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SUMMARY

This dissertation deals with the exact solution
of linear algebraic equations governing the béhaviour
of statically indeterminate structures. Matrix Algebra
has been employed as a tool for assisting the analysis,
since it makes the discussion and formulation of
complex structural problems a very convenient and system-
atic process which can easily'be mechanised. This approach,
being most general in its application, also reduces the
chances of committing errors and results in a conside
erable saving in time and labour required for a particular
problem. These matrix techniques are especially advant-
ageous vhen we have to deal with highly complex and redu-
ndant problems, which would otherwise be impossible to

solve by hand methods of computation.

The chief objective of this dissertation has been
to represent the subject in a manner which is systematic
and easily assimilable by a common civil engineer. In
addition, a few easier and direct synthetic methods to
assemble the matrix of a given structure have been devel-
oped. The obvious merits of the matrix methods over the
exlisting conventional methods have been discussed while
describing the téchniques, and also the possibilities

of making rapid design calculations on an electric desk

L)



calculator, which is more easily available to a common

structural engineer, have been fully discussed,

The systematic representation of the subject is

contained in the following seven chapters.

In the first four chapters are given the matric
formnlétion of the two complementary basic approaches
to a structural problem and the explanatibn of various
matrix operations and methods required for the analysis.
Chapters 5 and 6 deal with a detailed discussion of the
flexibility ﬁatrix method and the stiffness matrix
method respectively. To illustrate the techniques descr-
ibed in these chaptérs, a good number of ﬁumerical
examples are given which have been solved on a 'Marchant'
electric desk calculator. The last chapfer deals with
Electronic Digital Computers = their brief functional
description and as to how more complex problems are

programmed for an automatic solution on such machines,



CHAPTER I

INTRODUCTION



1.1 Structural Analysis.

==

in the 1last 40 years, staticglly indeterminate struct-
ures have been used more and more extensively., This is no
doubt due to their economy and increased rigidity under moving
or movable loads. The details of reinforced-concrete gnd
welded construction are such that structures of the se types
are usually wholly or partly continuous in their structurgl
action and are therefore usually statically indeterminate.
A knowledge of the gnalysis of indeterminate structures has
thus become increasingly important ags the use of these types

of construction have become more extensive.

Staticglly indeterminate structures differ from statically

determinate ones in two importaent respects, vizg

(D Their stress snalysis involves not only their geom-

ticity, cross-sectional area and moment of inertlia., Thus the
final design of an indetermmingate structure involves assuming
preliminary sizes for the members, making g stress analysis
of thls design, testing the members for these stresses, revis-
ing the design if necessary till the fingal design is grrived
at.

(2) In genergl, stresses aré developed in indeterminate
structures, not only by loads, tut atse by terperature changes,
-suppert ssttiements, fabrication errors, etc.

| Structural analysis involves computing not only the
external reactions and the internsl forces( and stresses) of

a structure, but glso strains and deflections throughout. In



a8
so called statically determinate structures, almost invarighly
the external reactions and internal forces (and stresses) are
computed first; then, from the stresses, the strains can be
determined, and subsequently deflections csn be computed. Same
order of computations is followed in mgny methods of analysing
statically indeterminate structures; that is, first the redun-
dants gnd corresponding staticelly determingte primary struct-
ure (slso called the peleased structure) are selected; then
these redundant forces (and/or couples) are computed by solving
an equal number of simul taneous equations, each of which express-
es a known deflection condition for the released structure in
terms of the redundants; and then once the redundants are known,
the stresses, strains, and déﬂections for the entire structure
may beé computed as in the case of a statically dgterminate
structure, Such a method of structurgl analysis is referred to
as a "force method of structural analysis", since the first step
in the computations involves determining the unknown external

and internal forces (and/or couples) in the structure,

In other cases of staticglly indetermingte structures,
the gbove order of computation is completely inverted. Such a
method of analysis is called g "displacement method of struct-
ural snalysis". In this gpproach, first the internal forces
(and coupleé), are expressed in terms of the key displacement
components of the structure; such expressions are substituted

into the key equilibrium equations of the structure, thereby
obtaining a system of linear simultaneous equations involving
the key displacements gs the unknowns; thén the vglues of

the displacements obtained from the solution of these



equations are substituted into the original expressions for
the internal forces (and couples) to obtain the values of
the latter; and finally,once all the internal forces (and
couples) agre known, it 1is 'easj to compute the reactionsof
the structurs.

According to the above classification, the superposition
equation method, the gpplication of Gastiglienc's second
theorem, and the use of the three moment equation are all
forcem methods of analysis., The siope-deﬂ.ection method 1s
a displacement method. The moment distribution method is a
successive gpproximation procedu're based on the same philoso-

phy as the displacement methods.
1.2 Structural Analysis and Matrix Algebra.

Whatever method of gnalysis we employ, the solution
of multiply redundant structures require solving simulteaneous
equations, For structures having only a few degrees of redund-
ancy, say upto five, any of the conventional methods can be
used. With the recent advance in modern construction, complex
structures, like multi-storeysd tuilding frames are becoming
‘more and more common. These structures contain a very large
numbsr of redundants and if solved by either of the direct
methods or the numerical iterative methods, the calculation
becomes a superhuman task, requiring many months of human
1l abor-labor subject to the inherent shortcomings of human
beings which produce errors, omissions, and the like. The
problem becomes much more difficult if the structurs is to
be analysed for a numbsr of loading conditions, |



For such complex and highly redundant prohlems of
structural analysis, the conventional methods have to be gband-
oned and some newsr gpproach has to be rasortsd to, which
will enable the structursl enginesr to discuss his complex
problems in a more compact and convenient form, This should
al so magke the method of computations most systematic and easy
to be mechanised., Matrix notgation provides Just this regquire-

ment,

During the last few years g numbsr of methods of anglys-
ing statically indeterminsate structures have been suggested
which use matrix notation, Mosgt of these involve rather more
numerical work thaﬁ 1s required in the traditional methods,
but the cong:uting' is entirely systematic and can easj.ly bs
mechanised. They gppear somewhat cumbarsome when applied 5
simple structures, but fom gz very powerful tool for dealing
with ecomplex I}ighly-redﬁndant systems. They have glready been
used extensively in the design and analysis of airceraft

structures.

Matrix notation is simply g useful shorthgnd inventsd
by mathematicians for discussing problems of linesr algebra.
Almost any method of agnalysis which treats a structure as a
linear elastic system (i.e., the changes in the geometry of
the structure under load are sufficlently smagll to have g

negligible effect upon loads and their corresponding stress
distribution, end the structural materigls obey Hooke's 1aw)
can be written in matrix form, but the notation gppears to

1ts best advantage when it is used to set .up the load-dis



-placement equations in explicit form. Such an approach leads,
of course, to the computational problem of solving sets of
1inesr simultaneous equations gnd for this reason it has in
the past been restricted to simple structures with only g
few degrees of freedom. However, the development of the desk
calcul ating machine and more recently the automatic digital
computer has made it easy to solve large ssts of equations,
so that the main objection to direct methods of this type
has disgppeared.

Matrix gl gebra may be regarded as a !shorthand' techne
ique for representing a system of linear eguations by a
simple equation and then solving that single matrix equation,
The rales of matrix algébra provide a computational procsdure
which is more repid on a mechanised. basis, than the numeriéal
process in common usage., Since all indeterminate structures
are governed by linear equations, the possibility of useful
applicaf.ion of matrix methods by the structural engineer is
suggested in the following contents of this work,



CHAPIER 2

MATRIX ALGEBRA
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2.1 Principle,.

When using an indeteminagte structure it is found
thgt the evaluation of the unknown displacement components
or the force components has to be made through the solution

of a system of linear simultaneous equations of the type,

k, X, + k, x, + k, X, u,
kX, + Kk, X, + k,, X, = u,

ksu X, + ksv_ X, + kyy X; = U,

Here there are three equations with k and x mi%ed
but in an ordered pattern. It would seem advantageous if these

equations could be reduced to "parcels" of the form

kx =/u

which it might be possible to separate into further parcels
so that . | '
k][x] =[u] :

The process; perhgps, could be carried further by writing

u

k

so that the left hand side of the equation could be unparcell-
ed to give the required vglues of the unknowns. We shall find
that matrices provide convenient form of parcel and as such
they may be regarded as a tool for assisting the gnalysis.
Since we are to use matrices as a tool we shall not need to

know much of the pure mathematical properties of matrices



but only some of the simple operations in which they can be

used.

2.2 Dafinition,

A matrix 1s defined as a reétangular array of coeffice
ients (numbers or 1inesr operators) which obey certain 1aws
of combination, to be specified. We shall adopt the following
notations for a matrix and call on array of m rows and n

colums an "mxw' magtrix",

A = [a, =a, oo a, |
a, a, e s o 8,
[ ] * ¢ o e [ ]
L4 L J s o o ®
i a'\MI a'wm. ¢ ¢ o a"M'w.J

The element of the matrix in the ith row and the jth |
column is donated by sij with the subscripbs in this order.
It is to be noted that the matrix is enclosed in sguare
brackets end is to be distinguished from the determinent
|Ale A determinant mist be square and can be evsluated by
the rules of algebra. A mgtrix need not be square snd can

.

never be evgluszted.

In the specigl case of g cblumn matrix (vector) i.e.,
a matrix with one column only, we shall use a lower cass
letter. Thus



u,, |

Simil arly we may have row matrices which are al so

written with a lower cass letter:
\' = [v, V., o ¢ o 'w]
2,8 Addition, Substraction gnd the Null Matrix,

The sum of two mxn matrieces [a,] end [by) 1is
defined to be mxn matrix [a.; + by;]. This is to say that
we add the corresponding elements of the two matrices to form
the elements of ths smmétion matrix, so that two matrices
can only be added when they have gn. equal number of rows and

columms, If this is not the case, the sum has no meaning,
The lav of addition shows that 1t ig

(a) cammutative , i,e.,

A + B = B + 2,

and (b) associative i.e.,

A +(B + O =( A +B‘)+c

The addition law also shows that multiplication of a
matrix by a single quantity results in a matrix each of whose
elements is multiplied by that quantity i,e,,



it A

[ay;]
then kA =[koay)

This shows that the distributive property holds, namaly
that

k (A + B) = k A + kB

The gbove laws of gddition include substraction., Two

matrices are said to be equal

A =B
if each of the elements of A equals the corresponding ele-
ment of B, Two matrices can only be equsl if they each havs

the same number of rows and columns.,

1f two matrices are equal and we sabstract one from the
other, then the resulting matrix has zero, as each of its

elements and is called the null matrix:

- 2s4 Multiplicgtion,

The produet AB of two matrices A snd B is defined
as a Matrix C whoss element in the it. row and the Jtm
column is the inner product of the itk row of A gnd the
- Jth column of B,

The inner product of a row and g column is the sum of

the products of the elements in the following order:
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(abl i, e ai,w) bij = a, b\, + a, b'LJ + "'aéwbwj
b,;
3
= Cg,‘
.
.
RN

It follows from the above definition that two matrices
are only conformgble for multiplication in the order AB
when the number of colums of A 'is equal to the number of
rows of B . Any two matrices, mxw and nxv , when multiplied

produce g matrix of order mx~r ,

For example
.rk“ k., k.| [%] [k,x +k.x. + k, x,]
kK, k., K,.| |x|= ko X, +k; X, + ki X,
_km k.. k“J _xaJ Lk:.,, X, +Ky, X, + ko, Xy
(3x9) (3x1) | (3x D

From the law of mltiplication stated above, it follows
immediately that the prz;gguct AB 1s not necessarily equal to
BA which may in fact/exist at all. In case of the product AB
we say either that B is premltiplied by A or that A
is postmltiplied by B, |

The product of two matrices leads to the form of result
we- wanted when parcélling [ kX], i.e.,

=@@ = K X



We see that the product matrix KX is column matrix
(nx1), as that it can be equal to the column matrix U which
is also (nx1) 1,e.,

KX = ©

The law of multiplication shows that the associative
and distributive properties &pply, provided the order of
the matrices 1is kept unal tered, viz.,

A(BC) =(aABC =aBC
and AB+C) =AB + p C
and (BC) A =Ba + C 4

As g result of the form of g matrix product it is
possible that the product matrix may be a null matrix

AB = 0

with neither A nor B beilng g nuil matrix, This is
exemplified by the following numerical case:

AB =(3 47| 4 8 = |0 O
0 0] |-8 -6] - 0 0
mtBA =[a 8] [3 4 12 16
= = 0
. ' -3_ -6“‘1 0 0 -9-]2‘ '

2,5 Transposition,

If amatrix B is made from g matrix A by writing
the ith row of B with the same elements in the same



relative position as the ithcolumn of A , then B
1s sald to be the transpose of A and is written

B = A¥*
For. example,
A = (&, a, ass

A¥* = [a, a,,
a, a,.,
_343 a?.s_J

If the transpose of a square matrix is eqial to the

original matrix, then the matrix is sald to be symmetrical

A =14 ] 0
'14_1
0 1 4

l.ec, A* = A

It cen be shown by the law of mul tiplication that the
transpose of a product of two matrices is the reversad product

of the transposed matrices viz. ’

(AB)* = B*A*.

2,6 Sulmatriceg,

It is sometimes convenient to partition g matrix into



sulmatrices. This is to say that the elements of the matrix

are themselves matrices. For 9Xgmple ,

, -
A = Fau v &y, 8, %Ly %y
---J -------- L. X ] =
'
I
] N
a, , 8, a,, gy %aa,
]
i
(83 1 8y, asa_j '
wWhere
o‘“ = a“ . d!?_ = [a"). a,}]

OCZ! = 82' o‘!?. = az-;_ aq_g
8, ) a, a,;

I1f two matrices gre of the same order in rows and
columns gnd agre similarly partitioned, then the rules of
m@trix addition gre still gpplicable and yield the same
result as addition of the unpartitioned matrices. Farther,
it can also be proved by rules of matrix multiplication that
if two matrices are conformable for multiﬁlication arid they
are egch partitioned so that they still remain conformmgable
for mul tiplication, then the resulting product matrix from
either operation will be the same.

&sZ The Unit matrix gnd the Inverse matrix,

A square matrix with its leading diagongl elements
8, equal to unity and all other elements zero is called g
a unit matrix (sometimes called Identity Matrix als;o) and is
represented by [1J.



The rules of matrix multiplication will show that
A I = 1A = A

where A 1is an arbitrary matrix and I the unit matrix

of the same order.

If we now find a square matrix B which is related
to the square matrix A in the following way

A B = B A = I

then the matrix B which is unique, is called the ":lnverse"
of A and is written
-1
B = 24
sothat A A " = A A = I

We must note that the matrix A mist be non- sin gul ar;
a non-singul ar matrix be ing defined as one in which the
determinant with the same coefficients, in the same.positions,

i1s not equal to zero, i.e.,

&% o

Each row and each column 'of a none singular mgtrix must

contain at least one non-zero element, A singul ar matrix has

Al = ©

19



It is to be noted that when the product A B equals
zero then glthough, as has been shown, neither of the
individqual matrices A nor B is necessarily zero, one or

both of the matrices must be singulgr.

By the law of multiplication of matrices the inverse
of a product of matrices can be written as the reversed

product of the inverse matrices.
(aB)1 = 1l g1
glso, that ( a*)=1 _ ( p-1y*

1f the original matrix has only elements on the leading
diagongl, e.g.,

R N
PR

then the rules of matrix multiplication show that since
axrt -1 thus

£l =fva o o
© b 0
0 0 /¢

That is, the inverse of a diagonal matrix is also a
diagonal matrix whose elements are the reciprocals of the

elements of the original matrix.

The Inverse has special value in our structural analysis
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protlem for we have seen that the relevant equations can be

written in mgtrix notation as

K X =0
which premultiplied by k-1 gives
k1 xx =x"1v ’
or IX =K1y |

X =k1lvu

part from its conciseness, matrix notation 1s useful
in that ‘it clearly separates the constants gppearing in a
set of simul taneous equations from the particular sets
of varigbles which hgppen to be related., In any physicel
system whose behaviour is governed by linear algebralc equat-
~ion, the matrix K 1is glways an invariant function and can
indeed be regarded as forming a complete mathematical state-
ment of the properties of the system., The vectors X énd
U on the other hand are merely related to one particular set

of conditions.



