

functioning of the machine foundations. This leads to the 

necessity of determining the resonant frequency of the system. 

Chiefly the designer is concerned with the vibrations 

in j0' mode usually vertical or rocking. Various workers have 

mostly concentrated on vertical vibrations. Tbsoretical analysis 

have been developed for the other modes of vibrations also. 

Broadly, the methods for determining the critical 

frequency can be divided into - i) theoretical methods and 

ii) Experimental methods. theoretical methods involve application 

of two basic concepts, viz., a) vibrating source (machine) resting 

on the semi-infinite fr elastic; isotropic and homogeneous medium, 

R141114 (soil), and b) vibrating source resting on elastic spring 

(soil). In theoretical methods the properties of soil are 

E Dynamic modulus of elasticity and a) - the poissonts ratio 

in case (a) and spripg constant or dynamic modulus of subgrade 

reaction and weight of soil participating in case (b). These 

are to be suitably assumed or may have to be determined experi-

mentally. 

Experimental approaches consist of developing 

certain empirical relations, or the response curves from the 

experimental data, and using these to determine the resonant 
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frequency of the actual system. 

For convenience, this chapter is divided into three 

main heads, which will indicate the basic approaches towards the 

problem of determining the resonant frequency. 

RESONANT FREQUENCY di. Soil as Elastic, Isotropic, 

semi-infinite & homogenous medium. 

RESONANT FREQUENCY - Soil as Spring. 

RESONANT FREQUENCY - Experimental approaches or 

miscellaneous methods. 

RESONANT  FREQUENCY - SOIL AS ELASTIC MEDIUM.  

3.2 ELASTIC WAVES  $ 

An actual foundation to which vibratory motion is 

imparted by a periodic force, becomes the source of periodic 

pulse which proceed into the subgrade in radial directions, 

similar to a sound wave. In the course of transmitting waves, 

the particles of subgrade also undergo periodic motion, but 

only at particular locations does this motion correspond to the 

motion of foundations. Directly, below the foundation base, the 

subgrade material moves with the foundation and is "in phase" 

with the foundation motion. At a greater distance a zone of 

subgrade moves posite to the foundation and may be designated 

as ;180 out of phase". Fig. 3.1 illustrates this concept of 

phase relations of zones of subgrade with the shaded areas re-

presenting the "inphase" zones. The spacing between the centres 

of these zones is determined by wave length, which in turn, is 

established by the velocity of propogation of elastic wave in 



the subgrade and the frequency of load application. 

In an infinite elastic, isotropic, homogeneous, 

body, disturbances may be propagated by compression waves or 

push waves or P-wave (The displacement of the particle is in the 

direction of the propogation of wave ) ) and by shear wave or trap 

nsverse wave or S-wave (The displacement of the particle is in 

a direction at right angles to the direction of propogation ©f 

wave). The compression and shear waves also transmit disturbances 

throughout the interior of a semi-infinite, elastic, isotropic, 

homogeneous body. But because of free surface, a third type 

of wave appears. This wave has been designed as the surface or 

Rayleight wave or R•wave, after Lord Rayleigh' (1885) who investi-

gated the behaviour of surface waves in an elastic "half space". 

His solution of surface elastic wave equation is now known as 

"Rayleight free wave solution". There are other types of surface 

wave: such as Love Waves, but it has been shown that for a circular 

vibrator operating normal to the surface of a semi-infinite medium, 

a large part of its power is radiated as Rayleigh waves (Miller 

and Pursey 1955). In Fig. 3.2, relationship between V/VS and 

poisson's ratio has been plotted, where V is the velocity of 

propogation of PI  8, and R waves. The equations for V are given 

for different values of poisson's ratio, zo 	for the above three 

waves. 

3.3 vateicAL IMPULSES AT THE SURFACE  s 

Lamb (1904) analysed the effects produced by a 

Single impulse which acted at the surface of a semi-infinite 



isotropic, homogeneous, elastic solid. He considered primarily 

the effects produced at the surface and found that the disturbance 

produced by the impulse, spreads in the form of a symmetrical 

annular wave system. He also studied the effects produced by the 

p eriodic vertical and horizontal forces applied at a point, or 

distributed along a line on the surface of semi-infinite solid. 

He established relation between the diplacements and stress, 

within the soil mass. This is now known as the "dynamic analogue 

of Boussineses problem". 

304 PERIODIC LOAD OVER CIRCULAR AREA  : 

More recently in 1936 Reissner (Sung 1953, Lorenz 

(1969) presented an analytical solution for the oscillation of a 

vibrator resting upon the surface of a semi-infinite, isotropic, 

homogeneous elastic body by integration of the effects of the 

periodic vertical point load over a4)ircular area. The vibrator 

was represented by a system of vertical periodic forces, uniformly 

distributed over a circular area on the surface. The displacement 

amplitude at the centre of circular vibrator mass, was obtained. 

The expression is also obtained for the power requirement of a 

given vibrator soil installation. Also the phase difference between 

the dynamic force and the amplitude of vibration was lietermined 

analytically. The expressions for amplitude of vibration, power 

in put and phase difference, as obtained are given below 1- 

Z = 	2 f12 	1'22 	•.......(3.1a) Gro (l+ba24)2  + (ba21'2)2 



402  a Af2  LP =   S  
2r02/t,  (1+ba2f1)2 (ba2f2)2 

 

(3.1b) 

 

and tan  =  f2  
0000 00 (3.1 0) 

ba
2 (

f1
2 4' t22) 

where, Z is the vertical amplitude of oscillation, 

is the modulus of rigidity. 

ro is the radius of circular oscillator. 

Fo is the maximum magnitude of the dynamic force 

applied. 

b is the dimensionless quantity known as mass 

ratio = mo/pro3  

ma  is the mass of oscillator (foundation & machine) 

f is the mass density of soil medium. 

a is the dimensionless frequency term, 

= ro  = 2 w fro/ 

f is the frequency of the forced vibrations. 

AyD is the phase difference between dynamic force 

and the vibration amplitude of machine fouddationo 

fl,f2 is function of I; andoq(lf,a) in which 1) is the 

poPssonis ratio. 

Lp is the power input, required to drive the vibrator 

at the amplitude Z. 

The resonant frequency of the system is defined 

as the frequency at which maximum amplitude of vibrations or max. 



(2) 	Gro 	/ 
Z = / f 2  + f 2  

Fo 	/ 	1 	2 
(1+ba2f1)2  (ba2f2)2 

00000000 .(3,2 a) 
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power consumption occurs. Other criterion is that phase difference 

between dynamic force, and vibrations is 7/2 or 90 deg. Reissner 

has taken the criterion of resonant frequency as phase difference, 

1.1  = "/2 in which case equation (3.1 c) gives ; 

fl bao2 (f12 f 22)  = 0 
Or 	ao  = fi / b(f12  f22) 	(3.1 d) 

where a0 is the value of dimensionless frequency term 

at resonance. 

In order to make the analysis, applicable to every 

case of vibrator, Reissner has introduced the use of dimensionless 

amplitude Z( 2) 	and power requirement Lp( 2). The expressions 

are ; 

(2)  - 2  r°
2
4/-17— LP F02  

a r2 

  

(3,2 b) 

   

   

(1 +ba21) 2 (ba2f2)2 

Curves have been plotted between this dimensionless 

amplitude factor Z(2) and dimensionless power requirement factor 

Lp(2)  versus the dimensionless frequency 'a' for different 

values of mass ratio (b), and poisson's ratio ( 	) f (As fl and 

f2  both depend upon V and ao), Curves have also been plotted 

between Zutax,(2)  	and ao  for different values of mass ratio (b) 

and poisson's ratio C V ). 
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Equation (3.1 a) demonstrates that a dynamically 

excited body on a homogeneous semi-infinite space, represents 

a system capable of vibration, as a single degree of freedom system. 

An equally important result is that the amplitikiti 

Z(2) 	at resonant frequency of the system ao  assumes finite max. 
values even though no damping factor was introduced throughout 

Reissnerls calculations. 

Terzaghi (1943) commented that no attempt has yet 

been made to apply the results of this analysis to the practice 

of vibrator investigations. The main difficulties which restricted 

the use of his results are due to the uncertainties concerning 

(a) the effect of a change of the oscillating pressure from the 

uniform distribution which he assumed (b) the effects of a change 

of shape of loaded area or region and, (c) the effects produced 

by deviations of the behaviour of the ideal elastic body. 

While the item (e) is the general drawback of all 

such approaches which assume the soil to be ideal solid, and 

as such must le left as a problem to be decided at each installa-

tion, and item, (b), is usually taken into account by assuming acme 

equivalent circular area, item (a) has been studied in detail 

recently by Sung (1953) Quinlan (1958) and further on by 

Richert (1953, 1960). 

3,5 MINTAGE PRESSURES 	 t 

Quinlan (1953) and Sung (1953) obtained the above 

solution for amplitude, power requirement and the phase difference, 



independently, for the circular vibrator with various types of 

contact pressure distributions. The ground pressure distribution, 

considered are rigid, uniform and parabolic distribution illusrated 

in Fig. 3.3 The final equations are same in both cases and 

correspond with the equations given by Reissner (Bolus 3.1) with 

the difference that functions f l  and f2 are different for 

different types of load distributions, in other words those 

functions depend not only on (a, 	 ) but also on the type of 

load distribution. 

The mass ratio assumed in Quinlan's analysis is 

bq  = m0/2/Pro3  = b/2, and this gives the corresponding differ-I 

once in values of fl and f 2  as given by the two workers. But 

the final result is same, though the mathematical approach is 

different. 

While Quinlan finds the resonant frequency of 

the system by assuming that at resonance phase difference between 

the dynamic force and the amplitude vibration produced is 

(He has concluded that result is quite accurate for Degebo type 

oscillators ), Sung, considerl‘s that resonace occurs at the 

frequency where amplitude of vibrations and power requirement are 

maximum. 

Quinlan has given functions fl and f2 forj 

1/3, and 1/4 for different values of 'a' 	(dimensionless 

frequency) for rigid base approximation. Similar curves can be 

set up for uniform and parabolic distribution of contact pressures. 

Also as at resonance tan Y1  =  = .0 , equation (3.1 b) 

reduces to ; 
f l + bq 1102  (42  + f22) = 0 
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bq (f12 f 22  ) 

Hehas plotted the value of bq  and ao, for different values of 

poisson's ratio, ( J = 1/2, 1/3, 1/4) for rigid base approxima-

tion. Assuming pressure distribution, for a particular value of 

bq  (mass ratio) and poissonts ratio, the value of resonant 

frequency ao  can be calculated, or read from the graph. By 

substituting the value of ao, and corresponding functions fl and 

f2 in equation (3.1 a) the maximum amplitude at resonance (ac) 

can be determined. Be has also given the solution for the long 

vibrator, with the same formulae except that bq  is per unit 

length of vibrator, and the functions fl  and f2  change into 

f3 and f4  and dimensionless frequency term 'a' is given by ; 

a 2 / /9  a  

is taken as the magnitude of dynamic force per 

unit length = bo 2  where ml 	is the eccentric mass per 

unit length. The similar curves as in circular vibrator have 

been plotted by Quinlan, for long vibrator as well. 

For a Degebo type vibrator with total eccentric 

masses ml  at eccentricity e , the value of maximum magnitude 
of dynamic force Fo  = m i  e w2  . Fig. 3.4 gives the diagrametic 

sketch of Degebo type vibrator. 

The dimensionless amplitude and power requirement 

as given by Reissner (Rqu. 3.2 a and b) are modified by Sung 

to suit the Degebo type vibrator, as below ; 
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z(1) = Gro a2  

Fo  

 

2
f r 03  a2//  fi2  + f22  

1 
(1}ba2f1) 24.( ba2f2)2 

 

00000000 ......(3.3 a) 

2 rot /74 s,24 	2 p512  rob  and IT(  

a5  f2   (3.3 b) . 

(1+ba2f1) 2 4. (ba2f2)2 

Sung has plotted this dimensionless amplitude and 

dimensionless power input versus 'a' (the dimensionless frequency) 

for various values of b (the mass ratio), poisson's ratio V # 

and the type of load distribution. Out of these curves the 

dimensionless frequency ao  at maximum amplitude (dimensionless) 

Z(1)  have been plotted for different types of load distributions, 
max 

poisson's ratio and b - value. Be has also plotted the maximum 
y value of m

(1)  and corresponding act 	for different kinds 

of load distribution poisson's ratio and b-value. 

In Fig. 3.5, the variation of amplitude factors 

A.(1)  and 1(2) versus dimensionless frequency term lal, are 

shown for several constant values of the mass ratio b. The 

diagrams of Fig. 3.5 result from the assumptions of poisson's 

ratio of 0.25 for the subgrade material and a distribution of 

contact pressure corresponding to that produced by a rigid circular 
r ► 

base. By assembling the values of a, corresponding to peak 

amplitude, for a particular value of b, the relationship between 

o and b has been established as shown in Fig. 3.6(a). Also 

by taking the value of the peak amplitude factor And plotting it 

F0
2 m12 2 11/2 
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against the corresponding values of b, the curves of Fig. 3.6 (b) 

were obtained (Richert 1960). 

Curves given in Figures 3.6 a and 3.6-b can be 

used to read off the value of to' and the maximum amplitude 

factor, for a particular value of mass ratio b, and poisson's 

ratio I) 	on the assumption of pressure distribution. These 

curves sum up the bulk work of calculation and are extremely 

useful for practice. 

3.6 CONCEPT OF EFFECTIVE _RADIUS  t 

Richert (1952) commenting on Sung's paper 

introduces the concept of "effective radius" for each pressure 

distribution which corresponds to an equivalent uniformly 

distributed load. This is illustrated in Fig. 3.7. 

The centroid of the stress diagram included between 

ro and o (Fig. 3.? -b) is at ran . Consequently a statically 

equivalent loading consists of a lire load, which acts along 

the circumference of a circle ii of radius r0/2. The centroid 

for the rigid base distribution is at 0.6366 ro and that for 

parabolic distribution is at 3/8 r0. From this, the radii 

for equivalent uniform distributions of load are 1.273 ro  and 

0.76 1.0  respectively for the rigid base and parabolic distribution. 

These effective radii may be used for the cases where the 

theoretical turves regarding various types of load distribution 

are not available. Suppose only data regarding the uniform 

distribution is available, and we want to find for rigid dis-

tribution, then in all the calculations of 'W I  lal we use 

the radius 1.273 ro and the result will be the same as for rigid 

distribution. 



It is common experience that with increase in dynamics 

load, the resonant frequency decreases. Lorenz (1934) BaliKrishna 

Rao (1961) observed this behaviour 1T4i-experimentelly. The 

explanation in terms of effective radius may be given as follows, 

(Richert 1953). AS the dynamic force increases, the pressure 

tends to become more intense near the centre of the oscillator, 

which means that effective radius becomes less. The curves plotted 

by Sung indicate the variation of the maximum amplitude of osci-

llation as a function of frequency for three types of pressure 

distributions. In these plots every thing else except pressure 

distribution is same. The peak of these resonance curves show 

graphically that the amplitude of oscillation increases and the 

resonant frequency decreases as the pressure is concentrated 

nearer the centre of the oscillator base. But no quantative 

information is available as to the effect of the increase in 

dynamic force as the decrease of resonant frequency and increase 

of amplitude or the change in the effective radius. 

3.7 BORIZONTAL  AND ROTARY MODES OF VIBRATIONS: 

Arnold, by Croft and Warburton (1957) Bycroft (1959) 

have extended the analysis to the other types of the vibratory 
at 

modes, so as to include all the translatory and rotopnry vibrations. 

They have considered circular vibrator with rigid base distribution. 

SA the circular vibrator is the case of axial symmetry, in reality 

thtAlbrating mass has four degrees of freedom, i.e., translation 

horizontally and vertically and rotation about horizontal and 

vertical axes. The values of f1 and f2 for different modes of 

vibration (4 degrees of freedom) have been given. The functions 
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of rotation about vertical axis are independent of poisson's 

ratio)  while functions for other modes of vibration depend upon 

poisson's ratio. The expression for amplitudes of translatory 

motion are the same as that obtained by Reissner (1936), Sung  

(x953) and Quinlan (1953) while for rotating  modes the expression 

for angular displacement is as follows :- 

M r 
Ox y Oz  =  f12  f2

2 
 

Gar()  
(1+bia

2
f1)2 +(bia2f2)2 

 

where Ozoca  is the amplitude of vertical or horizontal 

rotation. 

	

M 	is the maximum magnitude of exciting  couple 

(about vertical axis or horizontal axis) 

f1,f 2  are the corresponding  functions for particular 

mode. 

bi  is non dimensional moment of inertia 
Io 

p ro5 

r0  is the radius of circular base plate. 

Io is the mass moment of inertia of the oscillator. 

It has been suggested by Bycroft (1959) that for 

rectangular contact areal  r0  should be taken as the radius of 

a circle of an area equal to that of the rectangle. Zr  that 

corresponding  amplitude for rectangular base is given by Zrgm x Z 

where m is a factor depending  upon the ratio of longer to shorter 

side (L/B). He has recommended values of shape factor based on 

theory of elasticity for static case given by Timoshenko(1937) 

.....(3.4)  
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and given in Table No. 3.1. 

