A REVIEW OF THE BEHAVIOUR AND
DESIGN OF MACHINE FOUNDATIONS

_ By
UMESH KUMAR BHATIA

A
T HESIS

Submilted in Partial Fulfilment of the Degree of
MASTER OF ENGINEERING
(Soil Mechanics and Foundation Engineering)

DEPARTMENT OF CIVIL ENGINEERING,
UNIVERSITY OF ROORKEE,
ROORKEE U.P.
JUNE 1963,



(11)

CERT IFICATE

Certified that the thesis entitled "A REVIEW
OF THE BEHAVIOUR AND DESIGN OF MACHINE FOUNDATIONSY which
is being submitted by Shri Umesh Kumar Bhatla in partial
fulfilment of the requirements for the degree of Master
of Engineering in Soil Mechanics and Foundation Engineering
of .. University of Roorkee is a record of student's ewn
work carried out by him under my supervision and guidance.
The matter embodied in this thesis has not been submitted

for the award of any other degree or diploma,

This is further to certify that he has worked
for a period of 7/  months from /§NeoV: 1962 tolﬁt}'éwméi?:,
for preparing the thesis for Master of Engineering Degree
at this University.

Dated June ?/, 1963, (Shamsher Prakash) %87(
| Reader in Civil Bngineering,
University of Roorkee,
Roorkee,

Raphg



(111)
ACKNOWLEDGEMENTS

The guthor wishes to express his deep and sincere
gratitude to Dr. Shamsher Prakash, Reader in Civil
Engineering, School of Research and Training in Earthe
queke Engineering, University of Roorkee for his valuable
guldance, suggestions, keen interest in the work and
encouragement at every stage during the preparation of the

thesis,

The author is highly indebted to Shri H.A.
Balgkrishna Rao, Jenior Scientific Officer (I), Central
Building Research Institute, Roorkee for creating author's
interest in the subject and help given from time to time,

=308~



CHAPTER =

CHAPTER =

CHAFTER =

NOT ATIONS
LIST OF FIGURES
LIST OF TABLES

SYNOPSIS
I, INTRODUCTION
1.1 General
1,2 Role of Soil Mechanics
1,3 Goncept of Resonant Frequency
l.4 Semi-infinite Elgstic Solld
1.5 Mass Spring System
1,6 Use of Experimental Behaviour
1.7 Scope of Study.
I1, BEHAVIOUR OF MACHINE FOUNDATIONS.
2,1 General
2.2 Behaviour of Machine Foundation
2.3 Recipoocating Machines.
2.8 Kinematics
2.3.2 Multt Cylinder Engine
2.4 Punch Press
2.5 Looms
2.6 Electric moters.
2.7 PFans and Blowers
2.8 Pumps

2.9 Forg 1n§rﬁammers.

2.10

Classification of Dynamic Loads.

uirements of Machine Foundation.

ﬁoxlol Vibration Amplitude.
2,11.2 Resongnce
2.11.3 Hoight Base Ratio,

ill.
3ol

3.2
363
3e4
3¢5
3.6
347
3.8
3¢9
3,10

3,11
3.12
313
3.14
3015
3.16

RESONANT FREQUENCY,

General

S80IL AS ELASTIC MEDIUM

Elastic Wgaves.

Vertical Impulses at the Surface

vi

xii
xiii

Xv

OO O oW

Periodic load over a eircular Area(Reissner)29

Contact Pressures (Quinlan and Sung)

Concept of Effective Radius

Horizontal and Rotary Modes of Vibrations

Equations of Motion
Conservative system
Discussion

80IL AS SPRING
Weighless spring
Experiments by Degebo
Experiments by Vios

Experiments by Crockett and Hammond
Truncated Pyramid of Soil Spring (Pauw)

Bulb of Pressure Concept

32
36
37
39
43
45

49
53
56
57
59
61



3.17
3.18
3.19
3.20

3.21
3.22

CHAPTER - IV,

4.1
4,2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

CHAPTER - V,

S.1
042
5.3
S.4
5.5
5.6
5.7
5.8

Se9
CHAPLER = VI,
CHAPTER « VII,

CONTENTS (contds)

MISCELLANEOUS METHODS

General
Reduced Natural Frequency Method
Empirical Equation Due to Converse,

Departure from Theory of Harmonic Oscilla=- .

ting Point,
S0il as Sublinear Spring.
Basic Simmiliarity of Various Approaches.

DYNAMIC TESTING OF SOILS

General

Selsmic Methods

Early Studies - Till 1930.

Dynamic Constants by Resonant Frequency
Wave Propogation

Swedish Experiments.

Dynamic Stiffness

Laboratory Methods

Correlation of Egyn.with CBR Value.

Liscussion.
‘DESIGN OF MACHINE FQUNDATIONS,

General
Empirical Methods
Terzaghi's Recommendations.
Hool and Kinne's Method
Bensity Pressure Bulb Concept
ew Comb's Method
Beduced Natursl Frequemcy Mgthod
ethods employing various approaches to
resonant frequencies.
Shortcomings of various methods.

SUGGESTIONS FOR FURTHER RESEARCH,
CONCLUSIONS,
BIBLIOGRAPHY,

FIGURES.
Appendix (Tables)

VITA

- St = OB

&

BARTE

92
94
96

, 97

101
101

102
103

106
108
110

111
114

118
121

131
166

168



NOTATIONS \£

Symbol. Unitse
A - Area of the Foundati;n Base 12
a - Dimensionless frequency factor wro/-"?—"' -
a, - Value of 'a' at resonance, ¢ -
B - Width of foundation or vibrator L
b = Mass ratio = Mo /f To° | -
by - Ine¥iia ratlo I I_ /pr 5 _
by - Mass ratio due to quinlan = mo/2/>1'03 -
D'~ Mass ratio for infinite strip loading

= on,/p (/)R -
C = Ratio of Wy to We ...
¢ - Damping coefficient Pyl
Cq = Mdss factor. f v ...
Ci - Inertia factor- -

'd -~ Diameter of oircu.la\ur f'rase =  2r, L
E - Modwlus of elasticity ( Dynamioc) PI2
E(z) Value of modulus of elnsticgtyat depth 2 PL~?
¢ 'f'. Eccentrieity factor mlt/mo ‘L

r

P - Resulting force @acting on piston
FO - Maximum magnitude of dynamie force
P - Maxinum magnitude of dynamic force per unit

0
length ( Por strip footing) FLt

Py ~Vertical component of inertia force ¥

Px -Horizontal component of inertia force

P! .~Primary force

g o

F" ~Jecondary force



Cvii

Fiy Pg - Purctions of £1 ankf, £y = 5 !
2
F.Z = fl /{-'l* “f fl + fz | Lol
£ - Operating frequenc()of machine it
fﬁrf'- Reducel natural frequenc’ pl/2 4111
f(;/ - Resonant frequency of machine foundation ;1
/ goll systen T
iiffl,'fz Functions of (W, a ) for circular vibrator -
£xy £4 - Punctions of (V,a) for infinite strip
, vibrator. -
G - Modulus of Rigidity PL~2
g - Acceleration due to gravity LT~2
H - Height of the ec.g of machine above ground or L
height of the Cylindrieal vibrator. L
h - Equivalent surcharge = %S_’E L
I, - Mass moment of inertia. FLTZ
K - Spring constant FLﬁl
Ky - Ky, K, - Spring factor for displacement in -1
_ X,¥,2 directions respectively. PL
Kyz,sz',‘ny - Spring factor for rotation about
X,¥,2 axes respectively, FL.-
' modulus o -3
K' - Dynamie/of subgrade reaction. - 2"
k, - Coefficient of earth pressure at rest. -
[N - s | B ,
(L - Distance betwéen@@rank shafts, L
P |
L | - Length of the base of machine foundation L.
L, - Power input requirement : FL 1%
Ia'-o( 1) Dinensionless power factor = ,05/ 2 ro6 L _
* 2

L,(2) -Dimensionless power factor 2r,2/ P G I‘p
Lp - Work performed in one cycle Fol FLrL




KKH -

B
i

Vi1l

Length of cozmeéting rod | L
ecoentricity of rotating masses L
Maximum magnitude of exciting couple FL
Shape factor depending upon L/B -
Mass of machine foundation FLrl T2
Vibrator mass per unit length €infinite

strip vibrator) FL™RpR
Eocentric masses FL-1 o2

Eocentric masses per uait length "
( infinite strip vibrator). FL™° m?

Mass of crank pin ( Rotating parts, -1 2
including a part of connecting rod) FL * T

Mass of piston ( Reciprocating parts

ino}uding other part of connecting -1
rod el
. 12
Seil nass ( equivalent) PL™T
Revolutions per minute “ T=q

‘Magnification factor . -

Ratio of Rayleight wave velicty to shear -
wave velocity - A function of Poisson's

ratio,

Damping force )
Dymamic force itransmitted to ground. P
Sun of static and dynemic lcads F

" Allowable bearing copacity of soil L

Ratio of length to breadth of the

foundation base
Crank Radws

Radius of on.rcvlar v*ibrator

SERSEN

Radius of density pressure bulb.

Dynamic stiffness (Dynamic load per unit -1
deflection) . FL



-

8 ~ 4n/B ( Pauw 1953) -
Uy V“," W, = Translatory displacements of the
centroid of base of vibrator in
x,y¥,2 directions respecctively. L

UB:vg;W - Translatoy displacament of the
8 c.g. of mechine foundation in
XyY92Zy directions respectively. L
U, - Summation of all unb%;;nges in the machine. FT%
U, = Dynamic foroe/ /w 2
‘ S

VC’VR,VS ~ Velocitiew of nropogation of

compressive wave, Rayleight wave, snd -1
shear wave respectively. 7
Wy = Weight of maenine and foundation. r

We = Weight of foundation.

W - Weight of machine.

W. - Weight of piston ( reciproecating parts
ineluding a part of connecting rod). P

Wy - Equivalent weight of soil participating
in vibration. F

X,Y,Z2- Maximum amplitude of vibrations in x
direction ( Horizontal) y direction
Horizontal) and z direction (vertical) L
Xs7s2%y The ocoordinares of gentroid of base with
respect to the three coordinate axes :

assing through c.g. of the machine
oundation. - L

X, - Displacement of erankpin perpendicular to
line of stroke, L
yc ~ Displacement of erankpin parallel to line
of stroke. L
Yy ; Displacement of piston parnllel to line

Y
of stroke. L

(1)
2 -~ Non dimensiongl amplitude factor

- ’o‘rzl
2
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85t

@d'y\
1
¢

¢

Non dimensional amplitude factor
- Gr./
ﬁgﬂz;_~_ Z
Twice the slope of truncated spring.
Raté of increage of modulus of elasticliy
with depth

Unit welght of soil

Yz, Yny , Yyz, Yz Spying facrors
(Pauw) for horizontal contact surface

(xy) for three translatory and three rotary
modes of vibration. .
Angular rotational diSplacemeﬁg of piston
02 The rotational diépiaoements of maaxinec
foundation about x,y,2z axes resp:ctively,
Deamping factor
Constants of equation (3.40)
Decay factor.
Poisson's ratio.
Mags density of soil.
Streas
Stntic stress
Dynanic stress
Period of vibrations.
Mngular displacement of erankpin
Anplitude of rotation.

¢’x,y,z, - MAmplitude of rotation about x,y,z, axes

respectively.

(P(l)max - Max, amplitude factor = Gr03 ¢ max

M

¢mv) - Punection of Poisson's ratio,.

?L

P12

FL%

FL2
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w

Wo

Phase angle difference between the dynamio

force applied and the resulting vibrations.

Angular velocity or circular frequency
e
Natural freauency.
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SYNOPSIS

A machine foundation differs from any other
type of foundatbn, because of the dynamic nature of loadse
T411 about 1930, a machine foundation wes designed based
upon emperical methods. These methods dﬁd,not take into
account the properties of the underlyina soil. In the
years to follow, attempts haVe been made to understand the

~ problem scientifically,

Characteristics of the underlying soil strats
affect the resonance of the system with the ‘machine., The
available literature on the subject is‘8cattered and no
systematic investigation, covering the ££esent trend 1s
available., The present investigation of the bshaviour and
design of machine foundation is intended 1o make a systematic
study of avallable literature and is believed to lead to a
better understanding of the problems connected. The various
approaches to the design of machine fpundations are critically
reviewed, compared with sach other and their limitations
discussed, A simple emprical equation for determination of
resonant frequency of the system is developed. suggestions

for further research have also been made,

TITT,



CHAPTER « I

INTRODUCTION

1,1 GENERAL 3
The function of a machine foundation similar to

any other foundation, is to transmit the imposed loads safely on to
the s0il, on which it is placed. Its special feature, however, is
that in addition to the satie¢ load, due to the weight of machine,

and the foundation, vibrating or pulsating forces varying with time
have to be considered. Such forces may be of short duration, such

as shock or impaot forces in forging hammers or may vary periodica~
1ly a8 in reciprocating and rotating machines with unbal ance masses,
As @ result, waves or steady vibrations are set up in the foundation
soil. If the natural frequency of the?foundation soil system

hgppens to coincide with or lie elose to the frequency of the exciting
forces generated by the machine, exggsive vibration amplitudes may

oceur, which may lead to the structural damage or the operational
failure of the machine.

1,2 BOLE OF SQIL MECHANIG

Problems connected with machine foundations,
were not considered to be important till the advent of the thirties,
when the greater use of heavy industrial plants, and consistent
failure of machine foundations, attracted attention of designers
(Tachebotarioff 1951). Before that, the design of machine founda-
tions was purely empirical, the simplest being to provide heavy

foundation bloeks. It was considered adequate to rest the machine



2
on a rigid foundation so as to avoid excessive amplitudes of vibration,
It was believed that natural frequency of the rigid foundation would
be higher than the operating frequency of the machine. But invariably
the rigid foundation has to rest on the ground. The result is that
rigid foundation transmits the vibrations to the ground, which is
relatively elastic, so that danger of resonance is still there. The
importance of this fact was realized, when even after the provision
of rigid foundation, excessive vibrations due to resonance were
caused, which led to operational failures of the machine. With the
advent of soil mechanics, and the sclence of structural dynamics, the
problem of machine foundation has been tackled mofe rationally and
scientifichlly. The investigations, both theoretical and experimental
have led to better understanding of the behaviour of machine founda=
tions, resulting in economy. At the same time, the number of failures
of machine foundations, which are mostly due to excessive amplitudes

of vibrations, have been minimized.

1,3 CONCEP? OF RESONANT FREQUENCY

Experimental studies on the phenomena of ground
vibrgtions, were first systematically conducted by Degebo (Deustehe
Gesell§§;;;§£§ fur Boden.mechanik) organisation in Germany from
1928 to 1939, Their earlier experiments were with a vibrator ‘j ;
without any variations in dynamic force and static forces. Thelr
Tesults showed that soil at any site has a natural frequency or self
frequeney of vibrations, depending only on type of soil (Lorenz
1934). This was further substantiated by Andrews and Crockett (1945)



who independently determined the natural frequency by a study of
resonance between heavy industrial plant, and the ground. At about
the gsame time as the Degebo's experiments with vibrator on the
ground, Vios, the Institute for Engineering Foundation Research,

performed similar tests in Russia (Barkan 1936).

X
5 Later experimental and enalytical studies

(Lorenz ]:g_atz‘ 1953, Reissner 1936, Sung 1953, Quinlan 1953,
Richart 1960, Tschebotariof) 1948) have shown that the natural
frequency of soil as such is meaningless because the resonant

frequency is not only dependent upon the type of underlying soil,
~ ]

but also on the area and“shap/e of contact, magnitude of dynamie

and static loads. Hence it will be proper to use the term,resonant

frequency of the machine ,fou.ndationﬁsoil system, or simply the v
resonant frequency of the system.

The problem of determining the resonant frequency .
of the system has been Yackled both by theoretical methods and
empiricsal methods based on past data of resonance, The thecretical
approaches which have been developed are based on the assumption of
(a) 80il a3 an elastic solid and (b) Soil as a spring,{uaually

,\elast‘@

1.4 SEMI-INFINITE ELASTIC SOLID 3=

One of the theoretical approsbhes is concerned with
the "Dynamic Boussinesq's Problem™ , This approach considers the
machine foundations resting on the ground and oscillating on the
surface of the seml-infinite elastice, isotropic and homogeneous meddunm.
Prominent contributions based on this concept are those of Reissner,

(1936), Quinlan (1953), Sun((1953), for vertical vibrations and those o



4

Arnold, Byeroft, and Warburton (1955), Byeroft (1959) and
Hseih (1962) for other modes of vibration viz., horizontal and

rotational modes,

This snalysis of course will necessitat';e‘ the deter-
mination of the dynamic response of the ground in terms of dynamic
soil constants that is modulus of elasticity or modulus of
rigidity, and Poisson's ratio. Dynamic testing of solls ¥s done
by measuring the velocities of propogation in the medium,.
Rayleigh (1865), Lamb (1904), Leet (1950) and others have analysed
the velocity of wave propegation in the semi-infinite elastic ,
homogeneous and isotropic medium. Bergstrom and Linderholm 1§46)
Bernhard and Finelli (1963), Jones (1955, 1958) Bernhard (195'8i
Vanderpoel (1951), Nijboer and Venderpoel (1953), Nijboer (1959)
Heukelom and Foster, (1960) and many others have given the
analysis spplicable to goils for determining in=situ dynemic

constants,

1,5 MASS SPRING SYSTEM 3

The other theoretical approach is to assume the
ground to be a spring, with or without, damping. In initial
studies (Ramnsch 1926) spring was assumed to be weightless and \,\6"5
linear. But experimental studies by Degebo (Lorenz 1934) ,@9
(Barkan 1936), and their subsequent analysis have shown that some
soil mass also oscillates with the machine foundation. This mass
of s0ll was found to be 4 to 10 times the vibrator mass by Degebo
studies. Vios concluded it to be relatively insignificant and have}] ‘
neglected 1t to obtain the dynamic modulus of subgrade resction,



7 But indirectly 1t was accepted that soil mass could not be neglected

et o

and that its value must lie between 2/3 and 1} times that of rounda-
tion. The above two statements seem to be ccggétr:r;% Torzaghi (1943)
recommnends the soil mass to be 3 times the dynamic force transm_itted
to the ground. Anderevs and Crockett (1945) Crockett. x)_ \mond
(1947,48, 49) suggested that mass of soil which vibrates with the
foundation must bear some relation to the bulb of stress, which
gives the stress distribution under a uniformly loaded area on an.
elastic medium. None of them gave any precise relationshipo It
was, however, reg‘a:ded that this mass must‘ vary with the area of
contact and the dynamic unbalance forces. Balakrishna Rao: (1960, ‘
61, 62) further advanced the concept of stress bulb and ham
suggested that the mass oscillating should be ta&en as the massm‘ ‘
of the soil within the pressure bulb of the same intensity (1b,

/8q.f%s) @s the density of the s0il (1b./cu.ft.). k —

The value of the spring constant has been teken

a8 the load required per unit reversible deflection (Barkan 1936}
Newcomb 1951), Lorenz (1934), has obtained k' gggzyhi‘cmng(_lgl_gg 2
of subgrade reaction and Wg the soil weight, from the two.vibrator
tests under different loading conditions and with different,.areu,
by essuming both k' and Wy %o be constant, But thJ.s agsumption
is not justified, as the tests have shown that both spring constant'
and soil weight vary with different vibrator sizes and loading conditions

'o#en on the same type of soil.,

Pauw (1953) by assuming soil as truncated spring has
given the expressions for spring factors and mass factors for different

modes of vibration.
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1,6 USE OF EXPERIMENT AL BEHAVIOUR

Another approach uses the past records of resonant
frequencies observed, Empirical relatlons have been developed.
Tachebotarioff (1948, 51, 53) has obtained logirthmic relationship
between reduced natural frequenoy and the contact area., Newcomb
has plotted the resonant frequency versus the static pressuresiv?

Another gpproach which considers soil as sublinear
spring, uses the resonance curves obtained from the test vibrator,
to plot the sub=linear characteristic of soil, has been put forward
by Lorenz (1953), and Alpan (1961).

1.7 SQPE OF STUDY ¢

The problem of machine foundation has been receivdng
importance since the thirties of this century. The importance of
underlying soil strata has been realized, in respect of the resonance -
phenomena, The available literature is scattered and no systematie
investigation covering the present trend is avallable. .It is felt
thaf this investigation of the behaviour and design of machine
foundation, based on a systematic study of avallable literature, will
lead to better understanding of the problems connected. The nature
of the problem consists of a system to be analysed (alpan 1961),

This system consists of the machine, the foundation and the soil, and

involves the following procedure s=

a) Weight and operating frequency of the machine
and the magnitude of the dynamic forces, is given.
b) The properties and the dynamic response of the

foundation soil are to be determined, or assumed,



¢) The foundation is designed based on 30il properties,

The genersl shape and dimensions of which may be
assumed for preliminary design.

The type of the foundation considered in this 1nvestigé -
is massive bloek resting directly on the ground. Isolators and shock

absorbers are not considered.

Review of the available literature on resonant frequency,
leads to an interesting observation., Spring constant in all the
approaches can be expressed as a simpise multiple of G ro, while the mass
factor a simple multiple of / ros,

where G is the modulus of rigidity of underlying soil,
f 1is the mass density of underlying soil,
and ro is the radius of t@e foundation base, in contact with soil,

Out of the available approaches to resonant frequncy
determination, the theory of vibrator resting on semi-infinite iso-
trOpic,homogeneous, elastic medium, i1s recommended for use in cases where
80il ecan be assumed to have fairly uniform modulus of elastieity., This,
if coupled with Hseih's transformation, gives easy way to calculate

/resonant frequencies. For soils, where modulus of elastiecity can ﬁg
;assumed to increase linearly with depth Pauw's (19053) analysis is ﬂdj'
recommended, Limitations of the applicability of theoretical analysis

to the machine problem have been discussed,

Almost all the experimental investigation reported
in literature have been carried out for vertical vibrations. The
approaches already existing should be verified for other modes of

vibrations as well, Pressure distribution under machine foundation have



@ not been investigated. Information on effect of dynamic load on
bearing capacity is not available. Based on these observations,

suggestions for further research have been made .