CHAPTER 3

MATRIC FORMULATION OF
STRUCTURAL PROBLEM
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It has already been pointed out that there are possible

two complementary formlations of g structursl problem,

(a) The stif.ﬁless method in which geometricelly compa-
tible states are combined to give equilibrium and

(b) The flexibility method in which equilibrium states
are combined to give geometrical compatibility.

- It is proposed to discuss, here, the genersl energy
theory and matrix formulgtion of the two complementary

approaches.,

(a) Stiffness Matrix Method,

Le:t U represent the strain energy stored within g
structure which is loaded by the forces Py Py eeay Pigouoo
Pn . The temperature of ‘the material remains constant and the
supports are rigid. Applying Castigliano's Theorem I of
Sfructure Equilibrium one obtainsy

dU )
P = DA (3‘1)

where A, is the deflection of the point of @pllcation
of the load P, in the direction of Pb.

If the strain energy is evgluated in terms of the loads
P. acting upon the structure we may expand Equation (3,1)

as follows:

?
P, = 2L -2 (3R (3.2)



1t the structure is assumed to be elastic then .
Castigliano's Theorem II for Linear Structures may be gpplied.

8= 5 (3.3

Substituting Equation (3.3) into Equation (3,2),

Py = 2 Aj (221 (3.4)

The partial derivative ?;;% represents the force
developed at point j due to g unit deflection of po.’mt‘ i,
all otherpoints assumed to be fixed. This force is represented
by the symbol k;, . The subscript J represents the point
at which the force acts and the subseript 1 the point at
which the unit deflectlion is imposed. With this substitution
Eq. (3.4) becomes :

P, = §J- 85 Ry, (3.5)

From the generalized Maxwell's Law of Reciprocal
Deflections we obtain the relation.

K, =k a8
and hence
Pi= 2 4 ki . (3.7
Writing Eq. (3,70 in its expanded form
TP, = k'c.,gg,, ‘+k.;z By ¥ eee + kuz,J- A; +eeas ka@A%(3.8)

It is evident from the expanded fem that Eq. (3.7) is

24



a superposition equation expressing the totsl load at joint
1 as the sum of the loads developed by each deflection
component - A; acting by itself. Each portion of Eq.(3.7)
describes an independent component of the structural béhav.
iour. The components may represent translation or rotation.
The total number of components is the number of degrees of

freedom which the ideslized structure possesses.

Using matrix gl gebra notation, Eq. (3.7) may be

rewritten gs
P = KA (3.9)

Where P is a vector or column matrix made up of the
load components P,y P, § ese Pi § ¢cees Poo A ds a vector

made up of the deflection components Ay 2, eee Bigees Ly o

K 1s a square matrix consisting of an ordered array
of the stlffness influence coefficients ki of Eq.(3.7).
Matrix K 1s called the stiffness matrix of the structure.
In the expanded form Eq. (3.9) appears as follows:

{'P’— rk“ kn_ L 2R 2K B BN B BN BRI Y ) ktw-— ’— j—

szv _ »kzi kz,_ooonooooooc k'z_w A, (3 10)
: : :

__P%_JA _k%‘ = k‘wz‘.....‘.... k%m LAN_J

25



(b) Flexibility Matrix Method,

Following the principle of superposition of deflections
we can write in matrix form the force-deflection equations

for a general structure gas

—

r"u'- «fn f"_ooooo fu' o0 0000 f’w_‘ Fx’.-
uz th f?.’L..... fz'oooooo. fz'n, x?_
* L .’
-lel=1. . | (3.1
u. fi" f,;?_.oooc fi,j.oo‘..! fb'h, XJ
_‘uwj 5 f’m f.M_ooQOo fﬂy\s I XX f""’u B xW_J
or -U = FX (3.12)

In this matrix equation X 1is g column matrix composed
of the unknown redundsnt forces X, 5 X, 5 se.. X, s Which
are to be removed in order to make the structure staticaliy
deterningle, The¢ elements of the weeter U are the daeflections
of the released structiure at the position and in the direction
of the respective redundants due to gpplied loads.

F is called the flexibility matrix of the structure.
It is composed of the elements like -f’«J 9y called the flexle
bility influence coefficisnts and defined as follows.

f.j = the deflection of the released structure at the
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position and in the dirsetion of x, for a unit value of the
redundant x; acting alone.

It is evident from the very definition of the coeffic-
lents ki; and fi; that

ky, =ki and £y =f;

Hence, for any structure, both the stiffness matrix
K and the flexibility matrix F will be symmetriecal.

In the typlcal problem Eq. (3.10) must be conétmctad
and solved for the deflections in terms of the applied loads.
The dirsct determination of the coefficients <£i; of Eq.(3.1D
1s difficult and impractical for a large indeterminate struc-
ture. However, the coefficients k;, of Eqn. (3.9) can be
readily calculated. The usugl procedure is thus to assemble
the stiffness matrix directly from the known propertles of
the iIndividual members of the structure, Then the matrix
equation (3.10) is solved for the unknown deflection oompd-
nents of the vector A , which, when substituted into the load-
deflection equations for individual members, give the internal

stresses everywhers inside the structure.

However, in some problems where the number of unknown
Joint deflections is large as cozﬁpared to the number of redund-
ant forces, as in the caseé of indetermingate pin-;]oi!ttéd trusses,
the number of equations in the displacement method will be

much 1larger as compared to that in force method where the



redundant forces are taken as unknowns. Hence, the solution
of such problems will involve less 1labour if solved by the
flexibility method. The details of these methods will be

discussed later as we proceed.
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4,1 Introduction,

We have seen, by now, that métrix analysis of indeter-
minate structures consists in expressing the load-displacement
equations for the structure in the form of one single matnx
- equation and then solving that matrix equation for the unknowns,
For instance, in the Stiffness Métrix method, the matrix

equation obtained is of the form
P = KA

To determine the elements of the unknown displacement
vector & we premultiply both sides of the above equation by

K"'l, the inverse of the stiffness matrix K . Thus,

A = k¥

The computationgl work, thus, lies in obtaining the

reciprocal matrix K™l ang then computing the deflections by

determining the matrix product of the gpplied load vector and
the matrix K ., But the task of imverting the matrix X , if
attempted by hand calculation on a slide rule or a desk cglc=-
ulator, is a very cumbersome process. This job is best suited
to Modern High Speed Automatic DigitaJ. Computers which will
invert a matrix of ordinary size in a few minutes and the
matrix as large as having 100 rows and 100 colums in g few
hours - the job which is impossible to attempt by hand _
methods. Also the chances to commit an error by these computers |
are very remote, rather the results may be tgken as accurgte

as the data fed into the machine,



redundant forces are taken gs unknowns. Hence, the solution
of such problems will involve less labour if solved by the
flexibility method. The details of these methods will be

discussed later as we proceed.
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CHAPTIER 4

COMPUTATION
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4,1 Introduction.

We have seen, by now, that matrix analysis of indeter-
minate structures consists in expressing the load-displacement
equations for the structure in the form of one single matnx
equation and then solving that matrix equation for the unknowns,
For instance, in the Stiffness Métrix method, the matrix

equation obtained is of the form
P = KA

To determine the elements of the unknown displacement
vector A we premultiply both sides of the above equation by

K-la the inverse of the stiffness matrix K . Thus,
A = K

The computational work, thus, lies in obtaining the
reciprocal matrix K~1 ang then computing the deflections by

determining the matrix product of the applied load vector and
the matrix K , But the task of imverting the matrix X , if
attempted by hand calculation on a slide rmile or a desk caglc-
ul ator, is a very cumbersome process. This job is best suited
to Modern High Speed Automatic Digital Computers which will
invert a matrix of ordinary size in a few minutes and the
matrix as large as having 100 rows and 100 colums in g few
hours - the job which is impossible to attempt by hand
methods. Also the chances to commit sn error by these computeré
are very remote, rather the results mgy be taken as accuragte

as the data fed into the machine,
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Due to the non-availability of such big digital
compufers for routine desigh and research work in our country,
same method has to be looked for, which will mgke the best
use of more easily available electrically operated desk cslcu-
lating machines. Keeping in view the constantly inc:easing
complexity of structural problems it is recommended that the
traditional slide rule be replaced by a desk calculator made
available to every structural engineer in the design office.

Prescott D, Crout has evolved an "guxiliary matrix
method" for solving a matrix equation - as obtained in g
structural problem, His method is best suited to an electric
desk calculatpr which can store the products of numbers. It
is proposed, for our work, to solve the typical problems of
structural analysis by this meﬁhod on a similar machine
available. For this resson the method shsll be discussed in
details, and also the Doolittle technique of matrix inversion,
which is most commonly adopted for solution of large size
matrix equations on sutomatic digitsl computers, shall be
indicated at the end of this chapter.

4.2 Crout's Muxiliary Mat#ix Method.

B "™

The work of solving a system of equations is largely
concentrgted in the determination of an "auxiliary matrix" and
;s roughly half_that required by a matrix multiplication. The
process is parficularly adgpted for use with 3 computing mgachine,
for each element is determined by one continuous machine

operation (sum of products with or without a finagl division).



The setting down of this matrix and of the final solution
1s the only writing required by the process. The work invole
ved is cut almost in half if the coefficient matrix of the
given matrix equation is symmetrical, as always happens with
a structursl problem. A "check column" can be carried along

if desired.

The amount of work required to obtain a solution is
consideragbly less than that required by the Gauss's method
of su.ccessive elimination, even when there is symmetry and
the coefficients are realy in which case Gguss's method has
been considerably refined by Doolittle. (4Gauss's method is
much shorter than a solution by determingits.)

The method as given by Crout is applicable to m
equations In n unknowns, thers bei ng ne restriction on the
rank of the matrix of the coefficients. Bui; in a structural
problem the coefficient matrix is essentially‘a square matrix
and hence the method will be illustrated for n equations in

n unknowns - n can be any natural number.

£.2.] Description of the me thods

Let the given system of equations be specified by its
given matrix, thus

X, x, x X, =
1 4 1 3 o

0 .3 3 -1 1 (4. D
3 1 o - 2 -1
1 -2 5 3
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the first equation being

X, +

4

The solution requires the formation of one matrix

and a set of final

results; thus we have an auxiliary matrix

-36 -0.1111 0.5000
-14 #2,4446 0,81812

matrix

-0.86345
~0.04545 ‘ (4.3)
0.59089 |

0., 81812

The procedure for obtaining the guxiliary matrix

from the given matrix is contalned in the following rules.

(1) The various numbers or elemnts are obtained in the

following order: elements of first colum, then elements of

first row to the right of the first column; elements of _

second column below first roiv', then elements of second row to

the right of second columng elements of third column below

the second row, then elements of third row to the right of

third column; gnd so on until gall elements are determined.



(2) The first column is identical with the first column
of the given matrix. Each element of the first row except the
first is obtained by dividing the corresponding element of the
given matrix by that first element.

(3) Each element on or below the principal diagonal is
equal to the corresponding element of the given matrix minus
‘the sum of those products of elements in its row and correspond-
ing elements in its column (in the suxiliary matrix) which

involve only previously computed elements.

(4) Each element to the right of the principal diagonal
is given by a calculation which differs from rule (3) only
in that there is a final division by its disgonsl element (in
the auxiliary matrix).

As examples we. have the following typical calculations
made in obtaining (4.2), the letters R and C representing

the words "row" and "column" respectively.

R, C; 1

= 1+1

R, C, =1 = .1-02x4

R4¢1 -6 = -2~ 1X4

R, C. -1 = (1-0x2)=(-1

R, C, =36 = 0-3x1-(-1D x (-3
R, C, 12 = 5-1%x1- (-6) x (=3

R; C, -0,1111

{2-3x3- (10 x( +D} = (-36)
R, C 24446 = 1. 1x3-(6) x1- (=19 x (-0.111D
R, C. 0.81812 (3-1x2 - 6x1 + 14x 0.5) + 2.4446

H
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Since an electric desk calculator gives in one contine
Uous operation a sum or difference of products with or without
a final division, we see that each element of the auxiliary

matrix is given by a single machine operation.

The procedure for obtaining the one columed final

matrix from the auxiliary matrix is contained in the following

rules.

(1) The elements are determined in the following order:

last, next to last, second from last, third from last ete. -

(2) The last element is squal to the corresponding ele-

ment in the last column of the auxiliary matrix.

(3) Each element is aqual to the corresponding element
o.f the last column of the aaxiliary matrix minus the sum of
those products of eiements in its row in the auxiliary matrix
and corresponding elements in its column in the final matrix

which involve only previously computed elements.

We see that in forming products only those elements of
the auxiliary matrix are used which 1ie to the right of the
principal diagonal and to the left of the 1ast column. The
calculations made in obtaining (4.3) gara

Ry C, 0,59089

i

+0.5000 +0.1111 x 0.81812
R, C, -0.04545 = . 1,00 - 1 x 0.81812 + 3 x 0.59089
R, C, -0.86345 = 2.3 x0.81812 - 1 x 0.50089+ 4 0,04545

It may be noﬁed‘ that each element of the fingl matrix



is given by a single machine operation.

It is not necessary but is strongly recommended that the
values of the unknowns, which compose the final matrix, be
substituted in each of the given equations, the result being
a number of Ehecks equal to the number 6f equations. Since
the satisfaction of these checks guarantees the correctness
of the solution, it is not necessary to check the caiculations
which gave the suxiligry matrix and the final matrix. The first
of the four checks obtained from (4.1 and (4.3 is

| -1 x 0.86345 - 4 x 0,04545 + 1 x 0.59089
+ 3 x0.,81812 = 2,00

Evidently each check requires but one machine operation,

4.2,2. Systems having symmetrical coefficient matrix.

If there is symmetry (as is the ususl case with struc-
turagl problems, since both the stiffness matrix or the flex-
ibility matrix of the problem have to be symmetrical), fhe
work of computing the asuxiligry matrix is cut glmost in half
by the fact that if the coefficients of the unknowns are
symmetrical about the principal diagonal; each element of the
auxiliary matrix below the principal diagonal gives, if
divided by its diagonal element, the synmetfically opposite
element above this diagonal. Elements below the principal
diagonal of the auxiliary matrix are thus obtained as bye'
prbducts of calculations made in determining elements above

this diagonal.



As an example, the symmetrical

X, X,

37

set of equations

x?) X4, XS‘ =

0.55777 0.017888 0.01183 -0.02683 40

0.17888 0.71554 0.17888
0. 17888 0.55777 ~0.02683 0.01183 -40 (4.4)

0.01183
-0.02683

0

-0.02683 0.00686 -0.00536 -24
0.01183 -0.0053 0.00686 24

has the auxiliary matrix,

L) Xl X

0.55777 0.30270
0.17888 0.65817 0.27178 -0.00576 0,01307

0 0.17888 0.50915 -0,05067 0.01864
0.01183 -0.00379 -0.02580 0.00528 -0.80871

2

X, X, p

0 0.02120 0.04810

"
i

71.7141
-19.4907
-17.7146 (4.5)
-5070,54

-0.02683 0.00860 0,00949 -0.00427 0.00182 2813.77

and the fingl matrix

X,

In the

colum 4 is

+ 266, 378
- 0,13040
- 265,787
- 2795,02
+ 2813.77

(4.86)

auxiliagry matrix the lement in row 3 and

(-0.02683 - 0 x 0.02120 + 0.17888 x 0.00576) / 0.50915
= _=_0,02580 = - 0.05067

0.50915
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the numerator - 0.02580 being recorded in the
‘symme trically opposite position before the final division
by the diagonal element 0.50915 is carried out. The fingl

matrix is obtained in the usual manner.

If , now, we chgnge only the last column of the given
matrix, the solution to this new set of matrix equation shall
be very readily obt;ained. The first five columns of the
' auxiliary matrix shall remain ungltered and only the last
column has to be re-cglculated. The fingl matrix is calculated
in the ustual manner from this new column of the auxiliary‘

matrix,

"For example, let us now recalculate the value of 3£
unknowns with the changed 1ast column of the given matrix

as

(=15

- 8

10.5

L5

the last column of the auxiliary matrix becoxhes

[-26.89528)

- © . 28779
o - lolio
204917

| S23622




The fingl matrix is given by

x, = 119.773
X, = -92,5657
%, = 220,895
x, = 6283.75

xs— - 52%. 22

This ssving im calculation work is of great significence
1f a structure has to be anglysed for a number of loading

conditions.

