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ABSTRACT

Waste disposal on land and application of fertilizers and

pesticides to crop lands has become a common practice universally. Water

infiltrating at the ground, dissolves such matter and carries it

downward through the unsaturated zone. Many types of waste material

(e.g., heavy metals, radioactive material) do not decompose easily. Such

pollutants travelling through the unsaturated zone join the water table

and may affect the water quality adversely. Further, fertilizers which

are not utilized by crops are transported below the root zone by

percolating water and pose a potential threat to the groundwater

quality. In a reverse situation, evapotranspiration may lead to an

accumulation of pollutants in the root zone. This may lead to a fall in

crop yield and deterioration of top soil conditions. To avoid such

problems and to design safe disposal systems, the time variant rate of

pollutant transfer to the water table as well as depth and time variant

concentrations need to be estimated.

In the present study an attempt has been made to develop a

numerical model for simulating one dimensional (vertical) solute

transport from ground to the water table. The mechanisms of solute

transport accounted for are convection, hydrodynamic dispersion, lateral

diffusion into/out of an immobile phase (in case of two phase solute

transport) and linear adsorption - desorption in either or both the

phases. The model is developed in the following four stages.

Stage I Single phase non-reactive solute transport.

«*4 Stage II Single phase reactive solute transport, accounting for

first order linear kinetic adsorption-desorption.
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Stage III Two phase non-reactive solute transport.

Stage IV Two phase reactive solute transport accounting for

linear equilibrium adsorption-desorption.

The numerical methods employed for solving the solute

transport equations are the method of characteristics (MOC) and the

finite differences. The convective component is solved using MOC to

overcome the problem of numerical dispersion encountered in solving

convection dominated flow problems. Change in concentration due to

hydrodynamic dispersion and adsorption-desorption is accounted for

subsequently, using an implicit finite difference scheme. The soil

moisture and flux distribution required for solving the solute transport

equations is obtained by solving (Mohan Rao, 1986) the head form of

Richards equation using a Crank-Nicolson finite difference scheme. The

problem of non linearity arising due to dependence of scpecific moisture

capacity and capillary conductivity on soil moisture (or capillary head)

was taken care of by using Picard's Iteration method.

To account for solute transport due to convection by MOC the

domain under consideration is discretized by a finite number of moving

packets of a pre-assigned strip thickness. Each moving packet is defined

by two co-ordinates (representing its upper and lower bounds) and the

solute and water volumes contained in it. During simulation, the

movement of these packets is traced. During each time step the new

positions of moving packets are obtained by ensuring a compatibility

between the cumulative water profiles obtained by the considerat of

flow and transport.

Solute volumes (per unit plan area) of these moving packets were

further redistributed amongst themselves to account for solute transport

due to hydrodynamic dispersion. This is done by solving the
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governingdifferential equation using an implicit finite difference

i scheme. To compute further change in concentration due to

adsorption-desorption of solute by the soil matrix or lateral diffusion

of solute into/out of the immobile phase and subsequent

adsorption-desorption a fixed grid system is superposed on the moving

co-ordinate system. Concentration distribution of this grid is computed

by identifying moving packets lying wholly or partially in the area of

influence of any node. The governing differential equations are then

solved using an implicit finite difference scheme. Further, change in

solute volume (per unit plan area) at the nodes is attributed to the

moving packets.

Thus, the model is capable of simulating spatial and temporal

distribution of solute concentration and quantifying the volume of

solute (per unit plan area) joining the water table.

The model was validated by comparing model simulated solute

transport with the results of two analytical solutions of van Genuchten

and Alves, 1982 (cited in Parker and van Genuchten, 1984) and Parker and

van Genuchten, 1984. The analytical solution of van Genuchten and

Alves', 1982 (cited in Parker and van Genuchten, 1984) pertains to flow

conditions, accounting for linear equilibrium adsorption-desorption.

Neglecting solute matrix interaction this solution was used to validate

the stage I model. Results obtained by the two methods showed an

excellent agreement. The analytical solution of Parker and van Genuchten

(1984) pertains to single phase and two phase solute transport under

steady state flow conditions. For single phase solute transport the

*Ji sorption sites present in the soil matrix are assumed to comprise of two

fractions i.e., equilibrium adsorption ('type-1' sites) and kinetic
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equilibrium adsorption ('type-2' sites). For two phase solute transport

the interaction between solute and soil matrix in both phases, is

described by a linear equilibrium adsorption-desorption isotherm. By

assigning appropriate values to the parameters, this solution was used

to validate the stage II, III and IV model. An excellent agreement was

obtained for most of the simulations.

The proposed model was also used to simulate reported

experimental data of two field experiments (Warick et al, 1971; Bottcher

and Strebel, 1989).

The model (Stage I) was used to simulate Chloride

concentration profiles in depth under conditions identical to the

experiments of Warrick et al. (transport of CaCl and water in Panoche

clay loam). The simulated and measured concentration profiles compared

reasonably well, except for a lag between the simulated and measured

depth of solute travel. The simulation was repeated considering the

presence of an Immobile phase (Stage III model) and neglecting solute

transfer into/out of the immobile phase (equivalent to a case of anion

exclusion, assuming the effect of osmotic potential on the fluid flow to

be negligible). For 6 = 0.06, the lag was almost eliminated.

A bromide leaching experiment was conducted by Bottcher and

Strebel, 1989 (unpublished data) and breakthrough curves at 51 locations

at depths of 120 cm were measured. Profiles of bromide amounts in depth

at 26 boring sites were also made on two dates. The measured

experimental data exhibited a considerable lateral variation in solute

transport. Although, the proposed model does not account for horizontal

transport, a reasonable agreement was observed between the model

simulated and measured mean concentration distribution.
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Model application to real life problems was demonstrated by

simulating two problems of solute transport through the unsaturated

zone. The model was used to simulate salt accumulation in the root zone

of two crops (wheat and rice) assumed to grow over a period of one year

and irrigated by considerably saline water (1.5 mmho/cm). Concentration

profiles (ground to water table) at different discrete times, covering

the entire period were also simulated. Evapotranspiration by the crops

was accounted for (Doorenbos et al., 1979). Salt accumulation in the

root zone was also estimated using the salt storage equation (Van der

Molen, 1973). A considerable deviation was observed between the salt

accumulation as computed by the salt storage equation and by the model.

This deviation was possibly caused by the assumptions on which the salt

storage equation is based.

The model was used to simulate solute travel of a conservative

pollutant (assumed to be abundantly available on the ground) in two

types of soils (loam and clay) under conditions of heavy monsoon

rainfall. At the end of the simulation period (140 days) the solute

joining the water table in case of clay was negligible - caused only by

dispersion. However, in case of loam, the convective front reached the

water table in about 80 days time, beyond which the solute joining the

water table was appreciable.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

The unsaturated zone acts as a conduit for the passage of

water from the ground to the water table. For a very long time it had

been believed that this zone serves as a filter and the quality of water

finally joining the water table is relatively good. After many instances

of water pollution in drinking water sources, scientists began to

realize the vital role played by the unsaturated zone in controlling the

quality of groundwater. In the past few decades research workers have

turned their attention towards the various processes taking place in

this zone, a complete description of which involves many physical,

chemical and biological processes. Thus, making it highly impossible for

any single discipline to tackle the encountered problems.

Any material present on the ground, which can be dissolved and

carried by water infiltrating into the ground is a potential threat to

groundwater quality. In addition to natural waste, the rapid growth of

industry has largely contributed to the numerous types of contaminants,

rendering waste management an almost Herculean task. Disposal of

domestic and industrial waste, directly on land or with the help of

disposal systems, which may be improperly designed and poorly

maintained, contributes significant amounts of leachate carried by the

rainfall percolating through them, to the soil. This leachate in due
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time travels through the unsaturated zone and joins the water table,

affecting the water quality.

The second most critical role, in deterioration of water

quality as well as soil conditions is played by agriculture, the main

thrust of which has always been optimal crop production, disregarding

all other adverse effects caused on a long term basis. Excess

application of pesticides and fertilizers not required by the plants

leads to their leaching below the root zone. They further travel through

the unsaturated zone and gradually join the water table. These are

mainly composed of complex organic chemicals and have adverse health

effects, if present in toxic levels. Also long term use of saline

irrigation water combined with poor management and adverse climatic

conditions i.e., low rainfall and high evapotranspiration, leads to

accumulation of salts in the root zone. This results in a loss of crop

yield and deterioration of soil conditions.

In order to prevent or minimize such a water quality hazard, a

thorough understanding of the flow process combined with the mechanism

of solute transport in the unsaturated zone is essential. Solute

transport in a porous medium involves transport by convection,

mechanical dispersion and molecular diffusion. The source-sink term

includes solid-solute interaction, various chemical reactions and decay

phenomena.

1.2 PRESENT STUDY

In the present study an attempt has been made to develop a

numerical model simulating one dimensional vertical two phase reactive

solute transport through the unsaturated zone, extending from ground to
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water table. The head form of Richards equation governing one

dimensional vertical flow was solved (Mohan Rao, 1986) using a Crank -

Nicolson finite difference scheme and Picard's iteration method.

To avoid problems of numerical dispersion and oscillations,

encountered in solving convection dominated solute transport problems,

the convective component was solved by the method of characteristics.

The diffusive - dispersive component was subsequently solver} by an

implicit finite difference scheme. The model can also account for two

phase flow (a feature of aggregated and unsatuarated flow conditions)

comprising of mobile and immobile liquid zones, linear equilibrium

adsorption and first order linear kinetic adsorption.

The model was validated using two analytical solutions. The

analytical solution of van Genuchten and Alves', 1982 (Parker and van

Genuchten, 1984), pertains to single phase reactive (linear equilibrium

adsorption-desorption) solute transport under steady state flow

conditions. Neglecting solute matrix interaction this solution was used

to compare results of the model accounting for single phase non-reactive

solute transport. Agreement between the results obtained by the two

solutions was excellent.

The analytical solution of Parker and van Genuchten (1984)

pertains to single phase and two phase solute transport under steady

state flow conditions. For single phase solute transport the sorption

sites present in the soil matrix are assumed to comprise of two

fractions. Adsorption on one fraction ('type-1' sites) is assumed to be

instantaneous i.e., equilibrium adsorption, while adsorption on the other

fraction ('type-2' sites) is time dependent i.e., kinetic equilibrium
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adsorption. For two phase solute transport the interaction between

solute and soil matrix in both the phases is described by a linear

equilibrium adsorption-desorption isotherm. Assigning appropriate values

to the parameters, this solution was used to compare results with the

model accounting for,

(i) single phase reactive (kinetic adsorption-desorption),

(ii) two phase non-reactive,

and (ii) two phase reactive (linear equilibrium adsortption -

desorption) solute transport.

Again, an excellent agreement was observed for most of the

simulations.

The proposed model was also used to simulate reported

experimental data of two field experiments (Warrick et al., 1971;

Bottcher and Strebel, 1989). Warrick et al. (1971) conducted a field

experiment to study transport of calcium chloride through Panoche clay

loam. The model accounting for single phase non-reactive solute

transport was used to simulate concentration profiles under conditions

Indentical to that of the experiment. The simulated and measured

concentration profiles compared reasonably well. However, a lag between

the simulated and measured depth of the solute travel was observed. This

indicates towards an increasd solute velocity, which may have been

caused by the phenomenon of anion exclusion. Therefore the simulation

was repeated considering the presence of an immobile phase and

neglecting solute transfer into/out of the immobile phase (equivalent to

a case of anion exclusion, assuming the effect of osmotic potential on

the fluid flow to be negligible). For an immobile moisture content value

of 0.06, the lag was almost eliminated.
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A Bromide leaching experiment was conducted by Bottcher and

Strebel, 1989 (unpublished data, details of experiment received by

personal communication). Monitoring of solute transport at different

locations showed a considerable variation in the time of arrival of

solute at a specified depth, possibly caused by horizontal transport.

The proposed model does not account for horizontal transport. Still, the

simulated concentration distribution in space and time compared

reasonably well with the measured mean distribution of concentration.

Application of the model to real life problems has been

demonstrated by simulating two problems of solute transport through the

unsaturated zone.

The model was used to estimate salt accumulation in the root

zone for two crops (wheat and rice) assumed to grow over a period of one

year. Concentration profiles (ground to water table) at differnt

discrete times, covering the entire period were also simulated. The

water used for irrigating the crops was assumed to be considerably

saline (1.5 mmho/cm). Evapotranspiration by the crops was accounted for

(Doorenbos et al., 1979). Salt accumulation in the root zone was also

estimated using the salt storage equation (Van der Molen, 1973). A

considerable deviation was observed between the salt accumulation as

computed by the salt storage equation and by the model. This deviation

was possibly caused by the assumptions on which the salt storage

equation is based.

Water percolating through waste material present at the ground

dissolves pollutants and carries them through the unsaturated zone. Non-

conservative pollutants may get adsorbed or degraded, however



conservative pollutants will sooner or later join the water table.

Again, the travel time of conservative pollutants to join the water

table would be lesser compared to pollutants which react with the soil

matrix and in the process get retarded. Thus, if the time of

degeneration of a pollutant is less than the travel time of a

conservative pollutant under identical conditions, its disposal on the

ground could be assumed to be safe.

The model was used to simulate solute travel of a conservative

pollutant (assumed to be abundantly available on the ground) in two

types of soils (loam and clay) under conditions of heavy monsoon

rainfall. At the end of the simulation period (140 days) the solute

joining the water table in case of clay was negligible- caused only by

dispersion. However, in case of loam, the convective front reached the

water table in about 80 days time. Thus beyond 80 days, the solute

joining the water table was appreciable.
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CHAPTER 2

LITERATURE REVIEW

'Solute transport in a porous medium', has gained much

attention during the past few decades. Considering its importance in

different areas, like agriculture, waste management, water quality etc.,

research workers have made immense efforts towards understanding the

complexities underlying this phenomenon. Following is a brief review of

significant research studies carried out involving some of the various

aspects of solute transport occuring in the unsaturated zone of the

earth.

2.1 MISCIBLE DISPLACEMENT IN POROUS MEDIA

Slichter, 1905 (cited in Bear, 1979) was one of the first ones

to observe that tracer movement in a porous medium doesn't follow piston

flow, as would be the case if there was complete displacement and no

mixing occured at the boundary of the tracer and tracer free water. He

injected salt into an aquifer and observed that a general spreading took

place from the point of injection. Scheideggar, 1954 (cited in

Scheideggar, 1961) suggested the term dispersion for this spreading

phenomenon, in order to distinguish it from the process of diffusion

which is superficially similar. The dispersion process is a result of

the complexities of the pore system, where as diffusion is caused by the

intrinsic motion of molecules. Either of the two processes may dominate

depending on the flow conditions in a system. Nielsen and Biggar (1961)
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and Biggar and Nielsen (1963) conducted laboratory experiments for

different types of soils and glass bead media, under saturated and

unsaturated soil conditions at different average pore water velocities

for chloride and tritium tracers. They obtained concentration break

through curves which were skewed and sigmoid in nature as compared to a

sharp concentration front, which would have resulted in case of piston

flow. The deviation from flow appeared to increase as the average pore

water velocity decreased.

The shape and time of arrival of the break through curve

depends on different physical and chemical processes taking place

between the solute and solid medium (Nielsen and Biggar, 1962). One of

the important physical feature observed during these experiments was the

magnitude of the volume of water not readily displaced at saturation,

increased as desaturation of the soil took place. This indicated towards

the presence of a region of water which was either stagnant or moved at

a very low velocity compared to the average pore water velocity. This

region of water termed as an immobile water zone, acts as a static sink

and material can be transferred to and from it only by a process of

lateral diffusion. Krupp and Elrick (1968) conducted a series of

miscible displacement experiments in an unsaturated glass bead medium

maintaining a constant average water content during each experiment.

Decrease in water content again resulted in early breakthrough and

tailing of the concentration curve, caused by slow transfer of

concentration from Immobile to mobile water. Gupta et al. (1973)

measured concentration vs time data at selected points along a column

for different solution contents and seepage velocities. At solution

contents close to saturation the breakthrough curves were symmetrical
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and regularly spaced. As the solution content decreased, the curves

became asymmetrical with a pronounced tailing of concentration. They

also attributed this phenomenon to the presence of an Immobile water

zone, which increased as the solution content in the column decreased.

De Smedt and Wierenga (1984) have pointed out that some of the observed

phenomena of early breakthrough and tailing could be explained on the

basis of anion exclusion and adsorption. However, the case of a glass

bead medium (experiments conducted by them also) eliminates the

possibility of such an explanation. Henceforth, miscible displacement in

the absence of an immobile liquid zone will be referred to as single

phase solute transport and in the presence of an immobile liquid zone

reference will be made to as two phase solute transport.

2.2 DEVELOPMENT OF DIFFUSION - DISPERSION MODELS

The oldest approach to dispersion problems is based on the

analogy between a porous medium and bundles of capillaries. Taylor,

(1953) (cited in Nielsen and Biggar, 1962) used solute flow in a single

circular cylindrical capillary tube as a basis to macroscopic flow. He

assumed that longitudinal molecular diffusion was negligibly small

compared to radial diffusion. Again, radial diffusion counteracts

velocity dispersion by trying to establish a uniform concentration

distribution over a cross-section. Thus, for a symmetrical concentration

profile about the axis of the capillary he gave the following equation,

Be +1 dc J_ dc +Jk_ (1_ _r^ dc
dr r Sr D at D a 3x

Where, a is the radius of the capillary, c is the concentration, r is

the distance along the capillary axis, U is the maximum velocity on the
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axis of the cylinder (velocity distribution in a cross-section is

parabolic), t is time and D is the molecular diffusion coefficient which

is constant and independent of the concentration.

Aris, 1956 (cited in Fried and Combarnous, 1971) generalized

Taylor's approch to irregularly shaped capillaries in which local

velocity distributions may not be parabolic, and the molecular diffusion

coefficient D varies with concentration. He inferred that the mean

concentrtion distribution about a point moving at a mean flow velocity

is dispersed according to a Gaussian distribution, and based on the

variance of this distribution he gave the following relation for an

effective diffusion coefficient,

K = D + a*[(aV)/D]
m

Where, K is the effective diffusion coefficient, D is the

molecular diffusion coefficient, a is a characteristic dimension of the

*

cross section, U is the mean flow velocity and a is a dimensionless
m

number depending upon the capillary cross section.

The theories of Taylor and Aris were not successful as flow in

a porous medium is very different from the flow in a capillary. Most of

the dispersion in a porous medium results from its complexity of

structure, and is not caused by the existence of a velocity profile in

each pore as in a tube. The models of Klinkenberg, 1957 (cited in Fried

and Combarnous, 1971) which represent the porous medium as a bundle of

straight non-connected capillaries and that of Marie and Defrenne, 1960

(cited in Fried and Combarnous, 1971), assuming regularly spaced

connections between capillaries also failed as the complexity of a

porous medium cannot be described by a fixed capillary pattern.



11

In an attempt to describe the porous medium more closely De

Josselin de Jong (1958) and Saffman (1959), (1960) introduced random

networks of capillaries. The model of De Josselin de Jong was very

restrictive. He neglected molecular diffusion and assumed that the

velocities in a capillary cross-section were constant. However, he was

the first one to express the fact that transverse dispersion is smaller

than longitudinal dispersion. The model of Saffman was more general and

consisted of a network of randomly oriented and distributed pores

connected to each other, in each of which the flow was uniform. The pore

sizes were comparable to a real porous medium. The path followed by

fluid particles in such a medium was regarded as a random walk in which

the length, direction and duration of each time step were random

variables. Saffman calculated the probability distribution function of

the displacement of a particle after a given time and deduced values of

dispersion. He considered cases where molecular diffusion was neglected

and where both molecular diffusion and dispersion were important.

A further improvement in random capillary models was given by

Bear and Bachmat, 1967 (cited in Fried and Combarnous, 1971), Bear et

al., 1968 (cited in Fried and Combarnous, 1971) and Bachmat (1969). They

represented porous medium as a continuum at the macroscopic scale by

averaging microscopic quantities in a representative element of volume

REV at a point. The REV was defined with respect to porosity. Their

model yielded results closer than Saffman's model and was a step towards

freeing models from a rigid geometrical frame.

Geometrical models were followed by a statistical approach

which was general, as no assumptions on the geometrical structure of the
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medium are required. The most important model was derived by Scheideggar

(1963), who used a random walk process. He derived the equation for a

homogeneous, isotropic medium and laminar flow conditions. Based on

experimental studies he realized that the dispersion coefficient was not

a scalar quantity and depended on the direction of the concentration

gradient. He gave the following equation,

dc
+ v . grad c = dlv ( D .grad c )

at

Where, v is the mean velocity and D is the tensor of

dispersion. Discrepencies were observed between experimental and

theoretical results computed by the above equation. In order to account

for these deviations Scheideggar Introduced autocorrelation between

subsequent time steps and ended up with a telegraph equation. However,

he could not improve the match. An interesting improvement was made by

Coats and Smith, 1964 (cited in Fried and Combarnous, 1971) who

introduced the concept of dead end pores. Fluid in these pores was

assumed to be static and subjected only to molecular diffusion. They

gave the following macroscopic equation,

*Uv^ =D4- d-f) !!i
at ax ax at

Where, f is the fraction of pore volume occupied by the moving

fluid and c is the concentration in the dead end pores. The equation

describing diffusion into and out of. the dead end pores was given by,

ac

y(c-c ) = (1-f) —-
at

where, y is a transfer coefficient between dead end pores and
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other pores.

The equation of Coats and Smith was a significant improvement,

however they were not quite successful in explaining the observed

discrepencies between experimental and theoretical results.

Whitaker (1967) and Fried, 1968 (cited in Fried and

Combarnous, 1971) objected to the mode of derivation of the equation

given by Scheideggar, and stated that it did not account for the fact

that the quantities involved were not functions, but distributions in

the sense of Schwartz. They proposed a method based on the theory of

scale change and gave the following macroscopic equation,

dc
div [D x grad c] - div (cv) = —

at

The above equation is one of the most accurate representations

of the classical convective dispersive equation (CDE). Source/sink terms

and scale change effects have been included in various studies to

represent problem specific phenomenon.

2.2.1 Parameters of Dispersion

The coefficient of molecular diffusion (D ) and mechanical
P

dispersion (D ) have been subject to many theoretical and experimental

investigations. They have been observed to depend on the flow pattern

and some basic medium characteristics.

The effective molecular diffusion coefficient of ions in a

soil medium is less than that in a free water system (D_). Based on

theoretical consiserations of a porous medium, Porter et al. (1960) gave
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the following relationship between D and D„,
& r p 0

D = Day (L/L )20
p o e

2
where, 9 is the volumetric water content of the soil, and (L/L ) , a and

y are factors accounting for reduction in ion velocity due to toruosity,

reduced fluidity of the water and electrostatic interactions.

They also measured chloride diffusivities in medium and fine

2
textured soils and observed a linear relationship between (L/L ) and 9

e

2
i.e. (L/L ) ay = a9 + b, where a and b are constants characterizing the

e

given soil.

Kemper and Van Schaik (1966) studied rates of salt difusion in

clay plugs and observed that the diffusion coefficients increased as an

exponential function of the water content, but for practical purposes,

were independent of the salt concentration. They gave the following

relationship between D and DQ,

D = Da eb9
P •

Olsen and Kemper (1968) reported that data collected on soils

fit the above equation reasonably well with b=10 and a ranging from

0.005 to 0.001, for sandy loam to clay soils.

The coefficient of mecahanical dispersion has been observed to

depend on the average flow velocity and characteristics of the medium.

One dimensional analysis show D to be proportional to, either the first

(Bear and Todd, 1960 cited in Bear, 1972) or second (Taylor, 1953 cited

In Bear, 1972) power of the average flow velocity(v), with a

proportionality constant A, being a characteristic length of the medium.
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Thus,

Dh = A |v|

or \ "* |v2|

2.3 SINGLE PHASE SOLUTE TRANSPORT

2.3.1 Analytical Solutions

A number of analytical solutions (exact and approximate) of

the one-dimensional CDE have been given by several research workers.

Lapidus and Amundson (1952) were one of the first ones to

present an analytical solution, which took into account longitudinal

diffusion and/or dispersion. The solution was valid for a system having

a constant average flow velocity and a constant diffusion coefficient.

They also accounted for linear adsorption and first order kinetics.

The solution presented by Brenner (1962) is applicable to beds

of finite length, initially containing a uniform distribution of solute.

He has computed numerical values of the solution and presented them in a

dimensionless form for, (i) the instantaneous concentration of solute

leaving the bed, and (ii) the average solute concentration in the bed at

any instant.

Lindstorm et al., 1967 (cited in Cleary and Adrian, 1973)

considered a flux type upper boundary condition and a semi-infinite soil

column. Gehrson and Nir (1969) studied the effect of initial and

boundary conditions on the distribution of a tracer in space and time

for various infinite, semi-infinite and finite soil systems. They also

accounted for a linear equilibrium adsorption isotherm and a
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radioactive tracer (considered stable in case of a long half life

compared to the experiment duration). Analytical solutions exhibited

that results of steady state experiments were influenced only upto 0.5%

by changes in the boundary conditions. However unsteady state results

were influenced upto 5°/. in the region c/c = 0.5 (where, c is the solute

concentration and c_ is the concentration of the input tracer).

Warrick et al. (1971) gave an approximate analytical solution

of the CDE in order to simulate data from a field experiment. They used

a constant apparent diffusion coefficient and assumed that the time

taken to attain steady state is much less compared to the total time of

infiltration. On analyzing the results they found that dispersion caused

by the average flow velocity was significant and that the apparent

diffusion coefficient increased with time or distance of solute travel.

Solution for the case of a finite soil medium accounting for

linear adsorption and a first type of boundary condition was reported by

Cleary and Adrian (1973). Marino (1974) presented an analytical solution

for a semi-infinite, homogeneous isotropic porous medium subject to

source concentrations varying exponentially with time. He also accounted

for decay of a radio-active contaminant and linear equilibrium

adsorption.

The solution given by Selim and Mansell (1976) is applicable

to a finite soil column, subject to the third type of boundary condition

i.e., accounting for convection and dispersion across the surface. The

solution incorporates reversible and irreversible linear adsorption in

the form of a source/sink term which may be constant or concentration

dependent. Neglecting the source/sink term, comparisons were made with
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earlier analytical solutions of Lindstorm et al., 1967 (cited in Cleary

and Adrian, 1973) and Cleary and Adrian (1973). The model of Cleary and

Adrian provided higher concentration values throughout the soil column.

However, the results matched well with the model of Lindstorm et al. ,

1967, except at the exit end of the soil column. This was understood to

be caused by the semi-infinite boundary condition. Computed break

through curves were found to lie between the previous two models. For

higher peclet numbers the deviation between the three models decreased.

A combination of a linear freundlich isotherm and first order

reversible kinetic adsorption was included in an analytical solution by

Cameron and Klute (1977). Comparison with experimental data gave a good

agreement. Parameters for adsorption-desorption were obtained by fitting

the simulated results to experimental data. Individually neither of the

two isotherms gave a good match with the experimental data.

Parlange and Starr (1978) presented a closed form approximate

analytical solution for a finite soil column accounting for linear

adsorption, first and zero order reactions. The solution is valid for

peclet numbers greater than 4 for break through curves and concentration

profiles within the soil columns. Earlier, solutions, which consider an

infinite soil column and first type boundary condition although simpler

are valid for peclet numbers greater than 16 for concentration profiles

within the soil column.

De Smedt and Wierenga (1978a) presented an approximate

analytical solution for solute movement in soils with an initial

-> non-uniform water content distribution leached at a steady rate. Linear

variation of dispersion coefficient with velocity was considered.
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Computed results matched with a CSMP simulation model (van Genuchten

and Wierenga, 1974) and were also in agreement with results obtained by

an exact analytical solution (Lindstorm, et al., 1967 cited in Cleary

and Adrian, 1973) for a case of uniform water content distribution. They

concluded that the approximate analytical solution could be applied to

field problems with variational flow velocity, water content and

dispersion coefficient. In case of breakthrough curves, no significant

effect was observed by variation in flow velocity and dispersion

coefficient, implying that the use of average values was good enough.

,^~ Another approximate solution by the same authors (1978b)

describes solute movement in soils during infiltration and

redistribution. The solution requires solute penetration depths. For the

case of infiltration (under ponded conditions) this was obtained by

dividing the cumulative infiltration depths by the moisture content

value at field capacity . Hydrodynamic dispersion was varied linearly

with pore water velocity. Concentration profiles were simulated

neglecting molecular diffusion and accounting for both molecular

1 diffusion and mechanical dispersion. Results were compared with a CSMP

simulation model (IBM, 1972 cited in De Smedt and Wierenga, 1978b)). A

good agreement was not obtained in case of redistribution, unless

molecular diffusion was accounted for.

CSMP : Continuous System Modelling Program, IBM, 1967 (cited in Bolt,

1982). In the CSMP approach the spatial derivatives are approximated

with suitable finite differences, while the integration in time is

performed using a predictor-corrector Runge-Kutta type algorithm.
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Gupta and Singh (1980) developed an analytical solution for a

semi-infinite soil medium in order to leach existing saline soils. The

initial salt concentration profile was approximated by an exponentially

decreasing concentration profile, uniform average salt concentration or

by fitting straight line segments to it. Reasonable accuracy in

predicting salt concentration profiles was obtained in case of closely

fitting straight line segments to the initial profile. A zero surface

boundary condition i.e. concentration at the ground surface

instantaneously becomes zero, when ponding of solute free water occurs,

was compared to a time varying (concentration decreases exponentially

with time) boundary condition at the ground surface. The difference

between the two was not significant. Thus a zero surface boundary

condition is a good enough approximation in case of ponding of solute

free water. They also observed that the time taken for leaching

decreased in case of high average pore water velocity leading to higher

dispersion values and flatter concentration profiles.

The analytical solution given by van Genuchten (1981) for a

,-X- semi-infinite soil profile under various boundary conditions, accounts

for linear equilibrium adsorption, zero order production and first order

decay. The solution holds good for the limiting case of neglecting zero

order production. However, in order to neglect first order decay the

solution had to be modified. The modified solution has also been

presented.

Approximating the initial salt concentration profile with an

^ exponentially varying concentration profile for leaching saline soils

has also been done by Misra and Mahapatra (1989). In their solution the
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slopes of the initial concentration profiles are varied with the help of

a parameter. The solution of Gupta and Singh (1980) is a limiting case

of their solution, when the concentration at the lower boundary becomes

zero. Linear variation of the hydrodynamic dispersion coefficient has

also been taken care of.

2.3.2 Numerical Solutions

Till date many numerical techniques have been applied for

solving the solute transport equation. The literature reviewed here

pertains only to the numerical methods of finite differences, finite

elements and Method of Characteristics.

2.3.2.1 Finite Difference Methods

Bresler and Hanks (1969) solved the solute transport equation

using an explicit finite difference technique in order to simulate salt

movement in unsaturated soils. They only considered convective transport

and neglected any effects on salt distribution, caused by the diffusion

process. Solutions were obtained for infiltration, redistribution and

evaporation for flooded and rainfall conditions. The results were

reasonable and an improvement between measured and computed salt

concentration profiles was observed on adding a source term to the

computations.

