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SUMMARY 

This dissertation deals with the exact solution 

of linear algebraic equations governing the behaviour 

of statically indeterminate structures. Matrix Algebra 

has been employed as a tool for assisting the analysis, 

since it makes the discussion and formulation of 

complex structural problems a very convenient and system-

atic process which can easily be mechanised. This approach) 

being most general in its application, also reduces the 

chances of committing errors and results in a consid-

erable saving in time and labour required for a particular 

problem. These matrix techniques are especially advant. 
ngnnnn when we have to deal with highly complex and redu-

ndant problems, which would otherwise be impossible to 

solve by hand methods of computation. 

The chief objective of this disisertation has been 

to represent the subject in a manner which is systematic 

and easily assimilable by a common civil engineer. In 

addition, a few easier and direct synthetic methods to 

assemble the matrix of a given structure have been devel-

oped. The obvious merits of the matrix methods over the 

existing conventional methods have been discussed while 

describing the techniques, and also the possibilities 

of making rapid design calculations on an electric desk 



calculator, which is more easily available to a common 

structural engineer, have been fully discussed. 

The systematic representation of the subject is 

contained in the following seven chapters. 

In the first four chapters are given the matric 

formulation of the two complementary basic approaches 

to a structural problem and the explanation of various 

matrix operations and methods required for the analysis. 

Chapters 5 and 6 deal with a detailed discussion of the 

flexibility matrix method and the stiffness matrix 

method respectively. To illustrate the techniques descr-

ibed in these chapters, a good number of numerical 

examples are given which have been solved on a 'Marchant' 

electric desk calculator. The last chapter deals with 

Electronic Digital Computers - their brief functional 

description and as to how more complex problems are 

programmed for an automatic solution on such machines. 
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1.1 Structural Analysis. 

In the last 40 years, statically indeterminate struct-

ures have been used more and more extensively. This is no 

doubt due to their economy and increased rigidity under moving 

or movable loads. The details of reinforced-concrete and 

welded construction are such that structures of these types 

are usually wholly or partly continuous in their structural 

action and are therefore usually statically indeterminate. 

A knowledge of the analysis of indeterminate structures has 

thus become increasingly important as the use of these types 

of construction have become more extensive. 

Statically indeterminate structures differ from statically 

determinate ones in two important respects, viz; 

Their stress analysis   i nveava s not or,  y their geom-
etry but also their elastic properties such as modulus of elas-

ticity, cross-sectional area and moment of inertia. Thus the 

final design of an indeterminate structure involves assuming 

preliminary sizes for the members, making a stress analysis 

of this design, testing the members for these stresses, revis-

ing the design if necessary till the final design is arrived 
at. 

(2) In genera, stresses are developed in indeterminate 

structures, not only by loads, but alt' by temerature changes, 

support settlements, fabrication errors, etc. 

Structural analysis involves computing not only the 

external reactions and the internal forces( and stresses) of 

a structure, but also strains and deflections throughout. In 
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so called statically determinate structures, almost invariably 

the external reactions and internal forces (and stresses) are 

computed first; then, from the stresses, the strains can be 

determined, and subsequently deflections can be computed. Same 

order of computations is followed in many methods of analysing 

statically indeterminate structures; that is, first the redun. 

dents and corresponding statically determinate primary struct. 

ure (also called the released structure) are selected; then 

these redundant forces (and/or couples) are computed by solving 

an equal number of simultaneous equations, each of which express. 

es a known deflection condition for the released structure in 

terms of the redundants; and then once the redundants are known, 

the stresses, strains, and deflections for the entire structure 
may be computed as in the case of a statically determinate 

structure. Such a method of structural analysis is referred to 

as a "force method of structural, analysis", since the first step 

in the computations involves determining the unknown external 
and internal forces (and/or couples) in the structure. 

In other cases of statically indeterminate structures, 

the above order of computation is completely inverted. Such a 

method of analysis is called a "displacement method of struct-
ural analysis". In this approach, first the internal forces 

(and couples), are expressed in terms of the key displacement 

components of the structure; such expressions are substituted 

into the key equilibrium equations of the structure, thereby 
obtaining a system of linear simultaneous equations involving 
the key displacements as the unknowns; then the values of 
the displacements obtained from the solution of these 



equations are substituted into the original expressions for 

the internal forces (and couples) to obtain the values of 

the latter; and finally, once all the internal forces (and 

couple s) are known, it is easy to compute the re actions of 
the structure. 

According to the above classification, the superposition 
equation method, the application of Castiglione' s second 

theorem, and the use of the three moment equation are all 

forcem methods of analysis. The slope-deflection method is 

a displacement method. The moment distribution method is a 

successive approximation procedure based on the same philoso-

phy as the displacement methods. 

j Structural  .Analysis and Matrix Algebra.  

Whatever method of analysis we employ, the solution 

of multiply redundant structures require solving simultaneous 

equations. For structures having only a few degrees of redund-

ancy, say upto five, any of the conventional methods can be 

used. With the recent advance in modern construction, complex 

structures, like multi-storeyed building frames are becoming 

more and more common. These structures contain a very large 

number of redundants and if solved by either of the direct 

methods or the numerical iterative me the% s the calculation  
becomes a superhuman task, requiring many months of human 

labor-labor subject to the inherent shortcomings of human 

beings which produce errors, omissions, and the like. The 

problem becomei much more difficult if the structure is to 

be analysed for a number of loading conditions. 

7 



8 

For such complex and highly redundant problems of 

structural analysis, the conventional methods have to be aband-

oned and some newer approach has to be resorted to, which 

will enable the structural engineer to discuss his complex 

problems in a more compact and convenient form. this should 

also make the method of computations most systematic and easy 

to be mechanised. Matrix notation provides just this require- 
ment. 

During the last few years a number of methods of analys-

ing statically indeterminate structures have been suggested 

which use matrix notation. Most of these involve rather more 

numerical work than is required in the traditional methods, 

but the computing is entirely systematic and can easily be 

mechanised. They appear somewhat cumbersome when applied to 

simple structures, but fon' a very powerful tool for dealing 

with complex highly-redundant systems. They have already been 
used extensively in the design and analysis of aircraft 
structures. 

Matrix notation is simply a useful shorthand invented 

by mathematicians for discussing problems of linear algebra. 

Almost any method of analysis which treats a structure as a 

linear elastic system (i.e., the changes in the geometry of 

the structure under load are sufficiently small to have a 

negligible effect upon loads and their corresponding stress 

distribution, and the structural materials obey Hooke' s law) 

can be written in matrix form, but the notation appears to 

its best advantage when it is used to set up the load-dis. 



-placement equations in explicit form. Such an approach leads, 

of course, to the computational problem of solving sets of 
linear simultaneous equations and for this reason it has in 

the past been restricted to simple structures with only a 

few degrees of freedom. However, the development of the desk 
calculating machine and more recently the automatic digital 
computer has made it easy to solve large sets of equations, 

so that the main objection to direct methods of this type 
has disappeared. 

Matrix algebra may be regarded as a 'shorthand' techn. 
ique for representing a system of linear equations by a 
simple equation and then solving that single matrix equation. 

The rules of matrix algebra provide a computational procedure 
which is more rapid on a mechanised. basis, than the numerical 
process in common usage. Since all Indeterminate structures 

are governed by linear equations, the possibility of useful 

application of matrix methods by the structural engineer is 
suggested in the following contents of this work. 

9 
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MATRIX ALGEBRA 



2.1 Principle.  

When using an indeterminate structure it is found 

that the evaluation of the unknown displacement components 

or the force components has to be made through the solution 

of a system of linear simultaneous equations of the type)  

k" x l +kx+ -19- -2. 	k 13 1B 3C1 

k11  x l  + kr, x, + ky, Xs  

ks, X, + ks, X, + k33  x3  

Here there are three equations with k and x miZed 

but in an ordered pattern. It would seem advantageous if these 

equations could be reduced to "parcels" of the form 

kx] 
.11••••••••■•■••■• 

u 

 

which it might be possible to separate into further parcels 
so that 

M 
The process; perhaps )  could be carried further by writing 

0.1  

so that the left hand side of the equation could be unparcell-

ed to give the required values of the unknowns. We shall find 

that matrices provide convenient form of parcel and as such 

they may be regarded as a tool for assisting the analysis. 

Since we are to use matrices as a tool we shall not need to 

know much of the pure mathematical properties of matrices 

11 
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but only some of the simple operations in which they can be 
used. 

la Definition.  

A matrix is defined as a rectangular array of coeffic-

ients (numbers or linear operators) which obey certain laws 

of combination, to be specified. We shall adopt the following 
notations for a matrix and call an array of m rows and 
columns an "mwv." matrix". 

12 

A 

all 

• 

al."... 

• 

• 

• 

• 

• 

• 

. 

atw  

• 

• • • • • 

a,„ a„, • • • a,„„ 
1.0 

The element of the matrix in the ith row and the jth 

column is donated by aij with the subscripts in this order. 

It is to be noted that the matrix is enclosed in square 

brackets and is to be distinguished from the determinant 

1AI. A determinant must be square and can be evaluated by 

the rules of algebra. A matrix need not be square and can 
never be evaluated. 

In the special case of a column matrix (vector) i.e., 

a matrix with one column only, .we shall use a lower ease 
letter. Thus 

• • • 



Similarly we may have row matrices which are also 

written with a lower case letter: 

V 	= j v v2 	vv,, 

	 Substraction  Au the Null Matrix. 

The sum of two mxyu matrices [Ito and EbA,j3 is 

defined to be mx-v. matrix [atj + bk.)]. This is to say that 

we add the corresponding elements of the two matrices to form 

the elements of the summation matrix, so that two matrices 

can only be added when they have an. equal number of rows and 

columns. If this is not the case, the sum has no meaning. 

The law of addition shows that it is 

( a) commutative , i.e. , 

A+B=B+ A 

and (b) associative i.e., 

	

A + (B + C) 	A + B) + C 

The addition law also shows that multiplication of a 

matrix by a single quantity results in a matrix each of whose 

elements is multiplied by that quantity i.e., 



if A = [kJ] 

.then kA = I k 

This shows that the distributive property holds, namely 
that 

k (A + B) =k A+ kB 

The above laws of addition include substz'%ction. Two 

matrices are said to be equal 

A = B 

if each of the elements of A equals the corresponding ele.: 

merit of B. Two matrices can only be equal if they each have 

the same number of rows and columns. 

If two matrices are equal and we !abstract one from the 

other, then the resulting matrix has zero, as each of its 

elements and is called the null matrix: 

A-B =A- A= 0 

2■_4114k■■ Multiplication.  ••■■• 

The product AB of two matrices A and B is defined 
as a matrix C whose element in the 1.0,  row and the it!, 

column is the inner product of the kak row of A and the 
3 -ti,  column of B. 

The inner product of a row and a column is the sum of 
the products of the elements in the following order: 

14 
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(aL, att. ••• 
	bij 	= abii + 	+ ..• 

'kJ 	
= qt.; 

It follows from the above definition that two matrices 

are only conformable for multiplication in the order AO 

when the number of columns of A 'is equal to the number of 

rows of B Any two matrices, m>kw and nil. , when multiplied 

produce a matrix of order mx.y 

For example 

-k kt„ 

k22  

kr5, -  

k23 

k 33 

x 

x 

X3  

■=1* 
.11111,  

k, 	xt  

k Li  x, 

k 	xl  

+ k t„ 3c7_ 

+ k2zx2, 

+ kl,„ x l_ 

+ 

+ 

+ 

k il 	x3 

k„ x 

k 1.1  xj 

(3x 3) 
	

( 3 I ) 

From the law of mmltiplication stated above, it follows 

immediately that the product AB is not necessarily equal to 
not 

BA which may in factLexist at all. In ease of the product AO 

we say either that B is premultiplied by A or that A 

is postmultiplied by B , 

The product of two matrices leads to the form of result 

we- wanted when parcelling Lkx)2  i.e., 

k x = K X 
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We see that the product matrix KX is column matrix 

(hAi), as that it can be equal to the column matrix U Which 

is also (nxi) i.e., 

ICX 

The law of multiplication shows that the associative 

and distributive properties apply, provided the order of 

the matrices is kept unaltered, viz., 

A(B c) 
	

=( A C =ABC 

and A(B+C) =AB+AC 

and (g6) A 	=BA + C A 

As a result of the form of a matrix product it is 

possible that the product matrix may be a null matrix 

A B = 0 

with neither A nor B being a null matrix. This is 

exemplified by the following numerical case: 

A B = [3 4 8 0 0 
0 0 3 -6 0 0 

but B A 4 3 4 12 

3 -6 0 0 

1/ 
=11;  0 

22,5 Transposition.,  

If a matrix B is made from a matrix A by writing 

the its, row of B with the same elements in the same 
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relative position as the it&colamn of A 	then B 

is said to be the transpose of A and is written 

B 	= A* 

For exaMple, 

[a"  

	

azi 
	

a12 

at; a 23 

813 
A 

A* all 
	at, 

an.. a2.2. 

a„ 

If the transpose of a square matrix is equal to the 

original matrix, then the matrix is said to be symmetrical. 

A 4 1 0 
1 4 

0 1 4 

i.e. A* 

It can be shown by the law of multiplication that the 

transpose of a product of two matrices is the reversed product 
of the transposed matrices viz., 

(,A B)* 	= B*A*.  

2 6 Sulxqgt_rAicsts,  

It is sometimes convenient to partition a matrix into 



sabnatrices. This is to say that the elements of the matrix 
are themselves matrices. For example, 

18 

A = a" I aft 	a13  
411•111.•••• ........ 

ot 	c412. —  

a 21 a 2.2 

8  32 

a2.1  

a n 

Where 

a4 = a" 	 = [ab.  

OC z  = 

[
at, 82l 

832 a 33 

 

a;, 

If two matrices are of the same order in rows and 

columns and are similarly partitioned, then the rules of 

matrix addition are still applicable and yield the same 

result as addition of the unpartitioned matrices. Farther, 

it can also be proved by rules of matrix multiplication that 

if two matrices are conformable for multiplication and they 

are each partitioned so that they still remain conformable 

for multiplication, then the resulting product matrix from 
either operation will be the same. 

2.2 The Unit matrix 	 Inverse matrix.  

A square matrix with its leading diagonal elements 
a 	equal to unity and all other elements zero is called a o   

a unit matrix (sometimes called Identity Matrix also) and is 
represented by [V. 



I 0 0 

0 1 0 

0 0 3. 

The rules of matrix'multiplication will show that 

AI=IA = A 

where A is an arbitrary matrix and I the unit matrix 
of the same order. 

If we now find a square matrix B Which is- related 
to the square matrix A in the following way 

A B B A I 

then the matrix B Which is unique, is ca3led the "inverse" 
of A and is written 

*MO 
1111.6 

-1 
A 

so that A ,A 
-1 

= A A = I 

We must note that the matrix A must be non-singplar; 
a non- singular matrix being defined as one in which the 

determinant with the same coefficients, in the same. positions, 
is not 'equal to zero i.e., 

1A1 	0 

Each row and each column of a non-singular matrix must 

contain at least one non-zero element. A singular matrix has 

IA 1- = 0 



It is to be noted that when the product A B equals 

zero then although, as has been shown, neither of the 

individual matrices A nor B is necessarily zero, one or 

both of the matrices must be singular. 

By the law of multiplication of matrices the inverse 

of a product of matrices can be written as the reversed 

product of the inverse matrices. 

( A B ) 4'1 = B"1  A"1  

also, that ( A* )-I = ri)  

If the original matrix has only elements on the leading 
diagonal, e.g., 

A 	= a 0 0 

o b o 

o 

then the rules of matrix multiplication show that since 

A A-1 

A-3. 	= 

thus 

-3/a 	0 0 
S. 

]/b 0 
0 0 Vc 

That is, the inverse of a diagonal matrix is also a 

diagonal matrix whose elements are the reciprocals of the 
elements of the original matrix. 

The inverse has special value in our structural, analysis 

20 



problem for we have seen that the relevant equations can be 

written in matrix notation as 

	

KX 	=U 

which premultiplied by 	gives 

K-1  K X =171 U 

Or 	I X 

	

X 	= 

Apart from its conciseness, matrix notation is useful 

in that it clearly separates the constants appearing in a 

set of simultaneous equations from the particular sets 

of variables which happen to be related. In any physical 

system those behaviour is governed by linear algebraic equat-

ion, the matrix K is always an invariant function and can 

indeed be regarded as forming a complete mathematical state-

ment of the properties of the system. The vectors X and 

U on the other hand are merely related to one particular set 
of conditions. 

21 



CHAPTER 3 

MATRIC FORMULATION OF 

STRUCTURAL PROBLEM 

22 



It has already been pointed out that there are possible 

two complementary formulations of a structural problem. 

(a) The stiffness method in which geometrically compa-

tible states are combined to give equilibrium and 

(b) The flexibility method in which equilibrium states 

are combined to give geometrical compatibility. 

It is proposed to discuss, here, the genera energy 

theory and matrix formulation of the two complementary 
approaches. 

