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ABSTRACT

Flood frequency analysis plays an important role in the esti

mation of design flood for various hydraulic structures. In the

past years, attempts have been mainly concentrated for the

analysis of flood peak only which provides a very limited assess

ment of a flood event as risk is formulated in terras of flood

peaks only. Hydrological phenomena like flood flows always appear

as multivariate events and characterized by various components

such as volume and duration etc. besides flood peak. In many

aspects of water resources planning and management the informa

tion about volume and duration etc. besides flood peak of criti

cal flood events is essential. This in turn requires the

probability of whole event rather than the probability of only

peak discharge. In spite of their importance very limited

research has been conducted in the past for the study of flood

duration and volume characteristics of flood flows and for the

study of flood event as a whole.

The objective of the preset work is to study various flood

characteristics such as flood peak, volume , duration and other

characteristics, and their interdependence for a typical flood

series, development and validation of the methodology for bivari-

ate stochastic modelling of flood flows using synthetically gen

erated data and application to real data. It also includes the

study to ascertain the suitability of daily flow generation

models for Indian rivers (where the flow is concentrated in five

months of monsoon season) and to use the selected model for gen

eration of long term data for validation of the methodology.
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The noted developments in the area of flood frequency

analysis using annual flood series (AFS) and partial duration

series (PDS), modelling of flood features other than peak dis

charge and synthetic generation of daily flows have been

reviewed.

The methodology for stochastic modelling of flood flows has

been developed using partial duration series approach with biva-

riate normal distribution function as the parent distribution

function for two dependent variables such as flood volume and

flood peak. The application of bivariate normal distribution

assumes normal marginal distributions which is usually not the

case with flood peaks, volumes and durations. The normalization

of the variables required for applying bivariate approach, has

been done using two step power transformation (TSPT). The TSPT

makes the Cb of a given series as 0 in the first step and Ck

equal to 3 in second step. Using the bivariate normal density

function the marginal, conditional and joint distribution func

tions have been derived, and used to estimate the return periods

of following events.

(i) exceedance of at least one of the values (x,y) in a year,

(ii) exceedance of both x and y in a year,

(iii) exceedance of y|x in a year,

(iv) exceedance of x (univariate) in a year and

(v) exceedance of y (univariate) in a year.

For the above events x is the value of flood volume (X) and y

is value of flood peak (Y).

The methodology for stochastic modelling of flood flows

(ii)



developed in this study has got the flexibility of selecting (i)

any threshold level which can be fixed from engineering consider

ation as long as the Poissonian assumption for number of flood

events in a year is satisfied, (ii) any volume of a flood event

which can also be decided on the basis of probable maximum pre

cipitation and by adopting a suitable loss and (iii) any flood

peak magnitude.

The daily discharge data of river Narmada at Garudeshwar

site (catchment area 88000 km2 ) from 1949-79 have been used. The

preliminary analysis of data includes conventional flood fre

quency analysis of annual flood series and analysis of (i) number

of flood events in a year, (ii) flood peaks, volumes and

durations, (iii) largest flood peaks, volumes and durations and

(iv) timing of largest flood peaks, for different threshold lev

els with emphasis on the study of their distribution functions.

Based on literature review the two schemes na»ely, linear

autoregressive and shot noise models have been used for genera

tion of daily flows. The purpose of this generation is (i) to

ascertain the suitability of these models for generation of flows

in the situation when major portion of the flow is occurring

during five months of monsoon season and (ii) to validate the

methodology developed for bivariate stochastic modelling of flood

flows. The computer programmes for these models have been devel

oped after incorporating suitable modifications in the schemes

and their performance inter-compared. The inter-comparison of two

approaches indicates that (a) the linear autoregressive model

gives better reproduction of overall statistical parameters of

(iii)



daily flows and flood peaks above a particular threshold level

and (b) shot noise model (modified) gives overall better repro

duction of statistical parameters of remaining flood characteris

tics. As such modified shot noise model was selected for further

generation of long term (1500 years ) daily flows for Narmada at

Garudeshwar for validation of the methodology.

After achieving satisfactory validation, the methodology was

applied to daily discharge data of Narmada at Garudeshwar. The

capabilities of the methodology for dealing with univariate as

well as bivariate modelling of flood characteristics has been

clearly established as also illustrated with typical examples.

A number of SUBROUTINES were developed in FORTRAN IV language

and used for carrying out data processing, preliminary analysis

of various flood characteristics, daily flow models, and valida

tion and application of the methodology. The important subrou

tines have been given in the thesis for general use. Though this

study has focussed on flood flows, the developed methodology can

be extended to other dependent hydrological variables, such as

drought related characteristics, sediment yield and -runoff and

many others, also. It is hoped that this study would contribute

in the areas of flood frequency analysis and daily flow genera

tion .

(iv)
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CHAPTER I

INTRODUCTION

1.1 General

Since time immemorial floods have been causing loss of human

lives, valuable property and crops in most parts of the world and

India is no exception to this. The flood damage can be reduced

significantly by proper management through various structural

measures such as dams, levees, embankments etc., by taking vari

ous non-structural measures and by proper design of various

hydraulic structures. The estimation of design flood and flood

characteristics is thus crucial for flood management and control.

The current methods of estimating design flood for hydraulic

structures mainly include the probable maximum flood (PMF)

approach and flood frequency analysis approach. The PMF approach

suffer from the major disadvantage of being entirely subjective

and of having no probability level, Kite (1977). This sometimes

leads to disastrous consequences since non technical people tend

to believe that maximum flood cannot exceed this certain limit of

PMF. As such the use of flood frequency analysis approach plays

an important role in the design flood estimation for various

structures.

In the past two to three decades, attempts in the flood fre

quency analysis area, have been mainly concentrated on fitting

one probability distribution or the other to the annual flood

series and carrying out flood frequency analysis. This provides a



very limited assessment of the flood event as risk is formulated

in terras of flood peak magnitude only. Hydrological phenomena

like flood flows always appear as multivariate events and charac

terized by various components such as volume, duration etc.

besides flood peak. In many aspects of water resources planning

and management the information about the magnitude, duration and

volume of the critical flood events is essential. This requires

the probability of whole flood event rather than the probability

of only peak discharge. In spite of its importance, very limited

attention has been paid in the past for the study of flood event

as a whole. The present work is a step ahead in this direction.

1.2 Objective and Scope of the Work

The objective of the present work is to (i) study various

flood characteristics, such as flood peak, volume and duration,

and their interdependence (ii) develop the methodology for multi

variate stochastic modelling of flood flows, (iii) validate the

methodology using synthetically generated data and (iv)

application of the methodology to real data.

The multivariate modelling though increases the possibilities

of practical application, yet requires more and more data as nura

ber of variables to be considered in the analysis increases. Con

sidering the data limitations and mathematical complexities

involved in multivariate modelling the scope of the present work

is limited to bivariate modelling only. This involves consider

ation of only two variables at a time among flood peak, volume

and duration by analyzing daily flow data. Besides this, the work



would also include study of other characteristics of flood flows

such as number of flood events in a year, timing of the flood

peaks, flood peaks, volumes and durations, largest flood peaks,

volumes and durations in different years and timing of largest

flood peaks for different levels of threshold.

For validation of the methodology synthetic daily flows would

be generated using appropriate procedure. For this purpose, the

scope of work would be limited to comparison of two approaches of

daily flow generation, namely time series analysis approach and

application of shot noise model after incorporating appropriate

modifications for monsoon behavior. The selected approach would

be used for generation of long term data for validation of the

methodology. The daily flow data of river Narmada at Garudeshwar

covering the period from 1949 to 1979 would be used in the study.

1.3 Outline of Contents

Chapter II is devoted to brief review of literature in the

area . Considering the scope of the study, the review concen

trates mainly on noted developments in the areas of flood fre

quency analysis using annual flood series (AFS) and partial

duration series (PDS), modelling of flood features other than

peak discharge and synthetic generation of daily flows.

Chapter III presents the formulation of the methodology along

with the basic considerations for defining the flood characteris

tics and the details of the normalization method required in the

application of the methodology.
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Chapter IV provides relevant details of the river basin, ear

lier studies of flood estimation in Narmada basin particularly

for Sardar Sarovar dam, the data used ,its processing and

preliminary analysis. The preliminary analysis includes conven

tional flood frequency analysis of AFS and analysis of following

flood characteristics (i) number of flood events in a year (ii)

timing of flood peaks (iii) flood peaks, volumes and durations

(iv) largest flood peaks, volumes and durations in different

years and (v) timing of largest flood peaks for different thresh

old levels.

Chapter V gives details of synthetic generation of daily

flows. The comparison of two schemes of daily flow generation,

namely linear autoregressive and shot noise models is presented

and discussed. The comparison is made on the basis of reproduc

tion of flood related characteristics in the generated data.

The validation of the methodology of multivariate modelling

of flood flows is described in Chapter VI. This chapter also

gives details of suitability of the methodology for analysis of

historical data and results of application to Narraada at Garu

deshwar .

Chapter VII presents conclusions drawn from the study and

suggestions for further work.



CHAPTER II

REVIEW OF LITERATURE

2 .1 General

The flood frequency analysis methods were introduced about

eighty years back and since then interests in this area have

waxed and waned several times. Numerous papers, covering various

aspects of flood frequency analysis, have appeared in literature.

A lot of work has been done and is currently being done in this

area by many researchers throughout the world. A close look at

various papers reveals that most of the work, reported in litera

ture, is regarding the frequency analysis of peak discharges

using either annual flood series (AFS) approach or partial

duration series (PDS) approach. Very few atterapts have been raade

for the study and analysis of other characteristics of flood such

as volume and duration etc. of flood events and their interrela

tionships

The survey of literature covering the first part, i.e.,

frequency analysis of peak discharges has been presented in sec

tion 2.2. Section 2.3 covers review of literature regarding anal

ysis of flood characteristics other than the peak discharge. The

synthetically generated data plays an important role in

simulation studies, in comparing the performance of various meth

ods and for the validation of new techniques proposed for various

aspects of frequency analysis. Keeping this in view, a brief

review of models developed for synthetic generation of daily



flows, is given in section 2.4. The conclusions drawn from the

review presented in sections 2.2, 2.3 and 2.4 have been summa

rized in section 2.5.

2.2 Frequency Analysis of Peak Discharges

In flood frequency analysis, in general, the sample data is

used to fit the probability distribution. The distribution, in

turn, is used to extrapolate from recorded events to design

events either graphically or analytically after estimating its

parameters. There are essentially two approaches of carrying out

flood frequency analysis. One corresponds to the strearaflow

annual flood series (AFS), in which the largest annual peak dis

charges of each year of record are considered, and the other

approach corresponds to strearaflow partial duration series (PDS),

in which all the discharges above a particular threshold are con

sidered. In both the approaches, the research has mainly concen

trated on fitting one probability distribution or the other to

the given series and its parameter estimation procedures. Some

studies have also been made involving normalization of the given

series irrespective of the parent distribution of the series and

using the normalized series for flood frequency analysis.

The other fields of flood frequency analysis such as regional

flood estimation and homogeneity, use of historical data in flood

frequency analysis, use of geomorphological unit hydrograph (GUH)

in regional analysis, Bayesian analysis and simulation and behav

ior analysis etc. have been investigated by many researchers.

Cunnane (1987) has traced selected developments under a nuraber of



different headings in his classical paper on 'Review of Statis

tical Models for Flood Frequency Analysis'. He classifies the

historical review in these areas under three phases; an early

phase of problem definition, a second phase of technical develop

ment beginning with the introduction of extreme value theory and

a final phase in which development of models based on the outcome

of simulation experiments, took place. The review of work in all

these areas is beyond the scope of the present study. However,

the outline of development of flood frequency analysis as given

by Cunnane (1987) is presented in Tables 2.1 and 2.2.

Keeping in view the objective and scope of the present study

the noted developments in the areas of AFS and PDS models are

presented in subsequent subsections. The work reported in litera

ture for the comparison of AFS and PDS models is also reviewed

and discussed in this section.

2.2.1 Annual Flood Series (AFS) models

An AFS is the sequence of largest annual peak discharge of

each year of record. Although annual maximum instantaneous peak

discharge values should constitute the AFS, the use of maximum

daily mean discharges is satisfactory for large basins, (Goel,

1989; NERC, 1975) since their time of concentration generally

exceeds one day. The development of AFS models are reviewed in

the light of (a) the form of distribution and estimation proce

dures and (b) normalization methods.



Table 2.1

Outline of development of flood frequency analysis
methods in three phases under selected headings

THREE PHASES OF DEVELOPMENT

Elrly Phase

Recognition that there Is no such thing as a
single design flood but nther a choice of
different return period floods depending on
c Ircumstances.

Middle Phase

Introduction of Ektreme Value theory,a1gebraIc
development of alternative paj-ametrlc mode!
types and estimation schemes.

Recent Phase

Development of models which have been stimulate.
by the outcome of simulation experiments

ANNUAL MAXIMUM MODEL DEVELOPMENT

Fuller (1914)

Foster (19?<)

Ma,en (1932)

Gumbel (1941)

Kimball (1946)

langbeln 11949)
Thomas (1948)
Adaaowskl (19PS)
Chow (1951)

Jenklnson (19SS,
1969)

Kacimerik (1957)

Concept of return period

Theoretical frequency
curves

Large body of empirical
knowledge

Deductive CV knowledge

Ml estimation

Linked AM and POT

01strlbutIon-free methods

Frequency Factor K.

GEV Distribution

Study of Standard Errors

Matalas et al. (I97S)Cond<tion of Separation

Houghton (I97B| Uakeby Distribution

Rossi et al (I9B4) TCEV Regional Model

POT MODEL DEVELOPMENT

Langbeln (1949) linked AM and POT

Borgman (19631
Shane aLynn( '64)
Bernler (1967a)

Todorovic (1970) "\ Generalised Probability
Model

Todorovic 5
Zelenhasic (1970) '

Todorovic a
Rousselle (1971)

Cervantes (I 983 ) Trigger-type cluster
Kavvas (1982 a,b.) nodels

L POT Mod
J Process

el as Renewal

Cunnane (1979) -iTest of Polsson Rates
Ashkar and lof occurence
Rousselle(I08la,b)f

USE OF TIME SERIES MODELS

Qulmpo (1967)

Hall and O'Connell I Seasonal means and AR
(U'2) i-Reslduals
O'Donnell, Hall and|
O'Connell (1972)

Weiss (1973)

NERC (1976,1..2 9) fShot-noise Models

COMPARISON OF AM AND POT NOOCIS s

Langbeln (1949)
Chow (1950
Takeuchl (1984)

1 Theoretic*.
, comparison of

V"1 tpju

Beran and Noidryn-Plotnlckl
(1977)

1

Tevjevlch and Taesoabut
(1978)

L»plrit4tl Comparison

. "' 'am ,m 'pot
Taesombut and Yevjevlch
(1978)

Takeuchl (1984)

Cunnane (1973)
Yevjevlch and Taesombut
(1978)

1
Comparison of
efficiency of

Taisombut and Tevjevlch
(1978)

AM and POT
• estimates

Tavares and da Silva
(1983)

Rosjberg (I98S)
.

' • .

REG'ONAl riOOO ESTIMATES

Fuller (1914)
_Haien_J1932^__

Dalrymple (1960)

Cole (196S)

Nash and Shaw (196S)

USwKC (1977)

NERC (1975 1.2.6)
Beable and McKercher
.11982]

Wallls (1980)

Contd.

1

Station Tear Method

Index flood and
distribution of

standardised varlate
X - Q/y, and choice
of hoao9eneout
regions

Application of above
to UK data

Relation of regional
average dlmenslonles?
moments to catchment

characteristics

Hap of Regional St*«

Regional average
dlmensionless order
.ftatlujci

Regional average
standardised Ptft's.



AM DISTRIBUTIONS RECOMMENDED FOR USE

(a) on basis of regional studies

Benson (1968) .<,->
USWKC (19*7.1977,1981)

NERC (1975) i.iv
Houghton (1978) Wakeby
Wu and tjoodrldgt (19761 P37LN
McMahon I Srlkanthan (1981a) LP3
Hue JIMS) PJ

(b) on basis of simulation results

Hosklng et al (1985a)
Wallts and Wood (1985)
Rossi et al (1984)

CEV/PWM
Wakeby/PVM
TCEV

PARAMETER ESTIMATION a

Kimball 11946)
Chow (1953)
Gumbel (1958)

Jtnklnson (1969)

ML for EV1
Least Squares
Geometric mean of
two least squares
lines

ML and Seniles
for GEV

Greenwood et al (1979)

Wallla (1980)

Rossi et al (1984)

PH4 for distrib
utions expressible
In inverse form

Regionally averaged
standardised pwm's
for Index flood
method

Iterative ML
procedure for
regional TCEV

STANDARD ERRORS
9

See Table 2 2.

Table 2.1 (contd.)

SIMULATION AND BEHAVIOUR ANALYSIS 10

Nash and Amorocho (1966)
Lowery and Nash (1970)
Katalat 1 Wall Is (1973)

Wallts et al. (1974)

Natalai et al (I9'M

Landwehr et al (1978)

Rossi et al (1984)
Hosklng et al (1985a)
Wallls and Wood (1985)
Lttttnu.tr et al (1985)
Lettenmaler I Potter (1985)
Arnell 1 Gabrlelle (1985)

BAtCSlAN ANALYSIS

Bernler (1967b)

Cunnane and Nash
(1971/74)

Davis et al (1972)

Wood and Rodrlguei-Iturbe
(1975a)

Kuczera (1982a)

OCCISION RELATED PROCEDURES

Natalas and Wallls (1972)

Slack et al (1975)

Davis (1972)

Wood and Rodrlguez-Iturbe (1975)

Kuczera (1982 «,b. 1963)

tVl quantlle
standard error

Pearson 3 estimation

Properties of small
sample statistics

Regional skewness
condition of

separation

Relationships
between real and

log space statistics

Statistical

properties of regional
flood estimation
procedures. Selec tIon
of some regional
parameter values.

11

Non-Informative prior
distribution

Informative Regional
prior distribution

Bayeslan decision
theory for flood
alleviation design

Informative conjugate
Regional prior
distributions
for flood
protection design

Linear empirical
Bayes procedures

12

1 Study on usefulness
k to decision-making
J of prior informatlor

about distribution
type.

Use of Bayesian
decision theory

USE OF HISTORICAL DATA 13

Benson (1950) Graphical Procedure

Chen et al. (1975)
Hua (1985)
luo (1985)

I Use of historical floods
J In China

Pang (1985) Floods In early Chinese
history

Sutdlffe (1965) Historical floods on
liver Mile

laker (1985)
Xu and Ye (1985)

Palaeoflood hydrology and
geomorphologkal methods
of quantifying historical
floods

Leese (1973)

Condle and Let (1983)

Censored estimation

techniques
Censored estimation and Mont.

Carlo evaluation

Hosklng et al. (1985a) Question tne statistical
wisdom of using historical
data

Evaluations of usefulness
of historical data

Hosklng and Wallls (1984) 1
Stedlnger and Cohn (1985) J

REGIONAL HOMOGENEITY u

Langbeln (1947)
Dalrymple (1960)

Homogeneity test -
based on plot of T
against record length.

Mosley (1981) "

Wiltshire (1985)

Wiltshire (1986 a.b.c)

Question the use of
geographical regions
and seek homogeneous
regions In catchment

' characteristic space.

Acreman and Sinclair (1986)

Reproduced from: Cunnane,, C. (1987), 'Review of Statistical Models
for Flood Frequency Estimation', in V.P.Singh (Ed.), 'Hydrologic
Frequency Modeling', D.Reidel Publishing Company, pp.89-90.



Table 2.2®

Selected References to investigations into sampling
properties of quantile estimates

Model
Distribution

Extreme Value

Typel

At-site Regional

»*

I

55

Reference

Kaczmarck (1957)

Nash and Amorocho (1966)
Lowery and Nash (1970)
Landwehr et al. (1979a)
Greis and Wood (1981)
Fiorentino and Gabrielle (1984)
LcttenmaieT et al. (1985)
Lettenmaier and Potter (1985)

Lognormal * Kaczmarek(1957)
* Sangal and Biswas (1970)

Burgesetal. (1975)
** II Kuczera (1982b)
»* Stedinger(1980)
•* II Lettenmaier and Potter (1985)

Pearson Type 3 * Matalas and Wallis (1973)
• Bobee(1973)

Log Pearson 3 Condie(1977)
Nozdryn-Plotnicki and Watt (1979)
Hoshi and Burges (1981)
Phien and Hsu (1984)
Wallis and Wood (1985)55

General Extreme * Jenkinson (1969)
Value (GEV) and 55 Hosking et al. (1985a)
LogEVl * Hosking et al. (1985b)

** 55 Wallis and Wood (1985)
•* 5 Lettenmaier et al. (1985)

55 Amell and Gabrielle

Wakeby Landwehr et al. (1979b,c)
5 Wallis (1980)
55 Hosking et al. (1985a)
55 Wallis and Wood (1985)
55 Amell and Gabrielle (1985)

TCEV

**

55 Arnell and Gabrielle (1985)

Parent and assumed model distributions are the same.
Also tests model distribution under different parent distribution
assumption(s) (Robustness test).

5 and 55 For regional cases correspond to * and ** in at-site estimation

10

^/ Reproduced from: Cunnane, C. (1987), 'Review of Statistical
Models for Flood Frequency Estimation', in V P Singh (Ed.),
'Hydrologio Frequency Modeling', D.Reidel Publishing Company,
pp.91.
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Form of Distribution and Estimation Procedures.

The first successful attempt to interpret flood flows in

terms of probability was made by Fuller (1914) who stated that

the mean annual flood was approximately proportional to 0.8 power

of the drainage area and that flood flows above the mean followed

an exponential tailed probability law. The work of Fuller was

supported by Hazen (1914) who constructed the normal and lognor-

mal probability papers for plotting of floods. Foster (1924) gave

the theoretical frequency curves. Hazen (1932) proposed the use

of lognorraal probability paper for graphical fitting of data.

In 1941, Gumbel published the first of a nuraber of papers in

the application of Fisher Tippett theory of extreme values to

flood frequency analysis. The use of extreme value theory was

further extended by many other hydrologists and researchers. Kim

ball (1946) gave maximum likelihood estimates of pararaeters of

the distribution of raaxiraura values. Thomas (1948) and Chow (1951)

gave the concept of frequency factor and distribution free meth

ods. Benson (1950) developed a synthetic 1000 years record of

peak floods based on a straight line plotting on the extreme

value probability paper.

The concept of General Extreme Value (GEV) distribution was

given by Jenkinson (1955) who also applied it to annual maximum

and minimum values of meteorological elements. The efficiency of

the estimation of floods with a given return period for extreme

value type 1 (EV1) and lognormal distributions was given by Kacz-

marek (1957). Kendall (1959) discussed the relationship between

the risk of occurrence of an event in a given period of time and
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its return period. Riggs (1961) derived a relation between the

magnitude, design period in years and probability of not exceed

ing that magnitude in the design period from a cumulative fre

quency curve.

Nash and Amorocho (1966) showed that the extrapolation of

magnitude frequency relationship obtained from finite samples is

not too hazardous when the form of the frequency distributions is

known for the population of floods. They made a plea for research

to establish, if possible, the true form of the frequency dis

tributions of floods.

Water Resources Council, WRC (1966) describes the methods

most commonly used by Federal agencies for making frequency stu

dies of runoff at individual strearaflow stations and provides an

extensive list of applications of frequency analysis methods.

WRC (1967, 77, 81) adopted the log Pearson type III distribu

tion (of which lognormal is a special case) to achieve standard

ization of flood frequency procedures used by Federal agencies in

USA.

Benson (1968) as the chairman of the work group on flow fre

quency methods, Hydrology Committee, WRC, studied the most com

monly used methods of flood frequency analysis and compared the

results by applying these methods to a selected group of long

record representative sites in different parts of the country. He

showed that there are large differences in the predicted floods

when different distributions are assumed particularly for larger

recurrence intervals.

Jenkinson (1969) gave the method of maximum likelihood and
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the method of sextiles for parameter estimation for GEV distribu

tion .