Richart (1960) has plotted the amplitude 0 versus 

frequency for bi = 2,5, 10 and 20 for rocking oscillations 

for U = 0, calculated from the values given by the above 

authors. Fig. 3.8, gives (a) the maximum amplitude factor 
(1) 
0  = 	Gro3  w  versus 'a' the dimensionless frequency 

max. 
factor. Also shown is the envelope curve which is tangent to 

each curve of amplitude versus frequency for different values 

of bi. The point of tangency is close to the point of maximum 

amplitude and this tangent curve is used to define the relation 

between frequency at maximum amplitude and the value of inertia 

ratio bi , which is shown in Fig. 3.8 (b). 

The corresponding curves for horizontal oscillation 

are shown in Fig. 3.9( a) and (b) as developed from the above 

author's analysis by Richart (1960) which show (a) the maximum 

amplitude factor X( 1) 	for horizontal displacement versus 
max. 

l al  the frequency term, and (b), the mass ratio, 	versus so  

from the consideration oeiouching envelope for Fig. 3.9 (a).'  

3.8 EQUATIONS OF MOTION  

The work done by Reissner, Quinlan, Sung and Arnold 

Bycroft and Warburton, dealt with one of the six modes of vibration 

at a time and therefore, is limited to the case, where the six 

modes exist independently. It is not possible to evaluate the 

equations of motion directly from the above theories. An interesting 

transformation suggested by Hseih (1962) makes it possible to find 



the equations of motion. For simplilty only the transformation 

achieved for vertical displacement will be given. 

For the waves radiating from a source at the surface 

of semi-infinite homogeneous isotropic elastic body created from 

a circular vibrator with dynamic force Fo  e 445 t and the 

ground pressure Pei(A)
t 	it has been shown by Reissner, 

Sung (1953, eq. 45) that the displacement Zbeiwt  of the 

base of vibrator is given by ; 

i't 	p 	 i wt 
Wb a  Zbe 	= 	(f1 	if2) 	......(3.5 a) 

Differentiating equation 3.5-a w.r.t., t, we gets  

d wb 	p 
= 	 fal 	(3.5 b) 

dt 	Gro 

Multiplying equation 3.5 -a by f l 	and equation 

(3.5 b) by - f2f 	and adding )  we get, 

f1 44)  Wb t'2 
d

: 	 - 42 / 

Vot 	Gro f2 	dwb + Gro  f l 	— or 	P 0 	 wb 7-7;7 f12422 dt 
fl2 

f 2
2 

** * too 000000000 (3.5 -c) 

which is of the same form as the pressure transmitted 

to ground by a spring and dash pot, 	where )  

Gro 	f2 	= jagLiF/G.  t2 .= / G pro2  
(A) 	1'12  +f 22 	a 	

f12422 

f2  x  

i 1.4  t dwb  P 	/411 2 _._ P 21 

a( f12  f22) 



  

r 2  re =  (equivalent damping o  a p 

coefficient), 	(3.6-a) 

represents the dash pot, or damping of the system, and 

Gro 	
fi 	= Gro F1 =  
2 e 
1 + '2 

K  ••••• (3.6-b) 

represents the spring constant of the system. In these equations, 

-11  F1 - 	2  2 fl 

Fn  = 
6 	2 

""1 f22)  
and have been evaluated by Beeih for different modes of vibration, 

including rotational modes. 

The similar transformations are possible for other 

modes of vibration. From ground reactions, (equation 3.5-c) the 

equations of the motion can be derived, for examplef for vertical, 

vibrations, 2 	 1 0,-)  t 	 i 44)  t d wg 	= r 8  + Fo e mo 	2 

dw
b + Foeicot  

=  Wb mi 0  dt 

 

( 3 a) 

 

where w5  is the displacement of e.g. of the machine 

foundation. Now wb can be converted into wg  as 

= wg  + x(iy. 

where x, y, z are the coordinates of the centroid of the 

contract surface, with respect to the coordinate axes passing 

11 2 

1 2 (3.6 -02) 

dt 
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through the combined e.g. of the foundation and machine (Fig.34010) 

0 and 0x are the rotational displacements about y, x axis 

respectively. 

Five more equations similar to equation (3.?) can 

beset up for other modes of vibrations, and frau these six 

simultaneous second order differential equations , u2, v xi g  g 
0,0,0 	the three translatory and three rotational displace- 

menu can be calculated by means of andlogae COIPlitors-.).)  IL _ 

But if 1 and y are zero, (that is the machine 

foundation is symmetrical about contact base), then the vertical 

translation and rotation about vertical axis exist independently 

while the horizontal translation is coupled with rotation about 

horizontal km axis, (ug  and 9y are coupled, vg  and fix  are 

coupled, wg  and 0z are decoupled). 

If the centroid of contact area and e.g. of the 

machine foundation coincide (i =x = y = 0 ) all the six 

degrees of freedom are decoupled. This is the hypothetical 

case and is not possible in practice. 

The same conclusions are reached by Pauw (1953) by 

considering the equation of motion, which are obtained by the 

soil spring analogy. 

This method offers a correlation between the two 

theoretical approaches viz., soil as elastic solid, and soil as 

spring, which will be discussed later on. 
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3.9. CONSERVATIVE SYSTEM 

Ford and Haddow ( 1960) has obtained the natural 

frequency of machine foundation based on Rayleigh's principle for 

rigid foundations. For a conservativesystem4  according to 

Rayleigh's principle, the maximum strain energy is equal to the 

maximum kinetic energy. It is based mainly on the following 

assumptions, 

(a) Vertical Vibrations. 

1. The system may be considered as conservative in order to 

determine the natural frequency. 

2. Dynamic pressure is transmitted through soil contained in 

a solid formed by the base of foundation and the surface 

y = f (z), y = - f(z), x =  (z) and x = 0 (z) as shown 

in Fig. 3.11. 

3. The dynamic stress at depth 2 is uniformly distributed 

over a section parallel to the base of foundation. 

The fast assumption is inaccurate, but is useful 

for the development of relation. 

(b) Horizontal Vibrations. 

The same assumption as for vertical vibrations are 

made with additional assumption that the dynamic shearing stress is 

uniformly distributed over a section of the solid parallel to x , y 

plane. 

It is further assumed that amplitude of vibration of 

a layer of thickness dz at depth Z, decreases with depth as 

= Zof e 
_Az 
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where Zo is the amplitude to vibration of layer at 

depth z . 

Zof is the amplitude of vibration of foundation. 

)(1  is the decay factor, dimensionally equivalent 

to L 

Equating the kinetic energy of the soil and machine 

foundation to the maximum strain energy of the soil, the author 

has obtained the vertical frequency ( resonant frequency) and 

horizontal natural frequency of vibrations. The expressions 

obtained are, 

fo (vertical) 
1  /   

/  2 G ( 1 + Y)  

V/)4+ rst. ...(3.8a) 

and fo (Horizontal) = 1  / 
27  /  G 

     

     

 

Y/1,1 + 0"st. 

   

(3.8b) 

    

where  y is the density of soil. 

m Cst = 
L xB  

and is the static pressure 

exerted by machine foundation. 

The decay factor 4  is determined from the equation 

m  (1-;)  ....(3.8c) 

where ̀m is a constant depending upon L/B and is given 

Table 3.1 

B, is a constant, and is taken as 2.0 for sands and 1.5 

for clays or may he determined from dynamic tests, by 
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noting the resonant frequency for particular 'st 

and working back for B1 • 

The authors have stated that value of B 1  for 

horizontal vibration may be different than as taken for vertical 

vibrations but no values have been recommended. 

3.10 piscussioN  

Reissner's analysis (1936) forms the basis of the 

subsequent analysis given by Quinlan (1958) Sung (1953) Hsei8h 

(1962) Richart (1953, 1960) Bycroft (1959) and Arnold, Bycroft and 

Warburton (1955). It forms a sound basis as long As soil can be 

assumed semi-infinite, homogeneous, elastic and isotropic solid. 

Reissner's analysis assumes the distribution under the circular 
LdJi 

base as uniform, which obviously is41not the case. It is evidenced 

from the experiments that the resonant frequency decreases and 

maximum amplitude of vibration increases with the increase in the 

exciter forces as indicated by Lorenz (1934), 1953, 1959) and 

Balkrisina Rao (1961). Reissner's analysis does not give the varying 

frequency of resonance for change in the exciter frequency and as 

such deviates from the experimental data. 

The modification by Sung (1953) and Quinlan (1953) 

for the different load distribution (Parabolic, uniform Rigid), 

show that as the pressures tend to concentrate nearer the centre of 

circular base)  the resonant frequency decreases and amplitude of 

vibration increases. The increase in dynamic force)  may qualitatively 

be assumed to be associated with the change in pressure distribution 

or the decrease in 'effective radius' corresponding to Richart's 
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foundation coincides with the centroid of the contact area, all 

motions are decoupled (This case is not feasible, practically). 

Ford and Haddow (1960) obviously have given a basically 

different approach to the problem by considering the machine 

foundation soil as the conservative system. But this gives the 

resonant frequency which is independent of the dynamic load, --\ 

which certainly is, not correct .as .shown by the experiment of 

Lorenz (1934, 53, 59) and Balakrishna Rao (1961). 

For the foundations other than circular ones, which 

have been considered in t he theoretical approach following 

modifications have been suggested for various investigators. 

1. For translatory motion, use an equivalent radius 

which gives the area of circle equal to that of 

the contact area of the foundation with ground 

(Sung 1953, Richart 1960, Hseih 1962). 

2. For rotational motion, use an equivalent radius 

which gives the moment of inertia of the circle 

equal to that of the contact area of the founda-

tion about the axis of rotation (Hseih 1962). 

3. Bycroft (1959) has suggested that if Z is the 

amplitude for equivalent circular base and Zr for 

the rectangular base, then Zr = mx Z, where 

m is a shape factor and may be taken as for 

static case given by Timoshenko (1937). 

4. As the distribution assumed by Bycroft (1959) 

is the rigid base distribution, the concept of 
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effective radius is suggested to find the values 

of frequency and amplitude for other type of dis-

tribution. 

In all the above theoretical methods based on the 

homogeneous semi-infinite, isotropic, elastic solid, certain 

values of G (modulus of rigidity ) and V (Poisson's ratio), 

have to be estimated. The values of modulus of rigidity G vary 

with depth and so does the poisson's ratio V , The test on 

01 oscillator, will no doubt give certain value of G and V  , but 

it is valid only for the depth, which may be taken at best equal 

to three times the base width of test vibrator. With increase 

in prototype area, the value of G and 	should be valid for 

depth upto three times the foundation width, and these values 

will obviously be different than those in test vibrator. 

Another short-coming is the assumption of pressure 

distribution to b e assumed, in a solution 61' particular problem. 

No data is available frmifield records, regarding the actual 

distribution and change in distribution with increase in dynamic 

loads. It has further been found from the survey of available 

literature that while the ratio of dynamic to static force in the 

prototype is about 4% to 5%, its value in the model vibrator is 

any where from about 25% to 90%. The distribution in two cases 

may be different, but no quantative approach is available. 
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RESONANT FRL ENCI — SOIL AS SPRING 

3,11 WEIGHTLESS SPRING : 

The first known approach to analyse the foundation 

vibrations considered the vibrating system to behave as a single 

mass supported by a weightless spring and subjected to viscous 

damping (Lorenz 1934, and Barkan 1936). It will )  therefore, be 

useful to review briefly the simple case of damped forced 

vibrations of a single mass supported by a weightless spring. 

The theoretical model which Hartwig (1933) (quoted by Lorenz 

1934, 1959) considered during his first investigations for 

Degebo is shown in Fig. 3.12 	The periodic vertical exciting 

force is defined by Fo  sine ts  where Fo  is maximum magnitude of 

the exciting force. 

If G denotes the vertical displacement of the block 

at time t)  the equilibrium condition for vertical oscillation 

requires that ; 

mo 	2 A m  + Z. ik = Fo  sin 44  t 	(3.9—a.) 

where mo  is the mass of the supported block (machine and 

foundation) 

(Seca61) denotes the damping factor such that 

2 A mo  = c = damping coefficient. J 

X is spring constant. 

Natural frequency 4)0  of free vibration of the mass 

spring system is given by 

4)0  = / 
I m0  

4koosif000so*..(3.9h1D) 
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Defining Zs  the static displacement as would be 

used by a force of magnituae Fo  acting on the spring, 

Zs  = F,/k, the equation (3.9-a) becomes ; 

41411 	• 	 . n 
Z 	Z +14104Z = Z8 4402  sin 40 t .........(3.9-c) 

The solution or which is given as (Denhartog 1947) ; 

1 
Z =Zs   sin (GA -Y' ) 

/( 
/ (1 - ( -flt!-)2  )2+(2AM0)2(4Vw0)2  

( 	wo 	) 

= Zs  N1  sin (w t  y)  (3.9 -d) 

where yi = tan-1  2wA - 
 
 (3.9- e) 

4) 2 .0? 
0 

(3.9-d) is the equation of a simple harmonic vibration 

with frequency equal to the frequency of the impulse ( 4). The 

value N1 represents the magnification factor. The amplitude of 

forced vibration lags behind the impulse, by phase angle " 

The 24401fIcation factor N1  is shown as the ordinate 

in Fig. 3.13 (a) and the curves on this diagram show the manner 

in which N1 varies as a function of frequency ratio 1'4/ 4,00  for 

different values of damping ratio  4/6Jo, 

For rotating machinery with unbalanced weights, 

the exciting force is the function of square of exciting frequency. 

For Degebo vibrator, 

Fo = m1` W2   (3.10) 

where ml is the mass of unbalanced rotating part, 
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and 	is the eccentric radius from the c.g. of unbalanced 

mass to the centre of rotation. 

By introducing the value of boas defined above, the 

solution for the displacement can be determined. The results are 

as shown in Fig. 3.13(b) in which the ordinate is equal to the 

ordinate of Fig. 3.13(a) multiplied by ( 4),/ 400 2. The value 

of maximum vibrational amplitude is ; 

z = N ( 14)  / 	)2  • 
ml 	 ........ mo 

It should be noted that on Fig. 3.13(b) all curves 

approach an ordinate value of 1.0 as the frequency ratio ('w/WO) 

becomes vary large and is independent of damping. The force 

transmitted through the spAng 

ps  = hmax. Or' sin ((#.1  t -  ) 

4.)/ 	 )2  w 
Ps =  	ti sin(ut.y) 

mo 

The force transmitted through the dash pot, 
• 

Pd = 2n  mo  = 2A  mo(A)  401ax cos (t4)  t- h ......(3.12b) 

There is a phase difference of 900  between (3.12a) 

and (3.12-b). The resulting force transmitted at any time is, 

therefore, (Myklestad-1956) ; 

tale 	, 2 	4,0 • tonA,0,2 
0/ /I 

mo 

/1 ((1-( 41/1u0)2 2  +(2i■. W j 
w 	.......(3012-a) o o 

(14^"Ad )2 )2+  -212L.__LJL)2 
o )  tj 0  ) 

1.,11  	 (3.12c) 
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This for large values of (C4)410) and negligible 

damping reduces to ml t its  
m0 

For undamped forced vibrations, resonance occurs 

at f/f 0  = 1.0. When the exciting force has a constant amplitude 

regardless of frequency, the curves representing damped forced 

vibrations in Fig. 3.13(a) show the maximum amplitude magnifica-

tion at values of f/f 0  less than 1.0. For snail values of damp-

ing the amplitude peaks occur at frequency ratios so close to 

1̀ )/(4 0 = 1.0 that the difference is usually negligible. However, 

when the damping ratio A / (430 = 0.5, the peak is at f/f o  = 0.707 

In other case for which the exciting force is a function of the 

exciting frequency, the peak amplitude occurs at a value of f/fo  

greater than 1.0, which for the damping ratio A P4 o = 0.5 

results in a peak of "No = 1,415. _This shows the effect of 

damping in shifting the frequency for maximum amplitude of vibra-

tion away from the "natural frequency of the foundation. However, 

for all practical purposes, the resonance occurs at frequency 

ratio of unity, since the damping ratio ( /*\ / W o) of the ground 

is of the order of 0.166 (Alpan 1961). The variation of phase 

angle as given by equation (3.9 e) with frequency ratio 4)/ o 

can be plotted for different values of damping ratio as shown 

in Fig. 3.14 - a. 

Another possible variable with frequency ratio 

besides the amplitude and the phase angle as given above is the 

work per unit of time required to operate the vibrator. This 

work consists of two parts (Terzaghi 1943) One part is used up 



in overcoming the friction in bearings and other resistances 

within the mechanism. It has been found that this part increases 

approximately in direct proportion to the square of frequency. 

The second part is consumed by the viscous resistance of soil 

against periodic deformation. The damping force Pd is 

determined by (Equation 3.12 -b). 