La). Stiffness Matrix Method. 

Let 17 represent the strain energy stored within a 

structure which is loaded by the forces PI  , Pa  . 	Pi ,... 
P11, . The temperature of the material remains constant and the 

supports are rigid. Applying Castigliano' s Theorem I of 
Structure Equilibrium one obtains; 

PL = au 	 (3.1) 

where zst, is the deflection of the point of epplication 
of the load P{)  in the direction of Pi,. 

If the strain energy is evaluated in terms of the loads 

P. acting upon the structure we may expand Equation (3.1) 
as follows: 

.8L)  P. 	= 
ZP:j aA, any  (3.2) 

23 



If the structure is assumed to be elastic then 
Castiglianot  s Theorem II for Linear Structures may be applied. 

24 

(3.3) 

Substituting Equation (3.3) into Equation (3.2), 

(3.4) 

-a The partial. 	 Pj derivative 	. represents the force 
developed at point i  due to a unit deflection of point i s  
all other points assumed to be fixed. This force is represented 

by the symbol kii, . The subscript 3 represents the point 

at which the force acts and the subscript I the point at 

which the unit deflection is imposed. With this substitution 
Eq. (3.4) becomes : 

(3.5) 

From the generalized Maxwell' s Law of Reciprocal 
Deflections we obtain the relation 

k 	= k 	 (3.6) 

and hence 

(3.7) 

Writing Eq. (3.71 in its expanded form 

Pi, = 	+ k 	2 + • • • + k 	j +.... k 

It is evident from the expanded fern that Eq. (3.?) is 



k 	k2,_ 
(3.10) 

• 

• 
• 

a superposition equation expressing the total load at Joint 

as the sum of the loads developed by each deflection 

, component isj  acting by itself. Each portion of Eq.(3.7) 

describes an independent component of the structural behav-

iour. The compOnents may represent translation or rotation. 

The total number of components is the number of degrees of 

freedom which the idealized structure possesses. 

Using matrix algebra notation, Eq. (3.7) may be 

rewritten as 

P = K d 	 (3.9) 

Where P is a vector or column matrix made up of the 

load components P Pz.  , • • • Pi, 	• • • • P. A is a vector 

made up of the deflection components A 022 ••• •6i,9••• Liao L. 

K is a square matrix consisting of an ordered array 

of the stiffttess influence coefficients Iriai of Eq.(3.7). 

Matrix K is called the stiffness matrix of the structure. 

In the expanded form Eq. (3.9) appears as follows: 

P, 

25 
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sj21 Flvdbility Matrix Method.  

Following the principle of superposition of deflections 

we can write in matrix form the force-deflection equations 

for a general structure as 

fit 
	f4. 	 

f 1 

(3.11) 
f f 	 

 

f L.) • ***** f 

 

• 

• 
• 

1'2 I 	f2.1... 
	ftj  

• 

• 
• 
• 

tr% fri 	 

 

f • * * 

 

  

f„,_ 

.m6 

or 	wU = FX 

In this matrix equation 

(3. 12) 

X is a column matrix composed 
of the unknown redundant forces x i 	x/ , 	x„, which 

are to be removed in order to make the structure statically 

determinate. The elements of the veeter U are the deflections 

of the released structure at the position and in the direction 

of the respective redundants due to applied loads. 

F is called the flexibility matrix of the structure. 
It is composed of the elements like f tj  , called the flexi-
bility influence coefficients and defined as follows. 

f 	= the deflection of the released structure at the 



position and in the direction of xi, for a unit value of the 

redundant xj acting alone. 

It is evident from the very definition of the coeffic-

ients ki,j and fij that 

k = k 	and 	= fiL 

Hence, for any structure, both the stiffness matrix 

K and the flexibility matrix F will be symmetrical. 

In the typical problem Eq. (3.10) must be constructed 

and solved for the deflections in terms of the applied loads. 

The direct determination of the coefficients fi,j of Eq. (3.11) 

is difficult and impractical for a large indeterminate struc-

ture. However, the coefficients kid of Eqn. (3.9) can be 

readily calculated. The usual procedure is thus to assemble 

the stiffness matrix directly from the known properties of 

the individual members of the structure. Then the matrix 

equation (3.10) is solved for the unknown deflection compo-
nents of the vector d 2 which, when substituted into the load-

deflection equations for individual, members, give the internal, 

stresses everywhere inside the structure. 

However, in some problems where the number of unknown 

joint deflections is large as compared to the number of redund- 

ant forces, as in the case of indeterminate pin-jointed trusses, 

the number of equations in the displacement method will be 

much larger as compared to that in force method wham the 

27 



redundant forces are taken as unknowns. Hence, the solution .  
of such problems will involve less labour if solved by the 

flexibility method. The details of these methods will be 
discussed later as we proceed. 

28 
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4.1 Introduction.  

We have seen, by nowt  that matrix analysis of indeter-

minate structures consists in expressing the load-displacement 

equations for the structure in the form of one single matrix 

equation and then solving that matrix equation for the unknowns. 

For instance, in the Stiffness Matrix method, the matrix 

equation obtained is of the form 

P = K 

To determine the elements of the unknown displacement 
vector 6 we premultiply both sides of the above equation by 
K-1, the inverse of the stiffness matrix K . Thus, 

= 	1p 

The computational work, thus, lies in obtaining the 
reciprocal matrix K-1  and then computing the deflections by 

determining the matrix product of the applied load vector and 
the matrix K . But the task of inverting the matrix K , if 

attempted by hand calculation on a slide rule or a desk calc-

ulator, is a very cumbersome process. This job is best suited 

to Modern High Speed Automatic Digital Computers which will 

invert a matrix of ordinary size in a few minutes and the 
matrix as large as having 100 rows and 100 columns in a few 
hours - the job which is impossible to attempt by hand 

methods. Also the chances to commit an error by these computers 

are very remote, rather the results may be taken as accurate 

as the data fed into the machine. 



redundant forces are taken as unknowns. Hence, the solution 

of such problems will involve less labour if solved by the 

flexibility method. The details of these methods will be 
discussed later as we proceed. 

28 
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4. 1 Introduction.  

We have seen, by now, that matrix analysis of indeter-

minate structures consists in expressing the load-displacement 

equations for the structure in the form of one single matrix 

equation and then solving that matrix equation for the unknowns. 

For instance, in the Stiffness Matrix method, the matrix 

equation obtained is of the form 

P = K 6, 

To determine the elements of the unknown displacement 
vector a we premultiply both sides of the above equation by 
r.1, the inverse of the stiffness matrix K . Thus, 

= 11.." 11` 

The computational work, thus, lies in obtaining the 
reciprocal matrix Ke-1  and then computing the deflections by 

determining the matrix product of the applied load vector and 
the matrix K . But the task of inverting the matrix K if 

attempted by hand calculation on a slide rule or a desk calc-

ulator, is a very cumbersome process. This job is best suited 

to Modern High Speed Automatic Digital Computers which will 

invert a matrix of ordinary size in a few minutes and the 
matrix as large as having 100 rows and 100 columns in a few 

hours - the job which is impossible to attempt by hand 

methods. Also the chances to commit an error by these computers 
are very remote, rather the results may be taken as accurate 

as the data fed into the machine. 
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Due to the non-availability of such big digital 

computers for routine design and research work in our country, 

same method has to be looked for, which will make the best 

use of more easily available electrically operated desk calcu-

lating machines. Keeping in view the constantly increasing 

complexity of structural problems it is recommended that the 

traditional slide rule be replaced by a desk calculator made 

available to every structural engineer in the design office. 

Prescott D, Crout has evolved an "auxiliary matrix 

method" for solving a matrix equation - as obtained in a 

structural problem. His method is best suited to an electric 

desk calculator which can store the products of numbers. It 

is proposed, for our work, to solve the typical problems of 

structural analysis by this method on a similar machine 

available. For this reason the method shall be discussed in 

details, and also the Doolittle technique of matrix inversion, 

which is most commonly adopted for solution of large size 

matrix equations on automatic digital computers, shall be 

indicated at the end of this chapter. 

42 Crout' s Auxiliary Mat*ix Method. 

The work of solving a system of equations is largely 

concentrated in the determination of an "auxiliary matrix" and 

is roughly half that required by a matrix multiplication. The 

process is particularly adapted for use with a computing machine, 

for each element is determined by one continuous machine 

operation (sum of products with or without a final division). 



The setting down of this matrix and of the final solution 

is the only writing required by the process. The work invol-

ved is cut almost in half if the coefficient matrix of the 

given matrix equation is synmetrical, as always happens with 

a structural problem. A "check column" can be carried along 
i f de sired. 

The amount of work required to obtain a solution is 

considerably less than that required by the Gauss' s method 

of successive elimination, even when there is symmetry and 
the coefficients are real, in which case Gauss' s method has 
been considerably refined by Dbolittle. (Gauss' s method is 

much shorter than a solution by determinaats.) 

The method as given by Crout is applicable to m 
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equations 4r  .1.1141. n uramowns, there ),eing 	rastrictiAn on the 
rank of the matrix of the coefficients. But in a structural 

problem the coefficient matrix is essentially a square matrix 

and hence the method will be illustrated for n equations in 
n unknowns - n can be any natural number. 

4wIL1 Description of the method 

Let the given system of equations be specified by its 
given matrix, thus 

x i  xa  x3  x4 	... - 
1 4 1 3 2 
0 -1 3 -1 1 (4. 1) 
3 1 0 2 -1 
1 -2 5 1 3 



the first equation being 

+ 4 3c2  + x5  + 3x 4. =2 

The solution requires the formation of one matrix 
and a set of final results; thus we have an auxiliary matrix 

XI 

I 

0 

3 
1 

x2 

4 

-1 

-11 
-6 

X3 

1 

-3 
-36 
-14 

X 4_ 

3 

1 
-0. 1111 
*2.4446 

--. 	'' 

2 

-1 
0.5000 
0.81812 

(4.2) 

and a final matrix 

x t  = -0.86345 

= -0.04545 	 (4.3) 
x s  = 0.59089 

2c 4.  = O. 8 1812 

The procedure for obtaining the auxiliary matrix 

from the given matrix is contained in the following rules. 

(1) The various numbers or elements are obtained in the 

following order: elements of first column, then elements of 
first row to the right of .the first column; elements of 

second column below first row, then elements of second row'to 

the right of second column; elements of third column below 

the second row, then elements of third row to the right of 

third column; and so on until all elements are determined. 
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( 2) The first column is identical with the first column 

of the given matrix. Each element of the first row except the 

first is obtained by dividing the corresponding element of the 

given matrix by that first element. 

(3) Each element on or below the principal diagonal is 

equal to the corresponding element of the given matrix minus 

the sum of those products of elements in its row and correspond-

ing elements in its column (in the auxiliary matrix) which 

involve only previously computed elements. 

(4) Each element to the right of the principal diagonal 

is given by a calculation which differs from rule (3) only 

in that there is a final division by its diagonal, element (in 
the auxiliary matrix). 

As examples we_ have the following typical calculations 
made in obtaining (4.2) 2 the letters 	R 	and 	C 	representing 
the words 	" row" 	and 	"column" 	re spectively. 

C3 	1 	= 	1 ÷ 1 

Rt  C2 1 = 	-1-0 x4 
R4  Ct  -6 = 	-2- 1 x 4 
R2_ 	Cs- -1 - 	(1 - 0 x 2)t (-1) 
R5  -36 = 	0 - 3 x 1 - (- 11) x (-3) 
R4 C3  -14 = 	5- 1 x 1 - (-6) x (-3) 
R 3  C4  -0.1111 = [2- 3 x 3 - (-11) 	x( 	4.1)} 	(-36) 
R4  C4  2.4446 = 1 - 1 x 3 - (-6) x 1 - (-14) x (-0.111D 
R4  Cs- 0.81812 = (3-1x2 - 6x1 + 14x 0.5) -=7. 	2.4446 
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Since an electric desk calculator gives in one contin-

uous operation a sum or difference of products with or without 

a final division, we see that each element of the auxiliary 

matrix is given by a single machine operation. 

The procedure for obtaining the one colunned final 

matrix from the auxiliary matrix is contained in the following 
rule s. 

(1) The elements are determined in the following order: 

last, next to last, second from last, third from last etc. 

(2) The last element is equal to the corresponding ele-

ment in the last column of the auxiliary matrix. 

(3) Each element is equal to the corresponding element 

of the last column of the auxiliary matrix minus the sum of 

those products of elements in its row in the auxiliary matrix 

and corresponding elements in its column in the final matrix 

which involve only previously computed elements. 

We see that in forming products only those elements of 

the auxiliary matrix are used which lie to the right of the 

principal diagonal and to the left of the last column. The 

calculations made in obtaining (4.3) are 

R I  C I  0.59089 = + 0.5000 	+ 0.1111 x 0.81812 
R z  C, _-0.04545 = - 1.00 - 1x 0.81812 f 3 x 0.59089 
R I  C, -0.86345 = 2-3 x 0.81812 - 1 x 0.59089+ 4 x0.04545 

It may be noted that each element of the final matrix 



is given by a single machine operation. 

It is not necessary but is strongly recommended that the 

values of the unknowns, which compose the final matrix, be 

substituted in each of the given equations, the result being 

a number of checks equal to the number of equations. Since 

the satisfaction of these checks guarantees the correctness 

of the solution, it is not necessary to check the calculations 

which gave the auxiliary matrix and the final matrix. The first 

of the four checks obtained from (4.1) and (4.3) is 

-1 x 0.86345 - 4 x 0.04545 + i x 0.59089 

+ 3 x 0.81812 	= 2.00 

Evidently each check requires but one machine operation. 

.• 4.2.2. Systems having symmetrical coefficient matrix.  

If there is symmetry (as is the usual case with struc-

tural problems, since both the stiffness matrix or the flex-

ibility matrix of the problem have to be symmetrical), the 

work of computing the auxiliary matrix is cut almost in half 

by the fact that if the coefficients of the unknowns are 

symmetrical about the principal diagonal; each element of the 

auxiliary matrix below the principal diagonal gives, if 

divided by its diagonal element, the symmetrically opposite 

element above this diagonal. Elements below the principal 

diagonal of the auxiliary matrix are thus obtained as bye 

pro ducts of calculations made in determining elements above 

this diagonal. 



As an example, the symmetrical set of equations 

x t  X Z  /t x4 Xs- 

0.55777 0.0 17888 0.0 1183 -0.02683 40 
0.17888 0.71554 0.17888 0 

0.17888 0.55777 -0.02683 0.01183 -40 (4.4) 
0.01183 -0.02683 0.00686 -0.00536 -24 

-0.02683 0.01183 -0.00536 0.00686 24 

has the auxiliary matrix, 

X I  

0.55777 

0.17888 

0 

0.0 1183 

-0.02683 

X t  

0.30270 

0.65817 

0.17888 

-0.00379 

0.00860 

0 

0.27178 

0.50915 
-0.02580 

0.00949 

x4 

0.02120 

-0.00576 

-0.05067 

0.00528 

-0.00427 

X s- 

0.04810 

0.01307 
0.01864 

-0.80871 

0.00182 

71.7141 

-19.4907 

-17.7146 

-5070.54 

2813.77 

(4.5) 

and the final matrix 
= + 266.378 

x2  = - 0.13040 

x = - 265.787 	 (4.6) 
x4  = - 2795.02 

xs. = + 2813.77 

In the auxiliary matrix the lament in row 3 and 
column 4 is 

/(-0.02683 - 0 x 0.02120 + 0.17888 x 0.00576) 0.50915 

0.50915 

37 

- 0._02580 =,- 0.05067 
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the numerator - 0.02580 being recorded in the 

symmetrically opposite position before the final division 

by the diagonal element 0.50915 is carried out. The final 

matrix is obtained in the usual manner. 

If , now, we change only the last column of the given 

matrix, the solution to this new set of matrix equation shall 

be very readily obtained. The first five columns of the 

auxiliary matrix shall remain unaltered and only the last 

column has to be re-calculated. The final matrix is calculated 

in the usual manner from this new column of the auxiliary 
matrix. 

For example, let U.S now recalculate the value of la 

unknowns with the changed last column of the given matrix 
as 

-15 

- 5 

0 

10.5 

1.5 

the last column of the auxiliary matrix becomes 
-26.9928  

- o • 253179 

o • 10 110 

2o49•I7 

52:16.22 
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The final matrix is given by 

x i  = 119.773 

x ••■•• 
..mg/ -92.5657 

x3  = 220,895 

x4  = 6283.75 

xs- = 5236.22 

This saving in calculation work is of great significance 

if a structure has to be analysed for a number of loading 
conditions. 