CWC (1972) recommended the use of EV1 distribution for Indian

rivers. Singh and Sinclair (1972) proposed mixed distribution

which is a combination of two distributions. Such a distribution

contains a mixture parameter which determines the relative fre

quency of occurrence of events from each population. This raodel

has been proposed to be used in situations when there is clear

physical distinction between the two distinct types of events in

the flood series.

NERC (1975) adopted GEV distribution to achieve standardiza

tion of flood frequency procedures. As reported, goodness of fit

of seven distributions was tested for 28 stations in Great

Britain and 7 stations in Ireland. The results of these tests

showed that the performance of Pearson type III (PT III) and log

Pearson type III (LP III) distributions was sensitive to the for

mulation of the tests. The GEV distribution was more stable and

for this and other reasons it was recommended as first choice of

annual flood peaks.

Matalas et al. (1975) and Wallis et al. (1977) showed that in

nearly all the 14 regions subdividing the United States a condi

tion of 'separation' existed which can neither be explained by LP

III distribution or by drawing regional skew maps. The separation

was observed while comparing the historical skewness and the sim

ulated skew values derived using other distributions. It was

observed that the natural data consistently displays more
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inherently unstable skews than the one derived from various sta

tistical distributions. Wallis et al. (1977) suggested spatial

mixing of skewness coefficient as a possible reason for

'separation'.

To explain some of the 'separation effects', the Wakeby dis

tribution was introduced by Houghton (1978 a) as the grand parent

of distributions because of its ability to generate flows which

mimic most conventional hydrologio distributions if the pararae

ters are chosen correctly. Houghton (1978 b) noted the similarity

of the Wakeby to the older Fuller flood raodel x - a+b[(T-l)]*

where T = 1/(1-F). One of the most attractive features of the

Wakeby distribution is that the right and left hand tails of the

distribution can be modelled separately. Secondly, this distribu

tion is able to explain some of the 'separation effects' (Matalas

et al. 1975) which many other distributions cannot. In

conjunction with the Wakeby distribution, Houghton (1978 b) also

proposed the incoraplete means estimation procedure. This proce

dure uses no moments higher than the first, resulting in the bias

of the estimates.

Method of least squares, method of moments and method of raax

iraura likelihood are the commonly used parameter estimation tech

niques for most of the distributions. Greenwood et al. (1979)

suggested a more elegant probability weighted moments (PWM)

approach for estimating the pararaeters of the distributions which

can be expressed in inverse form. An application of PWM technique

in regional flood frequency was proposed by Wallis (1980). The

PWM method works well for situations where records are extremely
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short and streamflow samples are highly skewed and kurtotic.

The major drawback of PWM method used to be that it cannot be

applied to distributions whose inverse forms are not available.

In a major breakthrough, very recently, Jing et al. (1989) have

overcome this drawback. They have shown that the functional

domain of PWM method can be extended to the function inexpress

ible in inverse form also. They have derived expressions relating

probability weighted moments to pararaeters of several

distributions inexpressible in inverse form such as normal, log-

normal, Gamma and Pearson type III distributions.

Now a days another method of parameter estimation based on

principle of maximum entropy (POME) is gaining importance in

hydrology field. The POME has widely been used in telecommunica

tion (Shannon, 1948; Jaynes, 1957). Sonuga (1972, 76) used it for

hydrologio frequency analysis and rainfall runoff modelling.

Amorocho and Espildora (1973) used it for assessment of uncer

tainty in hydrologio systems and models. Singh and associates

(Singh and Krstanovic, 1986, 1987; Singh et al. 1985) have

applied it for derivation of frequency distributions, parameter

estimation and sediment and water quality modelling.

Rao (1980) used the method of mixed moments to estimate

parameters of log Pearson type III distribution.

Rossi et al. (1984) offered the two component extreme value

distribution (TCEV) as a good distribution for modelling annual

floods in Italy. The TCEV is motivated on the premise that floods

above a particular threshold come from two independent processes,

each occurring according to a compound Poisson process and having
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exponentially distributed exceedances. With such a structure for

floods above a threshold, annual floods have a TCEV distribution.

Use of TCEV is supported by the observed 'separation effect' in

estimated skews and by the observed distribution of reduced larg

est floods. Beran et al. (1986) explored the basic geometry and

moments of the TCEV distribution.

Ahmad et al. (1988) demonstrated that log - logistic distri

bution (LLG) has many properties well suited for modelling flood

frequency data. They compare the performance of the log -

logistic distribution with GEV, three parameter lognormal (LN3)

and PT III distributions. On the basis of empirical distribution

function tests they conclude that (i) the LLG provides a better

fit than the GEV for reasonably long flood series ( > 24 years in

length) at individual sites and (ii) that it provides a better

fit than the GEV, LN3 and PT III distributions on a regional

basis.

In a classical paper on 'Methods and Merits of Regional Flood

Frequency Analysis' Cunnane (1988) concludes that 'At present the

WAK/ PWM regional procedure is the best available at site

regional flood quantile estimating procedure'. This is supported

by the work of Kuczera (1982 b) who found that four parameter

Wakeby distribution (WAK-4) outperformed the LP III and log EVl

distributions as at site quantile estimators. In the regional

context also the five parameter Wakeby distribution (WAK-5),

estimated from regional averaged standardized PWMs and denoted by

WAK/ PWM has been consistently found to be a better quantile
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estimator than GEV/ PWM (Hosking et al., 1985 a) or LP III /

USWRC (Wallis and Wood, 1985) or TCEV (Arnell and Gabrielle,

1985)

Normalization. Method^

Data arising from various situations form their own distrib

utions. Thus instead of fitting a known distribution to the data

it is better to find the probable distribution of the population

series from the data itself which is a difficult computational

task. Alternatively, the data could be reconstituted by some

suitable transformation such that the transformed series follow a

particular distribution. Transformation of the series to follow

normal distribution has caught the attention of many research

workers, though there have been atterapts to transform the series

to follow other distributions, eg. EVl distribution by Seth et

al. (1986) also.

Bethlahray (1977) has suggested the use of SMEMAX transforma

tion to normalize the skewed data. This method transforms a

skewed series using the smallest median and the largest value of

the given series. The resulting series has the difference between

the largest value and the median value equal to that between

median value and the smallest value. This is a necessary but not

sufficient property to normalize the transformed series. The

resulting series can still have appreciable skewness or kurtosis

or both, even though median value is equidistant from the

smallest and the largest value.
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Chander et al. (1978) suggested the use of Box-Cox transfor

mation (1964) for normalization of the given series and flood

frequency analysis. The authors expressed satisfaction with

Box-Cox transformation for estimating flood quantiles on the

basis of 15 long records examined by them. The Box-Cox transfor

mation makes the coefficient of skewness of the transformed

series equal to zero. For kurtosis correction, the authors have

proposed the use of table based on the work of Box and Tiao

(1973) and Tiao and Lund (1970).

Seth et al. (1983) compared the efficiencies of several nor

malization procedures and found the use of Box-Cox transformation

satisfactory for normalization of the annual flood series.

Gupta et al. (1989) proposed two step power transformation

(TSPT) for normalization of the series and applied it to AFS of

17 Indian rivers satisfactorily. The TSPT rectifies some of the

operational difficulties with regard to the use of correction

factor for kurtosis. At present TSPT seems to be the most suit

able normalization procedure as it preserves Co and Ck of normal

distribution in the transformed series and avoids use of any

table.

2.2.2 Partial Duration Series (PDS) models

In partial duration series (PDS) approach, all the floods

that exceed a certain threshold level Qb are considered. If there

are M such floods in N years of record then the average rate of

occurrence, *. , will be equal to M/N. In PDS approach, once the

truncation level is defined the flood events can be analyzed in
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terms of the nuraber of events per year, peak discharges, dura

tions and volumes. Most of the research reported in literature

considers only number of events per year and the peak discharges

associated with these events. The brief chronological review of

literature in this area is given in the following paragraphs.

Bergman (1961) presented a simplified technique for computing

the probability that a near extreme occurrence of a physical phe

nomenon would exceed a selected value. The limiting distribution

of the maximum term in a sequence of independent identically

distributed random variables was first analyzed by Berman (1962)

who showed that the limiting distribution of the maximum term was

a mixture of distributions.

Shane and Lynn (1964) found the distribution function of the

flood peaks in a certain time interval (0,t) assuming their num

ber to be time homogeneous Poisson process. The flood magnitudes

were assumed to follow an exponential distribution.

Zelenhasic (1970) and Todorovic and Zelenhasic (1970) consid

ered the case where the number of exceedances follows a non homo

geneous Poisson process with the sequence of flood discharges

kept independently identically distributed (iid). Zelenhasic

(1970) comments that the determination of the distribution func

tion of flood exceedances is purely a problem of estimation and

according to the present state of art there are no theoretical

grounds that indicate the form of the distribution. Todorovic and

Rousselle (1971) and Rousselle (1972) extended the work of Zelen

hasic (1970) to non identically distributed exceedances by divid

ing the water year into different seasons and keeping the iid
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assumption only within the season being considered.

Todorovic (1978 a) presented stochastic models of extreme

flows and their application to design. He also explained various

assumptions raade in the formulation of the models. North (1980)

proposed time dependent stochastic raodel of floods based on non

homogeneous Poisson process for the occurrences and time depen

dent exponential distribution for the magnitudes.

In the application of PDS approach, it is occasionally

observed that successive exceedances are correlated and to reduce

this correlation some investigators (WRC, 1976; Cunnane, 1979)

tend to impose certain restrictions on the inter-arrival times of

the flood events. Ashkar and Rousselle (1983 a) showed analyti

cally how such restrictions interfered with the underlying

hypothesis of the Poisson process commonly used to raodel flood

counts, and cautions against imposing such restrictions that may

render this simple and appealing raodel inapplicable.

While commenting on the truncation level (threshold) used in

PDS models, Ashkar and Rousselle (1983 b) concluded that both the

Poisson distribution as a model for flood frequency and exponen

tial distribution as a model for flood magnitudes would remain so

with any higher level of truncation also. A great degree of

freedom is thus left to the user to chose the truncation level.

If the Poisson and exponential distributions are to be used then

the choice of the base level should be raade primarily on mathe

matical grounds rather than on economic and engineering consider

ations .
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2.2.3 Comparison of AFS and PDS models

There is classical dilemma in flood frequency analysis

regarding the use of AFS or/and PDS models, and hence several

investigators have made efforts to compare and relate the two

types of models. The AFS and PDS models can be related on the

basis of value of flood discharge Q for a given return period T,

i.e., Q (T) in the parent process and the value of Q (T) evalu

ated by the two models. The models can be related in other way

also i.e, by relating T given by various models for a particular

Q.

Langbein (1949) showed that when T is small TAW differs

appreciably from Tr„ and hence from T but differs by only half

year at large values of T. He related the two return periods by

the following formula

TAFS-l/(l-exp(-l/TPDS)) (21)

Chow (1950) discussed Langbein's formula, and pointed out

that the difference between TA,8 and T,0, evaluated by the relative

difference CTa„-t,k)/ta„ is less than 5% for T,M *. 10 years and

greater than 10% for T,B. < 5 years. Chow further stated that ' in

ordinary engineering practice a five percent difference is toler

able and that, the two methods give essentially, identical

results for intervals greater than about 10 years'.

Takeuchi (1984) evaluated Langbein's theory (1949) and sug

gested an alternative derivation procedure. The resultant formula

given by him is identical to Langbein's but the condition to be

satisfied for the formula to hold good is replaced by a new, more
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relaxed condition. He confirmed the validity of Langbein formula

(1949) and Chow 's discussion (1950).

Cunnane (1973) compared the statistical efficiency of Q(T)

obtained by AFS model and PDS raodel on the basis of variance of

Q(T) obtained by the two models. He showed analytically that,

under commonly used assumptions and for return periods greater

than about 10 years, the PDS estimate of annua] maximum discharge

Q (T) for a given return period (T) had smaller sampling variance

than the AFS model estimate for *• >. 1.65.

NERC (1975) describes use of the Poisson and the negative

Binomial distributions to model the number of exceedances and the

exponential distribution to model the magnitude of exceedances

for 26 hydrometric stations from all over UK. It was found that

in most of the cases the Poisson and exponential distributions

fit reasonably well the series for number and magnitude of annual

exceedances respectively. However these distributions cannot be

taken as granted as they were clearly rejected for some stations.

As a final recommendation NERC (1975) suggests that for small

samples of length less than 10 years the PDS method should be

used to estimate the mean annual maximum discharges.

Taesombut and Yevjevich (1978) estimated the probability dis

tribution of annual maximum flood peaks by using a combination of

probability distributions for number and magnitude of flood peaks

that exceed a certain threshold based on data of 17 stations from

United States. They concluded that in the range of truncation

levels with an average number of exceedances from one to four,

the independence assumptions underlying the use of PDS method
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could be accepted. The mixed Poisson or the Poisson distributions

and mixed exponential or exponential distributions gave the best

results in modelling the annual number and magnitude of excee

dances. The authors confirmed the results of Cunnane (1973) based

on synthetic data generated by a daily flow model. As a basic

conclusion Taesorabut and Yevjevich (1978) state that ' when the

model of partial flood series is developed with assumptions for

its derivation supported by data from low truncation levels, the

partial flood series is more efficient or more useful in estimat

ing annual flood peaks than the annual flood series, especially

in the case of small sample sizes'.

Tavares and Da Silva (1983) showed that the Cunnane's (1973)

equation for Var (Qt) for a given return period could underesti

mate (or overestimate) the variance observed in a simulation

study, if the average number of annual exceedances was higher (or

smaller) than 2. It was shown that there was significant lower

estiraation variance for PDS if *• was greater than 2, and this

reduction of the estiraation variance increased with return period

and *-. They proposed negative exponential law with constant

serial auto- correlation for auto- correlated annual exceedances

and showed that estimation variance of Q (T) increases with

increase in p,.

Rosbjerg (1985) further extended the work of Tavares and Da

Silva (1983) by introducing a correction factor in the variance

formula to reduce the deviations between theoretical and Monte

Carlo generated samples. He also developed a formula for estima

tion of variance of T year flood for dependent case and showed
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that it was in fine agreement with Monte - Carlo based variance

calculations.

Correia (1983) applied the PDS method to daily flow records

from 12 stations in Portugal for truncation levels corresponding

to *• equal to 0.5 to 4. He compared estimates of annual peak

discharges for return periods from 5 to 1000 years with results

obtained from the EVl, Lognorraal, PT III and LP III and GEV dis

tributions applied to annual flood series. The Poisson and expo

nential distributions were found adequate to raodel the nuraber of

annual exceedances and the magnitude of exceedances,

respectively. He found that PDS method with *. from 2 to 3 gave

the best results by fitting the observed annual maximum daily

flows and was significantly more efficient in estimating the

annual peak discharges for the return periods considered in the

study. The use of PDS method was recommended principally for

short records.

Goel et al. (1987) compared the efficiencies of AFS and PDS

models on the basis of exact theoretical and approximate theoret

ical approaches using data of river Narmada at Mortakka (India).

On the basis of exact theoretical approach, the sampling variance

of Q (T) by PDS model (for any value of *• ) was shown to have

lesser sampling variance than AFS model if the return period was

less than 11 years. For any return period the PDS estimate of

Q(T) had smaller sampling variance than that of AFS if *• was at

least 1.65. However, on the basis of approximate theoretical

approach, in the range of ** studied (1.0 to 2.437) the sampling

variance given by AFS was smaller than that of PDS.
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Buishand (1989) derived an expression for asymptotic variance

of quantile estimates. He shows that the method of raaxiraura like

lihood leads to slightly biased quantile estimates, and unbiased

quantile estimates can be obtained from the minimum variance

unbiased (MVU) estimates.

2.3 Modelling of Other Characteristics of Flood

In all the studies mentioned in previous sections, only peak

discharge of every flood event has been considered, and flood

risk is simply characterized in terras of the annual flood for a

given return period. The other flood features such as duration

and volume are not considered although they are important charac

teristics to be considered in the design of many flood control

systems. Of the numerous papers written on flood analysis very

few deal with the analysis of flood features other than peak

discharge. Some important work in this area has been reviewed as

given in following paragraphs.

Todorovic (1971) used the PDS approach together with the

mathematical assumptions of Todorovic and Zelenhasic (1970) to

derive exact expression for time of occurrence of extreme flood

in selected time. Todorovic and Woolhiser (1972) applied this

theory to two rivers of USA and found good agreement between

observed and theoretical distributions.

Gupta et al. (1976) extended the work of Todorovic and Wool

hiser (1972) and developed the expression for the joint distribu

tion function of the largest flood peak and its time of

occurrence. They also derived the distribution function of the
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time of occurrence of the largest flood for the two rivers in USA

and modified the expression valid for independently identically

distributed exceedances to non identically distributed excee

dances .

Todorovic (1978 b) presented three stochastic models based on

PDS approach. These models varied only in assumptions concerning

properties of exceedances of threshold level. He determined the

distribution of time of occurrence of the largest exceedance and

derived distribution function of the largest flood volume in a

time interval (0,t).

Ashkar and Rousselle (1982) studied the multivariate and mar

ginal distributions of flood magnitudes, duration and volume for

three stations in Quebec. They considered hydrograph of flow

above a particular threshold as a triangle and showed that

assumption was not unrealistic.

A theoretically more general model was developed by Kavvas

and co-workers (Kavvas and Delleur, 1975; Kavvas, 1982; and Kav

vas, et al., 1983) treating flooding as the clustering phenomenon

and its mechanisms as centers of clusters of flood peaks. This

model is not used because of its mathematical complexity (Krsta-

novic and Singh, 1987).

Krstanovic and Singh (1987) used the principle of maximum

entropy to derive a multivariate stochastic model for flood anal

ysis. By specifying appropriate constraints in terms of covarian-

ces, variances and cross covariances, multivariate Gaussian and

exponential distributions were derived. As a special case the

bivariate process of flood peaks and volumes was investigated for
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the following three cases: (i) the peaks and volumes are indepen

dent and occur the same number of times, (ii) the number of peaks

is more than that of volumes in the same time interval and (iii)

peaks and volumes exhibit dependence. Marginal distributions of

flood characteristics were obtained first with no restriction

imposed and then with assumptions of independent occurrences and

a high threshold value. They also obtained the conditional dis

tribution of flood volume for the given peak. In the raodel spe

cial emphasis was given to the matrix of Lagrange multipliers.

Correia (1987) derived the joint distribution of flood peaks

and durations using PDS approach assuming (i) independence

between them and (ii) linear dependence between the two vari

ables. For the independent case the marginal distributions of

flood peaks and durations were assumed as exponential. For the

dependent case he assumed the conditional density function h

(x|y) as normal with variance o' and mean M-(X) = AY + B. For

volume, the triangular relationship between volume, peak and

duration was assumed. On the basis of results of application to

twelve Portuguese rivers, he reported satisfaction over the use

of partial duration series approach for the multivariate charac-

terization of flood peak, duration and volume. However, he empha

sized the need of additional research before final conditions

could be formulated with respect to the general use of

multivariate partial duration series.

The approach given by Correia (1987) seems to be promising

but the general applicability of the assumption of conditional

density function as normal is somewhat doubtful.
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Sackl and Bergmann (1987) used bivariate normal distribution

as the parent bivariate distribution function for flood peaks and

volumes of direct runoff after transforming the marginal distrib

utions of both variables into normal distribution using transfor

mation proposed by Schroder (1969). They fitted and tested the

bivariate normal distribution using the equi- lines of

probability density function (ISO - PDF lines). According to the

authors their approach offers various possibilities of probabil

ity interpretation and the conditional distributions of one vari

able can be computed for a constant value of the other variable

which shows the probability by which the variable is equalled or

exceeded for the fixed variable.

The use of bivariate normal distribution for flood peaks and

volumes seems to be quite appealing. There is scope of (i)

improvement in the normalization procedure used by the authors

and (ii) extension of the methodology using partial duration
«

series.

The studies of Zelenhasic and Salvai (1987) and Singh and

Krstanovic (1987) need special mention in this review. Though,

these are not directly related to flood analysis, yet the con

cepts presented and discussed in these studies have been very

useful in the formulation of methodology of the present work.

Zelenhasic and Salvai (1987) have presented a method of com

pletely describing and analyzing the stochastic process of

streamflow droughts. Singh and Krstanovic (1987) applied the

principle of maximum entropy to derive a stochastic raodel for
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sediment yield from upland watersheds. By maximizing the condi

tional entropy subject to certain constraints, they derived prob

ability distribution of sediment yield conditioned on the

probability distribution of direct runoff volume. It was shown by

the authors that the joint distribution of sediment yield and

runoff, obtained by the application of principle of maximum

entropy and subject to constraints in terras of variances and

covariances, was bivariate normal distribution.

2.4 Generation of Daily Flows

As stated earlier, though for flood frequency analysis, the

annual maximum instantaneous discharges constitute the AFS, the

use of annual maximum daily discharges is satisfactory for large

basins (Goel, 1989; NERC, 1975). Therefore the synthetically gen

erated daily flows play an important role in comparing the per

formance of various models ( Taesombut and Yevjevich, 1978) and

for the validation of new techniques proposed for various aspects

of flood frequency analysis. Their role in simulation studies is

well known. This section gives a brief review of some important

developments in the area of synthetic generation of daily flows.

The work in the area of daily flow generation started with

the pioneering work of Quimpo (1967). The raodel proposed by

Quimpo (1967) and Payne et al. (1969) used autoregressive time

series model based on Gaussian distribution. These models did not

yield fully satisfactory results as the models were based on a
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statistical analysis which only used the classical stationary co-

variance spectrum estimators, and ignored the statistical proper

ties of the rising and recession limbs of the hydrograph.

Yakowitz (1973) proposed another daily flow model based on

nonlinear autoregressive model. This model was operationally suc

cessful in modelling zero flows, and also steep rising and fal

ling behavior. However, this model lacked in mathematical

tractability (Kumar, 1982).

Weiss (1973, 1977) showed that Gaussian autoregressive models

cannot reproduce the rapid rises and slow recessions observed in

the streamflow records of daily flow intervals. He suggested a

new raodel known as 'Shot Noise Model' which has a built in capa

bility to model the ascension recession behavior. Making an anal

ogy to the theory of the unit hydrograph, he also proposed the

double shot noise raodel, based on filtered Poisson process, as a

raodel for the continuous streamflow records. He used one shot

noise process for the surface runoff and other shot noise process

for the ground water discharge so as to approximate the nonlinear

behavior of the watershed system. His double shot noise raodel was

the summation of these two processes which he assumed to be inde

pendent of each other. O'Connell (1974) gave further details of

application of shot noise models in synthetic hydrology.

NERC (1975) applied the 'Shot Noise Model' to daily mean dis

charges from Avon at Evesham in a trial of the flood reproducing

properties of the model. Three methods to incorporate the

skewness into the model were also tried. Based on the application

of these methods to this data, it was found that the simplest
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shot noise model with exponentially distributed jump heights was

the only model which could be used to fit the flows.

Treiber and Plate (1975) assumed that the input rainfall

pulses to the watershed system were a white noise sequence. They

obtained the watershed system transfer function for the daily

flows under this assumption. Later in their work, they assumed a

Markov structure for the rainfall pulses and used these Markovian

pulses as the input series.

O'Connell and Jones (1979) describe three types of models

viz. linear autoregressive model, shot noise models and nonlinear

autoregressive models which have been developed in the UK for the

stochastic simulation of daily flows.

Kottegoda and Horder (1980) used an alternating renewal pro

cess for the occurrence of rainy and dry days. They verified

their renewal process assumption by the correlation coefficients

of the lengths of adjacent wet and dry spells. They showed that

these coefficients are nearly zero. They made the assumption that

the rainfall amounts on successive days are independent. Using

this independence assumption and also assuming stationarity for

the daily flows, they constructed a time invariant system trans

fer function from a stationary sample covariance function of the

daily flows. Later, they generalized the system transfer function

to a function which depends on the state of the flow when the

rainfall pulse occurs. They then used regression equations to

obtain effective rainfall amounts from the actual rainfall.

Finally, the daily flows were obtained from a convolution of the

effective rainfalls with the variable transfer function. The
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daily flow model was compared to the historical records in terras

of the annual maxima of the observed flows, and the synthetic

flows that are generated by the model. The results of this com

parison are not too satisfactory ( Kavvas and Delleur, 1984).