It 1s felt that the dynamic behaviour of soil be evaluataed
by observing the resonant frequency of a test vibrator under different \
loading conditions, and contact areas. The information obtained then
can be used for determination of resonant frequencies of the foundation

gsoil system,

TN
- -
‘L\#-"



CHAPTER = 2,

BEHAVIOUR OF MACHINE FOUNDATIONS

2,1 GENERAL

Machime foundations are important substructares. For the
safety of operation of every factory, dependable foundations of its
machines, are essential, If the foundation is not properly designed,
not only the machine gets damaged but the adjoining structures may
also be damageds In addition for proper working conditions in a
- factory, the vibrations produced by the machine should be such as not
to interfers with the worker's comfort. For a'prOper design of machine
foundation it is essential that 4ts behaviour be understood. The
discussion to follow has been prepared from evidence reported in
literature from time to time. Also it is essamtial to know the magni-
tude of the dynamic forces and its frequency. The dynamic loads as
produced by a reciprocating machine is dealt in detail., The other
cases have becen briefly referred to. Finally the requirements of

machine foundation based on its behaviour are discusseds

2,2 BEHAVIOUR OF A MACHINE FOUNDATION -

A machine foundation is different from other foundations,
mainly because this is subjected to a dynamic load whieh 1is usually
periodies Under the influence of this load, the foundation starts
vibrating, For every system, there is a natural frequency, which is
defined as thse rrequéncy with which it will vibrate, when subjected to
free vibrations. For a body with spring stiffness as k and mass my ,

the naturaqureqnancy @, 1s given by (neglecting damping)

COO‘ / __!_‘____ eoesessesncseces(2s1)
n,
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Under forced vibmations, as in machine foundations
the phenomena of resonance occurs, if the operating frequency coincides
with this natural frequency. For no danping, the amplitude at resonance
tends to infinity. If demping is included in the system,the amplitude
of vibre$ion is still (meximun close to resonance)though of finite

value. The ratio of actual smplitude to free emplitude(the static 2
defleqfc}g;; of sprin% due to dynamic load) is called magnification

-

T e e -

factor Ny (Denhartog 1947). At frequency ratio (the ratio of operating
frequeney to ths resonant frequency) of 1.0, this magnification fastor

is maximum,
The transmissibility is defined as the ratio of force

transmitted to the dynamic force gpplied. For small damping, transmi-
88ibility is maximum at frequency ratio of 1,0, For the machines having
dynamic loeds independent of frequency,it 1s maximum at frequency
ratio of 1,0, for large,damping as well, But for the machines having
dynamic load prOportior?fto the square of the frequency (which is
true for rotating and reciprocating machings), transmissibility is
maximum for higher frequency ratios and for large damping (Mykelstad
 1956) . In such cases it is preferable to keep "frequency ratio |
much lower then 1l.0.

In addition, at resonance, the power required to keep
the system oscillating is maximum. This has been observed experimen=-
telly by Lorenz (1934), Crockett and Hammond (1948) and analytically
by Relssnér (1936), Sung (1953), quinlan (1953), It is seen that at

e Whey!
resonance, the amplitude of vibration, the force transmitted, and the

power input requirement of the machine, are maximum, Hencse resonance

has to be avoided,
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In an attempt to avoid resonance, the foundation was made
rigid and firme The natural frequency of such a rigid body is very
high. The value of spring constants of a rigid body like mass conerete
foundation is very high. The equivalent spring constant (K) 1is
(Timeshenko 1937)

k< 5B N €17

where E is modulus of elasticity.

and v 1s the Poisson's ratio.

Values of E and ) for the concrete are of the order 2L

2 to 5 x 10°

psl and 0.15 respectively, This would give a very high
natural frequency of the foundation, with hardly any chance of resonance
with machine's operating frequency. But it has been observed that even
these massive foundations start vibrating and sometimes the amplitudes
become quite large. The answer lies in the fact, that though the
foundation 18 rigid in itself, it is resting on the ground. The ground
i1s not so rigid and is relatively elastie.s The value of E for solls
is of the order of 10 to 15 x 103 lbs/sq.in., and poisson's ratio of'
0.3 to 044 This means that 80il and foundation are in series (two

el ’f/: ’7"(!5
fr
springs in series), with the soil charackeristic preddminating. That is

why phenomena of resonance can be noticed even after providing rigid
foundation, Therefore, the term resonant frequency should me an.

natural frequency of machine foundation and soil system.

Consider a rigid, concrete foundatieén block, which supports
a steam engine with speed of 250 r.p.m, resting on ground, Assumqthat
resonant frequency of the system is 300 r.p.m. This will lead fe fairly
excessive amplitude of vibration, as the frequency ratio 1s close to

unity. If this foundation is made 'stronger' by adding more concrete
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mass to the foundation block, the value of m,, increases. This
will lead to the decreased resonant frequency of the system, and the
frequency ratio approaches closer to unity leading to still more ?&vere

vibration emplitudes, This example shows that the quali{i}or the foundap

tion does not necessarily improve with the mass of the foundation block.

The forced vibrations are transmitted tﬁ@ugh the ground
/EBVan after some distance, if some adjoining foundation has a natural
frequency equal to the frequeney of transmitted vibrations, the resbnanco‘
may occur, lesding to its damage. For this reason, the foundation under
heavy machines and forging hammers are 1solated, and shock absorbers
are used, The study of these shock absorbers and &solators is beyond
the scope of this investigatioms ve e .

243 RECIPROCATING MACHINES

The machines considered in this section are those which

transform the rotational motion to, reciprocating motion and vice versa. ?

s o
et b

The machine may be driven by the reciprocating motion, as an 1nternal
cumbustion engine, or by the rotetional motion, as ai?ﬁé;&;ressor. The
essential moving elements of such a machine are a piston, a crank, and
the connection rod., Vibration of the machine may result from the gés
pressure applied periodically to the piston, and from the inertia forces
associgted with the moving parts. It may be possible to balance the
inertia forces, and couples in certain types of mubti-cylinder machines,
but this eannot be achieved in one or two cylinder machines. The gas
pressure acting upon the piston reacts as the foundation of the machine

in the form of a couple which is transmitted to its support,

2.3,1 INEMATICS ¢
The Kinematics of the mechanism being considered is

illustrated by Fig. 2.1, The crank rotates in a counter clockwise
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direotion with constant angular veloeity w o The piston is const-
rained to move along a vertical line in a manner determined by the
erank radius r, and length of conneeting rod 2 + The upper most
position of the piston is taken as the co~ordinate reference, and down=-
ward displacement Yp of the piston 1s taken as positive. The piston
displacement is then given by j

yp =T ¢+ l-rcoswta Leos o esesensssensse(2:3)

Now sine =_.T_ sin w t.

L}

/
o% cos & / le=(r/t )2 sinzw t.

*

This can be expanded by the bionomal theorem as follows s-
2
cos ® = (1 =#(2/p ) sin® @t - .81.(r/e)4 sint Wt 4 mmeee )

2
Now sin w ¢t = §(1 = cos 2wt), and dropping all powers of r//¢ ’

greater than the second, equation (2.3) becomes,
r

yp = ®(1 + ) =r (coswt + 4" cos 2 W t)

000..0.0000000"0(204)

Expression for the veloecity y‘p and acceleration is 9'p of the piston

are =

ip =rw(81nwt + 31n2wt) 0000000'0000(205)

¥
2¢
?0 2 r

P =T 0 (COS wit + cos Zwt) 000000000(206)

¢

The crank pin moves in a circular path with the axis of
the orank shaft as a center. Taking the same system of co-ordinates
equations that define the vertical and horizontal components of the
crankpin motion are readily written as follows :=-

yc=t+r(l - cos Wy), |
Jo=F Wsin w t. PR ¢ 5 )

i;: rwz Cos wt .
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X, =r sinw t,

¢
*
x°=rwcoswt ’ o.-.....o.o...............(2.8)

fc = rf sin @t

vhere Y, and x, are vertical and horizontal components, respectively,

of the crank pin displacement.

The motion of the conneeting rod is rather complicated,
A simplification which is usually adequate, is obtained by assuming the
connecting rod to consist of (1) a concentrated mass whose motion
corresponds to that of the piston and (2) a second concentrated mass,
whose motion corresponds to that of the crank pin,both the masses Joined
by a massless strut. Designating the mass of the piston and erank pin
(including the comneeting rod) by mp snd mc respectively, The vertical
¢omponent Fy is obtained from the product of these masses and their

respective accelerations as given by equations above,

F. mp }.'1'; + me frc':

J

(mp +me) rw? cos w t +mpr(r/¢ w2 cos @wWt

cesecsscssscees(2:9=a)
The horizontal component Fx of the inertia force results
only from the rotating mass mc (crank pin + part of connecting rod)
and is readily written as i Vi

Fx = me i; = e rw2 sin Cdt/ 0000000000(209 b)

Thus we see that inertia forces Fy along the line‘of '
stroke consists of a force with a frequency of «W (the same as that of
rotation), called primary force, and a force with a frequency of 2« ,
which is called secondary force. In addition there is an inmertia force

Fx, perpendicular to the line of stroke with a frequency of “
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The crank shaft can be counter-balanced so that the mass
mg is substentially zero, Thus Fx (horizontal component of the inertia
force) is eliminated, but the verticgl force resulting from the single

reciprocating piston 18 a source of severe unbalance, Therefore,
equation (2,9a) becomes j

2
F = mp r o cos wt +r(r/¢§ ) cos 2wt

= mp T u? (QOB‘dt + ( r/e )003 2 Ldt) fooooooooto(ZQlO'&)

Changing By in to the weight of the piston in 1bs. taking r in inches,

and @ = 2 WN/60 where N is number of revolution per minutes, we get

Fy = .0000284 Hb r N%(cos £ + cos 2 P .%%._. ) eesee(2610=D)

where g = W ¢,

If higher terms of r/{ were not neglected, we would have obtained
(Newcomb . 1961)

Fy = ,0000284 wp r Ha(cos g +cos 20 +Bcos 4¢

//” +Ccos 68 )
z ,0000284 WP er X (constant) ............(2010-3)

Higher harmonics, which are of usually negligible magnitude can be
excluded without much effect on the unbalance dynamic force,

24342 NULTI-CYLINDER ENGINE 3

In a multicyliﬁder engine, some or all of the lnertis
forces and the couples resulting therefrom, may be balanced by proper
arrangement of the crenks. The condition necessary for such balancing
are indicated by reference to figure 2,2, The cranks are numbered, and

the angular position of each is indicated by ¢, , referred to the position
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of orank O, The position of each crank along the shaft ia indicated
by the distance Ln from the crank 0., If the reciprocating and rotating
mass for each cylinder are respectively equal, the following conditions
for balance of inertia forces are obtained.

Py = 0 cos #. =0 and Scos 24, =0 |
Z 7 Z o Z n 000000000(2011"‘&)

E_Fx =0 i_sin ¢n =0

In a multicylinder engine, the inertia forees defined
by equations (2.9-a) and (2.2 =b) create couples about the horizontal
and vertical transverse axes., For convenience, the couples are taken
with respect to axes through the 0 crank as indicated in Fige. 2.4, The

following eonditions for balance of inertla couples are obtalned,

SipnFy =0 sLycos g, =0and S cos 24 =0

ooocoonoooooo.(a 11-b)
s1 Fy=0 TLystn g, =0 )

For example, consider the four cylinder engine, (Crads,
1961) whose crank angles are 0, 90, 270, 180 degrees, and where cranks
are épaced apart equal distances L along the shaft. Table 2,1
is now established in accordance with equations (2.11=a) and (2,11=b)
It is evident that the primary and secondary foreces are bal anced
because S cos @ = Scos 2f = Ssin @ = 0, Furthermore, the secondary
couples are balanced because =L cos 2 ¢ = 0, However, s L cos # # 0,
and £L sin # # 0, the primary couples are, therefore, not bal anced.
The engine will thus tend to vibrate in a rotational made about a

transverse axis,
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Table 2,2 gives the summary of unbalanced inertia forces

and couples for different crank arrangements, as given by Newcomb,
§1951),

2,4 PUNCH PRESS 1

Machinary used for forming metal by shearing, drawing
or punching is a frequent source of disturbance in industrial plants.
The machine most commonly used for these operations 1s the punch press
illustrated in Fig. 2.3, 8uch a machine generally embodies a relatively
heavy, rigid lower portion carrying the stationary platt7{L, and a
vertieally reciprocating head carrying the moving platten. The moving
platten is usually driven by a crank and connecting rod, and in some
types of presses i1t moves in a line inclined to the vertical,

A punch press is a machine of conservative momentum.,

N e e i

There is no gddition of momentum from an external source, and the
machine cannot permanently acquire a velocity, although it may acquire
a displacement, In other words, if the press were supported by some
means that offered no constraint to its movement, it would move inter=-
mittently with a Short step at each cycle of operation, If supported

a rigid foundation which prevents appreciable movement, the forees that
tend to cause this stepwise displacement are transmitted directly to

the foundation, The foundation in this case has to be rigid aﬁd capable
of suffering impact cansed by the punching press (Barkan 1963),

2.6 LOOM3S

One of the most troublq§:;5§5> machines with regard to
vibration and shock is the eloth weaving loom. The principle features
that cause vibration and shock are illustrated schematically in Fig.2.4.
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e

They lay Y relatively A;;;Q member 18 driven with a horizontally reci-
— T
procating motion by a palr of cranks and connecting rods. A shmttle

travels alternately in opposite directions, across the lay, from one

ghuttle box to the other by means of a mechanism,

from loom operation are t=

)

b)

The two principal sources of vibration ‘and shock resulting

The inertia forces created by the reciprocating motion of
the lay is sustantial., This 1s almost a pure harmonie
force acting in a horizontal direction, and the reaction
upon the freme of the loom 1s at the crank shaft. When
looms are installed on the upper floors of mills, the

entire building may sway at the frequency of the lay

motione It is characteristic of textile mills that the
amplitude of sway continually increases and decreases as

the many looms operating nominally at the same but actually
at slightly different speeds, change phase relations. There
is sane evidence that the magnitude of sway 1is occasionally
inereased by resonance of the building with the looms (Crede
1951), The floors that support the looms are caused to weave
or bend under the iﬁfluence of the moment resulting from the
lay foree acting upon thénloom freme at the height of the
crank shaft above the floor.

The force that propels the shuttle is in the nature of an
impact., The complexity of mechanism employed for this pure
pose makes the exaect nature and direction of this impact
uncertain. Although the picking action occurs with the

same period as the lay movement, the actual force is induced
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for only a small fraction of period. Since the

period of application of picking force is smaller than
the period of the lay force, the associated frequencies
are higher,

2,6 ELECTRIC MOTORS

An electric motor is comprised of two prineipal parts,
a startor, and a rotor., The torque delivered by the motor results
from the attraction of a magnetic field on current - carrying conduc-
tors of the rotor. The magnetic field is created by electrie current
flowing through the winding of the startor., Any variation in the
current is reflected in the strength of the field, and consequently
in the torque. In a single phase 60-cycle alternating current motor
for example, the current in the windings of the startor passes through
zero 120 times per second. There is thus variation in torque at a

frequency of 120 c.p.S,

The vibration created by the operation of an electric

motor may result from =

a) the periodic variation in the strength of the magnetic

field and

b) inertia forces associated with unbalanced rotating parts,
The power output of a moter is manifested in a torque applied to the
motor shaft, and en equal and opposite torque reaction is exerted upon
the startor. The motor support (foundations) thus experiences, in
the form of fibration, the periodic fluctuation in the strength of
the magnetie fields This disturbance 1s fundamentally torsional in
nature. Vibrations resulting from the unbalance of rotating parts
should be treated in the seme manner (i.e. these are of the same

nature) as the vibration of any rotating machine,
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w

4

2,7 FANS AND BLOWERS

The ferm fan is used to deslignate a machine having ;
a rotor with sevefal blades arranged to cause a flow of air gas :
axially of the faﬁ, the term blower designates the so called squirrel-
cage blower in wﬁich the alr flows into the blower in an axial direction

. and out in a radial direction. Machines of these types operate at
many different speeds, depending upon the siZe and the type of the
service. In.éeneral, the operating speed decreases as the size of the
fan or blower increased. Predominant sources of the vibration are rotor
balance, bearing, gear, and belt forces, motor impulses and aero=-

dynauic forces,

2,8 PUMPS 3

This class of equipment is comprised of both centrie
fugal and reeiprocating pumps. The former usually includes a multi=-
vane rotor which operates at a relatiyaly high speed, Vibration may
be expected at the rotational frequency, as a result of mass unbalance
of the rotor, at the vane frequency, because the moving vanes pass in
close proximity to the fixed vanes, and at the random rrequenéies
usually relatively high, as a result of forces created by turbulant
flow of liquid within the pump.

Reciprocating pumps are used for causing a flow of
fluid, for the compressing air and gas, and for creating a vacuum,
These are characteristically low speed machines, and the number of
oylinders is usually small. Unbalanced rotating and reeiporecating
parts and torsional or torque impulses associated with the work being

done as the fluid are predominant sources of vibration. Minor sources
‘ ‘. R r .. &

)
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of vibrations are gears and bearings, motor impulses and asrodynamic

or hydrodynamic forces resulting from turbulent flow of fluids through

and ground structural member of the pump.

2,9 FORGING HAMMERS

The term forging hammer is used to designate a machine
in which a relatively heavy hammer is caised to full freely against .
an anvil, According to Anderews and Crockett (1945) the largest unit
in operation at that time had a 25 ton hemmer (tup) and the foundation
welghed 3000 tons. The principal problem from the stand point of shoek
ar;sed from the fact thagt the momentum of the falling hammer is transe
forred to the body of the machine. The machine thus tends. acquire a
downward velocity and to carry its foundations with it (Crockett
and Hammond 1958, Barkan 1963).

2,10 CLASSIFICATION OF DYNAMIC LOADS 3

From section 2.3 to 2,9, some of the¢ important classes #f
machinary have been considereds The nature of vibrations and dynanic
forces assoeciated with these machine types have been shown. In

general the dynamic loads cen be classified as &=

a) Shock loads occuring at regular intervals e.ge. vertical
loeds as in punching press, forging hammers and horizontal
shock loads, as in looms.,

b) Vibratory loads, which repeat after a particular period
and are cyclic in nature, These may include the vibrations
caused in any of the six degrees of freedom (for a single

mass) that is three translatory load and three rotational
torques (Fig. 2.5), '
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Figure 2,5 indicates the possible six modes of vibration
for a foundation., These include three translatory vibrations,
viz, vertical, longitudinal and lateral along three coordinate
axes, X, y, 2 , and three rotational vibrations. Rotation
about vertical axis (z-axis) is called ya wing, while rocking
is rotation about longitudinal axis (y = axis) and pitching is
rotational about lateral axis (x - axis). For symmetrical
foundations, vertical vibrations and ya wing can exist
indepéndently, but rocking is associated with lateral vibrations
and pitching is assoclated with longitudinal vibrations,

In most of the machine foundations, the vibration§7 |

occur in vertical direction, or in rocking. ]
J

2,11 REIREMENIS OF MACHINE FOUNDATIONS

" A properly designed foundation for a machine must first
of all meet the general requirements for all foundation for the
particular load transmitted to the ground. These are as
follows ( Tschebotarioff 1961) 3=

1. The loads of the structure should be transferred
to soil layers capable of supporting them without
a shear fallure,

2. The deformation of the soil layers underlying the
foundation should be compatible with those whiech
the foundation itself in super structure, as well
a8 adjoining existing struetures can safely undergo.

3., The construetion operations should not endanger

&djoining existing structures,
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Usually static loads play only a minor part as compared
with the dynamic loads proddced by the moving parts of the
machinery. '

Besides these, the machine foundation must meet the
following additional requirements, which are characteristics
of dynamic loading 13-

&) Vibrational Amplitude
' It is not possible to eliminate the ‘osl rig$IE\‘motion

completely from a foundation whiech 1s subjected to significant
dynsmic impulses., The designer can only attempt to reduce the
foundation vibration to a magnitude which is tolerable at the
operating frequency for the design conditioné. In general, the
ggfgissip;qfamplitude of vibration }§ decreases as the frequency
of éﬁé;&tion increases (Richart 1960). Thus no value of allow=
able amplitude should be considered as design criterion, unless
the frequency of operation is also specified. Again the
amplitude of vibration may be limited by the other machines
acting on the same ground nearby. In many cases, some fine
milling machines with low tolé?%nco 1imits have to stand idle,
while nearby forging h;;;;;“IZ*ESEEEEEEE';nich produces vibrae
tions in ground, and as such the accurate milling machine cannot
function to the required degree of tolerance. (Crockett &
Haumond 1958),

In the absence of the design specifications for limiting

vibrations, either of the following recommendations may be used

as a gulde. One of these 1s originally suggested by Rausch,

(1936) and reported in English by Converse (1962). According
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to this, the permissible smplitude 1is given by

Permissible amplitude = 2;;5_ for frequencies less

than 1800 r.p.m.

- 17,600 for f
- or frequencies more

b g
than 1800 r. Dellle

ssecevssnsccsssccese(2:12)

Richart (1960) has recommended the use of curves to
obtaln permissible amplitude of vibration., These were obtained
by him on the basis of published records of machine foundations,
and given in figure 2.6, which is self explanatory.

The vibration gmplitude which is designated as the limit
for machines and machine foundation is approximately 100 times
that whieh 18 barely perceptible or noticeable to human beings.,

B, Resonanace 3

It is necéssary to avoild resonance between machine and
the foundation soil system. Resonance phenomena will usually
lead to excessive amplitudes of vibrations,‘larger loads
transmitted to foundations. Hence resonant frequency of the
system, should be far from the operation frequency of the
machine,

a) gShoek Logds s- The forece occurs at equal time intervals,
even though it is actually gpplied but for a fraction of the
loading cycle., The entire machine experiences vibrations of
large amplitudes if the time interval between successive strokes

of the machine equals the resonant period, of the machine founda-

tion 801l system. This is g condition of resonance even though
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the exciting force is not harmonic.

b) Low Frequency Machines s In order to avoid resonance,

and to control the amplitude of vibration, the frequency of
operation of machine must be considerably lower than the resonant
frequency of the system. The suggested frequency ratio is 0.5,
in order to ensure small amplitudes of vibration. The oxact

retio may depend upon the accuracy with which resonant frequency X

|

Y

of the system, can be predicted,

¢) High Frequency Machines ¢ In order to avoid resonance,

the resonant frequency of the system should be substantially f¥5

W

lower than the operating frequency of operation of machine, The
frequency ratio suggested in this case for frequency ratio is 2,0
or more., These types of machine will usually have to pass tkwough
the resonance condition whieh should last for as small%tine

as possible. A

3. Height _Base Ratio

In the case of machines subjected to rotary motion as in
a compressor, foundation is subjected to rocking. In such a
case it may be necessary to control amplitudes of rocking so as
to avoid damage to the machiné. This can be achieved by docr{easin
the ratio of height to base dimension in the direction of rocking
(Newcomb 1251) resulting in increase of general stability of
the foundation block. This implies that the rocking machine

should be as near to the‘foundation)or ground, as possible,
TN



CHAPTER - 3,

RESONANT  FREQUENCY.

3.1 GENERAL

In the previous chapter, it has been stated as to
why it is necessary to avoid resonance for the satisfaetory
functioning of the machine foundations. This leads to the

necessity of determining the resonant frequency of the system,

Chiefly the designer is concerned with the vibrations
in ji’mode usually verticel or rocking. Various workers have
mogtly concentrated on vertical vibrations. Theoretical analysis

have been developed for the other modes of vibrations alsoc.