Lai and Jurinak (1971) gave an explicit solution involving

cation exchange in soil columns. They used three different soils and

found that the cation exchange isotherms were non-linear, by plotting

the normalized concentration in solution and in the adsorbed phase. The

developed numerical method was capable of solving the equation for both
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linear and non-linear cation exchange isotherms. Agreement between

numerical solution and experimental values was fairly good. They further

(Lai and Jurinak, 1972) applied the method to predict cation adsorption

in systems involving five different types of exchange isotherms. For

convex isotherms they found that the concentration profiles were sharp

and the adsorbed phase advanced ahead of the solution phase. For concave

isotherms the concentration profiles were diffused and the adsorbed

phase lagged behind the solution phase. For the case of a linear

exchange isotherm, the numerical solution was compared with the

analytical solution of Lindstrom et al.,1967 (cited in Cleary and

Adrian, 1973). A small deviation was observed between the two, which was

attributed to numerical dispersion.

Kirda et al. (1973) also presented an explicit finite

difference solution of the CDE for a non-reactive solute. Assuming the

apparent diffusion coefficient to be a constant, they studied

displacement of Chloride during infiltration using soil columns. A

deeper and more complete displacement of Chloride was observed in case

of maintaining a constant moisture content having a value below

saturation at the ground surface. For flow velocities below 0.1 cm/min

the apparent diffusion coefficient depended mainly on molecular

diffusion.

The finite difference solution for a non-interacting solute

given by Bresler (1973a) is one of the most significant solutions given

so far and has been used and modified by many subsequent research

workers. He has used an implicit scheme of solution and accounted for

numerical dispersion following Chaudhary, 1971 (cited in Bresler, 1973a)
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by considering the second derivatives in Taylor's series. A variable

diffusion-dispersion coefficient was introduced by combining the

relations given by Kemper and Van Schaik (1966), for molecular diffusion

and by Ogata, 1970 (cited in Bresler, 1973a) for mechanical dispersion.

Results obtained for a steady state case were compared with the

analytical solution of Brenner (1962). An exact match was achieved only

after accounting for numerical dispersion. For transient infiltration

the results were compared with field data reported by Warrick et al.

(1971). Cases of redistribution and evaporation were also studied and

they found that mechanical dispersion dominated during infiltration as

compared to molecular diffusion, which was more important during the

process of redistribution and evaporation.

Bresler (1973b) extended his model to account for the

phenomenon of anion exclusion . He again simulated the data of Warrick

et al. and observed an improvment of fit between the observed and

theoretical results. However, contribution of osmotically induced flow

to total flow was negligibly small in most parts of the system.

Wood and Davidson (1975) presented an implicit-explicit finite

difference solution, accounting for non-linear equilibrium

adsorption-desorption. Numerical dispersion in the solution was

accounted for following Chaudhari, 1971 (cited in Bresler, 1973a).

Comparison with experimental data gave a good agreement barring a slight

lag between the two.

An implict finite difference solution using a second order

accurate difference form as suggested by Chaudhari, 1971 (cited in

Bresler, 1973a) was also given by Gureghian et al. (1979). They

\
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accounted for soil layering and included a sequential chemical reaction

of ammonium getting converted to Nitrite and then Nitrate.

The model of Bresler (1973a) was modified by Russo (1988a) to

account for physical and chemical reactions between soil solution and

soil matrix in terms of hydraulic conducivity and retentivity functions,

anion exclusion and cation exchange. Solute transport was studied for

three different homogeneous soils under different sets of initial and

boundary conditions. Comparisons were made with results obtained for

transport of an inert solute under the same set of conditions. To

account for inhomogeneity of the soil profile the model was further

modified (Russo, 1988b) and solute transport through layered sequences

of soil were studied.

Russo et al. (1989a) has again used the solution of Bresler

(1973a) for non-reactive solute transport. Assuming scale heterogeneity

of the medium in a vertical direction he accounted for hysteresis in the

soil hydraulic properties and studied their effect on field scale

transport.

2.3.2.2 Finite Element Methods

Cavalieri and Russo Spena (1984) solved the solution transport

equation including an irreversible adsorption isotherm with the help of

galerkin finite element method. First order approximations were used and

convergence of the numerical scheme may or may not be guaranteed

depending on the particular choice of the space and time step.

•*• Infiltration of solute into a loam soil profile was studied, neglecting

and accounting for adsorption. Incorporation of the irreversible
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adsorption isotherm resulted in a retardation of the solute movement and

decrease of solute concentration.

2.3.2.3 Method of Characteristics (MOC)

This numerical technique was introduced by Carder et al., 1964

(cited in Smajstrla et al., 1975) to overcome problems encountered in

solving convection-dominated solute transport. He used it to solve a

miscible displacement problem for unsteady unsaturated solute

infiltration into a homogeneous, isotropic porous medium. The method has

subsequently been used for solving solute transport problems in porous

media.

Smajstrla et al. (1975) solved the CDE for transient

unsaturated flow conditions. They used MOC to solve for convective

transport and subsequently solved for dispersive transport using an

explicit finite difference scheme. A set of moving points was

distributed throughout the entire grid system (1 point per grid) at the

beginning of simulation and each moving point was assigned an initial

depth and solute concentration. During subsequent time steps new moving

points were generated at the top and existing ones were moved using

linearly interpolated values of pore water velocity at the grid

boundaries. To avoid overcrowding of moving points at the front, moving

points were removed when they became closer than 0.2 times of the grid

thickness. Results were compared with earlier reported experimental

results and analytical solutions under steady state saturated flow

conditions. A close agreement was obtained between the various results.

During steady state flow a weighted averaging scheme was used to obtain

grid concentrations. However, it was not feasible to use this scheme for
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unsteady state flow. For unsteady unsaturated flow conditions field

experimental data of Warrick et al. (1971) was used. Employing a

constant dispersion coefficient given by Warrick et al. or the

dispersion coefficient relation proposed by Bresler (1973a). The

simulated results agreed reasonably well with the numerically simulated

results of Bresler and those obtained by Warrick et al. using an

approximate analytical solution. However, a lag between the experimental

and simulated data was observed.

Charbeneau (1981) solved the transport equation accounting for

adsorption and cation exchange. He assumed dispersion to be negligibly

small and solved only for the convective component using MOC. Both

adsorption and ion-exchange served to retard the contaminant movement.

In case of ion-exchange the ion preferred on the exchange site was

retarded to the greatest extent.

Khaleel et al. (1985) again used MOC to solve for the

convective component of the solute transport equation. The dispersive

component was subsequently solved using an explicit centered in space

finite difference approximation. They also simulated the field data of

Warrick et al. (1971) for unsaturated transient conditions and found a

lag between the observed and simulated concentration profiles.

2.3.3 Numerical Dispersion and Oscillations

It is well known, that while solving the CDE numerically if

the term proportional to the second order is neglected in approximating

y the first order derivative, it results in a numerical dispersion i.e.,

smearing of the concentration front. Also in case of steep concentration
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fronts oscillations of the solution are observed at the upstream side

i.e., overshoot and downstream side i.e., undershoot of the

concentration front. Oscillations manifest themselves as concentration

values higher than the maximum value and negative concentration values.

These two errors are interrelated and numerical schemes selected to

reduce the magnitude of one problem generally increases the other.

Several numerical schemes have been introduced and modified since these

problems were detected In numerical solutions of convection dominated

solute transport. Following is a brief review of some of these schemes

including comparisons amongst different numerical techniques (again

restricted to finite differrences, finite elements and MOC). In all of

these techniques the one-dimensional CDE under steady state flow and

constant moisture conditions has been solved and compared with exact

analytical solutions, although most of them are valid under transient

unsaturated flow conditions.

For very small values of D, solution of the CDE equation

develops discontinuities in the dependent variable referred to as shock

«r waves or shock fronts. Von Neuman and Richtermeyer, 1950 (cited in

Stone and Brian, 1963) proposed the use of large dispersion

coefficients, the effect of which was to smear out these

discontinuities, by replacing them with thin layers, in which the

dependent variable varied rapidly and continuously.

Stone and Brian (1963) were one of the first ones to suggest

the use of a weighted finite difference scheme to overcome this problem.

y'' They £u«srfcaD)-e to almost get rid of the oscillations. Comparison with an

analytical solution was not very good. However, there was a considerable
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improvement over earlier solutions.

The finite difference method adopted by Bresler (1973a) to

eliminate numerical dispersion has already been mentioned (refer section

2.3.2.1). A considerably good match was obtained on comparison with

Brenner's (1962) analytical solution for high Brenner numbers (low

dispersion coefficients).

Gray and Plnder (1976) have used the Fourier series analysis

to demonstrate the accuracy of finite difference and finite element

(Galerkin's approach using different types of basis functions) schemes.

They found that the solution obtained by finite differences was

consistently inferior to the ones obtained using finite element schemes

for a given number of degrees of freedom. In case of the different

finite element schemes, hermite polynomials exhibited decreased amounts

of oscillation and numerical smearing as compared to quadratic elements.

On including a correction factor to account for numerical dispersion in

the solution, the finite difference scheme remained relatively

unaffected. However a substantial improvement in the finite element

method was observed. Again, upstream weighting of the convective term

generated unacceptable solutions as selection of an appropriate

weighting factor to minimize overshoot resulted in increased smearing of

the front.

van Genuchten (1976) has also compared solutions obtained by

finite difference and finite element methods and reported conclusions

similar to Gray and Pinder. He also stated that first and second order

continuous hermitian polynomial solutions, exhibit lesser numerical

dispersion and oscillations compared to the various zero order
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continuous elements. Quadratic and cubic elements fare better than

linear elements and depending upon the time step size, quadratic

elements may be preferred to cubic elements. The relative indifference

of the finite difference scheme to a correction factor for numerical

dispersion has also been shown.

Varoglu and Finn (1978) presented a finite element method

(based on Galerkin*s approach) incorporating the method of

characteristics (FEMIC) to take care of convection dominated solute

transport. This was achieved by using spatial and temporal elements and

incorporating the method of characteristics by orienting the sides of

the elements joining the nodes at subsequent time levels, In a

particular direction. For very low values of dispersion the method

yields results which are very close to the exact solution. For the case

of pure convection,the method predicts the exact solution.

van Genuchten and Gray (1978) presented high order accurate

finite difference and finite element schemes to solve the CDE. The

various schemes were made high order accurate in time through the

introduction of appropriate dispersion corrections in the numerical

formulations. The most accurate finite difference and finite element

schemes were obtained when fourth order space-time corrections were

applied to each of the two schemes, in which case the two methods became

identical. The quadratic finite element schemes which provided the best

results were based on third and fourth order correct difference

equations in time. Superior results were obtained with the dispersion

corrected Hermitian schemes.
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Neuman (1981) solved the convective component by MOC on a

fixed grid in space. Dispersion was handled by finite element on a

separate grid which may or may not coincide with the former at selected

points in space and time. Information from one grid to another was

projected by local interpolation. Results were free from oscillations,

but numerical dispersion existed. However, it could be brought under

control by reducing the spatial Increment of the convective grid or by

increasing the time step. Best results were obtained for courant numbers

exceeding one.

van Genuchten (1982) compared several numerical schemes for

solving the CDE under transient flow conditions. For steep

moisture/concentration fronts he concluded that finite difference and

mass lumped linear finite element schemes generated the most stable

solutions while the hermitian finite element scheme gave a better

spatial location of the front. However, some oscillations developed near

the toe of the front. Temporal approximation was done using a Crank -

Nicolson scheme with correction applied to the dispersion coefficient.

Neuman and Sorek (1982) compared three different Eularian

-Lagrangian schemes for solving the one-dimensional CDE. The first two

methods decouple the CDE Into convection and dispersion problems. The

problem of convection was solved by the method of reverse streaklines

(developed by the authors In question) and continuous particle tracking

(based on the MOC presented by Garder et al., 1964), while the

dispersion problem was subsequently handled by implict finite elements

>-' on a fixed grid using linear and quadratic basis functions. A comparison

with analytical solutions exhibited that, the first two methods worked
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well for convection dominated problems but irregularities appeared in

certain dispersion dominated problems. The third method sufferred from

numerical dispersion and overshoot in case of convection dominated

problems, but works well when dispersion is dominant.

Khaleel et al. (1986) solved the one dimensional CDE under

steady state uniform flow conditions using MOC to solve for the

convective component. An explicit centred in space finite difference

scheme was used to solve for the dispersive component. Comparison with

an analytical solution using a small dispersion coefficient is quite

good. However no comparison with purely convective solute flow or very

small dispersion coefficients was shown. Documented list of the fortran

program has also been presented.

2.4 TWO PHASE SOLUTE TRANSPORT

Deans, 1963 (cited in van Genuchten and Wierenga, 1976)

modified the CDE to include transfer by diffusion from mobile to

immobile water. However, he neglected the effect of longitudinal

dispersion. Similar concepts were proposed by Gottschlich (1963) and

Skopp and Warrick (1974). Coats and Smith, 1964 (cited in van Genuchten

and Wierenga,1976) modified the model of Deans and accounted for

longitudinal dispersion. Subsequent authors adopted the model of Coats

and Smith.

2.4.1 Analytical Solution

The solution of van Genuchten and Wierenga (1976) includes a

linear equilibrium adsorption-desorption isotherm, for a semi-infinite

soil column and a pulse input of solute. The model is capable of
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simulating concentration profiles in both the mobile and immobile liquid

regions. They computed effluent concentration curves to study the effect

of various parameters on the solution. The model was further used by

them (cited in van Genuchten and Wierenga, 1977) to. simulate tritium

effluent concentration curves, which were compared with the observed

concentration distribution. Necessary parameters were computed by curve

fitting of simulated and experimental data. They gave the following

conclusions.

(1) The amount of immobile water generally decreases with Increasing

flow velocity.

(ii) The coefficient of mass transfer- increases with decreasing flow

velocity, which may be a consequence of an increased amount of immobile

water and hence an increase in the diffusion path length.

(iii) A decrease in the size of aggregates decreases the amount of

dead water in the column.

(iv) A reduction in bulk density appeared to increase the amount of

immobile water.

(v) The dispersion coefficient appeared to some what increase with an

increasing aggregate size and decreasing bulk density.

van Genuchten et al. (1977) again made comparisons between

observed 2,4,5-T herbicide effluent concentration curves for 30 cm long

unsaturated soil column and simulated concentration curves using the

previous solution. Theoretical curves were also calculated using a CSMP

model (van Genuchten and Wierenga, 1974 cited in van Genuchten et al.,

1977), accounting for non-linear hysteretic adsorption-desorption. The

simulated curves gave a reasonably good description of the observed

data. They also stated that in case of two phase solute transport the
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effect of hysteresis did not appear to be very significant as compared

to single phase solute transport.

De Smedt and Wierenga (1979a) presented an analytical solution

valid for both a finite and semi-infinite soil column and concentration

or flux type boundary condition leached at constant rate. They conducted

column experiments under saturated and unsaturated soil conditions. On

comparing simulated and observed data they found that a good match could

not be obtained for unsaturated soils, unless the presence of an

immobile liquid phase was accounted for.

Analytical solutions for a flux type and concentration type

upper boundary condition for finite and semi-infinite soil columns were

again given by De Smedt and Wierenga (1979b). They compared observed and

simulated effluent concentration curves and concluded that effluent

concentration curves for finite soil columns leached at a steady rate of

infiltration may be computed with a relatively simple solution, derived

for semi-infinite soil columns and a concentration type upper boundary

condition, provided the peclet number is greater than 9. Also

concentration distribution inside the column could be computed If the

peclet number is greater than 40.

In a subsequent study De Smedt and Wierenga (1984) conducted

column experiments using a porous medium consisting of glass beads so as

to eliminate the ambiguity of asymmetric concentration curves being

caused by anion exclusion or adsorption, in case of unsaturated flow.

They conducted a wide range of experiments, both for saturated and

unsaturated flow conditions at different steady flux rates and initial

uniform water contents. Theoretical curves were computed for the one
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phase and two phase CDE and compared with observed experimental curves.

For unsaturated displacement experiments they found that a reasonable

match using the one phase CDE, could only be obtained in case of using

very large dispersion coefficients (almost 20 times greater than those

used for saturated conditions). However, a good match was obtained

between the two, if the two phase CDE solution was considered. Also the

dispersion coefficient was comparable with saturated conditions. For

very long soil columns, symmetric concentration curves were obtained,

but again they could not be reproduced by the one phase CDE solution,

unless a large dispersion coefficient was used. Other conclusions

regarding the fraction mobile water (ratio of mobile to total water

content) and value of mass transfer coefficient were similar to those

reported earlier.

2.4.2 Numerical Solutions

2.4.2.1 Finite Difference Methods

Gaudet et al. (1977) gave an explicit finite difference

solution of the two phase solute transport equation. They conducted

experiments at different steady flux rates and initial water content

values. Curve fitting techniques were used to determine the parameter

values. A sensitivity analysis indicated that the fraction mobile water

was the most sensitive parameter and primarily affected the time of

appearance of the solute. A good match between the calculated and

experimental data was observed for all the different experiments.

Russo et al. (1989b) modified the solution of Bresler (1973a)

to include the presence of an immobile water zone. They simulated
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concentration profiles for irrigation, redistribution and evaporation,

using different values of the mass transfer coefficient and compared

them with concentration curves simulated using the one phase CDE. In the

two region case, the concentration profiles were characterized by higher

dispersion and low concentration peaks compared to the single region

case. The effect of the rate of mass transfer was manifested as low

concentration peaks, and significant tailing in case of low values of

the mass transfer coefficient. As the rate of transfer increased, the

difference in concentration of the two regions decreased and eventually

led to a new equll ibrlurn. For the limiting case, where its value tends

to infinity, concentration in the two regions became equal and the

solution reduced to that of the one phase CDE.

2.5 Field Tracer Experiments

Solute transport under field conditions was studied by several

research workers, as experiments conducted under laboratory conditions

are far from representing complexities encountered in the field.

Miller et al. (1965) conducted a field experiment to study
Jkr-

chloride (applied in the form of KCl) displacement through Panoche clay

loam. They found that more efficient leaching of the soil profile was

achieved in case of intermittent ponding as compared to continuous

ponding i.e., application of a certain amount of water by intermittent

ponding provided a lower average concentration distribution. However,

the time taken by intermittent ponding was much higher than continuous

ponding to achieve the same distribution. They gave two main

>- conclusions, (i) the amount of chloride displaced from a depth was not

uniquely related to the volume of displacing water and (11) the chloride
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concentration attained at any depth could be either less than or greater

^_ than the concentration above or below that depth.

A field experiment was conducted by Biggar and Nielsen (1976).

They leached solute pulses of chloride and nitrate in twenty plots over

an area of 150 ha. Steady state conditions were established, before

applying the solute pulses. They observed extremes in solute leaching at

equal or different depths within relatively small areas, exhibiting the

significance of spatial variability in field soils even at small

distances.

Similar conclusions were drawn by Van de Pol (1977), who

studied solute (labelled with chloride and tritium) and water movement

under steady state flow conditions in a field soil, consisting of a 70

cm clay layer over medium sand.

Butters et al. (1989) conducted a two year field study of

mobile solute transport over an area of 0.64 ha to a depth of 25 cm.

Prior to tracer application the field was leached to free it from

» residual salts and achieve a uniform water content profile to a depth in

excess of 3 m. A pulse of NaBr (aq) was applied and subsequently leached

downward, monitored by vacuum solution samplers replicated at different

depths. Although mass recovery was nearly 1007. at all depths, the

coefficient of variation of mass recovery between samplers at a given

depth was nearly 50%. Lateral variations in vertical solute velocities

at shallow depths was considerable, causing rapid solute breakthrough at

some sites, in contrast to late arrival at the others. The average pore

water velocity at shallow depths was found to be greater than the

average solute velocity. This difference decreased with depth and was
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attributed to the transient irrigation regime near the surface.

Van Ommen et al. (1989a) applied a small pulse of KBr to a

strip of land (260m x 12m). The landuse pattern was grass and corn and

both the areas were treated separately. Concentration profiles were

measured in depth at different times and locations. Large local

variations were observed at seemingly homogeneous and small areas. A

mean concentration profile was compared with CDE predicted results and a

reasonably good match was observed upto a depth of 70 cm. Parameter

estimation for the model was done by curve fitting. Effluent

•\ concentrations were measured in drains and simulated solute travel

depths were underestimated, unless the soil profile was divided into two

layers. The first layer consisted of the top 25 cms characterized by a

low average velocity while the solute travelled at higher velocities in

the second layer. They attributed the accelerated breakthrough curves to

the phenomenon of preferential flow. An iodide tracer experiment was

carried out at the same site to examine preferential flow paths (Van

Ommen et al., 1989b). The solute front shape was more irregular in case

>~ ' of the grassland compared to the corn field. However, moisture content

profiles exhibited no significant difference within and outside a

preferred flow zone. Solute penetration depths were underestimated using

the parameters estimated for the bromide tracer experiment (Van Ommen et

al., 1989a) assuming a homogeneous soil profile. On the other hand they

were over estimated using the parameters estimated assuming a two

layered soil profile. A good agreement was observed only in case of

obtaining parameters by fitting the model results to the iodide tracer

experiment. The accelerated breakthrough curve that was observed during

the bromide experiment could not be reproduced. The authors deduced that

Itr
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the antecedent moisture content and rainfall intensity may have an

important effect on the formation of preferred flow zones.

2.6 UNSATURATED FLOW

To solve the equation governing solute transport in an

unsaturated porous medium, it is necessary to obtain a solution of the

eqution governing unsaturated flow. Again, the work done in this

direction is immense. A brief review of the reported work is as follows.

Green and Ampt, 1911 (cited in Chi Ids, 1967 and Philip, 1969)

were among the first ones to propose a model for water movement in

soils. They assumed that for surface flooding the advancing moisture

profile exhibited a sharp front, above which the soil was saturated and

below which it remained at the initial moisture content value. They

expressed the rate of infiltration in terms of depth penetration and a

uniform conductivity. As time increases the rate of infiltration

approaches a constant value.

Richards, 1931 (cited in Swarzentruber, 1969) extended Darcy's

law for saturated flow to unsaturated flow and combining it. with the

continuity equation gave the partial differential equation governing

flow through unsaturated soils.

Klute (1952) also derived the equation for flow of water for

unsaturated porous materials by combining the continuity equation with

Darcy's law. Neglecting the effect of gravity he solved the moisture

flow equation numerically for semi-infinite horizontal systems and

applied it to several examples.
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Philip, 1957a (cited in Philip, 1969) gave a quasi-analytical

solution of the moisture flow equation for- absorption (horizontal flow)

and infiltration (vertical flow) into an effectively semi-infinite

homogeneous soil. It was assumed that the soil had a constant initial

moisture content and was submerged under a thin layer of water which

instantaneously increases the wetness at the surface to near saturation

and remains constant thereafter. For infiltration his solution is in the

form of a power series, which reduces to the first term of the series in

case of absorption. The coefficients of the power series are expressed

in the form of ordinary integro-differential equations including the

diffusivity and conductivity functions and are solved using appropriate

finite differences and forward integration.

The series solution however fails for large values of time

exhibited by the infiltration rate, which after reaching a minimum

starts increasing. Restating the infiltration equation as diffusion

equations in terms of moisture gradient, flux and flux gradient, philip

(1957b) has established certain theorems about the moisture profile.

-V- With the help of these theorems he has solved the moisture flow equation

under conditions stated above (Philip, 1957a), for large times

(approaching infinity). It is shown that the moisture profile approaches

a constant shape and travels down the column at a constant velocity,

confirming to theory.

Youngs (1957) solved the moisture flow equation for, (i)

vertical infiltration into an initially dry semi-infinite column of

t*~ porous material, with the surface moisture content maintained at

saturation, and (ii) vertical Infiltration at a constant rate Into a
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column draining to the water table, numerically using integration and

finite differences. Comparison between theoretical and experimental

moisture profiles exhibited good agreement.

Philip (1958) extended his series solution to account for

ponded water at the ground surface by defining a depth at which the

hydrostatic pressure becomes zero. Solutions are presented for one

dimensional absorption and Infi1tration. Theoretical profiles indicate

an increased rate of infiltration by increasing the depth of ponding at

small times.

Hanks and Bowers (1962) gave an implicit finite difference

solution of the head form of Richards equation for vertical infiltration

into layered soils. The hydraulic conductivity was computed using an

average moisture diffusivity, while specific moisture capacities were

computed from a table of 0 vs h. To evaluate the numerical model,

results for a case of horizontal infiltration Into a homogeneous soil at

uniform initial soil moisture content were compared with those obtained

by the methods of Scott et al., 1962 (cited in Hanks and Bowers, 1962)

and Philip, 1955 (cited in Hanks and Bowers, 1962). In both the cases

the agreement was considerably good. Vertical infiltration into a

layered soil indicated that infiltration is governed by the least

permeable layer, once the wetting front reaches that layer.

Rubin and Steinhardt (1963) solved the moisture form of

Richards equation for a nonponding infiltration condition using an

implicit finite difference scheme. The equation was linearized employing

linear extrapolation. They numerically simulated moisture profiles in

depth for constant rainfall intensities (R) and confirmed the following



40

analytical considerations.

(i) If the rainfall intensity R ^ K (0 .) (i.e. capillary conductivity
•*• sat

at saturation), infiltration will continue indefinitely without giving

rise to ponding. However, if R > K(0 ), ponding will occur after

infiltration is allowed to proceed for a finite time.

(ii) During rain infiltration the soil moisture contents at finite

depths proceed to increase, till a definite limit defined by the

relation R = K(0 ) is reached.

The numerical solution only holds good as long as R ^ K(0 ).

-* Experiments of infiltration into soils using constant rainfall

intensities were conducted by Rubin et al. (1964). They simulated

moisture profiles with the help of the earlier developed numerical model

(Rubin and Steinhardt, 1963) using the average moisture content, of the

transmission zone to compute capillary conductivity values. Comparison

with experimental results exhibited a good agreement for low rainfall

intensities but a departure was observed as the intensity increased.

Remson and Drake (1965) solved the moisture flow equation

using an explicit finite difference scheme and applied it to the

following cases,

(i) Moisture content specified at the top and bottom of the soil,

(ii) Zero moisture flux across the soil surface.

Staple (1966) solved the moisture flow equation using an

explicit finite difference scheme to simulate infiltration and

redistribution. For redistribution in the upper part of the soil profile

he accounted for hysteresis, both in the capillary pressure and

capillary conductivities by interpolating the appropriate scanning
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curve. However, it was assumed that after partial drying of the soil,

wetting did not take place. Neglecting hysteresis only in the hydraulic

conductivity gave results closer to the ones obtained by accounting for

hysteresis, as compared to the results obtained by neglecting hysteresis

entirely.

Rubin (1967) solved the moisture flow equailon using an

implicit finite difference scheme and accounted for hysteresis in the

retention curve during redistribution. He used empirical equations,

based on experimental data for the wetting, drying and scanning curves.

He assumed that during the process if significant drying was exhibited

by a soil element, then wetting of it does not take place. For a case of

redistribution he observed that hysteresis retarded the process of

drainage as compared to using only wetting or drying curves for

simulation. The method is also applicable to cases, where evaporation and

redistribution take place simultneously.

The numerical method developed by Hanks and Bowers (1962) to

solve the head form of Richards equation was modified by Hanks et al.

(1969). They incorporated a code to account for hysteresis in the

capillary pressure and moisture content relation. They conducted

experiments for infiltration followed by redistribution, followed by

evaporation. Comparison of the depth of wetting front and average

moisture content with numerically simulated results, exhibited a good

agreement. However, the measured cumulative infiltration and evaporation

values were higher than the computed values.

Bresler et al. (1969) conducted column experiments to study

the effect of hysteresis on Infiltration, redistribution and evaporation
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for three different wetting rates. An earlier developed numerical

simulator (Hanks et al, 1969) was also used to simulate moisture

profiles in depth and time. Based on experimental and numerical results

they stated.

(i) During infiltration no drying occurred and constant moisture

content values were approached in the transmission zone depending on the

wetting rate.

(ii) During redistribution the h vs 0 relation followed separate drying

scanning curves. As observed earlier (Rubin, 1967 ; Hanks et al, 1969)

the hysteresis effect tends to keep the water content higher and zone of

wetting shallower. This effect increased with an increase in the wetting

rate.

(iii) Due to the high water contents and a shallow wetting zone,

evaporation subsequent to redistribution was higher as compared to the

case where hysteresis was neglected. Thus, evaporation was directly

related to the wetting rate. The same observation held good when the

redistribution stage was also accompanied by evaporation.

The head form of Richards equation was solved using a

Crank-Nicolson finite difference scheme and Jacobi Iteration method, by

Giesel et al. (1973). Hysteresis in the h vs 0 relation was accounted

for. They simulated results in accordance with the experiments conducted

by Vachaud and Thony (1971) for the following two cases,

(i) Constant head infiltration followed by redistribution with no

evaporation.

(ii) Constant flux infiltration followed by redistribution, accompained

by evaporation.
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A good agreement between the simulated and experimental

results was observed.

Bruch and Zyvoloski (1974) presented a finite element solution

of the moisture flow equation using a Galerkin approach. Finite elements

in space and time and linear shape functions were used for two different

element configurations; triangles and rectangles. A quadratic form was

used for the diffusion co-efficients and capillary conductivities based

on curve-fitting of experimental data of these funtions. Results were

compared with the finite difference solution of Reason et al. (1965) and

series solution of Nielsen et al., 1961 (cited in Swartendruber, 1969).

A good agreement between the different results was observed.

Dane and Mathis (1981) solved the head form of Richards

equation using an implicit finite difference scheme. Boundary conditions

were experessed so that they could easily be changed from pressure head

to flux boundary. The method allows for variable space and time steps as

smaller time and space steps are required in regions where changes in

the pressure head gradients are large. The time step was changed on the

basis of mass balance. In the space direction a fixed number of grid

points were used, which were continuously redistributed to give the best

possible piecewise interpolation of the pressure head at the end of the

time step. For required values of pressure head and flux at grid points

not present at the previous time level, linear interpolation was carried

out. Earlier reported experimental data was simulated using the

numerical model and a good agreement was observed.

Parlange et al (1982) added a new parameter to the two

parameter Green and Ampt equation. Addition of this parameter resulted
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in a more accurate description of infiltration. Also it is not very

sensitive to soil structure.

Mohan Rao, 1986 solved the head form of Richards equation

using a Crank-Nicolson finite difference scheme and Picard's iteration

method. His model can account for a time variant water table as a lower

boundary condition. The upper boundary condition (Neuman or Dirichlet)

is automatically Identified and assigned, Evapotranspiration has been

computed. A good agreement was observed between simulated and

experimental data.

2.6.1 Soil Characteristics

Along with the solution of Richards equation research workers

realized the necessity of a K vs 0 (or h) and h vs 0 relation, which

could be used for different soils in absence of elaborate experimental

data. Following is a brief description of some of the research studies

carried out in this direction.

Childs and Collis George, I960 (cited in Bear-, 1979) gave a

relationship for capillary conductivity relating it to the soil moisture

content and the specific surface area of the soil phase.

Irmay, 1954 (cited in Bear, 1979) derived a relationship

assuming that the resistance to flow offered by the solid matrix is

proportional to the solid liquid interfacial area. For a cubic

arrangement of spheres he gave the following relation.

3

K = K
o

S - S
r

L 1 - S
r
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where, K is capillary conductivity at saturation S, K is saturated

hydraulic conductivity and S is the residual saturation.
r

Corey, 1957 (cited in Brooks and Corey, 1964) called the

quantity (S-S )/(l-S ), as effective porosity S and found that for a
r r e

large number of soils, relative permeability K (= K/K ) is equal to the

fourth power of S .

