APPLICATION OF KINEMATIC WAVE THEORY TO SMALL WATERSHEDS

A THESIS

submitted in fulfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

in HYDROLOGY

MD. MUBARAK HOSSAIN

DEPARTMENT OF HYDROLOGY UNIVERSITY OF ROORKEE ROORKEE-247 667 (INDIA)

OCTOBER, 1989

TO THE MEMORY OF MY FATHER AND GRANDFATHER

0.111

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled "APPLICATION OF KINEMATIC WAVE THEORY TO SMALL WATERSHEDS" in fulfilment of the requirement for the award of the Degree of DOCTOR OF PHILOSOPHY submitted in the Department of Hydrology of the University is an authentic record of my own work carried out during a period from May, 1986 to October, 1989 under the supervision of Dr. B. S. Mathur.

The matter embodied in this thesis has not been submitted by me for the award of any other Degree.

(MD. MUBARAK HOSSAIN)

This is to certify the above statement made by the candidate is correct to the best of my knowledge.

Sha idini

flace

(Dr. B.S. MATHUR) Professor, Department of Hydrology, University of Roorkee, ROORKEE

nation held on Nov. 20, 1990 at 13 ophrs D.O.H. The thesis is recommended for award of the Ph.D. Degree.

Binaldin

2011/90

Signature of Guide/s Signature of External Examiners

ACKNOWLEDGEMENTS

I feel priviledged to express my deep sense of gratitude and sincere regards to Dr. B.S. Mathur, Professor, Department of Hydrology, University of Roorkee, Roorkee, India, for his keen interest, invaluable guidance, and constant encouragement throughout the course of the present study.

I wish to express sincere thanks to Dr. D.K. Srivastava, Professor and Head, Dr. Ranvir Singh, Dr. Deepak Kashyap, Dr. D.C. Singhal, Mr. N.K. Goel and Mr. H. Joshi, Readers, Department of Hydrology, University of Roorkee, Roorkee, for their encouragement and co-operation throughout the study.

I express my gratitude to Dr. V.P. Singh, Professor, Department of Civil Engineering, Louisiana State University, U.S.A. for useful discussions on the subject.

I pay a respectful homage to the memory of my father who unfortunately expired before I could complete my research work. On his intensive I started this research work and I would be ever grateful to him for the support which he extended to me.

I would like to express my deep sense of indebtedness to my mother, mother-in-law, brothers, sisters, and to all my relatives, who have given me their moral support and also for their patience through the period of study. My deepest regards and gratitude to my father-in-law M. Muzaffar Ali (Ex. Member of Parliament) who inspired me to continue the course of research work. The vacuum caused due to the death of my father was very much filled in by him.

I am greatly grateful to my beloved wife Rokshana, daughter Poly for their full co-operation, understanding and also patiently bearing my inattentiveness towards them and allowed me to spend few years away from them.

I am thankful to my colleagues and friends Dr. Hasna Banu, Prof. A.F.M. Abdur Rahman, Mr. M.M. Rahman, Mr. M.A. Islam, Mr. Saiful Islam, Mr. B.C. Basak, Mr. M. Younus Ali and other friends, for their kind co-operation in all respects.

Token but more valuable financial assistance rendered by UNESCO Regional Office, New Delhi, for my research study is gratefully acknowledged. In this connection, I am very much thankful to Dr. Derkatch, Prof. M.F.H. Chowdhary (Ex. V.C.), Mr. L.A. Mandalia, Dr. M.S. Alam and all the officials of UNESCO for their kind co-operation. Thanks are also due to the University of Dhaka, Dhaka, Bangladesh for granting me a long study leave and an initial token study-grant to pursue the research work.

I am thankful to the staff of the Regional Computer Centre and Department of Hydrology, University of Roorkee, Roorkee, for their courteous and prompt assistance all through my work.

111.

Sincere thanks are due to Research Designs and Standards Organisation, Ministry of Railways, Government of India and Central Soil Salinity Research Institute, Karnal (India), for making available the data for this reseasrch work. Without their co-operation this work could never be taken up.

Careful and neat typing of the thesis by Shri Nirmal Kumar, Rashtriya Commercial Institute, Shantinagar, CBRI colony, Roorkee deserves my acknowledgements.

ollacer (MD. MUBARAK HOSSAIN)

4.10 . 1989

Roorkee

SYNOPSIS

In the recent past, in many developing tropical countries a good deal of research has been carried out to solve the problems of 'large basins' whereas not much has been done with regard to the hydrologic problems of small watersheds. Small watersheds do play important roles e.g. a village pond is catered by its own small watershed; in hilly watersheds, the generated runoff causes flash flood, resulting into disruptions of communication lines etc. Therefore, it is necessary to look into these aspects of the hydrologic problems with greater attention.

The hydrologic responses of a small watershed basically depends upon the mechanics of surface runoff which is primarily a nonlinear process. In this thesis, the surface hydrologic behaviour of three small natural hilly watersheds (from 82.0 to 1400.0 hectares) and of one agricultural watershed (1073.0 hectares) have been studied in details by the application of 'Kinematic Wave (KW) Theory'.

During the last two or three decades considerable research work has been carried out by various researchers into different aspects of KW theory application to watersheds of varying physiography. A brief summary of these efforts is presented in Chapter II of this thesis. The details of the KW theory i.e. formulation of mathematical equations and few of their possible solutions which happened to be explicit in nature have been discussed in Chapter III. Out of many possible solutions, the three fully offcentred, first order, numerical finite difference schemes namely, forward-in-time and backward-in-space (termed as Scheme I), backward-in-time and forward-in-space (Scheme II) and backward-in-time and backward-in-space (Scheme III) have been preferred and used in this work. Computations of the models are performed with the help of a digital computer. The computer code has been written in FORTRAN-IV.

Suitable configuration of distributed parameter models have been suggested for applying the KW theory to compute surface runoff (Chapter - III). The data availability on these watersheds is described in Chapter-IV.

The procedural details for the application of KW theory to the four small watersheds have been described in Chapter-V. The physiographic parameters that have been used are namely, the overland slope and roughness; channel slope and its roughness, side slope, bed width and water depth. A systematic sensitivity analysis of these parameters has also been carried out. The results indicated that the effective overland roughness and the overland slope happened to be the most sensitive parameters. During the identification analysis, the values of effective overland roughness parameter have been worked out for different parts of the wet monsoon period (i.e. July to October). The effective overland roughnesses showed an interesting variation with respect to time in case of all the three natural hilly watersheds. Also, suitable conclusions have been drawn with regard to the applicability of the different types of finite difference computational schemes for the two distinct categories of watersheds.

As an extension, application of these principles to ungauged watersheds have also been tried (Chapter-VI). Possible solutions in the form of nomograms and regression models have been suggested. It was interesting to note that the time of concentration (T_c) for the same watershed did not turn out to be a fixed characteristic. Contrary to belief, it was found that T varied with rainfall excess intensity and effective overland roughness. Variations in T were studied in depths. Regression equations were found for T as a function of area, effective overland roughness, overland slope, channel slope and rainfall excess intensity. These concepts were applied to develop a suitable methodology for using these principles for time-areaconcentration (TAC) based models. The response of TAC model was found to be encouraging (Chapter-VI). Appropriate discussion of results and conclusions as arrived at in different parts of the thesis have been summarised in Chapter - VII. N TECH

Concludingly, it is remarked that the KW theory is a powerful tool in computing the surface hydrologic responses of small watersheds of tropical regions. CONTENTS

	Description	Page No
	CANDIDATE'S DECLARATION	i
	ACKNOWLEDGEMENTS	ii
	SYNOPSIS	
	CONTENTS	V
	LIST OF FIGURES	viii
	LIST OF TABLES	xiii
	LIST OF SYMBOLS AND ABBREVIATIONS	xvi xix
CHAPTER	- I INTRODUCTION : Objective and Scope	1
CHAPTER	- II REVIEW OF LITERATURE	8
2.1	INTRODUCTION	8
2.2	THE HYDROLOGIC SYSTEM	8
2.3	NATURE OF HYDROLOGIC SYSTEM	
100	2.3.1 The Linear and Nonlinear Systems	12
2	2.3.2 The Lumped and Distributed Systems	12
	2.3.3 Time-Invariant and Time-Variant Systems	13
2.4	PRESENT TRENDS IN HYDROLOGIC STUDIES	13
~	2.4.1 Conceptual Models and Mathematical Model	15
2.5	KINEMATIC WAVES Vs. DYNAMIC WAVES	10
2.6		17
	ST. VENANT EQUATIONS	21
	2.6.1 General Assumptions and Kinematic Wave Equations.	23
2.7	APPLICABILITY OF KINEMATIC WAVE APPROXIMATIONS	25
2.8	MATHEMATICAL TECHNIQUES FOR THE SOLUTION OF KINEMATIC EQUATIONS	29
	2.8.1 Analytical Solution Techniques	29
	2.8.2 Numerical Solution Techniques	30
	2.8.2.1 Characteristics methods	. 33
	2.8.2.2 Finite difference methods.	33

	2.8.2.2.1 Explicit finite difference methods	34
	2.8.2.2.2 Implicit finite difference methods.	35
	2.8.3 Finite Element Method	37
2.9	REVIEW OF KINEMATIC HYDROLOGIC MODEL DEVELOPMENTS	37
CHAPTER	- III MODEL DEVELOPMENT	45
3.1	INTRODUCTION	45
3.2	HYDRODYNAMIC THEORY AND KINEMATIC WAVE EQUATIONS.	46
3.3	ELEMENT USED IN KINEMATIC WAVE MODELS	49
3.4	KINEMATIC WAVE EQUATION FOR THE OVERLAND FLOWS	49
2	3.4.1 Determination of Kinematic Wave Routing Parameters α_0 and m_0 for the Overland Flows	51
2	3.4.2 The Final Form of Kinematic Wave Equations for the Overland Flows.	52
3.5	KINEMATIC WAVE EQUATIONS FOR THE CHANNEL FLOWS	53
The	3.5.1 Determination of Kinematic Wave Routing Parameters α_k and m_k for Channel Flows.	53
. 6	3.5.2 Trapezoidal Channel Cross Section	54
	3.5.3 The Final Form of Kinematic Wave Equations for the Channel Flows.	56
3.6	NUMERICAL TECHNIQUE (FINITE DIFFERENCE METHODS) FOR SOLVING THE KINEMATIC WAVE EQUATIONS	57
3.7	APPROXIMATION OF THE DERIVATIVES OF KINEMATIC WAVE EQUATIONS THROUGH FINITE DIFFERENCES.	60
3.8	DIFFERENT SCHEMES FOR THE SOLUTION OF KINEMATIC WAVE EQUATIONS : Their Stabilities and Convergences.	63
	3.8.1 Kinematic Wave Celerity	65
	3.8.1.1 Average kinematic wave celerity for the overland flows	68

ix

	3.8.1.2 Average kinematic wave celerity for the channel flows.	69
	3.8.2 Computational Scheme I for the Solution of Kinematic Wave Equations	70
	3.8 3 Computational Scheme II for the Solution of Kinematic Wave Euations	72
	3.8.4 Computational Scheme III for the Solution of Kinematic Wave Equations	73
3.9	PHYSIOGRAPHIC MODELS EMPLOYED	75
	3.9.1 Lumped Physiographic Models	76
	3.9.2 Distributed Physiographic Models	78
	3.9.3 Initial and Boundary conditions	80
1	3.9.3.1 Initial conditions	- 80
	3.9.3.2 Eoundary conditions	81
3.10	COMPUTER PROPGRAMS	82
CHAPTER	- IV WATERSHEDS UNDER STUDY AND AVAILABILITY OF DATA	84
4.1	INTRODUCTION	84
4.2	PHYSIOGRAPHIC DETAILS OF WATERSHEDS OF RAILWAY BRIDGE Nos. 319, 317 and 719	85
Ę	4.2.1 The storm Rainfall Data of Bridge Nos. 319, 317 and 719	85
	4.2.2 The Runoff Data of Bridge Nos. 319, 317 and 719	87
4.3	PHYSIOGRAPHIC DETAILS OF KACHWA WATERSHED	88
	4.3.1 The availability of Data of Kachwa Watershed	89
4.4	GENERAL REMARKS	90
CHAPTER	- V MODEL APPLICATION TO GAUGED SMALL WATERSHEDS	95
5.1	INTRODUCTION	95
5.2	ESTIMATION OF PHYSIOGRAPHIC PARAMETERS	95
	5.2.1 Determination of Overland Slope	96
	5.2.2 Determination of Channel Slope	97

х

	5.2.3 Channel Roughness Coefficient	
	5.2.4 Channel Geometry	97
5.3		97
5.4	RAINFALL EXCESS COMPUTATIONS	99
5.5		100
	APPLICATION OF PROPOSED MODEL ONTO THE WATERSHED OF BRIDGE No. 319	102
	5.5.1 Estimation of Physiographic Parameters (Bridge No. 319)	102
	5.5.2 The Sensitivity Analysis of Physiographic Parameters (Bridge No. 319)	105
	5.5.3 Estimation of Effective Overland Roughness (Bridge No. 319)	107
6	5.5.4 Application of Different Computational Schemes (Bridge No. 319)	117
	5.5.5 Application of KW Theory to the Proposed Distributed Parameters Model (Bridge No. 319)	123
5.6	APPLICATION OF PROPOSED KW THEORY MODELS TO THE NATURAL WATERSHEDS OF BRIDGE Nos. 317, 719 AND TO THE KACHWA AGRICULTURAL WATERSHED	134
2	5.6.1 Estimation of Physiographic Parameters (Bridge Nos. 317, 719 and Kachwa Watershed)	135
	5.6.2 The Sensitivity Analysis of Physiographic Parameters (Bridge Nos. 317, 719 and Kachwa Watershed)	146
	5.6.3 Estimation of Effective Overland Roughnesse (Bridge Nos. 317, 719 and Kachwa Watershed)	s147
	5.6.4 Applicability of Different Computational Schemes (Bridge Nos. 317, 719 and Kachwa Watershed)	148
	5.6.5 Application of KW Theory to the Proposed Distributed Parameters Model (Bridge Nos. 3 719 and Kachwa Watersed)	163 17,
CHAPTER	- VI EXTENSION OF PROPOSED CONCEPTS TO UNGAUGED WATERSHEDS	184
6.1	INTRODUCTION	184
6.2	THE PHYSIOGRAPHIC DATA	185

xi

6	.3 PROPOSED APP	ROACHES	186
6	.4 NOMOGRAM APP	ROACH	190
6.	5 MULTIPIE NON FOR PEAK DIS	LINEAR REGRESSION ANALYSIS CHARGE COMPUTATIONS	• 195
6.	.6 ANALYSIS OF	TIME OF CONCENTRATION	197
6.	7 MULRIPLE NON FOR COMPUTAT	LINEAR REGRESSION ANALYSIS IONS OF TIME OF CONCENTRATION	200
6.	.8 VARIABILITY ITS APPLICAT (TAC) BASED I	IN TIME OF CONCENTRATION AND ION TO TIME-AREA-CONCENTRATION MODELS	207
6.	9 RESPONSES OF	THE TAC MODEL	208
CHAPT	PER - VII CONCLU	USIONS	216
7.	1 DISCUSSION OF	F RESULTS AND CONCLUSIONS	216
7.	2 SCOPE OF FUR	THER WORK	221
7.	3 CONCLUDING R	EMARKS	222
AF	PPENDIX - I CO	OMPUTER PROGRAMS	224
AF	PENDIX - II DA	ATA OF FOUR WATERSHEDS (Bridge Nos. 19, 317, 719 and KACHWA WATERSHED)	258
A	PPENDIX - III DA (1	ATA OF SENSITIVITY ANALYSIS Bridge Nos. 317, 719 AND KACHWA WATER	277 SHED)
RE	FERENCES	I STATE / R w	286
	5.000	2365/85	
	200	and a co	
	NO.	OVE DE TECHNO	
	~	Lamas	
		and the first second	

xii

LIST OF FIGURES

FIGUR NUMBE		PAGE	No.
2.1	The Hydrologic Cycle in Systems Notations		10
2.2	The Concept of System Operation		10
2.3	The Lumped and Distributed Systems		14
2.4	Visualization of Dynamic and Kinematic Waves		19
2.5	The Rising Hydrograph-Variation with k, for F	= 1	28
3.1	Generation of Flow Profile	-	50
3.2	Channel Shapes for KW Channel Routing		55
3.3	Flow Domain Representation Through a Fixed $\Delta x = \Delta t$ Grid	5	58
3.4	Space-Time Discretization for the Computation Schemes I, II and III	al	64
3.5	Lumped Physiographic Models		77
3.6	Distributed Physiographic Models		79
4.1- 4.4	The Index Maps of Bridge Nos. 319, 317, 719 and Kachwa Watershed		91- 94
5.1	Determination of Mean Overland and Channel Slo	opes	98
5.2	Schematic Representation Through a Lumped Mode (Bridge No. 319)	21 1	03
5.3	Sensitivity of Overland and Channel Roughnesse and Slopes w.r.t. Peak Discharges (Bridge No.	s 1 319)	11
5.4	Sensitivity of Overland and Channel Roughnesse and Slopes w.r.t. Time to Peaks (Bridge No. 31	s 1: 9)	12
5.5	Variation of Effective Overland Roughness with Time (Bridge NO. 319)	1 1:	15
5.6	Schematic Representation Through a Distributed Model (Bridge No. 319)	12	24
5.7- 5.11	Comparison of Observed and Computed Direct Runoff Hydrographs (Bridge No. 319)		28-
	Comparison of Observed and Computed Peak Dis and Time to Peaks for 10-Storm Events		
	(Bridge No. 319)	13	33

é

	Schematic Representation Through a Lumped Model:	
5.13	Bridge No. 317	135
5.14	Bridge No. 719	137
5.15	Kachwa Watershed	
5.16	Schematic Representation Through Distributed Model: Bridge No. 317	138
5.17	Bridge No. 719	142
5.18	Kachwa Watershed	143
~	Sensitivity of Overland and Channel Roughnesses and Slopes w.r.t. Peak Discharge :	144
5.19	Bridge No. 317	150
5.20	Bridge No. 719	151
5.21	Kachwa Watershed	152
	Variation of Effective Overland Roughness With Time :	
5.22	Bridge No. 317	156
5.23	Bridge No. 719	
5.24	Kachwa Watershed	157
5	Comparison of Observed and Computed Direct Runoff Hydrographs :	158
5.20	Bridge No. 317 Bridge No. 317	168- 171
5.32	Druge NO. 31/	172-
5.33-	Kachwa Watershed	175
5.35		176- 178
5.36	Comparison of Observed and Computed Peak Discharge of the Three Watersheds (Bridge Nos. 317, 719 and Kachwa)	182
5.37	Comparison of Observed and Computed Time to Peak of the Three Watershed (Bridge Nos. 317, 719 and Kachwa)	183

xiv

6.1	Fortnightly Average Effective Overland Roughness for Monsoonn months (Bridge	187 - 189
	Nos. (a) 319, (b) 317 and (c) 719	
6.2	Nomogram of Peak Discharge (Bridge No. 319) (a) $N = 0.05$, (b) $N = 0.15$ and (c) $N = 0.35$	19 <mark>2-</mark> 194
6.3	Comparison of Observed and Computed Peak Discharges by Using Multiple Regression Equa- tion 6.3	198
6.4	Comparison of Observed and Computed Peak Discharges by Using Multiple Regression Equation 6.4	199
6.5	Relationship of Time of Concentration and Rainfall Excess Intensity as a Function of Effective Overland Roughness (Bridge No. 319)	201
6.6	Comparison of Computed Values of Time of Concentrations Using the Model (Section 3.9.1) and Equations (a) 6.6a, (b) 6.6b and (c) 6.6c	204- 206
6.7	Time-Area-Concentration Approach for Computation of Runoff (Bridge No. 319)	210
6.8	Contributing Inter-isochronal Areas for Selected Rainfall Excess Intensities and (a) N = 0.05, (b) N = 0.15 and (c) N = 0.35 (Bridge No. 319)	211- 213
6.9	Contributing Inter-isochronal Areas for Three N(i.e. N = 0.05, 0.15, 0.35) and Two I(i.e. 10.0, 60.0 mm/hr) (Bridge No. 319)	214
6.10	Comparison of Observed and Computed (BY KW Model and TAC Model) Direct Runoff Hydrographs (Bridge No. 319)	215
	~ unnsv	

1

18 N

xv

LIST OF TABLES

TABLE NUMBE	R DESCRIPTION PA	GE	NO.
2.1	Identification of Surface Hydrologic Problems		9
3.1	The Three First Order Explicit Scheme of KW Equations Under Investigation		63
4.1	General Information and Salient Features of Watershed of Rly. Bridge Nos. 319, 317 and 719		86
4.2	Period of Data Collection and Number of Storm Events for Each Watershed (Bridge Nos. 319, 317 and 719)		87
4.3	Details of Net Area Participating in the Runoff Process (Kachwa Watershed)		89
5.1	The Lumped Physiographic Parameter Values (Bridge No. 319)		104
5.2	Sensitivity of (i) Channel Bed Width, (ii) Channel Side Slope and (iii) Channel Depths (Bridge No. 319, Storm dated: 5.8.1964)		108
5.3	Sensitivity of (i) Channel Slope and (ii) Channe Roughness (Bridge No. 319, Storm dated:5.8.1964)	:1	109
5.4	Sensitivity of (i) Overland Slope and (ii) Overland Roughness (Bridge No. 319, Storm dated: 5.8.1964)		110
5.5	Computed Effective Overland Roughnesses (Bridge No. 319)		114
5.6	Range of Effective Overland Roughnesses During the Four Monsoon Months (July to October) (Bridge No. 319)		116
5.7	Test Runs for Establishing the Range of Time Step (Δt) from Stability and Convergence Point of Views for Computational Schemes (I&II) and III (Bridge No. 319)		120
5.8	Test Runs for Establishing the Range of Overland length step (4x) from Stability and Convergence Poifit of Views for Computational Schemes (I & II) & III. (Bridge No. 319)		121

5.9	Test Runs for Establishing the Range of Channel Length Step (Δx_c) from Stability and Convergence Point of Views for Computational Schemes (I & II) and III (Bridge No. 319)	122
5.10	Computed Physiographic Parameter Values for the Distributed System of Bridge No. 319	125
5.11	Observed and Computed Hydrograph Parameters Using KW Model Scheme (I & II), (Bridge No. 319)	127
5.12	The Lumped Physiographic Parameter Values (Bridge No. 317)	139
5.13	The Lumped Physiographic Parameter Values (Bridge No. 719)	140
5.14	The Lumped Physiographic Parameter Values (Kachwa Watershed)	141
5.15	Computed Physiographic Parameter Values for the Distributed System of Scheme (I&II) (Bridge No. 719)	145
5.16	Three Representative Depths for the Computations of α_k and m_k of Three Watersheds	146
5.17	Computed Effective Overland Roughnesses (Bridge No. 317)	153
5.18	Computed Effective Overland Roughnesses Bridge No. 719)	154
5.19	Computed Effective Overland Roughnesses (Kachwa Watershed)	155
5.20	Range of Effective Overland Roughnesses During the Monsoon Months (July to October), (Bridge No. 317)	159
5.21	Range of Effective Overland Roughnesses During the Monsoon Months (July, August and September), Bridge No. 719)	159
5.22	Test Runs for Establishing the Range of Time Step (At) from Stability and Convergence Point of Views for Computational Schemes (I&II) and III (Bridge Nos. 317, 719 and Kachwa Watershed)	160
5.23	Test Runs for Establishing the Range of Overland length Step (Δ_x) from Stability and Convergence Point of Views for	161

xvii

Computational Schemes (I&II) and III (Bridge Nos. 317, 719 and Kachwa Watershed)

5.24	Test Runs for Establishing the Range of Channel Length Step (Δx) from Stability and Convergence Point of Views for Computational Scheme (I&II) and III. (Bridge Nos. 317, 719 and Kachwa Watershed)	162
5.25	Adopted Schemes and Their Parameters (Δt , Δx and Δx) for the Three Watersheds (Bridge Nos. 317, 719 and Kachwa Watershed)	163
5.26	Computed Physiographic Parameter Values for the Distributed System of Bridge No. 317)	166
5.27	Computed Physiographic Parameter Values for the Distributed System of Kachwa Watershed	167
5.28	Observed and Computed Hydrograph Parameters Using KW Model of Schemes (I&II) (Bridge No. 317)	179
5.29	Observed and Computed Hydrograph Parameters Using KW Model of Scheme (I&II) (Bridge No. 719)	180
5.30	Observed and Computed Hydrograph Parameters Using KW Model of Scheme III (Kachwa Watershed)	181
6.1	Range of Independent Variables Used for Nonlinear Multiple Regression Analysis	197
6.2	Data Used for Regression Analysis for the Time of Concentration	203
50		

xviii

SYMBOL DECRIPTION A Area of the watershed; Channel cross-sectional area. a1, a2, an Constant function Ao area of overland flow element Average of the whole representative area Ā В Channel width Wave celerity C Average representative wave celerity D Hydraulic depth; rainfall excess duration differential operator; rainfall excess depth d f() function of Fr Froude number $= f(F_1, F_2, \dots, F_n) \text{ or } f(F_i)$ Acceleration due to gravity g i Rainfall intensity; Variable grid number along x-direction ie,I Rainfall excess intensity $I(f), I(\tau)$ Input function j Variable grid number along time Κ Constant function; Kinematic wave number L Length of the plane 1 Total length of grid line segment (horizontal and vertical) L length of the overland flow Lk, Lc length of the channel mo Kinematic wave parameter of overland flow

LIST OF SYMBOLS AND ABBEREVIATIONS

-	
^m k	Kinematic wave parameter of channel flow
m	metre
min	minute
Ν	Effective overland roughness
n	Manning roghness
n _c ,n	Manning roughness of channel flow
N _c	Total number of countour intersections
0	Order of
Р	Pressure
Q, Q(t)	Discharge
q	Lateral inflow per unit length
Q _n	Steady uniform discharge
Q.	Dimensionless discharge
q	Average inflow per unit length
Ro	Hydraulic radius
R	Hydraulic radius
So	Bed slope; Overland slope
s _f	Frictional slope
S	Channel bed slope
S	Sensitivity
т	Width of the free surface of a channel \cdot
t	Time instant
t *	Dimensionless time
u	x-component of mean velocity
V	Average velocity of flow
v	x-component of velocity of the lateral inflow; y-component of velocity
W	Z-component of velocity

Х	Body force along x-direction
х	Distance measured in downstream flow direction
x _o	Distance measured in overland flow
x _c	Distance measured in channel flow
Y	Body force along y-direction
y	Mean depth of overland flow
У	Mean depth; component along y direction
У _С	Mean depth of channel flow
Z	Component along z-direction
Z	Body force along z-direction; Channel side slope.
ψ	Function
ν ₁ , ψ ₂	Ψ_n Function
μ	Viscosity
ρ	Mass density
V	Differential Operator of 1st Order
αο	Kinematic wave parameter of overland flow
α _k	Kinematic wave parameter of channel flow
Δh	The contour interval
∆x	Space step
Δt	Time step
9	Partial derivative opereator
θ	The angle between a normal to the contours and the grid .
φ	Infiltration index
φ(t)	Transfer function
ω	Infinity
+	T e nds to

Tends to

xxi

Abbreviations

TAC

Тс

DRH Direct Runoff Hydrograph

FEM Finite Element Method

KW Kinematic Wave

MSL Mean Sea Level

PDE Partial Differential Equation

Time-Area-Concentration

Time of Concentration

CHAPTER - I

INTRODUCTION : Objective & Scope

Water is one of the most important natural resources vitally needed for sustenance of life. The use of water is continuously increasing with the increase in population. This increased demand for water has forced the planners, scientists and hydrologists not only to concentrate on major 'basin planning' but also to pay sufficient attention to small watersheds. The watershed planning may help in micro-level water budgeting to meet the localised demands of water for small population concentrations scattered over the entire basin. In India, in majority cases, each village has its own pond (or tank) from which the water is drawn for domestic and other needs. These ponds have their own watersheds from which the rain water is fed to them. Prior to onset of monsoon, after the sustained dry period, most of the ponds either get dried up or are left with insignificant quantities of water. The fine silt or clay which gets accumulated at the bottom of the tank is removed by the local people for plastering of huts, and other general repairs of the houses. Thus, the lost capacity of the pond, due to accumulation of silt, is recouped. Though it may appear quite insignificant, yet the role of small watersheds is very important in most of the developing tropical countries in general and in the Indian subcontinent in particular. The micro-climatic influences onto the small watersheds is of particular significance. Response of a watershed to small, medium, heavy and very heavy rainfall leading to near cloud burst conditions is of importance not only for meeting the water demands but also for the protection of life and property. In hilly and mountainous catchments the situations may get worse. Heavy intensity rains and resulting runoffs may cause flash floods and landslides and thus disrupt the communication lines of vital importance. These disruptions may result into major economic problems as one region gets completely cutoff from the rest of the country.

To find suitable solutions to these problems, it is necessary that the micro-level in-depth studies be carried out for computations of watershed responses to vastly varying meteorologic conditions (i.e. from mild intensity rains to the cloud burst conditions). There are different types of watershed models which have been developed in the past to estimate the peak flows and runoff hydrographs for small watersheds. With the advent of powerful high speed digital computers, it is now possible to study through mathematical models the basic physical processes viz. transformation of rain into the runoff and also the movement of water on the surface as well as in channels. These models rely on mathematical statements to represent the system.

In a small watershed, the generation of runoff can better be studied through the 'overland phase' and 'channel phase'. The conversion of rainfall excess into surface runoff and then the movement of flood flows in the channel is recognised as a nonlinear process. These days, this process is generally modelled through two approaches, viz. the hydrodynamic approaches and the system's approach. For small watersheds, the hydrodynamic approaches have been found more useful for the transfor-

mation of rainfall excess into the surface runff (viz. in the overland phase) and the movement of flood flows in the channel (viz. in the channel phase).

Various determistic approaches developed and used by the researchers in the past have been reviewed in this work. It has been found that hydrodynamic approaches have got the specific advantage that these can take care of the geo-physical conditions and are expectedly better suited for the prevailing tropical conditions of South-Asian region. These approaches have popularly been studied through the 'Kinematic Wave (KW) Theory' (Lighthill and Whitham, 1955), and the 'Dynamic Wave theory'. In small watersheds, surface runoffs are dominated by the overland flows and the KW models have been found to give good results. Therefore, for this study the KW models have been used to analyse the problems of small watersheds. The KW models and some of their applications have been discussed in details (Chapter - II).

The kinematic wave models have been preferred because these mathematical models use the simpler form of St. Venant wave models (or dynamic wave models). In KW models local and convective accelerations are neglected and the water surface slope is taken nearly equal to channel bed slope. These models are mathematical as well as deterministic in nature. These can be used to account for lumped, distributed and time-varient aspects. These models are much simpler and can easily be incorporated into a watershed geometry. Further, these models can be coupled with other process models to investigate the effects of land use changes, temporal and spatial variations in rainfall

as well as in watershed conditions, and pollutant washoffs. The KW models perform better as these are based on the physics of the runoff process (Stephension and Meadows, 1986). Most significantly, these models do account for the nonlinearity of the process without unduly complicating the solution procedures which otherwise became unmanageable. Further, for both the components i.e. the overland and the channel flow routing, the KW models have been found to be accurate and efficient (Overton and Meadows, 1976). By using KW models, it is possible to find out velocities of flows and thus the corresponding discharges at different stages of the overland as well as channel flows. Further, compared to other mathematical models, the data requirements for the KW models is quite moderate and thus this can be calibrated with limited data.

Keeping in mind the above advantages, KW models have been used in the present work to analyse the problems of small watersheds identified by the Ministry of Railways, Government of India and Central Soil Salinity Research Institute (CSSRI), Karnal, India. Thus, the present work has been undertaken to explore the possibility of application of KW theory to two distinct categories of typical problem ridden watersheds. One category belongs to small hilly natural watersheds and the other of a flat alkaline agricultural watershed under going reclamation.

The three fully off-centred first order explicit finite difference schemes have been employed for the solutions of the KW equations. Details of these schemes have been discussed (Chapter - III).

The objectives of the present work may thus be summarised as below :

(a) To develop suitable mathematical models based on KW theory, best suited to the typical problems of some small watersheds (i.e. natural high sloped watersheds and agricultural watershed under going reclamation).

(b) To confirm the applicability of finite difference schemes which are most suitable for the two types of watersheds under study.

(c) To carry out the sensitivity analysis for the physiographic parameters of overland as well as channel flow elements and to identify the parameters which are most sensitive. Further, to find out the role of effective overland roughnesses in the context of natural high sloped watersheds.

(d) To explore the effects of inputs on time of concentrations and their influences on 'time-area-concentration' (TAC) based models.

A close look of KW model applications reveals that the KW theory has successfully been applied for the rainfall-runoff relationships of small and medium sized natural and urban watersheds having moderate slopes with more-or-less uniform physiographic conditions. In the context of the watersheds of tropical countries, the physiographic characteristics (viz. the roughness) undergo appreciable changes during the wet monsoon months.

Thus, the present work has been undertaken to see the applicability of the KW theory onto mountainous as well as nearly flat watersheds in tropical conditions. These investigations will, therefore, enable the hydrologists to apply this tool for solving the complex rainfall-runoff relationships of small watersheds.

The subject matter of the present study is arranged in the following seven chapters.

In the current chapter entitled INTRODUCTION, the problem is introduced, the objectives and scope of the present work are also outlined.

The Chapter II entitled **REVIEW OF LITERATURE**, deals with terminologies, concepts, previous studies of KW models by the researchers and their applications, the basic equations of KW models and various finite difference methods (which are used in KW equations) are discussed in details.

The Chapter III is named as "MODEL DEVELOPMENT". Here KW theory has been discussed. Solution of KW equations through fully off-centred finite difference schemes adopted for this study are described in details.

The Chapter IV entitled WATERSHEDS UNDER STUDY AND AVAIL-ABILITY OF DATA, deals the description of the four small watersheds with respect to their locations, areas, soil types, topography etc. for the rainfalls and corresponding runoffs.

The Chapter V on "MODEL APPLICATION TO GAUGED SMALL WATER-SHEDS" presents the details of application of the KW models to four small gauged natural watersheds. In all thirtyone storm events, whose data were available have been used.

The Chapter VI on **EXTENSION OF PROPOSED CONCEPTS TO UNGAUGED WATERSHED**, is devoted for extension of the proposed concepts to ungauged watersheds. The concept of variable time of concentration (T_c) has been investigated and its application is made through time-area-concentration (TAC) based model.

Finally, the Chapter VII is devoted to "CONCLUSIONS". In this chapter a summary of results is also presented along with the conclusions and suggestions for future development and extension of this work.

CHAPTER - II

REVIEW OF LITERATURE

2.1 INTRODUCTION

The previous chapter, a brief description of the statement of the problem, its scope and the objectives were presented. In this chapter, the concepts, terminologies, kinematic waves vs. dynamic waves, basic equations of kinematic wave models and their applications, different types of solution techniques which are used in the kinematic wave equations, review of some kinematic hydrologic model developments will be introduced.

2.2 THE HYDROLOGIC SYSTEM

"The word hydrology is derived from the Greek words hydro, meaning water, and logos, meaning science. In this broad sense hydrology is concerned with all water on the earth, its occurrence, distribution and circulation, its physical and chemical properties, its effects on the environment and on life of all forms" (Raudkivi, 1979).

The hydrologic cycle is a simple link to the general circulation of water from the oceans or seas to the atmosphere, to the ground, and back to the oceans or seas. It can be summarized graphically as shown in figure 2.1.

A hydrologic system "is a set of physical, chemical and/or biological processes acting upon an input variable or variables, to convert it (them) into an output variable (or variables)" (Clarke, 1973). In the natural process, generally the input function is the hyetograph and the transfer (or system) function is a function of representative catchment action on the hyetograph. The response or output function is the runoff hydrograph which are observed at the outlet as shown in figure 2.2.

According to Dooge (1973), hydrologic problems are treated through system approach. He had identified the problems under two main categories. These are : (i) hydrologic analysis, and (ii) hydrologic synthesis. The hydrologic analysis is again classified as three types, identification, forecasting and detection. The various categories of hydrologic problems so formed are given in Table 2.1.

TABLE 2.1 : Identification of Surface Hydrologic Problems (After Dooge, 1973).

Тур	e of Problem i	in Sur	face Hydrology	Input (Hyeto- graph) I(t)	System Function Ø(t)	Response (DRH) Q(t)
Α.	Surface Hydrologic Analysis	(1)	Identification Problem	V	?	V
	Problems	(2)	Forecasting Problem	V	V	?
	~	(3)	Detection Problem	?	V	~
В.	System Synthesis (Simulation)			\checkmark	?	V

It is clear (Figure 2.2) that the system function (or transfer function) describes the nature of the system and the physical laws governing its operation.

FIG. 2.1 THE HYDROLOGIC CYCLE IN SYSTEMS NOTATIONS (AFTER HALL, 1984 (MODIFIED FROM DOOGE, 1973))

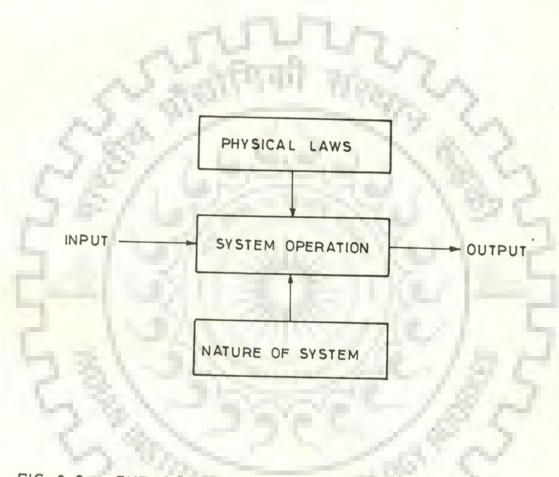


FIG. 2.2 THE CONCEPT OF SYSTEM OPER ATION (AFTER DOOGE 1973)

2.3 NATURE OF HYDROLOGIC SYSTEM

The nature of the hydrologic system is completely defined, through one property each, mentioned in the following three sets of possible system behaviours.

- (1) Linear or nonlinear
- (2) Lumped or distributed
- (3) Time-invariant or time-variant

A brief description of these three characteristics is given in the following subsections.

2.3.1 The Linear and Nonlinear Systems

A hydrologic system is said to be linear, if a step input fed to the system produces an output which is directly proportional to the input. A linear system may be represented mathematically by a linear equation. The principle of superposition applies to it may be defined mathematically as under :

$$f(\psi_{1})_{t} + f(\psi_{2})_{t} + \dots + f(\psi_{n})_{t} = f(\psi_{1} + \psi_{2} + \dots + \psi_{n})_{t} \qquad \dots \qquad (2.1)$$

Where ψ is any response function and t is the time of its applicability.

The principle of homogeneity which is a particular case of principle of superposition, thus may be described as below

$$Kf(\psi)_{t} = f(K\psi)_{t}$$
 ... (2.2)

where K is a constant function.

A nonlinear system is represented by a nonlinear function. The extent of nonlinearity depends upon the system itself.

The hydrologic system may be defined by a general type of differential equation and can be written as follows :

$$f(\psi) = a_n \frac{d^n \psi}{dt^n} + a_{n-1} \frac{d^{n-1} \psi}{dt^{n-1}} + \dots + a_1 \frac{d\psi}{dt} + a_0 \psi \dots (2.3)$$

2.3.2 The Lumped and Distributed Systems

The hydrologic system is said to be lumped if its input functions or parameters do not vary with respect to spatial coordinates (Figure 2.3(a)). For the lumped systems average conditions or values of input and parameters are applicable. Thus, lumped systems are represented by ordinary differential equations.

The system is defined as distributed if the input or the transfer function and other parameters do vary with the spatial coordinates (Figure 2.3(b)). Such systems are mathematically represented by the partial differential equations. The theoretical solution of such systems (a differential equation) thus requires complete knowledge of the boundary conditions.

2.3.3 Time-Invariant and Time-Variant Systems

A time-variant system is one in which the input-output

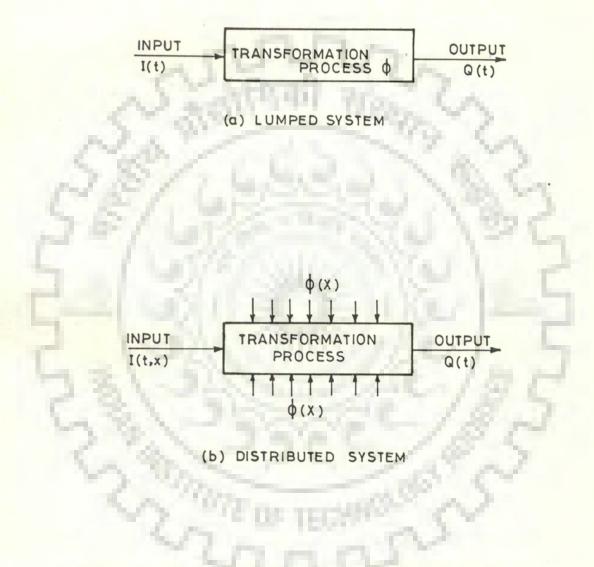


FIG. 2. 3 THE LUMPED AND DISTRIBUTED SYSTEMS

relationship is not dependent upon the time at which the input is applied to the system. The concept of time-invarianting makes the analysis simpler.

A time-variant system is one in which the input-output relationship is a dependent function of time. It may be concluded that a lumped, linear and time-invariant system is easiest to work with. But in surface hydrology, the hydrologic system, happens to be distributed, nonlinear and time-variant in its behaviour. This behaviour of the system is the most complex one and quite difficult not only to formulate mathematically but also to solve. Therefore, a compromise has to be reached so that the complicated natural hydrologic system may be solved satisfactorily by making suitable assumptions with respect to the aspects stated above.

2.4 PRESENT TRENDS IN HYDROLOGIC STUDIES

In a broad sense, the hydrologic studies can be described through the following two approaches :

(i) deterministic approaches, and (ii) stochastic approaches. If all variables and parameters are considered free from random variations the approaches are referred to as deterministic approaches (Clarke, 1973). On the other hand, if random variables are taken care of, in terms of their distributions as well as their probabilities of occurrences, the approaches are defined as stochastic. Since the present study deals with the deterministic aspects, therefore, in the following section emphasis is given on the basic concepts and other relating approaches dealing with deterministic aspect only.

2.4.1 Conceptual Models and Mathematical Models

"A model is a simplified representation of a complex system. It simulates some but not all the characteristics of the system" (Singh, 1988).

Conceptual models rely heavily on theory to interpret phenomena rather than to represent the physical process. These models have been evolved in surface hydrology which simulate the catchment behaviour through conceptual element e.g. linear reservoirs, nonlinear reservoirs, linear channels and also through their combinations. Some of the conceptual models which are found more useful for application to small watersheds are :

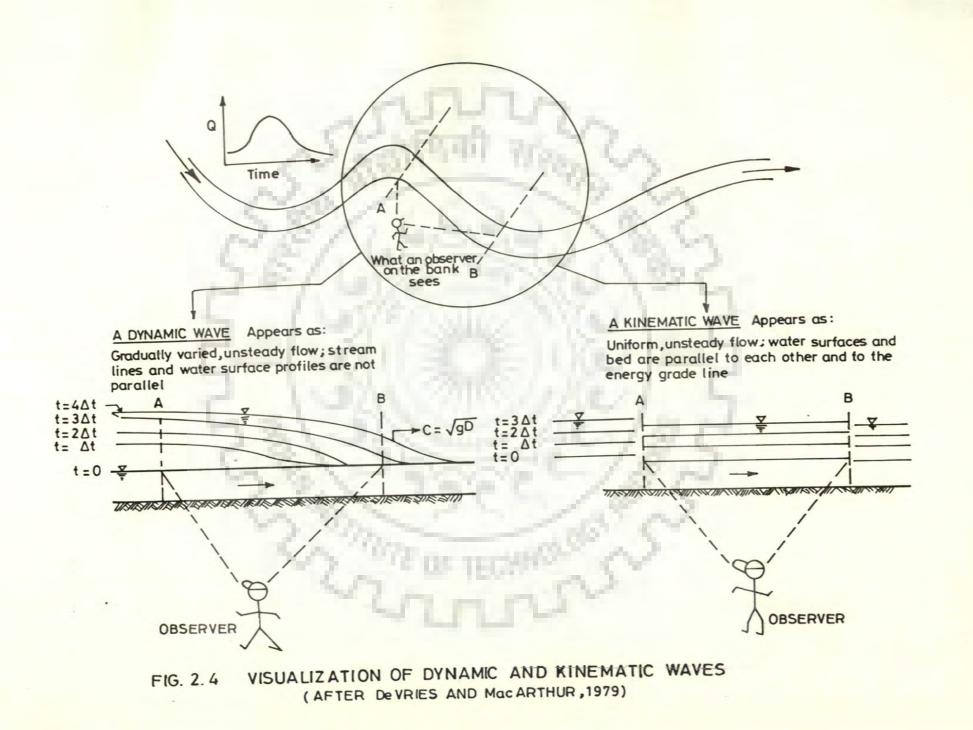
Clark Model (1945); Nash Models (1957, 1960); Singh Model (1962); Dooge Model (1959); Mathur Model (1972); Pedersen et al. Model (1980) etc.

Most of the conceptual models are directly or indirectly related to the theories of 'Unit Hydrograph' and 'Instantaneous Unit Hydrograph'.

"A mathematical model is a simplified representation of a complex system in which the behaviour of the system is represented by a set of equations, perhaps together with logical statements, expressing relations between variables and parameters" (Clarke, 1973).

Complex watershed problems may be analysed by using a suitable mathematical technique known as "Mathematical model". The model adopted may be much simpler than the actual system. Such a mathematical model rely on mathematical statements to represent the system. These models are generally more useful in hydrologic studies when compared with physical models. The relationship between watershed response and its parameters can be studied suitably with the help of mathematical models. It is quite difficult to draw a clear line between the conceptual and mathematical models. It has rightly been stated that "any mathematical model formulated to represent a process or phenomenon will be conceptual to some extent and the reliability of the model will be based upon the extent to which it can be or has been verified" (Overton and Meadows, 1976).

A mathematical model is generally developed through a four step process. These steps are : (i) an examination of the physial problem, (2) replacement of the physical problem by an equivalent mathematical problem, (3) solution of the mathematical problem with the accepted techniques of mathematics, and (4) interpreting the mathematical results in terms of the physical problem (Freeze, 1978; Haberman, 1977). Dynamic models and their simplified forms of kinematic models are the examples of this category. Since the present study is devoted to kinematic wave models, therefore, the literature relating to the development of kinematic wave model and its application to the hydrologic problem are reviewed in more details in the following section.


2.5 KINEMATIC WAVES Vs. DYNAMIC WAVES

Kinematics is defined as the study of motion without the influences of mass and force, whereas, dynamics is defined as

the study of motion, in which these influences (mass and force) are included. Initially both kinds of waves phenomena are present in flood waves i.e. the dynamic waves as well as the kinematic waves (KW). But certain characteristics of a watershed can make kinematic waves a dominant characteristic of that flood event (DeVries and MacArthur, 1979).

Generally dynamic waves characterise the movement of long waves in shallow water, like a large flood wave in a wide river when inertial and pressure forces are important. However, if the inertia and pressure forces are not so important, kinematic waves govern the flows. Therefore, in case of KW, the force in the direction of the channel axis due to the weight of the fluid flowing down owing to gravity, is approximately balanced by the resistive forces of channel bed friction. The friction force is representatively taken care of by the Manning's roughness equation in most cases. In such cases, kinematic flows do not change significantly and the flow remains approximately uniform along the channel. To an observer on the bank of the river, no visible surface wave will be noticeable and the passage of the flood wave will be seen as an apparently uniform rise and fall on the water surface elevation over a relatively long period of time (Figure 2.4). So, kinematic flows are also sometimes called as uniform unsteady flows (DeVries et al. 1979).

Dynamic waves normally have much higher velocities and attenuate quickly than kinematic waves. Therefore, flood wave travel can better be defined through KW phenomenon rather than dynamic wave concept.

In a shallow open channel, the speed of small gravity waves (or wave speed) is often called as wave celerity and is denoted by G. The value of G is equal to \sqrt{gD} (i.e. $C = \sqrt{gD}$) where D is the hydraulic depth and equals to A/T; A being the cross-sectional area and T is the width of the free surface of a channel (Chow, 1959). In the case of overland flow, the hydraulic depth D is represented by mean depth y_o.

Dominance of kinematic or dynamic wave is to be ascertained through the Froude's number. The Froude number (F_r) is defined as the ratio of the fluid speed (the mean cross-sectional velocity) to the wave celerity. Therefore, it also represents the ratio of inertial forces to gravity forces (i.e. $F_r = V/\sqrt{gD}$), where V is the mean velocity.

From the analysis, Lighthill and Whitham (1955) found that when the average velocity of flow V is greater than twice the speed of the wave relative to the water, depth of flow will continue to increase and a surge or bore will be developed. It is further shown that when Froude number is 2, kinematic waves dominate over dynamic waves. However found, for $F_r < 2$ the dynamic waves are damped.

Generally, the kinematic wave approximation would be good when $F_r > 1$ (supercritical) because the waves could not move upstream (since $V > \sqrt{gy}_0$ or \sqrt{gD}). Therefore, kinematic waves ultimately prevail the flow characteristics occurring for overland flows and small watershed channel flow when $F_r \leq 2$.

Thus KW theory is one of the most important methods for

estimating stormwater runoff rates and their volumes. Though it is a simplified form of dynamic wave approach, yet it has proved itself to be an efficient method for simulating stormwater runoffs from small watersheds (Overton and Meadows, 1976).

Formulation of KW equations, assumptions involved in this theory, its applicability alongwith their solution techniques, all are discussed in the following sections.

2.6 KINEMATIC WAVE EQUATIONS FROM ST. VENANT EQUATIONS

The equation of continuity and the equation of momentum for gradually varied, unsteady, one dimensional, incomperssible flows were developed by Franch mathematician De Saint Venant in 1271 (Rovey et al., 1977). These two equations are quasilinear, hyperbolic, partial differential equations. In its one dimensional form, these equations describe the changes in stream flow in the vertical and in the longitudinal directions.

The St. Venant equations characterising the dynamic flow can be written as :

Continuity:
$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q + (i - \emptyset) \dots$$
 (2.4)

Momentum : $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial y_0}{\partial x} = g(S_0 - S_f) - q \frac{u - v}{A}$ (2.5)

where :

A = Cross-sectional area of flow; Q = Discharge of the channel; g = Acceleration due to gravity; y = Mean depth; x = Distance measured in downstream flow direction;

t = Time (seconds);

q = Lateral inflow rate;

u = X-component of mean velocity;

i = Rainfall intensity;

 \emptyset = infiltration rate;

S = Average bottom slope;

 S_{f} = Frictional slope defined by the Manning's equation

and v = X-component of velocity for lateral inflow (assumed that v is negligible to the total momentum balance for channel routing and equal to zero).

In the continuity equations (2.4) the terms are respectively known as :

 $\frac{\partial A}{\partial t}$ = Rate of rise term;

 $\frac{\partial Q}{\partial x}$ = Storage term;

q = Lateral inflow rate and

 $(i-\emptyset)$ = Intensity of excess rainfall.

In the momentum equation (2.5) various terms are successively known as :

 $\frac{\partial u}{\partial t} = \text{Acceleration term};$ $\frac{\partial u}{\partial x} = \text{Velocity head term};$ $\frac{\partial y}{\partial x} = \text{Depth taper term};$

 $S_0 - S_f$ = Bed slope minus friction term and

 $q \frac{(u-v)}{A}$

Lateral inflow term (This term is very small with respect to other terms and therefore neglected).

The equation (2.5) may be rewritten in the following form for a ready reference to the various types of wave models that are recognized.

Term ΙV Equation of du motion dt (2.6)Local Convec-Depth (Friction -Bed accetive slope slope slope leraacceletion ration Wave model and terms used to describe it are : Kinematic wave only term IV = 0 (1)(2) Diffusion wave III + IV = 0Steady dynamic wave II+III+IV=0 (3) (4) Dynamic wave I+II+III + IV=0 (2.7)(5) Gravity wave I + II + III = 0

and other terms are neglected.

By making suitable assumptions the KW equations can be deduced from the dynamic form of equations (Equations 2.4 and 2.5) given by St. Venant and these can be applied to channel flows.

2.6.1 General Assumptions and Kinematic Wave Equations

In order to apply the St. Venant equations to channel flows, the following general assumptions are needed.

- (1) Flow is primarily one dimensional. It is considered in the longitudinal direction of flow. Therefore, the depth and the velocity variations are considered only in the longitudinal direction. Flow characteristics in the direction perpendicular to the direction of flow are, therefore, neglected.
- (2) The velocity distribution is considered constant and the water surface is horizontal across any section perpendicular to the longitudinal flow axis.
- (3) The water surface profile varies gradually with hydrostatic pressure prevailing at all points in the flow such that all vertical accelerations within the water column can be neglected.
- (4) Resistance to flow can be approximated by steadyflow formulae such as the Manning's equation.
- (5) Momentum transferred to the fluid flow from lateral inflows is negligible.
- (6) The longitudinal axis of the flow channel can be approximated by a straight line, therefore, no lateral secondary circulations occur.
- (7) The channel boundaries may be treated as fixed noneroding and non-aggrading, and
- (8) The flow is incompressible and homogeneous in nature.

In most cases of overland and channel flows, the terms pertaining to the changes in momentum and acceleration can be neglected. In fact, this amounts to assuming that the energy line is parallel to the bed of channel. That is $S_f = S_o$. Thus the resulting simplified (in Equation 2.5) equations are the 'Kinematic Equations' and these characterise the unsteady uniform flow conditions. The equations for friction gradient can be written in the form as the area of flow A, and discharge Q, as:

$$Q = \alpha A^{\rm m} \qquad (2.8)$$

where α and m are kinematic wave routing parameters which are directly related to the watershed and flow characteristics.

Equations (2.4) and (2.8) together are known as the kinematic wave equations.

2.7 APPLICABILITY OF KINEMATIC WAVE APPROXIMATIONS

The applicability of kinematic wave approximations under different conditions is to be discussed in this section. By using Henderson's (1966) approach the momentum equation (2.5) can be normalized for a steady uniform discharge Q_n . The normalized form of the equation may be written as :

$$Q = Q_n \left[1 - \frac{1}{s_0} \left(\frac{dy_0}{\partial x} + \frac{u}{g}\frac{\partial u}{\partial x} + \frac{1}{g}\frac{\partial u}{\partial t} + \frac{qu}{gA}\right)\right]^{1/2}$$
(2.9)

If the sum of the terms to the right of the minus sign is much less than one (i.e. inertia, local inflow, and pressure terms are relatively small compared to S_0), then :

 $Q \approx Q_n$

This suggests that unsteady flows may be approximated by a uniform flow formula e.g. Manning's equation which is generally used for turbulent flows, can also be used in this case.

In the kinematic wave approximation, the discharge (or flow rate) is expressed as a unique function of depth of flow. This suggests that the normal flows of the nature may be described by a unique depth-discharge relationship (Overton and Meadows, 1976; DeVries et al., 1979; Stephension et al., 1986) which provides a simple tool for calculating flows from stormwater runoffs. Ponce et al. (1978) proposed that most of the overland flow problems can be modelled through kinematic flows. For this purpose the use of a linear stability analysis of the St. Venant equations to examine the applicability of the kinematic and diffusion models in open channel flows was suggested.

The characteristics of rising hydrographs for a large variety of flow conditions have been studied by Woolhiser and Liggett (1967). They found that the dynamic components in equation (2.5) will be damped enough to be neglected if dimensionless kinematic flow number (K) is greater than 10. The dimensionless kinematic flow number (K) is defined as

$$K = \frac{S_{O}L}{y_{O}F_{P}^{2}}$$
 ... (2.11)

and $F_r = V / \sqrt{gy_0}$... (2.12)

where V is the mean flow velocity (= Q/A), F_r is Froude's number and L is the length.

26

(2.10)

The parameter K is now frequently used to test the applicability of kinematic wave equations to the overland flow modelling. The kinematic wave approximation gives very good results if K > 20, reasonable if K > 10, and poor if K < 10. It was also concluded that the kinematic wave approximation may be used instead of the full St. Venant (dynamic wave) equations if K > 20 and $F_{p,2}$ 0.5. Overton and Meadows (1976) recommended that kinematic wave approximation may be used only for K > 10, regardless of the Froude number value. Morris and Woolhiser (1980) re-evaluated and concluded that for the low values of Froude number the kinematic wave approximation can be used if $F_p^2 K \ge 5$. This conclusion is compatible with the condition K>20 for $F_r > 0.5$ given by Woolhiser and Liggett (1967). Later on, Vieira (1983) made a general conclusion that the kinematic wave solution is a good approximation for St. Venant equation if K > 50 regardless the Froude number value.

Results published by Woolhiser and Ligget (1967) are reproduced in figure 2.5. Here t_* is dimensionless time (= tv/L) and the dimensionless discharge Q_* equals qL/Vg. It is also reported that the maximum error in the outflow hydrograph for K = 10 is of the order of 10 per cent and it decreases rapidly as K increases. The kinematic wave solution and the general solution are found to coincide as $K \rightarrow \infty$.

Concludingly, it may be remarked that for surface hydrologic estimates the kinematic wave approximations can be used with advantage for K > 10 (DeVries et al. 1979). Some of the solution techniques for solving the kinematic wave equations are discussed in the following sections.

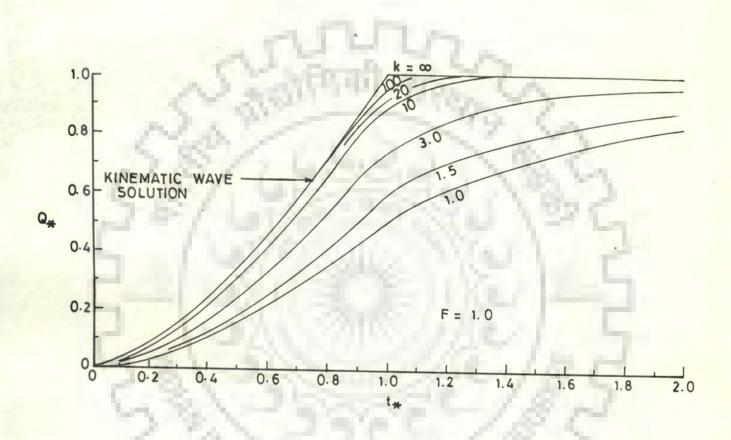


FIG. 2. 5 THE RISING HYDROGRAPH - VARIATION WITH k, FOR F=1 (AFTER LIGGETT AND WOOLHISER, 1967)

2.8 MATHEMATICAL TECHNIQUES FOR THE SOLUTION OF KINEMATIC WAVE EQUATIONS

In general, many techniques are now available for solving the kinematic wave equations. These may be classified as :

(1) Analytical solution techniques (simplified form), and

(2) Numerical solution techniques.

A brief discussion of these techniques is presented in the following sections.

2.8.1 Analytical Solution Techniques

Analytical methods of solving partial differential equations are usually restricted to linear cases with simple geometric and boundary conditions. By these methods the solution of St. Venant equations and Kinematic wave equations have been obtained only for some simplified cases. Graphical solutions are in vogue since a long time. During the last two decades, the development of modern digital computers has opened new horizons and has given rise to the sophisticated numerical techniques.

A number of researchers have developed exact as well as approximate analytical solutions for the kinematic flow approximations to compare the runoff from planes of different types and forms (Wooding, 1965(a); Parlange et al., 1981; Rose et al., 1983; Campbell et al., 1984; Moore, 1985; Moore et al., 1987).

However, numerical techniques are more rational when compared to the exact and approximate analytical solutions. The techniques enable researchers to incorporate more parameters if accuracy of solution so demands.

2.8.2 Numerical Solution Techniques

Availability of powerful digital computers has enabled the researchers to seek the solutions of complicated partial differential equations (linear or nonlinear) for different boundary conditions which may be applicable. Methodology used is termed as "Numerical Methods". These are the algorithms that use only arithmatic operations and also certain logical operations such as algebraic comparison.