Broadly, the methods for determining the eritical
frequency ean be divided into - 1) theoretical methods and
i1) Exporimental methods, Theoretical methods involve applicaxion
of two basic concepts, viz., a) vibrating source (m#chine) resting
on the semi-infinitey 6lastic, isotropic and homogeneous medium,
2¥rEn: (soil), end b) vibrating source resting on elastic spring
(801l). In theoretical methods the properties of soil are
E Dynamic modulus of elasticity and U ~ the poisson's ratio
in case (a) and spripg constant or dynamic modulus of subgrade
reaction and weight of soil participating in case (h), These
are to be suitably assumed or may have to be determined experi-
mentally,

Experimental approaches consist of developing
certain empirical relations, or the response curves from the

experimental data, and using these to determine the resonant
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frequeney of the actual system,

For convenience, this chapter 1s divided into three
main heads, which will indicate the basic approaches towards 4he

problem of determining the resonant frequency.

RESONANT FREQUENCY « Soil as Elastic, Isotropic,
semi-infinite & homogenous medium,

RESONANT FREQUENCY - Soil as Spring.

RESONAN'.I.‘ FREQEBNCY - Experimental approaches or

miscellaneous methods.

RESONANT PREJENCY <« 80IL AS ELASTIC MEDIUM,

3.2 ELASTIC WAVES 3

An actual foundation to which vibratory motion@ is
imparted by a periodiec force, becomes the source of periodie
@ whieh proceed into the subgrade in radial directions,
similar to a sound wave. In the course of transmitting waves,
the particles of subgrade also undergo periodic motion, but
only at particular locations does this motion correspond to the
motion of foundations. Directly, below the foundation base, the
subgrade material moves with the foundation and is "in phase”
with the foundation metion., At a greater distance a zone of
subgrade moves @)posite to the foundation and may be designated
&8 41800 out of phese"., Fig. 3.1 1llustrates this concept of
phase relations of zones of subgrade with the shaded areas re=
presenting the "inphase® zones. The spacing between the centres

of these zones is determined by wave length, which in turn, is

estaplished by the velocity of propogation of elastic wave in
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the subgrede and the frequency of load application,

In an infinite elastic, isotropic, homogeneous,
body, disturbances may be propagated by compression wavéﬁ or
push waves or P=-wave (The displacement of the particle is in the
direction of the propogation of wave,) and by shear wave or trae
nsverse wave or Sewave (The displacement of the particle is in
@ direction at right angles to the direction of propogation of
wave), The compression and shear waves also transmit disturbances
throughout the interior of a semi-infinite, elastic, isetropic,
homogeneous body. But because of free surface, a third type
of wave appears. This wave has been designed as the surface or
Rayleight wave or R-wave, after Lord Rayleigh (1885) who investi-
gated the behaviour of surface waves in an elastic "half'space".
His solution of surface elastic wave equation is now known as
"Rayleigh® free wave solution". There are other types of surface
wave.guch as Love Waves, but it has besn shown that for a circular
vibrator operating normel to the surface of a semi-infinite medium,
a large part of its power is radiated as Rayleigh' waves (Miller
and Pursey 1955), In Fig. 3.2, relationship between V/V3 and
polsson's ratio has been plotted, where V is the velocity of
propogation of Py 5, and R = waves. The equations for V are given
for different values of poisson's ratio, » , for the gbove three
waves,

343 VERTICAL IMPULSES AT THE SURFACE 1

Lamb (1904) analysed the effects produced by a
single impulse which ascted at the surface of a semi-infinite
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isotropic, homogeneous, elastic solid, He considered primarily
the effec¢ts produced at theisurface and found that the disturbance
produced by the impulse, spéends in the form of a symmetrical
annular wave system. He also stwdied the effects produced by the

p eriodic vertical and horizontal forces applied at a point, or
diatributed along a line on the surface of semi-infinite solid,
He established relation between the diplacements and stress,
within the soil mass. This is now known as the ﬁﬁynamic ggélqgno

3,4 PERIODIC LOAD OVER CIRCULAR AREA 3

N More recently in 1936 Reissner (Sung 1983, Lorenz
;(§§§g) presented an analytical solution for the oscillation of a
vibiétor resting upon the surface of a semi-infinite, isotrepie,
homogensous elastic body by integration of the effects of the
periodic vertical point load over a(gkrcular areas The vibrater
was represénted by a system of vertical periodic forces, uniformly
distributed over a circular area on the surface. The displacement
amplitude at the centre of circular vibrator mass, was obtained.
The expression is also obtained for the power requirement of a
given vibrator soil installation. Also the phase difference botvoﬁn
the dynanic foree and the amplitude of vibration was determined
analytically, The expressicns for amplitude of vibration, power
in put and phase difference, as obtalned are given below t=

Z"‘ -I:-Q.. // rlg +f22 — 000.0000(301‘)
Gro (1+b‘2f1){* (basz)z




a 1,

> v ......(S.Ib)
0%/ FT  (14b,211)2 + (bg2f3)2

and t&nr = _ - f2 sessanese(3ed °)
£y + ba2 (flz + f22)

where, 2 4s the vertical emplitude of oscillation,

G is the modulus of rigidity.

Po 1s the radius of eircular oseillator.

Fo 1s the maximum magnitude of the dynamic force
applied.

b 18 the dimensionless quantity known as mass
ratio = m‘,/'o rod

Mg 18 the mass of oseillator (foundation & machine)

o

is the mass density of soil mediunm.,

a 1s the dimensionless frequency term,

=“ro [ = 2F fro/ g

f is the frequency of the forced vibrations.
/(@ is the phase difference betwsen dyn‘amic force
and the vibration amplitude of machine fouddation.
£1,f2 1s function of y and o F(V¥,a) 1n which U 45 the
po@sson’s ratio,
Lp 1is the power input, required to drive the vibrator
at the amplitude Z,

The resonant frequency of the system is defined
a8 the frequency at which maximum amplitude of vibrations or max,
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power consumption occurs. Other eriterion is that phase difference
between dynamic force, and vibrations is %/2 or 90 deg. Relssner

_has taken ths criterion of resonant frequency as phase differlnca,

S

Y = "/2 in which case equation (3.1 c) gives j

f1+ba°2(t12+f2) =0
or ﬂ°2‘= - fl / b(rlz + f22) -o...........(aol d)

where a8y 1s the value of dimensionless frequency term
at resonance. |
In order to make the analysis, applicable to every
case of vibrator, Reissner has introduced the use of dimensionless

amplitude z0 2)  and power requirement Lp{2)s The expressions
are 3 '

/
2) o ./ 12, 2

AL

"

(1+bg21)2 + (b 252

....o.........(3.2 a)

1(8) - 2FY/7T
Fol
a fz

(1 +dg%)2 + (b 260)2

000-.00(3.2 h)

Curves have been plotted between this dimensionless

amplitude factor 2(2)

LP( 2?'

and dimensionless power requirement factor
versus the dimensionless frequency ‘a' for different
values of mass ratio (b), and poisson's ratio ( 2 ), (as f3 and
f, both depend upon VU and o), Curves have also been plotted
between zmgﬁl and &, for different values of mass ratio (b)

and poisson's ratio ( UV ).
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Equation (3.1 a) demonstrates that a dynamically
excited body on a homogeneous semi-infinite space, represents

a system capable of vibration, as a single degree of freedom system.

An equally important result is that the anplit'ldo? |

z;i; at resonant frequency of the system a, assumes finite
e

values even though no damping factor was introduced throughout /
|
Redssner's caleulations.

Terzaghi (1943) commented that no attempt has yet
been made to apply the results of this analysis to the practice
of vibrator 1nvest1gat;ons. The main difficulties which restricted
the use of his results are due to the uncertainties coneerning
(a) the effect of a change of the oscillating pressure from the
uniform distribution which he assumed (b) the effects of a change
of shape of loaded area or region and, (e) the effects produced /

by deviations of the behaviour of the idsal elastic body. ]
While the item (e¢) 1s the general drawback of all | (yht
. RN
such approaches which assume the soil to be ideal solid, and ﬁf

as such must ®e left as a problem to be decided at each installa~
tion, and item (b), is usually taken into account by assuming some
equivalent circular area, item (a) has been studied in detail
recently by Sung (1853) Quinlan (1958) aﬁd further on by

Richart (19563, 1960).

3,6 QUNTACT PRESSURES § QUINLAN AND SUNG

Quinlan (1953) and Sung (1953) obtained the above

solution for eamplitude, power requirement and the phase difference,
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independently, for the cirecular vibrator with various types of
contact pressure distributions. The ground pressure distribution,
considered are rigid, uniform and parabolic distribution illusrated
in Fig. 3.3 The final equations are same in both cases and
correspond with the equations given by Redissner (Equ. 3,1) with
the difference that functions f; and fz are different for
different types of load distributions, in other words these
funetions depend not only on (ay, ¥ ) but also on the type of
load distribution. |

The mass ratio assumed in Quinlan's analysis is /
bq = m°/2/>r°3 = b/2, and this gives the corresponding di.trer-{!
ence in values of £y and f5, as given by the two workers. But
the finsl result is same, though the mathematicsl approach is j
different,

While @uinlan finds the resonant frequency of
the system by assuming that at resonance phase difference between %
the dynamic force and the amplitude vibration produced is %/2 /&
(He has concluded that result is quite ascurate for Degebo type
oseillators ), Sung, considerfs that resonace occurs at the
frequency where amplitude of vibrations and power requirement are
maximum .

Quinl an h.aS given functions £ and fp fori) =t,
1/3, and 1/4 for different values of 's' (dimensionless
frequeney) for rigid base approximation., Similar curves can 50
set up for uniform and parabolic distribution of contact pressures.
Al3o a8 at resonance tan ¥ = %/2 = e y equation (3.1 b)

reducas to 3
£ +dg a2 (2413 = 0
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or . 2 -f

‘0 = . u...c...(3.1 d)

Hehas plotted the value of by and ayy for different values of
poisson's ratio, ( ¥ = 1/2, 1/3, 1/4) for rigid base approxima-
tion. Assuming pressure distribution, for a particular value of
bq (mass ratio,) and poisson's rgtio, the value of resonant
frequency a, ¢an be calculated, or read from the graph, By
substituting the value of a,) and corresponding functions fy and
fo in equation (8.1 a) the maximum amplitude at resonance (a,)
can be determined., He has also given the solution for the long

vibrator, with the seme formulae except that b_ 1is per unit

q
length of vibrator, and the functions £y and £ change into

fq end f, and dimensionless frequency term 'a' is given by

A o s

B
a= “-E— / f G
/
F 1s texen as the magnitude of dynamic force per
unit length =m' L« 2 where m' is the eccentric mass per
unit length. The similar curves as in eircular vibrator have

been plotted by quinlan, for long vibrator as well.

For a Degebo type vibrator with total eccentric
masses my at eccentricity { y the value of maximum magnitude
of dynamic force Fo = m, ¢ w2 ., Fig, 3.4 gives the diggrametic
sketeh of Degebo type vibrator,

The dimensionless amplitude and power requiremant
a8 given by Reissner (Equ, 3.2 a and b) are modified by Sung
to suit the Degebo type vibrator, as below j
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2D . Grod® g ’%1‘_9___ - “j/ e+t
F
° 1 (1+0,2¢,)24(b 2¢,)2
, ...0....0'5..0.(30'3 a)
and LP“)= 2 ro? /PG wptlp . 2/9/2 ro° Lp
: Py2 n 2 (2 (W2
. P05

0000000.00(8.3 b) .

(1+0g21)% + (b 2r5)°

Sung has plotted this dimensionless amplitude and
dimensionless power input versus 'a' (the dimensionless frequency)
for various values of b (the mass ratio), polsson's ratio p »
and the type of load distribution., Out of these curves the

dimensionless frequency &, &t maximum amplitude (dimensionless)
(1)
4

max
poisson's ratio and b - value. He has also plotted the maximum

(1)

have been plotted for different types of load distributions,
value of Lp and corresponding a, , for different kinds
of load distribution poisson's ratio and b-value,

In Fig. 3.5, the variation of amplitude factors
A(1)

shown for several constant values of the mass ratio bh. The

and ‘§2) versus dimensionless frequency term 'a', are

diagrams of Fige 3.5 result from the assumptions of poisson's

ratio of 0,25 for the subgrade material and a distribution of

contact pressure corresponding to that produced by a rigid cireular

base, By assembling the values of'a; corresponding to peak

amplitude, for a particular value of b, the relationship betweem
Va0 end b has been established as shown in Fig. 3.6(a). Also

by taking the value of the peak amplitude factor dnd plotting 1t
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agalnst the corresponding values of b, the curves of Fig. 3.6 (b)
were obtained (Richart 1960).

Curves given in Figures 3.6 a and 3.6=b c¢an be
used to read off the value of 'a0' and the maximum amplitude
factor, for a particular value of mass ratio b, and poisson's
ratio » , on the assumption of pressure distribution. These
curves sum up the bulk work of calculation and are extremely

useful for practice,

3.6 CONCEPT OF EFFECIIVE RADIUS

Richart (1958) commenting on Sung's paper
introduces the concept of "effective radius”" for each pressure
distribution , which corresponds to an equivalent uniformly
distributed load. This 18 illustrated in Fig. 3.7,

The centroid of the stress diagram included between
ro and o (Fig. 3.7 =b) 1s at ro/2 . Consequently a statically
equivalent loading consists of a lime load, which acts along

the eircumference of a circle & of radius r, /2. The centroid
© for the rigid base distribution is at 0.6366 o and that for
parebolic distribution is at 3/8 ry. From this, the radii
for~eqnival§nt uniform distributions of load are 1.273 ry and
0476 ro respectively for the rigid base and parabolic distribution.
These effective radii may be used for the cases where the
theoretical surves regarding various types of load distribution
are not available. Suppose only data regarding the uniform
distribution is available, and we want to find for rigid dis=
tribution, then in all the c¢alculations of 'b', 'a' we use
the radius 1,273 ro and the result will be the same as for rigid
distribution,
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It 18 common experience that with increase in dynamie
load, the resonant frequency decreases. Lorenz (1934) BalaKrishna
Rao (1961) observed this behaviour f£fom experimentally. The
explanation in terms of effective radius may be given as follows,
(Richart 1953). As the dynamic force increases, the pressure
tends to become more intense near the centre of the oscillater,
which means that effective radius becomes legs. Ths curves plotted
by Sung indicate the variation of the maximum amplitude of 0sci=-
llation as a function of frequency for three types of pressure
distributions. In these plots every thing else except pressure
distribution is same. The peak of these resonance curves show
graphically that the amplitude of oscillation inereases and the
resonant frequency decreases as the pressure is concentrated
nearer the centre of the escillator base. But no quantative
information 1s avallable as to the effect of the increase in
dynamic force as the deorease of resonant frequency and increase
of guplitude or the change in the effective radius.

3.7 HORIZONIAL AND ROTARY MODES OF VIBRATIONS:

Arnold, By Croft and Warburton (1957) Bycroft (1959)
have extended the analysis to the other types of the vibratory
modes, so as to include all the translatory and roazonry vibrations,
They have considered eireular vibrator with rigid base distribution,

RS

the vibrating mass has four degrees of freedom, i.e., translatioa

horizontally and vertically and rotation about horizontal and
vertical axes. The values of f3 and fg for different modes of

vibration (4 degrees of freedom) have been given. The funetions
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of rotation about vertical\axis are independent bf poisson's
ratio, while functions for other modes of vibration depend upen
poisson's ratio. The expression for amplitudes of translatory
motion are the same as that obtained by Relssner (1936), Sung
(©63) and Quinlan (1953) while for rotating modes the expression

for éngular displacement 1s as follows 3=

M /
¢X¢Y ¢z = 3 / flz + f22

Gro

ese0e(3:4)

2
(1490 ,)2 +(b,a%f,)?

where ﬁz,x,y is the amplitude of vertical or horizontal
rotation,
M is the maximum magnitude of exciting couple
(about vertical axis or horizontal axis)
fl,rz are the corresponding functions for particular
mode.

by is non dimensional moment of inertia
= 10

f ro®
ro 1s the radius of circular base plate.

Io is the mass moment of inertia of the oseillator.

It has been suggested by Bycroft (1959) that for
rectangular contact area, r, should be taken as the radius of
a circle of an area equal to that of the rectangle. 2p the
ecorresponding amplitude for rectangular base is given by Zp=m X Z
where m is a factor depending upon the ratio of longer to :hbrter

side (L/B). He has recommended values of shape factor based on

theory of elasticity for static case given by Timoshenko(1937)
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and given in Table No. 3.1l.

Richart (1960) has plotted the amplitude @ versus
frequency for by = 2,5, 10 and 20 for rocking oscillations
for V =0, calculated from the values given by the above
authors, Fig. 3.8, gives (a) the maximum amplitude factor

1l 3
¢( ) = .Eﬁﬂ_- versus 'a' the dimensionkess frequency
maxe

faotor, Also shown is the envelope curve which is tangent to
each curve of amplitude versus frequency for different values
of bye The point of tangency is close to the point of maximum
smplitude and this tangent curve is used to define the relation
between frequency at maximum amplitude and the value of inertia
ratio by y which is shown in Fig. 3.8 (b),

The corresponding eurves for horizontal oscillation
are shown in Fig, 3.9( a) and (b) as developed from the above
author's analysis by Richart (1960) wnich show (a) the maximum
amplitude factor X(1)  for horizontal displacement Versus
'a' the frequency %gxrﬁ, and (D), the‘/mass_‘rgtio,verggs»‘ %, 2

from the consideration ofifouching envelope for Fig, 3,9 (a){> z

3.8 EQUATIONS OF MOTION ¢t~ _——

The work done by Reissner, Quinlan, Sung and Arnold
Byeroft and Warburton, dealt with one of the six modes of vibration
at a time and therefore, is limited to the case, where the six
modes exist independently, It is not possible to evaluate the
equations of motion directly from the above theories. An interesting
transformation suggested by Hseih (1962) makes it possible to find
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L
the equations of motion, For simplicpty only the transformation
achieved for vertical displacement will be given,

For the waves radiating from a source at the surface

of semi-infinite homogeneous isotropic elastic body created from

& circular vibrator with dynamic force Fy eiaat and the

ground pressure Peitﬂt, it has been shown by Relssner,
sung (1953, eq. 45) that the displscement Zyel“% of the

base of vibrator is given by

iwg P 1wt
wb = Zbe = ‘Fg—— (fl + 1f2) e 0.0000(305 a)

Differentiating equation 3.5-a w.r.t., t, we get,

d wy P 1wt
= (ﬁ "f ) - [ XEXXEX] 3.5b
dt Gro 1 2 ( )

Multiplying equation 3.5 -a by fl and equation
(3.5b) by =-foy and adding, we get,

dw 4
fwp -ty =2 = Gio (1,2 + £,2) e

Gro ¢ d
pei‘*’t_______ 212 Wh

or
Tow f12+f22 at

+ Gro fl L4
2 2
f1+ ¢
1 2
00000.00000000(305 "0)
which 18 of the same form as the pressure transmitted
to ground by a spring and dash pot, where,

Gro fa

- 2 - seaenwendis. 'L X5
o B _ - fp B - Tih
£1° +fo & f12+f22
x —f2
a(f12+f22)
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L ——————— 2 K
= /G z To /7: = € (equivalent damping
coefficient),eseees(3.6=a)

represents the dash pot, or damping of the system, and

- Gro r,{ - Gro Fl = K eee00trge (3.6’b)
represents the spring constant of the systems In these equations,

-fl

Fl =
flz +f22
f 000..0000000000.(3.6 -0)

2
F =
2

2 2
a(fl t1, )
and have been evaluated by Hseih for different modes of vibration,
including rotational modes.

The similar transformations are possible for other
modes of vibration. From ground reactions, (Equation 3.5=3) the
equations of the motion can be derived, for example,for vertical,
vibratlons,

2 jw t
4" v A

1Ut 000000000000(307)

dwb
= -wa-c ™ + Foe

where wa is the displacement of ¢.g. of the machine
foundation. Now W, can be converted into wg as
wb = wg + xey - yox ’ |
where X, y, % are the coordinates of the centrold of the

contpact surface, with respeet to the coordinate axes passing



42
through the combined c.ge. 0f the foundation and machine (Fig.3.10)
Oy and Ox’ are the rotational displacements about y, x axisf

respectively.

Five more equations similar to equation (3.7) can
beset up for other modes of vibrations, and from these six
simulteneous second order differential equations , ug, v , wg

g

0, Oy, @, ‘the three translatory and three rotational displace-
x TR e
ments ¢an be calculated byC@Eéég:ég:égg;ggnQ_g§ﬁgggg£;3 v

But 4f X and ¥ are zero, (that 1s the machine
foundation is symmetrical about contact base), then the vertical
translation and rotation about vertical axis exist independently
while the horizontal translation is coupled with rotation about
horizontal Xxsm axis, (ug and @,  are coupled, Ve and @, are

coupled, wg and 62_ are decoupled).

If the centroid of contact area and c¢.g. of the
machine foundation coineide (z = X = ; = 0 ) all the six
degrees of freedom are decoupled, This is the hypothetical

- 6ase and is not possible in practice,

The same conclusions are reached by Pauw (1953) by
considering the equation of motion, which are obtained by the
soil spring analogy.

This method offers a correlation between the twe
theoretical approaches viz., soil as elastic solid, and soil as

spring, which will be discussed 1later on,
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3.9. CONSERVATIVE SWSTEM ¢

Ford and Haddow ( 1960) has obtained the natural
frequency of machine foundation based on Rayleigh's principle for

rigid foundations. For a conservative system, according to

Rayleigh's principle, the maximum strain energy 1is equal to the
maximum kinetic energy. It is based mainly on the following
assumptions,
(a) Vertical Vibrations.
1. The system may be considered as conservative in order to
determine the natural frequency.
2. Dynamic pressure is transmitted through soll contained in
a solid formed by the base of foundation and the surface
y=rFr (2)yy==f(z)yx =0 (2) and x = - B (2) as shown
in Fig. 3.11.
3& The dynamic stress at depth Z is uniformly distributed
\ over a section parallel to the tase of foundation,
L The fast assumption is inaccurate, but is useful
for the\a;;;iépment of relation.
(b) Horizontal Vibrations.,

The same assumption as for vertical vibrations are
made with additional assumption that the dynamic shearing stress is
uniformly diétributed over a section of the solid parallel to x 4 ¥
plane. |

ﬁ? It is further assumed that amplitude of vibration of
a layer of thickness dz at depth &, decreases with depth as

ZO =ZOf e-‘z tees s e (308)
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where Zo 1s the amplitude to vibration of layer at
depth 2z .
Zof 1s the amplitude of vibration of foundation,

A 15 the decay factor, dimensionally equivalent

to 11

Equating the kinetic energy of the soil and machine
foundation to the maximum strain energy of the soll, the author
has obtained the vertical frequency ( resonant frequency) and
horizontal natural frequency of vibrations. The expressions

obtained are,

1 /
fo (vertical) ===/ 206 (1+¥) Ay
¥/ pu+ Ost, ees(3.8a)
and fo (Horizontal) = _i_ /
ar /G . Mg,
¥/ U +06st. ceees..(3.8D)

wvhere Y 1is the density of soil,
m
st =0 __ and is the static pressure
L xB
exerted by machine foundation.