Brooks and Corey (1964) gave a relation between S and

capillary pressure and defined a characteristic constant of the medium

known as bubbling pressure, below which the soil is more or less

saturated. They further gave relations of K in terms of capillary

pressure.

Another empirical equation to compute capillary conductivity

from the moisture content value using the satu-rated moisture content

and capillary conductivity, has been presented by Campbell (1974). His

equation is based on the approach of Childs, 1969 (cited in Campbell,

1974),and requires an empirical equation between capillary pressure and

moisture retention.

Mualem (1976) presented a simple analytic model based on the

approach of Burdine, 1953 (cited in Brooks and Corey, 1964). The

expression is in an integral form related to moisture content, capillary

pressure and saturated capillary conductivity.

van Genuchten (1980) derived a closed form analytic expression

for predicting relative capillary conductivity, using the model of

Mualem (1976). This was done by using an equation for the soil water

retention curve in the expression of Mualem (1976). The resulting
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expression for relative capillary conductivity contained three unknown

parameters, which were determined by fitting the proposed soil water

retention model to experimental data. For comparing simulated and

experimental results, five different types of soils were used. The

agreement was found to be good in four cases.

Mohan Rao et al. (1989) gave a functional relation for h vs 0

in terms of well defined soil properties i.e., porosity, residual

moisture content and bubbling pressure. Piecewise functional

approximations were presented for h above and below the bubbling

pressure . An exponential decay relation ensures that at higher values

of capillary pressure, the moisture content tends to the residual

moisture content.
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CHAPTER 3

MODEL DEVELOPMENT

3.1 MECHANISMS OF SOLUTE TRANSPORT

3.1.1. Convection and Diffusion-Dispersion

Assuming no interaction between solute and soil matrix,

transport of solute in a soil system depends on the average flow

velocity i.e., viscous movement of the soil solution and Is known as

convective transport. Further spreading of the tracer solution takes

place due to molecular diffusion and mechanical dispersion. The combined

effect of the two is known as hydrodynamic dispersion.

The rate of solute transport in soils is also affected by the

presence of an immobile fluid phase. In this phase the fluid does not

move/moves negligibly by the process of convection. In homogeneous soils

this condition is created by continued desaturation of the soil,

eliminating the larger pores for transport. However, in aggregated

soils, fluid located in micro-pores and dead end pores is also

stagnant. Thus, the entire flow region is effectively partitioned into

an immobile phase and a mobile phase. Transport of solute in the mobile

phase is governed by convection and hydrodynamic dispersion. The

transfer of solute into and out of the immobile phase can only take

place by the process of lateral diffusion. In the following discussion,

solute transport in the absence of an immobile phase has been referred



48

to as single phase solute transport. Again, the transport in the

presence of an immobile phase has been referred to as two phase solute

transport.

3.1.2 Adsorption-Desorption

In case of a reactive solute, one of the additional mechanisms

affecting the transport is the process of adsorption-desorption.

Adsorption is a physico-chemical process by which molecules or ions of

the solute are immobilized/fixed by the soil matrix (e.g. cations

present in the solute held by anions present in the soil matrix).

Further the adsorbed concentration i.e., the amount of salt per unit

mass of soil adsorbed by the soil matrix, is described as a function of

the solute concentration at a fixed temperature and is known as an

adsorption isotherm. Equilibrium between the solute and adsorbed

concentration may be attained very rapidly i.e., almost instantaneously

or at a finite rate. The two modes of reaching equilibrium are known as

equilibrium adsorption and kinetic adsorption respectively.

For the two phase solute transport, the soil matrix can be

conceptualized as being made up of two separate regions. The region in

contact with the solute in the mobile phase, termed as mobile soil

matrix; and the region in contact with the solute in the immobile phase,

termed as immobile soil matrix. When a solute invades such a soil, only

part of the adsorption sites i.e., the ones located in the mobile soil

matrix may be readily accessible. However, some of the solute after

being diffused into the immobile phase may also get adsorbed at the

adosrption sites located in the immobile soil matrix.
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3.2 PROBLEM DEFINITION

The present study is aimed at developing a numerical model to

simulate vertical two phase transport of a reactive solute through the

unsaturated zone extending from ground surface to the water table.

The mechanisms of solute transport accounted for in the

present model are convection, hydrodynamic dispersion, lateral diffusion

of solute into/out of the immobile phase and linear adsorption

desorption in either or both the phases. The model is capable of

simulating simpler cases of solute transport by assigning appropriate

values to the concerned parameters. The simplest case being single phase

non-reactive solute transport brought about only by the mechanism of

convection. For such a case the immobile moisture content and

hydrodynamic dispersion are assigned zero values and inter—action

between the solute and soil matrix is neglected.

The model was developed in the following four stages.

Stage I Single phase non-reactive solute transport.

Stage II Single phase reactive solute transport accounting for first

order linear kinetic adsorption-desorption.

Stage III Two phase non-reactive solute transport.

Stage IV Two phase reactive solute transport accounting for linear

equilibrium adsorption-desorption.

The model output ( as per requirement ) comprises of,

(i) Concentration distribution in space at pre-specified discrete

times.

(ii) Concentration distribution ( referred to as a breakthrough curve)

in time at pre-specified depths.
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(iii) Volumes of solute (npp unit ~i xsoiute iper unit plan area) transferred to the

water table till different pre-assigned discrete times.

3.3 GOVERNING DIFFERENTIAL EQUATIONS

3.3.1 Single Phase Solute Transport

(i) Non - reactive solute

The equation governing one-dimensional solute transport
in an unsaturated porous medium can be written as,

dice) d , dc a
= (0D — ) - _£_ (qc)

at az 5z dz (qc) (3-D

where, z is a co-ordinate along the vertical direction t is time 0
(=e(z,t) is the volumetric moisture content, c(=c(z,t) is the solute
concentration, D( =D(0,z,t)) is the hydrodynamic dispersion coefficient
and q = (q(z,t)) is the volumetric flux.

The hydrodynamic dispersion coefficient D represents the
combined effect of both molecular diffusion and mechanical dispersion,
and can be defined as follows (Bresler, 1973a).,

where, a and bare empirical constants characterizing the soil. A is
dispersivity, v (=q/0) is seepage velocUy ^ ^ ^ ^ ^^
diffusion coefficient in a free water system.

V (ii) Reactive solute

Accounting for first_ order linear Kinetic adsorption-desorption,
^—^i- ZAS7I3

ill
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equation (3.1) can be rewritten as,

a(co) as a ,„_ ac , a , , ,„ „,
— + p — = (0D ) - (qc) (3.3)
at at 3z 3z 3z

where, s is the adsorbed concentration of the soil matrix, and p is the

bulk density of the soil.

The linear kinetic adsorption - desorption rate equation can

be written as,

— = 0(k.c - s) (3.4)
at

where, 8 is a kinetic rate coefficient governing exchange

between solute and soil matrix and k is an empirical distribution

constant.

3.3.2 Two Phase Solute Transport

(i) Non-reactive solute

Considering the presence of an immobile phase alongwith

the mobile solute phase, the equation governing one - dimensional solute

transport can be written as,

a(c 0 ) a(c, 0. ) ac
m m lm lm a ,-. _. m , a , * ,_ „.

+ = • (0 D ) - (qc ) (3.5)
.. -. „ mm m
at at az az az

where, subscript m represents the mobile phase and im the immobile

phase. The total moisture content in the soil comprises of the moisture

contents in the two phases (0=0 + 0. ).
m im

The hydrodynamic dispersion coefficient defined for the mobile
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D = D aeb9m + A Iv 3.6
mo m
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where, v (=q/0 ) is the seepage velocity in the mobile phase.
m m

The lateral diffusion of concentration into and out of the

immobile phase, can be defined by the following rate equation,

ac

0. — = a (c - c. ) (3.7)
im „, m im

at

where, a is a first order rate constant governing the rate of solute

exchange between the two phases.

(ii) Reactive solute

Accounting for a linear equilibrium adsorption-desortion

isotherm, with adsorption occuring in either or both phases, equation

(3.5) can be rewritten as,

3c (0 + pfkj 3c.
-5_» i- + (0. ♦ Pd-f)kj -ii

at im d at

a dcm a__£_ (0 D —— ) - — (qc ) (3.8)
_ m m m
az az az

where, f is the fraction of adsorption sites located in the mobile

phase.

Again, the rate equation for lateral diffusion into and out of

the immobile phase and subsequent adsorptlon-desorption can be written
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ac

(9, + p(l-f)k.) —— = a(c - c. ) (3.9)
lm d _. m im

at

3.3.3 Fluid Flow

To quantify the distribution, of moisture (9) and volumetric

flux (q) required for solving the solute transport equations (3.1-3.9)

the partial differential equation governing flow in an unsaturated

porous medium has to be solved. The head form of Richards equation

governing one dimensional vertical flow in an unsaturated porous medium

can be written as,

C ^ = -g- (K d{~ h + Z)) - E (3.10)
u at az az

where, h (=h(9)) is the capillary pressure head, K (=K(0)) is the

unsaturated hydraulic conductivity (known as capillary conductivity),

C (=d9/dh) is the specific moisture capacity and E is sink term

representing volume of water extracted/unit volme of soil/unit time.

h(9) and K(9) are the soil characteristics.

3.4 THE SOLUTION

3.4.1 Solution Strategy

The solute transport equations (eqns. 3.1-3.9) comprise of

among others, a convective and a diffusive - dispersive component.

Solving for these two components simultaneously using a finite

difference approximation scheme results in an artificial dispersion

known as numerical dispersion. Numerical dispersion is a truncation
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error and results by neglecting the term proportional to the second

order derivative in the Taylor's series, while approximating for the

first order derivative. To overcome this problem, the convective

component is solved using the Method of Characteristics (MOC). The

change in concentration due to hydrodynamic dispersion and

adsorption-desorption is accounted for subsequently using an implicit

finite difference scheme. However, for such a solution space and time

distributions of q and 9 form a pre -requisite. To obtain these

distributions, Richards equation has been solved.

3.4.2 Co-ordinate System

Two co-ordinate systems in depth have been used. The z

co-ordinate system begins with a zero value at the lower boundary, (+ve

upwards and has been used for solving Richards equation. The £

co-ordinate system begins with a zero value at the upper boundary (+ve

downwards) and has been used for solving the solute transport equations.

3.4.3 Solution of Richards Equation

Richards equation i.e., equation (3.10) has been solved for a

capillary pressure distribution in space and time which also leads to

the spatial and temporal moisture distribution using the h vs 0 relation

(soil characteristic). The method of solution has been adopted from

Mohan Rao (1986). Following is a brief description of it.

Richards equation is a non-linear second order partial

differential equation. The non-linearity arises due to the dependence of

Cu and K on 0 (and h). In order to solve this equation the flow domain

under consideration (for example ground to water table) is discretized

by a finite number of nodes. Similarly the time domain is discretized by
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a finite number of discrete times. Thus, h(z,t) at the j node and k

discrete time is represented as, h (refer Fig.3.1). Using a central

finite difference scheme, the difference approximation of equation

(3.10) for an interior node j and time step Atk> from k to k+1

discrete time can be written as,

hJ,k+l hj,k _ 1
j.k+1/2 At,

j-l/2,k

+ K
hj,k+l - hj-l,k+l + AZJ-1

j-l/2,k+l
Az

j-l

h 5 , - h. . , + Az . .
j,k j-l,k j-1

Az
j-l

h. , , -h . + Az .
j+1,k+1 j,k j

Az.

h. . , - h. . + Az ,y J+l,k j,k j
\)+l/2,k Az \j+l/2,k+l

Az +Az Ej,k+l/2 (3.11)

j = 2,3,4 n-1

where, n is the total number of nodes.

This provides (n-2) non-linear simultaneous equations. Two

additional equations are obtained by assigning upper and lower boundary

conditions.

(i) Upper Boundary Condition

The upper boundary condition i.e., the boundary condition at the

ground may be of Neuman type (entire input infiltrates) or Dirichlet

type (ponding occurs or just saturation is maintained), depending upon

the relative magnitude of input intensity (Q), infiltration capacity
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Fig. 3.1. Finite difference grid for solving Richards equation.
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(I ) and saturated capillary conductivity (K ). Thus, assuming Q to be

constant for a sufficiently long period, either of the following three

situations may arise,

(a) Q < K The entire input will be infiltrated. The top soil

remains unsaturated (i.e., h > 0).

(b) K < Q < I Saturation will occur after infiltration is
s c

allowed to proceed for a finite time. The top soil

becomes saturated (i.e., h = 0).

(c) Q > I Saturation will occur and will be followed by
c

ponding after infiltration is allowed to proceed for

a finite time (i.e., h < 0)

In case of a time variant input intensity the above three

situations may change from one to another. In the present solution, a

change over of the boundary condition is assigned based on the capillary

head value. The adopted algorithm is given in annexure 1.

(ii) Lower Boundary Condition

The lower boundary condition is taken as a constant head boundary

condition (h = 0, for a water table) and may be time variant i.e., a

fluctuating water table. This will cause a change in the depth of the

flow domain i.e., an increase (falling water table) or a decrease

(rising water table). To account for this change, the number of nodes

discretizing the domain are modified accordingly.

This leads to a determinate system of equations. The system of

non-linear simultaneous equations is solved using Picard's iteration

method (Remson et al., 1971). According to this method the system of

equations is linearized and solved successively by evaluating K and C
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in accordance with the known values of h arrived at in the previous

iteration. Thus for the m iteration equation (3.11) is rewritten with

the following substitutions,

h h^m' h = h^ h =h^m)
nj-l.k+l '" j-l,k+l ' nj,k+l " nj,k+l' J+I,k+1 "j.k+l

,(m)

u
= C

j,k+l/2

K(m) =05Kj-l/2,k+l °-5

K(m) =05Kj+l/2,k+l Ub

h . , , + h . .
J,k+1 j,k

k f0(.m;1? , K.i \e[*:l\ }I j-l,k+l J [ j,k+l J

k [0(.m:l1) l ♦ Kf 0(.m;^ , II J.k+1 J [ j+l,k+l

„(0) „ . _ (0)
K. , ._ , . = K, , ,_ , and L = Cj-l/2,k+l j-l/2,k "J>k+1/2 Uj>k

The resulting system of equations is tridiagonal and is solved

r m \

for (h. j = 1,2, n) using Thomas algorithm (Remson et al.,
J•k+i,

1971). As the iteration index approaches infinity h converges to
J >k+ l

the unknown true solution h. , . of the non
j,k+l

equations.

h[m} i:L.| = o
j,k+l j,k+l

linear simultaneous

(3.12)

To avoid too large a number of iterations, the iterations are

stopped when the following check is satisfied,

. (m) K(m_1) i ^ c K^m_1^h., .-h., . -c h ., .
j,k+l j,k+l so J,k+1

(3.13)
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where, £ is a small +ve value.
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Thus, the distribution of h in space and time is obtained. The

corresponding distribution of 0 in space and time is obtained by the 0

vs h relation.

Again, using the known h distribution, the distribution of q

is computed as follows,

qj+l/2,k+l/2 -w 1/2,k + qj+l/2,k+l /2

where,

h. . , - h, . + Az
qj+l/2,k = Kj+l/2,k -£h* JJL 1

Az .

= Kqj+l/2,k+l := j+l/2,k+l
h. , , , - h. . . + Az .
j+1,k+1 j,k+1 j

Az .

(3.14)

3.4.4 Single Phase Non-reactive Solute Transport

This requires the coupled solution of equation (3.1) and

equation (3.10). The solution of equation (3.10) i.e., Richards equation

has already been described (Section 3.4.3).

An equivalent set of ordinary differential equations for

solving equation (3.1) can be written as.

dz q

dt 9

d(c0) 3 (0D dC )
dt 3z 3z

(3.15)

(3.16)
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Thus, equation (3.1) can be solved by solving equations (3.15)

and (3.16), which comprise of the convective and diffusive - dispersive

transport respectively.

3.4.4.1 Convective Transport

The initial solute domain is discretized into a finite number

(np) of moving packets, each moving packet having a pre-assigned strip

thickness (ts). The first packet lies at the lower boundary, while the

np packet lies at the upper boundary (Fig. 3.2). Each moving packet is

defined by two co-ordinates (x) and (y) representing its lower and upper

bounds. Further, the solute (si) and water (vl) volumes (per unit plan

area) contained in each moving packet are quantified based upon the

known initial soil moisture and solute concentration distributions. The

variables x,y,vl,sl are defined as double subscripted variables, the

first subscript represents the serial number of the moving packet, while

the second subscript represents the discrete time (the initial discrete

time is designated as zero time). Thus, for p moving packet,

x „,y „,vl „ and si _ at the beginning of simulation are defined as
p,0,0p,0' p,0 p,0

follows,

x „ = (np - p + 1). ts (3.17)
p,0

y = (np - p). ts (3. 18)
p. u

vl . = (x . - y _). 0 n (3.19)
p,0 p,0 'p.O p,0

where, 0 is an average moisture content of the p moving packet. It
p, u

is estimated by taking an arithmatical mean of the moisture contents at

the lower and upper bounds of the p moving packet. These moisture

contents in turn are estimated by linearly interpolating the initial

soil moisture distribution known at the fixed nodal points.
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Fig. 3.2. Moving and fixed co-ordinate systems for simulation of solute

transport.
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si n = vl . c, (3.20)P.O p,0 ipQ

where, c is an average concentration of the p moving packet. It is
P.O

estimated by taking an arithmatical mean of the concenWTons at the lower

and upper bounds of the p moving packet. These concentrations in turn

are estimated by linearly interpolating the initial tc»icentration

distribution known at the fixed nodal points.

It is to be noted that the water volumes (per unit plan area)

assigned to the moving packets remain the same throughout the simulation

(except when evapotranspiration is accounted for). However, any change

in moisture distribution is manifested as a change in the length of the

moving packets (length of the p moving packet = x -y ).
P ,U P ,U

3.4.4.1.1 Convection of Moving Packets

For known positions of the moving packets at the beginning of

a time step At (i.e., at k discrete time), the new positions at the

end of the time step [i.e., at (k+1) discrete time] are computed in

the following steps.

(i) Computation of cumulative water volume (per unit plan area) profile

from the flow consideration : Using the moisture content distribution

(0. ,j=l,2 n) known at the end of the time step (obtained by the
J >K+ 1

solution of Richards equation; refer section 3.4.3) cumulative water

volumes (per unit plan area) at the fixed nodal points (used for solving

Richards equation) are computed. For the j node at (k+1) discrete

time, the cumulative water volume (cw, , ,) (per unit plan area) is
j,k+l

computed as,
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=V 9l'k+1 IhlhJE^l .Az. . (3.21
*,k+l /_ ."wj,k+l L 0 i-1

i=2

j=2,3,

CWl,k+l =°-°

The nodal depth %., at node j is computed as,

J

*1*I AZ1-1J Ll=2 i 1

j=2,3 n

S. = 0.0

where, Az. is the spatial distance between i and (i+1) fixed node,

of the finite difference grid used for solving Richards equation. Thus,

a cumulative water volume profile cw vs £, (j=l,2 n) is

obtained.

(ii) Computation of cumulative water volume (per unit plan area) profile

from the transport consideration : The cumulative water volumes (xw

and yw .) (per unit plan area) at the lower and upper bounds (x .

and y , .) of each moving packet at the end of the time step At. i.e.,
p,k+l k

(k+1) discrete time are computed using the known cumulative water

volumes (xw , and yw . ) (per unit plan area) at k discrete time and
p,k * p,k

the infiltration during the time step At , known from the solution of

Richards equation. Thus, xw . . and yw are computed as follows,
M p,k+l P,k+1

XWp,k+l = XWp,k + ^^+1/2 •Atk (3'23)

^p,k+l " yWP,k + !l,k+l/2 •Atk (3"24)

(3.22)
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where, I is the rate of infiltration at the upper boundary during

At [for a Dirichlet boundary condition I v+i/p = qi k+l/2; refer

eqn(3.14), while for a Neuman boundary condition I v+1/2 is the

assigned net input intensity].

At the beginning of each time step xw and yw are known
p, K p,K

from the solution of the preceding time step. However, at the beginning

of simulation xw _ and yw _ are computed using the initial soil
p.O * p,0

moisture distribution and spatial location of moving packets [refer eqn

(3.17),(3.18) and (3.19)].

np

xw . = V vl, _ (3.25)
p,0 L i,0

i=p

np

^.0 =1 vli.o (326)
l=p-l

(iii) New positions of the moving packets : Finally the new positions of

the moving packets (i.e., co-ordinates x and y ) at (k+1)

discrete time are computed by ensuring a compatibility between the

cumulative water volume (per unit plan area) profiles computed from the

considerations of flow [step(i)] and of transport [step(ii)]. Thus, for

the p moving packet x . . and y . , are obtained as follows.
r & r p,k+l 'p,k+l

(a) Locate two nodal points j and j+1 at which the computed cumulative

water volumes (cw) (per unit plan area) lie just below and just above

the xw . , i.e.,
p,k+l

CWj,k+l S XWp,k+l " CWj+l,k+l

Similarly for yw k+1>
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CWj,k+l "yWP,k+l 5CWj+l.k+l

(b) The £ co-ordinate at which the cumulative water volume (per unit

plan area) just equals xw is estimated by assuming a linear
p, k+i

variation of cw in between the nodal points j and j+1 (Fig. 3.3).

« = *\i + (xwP.k+i " cwj,k+i)(Vi • V/(cvVi,k+i - ^j.k+i*
(3.27)

Similarly the £ co-ordinate corresponding to yw is obtained.
p, K+ 1

«= ^j+ (ywP,k+i - cwj,k+iH?j+i - V/(cwj+i.k+i - cwj,k+i)
(3.28)

The two £ co-ordinates obtained in step(b) represent the new

positions of the p moving packet i.e., the co-ordinates x and
p, K+ 1

y respectively at the end of the time step At .
p,k+1 k

Thus, the new positions of all the moving packets at (k+1)

discrete time are obtained.

To account for the downward movement out of the domain, of the

moving packet closest to the water table, the cumulative water volume

(per unit plan area) profile computed in step (i) (same section) is

extended to a certain depth below the water table using the moisture

content value of the last node i.e., porosity.

3.4.4.1.2 Generation of New Moving Packets

In case of continued solute infiltration at the upper

boundary, there will be a continuous downward movement of the packets.
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Fig. 3.4. Generation of a new moving packet.
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To quantify the infiltrating solute, new moving packets are generated as

follows.

When the upper co-ordinate (y) of the moving packet closest to

the ground equals or just exceeds the strip thickness ts a new moving

packet is introduced into the flow domain (Fig. 3.4). The moving packet

is described as follows,

Serial number = r + 1

where, r is the number of moving packets present in the flow domain till

the k discrete time,

x = v (3.29)
r+l,k+l yr,k+l

yr+l,k+l = (yr,k+l - ts ) (3-30)

Vlr+l,k+l = CV- ts/yr,k+l (331)
si . .A, • C8. ts /y W1 (3.32)

r+l,k+l 'r.k+l

where, cv and cs are the volumes (per unit plan area) of water- and

solute respectively, infiltrated during the time interval between the

subsequent entry of two moving packets. And are computed as follows.

cv =[ li.*vr** (3-33)
kl

cs -7 I, -•- -"-At, .c
jk+1/2' k' o

kl

where, kl is the number of time steps occuring between the subsequent

entry of two moving packets, cQ is concentration of the solute

infiltrating during the time step At .

XWr+l,k+l = Xr+l,k+rCV /yr,k+l (3"35)



*

68

vw = v .Cv/y • -t (3.36)
y r+l,k+l yr+l,k+l yr,k+l

Again from Fig. 3.4, it can be seen that after the new moving

packet is generated, a certain volume of solute, in excess of the new

moving packet may remain at the upper boundary. During the subsequent

time steps it is constantly incremented till it attains the status of a

moving packet i.e., when its thickness equals or just exceeds ts.

However, to account for its presence during each time step it is treated

as a moving packet and is defined as,

x = v (3.37)
k+1 yr+l,k+l

V* =0 (3.38)
yk+l

*vl, = cv - vl . ... (3.39)
k+1 r+l,k+l

Slk+l=CS-Slr+l,k+l (3-40)

*Vl =CV " Vlr+l,k+l (34U
yw*+1 -0 (3.42)

It does not add to the total number of moving packets.

3.4.4.1.3 Solute Leaving the Domain at the Lower Boundary

When the co-ordinates of a moving packet exceed the total

dpeth (Z) of the solute domain under consideration some solute has left

the domain at the lower boundary. The moving packets leaving the domain

at the lower boundary are identified as follows.

(1) if x , , > Z and y . , < Z, implies that the p moving packet
p,k+l p,k+l

has partially left the domain.

(ii) if x > Z and y a Z, implies that the moving packet has
P»K*1 p, K"r" 1
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completely left the flow domain.

On encountering either of the two conditions stated above, for

the p moving packet the following procedure is carried out.

Condition(i) : If a moving packet partially leaves the flow domain, the

volumes (per unit plan area) of solute leaving the domain and remaining

in the domain are quantified based on the ratio of the length (x -Z)

of the moving packet which has left the flow domain and the total length

(
P.

(x -y .) of the moving packet. Thus,

(a) To account for partial exit of the p moving packet during the time

step At , the variables si ,t.,vl ,xw , ,, yw , ., x . . and
k p,k+l p,k+l p,k+l•* p,k+l p,k+l

y . . are modified as follows.

si . . = si . , - si , , (x , , - Z)/
p,k+l p,k+l . , p,k+l , , p,k+l ,.

new r old r' old r old

(xn .., - y^ ... ) (3.43)p,k+lold P,k+lold

vl .A- = vl . . - vl . , (x , . -Z)/
P.k+1 p,k+l . , p,k+l ,. p,k+l

new r old r' old K' old

(xr, wi ~yn W1 } (3.44)p,k+lold P,k+lold

xw ., = xw , . - vl , , (x . . -Z)/
P.k+1 p,k+l , , p,k+l ,. p,k+l ..

new r* old r* old *' old

(XP k+1 "yp k+1 ] (345)
P,K old P,K old

xP,k+i =Z (3-46)
new

There Is no change in y , , and yw , ,.
6 p,k+l * p,k+l
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(b) The volume (per unit plan area) of solute (vsl) leaving the domain

due to partial exit of the p moving packet during the time step At is

quantified as,

-W Slp,^lold'Vk+lold-Z)/<><P,^lold-p.k+lold' "-"I

Condition (ii) : If a moving packet leaves the flow domain completely,

it is excluded from the total number of moving packets. The remaining

ones are renumbered. Volume of solute (vsl) (per unit plan area)

leaving the domain due to exit of the p moving packet during the time

^ step At is,

vsl , . = si , .
p,k+l p,k+l

Similarly, the positions of all the moving packets are checked. Thus,

total solute volume leaving the domain during the time step At

I p,k+l
pepl

where, pi is a subset of np and is the number of moving packets leaving

the domain completely or partially during the time step At, .

Thus, the cumulative volume (per unit plan area) of solute

transported to the water table till different discrete times is

estimated by constantly adding up the solute leaving the system during

each preceding time step.

3.4.4.1.4 Concentration of Moving Packets

Concentration of the p moving packet (due to convection

only) at (k+1) discrete time is computed as follows,



C , „ = si . ,,/ vl , ..
p,k+l p,k+l p,k+l

P = 1,2, n.
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(3.49)

During computation of convective solute transport the volumes

of solute of all the moving packets (si p=l,2 np) remain time
p, K+ 1

invariant from k (known from the solution of the preceding time step)

to (k+1) discrete time. There may be a change in the solute volume of

the temporary moving packet lying at the top (which is incremented due

to solute infiltration during the time step At ). Also, at the lower

boundary, in case of partial exit of a moving packet its solute volume

gets modified during the time step At . However, when accounting for

hydrodynamic dispersion and adsorption-desorption by the soil matrix

(described subsequently), there is a change in the solute volumes of

moving packets caused by redistribution of the solute amongst themselves

and adsorption by the soil matrix.

3.4.4.2 Diffusive-Dispersive Transport

Subsequent to accounting for the process of convective

transport, diffusive-dispersive transport is accounted for by solving

equation (3.16). The solution is carried out using an implicit finite

difference scheme for all the moving packets in the flow domain. The

finite difference approximation for the p packet from k to (k+1)

discrete time is written as,

c ,.0 ,,-c ,.0 ,
p,k+l p,k+l p,k+l p,k

At,
p-l,k+l p,k+l
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D 1/9 . +1/9 Cp-l,k+l °p,k+l _ , )/2p-l/2,k+l/2 — — (8 ep+l.k+lJ/2
(Axp-l,k+l + AxP,k+l)/2

Vl/2,k+l/2 Cp'k+1 "Cp+1'k+1
(AxP,k+l+ AxP+l,k+l)/2 Ax

P^ktl

(3.50)

where, c , . is the concentration at (k+1) discrete time due to
p,k+l

convection only.

The other required variables Ax ... (length ), 0 ...
^ p,k+l p,k+l

(moisture content) and D . , .„ (hydrodynamic dispersion coefficient)
p,k+1/2

for the p moving packet at (k+1) discrete time are computed as,

Axp,k+1 =Xp,k+l "yp,k+l (351)

0 , , = vl . , /Ax . . (3.52)
p,k+l p,k+l p,k+l

Dp+l/2,k+l =Ve P'k+1 P+1'k+1 +AlVp+l/2,k+ll (3-53)

The seepage velocity v is computed using the

positions of the co-ordinates at the k and (k+1) discrete times.

Thus,

VP+l/2(k+l=(yp,k+l-yp,k)/Atk (3'54)

Similarly,

D tm , , - Daeb(Gp-l.k+l+0p,k+l)/2 + XI Vp-l/2,k+l| (3.55)p-l/2,k+l O K » Ki f i

where,
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Vp-l/2,k+l = (Xp,k+l "Xp,k)/Atk (3.56)

Similarly, writing difference approximations for all the

interior moving packets results in (np-2) (where, np is the total number

of moving packets at (k+1) discrete time including the temporary

moving packet, which lies at the top) equations.

The np packet lies at the upper boundary. Thus, the

difference approximation for the np packet from k to (k+1)

discrete time is written as,

np,k+l np,k+l np,k+l np,k

At,

Vl/2 CnP,k+l - Cnp-l,k+l
(AXnp,k+l + AXnp-l,k+l)/2

(0 +0 J/2np^t, np-l^+,

Ax
np,k+l

(3.57)

st
Again, the 1 packet lies at the lower boundry and the

difference approximation for it is written as,

Cl,k+1 9l,k+l "Cl,k+l9l,k
At,

°1+1/2 Cl'k+1 "°2'k+1
(AX!,k+l + Ax2,k+1 )/2

(02,k+l + 9l,k+l)/2

(3.58)

Ax
l,k+l

This leads to a determinate system of equations and is solved

for c ( p = 1,2 np) using Thomas algorithm (Remson et al.,
p, K+1

1971). Thus, the solute concentration distribution accounting for
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convection and hydrodynamic dispersion is obtained.

3.4.4.2.1 Change in Solute Volumes (per unit plan areajof Moving Packets

To account for solute exchanged between the moving packets due

to diffusive dispersive transport, the solute volumes (per unit plan

area)of the moving packets are recomputed. Thus, for the p moving

packet at (k+1) discrete time si is computed as,

si , , = c , , . vl . . (3.59)
p,k+l p,k+l p,k+l

P=l,2 np.