A. 2.3  Continuous Check on Calculation.  

If desired, a "check column" may be written at the right 

of the given matrix, each element of this column being the sum 

of the elements of the corresponding row in the matrix. This 

column is now treated in exactly the same manner as the last 

column of the given matrix, the calculations being carried 

along with those for the other columns, and the result being 
the addition of corresponding 	check columns" to the auxiliary 
matrix and the final matrix. The check columns thus obtained 
for (4.1) 7 	(4.2) 

11 

2 

5 

8 

7 and (4.3) 

11 

- 2 

1.3889 

1.81812 

are, respectively 

0.13655 

and 	0.95455 

1.59089 

1.81812 

(4.7) 
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These columns provide checks at all stages of the 
computation, because 

1. In the auxiliary matrix any element in the check 

column is equal to one plus the sum of the other elements 

in its row which lie to the right of the principal diagonal. 

2. 	In the final, matrix any element in the check column 

is equal to one plus the sum of the other elements in its 
row. 

For example noting (4.2), (4.3), and (4.7), two of the 
checks are 

3t1.. I  

1 0.04646 

:-.. .2 

= 0.95455 

The above statements 	trace 	the procedure Ls 

the same for any number of equations and unknowns. 

4.2.4 Improvement  in Accuracy. 

Since the number of decimal places in the computations 

is limited, the values obtained for the unknowns are in general 
not exact. However, if they are placed in the given equations 

and the differences between the two sides are obtained, dad 

if these differences are then inserted in place of the right 

hand sides of the given equations, the resulting equations have 

as their solution the corrections to the values first obtained. 
Noting that the above differences are obtained in applying 

the final checks (that of substituting the computed values of 



unknowns in the given set of equations) I  and that the auxi, 

liarY matrix for the modified equations is the same as that 

for the original equations except for the last column, it 

follows that if the column of the differences obtained in 

in applying the final checks be annexed to the given matrix 

and then treated in the same manner as the last column., the 

corresponding column obtained in the final matrix is composed 

of the required corrections. 

Since the problem of solving the modified equations 

is similar to the original problem, the above process may be 

repeated; thus the final checks on the corrections give data 

for another column in the given matrix, which leads to a 

column in the final matrix composed of corrections to the 

first corrections, etc. In the usual case each application of 

this process increases the number of significant figures in 

the results by approximately the sane number obtained with the 
original solution , the data in the given equations being 
considered exact. 

But in problems of structural analysis results correct 

upto three significant places of decimal are usually accepted 

for subsequent design work. By using the available Merchant 

Electrical desk calculating machine and working with five 

decimal places, fairly exceptable correct results are being 

obtained in the first solution. Hence, the labour involved in 

calculating the corrections is not justified for our purpose 

by obtaining a little more accuracy in results over those 
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obtained in the first set of calculations. 

4.2.5 Mathematical. Proof. 

The mathematical proofs which established the method 

have been omitted in describing the technique. The method, 

in essence, is a combination of various processes which com-

pose Gauss's elimination method, and adapting them for use 

with a computing machine. However, direct proofs of the ind-

uction type have been given by Crout in his original paper 

and the reader, if interested, may make a reference of the 

same. (See 4. t Referencaa, ). 

4.31latrix inversion  IlyDoolittle technique.  

Large size matrix equations are most conveniently solv-

ed on automatic digital computers with a very high speed and 

degree of accuracy. The technique of inverting large size 

matrices, which is generally adopted for use on such giant 

- size machines, is explained below in a tabular form. Let 

the coefficient matrix K of a set of simultaneous equations 

be given by 

kit  1c 14.-  

kz, k22 k k2.4 
WO& 
.10 

ks, 

Itc41  

k32 

k42 

k33 

k43 

Itz4  

k44 
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Similarly from row (12) , 	 c14  are obtained 

r„ 	1,41  -" 
" 

^ IM C 1 

  

and from (5) we have c41 2 042._ 	C43 2 C44 • 

km  +C km 4. Q 	 +C41 k 21 	 k14 

Thus, the elements of the inverted matrix in rows other 

than the first are obtained by a process of back substitution. 

To illustrate the above procedure we shall solve a prob-

lem of matrix inversion on the desk calculator as follows. 

With the aid of automatic digital computers, the same technique 

is extended and coded for inverting large size square matrices. 

Table 	4.2 

Given matrix Unit matrix 

(1) 1 4 1 	3 1 0 0 0 

'(2) 0 -1 3 	-1 0 1 0 0 

(3)  3 1 0 2 0 0 1 0 

(4)  1 -2 5 1 0 0 0 1 

(5)  0,3333 1.3333 0.3333 1 0.3333 0 0 0 

(6)  0 1 -3 1 0 -1 0 0 

(7)  1.5 0.5 0 1 0 -A 0.5 0 

(8)  1 -2 5 1 0 0 0 1 

1 
k 14 
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For ease in explaining we have chosen a 4 x 4 matrix, 

although the method can be extended to any order. Table 4.1 

shows step by step the Doolittle technique. On the left hand 

side is the given matrix and on the right hand side is the 

unit matrix. The table is self-explanatory. 

The last four elements, i.e., 	.9 Cm  $ C 13 

c14  , obtained from the unit matrix, form the first row of 

elements of the inverse matrix, given below. 

C C t+ 

C23 

Cts 

C43 C44 

To obtain the other elements of the inverse, multiply- 

ing row ( 17) with K-1  1, et. M II 

M 12_ 
[ I] , we have 

owvil  
c-'11 

1"42. 
1214 115 1'442. 

0 

C t3 	C.23tl 	
1  

Wvt, 
1?434 t1311".'12  

Ct4 

14".9/.. 
	— 2-4 
	

1 	)44 11'33 	 '44 	lvvIt 
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2 C2-3 	C 24  
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Similarly from row (12) I csi 	c3,, c,3}  c14  ,are obtained 

t41 

C
u • 

411 

+ C14 O 
1 

ki4  

	

and from (5) we have c4, 	c.o. 	C4.3 	 C44 

„ 	k,1 , 	km 4. ^ 
.•• 	 • 	

k 	 e4t  

km. 	1' 	kt4  

Thus, the elements of the inverted matrix in rows other 

than the first are obtained by a process of back substitution. 

To illustrate the above procedure we shall solve a prob-

lem of matrix inversion on the desk calculator as follows. 

With the aid of automatic digital computers, the same technique 

is extended and coded for inverting large size square matrices. 

Table 	4.2 

Given matrix Unit matrix 
.11.1PNI D 

(I) 1 4 1 	3 1 0 0 0 

'(2) 0 -1 3 	-1 0 1 0 0 

(3)  3 1 0 2 0 0 1 0 

(4)  1 -2 5 1 0 0 1 

(5)  0.3333 1.3333 0.3333 1 0.3333 0 0 0 
(6)  0 1 -3 1 0 ..1 0 0 
(7)  1.5 0.5 0 1 0 -O. 0.5 0 
(8)  1 -2  5 1 0 0 0 1 



Given matrix Unit matrix 

(5)-(8) (9)  -0.66E7 3.3333-4.667 0.3333. 	0 0 -1 
(6)-(8) (10)  -1 3 	-8 

-1.0. 
o -c$32s5 0 -1 

(7). 	(8) (11)  0.5  2.5 	_5 0 0 0.5 -1 

(12)  0,1428 -0.7143 	1 -0.0714 0 0 0.2143 
(13)  0.325 -0, 375 	1 0 0.125 0 0.125 
(14)  -0.1 -0.5 	1 0 o -0.1 0.2 

4 
(32)-(14) (15)  0.2428 -0.2143 -0.714 0 0.1 0.0143 
.(1*-(14) (16)  0.225 0.125 0 0.125 0.1 -0.075 

(17)  -1 1329 1 0.3332 0 _046E6 -0.0667 
(18)  1.8 1 0 1 0.8 -0.6 

(17)-(18) (19)  -2.9329 0.3332 -1 -1.2666 0.5333 
(20)  1 -0.1136 0.3109 0.4318 -0.181 

Row (20) of table (4.2) gives the values of the elements 
in the first row of the inverse matrix. Elements of the second 
row are obtained from equations formed with row (17) as follows. 

1. 1329 x 0.1136 + 	c2.1  = 0.3332 
-1. 1329 x 0.3409 + 	c 2.2_ = 0 
-1.1329 x 0.4318 + c Z3 = -0.4666 

1. 1329 x 0. 3.8 18 + ca4  = -0.0667 
which in turn give 

= 0.2045 
c„ 	= 0.3862 
c 2_1 	= 0.0226 
c 2.4 	= -0.2726 
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Similarly, from row (12) we have 

-0.1428 x 0.1136 - 0.7143 x 0.2045 + Cli 

0.1428 x 0.3409 - 0.7143 x 0,3862 + 
C an. 

0.1428 x 0.4318 - 0.7143 x 0.0226 + c _11  
-0.1428 x 0.1818 + 0.7143 x 0.2726 + CI 

= 
ON* 

= 

-0.0714 
0 
0 

0.2143 

giving 

= 0.0909 
032  = 0.2272 

C13 =-0.0455 
= 0.0455 

and from row (5) 

-0.3333 x 0.11X + 1.3333 x 0.2045 + 0.3333x0. 0909+ 041=0.3333 
0,3333 x 0.3409 + 1.3333 x 0.3862 + 0.3333x0. 2272+04.,= 0 
0.3333 x 0,4318 + 1.3333 x 0.0226 0.3333x0. 0455+043= 0  

-0'.3333 x 0.1818 1.3333 x 0.2726 + 0.3333x0. 0455+044 = 0 

which gives, 

C41 = 0.0682 

0  41_ - -0.7043 

041 	-0. 1589 

O 44. = 0.3678 
The inverted matrix, thuv becomes 

-0.1136 0.3409 0.4318 -0. 1818- 0.2045 0.3862 0.0226 -0.2726 0.0909 0.2272 -0,0455 0.0455 0.0682 -0.7043 -0.1589 0.4089 

4C 
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„l 	tAitra 

The method to be adopted for the analysis of a statically 
indeterminate structure is the removal of the redundant reaction 

components or the member forces by introducing a number of 

releases in the structure so that it is transformed to a stat-

ically determinate one. The solution to the problem is obtained 

by determining what values of the redundants at the positions 

of, and of the kind corresponding to, the releases will enable 

geometrical continuity to be re-established at all the releases 
where the structure is loaded. The redundant reaction components 

and the number forces are taken as the arbitrary constants of 

the problem since it is the values of these which have to be 

determined in solving the structure by satisfying the boundary 
conditions of continuity. 

The symbol we shall use for the arbitrary constants is 
x and there Will be as many of them as the structure has 

degrees of statical indeterminacy. 

The most convenient way of arriving at the flexibility 

matrix method of structural analysis is through the concept 

of strain energy principles. 

5.2 Flexibility Influence Coefficient  Bauations. 

Let us consider the application of the theorem of least 

work to a simple problem; a three span continuous beam on rigid 

supports (Fig. 5.3). 

The structure is released by removing the two intermediate 

supports, so that the support reactions at B and C become 
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the arbitrary constants, x, and xt  of the problem. 

We shall consider only the flexural strain energy. By the 

principle of superposition the total moment distribution 

Fl can be considered as composed of - two parts: 

Ivi = mo 	(m, x, + mz  x 	(5.1) 

(a) mo 	the moment distribution due to the applied 

loads only acting on the released structure. This is also 

called the "particular solution" of the problem. It satisfies 
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the arbitrary constants, x, and x2. , of the problem. 

We shall consider only the flexural strain energy. By the 

principle of superposition the total moment distribution 

M can be considered as composed of two parts: 

M = me  + (m, x, + m2  4 	(5.1) 

(a) mc, , the moment distribution due to the applied 

loads only acting on the released structure. This is also 

called the "particular solution" of the problem. It satisfies 



X.. 48 = 

the conditions of equilibrium but not the geometrical compat-

ibility of the problem. 

( 	( MI x, + 1112  xt  ) the moment distribution due to 

the action of x i  and xt  acting on the released structure 

whose job is tits to satisfy the compatibility conditions. 

This is also termed as the " complementary function". 

The total strain energy is given by 

U 
j

Mz az 
26 I 

the integration extending over the whole length of the 

structure. 

Applying the theorem of least work we obtain two equations 

for the determination of x i  and xt  . Thus 
au 	f Za 
ax 	

\ 
2-er) ot'h = ° , 

(5.2) 
a° r42-  VoLis aoc, 	j ax2.. \ 2Er ) 

Substituting for M from Eq. (5.2) Eqs. (5.2) become 

U 
Wvo 	,OC 	101N-2. 3C.2.) 	= 0 

s  E I 

au (Itwo  4 Wv 100 + VA, .1) 416 z a X 	E I 

which can also be expanded as 
7_ r  

1 T.ic tb 

	

	W.2 S
°us 	ltwevA. 0  

El 	 Et 
(5.3) 

E.' I 
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Since, Castiglianot  s second theorem gives 

51 

and 6, 

6, and 62. being the deflections at the position and in the 

direction of x, and ccs respectively. 

Supposing, 

(a) m0 	x 	0 „. 	the first equation of (5.3) becomes 

s xl f  El s  = x, f„ 	(say) 

Thus ff, = the deflection of the released structure at 

the position and in the direction of cel for a unit value of 

x, acting alone (Figure 5.2) . 

 

 

X2 	
122 

  

  

	4_1_1 	_1 ___tiaimanw_,  

u 2  

PIGuPL, 

(b) mo  = 0 and x, = 0 7  then 

CC.2  ft2. 	 ( say) 

f 12 = the deflection of the released structure at the 
position and in the direction of x, for a unit value of x2  
acting alone (Fig. 5. 2) . 

81 - 
	 inA• MA4  j 
;2  is 	EI 
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S 	1" 	 01) El 

U = the deflection of the released structure at the 

position and in the direction of x l  due to the applied 
loads (Fig. 5.2). 

With these definitions for the integrals we can relate 

the first equation of (5.3) in the form 

11 'X" + 	x1 = 
	 (5.4 a ) 

Similarly, we can write the second equation, which 

relatesto the boundary condition at the support c as 

X. I 4-  f.22.. ma. = — u,, 	 (5.4 b) 

where f i, 	22 and 1.1 2_ have meanings similar to f 42 
f li  • and u t 	but related to 

It has to be noted that 

EI 

which also follows from Maxwell' s reciprocal theorem 

due to the physical, meanings of 1'12  and f 2, . 

In matrix notations Eqs. (5.4) can be written as, 

       

 

f,, 

     

  

MIS 

u, 

u a  
(5.5) 

f 2.1 

    

       

       

The solution to the structural problem, the result the 

engineer requires, is the distribution of the bending moment 

M in the statically indeterminate structure which is computed 



by solving the matrix Eq. (5.5) for x i  and x2  and inser-
ting the se values in the expression 

M = mo 	ma X2 

The above example is one in which there 

trary constants, the redundant reactions x l  

In general, the solution of a structure with 

are two arbi-

and xa  

n arbitrary 

constants (the redundants) will lead to a matrix equation 
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f„ 

f2.1 

• 

• 

fiA ft, 

fu 	 

fa.y, Xa  

O 	  fi,v, 

(5.6) 

• 

• 
fry,., 

where 2  

and 

= El 
	 oLa 

ewvow.  4.43  
E 

S 

(5.7) 

(5.8) 

still assuming that flexural energy alone is sigtificant. 

The meanings of the f's and u's remain as displace-
ments which may include deflections and rotations according 

to whether the corresponding arbitrary constants are forces 
or moments. 

Writing' Eq. (5.6) as 

FX = U 	 (5.9) 



F is the " flexibility matrix" of the structure which 

is composed of the flexibility influence coefficients of the 

type given in Eq. (5.?) . It iS to be noted that the matrix 

F is a symmetrical matrix. 

The matrix Eq. (5.6) is solved for the values of the 

elements of the vector x by our excepted methods of 

computation and the final distribution of moment will be det-

ermined from the expression 

	

= n10 	m, 	 + 	 IC + 	 M x, (5.10) 

5.3 Other Strain Engr42st  

If it is necessary to consider the effect of shear and 
to 

direct forces also in contributinathe strain energy, then 

Utotal = Ubending+ shear Udirect force 

for plane frames. 

The expressions for the influence coefficients fij  
and that for 	will, in the complete plane frame case, 
become 

	d 	+ 	coy& 	144  ou, 
s Ei 	 E A 

S 
 GA 
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where s and n are the " unit shear force and 

direct force diagrams"i  defined in the same way as the 

diagrams. 

It is to be pointed out that, although a problem may 

be solved by considering only one, or some, of the stress 

resultants contributing significantly to the total strain 

energy, it is of course still possible to determine the 

distribution of all the other stress resultants. Thus, in 

the case of the three-span bean discussed above, the total 

shear distribution S is determined by adding the contrib-

utions due to the applied loading se, due to the arbitrary 

constants 	s, x, + s, x, 	so that 

S = so  + s, X, + s, X2  

5.4 Evaluation of the Integrals. 

The various quantities whose values have to be evalua-

ted eppear as the integrals of the products of the ordinates 

of diagrams of moment (or direct force, shear etc.) and of 

variations in structural properties (EI El  A letc). A visual 

representation of the Stress resultant and structural, property 

distributions will be valuable and we shall, wherever poss-

ible, draw diagrams. However, in order to draw diagrams, we 

shall require sign conventions. 

(a) Bending Moments. 