The decay factor A is determined from the equation

»

B,

4]

n /5 (1-9) vev(3.8¢)

where\ﬁﬁis a constant depending upon L/B and is given
Table 3.1
B, 1s a constant, ard is taken as 2,0 for sands and 1.5

for clays or may be determined from dynamic tests, by
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noting the resonant frequency for particular 6§t

and working back for Bj .

The authors have stated that value of B, for
horizontal vibration may be different than as taken for vertical

vibrations but no values have been recommended.

3,10 DISCUSSION ¢
Reissner's analysis (1936) forms the basis of the

subsequent analysis given by Quinlan (1958) Sung (1953) Hseigh
(1962) Richart (1953, 1960) Bycroft (1959) and Arnold, Bycroft and
Warburton (1955). It fofms a sounté bBasis as long as éoil can be
assumed semi-infinite, homogeneocus, elastic and isotropic solid,

Reissner's analysis assumes the distribution under the circular

ﬂ; 7
base as uniform, which obviously isunot the case., It is evidenced
N-/\w

from the experiments that the resonart frequency decreases and

maximum amplitude of vibration increases with the increase: in the
exciter forces as indicated by Lofenz (1934), 1953, 1959) and

Balkrishna Rao (1961), Reissner's analysis does not glve the varying gk

T ——— e B

frequency of resonance for change in the exciter frequency and as ‘e,

such deviates from the experimental data,

R SN T e—

The modification by Sung (1953) and Quinlan (1953)
for the different load distribution (Parabolic, uniform Rigid),
show that as the pressures tend to concentrate nearer the centre of
circular base, the resonant frequency decreases and amplitude of
vibration increases. The increase in dynamic force, mgz_gga}itatively '
be assumed to be assoclated with the change in pressure distributisn

~

or the decrease in 'effective radius' corresponding to Richart's
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foundation coincides with the centroid of the contact area, all

motions are decoupled (This case is not feasible, practically).

Ford and Haddow (1960) obviously have given a basically
different approach to the problem by considering the machine
foundation soil as the conservative system., But this gives the
resonant frequency which is 1ndepeg§ggfr9§ the dynamic load, .
which certainly is not correct as shown byv;hgwexperiment of Cﬁ&”%§

Lorenz (1934, 53, 59) and Balakrishna Rao (1961).

For the foundations other than eircular ones, which
have been considered in t he theoretical approach following

modifications have been suggested for various investigators,

1, For trenslatory motion, use an equivalent radius
which gives the area of circle equal to that of
the contact area of the foundation with ground
(Sung 1953, Richart 1960, Hseih 1962),

2. For rotational motion, use an equivalent radius
which gives the moment of inertia of the circle
equal to that of the contact area of the founda-
tion about the axis of rotation (Hseih 1962),

3. Bycroft (1969) has suggested that if 2 is the
amplitude for equivalent circular base and Zr for
the rectangular base, then 4r =mx 2, where
m 1s a shape factor and may be taken as for

static case given by Timoshenko (1937).

4, As the distribubion assumed by Byeroft (1959)

is the rigid base distribution, the concept of
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effective radius is suggested to find the values

of frequency and amplitude for other type of dis=-
tribution,

In all the above theoretical methods based on the
homogeneous semi-infinite, isotropic, elastic solid, certain
values of G (modulus of rigidity ) and V (Poisson's ratio),
have to be estimateds The values of modulus of rigidity G vary

_ with depth and so does the poisson's ratio ¥ . The test on
\db%' oscillator, will no doubt give certain value of G and ¥ , but
it is valid only for the depth, which may be taken at best equal
to three times the base width of test vibrator., With inerease
in prototype area, the value of G and ¥ should be valid for
depth upto three times the foundation width, and these values
will obviously be different than those in test vibrator,

Another shortecoming is the assumption of pressure
distribution to be assumed, in a solution df particular problem,
No data 1s avallable framfield records, regarding the actual
distribution and change in distribution with increase in dynamic
loads. It has further been found from the survey of available
litergture that while the ratio of dynamic to static force in the

prototype is about 4% to 5%, its value in the model vibrator 1is
any where from about 254 to 90%. The distribution in two cases
may be different, but no quantative approach is available.
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RESONANT FREQWuNCY « SOIL AS SPRING

3,11 WEIGHTLESS SPRING

The first known approach to analyse the foundation
vibrations considered the vibrating system to behave as a single
mass supported by a weightless spring and subjected to viscous
demping (Lorenz 1034, and Barkan 1936), It will, therefore, be
useful to review briefly the simple case of damped foreced
vibrations of a single mass supported by a weightless spring,
The theoretical model which Hertwig (1933) (quoted by Lorenz
1934, 19569) considered during his first investigations for
Degebo 1s shown in Fig, 3,12 » The periodic vertical exeiting
force is defined by Fg sinw t, where Fp 13 maximum magnitude of
the exeiting force.

If 4 denotes the vertical displacement of the block
at time t, the equilibrium condition for vertical osecillation
requires that j

o) .7:1-\2/\111 yA +ZO K = FO sin w t 000000(309"&)

whefe mg 1s the mass of the supported block (machine and
foundation) ~
h (sec™) denotes the damping factor such that
2 Auy = ¢ = damping coefficient, /

¥ 1s spring constant.

Natural frequency @, of free vibration of the mass

spring system is given by

7 [ORAY AP g%w%' "

‘00 :// K ‘\“‘ 000.00.00000..(309hb)
mn ‘ .
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Defining 43 the static displacement as would bs
cansed by a force of magnitude Foy acting on the spring,
Zg = B/k, the equation (3.9-a) becomes }

i'f 2}\2 +w022 =ZS 6‘)02 sin Wt 000000000(309"3)

The solution o which is given as (Denhartog 1947) ;

1

Z = 4g - 8in (Wt - V%)

]

/ )2
/ él-( 22 +(25/w°)2(°"/w°)2
( “o )
:Zs Nl sin(w t -Y) ooooooocnaot(3.9 .d)
=] 2 wi

w2 &

Q

where ¥ = tan

00000.....00(3.9" e)

(3.9~d) 1s the equation of a simple harmonic vibration
with frequency equal to the frequency of the impulse (%), The
value Ny represents the magnification factor. The amplitude of
forced vibration lags behind the impulse, .by phase angle Y .

The maghtfication factor Ny 4is shown as the ordinate
in Fig., 3,13 (&) and the curves on this diagram show the maaner
in which Ny varies as a function of frequency ratio “ «w, for
different values of damping ratio A/Uo,

For rotating machinery with ugbal anced weights,
the exciting force is the function of square of exciting frequency.
For Degebo vibrator,

Fozmlc 602 o.........-......(3.10)

where m) 4s the mass of unbalanced rotating part,
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and { i3 the eccentric radius from the c.g. of unbalanced
mass to the centre of rotation,

By introducing the value of F as defined above, the
solution for the displacement can be determined. The results are
as shown in Fig. 3.13(b) 4in which the ordinate is equal to the
ordinate of Fig. 3.13(a) multiplied by ( &/ wo)2, The value
of maximum vibrational amplitude is }

Z=N1(w/w°)2 4 ml{ 0000!00000000(3011)

Bo

It should be noted that on Fig. 3.13(b) all curves
approach an ordinate value of 1,0 as the frequency ratio (“/w,)
becomes very large and is independent of damping, The force
transmitted through the spn ng

= . W -
Ps * Znax K sin (Wt -¥)

( Y wo)? -
Ps = ° E'Lgo ‘ sin(;wt-r’)
0

/(_U 2)2 ok, w2
(1 ( /‘Jo) ; +(‘§__. 23-0".) 0000000(3012“)

The force transmitted through the dash pot,
®
Pd = 2Am° 4 = ZA mow .Zmax cos (W te 7’) 0000'0(301213)

There is a phase difference of 90° between (3.12a)
and (3.12-b), The resulting force transmitted at any time is,
therefore, (Myklestad-1956) §

~ml K.(“"/coo)z /e Moy w2

(1o (W )2 2h. W2
SRR et

’..l,oooootoooooooococoo.o.ooooo‘aglzc)
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This for large values of (W/¢e,) and negligible
demping reduces to U1 ¢ % .

Dy

For undamped forced vibrations, resonance occurs

at f{:o, = l,q: When the exciting force has a constant amplitude

regardless of frequency, the curves representing damped forced
vibrations in Fig. 3.,13(a) show the maximum amplitude magnifica=
tion at values of f/f° less than 1.0, For small values of damp=-
ing the amplitude pesks occur at frequency ratios so close to

IR o = 1.0 that the difference is usually negligible. However,
when the damping ratio £/ o = 0.5, the peak is at £/f, = 0,707
In other case for which the exciting force is a function of the |
exciting frequency, the peak amplitude occurs at a value of f/f

greater than 1.0, which for the damping ratio A /%0 = 0.5

———

results in a peak of “/Wo = 1,415, This shows the effect of
damping in shifting éggkf;équency for maximum emplitude of vibra-
tion aeway from the "natural frequency of the foundation, However,
fbr all practical purposes, the resonance occurs at frequenecy
Iratio of unity, since the damping ratio (/‘/ Wo) of the ground
is of the order of 0.166 (Alpan 1961), The variation of phase
angle as glven By equation (3,9 e) with frequency ratio bd/ﬁdo
can be plotted for different vaglues of damping ratio as shown

in Fig. 3414 ~ a.

Another possible variable with frequency ratio
besides the amplitude and the phase angle as given above 1is the
work per unit of time required to operate the vibrator. This

work consists of two parts (Terzaghi 1943) One part is used up
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in overcoming the friction in bearings and other resistances
within the mechanism, It has been found that thils part increases
approximately in direet proportion to the square of frequency.
The second part is consumed by the viscous resistance of soil
against periodic deformation, The damping force Pd is
determined by (Equation 3,12 «b),

The work performed in overcoming the damping force

during one complete cycle with the period { = 1/f is

T
ds
= P S —— 000000 e .
Lr of d i (3,13 a)
and work per ugit time is T
LP =f.L =f jpd...gz_.._ 0000000(3013 b)
t

substituting for Py from equation 3,12(b) and €. from equation
(3.11) in equation (3.13 b) and integrating, we get

a. 2 ¢ 6
Lp = 32 V6 (mle ) Nl Kz f :000000(3013 C)

(Terzaghi 1943)

The variation of the work rate with the frequency
ratio £/fo or “/w, 1s given in Fig, 3.14 Db,

3.12 BXPERIMENTS BY DEGEBO

From 1930 onwerds, the work was carried at the Deutshe
N ‘.
Forschungs~gdsellch;E§ fur Bodenmechanik (Degebo) (Lorenz 1934)
L//
The standard experimental set up consisted of weight of vibrator
2700 kgm base area 1 8q. meter eccentricity 10o (moment of inertias

eccentric weight x eccentricity = 30.4 x 1.02 = 31,0 kgm. cm)
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Experiments were conducted on different sites using
the above vibrator. Amplitude of vibration, the phase angle
between the exciting force and the resulting vibrations, and the
power requirement of the vibrator, were determined at various
frequencies, The reasonant frequency is determined where maximum
amplitude occurs, and checked with the frequency, where maximum
power i# required and the frequency where QBEEEwQEfference Y is

¥/2 , Comparison of the experimental plots with those in Fig.
No, 314 give the value for damping factor.

The values for the frequency which correspond to
individual soil types and hence to bearing capacity aecording
to Lorenz (1934) are given in Table 3.2, From the table a general
trend 1s observed i.e. the higher the natural frequency, higher
the safe soil pressurs, A the damping factor was found to
have the following significance. A value in excess of about
3 t0 4 sec ~ combined with an important settlement of the base
was considered an indiecation of high compressibility, and
sensitivity to vibrations (Lorenz 1934).

Buring the series of experiments it was found that
W in equation (3.2 b) 1s not the weight of vibrator alone, but
also includes the weight of the soil vibrating with it,

Natural frequency becomes

/
:wo =/ K.g ooaoooa.oooo(3014 a)
Wo + Wy

where Wy = 1s equivalent soil weight which is assumed to be

concentrated at the c.g. of foundation mass,
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In order to determine ws, the weight of vibrator
was increased by meeans of surcharge, and the test repeated.
The natural circular frequency of system decreases from Yo to
Wo! , where Wo and Wo' are the frequencies obtained for
different weights of vibrator. Assuming for the sake of simplie
city that the increase of the weight of the vibrator has no
effect on Wy, two equations are obtained which make it

possible to determine Wg .

Another suggested method i1s to increase the area of
the vibrator base, keeping weight of the vibrator same. Re=-

placing ¥ by k',A in egquation (3,14 a), @o i3 obtailned asj

/
w K'.A.
o=/ Kb

00..00000.(3014 b)
WO + wS
where A 1s the area of base plate, and

k' 1is the modulus of dynanic subgrade reaction.

Assuming value of k' to be sgme from one test to

another, value of Wg can be determined,

By inc¢reasing the weight of vibrator from 1.8 to 3.4
metric tons, the value Wg 18 found to be 12,5 tons (Lorenz 1984),
S8imil arly keeping the vibrator weight at 2700 kgm (2.7 metric tons),

and changing the area from 1/4 sq. meter to 1 sq. meter, the value

of ¥ for the same site was found to ve again 12,5 tons,
S

In another set of the test mentioned , Wg was equal to

1 metric ton, when the weight of vibrator was increased from 2060
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kgme %0 2700 kgm. These results indicate that value of Wy 1s
likely to vary between wide limits,

For change in eccentricity (increase in dynamic loads),

the natural frequency was found to decreases

3,13 EXPERIMENTS BY VIOS

At about the same time, the independent tests
were carried out in Russia which are reported by Barken (1936).

The theory is based on free vibrations, discussed apove.

For the vibrations, 8o produced as to give both
gyration (rotatton) and translatory displacement the system is
two degrees of freedom, the resonant frequencies are coupled,

and there will be two resonant frequencies which were noted,

The experimental foundations weighed upto 30 tons

and having an area at bottom upto 8 m, sq.

Value of ¥ = k'.A was determined by the statical
tests (reversible displacement x k' = normal stress). k' was
determined for areas 2, 4 and 8 m. sq. From the determined values
of k', the frequencies of the vertical vibrations only, were
calculateds, The foundation was subjected to forced vertical
vibration with the aid of viovrating machine and resonance
diégrams recorded. In nearly all the cases frequencies differed
but little from the theoretically calcul ated ones.

In the analysis the weight of the soil partiecipating

has been neglected. In fact, no note seems to have been taken of
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it, Also k' was determined by statlc tests and not by dynamic
tests. But their extension to the problem of displacement and
gyratory motion is worth noting. The two resonant frequencies
were observed and their values confirmed, from theory. In a

particular case, these two frequencles were 40 c.p.s. and 160 ?

eps, ~Negleeting the soil welght, should have led to some dis=-
erepancies between the experimental and theoretical values,
Probably the explanation lies in that the value of k' taken
was from the static tests. The two arrors,ﬁgﬁﬁhaye compensated.
Laxﬁ%r experiments in Sweden (Bergstrom and Linderholm 1946)
have shown that for large base plates (of order of 3 m. 8q.) the
value of subgrade reaction (k') corresponds to the values of
obtained from dynamic as determined from the wave velocity

measurements,

Another conclusion which have been proved wrong in
todate experiments, 1is that resonance frequency is independent
of the dynamic load. In fact Barkan (1936) , has reported the Ol
resonant frequency of 1l cps for the eccentricities of 225 mm, | *©
17,5 mm, 6.5 mm, This again seems erronous conclusion as the
resonant frequency has been found to decrease with inerease in
eccentricity or the dynamic loading (&orenz 1934, Crockett and

Hanmond 1948, 1949, Lorenz, 1953).

3014 EXPERIMENIS BY CROCKETT AND HAMMOND 3

Andrews and Crockett ¢ 1945), and Crockett and Hgmmond
(1948, 1949, 1958) have also measured natural frequencies using
a vibrograph to pick wup the oseillations in the vicinity of large

hammers., These frequencies are roughly the same as those
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reported by Degebo (Lorenz 1984) and these are given in
Table 3.3. Crockett and Hammond (1948) also stated that for
any particular type of ground they got the same natural frequency
irrespective of the size of the foundation, the largest founda~
tion tested had an areéa of 2500 sq.ft. But for reasons given
‘stelow, it does not seem logical that all foundations whatever
their size and weight should be having the same natural
:ggqggpcy. For example, it would be necessary that the spring
stiffness of ground is constant for all different widths. This
is very unlikely, since the soil mass must behave at least
partially like an elastic mass to set up the oseillations. 4s
is well known, a foundation or an elastic mass stresses soil
to a depth proportional to the foundation width. This would
cause the spring stiffnessfper unit area k', to decrease as the
foundation size increased:/ In addition, if a very narrow
foundation is considered it would be necessary for the effective
mass of soil vibrating with it to be very large if natural
frequency were to remain constant, whether the footing were loaded
with 3 ton/sq.ft. or virtually unloaded, This would mean that
the soil must be highly stressed to a depth many times the width
of the foundations which is contrary to common knowledge (Easte
wood 1983).

But all workers have agreed that mass of soil which
vibrates with the foundation must bear some relation to bulb of
stress, which gives the stress distribution under a uniformally

loaded area on an elastic medium. As shown in Fig. 3.15(Crockett

and Hammond 1948, 1940) the active ground weight i1s assumed to
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be within a ceertain bulb of pressure, But no relationship has
been indicated.

3415 TRUNCATED PYRAMID OF SOIL SPRINGS - PAUW 3

Pauw (1963) has given an analytical procedure whereby
the dynamic so0il constants required for the prediction of
natural frequencies of a foundation soil system may be determined.
The foundation soil system is treated by considering the founda-
tion mass to be supported by a truncated pyramid of "soil
springs”.

Based on the concept that the modulus of elastieity
is epproximately proportional to the shearing strength, Pauw

made the following assumptions :=

1, For cohesionless soils the modulus of elasticity is
proportional to the effective depth which equals the
actual depth plus equivalent surcharge.

2. For cohesive soils the modulus of elasticity is

constant, Intermediate soil conditions may be inter~ x&g@?
poleted on the basis of coloumb's law,

3. The distribution of stress takes place within a
truncated pyramid.,

4, The so0il pressure below the foundation and also at

any depth is uniform,

Consider a rectangular area of length L and width B
loaded with a uniform load €'st (Fig. 3.16). The effective
zone assumed is the volume of the truncated pyramid defined by

the surface area LB and the planes sloping at an angle



tan™ < /2,
Value of © at any depth z, aceording to assumptions
(1) and (2) 1is

E(z) = E for cohesive 50115 sevseesssce(3:15 @)

1

E(z) = B(h + a) for cohesionless soils seea(3e16D)

"

where ﬁ is the rate at which modulus of elastiecity increases
with depth.
h 1is the equivglent surcharge such that
h= GOst/y .
6st 1s the static soil pressure.

and Y 1is the density of soil,

opring factor is defined as the force or moment
exerted en a system when the system is displaced a unit distance, or
rotated through a unit angle, from the equilibrium position.
For a foundation with six degrees of freedom, six spring constants
are required for each surface in contact with soil. Apparent
mass of soil vibrating with the foundation is estimated by
equating the kinetic energy of an equivalent concentrated mass
at the surface to the total kinetic energy in the effective zone,
Anthor has given these factors for horizontal and vertical

surface,

Spring factors for horizontal contact surface (for
cohesive and cohesionless soils) are reproduced in Fig. 3.16,
The mass factors for horizontal contact surface are given in

Figure 3.17, The integral for mass factor in case of translatory
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vibrations for cohesive soils does not yield to a converging
solution + In above figures the following dimension less

parameters are introduced s-

8 = 4.h )
B
r = L/B.

Author has also considered the equations of motion
for a symmetrical foundation (e@.g. of machine foundation is
directly above centroid of the contact surface) and found that
only vertical vibrations and rotation about vertical axis
exist independently, the horizontal translatory motion is coupled
with rotation about horizontal axis.

The attempt deserves credit as a rational method
ensues to determine the two variables K and Wg for different
modes of vibration. The variation of E with respect to depthd’ ‘41pu 7
for eohesionless soils 1s not necessarily linear, as assumed. J S.biwte
The author has verified experimentally, the theory advanced by !
him, This method suffers from disadvantage that no frequency
variation is obtained with dynamic loads.

3.16 BULB OF PRESSURE CONCEPT 3

| Balakrishna Rao and Nagraj (1960) and Balakrishna

Rab (1961, 1962) have developed further the concept of oscillation
of Bulb of pressure as advanced by Crockett and Hammond (1948,
1949), This has been modified to the density pressure bulb

concept. The equation for resonant frequency is j

“0 =// x.g i 00.00.00..0.0(30]-4 "a)

Wo + w,
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The weight of the soil mass participating in
vibration is estimated by taking the weight of the soil contained
in a definite pressure bulb, this pressure bulb is obtained by
considering the sum of static and maximum positive dynamic 1load
of the machine and the foundation block to act as a concemtrated
load at the mass centre of the foundation block. The reason
advanced for adding the dynamic load is that the additional
static stresses are developed by dynamic load (Nagraj and
Bal ekrishna Rao, 1959). The boundary of this pressure bulb is '
supposed to be given by pressure intensity of IY‘ lbs per
8qeft. where Yy is the density of the soil mass in lbs per
eft.

Thus if @ 4s the total vertical load (static +

dynamie) d.e. @ = Wo + F,» where F, 1s the maximum magnitude

of dynamic loading, Y 1s the required density and intensity

of pressure, ry; the radius of the pressure bulb (sphere) then,
et —— e .
(21'1)2 = 0.,4775 ._%& (Boussinesq's theory of pressure
‘ distribution)

00...0.00..0.......(3.16 -a)

¢% Volume of soil contained in this sphere is 3

4y 3 4
——Tr = 2 9 04475 @ 92
3 1 3 ( 4 T?T) ooooooo(3016"b)

and the weight of soil oscillating is,
- 3/2
g = 2wy (04775 @ y3/
3 4 1§

The resonent frequency is then determined by

00000.003000(3016"0)

substituting Wg 1in equation (3.14 «b) $
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Wo + Wdyn + ws‘

]

iif' / kK . g 00000000600(3016 -d)
Wo + B + Ws

The above authors have suggested to take the value
of ¥ or spring constant according to that given by Pauw, or for
that matter from the dynamic soil tests. Knowing the value of K
and Wgy the natural frequency cen be determined from equation
(3416 = d) « The approach is significant in as much as it
considers the pressure bulb for the combined static plus dynamiec
load and a specific value to pressure bulb is given. This
explains the phenomenon of decreased resonant frequency for higher
dynamic load as 1t assumes that soill mass will 1ncregsc. In
most of his calculations, he assumes the shatic and dynamic loads
to act as a concentrated loade The pressure bulb for distributed
load based on equivalent sphere did not give much different

results,

— He has calculated Wg en the assumption of soil

as uniform, homogenous, elastic medium, (having same value of

E at various depthg} The spring constant K is calculated on the
assumption that value of E increases with depth (Pauw's approach).
That is, the value of Wy and K are calculated on the basls of two
contrary assumptions. But it offers a good empirical means to

evaluate the effect of changed dynamic force,



64

He has verified the resonant frequency as
saloulated by pressure bulb concept with the published res;ult;
of Oonverse (1953) and Eastwood (1953).