The work performed in overcoming the damping force 

during One complete cycle with the period T = 1/f is 

LT = 	Pd 
d

..... . (3.13 a) 

and work per upit time is 

Lp = f. L 	= f 	Pd dz .......(3.13 b) 
dt 

substituting for Pd from equation 3.12(b) and "from equation 

(3.11) in equation (3.13 b) and integrating, we get 

liP = 32 76  (mit )2  X12 	2 	
6 
	(3.13 c) 

Y 

(Terzaghi 1943) 

The variation of the work rate with the frequency 

ratio f/fo or (4/(40  is given in Fig. 3.14 b. 

3.12 EXPERIMENTS BY DEGEBO  s 

From 1930 onwards, the work was carried at the Deutshe 

Forschungsrgesellch;f) fUr Bodenmechanik (Degebo) (Lorenz 1934) 

The stan4ard experimental set up consisted of weight of vibrator 

2700 kgm base area 1 sq. meter eccentricity 100  (moment of inertial 

eccentric weight x eccentricity = 30.4 x 1.02 = 31.0 kgm. cm) 



Experiments were conducted on different sites using 

the above vibrator. Amplitude of vibration, the phase angle 

between the exciting force and the resulting vibrations, and the 

power requirement of the vibrator, were determined at various 

frequencies. The reasonant frequency is determined where maximum 

amplitude occurs, and checked with the frequency, where maximum 

power is required and the frequency where phase difference Vi is 

V/2 	Comparison of the experimental plots with those in Fig. 

No. 314 give the value for damping factor. 

The values for the frequency which correspond to 

individual soil types and hence to bearing capacity according 

to Lorenz (1934) are given in Table 3.2. From the table a general 

trend is observed i.e. the higher the natural frequency, higher 

the safe soil pressure.  A the damping factor was found to 

have the following significance. A value in excess of about 

3 to 4 sec
-1 

combined with an important settlement of the base 

was considered an indication of high compressibility, and 

sensitivity to vibrations (Lorenz 1934). 

During the series of experiments it was found that 

W in equation (3.9 b) is not the weight of vibrator alone, but 

also includes the weight of the soil vibrating with it. 

Natural frequency becomes ; 

.40 	 K•g 
o = /  + W o s 

    

   

(3.14 a) 

   

where Ws  = is equivalent soil weight which is assumed to be 

concentrated at the c.g. of foundation mass, 
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In order to determine Ws° the weight of vibrator 

was increased by means of surcharge, and the test repeated. 

The natural circular frequency of system decreases from wo to 

Loot 	where wo and to  o' are the frequencies obtained for 

different weights of vibrator. Assuming for the sake of simpli-

city that the increase of the weight of the vibrator has no 

effect on Ws, two equations are obtained which make it 

possible to determine Ws  . 

Another suggested method is to increase the area of 

the vibrator base, keeping weight of the vibrator same. Re-

placing t by 10,A in equation (3.14 a), 4)o is obtained as; 

(40  = 

Wo Ws 

where A is the area of base plate, and 

lc' is the modulus of dynamic subgrade reaction. 

Assuming value of k' to be same from one test to 

another, value of Ws  can be determined. 

By increasing the weight of vibrator from 1.8 to 3.4 

metric tons, the value Ws  is found to be 12.5 tons (Lorenz 1924). 

Similarly keeping the vibrator weight at 2700 kgm (2.7 metric tons), 

and changing the area from 1/4 sq. meter to 1 sq. meter, the value 

of 14 for the same site was found to ea again 12.5 tons. 

In another set of the test mentioned , Ws  was equal. to 

1 metric ton, when the weight of vibrator was increased from 2060 

(3.14 b) 
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kgm. to 2700 kgm. These results indicate that value of Ws  is 

likely to vary between wide limits. 

For change in eccentricity (increase in dynamic loads), 

the natural frequency was found to decrease. 

3.13 EXPERIMENTS BY VIOS  

At about the same time, the independent tests 

were carried out in Russia which are reported by Barken (1936). 

The theory is based on free vibrations, discussed above. 

For the vibrations, so produced as to give both 

gyration (rotattan) and translatory displacement the system is 

two degrees of freedom, the resonant frequencies are coupled, 

and there will be two resonant frequencies which were noted. 

The experimental foundations weighed upto 30 tons 

and having an area at bottom upto 8 m. sq. 

Value of It = k'.A was determined by the statical 

tests (reversible displacement x 	= normal stress). kl was 

determined for areas 2, 4 and 8 m. sq. From the determined values 

of ki t  the frequencies of the vertical vibrations only, were 

calculated. The foundation was subjected to forced vertical 

Vibration with the aid of vibrating machine and resonance 

diagrams recorded. In nearly all the cases frequencies differed 

but little from the theoretically calculatad ones. 

In the analysis the weight of the soil participating 

has been neglected. In fact, no note seems to have been taken of 
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it. Also AO was determined by static tests and not by dynamic 

tests. But their extension to the problem of displacement and 

gyratory motion is worth noting. The two resonant frequencies 

were observed and their values confirmed, from theory. In a 

particular case, these two frequencies were 40 c.p.s. and 160 ? 

_c0,y_Neglecting the soil weight, should have led to some dis-

crepancies between the experimental and theoretical values. 

Probably the explanation lies in that the value of 10 taken 

was from the static tests. The two errors jiay have compensated. 

Later experiments in Sweden (Bergstrom and Linderholm 1946) 

have shown that for large base plates (of order of 3 m. sq.) the 

value of subgrade reaction (10) corresponds to the values of 

obtained from dynamic as determined from the wave velocity 

measurements, 

Another conclusion which have been proved wrong in 

todate experiments, is that resonance frequency is independent 

of the dynamic load. In fact Barkan (1936)  has reported the--  
Cs..( 

resonant frequency of 11 cps for the eccentricities of 225 mm, 	ttc, 

17.5 mm, 6.5 mm. This again seems erronous conclusion as t1 

resonant frequency has been found to decrease with inerease in 

eccentricity or the dynamic loading (Lorenz 1934, Crockett and 

Hammond 1948, 194, Lorenz, 1953). 

3.14 EXPERIMENTS BY CROCKIM AND HAMMOND  : 

Andrews and Crockett 0 1945), and Crockett and Hammond 

(1948, 1949, 1958) have also measured natural frequencies using 

a vibrograph to pick up the oscillations in the vicinity of large 

hammers, These frequencies are roughly the same as those 



reported by Degebo (Lorenz 1924) and these are given in 

Table 3.3. Crockett and Hammond (1948) also stated that for 

any particular type of ground they got the same natural frequency 

irrespective of the size of the foundation, the largest founda-

tion tested had an area of 2500 sq.ft. But for reasons given 

below, it does not seem logical that all foundations whatever 

their size and weight should be having the sane natural 

frequency. For example, it would be necessary that the spring 

stiffness of ground is constant for all different widths. This 

is very unlikely, since the soil mass must behave at least 

partially like an elastic mass to set up the oscillations. As 

is well known, a foundation or an elastic mass stresses soil 

to a depth proportional to the foundation width. This would 

cause the spring stiffness per unit area lc', to decrease as the 

foundation size increased. In addition, if a very narrow 

foundation is considered it would be necessary for the effective 

masa of soil vibrating with it to be very large if natural 

frequency were to remain_ constant, whether the footing were loaded 

with 3 ton/sq.ft. or virtually unloaded. This would mean that 

the soil must be highly stressed to a depth many times the width 

of the foundations which is contrary to common knowledge (East-

wood 1953). 

But all workers have agreed that mass of soil which 

vibrates with the foundation must bear some relation to bulb of 

stress, which gives the stress distribution under a uniformally 

loaded area on an elastic medium. As shown in Fig. 3.15(Crockett 

and Hammond 1948, 1949) the active ground weight is assumed to 



be within a certain bulb of pressure. But no relationship has 

been indicated. 

3.15 TRUNCATED PYRAMID OF SOIL SPRINGS PAJJW 

Pauw (1953) has given an analytical procedure whereby 

the dynamic soil constants required for the prediction of 

natural frequencies of a foundation soil system may be determined. 

The foundation soil system is treated by considering the founda-

tion mass to be supported by a truncated pyramid of "soil 

springs". 

Based on the concept that the modulus of elasticity 

is approximately proportional to the shearing strength, Pauw 

made the following assumptions 

1. For cohesionless soils the modulus of elasticity is 

proportional to the effective depth which equals the 

actual depth plus equivalent surcharge. 

2. For cohesive soils the modulus of elasticity is 

constant. Intermediate soil conditions may be inter-
polated on the basis of coloumbls law. 

3. The distribution of stress takes place within a 

truncated pyramid. 

4. The soil pressure below the foundation and also at 

any depth is uniform. 

Consider a rectangular area of length L and width B 

loaded with a uniform load Tat (Fig. 3.16). The effective 

zone assumed is the volume of the truncated pyramid defined by 

the surface area LB and the planes sloping at an angle 



	

tan-1 	/2, 
• 

Value of E. at any depth z, according to assumptions 

(1) and (2) is ; 

E(z) = E for cohesive soils 	(3.15 a) 

E(z) = p(h + z) for cohesionless soils ...a(3.15b) 

where 	is the rate at which modulus of elasticity increases 

with depth. 

h is the equivalent surcharge such that 

h= Tet/ y . 

rat is the static soil pressure. 

	

and 	y is the density of soil. 

Spring factor is defined as the force or moment 

exerted on a system when the system is displaced a unit distance, or 

rotated through a unit angle, from the equilibrium position. 

For a foundation with six degrees of freedom, six spring constants 

are required for each surface in contact with soil. Apparent 

mass of soil vibrating with the foundation is estimated by 

equating the kinetic energy of an equivalent concentrated mass 

at the surface to the total kinetic energy in the effective zone. 

Author has given these factors for horizontal and vertical 

surface. 

Spring factors for horizontal contact aurfaee (for 

cohesive and cohesionlesi soils) are reproduced in Fig. 3.16. 

The mass factors for horizontal contact surface are given in 

Figure 3.17. The integral for mass factor in case of translatory 
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vibrations for cohesive soils does not yield to a converging 

solution  In above figures the following dimension less 

parameters are introduced 

• = 
B 

r = L/S. 

Author has also considered the equations of motion 

for a symmetrical foundation (e.g. of machine foundation is 

directly above centroid of the contact surface) and found that 

only vertical vibrations and rotation about vertical axis 

exist independently, the horizontal translatory motion is coupled 
with rotation about horizontal axis. 

The attempt deserves credit as a rational method 
ensues to determine the two variables X and Ws  for different 

modes of vibration. The variation of E with respect to depth  
14-0.1.4) 

for cohesionless soils is not necessarily linear, as assumed. 

The author has verified experimentally, the theory advanced by 

him. This method suffers from disadvantage that no frequency 

variation is obtained with dynamic loads. 

3.16 BULB OF PRESSURE  CONCEPT 

Balakrishna Rao and Nagraj (1960) and Balakrishna 

Rao (1961, 1962) have developed further the concept of oscillation 

of Bulb of pressure as advanced by Crockett and Hammond (1948, 

1949). This has been modified to the density pressure bulb 

concept. The equation for resonant frequency is ; 

= 	
IC4 	"" 	

00000 OOOOOOO O (3.14 -a) 
W0  t Ws  
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The weight of the soil mass participating in 

vibration is estimated by taking the weight of the soil contained 

in a definite pressure bulb, this pressure bulb is obtained by 

considering the sum of static and maximum positive dynamic load 

of the machine and the foundation block to act as a concentrated 

load at the mass centre of the foundation block. The reason 

advanced for adding the dynamic load is that the additional 

static stresses are developed by dynamic load (Nagraj and 

Balakrishna Rao, 1959). The boundary of this pressure bulb is ' 

supposed to be given by pressure intensity of 111 lbs per 

sq.ft. where y is the density of the soil mass in lbs per 

oft. 

	

Thus if 	is the total vertical load (static + 

dynamic) i.e. q = Wo  + Foy where Fo  is the maximum magnitude 

of dynamic loading, 	y is the required density and intensity 

of pressure, ri the radius of the pressure bulb (sphere) then, 

	

(2r1)2  = 0.4775 AL  (Boussinesqls theory of pressure 
IY I  distribution) 

	 (3.16 -a) 

4 Volume of soil contained in this sphere is ; 

4 71, 3 	4 

	

ri  = 	0.4475 111 ,3/2  
4 	TT  ..... (3.16.-b) 

and the weight of soil oscillating is, 

 

ws  , 4 	y 	(0.4775 	)3/2  	(3.16-c) 

	

3 	4 	11$ 
The resonant frequency is then determined by 

substituting Ws in equation (3.14 -b) ; 
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1 r   =  / 

W o  + Wdyn + W s  

eesstrosoC..(3016 •d) 

wo 	+ Ws  

The above authors have suggested to take the value 

of It or spring constant according to that given by Pauw, or for 

that matter from the dynamic soil tests. Knowing the value of It 

and Ws, the natural frequency can be determined from equation 

(3.16 d) 	The approach is significant in as much as it 

considers the pressure bulb for the combined static plus dynamic 

load and a specific value to pressure bulb is given. This 

explains the phenomenon of decreased resonant frequency for higher 

dynamic load as it assumes that soil mass will increase. In 

most of his calculations, he assumes the static and dynamic loads 

to act as a concentrated load. The pressure bulb for distributed 

load based on equivalent sphere did not give much different 

results. 

He has calculated Ws  an the assumption of soil 

as uniform, homogenous, elastic medium, (having same value of 

E at various depths. The spring constant K is calculated on the 

assumption that value of E increases with depth (Pawls approach). 

That is, the value of Ws  and K are calculated on the basis of two 

contrary assumptions. But it offers a good empirical means to 

evaluate the effect of changed dynamic force. 

4 

f 

*T 

  

 

. g 

   



Be has verified the resonant frequency as 

calculated by pressure bulb concept with the published results 

of eonverse (1953) 	and Eastwood (1953). 

RESONANT FREQUENCY - hascaLasous METHODS  

3017 GENERAL  s 
Under the subhead will be considered the empirical 

approach to the problem of determining resonant frequency, the 

resonant frequency of soil as linear spring, and the attempted 

ceerelation between the two approaches is given. 

3.18 REDUCED NATURAL FREQUENCY MIC HOD 

Tschebetarioff and Ward (1948) Tschebotarioff(1951, 

1953) have suggested that there is a logarithmic relation between 
the area of foundation and the reduced natural frequency. The 

resonant frequency is given by ; 

fo  =  / ke,A,g  
2 w Wo  + W s  

  

4/ 
ar----/1 V'  

= _1_  / 	10.g  
2 W 	1+ Ws/wo  

Wo/A is equal to the static load on foundation 

per unit area ( rat). Thus at unit static pressure, the 

frequency would be ; 

fnr 	 / 10.g 
"11' - 2 I*  1 + Ws/Wo tAiik ■ 

,/ This is termed as the reduced natural-frequency. 

•••••••111•( 34114) 
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f o 	 A0.248  11 0110000rns0(3.18 d) 
/ 0  

The contact area in Tschebotraiofl diagram ranges 

from 1 to 1000 sq.meters (10 to 10,000 sq.ft). For smaller areas, 

results of laboratory experiments with model footings are available 

(Eastwood 1953). These tests were made to investigate the factors 

influencing the resonance frequency on dry and inundated sand. 

The oscillations was generated by impact. The sand employed in 

Eastwood's tests (1953) had a dry density of 1.74 g.c.c and a void 

ratio as 0.525. 

Alpan (1961) plotted the results of Eastwood in terms 

of reduced natural frequency fnr  versus area A on log log paper 

and compared it with extrapolated values as obtained by Techebotarioff's 

plot for sands. It will be seen from Fig. 3.19 that the lines)  

obtained by Alpan are quite different than that of Tschebotarkfls, 
1 

This raises the question if these strajght lines donot represent 

an over simplification of relation between contact area and reduced 

natural frequency. Actually the points are anything upto 100% 

high or 50% low$  the errors being masked by the log log scale 

(Eastwood' s comments 1953). From the data which Tschebotarioff has 

used for his plot (summarized in Table 1) Tschebotarioff 1953) 

it will be seen that the resonant frequency was obtained by 

forced vibration test and'ihocis. or impact and exciting force was 

either vertical or horizontal and vertical or $  only horizontal. 

But it is a known fact that the nature of the vibrations and the 

method by which they are induced materially affect the frequency 



response of the ground. Hence Tachebotarioff's plot is not the 

true picture of frequencies. 

Bastwoodls (1953) tests show that for the same 

applied load per unit area, the natural frequency of a 12" x 3" 

model footing is the same as that of for a 24" x 3" model footing. 

Thus they will also have the same reduced natural frequency even 

though area of one is twice that of the other. Be has suggested 

a possible relation between reduced natural frequency and the 

least dimension of footing. 

Refer equation (1.17 b) for resonant frequency. To 

obtain same values of for  (for same area), whatever be the applied 

loads  / 10.0.0400 	has to be constant for different areas. 

This means that either Ws  must increase at exactly the same ratio 

as Wo  or alternatively that Ws is always negligible compared to Wo. 

The latter is impossible and the former extremely unlikely 

(Eastwood 1953). 