We shall adopt the convention of drawing the posi-

tive ordinate on the side of the member under 
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tensile bending stress. 

(b) Direct force. 

Direct forces will be denoted positive if they are 

tensile. 

(c) 	Shear force. 

We put an arrow on each member to indicate the sense 

of increasing length coordinate. Then sitting on the member 

behind the arrow and cutting it in front of the arrow we 

draw the shear diagram on the side which the portion of the 

member in front of the cut would appear to us to move. 

The calculation of integrals of the type 

is often considerably simplified if we remomber that they 

are always zero if one is symmetrical ( $ ) and the other 

is antisymmetrical ( A/S) i.e. if 	is $ and m; is 
A/S and Ei is 

e.`• 	 

In carrying out product integrations in the general 

case we shall frequently have to use an approximate method 
of integration. Of the many formulae which exist for this 
purpose that known as Simp son' s first rule is probably the 

most convenient since it is easy to apply and is precise upto 
third degree curves. 

In the case of simple geometrical figures we can det_ 

ermine useful expressions for the product integrals. A number 

of these are given in Table 5.1. 
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5.5 Deflections At asz point in ,structure.  

Using Castigliano' s second theorem, it is easy to 

show that the deflection 8 at the point of application and 
in the direction of a load P acting on a structure is 
given by 

S lletq  
ET

M (5.12) 

where m s  is the bending moment on the released structure 

due to P = 1 and M the total bending moment on the load-

ed statically indeterminate structure. The deflection 8 will 
correspond to displacement if P is a force and to rotation 
if it is a moment. 

We may use expression (5.12) to detexnine deflections 
and it is to be noted that the computation of the integral 

is dependent upon the information already determined in soly= 
ing the structure plus a moment m 8 1 - due to a unit load 
acting on the released structure at the position and in the 

direction of the required deflection. 

In the case of a structure in which the strain energy 

includes contributions from other stress resultants in add-

ition to bending moment the expression for deflection will 
include extra terms, e. g. 

(5. 10 
8 	wv6 	

act + ws Gct s EI 	 s  GA 	 EA 
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Exanuls1 

Let us now examine the application of the foregoing 

analysis, in numerical terms, to a  four span continuous 

beam loaded as shown below. The problem itself is almost 

trivial, but will serve to illustrate the process. 
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FIGUT-E. 5.5 

We choose to produce the statically determinate system 

by inserting hinges at the intermediate supports (Fig. 5.3 b); 

so that the arbitrary constants of the problem, x, 	x2  

and 	become the moments in the beam at these points. 

If flexural energy only is considered we shall require for 

the analysis only the bending moment diagrams. A tabular 

method is suggested in order to represent the calculations 

in a symmetrical way. 

(a) 	Determination of the elements of flexibility matrix F. 
-f„ 1* 1̀5  

Using Table 5.1, we have 

= 1  x 12 + 1 x 24 	(a=c= 1) 
3x3 	10x3 

= 1.33at + 0.8 	= 2. 1334 
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TA bLE 5'2 

1122 = 	x 24 + 	 x 12=2.8 
10x3 	2x3 

f",.3 	1 	xv A. 1 	x 6 	= 3.0 

	

2x3 	 2x3 

ml  m, 
= 0.4 f{z =  f 	= 	ds = 	1  x 24 

10 x 6 

f 	f M 
ds = 0 

El 
 

1%.?. 	 ds 	1 	x 12 	= 1.00 z3 =
2x6 

Hence, the flexibility matrix F is 

[
2.1334 	0.4 

0.4 	2.8 	1.0 

0 	 1.0 	3.0 



(b) Determination of the elements of vector U. 

60 

u, = ds 

x 54 x 	- 	x 120 x 24 - 1 3 x3 	10x4 	 10x3 

x 144 x 24 

72,0 - 72.0 - 115.2 = - 259.2 

2_ - 72.0 - 115.2 - 1 	x 4 (3+4 ) 48 
2x6 

-
2 
1 	x 8 x - 63Er x 48 

277.2 

3 
•NWO 
.111=10  2x3x4 x x48- 26  x 8 (.1 + ) x48 

6 x 9 
3x2 

= -73.0 

(c) Solution of the Matrix Equation. 

Hence, the matrix equation of the problem is 

2 1334 
0.4 
0 

0.4 

2.8 
1.0 

0 

1.0 
3.0 

	

[

x, 	259.2 

	

x, 	= 	277.2 

	

xl 	73.0 



The computed auxiliary matrix (Grout' s method) 

x, xs  
2.1334 0. 1874 0 121.49 

0.4 2.7250 0.3669 83.891 
0 1,0000 2.6331 -4.11 

and finally, 

x = 105.76 

x 2.  = 85,408 

x 3  = 4.11 

(d) Solution of the problem 

The distribution of bending moment in the statically 

indeterminate structure is given by the expression 

= mo  + 105.76 m, + 85.408 m - 4.1861m3  

This is a very simple job of superposition of bending 
moment diagrams m, 	m i 	m2. l and m3  according to the 
above expression, and get the net moment distribution diag- 

ram of the indeterminate beam. In the same way we may draw 

the individual S.F. diagrams and combine them according to 

S = 40 + 105.76 + 85.408 - 4.1361 h 

to obtain the S.F. distribution in the beam, even though 

the shear forces were ignored in the computation. 
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(b) 
F !CURE, 5"4 

4xampie .  5.2 

Consider the encastered plane portal of Fig. (5.4a) 

with the released structure shown in Fig. (5.4 b) along with 
the chosen arbitrary constants. 
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(a) Calculation of F. 

The elements of the flexibility matrix F are computed 
in the usual way from the expression 

ot, s 
Js 	E. I 

where only the flexural strain energy is being considered. 

Let El = 100 units 

Thus, the computed flexibility matrix 

0.50 5.25 5.00 
5.25 67.50 52.50 
5.00 52.50 86.67 

(b) Calculation of u's 

Thus, 

20.49 

um = 279.22 

570.56 

c) Solution of the matrix equation 
x, 	X 2 	 x3 

0.50 5.25 5.00 -20.49 
5.25 67.50 52.50 -079.22 
5.00 52.50 86.67 -570.56 
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The auxiliary matrix 

x, x,_ 

0.50 10.50 10.00 -40.98 

5.25 12.7 3 0  - 5.18 

5.00 0 36.67 - 9.97 

and the final matrix 

x, 	+113.11 

5. 18 

- 9.97 

which gives the values of the redundant reaction compo-

nents and hence the solution of the problem. 

Example 5.3 

Consider the three bay pin-jointed plane truss shown 

in Fig. (5.5a) carrying the loads indicated. The structure 

carries the loads by a system of direct forces only isv the 

members and is therefore three times statically indeterminate. 

The structure is made statically determinate by cutt-

ing one diagonal member in each bay (Fig. 5.5b) so that 

it becomes a straight-forward process to write down the 

values of the forces in each of the members. Since the forces 

are constant along the members it is sufficient in this case 

to indicate the value and sign (Table 5.4). Following the 
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usual procedure we next determine the stress distribution 

due to the application of unit values of the arbitrary cons-

tants which effects are again indicated by value and sign 

(Table 5.4). 

(a) Determination of F. 

The elements of the flexibility matrix F will be 

determined by consideration of direct strain energy only, 

"Vv 	j ,---dLa 
LA 

Let the frame be assumed to be made of members of simi-

lar cross-section with EA = 1. 
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and we calculate 
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- 	1920 + 960 SY- ) 

240 + 420 .F- 

1680 + 780 

The matrix equation of the problem becomes 

X, 	x t 	x1  = 

57.940 	6.0 	0 3277.63 

6.0 	57.940 	6.0 - 833,96 

0 	6.0 	57.940 -2783.07 

It has the auxiliary matrix 

X1  1 	x2_  = 

57,940 	0.1035 	0 56.569 

6 	57.319 	0.1046 -20.470 

0 	6.0 	57.312 -46.416 

and the final matrix 

x, = +58.185 

x, = - 15.615 

... - 46.416 

(c) Solution of the problem 

In the usual way, the solution to the problem is 



10 10 

A LL FOP.c. 5. IN 1.i1,0 POUNDS 

F IG URE. 5- 6 

• 

obtained by determining the final stresses in members 

from the expression 

N =113,, + n, x, + n2  x,_ + ns  xs  

This gives the final force distribution shol.qn in 
fig. 5.6. 

The above problems belong to the very elementary class 

of indeterminate structures, but have been solved here only 

to illustrate the application of the flexibility method. 

For more complex problems the evaluation of the flexibility 

influence coefficients becomestoo cumbersome and laborious 

task, in which case the stiffness method (to be discussed 

in details in the next chapter) proves to be most convenient, 

since the stiffness influence coefficients are very readily 

obtained. However, the flexibility method is of particular 

significance for solution of indeterminate pin-jointed 

trusses having few degrees of redundancy, for, in such 

cases the flexibility matrix is easier to assemble and also 

it is of a much smaller order than that of the corresponding 

stiffness matrix of the problem. 
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CHAPTER 6 
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STIFFNESS MATRIX METHOD 
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(b) 

The techniques described in the present chapter are 

methods, in which all internal forces and moments are ex-

pressed in terms of joint displacements and rotations, and 

the latter are found by solving the matrix equation which 

is obtained by considering the equilibrium of joints. This 

group of methods, however, possesses certain advantages, 

since the stiffness matrix equation of a structural problem 

is comparatively much easier to assemble. 

We shall consider, for our present discussion, only 

the structures composed of straight uniform members joined 

at their ends (although much of the analysis is applicabi 

to non-uniform cases also) and the analysis will be restri-

cted to problems in which the external loading consists of 

forces and moments applied at the joints. This involves 

no real loss of generality, since any loading of a member 

at points between its ends may be replaced by equivalent 

"fixed-end" , forces and moments at the joints themselves, 

without affecting the stresses in the rest of the framework. 

When the displacements and stresses due to this equivalent 

loading have been evaluated, the actual stresses in the 

loaded member may be found by simple super-position. 
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6. 1 Notation 

The basic unit of a plane rigid frame is a straight 

uniform member of length L 	cross-sectional area A, 

and flexural rigidity El. It is convenient in diagrams to 

place an arrow on the member to denote a specific direction, 

which may be chosen arbitrarily, and the two ends are then 

denoted by suffices 1 and 2. The positive directions of 

the three displacement coordinates x, y and 9 at each 

end are shown in Fig. (6.1 a). The displacements of the two 

ends are then denoted by single symbols, D, and Da 	where 
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x, 

9, 

and D2.  

  

similarly, the loads applied at the ends of the members 

are represented by single symbols, Fi  and F2  , where 

and F2.  

In the rest of the discussion of this chapter the terms 

"displacements" and "loads" will be taken to mean column 

vectors of the above type. 

When considering a structure formed of connected mem-

bers, the displacements and loads in the final set of equa-

tions will be expressed in a single reference frame xl Y 

0' 
chosen arbitrarily for the whole structure (normally 

F1  

 

   

Nt  

S2  

M 



we take axes x' and y' along the horizontal and vertical) . 

Primes will be used to denote such overall 	system coordi- 

nates". It could easily be seen by a simple geometrical 

argument that D, and Da  can be expressed in terms of D; 

and D:_ as 

D, =TD; 	 D, = T D:_ 	(6.1) 

Similarly the end loads, F, and F„ , are expressed 

in system coordinates by F,' and F; as 

F, = T F,' = T 	 (6.2) 

where T is the orthogonal transformation matrix given 
by 
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Cos a. 

- Sin 0( 

0 

Since 0 

Cos 0( 0 

C 
	

lJ 

being the inclination of the member to the x' -axis. 

Thd inverse of T 

Costa - s in 0( 0 
-1 

T = Sino( Cosa 0 

0 	0 	1 

enable s us to carry out the reverse transformation e. g. 

= 	D, 	etc. 

It will be noticed that the inverse of the orthogonal 

transformation matrix is the same as its transpose' - 



the matrix formed by interchanging rows and columns. 

When discussing a structure composed of several 

members, an additional suffix is required to denote a 

particular member. Thus, the displacement of end 1 of 

member (3) is written D,3  . In order to avoid confusion, 

square matrices, which already ahve two suffices, are 

placed in brackets before the member suffix is attached; 

that is, ( K I, )3  is a matrix associated with the third 

member. It has also been found convenient to ma* the 

joints separately. Joint loads and displacements are rep-

resented by the symbol P and A respectively, these, 

of course, being measured in the genera reference frame 

(primes are discarded here since there is no possible 

ambiguity.) Thus if members (1) and (2) meet at joint B, 

the end 2 of member (1) being rigidly attached to the 
end 1 of member (2) 	the equations of compatibility and 

equlibrium at the joint B will be written 

= 	Dz 	- Dt11 	7  and 

	

PE = F2, 	+ Ft 

6.2 Load-Displacement Equations for _g Single Member.  

Using the above notation, the equations connecting 
the quantities D, 	DL  and F, and F2  now have to be est- 

ablished. In order to obtain the equations for a member with 

arbitrary loads acting at each end (these loads, however, 

being such as to keep the member in equilibrium) consider 

the two following cases and then apply the principle 
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of superposition. 

Clamp end 2 of the member shown in Fig. (6. 1) 
(i.e. Dz  = 0) and then apply a load Q., to end 1; the sine 
theory of bending gives 

Q.1 = D, 

where K„ = 0 0 
L 

0 12E1 6E1 
L3  L2  

0 6E1 

.Also, from the conditions of equilibrium, 

	

Q2.° 	7t2.1 

Whe re 	2■, 2_1 - 

Cj 

-1 

0 

0 

-1 

0 

0 

L L -1_ 
Similarly, clamping end 1 ( D, = 0 ) 	and applying 

a load R2  to end 2, gives 

R2. 	=K22 Dt , 

Where 

0 	0 
L 

0 	1 2E1 ...AM 
Lz 

0 	-6E1 	, 4E1  
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and from the conditions of equilibrium, 

= 	n  11 E L 

where 

0 
	

0 ~12 = 

0 -L -1 

Combination of the two cases gives 

F, = Qt + R, = a, + 	 = K t, D, + 	D2 

and, F„ = Qt+ R„ =;a2.,Q,+ R, 	= 	D, + K„ D„ 

If K,„ and K„, are now defined by the equations 

K )\ K 

K  

 

I v. 
[ Kil I A. 12  

4. 	 

K t! Kt, 

  

then 

D, 
_ 

(6.8) 

  

This matrix equation gives the end loads in terms 

of the end displacements for a single member in its own 

reference axes. This cannot be solved for D, and D2 

since the matrix formed by the four K- matrices is sing-

ular; this is to be erected, since it is obviously possible 

to give the member an arbitrary rigid-body displacement. 

In order to write down conditions of compatibility 

and equilibrium at the joints, it is necessary to express 



F' T 

F ' 2. 

all end displacements and end loads in the general reference 

frame of the system. The next step is therefore to determine 

the form taken by equation (6.3) in system coordinates. 
If x' y' I  are the system coordinates, as shown in Fig. (6. lb) 
substituting from eqns. (6. 1) and (6.2) eqn. (6.2) becomes 
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T F,' 

 

K,1  T 	K,t  T D' 

T Ft' 

  

 

T K„ 

    

    

and, therefore, 

T 	T 1  K 12.  T 

K,, 	K tt  11 _ 

or, defining Kj by the relationship 

T K ai T = 	, 	(i, 	 = 1,2 ) 	(6.4) • L: 

we have 

F,' 

Kt't  

D: 

D; 
(6.5) 

  

Using  Eq. (6.4) the four Kt -matrices of Eq. (6.5) are 
obtained, the coefficients of which have been tabulated and 
given in Table (6. 1). 
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6.3 Analysis of a Plane Rigid-Jointed  Framework- 
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Consider the str-

ucture shown in Fig. (6.2) 

which is acted upon by 

loads Pt  and Pc  as 

down. Eq. (6.5) can be 

written down for each 

member as follows - 

K„ 	K12  

(6.6) 

K2, KZZ 

where i may denote member 1, 2 or 3. 

The conditions of compatibility and equilibrium at 

the joints are 

0 	= D;r  = aB  

and 

= Dits  Ale 	 0 

Ft2  = Pt  , F12  -I- F13  = Pc  . 

Substituting these expressions in Eqs. (6.6) , we 

obtain 

( K 12 ), 	6  (6.7) 

F2" 
41, 
	D2 
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Pt 	 ( K 22_ )1  + 	ICH  )1 	(K12 

Pc 	 (K21)2  + (K/s, 

also written as, 	P 	= K d 

.68  

(6.8) 

(6.9) 

= ( K2, 	A c, 	 (6. 10) 

The Eq. (6.8) is called the stiffness matrix equation 

of the structure the matrix of coefficients being called 

the stiffness matrix of the structure. The elements of this 

matrix are often referred to as the stiffness influence 

coefficients. 

The matrix equation (6.8) forms a set of six linear 

equations for the six degrees of freedom of the structure. 