3.4.5 Single Phase Reactive (first order linear kinetic

adsorption-desorption) Solute Transport.

The model described previously has been extended by

incorporating an additional equation, describing the rate of

solute-matrix interaction. For a first order linear kinetic

adsorption-desorption isotherm, the problem is defined by equations

(3.3),(3.4) and (3.10) alongwith the appropriate boundary conditions.

Combining equtions (3.3) and (3.4) as follows,

*!£»> =A- (BD-52- )- -i_ (qc) -(i(kc " s)/0 (3.60)
at az az az

The set of ordinary differential equations to be solved for

solving the above partial differential equation can be written as,

^ --3- (3.61)
dt 0
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d(c9) =J—{eD— )-p (kdc -s)/0 (3.62)
dt az az

Neglecting the second term on the R. H.S of eqution (3.62) the

solution reduces to that of, single phase non-reactive solute transport.

Thus, the solution described previously is followed to obtain the solute

concentration distribution (c . .,p=l,2 np) ignoring solute matrix
p,k+1

interaction (refer section 3.4.4). To account for linear adsorption -

desorption, the following additional steps are taken.

3.4.5.1 Computation of Nodal Concentration

To compute nodal concentration values, a fixed grid system is

superposed on the solution domain. This grid system coincides with the

one used for solving the flow equation. However, it extends to a certain

depth below the water table [refer section 3.4.4.1.1; step (il)]. Each

node is assumed to have an area of influence. For j node this area of

influence extends from (£ - Az /2) to (£,+ Az /2) (Fig. 3.5a). All

moving packets lying wholly or partially within the area of influence of

a certain node at any instant contribute towards the concentration of the

node.

The following possibilities may arise,

(a) If the p moving packet satisfies the conditions,

fj-1/2 * Xp,k+1 * ?j+l/2
and

i

?j-l/2 ~ yp,k+l " *\j+l/2 ,

it lies wholly within the area of influence of node j ( Fig.

3.5a). The solute volume (xs . ,) (per unit plan area) contributed to
P.k+1
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node j by it, is

xs _. = si _. (3.63)
p,k+l p,k+l

(b) If the p moving packet satisfies the conditions,

*\j-l/2 < Xp,k+1 " lj+1/2
and

yp,k+l <?j-l/2 ,

it lies partially (towards the upper side of node j) within

the area of influence of node j (Fig. 3.5b). The solute volume (xs k+J)

(per unit plan area) contributed to node j by it, is

xsP,k+r (xP,k+i - Vi/2)slP,k+i/(xp,k+i - ^.k+i3 (3-64)

(b) If the p moving packet satisfies the conditions,

*\j-l/2 " yp,k+l< *\j+l/2
and

?j+l/2 < Xp,k+1 ,

it lies partially (towards the lower side of node j) within

the area of influence of node j (refer Fig. 3.5c). The solute

volume (xs , .) (per unit plan area) contributed to node j, by it is,
p,k+l

XSp,k+l = (^j+l/2 "yp,k+l)slp,k+l/(Xp,k+l "^.k+15 (3"B5)

Thus, the total solute volume (ns ) (per unit plan area)
J, K+1

of node j is computed by summing up the separate contributions of the

moving packets lying wholly or partially within the area of influence of
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Fig. 3.5. Nodal area of influence and moving packets lying (a) wholly,

(b) partially towards the upper side, (c) partially towards the lower

side, in it.
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ns = T. xs (3.66)

J'k+1 p.J P'k+1

where, J is a subset of moving packets comprising of all the moving

packets lying wholly or partially within the area of influence of node

j-

The water volume (nv ) (per unit plan area) of j node is
J tK+ 1

computed using a similar procedure. The separate contributions of water

volumes (xv , ,) (per unit plan area) by different moving packets are
p,k+l

computed as,

(a) if

(b) if

(c) if

\j-l/2 " P,k+1 \j+l/2

and lj-1/2 " yp.k+l ~ lj+1/2 '

xv = vl (3.67)XVp,k+l Vp,k+1

^j-1/2 < Xp,k+1 < ^j+1/2

and yp,k+l <^j-1/2 '

xvP,k+r (xP,k+i - Vi/2)vlP,k+i/(xp,k+i - yP,k+i) (3-68)

^j-1/2 " yp,k+l < ^j+1/2

and ?j+l/2 < Xp,k+1 '

XVp,k+l= (<\j+l/2 " yp,k+l)vlp,k+l/(xP,k+l - ^.k+13 (369)

Again,
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nv, . . = Z xv .. (3.70)
J'k+1 peJ P'k+1

The solute concentration (cc. . .) at the j node at (k+1)
J,k+1

discrete time is computed as,

CCj,k+l = nsj,k+l/nvj,k+l (371)
Similarly, solute concentrations (cc j=l,2,...n) of all

J >k+i,

the nodes are computed.

3.4.5.2 Adsorption - desorption of Solute by the Soil Matrix

To further account for first order linear kinetic adsorption -

desorption, equation (3.4) is solved. For any interior node j, the

finite difference approximation of equation (3.4) can be written as,

A^ =^ = p (k, cc. . .- s. . .) (3.72)
d J,k+1 J,k+1

k

Similarly, writing for all the nodes and solving renders the

adsorbed concentration distribution (s ,j=l,2...n) of the soil
J >k+1

matrix.

Adsorption-desorption of solute by the soil matrix results in

a change of solute concentration (cc. j = 1,2, n). The volume
J >k+1,

(per unit plan area) of solute adsorbed (Asd. . . is +ve ) - desorbed
j,k+1

(Asd. is -ve) at the j node is computed as,

Asdj.k.1" (sj.k*r sj.k,(pj,4zj-i * 4zj,/2) (3 73)

Thus, the solute concentration of the j node is recomputed
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as,

CJ.^l •«*krt "^JW-J.ICH.I l3-74'

where, nv is the nodal water volume (per unit plan area) at node
J,k+1

j (refer section 3.4.5.1).

Similarly, writing for all the nodes and solving, the solute

concentration distribution (c ,j=l,2...n) accounting for first order

linear kinetic adsorption - desorption is obtained.

3.4.5.3 Attributing Change in Nodal Solute Volume (per unit plan

area) to the Moving Packets

Change in nodal solute volumes (Asd j=l,2...n) (per unit

plan area) at all the nodes is attributed to the solute volumes (per

unit plan area) of the moving packets as follows.

For any node j,

If Asd. < 0, the solute volume si , . of the p
1n iC• 1 Pi K"*" 1
J' " new

moving packet is computed as,

si , , - Si . , + P-^ Asd. . . (3.75)
P.k+1 P,k+1 .. .. . w„ J,k+1
r new old (Az. . + Az.)/2

J-l J

If, Asd y 0, the solute volume si (per unit plan area) of
J' new

the p moving packet is computed as,

Slp,k+1
si , , =sl . , + ^i^-Asd.. . (3.76:

p,k+l p,k+l .. J,k+1
r new old ns . . .

j,k+l
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Where ns is the solute volume (per unit plan area) at node j
j,k+l

(refer section 3.4.5.1).

Similarly, the solute volumes of (per unit plan area) all the

moving packets are modified.

3.4.6 Two Phase Non-reactive Solute Transport

The model described previously has been modified to account

for two phase non-reactive solute transport. To represent two phase

solute transport, the soil moisture (0) present in the domain is

conceptually divided into an immobile and a mobile phase. The soil

moisture content in the immobile phase (eim) is assumed to remain

constant. The moisture content in the mobile phase (e^ will remain

constant for steady state flow conditions (constant 0) . However, for

unsteady state flow conditions, it will vary as a result of varying 0.

Transport of solute in the mobile phase is governed by the process of

convection and hydrodynamic dispersion. However, transfer of solute

into/out of the immobile phase takes place only through the process of

lateral diffusion.

The problem of two phase non-reactive solute transport is

defined by equations (3.5)-(3.7) and (3.10), alongwith appropriate

boundary conditions. Combining equations (3.5) and (3.7) as follows,

die 6 ) _ 3c
!LJ1_ = _JL (B D ) - — (qc ) - a (c - c. ) (3.77)

„mm„ „Mm mim
3t 3z 3z 3z

The set of ordinary differential equations to be solved, for

solving the above partial differential equation can be written as,



dz
_

q

dt 9m

d(c 0 )
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(3.78!

ac

1_ (0 D -5- J- a (C - 0.1 (3.79)
mm. m im

dt dz dz

Equations (3.78) and (3.79) are first solved neglecting the

second term on the R.H.S of equations (3.79 ) (i.e., neglecting transfer

of solute into/out of the immobile phase).

3.4.6.1 Convective Transport

The solution follows directly from section 3.4.4.1 with 0

being replaced by 9. The equations modified as a consequence of such

replacements are as follows.

, ^ Q (3.80)
Vlp.k= (Xp,k" yP,k} 9m

[refer eqn.(3.19)]

where, 0m - 9 - Bim
p,k

C"j.n*l 'I 2 ' '-1
1=2 [refer eqn.(3.21)]

Cm _.. =Slp,k+1/Vlp,k+1
(3.82)

P,k+1 [refer eqn.(3.49]

3.4.6.2 Diffusive-Dispersive Transport

The solution follows directly from section 3.4.4.2 with 0

being replaced by 9ffl. The equations modified as a consequence of such
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replacements are as follows.

0

mp,k+l mp,k+l 'Cmp,k+1 mp,k+l.
At,

0

Vww Vttl' c'p-k*'
(Ax . . , +Ax , .)/2

p-l,k+l p,k+l

83

tQ L e wo
p-l,k+l p,k+l

<Q ^e wo
( • i , * m .1 i .1'/2p,k+l p+l,k+l

(3.83)
c ~ c

DVl/2ik+i —**i! P^^l
(Ax , , + Ax ^. .,. )/2

p,k+l p+l,k+l
Ax

P,k+1

[refer eqn.(3.50)]

9 vl /Ax . ..
m . , m ... P,k+1
p,k+l P,k+1

(3.84]

[(refer eqn.(3.52)]

b(9 +0 )/2 j ,|
) = D ae m . . m A, ... + A v
mp+l/2.k+l ° P'k+1 P+1'k+1 p+l/2,k+l'

'« = (yn k+1 " yD k)/AtkmP+l/2,k+l P'k+1 P,k

b(0 +0 )/2
D =Dae m ., , ,1 m i^1

mp-l/2,k+l ° P'1>k+1 P'k+1 +

A v

p-1/2,k+1

(3.85)

[refer eqn.(3. 53)]

(3.86)

[refer eqn.(3.54)]

(3.87)

[refer eqn.(3.55)]



r = (x . .. - x )/At
Vl/2,k+l P'k+1 P'k k

c 0 - c 0

mnp,k+l mnp,k+l mnp,k+l mnp,k
At,

84

(3.88)

[refer eqn.(3.56)]

(0 +0

mnp,k+l mnp-l,k+l
)/2

c - c

D mnp,k+l mnp-l,k+l
mnp-l/2 Ax )/2

np,k+l np-l,k+l
Ax

np,k+l

c 0 - c 0

ml,k+l ml,k+l ml,k+l ml,k

At,

D
m
1+ 1/2

Cml,k+1 S.k+l
(AX2,k+l +Axl,k+1)/2

Slp'k+1 ^Cmp,k+1 ^P'k+1
vl

(3.89)

[refer eqn. (3.57)]

(0 +0

ml,k+l m2,k+l
)/2

Ax
l,k+l

(3.90)

[refer eqn.(3.58)]

(3.91)

[refer eqn.(3.59)]

3.4.6.3 Computation of Nodal Concentration

3.4.5. 1.

Nodal solute concentrations are computed following section

cc • ns . . .,/nv t . ,

mj,k+l J'k+1 J'k+1
(3.92)

[refer eqn.(3.68)]
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3.4.6.4 Transfer of Solute into/out of the Immobile Phase due to

Lateral Diffusion

To further account for transfer of solute into/out of the

immobile phase, equation (3.7) is solved. For any interior node j the

difference approximation of equation (3.7) can be written as,

c. - c,
im. , , li. ,

9im ±*± JiiL.= a(cc - c, ) (3.93)
Atk mj,k+l imj,k

Similarly, writing for all the nodes and solving renders the

,k concentration distribution (c, ,j=l,2 n) of the immobile

phase.

Transfer of solute into/out of the immobile phase results in

a change of mobile solute concentration (cc ,j=l,2 n). The
j,k+l

volume of solute (per unit plan area) transferred into (Acd fc+1 is

+ve)/out of (Acd is -ve) the immobile solute phase, at node j is
J >k+l

computed as,

Acd, , , = (c, - c, ). 0, (Az, +Az,)/2 (3.94)j,k+l 1. im.)k im j-l J

Thus, the mobile solute concentration at the node j is

computed as,

c = cc - Acd /nv (3.95)
mj,k+l mj,k+l J'k+1 J'k+1

Where, nv is the volume of water (per unit plan area) at node j
J,k+1

(refer section 3.4.5.1).

Similarly, writing for all the nodes and solving, the mobile
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solute concentration distribution (c ,j=l,2 n) accounting for
j,k+l

transfer of solute into/out of the immobile phase is obtained.

3.4.6.5 Attributing Change in Nodal Solute Volumes (per unit plan

area) to Moving Packets

Change in solute volume (per unit plan area) in the mobile

phase (Acd. ,j=l,2 n) at all the nodes is further attributed to
j, k+l

the solute volumes (per unit plan area) of the moving packets. Thus, the

solute volumes (per unit plan area) of all the moving packets are

modified, following the procedure described in section 3.4.5.3.

3.4.7 Two Phase Reactive (linear equilibrium adsorption-desorption)

Solute Transport.

The model was further modified to account for linear

equilibrium adsorption-desorption during two phase solute transport. The

problem is defined by equations (3.8), (3.9) and (3.10) alongwith

appropriate boundary conditions. Combining equations (3.8) and (3.9) as

follows,

3c (0 +pfk.) „ 3c -
m m d S±(8D -5- )- ±- (qcJ

at az m m az 3z

- a (c - c. ) (3.96)
m im

The set of ordinary differential equations to be solved, for

solving the above partial differential equation can be written as,

dfi = 5 (3.97)

dt (0mr rf K*;
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dc (0 +pfk J . 3c
mm d a ._ _ m , , , ,„ ^^^

= (0 D )- a(c - c. ) (3.98)
mm m lm

dt 3z 3z

Equations (3.97) and (3.98) are first solved neglecting the

second term on the R.H.S of equation (3.98) (i.e., neglecting transfer

of solute into/out of the immobile phase and subsequent

adsorption-desorption), which are accounted for subsequently.

3.4.7.1 Convective transport
•

The solution follows directly from section 3.4.4.1 and section

"*" 3.4.6.1 with 0 being replaced by (0 + pfk,). The equations modified as
m ma

a consequence of such replacements are as follows.

vl . = (x - y ,)(9 + pfk.) (3.99)
p,k p,k °p,k m r d

[refer eqn.(3.80)]

,J [(9. -9. )+pfk,] + [(9. . -9. )+pfk,)]
i im d l-l im r d

cw i.k+1 := L
Az.

J.k+1 L 2 i_1
i=2 *

(3.100)

[refer eqn.(3.81)]

c = si . ,/vl . , (3.101)
m w P'k+1 P,k+1
p,k+l

[refer eqn 3.49)]

3.4.7.2 Diffusive-Dispersive Transport

The solution follows directly from section 3.4.4.2 and 3.4.6.2

with 9 being replaced by (9 +pfkj, as and when required. The equations
m m d

modified as a consequence of such replacements are as follows.



Cm (9m + pfkH) " cm (6 + pfk.)mp,k+l mp,k+l d mp,k+l mp,k d
At.

(9 +9 )
Vl.k+l mp,k+l D

c -c

p-ltk+l p,k+l
p+1/2,k+1
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p-l,k+l p,k+l

(9 +9 )

mp,k+l mp+l,k+l D Cmp,k+l"Cmp+l,k+l
(AXp,k+l+Axp+l,k+l)/2

p+l/2,k+l

9 = vl . VAx , . - pfk
mp,k+l p,k+1 P,k+1 d

(3.102)

[refer eqn.(3.83)]

(3.103)

[refer eqn.(3.84)]

cm (0m + PfkJ " c (9 + pfk,)
V.k+l mnp,k+l d %,k+l mnp,k d

At,

(9m +6mmnp,k+l mnp-l,k+l D
np-1/2,k+1

c - c

np,k+l mnp-l,k+l

(Ax .. +Ax , .)/2
np,k+l np,k+l Ax

np,k+l

(3.104)

[refer eqn.(3.89)]



+ pfk ) - c
d m

(9 + pfk.)
1, k+1 l.k

c (9

ml,k+l ml,k+l

At,

r 9 +9

mi,k+l m2,k+l D.
1+1/2,k+1

Cmi,k+1 Cm2,k+1
(AX!,k+l+AX2,k+l)/2
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Ax,
l,k+l

(3.105)

[refer eqn.(3.89)]

3.4.7.3 Computation of Nodal Concentration

3.4.5. 1.

Nodal solute concentrations are computed following section

cc = ns . . ./nv , .

mj,k+l J'k+1 J'k+1
(3.106)

[refer eqn.(3.89)]

3.4.7.4 Transfer of Solute into/out of the immobile Phase due to

Lateral diffusion (accounting for linear equilibrium

adsorption-desorption)

To further account for transfer of solute into/out of the

immobile phase (accounting for linear equilibrium adsorption-desorption

), equation (3.9) is solved. For any interior node j the difference

approximation of equation (3.9) is written as,

c — c.

(9. + p(l-f)k.) ^i ^- = <x(cc - c )
d At, mj,k+l imj,k+l

(3.107)

[refer eqn.(3.93)]
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Similarly, writing for all the nodes and solving renders the

concentration distribution (c, ,j=l,2 n) of the immobile
Im . , ,

J,k+1

phase (accounting for linear equilibrium adsorption-desorption).

Transfer of solute into/out of the immobile phase results in

a change of mobile solute concentration (cc ,j=l,2 n). The
m . , ,

J, k+1
volume of solute (per unit plan area) transferred into (Acd. , . is

J,k+1

+ve)/out of (Acd is -ve) the immobile solute phase (accounting for
J >k+i

linear equilibrium adsorption-desorption), at node j Is computed as.

as,

Acd, - (c. -c, )(0, +p 1-f k.) Az, .+Az. /2
j,k+l im im. , im K d j-l j

J K+i JJf<
(3.108)

[refer eqn.(3.94)]

Thus, the mobile solute concentration at node j is computed

c = cc - Acd, . ,/nv, , , (3.109)
mj,k+l mj,k+l J'k+1 J'k+1

[refer eqn.(3.95)]

Similarly, writing for all the nodes and solving, the mobile

solute concentration distribution (c ,j=l,2 n) accounting for
"j.k+l

transfer of solute into/out of the immobile phase and linear equilibrium

adsorption-desorption is obtained.

3.4.7.5 Attributing Change in Nodal Solute Volumes (per unit plan

area) to Moving Packets

Change in solute volume (per unit plan area) in the mobile

phase (Acd ,j=l,2 n) at all the nodes is further attributed to

the solute volumes (per unit plan area) of the moving packets. Thus, the
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solute volumes (per unit plan area) of all the moving packets are

modified, following the procedure described in section 3.4.5.3.

3.5 Mass Balance

Mass balance calculations were performed to check the accuracy

of the solution. The principle of conservation requires that the

difference between the solute inflowing into and outflowing from a

spatial domain in a given time must equal the change of solute in the

domain at the same time. Thus, considering a spatial domain extending

from the ground surface to water table,

Total solute volume Total solute volume Change in solute

(per unit plan area) (per unit plan area) volume (per unit
infiltrated into the joining the toa.i~ef plan area) in the
unsaturated zone at - table. = domain.

the ground surface.
(SV. ) (SV _.) (ASV)

inf efl

The relative mass balance error (ERR) was computed as follows,

SV, - SV - ASV
ERR(X) = i£ 5£

SVinf

The relative mass balance error is computed at the end of each time step

as follows,

(a) The total solute volume (per unit plan area) infiltrated into

the system till any discrete time t is computed by

integrating the product of infiltration rate (q) and the

tk
concentration (c ) of the infiltrating solute (J" q c dt).

o ° 0 0

(b) The change in solute volume (per unit plan area) in the domain

at any discrete time t , for the four different stages of the

model are computed as follows.
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Stage I

Change in solute volume (per unit plan area)

np a np

= 1 si . + si. - £ si

p=l p'k k p=l P'°
Stage II

Change in solute volume (per unit plan area)

np a np n
= Z si . + si . - Z si + Z s ,p(Az + Az )/2p,k p,k p,0 J=1 j,k j-l j

" zj=i sj,op(Azj-i + AzJ)/2

Stage III

Change in solute volume (per unit plan area)

np „ np n

= Z si ,+ si . - Z si _ + Z c, 9 (Az +Az )/2
p=l P'k p'k p=l P'° j=l imj,k im J"1 J

n

-Z c, 0, (Az. + Az,)/2
j=l imj,0 im J_1 J

Stage IV

Change in solute volume (per unit plan area)

np , np n

=Z si . + si . - Z si _ + Z c. [p(l-f)k 0 ]
p=l P'k P'k P=l P>° J=l imj,k d im

n

(Az. , +Az.)/2 - Z, , c. [p(l-f)k,0. ](Az, ,+Az )/2
j-l J j=l imj o J_ J

(c) The solute volumes (per unit plan area)joining, the water

table till different discrete times are computed throughout the

simulation period (refer section 3.4.4.1.3).
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3.6 MODEL PARAMETERS

For simulation of spatial and temporal variation of

concentration using the numerical model described so far, the following

parameters are required.

D - hydrodynamic dispersion

D is expressed by equation (3.2) and in turn requires

parameters D ,a,b, and A.
o

3.7.

P

a

im

D molecular diffusion coefficient in a free

water system.

empirical constants characterizing the soil.

dispersivity

first order rate coefficient governing exchange

between solute and soil matrix (kinetic

adsoprt ion-desorpt ion)

empirical distribution coefficient

first order rate coefficient governing exchange of

solute between mobile and immobile phase.

fraction of adosprtion sites, located in the mobile

phase.

immobile moisture content.

COMPUTER CODE

The computer code for performing the calculations of the

distributed model, has been written in FORTRAN IV. The program consists

of four functions, twelve subroutines and a main program. Role of the
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main program and each subroutine is described briefly in the following

paragraphs.

3.7.1 MAIN PROGRAM

The following tasks are performed.

1. Reading of input data. The details of the read statements are

as follows,

(i) NDP: number of nodes in the flow domain, NMAX: number of nodes

in the solute domain, NT: Number of time steps, NOB: number of daily

observations, ITR: maximum number of iterations used in Picard's

iteration method; Conditional switches [IOPT = 0: Neuman boundary

condition, I0PT=2: Dirichlet boundary condition, NWIV = 1: time variant

water table (Default time invariant water table), NETS=1:

evapotranspiration not occounted for (default evapotranspiration

accounted for, NMKT=1: linear kinetic adsorption-desorption not

accounted for (default linear kinetic adsopriton-desorption accounted

for)].

(ii) DTM: time step, TOTIRR: time duration of a single irrigation

application, EPS: small positive value for defining permissible error in

Picard's iteration method.

3 -3
(iii) POR(0): porosity (L L ), SAT(K ): saturated capillary

conductivity (LT~ ), SSM(h ): bubbling pressure (L), FFC (9 ): field

capacity (L3L~3), WP (9 ): wilt point of the crop (L3L~3), THR (9 ):
3 -3

residual moisture content (L L ), PAT: minutes in a day (T).

(iv) C0(c ): input solute concentration (ML 7, TSTR(ts): strip

3 -3
thickness, parameters [THC (0. ): immobile moisture content (L L );

im

D0(D ): molecular diffusion coefficient in a free water system,

(A0(a),A10(b)): empirical constants characterizing the soil, AML(A):
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dispersivity (L), p(f): fraction of adsorption sites located in the
-3mobile soil matrix, RO(p): bulk density of soil (ML ), CONS (kj):

3 -1
empirical distribution coefficient (L M )].

(v) DELZ (Az): spatial increment for solving flow equation (L).

(vi) HPRl(h): cpillary pressure at the beginning of simulation/a time

3 -3
step (L L ).

(vii) DZS (Az): spatial increment for solving solute transport

equation (L).

(viii) CI(c ): initial concentration distribution in the soil profile

(ML"3).

2. Computation of nodal depth co-ordinates and nodal area of

influence.

3. Computation of total number of moving packets, upper and lower

coordinates of each moving packet, water volumes and solute

volumes (per unit plan area) contained in the moving packets,

cumulative water volumes (per unit plan area) corresponding to

coordinates.

4. Computation of nodal solute and water volumes (per unit plan

area).

5. Reading daily input data. Details of the read statements are

as follows.

(i) NYR : year of simulation, NMNTH: month of simulation, NDT:

date of simulation, RAIN: rainfall intensity (daily), PET: potential

evapotranspiration (daily), PF: P factor, API: depth of applied

irrigation.

(ii) RZD: root zone depth, NOROOT: node number at which root zone

ends.

6. Computation of number of nodes in the flow domain, in case of
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time variant water table.

7. Computation of capillary head and moisture distribution,

accounting for evapotranspiration, if required.

8. Computation of cumulative water volume (per unit plan area)

profile, based on moisture distribution.

9. Modifying water volumes (per unit plan area) of moving packets

lying in the root zone caused by evapotranspiration and

subsequent modification of cumulative water volumes (per unit

plan area) corresponding to coordinates, if required.

10. Computation of solute concentration by solving for the various

components of transport.

11. Printing the computed results.

3.7.2 SUBROUTINES

DPEC : Computes nodal depths and upper and lower limits of the nodal

areas of influence. Data supplied are total number of nodes

and nodal spacing for the solute domain.

INICON: Computes total number of moving packets, their upper and lower

coordinates, moisture contents, solute and water volumes (per

unit plan area)contained in them and the cumulative water

volumes (per unit plan area)correponding to the coordinates.

Data supplied are strip-thikness, total depth of domain,

initial concentration and moisture distributions.

V0LS0L: Computes nodal concentration, solute and water volumes (per-

unit plan area). Data supplied are the output of INICON, total

number of nodes and nodal area of influence.

WATBLE Computes total number of nodes in the domain, additional nodal

spacing and capillary head values, in case of a fluctuating
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water table. Data supplied are depths to water table (before

and after fluctuation), number of nodes and nodal spacing

(before fluctuation).

SOLVE Computes the latest capillary head and moisture distribution.

Data supplied are capillary head and moisture distribution at

the beginning of the time step, upper and lower boundary

conditions at the beginning of the time step, maximum

permissible number of iterations for Picard's iteration

method, permissible convergence error and time step.

SINK Computes nodal values of evapotranspiration (restricted to the

root zone depth). Data supplied are depth of root zone, node

number at which the root zone ends, moisture content values at

the beginning and end of the time step/iteration, daily value

of potential evapotranspiration, wilt point of the crop, field

capacity of the soil, residual moisture content, nodal area of

influence and time step.

TRANS Computes the latest solute concentration distribution. Data

supplied are input flux, input concentration, total number of

nodes in the solute domain, total number of moving packets,

their upper and lower coordinates, the solute and water

volumes (per unit plan area) contained in the moving packets,

the cumulative water volumes (per unit plan area)

corresponding to the coordinates, total depth of solute

domain, the amount of solute which has already left the

domain, nodal area of influence, nodal spacing, strip

thickness, molecular diffusion coefficient, empirical

constants characterizing the soil, dispersivity, bulk density

of soil, empirical distribution coefficient, first order rate
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coefficient governing exchange of solute between solute and

soil matrix, immobile moisture content, rate coefficient

governing transfer of solute into/out of the immobile phase

fraction of the adsorption sites located in the mobile phase.

MCURVE Computes the cumulative water content profile based on the

nodal moisture distribution, obtained by solving Richards

equation. Data supplied are latest moisture distribution,

nodal spacing, immobile moisture content value, bulk density

of soil, fraction of adsorption sites located in the mobile

phase and empirical distribution coefficient.

MODCOR Increments cumulative water volumes (per unit plan area)

corresponding to the coordinates and computes their latest

positions. Data supplied are input flux, cumulative water

volumes (per unit plan area) corresponding to the coordinates

at the beginning of the time step and the output of subroutine

MCURVE.

MODSOL Modifies solute volumes (per unit plan area) of the moving

packets. Data supplied are solute volumes (per unit plan area)

of the moving packets at the beginning of the time step and

change in nodal solute volume (per unit plan area).

DONNA Carries out linear iterpolation.

BST Solves the tridiagonal coefficient matrix.

3.7.3 FUNCTIONS

THETA Computes moisture content values corresponding to the supplied

capillary head value. Other data supplied are porosity,

residual moisture content, bubbling pressure (in accordance

with the h vs 0 relation).
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COND Computes capillary conductivity values corresponding to the

supplied moisture content values. Other data supplied are

porosity, residual moisture content, saturated capillary

conductivity (in accordance with the K vs 0 relation).

DIFU Computes specific moisture capacity corresponding to the

capillary head values at the beginning and end of the time

step. Other data supplied are porosity, residual moisture

content, bubbling pressure (in accordance with the h vs 0

relation).

TREP Computes change in moisture storage. Data supplied are

moisture distribution at the beginning and end of a time

step, number of nodes and nodal spacing.

For listing of the computer code refer to annexure 2.
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CHAPTER 4

MODEL VALIDATION

The model described in chapter 3 was validated by comparing

the simulated results with available analytical solutions and reported

experimental data.

4.1 COMPARISON WITH ANALYTICAL SOLUTIONS

The model simulated transport was compared with the results of

two analytical solutions (van Genuchten and Alves, 1982 cited in Parker

and van Genuchten, 1984 and Parker and van Genuchten, 1984). Both the

analytical solutions have been programmed by Parker and van Genuchten,

1984 and are contained in a package called CXTFIT. Thus, CXTFIT was used

to obtain the spatial and temporal distributions pertaining to the

analytical solutions. The model was operated under conditions consistent

with the assumptions of the analytical solutions.

4.1.1 van Genuchten and Alves' Solution (van Genuchten and Alves,

1982 cited in Parker and van Genuchten, 1984)

The solution pertains to single phase reactive solute

transport under steady state flow conditions. The interaction between

solute and soil matrix is described by a linear equilibrium

adsorption-desorption isotherm. The source/sink term accounted for are

first order decay and zero order production. The details of the solution

are as follows.
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4.1.1.1 Differential Equation

The differential equation governing one dimensional solute

transport under conditions described above is written as,

R^_=D^| -v^-pc +r W.1J
3t 3z 3z

where, v is the steady state velocity

The dimensionless factor R is defined as,

kd
R = 1 + —

0

and

M = P., + V„w s 0
d

P

r * y„ ♦ y„ -u s e

where u and u are rate constants for first order decay in the solute
' ^u s

and soil matrix respectively, y and y are rate constants for zero

order production in the solute and soil matrix respectively.

Neglecting the source/sink terms u and y and assuming R to be

1, equation (4.1) reduces to the form of equation (3.1).

4.1.1.2 Initial and Boundary Conditions

The initial condition is assumed to be of the form,

c(z,o) = c.

where, c is a constant

(4.2)

For a pulse type input the upper boundary condition is written

as,



c -

v az

. c
d ac 0 < t s t

o

t > t
z=0 ' o
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(4.3)

where, c is the input concentration and is a constant.