4,2,3 Continuous Check on Calcul gtion.

If desired, a "check column" may be written at the right
of the given matrix, each element of this column being the sum
of the elements of the corrssponding row in the matrix, This
column is now treated in exactly the same manner as the last
column of the given matrix, the calcul gtions being carried
along with those for the other columns, end the result being
the addition of corresponding " check columns" to the auxiliary
matrix and the final matrix. The check columns thus obtalned
for (4.1, (4.2), and (4.3 are, respectively

11 11 0, 13655
2 9 - 2 and O . 9 5455 (40 7)
5 1. 3889 1. 59089

8 1..81812 1..81812
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These columns provide checks at all stages of the

computation, because

1. In the auxiliary matrix zny element in the check
‘column is equal to one plus the sum of the other elements
in its row which lie to the right of the principal diagonal.

2. In the fingl matrix any element in the check column
is equal to one plus the sum of the other elements in its

. row,
For example noting (4.2), (4.3), and (4.7), two of the
chaecks gre
1-3+1=-1 =2 &2
1 - 0.04545 =

0.95455

The above statements zre tme and the procedure is

the same for any number of equations and unknowns.

4,2.4 Improvement in Accuracy.

Since the number of decimal places in the computations
is limited, the valuss obtained for the unknowns are in general .
not exact. However, if they are placed in the given squations
and the differences between the two sides are obtained, gnd
if these differences are then inserted in place of the right N
hand sides of the given equations, the resulting equations have
as their solution the corrections to the vslues first obtainea,
Noting that the above differences are obtained in applying
the final checks (that of substituting the computed values of



unknowns in the given set of equgtions), and that the guxi-
liary matrix for the modified equations is the same as that
for the originagl equations except for the last colum, it
follows that if the column of the differences obtained in

in applying the final checks be annexed to the given matrix
and then treated in the same manner as the last colum, the
corresponding column obtained in the fingl matrix is composed

of the required corrections,

Since the problem of solving the modified equationé
is similar to the original problem, the above process may be
repéated; thus the final checks on the corrections give data
- for another column in the given matrix, which leads to g
column in the final matrix comﬁosed of corrections to the
Tirst corrections, etec. In the usugl case each application of
this process increasss the number of significant figures in
the results by approximagtely the sazme number obtained with the
6rigina1 solution, the data in the given equations being

considered exact.

But in problems of structural analysis results correct
upto three significant places of decimal are usuaglly gccepted
for subsequent design work. By using the available Marchant
Electrical desk calculating machine and working with five
decimal places, fairly excgptable correct results are being
obtained in the first solution. Hence, the labour involved in
calculating the corrections is not Justified for our purpose

by obtaining a 1ittle more agccuracy in results ovar those



obtained in the first set of calcul ations.

4,2,5 Magthemagtical Proof.

The mathematical proofs which establishaed the method
have been omitted in describing the technique. The method,
in essence, is a combination of various processes which conm-
pose Gauss's elimingtion method, and adapting them for use
with a computing machine. However, direct proofs of the ind-
uction type have baan givén by Crout in his originagl pgper
and the reader, if interestsd, may maks a referencs of the

sama. (See + ‘'Raferences').
4.3 Matrix inversion by Doolittle technique,

Large size matrix equations are most conveniently solv-
éd on gutomatic digital computers with g very high speed and
degree of accuracy. The technique of inverting large size
matrices, which is generally adopted for use on such giant
- 81ze machines, is explained below in a tabular form. Let
the coefficient matri® X of a set of simultaneous equations
be given by |

42
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Similarly from row (12) 4 ¢,, 4 C4,.C,9 C., saPe obtained

and from (5) We haVve Ca; 3 Cu. 9 Cays 9 Ced o

c“ -E‘-‘- "‘ c k‘l + c k|3 + C4| = ———1--
k|4 u k|4, M k\q, kl4

Thus, the elements of the inverted matrix in rows other
than the first are obltained by a process of back substitution.

To illustrate the above procedure we shall solve a prob-

lem of matrix inversion on the desk easlceulator as follows.

With the aid of automagtic dlgital computers, the same technique

is extended arid coded for inverting large size square matrices,

Tabi e 4.2

Given matrix Unit matrix

(D 1 4 1 3 1 0O 0 o)
(2) 0 -1 3 w1 0 1 0 )
(3 3 1 0 2 0 0 1 0
(4) 1 -2 5 1 0 0O O 1
(5) 0.3333 1.3333 0,3333 1 [0.3333 0 0 O
(6) 0 1 -3 1 0 -1 © 0
(7 1.5 0.5 o 1 0 -0 0,5 ©
(8) 1 -2 5 1 0 0O © 1

&4
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For eass in explaining we have chossn g 4 x 4 matrix,
al though the method can be extended to any order. Table 4.1
shows step by step the Doolittle technique. On the left hand

side is the given matrix and on the right hand side is the
unit matrix. The table is self-explanatory.

The last four elements, i.e.y C, 4y € 4 C,,

Cis 9 obtained from the unit matrix, form the first row of

elements of the inverse matrix, given below.

r_c [l Crn Ces c M-—
c., Can Co Coq
x1 =
' Cy, Cyy Cyy Csy
| Caqu Caa Caz 344_J

To obtain the other elements of the inverse, mul tiply-

ing row (17) with K-1 i.e,, [ kl K-]'J [I] sy W8 have
' m,,

Y ]
Cy 'W\“ + Cy,
e ki Ly M
Mg
m , 1
Cpa -w: + Cp =
> "%4 Ly mya
Cua AT TU Cy - ! _ ! !
4 -
Wiz baalyy  Rag L ) ™

which give . the values of C,, 9 C, 4 ¢€




Similarly from row (12), ¢, 4 €,,,C,y C., sare obtained

—-——L" + c.,_, 1!:“' + C3| - 1

C
" otn " Ky, Ly

and from (5) we have Cay 9 C4. 3 Caz 3 Ces o

c k\\ c kqa.. + c k)g + c4 = 1
1t " 2 ""'"""'k (S v ! K
1+ 14 4 14

Thus, the elements of the inverted matrix in rows other

than the first are obtalned by a process of back substitution.

To illustrate the above procedure we shall solve a prob-
lem of matrix inversion on the desk calculator as follows.
With the aid of sutomatic digital computers; the szme technique

is sxtended and coded for inverting large size square matrices.

Table 4.2

Given matrix Unit matrix

(D 1 4 1 3 1 0O O o
'(2) 0 -1 3 -1 0 1 0 0
(3) 3 1 0 2 0O o0 1 o}
(4) 1 -2 5 1 (4] 0 0 1
(6) 0.3333 1.3333 0,3333 1 (0.3333 0 O (0]
(6) 0 1 -3 1 0 -1 O o]
(7 1.5 0.5 c 1 0 -0 0,5 ©
(8) 1 -2 "5 1 0 0O 0 1

&4



Given matrix Unit matrix )
(5)-(8)| (9) -0.6687 3,3833.4,667| 0,3333 O 0 -1
(6)-(8)| (1) -1 3 _g 0 0185 O -1
(7-(8)| (1) 0.5 2.5 -5 ) 0 0.5 -1
(12) 0,1428 -0,7143 1 | -0,0714 O o 0.2143
(13 0.125 -0, 375 1 0 0,125 0 0.125
(14) -0.1 '.o0.5 1 0 0 0.1 0.2
(12-(14){ (15) 0.2428 _0.2743 -0,0714 O 0.1 0.,0143
(13-(19)| (16) 0.225 o0, 125 0 0.195 0.1 -0.075
(17 -n 1329 1 0.3332 0 . -04666 -0,0667
(18) 1.8 1 ) 1 0.8 -0.6
(17)-(18)|(19) -2,9329 0.3332 -1 -1.2666 0.5333
(20) 1 -0,1136 0.3469 0.4318 -0,1818

Row (20) of table (4.2) gives the values of the elements

in the first row of the inverse matrix. Elements of the second

row are obtained from equétions formed with row (17) as follows,

1.1329 x 0,1136 + ¢,,
-1.1329 x 0,3409 + c,,
-1.129 x 0,4318 + e,,

1.1329 x 0,1818 + ¢,,

which in turn give

Cy = 0, 2045
Co = 003862
C.,, = 0,0226
Cos = -0,2726

= 0,3332
0

-0,4666
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Simil arly, from row (12) we have

-0.1428 x 0,113 - 00,7143 x 0.2045 + ¢, = -0,0714
0.1428 x 0,3409 - 0,7143 x 0.3862 + .. = 0
0.1428 x 0,4318 - 0,7143 x 0,0226 + c., = O

-0.1428 x 0.1818 + 0,7143 x 0.2726 + ¢,, = 0.2143
giving,

e, = 0.0209
e, = 0.2272

¢, =-0.0455
c.’>4 = 0.0455

and from row (5)

-0.3333 x 0,1136 + 1.3333 x 0.2045 + 0.333330,0909+ ¢,=0.3333
0.3333 x 0.3409 + 1.3333 x 0.3862 + 0.3333x0.2272+c., = 0
0.3333 x 0,4318 + 1,3333 x 0,026 = 0. 3333x0.0455+c., = 0

-0.3333 x 0,1818 - 1.3333 x 0.2726 + 0.38333x0.0455+c,, = 0

which gives,
¢, = 0.0682
4y, = =-0,7043
¢, = =0.1589
Cse = 00,3678
The inverted matrix, thus becomes
-0.1136 0.3309 0.43318 .0, 1818
0.2045 0.3862 0,0226 -0,2726

K-1 - 0,0909 0.2272 -0.0455 0.0455
0.0682 -0.7043 .0.1589 0.4089



CHAPTER 5

FLEXIBILITY MATRIX METHOD

&7
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5.1 Gengrgl

The method to be adopted for the anzlysis of a statically
indeterminate structure is the removal of the redundasnt reaction
components or the member forces by introducing a number of
raleases in the structurs so that it is transformed to g stat-
ically determinate one. The solution to the problem is obtainaed
by determining what values of the redundants at the positions
of, and of the kind corresponding to, the releases will enable
geometrical continuity to be re-gstablished at all the releasas
whena the structure is loaded. The redundant reaction components
and the number for.ces are taken as the arbitrary constants of
the ;;roblem since 1t is the values of these which have to be
determined in solving the structure by gsatisfying the boundary
conditions of continuity.

The symbol we shall use for the arbitrary constants is
X and there will be as many of them as the structure has

degrees of statical indeterminaecy.

The most convenient way of arriving at the flexibility
matrix method of structural snalysis is through the concept
of strain energy principles.

5.2 Flexibility Influence Coefficient Bquations,

Let us consider the application of the theorem of least
work to a simple problem; a three span continuous beam on rigigd
supports (Fig, 5.1).

The structure is released by removing the two intermediate

Supports, so that the support reactions at B end C Dbecome
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We shall consider only the flexursl strgin energy. By the
principle of superposition the totél moment distribution
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.

(2) m, , the moment distribution due to the gpplied
loads only acting on the released structure. This is glso
called the "particular solution" of the problem. It satisfies
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the arbitrary constants, x, and x, , of the problem.

We shall consider only the flexural strain energy. By the
principle of superposition the total moment distribution

M can be considered as composed of ‘two parts:

(a) m, , the moment distribution due to the gpplied
loads only acting on the releagsad structure. This is gl so
called the "particular solution" of the problem. It satisfies



the conditions of equilibrium but not the geometricsal compat-

ibility of the problem.

(b) (m, x, +m, X, ), the moment distribution due to
the actlion of x, and x, acting on the released structure
whose Job is xk® to satisfy the compatibility conditions.

This is also termed as the " complementary function'.

The total strain energy is given by

M?.
U = J 2E1 s
S .
the integration extending over the whole length of the

structure.

Applying the theorem of least work we obtain two equations

for the detemination of X, and x, . Thus ,

QL. 2 M=
o, g a::;,(a.ar) dr = O

2= = dr = ©

Substituting for M from Eq. (5.1), Egs. (5.2) becomne

(5.9)

oV

amr =, EI ('Vw.,-l-’wa‘-a-'w\,lac)dA =0
,

3u

-5—3:1: . .,+'w\,,_:n,_)d,‘s z.o

which cen also be expanded as

KR
. WWv
& = @uLEI‘ de 4 %z‘[%&5+J‘M'M°&&-O
S
(5.3)
MWy -
57_ = o, j;-—é-i—‘-o"& + TJ,_J '\;\.‘;_ dA 4+ l{ %&d&: Q
S
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Since, Castigliano's second theorem gives

Y s
'asc. -
oU

and —a—-gz:: 61

& and 6, being the deflections at the position and in the

direction of x, and =, respectively.
Supposing,
(a) mie = x, = 0 , the first equation of (5.3) becomes

2
8§, = s:.,s'vé'l' At = o=, f (say)

Thus f, = the deflection of the released structure at
the position gnd in the direction of =, for sz unit value of

X, acting glone (figure 5.2).

/ﬂ-‘L —— ]
é - —"/;'/Z: - r = N \\\"2\
4 =i ~ {’U
i |
e \‘\

EREREERIEWE RN ‘ 1 X
- . -
1 N

Uy ! \02

FIGURE 5°2

() my, =0 and x, =0, then _
bom [ TELA = af (say)
fi.. = the deflection of the released structure at the
position and in the direction of x, for s unit value of X,

acting alone (Fig, 5.9).
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e R

u, = the deflection of the released structure st the
position and in the direction of x, due to the gpplied
loads (Fig. 5.92).

With these definitions for the integrals we can rewzte
the first equation of (5.3) in the form

§ X+ szq_: - Wy (5.4 a)

Similarly, we cal write the second equation, which
relatesto the boundary condition at the support ¢ , as

5'qu“ -+ ‘j:zzx‘z. = -W, : (5.4 b)

where f,, , f,, and u, have meanings similar to £,, ,

f,, and u, , but related to =, .

It has to be noted that

' Wy Wy
Sio = fay = L S ama

which gl so follows from Maxwell's reciprocsb theorem

due to the physicgl meanings of f,, and f,, .
In matrix notations Eqs. (5.4) can be written gs,
f. X, u,

= - - (5.5)
£, f.. X, u,

f,

i

The solution to the structurgl problem, the result the
engineer requires, is the distribution of the bending moment

M in the statically indeterminate structure which is computed




-

by solving the matrix Eq. (5.5) for x, asnd x, and inser-

ting these values in the expression
M = m +mx, + m X,

The above example is one in which thers are two arbi-
trary constagnts, the redundant reactions X, and x,.
In general, the solution of a structure with n arbitrary

constants (the redundants) will lead to a matrix equation

(£, foeeeceee Fievaenane. 5, XT @]

£y freeeecee Ljevenionee Lo X, u,

. S | 5.6

£ Bpeeveene Lyeneenenes £l X u,

[ fapeeeens Speeeenens Buflx] |,
where, fiy = (5.7
and Wy = j3%§¥2<ia. (5.8)

5

still assuming that flexursgl energy alone is significant.

The meanings of the f* and uws remain as displace-

ments which may include deflections gnd rotations according

to whetheér the corresponding arbitrary constants are forces

)
or moments.

Writing Eq. (5.6) as

FX = - U (5.9)
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F is the " flexibility matrix" of the structure which
is composed of the flexibility influence coefficients of the
type given in Eq. (5.7). It is to be noted that the matrix
F is a symmetricsl matrix.

The matrix Eq. (5.6) is solved for the vglues of the
elements of the vector x by our excepted methods of

computation gnd the final distribution of moment will be det-

emined from the expression

M =me + M X, +M, X, + eeeesem, X.. (5;10)

5.3 Other Strain Energies.

If it is necessary to consideg the effect of shear and
o]
direct forces aglso in contributing/the strain energy, then

Utotar = Ubending"' Yshear* Ugirect force

for plane frames.

