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ABSffRACT

Irrigation canals are generally constructed

in a deep pervious alluvium and are largely unlined.

These canals alongwith their conveyance system are

a major source of seepage from them which recharges

the aquifer. The continuous recharging of aquifer

leads to the rise of ground water table in the in

fluence area of the canals. In order to plan and

design an irrigation canal network or to manage effi

ciently an existing system of canals, a reasonably

accurate assessment of seepage losses from canals

is essential. When canals run continuously with

a constant discharge, a steady state of seepage may

be attained in course of time. However, generally

the canals run in roster or with varying discharges,

and the water table positions may vary with time

due to which a steady state condition of seepage

may not be reached at all. In a number of major

canal systems in the state of Uttar Pradesh (India),

parallel canals by the side of the existing main

canals have been constructed to augment supplies

in the command area. Since the parallel canals

largely run intermittently the seepage from such

canal systems would remain in unsteady state.

The canal systems may be constructed in regions



where the existing water table is too deep, or the

canal may be located at high elevation, such that

the canal is not hydraulically connected . with the

aquifer. In general, however, the irrigation canals

are located in pervious alluvium with shallow water

table positions and the canals are hydraulically

connected with the aquifer.

At present analytical solutions of the unsteady

seepage from parallel canals are not yet available.

In the persent thesis a study has been made to analyse

the unsteady seepage from a canal for deep as well

as for shallow water table positions and it has then

been extended to study the unsteady seepage from

parallel canals and their interference. The analysis

is based on linear theory of hydrologic system. Many

complex ground water flow problems have been solved

based on this theory. Ground water hydrology- is a

quantitative science and mathematics is its important

dialect. Discrete kernel approach is comparatively

new in its ambit. The discrete kernels are the proper

ties of a linear system. Using the discrete kernel

response functions, unsteady seepage from canals

has been studied in this thesis.

From the study of a single canal, which is

not hydraulically connected with the aquifer, and

(11)



which runs intermittently, it is found that there

is no reversal of flow in consequence of intermittent

running of the canal.

For two parallel canals, which are not hydrauli

cally connected with the aquifer, their interferrence

relates to evolution of water table only. In case

of two identical parallel canals, it has been found

that in the beginning of recharge,. two distinct

water mounds are formed below the centre of each

canal. With lapse of time, the points of maximum

rise move towards each other; but they do not move

beyond the respective recharging strip. With further

lapse of time, a stagnant zone gets created between

the canals, and the region between the two parallel

canals takes the shape of a plateau. It has been

found for the case of unequal parallel canals that,

sometime after the onset of recharge, only one point

of maximum rise under the larger canal is established.

When a canal is hydraulically connected with

the aquifer, the seepage losses decrease with time.

In the case of parallel canals, the seepage from

each canal will be further reduced because of inter

ference of one canal on the other one. The interfer

ence is the decrease in seepage loss of .a canal

due to the presence of the parallel canal. It has

(iii)



been taken as the difference between the seepage

losses from a canal when it runs alone and when it

runs alongwith the parallel canal. The seepage loss

from canal may be linearly or non-linearly dependent

on the potential difference between the canal and

the aquifer. It has been found that for very shallow

water table position below the canal bed the linear

relationship can be used. However, as the potential

difference between the canal and the aquifer increases

or the width of canal increases, the non-linearity

gets pronounced. The study of interference of parallel

canals has been done assuming a linear relationship

between the seepage and the potential difference.

It is found that Herbert's formula for reach trans-

missivity is appropriate for use in canal-aquifer

interaction studies.

The study of unsteady seepage from two parallel

canals, when the water table is located at shallow

depth below the bed of the canals, has been carried

out for equal and unequal canals which run conti

nuously. The study has been extended for the case

in which one of the canals runs intermittently.

It has been found that in case of two continuously

running parallel canals, the reduction in seepage

from one canal due to interference of the other

is zero in the beginning of seepage. The interference

increases with time, attains a maximum value, and
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then decreases. The decrease in inteference is mono-

tonic at large time. The interference of parallel

canals is found to decrease with increase in the

spacing between the canals. For unequal parallel

canals, the inteference of bigger canal on smaller

canal is more than that of the smaller canal on

the bigger one. If one of the parallel canals runs

intermittently, it is found that the reduction in

seepage from the continuously running canal, due

to interference of the intermittently running canal,

starts from zero, increases from cycle to cycle,

reaches a maximum value, and then decreases. Also,

the intermittently running canal in the parallel

canal system acts as a drain during its closure

period after a few cycles of running. It has been

seen that in case of two continuously running equal

parallel canals a stagnant zone is formed between

the canals with lapse of time.

From the study of interference of two parallel

canals, when one canal is situated on a high ridge

and the other in the valley having hydraulic connec

tion with the aquifer, it is found that interference

of ridge canal increases with time and that reversal

of flow to the valley canal is mainly controlled

by the dimension of the ridge canal and its distance

from the valley canal.

(v)



When there is a natural drainage in the vicinity

of the canals it will influence the water table

evolution and carry away part of the recharge after

it gets activated. In the present thesis a solution

has been given to find the time of activation of

the drain located in the vicinity of two parallel

ridge canals running continuously. Temporal variation

of the return flow to the drainage channel has also

been quantified.

It is hoped that this study will be helpful

in understanding the interference of seepage of

parallel canals.
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NOTATIONS

The following notations have been used in this thesis.
In chapter 2, which deals with review of literature,
original notations have been used.

S.No. Notation Description Dimension

1 a Half width of the recharging l
strip

B Width of canal at water surface L

3 Bl'B2 Width of the first deft) canal L
and width of the second (right)
canal respectively, at the water
surface

4 B3 Width of drain L

5 C2'C3 Constants appearing in the non- L-1
linear relationship between re
charge rate and difference of
potentials at the peri-phery of
the canal and in the aquifer un
der the bed of canal

6 D Centre to centre distance bet- L
ween two parallel canals

7 Dj Depth to impervious stratum L
measured from a high datum

8 T>1 The distance from the centre of
the first ridge canal to the centre
of the drainage channel

9 D2 The distance from the centre L
of the second ridge canal to
the centre of the drainage
channel

10 DD Depth to bed of channel from l
high datum

11 Dbl'Db2 DePth to bed of the first and l
the second canal respectively
measured from high datum

(vii)



S.No. Notation Description Dimension

12 d The distance from the centre of L
the rth reach to the centre of
the pth reach

13 e Saturated thickness of the aqui- L
fer below the bed of the canal

Saturated thickness of the aquifer L

Error function of X

Depth of water in the canal L

Saturated thickness of the L
aquifer

Weighted mean depths of satu- L
ration during the period of
recharge

19 h(0,n) Potential in the aquifer under L
the bed of the canal during
time period, n.

20 hQ Initial water table height L

21 hr Ground water potential at the L
canal perimeter

22 K Hydraulic conductivity of the Lt _1
aquifer material

23 L Length of a canal reach L

24 n,r,m,M Time - steps t

25 Q Seepage rate per unit length of L2t_1
canal

26 q Recharge rate per unit length of L2t-1
the line/strip source

27 Qi'^2 Seepage loss from unit length of L2t-1
the first and the second canal

, respectively

28 Q2(P',Y) Seepage during yth unit time- L3t_1
step from the pth reach of the
second canal

14 E

15 Erf(X

16 H

17 H

18 h

.(viii)



S.No. Notation Description Dimension

29 Q1(p,Y) Seepage during yth unit time L3t l
step from pth reach of first canal

30 Q1 (n) Recharge rate from a canal reach L t
r of length 1 at various times

31 R Number of identical canal reaches L

32 r Radius of the equivalent semi cir- L
cular section of the canal appearing
in the Herbert's formula for reach
transmissivity

33 S1(r,n) The drawdown at the end of the L
nth unit time step under the rth
reach of the first canal measured
from a high datum

34 S2(r,n) The drawdown at the end of nth L
unit time-step under the rth
reach of the second canal

35 S(x,t) Rise in water table height at co- L
ordinate x and at time, t

36 T Transmissivity of the aquifer lV1

37 t Time t

38 W Half width of the channel in the
equation of Dillon and Liggett

•

39 w Uniform recharge rate of the strip
source per unit area

Lt"1

40 W
P

Wetted perimeter of the canal
section

L

41 x,y Cartesian coordinates lV1

42 a T/tj> lY1

43 r(r,n)
+v»

Reach transmissivity of the r
reach of the first canal during
the nth unit time step

lV1

44 rr Constant of proportionality bet- lY1
ween the exchange flow rate and
difference in potentials at the
canal and aquifer
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S.No. Notation Description Dimension

45 r„(r,n) Reach transmissivity of the r L t
2'

reach of the second canal during
nth unit time - step

3
46 <5(n) Discrete kernel coefficient L/(L It)

3
47 <5[r,l,r,l, Discrete kernel coefficient for L/(L /t)

Bi(Y), water table rise at the end of
(n-Y+1)] (n-Y+l)th unit time - step under

the rth reach of the first canal
in response to unit recharge
during time - step Y from the
rth reach of the first canal when

the canal width was B.(Y)

• 3
48 6(r,l,P,l,M) Discrete kernel Coefficient for L/(L It)

P + r water table rise at the end of
Mth unit time - step under the
rth reach of the first canal in
response to unit recharge during
the first time period from the
pth reach of the first canal

3
49 <5(r,l,P,2,M) Discrete kernel coefficient for L/(L It)

water table rise at the end of
Mth unit time - step under the
rth reach of the first canal in
response to unit recharge
during the first unit time period
from the pth reach of the
second canal

3
50 6(r,2, P,1,M) Discrete kernel coefficient for L/(L It)

water table rise at the end of
Mth unit time - step under
the rth reach of the second
canal in response to unit recha
rge during first time - step
through the pth reach of the
first canal

3
51 <5(r,2,p,2,M) Discrete kernel coefficient for L/(L It)

P # r water table rise at the end of
Mth unit time - step under the
rth reach of the second canal
in response to unit recharge
during first unit time period
from the pth reach of the
second canal
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S.No. Notation Description Dimension

52 4>

53 o1(r,n)

54 a (n)
r

55 c2(r,n)

Storage coefficient of the aquifer

The drawdown to water level in
the rth reach of the first canal
measured from the high datum

Drawdown of the water level in
the canal measured from the
high datum

The drawdown to water level in
the rth reach of the second
canal measured from the high
datum

56 p Number of canal reaches
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CHAPTER 1

INTRODUCTION

Canals continue to be the major conveyance system

for delivering water for irrigation in most parts of the

world. The main canals, in irrigation projects, are

designed keeping in view the water availability and the

irrigation requirements in their command areas. It has

been seen that in some canal systems in northern India,

the capacities of main canals fall short of irrigation

water requirements for paddy and sugarcane crops in the

command areas during the months of May to October.

Since, during this period, additional water is available

in the rivers, from which the canals offtake, parallel

canals have been constructed along the existing canals

to augment supplies to the respective command areas.

The irrigation canals, specially the parallel canals,

generally run intermittently. Therefore, in most cases,

the seepage from such parallel canal systems remains in

unsteady state.

Estimation of seepage from irrigation canals and

assessment of its impact on groundwater regime are

required for a rational water resources management. The

importance is particularly noticeable when large unlined

canals are constructed in alluvial soil. Steady state



seepage from a canal for various boundary conditions,

that are encountered in nature, has been analysed by a

number of investigators. The literature on steady

seepage from canal and its impact on groundwater regime

have been documented by Muskat (1946), Harr (1962),

Polubarinova-Kochina (1962),- Shestakov (1965), Bouwer

(1969), Kovacs (1981) etc. The computations of the

unsteady free seepage have been made by few authors.

Averjanov (1950) has expressed the time dependent flow

rate of seepage as a product of the water loss under a

free steady state (t=oo) and a factor greater than unity

which has been determined analytically and by

experiments. Dillon and Ligget (1983) have studied the

stream acquifer system using a two dimensional numerical

model based on boundary integral equation method.

Hantush (1967) has derived a solution for the evolution

of water table due to recharge from a rectan'gular

source. If the dimension of length is increased to a

very large value, the solution will correspond to that

for a canal. However the solution involves numerical

integration. Shestakov (1965) has tabulated special

functions, using numerical integration, for determining

water table rise due to recharge from a strip source of

infinite length. Glover (1974) has analysed the

evolution of water table due to recharge from a line



source but has not considered the width of the

recharging body in the analysis.

In many situations the water table below canal bed

may be at a shallow depth and the canal may be

hydraulically connected with the aquifer. The time

variant recharge to ground water in such a situation is

proportional to the difference of water levels in the

canal and aquifer. Aravin and Numerov (1965),

Streltsova (1974) and Morel-Seytoux et al.(1979), have

assumed the exchange flow rate between stream and

aquifer to be linearly dependent on the potential

difference between the stream and the aquifer. The

coefficient of proportionality depends on stream bed

characteristics and aquifer parameters,and is recognised

as reach transmissivity. Complex problems of stream

aquifer interaction have been analysed by Morel- Seytoux

and Daly (1975) who have used the reach transmissivity

concept and discrete kernel theory. Non-linear

relationships between flow to the aquifer and the

potential difference between stream and aquifer have

been proposed by Rushton and Redshaw (1979) which

appear to give a fair representation to the true

relationships. However, analytical treatment of seepage

which considers nonlinear relationship is yet to be

developed.



Analytical solutions for interference of two

parallel canals are not available so far. In the present

thesis, seepage from two parallel canals has been

studied for unsteady state. Mathematical models have

been developed for determining time variant recharge and

temporal and spatial variations of water table, due to

seepage from two parallel canals, for different boundary

conditions and locations of water table.

Scheme of the work carried out in the present

thesis is given below:

(i) In chapter 2, a review of literature has been

presented pertaining to steady and unsteady seepage from

canal, and evolution of water table for deep and shallow

water table positions. The literature review also

includes the reach transmissivity concepts given by

various investigators and non-linear relationship

between stream and hydraulically connected aquifer.

(ii) A study has been made in chapter 3 to analyse the

evolution of water table due to recharge from a canal

which has no hydraulic connection with the aquifer. In

the analysis, the width of the canal and depth of water

in it have been preseved and a closed form solution for

evolution of water table has been obtained. The

analysis is based on Glover's basic solution of

Boussinesq's equation for a line source of negligible



width and method of superposition. The results have

been compared with those of Shestakov. Results have

been presented for increase in the saturated thickness

of the aquifer at various distances from the canal due

to its long and continous running. Making use of the

above solution, the response functions of the system,

which is linear, have been determined for a unit pulse

excitation. Using the unit pulse response functions,

the evolution of water table due to intermittent running

of the canal has been studied. The analysis has been

extended to find the evolution of water table due to

seepage from two parallel canals for their different

spacings and widths. The loci of points of maximum

rise of water table have been determined for continuous

running of parallel canals.

(iii) The unsteady seepage from a canal, which is

nonlinearly dependent on the potential difference

between the canal and aquifer, has been studied in

chapter 4, making use of stream aquifer interaction

model proposed by Morel- Seytoux. The non-linear

relation proposed by Rushton and Redshaw (1979) has

been used. The parameters involved in the nonlinear

relationship have been derived analytically. The

recharge rates pertaining to non-linear and linear

relationships have been compared.



(iv) In chapter 5 the interference of seepage of two

parallel canals, which are hydraulically connected with

the aquifer, has been investigated using reach

transmissivity concept and discrete kernel theory. The

rise of water table at different times and locations

along a transverse section of the parallel canals has

been evaluated for different spacings and bed widths of

the canals, and for various initial positions of water

table below the bed level of the canals. Results of

interference of parallel canals have been presented when

one of the canals runs intermittently and the other runs

continuously.

(v) In chapter 6, the study of interference of two

parallel canals has been carried out when one of the

canals is situated on a high ridge and the other is at

much lower elevation. The higher canal is not

hydraulically connected with the aquifer, whereas, the

lower canal is hydraulically connected with the aquifer

and its seepage rate is assumed to be linearly dependent

on the difference of potentials in the lower canal and

in the aquifer underneath. A mathematical model, for

seepage studies from the two parallel canals, has been

developed and the time variant seepage from the lower

canal has been quantified for various spacings of the

two canals. The temporal and spatial variations of



water table due to seepage from the two canals have been

determined. The model predicts the time at which the

seepage from the lower canal,having hydraulic connection

with the aquifer, reduces to zero. Thereafter, the lower

canal starts functioning as a drain. The analysis

presented quantifies the temporal variation of water

entering into the lower canal.

(vi) The effect of a drainage channel on evolution of

water table due to recharge from two parallel canals

which are not hydraulically connected with the aquifer

has been studied in chapter 7. The drainage channel

activates when the water table rises above its bed

level. The time at which the drain starts functioning

has been determined and the drainage rate at various

times has been quantified.

(vii) The general conclusions drawn from the studies

are summarised in chapter 8.



CHAPTER 2 8

REVIEW OF LITERATURE

2.0 Introduction

A literature review of steady and unsteady seepage

from canals in homogeneous and isotropic porous medium

with water table either at shallow or at large depth has

been made in this chapter. The aim of the present

thesis is to analyse unsteady seepage from parallel

canal system. Since solution of a single canal and

aquifer interaction problem forms the basis for solving

an aquifer and parallel canals interaction problem,

literature review of seepage from a single canal has

been carried out and included in this chapter.

2.1 Steady seepage from canals

Steady state seepage from a canal, when the water

table is at large depth has been analysed by a number of

investigators for various boundary conditions. Kozeny

(1931) has shown that, if the shape of a ditch or canal

conforms to the equation [x- -§- .cos-1(y/H) ]2 + y2= H2,

where Q is the seepage rate, x and y are cartesian

coordinates with origin at the centre of water surface,

and H is the maximum depth of water in the canal, the

maximum width of sheet of water seeping down into the

porous medium is equal to (B+2H); B being the width of

canal at water surface. According to Kozeny, the

seepage quantity from such a canal is K(B+2H),where,K is



the coefficient of permeability.The result holds good if

the porous medium is of very large thickness so that the

seeping water can maintain its vertical downward

movement indefinitely. This requirement prohibits the

applicability of the solution to cases where the ground

water table is at shallow depth. Muskat (1946) has

compared the values of seepage discharge for three

different shapes of canals and quantified that the

extreme variation in seepage,due to the effect of shape

of canal or ditch,is about 10 percent. Wedernikov

(1937) obtained an exact solution for seepage from

channels of triangular and trapezoidal shape with ground

water table at infinite depth. Solutions for various

other simplified flow geometries were also obtained by

Risenkampf (1940). Morel-Seytoux (1964) applied

hodograph techniques, Schwarz - Christoffel transforma

tions, and the Green - Neumann function to obtain

solutions of seepage for the condition when water table

is at large depth for channels of different geometry

including shapes deviating from the standard

rectangular, trapezoidal,and triangular cross sections.

Jeppson (1968) solved the problem of seepage from canal

to an underlying pervious stratum by the method of

finite differences. All these derivations assume the

water table to be at infinite depth.From the studies of
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these authors it is seen that, the variations in seepage

discharge due to changes in shape of canal are of

small order.