Thus the formulation of a well posed numerical model requires both the derivation of a set of difference equations based on the mathematical model and a demonstration of an adequacy of these difference equations. The latter involves an analysis of the consistency, convergency and stability of the numerical model (Noye, 1982) which are discussed in the current section.

The definition of consistency, convergency and stability are presented here as under :

TEISING

Consistency :

The difference equations and auxiliary conditions of the numerical model must be consistent with the differential equations and initial and boundary conditions of the mathematical model. The numerical model is said to be consistent, if the truncation error, that is, the discrepancy (difference) between the finite difference approximations and the continuous derivatives, tends to zero, as the grid spacings get smaller and smaller. The term truncation error refers to the error which is introduced in approximating the solution of a mathematical problem by a numerical method.

Convergence :

The solution to the finite difference equation must be convergent to the solution of the differential equation as the grid spacings get smaller and smaller or tend to attain zero values. That is, the difference between the exact solutions of the numerical and mathematical models should vanish as the grid spacings tends to zero. In defining convergence a term 'discr2tization error' is often used. The discretization error refers to the departure of the finite difference approximation from the solution of 'Partial Differential Equation' (PDE) at any grid point. There are two important concepts closely associated with the convergence of a particular fimite difference procedure, namely, consistency and stability. Consistency is a necessary condition for convergence.

Stability :

This is the third important feature to which a finite difference method of solving a PDE must satisfy. In a repetitive solution step by step the stability pefers to the growth (or decay) of errors produced in the finite difference solution by the errors of the previous steps.

OF TECHNOLOG

Round-off error :

Computers can solve only a finite number of digits to represent each number at each step of a calculation. Hence round-off errors are incorporated. The computation is stable if the growth of these errors are within reasonable limits or controlled.

A numerical model with consistent equations, convergent solutions and stable error propagation forms a computationally stable scheme and gives results which are quite close to the exact solution.

In principle, the method of finite differences can be applied on to nonlinear mathematical models, but consistency, stability and convergence are more difficult to prove (Noye, 1982).

There are a large number of numerical techniques for solving St. Venant and kinematic wave equations. Each one of these has its own specific advantages in terms of convergence, stability, consistency accuracy and efficiency. These techniques can be classified as under :

- (1) Characteristics methods
- (2) Finite differences methods
 - (a) Explicit methods
 - (b) Implicit methods
- (3) Finite element methods

A brief description of these methods is given in the following sections.

2.8.2.1 Characteristics methods

In the method of characteristics the two simultaneous partial differential equations (e.g. continuity and momentum) are replaced by four ordinary differential equations. This approach was known to hydrologists for quite sometime. The graphical solutions of method of characteristics were in use much before computer era began. Now, the characteristics equations are solved numerically through digital computers. In this method the flow characteristics through a set of 'Characteristics Curves' and the solution is sought along another 'Characteristic Curves'.

The characteristics method is considered to be a standard with which the other methods are compared or judged. This method is stable and accurate. Accuracy is checked through conservation of mass at different times and comparing the solutions with different point spacing (Liggett et al., 1967).

Recently more elaborate methods of characteristics have been developed. Four-point method of characteristics has been developed by Abbott and Verway (1970) which is a powerful tool.

2.8.2.2 Finite difference methods

The finite difference methods can be used to solve the complicated mathematical models which may consist of partial differential equations. The solutions may use either an explicit or an implicit finite difference schemes. Both the schemes, have been used in solving the stream flow routing equations. These schemes may have their own limitations with respect to the stability for the allowable size of the grid spacing. Some of the basic features of the two schemes are described in the followng sections.

2.8. 2.2.1 Explicit finite difference methods

The term explicit refers to those difference methods that advance the solution point by point from one time line to the next. This method utilizes initial values and upstream boundary information and seeks the solution for the remaining grid points one at a time. This way, the solution proceed is sought for all the points until the entire solution domain is solved. To ensure stability, the step sizes At(time) and Ax (space) must satisfy the Courant condition

 $\Delta t \leq \Delta x$ throughout the computation space.

This puts a limitation on the size of the time step At. The methodology continues to be as popular in the present day as it used to be in the past.

Explicit finite difference schemes are widely used for the solution of the one-dimensional St. Venant equation as well as for solving the kinematic wave equations. Some of the popular schemes used under this technique are named below

(a)	Unstable method	(c) Leap-frog method
(b)	Diffusing method	(d) Lax Wendroff method

and (e) Fully off-centered schemes

Explicit finite difference schemes are simple to apply. By using a fixed regular grid and it is easier to follow the variation of the flow properties along the overland as well as channel flows. These methods are found to be accurate as well as economical when used properly. Kibler and Woolhiser (1970) found that for the study of overland flows explicit finite difference scheme with second order accuracy, happen to be the most satisfactory one. Applications some of the above mentioned schemes was reviewed by Liggett and Woolhiser (1967). Constantinides (1982) employed various schemes for solving the one dimensional KW equations in order to suggest the suitability under the prevailing conditions. He found that backward-central explicit finite difference scheme yielded extremely accurate results. Singh (1979) reported that a single step, second order, explicit Lax-Wendroff scheme was more convenient and efficient. He also established the superiority for solving KW equations of this scheme over the other explicit schemes in general.

Fully off-centered schemes for solving the kinematic wave equations were also developed and used (Li et al., 1975; Huang, 1978; DeVries et al., 1979; HEC-1, 1981 and 1985; Ponce, 1986). These gave very satisfactory results. The detailed study of stability and convergence of these schemes have been reported by Ponce et al. (1979). These schemes are easy to understand, efficient and easy to apply to the rural as well as urban hydrologic problems.

2.8.2.2.2 Implicit finite difference methods

Implicit finite differene methods utilize initial value and the upper and the lower boundary information for giving

a solution to the unknown grid points at the next time level simultaneously. In this method, the resulting algebraic equations are generally non-linear and the dependent variables occur implicitly.

In general, implicit finite difference methods are unconditionally stable. This implies computational stability for any size of the increments in time Δt and space Δx .

The main advantage of this methodology is that the ratio of space to the time interval, $\Delta x / \Delta t$ is not governed by any stability criteria. However, the size of Δt and Δx are still governed by the accuracy desired. The use of very large values of Δx and Δt have led to poor results because of involvement of unacceptably large truncation errors.

Among the various implicit schemes reported in Piterature, the four point scheme proposed by Strelkoff (1970) and Amien et al., (1970, 1975) is the most popular. Also a six point implicit scheme was suggested by Liggett and Woolhiser (1967) and Abbott et al. (1967).

Explicit and implicit schemes have been used by Wylie (1970) for unsteady free-surface flow computations. Brakensick (1967a) applied three types of finite difference schemes for solving the kinematic wave equations describing the flood wave travel. It was concluded that a four point implicit scheme having centre on the two upper points, gave the most satisfactory results.

2.8.3 Finite Element Method (FEM)

The finite element method is a recent approach being applied to solve the partial differential equations that govern hydraulic processes. In the finite element method, the system is divided into a number of elements and the partial differential equations describing the phenomenon are integrated at the nodal points of the elements.

For solving the St. Venant and Kinematic wave equations only a few researchers have used the FEM. The finite element methodology is quite regorous and tidious method. Cooley et al. (1976), King (1977), and Stephension et al. (1986) has used this technique for flood routing in channels and natural streams.

Various researchers have use the technology of the KW theory for surface hydrologic computations of watersheds. A brief literature review of the various models developed on this line is presented in the following section .

2.9 REVIEW OF KINEMATIC HYDROLOGIC MODEL DEVELOPMENTS

In the previous sections the KW theory and the various techniques for solving the KW equations alongwith their implications (i.e. stability, convergence etc.) have been discussed. In order to review the research carried out on these lines, a detailed survey of literature is presented in this section.

Very good bibliography of work on flood routing with references upto 1960 is available (Yev jevich, 1960). The researches having their direct relevance to prsent work will be reviweed in this section. Various investigators have studied the one dimensional gradually varied unsteady flows. The solutions so obtained reveal that the proposed simplifications of complete momentum equation and the continuity equation are quite accurate. Keulegan (1945) is one of the pioneer researchers who applied sound physical principles to overland flows. He derived the continuity and momentum equations and introduced several approximations to the dynamic equations known St. Venant equations by neglecting various terms of minor significance. Thus he arrived at a set of simplified equations which are now termed as the 'Kinematic Wave Equations'. These equations are quite adequate for 'Overland flow' and 'Channel flow routing' of small watersheds.

An in-depth study of continuity and momentum equations through KW theory was taken by Lighthill and Whitham (1955). They considered propagation of flood waves in rivers as mainly Kinematic (a balance of bed slope and friction slope). They developed kinematic wave equations for overland flows through general treatment of kinematic wave theory and showed that, when the inflow is constant (or a function of distance only) an explicit solution can be obtained. They suggested that the solution has been found by numerical integration along the characteristics when the lateral inflow is a function of time and distance. They also investigated kinematic shock waves. They found that for $F_{\mathbf{r}} \leq 2$, the dynamic components decay exponentially and the kinematic waves ultimately dominate the flows.

In 1955, Iwagaki worked on the problems of steep rivers by using the methods of characteristics. He used the kinematic assumptions implicitly in his analysis of unsteady flows in steep channels. Henderson (1963) described the conditions under which flows in a prismatic channel without lateral components could be classified as kinematic. He developed the criteria for kinematic flows. It was stated that the partial derivative terms appearing in the equation of momentum must be neglected in comparison to bed slope (i.e. the flow must be essentially uniform). Henderson and Wooding (1964) had applied the kinematic wave techniques to the flow over a sloping plane.

Wooding (1965(a), 1965(b), 1966) applied kinematic wave theory to the overland and channel components of the runoff. He considered a hypothetical V-shaped watershed formed by two rectangular planes (i.e. open book system) discharging into a straight channel formed by them in between. He concluded that kinematic wave theory is applicable to gradually varied unsteady flows if the Froude number is less than 2. This way the runoff mechanics was studied through the kinematic wave theory to get the response of the elementary watershed system. By taking nearly the same geometrical representations and based on kinematic wave theory, other researchers also made their valuable contributions (Harley et al., 1970; Smith and Woolhiser, 1971a, 1971b; Lane et al., 1975; and Rovey et al., 1977).

Morgali and Linsley (1965) used the finite difference methods for solving the shallow water equations as applicable to compute runoffs from natural watersheds. Schaake (1965) used numerical methods for computing runoffs from urban watersheds; whereas Brakensick (1966) and Brakensick et al. (1966) also used the same approach for computing runoffs from the rural

watersheds. Chen and Hansen (1966) used the dimensionless forms of the continuity and momentum equations and tested the flow profile characteristics and discharge-depth relationships with distance and time as parameters. A generalization of the catchment stream model has also been found by Eagleson (1967).

Woolhiser and Liggett (1967) have reported in details about the applicability of kinematic wave models under different conditions. They have analysed the rising hydrograph (unsteady and one dimensional flow over a plane) of overland flow on a single plane. They used both the shallow water equations and kinematic approximations in their dimensionless forms. They also examined the accuracy of the kinematic wave approximation and have found it to be very good if the dimensionless parameter K (known as Kinematic number) for planes is greater than 20; reasonabe if greater than 10, and poor if its value is below 10. Their results showed that for K=10, about 10 per cent error would be introduced by neglecting the dynamic terms from the solution. The error decreases if K increases and coincides with the general solution when $K \rightarrow \infty$ (Figure 2.5). Later on, Morris and Woolhiser (1980) and Woolhiser (1981) have investigated in more details the applicability of kinematic wave equations under different conditions. They showed that the additional criterion $S_0 L/y_0 > 5$ is also required along with other criteria (where S is the bed slope and L is the length). Kibler (1968) had also used kinematic wave equations for overland flow computations and discussed the optimization techniques.

Brakensick (1967a) first introduced the concept of the kinematic cascade models. He transformed an upland watershed

into a cascade of planes discharging into a single channel. Later on kinematic cascade models have been used by other researchers too (Kibler and Woolhiser, 1970; Lane and Woolhiser, 1977; Croley et al., 1981; Jayaseelan, 1984). Kinematic cascade models continue to remain popular for the computation of overland flows and channel flow routings of small watersheds.

Brakensick (1966, 1967b) has used kinematic flood routing methods and has described the properties of the kinematic techniques in the context of hydraulic and hydrologic flood routings. Overton and Brakensick (1970) have also applied this approximation for a V-shaped configuration. They calculated a lag time based on catchment dimensions, roughness, and rainfall rates etc. The relationship between lag time and rainfall rate agreed with observed data for several storm events on experimental catchments. Their sensitivity analysis showed the solution more sensitive to errors in rainfall rather than to errors physiographic parameter estimations.

Schaake (1970), applied the kinematic wave models by splitting the watershed into a number of segments over which the model parameters were assumed to be uniform. Based upon geometric characteristics and assumed type of flow for a segment, he presented a technique to compute the kinematic parameters. By applying the kinematic equations Morgali (1970) had also examined the experimental laminar and turbulent overland flow hydrographs. More detailed studies of kinematic wave equations and their applications to different watersheds have been reported by Mahmood and Yevjevich (1975); Stephension (1981), Stephension et al. (1986); Overton and Meadows (1976); Raudkivi (1979); Eagleson (1970), Haan et al. (1982); Kirkby (1978).

For water routing, use of a nonlinear kinematic wave approximation has also been reported by some researchers (Singh, 1974; Li et al., 1975; Singh et al., 1976; Huang, 1978; Ponce, 1986).

Woolhiser (1969) had applied kinematic flow equations on an inverted cone-shaped surface having a specified degree of convergence at the apex. Subsequently, this direction of research was further explored in more depths and details. Worth mentioning are the efforts of Singh and his co-researchers (Singh, 1975a, 1975b, 1975c, 1975d, 1975e, 1975f, 1976a, 1976b, 1976c, 1976d, 1976e, 1976f, 1977, 1978 and 1979; Sherman and Singh, 1976a, 1976b; Shelburne and Singh 1976, Singh and Shelburne 1977) and diverging section (Singh and Agiralioglu 1981a and 1981b).

Kinematic wave models have also been applied to simulate runoffs from agricultural watersheds (Woolhiser et al., 1970; Langford and Turner, 1973). It was further expanded to irrigation systems as well. Chen (1966) applied it to solve the hydrologic problems of irrigated lands comprising of porous beds. This work was critically discussed by Woolhiser (1970). Later on, this technique was used for solving problems of surface irrigation system by other researchers (Cunge and Woolhiser, 1975; Sherman and Singh, 1978, 1982; Singh and Sherman 1983; Singh and Ram 1983).

Many researchers worked for the kinematic wave theory applications to watershed hydrology (Ponce et al., 1978; Singh,

1978; Brutsaert, 1968; Morris et al., 1980; Borah et al., 1980 and 1982; Beven, 1979, 1982 and 1985; Weinmann et al., 1979; Cundy et al., 1985; Vieira, 1983; Blandford et al., 1983; Singh and Agiralioglu, 1981; Woolhiser, 1982; Field, 1982; Fread, 1982). Allent (1984) worked on kinematic wave theory and compared his findings with Clarks unit hydrograph theory.

Further more, a good number of authors have applied the kinematic wave theory to water flows and solute transport in porous media. Movement of water flow through an isothermal snow layer has been studied by Colbeck (1972). The theory was also applied to drainage (Sisson et al., 1980); infiltration and soil water movement (Beven, 1982; Smith and Hebbert, 1983; Beven and Germann, 1985); soil moisture and solute transport in porous media (Charbeneau, 1984); infiltration into soils with sorbing macropores (German and Beven, 1985; Germann, 1985); water flow in soil macropores and subsurface storm flow (Germann and Beven, 1986; Germann et al., 1986, Germann et al., 1987); moisture flux in the unsaturated zone (Bengtsson, 1988) etc.

In more recent applications of kinematic wave theory, it has been extended to some of the applied hydrologic problems viz. urbanization and its effect on storm runoff (Stephension, 1983); dam-break problem (Hunt, 1982); estimation of time of concentration (Ragan et al., 1972; Singh 1976; Singh and Agiralioglu, 1980; Akan, 1986); peak runoff estimates (Akan, 1985); effect of storm rainfall intensity (Woolhiser et al., 1988); unsaturated infiltration (Yamada et al., 1988); stochastic infiltration (Rayej et al., 1988); infiltrating parabolic shaped surfaces (De Lima et al., 1988); concentration of flow (Takasao

et al., 1988); KW routing (Hromadka et al., 1988); dimensionless hydrographs (Constantinides and Stephension, 1982); urban drainage networks (Smith, 1983; Green, 1984; NIH, 1989); dynamic storms (Stephension, 1984a); detention storage (Stephension, 1984b); estimation of time of concentration (Agiralioglu, 1984 and 1988); estimation of overland roughness (Liong et al., 1989); rainfallrunoff modeling (Singh, 1988, 1989) etc.

Suitable KW models capable of meeting the objectives of the study are described in details in the next chapter.

CHAPTER - III

MODEL DEVELOPMENT

3.1 INTRODUCTION

In the previous chapter, basic concepts about kinematic wave (KW) equations and their solution techniques were discussed. Also, some of the important hydrologic models which were quite relevant to the theme of present study were briefed. In this work, it is proposed to study the mechanics of the runoff of small watersheds and the resulting surface runoff. This can better be studied by developing suitable models capable of meeting the objectives of the study.

A hydrologic model is an important tool for estimating and organizing quantitative hydrologic information. The main objectives for the development of a suitable surface hydrologic model are to study the movement of overland, (i.e. through its surface runff) as well as stream flow components of the hydrologic cycle.

It will not be out of place to mention that all the natural processes are very complicated. There are many factors influencing the runoff process which are widely responsible for the complex nature of rainfall-runoff relationships. There are different aspects of the hydrologic transformation process which have been widely investigated in order to get an insight into the complexities involved. But till now, no perfect methodologies or models are available for their universal applications to predict the runoff characteristics of small tropical watersheds having typical conditions of rainfall input and other controlling factors. However, Scientists, Hydrologists and Engineers are trying to find out the methods which will be the best suited to the small watershed under different natural conditions.

To achieve this objective various techniques, and available models were studied (Chapter - II). It was concluded that the dynamic approaches are the best to account for the physical processes associated with the runoff mechanics of the watersheds. Among these approaches (dynamic), the kinematic wave theory is the best suited to the prevailing conditions and also keeping in view the availability of data on the watersheds which are currently being investigated in this thesis.

Thus, the present study is aimed at developing mathematical models based on kinematic wave theory. As an initial step towards it, development of KW equations as derived from the hydrodynamic equations, is taken up first.

3.2 HYDRODYNAMIC THEORY AND KINEMATIC WAVE EQUATIONS

The hydrodynamic theory for incompressible fluid flows gives the following set of equations (also known as the Navier-Stokes' equations):

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}\right) = X - \frac{\partial P}{\partial x} + \mu \nabla^2 u \qquad \dots (3.1)$$

$$\rho \left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = Y - \frac{\partial P}{\partial y} + \mu \nabla^2 v \qquad \dots \qquad (3.2)$$

 $\rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z}\right) = Z - \frac{\partial P}{\partial z} + \mu \nabla^2 w \qquad \dots (3.3)$

and continuity equation : $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$... (3.4)

where $\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$;

 ρ = the mass density; u, v, w are the velocity Components in the x, y, z directions respectively; X, Y, Z are the body forces per unit volume; P = pressure, and μ = viscosity.

The above four equations describe theoretically the fluid flow in any situation. However, in hydrology as well as in hydraulic engineering, viscous forces of the above equations may be replaced by turbulent momentum transfer or by a semiempirical drag equation e.g. by Manning or Darcy equations as the case may be.

Keeping in view the difficulties involved in the application of these equations for the flow of water in a channel, the following one dimensional hydrodynamic equations were suggested by St. Venant (1871):

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q$$
 ... (3.5)

and $\frac{1}{g} \frac{\partial u}{\partial f} + \frac{u}{g} \frac{\partial u}{\partial x} + \frac{\partial y_0}{\partial x} + S_f - S_0 = 0$

where Q = flow rate; t = time (seconds); y_o=mean depth; x = distance in down stream flow direction; q = lateral inflows per unit length. u = x-component of mean velocity; S_o = bed slope; S_f = energy slope, and g = acceleration due to gravity. 47

... (3.6)

A close inspection reveals that the St. Venant equation are similar in many respects to the Navier-Stokes' equations. For hydrologic problems, the exact solution of the St. Venant equations is also quite difficult. Now-a-days, these equations can be solved in their various forms with the help of powerful digital computers. Finite difference solution of these equations in its simplified form is also possible through micro-computers.

Another important and simplified form of St. Venant equations are the kinematic wave equations (Section 2.6). In the present situation, the derivatives of the energy and velocity terms in the momentum equation (3.6) are very small in comparison with gravity and frictional forces. This allows to assume that the bed slope is approximately equal to the friction slope (i.e. $S_0 = S_f$). Under the above conditions and if there is no appreciable back water effect, for all x and t, the discharge can be described as the function of area of flow only and can be written as under :

$$Q = \alpha A^{m} \qquad \dots \qquad (3.7)$$

Where α and m are known as kinematic wave routing parameters which are directly related to the watershed and flow characteristics. Equations (3.5) and (3.7) when taken together, are termed as 'Kinematic Wave (KW)' equations.

Thus, the general form of the KW equation can be written as under :

$$\frac{\partial A}{\partial t} + \alpha m A^{m-1} \frac{\partial A}{\partial x} = q \qquad \dots \qquad (3.8)$$

provided α and m are independent variables.

In the past, the KW equations have already been successfully applied to the problems related to overland flows, small watersheds, slow-rising flood waves etc. It was found that under certain circumstances of overland flows as well as the channel and conduit flows the KW equations are much easy to work with. The KW equations are now recognised as a powerful tool which takes into account the physics of the flows on the surface, as well as in the channels of small watersheds.

3.3 ELEMENTS USED IN KINEMATIC WAVE MODELS

In this work, for computational purposes, the following two types of elements have been identified :

- (i) Overland flow elements and
- (ii) Channel flow elements (Figure 3.1)

Overview of simplified arrangement of the above mentioned two elements, in reference to a small watershed, is shown in figure 3.1(a), (b) & (c).

The one dimensional unsteady, nonlinear, uniform, deterministic, time variant first order partial differential for kinematic wave equations are presented in Section 3.2. Development of the KW equations for the overland and the channel flow elements is discussed in the following sections.

3.4 KINEMATIC WAVE EQUATION FOR THE OVERLAND FLOWS

It is assumed that the overland flow is in the form of sheet flow. A unit width of the plane has been considered for the computational aspects of the runoff generation. The KW equations can, therefore, be written as :

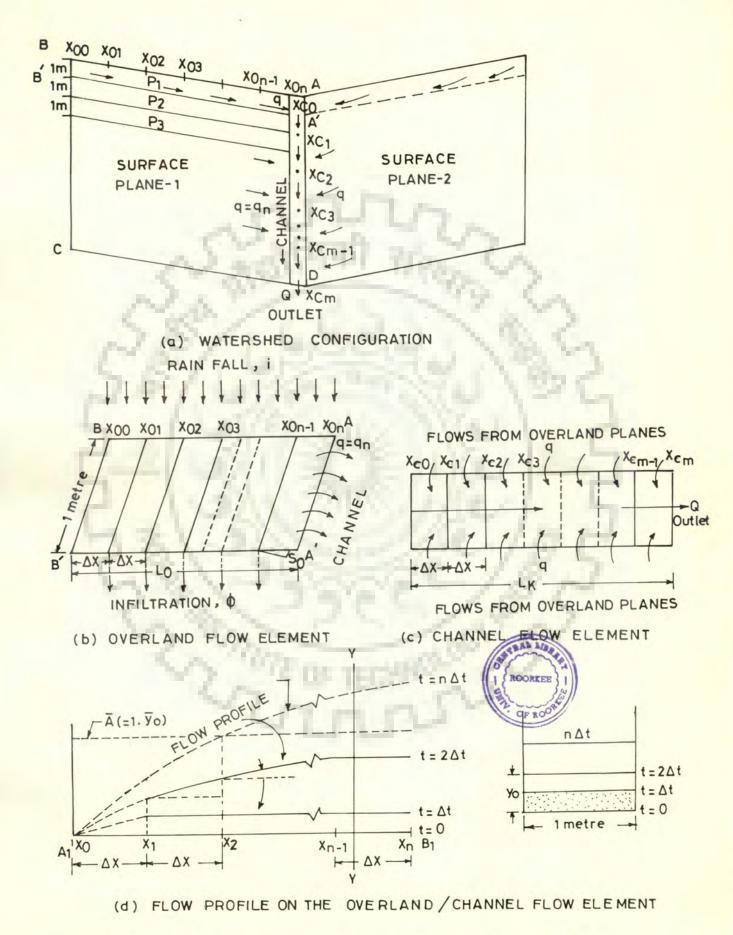


FIG. 3.1 GENERATION OF FLOW PROFILE 245 501 Central Library University of Room

$$\frac{\partial y_0}{\partial t} + \frac{\partial q}{\partial x} = i_e = i - \emptyset$$
 ... (3.9)

$$q = \alpha_0 y_0^{m_0} \qquad \dots \qquad (3.10)$$

where α and m are kinematic wave routing parameters which are directly related to conveyance of particular surface (i.e. to the slope and its roughness);

q is discharge per unit width of overland flow;

 y_0 is the mean depth and i is the rainfall excess intensity [precipitation (i) - infiltration (\emptyset)].

3.4.1 Determination of Kinematic Wave Routing Parameters

The overland flow on a wide plane has been considered as a sheet flow (very shallow flows). Therefore, the kinematic wave equations for the overland flow segments have been derived from equation (3.10) along with the Manning's equation. The steady state Manning's equation for discharge per unit width(q), can be written as :

$$q = \frac{1}{n} A_{O} R_{O}^{2/3} S_{O}^{1/2} \dots (3.11)$$

where n = Manning's roughness coefficient of overland flow

 A_{o} = area of cross-section of water;

 R_{o} = the hydraulic radius, and

 S_{o} = average slope of overland flow element.

For a sheet flow on a plane of unit width A_0 and R_0 can be replaced by y_0 i.e. the mean depth of flow (since $A_0 = 1.y_0$ and $R_0 = y_0.1/1$). Substituting their values in equation (3.11) the discharge per unit width (q) can be written as :

$$q = \frac{1}{n} y_0(y_0)^{2/3} s_0^{1/2}$$

or $q \simeq \frac{1}{N} y_0^{5/3} s_0^{1/2}$... (3.12)

where the Manning roughness coefficient has been replaced by an appropriate coefficient N which is called here the 'Effective Roughness' parameter of overland flow. The parameter N is generally greater than the Manning's 'n' and it is a characteristic parameter of a watershed (DeVries et al. 1979).

Comparing of equations (3.10) and (3.12) reveals that

$$\alpha_{0} = \frac{1}{N} S_{0}^{1/2} \qquad (3.13) \qquad (3.14)$$

and $m_{0} = 5/3$

The parameters N and S_o being known, the values of α_0 is worked out from equation (3.13).

3.4.2 The Final Form of Kinematic Wave Equations for the Overland Flows :

Combining equations (3.9) & (3.10) and substituing m_0 given in equation (3.14), the following complete form of kinematic wave equation for overland flow is derived as :

$$\frac{\partial y_0}{\partial t} + \frac{\partial (\alpha_0 y_0^{5/3})}{\partial x} = i_e$$

or $\frac{\partial y_0}{\partial t} + \frac{5}{3\alpha_0} y_0^{5/3-1} \frac{\partial y_0}{\partial x} = i_e \dots (3.15)$

In equation (3.15), y_0 is only dependent variable which is a function of x,t and rainfall excess intensity (i_e) . Thus y_0 can be determined explicitly by using equation (3.15). From computed values of y_0 , the overland surface runoff per unit width (q) can be computed by using equation (3.10).

3.5 KINEMATIIC WAVE EQUATIONS FOR THE CHANNEL FLOWS

For the channel flows, the kinematic wave equations can be written as follows :

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q \qquad \dots \qquad (3.16)$$
$$Q = \alpha_k A^m k \qquad \dots \qquad (3.17)$$

where A = Cross sectional area of the channel; Q = discharge; q = lateral inflow per unit length of the channel; a and m_k are the kinematic wave routing parameters which are directly related to the watershed and the channel flow characteriistics (a particular channel crosssectional shape, channel slope and roughness).

In order to apply the equations (3.16) and (3.17), it is necessary to know the values of the parameters α_k and m_k for the known channel physiography.

3.5.1 Determinaton of Kinematic Wave Routing Parameters a_k and m_k for Channel Flows

In channel flows, parameters α_k and m_k are different for different shapes of the cross sections. Their values are also dependent on the Manning roughness coefficient (n) and its slope (S). The cross-section of a natural channel can be approximated by the following geometric shapes. (i) Trapezoidal, (ii) Rectangular, and (iii) Triangular.

Since, most of the natural channels nearly conform to trapezoidal shapes. Therefore, the same has been adopted in this work for the computation of the parameters α_k and m_k . This is an added advantage. The other two cross-sections are particular cases of the trapezoidal section under certain conditions as discussed next.

3.5.2 Trapezoidal Channel Cross Section

A trapezoidal cross-section is the most general type of channel cross-section. It is defined by the channel side slope (Z), and the channel bottom width (B) (Figure 3.2). The modifications of this section may result into the other two type of shapes mentioned earlier. For example, if the channel side slope is zero, it conforms to a rectangular section, whereas if its channel bottom width is zero, it becomes a triangular section. For the trapezoidal geometric shapes, it is not possible to derive a single simple relationship for determining α_k and m, explicitly.

An indirect approach is adopted. The Manning's equation and KW equation are employed together to compute the values of parameters α_k and m_k .

The Manning's equation for discharge (Q) in a channel is given by

$$Q = \frac{1}{n} S^{1/2} AR^{2/3}$$
 ... (3.18)

For the trapezoidal channel cross-section, equation (3.18) can be written as below :

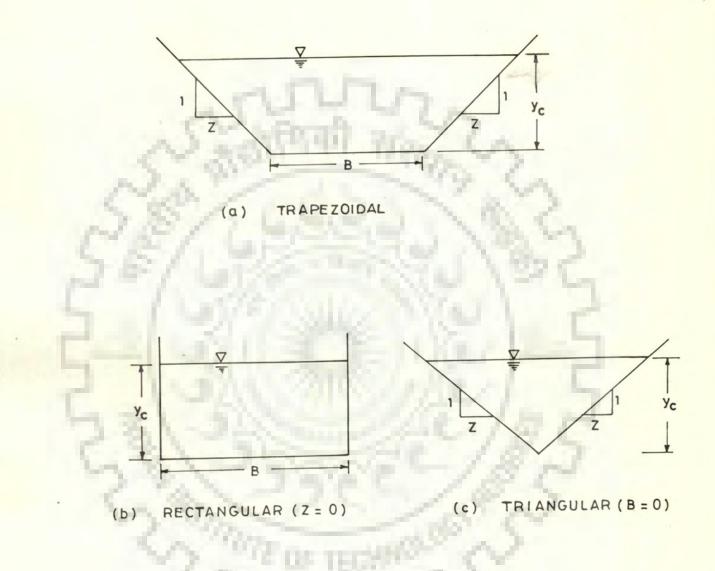


FIG. 3.2 CHANNEL SHAPES FOR KW CHANNEL ROUTING

$$Q = \frac{s^{1/2}}{n} (A_{\rm C})^{5/3} \left[\frac{1}{B + 2y_{\rm C}} \sqrt{1 + Z^2} \right]^{2/3} \dots (3.19)$$

where A_{C} = the area of the effective channel cross-section at depth y_c.

The KW equation for channel flow is given by (equation 3.17) and reproduced as under :

$$Q = \alpha_{k}^{m} A^{k} \qquad \dots \qquad (3.20)$$

From equation (3.19) for two appropriate values of depths (y_c) , (minimum, average or maximum depths may be adopted) corresponding Q values are obtained. By substituting them in equation (3.20), the two unknowns α_k and m_k are thus computed. It has been found that the values of m_k varies from 4/3 for a triangular channel cross-section to 5/3 for a wide rectangular channel cross-section. For the known parameters (α_k and m_k) the final form of KW equation for unknown discharge function Q can now be found out as discussed next.

3.5.3 The Final Form of Kinematic Wave Equations for the Channel Flows :

The unknown parameters for the channel shapes under consideration i.e. α_k and m_k being the unknown functions. The KW equatiion for the channel flow can be written by combining equations (3.16) and (3.17) as given below:

$$\frac{\partial A}{\partial t} + \frac{\partial (\alpha_k A^{m_k})}{\partial x} = q \qquad (3.21)$$

If α_k is independent of m_k , then the equation (3.21) becomes:

Equation (3.22) is thus considered the final form of kinematic wave equation for channel flows. In this equation A is only the dependent variable whereas x, t and q are independent variables. If A is found out from equation (3.22) and is substituted in equation (3.17), the discharge (Q) from the channel is computed.

Appropriate numerical techniques are needed for solving the KW equations given for the overland flows as well as the channel flows.

3.6 NUMERICAL TECHNIQUE (FINITE DIFFERENCE METHODS) FOR SOLVING THE KINEMATIIC WAVE EQUATIONS

Different types of numerical solution techniques of kinematic wave equations have been discussed in Section 2.8 (Chapter - II). The fully off-centred, first order, explicit numerical finite diifference techniques (schemes) have been preferred for solving the KW equations characterising the flow of water in its overland and channel flow phases. Therefore, application of this technique in the context of this work has been discussed in details.

For solving the kinematic wave equations for the overland as well as channel components, the flow domain is characterised by x(for spatial coordinates) and t (for time coordinates). For the application of finite difference schemes to a section of the flow domain, space-time (x-t) plane is shown in figure 3.3. In this plane, the lines parallel to the x-axis (abscissa) are

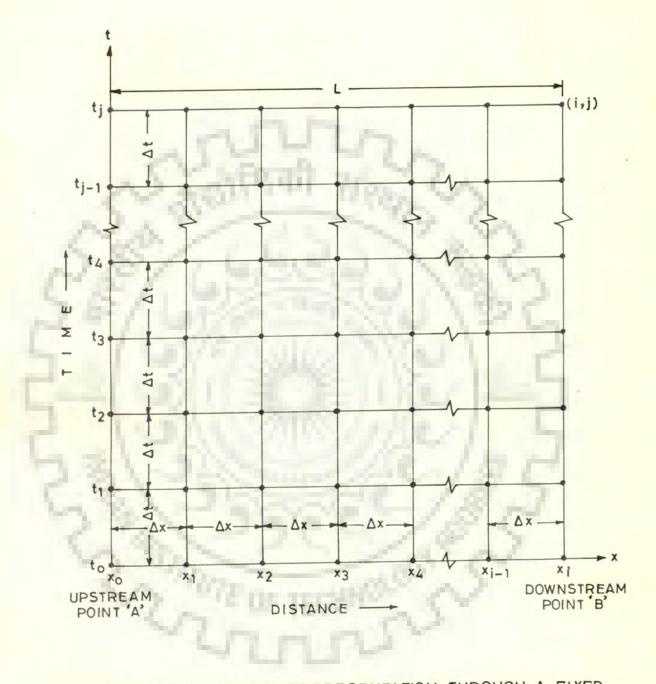


FIG. 3.3 FLOW DOMAIN REPRESENTATION THROUGH A FIXED $\Delta x - \Delta t$ GRID

the 'time - line'. The ordinate is the t-axis and the lines parallel to it are the 'space-lines'. The intersections of these two lines are termed as nodes (or computational points). The solution domain in x-t plane is covered by a rectangular node (or grid) with grid spacing of Δx , Δt in the x-t directions respectively. The Δx and Δt values are being assumed constant in the present case. The grid consists of the set of lines parallel to the t-axis are given by

 $x = x_i, \qquad i = 0, 1, 2, 3 \dots$ where $x_i = i \Delta x$. And the set of lines parallel to the x-axis are given by $t = t_j, \quad j = 0, 1, 2, 3 \dots$ where $t_j = j \Delta t$.

Therefore, the point ($i \Delta x$, $j \Delta t$) is called the grid point (i,j) and is surrounded in neighbourhood by other grid points.

The computational scheme will require the initial values for the entire domain $(X_i 's)$ and the upstream boundary conditions for all (tj's). Solutions of the governing equations through the finite difference scheme will be obtained at each of these grid point Computations advance along the downstream direction for a time step Δt , until all the discharges as well as water areas are computed at all the grid points in the entire longitudinal length L (Figure 3.3).

Next the computations are advanced ahead in time by another time step Δt and the computations proceed likewise.

The rainfall excess intensity (i_e) is assumed constant within a time step Δt . But it may change from one time step to the next time step, to account for the variation in rates of rainfall excess intensities occurring within a storm event.

3.7 APPROXIMATION OF THE DERIVATIVES OF KINEMATIC WAVE EQUATIONS THROUGH FINITE DIFFERENCES

The discharge of any point (x) at a given instant (t) is written as Q(x,t). If Q possesses a sufficient number of partial derivatives then at the two points (x,t) and $(x + \Delta x, t + \Delta t)$, the values of Q are related by the Taylor's series expansion, as under :

$$Q(x + \Delta x, t + \Delta t) = Q(x,t) + (\Delta x \frac{\partial}{\partial x} + \Delta t \frac{\partial}{\partial t})Q(x,t)$$

+ $\frac{1}{2!} (\Delta x \frac{\partial}{\partial x} + \Delta t \frac{\partial}{\partial t})^2 Q(x,t) + \dots$
+ $(\frac{1}{x-1)!} (\Delta x \frac{\partial}{\partial x} + \Delta t \frac{\partial}{\partial t})^{n-1}Q(x,t) + R_n \dots (3.23)$

where R_n is the remainder term and can mathematically be written as below :

$$R_{n} = \frac{1}{n!} \left(\Delta x \frac{\partial}{\partial x} + \Delta t \frac{\partial}{\partial t} \right)^{n} Q(x + \xi \Delta x, t + \xi' \Delta t), \quad 0 < \xi < 1 \qquad \dots \quad (3.24)$$

That is,

$$R_{n} = 0[(|\Delta x| + |\Delta t|)^{n}] \qquad \dots (3.25)$$

Here, '0' represents the order (or degree) of the remainder.

Equation (3.25) suggests that there exists a positive constant M, such that $|R_n| \le M(|\Delta x| + |\Delta t|)^n$ as $\Delta x \neq 0$ and $\Delta t \neq 0$.

The space point (i Δx , j Δt) is already defined (Section 3.6) as the grid point (i,j) and is surrounded by the neighbouring grid points. Therefore, through neighbouring grid points, the Taylor's series expansion can be written for $Q_{i-1,j}$ and $Q_{i+1,j}$ about the central value $Q_{i,j}$ respectively as :

$$Q_{i-1,j} = Q_{i,j} - \Delta x \frac{\partial Q}{\partial x} + \frac{(\Delta x)^2}{2!} \frac{\partial^2 Q}{\partial x^2} - \frac{(\Delta x)^3}{3!} \frac{\partial^3 Q}{\partial x^3}$$

$$(\Delta x)^4 - \frac{4}{2} \frac{Q}{2} + (3.26)$$

and

$$Q_{i+1,j} = Q_{i,j} + \Delta x \frac{\partial Q}{\partial x} + \frac{(\Delta x)^2}{2!} \frac{\partial^2 Q}{\partial x^2} + \frac{(\Delta x)^3}{3!} \frac{\partial^3 Q}{\partial x^3}$$

$$+ \frac{\left(\Delta x\right)^{4}}{4!} \frac{\partial^{4} Q}{\partial x^{4}} \cdots$$
(3.27)

All partial derivatives $\frac{\partial Q}{\partial x}$, $\frac{\partial^2 Q}{\partial x^2}$, $\frac{\partial^3 Q}{\partial x^3}$... etc.

ax4

are evaluated at the grid point (i,j).

The first order derivatives $\partial Q/\partial x$ at (i,j) in terms of finite difference relationships are obtained from the equations (3.27) and (3.26) and subsequently by subtracting the two :

$$\frac{\partial Q}{\partial x} = \frac{Q_{i+1,j} - Q_{i,j}}{\Delta^{x}} + O(\Delta x) \qquad \dots \qquad (3.28)$$

$$\frac{\partial Q}{\partial x} = \frac{Q_{i,j} - Q_{i-l,j}}{\Delta x} + O(\Delta x) \qquad \dots \qquad (3.29)$$

$$\frac{\partial Q}{\partial \mathbf{x}} = \frac{Q_{i+1,j} - Q_{i-1,j}}{2\Delta \mathbf{x}} + O(\Delta \mathbf{x}) \qquad \dots \qquad (3.30)$$

The order term $O(\Delta x)$ accounts for the higher order terms (having order in two or more than two).

Equations (3.28), (3.29) and (3.30) are respectively known as the forward, backward and central difference forms of the finite differences.

In this work only the forward and the backward finite difference forms have been used. The first order partial derivative $\partial Q/\partial x$ is approximated by neglecting order term $O(\Delta x)$ from equations (3.28) and (3.29). Thus at the grid point (i,j) the partial derivates of Q in the forward and the backward finite difference forms are written as :

$$\frac{\partial Q}{\partial x} \simeq \frac{Q_{i+1,j} Q_{i,j}}{\Delta x} \cdots (3.31)$$

$$\frac{\partial Q}{\partial x} \simeq \frac{Q_{i,j} - Q_{i-1,j}}{\Delta x} \qquad \dots \qquad (3.32)$$

Similarly, the first order partial derivatives $\partial Q/\partial t$ can be written in forward and backward finite difference forms at the grid point (i,j) as below :

$$\frac{\partial Q}{\partial t} \simeq \frac{Q_{i,j+1} - Q_{i,j}}{\Delta t} \qquad \dots \qquad (3.33)$$

and

$$\frac{\partial Q}{\partial t} \simeq \frac{Q_{i,j} - Q_{i,j-1}}{\Delta t} \qquad \dots \qquad (3.34)$$

Likewise, the first order partial derivatives of cross sectional area (A) are approximated through the forward and the backward finite differences at the grid point (i,j) as under :

$$\frac{\partial A}{\partial x} \simeq \frac{A_{i+1,j} - A_{i,j}}{\Lambda x} \qquad \dots \qquad (3.35)$$

$$\frac{\partial A}{\partial x} \simeq \frac{A_{i,j} - A_{i-1,j}}{\Delta x} \qquad \dots \qquad (3.36)$$

$$\frac{\partial A}{\partial t} \simeq \frac{A_{i,j+1} - A_{i,j}}{\Delta t} \qquad \dots \qquad (3.37)$$

$$\frac{\partial A}{\partial t} \simeq \frac{A_{i,j} - A_{i,j-1}}{\Delta t} \qquad \dots \qquad (3.38)$$

Equations (3.31) through (3.38) have been used for the finite difference approximation of the partial derivatives appearing the final form of KW equations. Suitable computational schemes are needed for the solution of these equations.

3.8 DIFFERENT SCHEMES FOR THE SOLUTION OF KINEMATIC WAVE EQUATIONS : Their Stabilities and Convergences

The three different kinds of computational schemes as briefed in Table 3.1 (and shown in Figure 3.4) have been used in this work for the solution of KW equations when applied to different watersheds under investigation.

TABLE 3.1 : The Three First Order Explicit Schemes of KW

Equations Under Investigation

Description	Schemes
Forward-in-time and backward-in-space	I
Backward-in-time and forward-in-space	II
Backward-in-time and space	III

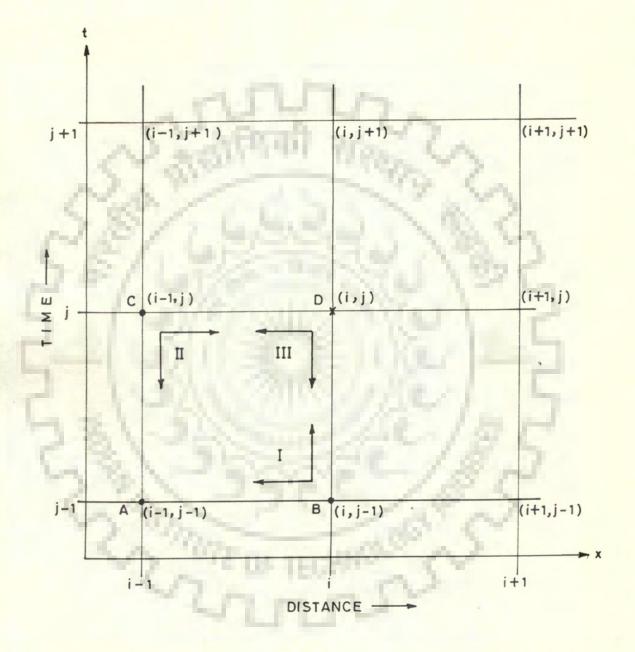


FIG. 3.4 SPACE - TIME DISCRETIZATION FOR THE COMPUTATIONAL SCHEMES 1, II & III

The recommended use of one or more of these schemes will depend upon their stabilities and the convergences to the analytical solutions.

The criteria of stability and convergence for these three fully off-centred explicit schemes, (Figure 3.4) were spelled by Ponce (1979, 1986). Schemes I & II have been found conditionally stable and always converging to the analytical solutions if the Courant number approaches 1. The Courant number is defined as the ratio of the physical celerity C (in this case the KW celerity) to the grid celerity $\Delta x/\Delta t$. The scheme I is reported to be stable for Courant number less than or equal to 1, whereas the Scheme II is said to be stable if Courant number equals to or is greater than 1. The Scheme I happens to the mirror image of Scheme II, therefore, for ascertaining the stability both the schemes I and II may be considered as one scheme and may thus be named as Scheme (I & II). Ponce (1979, 1986) has also stated that the Scheme III is unconditionally stable but non-convergent for any values of Courant number. Therefore, it should be taken as a separate computational scheme. Scheme III thus can be used only when it is found convergent to the analytical solution. The values of Δx and Δt which make the scheme convergent have to be ascertained by trial and error. It may be concluded that for ascertaining the stability of these computational schemes the Courant number has to be computed which requires estimation of KW celerity values.

3.8.1 Kinematic Wave Celerity

The kinematic wave celerity (C) values will depend upon

as to how the mechanics of the generation of surface runoff and the channel flows have been taken care of. The manner in which the contributions of overland planes reach the channel, will affect the channel flows and so the channel velocities. Therefore, it is necessary to explain the mechanic of the overland and the channel flows, as accounted for in this work.

In this study, rectangular planes have been assumed to represent the watershed geometry in its simplified form. The assumed configuration of a watershed thus consists of the two rectangular planes and a channel in between (Figure 3.1(a)). The rainfall excess generated over the overland planes (on the two sides of the channel) causes the surface runoff to generate. This surface runoff contributes to the channel in the form of gradually varied flows (Fig. 3.1(b) and (c)). The overland flow elements are assumed to be perpendicular to the channel flow direction. The lateral contribution (q) from the planes is taken as inflow to the channel. By channel routing, the final flood hydrographs are estimated at the outlet.

For the computational purposes the surface planes are divided into the elements of unit width. In figures 3.1(a) and 3.1(b), ABB'A' is one of such overland flow element of one metre width (width AA' = BB' = 1 metre and length BA = B'A' = Lo i.e. the width of the plane. This overland plane element is further divided into n number of strips all along the downstream directions of flow. Each strip of equal length Δx_0 (i.e. Lo = $n\Delta x_0$). By taking rainfall excess intensity (i.e. gross rainfall - abstractions) as input within a Δt , computations are performed for the flow per unit width (q_i) and flow area A_i (=1.y_{oi} = y_{oi}) from one nodal point to other nodal point (i.e. from x_{oi-1} to x_{oi}) (where i = 1,2,... n). The discharge per unit width (q_i) and corresponding flow area (y_{oi}) for each of the nodal point so obtained have been used for the computation of q_i and y_{oi} as initial values for the next time step (i.e. Δt to $2\Delta t$). The flow profiles so obtained for different time steps (Δt) are shown in figure 3.1(d). In this way, the computations proceed and the final surface flow profile is generated.

In the case of channel flows, the computational scheme is similar to the overland flow scheme. Here, the channel is divided into m number of strips of length Δx_c (i.e. m $\Delta x_c = L_k$ length of the channel). From the overland plane elements the lateral contributions per unit width $q(=q_n)$, from the input to the channel. For computing the water area (A) and discharge (Q) at the outlet (or at any desired point in the channel), the computations proceed from the nodal point to the other in the downstream direction (i.e. from X_{c0} to X_{c1} and onwards).

In the physiographic properties remain uniform over the entire surface plane, the surface runoff contributions (i.e. $q = q_n$) will also be uniform for all the elemental planes denoted by P_1 , P_2 , P_3 etc. [Figure 3.1(a)]. This final value of lateral contribution per unit width q is used in the channel flow routing.

For the earlier discussed mechanics of the runoff, the kinematic wave celerity (C) in its general form can be written as:

$$C = \frac{\partial Q}{\partial A} \qquad \dots \qquad (3.39)$$

67-

A substitution from equation (3.7) in the above relationship gives the KW celerity (C) as below :

$$C = \alpha m A^{m-1} \qquad \dots \qquad (3.40)$$

The average wave celerity \overline{C} may thus be expressed as :

$$\overline{\mathbf{C}} = \alpha \mathbf{m} \overline{\mathbf{A}}^{\mathbf{m}-1} \qquad \dots \qquad (3.41)$$

where \overline{A} is the average waterflow area. Equation (3.41) gives the average celerity of kinematic waves and may thus be used for the overland as well as the channel flows.

3.8.1.1 Average kinematic wave celerity for the overland flows

For overland flows, in equation (3.41), \overline{A} will be the average water flow area. Since a unit width of overland element has been considered for the computations, average water area will be given by its average depth \overline{y}_0 (i.e. $\overline{A} = 1.\overline{y}_0$).

The average water area for the overland flow elementat jth instant will be given by

$$\overline{A} = \overline{A}' + \text{Rainfall excess depth}$$

or $\overline{A} = \overline{y} + \text{Rainfall excess depth}$... (3.42)

the second se

Here \overline{A}' (= \overline{y}_0) will be the average value of the flow area (y_{0i} , i = 0, 1, 2, 3 ... n) which are computed at (j-1)th instant (j = 1, 2, 3, 4,) at different nodal points (X_{0i} 's) over the entire length of plane L_0 . Trapezoidal rule of numerical integration (Rajaraman, 1983) is used to compute the average flow areas which will be as under :

$$\overline{A}'(=\overline{y}_0) = \frac{1}{n+1} \left[\frac{y_{00}}{2} + y_{01} + y_{02} + y_{03} + \dots + \frac{y_{0n}}{2} \right].$$

.. (3.43)

The rainfall excess depth (if it exists) is accounted for the duration Δt between (j-1)th and jth time steps.

Following the procedure, the average flow areas for all the time steps are computed and by using equation (3.41), the average KW celerity is computed for each time step.

3.8.1.2 Average kinematic wave celerity for the channel flows

The average kinematic wave celerity \overline{C} of the channel flows varies from one time step to another time step and will depend upon the average flow area \overline{A} .

The average channel flow area, A is approximated by the following finite difference formula for the computations of \overline{C} :

$$\overline{A}_{i,j} = \frac{A_{i-1,j} + A_{i,j-1}}{2} \dots (3.44)$$

where i and j respectively refer to the space and time steps (Figure 3.4).

Having computed the $\overline{A}_{i,j}$, the average KW celerity for the jth time step is computed by using equation (3.41). Similarly the KW celerity is computed for all the time steps till the channel flows continue. These values are then used to compute the Courant number for establishing the stability of the proposed computational schemes. These computational schemes are described in the following sections :

3.8.2 Computational Scheme I for the Solution of Kinematic Wave Equations

As mentioned in Table 3.1 and shown in figure 3.4, the Scheme I is defined as forward-in-time and backward-in-space. Also mentioned earlier, Scheme I is stable if Courant number is less than or equal to 1. That is the average kinematic wave celerity \overline{C} should be less than or equal to, the ratio of the computational space strip Δx and time strip Δt (i.e. $\overline{C} \leq \frac{\Delta x}{\Delta t}$). For this scheme, the temporal derivative of cross sectional area is evaluated between two points B and D in figure 3.4, at the grid point (i, j-1) and thus can be written as (by the concept of Section 3.7):

$$\frac{\partial A}{\partial t} \simeq \frac{\Delta A}{\Delta t} = \frac{A_{i,j} - A_{i,j-1}}{\Delta t} \qquad \dots \qquad (3.45)$$

And the spatial derivative of area is evaluated between points B and A at the grid point (i, j-1) and gives

$$\frac{\partial^{A}}{\partial x} \simeq \frac{\Delta A}{\Delta x} = \frac{A_{i,j-1} - A_{i-1,j-1}}{\Delta x} \qquad \dots \qquad (3.46)$$

The average area is taken between two points B and A and gives

$$\bar{A} \simeq \frac{A_{i,j-1} + A_{i-1,j-1}}{2} \dots (3.47)$$

By making use of equations (3.45), (3.46) and (3.47), the general KW equation (3.8) can be written in terms of cross sectional area

in its complete finite difference forms at the grid point (i,j-1) as under :

$$\frac{A_{i,j} - A_{i,j-1}}{\Delta t} + \alpha m \left[\frac{A_{i,j-1} + A_{i-1,j-1}}{2} \right] \left[\frac{A_{i,j-1} - A_{i-1,j-1}}{\Delta x} \right]$$

$$= \overline{q} \qquad \dots \qquad (3.48)$$

In this study,
$$\overline{q} = q$$
 ... (3.49)

The values of A are known at the grid points (i-1, j-1) and (i,j-1). Therefore, in equation (3.48), the only unknown is $A_{i,j}$ and its value may be computed for the adopted values of $\alpha \not\leftarrow m$ (Sections 3.4.1 and 3.5.1), i.e. for the overland and channel flow, as the case may be.

Therefore, equation (3.48) can also be written in terms of $A_{i,j}$ in the following form explicitly:

$$A_{i,j} = \bar{q} \Delta t + A_{i,j-1} - \alpha m \frac{\Delta t}{\Delta x} \left[\frac{A_{i,j-1} + A_{i-1,j-1}}{2} \right]^{m-1}$$

$$[A_{i,j-1} - A_{i-1,j-1}] \dots (3.50)$$

If $A_{i,j}$ is known from equation (3.50), then the corresponding $Q_{i,j}$ can be computed from equation (3.7) and is given by

$$Q_{i,j} = \alpha (A_{i,j})^{m}$$
 ... (3.51)

This is a direct method of computing the cross-sectional areas and the corresponding dischages. It is applied to the overland as well as the channel flow components with minor modifications in the relationships (3.50) and (3.51). For overland flows, in equations (3.50) and (3.51), the following changes must be incorporated.

 (i) q be replaced with i_e (i.e. rainfall excess intensity)

(ii) Q be replaced with
$$y_0$$
 [i.e. $A(=y_0) = 1.y_0$]

(iii) α and m be substituted with α_0 and m₀ respectively (Section 3.4.1)

For the channel flows, q is the input due to overland flows. The parameters σ and m be replaced with $\frac{\alpha_k}{k}$ and $\frac{m_k}{k}$ respectively (Section 3.5.1).

3.8.3 Computational Scheme II for the Solution of Kinematic Wave Equations

It is seen from Table 3.1 and figure 3.4 that the Scheme II is defined as backward-in-time and forward-in-space in its finite difference forms. Scheme II is stable for Courant number greater than or equal to 1. That it, average kinematic wave celerity \overline{C} must be greater than or equal to the ratio of the space step Δx and time step Δt (i.e. $\overline{C} \ge \Delta x / \Delta t$. In this scheme, the spatial derivative of disharge is evaluated between two points C and D, at the grid point (i-1,j) (Figure 3.4) and can be written as:

$$\frac{\partial Q}{\partial \chi} \simeq \frac{\Delta Q}{\Delta \chi} = \frac{Q_{i,j} - Q_{i-1,j}}{\Delta \chi} \dots (3.52)$$

And the temporal derivative of area of cross section is computed between points C and A at the grid point (i-1,j) as:

$$\frac{\partial A}{\partial t} \simeq \frac{\Delta A}{\Delta t} = \frac{A_{i-1,j} - A_{i-1,j-1}}{\Delta t} \dots (3.53)$$

Substituting the above values in the continuity equation (3.5), the following equation is obtained.

$$\frac{Q_{i,j} - Q_{i-1,j}}{\Delta x} + \frac{A_{i-1,j} - A_{i-1,j-1}}{\Delta t} = \bar{q} \qquad \dots (3.54)$$

In equation (3.54) all the values are known except $Q_{i,j}$. Therefore, this equation can be written in terms of $Q_{i,j}$ as :

$$Q_{i,j} = Q_{i-1,j} + \overline{q}\Delta x - \frac{\Delta x}{\Delta t} [A_{i-1,j} - A_{i-1,j-1}] \dots (3.55)$$

Computing the value of $Q_{i,j}$ from equation (3.55) and substituting in equation (3.7), the area of cross section at the point (i,j) is to be determined by

$$A_{i,j} = (Q_{i,j}/\alpha)^{1/m}$$
 ... (3.56)

As stated in Section 3.8.2, with proper substitutions, the above mentioned two finite difference forms of equations (Equations 3.55 and 3.56) can be applied to the overland as well as the channel flow computations.

3.8.4 Computational Scheme III for the Solution of Kinematic Wave Equations

The Scheme III is defined (shown in Table 3.1 and Figure 3.4) as backward-in-space and time in its finite difference forms. This scheme is unconditionally stable but it is nonconvergent for any values of Courant number. In this scheme, the temporal derivative of cross sectional area is evaluated between two points D and B (Figure 3.4) at the grid point (i,j) and thus can be written as

$$\frac{\partial_A}{\partial t} \simeq \frac{\Delta A}{\Delta t} = \frac{A_{i,j} - A_{i,j-1}}{\Delta t} \qquad \dots \qquad (3.57)$$

And the spatial derivative of area is computed between points D and C at the grid point (i,j) and gives

$$\frac{\partial_{A}}{\partial x} \simeq \frac{\Delta A}{\Delta x} = \frac{A_{i,j} - A_{i-1,j}}{\Delta x} \qquad \dots \qquad (3.58)$$

By using equations (3.57) and (3.58), the KW equation (3.8) can be written as in terms of cross-sectional area in its finite difference forms at the grid point (i,j) as below :

$$\frac{A_{i,j} - A_{i,j-1}}{\Delta t} + \alpha m \bar{A} \frac{m-1}{\Delta x} = \bar{q} \dots (3.59)$$

 $(\bar{q} \text{ as equation } 3.49).$

In equation (3.59), $A_{i,j}$ is unknown. Therefore, by putting om $\overline{A}^{m-1} = \overline{C}$ from equation (3.41) in equation (3.59), $A_{i,j}$ can explicitly be written as

$$A_{i,j} = \frac{\overline{q} \cdot \Delta x \cdot \Delta t + \Delta x \cdot A_{i,j-1} + C \cdot \Delta t \cdot A_{i-1,j}}{\Delta x + \overline{c} \Delta t} \dots (3.60)$$

or
$$A_{i,j} = \frac{\overline{q}\Delta t + A_{i,j-1} + \overline{c} \cdot A_{i-1,j} \cdot \frac{\Delta t}{\Delta x}}{1 + \overline{c} \cdot \frac{\Delta t}{\Delta x}} \dots (3.61)$$

By knowing $A_{i,j}$ from equation (3.61) and then $Q_{i,j}$ can be computed from equation (3.7) as :

In the case of the overland flows, the values of \overline{A} will be computed using equation (3.42) and for the channel flow by applying equation (3.44). With the proper substitutions of parameters as stated in Section 3.8.2, the above mentioned two finite difference forms of equations (Equations 3.61 and 3.62) can be applied to the overland and the channel flow computations.