RESONANT FREQUENCY « MISCELLANEQUS METHODS
3,17 GENERAL
Under the subhead will be considered the empirical

approach to the problem of determining resonant frequency, the
resonant frequency of soil as linear spring, and the attempted

ce~relation between the two approaches is given,

3.18 REDUCED NATURAL FREQENCY METHOD

Tschebetarioff and Ward (1988) Tschebotarioff(1951,
1953) have suggested that there is a logarithmic relation between
the area of feundation and the reduced natural frequency., The

resonant frequency is glven by j

f0 = 1 / ulé_. 000000000(3014)
2w wo + us
=/ Ea M
1+ w’/wo .......(3.17a)

W,/A 1is equal to the static load en foundation
per unit area ( 0'st). Thus gt unit static pressure, the

frequency would be }

St =2/ kg
r T 1+ Wg/Wg °

'}....(a.lvb)

This is termed as the reduced naturaLf»re‘?qﬁenoy.
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.4
f = 00248
o / ‘ 00Q0000'0000(3.18 d)

The contact area in Tschebotraiof8 diagram ranges
from 1 to 1000 sq.meters (10 to 10;000 8q.ft)e For smaller areass,
results of laboratory experiments with model footings are wvailable
(Eastwood 1953)., These tests were made to investigate the factors
influencing the resonance frequency on dry and inundated sand.

The oseillations was generated by impact. The sand employed in
Eastwood's tests (1953) had a dry density of 1.74 g.c.c and & void
ratio as 0,525,

Alpan (1961) plotted the results of Eastwood in terms
of reduced naturel frequency fnr versus area A on log log paper
and compared it with extrapolated values as obtained by Tschebotmrioff's
plot for sands. It will be seen from Fig. 3,19 that the lines 4},
obtained by Alpan are quite different than that of Tschebotar!ff's.
This raises the question 1f these stratght lines donot represent
an over simplification of relation between contact area and reduced
natural frequeney, Actually the points are anything upto 100%
high or 50% low, the errors being masked by the log ldg gcale
(Eastwood's comments 1953), From the data which Tschebotarioff has
used for his plot (summarized in Table 1) Tschebotarioff 1953)
it will be seen that the resonant frequeney was obtained by
forced vibration test and ®hock or impact and exciting force was
oithe: vertical or horizontal and vertical or, only horizontal.

But it 1is a known fact that the nature of the vibrations and the
method by which they are induced materially affect the frequency
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response of the ground. Hence Tschebotarioff's plot is not the

true picture of frequencies.

Eastwood's (1953) tests show that for the same
applied load per unit area, the natural frequency of a 12" x 3"
model footing is the same as that of for a 24" x 3" model footing.
Thus they will also have the same reduced ngtural frequency even
though area of one is twice that of the other, He has suggested
a possible relation between reduced natural frequency and the
least dimension of footing.

Refer equation (8,17 b) for resonant frequency., To

obtain same values of ¥pp (for same area), whatever be the applied

loady, / ., 3/1 g/ W has to be constant for different areas.
This means that either Ws must increase at exactly the same ratio
a8 Wo or alternatively that Wg 1s always negligible compared to W,e.
The latter is impossible and the former extremely unlikely
(Eastwood 1953).

Alpan (1961) has made an attempt to analyze from
first principles, the relation between frequency and areas

Spring constant

E/ A
a(l -v %)
(for uniformly distributed load i.8. flexible

'000000000.00(3019 a)

k =

base according to Timoshenko 1937).
vhere E is modulué of elasticity of soil,
and ) is the poisson's ratio.
m is the shape factor previously described
depending upon L/B. |
The propogation velocity of Rayleigh waves (Jones 1958)
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(Heykeiam and Foster, 1960) 4is given by 3
2 k
Vg = P —— cesssvenssea(3.19 D)
2(1 +v )f
where f is the mass density
and p is a factor depending on .

(Henkelom and Foster 1960).

A table of valuas of p for a range of .- from 0,2
to 0,5 4is given in Jones (1958) and given in Fig, 3.2

Now fo = / kOg u..—‘oo-oooo-oo.o(aolg 0)
W anm

Substituting thg value of E, from equation (3.19b)
in the values of K in equation (3.19 a), which in turn i3 sub=
stituted in equation (3.19 ¢) , Alpan (1961) obtains,

L. 2 vy M

fc’-‘-—-—-'—-——

g P mn(l=¥)

/Wy
where Y is the unit weight of soil.

Now for a particular type of soil, pyw , J, Vi are

constant, leading to,

0425
£, = constant o A eeeereees(3.20D)
/m /Wo

which differs from equation (3.18 d) in only that a shape factor
m is involved, and that exponental power of A 1s 0,25 instead
of 0.248.

Now shape factor is not only dependent upon the
lengﬁ:/width ratio, but may depend also on the type of the load
distribution. This probably may be able to remove the discre=
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~pancies in the plot of Tschebotarioff. For example, Eastwood(1953)
obtains the same natural frequency fo , for 24" x 3" and 12" x 3"
foundation models, for the ssme static load intensity, though the

area is twice. This can be explained by introductlion of shape factor.
Further work has to be done along these lines. Shape factor which

is derived from Pauw'!s analysis (1953) for cohesive soils is given

by 3
log L/B
m = 000000000000(3021)

L/B =1
It will be interesting to use the value of this 'm’

in the theoretical analysis equation (3.20b ) to see how Eastweod's
result fit in. Equations (3.20b ) for two footings 24" x 3"

and 12" x 3" gives,

. (ZA)O.25
const,
(f.) 24"1 an = X 0.5 00000(30228)
/(m)for L/B=8 (24Wy)
' const A0+25
eoece 3.22b
(f,°)12l13n = x (wo) ( )
/(m)for L/B = 4
Dividing (3. a) by (3. b) we get,
(f) 24" x 3" = / 0,463 * -
(fo)12" x 3 /"'"'":"3'0"i""" (2)0025

= 10047 ...........u.....(3.22 0)
That is the frequencies should be almost same which
18 as was observed by Eastwood (1953).

3,19 EMPERICAL EJJ ATION DUE TO CONVERSE ¢

From the results of the field testing programme
mainly conducted to note the effect of various parameters, on the

compaction of sand by vibration in a test pit 6' deep, 10' squares,
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an empirical equation was developed (Converse 1953) for predicting
the resonance frequency of a vibrator sand mass system. As a first
approximation, the system {s assumed to be analogous to a simple

harmonic vibration system of a singie degree of freedom.,

Since the field tests indicated that resonant fre-
quency is influended both by the dead load, W and the dynamic
force Fqy the vspﬂng modulus K is non linear. By using the data
from 28 field tests for vibrator plate diameter as 19,2",

converse caloulated k a3
"k = 44,3 w° + 16000 - 27 Fo 0000000...(3.23 &)

!

e/ ’
""‘E""‘ / 44.3 + lﬂ;lqg- - 27 Fo ooooo(3023b)
Q

w
2 wo

Hence fg

In order to make above equation dimensionally consig=
tent, the term under the radical must have the dimensions of K/W
/(t‘hat is L-l ) , Converse (1953) further changed the natural
fr‘cequency expressionsa a8 3§

"8 /
f, = / 1380 Y +0.55 %° -840 F Y

o " G Ho wo G
ceceseccsese(3e23 C)
- s |
or fo = ;-?- 840 _g_. (1,64 - Fo/wo) + 0455 Gro/w
0
00000.000."(3023 d)
. Fo
where 00— <1.
L

which in terms of unit loads , will be 3}

£y = 313 / 84 jg_ (1,64 - Sdyn ) + 0.8 G
et

8t Gast, ro
................(3.23 ‘)
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confirmetion 1is required for different types of soils.

3420 DEPARTURE FROM THEORY OF HARMONIC OSCILLATING POINT

Lorenz (1953) has noted that the following three
phenomena donot agree with the theory of a harmonic oscillations
is unagble to explain the following experimental behaviour of the
system t=

a) Increase in the exciter forces leads to decrease in
natural frequency.

b ) Keeping the exciter forces and static soil loads constant,
and increasing the contact area 'the resonant frequency
increases,

¢) The damping constant increases with the contact area,
consequently lower amplitudes are obtalned if the contact

area 1s inecreased,

The resonant frequency of a harmonic system depeﬁds onl
upon the spring constant and mass. Hence the dynamic force does [Vr}
not have 1nf1uencé¥‘the natural frequency. However, this may be (e
explained by assuming the Ws participating in vibration inereases
with inerease in dynamic load (Balakrishna Reo 1960, 61, 62).

The effect of increase in area, for the same dynamic
and statie load, on the natural frequency may be explained as belows=

Since Wgy the soil weight participating in vibrations,
based on concept of pressure bulb below the uniformly loaded area,

increases with area, the natural frequency deereases,
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where 0 dyn = unit dynamic force lb/sqe.in.
and O st = unit dead load lb/sq.in.

The units in equations (3.23) are lb.inch units,

Converse has verified the resonant frequency based
on the agbove formula with that of the field test results obtained
with base plates 16.7, 19.2, 24.0 and 45.0 inch in diameter.

The development of the empirical equation is signifie
cant, as it involves not only the soll constants, but also the
vibrator dimensions (ro), weight (W,) and dynamic force (Fg)

But the equation 1s developed only for one type of soil and it is
only reasonable to expect that this will vary with the type of soil

and as such the equation is not universal in its nature,
The equation tekes into account that

&) Aincreasing the dynamic load, the natural ffequency will
decrease

b) increasing the contact area, but keeping exciter forces
and the static welght constant, that is E/wo constant,
Wo = constant, ro - increasing, the resonant frequency
increases.

(a) and (b) agree with the experimental behaviour as
observed by Lorenz (1934) 1953, 1859), Balakrishna Rao (1961),

The spproach is significant but the constants will
vary with the type of soil and as such this may not be of much
help « It may, however, be suggested that keeping the same

parameters, the constants may be determined at the site for a pare
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But the soil spring constant X increases with area.
Therefore, there is a tendency for netl increase in the natural
frequency,

The third phenomenon has been explained by Bhllr%

(Lorenz (1953,1959) who introduced the concept that loss of energy

1s csused by waves radiaxing into the soils This is equivalent
to an additional damping, called system damping. It appears
probable that this loss of energy increases with the contaect ares.
The results of Ehler's theory are represented here (korenz 1959)
In particular the simple formulae for amplitudes and phase dis=-
placements are dependent on a spring factor, and a damping faector,
which are both related to the surface arcas as well as to the

propogation veloeity and Elasticity modulus of the soll,

According to Ehler's, the system damping is proportimnal
to E, A and inversly proportional to the velocity of compression
wave.

1.9. (o] = E’A' 00000000000(8024) -a

where ¢ 1s damping coefficient

Ve 18 the propogation velocity of compression wave,

and is /34, . V),
g(v) 1s the function of poisson's ratio.
. B« & /
oo o= 2 I3 /7 A
/5 /(6(11) ¢(-,_,) )

0000000000(3024 b)

Ehler has further shown that with the increase in
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area, the value 6f demping will increase, and after a certain limit
L De

the damping will jover critical,
over er.uic

The result of Ehler's investigation is so significant,
because we are forced to conclude from it that a dynamically
affected structure shows perceptible amplitkdes only within a
certain surface area. If the surface area increases beyond Rkhe
limit, the vibration becomes a periodic, that is no amplitudes
are discernible., The same conclusions can be derived with the help
of Hseih's transformation (Hseih 1962) equation (3,6 a). The
gystem is equivalent to the simple dashpot and spring system,
with the following values of ¥ and ¢,

———eemeee 2
K =GroFy, and c=/ @ ro F,

where Fl and F2

poisson's ratio ) , and loading distribution.

depend upon dimensionless frequency term 'a',

For rigid base distribution, Hseih (1962) has cal~-
culated F, and Fo as given below for vertical translation (o0 <a

{ 1.5)

V=0, Py =40 -0.5a ;
Fy=3.3 404 a 3

V=4, F =53-10 a” g creseaees(3425)
Fy = 4,4+0.8 a g

Vap, F =8.0-20a°
Fa = 6.9

Value of @15 of the same form as that obtained by

Ehler's and increases with area A, so it is possible by inoreasing
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area (which will be too large) to obtain a periodic motion (to
reach critical damping).

3.21 SOIL AS SUBLINEAR SPRING 3

The decrease im natural frequency with increase in
dynamic loads and increase in contact area may also be explained
from the concept of sublinear spring (Lorenz 1953a, Alpan 1961),

A sublinear spring is defined as the sprigg, in which the spring
stiffness decreases das the deflection increases, Fig. 3.20

shows 3 amplitude curves, obtained with an oscillator (Lorenz 1953a)
Total weight of oscillator wasgaf;\}g contact area 0 0.25 sq.meter
static pressure was 0.27 kg/sq.cm. The total eccentric weight was
gbout 24 kg. and 3 tests shown in the figure, run with { =1, 2

3 em., gpproximately. The corresponding eccentrieity factors were
given as € = mll / m, = 0.037, 0.074, 0,111 cm, respectively.
The shape of amplitude curves is particularly,.rﬂﬁ for ¢ = 0,111 em.,
is chargeteristic of damped forced vibrations of a system with a
sublinear (soft) spring., This type of spring exhibits greater
strains at higher stresses. DBased on a method developed by
Denhartog (1947), and modified by Lorenz (1953) 1%t is possible

to derive the nonlinear spring characteristics from experimental
amplitude curves. The procedure illustrated in Fig. 3.21 is

briefly as follows s=-.

A point 1s chosen on the ascending branch of the
amplitude ourve, say point A (W, z) in figure 3.20, The spring
characteristic is computed as follows 3=

In equation (3.9a) neglecting damping, value K(z) is



- 76

substituted instead of K . X4%) indicates that spring constant
depends upon amplitude,

‘mg % +K(2) 2 =F,8in w t.  ceeeesee(349a)

Lel the maximum amplitude!b Zy then

Z =7 sin® t,

2
FQ mlaw =m°£w2(a3m1Q= m°£ )

Substituting equation (3.9a) we ebtain ;
~moZ e + (K (2) 2 = m € w?e

or k(Z).2 = m°w2 (€+2)

Now K42) ,2 = Cuyn A. (By definition) e....(3.26a)

2
_mow + 2
) Gdyn - ( ¢ ) tecene 0000(3026 b)
A
From point A,()dyn. can be computed and a plot is

obtained between Z and 8 dyn. The slope of this curve at any
point defines the characteristics of the sublinear spring.
Equation (3.26 b) can also be plotted graphically as shown in
Figs 3.21 whiech is self explanatory. It must be emphasized
here that the method breaks down for points chosen too near the
resonant frequency., In many cases, the spring characteristic so
obtained may be extrapolated for higher values of Udyn and 2.

This may-be used in Eq. (3.9) to give the solution for
anplitude and frequency for any other foundation soil system. This
becomes complicated. Alpan (1961) has suggested a simple method
by which knowing the spring characteristics, fo and Zo (resonant
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frequency and resonant amplitude), may be determimd for any
value of € and oy '

S
ﬁ N AA/qumét”r '

ALPAN'S APPROACH (1961) //w ~

EEESt simplifying assumption that Alpan makes is that
"it is considered permissible to analyze the foreces with the help

of a phase diagram at no great sacrifice of accuracy™.

For the case of forcing frequency being equal to natural
frequency of the system i.6.,% = W, , the damping force is
180 deg. out of phase with the driving force, and so is the
restoring spring force with the acceleration force, The direction
of these pairs of forces are normal to each other, The vector dia
gram of Fig, (3,22 a) gives j

m ew2= c W 4o
1 0 ° .....0.000000(3027 a)

N s N o’

o o
These two equations give }
coZ i
wo = 0 = © ZO since mll = motg
m ¢ mg € ) vose(3427D)
2 )
and wo =k/m respectively )

Eliminating “g from equations (3.27b), we get,

¢ ¢
AO =Km°( /c) se0s00c0s0 e 0.0000000(3.28 a)

Also from the equation (3.26 a),
k = A. Tdyn. / ZO esesesnse(3.,26 a)
By eliminating k from equations (3.28 a) and (3.26 a)

ZoazA mO( E/C) G. dyn. ooqocooooo-(3o28 b)
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‘The spring characteristic (determined in Fig, 3:21) is
represented by K/4 curve (or ©dyn/Z) . The ocubic parabola of
equatiop (3,28 b) intersects this curve at a point which gives
the value of Z 1 the amplitude at resonance (Fig. 3.22 b) but cubie
parabola can be constructed only when values of ¢ 1is known,
Actuelly to a certain extent, this demping constant varies with

€ or the exciter force. But this variation may be neglected
and determined fpom Equation (3,26), which gives,

000000...00'.0(3029)

Experimental curves such as shown in Fig. 3.20, may be

used to evaluate ¢ from equation (3.,29).

Having assigned to the soil an average value of ¢, the
cubic parsebola equation(3.28 b) can be constructed for any - and My o
The intersection with charadteristic (k/a or Gdyn/Z) ourve gives
the value of Zpy for € =€ .« The value of Z°1 found graphically
is used in equation (3.27 b) to determine ‘”ol the resonant

frequency at & = &, o

The method deseribed to determine the soil spring
characteristic by graphical means 1s a simple one. Alpan
gives a simple method of using this characteristic, to determine
for any exciter force ( & ), the value of resonant frequency and
the emplitude., Alpan has checked the method and found it sufficie
ently accurate, for varying dynamic loads. However, il seems

likely that if the contact area & is changed, spring characteristic
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will change, and hence fer changing area this cgnnet be applied,

3.22 BASIC SIMILARITY OF VARIOUS APPROACHES 3

In all the metheds for predicting resonant frequency,
which assume soil to be homogeneous, an interesting similarity B
is pointed out, Based on this an empirical formula is developed,
which will help in simplifying the calculations .

For stgtic loads, the value of spring constant for

various distributions are }

@Gro
k:—-—-—————— .....................(3.30 a
(1 =v) )
for rigid plate condition. (Snedd@n 1951).
"
k = Gro 0000000000(3030 b)
1l -2

for uniform stress condition, (Baussinseq's 1885),

_ 3
k.——-———- i._r_g 00000000000000000(3030 C)
4 ley

for parabolic stress distribution. (Frohlich 1934)

Equations (3.,30) show the spring constant is multiple
of Gro. Now consider the theory of vibration mesting on elastie
homogeneous, semi-infinite, isotropic medium (soil). In the
analysis, mass ratio 'b' and dimensionless frequency temm 'a' is

used, where,

b = m03 ‘nd B.Q = wo rO /-7;7&-—— 00000(3031 a)
fro

2 m

o' bab = Q 2 2 f
—ge W PO o cosemm— esscssserasses(3.31 D)
froa ) o 5
which after re-arranging gives,
2 - G 2
wo 3"1".'9"—(})% ) 0000000000000(3031 C)

Ry
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Value of equivalent spring eonstant is, therefore,

(Assuming @42 = ¥, )

k = 91_0._ L4 (baoz) -ou..............(3.3l d)

D
kquation (3..1 d) based on the criterion of resomnce
at phase angle = "/2 , gives (Raissner 1936, Quinlan 1953),
(b&oz) = _° fl

] ) 000000000000000000(3032 0)
fl + £,

(bag2) 1s, therefore, a function of load distribution
Poisson's ratio and ‘'ai Jones (1958) has plotted value of (baoz)
versus (b) for different load distributions and poisson's ratio
from Sung's (1953) ecalculations,

Hseih's transformation (1962) gives spring constant as
(Equation 3.6 a)

K= Gro Fy esssssssesassss(3e6 a)

where Fl has been evaluated for rigid distribution and different
poisson's ratio in terms of 'a', given in equation(3.25).
G922 Fd P e a(3.32)
Io
Putting value of Fy from equation (3.25) we get (for
V= 1/2)

- 2
‘092=§12( 8m 2.0 & ) seeeeses(3.32 b)
(0]

Substituting value of 'g'o = Woro / f'/G , and

rearranging we, obtain,

w°2 - 8 Gpo - ooooooooooo..(3.33 ﬂ)
Mo + ?.f ros
V=
ENTRAL UBRARY UNIVERSITY OF ROGRKEL

ROORKEE.
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wozz 503 Gro

0000000000(3033 b)

Dy + 4 ro°
For ¥V = 0,
w02 = 4.0 Gro 00000..0(3033 0)

my + 045 ¢ rod

Values of spring constant from equation (3,30) for
rigid base distribution is 4Gro/l-v , which for v=1/2, 1/4,
0 is 8 Gro, 5.33 Gro and 4.0 Gro respectively, This tallies with
spring constants in equations (3.33).

Lot us take Ford and Haddow's analysis §1960). In
this analysis, value of resonant frequency (equation 3.8 a) is
26 (L+v) M, g
Y//u + Gat,
in which U is the decgy factor and is given by

wozu

000000000(308 ﬂ)

equations (3.8 ¢)

= BJ— ..........(3.8 0)
m/Z( 1=V 2 .
Changing § st in to m,/w ro® , area 4 into ™ Bo

and substituting value of & from equation (3.8 ¢) in equation,(3.8a)

we Obtain, 1
w°2= 26(14»7/);811'0/? . _ —
(L =-v) (mg,+ "3/2./9.1'0 (1- vz)

B

0000000000000000(303£ a)
28 1l
=Gz L /T
d o/
(1 - ) ) mo"'fro N (1-2}2)
By

0000000000..0.(30“ b)
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Therefore, the equivalent 'spring constant is & multiple of Gpo,

and the mass of soil partieipating in vibration is a multiple of

frod , | '
Now consider the emperical plot of Tschebotarioff

(1948, 51, 53) « The equation of the plot (Bquation 3.18 d) is

fo = J A0.248 0.00000..(3.18 d)

’ 3
Substituting A = W ro” / in equation (3,18 d), we

obtain,

constant X i 000.000.0(3.35 a)
/ W

y
N

constant x / .
/ I'QO 992 00060.00(3035 b)

W
_ o ,
where the constant depends upon soil type, (and

hence an value of G).
Hence spring constant may be taken as a multiple

of Gro. Note very small power difference between 1.0 and 0,992,

Converse (1953) has given an emperical equation for

resonant frequency of sand vibrator system (Equation 3.23 d)

_ /8 /g4 X
£t 5w 5~ (1.64-Fo/W5)+0.55 Gro
Wo
.0000.000000'000000(3023d)

For large values of G, equation (3,23 d) reduces to,

/
fO = / Uro X a constant 0000000000(3036)

Wo

Pauw (1953) has evaluated the spring constants for
the cohesive soils for which values of E or G can be assumed

to be constant. Though it was not possible to evaluate the mass
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factor , it will be/interest to see nature of spring constant by

hime Expression for springf@nstant for vertical vibration is

k= EL Y2 teeeseess(3.37 a)
%W where tan'l-(/z denotes the angle of pressure distribution,
A < and Y2 is a factor depending upon L/B ratio.
)
K8 For circular vibration B = 2 ro, and Y = 1.0
(Pauw 1953),
S k=E.AL(2ro)el =2&1 +V) & .(2ro0)
f : = Gro 34 (1 + V) ; cesesersessessst3,37 D)
|

i.e, the spring constant is a multiple of Gro.