Seepage from canal in uniform soil, with shallow

water table merging "with the canal water surface, has

been analysed by Dachler (1933). He derived a procedure

in which both model experiments and an approximate

analysis were combined for computing the seepage from a

trapezoidal channel, embedded in a porous medium of

finite depth, to a fully penetrating vertical drain at

some distance away from the channel. Analysis of

seepage from leveed rivers into the low lying adjoining

lands was carried out by Todd and Bear (1961) with an

electrical analog.

A detailed study was made by Bouwer (1965) to

determine how seepage from canals or streams,in theory,

is affected by the shape and depth of water in the

channel,by the position of the groundwater table, and by

the soil conditions.The multitude of soil conditions,

that may be encountered in practice, were reduced for

this study to three basic groups,i.e.,(i) the channel is

in uniform soil which is underlain by much more perme

able material,designated as condition A;(It) the channel

is in uniform soil which is underlain by much less

permeable material,designated as condition B, and (iii)
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the channel is surrounded by a thin, slowly permeable

(clogged) layer along its wetted perimeter,designated as

condition C. The case of seepage to a free draining,

permeable layer is a special case of condition A and it

is termed condition A'. For condition A, A', and B,

solutions of steady state seepage systems were obtained

with an electrical resistance network analog. The

results were expressed in dimensionless graphs showing

seepage in relation to the position of the ground-water

table for different depths to the permeable or

impermeable layer, and different water depths in the

canal. The canal was taken as trapezoidal with 1:1 side

slopes. The graphs showed that the effect of a

permeable or impermeable layer on seepage becomes rather

small when this layer lies below the channel bed at

depth more than 5 times the bottem width, W, , of the

channel. Thus, soil explorations for new canals do not

need to go deeper than 5 W, below the projected bottom

elevation. The graphs also showed that seepage rates

increase with increasing depth to the groundwater table,

but at a decreasing rate. If the water table at a

distance of 10 W, from the channel centre is at a depth

more than 2.5 times the width of the channel at the

water surface, the corresponding seepage is close to

that which would occur if the water table is at infinite
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depth. For condition C, an equation is presented which

gives the seepage as a function of the geometry of the

channel (triangular, trapezoidal, or rectangular), the

hydraulic impedance of the slowly permeable (clogged)

layer, and the pressure condition in the unsaturated

underlying material as determined by the unsaturated

hydraulic conductivity characteristics of that material.

Analyses regarding the effect of channel shape on

seepage showed that, for a given surface width and

depth of the water in the channel, seepage increases

from a triangular to a trapezoidal and from trapezoidal

to a rectangular cross section. For most conditions,

this increase is only moderate and less than the

corresponding increase in hydraulic discharge capacity

of the channel. Therefore, for a certain width and

depth of the water, rectangular channels have lower

relative water losses due to seepage than trapezoidal or

triangular channels. An exception to this rule may be

condition A' if the permeable drainage layer is at very

small distance below the channel bottom.

According to Bouwer, the seepage from open channels

increases with increasing water depth in the channel.

Also the discharge in the channel increases with

increasing water depth in the channel, if the flow is

uniform.For all three soil conditions, however, the rate
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of increase in seepage was less than the rate of

increase in discharge. Therefore, canals with uniform

flow and uniform soil conditions along the wetted

perimeter become more efficient conveyor of water with

increasing water depth in the canal.

In addition to the above works, the literature on

steady seepage from canal and its impact on ground water

regime has been extensively documented by Muskat (1946),

Harr (1962), Polubarinova Kochina (1962), Aravin and

Numerov (1965), Bouwer (1969), Bear (1972), Kovacs

(1981), Verrujit (1982), and Huisman and Olsthoorn

(1983). The evaluation of seepage losses from parallel

canals evoked attention of investigators quite late. It

was not until 1960 that Hammad (1960) examined the

problem of seepage from parallel canals. The analysis

given by him was for a system consisting of a number of

identical and equally spaced parallel canals having no

particular geometrical shape. Hammad did not find

solution for the loci of the free stream lines in his

analysis; but instead assumed the free surface to be

horizontal between canals. He also assumed the canals

to be constructed in a semipervious clay layer of finite

thickness, underlain by a free permeable layer of sand

and gravel, in which the piezometric head is very near

the canal water level. The vertical lines of symmetry
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between the canals were stream lines and, therefore,

were replaced by impervious boundaries in the analysis

to simplify the problem. Ahmed El Nimr (1963)

considered the canal section to be trapezoidal and

derived a sol-ution for the unconfined flow problem by

using inverse hodograph method. Bruch and Street (1967)

studied the seepage from an infinite array of parallel

triangular channels. The array of canals were assumed

to be underlain by a drainage layer at a finite depth.

In this study, the shape of the free surface was

obtained from the analysis by using conformal mapping

technique and inverse hodograph method allowing fully

for the possibility of point of inflection along the

free stream line. Charmonman (1967) studied the seepage

flow from parallel canals with intermediate drains in

coastal aquifers. The solution for the set of

mathematical model of the flow pattern was obtained by

numerical methods. Sharma and Chawla (1974) analysed

the seepage from a canal into a drain which is parallel

to the canal alignment. The analysis was made by making

use of Zhukovsky's function and Schwartz-Christoffel

transformation.

2.2 Unsteady seepage from canals

The literature review on unsteady seepage from
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canals for deep and shallow water table positions has

been presented separately since the phenomena of flow in

the two cases are quite different from each other.

2.2.1 Unsteady seepage from canals when water table
is at large depth

When the water table is at large depth, the canal

is not hydraulically connected with the aquifer, and the

seepage from canal is independent of the location of

water table. In such a situation, there are three main

aspects of the flow process, viz., the movement of water

through the unsaturated zone till it reaches the deep

water table, recharge to the aquifer after the wetting

front reaches the water table, and evolution of water

table after the onset of recharge.

A simplified model which describes the flow from a

rectangular water body to deep water table through a

unsaturated zone has been given by Abdulrazzak and

Morel-Seytoux (1983). The flow process envisaged by

Morel-Seytoux is depicted in Fig. (2.1). If water

becomes available in the basin at time zero,

infiltration will proceed. Though the wetting front is

shown as a line in Fig. (2.1), Morel-Seytoux (1985) has

stated that zone of seperation between the originally

dry soil and the significantly wetted soil has some

thickness, as shown in Fig. (2.2). The water content
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behind the wetting front need not be at its highest

possible value; but it is essentially constant behind

the front for most of the profile. As the front

propagates downward, it also spreads laterally. As it

nears the water table, the width of the front is 2 B'

[Fig (2.1)], somewhat greater than 2 B, the width of

the basin. According to Morel-Seytoux and Khanji

(1974), until the wetting front reaches the water table,

the infiltration rate can be represented adequately by a

modified Green Ampt equation given below:

K{(S -*1)[H(t) + Hc]+w(t)}
Z(t) = wit) ...(2.1)

where,

H(t) * depth of water above soil,

w(t) = cumulative volume of infiltration expressed
as depth,

K * hydraulic conductivity at normal saturation,

H = effective capillary drive,

& = water content at natural saturation, and

•&1 = initial water content.

According to Abdul-razzak and Morel-Seytoux (1983),

the seepage rate from a canal is not the recharge rate

at the water table at all time. With the wetting front

position between the canal bed and initial water table
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position, and for initially dry soil, the seepage rate

varies in time, but the recharge rate is constant and

zero. Even after hydraulic connection is established,

unless the soil column between river bed and initial

water table position is saturated, the two rates will be

different. When the depth of water table from canal bed

is large, by the time the wetting front reaches the

saturated zone it travels at a velocity approximately

equal to the saturated hydraulic conductivity, K.

Bouwer (1969) states that for the case of seepage from a

canal for the shape of channel given by Kozeny, the

vertical downward flow and maximum width of the flow

system are essentially reached at a depth of 1.5 (B+2H)

below the bed of the canal. The rate of recharge at the

time the wetting front meets the ground water table is

equal to the seepage rate and remains constant equal to

K(B+2H).

A time delay, t ,, for recharge to reach the water

table after the onset of seepage flow from a stream has

been obtained by Dillon and Ligett (1983 ) based on the

Green and Ampt equation. The delay is given by:

*d "| ^m " Di -(hs-hc)-L°s[(hs-hc+ym-D. )/(hs-hc)]}
...(2.2)

Where,

cp = effective porosity,
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hs - head in the stream,

ym - elevation of the semi-permeable blanket,

hc = capillary potential or suction head at the
base of blanket,

K = hydraulic conductivity at saturation,and

Di = the initial saturated aquifer thickness.

The flow of water from the canal through the

unsaturated zone till it reaches the water table is not

under the scope of the present study. The evolution of

water table after the onset of recharge has been dealt

in the present work. Therefore, a literature review

pertaining to the research work on evolution of water

table due to recharge from strip source, for a deep

water table position, has been presented in the

following paragraphs:

Theis (1935) has given the following equation for

water table rise due to a unit impulse recharge from a

vertical line source:

1 e-r2/4Bt
S(X,t) " ~4^T~ t ...(2.3)

in which, r is the distance between the point of

recharge and the point of observation, and 3 = T/cp ; T

being the transmissivity of the aquifer and cp the

storage coefficient. This solution is based on an
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analogous solution for conduction of heat in solids

given by Carlslaw (1921). Making use of the above

equation, Polubarinova - Kochina [1951, (Vide Polu-

barinova-Kochina, 1962)] has derived the expression for

water table rise due to a line source and extended it to

strip source. If unit impulse recharge per unit length

is taking place from a line source, the water table rise

at a distance, x, from the line source is given by:

+<» -(x2+y2)/4(3t
S(x,t) =^ J 1 .dy

—oo

This expression reduces to:

S(x,t) = 1 e-*2/4^ •'•<2-4>
2/(TtcP7T)

If the recharge is taking place continuously through a

strip source of width 2R, the expression of rise of

water table has been obtained using convolution

technique (Polubarinova - Kochina, 1951). The

expression derived by Polubarinova - Kochina is given

by:

S(x>t) . jt L_d, fRw[e-<*-OV4e<t-C>jd?
° 2/TTmp)/Tt-c)

...(2.5)

in which, w is the recharge rate per unit area of the
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strip source. After integration, Polubarinova - Kochina

derived the expressions for water table rise below and

beyond the recharging strip. The expressions derived by

Polubarinova-Kochina (1962) have been given in the text

book "Theory of Ground Water Movement", by P. Ya.

Polubarinova - Kochina, translated from Russian by I.M.

Roger De Wiest, and also in the book, "Dynamic

Hydrology", by Eagleson (1970). The expressions given

in the translated version of the book of Polubarinova

Kochina contains several printing errors. In the

expression given in Eagleson's book, a part of the

solution is missing.A complete derivation of water table

evolution has been presented in Chapter 3.

Hantush (1967) has developed approximate expression

for the rise and fall of the water table in an infinite

unconfined aquifer in response to uniform recharge from

a rectangular spreading basin. Hantush described the

water table rise by the following expression:

h2 = h2+^Kt> {F[(a+x)/2/(Kht/cp),(b+y)/2/(Kht/cp)]
O i-J(D

+F[ (a+x)/2/(Kht/cp) , (b-y) /2/(Kht/cp) ]

+F[ (a-x)/2/(Kht/cp) , (b+y)/2/(Kht/(p) ]

+F[ (a-x)/2/(Kht/cp) , (b-y)/2/(Kht/c?) ] } ... (.2.6)

in which,

h = weighted mean of the depth of saturation during the

period of flow (a constant of linearization), 2a, 2b

•>
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are dimensions of the rectangular strip, w = constant

rate of percolation, K is the coefficient of

permeability, cp is the storage coefficient, h is the

initial depth of saturation, and,

F(p,q) = qJ"1 Erf(p//C).Erf(q//C)dC ...(2.7)

The following expression for height of water table

due to recharge from a canal can be derived from

Equation (2.6) given by Hantush.

h2(x,t)-h5 =m {2 J1 Erf[ a+X _ ]dt
° Z(? 2 /(K.hU/cp)

+2 jhrl [ _a - x ]d-c } (2 8)
2^Kht C/«p) ...U.8)

The solution of the above equation involves

numerical integration.

Bianchi and Muckel (1970) have presented the water

table rise due to recharge from a square basin; The

results of mound height have been presented in the non-

dimensional form for different non-dimensional time.

Shestakov (1965) has tabulated special functions

numerically for determination of water table rise due to

recharge from a strip source of width 2b and of infinite

length. The expression for rise of water table given by

Shestakov is as follows:

s(x,t) = wt/ cp -Fw (T) ...(2.9)
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in- which, s(x,t) • rise in water table at a distance,x,
from the centre of the strip,

w = uniform percolation rate,

cp = storage coefficient, and

t = time reckoned from the onset of
recharge.

For the centre of the strip (x=0), F = F ( T ):
w w o

tFu, ( Tl ) + Pw < t" )]/2 , . ...(2.10)

for x < b,

F
w

=

and for X > b,

F
w

= [Fw ( Tx } ~ Fw ( Tx )]/2 -..(2.11)

Tt „ Tt

Tx = -I—I ' Txcp(b+x)2 cp(b-x)2

TQ = TT/(cp.b2)

The special functions tabulated by Shestakov are given

in Table (2.1). It is evident from the table that for

values of t which are not given in table, the value of

special function has to be interpolated.

Assuming the canal to be a line source, as given

in Fig. (2.3), Glover (1974) analysed the evolution of

water table due to recharge from a canal. The rise in

water table at a distance x at time t, s(x,t), has been

derived by Glover as given below:

( t) = q/4-rrat , x r°° e"U du f0 19.
S(X't; 2ttKD C,_. •> J ; ...(2.12)

/4at x . u2

/4aT
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The integration appearing in Equation (2.12) has been

evaluated by Glover as given below:

J
°° e du

-u2

" J"
2ue du

U"

/4ot

-M?-)4at

/4at "

(-2—)

2 /^-ug_ /4~qT e
- a+/'itao/ e UJ du

The final expression derived by Glover is as follows:

,/T *% = q/(4Trat) x r/(4qt)
'^x,x; 2 ttKD */(4ctt) L x

-A+/Tf.Erf(7Tf^y)]

4at

...(2.13)

The response of the aquifer to a unit impulse

excitation in the form of a rectangular water table

mound has been analysed by Moench and Kisiel (1970).

The use of the response functions has been shown through

convolution technique for finding out the behaviour of

the aquifer for variable recharge rate.

A ground water recharge system has been analysed by

Marino (1975) in which the recharging area is

rectangular in shape as shown in Fig. (2.4). The

unconfined aquifer, receiving the recharge, is assumed

to be homogeneous, isotropic,and resting on a horizontal

impermeable base. The aquifer parameters are assumed to
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be • constant in time and space. The constant rate

of recharge is considered to be small in comparison

to the hydraulic conductivity. It is assumed that

the vertically downward recharge is almost

completely refracted in the direction of the slope of

the water table. Marino obtained the numerical

solution of the non-linear partial differential

equation characterising the flow in the unconfined

aquifer receiving the recharge, by an alternating

direction implicit procedure with an inhomogeneous

grid spacing. The method employs two different

equations which are used in turn over successive

time - steps. The first equation is implicit only in

the x direction, and the second equation is implicit

in the y direction. According to Marino, the

method of solution is such that a change in spacing

can be easily introduced at any stage of • the

progressing calculation. The numerical solution obtained

by Marino has been compared with linearised solution

given by Hantush for a similar flow system under

identical conditions. The linearised solution by

Hantush gives results that are smaller than those

obtained by alternating direction implicit procedure.

The maximum relative deviation found by Marino was

two percent.
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Rao and Sarma (1980) have derived solutions for

rise of water table due to recharge from a strip source

in an unconfined aquifer of finite lateral extent. The

solutions to the non - linear differential equation were

obtained using two different methods of linearisation,

those of Baumann (1952) and Hantush (1967). The flow

equation has been solved using Laplace transform

techniques.

According to Rao and Sarma, both the linearisation

procedures were found to yield results which have

satisfactory agreement with the experimental results

(within ±5 percent) upto 40 percent rise of the water

table. Beyond this limit, the linearisation procedure

suggested by Hantush gave a more satisfactory agreement.

However, the Hantush's procedure involves computations

of average height of the water table through successive

iteration .

2.2.2 Unsteady seepage from canals when water table
is at shallow depth

When the water table is at shallow depth, the

canal gets hydraulically connected with the aquifer and

the recharge rate is influenced by the change in water

table position. The recharge rate in such situations

is to be treated as time variant. The merger of the
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wetting front with the underlying saturated zone at

shallow depth involves a complicated two dimensional

transient flow pattern that has not received rigorous

analyses,except through the use of numerical modelling

techniques.The experimental and numerical studies

carried out by Vauclin et al. (1979) deal with the

development of a numerical model for predicting the

response of a shallow water table to infiltration from

the soil surface,taking into account the transfer of

water in the unsaturated zone.The equations used is for

a unified saturated-unsaturated flow system. It has been

pointed out by Vauclin et al. that the tranfer of water

through the unsaturated zone,in predicting the recharge

of a water table aquifer, should not be neglected.

According to them, from practical point of view, the

most important items to know are the time of transfer

and the volume of recharge joining the aquifer . at a

given time.

A simplified model has been proposed and verified

by Abdulrazaak and Morel-Seytoux (1983) in which the

influence of water table on recharge rate has been

considered; an expression for time variant recharge rate

to aquifer has been arrived at; and water table

evolution has been determined for the derived recharge

rate. Abdulrazzak and Morel - Seytoux (1983) used the
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flow net approach given by Muskat (1946) to obtain an

approximate two dimensional recharge rate, q(t), which

can be expressed by Darcy's law as:

att^ K A Ahq(t) - — ...(2.14)
L

where,

A is the average cross sectional area of the flow

tubes,

Ah is the piezometric head drop and L is the

average length of the flow tubes for the flow

domain illustrated in Fig. (2.5). A, L and Ah are

given by:

A - | {W+[E+h(o,t)]J ...(2.15)

where,

E is the initial saturated thickness of the

aquifer, W is half width of the wetting front, and

h(o,t) is the deviation of the ground water mound height

from the initial water table elevation at the boundary.

L - {[D+E+W]+[D-h(o,t)]}/2

2D +E+W-h(o,t) ...(2.16)
2



River bed or
Recharge basin

1
H

qlt)

•h-M-
- w

Position of Infiltration I
Wetting front at time

zero

^ Initial water table
elevation (or Top of |
capillary fringe )

I

— Axis of Symmetry I

Ground surface

h(o,t)

-i-r,r777777777777777777777777777? *-?777777777777777
x=0

•*- x

Fig.2.5-Evolution of the groundwater mound during recharge

\

31



V

32

in- which, D is the depth from bed of river to initial

water table position.

Ah - H+D-h(o,t)

where,

H is the depth of water in the river.