Kelman (1980) proposed a stochastic model for the description

and generation of daily flows. The basic assumption is that the

rising and falling limbs of the hydrographs ought to be modelled

separately due to the fact that they translate different physical

processes. The rising limb is mostly due to factors external to

the watershed. On the other hand, the falling limb is mostly

governed by the emptying water from the watershed. The raodel

assumes the conceptual representation of the watershed as two

linear reservoirs. Any sequence of recession discharge is then a

stochastic output from these two reservoirs. His raodel worked

well for the fast decreasing recession lirabs with high peak dis

charge, but yielded unsatisfactory results when the peak dis

charge was low. The significant contribution of Kelraan (1980)

with respect to the statistical analysis of daily flows was that

he used time varying mean, standard deviation and first lag cor

relation coefficient estimators in order to draw inferences about

the behavior of the first and second moments of the daily flow

process. He also computed the recession curves of the observed

daily flow series but only within the stationary domain. His use

of constant decay coefficients resulted in unsatisfactory model

ling of the recession limbs, corresponding to low peak dis

charges .

Kavvas and Delleur (1984) have given very useful comments on
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the works of Quimpo (1967), Payne et al. (1969), Weiss (1973),

Treiber and Plate (1975), Kottegoda and Horder (1980) and Kelman

(1980). The periodic statistical analysis of daily streamflow

data in Indiana, USA, by them shows that (a) the persistence

properties of daily flows depend on the storage state of the

basin at the specified time origin of the flow process; (b) the

daily streamflow process is time irreversible; (c) the probabil

ity distribution of the daily hydrograph peak inter arrival time

depends both on occurrence time of the peak from which the inter

arrival time originates and on the discharge exceedance level;

and (d) if the daily streamflow process is raodelled as the

release from a linear watershed storage, this release should

depend on the state of the storage and on the time of the release

as the persistence properties and the recession limb decay rates

were observed to change with the state of the watershed storage

and time. Therefore, a time varying reservoir system needs to be

considered if the daily streamflow process is ico be raodelled as

the release frora a linear watershed storage.

Vandewiele and Dom (1989) proposed another non-Gaussian multi

component model for modelling river flows. In the model, reces

sion and base flow components are subtracted from the observed

flow before deseasonalization. This results in the possibility of

modelling sharp rises and slow decreases, as are observed in flow

time series with a sufficiently small time base. The remaining

part of the flow called random shocks are then deseasonalized in

order to model them as a stationary second order Markov process
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with non normal transition probabilities. This allows the model

ling of zero random shocks. Deseasonalizing is modelled by a

truncated Fourier series, so that the number of parameters

remains small. They applied this model on a weekly time basis to

the Meuse catchment (20,000 sq. km ) upstream of Liege in Belgium

and France. The comparison of 1000 year simulated series proper

ties with that of the observed series was satisfactory even on

the basis of properties of hydrological interest such as return

periods, which were not modelled explicitly.

2 .5 Summing up

Based on this review of literature related to AFS models, PDS

models, comparison of AFS and PDS models, modelling of flood

characteristics other than peak discharge and generation of daily

flows the following broad conclusions can be drawn.

AFS Models

There is no general agreement among the hydrologists for the

use of any particular distribution and its parameter estimation

technique. It is very difficult to discard any distribution and a

parameter estimation technique without extensively testing it and

at the same time it will be very much time consuming and expen

sive to try all the available techniques for a particular site.

Wakeby /PWM, GEV /PWM, LPIII /PWM and EVl /PWM techniques cover

most of the major schools of thought for at site frequency analy

sis of annual flood series.

In the area of application of normalization procedures in
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flood frequency analysis, the two step power transformation is an

improvement over original Box-Cox transformation for normaliza

tion of a given series since it preserves Ce and Ck of normal

distribution in the transformed series and avoids use of any

table.

PDS Models

Besides typical features of PDS approach, data limitations in

many cases have led to significant developments in this area.

Using partial duration series, a number of models, ranging from

the simplest up to one where peak magnitudes vary with season are

available.

The determination of the distribution function of flood

exceedances is purely a problem of estimation and according to

the present state of art there are no theoretical grounds that

indicate the form of the distribution (Zelenhasic, 1970).

The choice of the threshold level should be made primarily on

mathematical grounds rather than on economic or engineering con

siderations if the Poisson distribution as a model for flood fre

quency and exponential distribution as a model for flood

magnitudes are considered (Ashkar and Rousselle, 1983 b).

nnmp^rison of AFS and PDS Models

The comparison indicates two important points.

(i) Under commonly used assumptions and for return periods

greater than 10 years, the PDS estimate of annual maximum dis

charge Q (T) for a given return period T has smaller sampling
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variance than AFS model estimate for a. > 1.65 (Cunnane, 1973).

(ii) For small samples (N <_ 10), the PDS model should be used to

estimate the mean annual maximum discharges (NERC, 1975).

Mnrifilline of Other Characteristics of Flood

Very few attempts have been made in the past for modelling

and analysis of flood characteristics other than peak discharge

and for multivariate modelling of flood characteristics.

The use of bivariate distribution has been considered ade

quate for modelling two components of flood events at a time as

the third variable among peak, volume and duration can be

estimated with reasonable accuracy by assuming triangular rela

tionship (Correia, 1987; USDA, 1957) between these variables.

Keeping in view the objective and scope of the present study,

the use of bivariate normal distribution along with PDS approach

appears to be quite appealing. Such approach would be mathemat

ically less complex and at the same time, would provide a useful

methodology which has not been tried earlier.

nftnftrat.ion of Daily Flows

The synthetically generated flows play an important role in

simulation studies by providing alternate samples. The syntheti

cally generated data are also useful in comparing the performance

of various models and for validation of new techniques proposed

for various aspects of flood frequency analysis, where daily

flows are used for obtaining flood series, as is the case with

large basins.
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For daily flow generation in case of perennial rivers, only

two raodels viz. linear autoregressive and shot noise raodels are

suitable. The review has not indicated any evidence wherein the

performance of these two models has been compared explicitly on

the basis of flood related characteristics in the generated daily

flow data.

It would be worth while to consider such a composition also

as a part of the present study. The conclusions drawn from liter

ature review were taken into consideration in formulation of the

methodology for multivariate modelling of flood flows, which is

presented in the next chapter.



CHAPTER III

DEVELOPMENT OF THE METHODOLOGY

3.1 General

The methodology for stochastic modelling of flood flows is

presented in this chapter. The methodology is based on partial

duration series approach and involves use of bivariate normal

distribution as the parent bivariate distribution function for

two dependent variables such as flood volumes and flood peaks.

The basic considerations for defining a flood event and its vari

ous components are described in section 3.2. The bivariate normal

distribution assumes normal marginal distributions which is

usually not the case with data series of flood peaks, volumes and

durations. Hence normalization of these variables is required

before applying bivariate normal distribution. The two step power

transforraation (TSPT) as per the details given in section 3.3 has

been adopted for normalization. The bivariate normal distribution

function and further derivations required for its suitable and

meaningful application to various components of flood flows are

presented in section 3.4. Finally, the steps of the methodology

are described in section 3.5.

3.2 Basic Considerations

The PDS approach which considers the flood discharges above a

38
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particular threshold, has been used throughout the development of

the methodology. The flood features considered in the analysis

are described as follows:

3.2.1 Main Features

For defining any flood event, the following flood features

have been considered; viz. (i) Flood peak (FP), (ii) Flood dura

tion (FD), (iii) Flood volume (FV) and (iv) Time of occurrence of

flood peak (Tp). These are described as follows:

(i) EIqoj. Peak (FP) : The flood peak (FP) is defined as the

highest discharge above a particular threshold (Qb) in a flood

event.

For example in Fig. 3.1 (1), (2), (n-1) and n etc. are

flood events. Flood event (1) starts at time Tbi and ends at time

Tel. Similarly flood event (n) is starting at time Tbn and ending

at time Ten. These flood events are having highest discharges at

times Tpi, TP2, and Tpn etc. The flood peaks for these

events are FPi, FP2, and FPn as shown in Fig. 3.1. If the

discharges at Tpi, TP2, ,Tpn etc. are Qtpl, Qtp2, ,

Qtpn, then flood peak for the nTh event is defined as

FPn = Qtpn - Qb (3,1)

(ii) Flood Duration : The flood duration (FD) is defined as the

duration for which a particular flood event remains above the

threshold (Qb). In Fig. 3.1 FDi, FD2 ,FDn etc. are durations

of flood events (1), (2),....,(n) respectively. Mathematically,
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Fig. 3-1 Streamflow hydrograph showing various flood featur
es
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flood duration for the nTh event FDn is defined as

FDn = Ten - Tbn (3.2)

(iii) Flood Volume (FV) : The flood volume (FV) is the volume of

water above a particular threshold (Qb) for the event. Mathemat

ically, the flood volume for the nTh event, FVn, is defined as

Te.n

FV.- J(Qt-Q6)dt (3.3)
Tbn

(iv) Time of Occurrence of Flood Peak (TP. : As mentioned ear

lier, the time of occurrence of flood peak of nTh event is Tpn

and has been shown in Fig. 3.1.

3.2.2 Other Features

Considering the fact that there may be more than one flood

events in a year, the following five features are also important.

(i) total number of flood events (k) in a year

(ii) largest flood peak in a year (FPiar)

(iii) largest flood volume in a year (FViar)

(iv) largest flood duration in a year (FDlar)

(v) time of occurrence of largest flood peak (.ut)

The subroutine DVPA has been developed by the author in FOR

TRAN IV for this study. It gives, for a given threshold value,

number of flood events, corresponding flood peaks, volumes,

durations and timing of flood peaks for different years. The sub

routine is given in Appendix - I. Other important subroutines
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developed in the present study are also given in Appendix - I.

The purpose of each subroutine and necessary instructions to use

these subroutines are described in the subroutine in the form of

comment statements.

The analysis and distribution functions of various variables,

mentioned in this section, i.e., (i) number of flood events in a

year, (ii) timing of flood peaks, (iii) flood peaks, volumes and

durations (iv) largest flood peaks, volumes and durations in dif

ferent years and (v) time of occurrence of largest flood peaks,

for Narraada at Garudeshwar, are presented in chapter IV for

various threshold levels.

In the next section the details of two step power transforma

tion (TSPT) are presented. TSPT has been used for normalization

of flood variables before applying bivariate normal distribution,

described in section 3.4.

3.3 Two Step Power Transformation (TSPT)

Box and Cox (1964) suggested the following family of trans

formation for normality

xK- 1
y, -—i-— for K+0

A-

y.-logx, for K-0 (3.4)

Here,

xi = the variates of a given series,

yi = the transformed normal variates and
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K = a constant of transformation.

Eq. (3.4) is a more general power transformation and the log

arithmic, reciprocal and square root transformation are special

cases of this. The constant *• is nonlinear and cannot be

determined in a closed form. However it can be estimated by

assigning various values to *• and choosing a value that makes the

coefficient of skewness nearly zero. An increase or decrease in *•

follows an increase or decrease in the coefficient of skewness.

This trend is helpful in estimating the value of *• . Alterna

tively, Newton - Raphson method can be used to estimate the value

of *. The subroutine P0WER1 developed for Box - Cox

transformation uses Newton - Raphson method and is given in

Appendix I.

The Box - Cox transformation though reduces the coefficient

of skewness (Co) to zero, yet is unable to make the coefficient

of kurtosis (Ck) equal to 3 which leads to underestimation or

overestimation of flood quantiles depending upon whether Ck is

more than 3 or less than 3. The correction for Ck is envisaged

through modulus transformation in two step approach as follows

z,-(|y.-y|)Y (3.5)

Where, v is positive and Zi is having same sign as (yi - y). The

modulus transformation given by Eq. (3.5) depending upon the

value of y, equally stretches or compacts the transformed histo

gram of yi obtained by Box -Cox transformation. Similar transfor

mation has also been suggested by John and Draper (1980) and
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Gupta et al. (1989).

With suitable value of y, the Ck of Z series can be made

equal to 3. In the modulus transformation it is evident that when

V-»0, the Ck of Z series tends to be one and for Y-*-, Ck tends to

be —. For y = 1 the Ck of Z series will be same as that of y

series obtained after Box -Cox transformation. Therefore, if Ck

of y series is more than 3, y will be between one and zero and

for Ck < 3, y will be more than one.

With the help of simple iterative algorithm the values of *•

and y can be obtained which will make Ca and Ck of x series as

zero and 3 respectively.

The value of x for a given return period (T) can be obtained

using back transformation as follows

ZT-Z + KTor (3.6)

y'T-(|ZT|)1^ (3.7)

Here y^. has the sign of Zt.

yT-y'T +y (3.8)

and

xT-(yT\+l)"K (3.9)

In Eq. (3.6) to (3.9),

xT = variate x corresponding to T year return period

Z - mean of Z series

ox = standard deviation of Z series

Kt = normal reduced variate corresponding to prob. Of exceedance
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equal to 1/T.

The subroutine P0WER2 gives the value of vs. and Y for a given

series. The subroutine requires the initial value of x which is

obtained from subroutine P0WER1.

3.4 Bivariate Normal Distribution

The bivariate normal distribution, though quite old in sta

tistics, has not been applied to hydrological problems quite

extensively. In the foregoing text, the bivariate normal

distribution function and further derivations required for its

suitable application to various components of flood flows are

presented.

3.4.1 The distribution

The bivariate normal density function for a bivariate (x,y)

e.g. normalized flood volumes and flood peaks, with sample corre

lation coefficient r between x and y is given by

h(x.y) L_CxP[—' (.fiq^cy-;,)'
2no,oyVlTP 2(l-r2)v a*x a*

,,_ (*-n,)(y->•,)..
2r 7^y >] (3.10)

where n, and a. are the mean and standard deviation of x and ny

and o„ of y. (Yevjevlch, 1972).

The marginal p.d.f. of x can be obtained by integrating Eq.

(3.10) with respect to y frora -~ to +— as
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1,00 TjT* ' ca.io

The marginal p.d.f. Of y can be obtained by integrating (3.7)

with respect to x from -•" to +«• as

hCy) 7J% ° <312>

3.4.2 Further derivations for application to flood flows

Following the work of Singh and Krstanovic (1987) the condi

tional p.d.f. of y due to the knowledge of x can be expressed as

h(y|x) = h(x,y)/h(x) (3.13)

Substituting r-ovo.o, in (3.7), h(x,y) can be written as

h(x.y)-
2n(oxoy-oxy)"2

exp<'{"zco^l-a^)10'^"^^*0'^-^'-^^^-^^-!!^]} (3-14)
Substitution of (3.11) and (3.14) in (3.13) gives

h(y|x) -
(2R(axay-axy))"2

exp
/ q»(y-tiy)2-2oxy(x-tix)(y-py)^(X-|xx)2(q;y/q;)\
\ 2(oxay-axy) / (3-15>

The cumulative distribution function H(y|x) can be obtained

by integrating with respect to y



H(y|x) -

i
--0

(2n(o2o2y-o2xy)),/2

exp<
2(axoy-o2y) (y-M-(^f(x-i*-)) }dy

Making the following substitutions

(2(oxay-a2xy)),/2
- c,

ei((y-tir)-^(x-ti,)jJ-z/V2
and

dy - dz/c,^2

H(y|x) can be written as

z

H(y|x) - JVz',2dZ
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(3.16)

(3.17)

which is the integral form of the standard normal distribution.

The joint distribution of X and Y can be obtained as

* r

H(x,y)-J J h(y|x)h(x)dxdy
—«£> -co

(3.18)

Following the work of Zelenhasic (1970) and Correia (1987)

the joint distribution function of X and Y when the time interval

of one year is considered may be given by
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F(x.y) - lH(x,y)k.P(Ek) (3.19)
k-0

where P(Ek) is the probability that k flood events occur in one

year. F(x,y) represent the probability that in one year x and y

are both not exceeded i.e.

F(x,y) - P(XSx.YSy)

If the nuraber of flood events per year is Poisson distrib

uted, Eq. (3.19) may be written as

(3.20)

F(x.y) - lH(x,y)^ (3>2I)

m H(x,y)W» H(x,y)a-K\ H(x,y)Vfc\'
0! 1! + 2! +

e"fc
.^(x.y)^ H(x,y)\2

1! 2! +

- e'xeH{",r>-x

or

F(x,y) - e»"**>-*

•]

(3.22)

The probability that at least one of the values (x,y) is

exceeded in one year is equal to 1 - F(x,y) and the return period

associated with this event is

T(x,y) n 1./ ( 1 - F(x,y)) (323)

The return period associated with the exceedance of both x

and y in one year is given by



49

T'(x,y) = l./(l - Fm (x) - Fm (y) + F(x,y)) (3.24)

In the above expression Fm (x) and Fm (y) represent the mar

ginal distributions of x and y being exceeded in one year. These

marginal distributions can be computed by

FM(x) - e^H(x)-K (3.25)

FM(y) - e*H<»"fc (3.26)

where,

X

H(x)- J h(x)dx
••0

or

'r 1 -\C-^XH(x)- f-4-e'^-J
^oxV2a

H(y)- J h(y)dy

or

1H(y>"j[iT7Bf •" (3.28)
The return period associated with the exceedance of x alone

is given by

.<?)'

(3.27)

T(x) = 1. / (1 - Fm(x)) (3<29)

The return period associated with the exceedance of y alone

is given by
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T(y) = 1. / (1. - FM(y)) (3>30)

The return period associated with the exceedance of y given x

i.e. (Yiy|x-x) is given by

T(y|x) - l./(l.-F(y|x)) (3.31)

where,

F(y|x) - e"""*^ (3>32)

3.4.3 Solution techniques

For the solution of integral of standard normal distribution

in Eq. (3.17), (3.27) and (3.28) subroutine NDTR frora Scientific

Subroutine Package of IBM was tested and used. The subroutine has

a maximum error of 7 x 10-7 and is based on the approximation of

Normal distribution function given by Hastings (1955).

The integral for joint distribution of X and Y given in Eq.

(3.18) has been solved using subroutine QG32 in which evaluation

is done by means of 32 point Gauss Quadrature formula.

3.5 The Methodology

Based on the concepts given in earlier sections, the proposed

methodology for stochastic modelling of flood flows consists of

the following sequential steps.

1. Processing of daily discharge data for river site under con

sideration and selection of appropriate threshold level. The

selection of threshold level requires that Poissonian assumption

for number of flood events in a year is not violated.

2. Identification of flood events and their components above
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selected threshold level using subroutine DVPA.

3. Normalization of flood volumes and peaks using TSPT (subrou

tine P0WER2). The subroutine P0WER2 will give the values of ^ and

Y for flood volume and flood peak series.

4. Use of bivariate normal distribution to estimate return peri

ods of various events given by equations (3.23), (3.24), (3.29),

(3.30) and (3.31).

The subroutine NKG was developed in FORTRAN IV. This subrou

tine performs step 3 and 4 for a given threshold level and is

capable of handling any number of flood volume and flood peak

values.

The methodology developed in this chapter has been validated

using long terra synthetically generated data in Chapter VI along

with its application to Narmada at Garudeshwar. The details of

data used and its preliminary analysis are presented in next

chapter and the details of daily flow generation in Chapter V.
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CHAPTER IV

DATA USED AND PRELIMINARY ANALYSIS

4.1 General

The chapter gives general description of Narmada river basin,

earlier studies of flood estimation for Sardar Sarovar dam,

details of data used, its processing and preliminary analysis.

The preliminary analysis of data includes conventional flood fre

quency analysis of annual flood series (AFS) and analysis of var

ious flood features for different threshold levels.

4.2 The Narmada Basin

General description of Narmada river basin and earlier stu

dies of flood estimation for Sardar Sarovar dam are presented in

this section, as follows:

4.2.1 General description

The River:

Narmada river is the fifth largest river of India and is

known as the 'life line' of Madhya Pradesh. The Narmada river

rises in the Amarkantak plateau of Maikala range in the Shahdol

district of Madhya Pradesh at an elevation of 1057 ra. above sea

level. The river travels a distance of 1312 km before it falls

into gulf of Cambay in the Arabian sea near Bharauch in Gujarat.

It runs for about 1100 km in the state of Madhya Pradesh and rest

in the states of Maharashtra and Gujarat.
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The Basin:

The Narmada basin extends over an area of 98796 sq. km. and

lies between longitudes 72* 32'E to 81* 45'E and latitudes 21* 20'N

to 23* 45'N. The catchment area up to Narraada Sagar dam (under

construction) is 61642 sq. km. and the area up to Sardar Sarovar

dam (also under construction) is 88000 sq. km. The basin is

bounded by Vindhyas in the north, by Maikala range in the east,

Satpuras in the south and by the Arabian sea in. the west. Most of

the basin is at an elevation of less than 500 m above sea level.

The index map of the basin is given in Fig. 4.1 with map of India

in inset.

The CllMta:

The climate of the basin is humid tropical ranging from sub

humid in the east to semi- arid in the west with pockets of humid

climates around higher hill reaches. The normal annual rainfall

for the basin is 1178 mm. South west monsoon is the principal

rainy season accounting for nearly 90% of the annual rainfall.

About 60% of the annual rainfall is received during July and

August months.

Soils;

The soils in Narmada basin are mainly black soils. The dif

ferent varieties are deep, medium and shallow black soils. In

addition to this, mixed red and black soil, red and yellow »oil

and skeletal soils are also observed in pockets. Of these deep

black soil covers the major portion of the basin.
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Land Us*;

About 35% of the area is under forest, about 60% under arable

land and remaining under grass land, waste land etc.

4.2.2 Earlier studies of flood estimation

A number of attempts have been made by several agencies to

estimate the design flood for Sardar Sarovar Dam. Various aspects

of Sardar Sarovar dam project have been documented in Sardar

Sarovar Narmada Nigam (1989). Some of the relevant studies of

design flood estimation for this dam are briefly presented as

follows:

The Central Water Power Commission (CWPC) carried out flood

studies for Broach Irrigation Project in 1952 utilizing the Garu

deshwar observed data for 3 years (1948-51). By adopting unit

hydrograph method and design storm of 100 years frequency, peak

of design flood was estimated as 57600 cumecs. Based on the use

of empirical formula and this study, a peak of 58000 cumecs was

recommended. In 1960, a Board of Consultants appointed to review

the design flood at Navagam dam site recommended an increase by

10% which gave a design peak flood of 63000 cumecs In 1961, IMD

oarried out fresh flood studies on the basis of up to date hydro-

graph and storm data. Considering July 1944 storm and peak flood

discharges of 1949, 1950, 1959, 1961 and 1962 design peak flood

arrived at was 64600 curaecs. In 1959, Government of Gujarat car

ried out flood frequency analysis with return periods of 1 in

1000 years and this gave a flood peak estimate of 46200 cumecs.
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Gauge data at Broach railway bridge and observed gauge and dis

charge data at Garudeshwar were utilized in the study.

After 1962, there was a succession of unprecedented floods in

the river Narmada. This set in process further rethinking on

design floods. In 1974, CWPC carried out a flood frequency study

for the project considering the observed gauge and discharge data

up to 1973. The design flood having a return period of 1000 years

worked out to be 86900 cumecs. After incorporating data up to

1977 design flood value of 85600 cumecs was estimated. The Sardar

Sarovar Project prepared in Jan. 1980, therefore considered a

flood with 1000 years return period as 86900 cumecs.

In view of the very large size of the catchment, variations

in storm rainfalls and physical parameters of the basin, and the

need to ensure safety of the dam under all possible adverse flood

conditions, comprehensive assessment of design floods with the

latest available approaches was considered urgent and essential.

Accordingly rational flood hydrology studies for the basin were

set in motion in consultation with Govt, of India at the Central

Water and Power Research Station, Pune (CWPRS) and National

Institute of Hydrology, Roorkee (NIH) in addition to the compre

hensive studies taken up by the engineers of Govt, of Gujarat.

These studies aimed at estimation of 1 in 1000 years flood

(project design flood), 1 in 10000 years flood and PMF under most

likely adverse hydro-meteorological conditions. All these studies

had a comraon data base. The Dam Design Review Panel (DDRP) set up

by Govt. Of Gujarat also reviewed the studies by various agen

cies. The CWPRS has carried out studies with deterministic
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approach using (i) OPSET model (Modified Stanford Watershed

Model) and (ii) SSARR model. Statistical approach has also been

used with various distributions such as EVl, LP III and PT III

etc. NIH carried out studies using frequency analysis approach

and deterministic approach using HEC 1 model by dividing the

whole basin into 20 sub basins.

