
NUMERICAL MODELLING OF

TWO-DIMENSIONAL TRANSIENT

SUBSURFACE FLOW TO DITCHES

Ac.

A THESIS

submitted in fulfilment of the

requirements for the award of the degree
of

DOCTOR OF PHILOSbPHY

in

HYDROLOGY

By

SALEEM AHMAD

DEPARTMENT OF HYDROLOGY

UNIVERSITY OF ROORKEE

R00RKEE-247 667 (INDIA)

OCTOBER, 1992



TO

MY WIFE

J-4.



(i)

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented

in the thesis entitled NUMERICAL MODELLING OF TWO-DIMENSIONAL

TRANSIENT SUBSURFACE FLOW TO DITCHES in fulfillment of the

requirement for the award of Degree of Doctor of Philosophy,

submitted in the Department of Hydrology, University of Roorkee,

is an authentic record of my own work carried out during a period

from November 1987 to October 1992 under the supervision of Dr.

B.S.Mathur and Dr. Deepak Kashyap.

The matter embodied in this thesis has not been

submitted by me for the award of any other degree.

(SALEEM AHMAD)

This is to certify that the above statement made by the candidate

is correct to the best of our knowledge.

(DEEPAK KASHYAP} LYj7a (B.S.MATHUR)
READER IN HYDROLOGY /( PROFESSOR & HEAD
DEPARTMENT OF HYDROLOGY DEPARTMENT OF HYDROLOGY

UNIVERSITY OF ROORKEE UNIVERSITY OF ROORKEE

ROORKEE (INDIA) ROORKEE (INDIA)

DATED: OCTOBER, 1992

The candidate has passed the viva-voce examination held

onMn-^l / at ji j\H . The thesis is' recommended for award

of the Ph.D. Degree

Signature of Guide(sV^* Signature of External Examiner

te&m jP\^y\A d



(ii)

ACKNOWLEDGEMENTS

I express my deep sense of gratitude to Dr. B.S.Mathur,

Professor and Head, Department of Hydrology, University of

Roorkeee, Roorkee, for his keen interest, guidance and

encouragement throughout the course of the present study.

I express my gratitude & indebtedness and thankfully

acknowledge the excellent guidance, valuable and timely

suggestions, and ceaseless encouragement that I received from Dr.

Deepak Kashyap, Reader, Department of Hydrology, University of

Roorkee, Roorkee, throughout the course of the present study.

This research venture could be taken up and sustained,

only due to the whole hearted cooperation of Dr. B.S.Mathur and

Dr. Deepak Kashyap.

I am thankful to Dr. D.K.Srivastava, Professor, Dr.

Ranvir Singh, Dr. D.C.Singhal, Dr. N.K.Goyal, Mr. Himanshu Joshi,

Readers, Department of Hydrology, University of Roorkee, Roorkee,

for their encouragement and cooperation throughout the course of

study.

I am grateful to Dr. G.C.Mishra, Scientist 'F', National

Institute of Hydrology, Roorkee, for his valuable suggestions,

help and continuous encouragement during the course of study.

I am thankful to my colleagues, friends and well wishers

Mis3 Sulekha Gupta, Mr. R.N. Shehri, Dr. M.E.E.Shalabey, Shri

V.S.Katiyar, Mr. Karisiddappa, Mrs & Mr. S.S.Mehta, Mrs. & Mr.

Saiful Islam, Mrs. & Mr. C.L. Garg, Mrs. & Mr. K.C.Patra, (Late)

Mr. Saeeduzzafar, Mr. I.N. Aggarwal, Mr. J.Dey, Mr. C.Haridas, Mr.

S.D.S. Hooda, Mrs. & Mr. lmtiaz Ahmad, Mrs. & Mr. Jamil Ahmad

Advocate, Mrs. & Mr. Mohd. Ilyas, Mr. Mohd Sajid Ansari, Mrs. &

Mr. Mohd. Quddus Ansari, Mrs. & Mr. Mohd Suleman Ansari, parents



(iii)

of my wife,and all other friends and relatives for their

cooperation and encouragement throughout the course of study.

I am thankful to my uncle, Maulvi- Quari- Hafiz- Hakeem

Mohd Idris Mazaheri, for his benign blessings.

Special thanks are due to Dr. Ayyub Hasan (M.B.B.S.)and

his wife for attending to the health problems of my family,kind

cooperation and help during the course of study.

I am thankful to Mr. Z.Hasan, Chairman NWDA New Delhi

for his kind cooperation.

I am thankful to the staff of the computer centre and

the staff of the Department of Hydrology, University of Roorkee,

Roorkee,for their courteous and prompt assistance all through this

study.

I am thankful to my Department, Central Water Commission

for sanctioning leave and providing opportunity to complete the

study.

I am thankful to the Indian Association of Hydrologists

for publishing a part of the present work as a paper in the

HYDROLOGY Journal of IAH. I am thankful to the American Society of

Civil Engineers for publishing two papers in the Journal of

Irrigation and Drainage Engineering, ASCE, which form parts of the

present thesis and which could build up confidence in me to work

further.

Finally, I am thankful to my father, my mother, my two

younger brothers and their wives, my wife and my son for their

cooperation, understanding, and bearing a bit of my negligence of

responsibilities towards thorn during the course of study.

Roorkee ydtUz^ sWO^lA
SEPTEMBER, 1992 /(SALEEM AHMAD)



(iv)

ABSTRACT

Inadequate natural subsurface drainage in an

agricultural area results in a rise of water table up to the root

zone of cultivated plants. This restricts the oxygen supply to

the plant root system. The high water table also reverses the

benefits of leaching of soluble salts from the root zone. An

appropriate artificial subsurface drainage system can maintain

the water table at a permissible depth, depending upon the crop

and the soil.

The prevalent theories of subsurface drainage,

employing Dupuit-Forchheimer assumptions, ignore the loss of head

due to vertical component of flow. This leads to an

underestimation of water table rise and, thus, an overestimation

of drain spacing. The effect is significant in the case of

horizontally stratified soils, pipe drains and partially

penetrating ditches due to higher vertical velocities. The

vertical flow can be accounted for by numerical solution of the

differential equation governing either two dimensional flow in a

vertical plane or three dimensional flow.

In the present study two numerical models of

two-dimensional subsurface drainage, one analysing only the

saturated domain (saturated flow model) and another analysing the

entire unsaturated-saturated domain (Total Response Model) have

been developed.

In the saturated flow model (SFM) the two dimensional

nature of the flow is accounted for by a finite differences based

solution of the differential equation governing two-dimensional

transient, unconfined saturated flow in a heterogeneous porous

medium having vertical anisotropy (subjected to drainage boundary
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conditions). The SFM requires among others the time variant

distribution of recharge rate at the water table as input data

and yields the time variant water table position. In the total

response model (TRM), the two-dimensional flow is accounted for

by a finite differences based solution of the differential

equation governing two-dimensional transient

unsaturated-saturated flow in a heterogeneous porous medium

having vertical anisotropy (subjected to the drainage boundary

conditions). The TRM requires among others, the time variant

distribution of infiltration rate at ground surface as input data

and yields the spatial and temporal distribution of capillary

head (h ). This in turn yields the time variant water table

position defined by h =0.
c

In chapter III the development of saturated flow model

and total response model, along with their solution techniques

have been presented.

The saturated flow model has been implicitly validated

by comparing its response with Donnan and Kraijenhaff analytical

solutions. The model computed water table rises are found to

converge to these analytical solutions as the ideal conditions

(negligible relative resistance to vertical flow, i.e., K /K >>1)
z x

assumed in the analytical solutions are approached. However,

under non-ideal conditions the analytical solutions are found to

underestimate the water table rise. The model computed lateral

flows (with K_/K >>1) into a ditch are also found to compare

well with the Edelman solutions under different conditions, viz,

(i) sudden lowering of water level in the ditch, (ii) constant

lateral flow from aquifer to the ditch, (iii) linearly increasing

lowering of water level in the ditch, and (iv) linearly
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increasing lateral flow to the ditch.

The computed rises by the saturated flow model and the

total response model have been compared with the corresponding

field data from Haryana, India, reported by Chhedi Lai (1986).

The two models have reproduced the water table rises quite well.

As expected, the reproduction by the total response model is

better.

In chapter IV, the model validation, by comparing it

with the analytical solutions and the reported field data, has

been presented in detail.

The model solution for partially penetrating ditch

systems has been presented in the form of dimensionless design

curves. The ratio Ah/Ah , i.e., the water table rise at the

midsection computed by the model (Ah) divided by Kraijenhoff

solution (Ah ), is expressed as a function of three dimensionless

independent variables K /K , d/Yn, and d/L. The design curves

along with Kraijenhoff solution permit graphical estimation of

the steady state rise of water table (accounting for the vertical

flows) within a practical range of geometric dimensions and

parameters (i.e. 20 > K/Km> 0,1.0 > d/Y > 0.25, 0.5 > d/L
X Cm U

>0.075).

The bank storage development and its subsequent release

to a ditch has been studied by passing an assumed stage

hydrograph of 7 days duration through the drain. For the case

considered, it is found that for no infiltration on the ground

surface 60% of the bank storage is released within a short period

(20 days). The rest 40% is released slowly.

The total response model developed in the present study

is capable of simulating the generation of perched water table
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condition (and associated throughflows to the drains) over an

impeding layer in the unsaturated zone.

The throughflow development has been studied by

considering a horizontal clay layer in the unsaturated zone of a

ditch system consisting of uniform loam soil above and below the

clay layer.

The applications of the two models, have been described

in details in chapter V. The prominent conclusions drawn from the

study have been presented in chapter VI.

*

V

*
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(k+l)th discrete time.



CHAPTER-I

INTRODUCTION

1.1 ARTIFICIAL SUBSURFACE DRAINAGE

Salt concentration in the root zone in irrigated areas

can be•maintained at a permissible level by leaching,1.e.,applying

water in excess of the evapotranspiration requirements of the

crops. The excess water percolates down to the water table and

transports along with it a part of the salt content of the root

zone.Thus,the leaching process is always associated with a

recharge to the water table.Even when there is no leaching

requirement,some recharge is inevitable as it is rarely practical

to apply water exactly equal to the evapotranspiration requirement

at the plant roots in large irrigation projects.

The recharge to the water table will cause a rise of the

water table.In the areas of adequate natural drainage; i.e., the

subsurface soil having good water-transmitting and storage

properties, closely spaced subsurface natural drains;the rise may

be insignificant. However. If the natural drainage i3 not adequate

the water table rises substantially. If the water table reaches

the root zone it will not only cause waterlogging but will also

reverse the benefits of leaching.

The natural subsurface drainage, in such areas has to be

supplemented by the artificial subsurface drainage to control the

excessive water table rise. The water table rise can be

effectively controlled either by pumping (vertical subsurface

drainage) or by providing horizontal subsurface drains (horizontal
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drainage).

1.2 THEORIES OF SUBSURFACE HORIZONTAL DRAINAGE-CRITIQUE 4

Subsurface horizontal drainage can be accomplished by

buried pipes or open ditches. The prevalent theories of subsurface

drainage (e.g., Donnan 1946, Hooghoudt 1940, Ernst (1956, 62),

Kraijenhoff 1958) are based on Dupuit-Forchheimer assumptions.

Since these assumptions essentially imply horizontal flow, the

design based upon these ignore the loss of head due to vertical

component of flow. This means that the streamlines are assumed to

be horizontal and parallel to each other. However, in practice all

streamlines originate from the free surface and converge at the

ditch. Such streamlines result from flow of the recharged water 9

(occurring at the water table) towards the ditch. Thus, the flow

has to be two-dimensional with a component of vertical flow even

in case of fully penetrating ditches. This vertical flow will

involve head loss, which may be quite significant in the case of

horizontally stratified soils. This will cause an extra rise in

the water table. The effect will be far more pronounced in the

case of partially penetrating ditches and tile drains due to

higher vertical velocities. Thus, the prevalent theories

underestimate the water table rise and hence lead to an ^

underdesign of the drainage system.

The vertical flow can be accounted for by numerical

solutions of differential equations governing either

two-dimensional flow in a vertical plane or three dimensional

flow. Several numerical models of three dimensional flow (e.g.,

Freeze 1971, France 1974) have been developed for groundwater

resources evaluation. In the field of subsurface drainage also, a

few numerical models of the two-dimensional flow in the saturated



zone (e.g., Gureghian and Youngs 1975) and in the

unsaturated-saturated zone (e.g., Skaggs and Tang 1976, Tang and

Skaggs 1977, Vauclin et al., 1979, Gureghian 1981, Merva et al.

1983) have been presented.

1.3 OBJECTIVES OF THE PRESENT STUDY

The present study has been carried out with the

following objectives:

(i) To develop a numerical model of two-dimensional

subsurface drainage in a saturated domain. Such a model

would permit estimation of water table rise for a given

rate of recharge at the water table.

(ii) To evaluate the currently used analytical solutions

(based upon Dupuit-Forchheimer assumptions) by employing

the numerical model.

(ill) To identify the conditions under which the existing

solutions may be U3ed without incurring significant

errors. Further, to construct appropriate design curves

for correcting the water table rise computed by the

existing solutions.

(iv) To develop a Total Response Model i.e.,a numerical model

of two-dimensional subsurface drainage in the entire

unsaturated-saturated domain extending from the ground

surface to the lower impervious layer. Such a model

would permit estimation ol* water table rise for a given

infiltration (and not recharge) rate,

(v) To use the total response model for studying,apart from

the water table rise, the throughflow (lateral flow to a

drain caused by an impeding layer in the unsaturated

zone), bank storage development and its release.



1.4 THE PRESENT STUDY AT A GLANCE

In the present study, the two-dimensional nature of the 4

flow has been accounted for by solving numerically the

differential equation governing two-dimensional transient,

saturated flow in a heterogeneous porous medium having vertical

anisotropy. The resulting solution provides the steady state as

well as unsteady state water table positions. The model solutions

have been found to compare well with Donnan (1946) and Kraijenhoff

(1958) solutions under ideal conditions (negligible relative

resistance to vertical flow, i.e., K /K >>1). These analytical
Z X

solutions are. however, found to underestimate the water table

rise when the vertical hydraulic conductivity is lower than the f

horizontal hydraulic conductivity (K /K <1) due to
Z X

stratification. Thus, the proposed model can lead to a more

rational design by accounting for the vertical flow and the

associated head loss. Dimensionless curves for graphical designs

have been generated by a systematic operation of the model. These

curves along with Kraijenhoff solution permit graphical estimation

of steady state rise of water table (neglecting the flows above

the initial drain level) within a practical range of the geometric

dimensions and the parameters. The curves yield higher water table ♦

elevation as compared to the steady state Kraijenhoff solution.

However, the error in the Kraijenhoff solution is found to be low

in case the soil is nearly isotropic, the ditches penetrate more

than 75% saturated thickness and the ditch spacing is at least 15

times the ditch penetration below drain level.

The saturated flow model explained above requires the

estimates of recharge at the water table as input data. However,

the recharge is not a directly measurable quantity and, thus, has
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to be estimated from the data of inputs (i.e., infiltration from

rainfall, applied irrigation etc.) at the ground surface. This may

introduce some errors. The transfer of infiltrated water through

the unsaturated zone and its subsequent flow towards the drains

has been accounted for in the total response model, by considering

the two-dimensional flow in the entire unsaturated-saturated

domain extending from the ground surface to the lower impervious

layer. The total response model also accounts for

evapotranspiration. The soil water properties of the unsaturated

zone are generated as part of the model solution by using Brooks

and Corey (1964) relation.

The saturated flow and the total response models have

been validated by comparing the computed water table rise (by the

two models) with the corresponding field data reported by Chhedi

Lai (1986). The experimental field a research station of Soil

Salinity Research Institute, Karnal, is located at Sampla village

(longitude 28°46'N, latitude 76°46'E) in Rohtak district of

Haryana state (India). The area suffers with salinity and

waterlogging. A subsurface drainage system laid out in a 10

hectare plot, to reclaim the highly saline land, consisted of

three tile drain spacings of 25,50 and 75m, buried at an average

depth of^,1.75ra. The soils are mainly loamy sand and sandy loam in

texture. The water table rise computed by the saturated flow model

is in good agreement with observed water table rise. As expected,

the total response model results are in still better agreement

with the observations.

In the presence of an impeding layer in the unsaturated

zone, the percolating water tends to accumulate over the layer.

This raises the soil moisture and ultimately may lead to the



development of saturated conditions (generally termed as perched

water table) over the impeding layer. This may initiate lateral ^

flow towards the drain through the perched water table. Such flow

13 termed as throughflow. The drainage systems involving

throughflow can not be analysed by the saturated flow model. The

subsurface drainage system in such cases, can be designed by using

the total response model. A typical example of throughflow

development has been illustrated by model operation for a domain

consisting of a clay layer in the unsatuarated zone and uniform

loam soil above and below the clay layer. A few dimensionless

curves to show the dependence of throughflow on the clay thickness

and partial penetration have also been presented. 9

Application of the total response model in studying the

bank storage development and its subsequent release to a drain has

also been demonstrated, by passing an assumed stage hydrograph of

7 days duration through a ditch. In this particular case, it is

found that in the absence of any infiltration from ground surface,

about 60% of the bank storage is released to the ditch within a

comparatively short period (20 days in the case considered), but

the rest 40% release is expected to take i\ very vesry long time (as

the gradient becomes insignificant after 60% release and it sill jt-

goes on decreasing). The case ha3 also been analysed considering

infiltration from the ground surface.

f



CHAPTER-II

LITERATURE REVIEW

2.1 DEVELOPMENT OF SUBSURFACE DRAINAGE AND A REVIEW OF FIELD

EXPERIMENTS CONDUCTED IN INDIA

In 1865, for the first time the government of Punjab

drew the attention of the Governor General to the problem of 'reh'

and 'usur' (saline soils) in the canal commands. In 1876, the

problem of soil salinity was reported from Uttar Pradesh and from

Nira Canal Command in Maharashtra. In 1937, a Technical Report

No.56 compiling observations and design techniques was submitted

to Maharashtra Government (still referred to for drainage design

in the state). A subsurface drainage research institute functioned

at Ibban (now in Pakistan). In 1928, the Royal Commission on

Agriculture mentioned, "Now lessons have been learnt and in all

future irrigation projects drainage will form an essential

component". In 1972, The Second National Irrigation Commission on

Agriculture emphasized the concept of irrigation and drainage to

go together. The agricultural scientists realized the importance

of subsurface drainage in reclaiming the waterlogged and saline

land, and various small scale experiments were carried out in

parts of India (Table 2.1 and 2.2). This led to the establishment

of Command Area Development Authorities for several projects.

Thus, the usefulness of subsurface drainage has been proved and

efforts are underway for provision of subsurface drainage network

in more irrigation commands having problems of waterlogging and

salinity.
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TABLE 2.1: REPRESENTATIVE SUBSURFACE DRAINAGE EXPERIMENTS FOR

WATERLOGGED/SALINE SOILS

Location Type of drains Major Conclusion Reference

Manjri Random combinat Increased crop R.P.Talati

(Maharashtra) ion of open and

tile drains

yield (1941)

Ludhiana Interceptor Significant in Michael

(Punjab) and combination crease in Kharif (1967)

of open and (maize), no signi-

tile drains ficnat increase

in Rabi (wheat)

Digod Mole, plastic Mole drains are Lovas

(Rajasthan) and asbestos cheap and consume (1972)

drains less time during

installation.

Sirugupa Open drains Significant in Channaba-

(Karnataka) crease in crop

yield over
undrained areas.

siah (1972)

IARI Open drains Significant in Yadav

(New Delhi) crease in Sorghum

and Wheat yield

(1975)

Indore Tile drains Significant in Yadav

(M.P.) crease in crop (1975)

yield. Yield
decreases as

spacing increases

^



TABLE 2.2: SUBSURFACE DRAINAGE WORKS AT VARIOUS CENTRES IN INDIA

Place,State Soil type Spacing Depth Type of Major

reference m m drains Conclusions

Karnal Sandy/ 10.30 1.5 Tile & Horizontal

(Haryana), Loam Open drainage

Jaiswal and
(Alkali) drains not desir

Dhruva able for

Narayana (1972). alkali

soils

Sampla Sandy- 20.0 1.5 Open Increased

(Haryana), loam drains crop yield &

S.K.Gupta Sandy- 50.0 1.5 Tile reduced

(1979) . loam drains salinity,

favourable

salt and

Sampla Sandy- 25,50,75 1.75 Tile water

(Haryana), loam drains balance

Rao and Pandey (cement

(1982). concrete)

Kailana Khas Sandy/ 58.5 1.5 Open Increase

(Haryana), loam drains crop yields,

O.P.Singh favourable

(1982). salt and

water

balance

Canning(W.B.) Silty- 15-45 1.75 Open 15m spacing

Rao and Kamra clay- drains is benefic

(1984). loam ial for

leaching

and

reducing

resalinl-

zation

Parbhani Vertisols 13 1.5 Brick, under irri

(Mahrashtra), (Clay soil3) stone gated cond-

Holsambre et al and tile dition3 net

(1982). drains profit of
Rs.6651 per

hectare

is envisaged
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Contd.Table 2.2

Place,State Soil type Spacing Depth Type of Major

reference m m drains Conclusions

Bidaj Clay soils 15-25 1.50 Open Overall
(Gujarat) drains improvement
Dhruva Narayana in water-

et al (1981) logged &
salinity

situation

2.2 THEORIES OF SUBSURFACE DRAINAGE-A REVIEW

Most of the theories in practice for artificial

horizontal subsurface drainage are based on Dupuit-Forchheimer

(D.F.) assumptions. In these theories, loss of hydraulic head is

ignored in the vertical direction and, accordingly, convergence

loss and surfaces of seepage are ignored. The design of a drainage

system requires knowledge of the requirement of the crops to be

grown, evaluation of the appropriate soil properties, and

incorporation of these data into the methodology adopted

(analytical/numerical) for the determination of the proper depth

and spacing of drains. Though, the input and calculation

requirement for the analytical solutions is less, but the unsafe

drainage design (especially in anisotropic soils) by these, poor

effectivity in removing waterlogging and salinity; and greater

demand for water, requiring most efficient water management; have

necessitated the use of more exact methods. This has been possible

by adopting the numerical methods. In this section, a brief

literature review of the analytical and numerical solutions for

solving steady state as well as non-steady state drainage problems

is presented.

»
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2.2.1 Steady State Theories

The steady state theories are based on the assumption

that the recharge intensity equals the drain discharge rate and

consequently that the water table remains in position.

2.2.1.1 Analytical Solutions

Hooghoudt (1936) and Donnan (1946) derived identical

solution for one dimensional flow to parallel fully penetrating

ditches resulting from uniform vertical recharge at the water

table. According to this solution the spacing of ditches is given

by the following equation:

9 4KAh (2Yn+Ah)
LZ = g—I ... (2.1)

where, R is the recharge rate per unit surface area, K is the

hydraulic conductivity of the soil, Y.. i3 the thickness of aquifer

below drain level, L is the drain spacing, and Ah is the rise of

water table at midsection.

Hooghoudt (1940) accounted the radial flow empirically

by considering two regions of flow i.e., radial flow in the

vicinity of the pipe drain and horizontal flow away from it. He

also introduced the concept of equivalent depth to transform a

combination of horizontal and radial flow into an equivalent

horizontal flow. His solution can be expressed as follows:

Ah = -]p- FH ... (2.2)

and

L - Y( / 2 Y
*u = —Mzir— + -if- ln —— ••• (23)

0

r() / 2
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FIG. 2-1 GEOMETRY OF THE DONNAN (1946) MODEL FOR DRAINAGE
BY FULLY PENETRATING PARALLEL DITCHES.
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FIG2-2 GEOMETRY OF THE HOOGHOUDT'S (1940) MODEL ACCOUNTING
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By equivalent depth concept

L2 = 4KAh (2d+Ah) ... (2.4)
n

where, d is the Hooghoudt's equivalent depth and r() is the radius

of the drains.

Ernst (1956, 1962) divided the flow towards the drain

into vertical, horizontal and radial flows and presented the

following solution in analogy with Ohm's law.

D .2 . a D
Ah = R -JL. + R—± + r J*v in __£- ..(2.5)

v 8Z(KD)h " r

where, K is the hydraulic conductivity in the layer with radial
r

flow, K is the hydraulic conductivity for vertical flow, D is

the thickness of layer over which vertical flow is considered, D

is the thickness of layer in which radial flow is considered,

Z(KD), is the transmissivity of the soil layers through which
h

horizontal flow is considered, u is the wet perimeter of the

drain, and a is the geometry factor for radial flow depending on

the flow conditions.

Kirkham (1958) gave analytical solution for two

dimensional flow to parallel pipe drains, ignoring the flow above

drain level. He imagined infinitesimally thin vertical plane

parallel strips, closely spaced, extending into the soil down to a

horizontal plane passing through the lowest points of the water

table. The strips forced the flow to be rectilinear in the region

of water table arch. To ignore the head loss in the arched region

he imagined gravel to be placed. He expressed the water table

rise at midsection by the following equation.

*
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FIG.2-3 GEOMETRY OF THE EARNST (1962) MODEL FOR FLOW
TOWARDS DRAINS.
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FIG. 24(a)
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T
Ah
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FIG. 2-Mb)

FIG2A(a)GE0METRY OF THE KIRKHAM'S (1958) MODEL ACCOUNTING
TWO-DIMENSIONAL FLOW BELOW DRAIN LEVEL (ISOTROPIC
SOILS)

' (b) KIRKHAM'S (1960) MODEL ACCOUNTING VERTICAL FLOW IN
THE ARCHED REGION AND TWO-DIMENSIONAL FLOW BELOW
DRAIN LEVEL (ISOTROPIC SOILS)

*

*
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T~ "K
Ah = —P P. (2.6)

and

FK
1 T 1 1 2n-Tr

ln-^- + S (Cos T- Cosnn)
n L «« o n=l n L

2nrrY,

Kirkham (1960) modified his earlier solution, considering vertical

flow in the arched region. Toksoz and Kirkham (1961) extended

Kirkham's work and prepared practical nomographs for drainage

design. Hammad (1963) obtained a function that satisfied

approximately the free surface condition and gave an approximately

uniform rain over this surface. In his model, the rain flux was

not exactly uniformly distributed in the x-direction over the free

surface. His solution can be expressed as follows:

— -1 )] (2.7)

Q i f #«j 2nx n , 2ny „ , 2nD"4> - —^— In (Sin Cosh -—- Cosh
,2

AnK

Cos2 ** Sinh2 _2ny .,. <,. ...(2.8)], c

where, #(=>? + D + h) is the hydraulic head referred to the level

of barrier; y = ?? + D + h, at free surface; Q is the quantity of

water entering unit length of drain per unit time; and D is the

thickness of aquifer below drain level.

Wesseling (1964) carried out extensive calculations of

Kirkham's theory and compared these calculations with recomputed

results of Hooghoudt's model. He showed that Hooghoudt's results

did not vary more than approximately b% from those of Kirkham for

midpoint water table heights and for situations in which head

losses in the water table arch were neglected. He also showed that

a reinterpretation of the y-axis of the Toksoz-Kirkham chart for
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tile or ditch drainage of rainfall allowed the hydraulic

conductivity of the soil in the water table arch to be accounted

for when this conductivity differed from that of the rest of the

soil.

Dagan (1964) imagined two-part flow region. In one part

the boundary condition was linearized and in the other part

horizontal flow was assumed. Dagan combined a line sink, confined

flow potential with a potential to give a uniform steady rain. The

potential for the uniform steady rain yielded a uniform rain along

a horizontal line passing through the lowest points of the water

table arch. This consideration of uniform rain along a horizontal

line was termed "linearization' as only the linear term of a power

series was used in the analysis. Dagan's solution is given by the

following equation:

Ah =-P- Fn ...(2.9)
K D

and

FD = -4-(-2T5 - W ..-(2.10)

where

2 , .„ „ . nx0
ft = —=- In (2 Cosh -—-= 2) ...(2.11)

y0

List (1964) assumed the tile drains as line sinks and

considered the boundary conditions exactly, except the impermeable

boundary. He obtained the impermeable boundary as an undulating

surface rather than a horizontal plane. The undulating plane

occurred in List's theory because he used a quasi-image method in

which a linear flux feeding a drain originated at a finite depth

above the real drains, while for image drains the flux originated
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FIG. 2-6 GEOMETRY OF THE DAGAN'S (1964) MODEL FOR
SUBSURFACE DRAINAGE.

v

Ah

O



21

M

^-Impermeable boundary

t t
Upward seepage from infinite depth

L/2

FIG.27 LIST'S (1964) MODEL FOR DRAINAGE OF RAINFALL IN
SOIL OVER AN IMPERMEABLE LAYER
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at an infinite depth below the soil surface. Kirkham (1966)

solved, Laplace equation in terms of stream function, for the

seepage of steady rain into tiles in 3oils overlying an

impermeable barrier at some finite depth. He gave his solution in

terms of Fourier series. Toksoz and Kirkham (1971) investigated

the drainage of layered soils using the Fourier series approach to

the problem. They solved the problems of two layer and three layer

soils for steady drainage condition. They approximated the

circular drain by a slit drain of zero thickness and width as

twice the radius of the circular drain.