By substituting the values of A, Ah and L in Equation

(2.14), the approximate formula for recharge rate has

been obtained as below:

[E+W+h(o,t)]
q(t) = K ,[H+D-h(o,t)] ...(2.17)

[2D+E+W-h(o,t)]

The recharge rate q(t) is also expressed as:

qm = Q ri+h(°it>i ri_h(o,t) ,-1, h(o, t)1
m.W qoL E + W J'L 2D+E+W J L D + H J ...<*.18)

in which, q is the recharge rate at t = 0.
o

Abdulrazzak and Morel - Seytoux (1983) have

verified the above solution by laboratory experiments

and have concluded that as long as the ratio of river

width over depth to water table (2 W/D) exceeds 2 and

the ratio of initial saturated thickness over depth to

water table (E/D) exceeds 2.5, there is good agreement

between theoretical and observed results of recharge

with time.

In the present study, a unified flow model

encompassing both the unsaturated and saturated zone has
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not been considered. In the following paragraphs

literature review of those studies,which do not consider

the flow in the unsaturated zone while predicting the

recharge from canal or water body to shallow water

table, has been carried out.

Liggett and Dillon (1985) have analysed a stream

aquifer interaction problem using boundary integral

equation method (BIEM). They plotted the rise in water

table due to recharge from two sets of parallel water

courses, located on either side of a dry stream bed.

Results have been presented depicting the time at which

the stream activates, the rate at which the stream

receives water thereafter, and the variation of

seepage with time from the two sets of parallel water

courses. The evolution of water table has also been

presented. The results of the study given by Liggett

and Dillon are shown in Figs. (2.6) and (2.7).

The analysis of unsteady recharge from river to

aquifer has been dealt by Morel -Seytoux (1973), Morel -

Seytoux and Daly (1975), Morel - Seytoux (1975),and

Illangasekare and Morel - Seytoux (1982). An efficient

yet accurate hydrologic model on the interaction between

river (canal)and the alluvial aquifer has been developed

by Morel - Seytoux and Daly. The flow from the river to

the aquifer has been assumed to be linearly dependent on
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Fig.2.7-Seepage rate variation with time for each watercourse
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the difference of potentials at the periphery of the

river and in the aquifer near the river. The following

relation has been used by Morel - Seytoux :

Qr(n) - rr[ar(n) - Sr(n)] ...(2.19)

in which,

r = the constant of proportionality known as reach

transmissivity,

a (n) = draw down of the water level in the river reach

during n time period measured from a high

datum,and

S (n) = drawdown of the water table in the aquifer

measured from the same datum in the vicinity of

the river.

Making use of the equation, and relating the value

of S (n) to all the excitations in the aquifer, such as

pumping from the aquifer, q(t), and the return flow from

the aquifer to the river, Q (t), the following integral

equation, when return flow is coming to one single

reach, has been given:

Qr(t) + Tr J*Q (c)krr(t-c) dC
o

P t
- rr[ar(t)- Z / qn(?)k _(t-c)dC] ...(2.20)
11 p=l o p rp

in which, P is the number of pumping wells.

For the case of several river reaches,
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R

(t) + rr i J QftU)krn(t-c)dC
1 p=i p p

p tTr[ar(t) - I0JCqp(c)krp(t-Odc] ...(2.21)

where R, is the number of reaches. Equation (2.21) is a

system of R integral equations to be solved

simultaneously.

Discretising the time span into uniform time -

steps and assuming that the excitations are uniform

within each time - step but vary from time - step to

time - step, the Equation (2.21) has been simplified to

the form:

R n

Qr(n) +rr E Z 6 (n-Y+l) Q (Y)
p=l y=l

P n

— I*- Z Z 6 <n-Y+l)q (Y)+rrar(n) ...(2.22)
p=l Y=l

where 6 6rr and 4 are given by:

, , B» /[4B(B-c)l

-H*i1i{-S>-»i'fjfer» •••(2-23)

in which, R is the distance between the centre of

th . th-v..
r reach and p well,
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R
1 r

4^T[El(~43f-)-EiUB(n-l)J ] ...(2.24)

where, R is the distance between the centre of the rth

reach and pth reach, and,

{rr<"> V'vrnr ettl*7m^ol]-ertlt7m^o]^

in which, a and b are length and width of the rth reach

respectively,and erf( ) is the error function. R number

of equations similar to Equations (2.22) can be written

and the R number of unknown return flows at any time -

step n can be solved in succession starting from time -

step 1.

2.3 Reach transmissivity constant

For solving unsteady state stream-aquifer

interaction problem, the use of reach transmissivity has

been introduced by Morel - Seytoux and Daly (1975). The

reach transmissivity has been defined as the constant of

proportionality between the return flow to river and the

difference of potentials at the periphery of the river

and in the aquifer in the vicinity of the river.
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The constant of proportionality has been obtained

analytically by various investigators, e.g., Hammad

(1959), Ernst (1962) Aravin and Numerov (1965), Bouwer

(1965 a), Herbert (1970) and Streltsova (1974), for

different aquifer and river geometry. According to

Muskat (1946), and Bouwer (1969), an unsteady state can

be treated as a succession of steady states.The validity

of this assumption has been reasoned out by Muskat in

detail [Muskat (1946), pp.621 - 625]. Based on the

above principle, the reach transmissivity constant,

though has been derived on the assumption of steady flow

condition, has been used for analysis of unsteady state

problems by Morel - Seytoux (1975 a, 1975 b, 1975 c,

1975 d, 1975 e). The reach transmissivity constant

derived by various investigators for different canal and

aquifer geometry has been reviewed in the following

paragraphs:

The geometry of a channel constructed in an aquifer

of finite depth which is underlain by an impermeable

layer is shown in Figure (2.8). The channel is

hydraulically connected with the aquifer. For a

specific case in which the channel is rectangular and

the bottom of the channel extends to the impermeable

layer, the seepage loss is given by (Bouwer, 1965 b).

Q = 2K(Hw - 0.5 Dw)/(L- 0.5 Wfe) Dw ...(2.25)
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F.g.2.10- Dachler's values of Ffor shallow and far deep channels
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The reach transmissivity for a fully penetrating canal

of reach length L i.s, therefore, given by:

r = 2 KL (H - 0.5 D )/(L- 0.5 W ) ...(2.26)
r rw w//v D' '

L can be regarded as the distance of the observation

well where the drawdown 'D 'is observed.
w

An approximate expression for seepage from a

partially penetrating channel shown in Figure (2.8) is

given by (vide Bouwer,1969)

Q = K2(H +D.-0.5 D )/(L-0.25 W.-0.25 W )D ...(2.27)
v w l w ,v b s w

Hence, the approximate expression for reach

transmissivity for a canal conforming to the

configuration depicted in Figure (2.8) is,

F - 2KL (H +D.-0.5D )/(L -0.25w.-0.25w ) ...(2.28)
xr rwi w b s

According to Bouwer (1969),the above expression is not

exact and the error in r will increase with increasing
r

D.. The error in Equation (2.28) is due to the curvature

arid divergence of the stream lines in the vicinity of

the channel.

Dachler (1936) had divided the flow system, on the

basis of model studies into a region with curvilinear

flow (region I) and the other with Dupuit Forchheimer

flow (region II) [Fig.(2.9)], the dividing line being at
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a distance,L ,from the centre of the canal, where,

W + H + D.
s w 1

- Ll = p ...(2.29)

The flow in region I was analysed with an approximate

equation for the potential and the stream line

distribution under a plain source of finite width. A

factor 'F' has been determined to estimate flow in

region I as:

Qj - 2 F K-AH ...(2.30)

where aH is the vertical distance between the water

surface in the canal and the ground water table at the

dividing line between the two flow regions. Values of F

given by Dachler are presented in Figure (2.10).

The flow in region II has been expressed with

Dupuit Forchheimer theory as:

2K(D -AH)
•Qjj = jf [D.+Hw -0.5 AH -0.5Dw] ...(2.31)

y ..

Since it is required to calculate the seepage for a

given value of D at a distance (L, + Ln ) from the
W 12

channel centre, aH will not be known initially. aH is

found by trial&error which satisfies the condition Q

Q . The reach transmissivity for a canal reach of

length L will be given by:

2KL

Tr =-~:[l-A| ][D.+Hw-0.5AH-0.5Dw] ....(2.32)
^j w
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Bouwer (1969) has applied Ernst's approach to

analyse seepage from a canal constructed in a porous

medium of finite depth underlain by an impervious layer.

Following Ernst's approximate solution for potential

distribution pertaining to flow to a line sink, the head

loss, hf , due to radial flow in the vicinity of the

canal, has been expressed by Bouwer as:

0 D-+H
hr %K loge < W* > ...(2.33)

P

Hence, reach transmissivity for a canal reach of length
L is given by:

r D.+H
Tr = ttK Lr /loge(-iJ) ...(2.34)

The head loss, h , due to horizontal flow in the region

away from the canal has been expressed by Bouwer as:

, = Q L
h 2K" D.+H -0.5D ...(2.35)

i w w

Since D = h + h_, Bouwer has combined Equations'(2.33)
w r h '

and (2.35) to obtain the relation:-

KD

Q =3 Q-g? ...(2.36)
-log rrd. +h )/w ]+ r— ltt &eu l w;/ pJ LD.+H -0.5D J

1 w w

The reach transmissivity for a canal reach of length L

from Equation (2.36) can be obtained as:

"„ • ~-y Tn cT ...(2.37)
• -log [(D.+H )/W ]+[n "n Kr> 1tt beLV l w" pJ LD.+H -0.5D J

l w w
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Equation (2.33) was developed for semi circular

channels of radious r, where the wetted perimeter is rrr.

The equation according to Bouwer (1969) can be used

for channels of other shapes by substituting the actual

wetted perimeter as shown in the above equation. For

shallow channels (W >> H ), the seepage rate can be
o W

more accurately estimated by the following expression:

0 = l2 h
y 4D.+H ' r

i r I w 1
loge[—rlwT ]

s

Hence,

the reach transmissivity for a canal reach of length L^

by Ernst modified formula would be given by:

Tr= K-rrLr/loge[4(Di+Hw) /ttW^ ...(2.38)

Using a simple potential theory Morel-Seytoux et al

(1979) have derived the following expression of reach

transmissivity for a canal embedded in a porous medium

underlain by an impervious layer [Fig. (2.11)]:

TL 0.5W + e
r =—t E —— ...(2.39)

. lr e 5 W + 0.5e

in which,

L = length of canal reach,
r

T = transmissivity of the aquifer,

W = wetted perimeter of the canal, and
P

e = saturated thickness below the canal bed.
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Fig.2.11-Schematic view of a stream in hydraulic connection with an aquifer
and definition of terminology
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Herbert (1970) has related the flow from a

partially penetrating river,having semicircular cross

section [Fig.(2.12)],to the potential difference between

the river and in the aquifer below the river bed. The

expression is given by:

Qr " TrLr K (hr - hQ )/loge (0.5m/rr) ...(2.40)

in which,

L = length of river reach,

h ( = potential at the river boundary,

h = potential in the aquifer below the river bed,

m = saturated thickness of the aquifer, and

r • radius of the semicircular river cross section.

The reach transmissivity which could be obtained from

equation (2.40) is:

Tr - irLrK/loge (0.5m/rr) ...(2.41)

For a rectangular channel shown in Fig.(2.13),Aravin

(1965) has derived the following expression for flow to

the channel:

Q „ K(H+h)(H-h) + K(H-h) ...(2.42)
L — tt L 1 -, , ,ttB.

2 2T~ * logesmh(^)

The reach transmissivity for a canal reach of length L

could be written as:
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KL (H+h) KLr

rr=EZ^^ +0-5|-ilogeslnh(|f) •••(2-43)

Seepage flow, from a canal embedded in a porous

medium of finite depth, underlain by a highly pervious

layer, [Fig.(2.14)], has been analysed for simplified

canal geometry by Hammad (1959). The analysis is valid

for the situation in which the piezometric head in the

underlying highly pervious layer is very near the canal

water level. According to Hammad,

2K..

Q = KEL ...(2.44)
*' K' - C

in which,

K1 and K' are the complete elliptic integral of the

first kind corresponding to modulus k and

complementary modulus kj respectively. The moduli are

defined as :

W' W'2 i
kj = 0.5[-§ + (-f - 2H-)2]

k' = (1-k2)2

The other constants are:

C = H' /k1
w 1
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^ = tan[2TFTD-^ lor Hw<Dp
v w p K

and

ttW

fi = 2 tanh[4(irTD-y^f- V DP
v w p' *

The reach transmissivity for a canal reach of length 1
r

can be written as:

2K

T - KL [ i ] ...(2.45)
K'-C

Aravin (1965) has analysed the seepage from a canal

which has very shallow water depth in it. The water

table lies above the highly permeable layer as shown in

Fig. (2.15). The analysis has been carried out using

Zhukovsky's function and conformal mapping. The seepage

quantity is given by,

Q = K (T - H) K« /K ...(2.46)

in which,K is the complete elliptical integral of. first

kind with modulus k = exp{(~^ J^' )), K' is complete

elliptic integral of first kind with modulus k', where

k' is given by,

k' = /ll - k2)

When k is very near to zero, the seepage rate is given

by:

Q = K(T - H)(b + 0.882H)/T
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Thus,

Tr - K Lr (b + 0.882H)/T ...(2.47)

The case of seepage from a canal in a two layered

soil [Fig.(2.16)], underlain by an impermeable layer,has

been analysed by Ernst (vide Bower, 1969).' Following

Ernst's solution, the reach transmissivity pertaining to

a two layered soil system can be written as:

Fr Qg^L J aCH^D^ •••(2.48)
K1(D1+Hw-0.5Dw)+K2D2 +¥ln—T

in which K± and K2 are permeabilities of the top and

bottom layer respectively. The parameter a given by Van

Beer (vide Bouwer, 1969), is shown in Fig. (2.17).

2.4 Non-linear relationship in stream aquifer interaction

The exchange flow rate between a stream and an

aquifer hydraulically connected with the stream has been

asasumed to be linearly proportional to the potential

difference between the aquifer and the stream by various

investigators as discussed above. However, there has

been evidence that the process can be very non-linear

[Rushton and Redshaw (1979), Dillon (1983 , 1984)].

Rushton and Redshaw (1979) have presented a typical non

linear relationship between the exchange flow rate and

the potential difference between the river and aquifer.

Central Library University or coorwt
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According to Rushton and Redshaw (1979) the generalised

non-linear relationships between flow to the aquifer and

the potential difference between the aquifer and the

river, which appear to give a fair representation,are as

follows [Figs. (2.12) and (2.18)] :

Q =C1(ho-hr)+C2[l-e~C3(ho~hr)],for hQ>hr ...(2.49)

and

Q = 0.3 C0[eC3(ho ~hr>-l],for li <;h ...(2.50)
z or

where C ,C ,C are constants which depend on field

condition.

Because of the difficulty in determining the actual

non- linear relationship, it has been a common practice

with most of the investigators to use a linear

relationship.

2.5 Conclusions

From the literature review it could be seen that

study of seepage from parallel canals have been carried

out for steady state condition and for simplified

boundary conditions. Boundary integral equation method

has been applied to study specific cases of interaction

of a stream and two parallel channels of small

dimensions. Though there have been evidence that the



Approximate
linear

relationship

Non linear
Relationship

Level of water
in

River

-500 0 500 1000

Flow from aquifer to river for 1km reach (m3/day)

Fig.2.18—Typical relationship between flow from aquifer to river
and groundwater potential proposed by Rushton and
Redshaw (1979)

52



i

53

exchange flow rate between the stream (canal) and

aquifer is non - linearly dependent on the potential

difference between them, the linear relationship is

still in vogue. The studies pertaining to unsteady

seepage from parallel canals and their interference are

yet not available. There has not been any analytical

study of unsteady seepage from stream or canal which

consideres the non-linear relationship of stream aquifer

interactions.
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EVOLUTION OF WATER TABLE DUE TO SEEPAGE FROM TWO PARALLEL
CANALS WHEN WATER TABLE IS AT LARGE DEPTH

3. 0 Introduction

The process of seepage from a canal starts as soon

as water is filled in it. As the time elapses, in the first

stage, the soil layers around the canal get saturated. The

saturated water front, in tho next stage, moves slowly down

wards and after a certain period of time it reaches the

water table below the bed of the canal. During this downward

propagation of seepage from the canal into the flow domain,

the seepage water is used for the saturation of wetted zone,

where the pores were previously filled with air. After reach

ing the water table only a part of the infiltrating water

is stored within the extending saturated zone, -whereas,

the remaining part recharges the groundwater. The time for

the seeping water to reach the water table, after the onset

of seepage from the canal which is hydraulically unconnected

from aquifer, can be obtained by using the Green and Ampt

equation (Abdulrazzak, and Morel-Seytoux, 1983). It may

be noted that seepage rate from the canal is not the recharge

rate at the water table at all time. With wetting front

position some where between the canal bed and initial water

table position at very large depth, and for initially dry

soil, the seepage rate varies in time, but the recharge
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rate is constant and zero. If the water content behind the

wetting front is close to saturation,recharge rate rises

abruptly from zero to the prevailing seepage rate at the

time the saturation front encounters the water table (Abdul

razzak and Morel-Seytoux, 1983). Ultimately the recharge

due to seepage from the canal results in rise of water table

in the form of water mound. The study of seepage prior to

the initiation of recharge to groundwater is not in the

scope of the study presented.

Theoretically the steady state of seepage from

a canal can develop only if the wetting front can propagate

large depth without encountering the water table. For a

canal having width 'B' at the water surface and maximum

depth of water 'H', if the water table is lying at a depth

more than 1.5(B+2H), for all practical purposes, water table

can be assumed to be at large depth (Bouwer, 1969). In practi

cal situation, however, the water seeping down from canal

will reach the normal groundwater at a finite depth and,

in the process, the seepage flow gets influenced by the

near horizontal flow of groundwater; thus forcing the stream

lines to follow a horizontal rather than a vertical trend.

Many research workers have investigated the steady

free seepage from a canal to deep water table. A number

of theoretically well established results are known after

Kozeny (1931), Wedernikov (1934), Riesenkampf (1938), Muscat
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(1946) etc. Their investigations are equally based on the

application of both hodograph and conformal mapping. The

difference in their detailed analysis are, in general, due

to difference in the profiles of the canal considered in

their analysis. If a flow domain comprises homogeneous and

isotropic material, for the shape of a canal given by Kozeny,

the maximum or asymptotic width of the downwards seeping

sheet of water is approximately given by (B+2H). The dis

charge flowing down as seepage is equal to K (B+2H), 'K'

being coefficient of permeability of the medium. Small devia

tion in the shape of canal from that given by Kozeny, will

not cause any appreciable error in the computation of see

page. The seepage from canal travelling downwards and meeting

the deep groundwater table will raise a groundwater ridge

from which groundwater can flow both ways. As the time pass

es the water table will continue to rise in the absence

of drainage in the vicinity of flow domain.

In many canal systems the canal seldom carries

a fixed discharge or have constant water depth in it. The

discharge in a canal depends on availability of water and

its demand in the command area. On account of fluctuating

water level in canal, largely for the reasons mentioned

above, the steady seepage condition is seldom reached. Also,

in some command areas there may be two parallel canals runn

ing simultaneously or intermittently depending on require

ments at various times. For instance, both the canals may
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run simultaneously in Kharif (Summer) crop season when

adequate supplies for both the canals are available, whereas,

when supplies in the river get diminished in Rabi season

(Winter) only one canal may run in those periods. In all

such cases the seepage from canals remains in unsteady state.