B/ A 

	

k 	= 	 .............(3.19 a) 
m(i - v 2) 

(for uniformly distributed load i.e. flexible 

base according to Timoshenko 1937). 

	

where E 	is modulus of elasticity of soil, 

and 	V 	is the poisson's ratio. 

	

2 	is the shape factor previously described 

depending upon L/13. 

The propogation velocity of Rayleigh waves (Jones 1958) 

Alpan (1961) has made an attempt to analyze from 

first principles, the relation between frequency and area. 

Spring constant 
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(Netikelam and Foster, 1960) is given by ; 

2(1 +V ) 74,  

where 
f 
 is the mass density 

and p  is a factor depending on 

(Henkelom and Foster t960). 

, 2 
Ir a  = p (3.19 b) 

A table of values of p for a range of  from 0.2 

to 0.5 is given in Jones (1958) and given in Fig. 3.2 

Now fa  = / kg x.  1   (3.19 a) 
an 

0 

Substituting the value of E, from equation (3.19b) 

in the values of K in equation (3.19 a), which in turn is sub-

stituted in equation (3.19 c) Alpan (1961) obtains, 

fo 
1  1  / 2  YR./ y = 
2 w  P  m(  ) 

"o 

where y is the unit weight of soil. 

Now for a particular type of soil, ply  are 

constant, leading to, 
0.25 

fo  
constant  A  .........(3.20b) 

/ a  o 

which differs from equation (3.18 d) in only that a shape factor 

m is involved, and that exponental power of A is 0.25 instead 

of 0.248. 

Now shape factor is not only dependent upon the 

length/width ratio, but may depend also on the type of the load 

distribution. This probably may be able to remove the discre- 
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-pancies in the plot of Tschebotarioff. For example, Eastwood(1953) 

obtains the same natural frequency f o  for 24" x 3" and 12" x 3" 

foundation models, for the same static load intensity, though the 

area is twice. This can be explained by introduction of shape factor. 

Further work has to be done along these lines. Shape factor which 

is derived from Pauw's analysis (1953) for cohesive soils is given 

by; 
log L/B 

 

• • • • • • • • • • • ( 3. 21) 

 

L/B - 1 

  

It will be interesting to use the value of this 'm' 
in the theoretical analysis equation (3. 20b ) to see how Eastwood's 

result fit in. Equations (3. 20b  ) for two footings 24" x 3" 

and 12" x 3" gives, 

const. 	x 	
(2A)0.26 

.....(3.22a) 
(4) 24"x 3" =  	 0.5 

/(m)for L/B=8 	 (2w0) 

AP•25 	 const 	(3,22b) 
(f0)12"3fl  = 

	

	 (Wo) 
/(m)for L/B = 4 

Dividing (3. 	a) by (3. 	b) 	we get, 

(f) 24" x 3" 	= 	/ 	0.463 	• 	1  

(4)12" x 3ft / .301 (2)0.25 

= 1.047 	 (3.22 c) 

That is the frequencies should be almost same which 

is as was observed by Eastwood (1953). 

3.19 EMPERICAL E4JATION DUE TO CONVERSE t 

From the results of the field testing programme 

mainly conducted to note the effect of various parameters, on the 

compaction of sand by vibration in a test pit 6' deep, 10' squares, 
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an empirical equation was developed (Converse 1953) for predicting 

the resonance frequency of a vibrator sand mass system. As a first 

approximation, the system is assumed to be analogous to a simple 

harmonic vibration system of a single degree of freedom. 

Since the field tests indicated that resonant fre- 

quency is influenied both by the dead load, 	and the dynamic 

force Fof the Spring modulus k is non linear. By using the data 

from 28 field tests for vibrator plate diameter as 19.2", 

converse calculated k as ; 

k = 44.3 Wo  + 16000 - 27 Fe, .,........( 3.23 a) 

/I-  if  44.3 + 160Q0  - 27 Fo  2* 	 Wo  
• o 

In order to make above equation dimensionally consis-

tent, the term under the radical must have the dimensions of VW 

;(that is L 1) 	Converse (1953) further changed the natural 

frequency expression& as ; 

f o = / 1380 .1- + 0.55 212- - 840 FO  Y 

21 	 Wo 	Wo G 

............(3.23 c) 

or 	fa 	
/g 	

/ 
/ 	  
 840 L (1.64 - ro/w0) + 0.55 Gro/W 

............(3.23 d) 

Hence 10  ..0..(3.23b) 

2 IT 

where 

which in terms of unit loads , will be ; 

fo - 313 /;;T7r-TT:5T:77Z7T7;:;;77---- 
Tat 	6-st. ro 

0) 



-cular soil type. But before adopting this, much experimental 

confirmation is required for different types of soils. 

3.20 DAPAATURE FROM THEORY OF HARMONIC OSCILLATING POINT 

Lorenz (1953) has noted that the following three 

phenomena donot agree with the theory of a harmonic oscillations 

is unable to explain the following experimental behaviour of the 

system t- 

a) Increase in the exciter forces leads to decrease in 

natural frequency. 

b ) Keeping the exciter forces and static soil loads constant, 

and increasing the contact area the resonant frequency 

increases. 

c) The damping constant increases with the contact area, 

consequently lower amplitudes are obtained if the contact 

area is increased. 

The resonant frequency of a harmonic system depends onl 

upon the spring constant and mass. Hence the dynamic force does 	()kV 
not have influencelri the natural frequency. However, this may be 	

Cevvic 

explained by assuming the Ws participating in vibration increases 

with increase in dynamic load (Balakrishna Rao 1960, 61, 62). 

The effect of increase in area, for the same dynamic 

and static load, on the natural frequency may be explained as below: - 

Since Ws, the soil weight participating in vibrations, 

based on concept of pressure bulb below the uniformly loaded area, 

increases with area, the natural frequency decreases. 
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where G  dyn  = unit dynamic force lb/sq.in. 

and 6-  st 	= unit dead load lb/sq.in. 

The units in equations (3.23) are lb.inch units. 

Converse has verified the resonant frequency based 

on the above formula with that of the field test results obtained 

with base plates 15.7, 19.2, 24.0 and 45.0 inch in diameter. 

The development of the empirical equation is signifi- 

cant, as it involves not only the soil constants, but also the 

vibrator dimensions (ro), weight (W0) and dynamic force (Fe) 

but the equation is developed only for one type of soil and it is 

only reasonable to expect that this will vary with the type of soil 

and as such the equation is not universal in its nature. 

The equation takes into account that 

a) increasing the dynamic load, the natural frequency will 

decrease 

b) increasing the contact area, but keeping exciter forces 

and the static weight constant, that is WW0  constant, 

Wo  - constant, ro - increasing, the resonant frequency 

increases. 

(a) and (b) agree with the experimental behaviour as 

observed by Lorenz (19341 1953, 1959), Balakrishna Rao (1961). 

The approach is significant but the constants will 

vary with the type of soil and as such this may not be of much 

help 	It may, however, be suggested that keeping the same 

parameters, the constants may be determined at the site for a par- 
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But the soil spring constant K increases with area. 

Therefore, there is a tendency for net increase in the natural 

frequency. 

The third phenomenon has been explained by Ehldrz 

(Lorenz (1953,1959) who introduced the concept that loss of energy 

is caused by waves radiating into the soil. This is equivalent 

to an additional damping, called system damping. It appears 

probable that this loss of energy increases with the contact area. 

The results of Eblers s theory are represented here (Lorenz 1959) 

In particular the simple formulae for amplitudes and phase dis- 

placements are dependent on a spring factor, and a damping factor, 

which are both related to the surface areas as well as to the 

propogation velocity and Elasticity modulus of the soil. 

According to Ehler's, the system damping is proportional 

to E, A and inversly proportional to the velocity of compression 

wave. 

i.e. = L.A. 
Ve  

 

(2.24) -a 

 

where c is damping coefficient 

V c  is the propogation velocity of compression wave, 

ana is / 	. 0(1)), 

0(V) is the function of poisson's ratio. 

• E. A / 
/E / 	A 

/ 0( u) 4  0 (z) 
..........(3.24 b) 

Shier has further shown that with the increase in 
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area, the value of damping will increase, and after a certain iiiit 

the damping willpver critical. 

The result of Ehler's investigation is so significant, 

because we are forced to conclude from it that a dynamically 

affected structure shows perceptible amplittdes only within a 

certain surface area. If the surface area increases beyond the 

limit, the vibration becomes a periodic, that is no amplitudes 

are discernible. The same conclusions can be derived with the help 

of Hseihls transformation (Hseih 1962) equation (3.6 a). The 

system is equivalent to the simple dashpot and spring system, 

with the following values of * and c. 

  

ro2 F2 = Gro Fl, and c = / op 

where F1  and F2  depend upon dimensionless frequency term 'a', 

poisson's ratio )? 	and loading distribution. 

For rigid base distribution, Hseih (1962) has cal-

culated F1  and F2 as given below for vertical translation ( o 4 a 

< 1.5) 

1)  = 	0, 

V= * 

= * 

F1 = 4.0 

F2 = 3.3 

F1  - - 5.3 

F2  = 4.4 

F1  =8.0 

- 0.5 a2  

+ 0.4 	a 

- 1.0 a2  

+ 0.8 	a 

- 2.0 a2  

) 
) 

) 	 

) 

(3.25) 

F2 = 6.9 

Value of 	s of the same form as that obtained by 

Ehler's and increases with area A, so it is possible by increasing 
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area (which will be too large) to obtain a periodic motion (to 

reach critical damping). 

3.21 SOIL AS SUBLINEAR  SPRING s 

The decrease is natural frequency with increase in 

dynamic loads and increase in contact area may also be explained 

from the concept of sublinear spring (Lorenz 1953a, Alpan 1961). 

A sublimer spring is defined as the spriAg, in which the spring 

stiffness decreases as the deflection increases. Fig. 3.20 

shows 3 amplitude curves, obtained with an oscillator (Lorenz 1953a) 

Total weight of oscillator was 67g contact area 0 0.25 sq.meter 

static pressure was 0.27 kg/sq.cm. The total eccentric weight was 

about 24 kg. and 3 tests shown in the figure, run with t = 1, 2 

3 am., approximately. The corresponding eccentricity factors were 

given as € = mll / mo 	= 0.037, 0.074, 0.111 am. respectively. 

The shape of amplitude curves is particularly, p-A for C = 0.111 cm. 

is characteristic of damped forced vibrations of a system with a 

sublinear (soft) spring. This type of spring exhibits greater 

strains at higher stresses. Based on a method developed by 

Denhartog (1947), and modified by Lorenz (1953) it is possible 

to derive the nonlinear spring characteristics from experimental 

amplitude curves. The procedure illustrated in Fig. 3.21 is 

briefly as follows s- 

A point is chosen on the ascending branch of the 

amplitude curve, say point A (4. z) in figure 3.20. The spring 

characteristic is computed as follows s- 

In equation (3.9a) neglecting damping, value li(z) is 
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substituted instead of K OA) indicates that spring constant 

depends upon amplitude. 

mo z + M(z) z = Fo 
sin 63 t ........(3.9a) 

Let the maximum amplitudelb Z then 

z = Z sin° t. 

Fo=ml Q 402  =mo d co2  ( as m1 t 	mo  C. ) 

Substituting equation (3.9a) we ebtain 

-moZt.a 2  + .eit (Z) Z = mo  E 14) 2  

or k(Z).Z = mo  142 	Z  ) 

Now KkZ) • Z = Irdyn  As (By definition) .....(3.26a) 

(5- 	
2 _ mo (45 ( 	Z) dyn - ....(3.26 b) 

A 
From point 4 dyn. can be computed and a plot is 

obtained between Z and 6-dyn. The slope of this curve at any 

point defines the characteristics of the sublinear spring. 

Equation (3.26 b) can also be plotted graphically as shown in 

Fig. 3.21 which is self explanatory. It must be emphasized 

here that the method breaks down for points chosen too near the 

resonant frequency. In many cases, the spring characteristic so 

obtained may be extrapolated for higher values of 1-dyn and Z. 

This may-be used in Eq. (3.9) to give the solution for 

amplitude and frequency for any other foundation soil system. This 

becomes complicated. Alpan (1961) has suggested a simple method 

by which knowing the spring characteristics, fo and Zo (resonant 
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frequency and resonant amplitude), may be determind for any 

value of E and  and  

ALPANIS APPROACH (1961)  : 

9 

   

First simplifying assumption that Alpan makes is that 

"it is considered permissible to analyze the forces with the help 

of a phase diagram at no great sacrifice of accuracy", 

For the case of forcing frequency being equal to natural 

frequency of the system i.e. ° = woo  the damping force is 

180 deg. out of phase with the driving force, and so is the 

restoring spring force with the acceleration force. The direction 

of these pairs of forces are normal to each others  The vector dia 

gram of Fig. (3.22 a) gives ; 

m
1 

C w02  = c 0Z o Z0 

and Kato  = mow 02  Zo  

These two equations give ; 

C • Z 0 	C ;20 

mo  E 

) .............(3.27 a) 

since mit = mod, 
....(3.27b) 

2 
and  wo = k/mo 

 respectively 

Eliminating 14)0  from equations (3.27b), we get, 

h 2= 4: m  EA) 0  0 

Also from the equation (3.26 a), 

k = A. Fdyn. / Zo  OOOOO ...(3.26 a) 

By eliminating lc from equations (3.28 a) and (3.26 a) 

Zo
3 

= A m0( 	/c) 	dyn.  00 Q 1100 OOOOO (3.28 b) 

. OOOOOOOOO  a) 
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,The spring characteristic (determined in Fig. 3c2l) is 

represented by VA curve (or 6-dyn/Z) 	The cubic parabola of 

aquatic)* (3.28 b) intersects this curve at a point which gives 

the value of Z 	the amplitude at resonance (Fig. 3.22 b) but cubic 

parabola can be constructed only when values of a is known. 

Actually to a certain extent, this damping constant varies with 

t or the exciter force. But this variation may be neglected 

and determined foam Equation (3.26), which gives, 

0  = mo 	45 o 
4104, 11 	411111141•1110*(3029) 

0 

Experimental curves such as shown in Fig. 3.20, may be 

used to evaluate c from equation (3.29). 

Having assigned to the soil an average value Of c, the 

cubic parabola equation(3.28 b) can be constructed for any and mo  

The intersection with characteristic (X/A or 6-dyn/Z) curve gives 

the value of Z01 for E El  • The value of Zol  found graphically 

is used in equation (3.27 b) to determine l'i),01  the resonant 

frequency at E n El.  • 

The method described to determine the soil spring 

characteristic by graphical means is a simple one. Alpan 

gives a simple method of using this characteristic, to determine 

for any exciter force ( 	), the value of resonant frequency and 

the amplitude, Alpan has checked the method and found it suffici-

ently accurate, for varying dynamic loads. However, it seems 

likely that if the contact area A. is changed, 	spring characteristic 
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will change, and hence for changing area this cannot be applied. 

3.22 BASIC SIMILARITY OF VARIOUS AkiROACESS s 

In all the letheds for predicting resonant frequency, 

which assume soil to be homogeneous, an interesting similarity 

is pointed out. Based on this an empirical formula is developed, 

which will help in simplifying the calculations . 

For static loads, the value of spring constant for 

various distributions are ; 

k =  Gro  	 (3.30 a) (1 -1)) 
for rigid plate condition, (Snedd4hn 1951). 

k  = " Gro 
	(3.30 b) 1 - 

for uniform stress condition, (Baussinseq's 1885). 

k=  3w' Bro 

 

4  
1--- 

for parabolic stress distribution. (FrOhlich 1934) 

Equations (3.30) show the spring constant is multiple 

of Gro. Now consider the theory of vibration testing on elastic 

homogeneous, semi-infinite, isotropic medium (soil). In the 

analysis, mass ratio 'b' and dimensionless frequency term la° is 

used 	where, 

b = mo  and ao  =  rico  /  .....(3.31 a) 

fro3 

bao 2  m o LI  2  2  
 ..(3.31 b) i wo re. 

fro3 G 

which after re-arranging gives, 
143 2 . Gro „ 2, 
o  

. a
()  ) 

 

(3.31 c) 

 

(3.30 c) 

mo 



Value of equivalent spring constant is, therefore, 

(Assuming " 02  = 1mo ) 
= Gala 	• (ba02) , 	 (3.31 d) 

liquation (3.,/ d) based on the criterion of resonance 

at phase angle = 17/2 , gives (italssner 1936, Quinlan 1953). 

(ba02) = 	 
f
1
2 + £

2
2 

(bao2) is, therefore, a function of load distribution 

Poisson s ratio and tai. Jones (1958) has plotted value of (ba02) 

versus (b) for different load distributions and poisson's ratio 

from Sung's (1953) calculations. 

aseih's transformation (1962) gives spring constant as 

(Equation 3.6 a) 

= Gro F1 	 (3.6 a) 

where F1 has been evaluated for rigid distribution and different 

poisson's ratio in terms of 'al, given in equation(3.25). 