2.2.1.2 Numerical Solutions

Gureghian and Youngs (1975) used Galerkin type finite

element method and solved the steady state drainage problem in

homogeneous and heterogeneous soils. With their two-dimensionai

flow model, the upper boundary of the groundwater region was found

by trial and error. They illustrated the use of their model in a

situation where the backfill over a pipe drain created a vertical

band of soil of different hydraulic conductivity.

2.2.2 Non-Steady State Theories

The non-steady state drainage theories consider the

fluctuations of the water table with time under influence of a

non-steady recharge.

2.2.2.1 Analytical Solutions

Dumm (1954) used a solution of the differential equation

for non-steady state one-dimensional flow found by Clover. In this

theory, the initial horizontal water table was considered the

result of an instantaneous rise caused by rainfall or irrigation

(recharging the groundwater instantaneously). He gave the

following solution for spacing of ditches:
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FIG. 2-8 GEOMETRY OF GUREGHIAN AND YOUNGS (1975) FINITE

ELEMENT MODEL OF STEADY STATE TWO-DIMENSIONAL

DITCH DRAINAGE.
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t r h(

rt
L-„ [" J g " in ; J*

h.

where, h„ is the height above drain level of the initial

horizontal water table, ht is the height of the water table midway

between the drains at any time t, and v is the drainable pore

space.

Dumm (1960) assumed the initial water table having the

shape of a fourth degree parabola, resulting in a slightly

different formula. The Dumm solution was basically for fully

penetrating ditches but has also been used for partially

penetrating ditches and pipe drains, replacing the aquifer

thickness by Hooghoudt's equivalent depth.

Kraijenhoff (1958) and Maasland (1959) derived identical

solutions for both constant and intermittent recharge for the

non-steady state one-dimensional groundwater flow to fully

penetrating ditches. The constant recharge for only a restricted

period and intermittent recharge was accounted for by applying the

principle of superposition. The general solution can be expressed

as follows:

h = _!_ _R_ j y _L_ (1-e-"Z +-/J) (2.13)
t n v •' L n3

lt=l ,-3,5. . .

where:

,2
j - I-1 L (2.14)

n2 K YQ

Jan Van Schilfgaarde (1963) presented a solution for

design of a drainage system based on a specified rate of drop of

the water table. The theory accounts for varying thickness of

>
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FIG. 2-9 GEOMETRY OF DUMM (1954) NON-STEADY STATE DRAINAGE

MODEL.
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FIG. 210 GEOMETRY OF THE KRAIJENHOFF (1958) NON-STEADY STATE
DRAINAGE MODEL.
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water bearing stratum resulting from falling water table. He

suggested the use of Hooghoudt's equivalent depth to replace the

actual depth to account convergence of flow at the drains. The

drain spacing was given by the following equation.

A =

L = 3A '" *" ' m) (d+m0) 11/2 (2.15)Kt (d + m) (d+mQ)

2/j(mM - m) -I
"0

and

i _ i d ,8,1/2
x K d + m ;

0

(2.16)

where, d is the depth of impervious layer below drain centre, m is

the water table height above drain centre at time t, and m.. is the

value of m at t = 0.

Moody (1966) presented graphic solutions in terms of

dimensionless curves for one dimensional flow to drains having

finite depth of soil between elevation of the drains and

impermeable barrier. The initial water table was considered in the

shape of a fourth degree parabola. He also used Hooghoudt's

equivalent depth and derived an approximate formula for computing

Hooghoudt's equivalent depth for any size of drain.

McWhorter and Duke (1976) presented an analytical

solution for the transient response of the water table to parallel

fully penetrating ditches considering soil water above and below

the water table. In this theory, the solutions of Dumm, Moody etc.

were retained and used for the appropriate boundary and initial

conditions and a correction was applied to account for

nonlinearity due to decreasing flow depth, flow above the water

table and the variation of the apparent specific yield with water

table depth. Indices to the degree of importance of capillary

m
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storage, flow above the water table and nonlinearity were defined

to enable one to judge the importance of the influences

seperately.

2.2.2.2 Numerical Solutions

Transient numerical models considering the flows in

saturated and unsaturated zones were pioneered by Rubin (1968).

This was followed by many other two-dimensional applications to

various specific problems (Hornberger et al (1969)), Taylor and

Luthin (1969), Verma and Brutsaert, (1970)). Jeppson (1969)

considered the saturated-unsaturated flow on a basin wide scale,

but he restricted himself to a steady state treatment. Amerman

(1969) presented finite difference solution of unsteady,

two-dimensional, partially saturated porous media flow, in his

Ph.D. thesis. Freeze (1971) presented a three-dimensional finite

differences model for the treatment of saturated-unsaturated

transient flow in small nonhomogeneous, anisotropic geologic

basins.

Skaggs and Tang (1976) presented solutions to the two

dimensional Richards equation for open ditch drainage using

numerical method developed by Amerman and compared their solutions

with solutions of the Boussinesq equation. They concluded that

agreement between solutions to the Boussinesq and Richards

equations can be improved by correcting the Bousinesq solutions

for convergence near the drain and for a nonconstant drainable

porosity. Tang and Skaggs (1977) modified the numerical method

developed by Amerman (1969) to solve the Richards equation for

ditch drainage and sub irrigation boundary conditions. They also

conducted laboratory experiments using a large soil tank to test

the validity of solutions to the Richards equation and Boussinesq
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equation for drainage and sob irrigation for a homogeneous soil.

They concluded that the solutions to the Richards equation were in ^r

better agreement with experimental observations than the

approximate solutions considered.

Vauclin et al.(1979) studied the transient

two-dimensional water flow in relation to the recharge of a water

table aquifer. Their approach was based on the physics of water

transfer in the complete domain defined by the saturated and

unsaturated zones of 3oils. They obtained experimental data in a

slab of soil in which the changes of water content and water

pressure occurring in the flow domain were measured throughout an

artificial recharge event. Their numerical model was based on

classical nonlinear parabolic equation. In the unsaturated zone

the solution was obtained by using the alternating direction

implicit (ADI) scheme, and in the saturated zone, where the

nonlinear parabolic equation changed into a linear elliptic

Laplace equation, the iterative numerical scheme was used. They

found an excellent agreement between simulated and experimental

results. They concluded that the problem of transient recharge of

a water table aquifer can be correctly solved by considering a

unified numerical treatment of unsaturated-saturated flow and that <*

classical saturated approach was unable to determine the transfer

time for water in the unsaturated zone.

Gureghian (1981) presented a two-dimensional finite

element solution scheme for the saturated-unsaturated movement of

water in homogeneous and nonhomogeneous aquifers drained by

parallel equidistant ditches extending to an impermeable floor.

Results obtained for the case of drainage with incident rainfall

under steady state conditions for homogeneous and layered soils

-
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were compared with numerical solutions obtained in the case where

only the saturated region was considered. He also compared his T

model results with laboratory data obtained for a transient state

problem. He concluded that hi3 model could reproduce the

experimental investigations and theoretical work to an acceptable

level of confidence.

Merva et al.(1983) presented a finite element model for

depth and spacing of drains in layered soils. Their model solved

the Laplace's equation for an anisotropic, vertically

nonhomogeneous soil using the soil characteristic curve for the

surface layer and hydraulic conductivities of as many as three

soil layers and a trench backfill to predict locations of the *

falling water table. The results were the potential distribution

ranging from zero at the drain to some positive value and then

through zero to negative values in the capillary fringe. The

position of zero water potential was assumed to be the free

surface.
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CHAPTER 111

THE MODEL DEVELOPMENT

Two numerical models of two dimensional sub surface

drainage,one analyzing only the saturated domain ( saturated flow

model ) and another analyzing the entire unsaturated-saturated

domain ( total response model ) have been developed .The saturated

flow model (SFM) requires among others ,the time variant

distribution of recharge rate at the water table as input data and

yields the time variant water table position .The total response

model (TRM) requires similar distribution of infiltration at

ground surface and yields the spatial and temporal distribution of

capillary head (h ).This in turn yields the time variant water

table position defined by hc= 0 .

3.1 SATURATED FLOW MODEL (NEGLECTING THE FLOW ABOVE DRAIN

LEVEL)

The saturated flow model essentially involves numerical

solution of the differential equation governing two-dimensional

flow in an anisotropic and heterogeneous porous medium by finite

differences .Initially the solution is obtained in a flow domain

bounded by a horizontal impervious boundary at the bottom,the

horizontal drain level at the top and two parallel drains on the

sides (Fig.3.1).

3.1.1 The Flow Equation

The differential equation governing two dimensional

transient flow in an anisotropic and heterogeneous porous medium

in x-z plane (Bear, 1979) can be written as follows:

tfx~ (Kxx dx } dz { zz dz } 3 3t
where, x(L) and z(L) are the coordinates along principal
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permeability directions in a vertical plane (x in horizontal

direction and z in vertical direction), K (LT ) and K (LT1)
xx zz

are the hydraulic conductivities in x and z directions

respectively, h (L) is the head above a datum, S (L~J) is the

specific storage. For the domain shown in Fig.3.1, the boundary

and initial conditions considered are as follows:

3.1.2 Boundary Conditions

(A) Boundary 1-2-3 and 1-2-3':

Boundary 1-2-3 is the boundary of the ditch/drain below

drain level. Water level in the drain, and thus, the head at the

drain boundary is considered to be known. At this boundary the

following boundary condition is assigned.

h = Y(), Y()-d < z < Y(), 0 < x < ~- , t > 0 ... (3.2a)

Similarly at boundary 1' 2"-3* the following boundary

condition is assigned.

h = Y(), Y()-d <z< Y(). L- £<x<lit t >0 ... (3.2b)
(B) Boundary 3-4 and 3-4':

The boundary 3-4 is the vertical plane extending from

the centre of the drain bottom to the Impervious layer.

Considering no flow across the vertical plane, the boundary

condition at 3-4 is assigned as follows:

-gg- = 0, D < z < Y()-d, x = 0, t > 0 ...(3.3a)

Similarly at boundary 3' 4' the following boundary

condition is assigned

—$£- = 0, 0 < z < Y()-d, x = L. t > 0 ...(3.3b)

(c) Boundary 4-4':

The boundary 4-4' is the impervious boundary at a finite

depth (Y()) below drain level. Considering no flow across the

impervious layer, the boundary condition is assigned as follows:
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(D) Boundary 1-1' : >

The boundary 1-1' is the initial drain level. At this

boundary the following boundary condition is assigned.

Kz —^- + Sy -^— = R, z = Y() ,-jp i x < L- g ,t>0 ... (3.5)

where, S = S (x) is the specific yield: R = R(t) is the recharge

to water table per unit time (LT ); L is the spacing of the

ditches; b is the width and d is the depth of the ditch below

drain level.

If the flow is symmetrical about the midsection then

there would exist a water divide at the midsection and the

differential equation (equation 3.1) may be solved only in half •

the domain (0 < x < L/2). This may lead to considerable saving in

the computational efforts. For such a solution the boundary of the

solution domain is 1-2-3-4-5-6-1. The boundary condition at 5-6

will be assigned as follows.

(E) Boundary 5-6:

The midsection between the drains is the boundary 5-6.

Considering no flow across the midsection, the boundary condition

is assigned as follows:

-~- = 0, 0 < z < YQ, x = -~- , t > 0 ... (3.6) >

3.1.3 Initial Condition

Initially a horizontal water table coinciding with the

initial drain level is considered. The initial condition

is assigned as follows:

h = Y(}, 0 < z < Y(), 0 < x < L „ t = 0 ... (3.7)

3.1.4 Finite Differences Approximation

Without any loss of generality, the finite differences

solution described in the following paragraph pertains to half the

= 0, z = 0, 0 < x < l. , t > 0 ...(3.4)
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domain (0 < x < L/2), i.e., assuming symmetry about the

midsection. In case the flow is not symmetrical the domain is

extended up to the right hand side drain (x=L), replacing the

boundary 5-6 by l'-2'-3'-4'. The boundary conditions at

l'-2'-3'-4' are assigned on the same lines as described in the
context of boundary 1-2-3-4.

The flow domain is discretized in horizontal and

vertical directions by a finite number of nodal points. The

differential equation for each node is written in terms of the
implicit finite differences as follows.

3.1.4.1 Interior Nodes

Finite differences equation for an interior node (i,j),

for a time step of kth to (k+l)th discrete times, can be written
as follows:

h* ^u.,- h
2.0

Ax . + Ax . «
J J-l

i.l

Kx. . hiJk+l hij-lk+l
ij-1 ___

ij+lk+1 i.ik+1
Kx

Ax .
J

J Az. +Ax.^ Az. * Az. t

f Kz. . hi^t4^1 ~*ljk+l _Ky hi.ik,l VlJkH -,

= a hi.ik+i " }lijk
sij At ... (3.6)

Where, hijk+1 is the piezometric head at the nodal point (i, j);

Kxi. is the hydraulic conductivity of the link between nodes (i,j)

arid (I, j+l); Kzij is the hydraulic conductivity of the link

between nodes (i,j) and (1+1,j); AXj is the spacing between nodes
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(i,j) and (i,j+l); Aa, is the spacing between nodes (i,j) and

(i+l,j); and Ss.. is the specific storage at node (i,j) (refer

Fig.3.2)

3.1.4.2 Boundary Nodes

Assuming symmetry and considering only the left half of

the flow domain, the boundaries [Figs. 3.3(1) - (vii)] are

assigned as follows:

(A) Boundary 1-2-3

Drichlet boundary condition al, boundary 1-2-3 is

assigned in accordance with equation (3.2)

h = Y ...(3.9)
*••••» hijk+l 0

(B) Boundary 3-4

Neuman type of boundary condition in accordance with

equation (3.3) is assigned ensuring water balance,

i.e., for a node (i,l) at 3-4,

Ax. Az. * Az
— c »h •» * -.v 1 * (3.10)

ql + q2 + q3 ' °s~"at 2 • 2

(C) Boundary 4-5

Neuman type of boundary condition in accordance with

equation (3.4) is assigned ensuring water balance.

i.e., for a node (l,j) at boundary 4-5,

Ax. * Ax . 1 Az.
c ^h _J ill > (3 11)

ql + q2 + Q3 = V~l?t" 2 "2 lJ-
(D) Boundary 5-6

The vertical plane passing through the mid point between

the ditches is boundary 5-6. Neuman type of boundary condition in

accordance with equation (3.6) is assigned ensuring water balance.

i.e.,for a node (i,j) at boundary 5-6,
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Boundary 6-1

41

3 °s tft

AX
jl

2

Az. +Az. .
1 l-l

2
(3.12)

In this section the head loss for flow above the drain

level is neglected. Boundary 6-1 is the assumed initial horizontal

water table at the drain level. Neuman type of boundary condition

is assigned in accordance with equation (3.5). i.e., for a node

(i,j) at 6-1,
Ax . + Ax ...

R J + q^ + q_ + q„ = S
n- 2 1 2 3 y «Jt

_, Ax . + Ax . 1
t?h j J-1

+ S
i?h

Ax . + Ax. i
J J-l 1-1

's t>t • 2 2

At points 1,2 and 3 boundary 1-2-3 is applicable. At

point 4, Neuman type of boundary condition is assigned ensuring

water balance.

i.e., for node (1,1)

(3.13)

ql + q2 - Ss ~at
iX . Az.

i

*~ • 2 •• (314'
Similarly at point 5, the Neuman type of boundary condition

ensuring water balance is assigned as follows:

c?h
Ax . 1 Az.

1

ql + q2 °s tft 2 " 2

At point 6, Neuman type of boundary condition is

assigned ensuring water balance as follows:

Ax

ql + q2 + R
j-l

Ax
j-l

iX . .
J-l

Az

3h

at

i-1

(3.15)

(3.16)

In the above equations for boundary conditions, the flows

q., q0 and qq are evaluated In accordance with the Darcy's Law.
1 Cm O
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3.1.5 Solution of the Finite Differences Equation

The differential equations written in terms of the y

implicit finite differences discussed in the above paragraphs are

linear. These are solved by the Iterative Alternating Direction

Implicit Explicit (IADIE) scheme (Remson, Hornberger and Molz,

1971) proposed by Peaceman and Rachford (1955).

3.1.6 IADIE Scheme

The finite differences equation for a node (i,j) for a

time step of kth to (k+l)th discrete times and 1th iteration can

be written as follows:

. (m) (m)
2o f ij+lk+l nijk+l

Kx. .

Ax . + Ax . . L 1J a
j j-l

x .

h (m) (m)
^ "ijk+1 nij-lk+l t 2.0

ij-l

j-l J Az. + Az. ,
i l-l

h (n) - h (n) h (n> h (n>Kz i+ljk+l nijk+l hljk+l "hl-ljk+l I
L ij AZi RZi-lj A^Tj J

- q "ijk+1 nljk
" Ssij At .-.(3.17)

♦

Where, m = 1 and n = 1 - 1 for solving implicitly along

x-direction and explicitly along z-direction; m = 1-1 and n=l for

solving implicitly along z-direction and explicitly along

x-direction; h±jk+1 = h±jk is the initial head at the beginning of•

time step At at the nodal point (i,j). The other terms are as

defined for equation (3.8).

3.1.7 Matrices for Solving Implicitly along x-direction ^

While solving implicitly along x-direction the equation
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(3.17) is rearranged as follows:

Ajhij-ik+i + Vijkn f cjhij+ik+i = Dj --• <3-18)
Thus, (Aj), (Bj),(Cj) and (Dj) are the matrices of (NC)th order

(NC being the number of columns of the finite differences mesh).

These are completely defined in terms of known spatial and

temporal step sizes, aquifer parameters and the piezometric heads

computed in the preceding iteration, as follows,

(a) INTERIOR NODES

o Kx. . ,

Aj - • — ... (3.19)
J Ax + Ax Ax. .

J J-l J-l

B.
J

Kx,, Kx2 f '^ij . Ml.j-1 ]
Ax.+Ax.^l Ax. Ax J

Kz5 . Ks

Az. ♦ Az.^l Az. A. J

S . .
SIJ
At~ (3.20)

2 Kx. .

Cj = AX. + Ax. , • Ax!J •• (3.21)
J-l J

D. =

h (] 1} l. (1-D-^-2 nl+ljk+l hi-ljkUl
*i +Azi_i "L ii 25J +Kzi-lj a^T^J

h. „

bsij At • -• 0-22)

(b) NODES ON BOUNDARY 1-2-3

Aj = 0.0 ... (3.23)

Bj = 10 ... (3.24)
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C. = 0.0

D, - Y„ ' •• (3'26) •
J o

(3.25)

(C) NODES ON BOUNDARY 3-4

Aj = (,-°
. (3.27)

2Kx. S,

BJ _ L ,ax.,2 At( Ax . )
•J

Kz. . Kz,_ r K-Z . . tVZ. . • -I
2 r u + i^ij_

LZ± + Azi_1 L Az± Az._1 J
(3.28)

,« - 2KX1J ... (3.29)
Gj = ~r~r ,2( Ax.)

h.(1-1}
n _ B hUfc _
Dj - bsij At Az

* [kz. .-A^1 1i ♦ Azi-iL u Azi J

h. (1-1}
2 !»„ i-ijKfi (3.30)

Az ,

2 rKz ni-ijk+i^_ -

(d) NODES ON BOUNDARY 4-5

Kx:A 2 r_^J.zJ__ 1 ...(3.31)

Kx, , Kx, ,_, -, Ssij

AX + AX L AXj AX.^ )Bi - Ax. + Ax. ** AX. . At
J J

2KaiJ ... (3.32)
(AZi)2
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KX-
J

J

2 r Kx. . -.

Zxj *A^Tl *L **« J ••• ^3.33)

h. ,. h (1-D
D = S ..—y«_ - 2Kz _1+Uk+1J sij At *Mij —• ~g ... (3.34)

(A2i)

(e) NODES ON BOUNDARY 5-6

A - ZKXij-l
J (A*j-l>z

s , .
sij

At
2

A3. + A2. ,
i x-1

Kz. , Kz[IYZ . . K Z

Azi Azi-i J

(3.35)

(3.36)

C. = 0.0
J ... (3.37)

h. .. . (1-1)

D< -Ssii-AT~- -TT-4- [k, —AtiiM±l 1sij At AFj 1 Az. ,[ ij Sij JJ

? r h (11>? fKz i-ljk+1 1
Azi + A2i_1 L i-U ~AzT^ J •-- (3-38)

(f) NODES ON BOUNDARY 6-1

Kx, . Az,
A = lj-1 i-l
j 2 "Ax. . ... (3.39)

J-l

b, = - -J^izu j.*: axj-i
J 2 -A^,
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KXi.j-1 Azi-1 K*ij AZi-l
2 " AX4_! 2 • Ax,

S . Ax. + Ax. .
yj . J L-±—

At

S Ax, + Ax, , Az. 1
sij _J____J^-1- —,} * ... (3.40)

Al • 2 2

**1J A2i-1 ... (3.41)
Lj " 2 * AXj

v, ^J-1)Ax. + Ax, x fti-ljk+l
D. =- R S ' KZi-lJ "2^

Az. h. ., Ax. + Ax...fo + q iw LJk_ L L1) ...(3.42)
(Syj + Ssij 2 )K 2 At

NODE (1,1)

A. = 0.0
J

KxijB. = hJ-9
J <AXjr

Kz, .
iJ

(Az,)2

S 4 4sij
2At

c -**"
3 (Ax r

D . = - Kz, .
J iJ

ni+ljk+l
2(AZi)^ sij 2At

NODE (1,NC)

(3.43)

(3.44)

(3.45)

(3.46)

A - KXiJ'l -. (3.47)
A « —

( AX.,,)
2

r
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B - - KXiJ-l KZU S3ij
J_ (ax._^ "7^~;iaT~" •• (3-48)

Cj = °-° ... (3.49)

h (1~1} h
D = - Kz i+ljk+l R hijk
j ij (Az.)2 SslJ 2At •• <3-50>

(i) NODE (NR,NC)

NR = total number of rows of the finite differences mesh

Aj XVAij-l- 2Ax~: ... (3.51)
Az. .

Vv x_l
ij-1- 2Ax

Ax. ,
- K- J"lRZi-lj- 2 Az. , - Kx. . «

U-l
A!Vi
2AX. «

j-l

"X . , Ax A7
S J"! O j-l Zil
yj 2At bsij 2At~ 2 - • <3-52)

Cj ~ 00 (3.53)

(11)
Ax . .. }i avD =-R J-l -_Kz. f. _!^ljk1l_.Axj-l

J 2 i-lj Z*"i-1

h, ., Ax . . }i Ay a—
-IJ* _J-1 s Uk "xj-i /jZi-i

yj At 2 sij At

... (3.54)

3.1.8 Matrices for Solving Implicitly along z - direction.

While solving implicitly along a-direction the equation

(3.17) is rewritten as follows
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»lhl-Uk*l +Blhijk+1* °ihl«Jk« =Di •••<»•»>

Thus, (A,), (B.),(C1) and (Di) are the matrices of (NR)th order.

These are completely defined in terms of known spatial and

temporal step sizes, aquifer parameters and piezometric heads

computed in the preceding iteration, as follows:

(a) INTERIOR NODES

Kz, . .
0 i-lj

a - ? ... (3.56)Ai Az + Az± ± • Az± 1

B. =
1

Kz. Kz,2 r ^ij + "i-ij 1
Az. + Az.^ L Azi Azi-1 J

Kx, , Kxij-1 ] Ssijr~ 1VA • •

yL +
+ Ax . ., Ax.

J-l L J
2Ax. + Ax. 1I Ax, Ax. 1 At

J J-1L J J-1

...(3.57)

Kz. .
C = ? ij ...(3.58)
x Az. + Az. . Az.

x 1-1 i

h <1T) h(1-1)2 f„ hlj+lk+l Rx nij-lk+l]
Di" Axj ♦ Axj:i lKXi' ~Ax7" ^ Axj-i Jj j

h

- S llk ...(3.59)
sij At

(b) NODES ON BOUNDARY 1-2-3

k± = 0.0 ...(3.60)

B. = 1.0 ...(3.61)
x

C. = 0.0 ...(3.62)
x

D. = Y,. ...(3.63)
x 0

-r
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(c) NODES ON BOUNDARY 3-4

Kz
i-lj

i =Az, I Az,^ —Az^ .-.(3.64)

_2 r Kzij , Kzi-ij i Ssij
. + Az. . Az. Az. .. At
x x-lL i x-lJ

13

2Kx, .
:Lj

(Ax.)2
... (3.65)

,j Kz. .

Ci =_Az, +Az. , Az?J ...(3.66)
i x-1 x

h (1~1} h
D. = - 2Kx. . y±iM±i S ..—^ ...(3.67)
x xj fA .2 sxj At

(d) NODES ON BOUNDARY 4-5

Ai = 0.0

B. =
X

2Kz. .
xj

(Az,)2
2

Ax .
J

S . .
sij

At

C. =
i

2Kz, .
ij
*2(Az,)

...(3.68)

[Kx. . Kx. . . -,xj + xj-1
Ax . Ax . .,

J J-l J

.(3.69)

. ..(3.70)

h. (1-!>

X Ax .
J

_2_ rKx _:^j-ik+i_ i
.♦ Ax._, L^U-l Ax.,, J

h (1-1}
2 • [Kx. . "lj+lk+* " -S lT^* (3.71)

X . + Ax . .. [ XJ ^X . SXJ "t
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(e) NODES ON BOUNDARY 5-6

B. =
x

D. =
x

Az

_2 r Kzi-ij ]
i+ Azi-1 L Azi-1 JAz

Kz

Az

r Kz. . Kz. .. . -i2 r xj + i-ij
Azi + Azi-i L Azi Azi-i J

S , .
sij
At

_2 r Kzij i
.+ AEi_1 L Az. J

- 2Kx
ij-l

. (1-1)
nlj-lkH

(a".i-i'2
xjk

sij At

(f) NODES ON BOUNDARY 6-1

Q4-72.0S

A. = Kz. A .
x x-lj

Ax . + Ax . i
J J-l
2Az. ,

x-1

Ax . + Ax . ..
J J-l

Az. .,
x-1

B. — — Kz, ., . —x i-lj 2"Z. ,
Kx. .

ij-l 2Ax
i-1

Az. . Ax. + Ax . .,
Ky i-i _ s J J_t1
Kxij 2Ax. yj 2At

SXJ

C, =0.0

D, = - R

Ax . + Ax. A
J J-l

Ax . « Ax. .
J J 1

'il

2At

Kx. . .
Ij-l

"ij lkil

(3.72)

2Kx.. ,
xj-1

(AXJ-1):

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)
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A*< 1 h.(.]-l> Azij+lk+1 Azi-1
Ax
jl

- Kx.
xj 2 Ax

h<-jk Axj+ A*j-T Azi 1 i r *». ..
L yj sxj 2 [At ']

NODE (1,1)

A, = 0.0

Kz. .

Bi = - ~^2 '
(Az.r

Kx. .
iJ

(Ax )2

S . .
sxj

2At

Kz

- (3.79)

... (3.80)

(3.81)

ij
X (Az,)2 ... (3.82)

D. =
X

- Kx, .
ij

h (1-1}
ij+lk+1

(Ax )2
•J

h. ..
S Jjk
sij 2At ... (3.83)

NODE (l.NC)

A, =0 .0
... (3.84)

B. =
i

Kz. .
xj

(Az,)2 (AXj,2
S . .
sij

2at ... (3.85)

C. =
X

Kz. .
xj

(Az,)2 ... (3.86)

D. - - Kx. . ,
xj-1

nij-lk+l s.. ijk
sxj 2At

f
X

(Ax )2
... (3.87)

(1) NODE (NR,NC)

r AX . . -,
i. = Kz. , . 1=1-x-lj I 2Az,_, _, (3.88)
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Ax - 1 Az. -
D - _ If™ J •*• _ Ifv J- I
x " x-lj 2AZj , "lj-1 2Ax '

Ax._1 S . . Az. n Ax . 1

" Syj—2Af IP - -IT1- ^ <3(,9>

C, = 0.0 (3.90)

Ax, 1 h. \ 7i.i.< Az. i
D. = - R -J"1 - Kx. . , ^~lk+1 *^-

x 2 xj-IAx.. 2

h. ,, Ax, 1 h, ,. Az. , Ax, .q ijk J-l o ijk x-1 j-l
yj At " 2 sij At • 2 2

... (3.91)

The coefficient matrices (3.19) to (3.54) are

substituted in equation (3.18) and the coefficient matrices (3.56)

to (3.91) are substituted in equation (3.55). The equations (3.18)

and (3.55) are then solved using the Thomas Algorithm (Remson,

Hornberger and Molz, 1971) as the governing coefficient matrices

((3.19) to (3.54) and (3.56) to (3.91)) are tridiagonal and

positive definite. These matrices contain coefficients derived

from numerical approximation to spatial derivatives. Moreover,

they are defined such that only the derivatives in one space

variable are represented in each matrix. The equations

((3.18)/(3.55)) are solved implicitly in one space dimension (x/z)

using the known values in other space dimension (z/x). This

sequential sweeping of the matrices is done first horizontally

(equation (3.18)) and then vertically (equation (3.55)). This

leads to the computation of piezometric heads at all the finite

differences nodes and at the discrete times considered.
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3.1.9 Convergence Criteria

y The differences of the (h,.^,) values of two successive

iterations (1) and (1-1) for all the nodes are summed up. This sum

is then compared with a prestipulated convergence factor (say ^1).