The computations of the unsteady free seepage have

been dealt with by few authors. Starting from the solution

given by Theis (1935) for water table rise due to a unit

impulse recharge through a vertical line source, Polubari

nova- Kochina (1951, vide Polubarinova Kochina- 1962) has

derived the expression for water table rise due to a strip

source making use of convolution technique. Shestakov (1965)

has tabulated special functions by adopting numerical method

to determine the rise in water table due to recharge from

a strip source of infinite length. Hantush (1967) has derived

an expression for rise in water table height due to recharge

from a basin of finite length and width. If the dimension

of length is increased to a very large value, the solution

will correspond to rise in water table due to recharge from

a canal. However, the solution involves numerical integra

tion. Glover (1974) has analysed the evolution of water

table due to recharge from a line source, but has not taken

the width of recharge body into consideration. Rao and Sarma

(1980) have obtained an analytical solution for evolution

of water table rise in a finite aquifer due to recharge

from strip source, using Laplace transformation technique.
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In the study presented in this chapter, the evolu

tion of water table due to recharge from a canal has been

analysed when water table is at large depth. In the analysis

the width of the canal and depth of water in it have been

preserved. The expressions for rise of water table due to

recharge from a strip source given by Polubarinova - Kochina

have been rederived. The analysis is based on Glovers solu

tion of Boussinesq's equation for a line source and method

of superposition. The analysis has been extended to study

the evolution of water table for an intermittently running

canal and also to study the interference of two parallel

canals.

3.1 Statement of the problem

Fig. [3.1(a)] shows a schematic section of a canal

constructed in a homogeneous and isotropic pervious medium

of infinite extent. 'B1 is the width of the canal at the

water surface and 'H' is the maximum depth of water in the

canal. The water table is at large depth below the canal

bed such that the canal is hydraulically unconnected with

aquifer. The coefficient of permeability of the flow domain

is 'K'. The thickness of the saturated depth of aquifer

is 'E'. There is no drainage channel in the vicinity of

the canal. It is required to determine the rise of water

table at different locations across the canal due to its

continuous or intermittent running. The rise of water table
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is to be evaluated in time, reckoned from the instant the

water front reaches the groundwater table. It is also requir

ed to determine the evolution of water table due to recharges

from two parallel canals located at a distance 'D' apart.

A schematic section of two parallel canals has been depicted

in Fig. [3.1(b)].

3.2 Analysis

3.2.1 Evolution of water table due to continuous recharge
from a canal (strip source)

The assumptions made to carry out the analysis

for evolution of water table are as follows :

(i) The aquifer is homogeneous, isotropic, and infinite ,

resting on a horizontal impermeable base.

(ii) The hydraulic properties of the aquifer remain

constant with time and space.

(iii) The rate of seepage is constant with respect to

time.

(iv) The flow due to seepage is vertically downward

until it reaches the water table.

(v) The water table remains below the bottom of the

recharging body.

(vi) The average head over the depth of saturation is

approximately equal to the height of the water

table above the base of the aquifer.
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(vii) The rise of water table relative to the initial

depth of saturation is small.

(viii) Dupuit's assumptions are valid.

The differential equation which governs the saturat

ed flow in a water table aquifer is the Boussinesq equation.

For one dimensional flow the linearised Boussinesq's equa

tion is :

£2.i _&s
3x2 a 3t ...U .U

T
in which 's' is the rise in water table, a = — ; t and

$

$ are the transmissivity and storage coefficient of the

aquifer respectively.

If the evolution of water table is due to recharge

from a line source, the solution of the above equation is

required to satisfy the following boundary conditions :

At x-0, T|£ - -5
3x 2

and at x =«> , s ( °°, t ) = 0

in which 'q' is the recharge rate per unit length of the

line source.

The initial condition required to be satisfied is :

s (x, 0) = 0
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Solution to the differential equation (3,1),

which satisfies the above initial and boundary conditions

has been given by Glover (1974) as below:

2

.u.«,. **m*-±- i v-*
/4at

2
x

q^™! . _*_ ^ • e 4at _A +^Erf (_x_}]
2ttT 4at X v^at

2
x

= q^t e~4at_ax+HX Erf (_x_, _(3>2)
At • v^at

In actual case a canal has a certain finite

width. Therefore, it would be appropriate to treat

it as a strip source instead of a line source. If

the water table is at very large depth below the bed

of canal, the width of the strip can be taken approxi

mately to be (B+ 2H). Also, if the water table 'lies

at large depth, according to Kozeny the seepage rate per

unit area of strip is 'K'. A strip source can be regarded to

be consisting of a number of line sources. As the governing

differential equation of flow is linear, the rise

of water table due to seepage from a strip source

can be obtained by integrating the rise of water table

due to each line source.

Assuming that the strip source is of width

(B + 211) and seepage rate per unit area = K, the ex

pression for rise of water table,s,at a distance x from the centre
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of the strip for x < - (B/2+H) and x £ (B/2+H) is derived as

follows:

(B/2+H) „ nr—r , x2 oo - u2

-(B/^+H) x-v u

/fat

The variable, v, is measured from origin as shown in Fig. [3.2(a)].

According to Glover,

2 (x-v)2 x~v
? e" U . SWt - *WT , , 2 /flOt) _ u2
J —o— du = -—— e -/1T + /U / e du

x-v u X v /tt o

/4at

(x-v)
v/3aT: 4at / , _ . , x-v »

= -—- e - /tt +/it Erf ( )
x_v /left

Making use of this relationship in Equation (3.3) and simplifying,

s(x,„ = <BTH> *g« [e-^)2«at)_^/((^v)_2}
-(B/2+H) ZTTT 4at

( - \2
+/^/{^Tat >Erf (JSZy~) ]dv ...(3.4)

/4al

Splitting the limits of integration and integrating,

s(x,t) '= ^ [ / e-(x-v)2/<4at>dv
ZW1 -(B/2+H)

(B/2+H) , ,2,,„ ..
+ / e-(x"v) /(4at)dv]

o

- K^iatVTT J (x-v) (B/2+H)
2tPt L j ~ZZ^~ dv + / -i i- dv]

-(B/2+H) v^aT o /3al
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K / 4'iiat/vr (B/2+H)

2ttT ri i <^> Erf iz£ dv ♦ K°T ' izza „ (xzi) dvl
-(B/2+H) /4a t /4at o /4 a t /4 a t

KvTfrat [*5I Erf (X+B/2+H ) -/^Tt Erf (x^ZlzH) j
/4"at /4aT

_ K /4irat A x(B+2H)
2ttT «

vfat

+ K/grfcg./ir ° .x-v. _ f ,x-v, „ (B/2+H> x-v
2ttT [ ; ("^T) Erf ( >dv + / 2LZ Erf (—) dv]

-(B/2+H)/5Tt /3al o /4at /4a"t

An integral of the form /Y.Erf(Y) dY has been derived as

2 2 2
/Y.Erf(Y)dY = i- Erf(Y) + _*- e"Y _ J_ /e"Y dY + conStant

2/tt 2/tt

Using this relationship in equation(3.5) and integrating,

8(x,t) = Igp [/tST Erf (x+B/2+H ) -/F5TT Erf (x-B/2-H)
2ttT

/5orf

x-/tt(B+2H) /ff(x+B/2+Hr _ . .x+B/2+H,
+ urt (. ;

Z4^ 2-»/4at /fat

L x+B/2+H
+ s ' e

(x+B/2+H)'
4at /Tiat „ „ ,x+B/2+H.

—rr- Erf ( )
/4al

/Et

o (x-B/2-H)'
/tt(x-B/2-H)^ . ,x-B/2-H , (x-B/2-H) 4at

uri { ) - x • e

2-/4at /4at

.(3.5)

♦ <I*£ Erf (X-B/2-H)]
L /Et

...(3.6)

Simplifying and rearranging,

s(x,t) = |S Erf (X+B/2+H) - Kot Erf (x-B/2-H}
2T

/3al
2T

'4at
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_ (x+B/2+H)2
+ « (x+B/2+H)2 Epf(^§Z2lH) +MT (x+B/2+H) e" 4at

/fat 2T/tt

_ (x-B/2-H)2
_ K*T (X_B/2_H) e 4at _K(x-B/2-H)2 &f x-B/2-H

2T /u 4T v^Tt

_ K/(x2) (B+2H)
nip . . • V«» *J

If x is replaced by -x, the above solution remains unchanged, indica

ting that water table rise is symmetrical about the 's' axis.

The above expression can be written as:

»(x.t>« FU.B.H.t) - K/(x2) (B+2H)nrp • • .(3.8)

The expression for rise of water table, s(x,t), under the

strip source at location x, for -(B/2+H)< x i (B/2+H), is derived as

follows:

(B/2+H+x) -.,_, ,2//1 ♦ «.,«, ,
o/_ +x _ , rK/ot -vz/4at Kv' Kv' _ „. v' , . .s(x,t) = / [—7 e - -kttt- + -7pr~ Erf( )]dv'

o T/lT 2T 2T /e
(B/2+H-x) K/-l _y2/4 Rv Ky

/ [-^ e ~Yr +rr Erf<—)jdv
o ±lMI /Sat

...(3.9)

The variables,v, and v' are measured from the point, x, as shown in

Fig.[3.2(b)]

Integrating and simplifying,

, .. Kat „ - ,x+B/2+H. Kat „ - ,x-B/2-H.s(x,t) = ~yy Erf ( ———) - ^r Erf ( ——)
/4aT /4aT

+Jr (x+B/2+H)2 Erf (X+B^2+H) - * (x_B/2_H)2 Erf(x-B/2-H)
/4at /iat

+̂ (x+B/2+H) e-(^B/2+H)2/4at

_ii^f (x-B/2-H) e-(x-B/2-H)2/4at _K[x2+ (B/2+H)2
2T» TT .& 1

...(3.10)
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The above expression can be written as

s(x,t) =F(x,B,H,t) -|^ [x2 +(B/2+H)2] ...(3.11)

The expressions for rise in water table given by

Equations (3.7) and (3.10) are the basic solutions which

can be used to derive the expressions for evolution of

water table for an intermittently running canal and for

parallel canal system.

3.2.2 The evolution of water table due to recharge from
an intermittently running canal

Let during the running period of the canal, the

depth of water in it be constant. This implies that the

width of the canal at the water surface, B, is also constant.

As already stated, the governing differential Equation (3.1)

is linear. Therefore, the expressions given by Equations

(3.7) and (3.10) are the response of a linear system due

to a continuous uniform excitation. Let this response due

to continuous uniform excitation be designated as U(t). Thus,

for x £ -(B/2+H) and x >(B/2+H),

U(t) =F(x,B,H,t) .Mx2MB+2H) ...(3.12)

and ,for - (B/2+H)<: x<(B/2+H),

D(tl =F (x.B.H.t) -K'*2 H2BT/2 +H)2] ...(3.13)
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Let the time parameter be discretised with uniform

time -step. If the canal runs for a unit time period and

is closed thereafter, the rise in water table at the end

of nth time-step, Sin), is given by:

6 (n) = u(n) - u (n-1)

Thus, for x < - (B/2+H) and x> (B/2+H), the rise in water

table due to running of the canal during the first unit

time period is given by:

6 (n) =• F (x, B, H, n) - F(x, B, M, n-1) ...(3.14)

In particular, the rise in water table at the end of time-

step 1 is:

6(1) = F(x, B, H, 1) - K /(x2)(B+2H)/2T ...(3.15)

For -(B/2+H) < x ^ (B/2 + H),

6(n) =F(x, B, H, n) -F (x, B, H, n-1) ...(3.16)

and 6(1) = F (x, B, H, 1) - K[x2 + (B/2+ H)2]/2T ...(3.17)

When the canal runs intermittently, the rise in water

table at the end of m* time-step is given by:

m

s(x,m)=Z R(y)6(m-Y+'1) ...(3.18)
Y =1

Where,

R( y ) is a factor which is equal to 1 for the time-steps

during which the canal runs and is zero during the time

steps the canal is closed.

3.2.3 Evolution of water table due to recharge from two
parallel canals.

The evolution of water table due to seepage from
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any number of parallel canals can be obtained by method

of superposition as the governing differential equation

of flow is linear. However, the present analysis has been

done for two parallel canals. The width of canals at the

water surface and depth of water for the left and right

canal are B,, H1 and B,,, H2 respectively as shown in Fig.
[3.1(b)]. The distance between centre to centre of the canals

is D. The rise in water table at any point along a transverse

section across the two parallel canals at time, t, can

be computed by summing up the values of rise in water

table for each canal with the help of Equations (3.7)

and (3.10). For different locations of point x, as shown

in Fig. [3.1(b)], the expressions for rise in water table

are as follows:

For x S -(Bl/2+H1),

s(x,t) -F(x, Br H,,t) +F(D-x,B2,H2,t) -[K /x2(B}+2H\)]/2T

-K[/(D-x)2(B2+2H2)]/2T ...(3.19)

for, -(B1/2+Hl) sx <(B1/2+H1)j
s(x,t) '= F(x,B1,Hl,t)+F(D-x,B2,H2,t)- K[x2+(B/2+H1)2]/2T

-K[/(D-x)2 (B2+2H2)]/2T ' ...(3.20)

for, (B1/2+H1)sxSD-(B2/2+H2),
s(x,t) = F(x,B1,Hrt) +F(D-x,B2,H2,t) -K /x2 (B1+2H1 )/2T

- [K /(D-x)2(B2+2H2)]/2T .'..(3.21)



71

for, D-(B2/2+H2) £x*D + (B2/2+H2) ,

s(x,t) = F(x,B1,H1,t) + F(D-x,B2,H2,t)

- [K/x"2(B1+2H1)]/2T

-K[(D-x)2 + (B2/2+H2)2]/2T ...(3.22)

and for, x>D +(B2/2+H2) ,

s(x,t) - F(x,B1,H1,t)+F(D-x ,B2 ,H2,t)-K/x"2 (B1+2H1) /2T

-K /(D-x)2 (B2+2H2)/2T ...(3.23)

3.3 Results and Discussions

Numerical results for rise in water table have been

presented for the following cases:

(i) A single canal running continuously with a constant

depth of water,

(ii) A single canal running intermittently with a

constant depth of water during the run, and

(iii) Two parallel canals running continuously with

constant water depth in them. . ,

The rise in water table has been evaluated for

known aquifer parameters,' viz., the coefficient of

permeability, K, the storativity, cp , and the initial

saturated thickness, E, of the aquifer. The

transmissivity, T, of the aquifer has been taken as

(K.E), since it has been assumed that there is no

appreciable change in the saturated thickness of the

aquifer due to recharge from a canal. The non-

dimensional groups which have been formed to present the

results are :
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(i) Time factor Kt/(2 q>E)

(ii) Water table rise s(x,t)/E

(iii) Width of canal at water
surface B/E

(iv) Depth of water in canal H/E

(v) Distance from centre of the
canal to an observation
point x/E

(vi) Distance between the canals D/E

The error function appearing in the solution has

been evaluated using the rational approximation given by

Hastings ( vide, Abramowitz and Stegun, 1970).

The percentage rise in water table elevations at

various non-dimensional time across a canal are

presented in Fig. (3.3), for B/E = 0.03 and H/E =

0.003. The results for canal of larger width, having

B/E = 0.06 and H/E - 0.003, are presented in Fig. (3.4).

It is found that for a canal with B/E = 0.03 and H/E =

0.003 the percentage rise in water table elevation

below the centre of the canal, at non- dimensional

time, Kt/(2cpE), = 0.05, is 0.6262. At x/E = 0.3, the

percentage rise 'at this time is 0.2417. For a canal

with a larger non-dimensional width of 0.06, the

corresponding percentage rises are 1.1241 and 0.4438

respectively. According to the assumption made in the

present analysis, the recharge rate from a unit length
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of canal is K(B+2H) and the width of the recharging

strip is (B+2H). A comparison of rise of water table per

unit recharge rate, s(x,t)/[K(B+2H)], for two different

canal sections is shown in Table (3.1). It is seen from

the table that water table rise is not proportional to

the recharge rate from canals of different cross

sections. According to the analysis, the water table

rise at a point depends not only on the recharge

quantity but also on the distribution of recharge.

Therefore, if the width of the canal is changed, there

ill not be a proportionate change in the elevation of

water table, as the relationship between water table

rise, s(x,t), and the width of the recharging strip,

(B+2H), given by Equation (3.10) is non-linear. It is

also observed that the water table rise below the centre

of the canal, per unit recharge rate, decreases with

increase in the width of the recharging strip. At

observation points located beyond the recharging strip,

the water table rise per unit recharge rate increases

w.ith increase in the width of the recharging strip.