For a semi-infinite system the lower boundary condition is written as,

f£ (M,t) = finite (4.4)
3z

4.1.1.3 Assumptions

The solution of equation (4.1) subject to the initial and

boundary conditions described in equations 4.2 - 4.4 is based upon the

following assumptions.

(i) Flow velocity is time independent.

(ii) Soil medium is homogeneous.

(iii) The system is semi-infinite.

(iv) Backmixing at the exit boundary is negligible.

4.1.1.4 Analytical solution

For u = 0 and subject to boundary and initial conditions

(4.2), (4.3) and (4.4), the solution of equation (4.1) is reported as

follows.

r c,+(c -c.)A(z.t) + B(z,t) 0 < t < t
i o l o

c(z,t) = -

c,+(c -c.)A(z,t)+B(z,t)-c A(z,t-t ) t > t
1 O 1 o o o

(4.5)
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Where, 1/2.

[ Rz-vt f v t I f (RZ-vt)H
A(z,t)= 1/2 erfc r^ + exp

L 2(DRt)17^ «• TiDR J L 4DRt -<2(DRt)

2
1 ,, VZ V t , , vz Ierfc [RZ *W\/2\

D DR D L 2(DRt) J

y f , Rz t DR , „ f Rz - vt 1
B(z,t)= -*- It* ( - — + —2)erfC 1/2

R I 2v 2 2v L2(DRh)i/^

- ( t )1/2(Rz + vt +J , r (Rz-vt)2i
)exp

L 4DRt J4nDR v 4DRt

r '2-
vt,

2v^ 4DR

f_1_ -55 ♦ !_Rz^t_)2lexp(^ erfcf te*r^ 1]
L 2 2v2 4DR J D L2(DR-t)1/2 JJ
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4.1.1.5 Model Operation

The model accounting for single phase non-reactive solute

transport (refer section 3.4.4) was operated under the following

conditions.

4.1.1.5.1 Time and space Domains

The depth of the solution domain was taken as 180 cms. At the

beginning of simulation the domain was subdivided into 180 moving

packets using a strip thickness (ts) of 1 cm.

The total time duration of each simulation was 1980 mins. A

time step of 1 min was used. However, to check the effect of a large

time step, the simulations were repeated using a time step of 15 mins.

4.1.1.5.2 Parameter values

The following parameter values were used for simulation.



taken.

a = 0.002

b = 10.0

2
D = 0.000667 cm /min.
o
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For A, a range of values, 0.0, 0.1, 0.5 and 1.0 cms, was

4.1.1.5.3 Initial and Boundary Conditions

c (z,0) =0.0 0 =? z ^ Z (4.6)

where, Z (180 cm) is the total depth of the domain.

The upper boundary condition is a pulse type input, and is

written as,

qc - 0D ^
3z

qC~ d, * x/ °
I0

in " (4.7)

d. > x
z=0 in

where, c^ is the concentration of the infiltrated solute ,d. is the
' o in

depth of infiltration and x is the depth of the solute to be

infiltrated.

If t is the time taken for x cms of solute to infiltrate and
o

0 and q are time independent, eqn(4.7) can be written as,

c -

v 3z
z=0

t^tD 3c o o (4>8)o o

0 t > t

where, v = q/9

Thus, the boundary conditions described by eqns (4.7) and

(4.3) are the same.

The following values were assigned.
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c = 209 meq/1
o

x = 7.62 cms

The solute was followed by fresh water infiltration till the

end of simulation. The soil moisture content 0 is maintained constant at

0.38. The corresponding value of q is 0.026 cm/min.

The lower boundary condition is assigned as,

3c(Z,t)_ Q (4.g)

3z

4.1.1.5.4 Results

(i) The model computed variation of c with respect to z at times

120,540,1020 and 1980 mins are presented in Figs. 4.1-4.4 (At=l min) and

Figs. 4.5-4.8 (At=15 mins).

(ii) Breakthrough curves at depths 20,40,60,80 and 100 cms are

presented in Figs. 4.1-4.4 (At=l min) and Figs 4.5-4.8 (At=15 mins).

4.1.1.6 Computation of Analytical Solution

CXTFIT was used to obtain c vs z and c vs t curves for

identical parameters.

4.1.1.6.1 Parameter Values

For the solution [described by equation (4.5)] to be valid for

single phase non-reactive solute transport, the dimensionless parameter

R was assigned a value of 1 and y was assigned a value of 0.

The parameters v and D were computed for the pre-assigned

values of 0,q (refer section 4.1.1.5.3), a,b,D0 and A (refer section

4. 1.1.5.2).

v = q/0 =0-0684 cm/min.
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The D values [refer equation(3.2)] computed for different A

values are as follows,

A(cm)
2

D(cm /min)

0.0 0.00006

0. 1 0.00689

0.5 0.03425

1.0 0.06846

4.1.1.6.2 Initial and Boundary Conditions

The initial and boundary conditions are assigned in accordance

with eqns (4.2)-(4.4).

For the upper boundary condition, t was computed as follows,

t = x/q = 7.62/0.026 = 293.077 mins (refer section
o

4. 1. 1.5.3)

The value of c and 0 were taken as 209 meq/1 and 0.38
o

respectively (refer section 4.1.1.5.3).

4.1.1.6.3 Results

The concentration distributions obtained in space and time,

from the analytical solution were superposed on the model computed

results and are presented in Figs. 4.1-4.8.

4.1.1.7 Comparison

The two solutions (section 4.1.1.5 and 4.1.1.6) pertain to

identical conditions except for the space domain (the analytical

solution holds good for a semi-infinite system, where as the model has

been operated for a system having a finite length of 180 cms). However,

as the change in concentration at the lower boundary is negligible the
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during the time period of simulation is negligible, the domain used for

numerical simulation can also be considered as effectively

semi-infinite.

4.1.1.8 Discussion

For different values of A, an excellent agreement between the

two solutions, represented by concentration profiles in depth and

breakthrough curves (Figs. 4.1-4.4) was observed.

Even, for a considerably large time step (At=15 mins), the

agreement between the two solutions remained excellent (Figs. 4.5-4.8).

4.1.2 Parker and van Genuchten's Solution (Parker and van Genuchten

1984, and van Genuchten, 1981 cited in Parker and van

Genuchten, 1984)

The solution pertains to single phase and two phase reactive

solute transport under steady state flow conditions. For single phase

solute transport the sorption sites present in the soil matrix are

assumed to comprise of two fractions. Adsorption on one fraction (type-1

sites) is assumed to be instantaneous i.e., equilibrium adsorption,

while adsorption on the other fraction (type-2 sites) is time dependent

i.e. kinetic equilibrium adsorption. For two phase solute transport the

interaction between solute and soil matrix in both the phases is

described by a linear equilibrium adsorption-desorption isotherm.

4.1.2.1 Differential Equations

The differential equation governing one-dimensional single

phase solute transport under conditions described above is written as,
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(1+^JL)^+_P_ ?E«d£e!.v8c (410)
0 at 0 at az az

The linear kinetic adsorption-desorption equation is written as,

3s
— = P [(l-F)k c - s] (4.11)
at

where, F is the fraction of type-1 sorption sites. For F=0, equations

(4.10) and (4.11) reduce to equations (3.3) and (3.4).

Introducing the following dimensionless variables,

T = vt/L (4.12)

x = z/L (4.13)

P = vL/D (4.14)

R f 1 + pkd/ 0 (4.15)

(4.16)5 =

0 + Fpkd

0 + <>kd
w = 0(1- 5)RL/v

c
" Ci

Cl
c - c

o 1

s •- (l-F)k.c,
d i

C2
(l-F)k.(c -c,)

do i

(4.17)

(4.18)

(4.19)

where, L is an arbitrary positive distance from the origin.

Equations (4.10) and (4.11) are rewritten as,

3c 3c 3c 3c

k J-+(1-6)R — = -L- i- - —i (4.20)
3t at p ax ax

5C2
(1-5)R = w (c - c ) (4.21)

St d



117

The differential equation governing one dimensional two phase

solute transport under steady state flow conditions accounting for

linear equilibrium adsorption - desorption is written as,

m q

3z L -> at az 3z

3c r -. 3c, ?
-2 + 0. +p(l-f)k, -i5neD^,-q8i (4.22)

L lm dJ at m m a-,2- ^

[1 3c.
9, +p(l-f)k, -m = cx(c - c, ) (4.23)
im dJ m im

The above equations are the same as eqns (3.5) and (3.7).The

dimensionless forms of equations (4.22) and (4.23) remain the same as

equations (4.20) and (4.21), if equations (4.22) and (4.23) are

expressed in terms of T,x and R, and the following reduced variables.

p=VmL/Dm (4.24)

0 + fpk .

6 =^ 1- (4.25)
0 +Pkd

w = aL/q (4.26)

c - c.

Cj =± X- (4.27)
Co - Ci

c. - c.
im i ,

c2 = (4.28)
c - c,
o i

where v = q/0 .
mm

Eqn (4.14) is the same as (4.24) if D for the two phase model

is defined as,

D = D 0 /0 (4 29)m m i*.4«»j
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4.1.2.2 Initial and Boundary Conditions

The intial and boundary conditions are assigned in accordance

with eqns (4.2) - (4.4). For eqn (4.11) an additional initial condition

is required, which is in the form of,

s(x,0) = (1-F) kdc. (4.30)

4.1.2.3 Analytical Solution

Solution of equations (4.20) and (4.21) in terms of the

reduced variables, is reported as,

where,

rCj +(cq -c^Atx.T) 0 < T < T

c(x, t)=-

Lc +(c - c )A(x,T)-c A(x,T-T ) T > T
1 O 1 o O o

A(x,t) = J g(x,T)J(a,b)dx
0

ofv rl - r p .1/2 f P(5Rx-xglx.xj - ( ) exp -
tt5Rt L /IARt

erfc

45 RT

1/2
-) (5Rx+t)

J(a,b) = 1 - e ° J e * I
0

2(bcr)

and

b =-

UT

6R

t^(t-x)

(1-5)R

1/2

)2 P
exp(Px)

25R

drr

(4.31)
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The function J(a,b) is referred to as Goldstein's J-function

and I is zero order Bessel's function. The above analytical solution

for c represents the concentration of the entire solute phase if applied

to the two site model, while for the two phase model the solution

represents the concentration of the mobile phase.

The model simulated transport was compared with the above

analtyical solution. The comparison was done for the following three

cases.

Case I

Single phase reactive (first order linear kinetic

adsorption-desorption) solute transport.

Case II.

Two phase non-reactive solute transport.

Case III.

Two phase reactive (linear equilibrium adsorption-desorption)

solute transport.

4.1.3 Case I

Single phase reactive (first order linear kinetic

adsorption-desorption) solute transport.

4.1.3.1 Model Operation

The model accounting for single phase reactive solute

transport (refer section 3.4.5) was operated under the following

conditions.
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4.1.3.1.1 Time and space Domains

The depth of the solution domain was taken as 180 cms. At the

beginning of simulation the domain was subdivided into 180 moving

packets using a strip thickness (ts) of 1 cm.

The total time duration of each simulation was 1980 mins. A

time step of 1 min was used. However, to check the effect of a large

time step, the simulations were repeated using a time step of 15 mins.

4.1.3.1.2 Parameter Values

The following parameter values were used for simulation.

a = 0.002

b=10.0 (refer section 4.1.1.5.2)

D = 0.000667
o

3
p =1.6 gm/cm

3
k , = 0.5 cm /gm

The sets of values of \ and p used are as follows,

A(cm) e(min_1)

0.5 0.01

0.1 0.01

0.5 0.001

Q.5 0.1

4.1.3.1.3 Initial and Boundary Conditions

In addition to the intial and boundary conditions, assigned In

accordance with eqns (4.6)-(4.8), the initial condition for the adsorbed

concentration of the soil matrix (refer eqn (3.4)) is assigned as,

s(z,0) =0.0 0 < z * Z (4.32)
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For the upper boundary condition (refer equation (4.7)), the

depth of solute to be infiltrated (x) was taken as 10 cms. This was

followed by infiltration of fresh water till the end of simulation. The

values of infiltrated solute concentration (c ), moisture content (0)

and volumetric flux (q) were taken as 209 meq/1, 0.38 and 0.026 cm/min

respectively (refer section 4.1.1.5.3).

4.1.3.1.4 Results

Model computed breakthrough curves at. depths of 20,40,60,80

and 100 cm are presented in Figs.4.9-4.12.

4.1.3.2 Computation of Analytical Solution

CXTFIT was used to obtain c vs z and c vs t curves for

identical parameters.

4.1.3.2.1 Parameter Values

For the solution [described by equation (4.31)] to be valid

for single phase reactive (first order kinetic adsorption-desorption)

solute transport a zero value was assigned to F.

The parameters R.6.D and w were computed for the pre-assigned

values of 0,v (refer section 4.1.3.1.3 and 4.1.1.6.1), p,k a,b,D0,A,|3

(refer section 4.1.3.1.2), F and L (where, L is the depth at which the

breakthrough curve is computed) in accordance with the equations

(4.15),(4.16),(3.2) and (4.17). The computed parameter values are as

follows,

R = 3.1053 [refer equation (4.15)]

5 = 0.32203 [refer equation (4.16)]
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The D values [refer equation(3. 2)] computed for different A

values are as follows,

2
>(cm) D(cm /min)

0.5 0.03425

0.1 0.00689

The w values [refer equation (4.17)] computed for different

values of L and ^ are as follows,

-1 -1
lin ) w(6=0. lmin )

61.558

123.117

184.675

246.234

307.792

4.1.3.2.2 Initial and Boundary Conditions

The initial and boundary conditions are assigned in accordance

with eqns (4.2)-(4.4) and equation (4.29);(c.=0.0). As the depth of

solute (x) infiltrated was 10 cms, the value of t was 384.615 min
o

(refer section 4.1.1.6.2).

The value of c and 0 were taken as 209.0 meq/1 and 0.38
o ^

respectively (refer section 4.1.1.5.3). Values of T [=vt /L, refer
o o

equation (4.12)], corresponding to the different values of L were

computed as,

L(cm) T
o

20 1.3154

40 0.6577

L(cm) w(8 =0.01min_1) w(8=0.0

20 6.1558 0.61558

40 12.3117 1.23117

60 18.4675 1.84675

80 24.6234 2.46234

100 30.7792 3.07792
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60 0.4385

80 0.3288

100 0.2631

4.1.3.2.3 Results

The concentration distribution in depth and time obtained from

the analtyical solution were superposed on the model computed results

and are presented in Figs. 4.9-4.12.

4.1.3.3 Comparison

The two solutions (section 4.1.3.1 and 4.1.3.2) pertain to

identical conditions, except for the space domain (the analytical

solution holds good for a semi-infinite system, where as the model has

been operated for a system having a finite length of 180 cms). However,

as the change in concentration at the lower boundary during the time

period of simulation is negligible, the domain used for numerical

simulation can also be considered as effecvtively semi-infinite.

4.1.4 Case II

Two phase non-reactive solute transport

4.1.4.1 Model Operation

The model accounting for two phase non reactive solute

transport (refer section 3.4.6) was operated under the following

conditions.
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4.1.4.1.1 Time and space Domains

The depth of the solution domain was taken as 180 cms. At the

beginning of simulation the domain was subdivided into 180 moving

packets using a strip thickness (ts) of 1 cm.

The total time duration of each simulation was 1980 mins. A

time step of 1 min was used. However, to check the effect of time

step variation, for a sigle set of parameters simulations were carried

out using 3 time steps of 5,10 and 15 mins.

4.1.4.1.2 Parameter Values

The following parameter values were used for simulation.

a = 0.002

b = 10 (refer section 4.1.1.5.3)

2
D = 0.000667 cm /min

o

A = 0.5 cm.

The sets of values of 0, and a used, are as follows,
im

6im

0. 1

0. 171

0. 3

0. 1

0. 3

a min lJ

0 001

0 001

0 001

10 0

0 1

4.1.4.1.3 Initial and Boundary Conditions

The initial and boundary conditions are assigned in accordance

with eqns (4.6)-(4.8). However, for the present simulation they



>

127

represent concentration and moisture content in the mobile phase. An

additional initial condition for concentration in the immobile phase

[refer equation ( 3-7)] is assigned In accordance with the following

equation,

c, (z,0) =0.0 0 s z < Z (4.33)
im

For the upper boundary condition [refer equation (4.7)] the

depth of solute to be infiltrated (x) was taken as 10 cms, except when

the simulation was carried out using an a value of 10 min . For that

simulation the value of x was taken as 7.62 cms. The values of the

concentration of the infiltrated solute (c ), moisture content (0) and
o

volumetric flux (q) were taken as 209 meq/1, 0.38 and 0.026 cm/min

respectively (refer section 4.1.1.5.3).

4.1.4.1.4 Results

(i) Model computed variation of concentrations in the mobile and

immobile phase, with respect to depth, at times 120,540,1020 and 1980

mins are represented in Figs. 4.15-4.17.

(ii) Model computed breakthrough curves (represent concentration

only in the mobile phase) at depths 20,40,60,80 and 100 cms are

represented in Figs. 4.13-4.20.

4.1.4.2 Computation of Analytical Solution

CXTFIT was used to obtain c vs z and c vs t curves for

identical parameters.
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4.1.4.2.1 Parameter Values

For the solution [described by equation (4.31)], to be valid

for two phase non-reactive solute transport, a zero value Is assigned to

The parameters R, 5, D and w were computed for the

pre-assigned values of 0,v (refer section 4.1.4.1.3 and 4.1.1.6.1)

a,b,D,,A,a,0 (refer section 4.1.4.1.2), k .and L (where, L is the
° im d

depth at which the breakthrough curve is computed) in accordance with

equations (4.15), (4.25), (4.29) and (4.26). The computed parameter

values are as follows,

R =1 [refer equation (4.15)]

The different values of 5 [refer equation (4.25)] and D [refer

equation (4.29); equation (3.6) for computing D ] computed corresponding

to the values of 0 (=0-0. ) are as follows,
m im

3 3
0 (cm /cm )

m
6 D

0.28 0.7368 0.03423

0.08 0.2105 0.03421

0.209 0.55 0.03422

The w values [refer equation (4.26)] computed for different L

and a values are as follows,

L(cm) w(a=0.

20 0.7692

40 1.5385

60 2.3077

80 3.0769

100 3.8461

•1
w(a=0.001 min ) w(a=0.lmin )

76.923

153.85

230.77

307.69

384.61

w(a=10min )

7692.31

15384.6

23076.9

30769.2

38461.5
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4.1.4.2.2 Initial and Boundary Conditions

The initial and boundary conditions are assigned in accordance

with eqns (4.2)-(4.4). However, they represent the concentrations of the

mobile phase only. The initial condition for equation (4.23) is assigned

in accordance with eqn (4.33) (refer section 4.1.4.1.3). The value of tQ

for 10 cms and 7.62 cms of solute infiltration were computed as 384.615

mins and 293.077 mins (refer section 4.1.3.2.2 and section 4.1.1.6.2).

For t = 384.615 and 293.077 mins, the T [=vtQ/L, refer
o

equation (4.12)] values, corresponding to the different values of L were

computed as,

.615) TQ(to=293.077)

1.0023

0.5012

0.3341

0.2506

0.2005

L(cm) T (t =:
o o

20 1.3154

40 0.6577

60 0.4385

80 0.3288

100 0.2631

4.1.4.2.3 Results

The concentration (of the mobile phase) distribution in depth

and time obtained from the analytical solution were superposed on the

model computed results and are presented in Figs. 4.13-4.20.

4.1.4.3 Comparison

The two solutions (section 4.1.4.1 and 4.1.4.2) pertain to

identical conditions, except for the space domain (The analytical

solution holds good for a semi-infinite system, where as the model has
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been operated for a system having a finite length of 180 cms). However,

the change in concentration at the lower boundary during the time period

of simulation is negligible, except at 1980 mins. Thus, the domain used

for numerical simulation can also be considered as effectively

semi-infinite.

4.1.5 Case III

Two phase reactive solute transport.

4.1.5.1 Model Operation

The model accounting for two phase reactive solute transport

(refer section 3.4.7) was operated under the following conditions.

4.1.5.1.1 Time and space Domains

The depth of the solution domain was taken as 180 cms. At the

beginning of simulation the domain was subdivided into 180 moving

packets using a strip thickness (ts) of 1 cm.

The total time duration of each simulation was 1980 mins. A

time step of 1 min was used.

4.1.5.1.2 Parameter Values

The following parameter values were used for simulation.

a = 0.002

b - 10.0

DQ= 0.000667 cm2/mln
3

p • 1.6 gm/cm

A = 0.5 cm

(refer section 4.1.1.5.2)

The sets of values of eim,oc, kd> and f used, are as follows,



n

6im oc(min )
3

kd(cm /gm) f

0.0 0.0 0.5 1.0

0.0 0.0 1.0 1.0

0. 171 0.001 0.5 0.0

0. 1 0.0005 0.5 0.5

0. 171 0.001 0.5 0.5

0. 1 0.0005 1.0 0.5

0. 1 0.0005 0.1 0.5
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4.1.5.1.3 Initial and Boundary Condition

The initial and boundary conditions are assigned in accordance

with eqns (4.6)-(4.8). Again, for the present simulation they represent

concentration and moisture content in the mobile phase (refer section

4.1.4.1.3). The initial condition assigned for the concentration in the

immobile phase [eqn(3.9)] is assigned in accordance with the following

equation.

t0im + P(1-f)kd] cim(z'0) " °-° 0 s z £ z (4.34)

For the upper boundary condition [refer-equation (4.7)], the

depth of solute to be infiltrated (x) was taken as 10 cms. The values

of, the concentration of the infiltrated solute (c ), moisture content
o

(0) and volumetric flux (q) were taken as 209 meq/1, 0.38 and 0.026

cm/min respectively (refer section 4.1.1.5.3).

4.1.5.1.4 Results

(i) Model computed variation of concentration in the mobile and

immobile phase with respect to depth, at times 120,540,1020 and 1980

mins are represented in Figs. 4.21, 4.22 and 4.25.

(ii) Model computed breakthrough curves (represent concentration
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only in the mobile phase) at depths 20,40,60,80 and 100 cms are

represented in Figs. 4.21-4.27.

4.1.5.2 Compuation of Analytical Solution

CXTFIT was used to obtain c vs z and c vs t curves for

identical parameters.

4.1.5.2.1 Parameter Values

The parameters R, D, 5 and u were computed for the

pre-assigned values of 0,v (refer section 4.1.5.1.3 and 4.1.1.6.1),

k ,a,b,D ,A,f,a,0 . (refer section 4.1.5.1.2) and L (where L is the
d ° im

depth at which the breakthrough curve is computed) in accordance with

equation (4.15), (4.29), (4.25) and (4.26). The computed .parameter

values are as follows,

The values of R [refer equation (4.15)], computed for the

different values of k, are as follows,
d

kd R
0.1 1.4210

0.5 3.1053

1.0 5.2105

The values of D [refer equation (4.29); equation (3.6) for

computing D ], computed for the different values of 9^= 0 - 0^) are as

follows,

9 D(cm /min)
m

0.28 0.03423

0.209 0.03422

0.38 0.03425
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The values of 5 [refer equation (4.25)], computed for the

different values of 0m>kd and f are as follows,

m

0. 38

0. 38

0. 209

0 28

0 209

0 28

0 28

k,(cm /gm)
d

f

0.5 1.0

1.0 1.0

0.5 0.0

0.5 0.5

0.5 0.5

1.0 0.5

0.1 0.5

5

0.678

0.8081

0.1771

0.5763

0.5161

0.5454

0.8372

The values of u [refer equation (4.26)], computed for the

different values of L and a are as follows,

L(cm) w(a=0.Omin -1) w(a=0.001min ) w(a=0.0005min l)

20 0.0 0.7692 0.3846

40 0.0 1.5385 0.7692

60 0.0 2.3077 1.1538

80

100

0.0

0.0

3.0769

3.8461

1.5385

1.9231

4.1.5.2.2 Initial and Boundary Conditions

The initial and boundary conditions are assigned in accordance

with eqns (4.2)-(4.4). However, they represent the concentration and

moisture content of the mobile phase only. The initial condition for the

immobile phase is assigned in accordance with eqn (4.34).

The value of t0 for 10 cms of solute infiltration was computed



as 384.615 mins (refer section 4.1.3.2.2). For tQ = 384.615 mins, the

T [=vtyL, refer equation (4.12)] values, corresponding to the different

values of L were computed as,

L(cm)

20

40

60

80

100

0

1.3154

0.6577

0.4385

0.3288

0.2631

14 5

4.1.5.2.3 Results

The concentration (of the mobile phase) distribution in depth

and time, obtained from the analytical solution were superposed on the

model computed results and are presented in Figs. 4.21-4.27.

4.1.5.3 Comparison

The two solutions (section 4.1.5.1 and 4.1.5.2) pertain to

identical conditions, except for the space domain (the analytical

solution holds good for a semi-infinite system, where as the model has

been operated for a system having a finite length of 180 cms). However,

as the change in. concentration at the lower boundary during the time

period of simulation is negligible, the domain used for numerical

simulation can also be considered as effectively semi-infinite.

4.1.6 DISCUSSION

Case I.

A very good agreement can be observed between the results
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obtained by the two solutions (Figs. 4.9-4.11). However, for a high

value of p (=0.1 min"1) some numerical dispersion is observed (Fig.

4.12). Again, from Figs 4.9 and 4.10 it can be seen that the sensitivity

of the peak concentration to the dispersivity value (A=0.5, A-0.1) is

much less compared to that of the non-reactive case (Figs. 4.3 and 4.2).

Case II

For different values of 0im (Figs. 4.13 to 4.15) an excellent

agreement between the two solutions can be observed. From Fig. 4.16 it

can be seen that, for a very high value of <x(=10 min" ) the solutions

converge to that of single phase solute transport i.e., the

concentration in the mobile and immobile phase become equal. For a high

value of 0 (=0.3) and a(=0.1 min" ), again some numerical dispersion is
1 mim

observed (Fig. 4.17). The effect of the time step variation can be

observed in Figs. 4.18 to 4.20. Deviations in the two solutions is

negligible till the time step is such that a moving packet travels more

than half the nodal spacing during a single time step.

-k Case III

An excellent agreement between the two solutions can be

observed till all the adsorption sites are either located in the mobile

(Fig. 4.21 and Fig. 4.22) or in the immobile soil phase (Fig. 4.23). For

partial location of adsorption sites in both the soil phases, the

agreement between the two solutions is not very good (Figs. 4.24-4.27).

However, it is considerably close.
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4.2 COMPARISON WITH EXPERIMENTAL DATA

4.2.1 Warrick's Experiment (Warrick et al., 1971)

A field experiment, to study transport of calcium chloride and

water in an unsaturated soil medium, has been reported by Warrick et al.

(1971). The experiment was conducted in the summer of 1970 on the

University of California West side field station near Fresno. The soil

is classified as Panoche clay loam. A 6.1- by 6.1- meter plot (Fig.

4.28) was wetted with 7.62 cm of 0.2N CaCl2> followed immediately by

22.9 cm of solute free water. The total infiltration occurred in 17.5

hrs. Tensiometers were installed in duplicate at depths of

30,60,90,120,150 and 180 cm below the surface in a 1-meter square,

located in the centre of the plot (Fig. 4.28) and were used to monitor

values of the soil-water pressure head. Ceramic cups were also installed

in duplicate at each 30 cm increment as shown in Fig. 4.28 to obtain

solute samples during the infiltration process.

Numerical simulation of the concentration and moisture

profiles in depth, under conditions identical to the field experiment

was carried out using the model for single phase non-reactive solute

transport. The simulated results were compared with the reported

observed profiles.

4.2.1.1 Data

4.2.1.1.1 Soil Characteristics

The following relations were used.

(i) h vs 0 relation
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r 0.6829-0.U9524 ln(Ihl) h^29.5
0(h) =( (4.34)

1-0.4531-0.02732 ln(|h|) 29.5 > hi 14.495

(ii) K vs 0 relation

K(0) = 3.24 x 10"8 exp (35.80) (4.35)

where, K is in cm/min.

4.2.1.1.2 Initial and Boundary Conditions (Soil-Moisture)

(i) Initial condition

0(z,O) = f(z) 0 ^ z s Z (4.36)

where, Z is the total depth of the flow domain.

(i) Upper boundary condition

h(0,t) = hs (4.37)

(ii) Lower boundary condition

h(Z,t) = hi (4.38)

where, h is the capillary head at the saturated soil moisture
s

content value and h is the initial capillary head at depth Z.

4.2.1.1.3 Initial and Boundary Condition (Solute Concentration)

(i) Initial condition

c(z,0) =0.0 0 s z * Z (4.39)

(i) Upper boundary condition

„ ,~ ^ •, r qc d. i 7.62
qc(0,t) -0D^°^=( ° in (4.40)

3t I 0 d . > 7.62
in

where, d. is the cumulative depth of infiltration in cms.
in



150

(ii) Lower boundary condition

oc(Z,t) _ Q (4.41)
dz

3 3where, z is in cm, 0 is in cm /cm , c is in meq/1 and t is in mins. The

value of c i.e.. concentration of the solute being infiltrated is 209
o

meq/1. To compute the hydrodynamic dispersion co-efficient [eqn (3.2)],

the following values of a, b and D (Bresler, 1973) were taken,

a = 0.002

b - 10.0

D = 0.000667 cm2/min
%

where, D is the molecular diffusion coefficient of chloride in a free
o

water system. For the dispersivity A a range of values was taken to get

the best possible match between the observed and computed profiles.

4.2.2 RESULTS AND DISCUSSION

The measured and computed soil moisture profiles at 2,9,11 and

17 hrs of infiltration are shown in Fig. 4.29. An examination of the

profiles reveals that there is a close agreement between the observed

and computed distribution of moisture in space and time. According to

the reported data, the infiltration of the solute (7.62 cm) and water

(22.9cm) required a time period of 1050 minutes (17.5 hrs). The model

simulated period of infiltration is 1044 minutes (17.4 hrs).

The reported and computed solute concentration profiles at

2,9,11 and 17 hrs are plotted in Fig. 4.30. It is revealed that at 9

^_ hrs A=0.7 yields the peak concentration value. However, at subsequent

times higher A values (A =0.9, at 11 hrs, A=1.0 at 17 hrs) are necessary

for matching the peak concentration values. This corroborates the time



E

N

I
I—

0_

9 (cm3/cm3)
0-2 03

g 100

o
ID

120-

1A0-

1 60-

180L

•—• measured

Simula led

0-4
1

Fig. 4.29. Measured and simulated soil moisture profiles.

151



2iOr

17 hrs

2 00- \

A 160

~ 1 20-

> 80

MEASURED SIMULATED A = 0-7 SIMULATED X=0-9 SIMULATED ,A-1-C

Fig. 4.30. Measured and simulated chloride concentration profiles.



k

153

(depth) variability of A reported by Corey et al., 1970 (cited in

Warrick et al., 1971).

An apparant lag between the simulated and measured solute

concentration profiles is observed at all time levels. Thus, the

measured depth of solute travel is higher, in comparison to the

simulated depth of solute travel. This indicates towards an increased

solute velocity, which may have been caused by the phenomenon of

anion-exclusion. To verify this hypothesis, the simulation was repeated

using the two phase non-reactive solute transport model, neglecting

transfer of solute into out of the immobile solute phase. The solution

carried out in this manner is similar to a single phase solute transport

accounting for anion-exclusion, where 0im acts as 0gx i.e., the

equivalent volume of anion free solution per unit volume of bulk soil.