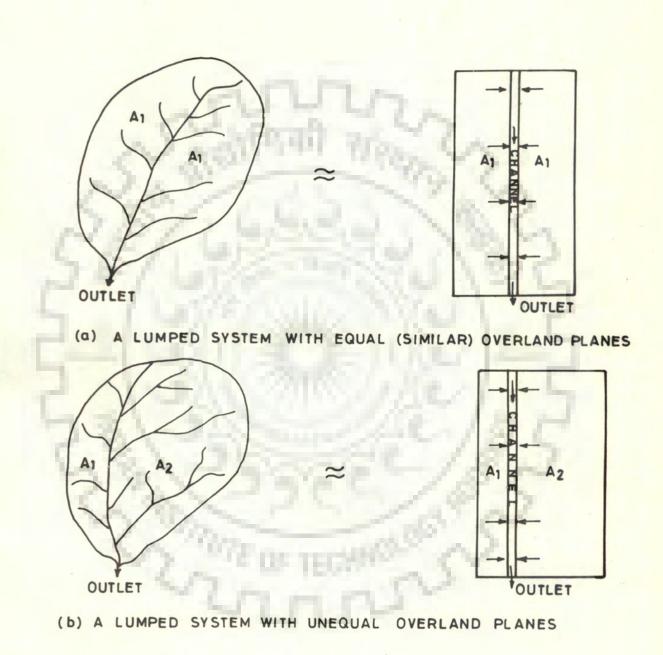
The convergence of this scheme (Scheme III) is to be checked by adopting suitable values of Δx and Δt , and by following the trial and error procedure that set of values have to be determined which makes the scheme convergent to the analytical solution.

The KW approach is to be applied through the three finite difference schemes to different watershed models. This will help in ascertaining the suitability of each scheme under different conditions of physiography and land use.

3.9 PHYSIOGRAPHIC MODELS EMPLOYED

In nature, small watershed may be of numerous shapes and may differ in their slopes, roughnesses, channel configurations, etc. For the application of KW theory, some simplifications have to be resorted with respect to the watershed geometry. These are aimed at identifying a watershed in term of two basic elements namely, the 'overland plane element' and the 'channel element'. An oversimplification will result into a lumped approach, whereas a detailed description of the watershed through some arrangements of channels and the overland planes, may result into a distributed system. Thus for present study, the following two broad categories of the physiographic models have been considered for general applications.

- (1) Lumped physiographic models, and
- (2) Distributed parameters physiographic models.

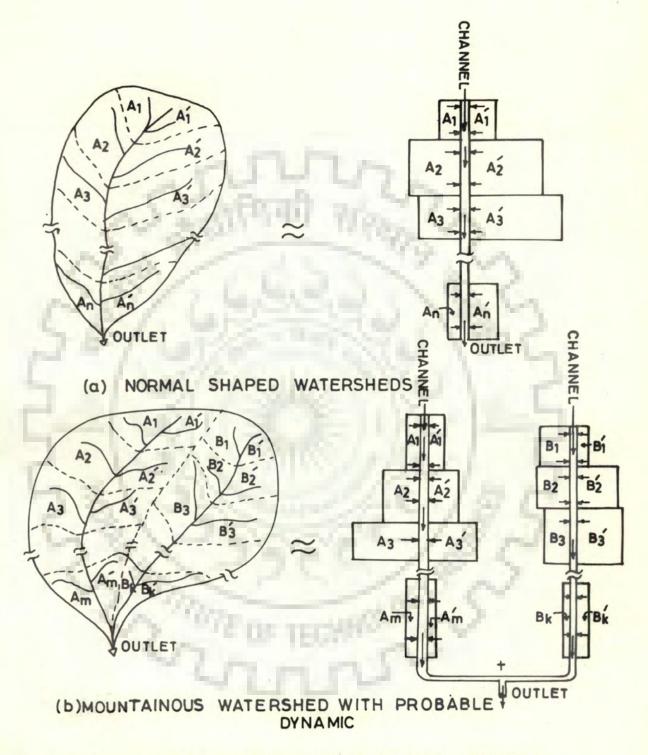

The main features of the above mentioned two categories of the models are briefly described in the following sections.

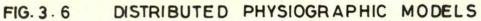
3.9.1 Lumped Physiographic Models

These models are characterized by a single main channel of length equal to that of the main drainage on the watershed. The contributing watershed on the two sides of the channel forms the two surface planes of this channel. If the main drainage is located nearly in the centre, the two surface planes may be equal in sizes (Figure 3.5(a)). The contributing surface planes are assumed as rectangular. The average values of the physiographic parameters (slopes i.e. overland and channel, Roughness etc.) are considered. The overland planes account for the total drainage area of the watershed.

In many cases, the main drainage may not be centrally located in the watershed. In such cases, the contributing watershed areas on the two sides may differ significantly (Figure 3.5(b)). For such cases the physiographic models may have unequal widths of the two overland rectangular planes on the two sides of the channel. Both categories of the lumped physiographic models have been used in this work.

In general, the lumped parameter physiographic models are pro to establish the model parameters which may be fitted into the distributed parameter models which are best suited for watershed physiography.




FIG. 3.5 LUMPED PHYSIOGRAPHIC MODELS

3.9.2 Distributed Physiographic Models

The lumped physiographic models discussed in the previous section, assumed average conditions of all the physiographic parameters related to the overland planes as well as the channels. In case of typical watersheds which may be a part of mountainous areas, agricultural lands, with varied land uses etc., the assumption of lumped approach may not be realistic. Also, approximation of the watershed area through the two rectangular planes will not take into account the shape of the watershed accurately. For this purpose watershed may be divided into number of subareas (6 or preferably more than that) keeping in view the overland drainages and their contributions to the channel system. Each subarea element is schematized by the two overland planes contributing to the channel located in between. The contributing overland planes may be unequal in sizes but are assumed to be rectangular in shapes. For a single main drainage, the schematic representation of the watershed physiography for a natural shaped watershed is given in figure 3.6(a). The cascade of elements (each element consisting of the two overland planes and a channel in between) thus represents the entire watershed and the watershed physiography is as closely followed as possible.

In case of hilly watersheds, parallel drainages are frequently found. In such cases, the main drainage channels are identified. Keeping in view, the channel system and the drainage patterns, their subareas are delineated. In the schematic representation, a watershed with two parallel main drainage has been shown in figure 3.6(b). Each drainage is represented by a cascade thus resulting into two parallel cascade systems

contributing to the outlet. As discussed earlier, each element of the cascade will consist of two overland planes (may be unequal in sizes) contributing to the channel.

This is to remark that if the number of parallel drainages is restricted to two only, parameter estimaion through a lumped system may work well. However, if the number of parallel drainage exceeds (3 or more than that) estimation of physiographic parameter through the lumped physiographic model may not be realistic. It is due to the fact that the lengths of overland plane will be at much variance than what they eixst in practice. Therefore, parameter estimation in such cases has to be obtained through the distributed physiographic model as adopted for the analysis.

As discussed in Section 3.9 for the application to the proposed physiographic models of the KW theory, it is necessary to have the required information about the initial and the boundary conditions.

3.9.3 Initial and Boundary Conditions

In cases of lumped as well as distributed systems, for the application of KW theory, the three computational schemes discussed in Section 3.8 are to be applied. These explicit finite difference methods will require initial and upstream boundary informations for the overland as well as the channel flows.

3.9.3.1 Initial conditions

The present work is aimed at applying the KW theory to some of the typical small watersheds located in different regions of India through the proposed physiographic model to ascertain their general applicability. The stream pattern in these watersheds is generally emphameral. No appreciable base flows are found in these watershed. Thus, the channel remain dry prior to the onset of the storm as well as after the storm event. Therefore, the initial conditions of the channel for all the lumped as well as for the distributed systems are described as under :

$$Q(x, 0) = 0$$

A(x, 0) = 0
for all x ... (3.63)

For the overland flows, the initial conditions refer to the depth of surface runoff at the instant t = 0 i.e. the instance when the rainfall excess just starts generating on the surface. So, the initial conditions applicable to both the types of the physiographic models (lumped and distributed) will be as below :

$$q(x,o) = 0$$

 $y_0(x,o) = 0$ for all x ... (3.64)

3.9.3.2 Boundary conditions

In the proposed physiographic models (lumped and distributed), the computational schemes discussed in Section 3.8 utilize only the upper boundary conditions. Since the watershed is bounded by the 'divide' no flow across the divide is possible. Therefore, the upstream boundary conditions for the channel and the overland components are defined as under :

For channel flow :

$$\begin{array}{c}
Q(o,t) = 0 \\
A(o,t) = 0
\end{array}$$
for all t
$$\begin{array}{c}
\dots (3.65) \\
(3.65) \\
(3.66) \\
y_{0}(o,t) = 0
\end{array}$$

3.10 COMPUTER PROGRAMS

For the physiographic models discussed in Section 3.9, the KW theory application was carried through the computational schemes described in Section 3.8. The computer programs for these applications were developed in FORTAN IV for the main frame computer (DECSYSTEM-20). The details of the programs are given in Appendix - I.

DeVries and MacArthur (1979) gave illustrative examples for the solution of finite difference applications to KW models. This data was used for the verification of the computer programs prepared and used in this thesis. A comparison of computed results with the illustrative examples of DeVaries et al., (1979) is given in Table A-1 of Appendix - I. The two results are in close agreement and this suggests and proves the correctness of the programs prepared and used in this work. The computer programs were run for the available data of the four test watersheds located in different parts of India. A brief description of these test watersheds and availability of data is described in the following chapter.

CHAPTER - IV

WATERSHEDS UNDER STUDY AND AVAILABILITY OF DATA

4.1 INTRODUCTION

In developing countries, financial constraints put serious limitations on collection and compilation of detailed hydrologic Non-availabiliy of equipments, technical personnels and data. other facilities also adversely affect this programme. Because of the high expenditures involved, the data collection programme of small watersheds suffers the maximum, as the first priority normally goes to the problems relating to basin hydrology. India being a developing country with limited financial resources is also not an exception to it. Thus, the desired detailed data for the hydrologic studies of small watersheds are not easily available even for the problematic watersheds. Nonetheless, as discussed in Chapter-I, many a times small watersheds do pose threats and are responsible for major communication disruptions. Therefore, there is a need to study the runoff mechanics of small watersheds more carefully and to develop suitable methodologies or models best suited for the prevailing conditions.

The Ministry of Railways, Government of India (GOI) identified a semi-mountainous region in the midst of the 'Plateau of Decccan' which produced quick and varied runoff responses to the rainfall events. The flash floods so produced pose dangers to the numerous culverts and bridges of the railways which are located in this region. Consequently, need was felt and three small test watersheds were identified where short durationed rainfall and runoff data of major storm events were collected for in-depth study of the mechanics of the runoff generation. These bridges are identified as Bridge Nos. 319, 317 and 719. Also, the hydrologic data for a small test agricultural watershed, named as Kachwa Watershed, was available from a doctoral thesis (Singh, O.P. (1980)). This watershed was alkaline in nature and had undergone reclamation through the treatment of gypsum. It is located in the nearby flat lands of the State of Haryana. A brief description of three test watersheds of the Ministry of Railways, GOI as well as of the Kachwa watershed is presented in the following sections.

4.2 PHYSIOGRAPHIC DETAILS OF WATERSHEDS OF RAILWAY BRIDGE NOS. 319, 317 AND 719

The small watersheds of Railway Bridge Nos. 319 and 317 selected for this study are situated in Bangalore district of Karnataka State of India. These bridges are located on Arsikere-Bangalore Section of the Indian Railways. The index maps giving details of the two watersheds are given in figures 4.1 and 4.2. The Bridge No. 719 is situated on the Jalarpet-Bangalore Sections of the Indian Railways. The index map giving details of the watershed of this bridge is given in figure 4.3. Some important features, general information and the physiographic data as extracted from the available records and the topographic map of these bridges are given in Table 4.1.

4.2.1. The Storm Rainfall Data of Bridge Nos. 319, 317 and 719

No recording raingauges were installed on any of the three watersheds. Since the watersheds are small, one non-record-

			CT Pro-	· · · · · · · · · · · · · · · · · · ·	
S1.	Particulars	12	124	Units	
No.	Tarticulars	21.00	Br. No. 319	Br. No. 317	Br. No. 719
1	2	-	3	4	5
1.	(a) Name of the zone(b) Name of the subzone	68	Deccan Plateau 3i	Deccan Plateau 3i	Deccan Plateau 3i
2.	Geographical location	(i)	Longitude(appr) 77 ⁰ 10' East	77 ⁰ 11' East	78 ⁰ 16' East
	7 1 30	(ii)	Latitude (appr) 13 ⁰ 18' North	13 ⁰ 19' North	12 ⁰ 52' North
3.	Terrain		Hilly	Hilly	Semi Hilly
4.	Shape of the basin		Oblong	Fan	Normal
5.	Climate		Humid	Humid	Humid
6.	Type of soil	(i)	Rocky	Rocky	Rocky
	121-	(ii)	Red Earth	Red Earth	Red Earth
7.	Land use	Partly	Dry cultivation	Dry cultivation	Dry cultivation
8.	No. of raingauge station		1	1	1
9.	No. of discharge location		1.00.2	1	1
10.	Altitude (average elevation from	MSL)	833 metre	833 metre	747 metre
11.	Watershed area		82.0 hectare	140.0 hectare	1400.0 hectare
12.	Length of the main channel(longe	st)	1650.0 metre	1475.0 metre	7200.0 metre
13.	Total average annual rainfall		500-1000 (mm)	500-1000 (mm)	500-1000 (mm)

TABLE 4.1 : General Information and Salient Features of Watershed of Railway Bridge Nos. 319, 317 and 719. ing rain gauge was installed for registering the storm rainfall data. The period of the data collection for the watersheds of these bridges are given in Table 4.2.

TABLE 4.2 : Period of Data Collection and Number of Storm Event for Each Watershed (Br. No. 319, 317 & 719)

Bridge No.	From	То	Onward	No. of Storm Events
319	1962	1964	1988	10
317	1961	1964	0.00	8
719	1964	1966		8

For these storms, the rainfall readings were usually taken at an interval of 30 minutes. This was often reduced to 15 minutes or 10 minutes in some cases. The original record was made available in FPS units which was converted to metric units. The storm rainfall data thus available for this study is given in Appendix - II-A, B and C.

4.2.2 The Runoff Data of Bridge Nos. 319, 317 and 719

The stage-discharge relationships (G.D - curves) were established for the main channels at the outlets (i.e. bridge sites). The flood discharge data was made available at intervals ranging between 10 to 30 minutes. Enquiries revealed that during working hours the current meter readings were taken and the discharges were computed. But during odd hours, only the channel stages were recorded. In such cases, the runoff was read off from stagedischarge relationships. The runoff data of various storm events is given in Appendix - II-A, B and C.

4.3 PHYSIOGRAPHIC DETAILS OF KACHWA WATERSHED

The Kachwa agricultural watershed (Figure 4.4) is situated near the Cental Soil Salinity Research Institute (CSSRI), Karnal in the Haryana State of India. It has a gross commanded watershed area of 1073.0 hectares. Its geographical location is at a Latitude 29°43' North and Longitude 76°50' East. The average elevation is 245 metres above the Mean Sea Level (M S L). The general average slope of the watershed was found to be 0.12 per cent. The maximum length of the watershed is 6.0 km. As a result, the terrain of the watershed is much flatter. The Kachwa watershed went under reclamation during 1974 to 1979. Prior to onset of the monsoon selected areas of the watershed were bounded and treated with gypsum. Therefore, such areas did not participate in the runoff process. In the subsequent rainy seasons, the treated lands were put under paddy cultivation to expedite the process of reclamation. By the year 1977, nearly 95 per cent land had been reclaimed and was put under paddy cultivations. This way the data was collected during the period 1977 onwards belonged primarily of an agricultural watershed with paddy fields.

In this watershed, the average yearly rainfall is about 740 mm. Out of which approximately 80 per cent of rainfall is normally received during the monsoon periods (June to September). The soil of this watershed is alluvial in nature. The texture of soil varies from sandy loam to silty clay loam.

4.3.1 The Availability of Data of Kachwa Watershed

The Kachwa watershed was gauged by the scientists of CSSRI, Karnal. The rainfall was measured with a non-recording raingauge as well as recording raingauge (the Siphon type). In the three years (1977-79) periods, the rainfall-runoff data was collected for two storm events each for the months of July as well as August except 1979. Thus,/data of five storm events were available at smaller time intervals (i.e. in multiples of 15 minutes). The corresponding discharge data at hourly intervals were recorded for all the above mentioned storm events. Since the topography of the watershed is nearly flat, therefore, the time bases of the hydrographs were lengthy and these varied from sixty four hours to seventy hours or more.

The rainfall-runoff records of the five storm events is given in Appendix - II-D.

During the period 1977 and afterwards the reclamation process continued. As a result of it some areas did not participate and therefore, yearwise details of net area participating in the runoff process are given in Table 4.3.

Table 4.3 : Details of Net Area Participating in the Runoff Process (Kachwa Watershed)

0.1		Total Bounded area area (ha) (ha ²)		Total area parti- cipating in the runoff process (ha)	% of total area participating in the runoff process		
1	2	3	4	5(=3-4)	6		
1	1977	1073.0	56.60	1016.40	94.73		
2	1978	1073.0	45.44	1027.56	95.77		
3	1979	1979 1073.0 -		1073.00	100.00		

4.4 GENERAL REMARKS

In the past, the general practice in India was that hydrological data collection formed a part of time bound (generally three years and exceptional cases five years) research programmes which were taken up by various agencies. Therefore, as discussed in the introductory remarks of this chapter, limited availability of detailed hydrologic data is the biggest constraints for the development and testing of sophisticated techniques. For the application of KW theory, short durationed rai nfall data study is needed. For most of the natural watersheds the rainfall data was available either by daily basis or in multiples of hours. With difficulty short duration rainfall data in multiples of 15 minutes could be procured through the Ministry of Railways. The data collected by the Ministry of Railways was primarily through non-recording gauges. Strictly speaking, it can not be considered to be very scientific or sophisticated. But no other alternatives were insight. All cares were taken to check the general consistencies with regard to the rainfall data and the corresponding flood data. However, a strict analysis pertaining to these aspects was not possible, keeping in view the limited number of storm events which were available. This data happens to be the only source of, for carrying out the research of the type as undertaken in this study.

Within the framework of this limitation, this study had to be taken up and the application of KW theory to some typical small watersheds through the different physiographic models is discussed in the following chapter.

FIG. 4.1 THE INDEX MAP OF BRIDGE NO.319

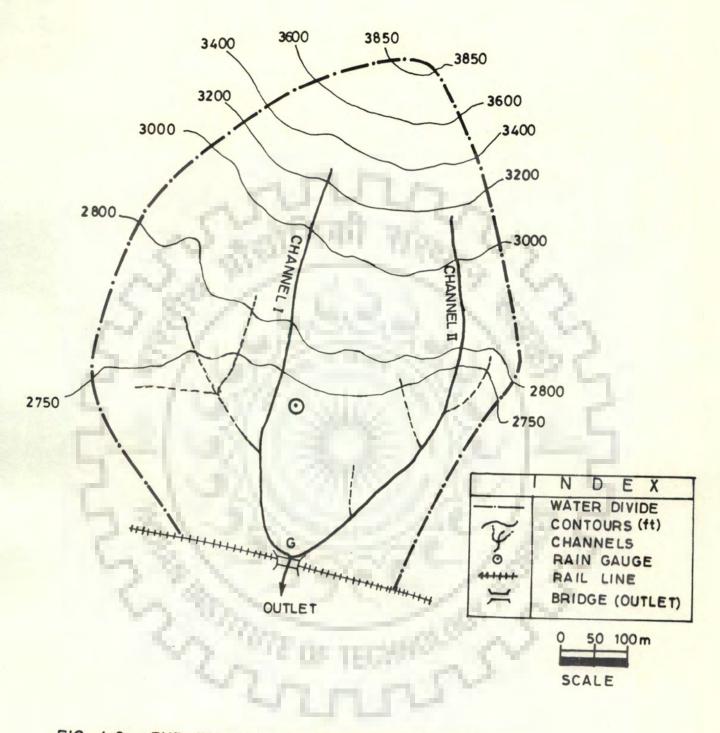


FIG. 4.2 THE INDEX MAP OF BRIDGE NO. 317

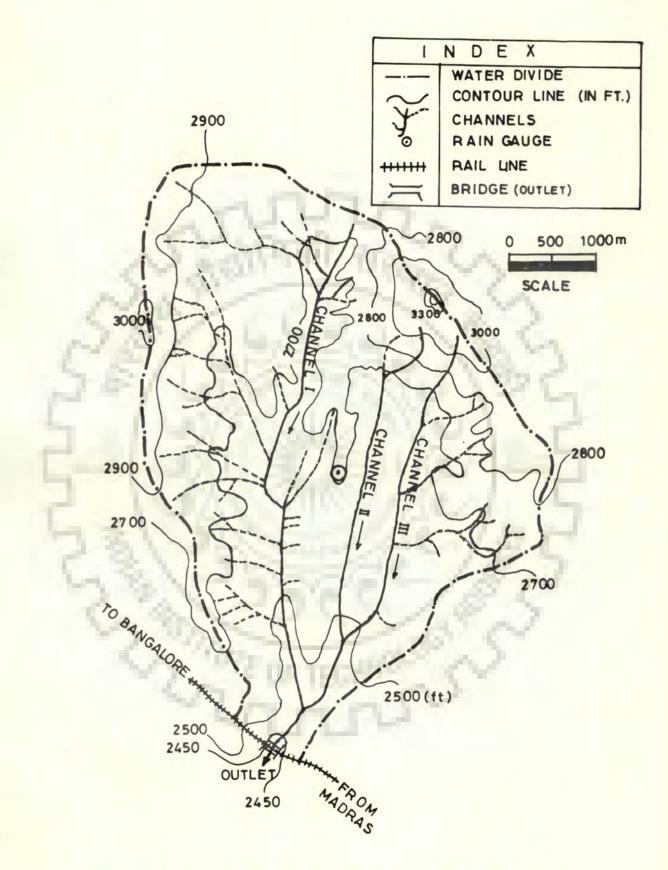


FIG. 4.3 THE INDEX MAP OF BRIDGE NO. 719

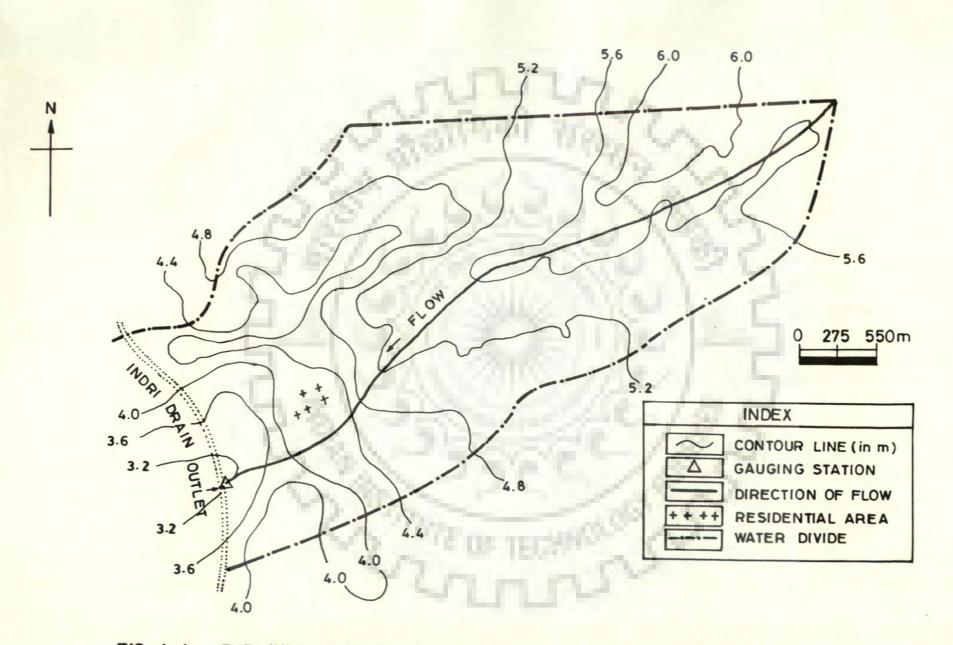


FIG. 4.4 THE INDEX MAP OF KACHWA AGRICULTURAL WATERSHED

CHAPTER - V

MODEL APPLICATION TO GAUGED SMALL WATERSHEDS

5.1 INTRODUCTION

Surface hydrologic models proposed for the application of KW theory, and the various finite difference schemes for solving the mathematical formulations have been discussed in details in Chapter - III. The availability of data on four test watersheds was described in Chapter - IV. In the current chapter, application of these models onto the four test gauged watersheds will be discussed. As a first step towards it, the procedures adopted for estimating the physiographic parameters, their sensitivity analysis (in general) as well as the rainfall excess computations are described.

5.2 ESTIMATION OF PHYSIOGRAPHIC PARAMETERS

Following is the list of physiographic parameters which are involved in the KW model applications.

(i) Overland slope, (ii) Channel bed slope,
 (iii) Channel roughness, (iv) Channel geometry
 (Sectifon), (v) Overland roughness, (vi) Watershed geometry.

Procedures of estimation of the first four parameters are explained in the forthcoming sections. The overland roughness has to be computed for each watershed by trial and is explained in the section thereafter. The watershed geometry as explained in Sectiion 3.9, is taken care of keeping in view the type of physiographic model being handled i.e. lumped or distributed.

5.2.1 Determination of Overland Slope

The overland slope (S_0) for a watershed has been calculated by using Horton's formula (Viessman et al., 1977) which is given as under :

$$S_{o} = \frac{N_{e} \Delta h. \sec \theta}{1} \qquad \dots \qquad (5.1)$$

The notations, as shown in figure 5.1, are explained below.

- N_e = Total number of contour intersections with the horizontal and vertical grid lines
- ∆h = The contour interval (m)
 - 1 = The total length of grid line segments in metres
 (horizontal and vertical)
- θ = The angle between a normal to the contours and the grid.

The term Sec θ is generally dropped to simplify the computations. Accordingly, overland slope (S₀) is written as below (Linsley et al., 1949):

$$S_{o} = \frac{N_{e} \cdot \Delta h}{1} \qquad \dots \qquad (5.2)$$

In this case, separate values of average slopes for the horizontal and vertical directions are computed. The mean overland slope (S_o) is computed by taking an average of these two values.

5.2.2 Determination of Channel Slope

As shown in figure 5.1, the channel slope (S) is taken as a ratio of the relief (Δ h) (i.e. the elevation difference between the two reference points of the channel) with the channel length (L) and can be written as below :

Average channel bed slope, $S = \frac{\text{Total relief } (\Delta h)}{\text{Total length of the channel } (L)}$

... (5.3)

In lumped configurations, one of the reference point is the channel outlet whereas the other is marked by the remotest upstream end of the channel.

5.2.3 Channel Roughness Coefficient

In the KW theory, channel roughness coefficient (n) is one of the important parameters for routing the flows through the channel. In this work, the Manning's roughness is used as the channel roughness coefficient. From the available description of field investigations (relating to general physiography) its value is picked up from the published records (Chow, 1959).

5.2.4 Channel Geometry

For all the watersheds, the cross sections of the main drainage channels were found to be approximately trapezoidal in shape. Therefore, in this work, the main channel cross section for the adopted physiographic models (Section 3.9) has been considered as trapezoidal in nature. The channel bed width (B) is taken as the average value of the channel bed widths at different sections. Similarly, the side slopes have also been taken

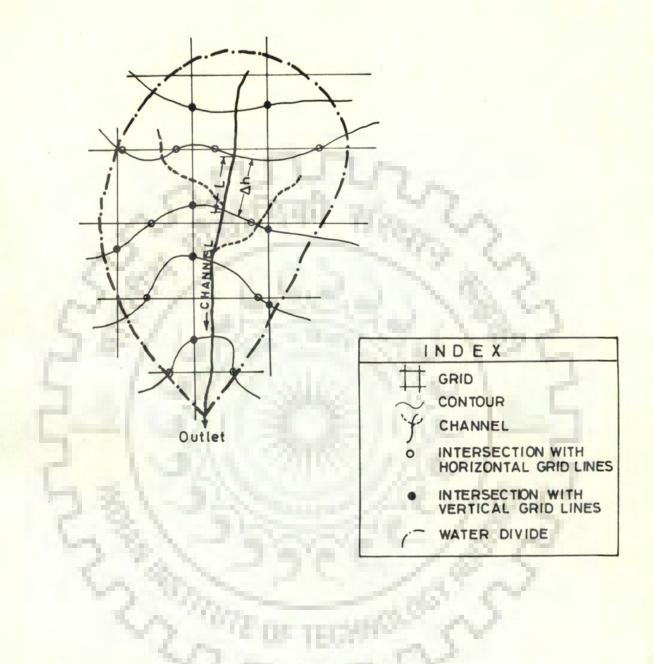


FIG. 5.1 DETERMINATION OF MEAN OVERLAND AND CHANNEL SLOPES

as the average of their values as measured at different section. In case of distributed models, representative values of channel bed widths were taken at the most upstream part of the watershed and these were subjected to some incremental increases for the down stream sections of the channel.

This is to remark that the impact of these physiographic parameters onto the watershed response in general, can better be ascertained through a 'parameter sensitivity analysis'. Some general aspects of this analysis are taken up in the next section.

5.3 SENSITIVITY ANALYSIS OF PHYSIOGRAPHIC PARAMETERS

It is of common knowledge that a number of physiographic parameters interact with the input rainfall function to produce the response i.e. the runoff. This interacton makes the rainfallrunoff process quite complex in nature. In different watersheds, the role of different physographic parameters i.e. the shape, soil type, land use, soil cover etc. may be different. Therefore, there is a need to conduct a sensitivity analysis for various physiographic parameters to ascertain the most effective ones.

A general mathematical treatment for the sensitivity analysis was suggested by McCuen (1973) in the following form:

 $s = \frac{\partial F_0}{\partial F_i} = [f(F_i + \Delta F_i; F_j, j \neq i) - f(F_1, F_2, \dots, F_n)] / \Delta F_i \dots (5.4)$ where $F_0 = f(F_1, F_2, F_3, \dots, F_n)$ and $i, j = 1, 2, 3 \dots n$.

The right hand side of above equation indicates that the sensitivity of F_0 , to the change in F_i can be derived by incrementing F_i and computing the resulting change in the solution of dependent function F_0 .

... (5.6)

An inspection of KW equations for its overland phase (Equations 3.9 and 3.15) and for the channel phase (Equations 3.16 and 3.22) suggests that the two dependent functions i.e. discharge per unit width (q) and discharge (Q) (at the outlet) will be the functions of the following physiographic parameters.

$$q = q(N, S_0, t)$$
 ... (5.5)

and

$Q = f(N, S_0, n, S, B, Z, y_c, t)$

Keeping in view the inter-dependence and inter-relation ships of the parameters involved, no direct method of differentiation can be used in an explicit manner to satisfy the equation (5.4). Therefore, in this study, the method of perturbation is used to assess the impact of individual parameters on the response function i.e. the discharge. In this method, one parameter is varied while the others are kept constant. The various response functions values so obtained become an index for the effectiveness of the parameter.

5.4 RAINFALL EXCESS COMPUTATIONS

A study of the rainfall and runoff records of the four test watersheds reveals that in general a time lag exists between the starting timings of the rainfall and the runoff. In such cases, the rainfall that had fallen in between this period is assumed as 'initial loss'. The 'effective rainfall duration' is thus considered that period of storm rainfall which had actually contributed towards runoff. Since all the four watersheds are small in size, therefore, the physiographic characteristics relating to the soil type, landuse and soil cover have been assumed to be uniform. As reported in Chapter - IV, in each test watershed one raingauge was installed. Therefore, the point rainfall data recorded at this rain gauge was taken as the representative value of the input rainfall function for the watershed.

For the three watersheds i.e. of the Railway bridge Nos. 319, 317 and Kachwa watershed, the field drains and main channel happened to be quite shallow and ground water table was found to be deep. Therefore, contributions from the ground water in the form of base flow (or interflow) are nil. Accordingly, the runoff in these three watersheds is totally derived from the rainfall. The watershed area of Bridge No. 719 is some what bigger (= 1400 ha) and traces of water were always seen in the main channel. Therefore, in this watershed, the base flows were accounted for to compute the 'Direct Runoff Hydrographs' (DRH). A linear distribution of base flows was considered between the 'rising point' and the 'point of cessation' in the observed hydrograph.

No detailed infiltration capacity curves for the storm events were available. Therefore, \emptyset -index approach (i.e assumption of constant rate of abstraction) has been adopted for the computation of rainfall excess distribution.

The KW models as reported in Chapter - III have been applied onto the available hydrologic data recorded on the four watersheds (Chapter - IV). To maintain logical sequences, the proposed model is first applied to the watershed of Bridge No. 319 which has much simpler physiography with a single main channel. Subsequently, brief descriptions of model applications to the other three watersheds are taken up.

5.5 APPLICATION OF PROPOSED MODEL ON TO THE WATERSHED OF BRIDGE No. 319

In order to apply the KW models to the watershed of Bridge No. 319, computations relating to the following would be necessary.

- (i) rainfall excess, and
- (ii) physiographic parameters and their sensitivities.

As discussed in Section 5.4, the rainfall excess computations were carried out after giving due consideration to the initial loss. Following the \emptyset -index approach, the time distributions of rainfall excess for all the storm events are computed. Their values are given in Appendix-II-A alongwith the data.

5.5.1 Estimation of Physiographic Parameters (Bridge No. 319)

The topographic details of this watershed are shown in figure 4.1. In this natural watershed, only one main drainage channel exists that too in the central part of the watershed. As discussed in Section 3.9.1, lumped physiographic model is used to compute the model parameters for the application of KW theory. For this purpose, a lumped model of the type given in figure 3.5(a) is adopted for the estimation of parameters.

The schematic representation of this model is shown in figure 5.2. The equivalent watershed has been obtained by dividing/ the total drainage area onto the two sides of 1650 metres long main channel. As discussed in Section 5.2, the physiographic parameters (namely, the slope, channel section, roughness etc.) were computed. the computed values of the physiographic parameters are given in Table 5.1.

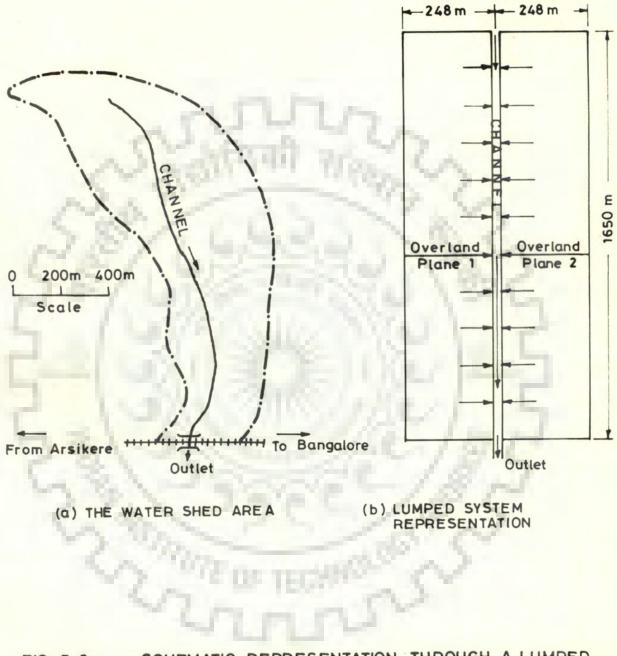


FIG. 5.2 SCHEMATIC REPRESENTATION THROUGH A LUMPED MODEL (BRIDGE NO. 319)

Central Library University of Roorker

TABLE 5.1 : The Lumped Physiographic Parameter Values (Bridge No. 319)

S1. No.	Particulars	Unit
(1)	(2)	(3)
1	Area	82.0 hectares
2	Overland (Plane) :	1 1
	(a) Average length (each side)	248.0 metres
	(b) Average slope (each side)	0.092
3	Channel :	015
	(a) Average length	1650.0 meters
C.	(b) Average slope	0.072
	(c) Average roughness	0.035
	(d) Average bed width	3.0 meters
	(e) Averag side slope	2.5 H : 1V
	and the second and	2
	C LD IEUN	1
	~ LD = D3	

The KW routing parameters α_k and m_k (as dicsussed in details in Section 3.5.1) have been computed for three representative depths of flows (y_c) as 0.25 m, 0.55 m and 0.75 m. This is to mention that for the computation of these parameters only two values of depths are needed along with other related parameters. Therefore, out of these three values paired sets were taken for the computations α_k and m_k and their average values have been used in the computational schemes.

5.5.2 The Sensitivity Analysis of Physiographic Parameters (Bridge No. 319)

In Section 5.3, theoretical aspects of sensitivity analysis of model parameters were discussed. Following the method of perturbaton, the sensitivity analysis was conducted with respect to the following physiographic parameters.

- (a) In Overland flow phase (i) Slope (ii) Effective roughness
- (b) In channel flow phase (i) Slope, (ii) Manning's roughness, (iii) bed width, (iv) Side slope and (v) depths.

To compute the responses through the application of KW models, the computational scheme (I & II) is preferred. It is because stability and convergence of the scheme remain moreor-less ensured through a proper selection of smaller values of time and space steps.

It is proposed to conduct this analysis with a time step of 2.5 minutes and space step of 4.0 metres for the overland flow and 15.0 metres for the channel flow. However, a detailed analysis to ascertain the ranges over which this scheme remains stable as well as convergent has been carried out in the next section.

For the perturbation analysis, the values of physiographic parameters as worked out in Table 5.1 were varied over a wide range (50 to 150 per cent). The storm dated 5.8.64 is selected for this analysis because of its isolated nature, short duration (50.0 minutes) and nearly uniform intensity. The computations are carried out for a representative overland roughness value of 0.140. The computed values in the perturbation analysis are compared with the following parameters of the observed hydrograph for the flood event under consideration.

- (a) Peak discharge = 3.651 cumecs
- (b) Time to peak = 50.0 minutes, and
- (c) Volume = $117.69 \times 100 \text{ m}^3$

A close agreement in the computed and observed values of the volume of the runoff indicates that the computational scheme has taken care of nearly the entire runoff which is produced over the watershed.

The results of the senstivity analysis in respect of the bed width, side slope and depths of the channel are presented in Table 5.2(1), (ii) and (iii). Further, the effect of variations in channel slope and channel roughness are shown in Table 5.3(i) and (ii) respectiviely. A comparison, of computed hydrograph parameters with the observed parameters mentioned earlier, reveals that inspite of large variations in the parameter values (50 to 150 per cent), the differences in the response parameters were found to be quite marginal. This suggests that these physiographic parameters are not very sensitive, with regard to their influence on the hydrograph parameters.

In Table 5.4, computed values of hydrograph parameters for different overland slopes and the overland roughness are given. Also as shown in figures 5.3 and 5.4, influence of these parameters on the peak discharge and the time to peak was found to be substantial. This led to a conclusion that the overland parameters namely the slope and roughness were very sensitive. The overland slope has been computed through a vigorous analysis as mentioned in Section 5.2.1 by selecting small contour intervals 3 m (10 ft) to 15 m (50 ft). Therefore, all care should be taken for a proper accounting of the overland roughness values.

Through various sets of calculations, efforts to determine one single represnetative overland roughness value did not meet with success. Therefore, trial and error procedure was adopted to establish the following :

(i) Overland roughness values, and

(ii) Suitability of the two computational schemes (discussed in Section 3.8.2 to 3.8.4).

Detailed discussions and analysis into these aspects is reported in the following sections.

5.5.3 Estimation of Effective Overland Roughness (Bridge No. 319)

As reported in the previous section, no single unique value of the effective overland roughness could successfully be determined which could have produced well matched hydrographs for various storm events. Therefore, following the trial and TABLE 5.2 : Sensitivity of (i) Channel Bed Width, (ii) Channel Side Slope and (iii) Channel Depths (Bridge No. 319, Storm dated : 5.8.1964)

51.	Channel bed width	Percen-	Peak	Time to	Volume
10.	(m)	tage (%)	(m ³ /s)	peak (min)	(m ³) x 100
1)	(2)	(3)	(4)	(5)	(6)
	A		~ 0	Sec. 1	
1	1.50	50.0	3.650	42.5	113.78
2	2.25	75.0	3.646	42.5	113.73
3	3.00	100.0	3.642	42.5	113.66
4	3.75	125.0	3.640	42.5	113.64
5	4.50	150.0	3.637	42.5	113.61
-	A STAT	- Aller		1	20
(ii)	Effect of Channel Si	de Slope	e :		2
_		-		-	-
	Channel Side Slope		(1.)	(=)	(6)
(1)	(2)	(3)	(4)	(5)	(6)
-		(3)	3.643	42.5	113.670
1	1.25			121	-
1	1.25 1.88	50.0	3.643	42.5	113.670
1 2 3	1.25 1.88 2.50	50.0 75.0 100.0	3.643 3.643	42.5 42.5	113.670 113.668
1 2 3 4	1.25 1.88 2.50 3.12	50.0 75.0	3.643 3.643 3.642	42.5 42.5 42.5	113.670 113.668 113.662
1 2 3 4	1.25 1.88 2.50	50.0 75.0 100.0 125.0	3.643 3.643 3.642 3.642	42.5 42.5 42.5 42.5	113.670 113.668 113.662 113.661
1 2 3 4 5	1.25 1.88 2.50 3.12 3.75	50.0 75.0 100.0 125.0 150.0	3.643 3.643 3.642 3.642	42.5 42.5 42.5 42.5	113.670 113.668 113.662 113.661
1 2 3 4	1.25 1.88 2.50 3.12 3.75) Effect of Channel 1	50.0 75.0 100.0 125.0 150.0	3.643 3.643 3.642 3.642	42.5 42.5 42.5 42.5	113.670 113.668 113.662 113.661
1 2 3 4 5	1.25 1.88 2.50 3.12 3.75	50.0 75.0 100.0 125.0 150.0	3.643 3.643 3.642 3.642	42.5 42.5 42.5 42.5	113.670 113.668 113.662 113.661
1 2 3 4 5 (iiii (1)	1.25 1.88 2.50 3.12 3.75) Effect of Channel 1 Channel Depths (m) (2)	50.0 75.0 100.0 125.0 150.0 Depths :	3.643 3.643 3.642 3.642 3.642	42.5 42.5 42.5 42.5 42.5	113.670 113.668 113.662 113.661 113.659
1 2 3 4 5 (iiii (1) 1	1.25 1.88 2.50 3.12 3.75) Effect of Channel 1 Channel Depths (m) (2) 0.25, 0.30 and 0.40	50.0 75.0 100.0 125.0 150.0 Depths :	3.643 3.643 3.642 3.642 3.642	42.5 42.5 42.5 42.5 42.5	113.670 113.668 113.662 113.661 113.659 (6)
(iii	1.25 1.88 2.50 3.12 3.75) Effect of Channel 1 Channel Depths (m) (2)	50.0 75.0 100.0 125.0 150.0 Depths : (3)	3.643 3.643 3.642 3.642 3.642 (4) 3.642	42.5 42.5 42.5 42.5 42.5 (5)	113.670 113.668 113.662 113.661 113.659 (6) 113.665

i) Effect of Channel Bed Width;

TABLE 5.3 : Sensitivity of (i) Channel Slope and (ii) Channel Roughness (Bridge No. 319, Storm dated : 5.8.1964)

(1)	(2)	(3)			
		()/	(4)	(5)	(6)
	000	for of	24	0.	
1	0.036	50.0	3.605	42.5	113.40
2	0.054	75.0	3.630	42.5	113.58
3	0.072	100.0	3.642	42.5	113.66
4	0.090	125.0	3.649	42.5	113.75
5	0.108	150.0	3.652	42.5	113.80
	1 40/27	- Hic		- 14	- C
1					
(ii) Effe	ect of Channel R	oughness:		41	1. 1

(1) Effect of Channel Slope :

(1) C	hannel Roughnes (2)	s (3)	(4)	(5)	(6)
1	1.00 0		1	18	2
1	0.0175	50.0	3.677	40.0	114.0
2	0.026	75.0	3.655	40.0	113.83
3	0.035	100.0	3.642	42.5	113.66
4	0.044	125.0	3.621	42.5	113.50
5	0.0525	150.0	3.601	45.0	113.35

TABLE 5.4 : Sensitivity of (i) Overland Slope and (ii) Overland Roughness (Bridge No. 319, Storm dated : 5.8.1964)

(1) Effect of Overland Slope :

Sl. No.	Overland slope	Percen- tage (%)		Time to peak (min)	Volume (m ³) x 100
(1)	(2)	(3)	(4)	(5)	(6)
1	0.046	50.0	3.329	50.0	111.16
2	0.069	75.0	3.500	45.0	112.79
3	0.092	100.0	3.642	42.5	113.662
4	0.115	125.0	3.756	40.0	114.22
5	0.138	150.0	3.849	37.5	114.62
	- 1 - S - 1				

(ii) Effect of Overland Roughness :

(1)	(2)	(3)	(4)	(5)	(6)
1	0.070	50.0	4.315	32.5	116.08
2	0.105	75.0	3.938	37.5	114.95
3	0.140	100.0	3.642	42.5	113.662
4	0.175	125.0	3.434	47.5	112.18
5	0.210	150.0	3.260	52.5	110.61

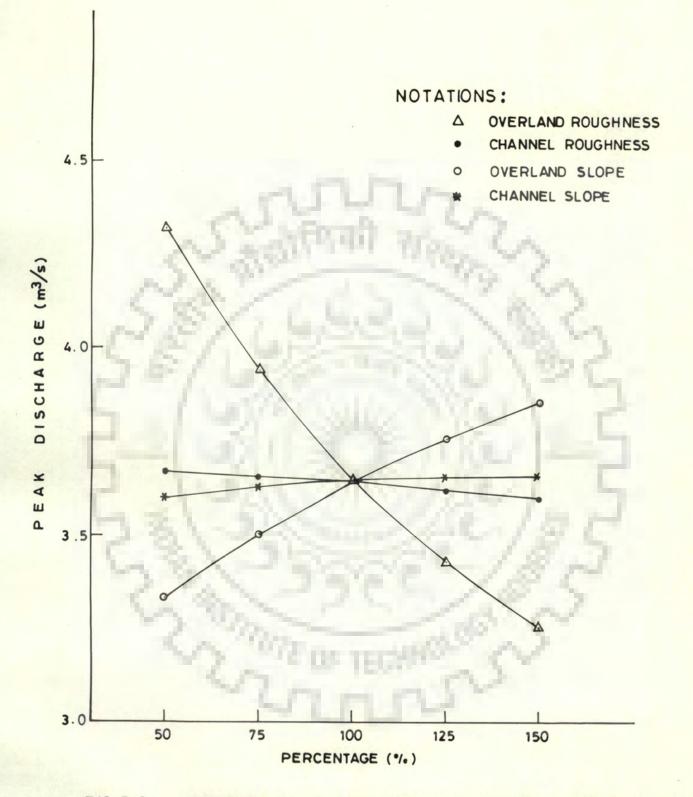


FIG. 5.3 SENSITIVITY OF OVERLAND AND CHANNEL ROUGHNESSES AND SLOPES w.r.t. PEAK DISCHARGES (BRIDGE NO. 319)

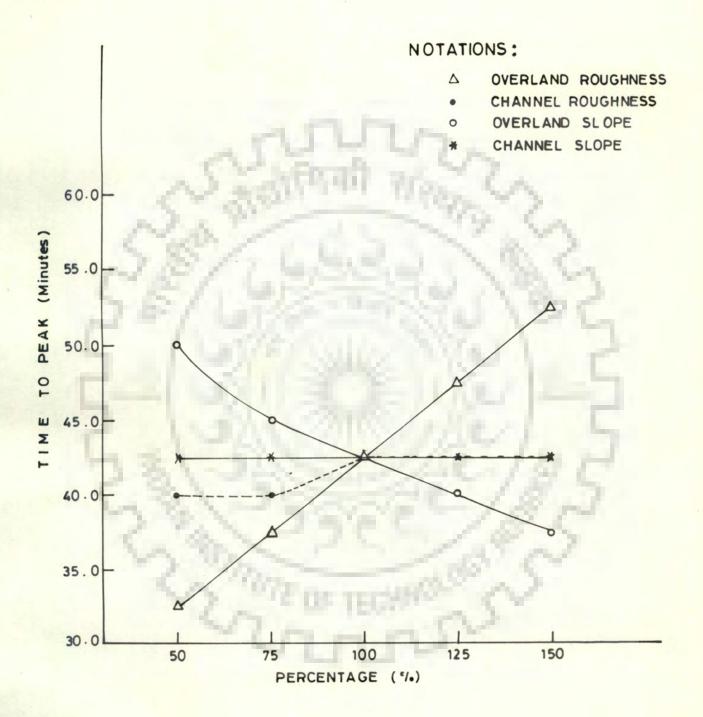


FIG. 5.4 SENSITIVITY OF OVERLAND AND CHANNEL ROUGHNESSES AND SLOPES w.r.t. TIME TO PEAKS (BRIDGE NO. 319)

error procedure, the exact value of effective overland roughnesses were tried withiin a range of 0.05 to 0.450. The upper and the lower limits of this range have been chosen from the description of the topography and landuse of this watershed. As Singh (1975a) has concluded, "For optimizing and estimating parameters, there is no need to consider the entire hydrograph in constructing an objective function. If the model structure is representative of physical reality, a peak matching criterion may suffice to reproduce and predict the entire hydrograph". This criteria has been adopted in this analysis.

For all the 10 storm events, the values of the unique effectiive overland roughnesses were determined which produced well matched peak discharges. For this purpose, computational scheme (I & II) was used for applying the KW theory for very small values of time and space steps ($\Delta t = 2.5$ minutes, $\Delta x_{0} = 4.0$ m for overland and $\Delta x_{c} = 15.0$ m for channel). The lumped physiographic model (Section 3.9.1) was used for this case. The best suited computed effective overland roughnesses for the 10 storm events are givien in Table 5.5.

It may be seen from Table 5.5 that over the four monsoon months, the effective overland roughnesses varied from nearly 0.05 (for the months of July and October) to a very high value of 0.420 in the month of September. A plot of effective overland roughnesses Vs. time was tried and the same is reproduced in figure 5.5. The plot indicates a systematic rise and fall in overland roughness parameter values during the monsoon months. From this curve the ranges of the effective overland roughness coefficient values for the four monsoon months were found

TABLE 5.5 : Computed Effective Overland Roughnesses (Bridge No. 319)

S1. No.	Storm Date	Effective Overland	Peak Discharge (m ³ /s)			
	Storm Putt	Roughness (N)	Observed	Computed		
(1)	(2)	(3)	(4)	(5)		
	15 / L	Section in the section of the	7. 1 200			
1	14.10.62	0.052	9.405	7.980		
2	4.11.62	0.052	7.301	6.990		
3.	17.7.63	0.050	3.339	3.113		
4	7.10.63	0.106	1.500	1.500		
5	5.8.64	0.140	3.651	3.642		
6	7/8.9.64	0.380	4.471	4.500		
7	8/9.9.64	0.395	6.281	6.320		
8.	9.7.88	0.050	2.775	2.784		
9.	8.8.88	0.230	0.906	0.924		
10	11.9.88	0.420	5.891	6.130		
	- A - 175	and the second se	1000			

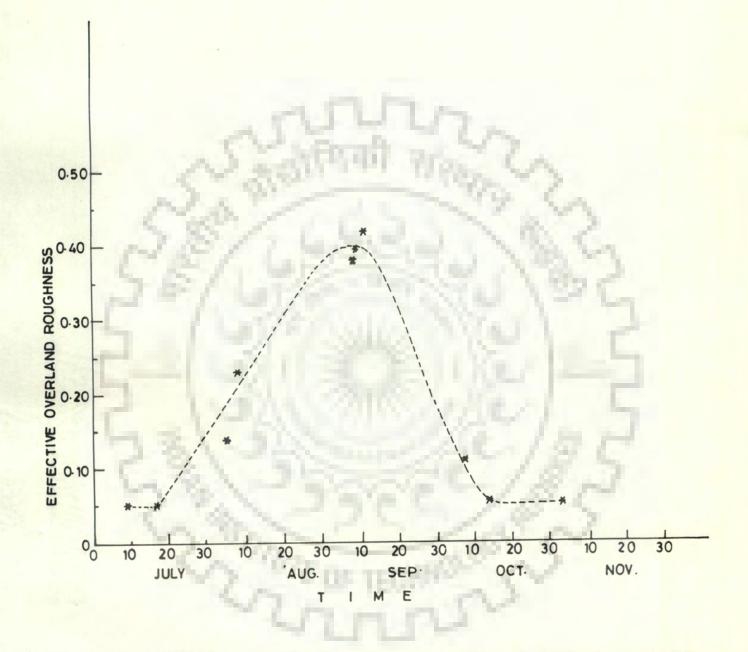


FIG. 5.5 VARIATION OF EFFECTIVE OVERLAND ROUGHNESS WITH TIME (BRIDGE NO.319)

TABLE 5.6 : Range of Effective Overland Roughnesses During the Four Monsoon Months (July to October)

(Bridge No. 319)

sl.	40.7	Range of Effective Ov	erland Roughnesses
No.	Months	From	To
(1)	(2)	(3)	(4)
		Sally Maria	1
1 -	July	0.050	0.150
2	August	0.150	0.375
3	September	0.200	0.420
4	October	0.052	0.200
200	Sec a		Contract Contract

(A)

out and the same are given in Table 5.6. Having identified the various physiographic parameters as well as the rainfall excess disitribution, it is now possible to verify the applicability and relative advantages and disadvantages of the computational schemes which are given in Sections 3.8.2 to 3.8.4.

5.5.4 Applicability of Different Computational Schemes (Bridge No. 319)

Initially three computational schemes were identified (Sectons 3.8.2 to 3.8.4). As already reported (Section 3.8) the schemes I and II happen to be complementary to each other. These are clubbed together and identified as Scheme (I & II). The other scheme was termed as Scheme III. The various physiographic parameters worked out in the previous sections, were determined by using scheme (I & II) for very small time and space steps (i.e. $\Delta t = 2.5$ minutes, $\Delta x_0 = 4.0$ m and $\Delta x_c = 15.0$ m). Validity of this criteria also needs confirmation. Further, there is a need to identify the ranges of the two step widths within which the schemes are to remain stable as well as convergent.

For this purpose, three storm events were selected for the analysis. One storm event dated 4.11.62 corresponds to the period having the lowest value of the effective overland roughness (i.e N = 0.052), whereas the second event of dated 5.8.64 belongs to the period of an effective overland roughness value as 0.140 (i.e. of medium order). The third storm event dated 7/8.9.64 corresponds to very large value of N (i.e. N = 0.380). The following three sets of computatiions were carried out to decide :

(i) optimal time step (At),

(ii) maximum overland space step (Δx_0) and

(iii) best suited channel space step (Δx_c)

over which the schemes are to remain stable and convergent.

In the first set of calculations several time stpes have been chosen, starting with a very small initial value of 2.5 minutes. The other values were taken as integer multiples of 2.5 minutes i.e. 5.0, 10.0, 15.0 and in one case 30.0 minutes. For these runs the space step length for the overland and the channel flows is kept fixed at 4.0 metres and 15.0 metres respectively. A comparison of observed and computed hydrograph parameters [i.e peak discharge (Q_p) , time to peak (t_p) and volume] for the two schemes along with the stability for the scheme (I & II) is shown in Table 5.7. It may be seen from this Table that the scheme (I & II) generally remains stable upto a time step 10 minutes for all the three storm events. Best convergence was seen for $\Delta t = 2.5$ minutes. Scheme III though stable did not converge satisfactorily even for a very small time step of 2.5 minutes.

The second set of computations were carried out to establish the range for the overland space step (Δx_0) over which the scheme (I & II) remains stable as well as convergent. The time step Δt and the channel space step (Δx_c) were fixed as 2.5 minutes and 15.0 metres respectively. Following the stability criteria mentioned in Section 3.8, the computations are carried out for all the three storm events and for both the schemes. The results are given in Table 5.8. The scheme (I & II) was found to be stable upto the step lengths of 4.0 to 8.0 metres in all the three storm events. Beyond it, the scheme showed unstable behaviour for the recession part of the hydrographs. The convergence of scheme III was not satisfactory for all the three storm events.

In the third set of calculations the time step Δt was kept as 2.5 minutes, overland Δx_0 was fixed in 4.0 metres and the channel step length was varied from 15.0 to 150.0 metres. The computed results are presented in Table 5.9. For all the three storm events scheme (I & II) was found to be stable for all the space step lengths upto 150.0 metres. In this case too, the convergence of scheme III was not satisfactory.

A close inspection of the result obtained in Table 5.7, 5.8 and 5.9, leads to the following conclusions.

(a) Scheme III, though inherently stable yet did not show satisfactory convergence to peak values even for very small time step (i.e. $\Delta t = 2.5$ minutes) and small overland and channel space step of 4.0 metres and 15.0 metres respectively.

(b) The scheme (I & II) was found to be stable upto a time step of 10.0 minutes and overland space steps upto 4.0 to 8.0 metres. It was stable for all the channel space steps upto 150.0 metres.

The above analysis thereby confirms that the earlier exercises conducted for establishing the sensitivity of physiographic parameters (section 5.5.2) and for computation of effec-

TABLE 5.8 : Test Rungfor Establishing the Range of Overland length Step (&x.) from Stability and Convergence Points of View for Computational Schemes (1 & 119 and III (Bridge No. 319)

(a) Storm event dated 4.11.62

	Observed					Computed Hydrograph Parameters						
S1.	Overlan Step	(Qp) to peak			Volume		Scheme (I & II)				Scheme III	
No.	(m)	(m ³ /s)	(t _p) (min)	(m ³) x 10 ⁻¹		ity Q_p (m^3/s)	1 -	nin)	(m ³)		t _p Volum min) (m ³) x 100	
(1)	(2)			-	D .,		1					
(1)	(2)	(3)	(4)	(5)	(6)	(7)) (8) (9) (1	0) (11) (12)	
	- ;	7.301	30.0 1	27.83	0,41							
1	2.00	-			Stable	6.977	20.0	105 (-	-	
1 2 3 4	4.00		-	-	Stable	6.990	30.0	125.6	0 5.63	2 30.0	105.79	
	15.50		-	-	Stable	7.016	30.0	125.3	2 5.62	2 30.0	105.65	
5	30.00	-	-	-	Unstable Unstable	1	-		5.60	2 30.0	104.97	
1)	(2)	(3)	(4)	(5)	(6) (7	,	(8) (9)) (10) (11)	(12)	
	2.00							-		-	-	
	4.00	-		3	Stable Stable Unstable	3.608 3.642	42.5	113.31	3.52 3.48 3.41	7 40.0	108.534 108.25 107.70	
c)	Storm even	t dated	8.9.64		2011		17	18.		-	_	
1)	(2)	(3)	(4)	(5)	(6)	(7)	(1	B) (9)	(10) (11)	(12)	
	- 4	.471 6	0.0 23	4.06		1.1	-		1.5			
	2.00	-	-	-	Stable	4.45	60.0	212 24			-	
	4.00	2.00	-	-	Stable	4.50	60.0	217.36	4.546	60.0	211.29 210.92	
	0.00	1.1	6. N		Unstable		1		4.342	60.0	210.73	
			1.1				-	100	1	-		
		20	~~		10.00		(D-)	×.,	07			
			6. 10		- T			1.1				
			10 A									

:2

TABLE 5.7 : Test Runs for Establishing the Range of Time Step (At) from Stability and Convergence Points of View for Computational Schemes (1 & 11) and 111 (Bridge No. 319)#

		Observed			Computed Hydrograph Parameters						
1.	Time	Peak	Time	Volume		Scheme (1 1 11)		Sche	me III	
	Step c(Δt) (min)	(Q _p) (m ³ /s)	to peak (t _p) (min)	(m ³) x 10 ²	Stability	Q _P (m ³ /s)	t _p (min)	Volume (m ³) within the base time x 100	Q _p (m ³ /s)	tp (min)	Volume (m ³) within the base time x 100
(1)		(3)	(4)	(5)	(6)	(7)	(8)		(10)	(11)	(12)
	121	()/			-						
	- 5.0 10.0 15.0	7 . jul	0.0 1 - -	27.83	Stable Stable Stable Unstable	6.990 6.655 6.269	30.0 30.0 30.0	125.72 125.46 125.16	4.613	30.0 30.0 30.0	105.65 .91.15 74.40
(b)	Store e	vent date	d 5.8.04	1.1	1. The second		1				
111	(2)		(4).	(5)	(6)	(7)	(8)	(9).	(10)	(11)	(12)
		. 3.051	50.0	117.69				18	86		
	1 2.5 2 5.0 3 10.0 4 15.0			1	Stable Stable Stable Unstable	3.642 3.391 3.103	42.5 45.0 50.0	113.66 113.19 112.65		5 40.0	100.14
) SLUPE	event dat	100 7/0.9	.04	1	1,1					
-	11 121	13	1 (4)	(5)	(6)	(7)	(8)	192	(10) (11)	(12)
		4.471	6U.U	234.60				1.5	E = E		-
	1 2.5 2 5.0 3 10.0 4 15.0 5 30.0				Stable Stable Stable Stable Unstab	3.884	60. 60.	0 217 0 217	. 38 .4.4 . 35 4.0 . 11 3.4 . 17 2.9	31 60 18 60	.0 201.1

(a) Storm event dated 4.11.62

As monitored in Section 2.7, applicability of KW theory has been checked through Kinematic Flow Number which always remained within permissible limits. One sample calculation set is shown in Arm.-1 on page 308.