The rise of water table, s ( x,t)/E, at various

non-dimensional time, Kt/(2cp E), for observation points

located under the canal, and at various distances from

the centre of the canal, are presented in Figs.(3.5) and

(3.6) for two sets of B/E and H/E. The non-dimensional

w



Table 3.1 - Water table rise per unit recharge rate
for canals of different cross sections

evaluated at Kt/(2q>E) - 0.05.
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SI.No. B/E H/E x/E s(x,t)/[K(B+2H)]

1. 0.03 0.003 0.00 0.17396/K

2. 0.06 0.003 0.00 0.17033/K

3. 0.03 0.003 0.05 0.15457/K

4. 0.06 0.003 0.05 0.15469/K

5. 0.03 0.003 0.10 0.13290/K

6. 0.06 0.003 0.10 0.13301/K

7. 0.03 0.003 0.30 0.06714/K

8. 0.06 0.003 0.30 0.06724/K

9. 0.03 0.003 0.50 0.02963/K

10. 0.06 0.003 0.50 0.02970/K
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Fig.3.5-Percentage rise in water table elevation at various observation points due to recharge
from a canal for B/E= 0.06 and H/E=0.003
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plot implies that if the geometric similarities are

preserved, i.e., if the ratios of B/E and H/E remain

unaltered, the variation of s(x,t)/E with kt/2 cp E at an

observation point would follow a fixed graph for any

value of K and 9 . The water table rise at these

observation points corresponding to various aquifer

parameters, K and o, can be obtained from these graphs

for geometrically similar canals. A set of results for

draw-down evaluated for transmissivity, T, ranging from

100 m2 / day to 1000 m2 / day and storage coefficient,

tp ranging from 0.05 to 0.2 are presented in Table (3.2)

The expressions for gradient of the water table

outside and below the recharging strip have been

obtained from Equations (3.7) and (3.10) by

differentiating s(x,t) with respect to x. The expression

for gradient outside the recharging strip is given by :

as(x,t) . K/TrTtT -(x+B/2+H)2/(4at)
8x T/tt

- K/(aTT -(x-B/2-H)2/(4at)
T/tt e

+ !=<x+B/2tH) Erf [x+B/2+H ]
2T /4c7t-

" |=(x-B/2-H) Erf [X"B/2"H ]

- K(B+2H) . . .(3.24)
2T
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Table 3.,2 - Rise in Water table at the end of 180 days due to
continuous recharge from canals having 30 m and
60 m width and 3.0 m depth of water, evaluated
for various values of aquifer parameters

B

30

60

E T x

(m) m2/day (m)

500 100 150

500 500 150

500 100 300

500 500 300

1000 100 150

1000 500 150

1000 1000 150

1000 100 300

1000 500 300

1000 1000 300

500 100 300

500 500 300

500 100 600

500 500 600

1000 100 300

1000 500 300

1000 1000 300

1000 100 600

1000 500 600

1000 1000 600

Rise in water table (m) for

=0.05¥

19.3546

49.2709

15.0824

44.3804

9.6773

24.6354

35.8982

7.5412

22.1902

33.3780

27.6585

81.3675

15.8204

65.2748

13.8292

40.6837

61.1952

7.9102

32.6374

52.6118

0.10

12.3726

33.3787

8.5471

28.6976

6.1862

16.6893

24.6354

4.2735

14.3488

22.1902

15.6795

52.6170

6.6082

38.0075

7.8398

26.3085

40.6837

3.3041

19.0037

32.6374

0.20

7.5437

22.1912

4.3151

17.8028

3.7719

11.0956

16.6893

2.1575

8.9014

14.3488

7.9233

32.6450

1.9984

20.0378

3.9617

16.3225

26.3085

0.9992

10.0189

19.0038
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The expression for water table gradient below the

reacharging strip is found to be:

as(x.t) K/Tat) -(x+B/2+H)2/(4at)
3x t/tt

K/Tut) -(x-B/2-H)2/(4 at)
T/tt 6

^(x+B/2+H) Erf [«$$*$ ]
2T'

K2T(x-B/2-H) Erf [*$g=f]

Kx ...(3.25)
T I

The water table gradients at various locations,

lying outside and within the recharging strip, have been

computed using Equations (3.24) and (3.25) respectively

and are presented in Table (3.3). As seen from the

table, the absolute value of the gradient at any point,

except at the origin and at infinity, increases with

time. It could be deduced from Equation (3.24) that,

the absolute value of the gradient at any point outside

the recharging zone attains a limiting value of

0.5(B/E +2H/E) after a long duration of time. At any

point within the recharging strip the limiting value of

the gradient attained after a long time is x/E. If the

gradient of the water table is known at a particular
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location outside a continuously running canal, when the

water table evolution at this observation point has

reached a near steady state condition, the saturated

thickness of the aquifer can be ascertained by making

use of the observed limiting gradient in the expression:

Limiting gradient = 0.5 (B/E + 2H/E).

Replacing the strip source by an equivalent line

source, the water table evolution can be predicted by

Glover's basic solution given in Equation (3.2).

Assuming the strength of the line source to be K(B+2H)

per unit length, and using Glover's solution, the water

table positions at different time have been evaluated

for different canal widths and are presented in Table

(3.4). The water table positions predicted using the

solution for strip source are also given in the Table

for the purpose of comparison.lt could be seen that

Glover's method over-estimates the water table rise at

all time below the centre of the canal. At other points

within the recharging strip, in the beginning of

recharge, the water table rise is under estimated

by Glover's approach. But with lapse of time, the water

table rise calculated using Glover's solution is found

to be higher than the rise estimated by Equation

(3.10). In the region outside the recharging strip

Glover's solution under-estimates the water table rise
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Table 3.3 - Water table gradient at various locations within
and outside the recharging strip at various
non-dimensional time

[- 3s/ ax].100 ie., - gradient x 100
evaluated at Kt/(2cpE)

H/E B/E x/E 0.050 0.100 0.300 0.600 0.900 9.00

0.003 0.03 0.005 0.484 0.488 0.493 0.495 0.496 0.498

0.015 1.452 1.466 1.480 1.486 1.488 1.496

0.06 0.010 0.941 0.958 0.976 0.983 0.986 0.995

0.030 2.823 2.875 2.928 2.945 2.958 2.986

0.03 0.150 1.327 1.462 1.604 1.661 1.686 1.764

0.300 0.904 1.143 1.411 1.523 1.574 1.728

0.06 0.300 1.659 2.097 2.588 2.793 2.885 3.168

0.600 0.594 1.132 1.927 2.305 2.481 3.037
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Table 3.4 - Comparison of results obtained from the present
analysis with Glover's Solution

B/E H/E x/E Kt/(2 cpE)

0.03 0.003 0.000

0.015

0.150

0.06 0.003 0.000

0.015

0.150

0.00005

0.00050

0.00500

0.05000

0.50000

1.00000

0.00005

0.00050

0.00500

0.05000

0.50000

1.00000

0.00500

0.05000

0.50000

1.00000

0.00005

0.00050

0.00500

0.05000

0.50000

1.00000

0.00005

0.00050

0.00500

0.05000

0.50000

1.00000

0.0050

0.0500

0.5000

1.0000

s(x,t)/E
obtained

from

present
solution

for strip
source

(10-3 )

0.0919

0.4974

1.8745

6.2626

20.1498

28.5626

0.0645

0.4198

1.7734

6.1537

20.0385

28.4517

0.3805

4.0824

17.7254

26.1049

0.0995

0.7370

3.2128

11.2414

36.6960

52.1192

0.0959

0.6848

3.1210

11.1355

36.5855

52.0081

0.7111

7.4915

32.4991

47.8608

s(x,t)/E
obtained

from

Glover's

solution

for

equivalent
line source

(10~3 )

0.2031

0.6422

2.0310

6.4228

20.3108

28.7238

0.0377

0.4080

1.7724

6.1564

20.0419

28.4546

0.3773

4.0807

17.7249

26.1045

0.3723

1.1775

3.7236

11.7752

37.2365

52.6603

0.0691

0.7481

3.2495

11.2868

36.7436

52.1668

0.6918

7.4814

32.4957

47.8584

Difference

between

Glover's

solution

and present
solution

(10 )

0.1112

0.1448

0.1565

0.1602

0.1610

0.1612

-0.0268

-0.0118

-0.0010

0.0027

0.0034

0.0029

-0.0032

-0.0017

-0.0005
-0.0004

0.2728

0.4405

0.5108

0.5338

0.5405

0.5411

-0.0268

0.0633

0.1285

0.1513

0.1581

0.1587

-0.0193

-0.0101

-0.0034

-0.0024
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marginally as seen from the table.

Hantush has derived an expression for water table

rise due to recharge from a rectangular spreading basin.

If the length of the rectangular spreading basin is

extended to infinity, Hantush's solution would give an

expression for water table rise due to recharge from a

strip source. Assuming the length of the spreading basin

to be infinite, the following expression for water table

height, consequent to recharge from a strip source,

has been deduced starting from Hantush's basic

Equation (2.6 ).

h2(x,t) = h2 + (f|£) . [2J1Erf(-a-^: )dx
° 9 ° 2/(KhtT/9)

+2 J1 Erf (——~ ) dT] ...(3.26)
2/(Khtr/cp)

where,

w = uniform recharge rate which has been assumed

to be equal to K in the present analysis,

a = half width of the recharging strip, which is

equal to (B/2+H) for a canal,

h = initial water table height, and
o

h = weighted mean depth of saturation during the

period of flow.
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Incorporating the above assumptions, and assuming

h = E, the expression for water table rise is found to

be:

•<».t) - (h =+2(|i) tjhrtlffflgfa )dT

4. r1TTr.f /B/2 +H-X , . ,,1/2 .
+oJ Ert <2/(TtT/cp)) d^} "ho ...(3.27)

The water table rises have been calculated using

Equation (3.27) and are presented in Table (3.5). The

corresponding water table rises calculated using

Equations (3.7) and ( 3.10) are also given in Table

(3.5) for the purpose of comparison. In the present

study, the solution of Boussinesq's equation is based on

Glover's linearisation technique. The small difference

between the results of present study, and those obtained

from Hantush's equation, is attributed to the difference

in linearisation techniques of Boussinesq's equation

adopted by Hantush and Glover, and to the numerical

integration used in the Hantush's solution for

evaluating the drawdown.

Shestakov has analysed the evolution of water table

due to recharge from a strip source and has tabulated a

special function to predict the water table rise at

different locations in an aquifer within and outside the
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Table 3.5 - Comparison of water table rises predicted by
Hantush's solution and the present analytical
method, evaluated for cp =0.1 and K=0.1 m/day.

B H E

(m) (m) (m)

x/E Kt/(2 cpE) s(x,t)/E s(x,t)/E
predicted predicted
by present by Hantush's
method method

(10-3 ) (10~3)

0.00 0.01 2.714 2.711

0.02 3.903 3.895

0.03 4.815 4.804

0.04 5.584 5.569

0.05 6.262 6.243

0.15 0.01 0.947 0.957

0.02 1.922 1.941

0.03 2.736 2.763

0.04 3.445 3.484

0.05 4.082 4.124
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strip source. The values of the special function for

different values of a non-dimensional time parameter are

given in Table (2.1). The water table rises computed

using Equations (3.7) and (3.10) have been compared with

the rises evaluated using Shestakov's special function.

The comparison has been made for the following values of

aquifer parameters and canal dimensions:-

K = 0.1 m/day,

cp = 0.1,

E = 1000 m,

B = 14 m, and

H = 3 m.

While computing water table rise by Shestakov's

equations, it has been assumed that the width of the

strip is ( B+2H) and the recharge rate per unit area is

K. The water table rises computed by both the methods

are presented in Table(3.6). It is seen that the water

table rises computed using Equations (3.7) and (3.10)

compare well with those computed using Shestakov's

spe,cial function.

The water table evolution for a continuously

running canal has been presented in the preceding

paragraphs. An Irrigation canal may run intermittently

depending upon the availability of water as well as its

need in the command area. The evolution of water table
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Table 3.6 -

89

Comparison of rise of water table computed
by equations (3.7) and (3.10) and by
Shestakov's special functions for B=14 m,
H = 3 m, K =0.1 m/day, T=100 m2/day,'cp =0.1!

Location

centre of

canal

from

the

Time Rise in water

table computed
by equations
(3.7)&(3.10)

Rise in water

table computed
by Shestakov's
special
functions

(m) (days) (m) (m)

0.0 1 0.3098 0.3110

5 0.7492 0.7550

10 1.0793 1.0800

5.0

10.0

15.0

20.0

1

10

1

10

1

10

1

10

0.2995

1.0675

0.2686

1.0320

0.2295

0.9857

0.1946

0.9406

0.3010

1.0700

0.2685

1.0350

0.2305

0.9950

0.1955

0.9500
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near an intermittently running canal is, therefore,

considered next. In order to predict the water table

evolution near an intermittently running canal, the

response of the aquifer at desired observation points to

a continuous running of the canal is first determined.

Making use of the response to the continuous running

of the canal, the response of the aquifer, if the canal

runs only for the first unit time period, is predicted

by Equations (3.14) and (3.16) for the desired

observation point. The response of the aquifer to a

pulse excitation, imparted by running the canal for the

first unit time period, has been designated as <s(n). The

procedure for determining the fi (n) coefficients at

different time-steps, n, for an observation point near

a canal has been explained through an example presented

in Table (3.7). 6(n) coefficients for different integer

values of n, for various sets of aquifer parameters and

canal dimensions, have been presented graphically in

Figs. (3.7) through (3.10). Using these coefficients,

the water table evolution for any running schedule of

these canals could be predicted.

The evolution of water table has been predicted for

an intermittently running canal whose running and

closure periods are of equal duration. The water table

evolutions have been presented in non-dimensional form
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Table 3.7 - Calculation of 6(a) coefficients for an
observation point at x/E = 0.15 evaluated
for T - 500 m2/day, cp =0.1, B/E = 0.03 and
H/E = 0.003.

Time in days Rise in water table 5 (n)
height if the canal
would run

continuously

(n) K(n) K(n)-K(n-1)

1 0.1080 0.1080

2 0.3805 0.2725

3 0.6692 0.2887

4 0.9473 0.2781

5 1.2108 0.2635

6 1.4603 0.2495

7 1.6971 0.2368

8 1.9227 0.2256

9 2.1384 0.2157

10 2.3453 0.2069
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Fig.3.7-Response function coefficients at locations across canal for B/E-0.03 ,
H/E=0.003,and K-1.0 m/day
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Fig.3.9.-Response function coefficients at locations across canal for B/E= 0-06 i
H/E=0.003, and K-1.0 m/day
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Fig.3.10.-Response function coefficients at locations across canal for B/E=0.12 }
H/E-0.006, and K=1.0 m/day
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for the first three cycles of canal operation in Figs.

(3.11) and (3.12) for two sets of canal dimensions. The

variation of water table rise s(x,t)/E with non-

dimensional time factor, Kt/(2 cp E), at different

dimensionless distances, x/E, are presented in Fig.

(3.11) for an intermittently running canal with B/E=0.06

and H/E =0.003. It has been assumed that the canal

first runs for a dimensionless time period of 9 x 10~2 .

The canal then remains closed for an equal duration of

time and runs again. This cycle of canal operation is

repeated. If K = 0.1 m/day, cp = 0.1, and E = 1000m, a

dimensionless running period of 9 xlO would correspond

to 180 days of canal running and the result would,

therefore, depict the water table evolution for the

running of canal for 180 days (six months ). It would be

seen from the figures that the water table height under

the centre of the canal declines immediately after the

closure of the canal. But, at locations beyond the

recharging strip the water table continues to rise even

after the closure of the canal. For example, in

Fig.(3.11), at x/E=0.4, and at non-dimensional time

Kt/(2cpE) = 0.09, the percentage rise in saturated

thickness, 100.s (x,t)/E is 0.599. The water table

continues to rise at this observation point even after

the closure of the canal, and the percentage rise in
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water table height attains a maximum value of 0.668 at

non -dimensional time of 0.11 and then starts declining

in response to the.first closure of the canal. In the

region beyond the recharging strip, the aquifer exhibits

a delayed response to the closure of the canal. It

could be further seen that there is no reversal of flow

any - where because of intermittent running of the canal.

Therefore, at any time, the height of water table will

be maximum at the centre of the canal and it would

decrease as the distance from the centre of the canal

increases. The water table evolution for canal of

smaller width with B/E = 0.03, H/E = 0.003 is presented

in Fig.(3.12). Comparing the results presented on Figs.

(3.11) and (3.12) it is seen that for B/E =0.06 and

H/E =0.003, -the water table rise s (o,t)/E below the

centre of the canal is 24 x 10~3 at the end of non-

dimensional time Kt/(2cpE) = 45 x 10~2 ,whereas, for a

canal of half the width, i.e.,B/E=0.03 and H/E=0.003,

the corresponding water table rise is 13.25 x 10~3

Thus, the water table rise for the smaller canal gets

reduced by 10.75 x 10~3.

The water table evolutionsat an observation point

pertaining to continuous and intermittent running of a

canal are depicted in Fig.(3.13) for comparison.lt could

be seen that if a canal with B/E=0.06 and H/E=0.006 runs
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for half of the time in a year (180 days) and is

closed for the next half year, and this cycle is

repeated, the percentage increase in water table height,

100.s(x,t)/E, at a distance x/E=1.2 from the canal in

an aquifer with cp = 0.1, and K =0.1 m/day, is 1.426

after the end of 1080 days(3 years).If the canal had run

continuously, the increase in water table height would

have been 2.619 percent.

The evolution of water table due to recharge from

parallel canal system is next considered. Water table

evolution can be predicted for any number of parallel

canals and for any running schedule of the canals by

using method of superposition. In the present study, the

water table evolution due to recharge from two parallel

canals, which run continuously, has been determined for

different spacings between them. The watertable rise at

various times along a section across two identical

parallel canals, each with 30m width and 3m depth of

water,is presented in Figs.(3.14) and (3.15) for D=80 m,

and 180m.The results presented in Figs.(3.16) and (3.17)

are for canals with 60 m width. Though the water table

evolution can- be presented in non-dimensional form, the

results for water table evolution have been presented

with physical dimensions for an easy understanding of

the process of evolution of water table.
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It could be seen from the figures that, in the

beginning of recharge, the two water table ridges are

located at the centres of the recharging strips. As the

recharge continues, the points of maximum rise move

towards each other. The points of maximum rise, though

continue to move towards each other, do not cross a

distance of (B/2+H) from the centre of the canal, where

B is the width of each of the parallel canals. In the

very beginning, the recharge from each canal is equally

divided in the aquifer,i.e.,under each canal, a quantity

of | .(B +2H)llows in the aquifer in horizontal
direction on either side of canal. The quantities of

flow entering to the aquifer between the canals oppose

each other with the result that a stagnant zone gets

created between the canals. Therefore, with lapse of

time, the quantity of recharge under each canal gets

unequally divided, resulting in more than half of the

recharge quantity from each canal flowing to the

external sides. The quantity flowing to external side

increases with time which is evident by the steeper

slope of the water table at higher time. The points of

maximum rise do not cross the recharging strip since a

fraction of recharge from each canal would still be

going in the zone in between the canals even after a

very long duration of time.However, as time elapses, the
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water table in the zone in between the canals tends to

become flat. It can also be seen from Figs. (3.14) and

(3.15) (for 30 m width), and (3.16) and (3.17) for (60 m

width), that at the end of a period of 100 days of

continuous running of the parallel canals, the zone in

between the canals becomes more flat when spacing is

80 m as compared to the case having 180 m spacing.

The percentage rise in water table (s/E) at

different non-dimensional time for various locations

across the parallel canals have been presented in

Figs.(3.18) through (3.21) for different canal

dimensions and spacings between them. Figs. (3.18) and

(3.19) depict the rise in water table (s/E) at different

locations (x/E) for canals with B/E=0.03 and H/E =0.003.

It is seen from the results that percentage of rise of

water table at x/E = -0.6 for D/E = 0.08, and 0.18 is

0.112, and 0.094 respectively at the end of non-

dimensional time of 5 x 10~2 . The corresponding results

for canals with B/E = 0.06 are 0.332, and 0.279 [Figs.

(3,.20 and (3.21)]. These results indicate that as the

spacing between the canals, D/E, increases, the percent

rise of water table at any point outside the parallel

canals decreases.

The maximum rise of water table for different

widths of parallel canals and spacings between them are
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presented in Tables (3.8) and (3.9). The results show

the reduction in maximum rise as spacing between the

parallel canals is varied from 80m to 480m. It is seen

from the table that for identical parallel canals for

spacings, D/E, upto 0.48 and beyond a time factor 0.15,

the difference in rise of water table at the middle

point between the canals and maximum rise is

insignificant. This shows that the region between the

canals takes the shape of a plateau ultimately and

becomes a stagnant zone.

A comparison of results of rise of water table

due to recharge from a single canal, (D=°°),with 30m width

and 3 m depth of water, and that due to parallel canals

of the same dimensions spaced at 120 m apart, can be

made from Table (3.8).It is seen that maximum percentage

rise for single canal, (s/E),at the non-dimensional time

factor of 0.045 is 0.593,whereas the maximum percentage

rise for parallel canals is 1.022.If the spacing

increases to 480m, the corresponding percentage of rise

is 0.693.This shows that for spacing of parallel canals

of more than sixteen times the width of the canal, the

interference of canals can be considered as

insignificant upto a time factor 0.045.