•• 	2 99  F1  	  • o = 	 (3.32) 
mo 

Putting value of F1  from equation (3.25) we get (for 

= 1/2) 
) 2 	GT(;)  ( 8  - 2.0 a2 

mo 

 

..... (3.32 b) 

  

Substituting value of la'  0 = °or° / (VG 	and 

rearranging we, obtain, 
W©2 = 8 Gro  

 

..... ...(3.33 a) 

 

mo + 2, roe  

Similarly for v =  1/41 	0-, 6 41 
auk UIRARY UNIVERSITY IF ROOM 

ROORKEE 

(3.31 e) 
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la 2  = 5.3  Gro o ..........(3.33 b) 
mo +1 ro 

For 'V = 0, 

6.) 02 	4.0 Gra  ........(3.33 a) 
mo  + 0.5f ro3  

Values of spring constant from equation (3.30) for 

rigid base distribution is 4Gro/1- V , which for ),) = 1/21  1/4, 

0 is 8 Gro, 5.33 Gro and 4.0 Gro respectively. This tallies with 

spring constants in equations (3.33). 

Let us take Ford and liaddow's analysis 1/4  1960). In 

this analysis, value of resonant frequency (equation 3.8 a) is 

, 2 	2G (1 + 	) 	. g 
wo 

	

	 ***** .(3,8 a) 
TO) + 4-St. 

in which 	is the decay factor and is given by 

equations (3.8 a) 

(3.8 c) 
ra/I.-( 1 V 2) 

Changing 6-st in to mo/,r ro2  , area A into w bo2  

and substituting value of *from equation (3.8 c) in equation,(3.8a) 

we obtain, 
W2_ 2G (1 +V )x Bl  ro / 

o = 	  
(1 - vt) 

  

1 

 

 

(me w3/2  
r03(1- 

     

B1 
	 (3.34 a) 

= 	2B1 1 

 

(1 -v ) + Dro3 -3/2 	2 mo r 	" (1-v ) 

    

******* 0(3.34 b) 
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f o = constant x _!  (3.35 a) 
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Therefore, the equivalent 'Spring constant is a multiple of Gro, 

and the mass of soil participating in vibration is a multiple of 

fro3  • 
Mow consider the emperical plot of Tschebotarioff 

(1948, 51, 53) . The equation of the plot (Equation 3.18 d) is 

ro = 
 A0.248  (3.18 d) 

obtain, 

pilmamm■■■• 

W 
0 

Substitutin in equation (3.18 d), we 

= constant / 	0.992 / rq  	(3.35 b) 
Wo 

where the constant depends upon soil type, (and 

hence an value of G). 
Hence spring constant may be taken as a multiple 

of Gro. Note very small power difference between 1.0 and 0,992. 

Converse (1953) has given an emperical equation for 

resonant frequency of sand vibrator system (Equation 3.23 d) 

/g 	/ 840 Y f o 	 (1.64-F0/W0) +0.55 Ciro 
2 It Wo  

(3.23d) 

For large values of G, equation (3.23 d) reduces to, 

ro = / 	Gro 	x a constant 	(3.36) 
Wo 

Pilaw (1953) has evaluated the spring constants for 

the cohesive soils for which values of E or G can be assumed 

to be constant. Though it was not possible to evaluate the mass 
' 	•• 
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factor , it will beLinterest to see nature of spring constant by 

him. Expression for spring constant for vertical vibration is 

k = E 	B Vz  	.(3.37 a) 

where tan..14/2 denotes the angle of pressure distribution, 

'/y4 	 and 	1(2 	is a factor depending upon L/B ratio. 

1))/,)/1  

For circular vibration B = 2 ro, and Yz = 1.0 

(Paaw 1953), 

k = E..(, (2 ro). 1 = 2 G(1 +V ) at .(2ro) 

= Gro i4 (1 +  (3.37 b) 

••■■••■•••••"-- 

i.e. the spring constant is a multiple of Gro. 

Experiments by Nijboer (1953, 1959) Vander Poel 

(1951, 1953) Heakelom (1959), lictikelom and Fos t,er (1960), obtained 

the value of spring constant as approximately 7.6 to 72 Grog  in 

their dynamic tests. 

i.e. 	= 7.6 Gro 	 (3.38 ) 

From consideration of equations (3.30)  (3.31), 

(3.32a) (3.33a,b,c) (3.34 b), (3.35b), (3.36), (3.37b) and 

(3.38), a simplified form of the natural frequency expression is 

suggested viz., 
2 	Ai  x Gro  

	 (3.39) 0 	ono  
A2 Pr°3  

Interoducing the shape factor m in equation (3.39), 

we obtain, 

1  Wog  =  A 	 
Gro 

mo + 2  i'ro3 

 (3.40) 

where A 1, A 2 are constants for the system and 

m is the shape factor depending upon L/B ratio. 

The effect of change in dynamic load upon)(1 and A2 

will have to be investigated experimentally° 

S ):*k  



CHAPTER - 4. 

DYNAMIC TESTING OF SOILS 

4.1 GENERAL s 

In Chapter - 3 various methods for predicting the 

resonant frequency of foundation soil system have been discussed. 

It was, however, assumed, while considering the methods, that dynamic 

constants of 8411 stratum were known. In analysis of machine, 

foundations by Elastic wave approach, soil properties are of prime 

importance. These are the (i) modulus of elasticity, (E), or 

modulus of rigidity (G), (ii) the poisson's ratio ( 	) and 

(iii) the density ( Y ) In mass spring analogy again three soil 

properties are of significance. These are (i) spring constant () 
, 	>v,  
'e- rjj(ii) damping factor (t), (iii) soil weight (Ws) Pauw (1953) 

Balakrishna Rao (1960, 1961, 1962) have shown that W depends upon C l.va.  
P2-7  y . Pauli (1953) has related the spring constant with (E) or its 

increase with depth ( f ). Ehier (Lorenz 1959), Liseih (1962), have 

attempted a correlation of spring constant damping factor with E, 

I  and y - Lorenz (1953) and Alpan (1961), have used the nonlinear 

characteristics of the spring to determine the resonant frequency. 

Tschebotarioff (1948, 1951, 1953) has given an empirical plot 

between contact area and reduced natural frequency. All these 

approaches try to use the soil data as obtained from vibrator test 

on the soil and from that data analyse the soil behaviour. 

As far as the value of I ' 	is concerned, it 

offers no difficulty, Ordinarily;  sampling will serve the purpose. 

Also Poisson's ratio varies only over a small range for most soils 

as long as the applied loads do not stress the particular soil 
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excessively. It is not a property that appreciably varies even 

under a dynamic load (Fisher and Winter 1962). In many cases it 

may be estimated or assumed with sufficient accuracy to be used in 

analyses. For greater accuracy laboratory tests may be used to 

measure poisson's ratio directly (Tschebotarioff 1951). By measure-

ment of the coefficient of earth pressure at rest (ko) in a triaxial 

\test, poisson's ratio may be found by the following relationship 

= ko/1 + ko . Typical values of poisson's ratio are given 

in Table No. 4.1. 

Therefore, the principal problem lies in evaluating 

either the modulus of elasticity or the modulus of rigidity. These 

properties vary not only in different soils, but d9pend upon the 

imposed loading condition. Measurements of the modulus of elasticity 

can be made by ; 

1) direct measurement of stress and strain in a confined compre-

ssion test, 

ii) using the first part of a stress strain curve on a triaxial, 

iii) using a straight line portion of a triaxial compression test, 

‘ 
after several rep tetions of load and reload cycles have been 

made. 

These methods may be considered to be standard test 

procedures for evaluating static elastic modulii. Dynamic elastic 

modulli with which we are concerned is not the same as obtained from 

static tests, and hence the static tests cannot be used for finding 

the dynamic behaviour of soils. 
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4.2 SEISMIC MSTBODS  

Seismic methods of exploration for mineral prospecting 

and oil explorations, are based on the velocity of propagation, 

and any change in velocity of propagation of wave(when a wave travels 

through media having different densities). An artificial impulse 

produces chiefly compression waves, and if seismographs are employedy 

the subsequent wave to arrive is shear wave. From these velocities 

S and V can be calculated by using equations given in Fig. (3.2). 

Disadvantage was that same force or impact may not be generated. 

Also as the explosion produces a single impulse, there is no 

possibility of determining the thickness of individual soil strata 

by means of observing interference phenomena on the surface of 

ground. 

Recent developments_ have made it possible to adopt 

seismic methods to the local sites within the economical range. Also 

the impact or shock is produced by a sledge hammer blow. These 

units are suitable for exploring subsurface conditions down to 

25 to 50 ft. below the ground surface, which is usually sufficient, 

to define the dynamic characteristics of subsurface, materials below 

tratbry equipment foundations. . typical unit is shown in Fig.4.1 

(Fisher and Minter). While the operations of these shallow depth 

seismographs is relatively simple, the electronic circuit is some-

what involved. This helps in evaluating the time difference between 

the time when the impact is imparted and when the geophone picks the 

first wave arrival. Knowing the distance between source of dis-

turbance and geophone and the time taken for the wave to arrive at 

geophone, velocity of propagation is calculated. This is mainly the 

compressive wave and from its velocity the value of A dynamic may be 
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determined by assuming suitable value of 1) • 

4.3 EARLY STUDIES 

Studies with mechanical vibrator, was first 

suggested in a report of Indian Railway Bridge stress Committee in 

1921 (Berkhard 1949) in which the idea of testing with a machine of 

two mass vibrator was advanced. Very few experiments were made 

till 1930 in Germany for the purposes of studying vibrations produced 

by industrial machinery. These earlier experiments have been 

reviewed by Heinrich (Bergstrom and Linderholm 1946, 1949, Subbarao 

1962). In early investigations amplitudies were observed at various 

distances from the source of initial disturbance. Heinrich found a 

relation of the following type :- 

  

(rn  r1) 
41 0 000 04, 01141(401) 

Zn = 41 / ri/rn  

where is the amplitude in a vertical direction at a 

distance rn  from the source of initial disturbance, 

ZI 	is the amplitude in a vertical directioh at a 

distance r1 from the source of initial disturbance. 

A4  
is a decay coefficient depending upon character- 

istics of soil. 

Similar expression has been given by Bernhard (1958) 

Barkan (1963). 

The constant /44.- characterized the properties of 

the soil to a certain extent, but the accuracy of the method was 

not sufficient to admit of a classification of various types of soil. 

4.4 DYNAMIC CONSTANTS BY RESONANT FREVENCY  

The beginning of the application of dynamic testing 

for the evaluation of the soil, properties can be traced back to 1930's 



when the research workers of Degebo started the systematic investi-

gations of soil vibrations. The first attempt was by analysing 

the behaviour of soil from the response curves - 

*) frequency vs amplitude, 

b) frequency vs power point and 

c) frequency vs phase difference, between the periodic 

disturbing force and the vibratiaas produced by this 

force - 

- obtained by means of a mechanical oscillator with two revolving 

eccentric masses (Lorenz 1934). These response curves can be inter-

preted to obtain resonant frequency, and damping of the system, and 

consequently spring constant k and soil weight participating in 

vibration with system as explained it section 3.12. In this analysis, 
was assumed to be 

modulus of subgrade reaction,andependent of area and dynamic 

load, which is not true. 	 6 

Jones (1958) has also given a method, which deter-

mines the values of modulus of rigidity by observing resonant fre-

quency. he has applied the theory of vibrator as semi-infinite, 

elastic homogeneous and isotropic solid. He has simplified the 

calculations by using a simplified equation (3.31 c) in which he 

has plotted value of (bao2) versus different values of b, for 

different poisson's ratio and load distribution‘ Fig. 4.2) For 

different values of Ib', and fog  the value of G is calculated by 

equation (3.31 c) (section 3.22). 

It is shown that shear modulus deduced from the 

measurement of the resonant frequency, at low amplitudes of vibration 



89 

was in good agreement with the shear modulus deduced from the phase 

velocity measurements. In this comparison, the stress distribution, 

was assumed to be either uniform or that arising from a rigid platei. 

It appears that when the soil was firm and dry the first assumption 
on 

was justified, where asLsoft wet soils the rigid plate condition 

applied. The results indicate that the uncertainty in the shear 

modulus due to unknown distribution of stress beneath the vibrator 
r 4 \ 	•  is likely to be about I (11A  ,  

r %) 
 

The method seems to be more useful for machine founda-

tions, as the behaviour of the soil is obtained at resonant frequency. 

In fact, by determining the resonant frequency, any particular soil 

constant representative of the dynamic behaviour of soil (16g. decay 

factor in Ford and Haddow l s analysis, rate of increase of modulus Of 

elasticity with depth in Pauli's spring analogy, or the spring constant) 

will be more applicable than from the empirical tables set up. 

The uncertainty due to load distribution, seems at present stage 

of knowledge difficult to remove. 	 j.‘ 

This method has been applied by Central Building No 

Research Institute in in-situ dynamic tests conducted for a wind 

tunnel design at Bangalore. 

I 
/ Subsequent investigations by Degebo (tallier, 

‘ 
Ramspeak 1936, Hertw/ . g 1936)/reported by Linderholm and Bergrstorm, 

1946, 1940, Jones, 1958, Subl irad 1962), comprised the measurement 

of velocity of wave propagation in the soil. The velocity of wave 

propagation is independent of the size and mass of the vibrator 

and can, therefore, be used for characterizing the properties of soil. 

If the soil is regarded as homogeneous, elastic semi-infinite body, 

4.5 WAVE PROPAGATION : 
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the modulus of elasticity in tension, El  and modulus of rigidity,G, 

of the semi-infinite body can be computed from the velocity of 

wave propagation. Actually, the soil is not homogeneous, and the 

calculated values of B, and G have to be regarded only as statistical 

values or effective modulii. 

The above work showed that on many sites, the veleci;cm 

of propagation of vibrations decreased with increase in frequency. J 

The variation was attributed to the variation of soil properties with 

depth, and attempts were made to give a theoretical explanation to 

the actual thickness and properties at bore holes. However, the 

type of wave propagation was not definitely established. To quote 

(J;Z1958) some workers considered it to be of the Rayleigh wavetype 

while others thought the waves were\vertical polarized Love waves.)  

However, in view of the theoretical work by Miller and Pursey (1955) 

it now appears that the first opinion was correct. 

The German work, (frequency range 10 to 60 cps) also 

showed that within the frequency range of 20 to 25 cps, the velocity 

of propagation was related to the strength of the soil (E or G). 

However, Jones (1958) has shown that on sites with a shallow surface 

layer, the frequency range of the mechanical vibrator does not always 

extend high enough to obtain a phase velocity that is representative 

of top layer. In fact he has shown that the dynamic shear modulus 

and the form of its variations with depth can be ascertained from 

measurements of the phase velocity of the surface vibrations with . 

in the frequency range of 35 to 400 cps. He further used the dynamic 

testing method for the concrete pavements which are relatively thin, 

with sustained vibrations of 40 to 60 kc/sec., in order to get the 

dynamic modulii for both pavement and subgrade Jones (1955,1959). 
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An investigation of the effects of soil stratification made by 

Ramspeck (1936) is of great interest. This subject has also been 

dealt with in several seismological papers (Oosterbeek 1948). It 

has been shown that the amplitude frequency curve has several 

maximum g and minimum whiCh are due to interference of waves 

passing through different soil layers. This conclusion was confirmed 

empirically. In some cases the agreement between theory and 

experiment was very close, while in some other cases the agreement 

was unsatisfactory. Jones(1958), used the electrodynamic vibrator 

weighing 85 lbs, which he had used earlier for the concrete pavement 

testing. It will be interesting to note that the complete vibrator 

generator )  is such as to produce frequencies between 35 cps to 

60 ke/s. (Jones 1955v-1959). 

Jones (1958) has indentified, surface waves as 

Rayleigh waves, based on the theoretical analysis by Miller and 

Pursey (1955)., who have shown that a vibrator on a circular base, 

operating normal to the surface of a semi inftnite elastic solid 

( 	= 0.25) radiates 67.4% of the power as a surface wave. The 

surface waves in which the soil particles have displacements at 

right angles to surface and also in the direction of propagation of 

wave are Rayleigh waves. If however, the arrangement, is such 

as to produce and detect vibrations in a horizontal direction, 

transverse to the line of measurement, the waves are her  or love 

wave in the soil. Love waves are basically horizontally polarized 	4L: 

shear waves (i.e. Th. waves) which have a particle displacement 	?,y. 30 

parallel to the surface and transverse to the direction of propagation. 
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Natural soil formations are rarely uniform with 

depth, and thik is reflected in the vibrational measurements by 

a variation in phase velocity with wave length. However, as the 
a.1■•••••

••■•••■ ••••••• 

wave length tends to zero (at high frequencies), the phase velocity 

reflects the behaviour at top surface in which we are interested. 

In such case, the data is extrapolated for zero wave length, phase 

velocity which gives the shear modulus. The shear modulus so ob-

tained refers to the soil nearest to the surface, which can be used 

in predicting the dynamic soil behaviour. In a particular case, 

for a surface layer of 4'-10", silty clay over stratum of the gravel, 

the phase velocity approahed a constant magnitude VR  at frequencies 

greater than 150 cps. 