Concentration profiles were again simulated, varying the values of 0im

and A. The best reproduction of the measured concentration profiles was

obtained with 0, = 0.06 and A = 1.5 cm. The results are plotted in Fig.
im

4.31. It can be seen that the lag between the observed and measured

profiles has considerably reduced.

4.2.3 Bromide leaching experiment (Bottcher and Strebel,1990)

A bromide leaching experiment was conducted in the Fuhrberger

field (Hannover, Germany) during the period 22.9.1989 to 26.3.1990. Fig.

4.32 is a schematic sketch of the area (3x12m). A bromide solution was

applied on 22.9.1989 and concentrations were monitored reguarly at a

depth of 120 cms, with the help of 51 suction cups. Profiles of bromide

amounts in depth were also measured on two dates (15.11.1989 and

6.2.1990) (Unpublished data, the experimental data were obtained through
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personal communcation).

Numerical simulation of the break through curve and bromide

amount in depth, under conditions identical to the field experiment was

carried out using the model for single phase non-reactive solute

transport.

4.2.3.1 Data

4.2.3.1.1 Soil characteristics

The soil type is gley-podzol in medium fine sand and comprises

of two horizons, A (upto 35 cms, rich in organic material) and B (> 35

cms). The reported soil characteristics of the two layers are given in

table 4.1. These characteristics are reported to have been determined by

laboratory experiments.

4.2.3.1.2 Initial and Boundary Conditions (Soil Moisture)

(i) Initial condition

+ h(z,0) = f(z) 0 * z * Z (4.42)

where, Z is the total depth of the flow domain.

(ii) Upper Boundary Condition

q (O.t) = Q(t) (4.43)

where, Q(t) is the net input at the ground comprising of precipitation

and evaporation. The actual evaporation values were computed using the

unsaturated flow model of Duynisveld and Strebel (1983), with the help

of the climatic data recorded during the experimental period. Further,

using the recorded precipitation data, the net input at the ground was

computed.
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(iii) Lower Boundary Condition

The lower boundary condition was taken as the water table, at

which the capillary pressure (h) was assigned zero (pressure=atmospheric

pressure).

h(Z,t) = 0.0 (4.44)

The depth to water table [i.e., the lower boundary condition,

described by equation (4.44)] was time variant and was monitored

throughout the experimental period.

Table 4.1

Soil Characteristics^}!^the two layers.

First layer

0

0.05

0.06

0.07

0.1

0. 14

0.17

0.2

0.245

0.28

0.34

0.4

0.46

h(cm)

60000.0

15000.0

10000.0

1000.0

300

100.0

60.0

40.0

30.0

20.0

10.0

0.0

K(cm/day)

-6
0.1x10

0.1x10"

0. 1x10"

0.5x10

0.4x10

0.1x10

0.5x10"

0.68

5.0

16.0

55.0

300.0

-4

-3

-1

Second layer

h(cm) K(cm/day)

0.01 60000.0 0.1x10

0.02 15000.0 0.1x10

0.03 10000.0 0.5x10

0.05 1000.0 0.1x10

0.06 300.0 0.1x10

0.07 100.0 0.5x10

0.09 60.0 0.2x10

0. 125 40.0 0.3

0. 15 30.0 3.0

0.22 20.0 12.0

0.29 10.0 78.0

0.38 0.0 800.0

-7

-3

-1
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4.2.3.1.3 Initial and boundary Conditions (Solute Concentration)

* (i) Initial condition

c(x,0) = 0.0 0 s x =s X (4.45)

where X is the total depth of solute domain. The value of X was taken

below the greatest depth to water table recorded during the simulation

period.

(ii) Upper Boundary Condition

c(0,0) = c (4.46)
o

M

where, c is the concentration of bromide applied at the ground at the

beginning of the experiment. The amount of bromide applied at the ground
•

2
was taken as 5.61 gBr /m

qc(0,t) - 0D ac(0,t) =0 (4.47)
3z

(iii) Lower Boundary Condition

ac(X't} = 0 (4.48)
ax

Moisture profiles in depth and time were simulated (Fig. 4.33)

(measured experimental data of soil moisture were not available). To

simulate spatial and temporal concentration distribution, two different

dispersivity values (i.e., A=1.5 cm and A=2.0 cm) were used.

i r-2
The amount of bromide appplied on 22.9.89 was 7.5 gBr /m (=75 kg/ha).

On 15.11.89, 26 borings were made to sample the soil down to 120 cms in
2

10 cm depth increments. The mean recovery of bromide was 5.61 gBr /m

(=56.1 kg/ha). The mean concentration profile in depth also gave the

same mean recovery of bromide. Thus, a loss of about 25% Br was

observed. This loss of Br was probably due to wind erosion from the

soil surface during the time between Br application and the first

considerable precipitation in October 89, which leached the Br into the

soil matrix.
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Fig. 4.33. Simulated Moisture Profiles.
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4.2.3.2 Experimental Curves

The experimental curves used for comparison comprise of,

(i) mean bromide breakthrough curve at a depth of 120 cm.

(ii) mean bromide amount in depth on 15.11.89 and 6.2.90.

The mean breakthrough curve at a depth of 120 cm was based on

measurements by suction cups at 51 locations. The soil was more or less

homogeneous in nature, but the time of arrival of solute in all the 51

cups was different. This indicates a large horizontal variability in the

pore water velocity. This was attributed to differences in the soil

moisture contents in a horizontal plane, which were quite prominent in

depths > 50 cm (Bottcher, 1991 ; personal communication).

4.2.3.3 Results and Discussion

The variation in solute transport observed at different

locations was possibly caused by horizontal transport. The proposed

model simulates one dimensional vertical solute transport and does not

account for horizontal variability.

The simulated bromide breakthrough curves for the two A values

were superposed on the measured mean breakthrough curve. From Fig. 4.35

and 4.36, it can be seen that the simulated breakthrough curves

generally lie between the reported ± 95 confidence interval. However,

for A=2.0 cm the measured and simulated breakthrough curves were

closer.

Profiles of bromide amounts in depth were also simulated using

the two dispersivity values. Superposing the mean measured data of
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Fig. 4.34. Mesured mean and simulated bromide breakthrough curve

(depth=120 cm, A=1.5cm).

0.00
i r

60.00 120 00 180.00

flux in 120 cm (mm)

i r
240.00

Fig. 4.35. Mesured mean and simulated bromide breakthrough curve

(depth=120 cm, A=2.0 cm).
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bromide amount in dpeth on the two dates shows a reasonably good

•agreement (Figs. 4.37 and 4.38). Again the higher dispersivity value

(A=2.0 cm) gave a closer reproduction.

4.3 MASS BALANCE ERROR

Following the procedure described in section 3.5, relative mass

balance errors were computed at all discrete times for each simulation.

The errors remained negligible£<0. 1 %) for all the simulations.



Bromide (p.g/cm soil)

26.3.1990
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amounts in depth ( A=1.5 cm).
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Fig. 4.37. Mesured mean and simulated bromide

amounts in depth ( A=2.0cm).
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CHAPTER 5

MODEL APPLICATION

Applicability of the model to real life problems has been

demonstrated by considering the problems of salt accumulation and

transport through the unsaturated zone.

5.1 ESTIMATING SALT ACCUMULATION IN THE SOIL PROFILE

k
Use of saline water subject to evapotranspiration during the summer

months and a subsequent poor monsoon over the years, leads to salt build

up in the top soil. Salt build up in the root zone is particularly

harmful to plantgrowth during its germination stage and to a lesser

extent during the later growth stages, depending upon its tolerance to

soil salinity. To overcome this problem irrigation in excess of

evapotranspiration is applied, and is known as leaching requirement. The

current practice is to use the salt storage equation (Van der Molen,

1973) for estimating salt accumulation in the root zone required for

designing leaching requirement. A more rational estimation of salt

accumulation can be carried out using numerical models ( as the one

developed in the present study).

The present model (accounting for two phase non-reactive

solute transport, refer section 3.4.6) was used to simulate the salt

accumulation in a loam soil (a typical agricultural soil in North

India), during a normal rainfall year and under irrigation schedules

prevalent around Roorkee. The period of simulation commencing from the

sowing of wheat crop (15 Nov) covers the harvesting oi' wheat, sowing
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and harvesting of paddy crop and two fallow periods. It terminates on

15 Nov. of the following year (refer table 5.1).

Table 5.1

Cropping schedule

Wheat 15th Nov. 15th Mar.
Fallow 16 Mar. 30 June

Rice lSt July 15th Oct.
Fallow 16th Oct. 15th Nov.

_4 In case of wheat and rice pre-sowing operations were neglected.

Casual unlrrigated crops were asssumed to gr-ow during the two fallow

periods. Further these crops were assumed to evapotranspire like the

reference crop i.e., actively growing green grass having a root zone

depth of 30 cm. The water used for irrigating the two crops (i.e., wheat

and rice) was assumed to be considerably saline (1.5 mmho/cm). Salt

build up in the root zone was also computed using the salt storage

equation (Van der Molen, 1973) and compared with the model simulated

values.

5.1.1 Flow Equation

5.1.1.1 Input at the Ground

The assigned net input at the ground, comprising of irrigation

and rainfall, are as follows.

5.1.1.1.1 Irrigation

Irrigation scheduling was assigned as per local practice

(Tripathi, 1991; personal communication). This allows an application of

7.5 cms of irrigation water at an interval of 20 days for the wheat
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crop. For the rice crop, the frequency of water application increases to

every 7th day. The application of water- is assumed to be carried out

uniformly over a period of 6 hrs, from the start of the day. Further,

for both the crops irrigation was ceased 15 days before the date of

harvest.

5.1.1.1.2 Rainfall

The data of daily rainfall at Roorkee during the year 1981-82

(which was a near normal rainfall year) were used for the study (refer

table 5.2). The rainfall was assumed to be uniform throughout the day.

fc Losses due to interception and direct evaporation were ignored.

5.1.1.2 Upper Boundary Condition

The upper boundary condition (i.e., the boundary condition at

the ground surface) may vary from Neuman (entire input infliters) to

Dirichlet (ponding or just saturation is maintained) and vice-versa,

depending on the intensity and duration of the net input at the ground

(refer section 3.4.3).

5.1.1.3 Evapotranspiration

Evapotranspiration from the root zone was estimated in

accordance with the following equation (Doorenbos et al., 1979).

ET/PET =1 0 ~ Gt ^5'la)
ET/PET = 0 0 ^ 0 ,or 0 s <p (5. lb)

0-0

ET/PET = ^ 0 < 0 < 9. (5.1c)
wp t

0 - 0 K
<4 t wp

where, ET is evapotranspiration, PET is potential evapotranspiration,

0 is wilting point and 0^ is a threshold moisture content. The
wp t

equation is shown graphically in Fig. 5.1. The figure reveals that



Table 5.2

Daily Rainfall Values (cm) for the year 1981-82
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Date Nov. Dec. Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov.

1 0.76 0.72

2 1.78

3 0.82 2.4

4 0. 15

5 0.35

6

7

8

9

10

11

12

13 2.38

14 1.6

15

16 3.45

17 1. 13 0. 13 0.22 1.12

18 0.05 2.13

19 0.04

20 4.6

21

22 0.3

23 1.06 0.4 0.1

24 0.07

25 1.12 1.0

26 0.02 0.1

27 4.3

28

29 0.25

30 7.62

31 0.23

Note: Blank entries denote zero values.

Source: Roorkee station, Department of Hydrology, University of Roorkee,

Roorkee (India).

2.86

0.95 0.3 0. 15

0.05

0.58 2.6 8.05 0.24

3.2 0. 15

0.28 0.26 1.2

0. 1

0.35 1.44

0.15 0.08 0. 16

0.1
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evapotranspiration will be zero for moisture contents at or below

wilting point and at or above saturation. Further it implies that

evapotranspiration will be at the potential rate even if the moisture

content falls below that at field capacity (0 ) by a certain extent.

Thus, factor P is defined as (Doorenbos et al., 1979),

0„ - 0.

p = JLH !_ (5.2)
e„ - e
fc wp

The various values of PET and P for the two crops and fallow

periods are given in table 5.3 (Doorenbos et al., 1979 cited in Mohan

Rao, 1986). During the fallow period, factor P remains zero. The values

of 0 and 0 for loam soil are 0.125 and 0.055 respectively (Rawls et
fc wp

al., 1981 cited in Mohan Rao, 1986).

To account for evapotranspiration during simulation, the sink

term in Richards equation [eqn(3.10)] is equated to evapotranspiration.

However, in the solute transport equation loss of water due to

evapotranspiration is manifested by a loss in the water volumes

contained in the moving packets lying in the root zone area (as

evapotranspiration takes place only from the root zone). This is done in

the following manner.

Referring to section 3.4.3, the volume of water (ET k+1/2^

lost at node j, during the time step At is,

ETj,k+l/2 =Ej,k+l/2-AV(Azj-l +AZJ)/2 (5"3)
Further, Et . is divided among all the moving packets

lying wholly or partially within the area of influence of node j. Thus,

for p moving packet, the reduced water volume (vl ) is computed
r' new

as,
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Table 5.3

Daily Values of Potential Evapotranspiration and Factor P

Wheat

Stage of Initial Development Mid
growth

Period 15-30 Nov. Dec. Jan.

Factor P 0.8 0.8 0.8

Late

Feb.

0.8

PET cm. 0.077 0. 105 0. 193 0.188

Rice

Stage of Initial Development Mid Late
growth

Harvest

1-15 Mar.

0.8

0.092

Harvest

Period 1-20 July 21-31 July Aug. 1-15 Sep 16-30Sep. 1-15 Oct.

Factor P

PET cm

Stage of

growth

doesn't arise

0.591 0.684 0.55 0.569 0.474 0.359

Fallow (reference crop)

doesn't arise

Period Mar. Apr. May. June Jul. Aug. Sep. Oct. Nov.

Factor P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PET cm 0.41 0.583 0.716 0.75 0.526 0.458 0.474 0.359 0.22

vl
p,k

vl
p.k

= vl
old

new
p.k

old
nv

ET

j,k
J,k+l/2

(5.4)

j=l,2 n
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where, n is the node number at which the root zone ends and nv, , is
r j.k

the volume of water (per unit plan area) at node j (refer section 3.4.5.1

5.1.1.3.1 Root Zone Depth

Evapotranspiration is effective only upto the depth of plant

root present in the soil. The root zone depth increases with time.

Fortnightly root zone depths for the wheat and rice crops were available

(Mohan Rao, 1986 ; refer table 5.4). The root zone depths were assumed

to increase instantaneously at each fortnight. During the fallow period

a time invariant root zone depth of 30 cms was adopted.

Table 5.4

Depth of Root Zone in (cm) During the various Fortnights

Fortnight 1 2 3 4 5 6 7 £

Wheat 32.5 72.5 102.5 132.5 142.5 152.5 162.5 172.

Rice 32.5 62.5 62.5 62.5 62.5 62.5 62.5

5.1.1.4 Lower Boundary Condition

The lower boundary condition was taken as the water table, at

which the capillary pressure (h) was assigned as zero

(pressure=atmospheric pressure) . The depth to water table was taken as

400 cm and was assumed to be time invariant.

5.1.1.5 Initial Condition

The soil moisture profile in depth at the beginning of

simulation was taken as the dynamic equilibrium profile reported by

Mohan Rao (1986). [The dynamic equilibrium profile is estimated

(commencing from arbitrary initial conditions) by operating the model.
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for a number of years for the same yearly data. The operation is

continued till the simulated initial conditions, at the beginning of two

consecutive years are practically identical]. The adopted soil-moisture

profile is given in Fig. 5.2a.

5.1.1.6 Soil Characteristics

Following relations for K vs 0 (Brooks and Corey, 1964) and 0

vs h (Mohan Rao et al., 1989) were adopted,

4
0-0

K = K

4> - 0

= 0

0

0 = $ - — h

h.

= exp

ln(0 -20 )
r

0 > 0

0 < 0

0 i h < h,

h + 0 h > h.

(5.5a)

(5.5b)

(5.6a)

(5.6b)

where, h, is the bubbling pressure.

Following values of 0^jt>, K and h reported for loam soil

(Rawls et al., 1980 cited in Mohan Rao, 1986) were used.

9 = 0.027

<t> = 0.463

K = 0.011 cm/min
s

h, = 40. 12 cm.

5.1.1.7 Space and Time Discretization

To solve Richards equation, the flow domain was discretized

into a finite number of nodes, based on a constant spatial increment

(Az) of 5 cms. For application of irrigation and rainfall intensity

equal to or higher than 5 cm/day, a time step (At) of 5 mins was used.

For lower rainfall intensities a time step (At) of 30 mins was used.
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Fig. 5.2. Dynamic equilibrium profiles, (a) loam soil, (b) loam soil,

(c) clay soil (Mohan Rao,1986).
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5-1.2 Solute Transport Equation

The initial soil profile was assumed to be salt free. Thus,
the initial concentration value throughout the soil profile remains
zero. The concentration input at the ground was in the form of apulse,
carried by the irrigation water. The concentration value of the
irrigation water was taken as 1.5 mmho/cm (co= 960 mg/1). The rainfall
was assumed to be salt free.

The immobile water content was assumed to be equal to 0 (8
r im

0.027). Evapotranspiration was assumed to take place only from the
bile phase. The value of the mass transfer coefficient («, was taken
n nnr,^ _, "I

mo

as 0.00005 min

The following values (Russo, 1988a) were assigned to the

parameters of the mobile hydrodynamic dispersion coefficient [refer
equation (3.6)].

a = 0.005

b = 10.0

Dq= 0.0007 cma/min.

A = 1.0 cm.

5.1.2.1 Space and Time Discretization

To discretize the solute into moving packets astrip thickness

of 2cms was used. The superposed spatial grid (refer section 3.4.5.1)
used for computing change in concentration due to transfer of solute
into/out of the immobile phase, coincides with the spatial grid used for
solving Richards equation. However, the total depth of it extends 20
cms below the water table (refer section 3.4.4.1.1).
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Again, the time steps used for solving the solute transport

equation, were the same as those used for solving Richards equation

(refer section 5.1.1.7).

5.1.3 Model Output

The output comprises of mobile concentration (c ) profiles in
m

depth at the end of every 20 days, over the enitre simulation period.

They are represented in Figs 5.3-5.9.

5.1.4 Conceptual Model

The prevalent practice for estimating salt build up in the

root zone necessary for designing leaching requirement is to use the

salt storage equation (Van der Molen, 1973). The conceptual model based

on the salt storage equation assumes that the soil in the root zone

medium behaves like a reservoir with a bypass. This assumption is based

on the observation of incomplete mixing of solute infiltrating into the

soil, with the soil solution. Part of the solute may move through large

pores and percolate below the root zone without mixing. If c is the
o

concentration of the infiltrating solute and c is the cone, of the

soil solution, then the solute concentration c „ arriving at the lower
ef &

boundary of the root zone is expressed as,

Cef = feC + (1"fe)co (5-7>

where, f is the fraction of the percolating solute having a

concentration of the soil solution and (1-f ) fraction has the
e

concentration of the infiltrating solute.

5.1.4.1 Salt Storage Equation

Based on the concept described above the change in salt

storage in the root zone over a certain period of time is written as

(Van der Molen, 1973),
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f R*Z*
Ic - (1 - f )R c - —

o e o

fcAZ = , -^— (5.8)
f R

1 ♦ -5-

2Wfc

where, AZ is the change in salt content of the root zone, c is the

concentration of the irrigation water, I is irrigation water applied (or

required), f is the leaching efficiency, Z. is the initial salt
e 1

content of the root zone, W„ Is the amount of moisture in the root
f c

*

zone assuming the moisture content to be at field capacity, R is the

net downward percolation.

Again,

R = I - E + P

where, E is evapotranspiration and P is precipitation.

AZ' -Z[ -£,
where, Z? is the salt content in the rootzone at the end of the period.

W„ = 0_ d,
fc fc t

where, d is the depth of root zone.

5.1.4.1.1 Underlying Assumptions

(i) All salts are highly soluble and do not precipitate.

(ii) Salts carried by rainfall are negligible.

(iii )Moisture content in the root zone remains at field

capacity.

The value of f was taken as 0.5 for loam soil. However, when
e

*

negative percolation (R < 0) occurs f was taken as 1 (complete

mixing). Using equation (5.8) and the data set described previously,

salt contents in the root zone for wheat and rice were computed at the

same time intervals (at every 20 day). The initial salt content in the

root zone for the rice crop was taken as per the model output.
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5.1.5 Results and Discussions

Model simulated mobile concentration profiles over- the entire

period of simulation are shown from Fig 5.3 to Fig. 5.9. The

concentration profile at the end of the year is shown in Fig. 5.9. The

average concentration in the root zone is almost three times that of the

applied irrigation water and the overall soil-solute concentration

profile is considerable as compared to an initially salt free soil

profile. Also from Fig. 5.4(H) and 5.4(iii) it can be seen that during

the month of April (fallow period), when rainfall is negligible (refer

table 5.2), there is a sudden increase in the concentration in the root

zone, due to evapotranspiration through the reference crop.

5.1.5.1 Salt Balance

The amount of salt retained by the soil profile and the amount

of salt leached to the water table were cmputed as follows.

(i) Total salt amount infiltrated into the soil profile during the

period of simulation (15 Nov. - 15 Nov.) : Salt amount infiltrated

into the soil profile during a single irrigation application was

calculated , by integrating the product of infiltration rate (q) and the

concentration of the irrigation water (c ) over the time of a single

application [J qc dt,t =6hrs]. Thus, the total salt amount infiltrated

0 ° °
into the soil profile was computed by summing the salt

amountsinfiltrated during each irrigation application. And is,

2
= 136.8 mg/cm

(ii) Total salt amount retained in the soil profile : This was

calculated by Integrating the product of the concentartion and the soil
Z

moisture over the depth of the soil profile (T c0 dz). And is,

2 °
=92.2 mg/cm
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(iii) Thus, the salt amount leached to the water table.

Total salt amount Total salt amount

= infiltrated into the - retained in the soil

soil profile profile
2

=44.6 mg/cm

Thus, for the assigned irrigation schedule, at the end of the simulation

period 67 % of the total Infiltrated salt amount was retained in the

soil profile.

5.1.5.2 Comparison with the salt storage equation

The average salt concentration and salt content in the root

zone (as computed by the model and by the salt storage equation) for the

wheat and rice crops are given in table 5.5a and 5.5b respectively. It

can be seen that the salt storage equation has under-estimated the salt

concentration as well as salt contents for the wheat crop. However, for

the rice crop, the salt storage equation has generally overestimated the

salt concentration and salt contents in the root zone.

The deviations in the results obtained by the two approaches

is mainly caused by the assumptions underlying the salt storage

equation. Thus, the use of the salt storage equation for estimating salt

accumulation in the root zone in order to compute leaching requirement

may not always be reliable.

5.2 POLLUTANTS JOINING THE WATER TABLE DURING A HEAVY MONSOON

Water percolating through waste material at the ground

diss-olves the pollutants in it and subsequently carries them through

the unsaturated soil profile. Depending upon the type of soil and the

amount of water percolating through it, non-conservative pollutants may

in time join the water table and adversely effect the water quality. Or



Table 5.5a

Average salt concentration and salt content in the root zone

of wheat crop
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Model Computed Computed with the help of the

salt storage equation

Date Salt cone. Salt Content Salt cone. Salt content

mg/l mg/cm mg/l mg/cm

/,th n4 Dec. 763.34 6.90 383.44 3. 47

24thDec. 791.96 13.36 258.91 3.32

13thJan. 985.09 18.63 417.62 6.92

2nd Feb. 980.01 23.69 432.76 8.25

22ndFeb. 931.82 26.02 468.59 9.52

14thMar. 910.00 25.62 543.79 11.72

Table 5.5b

Average salt concentration and salt content in the root zone

of rice crop

Model computed Computed with the help of the

salt storage equation

Date Salt cone. Salt Content Salt cone. Salt content

mg/l mg/cm mg/l mg/cm

12th July 1660.68 7.22 2293.08 9.31

1St A1 Aug. 996.21 12.03 1749.02 13.66

21StAug. 783.88 12.90 1403.17 10.96

10thSep. 873.28 13.13 1107.71 8.63

30thSep. 1295.17 11.70 2121.12 16.57

depending on the time of travel, they may be degraded to harmless levels

or get adsorbed by the soil. However, conservative pollutants will

sooner or later join the water table. Heavy rainfall is particularly
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helpful in accelerating the transport. The travel time of conservative

pollutants to join the water table is smaller compared to the travel

time of non-conservative pollutants (which react with the soil matrix

and in the process get retarded). Thus, if the time of degeneration of a

non-conservative pollutant is less than the travel time of a

conservative pollutant under identical conditions, the disposal of the

non-conservative pollutant on the ground could be assumed to be safe.

The model developed in the present work (two phase

non-reactive solute transport) was used to study the transport of a

pollutant (assumed to be abundantly available at the ground) through two

soil profiles (comprising of loam and clay soils respectively) during a

monsoon season [1 July to 17 Nov. (140 days)]. Each of the soil

profile was assumed to be 400 cms thick, extending from ground surface

to water table. Daily rainfall data of an above normal rainfall year

were taken. As has already been stated, heavy rainfall is helpful in

accelarating the transport. Thus, a safer limit is arrived at.

Conditions of operation were identical for both soil

types.

5.2.1 Flow Equation

5.2.1.1 Net Input at the Ground

The assigned net input at the ground comprising of rainfall is

as follows.

5.2.1.1.1 Rainfall

The data of daily rainfall at Roorkee during the year 1988

(which was an above normal rainfall year) were used for the study (refer

table 5.5). Rainfall was assumed to be uniform throughout the day.
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Losses due to interception and direct evaporation were not considered.

5.2.1.2 Upper Boundary Condition

The upper boundary condition (i.e., the boundary condition at

the ground surface) varied from Neuman (entire input infiIters) to

Dirichlet (ponding or just saturation is mantained) and vice-versa,

depending on the intensity and duration of the net input at the ground

refer section 3.4.3).

5.2.1.3 Evapotranspiration

The area was assumed to be covered with grasses (reference

crop). Evapotranspiration was estimated as described previously (refer

section 5.1.1.3). Daily values of PET and P for the reference crop

during the period of simulation are given in table 5.3. (Doorenbos et

al., 1979 cited in Mohan Rao, 1986). The values of 0„ and 0 for loam
fc wp

soil are 0.125 and 0.055 (refer section 5.1.1.3). The values for clay

are 0.225 and 0.15 respectively (Rawls et al., 1980 cited in Mohan Rao,

1986).

5.2.1.3.1 Root Zone Depth

The reference crop was assumed to have a time invariant root

zone depth of 30 cm.

5.2.1.4 Lower Boundary Condition

The lower boundary condition was taken as the water table at

which the capillary pressure head (h) was assigned as zero (pressure =

atmospheric pressure). The depth to water table was taken as 400 cms and

it is assumed to be time invariant.



Table 5.6

Daily Rainfall Values (cm) for the year 1988

Date July Aug. Sep. Oct. Nov.

1 7.43

2 0.3

3 4.2 2.36

4 4.22 0.02

5 15.5 1.56

6 4. 1

7 3. 1

8 0. 1

9

10

11

12 0.18

13 0.62

14 0.86

15 0.18

16 0.16

17 0.08

18

19 0.2

20 1.6

21 0.13

22 1.15

23

24 5.4

25 0.2

26

27 2.14 3.7

28 0.03

29

30 0. 1

31 4.46

Note: Blank entries denote zero values

Source: Roorkee station, Department of Hydrology, University of Roorkee

Roorkee.

3.88 1.26

2.54 1.6

3.76

0. 18

1. 18

1.44

4.02

4.98

0.76

0.46

0.03

0.05 0.4

1.4 3.29

6.4 3.78

6.38 13.9
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5.2.1.5 Initial Condition

For both soil profiles the initial moisture profile in depth

were taken as the dynamic equilibrium profiles (refer section 5.1.1.5)

reported by Mohan Rao (1986). The adopted moisture profiles are given in

Figs. 5.2b and 5.2c.

5.2.1.6 Soil Characteristics

The K vs 0 and 0 vs h relations were taken the same as

described previously (refer section 5.1.1.6). Following values of 0 ,0,

K and h reported for clay soil (Rawls et al., 1980 cited in Rao, 1986)
s b

were used.

0
r

= 0.09 K
s

= 0.001 cm/min

0 = 0.475 h = 85.0 cm

For the values of 0 , 0, K and h, for loam soil refer to
r s b

section 5.1.1.6.

5.2.1.7 Space and Time Discretization

To solve Richards equation the flow domain was discretized

into a finite number of nodes, based on a constant spatial increment

(Az) of 5 cms.

For rainfall intensities equal to or higher than 5 cm/day a

time step (At) of 5 mins was used. For lower rainfall intensities a time

step (At) of 30 mins was used.

5.2.2 Solute Transport Equation

The initial soil profiles were assumed to be salt free. Thus,

the initial values of c. were taken as zero for the entire depth under

consideration.
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The pollutant was assumed to be completely soluble in the

rainfall. As the supply of pollutant was assumed to be abundant at the

ground, the pollutant concentration in the infiltrating water was

assigned a relative concentration value of 1 unit and the relative

concentration distribution in the soil water at different discrete space

and time points were estimated. The concentration input at the ground

was again in the form of a pulse input carried by the rainfall. This was

valid for both soil profiles.

The immobile water content was taken equal to 0 . Thus, for

loam soil 0. = 0.027 and for clay soil 0. = 0.09. The mobile water
im im

content was variable, depending upon the total moisture content (0 =0

-0 ). Evapotranspiration was assumed to take place only from the mobile

solute phase. Rest of the parameters required for solving the solute

transport equation were taken to be the same as described previously

(refer section 5.1.2) except the value of a, which changes for clay soil

and was taken as 0.002 (Russo, 1988a).

4.2.2.1 Space and Time Discretization

To discretize the solute into moving packets a strip thickness

of 2 cms was used. The superposed spatial grid (refer section 3.4.5.1)

used for computing change in concentration due to transfer of solute

into/out of the immobile phase, coincides with the spatial grid used for

solving Richards equation. However, the total depth of it extends 50 cms

below the water table (refer section 3.4.4.1.1).

Again, the time steps used for solving the solute transport

equation were the same as those used for solving Richards equation

(refer section 5.2.1.7).
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5.2.3 Model output

Cumulative solute depth/c joining the water table vs time for

loam soil Is represented in Fig. 5.10. (c /c ) profiles in depth at the
mo r

end of every 20 days, over the entire simulation period, for the two

soils are represented in Figs. 5.11 and 5.12 for loam soil and Figs.

5.13 and 5.14 for clay soil.

5.2.4 Results and Discussion

For clay soil the cumulative depth of solute/c joining the

water table even towards the end of the simulation period is

negligible-caused only by dispersion. However, for loam soil (Fig. 5.10)

the convective front reaches the water table in about 80 days time.

Thus, beyond 80 days the cumulative depth of solute/c joining the water

table is appreciable for loam soil. Comparing the two sets (Figs.