In the results presented above, the two parallel

canals were identical. The case of unequal parallel
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Table 3.8 - Effect of spacing of parallel canals on maximum
rise of water table determined for B =B =30m
H1=H2=3.0 m. 12 °vm>

Spacing
between

canals, D
(m)

Non-

dimensional
Kt/(2 cp E)

Maximum rise

as percentage
of saturated
thickness,E

Percentage rise
at middle point
between the
canals

80 0.015 0.573 0.570

0.045 1.082 1.080

0.150 2.085 2.084

120 0.015 0.520 0.509

0.045 1.022 1.015

0.150 2.019 2.016

180 0.015 0.459 0.427

0.045 0.941 0.922

0.150 1.926 1.916

240 0.015 0.414 0.355

0.045 0.871 0.835

-

0.150 1.840 1.820

480 0.015 0.344 0.153

0.045 0.693 0.545

0.150 1.557 1.467

oo 0.015 0.336 _

•0.045 0.593
—

0.150 1.096
-

'
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Table 3.9 - Effect of spacing of parallel canals on maximum
rise of water table determined for B, =B„ =60m
H =H =3.0m. 12

Spacing
between

canals,D

(m)

80

120

180

240

480

Non-

dimensional

time

Kt/(2 cpE)

0 .015

0 .045

0 .150

0 .015

0 .045

0 .150

0 .015

0 .045

0 .150

0 015

0. 045

0. 150

0. 015

0. 045

0. 150

0. 015

0. 045

0. 150

Maximum

rise as

percentage

of saturated
thickness

Percentage
rise at

middel point
between the

canals

1.048 1.047

1.983 1.982

3.822 3.822

0.946 0.936

1.868 1.863

3.699 3.697

0.826 0.786
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canals is next considered to study the rise of water

table. The results of rise of water table pertaining to

two parallel canals, one of the canals with 60m width

and 3m depth of water and the other with 30m width and

3 m depth of water, are depicted in Figs. (3.22) and

(3.23) for spacings of 80 m and 180 m respectively

between the canals. From the shape of the water table

shown in the figures, it is indicated that in the

beginning of recharge the water table mound is formed

under each recharging strip. It could further be seen

from the figures that with lapse of time the water table

mound under the canal having less strength gets

diminished. Ultimately the water table exhibits one

maximum point where slope of water table is zero. This

phenomenon happens quicker when the spacing between the

canals is smaller. In the beginning of recharge, the

recharge from each strip gets distributed in the aquifer

on either side of each strip. It could be deduced from

shape of the water table mound that with passage of

time the recharge from right canal with lower

strength, flows towards the right.

Fig.(3.22) shows that when spacing between the

left canal of 60 m width,and right canal of 30 m width,

is 80 m,the maximum point of rise of water table under

the canal shifts by 17 m from the centre of the canal
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3.4 Conclusions

Based on the study presented, the following
conclusions are drawn:-

1. Using method of superposition, and starting from
Glover's basic solution of one dimensional
Boussinesq's equation for a line source, closed
form solutions for evolution of water table
within and outside a strip source have been
derived. The solutions are identical to the

solutions which have been given by Polubarinova-
Kochina.

Making use of the solutions, the evolutions of
water table for intermittently running canal and
for parallel canals have been obtained.

2. The results obtained by using the derived
analytical solutions for a strip source compare
well with the numerical solutions of Hantush and
Shestakov.

3. Glover's method over estimates the water table
rise at all times below the centre of the canal.

At other points inside the recharging strip, in
the beginning of recharge the Glover's approach
under estimates the water table rise. But, with

lapse of time, the water table calculated by
Glover's solution is higher than the rise
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after a period of 100 days of ruuning of the two canals.

This shows that recharge quantity of 50 K out of 66 K is

flowing to left side of the left canal and the rest is

flowing to its right side. All the recharge from right

canal with lower strength is flowing to right side of

the canal. In the case of spacing of 180 m between the

canals of same dimensions, the point of maximum rise

under the left canal is shifted by only 13.5 m as shown

in Fig. (3.23). This indicates that a recharge quantity
equal to 46.5 K out of 66K flows to the left side of the

canal to aquifer and the remaining recharge is flowing

to the right. Thus, with increased distance between the

canals more recharge flows to the right. The Figs.

[3.22(a)] and [3.22(b)], and Figs. [3.23(a)] and

[3.23(b)] also indicate that as time passes the point of

maximum rise of water table under left canal of larger

strength shifts from the centre of the canal, thereby
indicating that with passage of time the recharge to

left of the left canal keeps on increasing. This will

happen till the recharge gets equally divided on the

left and right side of the canal system after a very
long duration of running. In the limiting case the point

of maximum rise will shift to a distance of 18 m from

the centre of left canal so that recharge at that stage
is equally divided on both sides of the system.
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calculated by the present solution. In the

region outside the recharging strip, Glover's

solution under- estimates the water table rise

marginally.

4. it is found that, when the strip source is

replaced by an identical line source, the water

table evolution beyond the recharging strip could

be predicted without any appreciable error using

Glover's solution.

5. The absolute value of water table gradient at any

point outside the recharging strip attains a

limiting value of 0.5(B/E + 2H/E) after a long

time. At any point within the recharging strip

the limiting value of the gradient attained after

a long time is x/E, where, x is the distance of

the observation point from the centre of the

canal. The saturated thickness of aquifer can be

predicted by making use of the limiting value of

the gradient of water table in the vicinity of

the canal.

6. For a canal having B/E =0.06 and H/E = 0.006, the

percentage rise of water table due to recharge,

when the canal runs continuously is 2.62 at the

end of non-dimensional time factor 1.08. If the

canal runs intetmittently for a period of 0.18

and is closed for equal duration, and this cycle
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is repeated, the rise in water table at non-

dimensional time of 1.08 is 1.43 percent. The

water table rise is reduced considerably due to

intermittent running of the canal.

7. If a canal runs intermittently, the water table

below the canal declines immediately after the

canal is closed. In the region beyond the

recharging strip the aquifer exhibits a delayed

response to the closure of the canal. There is,

however, no reversal of flow any where on account

of intermittent running of the canal, and, at any

time the height of water table is maximum at the

centre of the canal and it decreases as the

distance from the centre of the canal increases.

8. In the case of two identical parallel canals, in

the beginning of recharge, the two water table

ridges are located at the centres of • the

recharging strips. However, as time elapses, the

points of maximum rise move towards each other

but they do not move beyond the respective

recharging strip,i.e.,none of the points of maxi

mum rise crosses a distance of (B/2+H) from the

respective centre of the canal.With lapse of time

the flows entering the aquifer between canals

oppose each other due to which a stagnant zone
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gets created between the canals. The region

between the two parallel canals under continuous

recharge takes the shape of a plateau in course

of time. It is also found that for canal systems

having smaller distance between them, the water

table in the stagnant zone becomes flat at

earlier time.

9. The results of rise of water table due to two

parallel canals have shown that if the distance

between the two canals is 16 times the width of

the strip (canal ), the interference of canals is

insignificant upto a time factor of 0.045.

It is seen that in the case of unequal parallel

canals, some time after the onset of recharge

there is only one point of maximum rise, where

the slope of water table is zero, and it lies

under the canal of larger strength. With passage

of time, the recharge from canal of smaller

strength flows only to the right side of the

canal.

10

Based on a part of the work reported in the Chapter
the following paper has been published:

1. Jhargava, D.N,, Mishra, G.C., Chandra, S.(1987),
Evolution of water table due to seepage from two
parallel canals", International Symposium on
Groundwater Monitoring and Management, Dresden,
GDR, Published by the Institute of Water
Management, Berlin (GDR).
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ANALYSIS OF UNSTEADY SEEPAGE FROM A CANAL WHICH
IS NONLINEARLY DEPENDENT ON THE POTENTIAL DIFFERENCE

BETWEEN THE CANAL AND THE AQUIFER

4.0 Introduction

In chapter 3 the evolution of water table

due to recharge from a single strip source and

from two parallel strip sources, when the water

table is at large depth, has been analysed. The

recharging strips were unconnected with the aquifer

and, therefore, the recharge rates were assumed

to be constant and independent of location of water

table. In this chapter, the evolution of water table

due to time variant recharge from a canal when

water table is at shallow depth has been analysed.

The canal is hydraulically connected with the aquifer

and the recharge rate is dependent on the location

of water table below the bed of the canal.

It has been often assumed for a stream (canal),

which is hydraulically connected with the aquifer,

that the exchange flow rate is linearly dependent
on the potential difference between the stream
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and the aquifer (Ernst, 1962, Aravin and Numerov,

1965, Herbert, 1970, Morel-Seytoux, 1975, Besbes

et al,1978, Flug et al, 1980). It was shown by Bouwer

(1969) that the recharge from a canal to an aquifer

is proportional to the difference in the water

levels in the canal and in the aquifer in the vici

nity of the canal. The coefficient of proportion

ality, recognised as reach transmissivity, depends

on the stream bed characteristics and shape of

canal cross section (Morel-Seytoux, 1964, Bouwer,

1969). However, there have been evidences that

the process of stream aquifer interaction can be

very non- linear (Rushton and Redshaw, 1972, Dillon,

1983, 1984). in this chapter, assuming a nonlinear

relationship between the exchange flow rate and

the potential difference, a canal aquifer interaction

problem has been solved.

4.1 Statement of the Problem

A canal having hydraulic connection with the

underlying aquifer is depicted in Fig. (4.1). The

water table is at a shallow depth below the canal

bed. The recharge from the canal to the aquifer

is assumed to have the following non-linear relation

ship with the potential difference between the canal
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and the aquifer which has been proposed by Rushton
and Redshaw (1979 ):

Qx -<n) = 0.3 C2 lr[1_G-C3 {hr-h(o,n)} }

...(4.1)

C2 and C3 are constants and lr is the length of
the canal reach, hr is the ground water potential

at the canal perimeter, and h(o,n) is the potential

in the aquifer under the bed of the canal during
time period n, hr and h(o,n) are measured upwards

from a low datum. The impervious bed of the aquifer

has been selected as the low datum. Other aquifer

parameters are as shown in Fig.(4.1). The hydraulic

head ,h(o,n), in the aquifer during time period 'n'

is governed by the recharges from all reaches of

the canal which occur during time period 'n\ besides

those which took place from all reaches upto (n-I)1*

time period. Tt is required to find the recharge

rate , Q <n),fr<* a reach of length 1 of the canal
r r

at various times after the onset of recharge.

4.2 Analysis

The following assumptions have been made in

the analysis:

(i) The time parameter is discrete. Within each

time-step the recharge rate is constant ,but

the recharge rate varies from time -step to
time-step.
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(ii) The water level in the canal is controlled by the

supply source,

(iii) The Darcy's law and the Dupuit's hypothesis are

valid for flow in the aquifer.

4.2.1 Evaluation of Constants C0 and C0
Z 3

The constants C2 and Cg, which appear in Equation

(4.1), are evaluated by the following procedure:

According to Muskat, if the water table is at a

depth of 1.5 (B + 2H) below the water surface in the

canal, the water table can be considered to be at large

depth. According to Kozeny, the seepage from a strip

source of width B, and a depth of water H, when water

table is at very large depth is given by:

<*1 - K(B+2H)lr ...(4.2)

Applying the condition proposed by Muskat and Kozeny in

Equation(4.1), [i.e., when hp - h(o,n)=l.5(B+2H), Q

K(B+2H)lr] the following relation is obtained:

K(B+2H)lr= 0.3C2lr[l-exp{-1.5C3(B+2H)}] ...(4.3)

Hence, C2 = K(B+2H)/[0.3-0.3exp{-l.5Cg(B+2H)}] ...(4.4)
Substituting C2 in Equation (4.1),

K(B+2H) lr[l-exp{-C (h -h(o,n))}]
Q^ (n) •• • , 2—£_

[1-exp { -1.5C3 (B+2H)}] ...(4.5)
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For small difference between hr and h(o,n) the
M9h« order terms of the polynomial expansion
°f the exponential term appearing in Bquation (4.5)
can be neglected and the recharge rate can be
approximated to be:

Q, <n» -l!1^^^2iJ^!°^> 1
r [1-exp] -|.b C3(B+2h )} ]

or

K(B+2H) 1 C0[h - h (o n)1Q (n) a r 3L r " [°>n> J
lT [1-exp{ -i.5 c3 (B + 2H) } J --.(4.6)

It could be seen from Fig. (2.18) that for small

difference in the potentials at the canal and aquifer,
the exchange flow rate has a linear relation with
the potential difference. The linear relationship
proposed by various investigators is of the form:

Qlr U) =rr t\ -h(0fn)i ...(4.7)
in which, Pr is the constant of proportionality.
Though the constant of proportionality has been
derived by various investigators for steady state
condition, it has been applied to unsteady flow
on the basis that an unsteady state can be approximated
to be succession of steady state conditions. Equating
Equations (4.6) and (4.7),

C3= rr[l-exP{ -1.5C3(B+2H)} ]/[Klr(B+2H)]
•••(4.8)
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constant C-. can be evaluated by an iteration pro

cedure from the above equation. Knowing C,, C„ can

be obtained from Equation (4.4).

If Muskat's condition is relaxed and if it

is implied that flow from the canal becomes vertically

downward at a very large depth below the canal,

it could be derived from Equations (4.1) and (4.2)

that C2 = K(B+2H)/0.3 as the exponential term in

Equation (4.1) would tend to zero for very large

value of h -h(o,n). The other constant could be

derived to be :-

C3 = rr/{ K<B+2H)l.c }

4.2.2 Estimation of unsteady seepage from the canal

For a homogeneous aquifer, if the canal stages

and canal section in different reaches are not vary

ing from each other, the recharge rates from all

canal reaches during a particular time period are

equal. Let the time span be discretised by time-

steps of equal duration and let during a particular

time - step y , the recharge rate from unit length

of the canal be constant and denoted by Q(y)- With

these assumptions the hydraulic head h(o,n) can

be written as:

n

h(o,n) =H+E Q(y)S(o,n-Y+D ...(4.9)
Y = 1
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in which 6 (.,.) are discrete kernel coefficients for

water table rise under the canal and H is the initial

water table height before the onset of recharge. Discrete

kernel coefficients «(.,.) are computed as follows:

The width of the strip source from which the recharge

is taking place is, B. If the recharge takes place at

unit rate per unit length of the strip, the rate of recharge

per unit area would be 1/B. Let the response of the aquifer

due to continuous uniform excitation, at a rate of 1/B

per unit area and per unit time, through the strip source of

infinite length ,be designated by U(x,t). The expression

for U(x,t) can be obtained from Equation (3.7) and (3.10),

replacing K by 1/B and (B/2+H) by B/2. Thus, for x< -B/2
and,x ^B/2,

U(x,t) = F(x,B,t) -^ .[ /(X2).B]
and for -B/2 <x 4E/2 ,

U(x,t) = F(x,B,t) -^ [x2+B2/4]
where

F(x,B,T) = -|| Erf tX+B/2 ] _ _°Lt Erf rX-B/2
2BT y(4at) J 2BT r L J

/(4at)

+ j~ (x+B/2)2Erf[^±5/2]
/(4a t)

- j~ (x-B/2)2 Erf [X"B/2 ]
/(4at)

+/iatl (x+B/2 ,e r_(x+B/2 fMa t)]
2BT/7I

/(at) o
" " (x-B/2) exp [- (x-B/2 )7(4 at)] ...(4.10)

2BT/,f
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TT unit recharge per unit length of the recharging

strip takes place during the first unit time period and

no recharge takes place thereafter, the response of the

aquifer, 5(x,n), at the end of n time step is given by:

6(x,n) • U(x,n) - U (x,n-l), for n>l

and 6(x,l) = U(x,l), for n=l

Thus,

S(x,n) = F(x,B,n)-F(x,B,n-l),for n>l ...(4.11)

6(x,l) = F(x,B,l)--|^ /?fx")2, ...(4.12)
for x ^-B/2 and x >B/2

= F(x,B,l) - 2^f(x2+B2/4), ...(4.13)
for -B/2 < x s B/2

The unsteady seepage problem could be solved with

Muskat's condition imposed or relaxed. In the following

paragraphs the solution to the seepage problem with

Muskat's condition imposed has been derived as follows:

On substituting h(o,n) from equation (4.'9) in

Equation (4.5), taking 1 to be equal to one, and

simplifying:-

l-Q(n) [1-exp {-1.5 C3(B+2H)}] / [K(B+2H) ]

_ n

= exp[-C3{D.-ar(n)-H - I Q(y)<5(0 ,n-7+l)} ]
Y=l

...(4.14)

in which Di is depth to impervious stratum measured from

a high datum and a (n) is drawdown of the water level

in the canal measured from the same datum. Taking

logarithm of terms on either side,



138

loge [1-Q(n){ 1-exp (-1.5Cg(B+2H)) } /{ K(B+2H) }]
_ n

= - Cg{ D.-ar(n) -H - z Q(Y)6 (o.B-y+l)} ...(4.15)
Y=l

Splitting the summation into parts and rearranging:

loge [l-Q(n) {1-exp (-1.5Cg(B+2H))}/{K(B+2H) }]

-C3 Q(n)6 (o,l)

n-1

- - C3{D.- ar(n) -H -I Q(y) S(0,n- Y+1) } ...(4.16)
7=1

Q(n) can be solved in succession starting from time

step 1 by an iteration procedure. The following

simplification can be adopted without much loss of

accuracy when the water table is at very shallow depth

below the canal bed. K(B+2H) being the maximum

recharge rate per unit length of the canal when water

table is at large depth, the ratio Q(n)/[K(B+2H)] is

less than 1. Expanding the logarithmic term and

neglecting higher order terms,

- Q(n){l-exp(-1.5C3(B+2H)) }/[K(B+2H)]

- 1/2 [ Q(n){l-exp (-1.5C3 (B+2H))} /(K(B+2H)}]2
-C3Q(n)6(0,l)

n-1

= -C3[D.- ar(n)-H - I Q(Y) 6(0,n-Y+l)] ....(4.17)
T=l

Equation (4.17) is a quadratic equation in Q(n) and can

be written in the form:

a Q2(n) + b Q (n) + c = 0

Hence,

Q(n) is given by ,
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Q.(n) = [ -b + /fb2 - 4ac)]/(2a) ...(4.18)
where,

a = 0.5 [1-exp {-1.5 C3 (B+2H) }f /[K(B+2H) ]2

b = [1-exp {-1.5Cg(B+2H) }]/[K(B+2H)J+C^ (o,1),and

C = " C3 [Di "CTr (n) ' K" Z~ Q(Y)(S (°>n-Y +1)]
Y=l

The solution to the seepage problem with Muskat's

condition relaxed is derived as follows:

When Muskat's condition is relaxed, the constants

C2 and C are given by:

C2 = K (B+2H) / 0.3, and

C3 = rr /[K(B+2H)Lr ]

Substituting for C2 in Equation (4.1) and considering

the reach length, Lf , to be equal to 1, the following

expression is obtained:

Q(n) = K(B+2H)[l-exp {-C3(hr -h(o,n))}] ...(4.19)

Substituting for h (o,n) from Equation (4.9> in

Equation (4.19 ), taking h = [D. -a (n)], and

rearranging the terms,

Q(n)/ {K(B+2H) }= l-exp[-Cg {D -ff (n) - f

n

- Z Q(y) 6(o,n- y+1) }]

or 1-Q(n)/{K(B+2H.)} = exp[Y-C„ {D. - a (n) -H

n

- Z Q(y)6 (o,n- y +1)} ]
Y-l
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Taking logarithm of terms on both sides,and simplifying,
loge [1- Q(n)/K(B+2H)] - C3Q(n) 6(o,l)

n-1

- C3[Di-ar(n)-H - Z Q(Y) 6(o,n-Y+l)] ...(4.20)
Y=l

Q(n) can be solved in succession starting from time -
step 1.