Experiments by Nijboer (1953, 1959) Vander Poel
(1951, 1953) Helkelom (1959), HeMkelom and Fos.er (1960), obtained
the value of spring constant as gpproximagtely 7.6 td 74 Gro, in
thelir dynamic tests,

ie€e ¥ = 7.6 GIO  seeessesosesed(3.38 )

From consideratim of equations (3.30) , (3.31),
(3.32a) (3.33aybyc) (3.34 b), (3.35b), (3.36), (3.37b) and
(3.38), a simplified form of the natural frequency expression is

suggested viz.,

Ay x G
(A)oz = l ro oooooooonooo(3039)
Interoducing the shape factor m in equation (3.39),
we obtai({l,: G
. ro
. Mi&}woa = (Al/m)o 000..00..(3.4‘0)
o B + A, prod
M ) M’X}N where A 1, A2 are constants for the system and
N
v Y m 1is the shape factor depending upon L/B ratio.

N The effect of change in dynamic load uponl(l and A 2
N will have to be investigated experimentallye



CHAPTER - 4,

DYNAMIC TESTING OF SOILS

4.1  GENKRAL

In Chapter - 3 various methods for predicting the
resonant frequeqcy of foundation soll system have been discussed.
It was, however; assumed, while considering the methods, that dynamle
constants of 3611 stratum were known. In analysis of machine,
foundations q& Elastic wave approach, soll properties are of prime
importance./;These are the (1) modulus of elasticity, (E), or
modulus of rigidity (G), (ii) the poisson's ratio (¥ ) and
(111) the density ( Y ). In mass spring analogy again three soil
properties are of significance. These are (i) spring constant (W)
)b&fiffzi;w“;amping factor (&), (141) soil weight (Wg) Pauw (1953)
Qﬁ;‘-' Balacrishna Rao (1960, 1961, 1962) have shown that W, depends upon Eﬁ%

pa SO

Y. Peauw (1953) has related the spring constant wiﬁnu(Ejmdf its
increase with depth ( # ). Ehler (korenz 1959), useih (1962), have
attempted a correlation of spring constant damping factor with E,

YV, and ¥ = Lorenz (1953) and Alpan (1961), have used the nonlinear
characteristies of the spring to determine the resonant frequency.
Tschebotarioff (1948, 1951, 1953) has given an empirical plot
between contact areas and reduced natural frequency. All these
approaches try to use the soil data as obtalned from vibrator test
on the soil and from that data analyse the soil behaviour,

As far as the value of 'Y ' 1s concerned, it
offers no difficulty, Ordinarily, sanpling will serve the purpose,
Also Poisson's ratio varies only over a small range for most soils

as long as the applied loads do not stress the particular soil
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excessively. VIt is not a property that appreciably varies even
under a dynamic load (Fisher and Winter 1962). In many cases it

may be estimated or assumed with sufficient accuracy to be used in
analyses. For greater accuracy laboratory tests may be used to
measure polsson's ratio directly (Tschebotarioff 1951)., By measure-
ment of the coefficlent of earth pressure at rest (ko) in a triaxial
\test, poisson's ratio may be found by the following relationship

kfg = ko/l + ko) . Typical values of poisson's ratio are given

in Table No, 4.l.

Therefore, the prineipal problem lies in evaluating
either the modulus of elasticity or the modulus of rigidity. These
properties vary not only in different soils, but depend upoﬁ the
imposed loading condition., Measurements of the modulus of elasticity
can be made by 3}

1) direct measurement of stress and strain in a confined compre=-
ssion test,
1i) wusing the first part of & stress strain eurve on a t}iaxial,
111) wusing a straight line portion of a triaxial compression test,
after several re%%tetions of load and reload cycles have been
mage.

These methods may be considered to be standard test
procedures for evaluating static elastic modulii., Dynamic elastic
modulli with which we are concerned is not the same as obtained from
static tests, and hence the static tests cannot be used for finding

the dynamic behaviour of soils.
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4,2 SEISMIC MKTHODS

Seismic methods of expleration for mineral prospecting
and oil explorations, are based on the velocity of propogation,
and any change in velocity of propagation of wave(when a wave travels
through mediw having different densities). 4&n artificial impulse
produces chiefly compression waves, and if seismographs are employeds
the subsequent wave to arrive is shear wave. From these velocities
Kk and ¥ can be calculated by using equations given in Fig. (3.2),
Disadvantage was that same force or impact may not be generated.

Also as the explosion produces a single impulse, there is no
possibility of determining the thickness of individual soil strata
by nieans of observing interference phenomena on the surface of
ground,

Recent developments have made it possible to adopt
selsmic methods to the local sites within the economical range., Also
the impact or shock is produced by a sledge hammer blow, These
units are suitable for exploring subsurface conditions down to
25 to 50 ft. Dbelow the ground surface, which is usually suffieient,
to define the dynamic characteristics of subsurface, materials below
vkbratbry equipment foundations., A typical unit is shown in Fig.4.l
(Fisher and Minter). While the operations of these shallow depth
seismographs is relatively simple, the electronic circuit is some-
what involved. This helps in evaluating the time difference between
the time when the impact is imparted and when the geophone picks the
first wave arrival. Knowing the distance between source of dise
turbance and geophone and the time taken for the wave to arrive at

geophone, veloelty of propagation is calculated.s This is mainly the

compressive wave and from its velocity the value of # dynamic may be
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determined by assuming suitable value of V¥

4,3 EARLY STUDIES

| Studies with mechanical vibrator, was first
suggested in a report of Indian Railway Bridge stress Committee in
1921 (Berhhard 1949) in which the idea of testing with a machine of
two mass vibrator was advanced. Very few experiments were made
till 1930 in Germany for the purposes of studying vibrations produced
by industrial machinery. These earlier experiments have been
reviewed by Heinrich (Bergstrom and Linderholm 1946, 1949, Subbara
1962) ., in'early 1nvest1gatidns emplitudies were observed at various
distances from the source of initial disturbance. Heinrich found a
relation of the following type 3~

Z2n = 4 -/u(r K rl
n 1 / l'l/rn | .000000000(401)

where Zp is the amplitude #n a vertical direction at a

distance r, from the scurce of initial disturbance,
4 is the amplitude in a vertical direction at a
distance ry from the source of initial disturbance.

M 1s a decay coefficient depending upon character-
istics of soil,
Similar expression has been given by Bernhard (1958)
Barkan (1963).
The constant ,‘L characterized the properties of
the soil to a certain extent, but the accuracy of the method was

not sufficient to admit of a classification of wvarious types of soil,

4.4 DYNAMIC CONSTANLS BY RESONANT FREQUENCY 3

The beginning of the application of dynamic testing
for the evaluation of the soil: properties ean be traced back to 1930's
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when the research workers of Degebo started the systematic investi=
gations of soil vibrations., The first attempt was by analysing
thé pehaviour of soil from the response curves -
3) tréquency vs amplitude,
b) frequency vs power po{g} and
¢) frequency vs phase difference, between the periodic
disturbing force and the vibratims produced by this
force -
- obtained by means of a mechanical osecillator with two revolving
eccentric masses (dorenz 1934). These response curves can be inter=
preted to obtain resonant frequency, and damping of the system, and
consequently spring constant k and soil weight partieipating in
vibration with system as explained ig section 3.12, -In this analysis,

was assumed to be .
modulus of subgrade :eaction[;ndependent of area and dynamic

— TR - v "
load, which is not true. TeendoeIy (¢ a vk o T 6l s

e e ettt

Jones (1958) has also given a method, which deter=
mines the values of modulus of figidity by observing resonant free
quency. He has applied the theory of vibrator as semi-infinite,
elasfic homogeneous and isotropic solide He has simplified the
caloulations by using a simplified equation (3431 ¢) in which he
has plotted value of (beo®) versus different values of b, for
different poisson's ratioc and load distribution({ Fig. 4.2) For
different values of 'b', and fo, the value of G is calculated by
equation (3.31 ¢) (section 3.22).

Et is shown that shear modulus deduced from the

measurement of the resonant frequency, at low amplitudes of vibration
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was in good agreement with the shear modulus deduced from the phase
velocity measurements. In this comparison, the stress distribution,
was assumed to be either uniform or that arising from a rigid plates.
It appears that when the soil was firm and dry the first assumption
was Justified, where aséggft wet soils the rigid plate condition“
applied, The results indicate that the uneertainty in the shear
modulus due to unknown distribution of stress beneath the vibrator
is likely to be about + @ s/x_, LV Le 3
The method seems to be more useful for machine founda-
tions, as the bghaviour of the soil is obtained at resonant frequancy.
In fact, by determining the resonant frequency, any particular soil
constant'representative of the dynamic behaviour of soil (#.g. decay
factor in Ford and Haddow's analysis, rate of increase of modulus Of
elasticity with depth in Pauw's spring analogy, or the spring constant)
will be more applicable than from the empirical tables set up.
The uncertainty - due to load distribution, seems at present stage
of knowledge difficult to remove, (o’ e
This method has been applied by Central Building ) Mo

Research Institute in in-situ dynamic tests conducted for a wind

tunnel design at Bangalore,

,_”\M 1\!/() ONL | L . '\/\n}( besn ?\Ja L«nk«e, <
/;’
Subsequent investigations by Degebo (Kohler,

4,5 WAVE PROPAGATION

Ramspeek 1936, Hertw‘g 1936)/§eported by Linderholm and Bergrstorn,
1046, 1949, Jones, 1958, §pbg;rad 1962), comprised the measurement

of velocity of wave propagaxion'in the soil. The velocity of wave
propsgation is independent of the size and mass of the vibrator

and can, therefore, be used for characterizing the properties of soil,

If the soil is regarded as homogeneous, elastic semi-infinite body,
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the modulus of elasticity in tension, E, and modulus of rigidity,G,
f—.
of the semi-infinite body can be computed from the veloeity of
wave propagation. Actually, the soil 1s not homogeneous, and the
calculated values of E, and G have to be regarded only as statistical
values or effective modulii,

The above work showed that on many sites, the velecit¥ .
of propagation of vibrations decreased with increase in frequency, )
The variation was attributed to the variation of soil properties with
depth, and attempts were made to give a theoretical explanation to
the actual thickness and properties at bore holes., However, the
type of wave propagation was not definitely established., To quote

¢

Jon e* 1968) some workers considered it to be of the Rayleigh wavetype

while others thought the waves were\vertieal polarized Love wayes.

Necmerrenmpecree™ ——
However, in view of the theoretical work by Miller and Pursey (1955)

it now appears that the first opinion was correct,

The German work, (frequency range 10 to 60 eps) also
showed that within the frequency range of 20 to 25 cps, the velocity
of propagation was related to the strength of the soil (E or G),.
However, Jones (1958) has shown that on sites with a shallow sufface
layer, the frequency range of the mechanical vibrator does not always
extend high enough to obtain a phase velocity that 1s representative
of top layer. In fact he has shown thatrthe dynamic shear modulus
and the formrof its vériations with depth can be ascertained from
measurements of the phase velocity of the surface vibrations with
in the frequency range of 35 to 400 cps. He further used the dynamic
testing method for the concrete pavements which are relatively thin,

with sustained vibrations of 40 to£60 kc;;;;:)‘in'order to get the

dynamic modulii for both pavement and subgrade Jones (1955,1959),

2 -
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An investigation of the effects of soil stratification méde by
Ramspeck (1936) 1s of great interest. This subject has also been
dealt with in sgveral seismological papers (Oosterbeek 1948), It

hes been shown that the amplitude frequency ourve has several
maximum ¢ and minimum which are due to interference of waves
passing through different soil layers. This conelusion was confirmed
empirically. In some cases the agreement between theory and
experiment was very close, while in some other cases the agreement
was unsatisfactory. Jones(1958), used the elestrodynamic vibrator
weighing 85 1lbs, which he had used earlier for the concrete pavement
~ testing, It will be interesting to note that the complete vibrator
generator, is such as to produce frequencies between 35 cps to ‘7

60 ke/s, (Jones 1955,-1969)¢ - o
0 ke/s. Lone

Jones (1958) has indentified, surface waves as
Rayleigh waves, based on the theoretical analysis by Miller and
Pursey (1955)., who have shown that a vibrator on a circular base,
Operati;g normal to the surface of a semi inffnite elastic solid
" ( YV =0.25) radiates 67.4% of the power as a surface wave, The
surface waves in which the soil particles have displacements at
right angles to surface and also in the direction of propagation of
wave are Rayleigh waves. If however, the arrasngement, is such
as to produce and detect vibrations in a horizontal direction,

transverse to the line of measurement, the waves are shear or love

s
wave in the soll. Love waves are basically horizontally gg;gq;zed CC:i*

shear waves (1.e. TH waves) which have a particle displacement Pyt D0

parallel to the surface and transverse to the direction of propagation,
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Natural soil formations are rarely uniform with
depth, and thi$ is reflected in the vibrational measurements by

a variation in phase velocity with wave length. However, as the

wave length tends to zero (at high frequencies), the bhase velocity
reflects the behaviour at top surface in which we are interested.

In such case, the data is extrapolated for zero wave length, phase
veloeity whieh gives the shear modulus. The shear modulus so ob=
tained refers to the soil nearest to the surface, which can be used
in predieting the dynamic soil behaviour., In a particular case,

for a surface layer of 4'-10", silty e¢lay over stratum of the gravel,

the phase velocity approahed a constant magnitude Vg at frequencies
greater then 150 cps. '

Jones has also analysed the phase velocity of Love
vaves for a surface layer swer a stratum of higher shear modulus
and has shown by experiments, a very good correlation between the
theory and experiments, ~Fhase veloecity of vibrations become velocity
of shear wave in top medium, when the thickness of surface layer,

becomes equal or greater than the wave length of vibrations,

Hg has also analysed and interpreted from these data
the thickness and the elastic constants of underlying medium. Jones
(1959). |
4,6 SWEDISH EXPERIMENIS

Similar to 'Degeba,experiments in Sweden (Bergstrom, Linderholm
1946, 1949) used the phase velocity at resonant frequency of
vibrator soil system to arrive at dynamic soil constants. The vibrator

used was 75 kg in weight, 600 em} in diameter (base area 0. 282 m.sq)

eccentric weight of 0.46 kg at an eccentricity radius of 43.5 mm, with
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a frequency range of 10 to 60 cycles per sec¢. The general arrange-
ment of the equipment used for displacement and wave length
measurements 1s shown in fig. 4.3. Veloeity of propagation, was
obtained from wave length (min. distance between pick ups so that
phase difference is 2 " ) end the frequency of sustained vibra-
tion. This was assumed to be Rayleigh wave (according to an analysis
by Sezawa and Kanai 1935). Values of E and G were determined for

the two Poisson ratios V = 0.25, and 0,50, The site seems to be
uniform, es indicated by no significant variation in the phase
velocity between frequency range of 14 to 32 ¢/s. (39.1 to 44.1

meters /sec, was corresponding range of velocity of propagation),
If the soil behaves elastically, an empirical soii constant has
been defined, by the above authors which is related to E ang G &Qw‘?

as follows s~ {Z R 2. V-
- S SEPENTR VISR TIN
Soil constant = 00000000000000‘402)
Wik W wwian Ar Qs Gadod - .l;—
Lruntd S DLt e - 2"

This constant is related to modulus of subgrade

reaction k' as 3
T ro
2

where k' = k/"Fo> (Bergstrom and Linderholm 1946).

Soil constant = k!

The field data has shown that the value of this
constant derived from the plate bearing tests on large plates
(ro = 3 meters) was in extremely good agreement with the values
obtained from vibration experiments. Smaller plates (Rg=0.14 to
A 0.56 mm) gave poor agreement, Another conclusion drawn from the
results in this case was that dynamic method gave a relatively
correct idea of the behaviour of the soil under the action of

distributed load if the maximum values of Y = 0.5 were usgeds

o
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4,7 DYNAMIC STIFFNESS

In post war period (1948 till date), Vender Poel add

Nijooer (1953) Vander Poel (1953) developed the technique of testing
the road.pavement and its subgrade with mechanical oscillators,
This has been applied to the subgrade testing, and the interpretation
applies to the soils in general. This oseillator, consists of
eccontric masses on 3 synchronized shafts, so that the centrifugal
'forces from the masses get mutually cancelled in the horizontal
direction, ®ut will get added int he vertical direction, giving
sinusoidal vertical forces. This machine which has been developed
further ny Vander Poel and Nijboer (1953), is commonly known as

'Road Vibrating Machine' (R.V.M.) Nijboer (1959), similar machine

has also been developed in Bundesanstal ¢ fur strassenwesen at

Coogne (Germany) Baum (1959;:~ Lhe onl& di}};;énce batween the two

is that former has frequency range of 5§ to 60 eps, while the latter
has a range of 10 to 80 cps. R.V.M. 15 supposed to duplicate the con=
dition of wheelload of 4 tons. Vander Poel (1951) introduced the-
concept of dynamic stiffness of the subgrade which is defined by the
ratio of amplitudes of forces gemerated and deflection of the strata.
The displacement was measured by feeding the signals from a displace-
ment pick\ just below the centre of the vibrator, on to the oscilloescope.
The results have shown that the dynamic stiffness is dependent on

the frequency at which 1t is determined (Heukelan (1959,1960)., The
data hes been analysed on the basis of elastic spring theory,
-Agcording to this theory, K, m,y ¢ are independent of frequency.
This has been found to be true at frequencies low enough for the vave

length to be large as compared with the radius of the body of soil
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in which greater part of deformation takes place. At relatively
high frequencies, however, the wave length become rather short

and parts of distributed mass of soil vibrate in opposite direction,
It has been found that this can still be represented by the above
simple model provided mass of soil acting is assumed to be a value

inversly proportional to the third power of the frequency.,

2 2\
Dynamic stiffness S = _gg_// Keg4gmw f (-23!5) +4 W fa 2

Qooo§0ttootooo(4o4)
and phase difference Y is given as
2% L., ¢
tanle '2' - 00000000(405)
K -47  f ( Wg + ug)
g

Equation (4.4) and (4.5) yield,

S cos¥Y=k = 4"2 fz( _u) 00000000(4063)
and 8 81DY= 2 W f.c 0000000000000000.000(4.6b)

If both the dynamic stiffness and the phase angle
are measured at few different frequencies, the three quantities k,
W, and ¢ in equations (4.6)zggtggmined from experiment, The
damping ¢ follows directly from equation (4.6 b). Equation (4.8a)
shows that a linear relationship exists between S cos ¥ and £2 ’
provided that k and Wg are independent of the frequency. A plot
of S ecos ¥ versus fa from test data is .obtained. The straight
line, through the experimental points intersects the vertical axis

(S cos W= axis) giving the value of ks The slope of the line is
equal to - 47 © (W, +Wg)  from which Wy can be calculated,

g
(See Fige 4.4 Dbetween S cos 7”3nd, f2, and notethe excellent ggree-

ment t1ll frequency = 35 C.p.s.) In low frequency range of upto
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20 to 40 c/s, the relations have been found to apply. Another

interesting feature is that k is invariably found to be c¢onstant

timegSro x G » The value 13(;.6 ro)as quoted by Lorenz (1959),
7.7 106G ‘s given by @1959). (See Section 3.22).

Inimoderate frequency range (vaiue upto about twice
the’ low freguency range), the mass of the soil participating is
 found to be inversly proportional to the third power of the
frequency. This is shown in (Fig., 4.5). The agreement between
suggested mess . Of soil participating, and the experimental
points im excellent, '

4,8  LABORATORY METHODS 3

Fisher and Winter (1962) have bsen suggested an .
interesting laboratory method to find the elastic modulus (dynamic)
by measuring the velocity of wave propagation, which is essentially
compression wave, on selected undisturbed soil sample. The procedure
is relatively simple. A pulse is introduced into one end of an
undisturbed soil sample, and the time téken by this pulse to travel
to other end of sample is accurately measured. Knowing the length
of the sample and the time taken, the veloecity of wave propagation
is estimated. From this velocity, soils constants (E) can be
determire d, To duplicate fleld conditions, the sample is subjected
to a confining pressure in the same manner as in a triaxial
compression test, However, several problems enter into theléggzzﬁ

deviee for measuring wave velocity which are as follows t=

1. Extremely accurate time measurement must be made.

2. Field conditions must be duplicated as for as

possible.
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Fisher and Winter (1962) have devised the
apparatus, which they name as"Shock Scope, which will meet the
above criteria,

Oosteybeek (1948 and Wilson and Dietrich (1960) °
have computed gdyn from theories of elastieity based on laboratory
determination of resonant frequency of soil specimens subjected to
forced vibrations. . |

" The restraint for the specimen being vibrated has
been verified to correspond to lower end clamped and the upper
end free (gpecimen was kdpt in triaxial cell) For this condition

at resonance (neglecting poisson's ratio (V) as the effect is

negligible), 5 2 |
E = 16 fo 1 .Y‘ 00&000..0(407)
g
where { is length of sample,

Y is unit weight of sample

f, 1s resonant frequency.

4.9 CORRELATION OF Epyy WITH C.B.R. VALUE 4

... A8 B (dynamic) represents the characteristics or
strength of soil, attempts have been made to correlate Edyn with
8alifornia Bearing Ratio. By introducing the diameter of the C.B.R,
piston (3 sq.in. area, and 1.96 inches in dia.,) in the Boussiﬂég)
equation for the surface deflection under the centre of a uniform
eireular load, and the C.B.R. at 0.1 in deflection equal to the
applied load on piston in 1b/sq.in. divided by 1000, the relation
between E and C.B.R. can be obtained as follows s-
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The spring constant is given as (Bquation 3.30 b)

K = Gro WxEBxro
(1=Y) " 2(L+v) (1=Y)

-oo-ooo¢(3030 b)

By defination k = force/deflection which gives,

- 1000 x C.B.Re x W ro2
100 0.1

00000(403)

GS Equating (3.30 b) and (4.8) putting ¥V = 0.5,

{0' E = m(«kg./sq&m-)

Actual soils, however, behave differenmtly from elastic materials,

for instance, after deformation under the C.B.R. piston, the soil
dees not completely rebqgnd on removal of loads A considerable

part of the derormatioégilaatic and only a small percentage of

the deflection is elastic. Under dynamic loading conditions, only
elastic deformation is recorded after a certain number of loading
cyclese The dynamic modulus E, is found to be higher than 10 C.BeRs
The ratio befween plastic and elastice deformations varies for

various soils and also may depend upon loading, so that correlation
between Bdyn and C.B.B. shows a considerable scatter. Jones (1958),
Heukelon and Poster (1960), have found that as an awerage&§§31:f§552>
é&%;gi- The factor véries betwen 50 to 200 for individual soils.‘
Figure 4.6 shows the points for various soils as they lie on Edyn

in kg./cm.sq. versus C.B.R. value,

This correlation only goes to show the wide scatter
whieh is possible, and as such may be used only for the soil for
which correlation has been established, which means that Edyn has
to be found by other methods discussed. Any way approximate range
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may be fixed from the C.B.R. value, and in sbsence better data,

this correlation may be used.