The PMF values estimated by various agencies ranged from

107600 cumecs to 221000 cumecs considering a moisture maximiza

tion factor of 1.35. The value of peak flood arrived at by NIH

for 10000 years return period was 127500 cumecs.

These estimates indicate the range covered in design flood

values in earlier studies and thus provide a rough guideline for

selection of flood peak magnitudes for the present study.

4.3 Data Used For the Study:

4.3.1 The data

Daily discharge data of river Narmada at Garudeshwar site

(downstream of Sardar Sarovar dam) from 1949-79 have been used in

this study. The Garudeshwar site lies at a latitude of 21* 50' N

and longitude of 73' 58' E. The zero of gauge is at 10.0 m above

sea level. The cross section of river Narmada at Garudeshwar is

shown in Fig. 4.2. The stage discharge relationship for the site

was developed by NIH (1985). In developing this relationship the

physical features like cross section, bed slope etc. were also

taken into consideration. The relationship is given below:



30 60 90 120 ISO 180 210 240 270 300 330 360

DISTANCE (m)

390 420 450 480 510 540 570 600 630 660

Fig. 4«2-Cro«i section of river Narma«Ja at Garudeshwar
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Q - 250.0(H-11.7)1'6* (4.1)

In Eq. (4.1), Q is discharge in cumecs and H is stage in meters

above sea level.

4.3.2 Processing of daily flow data :

The regular gauging in the river at Garudeshwar started from

July 1948. The daily discharge data compiled by Narmada Project

Dam Design Circle, Gujarat, were available in manuscript form.

The data was thoroughly checked for any inconsistent value, wrong

entries and gaps. The discharge values were keyed in and checked

through software developed by the author for any inconsistent

value and punching error. This software included a simple subrou

tine to check number of values in a month, number of values in a

year, conversion of unit etc. and a plotting subroutine to plot

the discharge data. The gaps in the data were few in number and

mostly in the lower range of flows. These were appropriately

filled up by considering the trend of the rest of the data, eve

ning and noon observations and hourly gauge data (wherever avail

able) . The processed data thus obtained was used for further

analysis.

4.4 Preliminary Analysis:

The preliminary analysis using daily discharge data from

1949-79 for river Narmada at Garudeshwar, includes conventional

flood frequency analysis of AFS and analysis of (i) number of
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flood events in a year, (ii) timing of flood peaks, (iii) flood

peaks, volumes and durations, (iv) largest flood peaks, volumes

and durations and (v) timing of largest flood peaks for different

threshold levels. The analysis of above variables mainly include

the study of distribution function of these variables. For test

ing the goodness of fit chi- square test at 5% significance level

has been used. The details of this analysis are as follows:

4.4.1 Conventional flood frequency analysis using AFS:

Conventional flood frequency analysis with an objective to

estimate various flood quantiles has been carried out. As pointed

out in review of literature, still there is lot of controversy

amongst hydrologists regarding the choice of a particular distri

bution and method of parameter estiraation. It is futile and inad

visable to try all the distributions and parameter estimation

techniques. Hence only some selected distributions and parameter

estimation techniques have been used for flood estimation. These

are listed below along with reasons for selection,

(i) Wakeby by PWM (recommended by Wallis and Wood, 1985 based on

simulation studies and by Houghton, 1978a, on the basis of

regional studies).

(ii) GEV by PWM (recommended by Hosking et al., 1985 on the basis

of simulation results and NERC, 1975 on the basis of regional

studies).

(iii) EVl by PWM (Central Water Commission (India), 1972 recom

mended the use of EVl distribution for Indian rivers; PWM was

shown to be the robust method of parameter estimation for EVl
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distribution by Goel and Seth, 1988)

(iv) LP III by method of moments (recommended by USWRC, 1967;

1977; 1981; and by Mc Mahon and Srikanthan, 1981 )

The annual flood series (AFS) for 31 years was obtained by

considering maximum daily discharge in a year as the annual flood

peak.

Flood magnitudes of 2, 5, 10, 20, 50, 100, 200, 500, 1000 and

10000 years return period have been estimated by fitting each of

the above distributions to the AFS. Both the forms (4 parameter

as well as 5 parameter) of Wakeby distribution have been tried.

The performance of these distributions has been Judged on the

basis of following three criteria:

(i) Average of relative deviation between observed and computed

values of events (ADA),

(ii) Average of squares of relative deviation between observed

and computed values of events (ADR) and

(iii) Efficiency (EFFI) of the distribution.

ADA, ADR and EFFI have been computed using following rela

tionships :

I

ADA- £|(Q,trt.-Qi.—.)/Q.,.».| xlOO/N (4.2)

ADR-g((Qli,„-Qlc,I|>)/Q1Oi)2xl00/N (4.3)
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EFFI - (model variance/Initial varlance)xlOO

Z(Q,....-Q)2 - Z(Q.....-Q.....,)2
r ^ xlOO (4.4)
Z(Q.....-Q)

In the above equations N is the no. of values, Qi.obn is the

iu value of observed discharge in AFS, Qi.comp is the l* value of

computed discharge in AFS and Q is mean of AFS.

Based on the above criteria floods of different magnitudes

have been finally selected. The steps and results of analysis of

31 years AFS are as follows:

(i) The AFS (1949-79) was tested for randomness using Anderson's

correlograra test (Anderson, 1941) and turning point test (Kotte

goda, 1980) and was found to be random at 5% significance level.

The AFS is plotted in Fig. 4.3. The presence of any rising or

falling trend was checked using Kendall's rank correlation test

(Kottegoda, 1980) and the series was found to be trend free.

(ii)The statistical parameters of AFS in original and log domain

are given in Table 4.1.

Table 4.1

Statistical parameters of AFS for Narmada at Garudeshwar

(1949-49)

Max. Min. Mean S.D. Cs Ck r,

Original series

63800.000 10131.767 27790.760 13788.216 1.042 3.819 0.111

Log Transformed series

11.064 9.223 10.121 0.479 0.154 2.502 0.158



63

Fig- 4.3-Plot of annual flood series (1949-79)
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(iii) The probability weighted moments M110 which are used to

estimate the pararaeters of Wak-4, Wak-5, GEV and EVl distrib

utions are computed by

M1|0 - E(X.F'.(1-F)°) (45)

where,

F = prob. of non exceedance

= (m-0.35)/N ....
(4.6)

ra = rank of data if arranged in ascending order.

>•«,„, M„., m,„, M,„,and M,„ for the AFS are 27790.761,

17718.111, 13395.817, 10906.89 and 9264.504 respectively.

(iv)The parameters of Wak-4, Wak-5 ,GEV and EVl distributions

using PWMs and procedure given by Greenwood et al. (1979) and

Hosking et al. (1984) are given in Table 4.2. In Table 4.2 u, «

and k are location, scale and shape pararaeters respectively.

Table 4.2

Pararaeters of Wak-4, Wak-5, GEV and EVl distributions

Distr- Parameters

Wak-4 A=12084.824, B=56.932 C =-131304.420, D =-0.138

Wak-5 A= 5401.526, B=3.395, C =-307795.930, D =-0.048,

GEV M=9544.909

EVl u=20901.489, « =9846.809, k =-0.111

u=21424.096, a. =11030.068
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(v) Using the pararaeters given in Tables 4.1 and 4.2 flood magni

tudes for various return periods for Wak-4, Wak-5, GEV, EVl and

LP III distributions were computed and are given in Table 4.3.

(vi) ADA, ADR and EFFI values as given by Eq. (4.2) to (4.5) for

various distributions are given in Table 4.4.

It can be seen from Table 4.4 that for Wak-4 distribution ADR

is minimum and EFFI is maximum. The ADA is minimum in the case of

Wak-5 but for Wak-4 also it is comparable. Hence on the basis of

criteria of ADA, ADR and EFFI the flood quantilos given by

Wakeby-4 distribution could be selected. These flood quantiles

are given in Table 4.5.

4.4.2 Distribution of the number of flood events

The distribution of the number of flood events in a year

plays an important role as the raethodology developed in Chapter

III considers simultaneous occurrence of flood events and their

numbers.

The number of flood events in a year depends upon the thresh

old level, Qb. The Poisson distribution assumption for number of

flood events was tested for different levels of threshold based

on chi- square test. For Poisson distribution the probability

that exactly k flood events occur in a year i.e. P(Ek) is given

by:

P(Ek) - \VVJU (4.7)

Where, Ek is the event that exactly k flood events occur in a



Table 4.3

T years return period floods for Wak-4, Wak-5, GEV, EVl and LP

III distributions

Return Qt in cumecs for

period (T) Wak-4 Wak-5 GEV EVl LP III

2 24056 24487 24585 25467 24564
5 38223 37767 36971 37969 37057

10 47811 47096 46073 46246 46258

20 56525 56102 55545 54186 55755
50 66837 67555 68984 64463 69064

100 73816 75891 80006 72164 79843
200 80159 83955 91871 79837 91324

500 87666 94211 108993 89961 107699
1000 92746 101677 123142 97612 121074

10000 106525 124768 178751 123014 172468

Table 4.4

ADA, ADR and EFFI values for different distributions

Crit. DJjiJLJ^.

Wak-4 Wak-5 GEV EVl LPIII

ADA 3.919 3.843 5.401 6.810 5.091

ADR 0.282 0.287 0.524 0.985 0.365

EFFI 97.948 97.406 95.606 97.655 97.301

Table 4.5

Various return period (T) floods Qt in cumecs

10 20 50 100 200 500 1000 10000

Qt 24056 38223 47811 56525 66837 73816 80159 87666 92746 106525

66
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year and *. is the average nuraber of flood events per year.

The computed and critical x* values at 5% significance level

for Poisson distribution for number of flood events are presented

in Table 4.6 for various threshold levels ranging from 700 cumecs

to 20000 curaeo3. Such a wide range has been taken to select the

limits of threshold levels in which the methodology developed

would be applicable. As mentioned in Chapter II, the following

two points should be kept in mind while selecting the threshold

level:

(a) The threshold level should be high enough to ensure that (i)

number of flood events in a year is a non increasing function of

threshold and (ii) the flood events are random,

(b) The threshold level on the other hand should not be very

high, otherwise the number of events will be too less.

The Table 4.6, also gives lag one serial correlation coeff.

(r,) for flood peaks and volumes along with the 95% lower and

upper confidence limits (r, =0.0). These are based on Anderson's

correlogram test and are used to test the randomness of flood

events.

It can be seen from Table 4.6, that for threshold level below

3000 cumecs the number of flood events are not decreasing with

increase in threshold level and the flood events are not random

for some of the threshold levels. Frora 4000 to 18000 cumecs both

the requirements are satisfied. These results confirm the find

ings of Ashkar and Rousselle (1983) that ' the Poisson distribu

tion assumption as a model for flood frequency should remain so

with any higher level of truncation also'. For threshold levels
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Table 4.6

Computed and critical x* at 5% significance level for Poisson

distribution for nuraber of flood events

Thres. Total x'eomp. x*cri. n of n of 95% 95 %

curaecs flood flood flood upper lower

events peak volume limit limit

700 71 9.85 12. 6 0.046 -0.159 0.218 -0.246

800 76 13.46 12. 6 -0.164 -0.270 0.211 -0.238

900 79 11.13 14. 1 -0.141 -0.236 0.207 -0.233

1000 89 10.67 14. 1 -0.102 -0.184 0.196 -0.219

2000 130 9.07 16. 9 -0.092 -0.062 0.164 -0.179

3000 138 7.36 18. 3 -0.184 -0.191 0.159 -0.174

4000 134 8.57 18. 3 -0.148 -0.067 0.161 -0.176

5000 133 7.08 16 9 -0.081 -0.047 0.162 -0.177

6000 121 8.07 16 9 -0.007 0.052 0.169 -0.186

7000 117 3.72 16 9 -0.025 -0.009 0.172 -0.189

8000 107 5.75 15 5 -0.062 -0.019 0.180 -0.198

9000 100 11.89 15 5 -0.059 -0.016 0.185 -0.206

10000 91 2.05 14 1 0.007 0.051 0.194 -0.216

11000 76 7.32 12 6 -0.042 0.043 0.211 -0.238

12000 70 8.44 12 .6 -0.090 0.017 0.219 -0.248

13000 62 11.87 12 .6 -0.132 -0.025 0.232 -0.265

14000 56 4.63 11 .1 -0.184 -0.045 0.243 -0.280

15000 50 8.87 11 .1 -0.211 -0.071 0.256 -0.297

16000 47 7.79 11 .1 -0.226 -0.093 0.264 -0.307

17000 43 7.60 9 .5 0.027 0.098 0.275 -0.322

18000 37 5.51 9 .5 -0.007 0.080 0.294 -0.349

19000 30 11.19 9 .5 -0.075 0.022 0.323 -0.392

20000 28 14.81 9 .5 0.021 0.173 0.333 -0.407
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above 18000 curaecs, the number of flood events are even lesser

than the length of the record. Above this threshold the Poisso

nian assumption is also violated based on chi- square test.

The computation of x* for four typical threshold levels of

6000 curaecs (K =3.903), 10000 cumecs (* =2.935), 13000 cumecs (*.

=2.0) and 18000 curaecs (iv =1.193) are shown in Table 4.7. The

observed and corresponding theoretical (Poissonian) distribution

for number of flood events for the same threshold levels are

depicted in Fig. 4.4.

4.4.3 Timing of flood peaks

For most of the Indian rivers including Narmada floods occur

during five months (June to October) of monsoon season. For river

Narraada, the floods are mainly concentrated in the months of

July, August and September.

4.4.4 Distribution of flood peaks, volumes and durations

The determination of the distribution function of flood

peaks, volumes and durations is purely a problem of estimation

and according to the present state of art there are no theoreti

cal grounds that indicate the form of the distribution (Zelen

hasic, 1970). Many investigators have found that the exponential

distribution which is a special case of Gamma distribution, fits

well the frequency distribution of flood peaks (Zelenhasic, 1970;

Todorovic and Zelenhasic, 1970; Rousselle, 1972), flood durations

(Correia, 1985, 1987) and flood volumes (Krstanovic and Singh,

1987). Hence the applicability of exponential distribution for
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Table 4.7

Observed and corresponding theoretical (Poissonian ) distribution

for number of flood events per year

k Qb= 6000 Qb =10000 Qb =13000 Qb =18000

fob fth fob fth fob fth fob fth

0 0 0.6225 1 1.6463 5 4.1954 11 9.3975

1 1 2.4414 6 4.8326 10 8.3908 9 11.2163

2 5 4.7646 6 7.0929 6 8.3908 8 6.6936

3 8 6.1991 8 6.9404 6 5.5939 1 2.6630

4 6 6.0492 4 5.0934 0 2.7969 1 0.7946

5 8 4.7223 4 2.9903 2 1.1188 1 0.1897

6 1 3.0720 1 1.4630 2 0.3729

7 1 1.7130 1 0.6135 0 0.1065

8 0 0.8358 0 0.2251

9 1 0.3625

10 0 0.1415

31 30.9267 31 30.89 31 30.966 31 30.9547

*=3.903 x=2.935 *=2 x=1.193

X*comp.=8.07 x*comp.=2.05 X*comp.=11.87 x'comp.rS.Sl

X*cri.=16.9 x*cri.=14.10 XIcri.=12.6 X*cri.=9.49

In Table 4.7 k is number flood events in a year, fob and fth

are observed and theoretical absolute frequency, x'cri. values

refer to the 5% significance level.
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Qb =10.000 CUMECS

Qb =18000 CUMECS

O OBSERVED

X- X THEORETICAL

k = NO. OF FLOOD

EVENTS

4-4 Observed and theoretical ( Poissonian ) distributions for number of flood
events in a year for different threshold levels (Qb)



72

the flood peaks, volumes and durations was tested.

The theoretical (exponential) distribution for flood peaks,

volumes and durations for a typical threshold level of 10000

cumecs are as follows:

H(FP) = 1. - exp(-(FP-110.2)/10591.9) (4.8)

H(FV) = 1. - exp(-FV/19390.6) (4i9)

H(FD) = 1. - exp(-(FD-l.l)/1.7) (4.10)

where, H(FP), H(FV), H(FD) are the functions of flood peaks (FP),

volumes (FV) and durations (FD) respectively.

Similarly distribution functions for other threshold levels

can be obtained using values of x0 and P frora Table 4.8.

The histogram of flood peaks, volumes and durations are

plotted in Fig. 4.5 to 4.7 for a typical threshold of 10000

curaecs. The theoretical (exponential) and observed distribution

functions of flood peaks, volumes and durations are plotted in

Fig. 4.8 to 4.10 for the same threshold level.

The histograms (Fig. 4.5 to 4.7) and CDF plots (Fig. 4.8 to

4.10) indicate the applicability of exponential distribution for

flood peaks, volumes and durations above 10000 cumecs threshold.

This was further investigated on the basis of chi- square test.

The computed and critical x* values at 5% significance level for

exponential distribution are presented in Table 4.9 for different

threshold levels ranging frora 4000 to 18000 cumecs.

It can be seen frora Table 4.9 that exponential distribution

is fitting well the flood peaks, volumes and durations for most



Table 4.8

Values of location parameter (xe) and scale parameter (P) for

exponential distribution for flood peaks, volumes and durations

for different threshold levels

73

Thres. X Flood peaks Flood volumes Flood dur.

cumecs X0 P xe B xe B

4000 4.322 0.0 10521.6 0.0 36500.9 1.2 5.9

5000 4.290 0.0 10404.8 0.0 30226.0 1.0 4.6

6000 3.903 136.1 10699.2 0.0 27677.2 0.9 3.9

7000 3.774 123.6 10592.9 0.0 24109.2 1.3 2.7

8000 3.451 7.5 10630.4 0.0 22396.6 1.1 2.4

9000 3.225 52.1 10570.8 0.0 20481.8 1.3 1.8

10000 2.935 110.2 10591.9 0.0 19390.6 1.1 1.7

11000 2.451 1048.9 10603.5 0.0 20123.6 1.2 1.5

12000 2.258 865.5 10631.1 0.0 19077.6. 1.1 1.4

13000 2.000 1125.9 10645.7 0.0 18852.8 1.0 1.4

14000 1.806 1205.3 10650.7 0.0 18285.1 1.0 1.3

15000 1.612 1313.0 10701.1 0.0 18039.8 1.0 1.2

16000 1.516 891.2 10743.2 0.0 16969.7 0.8 1.2

17000 1.387 753.8 10790.2 0.0 16435.5 0.7 1.2

18000 1.193 1149.7 10906.8 0.0 16946.2 0.7 1.2
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FLOOD PEAK (10 cumecs)

Fig. 4-5-Histogram of flood peaks above 10,000 cumecs threshold
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Table 4.9

Computed and critical x* at 5% significance level for exponential

distribution for flood peaks, volumes and durations for different

threshold levels

Thres. x* com p. x'cti

curaecs flood flood flood

peaks volumes dur.

4000 5.46 28.05* 4.38 11. 10

5000 3.96 28.77* 10.45 11. 10

6000 4.82 18.54* 4.36 9. 49

7000 18.51* 13.29* 4.75 9 49

8000 12.78* 19.14* 4.41 9 49

9000 3.18 13.48* 6.54 9 49

10000 5.07 10.15* 9.53* 9 49

11000 1.92 7.69 15.00* 9 49

12000 1.80 4.50 14.00* 9 49

13000 3.41 4.74 12.70* 7 81

14000 0.78 6.32 6.14 7 .81

15000 3.52 5.40 5.44 7 .81

16000 3.93 9.89* 9.29* 7 .81

17000 0.95 10.06* 8.20* 7 .81

18000 1.43 5.64 2.08 7 .81

Note:If x'comp. > x*cri., the value have been marked by *
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of the threshold levels. At the same time this fails either for

peaks or volumes or durations or all the three for some of the

threshold levels. From this analysis the general applicability of

exponential distribution for flood peaks, volumes and durations

for all the threshold levels is not confirmed and it again

remains a mathematical problem to determine their distribution.

Hence in the raethodology, adopted for the study, a two step power

transformation has been proposed to normalize these variables for

further univariate and multivariate analysis in Chapter VI.

4.4.5 Distribution of largest flood peaks, volumes and durations

In a particular year there may be more than one flood event.

The distributions of the largest flood peaks, volumes and dura

tions are more important as compared to all the flood peaks,

volumes and durations.

Zelenhasic (1970) derived the distribution function of larg

est exceedances, in a time interval, Ft(x), as given below:

m

Ft(x) =P(E*)+X!(H(x))k.P(E^) (4.11)
k-l

where,

H(x) is the distribution function of all the exceedances in given

interval of time and P( E, ) is the probability that there will

be k exceedances in the time interval.

Considering a fixed time interval of one year Eq. (4.11) can

be written (Correia, 1987) as
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F(x)- £<H(x)>k.P(Ek) (4.12)
k-0

Substituting the value of P(Ek) frora Eq. (4.7)

-KV k

F(x)-£<H(x)>k^- (4.13)

or

F(x)-ekH<x)-x (4.14)

In Eq. (4.14) F(x) is the distribution function of largest

flood exceedances, H(x) is distribution function of all the flood

exceedances and *• is average nuraber of flood events occurring in

a year.

Eq. (4.14) can be used to derive the distribution function of

largest flood peaks, volumes and durations as follows:

F(FP,.r) - exp(\H(FPl„)-\) (4.15)

F(FV,.r) - exp(\H(FVlir)-M (4.16)

F(FDltt) - exp(\H(FDlir)-\) (4.17)

The distribution functions of largest flood peaks, volumes

and durations can be derived by obtaining functions of all the

flood peaks, volumes and durations from Table 4.8. The computed

and critical x* at 5% significance level for distribution func

tions given by Eq. (4.15) to (4.17) are presented in Table 4.10

for different threshold levels ranging from 4000 to 18000 cumecs.

Here the distribution functions of all the flood peaks, volumes

and durations above a particular threshold level,have
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Table 4.10

Computed and critical x* at 5% significance level for largest

flood peaks, volumes and durations for different threshold levels

Thresh. x'comp. largest flood x'cri.

cumecs peaks volumes durat.

4000 5.45 8.03 12.54 14.1

5000 4.80 4.54 3.51 14.1

6000 7.38 4.54 4.16 14.1

7000 8.67 6.74 6.09 14.1

8000 8.67 6.74 9.32 14.1

9000 12.00 4.33 6.66 14.1

10000 13.33 4.33 2.66 14.1

11000 8.00 5.33 2.00 14.1

12000 9.27 8.58 9.96 14.1

13000 10.92 7.84 14.00 14.1

14000 19.40* 12.20 21.00* 14.1

15000 14.33* 13.50 18.50* 14.1

16000 13.95 12.21 14.82* 14.1

17000 16.61* 14.71* 14.71* 14.1

18000 16.00* 15.00* 12.00 14.1

Note:If x'comp. > x'cri., the values have been marked by * .
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been assumed as exponential. The theoretical (Eq. (4.15) to

(4.17)) and observed distribution functions of largest flood

peaks, volumes and durations are plotted in Fig. 4.11 to 4.13 for

a typical threshold of 10000 cumecs.

It can be seen from Table 4.10 that the distribution func

tions given by Eq. (4.15) to (4.17) for largest flood peaks,

volumes and durations are fitting well the data for most of the

threshold levels at 5% significance level. These also fail for

some of the threshold levels. The possible reason for the failure

for.some the threshold levels may be the assumption of exponen

tial distribution for flood peaks, volumes and durations above a

particular threshold level. This can be taken care of by

normalizing these variables before applying Eq. (4.15) to (4.17).