Expanding the logarithmic term in Equation (4.20)
and neglecting higher order terms, the approximate
equation for seepage loss is given by :

-Q(n)/[K(B+2H)]-l/2[Q(n)/{K(B+2H)}]2 -Cg Q(n) 6(o,l)
_ n-1

- -C3[D.-ar(n)-H - I Q(Y) 6(o,n-Y+l)] ...(4.21)
Y=l

The above quadratic equation can be expressed as:

a2Q2(n) + b1Q(n) + ^ = 0, hence

Q(n) - [-b1+/(bj - 4a1c1)]/2a1 ...(4.22)
where,

*j " 0.5/[K(B+2H)]2, b1=l/[K(B+2H)] ♦ CQ«(o.l) '

n-1

Cl ~ ~C3 tDi"^r(n) - H - z Q(Y) 6(o,n-Y+l)]
Y=l

Once the Q(n) values are obtained, the evolution

of water table at any point can be evaluated using the
following relation:-

n

S(x,n) = z Q(Y)fi (X,n- Y+l),
Y=l

where, S(x,n) is the rise in water table at location
x, at the end of time step n.
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If the relationship between the flow rate
and the potential difference is linear, the seepage
rate can be predicted by the stream aquifer inter
action model of Morel-Seytoux and Daly M975) as
described below:-

The potential h(o,n) in the aquifer below the
canal bed is given by Equation (4.9). Substituting
for h(o,n) in Equation (4.7) and rearranging,

Q(n)/rr ^-II+joiT) 6(o,n-Y+D] ...(4.23)
«(o.n- Y+1) are the discrete kernel coefficients computed
from Equations (4.10) through (4.13). Splitting the
summation into two parts,

0(n)/Tp. hx-[S +0(n)«(o,1) ♦ V Q(Y,s(o,n_y+,,,
or, y '

Q<n) =̂ "{3+ XQ'y) s(o-v+')}]/[ !♦«,o.„]
r

••• (4.24)Q<n» can be computed in succession starting from"time
step 1.

In particular for time step, 1,

Q(,,-"»r-»»'£««lo.li] ...(4.25)
^ce the Q(n) values' are obtained, the evolution of
water table at any point can be evaluated using the
following relation:-

n

S(x,n) = z Q(Y) 6(X,n-Y+ 1)
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4.3 Results and Discussions

The constant of proportionality, r , which relates

the seepage rate from a canal to the small difference

in the potentials at the canal and in the aquifer can be

determined by formulae proposed by several investigators.

A comparison of reach transmissivity values evaluated

by various formulae has been made to select the appropri

ate one for the present study of canal aquifer interaction.

The computations of reach transmissivity by for

mulae proposed by Morel-Seytoux, Herbert and Ernst have

been made for canals having vertical sides. Canals with

vertical sides have been chosen in order to eliminate

the dependence of width of water surface on the depth

of water in the canal so that the individual effect

of depth of water in the canal, and width of water surface

on reach transmissivity could be ascertained. The reach

transmissivity values for canals having different widths

and depths of water are given in Table (4.1) for an assumed

set of aquifer parameters. It is seen from the table

that the reach transmissivity, evaluated by the formula

given by Morel-Seytoux [Equation(2.39)] with characteristic

length equal to 5w , decreases with the increase in width

of the canal. With all other parameters remaining the



Table (4.1) - Comparison of reach transmissivity comouted
by different formulae evaluated JJrCOmputed
e-lOOOm, Lr(reach length)=10m, K=0.1m/day

Reach transmissivity
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Klr(0.5Wp+e) «lP/log[SMj irKlr/logfl^] vKlr/iQ^^l

(Modified
Ernst' s

Formula)

0.7069

0.7072

0.7073

0.8375

0.8380

0.8382

1.0273

1.0280

1.0283

1.1844

1.1853

1.1857

1.3285

1.3296

1.3301

1.6034

1.6050

1.6058

1.7403

1.7403

1.74 22

(Herbert's
Formula)

(m)
5W +0.5e

(m) (in) (Mbrel- (Ernst's
Seytoux 's Formula)
Formula)

15.0 3.0 21.0 1.6702 0.8126
15.0 1 .0 17.0 1.7329 0.7708
15.0 0.1 15,2 1.7493 0.7504

30.0 3.0 36.0 1.4971 0.9442
30.0 1.0 32.0 1.5394 0.9125
30.0 0.1 30.2 1.5593 0.8976

60.0 3.0 66.0 1.2446 1.1545
60.0 1.0 62.0 1.2728 1.1294
60.0 0.1 60.2 1.2860 1.1180

90.0 3.0 96.0 1.0694 1.3389
90.0 1.0 92.0 1.0896 1.3161
90.0 0.1 90.2 1.0990 1.3058

120.0 3.0 126.0 0.9407 1.5144
120.0 1.0 122.0 0.9559 1.4926
120.0 0.1 120.2 0.9629 1.4828

180.0 3.0 186.0 0.7643 1.8644
180.0 1.0 182.0 0.7738 1.8428
180.0 0.1 180.2 0.7781 1.8331

210.0 3.0 216.0 0.7013 2.0460
210.0 1.0 216.0 0.7013 2.0460
210.0 0.1 212.0 0.7090 2.0240

0.7276

0.6939

0.6773

0.8314

0.8067

0.7950

0.9906

0.9717

0.9632

1.1228

1.1068

1.0995

1.2437

1.2290

1.2223

1.4704

1.4570

1.4508

1.5810

1.5810

1.5679
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same, the seepage loss from a canal would increase with

increase in width of the canal. Therefore, the formula
suggested by Morel-Seytoux cannot be applied to relate

the seepage loss, and the difference in the potentials
at the canal periphery and in the aquifer under the canal,
without an appropriate assessment of the characteristic
length which represents the zone of influence.

When reach transmissivity is calculated by the
Ernst's modified formula [Equation(2.38) ], which is valid

for shallow water table condition (vide Bouwer, 1969),
it is seen from the Table (4.1) that the reach transmi

ssivity increases marginally with decrease in depth of
water in the canal, with all other parameters remaining
the same. This indication is contrary to the fact that

with decrease in depth of water in a canal, all other

parameters remaining same, the reach transmissivity'should
decrease.

The reach transmissivity computed by Ernst's formula

[Equation 2.34 )] and Herbert's formula [Equation(241)]
are sensitive to change in depth of water in canal and

the values of reach transmissivity increase with an incr

ease in depth of water or in the width of water surface

in the canal. Therefore, any of the two formulae viz.
the one given by Ernst and the other by Herbert can be
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used for computing the reach transmissivity. However,

a comparison of the results given in Table (4.1) shows

that the results given by Ernst modified formula and by

Herbert's formula are close to each other for the same

aquifer and canal parameters. Therefore, the Herbert's

formula for calculating reach transmissivity has been

chosen for the analysis in the present study. The

Herbert's formula is given by:

rr =7rKir/iog [ °-y+H) ]
(4.26)

where

lr = length of the reach,

e = saturated thickness of aquifer below the
bed of the canal,

H = depth of water in the canal, and

rr = radius of the equivalent semi circular
section of the canal.

The shape of canal for which Herbert's formula has

been derived is shown in Fig.(4.2). While calculating

the reach transmissivity for a trapezoidal shape of

canal, the equivalent r has been taken W / tt where W
1 P ' p

is the wetted perimeter of the canal. However

Herbert's formula can only be applied to cases for

which 0.5(e+H) > rr, otherwise the reach transmissivity
term would become negative.
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Canal

e + H

Aquifer

r~7~7-7-^-?-T^^
y~yr~z-r-7-7~r-T

Fig.4.2- Representation of partially pentratinq canal
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Before computing the seepage from a canal, which is

non-linearly dependent on the potential difference

between the canal and the aquifer, the two procedures

suggested in the analysis for determining the constants

C2 and C3, appearing in the Equation (4.1), have to be

examined. The parameters C2 and C3 are determined first

without imposing Muskat's condition and the time

variant seepage from a canal are found in succession

starting from time step 1 by an iteration procedure,

making use of Equation (4.20), for a known position of

initially rest water table. The rates at which seepage

would occur during the first time period corresponding

to different initial potential differences are shown in

Fig. (4.3). These seepage rates have been calculated

assuming the hydraulic conductivity of the aquifer

material to be O.lm/day. Since the time-step size has

been chosen to be one day, the seepage rates presented

in Fig.(4.3) are the rates during the first day after

the onset of seepage. It could be seen from the figure

that corresponding to an initial potential difference

of 100m, the seepage from the canal with 10m width and

2m depth of water is 1.38 m3/day. According to Kozeny,

if the water table is at a very large depth

below the canal bed, for K=0.1m/day, the seepage
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from a canal with 10m width and 2 m depth of water

will be 1.4m /day. It is seen from the figure that

seepage from the canal with 10m width and 2m depth

of water becomes approximately constant if the poten

tial difference is more than 8(B+2H). At potential

difference equal to 21m , the seepage rate from this
3

canal is about 0.86m/day. According to the experimen

tal finding reported by Muskat, the flow from a canal

becomes constant if the water table is at a depth

more than 1.5(B+2H) below the water surface in the

canal. The constants C2 and C3 should therefore

be evaluated imposing the condition that seepage

from the canal attains a limiting value when the

potential difference is equal to 1.5(B+2H).

Imposing the Muskat's condition i.e. the seep

age from a canal would tend to K(B+2H) if the. poten

tial difference is equal to 1.5(B+2H), the constant

C2 and C3 are determined by iteration. The exact

seepage rates at different time have been computed

using Equation (4. 16) by an iteration procedure.

The seepage that would occur during the first unit

time period for different initial potential difference

is shown in Fig.(4.4) It could be seen from the figure

that the non-linearity gets pronounced with increase
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in. the width of the canal. It could also be noticed

that at small potential difference the relationship

between seepage and potential difference is very much

linear. However, the range of lower potential

difference over which the relationship is linear,

decreases with increase in width of the canal.

The variations of the dimensionless seepage

quantity, Q(t)/(KH), from a trapezoidal canal with the

dimensionless time factor, Kt/(2(pH), have been presented

in Figs. (4.5) and (4.6) for three different positions

of the initially rest water table. The results

presented in Fig. (4.5) have been computed for B/H=0.03

and H/H - 0.003 and those presented in Fig. (4.6) have

been obtained for B/H = 0.06. The canal banks have a

1:1 slope. It is seen from the figures that the seepage

rate declines faster for a canal with deeper water table

position. If the water table before the onset of

seepage lies at a depth of 1 m below the canal bed i.e

for (hr-H)/H = 0.004, the reduction in non-dimensional

seepage rate during the dimensionless time interval from

Kt/(2(pH) = 1x 10"2 to Kt/(2<pH) = 1x 10"1 is about 0.3
_3

x 10 • If the water table lies initially at a depth

of 5m below the canal bed i.e. for (h -H)/H=0.008, the

reduction in seepage rate during the above period is

about 0.7x10 .It is also seen that the rate of decrease



U103 IxlO2
Kt/(2(J)H)

Fig.^-Variation %™J™™™^*W**~* per unit length of atrapezoidal canal with non-dimensiona,
amerent initial potential deference between canal and aquifer for B/H=0.03 and H/H =0-003

en



8xl63

Kt/2(J>H

Fig.C.6- Variation of non dimensional seepage losses per unit length of a trapezoidal canal with non-dimensional
time for different initial potential difference between canal and aquifer for B/H=0 06 and H/H=0003
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increases with time for any initial position of the

water table before onset of seepage.

A comparison of results obtained by exact method

with Muskat's condition imposed, and by exact and

approximate method without Muskat condition imposed has

been made in Table (4.2). The corresponding results

assuming linear relationship between seepage and

potential difference have also been presented in the

table. It could be seen from the table, that for water

table lying within 5 m below canal bed, the linear

relationship could be adopted to predict the time

variant seepage loss from a canal. Also, if the water

table lies within 5 m below a canal bed, one can predict

the seepage loss which is non-linearly related to

potential difference by the approximate method.

The water table evolution, if the seepage is non-

linearly dependent on the potential difference, has-been

shown in Fig.(4.7). The corresponding water table

position if the seepage loss obeys the linear relation

is also shown in the figure. It could be seen that, if

the water table lies within 5 m below the canal bed,

there is no appreciable difference in water table

evolutions whether the seepage rate obeys the linear or

the non-linear law.
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lable 4.2 Comparison of seepage rates which are nonlinearly and
linearly dependent on potential difference between canal
and aquifer estimated for B=30m, H=3m and (h -H )=4m

*??"" . Nondimensional seepage rate per unit length of
dimensional canal [Q(n)/(KH)j y
time factor

Kt/(2<J)H) Nonlinearly Nonlinearly
dependent on dependent on
potential potential
difference difference
estimated by estimated by
approximate exact analy-
analysis with sis with
Muskat's Muskat's
condition condition
relaxed relaxed

(10~3) do"3)( 10 1i

0 .005

0 .010

0 .020

0 .030

0 .040

0 .050

0 .075

0 . 100

0 . 150

0 .200

0 .250

0 .300

0 350

0 400

0 450

0 500

0 750

1 000

1 250

1. 500

2. 000

2. 500

3. 000

3. 500

4. 000

4. 500

5. 000

3.0699 3.0633
3.0534 3.0472
3.0301 3.0231
3.0123 3.0055
2.9975 2.9919
2.9845 2.9788
2.9570 2.9518
2-9342 2.9288
2.8964 2.8916
2.8651 2.8606
2-8380 2.8335
2-8138 2.8086
2.7918 2.7867
2-7716 2.7667
2-7528 2.7480
2-7352 2.7315
2.6614 2.6572
2.6006 2.5968
2.5487 2.5452
2.5032 2.5000
2.4254 2.4226
2.3600 2.3575
2-3032 2.3009
2-2529 3.2508
2-2077 2.2057
2. 1664 2. 1647
2.1286 2.1270

Nonlinearly Linearly
dependent on dependent on
potential potential
difference difference
estimated by
exact analy
sis with

Muskat's

condition

imposed

(10~3) (10~3)

3. 1533 3. 1993
3. 1356 3.1806
3.1108 3.1543
3.091 1 3.1343
3.0757 3.1176
3.0618 3. 1030
3.0317 3.0722
3.0071 3.0465
2.9669 3.0043
2.9333 2.9694
2.9043 2.9392
2.8782 2.9123
2.8543 2.8879
2.8326 2.8655
2.8126 2.8447
2.7940 2.8252
2.7144 2.7439
2.6497 2.6771
2.5947 2.6204
2.5466 2.5708
2.4646 2.4863
2.3958 2.4156
2.3362 2.3544
2.2835 2.3004
2.2362 2.2520
2.1932 2.2080
2.1537 2. 1677
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Table 4.2 Comparison of seepage rates which are nonlinearly and
linearly dependent on potential difference between canal
and aquifer estimated for B=30m, H=3m and (h -H )=6m.

Non-

dimensional

time factor
Kt/(2<t>H)

(10 ')

0 005

0 010

0 020

0 030

0 040

0 050

0 075

0 100

0 150

0 200

0 250

0 300

0 350

0 400

0 450

0 500

0 750

1 000

1 250

1 500

2 .000

2 .500

3 .000

3 .500

4 .000

4 .500

5 .000

Nondimensional_seepage rate per unit length of
canal [Q(n)/(KH)]

Nonlinearly
dependent on
potential
difference

estimated by
approximate
analysis with
Muskat's

condition

relaxed

M0~3)

Nonlinearly
dependent on
potential
difference

estimated by
exact analy
sis with

Muskat's

condition

relaxed

(10~3)

Nonlinearly
dependent on
potential
difference

estimated by
exact analy
sis with

Muskat's

condition

imposed

( 10-3)

Linearly
dependent on
potential
difference

(10 J)

4.5165 4.4940 4.6942 4.7965
4.4930 4.4716 4.6678 4.7685
4.4600 4.4392 4.631 5 4.7291
4.4347 4.4 146 4.6030 4.6992
4.4136 4.3937 4.5793 4.6741
4.3951 4.3746 4.5584 4.6522
4. 3561 4. 3363 4.5 156 4.6060
4.3236 4. 3055 4.4789 ." 4.5676
4.2698 4.2526 4.4194 4.5043
4.2252 4.2090 4.3701 4.4520
4. 1865 4.1706 4.3276 4.4067
4.1520 4.1356 4.2894 4.3664
4. 1206 4.1059 4.2550 4.3299
4.0917 4.0763 4.2229 4.2963
4.0648 4.0506 4. 1939 4.2651
4.0396 4.0262 4. 1659 4.2359
3.9338 3.9207 4.0489 4. 1 141
3.8464 3.8345 3.9535 4.0140
3.7718 3.7609 3.8724 3.9290
3.7063 3.6961 3.8013 3.8546
3.5942 3.5853 3.6801 3.7280
3.4997 3.4918 3.5783 3.6221
3.4175 3.4103 3.4902 3.5304
3.3445 3.3381 3.4122 3.4494
3.2788 3.2729 3.3421 3.3768
3.2189 3.2135 3.2783 3.3108
3. 1639 3.1588 3.2199 3.2504
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and aquifer estimated
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rates which are nonlinearly and
potential difference between canal
for B=30m, H=3m and (h -H )=8m.