Jones has also analysed the phase velocity of Love 

waves for a surface layer lower a stratum of higher shear modulus 

and has shown by experiments, a very good correlation between the 

theory and experiments. phase velocity of vibrations become velocity 

of shear wave in top medium, when the thickness of.  surface layer, 

becomes equal or greater than the wave length of vibrations. 

Be has also analysed and interpreted from these data 

the thickness and the elastic constants of underlying medium. Jones 

(1959). 

4.6 SWEDISH EXPERIMENTS : 

Similar to Degebo experiments in Sweden (Bergstrom, Linderhoim 

1946, 1949) used the phase velocity at resonant frequency of 

vibrator soil system to arrive at dynamic soil constants. The vibrator 

used was 75 kg in weight 600 ma in diameter (base area 0.282 m.sq) 

eccentric weight of 0.46 kg at an eccentricity radius of 43.5 am, with 
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a frequency range of 10 to 60 cycles per sec. The general arrange-

ment of the equipment used for displacement and wave length 

measurements is shown in fig. 4.3. Velocity of propagation, was 

obtained from wave length (min. distance between pick ups so that 

phase difference is 2 71  ) aid the frequency of sustained vibra-

tion. This was assumed to be Rayleigh wave (according to an analysis 

by Sezawa and Kenai 1935). Values of E and G were determined for 

the two Poisson ratios 1) = 0.25, and 0.50. The site seems to be 

uniform, as indicated by no significant variation in the phase 

velocity between frequency range of 14 to 32 c/s. (39.1 to 44.1 

meters /sec. was corresponding range of velocity of propagation), 

If the soil behaves elastically, an empirical ea; constant has 

been defined, by the above authors which is related to E ang G 	f ikk 

as follows s- 

Soil.  constant = 

reaction lc' as ; 

Soil constant = k' wro 

 

2 

where k,  = k/1102  (Bergstrom and Linderholm 1946). 

The field data has shown that the value of this 

constant derived from the plate bearing tests on large plates 

(ro  = 3 meters) was in extremely good agreement with the values 

obtained from vibration experiments. Smaller plates (R0=0.14 to 

0.56 mm) gave poor agreement. Another conclusion drawn from the 

results in this case was that dynamic method gave a relatively 

correct idea of the behaviour of the soil under the action of 

distributed load if the maximum values of 	= 0.5 were used. 

	

--. 	 -I,  
 ' N-1-1-V,  ;NA ct,  k-NA.A.A ' td.A.,—re.  g - - IX 

	 = 2 G \ 

J. gir I) 	 1 • 1) 	LA) ir-J-  ‘K. 1v4.4.6 	tin S i \A cipyl ■vr •  1 	2 
c.i.,(.4,4.4 ;,..,.. ? Lt 	.4 \ 

	 1'2;1' 

This constant is related to modulus of subgrade 

41110410 ********* ( 44) 
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4.7 DYNAMIC STIFFNESS : 

In post war period (1948 till date), Vender Poel add 

Nijboer (1953) Vander Poel (1953) developed the technique of testing 

the road pavement and its subgrade with mechanical oscillators. 

This has been applied to the subgrade testing, and the interpretation 

applies to the soils in general. This oscillator, consists of 

eccentric masses on 3 synchronized shafts, so that the centrifugal 

forces from the masses get mutually cancelled in the horizontal 

direction, but will get added int he vertical direction, giving 

sinusoidal vertical forces. This machine which has been developed 

further try Vander Poel and Nijboer (1953), is commonly known as 

'Road Vibrating Machine' 	Nijboer (1959), similar machine 

has also been developed in Bundesanstalt fur strassenwesen at 

Coogne (Germany) Baum (1959), The only difference between the two 

is that former has frequency range of 5 to 60 cps, while the latter 

has a range of 10 to 80 cps. R.V.M. is supposed to duplicate the con-

dition of wheelload of 4 tons. Vander Pool (1951) introduced the 

concept of dynamic stiffness of the subgrade which is defined by the 

ratio of amplitudes of forces generated and deflection of the strata. 

The displacement was measured by feeding the signals from a displace-

ment pick st below the centre of the vibrator, on to the oscilloscope. 

The results have shown that the dynamic stiffness is dependent on 

the frequency at which it is determined (lieukelan (1949,1960). The 

data has been analysed on the basis of elastic spring theory. 

According to this theory, A, mot  c are independent of frequency. 

This has been found to be true at frequencies low enough for the wave 

length to be large as compared with the radius of the body of soil 
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in which greater part of deformation takes place. At relatively 

high frequencies, however, the wave length become rather short 

and parts of distributed mass of soil vibrate in opposite direction. 

It has been found that this can still be represented by the above 

simple model provided mass of soil acting is assumed to be a value 

inversly proportional to the third power of the frequency. 

2 / K 4 71....f (W,0,„3)2+4  "f202Dynamic stiffness 3 = 4  
Z / ****** ..(4.4) 

and phaie difference 4/is given as 
2 1* f, c. 

tan'=   	(4.5) 
 

k  41r f
4, 

g 

Equation (4.4) and (4.5) yield, 

S cosW= k - 4 1r2  f 2( 4.2.21) ........(4.6a) 
g 

and 	S sinY= 2 Ti f.c 	 (4.6b) 

If both the dynamic stiffness and the phase angle 

are measured at few different frequencies, the three quantities k, 
can be 

Ws and c in equations (4.6)Zdetermined from experiment. The 

damping 0 follows directly from equation (4.6 b). Equation (4.6a) 

shows that a linear relationship exists between S cos Vi and f 2  

provided that k and Ws  are independent of the frequency. A plot 

of S cos yi versus f
2 

from test data is ,'Obtained. The straight 

line, through the experimental points intersects the vertical axis 

(S cos tP ,- axis) giving the value of k. The slope of the line is 
2 	 can be calculated. _ 

equal to - 4 n  (Wo  + Ws) 	from which Ws  

g 
(See  Fig. 4.4 between S cos 7 and f 2, and notethe excellent agree- 

ment till frequency = 35 c.p.s.) In low frequency range of upto 



times ro x G . The value is 

given by emkelem 

as quoted by Lorenz (1959), 

1959). (See Section 3.22). 

7.6 rod 
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20 to 40 c/s, the relations have been found to apply. Another 

interesting feature is that k is invariably found to be constant 

c)u In moderate frequency range (value upto about twice 

the low fre ency range), the mass of the soil participating is 

bland to be inversly proportional to the third power of the 

frequency. This is shown in (Fig. 4.5). The agreement between 

suggested mess , of soil participating, and the experimental 

points it excellent. 

4.11 	LABORATORY METHODS  s 

Fisher and Winter (1962) have beivn suggested an 

interesting laboratory method to find the elastic modulus (dynamic) 

by measuring the velocity of wave propagation, which is essentially 

compression wave, on selected undisturbed soil sample. The procedure 

is relatively simple. A pulse is introduced into one end of an 

undisturbed soil sample, and the time taken by this pulse to travel 

to other end of sample is accurately measured. Knowing the length 

of the sample and the time taken, the velocity of wave propagation 

is estimated. From this velocity, soils constants (E) can be 

determin)d. To duplicate field conditions, the sample is subjected 

to a confining pressure in the same manner as in a triaxial 

compression test. However, several problems enter into the lab. 

device for measuring wave velocity which are as follows s- 

1. Extremely accurate time measurement must be made. 

2. Field conditions must be duplicated as for as 

possible. 
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Fisher and Winter (1962) have devised the 

apparatus, which they name as Shock Scope, which will meet the 

above criteria. 

Oosteybeek (1948 and Wilson and Dietrich (1960) 4  

have computed Bilyn  from theories of elasticity based on laboratory 

determination of resonant frequency of soil specimens subjected to 

forced vibrations. ,  

The restraint for the specimen being vibrated has 

been verified to correspond to lower and clamped and the upper 

end free (specimen was kept in triaxial cell) For this condition 

at resonance (neglecting poisson's ratio (V) as the effect is 

negligible),  
16 fo2  t .y 	

to' 	 (4.7) 
g 

where  t is length of sample, 

( is unit weight of sample 

fo  is resonant frequency. 

4.9 CORRELATION OF EaN  WITH C.B.R. VALUE 

AB B (dynamic) represents the characteristics or 

strength of soil, attempts have been made to correlate Edyn  with 

dalifornia Bearing Ratio. By introducing the diameter of the C.B.R. 

piston (3 sq.in. area, and 1.96 inches in dia.') in the Boussi 

equation for the surface deflection under the centre of a uniform 

circular load, and the C.B.R. at 0.1 in deflection equal to the 

applied load on piston in lb/sq.in. divided by 1000, the relation 

between 4 and C.B.R. can be obtained as follows 



=  1000 x C.B.R. 	x 	rot  

 

111■4141110(4.8) 

100 	 0.1 

 

Equating (3.30 b) and (4.8) putting 1/.= 0.5, 

= 10 C.B.R. (kgasq.cm.) 

171-21`1- 	 98 

40, 	 1}11.4 	 V....ft- 

otd,46„.  

The spring constant is given as (Equation 3.30 b) 

1) 	
WxEx ro k 	ro 

(1 -) - 2 (1 +1)  ) (1 

By defination k = force/deflection which gives, 

Actual soils, however, behave differently from elastic materials, 
for instance, atter deformation under the C.B.R. piston, the soil 
does not completely rebound on removal of load. A considerable 

part of the deformationjolastic and Only a small percentage of 
the deflection is elastic. Under dynamic loading conditions, only 
elastic deformation is recorded after a certain number of loading 

cycles. The dynamic modulus E, is found to be higher than 10 C.S.R. 
The ratio between plastic and elastic deformations varies for 

various soils and also may depend upon loading, so that correlation 

between Edyn and C.B.R. shows a considerable scatter. Jones (1958), 
Jleukelon and Foster (1960), have found that as an average Edyn 

C.B.R. The factor varies betwen 50 to 200 for individual soils. 

Figure 4.6 shows the points for various soils as they lie on Edyn 
in kg./om.sq. versus C.B.R. value. 

This correlation only goes to show the wide scatter 
which is possible, and as such may be used only for the soil for 
which correlation has been established, which means that Edyn has 

to be found by other methods discussed. Any way approximate range 

(3.30 b) 
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may be fixed from the C.B.R. value, and in absence better data, 

this correlation may be used. 

4.10 DISCUSSION t 

The oldest method of the dynamic testing of subsurface 

is by seismic methods. These methods have been extensively used, 

in mineral prospecting. By knowing the velocity of propogation it 

is possible to find the dynamic modulii, and poisson's ratio. Also 

refraction methods have been used to calculate the depth of stratum. 

The next group of methods uses one or other type of 

vibrator to generate the waves. Various methods of interpretation 

and their development are described in this chapter. 14 means of 

vibrator a station4ry nave pattern can be obtained and with inter-

ference effects from the various underlying strata, it is possible 

to calculate the depths and dynamic behaviour of soil layers. The 

vibrator method can be used to find the resonant frequency of 

vibrator soil system, which in turn may be used to find the constants 

depicting'dynamic behaviour of soils. Laboratory methods to find 

the wave of propogation have been described. The method offers the 

solution of problem by laboratory testing of samples. It suffers 

from the same limitations as ordinary static loading teats viz. the 

Simulation of field condition in the laboratory. A concept of 

stiffness of foundation soil leads us to believe that below a 

certain critical frequency, the system may be assumed to be linear, 

and after that the non linearity may be accounted for by a decrease 

in soil mass. but unfortunately in that approach nothing has been 
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done to see if the stiffness is independent of the dynamic force. 

(The tests are done with one type of machine). 

The best method available for predicting the 

dynamic behaviour of soils under machine foundations seem to be 

to observe the resonant frequencies with various vibrator parameters 

and evaluate the response from the experimental data. But there is 

one hitch in this also as to what distribution of pressure be assumed 

i.e. uniform, rigid or parabolic. This leads to a variation of 

+ 11% in the dynamic constants. The finding that spring constant 

is about 7.6 to 7.7 roar is important if the system is assumed to 

(
be mass spring system, and the mass factor may be changed to account 

for non-linearity seems to be promisillg Wrosch. However, much 

further work needs to be done in this connection. 
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DESIGN OF MACHINE  FOUNDATIONS. 

5.1 GENERAL s 

In the present chapter, design procedures for 

machine foundations will be summarized. The earlier methods 

were completely empirical, and the design of foundation 

depended upon the manufacturer's recommendation, A heavy 

foundation was believed to be trouble free. These methods 

obviously did not account for soil properties. 

The first rational approach to the problem is giv 

by Rool and Kinne (1943), who obtained the weight of foundation 

by considering its stabilizing action, so as to get the permissi• 

ble amplitude of vibrations. A value for soil weight is assumed 

empirically. This has been modified later on by Balakrishna 

Rao (1961), who assigns a definite value to the soil weight. 

In the above two approaches resonance was not at all considered 

though significance of the same was understood as early as 

1926 (Rausch 1926). 

The next group of methods used the published 

data, to give the empirical relationship between ; 

6) soil bearing pressure and the resonant frequency 

(Newcomb 1951) and 

b) contact area'@ri reduced natural frequency, 

(Tschbotarioff and Ward 1948), Tschebotarioff, 

(1951, 1953), for difference types of soil. 
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These curves are used in the design of foundation. 

The present state of knowledge lays stress on 

avoiding the resonance and limiting the amplitude of vibration. 

These methods use the various approaches to determine the reso-

nant frequency. All these methods are described in the 

following sections. 

5.2 BMP CAL METHODS 

The basic principle of these methods is that the 

dimensions or the weight, or the amount of concrete used in the 

foundation Is dependent upon the type of machine, its operating 

frequency or its br as horse power. This is based mainly on the 

recommendations given by the manufacturers, who observed from their 

experience that certain designs were satisfactory for the working 

of machine. In these methods obviously the type of soil, was 

not considered to be of much significance except that its 

bearing capacity should not be exceeded and that these should not 

be excessive settlement. 

The basic idea was to use heavy machine foundations 

which were considered as means of providing resistance to the 

dynamic reactions arising from the moving parts of the machine. 

An adequate mass of the foundations is also necessary in order 

to absorb vibrations and to prevent resonance between machine 

and the soil foundation system. Several recommendations, sometime 

contradictory are available to achieve this end. 

Table 5.1, gives the representative recommendation 



wv4/' 

1.03 

as to size of foundations to be adopted for various engines. 

5.3 TERZA0HIIS RECOMMENDATIONS  s 

Terzaghi (1943) has given the following sugges-

tions for the design of machine foundations. 

1. The dynamic pressure transmitted to the ground by an 

oscillating force Fo  sin wt, is given by Fo  x A, 
where NI  is the magnification factor, which in turn 
depends upon the frequency ratio. Hence, the total 

pressure on the base of the foundation varies periodically 

between Wo  + PA  and Wo  Pa. According to Terzaghi 

the dynamic pressure should be multiplied by a factor 

of 3 to obtain equivalent static load. Hence, the 

greatest total load on the soil is equal to 

Wo + 3 Pa  
+ 3Pa  

The greatest unit pressure is = .Wo --71---- per unit 

of area. This load should not exceed the allowable 

bearing value qa  as in static case for the soil, where 

A  = Wo  + 3'a  • 

qa 

2. For low frequency machines 4")&10  or frequency ratio 

is to be less than 0.5, which means that too should be 

more than twice the operating frequency. 

Now Ck) o 	X.g  = / 
Wo Ws 

As such the value of soil mass participating, if 

neglected will give more natural frequency than actual 

one and this will give the false sense of security to 

6001110414,410116(34119 b) 
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the designer: Hence the value of Ws, should not be 

neglected. 

3. For high frequency machines, 4)0  should be less than half 
the operating frequency. In such a case if Ws is 
neglected, we get a higher 44  0, and if this satisfies 

the requirement of 4)0  = 0.513thon we are all the more 

safe. 
4. For high frequency machines, there will be transition 

through resonant frequency, when the machine 
(itpto operating machine. Care should be taken to limit 

this resonant amplitude. 

6.4 MOLD AND KINNEIS METHOD  $ 

A fairly rational approach to the problem of 

design of machine foundations is to equatethe stablising force 
obtained by the weight of machine, the foundation block, and a 

certain portion of the soil to the disturbing forces caused by 
the reciprocating and rotating masses. 

Invariably the maximum magnitude of dynamic 
disturbing forces of the machine can be written as ; 

Fo 'Uri 4) 2 	
• • • . . • ***** • • • • • • • ***** • • • • (5.1) 

where Un isjsummation of all unbalances, including 
prbcating and rotating parts and is constant 

for a particular machine . 
c 	is the operating frequency. 

Let Wa  be the weight of the machine, and Wf be the 

weight of foundation, so that Wo  = Wa + Wt. Hool and Xinne (1943) 
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have assumed that the weight of soil participating is a constant 

times weight of foundation, that is Ws  = Calf. 

Further they have assumed that all these masses 

(Machine, foundation and soil) are accelerated to the same amount. 

Since the frequency of the large masses is periodic, and is the 

sane as the operating frequency of the machine, the assumption is 

made that motion is harmonic, in which acceleration equals Z(42,,  

where Z is limiting amplitude of displacement of this harmonic 

motion. 