OF THE

TABLE 5.9 : Test Runsfor Establishing the Range of Channel length Step (Δx_c) from Stability and Convergence Points of View for Computational Schemes (1 & II) and III (Bridge No. (19)

(a) Storm event dated 4.11.62

		ot	oserved			Comput	ed Hydrog	graph Pa	arameter	.8
~ 1	Channel	Q (m ³ /s)	tp		Scheme (I	& II)		S	cheme Il	II
S1. No.	(Δx_c)	(m ³ /s)	(min)	Stability	Qp (m ³ /s)	t (min)	Volume m ³ x 100	Q (m ³ /s)	t (min)	Volume (m ³) x 100
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	-	7.301	30.0	A PRI	dir a		12		-	-
12345	15.0 25.0 50.0 75.0 150.0	5,	1	Stable Stable Stable Stable Stable	6.990 6.993 6.999 7.000 7.020	30.0 30.0 30.0 30.0 30.0	125.72 125.73 125.74 125.74 125.74	5.629 5.626 5.619 5.612 5.590	30.0 30.0 30.0 30.0 30.0	105.65 105.61 105.51 105.41 105.12
(D)	Storm even	t dated o	.8.04			1	5		10	
(1)	(2)	(3)	(4)	(5)	(6)	47)	(8)	(9)	(10)	(11)
-	1.	3.651	50.0					4	-	
1	15.0 25.0 50.0 75.0 150.0			Stable Stable Stable Stable Stable	3.642 3.643 3.645 3.649 3.656	42.5 42.5 42.5 42.5 42.5	113.662 113.667 113.67 113.68 113.68		40.0 40.0 40.0 40.0 40.0 42.5	108.25 108.21 108.09 107.99 107.667
(c)	Storm ever	nt dated 7	/8.9.64		1100		14	7		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
-	Ann	4.471	60.0				/			
1 2 3 4	15.0 25.0 50.0 75.0 150.0	1	12	Stable Stable Stable Stable Stable	4.500 4.508 4.509 4.511 4.512	60.0 60.0 60.0 60.0 60.0	217.28 217.29 217.35 217.38 217.38 217.39	4.472 4.470 4.465 4.459 4.459	60.0 60.0 60.0 60.0 60.0	210.92 210.83 210.618 210.403 210.393

577

tive overland roughnesses (Section 5.5.3) stand vindicated as the time step 2.5 minutes and the overland and the channel space steps values were adopted as 4.0 and 15.0 metres respectively. The best stability and convergence were found for these values, therefore, there is no need for any reconsideration.

All the analysis pertaining to the parameter estimation in this section as well as in the earlier sections were based on the concept of 'peak matching criteria'. There is a need to test that the computed parameters do reproduce the hydrographs satisfactorily. This text is performed in the following section.

5.5.5 Application of KW Theory to the Proposed Distributed Parameter Model (Bridge No. 319)

As discussed in Section 3.9.2, the distributed parameter model for the watershed of Bridge No. 319 has been obtained by dividing the watershed into 7 subwatershed areas as shown in figure 5.6(a). The subwatersheds were delineated by following the general drainage patterns of the overland flow. For schematic repesentation the subareas are approximated through a rectangular plane as shown in figures 5.6(b). The physiographic parameters for the subareas so formed have been worked out in accordance with the concepts discussed in Section 5.2. The measured and computed values of these parameters are given in Table 5.10. The subwatershed areas which are located on the right bank of the channel are marked with 'A' whereas those located on left bank are marked with 'B'. The channel bed widths at different sections were of the order of 3.0 metres. Therefore, the bed widths are given a variation from 2.5 to 3.5 metres. The parameters a , and m, are computed in the computational schemes as detailed in Section 5.5.1.

(a) SUB WATERSHED AREAS

(b) DISTRIBUTED SYSTEM REPRESENTATION

FIG. 5. 6 SCHEMATIC REPRESENTATION THROUGH A DISTRIBUTED MODEL (BRIDGE NO. 319)

Sl. No. of sub water- shed	Overland length (m)	Right bank sub water- shed areas (A) (ha)	Left bank sub water- shed areas (B) (ha)	Overland slope	Channel length (m)	Channel slope	Channel bed width (m)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1(A) 1(B)	368.0 296.0	7.728	6.216	0.291	210.0	0.123	2.5
2(A) 2(B)	324.0 280.0	7.776	6.720	0.212	240.0	0.116	2.5
3(A) 3(B)	184.0 292.0	5.520	8.760	0.167 0.266	300.0	0.061	3.0
4(A) 4(B)	200.0 368.0	4.800	8.832	0.08 0 0.270	240.0	0.0126	3.0
5(A) 5(B)	156.0 312.0	3.276	6.552	0.067 0.261	210.0	0.036	3.0
6(A) 6(B)	132.0 204.0	2.772	4.284	0.074 0.192	210.0	0.0145	3.5
7(A) 7(B)	104.0 260.0	2.496	6.240	0.026	240.0	0.0127	3.5

TABLE 5.10 : Computed Physiographic Parameter: Values for the Distributed System of Bridge No. 319

The effective overland roughnesses have been computed in Section 5.5.3 and are given in Table 5.5. As remarked in Section 5.5.4 the following values of KW parameters are used for computing the discharges at the outlet.

- (i) Time step, $\Delta x = 2.5$ minutes,
- (ii) Overland space step, $\Delta x_0 = 4.0$ metres and
- (iii) Channel space step $\Delta x_c = 15.0$ metres.

The scheme (I & II) has been used for the runoff computation. As shown in previous section for these values of the parameters, the scheme was found to be stable as well as convergent. The scheme III (Section 3.8.4), since was not found to be convergent has been dropped.

The rainfall excess function for all the 10 storm events has already been computed and given in Appendix-II. The computer programme for KW model of scheme (I & II) (Appendix-I) was run on DECSYSTEM-20 computer. A comparison of the observed and the computed hydrograph parameters is presented in Table 5.11. Also the computed hydrographs have been compared with the respective observed hydrographs. This comparison is shown in figures 5.7 throuh 5.11. The plot of observed and computed values of the peak discharges and the time to peaks are shown in figure 5.12. Further in columns 7 through 9 of Table 5.11, the observed, computed and percentage errors in volumes are given. It may be seen that the errors lie in a range from 0.98 per cent to 6.84 per cent. This is well within the acceptable limits for such an analysis. TABLE 5.11 : Observed and Computed Hydrograph Parameters Using KW Model Scheme (1 & II)

(Bridge No. 319)

S 1.	Storm	Peak Discharge (m ³ /s) Time to Peak (min) Volume (m ³) x 100 V							
No.	Date			Observed	Computed	Observed	Observed Computed		R ² (%)
(1)	(2)		(4)	(5)	(6)	(7)	(8)	(9)	(10)
1	14.10.62	9.405	7.938	40.0	32.50	170.844	168.90	1.13	90.1
2	4.11.62	7.301	6.950	30.0	30.0	127.820	125.96	1.46	99.1
3	17.7.63	3.339	3.212	20.0	20.0	50.420	48.920	2.90	93.5
4	7.10.63	1.50	1.665	40.0	40.0	45.834	43.725	4.60	76.3
5	5.8.64	3.651	3.758	50.0	40.0	117.69	113.783	3.31	68.8
6	7/8.9.64	4.471	4.598	60.0	57.5	234.66	218.595	6.84	96.4
7	8/9.9.64	6.281	6.612	80.0	75.0	324.10	305.13	5.85	62.3
8	9.7.88	2.775	2.790	60.0	40.0	157.01	155.475	0.98	79.5
9	8.8.88	0.906	1.085	60.0	55.0	49.18	-	-	90.5
10	11.9.88	5.891	6.379	90.0	62.5	314.51	305.355	2.9	70.8

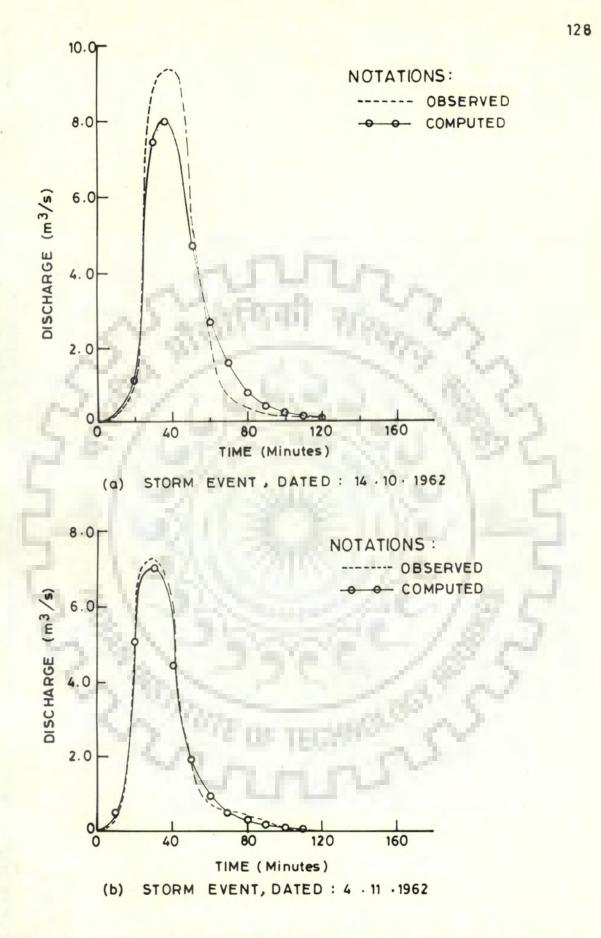


FIG. 5.7

COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO. 319)

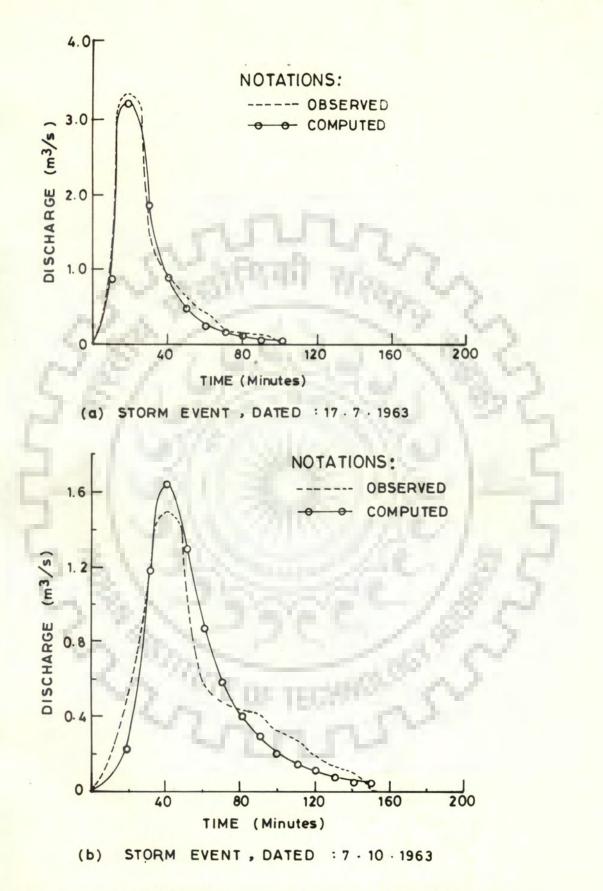


FIG. 5.8 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO. 319)

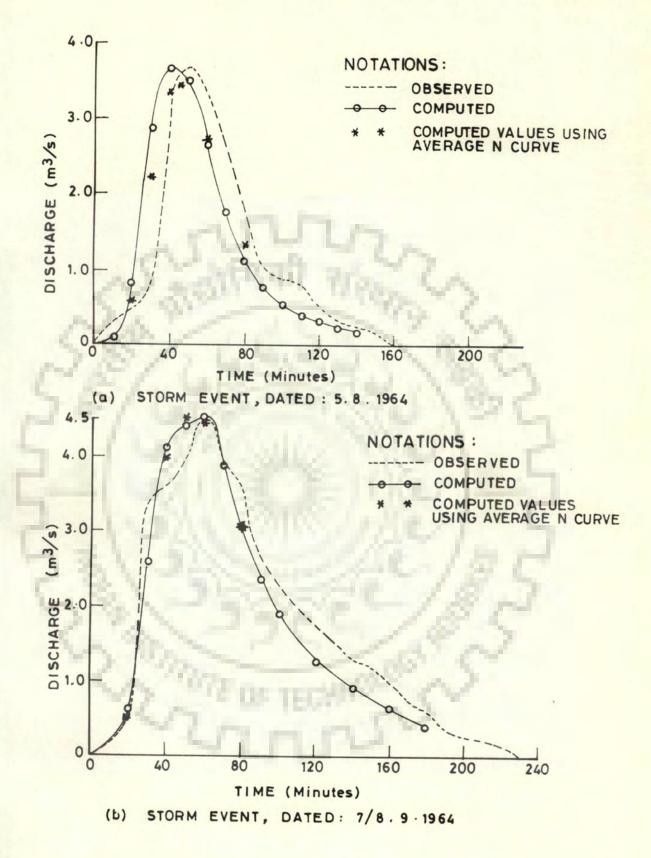
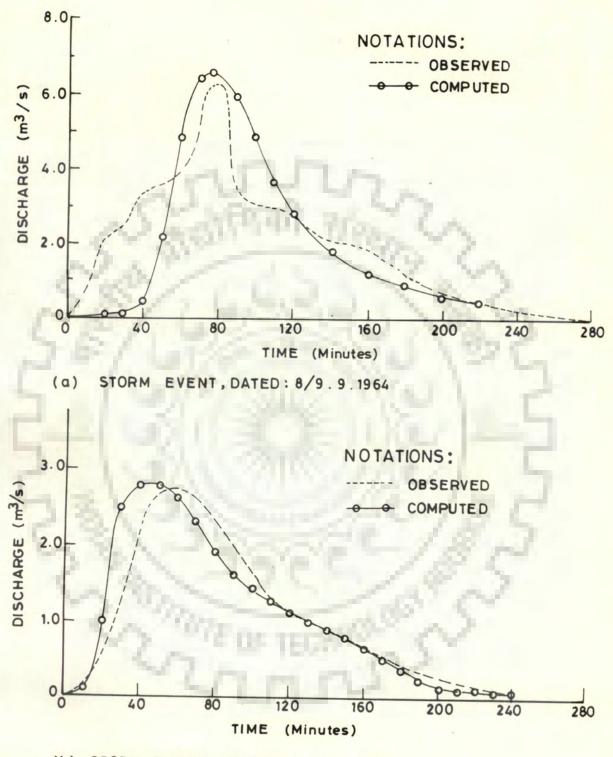



FIG. 5.9 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO. 319)

(b) STORM EVENT, DATED : 9 . 7 . 1988

FIG. 5.10 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO. 319)

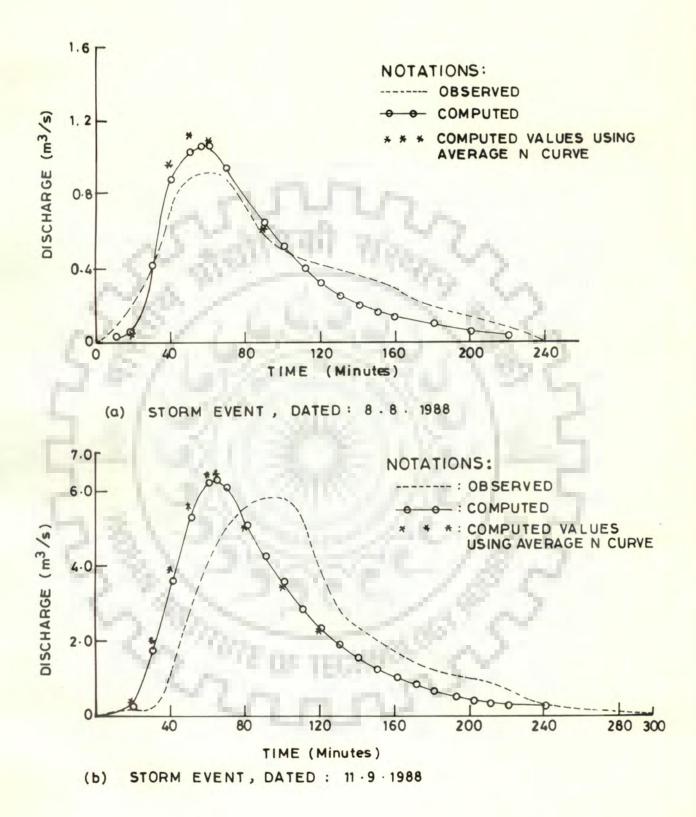


FIG. 5. 11 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO. 319)

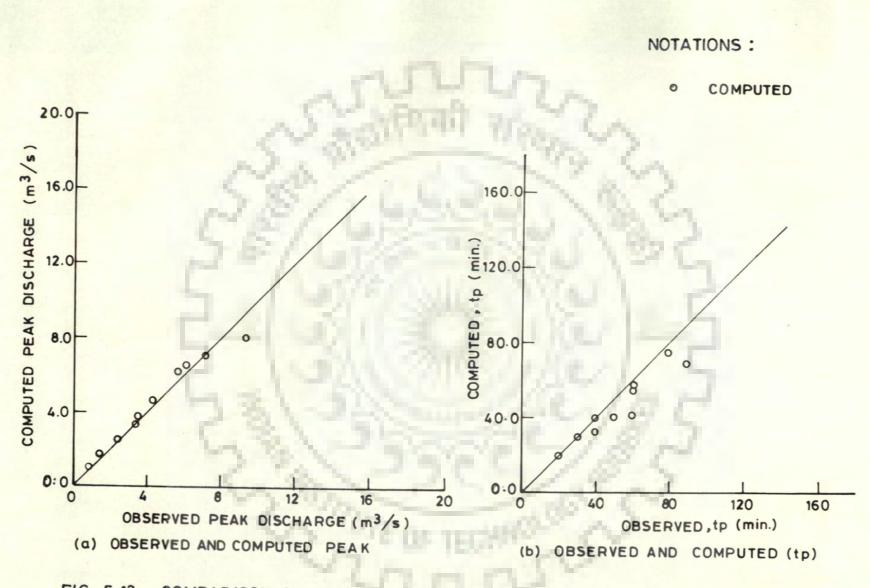
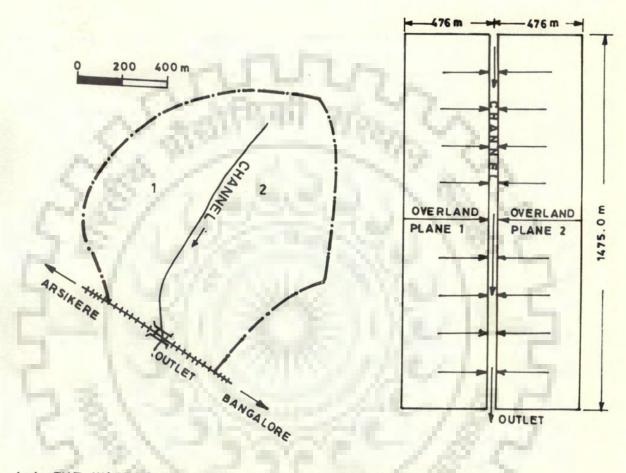


FIG. 5.12 COMPARISON OF OBSERVED AND COMPUTED PEAK DISCHARGES AND TIME TO PEAKS FOR 10- STORM EVENTS (BRIDGE NO. 319) Criteria for compaison of single event models have been discussed by Green et al. (1986). It was recommended that to assess the performance of a model over a number of different events, a more general dimensionless ordinate independent measure of fit is required. The criteria for model efficiency suggested by Nash and Sutcliffe (1970) is reportedly the most appropriate. The same has been applied for assessing the model efficiencies for the different flood events. These values are given in Table 5.11 in the last column. In most of the cases, the close agreement between the observed and the computed hydrographs suggests that the proposed distributed physiographic model is well suited for the application of KW model for this watershed.

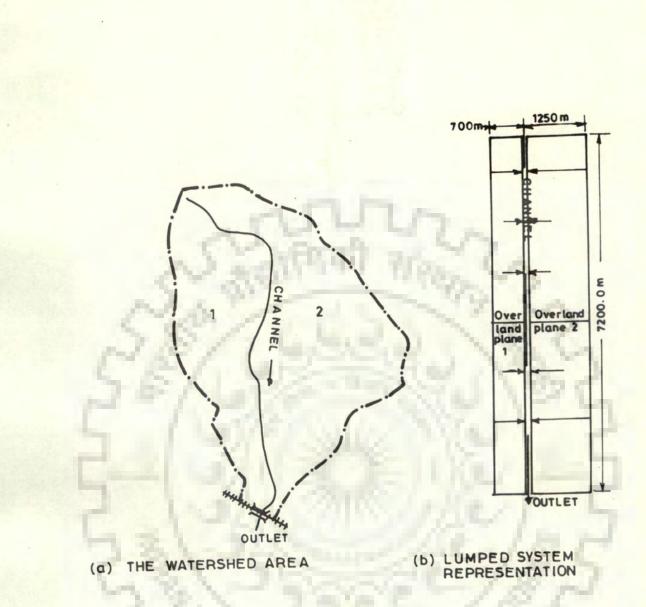
Application of KW models to the other three watersheds has been discussed in the forthcoming sections.

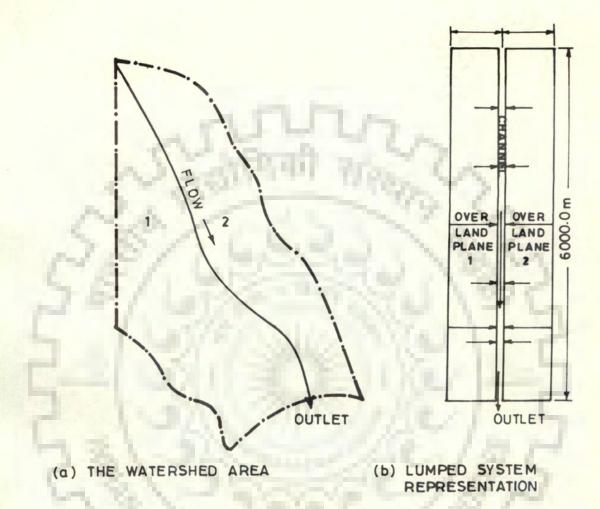

5.6 APPLICATION OF PROPOSED KW THEORY MODELS TO THE NATURAL WATERSHEDS OF BRIDGE NOS. 317, 719 AND TO THE KACHWA AGRICULTURAL WATERSHED.

In the previous section, details of application of the proposed KW theory models were explained by applying them on to the natural watershed of Bridge No. 319. Following the similar lines, application of the proposed models is discussed for the other three watersheds (viz. of the Bridge Nos. 317, 719 and the Kachwa agricultural watershed).

As discussed in Section 5.4, based on the Ø-index approach, the time distributions of rainfall excesses for various storms were computed. The same are presented in Appendix-II-B,C and E along with the gross rainfall data. In the following sections, various steps involved in the application of KW theory to these watersheds are discussed and the results obtained are presented.

5.6.1 Estimation of Physiographic Parameters (Bridge Nos. 317, 719 and Kachwa Watershed)


Figures 4.2, 4.3 and 4.4 give the topographic feature of the watersheds of the Bridge Nos. 317, 719 and the Kachwa watershed. There are two parallel main drainages in the watershed of Bridge No. 317. Each of these channels has its small tributaries. The watershed is hilly, registering a fall from 1173.0 m (3850 ft) to 835.0 m (2740 ft). As discussed in Section 3.9, it was considered appropriate to estimate physiographic parameters of this watershed through the lumped physiographic model given in figure 5.13. In the case of natural watershed of Bridge No. 719, nealy three parallel drainages exist. Firstly, a lumped physiographic model of the type given in figure 5.14 was tried for this hilly watershed which registered a fall from nearly 914.0 m (3000.0 ft) to 747.0 m (2450.0 ft). In the Kachwa watershed the area is nearly flat with contours registering the fall from 6 metres to 3.2 metres (w.r.t. an arbitrary datum). The lumped physiographic model proposed and tried for the watershed is shown in figure 5.15. The physiographic parameters computed through lumped physiographic models are given in Tables 5.12, 5.13 and 5.14. The distributed parameters models for the three watershed are shown in figures 5.16, 5.17 and 5.18. The distributed physiographic parameters computed for the watershed of Bridge No. 719 are given in Table 5.15.


(a) THE WATERSHED AREA (b) LUMPED SYSTEM REPRESENTATION

OF THE

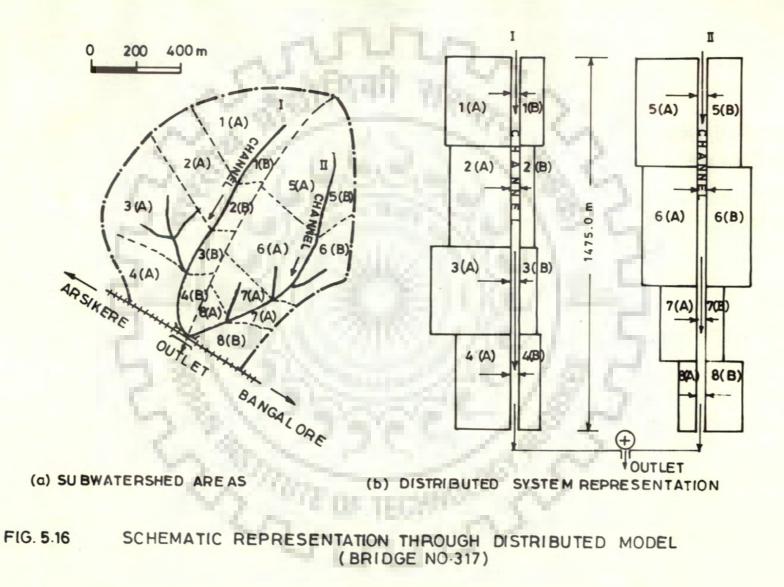
FIG. 5.13 SCHEMATIC REPRESENTATION THROUGH A LUMPED MODEL (BRIDGE NO. 317)

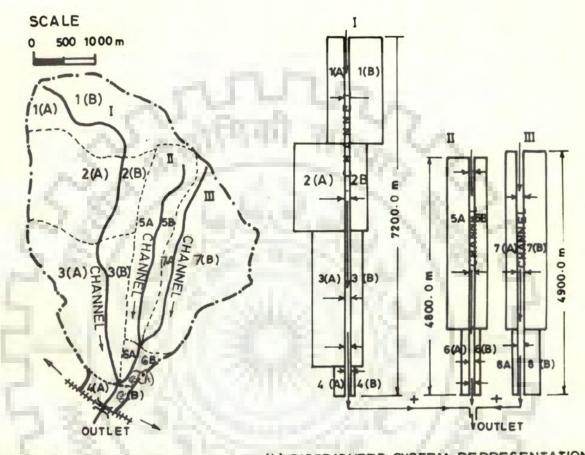
FIG.5.14 SCHEMATIC REPRESENTATION THROUGH A LUMPED MODEL (BRIDGE NO. 719)

FIG. 5.15 SCHEMATIC REPRESENTATION THROUGH A LUMPED MODEL (KACHWA WATERSHED)

TABLE 5.12 : The Lumped Physiographic Parameter Values (Bridge No. 317)

0.	Particulars	Unit
1)	(2)	(3)
1	Area	140.00 hectares
2	Overland Plane :	124
	(a) Average length (each side)	476.00 metres
×	(b) Average slope (each side)	0.081
3	Channel :	15
	(a) Average length	1475.00 metres
e.	(b) Average slope	0.105
	(c) Average roughness	0.040
14	(d) Average bed width	4.00 metres
	(e) Average side slope	2.5 H : 1V
	the second second second	2
	A S THE DE LEGALINE	5 V

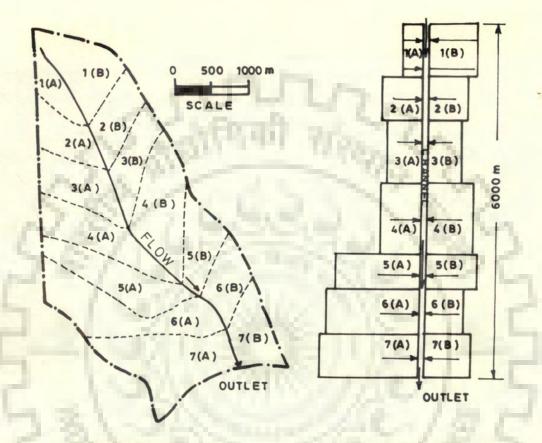

*


TABLE	5.13	:	The	Lumped	Physiographic	Parameter (Bridge No	
	a	3			-no		

S1. No.	2	0.20	Particulars	Unit
(1)		4	(2)	(3)
1	Area	2/1	68393	1400.00 hectares
2	Over	land Pla	ne :	122 6
	(a) (b)		length (Right bank side) length (left bank side)	
	(c)	Average	slope (Right bank side)	1250.00 metres 0.071
3	(d)	Average	slope (Left bank side)	0.065
3	Chan	nel :		
ċ.	(a)	Average	length	7200.00 metres
100	(b)	Average	slope	0.0210
1	(c)	Average	roughness	0.045
	(d)	Average	bed width	15.00 metres
	(e)	Average	side slope	2.00 H : 1V
		50	anas	
			A TUTTE	

TABLE 5.14 : The Lumped Physiographic Parameter Values (Kachwa Watershed)

S1. No. (1)	2.8	44	Particulars (2)	1	Unit (3)
1	Area			5	1073.00 hectares
2	Overl	and Plar	ne :		12
4.	(a)	Average	length (each side)		894.00 metres
	(b)	Average	slope (each side)		0.0012
3	Chann	el :			1.3
-	(a)	Average	length		6000.00 metres
5	(b)	Average	slope	1	0.00047
	(c)	Average	roughness		0.0520
	(d)	Average	bed width		2.00 metres
	(e)	Average	side slope	68 M.	2.00 H : 1V



(a) SUBWATERSHED AREAS (b) DISTRIBUTED SYSTEM REPRESENTATION

THITE OF

FIG. 5. 17 SCHEMATIC REPRESENTATION THROUGH A DISTRIBUTED MODEL (BRIDGE NO.719)

(a) SUBWATERSHED AREA (b) DISTRIBUTED SYSTEM REPRESENTATION

FIG. 5.18 SCHEMATIC REPRESENTATION THROUGH A DISTRIBUTED MODEL (KACHWA WATERSHED)

lof	S1. No. of sub water- shed	Overland length (m)	Right bank sub water= shed areas (A) (ha)	Left bank sub water- shed areas (B) (ha)		Channel length (m)	Channel slope	Channel bed width (m)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	1(A) 1(B)	350.0 720.0	73.5000	_ 151.2000	0.071 0.043	2100.0	0.032	5.0
1	2(A) 2(B)	1100.0 390.0	198.0000	70.2000	0.056 0.038	1800.0	0.012	5.0
r.	3(A) 3(B)	680.0 270.0	183.6000	72.9000	0.082 0.040	2700.0	0.018	10.0
	4(A) 4(B)	230.0 60.0	13.8000	•3.6000	0.028	600.0	0.0076	15.0
1	5(A) 5(B)	520.0 300.0	179.4000	103.5000	0.071 0.070	3450.0	0.036	5.0
11	6(A) 6(B)	60.0 60.0	8.1000 -	8.1000	0.017 0.017	1350.0	0.009	10.0
11	7(A) 7(B)	200.0	71.000	205.9000	0.071 0.053	3550.0	0.040	5.0
	8(A) 8(B)	60.0 350.0	8.100 ₀ -	47.2500	0.017	1350.0	0.009	10.0
otal			735.500	6-2.0500				

TABLE 5.15 : Computed Physiographic Parameter Values for the Distributed System of Scheme (I & II), (Bridge No. 719)

The KW routing parameters α_k and m_k (Section 5.5.1) for the above three watersheds have been computed by using three representative depths of flows given in Table 5.16.

TABLE 5.16 : Three Representative Depths for the Computations of α_k and m_k of three Watersheds.

S1.	Watersheds	Dept		
No.	N AGIPIO	(i)	(ii)	(iii)
1	Bridge No. 317	0.25	0.50	0.70
2	Bridge No. 719	0.15	0.50	0.90
3	Kachwa	0.25	0.40	0.50

The physiographic parameters arrived at in this section are subjected to the sensitive analysis to determine their sensitiveness.

5.6.2 The Sensitivity Analysis of Physiographic Parameters (Bridge No. 317, 719 and Kachwa Watershed)

The sensitivity analysis was carried out for the various physiographic parameters (viz. channel bed width, channel side slope, channel depths) on similar lines as proposed in Section 5.5.2. The computed results of this analysis for one selected storm on each of the watersheds are given in Appendix-III-A,B and C. Also, the sensitivity of channel slopes, channel roughnesses, overland slopes and its roughnesses were tested for all the three watersheds. Their computed results are given in Appendix-III-D, E, F and G, H, I respectively. The computed values of the hydrograph parameters indicate that for these watersheds also the overland slope and the overland roughnesses happened to be the most sensitive.

This is also evident from the plots given in figures 5.19, 5.20 and 5.21. The overland roughnesses have been computed by following the comprehensive procedure given in Section 5.5.3. Therefore, a detailed analysis is needed for the estimation of effective overland roughnesses of all the three watersheds.

5.6.3 Estimation of Effective Overland Roughnesses (Bridge Nos. 317, 719 and Kachwa Watershed)

As reported in Section 5.5.3, following the similar lines the effective overland roughnesses have been worked out using the data of all the storm events of the watersheds. The scheme (I & II) is applied to the Bridge Nos. 317 and 719 whereas scheme III has been used for the Kachwa watershed. Reasons for this selection of schemes are explained through a comprehensive analysis given in the next section.

For the computational scheme (I & II), very small values of time and space steps were used (i.e. $\Delta t = 5.0$ minutes, Δx_{0} = 4.0 meters and $\Delta x_{c} = 25.0$ metres for the Bridge No. 317 and $\Delta t = 10.0$ minutes, $\Delta x_{0} = 10.0$ metres and $\Delta x_{c} = 50.0$ metres for the Bridge No. 719). For the watershed of Bridge No. 719, both the lumped and distributed physiographic models (Section 3.9) have been used. The Kachwa watershed is very flat and in most of the cases; the time base for hydrographs was found to be more than 60.00 hours. Therefore, for the application of scheme III, a moderate value of time steps ($\Delta t = 60.0$ minutes) and small values of space steps ($\Delta x_{0} = 22.35$ metres and $\Delta x_{c} = 75.0$ metres) were selected. Satisfying the criteria stated in Section 5.5.3, the computed effective overland roughness values for the three watershed are given in Tables 5.17, 5.18 and 5.19. Using these values, plots of effective overland roughnesses Vs. time were tried and the same are produced in figures 5.22, 5.23 and 5.24. For the Bridge No. 719, the distributed physiographic model has also been used for computing the effective overland roughness parameter values. The plots of figures 5.22 and 5.23, do suggest the existence of a systematicrise and fall in effective overland roughness parameter values over the monsoon months.

In the figure 5.23, it is clear that the effective overland roughnesses differ significantly for the lumped and distributed physiographic models. The ranges of the effective overland roughness values for different months of monsoon period for the Bridge Nos. 317 and 719 are given in Tables 5.20 and 5.21.

For the Kachwa agricultural watershed most of the storm events belonged to a period starting from the last week of July to the first week of August. A plot of effective overland roughness factors w.r.t. their times of occurrences is given in figure 5.24. Since all the storm events belonged to a narrow period, therefore, no definite trend in the change of roughness values over the four monsoon months could be established.

5.6.4 Applicability of Different Computational Schemes (Bridge Nos. 317, 719 and Kachwa Watershed)

The suitability of the two computational schemes (Section 3.8) for each of the three watersheds has been ascertained on the lines reported in the section 5.5.4. Firstly, for different

values of time steps Δ ts, applicability of the scheme (I & II) as well as of the scheme III has been tried keeping the criteria of the stability and convergence in mind. Subsequently the space steps for the overland and channel segments are worked out.

For selecting appropriate time steps, the results of the test runs for one selected storm on each of the three watersheds are presented in Table 5.22. The comparison of computed and observed hydrograph parameters (i.e. Q, t, and volume) suggests that the scheme (I & II) which is inherently convergent is also stable for At upto 30.0 minutes whereas scheme III though stable did not converge for any value of At ranging (i.e. from 5.0 minutes to 30.0 minutes) in cases of the two watersheds i.e. of Bridge Nos. 317 and 719. Therefore, for further computations of runoff on the two watersheds, scheme (I & II) has been used with a time step of 5.0 minutes for the Bridge No. 317 and 10.0 minutes for the Bridge No. 719. In the case of Kachwa agricultural watershed, the Scheme (I & II) remained mostly unstable. A time step value of less than 15.0 minutes was not found to be practical as well as economical from computer time considerations because the time base of the hydrographs happened to be more than 60.0 hours. However, the scheme III did converge for a time step value as large as 60.0 minutes. Therefore, the scheme III with one hour time step has been chosen for further calculations.

As shown in Table 5.23, for the adopted values of time steps, scheme (I & II) remained stable upto an overland space

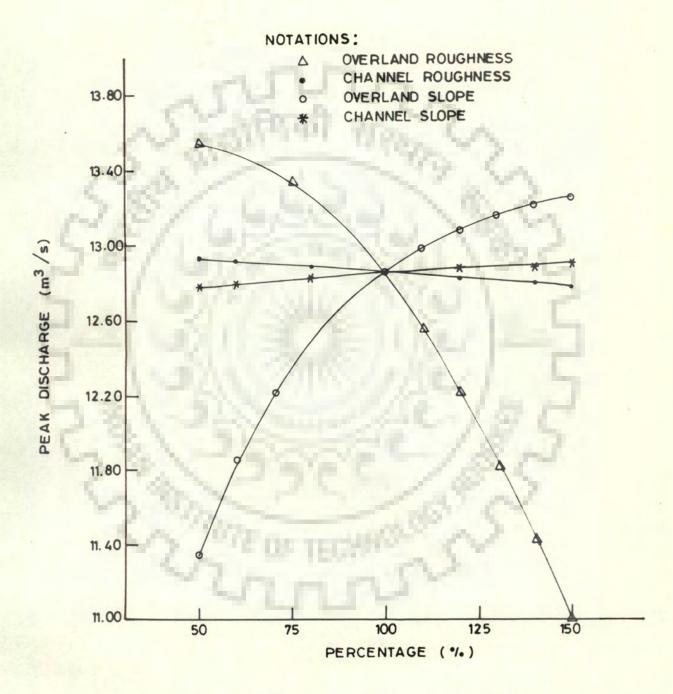


FIG. 5.19 SENSITIVITY OF OVERLAND AND CHANNEL ROUGHNESSES AND SLOPES W.r. t PEAK DISCHARGE (BRIDGE NO. 317)

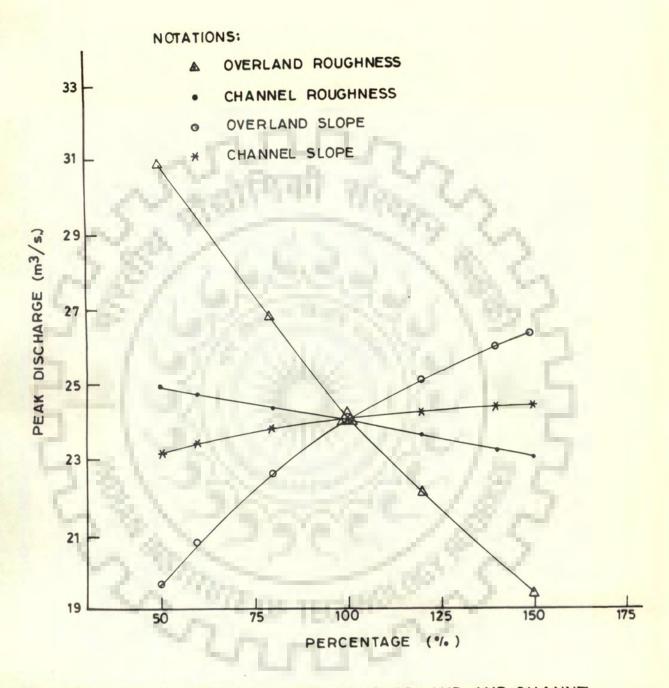


FIG. 5.20 SENSITIVITY ANALYSIS OF OVERLAND AND CHANNEL ROUGHNESSES AND SLOPES w.r.t PEAK DISCHARGE (BRIDGE NO. 719)

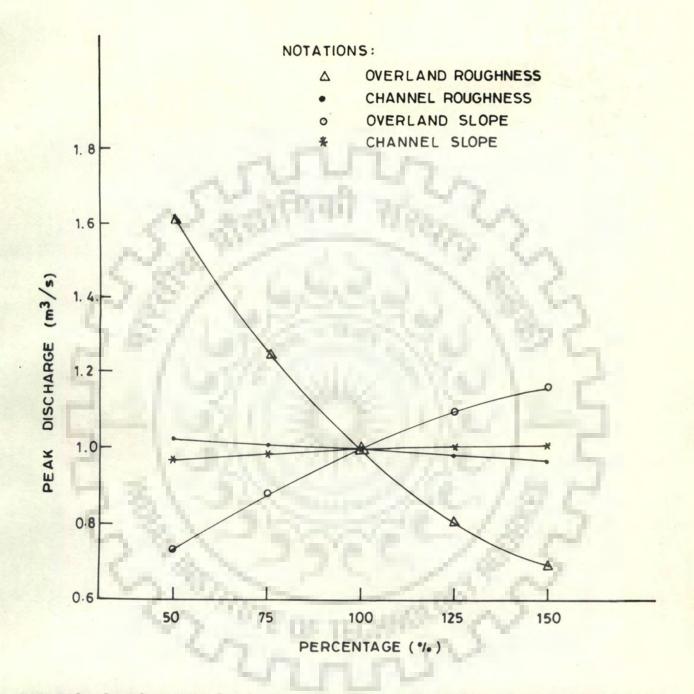


FIG. 5.21 SENSITVITY OF OVERLAND AND CHANNEL ROUGHNESSES AND SLOPES w.r.t PEAK DISCHARGE (KACHWA WATERSHED)

TABLE 5.17 :	Computed	Effective	Overland	Roughness
				No. 317)

- una

S1. No.	Storm pate	Effective Overland	Peak Discharge	(m ³ /s)
2	10.	Roughness (N)	Observed	Computed
(1)	(2)	(3)	(4)	(5)
1	25.10.1961	0.192	12.82	12.864
2	24.9.1962	0.169	15.10	11.691
3	14.10.1962	0.150	5.773	5.770
4	18.7.1963	0.070	9.905	9.862
5	26.7.1964	0.083	6.481	6.382
6	7/8.9.1964	0.292	4.245	4.243
7	8.9.1964	0.336	5.098	5.088
8	15.9.1964	0.270	3.424	3.426

Same and Same

S1.	Storm Date	Effective Overland Roughness (N)		Peak Discharge (m ³ /s)		
lo.		Lumped	Distributed	Observed	Computed (lumped)	Computed (Distributed
1)	(2)	(3)	(4)	(5)	(6)	(7)
	24/25.7.1964	0.168	0.251	24.100	24.050	24.20
	26/27.7.1964	0.215	0.345	32.709	32.740	32.68
	3.9.1964	0.110	0.189	10.480	10.470	10.50
	11.8.1965	0.200	0.345	40.022	40.060	39.95
	18.9.1965	0.042	0.072	9.350	9.286	9.420
	6.7.1966	0.044	0.073	10.365	10.293	10.284
	16.9.1966	0.132	0.230	33.98	33.890	33.890
	20.9.1966	0.040	0.070	10.30	9.726	10.480

The

TABLE 5.18 : Computed Effective Overland Roughness (Bridge No. 719)

TABLE 5.19 : Computed Effective Overland Roughness (Kachwa Watershed)

585/11		Roughness (N)	Observed	Computed	
(1)	(2)	(3)	(4)	(5)	
1	27.7.1977	0.094	0.851	0.852	
2	4.8.1977	0.119	0.993	0.993	
3	2/3.8.1978	0.196	1.178	1.179	
4	8/9.8.1978	0.158	0.918	0.92	
5	2.8.1979	0.106	0.417	0.418	

ALL BAR

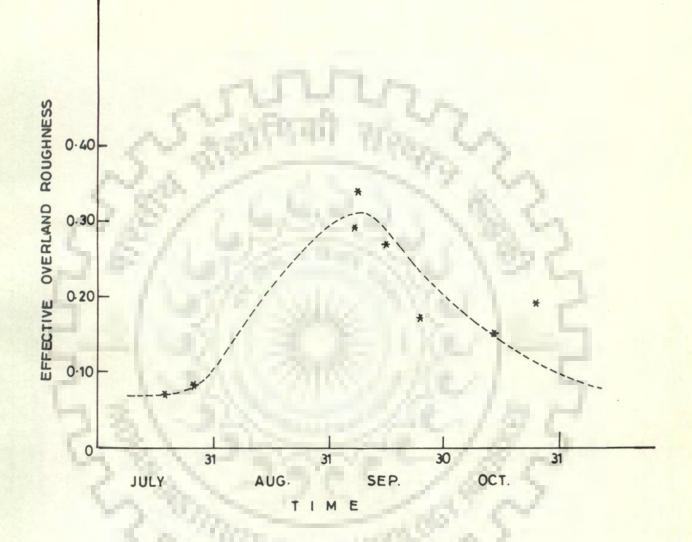


FIG. 5.22 VARIATION OF EFFECTIVE OVERLAND ROUGHNESS WITH TIME (BRIDGE NO. 317)

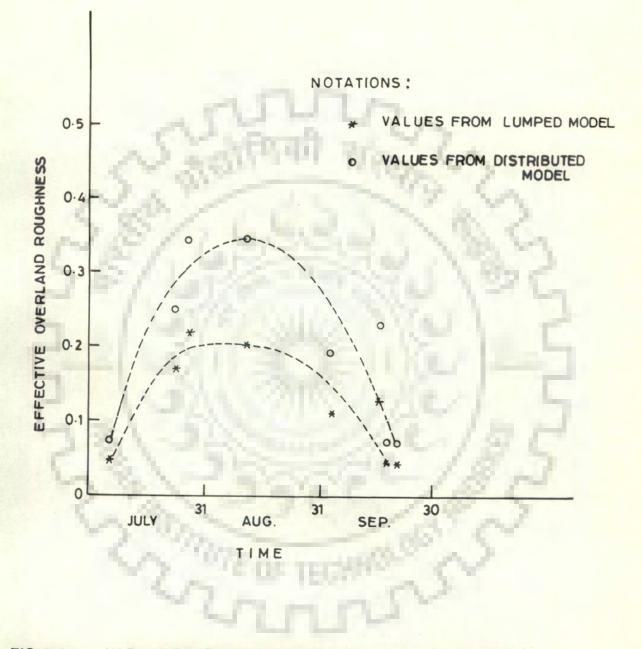


FIG. 5-23 VARIATION OF EFFECTIVE OVERLAND ROUGHNESS WITH TIME (BRIDGE NO. 719)

FIG. 5. 24 VARIATION OF EFFECTIVE OVERLAND ROUGHNESS WITH TIME (KACHWA WATERSHED)

ABLE 5.21 : Range of Effective Overland Roughnesses During the Monsoon Months (July, August and September) (Bridge No. 719)		S1.	Months -		ective Overland ghnesses	_
2 August 0.10 0.290 3 September 0.210 0.290 4 October 0.10 0.210 ABLE 5.21 : Range of Effective Overland Roughnesses During the Monsoon Months (July, August and September) (Bridge No. 719) 1. Monsoon Months (July, August and September) (Bridge No. 719) 1. Months 0. Lumped Distributed 1. Months July 0.044 0.200 0.073 July 0.044 0.200 0.280		No.		From	То	
2 August 0.10 0.290 3 September 0.210 0.290 4 October 0.10 0.210 ABLE 5.21 : Range of Effective Overland Roughnesses During the Monsoon Months (July, August and September) (Bridge No. 719) 1. Monsoon Months (July, August and September) (Bridge No. 719) 1. Months 0. Lumped Distributed 1. Months July 0.044 0.200 0.073 July 0.044 0.200 0.280			-12	L L	the second	-
ABLE 5.21 : Range of Effective Overland Roughnesses During the Monsoon Months (July, August and September) (Bridge No. 719) Range of Effective Overland Roughness C. Months C. M		1	July	0.07	0.10	
ABLE 5.21 : Range of Effective Overland Roughnesses During the Monsoon Months (July, August and September) (Bridge No. 719) Range of Effective Overland Roughness (Bridge No. 719) Range of Effective Overland Roughness Lumped Distributed From To From To July 0.044 0.200 0.073 0.325 August 0.165 0.200 0.280 0.325		2	August	0.10	0.290	
ABLE 5.21 : Range of Effective Overland Roughnesses During the Monsoon Months (July, August and September) (Bridge No. 719) Range of Effective Overland Roughness Charles Months Lumped Distributed From To From To July 0.044 0.200 0.073 0.325 August 0.165 0.200 0.280 0.325		3	September	0.210	0.290	
Monsoon Months (July, August and September) (Bridge No. 719) Range of Effective Overland Roughness Months Lumped Distributed From To From To July 0.044 0.200 0.073 0.325 August 0.165 0.200 0.280 0.325		4	October	0.10	0.210	
Monsoon Months (July, August and September) (Bridge No. 719) Range of Effective Overland Roughness Months Lumped Distributed From To From To July 0.044 0.200 0.073 0.325 August 0.165 0.200 0.280 0.325		28	1630		1/25	
Monsoon Months (July, August and September) (Bridge No. 719) Range of Effective Overland Roughness Months Lumped Distributed From To From To July 0.044 0.200 0.073 0.325 August 0.165 0.200 0.280 0.325					all r	
Monsoon Months (July, August and September) (Bridge No. 719) Range of Effective Overland Roughness Lumped Distributed From To From To July 0.044 0.200 0.073 0.325 August 0.165 0.200 0.280 0.325					the second second second	
I. Months Lumped Distributed From To From To July 0.044 0.200 0.073 0.325 August 0.165 0.200 0.280 0.325	ABLE	5 21 · B	lange of Effectiv	ve Ovenland Pou		
I. Months Lumped Distributed 0. From To From To July 0.044 0.200 0.073 0.325 August 0.165 0.200 0.280 0.325	ABLE	5.21 : R	lange of Effectiv Monsoon Months (July, August an	d September)	ie
Lumped Distributed From To From To July 0.044 0.200 0.073 0.325 August 0.165 0.200 0.280 0.325	ABLE	5.21 : R	ange of Effectiv Monsoon Months (July, August an	d September)	ie
July0.0440.2000.0730.325August0.1650.2000.2800.325	1.	2	Monsoon Months (July, August an (Bridg	d September) e No. 719)	
August 0.165 0.200 0.280 0.325	1.	2	Monsoon Months (July, August an (Bridg Range of Effect)	d September) e No. 719) ive Overland Rough	ness
August 0.165 0.200 0.280 0.325	1.	2	Monsoon Months (July, August an (Bridg Range of Effect Lumped	d September) e No. 719) ive Overland Rough Distribut	ness ed
	1.	Months	Monsoon Months (July, August an (Bridg Range of Effect Lumped To	d September) e No. 719) ive Overland Rough Distribut From	ness ed To
	1.	Months	Monsoon Months (From 0.044	July, August an (Bridg Range of Effect Lumped To 0.200	d September) e No. 719) ive Overland Rough Distribut From 0.073 0.3	ness ed To 25

TABLE 5.20 : Range of Effective Overland Roughnesses During the Monsoon Months (July to October). (Bridge No. 317).

TABLE 5.22 : Test Run for Establishing the Range of Time Step (At) from Stability and Convergence Points of View for Computational Schemes (1 & 11) and III

b. (min) (m^{3}/s) (min) $x 10^{3}$ stability Q_{p}^{2} (mn) (mn) (m^{3}) $(m^{3}$				Observed			Comp	uted Hy	drograp	h Parame	eters	
$(m^{3}/s) \xrightarrow{(m,1)} (m^{3}) (m^{3}/s) (m^{3}/$	1.	Step	(Qp)	to peak						Sche	me III	
1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) - 12.82 90.0 53.586 - 10.0	ο.		(m ³ /s)	(min)	x 10 ⁵	ətabili		(min	['] (m ³)	θp (13/s)	(mîn)	(m ³)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(2)	121	(1)		-						x 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						(6)	(7)	(8)	(9)	(10)	(11)	(12)
Stable 12.026 90.0 52.960 10.190 90.0 </td <td></td> <td></td> <td>-</td> <td>90.0 53.</td> <td>586</td> <td></td> <td>12 804</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>			-	90.0 53.	586		12 804			-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.1		1000	Stable	12.026	90.0	52.960	10.160	90.0	
1) Bridge No. 719 (Storm event, dated 24/25.7.1964, N = 0.16b) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 24.10 180.0 $z_{54.83}$ 10.0 Stable 24.05 130.0 $2_{34.24}$ 23.10 130.0 $2_{31.01}$ 30.0 Stable 22.73 135.0 236.34 21.25 120.0 219.45 Stable 19.93 120.0 234.23 17.34 120.0 190.62 11) Kachwa Water shed (Storm event, dated 4.8.1977, N = 0.119) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (hr) 0.993 8.0 78.264 15.0			1.00					90.0	52.767	8 844		41.076
) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 24.40 180.0 $z_{5}4.8_{3}$ 10.0 Stable 24.05 130.0 $z_{3}7.2_{4}$ 23.10 130.0 $z_{3}1.0_{1}$ 30.0 Stable 22.73 135.0 236.34 21.25 120.0 219.45 Stable 19.93 120.0 234.23 17.34 120.0 190.62 11) Kachwa Water shed (Storm event, dated 4.8.1977, N = 0.119) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (hr) - 0.993 8.0 78.264 15.0	1)	Bridge N	o. 719 (S	torm even	at. dated 24	1/25 7 1061		and the second second				52.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)				and the second se				(0)	100		-
10.00 1 Stable 24.05 130.0 237.24 23.10 130.0 231.01 30.0 - - Stable 22.73 135.0 236.34 21.25 120.0 219.45 30.0 - - - Stable 19.93 120.0 234.23 17.34 120.0 190.62 11) Kachwa Water shed (Storm event, dated 4.8.1977, N = 0.119) -			24.44	184.0 25.4	84			(0)	(9)	(10)	(11)	(12)
30.0		10.0	-		.05	Stable	24.05	130.0	237 24	22.10	1 20. 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-		C				23.10	130.0	231.01
(hr) 0.993 8.0 78.264 15.0	11)	30.0	1	(Storm	event, date	512016	19.93	120.0	236.34	21.25	120.0	219.45 190.62
15.0	-	30.0 Kachwa N	Watersf.ed	(4)	1	d 4.8.1977	22.73 19.93	120.0	234.23	17.34	120.0	190.62
30.0	-	30.0 Kachwa N	Water sted	(4) (hr)	(5)	d 4.8.1977	22.73 19.93	120.0	234.23	17.34	(11)	190.62
	-	30.0 Kachwa ((2)	Water sted	(4) (hr)	(5)	(6)	(7)	(8)	(9)	(10)	(11) (hr)	(12)
	-	30.0 Kachwa 1 (2) 15.0 30.0	Water sted	(4) (hr)	(5)	(6) Stable Unstable	22.73 19.93 (, N = 0.1) (7) 1.049	(8) 10.25	(9) 72.251	(10)	(11) (hr) 9.0	(12) 78.524
	-	30.0 Kachwa 1 (2) 15.0 30.0	Water sted	(4) (hr)	(5)	(6) Stable Unstable	22.73 19.93 (, N = 0.1) (7) 1.049	(8) 10.25	(9) 72.251	(10) 1.044 1.033	(11) (11) (hr) 9.0 9.0	(12) (12) 78.524 77.900
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	30.0 Kachwa 1 (2) 15.0 30.0	Water sted	(4) (hr)	(5)	(6) Stable Unstable	22.73 19.93 (, N = 0.1) (7) 1.049	(8) 10.25	(9) 72.251	(10) 1.044 1.033	(11) (11) (hr) 9.0 9.0	(12) (12) 78.524 77.900
2.4 236 4.6.5	-	30.0 Kachwa 1 (2) 15.0 30.0	Water sted	(4) (hr)	(5)	(6) Stable Unstable	22.73 19.93 (, N = 0.1) (7) 1.049	(8) 10.25	(9) 72.251	(10) 1.044 1.033	(11) (11) (hr) 9.0 9.0	190.62 (12) 78.524 77.900
14 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	-	30.0 Kachwa 1 (2) 15.0 30.0	Water sted	(4) (hr)	(5)	(6) Stable Unstable	22.73 19.93 (, N = 0.1) (7) 1.049	(8) 10.25	(9) 72.251	(10) 1.044 1.033	(11) (11) (hr) 9.0 9.0	190.62 (12) 78.524 77.900
Same Sector	-	30.0 Kachwa 1 (2) 15.0 30.0	Water sted	(4) (hr)	(5)	(6) Stable Unstable	22.73 19.93 (, N = 0.1) (7) 1.049	(8) 10.25	(9) 72.251	(10) 1.044 1.033	(11) (11) (hr) 9.0 9.0	190.62 (12) 78.524 77.900
Same and Same	-	30.0 Kachwa 1 (2) 15.0 30.0	Water sted	(4) (hr)	(5)	(6) Stable Unstable	22.73 19.93 (, N = 0.1) (7) 1.049	(8) 10.25	(9) 72.251	(10) 1.044 1.033	(11) (11) (hr) 9.0 9.0	190.62 (12) 78.524 77.900
The second of th	-	30.0 Kachwa 1 (2) 15.0 30.0	Water sted	(4) (hr)	(5)	(6) Stable Unstable	22.73 19.93 (, N = 0.1) (7) 1.049	(8) 10.25	(9) 72.251	(10) 1.044 1.033	(11) (11) (hr) 9.0 9.0	(12) 78.524 77.900
Contraction of the second seco	-	30.0 Kachwa 1 (2) 15.0 30.0	Water sted	(4) (hr)	(5)	(6) Stable Unstable	22.73 19.93 (, N = 0.1) (7) 1.049	(8) 10.25	(9) 72.251	(10) 1.044 1.033	(11) (11) (hr) 9.0 9.0	(12) (12) 78.524 77.900

(1) Bridge No. 317 (Storm event, dated 25.10.1901, N = 0.192)

TABLE 5.23 : Test Run for Establishing the Range of Overland length step (Ax.) from Stability and Convergence Points of View for Computational Schemes (I & II) and III

			Observed				Computed	Hydrog	raph Par	ameters	
S1. No.	Overland space step	(Qp)	Time to peak (tp)	Volum		Sche	me (I &	11)		icheme I	
	Δ× ο (m)	(m ³ /s)	(min)	(m ³) x 10 ³	Stabili	(m ³ /s	(mPr)	$\begin{array}{c} t & \text{Vol.} & \mathcal{O}_{\mathbf{p}} & t \\ (m \mathbf{\hat{P}}_{\mathbf{n}}) & (m^3) & (m^3/s) \end{array}$			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
		2.02	90.0 5	3.500	ent.		9	5			(11)
2 34	10.0 52.0	5			Stable Stable Unstable Unstable	12.864 12.864	90.0 90.0 -	52.960	11.940 11.926 11.791 11.495	90.0	50.097 50.085 49.856 49.442
	5	35	(ii) Brid	ige No.	719 (Stor	m dated a	24/25.7.	1964, N	= 0.160	1	
(1)	(2)	(3)	(4)	(5)		-+++	· - (8)	-197		T11)	. (12)
-	- 21	4.10 1	80.0 254	1.83					107		
1234	5.0 10.0 20.0 50.0		:		Stable Stable Stable Unstable	23.94 24.05 24.26	130.0 130.0 130.0	237 24	23.31 23.18 22.91 22.29	130.0 130.0 130.0 130.0	232.44 231.93 229.29 226.97
		(:	iii) Kach	iwa Wate	ershed (St	orm dated	4.8.19	77, N =	0.119)		
(1)	(2)	(3)	-thr	(5)	(6)	(7)	(8)	(9)	(10)	(11) (br)	(12)
1 2 3	21.20 42.40 04.00		8.0. 78	.204	Unstable Unstable Stable	-	10.0		0.993 0.976 0.945	9.0 8.0 8.0	76.802 74.408 70.884
	1				20	-	1	10	-	-	
		3.7	6.0				14		01		
		s,	6.18		OC TR	-141		2			
			5				0	2			
				5		1.1					

(1) Bridge No. 317 (Storm dated 25.10.1961, N = 0.192)

TABLE 5.24 : Test Run for Establishing the Range of Channel length Step (Δx) from Stability and Convergence Points of View for Computational Schemes (1 & II) and III

	-halifie i		Observed				c	ompute	d Hy	drog	raph Par	ameters	
51. No.	space step (4x)	Peak	Time to peak	Volum				e (1 8	. 11)		S	cheme II	1
		(m ³ /s)	(tp) (min)	(m ³ x 1()	Stabi:	lity	0 _F (m ³ /s)	(m)	, (n)	Vol (m ³ x 1) (m ³	(min (s)	(m ³)
(1)	(2)	(3)	(4)	(5)		6)	(7)		8)	(9)		(11)	x 10-
	-	12.82	90.0 5	3.580	Con 1		-			.,,		(11)	(12)
	15.05 25.0 49.167 98.33+	3	1		Stable Stable Stable Stable Stable	12 12 12	.867 .864 .867 .876 .890	90.0 90.0 90.0	52 52 52	.960	11.945 11.940 11.920 11.900 11.851	90.0 90.0 90.0 90.0 90.0 90.0	50.100 50.097 49.993 49.890 49.710
		2.8	(11) Br	idge No	. 719 (St	orm	dated	24/25.	7.19	64, 1	N = 0.16	ö)	•
11		(3)	.4)	(5)	(6))	(7)	(8)	(9)	(10)	(11)	(12)
	-	24.10	180.0 25	4.03			-				1.2		٦.
	25.0 50.0 100.0 150.0 20x.0	-			Stable Stable Stable Stable Stable	24 24 24	.05 .09 .13	130.0 130.0 130.0 130.0 130.0	237	.21 .24 .30 .35 .42	23.204 23.180 23.150 23.150 23.110 23.070	130.0 130.0 130.0 130.0 130.0 130.0	231.87 231.97 231.69 231.57 231.14
			(111)	Kachwa I	datershed	(St	orm da	ted 4.	8.19	77, 1	N = 0.11	9)	_
1)	(=)	-(3)	(4) (.hr.)	(5)	(6)		(7)	(8)	(9)	(10)	(11) (hr)	(12)
	50.0 1500 150.0 300.0	0.993 - - - - -	8.0 /	8.264 - - -	Unstable Unstable Unstable Unstable Unstable					2	0.994 0.993 0.992 0.990 0.984	9.0 9.0 9.0 9.0 9.0	76.824 76.802 76.777 76.726 76.582
		3	2	Non Z	0	TE		0		5	2		

(1) Bridge No. 317 (Storm dated 25.10.1901, N = 0.192)

step of 10.0 metres for the Bridge Nos. 317 and 719. For the Kachwa agricultural watershed, scheme III could be satisfactorily run for the overland steps of about 85.0 metres. For the channel space step (Δx_c) (Table 5.24) scheme (I & II) remained stable upto nearly 200.0 metres for the two watersheds of Bridge Nos. 317 and 719. For the Kachwa watershed the scheme III did converge even for large values of channel space step length 300.0 metres. Summarisingly, for the three watersheds, the adopted schemes alongwith their chosen parameter values are given in Table 5.25.