The stiffness matrix is non-singular, and the Eq. (6.8) 
can therefore be solved for do  and Ac When this has been 

done, Eqs. (6.7) and (6.10) give the redundant reactions 

at A and D or, alternatively, dquations (6.6) enable 

all the internal forces to be determined. 

6.4 Some Practical Details of the Method- 

Table 6.1 gives the coefficients of the four Kt-

matrices for a member inclined at angle oc to the x'-axis. 

In the majority of our structural problems, a large prop-

ortion of the members will have the simpler matrices ass- 

ociated with the values oc = 0 	oc = 90o
. 

Referring to Eq. (6.5) , the matrices IC,/, 

may be described as "direct";- stiffness matrices, relating 



the load at one end to the displacement thereat, while the 

matrices Kit  , 	, are 'cross"-stiffness matrices, rela- 

ting the load at one end of a member to the displacement 

at the other. Using these ideas, it is quite easy to build 

up the matrix equation (6.8) for the structure, directly 

from the stiffness matrices of individual members, without 

first writing down the Eqs (6.6). 

Considering the stiffness matrix K of Eq. (6.8) I  

the leading diagonal coefficient matrices are found to be 

the sums of the direct-stiffness matrices of the members 

meeting at the respective joints. 

The term ( 	+ (K;, ),, for instance, represents the 

sum of the direct-stiffness matrices of members (1) and 

(2). The matrix ( Kt/ 0, appears because member (I) has end 

at the joint B, member (2) has end 1 at the joint and is 

therefore' represented by (K,', 	. Similarly, the coeff- 

icient matrices away from the leading diagonal represent 

cross. -stiffness effects due to the deflections of the other 
joints. 

For a structure with any number of joints, the matrix 

equation takes a form similar to (6.8). In the equation for 

a given joint, the coefficient matrix on the leading diagonal 

is the sum of the direct-stiffness matrices of the members 

meeting at that joint, the matrices chosen being either 
K111 

if the joint is at end 1 or K22 if at end 2 of the 

member. Coefficient matrices away from the leading diagonal 
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represent the effects of all other joints directly coupled 

to the one .considered. 

It will be found in practice that, if the diagram 

is first labelled with arrows showing the direction of all 

the members, the synthesis of the stiffness matrix K for 

the whole structure, from the V-mattices of the individual 

members is a straightforward process. As a. check, it is 

useful to remember that the elements of the stiffness matrix 

K, for any structure, must always be symmetrical about 

the leading diagonal. 

6.5 Sp...22e Frames.  

The above analysis may easily be extended to cover the 

problem of rigidly jointed frameworks in three dimensions. 

Each joint will have six degrees of freedom- three components 

of displacement and three of rotation. The load and displac-

ement column-vectors will have their full six omponents, 

while the four K-matrices of Eqn. (6.3) will be square mat-

rices having six rows and six columns. The orthogonal trans-

formation matrix T will also be more complicated, taking 

the genera form 

0 

80 

0 2 

where 	represents the matrix of the direction cosines 

of the new axes referred to the old. With these extensions, 

the analysis becomes identical with that presented for planar 
structures. 	

02 3 
ORAL 	si .:IA! 	!'.1  POORE& 

ann. vcc 
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Matrix methods provide a general approach to the ana-

lysis of complex space frames, although it must be admitted 

that the computational work is extremely laborious when carr-

ied out by hand. In practice the large scale matrix operations, 

involved in the analysis, are normally carried out on aut-

omatic digital computers. Keeping in view the limited scope 

of the present work we shall not take up the detailed dis-

cussion of such complex problems. 

6.6 Modification for Hinged Supports- 

In order to lessen the redundancy of a rigid structure, 

it is often fixed to its foundations by pin joints. For 

instance, the effect of pin-jointing the ends A and D of 

the structure represented in Fig. (6.2) would be to alter 

the compatibility equations at those points. If the structure 

is connected to the hinged support by a single member, it is 

possible to modify the stiffness matrices of the member, 

and then consider it as if it were rigidly anchored at the 

hinged end. This is a more general case of the modification 

of the "carry-over"- factor for a pin-supported member in 

the moment-distribution method. 

Consider a member,hinged to a rigid foundation at end 

I ; then 	Eq. 	(6.3) may be written in expanded form as 

N, 0 

Ft  = Si  = K1, 0 K (6.11) 
0 0, 



4] 

	

6E1 	E1  

	

L2 	L 0 { 0 

[Fi  

0 

Ft  = K 24 	0 	K 2.  Da 	 (6. 12) 

Eq. (6.11) gives, considering the last of the three 
scalar equations, 

0 
-6EI 	azi D2  La 

et.  

wrich, by simple manipulation, gives 

0 0 0 

0 0 0 Cl  Da  =X2  
et  0 3 

2L 

where x1  is defined by this equation.. Substituting tissar 

this in Eqs. (6.11) and (6.12) we obtain 

K it  K„Xt  ) 
Dt 	(6. 13) 
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0 

( Kaz + K t, ;) F2.  

or, defining modified matrices as 

can be re-written as 
K" and .K;121_ Eq. (6. 13) 

Dt 	 ( 6. 14) 

in which form they are similar to the equation for a rigidly-
encastered member. 

For a member withend 2 hinged, the analysis is 



similar. The matrix X t  comes out to be 

0 	0 

0 	0 	0 

0 	3 
2L 

0-1 

and the modified matrices K 

eqUations 

V:, 	, are defined by the 

= K + K,., 

K u K a l 	 IC2.121  

The components of these modified matrices have been 

evaluated and are being given in Table 6.2, herewith. Trans-

formations of these matrices follow the normal rules. 

In case of a joint where two or more members are rigid-

ly attached to each other and the joint as a whole is pin-

anchored (as, for instance, at the end of a bridge truss) 

modifications on the above lines become impracticable, and 

the method suggested here should be adopted. If the joint 

displacement is A's  where x; , ysl take prescribed zero 

values, and the applied Moment Ms  is also zero, the three 

scalar equations for the joint should be constructed as if 

it were a normal one. The first two equations (containing 

the unknown reactions) should then be discarded„ together 

with all coefficients of 4 	and y: 	occurring in the 

other equations. Thus, one equation will be added to the set 
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X, 



0 

0 14, 

3 611 

2 

 

  

of load-displacement equations, corresponding to the extra 

variable 8s This problem shall be discussed later in this 

chapter, when we shall solve numerical example of a bridge 

truss. 
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e AiL 	0 	0 

0 	_ 1 1, 	S E I/L1 

LAiL 	0 	0 	I.  

0 	,̀LI/L4. 	_ : ,̀L LA,. 

0 	- 5L  1/1_ 	3E1/1 

0 	0 

>E. 

L. 	
L ILL /1-2-  

EA/1  

L A /1  

0 

0 

o 	L.1/1.4 	_ 	I/  

0  0 	0 
L. 

TABLE. 6'2- (MODIFIED MA rp_los) 

6.7 Modifications of the General Theory.  

The analysis so far has applied to any structure with 

rigid i,oints. Its application to certain classes of problems 

more common to a structural engineer, will now be considered. 

6 .7. i Continuous Be am s. 

In the case of a horizontal continuous beam with only 

vertical loading, Eq. (6.3) may be applied directly, since 

all the member and system coordinates may be made to coincide. 

Furthermore, all deflections and forces in the x-direction 

will be zero, and hence the first scalar equation of each of 
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the matrix equations (6.2) becomes identically zero. Hence, 

the K-mbtrices become 2 x 2 matrices, and D and F vectors 

will have two components. Equation (6.3) for a member of a 

horizontal continuous beam can be written out in full as 

follows. 

S, 

M, 

St  

= 

12E1 
L3  

6k.0 

 6 	i 
L2 	i 

4E1 
L  

_ 6E1 ____ 

11  

12E1 
L3  
E1 
L2 

La  
2E1 
L 

_ 12E1 	6E1 
L3 	L2 

	

- 6E1 	2E1 

	

_ 1;2 	L  

	

12E1 	6hi 
1,3  - L 

	

6E1 	4E1 
r. 	L 

   

 

e, 
(6.15) 

    

    

It may be pointed out that, by this method of analysis, 

an allowance can easily be made for the effect of elastic 

supports. To illustrate this effect, let us consider the beam 

on elastic supports shown in Fig.6.3, 

(21 
• 	 

 

(3) 

 

PD  

     

      

F IG u V2.E- l0•3 

The applied joint loads (which are the same as fixed-

end loads with oppo#te sign) each comprise of a force and 

a moment, an'd are represented by the symbols Pa  , Pe.  and PD  
while the symbols R a  R, and RD  represent the forces 

and moments applied by the elastic supports located, in the 

present problem, at points 13, C and D respectirely. We shall 

assume that at each of the elastic supports the vertical zkr 
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reaction is kl  times the vertical displacement of the joint, 

while the reactive moment is ke  times the angular rotation. 

We can write down the Eqs. (6.3) for each span. If the 

displacements of the joints B, C , D are i 	Ac, oD  

respectively, we have the following compatibility equations 

D,, 	= D, = As 7  

D„ 	DI3 	Ac, 

and 	AD 

We also have the following joint equilibrium equations 

Ps  - 

F, + 	Pc - 

ri 
D 

the reactions R s  , Rc. 	being given by 

	

Re = Zag , Rc  = Z 	=Zap 

where Z is the stiffness matrix of the supports, 
defined by 

k `J 	0 

0 	ke  

By usual substitution, we get the load-displacement 

equations in matrix form as follows, 
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-Z + (K ), + (K s t  22 

(K 

     

PE, 

PC  

(K it  

z + (K„), + (K0 )3  (Ki, 

(ICIt 	z +(1(103  

    

 

ag  

be  (6. 16) 

 

   

Ls o  

  

      

       

In the above matrix equation, the stiffness matrix for 

the complete beam could easily be obtained by direct synthetic 

process and the equation (6.16) solved for the unknowns 

,6 8,7 4c7 AD. The effect of the elasticity of the support 

for instance, on the stiffness matrix of the complete struct-

ure is to add, to the diagonal term for the joint, a term 

Z which is the direct stiffness of the support at B. 

If we consider, in the above example, that the supports 

are rigid ( k , ke --cD ) in which the displacements of the 
supports all tend to zero, the joints B, C7  D have only rot-
ation al movement GB 7 Gc, 7 OD The applied joint loads  will only 

comprise of the equivalent fixed-end moments Ma , Mc , MD • 
Eq. (6, Z) will adopt the simple form 

  

2,31 
L 	L 

2E1. 	4E1 
L 	 L 

  

M , 

   

   

MZ  
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(6. 17) 

    

    

    

     

Eq.(6.17) is seen to be the slope-deflection equation 

for a span of a continuous be with rigid supports, 

2E1 being known to be the cross-stiffness coefficient for a 
L 

member of uniform cross-section. 



6.7. Pin-connected Frames.  

The analysis of redundant pin-connected frames is a 

straight-forward special case of the general theory. It is 

clear that a pin-jointed frame is equivalent (for stress 

analysis purposes) to a rigid-jointed frame whose members 

have zero moments of inertia. In analysing such a frame, the 

third scalar equation at each joint may be discarded, sine 

no moments can be applied to the frame and the joint rotat-

ions are irrelevant. Hence, end-loads F' and displacement-

vectors D1  become 2-vectors, and the K-matrices are reduced 

to the simple form 

0 
L 

K11  = K22  

-EA 
L 

Kt, = K 

0 	o 

In view of this simplification, 

KI, = K Z2 = 	= K 	= -K. 

The transformation matrix T is now given by 

CO S o.  S Inc( - 
(6.18) 

-sinoc 	cos oc 
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and Eq. (6.5) becomes 

    

F,' 

 

K' 

 

   

(6. 19) 
F," 

 

-K' 	K' 

    

    

where 

 

Cosa 	Cosa Sina 

CosaSina 	Sitio( 

 

 

K' = 	K T = (6.20) 

    

Replacing Cosa< by 'X and Sina by ft for a pin- 

ended truss member the matrix equation (6.19) can be written 

down, in full 	as 

N, 

(6. 21) 
N; 

Si 

= 

x;.  

The method of solving any (determinate or indeter- 

minate) pin-connected truss will be presented and discussed 

in details with reference to a simple example of a pin- 

jointed frame. The method is essentially tabular in nature 

and consists in setting up the 'complete' matrix•of stiff- 

ness influence coefficients relating the joint forces and 

displacements. •As soon as this matrix has been framed, the 

solution for node deflections, external reactions, and 

separate member forces proceeds from routine matrix operations, 



already described in Chapters 2 and 4. 

Analysis of a Simple Truss. 

When the stiffness expressions (like Eq. 6.2]) for 

individual members of a structure 'are known, the stiffness 

of an assemblage of such members may be formed. A simple 

example is represented by the truss in Fig. 6.4. The arrows 

on the members in the figure are inserted to show their 

positive x-direction which is a very convenient way of 

distinguishing ends 1 and 2 of a member in a diagram. 

For simplicity it is assumed that all members have 

equal values of A and E. The stiffness matrix can be 
2. 

developed by first determining XI-  , /AIL  an d 7,A,  and then 	7 

P.2  and 	for for each member - this is done in Table 6.3. 

90 

for each member. 
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It is now desirable to form the stiffness matrix for 

the complete truss. This is the principal task that the 

engineer must perform in the analysis, and, as will be seen; 

it is routine. 

Eq. (6.21) for the complete truss can be written. 

directly from Table 6.3. The result will be presented first 

and then explained in some detail. 

r 

	

X.,' 	1 ' X 	a. 	4-1- 	elt 3 	 it .41 	I I A 
F= 

I+ 1/2.r2 	7211 	I 	0 	• . 14, 12 	1/1 j ,_ 	o 	o 

	

1i-fa 	1,  'i_J 2 	0 	0 	'4, 1-,, 	/1.12 	0 	0 

V A 
7  C/ 

	

I 	0 	I + 1/213 	 itz iz 	/2 S1. 

	

0 	0 	-'2si 	V2.3 .1. 	= 	1 /L-1z 	I/.4.Ji  

-1/21, 	1/212 	0 	0 	1- 	 0 

1/i IA 	Y2 z 	O 	- 	1/2..1 	4.3 	( 
	 0 

Y2S2 	4Ziz 	 e I V) J2 	7211  

1/ .4J 2 	' 	1.4 	0 	0 	''/ j.  

' 2 2 ) 



The first element in the first column in the square 

stiffness matrix of Eq. (6.22) represents force Nit  due 

to x't 	and the second element represents force SI due 

to xi' 	Similar explanations apply to the remainder of 

the column. Similarly, the se cordcolumn represents these 

forces due to displacement y,' 	and so on for other col- 

uns. Two checks can be applied to the stiffness matrix. First, 

it must be symmetrical. Second, for each column the sum of 

the N'-forces must vanish as must the sum of the 31 -forces. 

In our problem, nodes 1 and 4 are fixed so as to 

prevent any rigid-body motion of the frame, whereas nodes 

2 and 3 are kept free. Eq.(6.22) can be written as 

    

    

 

K1, 

J ---- 

K i K2.1  

X 

X = 0 

y: = 0 

xl  = 0 

=0 

(6.23) 
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4 



_ 
24;i: 

0 

0 +-
z,(2 

K11  0 0 — 

0 -1 2,r2 

0 

. 
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in which K„ 	Ka., are the sub-matrices of ( K ) and are 

obtained from the K -values of Eq. (6.22) . For example 

0 	0! 
= 

a 
-1 0 

0 

In Eq. (6.23) , Ni , SI , 1\1: 	7  SI , are applied 

loads at the free nodes 2 and 3 of the structure where-

as the other forces are the unknown external reaction s at 

the support points 1 and 4 , and xtz. 	y: 	,y3 , 
are the unknown di splacements. Solution for the unknown 

quantities result s from expanding Eq. (6. 23) into the foil-

owing two sets of equations: 

   

S:.  

[K11] (6.24 a) 

   

   



and 
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Nit  

   

= [K2 ] 
X'  

(6.24 1,) 

   

   

   

The values of unknown deflection components are com-

puted from Eq. (6.24 a) which when substituted in Eq. (6.24 b) 

give the values of the support reactions. 

The final step is that of determining truss member 

forces. Let us consider a general member 	of the frame 

having end loads and displacements as shown in Fig. 6.5 

below. 

It is easy to show that direct force in the member 

is given by 

17i,j 	Ni, - Nj = 	EA (xi - xi') ÷t4' 	)) (6.25) 

4 



Compression is denoted by a positive sign. Such a 

relationship applies for each member of the truss. Because 

displacements are known in terms of applied loads from 

Eq. (6.24 a) the member forces can be computed from 

Eq. (6.25). 

In the present problem, if a downward load of 5 kips. 

is applied at the node 

xt 	3r 

3, the Eq. 	(6.24 a) 

, x, 	Y; 

becomes, 

1.3535 -0.3535 0 0 = 0 

-0.3535 1. 3535 0 - 1.00 0 

0 0 1. 3535 0.3535 0 

0 - 1.00 0.3535 1.3535 5.00 

which has its auxiliary matrix 

3r2.' 	x'„ 	y3 

1.3535 -0.2611 0 0 0 

-0.3535 1.2612 0 -0.7928 0 

0 0 1.3535 0.2611 0 

0 -1.00 0.3535 0.4684 10.6746 
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and the final matrix 



x: = 2.2096 
EA 

Y2' = 8.4628 —a- EA 

x3  = -2.78/1 —
EA 

4 = 10.6 746 -a-- 

Member forces as determined from Eq. (6.25) are 

Pia 
	-2. 2096 	kip s. 