The ADIE iterations are repeated until this sum attains a value
less than £\t i.e.,

I '\»*l " \%V I*•'.% ...(3.92,

The piezometric heads are computed at each node by the

above procedure at the discrete times separated by nonuniform time

steps. Smaller time steps were assigned in the early stage when

Piezometric heads are known to change faster. Later each time step

is divided into appropriate number of subtime steps so that the

computed piezometeric heads at the end of the time step does not

change significantly with further increase in the number of

subtime steps (Ahmad et al, 1990), i.e..

I l(hi.ik+l>np <hi )„„,ol < c 2jk+l'np '"ljk+l'np/21 ~' C * ••• (3.93)

where, (h,jk+,)np is the piezometric head calculated with np

number of subtime steps, (h. jfc+] )^/? la the piezometric head
calculated with nP/2 number of subtime steps at the end of (k+I)th

discrete time and £2 is the prestipulated convergence factor.

3.2 SATURATED FLOW MODEL (ACCOUNTING FOR THE FLOW ABOVE

DRAIN LEVEL)

In this section the flow domain of the model (refer para

3.1, Fig.3.2) is extended up to the transient water table position
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by modifying the boundary conditions at the upper boundary and at

the mid section as fol low.s

(a)

(b)

Upper Boundary at the Water Table Position (6'-l)

( refer Fig 3.4 )

£(x,0) = Y., (initially horizontal water table) ..(3.94)

^S+Syl^ Z=*« | ,t >05 X

?(x,t) =h|x, ?(x,t),tl, z=?, |<x
Boundary at the mid section (5-6')

(refer Fig 3.4)

H =0, 0<* <%( | ,t), x=I ,t>0

(3.95)

(3.96)

(3.97)

where, ? = ^ (x,t) is the elevation of the water table above the

lower impervious layer. These modified boundary conditions

(equations 3.94 - 3.97) are numerically implemented as follows.

3.2.1 Solution of the Differential Equation for the Modified

Boundary Conditions.

The boundary condition at the free surface (equation

3.95) includes the variables h(x,^,t) and ?(x,t), which are

implicitly related to each other in accordance with equation

(3.96). Thus, a solution for these two variables is not feasible

by conventional use of numerical techniques like finite

differences. An iterative solution of if(x,t) based upon repetitive

finite differences application is adopted (Ahmad et al., 1991).

3.2.2 Solution Strategy

The implicit nature of the relation between £ and h

(equation 3.96) is approximated by the following explicit relation,

(P)

(x,t)

"(P-D

h (x« *u,tr i) (3.98)

>
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" (P)
where, % .is the computed elevation of the water table at (x,t)

(x,t) ~(p-l)
at the end of pth iteration; t, , .,, is known from the preceding

lx,T,; "(0)
iteration. Commencing from p = 1 and assigning £(x,t) in

accordance with the known Initial condition or computed solution

at the preceding time step, the iterations are continued until the

(£) values of two successive iterations do not have an appreciable

difference, i.e., if

y

1}
"(p) *(P-1)
K, «.%-?, *\ U-n i to • £ 3 ... (3.99)^ (x,t) (x,t) x-0 L/2

" (P)
then ?(x,t) -%. .. ... (3.100) >

vX , Tj)

3.2.3 Finite Differences Solution

Equation (3.1) subjected to the Initial and boundary

conditions (equations 3.2 - 3.4 & 3.6, 3.94 - 3.97) is solved by

the iterative ADIE method (Remson et.al. 1971; Ahmad et. al. 1990)

proposed by Peaceman and Rachford (1955). The method Involves

superposition of a system of rows and columns over the flow domain

(Fig. 3.4). The domain is, thus, discretized by a finite number of

intersection points (generally known as nodal points or nodes).

Similarly the time domain is discretized by a finite number of

discrete times. Therefore, t, and h are discretized as t, ,, and

h. ., ; where j is the column number (discretized x coordinate), i
xjk

is the row number (discretized z coordinate) and k is the discrete

time (similar to those explained in para 3.1.4 and Fig.3.2).

Knowing h. ... the iterative ADIE techniques can provide
J. JK

h At the top most row ( i = NR), the piezometric head equals
xjk+1

the water table elevation, i.e.,
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?jk+l = hNRjk+l --- (3.101)
3.2.4 Accounting of Free Surface

In the ADIE solution the time variant position of the

water table is discretized by the top most row (Fig.3.4). Thus,

the top most row is successively redefined at the end of each ADIE

solution in accordance with the following discretized form of

equation (3.98).

(P) " (P-l)

Y0 + DZjk+l " Az = * jk.l (3.102)

(P) " {ri)
or DZ;. ,. = Az + ?.,.- Y n u\^\jk+1 s jk+l 0 • • (J-1M3)

(P)where, DZjk+1 is the spacing between nodes (NR,j) and (NR-l,j) at

(k+l)th discrete time during pth ADIE solution; ?(£"}' is the

known water table elevation computed in the (p-l)th ADIE solution;

Az is the initial spacing between the (NR)th and (NR-l)the rows.

The vertical spacing between the (NR)th row and (NR-l)th row at

the jth column is modified in accordance with equation (3.103).

The boundary condition at the free surface (equation

3.95) is applied, ensuring water balance as follows (refer Fig.

3.4).

c Ax . + Ax. 1 .

ql +q2 +*3 fR[ h ~ J

dT f Axj + Axj-1 "J dP r **. + Ax
= S -— -— ^—= -t q * i 3 J •*•y *t [ 2 J bs at [ 2

Dz.i-i ♦ 2DZj f DZ.m
(3.104)
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3.2.5 Matrices for the Modified Boundary Conditions

3.2.5.1 For Solving Implicitly along x-direction

The solution is proceeded in the same way as explained

in paragraphs (3.1.5 - 3.1.6). All the coefficient matrices will

remain the same (equations 3.19-3.38, 3.43-3.50) except the

matrices for nodes of the top most row.

(a) MATRICES FOR NODES OF THE TOP MOST ROW

(Boundary 6-1, Excluding Node (NR,NC))

A . = Kx, . .
J ij-l

DZ. + DZ . ,
J J-l
4DX

j-l

(3.105)

B Kz. . .
x-lj

Ax . + Ax. i
J J-l

2DZ,
- Kx, . ,

ij-l

DZ .+DZ . ,
J J-l

4DX
,1-1

- Kx.
xj

- S
sxj

C. = Kx..
J xj

D. = - R
*J

SXJ

DZ .+DZ ..,
J .1 + 1

4DX.
-S .-

yj

Ax . + Ax . ..
J J-l
2At

Ax . + Ax . .,
J J-l

2At

DZ,i » DZ.m
4DX.

J

DZ . .+2DZ.+DZ.,,
J-l J J+1

8
(3.106)

... (3.107)

Ax . + Ax. ..
J J-l

Kz
i-lj

h-MLi (Ax.+Ax. .)x-ljk+1 j j-l
2DZ ,

yj

ijk
At

hUk(Axj+Axj-l)
2At

Ax.+Ax. , (DZ. . +2DZ.+DZ.A1)
j j 1 j-l J J+1

8

... (3.108)
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(b) MATRICES FOR NODE (NR,NC)

DZ . . +DZ .
A Ky J-1 J
j " xj-1 4DX~ •- (3.109)

J-l

Axi_1 DZ. . +DZ.
j i-lj 2DZ. ij-l 4DX.

-1 J

**J-1 DZ. + DZ.
Syj 2Air ~ Ssij Axj-1 »At J~ " (3-110)

°j = °'° ... (3.111)

Ax. ., h (il) AXD. = - R J'1 -- Kz nl-Uk+l .Axj-1
J

AXJ1 , DZ. +DZ
> i B. ... Tj-r-r - S .. h. .. Ax. . ^—= !
yj xjk 2At sij ijk j-l OAt

... (3.112)

(AXj)Z +(DZJ+1 -DZj)2 .. (3.113)

(AXj_j )2 +(DZ. DZ. l}2 ] " .(3.U4)

3.2.5.2 For Solving Implicitly along z directi on

(a) MATRICES FOR NODES OF THE TOP MOST ROW

(BOUNDARY B'-l, EXCLUDING NODE (NR,NC))
Ax . + Ax. .

A - K7 J J'l
Hi RZi-lj 2DZ~; •• (3.115)

Axi ' Ax4 , DZ .+DZ. .
B. - Kz a 3"4 _ Kv J J 1RZx-lj 2DZ Kxij-! 4Di4 ,

•J j-l

DZ | "DZ . Ax , i AX . ,
- Kx, , =* Hi q sL_ J-lij 4DXj hyj IZt
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S .. Ax.+Ax. . DZ . 1+2DZ.+DZ..1
sxj J J-l J-l J J+i n 11R)___ _ _ ... (j. lib)

C. = 0.0 ... (3.117)

Ax. + Ax. , »»..(}~ij (DZ.+DZ, ,)
D. =-R L- tl -Kx. ., 1J"lk*1AM J ^-i 2 ij-l 4DX._j

- Kx h (11) DZ1 * DZ}+1Kxij- hij+lk+l • 4M3 *±±

Ax . + Ax . .,
q h J J"1
yj" ijk 2At

h. .. (Ax. + Ax . .) DZ, .+2DZ.+DZ..*
c xJk _ A J-l j-i j j+i
•o . -
sij At ' 2 8

(3.118)

(b) MATRICES FOR NODE (NR,NC)

Ai = Kzi-ij 2MT •• (3119)
«J

Ax . . DZ. +DZ. .
n _ _ if„ J. * _ ifv J J'" x
«i - "i-lj 2DZj xj-1 ^Xj-i

Ax. , DZ. + DZ. .
- S , htt- -8 ..Ax. . J dJU *- ...(3.120)

yj 2At sij j-l OAt

(3.121)C± = 0.0

D. = - R
l

* •-
"X . ..

J-l
2

Kx

,, ,, DZ . +DZ . ,
t (1-1) J J-l

ij-1 ij-lk+1 4DX. ,

Ax . . DZ. . + DZ .
q h ill _ g h J"1 J ax
yj xjk ' 2At sij" ijk 8At j-l

(3.122)
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3.2.6 Convergence

At the end of each ADIE solution (DZ), and hence the

domain, is modified in accordance with equation (3.103). The

modification of (DZ) is continued until the spacings at the end of

two consecutive ADIE solutions are

TIDZ^ -DZ^;}> |<s 3 ... (3.123)
for all j's (Ahmad et a 1.1991).

Equation (3.123) Is the finite differences equivalent of equation

(3.99). The convergence of piezometr1e heads with respect to ADIE

iterations and time step iterations are achieved in accordance

with the criteria explained in para 3.1.9. (equations 3.92 and

3.93).

3.3 THE TOTAL RESPONSE MODEL

The total response model essentially involves numerical

solution of the differential equation governing two-dimensional

flow (x-z plane) in an anisotropic and heterogeneous porous medium

by finite differences.The solution is obtained in a flow domain

bounded by a horizontal impervious boundary at the bottom ,the

horizontal ground surface at the top and two parallel drains on

the sides .

3.3.1 The Flow Equation

The differential equation governing two-dimensional

transient unsaturated -saturated flow in an anisotropic and

heterogeneous porous medium (in x-z plane) can be written as

follows.

c §1 = *-k-<k* % '' »£-<*" Si ' •»- <3"4,
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d6_ Q < 4> (3.125)
dh

c

Kx= Kx(Kxsat,©)

Kz = Kz(Kzsat,0)

c= ss

Kx = Kxsat

Kz = Kzsat

, e < <f> (3.126)

, e < 4> (3.127)

, 0 = 4, (3.128)

9 - 4> (3.129)

0 - <f> (3.130)

ET = f(PET,e) . 2 * Di-droot (3.131)

ET _ 0 , z < Di-droot (3.132)

Here, h is the algebraic sum of capillary head [(1^(0)1 and the
elevation head z , «9 being the volumetric soil moisture content);

C equals the specific storage/specific soil moisture capacity

(de/dh ); ET (=ET(0)) is the actual evapotranspiration rate per

unit soil volume; Kx and Kz are capillary conductivities in x and

z directions respectively.Kxsat and Kzsat are the saturated

hydraulic conductivities of the medium in x and z directions

respectively ;* is the soil porosity ;PF.T is the potential

evapotranspiration rate ;D. is the depth of impervious layer below

ground surface ;droot Is the root zone depth.Thus, equation
(3.124), by adopting appropriate values of parameters, represents

the Richards equation in the unsaturated zone and classical

groundwater flow equation (equation 3.1) in the saturated zone

below water table.Referring to Fig. 3.5, the initial and boundary

conditions for drainage(considering symmetry about the midsection)

are assigned as follows:

h=Y,0<Z<D±, 0<x<-|-, t=0 . (3.133)
h=Y(J, Y()- d<z<Y(), 0<x<-|-,t >0... (3.134)
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*£ = 0, 0 < z < Y,,-d, x = 0, t > 0
t?x °

<?h = 0, z=0, 0 < x < -s-
t7Z ^

tfh = 0, 0 < z < D. , x =
t>x ] fi

Kz §£ = I-ET, z=D.,-|- <x !
^ = 0, YM+s < z < D , x =
tfx u •*•

,t > 0

L ,t > 0

_L
2 '

t > 0

z, Y
0 Yo + s' x

2

t>

2

,t > 0

,t > 0

(3.135)

(3.136)

(3.137)

(3.138)

(3.139)

(3.140)

where, Y() is the depth of impervious layer below initial water
table positions is the centre to centre spacing of the

ditches/drains, b is the width of the ditch, d is the depth of the

ditch below initial water table position (d = b/2 = radius of the

tile, for circular tiles). I = I(t) is the rate of infiltration

and s = s(t) is transient surface of seepage (water height

standing at the tile) determined as part of the numerical

solution.

3.3.2 Numerical Solution

Equation (3.124), in terms of finite differences,

subjected to the initial and boundary conditions (equations 3.133

to 3.140) is solved by Iterative Alternating Direction Implicit

Explicit(ADIE) scheme [(Remson et. al. (1971), Ahmad et.al (1990),

Ahmad et.al. (1991)].The scheme was proposed by Peacemen and

Rachford (1955). The flow domain (Fig.3.5) superposed by a system

of rows and columns is discretized by a finite number of nodal

points. The time domain is also discretized by a finite number of

discrete time steps. The soil characteristic data (0, Kx, Kz and

ET) for unsaturated zone are generated within the model in

accordance with the following equations.

(i) K - CHARACTERISTIC: The following relations (equations

3.141 to 3.144) proposed by Brooks and Corey (1964) are adopted.

!•
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9 0 ,4

K(x,9) =Kxsat [ rj~-r£ ] • e* eT •-. (3.141)

- 0 e < e
r

r e - e 1/\
K(z,t?) = Kzsat -^-r-— I , 0 Z 9

. (3.142)

$~~e- . » 2 » ... (3.143)

o e < &
r

... (3.144)

(ii) S - CHARACTERISTIC:

The following relations ( Mohan Rao et al. (1986)) are

h
adopted

f, _ (ln(<? 29 ). c°. )
0 - e r \ + V h > hb ... (3.145)

e

=* ~ —h^ "hc '°~ hc -hb •- (3-146)

(iii) RELATION FOR ET:

The following relations (Doorenbos et al.(1979).Mohan

Rao et al. (1990)) for calculation of evapotranspiration are

adopted.
9 — W

"S%- V <f-Pf)» WP<0^t •-- 0.147)

=PET, 0t < 0 < * - ex ... (3.148)

= »• • -: ° -: wp ... (3.149)

where, ©r is the residual soil moisture content,hfa is the bubbling

pressure, e is the base of natural (Napierian) logarithm. F is the
c

field capacity, Wp is the wilting point, (Fc- W ) is the available

soil moisture content, Pf is the fraction of available soil

moisture after which ET =PET, *tL=(Fe- Pf(*<,-*,,>] is a dummy
variable.
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The solution provides h and h values at different times

at all the nodes of the domain. The points of zero pressure at

each column of the domain (Fig.3.5) are obtained by interpolating

between two such successive rows where hc changes its sign. These

points are joined by curved line to get the water table position.

3.3.3 Finite Differences Approximation

The flow domain is discretized in horizontal and

vertical directions by a finite number of nodal points. The

differential equation for each node is written in terms of the

implicit finite differences as follows.

3.3.3.1 Interior Nodes

Finite differences equation for an interior node (i,j)

for a time step of kth to (k+l)th discrete times can be written as

follows:

2.0 [„ hij+lk+l hijk+l[ Kx "iJ+lfc+1
Ax . + Ax. 1

J J-l

h. ., ,* - h.xjk+1 i__
ij-l AXj.i J' Azi + Azi-l

- h, ,,.., h. .,,t1-h.

v 'ijk+1 "ij-lk+1 1 2.0

r„ hi+i.ik+i ~ nijk+i - "ijk+i "i-ijk+i i
LKzij AzT "KZilJ Az.^ J

hijk+l " hijk
-ET] =0lJ U ••• (3-150)

Where, i,j and k have already been defined in the saturated flow

model ( Section 3.1 and 3.2 ), h. jkl] is the value of h' at the

nodal point (i,j) at the end of (k 1 1)th discrete time; Kx±^ -

the capillary conductivity of the link between nodes (i,j) and (i,

j+1); Kz. . is the capillary conductivity of the link between

nodes (i.j) and (i+1,J); Ax is the spacing between nodes (i,j)

and (i,j+l), Az. is the spacing between nodes (i,j) and (i+1,j);
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C. .is the specific soil moisture capacity (in the unsaturated
zone) or specific storage (in the saturated zone) at node (i,j);
ET1 is rate of actual evapotranspiration per unit soil volume in
the ith row; and At is size of the subtime step.

3.3.3.2 Boundary Nodes for Total Response Model

For the left half of the flow domain (Fig.3.5) the

boundary conditions (Fig. 3.6(1) - (ix)) have been considered as
follows:

(a) BOUNDARY 1-2-3

Drichlet boundary condition at boundary 1-2-3 is

assigned in accordance with equation (3.134) i.e., for a node on
boundary 1-2-3,

hijk+l = Y0 -..(3.151)
(b) BOUNDARY 3-4

Neuman type of boundary condition in accordance with
equation (3.135) is assigned ensuring water balance

i.e., for a node on boundary 3-4,

ql + q2 * q3 =c p -xi
OL • 2

Az. + Az. „
x x-1

2

Ax.

- ET J
Az. + Azi_1

2 • 2

BOUNDARY 4-5

I ' 2 ~2~ -.(3.152)
(c)

Neuman type of boundary condition in accordance with
equation (3.136) is assigned ensuring water balance.

i.e., for a node at boundary 4 5

ql + q2 +^3 ^ §g . ^-± .—J-™__izl_

I - ET -!i J^-l^Li
'22 ...(3.153)
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(d) BOUNDARY 5-8 (or 5-6-7-8)

The vertical plane passing through the midpoint between

the drains is boundary 5-8. Neuman typo of boundary condition in

accordance with equation (3.137) is assigned ensuring water

balance.

i.e. for a node at boundary 5-8,

*. Ax. . Az. + Az. ,
_ n f?h j-l x x-1

ql + q2 + q3 - C St • 2~ • 2

Ax._1 Az. + Az...
- ET . aJ~ - X2 ...(3.154)

(e) BOUNDARY 8-9

Neuman type of boundary condition in accordance with

equation (3.139) is assigned ensuring water balance.

Ax . + Ax . A Az. . Ax. + Ax. ,j J J-l _ KT x-1 J J-l

j, Az-_i Ax. + Ax. 1

+ql + q2 + q3 =C W ~T^ • -h -~ •• (3155)
(f) BOUNDARY 9-10

At the ditch face,the following Neuman type of boundary

condition is assigned:
s. Ax . Az. • Az. ,

r. "h J 1 X-1
q, + q0 + qQ = C .

6»t • 2 2

Ax . Az I A?5

KT . 2J . ~ (3.156)

At points 1, 2 & 3 boundary 1-2-3 is applicable. At

point 4, Neuman type of boundary condition is assigned ensuring

water balance.

i.e. for node (1,1)
^, Ax. Az. Ax . Az.

•H +92= c m z -r ~ ET a V1 <3157>

1
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At point 5, Neuman type of boundary condition is

assigned ensuring water balance.

i.e. , for Node (1,NC)

<?h Axi-1 Azt Azi Ax- 1
ql +«2= C M — 2^ -T~ -ET IT- -^ (3-158)
At point 8, Neuman type of boundary condition is

assigned ensuring water balance.

i.e. for Node (NR.NC)

Ax. Axvi Az- i

ql + q2+ * ~^~^ " ET 2 ~2JL^

~, Ax. . Az. .
~h j-l x-1
frb ~~2 2~ (3.159)= C ^

At point 9, Neuman type of boundary condition is

assigned ensuring water balance.

i.e., for Node (NR,1)
Ax. Az. . Ax.

i. -V- - *•'• -r21 -it- +"i f "2

m. Ax . Az. .
_ r «*h j x-1
" C at ;"*"2 2"" -- (3.160)
In the above equations for boundary conditions, the

flows q^ q2and q3 are evaluated in accordance with Darcy's Law.

3.3.4 Solution of the Finite Differences Equations

The differential equation (3.150) written in terms of

the implicit finite differences is linear. This is solved,

subjected to boundary conditions (equations 3.151 3.160), by the

iterative ADIE scheme (Remson et al. 1971, Ahmad et al.1991)

proposed by Peaceman and Rachford (1955).

3.3.4.1 Iterative Alternating Direction Implicit Explicit Scheme

The finite differences equation for a node (i.j) for a

time step of (k)th to (k+l)th discrete times and 1th iteration can

be written as follows.
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. (m) _ h(*)
hij+lk+l xjk+1

Ax. + Ax . 1
Kx. .

xj Ax.
J

Kx. . ,
xj-1

h
(ra)

ijk+1
- h (m)

xjlk 2
Kz

h (n) h (n)
"l+ljk+1- ijk+1

'ij Az4Ax
j-l

t. (ni
hijk+l

Az

- h

n Az.+Az. i
x x-1

- Kz. ! .
x-lj

C. .
xj

, (m)
xijk+l

- (n)
hi-ljk+l "I

i-1 J

ijk
+ ET

At i

where, m - 1 and n = 1-1 for solving implicitly along x -

direction and explicitly along z-direction; m = 1-1 and n=l for

solving implicitly along z- direction and explicitly along

x-dlrection, h.^ = hijk is the Initial V value at the
beginning of time step At at nodal point (i,j)-

3.3.4.2 Matrices for Solving Implicitly along x - Direction

Equation (3.161) and equations for boundary nodes in

terms of finite differences are arranged as follows to solve

implicitly along x-direction.

(3.161)

Aj hij-lk+l + B.i hi.ik+l + Cj hiJ+lk+l
D. ...(3.162)
J

In equation (3.162) the (A.), (B.), (Cj) and (D.) are the matrices
of (NC)th order. These are completely defined in terms of known

spatial and temporal step sizes, aquifer parameters, soil water

properties, and k^^] computed in preceding iteration as
follows

(a) INTERIOR NODES

A.:
.1 iX. + Ax. .

J J-l

Kx
13

i-1
AX

(3.163)

I
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- _ 2 r "*ij + Mij-i |
j Ax. + Ax,_1 [ Ax, Ax)-1 J

. U . 1-131 Ij , o 1Pj,v
Az. +~Az, : ~AzT~ * A«: J "At~ (3.164)

i x-1 L x j-lJ

2 Kxii
Cj= -AxT-+-^x— -Axf- " <3165>

J J-l .1

h^1-^n _ - 2 f "i+ljk+l „
D .- t : j — KZ. . — + Kz .j Az± + Az±_1 I ij Az i i

h (1-1)

lj

1~^k+1 - C. . iJ*!1 , ET. (3.166)AZ._1 XJ At X *«#.*ww#

(b) NODES ON BOUNDARY 1-2-3

(c)

AJ -
0 . 0

Bj = 1 . 0

UJ
- 0 . 0

DJ
=

Yo
NODES ON

A.
J

- 0 . 0

2Kx. . C. .

B y , y.
(Ax,)2 AtJ

r Kzij , K?vij l
1 L Aal Aai-i JAz. • Az.

X X

(3.167)

(3.168)

(3.169)

(3.170)

(3.171)

(3.172)

2Kx. .

C= 1 ... (3.173)
J (Ax r



(d)

(e)

D.= - C,
J
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—m~ + et.
xj At x

(1-1) (1-1)
2 [ hl-ljk+l K„ ni+ljk+l 1

Azi +Azi-lLi"1J Azi-i ij Azi J

NODES ON BOUNDARY 4-5

2 Kxlj-1
'j" Ax. + Ax._x " Ax.,,

Bj _ Ax, +
J^ij Kxij-1 I

^xj-i L Axj Axj-i J
c. .
xj

At

Kx. .

Cj " Axj+Axj-i L AxjJ -I
h. .. h

D. c. . -4x^ + ET. - 2Kz.J xj At x xj }2
NODES ON BOUNDARY 5-8

2Kx

A. = -
ij-l

(AXJ-1}'

(1-1)
i+ljk+1

. (3.174)

.(3.175)

(3.176)

(3.177)

(3.178)

(3.179)

2Kx
ij-l 3.

At

Kz, . Kz2 ^ij , rilj]
..Azi_1L Az. Azi_J15

j Ax
j-l

C, = 0.0
j

Az

. . . (3.180)

. . .(3.181)

>
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1J Lxt Az.+ Az. , ii ~~X^~x i-1 L XJ uzj

h (1 1>
+ Kz. t. - i-ljk+l__ ]

i-lj Azi-1 J i *• (3-182)
(f) NODES ON BOUNDARY 8-9

Kx., Az. ,
A s xj-1 x-1
j 2 Ax)-l ---(3.183)

2 -SV7

Z Ax, At 2

(Azi-i»

Kx, Az,
C. 1J

.(3.104)

J 2 - Ax. --.(3.185)

Ax, + Ax. « Ay +Av fc-D =-I. -^ Jzi +ET ^___tt± A2i-1
J 2 12- ~2

-Kz. f| . A™, _f^3* AXJ-1
1-1J A2i 2

Azi 1 Ax . + Ax . h- C, , . -1"1 __J j-l fti jk
13 2 • —2 - -23P -..(3.186)

(e) NODES ON BOUNDARY 9-10

A. = 0.0
J (3.187)

b. =- _^tL . !"Ci=&=i - -!^y_ ^
«j 2 • 4Sl
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Kz. ... Ax. C. . Ax Az.+Az._1
i-l J J xj J x x-1

Az. . At 2
x-1

iz. + Az..

c. =
J

Kx. ..
xj 2Ax.

J

D. =
J

ni+ljk+l
Kz.. r-xj Az±

Ax.
J

2

h

Kz. . .
i-lj

(1-D
i-ljk+1

Az.
X

Ax .
J

2

h. .
U

XJ At

, Ax.
k j

2

Az. + Az. A
x 1-1

2

- ET
AXJ

• 2

Az. + Az.
X X

2

-1

NODES1 ON BOUNDARY 10-1

aj = 0.0

B. =
J

1.0

C. =
J

0.0

D. =
J

z

NODE (1,1)

A. =
J

0.0

B. =
J

Kx. .
xj

(Ax )2
•J

Kz. .
xj

(AZl)2
C. .
xj

2At

C. =

(Ax >2J

(3.188)

.(3.189)

..(3.190)

..(3.191)

. .(3.192)

..(3.193)

..(3.194)

..(3.195)

..(3.196)

..(3.197)

h(ll)
h. .. ET, "i+ljk+1

D. = -C, ,-jys _ i_ - Kz j- (3.198)
j xj 2At 2 xj (Az )
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(j) NODE (l.NC)

A - 1J \ ...(3.199)
3 (Ax. . r

J-l

Kx, ._. Kz. . Ui ,
B. = - ^-A, H^ - -*M ...(3.200)
j t^J-l* (Azi>

C. s 0.0 (3.201)

a....... iii. n. .,n _ K„ x+ljk+1 x_ _ r xjk
j ' ~ ij 771 2 "~2~ °ij ~~2At"ij (Az,2

(3.202)

(k) NODE (NR.NC)

Azi-1A. = Kx.. 1 »A, * ...(3.203)j ij-l 2"X. _j

Ax ._1 Az._.
B . = —Kz . . . —R-;—; — Kx. . , —jt-jj x-lj 2Azi_1 xj-1 2Ax. _1

Ax . 1 Az. .
- CjLj -/^l -^- ...(3.204)

C. = 0.0 . . .(3.205)

Ax ._1 Az, . Ax._.
D = -I J + ET —- —-j l 2 I 2 2

b, , ., ,, Ax . . h. .,
„ I-ljkH j 1 ., xjk

X-lj 2 l>Z. <. 1,1 at

Az._1 Ax . 1
i—^ - 4-^ --- (3.206)
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(1) NODE AT POINT 9

A. = 0.0 ... (3.207)
J

Az... Ax.