TABLE 5.25 : Adopted Schemes and Their Parameters $(\Delta t, \Delta x_0 \text{ and } \Delta x_c)$ for the Three Watersheds.

S1. No.	Watershed	Scheme	∆t (min)	Δ ^x _o (m)	∆x _c (m)
1	Bridge Ne 217	1000		1 6	
	Bridge No. 317	(I & II)	5.0	4.0	25.0
	Bridge No. 719	(I & II)	10.0	10.0	
	Kachwa			10.0	50.0
Sec.	Raciiwa	III	60.0	22.35	75.0

Using the parameters of Table 5.25, the KW models has now been applied to three watersheds to compute their responses.

5.6.5 Application of KW theory to the Proposed Distributed Parameters Model (Bridge Nos. 317, 719 and Kachwa Watershed)

The distributed parameter models (discussed in Section 3.9.2) for the three watersheds of Bridge Nos. 317, 719 and Kachwa have been evolved by dividing the watersheds into a number of subwatersheds (Figures 5.16, 5.17 and 5.18). The distributed physiographic parameters computed for the two watersheds of

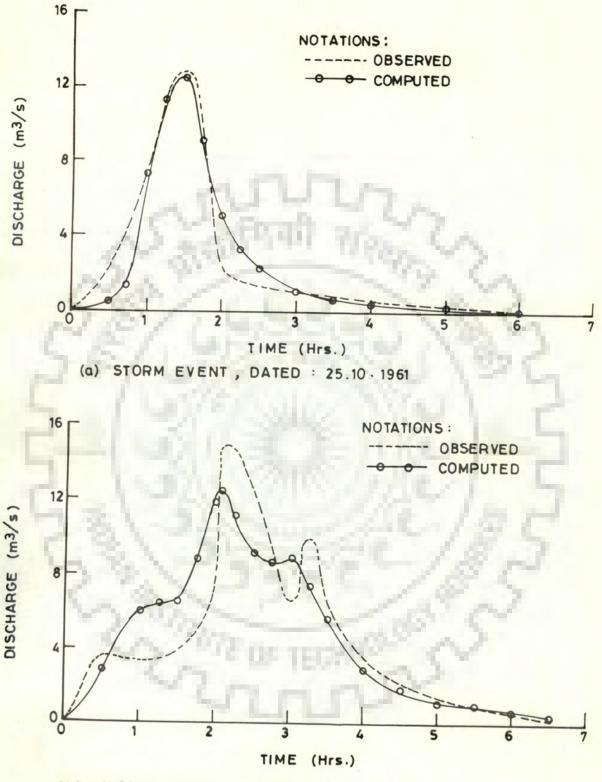
Bridge Nos. 317 and Kachwa are given in Tables 5.26 and 5.27. For the watershed of Bridge No. 719, the distributed physiographic parameters have already been computed in Section 5.6.1 (Table 5.15). The computational schemes to be applied on these watersheds and parameter values to be used are given in Table 5.25 of the previous section.

The subwatershed areas which are located on the right bank of the channel are marked with 'A' whereas those located on the left bank are marked with 'B'. Bed widths, channel side slopes and parameters α_k and m_k etc. are computed on the lines as reported in the Section 5.5.5.

For the watershed of Bridge No. 719, the physiographic parameters worked out on the basis of the lumped model (Figure 5.14 and Table 5.13) were used to compute the responses (Figures 5.29 to 5.32). The visual comparison of the observed and the computed responses suggests that the two did not match satisfactorily. The possible reason that the three main streams located in the watershed form nearly parallel drainages and a lumped parameter approach did distort the real existing situation. Consequently, the physiographic parameters worked out from the distributed parameter model (Figure 5.17 and Table 5.15) and the effective overland roughness worked out for this system were used. The computer programmes used are given in Appendix-I.

The comparisons of the observed and the computed hydrographs for 21 storm events recorded on the three watersheds are shown in figures 5.25 through 5.35 (i.e. Figures 5.25 through 5.28 for the Bridge No. 317, figures 5.29 through 5.32 for the Bridge No. 719 and figures 5.33 through 5.35 for the Kachwa watershed). The computed hydrograph parameters are also compared with their respective observed hydrograph parameters of these three watersheds (Tables 5.28, 5.29 and 5.30). Plots of observed and computed values of the peak discharges and the time to peaks are shown in figures 5.36 and 5.37. Percentage of errors in volume and model efficiencies are also computed (Tables 5.28, 5.29 and 5.30).

Concludingly, it may be remarked that the proposed KW model approach has produced quite satisfactory results. Attempts were made to explore the possibility of extending this work to ungauged watersheds as well. Also, further investigations relating to time of concentration, time_area-concentration applications were carried out, as reported in the next chapter.



	Sl. No. of sub water- shed	Overland length (m)	shed areas (A)	sub water shed	- slope	Channel length (m)	Channel slope	Channel bed width (m)
(1)	(2)	(3)	. (4)	(5)	(6)	(7)	(8)	(9)
5	1(A) 1(B)	376.0 144.0	13,1600	5.0400	0.223 0.224	350.0	0.174	2.0
3	2(A) 2(B)	360.0 72.0	14.4000 -	2.8800	0.06	400.0	0.144	3.0
1	3(A) 3(B)	456.0 96.0	15.9600	3.3600	0.052 0.045	350.0	0.017	3.0
S.s.	4(A) 4(B)	320.0 104.0	12.0000	3.9000	0.0036 0.0040	375.0	0.004	3.0
~	5(A) 5(B)	352.0 192.0	14.9600	8.1600	0.169 0.152	425.0	0.179	2.0
	6(A) 6(B)	320.00 264.0	15.2000	12.5400	0.067	475.0	0.064	3.0
	7(A) 7(B)	232.0 104.0	6.9600	3.1200	0.044	300.0	0.054	3.0
	8(A) 8(B)	104.0 224.0		6.1600 45.1600	U.0076 0.0064	275.0	0.0033	3.0

TABLE 5.26 : Computed Physiographic Parameter Values for the Distributed System of Bridge No. 317

Sl. No. of chann- el	Sl. No. of sub water- shed	Overland length (m)	Right bank sub water- shed areas (A) (ha)	Left bank sub water- shed areas (B) (ha)	Overland slope	Channel length (m)	Channel slope	Channel bed width (m)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	1(A) 1(B)	400.00 900.00	36.00	81.00	0.0012 0.0013	900:00	0:00044	1:50
	2(A) 2(B)	750.00 750.00	56.25	- 56.25	0.0013	750.0	0.00044	1.50
1	3(A) 3(B)	650.00 650.0	68.25 -	- 68.25	0.0010 0.0012	1050.0	0.00045	2.00
	4(A) 4(B)	750.0 850.0	90.00	_ 102.00	0.0013 0.00099	1200.0	0.00045	2.00
	5(A) 5(B)	1450.0 950.0	87.00	- 57.00	0.0013	600.0	0.00046	2.00
	6(A) 6(B)	1650.0 700.0	123.50	52.50	0.0014 0.00091	750.0	0.00047	2.50
	7(A) 7(B)	1750.0 850.0	131.25	63.75	0.0014	750.0	0.00055	2.50
Total			592.25	480.75				

TABLE 5.27 : Computed Physiographic Parameter Values for the Distributed System of Kachwa Water shed

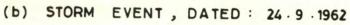


FIG. 5. 25 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO-317)

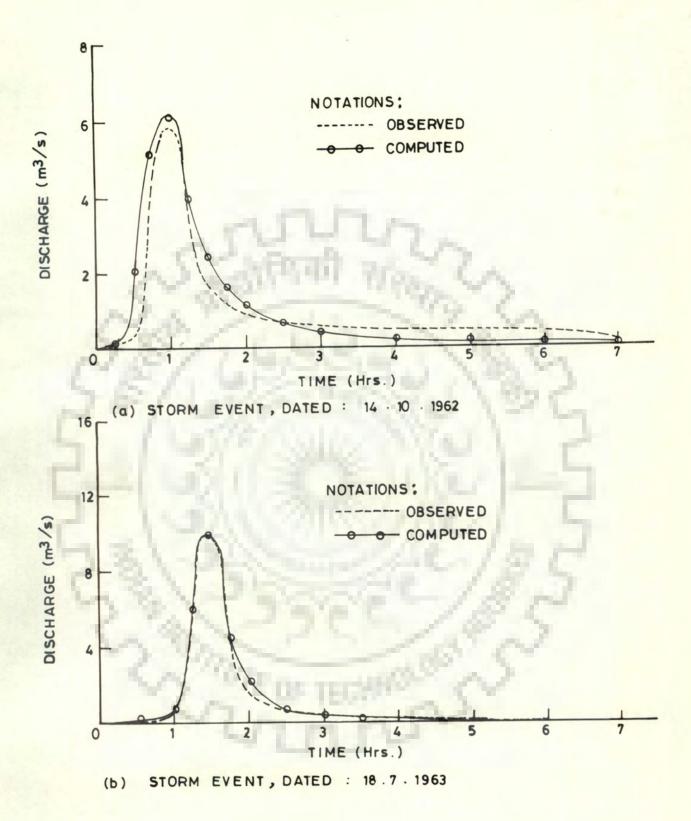
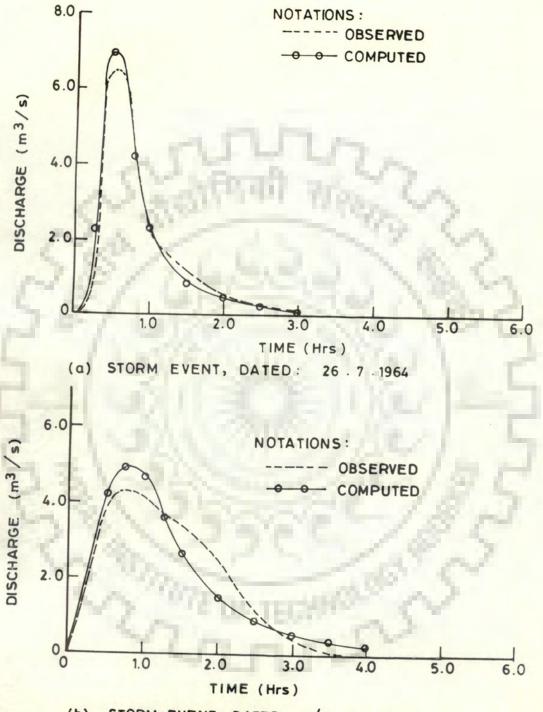



FIG. 5.26 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO. 317)

(b) STORM EVENT, DATED : 7/8 . 9 . 1964

FIG. 5. 27 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO. 317)

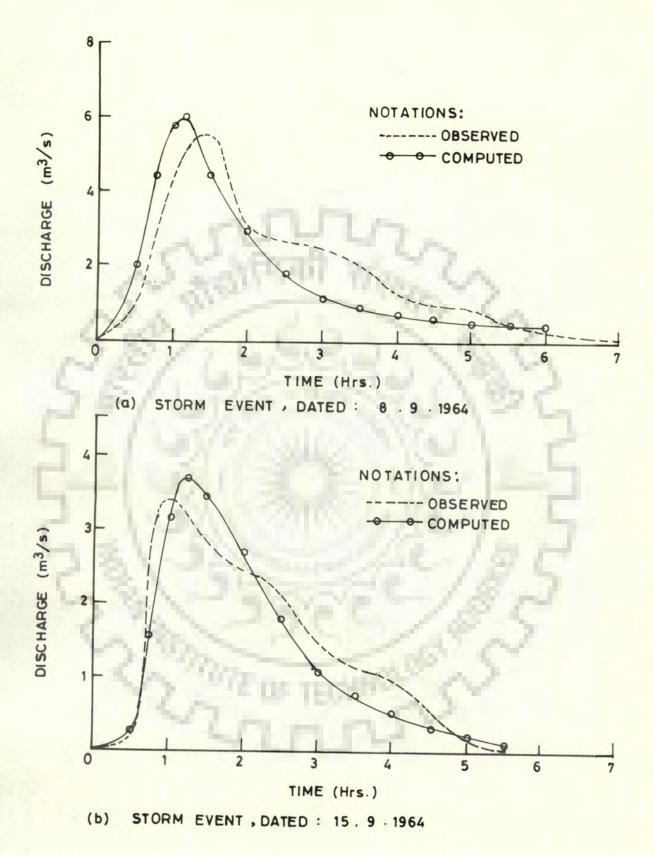
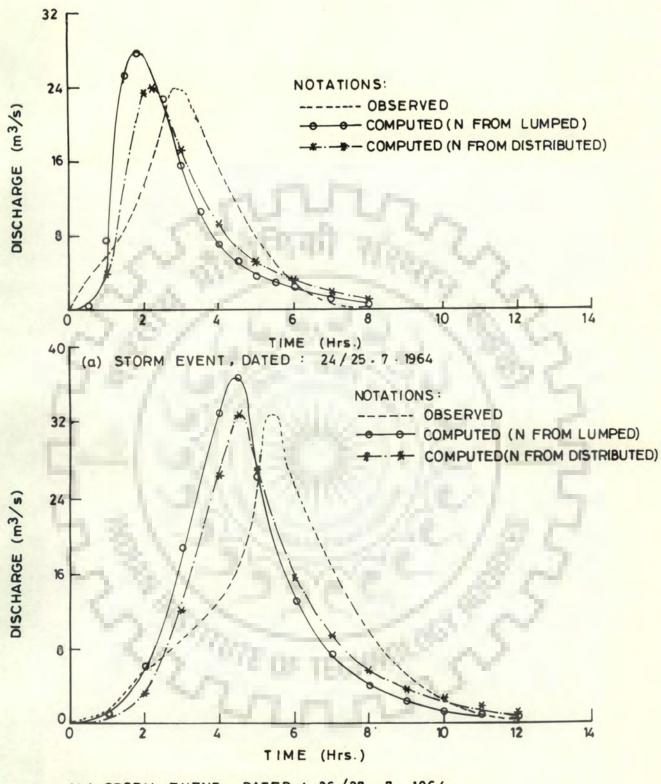



FIG. 5-28 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO.317)

(b) STORM EVENT , DATED : 26 /27 . 7 . 1964

FIG. 5. 29 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO. 719)

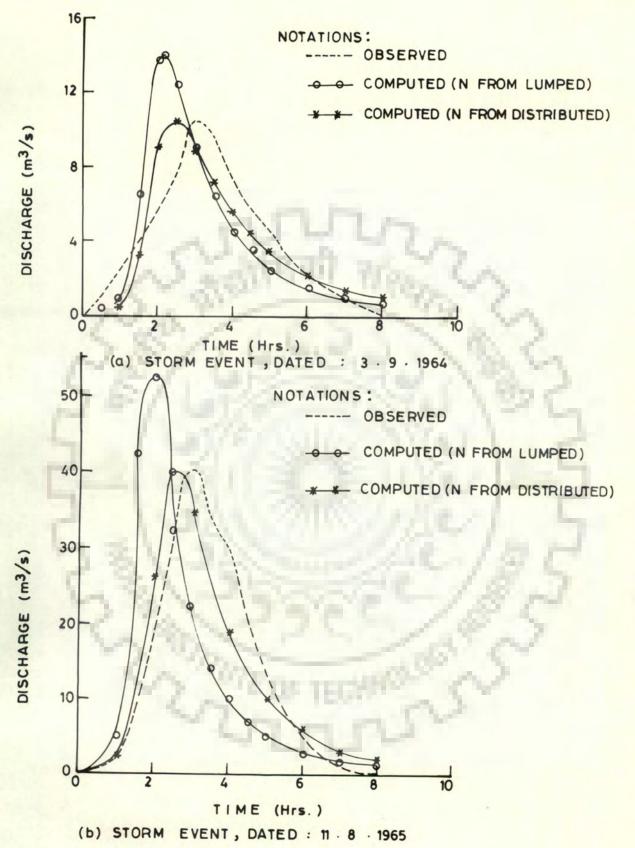


FIG. 5.30

COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO. 719)

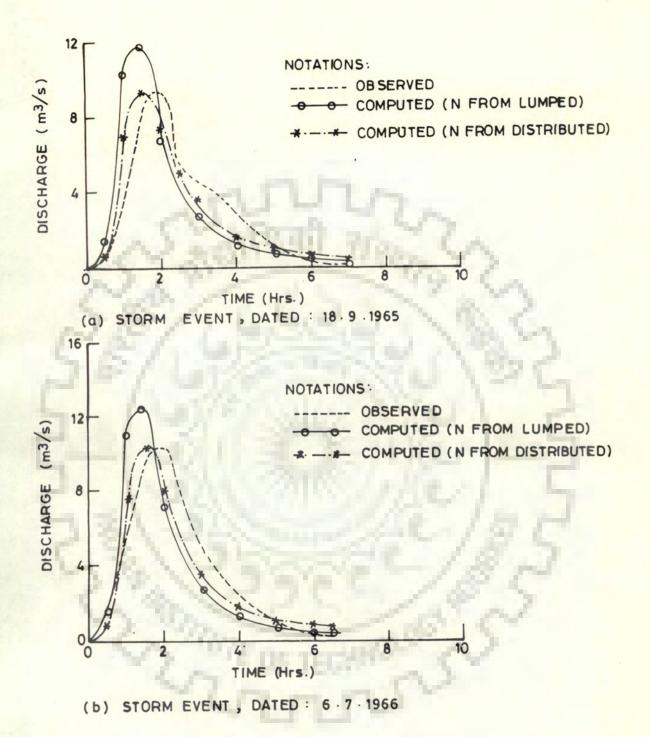
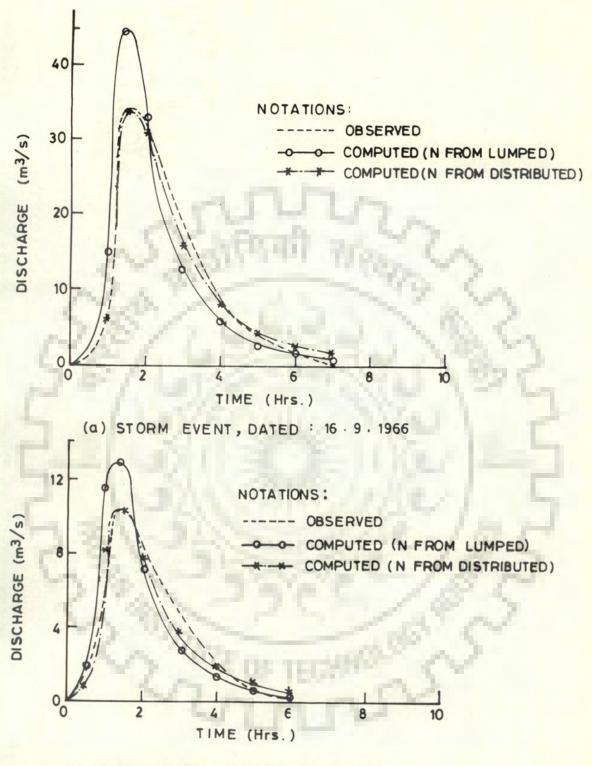



FIG. 5.31 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO. 719)

(b) STORM EVENT , DATED : 20 .9 . 1966

FIG. 5.32 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO. 719)

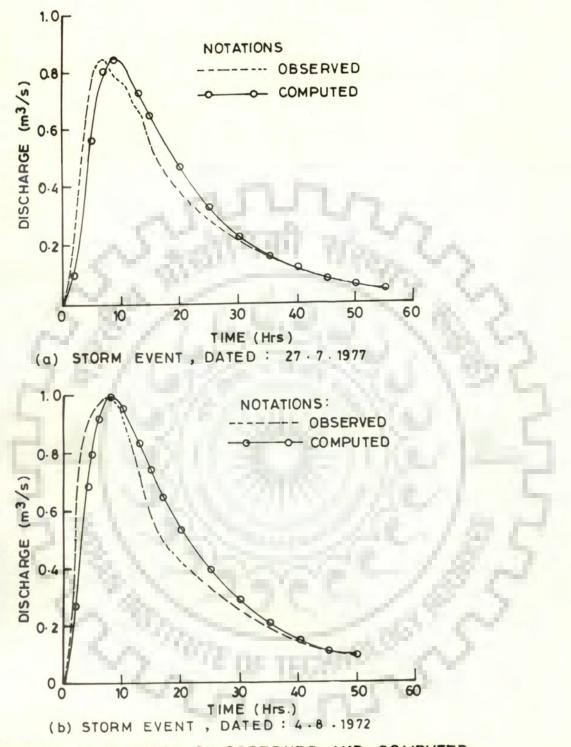


FIG. 5.33 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (KACHWA WATERSHED)

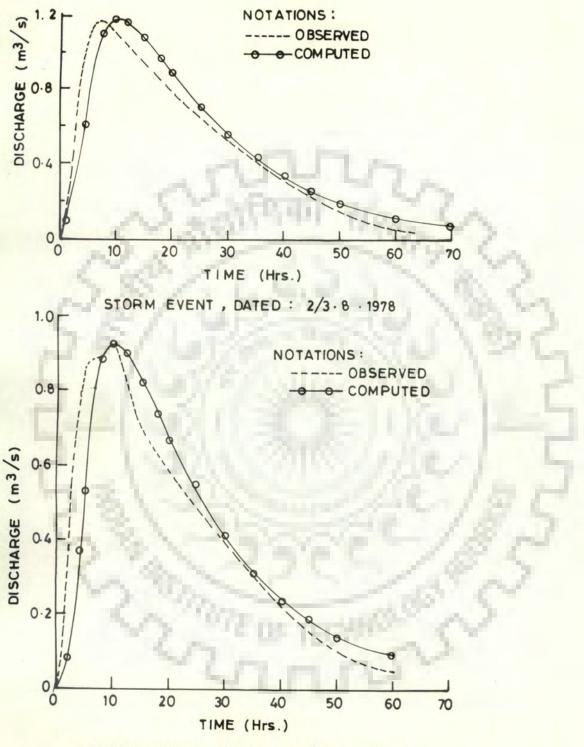


FIG. 5-34 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (KACHWA WATERSHED)

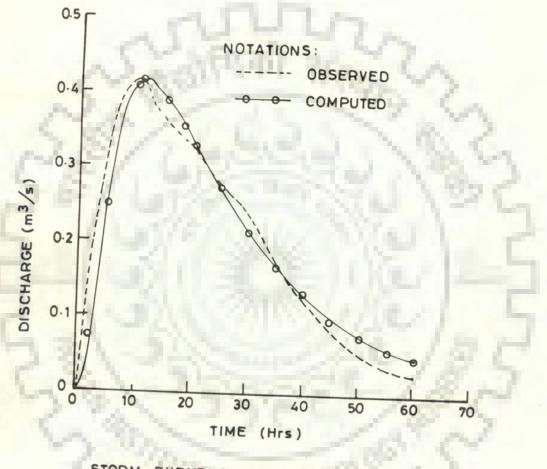


FIG. 5.35 COMPARISON OF OBSERVED AND COMPUTED DIRECT RUNOFF HYDROGRAPHS (KACHWA WATERSHED)

TABLE 5.28 : Observed and Computed Hydrograph Parameters Using KW Model of Scheme (I & II) (Bridge No. 317)

s1.	Storm	Peak Disc	harge (m ³ /s)	Time to	Peak (min)	Volume (m^{3}) x 10 ³	Volume	Model Efficiency
No.	Date	Observed	Computed	Observed	Computed	Observed	Computed	(%)	R ² (%)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1	25.10.1961	12.82	12.44	90.0	90.0	178,62	177.074	0.86	90.2
2	24.9.1962	15.10	12.03	130.0	125.0	340.734	339.489	0.36	62.0
3	14.10.1962	5.773	6.212	60.0	60.0	81.110	80.983	0.156	77.8
4	18.7.1963	9.905	10.19	80.0	85.0	81.846	81.680	0.20	98.0
5	26.7.1964	6.481	7.08	30.0	30.0	60.776	60.532	0.40	96.9
6	7/8.9.1964	4.245	5.11	50.0	50.0	94.96	89.450	5.80	81.5
7	8.9.1964	5.098	6.00	90.0	65.0	145.356	100	-	85.3
8	15.9.1964	3.424	3.792	60.0	75.0	93.040	89.051	4.2	90.3
		1. S.				Contraction of the second second			

Contract &

		Peak Di Observed		(m^3/s)	Time	to Peak Compu		Volum		x 10 ³	Volume	error (%)	Model Efficiency
S1. No.	Storm			Distri- buted	-	-	Distri- buted			Distri- buted	Lumped	Distri- buted	- (7)
(1)	(2)	(3)	(4)	(5)	(6)	. (7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
			. 7.	5.	671			3.1		S. C.,			
1	24/25.7.1964	24.100	28.09	24.20	180.0	110.0	130.0	254.83	244.013	241.432	4.2	5.2	48
2	26/27.7.1964	32.709	35.80	52.68	330.0	260.0	270.0	422.58	409.146	405.329	3.1	4.1	46
3	3.9.1964	10.480	14.02	10.50	180.0	130.0	150.0	125.06	119.290	116.660	4.6	6.7	69
4	3.9.1964	40.022	54.176	39.95	180.0	120.0	150.0	391.07	376.302	368.435	3.7	5.7	79
5	18.9.1965	9.350	11.80	9.42	120.0	80.0	90.0	78.584	77.314	75.331	1.6	4.1	78
5	6.7.1966	10.365	12.706	10.284	120.0	80.0	90.0	85.27	81.853	79.649	4.0	6.5	75
1	16.9.1966	33.980	45.80	33.89	90.0	80.0	90.0	285.59	276.503	268.104	3.2	6.1	97
3	20.9.1966	10.300	13.119	10.48	90.0	80.0	90.0	79.72	78.595	77.40	1.4	2.9	88

Contract of

TABLE 5.29 : Observed and Computed Hydrograph Parameters Using KW Model of Scheme (I & II), (Bridge No. 719)

TABLE 5.30 : Observed and Computed Hydrograph Parameters Using KW Model of Scheme III (Kachwa Watershed)

S1.	Storm	Peak Disc	harge (m ³ /s)	Time to	ime to Peak (hr.) Volume $(m^3) \times 10^3$			Volume	
No.	Date	Observed	Computed	Observed	Computed	Observed	Computed	(%)	Efficiency R ² (%)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1	27.7.1977	0.851	0.847	7.0	9.0	60.08	60.04	0.07	95.0
2	4.8.1977	0.993	0.992	8.0	8.0	63.00	62.64	0.57	92.0
3	2/3.8.1978	1.178	1.194	7.0	10.0	45.07	44.90	0.38	86.0
4	8/9.8.1978	0.918	0.928	10.0	10.0	115.91	115.826	0.07	86.0
5	2.8.1979	0.417	0.422	10.0	11.0	88.164	88.200	-0.04	95.0

NOTATIONS :

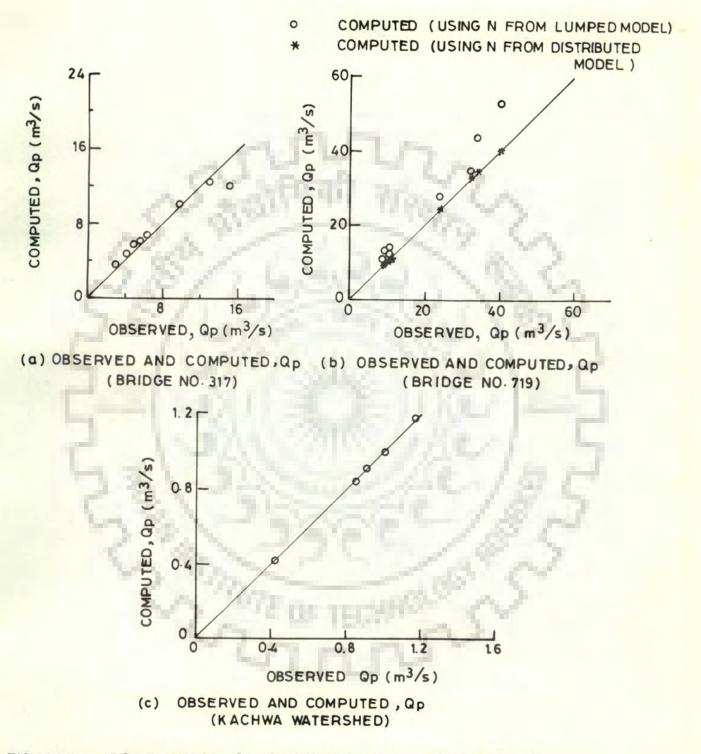
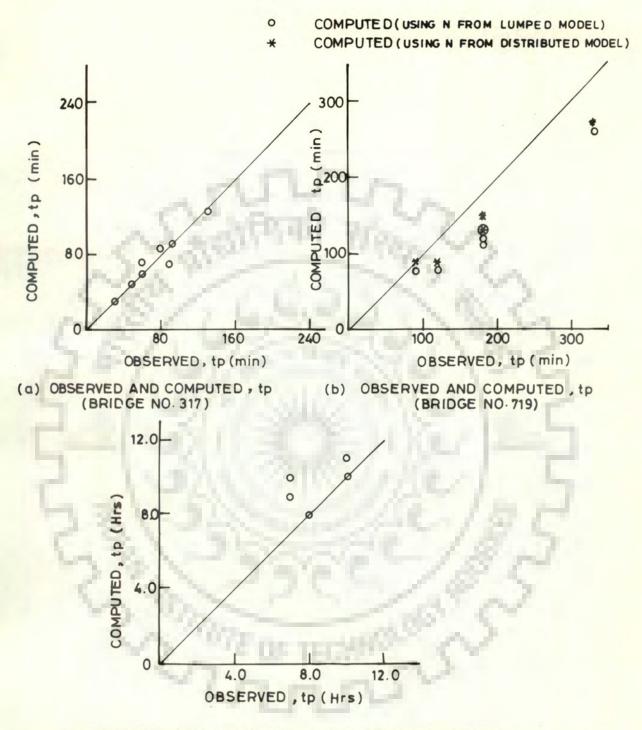



FIG. 5.36 COMPARISON OF OBSERVED AND COMPUTED PEAK DISCHARGE OF THE THREE WATERSHEDS (BRIDGE NO. 317, 719 AND KACHWA)

NOTATIONS:

(c) OBSERVED AND COMPUTED, tp (KACHWA WATERSHED)

FIG. 5.37 COMPARISON OF OBSERVED AND COMPUTED TIME TO PEAK OF THE THREE WATERSHEDS (BRIDGE NO. 317 719 AND KACHWA)

CHAPTER - VI

EXTENSION OF PROPOSED CONCEPTS TO UNGAUGED WATERSHEDS

6.1 INTRODUCTION

In the previous chapter, proposed KW models developed for distributed systems were applied to three small gauged natural hilly watersheds. Also these applications were discussed for an agricultural watershed. Such attempts mainly remain of accademic interest and do not find their practical field applications unless they can be suitably applied to the ungauged watersheds. For this purpose, appropriate relationships are to be developed. The term "Ungauged" is used in a sense that information pertaining to physiography, land use, soil cover is available. The rainfall excess data is either available for the storm events recorded in the past or their future reliable estimates can be had from the information of the nearby larger system to which the ungauged watershed belongs. However, in any case, no gauged runoff responses are availbale for identification of the system. The usual attempts are directed towards correlating the vital hydrograph parameters with the watershed physiography and the causative excitation function i.e. the rainfall in this case. For such attempts, it is usual that the proposed models should be applied on to a large number of watersheds. Having identified these systems correctly, their hydrologic responses and the corresponding physiographic details along with the input functions are utilised to develop suitable relationships for their extension to ungauged watersheds.

This work is handicapped because data are available for only three gauged hilly small natural watersheds of the 'Plateau of Deccan'. Nevertheless, attempts are made to develop suitable relationships in the forms of nomogram and regression equations. As and when data of more gauged watersheds would be available, the proposed KW models can be extended to them and the relationships arrived at in the forthcoming sections can further be modified.

6.2 THE PHYSIOGRAPHIC DATA

Normally topographic sheets of Survey of India are available for most parts of the Indian main land. Following information can suitably be extracted by appropriately selecting a topo-sheet of the desired scale. Usually 1:50,000 scale is the right choice for such studies.

- (1) The water divide of the watershed and its watershed area, width of the watershed etc.
- (2) The channel network, length of the longest (main) channel, length of the main channel from the outlet to the point opposite the C.G. of watershed.
- (3) Contributing overland areas for various channels
- (4) Contours, spot levels for computing the watershed slopes (i.e. the overland as well as for the channels).

In the proposed concepts, the watershed effective overland roughness plays an important role as it has been found to be the most sensitive parameter. A correct description of effective overland roughness will be needed for the ungauged watersheds for suitably applying the proposed concepts to them. For this purpose, the effective overland roughnesses worked out in the previous applications in 3 watershed (Figures 5.5, 5.22 and 5.23) have been used as indices. The fortnightly average effective overland roughnesses as worked out for the three watersheds are given in figures 6.1(a) through 6.1(c).

Keeping in view, the size of the watershed as well as the rainfall period appropriate values of the effective overland roughnesses can be picked up from these three curves.

6.3 PROPOSED APPROACHES

The peak discharge ordinate has been considered to be a dependent function. This is to be determined in terms of independent physiographic and meteorologic variables. In the proposed theory, the effective physiographic parameters are the watershed area (A), length of the main channel (L_c), effective overland plane length (L_o), effective overland roughness (N), overland slope (S_o), channel roughness (n), channel slope (S) and cross-section of the water area in channel. The meteorologic parameters used are rainfall excess intensity (I) and its duration (D).

Keeping in view, the limited data base, the choice of the independent variables have been restricted to the following :

FIG. 6.1 (a) FORTNIGHTLY AVERAGE EFFECTIVE OVERLAND ROUGHNESS FOR 4 MONSOON MONTHS (JULY TO OCTOBER, BRIDGE NO. 319)

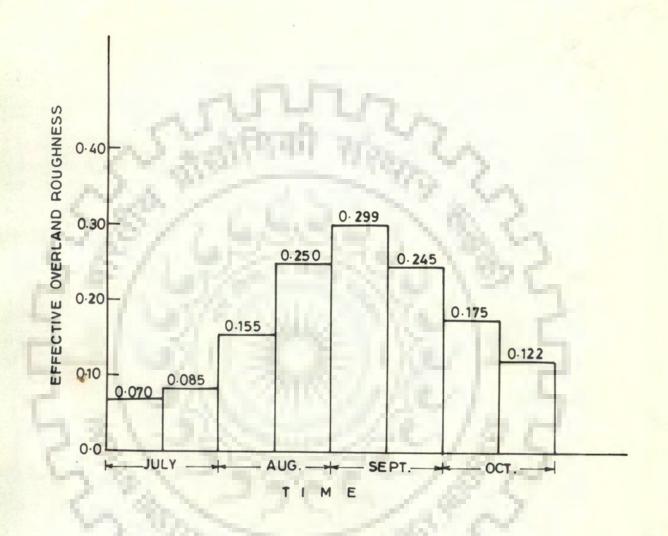


FIG. 6.1(b) FORTNIGHTLY AVERAGE EFFECTIVE OVERLAND ROUGHNESS FOR 4 MONSOON MONTHS (JULY TO OCTOBER, BRIDGE NO.317)

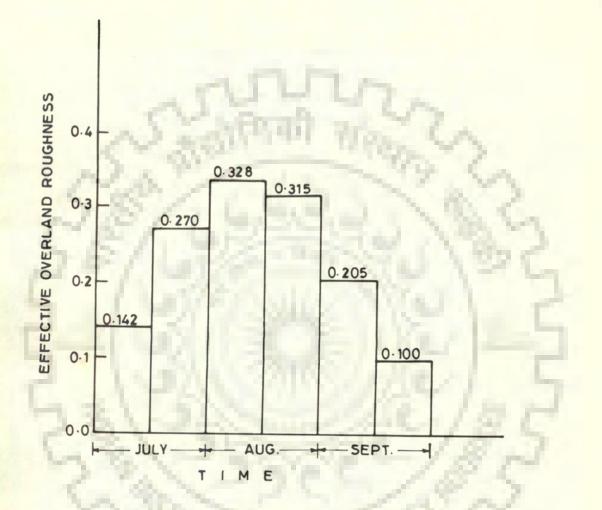


FIG. 6.1 (c) FORTNIGHTLY AVERAGE EFFECTIVE OVERLAND ROUGHNESS FOR 3 MONSOON MONTHS (JULY TO SEPT., BRIDGE NO. 719)

- Physiographic parameters : Watershed area (A), effective overland roughness (N), length of the main channel (L_c).
- (2) Meteorologic parameters : Intensity of rainfall excess (I) and its duration (D) [or depth of rainfall excess (d)].

It will not be out of place to mention that the computation of rainfall excess function for the given gross rainfall continues to be the weakest link in surface hydrologic computations. Like most analyses, in this work too, the rainfall excess functions have been computed by assuming constant rate of abstractions (i.e. the \emptyset -index). Thus, it is necessary to have an idea of \emptyset -index along with the gross rainfall data to compute the rainfall excesses functions.

The following approaches have been tried for obtaining the responses for the ungauged watersheds.

- (1) Nomogram approach, and
- (2) Regression approach.

A brief description of the above approaches is given in the forthcoming sections.

6.4 NOMOGRAM APPROACH

Owing to limited data availability (i.e. of only 3 watersheds and total number of 26 storm events), the watershed area could not be taken up as variable. The dependent variable i.e. the peak discharge (Q_p) is considered a function of effective overland roughness (N), rainfall excess intensity (I) and its duration (D).

For the watershed of Bridge No. 319 (82.0 ha), the relationships in the form of nomograms are plotted in figures 6.2(a) through 6.2(c). In the relationships, curve drawn by the firm lines are for the watershed of Bridge No. 319. The relationships given by the dotted lines refer to some hypothetical cases of watersheds having the same area (82.0 ha) but different ratios of L_c (length of the channel) and L_o (length of the overland plane). The very high intensity rainfall excesses (20.0, 50.0 and 100.0 mm/hr) have been considered. It is interesting to note the following :

- (1) For the same effective overland roughness, as the rainfall excess intensity increases, the time of concentration decreases.
- (2) For the same rainfall excess intensity, the increase in effective overland roughness, increases the time of concentration (T_c) .

Thus, according to the revealations, the time of concentration (T_c) is not a fixed property (characteristic) of the watershed. It needs further investigations which have been carried out in the forthcoming section.

Concludingly, it may be remarked that similar curves can be prepared for the watersheds of different sizes, different

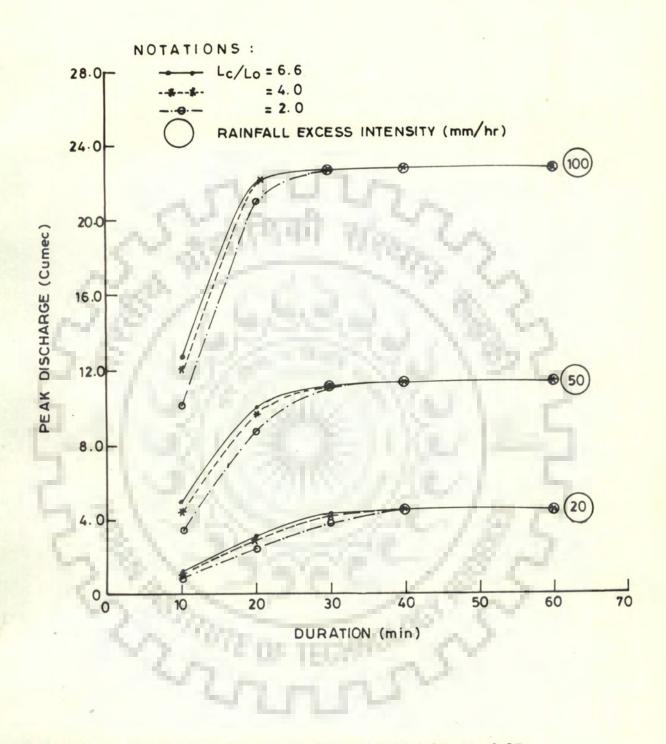


FIG. 6.2 (a) NOMOGRAM OF PEAK DISCHARGE FOR N = 0.05 (BRIDGE NO. 319)

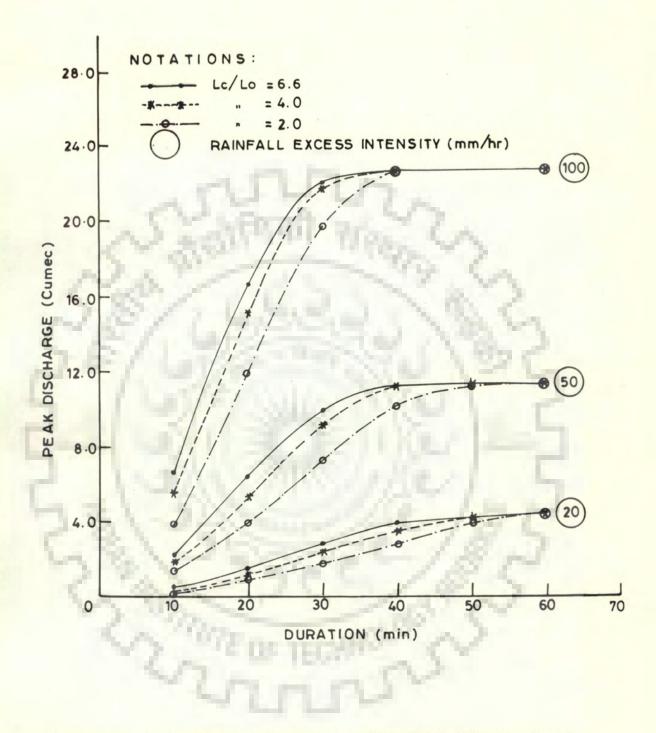


FIG. 6.2 (b) NOMOGRAM OF PEAK DISCHARGE FOR N = 0.150 (BRIDGE NO. 319)

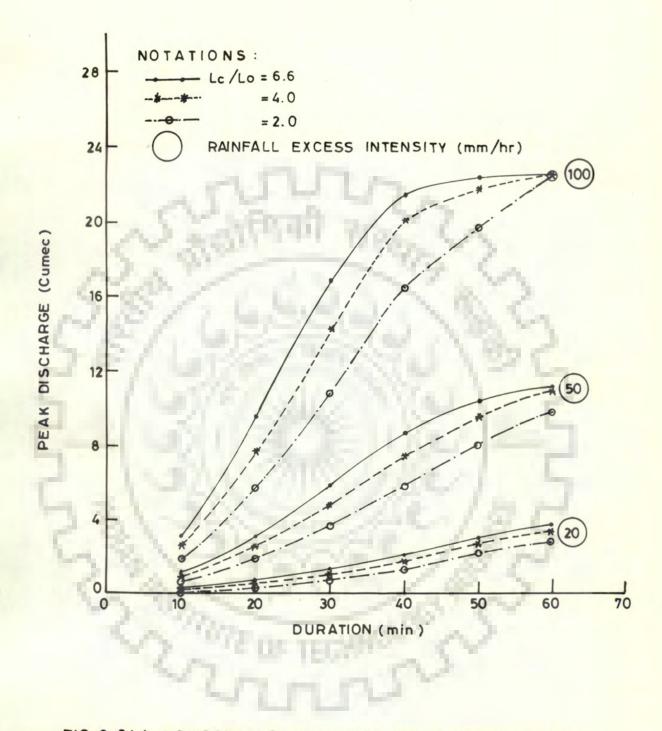


FIG. 6.2(c) NOMOGRAM OF PEAK DISCHARGE FOR N = 0.350 (BRIDGE NO. 319)

effective overland roughnesses, of the similar physiographic characteristics of the watersheds in the vicinity.

These curves have a limitation that the another sensitive parameter overland slope could not be included and its effect is not reflected in the relationships. For this purpose, the regression analysis have been tried to arrive at suitable relationships.

6.5 MULTIPLE NONLINEAR REGRESSION ANALYSIS FOR PEAK DISCHARGE COMPUTATIONS

The use of nonlinear multiple regression equations for the transformation of the desired hydrologic dependent variable from a few gauged stations to many ungauged ones is a practical and handy tool. In such relationships, the dependent variable is expressed as a function of independent variables. Since, the hydrologic processes are mostly nonlinear in nature, therefore, a nonlinear fit is preferred. With the advent of digital computers, it is now easy to consider a number of independent variables which effectively influenced the hydrological processes.

In this analysis, the peak discharge (Q_p) is the dependent function. In the proposed KW models application, the independent physiographic parameters and the input meteorological parameters which influence Q_p have been listed in the previous section. Large quantity of data are required to incorporate all the parameters in the regression analysis. Further, the experience tells that, it is better to restrict the number of independent variables to a minimum. Since, for developing such relationships, data of only three watersheds was available and the total number of 26 storm events, therefore, choice has been restricted to only 4 independent variables. The following two alternatives have been considered by making use of a total number of 6 independent variables (viz. A, N, S_0 , I, D, d).

$$Q_p = f(A, I, D, N)$$
 ... (6.1)
and
 $Q_p = f_1(A, d, N, S_0)$... (6.2)

Data pertaining to independent variables have been listed in Tables 5.1, 5.5, 5.12, 5.13, 5.17, 5.18 and Appendix - II. The average rainfall excess intensity (I) has been considered for the storm events. The two nonlinear multiple regression equations worked out for the dependent variable Q_p are as below

$$Q_p = 0.9336 A^{0.688} I^{1.261} D^{0.848} N^{-0.304}$$
 ... (6.3)
and

$$Q_p = 2.113 A^{1.060} d^{1.055} s_0^{4.292} N^{-0.401} \dots (6.4)$$

where Q_p = Peak discharge in cumec

A = Area in sq.metre

- I = Average rainfall excess intensity in m/s
- D = Duration of rainfall excess in second
- d = Depth of rainfall excess in metre.

It is necessary that the regression equations be used with care and caution. Best results are obtained when such

196

equations are applied for the values of independent variables which lie within the ranges for which the relationships have been obtained. For equations (6.3) and (6.4), the range of independent variables are given in Table 6.1.

TABLE 6.1 : Range of Indpendent Variables Used for NonlinearMultiple Regression Analysis

Independent Variable Range	I (mm/hr)	D (min)	So	N	d (mm)	A (ha)
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Maximum	40.68	240.0	0.092	0.420	73.02	1400.0
Minimum	5.976	10.0	0.071	0.05	5.6	82.0

Equation (6.3) and (6.4) have been used to compute the peak discharges for the available data sets of 26 storm events registered on the three natural watersheds. The comparisons of computed and the observed peak discharges are shown in figure 6.3 [from multiple regression equation (6.3)] and in figure 6.4

It is to be seen that the equation (6.3) fits into the data well and is therefore, the same is recommended for use of ungauged watersheds of the vicinity.

6.6 ANALYSIS OF TIME OF CONCENTRATION

In Section 6.4, while discussing the nomograms given in figures 6.2, findings regarding the effects of overland rough-

197

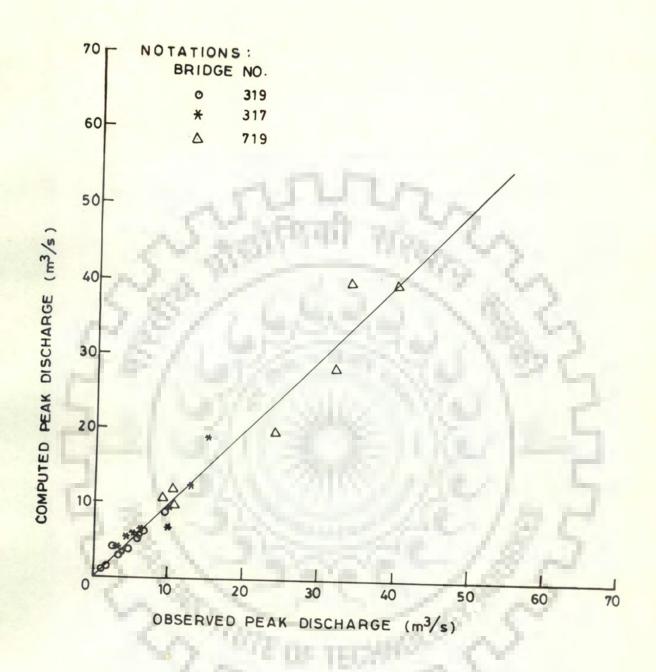


FIG. 6.3 COMPARISON OF OBSERVED AND COMPUTED PEAK DISCHARGES BY USING MULTIPLE REGRESSION EQUATION (6.3)

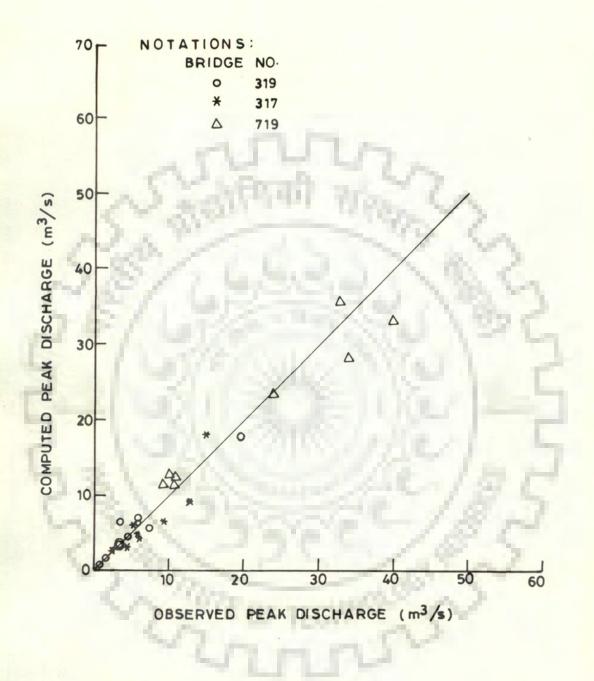


FIG. 6-4 COMPARISON OF OBSERVED AND COMPUTED PEAK DISCHARGES BY USING MULTIPLE REGRESSION EQUATION (6.4)

ness and the rainfall excess intensity on the time of concentration were stated. Singh (1976) and Agiralioglu (1988) have given mathematical formulations of KW theory for the time of concentration for varying rainfall input conditions, watershed geometry and physiographic conditions. Inspite of these findings, no research work could be traced where there were translated into practice for use of the 'Time-Area-Concentration' (TAC) models. TAC based models generally assume linearity and the time of concentration is considered to be a fixed characteristic. Attempts were made in this work to introduce the variability in the time of concentration with rainfall excess intensity and effective overland roughness.

For three representative overland roughness values of N = 0.05 (i.e. the least value), 0.15 (i.e. average value) and 0.35 (i.e. maximum value), runoff hydrographs were computed for the watershed of Bridge No. 319 (Section 5.5.5) for seven uniform rainfall excess intensities varying in the range of 5.0 to 60.0 mm/hr. The time of concentrations were marked on these hydrographs when the discharges became steady. A plot of time of concentration (T_c) Vs. rainfall excess intensity (I) was drawn as a function of effective overland roughness (N) for the watershed of Bridge No. 319 and the same is produced in figure 6.5. From this plot, it is evidently clear that the time of concentration very much depended upon the rainfall excess intensity as well as effective overland roughness.

6.7 MULTIPLE NONLINEAR REGRESSION ANALYSIS FOR COMPUTATIONS OF TIME OF CONCENTRATION

As suggested by various researchers, the time of concen-

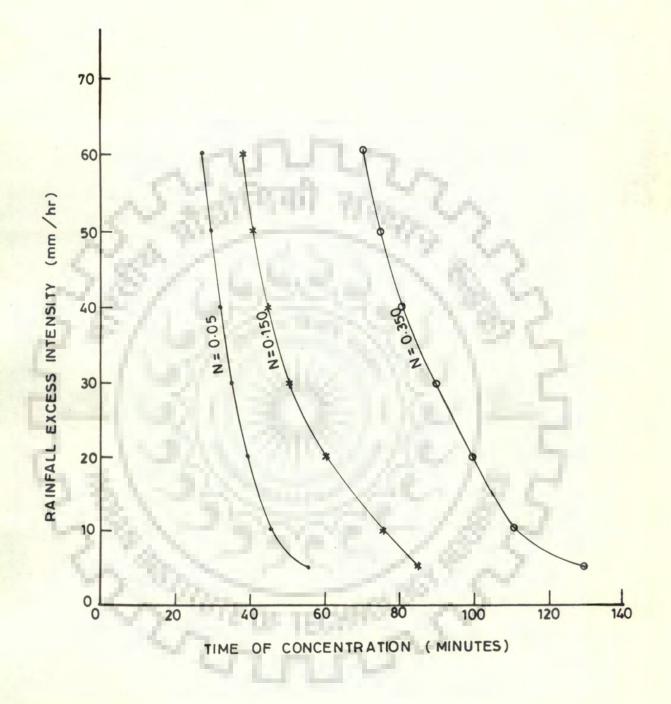


FIG. 6.5 RELATIONSHIP OF TIME OF CONCENTRATION AND RAINFALL EXCESS INTENSITY AS A FUNCTION OF EFFECTIVE OVERLAND ROUGHNESS (BRIDGE NO. 319)

tration was considered to be a function of physiographic characteristics as well as the rainfall excess intensities. The following three alternatives were investigated.

$$T_{c} = f(A, N, I)$$
 ... (6.5a)
 $T_{c} = f_{1}(A, N, I, S_{0})$... (6.5b)
and

$$T_c = f_2(A, N, I, S)$$
 ... (6.5c)

The physiographic data of the three watersheds and computed time of concentrations for five different rainfall excess intensities as given in Table 6.2 were used to develop nonlinear regression equations. The equations so arrived at are given as below :

$$T_{c} = 6.465 \ A^{0.409} \ I^{-0.130} \ N^{0.347} \qquad \dots \qquad (6.6a)$$

$$T_c = 0.0369 A^{0.086} I^{-0.138} N^{0.312} s_0^{-3.88} \dots (6.6b)$$

$$T_c = 0.602 A^{0.657} I^{-0.138} N^{0.312} S^{0.50} \dots (6.6c)$$

where
$$T_c = Time$$
 of concentration in seconds
A = Area in m²

I = Rainfall excess intensity in m/s.

and

To check the performance of these equations, the time of concentration computed by equations and through the models were compared. The comparisons are shown in figures 6.6(a), (b) and (c). Though all the three comparisons are very close, yet performance of equation (6.6c) may be said better and the same is suggested for future works.