5.11-5.12 and Figs. 5.13-5.14) of concentration proifles it can be seen

that the pollutant travels at a much faster rate in loam soil as

compared to the clay soil.
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CHAPTER 6

CONCLUSION

A numerical model has been developed for simulation of

vertical unsteady state two phase reactive solute transport in an

unsatuarated porous medium extending from the ground surface to the

water table. The model provides, among others, solute concentrations at

pre-stipulated discrete depth time points. The solute matrix

interac-tion is described by first order linear- kinetic

adsorption-desorption (single phase) and linear equilibrium

adsorption-desorption (two phase) isotherms. Convective transport is

computed by the method of characteristics, while diffusive-dispersive

transports and adsorption-desorption by the soil matrix are computed

subsequently by implicit finite difference. The solutions of the

transport equations require spatial and temporal distributions of

moisture and flux. These distributions are obtained by solving the head

form of Richards equations, which governs one dimensional unsteady state

flow in an unsaturated porous medium. The solution of Richards equation

is accomplished by the Crank-Nicolson finite difference scheme. The

non-linearity is taken care of by Picard's iteration method. The

prominent conclusions of the study are as follows,

1. The model is capable of reproducing available analytical

solutions.

(i) The model computed concentration profiles and breakthrough

curves obtained with a time step of 1 min and strip thickness of 1 cm,
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matched well with the corresponding analytical solutions. Increasing the

time step to 15 mins, caused no change in the solution for single phase

non-reactive solute transport. However, for two phase non-reactive

solute transport, increasing the time step to 15 mins caused some

deviation between the model simulated breakthrough curve and the

corresponding analytical solution.

(ii) The model reproduced the analytical solution even at very low

dispersivities (A=0.1 cm). This suggests that the proposed procedure of

breaking up the total transport among convective and dispersive

Components and computing the former by method of characteristics

eliminates the problem of numerical dispersion and oscillations.

2. Reproduction of two field experimental results by the model

has been reasonably good. Prominent details are as follows,

(1) Warrick's experiment (Warrick et al.,1971)

(a) Considering the solute transport to be single phase

non-reactive, a lag between the time to peak concentration was observed

between the simulated and measured concentration profiles. This lag

could be minimized by considering the presence of an immobile phase. A

reasonable agreement was obtained for 0. =0.06 and A = 1.5 cm.
im

(b) Time (depth) variability of A was observed. To match the peak

concentration values, increasing values of A had to be used (A = 0.7 cm

at 9 hrs, A = 0.9 cm at 11 hrs, A = 1.0 cm at 17 hrs).

(ii) Bottcher and Strebel's experiment (Bottcher and Strebel, 1989;

unpublished data)

The reported breakthrough curves measured at 51 locations show

a considerable variation. This was possibly caused by a horizontal
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transport, due to lateral variations of soil moisture. Although the

proposed model does not account for horizontal transport, the simulated

'concentration distribution in space and time compared reasonably well

with the measured mean distribution of concentration.

3. Relative mass balance error remained negligible (<0.1%) at all

the discrete times for each simulation.

4. The model is capable of estimating salt accumulation in the

root zone due to application of saline irrigation water. Apart from the

salt accumulation in the root zone, the model can also provide estimates

of the salts leached down to the water table.

Salt accumulation in the root zone for a yearly cropping

schedule irrigated by considerably saline irrigation water (1.5 mmho/cm)

has been estimated using the proposed model. Results were compared with

those obtained by the salt storage equation, which assumes the soil

medium in the root zone to be a reservoir with a bypass (Van der Molen,

1973). A considerable deviation between the two results was observed,

which may have been caused by the assumption on which the salt storage

equation is based. Thus, the proposed model can be employed to arrive at

more rational estimates of the leaching requirement.

5. The model is capable of estimating volume of pollutant

transferred to the water table.

The model was employed to estimate the volume of pollutant

(abundantly available at the ground) transferred from ground surface to

the water table, during an above normal monsoon season at Roorkee,

extending from 1st July to 17th Nov. (140 days). The water table was
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assumed to occur at a depth of 400 cms (below the ground), which is a

typical depth to water table around Roorkee. Model simulated results

indicated that for a clayey unsaturated medium, the pollutant joining

the water table, right till the end of the simulation period (140 days)

remained negligible (caused only by diffusive-dispersive transport).

However, for a loamy unsaturated medium the convective front reached the

water table in about 80 days time.



ANNEXURE 1

AUTOMATIC ASSIGNMENT OF

UPPER BOUNDARY CONDITION
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Automatic Assignment of Upper Boundary Condition

The type of boundary condition at the ground during the

simulation period may alternate between Neuman and Dirichlet types,

depending upon the intensity and duration of the net input at the ground

(refer section 3.4.3). The following algorithm was adopted to implement

such alternating boundary conditions.

At the beginning of a time step Atk i.e., k discrete time,

the following possibilities are encountered.

1 h is positive (i.e., the top soil remains unsaturated),
l,k

implying that the boundary condition is of Neuman type.

2. h is zero (i.e., just saturation is maintained) or negative
1, K

(i.e., ponding has occurred), implying that the boundary

condition is of Dirichlet type.

Beginning from either of the two conditions stated above, at

the end of the time step At i.e., (k+1) discrete time and m

iterations for each condition the following situations may arise.

Condition 1.

(1) h remains positive (i.e., the boundary condition remains
X f K ' X

of Neuman type). Simulation in the subsequent time step is

carried out in the same manner as the current one.

(ii) h."V is zero or negative (i.e., saturation or ponding has

occurred). If h,' is negative At is reduced successively,

till h.m! becomes zero or very small, in which case a zero

value is assigned. For simulation during the subsequent time

step a Dirichlet boundary condition is assigned.
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Condition 2.

At the end of the time step hj Is computed using the mass

balance of ponded water at node 1, as follows,

„(.) _h .„ h2.k --i.^i . ro l&*i-'d»tei,
hl,ktl " hl,k lKl+l/2,k Az, NUl/2.ktl Az

where, I is the total input (rainfall + irrigation) and E is

evapotranspiration. Again, the following two situations may arise,

(i) h^"1' remains zero or negative (i.e., the boundary condition

remains of Dirichlet type). Simulation during the subsequent

tirrjc step is carried out in the same manner as the current

one.

(ii) h is positive or zero (i.e., the boundary condition has
l.k+1

changed from Dirichlet to Neuman type). If 1^ is positive
( m 1

At is reduced till h: , , attains a small positive value. For
k l,k+l

simulation in the subsequent time step a Neuman boundary

condition is assigned.
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COMPUTER CODE

205



FLOW CHART OF THE MAIN PROGRAM

( START )

READ THE BASIC DATA OF SPACE; CONDITIONAL SWITCHES
PARAMETERS INITIAL CONDITIONS

i
CALL DPEC TO COMPUTE NODAL DEPTH CO-ORDINATES AND
NODAL AREA OF INFLUENCE

CALL INICON TO COMPUTE NUMBER OF MOVING PACKETS,THEIR

CO-ORDINATES,WATER AND SOLUTE VOLUMES (PER UNIT PLAN

AREA) AT CO-ORDINATES

(REFER SECTION 3.4.4.1)

CALL VOLSOL TO COMPUTE NODAL CONCENTRATION, SOLUTE
AND WATER VOLUMES (PER UNIT PLAN AREA)
(REFER SECTION 3.4.5.1)

©•
IX =0

IX = IX+1

READ DAILY DATA RELATED TO BOUNDARY CONDITIONS & CROP

ASSIGN UPPER BOUNDARY CONDITION

7^

YES

CALL WATBLE TO REDEFINE

SPACE DOMAIN FOR A TIME
VARIANT WATER TABLE

YES

COMPUTE RATE OF APPLIED

RRIGATION
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0-

&

TIME = 0.0

CALL SOLVE TO COMPUTE THE CAPILLARY HEAD AND
MOISTURE DISTRIBUTION ( REFER FLOW CHART A)

ADVANCE TIME

YES

NO

MODIFY WATER VOLUMES (PER
UNIT PLAN AREAJOF MOVING PA

CKETS LYING IN THE ROOT ZONE
AND CUMULATIVE WATER VOLUM-
ES(PER UNIT PLAN AREA) OF
CO-ORDINATES

CALL MCURVE TO COMPUTE CUMULATIVE WATER VOLUME (PER UNIT PLAN
AREA) PROFILE BASED ON THE MOISTURE DISTRIBUTION OBTAINED BY SOLVING
RICHARDS EQUATION (REFER SECTION 3.4.4.1.1)

CALL TRANS TO OBTAIN CONCENTRATION DISTRIBUTION BY SOLVING
FOR THE VARIOUS COMPONENTS OF SOLUTE TRANSPORT

( REFER FLOW CHART B I

NO

NO

207
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FLOW CHART A (SUBROUTINE SOLVE)

1
ITERATION = 0.0

ADVANCE ITERATION o

NO

YES

CALL SINK TO COMPUTE EVAPOTRA
NSPIRATION IN THE ROOT ZONE AREA
( REFER SECTION 5.1.1.3 )

SETTING UP OF TRIDIAGONAL COEFFICIENT MATRIX FOR THE
FINITE DIFFERENCE APPROXIMATION OF RICHARDS
EQUANTION ( REFER EQN. 3.11 )

*

CALL BST TO SOLVE THE MATRIX

CHECK FOR CHANGOVER IN BOUNDARY CONDITION AND CHANGE
IF REQUIRED (REFER SECTION 3.4.3 )

* -

CHECK FOR CONVERGENCE

CALL THETA TO COMPUTE MOISTURE DISTRIBUTION

( RETURN )



FLOW CHART B (SUBROUTINE TRANS)

CALL MODCOR TO INCREMENT THE CUMULATIVE WATER

VOLUMES (PER UNIT PLAN AREA) OF CO-ORDINATES AND
ESTIMATE THE CONVECTIVE TRANSPORT BY COMPUTING NEW
POSITIONS OF THE MOVING PACKETS (REFER SECTION 3.4.4.1.1)

GENERATE NEW MOVING PACKETS IF REQUIRED (REFER

SECTION 3.4.4.1.2)

CALL EXCMOV TO COMPUTE SOLUTE VOLUME (PER UNIT PLAN
AREA) LEAVING THE DOMAIN AT THE LOWER BOUNDARY
(REFER SECTION 3.4.4.1.3)

COMPUTE CHANGE IN CONCENTRATION OF MOVING PACKETS DUE
TO HYDRODYNAMIC DISPERSION- RECOMPUTE SOLUTE VOLUMES
(PER UNIT PLAN AREA) CONTAINED IN MOVING PACKETS
(REFER SECTION 3.4.4.2 AND 3.4.4.2.1 )

CALL VOLSOL TO COMPUTE NODAL CONCENTRATION, SOLUTE
AND WATER VOLUMES (PER UNIT PLAN AREA) BY LOCATING THE
MOVING PACKETS IN EACH NODAL AREA OD INFLUENCE
(REFER SECTION 3.4.5.1)

©

YES

COMPUTE ADSORBED CONCENTRA
TION OF SOIL MATRIX ACCOUNTING

FOR FIRST ORDER LINEAR KINETIC
ADSORPTION-DESORPTION. REC
OMPUTE NODAL SOLUTE CONCEN
TRATION AND CHANGE IN NODAL

SOLUTE VOLUME (PER UNIT
PLAN AREA)

(REFER SECTION 3.4.5.2)
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YES

(returnJ

COMPUTE IMMOBILE CONCENTRATION
BY ACCOUNTING FOR TRANSFER OF
SOLUTE INTO/OUT OF THE IMMOBILE
PHASE RECOMPUTE NODAL MOBILE
CONCENTRATION AND CHANGE IN
NODAL SOLUTE VOLUMES (PER
UNIT PLAN AREA)
(REFER SECTION 3-4.6.4)

<D

CALL MODSOLTO MODIFY SOLUTE
VOLUMES (PER UNIT PLAN AREA)
CAUSED BY CHANGE IN NODAL
SOLUTE VOLUME (PER UNIT PLAN
AREA)

(REFER SECTION 3.4.5.3)

210



211

* SOLUTE TRANSPORT IN AN UNSATURATED POROUS MEDIUM EXTENDING FROM GROUND
* TO WATER TABLE PROGRAMMED BY SULEKHA GUPTA
*

* DEFINATION OF VARIABLES
*

* NDP : NUMBER OF NODES IN THE FLOW DOMAIN
* NMAX : NUMBER OF NODES IN THE SOLUTE DOMAIN
* NT : NUMBER OF TIME STEPS

* NOB : NUMBER OF DAILY OBSRERVATIONS
* ITR : MAXIMUM NUMBER OF ITERATIONS USED IN PICARD'S ITERATION
* METHOD

* CONDITIONAL SWITCHES

* IOPT = 0 : NEUMAN BOUNDARY CONDITION

* IOPT = 2 : DIRICHLET BOUNDARY CONDITION
* NWTV = 1 : TIME VARIANT WATER TABLE (DEFAULT TIME INVARIANT
* WATER TABLE

* NETS = 1 : EVATRANSPIRATION NOT ACCOUNTED FOR (DEFAULT
* EVAPOTRANSPIRATION ACCOUNTED FOR

* NMKT = 1 : LINEAR KINETIC ADSORPTION-DESORPTION ACCOUNTED FOR
* (DEFAULT LINEAR KINETIC ADSORPTION-DESORPTION NOT
* ACCOUNTED FOR)
*

* DTM : TIME STEP

* TOTIRR : TIME DURATION OF A SINGLE IRRIGATION APPLICATION

* EPS : SMALL POSITIVE VALUE FOR DEFINING THE PERMISSIBLE ERROR

* IN PICARD'S ITERATION METHOD
*

* POR : POROSITY ; SAT : SATURATED CAPILLARY CONDUCTIVITY ; SSM :
* BUBBLING PRESSURE ; FFC : FIELD CAPACITY ; WP : WILTING POINT ;

* THR : RESIDUAL MOISTURE CONTENT
*

* PAT : MINUTES IN A DAY

* CO : INPUT SOLUTE CONCENTRATION ; TSTR : STRIP THICKNESS

* PARAMETERS

* THC : IMMOBILE MOISTURE CONTENT ; DO : MOLECULAR DIFFUSION

* COEFFICIENT IN A FREE WATER SYSTEM ; A0,A10 : EMPIRICAL CONSTA-
* NTS CHARACTERIZING THE SOIL ; AML : DISPERSIVITY ; P : FRACTION

* OF ADSORPTION SITES LOCATED IN THE MOBILE SOIL MATRIX ; RO :

* BULK DENSITY OF SOIL ; CONS : EMPIRICAL DISTRIBUTION COEFFICIENT

* ALPHA : FIRST ORDER RATE COEFFICIENT GOVERNING TRANSFER OF

* SOLUTE INTO/OUT OF THE IMMOBILE PHASE ; BETA : FIRST ORDER RATE
* COEFFICIENT GOVERNING EXCHANGE BETWEEN SOLUTE AND SOIL MATRIX
*

* DELZ : SPATIAL INCREMENT IN THE FINITE DIFFERENCE GRID

* HPRI : INITIAL CAPILLARY HEAD DISTRIBUTION

* CI : INITIAL CONCENTRATION DISTRIBUTION
*

* NYR : YEAR OF SIMULATION ; NMNTH : MONTH OF SIMULATION ; NDT :

* DATE OF SIMULATION ; RAIN : RAINFALL INTENSITY (DAILY) ; PET :
* POTENTIAL EVAPOTRANSPIRATION (DAILY) ; PF : P FACTOR ; API :
* DEPTH OF APPLIED IRRIGATION ; RZD : DEPTH OF ROOT ZONE ; NOROOT

* : NODE NUMBER AT WHICH ROOT ZONE ENDS
*



* ERR

* THE

* ECE

* CCM

* CIM

* CC1

* ADN1

*

* WTSO

*
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RELATIVE MASS BALANCE ERROR

MOISTURE CONTENT

CONCENTRATION OF SATURATION EXTRACT
MOBILE CONCENTRATION

IMMOBILE CONCENTRATION
AVERAGE CONCENTRATION IN THE ROOT ZONE
: AVERAGE SOLUTE VOLUME (PER UNIT PLAN AREA) IN THE ROOT
ZONE

: VOLUME OF SOLUTE (PER UNIT PLAN AREA) JOINING THE WATER
TABLE

*

DIMENSION WADPT(800),CMD(800),SMY(800),VLT(800),CUMET(800)
DIMENSION DZS(120),ECE(120),COT(120),S(120)
DIMENSION NNA(120),INA(120,100),DV(120),DV1(120)
COMMON/DAT/DELZ(120),HAD(120),Bl(120),THE(120),HPR1(120),AP(120)
COMMON/CONN/CCM(120),VLA(120),VLX(120),CIM(120)
1,XV(120),XU(120),XF(120)
COMMON /CONC/VLL(800),X(800),Y(800),SOL(800),XWAT(800),
1YWAT(800)
COMMON/CONST/POR,SAT,PAT,SSM,FFC,WP,POW,THR,RZD,PF,PET,THC
COMMON/INDEX/TSTR,CO,AO,AlO,AML,DO,CFS,SUMVL,EFL,ALPHA,BETA
IP,RO,CONS
OPEN(UNIT=1,DEVICE='DSK',FILE='LR2.DAT')
OPEN(UNIT=2,DEVICE='DSK',FILE='LR1.DAT')
OPEN(UNIT=3,DEVICE='DSK',FILE='WHTSAL.OUT')
OPEN(UNIT=4,DEVICE='DSK',FILE='FLUX.OUT')
READ(1,*)NDP,NMAX,NT,NOB,ITR,IOPT,NWTV,NETS,NMKT
READ(1,*)DTM,TOTIRR,EPS
READ(1,*)POR,SAT,PAT,SSM,FFC,WP,POW,THR
READ(1,*)CO,CI,TSTR,DO,AO,AlO,AML,ALPHA,THC,P,RO,CONS,RX,KS
READ(1,*)(DELZ(I),I=1,NMAX-1)
READ(1,*)(HPR1(I),1=1,NDP)
READ(1,*)(CI(I),1=1,NDP)
IF (NMKT.EQ.l) GO TO 5
RX=RO

KS=CONS

RO=0.0

CONS=0.0

5 CONTINUE

SUM1=0.0

DO 101 1=1,NMAX
IF (I.GT.NDP) GO TO 102
JTL=I

Bl(I)=THETA(HPR1(I),JTL)
GO TO 101

102 Bl(I)=POR
101 CONTINUE

SOLIV=0.0

DO 10 J=1,NMAX
IF (J.GT.NDP) CI(J)=0.0
SOLIV=SOLIV+CI(J)*B1(J)

10 CONTINUE

AP(1)=(C0ND(B1(1),1)+C0ND(B1(2),2))/2.0



DFR=(HPR1(1)+DELZ(1)-HPR1(1))
DV(1)=DFR*AP(1)/(DELZ(1))
CALL DPEC(NMAX,DZS,XF,XV,XU)
CALL INICON(NMAX,XF,TSTR,Bl,THC,CI,P,RO,CONS,NTP)
NTT=NTP
CALL VOLSOL(NMAX,XV,XU,NTT,X,Y,SOL,VLL,VLA,VLX,COT,CCM,
1NNA,INA)
CTM=0.0

IX=0

IRR=0

65 CMDTM=0.0

IRR1=0

API=0.0

WTOD=WTNW

655 IX=IX+1
READ(2,*)NYR,NMNTH,NDT,RAIN,PET,PF,API
TYPE *,NYR,NMNTH,NDT,RAIN,PET,PF,API
IF (IX.EQ.l) GO TO 205
IF (NDT.EQ.1.0R.NDT.EQ.16) GO TO 205
GO TO 210

205 IF (IX.EQ.2.AND.NDT.EQ.16) GO TO 210
READ(2,*)RZD,NOROOT

210 CONTINUE

CMRAIN=RAIN

RAIN=RAIN/PAT
IF (NWTV.EQ.l) GO TO 889
IF (IX.GT.l) CALL WATBLE(WTOD,WTNW,NDP)

889 LMN=0

IF (API.EQ.0.0) GO TO 225
IRR=1

IRR1=1

APIRI=API/TOTIRR
TYPE *,APIRI
DPTAPI=0.0

225 FLUX1=RAIN+APIRI

IOPT=0

IF (HPR1(1).LE.0.0) IOPT=2
INX=INX+1

DO 166 IT=1,NT
DV1(1)=DV(1)
IF (IT.EQ.l) GO TO 62
IF (DELTAT.EQ.TSP) GO TO 62
IF (AD.EQ.HAX) GO TO 62
DELTAT=DT

NP=1

GO TO 60

62 DELTAT=DTM

TSP=DELTAT

AD=0.0

DT=0.0

NP=0
60 CALL SOLVE(NDP,IOPT,ITR,NETS,NOROOT,EPS,DELTAT,FLUX1,XU,XV

l,BAL,STOR,S,DT)

213
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AD=AD+DT
IF (IND.EQ.O.OR.NP.NE.O) GO TO 69
HAX=DT*(2**IND)
IND=0

69 CTM=CTM+DELTAT
CMDTM=CMDTM+DELTAT

CFL=CFL+BAL

CMS=CMS+STOR

FLUX=FLUX1

TYPE *,CTM,FLUX
IF (IOPT.EQ.O) GO TO 80
DFR=(HPR1(2)+DELZ(1)-HPR1(1))
DV(1)=DFR*AP(1)/(DELZ(1) )
FLUX=(DV1(1)+DV(1))/2.0
TYPE *,IOPT,FLUX

80 SUMIFS=SUMIFS+FLUX*DELTAT*CO
CALL MCURVE(NDP,B1,DELZ,THC,P,RO,CONS,NMD,WADPT,CMD)
IF (NETS.EQ.l) GO TO 79
CALL SOLET(NOROOT,NNA,INA,NTT,NTP,VLX,XV,XU,S,X,Y,VLL,
1RZD,DELTAT,CUMET)

79 CONTINUE
CALL MODCOR(NTP,NMD,FLUX,CUMET,SUMVL,CFS,WADPT,CMD,DELTAT,SMY)
CALL TRANS(NMAX,NTT,NTP,FLUX,DELTAT,THC,SMY,NNA,INA,NMKT)
IF (IRR.EQ.O) GO TO 288
DPTAPI=DPTAPI+APIRI*DELTAT

TYPE *,DPTAPI,API
IF (DPTAPI.LT.API) GO TO 288
APIRI=0.0

IRR=0

FLUX1=RAIN

288 SUMV=0.0

DO 901 K=1,NTT
SUMV=SUMV+SOL(K)

901 CONTINUE

SUMV=SUMV+EFL

SUMC=0.0

DO 902 J=1,NMAX
SUMC=SUMC+CCM(J)*VLX(J)+CIM(J)*(XU(J)-XV(J))*THC
SUMV=SUMV+CIM(J)*(XU(J)-XV(J))*THC

902 CONTINUE

SUMC=SUMC+EFL

TYPE *,IT,CMDTM,SUMIFS,SUMV
IF (CMDTM.EQ.PAT) GO TO 67

166 CONTINUE
67 IF (INX/20*20.EQ.INX) GO TO 784

IF (IX.EQ.l) GO TO 784
GO TO 780

784 WTSOL=0.0

DEPTH=XF(NDP)
IF (NWTV.NE.l) DEPTH=WTNW
DO 787 K=1,NTP
IF (X(K).LE.DEPTH) GO TO 787
IF (Y(K).LT.DEPTH) GO TO 789
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WTSOL=WTSOL+SOL(K)
GO TO 787
WTSOL=WTSOL+SOL(K)*(X(K)-DEPTH)/(X(K)-Y(K))
CONTINUE

ERR=(SUMIFS-SUMC-SOLIV)/SUMIFS
WTSOL=WTSOL+EFL

WRITE(4,*)NYR,NMNTH,NDT
WRITE(4,*)(THE(I),1=1,NDP)
DO 782 J=1,NDP
ECE(J)=(CCM(J)*(THE(J)-THC)+CIM(J)*THC)/POR
CONTINUE

WRITE(3,*)NYR,NMNTH,NDT
WRITE(3,*)ERR
WRITE(3,*)NDP,NMAX
WRITE(3,*)(ECE(J),J=1,NDP)
WRITE(3,*)(CCM(J),J=1,NMAX)
WRITE(3,*)(CIM(J),J=1,NMAX)
ADN1=0.0;ADN2=0.0;ADN3=0.0
ADN4=0.0;ADN5=0.0;ADN6=0.0

DO 883 J=l,NOROOT
ADN1=ADN1+(CCM(J)*(THE(J)-THC)+CIM(J)*THC)*(XU(J)-XV(J))
ADN2=ADN2+THE(J)*(XU(J)-XV(J))
CONTINUE

CC1=ADN1/ADN2
WRITE(3,*)CC1,ADN1
IF (IX.LT.NOB) GO TO 65
STOP

END

FUNCTION THETA(TUF,JTL)
C THIS FUNCTION COMPUTES MOISTURE CONTENT VALUES

COMMON/CONST/POR,SAT,PAT,SSM,FFC,WP,POW,THR,RZD,PF,PET,THC
IF(TUF.GT.SSM)GO TO 100
THETA=POR-THR*TUF/SSM

GO TO 101
THETA=EXP(ALOG(POR-2.0*THR)*TUF/SSM)+THR
IF(THETA.GT.POR)THETA=POR
RETURN

END

FUNCTION COND(TUF,JTL)
C THIS FUNCTION COMPUTES CAPILLARY CONDUCTIVITY VALUES

COMMON/CONST/POR,SAT,PAT,SSM,FFC,WP,POW,THR,RZD,PF,PET,THC
COND=SAT*((TUF-THR)/(POR-THR))**POW
IF (TUF.EQ.POR) COND=SAT
IF (TUF.LE.THC) COND=0.0
RETURN

END

SUBROUTINE DPEC(NMAX,DZS,XF,XV,XU)
SUBROUTINE COMPUTES CUMULATIVE NODAL DEPTHS AND NODAL AREA

OF INFLUENCE

DIMENSION DZS120),XF(120),XV(120),XU(120)
SUM1=0.0

DO 3 J=2,NMAX
SUM1=SUM1+DZS(J-l)



216

XF(J)=SUM1
3 CONTINUE

XF(1)=0.0
DO 155 J=1,NMAX
IF (J.EQ.l) GO TO 1100
XV(J)=XF(J-1)+0.5*(XF(J)-XF(J-1))
GO TO 1122

1100 XV(J)=XF(J)
1122 CONTINUE

IF (J.EQ.NMAX) GO TO 1155
XU(J)=XF(J+1)-0.5*(XF(J+1)-XF(J))
GO TO 1177

1155 XU(J)=XF(J)
1177 CONTINUE

155 CONTINUE

RETURN

END
SUBROUTINE INICON(NMAX,XF,TSTR,Bl,THC,CI,P,RO,CONS,NTP)

C THIS SUBROUTINES COMPUTES THE TOTAL NUMBER OF MOVING PACKETS, THEIR
C COORDINATE POSITIONS, WATER AND SOLUTE VOLUMES (PER UNIT PLAN AREA)
C CONTAINED IN THEM AND CUMULATIVE WATER VOLUMES (PER UNIT PLAN AREA)
C CORRESPONDING TO THE CO-ORDINATES AT THE BEGINNING OF SIMULATION

DIMENSION XF(120),B1(120),CI(120)
DIMENSION XTH(800),YTH(800),WCON(800),CPX(800),CPY(800),
CPI(800)
COMMON /CONC/VLL(800),X(800),Y(800),SOL(800),XWAT(800),
1YWAT(800)
NTP=0

CTM=0.0

TTE=PAT

RNM=XF(NMAX)/TSTR
NNM=IFIX(RNM)
DO 35 K=NTP+1,NTP+NNM
Y(K)=(FLOAT(NTP+NNM)-FLOAT(K))*TSTR
X(K)=Y(K)+TSTR

35 CONTINUE

NTP=NTP+NNM

NTT=NTP

MP2=NTP+1

DO 31 K=1,NTP
DO 30 J=1,NMAX-1
IF (X(K).LT.XF(J).OR.X(K).GT.XF(J+1)) GO TO 30
XTH(K)=B1(J)+(B1(J+1)-B1(J))*(X(K)-XF(J))/(XF(J+1)-XF(J))
CPX(K)=CI(J)+(CI(J+1)-CI(J))*(X(K)-XF(J))/(XF(J+1)-XF(J))
GO TO 29

30 CONTINUE

29 DO 28 J=1,NMAX-1
IF (Y(K).LT.XF(J).OR.Y(K).GT.XF(J+1)) GO TO 28
YTH(K)=B1(J)+(B1(J+1)-B1(J))*(Y(K)-XF(J))/(XF(J+1)-XF(J))
CPY(K)=CI(J)+(CI(J+1)-CI(J))*(Y(K)-XF(J))/(XF(J+1)-XF(J))
GO TO 31

28 CONTINUE

31 CONTINUE
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DO 33 K=1,NTP
WCON(K)-(XTH(K)+YTH(K)-2.0*(THC+P*RO*CONS))/2.0
VLL(K)=(X(K)-Y(K))*(XTH(K)+YTH(K)-2.0*(THC+P*RO*CONS))/2.0
CPI(K)=(CPX(K)+CPY(K))/2.0
SOL(K)=VLL(K)*CPI(K)

33 CONTINUE

DO 39 L=1,NTP
K=NTP-L+1

SUMXW=SUMXW+(X(K)-Y(K))*WCON(K)
XWAT(K)=SUMXW
IF (K.EQ.NTP) GO TO 39
SUMYW=SUMYW+(X(K+1)-Y(K+1))*WCON(K+1)
YWAT(K)=SUMYW

39 CONTINUE

YWAT(NTP)=0.0
RETURN

END
SUBROUTINE VOLSOL(NMAX,XV,XU,NTT,X,Y,SOL,VLL,VLA,VLX,COT
1,CCM,NNA,INA)

C THIS SUBROUTINE COMPUTES NODAL WATER AND SOLUTE VOLUMES (PER UNIT
C PLAN AREA)

DIMENSION XV(120),XU(120),VLX(120),COT(120),CCM(120),NNA
1(120),INA(120,100),VLA(120)
DIMENSION X(800),Y(800),SOL(800),VLL(800)
DO 55 J=1,NMAX
VLA(J)=0.0
VLX(J)=0.0
NNA(J)=0.0

55 CONTINUE

SUMSOL=0.0

DO 50 J=1,NMAX
DO 60 K=1,NTT
IF (X(K).LE.XV(J).OR.Y(K).GE.XU(J)) GO TO 60
IF (Y(K).LE.XV(J).AND.X(K).GE.XU(J)) GO TO 53
IF (Y(K).LT.XV(J).AND.X(K).GT.XV(J)) GO TO 66
IF (Y(K).LT.XU(J).AND.X(K).GT.XU(J)) GO TO 71
VLA(J)=VLA(J)+SOL(K)
VLX(J)=VLX(J)+VLL(K)
GO TO 75

66 VLA(J)=VLA(J)+SOL(K)*(X(K)-XV(J))/(X(K)-Y(K))
VLX(J)=VLX(J)+VLL(K)*(X(K)-XV(J))/(X(K)-Y(K))
GO TO 75

71 VLA(J)=VLA(J)+SOL(K)*(XU(J)-Y(K))/(X(K)-Y(K))
VLX(J)=VLX(J)+VLL(K)*(XU(J)-Y(K))/(X(K)-Y(K))
GO TO 75

53 VLA(J)=VLA(J)+SOL(K)*(XU(J)-XV(J))/(X(K)-Y(K))
VLX(J)=VLX(J)+VLL(K)*(XU(J)-XV(J))/(X(K)-Y(K))

75 NNA(J)=NNA(J)+1
KN=NNA(J)
INA(J,KN)=K

60 CONTINUE

IF (VLX(J).EQ.0.0) GO TO 50
COT(J)=VLX(J)/(XU(J)-XV(J))
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CCM(J)=VLA(J)/VLX(J)
50 CONTINUE