The expressions for the influence coefficients £y

and that for wu; , will, in the complete plane frame case,

become

E
SG\A A

v A
;g * fq *+ ﬂy

. Wl W ALd i Yo
Wy = | 22700 oy 4 PLoo ga SAARLLEY; FY
‘ j Er kﬂL oA | Ea

fy = [Tman 4ok [ S8, +jwﬁ
s 1

(5.11)

B

94



where s and n gre the " unit shear force and
direct force diagrans“ defined in the same way as the m

dliagrams.

It is to be pointed out that, slthough a problem may
be solved by considering only one, or some, of the stress
| resultants contributing significantly to the total strain
energy, it is of course still possible to determine the
gistribution of 211 the other stress resultants, Thus, in
~the case of the three-span beam discussed above, the total
shear distribution S is determined by adding the contrib-
utions due to the gpplied loading 8e, due to the arbitrary

constants s, x, + s, X, 4 so that
-S= S, + s, X, +8§, X,

5.4 Evaluation of the Integrals.

The various quantities‘whose values have to be evglua-
ted gppear as the integrals of the products of the ordingtes
of diagrams of moment (or direct force, shear etc.) znd of
Variations in structural properties (g7 .¢; j,etc). A visual
repre sentation of the stress resultasnt and structursl property
distributions will be valuable and we shall, wherever poss-
ibley draw diagrams. However, in order to draw diagrems, we

shall require sign conventions,

(8) Bending Moments. 4
We shall adopt the convention of drawing the posi-

tive ordinate on the side of the member under

09



tensile bending stress.

(b) Direct force.
Direct forces will be denoted positive if they gre

tensile,

(¢)  Shear force.

We put an arrow on each member to indicate the sense
of incregsing length coordingte. Then sitting on the membar
behind the arrow aznd cutting it in front of the arrow we
draw the shear diagram on the side which the portion of the

member in front of the cut would aopear to-us to move.

The calculation of integrals of the tyve

J‘ Y gy da
. EI

is often considerably simplified if we remember that they
are always zero if one is symmetrical ( $ ) and the other
1s entisymmetrical ( 4/8) i.e. if my, is $ and m; is

. A/S  and “‘é{ is $

5 = O
[ =

In carrying out product integrations in the general
case we shall frequently have to use an approximate method
of integration. Of the many formul se which exist for this
purpose that known as Siﬁpson's'first rulevis probably the
most convenient since it is easy to apply and is precise upto

third degres curves.

In the case of simple geometrical figures we can det_
ermine useful expressions for the product integrals. A number

of these gre given in Table 5. 1.
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5.5 Deflections at any point in g structure.

Using Castigliano's second theorem, it is egsy to
show that the deflection § at the point of gpplication and
in the direction of a load P acting on a structure is

given by

W M
6 = J‘s Esr dl& (50 3-2)

where m; is the bending moment on the released structure

due to P =1 and M the total bending moment on the 1oad-
~ @d staticeally indeterminate structure. The deflection & will
correspond to displacement if P 4s a force and to rotation

if it is g moment,.

We may use expression (5,12 to determine deflecticons
and it is to be notéd that the computation of the integral.
1s dependent upon the information already determined in solve
ing the structure plus a moment mg ,-due to z unit load
acting on the released structure at the position and in the
direction of the required deflection,

In the case of g structure in which the strain energy
includes contributions from other stress resultants in add-
ition to bending moment the expression for deflection will

include extra terms, e.g.

8: ’VW&M JASS wg N .
e dr + ks—wGA dr 4 A% (5.13)



Example Q.1

Let us now examine the gpplication of the foregoing
anglysis, in numerical terms, to g four span continuous
beam loagded as shown below. The problem itself is almost

trivial but will serve to illustrate the process.

18“' 5 " -
Shg 2%/ "'-l . f; t,
A ’;’b < nﬁs’o
, vat o e l et ’ o L o L,
! ! i i
can)
Ay X, X
o~ T {4‘&' *"’ "“(é}—éﬁ

(b

FIGURE 5°3

We .chooss to produce the statically determinagte system

by inserting hinges at the intermediate supports (Fig. 5.3 b)

so that the arbitrary constants of the problem, x, , X, ,

and X, , become the moments in the beam at these points.
If flexuréi energy only is considered we shall require for
the gnalysis only the bending moment disgrams. A tabular
method is suggested in order to represent the calculgtions

in a symmetrical way.

(a)

Determination of thedements of flexibility matrix F.

“ J oy A8
Using Table Sel, we have

=. 1 x12+_1 x24 (a=e¢=1
3x3 10x3

= 1l.333%4% + 0,8 = 2,133%
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TABLE 5°2
£, =.l xo2a+_1_ x12=2.8
2 10x3 2x3 x 1
f,, = ——if_ x12 +_1 6 = 3.0
= 2x3 2x3
£, =[ DM . . _1 xo4 =o0.4
s El ds 10 x 6 :
f5 =J m, - -
3 TR ds =0
.. '-"j m. O, ds = 1 X 12
——e = = 1,00 -
s EL ‘ 2x6 1

Hence, the flexibility matrix F isg
2. 1334 0.4 0
0.4 2.8 1.0

0 1.0 3.0
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(D) Determination of the elements of vector U.

a0, = Jsml,mmo ds
‘= 'EI_:c'éXMXB"iOJ:folgOX%'EE)J‘;E
"x 144 x 24
= - 72,0 - 72,0 - 18,2 = - 259.2
W, = - 72.0 - 115.2 - 1 x4 (d) 48
236 E}
"'é‘;:é‘g“' ‘x8x-§fux48
- 2.2

- - 1 - - 8 (4
u, ooy X4 X 4 X 48 -5}3;6—x (8 + 1) =8

-l_x6x9
3x2

)]

"'7 3.0

(c) Solution of the Matrix Equation.

Hence, the matrix equation of the problem is

2,1334 0.4 0 X, 859,2
0.4 2.8 1.0| [x,| = |277.2]
o - 1.0 3.0| |x, 73.0



The compufed auxiligry matrix (Crout's method)‘

X, X, X, =

2.1334 0, 1874 0 121.49
0.4 2.7250 0, 369 83.891
0 1. 0000 2.6331 -4,1361

and finally,

X, = 105.76
Xz = 85.4:08
X, = - 44,1361

(d) Solution of the problem

The distribution of bending moment in the statically

indeterminate structure is given by the expresston
H= m + 105.76 m, +85,408m, - 4,181 m,

This is g very simple job of superposition of bending
moment diagrams m, , m, , m ,8nd m, according to the
above expression, and get the net moment distribution diag-
Tem of the indeterminate beam. In the .same way we may draw

the individual S.F. disgrams and combine them according to
S = & + 105,762, + 85,4088, - 4,131 2,

to obtain the S.F. distribution in the beam, even though

the shear forces were ignored in the computation.
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Exgmple 5.2

Consider the encastered plane portal of Fig, (5.4a)
with the released structure shown in Fig. (5.4 b) glong with

the chosen arbitrary constgnts,

|2K
. 8 L wl ;
o t e |
— Sy L — - 1%
3‘2[.. .
' o
AJ”* rrrr 61- A-’;m » 2—‘ o}
S _._AZ_QI..Ah,L__ _ ' 1..\- ‘ xs
- (@ _ (b '
FIGURL 54
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(a) Calculation of F.

The elements of the flexibility matrix F gre computed

in the usuagl way from the exXpression

Wyl g
TR s
g = |78

where only the flexural strain energy is being considered.

Let EI = 100 units
Thus, the computed flexibility matrix

0.50 5.25 5.00
5.25 67.50 52.50
5.00 52,50 86.67

e
u

(b) Cglculation of u’s

m, m :
u, =J 2 ds
's

EI
Thus,

20,49
u = 279,22
570.56

"~ (c) Solution of the matrix equation

X, X, ' X =
0.50 5.25 5.00 -20,49
5.25 67,50 62.50 -Z79.22

5.00 52,50 86.67 ~570. 56
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The auxiligry matrix

X, X, X, =
0.50 10.50 10,00 -40,.98
5.25 12.73 ¢ - 5.18
5.00 0 36.67 - 9.97

and the fingl matrix

x, = +113.11

»
X3
1}

- 50 18

3 - 9.97

which gives the values of the redundant reaction compo-

nents and hence the solution of the problem.
Example 5.3

- Consider the three bay pin-jointed plane truss shown
in Fig, (5.5a) carrying the loads indicated. The structure
carriles the loads by a system of direct forces only isv the

members and is therefore three times statically indeterminate.

The structure is made statically determinate by cutt-
ing one diagonal member in each bay (Fig. 5.5b), so that
1t becomes a straight-forward process to write down the
Values of the forces in each of the members. Since the forces
are constant glong the members it is sufficient in this case

to indicate the value and sign (Table 5.4). Following the
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by

usual procedure we next determine the stress distribution
due to the application of unit values of the arbitrary cons-
tents which effects are again indicated by value and sign
(Table 5.4). - |

(a) Determination of F,

The elements of the flexibility matrix F will be

determined by consideration of direct strain energy only,

: ' - i Wi
te . ;. =
¢ 5‘1 L EA &

Let the fraome be assumed to be made of membérs of simi-

1l ar cross-section with EA = 1.
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Thus
B : -
I OB - o |
6 2401+ &) 6
R 6 . 24 (14 ) |

(b) Determination of wi

s
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and we éalcul ate

_ ( 1920 + 960 [z )
1680 + 780 (=

The matrix equation of the problem becomes

X, xz xS =
57.940 6.0 0 277.63
6.0 57,940 6.0 - 833,96

It has the auxiliary matrix

X, X, X, =
57,940 00,1035 .O 56,569
6 57.312 0. 1046 -20,470
0 6.0 57.312 -46,416

and the final matrix

XI 1 + 58. 185
X, = = 15.615
X, = - 46,416

(¢) Solution of the problem

In the usugl way, the solution to the problem is
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obtained by determining the final stresses in members

from the expression
N=m +n, X, +n, x, + n, x,

This gives the finagl force distribution shewn in
fig. 5.6.
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FIGURE S5°06

The gbove problems belong to the very glementary class
of indeterminate structures, but have been solved here only
to illustrate the gpplication of the flexibility method.

For more complex problems the evgluation of the flexibility
influence coefficients becomestoo cumbersome and laborious
task, in which cgse the stiffness method (to be discussed

in details in the next chapter) proves to be most convenient,
since the stiffness influence coefficients are very readily
obtained. However, the flexibility method is of particuiar
significance for solution of indeterminate piﬁ-jointed
trusses having few degrees of redundancy, for, in such ‘
cases the flexibility matrix is egsier to assemble and salso
it is of a much smgller order than that of the corresponding

stiffness matrix of the problem,



CHAPTER 6

STIFFNESS MATRIX METHOD
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The techniques described in the present chgpter are

methods, in which all internal forces and moments are ex-

pressed in terms of joint displacements and rotations, and

the latter are found by solving the matrix equation which

is obtained by considering the equilibrium of joints. This

group of methods, however, possesses certzin advantages,

since the stiffness matrix equation of a structural problem

is comparatively much easier to assemble.

We shall consider, for our present discussion, only

the structures composed of straight uniform members joined

at their ends (although much of the analysis is spplicable

to non-uniform cases also) and the analysis will be restri-

cted to problems in which the external loading consists of

forces and moments gpplied at the
no regl loss of generality, since
at points between its ends may be
"fixed-end" -forces and moments gt

without affecting the stresses in

joirits. This involves
any loading of a member
repl gced by eéuivglent
the joints themselves,

the rest of the framework.

When the displacements and stresses due to this equivalent

loading have been evaluated, the actual stresses in the

loaded member may be found by simple super-position.
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6.1 Notation

The basic unit of a plane rigid frame is a straight
uniform member of length L , cross-sectional area A,
and flexural rigidity EI, It is convenient in diagrams to
place an arrow on the member to denote =2 specific direction,
which may be chosen arbitrarily, and the two ends are then
denoted by suffices 1 and 2. The positive directions of
'the three displacement coordinates Xy ¥ and 0 at egzch
end are shown in Fig. (6.1 g). The displacements of the two

ends are then denoted by single symbols, D, and D, , where

Fx1 ’—Xz-‘
D = Y, and D, = v,
_QI ga_‘

Simil arly, the loads spplied st the ends of the members

are represented by single symbols, F and F, , where

', ] ',
F, = S, and F.‘,_ = Sz
M, M,

In the rest of the discussion of this chapter the terms

"displacements" and "loads" will be tasken to mean column

vectors of the above type.

When considering a structure formed of connectéd mem-
bers, the displacements and loads in the fingl set of equé-
tions will be expressed in gz single reference frame X, y',

6 cho sen arbitrarily for the whole structure (normally



we take aXes x' and ¥y’ along the horizontal and vertical).
Primes will be used to denote such overall " system coordi-
nates". It could easily be seen by a simple geometrical
argument that D, and D, can be expressed in terms of D

and D, asg

D, =TD, , D, =TD, | (6.1

»

Similarly the end loads, F, and F, , are expresAs‘e’d

in system coordinates by F, and F,' as’

F, =TF , F =7TF (6.2)

2 kX

where T 1is the orthogonsl transformastion matrix given

by -
Cosx Sina 0

T =]- Sin« Cost O

| O v} 1

=

- o Dbeing the inclination of the member to the x'-agxis.

The inverse of T

-

Cost -sink 0

T = Sin« Cos« O

0 ¢ 1]
- €nables us to carry out the reverse transformation e.g.,
D" - T D‘ etcg

It will be noticed that the inverse of the orthogonal

transformation matrix is the same as its 'transpose', -



the matrix formed by interchanging rows gnd columns.

When discussing g structure composed of several
members, an additional suffix is required to denote g
particular member, Thus, the diéplacement of end 1 of
member (3) is written D,, . In order to svoid confusion,
Square matrices, which already ahve two suffices, are
placed in brackets before the member suffix is attached;
that is, ( X,, ), is a matrix associsted with the third
member. It has also been fouhd convenient to mark the
joints separately. Joint loads and displacements are rep-
resented by the symbol P ang Ay respectively, these,
of course, being measured in the general reference frame
(primes are discarded here since there is no possible
ambiguity.) Thus if members (1) and (2) meet at joint B,
the end 2 of member (1 being rigidly attached to the
end 1 of member (2) , the equétions of compatibility and

equlibrium at the joint B will be written
Dy = D;' = Dt]z s, and

P

il

! t -
B Fu + Fiz

6.2 Loa -Disnlacemént.Eguations for a Single Member.

Using the gbove notation, the equations connecting
the quantities D, , D, and F, and F, now have to be est-
ablished. In order to obtain the equations for g member with
arbitrary loads acting at each end (these loads, however,

being such as to keep the member in equilibrium), consider

the two following cases ang then apbly the principle



of superposition.

Clamp end 2 of the member shown in Fig., (6.1,
(i.e. D, =0), and then apply a load Q,to end 1; the sinBe
theory of bending gives

Q,: K“ D‘ )
r" -
where K, = EA o] o]
L
0 12EI 6EL

L3 1’

0 ~BEL 421
L L L

Also, from the conditions of equilibrium,

Q.- = ?\m Qi
(.1 0 0]
Whe re A=
0 -1 0
L L -1

Similarly, clamping end 1 ( D, = 0 ) and applying

a load R, to end 2, gives

RZ. - KZ.?. pa ?
Where
FEA 0 o |
L
Kz'z_. = 0 X -
L3 n?.
0 —6El  _4KI
B L* L |




and from the conditions of equilibrium,

R, = 2A,R,
whers
-1 0 o
9\5:. = 0 -1 0
0 -L -1

Combination of the two cases gives

- F = Q+ R, = Q + 7\1132 =K, D, + ?\n_KZ'L D

2

and, F, = Q+ R, =2,Q+R, =NK, D, +K, D,

2
If K, and K, are now defined by the equations

K 12 = '>\|7.Ku

then [_E_J _ {_Ifg,, %_Ifiz___} [_?L_J (6.98)
F,_ qu ! K?.?. ’ Dz

This matrix equation gives the end loads in terms
of the end displacements for g3 single member in its own
reference axes. This cannot be solved for D, and D, ,
since the matrix formed by the four K- matrices is sing-
ular; this is to be expected, since it is obviously possible

to give the member an arbitrary rigid-body displacement.