4.4.6 Distribution of the timing of largest flood peaks

To analyze the time of occurrence of largest flood peaks two

parameter Gararaa distribution was adopted .following the work of

Todorovic and Woolhiser (1972). This distribution was fitted to

the time of occurrence of largest flood peaks and was found to

fit well at 5% significance level for different levels of thresh

old. The mean, std. dev. , and Cooitiraing of largest flood peaks,

xtat (counted frora Jan. 1 in days) are given in Table 4.11 along

with computed and critical x1 values for Gamma distribution for

different threshold levels. It can be seen from the table that

Gamma distribution is fitting well to the timing of largest flood

peaks.
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Fig. 4-11-Observed and theoretical (Eq.4-15) distribution of largest
flood peaksabove 10,000 cumecs threshold
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Table 4.11

Computed and critical x* at 5% significance level for time of

occurrence of largest flood peaks for different threshold levels

Thres. *.«. X comp. x'cri.

curaecs mean S.D. Cs

4000 to 235.4 20.5 -0.064 4.32 5.99

8000

9000 to 235.9 20.7 -0.124 5.33 5.99

11000

12000 236.6 20.6 -0.202 5.99 5.99

13000 239.9 19.0 -0.304 5.92 5.99

14000 239.1 18.9 -0.237 4.80 5.99

15000 240.3 18.3 -0.309 4.75 5.99

16000 241.3 18.1 -0.418 2.86 5.99

17000 241.9 18.1 -0.474 3.52 5.99

18000 242.7 18.2 -0.600 3.50 5.99



89

For the threshold of 10000 curaecs the mean, and std. dev. of

T«. are 235.867 and 20.649 days respectively. This gives the PDF

of Tto, as follows:

-IM.V* -tn,/18077
xl«r

f(t,")" 1.8077 '»•♦"[•( 130.479) (4,18)

Similarly the PDF for other threshold levels can be obtained.

4.5 Inferences

General description of Narmada basin, data used and its pro

cessing, conventional flood frequency analysis of AFS and analy

sis of (i) number of flood events in a year, (ii) timing of flood

peaks, (iii) flood peaks, volumes and durations, (iv) largest

flood peaks, volumes and durations and (v) time of occurrence of

largest flood peaks, have been presented in this chapter. On the

basis of the analysis carried out in this chapter the following

inferences can be drawn:

(i) For annual flood series of Narmada at Garudeshwar the Wakeby

distribution performs better than GEV, EV 1 and LP III distrib

utions .

(ii) Based on chi- square test at 5% significance level, the

number of flood events in a year follow Poisson distribution.

Once the applicability of Poisson distribution is established it

remains applicable for any higher level of threshold also in the

range 4000 to 18000 cumecs.
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(iii) Exponential distribution fits well to the flood peaks, vol

umes, and durations for most of the threshold levels but the

general applicability of this distribution for all the threshold

levels is not confirmed by chi- square test at 5% significance

level. Hence in the methodology, adopted for the study, a two

step power transformation has been proposed to normalize these

variables for further univariate and multivariate analysis in

Chapter VI.

(iv) Two parameter Gamma distribution function fits well the time

of occurrence of largest flood peaks for the threshold levels

ranging from 4000 to 18000 cumecs.
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CHAPTER V

GENERATION OF DAILY FLOWS

5.1 General

The methodology and application of two models of daily flow

generation, viz. linear autoregressive and shot noise models are

described in this chapter. The purpose of this study is (i) to

ascertain the suitability of these models for generation of flows

in the situation when major portion of flow occurs during 5

months of monsoon season, and (ii) to use the generated data for

the validation of the methodology developed for stochastic model

ling of flood flows. Synthetic data generation for river Narmada

at Garudeshwar using linear autoregressive (LAR) model and shot

noise raodel is described in section 5.2 and 5.3 respectively. The

modified shot noise model (MSNM) which account for the different

behavior of the river during monsoon and nonraonsoon seasons is

also described in section 5.3. Section 5.4 describes the inter

comparison of these raodels (MSNM and LAR) in preserving the sta

tistical parameters of daily flows and other flood related char

acteristics in generated data. The conclusions drawn from this

study are presented in section 5.5.

5.2 Linear Autoregressive Model

This section first describes the steps of the methodology
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used in linear autoregressive raodel to generate daily flows. The

components of daily flow time series and generation of daily

flows for river Narmada at Garudeshwar are then presented.

5.2.1 The Methodology

The classical approach to tirae series analysis comprises of

decomposition of the series into deterministic component (trend

and periodicity) and stochastic component. Various tests, e.g.

Kendall's rank correlation test and regression test, etc. have

been described in literature for identification of trend. Har

monic analysis has been traditionally employed to quantify peri

odic component in discrete time series. After removing the

deterministic component, the resulting series is treated as

stationary and described by linear autoregressive scheme. The

model representing various components of time series is then used

for data generation. The step wise procedure for such analysis,

as given by Hall and O'Connell (1972), is as follows:

(i) Apply a logarithmic transforraation to the flows denoted by Xt

as:

Yt = loge(Xt) (5fl)

The logarithmic transformation stabilizes the seasonal fluc

tuations and also precludes the negative flows in the generated

data.

(ii) Obtain a periodic representation of the seasonal fluctua

tions in the observed daily means Y,, Y,, , Y,*, as
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where, Y denotes the overall mean, s is selected number of har

monics and coefficients A. and B. are given by

a 2 £?- 2aky

and

B" 3SY4-,Y'Slnl6r (S.3)

Though 182 harmonics can be used for smoothing a daily tirae

series, yet more than 6 to 8 harmonics are seldom used (Yevje

vlch, 1976). The selection of the number of harmonics can also be

raade on the basis of Pmax and Pmin test or Periodogram test

(Yevjevich, 1972b).

(iii)Obtain a periodic representation of the seasonal fluctua

tions in the daily standard deviations Si, S2, ,S385 as:

c e4fL« 2nkT _ _, 2nkT\ST-S*£<;ckCos —+ DkSlnwj (5.4)

where, Ck and Dk are defined by analogy with Eq. (5.3)

(vi) Obtain a standardized series as:

Zt - (Yt-MT)/ST (5.5)

where, t = 365 j +T and j = 0, 1, , (N-1) years.

Zt series is approximately standardized. A further transfor

raation is also done to standardize the series fully:
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fl, (5.6)

where, n. and a. are overall mean and standard deviations of Zt

series.

(v) Fit a multiple lag autoregressive model to the series Zt*

z;- £a,Zt-,+et
i-i

(5.7)

Estimates of the coefficients ai are derived by obtaining

estimates of the first ra auto correlation coefficients of Zt*

series and then solving the linear Yule Walker equations. Tests

on the raodel residuals e, are used to determine the order of the

model. This description of the Zt series assumes that its auto

correlation structure is nonseasonal.

(vi) Fit an appropriate probability distribution to the series of

residuals i,. Normal, PT III and GEV distributions are generally

tried in dealing with hydrologio time series.

(vii)Daily flows are then synthetically generated by reversing

the above series of steps, starting by sampling independent ran

dom variates from the distribution «,.

5.2.2 The Components of daily flow time series

Daily flow data of 31 years (1949-79) for river Narraada at

Garudeshwar have been used in the study. Various components of

this time series of daily discharges (original domain) were ana

lyzed as follows:
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Trend: Kendall's rank correlation test (Kottegoda, 1980) was used

to identify the presence of any rising or falling trend in the

data and annual flows of 31 years were used for this purpose. The

annual flows are plotted in Fig. 5.1. Based on Kendall's rank

correlation test, the hypothesis of no trend in this data can be

accepted at 95 % confidence level.

Period!nlty: The harmonic analysis of daily means and standard

deviations was carried out using the procedure described in sec

tion 5.2.1 and Fourier coefficients were obtained. As suggested

by Yevjevlch (1976) only 8 harmonics were used for daily means

and standard deviations. When the harmonic means and harmonic

standard deviations were computed from Eq. (5.2) and (5.4)

respectively it was noticed that some of the ordinates were nega

tive. Though the negative volume i.e. the sum of negative ordi

nates, was negligible. To avoid negative ordinates, the

Fourier coefficients were adjusted as follows:

F* "U^'Mr—J (5.8)

where,

F„'= adjusted Fourier coefficient,

w = nuraber of seasons in a year; For daily flows w will be equal

to 365.

m = minimum percentage to make the negative volume as zero. Gen

erally ra varies from 1% to 10% .

Fk = original Fourier coefficient.The variance accounted for the
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Fig. 5.1- Annual flows for river Narmada at Garudeshwar(1949-79)
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jth harmonic is o.S(Af+Bj)

The initial variances in daily means and daily standard devi

ation were computed as 3.77 x 106 and 5.14 x 106 respectively.

The adjusted Fourier coefficients, Aj and Bj, ratio of

variance explained by each harmonic to the initial variance

denoted by Pj and cumulative sura of Pj for first eight harmonics

are given in Table 5.1 for daily means and standard deviations.

It can be seen from Table 5.1, that 8 harmonics are able to

explain 88.8% of the variance in the daily means and 61.7% in

daily standard deviations. The other harmonics of higher fre

quency were further not tried and were passed onto the stochastic

component as noise. The selection of harmonics was not done on

the basis of any formal test to avoid higher frequency (more than

8) in the daily standard deviations.

The unsmoothed daily means and superimposed harmonic means

based on 8 harmonics are presented in Fig. 5.2, while the corre

sponding plots for standard deviations are shown in Fig. 5.3

Dependent Stochastic Component: The statistical parameters (mean,

standard deviation, Ca, Ck, ri, r2, r3) of the standardized

series given by Eq. (5.5) are -0.042, 0.829, 7.07, 101.342,

0.732, 0.559 and 0.462 respectively. A further transformation (as

per Eq. (5.6)) was done to standardize this series fully i.e. to

have mean =0.0 and standard deviation =1.0. Different autoregres

sive raodels AR (1), AR (2), AR (3), etc. were fitted to this

series and their coefficients of determination computed. The

coefficients of determination for AR (1), AR (2), and AR (3)



Table 5.1

Harmonic analysis of daily means and standard deviations

Harmonic Aj Bj Pj Cum.sum

(j)

Daily Means

1 -1102.0 -1638.9 0.5160 0.5160

2 -419.7 1329.4 0.2571 0.7730

3 761.0 -262.0 0.0857 0.8587

4 -284.3 -250.6 0.0190 0.8777

5 -93.6 136.6 0.0036 0.8814

6 95.0 87.3 0.0022 0.8836

7 70.6 -114.7 0.0024 0.8860

8 -115.6 -35.1 0.0019 0.8879

Daily S.D.

1 -1157.6 -1583.1 0.3739 0.3739

2 -395.7 1248.7 0.1668 0.5408

3 669.0 -129.2 0.0451 0.5859

4 -113.1 -305.7 0.0103 0.5962

5 -215.3 75.6 0.0051 0.6013

6 110.9 181.9 0.0044 0.6057

7 145.0 -181.0 0.0052 0.6109

8 -235.4 -42.0 0.0056 0.6165
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models were found to be 0.5361, 0.5372, and 0.5403 respectively.

Adopting the criterion given by Yevjevich (1972 b) the AR (1)

model was selected to remove the dependence from, the stochastic

component. The coefficient ai for the AR (1) model was evaluated

as 0.732, i.e. equal to n.

Indepflnrifint St,0(.hant,ic Component, (ISC) : After removing the

dependent stochastic components the statistical parameters (mean,

standard deviation, C«, Ck, ri, r2, ra) of the ISC were obtained

as -0.0, 0.681, 8.154, 204.527, -0.036, -0.036, and 0.025 respec

tively. These parameters indicate that the ISC is highly skewed

and will require a skewed distribution. For the present study it

was decided to try normal, PT III and GEV as three possible
alternatives.

5.2.3 Generation of Daily Flows

Daily flows are generated by reversing the series of steps
explained in section 5.2.1.

The synthetic flows have been generated for the following two

cases, (i) without logarithmic transformation in the beginning

and exponentiation in the end, and (ii) logarithmic transforma

tion in the beginning and exponentiation in the end. These will

be referred as Case I and Case II respectively. For generation of

ISC three distributions, namely: (i) Normal, (ii) PT III, and

(iii) GEV, were tried. PT III and GEV distributions were taken as

highly skewed series having Cs equal to 8.154 was to be modelled.

For generating the PT III distributed random numbers, Wilson-

Hilferty transformation was used. This transforraation converts
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normally distributed random numbers into PT III distributed ran

dom numbers. For generating GEV distributed random numbers the

parameters (u, « and k) of GEV distribution were estimated from

the series of ISC using PWM. These parameters were then used to

convert uniformly distributed random numbers to GEV distributed

random numbers. Subroutine GAUSS was used for generation of nor

mally distributed random numbers and is given in Appendix I. Sub

routine GAUSS requires uniformly distributed random numbers,

generated using built in function RAN of DEC- 20 computer system.

Model Bn,notion and Generation: 10 samples of 30 years length for

each case were generated and their overall statistical parameters

computed. The statistical parameters of the historical series and

mean of the statistical parameters of 10 samples for each case

are presented in Table 5.2.

It can be seen from Table 5.2,that reproduction of statistical

pararaeters in Case II with norraal distribution for ISC is better

than other options tried. In case I with PT III distribution,
even the overall raean is coraing negative. The reason for this was

further investigated by studying applicability of Wilson- Hil-

ferty transformation for generation of PT III distributed random

numbers. It was found that Wilson- Hilferty transformation is

good only when C« is around 2. The Ca of ISC is 8.154 and hence

the transformation was not able to reproduce this Ce in generated
ISC.

Based on Table 5.2, it can be concluded that out of various

cases considered, the Case II (logarithmic transformation in the
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Table 5.2

Statistical parameters of historical series and mean of the

pararaeters of 10 samples generated by different cases of LAR

raodels

Series

Hist.

series

Case I

Normal

Case I

PT III

Case I

GEV

Case II

Normal

Case II 207512
PT III
Case II
GEV

Max Min Mean

Stat. Par.

S.D. Cv C. Ck ri

63800 3 1249.6 3242.6 2.6 6.8 76.1 0.82

2185 -10063 1191.5 2563.5 2.2 2.6 11.5 0.86

46701 -130941 -3255.7 7513.7 5.1 47.5 0.82

24660 -354 1184.9 2029.6 1.7 2.8 14.0 0.93

62589 2 1237.3 3168.6 2.6 6.7 79.0 0.95

4 1371.7 5303.8 3.9 16.6 489.3 0.87

41293 4 1053.2 2345.2 2.2 5.5 59.2 0.95

Note: Case I represents analysis of tirae series in original

domain.

Case II represents analysis of time series in log domain.

Normal, GEV and PT III are distributions of independent

stochastic components.
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beginning and exponentiation in the end) with ISC generated as

normally distributed is the best one. The statistical pararaeters

of individual samples along with the parameters of historical

series are presented in Table 5.3.

Table 5.3

Statistical parameters of historical series and generated samples
by selected linear autoregressive raodel

Stat. Para.

Series Max. Min. Mean S. D. Cv Cs Ck
ri

Hist. ser. 63800.0 3.1 1249.6 3242.6 2.59 6.79 76.1 0.82

Series 1 51485.0 3.6 1215.5 3139.1 2.58 6.32 62.1 0.95

Series 2 67234.6 0.8 1278.3 3337.6 2.61 6.87 78.0 0.94
Series 3 87969.6 1.0 1202.1 3139.0 2.61 9.26 165.7 0.95

Series 4 46309.1 3.1 1162.6 2756.3 2.37 5.39 46.3 0.94
Series 5 87832.0 0.8 1283.8 3681.4 2.86 8.58 120.4 0.94
Series 6 42156.5 0.6 1184.2 2774.0 2.34 5.24 41.5 0.95
Series 7 58140.7 1.8 1272.2 3366.7 2.64 6.70 70.2 0.95
Series 8 67417.3 2.6 1146.0 2956.8 2.58 7.14 91.2 0.95
Series 9 64483.6 1.3 1312.7 3460.7 2.63 6.46 65.1 0.94
Series 10 52816.8 0.4 1315.8 3074.6 2.33 5.38 48.9 0.94
Max. of 87969.6 3.6 1315.8 3681.4 2.86 9.26 165.7 0.95
10 samp.

Min. of 42156.5 0.4 1146.0 2756.3 2.33 5.24 41.5 0.94
10 samp.

Mean of 62589.0 1.6 1237.3 3168.6 2.55 6.74 78.9 0.94
10 samp.
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It can be seen frora this table, that all the samples are

closely reproducing the overall statistical parameters. The

raaxiraura of these parameters (among samples) are higher than the

historical parameters while the minimum are lower.

The ability of this model to reproduce the characteristics of

AFS was further studied by generating two samples of 30 and 50

years length. The comparison of statistics of AFS of historical

data and 30 and 50 years length samples is given in Table 5 4

i(ROORKEE \ |

Table 5.4 Wv

Comparison of statistics of AFS of historical d^iHmd synthetic

data generated by selected linear autoregressive model

Stat. Para.

Series Max- Min. Mean S.D. Cv C» Ck ri

Historical 63800 10132 27790.8 13788.2 0.50 1.0 3.8 0.11

AFS of 30 years 51485 4552 16733.4 11754.0 0.70 1.6 5.3 -0.29
generated data

AFS of 50 years 65696 4552 18271.5 13331.4 0.73 1.5 5.5 -0.25
generated data
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It can be seen frora Table 5.4 that the mean annual flood of

AFS of synthetic data is lower while Cv is quite high as compared

to AFS of historical data. The C8 and Ck are also higher. These

indicate the poor performance of LAR model in reproducing the

characteristics of AFS.

Further discussion on Table 5.3 and 5.4 is given in section

5.4, while discussing inter-comparison of LAR and MSNM models.

5.3 Shot Noise Model

The existence of rapid rise followed by slow recessions in

the daily flows suggested another model called 'Shot Noise Model"

in which a sequence of random disturbances occurs at random

times. Each disturbance causes a rapid rise followed by a slow

recession in the flow. This contrasts with linear autoregressive

models where random disturbances occur at all the time points. In

addition, linear Gaussian processes are time reversible, i.e. the

statistical properties of the process are the same regardless of

the direction in which time is measured, in contrast to the

observed daily flows which have been found to be time irrevers

ible owing to the classic asymmetric shape of the hydrographs.

The theory of shot noise model and testing of the raodel are

described in section 5.3.1. The daily flow generation using

modified shot noise model (MSNM) which account for different

behavior of the river flows during monsoon and nonmonsoon seasons

and requires much lesser nuraber of parameters, is presented

subsequently.
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5.3.1 Theory of shot noise raodel

In shot noise model, the flows are treated as a series of

impulses and decays. The model is based upon filtered Poisson

process (Parzen, 1962) and was developed by Weiss (1973, 1977).

The shot noise process is defined, in continuous time, as:

.-NCt)

X(t)- V w(t-x..y.) (5.9)
»-M( — )

where, N(t) is a Poisson process having rate v and the random

variable ym associated with the random tirae x. produces a pulse

in the flow given by w (t-x.,ym). One of the simplest filtered

Poisson processes is obtained when w (t-x.,yrn) is linear and

defined as:

w(t-x.,y.)-y.e"*(t-t-) (tfct.)

"° (t<x.) (5.10)

The resulting process is referred to as a simple shot noise

process, which can be synthesized through the following series of

steps:

(i) Random event times ..... x„_,, xmi x..,,... are generated

according to

P(N(t)-n)-e ytl) (5.ii)

which means that the tirae between events is exponentially

distributed with mean 1/v.

(ii) Associated with the random times *„„», x„, t.., random jumps

ym-i, ym, ym+i are generated from an exponential distribution

with mean 9. • ,
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(iii) Associated with the random times x..,, x,, t.., and random

jumps ym-i, ym, ym+i are pulses with values y»-i» ", yB«"'(''*',

y,.(e at times t.

(iv) The continuous single shot noise process is defined as the

sura of all contributing pulses at tirae t.

• -NJt)

X(t)- T y.e"*(t"t-) (5.12)
••IT—)

The steps (i) to (iv) are shown in Fig. 5.4.

The continuous single shot noise process with parameters v, e

and b can be regarded as a model of continuous daily streamflow.

The marginal distribution of the process is Gararaa with density

function

m, % (l/e)v"x(v-¥>'ke-,",
fCx) F(V7b) <5-13>

O'Connell (1974) suggests that pulse function employed does

not yield a very realistic raodel of continuous daily strearaflow.

However raore realistic pulse functions increase the nuraber of

pararaeters and make the resulting process more raatheraatically

intractable.

For application to daily flows, the single shot noise process

can be defined as an averaged process over a period of one day,

i.e.,

t

Xt-Jx(S)da (5.14)
t-i

As a result, the averaged process will not exhibit vertical

jumps in the flow. The properties of Xt have been studied by

Weiss (1973b) who suggested that the parameters v, e and b could
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Fig. 5-4-(a) Events...Tm,....from a Poisson process
with rate v. (b) Jumps.... ym..from an ex
ponential distribution with mean 8.(c)
Pulses with values ym eb(t"W-,at time t.
(d) Schematic plot of continuous single
shot noise process.
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be obtained from the following equations.

v8

2 2v92 _>
• -"T7-[b(l-e k)] (5.16)

2v033{b-2(l-e-»)*i(l-e-")}
C'° "I & (5-17)

Pl 2[b-(l-c-)] C5-18>

Eq. (5.18) is used to determine b and Eq. (5.15) and (5.16)

are used simultaneously for e and -v . To account for the

seasonality in daily flows the pararaeters b, e and v are

estimated separately for each month of the year. The model would,

thus, require (12x3)= 36 parameters.

5.3.2 Testing the model

For estimating the parameters of the model the monthly

statics of daily flows was obtained and using Eq. (5.15), (5.16)

and (5.18) the parameters of the raodel were calculated. The

Newton- Raphson method was used to estimated 'b' frora Eq. (5.18).

Table 5.5 gives the statistics and parameters e ,v and b for

each month of the year. The monthly statistics and parameters are

plotted in Fig. 5.5 and 5.6 respectively.

It can be seen from Table 5.5 and Fig. 5.6 that the variation

in the parameters during nonmonsoon raonths (Nov. to May) is

negligible as compared to monsoon months. This indicates the
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Table 5.5

Monthly statistics of daily flows and parameters of shot noise

model

Month Mean S.D. Cs Min ri V
e b

Jun. 301.3

2283.2

687.

2703.

4

8

3.67 10.2 0.797

0.708

0.060*

0.326*

1756.9*

3807.3*

0.351*

July 2.58 224.4 0.544*

Aug. 5270.6 5161. 2 2.31 578.6 0.755 0.396* 5816.1* 0.437*

Sep. 4914.8 5848 9 2.62 527.2 0.799 0.219* 7786.5* 0.346*

Oct. 1173.1 1253 8 2.47 183.4 0.896 0.139* 1415.6* 0.167*

Nov. 341.5 210 5 1.38 74.5 0.951 0.194 133.1 0.076

Dec. 200.2 105 5 1.40 53.4 0.962 0.204 56.7 0.058

Jan. 139.6 66 6 1.88 43.8 0.970 0.202 32.3 0.047

Feb. 110.2 56 7 1.56 35.9 0.972 0.157 29.6 0.042

Mar. 77.4 37 .9 1.14 23.8 0.969 0.192 18.9 0.047

Apr. 55.6 28 .2 1.18 15.4 0.970 0.175 14.5 0.046

May 37.4 22 .3 1.72 9.7 0.945 0.235 13.7 0.086

Nonmon. 137.2 75 .3 1.46 9.7 0.963 0.187* 42.1* 0.057*

Note:* indicate parameter of Modified Shot Noise Model
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possibility of lumping all the nonmonsoon months together. This

way the shot noise model would require only 18 (3x5 +3=18)

parameters without any significant effect on generated flows.

This model has been designated as modified shot noise model

(MSNM) in the following text.

In order to examine the possibility of incorporating the

skewness in the raodel three methods (NERC, 1975; pp. 221-223)

namely, (i) addition of constant base flow, (ii) use of Gamma-2

parameter distribution for jump heights, and (iii) Lomax distri

bution for jump heights were tried. All these methods require

certain conditions for their application, which were not met by

the data of Narraada at Garudeshwar. Hence exponential distribu

tion was adopted for jump heights.

5.3.3 Generation of daily flows

The MSNM requires separate set of pararaeters for monsoon

months (June to Oct.) and one set of pararaeters for all the

nonmonsoon months (Nov. to May). It would, therefore, require only

18 (3x5+3 = 18) pararaeters. These pararaeters have been marked by

* in Table 5.5.

The MSNM with exponentially distributed jump heights was used

to generate 10 sequences of 30 years length. The statistical

pararaeters of these sequences and historical series are given in

Table 5.6.