S1.	I	T _c (min) for Effective Overland Roughness (N)			
No.	mm/hr	N=0.05	N=0.075	N=0.200	N=0.380
1 2 3 4 5	10.0 20.0 30.0 50.0 100.0	52.5 40.0 40.0 37.5 35.0	65.0 50.0 45.0 40.0 35.0	87.5 70.0 62.5 50.0 50.0	112.5 90.0 77.5 65.0 62.5
(b)	Bridge No.	317 (A = 14)	10.0 ha, S _o	= 0.081, S	= 0.105):
S1.	I	T _c (mir) for Effe Roughness	ctive Overl (N)	and
No.	mm/hr	N=0.07	N=0.155	N=0.255	N=0.300
1 2 3 4 5	10.0 20.0 30.0 50.0 100.0	85.0 85.0 80.0 70.0 60.0	120.0 115.0 105.0 85.0 75.0	150.0 135.0 125.0 105.0 85.0	160.0 150.0 135.0 115.0 95.0
(c)	Bridge No. 7	719 (A = 14	00.0 ha, S	o = 0.071, S	$S_c = 0.021)$
51.	30	T _c (m	in) for Eff Roughness	fective Over s (N)	land
10.	mm/hr	N = 0.07	N =	0.150	N = 0.338
1	$ \begin{array}{r} 10.0 \\ 20.0 \\ 30.0 \\ 50.0 \\ 100.0 \\ \end{array} $	200.0 180.0 180.0 170.0 130.0	23 23 22	50.0 30.0 30.0 20.0 50.0	350.0 290.0 280.0 270.0 200.0

TABLE 6.2 : DATA Used for Regression Analysis for the Time of Concentration

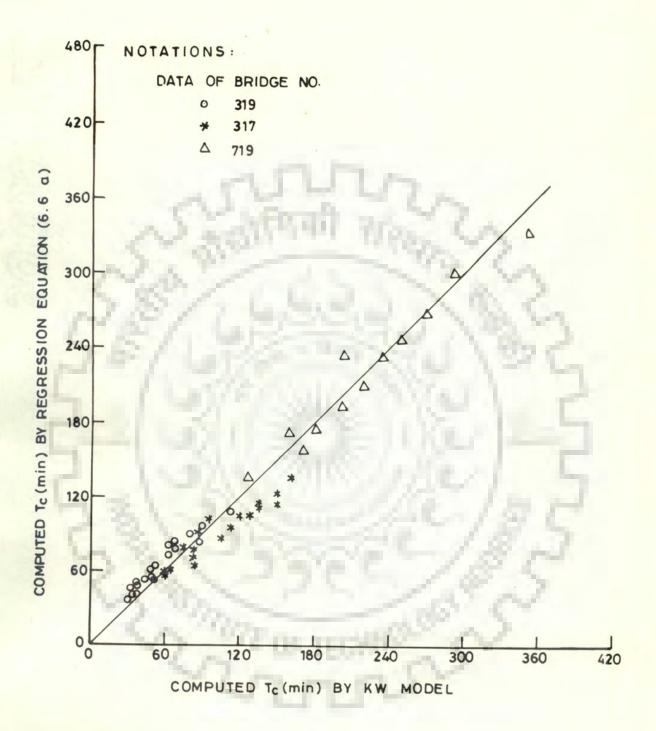


FIG. 6.6(a) COMPARISON OF COMPUTED VALUES OF TIME OF CONCENTRATION USING THE MODEL (SECTION 3.9.1) AND THE EQUATION (6.6 a)

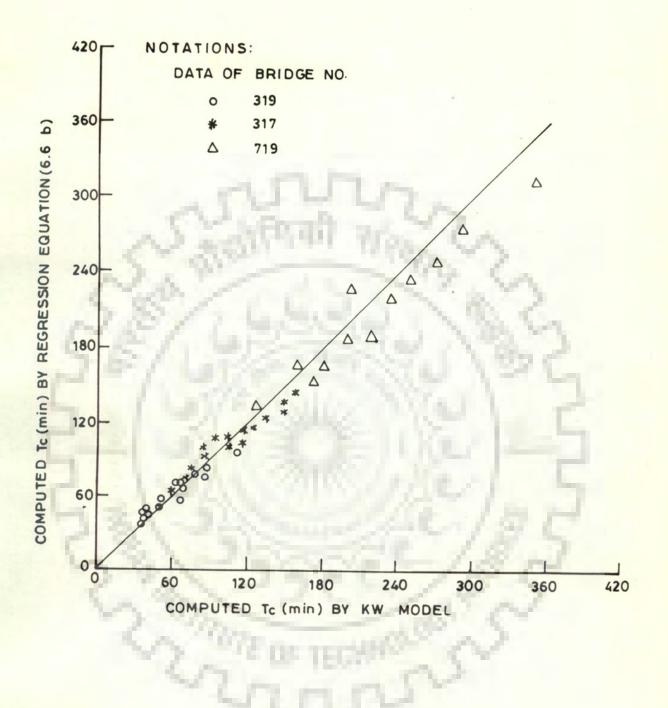


FIG. 6.6(b) COMPARISON OF COMPUTED VALUES OF TIME OF CONCENTRATION USING THE MODEL (SECTION 3.9.1) AND THE EQUATION (6.6 b)

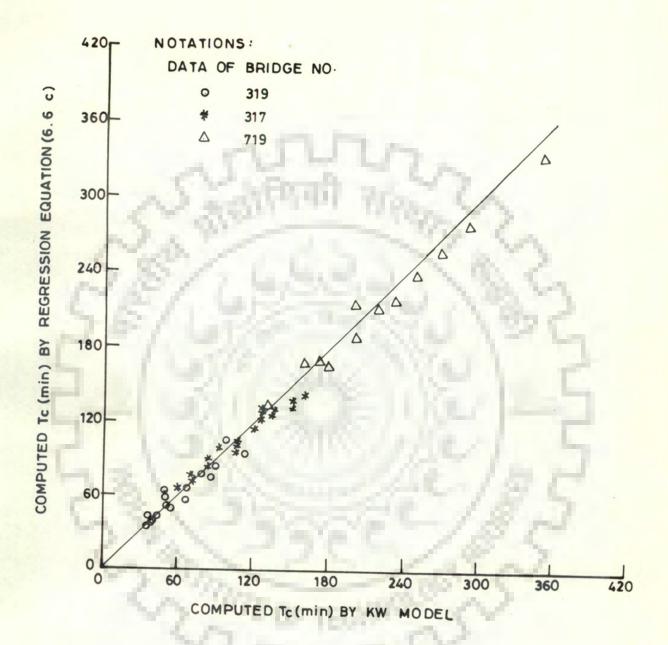


FIG.6.6(c) COMPARISON OF COMPUTED VALUES OF TIME OF CONCENTRATION USING THE MODEL (SECTION 3.9.1) AND THE EQUATION (6.6 c)

6.8 VARIABILITY IN TIME OF CONCENTRATION AND ITS APPLICATION TO TIME-AREA-CONCENTRATION(TAC) BASED MODELS

In the previous sections dependence of the time of concentration on rainfall excess intensity and the physiographic parameters has been described. In this section attempts are made to translate the variability in time of concentration into practical applications for TAC based models. For this purpose, the watershed of Bridge No. 319 is selected. It is mainly because, this watershed is oblong in shape. To such watershed the TAC based models have been found to be the most practical and useful. Three representative effective overland roughness values viz. n = 0.05 (i.e. minimum), 0.150 (i.e. average) and 0.350 (i.e. maximum) have been chosen. Six uniform rainfall excess intensities (viz. 5.0, 10.0, 20.0, 30.0, 40.0 and 60.0 mm/hr) have been tried. By using the proposed KW model for this watershed (Section 5.5.5), the six runoff responses have been computed.

The genetic principle of runoff (Figure 6.7) suggests the following relationship for the computation of runoff.

$$Q(t) = \int_{0}^{t} \frac{dA_{t-\tau}}{dt} \cdot I(\tau) d\tau \qquad \dots \quad (6.7)$$

By using KW models for this relationship, for particular values of N and rainfall excess intensities, Q(t) at different times became known functions. Thus for variable times (0.0 to T_c), the cumulative contributing areas are worked out. By appropriately adopting a uniform incremental values (say, 5.0 minutes in this case), the inter-isochronal areas are obtained. For each of the three effective overland roughnesses, the relationships between the inter-isochronal areas and 'contributing times' are shown in figures 6.8(a), (b) and (c).

In figure 6.9, for the two selected rainfall excess intensities (i.e. 10.0 and 60.0 mm/hr), the contributing inter-isoch ronal areas are plotted against time for the three adopted N values. This gives a clear picture of the impact of effective overland roughness and rainfall excess intensities on the time of concentration for this watershed.

6.9 RESPONSES OF THE TAC MODEL

The relationship arrived at in figures 6.8(a), (b) and (c) have been utilized with appropriate interpolation for working out the inter-isochronal areas at 5.0 minutes interval for the following three storm events with effective overland roughnesses shown against them.

(1) Storm event dated 4.11.1962 (N=0.052)

(2) Storm event dated 5.8.1964 (N=0.140)

(3) Storm event dated 7.10.1963 (N=0.106) The rainfall excess functions are given for the storm events in Appendix-II(A).

Comparison of observed hydrographs with those of computed through the TAC model as well as KW model is shown in figure 6.10. Though the comparison between the computed and the observed is quite satisfactory but this can further be refined for a still closer match by appropriately drawing increased number of design curves for a number of N values in the close ranges (i.e. to minimize the approximation due to interpolation). This leads enough scope for further studies and research in different aspects of the TAC based model. Perhaps, various conceptual models proposed by different researchers (Dooge (1959), Laurensow (1964), Mathur (1972) etc.) can further be improved.

Concludingly, it may be remarked that the KW theory is an excellent tool to analyse the runoff mechanics. The effect of various physiographic and meteorologic parameters on the runoff can best be studied and various unexplored aspects can be studied in depths and details to improve upon the existing simpler techniques and models.

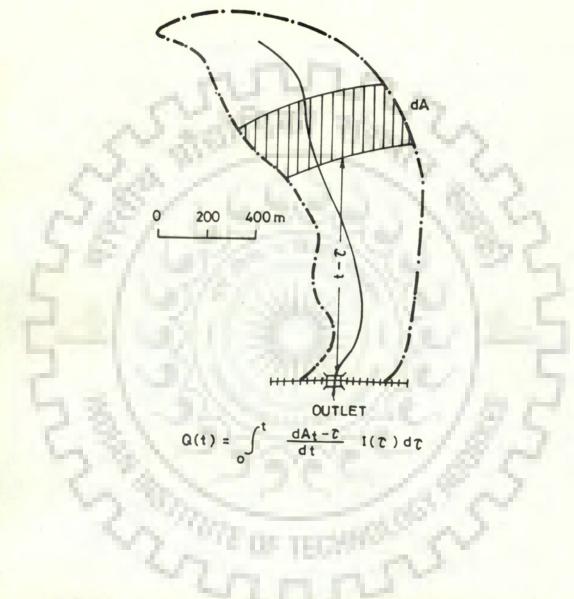


FIG.6.7 TIME-AREA CONCENTRATION APPROACH FOR COMPUTATION OF RUNOFF (BRIDGE NO. 319)

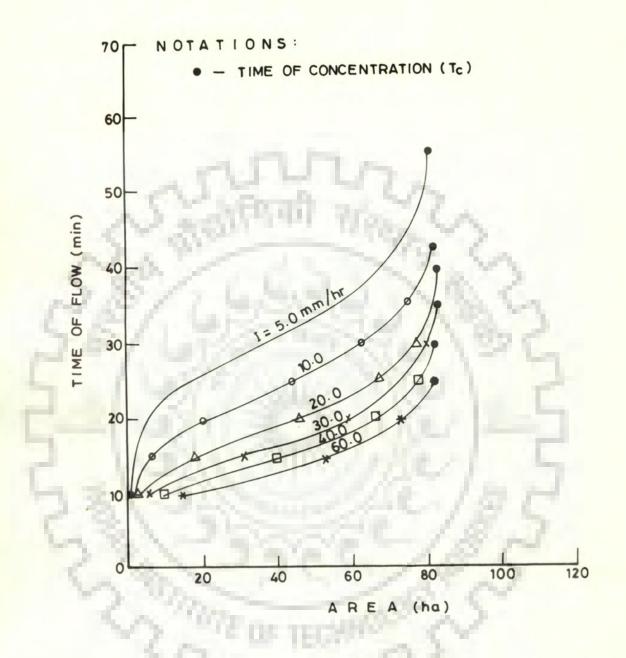


FIG.6.8(a)CONTRIBUTING INTER-ISOCHRONAL AREAS FOR SELECTED RAINFALL EXCESS INTENSITIES AND N= 0.05 (BRIDGE NO.319)

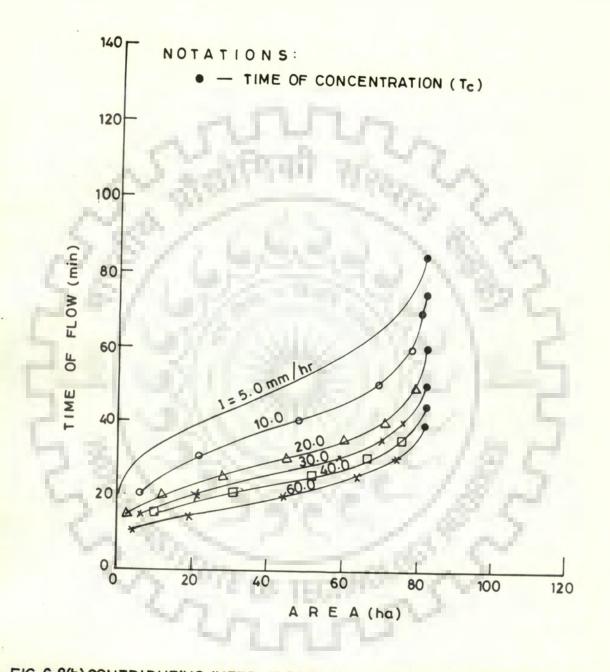


FIG. 6.8(b) CONTRIBUTING INTER-ISOCHRONAL AREAS FOR SELECTED RAINFALL EXCESS INTENSITIES AND N=0.150 (BRIDGE NO.319)

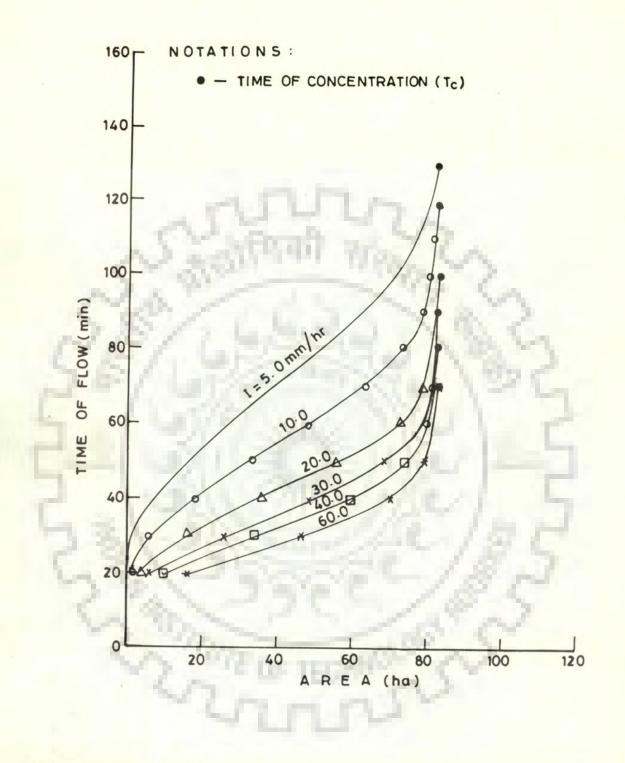


FIG. 6.8(c) CONTRIBUTING INTER-ISOCHRONAL AREAS FOR SELECTED RAINFALL EXCESS INTENSITIES AND N= 0.350 (BRIDGE NO. 319)

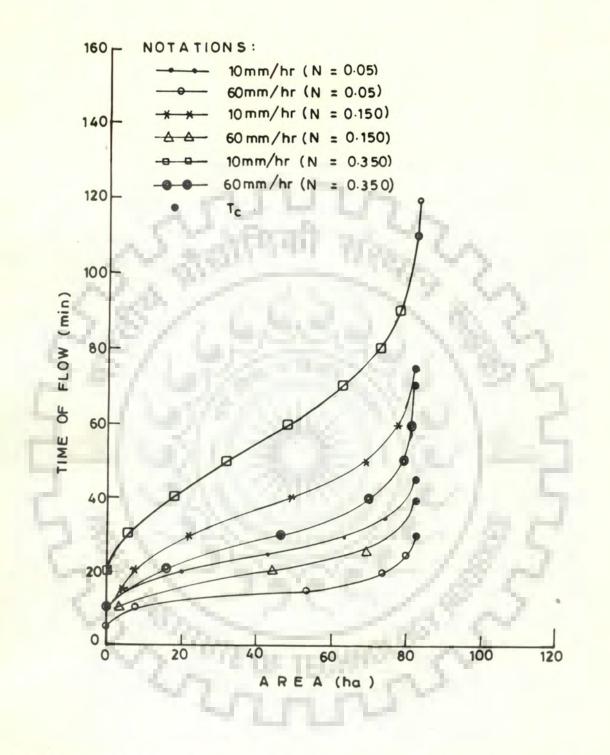


FIG. 6.9 CONTRIBUTING INTER-ISOCHRONAL AREAS FOR THREE N (i.e N = 0.05, 0.150, 0.350) AND TWO I (i.e I = 10.0,60.0 mm/hr) (BRIDGE NO. 319)

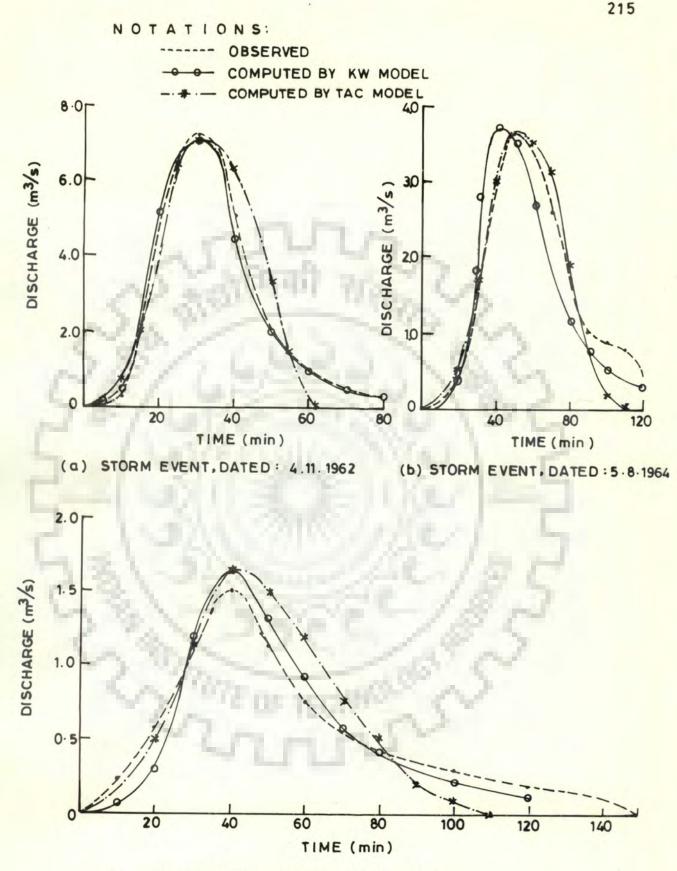


FIG. 6.10 COMPARISON OF OBSERVED AND COMPUTED (BY KW MODEL AND TAC MODEL) DIRECT RUNOFF HYDROGRAPHS (BRIDGE NO- 319)

CHAPTER - VII

CONCLUSIONS

In this chapter, the results of the KW theory applications to three natural hilly watersheds and one agricultural watershed (as detailed in the previous chapters) are discussed. Suitable conclusions have been drawn from these discussions. In the last, some proposals relating to the possible extension of the present work have also been mentioned.

7.1 DISCUSSION OF RESULTS AND CONCLUSIONS

(1) In Section 3.8, two schemes for the solution of KW equations were proposed. The scheme (I & II) was found to be stable and convergent upto a time step of 10.0 minutes and therefore, the same was adopted for solving the proposed distributed configurations of the three natural watersheds discussed in Chapter V. The scheme III inherently stable did not show convergence for these watersheds and therefore, the same has not been used for solving the model equations.

(2) In case of the agricultural watershed (Kachwa), the proposed model scheme (I & II) which is inherently convergent did not exhibit stability. On the other hand, the scheme III which is inherently stable showed convergence even for large time step value of 60.0 minutes. Since the watershed is nearly flat and the runoff durations exceeded 60.0 hours, in most of the storm events, this scheme was found to be advantageous from economic considerations i.e. the total computer run time was very less.

(3) Among the physiographic parameters considered for this analysis, the effective overland roughness (N) was found to be the most sensitive for all the watersheds (Figures 5.3, 5.4, 5.19, 5.20 and 5.21).

(4) Subsequent to N values, the overland slope (S_0) were found to be effective. Therefore, a detailed analysis (Section 5.2.1 as given in Horton's formula and discussed by Viessman et al., 1977) was adopted for the computation of overland slope.

(5) In order to identify the systems, it was necessary to have correct estimates of effective overland roughness values as this parameter was found to be the most sensitive. In case of natural watersheds of Bridge Nos. 319, 317 and 719, interesting variations were found in the effective overland roughnesses with time. As the monsoon season proceeded, the N values registered a rise from 0.05 to 0.420 for the watershed of Bridge No. 319; 0.07 to 0.336 for Bridge No. 317 and 0.07 to 0.345 for Bridge No. 719 (disributed). The value of N was found to be maximum in the mid-monsoon season and subsequently, it again registered infall in their values. The distribution of effective overland roughnesses over the monsoon months was to be approximatley parabolic in nature (Figures 5.5, 5.22 and 5.23).

In case of agricultural watershed, most of the storm events belonged to a period which ranged from last week of July

217

to first week of August. Therefore, the overall variation of N values could not be ascertained.

(6) The average fortnightly N values worked out for the three watersheds are shown in figures 6.1(a), (b) and (c) and the same were used for prediction purposes. These were also used of ungauged watersheds as well as in the application of TAC based models.

(7) The N values obtained from the best fit curves (Figures 5.5, 5.22, 5.23 and 5.24) were used for computing the discharges by the application of KW theory in the proposed models. The comparison of observed and computed hydrographs was found to be quite close. For most of the storm events of four tests watersheds, model efficiencies were found to vary from 80% to 99%. The volume error was in the range of 0.04% to 6.84% which is also within the acceptable limits.

(8) In order to apply the proposed concepts to the ungauged watersheds, attempts were made to arrive at some nomograms. For watersheds having areas under a hundred hectares (i.e. nearly 80.0 ha or so), the relationship arrived at for Bridge No. 319 can be used (Section 6.4). In this case some sample plots of peak discharges versus rainfall excess durations (upto 60.0 minutes) were drawn for heavy rainfall excess intensities (20.0, 50.0 and 100.0 mm/hr) of three representative effective overland roughness values [N = 0.05 (i.e. minimum); 0.15 (i.e. average) and 0.35 (i.e. maximum)]. Similar plots can be developed for a variety of ranges of rainfall excess intensi-

ties and effective overland roughness to have quick estimates of peak discharges of watershed areas in the vicinity of 80.0 hectares and having similar physiographic conditions.

(9) Nonlinear multiple regression analysis was conducted, considering the peak discharges to be the functions of area (A), effective overland roughness (N), overland slope (S_0) , rainfall excess intensity (I), its duration (D) and depth (d) [Section 6.5]. The two alternatives of independent variables were attempted. The comparison of computed and observed peaks for various storm events on the three watersheds are shown in figures 6.3 and 6.4. Both the comparisons give nearly similar results. However, equation (6.3) has been found to be better and therefore, is preferred.

(10) For the watershed of Bridge No. 319, the KW model applications were made for various uniform rainfall excess intensities (ranging from 5.0 to 60.0 mm/hr) of infinite durations $(>T_c)$ and the three representative effective overland roughness values (i.e. N = 0.05, 0.15 and 0.35). The time of concentration were marked on the hydrographs. A plot of T_c Vs. rainfall excess intensity as a function of effective overland roughness is shown in figure 6.5. T_c was found to be a function of I and N. Time of concentration decreased with increase in rainfall excess intensity (1) values for the same effective overland roughness value (N). Also, it increased with increase in N values for the same rainfall excess intensity.

(11) In order to determine the time of concentration of ungauged watershed, T_c was considered to be a function of

A, N, S_0 , S and I. Three alternatives were tried for different combinations of independent variables. The relationships arrived at are given in Section 6.7 [Equations 6.6(a), (b) and (c)]. Using these equations the T_c values were computed for the three watersheds and they were compared with their computed values obtained from the KW models [Figures 6.6(a), (b) and (c)]. This comparison shows that all the three equations perform quite well. However, performance of the following equation was found better and therefore, is preferred.

$$T_c = 0.602 A^{0.657} I^{-0.138} N^{0.312} S^{0.50}$$
 (7.1)

(12) Variation in the T_c values open up new options to develop time-area-concentration (TAC) based models for variable T_c values. For different rainfall excess intensities (ranging from 5.0 to 60.0 mm/hr), for three N values (N = 0.05, 0.15 and 0.35) and for different T_c values, the inter-isochronal areas were worked out for watershed of Bridge No. 319. Plots of inter-isochronal areas Vs. time of flows as the function of different rainfall excess intensities are given in figures 6.8(a), (b) and (c). The effect of rainfall excess intensity variations on the inter-isochronal areas for different effective overland roughness values is evident from these figures.

The three figures 6.8(a), (b) and (c) were used as the design curves. For the three storm events of Bridge No. 319 (Section 6.9) dated 4.11.1962, 7.10.1963 and 5.8.1964, the inter-isochronal areas were interpolated for the prevailing effective overland roughness values as well as for the rainfall excess intensities. The discharges were computed by using the

220

time-area method. Comparisons of observed and computed discharges through variable T_c and KW models are presented in figure 6.10. The performance of TAC model is quite encouraging. However, it can further be improved by developing more numbers of design curves of the type given in figures 6.8 for a number of N values and different rainfall excess intensities. This will minimize the errors due to interpolations.

7.2 SCOPE OF FURTHER WORK

Three fully off-centred first order explicit finite difference methods have been used for the solution of proposed KW models. A single step, second order explicit, Lax-Wendroff scheme (Singh, 1979) can also be used with advantage for the above mentioned models. Also, implicit finite difference methods and the finite element methods may be used for this purpose. The applicability of these methodologies in the context of small watersheds of tropical regions need be investigated in details.

In the proposed models, the contributing surface plane elements have been assumed rectangular and perpendicular to the channels. The shape and the alignment of these planes need be oriented according to the prevailing overland slopes. An altogether, different approach will have to be developed for such cases of modelling.

For the ungauged watersheds, the nomogram appraoch and the regression models are proposed. These are to be further refined with data of larger number of watersheds as and when the same are available. The concept of a variable time of concentration and its use for different TAC based models need be investigated in much more details. However, dependence of T_c on rainfall excess intensity and effective overland roughness will be of practical significance for the prediction of flood peaks at the outlet.

7.3 CONCLUDING REMARKS

Application of KW theory for surface hydrologic computations has been tried in different parts of the world with success. Perhaps, this is the first detailed research work which has been carried out on the small watersheds of tropical regions in India. This sophisticated methodology needs a detailed data which should be collected for short intervals and must be accurate as well as reliable. Unfortunately, in most of the developing countries such elaborate data are not available. With great difficulty data on three natural watersheds and of one agricultural watershed would be procured. With all these limitations and constraints, it was quite enterprisinig experience to work for such sophisticated and detailed techniques. The various conclusions which have been discussed in the last section need be further verified in future when more detailed data are available.

Concludingly, it may be remarked that in the computational schemes used in this work uniform values of steps Δx and Δt have been used. Schemes which take variable time steps may be tried to make computations more efficient. Further, in one or two cases computed values differed appreciably from observed values. This is partly due to computations of rainfall excess function which was based on ϕ -index approach. This aspect of surface hydrology continues to be the weakest link in the present day technology. It effects the magnitudes of computed discharges as well as the time of their occurrences. Thus affecting the shape of be inograph in general. This limitation remained. Leyond the dealings of the present work and it is hoped that in future some solution will be available some day.

PAGE: 1 224

APPENDIX-I(i)

00100 C CAL. OF CANNEL FLOW BY K.W.T.MODEL(P2.FOR)

	******	**********************
00200	C*****	* SCHEME I AND II ******LUMPED **********
00202	C	BY MD. MUBARAK HOSSAIN
00204	С	
00206	С	
00208	С	CHANNEL FLOW ROUTING:
00210	С	
00212	C	DX1=LENGTH STRIP(METRE)
00214	С	DT1=TIME STEP(SECOND)
00216	C	ANIECHANNEL BED ROUGENESS
00218	C	SU1=CHANNEL BED SLOPE
00220	C	M1=NOS. OF TIME STEPS
00222	C	NIENOS. OF LENGH STRIPS
00224	С	AL1=LENGH OF THE MAIN CHANNEL (METRE)
00226	С	Y1, Y2, Y3=DEPTHS OF WATER ON CHANNEL
00228	C	B=BED WIDTH(METRE)
00230	C	BZ=CHANNEL SIDE SLOPE
00232	C	FR1=FRUDE NO. (CHANNEL)
00234	C	AK=KINENATIC WAVE NO.
00236	C	Q=DISCHARGE(M**3/S) AT THE CHANNEL
00238	C	A=AREA OF CROSS-SECTION AT THE CHANNEL
00240	С	
00242	C	OVERLAND FLOW ROUTING:
00244	C	
00246	С	DX=LENGTH STRIP(METRE)
00248	C.	DT=TIME STEP(SECOND)
00250	С -	AN= ROUGHNESS
00252		SO= SLOPE
00254		MÊNOS. OF TIME STEPS
00256		NENOS. OF LENGH STRIPS
00258		AL=LENGH OF THE OVER LAND(METRE)
00260		FR2=FRUDE NO.
00262		AK2=KINEMATIC WAVE NO.
00264		Q=DISCHARGE(M**2/S) ON THE OVERLAND
00266		QR=RAINFALL EXCESS INTENSITY(METRE/SEC.)
00268		A=AREA OF CROSS-SECTION OF OVER LAND DEPTH
00270	C	

TABLE - A-1 OF APPENDIX - I

ILLUSTRATIVE EXAMPLE (DeVaries and MacArthur, 1979)

(i) DATA

Overland Flow Element	Channel Element
Overland Flow Length = 50 ft	Length = $1,600$ ft
Slope = 0.06 ft/ft	Slope = 0.003 ft/ft
Roughness Coefficient = 0.3	Roughness $('n') = 0.025$
Loss Rate = 0.0	Shape : Trapezoidal
Rainfall	Bottom width = 2 ft
(i) 1st five minutes = 1"/hr	Side slope = 2 to 1
(ii) 2nd five minutes = 2 "	257 A 122 C
(iii) 3rd five minutes = 1 "	

(ii) OVERLAND AND CHANNEL FLOW CALCULATIONS

Time	Flow to the channel(Cfs/ft)		Channel outflor (Cfs)		
(min)	DeVries	Mine	DeVries	Mine	
0	- 0	0	0	0	
5	0.000308	0.000308	0.057	0.0563	
10	0.00161	0.00 161	0.658	0.662	
15	0.00159	0.001593	1.369	1.385	
20	0.000844	0.000845	1.542	1.551	
25	0.000041	0.000041	1.162	1.167	
30	0.000025	0.000026	0.808	0.807	
35	0.000017	0.000017	0.534	0.532	

	PAGE: 2 225
	APPENDIX-I(c)
00300	DIMENSION A(140,50),Q(140,50),QR(50),ABR(50),QI(140,50)
00400	DIMENSION V(100,100)
00500	OPEN(UNIT=1, DEVICE='DSK', FILE='DA.DAT')
00600	OPEN(UNIT=2, DEVICE='DSK', FILE='DAH.OUT')
00700	READ(1,*)DX1,DT1,AN1,SO1,M1,N1,AL1,Y1,Y2,Y3,B,BZ
00800	READ(1,*)DX, DT, AN, SO, AM, M, N, NR, AL
00900	READ(1, $*$)(QR(J), J=1, NR)
01000	WRITE(2,950)DX1,DT1,AN1,S01,M1,N1,AL1,Y1,Y2,Y3,B,BZ
01100	WRITE(2,960)(DX,DT,AN,SO,AM,M,N,NR,AL)
01200	CALL LAND (DX, DT, AN, SO, AM, M, N, NR, AL, OR, QI)
01300	WRITE(2,953)
01400	WRITE(2,955)
01500	DXT1=DX1/DT1
01600	DTXI=DT1/DX1
01700	CALL SALP (Y1,Y2,Y3,B,BZ,SO1,AN1,EC,ALP)
01800	C SPECIFY THE INITIAL AND BOUANDARY CONDITIONS
01900	DO 3J=1,M1
02000	A(1,J)=0.0
02100	Q(1,J)=0.0
02200	3 CONTINUE
02300	DO 4I=1,N1
02400	A(1,1)=0.0
02500	O(I,1)=0.0
02600	4 CONTINUE
02700	T=0.00
02800	D0-5J=2,M1
02900	T=T+DT1
03000	TT=T/60.0
03100	
03200	DO 50 I=2,N1
03300	ABR1 = (A(I, J-1) + A(I-1, J)) * 0.5
03400	QBR=QI(N,J)*2.0
03500	CBR=ALP*EC*(ABR1**(EC-1,0))
03600	A1=A(I, J-1)+A(I-1, J-1)
03700	A2=A(I, J=1)-A(I=1, J=1)
03800	A3=A(I-1,J)-A(I-1,J-1)
03900	A4=QBR*DT1+A(I,J-1)

PAGE: 3 226

		PENDIX-I(i)	PAGE:	3	2
04000	API				J
04000		A5=ALP*EC*DTX1*(A1/2)**(EC=1.0)*A2			
04100		IF(CBR.LE.DXT1)GO TO 200			
04200	200	IF(CBR.GT.DXT1) GOTO 300			
04300	200				
04400		Q(I,J)=ALP*(A(I,J))**EC			
04500		GO TO 50			
04600	201	GO TO 5			
04700	300	0 Q(I,J)=Q(I=1,J)+QBR*DX1-DXT1*A3			
04800		A(I,J)=(Q(I,J)/ALP)**(1./EC)			
04900	50	CONTINUE			
05000		V(N1,J)=Q(N1,J)/A(N1,J)	Cart in		
05100		B5=SQRT(B*B+4.0*B2*A(N1,J))	a.		
05200		¥5=(-B+B5)/(2.*BZ)	2		
05300	1	Y=ABS(YS)	Arr.		
05400		TP=B+2.*BZ*Y	mar and		
05500	-	XP=9.81*A(N1,J)	Pr La		
05600		<pre>XP=32.2*A(N1,J) FR1=SORT(V(N1,J)*V(N1,J)*TP/XP)</pre>			
05800		SK=S01*AL1			
05900		ADC1=SK/Y			
06000		FK=Y*FR1*FR1			
06100		AK=SK/FK	1.1.5		
06200		WRITE(2,954)TT,0(N1,J),A(N1,J),V(N1,J),Y,A	DC1 ED1	AK	
06300		J1=J-1	incretterre	an	
06400		TYPE*, J1, Q(N1, J), A(N1, J), V(N1, J), Y			
06500	953	FORMAT(9X, 'TIME(MINS)', 6X, 'DISCH', 6X, 'AREA	* . 12X . * V	EL.	
06600		19X, DPTH", 14X, ADC1", 12X, FR1", 16X, AK")	i i cart i		
06700		The second se			
06800	5				
06900		QO=OBSERVED DISCHARGE IN CUMECS			
07000		QO=51.516			
07100		QC=0.0			
07200	C	VC=0.0			
07300		DD 20 J=2,M1			
07400		QC=QC+Q(N1,J)			
07500	C	VC=VC+V(N1,J)			
07600		IF(J.EQ.50) QC8=QC			

PAGE:

	0	· 2 · 7
	1	27
4	head	

APPEI	NDIX-I(:) PAGE: 4 22:
07700	IF(J.EQ.61) QC9=QC
07800 C	IF(J.EQ.11) VC10=VC
07900 C	IF(J.EQ.16) VC15=VC
08000 C	IF(J.EQ.37) VC36=VC
08100 20	CONTINUE
08200	WRITE(2,240) Q0,QC8,QC9,QC
08300 C	WRITE(2,240) VC10,VC15,VC36
08400 240	FORMAT(5X, 'QO=', F10.3, 4X, 'QC8 AFTER(50.HINS)='
08500	1,F10.3,4X, "QC9(60.MIS)=",F10.3,4X, "TOTAL CAL DISCH
08600	2.IN CUMES=",F10.3)
08700 C240	FORMAT(5X, 'VC10=', F10.3, 4X, 'VC15='F10.3, 4X, 'VC36=', F10.3)
08800	TYPE*,00,0C8,0C9,0C
08900 C	TYPE*, VC10, VC15, VC24
09000 950 1	TORNAT(2X, 'DX1=', F9.4, 4X, 'DT1=', F9.4, 4X, 'AN1='
09100	1,F9.4,4X, SO1=',F9.4,4X, M1=',I9,4X, N1=',I9
09200	2,4X, "AL1=",F14.4,4X, "Y1=",F10.4,4X, "Y2="
09300	3,F9.4,4X, Y3=',F9.4,4X, B=',F9.4,4X, BZ=',F9.4)
09400 960 H	FORMAT(2X, 'DX=', F9.4, 4X, 'DT=', F9.4, 4X, 'AN='
09500 1.	,F9.4,4X, SO=',F9.4,4X, AM=',F9.4,4X, M=',I9,4X, N=',I9
09600 2.	,4X, 'NR=',I9,4X, 'AL=',F14.4)
09700 955	FORMAT(6X, "CANNEL FLOW ROUTING")
09800	LDSE(UNIT=1)
09900	STOP
10000 H	
10100	SUBROUTINE SALP (Y1, Y2, Y3, B, BZ, SQ1, AN1, EC, ALP)
10200 C::::::	***************************************
10300 C	CAL. OF ALP. AND EC. (ALP.FOR)
10400	A1=(B+BZ*Y1)*Y1
10500	P1=B+2,*Y1*SQRT(1+BZ*BZ)
10600	R1=A1/P1
10700	HR1=R1**(2./3.)
10800	AR1=SQRT(SO1)/AN1
10900 C	AR1=1.486*SORT(SO1)/AN1
11000	Q1=AR1*HR1*A1
11100 C	PRINT*, A1, P1, R1, AR1, Q1
11200	A2=(B+BZ*Y2)*Y2
11300	P2=B+2.*Y2*SQRT(1+BZ*BZ)

	APPEN	DIX-I(c) PAGE:
11400	114 E Latt	R2=A2/P2
11500		HR2=R2**(2./3.)
11600		Q2=AR1*HR2*A2
11700		PRINT*, Q1, R1, A2, P2
11800		A3 = (B + BZ * Y3) * Y3
11900		P3=B+2.*Y3*SQRT(1+BZ*BZ)
12000		R3=A3/P3
12100		HR3=R3**(2./3.)
12200		Q3=AR1*HR3*A3
12300		04=01/02
12400		A4=A1/A2
12500		A5=A1/A3
12600	1	-05=01/03
12700	1	XX=ALOG(04)
12800		YY=ALOG(A4)
12900	1	XX2=ALOG(05)
13000		YY2=ALOG(A5)
13100		EC1=XX/YY
13200		EC2=XX2/YY2
13300	-	EC=(EC1+EC2)*0.5
13400	and the	AB1=A1**EC
13500	-	AB2=A2**EC
13600	and the	AB3=A3**EC
13700	here.	ALP1=Q1/AB1
13800	1	ALP2=02/AB2
13900		ALP3=03/AB3
14000	C	PRINT*, Q2, AB2, MC, AB1, AB2, ALP1, ALP2
14100		ALE=(ALP1+ALP2+ALP3)/3.
14200		WRITE(2,751)EC, ALP
14300	751	FORMAT(5X, "EC=", F14.9, 4X, "ALP=", F10.6)
14400		RETURN
14500		END
14600	C ****	*************
14700		SUBROUTINE LAND (DX, DT, AN, SO, AM, M, N, NR, AL, QR, Q)
14800	C C.	AL. OF OVER LAND FLOW BY MODEL (HEC.FOR)
14900	D	IMENSION A(140,50),Q(140,50),QR(50),ABR(50)
15000		WRITE(2,956)

FAR MI	 1	0	01	0
PAGI	0	1	2	U
		6	4	. 1

APPENDIX-I(%) PAGE:
15100 WRITE(2,963)
15200 DXT=DX/DT
15300 DTX=DT/DX
15400 ALP=SQRT(SO)/AN
15500 C ALP=1.486*SQRT(SO)/AN
15600 C SPECIFY THE INITIAL AND BOUANDARY CONDITIONS
15700 DO 3J=1,M
15800 A(1,J)=0.0
15900 Q(1,J)=0.0
16000 3 CONTINUE
16100 DO 4I=1,N
16200 A(I,1)=0.0
16300 Q(I,1)=0.0
16400 4 CONTINUE
16500 T=0.00
16600 DO 5J=2,M
16700 T=T+DT
16800 TT=T/60.0
16900 C TT=T/3600.0
17000 DO 50 I=2,N
17100 ABJ=0.0
17200 DD 6 II=2,N-1
17300 ABJ=ABJ+A(II,J-1)
17400 6 CONTINUE
17500 ABJ1=ABJ+(A(1,J-1)+A(N,J-1))*0,5
17600 ABRJ=DT*OR(J)
17700 C ABR1=(A(I,J=1)+A(I=1,J))*0.5
17800 ABR(J)=(DX/((N-1)*DX))*ABJ1+ABRJ
17900 OBR=OR(J)
18000 CBR=ALP*AM*(ABR(J)**(AM-1.0))
18100 $A1 = A(I, J-1) + A(I-1, J-1)$
18200 A2=A(I, J-1)-A(I-1, J-1)
$18300 \qquad A3=A(I-1,J)-A(I-1,J-1)$
18400 A4=QBR*DT+A(I,J-1)
18500 A5=ALP*AM*DTX*A2*(A1/2)**(AM-1.0)
18600 C A6=A4=A5
18700 C IF(A6.LE.0.0) GD TO 32

	AND NUMBER OF A	All and a start	PAGE: 7	Z 30
	APPENDIX-I(c)			-00
18800				
18900	IF(CBR.LE.DXT)GO			
19000	IF(CBR.GT.DXT) G(JTO 300		
19100				
19200	C200 A(I,J)=A6			
19300	Q(I,J)=ALP*(A()	(,J))**AM		
19400	GO TO 50			
19500	GO TO 5	inter from		
19600	300 Q(I,J)=Q(I-1,J)-	-QBR*DX-DXT*A3		
19700	A(I,J)=(Q(I,J)/A	P)**(1./AM)	The second second	
19800	50 CONTINUE	Patrick ALERS	5	
19900	V=Q(N,J)/A(N,J)	the second second	5 6 4	
20000	C ¥1=A(N,J)/1.	A Carton	a mar	
20100	XP=0.81*A(N,J)	ALL AND A	A. Ca	
20200	C XP=32.2*A(N,J)		142 - 1	
20300	C FR2=SQRT(V*V*T)	P/XP)	1 32 C	
20400	FR2=V/SQRT(XP)			
20500	SK1=SO*AL			
20600	ADC=SK1/A(N,J)			
20700	FK1=A(N,J)*FR2:	FR2		,
20800	AK2=SK1/FK1		La la Maria	
20900	WRITE(2,964)TT,Q	(N, J), A(N, J), V, QR(J)	ADC, FR2, AK2	
21000	963 FORMAT(9X, TIME((INS)", 6X, "DISCHARGE	E", 6X, "AREA", 12X, "	VEL",
21100	19X, "OR", 16X, "ADC"	,16X, 'FR2',12X, 'AK2	2*5	
21200	964 FORMAT(2X,8F16.7)		20 2	
21300	5 CONTINUE	the second	Ent	
21400	956 FORMAT(6X, OVE	A LAND FLOW ROUTING	5	
21500	RETURN	De LECHIE	CV	
21600	END	and the Cha	2	
	the second se	LALL		

State State State

APPENDIX-I(ii)

00100	C C	AL. OF CANNEL FLOW BY K.W.T. MODEL(R2.FOR)

00200	C*****	** SCHEME III *****************************
00300	с	BY MD. MUBARAK HOSSAIN
00400	С	
00500	С	***************************************
00600	C	CHANNEL FLOW ROUTING:
00700	С	
00800	С	DX1=LENGTH STRIP(METRE)
00900	С	DT1=TIME STEP(SECOND)
01000	C	ANI=CHANNEL BED ROUGHNESS
01100	С	S01=CHANNEL BED SLOPE
01200	C	MIENDS. OF TIME STEPS
01300	С	NIENOS. OF LENGH STRIPS
01400		AL1=LENGH OF THE MAIN CHANNEL(METRE)
01500		Y1,Y2,Y3=DEPTHS OF WATER ON CHANNED
01600		B=BED WIDTR(METRE)
		BZ=CHANNEL SIDE SLOPE
		FR1=FRUDE NO. (CHANNEL)
		AK=KINEMATIC WAVE NO.
		0=DISCHARGE(M**3/S) AT THE CHANNEL
02100		A=AREA OF CROSS-SECTION AT THE CHANNEL
02200	ALC: NO	
02300		OVERLAND FLOW ROUTING:
02400		EV-r MMCMU Empts ANEMDES
02500		DX=LENGTH STRIP(METRE) DT=TIME STEP(SECOND)
02700		AN= ROUGHNESS
02800		SO= SLOPE
02900		MENOS. OF TIME STEPS
03000		NANOS, OF LENGH STRIPS
03100		AL=LENGH OF THE OVER LAND (METRE)
03200	C	FR2=FRUDE NO.
03300	C	AK2=KINEMATIC WAVE NO.
03400	C	QR=RAINFALL EXCESS INTENSITY(METRE/SEC.)
03500	C	Q=DISCHARGE(M**2/S) ON THE OVERLAND
03600	C	A=AREA OF CROSS-SECTION AT THE OVER LAND DEPTH
03700	C	

```
PAGE: 2 232
```

```
APPENDIX-I(ii)
```

	HELPHORY-T(0)
03800	DIMENSION A(130,201),Q(130,201),QR(201),ABR(201),QI(130,201)
03900	OPEN(UNIT=1, DEVICE='DSK', FILE='K44.DAT')
04000	OPEN(UNIT=2, DEVICE='DSK', FILE='K44T.OUT')
04100	READ(1,*)DX1,DT1,AN1,SO1,M1,N1,AL1,Y1,Y2,Y3,B,BZ
04200	READ(1,*)DX,DT,AN,SO,AM,M,N,NR,AL
04300	READ(1,*)(QR(J),J=1,NR)
04400	WRITE(2,950)DX1,DT1,AN1,SO1,M1,N1,AL1,Y1,Y2,Y3,B,BZ
04500	WRITE(2,960)(DX,DT,AN,SO,AM,M,N,NR,AL)
04600	CALL LAND (DX, DT, AN, SU, AM, M, N, NR, AL, QR, QI)
04700	WRITE(2,953)
04800	WRITE(2,955)
04900	DXT1=DX1/DT1
05000	DTX1=DT1/DX1
05100	CADE SALP (Y1, Y2, Y3, B, BZ, SO1, AN1, BC, ALP)
05200 (SPECIFY THE INITIAL AND BOUANDARY CONDITIONS
05300	D0_3J=1,M1
05400	A(1,J)=0.0
05500	Q(1,J)=0,0
05600	3 CONTINUE
05700	DO 4I=1,N1
05800	A(I,1)=0.0
05900	O(I,1)=0.0
06000	4 CONTINUE
06100	7=0.00
06200	DO 5J=2,M1
06300	T=T+DT1
06400 0	
06500	TT=T/3600.0
06600	DO 50 I=2,N1
06700	QBR=QI(N,J)*2.
06800	A1=(A(I, J-1)+A(I-1, J))*0.5
06900	CBR=ALP*EC*((A1)**(EC-1.))
07000	CRR=CBR*DTX1 A2=0BR*DT1
07100	
07200	A(I,J) = (A2+A(I,J-1)+CRR*A(I-1,J))/(1+CRR)
07300	Q(I,J)=ALP*(A(I,J))**EC 50 CONTINUE
01400	Of CONTINUE

APPENDIX-I((i) PAGE: 3 233
	1, J)/A(N1, J)
	RT(B*B+4.0*BZ*A(N1,J))
	B+BS)/(2.*BZ)
07800 Y=ABS	(YS)
07900 TP=B+	2.*BZ*Y
08000 XP=9.	81*A(N1,J)
08100 FR1=S	QRT(V*V*TP/XP)
08200 SK=SO	1*AL1
08300 ADC1=	SK/Y
08400 FK=Y*	FR1#FR1
08500 AK=5K	JFK AND THE TOP CAL
08600 WRITE	(2,954)TT,Q(N1,J),A(N1,J),V,QBR,ADC1,FR1,AK
08700 - J1=J-	
08800 TYPE*	, JI, Q(N1, J), Y, ADC1
08900 953 FORMAT(9x, "TIME(HRS)", 6X, "DISCH", 6X, "AREA", 12X, "VEL",
09000 19X, OBR	*,14X, *ADC1*,12X, *FR1*,16X, *AK*)
09100 954 FORMAT(5X,8F15,7)
09200 5 CONTINÚ	ENTRACIONAL
09300 C 00=0BSER	VED DISCHARGE IN CUMECS
09400 00=32	.039
09500 QC=0.	
09600 DO 20	J=2,M1
09700 GC=0C	+O(N1,J)
09800 IF(J.	E0.51) QC8=QC
09900 IF(J.	E0.66) QC9=0C
10000 20 CONT	INUE
10100 C PC=(Q	C/PCJ*100
10200 WRITE	(2,240) QD,QC8,QC9,QC
10300 240 FORMA	T(5X, 00=", F10.3, 4X, 'QC AFTER(50.0HR)=", F10.3, 4X
10400 1, °QC	9(65HR)", F10.3,4X, "TOTAL CAL DISCH.IN CUMECS=", F10.3)
10500 TYPE*	,00,008,009,00
10600 950 FORMAT(2X, DX1=', F9,4,4X, DT1=', F9,4,4X, AN1='
10700 1,F9.4,4	X, SO1=', F9.4,4X, M1=', I9,4X, N1=', I9
10800 2,4X, 'AL	1=",F14,4,4X,"Y1=",F10.4,4X,"Y2="
10900 3,F9.4,4	X, Y3=', F9,4,4X, 'B=', F9,4,4X, 'BZ=', F9,4)
11000 960 FORMAT(2X, DX=', F9.4, 4X, DT=', F9.4, 4X, AN='
11100 1,F9.4,4	X, SO= , F9.4,4X, AM= , F9.4,4X, M= , I9,4X, N= , I9

	APPENDIX-I(u)
11200	2,4X, "NR=", I9,4X, "AL=", F14.4)
11300	955 · FORMAT(6X, "CANNEL FLOW ROUTING")
11400	CLOSE(UNIT=1)
11500	C CLOSE(UNIT=2)
11600	STOP .
11700	END
11800	SUBROUTINE SALP (Y1, Y2, Y3, B, BZ, SO1, AN1, EC, ALP)
11900	C:::::::::::::::::::::::::::::::::::::
12000	C CAL. OF ALP. AND EC. (ALP.FOR)
12100	A1 = (B + BZ * Y1) * Y1
12200	P1=B+2.*Y1*SORT(1+BZ*BZ)
12300	R1=A1/P1
12400	HR1=R1**(2.73.)
12500	AR1=SORT(SD1)/AN1
12600	Q1=AR1*HR1*A1
12700	C
12800	A2=(B+BZ*¥2)*¥2
12900	P2=B+2.*Y2*SQRT(1+BZ*BZ)
13000	R2=A2/P2
13100	HR2=R2**(2./3.)
13200	Q2=AR1*HR2*A2
13300	C PRINT*, 01, R1, A2, P2
13400	A3=(B+BZ*Y3)*Y3
13500	P3=B+2.*Y3*SQRT(1+BZ*BZ)
13600	R3=A3/P3
13700	HR3=R3**(2./3.)
13800	Q3=AR1*HR3*A3
13900	04=01/02
14000	A4=A1/A2
14100	A5=A1/A3
14200	05=01/03
14300	XX=ALOG(Q4)
14400	YY=ALOG(A4)
14500	XX2=ALOG(Q5)
14600	YY2=ALOG(A5)
14700	EC1=XX/YY
14800	EC2=XX2/YY2

	APP	ENDIX-I(2)	PAGEI
14900		EC=(EC1+EC2)*0.5	
15.000		AB1=A1**EC	
15100		AB2=A2**EC	
15200		AB3=A3**EC	
15300		ALP1=Q1/AB1	
15400		ALP2=02/AB2	
15500		ALP3=Q3/AB3	
15600	С	PRINT*,Q2,AB2,MC,AB1,AB2,ALP1,ALP2	
15700		ALP=(ALP1+ALP2+ALP3)/3.	
15800		WRITE(2,751)EC, ALP	
15900	751	FORMAT(5X, 'EC=', F14.9, 4X, 'ALP=', F10.6)	
16000		RETURN	1. 19 5
16100		END	3
16200	C **	**************	**
16300	E	SUBROUTINE LAND (DX, DT, AN, SO, AM, M, N, NR, A	L, QR, Q)
16400	С	CAL. OF OVER LAND FLOW BY CONSTANT MODEL (HEC.	FOR)
16500		DIMENSION A(130,201),Q(130,201),QR(201),AB	R(201)
16600		WRITE(2,956)	F
16700	The	WRITE(2,963)	
16800	-	DXT=DX/DT	
16900	T. State	DTX=DT/DX	1
17000		ALP=SQRT(SU)/AN	
17100	С	SPECIFY THE INITIAL AND BOUANDARY CONDITIO	NS
17200	1 Jun	DO 3J=1.M	Spend
17300		A(1, J)=0.0	
17400		Q(1,J)=0,0	
17500	3	CONTINUE	
17600		DO 41=1.N	
17700		A(I,1)=0.0	
17800		Q(I,1)=0.0	
17900	4	CONTINUE	
18000	C	T=13.00*3600.00	
18100		T=0.00	
18200		DO 5J=2,M	
18300		T=T+DT	
18400	C	TT=T/60.0	
18500		TT=T/3600.0	

	APPI	ENDIX-I(ii) PAGE: 6	2.
18600		DO 50 I=2,N	
18700		ABJ=0.0	
18800		DO 6 II=2,N-1	
18900		ABJ=ABJ+A(II,J-1)	
19000	6	CONTINUE	
19100		ABJ1=ABJ+(A(1,J-1)+A(N,J-1))*0.5	
19200		ABRJ=DT*QR(J)	
19300		ABR(J)=(DX/((N-1)*DX))*ABJ1+ABRJ	
19400		CBR=ALP*AM*(ABR(J)**(AM-1.0))	
19500		OBR=OR(J)	
19600	С	A1=(A(I, J-1)+A(I-1, J))*0.5	
19700		CRR=CBR*DTX	
19800		A2=OBR*DT	
19900	C	Q(1,J)=(A2*CBR+Q(1,J-1)+Q(1+1,J)*CRR)/(1+CRR)	
20000	С	A(I,J)=(Q(I,J)/ALP)**(1./AM)	
20100		A(I,J)=(A2+A(I,J-1)+CRR*A(I-1,J))/(1+CRR)	
20200		Q(I,J)=ALP*(A(I,J))**AM	
20300	50	CONTINUE	
20400		V=Q(N,J)/A(N,J)	
20500	C	Y1=A(N,J)/1.	
20600	-	XP=9.81*A(N,J)	
20700	C	FR2=SQRT(V*V*TP/XP)	-
20800	1	FR2=V/SQRT(XP)	
20900	1 mon	SK1=SQ*AL	
21000	1	ADC=SK1/A(N,J)	
21100		FK1=A(N,J)*FR2*FR2	
21200		AK2=SK1/FK1	
21300		WRITE(2,964)TT,Q(N,J),A(N,J),V,QR(J),ADC,FR2,AK2	
21400		FORMAT(9x, "TIME(HRS)", 6X, "DISCHARGE", 6X, "AREA", 12X, "VEL"	
21500		L9X, 'QR', 16X, 'ADC', 16X, 'FR2', 12X, 'AK2')	
21600		FORMAT(2X, 8F16.7)	
21700	5	CONTINUE	
21800	956	FORMAT(6X, 'OVER LAND FLOW ROUTING')	
21900		RETURN	
22000		END	

APPENDIX-I(ccc)

PAGE: 1 237

********************* 00100 C**CAL. OF CHANNEL FLOW BY KINEMATIC WAVE (DISTR) THEORY (AKK4.FOR) 00202 C BY MD. MUBARAK HOSSAIN 00204 C 00206 C 00208 C CHANNEL FLOW ROUTING: 00210 C 00212 C DX1=LENGTH STRIP(METRE) 00214 C DT1=TIME STEP(SECOND) AN1=CHANNEL BED ROUGHNESS 00216 C 00218 C SO1=CHANNEL BED SLOPE MISNOS. OF TIME STEPS 00220 C NTENOS. OF LENGH STRIPS 00222 C 00224 C AL1=LENGH OF THE MAIN CHANNEL (METRE) Y1, Y2, Y3=DEPTHS OF WATER ON CHANNEL 00226 C 00228 C B=BED WIDTH(METRE) BZ=CHANNEL SIDE SLOPE 00230 C 00232 C FR1=FRUDE NO. (CHANNEL) 00234 C AK=KINEMATIC WAVE NO. 00236 C Q=DISCHARGE(M**3/S) AT THE CHANNEL 00238 C A=AREA OF CROSS-SECTION AT THE CHANNEL 00240 C OVERLAND FLOW ROUTING: 00242 C 00244 C 00246 C DX=LENGTH STRIP(METRE) 00248 C DT=TIME STEP(SECOND) 00250 C AN= ROUGHNESS 00252 C SO= SLOPE MENOS. OF TIME STEPS 00254 C 00256 C N=NOS. OF LENGH STRIPS 00258 C AL=LENGH OF THE OVER LAND(METRE) 00260 C FR2=FRUDE NO. AK2=KINEMATIC WAVE NO. 00262 C AN2= ROUGHNESS 00264 C 00266 C SO2= SLOPE 00268 C N2=NOS. OF LENGH STRIPS AL2=LENGH OF THE OVER LAND (METRE) 00270 C

		PAGE: 2	23
00272		Q=DISCHARGE(M**2/S) ON THE OVERLAND	
00274	C	A=AREA OF CROSS-SECTION OF THE OVERLAND DEPTH	
00276		QR=RAINFALL EXCESS INTENSITY(METRE/SEC.)	
00278	C		
00300		DIMENSION N1(4), AL1(4), QBR1(85,4), QBR2(85,4)	
00400		DIMENSION Q1(85),Q2(85),Q3(85),QC(85)	
00500		COMMON/AAA/L1	
00600		COMMON/AA1/Y1, Y2, Y3, BZ	
00700		COMMON/AA2/SO1(4), AN1(4), B(4)	
00800		COMMON/AA3/EC(4), ALP(4)	
00900		COMMON/BB1/DX, DT, AM, M, NR, OR(5,85) COMMON/BB2/SO(4), AN(4), N(4), AL(4)	
01000		COMMON/BB3/0(112,85,5),A(112,85,5)	
01200		CUMMON/CC1/S02(4), AN2(4), N2(4), AD2(4)	
01300	8-5	OPEN(UNIT=1, DEVICE='DSK', FILE='NAA.DAT')	
01300	1	GPEN(UNIT=2, DEVICE='DSK', FILE='NAAH.OUT')	
01500		READ(1,*) DX1, DT1, M1, L1, Y1, Y2, Y3, BZ	
01600	-	READ(1,*) DX, DT, AM, M, L2, NR	
01700	and the	DD 100 KK=1,L2	
01800	and the second	IF(KK.EQ.1) L1=4	
01900		IF(KK.EQ.2) L1=2	
02000		IF(KK.EQ.3) L1=2	
02100		READ(1,*)(SD1(K),K=1,L1)	
02200	E.	READ(1,*)(AN1(K),K=1,L1)	
02300	3	READ(1,*)(B(K),K=1,L1)	
02400		READ(1,*)(N1(K),K=1,L1)	
02500		READ(1,*)(AL1(K),K=1,L1)	
02600		READ(1,*)(AN(K),K=1,L1)	
02700		READ(1,*)(SO(K),K=1,L1)	
02800		READ(1,*)(N(K),K=1,L1)	
02900		READ(1,*)(AL(K),K=1,L1)	
03000		READ(1,*)(AN2(K),K=1,L1)	
03100		READ(1,*)(SO2(K),K=1,L1)	
03200		READ(1,*)(N2(K),K=1,L1)	
03300		READ(1,*)(AL2(K),K=1,L1)	
03400		READ(1,*)((QR(K,J),J=1,NR),K=1,L1)	
03500		WRITE(2,950)DX1,DT1,M1,L1,Y1,Y2,Y3,BZ	