B. = -Kx, „ * - Kzj - 1VAij 2AXj i-lj 2Azi_1

C. . Ax. -£=± --- (3.208)
'ij ~~j 4At

Az. 1
C. = Kx. . -oX2-- -- (3.209)j xj 2Axj

Ax. Ax. Azi_iD. p-I V +ET. -g-4 -£=• - falfclJ

hi-ljkil AXJ r hijk Axj Azi-1
C.

Az., - 2 ij At 2 2

(3.210)

3.3.4.3 Matrices for Solving Implicitly along z-Direction

Equation (3.161) and equations for boundary nodes

(3.151-3.160) in terms of finite differences are arranged as

follows to solve implicitly along z-direction.

Aihi-ljk+l+ Bihijk+1+ CihHljk+l= Di -.(3.211)

In equation (3.211) the (A^), (B,), (Cj ) and (D,) are the matrices

of (NR)th order. These are completely defined in terms of known

spatial and temporal step sizes, aquifer parameters, soil

hydraulic properties, and h computed in the preceding iteration

i.e. h. .,~ as follows.

1

1
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(a) INTERIOR NODES

Kz, . .

Ai = Az. + Az, A Az. ., ••• (3-212)
x i-1 x-1

(b)

o r Kz. . KZ, i , T C. .
B. = s—^ il » 1-lJ | L-l
x Az, + Az,.^ L Azj Azi_i J At

? [ _^y__ + ,Kxu-i .1 ,, „-,
Ax.+Ax. " Ax. Ax. 7 -.-(3.213)

J j 1 L j j-l J

2 Kz, .
Ci = AZj. +Az^j Az|J ...(3.214)

D. =
x "'ij-l

h/1-^2 rKx "ij+ik+i + _
Ax. + Ax. . [Kxij A3T + Kx

J J i J

h <1-1) Knij-lk+l ] hi.ik
Axj-1 J j'j At

I ET.
:i

NODES ON BOUNDARY 1-2-3

A± = 0.0

B, = 1.0

C, = 0.0

Di = Y0

(3.215)

(3.216)

(3.217)

(3.218)

(3.219)

(c) NODES ON BOUNDARY 3-4

o Kz. . .

Ai = Aai +Ag ' ' As ~i •••<3•220)
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r Kz., Kz

B4 = .- -
X Az, + Az^ L Azi

At
- -

2Kxi,

(Ax.)2
tl

p —
2 Kzij

Ci " A*. + Azi-1 Az,

h<l:i> n,

. .(3.221)

(3.222)

D. = - 2Kx
1 "J (Axj)

ij+lk+1 _c __ijk_ + KT ...(3.223)
ij ,,„ ^2 LI At i

(d) NODES ON BOUNDARY 4-5

A. = 0.0 ...(3.224)
x

Kx. Kx,

B
2Kzij __2 r ^ij_ _ +^Mzl_l

i ="HzT? Axj +Axj-i LAx j Axj-i J

13 ...(3.225)

C.

At

2Kz. .

D. = - C. .ij - -j

(1-1)

+ Kx

U ...(3.226)

(Az.)2

hijk . ET . ___2 rKx hij+ik+i
0~ * hli Ax +Ax L ij Axj

ij-lk+1 ...(3.227)
ij-l A*,_! J

(e) NODES ON BOUNDARY 5-8(or 5-6-7-8)
Kz. n

2 1~U ...(3.228)
A

1 Az. + Az. . "Z
3 i-1 —i-1
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2 r Kz Kz. , . -.
—i-T . — y . i-iji +Azi-! L A^i a*1_1 J

B. = - — -
x Az

Cij 2K*i3-l
At ' f**7~? --(3.229)

C. = 2 Kfij
x Az, + Az. " Az7~ .--(3.230)

i 1-1 i

h (J"3) h
D - - ?Ky ij-lk+1 ,, ni jkDi - 2KxiJ-r~^ ~T2 Cij AT- * W1 ..(3.231)

j-l'

(f) NODES ON BOUNDARY 8-9

Ax, + Ax . .,
A = K? J J-l

i 1-13 2Az.~T~ -..(3.232)
x-1

Ax, +Ax,
Kx,B. = -Kz. , . "J -JLJL _ K* '" i-1x-lj" 2Az. _j ^ij-x -2AxT-

j-l

- KxM. -£N ^ A" +^ ^iziij 2AX . At • 2 " 2

-..(3.233)

°i = »'• (3.234)

Ax . + Ax, , K W~D KmDi =- i. _j—L± Kx> . hiJ-ikn, Azi-i
1 2 ij-l 2

"Xj-1
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h(1 J) Az, .
iJllk-Ll i-1" Kxij 2 • Stj

r hiJk ,_^J ~X3:±_ ) i"1
- Cij "At ( 2 2

Ax . + Ax . 1 Az.. 1
itt r J J-Zl ) izL- ...(3.235)+ E^ ( g I- 2

(g) NODES ON BOUNDARY 9 10

Cij • A\i" 4A1

...(3.236)

Az. +Az. .
i il

Ax .
J_ (3.237)

Ax .

A. :
J

Kz. - ,
x-lj

J

2 Azj
1

B.
x

= -Kx. . .
U

Az. +A:
1 Si-1

2Ax .
J

— K.Z • •
XJ

AXj
2Az,

Kz.
ai-lj- 2A2i

r - k, AXJ - (3.230)
°1 - Kzij 2AZi

ii ^ 7. Az , I Az, .

Di = - KXIJ " Ax. " 2

Az I Az^,
+ ET. . Ax. ( A )

x J i

Az. + Az. ..

- C. .. h. ...A*. ( 14&t i-1 ) (3.239)
xj xjk j 4At

(h) NODES ON BOUNDARY 10-1

Ai ": 0.0

B. -
j

: 1.0

Ci :
: 0.0

D. :
X

= Z

(3.240)

(3.241)

(3.242)

(3.243)
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(1) NODE (1,1)

AjL = 0.0
(3.244)

Kz4 : Kx. . cB = - y iJ_ _ _Uij
(Az.)2 (Ax,)2 SOS -..(3.245)

i .1

Kz. ,
c, = —LL_
i (Az,)2 ---(3.246)

D. = -Kx.. "iJ+lk+l . „ hijk ' KT
1 ^ (Ax ,2 °ij 2At ' —r^ --.(3.247)

j

(J) NODE (l.NC)

A, = 0.0
1 .-.(3.248)

KzH Kx. . , n
b, = - y _ 13-1 - -•ij

(Az.)2 (ax x2 2At~ .-.(3.249)
1 v 3-1;

Kz,
C 'ij

1 (Az.)2 -.-(3.250)

h (1~3)D.= -Kx. ..-"iJ-lfc+l .c h13k . »±j
1J_1 (ax i2 ij 2At~~ * 1 .-.(3.251)

1 3-l'

(k) NODE (NR.NC)

A, = Kz. %. "XJzl_i 1-13 2Az±_1 --.(3.252)

"; • -fei-ii -«a« »«••, | ^
j-l

Az.

c. ..AX . ,( t~x .. i
ij j-l* 4At '

i 1

--.(3.253)
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ci = o.o

Ax . i

D, = -I -J=± ♦
i

^ij-l Ax._x
k t(Jwil Azi 1 hiikxj-lk+l x-1 r , XJK >

• ~~2~~ xj1 At ;

(3.254)

c^Ir1) •<—i-> ♦ KTi - Ax.r 4~ (3255)

(1) NODE AT POINT 9

Ax

Ai ~ Kzi-lj 2Az,
|_ .. (3.256)

i-1

Ax .

B, = -Kz, «, hKi - Kx,
"i-1

x 'i-lj 2Az±_| ij 2AXj

Az

- C. . Ax,
ij j 4At

i-1 ..(3.257)

c. = 0.0
X

Ax .

D. =-I ~- + ETix 2 x

Ax.
J

2

Az. ..

~T Kxij

...(3.258)

h ^ ^ Az. h, ., Ax . Az, 1
ai3+lk+l i-1 P M^ A- >1"1 . .(3.259)

x.J At"X .

J

The coefficient matrices (3.163) to (3.210) are substituted in

equation (3.162) and the coefficient matrices (3.212) to (3.259)

are substituted in equation (3.211).The equations (3.162) and

(3.211) are then solved using the Thomas Algorithm (Remson et
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al.1971) as the governing coefficient matrices 1(3.163) to (3.210)

and (3.212) to (3.259) | are tridiagonal and positive definite.

These matrices contain coefficients derived from numerical

approximation to spatial derivatives. Moreover, they are defined

such that only the derivatives in one space variable are

represented in each matrix. The equation (3.162)/(3.211) are

solved implicitly in one space dimension (x/z) using the known

values In other space dimension (z/x). This sequential sweeping of

the matrices is done first horizontally (equation (3.162) and then

vertically (equation (3.211)). This leads to the computation of

'h' values at all the finite differences nodes and at the discrete

times considered. Thereafter, the hQ values at all the nodes, are

calculated. The water table position (h =? 0) at each column is

obtained by interpolating between two such successive rows where

hc changes Ita sign.

3.3.5 Convergence Criteria

At the end of a discrete time (say kil) the difference

of h values of two successive iterations at each of the Unite

differences nodes is computed. The ADIE iterations are continued

until the biggest of these differences is less than a

prestipulated convergence factor, £4. Thus, for ADIE solution the

convergence criteria is as follows.

r (1) (1-D -,
Max |Abs (h..kH- h. Jk+1)J <£ 4 ... (3.260)

where, fajjj^j is the h value at a node (i.j) after 1th ADIE

iteration, hjjkfj is the h value at the node after (l-l)th

iteration.

The h values are computed at each node by the above
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procedure at the discrete times separated by non-uniform time
steps. Later each time step is divided into appropriate number of
subtime steps so that the computed h value at the end of the time

step does not change significantly with further increase in the

number of subtime steps (Ahmad et.al., 1991); i.e.,

Max [Abs (h. Jk+1)np - (hitikM)np/2 ]< *5 •• (3261)

^ {x, ) is the h value computed with np number of
re, i"ijl[+l'iip

j /1- ^ i« ttniMNitfid with np/2 number ofsubtime steps and (hijk+i>np/2 la ^on>Putea
subtime steps at the end of (k+l)th discrete time.

3.4 COMPUTATION OF VELOCITIES AND OUTFLOW TO DRAINS

The horizontal and vertical velocities have been

calculated as follows:

whe

_ r_^xj+JJ*+J_^J:k+l V Kx.
Uijk+1 - I Ax. J IJ

..(3.26Z)

hi»ljk+l hiJk+l 1 K. .. .O.20S)_ f„i:UJkrl.: "i.ik+1 1 K
jk+1 L Azj J iJVi

Where'h', 'Kx' and 'Kz' bear different meanings in

saturated flow model(SFM) and the total response model(TRM) and

are considered accordingly (refer section 3.1 and 3.2 for

saturated flow model and 3.3 for total response model). While

computing by SFM the Kx and Kz are the saturated hydraulic

conductivities, whereas, in the TRM computation the Kx and Kz are

defined by equations 3.126-3.127 and 3.129-3.130 depending upon &
{9 < 4> or 6 - 4>). For 9 < 4> the Kx and Kz are computed as part of

the TRM solution in accordance with equations (3.141 3.144)

proposed by Brooks and Corey (1964).
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Here, Uijk+1 l3 the horizontal velocity component in the domain

(i.J) to (i, j,l) at the (k,1)Lh discrete time; YJ|kM j.a tho
vertical velocity component in the domain (1..,) Lo (^j, ab the
(k+l)th discrete time; hjJk|| In the computed h' at node (i.j, n,,
(k+l)th time; Az. is the spacing between nodes (i.j) and <Hl,j);
KxAj and Kz_, }are the hydraulic conductivities of the domain
(i,J+l)to (i,J) and (i+1,J ) to (i,j) respectively

An integration or normal velocity over the drain
boundary leads to the computation of discharge q (,/'r ', entering
the drain per unit length. The Integration Is performed
numerically by trapezoidal, rule. Thus „ l:i ,,Lven by.

ASti-J ' AB1 Ax i- Ax. ,
•> J-l

2"i.i — T" ♦ IV 2

(3.264)

3-5 SUBSURFACE DRAINAGE BY TILES

The two models, the saturated flow model and the total
response model, explained in sections 3.2 and 3.3 have been
Presented for drainage by para.lo, ,ntO,os. Kor U,e drainage the
boundary conditions will be mod I1.1 ed as lollows:
3.5.1 Saturated Flow Mode)

The boundary conditlons |equations 3.2,3.3 and 3.5(or
3.95 ]will be modified by replacing the width of the ditch (b) by
the diameter of the tile (2r) and the depth of the ditch (d) below
drain level by the radius (r) of the tile (i.e.. b/2 or d=r).
3.5.2 Total Response Model

The boundary conditions (eoimUonn 3. 13M 3. mo, „U, Im,
modified by replacing d and „/2. ,n equations 3.134-3.13f>. d and
b/2 wll, be replaced by ,,,„„,, o, Uu, .. I,e |r|. In ,M|UnLlo|1M
3.138-3.140 , b/2 will be replaced by zero.
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3.6 COMPUTER CODE

The computer codes, for performing the calculations of

the saturated flow model and the total response model have been

written in FORTRAN IV.

3.6.1 Computer Code of the SFM.

The programme consists of one subroutine and a main

programme. Role of the main programme and the subroutine is
described briefly in the following paragraphs.

3.6.1.1 Main Programme

The following tasks are performed.

(A) Reading of all the input data

The details of the READ statement are as follows:

(i) OWT(LTM): Variation with time of the observed water
table rise at mid section, NT: number of time steps, NR:

number of rows, NC: number of columns, KOUNT: maximum

number of iterations for convergence of additional

domain above drain level (spacing between NRth and

(NR-l)th rows at Jth column. i.e., l)l)Z(J)). Al.W:

convergence factor for AD1ES, NR1): number of the row

passing through the lowest point of the drain, NCD1:

number of the column passing through the meeting point

of drain face of first drain and initial horizontal

water table (drain level), NCD2: number of the column

passing through the meeting point of drain face of

second drain and initial drain level.

(il) ,JD(I): number of the column In Ll.li row (I NRI) Nil)

passing through the drain boundary, EPS: convergence

factor of piezometric head with respect to subtime

steps, KTM: maximum number of reductions allowed for



88

discretization of a time step into subtime steps. ISYM

(=0): complete domain between the drains is analyzed,

ISYM (=1): considering symmetry only left half of the

domain is analysed. NCONF (=()):.flow above drain level is

accounted for, NCONF (=100) flow above drain level is

neglected, EPS1: convergence factor for DDZ(J), K0UNT1:

maximum number of iterations for DDZ(J) modification.

(ill) DT(IT): time step size Tor (IT)th time step, IT: number

of the time step varying from 1 to NT.

(lv) HII( I, J): piezometric head at the beginning of a time step

at a node (I,J) (i.e., piezometric head distribution).

(v> SS(I.J): specific storage distribution

(vi) SY(J): specific yield distribution

(vii) DX(J): horizontal grid spacing

(viii) DZ(I): vertical grid spacing

(ix) AKX (I.J): distribution of hydraulic conductivity in

x-direction.

(x) AKZ(1,J): distribution of hydraulic conductivity in

z-direction.

(xi) HI: piezometric head at the left hand side drain. 112:

piezometric head at the right hand side drain, R(1T):

distribution of recharge rate.

(B) computations of the distribution of piezometric head.

(C) computations of the distribution of horizontal velocity,

VX(1,J).

(D) computations of the distribution of vertical velocities,

VZ (I.J).

(E) computation of lateral flows to the drain

comparison of the computed and observed water table(F)
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elevations at midsection.

(G) computations of the model efficiency ^

(H) printing the computed results.

3.6.1.2 Subroutine Called: STN

STN: In this subroutine, the matrix generated by the

finite differences approximation is solved using the Thomas

Algorithm (Remson et al, 1971).

3.6.2 Computer Code of the TRM

The programme consists of six subroutines and a main

programme. Role of the main programme and each subroutine is
described briefly in the following paragraphs.

3.6.2.1 Main Programme -f

The following tasks are performed

(A) Reading of all the input data

The input data of the saturated flow model are also read

in the total response model (refer 3.6.1.1 (A)). In

addition there are some additional input data in TRM.

The details of corresponding additional READ statements

are as follows,

(i) 1CLAY1: number of the row representing the bottom of the
clay layer, ICLAY2: number of the row representing the y
top of the clay layer, NRWD(IT): number of the row at

water level in the drain , DL: depth of impervious layer

below drain level, NRW: number of the row at the drain

level. AL: spacing between the drains.

(11) WP: wilting point, T1IR: residual soil moisture content,
PET: potential evapotranspiration rate. PF: fraction of

available soil moisture after which KTl'KT. where. KT Is

the actual evapotranspiration rate. FOR: soil porosity,
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FFC: field capacity, AEV: air entry value (bubbling

Pressure), POM: power factor (taken as 4) in Brooks and

Corey (1964) relation, E: evaporation rate, NRZ: number

of the row representing bottom of root zone.

(B) computations of distribution of capillary pressure head,

P(I,J), and water table elevations (P(I,J)=0.0).

(C) computations of the distributions of hydraulic

properties of soil in the unsaturated zone.

(D) computations of the distribution of horizontal
velocities, VX(I,J).

(E) computations of the distribution of vertical velocities,
VZ(I,J).

(F) computations of lateral flows to the drain

(G) comparison of the computed and observed water table

elevations at midsection.

(H) computations of model efficiency

(1) Printing the computed results.

3.6.2.2 Subroutines Called

Transfer of data from main programme to the subroutines

and in between the subroutines, is made by labelled COMMON blocks.

STN: In this subroutine the matrix generated by the finite

differences approximation is solved using the Thomas Algorithm
(Remson et al, 1971).

THETA: In this subroutine the © for a given P (i.e., h ) is
c

calculated.

COND: In this subroutine conductivity is calculated (for the link)

for the specified O(or P) in the unsaturated zone.

D1FU: in this subroutine, the specific moisture capacity is

calculated. Either numerical or closed form method should be
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programmed in this subroutine.

EVPT: In this subroutine, the actual evapotranspiration rate at
all the nodes in the root zone is calculated. Necessary data is
made available through aCOMMON block. The actual ET, potential ET
(PET) and 6 relation needs to be programmed.
BIG: in this subroutine largest difference of P values of two
consecutive iterations (ADIE/subtime step) is calculated.

In annexure II listings of the computer codes (of SFM

and TRM) have been presented.

i

*

>
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CHAPTER IV

MODEL VALIDATION

The saturated flow model (SFM) has been validated by

comparing the model solutions with analytical solutions and with

reported field observations. The total response model (TRM) has

been validated by comparing the model solutions with reported

field observations.

4.1 COMPARISON WITH ANALYTICAL SOLUTIONS

The water table elevations computed by the saturated

flow model (SFM) have been compared with Kraijenhoff s (1958)

unsteady state solution and Donnan's (1946) steady state solution.

The transient lateral outflows computed by SFM have been compared

with Edelman's (1947) solution. These comparisons are explained in

details in the following paragraphs.

4.1.1 Comparison with Kraijenhoff Solution

Kraijenhoff (1958) presented an analytical solution

(refer section 2.2.2.1) for the unsteady state water table

elevations midway between two parallel fully penetrating ditches,

assuming the flow to be one dimensional horizontal. The solution

is based upon the following differential equation ("Drainage

Principles" 1983,Vol.II).

Kx Y„ ^K- +R e ^i
Ox

0 Z~2~ * R r Ky IfT H-i)

with h(x,0) = Y(), h(0,f) Y() and h(I.,t) = Y()

where, Kx is the hydraulic conductivity of the medium in

x direction, Y() is the depth of the impervious layer below drain

level, h is the piezometric head, R is the recharge depth per unit
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time at the water table, Sy is the specific yield of the medium,
and t is the time. The Kraijenhoff solution ignores the vertical ,

component of flow & the associated head loss, the flow above the

initial drain level, and the compressibility of the soil.

The assumption of one dimensional horizontal flow holds

good provided the vertical hydraulic gradient is insignificant in

comparison to the horizontal hydraulic gradient. However, the

transfer of recharge occurring at the water table into the flow

domain requires a relatively significant component of velocity.

The vertical component of velocity can be significant under

insignificant hydraulic gradient only if Kz >> Kx . This requires

the saturated flow model solution,with the storage coefficient y

assigned as zero and neglecting the flow above the drain level, to

converge to the Kraijenhoff solution at Kz >> Kx . Based upon this

logic the saturated flow model solution, neglecting the flow above

drain level (refer section 3.1), has been compared with the

Kraijenhoff solution. The details of the space & time domains in

which the model and Kraijenhoff's solutions were obtained are as

follows.

4.1.1.1 Space Domain

The flow domain between two parallel fully penetrating

ditches, 30 meters apart, is bounded by the drain level as upper

boundary and by an impervious base at 5 meters below the drain

level as lower boundary (i.e., L = 30 m, Y() = 5 m) . Owing to

symmetry, only the left half of the flow domain is analysed. This

domain is discretised by 11 rows and 16 columns. The spacings of

these rows and columns are non-uniform. The spacing of the columns

near the ditch is 0.1 metro, which is increased gradually,

reaching a maximum value of 2.4m at mid section. Similarly, the
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spacing between the rows near the drain level is 0.2m, increasing

gradually towards the impervious layer to a maximum value of 0.8m.

4.1.1.2 Time Domain

A time domain of 5.79 days is di.scrotised by 15 discrete

non-uniform time steps, starting from a minimum value of 0.01 days

and subsequently increasing gradually to reach a maximum value of

1.0 day. The discretisation of each time step into appropriate

number of subtime steps is done automatically as per the provision

made within the model (refer section 3.1.9 convergence criteria).

4.1.1.3 Solution by Saturated Flow Model

A uniform recharge of 0.1 metre per day is assumed to

occur at the initial position of water table at drain level.The

flow domain(para 4.1.1.1) bounded by a horizontal impervious

boundary at the bottom and the horizontal drain level at the top

is considered.Thus,the flow above the drain level is neglected.The

model solutions are obtained for varying vertical hydraulic

conductivities (Kz= 0.02, 0.2, 2.0 and 2000.0 m/day) and uniform

hydraulic conductivity in horizontal direction (Kx = 2.Om/day).The

specific yield (S ) is taken as 0.02. The midpoint water table

elevations computed by the model, at the discrete times are plotted

in Fig.4.1.

4.1.1.4 Kraijenhoff Solution

The water table elevation at midpoint of the flow domain

described in section (4.1.1.1) at the discrete times described in

section (4.1.1.2), has also been computed by the Kraijenhoff

solution (refer equation 2.13 in section 2.2.2.1), assigning

identical values for recharge and horizontal hydraulic

conductivity (R = 0.1 m/day, Kx - 2.0 m/day).

The computed elevations are plotted along with model
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MODEL SOLUTION

KRAIJENHOFF SOLUTION

KtftfO-OI

TIME (Days) *

FIG.A-1 COMPARISON OF THE MODEL SOLUTION (NEGLECTING THE FLOW ABOVE
DRAIN LEVEL) WITH KRAIJENHOFF SOLUTION.

♦

*
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solution (Fig. 4.1). It is found that for Kz- 2000.0 m/day,i.e.,
at Kz/Kx=1000.0, the model solution converges to the Kraijenhoff s

solution. For Kz < Kx the Kraijenhoff solution is found to
underestimate the water table rise.

4.1.2 Comparison with Donnan Solution

Donnan (1946) presented an analytical solution (refer

equation 2.1, section 2.2.1.1) for the steady state rise of water

table midway between two fully penetrating parallel ditches. The

solution is based upon the following equation governing one

dimensional horizontal, steady state flow in a porous medium
("Drainage Principles" 1983, Vol.1).

dx " l~2~ x^ (4.2)

with eU.O), = Y(), * (0,t), = Y(), * (L, t) , Y() and < =? <Xft,
at t > 0.0. Where ? is the elevation of the water table above the

impervious layer. The other symbols arc as defined in section

(4.1.1). Thus unlike Kraijenhoff's solution, the Donnan solution

accounts for the flow in the arched region of the water table. The

Donnan solution can be expressed as follows.
*2 _ v2 R.x,r
* ~ Y0 + —Kx ( L " x> (4.3)

For similar reasons as explained in the context of the Kraijenoff

solution (section 4.1.1),the saturated flow model solution

(accounting for the flows in the arched region of the water table

section 3.2) at steady state, with Kz >> Kx,should converge to the
Donnan solution.

The saturated flow model solution as well as the

Donnan's solution are obtained for the flow domain descrihed in

section (4.1.1.1) for identical recharge and parameter values.

While obtaining the model solution the flow in the additional

Kx * -7w— = « ( ^ x)
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MODEL SOLUTION (Steady state)

.DONNAN SOLUTION

DISTANCE (m)

Kz/Kx=0-01

/Kx =0-1

z/Kx =10
z/Kx =10000

FIG. 4-2 COMPARISON OF THE MODEL SOLUTION WITH DONNAN SOLUTION

f
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domain between the drain level and the risen water table is

accounted for in accordance with the logic described in section

3.2. The model has been operated for a long enough time to reach

the steady 3tate. The model computed steady state water table

profiles for different vertical hydraulic conductivities have been

Plotted in Fig. 4.2. The steady state wafer table profile computed

by Donnan solution is also plotted in Fig. 4.2. It is noticed that

for Kz/Kx = 1000.0, the model solution converges to the Donnan's

solution. For Kz<Kx, the Donnan solution is found to underestimate

the water table rise at all the points between the drains.

4.1.3 Comparison with Edelman Solution

Edelman (1947) presented analytical solutions for

transient lateral outflows from a homogeneous unoonfined aquifer

of infinite lateral extent to a fully penetrating ditch (Fig.

4.3).He considered four different boundary conditions at the ditch

,i.e.,sudden lowering of the wafer level in the ditch by an amount

A,linearly increasing lowering of water level in the ditch by an

amount a t,constant groundwater discharge into the ditch in a

magnitude q(), linearly increasing groundwater discharge into the

ditch of magnitude /3 t ( Huisman .1902) .The solutions are based on

the following differential equation.

,2 S t?s
* a = JL (4.4)dx2 Kx Y(J ST

where, s is the water table drawdown caused by lateral flow from

aquifer to the ditch, the definitions of other variables follows

from the explanation presented earlier in this chapter.The model

(neglecting the flow above drain level, section. 3.J) was operated

to estimate the outflow rate to the ditch under each of the

boundary conditions .The model computed outflows have been



t=0

t=t_

FIGA-3-UNSTEADY ONE-DIMENSIONAL FLOW OF GROUNDWATER IN ASEMI-INFINITE
UNCONFINED AQUIFER WITHOUT RECHARGE.

v -
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compared with the corresponding Edelman solutions .For model

^ solutions the space and time domains are dlscreflsed by

non-uniform step sizes (similar to the ones explained in

paragraphs 4.1.1.1 and 4.1.1.2).The details, of the Edel man's

solutions .model solutions ,and comparison for each case of the

boundary conditions are as follows .

(_a_) Sudden lowering of water level in the boundary ditch by an

amount A (refer Fig. 4.4)

i.e.,at x = 0,s0=A ,the Edelman solution for q the lateral

outflow ,i3 as follows

q() = s
S Kx f„ "I°
__y o

rr.t (4.5)

where, s(} is the drawdown at the ditch face (taken as 0.5 m ) and

qn i3 the lateral outflow from aquifer to the ditch.

The solution was obtained for a soil medium (uniform

loam soil) having an impervious boundary at 9. 5 ra below drain

level. The soil properties are considered as (S = 0 0001 S =
s • ' y

0.434, Kx= 0.3168 m/day).Since the saturated flow model can not be

operated for an infinite lateral extent (x =00), the requirement

of infinite lateral dimension has been approxiraated by assigning a

constant head boundary condition at a distance of 200 metres from

the ditch, thus making x >> ¥ The constant head boundary

condition has been numerically impiemcnfed by assigning very high

values to the storage coefficient and specific yield (S =
s

1000.0/ra, Sy= 1000) at all the nodes of the last column

(representing the constant head boundary) of the domain.

The computed variations of the outflow rate (q ) by

Edelman's solution (equation 4.5) and by SFM (with Kz = 0.03168,

0.3168, 316.8 m/day and Kx= 0.3168 ro/day) are plotted with time in

Fig. 4.5. It is found that the SFM solution converges to the
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Edelman's solution at Kz/Kx = 310.8 m/day). For Kz<Kx the

Kdelman's solution was found to overestimate Lhe lateral outflows,

(b) Linearly increasing lowering of water level in the ditch

by an amount at (refer Fig. 4.0)

i.e.,at x = 0,s = <xt,the Kdelman's solution for qnis as follows.

*0 =2* [iSy Kx" V b] " (4-B)
where, <* is taken as O.lm/day. The geometric dimensions and

parameters are taken identical to case (a).The outflow at

different times computed by Kdelman's solution (equation 4.0) is

plotted in Fig. 4.7.

The outflows are also computed by the SFM by assigning

the constant head boundary condition at 200 meters from the ditch

and implementing the condition numerically as explained in case

(a). The model solution is also plotted in Fig. 4.7. The model

solution is found to converge to the Edelman's solution (equation

4.6) at Kz/Kx= 1000. For Ka< Kx the Edelman's solution was found

to overestimate the lateral outflows.