In order to write down conditions of comp atibility

and equilibrium at the joints, it is nece ssary to express

{9



all end displacements and end loads in the general reference
frame of the system. The next step is therefore to determine
the form taken by equation (6.3) in system coordinataes.

If x', y', are the system coordinates, as shown in Fig,(6.18),

substituting from egns. (6.1) and (6.2), eqn. (6.3) becomes

i

I

F/| T Ky, T T K,T| D, |

or, defining K{; by the relationship

/

T XKyT =Ky 5, (i, j, =1,2) (6.4) =
we have
] ke k] [
= (6.5)
=y (K Ko [ D]

Using Eq. (6.4) the four K'-matrices of Eq.(6.5) are
obtalned, the coefficients of which have been tabulated and
given in Table (6.1).
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6.3 Anglysis of g Plane Rigid-Jointed Framework-

Consider the str- % ‘F;__. <
3

ucture shown in Fig,(6.2) AT ' ¥
X RS
which is acted upon by ,_{‘___ e

loads Py and P , as

sghown. Eq.(6.5) can be

written down for each FIGURE &9

memnber as follows =

BE K, K.
F|, K, K.

- . L 2

i -DZ-JL

where 1 may denote member 1, 2 or 3.

The conditions of compatibility and equilibrium at

the joints gre

D,, = 0, D, =D, = A,

B, = D, = 4e , D, = O
and

F; + E; =I Py FZz * Fé =F .

Substituting these expressions in Egs. (6.6), we

Obtain

Fl: = ( K,iz )1 As (6.7)



P, (K )+ CKY), (Kn), s,
= i ' , (6.8)
Pc (Kz| ).,_ (K 22 )7_ + (K ] )5 Ac,
also written as, P = KA : (6.9)
F;’& = ( K,Q‘ )3 A¢ (60 ]O)

The Eq. (6.8) is called the stiffness matrix equation
of the structure , the matrix of'coefficients being called
the stiffness matrix of the structure. The elements of this
matrix are often referred to as the stiffness influence

coaefficients.

The matrix equation (6.8) forms a set of six lineasr
equations_for the six degrees of freedom of the structure.
The stiffness matrix is non-singular, and the Eg.(6.8)
can therefore be solved for A and A.. When this has been
done, ZEgs. (6.7) and (6.10) give the redundant reactions
at A and D, or, alternatively, dquations (8. 6) enagble

all the lnbernal forces to be determined.

6.4 Somg Practical Detgils of the Method-

Table 6.1 givesAthe‘coefficients of the four K'-
matrices for a member inclined at angle « to the x'-axis.
In the majority of our structural prohlems,'a large prop-
ortion of the members will have the simpler matrices ass-

ocliated with the values « = 0 , « = 900.

7

Referring to BEg. (6.5), the matrices K, , Ki, ,

may be described as "direct"- stiffness matrices, relating



the load at one end to the displacement there at, while the
matrices K,, , K, , are "cross"-stiffness matrices, rela-
ting the load at one end of 5 member to the displacement

at the other. Using these ideas, it is quite easy to build
up the matrix equation (6.8) for the structure, directly
from the stiffness matrices of individual members, without

first writing down the Egs (6.8).

Consideriyg the stiffess matrix K of Eq. (6.8),
the leading diagonal coefficient matrices are found to be
the sums of the direct-stiffness matrices of the members

meeting at the respective joints.

The term ( K, ), + (Ky ),, for instance, represents the
sum of the direct-stiffness matrices of members (1) and
(2). The matrix ( K,,), sppears because member (1) has end
at the joint B; member (2) has end 1 at the joint and is
therefore represented by (K;;)L o Similarly, the coeff-
icient matrices away from the leading diggonal represent
cross -stiffness effects due to the deflections of the other

Joints,

For a structure with any number of Joints, the matrix
equation takes a form similar to (6.8). In the equation for
a given joint, the coefficient matrix on the leading diagonal
ls the sum of the direct-stiffness matrices of the members
meeting at that joint, the matrices chosen being either K/,
if the joint is at end 1, or Kj, if at end 2 of the

member., Coefficient matrices away from the leading diagonal
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represent the effects of all other joints directly coupled

to the one .considered.

It will be found in practice that, if the diagram
is first 1abelied with arrows shqwing the direction of all
the members, the synthesis of the stiffness matrix K for
the whole structure, from the K'-mattices of the individugl
members is g straightforward process. As o check,} it is
useful to remember that the eleménts of the stiffness matrix
Ky for any structure, must sglways be symmetrical about

the leading diagonal.
6.5 Space Fromes.

The above gnalysis may easily be extended to cover the
problem of rigidly jointed frameworks in three dimensions.

Each joint will have six degrces of freedom- three componants

of displacement and three of rotation. The load and displac-

ement column-vectors will hgave their full six omponents,
while the four K-matri_ces of Egn. (6.3) will be square mat-
rices having six rows and six columns. The orthogonal trans-
formation matrix T will also be more complicated, taking

the genergl form

b; 0

’
0 L

where {;; represents the matrix of the direction cosines
of the new gxXes referred to the old., With these extensions,
the analysis becomes identical with that presented for planar

structures, o é 2/ 3? T7

(ENTRAL L5720 gne i vl ROORKEE,

DNAN. Wl
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Matrix methods provide a genergl gpproach to the ana-
lysis of complex space frames, although it must be admitted
that the computational work is extremely 1laborious when carr-
ied out by hand. In practice the large scale matrix cperations,
involved in the analysis, are normally carried out on gut-
omagtic digital computers. Keeping in view the limited scope
of the present work we shall not take up the detailed dis-

cussion of such complex problems.

6.6 Modification for Hinged Supports-

In order to lessen the redundancy of a rigid structure,
it is often fixed to its foundations‘by pin joints. For
instance, the effect of pingjointing the ends A and D of
the structure represented in Fig. (6.2) would be to alter
the compatibility dquations at those points. If the structure
is connected tc the hinged support by a single member, it is
possible to modify the stiffness matrices of The member,
and then consider it as if it were rigidly enchored at the
hinged end. This is g more general case of the modification
of the "ecarry-over" factor for a pin-supported member in

the moment-distribution method.

Consider a member hinged to a rigid foundation at end

1 ; then Eq. (6.3) may be written in expanded form as

N, o
Fl = 81 = K" O + K 2 D& (60 ll)
0 | Kl
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Ft = KZ{ O } + Kz-)_ Dz (60 12) -

Eq. (6.11) gives, considering the 1ast of the three

Scal ar equations,

0
7 | -6EL 2EL| p
0 = {o §%§ ﬁ%;] 0 *[O T 1 ] 2

&

wrich, by siinple manipulation, gives

Fo- 0 0 0-

0 = O 0 Da =Xz DZ
0 0 -3 -3 |
_.'- L 2L i

where x, is defined by this aquation. Substltutmg k=
‘this in Egs. (6.11) and (6.12) we obtain

F, (K, + KX )
= | | D, (6,13
Fa. ( K?_'z + K?J Xq_)

or, defining modified matrices as K} and KY , Eq.(6.13)
can be re-written gs
F, K,
= | D, (6. 14)
F?_ K:z

in which form they are similar to the equation for g rigidly-

encastered member,

For a member with end 2 hinged, the analysis is



similar. The matrix X, comes out to be

0 0 o |
X, = |0 - 0 0

0 - 3. -

L 2L * .

and the modified matrices KU |, KR , are defined by the

equations
K ‘I’i = K W + K 1 X,
K‘z" = K 24 -+ K'zz X,

The components of these modified magtrices have been
evaluated and are being given in Table 6.2, herewith. Trans-

formgtions of these matrices follow the normal rules.

In cgse of a3 joint where two or more members agre rigid-
1y attached to each other and the joidt as g whole is pin-.
anchored (as, for instance, at the end of a bridge tfuss),
modifications on the above lines become impracticable, and
the method suggested here should be adopted. If the joinﬁ
displacement is A%, where X5 3 ¥s take prescribed zero
values, and the gpplied moment Mg is also zero, thg three
Scalar equations for the joint should be constructed gs if
1t were a normal one. The first two equations (contalnlng
the unknown regctions) should then be discarded, together
with a1l coefficients of x%\ and ¥ occurring in the

other equations. Thus, one equation will be added to the set
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of load-displacement equations, corresponding to the extra
variable 6s. This problem shall be discussed Yater in thi;

chapter, when we shall solve numerical example of a bridge

truss.
— ] .
! EAfL o ©
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o | K., o Tt
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P !
N R
Lo _ o o
TABLE 62" (MODIFIED MA TRICS)

6.7 Mogifications of the Genersl Theory.

The analysis so far hsas éﬁpiied to any structure with
rigid joints, Its gpplication to certsin classes of problems

more common to a structural engineer, will now be considered,

6.7.1 Continuous Begms,

In the case of a horizontal continuous besm with only

vertical loading, Eq. (6.3) may be gpplied directly, since

.

all the member and system coordinates may be made to coincide.

Furthermore, all deflections and forces in the x-direction

will be zero, and hence the first scalar equation of each of



the malrix equations (6.3) becomes identicslly zero. Hence,
the K-matrices become 2 x 2 matrices, and D and F vectors
will have two componénts. Equation'(G.B) for a member of 2

horizontal continuous beam cgn be written out in full gas

follows.

] [ 228 eEmr 1 12ET emr [ ]
SI L3 L'Z |' L3 Ll \dl
N
M, 6EI 4 | - SEL 2EI || ¢

= L ____ L ___ T R L_ (6. 15)
5 12E] 6EL |  12EI 6EI
B T e
|
M 6EI oEI | 6EI 4FT
: T T ! T T %
] L ! L2

It may be pointed out that, by this method of analysis,
an allowance can easily be made for the effect of el astic
supports. To illustrate this effect, let us consider the beam

on elastic supports shown in Fig.é. 3,

P R Py
W (€2 . 3
\?} 2.

FIGURE '3

x

i

Ny AN N NN,

The applied joint loads (which are the Same as fixé&Q
end loads with opposite sign)'each comprise of a3 force and
a moment, and are represented by the symbols P, , P and B, ,
while the symbols R, , R. and R, represent the forces
and moments applied by the elgstic supports located, in the
present problem, at points B, C gnd D respectivly. We shall

assume that at each of the elastic supports the vertical »m



ragetion is ky times the vertical displacement of the Joint,

while the reactive moment is ke times the angular rotation.

We can write down the Egs. (6.3) for each span. If the
displacements of the joints B, C sy D are 4, , acy, &p

respectively, we have the following compatibility equations

24 = D 2 = Dy ’
DZ?_ - D 13 = Ac, L)
and D,, = Ap

We aglso have the following joint equil ibrium equations

F, + F,- = P, - R,
F,, + F, = P. - R,
Fz,s = PD - R D

the reactions RB', R. 4, R, , being given by

where Z 1is the stiffness matrix of the supports,

defined by

0 kg |

b

By usual substitution, we get the load-displacement

equations in matrix form gas follows,



PB FZ + (qu.), + (X i )z (Ki'z ):. 0 ] rAe.
P.| = (X, ), Z2 + (Kp,), + (Ko, (K,,), ||a.](6.16)
P, 0 (K, ), Z +(Kn )| 8y

In the agbove matrix equation, the stiffness matrix for
the complete beam could easily be obtsgined by direet synthetic
process and the equation (6,16) solved for the unknowns
bgy ey spe The effect of the elgsticity of the support B )
for instence, on the stiffness matrix of the complete struct-
ure is to add, to the diagonal term for the joint, a term

Z wnich is the direct stiffness of the support at B.

If we consider, in the above examﬁle, that the supports
are rigid ( ky , kg—~=) in which the displacements of the
supborts all tend to zero, the joints B, C, D hgve only rot-
ational movement 6,, &, QD..The goplied joint loads will only
comprise of the equivglent fixed-end moments Mg o Mo 5 My

Eq.(6,3) will adopt the simple form

M, 4EL 2EL 0,
= 221 L (6.17)
_ 4E1
M, L 1 0,

Eq.(6.17) is seen to be the slope-deflection equation
for a span of g continuous begm with rigid supports, —
2ET being known to be the cross-stiffness coefficient for a

L
member of uniform cross-section.



6.7. Pin-connected Frames.

The analysis of redundant pin-connected frames is a
s¥raight-forward specigl case of the genergl theory. It is
clear that a pin-jointed frame is equivalent (for stress
anglysis purposes) to alrigid-jointed frame whose members
have zero momehts of inertiaz. In analysing such a frame, the
third scelar equation at each joint may be discarded, since
no moments can be agpplied to the frame znd the joint rotat-
lons are irrelevant, Hence, end-loads F', and diSplaéement-
vectors D', become 2-vectors, and the K-matrices are reduced

to the simple form

rEA 0
L

K" :Kn =
i 0 G
_ma 0
L t

K, =K, =

In view of this simplification,

RA N 2 12

K, =K, = K , K, =K, = .K.

The transformation matrix T is now given by

COS sine

T (6., 18)

-sin« COS o
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and Bq. (6.5) becomes

B/ K! - K! Dy
F, -K! K D!
wherg
- Cos'w Coso Sin«
K- Tk = £A . | (6.20)
Cosa Sine Sine

Replacing Cos« by N\ gnd Sin« by My for a pin-
ended truss member the matrix equation (6.19) can be written

dom, in fUll s 35S

N/ [ A X o] Tx:]

S e T
= —ph (6.2

N;_ -~ — W ~ 7\/& X;

5. R R A N R

The method of solving any (determinate or indeter-
minate) pin-connected truss will be preéented and discussed
in detgils with reference to g simple example of a pin-
jointed frame. The method is essentially tabular in nature
and consists in setting up the 'complete' matrix of stiff-
ness influence cdefficients relating the joint forces and
displacements;iAs soon as this matrix has been framed, the

solution for node deflections, external reactions, and

separate member forces proceeds from routine matrix operations,
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already described in Chgpters 2 gnd 4.

Anglysis of a Simple Truss.

When the stiffness expressions (like Eq. 6.21) for
'individual members of g structure are known, the stiffness
of an assemblage of such members may be formed. A simple
exXample 1s represented by the truss in Fig. 6.4. The garrows
on the members in the figure are inserted to show their
positive x-direction which is g very convenient way of

distinguishing ends 1 and 2 of a member in a diagram.

FIGURE G*4.

For simplicity it is assumed that a11 members have
equal values of A and B, The stiffness matrix can be
- 2
developed by first determining X', p“and w and then *

;‘f and AP for each member -~ this is done in Table 6. 3.
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It is now desiragble to form the stiffness matrix for

the complete truss. This is the principal task that the

engineer must perform in the analysis, and, as will be seen,

it is routine.

Eq. (6.21) for the complete truss can .

directly from Table 6.3. The result will be presented first

and then explagined in some detail.
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The first element in the first column in the square
stiffness matrix of Eq. (6.22) representé force N! due
to x| , and the second element represents force S! due
to x/ . Similar explanations apply to the remainder of
the column, Similarly, the second column represents these

forces due to displacement y' , and so on for other col-

uns. Two checks can be gpplied to the stiffness matrix. First,

it must be symmetrical. Second, for each column the sum of

the N'-forces must vanish gs must the sum of the S'-forces.

In our problem, nodes 1 and 4 are fixed so as to
prevent any rigid-body motion of the frazme, whereas nodes

2 and 3 are kept free. Eq.(6.22) can be written as

—

N, | | [ x: |
Sz Y,
N, X,
s Ko | Kol | ®
..... S T N S N A (6.23)
N; Ky | Koo x' =0
S yvi =0
Ny xt =0
| Sy | ¥e =0




in which K, «... K,, are the sub-matrices of ( X ) and are

obtained from the K -values of Eq.(6.22), For example,

/
o 0 o]
. 1+z{{ i
o e
2z 27 Y -1
= B ' _t
Ko=—241 o 0 tiE i
1
i 0 -1 36 \+~2lr£d
r -
-1 0 . _
24z 2 {2
‘ 0 0 S 1
Kz\ = _E‘A 207 27T
a
] i
2@ e -1 0
) )
B 0 0 |

In Eq. (6,28), N! , 88 , N , 8! , are spplied
loads at the free nodes 2 and 3 of the structure, 'whére-
as the other forces are the unknown externsl reactions at
the support points 1 and 4 , and x! , Y, s xL 2V
are the unknown displacements. Solution for the unknown
quantities results from expanding Eqg. (6.23) into the foll-

owing two sets of eguations:

TN,’,“ ’—x'z-
S. | - v,
N; = [K,] z! (6.24 g)
..S;J _y;_[



and

Nil X'z

S/ A .