+2.7871 kip s. 

P2_.3 	-2. 2118 	kip s. 

= 	(. 2.737 1 - 10.6746) = -3.9437 kip s. 

42. = 2 ( -2.2096 + 8.4628) 	= + 3. 1266 kip s. 

Eq. (6.24&) on substitution become s 

2.2096 8.4628 -2. 787 1 10.6746 

-1.00 0 -0. 3535 -0. 3535 

0 0 -0.3535 -0.3535 

-0.3535 0.3535 - 1.00 0 

0.3535 -0.3535 0 0 

from which 
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N; 	-4,9979K 
	

N:= +4.9976K 

and 

S; 	-2,7883K 
	

Si. _2.2105K  

These are the four reaction components at the support 

points 1 and 4. 

The method described above is most useful in dealing 

with highly redundant trusses, where the number of members 

is large and the number of joints small. It is obviously not 

suitable for analysing statically determinate trusses. 

6.7.3 Ri id Jointed Frames.  

It is obvious that a direct application of the general 

method, described under Art. 6.3 and 6.4, always gives three 

equations for each joint, corresponding to two degrees of 

freedom in displacement and one in rotation. The strains 

produced by axial forces are automatically included whether 

they are important or not. This may be desirable in analysing 

rigidly jointed trusses (which gives primary and secondary 

stresses combined), while in other frameworks, it may be an 

unnecessary refinement. In the latter case when the frame-

work is composed of inclined members also, the general theory 

will be applied. The only modification needed is that the 

ter 	is put equal to zero wherever it occurs in the Ict- L. 
matrices of Table 6.1. 

In the case of rectangular building frames, if the 

axial strains are to be ignored in the analysis )  the vertical 



movements of all the joints will be neglected and the hor-

izontal movements of joints at one storey level will be 

.equal. The modification in the general theory needed for 

analysing such frames and the procedure for obtaining the 

stiffness matrix of the complete frame directly from the 

stiffness matrices of the individual members shall be 

discussed  below. 

Such frames are composed of horizontal be 	members 

and vertical columns. -Since the vertical movement of the 

joints is neglected, the beam members will have their stiff-

ness matrix equations of the form 
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ki, 

kai 	k 

k„ 	k,, 

kIi 
	 k, 

x, 

- 4Fa 	2E1  
L L 

031 	4E1 
L L 

where 

2.2 

the member being of a uniform cross-section throughout 

its length. 

Let us consider a column 

member 12 whose upper en& 2 

has a positive horizontal dis-

placement relative to the low-

er end i.  The matrix equation 

of- the member will be of the 
F I G URL 6'6 

form 

(6.2.6) 



k„ 	k it 	kis  

k2.3  

kit 	k„ Ps  

where the elements of the stiffness matrix are the 

ber. 

coefficients in 

Thus 7 

k, 	k13  

k 	k al 	zs 

ks, 	k„ 	k„ 

the 

4E1 
L 

_2„Ea 

6= 

slope-deflection 

2E1 	-6E1 

equations for the mem- 

(6.27) 

L 

6E1 -12E1 
12-  

Shear at the end 2 is - P3. 

The method of obtaining the stiffness influence Co  cs._- 

fficients for the complete structure will be clear from 

the follow 	simple example of a two-storeyed, single bay 

portal frame shown in Fig. (6.7 a). 

1'4;  rL 	 cis • 

.1 
P6 - •.; 

41. 

7177 
• 

(ct,) 	 (b) 

FIGURE 6'T 
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The stiffness matrices of beam members (3) and (6) 

will be of the form given in Eq. (6.26) and those of 

the column members (1) (2), (4) and (5) being given by 

Eq. (6.27). The load-displacement equations in matrix 

form P = KX are readily obtained from the stiffness 

influence coefficients of individual members. This is given 

by Eq. (6.28) 

x, 

(K2.), -1.(ku)-o- (ki%)4  

( k2.04 

( kz1)4 0 

( ki1)5 

-(1<u).4. (k51)4  

- (k 504  

- (k 32X+ (14-05 

-(k31)9 

As a check, it should be noted that the matrix K 

is symmetrical. 

6.8 Procedure.  

In applying the stiffness matrix technique, described 

in the preceding articles, to the analysis of indeterminate 

structures, one proceeds as follows. 

1. 	Assume unknown deflections (angular rotations, horiz- 

ontal, linear and vertical linear) at all, 
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Joints that can have deflections. This includes 

assumed sidesway deflections in rigid frames. There will 

be n unknown deflections. 

(We do not assume deflections at points that cannot 

deflect. Thus a hinged end can have only an angular def-

lection and not linear. A rigidly encastred end cannot 

have deflection of any kind. This assumption is necessary, 

since otherwise the determinant of the stiffness matrix 

will be zero and the inverse of the matrix undefined.) 

2. Assume a load acting at each jointcorresponding to the 

assumed deflection - Moment for angular deflection, force 

for linear one. There will be n loads, all of which are 

evaluated as the equivalent fixed-end loads. 

3. Compute the elements of the stiffness matrix K for 

the complete structure from the stiffness matrices of the 

individual members. These will be the elements of an n x n 

symmetrical matrix. 

4. Solve the matrix equ,ation (6.9) for the unknown 

deflections. 

5. Knowing all the deflections and using the relation 

(6.6) for every member, determine the internal stresses at 

all key points in the structure. 

6. The solution obtained in step 5 is then superimposed 

over the fixed-end solution of the structure. 
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6.9 taa. cg11angoLsProblems. 

The stiffness matrix technique described in the pre-

ceding articles can be extended to other classes of str-

uctural problems also. These problems being of highly 

complex nature can be attempted with this technique only 

when automatic digital computer facilities are available 

to the structural engineer. Two of the more common types 

of structural problems are considered below. 

(a) Arch Rib Analysis.  

Consider the arch rib shown in Fig. (6.8 a). The arch 

structure may be represented by a series of straight beam 

segments between the load points. 
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The deflection and loading (i.e., P-X diagram) of the 

structure may then be represented by the system of coordin-

ates shown in Fig. (6.8 b). 21 coordinates are required for 

the stiffness matrix analysis. Moments, shears and axial 

thrusts may be computed at each end of each segnent. 

( 	tural 	 . 

Most civil engineering structures are not analYeed 

to determine their response to dynamic forces, there being 

two exceptions. First the structure which is analysed to 

determine the effect of earthquake forces upon it and second, 

the structure which is designed to resist the effect of a 

bomb blast. In either case, the calculation of the dynamic 

response of the structure to a transient load is easily 

performed if one first obtains the natural frequencies and 

mode shapes for the structure. The mode shape analysis is 

easily carried out using the K matrix obtained for the 

deflection calculation. Iterative procedures which converge 

on the lowest mode give best results. The computations must 

be perfoimed on Automatic Digital Computers, which will be 

dealt with in. the next chapter. 
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Example  EL  1 

We shall now analyse the continuous beam shown in 

Fig. 6.9. It will illustrate the stiffness matrix technique 
described in Art. 6.7.1. 

F IGUI2E 	G 9 

 

From matrix Eqs. (6.17) for individual spans, the com-

plete set of equilibrium equations for the entire beam is 
obtained as given below. 

OA 

12 

GB 

6 

Ge 

0 +36 

6 12+20 10 0 + 120 

0 10 20+8 - 124 

0 0 4 8 + 	2 
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The auxiliary matrix is computed to be 

12 0.5 	0 

6 29 0.3448 

0 10 24.552 

0 0 4 

and finally the values of g's as 

+ 0.017 	+ 5.966 

0 3.00 

0 3.5172 

0.1629 -6.483 

7.3484 3.801 

-7. 102 + 3.801 

Once the joint deflections have been evaluated thus, 

the calculation of moments and shear forces are quite simple. 

The calculations for end moments are given below. 

MAg 

Map, 

= 

= 

-36 

*36 

+ 3( 

+ 3( 

4 x 0.017 +2 x 5.966) 

2 x 0.017 + 4 x 5,966) 

= 

= 

kips-ft. 

0 

+107.69 

M ac, = -156 + 5( 4 x 5,966 - 2 x 7.102) = -107.70 

= +156 + 5( 2 x 5.966 - 4 x 7.102) = + 73.62 

= -32 + 	2( -4 x 7.102 + 2 x 3. 80 1) = - 73.61 

MD, 

m„, • 

= 

= 

+ 16 

- 18 

+ 2 (-2 x 7.102 + 4 x 3.801) = + 18 

Equilibrium of the joints is the check on the accuracy 

of the analysis. It will be noted that the sum of the moments 

at all joints vanishes. 
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Alternatively, let us solve the above problem by 

modifying the stiffnesses of the end spans AB and CD 

according to the modification given in Art. 6.6. After mak-

ing this modification the ends A and D shall be treated as 

fixed. But the fixed-end moments will also have to be modified. 

Joint. A 
	

B 
	

C 
	

D 

Normal 
fixed-end 
moments. 

-W 

+36 

+36 

+18 

-156 +156 -32 

+1 

+16 

+2 

-18 

........— 
Modified 
fixed-end 
moments. 0 +54 -156 4156 -31 +18 -18 

Unbalanced 
moments. +10 2 -125 

The modified equilibrium equations now become 

 

As  ec, 

9 +20 	10 	 +102 

+ 6 	 -125 

which has its auxiliary matrix 

	

es 	o, 

	

29 	0.3448 	3.5172 

	

10 	22.552 	-7.1023 

and finally 
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es = + 5.9661 

0, = _ 7.1023 

End moments are calculated as usual 

AB 

M eA  

= 

= 

0 
+54 + 3 (3 x 5.9661) 	= 107.69 

= 156 + 5(4 x 5.9661 - 2 x 7.1023 ) = -107.70 

= + 156 + 5 ( 2 x 5.9661 	- 4 x 7.1023) = + 73.615 

M,D  = - 31 41- 2 	(-3 x 7.1023) 	= -73.614 

= + 18 

14".  = -18 

The values of end moments are found identical with 

those obtained by the previous analysis. 

If now the end A of the above beam is assumed to 

be fixed, the equilibrium equations will be obtained by del-

eting the first row and column from the original matrix 

equation. Thus, 

98  o c ep 

12 +20 10 0 120 

10 20 8 4 - 124 

0 4 0 2 
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The auxiliary matrix is computed to be 

32 0.3125 0 3.75 

10 24.875 0. 1608 -6.4924 

0 4 7.3568 3.8018 

which gives 

eg  = + 59699 

ec. = 7.1037 

eD  = + 3.8018 

As usual, the computation of end moments from these 

values of joint rotations follows from the slope-deflection 

equations for various spans. The computed values are given 

below. 

(K-ft) 
MAB  = -0.1806 

= +107.638 

Mac.  = - 107.639 

Iti ce, • = +73.625 

Mc°  = -73.622 

Mot = +17.999 

M DE = -18 

For each subsequent Jo loading condition, only the last 

column in the auxiliary matrix has to be re-calculated and 

from it the final matrix, giving the values of the unknown 
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joint rotations. The end moments are then calculated with 

the se value s. 

Example 6.2 

Analyse the simple building frame loaded as shown in 

Fig. 6.10 (a) below. 

• 
1 .4.m 
	0 

A 

4 

f gt0.1.1L 	 C.9 Q. t‘,1 

4 5 • 19!)"  4 6 [td.  
-3,  7 
k 

P5 51-144 
..8.9  9- 

Ps  + 4 Et f. 106  

( 	 
E. 

) 4 49 tIC,12  
A 

jt G 	 L 

(C..) Fla 	 tAC,WI6141-1. (INCH 11:,5) 
	

) 	VALue 5 	Iw lbss  codr-rs) 

F 1 G. u 	L. 	• 10 

Following the me tho d given in Art. 6.7. 3, the stiffne ss 

matrix of the complete frame, corresponding to P-x values 

assumed as shown above, is assembled as given below. 

x l 	 Xi 

(kAa),5 +(k..)„,, 	0 

0 	 Ck■■)co 

( kit )gsv 	C k21), „ 

0 	 0 

- 	s 2 	e 	C I,. • ) 

+ (.14.,01 
+ 

C. k , i)r 

( 	) 

X4 45 

ka..)Ap. 	P, 

Pa 

( 
	

P3 

0 	 1,4 

- ),1 (cks)„ P5 
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The given matrix of the problem thus becomes 

Xi  

0.35 x 10 0 9 
O. 1x10 0 -0 . 125x10 

= 

0 . 3x 10 

0 0 • 16 X1(3 0.8x10 0 -0.1 x 10 0 

O.1 x 10 0 . 8x109  0, 56 x10 0.1x10 -0.1 x 10? -0.3x10 

0 0 0. 1X116 0 9 . 2 x10 0 0 . 48x1d 

_0, 125 x 10 -O. lx 107  -0. 1,x10 0 0.222 x 10 0.5x10 

and the auxiliary matrix is computed to be 

9 
'0.35x10 

0 

0 

5 
0. 16 x10 

)(I  

0. 28571 

0.500 

0 

0 

-2 
-0, 35714x10 

-0.625x10 &  

0.85714x102  

0 
9 8 -3 0.1x10  0.8x10 0. 49i4 3x109  0. 20348 -0. 29070 x10 -078487x102 

 

9 -5 	 -1 0 0. lx le 0. 17965x10 0 ;16 181x10 . 0 . 31087x 10 

-0.125x10 -O. 1x1(3 -O. 1420e(x10 O. 29070x10 O. 1146 lx105-  5.12075 

which gives the final matrix 

X2. x3. 4 	Xs_ 
-1 0.30431x10 -1 

0.38254x10 _0.0125 0.30253x10 5.12075 

From these values of the unknown displacement components ?  
internal stresses in various members can be calculated from 
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Eqs. 	(6.26) 	and (6.27) 

are given below. 

The computed value s of the end-moments 

M„„ = -4118.25 (kip-inche s) 

MBA  = —1836.00 

M = +1836.20 ot 

M„B  = +3543.10 tt 

M pc  = -4060.00 it 

N CO = 0 If 

MDE  = + 525.80 it 

M +4801.60    If 

M es = -4800.00 It 
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Example 6.3. 

Let us analyse by stiffness matrix method, the gable 

frame shown in Fig. (6.11 a). Effect of axial strains is to 

be neglected. Thus, the frame will have three unknown joint 

rotations and two sidesway displacements as shown in Fig.(6.11.b). 

Stiffness matrix for members AB and ED is given by 

4 
ko 	km 	km  0.2 0.1 —0.15x10 

k, EI O. 1 0.2 —0. 15x10 
-t 

k„ 0.15x10 0.15x10 -0.15x10_ 

and that for BC and DC will be 

0.35777 

0.24x10 

0. 17888 

0.24xle 

-0.24x10 

-0.24x10-'  

-0.21466 x10 

El 0.17888 	0.35777 

The assembled stiffness matrix of the complete frame 
is given as below. 

3L (L-12)b. 

(Lxz)3, t (Lz 

Pb 	 (k,)pc 
94 	 -4;s(k,06.- j-i( 

(ki.),,, 	 Js 



0
.1
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 x
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 x
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0
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  x
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Au
xi
li
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ry
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x
  i
s
  c

om
pu
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to
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0
.6
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65

 x
  

-0
. 5

36
65

  x
  

0
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18
32

 x
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0
. 2
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32

  x
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0 0
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 x
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P-values as found from Fig. (6. 11 d) , for the two 
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cases of loading, are 

Case _I, 	Case 2. 

40 -15 

PL.  0 -5 

-40 0 

P4  -24 10.5 

PS  24 1.5 

(kip-ft units) 

The corresponding last columns of the auxiliary matrix 

are computed to be 

Case  

2_ 
1.  0.7 17 14x101-  -0.26893 x 10 

2.  -0.19491X1 s, -0,00288 x 10 

3.  -0.71714x10 0.00101 x 1d- 

4. -0.50646x16'  0.20468 x 104 

5. 
4 

0.28027x 10 
4  

- 0..5 1629 x 10 
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and the corresponding final matrices are 

CA se_ T 	 Ca se 2  

X I 	0.26599 x le 	0.11897 x 10 

X2 	0 	-0.91406 x 10 - 

X3 	-0.2659 x 10 	0.21872 x 10 (multiplieri) 

	

-0.2802? x 104 	0.6232a x 104  

4  4. 
Xs_ 	0.28027x10 	0.51629x 10  

Moments at the ends of all members for both loading 

conditions can now be calculated and the final values are 

give below. 

MAB 

MBA 

Mtc.  