(c) Constant groundwater discharge into the ditch in a

magnitude q,. (refer Fig. 4. 8)

i.e.,for q..- constant at x = I),the Edelman solution for s() Is as

follows.

sn = 2qQ. n S . Kx. Y„
y 0

0. !>

(4.7)

The geometric dimensions and parameters are taken identical to

case (a). The values of s..are computed at different times for q() =

0.08 ra3/m/day. The water level in the ditch (Y() s()) at different

times computed by Edelman s solution (equation 4.7) are presented

in Fig.4.9. The constant outflow (q ) is plotted in Fig. 4.10.

_i_
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The values of (Y(J-s(.) obtained from above- (FIfi 4.0)are

used to compute q() by the SFM. The constant head boundary

condition is assigned the same way as in case (a). The mode)

computed outflows for different vertical hydraulic conductivities

are also plotted in Fig. 4.10. It i3 noticed that the outflow

computed by the model converges to the constant value (assumed for

Edelman's solution) at Kz/Kx = 1000. For other values of Kz/Kx,

the model computed outflows are much lower than the constant

value.

(d) Linearly increasing groundwater discharge into the ditch

of magnitude /3t (refer Fig. 4.11)

i. e. ,for fl.^-f3 t at x = 0,the Edelman solution for s.. is as

follows.

S0=

0.5

4f3.t
S .Kx.Y.,.n
y 0

(4.8)

The geometric dimensions and parameters are kept identical to case

(a). The value of p is taken as 0.05m /m/day .The values of s..are

computed by the Edelman's solution (equation 4.0) and plotted with

time in Fig. 4.12. The variation of outflow (q„~ (3t) with time*(t)

is plotted in Fig. 4.13.

The values of (Y..- s..) obtained from above (b'ig 4.13)are

used to compute lateral outflows by the SFM. The constant head

boundary condition is implemented in the same way as in case(a).

The model computed outflows are also plotted in Fig. 4.13. It is

found that q() computed by the model converges to the q.. (=/3t)

values assumed for Edelman's solution at Kz/Kx = 1000 . For other

cases, Kz<Kx, the Edelman solution la found to overestimate the

y
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lateral outflows.

4.1.4 Inference

The SFM solution's convergence to the analytical

one-dimensional flow solutions under ideal conditions (negligible

relative resistance to vertical flow, i.e.,Kz/Kx >> 1) implicitly

validates the saturated flow model.Under non ideal conditions ( Kz

< Kx ),where these solutions give erroneous results,the saturated

flow model will provide more rational estimates of water table

rise/fall and the drain outflows.Hence,the saturated flow model

will provide more rational designs for subsurface drainage

systems,than the one-dimensional flow solutions.

4.2 COMPARISON WITH FIELD DATA

The water table elevations at midsection, computed by

the SFM and TRM, have been compared with the corresponding field

data reported by Chhedi Lai (1986). The experimental field, a

research station of Soil Salinity Research Institute, Karnal, is

located at Sampla village (Latitude 28°4G'N, Longitude 76°46'E) in

Rohtak district of Haryana state (India).

The area is under di !\ tress due to sallnll-y and

waterlogging. The subsurface drainage system, laid out In a 10

hectare plot to reclaim the highly saline land, consisted of three

drain spacings of 25,50 and 75 ra buried at an average depth of

1.75 m. The geometry of the flow domain (refer Fig. 4.14) is (Y..=

1.2 m, Dw = 1.75 m, radius of tile = 0.05 in). The reported values

of horizontal hydraulic conductivity (Kx), measured at 12 sites,

have large variations. The Kx value for the top layer (from ground

surface to 1.1 in depth) ranges from 0.06 m/ilny to 10 m/day, for

the middle layer (at 1.1 m to 1.8 ra from ground surface) from 0.05

-y
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m/day to 2.44 m/day and for the bottom layer (at 1.8 to 3 m from

ground surface) from 1.27 to 22.50 m/day. It is reported that the

soil is sandy loam in texture in the upper layer up to 1.2 m

depth,and sand & loamy sand below this layer.

4.2.1 Total Response Model

The estimates of water table rise midway between the

drains as arrived at by the total response model have been

compared with corresponding reported data for all the three

spacings (Figs. 4.15-4.17). Since unique value:; of saturated

hydraulic conductivity were not available, these were estimated by

subjectively minimising the residual errors. The minimization was

carried out within the reported range, by visual inspection of the

computed and reported water table hydrographs.Through rigorous

numerical experimentation the reported and computed water table

hydrographs were brought close enough by changing only the

saturated hydraulic conductivities and assigning average values to

other parameters <W ,0r>hb,0).The shape of the computed

hydrographs was further improved by subjective minimization of

residual errors by changing the parameters Wp,Or»hl) and <p, only

one at a time.The values of soil parameters (W , 9pI h^ and <*») are

estimated within the prescribed ranges of variation (Rawls et al

1981, 1982) for the reported soils (Table 4.1). The estimated

values of soil parameters by the above explained subjective

optimization are shown in Table 4.2. The reported rainfall for the

period considered (July to September, 1985) is tabulated in Table

4.3.

The computed and reported water table hydrographs are

found in good agreement. The mode) efficiencies for 25,50 and 75m

spacings have been estimated as 0.87, 0.87 and 0.89 respectively.
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4.2.2 Saturated Flow Model

The estimates of water table rise midway between the

drains as arrived at by the saturated flow model have also been

compared with the corresponding reported data for all the three

tile spacings (Figs 4.18-4.20). The values of hydraulic

conductivities arrived at after subjective minimization explained

in the preceding paragraph have been used in the computations by

saturated flow model. The values of the specific yields are again

estimated by subjectively minimizing residual errors. The

minimization is carried out by visual inspection of the computed

and reported water table hydrographs. The values of specific yield

estimated by this subjective minimisation for 25, 50 and 75m

spacings are 0.14, 0.125 and 0.18 respectively. The computed and

reported water table hydrographs are found in good agreement. The

model efficiencies for 25,50 and 75m spacings have been estimated

as 0.85, 0.86 and 0.51 respectively. As expected a better

agreement between the computed results and the reported data has

been found in case of the total response model.

Chhedi Lai (1988) attempted to reproduce the same water

table hydrographs by one dimensional flow equations [Massland

(1959),Dumm (1960),Van Schilfgaarde (1965)1.He used Hooghoudt's

equivalent depth in place of actual saturated thickness below

drain level , to account for the radial flow close to the drain

("Drainage Principles" 1983 Vol. LI). He could reproduce the

hydrographs to some extent (though not as closely as accomplished

by the two dimensional flow models .SFM ftTftM )1n case of the 50

and 75 ra tile spacings.However,the reproduction was very poor in

case of the 25 m tile spacing Thin can be explained by considering

the effect of drain spacing on the head loss.in case of the larger
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spacings (i.e.,L = 50 m and 75 m ) the head loss due to the

horizontal flow may be large and thus,the loss of head due to

vertical flow may form a relatively small part of the total head

loss and hence may not play a significant role. However for the

shorter spacing (i.e.,L = 25 m ), the head loss due to the

horizontal flow may be small and hence the loss of head due to

vertical flow may form relatively large fraction of the total head

loss and hence may play a significant role .

On the other hand the proposed two dimensional flow

models could reproduce the observed hydrographs for all the three

spacings reasonably well.

Table 4.1: Ranges of Soil Hydraulic Properties

Depth Horizontal Hydraulic Conductivities (12 sites)

(m) of Different Layers (Chhedi l.a 1, 1900) m/day.

0-1.1 0.00 - 10.00

1.1-1.8 0.05-2.44

1.8-3.0 1.27-22.50

Parameter Prescribed range (Bawls and Brakensiek, 1982) for

Sandy Loam Soil.

rp 0.351 0.555

e o.o o.i of;

h 0.0 li.'MVA
nb

(ni)
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Table 4.2: Adopted Values of Soil Hydraulic Properties

Parameter

Saturated-

hydraulic-

Conductivity

(Kx or Kz)

6

Spacing = 25 m

0.2

0.1

1.3

0. 035

0.030

0.220

0.50

Spacing - 50 m

0.0

0. 32

4.22

0.055

0.035

0. 222

0.50

Spacing = 75 m

0.7 b

0.40

5.00

0.055

0.035

0.180

0.50

Table 4.3: Observed Rainfall from July to September, 1985

Dates

7.7.85

8.7.85

9.7.85

10.7.85

11.7.85

12.7.85

15.7.85

10.7.85

17.7.85

22.7.85

Total Rainfall

(cm. )

0.474

5.01

0.60

1.37

5.94

5.18

8.65

1 .34

0.57

0.98

Da tea

20.7.85

27.7.05

29.7.85

3.8.85

4.0.85

5.8.85

0.8.85

16.8.05

17.8.85

18.8.85

Total Rainfall

(cm. )

2.48

0.69

0.96

3.14

1 .62

4 .33

3.27

0.69

0.24

1 .67
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CHAPTER V

MODEL APPLICATION

5.1 SATORATED FLOW MODEL

The saturated flow model solution for partially and

fully penetrating ditch systems has been presented in the form of

dimensionless design curves. These curves along with Kraijenhoff

solution permit graphical estimation of steady state rise of water

table within a practical range of geometric dimensions and the

parameters.

5.1.1 Design Curves for Ditch Drainage

The proposed model can provide more realistic designs in

comparison to the Donnan and Kraijenhoff solutions. It has been

shown earlier (paragraphs 4.1.1 and 4.1.2) that the model computed

water table elevations compare well with the analytical solutions

provided Kz is very large in comparison to Kx (Ahmad et al.

1990,1991). However, in practice Kz may be much less than Kx due

to stratification. Such anisotropic conditions cause an excessive

water table rise. For example, for Kz/Kx = 0.1, the Donnan

solution leads to an underestimation of steady state water table

rise by as much as 50% and can be as much as 75% for Kz/Kx =0.01

(refer Fig. 4.2). Similarly the Kraijenhoff solution gives an

underestimation of the unsteady state water table rise (refer Fig.

4.1). Thus, the saturated flow mode) gives a more realistic and

rational design for subsurface drainage systems. Recognizing that



126

a designer may not have access to a computer and the necessary

software, dimensionless design curves have been generated for

graphical designs (Fig. 5.1 5.4).

5.1.1.1 Dimensional Analysis

The model computed steady state rise of the water table

(Ah) at the midsection (in a partially penetrating ditch drainage

system) can be expressed as a function of the physical quantities

involved.

fx(Ah, Kx , Kz , L, b, d, Y(), R) - 0 (5.1)

In accordance with Buckinghum n theorem (Streeter and

Benjamin, 1987) equation (5.1) can be completely defined in terms

of dimensionless variables as follows:

Ah _ f . Kx d _b_ _d_ _R_ . (5 2)
Yg" "f2( ~Kz~ ' y() ' d 'L' Kz ;

Denoting the steady state rise in accordance with the

Kraijenhoff solution as Ah , the ratio (Ah /y()) can be written as:

Ah* f ' Kx _d_ b__ d _R j (b 3)
TJ- -f3( Kz ' y(, 'd 'L ' Kz > k

Dividing equation (5.2) by equation (5.3) we get:

Ah _ - { Kx d _b_ d R ) (g 4)
"IT - f4( Kz ' y,. ' d ' L ' Kz '

KIT ' '0

The number of curves required to completely describe the

dependence of Ah/Ah* on the five independent dimensionless

variables (equation 5.4) will be prohibitively large. It has been

found by numerical experimentation, that b/d does not affect

*
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Ah/Ah appreciably. Further, Ah/Ah becomes independent of R/Kz

when the flow above the initial drain level is neglected. This

reduces the number of dimensionless variables to three and

equation (5.4) can be written as:

A*L_ - r , Kx d d ,Ah* 1 « Kz •TJJ- - r, ) (5.5)

5.1.1.2 Preparation of Design Curves for Ditch Drainage

The model is operated for fully penetrating and

partially penetrating ditches under isotropic and anisotropic soil

conditions ignoring the flow above drain level. A finite

differences grid is superposed over the flow domain (Fig. 3.2).

Non-uniform grid spacing are adopted, assigning in general, lower

spacings in the zones of higher anticipated velocities. The model

operation, commencing from the Initial condition, is continued

until the steady state. The piezometric heads are computed at the

discrete times separated by nonuniform time steps. Smaller time

steps are assigned in the early stage when piezometric heads are

known to change faster. Later, each time step (At) is divided into

two equal subtime steps and the piezometric heads are calculated

after two time steps of At/2. The two different values of

piezometric heads each at the end of time step At are then

compared. The differences are summed up and compared with a

prestipulated convergence factor. If this sura of differences

exceeds the convergence factor, then the time step is divided into

four equal subtime steps. The procedure of doubling the number of

subtime 3teps is continued until there Is no appreciable change in

the computed heads (at the end of the time step) by the subsequent
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doubling.

Typical values are assigned to the variables I. and Kz

(L= 30 m, Kz= 2 m/day). The model is operated to estimate Ah for

various discrete values of other independent variables (b,d,y() and

Kx). The discrete values are selected to cover a practical range

of variation of each of the three independent dimensionless

variables i.e., Kx/Kz from 0.1 to 20, d/y() from 0.25 to 1.0 and

d/L from 0.075 to 0.5. The resulting design curves show that

Ah/Ah* approaches unity (i.e., Kraijenhoff solution holds good) as

Kx/Kz decreases (relatively higher vertical conductivity), d/y()

increases (higher ditch penetration) and d/L decreases (larger

ditch spacing). Thus, for isotropic soils (i.e., Kx/Kz = 1), the

error in Kraijenhoff solution is negligible provided the ditches

penetrate at least 75% thickness (i.e., d/y() > 0.75) and the ditch

spacing is att least 13.3 (say 15) times the ditch penetration

(i.e., d/L< 0.075). For anisotropic soils the error is restricted

to 5% provided Kx/Kz does not exceed 5, the ditches are fully

penetrating and the ditch spacing is at least 15 times the ditch

penetration. Ose of these curves may require interpolation with

respect to d/y.. and d/L.

5.1.1.4 Illustration

Consider an area drained by a parallel partially

penetrating rectangular ditch system with ditch geometry and soil

parameters as follows: L = 50 m, y() 0 m, d 4 m, Kx 1 m/day, Kz=

0.1 m/day, R = 0.01 m/day (refer Fig. 3.1). The steady state rise

of water table at the mid section is estimated graphically as

follows:
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(i) CALCULATION OF AH:

The steady state Kraijenhoff solution (Drainage

Principles and Applications, Vol.11, 1983) yields

Ah* = ~M^. - 0-01x50x50 _ _ __njl0KyQ - 0xlx0"~~ " °-5208 ra.

(ii) GRAPHICAL FST1MAT10N OF Ah/Ah*:

For the present problem independent dimensionless
variables are:

£- =0.08, d/y() =0.67, -|f =1()
since Ah/Ah* for these values of the Independent variables in not
directly available in any of the curves, an interpolation is

called for. For the present problem d/L lies in between d/L

ratings (0.075 and 0.1) of two sets of curves given in Fig. 5.1

and Fig. 5.2; d/y() lies in between d/yf) ratings (0.5 and 0.75) of

the middle two curves of each set. Thus, Ah/Ah* can be estimated

by two way interpolation from the four corners having d/L and d/y

coordinates as (0.075, 0.5); (0.075, 0.75); (0.1, 0.5); (0.1,0.75)

(Fig. 5.5). The interpolated values of Ah/Ah* at (0.075, 0.07) and

(0.1, 0.07) are 1.401 and 1.005 respectively. Thus, the

interpolated value of Ah/Ah* for the problem in hand (d/L 0.08,
d/yn = 0.87) is 1.453.

Therefore, the rIse at mi dsecti on,

Ah = 1.453 x 0.5208 = 0.757 m.

The rise computed by direct operation of the model is
0.750 m.



4

dA

0-75

0-67

0-5

(1-264)

(1-401)

(1-693)

(1-462)

tear—*•"

2-099)

0-3
005 0-075 008 0-1 d/L

AhFIG 5-5 GRAPHICAL ESTIMATION OF-^ftr
(±feValues shown in parentheses)

< *
*•



13 5

5.1.2 Computation of Velocity Distribution

For solving transport problems the spatial and temporal

distribution of the horizontal and vertical velocities need to be

known. These can be computed by the application of the saturated

flow model or the total response model (refer section 3.4). A

typical distribution of horizontal and vertical velocities

computed by the saturated flow model have been shown in Figs (5.0

- 5.13).

5.2 TOTAL RESPONSE MODEL

The total response model can be used for stream aquifer

interaction problems in situations where the flow in the aquifer

system can be considered two dimensional (x-z plane), instead of

three dimensional. The application of the total response model in

studying the throughflow and bank storage has been explained in

the following paragraphs.

5.2.1 Study of the Development of Throughflow

Consider an unsaturated zone with an impeding layer. The

percolating water tends to accommodate over the layer. This raises

the soil moisture and ultimately may lead to the development of

saturated condition (generally termed as perched water table) over

the impeding layer. This may initiate lateral flow towards the

drain through the perched water table. Such flow is termed as

throughflow.

In layered soils, if the unsaturated zone above water

table consists of layer(s) of very low hydraulic conductivity,

some of the infiltrated water may find its way to the ditch as

throughflow from above the low hydraulic conductivity layer(s).
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This throughflow can be computed by using the total response

model.

Fig (5.14) represents schematic diagram of the flow

domain of a symmetric ditch drainage system involving throughflow.

The domain is considered to consist of uniform loam soil. To study

the development of throughflow, a thin clay layer is considered in

the unsaturated zone. The geometric parameters are taken as

[L=10.4 m; b=0.4 m; D.=6 ra; J) ~4.5 m( is the depth of the ditch

below ground surface); 1) =3 m (is the depth of initial water

table); D =1.2 m (is the depth of top of eiay);t :0.9 m ( is the

thickness of clay layer)]. The hydraulic properties of soil are

assigned (Hawls et al. 1982) as: 9 = 0.027, $ - 0.4(53, F^ 0.125,

h, = 0.4012 m, PET = 0.001 m/day, p_= 0.0, W = 0.055 and the
b t. p

saturated hydraulic conductivities as (Kxsat = Kzsat = 0.3168

m/day for loam soil and Kxsat = Kzsat= 0.0144 m/day for clay). For

estimation of K and 0 of the unsaturated zone, the

K-characteristic and ©-characteristic equations (3.1.41 - 3.144 and

3.145 - 3.140); and for evapotranspiration equations (3.147

3.149) are assumed to hold good.

The model was initially run with no play in the domain

and for no evapotranspiration.The water table rise at midsection

computed by the total response model is compared with the rise

computed by the saturated flow model . These two are found to

match at steady state (Fig. 5.15). This fulfills the theoretical

requirement for the TRM, as the total response model accounts the

transfer of flow through unsaturated zone. At steady state, the

recharge at the water table should be equal to the infiltration
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assigned at the ground surface (for no evapotranspiration) and

hence the water table rise computed by SFM and TRM should match.

The total response model is then run with and without a

clay layer in the unsaturated zone assigning a potential

evapotranspiration of 0.001 m/day . In the presence of a 0.9 m

thick horizontal clay layer the initiation of rise is lagged by

about 2 days, and the maximum rise is reduced by about 0.06 m

(Fig. 5.16). The infiltration is assigned for a period of 12 days.

The computed water table is found to rise till 12 days, beyond

which it starts receding. The period of recession is longer in the

presence of clay layer. The portion of Fig. (5.14) marked as ABCD

is redrawn in Fig. (5.17) to explain the build up of perched

saturated zone and the development of throughflow (q.).It is seen

that the perched saturated zone's thickness is maximum on 9th day,

though, a near steady state reaches much later (12th day). Fig.

(5.18) shows the rate of lateral inflow (q) to the ditch from the

saturated zone below water table and the rate of throughflow (q.)

from the perched saturated zone. It is observed that the maximum

rate of throughflow is also on the 9th day, which reaches a neat-

steady state rate on 12th day. Fig. (5.19) shows the decrease of

the perched saturated zone after ceasure of the infiltration. it

is noticed that on 13th day, though, there exists a perched

saturated zone but there Ls no throughflow. (Figs 5.18 and 5.19).

Seepage face for throughflow existed even at the 30th day. The

period of throughflow in general, however, depends upon many

factors (such as rate of infiltration, thickness of clay, depth to

the top of clay etc.), and it may continue Cor many days even
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after infiltration is ceased.

The effect of clay thickness and the effect of partial

penetration on the throughflow is studied (Fig. 5.20) in terms of

the dimensionless parameters (D /t , I) /!). and Q./Q). Where Q =
W C# x 1 1 j

Zq^lt and Q = Zq.dt are rcr.poct, ive Iy the cumulative throughflow

from perched saturated zone and the cumulative saturated flows

from beneath the water table in BO days. The geometric and other

parameters are considered as | I. Hi.4 ra, i). B.3 m, I) 3.3 m,

I(t) = 0.05 m/day (only for 20 days), b 0.4 rn, D : 1.5 m, TET =

0.0]. The thickness of clay and the depth of the ditch has been

varied as (tQ = 0.3 , 0.6 , 0.9 , 1.2 , 1.5 l, and Dr = 3.3 , 3.9

, 4.5 , 5.1, 5.7, 6.3m). Dimensionless curves are plotted taking

Dr/Di °" horizoiltal axis and Qj/Q on vertical axis. for varying

clay thickness, it is observed that Q./Q increases with increasing

clay thickness and with decreasing ditch penetration (Fig. 5.20).

These dimensionless curves are, however, found to change with

change in other parameters (e.g., spacing L; rate of infiltration

I(t)). On the other hand, it is not even possible to draw unique

sets of dimensionless curves due to nonlinearity of the problem

and a large number of parameters involved.

5.2.2 Bank Storage Development and Release

Bank storage build up and its subsequent release to the

ditch is studied by passing an assumed stage hydrograph (Fig. 5.21

of 7 days duration through the ditch. This shape of the stage

hydrograph is chosen to suit the time step size (0.25 days) and

less number of rows considered. However, the model can be used to

execute any shape of the stage hydrograph by considering
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appropriate time step sizes and suitable discrete spatial sizes.

The parameters considered here are (L, 6000 m, b =60 m, D.~ 10.5

m, Dw= 6.0 m, D^- 7.5 m). Soil is heterogeneous in horizontal

direction (up to 102 ra sand, 102 to 312 m 1oamy sand, 312 to 1014

m sandy loam, 1014 to 3000 m loam). The hydraulic properties of

soil are taken from Haw Is et, aI (1982). For properties of the

unsaturated zone Brooks and Corey (1964) relations (equations

3.141 - 3.144) and equations (3.145 3.149) are considered to

hold good. Two cases; i.e., with infiltration, l(t) - 0.0 and l(t)

= O.lm/day are considered. Fig. (5.22 - 5.24) and Figs (5.25 -

5.27) represents the cases of no infiltration (l(t) = 0.0) and

with infiltration (l(t) = 0.1 m/day) respectively. Fig. (5.22)

represents the rate of lateral flows (q ) from ditch to the

aquifer (when water level is higher in the ditch). Thus negative

of these (~Qh) represents the rate of lateral flows from aquifer

to the ditch. Fig. (5.23) represents the cumulative flow (Q ) to

the aquifer, the maximum being; at 4.5 days. Fig. (5.24) shows the

cumulative flows released to the ditch.in the specific problem

considered, it is seen that about 60% of the maximum cumulative

flows stored in the banks are released within 20 days. The rest

40% may take a very very long time as the gradient of flow has

become significantly low and it is Still decreasing. The Figs

(5.25-5.27) are corresponding to the Infiltration rate, l(t) 0.1

m/day.
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CHAPTER-VI

CONCLUSIONS

Two numerical models of two dimensional subsurface

drainage have been developed .The first one (saturated flow model)

analyses the flow in the saturated flow domain bounded by the

impervious layer at the bottom ,water table at the top and two

parallel drains at the sides. The second one ( total response

model)analyses the flow in the entire unsaturated-saturated domain

bounded by the impervious layer at the bottom .ground surface at

the top and two parallel drains at the sides.The saturated flow

model (SFM) requires among others, the time variant distribution

of recharge rate at the water table as Input data and yields the

time variant water table position. The total response mode] (TRM)

requires similar distribution of infiltration at ground surface

and yields the spatial and temporal distribution of capillary head

(hc). This in turn yields the time variant water table position(

defined by h = 0).
c

Following are the prominent conclusions of the study,

la. Transfer of recharge occurring at the water table

requires a vertical component of velocity. This component gets

more prominent if the ditches are partially penetrating. One

dimensional flow theories (e.g. Donnan's and Kraijenhoff's

solutions) of subsurface drainage neglect the head loss associated

with this vertical flow. This head loss may be quite significant

in case of anisotropic soils with Ks < Kx. This leads to an

underestimation of water table rise by such theories. Both the



163

models corroborate the vertical flows. The SFM accounts for

two-dimensional flows in the saturated domain below water table,

whereas the TRM models these flows in the entire

unsaturated-saturated domain. The two models yield higher water

table rise than one dimensional flow solutions of Donnan,

Kraijenhoff etc (chapter IV,section 4.1 and Figs 4.1-4.2).

lb. The two models can account for the vertical flows, the

partial penetration of drains, vertical anisotropy, flow above the

initial drain level and associated head losses.

2. The time lag between the occurrence of infiltration at

the ground surface and recharge at the water table influences the

transient water table rise, though the steady state rise is not >

affected. Thus, for the unsteady state drainage designs, it is

necessary to account for the lag rationally. However, this may not

be possible unless the flow through the intervening medium (i.e.,

the unsaturated zone) is modelled realistically. The proposed

total response model, models the flow through both the (saturated

as well as unsaturated) zones and thus implicitly accounts for the

time lag.

3. The TRM is capable of simulating the generation of

perched water table condition (and associated throughflow to the

drains) over an impeding layer in the unsaturated zone. The

throughflow was found to increase with, the increase in thickness

of the clay layer, decrease in ditch penetration, and increase in

the rate of infiltration (chapter V,section 5.2 ^nd Kig 5.20).

4. The total response model can be used to estimate the

build up and depletion of bank storage, provided the subsurface

flow is predominantly normal to the drain (chapter V,section 5.2

and Figs 5.21-5.27).
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5a. The saturated flow model has been Implicitly validated

by comparing the SFM solution with one dimensional flow solutions

of Donnan and Kraijenhoff. The computed water table rise by SFM

has been found to converge to these analytical solutions when

resistance to vertical flow is made negligible by numerically

assigning a very high vertical hydraulic conductivity (Kz >> Kx)

[chapter IV,section 4.1,and Figs 4.1-4.2 ].However, similar

validation of the total response model could not be taken up,

since no analytical solution in the unsaturated-saturated domain

was accessible.

5b. The SFM computed outflows to drains are found to be

lower than the outflows computed by the Edelman's one dimensional

flow solutions except at Kz >> Kx (where the SFM solutions are

found to converge to the Edelman's solutions) [chapter IV,section

4.1,and Figs 4.5,4.7,4.10,4.13 J.

5c. Both the models (SFM & TRM) have also been validated by

comparing their solutions with a set of reported experimental

data. The experimental field, a research station of Soil Salinity

Research Institute, Karnal, is located at Sampla village in Rohtak

District of Haryana State, India. The area is under distress due

to salinity and waterlogging. The subsurface drainage system, laid

out in a 10 hectares plot to reclaim the highly saline land,

consisted of three tile drain spacings of 25, 50 and 75 metres

buried at an average depth of 1.75 m. The computed and reported

water table hydrographs are found in good agreement. As expected,

the agreement is better in case of the total response model

(chapter IV,section 4.2,and Figs 4.15 4.20).

6a- The saturated flow model solution has been presented in

the form of dimensionless design curves. These curves along with
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Kraijenhoff solution permit graphical estimation of the steady

state rise of water table, accounting for the vertical flows,

within a practical range of the geometric dimensions and the

parameters (chapter V,section 5.1,and Fig3 5.1 5.4).

6b. The design curves reveal that the extra rise of water

table on account of vertical flows is insignificant provided all

of the following conditions hold good,

(i) the ditch spacing is more than 15 times the ditch

penetration,

(ii) the ditch penetration is more than 75% saturated

thickness,

(iii) the vertical hydraulic conductivity is not less

than 20% the horizontal hydraulic conductivity.