1= [K.)] (6.24 v)
Na X;
L S‘;J yz:J

The values of unknown daflection .components are com=
puted from Eq. (6.24 a) which when substituted in Eq., (6.24 b)

give the vglues of the support reactions.

The final step is that of determining truss member
forces. Let us consider a general member i of the frame
having end loads and displacements as shown in Fig, 6.5

below.

’ ’
N =X;

! FIGURE 6'S i

It is easy to show that direct force in the member

is given by

Pij = Ni-wny = -ELA‘{')\(‘X‘.L'—I_{') +/-(ﬂg¢'v«4,'-)} (6.25)



Compressicn is denoted by a positive sign. Such a
rel gtionship spplies for each member of the truss. Because
displacements are known in terms of applied loads from
Eq. (6.24 3), the member forces can be computed from

Eq. (6.25).

In the present problem, if a downward load of 5 kips.

is gpplied at the node 3, the Eq., (6.24 g becomes,

!

X, A N
1.3535 -0.3535 0 0 = 0
 _0.3535 1. 3535 0 - 1.00 0
0 0 1.3535 0.3535 0
0 - 1.00  ©0.3535 1.3535 5,00
which hags its guxiliary matrix
X, A X, A =
1.3535 -0.2611 0 0 0
-0.3535 1.2612 0 -0.7928 0
0 -0 1.3535 0.2611 0
0 -1.00 0,3535 0,4684 10,6746

and the fingl matrix



X, = 2,2096 .ﬁ_
v, = 8,4628 Ei"
X, = -2,78TI .}_ﬂL
v/ = 10.6746 -ﬂ—-

Member forces as determined from Eq. (6.25) are

P, = -2,2096 Kkips.

P, = +2,7871 Kkips.

P, = =-2.2118 kips.

B, = % (2.7871 - 10.6746) = -3,9437 kips.
P, = % (-2.2006 + 8.4628) = + 38,1266 kips. .

Eq. (6.248) on substitution becomes

2,2096 8,4628 -2,7871 10,6746

(v ] [-1.00 0 _0.3535  -0.3535 ]
s! 0 0 -0.3535 -0.3535
N, i -0.3535 0.3535 - 1.00 0
A 0.3535 -0.3535 0 0

L M4 L d

from which



N, = -4,007K N= +4.9976K
and

s = .g,7883K L .2,21058

e

These are the four reaction components at the support

points 1 gnd 4.

The method described above is most useful in dealing
with highly redundant trusses, where the number of members
is large and the number of joints small. It is obviously not

sultgble for analysing staticzlly determinate trusses.

6.7.3 Rigidly Jointed Frames.

It is obvious that a direct application of the general
method, described under Art. 6.3 and 6.4, glways gives three
equations for each joint, corresponding to two degrees of
freedom in displacement and one in rotation. The stragins
produced by axial foTces are sutomatically included whether
they are important or not. This may be désirable in anaglysing
rigidly jointed trusses (which gives primary and secondary
stresses combined), while in other frameworks, it may be an
unnecessary refinement, In the lgtter case when the frsme-
work is composed of inclined members al so, the general theory
will be gpplied. The only modificstion needed is that the
terw EA is put equal to zero wherever it occurs in the X'-

matrices of Table 6. 1.

In the case of rectangular building frames, if the

axlal strains are to be ignhored in the anaglysis, the vertical



movements of all the joints will be neglected and the hor-
izontal movements of joints at one storey level will be
equagl. The modification in the genersgl theory needed for
anaglysing such frames agnd the procedure for obtaining the
stiffness matrix of the complete frame directly from the
stiffness matrices of the individual members shall be

discussed below.

Such frames are composed of horizontsgl beam members
and vertical columns. Since the verticsl movement of the
Joints is neglected, the beam members will hagve their stiff-

ness matrix equations of the form

M, Fku K X,
,,Mz k,, k,, X,
were [k, k] [SE-  _2EL
. = (6.2.6)
2H1 AET
_kll kz:»] i L L _]

the member being of a uniform cross-section throughout

its length,

Let us consider a column
member 12 whose upper end, 2
has g positive horizontsl dis-
placement relative to the low-

er end 1. The matrix equation

of- the member will be of the

— e e e e ———— = — o -

FIGURE 66
form o



- - - - - -
P! k i k 2 kla Xy
P| = k,, k,. k,, X,

i sz L Ky, K. kas_} _Xs |

where the elements of the stiffness matrix are the
coefficients in the slope-deflection equations for the mem-

ber. Thus,

B - -
k, k. k| |2 2 6H
L L L
k, k, k|=|—<_B 4B  -GEL (6.27)
* L L L
GEl ehE] -12EI
R s s

Shear at the end 2 is - Pa.

The method of obtgining the stiffness influence coe-
fficlents for the complete structure will be clear from
the followlg simple example of g two—-stor‘eyed, single bay

portgl frame shown 'in Fig, (6.7 2).

£ () (273 re - TN Fa ry - \ P‘ “Ka.
-— - L ] L R o p—j— e o
. (A ) (‘))'
| P :
(S 2] : Ps-xs5 /] I ‘\ Pa-xa
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|
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| ! L,
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FIGURE ©'7



The stiffness matrices of beam members (3) and (8)
will be of the form given in Eq. (6.26) and those of
the column members (1, (2), (4) snd (5) being given by
Eq. (6.27)., The load-displacement equations'in matrix
form P = KX are readily obtgined from the stiffness
influence coefficients of individugl memﬁers. This is given

by Bg. (6.28)

X Xa
(K22), +(kndy + (k..); (ki)s
(kads (k;;),%kn)ﬂ (kw)s
(kai)a o
© A | (Ka)s |
=(ksa),+ (kai), - ~ (k32 t (ks)s
- (k3 ), ~(kas
E

As g check, it should be noted that the matrix K
1s symmetrical.

6.8 Pchedure.

In gpplying the stiffmess matrix technique, described
in the preceding articles, to the analyéis of indeterminate

structures, one proceeds as follows.

1. Assume unknown deflections (angular rotations, horiz-

ontal, linear and vertical linear)at all,

100



~ 101

Joints that can hgve deflections., This includes
gssumed sidesway deflections in rigid frames. There will

be n unknown deflections.

(We do not.assume deflections at points that cannot
deflect., Thus a hinged end can have only an angular def-
lection gnd not linegr. A rigidly encastred end cannot
have deflection of any kind. This assumption is necessary,
since otherwise the determinant of the stiffness matrix

will be zero and the inverse of the matrix undefined.)

N Assume g load acting at each jointcorresponding to the
assumed deflection - moment for angular deflection, force
for linear one. There will be n loads, all of which are

evgluated gs the egquivalent fixed-end loads.

3e Compute the elements of the stiffness matrix K for
the complete structure from the stiffness matrices of the
individual members. These will be the alements of an n x n

symmetrical matrix,

4, Solve the matrix equation (6.9) for the unknown

deflections,

5. Knowing gll the deflections and using the relation
(6.6) for every member, determine the interhal stresses at

all key points in the structure.

6. The solution obtained in step 5 1is then superimposed

over the fixaed-end solution of the structure.
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6.9 Miscell aneous Problems,

The stiffness matrix technique described in the pre-
ceding articles can be extended to other classes of str-
Uctural problems glso. These problems being of highly
complex nature can be attempted with this technique only
when automatic digital computer facilities are avail gble
to the structurzl engineer. Two of the more common types

of structursl problems are considered below.

(a) Arch Rib Analvsis.

Consider the arch rid shown in Fig. (6,8 z). The arch
structure may be represented by a series of straight be am

segments between the load points.

(V) simPLE ARCH RIR

(b)) SEGMENTEP AKROH RIB

FIGURE 68 B

[N S —— . - . - - PR PR,
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The deflection and loading (i.e., P-X diagram) of the
structure may then be represented by the system of coordin-
ates shown in Fig. (6.8 b). 23 csordinates are required for
the stiffness matrix analysis. Moments, shears and axisl

thrusts may be computed at each end of each segment.

(b) Natural Mode Anslysis,

Most civil engineering structures are not analysed
to determine thelr response to dynamic forces, there being
two exceptions. First the structure which is analysed to
determine the effect of earthquake forces upon it gnd second,
the structure which is designed to resist the effect of g
bomb blast. In either case, the cglculgtion of the dymnamic
response of the structure to a transient load is easily
performed if one first obtains the natural frequencies and
mode shapes for the structure., The mode shape anglysis is
easily carried out using the K matrix obtained for the
deflection calculation. Iterative procedures which convergs
on the lowest mode give best results. The computations must
be performed on @utométic Digital Computers, which will be
dealt with in the next chspter.
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Example 6,1

We shall now gnalyse the continuous beam shown in
Fig, 6.9. It will illustrate the stiffness matrix technique
described in Art. 6.7.1.

T

RELATIVE sTivPnesy 157'2 P 1904 X2 = @ N R T =@ ]
f T ! : ‘
1 FIXED END -z r‘ééi—r:i'ﬁ 156 -z FAT-SENY. ]

MOMENTS, . !

UNBALL ANCEP + 36 Y120 -124 +2
I JOINT mMmoOMERNT, A =) : c o)
e = S U

Ficgureg e "9

From matrix Egs. (6.17) for individual spans, the com-
plete set of equilibrium equations for the entire beam is

obtained as given below.

QA 95 . QC gb
12 6 0 0 + 36
6 12+20 ¥ 0 ' + 120

0 10 20+8 4 - 124
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The guxiliary matrix is computed to be

=

12 0.5 ) 0 3.00
6 0, 3448 0 3.5172
0 10 24,552 0.1629 -6,483
c 0 4 7.3484 3.801

and finglly the values of 95 gs
+ 0.017 + 5,966 -7.102 + 3.801

Once the joint deflections have been evaluated thus,
the calculation of moments and shear forces are quite simple.

The calculations for end moments are given below.

kips-ft.
N, =-3 +3(4x0,017 + 2 x 5,966) = 0
My, = #3 + 3( 2 x 0,017 + 4 x 5.966) = +107.69
M, =-156 + 5( 4 x 5,966 - 2 x 7,102) = -107,70
M, = +156 + 5( 2 x 5,966 - 4 x 7.102) = + 73,62
M, =-32 + 2( -4 x 7,202 + 2 x 3.801) = - 73.61
MDC =+16*:2(—2X7,102+4X3.801) = + 18
MDE - 18

Equilibrium of the joints is the check on the acecur acy
of the gnalysis. It will be noted that the sum of the moments

at all joints vagnishes.
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Alternatively, let us solve the above problem by
modifying the stiffnesses of the end spans AB and CD
according to the modification given in Art. 6.6. After mgk-
ing this modification the ends A and D shall be trested as
fixed. But the fixed-end moments will also have to be modified.

Joint, A B c D

Normal -6 +36 ~-156 +156 -32 +16 ~-18
f ixed~-end : '
moments, +36 +18 , +1 +2

Modified
fixed~end
moments, 0 +54 -156 #156 -31 +18 -18

Unbal anced
moments. +102 =125

The modified equilibrium equatibns now become

98 9¢,
o + 20 10 +102
1€ 80 + 6 -125

which has its guxiliary matrix

Oa 0. =
29 0.3448 3.5172
10 22,552 -7.1023

and finally
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+ 5,9661

7.1023

End moments are calculated as usual

Mg
MBA
Mae
Mg

Mep

M

D<

Moe

2y P

Il

1l

I

I

]

ine

0
54 + 3 (3 x 5.9661) = 107.69

- 156 + 5(4 x 5.9661 - 2 x 7,1023 ) = =107,70

+ 156 +5 (2 x 5.9661 - 4 x 7.1023) = +73.615

- 31 +2 (-3 x 7.1023) = -73.614

+ 18

-18

values of end moments are found identical with

those obtained by the previous analysis.

If now the end A of the above beam is assumed to

be fixed, the equilibrium equations will be obtained by del~

eting the first row and column from the original matrix

equation. Thus,

12 + 20

Os

10

6c G, =
10 0] + 120

20 + 8 4 - 124
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The auxiliary matrix is computed to be

32 0.3125 0 3.75
10 24,875 0,1608 -6,4924
0 4 7.3568 3.8018
which gives
8 = + 59699
% = - 7.1037
& = + 3,8018

As usual, the‘computation of end moments from these
values of joint rotations follows from the slope-deflection
equations for various spans. The computed values are given
below.

(K-£t)

+107.638
-107.639
+73,628

o
>
i i T

T

-73,622

I

+17.999

= = n.'.'f-." =
v

DE = -18

For each subsequent ¥ loading condition, only the last

column in the aguxiliary matrix has to be re~-calculgted and

from it the final matrix, giving the values of the unknown
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joint rotations. The end moments are then calculated with

these values.

Example 6.2

MAnalyse the simple building frame loaded as shown in

Fig. 6.10 (a) below.

1€ w
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« ¢+ '@ v T, he + +
- !
- ‘ + K]
=] T A ons O 13 40 ¢ [
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Following thé method given in Art. 6.7.3, the stiffness

matrix of the complete frame, corresponding to P-x vglues

assumed as shown gbove, is gssembled as given below.

X, X2 X3
Ckas) gt (Kt pp 6 C ko
o Ckideo Ckaadew
Ckadep Cka)eo {thl)bn"(kn)cu
+ (kodpe
o o (K g
“(k32jae lkadeo (k) ep

§

X4
()

Le]

(& )os

(ku)oz

W

X5 =

( ks3)an
( k‘&)(o

( ka.h)bp

o

-k 53)Ag (.k M>t.p

2
P2

3

Ps
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The given matrix of the problem thus becomes

X, X, X, X, X,
9 9 v -y
0.35 x 10 0 0, 1x10 0 -0.125x10 0.3x10
9 8 12
0 0.16x10 0,8x10 0 -0.1 x 10 0

9 ]
0.1 x 10 0.8x10 0.56x15 o.:y.xj_o9 -0.1 x 16' -0.3x16'

%.

0 0 0.1x10 0.2x10 0 0.48x10

7 7
-0.,125 x 10 -0.1x10

. 7 ‘ s 5
-0, 1x10 0 0.222 x 10 0,5x10
and the guxiliary matrix is computed to be

%y Ry %3

*4 Rs =
’ ] \ L w2 i -
-0.35%10 0 0.28571 0 -0,35714x10 0,85714x10
0 0.16%x10 0.500 0 ~0.625%x10 0

0.1x10  0.8x10 0.49143x10 0.20345 -0.2907ox163-0784é7x16"
‘0 0 0, 1x15 0. 17965:(1(3 0.'16 181xlf)3.: 0.31087x10'
-0.125x10 -o,1x16' -0.14256xi<§ 0.20070x10 0. 11461x18 5. 12075
which gives the finai matrix
X, X, X, %, X,
0.30431x16' 0.38254x10' -0.0125 0.30258x10 . 12075

From these values of the unknown displacement components,

interngl stresses in various members can be calculated from



111

Bgs. (6.26) and (6.27)., The computed values of the end-moments

are given bglow.

M,e = -4118,25 (kip-inches)
M,, = -1836.00 "
M,, = +1836.20 n
M,y = +3543,10 b
M, = -4060.00 n
Moo = o "
M,, =+ 525,80 "
Mep = +74801.60 "

M. = -4800,00 "
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Example 6.3.

Let us gnalyse by stiffness mgtrix method, the gable
frame shown in Fig. (6.11 a). Effect of axial strains is to
be neglected. Thus, the frame will hagve three unknown joint

rotations and two sidesway displacements as shown in Fig.(6.11.Db).