4,10 DISCUSSION

The oldest method of the dynamic testing of subsurface
is by seismic methods. These methods have been extensively used,
in mineral prospecting. By knowing the velocity of propogation it
is possible to find the dynamic modulii, and poisson's ratio., Also

refraction methods have been used to calculate the depth of stratum.

The next group of methods uses one or other type of
vibrator to generate the waves. Various methods of interpretation
and their development are described in this chapter. By means of
vibrator a stationery wave pattern can be obtained and with inter-
ference effects from the various underlying strata, it is possible
to calculate the depths and dynamic hehaviour of soil layers. The
vibrator method can be usad to find the resonant frequency of
vibrator soil system, which in turn may be used to find the constants
depicting'dyn;nic behaviour of soils. Laboratory methods to find
the wave of propogation have been described.s The method offers the
solution of problem by laboratory testing of samples. It suffers
from the seme limitations as ordinary static loading tests viz, the
simul ation of fleld condition inthe laboratory. A concept of
gtiffness of foﬁndatibn soil leads us to believe that below a
certain critical frequency, the system may be assumed to be linear,
and after that the non linearity may be accounted for by a decrease
in soil mass. But unfortunately in that approach nothing has been
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done to see if the stiffness is independent of the dynamic force.
(The tests are done with one type of machine).

The best method available for predicting the
dynamic behaviour of soils under machine foundations seem to be
to observe the resonant frequencies with various vibrator parameters
and evaluate the response from the experimental data. But there is
one hitech in this also as to what distribution of pressure be assumed
i.e, uniform, rigid or parabolic., This leads to a variation of
+ 11% in the dynamic constants. The finding that spring constant
is about 7.6 to 7.7 roG is important if the system is assumed to
De mass spring system, and the mass factor may be changed to account

for non-linearity seems to be promising approach. However, much

further work needs to be done in this connection,
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CHAPLER - (8

DESIGN OF MACHINE FOUNDATIONS,

5.1 GENERAL

In the present chapter, design procedures for
machine foundations will be summarized, The earlier methods
were completely empirical, and the design of foundation
depended upon the manufacturer's recommendation, A hsavy
foundation was believed to be trouble free, These methods

obviously did not account for soil properties,

The first rational agpproach to the problem is giv
by Hool and Kinne (1943), who .obtained the weight of foundation
by considering its stabilizing action, so as to get the permissi.
ble amplitude of vibrations. A value for soil weight 1s assumed
empirically. This has been modified later on by Balakrishna
Rao (1961), who assigns a definite value to the soil weight.

In the above two approaches resongnce was not at all considered
though significance of the same was understood as early as
1926 (Ramsch 1926),

The nmext grdup of methods used the published
data, to give the empirical relationship between
&) s8oil bearing pressure and the resonant frequency
(Newcomb 1951) and
b) contact area(gh reduced natural frequenocy,
(Tschbotarioff and Ward 1948), Tschebotarioff,
(1961, 1953), for difference types of soil,
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These curves are used in the design of foundation.

The present state of knowledge lays stress on
avoiding the resonance and limiting the asmplitude of vibration,
These methods use the various approaches to determine the reso-
nént frequency. All these methods are desoribed in the

following sections,.

5.2 EMPs{RICAL METHODS 3

/

dimensions or the weight, or the amount of oconcrete used in the

The basic principle of these methods is that the

foundation 48 dependent upon the type of machihe, its operating
frequency or its b;ﬂﬁi“horse power., This is based mainly on the
recommendations given by the manufacturers, who observed from thelr
experience that certain designs were satisfactory for the working
of machine. In these methods obviously the type of soil, was

not considered to be of much significance except that its

bearing capacity should not be exceeded and that thegb should not

be excessive settlement,

The basic idea was to use heavy machine foundations
which were considered as means of providing resistance to the
dynamie reactions arising from the moving parts of the machine.

An adequate mass of the foundations is also necessary in order
to absorb vibrations and to prevent resonance between machine
and the soil foundation system, Several recommendations, sometime

contradictory are avallable to achieve this end.

Table 5.1, gives the representative recommendation
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H]

as to size of foundations to be adopted for various engines.

6.3 TEBZAGHI'S RECOMMENDATIONS ¢

Terzaghl (1943) has given the following sugges=-
tions for the desigh of machine foundations,
1, The dynani¢ pressure transmitted to the ground by an
oscillating force Fo sin wt, is given by Fy x N,
where N, 1s the magnification factor, which im turn
depends upon the frequency ratio. Hence, the total
pressure on the base of the foundation varies periodically
L))L"zg M‘*ﬁ’"\ between Wo + P, and W, = P.« 4According to Terzaghi

- ey
W\”a"ﬁ: the dynamic pressure should be multiplied by a factor
*~
37 s Of 3 to obtain equivelent static load, Hence, the
~ DV"“
3 1 %vgreatest total load on the soil is equal to
\O e Wk
A Wo + 3P
W o
A . Wo + 3Py

The greatest unit pressure is = . per unit

of area. This load should not exceed the allowable
bearing value qg as in static case for the soil, where

A =Wo + 3Py
9

[ ]

2, For low frequency machires “/w, or frequency ratio
1s to be less than 0.5, which means that «w, should be

more than twice the operating frequencey.

Now -wo 3// K’g 00000000000(3.9 b)

4s such the value of soil mass partieipating, if

neglected will give more natural frequency than actual

one and this will give the false sense of security to
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the designer. Hence the value of W » should not be
neglected, ,

3. For high frequency machines, “, should be less than half
the operating frequency. In such a ecase if Wg 1is
neglected, we get a higher “ ,, and if this satisfies
the requirement of “, = 0.54then we are all the more
safe.

4, For high frequency machines, there will be transition
through resonant frequency, when the machine buil@ d A

<§pto Operaxing machina\B Care should be teken to limit

this resonant amplitude.

6.4 HOLS AND XINNE!'S METHOD 3

A falrly rational approach to the problem of
design of machine foundations is to equatethe stablizing force
obtained by the weight of machine, the foundation block, and a
certain portion of the soil tS the disturbing forces cansed by

the reciprocating and rotating masses,

Inveriably the maximum magnitude of dynamic

disturbing forces of the machine can be writtem as

?0 «’-'Unwz oooooooo0000000000000000000(5'1)
where Uy is\lummation of all unbalances, including

Jv\\‘iggprocating and rotating partl and is constant
for a particular machine .
«  is the operating frequency.
Let Wy be the weight of the machine, and We be the
weight of foundation, 80 that Wo = Wy + Wge Hool and Kinne (1943)
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hagve assumed that the weight of 801l participating is a constant
times welght of foundation, that is W, = @uig.

Further they have assumed that all these masses
(Machine, foundation and soil) are accelerated to the same amount.
Since the frequency of the large masses is periodie, and 1s the
sane as the operating frequency of the machine, the assumption 1s
made that motion is harmonie, in which acceleration equals Zmz&
where 4 is limiting amplitude of displacement of this harmonic
motion,

The forees of small masses (Machine parts) with large
accelergtions are balanced by the forces of luge{é}massu with

small acceleration (inertia forces).

il.¢. wll + w! ¥ wf X (2,102) = Un wz 0000000000(502 ‘)
g
Substituting Ws = GWyy the velue of W, 1s obtained as,
1
wf = (UnOS - wu) — ooooooooootooo(st b)
——— l+C

Z.
80 that knowing Upy W, for a partioular machine and Z

the limiting amplitude, and assuming a suitable value of C, the

wieght of foundation required can be found out,

Thus Hool and Kinne have assumed that mass of soil
oscillating\ is proportional to the mass of foundation,(roughly
10 times). The s0il mass participating 4w vibrations is probably
proportional to the mass of foundation and machine and not foundae

tion only since they are likely to act as one unit.
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The phenomenon of possible resonance is not even
eonsiderod while estimating the weight of foundation., This means
that & foundation as designed by this methed should be checked
for the frequency ratio, as recommended by Terzaghl (1943),

6.5 DENSITY PRESSURE BULB QONCEPT

Balakrishna Rao (1961) has given a method to
determine the value of Wg or C, for use in Hool and Kinne's
method., The method employed for the design is same as suggested
by Hool and Kinne, but the value of constant (Ws/We) 1s doeter-
mined on the assumption that Wg 1s weight of soil contained within
the pressure bulb intensity of *Y ' 1b/sqe ft. where Y is the
unit weight of the soil. The intensity bulb, being calculated
on the basis of static weight plus dynamic weight acting as the
eoncentrated load at the centre of the area of contact, The
procedure as given by Balakrishna Raso (1961) is summarized here.
Weight of foundation as obtailned by Hool and Kinne is

1 U, x
1+C ( —n-z_g—') -wﬂ uuu....(5.2 b)

Wp =

1, FPor a particular machine, portion in the brackets is
constant, Assume arbitrary value of C, and corresponding value
of weight of foundation is determined. Let this be Weqe Then
the weight of soil participating will be w,l = w,l xC.

2. The maximum magnitude of unbalanced inertia force is
determined Fge Then the equivalent concentrated load is Wy + wel
+ Foe Let Y be the density of soil in lbs/eusft.

3. Then radius of density pressure bulb is given by radius -
P = //Wn + Wey + Fo)o 0.4775

Y 4

[ 0.00..0..00,4.0(5.3 .)
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4. Volume~of?idil”contained in this pressure bulb is equal

- 3/2
to 4 (W +tWe +Fo _ 0.4775 vesesssses(Be3 b)
3 Y 4 A

Hence weight of soil can be caloulated by multiplying

the above volume by ¥ . Let this be W 5
8

If Wy = Wy, ) assuned volume of C is corrests

W .
5o If not, assume, C = ﬁgg__ y with the new value of constant
4
1

the steps are repeated. By trial and error, correct value of

eonstant can be evaluated.

6., Then We can be determined by the final value of the

constant «»

An alternative method is suggested by the same anthor
which results in a cubie equation 4in C, This cubic equation has
only one positive real root which gives the unique value for the
constant. The cuble equation is obtained by equating the value of
Wg as obtained by a constant times wf, and as obtained by the weight
of 80il conleined in density pressure bulb when Wp itself is

expressad in terms of machine constants, and the constant C,

The method suggested is the modification of Hool and
Kinne's method. A rational approach to determine the value of

constant C is given, Except for this, this method also suffers from

’/‘
/{the limitations of the parent method, viz., the phenomenon of

\
(

possible resonance is not considered. It may have been preferable

Af the soil weight were assumed to be a function of both machine

— o b UJV\/“S\"\ ' beW( f A '\er »,,\ﬂ«a% eﬂ f;,u\,‘l,»..} C |
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weight and foundation welght i.e. Wy = constant x W, where W, is

the weight of machine and its foundafion, though 1t is realized N

that final value of We will remain sameo

6,6 NEWCOMB'S METHOD

Newcomb ( 1981) from the past data of resonant frequenciles
in the engine and compressor foundation, has plotted the natural
frequency versus the static soil pressure, and has obtained two
distinot ocurves for hard and soft clay shown in Fig, S.1.

Ho has compared these curves with the result obtained from static
deflection tests as follows. Resonant freqgeuncy for a weightless
spring is given by ;
¥o = 2“%‘// K. g
W,
The term Wo/k is called the static defleetion - which

0'.....0..0‘.(309 b)

is the deflectlon of ground undsr the load Woe Substituting

Wo/®K = § 1in the expression for resonant frequency, we get
pl 08t
[ ,

e S R

@\ SN 1y 1 — .

f . v r R e __&;_ C, 8 = / 1

w00 5 Pe8s 188 /- e
.00!..00.‘0(504)

From the load settlement curves for a particular value

of deflection § , static pressure = Load from curve
Area
and frequency is given by equation (5.4). These have also been

plotted in figure 5.1,

?

The dashed lines represent the natural frequency, as ?
obtained from static deflection tests, The correlation is good ¥kﬂA '
for the static pressure higher than 1000 lb/sq.ft.
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The design of the foundation is done in the following

manner 3

1.

2.

3e

5.

Determine the magnitude and frequeney of the unbalaneed
forces. This information is generally supplied by the manu-
facturer of the machine or can be readily calculated
(Denhartog 1947). The natural frequency of the system
should be at least twlce the frequeney of any substantial
unbalanced force, 1.6, the frequency ratio should less than
.5 .

Knowing the natural frequency of the system, the statie

pressure 1s read from figure 5.1, for particular soil type.

Soils other than those in Fig. 5.1, a similar relationship L ke

betwaen %gt and natural frequency should first be determined A

from vibrator tests. He &ﬁi”“AV (WO Jv Al

N MU S VR VRRN XN
J( ~nA } ST SR

The weight of the foundation is assumed im accordance with manu~

feeturer's specifications, or general empirical recommendation
for the particular type of engine., The area of the machine
foundation is then fixed by knowing 0 st from item (2), It is
assumed that no resonance would occur now,

Amplitude of vibration is then calculated on the basis of welight
less spring (Section 3.11) and can be reed from Fig. 8.13 (b)
In most of the cases the damping ratio ma& be neglected or a
suitable value (Newcomb suggests damping ratio as 0.25) ean be
assumed,

Amplitude Z ean be checked for the machine data. Xif it is
within permissible limits, the weight chosen is all right. If

not revise the calculations for the weight and area in
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accordance with item (2) and (3),

This méthod suffers from the following limitations,

1., There are only two lines, each for hard and soft clay 9
(Fige 5.1) There is no indication about the position | Pt W
for various other types of soil, s ol e ‘7t»k§%1%1
2. The plot in Fig. 5.1, is questionagble, as our present
knowledge shows that, the resonant frequency is not
solely dependent upon -static stress. It is a complex
factor of the type of soil, static pressures, dynamic
loads, area of contacts The plot is infact an over-
simplification of the problem. In any case , if such a
relationship is to be obtained for a particular problem,
the ratio of dynamic to static loads should be kept
approximately the same as in an actual machine,

3+ The weight of soil participating is ignored,

However, %he method offers a rational basis of the engine
foundation, as it takes into account the phenomena of resonance

and tends to limit the value of amplitude of vibration,

6,7 REDUCED NATURAL FREQUENCY METHOD

This method uses, Tschebotarioff's plot between reduced
natural frequency and the contact area, discussed in section 3,18,
The plot is reproduced in Fig. 3.18, The method consists of the
following steps,
ls A suitable foundation weight and area of the foundation

block i3 assumed, depending on the machiné dimensions, and
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avallable space for the foundation,

2. The type of the foundation soll 1s gnalysed, and an
ogtimated line for the corresponding soil type is pletted
; ol L —
Lokt % S(dnterplot ted))on Tschebotarioft's plot (Fig. 3.18), of
ki R '
reduced natural frequency versus the centact area.
3. Reduced natural frequency 1s estimated from the plot for
the assumed contact area.

4, The resonant frequeney of the systém is then ecalculated

from Lo=fmr o /0 0 veeeeseeeas(3.17)

8., Knowing the opera.tionalwo frequency of machine, the
frequency ratio can be calculated, and checked if resonance
1s avolded. Also for the frequency ratio, the amplitude of
vibration can be checked as in Newcomb's method).

6., If within required limit, the design is safe, otherwise

assume another foundation weight and / or area.

Its niain limitation lies in the validity of the
assumed plot between reduced natural frequency and the contact

area. This has been discussed in section 3,18,

5,8 METHODS EMPLOYING VARIOUS APPROACHES TO RESONANT FREQUENCIESS

The general method of designing the foundation 1s %o
determine the natural frequency of the system based on analytical
methods discussed in Chapter -~ 3. Lhe common steps in these methods
are i-

l. The dynamie unbalanced forces, and their frequencigs of

operation are calculated, or these mgy be supplied by the

manufacturers,
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2., The dimensions of the foundation block are assumed,
taking care that allowable soil pressures (which are
less than in case of static loads only) are not
exceeded.

3. The soil type is analysed by borings, and sampling.

To analyse the dynamic behaviour of the soil, im=-situ
vibrator tests, should be conducted.s In these tests,
either the velocity of wave propogation is determined O
(which will give value of E and ¥), or the resonant
frequency and amplitude of vibration, are determined
for different base plate areas, and for different combi=-
nation of static and dynemic weightse On the basis
of vibrator data, E, ¥ can be determined by applying
)‘/ /S_ung's theory (described in seetion 444) From these
%W‘ i dynamic tests the value of P (rqte ef increase of
C}ng Young'!s modulus .with depth) can be caleulated with the
¥ help of Pauws' enalysis (section 3.15), The value of
decay factor, or By a constant is Ford and Haddow's
analysis cen also be calculated(Section 3.9)s The sub=
linear characteristics of soil spring can be determined
grephically by a method given by Lorenz (1953) and
developed by Alpan (1961), and described in section
3.21, It is recommended that tests with at least 3
different areas of base of vibrator be performed.
Balakrishna Rao (1962) has suggested a linear variation
WMQ&E ,..iiih aref?l}t} based on analytical results of Ford
L,UG OU"ZJ and ﬁaddofsl./ Pauw (1953) himself has assumed constant
value of B . However, this is not eonfirmed. The
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dynamic constants ewaluted for three different areas will
give @ better idea of variation with areas and in some
cases, it may be possible to extrapalaté the constants for
prototype from test vibrator.

Knowing the above soil properties, the resonant frequency
can be calculated by any one of the methods deseribed in
Chapter = 3.

Resonant frequency is then checked with operational fre=-
quency of the machine, and if the frequency ratio is in
safe limits (less than 0.5, or more than 2.0), the design
may be checked for amplitude of vibrations,

Usually the amplitude of vibrationg, can be determined with
sufficient accuracy by assumption of a simple spring, in
which the damping value may be neglected or a reasonable
value may be assumed (Fig. 3.13 b).

If this is found to be within permissible limits, whiech
can be tolerated by the machine and the structure, then
design is gafe. -

If not, assume another preliminary design and repeat

the above steps.

Usually the vertical vibrations exist independently,

If the vibrations occur in more than one degree of freedom, the

frequencies will be coupled as shown by Pauw (1953) and Hseih (1962)

Then the only possible approach as to the determination of resonant

frequencies are (1) Pauw's method of truncated springs, which

gives spring fgetors and man factors, and corresponding equations

of motion, and (ii) from the theory of vibrator on elastic soils,
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the transformation is made to the spring factor and damping, and

then equations of motion can be obtained, and corresponding
resonant frequencies obtained. But Pauw's method is applicable

only for coehesionless soils, as for cohesive soils, mass factors

are not obtained,

- For fairly homogeneous soils, the theory of vibrater
on elastic soils can be gpplied,

5,9 BSHORT COMINGS OF VARIOUS METHODS g~

In the emprical methods of design of foundation soil
type 18 usually not considered. Emphasis is on providing rigid '
and heavy foundations, These methods do not tske apparently 1nto ”
account the phenomena of reconance and the excess ampl;tude of
vibrations. The past experience is relied on, but every machine is
an individual case and the design of foundation cannot be genera-
lized, ‘ _

The second group of methods (Seetions 5.4 and 5.5)
sonsider the stabilizing action of static weights of foundation
machine and the soil participating to the dynamic force;xproduced

(Hool and Kinne 1943, Balakrishna Rao 1961). But these methods
do not teke into account the increassed power input reqnire@ent of

machines at regonance, which provide the energy required for
excessive vibrations,

The third group of methods uses the published reoqfﬂs
of resonant fre@nencias, and emprical plots obtained from thph;
(Tschebotarioff 1948,1961,1953) and(New Comb 1951). These mdthods

¢
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AMvantage of it is that the shape or ratio L/B is taken inte
account, A

Ford and Haddow (1960) have treated the soil to be
conservative system and have obtained the frequeney expression fer
vertical and horizontal vibrations. This method also suffers fromuas
the limitation that no variation in resonant frequency is given
with change in dynamic load, |

Balakrishna Rao (1860, 61, 62) has developed the
concept of density bulb of pressure, the mass within which is taken
&s the mass factor. 4s this varies with dynamic load, as well,
it explains the reduction in natural frequency with inerease in
dynamic loads as observed experimentally., The results obtained
by this inclusion of mass factor are in good agreement with
those obtained experimentally by Converse (1953). But it is not
understood if this same mass facto® can be taken for the soil,

for which the value of & can be assumed to be unifomm.

Hseih (1962) has given the transformation from the theory
of vibrator resting on elastic solid to the spring with viscous
demping. This would remove the necessity for tedious caleulations
and graphs involved in the theoretical approach,.

Dynamic characteristics have been determined by assume
ing the soil to be sublinear spring (Lorenz 1953, Alpan 1961),
This method though will give the resonant frequency for any dynamie
load for the constant area, suffers from the limitation thgt the
spring characteristics depend on area. Hence it is not péssible

to extrapolate for different areas.
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SUGGESTIONS FOR FURTHER RESEARCH,

In view of the study made, the following suggestions for
further research are made s=-

1. A simple equation forthe natural frequeney of the system is
mvolved (Section 3.22), by considering the basic similarities
of various analytical approaches,an experimeni(investigation
regarding variation of parameters ,My , Ao 13 recommended.
The factors affecting Ay and A 5 need be studied systema=
tically. '

2. Shape flgctors (m) that 1s the effect of shape of base area
(characterized by L/B ratio) needs to be investigated exper-
imentally, There are reasons to believe that an emprical
shape faetor based on Pauw's analysis for cohesive soils,
may give reasonably good results., However, experimental
investigation have to be made.

3, Balakrishna Rao (1960, 61, 62) has evolved density pressure
bulb concept., It accounts for the change in the natural
frequency of system with change in dynamic loads. This
approach has given good results when Panw's spring factor
for cohesionless soils (E increasing with depth) 1s used,
Experimental verification of this approach for cohesive
soils should be tried. "

'4, Experimental investigations of bearing capacity of soil under
dynanic loads are being undertaknn (AeSoT Mo 1961). T1ll
now no definite conclusions have been drawn, as to how

bearing capacity is affected by the dynamic loads. The

practice is to take an equivalent static load for dynanic
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load, and bearing capacity as in static case is taken.
Proper study of the problem will prove extremely useful
to the designer of machine foundations,
The problem of machine foundations on piles has not{been
tackled at all. Experimental and analytical #nvestiga-
tions of this problem need be made,
No data from the actual machine foundations in India 1is
available. It 1s suggested that a questionaire be pre=-

pared and sent to various industries, designers, and

research workers in the field of machine foundations. The

purpose will be to undertake a systematic analysis of
field data regarding actual behaviour of machine foundae
tions. This will help in co~ordinating the efforts of
various workers and will consequently lead to a standard
practice for the design of machine foundations.

Richart (1953), has suggested a possible variation in
pressure distribution due to change in dynamic loadse.
The effect of the change in dynamic load is not yet
sufficiently accounted for, PFurther work will have to
be undertaken for experimental determination of pressure
distribution for different dynamic loads. In this regard,
it may be useful to study effect of ratio of dynamic load
to static load on the natural frequency of system and on
the amplitude of vibration.