Thus, under these conditions the prevalent one dimensional flow

theories [Kraijenhoff(1958),Donnan (1946),Dumm (1954) etc.] may be

employed without incurring any significant error.However,these

theories may lead to significant overestimation of ditch spacing

if any one of the above conditions is violated .
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ANNEXURE-II

COMPUTER CODE

»
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C **********************^^

C SATURATED FLOW MODEL

C PROGRAMME FOR COMPUTATION OF RISE /FALL OF WATER TABLE
C ************************************************#######
C NT:NUMBER OF TIME STEPS

C NR:NO.OF ROWS FOR FINITE DIFFERENCE MESH/TOP MOST ROW
C 1=1:BOTTOM MOST ROW OF THE MESH

C NC:NO.OF COLUMNS FOR THE MESH

C KOUNT:NO.OF ITERATIONS FOR ALTERNATE DIRECTION IMPLICIT
C 1 EXPLICIT SCHEME

C ALW:CONVERGENCE FOR ADIES

C NRD:SERIAL NO.OF THE ROW AT THE DRAIN BOTTOM
NCD1:SERIAL NO.OF THE COLUMN AT THE FACE OF FIRST DRAIN
NCD2:SERIAL NO.OF THE COLUMN AT THE FACE OF SECOND DRAIN

C EPS CONVERGENCE WITH RESPECT TO SUBT1MESTEPS
C KTM:NO.OF ALLOWABLE SUBTIME STEP REDUCTIONS
C DT(IT):TIME INCREMENTS(DAYS)
C DELT:SUBTIME STEP INCREMENT

C TM:TOTAL TIME OF SIMULATION(DAYS)
C HH(I,J):INITIAL PIEZ.HEAD AT THE NODE AT JTH ROW AND
C 1 JTH COLUMN(METER)

C SS(I,J).SPECIFIC STORAGE AT NODE (I,J) (1/METER)
C SY(J).SPECIFIC YIELD AT JTH COLUMN IN NRTH(TOP)ROW
C DX(J):SPACING BETWEEN COLUMNS (J-l)ft J (METER)
C DZ(I):SPAC1NG BETWEEN ROWS (I-l)& J (METER)
C AKX(I,J):HYDRAULIC CONDUCTIVITY OF THE LINK BETWEEN
C 1 NODES (l,J-l)ft(I,J) (M/DAY)

AKZ(I,J):HYDRAULIC CONDUCTIVITY OF THE LINK BETWEEN
C 1 NODES (I-1,J)&(],J) (M/DAY)

C HI:WATER LEVEL IN FIRST BRA 1N(METER)
C H2:WATER LEVEL IN SECOND DRAIN(METER)
C R:RATE OF RECHARGE(M/DAY)

C H(I,J):S1ULATED P1EZOMET. HEAD AT NODE (i rJ) (M)
HIN(J):INIT1AL PIE.MEAD IN TOPMOST ROW AT JTH COLUMN (M)
HSA(l,J):PIEZOMET. HEAD AT THE BEGINNING OE TIME STEP

C 1 AT NODE (I,J) (M)

C NTD:NO.OF TOTAL SUBTIME STEPS

(J HP(I,J):piEZOMET. HEAD IN PREVIOUS ITERATION AT
C 1 NODE(I.J) (M)

c

c
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C HPT(I,J):PIEZOMET.HAD IN PREVIOUS ITERATION OF SUBTIME

C 1 STEP AT NODE(I,J) (M)

C VX(I,J)-VELOCITY IN X-DIRECTION IN THE LINK BETWEEN

C 1 (I,J-D&(1,J) (M/DAY)

C VZ(I,J):VELOCITY IN Z-DIRECTION IN THE LINK BETWEEN

C 1 (I-1,J)&(I,J) (M/DAY)

C Q:COMPUTED LATERAL FLOW IN A ROW/COLUMN (M**3/DAY/M)

C SQl:TOTAL HORIZONTAL FLOW TO THE DRAIN (M**3/DAY/M)
C SQ2:TOTAL VERTICAL FLOW TO THE DRAIN (M**3/DAY/M)
C SQ:TOTAL LATERAL FLOW TO THE DRAIN (M**3/DAY/M)

C NTD:NO.OF TOTAL SUBTIME STEPS

C IMD:INDEX TO USE AVERAGE DDZ(J)

C KOUNT1.NO.OF ITERATIONS FOR CONVERGENCE W.R.T.DDZ(J)

C DDZM(J)-MODIFIED DDZ(J) M

C EPS1:CONVERGENCE W.R.T.DDZ

C NRD=1:FULLY PENETRATING DITCH *

C ISYM=0:NO SYMMETRY

C ISYM=1:SYMMETRIC DRAINS

C NC0NF=0:UNCONFINED AQUIFER

C NCONF-100:CONFINED AQUIFER

C OWT(ITM):OBS.WATERTABLE RISE AT MIDSECTION AT TIME ITM
C FO:VARIANCE OF OBSERVED WATERTABLE RISE*TOTAL NO.OF DAYS

C FM.VAR. USING COMP. AND OBS. WATERTABLE RISE*TOTAL DAYS

C FOM:MEAN OF OBSERVED WATERTABLE RISE VALUES

C SOM.SUM OF OBSERVED WATERTABLE RISE VALUES

C SDFM:UNEXPLAINED VARIANCE USING(OBSERVED-COMPUTED)RISE

C SDFO:VARIANCE OF OBSERVED WATERTABLE RISE VALUES

C D1RSQ:DETERMINATION INDEX R SQUARE(EFFICIENCY) ♦

C KT1(=1):SUBTIME STEP REDUCTION INITIATED

C NTD(=l):NO.OF SUBTIME STEPS IN A TIME STEP TAKEN AS 1
C KTM.NO.OF REDUCTIONS FOR SUBTIME STEP DISCRETISATION

C HH(I,J):PIEZ.HEAD AT THE BEGINNING OF SUBTIME STEP

C HSA(1,J):PIEZ.HEAD AT THE BEGINNING OF TINE STEP

C H{I,J):COMPUTED PIEZOMETRIC HEAD

C IMPLICIT REAL*8(A-H,0-Z)

DIMENSION H( 30,51 ),AKX(30,51),AKZ(30,51 ),A(51)

DIMENSION B(51),C(51) ,D( 51 ),DX(51).DZ(51)

0 DIMENSION 5S(30,51 ),SY( 51 ),HII( 30,51 ),H(120),II 1(51) f
DIMENSION HS(51),DT(120),HP(30,51),H1N(51)
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DIMENSION VX(30,51),VZ(30,51),HPT(30,51),JD(51),OWT(100)

DIMENSION HSA(30, 51), 1)11(51), DDZ( 51) ,DXX( 51) ,DDZM( 51)

C OPEN(UNIT=1,DEVICE='DSK',FlLE='YS25.DAT')

OPEN(UNIT=1,DEVICE- DSK',FILE 'YS75.DAT')

C OPEN(UNIT=2,DEVICE='DSK',F1LE='WTR75.DAT')

C OPEN(UNIT=2,DEVICE='DSK',F1LE='WTR25.DAT')

OPEN(UNIT=3,DEVICE='DSK',FILE='OBWT75.DAT')

C OPEN(UNIT=1,DEVICE^'DSK',FILE='YS50.DAT')

C OPEN(UNIT=2,DEVICE='DSK',FILE='WTR75.DAT')

C OPEN(UNIT=3,DEVICE='DSK',F1IJE='OBWT50.DAT')

C OPEN(UNIT=l,DEVICE='DSK',FILE='DL.DAT)

C OPEN(UNIT=3,DEVICE='DSK',FILE='OBWT25.DAT')

READ(3,*)(OWT(LTM),LTM=1,83)

READ(1,*)NT,NR,NC,KOUNT,ALW,NRD,NCD1,NCD2

READ(1,*)(JD(1),1=NRD,NR)

READ(1,*)EPS,KTM,ISYM,NCONF,EPS1,KOUNT1

READ(1,*)(DT(IT),IT=1,NT)

TM=6.0

FM=0.0

FO=0.0

C QLI=0.000263157

READ(1,*) ((HH(I,J),J=1,NC),1=1,NR)

READ(1,*)((SS(I,J),J=1,NC),1=1,NR)

C ACCEPT*,(SS(I,NC),1=1,NR)

READ(1,*)(SY(J),J=1,NC)

C ACCEPT*,(SY(NC))

READ(1,*)(DX(J),J=1,NC-1)

READ(1,*)(DZ(I),I=1,NR-1)

READ(1,*)((AKX(1,J),J=1,NC-1),!=!,NR)

READ(1,*)((AKZ(1,J),J=1,NC),1=1,NR-1)

C READ(1,*)(HO,H2,(R(IT),1T=1,NT))

C Hl=HO

C READ( 1, * )(HI(IT) ,1:T=1, NT)

C READ(2,*)(R(IT),IT=1,NT)

READ( 1,*) (III ,112 ,(R( IT) ,1T= 1 ,NT ))

DO 15 J=1,NC

DO 10 1=1,NR

H(I,J)=HH(1,J)

10 CONTINUE
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HIN(J)=HH(NR,J)

15 CONTINUE

DO 26 J=1,NC

DDZ(J)=DZ(NR-1)

26 CONTINUE

JTM=1

DO 1000 IT=1,NT

DO 5001=1,NR

DO 505 J=1,NC

HSA(I,J)=HH(I,J)

505 CONTINUE

500 CONTINUE

KT1= 1

NTD=1

6 DO 5101=1,NR

DO 515 J=1,NC

HH(I,J)=HSA(I,J)

515 CONTINUE

510 CONTINUE

DELT=DT(IT)/FLOAT(NTD)

IF(NCONF.BQ.100)00 TO 453

DO 452 J=1,NC

DDZ(J)=DZ(NR-1)+HSA(NR,J)-HIN(J)

452 CONTINUE

453 DO 1050 1TD=1,NTD

DO 88 1D=1,KOUNT1

DO 16 1K=1,KOUNT

DO 100 1=1,NR

DO 110 J=1,NC

IF(I.EQ.NR)GO TO 25

IF(I.EQ.NR-l)GO TO 36

DZI=DZ(I)

IF(I.EQ.l)GO TO 35

DZI1=DZ(I-1)

GO TO 35

25 DZ11=DDZ(J)

CO TO 35

36 DZ1=DDZ(J)

DZI1=DZ(I-1)
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35 CONTINUE

IF(I.GE.NRD.AND.J.LE.JD(I))GO TO 160

C 1F(I.GE.NRD.AND.J.LE.JD(I))G0 TO 161

IF(ISYM.EQ.l)GO TO 801

IF(I.GE.NRD.AN1).J.GE.NCD2)G0 TO 170

801 IFd.EQ.NR.AND.J.EQ.NC.AND.ISYM.EQ.1)GO TO 1120

IF(I.EQ.NR) GO TO 120

IF(I.EQ.l) GO TO 130

IF(I.LT.NRD.AND.J.EQ.l) GO TO 140

IF(I.LT.NRD.AND.J.EQ.NC) GO TO 150

IF(ISYM.EQ.l.AND.J.EQ.NC)GO TO 150

IF(I.EQ.l.AND.J.EQ.NC)GO TO 175

IF(DZI1.GT.DZI)DA=DZI

IF(DZI1.LE.DZI)DA=DZ11

IF(DX(J-l).GT.DX(J))DB=DX(J)

IF(DX(J-1).LE.DX(J))DB=DX(J-1)

A(J)=(AKX(I,J-1)/DX(J-1))/DB

B(J) =-((AKX(I,J)/DX(J)+AKX( I.,J-1)/DX(J-1))

1/DB+SS(I,J)/DELT)

1-(AKZ(I,J)/DZI+AKZ(I-1,J)/DZI1)/DA

C(J)=(AKX(I,J)/DX(J))/DB

D1=-(H(I-1,J)*AKZ(I-1,J)/DZI1)/DA

D3=-(H(I+1,J)*AKZ(1,J)/DZI)/DA

D4=-HH(I,J)*SS(I,J)/DELT

D(J)=D1+D3+D4

GO TO 110

120 DXX(J)=(DX(J)**2+(DDZ(J+1)-DDZ(J))**2)**0.5

DXX(J-1)=(DX(J 1)**2+(DDZ(J)-DDZ(J-1))**2)**0.5

A(J) =(DDZ(J 1 ) H)DZ(J))*AKX(I,J 1.)/(4.0*DXX(J 1))

B(J)=-(DX(J)+DX(J-1))*AKZ(I-1,J)/(2.0*DDZ(J))-(DDZ(J-1)+

1DDZ(J))*

lAKX(I,J-l)/(4.0*DXX(J-l))-(DDZ(JM)+DDZ(J))*AKX(I,J)/(4

1.0*DXX(J))-

1SY(J)*(DX(J)+DX(J-1))/(2.0*DELT) SS(1,J)*(DX(J)+

lDX(J-l))*(DDZ(J)+(DDZ(J+l)+DDZ(J-l))/2.0)/(8.0*DELT)

C( J )=(DDZ(J+1) +DDZ(J ))*AKX(I ,J )/( 4 .()*UXX(J) )

D(J)=-((DX(J)+DX(J-1))/2.0)*(R(IT)+H(1-1,J)*AKZ(1-1,J)/DDZ(J

1))-(HH(I,J)*(DX(J)+DX(J-1))/(2.0*DELT))*(SY(J)

l+SS(I,J)*((DDZ(J)+(DDZ(J+l)+DDZ(J-l))/2.0)/4.0))
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GO TO 110
1120 DXX(J)=(DX(J)**2+(DDZ(J+1)-DDZ(J))**2)**0.5

DXX(J-1)=(DX(J-1)**2+(DDZ(J)DDZ(J- 1))**2)**0.5
A(J)=(DDZ(J-l)+DDZ(J))*AKX(I,J-l)/(4-0*DXX(J-D)
B(J)=-DX(J-1)*AKZ(I1,J)/(2.0*DDZ(J))-(DDZ(J-1)+DDZ(J))*

1AKX(I,J-D/
1(4.0*DXX(J-1))-SY(J)*DX(J-1)/(2.0*DELT)-SS(I,J)*
1(DDZ(J)+DDZ(J-1))*DX(J-1)/(8.0*DELT)

D((J)=-R(IT)*DX(J-l)/2. 0-11(1-1. J)*I)X(.M)*AKZ(ll,J)/(2. 0*1)
1DZ(J))-HH(I,J)*SY(J)*DX(J-1)/(2.0*DELT)-HH(1,J)*SS(1,J)
1*(DDZ(J-D+DDZ(J))*DX(J-1)/(8.0*DELT)

GO TO 110

C160 IF(IT.GT.l)GO TO 161

160 A(J)=0.0

B(J)=1.0

C(J)=0.0

C D(J)=H1(IT)

D(J)=H1

GO TO 110

GO TO 163

161 IF(I.EQ.NR)GO TO 162

A(J)=0.0
B(J)—AKX(I,J)*(DZ(I)+DZ(I-l))/4.0-(AKZd,J)+AKZ(I-l,J))
l*DX(J)/4.0-SS(I,J)*DX(J)*(DZ(l)+DZd-l))/(4.0*DELT)
C(J)-AKX(I,J)*(DZ(l)«DZ(I-l))/4.0
D(J)=-H(l+l,J)*AKZ(I,J)*DX(J)/4.0-H(l-l,J)*AKZ(I-l,J)*D
lX(J)/4.0+QLl-HH(l,J)*SSd,J)*DX(J)*(DZ(l)+DZ(I-l))/(4.0

1*DELT)

GO TO 110

162 A(J)=0.fl
B(J)=-AKX(I,J)*DZ(I-l)/4.0-AKZ(l-l,J)*DX(J)/4.0
1-SS(I,J)*DX(J)*DZ(1-1)/(4.0*DELT)-SY(J)*DX(J)/(2.0*DELT)
C(J)=AKXd,J)*(DZ(l)+DZ(l-l))/4.0
D(J)=-H(I-l,J)*AKZd-l,J)*DX(J)/4.0+QLl-SS(l,J)*HHd,J)
l*DX(J)*DZ(l-l)/(4.0*DELT)-SY(J)*HH(l,J)*DX(J)/(2.0*DELT)

GO TO 110

163 CONTINUE

170 A(J)=0.0

>

*
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B(J)=1.0

C(J)=0.0

D(J)=H2

GO TO 110

130 IF(NRD.GT.l.AND.J.EQ.l) GO TO 165

IF(NRD.GT.1.AND.J.EQ.NC) GO TO 175

IFd.EQ.l.AND.NRD.GT.l. .AND.J.EQ.NC) GO TO 175

IF(ISYM.EQ.l.AND.J.EQ.NC)GO TO 175

A(J)=(AKX(I,J-1)/DX(J -1))*(2.0/(DX(J)+DX(J-1)))

B(J)=-((AKX(I,J)/DX(J)+AKX(1,J-1)/DX(J-1))*

1(2.0/(DX(J)+DX(J-1)))+S8(I.J)/DELT)

1-2.0*(AKZ(1,J)/DZl**2)

C(J)=(AKX(1,J)/DX(J))*(2.0/(DX(J)+DX(J-1)))

D(J)=-HH(I,J)*SS(1,J)/DELT

1-2.0*H(I+1,J)*(AKZ(1,J)/DZ1**2)

GO TO 110

165 A(J)=0.0

B(J)=-(AKX(I,J)/DX(J)**2+SS(I,J)/(2.0*DELT))

1-(AKZ(I,J)/DZI**2)

C(J)=AKX(I,J)/DX(J)**2

D(J)=-H(I+1,J)*AKZ(I,J)/DZI**2

1-HH(I,J)*SS(I,J)/(2.0*DELT)

GO TO 110

175 A(J)=AKX(I,J-1)/DX(J-1)**2

B(J)=-(AKX(I,J-1)/DX(J-1)**2*SS(I,J)/(2.0*DELT))

1-(AKZ(I,J)/DZ1**2)

C(J)=0.0

D(J)=-H(I+1,J)*AKZ(1,J)/DZ1**2

1-IIIK I ,J)*SS( 1 ,J)/(2.0*DBI,T)

GO TO 110

140 A(J)=0.0

B(J)=-((2.0*AKX(1,J)/DX(J)**2)•SS(1,J)/DELT)

1-(AKZ(I,J)/DZ1»AKZ(1-1,J)/DZ11)

1*(2.0/(DZI+DZI1))

C(J)=2.0*AKX(I,J)/DX(J)**2

D(J) =-HH(1,J)*SS(I,J)/DELT 11(1 »1 ,J)*(AKZ(1,J)/DZ1)

1*(2.0/(DZI+DZ11))

1-H(I-1,J)*(AKZ(11,J)/DZI1 )

1*(2.0/(DZHDZ11 ))
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GO TO 110

150 IF(I.EQ.l)GO TO 175

1F(J.EQ.NR)GO TO 1120

A(J)=(2.0*AKX(I,J-1))/DX(J-1)**2

B(J)=((2.0*AKX(1,J 1))/DX(J 1)**2iSS(I,J)/DELT)

1-(AKZ(I,J)/DZI+AKZ(I-1,J)/DZI1)

1*(2.0/(DZ1+DZ11))

C(J)=0.0

D(J)=-HH(I,J)*SS(I,J)/DELT-H(I»1,J)*(A KZ(I,J)/DZI)

1*(2.0/(DZ1+DZI1))

1-11(1-1, J)*(AKZ(I 1,J)/D7,U.)*(2.0/(1)7.1 'DZ 1.1) )

110 CONTINUE

CALL STN(NC,A,B,C,D,HS)

DO 20 J=1,NC

H(I,J)=HS(J)

20 CONTINUE

100 CONTINUE

DO 200 J=1,NC

DO 210 1=1,NR

IF(I.EQ.NR)GO TO 251

IF(I.EQ.NR-1)G0 TO 361

DZI=DZ(I)

IFd.EQ.DGO TO 351

DZI1=DZ(I-1)

GO TO 351

251 DZil=DDZ(J)

GO TO 351

361 DZI=DDZ(J) *

DZI1=DZ(I-1)

351 CONTINUE

IF(J.LE.JD(I).AND.l.GE.NRD)GO TO 260

C IF(J.LE.JDd) .AND.1.GE.NRD)G0 TO 261

IF(ISYM.EQ.l)GO TO 805

IF(J.GE.NCD2.AND.I.GE.NRD)GO TO 270

805 IF(J.EQ.NC.AND.I.EQ.NR.AND.ISYM.EQ.l)GO TO 1240

IFd.LT.NRD.AND.J.Q.I ) GO TO 220

IFU.LT.NRD.AND.J.EQ.NC) 60 TO 230

IE( 1SYM.EQ.1.AND. J.EQ.NOGO TO 230 f

IF(I.EQ.NR) GO TO 240

IF(I.EQ.l) GO TO 250
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1F(1.EQ.1.AND.J.EQ.NC)G0 TO 275

IF(DZI1.GT.DZ1 )DA=DZI

1F(DZI1.LE.DZ1)DA=DZI 1

IF(DX(J-1).GT.DX(J))DB=DX(J)

IF(DX(J-1).LE.DX(J))DB=DX(J-1)

A(I)=(AKZ(1-1,J)/DZI1)/DA

B(I)=-((AKZ(I,J)/DZ1+AKZ(I-1,J)/DZ11 )

1/DA+SS(I,J)/DELT)

1-(AKX(1,J)/DX(J)+AKX(1,J-1 )/DX(J-l))/I)B

C(I)=(AKZ(I,J)/DZ1)/DA

D(I)= (11(1 ,Ji 1 )*AKX( I,J)/DX(J) )/DB

1-HH(1,J)*SS(1,J)/DELT-H(1,J-1)*(AKX(1,J-1)/DX(J-1))/DH

GO TO 210

220 IF(I.EQ.l) GO TO 265

A(I)=(AKZ(1-1,J)/DZ11)*(2.0/(DZI+DZ11))

B(I)=-((AKZ(1,J)/DZI+AKZ(I-1,J)/DZI1)

1*(2.0/(DZI+DZI1))+SS(I,J)/DELT)

1-(2.0*AKX(I,J)/DX(J)**2)

C(I)=(AKZ(I,J)/DZ1)*(2.0/(DZ1+DZ11))

D(I)=-H(I,J+1)*2.0*AKX(I,J)/DX(J)**2

1-HH(I,J)*SS(I,J)/DELT

GO TO 210

C260 IF(IT.GT.1)G0 TO 261

260 A(I )=().()

B(I)=1.0

C(l )=().()

C D(I)=H1(1T)

D(I)=H1

GO TO 210

GO TO 263

261 IF(l.EQ.NR)GO TO 262

A(I)=AKZ(I-l,J)*DX(J)/4.0

B(I)=-AEX(I,J)*(DZ(I)+DZ(I-l))/4.0-(AKZ(I,J)+AKZ(I-l,J))

l*DX(J)/4.0-SS(I,J)*DX( J)*(DZ(1) »!)'/.(11 ))/( 4 .0*DELT)

G(l)=AKZ(l,J)*DX(J)/4.0

D(I)=-H(I, J+l)*AKX(l,J)*(DZ(I)-»-DZ(l-l))+QLI-HH(l,J)*

1SS(I,J)*DX(J)*(DZ(1 )U)Z(11))/{4.0*DELT)

GO TO 210

262 A(I)=AKZ(I-l,J)*DX(J)/4.0
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B(I)=-AKX(I,J)*DZ(I-l)/4.0-AKZ(l-l,J)*DX(J)/4.0-SS(I,J)

1*DX(J)*DZ(I-1)/(4.0*DELT) SY(J)*DX(J)/(2.0*DELT)

C(I)=0.0

D(I)=-H(I,J+1)*AKX(I,J)*DZ(1 -1)/4.0IQI,I -1111 (I , J )*SS( I ,J)*

1I)X(J)*DZ(I.-1)/(4.0*I)ELT) 11JI ( I , J)*BY( J )*DX( J)/(2. 0*DELT)

GO TO 210

263 CONTINUE

265 A(l)=0.0

B(l)=-(AKZ(I,J)/DZI**2+SS(I,J)/(2.0*DELT))

1-(AKX(I,J)/DX(J)**2)

C(I)=AKZ(I,J)/DZI**2

1)(I) = -H (I!, J+1) * AKX (I ,J )/DX(J )**2

1 HHd,J)*SS(l,J)/(2.0*DEI.T)

GO TO 210

230 IF(I.EQ.l) GO TO 275

Ad) =(AKZ(l-l,J)/DZU )*(2.0/(DZI H)ZI 1 ))

Bd)=-((AKZ(l,J)/DZHAKZ(l-l,J)/DZJ 1)

1*(2.0/(DZI+DZI1))+SS(1,J)/DELT)

1-((2.0*AKX(I,J-1))/DX(J 1)**2)

C(I)dAKZ(I,J)/DZI)*(2.0/(DZI+DZll ))

D(I) =-(2.0*H(I,J-l))*AKX(1,J 1)/DX(J-l)**2

1-HH(I,J)*SS(1,J)/DELT

GO TO 210

270 A(I)=0.0

iur\-i n

v



178

1(1,J-l)/(4.0*DXX(J-l))-(DDZ(J»1)* DDZ(J))*AKX(1,J)/(4.0*

1DXX(J))-SY(

1J)*(DX(J)+DX(J-1))/(2.0*DELT)-SS(1,J)*(DX(J)+DX(J-l))*

l(DDZ(J)+(DDZ(J-l)+DDZ(J+l))/2.0)/(8.0*DELT)

C(I )=().()

D(I)=-R(IT)*(DX(J)+DX(J-l))/2. 0-11(1, J-l)*(DDZ(J-l)+DDZ(J))*A

lKX(I,J-l)/(

14.0*DXX(J-1))-H(1,JM)*(DDZ(J+l)«DDZ(J))*AKX(l,J)/(4.0*

1DXX(J))-(IIH

1(I,J)*(DX(J)+DX(J-1))/(2.0*DELT))*(SY(J)+SS(I,J)

l*(DDZ(J)+(DDZ(J-l)+DDZ(J+l))/2.0)/4.0)

GO TO 210

1240 DXX(J)=(DX(J)**2+(DDZ(J+1)-DDZ(J))**2)**0.5

DXX(J-1)=(DX(J 1)**2«(DDZ(J) DDZ(J 1))**2)**0.5

A(I)=DX(J-1)*AKZ(1-1,J)/(2.0*DDZ(J))

B(I)=-DX(J-l)*AKZ(l-l,J)/(2.0*DI)Z(J))-(DDZ(J-l)+DDZ(J))*

1AKX(I,J-1)/

1(4.0*DXX(J-1))-SY(J)*DX(J-1)/(2.0*DELT)-SS(1,J)*

1(DDZ(J)+DDZ(J-1))*DX(J-1)/(8.0*DELT)

C(I)=0.0

D(l)=-R(lT)*DX(J-l)/2.0 11(1 ,J-1)*(I)DZ(J--1)+DDZ( J))*AKX(1, J-l

1)/(4.0*DXX(

1J-1))-SY(J)*DX(J-1)*HII(I,J)/(2.0*1)ELT)-SS(1,J)*DX(J-1)*

1(DDZ(J)+DDZ(J -1 ))*HII ( 1,J )/ (8 .0*DELT)

GO TO 210

250 A(I )=().()

B(l)= (2.0*AKZ( I,J)/DZJ**2tSS( I,J)/DEI.T)

1-(AKX(1,J)/DX(J)+AKX(1,J 1)/DX(J 1))

1*(2.0/(DX(J)H)X(J 1)))

C(1)=2.0*AKZ(1,J)/DZI**2

D(I)=-H(I,J-1)*(AKX(I,J-1)/DX(J-1))

1*(2.0/(DX(J)+DX(J-1)))

1-H(I,J+1)*(AKX(1,J)/DX(J))*(2.0/(DX(J)+DX(J-1)))

1-HH(I,J)*SS(I,J)/DELT

210 CONTINUE

CALL STN (NR,A,B,C,D,HS)

DO 30 1=1,NR

H(I,J)=HS(I)

30 CONTINUE
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200 CONTINUE

IF(IK.EQ.l) GO TO 400 ^

SM=0.0

DO 350 1=1,NR

DO 370 J=1,NC

SM=SM+ABS(H(I,J)-HP(I,J))

370 CONTINUE

350 CONTINUE

IF(SM.LT.ALW) GO TO 50

400 DO 380 1=1,NR

DO 390 J-l.NC

HP(I,J)=H(I,J)

390 CONTINUE

380 CONTINUE

16 CONTINUE

C PRINT 65,SM

65 FORMAT(5X,'CONVERGENCE NOT ACHIEVED',E1S.7)

STOP

50 CONTINUE

IF(NCONF.EQ.l00)GO TO 45

DO 44 J=1,NC

DDZM(J)=DZ(NR-1)+((H(NR,J)-H1N(J))+(HH(NR,J)-H1N(J)))*0.5

44 CONTINUE

DO 810 J=1,NC

1F(ABS(1)DZ(J)-DDZM(J)).GT.EPS1)G0 TO 820

810 CONTINUE

GO TO 830 y
820 DO 840 J=1,NC

DDZ(J)=DDZM(J)

840 CONTINUE

DO 77 1=1,NR

DO 99 J=1,NC

H(1,J)=HH(1,J)

99 CONTINUE

77 CONTINUE

88 CONTINUE

PR1NT850

850 FORMAT(5X,'CONVERGENCE H.R.T.DDZ NOT ACHIEVED) f
PRINT*,(DDZ(J),J=1,NC)
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1JRINT*,(1)1)ZM(J),J = 1,NC)

830 CONTINUE

DO 89 J=1,NC

DDZ(J)=DZ(NR-1)+H(NR,J)-HIN(J)

89 CON?

45 DO 551 1=1,NR

DO 661 J=1,NC

HH(I,J)=H(I,J)

661 CONTINUE

551 CONTINUE

1050 CONTINUE

PRINT*,IT,NTD,DELT

TYPE*,IT,NTD,DELT

C DO 305 1=1,NR

C PR1NT*,(H(1,J),J=1,NC)

C TYPE*,(H(I,J),J=l,NO)