M„ 

Men 

MD, 

MDE 

M  ED 

	

Case 1 	Case  _2, 

	

+68.64 	-101.312 
+ 95.24 	- 49.415 

- 95.24 	+ 49.413 
- 62.82 	+ 21.778 

+ 62.82 	- 21.780 

+ 95.24 	+ 33.700 

- 95.239 	-33.700 

	

- 68.64 	- 55.573 

(Units 
ki4 Srf 
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Exampl e 6.4 

Let us now analyse a portal type broken storey building 

frame for the two case s of loading Condition as shown. in 

Fig. (6.12 a) . 

Stiffness matrices of individual members are as given 

below. 

All beam members 

0. 53333 

0. 26666 

01 26666 

0.53333 
El 

K AI?. 

	

0.22222 	0. 11111 	-0. 18518 x 161  

	

O. 11111 	0.22222 	-0.18518 x 15'  
0. 18518 x 16' O. 18518x1© '  -0.20576x 161  

K DC ,CF =E1 

0.66666 

0. 33333 

0. 16666 

0.33333 

0.66666 

0. 16666 

-0.1666 

-0.10666 

-0.55555x10 

     

Other column members 

	

0.33333 	0.16666 

	

0.16666 	O. 33333 

0.41666x10 ' 0. 41666x10 

El 
-0.4 1666 x10 
-0.41666 x 10 

-0.69444 x 10 

From these matrices the stiffness matrix K for the 

complete frame is assembled, using the technique described 

in Art. 6.7.3. The equation P = KX is given in Table 6.4. 



P1  1.53332 

P2  0,26666 

P3 0 

P5 0 

P6  0,33333 

P7  0 

P8  0 

P9 0 

P10 0,125 

k 	k 	X4 X s 	k 	x, , 

0,26666 	0 	0 	0 	0,33333 0 

	

1,73332 	0,26666 	0 	0 	0 	0 

	

0,26666 	1.73332 	0,26666 	0 	0 	0 

0 	0,26666 	0,86666 	0 	0 	0 

0 	0 	0 	0,75555 0,26666 0 

0 	0 	0 	0,26666 	1,86665 0,33333 

0 	0 	0 	0 	0,33333 1,19999 

0,16666 	0 	0 	0 	0 	0,26666 

0 	0,16666 	0 	0 	0 	0 

0 	-0,41666x10'  0 	0,16666 0 

P i, .0,16666 	0 	0 	0 	.0,18518x16t  0 	0,16666 

Taber, 	6,4 

, 

X„ X9  X i„ X„ 

0 0 0,126 -0,16666 

0,16666 0 0 0 

0 0,16666 0 C 

0 0 -0,41610' 0 

0 0 0 -0 .18518x161  

0 0 0,16666 0 

0,26666 0 0 0,16666 

1,11999 0,26666 0,41666x10 0 

0,26666 0,86666 0,41666x10 0 

0,41666x10 0,41666xi 0,97221x10 -0,55555x10 

0 0 .0,55555x101  1,13167x10' 

X i, 

0  

.0,41666x10 

.0,41666x10' 

0  

.0,16666 

-0,16666 

.0,41666x16' 

.0,41666x161  

-0.13888x101  

-0.555554o' 

P 	0 	.0,4166631
,1 
 .0,4166631 
	

0 	.0,16666 .0,16666 .0,41666xi-0,41666x16-0.1 8x1e .0,55555x10' 	0,69444x10' 



)*"T """""*"7"."'"1:"7""'"".".1T'''''"T".'''"( ""*'"77"...'""TH 
 di 	b 	X4 	5 Xli 

2411,_5 

'1U112a4jattL. 
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.4m;•■•••••■or 

1. 	1.53332 	0,17391 	0 	0 	0 	0, 21739 	0 0 	0 0,81522x10 	-0.10869 0 

2, 0,26666 	1,68694 	0,15807 	0 0 	434363x10 	0 0,98794x10 	0  -0,12886x10 4 	0.1718110 	-0, 24699x10 

3, 0 	0,26666 	1,69117 	0,15767 	0 	0.54183x1 ' 	0  .0,50372x10 0,98542x104 0,20318d 	-0,27091x102 	-0,20743d 

4, 0 	0 	0,26666 	0,82461 	0 	4.17521x10 	0 0,50372)1.1.0.318684 -0.5118540 	0,87606x10 	0.67078x10 

5, 0 	0 	0 0 	0,75555 	0,35293 	0 ,0 0 	0 	.0,24509x161  

6, 0,33333.0.57969x10 0,91632x10 	.Cd4 "; 4.(j' 0,26666 	1.69808 	0,19630 	0,34611x10,34611x10'-0,55891x103 0,81651x10 	0,25787x10 	-0,98874x104  

7. 	0 	0 	0 0 	0 	0,32333 	1,13456 	0,23402 0.1642xe -0,2a)8sx10 0,13932 	-0,11784 

8, 0 	0,16666 	-0,2634440 0,41537x10 	0  0,5877010 0,26551 	1,32098 0,20399 	0,37827x10 .0,30342x10 	.0,47353x1e 

9, 0 0 	0,16666 	-026278x16 	0  -0,949056
-3 

 0.1863x10
3 
	0,26935 0,79448 	0,37604x10 	0,1088x10 	-0.46356x10 l  

10, 0,125 .0,21738x10 0,34362110
,2 
 .0,42208x10 	0 	0,13865 	-0,27217x10 	0,49969x101  

-1 
0, 	875x10 	C.69596x1C  .0,57678 	-0.27979x10 '  

11. -0.16666 	0,28982x10 -0.45815x101  0,72241d -0,18518xi 0,43/87x100,15806 	-0.40081c10 0.86456x104.40141x10 	0,46475x10 	-0,70782 

12. 0 	-0,41666d -0,3507946 	0,55313x103 	0 	-0,16789 	-0.13370 	-0,62552xit  .0.36829xi - 0,19472xe 	-0,32896/161 	0,10219x10 
rix(mtil- 
Final mat. 

tiplieri/K) 
.1.•■•■••••••■ 

3.32963x10.8,23574 	1,1672711 -4,5Z96x10 6,7258315,0535040 386873;1 -0,573 	-4,9979340 3,24857x10 	-0,8557740 	-5,69312x10 Case 1 

wiewolme.....411.4.■••••■■••■■•■■•■■••••••■•101.•■■•■•••••■■WOMeamosomilals1100.110stm■II0.01•11.........wanalla.011.■••••■••••■* 

2,52875x10 	7,54658 	9,65346 	1,16711x10 	-1,27376x10 2,12769x10.2,3)579 	5,46678 	8,71587 	3,04541x10 	5,15706x10 	5,59425x10 Case 2 

OMINI.alk.1 1,0■11 100.1 1.0.7.11.1111111MIPM 
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the two cases and the corresponding check columns are as given 
below. 

F_Tialuea. 	 Cialaksigiumn 

Laza_l Case 2 Case I Case 2 

1.  + 37.5 0 39.59165 2,09165 

2.  0 0 2.39163 2.39163 

3.  0 0 2.39163 2.39163 

4.  - 37.5 0 -X.40834 1.09165 

5.  + 37.5 -13.5 38.50369 -12.49631 

6.  - 37.5 + 1.5 -34.70003 4.29997 

7.  + 37.5 - 1.5 39.29998  0.29998 

8.  0 0 2.09997 ?,09997 

9.  - 37.5 0 -36.20002 1.29998 

10.  0 0 0.35110 0,36110 

11.  + 6.0 -0.016461 5.98354 

12.  0 + 1.5 -0.49998 1.00002 
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The auxiliary matrix is computed in Table 6.5 with 

the columns corresponding to above given below. 

1. 2. 44567x10 0 2. 58208 x10 1.35413 

2. -3.86594 0 -2.66384 1. 20 210 

3. _0,60957 0 1.83421 1.22464 

4. -4.56732x10 0 -4.47453x10 0.92781 

5. 4.96 327x10 - 1. 78678x10 5.09611x10 -1.6539 3x10 

6. -3.48538x10 3. 689 35 -3.35461x10 4. 89711 

7. 4. 32924x10 -2.40602 4. 4524 ix10 -1._;i7435 

8. -7.90297 0.46718 -6.69636 1.67380 

9. -4.62117x10 - 0. 1534. -4. 52095x3.0 0. 8487 1 

10. 3.90145x10 - 8.56048 , 3.94098x10 -8.16529 

11. 3. 17393x10 1. 19721/x10-  3.20 315x10 1. 20019 xla 

12. -5.69312x10 5. 594 35x1a -5.593 13 x10 5. 6043x la 

With the se value s and the auxiliary matrix of Table 6.5 

the final matrices fbr the two case s are computed which give 
the value s of" the unknown X' s. These are at the bottom of 
the Table 6.5 . 
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Joint displacements having been evaluated thus, the 

calculation of final end-moments follow from the stiffness 

matrix equations for individual members, superimposed with 

the fixed-end moments. The computed values of the end 

moments for the two cases of loading condition are listed 

as below. Equilittium of joints will check the accuracy of 
the analysis. 

kiamenta Ca se 	1. Case 2.. 	(Values in 
kp s. ft) 

MAB 7.6315 -24.4651 

BA 15, 1046 1. 1196 

NBC -15.1048 -1.1196 

M CS 28.4833 7.9510 

MCD rl .■. 15.7507 -12.5792 

M pc,  1-2 • 1928 -11.2424 

MDE 9.7451 -4.2600 

MED 4. 1956 -8.4746 

Mc  r -12.7321  4,6280 

M PC 17.0084 -0.2328 

14 F4 -17.0082 0.2300 

M4r 47.5338 2.3007 



m Lk  

MDH 
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Cosa Ca SQ 

MOH  2. 1765 -7.5405 

MHG 0.8921 -7. 1938 

101 41, 1100 5.2398 

M LN 

MNL 

NH3  

M  mL 

10.7033 

-10.9886 

-0.7130 

-21.9382 

41.9864 

-38.7797 

41.5292 

-43. 3542 

16.4530 

-2.7261 

-4..0987 

9.5918 

2.5373 

-8.9032 

-16.4533 

6. 106 2 

-6. 106 3 

-5.9500 

15.4989 

10.7680 

6.5990 

7. 1608 

8. 2607 

8.7987 

-11.4313 

-10. 1735 

-11.0802 

-9.4712 

-10.7439 

-8.7986 

M k4 

M  Kt. 

M
141- 

M  LM 

Mini  

MON 
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Example 6.5 

A redundant pin-connected truss shown in Fig.6.13, 

will be analysed in this example. The truss is loaded as shown 

in the figure. The nodes of the truss are numberedithrough 

8. Values of A and E will be assumed as the same for 

each member. With the supports, as shown, the truss has three 

internal redundant members and five redundant components of 

external reactions. 

The stiffness matrix can be developed by first deter- 

mining * /2 and 7./A, and then), 	i4A,-  and 5,7Z for each mem- 
ber - this is done in Table 6.6. 

Arrows have been marked on each member in Fig. 6.13 

to show their positive x directions. 
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From values given in Table 6.6, the stiffness matrix 

of the complete truss is assembled. This matrix is given in 

Table 6.7, along with the last column of applied joint loads 

and the check column. The corresponding auxiliary matrix is 

obtained in Table 6.8, at the bottom of which is also given 

the final matrix. 

Having, thus, obtained the values of unknown joint 

displacements, the axial forces in the individual members 

can easily be computed from Eq. (6.25). These are computed 

and the values with sign are shown in the following Fig.6.14. 
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Example 6.6 

In this example we propose to find the secondary stresses 

in the members of the truss shown in Fig. 6.13, if the joints 

were rigid instead of being hinges. For this purpose, the 

equivalent fixed-end moments developed at the joints due to 

their known linear displacements (as computed in Example 6.5) 

will - be considered as known - joint loads and the consequent 

joint rotations will be computed. In this stage the joints 

will be assumed to be rotation-free only, and the stiffness 

matrix assembled accordingly. 

For a general member i,j , shown in Fig. 6.57 if the 

joints were rigid, the fixed-end moments "due to the linear 

joint displacements will be given by 

( f)zi 	sEZ[ 	(zc, 201- 
 

Using this equation, the fixed-end moments for all 

members pill be computed as given below. 

A = 10 S • in. 

I = 120 in 	for all members. 

),, 	- 10 
l
x 9 x 1491.6 

- 16'57333 k-ft. 

( MF ~ f4 -10.51195 k-ft. 

( hip ) .16 0.41566 k-ft. 



P 	 ti521 
P,z .+30.06528 4.2•17.$21 

P 	18s-42. 
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( mr )24 = -13.32731 k-ft. 

1/1  f )4.5 = -0.41566 k-ft. 

( Mp )3s. = 0 k- ft. 

( Mc )44  = 0 k-ft. 

( MF ) za  = — 10 . 10404 k-ft. 

( biF )14  = — 15.91350  k-ft. 

VA LU ES 

---3o.oe 

, - 4 1-.4513S 

F 1 C U PLE 	I 

Stiffness matrices for individual members are given 

in Table 6.9. 

— Member Stiffness Matrix 

G.2 12 7  78 0.4 

0.2 	0.4 
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Member Stiffness Matri2 
Lyatiplier 

.M.M.1•4M1111.MINIMM• 

34,56 0.8 

0.4 

0,4 

0.8 

13,35, 46, 5? 0.26666 

0.13333 

0.13333 

6.26666 

14, 36, 45, 6?, 24,68 0.25298 

0. 12649 

0.12649 

0.25298 

23,58 0,22188 

0.11094 

•■■•■••■•■ 	••■•■••••■•■••■ 

0. 11094 

0,22188 

From these, the stiffness matrix for the entire frame 

is assembled, which is given in Table 6.10. 
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The values of the unknown joint rotations are computed 

and at the bottom of Table 6.11.. Using these values and the 

stiffness matrices of Table 6.9 are computed the end moments 

of the members of the truss, which when superimposed on the 

fixed-end moments give the final secondary bending moments. 

These are computed and shown in Fig. 6.16, given below 

I C3 C.J 1.2 	k, • 	(o 
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CHAP TER 7 

AUTOMATIC DIGITAL COMPUTERS 
AND STRUCTURAL ANALYSIS 
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7. 1 Introduction.  

In the previous chapters we have been dealing with 

the techniques of setting up the relevant force-deflection 

equations for statically indeterminate structural problems 

in matrix form and also the method of solving this set of 

equations which is best suited to an electric desk calcu-

lator. A•few typical examples have been solved on a similar 

machine available using the techniques suggested in the 

preceding work. Although these methods can be used to 

solve problems of any size, the problems in examples, sol-

ved for illustration purposes, have the number of unknowns 

(redundant forces or displacement components) limited to 

the order of 16 or so. This is because of the fact that the 

process of setting up and solving the simultaneous equations 

becomes quite cumbersome with the aid of the type of machine 

available, as the number of equations increases for more 

complex structures. 

The invention and development of the high-speed elec-

tronic computer has now made it possible to formulate and 

solve many simultaneous equations in a reasonable time. An 

example has been cited in which a structure with 106 redun-

dents was solved initially in about 12 hours, and each 

additional loading condition was solved in an additional 

hours of computing time. This same problem could probably 

never have been solved using human labour with electric 

desk calculators. 
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The analysis of highly indeterminate structures using 

the electronic digital computer is really a two-part problem. 

The problem has first got to be set up and formulated accord-

ing to the matrix techniques discussed in the previous chap-

ters. This part of the problem lies within the scope of the 

structural engineer' s *work. The second part of the problem 

requires coding, or programing, and setting up the card 

system for the actual machine operation. This generally calls 

for the services of a specially trained operator, familiar 

with the particular computer being used. This person is 

often a mathematician in the field of applied mathematics, 

trained (usually under direction of the computer manufacturer) 

to set up the coding and card system for a specific type of 

problem. His programming can be applied to any similar future 

problem and is stored in a "library" and brought out and used 

when needed. 

7,2 Functional Description of a Digital Computer.  

There are two distinct types of electronic computers 

widely used in the solution of engineering problems, the 

analogue and the digital. The digital computer, as its name 

implies, deals directly with numbers, manipulating them 

much in the same way as is done with. pencil and paper or a 

desk calculator. On the other hand, the analogue computer 

deals with physical quantities, such as voltages and curr-

ents, rather than with numbers, and the solution is obtained 

in terms of an electrical analogue of the mathematical or 

physical system under consideration. ( A slide rule is the 
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best known exignple of Egl analogue computer, numbers being 
represented by distances on the scales, and the calculations 

being performed by physical manipulation of these distances.) 

Analogue computers have many uses in solving specialised 

problems, but because of their greater versatility digital 

computers have been used in structural analysis and this 

discussion will be limited to that type of computers. 

The procedure followed in the operation of an autom-
atic computer may be explained most clearly by taking a very 

simple example. Suppose that an engineer wishes to determine 

the height of a mountain peak above a certain point as show). 
in Fig. 7.1. From a map he determines that the horizontal 
distance (d) from the point of observation to the peak is 
20 .1000 ft, and w4 4h a transit he measures the vertical angle 
( ) to be 15°. He knows that the height (h) will be given 
by the formula presented in the figure. 