RETURN

END

SUBROUTINE WATBLE(WTOD,WTNW,NDP)
C THIS SUBROUTINE MODIFIES THE NUMBER OF NODES, THEIR POSITIONS
C AND CAPILLARY HEAD VALUES IN CASE OF A VARIABLE WATER TABLE

COMMON/DAT/DELZ(120),HAD(120),Bl(120),THE(120),HPR1(120),AP(12(
NDOLD=NDP

DTW=WTOD-DELZ(NDP-1)
PRH=HPR1(NDP-1)
HNS=0.5*DELZ(NDP-2)
ZZ=DELZ(NDP-2)
DFWT=WTNW-WTOD

IF (DFWT)5,10,15
15 DFWT=DFWT+DELZ(NDP-1)

NDP=NDP-1

50 DFWT=DFWT-ZZ
IF (DFWT.LT.0.0) GO TO 60
DELZ(NDP)=ZZ
NDP=NDP+1

GO TO 50

60 DFWT=DFWT+ZZ

IF (DFWT.EQ.0.0) GO TO 70
IF (DFWT.LT.HNS) GO TO 80
NDP=NDP+1

DELZ(NDP-1)=DFWT
GO TO 70

80 DELZ(NDP-1)=DELZ(NDP-1)+DFWT
70 HPR1(NDP)=0.0

GO TO 10

5 DFWT=DFWT+DELZ(NDP-1)
NDP=NDP-1

IF(DFWT.LT.O.O) GO TO 5
IF (DFWT.EQ.0.0) GO TO 55
IF (DFWT.LT.HNS) GO TO 40
NDP=NDP+1

DELZ(NDP-1)=DFWT
GO TO 55

40 DELZ(NDP-1)=DELZ(NDP-1)+DFWT
55 HPR1(NDP)=0.0
10 CONTINUE

IF (NDP.LE.NDOLD) GO TO 678
DXDN=0.0

DO 673 J=NDOLD,NDP
DXDN=DXDN+DELZ(J-l)
HPR1(J)=PRH*(WTNW-(DTW+DXDN))/(WTNW-DTW)

673 CONTINUE

DO 678 J=NDOLD,NDP

JTL=J

B1(J)=THETA(HPR1(J),JTL)
678 CONTINUE

RETURN
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SUBROUTINE SOLVE(NDP,IOPT,ITR,NETSNNOROOT,EPS,DELTAT,RAIN
l,XU,XV,BAL,STOR,S,DT)

C THIS SUBROUTINE SOLVES RICHARDS EQUATION AND PROVIDES THE LATEST
C VALUES OF CAPILLARY HEADS AND MOISTURE CONTENTS

DIMENSION SA(120),STOl(120),FTHE(120),AP1(120),STO(120)
l.XU(120),XV(120)
DIMENSION B(120),A(120),C(120),D(120),H(120),F(120),S(120)
COMMON/DAT/DELZ(120),HAD(120),B1(120),THE(120),HPR1(120),AP(120
LMN=LMN+1

KIN=1

IF (LMN.NE.l) GO TO 3801
DO 5 1=1,NDP-1
JTL=I
AP(I)=(C0ND(B1(I),JTL)+C0ND(B1(I+1),(JTL+1)))/2.0

5 CONTINUE
ST0(1)=(-HPR1(1)+HPR1(2)+DELZ(1))/DELZ(1)*AP(1)
Cl=STO(1)
G1=(-HPR1(NDP-1)+HPR1(NDP)+DELZ(NDP-1))/DELZ(NDP-1)*AP(NDP-1)
STO(NDP-1)=G1-(-HPR1(NDP-2)+HPR1(NDP-1)+DELZ(NDP-2))/DELZ(NDP-2

^ l*AP(NDP-2)
ST0(NDP)=G1
DO 1000 1=2,NDP-2
ST0(I)=(-HPR1(I)+HPR1(I+1)+DELZ(I))/DELZ(I)*AP(I)
l-(-HPRl(I-l)+HPRl(I)+DELZ(I-l))/DELZ(I-l)*AP(I-l)

1000 CONTINUE

DO 3800 1=1,NDP
ST01(I)=STO(I)

3800 CONTINUE

3801 CONTINUE

NPT=IOPT

DO 1266 1=1,NDP
SA(I)=STO(I)

1266 CONTINUE

900 CONTINUE

V IOPT=NPT
DO 1 1=1,NDP
THE(I)=B1(I)
AP1(I)=AP(I)
STO(I)=SA(I)
HAD(I)=HPR1(I)

1 CONTINUE

DO 110 M=1,ITR
IF (NETS.EQ.l) GO TO 111
CALL SINK(NDP,NOROOT,Bl,THE,XU,XV,S,DELTAT)

111 CONTINUE

DO 10 1=1,NDP-1
JTL=I
AP(I)=(COND(THE(I),JTL)+COND(THE(1+1),(JTL+1)))/2.0

10 CONTINUE

* DO 68 1=1,NDP
JTL=I

IF (I.GT.l.AND.I.LT.NDP) GO TO 69
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IF (I.EQ.l) GO TO 70
GO TO 75

70 IF (IOPT.GT.O) GO TO 71
A(I)=0.0
B(I)=AP(I)/DELZ(I)-DELZ(I)/DELTAT*DIFU(JTL)
C(I)=-AP(I)/DELZ(I)D(I)=-HPR1(I)*DELZ(I)/DELTAT*DIFU(JTL)-2.0*RAIN+STO(I)+AP(I)
1+2.0*S(I)
GO TO 68

75 A(I)=0.0
B(I)=1.0
C(I)=0.0
D(I)=0.0
GO TO 68

71 A(I)=0.0
B(I)=1.0
C(I)=0.0
D(I)=HAD(I)
GO TO 68

69 CONTINUE

JTL=I

A(I)=-AP(I-1)/DELZ(I-1)
B(I)=AP(I-1)/DELZ(I-1)+AP(I)/DELZ(I)-DIFU(JTL)*(DE
1LZ(1-1)+DELZ(I))/DELTAT
C(I)=-AP(I)/DELZ(I)
D(I)=-DIFU(JTL)*(DELZ(I-1)+DELZ(I))*HPR1(I)/DELTAT+
1STO(I)+AP(I)-AP(I-1)+2.0*S(I)

68 CONTINUE

CALL BST(NDP,A,B,C,D,H)
DO 73 1=1,NDP

F(I)=H(I)
73 CONTINUE

IF (IOPT.GT.O) GO TO 502
IF (HPR1(1).GT.O.O.AND.F(l).GT.0.0) GO TO 504
IF (F(l).GT.-0.01.AND.HPR1(1).LT.0.01) F(1)=0.0
IF (F(l).NE.0.0) GO TO 1100
IOPT=2

GO TO 1110

502 F(1)=HPR1(1)+(STO(1)+AP(1)*(HAD(2)-HAD(1)+DELZ(1))/DELZ(1))
l*DELTAT/2.0+(THE(l)-Bl(l))*DELZ(l)/2.0-RAIN*DELTAT+S(l)*DELTAT
IF (HPR1(1).LE.O.O.AND.F(l).LE.0.0) GO TO 504
IF (HPR1(1).GT.-0.01.AND.F(l).LT.0.01) F(l)=0.001
IF (F(l).NE.0.001) GO TO 1100
IOPT=0

GO TO 1110

504 DO 505 K=1,NDP
PERR=F(K)*EPS
IF (PERR.EQ.0.0) GO TO 507

IF(ABS(HAD(K)-F(K)).LE.ABS(PERR)) GO TO 507
GO TO 605

507 JTL=K

FTHE(K)=THETA(F(K),JTL)
ERD=FTHE(K)*EPS



IF (ABS(THE(K)-FTHE(K)).LE.ABS(ERD)) GO TO 505
GO TO 605

505 CONTINUE

GO TO 1110

605 DO 600 1=1,NDP
JTL=I

HAD(I)=F(I)
THE(I)=THETA(HAD(I),JTL)

600 CONTINUE

110 CONTINUE

1100 DELTAT=DELTAT/2.0
IND=IND+1

DT=DELTAT

GO TO 900

1110 CONTINUE

DO 700 1=1,NDP

JTL=I

HAD(I)=F(I)
THE(I)=THETA(HAD(I),JTL)

700 CONTINUE

, DO 800 1=1,NDP-1
JTL=I

AP(I)=(COND(THE(I),JTL)+COND(THE(I+l),(JTL+1)))/2.0
800 CONTINUE

STO(1)=(-HAD(1)+HAD(2)+DELZ(1))/DELZ(1)*AP(1)
C2=STO(l)
G2=(-HAD(NDP-1)+HAD(NDP)+DELZ(NDP-1))/DELZ(NDP-1)
1*AP(NDP-1)
STO(NDP)=G2
STO(NDP-1)=G2-(-HAD(NDP-2)+HAD(NDP-1)+DELZ(NDP-2))/DELZ
1(NDP-2)*AP(NDP-2)
DO 1050 1=2,NDP-2
STO(I)=(-HAD(I)+HAD(I+l)+DELZ(I))/DELZ(I)*AP(I)
l-(-HAD(I-l)+HAD(I)+DELZ(I-l))/DELZ(I-l)*AP(I-1)

1050 CONTINUE

^ STO(NDP)=G2
COM=RAIN*DELTAT

IF (IOPT.GT.O) C0M=(C1+C2)*DELTAT/2.0
OUT=(Gl+G2)*DELTAT/2.
EVTP=0.0

DO 1070 J=l,NOROOT
EVTP=EVTP+S(J)*DELTAT

1070 CONTINUE

BAL=COM-(OUT+EVTP)
STOR=TRP(NDP)
DO 3700 1=1,NDP

B1(I)=THE(I)
HPR1(I)=HAD(I)

3700 CONTINUE

C1=C2

G1=G2

RETURN

END
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SUBROUTINE SINK(NDP,NOROOT,Bl,THE,XU,XV,S,DELTAT)
C THIS SUBROUTINE COMPUTES NODAL EVAPOTRANSPIRATION VALUES

DIMENSION B(120),B1(120),THE(120),XU(120),XV(120),S(120)
COMMON/CONST/POR,SAT,PAT,SSM,FFC,WP,POW,THR,RZD,PF,PET,THC
THMC=FFC-(FFC-WP)*PF
SSS=PET/(PAT*RZD)
DO 10 J=1,NDP
B(J)=(Bl(J)+THE(J))/2.0
S(J)=0.0

10 CONTINUE

DO 50 J=l,NOROOT
IF (B(J).GE.THMC) GO TO 30
IF (B(J).LE.WP.OR.B(J).GE.POR) GO TO 40
S(J)=SSS*(B(J)-WP)/(THMC-WP)*(XU(J)-XV(J))
IF (J.EQ.NOROOT) S(J)=S(J)*(RZD-XV(J))/(XU(J)-XV(J))
GO TO 20

30 S(J)=SSS*(XU(J)-XV(J))
IF (J.EQ.NOROOT) S(J)=SSS*(RZD-XV(J))
GO TO 2 0

40 S(J)=0.0
20 SVR=S(J)*DELTAT

AVSM=(B(J)-THR)*(XU(J)-XV(J))
IF (J.EQ.NOROOT) AVSM=(B(J)-THR)*(RZD-XV(J))
IF (AVSM.LT.0.0) AVSM=0.0
IF (SVR.GT.AVSM) SVR=AVSM
S(J)=SVR/DELTAT

50 CONTINUE

RETURN

END

FUNCTION DIFU(JTL)
C THIS FUNCTION COMPUTES SPECIFIC MOISTURE CAPACITY

COMMON/DAT/DELZ(120),HAD(120),B1(120),THE(120),HPR1(120),AP(120
COMMON/CONST/POR,SAT,PAT,SSM,FFC,WP,POW,THR,RZD,PF,PET,THC
TUF1=(HPR1(JTL)+HAD(JTL))/2.0
AC=ALOG(POR-2.0*THR)/SSM
IF(TUF1.GT.SSM)G0 TO 1000
IF (TUF1.EQ.SSM) GO TO 887
DIFU=-THR/SSM
RETURN

1000 DIFU=EXP(AC*TUF1)*(AC)
IF(DIFU.GE.0.0)STOP'ERROR-SPEC
RETURN

887 CONTINUE
Al=THETA(TUFl+0.001,JTL)/0.002
A2=THETA(TUF1-0.001,JTL)/0.002
DIFU=A1-A2

IF(DIFU.GE.0.0)STOP'ERROR-SPEC
RETURN

END

FUNCTION TREP(NDP)
C THIS FUNCTION COMPUTES THE CHANGE IN MOISTURE STORAGE

COMMON/DAT/DELZ(120),HAD(120),B1(120),THE(120),HP1(120),AP(120)
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AREA=0.0

DO 100 KM=2,NDP-1
AREA=AREA+(THE(KM)-Bl(KM))*(DELZ(KM-1)+DELZ(KM))/2.

100 CONTINUE
TREP=AREA+(THE(1)-Bl(1))*(DELZ(l))/2.+(THE(NDP)-Bl(NDP))
1*DELZ(NDP-1)/2.
RETURN

END

SUBROUTINE BST (N,A,B,C,D,H)
C THIS SUBROUTINE SOLVES THE TRI-DIAGONAL COEFFICIENT MATRIX
C USING THOMAS ALGORITHM

DIMENSION A(800),B(800),C(800),D(800)
DIMENSION AL(800),BT(800),Y(800),H(800)
AL(1)=B(1)
BT(1)=C(1)/B(1)
DO 100 1=2,N
AL(I)=B(I)-A(I)*BT(I-1)
BT(I)=C(I)/AL(I)

100 CONTINUE

Y(1)=D(1)/AL(1)
DO 200 1=2,N
Y(I)=(D(I)-A(I)*Y(I-1))/AL(I)

200 CONTINUE

H(N)=Y(N)
DO 300 1=2,N

II=N-I+1

H(II)=Y(II)-BT(II)*H(II+1)
300 CONTINUE

RETURN

END

SUBROUTINE TRANS(NMAX,NTT,NTP,FLUX,DELTAT,THC,SMY,NNA,INA,NMKT)
C THIS SUBROUTINE SOLVES THE SOLUTE TRANSPORT EQUATIONS

DIMENSION COT(120),CCD(120),CIMP(120),NNA(120),INA(120,100)
DIMENSION DIS(800),HRC(800),VLT(800),DFC(800),CSO(800),
1WCON(800),SMY(800)
DIMENSION A(800),B(800),C(800),D(800),H(800)
COMMON/DAT/DELZ(120),HAD(120),B1(120),THE(120),HPR1(120),AP(120)
COMMON/CONN/CCM(120),VLA(120),VLX(120),CIM(120)
1,XV(120),XU(120),XF(120)
COMMON /CONC/VLL(800),X(800),Y(800),SOL(800),XWAT(800),
1YWAT(800)
COMMON/INDEX/TSTR,CO,AO,AlO,AML,DO,CFS,SUMVL,EFL,ALPHA,
1P,R0,C0NS,RX,KS
XL=Y(NTP)
IF (SUMVL.GE.0.0) GO TO 99
GO TO 101

99 CFS=CFS+FLUX*DELTAT*CO

IF (XL.LT.TSTR) GO TO 101
ETP=XL/TSTR
NMP=IFIX(ETP)
DSL=(ETP-NMP)*TSTR
SLSUM=0.0

DO 107 K=NTP+1,NTP+NMP



VLL(K)=TSTR*SUMVL/XL
SOL(K)=TSTR*CFS/XL
Y(K)=DSL+(FLOAT(NTP+NMP)-FLOAT(K))*TSTR
X(K)=Y(K)+TSTR
XWAT(K)=X(K)*SUMVL/XL
YWAT(K)=Y(K)*SUMVL/XL
SLSUM=SLSUM+SOL(K)

107 CONTINUE
NTP=NTP+NMP

XL=DSL

SUMVL=YWAT(NTP)
CFS=CFS-SLSUM

101 CONTINUE
EXDP=XF(NMAX)
CALL EXCMOV(NTP,EXDP,EFL)
IF (XL.EQ.0.0) GO TO 115
NTT=NTP+1

VLL(NTT)=SUMVL
SOL(NTT)=CFS
X(NTT)=XL
Y(NTT)=0.0
XWAT(NTT)=SUMVL
YWAT(NTT)=0.0
GO TO 114

115 NTT=NTP

114 DO 105 K=1,NTT
DIS(K)=X(K)-Y(K)
HRC(K)=SOL(K)/VLL(K)
WCON(K)=VLL(K)/(X(K)-Y(K))-P*RO*CONS

105 CONTINUE

DO 110 K=1,NTT-1
AVW=(WCON(K)+WCON(K+1))/2.0
WIP=A10*AVW

DFC(K)=D0*A0*EXP(WIP)+AML*ABS(SMY(K))
110 CONTINUE

DO 69 K=1,NTT
IF (K.GT.LAND.K.LT.NTT) GO TO 73
IF (K.EQ.NTT) GO TO 72
GO TO 74

72 AX=2.0*((WCON(K-1)+WCON(K)))*(DFC(K-1))/
1(DIS(K)*(DIS(K)+DIS(K-1)))
A(K)=-AX
B(K)=(WCON(K)+P*RO*CONS)/(DELTAT)+AX
C(K)=0.0
D(K)=HRC(K)*(WCON(K)+P*RO*CONS)/DELTAT
GO TO 69

74 AX=2.0*((WCON(K+1)+WCON(K)))*(DFC(K))/
1(DIS(K)*(DIS(K)+DIS(K+1)))
A(K)=0.0
B(K)=(WCON(K)+P*RO*CONS)/(DELTAT)+AX
C(K)=-AX
D(K)=HRC(K)*(WCON(K)+P*RO*CONS)/(DELTAT)
GO TO 69
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73 CONTINUE
ATH=(WCON(K)+WCON(K+1))/2.0
BTH=(WCON(K-1)+WCON(K))/2.0
A(K)=-(2.0*DFC(K-1))*(BTH)/(DIS(K)*(
1DIS(K)+DIS(K-1)))
B(K)=(WCON(K)+P*RO*CONS)/DELTAT+(2.0*DFC(K))*
1(ATH)/(DIS(K)*(DIS(K)+DIS(K+1)))+(2.0*DFC(K-1))*(BTH
2)/(DIS(K)*(DIS(K)+DIS(K-l)))
C(K)=-(2.0*DFC(K))*(ATH)/(DIS(K)*(DIS(K)+DIS(K+1)))
D(K)=HRC(K)*(WCON(K)+P*RO*CONS)/DELTAT

69 CONTINUE
CALL BST(NTT,A,B,C,D,H)
DO 88 K=1,NTT
CSO(K)=H(K)

88 CONTINUE

DO 106 K=1,NTT
SOL(K)=CSO(K)*VLL(K)

106 CONTINUE
CALL VOLSOL(NMAX,XV,XU,NTT,X,Y,SOL,VLL,VLA,VLX,COT,CCM,
1NNA,INA)
IF (THC.EQ.0.0.OR.ALPHA.EQ.0.0) GO TO 78
DO 121 J=1,NMAX
IF (NMKT.NE.l) GO TO 122
CIM(J)=(ALPHA*DELTAT*CCM(J)+CIMP(J)*(THC+(1-P)*RO*CONS))
l/((THC+(l-P)*RO*CONS)+ALPHA*DELTAT)
CCM(J)=CCM(J)-(CIM(J)-CIMP(J))*(THC+(l-P)*RO*CONS)/COT(J)
GO TO 121

122 CIM(J)=(ALPHA*DELTAT*KS*CCM(J)+CIMP(J))/(1.0+ALPHA*DELTAT)
CCM(J)=CCM(J)-RX*(CIM(J)-CIMP(J))/COT(J)

121 CONTINUE

DO 123 J=1,NMAX
CCD(J)=(CIMP(J)-CIM(J))*(THC+(l-P)*RO*CONS)/COT(J)
IF (NMKT.EQ.l) GO TO 124
CCD(J)=(CIMP(J)-CIM(J))*RX/COT(J)

124 CIMP(J==CIM(J)
123 CONTINUE

CALL MODSOL(NTT,NMAX,NNA,INA,VLA,VLX,CCD,XU,XV,X,Y,SOL)
78 IF (NTT.EQ.NTP) GO TO 79

CFS=SOL(NTT)
79 CONTINUE

RETURN

END

SUBROUTINE MCURVE(NDP,Bl,DELZ,THC,P,RO,CONS,NMD,WADPT,CMD)
C THIS SUBROUTINE COMPUTES THE CUMULATIVE WATER VS DEPTH PROFILE

DIMENSIONB1(120),DELZ(120),WADPT(120),CMD(120)
SUM2=0.0

SUM3=0.0

LNDP=1

DO 7 3 J=2,NDP
SUMDP=0.0

PSTP=ABS(Bl(J)-Bl(J-l))
NDIV=IFIX(PSTP/0.002)
IF (PSTP.LT.0.002) NDIV=1
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DDZ=DELZ(J-l)/FLOAT(NDIV)
733 LNDP=LNDP+1

SUMDP=SUMDP+DDZ

SUM3=SUM3+DDZ

CMD(LNDP)=SUM3
STAG=(Bl(J-l)-(THC+P*RO*CONS))
IF (STAG.LT.0.0) STAG=0.0
SUM2=SUM2+(2.0*STAG+(Bl(J)-Bl(J-l))*
1(SUMDP+SUMDP-DDZ)/DELZ(J-l))*DDZ*0.5
WADPT(LNDP)=SUM2
IF (SUMDP.LT.DELZ(J-l)) GO TO 733

73 CONTINUE
WADPT(1)=0.0
NMD=LNDP+1
CMD(NMD)=CMD(LNDP)+15.0*DELZ(NDP-2)
WADPT(NMD)=WADPT(LNDP)+(B1(NDP)-THC+P*RO*CONS)*15.0*DELZ(NDP-2]
RETURN

END

SUBROUTINE DONNA(X,ARG,VAL,Y,NDIM,IER)
C THIS SUBROUTINE PROVIDES LINEAR INTERPOLATION

DIMENSION ARG(800),VAL(800)
IER=0

KDIM=NDIM-1

IF (ARG(l).GT.ARG(2)) GO TO 1
IF (X.LT.ARG(l).OR.X.GT.ARG(NDIM)) GO TO 100
DO 2 I=1,KDIM
IF (X.GE.ARG(I).AND.X.LE.ARG(I+1)) GO TO 3

2 CONTINUE
3 Y=VAL(I)+(X-ARG(I))*(VAL(I+1)-VAL(I))/(ARG(I+1)-ARG(I))

RETURN
1 IF (X.GT.ARG(l).OR.X.LT.ARG(NDIM)) GO TO 100

DO 4 I=1,KDIM
IF (X.LE.ARG(I).AND.X.GE.ARG(I+1)) GO TO 5

4 CONTINUE
5 Y=VAL(I)+(X-ARG(I))*(VAL(I+1)-VAL(I))/(ARG(I+1)-ARG(I))

RETURN

100 IER=1

RETURN

END

SUBROUTINE SOLET(NOROOT,NNA,INA,NTT,NTP,VLX,XV,XU,S,X,Y,
1VLL,RZD,DELTAT,CUMET)

C THIS SBBROUTINE MODIFIES THE WATER VOLUMES (PER UNIT PLAN AREA) OF
C MOVING PACKETS DUE TO LOSS OF WATER BY EVAPOTRANSPIRATION

DIMENSION NNA(120),INA(120,100),VLX(120),XV(120),XU(120)
1,S(120)
DIMENSION X(800),Y(800),VLL(800),CUMET(800),ETS(800),VLT
1(800)
DO 399 K=1,NTT
VLT(K)=VLL(K)

399 CONTINUE

I=NOROOT

IF (RZD.EQ.XU(I)) GO TO 411
VLX(I)=0.0
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DO 411 KK=1,NNA(I)
K=INA(I,KK)
IF (Y(K).GE.RZD) GO TO 411
IF (Y(K).LT.XV(I).AND.X(K).GT.RZD) GO TO 413
IF (Y(K).LT.XV(I).AND.X(K).GT.XV(I)) GO TO 414
IF (Y(K).LT.RZD.AND.X(K).GT.RZD) GO TO 415
VLX(I)=VLX(I)+VLL(K)
GO TO 411

413 VLX(I)=VLX(I)+(RZD-XV(I))/(X(K)-Y(K))*VLL(K)
GO TO 411

414 VLX(I)=VLX(I)+(X(K)-XV(I))/(X(K)-Y(K))*VLL(K)
GO TO 411

415 VLX(I)=VLX(I)+(RZD-Y(K))/(X(K)-Y(K))*VLL(K)
411 CONTINUE

XYZ=XU(I)
XU(I)=RZD
ADD=0.0

DO 300 L=1,NTT
K=NTT-L+1

ETS(K)=0.0
CUMET(K)=0.0
SUME=0.0

DO 310 J=l,NOROOT
IF (X(K).LE.XV(J).OR.Y(K).GE.XU(J)) GO TO 310
IF (Y(K).LT.XV(J).AND.X(K).GT.XU(J)) GO TO 320
IF (Y(K).LT.XV(J).AND.X(K).GT.XV(J)) GO TO 330
IF (Y(K).LT.XU(J).AND.X(K).GT.XU(J)) GOTO 340
ETS(K)=VLT(K)/VLX(J)*S(J)*DELTAT
GO TO 350

330 ETS(K)=VLT(K)*(X(K)-XV(J))/((X(K)-Y(K))*VLX(J))*S(J)*DELTAT
GO TO 3 50

340 ETS(K)=VLT(K)*(XU(J)-Y(K))/((X(K)-Y(K))*VLX(J))*S(J)*DELTAT
GO TO 350

320 ETS(K)=S(J)*DELTAT
350 VLL(K)=VLL(K)-ETS(K)

SUME=SUME+ETS(K)
310 CONTINUE

ADD=ADD+SUME

CUMET(K)=ADD
300 CONTINUE

XU(NOROOT)=XYZ
IF (NTT.EQ.NTP) CUMET(NTP+1)=0.0
RETURN

END

SUBROUTINE MODCOR(NTP,NMD,FLUX,CUMET,SUMVL,CFS,WADPT,CMD
1,DELTAT,SMY)

C THIS SUBROUINE MODIFIES THE CUMULATIVE VOLUMES (PER UNIT PLAN AREA) C
C WATER CORRESPONDING TO THE MOVING COORDINATES AND COMPUTES THEIR NEW
C POSITIONS

DIMENSION CUMET(800),SMY(800),SM(800),XOLD(800),YOLD(800)
DIMENSION WADPT(120),CMD(120)
COMMON /CONC/VLL(800),X(800),Y(800),SOL(800),XWAT(800),
1YWAT(800)



DO 34 K=1,NTP
XOLD(K)=X(K)
YOLD(K)=Y(K)

34 CONTINUE

MPR=0

DO 36 K=1,NTP
XWAT(K)=XWAT(K)+FLUX*DELTAT-CUMET(K)
YWAT(K)=YWAT(K)+FLUX*DELTAT-CUMET(K+1)
IF (YWAT(K).GT.O.O) GO TO 36
SUMVL=XWAT(K)
CFS=CFS+SOL(K)
MPR=MPR+1

36 CONTINUE

NTP=NTP-MPR
IF (MPR.EQ.O) SUMVL=YWAT(NTP)
DO 26 K=1,NTP
CALL DONNA(XWAT(K),WADPT,CMD,X(K),NMD,IER)
IF(IER.NE.O)STOP'ERROR IN INT1'
SM(K)=(X(K)-XOLD(K))/DELTAT
CALL DONNA(YWAT(K),WADPT,CMD,Y(K),NMD,IER)
IF (IER.NE.O) TYPE *,K,Y(K)
IF(IER.NE.O)STOP'ERROR IN INT2'
SMY(K)=(Y(K)-YOLD(K))/DELTAT

26 CONTINUE

RETURN

END

SUBROUTINE EXCMOV(NTP,EXDP,EFL)
C THIS SUBROUTINE EXCLUDES MOVING PACKETS LEAVING THE DOMAIN

COMMON /CONC/VLL(800),X(800),Y(800),SOL(800),XWAT(800)
1YWAT(800)

43 CONTINUE

DO 40 IK=1,NTP
IF (X(IK).LE.EXDP) GO TO 40
IF (Y(IK).LT.EXDP) GO TO 441
EFL=EFL+SOL(IK)
DO 442 L=IK,NTP-1
X(L)=X(L+1)
Y(L)=Y(L+1)
VLL(L)=VLL(L+1)
SOL(L)=SOL(L+l)
XWAT(L)=XWAT(L+1)
YWAT(L)=YWAT(L+l)

442 CONTINUE

NTP=NTP-1

GO TO 43
441 EFL=EFL+SOL(IK)*(X(IK)-EXDP)/(X(IK)-Y(IK))

SOL(IK)=SOL(IK)-SOL(IK)*(X(IK)-EXDP)/(X(IK)-Y(IK))
XWAT(IK)=XWAT(IK)-(X(IK)-EXDP)*VLL(IK)/(X(IK)-Y(IK))
VLL(IK)=VLL(IK)-VLL(IK)*(X(IK)-EXDP)/(X(IK)-Y(IK))
X(IK)=EXDP

40 CONTINUE

RETURN

END
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SUBROUTINE MODSOL(NTT,NMAX,NNA,INA,VLA,VLX,CCD,XU,XV,X,Y,SOL)
C THIS SUBROUTINE MODIFIES SOLUTE VOLUMES (PER UNIT PLAN AREA) CONTAINEC
C IN THE MOVING PACKETS

DIMENSION NNA(120),INA(120,100),VLA(120),CCD(120),XU(120)
1,XV(120),VLX(120)
DIMENSION X(800),Y(800),SOL(800),VLT(800)
DO 669 K=1,NTT
VLT(K)=SOL(K)

669 CONTINUE
DO 78 J=1,NMAX
IF (CCD(J).EQ.0.0) GO TO 78
DO 70 KK=1,NNA(J)
K=INA(J,KK)
IF (CCD(J).LT.O.O.AND.VLA(J).LT.1.0E-35) GO TO 78
IF (CCD(J).GT.0.0) GO TO 57
RT=VLT(K)/VLA(J)
IF (Y(K).LT.XV(J).AND.X(K).GT.XV(J)) RT=VLT(K)*(X(K)-XV(J))/
1((X(K)-Y(K))*VLA(J))
IF (Y(K).LT.XU(J).AND.X(K).GT.XU(J)) RT=VLT(K)*(XU(J)-Y(K))/
1((X(K)-Y(K))*VLA(J))
IF (Y(K).LE.XV(J).AND.X(K).GE.XU(J)) RT=1.0
GO TO 59

57 RT=(X(K)-Y(K))/(XU(J)-XV(J))
IF (Y(K).LT.XV(J).AND.X(K).GT.XV(J)) RT=(X(K)-XV(J))/
1(XU(J)-XV(J))
IF (Y(K).LT.XU(J).AND.X(K).GT.XU(J)) RT=(XU(J)-Y(K))/
1(XU(J)-XV(J))
IF (Y(K).LE.XV(J).AND.X(K).GE.XU(J)) RT=1.0

59 CSV=RT*CCD(J)*VLX(J)
SOL(K)=SOL(K)+CSV
IF (SOL(K).GE.0.0) GO TO 70
TYPE 56

56 FORMAT(5X,'CONTENT OF A MOVING POINT GETTING NEGATIVE')
STOP

70 CONTINUE

78 CONTINUE

RETURN

END
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