Stiffness matrix for members AB and ED is given by

-~

rk:n k, kfz.q r0.2 0.1 -0, 15X16’
k, k, k | =EI[0.1 0,2 -0.15x10

: -1 =1 -2

B ks‘ k31 k'sa ‘Oo 15X1O O L] 15Xlo "‘Oo lSX]_O N

and thagt for BC and DC will be

B ' -
' 0.35777  0.17888  -0.24x10

EI | 0.17888  0.35777 -0.24x10

| 0.24x10°  0,24x10 -0.21466x10 |

- The assembled stiffness matrix of the complete frume

is given as below.

X B X 2
P (ke * (ke dae (ki )oe
P (k3i Jec (kandge + (oo
" ° (koo
Pa Sk LECKadpe 5 (ko - HC
e -5 (k3o B (ke + (U
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P-vazlues as found from Fig. (6.11 d), for the two'"

cases of loading, are

Case ] Lase 2.
R 40 -16-
P, 0 -5
(kip-ft units)
B, -40 0 |
g -24 10.5
P, ‘ 24 1.5

The corresponding last columns of the guxiliary matrix

are computed to be:

Casa 1 Casg 2.

> 2.

1. 0.71714x10 -0.26823 x 10
) N 2L

2,  -0.19491x10. -0,00288 x 10
2 2

3. -0.71714x10 0.00101 x 10
' 4 4

4, - «0,50646x10 0.20468 x 10

4 . .



and the corrssponding fingl matrices are

Casa 1
) \ 3
0
-0.26509 x 10
4‘
-0.28027 x 10

0.28027 x 16

Case 2

00,1187 x 15
(S
-0.91406 x 10
EN
0.21872 x 10
0.621® x 10

0.51629 x 10

116

(multiplierg;)

Moments at the ends of g1l members for both loading

conditions can now be cglculated and the finagl values are

give below.

Casa 1
+68,64

+ 95,24
- 95.24
- 62,82
+ 62,82
+ 956,24
- 95.239
- 68,64

Lase 2.

-101.312
- 49,415
+ 49,413
+ 21.778
- 21.780
+ 33,700
-33. 700

- 55,573

(Units
kip Srft)
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Examole 6.4

Let us now aznalyse a portal type broken storey building
frame for the two cases of loading condition as shown in

Figo (60 12 a) °

Stiffmess matrices of individual members gre as given

below.

A1l beam members

0.53333 0.26666
EI
0. 26666 0.53333
[ 0,22222 0.11111 -0.18518 x 10
Kas = E | 0,11111 0.22222 -0,18518 x 10'
0.18518 x 10 0,18518x10 -0.20576x 10 |
0.66666 0. 33333 -0, 16666 i
Kpoe =BEI| 0.33333  0.66666 -0. 16666
0, 16666 0. 16666 -0.55555%x10'
, o

Other column members,

0.33333 0. 16666 -0.41666%10
EI 0. 16666 0. 33333 -0.41666 x 10

0.41666x10  0.41666x10  -0.69444 x 10°|

From these matrices the stiffness matrix K for the
complete frame is assembled, using the techniriue described

in Art, 6.7.3. The equation P = KX 1is given in Table 6.4.



Py

3

O

2

1,933 0,26666

026686 1,732
0 0,00606
0 0
0 0
0,385 0
0 0
0 | 0;16666
0 | o
05 0

P 1 0,066 0

P

0, 26666

17333

0, 26666

0

0

0, 16666

0

0

Lile 6,4
S et (e )
A S A
0 0 0Ly 0 0
0 0 0 00,1666
00866 O 00 0
086666 0 | 00 0
0 075585 0,%685 0 0
0 026666 1,665 0,338 0
0“ 0 0,33333 1,10999  0,26666
L O 0 0 1,0
0 0 00 0,966

Q456610 0

0

0 04K 0455650 0

08800 ¢

0

. 4 . .
06665 0 0,4166x10 0,43666¢1) 0,97010 -0.55555x10

0,6666 0

' o . . ol ~
-0, 16665 -0, 16666 -0, 41666710 =0, 4166610 -0, 1388870 -0 5555550 0, 6944dx g

0

0, 16666

0

0

0, %6666

0, 86666

0

%, %, L,
0.8 0,166 O
0 0 0,41866x10
0 0 0.41666x00
Q4160 0 0

0 0yl 0

0B 0 0, 16666
0 0.16666 D, 6
04166650 0 \.0.416661{10';
g 0 Ddgg6ed

-0, 13888110

0,555550 11670 -0,55585¢1)

Y
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The last column in the given matrix (the P-values) Tor

the two cases gnd the corresponding check columns are as given

below.
P-values. Ql;agk_gghmn

Casgq 1 Casa 2 Cage 1 - Lase 2
1. + 37.5 0 39.52165 2,09165
2. 0 0 2.3 163 2.89163
3. 0 0 2.39163 2.39163
4. - 37.5 o -56.40834 1.09 165
5. + 37.5 -13.5 38.50369 -12.49631
6. - 37.5 + 1.5 -34,70003 4, 29997
7. +37.5 - 1.5 30.29998 - 0.20998
8, 0 0 2.09997 . 2,00997 |
9. - 37.5 0 -36,20002 1. 20998
10, Y 0 0.3110 0.36110
1. C + 6,0 -0,016461 5.98384

12, 0 + 1.5 ~-0.49998 1.00002



The auxiliary matrix is computed in Table 6.5 with

the colums corresponding to above given below.

1.
2
3.
4,
5.

6.

10.
11.

12,

the

2.,44567x10

- 3. 86504

~0,60957

-4, 56732x10

4,96327x10

-3,48538x10

4, 32024x10

-7.20207

-4.62117x10

3.90145x10

3. 17393x10

0

0

-1.78678x10
3.68235

-2.40602
0.46718

0.15342

- 8,560486 .

2
1. 12727x10

-5.69312x10 5.50435%10

With these values and the auxiliary matrix of Table 6.5

2.58208x10
-2.66384
1. 83421

-4, 47453x10

5,09611x30

-3, B461x10
4, 4524 1x10

-6,690636

-4, 52095:{10
3.94098x10
3. 20 315::10

-5.59313x10

1. 6413

1. 20210

1. 22464

0.92781
~1.65393x10

4.89711
-1017435
1.67380

0.84871
-8, 16529
1.20019x10

5.6043x10

final matricesfr the two cases are computed which give

the values of the unknown X's. These are at the bottom of

the

Table 6.5 .

122
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Joint displacements having been evaluated thus, the

calcul ation of final end-moments follow from the stiffness

matrix equations for individual members, superimposed with

the fixed-end moments, The computed values of the end

moments for the two cases of loading condition are listed

as below., Equilibrum of joints will check the accuracy of

the analysis.

‘Moments.

M

AB

M

BA
Mg

M

<R

Case 1.

7.6315
15, 1046
-15, 1048
28,4833
-15.7507
18, 1928
9.7451
4, 1956

-12,7321

17.0084

-17.0082

47,5338

Lasa 2, .

-24,4651

- 1.1186

~1. 1106

7.9510
-12,5792
-11.2424

-4,2600
-8.4746

4,6280

.(Values in
kps.ft)

-0.2328

0.2300

2.3007



Moments., = Case 1

M

GH

M

ke

M

Gk

M

M,

M

Lk

MDH

M

Ho

2.1765
0.821
-51. 1100
10,7033
-10,9886
-0,7130
-21.9382
41.9864
- 38,7797
41,5292
-43, 3542
116.4530
-2,7261
-4,0987
0.5918
2.5373
-8.9032

- 16 . 4533

Case 2
-7.5405
-7.1938
5.2398
6. 1062
-6.1063
-5,9500
15.4989
10,7680
6. 5990
7.1608
8. 2607
8, 7987
-11.4313
-10, 1735
-11.0802
-9.4712
-10.7439

~-8,7986

124
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Example 6.5

A redundant pin-connected truss shown in Fig.é6. 13,
will be analysed in this example. The truss is loaded as shown
in the figure. The nodes of the truss are numberedithrough
8. Values of A and E will be assumed as the séme for
each member., With the suppofts, as shown, the truss has three

internal redundant members and five redundant components of

externagl reactions.

5 L 2
| -
: “>Jr — N
\ 7 =4 6~ )
! - : -~ <. i
! - !
; L - ! ~
r 2 ) l %\E’?
‘ 75,,. » e
) (AE-coNSTANT )
Y

FIGURE 613"

' The stiffness matrix can be developed by first deter-
N .

mining X , /ut and  »w and then » /117' and. i/’i for each mem-
ber - this is done in Table 6.6.

Arrows have been marked on each member in Fig., 6,13

to show their positive x - directions.
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From values given in Table 6.6, the stiffness‘mafrix
of the complete truss is assembled. This matrix is given in
Table 6.7, along with the last column of gpplied joint loads
and the check column. The corresponding aguxiliary matrix is
obtained in Table 6.8, at the bottom of which is sl so given .

the final matrix,

Having, thus, obtained the vslues of unknown joint
displacements, the axigl forces in the individual members
can easily be computed from Eq. (6.25)., Thase are computed

and the vglues with sign are shown in the following Fﬁg.ﬁ.lé:
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Exampls 6.6

In this example we propose to find the secondary stresses
in the members of the truss shown in Fig. 6.13, if the joints
were rigid instead of being hinges. For this purpose, the
equivalent fixed-end moments developed at the joints due to
their known linear displacements (as computed in Example 6.5)
will ‘be considered as knowﬁ‘— Joint loads and the consequent
Joint rotations will be computed. In this stage the joints
will be gssumed to be rotation-free only, and the stiffness

matrix assembled accordingly.

For a general member ¢ , shown in Fig, 6.5, if the
joints were rigid, the fixed-end moments due to the linear
Joint displacements will be given by ,
T A I et
L(Vi*‘#s)
Using this equation, the fiXed-end moments for a1l
members will be computed as given below.
A =10 éq. in. |
I = 120 in for all members. . e

( _MF )i = - 101x 5 X 1491.6

- 1657333 k-ft.

-18.51195 k-ft,

~
4
-
~r
il

,.\
X
4
~r
il

0.41566 k-ft.
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( MF )35- = 0 k—fto
( MF )q‘, = O k—fto
¢ M), = -10.10404 k-rt.
C oM )y, = -15.91350 k-ft.
Pz +30:00528 Py:4+42.1752) w Ps = ‘--41.'3157.' P7—30a9@$
a > ~ ‘Y ry
R B ;/;7r; B
R B -
T e |
| o ~L -7 T L
‘ Tow/ A .
| : © Pa:rasesa Pe:-as 16842 B

Ai s SV
\ _ -
K- VALUES Py = - 4%..a3%145

I T 42345155 ’ \‘L'\

Fl1oUuUre < -

P
N

Stiffness matrices for individual members are given

in Table 6.9,

Iable 6,9,

Member Stiffness Matrix

2, 78 0.4

.2
0.2 0.4




Member Stiffness Matriz
(Mul tiplier EI)
4,56 0.8 0,4
0.4 0,8
13,35, 46, 57 0.26666  0,13333
0, 13333 Q, 26866
14, 36, 45, 67, 24,68 0.25298  0.12649
0. 12649 0.,25208
23,58 0.22188 0. 11094
0. 11004 0.22188

From these, the stiffmess matrix for the entire frame

is assembled, which is given in Tagble 8. 10.
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The vglues of the unknown Joint rotations gre computed
and at the bottom of Table 6. 1].. Using these values and the
stiffness matrices of Table 6.9 are computed the end moments
of the members of the truss, which when superimposed on the
fixed-end moments give the final secondary bending moments,

These are computed and shown in Fig. 6.16, given below
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CHAPTER 7

AUTOMATIC DIGITAL COMPUTERS
AND STRUCTURAL ANALYSIS
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7.1 Introduction.

In the previous chapters we have been dealing with
the techniques of setting up the relevant force-deflection
equétions for staticeglly indetermingte structurgl problems
in matrix form and aglso the method of solving this set of
equations which is best suited to an electric desk calcu-
lator. A few typical examples have been solved on g similar
machine available using the technigues suggested in the
preceding work. Although these methods can be used to
solve problems of any size, the problems in examples, sol-
ved for illustration purposes, have the number of unknowns
(redundant forces or displacement components) limited to
the order of 16 or so. This is because of the fact that the
process of setting up snd solving the simultaneous équatinns
becomes quite cumberscme with the aid of the type of machine
available, as the number of equations incregses for more

complex structures.

The inventicn and development of the high-speed elec-
tronic computer has now made it possible to formulate and |
sclve many simul taneous equations in g reasongble time. An
example hgs been cited in which g structure with 106 redun-
dants was sclved initiglly in about 12 hours, and each
additional loading condition was solved in an additional
1+ hours of computing time. This same problem could probably
‘never ha§e been solved using human 1lgbour with electric

desk calculstors.
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The analysis of highly indeterminate structures using
the electronic digital computer is really a two-part problem.
The problem has first got to be set up and formulated accord-
ing to the matrix techniques discussed in the previous chgp-
ters. This part of the problem lies within the scope of the
structural engineer's work. The second part of the problem
requirés coding, or programing, and setting up the card
system for the actugl machine operation. This geherally calls
for the services of a speciglly trained operator, familiar
with the particular computer being used. This person is
often a mathematician in the field of gpplied mathematics,
trained (usually under direction of the computer msnufacturer)
to set up the coding and card system for a-specific type of
problem, His>programming can be gpplied to gny similar future
problem and is stored in a "library" and brought out and used

when needsd.

7.2 Functional Description of g Digital Computer.

There are two distinct types of electronic computers
widely used in the solution of engineering problems, the
anglogue and the digital. The dlgital computer, as its name
implies, desgls dirdctly with numbers,‘manipulating them
much in the same way as is done with. pencil and paper or a
desk calculator..On the other hand, the analogue computer
deals with physical quantities, such as voltages and curr-
ents, rather than with numbers, and the solution is obtained
in terms of an. electrical analogue of the mathematical or

physical system under consideration. ( A slide rule is the
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best known example of an analogue computer, numbers being
represented by distances on the scales, and the calculations
being performed by physical menipulation of these distances.)
Anglogue computers have many uses in solving spaciglisad
prohlems, but becanse of their greater versatility digital
computers have been used in strctural analysis and this
discussion will be limited to that type of computers.

The procedure followed in the operation of sn sutom-
atic computer may be explained most clearly by taking a very
simple example. Suppose that an engineer wishes to determineg
the height of g moun’céin peak above a certain point as shomn
in Fig. 7.1. From a map he determines that the horizoptal
distance (d) from the point of observation to the peak 1s
20,000 ft. and with g transit he measures the vertical angle
(8) to be 15° He knows that the height (h) will be given
by the formulg pressnted in the figure,

4 =20 oo f |

—e
—.-

CHIGURE 7
The important fact gbout an antomgtic digital computer
is that it 1s not a "brain", as is sometimes remarked; it can

only perform routine numericsl operations as specified by a
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Progranme which has to be prepared for the particular prob-
lem under consideration. Now, in order that this simple cal-
culation might be carried out by sutomatic computer, ths eng-
ineer first would have to write out a calcul ation programme
in a form which the machine cbtlld understand (usually by g
code punched on cards or paper tape) and feed it into the
machine. Then he would have to prepare the basic data sheet
and input it similarly. Finally, pressing the start tutton
would cause the machine to go through the operations strictly
according to the instraetions fed into 1t through the progr-
amme. The machine programme might be somewhat as shown in
Fig. 7.2, which is clearly the exact equivalent of the prog-
ragnme which wollq have been followed by a computist if the
calculations were to be performed by hand.

- Atomgtie C‘ogguter Programme

(a) Read "q" into storage space 1.

(b) Bead "©" into storage space 2.

(¢) 1In Tahle storage, locate vglue of "t® corre sponding
with number in storage space 2 and transfer to storage
Space 3.