PAGE: 3 239

	API	PENDIX-I(ici)	AGE: 3	699
03600		WRITE(2,960)(DX,DT,AM,M,L2,NR)		
03700	950	FORMAT(2X, 'DX1=', F9.4, 4X, 'DT1=', F9.4, 4X,		
03800		1'M1=', I9, 4X, 'L1=', I9		
03900		2,4X, 'Y1=', F10,4,4X, 'Y2='		
04000		3,F9.4,4X, 'Y3=',F9.4,4X, 'BZ=',F9.4)		
04100	960	FORMAT(2X, 'DX=', F9.4, 4X, 'DT=', F9.4, 4X,		
04200		1"AM=",F9.4,4X,"M=",I9,4X,"L2=",I9		
04300		2,4X, "NR=",19)		
04400	C	CALL LAND (DX, DT, AN, SO, AM, M, N, NR, L1, AL, QR, Q)	[]	
04500		CALL ALAND		
04600		DO 1001 K=1,L1		
04700		DG 1001 J=2,M1		
04800		OBR1(J,K)=O(N(K),J,K)		
04900	1001	CONTINUE	S. Barris	
05000		CALL ALAND2		
05100		DD 1002 K=1,L1		
05200		DO 1002 J=2,M1		
05300		QBR2(J,K)=Q(N2(K),J,K)	T	
05400	1002	CONTINUE		
05500	hang	WRITE(2,955)		
05600	955	FORMAT(6X, "CHANNEL FLOW ROUTING")	ing.	
05700		CALL ASALP	and i	
05800	С	REWIND2	Sec. 1	
05900		WRITE(2,953)	1	
06000	953	FORMAT(9X, 'TIME(HRS)', 6X, 'DISCHARGE', 6X, 'A	REA", 12X,	'VEL'
06100		1,9X,"QBR",14X,"ABR",12X,"FR1",16X,"AK")		
06200		DXT1=DX1/DT1		
06300		DTX1=DT1/DX1		
06400	C	SPECIFY THE INITIAL AND BOUANDARY CONDITION	VS	
06500		DO 3J=1,M1		,
06600		A(1,J,1)=0.0		
06700		Q(1, J, 1)=0.0		
06800	3	CONTINUE		
06900		DO 12 K=1,L1		
07000		DO 4I=1,N1(K)		
07100		A(I,1,K)=0.0		
07200		Q(I,1,K)=0.0		

P	A	G	E	:	

		APP	ENDIX-I(ici)	PAGE: 4
	07300	4	CONTINUE	
	07400	12	CONTINUE	
	07500		T=0.00	
	07600		DO 5J=2,M1	
	07700		T=T+DT1	
	07800	С	TT=T/60.0	
	07900		TT=T/3600.0	
	08000		. DO 8 K=1,L1	
	08100		DO 50 I=2,N1(K)	
	08200	С	ABJ=0.0	
	08300	С	DD 6 II=2,N1(K)-1	
	08400	С	ABJ=ABJ+A(II,J-1,K)	
	08500	C 6	CONTINUE	3
	08600	С	ABJ1=ABJ+(A(1,J-1,K)+A(N1(K),J-1,K))*0.	5
	08700	С	QBR=Q(N(K), J, K)+Q(N2(K), J, K)	1 M 1
	08800	С	ABR1=DT1*QBR	25
	08900	C	ABR(J)=ABR1+ABJ1*(DX1/((N1(K)-1)*DX1))	
	09000	C	IF (NR1.GT.M1)QR(J)=0.0	T
	09100		ABR1=(A(I,J-1,K)+A(I-1,J,K))*0.5	
	09200		QBR=QBR1(J,K)+QBR2(J,K)	
	09300	-	CBR=ALP(K)*EC(K)*(ABR1**(EC(K)-1.0))	
	09400		A1 = A(I, J-1, K) + A(I-1, J-1, K)	
	09500	1	A2=A(I, J-1, K)-A(I-1, J-1, K)	The second
	09600	10	A3=A(I-1, J, K)-A(I-1, J-1, K)	mil
	09700		A4=OBR*DT1+A(I,J-1,K)	1
	09800		A5=ALP(K)*EC(K)*DTX1*(A1/2)**(EC(K)-1.0)*A	2
	09900		IF(CBR, LE, DXT1)GO TO 200	
	10000		IF(CBR.GT.DXT1) GOTO 300	
	10100	200	A(I, J, K)=A4-A5	
	10200		Q(I,J,K)=ALP(K)*(A(I,J,K))**EC(K)	
	10300		GO TO 50	
	10400		GO TO 5	
-	10500	300	Q(I,J,K)=Q(I-1,J,K)+QBR*DX1=DXT1*A3	
	10600		A(I,J,K)=(Q(I,J,K)/ALP(K))**(1./EC(K))	
	10700	50	CONTINUE	
	10800		V=Q(N1(K), J, K)/A(N1(K), J, K)	
	10900		BS=SQRT(B(K)*B(K)+4.0*BZ*A(N1(K),J,K))	

	APPEN	DIX-I(cd)	PAGE:	5	24
11000		YS=(-B(K)+BS)/(2.*BZ)			
11100		Y=ABS(YS)			
11200		TP=B(K)+2.*BZ*Y			
11300		XP=9.81*A(N1(K),J,K)			
11400	с	XP=32.2*A(N1(K),J,K)			
11500		FR1=SQRT(V*V*TP/XP)			
11600		SK=S01(K)*AL1(K)			
11700		FK=Y*FR1*FR1			
11800		AK=SK/FK			
11900	С	WRITE(2,954) TT, Q(N1(K), J, K), A(N1(K), J, K)	, V, QBR, AE	R1,	
12000	С	1FR1.AK			
12100	954	FORMAT(5X,8F15.7)	State 1		
12200	1	A(1, J, K+1)=A(N1(K), J, K)	2		
12300		Q(1, J, K+1)=Q(N1(K), J, K)	6.		
12400	8	CONTINUE			
12700		Jl=J-1	35		
12800	-	TYPE*, J1, Q(N1(L1), J, L1), V			
12900	the second	IF(KK.EQ.1) Q1(J)=Q(N1(L1),J,L1)	The second se		
13000	Part -	IF(KK.EQ.2) Q2(J)=Q(N1(L1),J,L1)			
13100		IF(KK.EQ.3) Q3(J)=Q(N1(L1),J,L1)	1		
13200	and the	QC(J) = Q1(J) + Q2(J) + Q3(J)	in the second		
13300	4	IF(KK.EQ.3)TYPE*,01(J),02(J),03(J),0C(J)			
13400	12 1	IF(KK.E0.3)WRITE(2,910)TT,Q1(J),Q2(J),Q3	(J), ac(J)		
, 13500	910	FORMAT(2X, 5F12.5)	and the		
13600	5	CONTINUE	-		
13700	100	CONTINUE	1		
13800	C	OO=OBSERVED DISCHARGE IN CUMECS			
13900		00=29,800			
14000		QA=0.0			
14100		DO 20 J=2, M1			
14200	С	QA=QA+Q(N1(L1), J, L1)			
14300		QA=QA+QC(J)			
14400		IF(J.EQ.49) QA8=QA			
14500		IF(J.EQ.43) QA9=QA			
14600	20	CONTINUE			
14700		WRITE(2,240) QD,QA8,QA9,QA			
14800	240	FORMAT(5X, 'QO=', F10.3, 4X, 'QA8 AFTER 8.0H	RSN=", F10	• 3,	4X

APPEN	DIX-I(cc) PAGE: 6 242
14900.	1, 0A9 7.00HRSN=", F10.3,4X, TOTAL CAL DISCH.IN CUMECS="
15000	2,F10.3)
15100	TYPE*,QO,QA8,QA9,QA
15200	CLOSE(UNIT=1)
15300	STOP
15400	END
15500 C	SUBROUTINE SALP (Y1, Y2, Y3, B, BZ, SO1, AN1, EC, ALP)
15600	SUBROUTINE ASALP
157.00 C::::::	**********
15800 C.	CAL. OF ALP. AND EC. (ALP.FOR)
15900	COMMON/AAA/L1
16000	CQMMON/AA1/Y1,Y2,Y3,BZ
16100	COMMON/AA2/SO1(4), AN1(4), B(4)
16200	COMMON/AA3/EC(4),ALP(4)
16300 C	TYPE*, Y1, Y2, Y3, BZ
16400	DD 18 K=1, L1
16500	A1 = (B(K) + BZ * Y1) * Y1
16600	P1=B(K)+2.*Y1*SQRT(1+BZ*BZ)
16700	R1=A1/P1
16800	HR1=R1**(2./3.)
16900	TYPE*, SO1(K), AN1(K), B(K)
17000	AR1=1.*SQRT(SO1(K))/AN1(K)
17100 C	AR1=1.486*SQRT(SO1(K))/AN1(K)
17200	Q=AR1*HR1*A1
17300 C	TYPE*, A1, P1, R1, AR1, Q
17400	A2=(B(K)+BZ*¥2)*¥2 P2=B(K)+2.*¥2*SORT(1+BZ*BZ)
17600	R2=A2/P2
17700	HR2=R2**(2./3.)
17800	Q2=AR1*HR2*A2
17900 C	TYPE*, Q, R1, A2, P2
18000	A3=(B(K)+BZ*¥3)*¥3
18100	P3=B(K)+2.*Y3*SQRT(1+BZ*BZ)
18200	R3=A3/P3
18300	HR3=R3**(2./3.)
18400	Q3=AR1*HR3*A3
18500	04=0/02

	APPENDIX-I(cc) PAGE: /
18600	A4=A1/A2
18700	A5=A1/A3
18800	Q5=Q/Q3
18900	XX=ALOG(Q4)
19000	YY=ALOG(A4)
19100	XX2=ALOG(Q5)
19200	YY2=ALOG(A5)
19300	EC1=XX/YY
19400	EC2=XX2/YY2
19500	EC(K)=(EC1+EC2)*0.5
19600	AB1=A1**EC(K)
19700	AB2=A2**EC(K)
19800	-AB3=A3**EC(K)
19900	ALP1=Q/AB1
20000	ALP2=02/AB2
20100	ALP3=Q3/AB3
20200	C TYPE*,Q2,AB2,EC,AB1,AB2,ALP1(K),ALP2(K)
20300	ALP(K)=(ALP1+ALP2+ALP3)/3.
20400	WRITE(2,751)EC(K), ALP(K)
20500	751 FORMAT(5X, 'EC=', F14.9, 4X, 'ALP=', F10.6)
20600	18 CONTINUE
20700	RETURN
20800	
20900	C ***************
21000	
21100	
21200	
21300	COMMON/AAA/51
21400	
21500	COMMON/BB2#SO(4), AN(4), N(4), AL(4)
21600	COMMON/BB3/Q(112,85,5),A(112,85,5)
21700	WRITE(2,956)
21800	WRITE(2,963)
21900	
22000	DO 20 K=1,L1
22100	TYPE*, AN(K), SO(K), N(K), AL(K)
22200	DXT=DX/DT

	PAGE:	8	244
DIX-I(ai)			
DTX=DT/DX			15.9
ALP=1.*SQRT(SO(K))/AN(K)			
ALP=1.486*SQRT(SO(K))/AN(K)			and the second
SPECIFY THE INITIAL AND BOUANDARY CONDITI	ONS		State of
0 3J=1,M		1	
(1,J,K)=0.0		The state	Sur Star
(1,J,K)=0.0			
ONTINUE			
0.4I=1,N(K)			
(I,1,K)=0.0			
(I,1,K)=0.0			a same
ONTINUE			Sec. Si
T=13.00*3600.00	1		S. J. Barris

T=13.00*3600 23500 C T=0.00 23600

APPENDIX-I(cci)

22300 22400

22500 C

22600 C

22700

22800

22900

23000

23100

23200

23300

23400

24400

24700

24800

3

4

DO 3J=1,M

CONTINUE

A(1, J, K)=0.0

Q(1, J, K)=0.0

DO 41=1,N(K)

A(I,1,K)=0.0

Q(I,1,K)=0.0

CONTINUE

23700 DO 5J=2, M T=T+DT 23800 23900 C TT=T/60.0 24000 TT=T/3600.0

DO 50 I=2, N(K) 24100 ABJ=0.0 24200

DO 6 II=2, N(K)-1 24300

ABJ=ABJ+A(II,J-1,K)

CONTINUE 24500 24600

ABJ1=ABJ+(A(1,J-1,K)+A(N(K),J-1,K))*0.5 ABRR=DT*QR(K,J)

ABRK=(DX/((N(K)-1)*DX))*ABJ1+ABRR

IF (NR.GT.M)QR(J)=0.0 24900 C QBR=OR(K,J) 25000 CBR=ALP*AM*(ABRK**(AM-1.0)) 25100 25200 A1=A(I, J-1, K)+A(I-1, J-1, K) A2=A(I, J-1, K)-A(I-1, J-1, K)25300

A3=A(I-1, J, K)-A(I-1, J-1, K) 25400 25500 A4=OBR*DT+A(I, J-1, K)

25600 A5=ALP*AM*DTX*(A1/2)**(AM-1.0)*A2

25700 IF(CBR.LE.DXT)GO TO 200 25800 IF(CBR.GT.DXT) GOTO 300

IF(CBR.EQ.DXT) GOTO 200 25900 C

	APPENDIX-I(cc)	PAGE:	
26000 2	00 A(I,J,K)=(A4-A5)		
26100	Q(I,J,K) = ALP*(A(I,J,K))**AM		
26200	GO TO 50		
26300	GO TO 5		
26400	300 Q(I,J,K)=Q(I-1,J,K)+QBR*DX-DXT*A3		
26500	A(I,J,K)=(Q(I,J,K)/ALP)**(1./AM)		
26600 5	O CONTINUE		
26700	V=Q(N(K), J, K)/A(N(K), J, K)		
26800 C	Y1=A(N(K),J,K)/1.		
26900	XP=9.81*A(N(K), J, K)		
27000 C	XP=32.2*A(N(K),J,K)		
27100	FR2=V/SQRT(XP)		
27200	SK1=SD(K) #AL(K)	3	
27300	FK1=A(N(K), J, K)*FR2*FR2	1 C	
27400	AK2=SK1/FK1	1 . 1	
27500 C	TYPE*, Q(N(K), J, K)	225-	
27600 C	WRITE(2,964)TT,Q(N(K),J,K),A(N(K),J,K)	, V, QR(K, J)	
27700 C	1,ABRK,FR2,AK2	T	
27,800 9	53 FORMAT(9X, "TIME(HRS)", 6X, "DISCHARGE", 6X, "	AREA", 12X,	VEL',
27900	19X, "QR", 16X, "ABRK", 16X, "FR2", 12X, "AK2")	- Personal P	
28000 9	64 FORMAT(2X,7F15.7,2X,F15.3)	and the second se	
28100	5 CONTINUE	in put	
28200 95	6 FORMAT(6X, "OVER LAND FLOW ROUTING")	and the second	
28300 20	CONTINUE	and .	
28400	RETURN	3	
28500	END		
28600 C	***************************************	***	
28700	SUBROUTINE ALAND2		
28800 C	CAL. OF OVER LAND FLOW BY KWT MODELCHEC.FO)R)	
28900	COMMON/AAA/L1		
29000	COMMON/BB1/DX, DT, AM, M, NR, QR(5,85)		
29100	COMMON/CC1/SO2(4), AN2(4), N2(4), AL2(4)		1. 4 1.2
29200	COMMON/BB3/Q(112,85,5),A(112,85,5)		
29300	WRITE(2,256)		
29400	WRITE(2,263)		
29500 C	TYPE*, DX, DT, AM, M, NR, L1		
29600	DO 20 K=1,L1		

	APPENDIX-I(cii) PAGE: 10
29700	TYPE*, AN2(K), SO2(K), N2(K), AL2(K)
29800	DXT=DX/DT
29900	DTX=DT/DX
30000	ALP=1.*SQRT(SO2(K))/AN2(K)
30100	
30200	
30300	DO 3J=1,M
30400	A(1, J, K)=0.0
30500	Q(1, J, K)=0.0
30600	3 CONTINUE
30700	DO $4T=1,N2(K)$
30800	A(I,1,K)=0.0
30900	Q(I,1,K)=0.0
31000	4 CONTINUE
31100	T=0.00
31200	D0 5J=2,M
31300	T=T+DT
31400	
31500	TT=T/3600.0
31600	DO 50 I=2,N2(K)
31700	ABJ=0.0
31800	DO 6 II=2, N2(K)-1
31900	ABJ=ABJ+A(II,J-1,K)
32000	6 CONTINUE
32100	ABJ1=ABJ+(A(1,J-1,K)+A(N2(K),J-1,K))*0.5
32200	ABRR=DT*OR(K,J)
32300	ABRK=(DX/((N2(K)-1)*DX))*ABJ1+ABRR
32400	The second state and the second state of the s
32500	QBR=QR(K,J)
32600	CBR=ALP*AM*(ABRK**(AM-1.0))
32700	A1 = A(I, J-1, K) + A(I-1, J-1, K)
32800	A2=A(I, J-1, K)-A(I-1, J-1, K)
32900	A3=A(I-1, J, K)-A(I-1, J-1, K)
33000	A4=QBR*DT+A(I,J-1,K)
33100	A5=ALP*AM*DTX*(A1/2)**(AM-1.0)*A2
33200	IF(CBR.LE.DXT)GO TO 200
33300	IF(CBR.GT.DXT) GOTO 300

	APPENDIX-I(ccc) PAGE: 11 24
33400	C IF(CBR.EQ.DXT) GOTO 200
33500	200 A(I,J,K)=(A4-A5)
33600	Q(I,J,K) = ALP*(A(I,J,K))**AM
33700	GO TO 50
33800	GO TO 5
33900	300 Q(I,J,K)=Q(I-1,J,K)+QBR*DX-DXT*A3
34000	A(I, J, K) = (Q(I, J, K) / ALP) * * (1. / AM)
34100	50 CONTINUE
34200	V=Q(N2(K), J, K)/A(N2(K), J, K)
34300	C Y1=A(N(K),J,K)/1.
34400	XP=9.81*A(N2(K),J,K)
34500	C XP=32.2*A(N2(K),J,K)
34600	FR2=V/SORT(XP)
34700	SK1=SO2(K)*AL2(K)
34800	FK1=A(N2(K),J,K)*FR2*FR2
34900	AK2=SK1/FK1
35000	C TYPE*,Q(N(K),J,K)
35100	C WRITE(2,264)TT,Q(N2(K),J,K),A(N2(K),J,K),V,QR(K,J)
35200	C 1,ABRK,FR2,AK2
35300	263 FORMAT(9X, *TIME(HRS) ', 6X, *DISCHARGE', 6X, *AREA', 12X, *VEL',
35400	19X, "QR", 16X, "ABRK", 16X, "FR2", 12X, "AK2")
35500	264 FORMAT(2X,7F15.7,2X,F15.3)
35600	S CONTINUE
35700	256_ FORMAT(6X, OVER LAND FLOW ROUTING')
35800	20 CONTINUE
35900	RETURN
36000	END
	S - C DE IEUSIN - C -
	LEV m F3.3 V

APPENDIX-I(V)

PAGE: 1 248

	******	************************
00100		OF CHANNEL FLOW BY KINEMATIC WAVE (DISTR) THEORY(AKK.FOR)
		********* SCHEME III ******* (1ST) ************************************
00300		BY MD. MUBARAK HOSSAIN
00400		
00500		
00600		CHANNEL FLOW ROUTING:
00700	C	
00800	C	DX1=LENGTH STRIP(METRE)
00900	с	DT1=TIME STEP(SECOND)
01000	С	AN1=CHANNEL BED ROUGHNESS
01100	С	SO1=CHANNEL BED SLOPE
01200	c	MIS. OF TIME STEPS
01300	с	NINDS. OF LENGH STRIPS
01400	с	AL1=LENGH OF THE MAIN CHANNEL (METRE)
01500	С	Y1, Y2, Y3=DEPTHS OF WATER ON CHANNEL
01600	C	B=BED WIDTH(METRE)
01700	c	BZ=CHANNEL SIDE SLOPE
01800	C	FR1=FRUDE NO. (CHANNEL)
01900	с	AK=KINEMATIC WAVE NO.
02000	С	Q=DISCHARGE(M**3/S) AT THE CHANNEL
02100	C	A=AREA OF CROSS-SECTION AT THE CHANNEL
02200	С	and an
02300	C	OVERLAND FLOW ROUTING:
02400	C	
02500	C	DX=LENGTH STRIP(METRE)
02600	C	DT=TIME STEP(SECOND)
02700		ANE ROUGHNESS
02800		SO= SLOPE
02900		MENOS. OF TIME STEPS
03000		N=NOS. OF LENGH STRIPS
03100	· · · · · · · · · · · · · · · · · · ·	AL=LENGH OF THE OVER LAND (METRE)
03200		FR2=FRUDE NO.
03300		AK2=KINEMATIC WAVE NO.
03400		AN2= ROUGHNESS
03500		SO2= SLOPE
03600		N2=NOS. OF LENGH STRIPS
03700	C	AL2=LENGH OF THE OVER LAND (METRE)

	APPENDIX-I(V)	PAGE:	2	249
03800				
03900		EPTH		
04000	QR=RAINFALL EXCESS INTENSITY(METRE/SEC.)			
04100	C			
04200	DIMENSION N1(7), AL1(7), QBR1(81,7), QBR2(81	,7)		
04300	COMMON/AAA/L1			
04400	COMMON/AA1/Y1,Y2,Y3,BZ			
04500	COMMON/AA2/SO1(7), AN1(7), B(7)			
04600	COMMON/AA3/EC(7),ALP(7)			
04700	COMMON/BB1/DX, DT, AM, M, NR, GR(8, 81), ABR(81)			
04800	COMMON/BB2/SO(7), AN(7), N(7), AL(7)			
04900	COMMON/BB3/Q(93,81,8),A(93,81,8)			
05000	COMMON/CC1/S02(7), AN2(7), N2(7), AL2(7)	n		
05100	OPEN(UNIT=1, DEVICE='DSK', FILE='KKA, DAT')	2		
05200	OPEN(UNIT=2, DEVICE='DSK', FILE='KKAT.OUT')		
05300	READ(1,*)DX1,DT1,M1,L1,Y1,Y2,Y3,BZ	25		
05400	READ(1,*) DX, DT, AM, M, L2, NR	1-1		
05500		and the second		
05600	READ(1,*)(SO1(K),K=1,L1)	in the		
05700	READ(1,*)(AN1(K),K=1,L1)			
05800	READ(1,*)(B(K),K=1,L1)			
05900	READ(1,*)(N1(K),K=1,L1)			
06000	READ(1,*)(AL1(K),K=1,L1)			
06100	READ(1,*)(AN(K),K=1,L1)	met.		
06200	READ(1,*)(SO(K),K=1,L1)	1000		
06300	READ(1,*)(N(K),K=1,L1)	1		
06400	READ(1, $*$) (AL(K), K=1, L1) READ(1, $*$) (AN2(K), K=1, L1)			
06600	READ(1,*)(S02(K),K=1,L1)			
06700	READ(1,*)(N2(K),K=1,L1)			
06800	READ(1,*)(AL2(K),K=1,L1)			
06900	READ(1,*)((QR(K,J),J=1,NR),K=1,L1)			
07000	WRITE(2,950)DX1,DT1,M1,L1,Y1,Y2,Y3,BZ			
07100	WRITE(2,960)(DX,DT,AM,M,L2,NR)			
07200	950 FORMAT(2X, 'DX1=', F9.4, 4X, 'DT1=', F9.4, 4X,			
07300	1'M1=', I9, 4X, 'L1=', I9			
07400	2,4X, 'Y1=', F10,4,4X, 'Y2='			

	APPI	ENDIX-I(IV)	PAGE:	3	250
07500		3,F9.4,4X, Y3=',F9.4,4X, BZ=',F9.4)			. 200
07600		FORMAT(2X, 'DX=', F9.4, 4X, 'DT=', F9.4, 4X,			
07700		1'AM=',F9.4,4X,'M=',I9,4X,'L2=',I9			
07800		2,4X, 'NR=',19)			
07900	С	CALL LAND (DX, DT, AN, SO, AM, M, N, NR, L1, AL, QR	,QI)		
08000		CALL ALAND			
08100		DO 1001 K=1,L1			
08200		DO 1001 J=2,M1			
08300		QBR1(J,K)=Q(N(K),J,K)			
08400	1001	CONTINUE			
08500		CALL ALAND2			
08600		DD 1002 K=1,L1			
08700		DO 1002 J=2,M1	2		
08800	1000	QBR2(J,K)=Q(N2(K),J,K)	2		
08900	1002	CONTINUE	Art.		
09000	No.	CALL ASALP	her.		
09100	fred	WRITE(2,955)	227		
09200		FORMAT(6X, CHANNEL FLOW ROUTING')	Ser.		
09300	C	REWIND2			
09400	and the second	WRITE(2,953)	Section of the sectio		
09500	953	FORMAT(9X, 'TIME(HRS)', 6X, 'DISCHARGE', 6X, '	'AREA , 12	x, v	EL.
09600		1,9X, "GBR", 14X, "ABR", 12X, "FR1", 16X, "AK")			
09700	A CONTRACTOR OF THE OWNER OF THE	FORMAT(9X, "TIME(HRS)", 3(6X, "DISCHARGE"))	T. L.		
09800	C	CALL SALP (Y1, Y2, Y3, B, BZ, SO1, AN1, EC, ALF)	and the		
09900		DXT1=DX1/DT1	£		
10000		DTX1=DT1/DX1	1		
10100	C	SPECIFY THE INITIAL AND BOUANDARY CONDIT.	LONS		
10200		DG 3J=1, M1			
10300		A(1, J, 1)=0.0			
10400	3	Q(1, J, 1)=0.0 CONTINUE			
10600	3	DO 12 K=1,L1			
10700		DO 4I=1,N1(K)			
10800		A(I,1,K)=0.0			
10900		Q(I,1,K)=0.0			
11000	4	CONTINUE			
11100		CONTINUE			
		The second s			

		AGE:
APPEND	DIX-I((V))	
	T=0.00	
	DQ 5J=2,M1	
	T=T+DT1	
C	TT=T/60.0	
	TT=T/3600.0	
	DO 8 K=1,L1	
	DO 50 I=2,N1(K)	
	ABR1=(A(I, J-1, K)+A(I-1, J, K))*0.5	
	QBR=QBR1(J,K)+QBR2(J,K)	
	CBR=ALP(K)*EC(K)*(ABR1**(EC(K)-1.0))	
	CRR=CBR*DTX1	
	A2=QBR*DT1	
1	-A(I, J, K)=(A2+A(I, J-1, K)+CRR*A(I-1, J, K))/(+CRR)
1	Q(I, J, K)=ALP(K)*(A(I, J, K))**EC(K)	2
50	CONTINUE	1.1
	V=O(N1(K), J, K)/A(N1(K), J, K)	5 -
and it	BS=SQRT(B(K)*B(K)+4.0*BZ*A(N1(K),J,K))	
	YS=(-B(K)+BS)/(2,*BZ)	
poil is	Y=ABS(YS)	
Sec. Constant	TP=B(K)+2.*BZ*Y	
	XP=9.81*A(N1(K),J,K)	
С	XP=32.2*A(N1(K),J,K)	
11	FR1=SORT(V*V*TP/XP)	
6.2	SK=S01(K)*AL1(K)	
2	FK=Y*FR1*FR1	
	AK=SK/FK	2
C	WRITE(2,954)TT, G(N1(L1), J, L1), A(M1(L1), J,	61),V,
C 954	FORMAT(5X,3F15.7)	
	A(1, J, K+1) = A(N1(K), J, K)	
	Q(1, J, K+1) = Q(N1(K), J, K)	
8	CONTINUE	
		APPENDIX-I((V) T=0.00 D0 5J=2,M1 T=T+DT1 C TT=T/3600.0 D0 8 K=1,L1 D0 50 I=2,N1(K) ABR1=(A(I,J-1,K)+A(I-1,J,K))*0.5 OBR=OBR1(J,K)+OBR2(J,K) CBR=ALP(K)*EC(K)*(ABR1**(EC(K)-1,0)) CRR=CBR*DTX1 A2=OBR*DTX1 A2=OBR*DTX1 A2=OBR*DT1 A(I,J,K)=(A2+A(I,J-1,K)+CRR*A(I-1,J,K))/(C) O(I,J,K)=ALP(K)*(A(I,J,K))**EC(K) CONTINUE Y=0(N1(K),J,K)/A(N1(K),J,K) BS=SORT(B(K)*B(K)+4.0*B2*A(N1(K),J,K)) Y\$=(-B(K)+BS)/(2.*B2) Y=ABS(YS) TP=B(K)+2.*BZ*Y XP=0.81*A(N1(K),J,K) FK=Y*FR1*FR1 AK=SK/FK C wRITE(2,954)TT,0(M1(L1),J,L1),A(M1(L1),J,C) C1,J,K+1)=0(N1(K),J,K)

E J. L1), V, QBR, ABR1, WRITE(2,954)TT,Q(N1(L1),J,L1),A(N1(L1),J,L1),V,QBR,ABR1 1,FR1,AK FORMAT(5X,8F15.7)

J1=J-1

TYPE*, J1, Q(N1(L1), J, L1) IF(KK.EQ.1) Q(J)=Q(N1(L1), J, L1) 14800 C

APPEN	NDIX-I((V) PAGE: 5	25
14900 C	IF(KK.EQ.2) Q2(J)=Q(N1(L1),J,L1)	
15000 C	QC(J)=Q(J)+Q2(J)	
15100 C	TYPE*,Q(J),Q2(J),QC(J)	
15200 C	WRITE(2,910)TT, Q(J),Q2(J),QC(J)	
15300 C910	FORMAT(5X, 4F15.7)	
15400 5	CONTINUE	
15500 C100	CONTINUE	
15600 C	QO=OBSERVED DISCHARGE IN CUMECS	
15700	QD=85.218	
15800	QA=0.0	
15900	DO 20 J=2,M1	
16000 C	QA=OA+OC(J)	
16100	QA=QA+Q(N1(L1), J, L1)	
16200	IF(J.EQ.51) GAS=QA	
16300	IF(J.EQ.63) GA9=OA	
16400 20	CONTINUE	
16500	WRITE(2,240) QD,QA8,QA9,QA	
16600 240	FORMAT(5X, 'QD=', F10.3, 4X, 'QA8 AFTER 50HRSS=', F10.3, 4	X
16700	1, QA9 62HRSN=", F10.3,4X, TOTAL CAL DISCH.IN CUMECS	=*
16800	2,F10.3)	
16900	TYPE*, GO, GA8, GA9, GA	
17000	CLOSE(UNIT=1)	
17100	STOP	
17200	END	-
17300 C	SUBROUTINE SALP (Y1, Y2, Y3, B, BZ, SO1, AN1, EC, ALP)	
17400	SUBROUTINE ASALP	
17500 C:::::	**********************	
17600 C	CAL. OF ALP. AND EC. (ALP.FOR)	
17700	COMMON/AAA/L1	
17800	COMMON/AA1/Y1,Y2,Y3,BZ	
17900	COMMON/AA2/S01(7), AN1(7), B(7)	
18000 18100 C	COMMON/AA3/EC(7),ALP(7) TYPE*,Y1,Y2,Y3,BZ	
18200	DO 18 K=1,L1	
18300	A1 = (B(K) + BZ * Y1) * Y1	
18400	P1=B(K)+2.*Y1*SQRT(1+BZ*BZ)	
18500	R1=A1/P1	

	APPENDIX-I(W)
18600	HR1=R1**(2,/3,)
18700	TYPE*, SO1(K), AN1(K), B(K)
13800	AR1=1,*SQRT(SO1(K))/AN1(K)
18900 0	AR1=1,486*SQRT(SO1(K))/AN1(K)
19000	Q=AR1*HR1*A1
19100 0	TYPE*, A1, P1, R1, AR1, Q
19200	A2=(B(K)+BZ*¥2)*¥2
19300	P2=B(K)+2.*Y2*SQRT(1+BZ*BZ)
19400	R2=A2/P2
19500	HR2=R2**(2./3.)
19600	Q2=AR1*HR2*A2
19700 0	TYPE*, Q, R1, A2, P2
19800	A3=(B(K)+BZ*¥3)*¥3
19900	P3=B(K)+2.*Y3*SQRT(1+BZ*BZ)
20000	R3=A3/P3
20100	HR3=R3**(2./3.)
20200	03=AR1*HR3*A3
20300	04=0/02
20400	A4=A1/A2
20500	A5=A1/A3
20600	Q5=Q/Q3
20700	XX=ALOG(Q4)
20800	YY=ALOG(A4)
20900	XX2=ALOG(Q5)
21000	YY2=ALOG(A5)
21100	EC1=XX/YY
21200	EC2=XX2/XX2
21300	EC(K)=(EC1+EC2)*0.5
21400	AB1=A1**EC(K)
21500	AB2=A2**EC(K)
21600	AB3=A3**EC(K)
21700	ALP1=Q/AB1
21800	ALP2=Q2/AB2
21900	ALP3=Q3/AB3
22000 C	TYPE*,Q2,AB2,EC,AB1,AB2,ALP1(K),ALP2(K)
22100	ALP(K) = (ALP1 + ALP2 + ALP3)/3.
22200	WRITE(2,751)EC(K), ALP(K)

	APPEI	NDIX-I((V)	7	254
22300	751	FORMAT(5X, 'EC=', F14.9, 4X, 'ALP=', F10.6)		
22400	18	CONTINUE		
22500		RETURN		
22600		END		
22700	C ****	******		
22800	c	SUBROUTINE LAND (DX, DT, AN, SO, AM, M, N, NR, L1, AL, QR,	(Q)	
22900		SUBROUTINE ALAND		
23000	C (CAL. OF OVER LAND FLOW BY KWT MODEL(HEC.FOR)		
23100		COMMON/AAA/L1		
23200		COMMON/BB1/DX, DT, AM, M, NR, OR(8, 81), ABR(81)		
23300		COMMON/BB2/SO(7), AN(7), N(7), AL(7)		
23400		COMMON/B63/0(93,81,8),A(93,81,8)		
23500	3	WRITE(2,956)		
23600	10.00	WRITE(2,963)		
23700	С	TYPE*, DX, DT, AM, M, NR, L1		
23800	a state	DO 20 K=1,L1		
23900	pul "	TYPE*, AN(K), SO(K), N(K), AL(K)		
24000		DXT=DX/DT		
24100	panel and	DTX=DT/DX		
24200	and the second	ALP=1.*SQRT(SO(K))/AN(K)		
24300	С	ALP=1.486*SQRT(SO(K))/AN(K)		
24400	C	SPECIFY THE INITIAL AND BOUANDARY CONDITIONS		
24500		00 3J=1,M		
24600	5	A(1, J, K)=0.0		
24700		Q(1, J, K)=0.0		
24800	3	CONTINUE		
24900		DO 4I=1, N(K)		
25000		A(I,1,K)=0.0		
25100		Q(I,1,K)=0.0		
25200	4	CONTINUE		
25300		T=0.00		
25400		DO 5J=2,M		
25500		T=T+DT		
25600	C	TT=T/60.0		
25700		TT=T/3600.0		
25800		DO 50 I=2,N(K)		
25900		ABJ=0.0		

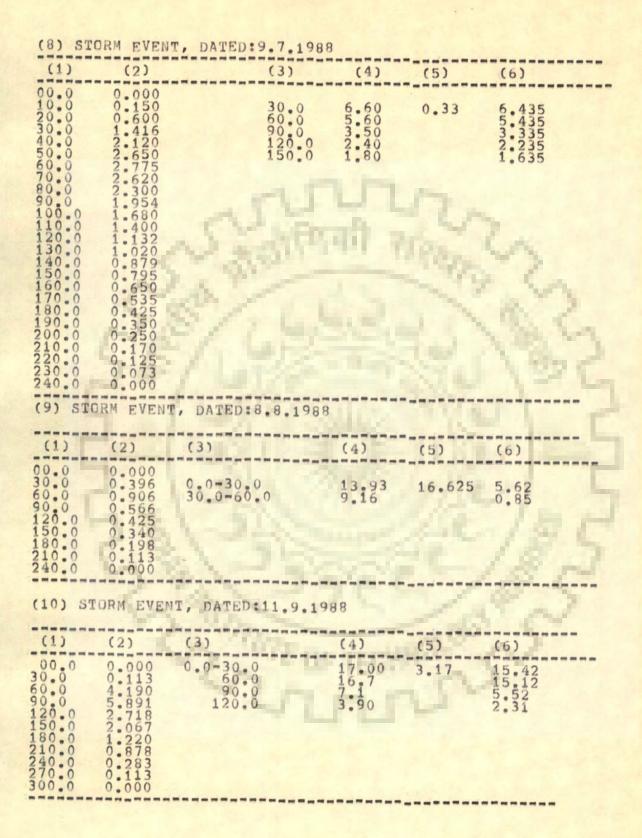
	PAGE: 8	OFF
	APPENDIX-I(V)	255
26000	DD 6 II=2,N(K)-1	
26100	ABJ=ABJ+A(II, J-1, K)	
26200	6 CONTINUE	
26300	ABJ1=ABJ+(A(1, J-1, K)+A(N(K), J-1, K))*0.5	
26400	ABRR=DT*QR(K,J)	
26500	ABR(J) = (DX/((N(K)-1)*DX))*ABJ1+ABRR	
26600	C IF $(NR.GT.M)QR(J)=0.0$	
26700	QBR=QR(K,J)	
26800	CBR=ALP*AM*(ABR(J)**(AM-1.0))	
26900	CRR=CBR*DTX	
27000	A2=QBR*DT	
27100	A(I,J,K)=(A2+A(I,J-1,K)+CRR*A(I-1,J,K))/(1+CRR)	
27200	Q(I, J, K) = ALP*(A(I, J, K))**AM	
27300	50 CONTINUE	
27400	V=Q(N(K), J, K)/A(N(K), J, K)	
27500	XP=9.81*A(N(K),J,K)	
27600	C XP=32,2*A(N(K),J,K)	
27700	FR2=V/SQRT(XP)	
27800	SK1=SO(K)*AL(K)	
27900	FK1=A(N(K),J,K)*FR2*FR2	
28000	AK2=SK1/FK1	
28100	C IYPE*, G(N(K), J, K)	
28200	C WRITE(2,964)TT,Q(N(K),J,K),A(N(K),J,K),V,QR(K,J)	
28300	the same the second	
28400	963 FORMAT(9X, 'TIME(HRS)', 6X, 'DISCHARGE', 6X, 'AREA', 12X, 'VE	L',
28500	19X, 'QR', 16X, 'ABR', 16X, 'FR2', 12X, 'AK2')	
28600	964 FORMAT(2X,7E15.7,2X,F15.3)	
28700	5 CONTINUE	
28800	956 FORMAT(6X, OVER LAND FLOW ROUTING')	
28900	20 CONTINUE	
29000	RETURN	
29100	END	
29200		
29300	SUBROUTINE ALAND2	
29400		
29500	COMMON/AAA/L1	
29600	COMMON/BB1/DX, DT, AM, M, NR, QR(8,81), ABR(81)	

	APPENDIX-I((V)
29700	COMMON/CC1/S02(7), AN2(7), N2(7), AL2(7)
29800 C	COMMON/CC2/Q(93,81,8)
29900	COMMON/BB3/Q(93,81,8),A(93,81,8)
30000	WRITE(2,256)
30100	WRITE(2,263)
30200 C	TYPE*, DX, DT, AM, M, NR, L1
30300	DO 20 K=1,L1
30400	TYPE*, AN2(K), SO2(K), N2(K), AL2(K)
30500	DXT=DX/DT
30600	DTX=DT/DX
30700	ALP=1.*SORT(SO2(K))/AN2(K)
30800 C	ALP=1.486*SORT(SD2(K))/AN2(K)
30900 C	SPECIFY THE INITIAL AND BOUANDARY CONDITIONS
31000	DO 3J=1,M
31100	A(1, J, K)=0.0
31200	Q(1,J,K)=0.0
31300	3 CONTINUE
31400	DO 41=1,N2(K)
31500	A(I,1,K)=0.0
31600	Q(I,1,K)=0.0
31700	4 CONTINUE
31800	T=0.00
31900	DO 5J=2,M
32000	T=T+DT
32100 C	TT=T/60.0
32200	TT=T/3600.0
32300	DO 50 1=2,N2(K)
32400	ABJ#0.0
32500	DO 6 II=2,N2(K)-1
32600	ABJ=ABJ+A(II,J-1,K)
327001 6	
32800	ABJ1=ABJ+(A(1,J-1,K)+A(N2(K),J-1,K))*0.5
32900	ABRR=DT*QR(K,J)
33000	ABR(J) = (DX/((N2(K)-1)*DX))*ABJ1+ABRR $IE (NB (CT M)OR(L)=0.0$
33100 C	IF $(NR.GT.M)QR(J)=0.0$
33200	QBR=QR(K,J)
33300	CBR=ALP*AM*(ABR(J)**(AM-1,0))

	APPENDIX-I(1V)	PAGE: 10	257
33400	CRR=CBR*DTX		201
33500	A2=QBR*DT		
33600	A(I,J,K)=(A2+A(I,J-1,K)+CRR*A(I-1,J,K))/	(1+CRR)	
33700	Q(I,J,K) = ALP*(A(I,J,K))**AM		
33800	50 CONTINUE		
33900	V=Q(N2(K), J, K)/A(N2(K), J, K)		
34000	XP=9.81*A(N2(K),J,K)		
34100	C XP=32.2*A(N2(K),J,K)	S. MEL.	
34200	FR2=V/SQRT(XP)		
34300	SK1=SO2(K) *AL2(K)		
34400	FK1=A(N2(K),J,K)*FR2*FR2		
34500	AK2=SK1/FK1		
34600		A	
34700	the second se	V, OR(K, J)	
	C 1,ABR(J),FR2,AK2		
34900		KEA , IZX, V	EL,
35000 35100			
35200	5 CONTINUE		
35300	the second s		
	20 CONTINUE		
35500	RETURN		
35600	END	1 14	
	C 2 1 1 2		
	MARCH STORE / B	Les .	
		3	
	A CONTENT TO SHOP OF		
	65		
	LT TTL		

APPENDIX --II(A)

BRIDGE NO. 319			
RAINFALL RUNOFF DIS	STRIBUTION		
(1) STORM EVENT, DATE	ED: 14.10.1962		
RUNOFF OBSERVATION H	RAINFALL OBSERVAT	TION	
TIME DISCHARGE	TIME	RAIFALL Ø-INDEX	RATNFALL.
(MIN) (M**3/S)	(MIN)	(MM) (MM/HR)	RAINFALL EXCESS (MM)
(1) (2)	(3)	(4) (5)	(6)
0.0 0.000			
20.0 0.991 30.0 8.659 40.0 9.405	0.0-20.0 20.0-40.0	19.81 19.035 13.72	13.465
50.0 5 512			2
60.0 2.321 70.0 0.623			100
80.0 90.0 100.0 0.170			-1
80.0 0.425 90.0 0.170 100.0 0.142 110.0 0.113 120.0 0.000			The second
(2) STORM EVENT, DATE			10.25
(1) (2) (3)	(4)	(5) (6)	the second
			1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.60 15.60	
40.0 4.953		-13	- S
60.0 0.623 70.0 0.500	- ac	1.15	¥
80.0 0.425			- 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Will fin me	all all	
			-
	LAN	nu	


(3) STORM EVENT, DATED:17.7.1963

(1)	(2)	(3)	(4)	(5)	(6)
0.0 1000 2000 3000 5000 5000 7000 8000 9000	$\begin{array}{c} 0 & 0 & 0 \\ 1 & 274 \\ 3 & 339 \\ 1 & 274 \\ 0 & 934 \\ 0 & 621 \\ 0 & 453 \\ 0 & 169 \\ 0 & 141 \\ 0 & 000 \end{array}$	10.0 20.0	16.51 5.59	62.16	6.15
(4) S'	TORM EVEN	IT, DATED:	7.10.196	3	
(1)	(2)	(3)		(4)	(5) (6)
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 140.0 140.0 150.0 (5) ST		0.0-30 30.0-60 T, DATED:		20.32	29.46 5.59
(1)	(2)	(3)		(4)	(5) (6)
0.0 10.0 30.0 30.0 50.0 50.0 50.0 50.0 50.0 5	$\begin{array}{c} 0 & 000\\ 0 & 283\\ 0 & 481\\ 0 & 708\\ 2 & 855\\ 3 & 6551\\ 3 & 1689\\ 1 & 626\\ 1 & 019\\ 0 & 906\\ 0 & 849\\ 0 & 538\\ 0 & 340\\ 0 & 255\\ 0 & 142\\ 0 & 000\\ \end{array}$	0,0-30 30,0-50			1.056 10.392 3.968

259

 $\begin{array}{c} (1) \\ 0 & 0 \\ 10 & 0 \\ 20 & 0 \\ 30 & 0 \\ 30 & 0 \\ 50 & 0 \\ 50 & 0 \\ 50 & 0 \\ 50 & 0 \\ 50 & 0 \\ 50 & 0 \\ 50 & 0 \\ 50 & 0 \\ 50 & 0 \\ 10 & 0 \\ 110 & 0 \\$ -(2) (3) (6) (5) 0.0-30.0 30.0-60.0 60.0-90.0 90.0-120. 120.0-150 150.0-180 17.10 7.42 1.83 0.82 0.82 0.82 7.60000 223222 7 0.404 0 .0 l STORM EVENT, (7) DATED:8/9.9.1 964 -----(1) (2) (3) (4) (5) (6) $\begin{array}{c} 0 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 0 & 0 \\ 4 & 0 & 0 \\ 5 &$ ----0-30. 90. 120. 150. 180. 210. 3.56 20.4 2.0 3 1.2 7 1.52 1.27 0.30 0 0.392 3211111 .00 0 31 00000 ł, ľ ¢

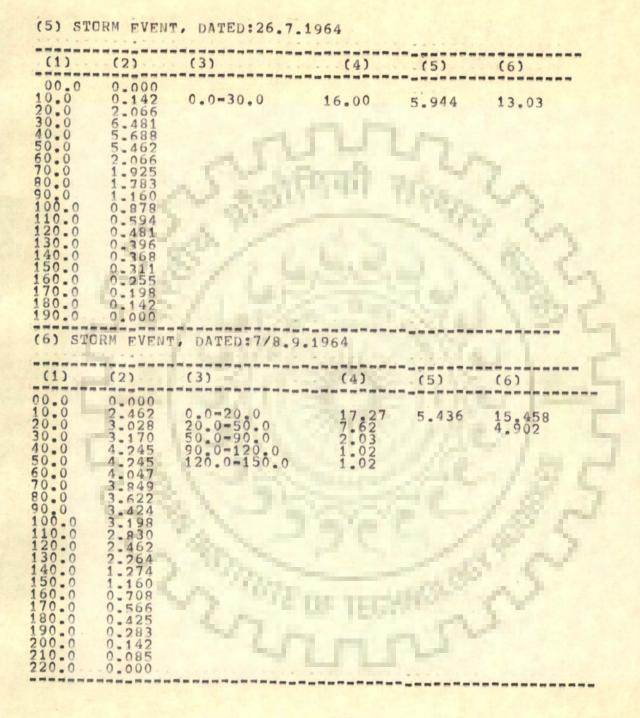
(6) STORM EVENT, DATED:7/8.9.1964

APPENDIX --- II(B)

BRIDGE NO. 317

RAINFALL RUNOFF DISTRIBUTION

(1) STORM EVENT, DATED: 25.10.1961


252

RUNOFF OBSERVATION R	AINFALL OBSERVA	TION		
TIME DISCHARGE (MIN) (M**3/S)	TIME (MIN)	RAINFALL (MM)	¢-INDEX (MM/HR)	RAINFALL EXCESS (MM)
(1) (2)	(3)	- (4)	(5)	(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0-30.0 30.0-60.0 60.0-90.0 90.0-120.0	4.88 22.40 19.90 1.63	5.92	1.92 19.44 16.94

DE TE

(2) STORM	EVENT, DATED:	24.9.1964	
	(3)	(4)	(5) (6)
00.0 10.0 20.0 30.0 40.0 50.0 3 50.0 3 50.0 3 50.0 3 50.0 3 50.0 3 50.0 3 50.0 3 50.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 & 13.72 \\ 10.67 \\ 0 & 10.67 \\ 20.0 & 20.57 \\ 50.0 & 11.18 \\ 80.0 & 13.97 \\ 10.0 & 6.35 \\ 40.0 & 2.54 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
200033 400033 400023 4000023 4000023 4000023 4000023 4000023 4000023 4000023 4000023 4000023 4000023 4000023 4000023 4000023 4000023 4000023 4000023 4000023 4000000000 40000000000 400000000000	434 830 764 990 896 242	40.0 2.54	0:434
130.0 15 140.0 14 150.0 12 160.0 9 170.0 7. 180.0 6	100 716 452 056 641 509		61/85
190.0 7. 200.0 10 210.0 7. 220.0 6 230.0 5. 240.0 3	716 452 056 641 509 641 471 641 509 688 764 169 830 321 122 896 415 188 160		Me L
250.0 3. 260.0 2. 270.0 2. 280.0 2. 290.0 1. 300.0 1.	169 830 321 122 896 415		Me la F
310.0 1 320.0 1 330.0 0 340.0 0 350.0 0 360.0 0	991 934 792 764	3376	983
370.0 380.0 390.0 400.0	708 283 142 000	TR.m. mailt	ess.
	~	unr	su

(3) STORM EVENT	. DATED:14.10.19	962	
(1) (2)	(3)	(4) (5) (6)
00.0 0.000	$\begin{array}{c} 0.0-30.0\\ 30.0-50.0\\ 50.0-90.0\\ 90.0-120.0\\ 120.0-150.0\\ 150.0-180.0\\ 180.0-210.0\\ \end{array}$	19.81 19 13.72	.32 10.15
60.0 5.773 90.0 1.613	50.0-90.0	19.81 19 13.72 1.27 1.52 2.03 0.73 0.76	.20
120.0 0.849 150.0 0.708 180.0 0.623	120.0 = 150.0 150.0 = 180.0 180.0 = 210.0	2.03	
210.0 0.509 240.0 0.509		0.10	5
270.0 0.481 300.0 0.453	West W	and stor	in CA
360.0 0.396 390.0 0.368	a gar		My Ca
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8/11		X 8 2
			1. 7. 28. 1-1
(4) STORM EVEN	, DATED: 18.7.19	063	11000
(1) (2)	(3)	(4) (5	(6)
$\begin{array}{c} 00.0\\ 30.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	30.0	6.35 9.9	9 1.40
90.0 120.0 1 358	30.0 60.0 80.0	6.86	9 1.40 1.91 14.23
150.0 0.764 180.0 0.283			MERT L
	1.200		a lan
300.0 330.0 0.142	1 1 1 2 2		185
E.	St. I		1.8 2
10	a Rillion		30° 3 5
	17	LECS.	CY.
	~ 67		1

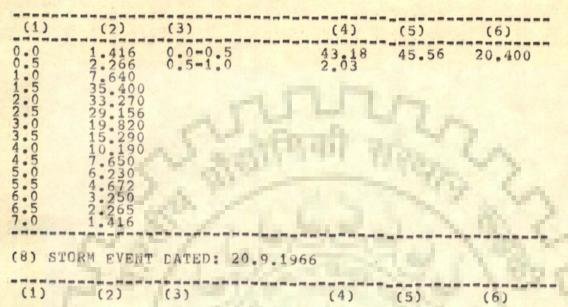
(7) STORM EVENT, DATED:8,9,1964

2222

(1) (2) (3) (4) (5) (6) $00 \cdot 0 + 0.000 + 0.0 - 30 \cdot 0 + 20 \cdot 83 + 2 \cdot 14 + 19 \cdot 76 + 76 + 10 \cdot 60 + 10 \cdot 67 + 10 \cdot 91 + 10 \cdot 60 + 10 $			
00.0 0.849 30.0 0.481 60.0 0.283 90.0 0.142 20.0 0.000 (1) (2) (2) (3) (4) (5) (6) 0.000 0.0	(1) (2)	and the second sec	(4) (5) (6)
360.0 0.283 390.0 0.142 20.0 0.000 38) STORM EVENT, DATED:15.9.1964 (1) (2) (3) (4) (5) (6) 0.0 0.000 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0-30.0\\ 30.0-60.0\\ 60.0-90.0\\ 90.0-120.0\\ 120.0-150.0\\ 150.0-180.0\\ 180.0-210.0\\ 210.0-240.0\\ 240.0-270.0\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	360 0 0.283 390 0 0.142 420 0 0.000 (8) STORM EVEN		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(3)	(4) (5) (6)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0-30.0 30.0-60.0 60.0-90.0 90.0-120.0 120.0-150.0 150.0-180.0	6.35 8.89 3.04 2.76 2.79 0.25 0.25

05.7

APPENDIX --II(C)


BRIDGE NO. 719 RAINFALL RUNOFF DISTRIBUTION (1) STORM EVENT, DATED: 24/25.7.1964 RUNOFF OBSERVATION OBSERVATION RAINFALL -----------TIME TIME Ø-INDEX RAINFALL EXCESS (MM/HR) (MM) DISCHARGE RAIFALL (HR) (HR) (M**3/S) (MM) (1) ------(3) 0.0-0 0.5-1 1.0-1 1.5-2 2.0-2 2.5-3 3.0-3 3.5-4 (5) -----(2) (6) 001122334455666778 $\begin{array}{c} 1 & 1 & 3 & 3 \\ 4 & 5 & 6 & 0 \\ 8 & 1 & 0 & 0 \\ 9 & 7 & 7 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 2 & 1 & 0 \\ 2 & 2 & 1 & 2 \\ 2 & 1 & 2 & 2 \\ 1 & 2 & 4 & 6 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 4 & 6 \\ 2 & 4 & 1 & 0 \\ 1 & 2 & 4 & 6 \\ 2 & 4 & 1 & 0 \\ 1 & 2 & 4 & 6 \\ 1 & 2 & 4 & 6 \\ 2 & 4 & 1 & 0 \\ 1 & 2 & 4 & 6 \\ 1 & 2 & 2 & 4 \\ 1 & 2 & 4 & 6 \\ 1 & 2 & 2 & 4 \\ 1 & 2 & 4 & 6 \\ 1 & 2 & 2 & 4 \\ 1 & 2 & 4 & 6 \\ 1 & 2 & 2 & 4 \\ 1 & 2 &$ 2.07 -----4.045 9.125 2.015 3.025 50505050 5134110 6 173321 0 -------(2) STORM EVENT, DATED: 26/27.7.1964 ------(5) (1) 0011223344556677889991001112 (2) 1.133 2.050 4.2842 8.0 1.2.58 1.2.59 1.2.58 1.2.58 1.2.58 1.2.58 1.2.58 1.2.58 1.2.58 1.2.58 1.2.58 1.2.58 1.2.59 1.2.59 1.2.59 1.2.59 1.2.59 1.2.59 1.2.59 1.2.57 1.2.58 1.2.57 1.2.58 1.2.57 1.2.58 1.2.57 1.2.58 1.2.57 1.2.58 1.2.57 1.2.58 1.2.57 1.2.58 1.2.57 1.2.58 1.2.57 1.2.58 1.2.57 1.2.58 (4) (3) (6) --------------0-0 5-1 0-1 5-2 5-3 8.13 6.60 2.03 4.06 6.10 10.16 982 452 912 912 952 012 001122 505050 2.296 650249 ------

(3)	STORM EVENT	, DATED: 3.	9.1964		
(1)	(2)	(3)	(4)	(5)	(6)
		0.0-0.5 0.5-1.0 1.0-1.5	4.57 6.86 7.37	6.570	1.283 3.573 4.084
05050505050505050	1.133 2.965 3.965 5.097 6.796 8.496 11.610 10.760 8.496 6.853 5.806 2.407 1.700 1.133	Sales	(Profil)	C'ANT	Sec.
	STORM EVENT	DATED: 11.	8.1965		1.20
(1)	(2)	(3)	(4)	(5)	(6)
001100505050505050505050505050505050505	$\begin{array}{c} 1.000\\ 2.010\\ 4.210\\ 10.200\\ 21.240\\ 29.740\\ 41.022\\ 35.400\\ 31.152\\ 21.810\\ 13.480\\ 10.223\\ 6.090\\ 3.400\\ 1.982\\ 1.000\\ \end{array}$	0.0=0.5 0.5=1.0 1.0=1.5 1.5=2.0	25.40 18.29 1.52 0.76	15.75	(6) 17.525 10.415
556677	13.480 10.223 6.090 3.400 1.982 1.000	15	336	5	125
	3	200	E DE LECH	10	2

(3) STORM EVENT, DATED: 3.9.1964

(1)		(2)	(3)	(4)	(5)	(6)
050505050505050	11581655	133 700 660 550 5480 560 970 550 970 550 970 540 700 440 133	0.0-0.5 0.5-1.0 1.0-1.5	20.80 2.03 1.02	30.36	5.62
			Sales	Refi R	Reg	3
	STORM.	(2)		1966		
(1)		5 E. P.	(3)	(4)	(5) 9.64	(6)
001112233445566	127781185432222111	190 832 08 49555 836 947 701 257 832 407 010 669 190	0-0-5 0-1-5 0-1-5 0-1-5 0-1-1-5 0-1-1-5 0-5 0-1-1-5 0-5 0-1-1-5 0-5 0-1-1-5 0-5 0-1-5 0-5 0-1-5 0-5 0-1-5 0-5 0-1-5 0-5 0-1-5 0-5 0-1-5 0-5 0-1-5 0-5 0-1-5 0-5 0-5 0-5 0-5 0-5 0-5 0-5 0-5 0-5 0	$ \begin{array}{r} 10.92 \\ 4.57 \\ 4.06 \\ 2.03 \\ 4.06 \\ 2.03 \\ 1.02 \\ \end{array} $	9.64	6.1
	0	53	10000	LTL	2 al	\$5

(5) STORM EVENT, DATED: 18.9.1965

(7) STORM EVENT DATED: 16.9.1966

Rainfall runoff distribution

(1) Dated 27.7.77

	lamoit observ			Rainfall	observations
Time	Lischarge	Time	Discharge	Time	Rainfall
hrs.	rate	hrs.	rate	interval	intensity
	m ³ /sec.		m ³ /sec.	hrs.	mm/hr
	1 A 1 A 1			1 × 2	
1.	0.107	27.	0.263	0.0 - 0.	
2.	0.249	28.	0,243	0.25 - 0.	
3.	0.431	29.	0.236	0.50 - 1.	
4.	0.642	30.	0.217	1.00 - 1.	75 25.0
8.	0.756	31.	0.198	1.75 - 4.	00 8.0
6.	0.832	32.	0.177	4.00 - 5.	00 2.1
7.	0.851	33.	0.171		
8.	0.805	34.	0.167		100
9.	0.784	35.	0.156		
10.	0.777	36.	0.151	Sec. 1	
11.	0.738	37.	0.140	A Contraction of the local division of the l	
12.	0.696	38.	0.135		
13.	0.666	39.	0.130	10 10 10	Concern 1
14.	0.609	40.	0.125		
15.	0.566	41.	0.114		
16.	0.503	42.	0.104		
17.	0.466	43.	0.098	1 8	
18.	0.431	44.	0.093	1 55 1	
19.	0.406	45.	0.082	1 55 14	
20.	0.386	46.	0.077		6
21.	0.365	47.	0.072	57 C 674	
22.	0.346	48.	0.067	Sec. 3.	
23.	0.325	49.	0,064	194	
24.	0.305	50.	0.062	1 A A	
25.	0.285	81.	0.062	100	
26.	0.275	52.	0.056		

Rainfall runoff distribution

(2) Dated 4.8.77

Time	noti observa	LIONS		Rainfall ob	I do toma de da ante
hrs,	Discharge rate m ³ /sec.	Time hrs.	Discharge rate m ³ /sec.	Time interval hrs.	Rainfall intensity mm/hr.
1.	0.754	26.	0.329	0.0 0.07	C
2.	0.624	27.	0.314	0.0 - 0.25	36.0
3.	0.790	28.	0.298	0.25 - 0.75	40.0
4.	0.972	29.	0.279	0.75 - 1.00	48.0
5.	1.019	30.	0.261	1.00 - 3.00	3.7
6.	0.981	31.	0.245		1000
7.	0.984	32.	0,218		Section Street
8.	0.993	33.	0.203		
9.	0.983	34.	0.198		1 m
10.	0.931	35.	0.196		
11.	0.850	36.	0.195		and the second se
12.	0.808	37.			
13.	0.728	38.	0.186 0.166		
14.	0.632	39.		and the second second	
5.	0.578	40.	0.146		
6.	0.511	41.	0.136		SF 1. "
7.	0.483	42.	and the second se		
8.	0.469	43.	0.131		S
9.	0.442	44.	0.115		2 g
0.	0.423	45.		1.00	
1.	0.401	46.	0.106	1.12	and a
2.	0.388	47.	0.099	1.000	
3.	0.368	48,	0.096	100 M	
4.	0.341	49.	0.094	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
5.	0.334	50.	0.094	1.50	