It can be seen frora Table 5.6 that synthetic sequences are

closely reproducing the overall mean, standard deviation and Cv.

However, Co and Ck of generated data are much lower than that of
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Table 5.6

Statistical parameters of historical series and generated samples
by MSNM

Series

Stat. Para.

Max. Min. Mean S.D. Cv C. Ck ri

Hist. ser. 63800.0 3.1 1249.6 3242.6 2.60 6.79 76.13 0.82

Series 1 46279.3 0.0 1172.2 2976.2 2.54 5.37 44.33 0.80

Series 2 56364.5 0.0 1261.8 3132.4 2.48 5.37 46.58 0.79

Series 3 51935.6 0.0 1307.6 3191.8 2.44 5.32 45.67 0.81

Series 4 43664.5 0.0 1237.9 3176.2 2.57 4.90 34.97 0.79
Series 5 49254.0 0.0 1292.5 3241.5 2.51 4.85 34.61 0.80
Series 6 36082.6 0.0 1218.3 2888.1 2.37 4.48 29.13 0.78

Series 7 50407.3 0.0 1098.7 2759.8 2.51 5.05 39.69 0.79
Series 8 46471.8 0.0 1280.3 3258.5 2.55 4.91 34.97 0.80
Series 9 52971.6 0.0 1283.0 3071.0 2.39 4.89 37.92 0.78
Series 10 41723.5 0.0 1282.2 3041.6 2.37 4.69 32.62 0.79
Max. of 56364.5 0.0 1307.6 3258.5 2.57 5.37 46.58 0.81
10 samp.

Min. of 36082.6 0.0 1098.7 2759.8 2.37 4.48 29.13 0.78
10 samp.

Mean of 47515.5 0.0 1243.5 3073.7 2.47 4.98 38.05 0.79
10 samp.
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historical data. The highest flows in the synthetic sequences are

also lower while the ri is comparable. The reproduction of

overall parameters (Table 5.6) seems to be poorer than the LAR

model (Table 5.3).

The behavior of AFS was further examined by generating two

samples of length 30 and 50 years by MSNM. The statistics of AFS

of historical data and synthetic data generated by MSNM are

presented in Table 5.7.

Table 5.7

Comparison of statistics of AFS of historical data and synthetic

data generated by MSNM

Stat. Para.

Series Max. Min. Mean S.D. Cv Ca Ck
ri

Historical 63800 10132 27790.8 13788.2 0.501.04 3.8 0.111

AFS of 30 years 46279 12467 23995.5 8550.3 0.360.89 3.4 0.128

generated data

AFS of 50 years 62734 1243 25962.9 11058.6 0.431.36 5.2 0.198

generated data

It can be seen from Table 5.7 that MSNM is closely

reproducing the statistical parameters of AFS in the generated

data of length 30 years and 50 years. The performance of MSNM

(Table 5.7) seems to be better than LAR model (Table 5.4). The Cv
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of AFS in generated data is lower as compared to AFS of

historical data.

The further discussion on results presented in Tables 5.6 and

5.7 is given in next section where inter-comparison of LAR and

MSNM models has been presented.

5.4 Inter-comparison of Linear Autoregressive and Modified Shot

Noise Models for Daily Flow Generation

The LAR raodel though preserves the overall statistical

pararaeters of daily flows yet does not reproduce the characteris

tics of AFS in the generated data. The MSNM preserves the

characteristics of AFS but gives poorer performance in

reproducing the overall statistical parameters of daily flows.

To further explore the suitability of these models, the inter-

coraparison of these raodels has been attempted in this section.

The inter-comparison has been made on the basis of reproduction

of statistical pararaeters of (i) daily mean flews (overall), (ii)

AFS and (iii) flood related characteristics above a particular

threshold. The details of comparison are as follows:

5.4.1 Reproduction of overall statistical parameters of daily

flows

The mean of overall statistical pararaeters of daily flows of

10 samples of length 30 years each generated by LAR raodel and

MSNM are presented in Table 5.8. This table has been derived frora

Table 5.3 and 5.6.



Table 5.8

Overall statistical pararaeters of daily flows generated by the

two raodels

Para. Hist. Mean of 10 samples,

series LAR MSNM

62589.000 47515.500

1.593 0.000

1237.300 1243.500

3168.600 3073.700

2.558 2.470

6.740 4.982

78.998 38.048

0.945 0.792

Max. 63800. 000

Min. 3. 087

Mean 1249 600

S.D. 3242 600

Cv 2 595

C« 6 .794

Ck 76 .131

ri 0 .822
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The LAR model gives better reproduction of maximum flow,

minimum flow, standard deviation, Cv, Cs and Ck as compared to

MSNM. The MSNM is better in reproducing ri. The overall mean in

both the raodels is comparable. Based on reproduction of overall

statistical parameters of daily flows, the performance of LAR

model is found to be better than MSNM. However the performance of

MSNM is also satisfactory.

5.4.2 Reproduction of statistical parameters of AFS

The statistical parameters of AFS from 2 samples of length 30



119

and 50 years generated by LAR model and MSNM are presented in

Table 5.9 (combination of Table 5.4- and 5.7) along with

parameters of AFS frora historical data.

Table 5.9

Statistics of AFS of historical data and synthetic data generated

by the two raodels

Stat. Hist. LAR MSNM LAR MSNM

para. series 30 years 30 years 50 years 50 years

Max. 63800.000 51485.000 46279.400 65695.600 62734.300

Min. 10131.800 4552.100 12467.300 4552.100 1243.300

Mean 27790.800 16733.400 23995.500 18271.500 25962.900

S.D. 13788.200 11754.000 8550.300 13331.400 11058.600

Cv 0.496 0.702 0.356 0.729 0.425

C« 1.042 1.565 0.888 1.522 1.364

Ck 3.819 5.305 3.406 5.473 5.211

ri 0.111 -0.291 0.128 -0.248 0.198

In 30 years sample MSNM is better reproducing mean annual

flood, Cv , Ca and Ck.au compared to LAR raodel. Almost similar

picture emerges from 50 years sample. Broadly, it can be

concluded that MSNM is better in reproducing the statistical

parameters of AFS. The Cv of AFS of data generated by MSNM is low
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as compared to AFS of historical data.

5.4.3 Reproduction of flood characteristics above a particular

threshold

Various flood features were explained in chapter III. In this

section, the two raodels have been compared on the basis of

reproduction of these flood characteristics. Both the models

were used to generate the daily flows of 30 years length and only

the flood events above a typical threshold of 10,000 curaecs were

considered. This threshold was chosen for the sake of

illustration and the analysis can be extended to other threshold

levels also on the similar lines. The comparison of models has

been raade on the basis of reproduction of pararaeters of following

characteristics:

(i) nuraber of flood events

(ii) timing of flood peaks

(iii) flood peaks, volumes and duration, and

(iv) largest flood peaks, volumes and durations

Number of Flood Events

The statistical parameter of number of flood events above

10,000 cumecs threshold for historical data and data generated by

two models are given in Table 5.10. The computed and critical xl

values for the Poisson distribution for number of flood events

are also given in this table.
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Table 5.10

Statistical parameters of number of flood events in a year above

10000 cumecs threshold frora historical data and synthetic data

generated by the two raodels

Stat. Hist. LAR MSNM Better

para. series raodel

Max.

Min.

Total events

Mean

S.D.

Cv

X comp.

X'cri.

7 4 6

0 0 1

91 39 101

2.935 1.300 3.367

1.672 1.512 1.520

0.569 1.160 0.451

2.158 26.717 3.726

19.700 14.100 21.000

MSNM

Corap

MSNM

MSNM

MSNM

MSNM

MSNM

Note: Corap stands for comparable.

The number of flood events for different years follow Poisson

distribution in historical data, which is exhibited only by MSNM.

LAR model fails to reproduce this in the generated data, and it

also fails to reproduce the total nuraber of flood events in the

generated data.

Timing of Flood Peaks

In the historical data all the flood peaks occur during five



122

months of monsoon season. In the data generated by LAR and MSNM

also, all the flood peaks are occurring in monsoon season. Based

on this, it is difficult to establish the superiority of one

raodel over the other.

FlOQd Peaks. Volumes and Durations

The statistical pararaeters of flood peaks, voluraes and dura

tion above 10,000 curaecs threshold frora historical data and syn

thetic data of length 30 years generated by two raodels are given

in Table 5.11. The table also gives computed and critical x"

values at 95% probability level for exponential distribution.

The LAR model is better in reproducing the parameters of

flood peaks above 10,000 cumecs threshold as compared to MSNM.

The LAR model though reproduces parameters of flood peaks, yet is

unable to generate desired number of peaks, which is a serious

draw back of LAR model.

The reproduction of statistical parameters of flood volumes

and duration is much better in case of MSNM . The other details

of comparison are given in Table 5.11.

Largest Flood Peaks. Volumes and Durations

Reproduction of statistical parameters of largest flood peaks

in different years, i.e. AFS, has already been discussed in sec

tion 5.4.2. This section covers only the largest flood voluraes

and durations. The statistical pararaeters of largest flood

voluraes (annual flood volurae series) and largest flood durations

(annual flood duration series) frora historical data and synthetic



Table 5.11

Statistics of flood peaks, voluraes and durations above 10000
curaecs threshold from historical data and synthetic data of

length 30 years generated by the two models

Stat. Flood peak

para. Hist. LAR MSNM Better

Max. 53800.00 41485.00 36279.40 LAR

Min. 649.80 935.20 1058.30 LAR

Mean 10702.00 8631.30 7807.80 LAR

S.D. 10591.90 9618.60 6667.30 LAR

Cv 0.99 1.11 0.85 LAR

Ca 1.92 2.05 1.97 Corap

ri 0.01 -0.12 -0.08 Corap

X comp . 5.07 5.46 8.99 Corap
X* c ri . 9.49 7.81 9.49

No. Of 91 39 101 MSNM

events

1"able 5.11. Cont

Stat. Flood volume Flood dur.

para. Hist. LAR MSNM Bett Hist. LAR MSNM Bett

er er

Max. 158007.8 536663.8 127388.8 MSNM 8 29 33.49 9.40 MSNM

Min. 546.9 537.3 547.8 MSNM 0 60 0.94 0.57 MSNM

Mean 19390.6 44689.3 13677.0 MSNM 2 77 6.55 2.50 MSNM

S.D. 27705.5 99432.0 22532.4 MSNM 1 69 7.45 1.77 MSNM

Cv 1.43 2.22 1.65 MSNM 0 61 1.13 0.71 MSNM

Ca 2.96 3.82 3.40 MSNM 1 36 2.26 1.61 MSNM
ri 0.05 -0.09 -0.05 Corap 0 09 -0.09 -0.08 Corap
X comp . 10.15 22.07 21 .85 Corap 9 50 10.4 1.92 MSNM

X'cri . 9.49 7.81 9.49 9 50 7.81 9.49

123
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data of length 30 years generated by two raodels are presented in

Table 5.12. The Table also gives computed and critical x* values

at 95% probability levels for distribution functions of annual

flood volume series and annual flood duration series represented

by Eq. (4.16) and (4.17).

Table 5.12

Statistics of largest flood voluraes and durations above 10000

curaecs threshold from historical data and synthetic data of

length 30 years generated by two raodels

Stat. Largest flood volume Larg. flood dura,

para. Hist. LAR MSNM Better Hist. LAR MSNM Better

model model

Max. 158008 536664 127389

Min. 2630 2769 1301

Mean 38366 97883 32412

S.D. 39135 140765 33646

Cv 1.02 1.43 1.03

Ca 1.79 2.37 1.77

x'comp. 4.33 9.12 4.33

x'cri. 14.10 14.10 14.10

MSNM 8.29 33.49 9.40

Comp 1.34 1.74 0.90

MSNM 4.04 11.40 4.25

MSNM 1.99 9.47 2.05

MSNM 0.49 0.83 0.48

MSNM 0.88 1.26 0.68

Comp 2.66 16.50 4.67

14.10 14.10 14.10

MSNM

MSNM

MSNM

MSNM

MSNM

MSNM

MSNM

It can be seen from Table 5.12 that the raaxiraura and mean

annual flood volume are much higher in data generated by LAR
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model. These are roughly 3 tiraes of the corresponding values in

historical data. These are quite close to historical parameters

in case of MSNM. The reproduction of other parameters also is

better in case of MSNM.

The statistical parameters of annual flood duration series

are much better reproduced by MSNM. LAR gives a largest flood

duration of 33.49 days which is much away frora 8.29 days given by

historical data and the realistic values of flood durations.

Based on the reproduction of statistical parameters of annual

flood volurae and duration series, the MSNM is much better than

LAR model.

The summary of inter-comparison based on various criteria is

presented in Table 5.13.

Table 5.13

Summary of inter-comparison of two raodels

Criterion

Reproduction of statistical parameter of

(i) Daily flows (overall parameters)

(ii) Annual flood series

(iii) No. of flood events

(iv) Timing of flood peaks

(v) Annual flood duration series

(vi) Annual flood volume series

(vii) Flood peaks above 10000 curaecs thres.

(viii) Flood voluraes above 10000 curaecs thres.

(ix) Flood durations above 10000 cumecs thres

Better model

LAR

MSNM

MSNM

Comparable

MSNM

MSNM

Comparable

MSNM

MSNM
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Broadly it can be concluded from Table 5.13 that MSNM gives

better reproduction of the statistical pararaeters of (a) number

of flood events (b) annual flood series, (c) annual flood

duration series, (d) annual flood volume series, (e) flood

durations, and (f) flood volumes. The reproduction of overall

statistical pararaeters of daily flows and flood peaks is also

satisfactory in case of MSNM.

5.5 Inferences

The methodology and application of two schenes of daily flow

generation viz. linear autoregressive (LAR) and shot noise models

have been described in the previous sections. The suitability of

these raodels for reproducing the flood related characteristics in

the generated data has also been examined. The inferences drawn

from the application and inter-coraparison of the two models and

the limitations of the study follow in subsequent text.

Linear Autoregressive Model

For LAR model Case II (logarithmic transformation in the

beginning and exponentiation in the end) with normally distrib

uted independent stochastic component was found to be better than

other considered cases and distributions. The model closely

reproduces the overall statistical parameters of daily flows.

The use of Wilson- Hilferty transforraation for generating PT

III distributed random numbers holds good only when Ca is around

2. The perforraance of this transforraation deteriorates as Ca

deviates from 2.
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Shot Noise Model

The modified shot noise raodel (MSNM), which account for the

different behavior of the river during monsoon and nonmonsoon

seasons, requires only 18 parameters as compared to 36 parameters

of the original shot noise model.

The three methods as suggested in NERC (1975) to incorporate

Ca in the shot noise model were found to be unsuitable for the

data of river Narraada at Garudeshwar.

Inter comparison of LAR Model and MSNM

The MSNM gives better reproduction of statistical parameters

of: (i) number of flood events, (ii) annual flood series, (iii)

annual flood duration series, (iv) annual flood volume series,

(v) flood durations, and (vi) flood volumes.

The reproduction of overall statistical parameters of daily

flows and flood peaks above a threshold of 10,000 cumecs is

satisfactory in case of LAR model as well as MSNM. However, the

LAR raodel gives comparatively better reproduction of overall

statistical parameters.

Limitations

The inter-comparison of the two raodels has been made on the

basis of only one sample of 30 years length and only one

threshold level of 10,000 curaecs. In order to conclude about the

general suitability and superiority of one of these models,

further studies with a number of data sets for different sites
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would be necessary.

The MSNM has been used to generate long term data of 1500

years for validation of the methodology in Chapter VI.
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CHAPTER VI

VALIDATION AND APPLICATION OF THE METHODOLOGY

6.1 General

The validation of the methodology of multivariate modelling

of flood flows is described in this chapter. This chapter also

gives details of suitability of the raethodology for analysis of

historical data and results of application for flood estiraation

for river Narraada at Garudeshwar. The usefulness of this type

analysis is illustrated with the help of one example.

6.2 Validation of the Methodology

The raethodology for stochastic modelling of flood flows has

been validated using synthetically generated daily flows of 1500

years length. The daily flows have been generated using modified

shot noise raodel (MSNM) which was found to be satisfactory in

preserving the characteristics of flood flows in the generated

data as discussed in the Chapter V.

For validation of the raethodology use has been raade of long

terra data of 1500 years instead of historical data because of the

following two reasons: (i) the short terra can be used to verify

the return periods associated with various events only up to the

length of data and (ii) the short term data may not have enough

number of critical combinations of various events.

The details of the strategy adopted and the results of this

study are presented in subsequent sections.
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6.2.1 The strategy

From the long term generated data the return periods asso

ciated with various events have been obtained using counting pro

cedure i.e. by the definition of return period. The return

periods associated with the same events have also been obtained

by applying the raethodology to the long terra data. The difference

between the two estimates of return periods is used as a measure

to decide about the applicability of a methodology. If the dif

ference is small enough, the raethodology is assumed to be vali

dated, otherwise not. The drawback of this type of strategy is

obviously the subjectivity involved in judging the difference as

small or large.

6.2.2 Validation Results

The return periods of the following events have been esti

mated by two methods viz. counting procedure and by application

of the raethodology.

(a) exceedance of x (univariate) in a year,

(b) exceedance of y (univariate) in a year,

(c) exceedance of at least one of the values (x,y) in a year and

(d) exceedance of both x and y in a year.

For the above events x is the value of flood volume (X) and y

the value of flood peak (Y).

The estimated return periods using counting procedure have

been denoted by T while those estimated by the application of the

methodology by T'. For estimating the return periods, in this

validation exercise, the range of flood volumes (X) was taken
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frora 60,000 cumecdays to 150,000 curaecdays with an increment of

6,000 cumecdays and flood peaks frora 10,000 curaecs to 46,000

cumecs with an increment of 2000 curaecs. The threshold was kept

as 10,000 curaecs. The above values were selected to cover a wider

range of return periods associated with corresponding events.

The return periods associated with some selected events only

are presented in Table 6.1 as an illustration since tabulation of

all the results will be too voluminous. However return periods T

and T' for various events are plotted in (i) Fig. 6.1 for excee

dance of x (univariate) in a year, (ii) Fig. 6.2 for exceedance

of y (univariate) in a year, (iii) Fig. 6.3 for exceedance of at

least one of the values (x,y) in a year and (iv) Fig. 6.4 for

exceedance of both x and y in a year.

The difference of the two return periods i.e. bias in Table

6.1 is small enough and indicates that the return periods asso

ciated with the various events can be estimated quite accurately

by applying the raethodology. In Fig. 6.1 through 6.4 also the

points for various return periods T and T' fall on +5* line. How

ever the values of T' i.e. the return periods estimated by the

methodology, are underestimated for events (Y * y) and (X * x and

Y * y), for higher return periods as shown in Figs. 6.2 and 6.4

respectively. The reason for this was investigated by comparing

the Cv of historical peak discharges and peak discharges gener

ated by MSNM. The value of Cv of peak discharges by MSNM was

found to be somewhat lower. Because of this, MSNM was not able to

produce enough variability in the generated peak discharges spe

cially in the higher range. The underestimation of T' seems to be
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Table 6.1

Return periods for some selected events using counting procedure

(T) and by applying the methodology (T') to long terra (1500

years) data

Event Bias

(T'-T )

X 2.60000 6.9 7.6 0.7

X 2.90000 18.3 21.1 2.8

X U20000 46.9 51.3 4.4

X 2.150000 115.4 112.7 -2.7

Y 2.10000 1.4 1.5 0.1

Y 2.20000 4.0 4.3 0.3

Y 2.30000 13.9 15.8 1.9

Y 2,40000 55.6 55.3 -0.3

X 2.60000 OR Y 2,10000 1.4 1.4 0.0

X 2.90000 OR Y 2.20000 4.0 4.3 0.3

X 2.120000 OR Y 2.30000 13.2 15.8 2.5

X 2.150000 OR Y 2.40000 42.9 52.0 9.1

X 2.60000 AND Y 2.10000 6.9 7.6 0.7

X 2.90000 AND Y 2.20000 18.5 21.1 2.6

X 2.120000 AND Y 2.30000 57.7 52.9 -4.8

X 2.150000 AND Y 2.40000 125.0 113.2 -11.8

Note: X is flood volurae in cumecdays and Y is flood peak in

cumecs.
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because of this limitation of MSNM.

Based on results as presented in Table 6.1 and Figs. 6.1

through 6.4 the methodology developed in the present study has

been validated satisfactorily.

6.3 Suitability and Application of the Methodology

The raethodology for stochastic modelling of flood flows has

got the flexibility of selecting (i) any threshold level which

can be fixed from engineering consideration as long as the Pois

sonian assumption for number of flood events in a year is satis

fied, (ii) any volume of a flood event which can also be decided

on the basis of probable raaxiraura precipitation and by adopting a

suitable loss rate and (iii) any flood peak magnitude.

The methodology was applied to daily discharge data of Nar

mada at Garudeshwar and the selection of various variables was

raade as follows:

Selection of Threshold Level

As mentioned in Chapters II and IV, the following points are

to be considered while selecting the threshold level:

(a) The threshold level should be high enough to ensure (i) num

ber of flood events in a year is a non increasing function of

threshold and (ii) the flood events are random.

(b) The threshold level should be low enough so that *• is greater

than or equal to 1.65 and

(c) The nuraber of flood events in a year follow Poisson distribu

tion .

It was shown in Chapter IV that for daily flow series of
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river Narraada at Garudeshwar, conditions a and c are met if the

threshold level is in the range of 4000 to 18000 cumecs. However,

for Uo be greater than or equal to 1.65, the threshold level

should not be higher than 14000 curaecs. Keeping in view these

considerations, for the application of the raethodology, any

threshold level between 4000 to 14000 curaecs can be selected.

For the sake of typical illustration the application of the

raethodology has been presented for the threshold level of 10000

curaecs (*- - 3.0 ).

Selection of Flood Volume

A nuraber of atterapts have been raade by several agencies par

ticularly Indian Institute of Tropical Meteorology, Pune and Dam

Design Review Panel in consultation with the World Bank experts

to determine the PMP for the basin (NIH, 1985). Some of the

storras which have been considered for this purpose are detailed

below.

1. 1970/73 storra with 1.35 uniform moisture maximization factor

giving a PMP of 413.76 ram,

2. 1927 transposed storm centered in the catchment with 1.35 uni

form moisture maximization factor giving a PMP of 634.7 mm and

3. 1926/27 storm progressing with 1.35 moisture maximization

factor giving a PMP of 618.9 ram.

All the above storras were assumed to be of five days dura

tion.

It is thus seen that the highest PMP depth, ever considered

so far, is 634.7 mm. Assuming a loss rate of 0.75 mra/hr this is
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expected to give a effective rainfall depth of 544.7 mm. The

volurae of water corresponding to 544.7 rara coraes out to be 554700

curaecdays (the catchment area being 88,000 km2). In other words,

the value of 5.6 x 105 cumecdays is an indication of the highest

limit on flood volurae which could be considered in the analysis

frora engineering point of view.

To cover a wider range, the flood voluraes were varied frora

100,000 to 560,000 cumecdays with an increment of 10,000 curaec

days .

Selection of Flood Pftaks

As mentioned in Chapter IV, the PMF estimated by various

agencies varied frora 1.076 x 105 curaecs to 2.21 x 105 cumecs. The

flood peaks were varied frora 10,000 to 220,000 curaecs with an

increment of 10,000 to cover a wider range of possibilities.

Applying the methodology (Subroutine DVPA and NKG ), the

return periods associated with the following events have been

estimated for a threshold level of 10,000 cumecs.

(i) exceedance of x (univariate) in a year,

(ii) exceedance of y (univariate) in a year,

(iii) exceedance of y|x in a year,

(iv) exceedance of at least one of the values (x,y) in a year

and

(v) exceedance of both x and y in a year.

6.4 Results and Discussion

For the threshold level of 10,000 curaecs, there are 91 flood
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events. The mean, std. and Cs of the flood volurae series are

19390.6, 27705.6 and 2.96. These pararaeters corresponding to

flood peak series are 10702.0, 10591.9 and 1.92 respectively. The

other parameters are given in Table 5.11 in Chapter V.

The values of * and v in TSPT to normalize flood volume

series are 0.048 and 1.34. For flood peak series these values are

0.0883 and 1.22 respectively.