() Traensfer numbsrs from Storage spaces 1 and 3 to grith-

matic unit, mltiply, aﬁd transfer product to storage
space 4,

(e) Print out number contained in storage space 4
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Input Daty Machine Storage
1. 20,000
d = 20,000 fget
2. 15
® = 15 degrees.
3. 0,26795
4. 5358,8

FIGURE 7.2

This example demonstrates the funetions of the essen-
tigl components of an gutomatic digital computer, namely:

(1D facilities for reading in instructions and data, (2)

storage facilities to kesp data and instructions availgbie

for use, (3) an arifhmatic unit to carry out the aetual
nu‘mer:lcal operations (usually liﬁited to add, subtract, multa
iply end divide ) and (4) a print-out device to present result
in a usable form (usually typed on g sheet of paper) . The
additional operation involved in this prohlem of locking up

the tangent of the angle, might be done by refersng to a large
scale storsge unit in which a complete set of trigonometrical
functions is stored for reference, or it might be handled

by a special sub-programme which calculates the value of the |
tangent to the required accuracy by means of a seriss expansion,

The programme required for this example c¢calculation 1s
too simple to indicate the complexity of the programming
problem in general, At the present time, the preparation of
the progremme is the principal restriction to wldespread
application of computing machines to structural agnalysis., To
prepare and check out a programme for g reaily complex prob-

lem may take weeks or even months of concentrated effort.
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For such cases, it 1s clesr that thers will be 1ittle advant-
age to be geined from g machine solution unless the same
progrgume can be ussd time after time with different data.
However, as libraries of such standard progremmes are built
up (where computer facilities are more commonly &vailable

o a structural engineer), more and more of structursl anal-
Ysis work can be done by machines with no addtiénal pProgramimn-

ing required.

7.3 Dascription of an Electronic Digital Computer.

A brisf description of the basiccomponents.,needed to
perform the essentiagl functions as described in the preceding
article,will be given hars.

& electronic computer has two forms of storage, known
as the magnatic»and the electronic stores. In the former, inf-
ormation ié retained on the sur{éce of a rotating drum, gnd
in the latter, it gppears as a'paiternv?f dots on the screen
of a cathode ray tubse. The electronid\ifére comprises of g
number of such tubes, each with g certaigkpgpacity of "lines".
Dots on these lines represent digital nﬁhkérs. All arithmetical
operations take place in the elsctronic stoge. The mgchine
performs these operations on lines under theacontrol of a "rou-
tine" - or 1ist of coded instructions- which is itself held
in part of the electronic store. Instructions are obeyed at
a rate of gbout 900 per sacond. Roﬁtines not in use, and other
information not immediately required, are kept in the magnetic

store. Information may be "read" from the magnetic store to



143

the electronic , or "written™ from the electronic to the magn-
etic. The maggnetic store is divided into "tracks", the contents
of a track corresponding to the ifformation stored in parti-

"cular tubes of the electronic store.

The reading and writing transfers mentioned above gre
in general part of the routines, znd the instruetions to per-
form one gppears in z routine in the sgre way as instructions
for the normal ar:ltimetical operations. In a caleulation using
severél routines, for instance, the last ihstruction in each
routine will be one which results in the next routine being
brought down from the magnetic stores and entered at the
correct point, Tﬁe detailed programme required for a given
calculation 1s fed into the machine on g tgpe or cards, which
must be previcusgly punched by hand. The characters punched,
are deglt with by a special input routine, which distributes
the various sequences of informstion to their correct loca-

tions in the two stores.

In a typicsl calculation, the programme is first fed
into the machine as described above. The tape .or cards,
punched with the data of the problem to be solved, are then
placed in the reader unit and the machine uses the input
prograimme to gbsorb the contents. The last few characters on
the tgpe form an instruction to commence the progrsmme of
calcuiations already fed into the machine. The last unit
1s normally a printing device, which will print the results

from given locations in the store.



7.4 Digitgl computer solution of structursl problems,

Keeping in view the ease snd speed in computational work
afforded by an automatic digital computer, it is recommended
that complex highly indeterminate problems of structuml anglysis
be solved on such machines where avallabley The method most
suitable for use on hi‘gh speed digitel computers is the stiff-
ness matrix technique described in Chgpter 6., This is because
of the fact that this technique is most general in its appli-
catlon gnd also the formation of the stiffmess matrix equation
is a very straight forward process as compared with the comp-
lementary method - the flexibility matrix technique., As has
already been pointed out while dealing with the flexibility
methods - that they are convenient only for cne particular
type of problems - the pin connected redundant trusses, when
the calculations are to be done with g smgll desk cslculator
by hand, since the number of equations is smaller in this case
than if the stiffness method is employed for the same problem,
But the same factor is glmost immaterial when we are using
glent machines - the points which matter being those which have
been described as the Chief merits of the stiffness method.

For this reason the adaptation of this method for use on gut-

omatic computers will be presented here.

(D Input of Date.

(a) The first part of the data tspe is concerned with
forming the stiffness matrices of the individual members of
the structure. For esch member in turn, the quantities



Ey 4 I,Lyx , gre read into the machine, shd the gppro-
priate routine is then called down. This forms the matrices
K, » K. 5 K. andK, , end stores them in the magnetic
track assigned to that particular member. If various members
of the structure possess the sgme stiffness matrices, it is
only necessary tc form and store them for one such member.
This g:lfés a useful saving both in time and storsge space. For
pin-Jointed structures, the members are conveniently regarded
as having zero flexursl rigidity and merely involves punching
zero for the value of I on the tape. The complete process
of input of data, formation ahd storage of all four matrices,
tekes about 2% seconds per member,

(b) When gl1 the member-stiffness matrices have been formed,
the second part of the tape is reached in which the stiffness
matrix of the whole structure is assembled by considering
each joint in turn, For each: ;]oint, a 11st is read intoc the
store giving details of the members meeting at that Jeint,
together with the number of the joint gt the other end of each
member. The gppropriate routine is then called down; this
forms the three equilibrium equations for that joint from

the stiffness matrices already stored. Each equation of this
matrix is then written up into g Saeparate hal f-track of the
magnetic store, together with the known elements of the exter-
ngl load veetor on the right hand side, The time for this pro-
cess depends to some extent on the number of members mgeting
thereat, but it is normally quoted as about 3,0 seconds per
Joint,

145
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Allowences, at this stage, can easily be made for various
support conditions according to modificagtions given, for the

purpose, in Chapter 6.

(2) Solution of the Stiffness Matrix Equation.

In this stage of conputations, the stiffness matrix ass-
embled for the structure to be anglysed is inverted. The method
mostly adopted is the Doclittle technique of mgtrix inversion
as has alresdy been indicated in Chgpter 4. The fingl solution
is obtalned by g matrix product of K and the gpplied load vec-
tor P. The routine developed will solve g set of n simultan-
sous equations in gbout (0.33n° + 0.8 n + 7 ) seconds(includ-
ing printing the solution) but this time is very considerably

reduced if many of the elements in the stiffness matrix are

It is essentlal that a check is gvailable on the accuracy
of the solutions found. The method adopted is to substitute
the computed values of the unknowns, and compare the values
of the gpplied Joint loads found with those originally teken.
The time for checking is 4.0 seconds per equation of which
practicglly the whole 1s spent in printing out the results.

(3) Calculation of Internal Forces-

When the joint displecements have been found and checkeds
the third part of the tgpe is read. This gives, for each member ,
the numbers of the joints at the two ends and the location in
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the store where the appropriate K'-matrices snd the fixed-
end load vectors may be found. The routine then selects

the requ:l\red dl splacements, stiffness matrices and the fixed-
end loads and cglculates gnd prints the end-loads N, S, M

at each end of the member. The ti@é for this routine is 12
Seconds per member. The conditions of equilibrium for the
individual members and the joints give a useful check on the

accuracy of the whole progrémme.

7.4.1 Overall Time of Con?‘utation.

The times of operation for the separate routines have
already been quoted. Using these, an estimate has been made
of the time required to analyse a given struc_tufe. 1f the
structure has m members and J ;jéinfs, the time igs gppr-
oXximately ( 0.11 ;IZ + 22 ) + 16 m +28) second; this include-
6s all the routines described above. It may be mentioned that
in the majority of cases the printing out of snswers has been
found to teke about 60% of the whole machine time.
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7.5 Matric Slope-dsflection Megthod,

It is g general practice in analysing rigid frame prob-
lems comron to a structural enginesr, to ignore the effect of
aXigl strains in the component membsers. This simplifies the
analysis very much without any considerable loss in the acce
uracy of the results obtained.An interesting matrix method,
suggested by C.K.Wang, is given here so that problems of com-
plex rigld frames may be analysed quickly on digital computers,
The chief merit of this method lies in the fact that it needs
no specilal programming for g particular problem, but asks the
digital computer only to produce products of matricss and
Inverse of a square matrix - the job which such machines can

perform in g couple of minutes.

Derivation,

Let m be the total number of members, and n the total
number of unknown joint deflections in a statically indeter-
minate structure. P 1s the load vector. Let M be a column
matrix of 2m rows showing values of moments acting on ends
of all members, axclusive of fi:;ed-end moments, Define the
staties matrix A of n rows and 2m columns as conditions
‘expressing the elements of the load vector P in terms of
those of M. Then, by definition

Pl = (AT o LD (7. D

X 1s the column matrix of unknown joint deflections.
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Let © be a column matrix of 2m rows showing values of elastic
r8tations at the ends of gl1 members, as causad by the end
moments M, Define the gesometry matrix B of 2m rows and.‘ n
columns as conditions expressing 6 in tems of X's. Then,
by definition,

[9]21«,“ = ts}z'vwxw[x]%xl (7‘2)

Consider a member 12, the end 1 of which 1s connected
to the ith joint in the structure. The end moment M, s which
acts clockwlse on the member 12 and anticlockwi se on the
ith Jjoint, will balance an externaglly gpplied positive moment
P, =M, 4, =M, at joint i, Thus A, = +1. Geomstrically,
a clockwise Totatlon of X, of joint 1 will cane a clockwise
rotation of .= X; By =X, at end 1 of member' 12. Thus
B, =+1 and a, =3B,.

Next consider the affect of the end moment M, on sidesway.

The free body for side Sway 1s usually a joint or a horizontal
member and the forcs acting on this free body and resulting

from M, may be determined by considering member' 12 or g

group of members, as g free body. If, as an exsmple, the posi-
tive direction of the externally applied forecs P, on the ith
free body for sideway is horizontal to the right, the positive
direction of the bal ancing force N, A4, resulting from M,
should be to the left on the ith free body for sidasﬁay, but

is again to the right on the fres body for member 12 or the

group of relevant members,
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As the member 12 or the group of members is given g
rigid body motion of X, horiz_ontal to the right at the
point where the force M, A, acts, the snticlockwise rotation
at end 1 of member 12 1is defined to be 6 = X, B, s since
an gnticlockwise rotation of the axis of a member will add
to the elastic end rotation, During this rigid-body motion,
the positive work done by the force M, A, to the right in
going through X; to the right must be numericslly equal to
the negative work done by the clockwise moment M, in going
through the anticlockwiss rotation % = X, B,; or,

M, 4,) (X)) =(M, ) ( XiBy;)
which gives A, = B,

By virtue of both considerations discussed above 1£ is
seen that the Geometry matrix B gnd the statics matrix A |
are the transpose of each other. This is g very interesting
result and can be spplied as a check for the accuracy of both
A gnd B,

A = B=x (7.3)

For a member 12,

M, K, K. | & (7.4)
MZ qu K).'L 92. .
Where Kn = Koy = 4t1

- [

Ko kg = 261 (7,5)

¥ Primvodic IV I I
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S 1s a square matrix of 2m rows and 2m columns
in which the end moments M gare expressed in terms of the
elastic end rotations 6, Entries in this matrix are those os
shown in Eq. (7.4) for members with \'rariable cross-section
and in Egs. (7.5) for prismatic members. Then, by definition,

Moy x 1 =log xon (0] o x 1 (7.6)
Substituting (7.2) and (7.3) into (7.6) we get,
M =8a*X | (7.7
Substituting (7.7) into (7.1
P = asax X (7.8)
It will be noticed thgt

ASA* = K

where K 1s the stiffness matrix of the struéture, Same
as defined in Chapter 6, but here obtained by g different

process,
P = KX (7.9)
-~!
and X = KP (7.10)
Brocedure.

(D  The P-X dlagram is drawm as usual.
(2) Cilockwise arrows are drawn in the unloaded structure to

act on ends of members gnd labelled M,-9,, m,-0, , ete,,
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upto 2m. These end moments, as is evident, exclude fixed-

end moments que to loads or support settlements,

(3) Fres body diagrams of all joints and sidesway equil-

ibrium conditions are drawn which are n in number.

(4 The staties matrix A is then constructed by observing
the equilibrium of free bodiss.

(5) From geometric considerations is constructed the geo-

metry matrix B.
(6) Their accuracy is checksd by B = A%
(7 S matrix is now constructed.

(8)  Compute all the equivalent fixed-end loads dus to the
known loading system and/or known settlement of support's and

construct the vector P.

After having/this much of job by hand, the data tape
1s prepared with A, B, S and P matrices which -are stored in
the magnetic unit of the machine. A routine is read into the

machine which asks it to perform the following matrix operations.

(9) Compute the matrix product SA* and store it for subse-

quent use.

(10) Compute the matrix prodquct ASs* giving the wxwstiffess
matrix of the structure.

(1) Invert the K-matrix,
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. ~1{
(12) ZX-matrix is computed from the matrix product K P,
(13) M-matrix is obtained from M = Sp* X

(14) Combining the fixed-end moments with the M values
obtained from step (13), the final end-moments are obtgined,

The main labour 1nvolved lies in the computation of the
matrix K-l. Once this has been done by the computer, anglysis
of the structure for subsequent loading conditions requires
a very little time and labour, since the construction of
P-vactor for each loading condition, and finding the matrix
products K P and SA*¥X 1s g comparatively simple process.

Exgmple
‘As & example, let us compute the stiffness matrix of

the gable frame, of Ex.6.3, by the method suggestéd as sbove.

Ma- 6,4 & \Ms- 05 Ma W My
- -
,// U~ . k“ J\)
e s / vV \‘»,\\ Mt dda [
. M -8 - T R Mo~ @ [P e \‘\\ Mg © -—
NS ‘ - Y H
£ T = S
‘14M2- (2% ‘T/‘M«Qp ‘V Iy L,
! i ) MM
M . <
5 : " /‘/> N ( v.
M@ L Mg-0 & N Me o
aM-6 T TeTe [ (TS N Yy
» An;v . 7’}7*5 l/ K,lw‘ NI
~ M2 } . . UMI
(@) M-© DIAGRAM (b))  EGUILIBRIUM  DIAGRAMS

FIGURE T3

From joint equilibrium diagrams shown in Fig. (7.3b),
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matrix A of Eq. (7.1 may be found to be

b\ b Y
M, M, Ma Mg M, M., M,
+1 +1
) +1
+1 1]
} 1 ] ! !
—— + Jo o - — U
20 20 20 206 20
L - A | ) {
20 29 Y2t "% 20

ometry matrix B will be equal to the transpose

of A. Matrix S of Eq. (7.8) will be given zs below.

) 0,

% % O 9 6, O

0.35777 0,17888
0 .17888 0.35777
0.35777 0.17888
0.17888 0.35777
0.2 0.1

0.1 0.2

The stiffness matrix X will be computed as a product

3 Q * L3 » ‘ 3
Of three matrices ASA” , which in this example comes out as
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,OU X §9989°0 O Go%Eg o~ 0L X 3esll’o 0  Of X 28893°0"
JOT X G9%ES*0™  ,o1xG9989'0 Ol ¥ 2898’0~ - 0 of X gEsli‘0
Of X 2egll*0 ol X 8Eg93°0- LLLGS*0  888LL°0 0
.\\/ / _ .
0 0 ‘ 88gLl "0  PSSTL°0  888L1°0
O ¥ gegoz°0~ - | OL X ZE8li’0 0 888L1°0  LLLSS°O
X *X *X X '
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It should be noted that this matrix is identical with

that obtained in Example 6.3 by a direct method.

In this method the only work required to be done by
hand is the formation of matrices A, S and the load vector
P (for each loading condition) , which evidently is quite
simple a job. The rest of the procedure described above,
which involves matrix operagtions 1 ike transposition, mul%i—
plication and inversion, can very conveniently be performed
on an automgtic digital computer without needing any speéial

programming for a particular type of problem.
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