The forces of small masses (Machine parts) with large 

accelerations are balanced by the forces of largermasses with 

small acceleration (inertia forces). 
W + Ws 1  Wf 

i.e. 	a 	IS 	X (Z. 02 ) = U
n 

60
2 .„. ,,,, .(5.2 at) 

Substituting W = Car, the value of Wf  is obtained as, 

We = (un,g w 
Wm) 	1  

1 + C 
	 (5.2 b) 

 

So that knowing Un, Wm  for a partial's? machine and Z 

the limiting amplitude, and assuming a suitable value of CI  the 

wieght of foundation required can be found out. 

Thus Hool and Kinn() have assumed that mass of soil 

oscillating is proportional to the mass of foundation,(roughly 

10 times). The soil mass participating is vibrations is probably 

proportional to the mass of foundation and machine and not founds.• 

tion only since they are likely to act as one unit. 
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The phenomenon of possible resonance is not even 

considered while estimating the weight of foundation. This means 

that the foundation as designed by this method should be checked 

for the frequency ratio, as recommended by Terzaghi (1943). 

6.5 DENSITY PRESSURE BULB CONCEPT 

Ba1akrishna Rao (1961) has given a method to 

determine the value of Ws  or C, for use in Hool and Einnels 

method. The method employed for the design is same as suggested 

by Hool and Linnet  but the value of constant (Ws/Wf) is deter-

mined on the assumption that Ws  is weight of soil contained within 

the pressure bulb intensity of yt lb/sq. ft. where y is the 

unit weight of the soil. The intensity bulb, being calculated 

on the basis of static weight plus dynamic weight acting as the 

concentrated load at the centre of the area of contact. The 

procedure as given by Balakrishna Rao (1961) is summarized here. 

Weight of foundation as obtained by Hool and Einne is 

Wf = 1 + 1  (  ) ) Ws ..........(5.2 b)  C 

1. For a particular machine, portion in the brackets is 

constant. Assume arbitrary value of C, and corresponding value 

of weight of foundation is determined. Let this be Wfl. Then 

the weight of soil participating will be Wsl  = Wil  x C 

2. The maximum magnitude of unbalanced inertia force is 

determined Fo. Then the equivalent concentrated load is Wa  + Wfi  

+ Fo. Let y be the density of soil in lbs/eu.ft. 

S. Then radius of density pressure bulb is given by radius • 

pi  = /(Wm + Wfi + Fo) 0.4775 
.(5.3a) 

4 



1 
the steps are repeated. By trial and error, correct value of 

If Wei  = Ws2  , assumed volume of C is correct. 

5. If not, assume, C = Ws2  with the new value of constant 
Wf 
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4. Volume-otsoil- contained in this pressure bulb is equal 

to 4 IT (Wm  + Wf1  + 7o  0.4775 )312  
it 	4  b) 

Hence weight of soil can be calculated by multiplying 

the above volume by Y . Let this be W 
s2 

constant can be evaluated. 

6. Then Wf can be determined by the final value of the 

constant 

An alternative method' is suggested by the same author 

which results in a cubic equation in C. This cubic equation has 

only one positive real root which gives the unique value for the 

constant. The cubic equation is obtained by equating the value of 

Ws  as obtained by a constant times WI., and as obtained by the weight 

of soil contained in density pressure bulb when Wf itself is 

expressed in terms of machine constants, and the constant C. 

The method suggested is the modification of Hool and 

Iinnels method. A rational approach to determine the value of 

Constant C is given. Except for this, this method also suffers from 

)the limitations of the parent method, viz., the phenomenon of 

possible resonance is not considered. It may have been preferable 

if the soil weight were assumed to be a function of both machine 

0 2  Af 



los 
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weight and foundation weight i.e. Ws  = constant x Wo  where Wo  is 

the weight of machine and its foundation, though it is realised 

that final value of Wf will remain sass 

8.6 NEWCOMB'S METHOD  s 

Newcomb (1951) from the past data of resonant frequencies 

in the engine and compressor foundation, has plotted the natural 

frequency versus the static soil pressure, and has obtained two 

distinct curves for hard and soft clay shown in Fig. 5.1. 

Be has compared these curves with the result obtained from static 

deflection tests as follows. Resonant freqeuncy for a weightless 

spring is given by ; 

0 	 g 
2 - 

  

 

411001 11 00, 0 4100 0(3109 b) 
Wo 

The term Wo/k is called the static deflection . which - 

is the deflection of ground under the load Wo. Substituting 

WWI = S in the expression for resonant frequency, we get ; 

Q.KS V;1 1 / 	 1 
-0 = 	 c.p.s. 	= 188 	/ 1 	spm  

8 
...........(5.4) 

From the load settlement curves for a particular value 

of deflection £ 	static pressure -  Load from curve  
Area 

and frequency is given by equation (5.4). These have also been 

plotted in figure 6.1. 

The dished lines represent the natural frequency, as 

obtained from static deflection tests. The correlation is good 

for the static pressure higher than 1000 lb/sq.ft. 
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The design of the foundation is done in the following 

manner s 

1. Determine the magnitude and frequency of the unbalanced 

forces. This information is generally supplied by the manu- 

facturer of the machine or can be readily calculated 

(Denhartog 1947). The natural frequency of the system 

should be at least twice the frequency of any substantial 

unbalanced force, i.e. the frequency ratio should less than 

0.5 

2. Knowing the natural frequency of the system, the static 

pressure is read from figure 5.1, for particular soil type. 

Soils other than those in Fig. 5.1, a similar relationship 

between 4.st and natural frequency should first be determined 
4..e tuc...., =-&,....- N.4.44.,.. from vibrator tests. 

t.)1 ml 	T 

3. The weight of the foundation is assumed is accordance with manu-

facturer's specifications, or general empirical recommendation 

for the particular type of engine. The area of the machine 

foundation is then fixed by knowing rst from item (2). It is 

assumed that no resonance would occur now. 

4. Amplitude of vibration is then calculated on the basis of weight 

less spring (Section 3.11) and can be read from Fig. 1.13 (b) 

In most of the cases the damping ratio may be neglected or a 

suitable value ( 14ewcomb suggests damping ratio as 0.25) can be 
assumed. 

6. Amplitude Z can be checked for the machine data. If it is 

. within permissible limits, the weight chosen is all right. If 

not revise the calculations for the weight and area in 
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accordance with item (2) and (3). 

This method suffers from the following limitations, 

1. There are only two lines, each for hard and soft clay 

(Fig. 5.1). There is no indication about the position 

for various other types of soil.  
u 

 

2. The plot in Fig. 5.1, is questionable, as our present 

knowledge shows that, the resonant frequency is not 

solely dependent upon -static stress. It is a complex 

factor of the type of soil, static pressures, dynamic 

loads, area of contact. The plot is intact an over-

simplification of the problem. In any case if such a 

relationship is to be obtained for a particular problem, 

the ratio of dynamic to static loads should be kept 

approximately the same as in an actual machine. 

3. The weight of soil participating is ignored. 

LA 
tt:i 

However, the method offers a rational basis of the engine 

foundation, as it takes into account the phenomena of resonance 

and tends to limit the value of amplitude of vibration. 

6.7 REDUCED NATURAL F11QUENCY METHOD 

This method uses, Tschebotarioft's plot between reduced 

natural frequency and the contact area, discussed in section 3.18. 

The plot is reprodubed in Fig. 3.18, The method consists of the 

following steps. 

1. A suitable foundation weight and area of the foundation 

block is assumed, depending on the machine dimensions, and 
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available space for the foundation. 

2. The type of the foundation soil is analysed, and an 

estimated line for the corresponding soil type is plotted 

Tschebotarioff's plot (Fig. 3.18), of 

reduced natural frequency versus the contact area. 

3. Reduced natural frequency is estimated from the plot for 

the assumed contact area. 

4. The resonant frequency of the system is then calculated 

from f o  f lar  

5. Knowing the operationalwo frequency of machine, the 

frequency ratio can be calculated, and checked if resonance 

is avoided. Also for the frequency ratio, the amplitude of 

vibration can be checked as in Newcombls method). 

6. If within required limit, the design is sate, otherwise 

assume another foundation weight and / or area. 

Its main limitation lies in the validity of the 

assumed plot between reduced natural frequency and the contact 

area. This has been discussed in section 3.18, 

5.8 METHODS EMPLOYING VARIOUS A'F'RO ACHES TO RESONANT FREqUENCIESt 

The general method of designing the foundation is to 

determine the natural frequency of the system based on analytical 

methods discussed in Chapter - 3. The common steps in these methods 

are t- 

1. The dynamic unbalanced forces, and their frequencies of 

operation are calculated, or these may be supplied by the 

manufacturers. 
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2. The dimensions of the foundation block are assumed, 

taking care that allowable soil pressures (which are 

less than in case of static loads only) are not 

exceeded. 

3. The soil type is analysed by borings, and sampling. 

To analyse the dynamic behaviour of the soil, i1.-situ 

vibrator tests, should be conducted. In these tests, 

either the velocity of wave propogation is determined 0 

(which will give value of E and 100, or the resonant 

frequency and amplitude of vibration, are determined 

for different base plate areas, and for different combi-

nation of static and dynamic weights. On the basis 

of vibrator data, El 10  can be determined by applying 

41( 
Sung's theory (described in section 4.4) From these 

rr
A  

., 	
dynamic tests the value of (rate of increase of 

Young's modulus .with depth) can be calculated with the 

help of Pauws' analysis (section 3.15). The value of 

decay factor, or Bo  a constant is Ford and Haddow's 

analysis can also be calculated(Section 3.9). The sub-

linear characteristics of soil spring can be determined 

graphically by a method giyen by Lorenz (1953) and 

developed by Alpan (1961), and described in section 

3.21. It is recommended that tests with at least 3 

different areas of base of vibrator be performed. 

Balakrishna Rao (1962) has suggested a linear variation 

f o 13 with area 	based on analytical results of Ford 

and  Pauw (1953) himself has assumed constant 

value of p . However, this is not confirmed. The 
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dynamic constants eisluted for three different areas will 

give a better idea of variation with areas and in some 

cases, it may be possible to extrapolate the constants for 

prototype from test vibrator. 

4. Knowing the above soil properties)  the resonant frequency 

can be calculated by any one of the methods described in 

Chapter - 3. 

A. Resonant frequency is then checked with operational fre-

quency of the machine, and if the frequency ratio is in 

safe limits (less than 0.5, or more than 2,0) )  the design 

may be checked for amplitude of vibrations, 

6. Usually the amplitude of vibrations, can be determined with 

sufficient accuracy by assumption of a simple spring )  in 

which the damping Value may be neglected or a reasonable 

value may be assumed (Fig. 3.13 b). 

7. If this is found to be within permissible limits)  which 

can be tolerated by the machine and the structure, then 

design is safe. 

8. If not, assume another preliminary design and repeat 

the above steps. 

Usually the vertical vibrations exist independently. 

If the vibrations occur in more than one degree of freedom)  the 

frequencies will be coupled as shown by Pauw (1953) and Hseih (1962) 

Then the only possible approach as to the determination of resonant 

frequencies are (i) Pauw's method of truncated springs, which 

gives spring factors and man factors)  and corresponding equations 

of motion)  and (ii) from the theory of vibrator on elastic soils, 
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the transformation is made to the spring factor and damping, and 

then equations of motion can be obtained, and corresponding 

resonant frequencies obtained. But Pauw's method is applicable 

only for coehesionless soils, as for cohesive soils, mass factors 

are not obtained. 

For fairly homogeneous soils, the theory of vibrator 

on elastic soils can be applied. 

509 SHORT COMINGS OF VARIOUS METHODS 1- •■■•••••■■■•0W 

In the emprical methods of design of foundation soil 

type is usually not considered. Emphasis is on providing rigid 

and heavy foundations. These methods do not take apparently into 

account the phenomena of reconance and the excess amplitude of 

vibrations. The past experience is relied on, but every machine is 

an individual case and the design of foundation cannot be genera- 

lized. 

The second group of methods (Sections 5.4 and 5.5) 

consider the stabilizing action of static weights of foundation 

machine and the soil participating to the dynamic forces produced, 

(Hcol and Kinzie 1943, Balakrishna Rao 1961). But these methods 

do not take into account the increased power input requirement of 

/

machines at re onance which provide the energy required for 

excessive vibrations. 

The third group of methods uses the published records 

of resonant frequencies, and emprical plots obtained from thia. 

(Tschebotarioff 1948,1951,1953) and(New Comb 1951). These miathods 
4 
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Advantage of it is that the shape or ratio L/B is taken into 

account. 

Ford and Haddow (1960) have treated the soil to be 

conservative system and have obtained the frequency expression for 

vertical and horizontal vibrations. This method also suffers fromilia00 

the limitation that no variation in resonant frequency is given 

with change in dynamic load. 

Balakrishna Rao (1960, 61, 62) has developed the 

concept of density bulb of pressure, the mass within which is taken 

as the mass factor. As this varies with dynamic load, as well, 

it explains the reduction in natural frequency with increase in 

dynamic loads as observed experimentally. The results obtained 

by this inclusion of mass factor are in good agreement with 

those obtained experimentally by Converse (1953). But it is not 

understood if this same mass factor can be taken for the soil, 

for which the value of E can be assumed to be uniform. 

liseih (1962) has given the transformation from the theory 

of vibrator resting on elastic solid to the spring with viscous 

damping. This would remove the necessity for tedious calculations 

and graphs involved in the theoretical approach. 

Dynamic characteristics have been determined by assum-

ing the soil to be sublinear spring (Lorenz 1953, Alpan 1961), 

This method though will give the resonant frequency for any dynamics 

load for the constant area, suffers from the limitation that the 

spring characteristics depend on area. Hence it is not possible 

to extrapolate for different areas. 



CHAF'TER, 

SUGGESTIONS FOR FURTHER RESEARCH.  

In view of the study made, the following suggestions for 

further research are made :- 

1. A simple equation forthe natural frequency of the system is 

evolved (Section 3.22), by considering the basic similarities 

of various analytical approaches.An experiment investigation 

regarding variation of parameters , A 1  i% 2 is recommended. 

The factors affecting k 1 and k 2 need be studied systema-

tically. 

2. Shape factors (m) that is the effect of shape of base area 

(characterized by Idi:3 ratio) needs to be investigated exper-

imentally. There are reasons to believe that an emprical 

shape factor based on Pauwis analysis for cohesive soils, 

may give reasonably good. results. However, experimental. 

investigation have to be made. 

3*  Balakrishna Rao (1960, 61, 62) has evolved density pressure 

bulb concept. It accounts for the change in the natural 

frequency of system with change in dynamic loads. This 

approach has given good results when Pawls spring factor 

for cohesionless soils (E increasing with depth) is used. 

Experimental verification of this approach for cohesive 

soils should be tried° 

Experimental investigations of bearing capacity of soil under 
A 

dynamic loads are being 4undertakin (A.S.T.M. 1962). Till 

now no definite conclusions have been drawn, as to how 

bearing capacity is affected by the dynamic loads. The 

practice is to take an equivalent static load for dynamic 
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load, and bearing capacity as in static case is taken. 

Proper study of the problem will prove extremely useful 

to the designer of machine foundations. 

5. The problem of machine foundations on piles has not been 

tackled at all. Experimental and analytical investigap-

tions of this problem need be made. 

6. No data from the actual machine foundations in India is 

available. It is suggested that a questionaire be pre-

pared and sent to various industries, designers, and 

research workers in the field of machine foundations. The 

purpose will be to undertake a systematic analysis of 

field data regarding actual behaviour of machine founda-

tions. This will help in co-ordinating the efforts of 

various workers and will consequently lead to a standard 

practice for the design of machine foundations. 

7. Richart (1953), has suggested a possible variation in 

pressure distribution due to change in dynamic loads. 

The effect of the change in dynamic load is not yet 

sufficiently accounted for. Further work will have to 

be undertaken for experimental determination of pressure 

distribution for different dynamic loads. In this regards  
it may be useful to study effect of ratio of dynamic load 

to static load on the natural frequency of system and on 

the ,amplitude of vibration. 

8. Though the experiments have been performed for vibratory 

loads, most of these are confined to vertical vibrations. 

The existing theories have yet to cue verified for other 

modes of vibration. Much work will have to be done in 



N OA) 'rji  

jAitOCA- 
0-)  

ir 	t'fr'" 
loU4AA"  (),IN 

( 

120 

Lutaiviot ? 

this field, before designers can be sure of the 

accuracy of the prediction of behaviour of actual 

machine foundation. 

9. Russians have performed the dynamic tests on relatively 

large footings (8 sq. meter or s  Barkan (1936,1963),. 

A study of Russian literature, which is usually not 

available in English, regarding machine foundations, 

may throw a great deal of light on the problem. A 

imitable study in this connection will be most desirable. 



CHAPTER - VII. 

CONCLUSIONS , 

From the study of the available literaturein the 

proceeding chapters, it has been observed that none of the methods 

for design of machine foundation is absolutely reliable. Following 

recommendations are however, made s- 

Resonance phenomena cannot be ignored in machine 

foundations and design should account for it. 