C PRINT*,(H(NR.J),J=1,NC)

TYPE*,(H(NR,J),J=1,NC)

C305 CONTINUE

IF(NTD.EQ.l)GO TO 7

SMI=0.0

DO 1 I=1,NR

DO 2 J=1,NC

SM1=SM1IABS(H(I.J) HPT(1,J))

2 CONTINUE

1 CONTINUE

IF(SM1.LT.EPS)GO TO 5

7 DO 3 1=1,NR

DO 4 J=1,NC

HPT(1,J)=H(1,J)

4 CONTINUE

3 CONTINUE

1F(KT1.LE.KTM)G0 TO 67

C PRINT66,SM1

66 FORMAT(5X,'NO.OF PERMISSIBLE TIME REDUCTIONS EXCEEDED',

1E16.7)

STOP

67 KTl=KTlfl

NTD=NTD*2
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GO TO 6

5 TM=TM+DT(IT) £
C QLI=QLI+0.00526315*TM

C H1=HO-(0.1*TM)

PRINT*,TM

C DO 300 1=1,NR

C PRINT *,(H(I,J),J=1,NC)

C TYPE *,(H(I,J),J=1,NC)

PRINT*,(H(NR,J),J=1,NC)

TYPE*,(H(NR,J),J=1,NC)

C300 CONTINUE

DO 55 1=1,NR

DO 60 J=1,NC

HH(I,J)=H(I,J)

60 CONTINUE

55 CONTINUE

C HORIZONTAL VELOCITIES

PRINT 101

101 FORMAT(IX'VX VALUES')

DO 11 1=1,NR

DO 12 J=1,NC-1

VX(I,J)=-AKX(I,J)*(H(1,J+1)-H(1,J))/DX(J)

12 CONTINUE

C PR1NT*,I,(VX(I,J),J 1,NC 1)

11 CONTINUE

SQ1=0.0

DO 700 1=NRD,NH

J=NCD1

IF(I.EQ.NR)GO TO 702

IF(I.EQ.NRD)GO TO 703

Q=-VX(l,J)*((DZ(l-l)+DZ(l))/2.0)

GO TO 704

702 Q=-VX(I,J)*(DZ(l-l)/2.0)

GO TO 704

703 Q=-VX(1,J)*DZ(NRD)*0.5

704 SQ1=SQ1+Q

700 CONTINUE

C VERTICAL VELOCITIES

PRINT 201
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201 F0RMAT(1X'VZ VALUES'/)

DO 21 1=1,NR-J

DO 22 J=l,NC

VZ(I,J)=-AKZ(I,J)*(H(I+1,J)-H(1,J))/DZ(I)

22 CONTINUE

C PRINT*, I ,(VZ(I ,J) ,J^] ,NO)

21 CONTINUE

SQ2=0.0

DO 707 J=1,NCD1

I = NRD

1F(J.EQ.1)GO TO 705

1F(J.EQ.NCD1)G0 TO 706

Q=VZ(I-1,J)*((DX(J)+DX(J-1))/2.0)

GO TO 708

705 Q=VZ(l-l,J)*(DX(J)/2.0)

GO TO 708

706 Q=VZ(1-1,J)*DX(NCD1-1)*0.5

708 SQ2=SQ2+Q

707 CONTINUE

SQ=SQ1+SQ2

PRINT*,SQ1,SQ2,SQ

TYPE*,SQ1,SQ2,SQ

C IF(NCONF.EQ.l00)GO TO 1000

C DO 44 J=1,NC

C DDZ(J)=DDZ(J)t (II(NR,J)-HSA(NH,J) )

C44 CONTINUE

PRINT*,(DDZ(J),J=1.NC)

SOM=0.0

DO 1111 LTM=1,83

SOM=(SOM+OWT(LTM))

1111 CONTINUE

FOM=SOM/83.0

IF(TM.LE.10.0)GO TO 1000

TMM=TM-IFIX(TM)

IF(TMM.NE.0.0)GO TO 1000

JTM=JTMH

EM FMi(H(NR.NC) ONT(JTM))**2.0

FO=FO+(OWT(JTM)-FOM)**2.0

TYPE*,TM,JTM,FOM,FO,FM
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PRINT*,TM,JTM,FOM,FO,FM

1000 CONTINUE

SDFM=FM/82.0

SDFO=FO/82.0

DIRSQ=l-(SDFM/SDFO)

TYPE*,DIRSQ

PRINT*,DIRSQ

STOP

END

c ********************************************************
C SUBROUTINE TO SOLVE TIM 1)1 AGONAL MATRIX

C ********************************************************
SUBROUTINE STN(N,A,B,C,D,H)

C IMPLICIT REAL*8(A-H,0-Z)

DIMENSION A(400),B(400),C(400),D(400)

DIMENSION AL(400),BT(400),Y(400),11(100) "
AL(1)=B(1)

BT(1)=C(1)/B(1)

DO500 1=2,N

AL(I)=B(I)-A(I)*BT(I-1)

C TYPE*,AL(I)

C PRINT*,AL(I)

BT(I)=C(I)/AL(I)

500 CONTINUE

Y(1)=D(1)/AL(1)

DO 5201=2,N

Y(I)=(D(I)-A(1)*Y(I-1))/AL(1)

520 CONTINUE

H(N)=Y(N)

DO 530 1=2,N

I1=N-I+1

H(1I)=Y(I1)-BT(II)*H(IH1)

530 CONTINUE

RETURN

END
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C ********************************************************
C TOTAL RESPONSE MODEL

PROGRAMME FOR COMPUTATION OF RISE /FALL OF WATER TABLE
C ******************************************************^*
C NT:NUMBER OF TIME STEPS

C NR:NO.OF ROWS FOR FINITE DIFFERENCE MESH/TOP MOST ROW
C 1=1:BOTTOM MOST ROW OF THE MESH

C NC-.NO.OF COLUMNS FOR THE MESH

C KOUNT:NO.OF ITERATIONS FOR ALTERNATE DIRECTION IMPLICIT
C 1 EXPLICIT SCHEME

C ALW:CONVERGENCE FOR ADIES

C NRD:SERIAL NO.OF THE ROW AT THE DRAIN BOTTOM

C NCD1:SERIAL NO.OF THE COLUMN AT THE FACE OF FIRST DRAIN
C NCD2:SERIAL NO.OF THE COLUMN AT THE FACE OF SECOND DRAIN
C EPS:CONVERGENCE WITH RESPECT TO SUBTIMESTEPS
C KTM:NO.OF ALLOWABLE SUBTIME STEP REDUCTIONS
C DT(IT):TIME INCREMENTS*DAYS)

C DELT:SUBTIME STEP INCREMENT

C TM:TOTAL TIME OF SIMULATION*DAYS)

C PP(I,J):INITIAL P.HEAD AT THE NODE AT JTH ROW AND JTH
C 1 COLUMN(METER)

C SS(I,J):SPECIFIC STORAGE AT NODE (1,J) (1/METER)
C SY(J):SPECIFIC YIELD AT JTH COLUMN IN NRTH(TOP)ROW
C DX(J):SPACING BETWEEN COLUMNS (J 1)& J (METER)
C DZ(I):SPACING BETWEEN ROWS (I-l)& 1 (METER)
C AKX(I.J):HYDRAULIC CONDUCTIVITY OF THE LINK BETWEEN
C 1 NODES (1,J--1)&(1,J) (M/DAY)

C AKZ(I,J).HYDRAULIC CONDUCTIVITY OF THE LINK BETWEEN
C 1 NODES (I-1,J)&(I,J) (M/DAY)

C HI:WATER LEVEL IN FIRST DRAIN(METER)
C H2:WATER LEVEL IN SECOND DRAIN(METER)
C R(IT):RATE OF INFILTRATION (M/DAY)

C Pd, J) SIMULATED CAPILLARY HEAD AT NODE (I,J) (M)
C PIN(J):INITIAL CAP.HEAD IN TOPMOST ROW AT JTH COLUMN (M)
C PSA(I,J):CAPILLARY HEAD AT THE BEGINNING OF TIME STEP
C 1 AT NODE (I, J) (M)

C NTD:NO.OF TOTAL SUBTIME STEPS

C PIP(I,J):CAPILLARY HEAD IN PREVIOUS ITERATION AT
C 1 NODE(l.J) (M)
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C PPT(I,J):CAPILLARY HEAD IN PREVIOUS ITERATION OF SUBTIME

C 1 STEP AT NODE(I,J) (M)

C VX(I,J)-VELOCITY IN X-DIRECTION IN THE LINK BETWEEN

C 1 (I,J-1)&(I,J) (M/DAY)

C VZ(I,J):VELOCITY IN Z-DIRECTION IN THE LINK BETWEEN

C 1 (I-1,J)&(I,J) (M/DAY)

C Q:COMPUTED LATERAL FLOW IN A ROW/COLUMN (M**3/DAY/M)

C SQ1:TOTAL HORIZONTAL FLOW TO THE DRAIN (M**3/DAY/M)

C SQ2:TOTAL VERTICAL FLOW TO THE DRAIN (M**3/DAY/M)

C SQ:TOTAL LATERAL FLOW TO THE DRAIN (M**3/DAY/M)

C SQ3:DIRECT DOWNWARD FLOW INTO THE DRAIN

C WTR:TOTAL DOWNWARD FLOW AT WATER TABLE(RECHARGE)

C WTRS(J):WATER TABLE RISE AT COLUMN J

C OWT(ITM):OBS.WATERTABLE RISE AT MIDSECTION AT TIME ITM

C FO.VARIANCE OF OBSERVED WATERTABLE RISE*TOTAL NO.OF DAYS

C FM:VAR. USING COMP. AND OBS. WATERTABLE RISE*TOTAL DAYS

C FOM:MEAN OF OBSERVED WATERTABLE RISE VALUES

C SOM:SUM OF OBSERVED WATERTABLE RISE VALUES

C SDFM:UNEXPLAINED VARIANCE USING(OBSERVED-COMPUTED)RISE

C SDFO:VARIANCE OF OBSERVED WATERTABLE RISE VALUES

C DIRSQ:DETERMINATION INDEX R SQUARE(EFFICIENCY)

C KT1(=1):SUBTIME STEP REDUCTION INITIATED

C NTD(=l):NO.OF SUBTIME STES IN A TIME STEP TAKEN AS 1

C KTM:NO.OF REDUCTIONS FOR SUBTIME STEP DISCRETISATION

C PP(I,J):CAP.HEAD AT THE BEGINNING OF SUBTIME STEP

C PSA(I,J):CAP.HEAD AT THE BEGINNING OF TIME STEP

C P(I,J):COMPUTED CAP.HEAD

C PF:FACTOR 'P' IN DOORENBOS ET AL.(1979)'ET'RELATION

C SAT:SATURATED CAPILLARY CONDUCTIVITY

C WP:WILTING POINT

C THR:THETA-R

C POR:POROSITY

C SSM:AIR ENTRY VALUE

C PET POTENTIAL ET OF CROP

C THE:VECTOR OF MOISTURE CONTENT

C NRD=1:FULLY PENETRATING DITCH

C 1SYM=0:NO SYMMETRY

C ISYM=1:SYMMETRIC DRAINS

C NCONF=0:UNCONFINED AQUIFER

k

V
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C NCONF=100:CONFINED AQUIFER

DIMENSION AKXM(20,20),AKZM(20,20),SSM(20,20),DP(50 ,50)

DIMENSION TP(50,50),RRCH(120),OWT(100),AP(20,20)

DIMENSION H(20,20),AKX(20,20),AKZ(20,20),A(30),WTRS(20)

DIMENSION B(30),C(30),D(30),DX(20),DZ(20),EZ(20)

DIMENSION SS(20,20),PP(20,20),ET(30,20),JD(40),R(250)

DIMENSION PS(30),DT(250),P1P(30,20),PIN(30),Z(20)

DIMENSION VX(20,20),VZ(20,20),PPT(20,20),P(20,20)

DIMENSION PSA(20,20),DH(20),DDZ(20) ,DXX(20),DDZM(20)

COMMON/CONST/THR,POR.AM,POW,AC,AEV,SAT,PET,PF,WP,FFC

C OPEN(UNIT=l,DEVJCE=DSK',FlLB='Y75.DAT")

C OPEN(UN1T=2,DEVICE= DSK',F1LE= OBWT75.DAT')

C OPEN(UNIT=3,DEVICE='DSK',FlLE='WTR75.DAT')

C 0PEN(UNIT=1,DEV1CE= DSK',FlLE='Y50.DAT')

C 0PEN(UN1T=2,DEVICE='DSK',FlLE='OBWT50.DAT')

C OPEN(UNIT=3,DEV1CE='DSK',FILE='WTR50.DAT')

OPEN(UNIT=1,DEVICE='DSK',FILE='Y25.DAT')

OPEN(UNIT=2,DEVICE='DSK',FILE= OBWT25.DAT')

C 0PEN(UNIT=3,DEV1CE='DSK',FILE='WTR25.DAT')

READ(2,*)(OWT(LTM),LTM=1,83)

READ(1,*)NT,NR,NC,KOUNT,ALW,NRD,NCD1,NCD2

READ(1,*)(JD(I),I=NRD,NRW)

READ(1,*)EPS,KTM,ISYM,NCONF,EPS1,KOUNT1

REAI)(1,*)(DT( IT) ,IT 1,NT)

TM=6.0

FM=0.0

FO=0.0

READ(1,*) DL.NRW.AL

READ(1,*)((SS(I,J),J=1,NC),I=1,NR)

READ(1,*)(DX(J),J=1,NC 1)

READ(1,*)(DZ(I),1=1,NR 1)

READ(1,*)((AKX(1,J),J=l,NC-1),1=1,NR)

READ(1,*)((AKZ(I.,J),J=1,NC),I =1,NR 1)

REAI)( 1,*) (R( IT),1T- 1,NT),WP.THR,PET,PE,POR.FFC,AEV ,POW,E,NRZ
C READ( 1,* )((PP( 1 ,,i) , J 1.NC ),1=1 .NR )

C DO 111 1=1,NR

C DO 222 =1,NC

C PP(1,J)=-AP(I,J)

C TYPE*,PP(1,J)
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C222 CONTINUE

Clll CONTINUE ^

AM=-THR/AEV

AC= ALOG(AEV*AM+POR-THR)/AEV

Z(1)=DL

DO 405 1=1,1*8-1

Z(H1)=Z(I)-DZ(I)

405 CONTINUE

EZ(1)=0.0

DO 109 I=1,NR-1

EZ(I+1)=EZ(I)+DZ(I)

109 CONTINUE

DO 505 1=1,NR

DO 605 J=1,NC

PP(I,J)=Z(I)

605 CONTINUE

505 CONTINUE

DO 15 J=1,NC

DO 10 1=1,NR

P(I,J)=PP(I,J)

10 CONTINUE

PIN(J)=PP(NR,J)

15 CONTINUE

DO 26 J=1,NC

DDZ(J)=DZ(NR-1)

26 CONTINUE

JTM=1 ^
DO 1000 IT=1,NT

DO 5001=1,NR

DO 905 J=1,NC

PSA(I,J)=PP(I,J)

905 CONTINUE

500 CONTINUE

KT1=1 ,

NTD=1

6 DO 5101=1,NR

DO 515 J = l ,NC

PP(I,J)=PSA(I,J)

515 CONTINUE
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510 CONTINUE

DELT=DT(IT)/FLOAT(NTD)
453 DO 1050 1TD=1,NTD

DO 90 1=1,PR

DO 1 J=1,HC

1F(PP(I.J))92,93,93

93 AEZM(I,J)=AKZ(J.,J)
AKXM(I,J)=AKX(1,J)

BSM(I,J)=SS(I,J)

GO TO 91

C92 PPO=-PP(I,J)

C THE=THETA(J^PC)
C SAT=AKX(I,J)

C AKXM(I,J)=COHD(THK)
G SAT=AKZ(1,J)

C AKZH(J,J)=COND( THE)

92 SSM(I,J)=-DIFU(PPC)
91 CONTINUE

IF(I.LT.HRZ)GO TO 94

BT(I,J)=EVPT(TIIB)
GO TO 90

94 ET(I,J) =(,».()

90 CONTINUE

DO 501 J=l,HR-l

DO 502 J=1,NC-1

P1=PP(I,J)

P2=PP(1+1,J)

P3=PP(I,J+l)

IF(PI.GE.0.0)GO TO 50J

TH1=THETA(-PI)
GO TO 504

503 TH1=P0R

504 IF(P2.GE.0.0)GO TO 511
TII2=TIIBTA(-P2)
GO TO 506

511 TH2=POR

506 IF(P3.GE.0.0)GO TO 507
TH3=THETA(-P3)

GO TO 500
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507 TH3=POR

508 CONTINUE

TH4=(THl+TH3)'/2.0

TH5=(TIU+TH2)/2.0

SAT=AKX(I,J)

AKXM(I,J)=COND(TH4)

SAT=AKZ(I,J)

AKZM(I,J)=COND(TH5)

IFd.LT.NRZGO TO 509

ET(I,J)=EVPT(TH1)

GO TO 502

509 ET(I,J)=0.0

502 CONTINUE

501 CONTINUE

DO 95 I=1,NR-1

J=NC

P1 =I>P(1,J)

P9-Pin T4.1 n
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P3=PP(I,J+1)

IF(P1.GE.O.O)GO TO 296

TH1=THETA(-P1)

GO TO 297

296 THl=POR

297 IF(P3.GE.0.0)GO TO 298

TH3=THETA(-P3)

GO TO 299

298 TH3=POR

299 CONTINUE

TH4=(THHTH3)/2.0

SAT=AKX(1,J)

AKXM(I,J)=COND(TH4)

IF(I.LT.NRZ)GO TO 495

ET(I,J)=EVPT(TH1)

GO TO 396

495 ET(I,J)=0.0

396 CONTINUE

295 CONTINUE

DO 88 ID=l,KOUNTl

DO 16 IK=1,KOUNT

DO 100 1=1,NR

DO 110 J=1,NC

IF(I.KQ.NR)GO TO 25

IF(1 .EQ.NR-UGO TO 36

DZI=DZ(I)

IF(l.EQ.l)GO TO 35

DZI1=DZ(1-1)

GO TO 35

25 DZI1=DDZ(J)

GO TO 35

36 DZ1=DDZ(J)

DZI1=DZ(I-1)

35 CONTINUE

C IF(I.GT.NRW.AND.J.EQ.1.AND.PP(I,J).GE.0.0)GO TO 209

IF(I.GE.NRD.AND.I.LE.NRW.AND.J.LE.NDl)GO TO 160

C IFd.GT.NRW.AND.J.EQ.NCDl )GO TO 709

C JFd.GT.NRW.AND. J .LT .NCD1 )GO TO 209

IF(I.GT.NRW.AND.J.EQ.l)GO TO 709
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IF(ISYM.EQ.1)G0 TO 801

IF(I.GT.NRW.AND.J.EQ.NCD2)GO TO 809

IF(I.GT.NRW.AND.J.GT.NCD2)GO TO 309

IF(I.GE.NRD.AND.J.GE.NCD2)GO TO 170
801 IF(I.EQ.NR.AND.J.EQ.NC.AND.ISYM.EQ.1)G0 TO 1120

IF(I.EQ.NR) GO TO 120

IF(I.EQ.l) GO TO 130

IF(I.LT.NRD.AND.J.EQ.l) GO TO 140

IFd.LT.NRD.AND.J.EQ.NC) GO TO 150

IFdSYM.EQ.l.AND.J.EQ.NOGO TO 150
IF(DZI1.GT.DZI)DA=DZ

IF(DZI1.LE.DZI)DA=DZI1

IF(DX(J-1).GT.DX(J))DB=DX(J)

IF(DX(J-1).LE.DX(J))DB=DX(J-1)

A(J)=(AKXM(I,J-1)/DX(J-1))/DB

B(J)=-((AKXM(I,J)/DX(J)+AKXM(I,J-1)/DX(J-1))
1/DB+SSM(I,J)/DELT)

1-(AKZM(I,J)/DZI+AKZM(I-1 ,J)/DZI1)/DA
C(J)=(AKXM(1,J)/DX(J))/DB

D1=-(P(I-1,J)*AKZM(I-1,J)/DZI1)/DA
D2=-AKZM(I,J)*((EZ(I+1)-EZ(I))/DZI)/DA
D3=-(P(I+i,j)*AKZM(I,J)/l)ZI)/DA
D4=-PP(I,J)*SSM(I,J)/DELT+ET(I,J)

D5=AKZM(I-1.J)*((EZ(I)-EZ(I-1))/I)ZI1)/DA
D(J)=D1+D2+D3+D4+D5

GO TO 110

120 DXX(J)=(DX(J)**2+(DDZ(JH)-DDZ(J))**2)**0.5
DXX(J-1)=(DX(J-1)**2+(DDZ(J)-DDZ(J-1))**2)**().5
A(J)=(DDZ(J-1)+DDZ(J))*AKXM(I,J-1)/(4.0*DXX(J-1))
B(J)=-(DX(J)+DX(J-1))*AKZM(I-1.J)/(2.(J*DDZ(J))_(DDZ _
1+DDZ(J))*

lAKXM(I,J-l)/(4.0*DXX(J-l))-(DDZ(JH)+1)I)/i(J)):<cAKXM
K4.0*DXX(J))-

1SSM(I,J)*(DX(J)»

lDX(J-l))*(DI)Z(J)+(DDZ(JM)H)l)Z(J-l))/2.0)/(8.o*DEllT)
C(J) =(DDZ(JM)H)DZ(J))*AKXMd,J)/(/,.(,+DXX(J))
D(J)=-((DX(J),DX(J 1))/2.0)*(R(JT),|.(J. 1,J)*AKZM( 1-1 ,J)/DD
1Z(^))-(PP(I,J)*(DX(J)+DX(J-1))/(2.0*DELT))*(
lSSM(I,J)*((DDZ(J)+(DDZ(J+l)+DDZ(J-l))/2.0)/4 0))

V
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1~AKZM(I-1,J)*(DX(J)U)X(J 1))*(EZ(1 1) EZ(I))/(2.0*DDZ(J))

l+ET(I,J)*(DX(J)+DX(J-l))*DDZ(J)/4.0

GO TO 110

1120 DXX(J)=(DX(J)**2+(DDZ(J+1)-DDZ(J))**2)**0.5

DXX(J-1)=(DX(J-1)**2+(DDZ(J)-DDZ(J-1))**2)**0.5

A(J)=(DDZ(J-1)+DDZ(J))*AKXM(l,J 1)/(4.0*DXX(J-l))

B(J)=-DX(J-1)*AKZM(I-1,J)/(2.0*DDZ(J))-(DDZ(J-l)+DDZ(J))

1*AKXM(I,J-1)/

1(4.0*DXX(J-1))-SSM(I,J)*

1(DDZ(J)+DDZ(J-1))*DX(J-1)/(8.0*DELT)

C(J)=0.0

D(J)=-R(IT)*DX(J-l)/2.0-P(I-l,J)*DX(J-l)*AKZM(I-l,J)/(2.0*

1DDZ(J))-PP(I,J)*SSM(I,J)

1*(DDZ(J-1)+DDZ(J))*DX(J-1)/(8.0*DELT)

l+ET(I,J)*DDZ(J)*DX(J-l)/4.0

1-AKZM(I-1,J)*DX(J 1)*(EZ(I-1) -EZ(I))/(2.0*DDZ(J))

GO TO 110

160 A(J)=0.0

B(J)=1.0

C(J)=0.0

D(J)=Z(I)

GO TO 110

170 A(J)=0.0

B(J)=1.0

C(J)=0.0

D(J)=Z(I)

GO TO 110

209 A(J)=0.0

B(J)=10

C(J)=0.0

D(J)=0.0

GO TO 110

309 A(J)=0.0

B(J)=1.0

C(J)=0.0

D(J)=0.0

GO TO 110

709 IF(I.EQ.NR)GO TO 718

A( J )=().()
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B(J)=-AKXM(I,J)*(DZI+DZI1)/(2.0*DX(J))

1-AKZM(I,J)*DX(J)/(2.0*DZI)

1-AKZM(I-1,J)*DX(J)/(2.0*DZ11)

1-SSM(I,J)*DX(J)*(DZI+DZI1)/(4.0*DELT)
C(J)=AKXM(I,J)*(DZI+DZI1)/(2.0*DX(J))
D(J)=-Pd+l,J)*AKZM(I,J)*DX(J)/(2.0*DZl)
1-P(I-1,J)*AKZM(I-1J)*DX(J)/(2.0*DZI1)
l+ET(I,J)*DX(J)*(DZI+DZIl)/4.0

1-(EZ(I+1)-EZ(I))*AKZM(I,J)*DX(J)/(2.0*DZI)
1-(EZ(I-1)-EZ(I))*AKZM(1-1,J)*DX(J)/(2.0*DZ11)
1-PP(I,J)*SSM(I,J)*DX(J)*(DZHDZI1)/(4.0*DELT)

GO TO 110

809 IF(I-EQ.NR)GO TO 808
A(J)=AKXM(I,J-l)*(DZIfDZll)/(2.0*DX(J-D)
B(J)=-AKXM(I,J-1)*(DZI+DZI1)/(2.0*DX(J-1))
1-AKZM(1,J)*DX(J-1)/(2.0*DZI) A
1-AKZM(I-1,J)*DX(J-1)/(2.0*DZI1 )

1-SSM(I,J)*DX(J-1)*(DZI+DZI1)/(4.0*DELT)

C(J)=0.0

D(J)=-Pd+l.J)*AKZM(I,J)*DX(J-l)/(2.0DZI)
1-P(I-1,J)*AKZM(I-1,J)*DX(J-1)/(2.0*DZI1)

l+ET(I,J)*DX(J-l)*(DZI+DZll)/4.0

ldEZ(Hl)-EZ(I))*AKZMd,J)*DX(J-l)/(2.0*DZI)

1-(EZ(I-1)-EZ(I))*AKZM(1 1,J)*DX(J 1)/(2.0*DZ11)
l-SSM(I,J)*PPd.J)*DX(J-l)*(DZl+DZIl)/(4.0*DELT)

GO TO 110

130 IF(NRD.GT.l.AND.J.EQ.l) GO TO 165

IFCNRD.GT.LAND.J.EQ.NC) GOTO 175

IFdSYM.EQ.l.AND.J.EQ.NOGO TO 175
A(J)=(AKXM(I,J-l)/DX(J-l))*(2.0/(DX(J)+DX(Jd)))

B(J) =-((AKXM(1 ,J)/I)X(J) lAKXMd .J-l )/DX( J-l ))*
1(2.0/(DX(J)+DX(J-1)))+SSM(1:,J)/DELT)

1-2.0*(AKZM(I,J)/DZI**2)

C(J)=(AKXM(I,J)/DX(J))*(2.0/(DX(J)H)X(J1)))

D(J)=-PP(LJ)*SSM(1,J)/DELT+ET(I,J)

1-2.0*P(I+LJ)*(AKZM(I,J)/DZ1**2)

1-2.0*AKZM(1,J)*(EZ(1»1) EZ(I))/DZl**2

GO TO 110 '

165 A(J)=0.0
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B(J)=-(AKXM(I,J)/DX(J)**2+SSM(1,J)/(2.0*DELT))
1-(AKZM(1,J)/DZJ**2)

C(J)=AKXM(I,J)/DX(J)**2

D(J)=-P(I+LJ)*AKZM(I,J)/DZl**2+ET(l,J)/2.0

1-PP(I,J)*SSM(I,J)/(2.0*DELT)

1-AKZM(I,J)*(EZ(J H )-EZ(I))/I)Zl**2

GO TO 110

175 A(J)=AKXM(I,J-1)/DX(J-1)**2

B(J)=-(AKXM(I,J-1)/DX(J-1)**2+SSM(I,J)/(2.0*DKLT))
1-(AKZM(I,J)/DZI**2)

C(J)=0.0

D(J)=-P(I+1,J)*AKZM(I,J)/DZl**2iET(l,J)/2.0
1-PP(I,J)*SSM(1,J)/(2.0*DELT)

1-AKZM(I,J)*(EZ(I+1) EZ(1))/DZl**2

GO TO 110

140 A(J)=0.0

B(J)=-((2.0*AKXM(I,J)/DX(J)**2)+SSM(I,J)/DELT)
1-(AKZM(I,J)/DZI+AKZM(I 1,J)/DZ11)

1*(2.0/(DZHDZ11))

C(J)=2.0*AKXM(1,J)/DX(J)**2

D(J)=-PP(I,J)*SSM(1,J)/DELT-P(1+LJ)*(AKZM(1,J)/DZI)
1*(2.0/(DZ1+DZ11))

1-P(I-1.J)*(AKZM(I-1,J)/DZ11)

1*(2.0/(DZI+DZI1))

1-AKZM(I,J)*((EZ(I+1)-EZ(I))/DZI)

1*(2.0/(DZI+DZI1))

1-AKZM(1-1,J)*((EZ(1-1)-EZ(1))/DZII)

1*(2.0/(DZI+DZI1))+ET(I,J)

GO TO 110

150 A(J)=(2.0*AKXM(1,J 1))/DX(J-l)**2

B(J)=-((2.0*AKXM(LJ-1))/DX(J-1)**2+SSM(I,J)/DELT)
1-(AKZM(I,J)/DZHAKZM( I 1,J)/DZ1 1)