Using Eq. (3.6) to (3.9), 50, 100, 500, 1000 years return

period flood volumes and peaks over a threshold of 10,000 curaecs

were obtained. These are shown in Table 6.2. This table also

gives the flood peaks for corresponding return periods obtained

by the application of Wakeby - 4 parameter distribution to AFS

for the sake of comparison.

Table 6.2

Various return period flood voluraes and flood peaks

over a threshold of 10000 curaecs

Flood peak magnitude (cumecs)

S. Return Flood Above Wakeby-4

No. period volurae 10000 Absolute distr.

(years) (curaecdays) thres. for AFS

1 50 146358 54414 64414 66387

2 100 177234 63070 73070 73816

3 500 258509 84482 94482 87666

4 1000 297884 94306 104306 92746
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It can be seen from Table 6.2 that flood peak magnitudes for

various return periods given by the methodology and by Wakeby - 4

parameter distribution are close enough. The deviation even for

1000 years return period flood is only 11%.

The return periods associated with the exceedance of various

flood voluraes and flood peaks are shown in Table 6.3. The same

are plotted in Fig. 6.5 for flood volumes and in Fig. 6.6 for

flood peaks respectively.

The return periods associated with events (i)X*xorY*y,

(ii) X * x and Y * y and (iii) Y * y | X = x for some selected

flood voluraes and flood peaks are shown in Table 6.4. The same

are plotted in Figs. 6.7 to 6.9.

The developed methodology is capable of doing univariate as

well as bivariate modelling of flood flows. The methodology

offers various possibilities of probability interpretation which

conventional flood frequency methods do not. Figs. 6.5 to 6.9 can

be used to answer raany of the additional questions required in

the hydrologic design. The use of these figures is illustrated

with the help of a typical example as explained below:

Examplei Suppose the designer is interested in knowing the

following quantities above 10000 cumecs threshold:

1. 1000 years return period flood volurae.

In Fig. 6.5 1000 years return period flood volume will be

corresponding to 0.001 prob. of exceedance as 298000 cumecdays.

2. The return period associated with flood volurae 2. 400,000

cumecdays.
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Table 6.3

The return periods of various flood voluraes and flood peaks above

10,000 curaecs threshold

Flood peak Return period Flood volurae Return period

(103 curaecs) (years) (103 Curaecdays) (years)

10 1.5 100 15.8

20 2.8 110 20.5

30 6.3 120 26.5

40 15.0 130 33.9

50 34.8 140 43.1

60 78.5 150 54.5

70 171.2 160 68.4

80 361.5 170 85.5

90 740.9 180 106.3

100 1477.8 190 131.4

110 2876.0 200 161.6

120 5473.4 210 198.0

130 10205.1 220 241.5

140 18672.5 230 293.3

150to

220

2. 30000 240

250

355 .0

428.0

260 514.2

270 615.7

280 735.0

290 874.7

300 1038.0

310 1228.3

320 1449.7

330 1706.7

340 2004.3

350 2348.3

360 2745.0

370 3201.9

380 3727.0

390 4329.5

400 5019.0

410 5808.5

420 6708.5

430 7735.0

440 8905.7

450 10230.0

460 to 2. 10000

560
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Table 6.4

Return periods for some selected events

145

S. No. Flood volume Flood peak Return period of event

(cumecdays) (cumecs) X2x or Y 2y X ix and Y 2y Y2y|X=x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

200000 40000

200000 60000

200000 80000

200000 90000

200000 100000

300000 40000

300000 60000

300000 80000

300000 90000

300000 100000

400000 40000

400000 60000

400000 80000

400000 90000

400000 100000

500000 40000

500000 60000

500000 80000

500000 90000

500000 100000

15.0

71.2

146.9

158.0

160.8

15.0

78.4

337.0

579.3

810.8

15.0

78.5

360.5

729.1

1383.4

15.0

78.5

361.4

739.9

1469.3

Note: X is flood volume and Y is flood peak.

162.7 1 1

204.9 1 2

466.5 3 6

829.8 10 .6

1548.1 39 .4

1040.3 .1

1057.0 .1

1311.2 .2

1703.6 .5

2458.5 .3

5066.3 •1

5049.6 •1

5224.7 •1

5636.1 •1

6532.2 .2

21053.8 •1

20481.9

20481.9

20802.5

22742.7
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In Fig. 6.5 the prob. of exceedance corresponding to 400,000

curaecdays flood volume is 0.0002 giving a return period of 5000

years.

3. 1000 years return period flood peak.

In Fig. 6.6 1000 years return period flood peak will be

corresponding to 0.001 prob. of exceedance as 94,000 cumecs.

4. The return period associated with flood peak 2. 80,000 cumecs.

In Fig. 6.6 the prob. of exceedance corresponding to 80,000

curaecs flood peak is 0.00275 giving a return period of 363.6

years.

5. The return associated with flood peak 2. 90,000 cumecs or flood

volurae 2. 300,000 cumecdays,

Fig. 6.7 gives the return period of event (X 2. 300,000 or Y 1

90,000) as 580 years.

6. The return associated with flood peak 2. 90,000 cumecs and

flood volurae 2. 300,000 curaecdays,

Fig. 6.8 gives the return period of event (X 2. 300,000 and Y

2. 90,000) as 1700 years.

7. The return period associated with flood peak 2. 90,000 curaecs,

given a flood volurae of 200,000 curaecdays.

Fig. 6.9 gives the return period of (Y2. 90,000|X=200,000) as

10.6 years.
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8. 1000 years return period flood peak given a flood volume of

300,000 cumecdays.

Fig. 6.9 gives the flood peak as 158500 cumecs.

Similar type of answers can be obtained for other flood peaks

and flood volumes also with the help of the developed raethodol

ogy.

The raethodology developed can be applied to other river

basins also on the similar lines. However, for small basins

smaller interval discharge data should be used to obtain various

flood features.

6.5 Inferences

The details of validation and application of the methodology

of raultivariate stochastic raodelling of flood flows have been

presented in this chapter. On the basis of the analysis oarried

out in the chapter, the following inferences can be drawn,

(i) The flood peak magnitudes for various return periods given by

the methodology and by fitting Wakeby- 4 parameters distribution

to AFS, are close enough. This indicates the suitability of two

step power transformation (TSPT) method and partial duration

series approach in flood frequency analysis.

(ii)The developed raethodology is capable of doing univariate as

well as bivariate raodelling of flood flows. The methodology

offers various possibilities of probability interpretation and

considers flood event as a whole, which is an improvement over

conventional flood frequency methods.
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CHAPTER VII

CONCLUSIONS

In the present study a systematic methodology for stochastic

modelling of flood flows has been developed. The methodology is

based on partial duration series approach. It uses bivariate nor

mal distribution as the parent bivariate distribution function

for the two dependent variables such as flood peaks and flood

volumes. The normalization of the variables required for the

application of bivariate normal distribution is done using two

step power transforraation.

The inter-comparison of two daily flow models namely linear

autoregressive and shot noise raodels has also been atterapted in

the study to ascertain their suitability for Indian rivers, where

most of the flow is concentrated in the five months of monsoon

season. The validation of the methodology has then been done

using synthetically generated daily flows by modified shot noise

model after verifying its performance in reproducing flood char

acteristics in generated data. The daily flow data from 1949-79

for river Narmada at Garudeshwar have been used in the study.

Various conclusions drawn from review of literature formed

general basis for the development of the methodology. These have

been given in section 2.5 of Chapter II. A number of SUBROUTINES

were developed during different stages of the study. Based on the
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study and analysis of flood characteristics using daily discharge

data of river Narraada at Garudeshwar, the following conclusions

were drawn:

1. For flood frequency analysis using annual flood series Wake

by/PWM performs better than GEV/PWM, EV1/PWM and LPIII/MOM dis

tributions .

2. The number of flood events in a year follow Poisson

distribution and once the applicability of this is established

for a particular threshold, it remains valid for higher threshold

levels also.

3. The exponential distribution fits well to the flood peaks,

flood volumes and flood durations for most of the threshold lev

els. However, the general applicability of this distribution for

all the threshold levels is not confirmed.

4. The distribution functions of largest flood peaks, largest

flood volumes and largest flood durations as given by Eq. (4.15)

to (4.17) fit well the data for most of the threshold levels.

5. Among various cases and distributions considered for linear

autoregressive model for daily flow generation, the Case II (i.e.

logarithmic transforraation in the beginning and exponentiation in

the end) with normally distributed independent stochastic compo

nent performs better. It closely reproduces the overall statis

tical pararaeters of daily flows.

6. In synthetic daily flow generation, the modified shot noise

model (MSNM) gives better reproduction of statistical parameters

of: (i) number of flood events, (ii) annual flood series, (iii)
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annual flood duration series, (iv) annual flood volurae series,

(v) flood durations, and (vi) flood volumes above a particular

threshold, as compared to linear autoregressive model. The repro

duction of overall statistical parameters of daily flows, and

flood peaks above a particular threshold is also satisfactory in

MSNM.

The conclusions given above are site specific. Besides these,

the following broad conclusions were also drawn in different

stages of the study. These conclusions are expected to be valid

for other sites also.

1. The use of bivariate normal distribution is quite adequate

for modelling two components among peak, volurae and duration of

flood events, at a time, as the third variable can be estimated

with reasonable accuracy by assuming triangular relationship

between these.

2. The two step power transforraation is an improvement over

original Box-Cox transformation for normalization of a given

series, since it preserves Ca and Ck of normal distribution in

the transformed series.

3.The use of Wilson- Hilferty transformation for generating PTIII

distributed random numbers holds good only when the value of C«

is around 2.0. The perforraance of this transforraation deterio

rates as Cs deviates frora 2.0.

4. The modified shot noise model (MSNM) requires only IB

parameters as compared to 36 parameters of shot noise model. This

model preserves flood related characteristics in the generated
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data. The raodel is suitable for daily flow generation for rivers

having floods in monsoon season only.

5. The use of daily mean flow data for obtaining flood related

characteristics is applicable only for large basins (wherein the

tirae of concentration is at least more than one day). For small

basins shorter interval data should be used for obtaining flood

characteristics. The use of bivariate norraal distribution and

TSPT would remain applicable for this also.

6. The methodology developed in the study is capable of univari

ate as well as bivariate modelling of flood characteristics. This

offers various possibilities of probability interpretation which

conventional flood frequency methods do not. The raethodology has

been validated using long term synthetic data.

Though the study has focussed on flood flows, the raethodology

can be extended to other dependent hydrological variables such as

drought related characteristics, sediment yield and runoff, and

many others. Modelling of flood flows by considering raore than

two variables, at a tirae, is further possible direction of work

in this area. Stochastic analysis of floods using principle of

raaxiraura entropy is another area, in which further work is

required to make it mathematically simpler.
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APPENDIX-I

IMPORTANT SUBROUTINES DEVELOPED AND USED IN THE STUDY

Some of the important subroutines developed and used in the

study are given in this Appendix. These subroutines were implem

ented on DEC-20 computer systera. Instructions for use are given

in the subroutines in the form of comment statements.

S. NO. Subroutine

1. NKG

2. P0WER2

3. P0WER1

4. DVPA

5. STAT

6. CORRE

7. SEQ

8. FCT

9. FCTI

10. SORTX

11. LEAP

12. NDTRI

1 «j . NDTR

14. QG32

15. GAUSS

Purpose

Multivariate flood analysis,

Two step power transformation,

Normalizing the series using Box-Cox transfor

raation,

Coraputs nuraber of flood events, flood peaks,

voluraes and durations for a given threshold.

Also computes some information about low flows

but not used in the study,

Computes statistical pararaeters,

Computes correlation coeff.,

Arranges the series in ascending order,

Computes function in Subroutine QG32,

Computes function in Subroutine QG32

Arranges the series in discending order,

Number of days in Feb. in a leap year,

Inverse normal distribution function (Source:

SSP),

Normal distribution function (Source: SSP),

Integration of a function by 32 point Gaussian

Quadrature formula,

Generation of normally distributed random num

bers .
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IMPORTANT SUBROUTINES DEVELOPED AND USED IN THE STUDY

C********************************************************************

C SUBROUTINE NKG

C PURPOSE:

C SUBROUTINE FOR MULTIVARIATE ANALYSIS.
C DESCRIPTION OF PARAMETERS

C X IS INPUT SERIES OF VARIABLE X (FLOOD VOLUMES)
C Y IS INPUT SERIES OF VARIABLE Y (FLOOD PEAKS)
C N IS TOTAL NO. OF VALUES IN X SERIES OR Y SERIES
C TOTAL NO. FLOOD EVENTS.

C ALEMDA AVERAGE NO. OF FLOOD EVENTS PER YEAR.

C XSTART STARTING VALUE OF X
C NX END VALUE OF X

C XINCRE INCREMENT DESIRED IN X
C YSTART STARTING VALUE OF Y
C NY END VALUE OF Y

C YINCRE INCREMENT DESIRED IN Y
C SUBROUTINES REQUIRED
C POWER2 FOR TWO STEP POEWER TRANSFORMATION
C CORRE FOR CORRELATION COEFF.
C STAT FOR STATISTICAL PARAMETERS
C NDTR1

C NDTR

C QG32

SUBROUTINE NKG(X,Y,N,ALEMDA,XSTART,NX,XINCRE,YSTART
1,NY,YINCRE)

C SUBROUTINE

DIMENSION X(1),Y(1),R1(10)
COMMON/BR1/A,B,XBAR,YBAR,SX,SY,SXY
C0MM0N/RD4/C1,X1T,Y1T
COMMON/BR/QSUM,QAVE,QMAX,QMIN,QSTD,QCV,QSKEW,QKURT,RI

C COMPUTE CORRELATION BETWEEN X AND Y IN ORIGINAL DOMAIN.
CALL CORRE(X,Y,N,R)
S=SQRT(1.-R*R)*SY
A1=A

B1=B

C NORMALIZE THE SERIES
WRITE(4,1)

1 FORMAT(20X'ANALYSIS OF THE POWER TRANSFORMED SERIES')
CALL POWER2(X,N,ALX,AGX)
CALL POWER2(Y,N,ALY,AGY)

C NORMALIZE THE X AND Y SERIES
DO 51 1=1,N
X(I)=(X(I)*ALX-1.)/ALX

51 Y(I)=(Y(I)**ALY-1.)/ALY
CALL STAT(X,N,0,1)
X1BAR=QAVE
CALL STAT(Y,N,0,1)
Y1BAR=QAVE
DO 82 1=1,N
XT1=X(I)-X1BAR
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YT1=Y(I)-Y1BAR
X(I)=(ABS(XT1)**AGX)*XT1/ABS(XT1)
Y(I)=(ABS(YT1)**AGY)*YT1/ABS(YT1)

82 CONTINUE

C COMPUTE CORRELATION BETWEEN NORMALIZED VARIABLES
CALL CORRE(X,Y,N,R)
WRITE(4,5)A,B,XBAR,YBAR,SX,SY,R,ALX,ALY,AGX,AGY

5 FORMATC A,B,XBAR,YBAR,SX,SY,R,ALX,ALY,AGX,AGY='/11F11.4)
C COMPUTE 50, 100, 500, 1000, AND 10000 YEARS X AND Y QUANTILES

Fl=(ALOG(1.-.02)+ALEMDA)/ALEMDA
F2=(ALOG(1.-.01)+ALEMDA)/ALEMDA
F3=(ALOG(1.-.002)+ALEMDA)/ALEMDA
F4=(ALOG(1.-.001)+ALEMDA)/ALEMDA
F5=(ALOG(1.-.0002)+ALEMDA)/ALEMDA
CALL NDTRI(F1,AX1,C,IER)
CALL NDTRI(F2,AX2,C,IER)
CALL NDTRI(F3,AX3,C,IER)
CALL NDTRI(F4,AX4,C,IER)
CALL NDTRI(F5,AX5,C,IER)
X50=XBAR+AX1*SX

X50=(ABS(X50)**(1./AGX))X50/ABS(X50)
X50=((X50+X1BAR)*ALX+1.)**(1./ALX)
X100=XBAR+AX2*SX

X100=(ABS(X100)**(1./AGX))*X100/ABS(X100)
X100=((X100+X1BAR)*ALX+1.)**(1./ALX)
X500=XBAR+AX3*SX

X500=(ABS(X500)**(1./AGX))*X500/ABS(X500)
X500=((X500+X1BAR)*ALX+1.)**(1./ALX)
X1000=XBAR+AX4*SX

X1000=(ABS(X1000)**(1./AGX))*X1000/ABS(X1000)
X1000r((X1000+X1BAR)*ALX+1.)**(1./ALX)
X5000=XBAR+AX5*SX
X5000=(ABS(X5000)**(1./AGX))*X5000/ABS(X5000)
X5000=((X5000+X1BAR)*ALX+1.)**(1./ALX)
Y50=YBAR+AX1*SY

Y50=(ABS(Y50)**(1./AGY))*Y50/ABS(Y50)
Y50=((Y50+Y1BAR)*ALY+1.)**(1./ALY)
Y100=YBAR+AX2*SY

Y100=(ABS(Y100)**(1./AGY))*Y100/ABS(Y100)
Y100=((Y100+Y1BAR)*ALY+1.)**(1./ALY)
Y500=YBAR+AX3*SY

Y500=(ABS(Y500)**(1./AGY))*Y500/ABS(Y500)
Y500=((Y500+Y1BAR)*ALY+1.)**(1./ALY)
Y1000=YBAR+AX4*SY

Y1000=(ABS(Y1000)**(1./AGY))*Y1000/ABS(Y1000)
Y1000=((Y1000+Y1BAR)*ALY+1.)**(1./ALY)
Y5000=YBAR+AX5*SY

Y5000=(ABS(Y5000)**(1./AGY))*Y5000/ABS(Y5000)
Y5000=((Y5000+Y1BAR)*ALY+1.)**(1./ALY)
WRITE(4,6)

6 FORMAT(7X'X50'6X'X100'6X'X500'5X'X1000'5X'X5000'7X'Y50'
16X'Y100'6X'Y500'5X'Y1000'5X'Y5000')

WRITE(4,7)X50,X100,X500,X1000,X5000,Y50,Y100,Y500,Y1000,Y5000
7 FORMAT(10F10.1)
71 CONTINUE
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3 PERFORMS MULTIVARIATE ANALYSIS

X11=XSTART

DO 53 1=1,NX
Y11=YSTART

X1T=((X11**ALX-1.)/ALX)-XlBAR
SIGN=X1T/ABS(X1T)
X1T=(ABS(X1T)**AGX)*SIGN
ZX=(X1T-XBAR)/SX
CALL NDTR(ZX,HX,DEN)

. FX=EXP(ALEMDA*HX-ALEMDA)
TX=1./(1.-FX)
WRITE(4,8)X11,FX,TX

8 FORMAT(10X'X='F10.1,'FX='F7.4,'TX='F10.1)
WRITE(4,2)
DO 54 J=1,NY
Y1T=((Y11**ALY-1.)/ALY)-YlBAR

SIGN=Y1T/ABS(Y1T)
Y1T=(ABS(Y1T)**AGY)*SIGN
ZY=(Y1T-YBAR)/SY
CALL NDTR(ZY,HY,DEN)
FY=EXP(ALEMDA*HY-ALEMDA)
TY=1./(1.-FY)
C1=SX/SQRT(2.*(SX*SX*SY*SY-SXY*SXY))
ZYIX=SQRT(2.)*C1*((Y1T-YBAR)-(SXY/(SX*SX))*(X1T-XBAR))
CALL NDTR(ZYIX,HYIX,DEN)
FYIX=EXP(ALEMDA*HYIX-ALEMDA)
TYIX=1./(1.-FYIX)
XL=-5.*SX+XBAR

CALL QG32(XL,X1T,FCT,HXYD)
HXYI=HX*HY

FXYD=EXP(ALEMDA*HXYD-ALEMDA)
FXYI=EXP(ALEMDA*HXYI-ALEMDA)
HXYIX=HX*HYIX

FXYIX=EXP(ALEMDA*HXYIX-ALEMDA)
TXORYD=l./(l.-FXYD)
TXORI=l./(l.-FXYI)
TXORYX=l./(l.-FXYIX)
TXANYD=1./(1.-FX-FY+FXYD)
TXANYI=1./(1.-FX-FY+FXYI)
TXANYX=1./(1.-FX-FYIX+FXYIX)
WRITE(4,3)YI1,FY,TY,FYIX,TYIX,FXYD,FXYI,

1FXYIX,TXORYD,TXORYI,TXORYX,TXANYD,TXANYI
3 FORMAT(F10.1,2(F7.4,F10.1),3F7.4,6F10.1)
2 FORMAT(9X' Y' 5X' FY' 8X' TY '3X' FYIX '6X' TYIX '3X' FXYD' 3X 'FXYI'

12X'FXYIX'4X'TXORYD'4X'TXORYI'4X'TXORYX'4X'TXANYD'4X'TXANYI

2')
Y11=Y11+YINCRE

54 CONTINUE

X11=X11+XINCRE

53 CONTINUE

RETURN

END
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C SUBROUTINE FOR TWO STEP POWER TRANSFORMATION
SUBROUTINE P0WER2(X,N,AL,AG)

C METHOD ADOPTED FROM 'FLOOD FREQUENCY ANALYSIS BY TWO
C STEP POWER TRANSFORMATION'BY GUPTA,D.K.,ASTHANA B.N.
C AND BHARGAVA A.N..JOUNAL OF INSTITUTION OF ENGINEERS
C VOL. 70/4,NOV.1989.
C X=INPUT SERIES
C N=NO. OF DATA POINTS.
C AL=LEMDA, AND AG= GAMMA

DIMENSION X(l),R(10),T(12000)
COMMON/BR/QSUM,QAVE,QMAX,QMIN,QSTD,QCV,QSKEW,QKURT,R
AG=1.0

CALL POWERl(X,N,AL)
YBAR=QAVE
CS=QSKEW
CKEX=QKURT-3.
QSKEW1=QSKEW
QKURT1=QKURT

7 FORMATC GAMMA LOOP'4F10.4)
56 IF(ABS(CKEX).LT.0.05)GO TO 55

IF(CKEX.GT.0.0)GO TO 51
AG=AG+0.01
GO TO 52

51 AG=AG-0.01
52 CONTINUE
67 DO 53 1 =1,N

T(I)=((X(I)**AL-1.)/AL)-YBAR
SIGN=T(I)/ABS(T(I))

53 T(I)=(ABS(T(I))**AG)*SIGN
CALL STAT(T,N,0,1)
CS=QSKEW
CKEX=QKURT-3.
QKURT1=QKURT
QSKEWl=QSKEW

C TYPE 7,AL,AG,CS,CKEX
GO TO 56

55 IF(ABS(CS).LT.0.02)GO TO 66
IF(CS.LT.0.0)GO TO 54
AL=AL-0.0001

GO TO 57

54 AL=AL+0.0001
57 DO 58 1=1,N
58 T(I)=(X(I)**AL-1.)/AL

CALL STAT(T,N,0,1)
YBAR=QAVE
GO TO 67

8 FORMATC LEMDA LOOP'4F9.4)
66 TYPE 1

WRITE(4,1)
WRITE(4,2)QMAX,QMIN,QAVE,QSTD,QSKEWl,QKURT1,R(1),AL,AG
TYPE 2,QMAX,QMIN,QAVE,QSTD,QSKEWl,QKURT1,R(1),AL,AG

1 FORMAT(5X'MAXIMUM'5X'MINIMUM'8X'MEAN'8X'STD.'8X'SKEW'
14X'KURTOSIS'2X'CORR. COEFF.'5X'LEMDA'5X'GAMMA')

2 FORMAT(6F12.3,2X,5F10.4)
RETURN
END
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C********************************************************************
C SUBROUTINE FOR NORMALISING THE SERIES USING POWER TRAN.

SUBROUTINE POWER1(X,N,AL)
C X IS INPUT SERIES.

C AL IS VALUE OF LEMDA.