Though the experiments have been performed for vibratory
loads, most of these are confined to vertical vibrations,
The existing theories have yet to ve verified for other

modes of vibration. Much work will have to be done in
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this fleld, before designers can be sure of the
accuracy of the prediction of behaviour of actual

machine foundation,

9« Russiens have performed the dynamic tests on relatively
large footings (8 sq. meter éE:EE) - Barkan (1936,1963),,

y A study of Russian literature, which is usually not
Ajmfdbimd? avallable in English, regarding machine foundations,
pA e

" bJMﬂLmﬁp» may throw a great deal of light on the problem, A
74

' ]
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luitable study in this connection will be most desirable,



CHAPTER - VII,

CONCLUSIONS,

From the study of the available literaturein the
preceeding chapters, it has been observed that none of the methods
for design of machine foundation is absolutely reliable. Following

recommendations are however, made g-

Resonance phenomena cannot be ignored in machine
foundations and design s ould aecount for it,

For soils, where it can pe assumed that value of E,
increases linearly with depth (for sand, and normally loaded
clays), Pauw's method can be adopted with the modification that
mass factor may be calculated by Balakrishna Raow's density
pressure bulb concept. This modification in mass factor, makes
the method complete for the vertlical vibrations and other trans=-
latory modes of vibrations.

For the rotary modes of vibrations, since the
corresponding mass inertia factors have not been modified, the
mass inertia factors given by Pauw only ¢an be used. This method
takes into acéount the shape of machire foundation, and hence
can be ayplied for any foundation shape, The value of /3 should
be determined from vibrator tests, Thse variation of 2 , with area can
be taken into account by performing tests with different areas
and .ﬁ versus corresponding area plotted on log log paper. The
actual A for the machine area can then be extrapolated by
extending the stfaight line as recommended by Balakrishna Rao(1962).

For cohesive soils for which value of E, can be assumed

to be unifornm, Pauw's method cannot be applieds In this case, -
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the thearetical analysis by Sung (1963), can be made use of. To
make the interpretation from vibrator test consistent with machine
foundetien, it i3 recommended that ratio of dynamic to static load
be kept #4pproximately the same as in case of the protype. The
excess dynamic load leads to Jjumping of vibrator (in which value
of acceleration, zo? 45 greater than g@j which certainly is not
the case with heavy foundation prototype,

For other modes of vibration, Byeroff's (1959) analysis
can be used and Hseih's transformation egses the calculation . He
has considered only rigid base distribution, For other types of
pressure distribution, concept of effective radius can be used
without any saerifice of accuracy. For any shape other than
circular, the value of ry 1s so chosen as to have equal area of
base in case of translatory vibrations, and to have equal moment
of inertia in case of rotary vibrations, A shape factor may be
taken as in static case (Timoshenko 1937) or from Pauw'’s anglysis
for cohesive soils which may be expressed as j

m = log L/B /L/B-l .

As regards the amplitude of vibration, if it is
determined by the model tests, the test vibrator should be arranged to
have the same dimensionless frequency ' a' and mass ratio 'p!
as ths proposed foundation. This can be achieved by keeping the
ratio of operating frequencies of the model to prototype as
inversly proportional to the ratio of their linegr dimensions
and by selecting the ratio of the masses of the model to the proto=
type as directly proportional to the cube of ratio of their linear

dimensions respectively. Then the amplitudes of Wibrations in
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prototype will be directly proportional to (Fo/Tq)Prot,
(Byeroft, 1959). (Fo/ro)mod,
Usually the test for amplitude determinetions 1is

not resorted to., In most cases the amplitude of vibration can be
determined with sufficient accuracy by simple mass spring
analogy (Seetion 3.11),

A simple equation, based on the general similiarity
of analytieal sapproache is developed, for determination of the
natural frequency of the system. The parameters involved (/\1, /\2)
can be determined by vibrator test in the field,



114

the trensformation is made to the spring factor and damping, and

then equations of motion can be obtained, and corresponding

resonant frequencies obtained. But Pauw's method is applicable
only for coshesfonless soils, as for cohesive soils, mass factors

are not obtained.

~ For falrly homogeneous soils, the theory of vibrator
on elastic soils can be gpplied,

5,9 SHORT COMINGS OF VaRIQUS METHODS s~

In the emprical methods of design of foundation soil
type 18 usually not considered. Emphasis is om providing rigid
and heavy foundations. These methods do not take apparently intoi
account the phenomena of reconsnce and the excess amplitudc of
vibrations. The past experience is relied on, but every machine is
an individual case and the design of foundation cannot\be genera=
lized, \ '

The second group of methods (Seetions 5.4 Snd 5.6)
sonsider the stabilizing action of statlic weights of foundation
machine and the soil partieipating to the dynamic forcegxproduced

(Hool and Kinne 19843, Balakrishna Rao 1961), But these methods
do not take into account the increased power input requiréqgnt of

machines at regonance, which provide the energy required for

excessive vibrations,

The third group of methods uses the published records
of resonant fréquencies, and emprical plots obtained from thpﬁ;
(Tschebotarioff 1948,1961,1953) and(New Comb 1851). These mkthmas
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recognise phenomena of resonance, but the plots represent over
simplification of the facts and generalizations from limited

data is questionabl.e. An empricai equation for the resonant
frequeneies of sand has been developed by Converse (1953). This
type of equation, is applicable only for the particular site,

It is not economical to develope similar emprical expressions

for subsoil on which the machine is constructed, as it will involve

& large number of vibrator tests,

The fourth group of methods gives due promingnce to
the phenomena of resonance, and uses any one of the analytical
methods discussed in Chapter - 3, to predict the resonant frequency of
the system,

The theory of vibrator resting on elﬁstic, semi-in-
finite homogeneous, and isotropic soil, which is developed by
Reissner (1936), Sund (1953), Quinlan (1953), Richar%%% 953,60),
Bycroft (1959), Hseih (1962 and others, suffers from the limita-
tion that real soils do not have the above properties. This
limitation is in common with any theory of elasticity when applied
to soils., The value of dynamic soil constants E and D , can be
obtained from the vibrator tests, or by the velocity of wave
propagation measurements. The pressure distribution below the
base is unknown., Also it may vary with the magnitude of dynamic
loads. For the rigid foundation and mats, the rigid pressure dis-
tribution can be assumed. The uncertalnty in pressure distribue-
tion may result in an error of the order of z 11% in modulus of
elastieity of soils (E) (Jones 1958)., Though it is an experi-

mental fact that resonant frequency of the system, decreases

with inerease in dynamic loads, the theory does not give any
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quantitative results. It may qualitatively be explained by assuming
‘change of the pressure distribution. The theory is applicable feor
an axially symmetrical case (that is the ciroular machine or vibra-
tor). The results are lilkely to be different for different

shgpes of base plate of vibrator, or the shape of the machine
foundations. A shape factor will have to be introduced, about
which the present state of knowledge is not adequate.

The other theoretical approach is to treat the soil
as weightless spring, with the mass of vibrator, or, machine
foundation, and some mass of soil, oscillating in simple harmonie
motion as one system., But in this both the spring constant and
the mell mass vary with the contact area, static and dynamic loads,
The value of spring constants in static case as derived by
Timoshenko (1937) vary with the pressure distribution well. These
spring constents ixplain at least one thing that for increase in
radius, the resonant frequency of the system, increases with ‘
contact area, which has been observed experimentally also (Lerenz
1953).

Pauw (1953) assumes the soil to be truncated pyramid of
spring, and has given the expressions for the spring factors and
mass factors for different modes of vibrations for ckhesionless
soil in which E is assumed t0 increase linearly with the depth,

For cohesive so0ils though the spring factors are obtained, mass
facter could not be obtained due to divergent integral form. The
assumption in case of cohesive 3oils was that B was constant with
depth. The method suffers from the limitation that neevadiation
in resonant frequency with respect to dynamic load is obtained,
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i, Gonneeting rod motion,
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Fig.2.2 Positions of Cranks on the Crank Shaft
of a Multi-cyzinder Engine (Crede 1959)



Fig.2.3 Typical Punch Press with Vertically Moving
Flatten, (Crede,1959)

2 Scmttle

Pig., 2.4 Schemgtic Diagram of Cloth-weaving Loon.
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“Vertical
2-Yawing

5 Rocking
&€Longitudinal

Fig. 2.5 81x Modes of Vibrations for a Foundsation,
(Rich_art, 1960)
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Fig.2.6 Maximum permissible amplitude vs. operating
frequency. ’



Value of V/Vs =.-V/,‘(;»/G

0

Figo 3e2

Pig. 3.1 Propagation of elastic waves into the
80il beneath an oscillator,
(Richart 1960)

0

Osl 0.2 0.3 0.4 0.5
Polsson's Ratio.v.
Relation of Vg, Vo and V4

vs. poisson's ratio,

Vs =G/f ’ VR

0e2, 0.3
0.811 0,9

\L R wave

9y P is a function ofw.
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Fig.3.3 Pressure Distribution assumed by Sung (195
3
Quinl an(1953) over a eircular Regigg. )

a) Rigld base distribution.
b) Uniform loading.

¢) Parabolie loading (After Sung,1953)
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Fige3e4 Degebo Type Vibrator and its operating
principle (After Lorenz 1953)
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Dimensionless amplitude factor = Zmax.”

ctor =4
Dimensionless amplitude fa naxe
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(4] S l.0 1.5 0 S 1.0 1.5

= tnt tat
a) For oonmdwbﬁ smplitude of Db) For wNnHm“_bm force amplitude
exciting force F,=Const. dependent upon the ezciting
frequency F = ml®
Fig.3.5 Amplitude versus frequency relations fof rigid base
osclllator resting semi-infinite body( ¥ =.25)

(Bichart 1960)
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LEGEND,
- For Rotating mass viP

tor
Zyox = ml/ prod ng '

a 80 A -=w For const.
© 60 \ ‘\ force vibrator.
\ _ (2)
i 40 \‘g\\\k Zmax -, Q/Gr()ozmax.
=] \\\\
w 20 SR
\\\\\\ \ Y,
» \\ 1\ I:\Q(’: *0.3 .
~ 10 o Sl <]
ot 8 < -n\\\ .
"; 6 RN \t \
4 N WX
4 \‘g R
a3 NANR] S
= 0¢2 Q¢4 0.6 0.8 1.0 1.2 1.4

a8 = ro/ Pygg

a) Mass Ratio vs. Frequency Factor Relationss
80 ki
m // /”’ Wd
a m %‘ P‘ﬂ/ O /4 ”/'
LW | R
SPONT/T 7
Y ” ”~
é 20 » // J e P P
" ! - -~
’/ // L7
2 10 AV y
o 8 7 /'
56 W /17
M ['\ / 4
4 LN /
A [HAYA\VA
a 37
= 2 1 4

0 0e2 044 Q.6 0.8 1.o 1.2
(1) (2)
Amplitude factor Z,., °©F Zmax

b) Mass ratio vs. amplitude factor relations.

Fige 36 Characteristics of vertical oscillations for
an oscillator with a rigid circular base
resting on a semi-infinite elastic medium
(Richart 1960). :
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Pressurse Statically Equivalent
distribution equivalent uniformly ;
| ring load distri)buted load

» T 1
a) Uniform mr 7111777/,”;:/1"/” YT eI,
—-{ Ko fo— !
1

= o™ —»1';3 f— - o]

|

|
b) Rigid base !

Hmﬂ ;]

‘md""

~ e ™™ —31 A fe— 273 50
‘ !“
m WLL],,W 1
I’IIIITLIIIIIIIH LA
¢) Parabolic 375 1, o ]
sm. | - >‘ 01;70‘5 te—
UNIFORM RIGID BASE PARABOLIC
EqgeUniform ro 1.273 1o 0.75 9
Eq.Rigld base 0.78rg Ty 58 14
Bq.Parabolic 1.33 r, 1.693 r, ro

Fig. 3,7 Concept of Equivalent or Effective
Radius (Richart 1953)
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b) Inertia ratio vs. frequency factors.

Fig.3.8 Characteristics of Rocking Oseillation
for an oscillator with a rigid eircular
base resting on semi~infinite elastic
medium (Richart 1960),
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b) Mass ratio vs, ffequency factor,

Fig.3.9 Gharacteristics of Sliding Oscillation for an
scillator with rigid circular base resting on a
semi-infinite elastic medium (Richart 1960%

LEGEND
___ For Oscillator with horizontal
force Fo = mjlw
3 (1)
- = M.l T
Ypax =Wyl /pTo” ¢ X o
ewewe FOr oscillator with constant
horizontal force
(2)

2
Xpax = Fo/Gro « Xnax.
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Elevation End—Tiew.
For symmetrjical
. foundation X=y=0
] xY . [ 2 £0
o \
Z '
TYTETINNTFTITIVITIN T, 4- '1'"”"“i llllll
Vz . — \;((
——IY e X —L g
! y X,¥,2 axes pass through C.G.
—- - T X of machire foundation.
[ | ;,;,E coordinates of centroid
of base.
Plan

Fig.3,10 Generalized foundation co=ordinates
(Hseih,1962)

Q/) - L -+
J/ Fﬁ”’
/2? : \

dz 4/ J

Dynamic pressure is transmitted through soil
containing a solid formed by the base and surfaces

y = £(z), y = £(=2), x = #(z), and x = ~@(z)

Fige3+.11 So0il as a conservative medium
(Ford and Haddow 1960)
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Fige 3,12 Mass Spring Analogy.
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0 0.9 140 1.5 2,0
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a) For constant amplitude exciting force F,= const,

0 0.5 1,0 1.5 2,0
£/1,

b) For exciting force dependiﬁégupon frequencx

8
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)
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~
(o]
I 2
[
A
= 0
Fig.

Fo = IH11

3.13 Amplitude frequency relations for damped
forced vibration of a mass spring system,
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Fig.3.14 a) Phase angle between force and

displacement ( ¥ )
b) Rate of work as a function of frequency

for various values of damping.
a) (DenHartog 1947) b) Terzaghi 1943)
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Fige3.15 Pr°p3§§gnx from the bulb of pressurése.
(Crockett & Hammond 1942)
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KgsKyyKz spring constants for vibrations in x,y,z directions.
Kyz,g y Kyy spring constants for rotating modes about x,y,z axds.

Fige 3,16 Equivalent Soil Spring Constants For
Horizontal Contact Surface (xy) (Pauw 1953)
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Cohesionless Soils
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Fig. 3,17 Apparent mass factors for horizontal contact
surface (Yauw 1953)
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Fige 3.18 Reduced Natural Frequency Plotted against
the area of foundation (Tschebetorioff 1953)
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3
£| = 0-037
&L = 0.074
&3 = o\l

amplitude 2 mm.

20 25
Fige3+20 Resonance curves of a vibrator on a soil for different

eccentricities., (Lorenz 1953)

1,0
Dynamic soil
pressure

T

2
Amplitude 4, mm,.

o1 F-g/iqc'm.

_L Static soil pressure

Fig, 3421 8oil characteristics found from three resonance
curves by graphical methods (Lorenz 1953)
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2
Spring - .~ Inertia m, o Z,
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Figs 3422 g) Vector Diagram of Harmonic Motlon,
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Fige 3.22 b) Greaphical method of determining the resonant

amplitude (Z?H atlgéel;-ﬂ, and m, = gy
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B

Binaries (10 Nos,)

HAMMER or]
EXPLOSIVE

GATE CONT AMPLIFIER 60 PHONE

Fig. 4,1 Instrument operation diagram
Selsmic methods (Fisher & winter,l962)

®

Frequency ~\\OscilOgr:aLph

meter

Amplifiers,

>Calibrating units,

From Generator,
?———L | Pick ups,
ibrator \e nl -«Pt, 10 em, deep

Fig. 4.3 Gensrgl Arrangement of Equipment for'Amplitude
and wave length measurements, (Bergstrom and
Linderholm 1946)

Plclkups =~ Philips type GM 5520 electrodynanic yickhps
(pulsation in voltage propotional to velocity)

Calibrating unit - Integrates electrically so as to obtain
a voltage proportional to amplitude. AlsoO supplies
a reference voltage of sixty cycles/second.
Amplifiers = Two type Fvs=-138, Svensta Radio Bologet
Uscillograph = Philips Type GM 3156 Cathode ray Oscillograph,

Frequency meter, Lype FMD 838 Svaska Radio Bologet,
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3 — et V=0
/ v
2.5 |
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Fige 442 Effect of Stress distribution and Pgissonts ratio
on t he non-dimensional quantity bao (Jones 1958)
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Fig. 4.6 Linear relationship between S cos ¥ and £2 at low
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Flge 4.5 Phase angle ¢ versus frequency of vibrations,
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Flge 4.6 E dyn. versus California Bearing Ratio,
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Fig. 5,1 Natural Frequency of Foundation on Two Types
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TABLE - 2,1

SUMMARY OF INERTIA FORCES AND COUrLES IN FOUR-CYLINDER ENGINE,

Crank @ 20 cosf cos28 s8ind L cosp L cos28 L sin @

| o/
0 o 0 1 1 (1, o0 0 0
1 90 18 0 -l 0 0o -1 o
2 270 540 0 -1 =1 0 -z -2
3 180 360 -1 1 0 - 4 0
Summation Q 0 0 -3 0 ~2L

i.e. Primary force, secondary foreces = 0, while

primary couples are not balanced.
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TABLE -2,2

SUMMARY OF UNBALANCED INERTIA FORCES aAND COUPLES FOR DIFFERENT
CRANK ARRANGEMENTS, (Nuw QUis , 1981)

F' = .0000284 W rE® cos ¢  (Primary)
™ = ,0000284 wprxz cos 24 (Secondary)
L = Distance between cylinder centers.
Forces. Couples
Crenk Arrengements praor Secondary  Primary Secondary
F' without
Single ¢renk counter-wt, ol none none
P'# with
counter-wt,
t 180°
Lwo cranks at 180 . F'L without none
In line eylinders Zero a2p counter-vwt,
T~_~ F'L/2 with
counter=wts,
Opposed cylinders. Zero 26ro N Nil

Two cranks at 90° 1,41 F' without

1,41 F'L with-

counter-wtis, Zero out counter=wt. FpFny
i: ® __ or 0.707 with 0.707 F'L with
counter-wts, counter=wts.
Two cylinders on
Cylinder at 90° F' withouz ‘
counter=-wis
¢ 1.41 P none Nil
C\\’f7 0 with
counter=wts,
Opposted cylinders. 2F' without
counter=yts. Zero none Nil
G":L:‘“{' F' with
counter=-wts, )
Ihree eranks at 120% .. — - —— ' B3.,46F'L with
,L, i m 4ero Zero counter-wts, 3.4 F'L
- 1,73 F'L with
gounter=wts,
Four gvlinderss
Cranks at 1809 Zero 4F" Zero Zero
0 . ‘ , 1,41F'L without
Cranks at 90 Zero Zero counter=wts. 4,0F"L
1 - 0.707F'L with
#ix Cylinderg, Zero Zero Zero Zero,

5y
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TABLR - 3

o1

VAIUE OF SHAPE FACTOR 'm' BL STAT C 7ASE ( Mimoshenko).

1/B 1.0 1.5 ) 3 5 10 100.
m 0,95 0,94 092 0.8 0.82 0,71 0,37
TABLE -3 2

3ULA TION BRTWETN N yTIHAL AND SAFT® 90Tl PRESTRE, (LORINZ 1934

Soil Type

1.5 m peat bag on sand

1l mold f111ing medium sand
with peat residues,

Gravelly sand wlth elay lenges,

0ld,stamped dm shh g filling

Very o016, stmped dam filling
of lommy s: 4, ,

Ter tinary clay wet,

Blem clay wet,

Very homo genmus, yellow
medium sand, ( so ealled
stettin gand,

Homo ¢anenui g gravel

Non homo gen eus, clogely
_p_ad{gd . séﬁ__d,. il B2

Absolu tely dry tertiary clay

Closely pack ed medium grawel
shell Iime ( bed rodr)

Mo ttled sand stone ( bed ro)

Cps
12,5

19,1
19 .4
213

21.7
21,8
23.8

24.1

Safe soill pressure
k gn/sq. .

4.5

4,5

4,5

%3 0f the adnigsidble
compr ession stirain,

-0~
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TABLE - 3,3

REIL TON BETWEWN NATURAL AD SAWE snTL PRFSSURE ( (RACKETT &
HAMOND 1043

Dns sq/ft.

Peat 745 -
Water lo gged estuarine silt 10 0.7
Very 1ight soft clay 12 1,0
Light water logged sand 15 1.5
Medlum elay 15 2.0
Hard peat and sand layers 17 2,0
stff clay 19 3.0
511t agnd sand mi xed 23,3 3.0
¢and agnd rubsgble lonsely

compated 23,5 3.0
Lime stone 0.0 -
Gr ani te 40 -

TABLE - 4,1

TALES O SON'S RATIO"R R [ PFREF T SUBGEADE

S0i11 OR Rodk Poiscon's Rato
Loose sand saturated 0.32
Dense sand saturated 0. 77

Organic silty clay 0.36
Sandy elay 0,30
Clay remoulded 0,42
Sand N
and stone 0.11 / 0.12
S1a tes v

0,10 - 0.12

s

Vi

S
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TABLF « 5,1

VARINTTS R"MMM P DATINF S Tk

SI7F OF M/ C FOUNDATIONS,

Engine Description,
MU ZFRIS ( (ODNVFRSE 196 9)

Gas Engine
1, Cylinder
2 "
4, "
6. "
8. "

DIFSFL ENC™NES,

2. Cylinder
4 "

e "
8

L

[ 2

Ro tary oonverter,

Vertl cal oompound stem engine mupled t
gneratpr,

Verti ~al trinle expansion stemm eheglne
counled.

Horizontal cross ampound to generator,

Horizontsl stesm turbine mupled to
generator,
Ver i cal Diesel Mmgne eunled o Generatr,

Ver t1 cal Dlesel Mglne mupled v Generstor,

LI ( gas engines)

1, Horizontal englne wl thout au tho ar d,

2, Horizontal englne wi th ou thoard bearing,
3¢ Vertical engine wi thou t outhogrd besring,
4

o Vartical engine Wi th outhoard bearing,

Ratlo of wetght of
foundatlon to ™Mgine
wel gh t,

3.5
3.%

3.0 % 4,0
3.9
2 6

Gnerate

14 to 18 of t/HHP

19 % 22 crtymn,
7.7 to B.8 oft/mHP

9.8 b 10,5 cft/BEE.
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MORST ( 1942) Wl ght of foundation.

Mul ti cvlinder engines,

1, fas engines, : 1600 1Y/ HHp
% Diegel engines, 1250 1L/ BHP
3., Stegm engines, 500 1b/ BHP

For single cylinder engines the abave should be
increased by about 40 b 60 percent,

BOYTR

™egines running at 400 cpm or less wt, of foundation,
3¢ Cylinder engine 550 1v/ BHp

8, Cylinder engine, 33/ 1b/ EHP

X R Rl el el
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