1*(2.0/(DZI+DZI1))

C(J)=0.0

D(J)=-PP(1,J)*SSM(I.J)/DELT-P(I+1,J)*(AKZM(1,J)/DZI)

1*(2.0/(DZI+DZ11))

1-P(I-1,J)*(AKZM(1-I,J)/DZ11 )*(2.0/(DZI»DZIl))

l-AKZM(l,J)*((EZ(lil) EZ(1))/DZ1)

1*(2.0/(DZI+1)ZI1))
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1-AKZM(I-LJ)*((EZ(I-1)-EZ(I))/DZ11)

1*(2.0/(DZI+DZI1))+ET(I,J)

GO TO 110

718 A(J)=0.0
B(J) =-AKXM(I,J)*DZ(L1)/(2.0*DX(J))

1-AKZMd 1 ,J)*DX(J)/(2.0*DZ(II))

1-SSM(I,J)*DX(J)*DZ(1-1)/(4.0*DELT)

C(J)=AKXM(I,J)*DZ(I-1)/(2.0*DX(J))
D(J)=-R(IT)*DX(J)/2.(HET(I,J)*DX(J)*DZd-l)/4.0

l-P(I-l,J)*AKZM(I-l,J)*I)X(J)/(2.0*DZd-l))

l-(EZ(I-l)-EZ(I))*AKZM(I-l,J)*I)X(J)/(2.0*l)Zd-l))

l-PP(I,J)*SSM(I,J)*DX(J)*DZ.d-l)/(4.0*DELT)

GO TO 110

808 A(J)=AKXM(I,J-1)*DZ(1-1)/(2.0*DX(J-1))

B(J)=-AKXM(I,J-1)*DZ(I-1)/(2.0*DX(J--1) )

1-AKZM(I-1,J)*DX(J 1)/(2.0*DZ(I 1)) 1

1-SSM(I,J)*DX(J-1)*DZ(I-1)/(4.0*DELT)

C(J)=0.0

D(J)=-P(1-LJ)*AKZM(I 1,J)*DX(J 1)/(2.0*DZ(I- 1))

l-R(IT)*DX(J-l)/2.0

l+ET(I,J)*DX(J-l)*DZ(I-l)/4.0

1-(EZ(I-1)-EZ(I))*AKZM(1-1,J)*DX(J-1)/(2.0*DZ(1-1))

1-PP(I,J)*SSM(I,J)*DX(J-1)*DZ(I-1)/(4.0*DELT)

110 CONTINUE

CALL STN(NC,A,B,C,D,PS)

DO 20 J=1,NC

P(I,J)=PS(J)

20 CONTINUE ^

100 CONTINUE

DO 200 J=1,NC

DO 210 1=1,NR

IF(1.EQ.NR)GO TO 251

IF(I.EQ.NR-l)GO TO 361

DZI=DZ(I)

IF(I.EQ.l)GO TO 351

DZI1=DZ(I-1)

GO TO 351

251 DZI1=DDZ(J) ^

GO TO 351
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361 DZI=DDZ(J)

DZI1=DZ(I-1)

351 CONTINUE

C IF(J.EQ.1.AND.LGT.NRW.AND.PP(1,J).GE.O.O)GO TO 1209

IF(J.LE.NCDl.ANI). 1: .GE. NRD. AND. 1 .I.E. NRW) GO TO 260

C 1F(I.GT.NRW.AND. J.LT.NCDDGO TO 1209

C IF(I.GT.NRW.AND.J.EQ.NCD1)G0 TO 1709

lF(l.GT.NRW.ANI). J.EQ. 1 )GO TO 1.700

IF(ISYM.EQ.1)G0 TO 805

IF(J.GE.NCD2.AND.I.GE.NRD)GO TO 270

IF(I.GT.NRW.AND.J.GT.NCD2)GO TO 1309

IF(I.GT.NRW.AND.J.EQ.NCD2)GO TO 1809

805 IF(J.EQ.NC.AND.I.EQ.NR.AND.ISYM.EQ.l)GO TO 1240

IF(LLT.NRD.AND.J.EQ.l) GO TO 220

IFd.LT.NRD.AND.J.EQ.NC) GO TO 230

^ IFdSYM.EQ.l.AND.J.EQ.NOGO TO 230

IF(I.EQ.NR) GO TO 240

IF(J.EQ.1) GO TO 250

IF(DZ11.GT.DZ1)DA-DZ1

IF(DZI1.LE.DZI)DA=DZI1

IF(DX(J-1).GT.DX(J))DB=DX(J)

IF(DX(J-1).LE.DX(J))DB=DX(J~1)

A(T )=(AKZM(I-1,J)/DZ11)/DA

B(1)=-((AKZM(I,J)/DZUAKZM( 1 1 ,J)/DZ1.1 )

1/DA+SSM(I,J)/DELT)

1-(AKXM(I,J)/DX(J)+AKXM(1,J 1)/DX(J-l))/DB

C(I)=(AKZM(I,J)/DZI)/DA

D(I)=-(P(I,J+l)*AKXM(l,J)/l)X(J))/DBfET(l ,J)

1-AKZM(I,J)*((EZ(Ji1) EZ(1))/DZ1)/DA

1+AKZM(1-1,J)*((EZ(1)-EZ(II))/DZI1)/DA

1-PP( I,J)*SSM( I,J)/I)EI.T P(ld 1)*(AKXM(1,J 1)/DX(J 1))/DB

GO TO 210

220 IF(1.EQ.l) GO TO 265

A(I) =(AKZM(I-1,J)/DZ11)*(2.0/(DZHDZI1))

B(1)=-((AKZM(1,J)/DZI»AKZM( I 1,J)/DZ11)

l*(2.0/(DZlH)Zll))fSSM(I,J)/DELT)

1-(2.0*AKXM(1,J)/DX(J)**2)

C(I)=(AKZM(I,J)/DZI)*(2.0/(DZI+DZ11))

D(I)=-P(I,J+1)*2.0*AKXM(I,J)/DX(J)**2
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1-PP(I,J)*SSM(I,J)/DELT

1-AKZM(I,J)*((EZ(H1) EZ(I))/DZI)

1*(2.0/(DZI+DZID)

1-AKZM(I-1,J)*((EZ(1-1)-EZ(1))/DZI1)

1*(2.0/(DZI+DZIl))+ET(I,J)

GO TO 210

260 A(I)=0.0

B(I) =L0

C(I)=0.0

D(I)=Z(I)

GO TO 210

265 A(I)=0.0

B(I)=-(AKZM(I,J)/DZI**2+SSM(I,J)/(2.0*DELT))

1-(AKXM(I,J)/DX(J)**2)

C(I)=AKZM(I,J)/DZI**2

D(I)=-P(I,J+1)*AKXM(I,J)/DX(J)**2 «

1-PP(I,J)*SSM(I,J)/(2.0*DELT)

1-AKZM(I,J)*(EZ(1H ) EZ( I))/I)Z I**2IET( i.J)/2.0

GO TO 210

230 IF(I.EQ.l) GO TO 275

A(I)=(AKZM(I-1,J)/DZI1)*(2.0/(DZI+DZ11))

B(I)=-((AKZM(I,J)/DZ1+AKZM(I-1,J)/DZI1)

1*(2.0/(DZI+DZI1))+SSM(I,J)/DELT)

1-((2.0*AKXM(I,J-1))/DX(J-1)**2)

C(I)=(AKZM(I,J)/DZ1)*(2.0/(DZI+DZ11))

D(I)=-(2.0*P(I,J-1))*AKXM(1,J-1)/DX(J-1)**2

1-PP(I,J)*SSM(I,J)/DELT

1-AKZM( I., J)*( (EZ( 1+1)-EZ( I))/DZI)

1*(2.0/(DZI+DZ11))

1-AKZM(I-1,J)*((EZ(I-1)-EZ(1))/DZ11)

1*(2. 0/(1)7.1 •»DZI 1 ))»ET( I,J)

GO TO 210

270 A(I)=0.0

B(I)=1.0

C(I)=0.0

D(I)=Z(I)

GO TO 210

r
1209 A(I)=0.0

B(I) =L0
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C(I)=0.0

D(I)=0.0

GO TO 210

1309 A(I)=0.0

B(I)=1.0

C(I)=0.0

D(I)=0.0

GO TO 210

1709 IF(I.EQ.NR)GO TO 1708

A(I)=AKZM(I-1,J)*DX(J)/(2.0*DZI1)

B(I)=-AKXM(I,J)*(DZ1+DZI1)/(2.0*DX(J))

1-AKZM(I,J)*DX(J)/(2.0*DZ1)

1-AKZM(I-1,J)*DX(J)/(2.0*DZ11)

1-SSM(I,J)*DX(J)*(DZI+DZI1)/(4.0*DELT)

C(I)=AKZM(I,J)*DX(J)/(2.0*1)ZI)

D(I)=-P(I,J+1)*AKXM(I,J)*(DZ1+DZI1)/(2.0*DX(J))

l+ET(I,J)*DX(J)*(DZI+DZIl)/4.0

1-(EZ(1+1) -EZ(1))*AKZM(I, J)*DX(J)/(2.0*1)7.1)

l-(EZ(I-l)-EZd))*AKZM(l-l,J)*DX(J)/(2.0*DZIl)

1-PP(I,J)*SSM(I,J)*DX(J)*(DZI.+DZ11)/(4.0*DELT)
GO TO 210

1809 IF(I.EQ.NR)GO TO 1808

A(I)=AKZM(I-1,J)*DX(J-1)/(2.0*DZU)

B(I)=-AKXMd,J-l)*(DZI+DZll)/(2.0*DX(J-l))

1-AKZM(I,J)*DX(J-l)/(2.0*DZI)

1-AKZM(I-1,J)*DX(J- 1)/(2.0*DZ11)

1-SSM(I,J)*DX(J-1)*(DZ1+DZI1)/(4.0*DELT)

C(I)=AKZM(I,J)*DX(J-1)/(2.0*DZ1)

D(I)=-P(l,J-l)*AKXM(l,J-l)*(DZlfDZIl)/(2.0*DX(J-l))

l+ET(I,J)*DX(J-l)*(DZl+DZll)/4.0

1-(EZ(I+1)-EZ(I))*AKZM(LJ)*DX(J-1 )/( 2. 0*1)7.1)

1-(EZ(I-1)-EZ(I))*AKZM(1-1,J)*DX(J-1)/(2.0*DZI1)

1-SSM(LJ)*PP(I,J)*DX(J-1)*(DZHDZI1)/(4.0*DELT)
GO TO 210

275 A(I)=0.0

B(I)=-(AKZM(I,J)/DZI**2+SSM(LJ)/(2.0*DKLT))

1-(AKXM(1,J-1)/DX(J-l)**2)

C(I)=AKZM(I,J)/DZ1**2

D(I)=-P(I,J-1)*AKXM(I,J-1)/DX(J-1)**2
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1-PP(I,J)*SSM(1,J)/(2.0*DELT)

l-AKZM(I,J)*(EZ(I+l)-E7.(I))/DZl**2+ET(1,J)/2.0

GO TO 210

240 IF(J.EQ.NCD1)G0 TO 17 00

IF(J.LT.NCD1)G0 TO 1209

DXX(J)=(DX(J)**2+(DDZ(J+1)-DDZ(J))**2)**0.5

DXX(J-1)=(DX(J-1)**2+(DDZ(J)-DDZ(J 1))**2)**(). 5

A(I) =(DX(J)+DX(J-1))*AKZM(1-1,J)/(2.0*1)DZ(J))

B(I)=-(DX(J)+DX(J-1))*AKZM(I-1,J)/(2.0*DDZ(J))-(DDZ(J-1)

1+DDZ(J))*AKXM

l(I,J-l)/(4.0*DXX(J-l))-(DDZ(J+l)+DDZ(J))*AKXM(I,J)/(4.0

1*DXX(J))-

1SSM(I,J)*(DX(J)+DX(J-1))*

l(DDZ(J)+(DDZ(J-l)+DDZ(J+l))/2.0)/(8.0*DELT)

C(I)=0.0

D(I)=-R(lT)*(DX(J)+DX(J-l))/2.0 -P( I,J 1)*(Dl)7.( J-l )+DD7.( J ))

1*AKXM(I,J-1)/(

14.0*DXX(J-1))-P(1 ,Jtl )*(DDZ(J» 1)H)I)Z(J) )*AKXM(1 ,J)/(4.0

1*DXX(J))-(PP

1(I,J)*(DX(J)+DX(J-1))/(2.0*DELT))*(SSM(I,J)

l*(DDZ(J)+(DDZ(J-l)+DDZ(J+l))/2.0)/4.0)

l+ET(I,J)*(DX(J)+DX(J-l))*DDZ(J)/4.0

l-AKZMd-LJ)*(DX(J)+DX(J-l))*(EZ(I-l)-EZ(l))/(2.0*DD7,(J))

GO TO 210

1240 DXX(J)=(DX(J)**2+(DDZ(J+1)-DDZ(J))**2)**0.5

DXX(J-1)=(DX(J-1)**2+(DDZ(J)-DDZ(J-1))**2)**0.5

A(I)=DX(J-1)*AKZM(I-1,J)/(2.0*DDZ(J))

B(I)=-DX(J-1)*AKZM(I-1,J)/(2.0*DDZ(J))-(DDZ(J-l)+DDZ(J))

1*AKXM(1,J-1)/

1(4.0*DXX(J-1))-SSM(I,J)*DX(J-1)*DDZ(J)/(4.0*DELT)

C(I)=0.0

D(I)=-R(IT)*DX(J-l)/2.0-P(l,J-1)*(DDZ(J 1)+DDZ(J))*AKXM(1,

1J-1)/(4.0*DXX(

U-l))-SSM(I,J)*DX(J-1)*PP(1,J)*DDZ(J)/(4.0*DKLT)

l+ET(I,J)*DDZ(J)*DX(J-l)/4.0

1-AKZM(I -1,J)*DX(J 1)*(EZ(1-1 ) EZ(I ))/(2.0*DDZ(J))

GO TO 210

250 A(I)=0.0

B(I) = - (2 .0*AKZM( I, J) /DZI **2+SSM(l, J )/DE1.T)



200

1-(AKXM(I,J)/DX(J)+AKXM(1,J-1)/DX(J-1))

1*(2.0/(DX(J)+DX(J-1)))

C(I)=2.0*AKZM(I,J)/DZI**2

D(I)=ET(I,J)-P(I,J-1)*(AKXM(I,J-1)/DX(J-1))
1*(2.0/(DX(J)+DX(J-1)))

1-P(1,J+1)*(AKXM(I,J)/DX(J))*(2.0/(DX(J)»DX(J 1)))

1-PP(I,J)*SSM(1,J)/DELT

1-2.0*AKZM(1,J)*(EZ(H1)- EZ(1))/DZI**2

GO TO 210

1708 A(I)=AKZM(I-l,J)*DX(J)/(2. 0*1)7.(1 1))

B(I)=-AKXM(I,J)*DZ(1-1)/(2.0*DX(J))

1-AKZM(I-1,J)*DX(J)/(2.0*DZ(1-1))

1-SSM(I,J)*DX(J)*DZ(I-1)/(4.0*DKLT)

C(I)=0.0

D(I)=-R(IT)*DX(J)/2.0+ET(I,J)*DX(J)*DZ(I-l)/4.0
1-P(I,J+1)*AKXM(I,J)*DZ(I-1)/(2.0*DX(J)

1-(EZ(I-1)-EZ(1))*AKZM(I-1,J)*DX(J)/(2.0*DZ(I-1))

1-PP(I,J)*SSM(I,J)*DX(J)*DZ(1 1)/(4.0*DELT)
GO TO 210

1808 A(I)=AKZM(I-LJ)*DX(J-1)/(2.0*DZ(1-1))

B(I)=-AKXM(I,J-J)*DZ(1 1)/(2.0*DX(J-1))

1-AKZM(I-1,J)*DX(J-1)/(2.0*DZ(I-1))

1-SSM(I,J)*DX(J-1)*DZ(1-1)/(4.0*1)ELT)
C(I )=().()

D(I)=-P(I,J-1)*AKXM(I,J-1)*DZ(1-1)/(2.0*DX(J-1))
l-R(lT)*DX(J-l)/2.0

l+ET(I,J)*DX(J-l)*DZ(I-l)/4.0

1-(EZ(I-1)-EZ(I))*AKZM(I-LJ)*DX(J-1)/(2.0*DZ(I-1))
1-PP(I,J)*SSM(1,J)*DX(J-1)*DZ(1 1)/(4.0*DELT)

210 CONTINUE

CALL STN (NR,A,B,C,D,PS)

DO 30 1=1,NR

P(I,J)=PS(I)

30 CONTINUE

200 CONTINUE

IF(IK.EQ.l) GO TO 400

C SM=0.0

DO 350 1=1,NR

DO 370 J=J,NC
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C SM=SM+ABS(P(I,J)-PIP(I,J))

C SM=ABS(P(I,J)-PIP(LJ))

DP(I,J)=ABS(P(I,J)-PIP(1,J))

370 CONTINUE

350 CONTINUE

CALL BIG(NR,NC,DP,DPBIG)

C IF(SM.LT.ALW) GO TO 50

IF(DPBIG.LT.ALW)GO TO 50

400 DO 380 1=1,NR

DO 390 J=1,NC

PIP(I,J)=Pd,J)

390 CONTINUE

380 CONTINUE

16 CONTINUE

PRINT 65,DPBIG

65 FORMAT(5X,'CONVERGENCE NOT ACHIEVED',E16.7)

STOP

50 CONTINUE

IF(NCONF.EQ.100)GO TO 45

DO 44 J=1,NC

DDZM(J)=DZ(NR-1)+((P(NR,J)-P1N(J))«(PP(NR,J)-P1N(J)))*0.5

44 CONTINUE

DO 810 J=1,NC

IF(ABS(DDZ(J)-DDZM(J)).GT.EPS1)G0 TO 820

810 CONTINUE

GO TO 830

820 DO 840 J=1,NC

DD7.(J)=DDZM(J)

840 CONTINUE

DO 77 1=1,NR

DO 99 J=1,NC

P(1,J)=PP(I,J)

99 CONTINUE

77 CONTINUE

PRINT850

850 FORMAT(5X,'CONVERGENCE W.R.T.DZ NOT ACHIEVED')

C PRINT*,(DDZ(J),J=1,NC)

C PRINT*,(DDZM(J),J=1,NC)

830 CONTINUE
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DO 89 J=1,NC

»M(J)=DZ(NR-1)+P(nh,J)-PINCJ)
89 CONTINUE

88 CONTINUE

45 DO 551 1=1,NR
DO 661 J=l,NC
PP(I,J)=P(1>J)

681 CONTINUE

51 CONTINUE

1050 CONTINUE

PRINT*,IT,NTD,DELT

TYPE*,TM,IT,NTD,DELT
C DO 305 1=1,NR
C PRINT*>CP(I,J),j,ljNC)

™W*.<P(I,NC),I=l,NH)
C305 CONTINUE

IF(NTD.EQ.l)GO TO 7
C SMI=0.0

»0 1 1=1,NR

BO 2 J=1,NC

SMl=SMl+ABS(P(I,j)_pPT(IJ))
SMl=ABS(Pd,J)_ppT(IJ))
TPd,J)=ABS(Pd,j}.ppT(i>J))

2 CONTINUE

CONTINUE

CALL BIG(NR,NC,TP,TPB1G)
IF(SM1.LT.EPS)G0 TO 5
1F(1TB1G.LT.EPS)G0 TO 5

7 BO 3 1=1,NR
DO 4 J=J,NC
PPT(l,j)=p(IjJ)

CONTINUE

3 CONTINUE

IF(KTLLE.KTM)GO TO 67
PRINT66,TPBIG

FORMAT (5X,-NO. OF PERMISSIBLE TIME REDUCTIfM.c ,.
STOP KKIWCTIONS EXCEEDED',E16.7)

67 KT1=KT1+1

NTD=NTD*2

C

C

1

C

4

66
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GO TO 6

5 TM=TM+DT(IT)

PRINT*,TM

C DO 300 1=1,NR

C PRINT *,(P(I,J),J=1.,NC)

PRINT *,(P(I,NC),I=1,NR)

C TYPE *,(P(I,J),J=1,NC)

TYPE *,(P(I,NC),I=1,NR)

C300 CONTINUE

DO 55 1=1,NR

DO 60 J=1,NC

PP(I,J)P(I,J)

60 CONTINUE

55 CONTINUE

DO 205 1=1,NR

DO 105 J=1,NC ^
H(1,J)=P(I,J)+EZ(I)

105 CONTINUE

205 CONTINUE

C HORIZONTAL VELOCITIES

PRINT 101

101 FORMAT(IX'VX VALUES')

DO 11 1=1,NR

DO 12 J=1,NC-1

VX(1,J) = -AKXM(I,J)*(H(I,J+ 1)-H(LJ))/DX(J)

12 CONTINUE

C PRINT*,I,(VX(I,J),J=1,NC-1)
V

11 CONTINUE

SQL0.0

DO 700 LNRD.NRW+1

J=NCD1

IF(I.EQ.NRW+l)GO TO 702

IF(I.EQ.NRD)GO TO 703

Q=-VX(I,J)*((DZ(1-1)*DZ(1))/2.0)

GO TO 704

702 Q=-VX(I,J)*(DZ(1-1)/2.0)

GO TO 704

703 Q=-VX(I,J)*DZ(NRD)*0.5

704 SQ1=SQ1+Q
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700 CONTINUE

C VERTICAL VELOCITIES

PRINT 201

201 FORMATdX'VZ VALUES'/)

DO 21 1=1,NR-1

DO 22 J=1,NC

VZ(I,J)=-AKZM(I,J)*(H(I+1 ,J) 1I( I,J)

D/DZI

22 CONTINUE

C PRINT*,1,(VZ( 1.,J),J=l,NC)

21 CONTINUE

SQ2=0.0

DO 707 J=1,NCD1

I=NRD

IF(I.EQ.l)GO TO 707

IF(J.EQ.l)GO TO 705

IF(J.EQ.NCD1)G0 TO 706

Q=VZ(I-l,J)*((DX(J)+DX(J-l))/2.0)

GO TO 708

705 Q=VZ(I-l,J)*(DX(J)/2.0)

GO TO 708

706 Q=VZ(I-1,J)*DX(NCDL1)*0.5

708 SQ2=SQ2+Q

707 CONTINUE

SQ3=0.0

DO 888 J=1,NCD1

I = NRW

IF(J.EQ.l)GO TO 786

IF(J.EQ.NCD1)G0 TO 787

Q=-VZ(I,J)*((DX(J)IDX(J-1))/2.0)

GO TO 777

786 Q=-VZ(I,J)*(DX(J)/2.0)

GO TO 777

787 Q=-VZ(1,J)*DX(NCDL1)*0.5

777 SQ3=SQ3+Q

888 CONTINUE

SQ=SQ1+SQ2+SQ3

PRINT*,SQ1,SQ2,SQ3,SQ

WTR=0.0
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DO 999 J=1,NC

I = NRW

IF(J.EQ.l)GO TO 333

IF(J.EQ.NCDDGO TO 444

1F(J.EQ.NC)G0 TO 555

Q=-VZ(I,J)*((DX(J)+DX(J-l))/2.0)

GO TO 666

333 Q=-VZ(I,J)*(DX(J)/2.0)

GO TO 666

444 Q=-VZ(1,J)*DX(NCDL1)*0.5

GO TO 666

555 Q=-VZ(I,J)*(DX(J-l)/2.0)

666 WTR=WTR+Q

999 CONTINUE

RECH(IT)=WTR/(0.5*AL)

TYPE*,TM,WTR,R(IT),RECH(lT),VZ(NRW,NO

PRINT*,TM,WTR,R(IT),RECH(IT),VZ(NRW,NC)

DO 152 J=1,NC

DO 151 I=NRW,NR-1

IF(P(I,J).GE.0.0.AND.P(l+l,J).LT.0.0)GO TO 153

GO TO 151

153 WTRS(J)=(P(I,J)*DZ(I)/(P(1,J)-P(1+1,J)))+(EZ(1)-EZ(NRW))

C PRINT*,VZ(I,J)

TYPE*,VZ(I,J)

151 CONTINUE

152 CONTINUE

PRINT*,(WTRS(J),J=l,NC)

SOM=0.0

DO 1111 LTM=1,83

SOM=(SOM+OWT(LTM))

1111 CONTINUE

FOM=SOM/83.0

IF(TM.LE.10.0)GO TO 1000

TMM=TM-IFIX(TM)

IF(TMM.NE.0.0)GO TO 1000

JTM=JTMi1

FM=FM+(WTRS(NC)-OWT(JTM))**2.0

C FOM= (OWT(JTM) +OWT(JTM-1 )/?.. 0

FO=FO+(OWT(JTM)-FOM)**2.0
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TYPE*,TM,JTM,FOM,FO,FM

PRINT*,TM,JTM,FOM,FO,FM
r

1000 CONTINUE

WRITE(3,*)(RECH(IT),IT=1,NT)

DO 395 IT=1,NT

C WRITE(3,*)(VZ(NRW,J),J=l,NC)

395 CONTINUE

SDFM=FM/82.0

SDFO=FO/82.0

DIRSQ--1 (SDFM/SDFO)

PRINT*,DIRSQ

STOP

END

C ********************************************************

C SUBROUTINE TO SOLVE TRIDIAGONAL MATRIX

•^ C ********************************************************

SUBROUTINE STN(N, A, B, C, I), P)

DIMENSION A(20),B(20),C(20),D(20)

DIMENSION AL(20),BT(20),Y(20),P(20)

AL(1)=B(1)

BT(l)=Cd)/B(l)

DO500 1=2,N

AL(1)=B(1) A(I)*BT(L1)

C TYPE*,AL(1)

C PRINT*,AL(I)

BT(1)=C(I)/AL(1)

500 CONTINUE

Y(1)=D(1)/AL(1)

DO 5201=2,N

Y(I) =(Dd)-A(l)*Yd-l))/AL(l)

520 CONTINUE

P(N)=Y(N)

DO 530 1=2,N

II=N-I+1

P(I1 )=Y(11)-BT( I1 )*P( 11 i1 )

530 CONTINUE

RETURN

END

n *******************************************************
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C SUBROUTINE TO CALCULATE HYD.COND.FOR COMP.CAP.HEADS

FUNCTION COND(TUF)

C ************************************************************

COMMON/CONST/THR,POR,AM,POW,AC,SSM,SAT,PET,PF,WP,FFC

COND =SAT*((TUF-THR)/(POR-THR))**POW

RETURN;END

C ***********************************************

C SUBROUTINE TO CALCULATE VOL.MOIS.CONT. FOR COMP.P(LJ)

FUNCTION THETA(TUF)

C **************************************************************

COMMON/CONST/THR,POR,AM,POW,AC,SSM,SAT,PET,PF,WP,FFC

IF(TUF.GT.SSM)GO TO 100

THETA=AM*TUF+POR

GO TO 101

100 THETA=EXP(-AC*TUF)+THR

101 IF(THETA.GT.POR)THETA=POR

RETURN;END

C *******************************************************

C SUBROUTINE TO CALCULATE SPECIFIC SOIL MOISTURE CAPACITY

FUNCTION DIFU(TUFl)

C ******************************************************

COMMON/CONST/THR,POR,AM,POW,AC,SSM,SAT,PET,PF,WP,FFC

IF(TUFl.EQ.SSM) GO TO 887

IF(TUFl.GT.SSM) GO TO 1000

DIFU=AM

RETURN

1000 DIFU=EXP(-AC*TUF1)*(-AC)

IF(D1FU.GE.0.0) STOP'ERROR-SPEC'

RETURN

887 CONTINUE

ALTHETA(TUFl + 0. 001)/(). 002

A2=THETA(TUFl-0.001)/0.002

DIFU=A1-A2

IF(DIFU.GE.O.O) STOP'ERROR-SPEC;RETURN;END

^ *******************************************************

C SUBROUTINE TO CALCULATE EVAPOTRANSPIRATION RATE

FUNCTION EVPT(THETA)

(j **************************************************************

COMMON/CONST/THR,POR,AM,POW,AC,SSM,SAT,PET,PF,WP,FFC
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IF(THETA.LT.WP)GO TO 10

IF(THETA.GE.(FC-PF*(FC-WP)))GO TO 20

EVPT=PET*(THE-WP)/((FC-WP)*(1.0-PF))

RETURN

10 EVPT=0.0

RETURN

20 EPT=PET

RETURN

END

C *******************************************************

C SUBROUTINE TO FIND OUT LARGEST DIFF.OF P(I,J) COMP.IN

C TWO CONSECUTIVE 1TERATI ONS( OF AJ) IE/SUBTIME STEPS)
SUBROUTINE B1G(NR,NC,DP,XB EG)

C *******************************************************

DIMENSION DP(50,50)

XBIG=DP(1,1)

DO 333 1=1,NR

DO 444 J=1,NC

IF(XBIG-DP(I,J))555,444,444

555 XBIG=DP(I,J)

444 CONTINUE

333 CONTINUE

RETURN

END
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