DIMENSION X(1),Y(1000),R(10)
COMMON/BR/QSUM,QAVE,QMAX,QMIN,QSTD,QCV,QSKEW,QKURT,R
AL1=1.0

DO 51 1=1,N
51 Y(I)=(X(I)**AL1-1.)/ALl

CALL STAT1(Y,N,0,1)
SK1=QSKEW
AL2=ALl+0.2

54 DO 52 1=1,N
Y(I)=X(I)**AL2-1.)/AL2

52 CONTINUE

CALL STAT1(Y,N,0,1)
SK2=QSKEW
DL=-SK2*(AL2-AL1)/(SK2-SK1)
IF(ABS(DL).LE.0.00001)GO TO 53
SK1=SK2

AL1=AL2

AL2=AL2+DL

GO TO 54

53 AL=AL2

DO 55 1 =1,N
55 Y(I)=(X(I)**AL-1.)/AL

CALL STAT1(Y,N,0,1)
WRITE(4,1)
TYPE 1

WRITE(4,2)QMAX,QMIN,QAVE,QSTD,QSKEW,QKURT,R(1),AL
TYPE 2,QMAX,QMIN,QAVE,QSTD,QSKEW,QKURT,R(1),AL

1 FORMAT(5X'MAXIMUM'5X'MINIMUM'8X'MEAN'8X'STD.'8X'SKEW'
14X'KURTOSIS'2X'CORR. COEFF.'5X'LEMDA')

2 FORMAT(6F12.3,2X,5F10.4)
RETURN

END

C SUBROUTINE DVPA

C PURPOSE:

C SUBROUTINE COMPUTES NO. OF FLOOD EVENTS, FLOOD PEAKS,
C VOLUMES AND DURATIONS, AND THE LOCATION OF FLOOD PEAKS.
C DROUGHT VOLUMES DURATION, PEAK ETC. ARE ALSO COMPUTED BUT NOT
C USED IN THE ANALYSIS.

C DESCRIPTION OF PARAMETERS

C Q IS THE SERIES OF DAILY FLOWS.
C N IS TOTAL NO. OF DAILY FLOW VALUES.N= 365

C YEAR IS THE YEAR FOR WHICH FLOWS ARE BEING ANALYSED

C THRESH IS THE THRESHOLD FOR WHICH THE FLOOD FEATURES ARE REQUIRED
C SUBROUTINE FOR PEAK VOLUME DURATION ANALYSIS

SUBROUTINE DVPA(Q,THRESH,N,YEAR)
DIMENSION Q(l),LZERO(100),V(100),VD(100),VF(100)

1,DD(100),DF(100),PF(100),PD(100),T(365),LOCF(100)
DIMENSION LOCD(100)



INTEGER YEAR

C0MM0N/BL1/VF,DF,PF,LOCF,IK
DO 51 1=1,N

51 Q(I)=Q(I)-THRESH
K=l

DO 52 1=2,N
IF(Q(I-1).LE.0.0.AND.Q(I).GT.0.0)GO TO 53
IF(Q(I-1).GE.0.0.AND.Q(I).LT.0.0)GO TO 53
GO TO 52

53 LZERO(K)=I-l
K=K+1

52 CONTINUE

IF (K.EQ.l)G TO 60
K=K-1

KK=1

KKK=1

DO 54 J=1,K-1
V(J)=0.0
DUR=0.0

Nl=LZERO(J)
N2=LZERO(J+l)
QMAX=0.0

LOC=Nl

QN1=Q(N1)
QN2=Q(N2+1)
Q(N1)=0.0
Q(N2+1)=0.0
DO 55 =N1,N2
T(L)=1.0

T(N1)=Q(N1+1)/(Q(N1+1)-QN1)
T(N2)=Q(N2)/(Q(N2)-QN2)
IF(QMAX-ABS(Q(L)))58,59,59

58 QMAX=ABS(Q(L))
LOC=L

59 V(J)=V(J)+T(L)*(Q(L)+Q(L+l))/2.
DUR=DUR+T(L)

55 CONTINUE

Q(N1)=QN1
Q(N2+1)=QN2
IF(V(J).LT.0.0)GO TO 56
IF(V(J).GE.0.0)GO TO 57

56 VD(KK)=-V(J)
DD(KK)=DUR
PD(KK)=THRESH-QMAX
LOCD(KK)=LOC
IF(VD(KK).LT.500)GO TO 54
KK=KK+1

GO TO 54

57 VF(KKK)=V(J)
DF(KKK)=DUR
PF(KKK)=QMAX
LOCF(KKK)=LOC
IF(VF(KKK).LT.500)GO TO 54
KKK=KKK+1

179



180

54 CONTINUE
KK=KK-1

KKK=KKK-1

IK=KKK

C WRITE(2,7)KK,KKK
7 FORMAT(5X,'TOTAL TROUGHS AND PEAKS ARE *,15,'AND',15 '

1RESPECTIVELY') ' '
GO TO 61

60 WRITE(2,8)YEAR
8 FORMAT(16)

WRITE(2,9)

9 FORMAT(IX,'NO PEAKS AND TROUGHS DETECTED. ALL THE
1VALUES ARE BELOW THRESHOLD')

IK=0

61 CONTINUE
RETURN

END

C*****************************^^^**^^^^**^**^^^^^^^^^^^^^^^^^^^^^^^^^^^^
SUBROUTINE STAT(X,KK,OPT,K)
DIMENSION X(1),Y(12000),R(10)
COMMON/BR/QSUM,QAVE,QMAX,QMIN,QSTD,QCV,QSKEW,QKURT,R
REAL Nl

INTEGER OPT
N1=KK

SUM1=0.0

SUM2=0.0

SUM3=0.0

SUM4=0.0

QMAX=X(1)
QMIN=X(1)
DO 51 1=1,KK
IF(X(I).NE.-999)GO TO 57
IF(X(I).EQ.-999)N1=N1-1
GO TO 51

57 SUM1=SUM1+X(I)
SUM2=SUM2+X(I)*X(I)
SUM3=SUM3+X(I)*X(I)*X(I)
SUM4=SUM4+X(I)*X(I)*X(I)*X(I)
IF(X(I).GT.QMAX)QMAX=X(I)
IF(X(I).LT.QMIN)QMIN=X(I)

51 CONTINUE
QSUM=SUM1
QAVE=SUM1/N1
QSTD=SQRT((SUM2-N1*QAVE*QAVE)/(Nl-1))
QCV=QSTD/QAVE

QSKEW=((N1*N1)/((Nl-1)*(Nl-2)*QSTD*QSTD*QSTD))*
1((SUM3/N1)-(3.*QAVE*SUM2/N1)+2.*QAVE*QAVE*QAVE)

QKURT=((N1*N1*N1)/((N1-1)*(N1-2)*(N1-3)*(QSTD**4)))*
1((SUM4/N1)-4.*QAVE*(1./Nl)*SUM3+6.*QAVE*QAVE*(1 /Nl)*SUM2
1-3.*(QAVE**4))

DO 56 J=1,K
DO 55 I=1,KK-J

55 Y(I)=X(I+J)
CALL C0RRE(X,Y,KK-J,R1)
R(J)=R1
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56 CONTINUE

IF(OPT.EQ.0)GO TO 54
WRITE(2 1)

1 FORMAT(5X,'MAXIMUM',5X,'MINIMUM',8X,'MEAN',8X,'STD. ',
18X,'SKEW',4X,'KURTOSIS',2X,'CORRELATION COEFFICIENTS')

WRITE(2,2)QMAX,QMIN,QAVE,QSTD,QSKEW,QKURT,(R(J),J=1,K)
IF(OPT.EQ.3)TYPE 1
IF(OPT.EQ.3)TYPE 2,QMAX,QMIN,QAVE,QSTD,QSKEW,QKURT,(R(J),J=1,K)

2 FORMAT(6F12.3,2X,5F8.3)
54 RETURN

END

C**************************************************************

SUBROUTINE CORRE(X,Y,N,R)
DIMENSION X(1),Y(1)
COMMON /BR1/A,B,XBAR,YBAR,SX,SY,SXY
SUMX=0.0

SUMY=0.0

DO 51 1=1, N
SUMX=SUMX+X(I)

51 SUMY=SUMY+Y(I)
XBAR=SUMX/N
YBAR=SUMY/N
VARX=0.0

VARY=0.0

VARXY=0.0

DO 52 1=1,N
VARX=VARX+(X(I)-XBAR)**2.
VARY=VARY+(Y(I)-YBAR)**2.
VARXY=VARXY+(X(I)-XBAR)*(Y(I)-YBAR)

52 CONTINUE

R=VARXY/((SQRT(VARX))*(SQRT(VARY)))
B=VARXY/VARX
A=YBAR-B*XBAR

SX=SQRT(VARX/(N-1.))
SY=SQRT(VARY/(N-1.))
SXY=VARXY/(N-1.)
RETURN

END
C********************************************************************

C SUBROUTINE FOR ARRANGING THE SERIES IN ASCENDING ORDER
C INPUT DATA ARE AS FOLLOWS:

C N=NUMBER OF VALUES TO BE ARRANGED
C IYEAR=YEAR IN CHRONOLOGICAL ORDER
C X=DATA SERIES IN CHRONOLOGICAL ORDER
C OUTPUT RESULTS ARE AS FOLLOWS:

C X=DATA SERIES IN ASCENDING ORDER
C IYEAR=YEAR CORRESPONDING TO X

SUBROUTINE SEQ(N,IYEAR,X)
DIMENSION X(1),IYEAR(1)
IF(N.LE.l)GO TO 30
J=0

20 J=J+1

DO 10 I=J,N
IF (X(I).GT.X(J)) GO TO 10
XT=X(J)
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XTY=IYEAR(J)
X(J)=X(I)
IYEAR(J)=IYEAR(I)
X(I)=XT
IYEAR(I)=XTY

10 CONTINUE
IF(J.NE.(N-1)) GO TO 20

30 RETURN
END

C*********************,,^^^^,,^^^^^^^^^^^^
SUBROUTINE FCT(X Y) **********************

cS?N/^%t;xBifAY?TYBAR'SX'SY'SXY
oiLLe^(^°^:srYBAE)-(sxY/<sx*sx"*<^BAE„
PAI=3.141592654

l*Fr(1/(SQRT(2-*PAI)*SX))*EXP(-0-5*((X-XBAR)/SX)**2.)
RETURN

END
C****************************^^^^^,,^^^^

SUBROUTINE FCTI(D Y) ************************
COMMON /RD/Y1,S,X0,BX
COMMON /BR1/A,B,XBAR,YBAR,SX,SY,SXY
Z=(Y1-A-B*D)/S
CALL NDTR(Z.FPD,DEN)
Y=EXP(-(D-X0)/BX)*FPD/BX
RETURN
END

°*M"MsuBRo^^rsoR;r:rxr*tt"""*""""*"***"—********
C SORTS IN DECREASING ORDER, X(1)=LARGEST

DIMENSION X(l)
K=N-1

DO 2 L=1,K
M =N-L

DO 2 J=1,M
IF (X(J)-X(J-fl)) 1,1,2

1 XT=X(J)
X(J)=X(J+1)
X(J+1)=XT

2 CONTINUE
RETURN

END

C********************************************m*
C SUBROUTINE FOR DAYS IN A LEAP YEAR ******************

SUBROUTINE LEAP(YEAR,NDAY)
INTEGER YEAR

YEARl=YEAR/4.0
NYEAR=YEAR1
BYEAR=NYEAR
IF(YEAR1-BYEAR)10,H,10

10 NDAY=28
GO TO 12
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11 NDAY=29
12 RETURN

END
C********************************m*****ww^^
C SUBROUTINE NDTRI
C PURPOSE

C C£J!PUTES X=P**(-D(Y), THE ARGUMENT X SUCH THAT Y=P(X)
C NoSmaF^B^ITxcT?AT THE RAND0M LIABLE U,DISTRIBUTEDC NORMALLY(0,1), IS LESS THAN OR EQUAL TO X F(X) THE

I C USAGE1^" °F ™E N°RMAL DENSITY' AT *' IS ALio COM™?ED.
C CALL NDTRI(P,X,C,IER)

. C DESCRIPTION OF PARAMETERS
C P -INPUT PROBABILITY
C X -OUTPUT ARGUMENT SUCH THAT P=Y=THE PROBABILITY THAT
C THE RANDOM VARIABLE IS LESS THAN OR EQUAL TO X
C C -OUTPUT DENSITY,F(X)
C IER -OUTPUT ERROR CODE

In *T~l IF P IS N0T IN THE INTERVAL (0,1),INCLUSIVEC X=C=.99999E+37 IN THIS CASE WlUWYI
C =C IF THERE IS NO ERROR
X SEE REMARKS BELOW
C REMARKS

C MAXIMUM ERROR IS 0.00045
C IF P=0,X IS SET TO -(10)**74.D IS SET TO C
^ IF P=1,X IS SET TO (10)**74.D IS SET TO C
C SUBROUTINES AND SUBPROGRAMS REQUIRED
C NONE
C METHOD

C BASED ON APPROXIMATIONS IN C.HASTINGS,' APPROXIMATIONS
C FOR DIGITAL COMPUTERS ",PRINCETON UNIV.PRESS.PRINCETON
C N.J.,1955.SEE EQUATION 26.2.23,HAND BOOK OF MATHEMATPAT
C ^KCyJrkS'ABRAM0WITZ AD STEGUN: D°VER ^L?CA?ASANC '

SUBROUTINE NDTRI(P,X,D,IE)
IE=C

X=.99999E+37
D=X

IF(P)1,4,2
1 IE=-1

GO TO 12

2 IF(P-1.0)7,5,1
4 X=-0.999999E+37
5 D=0.0

GO TO 12
7 D=P

IF(D-0.5)9,9,8
8 D=1.0-D

9 T2=ALOG(1.0/(D*D))
T=SQRT(T2)

X=T-(2.515517+0.802853*T+0.010328*T2)/(1 0+1 432788*T+10.189269*T2+0.001308*T*T2) ^^.» i.4d^roa*T+
IF(P-0.5)10,10,11

10 X=-X

11 D=0.3989423*EXP(-X*X/2 0)
12 RETURN

END
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C********************************************************************
C SUBROUTINE NDTR
C PURPOSE:

C COMPUTES PROBABILITY THAT THE RANDOM VARIABLE X
C DISTRIBUTED NORMALLY (0,1) IS LESS THAN OR EQUAL TO X
C THE ORDINATE OF THE NORMAL DENSITY AT X IS ALSO COMPUTED
C USAGE:

C CALL NDTR(X,P,D)
C DESCRIPTION OF PARAMETERS
C X:INPUT SCALER FOR WHICH P(X) IS COMPUTED
C P:OUTPUT PROBABILITY.
C D:OUTPUT DENSITY.
C REMARKS:
C MAXIMUM ERROR IS 0.0000007.
C SUBROUTINES AND SUBPROGRAMMES REQUIRED NONE
C METHOD:

C BASED ON APPROXIMATIONS IN C HASTINGS,'APPROXIMATIONS
FOR DIGITAL COMPUTERS',PRINCETON UNI. PRESS .PRINCETON

C N.J.1955,SEE EQUATION 26.2.17,IN HANDBOOK BOOK OF
C MATHEMATICAL FUNCTIONS BY ABRAMOWITZ AND STEGUN OOVER
C PUBLICATIONS INC. NEW YORK
C

SUBROUTINE NDTR(X,P,D)
AX=ABS(X)
T=l.0/(1.0+0.2316419*AX)
D=0.3989423*EXP(-X*X/2 )

,, P;i-?;?*I*(;((1-3302*T-1.821256)*T+1.781478)*T-0.3565638
l;*l+lo. J19dol5)

IF(X)1,2,2
1 P=l.-P
2 RETURN

END
C***************************^^^***^^^^^^^^^^^^^^^^^^^^^^^^
C SUBROUTINE QG32
C PURPOSE:

C TO COMPUTE INTEGRAL SUMMED OVER X FROM XL TO XU.
C USAGE:

C CALL QG32(XL,XU,FCT1,Y)
C DESCRIPTION OF PARAMETERS:
C XL:THE LOWER BOUND OF THE INTERVAL
C XU:THE UPPER BOUND OF THE INTRVAL

O SETRKsSL??NGFlS?LRSEVAtuEFUNCTI0N ^^ °R SUBR°UTINE °SED
C REMARKS: NONE

n SHSR2PTINE AND FUNCTION SUBPROGRAMMES REQUIRED
C THE SUBROUTINE FCT MUST BE FURNISHED BY THE USER
C METHOD EVALUATION IS DONE BY EANS OF 32 POINT GAUSS
C DEGREET63EEXAC?LYA ""^ INTEGRATES POLYNOMIALS UPTO

SUBROUTINE QG32(XL,XU,FCT1,Y)
A=0.5*(XU+XL)
B=XU-XL

C=.4986319*B
CALL FCT(A+C,FCT1)
CALL FCT(A-C,FCT2)



o
•
<

o
o

II
II

>
>

•
•<

f
c

&
+

f
r1

M
^

n
n

C
O

0
>

-
3

-
3

e
n

c
o

«
"
"
»

^
->

c
o

to
>

>
C

D
tO

I
+

*
i-

»
o

o
C

O
C

O
-

-
•*

fs
l

fx
j

-
s

o
o

n
w

H
-
3

s
-
^
s
_

n -
3

tO

o
•<

o
11

n
>

•
<

<
f

•-
*

+
f

>
-
»

•

c
o

e
a

^
r
o

.*
»

o

0
5

0
0

>
C

O
C

O
I

*
c
o

n
C

O
c
o

-
*

*
q

—
s

o
fx

j
-
3

O
t
o

fx
j

o r
o

o
o

>
II

C
•

tr
"

t-
1

C
D

«
3

e
n

O
C

O
H

to

>
c
o

+
<

S
O

*
•

C
X

I
1

3

o -
3

•
<

o
o

II
>

>
*

<
f
t
r

+
t
r

tr
1

CS
J

1
3

rr
)

*
»

O
Q

C
O

-
3

>~
3

C
O

'-
s
'-

s

t
o

>
>

r
o

1
+

c
a

n
o

*
»

-
-

*
*

3
tr

}
•^

o
o

rx
j

-
a

H

O
t
o

i-
1

^
s
_

v
_

+ *
l

O •-
3

t
o

O
m

J
o

o
II

II
>

>
•

M
j

f"
f

t
o

+
tr

"
tr

1

5
1

Q
r
o

,*
».

e
n

r
o

r
o

e
n

c
o

e
n

*
c
o

C
d

ro * 1
3

o -
3

rx
j

rx
j

O
O

-
3

-
3

>
>

I
+

o
o

rx
j

rx
|

o
o

>
-3

-
3

t
o

i-
1

*
q

o -
3

t
o

11
11

>
>

•
K

J
C

-I
C

1
to

+
C

-"
f

C
O

•

c
o

c
a

«
g

•*
)

C
O

C
O

O
O

e
n

r
o

>
-3

»-
3

•
s
l
M

'
s
^

C
O

~
J

>
>

-s
i

tO
I

+

#
0

0
0

0
C

d
c
o

-
-

*
*

i
rx

j
~

O
0

.
rx

j
H

-
3

O
tO

I-
'

—
3

s—
S

—

I-
1

+ n
q

a -
3

t
o

O
•<

o
o

II
II

>
>

•
•<

f
tr

>
t
o

+
r
1

tr
1

e
n

•
c
o

c
a

"
g

»x
j

(t
*

c
o

O
O

»&
.

C
O

H
H

c
o

c
a

'-
»

'-
>

C
O

C
O

>
>

e
n

r
o

1
+

*
c
o

o
O

C
d

*
.
-

-
*

m
j

fx
j

^
s

o
o

rx
|

-
3

-
3

-
3

—
w

+ r*
3

o t
o

o
^

o
o

n
K

i
n

o
o

H
i
o

n
o

^
o

n
o

^
n

n
n

^
o

n
n

^
o

o
n

H
!

n
11

>
>

II
II

>
>

II
II

>
>

II
II

>
>

II
II

>
>

II
II

>
>

11
11

>
>

11
11

•
•<

tr
1

tr
1

•
H

j
r
r
i

•
>

<
t
r
t
r

•
•<

r>
tr

1
•

•<
f

f
•

«
J

r
1

tr
"

.
><

tr
"

tr
1

•
•

w
+

t-
,t

-,
c
o

+
tr

^
c
^

c
o

+
r,

c
^

H
^

+
r
,
r
,
i
^

+
tr

,t
r
^

i^
+

tr
'C

-,
M

^
+

tr
1

tr
1

j*
c
a

C
O

•
r
o

•
C

O
•

t
o

•
*

k
•

r
o

•
c
o

c
o

t
a

i
-
i
c
a
^

^
r
o

(
s
^

^
-
s
3

c
a
^

^
H

^
s
^

^
r
o

c
a
^

^
-
s
i
c
a
^

^
M

c
a
'T

J
,T

3
t
o

c
o

e
n

c
o

o
o

c
a
t
o

o
o

t
o

t
o

o
o

r
o

t
o

o
o

H
p

n
n

*
H

a
n

c
o

s
o

n
c
o

o
i

M
M

H
H

s
O

t
D

H
^
^
U

i
H

H
C

O
H

*
>

-3
>

-3
r
o

-N
l'

-3
>

-3
c
n

tO
i-

3
'-

3
C

O
C

D
>

-3
>

-3
c
a

c
a

t
o

C
O

^
'-

^
H

U
'
^
'
S

H
^

,
^
^
^
-
s

C
O

^
*

-
»

»
-
s

S
h

"
v

—
s

c
o

r
o

^
-
s
-
~

s
h

-1
K

^
^
s

u
i

C
O

i
-
'i

-
i
>

>
c
a
>

t
»

'>
>

c
o

c
o

r
>

>
c
o

h
-
'>

>
c
n

c
o

>
5

>
c
a
c
b

>
>

(
-
1

c
o

>
>

-
J

c
o

C
O

»-
m

1
4

e
n

t
o

1
+

c
o

c
o

i
+

c
a

-
j

1
+

-
j

r
o

1
+

c
o

r
o

1
+

t
o

-
j

1
+

e
n

c
a

*
r-

»
0

n
*

s
n

n
*

t
a
o

o
*

c
o

o
o

*
C

O
0

0
#

s
o

o
*

h
^

0
O

#
*

C
d

r-
»

-
-

C
d

*
>

-
-

C
d

t
o

-
-

C
d

*
»

-
-

C
d

c
o

-
-

C
d

c
o

-
-

C
d

c
o

-
-

C
d

^
*

^
3

rx
|

*
1

3
*

a
*

t*
i

rx
j

*
*

3
rx

j
*

*
J

rx
j

*
*

3
ix

j
*

rx
j

rx
j

tx
]

•*
»•

0
0

-
^

O
O

-
s

n
0

-~
s

O
O

'-
s

O
O

-
s

H
O

^
0

n
0

rx
j

-
3

>
-3

rx
j

-
3

H
«

3
*-

3
H

*3
n

l
-3

tx
j

*
q

,-
3

fx
j

t
o

>
^

i
)
H

H
i-

3
n

w
i
-
1

O
tO

r
-'

O
M

H
O

t
o

1-
1

O
I
O

K
O

^
-

l-
1

O
M

H
l-

>
-
3

—
s
—

1-
3

s
—

s—
-
3

s
—

s
^

-
3

^
s
_

-
3

s
—

w
H

s
_

-
3

s
—

s
^

+
K

*
l-

»
I
-
1

1
-1

f-
1

h
^

M
ix

j
+

+
+

+
+

+
+

O
^

1
^

T
j

>
x|

w
j

"
q

rx
j

-
3

0
0

0
O

O
0

n
r
o

>
-3

H
-
3

-
3

•
^

-
3

-
3

s
^

t
o

t
o

t
o

t
o

t
o

t
o

r
o

C
O

e
n



CALL FCT(A+C,FCT1) 186
CALL FCT(A-C,FCT2)
Y=Y+.04781936*(FCT1+FCT2)
C=.02415383*B
CALL FCT(A+C,FCT1)
CALL FCT(A-C,FCT2)
Y=B*(Y+.04827004*(FCT1+FCT2))
RETURN

END
C**********************************^^^5^#^^^^^^^^^^#^^####^#^^#:4())<j!()tc)|c;(c;)(

SUBROUTINE GAUSS(IX,S,AM,V)
A=0.0

DO 50 1=1,12
C

Y=RAN(IX)
C

50 A=A+Y

V=(A-6.0)*S+AM
RETURN
END

**#
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