/ 

olne. re. 

r 2c ,Nct,.7) 

1 CI 	E_, 7 ' 1 

The important tact about as automatic digital computer 

is that it is not a "brain", as is sometimes remarked; it can 

only perform routine numerical operations as specified by a 
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programme which has to be prepared for the particular prob-

lem under consideration. Now, in order that this simple cal-

culation might be carried out by automatic computer, the eng-

ineer first would have to write out a calculation programme 

in a form which the machine could understand (usually by a 

code punched on cards or paper tape) and feed it into the 

machine. Then he would have to prepare the basic data sheet 

and input it similarly. Finally, pressing the start tu.tton 
would cause the machine to go through the operations strictlY 

according to the instructions fed into it through the progr-

amme. The machine programme might be somewhat as shown in 

Fig. 7.2, which is clearly the exact equivalent of the prog-

Paula which would have been followed by a computist if the 
calculations were to be performed by hand. 

utonatic ,Computer Programme 

(a) Read "d" into storage space 1. 
(b) Read " e " into storage space 2. 
(c) In Table storage, locate value of "t" corresponding 

with number in storage space 2 and transfer to storage 
space 3. 

(d) Transfer numbers from storage * spaces 1 and 3 to arith- 
metic unit, multiply, and transfer product to storage 
space 4. 

(e) Print out number contained in storage space 4 
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Input Data 

d = 20,000 feet 
e = 15 degrees. 

Machine Storage 

1. 20,000 

2. 15 
3. 0.26795 

4. 5358.5 
FIG URE 7.2..  

This example demonstrates the functions of the essen-

tial components of an automatic digital computer, namely: 

(1) facilities for reading in instructions and data, (2) 
storage facilities to keep data and instructions available 
for use, (3) an arithmetic unit to carry out the actual 
numerical operations (usually limited to add, subtract, mult., 

iply and divide.) and (4) a print-out device to present result 
in a usable form (usually typed on a sheet of taper). The 

additional operation involved in this problem of looking up 

the tangent of the angle, might be done by referring to a large 

scale storage unit in which a complete set of trigonometrical 
functions is stored for reference, or it might be handled 
by a special sub-programme which calculates the value of the 

tangent to the required accuracy by means of a series expansion. 

The programme required for this example calculation is 

too simple to indicate the complexity of the programming 

problem in general. At the present time, the preparation of 

the programme is the principal restriction to widespread 

application of computing machines to structural analysis. To 

prepare and check out a programme for a really complex prob-

lem may take weeks or even months of concentrated effort. 
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For such cases, it is clear that there will be little advant-

age to be gained from a machine solution unless the same 

programme can be used time after time with different data. 
However, as libraries of such standard programmes are built 

up (where computer facilities are more commonly available 
to a structural engineer) 2 more and more of structural dial-
ysi s work can be done by machines with no addtional progrEmm. 
ing required. 

7.3 Description of 2.litlectronic Digital.  Computer.  

A brief description of the basiccomponents,needed to 

perform the essential functions,as described in the preceding 
article, will be given here. 

Ay% electronic computer has two forms of storage, known 
as the magnetic and the electronic stores. In the former, inf-
ormation is retained on the surface of a rotating drum, and 

in the latter, it appears as a paiternVof dots on the screen 
of a cathode ray tube. The electronic store comprises of a 
number of such tubes, each with a certain capacity of "lines". 

Dots on these lines represent digital, numl)ars. al arithmetical 
operations take place in the electronic store. The machine 
performs these operations on lines under the control of a "rou-

tine" - or list of coded instructions- which is itself held 

in part of the electronic store. Instructions are obeyed at 
a rate of about 900 per second. Routines not in use, and other 
information not immediately required, are kept in the magnetic 

store. Information may be "read" from the magnetic store to 
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the electronic or "written" from the electronic to the magn-

etic. The magnetic store is divided into "tracks", the contents 

of a track corresponding to the information stored in part3.► 

cular tubes of the electronic store. 

The reading and writing transfers mentioned above are 

in general part of the routines, and the instructions to per-

form one appears in a routine in the same way as instructions 

for the normal arithmetical operations. In a calculation using 

several routines, for instance, the last instruction in each 

routine will be one which results in the next routine being 

brought down from the • magnetic stores and entered at the 

correct point. The detailed programme required for a given 

calculation is fed into the machine on a tape or cards, which 

must be previously punched by hand. The characters punched, 

are dealt with by a special input routine, which distributes 

the various sequences of information to their correct loca-

tions in the two stores. 

In a typical calculation, the programme is first fed 
into the machine as described above. The tape or cards, 

punched with the data of the problem to be saved, are then 

placed in the reader unit and the machine uses the input 

programme to absorb the contents. The last few characters on 

the tape form as instruction to commence the programme of 

calculations already fed into the machine. The last unit 
is normally a printing device, which will print the results 

from given locations in the store. 



7.4 Digital ,computer solution of structural problems. 

Keeping in view the ease and speed in computational work 

afforded by as automatic digital computer, it is recommended 

that complex highly indeterminate problems of structma analysis 

be solved on such machines where available. The method most 

suitable for use on high speed digital computers is the stiff- 

ness matrix technique described in Chapter 6. This is because 

of the fact that this technique is most general in its appli-

cation and also the formation of the stiffness matrix equation 

is a very straight forward process as compared with the comp-

lementary method - the flexibility matrix technique. As has 

already been pointed out while dealing with the flexibility 

methods - that they are convenient only for one particular 
type of problems.  - the pin connected redundant trusses, when 

the calculations are to be done with a anal desk calculator 

by hand, since the number of equations is smaller in this case 

than if the stiffness method is employed for the same problem. 

But the sane factor is almost immaterial when we are using 

giant machines - the points which matter being those which have 

been described as the Chief aerits of the stiffness method. 

For this reason the adaptation of this method for use on aut-
omatic computers will be presented here. 

(i) It....aut of Data. 

(a) The first part of the data tape is concerned with 
forming the stiffness matrices of the individual members of 

the structure. For each member in turn, the quantities 

-L '2 
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E$  A, I, L, cc , are read into the machine, and the appro-

priate routine is then called down. This forms the matrices 

, C.,. and Kit 	ead stores them in the magnetic 

track assigned to that particular member. If various members 

of the structure possess the sane stiffness matrices, it is 

only necessary to ibrm and store them for one such member. 

This gives a useful saving both in time and storage space. For 

pin-jointed structures, the members are conveniently regarded 

as having zero flexural rigidity and merely involves punching 

zero for the value of I on the tape. The complete process 

of input of data, formation and storage of all four matrices, 

takes about 2i seconds per member. 

(b) 	When all the menber-stiffness matrices have been formed, 

the second part of the tape is reached in which the stiffness 

matrix of the whole structure is assembled by considering 

each joint in turn. For each'joint$  a list is read into the 

store giving details of the members meeting at that joint, 

together with the number of the joint at the other end of each 

member. The appropriate routine is then called down; this 

forms the three equilibrium equations for that joint from 

the stiffness matrices already stored. Each equation of this 

matrix is then written up into a separate half-track of the 

magnetic store, together with the known elements of the exter-

nal load vector on the right hand side. The time for this pro-

cess depends to some extent on the number of members meeting 

thereat, but it is normally quoted as about 3.0 seconds per 

joint. 
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Allowances, at this stage, can easily be made for various 

support conditions according to modifications given, for the 

purpose, in Chapter 6. 

(2) Solution of the Stiffness Matrix Eau-  ation.  

In this stage of computations, the stiffness matrix ass-

embled for the structure to be analysed is inverted. The method 

mostly adopted is the Doolittle technique of matrix inversion 

as has already been indicated in Chapter 4. The final solution 
is obtained by a matrix product of 11  and the applied load vec-

tor P. The routine developed will solve a set of n simultan-

sous equations in about (0.33 nz  + 0.8 n + 7 ) seconds (includ-

ing printing the solution) but this time is very considerably 

reduced if many of the elements in the stiffness matrix are 

zero. 

It is essential that a check is available on the accuracy 

of the solutions found. The method adopted is to substitute 

the computed values of the unknowns, and compare the values 

of the applied joint loads found with those originally taken. 

The time for checking is 4.0 seconds per equation of which 

practically the whole is spent in printing out the results. 

(3) Calculation. of InternForces- 

When the joint displacements have been found and chec.kedt 

the third part of the tape is read. This gives, for each member, 

the numbers of the joints at the two ends and the location in 
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the store where the appropriate K' -matrices and the fixed-

end load vectors may be found. The routine then selects 

the required displacements, stiffness matrices and the fixed-

end loads and calculates and prints the end-loads N, S, M 

at each end of the member. The ti*e for this routine is 12 
seconds per member. The conditions of equilibrium for the 

individual members and the joints give a useful check on the 
accuracy of the whole programme. 

7.4.1 Overall Time of Computation.  

The times of operation for the separate routines have 

already been quoted. Using these, an estimate has been made 

of the time required to analyse a given structure. If the 
structure has m members and j joints;  the time is ar., pr-
oximately  ( 0.11 ja  + 22 j + 16 m + 28 ) second; this includ-
es all the routines described above. It may be mentioned that 

in the majority of cases, the printing out of answers has been 
found to take about 60% of the whole machine time. 
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7.5 Natric Slope-deflection Method.  

It is a general practice in analysing rigid frame prob-

lems common to a structural engineer, to ignore the effect of 

axial strains in the component members. This, simplifies the 

analysis very much without any considerable loss in the acc-

uracy of the results obtained.An interesting matrix method, 

suggested by C.K.Wang, is given here so that problems of com-

plex rigid frames may be analysed quickly on digital computers. 

The chief merit of this method lies in the fact that it needs 

no special programming for a particular problem, but asks the 

digital computer only to produce products of matrices and 

inverse of a square matrix - the job which such machines can 
perform in a couple of minutes. 

Derivation.  

Let m be the total number of members, and n the total 

number of unknown joint deflections in a statically indeter-

minate structure. P is the load vector. Let M be a column 

matrix of 2m rows showing values of moments acting on ends 

of all members, exclusive of fixed-end moments. Define the 

statics matrix A of n rows and 2m columns as conditions 

expressing the elements of the load vector P in terms of 
tho se of M. Then, by definition 

= 	[ 	 (7.1) 

X is the column matrix of unknown joint deflections. 
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Let e be a column matrix of 2m rows showing values of elastic 

rotations at the ends of all members, as caused by the end 

moments M. Define the geometry matrix B of 2m rows and n 

columns as conditions expressing 9's in terms of 	s. Then, 
by definition, • 

{912,,,,y0 = [B] 
 

I x31/1t1 
	(7.2) 

Consider a member 12, the end. 1 of which is connected 
to the ith joint in the structure. The end moment M I  which 
acts clockwise on the member 12 and anticlockwise on the 

ith joint, will balance an externally applied positive moment 
= M I 	= MI  at joint i. Thus AL, +1.  Geometrically, 

a clockwise rotation of X,., of joint i will cause a clockwise 
rotation of 94= Xi, 	= Xi, at end 1 of member 12. Thus 
Bo, = +1 and A 4, = Bo, • 

Next consider the effect of the end moment M1  on sidesway. 
The free body for side sway is usually a joint or a horizontal 

member and the force acting on this free body and resulting 
from MI  may be determined by considering member 12 or a 
group of members, as a free body. If, as an exampde l• the posi, 
tive direction of the externally Applied force Pi, on the ith 

free body for sideway is horizontal to the right, the positive 
direction of the balancing force Mf  Ail  resulting from Mi  
should be to the left on the ith free body for sidesway, but 

is again to the right on the free body for member 12 or the 
group of relevant members. 



} 

where 

Kit t 

KH = pct 

Kt, 

4EL L  

2I 
L 

(7,5) 
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As the member 12 or the group of members is given a 

rigid body motion of Xi, horizontal to the right at the 

point where the force M, Ai,, acts, the anticlockwise rotation 

at end 1 of member 12 is defined to be ei = 	13 1i, , since 
an anticlockwise rotation of the axis of a member will add 

to the elastic end rotation. airing this rigid-body motion, 

the positive work done by the force N i  AL, to the right in 
going througla 	to the right mast be numerically equal to 

the negative work done by the clockwise moment M, In going 
through the anticlockwise rotation 	of = X ;, B i L or, 

CM, 	 = C Ni ) 	Xi Bit,) 

	

which gives 	A i,, = 331,, 

By virtue of both considerations discussed above it is 

seen that the Geometry matrix B and the statics matrix A 

are the transpose of each other. This is a very interesting 

result and can be applied as a check for the accuracy of both 
A and B. 

	

A 
	B* 	 (7.3) 

For a member 12, 

 

Le, 

 

K,2 (7.4) 

Kit 

 

   

lay 
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S is a square matrix of 2m rows and 2m columns 

in which the end moments 14 are expressed in terms of the 

elastic end rotations 8. Ekitries in this matrix are those ass 

shown in Eq. (7.4) for members with variable cross-section 

and in Eqs. (7.5) for prismatic members. Then, by definition, 

[I'l l 2m x 3. 	= [s]  2m x an [0]  2m x 1 	(7.6) 

Substituting (7.2) and (7.3) into (7.6) we get, 

M = SA* X 

Substituting (7.7) into (7.1) 

P = ASA* X 

It will be noticed that 

ASA* = 

(7.7) 

(7.8) 

where K is the stiffn.ess matrix of the structure, same 

as defined in Chapter 6, but here obtained by a different 
process. 

P = K X 	 (7.9) 

and 	X = K 	 (7.10) 

procedure. 

The P-X diagram is drawn as usual. 

Clockwise arrows are drawn in the unloaded 

act on ends of members and labelled 1Y14-g, 

structure to 

mt- et. 	etc., 
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upto 2m. These end moments, as is evident, exclude fixed-
end moments due to loads or support settlements. 

(3) Free body diagrams of all joints and sidesway equil-
ibrium conditions are drawn which are n in number. 

(4) The statics matrix A is then constructed by observing 
the equilibrium of free bodies. 

(5) From geometric considerations is constructed the geo-
metry matrix B. 

(6) Their accuracy is checked by B A* 

(7) S matrix is now constructed. 

(8) Compute all the equivalent fixed-end loads due to the 
known loading system and/or known settlement of supports and 
construct the vector P. 

After havinCthis much of job by hand, the data tape 
is prepared with A, B, S and P matrices which 'are stored in 
the magnetic unit of the machine. A routine is read into the 
machine which asks it to perform the following matrix operations. 

(9) Compute the matrix product SA* and store it for subse-
quent use. 

(10) Compute the matrix product ASA* giving the Tv wiN stir fat) s s 

matrix of the structure. 

(11) Invert the K-matrix. 



1.1 1 1 M v.  

- 0 

B  -19 g 

77J7-6 
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-1 (12) X-matrix is computed from the matrix product K P. 

(13) 14-matrix is obtained from 14 = SA* X 

(14) Combining the fixed-and moments with the 14 values 

obtained from step (13) ;  the final end-moments are obtained. 

The main labour involved lies in the computation of the 
matrix K-1

. Once this has been done by the computer, analysis 

of the structure for subsequent loading conditions requires 

a very little time and labour, since the construction of 

P-vector for each loading condition, and finding the matrix 
4 

products K P and SA*X is a comparatively simple process. 

Example 

As an example;  let us compute the stiffness matrix of 

the gable frame, of Ex.6.3, by the method suggested as above. 

N42- 

( 	M-9 DIAGP.AM 	 UIL1 t5 IWO DIA L RAMS 

F1GUKE, 7.3 

From joint equilibrium diagrams show,. in Fig. (7.3b), 
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the statics matrix A of Eq. (7. 	may be found to be 

M t 	 M3 	M4 	Ms- 	M G 	M 	M 

P, 	 + 	+ 

P, 	 + 1 	+ 1 

P 	 +1 	- +1 
3 

P 	1 	_ 1 	 t- 	1 •r- - 	 .... I  
4 	ZO 	 20 	 2.0 	 20 	20 	 26 

P 	 _ i 	r 	4- J- 	t 	_ i 	_ I -I- — S Zo 	2.0 	Zo 	go 	20 	2.0 

The geometry matrix B will be equal to the transpose 

of A. Matrix S of Eq. (7.6) will be given as below. 

e, 	Ot 
	

as 	84 
 

96 	9,t 98 

M t  0.2 	0.1 

Mz  0.1 0.2 

0. 3577 7 0. 17888 

pi, 	0 .17888 0.35777 

M 	 0.35777 0.17888 

0 17 888 0. 35777 

	

0.2 	0.1 

	

0.1 	0.2 

The stiffness matrix K wild be computed as a product 
* o f three matrices A../1 7 which in this example comes out as 

M7 
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It should be noted that this matrix is identical with 

that obtained in Example 6.3 by a direct method. 

In this method the only work required to be done by 

hand is the formation of matrices A, S and the load vector 

P (for each loading condition) which evidently is quite 

simple a job. The rest of the procedure described above )  ' 
which involves matrix operations like transposition, multi-

plication and inversion, can very conveniently be performed 

on an automatic digital computer without needing any special 

programming for a particular type of problem. 
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