Bainfall runo	II	als	TL.	DUL	lon
---------------	----	-----	-----	-----	-----

(3) Dated 2/3.8.78

	Runoff Observ.		Company and a start of the star	Rainfall	observation
Time	Discharge	Time	Discharge	Time	Rainfall
hrs	rate	hrs.	rate	interval	intensity
	m ³ /sec.		m ³ /sec.	hrs.	mm/hr.
-					
1.	0.185	32.	0.446	0.00 - 0.50	11.25
2.	0.418	33.	0.430	0.50 - 1.25	26.00
3.	0.693	34.	0.420	1.25 - 2.60	81.40
4.	0.841	35.	0.402	2.60 - 3.50	29.50
5.	1.053	36.	0.387	3.50 - 8.50	
6.	1.144	37.	0.369		
7.	1.178	38.	0.341		
8.	1.169	39.	0.323		
9.	1.146	40.	0.314		
10.	1.159	41.	0.305		and the second se
11.	1.139	42.	0.282	1000 100	the second se
12.	1.095	43.	0.255		
13.	1.059	44.	0.228		
14.	0.997	45.	0.219	2 No. 1 No. 2	
15.	0.954	46.	0,199	1.1.10	
16.	0.905	47.	0.175	- 1 M	State .
17.	0.853	48.	0,160		
18.	0.801	49.	0,155	1.18	
19.	0.784	50.	0.148	- 10 C	<u> </u>
20.	0.763	51.	0.141	109	
21.	0.739	52.	0.138	~~~~	
32.	0.724	53.	0.132	10 March 10	
23.	0.710	54.	0.123	C	
34.	0.669	55.	0.114		
25.	0.666	56.	0, 104		
86.	0.629	57.	0.094		
27.	0.606	58.	0.087		
28.	0,602	59.	0.069		
29.	0.581	60.	0.062		
30.	0.542	61.	0.061		
81.	0.498	62.	0.054		

Rainfall runoff distribution

(4) Dated 8/9.8.78

Ru	noff observat	lons			servations
Time	Discharge	Time	Discharge	Time	llainfall
hrs.	rate	hrs.	rate	interval	intensity
	m ³ /sec.		m ³ /sec.	hrs.	mm/hr.
	M / 580.				
1.	0.213	31.	0.372	0.0 - 0.25	7.30
2.	0.483	32.	0.322	0.25 - 0.75	19,00
3.	0.603	33.	0.301	0.75 - 2.25	-31.00
4.	0.738	34.	0.292	2.25 - 4.60	13.20
5.	0.869	33.	0.281		A 14
6.	0.876	38.	0.271		
7.	0.881	37.	0.265		
8.	0.884	38.	0.262		
9.	0.888	39.	0.241		
10.	0.918	40.	0.221		
11.	0,857.	41.	0.211		100
12.	0.815	42.	0.190		the second se
13.	0.768	43.	0.179	1. Carlos 1. C.	
14.	0.728	44.	0.161		
15.	0.706	45.	0.152		
16.	0.664	48.	0,144	1.15	
17.	0.642	47.	0.136	- 1 M	1000
18.	0.613	48.	0.120	- 1 St. 1	
19.	0.605	49.	0.105	1	- P
20.	0,585	50.	0.100	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	×
21.	0.559	51.	0.095	1000	
22.	0.542	52.	0.091	50 S. S. S.	
23.	0.526	53.	0.088		
24.	0.501	54.	0.083	Contraction of the second	
25.	0.481	55.	0.080	3 m	
26.	0.474	56.	0.073		
27.	0.459	57.	0.067		
28.	0.457	58.	0.060		
29.	0.423	59.	0.049		
30.	0,403	60.	0.045		

Rainfall runoff distribution

(5) Dated 2.8.79

Time	Discharge		antenanterio normalitati antenante	Rainfall ob	ervations
hrs.	rate	fime	Discharge	1.1.18.61	Rainfall
	3,	hrs.	rate	interval	intensity
_	m ³ /sec.	17-14-00	m ³ /sec.	hrs.	mm/hr
1.	0,090	31.	0.220	0.00 0.07	
2.	0,199	32.	0.190	0.00 - 0.25	26.80
3.	0.240	33.	0.178	0.25 - 0.75	31.20
4.	0.290	34.	0.172	0.75 - 1.00	48.10
5.	0.340	35.	0.166	1.00 - 1.32	10.40
8.	0.357	36.	0.160	C. C. Sterner	
7.	0.373	37.	0.156	1 1 24 1	
8.	0.396	38.	0.155		
9.	0.407	39.		6 J J	
10.	0.417	40.	0.147		
11.	0.413	41.	0.131		
12.	0.396	42.	0.124	The strength	
13.	0.379	43.	0,112		
18.	0.367	44.	0.099		and the second s
15.	0.362	45.	0.083	1.2	
16.	0.350	46.	0.074		
7.	0.344	47.	0.071	17 I B. L	
8.	0.337		0.066	1 63	
9.	0.334	48.	0.063	1 22 84	
0.	0.326	49.	0.059	1 . S. A.	
1.	0.317	50.	0.057	18 m 2	
2.	0.309	51.	0.054	31.00	
3.	0.302	52.	0.051		
4.	0.299	53.	0.049	100	
5.	0.277	54.	0.047		
6.	0.273	55.	0.043		
7.	0.269	56.	0.038		
8.	0.259	57.	0.035		
9.	0.250	58.	0.031		
0.	0.238	59.	0.029		
	0.230	60.	0.026		

Appendix -	· II -	(E)
------------	--------	-----

Kachwa Watershed :

Computation of Excitation Function at Hourly Time Step

Tin	Storm event, da me (hr)	1		the state of the state of the state			and the second	an and an a state of a
Rain	fall depth (mm)	2	<u>0-1</u> 19.0	1-2	2-3		3-4	4=5
Raini	fall excess n (mm)	3	2.2	20.8	8.0.	5	3.0 -	2.1
THE OWNER AND A PARTY OF	and an advantage of the second s	4			2.			
(2)	Storm event, da	ted :	4.8.1977	1946	0	7		
	NA	1	0-1	1-2	2-3	1.1	3-4	
	SEL.	2 3 4	41.0	3.8	3.6		3:	
3)	Storm event, dat	ted :	2/3.8.1	<u>33.3</u> 978			-	
1	0-1 1-2				5-6	6.7		
2 3 4	18.6 22.4	24.7	16.1		3.2	6-7 3.2 -	3.2	1.4
(4)	Storm event, dat	ed :			-	10	-	
1		Statement of the second se	and the second se	4-5	12			
2 3	1.06 6.66	0.86		Section	27	2		
4	- Y.Y.		14-64	1000	C			
5) 5	Storm event, date	ed :	2.8.1979	25				
1	0-1		1-2		2-3			
2	34.33		2.27			+		
3	4.2				-			
4			30.13					

APPENDIX - III-A

Sensitivity of (i) Channel Bed Width, (ii) Channel Side Slope and (iii) Channel Depths (Bridge No. 317, Storm dated 25.10.1961)

S1.	Channel Bed Width	Percen- tage	Peak	Time to peak	Volume
No.	(m)	(%)	(m ³ /s)	(min)	(m ³)x10 ²
(1)	(2)	(3)	(4)	(5)	(6)
1.	0.0			2 Ca	
2.	2.0	-	12.873	90.0	529.935
	4.0	50.0	12.875	90.0	529.794
3.	6.0	100.0	12.864	90.0	529.608
4.	8.0	150.0	12.848	90.0	529.440
5.	0.0	200.0	12.831	90.0	529.290
	Effect of Channel S:		and the second se		
(1)	Channel side slope (2)	(3)	(4)	(5)	(6)
1.	Channel side slope	(3)	(4) 12.8 8 6	(5) 90.0	(6)
1. 2.	Channel side slope (2)	(3)	and the second s	-	
1. 2. 3.	Channel side slope (2) 1.0	(3)	12.886	90.0	529.536
1. 2. 3.	Channel side slope (2) 1.0 2.0	(3)	12.8 8 6 12.871	90.0 90.0	529.536 529.593
1. 2. 3. 4.	Channel side slope (2) 1.0 2.0 2.5	(3)	12.886 12.871 12.864	90.0 90.0 90.0 90.0	529.536 529.593 529.608
(1) 1. 2. 3. 4. 5. (iiii	Channel side slope (2) 1.0 2.0 2.5 3.0		12.886 12.871 12.864 12.856	90.0 90.0 90.0 90.0 90.0	529.536 529.593 529.608 529.620
1. 2. 3. 4. 5.	Channel side slope (2) 1.0 2.0 2.5 3.0 3.5		12.886 12.871 12.864 12.856	90.0 90.0 90.0 90.0 90.0	529.536 529.593 529.608 529.620
1. 2. 3. 4. 5.	Channel side slope (2) 1.0 2.0 2.5 3.0 3.5) Effect of Channel I Channel depths (m)	- - - Depths:	12.886 12.871 12.864 12.856 12.8494	90.0 90.0 90.0 90.0 90.0	529.536 529.593 529.608 529.620 529.629
1. 2. 3. 4. 5. (iiii	Channel side slope (2) 1.0 2.0 2.5 3.0 3.5) Effect of Channel I Channel depths (m) (2)	- - - Depths:	12.886 12.871 12.864 12.856 12.8494 (4)	90.0 90.0 90.0 90.0 90.0	529.536 529.593 529.608 529.620 529.629 (6)
1. 2. 3. 4. 5. (iiii (1)	Channel side slope (2) 1.0 2.0 2.5 3.0 3.5) Effect of Channel I Channel depths (m) (2) 0.1, 0.2 and 0.3	- - - Depths:	12.886 12.871 12.864 12.856 12.8494 (4) 12.881	90.0 90.0 90.0 90.0 90.0 (5) 90.0	529.536 529.593 529.608 529.620 529.629 (6) 529.461

(i) Effect of Channel Bed Width :

Sensitivity of (i) Channel Bed Width, (ii) Channel Side Slope and (iii) Channel Depths (Bridge no. 719, Storm dated 24/25.7.1964 (i) Effect of Channel Bed Width :

S1. No.	Channel Bed Width	Percen- tage	Peak	Time to peak	Volume
	(m)	(%)	(m ³ /s.)	(min)	(m ³)x10 ³
(1)	(2)	(3)	(4)	(5)	(6)
100	120	Let the	WPar S	5	
1.	7.5	50.0	24.41	130.0	239.01
2.	15.0	100.0	24.05	130.0	237.24
3.	22.5	150.0	23.58	130.0	235.78
	ph and the state		S.L.	Var r	1
(ii)		e Slope :	- ile	1-5	
(1)	Channel Side Slope (2)	(3)	(4)	(5)	(6)
1.	1.0	50.0	24.13	130.0	237.19
2.	2.0	100.0	24.05	130.0	237.24
3.	3.0	150.0	23.54	140.0 .	237.26
	the market of the second		and the second		
(iii	.) Effect of Channel Dep	pths :	no?	×.	
(1)	Channel Depths (m)	(3)	(4)	(5)	(6)
1.	0.5, 0.9 and 0.15	-	24.107	130.0	237.03
2.	0.5, 0.9 and 0.15	-	24.05	130.0	237.24
3.	1.5, 2.9 and 3.15	-	24.14	130.0	239.05

APPENDIX - III-C

Sensitivity of (i) Channel Bed Width, (ii) Channel Side Slope and (iii) Channel Depths (Kachwa Watershed, Storm dated 4.8.1977)

S1. No.	Channel Bed Width	Percen - tage	Peak	Time to peak	Volume
	(m)	(%)	(m ³ /s)	(hr,)	(m ³)x10 ³
1)	(2)	(3)	(4)	(5)	(6)
	0.0	1.10	0.994	9.0	77 150
	1.0	50.0	0.994	9.0	77.159
	2.0	100.0	0.993	9.0	76.802
	3.0	150.0	0.990	9.0	76.554
ii)	Effect of Channel	Side Slope :			5
	Effect of Channel Channel side slope	Side Slope :	(4)	(5)	(6)
	Channel side slope		(4)	(5)	(6)
	Channel side slope		(4)	(5) 8.0	(6) 76.871
1)	Channel side slope (2)	(3)	1000	2141	
	Channel side slope (2) 1.0	(3)	1.000	8.0	76.871
ii) 1)	Channel side slope (2) 1.0 1.5	(3) 50.0 75.0	1.000 0.997	8.0 8.0	76.871 76.8 <mark>3</mark> 8

(i) Effect of Channel Bed Width :

(1)	Channel depths (m) (2)	(3)	(4)	(5)	(6)
1	0.25, 0.4 and 0.5	-	0.993	9.0	76.802
2	0.45, 0.6 and 0.8	-	0.992	9.0	76.910
3	0.8, 1.00 and 1.60	-	0.993	9.0	77.000
4	1.25, 1.50 and 2.05	+	0.994	9.0	77.097
				11	11.351

APPENDIX - III-D

Sensitivity of (i) Channel Slope and (ii) Channel Roughness (Bridge No. 317, Storm dated 25.10.1961).

(i) Effect of Channel Slope :

S1. No.	Channel Slope	Percen- tage (%)	Peak (m ³ /s)	Time to peak (min)	Volume (m ³)x10 ²
(1)	(2)	(3)	(4)	(5)	(6)
	0.0525	50.0	12.799	90.0	529.377
	0.084	. 80.0	12.845	90.0	529.539
•	0.105	100.0	12.864	90.0	529.608
•	0.126	120.0	12.877	90.0	529.659
	0.1575	150.0	12.893	90.0	529.716

(ii) Effect of Channel Roughness

(1)	annel Roughness (2)	(3)	(4)	(5)	(6)	
1.	0.020	50.0	12.945	90.0	529.923	,
2.	0.032	80.0	12.895	90.0	529.728	
3.	0.040	100.0	12.864	90.0	529.608	
4.	0.048	120.0	12.832	90.0	529.494	
5.	0.060	150.0	12.785	90.0	529.329	
						4

APPENDIX - III-E

Sensitivity of (i) Channel Slope and (ii) Channel Roughness (Bridge No. 719, Storm dated 24/25.7.1964).

(i) Effect of Channel Slope :

Sl. No.	Channel Slope	Percen- tage (%)	Peak (m ³ /s)	'Time to peak (min)	Volume (m ³)x10 ³
(1)	(2)	(3)	(4)	(5)	(6)
	NA	1.	- 10	N. 5.	
1.	0.0105	50.0	23.17	140.0	235.14
2.	0.0168	80.0	23.82	130.0	236.63
3.	0.0210	100.0	24.05	130.0	237.24
4.	0.0252	120.0	24.20	130.0	237.69 '
5.	0.00315	150.0	24.34	130.0	238.21
	1				

(ii) Effect of Channel Roughness:

Chann (1)	el Roughness (2)	(3)	(4)	(5)	(6)	
1.	0.0225	50.0	24.93	120.0	239.97	
2.	0.036	80.0	24.36	130.0	238.29	
3.	0.045	100.0	24.05	130.0	237.24	
4.	0.054	120.0	23.64	130.0	236.22	
5.	0.0675	150.0	23.04	140.0	234.72	

APPENDIX - III-F

Sensitivity of (i) Channel Slope and (ii) Channel Roughness (Kachwa Watershed, Storm dated 4.8.1977)

(i) Effect of Channel Slope :

S1. No.	Channel Slope	Percen- tage (%)	Peak (m ³ /s)	Time to peak (hr.)	Volume (m ³)x10
(1)	(2)	(3)	(4)	(5)	(6)
	No	1		200	
1.	0.000235	50.0	0.967	10.0	76.136
2.	0.0003525	75.0	0.984	9.0	76.546
3.	0.00047	100.0	0.993	9.0	76.802
·.	0.0005875	125.0	1.000	8.0	76.982
ō.	0.00076	150.0	1.006	8.0	77.122

(2)	(3)	(4)	(5)	(6)	,
0.026	50.0	1.025	7.0	77.778	
0.039	75.0	1.010	8.0		
0.052	100.0	0.993	9.0		
0.065	125.0	0.976	9.0		
0.078	150.0	0.960	10.0	75.996	
	(2) 0.026 0.039 0.052 0.065	(2) (3) 0.026 50.0 0.039 75.0 0.052 100.0 0.065 125.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

APPENDIX - III-G

Sensitivity of (i) Overland Slope and (ii) Overland Roughness (Bridge No. 317, Storm dated 25.10.1961)

(i) Effect of Overland Slope :

SI.	Overland Slope	Percen- tage	Peak	Time to peak	Volume
No.	~ ~ ~	(%)	(m ³ /s)	(min)	(m ³)x10 ²
(1)	(2)	(3)	(4)	. (5)	(6)
	28/2	La Maria		1000	
1.	0.0405	50.0	11.354	90.0	524.187
2.	0.0648	80.0	12.508	90.0	528.153
3.	0.0810	100.0	12.864	90.0	529,608
4.	0.0972	120.0	13.075	90.0	529.637
5.	0.1215	150.0	13.255	90.0	531.744

(1i) Effect of Overland Roughness ;

(1)	Overland Rough (2)	(3)	(4)	(5)	(6)
	~	ann	175		
1.	0.096	50.0	13.550	80.0	534.906
2.	0.144	75.0	13.346	90.0	532.461
3.	0.192	100.0	12.864	90.0	529.608
4.	0.240	125.0	12.032	90.0	526.437
5.	0.288	150.0	10.977	90.0	522.969

APPENDIX - III-H

Sensitivity of (i) Overland Slope and (ii) Overland Roughness (Bridge No. 719, Storm dated 24/25.7.1964)

(i) Effect of Overland Slope :

S1.	Overland Slope	Percen_ tage	Peak	Time to peak	Volume	
No.		(%)	(m ³ /s)	(min)	$(m^3)x10^3$	
(1)	(2)	(3)	(4)	(5)	(6)	-
1.	0.0355 0.0325	50.0	19.70	140.0	228.15	
2.	0.0568 0.052	80.0	22.64	130.0	234,72	
3.	0.071 0.065	100.0	24.05	130.0	237.24	
+.	0.0852 0.078	120.0	25.05	130.0	239.05	
5.	0.1065 0.0975	150.0	26.332	120.0	241.02	
	NO. 105					_
ii)	Effect of Overla	and Roughness :	HIN .	2		
	Effect of Overland Overland Rough (2)	- 10- 100	(4)	(5)	(6)	
1)	Overland Rough (2)	iness (3)				
1)	Overland Rough (2) 0.0665	iness (3) 50.0	30.925	100.0	247.45	
1)	Overland Rough (2) 0.0665 0.1064	iness (3) 50.0 80.0	30.925 26.97	100.0 120.0	247.45 241.94	
(ii) (1)	Overland Rough (2) 0.0665	iness (3) 50.0	30.925	100.0	247.45	

APPENDIX - III-I

Sensitivity of (i) Overland Slope and (ii) Overland Roughness (Kachwa Watershed, Storm dated 4.8.1977)

S1. No.	Overland Slope	Percen_ tage	Peak	Time to peak	Volume
NO.	03	(%)	(m ³ /s)	(hr.)	$(m^3)x10^3$
(1)	(2)	(3)	<u>(</u> 4)	(5)	(6)
	621	100		273	
1.	0.0006	50.0	0.729	11.0	74.656
2.	0.0009	75.0	0.877	9.0	76.320
3.	0.0012	100.0	0.993	9.0	76.802
4.	0.0015	125.0	1.091	8.0	76.849
5.	0.0018	150.0	1.169	8.0	76.705
(ii)	Effect of Overland Ro	ughness :		180	
	S. S. V. 25		28.1	S. J.	
(1)	Overland Roughness (2)	(3)	(4)	(5)	(6)
	Overland Roughness	(<u>3</u>) 50.0	(4)		
L.	Overland Roughness (2)	_	100	(5) 6.0 7.0	(6) 73.854 76.446
	Overland Roughness (2) 0.05950	50.0	1.616	6.0	73.854 76.446
L. 2. 3.	Overland Roughness (2) 0.05950 0.08925	50.0 75.0	1.616 1.2475	6.0 7.0	73.854 76.446 76.8p2
(1) 1. 2. 3. 4.	Overland Roughness (2) 0.05950 0.08925 0.11900	50.0 75.0 100.0	1.616 1.2475 0.993	6.0 7.0 9.0	73.854 76.446

(i) Effect of Overland Slope :

REFERENCES

- Abbott, M.B. and Ionescu, F. (1967). On the Numerical Computation of Nearly Horizontal Flows. J. of Hydr. Res., IAHR, Vol. 5(2):96-117.
- Abbott, M.B. and Verwey, A. (1970). Four-point Method of Characteristics. J. Hyd. Div., ASCE, Vol. 96 (HY12):2549-2564
- Ağiralioglu, N. (1984). Effect of Catchment Geometry on Time of Concentration, Proc. 3rd Inter. Conf. on Urban Storm Drainage (Göteburg, Sweden), Vol. 1:177-184.
- 4. (1988). Estimation of the Time of Concentration for Diverging Surfaces. Hydrological Sciences Journal, Vol. 33(2):173-179.
- 5. Akan, A.O. (1985). Kinematic-Wave Methods for Peak Runoff Estimates. J. of Trans. Engg., ASEC, Vol. 111(4):419-425.
- Akan, A.O. (1986). Time of Concentration of Overland Flow. J. of Irr. and Dran. Engg., ASCE, Vol. 112(4):283-292.
- Allent, H.J. (1984). Convolution and the Kinematic Wave Equations. J. of Hydrology, Vol. 75(1-4):301-309.
- Amien, M., and Chu, H.L. (1975). Implicit Numerical Modelling of Unsteady Flows. J. of Hydr. Div., Proc. ASCE., Vol. 101(HY1):717-731.

- 9. Amien, M., and Fang, C.S. (1970). Implicit Flood Routing in Natural Channels. J. of Hyd. Div., Proc. ASCE, Vol. 96 (HY12):2481-2500.
- Bengtsson, L. (1988). Movement of Meltwater in Small Basins. Nordic Hydrology, Vol. (19):237-244.
- Beven, K.J. (1979). On the Generalised Kinematic Routing Method. Water Resour. Res., Vol. 15(5):1238-1242.
- 12. Beven, K. (1982). On Subsurface Stormflow: Predictions with Simple Kinematic Theory for Saturated and Unsaturated Flows. Water Resour. Res., Vol. 18(6):1627-1633.
- 13. Beven, K. (1985). "Distributed Models", in Hydrological Forecasting, Anderson, M.G., and Burt, T.P., Eds., John Wily & Sons Ltd. Chapter - 13.
- 14. Beven, K., and Germann, P. (1985). A Distribution Function Model of Channelling Flow in Soils Based on Kinematic Wave Theory, Proc. of the ISSS Symp. on Water and Solute Movement in Heavy Clay Soils, pp. 89-100, Publ. 37, ILRI, Wageningen, The Netherlands.
- 15. Blandford, G.E. and Meadows, M.E. (1983). Finite Element Simulation of Kinematic Surface Runoff. Proc., Fifth Intl. Symp. on Finite Elements in Water Resources. Univ. of Verment. Bennington, Vermont.
- Borah, D.K., Prasad, S.N. and Alonso, C. (1980). Kinematic Wave Routing Incorporating Shock Fitting. Water Resour. Res., Vol. 6(3):529-541.

- Borah, D.K. and Prasad, S.N. (1982). Shock Structure in Kinematic Wave Routing. In Rainfall-Runoff Relationships, Edt. Singh, V.P., Water Resources Publication, Colorado, 582 pp.
- Brakensick, D.L. (1966). Hydrodynamics of Overland Flow and Nonprismatic Channels. Trans. ASAE, Vol. 9(1):119-122.
- Brakensick, D.L., Heath, A.L., and Comer, G.H. (1966). Numerical Techniques for Small Watershed Flood Routing, U.S. Dept. of Agriculture, ARS:41-113.
- 20. Brakensick, D.L. (1967a). A Simulated Watershed Flow System for Hydrograph Prediction: A Kinematic Application. Paper No. 3, Proc. of the Intl. Hydrology Symp. Fort Collino, Colarado.
- Brakensick, D.L. (1967b). Kinematic Flood Routing. Trans. ASAE, Vol. 10, No. 3, pp. 340-343.
- 22. Brutsaert, W. (1968). The Initial Phase of the Rising Hydrograph of Turbulent Free Surface Flow with Unsteady Lateral Inflow. Water Resour. Res., Vol. (4):1189-1192.
- 23. Campbell, S.Y., Parlange, J.Y. and Rose, C.W. (1984). Overland Flow on Converging and Diverging Surfaces - Kinematic model and Similarly Solutions. J. Hydrology, Vol. (67):367-374.
- 24. Carnahan, B., Luther, H.A., and Wilkes, J.O. (1969). Applied Numerical Methods. John Wiley, New York.

- 25. Charbeneau, R.J. (1984). Kinematic Models for Soil Moisture and Solute Transport. Water Resour. Res., 20(6):699-706.
- 26. Chen, Chen-Lung, and Hansen, V.E. (1966). Theory and Characteristics of Overland Flow. Trans. ASAE, Vol. (1): 20-26.
- 27. Chow, V.T. (1959). Open Channel Hydraulics. McGraw-Hill Book Company. New York.
- 28. Clark, C.O. (1945). Storage and the Unit Hydrograph. Proc. ASCE, Vol. 69:1333-1360.
- 29. Clarke, R.T. (1973). Mathematical Models in Hydrology. Food and Agri. Organ. of the United Nations, Irrigation and Drainage paper No. 19, Rome.
- 30. Colbeck, S.C. (1972). A Theory of Water Percolation in Snow. J. GLaeoil., Vol. 2(63):369-385.
- 31. Constantinides, C.A. (1982). Two-dimensional Kinematic Modelling of the Rainfall-runoff Process. Water Systems Research Programme, Report 1/1982. Univ. of the Witwatersrand.
- 32. Constantinides, C.A. and Stephenson, D. (1982). Dimensionless Hydrographs Using Kinematic Theory. Water Systems Research Programme, Report 5/1982, University of the Witwatersrand.

- 33. Cooley, R.L., and Moin, S.A. (1976). Finite Element Solution of St. Venant Equations. J. of Hyd. Div., Proc. ASCE, Vol. 102(NY6):759-775.
- 34. Croley, T.E. and Hunt, B. (1981). Multiple Valued and Non-Convergent Solutions in Kinematic Cascade Models.
 J. Hydrol., Vol. 49:121-138.
- 35. Cundy, T.W., and Tento, S.W. (1985). Solution to the Kinematic Wave Approach to Overland Flow Routing with Rainfall Excess given by Philip's Equation. Water Resour. Res., Vol. 21(8):1132-1140.
- 36. Cunge, J.A. and Woolhiser, D.A. (1975). Irrigation System, in Unsteady Flow in Open Channels, edited by K. Mahmood and V. Yevjevich, pp. 522-537, Water Resources Publications, Fort Collins. Colorado.
- 37. De Lima, J.L.M.P. and Vander Molen, W.H. (1988). An Analytical Kinematic Model for the Rising Limb of Overland Flow on Infiltrating Parabolic Shaped Surfaces. J. of Hydrol., Vol. 104:363-370.
- 38. DeVries, J.J., and MacArthur, R. C. (1979). Introduction and Application of Kinematic Wave Routing Techniques Using HEC-1. Training Doc. No. 10, HEC, DAVIS, California, USA.
- 39. Dooge, J.C.I. (1959). A General Theory of the Unit Hydrograph. Journal of Geophysical Res., AGU, 64(2):241-256.

- 40. Dooge, J.C.I. (1973). Linear Theory of Hydrologic Systems.
 U.S. Dept. Agri., Agri. Res. Serv., Tech. Bull. 1468,
 327 pp.
- 41. Eagleson, P. (1967). A Distributed Linear Model for Peak Catchment Discharge. Intl., Hydrol. Symp., Colarado State Univ., Fort Colling, pp:1-18.
- 42. Eagleson, P.S. (1970). Dynamic Hydrology. McGraw-Hill Book Company, New York.
- 43. Field, W.G. (1982). Kinematic Wave Theory of Catchment Response with Storage. J. of Hydrology, Vol. 55(1-4):279-301.
- 44. Fread, D.L. (1982). Flood Routing: A Synopsis of Past, Present and Future Capability, in Rainfall-Runoff Relationship, edited by V.P. Singh, pp. 521-542. Water Resources Publications, Littleton, Colorado.
- 45. Freeze, R.A. (1978). Mathematical Models of Hillslope Hydrology, in Hillslope Hydrology, M.J. Kirkby, eds., John Wiley & Sons Ltd., New York.
- 46. Germann, P. (1985). Kinematic Wave Approach to Infiltration and Drainage into and from Soil Maeropores. Trans., ASAE, Vol. 28(3):745-749.
- 47. Germann, P. and Beven, K. (1985). Kinematic Wave Approximation to Infiltration Into Soils With Sorbing Macropores. Water Resour. Res., Vol. 21(7):990-996.

- 48. (1986). A Distribution Function Approach to Water Flow in Soil Macropres Based on Kinematic Wave Theory. J. Hydrol., Vol. 83:173-183.
- 49. Germann, P., Pierce, R.S. and Beven, K. (1986), Kinematic Wave Approximation to the Initiation of Subsurface Storm Flow in a Sloping Forest Soil. Adv. Water Resour., Vol. 9(2):70-76.
- 50. Germann P.E., Smith, M.S. and Thomas, G.W. (1987). Kinematic Wave Approximation to the Transport of ES cherichia coli in the Vadose Zone. Water Resour. Res., Vol. 23(7): 1281-1287.
- 51. Green, I.R.A. (1984). WITWAT Storm Water Drainage Program. Report 1/1984. Water System Research Programme, University of the Witwatersrand, Johannesburg.
- 52. Green, R.A., and Stephenson, D.(1986). Criteria for Comparison of Single Event Models. Hydrological Sciences Journal, Vol. 31(3):395-411.
- 53. Haan, C.T., Johnson, H.P., and Brakensick, D.L. (1982). Hydrologic Modelling of Small Watersheds. An ASAE Monograph. U.S.A.
- 54. Haberman, R. (1977). Mathematical Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, U.S.A.
- 55. Harley, B.M., Perkins, F.E., and Eagleson, P.S. (1970). A Modular Distributed Model of Catchment Dynamics. Report No. 133, Ralph., M. Parsons Laboratory for Water Resources and Hydrodynamics, Deptt. of Civil Engineering, Massachu-

setts Institute of Tech. Cambridge, Mass.

- 56. HEC-1, Flood Hydrology Peakage, Users Manual, The Hydrologic Engineering Centre, U.S. Army Corps of Engineers, Davic, Calif., Sept., 1981 revised Jan. 1985.
- 57. Henderson, F.M. (1963). Flood waves in Prismatic Channels. Jour. Hydraulic Div. ASCE, Vol. 89(HY4):39-67.
- 58. Henderson, F.M.(1966). Open Channel Flow. MacMillan Publishing Company, Incorporated, New York.
- 59. Henderson, F.M., and Wooding, R.A. (1964). Overland Flow and Groundwater Flow from a Steady Rainfall of Finite-Duration. J. of Geophysical Research, Vol. 69(8):1531-1540.
- 60. Hromadka II, T.V. and DeVries, J.J. (1988). Kinematic Wave Routing and Computational Error. J. of Hydraulic Engg., ASCE, Vol. 114(HY2):207-217.
- Huang, Y.H. (1978). Channel Routing by Finite Difference Method. J. Hydraulics Division, ASCE, Vol. 104 (HY10): 1379-1393.
- Hunt, B. (1982) Asymptotic Solution for Dam-Break Problem. Hydraulic Division, ASCE, Vol. 108(HY1):115-125.
- 63. Iwagaki, Y. (1955). Fundamental Studies on Runoff Analysis by Characteristics. Disaster Prevention Research Institute Bulletin No. 10, Kyoto University, Kyoto, Japan.

- 64. Jeyascelan, A.T. (1984). The Overland Flow Study for Godavari Basin. M.E. Dissertation, University of Roorkee, Roorkee India, 70 pp.
- 65. Keulegan, G.H. (1945). Spatially Varied Disharge Over a Sloping Plane. Amer. Geophys. Union Trans. Part 6, pp: 956-959.
- 66. Kibler, D.F. (1968). A Kinematic Overland flow model and its optimization. Ph.D. dissertation, Colorado State University, Fort Collins, Colorado.
- 67. Kibler, D.F. and Woolhiser, D.A. (1970). The kinematic Cascade as a Hydrologic Model. Hydrology Paper No. 39, Colorado State University, Fort Collins, Colorado.
- 68. King, I.P. (1977). Finite Element Methods for Unsteady Flow Through Irregular Channels. Proc. First Conf. on Finite Elements in Water Resources, Princeton Univ., U.S.A., July 1976; Finite Elements in Water Resources, Pentech Press, pp: 165-184.
- 69. Kirkby, M.J. (1978). Hillslope Hydrology, (edited by Kirkby), John Wiley and Sons, New York.
- 70. Lane, L.J., Woolhiser, D.A., and Yeujwich, V. (1975). Influence of Simplification in Watershed Geometry in Simulation of Surface Ruinoff. Hydrology paper No. 81, Colorado State University, Fort Collins, Colorado, 50 pp.
- 71. Lane, L.J. and Woolhiser, D.A. (1977). Simplification of Watershed Geometry Affecting Simulation of Surface Runoff. J. of Hydrology., Vol. 35:173-190.

- 72. Langford, K.J. and Turner, A.K. (1973). An Experimental Study of the Application of Kinematic Wave Theory to Overland Flow. J. of Hydrology, Vol. 18(2):125-145.
- 73. Laurenson, E.M. (1964). A Catchment Storage Model for Runoff Routing. Journal of Hydrology, Vol. 2:141-163.
- 74. Li, R.M. Simons, D.B., and Stevens, M.A. (1975). Nonlinear Kinematic Wave Approximation for Water Routing. Water Resourc. Res., Vol. 11(2):245-252.
- 75. Liggett, J.A. and Woolhiser, D.A. (1967). Difference Solutions of the Shallow-Water Equation. J. of the Energy. Mechanical Division, ASCE, Vol. 93 (EM2):39-71.
- 76. Lighthill, M. J., and Whitham, G.B. (1955). On Kinematic Waves. 1. Flood Movement in long rivers, Proc. Roy, Soc. London, A, vol. 229:281-316.
- 77. Linsley, R.K., Kohler, M.A. and Paulhus, L.H. (1949). Applied Hydrology. Tata McGraw Hill Publishing Company Ltd., New Delhi, India.
- 78. Liong, S.Y., Selvalingam, S. and Brady, D.K. (1989). Roughness Values for Overland Flow in Subcatchments. J. of Irri. and Drainage Engrg., ASEC, Vol. 115(2):204-214.
- 79. Mahmood, K. and Yevjevich, V. (1975). Unsteady Flow in Open Channels, Water Resources Publications, Fort Collins, Colorado.

- Mathur, B.S. (1972). Runoff Hydrographs for Uneven Spatial Distribution of Rainfall. Ph.D. Thesis, The Indian Institute of Tech., New Delhi, India.
- 81. Margali, J.R. (1970). Laminar and Turbulent Overland Flow Hydrographs. Proc. ASCE, Vol. 96 (HY2):441-460.
- Margali, J.R., and Linsley, R.K. (1965). Computer Analysis of Overland Flow. Proc. ASCE., J. Hydraulic Div., Vol. 91 (HY3):81-100.
- 83. McCuen, R.H. (1973). The Role of Sensitivity Analysis in Hydrologic Modeling. J. of Hydrol., Vol. 18:37-53.
- 84. Moore, I.D. (1985). Kinematic Overland Flow: Generalization of Rose's approximate Solution. J. of Hydrology, Vol. 82:233-245.
- 85. Moore, I.D. et al. (1987). Kinematic Overland Flow Generalization of Rose's Approximate Solution, Part II, J. of Hydrol., Vol. 92: 351-362.
- 86. Morris, E.M. and Woolhiser, D.A. (1980). Unsteady One-Dimensional Flow Over a Plane: Partial Equilibrium and Recession Hydrographs. Water Resour. Res., Vol. 16(2): 355-360.
- 87. Nash, J.E. (1957). The Form of Instantaneous Unit Hydrograph. IASH General Assembly, Toronto, Pub. 45:114-119.
- 88. Nash, J.E. (1960). A Unit Hydrograph Study with Particular Reference to British Catchments. Proc. Inst. Civ. Engrs., No. 17, pp:249-281.

- 89. Nash, J.E., and Sutcliffe, J.V. (1970). River Flow Forecasting Through Conceptual Models. Part I - A Discussion of Principles. J. of Hydrol., Vol. 10:282-290.
- 90. (NIH) Perumal, M., and Santoshi, M.K. (1989). Report TR-41 on Development of Dimensionless Hydrographs for Storm Sewers Using Kinematic Wave Routing Technique, Publication of National Institute of Hydrology, Roorkee, India, 51 pp.
- 91. Noye, J. (1982). Numerical Solutions of Partial Differential Equations. North-Holland Publishing Company, Amsterdam.
- 92. Overton, D.E. and Brakensiek, D.L. (1970). A Kinematic Model of Surface Runoff Response. IASH Symp., Wellington, New Zealand.
- 93. Overton, D.E. and Meadows, M.E. (1976). Stormwater Modeling. Academic Press, New York.
- 94. Parlange, J.-Y., Rose, C.W. and Sander, G.C. (1981). Kinematic Flow Approximation of runoff on a Plane : An exact analytical solution. J. Hydrol., Vol. 52:171-176.
- 95. Pedersen, J.T., Peters, J.C., and Helweg, O.J. (1980). Hydrographs by Single Linear Reservoir Model. J. of Hydr. Div. ASEC, Vol.106(HY5):837-852.
- 96. Ponce, V.M. (1986). Diffusion Wave Modeling of Catchment Dynamics, J. Hydraulic Engineering., ASCE, Vol. 112(HY8): 716-727.

- 97. Ponce, V.M., Chen, Y.H., and Simons., D.B. (1979). Unconditional Stability in Convection Computations, J. of the Hydraulic Division, ASCE, Vol. 105 (HY9):1079-1086.
- 98. Ponce, V.M., Li, R.M., and Simens, D.B. (1978). Applicability of Kinematic and Diffusion Models. J. of Hydraulic Division, ASCE, Vol. 104(HY3): 353-360.
- 99. Rgan, R.M. and Duru, J.O. (1972). Kinematic Wave Nomograph for Time of Concentration. J. of Hydraul. Div., ASEC. Vol. 98(HY10):1765-1771.
- 100. Rajaraman, V. (1983). Computer Oriented Numerical Methods (2nd edition). Prentice Hall of India Private Ltd., New Delhi.
- 101. Randkivi, A.J. (1979). Hydrology (An Advanced Introduction to Hydrological Processes and Modelling). Pergaman Press, England.
- 102. Rayej, M., and Wallender, W.W. (1988). Time Solution of Kinematic Wave Model with Stochastic Infiltration. J. of Irri. and Drainag. Engg., ASCE. Vol. 114(4):605-621.
- 103. Rose, C.W., Parlange. J.-Y., Sander, G.C., Campbell, S.Y. and Barry. D.A. (1983). Kinematic Flow Approximatioin to Runoff on a Plane : An Approximate Analytic Solution. J. Hydrol., Vol. 62:363-369.
- 104. Rovey, E.W., Woolhiser, D.A. and Smith, R.E. (1977). A Distributed Kinematic Model of Upland Watersheds. Hydrology paper 93. Colorado State Univ., Fort Collins.

- 105. Schaake, J.C., Jr. (1965). Synthesis of the Inlet-Hydrograph, Tech. Rept. 3, Storm Drainage Research Project, Dept of Sanitary Engiceering and Water Resources, The Johns Hopkins University, Baltimore, Md., U.S.A.
- 106. Schaake, J.C. (1970). Deterministic Urban Runoff Model. Institute on Urban Water Systems, Fort Collins, Colarado.
- 107. Shelburne, K.L. and Singh, V.P. (1976). Studies on Rainfall-Runoff Modelling: 4. Estimation of Parameters of Two Mathematical Models of Surface Runoff. WRRI Rep. No. 076, pp. 1-96, New Mexico Water Recour. Res. Institute, Las Cruces, New Mexico.
- 108. Sherman, B., and Singh, V.P. (1976a). A Distributed Converging Overland Flow Model : 1. Mathematical solutions. Water Resource. Res., Vol. 12(5):889-896.
- 109. Sherman, B., and Sing, V.P. (1976b). A Distributed Converging Overland Flow Model:2. Effect of Infiltration. Water Resour. Res., Vol. 12(5):897-901.
- 110. Sherman, B., and Singh, V.P. (1978). A Kinematic Model for Surface Irrigation. Water Resour. Res., Vol. 14(2): 357-364.
- 111. Sherman, B., and Singh, V.P. (1982). A kinematic Model for Surface Irrigation: An Extension. Water Resour. Res. Vol. 18(3): 659-667.
- 112. Singh, K.P. (1962). A Nonlinear Approach to IUH Theory. Ph.D. Thesis, Univ. of Illonois, Faculty of Civil Engineering, Urbana, Ill.

- 113. Singh, O.P. (1980). Analysis of the Hydrologic Changes Taking Place in Alkali Soil Watershed During Reclamation. Ph.D. Thesis, Jawaharlal Nehru Technological University, Hydereabad India, 153 pp.
- 114. Singh, V.P. (1974). A Non-linear Kinematic Wave Model of Surface Runoff, Ph.D. Dissertation, Colorado State University, Fort Collins, Colorado, 282 pp.
- 115. Singh, V.P. (1975a). A Laboratory Investigation of Surface Runoff. J. of Hydrology, Vol. 25(2):187-200.
- 116. Singh, V.P. (1975b). Hybrid Formulation of Kinematic Wave Models of Watershed Runoff. J. of Hydrology, Vol. 27:33-50.
- 117. Singh, V.P. (1975c). A Distributed Approach to Kinematic Wave Modelling of Watershed Runoff. Proc. National Symp. on Urban Hydrology and Sediment Control, Univ. of Kentucky, Lexington, Kentucky, pp. 227-236.
- 118. Singh, V.P. (1975d). Kinematic Wave Modelling of Water Shed Surface Runoff: a Hybrid Approach, Intern. Assoc. of Hydrol. Sci. Pub. 117, pp. 255-264.
- 119. Singh, V.P. (1975e). Estimation and Optimization of Kinematic Wave Parameters. Water Resour. Bull. 11(6), pp. 1091-1102.
- 120. Singh, V.P. (1975f). Derivation of Surface Water Lag Time for Converging Overland Flow. Water Resour. Bull. 11(3), pp. 505-513.

- 121. Singh, V.P. (1976). Derivation of Time of Concentration. J. of Hydrol., Vol. 30:147-165.
- 122. Singh, V.P. (1976a). Studies on Rainfall-Runoff Modelling:
 2. A Distributed Kinematic Wave Model of Watershed Runoff.
 WRRI Rep. No. 065, New Mexico Water Resources Research Institute, Las Cruces, New Mexico, pp. 1-154.
- 123. Singh, V.P. (1976b) Studies on Rainfall-Runoff Modelling:8. Converging Overland Flow. WRRI Rep. No. 073, New Mexico Water Resources Research Institute, Las Cruces, New Mexico, pp. 1-290.
- 124. Singh, V.P. (1976c). A Distributed Converging Overland Flow Model: 3. Application to Natural Watersheds. Water Resource Res. 12(5):902-908.
- 125. Singh, V.P. (1976d). Mathematical Aspects of Surface Runoff. Proc. Symp. On Inland Waterways for Navigation, Flood Control and Water Diversions, Colorado State University, Fort Collins, Colorado, pp. 773-792.
- 126. Singh, V.P. (1976e). Comparison of two Mathematical Models of Surface Runoff. Intern. Assoc. of Hydrolog, Sci. Bull. No. 21, pp. 285-299.
- 127. Singh, V.P. (1977). Estimation of Parameters of a uniformly nonlinear surface runoff model. Nordic Hydrology, Vol. 8:33-45.
- 128. Singh, V.P. (1977). Sensitivity of Some Models to Errors in Rainfall-Excess. J. of Hydrology, Vol. 3:301-318.

- 129. Singh, V.P. (1978). Mathematical Modelling of Watershed Runoff. Proc. Intern. Conf. on Water Resour. Engg. Asian Institute of Tech. Bangkok, Thailand, pp. 703-726.
- 130. Singh, V.P. (1978). Linear Kinematic Converging Flow. J. of Indian Assoc. of Hydrologists. Vol. 2 No. 3 and 4, pp. 35-47.
- 131. Singh V.P. (1978). Mathematical modeling of watershed runoff, paper presented at the International Conf. on Water Resources Engg. Int. Assoc. for Hydraul. Res., Bangkok, Thailand.
- 132. Singh, V.P. (1979). A Uniform Nonlinear Hydrologic Cascade model. Irrigation and Power. Vol. 36(3):301-317.
- 133. Singh, V.P. (1979). An Improved Numerical Procedure for Runoff Computation J. of the Indian Assoc. of Hydrologists, Vol. 3 (3&4):42-46.
- 134. Singh, V.P. (1979). A Linear Dynamic Model for Prediction of Surface Runoff in Modeling Hydrologic Processes, Morel-Seytoux general edited., Water Resources Publications, Fort Collins, Colorado, USA.
- 135. Singh, V.P. (1988). Hydrologic System. Vol. I (Watershed Modeling). Prentice Hall, Inc., Englewood Cliffs, New Jersey - 07632, U.S.A.
- 136. Singh, V.P. (1989). Hydrologic System. Vol. II (Watershed Modeling). Prentice Hall, Inc. Englewood Cliffs, New Jersey 07632, USA.

- 137. Singh, V.P. and Agiralioglu, N. (1980). A Mathematical Investigation of Diverging Flow. I. Analytical Solutions. Report No. MSSU-EIRS-CE-80-3, Dept. of Civil Engineering, Mississippi State Univ. Mississippi State, Miss. U.S.A.
- 138. Singh, V.P. and Agiralioglu N. (1981a). Diverging Overland Flow, 1. Analytical Solution. Nordic Hydrology, Vol. 12: 81-98.
- 139. _____ (1981b). Diverging Overland Flow, 2. Application to Natural Watersheds. Nordic Hydrology, Vol. 12:99-110.
- 140. Singh, V.P. and Agiralioglu, N. (1981). Diverging Overland Flow. Adv. Wat. Resour. Vol. 4:117-124.
- 141. Singh, V.P. and Ram, R.S., (1983). A Kinematic Model for Surface Irrigation: Verification by Experimental Data, Water Resour. Res., Vol. 19(6): 1599-1612.
 - 142. Singh, V.P. and Shelburne, K.L. (1977). Estimation of Parameters of Converging Overland Flow Model. Nordic Hydrology, Vol. 8: 193-210.
 - 143. Singh, V.P., and Sherman, B. (1983). A Kinematic Study of Surface Irrigation: Mathematical Solutions, Tech. Rep. WRR4, Water Resour. Program., Dep. of Civ. Eng., .La. State Univ., Baton Rouge.
 - 144. Singh, V.P. and Woolhiser, D.A. (1976), A Nonlinear Kinematic Wave Model for Watershed Surface Runoff. J of Hydrology, Vol. 31:221-243.

- 137. Singh, V.P. and Agiralioglu, N. (1980). A Mathematical Investigation of Diverging Flow. I. Analytical Solutions. Report No. MSSU-EIRS-CE-80-3, Dept. of Civil Engineering, Mississippi State Univ. Mississippi State, Miss. U.S.A.
- 138. Singh, V.P. and Agiralioglu N. (1981a). Diverging Overland Flow, 1. Analytical Solution. Nordic Hydrology, Vol. 12: 81-98.
- 139. _____ (1981b). Diverging Overland Flow, 2. Application to Natural Watersheds. Nordic Hydrology, Vol. 12:99-110.
- 140. Singh, V.P. and Agiralioglu, N. (1981). Diverging Overland Flow. Adv. Wat. Resour. Vol. 4:117-124.
- 141. Singh, V.P. and Ram, R.S., (1983). A Kinematic Model for Surface Irrigation: Verification by Experimental Data, Water Resour. Res., Vol. 19(6): 1599-1612.
- 142. Singh, V.P. and Shelburne, K.L. (1977). Estimation of Parameters of Converging Overland Flow Model. Nordic Hydrology, Vol. 8: 193-210.
- 143. Singh, V.P., and Sherman, B. (1983). A Kinematic Study of Surface Irrigation: Mathematical Solutions, Tech. Rep. WRR4, Water Resour. Program., Dep. of Civ. Eng., La. State Univ., Baton Rouge.
- 144. Singh, V.P. and Woolhiser, D.A. (1976), A Nonlinear Kinematic Wave Model for Watershed Surface Runoff. J of Hydrology, Vol. 31:221-243.

- 145. Sisson, F.B., Ferguson, A.H. and Gennchten, M.Th. Van (1980). Simple Method for Predicting Drainage from Field Plots. Soil Sci. Soc. Am. J., Vol. 44:1147-1152.
- 146. Smith, R.E. (1983). Approximate Soil Water Movement by Kinematic Charateristics, Soil Sci. Soc. Am. J., Vol. 47:1-8.
- 147. Smith, R.E., and Hebbert, R.H.B. (1983). Mathematical Simulation of Interdependent Surface and Subsurface hydrologic processes. Water Resour. Res., Vol. 19(4):987-1001.
- 148. Smith, R.E. and Woolhiser, D.A. (1971a). Mathematical simulation of Infiltrating Watersheds. Hydrology paper No. 47, Colorado State University, Fort Collins, Colorado, 44 pp.
- 149. Smith, R.E. and Woolhiser, D.A. (1971b). Overland Flow on Infiltrating Surfaces. Water Resour. Res., Vol. 7(4): 899-913.
- 150. Stephenson, D. (1981). Stormwater Hydrology and Drainage. Developments in Water Science (14). Elsvier Scientific Publishing Company, Amsterdam, The Netherlands.
- 151. Stephenson, D. (1983). The Effects of Urbanization, Course on Modern Stormwater Drainage Practice, SAICE. Cape Town.
- 152. (1984a). Kinematic Study of Effects of Storm dynamics of runoff hydrographs. Water S.A. Vol. 10, No. 4, pp. 189-196.

- 153. (1984(b). Kinematic analysis for Detention Storage. EPA/Users Group meeting. Detroit.
- 154. Stephenson, D., and Meadows, M.E. (1986). Kinematic Hydrology and Modelling. Elsevier, Amstredam.
- 155. Strelkoff, T. (1970). Numerical Solution of Saint Venant Equations. J of Hydr. Div., Proc. ASCE, Vol. 96(HY1):223-252.
- 156. Takasao, T. and Shiiha, M (1988). Incorporation of the Effect of Concentration of Flow into the Kinematic Wave Equations and its Applications to Runoff System Lumping. J. of Hydrol., Vol. 102:301-322.
- 157. Vieira, J.H.D. (1983). Conditions Governing the Use of Approximations for the Saint Venant Equation for Shallow Surface Water Flow. J. of Hydrology, Vol. 60: 43-58.
- 158. Viessman, J.W. Knapp, W., Lewis, L.G., and Harbaugh, T.E. (1977). Introduction to Hydrology, Thomas, Y. Crowell Company, Inc. New York.
- 159. Weinmann, P.E., and Laurenson, E.M. (1979). Approximate flood Routing Methods : a review. J. Hydrau. Div. Proc. ASCE, Vol. 105(HY12):1521-1536.
- 160. Wooding, R.A., (1965). A Hydraulic Model for the Catchment-Stream Problem. (a) I. Kinematic Wave Theory, (b)II. Numerical Solutions. Jour. of Hydrology, Vol. 3(3):254-282.

- 161. Wooding, R.A. (1966). A Hydraulic Model for the Catchment-Stream III. Comparison with Runoff Observations, J. of Hydrology, Vol. 4:21-37.
- 162. Woolhiser, D.A. (1969). Overland Flow on a Converging Surface. Trans. ASCE, Vol. 12(4):460-462.
- 163. Woolhiser, D.A. (1981). Physically Based Models of Watershed Runoff, pp. 189-202 in Singh, V.P. (Ed) Rainfall Runoff Relationships Water Resources Publications, Colorado, 582 pp.
- 164. Woolhiser, D.A. (1970) Discussion of "Surface irrigation using Kinematic Wave Method by C.L. Chen." J. Irrig. Drain. Div. ASCE, 96(IR4):498-500.
- 165. Woolhiser, D.A. and Goodrich, D.C. (1988). Effect of Storm Rainfall Intensity Patterns on Surface Runoff. J. of Hydrology , Vol. 102 : 335-354.
- 166. Woolhiser, D.A., Hanson, C.L. and Kuhlman, A.R. (1970). Overland Flow on Rangeland Watersheds. J of Hydrology (N.Z.) Vol. 9(2):336-356.
- 167. Woolhiser, D.A. and Liggett, J.A. (1967). Unsteady, One-Dimensional Flow over a Plane - the Rising Hydrograph., Water Resour. Res., Vol. 3 (3) : 753-771.
- 168. Wylie, B. (1970). Unsteady Free-Surface Flow Computations. J. of Hyd. Div. Proc. ASCE, Vol. 96(HY11):2241-2251.

- 169. Yamada, T. and Kobayashi, M. (1988). Kinematic Wave Characteristics and New Equations of Unsaturated Infiltration. J. of Hydrology, Vol. 102:257-266.
- 170. Yevjevich, V.M. (1960). Flood Routing Methods, Discussion and Bibliography, U.S. Dept. Interior, Geological Survey, Washington, D.C.

ROORK

DX1= 15.0000 .5500 .2500 Y2= 0.5500	150.0000 AN15 0.0350 33= 0.7500 B= 3.0000 50.0000 AN= 0.0520 S0=	AZE 2.5000	1.6667 N=	N1= 111 ×	63 NR=	49 AU	
DX# 4.0000 FLOW ROU 248.0000 FLOW ROU TITHE(WINS) 2.5000000 10.2000000 5.0000000 10.2000000 10.2000000 117.50000000 12.50000000 12.50000000 22.5000000 22.50000000 22.50000000 22.50000000 22.50000000 22.50000000 22.50000000 22.50000000 22.50000000 30.0000000 33.500000000 31.500000000 32.500000000 32.500000000 32.500000000 32.500000000 32.500000000 32.500000000 42.500000000 32.500000000 42.500000000 42.5000000000 55.500000000 55.5000000000 57.500000000 57.5000000000 77.500000000 72.5000000000 77.500000000 72.5000000000 77.500000000 72.50000000000 77.50000000000 77.500000000000000000000000000000000000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VEL OR 0.10988912 0.1438919 0.1734851 0.1734851 0.1734851 0.1734851 0.2172744 0.22302214 0.22302214 0.22454133 0.24454133 0.24454133 0.24454133 0.24454133 0.24454133 0.2445473 0.224473799 0.224473799 0.224473799 0.224473769 0.117531664 0.1177743 0.117531664 0.1177743 0.117531664 0.1177743 0.11753120 0.160222 0.1175421 0.110022 0.1175421 0.110022 0.11754241 0.10022 0.0453507 0.16453744 0.04535077 0.4537244 0.04535077 0.4453507 0.04437507 0.3418627 0.0435507 0.3452485 0.034082481 0.0330026 0.0340824850 0.0330026 0.0340824850 0.0330026 0.0340824850 0.0312232 0.0340824850		ADC 17645.7860000 8823.2799000 5888.5599000 4448.0601000 3173.5971000 2909.6880000 2766.1746000 2685.2566000 2685.2566000 2645.3734000 2645.3734000 2642.3432000 2642.3734000 3612.277000 3483.3219000 4655.3732000 5361.4944000 5361.4944000 7072.6524000 7072.6524000 7075.7682000 11321.462000 11321.462000 11321.462000 12593.6770000 13941.709000 11321.320000 11321.320000 11321.320000 12593.6770000 23522.4530000 2754.750000 2752.4500000 2752.4500000 2752.4500000 2752.4500000 2752.4500000 2752.4500000 2752.45000000 2752.4500000000000000000000000000000000000	FR2 0.6146760 0.7340512 0.7733806 0.7996445 0.8101449 0.8370970 0.8412495 0.8414473 0.8414473 0.841451220 0.8252462 0.8052112 0.7675309 0.7757309 0.7757104 0.77675309 0.77675309 0.77675309 0.77675309 0.77675309 0.77675309 0.76752899 0.6618658 0.66392941 0.66392941 0.66392941 0.6639589208 0.565650 0.57177644 0.56569699 0.56569699 0.557176644 0.55530689 0.55228749 0.55228749 0.55145674 0.55145674 0.55071316 0.5037257 0.55071316 0.5003775 0.5003775 0.5145674 0.55071316 0.50037257 0.5003775 0.5003371 0.5003775 0.5003371	AK2 46703.4020000 18535.2550000 7436.7659000 5692.0602000 4741.23280000 4741.23280000 3947.5530000 3746.3121000 3677.4596000 4422.6246000 5368.0147000 5368.0147000 5368.0147000 1456.5470000 1456.5470000 1456.5470000 1456.5470000 1456.5019000 22273.3020000 22987.203000 38429.2590000 38429.2590000 38429.2590000 38429.2590000 38429.2590000 39325.4010000 93465.520000 49466.5940000 33325.4010000 91365.460000 91365.460000 91365.460000 12771z.320000 12772z.6320000 12772z.6320000 12772z.6320000 12772z.6320000 12772z.6320000 12772z.6320000 12772z.6320000 12772z.6320000 12772z.6320000 12772z.6320000 12772z.6320000 12772z.63200000 12772z.63200000 12772z.63200000 12772z.632000000000000000000000000000000000000	
120 JC00002 120 JC00002 CARLEL FLUX CANTI EC= 2.5AUCUNA 7.5600000 10.0000000 12.5000000 12.5000000 12.5000000 22.5000000 22.5000000 22.5000000 22.5000000 22.5000000 23.5000000 23.5000000 24.5000000 35.000000 45.000000 45.000000 55.0000000 55.0000000 55.0000000 55.0000000 55.0000000 55.0000000 57.5000000 57.5000000 57.5000000 57.50000000 57.50000000 57.50000000 57.5000000 57.50000000 57.50000000 57.50000000 57.50000000 57.50000000 57.50000000 57.50000000 57.50000000 57.50000000 57.500000000 57.5000000000 57.50000000000000 57.500000000000000000000000000000000000	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	1.5.930175 1.1175174 1.6.90054 2.21142306 2.6.30731 3.7.5.95504 7.7.77722 5.6.77717 3.5.6.55974 7.7.59856296 3.5.6.59708 3.5.6.59708 3.5.6.59708 3.5.6.59856296 3.5.6.59708 3.5.6.59708 3.5.6.59708 3.5.6.59708 3.5.6.59708 3.5.6.5922136 2.2.1383926 2.2.1383926 2.2.1383926 2.2.1383926 2.2.1383926 2.2.1383926 2.2.1383926 2.2.1383926 1.5.7260043 1.5.7262854 1.5.75928124 1.5.759781	0.0005663 0.0011151 1.00017755 0.0024860 0.0031241 0.0039281 0.0039281 0.0042359 0.0042359 0.0042323 0.0043213 0.0034079 0.002655 0.00020961 0.0016496 0.0016496 0.00016496 0.0000725 0.000024517 0.0003141 0.0003751 0.0003751 0.0003751 0.0003751 0.00026551 0.0001666 0.0001663	1004.6382000 1518.0644000 847.5606700 572.6705900 442.4766600 374.8917500 337.9573900 317.0691900 305.2555400 298.6602500	1.9011762 9 1.8759962 9 1.8759962 9 1.8977277 2 1.9393162 1 1.9821145 1 2.0172172 2 2.0594268 2 2.0699975 2 0.762527 2 0.797968 2 0.0675736 2 0.06757	18.7342000 97.2796000 31.3439200 52.2676400 12.6245100 97.1298890 81.0086630 74.7586240 71.23999900 59.2814580 68.2096200 72.0228950 79.4120610 89.7957170 102.8656200 118.4434800 136.4263400 136.4263400 136.4263400 136.4263400 136.4263400 136.4263400 204.3619600 201.1175300 202.88757200 363.0657300 401.4210200 441.9070700 444.4876100 529.1256000 575.7830300	

.

2

ANN-1

)

)

2

3

)

3

)

2

3

308 د

. .