For soils, where it can oe assumed that value of E, 

increases linearly with depth (for sand, and normally loaded 

clays), Pauwls method can be adopted with the modification that 

mass factor may be calculated by Balakrishna Raow's density 

pressure bulb concept. This modification in mass factor, makes 

the method complete for the vertical vibrations and other trans- 

latory modes of vibrations. 

For the rotary modes of vibrations, since the 

corresponding mass inertia factors have 'not been modified, the 

mass inertia factors given by Pauw only can be used. This method 

takes into account the shape of machine foundation, and hence 

can be applied for any foundation shape. The value of /3  should 

be determined from vibrator tests. The variation of p , with area can 

be taken into account by performing tests with different areas 

and A versus corresponding area plotted on log log paper. The 

actual 3 for the machine area can then be extrapolated by 

extending the straight line as recommended by Balakrishna Rao(1962). 

For cohesive soils for which value of E )  can be assumed 

to be uniform, Pauw's method cannot be applied. In this case, 
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the theoretical analysis by Sung (1953), can be made use of. To 

make the interpretation from vibrator test consistent with machine 

foundation, it is recommended that ratio of dynamic to static load 

be kept 4pproximately the same as in case of the protypee The 

excess dynamic load leads to jumping of vibrator (in which value 

of acceleration, Zo2 is greater than g which certainly is not 

the case with heavy foundation prototype. 

For other modes of vibration, Bycroft's (1959) analysis 

can be used and Bseih's transformation eases the calculation . He 

has considered only rigid base distribution. For other types of 

pressure distribution, concept of effective radius can be used 

without any sacrifice of accuracy. For any shape other than 

circular, the value of 1'0  is so chosen as to have equal area of 

base in case of translatory vibrations, and to have equal moment 

of inertia in case of rotary vibrations. A shape factor may be 

taken as in static case (Timoshenko 193?) or from Palm's analysis 

for cohesive soils which may be expressed as ; 

m = log LAi // 1.43-1 . 

As regards the amplitude of vibration, if it is 

determined by the model tests, the test vibrator should be arranged to 

have the same dimensionless frequency ' a' 	and mass ratio 'b' 

as the proposed foundation. This can be achieved by keeping the 

ratio of operating frequencies of the model to prototype as 

inversly proportional to the ratio of their linear dimensions 

and by selecting the ratio of the masses of the model to the proto-

type as directly proportional to the cube of ratio of their linear 

dimensions respectively. Then the amplitudes of vibrations in 



123 

prototype will be directly proportional to (Fo/ro)prot. 

(Byeroft, 1959). 	 (Fdro)mod. 

Usually the test for amplitude determinations is 

not resorted to. In most cases the amplitude of vibration can be 

determined with sufficient accuracy by simple mass spring 

analogy (Section 3.11). 

A simple equation, based on the general similiarity 

of analytical approache is developed, for determination of the w. 

natural frequency of the system. The parameters involved (\1, /1/4 2) 
can be determined by vibrator test in the field. 
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the transformation is made to the spring factor and damping, and 

then equations of motion can be obtained, and corresponding 

resonant frequencies obtained. But Pauw's method is applicable 

only for coehesionless soils, as for cohesive soils, mass factors 

are not obtained. 

For fairly homogeneous soils, the theory of vibrator 

on elastic soils can be applied. 

609 SHORT COMINGS OF VARIOUS METHODS 1- 

In the emprical methods of design of foundation Soil 

type is usually not considered. Emphasis is on providing rigid 

and heavy foundations. These methods do not take apparently into 

account the phenomena of reconance and the excess amplitude of 

vibrations. The past experience is relied one  but every machine is 

an individual case and the design of foundation cannot be genera-

lized. 

The second group of methods (Sections 5.4 and 5.5) 

consider the stabilizing action of static weights of foundation 

machine and the soil participating to the dynamic forces produced 

(Hool and Kinne 1943, Balakrishna Rao 1961). But these methods 

do not take into account the increased power input requirement of 

/
machines at re onance, which provide the energy required for 

excessive vibrations. 

The third group of methods uses the published records 

of resonant frequencies, and emprical plots obtained from thin. 

(Tschebotarioff 1948,1951,1953) and(New Comb 1951). These methods 
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recognise phenomena of resonance, but the plots represent over 

simplification of the facts and generalizations from limited 

data is questionabloe. An emprical equation for the resonant 

frequencies of sand has been developed by Converse (1953). This 

type of equation, is applicable only for the particular site. 

It is not economical to develope similar emprical expressions 

for subsoil on which the machine is constructed, as it will involve 

a large number of vibrator tests. 

The fourth group of methods gives due prominence to 

the phenomena of resonance, and uses any one of the analytical 

methods discussed in Chapter - 3, to predict the resonant frequency of 

the system. 

The theory of vibrator resting on elastic, semi-in- 

finite homogeneous, and isotropic soil, which is develo ed by 

Reissner (1936), 84(1953), Quinlan (1953), RichartT 953,60), 
eN, 

Bycroft (1959), liseih (1962 and others, suffers from the limita-

tion that real soils do not have the above properties. This 

limitation is in common with any* theory of elasticity when applied 

to soils. The value of dynamic soil constants E and 1) 	can be 

obtained from the vibrator tests, or by the velocity of wave 

propagation measurements. The pressure distribution below the 

base is unknown. Also it may vary with the magnitude of dynamic 

loads. For the rigid foundation and mats, the rigid pressure dis-
tribution can be assumed. The uncertainty in pressure distribu-

tion may result in an error of the order oft 11% in modulus of 

elasticity of soils (E) (Jones 1958). Though it is an experi-

mental fact that resonant frequency of the system, decreases 

with increase in dynamic loads, the theory does not give any 
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quantitative results. It may qualitatively be explained by assuming 

change of the pressure distribution. The theory is applicable for 

an axially symmetrical case (that is the circular machine or vibra-

tor). The results are likely to be different for different 

shapes of base plate of vibrator, or the shape of the machine 

foundations. A shape factor will have to be introduced, about 

which the present state of knowledge is not adequate. 

The other theoretical approach is to treat the soil 

as weightless spring, with the mass of vibrator, or, machine 

foundation, and some mass of soil, oscillating in simple harmonic 
motion as one system. But in this both the spring constant and 

the tell mass vary with the contact area, static and dynamic loads. 

The value of spring constants in static case as derived by 

Timoshenko (1937) vary with the pressure distribution well. These 

spring constants explain at least one thing that for increase in 

radius, the resonant frequency of the system, increases with 

contact area, which has been observed experimentally also (Lorenz 

1953). 
Pauw (1953) assumes the soil to be truncated tyramid of 

spring, and has given the expressions for the spring factors and 

mass factors for different modes of vibrations for ohhesionless 

soil in which E is assumed to increase linearly with the depth. 

For cohesive soils though the spring factors are obtained, mass 

factor could not be obtained dee to divergent integral form. The 

assumption in case of cohesive soils was that E was constant with 

depth. The method suffers from the limitation that neavihiation 

in resonant frequency with respect to dynamic load is obtained. 
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Fig.2.1 Kinematics of Pistono Cri3nk and 
Connecting rod motion. 
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Fig.2.2 Positions of Cranks on the Crank Shaft 
of a Multi-cylinder Engine (Credo 1959) 
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Fig.2.3 Typical Punch Press with Vertically Moving 
Platten. (Credet 1959) 

Fig. 2.4 Schematic Diagram of Cloth-weaving Isom. 
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Fig. 2.5 Six Modes of Vibrations for a Foundation. 
(lichart I  1960) 
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Fig. 3.1 Propagation of elastic waves into the 
soil beneath an oscillator. 

(Richart 1960) 
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7ig.3.3 Pressure Distribution assumed by Sung  (1953) Quinlan(1953) over a circular Region. 

a) Rigid base distribution. 
b) Uniform loading. 
C) Parabolic loading  (After Sung11953) 
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Fig.3.4 Degebo Type Vibrator and its operating  
principle (After Lorenz 1953) 
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Fig. 3.6 Characteristics of vertical oscillations for 
an oscillator with a rigid circular base 
reating on a semi-infinite elastic medium. 

(Richart 1960). 
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Fig. 3.? Concept of Equivalent or Effective 
Radius (Richart 1953) 
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force Fo  = mllw 2  

Oh/ as 10 sr 

XmaX = m14' /4)  r03 X
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max. 
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(2) 
IcmaX = Fo/Gro  • 4m ax. 
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Fig.3.10 Generalized foundation co-ordinates 
(Hseih11962) 
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Dynamic pressure is transmitted through soil 
containing a solid formed by the base and surfaces 

y = f(z), y = f(-z), x = 0(z), and x = .0(z) 

Fig.3.11 Soil as a conservative medium 
(Ford and haddow 1960) 
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Fig. 3.12 Mass Spring Analogy. 
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Fig.3.14 a) Phase angle between force and 
displacement ( 	) 
b) Rate of work as a function of frequency 

for various values of damping. 
a) (DenEartog 1947) b) Terzaghi 1943) 
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Fig.3.15 Proposed method of obtaining the active ground 
weight from the bulb of pressures. 
(Crockett & Hammond 1998) 
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Fig. 3.16 Equivalent Soil Spring Constants For 
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Fig. 3.1? Apparent mass factors for horizontal contact 
surface (eauw 1953) 
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Fig. 3.21 Soil characteristics found from three resonance 
curves by graphical methods (Lorenz 1953) 
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TAALE - 2.1 

SUMMARY OF INERTIA FORCES AND COUeLES IN FOUR-CYLINDER ENGINE. 

Crank cos cos2 

0 0  0 1 1 

1 90  180 0 -1 

2 270  540 0 -1 

3 180  360 -1 1 

Summation 0 0 

L cos  cos  L sin 

‘,/ 

.;  o  0  0 

0 0 

-1 0 

0 -3L 

0 -3L 

 

- L  o- 

 

-2L  -2L 

 

31,  0 

0  -2L 

i.e. Primary force, secondary forces = 0, while 

primary couples are not balanced. 



Nil 

F' without 
counter-wts. 

0 with 
counter-wts. 

1.41 F" 	none 

Two cylinders on 
guts crank.    

Cylinder at 900  
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TABLE -2.2 

SUMMARY OF UNSALANCED INERTIA, FORCES AND COUPLES FOR DIFFERENT 
CRANK ARRANGEMENTS. (N.:ad  19C1) 

F' = 00000284 W 2 cos 0  (Primary) 

F" = .0000284 W rN2 cos 20 (Secondary) 

L  z Distance between cylinder centers. 

Forces. Couples 
Crank Arrangements Primary Secondary Primary 

F' without 
Single crank counter-wt. F" none 

Fljr,  with 
counter-wt. 

Two cranks at 180°  
F'L without 

In line cylinders Zero 2F" counter-wt. 
F'L/2 with 
counter-wts. 

Opposed cylinders. Zero Zero Nil 

none 

Nil 

Two cranks at 900   1.41 F' without 
counter-wts.  Zero 
or 0.707 with 
counter-wts. 

1.41 F'L with-
out counter-wt. F"L 
0.707 F'L with 
counter -wts. 

Opposted cylinders. 2F' without 
counter-wts.  Zero 
F' with 
counter-wts. 

Nil none 

Zero 

Zero 4F" 

4.0F"L Zero 

Zero. Zero 

Three cranks-at 120  

11 9  Zero 

ULLA/1=MA 
Cranks at 1800  Zero 

1 
:ranks at 900  Zero 

ILL CAlnders. 	Zero 

3.46F'L with 
counter-14s.  3.4 F"L 
1,73 F'L with 
counter-wts4 

Zero 

1,41F1L without 
countermfts. 

0.707F1L with 
counter-16u  

Zero 

Secondary 

none 
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TABL7 - 3.1 

VALUE OF SHAPE FACrli 'm' 1t)F STVIT C CASE ( Timoshenko) 

L/B 	1.0 	1.5 
	

3 	5 	10 	100. 

	

0.95 	0.94 0:92 0.88 0.82 0.71 	0.37 

TARE -3.2 

TION 	Tv7241 NICT-A Al, AND S  AFT' (TIT, PR  ES11137,. ( LORIN Z 1934)  

Soil ype 	 Cps 	Safe soil pressure 
k sq . 

1.5 m peat bag on sand 

1.5 m old fillings m edi um sand 
th peat  r psi du es. 

Gravelly sand wi th clay 1 ense 
Old, strinDed-  (ill sin g filling 

Very old, stmped dan fillin g 
or logny 

Ter ti nary clay wet. 

Bi am cl ay wet. 

Very homo gen cou s, yellow  m edium sand. ( so call ed 
stettin sand. 

Homo gen Er u s gr avel 

No home gen enu 	dTh_sely p-ack ssiA 

Abso lu t el y dry ter 44k-r. ary cl ay 

Clo sely p ck ed m edium gr oirel 
Shell lune ( bed rods)  

12.5 

91.7 

91,P 

93.8 

04.1 

,r A 7 

26.7 

T.1 
30.0 

1,0 

IMO 

3.0 

4,5 

4.5 

4.5 
9/3 of the admissible 
compr es sion str ain. 

Mottled sand sine ( bed rock) 	34,0 	 - do- 
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TAME 3,3  

REIA TION BETWEIT  NOIR AL ArD SVPF,  SOIL PRESSURE ( Car' TETT I 
HxmoND 1943) 

P eat 	 7.5 

Tons Ey ft. 

Water logged estuarine silt 3.0 0.7 

Very light soft clay 12 1.0 

Light water logged sand 15 1.5 

Medium clay 15 2.0 

Hard peat and sand layers 17 2.0 

stiff claY 19 3.0 

Silt and sand mixed 23,3 3.0 

Sand and rubable loosely 
compated 23,5 3.0 

Lime stone 30.0 

Granite 40 

TABLE - 4.1 

TYpIcA,T, VAIN? FS O T polsFcr,s RAIrifriC R Li FFI=RTT T 501-0.15.1a  

Soil OR Rock Poisron' s Ratio 
Loose sand saturated 0.32 
Dense sand saturated 0..77 

0.36 Organic silty clay 

Sandy el ay 0.30 
Clay r (moulded 0.42 
Sand stone  0.11 0.12 
gig tes 0.10 0.12 
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Ratio of weeitt of 
foundation to RI gin e 
tad gh t. 

Gas Engine 

1. Cylinder 

4, 
6, 	11 

Se 	11 

3.0 

7.75 
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TABLE - 5. 1 

VARI(Tr3 1377)MM 	TIM\T 	SIZE OF M/ C FOUNDATIONS. 

DIESEL Err-N.7S. 

Cylinder 
4. 	ft 
6. 8. 

7.75 
7.4 
2.1 
L9 

Ro tar y con vet ter 

Vet' ti cal compoun 
gr erator. 

Ver ti -al trial e 
co upl ed. 

Horizontal cross 

Horizontal steam 
generator. 

Ver ti cal Diesel 

Vex ti cal Di es el 

d s team en gin e co u pl ed to 

expansion stern ein e 

compound to generator. 

turbine coupled to 

En pine counled to Generator . 

Engine coupled to Generator. 

0.5 to 0.75 

3.8 

3.5 

3. 15 

3.0 to 4.0 

1.6 

LI 1177 ( gas en gines)  

1. Horizontal engin e without outboar d.  
2. Horizontal engine t.th outboard bearing,  
3. Ver ti caler gi e withoutoutboard bearing.  
4. Ver ti ca]_ en gine wi th ou tto ar d hearing. 

Con cr ete 

14 to is cf t/ PHP 

19 to 	cf t/13M), 

7.7 tb 8.8 eft/ EfrP 

9.8 'bp 10.5 of 



161 

MOB fir ( 1942 ) 

Mul tt cylinder engines. 

1. ras m gin es, 

'1. Di es el 11 gin es. 

3. Steam en Fines, 

wet 1  t of foundation. 

1600 lb/ BHP 

1250 lb/ PEP 

500 lb/HP 

For sin gl e cylinder en gin es VI e abov e should be 

increased by about 40 to 60 percent. 

BOYM 

7n gin es running at 400 cpra or less 	vt, of foundation. 

3. Cylinder en gine 	 550 1b/ PEIP 

8. Cylinder en gine. 	 335/ 1 b/ PRP 



VITA 

NAME 	Umesh Kumar Bhatia 

BIRTH. 	5th March, 1938, Ubbavro (Sind now in 

Waakistan) 

EDUCATION, 	Govt. Sindhi High School, Rajendra Nagar, 

New Delhi, 

Hindu College, Delhi. 

D.S.D. College, Gurgaon, (Punjab). 

Indian Institute of Technology, Kharagpur. 

University of Roorkee, Roorkee, U.P. 

WARIFICATIONS. 

EXPERIENCE. 	Technical Teacher Trainee, 

University of Roorkee, 	3 years. 

Roorkee. 

PUBLICAXIONS. 	Nil. 

High School 	Ist Class 1954 

Inter. Science. Ist Class 1956 

B.Tech.(Hons) 	Ist Class 1960 

P.G. Diploma. 	Ist Class 1962. 


	62649.pdf
	Title
	Synopsis
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Bibliography