Non- Nondimensiona1 seepage rate per unit length of
dimensional canal [Q(n)/(KH
time factor

Kt/(2<|>H ) Nonlinearly Nonlinear iy. Nonlinearly Linearly
f dependent on dependent on dependent on despendent on

potential potential potential pcitential
difference difference difference di.fference
estimated by estimated by estimated by
approximate exact ana ly- exact analy
analysis with sis with sis with
Muskat's Muskat's Muskat's

condition condition condition
relaxed relaxed imposed

do-1) (10"3) no"3.) (10~3) (10"3)

0.005 5.9122 5.8623 6.2113 6.3921
0.010 5.8826 5.8331 6. 1776 6.3549
0.020 5.8407 5.7926 6.1288 6.3024
0.030 5.8088 5.7618 6.0921 6.2625
0.040 5.7820 5.7367 6.0614 6.2291
0. 050 5.7586 5.7142 6.0347 6. 1999
0.075 5.7091 5.6664 5.9782 6. 1384
0. 100 5.6678 5.6260 5.9301 6.0872
0. 150

0.200
5.5995

5.5429

5.5589

5.5050

5.8532

5.7884
6.0029

5.9333
0.250 5.4936 5.4569 5.7326 5.8729
0. 300 5.4497 5.4145 5.6828 5.8192
0.350 5.4097 5.3757 5.6378 5.7705
0.400 5.3729 5.3396 5.5956 5.7258
0.450 5.3386 5.3059 5.5574 5.6843
0. 500 5.3065 5.2747 ' 5.5213 5.6454
0.750 5.1714 5.1419 5.3683 5.4832
1.000 5.0596 5.0328 5.2434 5.3498
1 .250 4.9641 4.9394 5.1369 5.2365
1.500 4.8801 4.8571 5.0436 5.1374
2.000 4.7361 4.7159 4.8844 4.9688
2.500 4.6145 4.5961 4.7508 4.8276
3.000 4.5086 4.4923 4.6347 4.7055
3.500 4.4146 4.3998 4.5320 4.5976
4 .000 4.3297 4.3161 4.4397 4.5008
4. 500 4.2523 4.2398 4.3557 4.4130
5.000 4. 1810 4. 1694 4.2786 4.3324
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Table 4.2 Comparison of seepage rates which are nonlinearly and
linearly dependent on potential difference between canal
and aquifer estimated for B= 60m, H=3m and (h -H )=4m.

Non-' Nondimensiona L seepage rate per unit length of
dimensional canal [Q(n)/(KH)]

time factor

Kt/(2cj,H) Nonlinearly Nonlinearly Nonlinearly Linearly
dependent on dependent on dependent on dependent on
potential potential potential potential

•
difference difference difference difference
estimated by estimated by estimated by
approximate exact analy exact analy
analysis with sis with sis with

Muskat's Muskat's Muskat's

condition condition condition

relaxed relaxed imposed

dO"1) (10"3) no"3) dO"3) dO"3)

0.005 3.7438 3.7400 3.7882 3.8488
0.010 3.7199 3.7170 3.7630 3.8228
0.020 3.6855 3.6824 3.7280 3.7855
0.030 3 .6 5 •) 2 3.6569 3.7008 3.7570
0 .040

0.050
3.6371

3.6 178

. 3.6350

3.6148
3.6775

3.6577

3.7332

3.7 122
0.075 3.5770 3.5746 3.6158 3.6682
0.100 3.5432 3.5413 3.5804 3.63 17
0. 150 3.4874 3.4851 3.5232 3.57 16
0 .200 3.4414 3.4389 3.4759 3.5222
0. 250 3.4016 3.3998 3.4451 3.4795
0 .300 3.3662 3.3647 3.3987 3.4416
0. 350 3.3342 3.3325 3.3652 3.4073
0.400 3.3047 3.3037 3.3351 3.3758
0 .450 3.2775 3.2764 3.3070 3.3467
0 .500 3.2520 3.2507 3.2809 3.3196
0 .750 3. 1462 3.1439 3.1713 3.2071
1 .000 3.0595 3.0574 3.0823 3.1150
1 .250 2.9861 2.9842 3.0072 3.0374
1 .500 2.9221 2.9203 2.9417 2.9698
2 .000 2.8138 2.8122 2.8310 2.8558
2. 500 2.7235 2.7221 2.7390 2.7612
3 .000 2.6459 2.6447 2.6599 2.680 1
3.500 2.5776 2.5766 2.5904 2. 6088
4. 000 2.5166 2.5156 2.5283 2.5453
4. 500 2.4615 2.4605 2.4723 2.4880
5 .000 2.4111 2.4103 2.4211 2.4357

•
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Table 4.2 Comparison of seepage rates which are nonlinearly and
inS I Y-fdepend!nt on Potential difference between canal
and aquifer estimated for B=60m, H=3m and (h -H )=6m

^°n" . , Nondimensional_seepage rate per unit ]enqth ofdimensional canal [Q(n)/(KH)] H J-engrn or
time factor

Kt/(2<))H) Nonlinearly Nonlinearly Nonlinearly Linearly
dependent on dependent on dependent on dependent on
potential potential potential potential
difference difference difference difference
estimated by estimated by estimated by
approximate exact analy- exact analy-
analysis with sis with sis with
Muskat's Muskat's Muskat's
condition condition condition
relaxed relaxed imposed

(10"1> dO"3) no"3) „fl-3, ,'-3,do J) no-

0.005 5.5398 5.5271 5.6335 5.7697
0.010 5.5053 5.4941 5.5976 5.7308
0-020 5.4557 5.4446 5.5456 5.6750
X*030, 5'4177 5.4073 5.5061 5.6322
0.040 5.3858 5.3750 5.4722 5.5964
°-050 5.3579 5.3476 5.4432 5 5651
0-075 5.2990 5.2896 5.3819 5*4992
0.00 5.2500 5.2408 5.3306 '
°'150 5.1693 5.1610 5.2455 5 3544
0-200 5.1026 5.0942 5.1760 5*2803
0-250 5.0450 5.0374 5.1164 5 2163

•300 4.9936 4.9862 5.0627 5*1595
2*4tf2 I'lVA 4-9395 5'0139 5'1082X*J?S 4.9044 4.8976 4.9695 5.0611
0-450 4.8649 4.8586 4.9280 5 0174
0-500 , 4.8279 4.8214 4.8904 4*9767
Vlll \'%ll\ 4-6672 4'7290 4'8082\'\\l J^474 4.5415 4.5979 4.6702

•250 4.4404 4.4350 4.4872 4.5539
I'nSn 4'3469 4.3420 4.3906 4.4527
2-000 4.1885 4.1843 4.2271 4.2819
ylZ \'l\\\ 4'°526 4-0911 4. 1401• \-\\\\ 3.9392 3.9740 4.0184
3-500 3.8422 3.8393 3 8711 1 qiiqtill \-l^\ 3.7499 IVlll ' l:l\H
5*000 I'Zlii I'6691 3-6961 3'73065-°°° 3.5973 3.5951 3.6202 3.6523
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Table 4.2 Comparison of seepage rates which are nonlinearly and
linearly dependent on potential difference between canal
and aquifer es timated for B=60m, H=3m and (h -H )=8m.

r

Non- Nondimensiona L seepage .rate per unit length of
dimensional canal IQ(ri) / (K H) ]
time factor

Kt/(2*H) Nonlinear]-y - Nonlinear iy Nonlinearly Linearly
dependent on dependent on dependent on dependent on
potential potential potential potential
difference difference difference difference

estimated by estimated by estimated by
approximate exact ana ly- exact analy
analysis with sis with sis with

Muskat's Muskat's Muskat's

condition condition condition

relaxed relaxed imposed

(10"1) (10~3) dO"3) (10"3) no"3)

0.005 7.2901 7.2613 7.4487 7.6883
0.010 7.2458 7.2191 7.4016 7.6364
0.020 7.1821 7.1562 7.3332 7.5621
0.030 7. 1332 7.1083 7.2821 7.5052
0.040 7.0923 7.0676 7.2378 7.4575
0.050 7.0564 7.0318 7.2002 7.4158
0.075 6.9806 6.9578 7.1202 7.3280
0. 100 6.9176 6.8955 7.0527 7.2551
0. 150 6.8135 6.7929 6.9435 7. 1352
0.200 6.7276 6.7074 6.8524 7.0365
0.250 6.6532 6.6339 6.7737 6.9513
0. 300 6.5869 6.5685 6.7034 6.8757
0. 350 6.5269 6.5100 6.6402 6.8072
0. 400 6.4717 6.4552 6.5830 6.7445
0.450 6.4205 6.4046 6.5289 6.6864
0.500 6.3727 6.3571 6.4787 6.6322
0. 750 6.1733 6.1585 6.2681 6.4077
1.000 6.0094 5.9962 6.0965 6.2239
1.250 5.8704 5.8584 5.9513 6.0690
1 . 500 5.7490 5.7381 5.8247 5.9342
2.000 5.5429 5.5336 5.6101 5.7066
2. 500 5.3707 5.3626 5.4313 5.5177
3.000 5.2223 5.2151 5.2775 5.3557
3. 500 5.0913 5.0849 5. 1420 5.2135
4 .000 4.9472 4.9684 5.0209 5.0867
4 .500 4.8680 4.8628 4.9114 4.9723
5 .000 4.7709 4.7662 4.8114 4.8679



n

a

2.8

2.4

2.0

1.6

a>

a 1.2
5

0.8

0-4

0.0
- 400

B = 30 m
H =• 3 m

K = 1.0 m / d a y

<D = .1 m

e = 1005m

H = 1000 m

T — 1000 m2/day

-L

-320

100 Days

90 Days

10 Days

1Day

- 240 -160

Legend

Non-linear case.

Linear case...

X (m)

161

240

Fig.4.7-Water table rise across a canal predicted using non-linear and
linear relationships between seepage loss and potential difference
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difference upto 8 m, the linear relationship

between the seepage loss and the potential

difference can be used to evaluate seepage

loss from canals having non dimensional width,

B/H upto 0.06 .
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4.4 Conclusions

The following conclusions are drawn on the

basis of the study presented in this chapter:

1. A numerically tractable exact- solution has

been obtained for predicting time variant seepage

which is non-linearly dependent on potential

difference between the canal and the aquifer.

The Herbert's formula of reach transmissivity

is found to be appropriate to be used in a

canal aquifer interaction problem. However,

this formula is applicable if the wetted perimeter

of the canal is less than 1.5 times the thick

ness of the aquifer below the canal bed.

The parameters appearing in the non-linear

relationship proposed by Rushton and Redshaw

should be evaluated making use of the condition

that seepage from a canal attains its maximum

rate when the potential difference is equal

to or more than 1.5 (B+2H), where, B is the

width of the canal and H is the maximum depth
of water in the canal.

With increase in the width of canal, the non-

linearity in the canal aquifer interaction

relationship gets pronounced. For potential

2.

4.
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INTERFERENCE OF SEEPAGE FROM TWO PARALLEL CANALS WHICH

ARE HYDRAULICALLY CONNECTED WITH THE AQUIFER

5.0 Introduction

Evolution of water table due to seepage from two

parallel canals, which were not hydraulically connected
with the aquifer, has been analysed in chapter 3. In
a canal command area the watertable is likely to be present
at a shallow depth below the canal bed. Considering a
nonlinear relationship between the seepage rate and the

potential difference between the canal and the aquifer,
a canal aquifer interaction problem for a shallow water

table position has been analysed in chapter 4.The study
presented in chapter 4 has shown that for shallow water

table position the relationship is approximately 'linear.
Using discrete kernel coefficients and reach transmissi
vity constant, a complex stream aquifer interaction prob
lem .has been analysed by Morel-Seytoux and Daly (1975)
for finding an expression of recharge from a partially
penetrating river. A linear relationship between exchange
flow rate and the difference in potentials at the stream
and in the aquifer has been assumed by them. In the present
chapter using discrete kernel coefficients and reach
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transmissivity constant, interference of seepage from

two parallel canals which are hydraulically connected

with the aquifer has been studied.

5.1 Statement of the Problem

Two parallel canals have been constructed in a

homogeneous ,isotropic ,porous medium of finite depth and

infinite lateral extent. The widths of canals at water

surface are B.(n) and B2(n) and the depths of water in

the canals are H.(n) and H„(n) as shown in Fig.(5.1).

The depths H..(n) and H„(n) may vary with time (n) depend

ing on the supply from the source. The canal cross sections

being trapezoidal, B.(n) and B„(n) vary with H. (n)

and H„(n) respectively. The water table lies at a shallow

depth below the canal beds. It is required to find the

seepage from the canals with time and the evolution of

watertable at a section across the canals.

5.2 Analysis

Let both the canals be divided into a number of

identical reaches, say, R as depicted in Fig.(5.2). Let

the seepage rate from a canal reach be linearly propor

tional to the difference in the potentials at the peri

phery of the canal reach and in the aquifer below the

canal bed .
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. The seepage rate from the rth reach of the first
canal during the nth unit time -step can be expressed
as

Q,<r.n) = - ri(r,n)[a1(r,n)-si(r,n)] :..<5.1)
where,

r^rvn) - reach transmissivity of the rth reach of
the first (left) canal during the nth unit time
step,

S,(rfnJ = the drawdown at the end of nth unit time

step under the rth reach of the first canal
measured from a high datum, and

a-,(r,n) = the drawdown to water level in the rth reach

of the first canal measured from the high
datum.

The drawdown under any reach at the end of nth

unit time-step is caused due to seepage which occurred
upto the end of nth unit time-step from all the reaches
of both the canals.

Hence,

Sl(r,n) -d.-h -^ ? Q,(P.Y)«<r.1,p,l,n-Y+1)
P T^r

n

- 2 Q,(r,Y) *[r,.1fr,1fB'(Yl-, (n-y+1)]

R n

"p=1 Yf, Q2(P'Y) «(r,1,,p, 2,n-Y+1) ...(5.2)
in which,
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Fig.5.1-Schematic section of a parallel canal systystem
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Fig.5.2-Division of the canals into identical reaches from which
seepage is taking place

166



168

Di - depth to impervious stratum measured from a high

datum as shown in Fig.(5.1),

H = initial saturated thickness of the aquifer before

the onset of recharge,

Q,(fi,yU seepage during Yth unit time -step from thepth
reach of the first canal,

Q2( p, yj = seepage during Yth unit time -step from the
p reach of the second canal,

6[r, 1rrr 1rB1 (Y) ,(n- Y+D] = discrete kernel coefficient

for water table rise at the end of (n-Y+1) th
unit

time -step under the rth reach of the first canal

in response to unit recharge during time-step y from

the r reach of the first canal when the canal

width was B (Y),

6( r,i, p,1,m) = discrete kernel coefficient for water
P F r

table rise at the end of Mth unit time-step under

the rth reach of the first canal in response to
unit recharge during the first time period from
the pth reach of the first canal,

6(r,1, p,2,M) = discrete kernel coefficient for water

table rise at the end of Mth unit time-step under
the rth reach of the first canal in response to
unit recharge during the first unit time period
from the p reach of the second canal.

Substituting the expression for S^r.n) in Equation
(5. 1) and-rearranging ,



Q.,(r,n)
* o (r,n) - D .+ H

- lyr.n) 1 ±
R n

+ E 2 Ql(p,Y)Mr,1,p,l,n-Y +1 ')
p=1 y=1

P f4 r
n

+ E Q^^y) 6[r, 1rr,1A (Y),n-Y+1 ]
Y= 1 '

*; Q2 (P,Y)«Cr,1, P,2,n-Y*1) ...(5.3)
R n

E E

P = 1 Y = 1

Splitting the temporal summation into two parts, one
part containing the summation upto (n-1)th term and the

other part the n^1 term, and rearranging ,Equation (5.3)
simplifies to:

Q^r.nX-l/ r] (r,n)-6 [r, 1,r, 1,B] (n) , 1]}
R

- E Q^p.n) 6(r,1,p,1,i)
p-1

^ r . -

R

- E Q (p, n)6(r,1,p,2,l)
P=1

=a1 (r,n)-Di +•H

R n-1

+ 2 I Q1(p,Y)6(r,1,p,1,n-Y^1)
P=1 Y = 1

P7* r
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n-1

Y

+ E Q^r, Y )6 [r,1, r ,1,B.(Y), n-Y+1 ]
Y = 1 I

170

R n-1

E E

P= 1 Y=1
+ *1, „i, Q2(P'Y) ««'.1i P.2, n-Y+1) ...(5.4)

The seepage loss from the rth reach of the second canal
during the nth time-step is given by the following equation
which is similar to Equation (5.1);

Q2(r,n) = -r2 (r,n) [a2(r,n)-s2(r,n) ] ...(5.5)
where,

T2 (r,n) = reach transmissivity of the rth reach of the

second canal during nth unit-time step,
S2 (r,n) = the drawdown at the end of nth unit time-step

under the rth reach of the second canal
a2(r,n) = the drawdown to water level ±n the rth reach

of the second canal measured from the high
datum.

The drawdown, S2(r,n) is given by the expression:

S2(r,n) = D.- H -E EQ <.p # ,fi {r 2p , _y
P =1Y=1

R n

~p=1 Z=1Q2(P'Y) «(r,2,P,2, n- Y+1)
P^r

n

\l, Q2(r'Y) «[ r,2,r,2,B2(Y), n-Y+1 ] ... (5.6)

where

6(r,2,p ,1, m) = discrete kernel coefficient for water

table rise at the end of Mth unit time

step under the rth reach of the second



171

canal in response to unit recharge during

first time -step through the pth reach

of the first canal,

6(r,2,p,2,M) = discrete kernel coefficient for water

table rise at the end of Mth unit time

step under the rth reach of the second

canal in response to unit recharge during

first unit time period from the pth

reach of the second canal.

Incorporating the expression for S2(r,n) in Equation(5.5)
and splitting the temporal summation into two parts and
rearranging,

Q2(r,n) {-1/ r2(r,n) - fi£r,2,r,2, B2(n), 1] }

R

"pil °2 ( P"n) 6 (r'2' p' 2'U
p/r

R

- JE Q^ P,n) 6(r,2, p,1,1)

= a„(r,n) -D.+H
™ 1

R n-1

+p=Z1 Y=1 Q1(P'Y) 6(r'2'P' l.n- Y+ D



R n-1

+p=1 Y-1 Q2(p'Y) 6(r'2'P ^,n-Y +1
P f r
n-1
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+ E Q2(r,Y)6 [r,2,r,2,B (Y), n-
Y =1 Y + 1] ...(5.7)

According to Morel-Seytoux the discrete k.ernel coeffi
cients are given by the following relations:

£-] - e r-^J
4aM 1 4a(I

(p^r)

<S(r,1, p,l,M) = 1 fE,r. rP i _ E r,drP;. n
4ttT la1l 4rvM J fi1L4a(M-1)J }

S{ r,1,r, 1,B (N),M]= -—J , /{ Prf , ^r
1 *L B.(N) JX Erf [ •=

o AJch I4/a (M-Y)
] •

Erf [
B1 ( N)

4/a (M-Y)

2
6(r,2,p,1, M) = —1_ {E f_rp , _ drp

4ttT 1 I 4a M J " E1 ' 4a(M-fV]>

j2 2
<S(r, 1,p,2,M)= ^-^{E r rg i P r drP n4ttT l*1 I 4aM J - E1*4dTO^}

d h2r _ r rn . a,6(r,2 ,p , 2, M) = ^1 e,[-£P- 1 _ p i dfP n

6[r,2,r,2,B (N),M] = 3 J Fr.- . Lr
2 4>L B_(N) j Erf ' ~ ~

r « o 4/a(M-Y)
•]Erf [-

]}dY

B2(N)

4/a(M-Y)
dY
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where,

drp = the distance from the centre of the rth

reach to the centre of .the Pth reach ,

Lr = reach length of the canal,

.T • Transmissivity of the aquifer,

4> = Storage coefficient, and

a = t/4> ..

If each canal is divided into R reaches,

there are 2 R unknown recharge quantites at each

time-step. A set of 2 R equations, one equation

for each reach for each of the two canals, can

be written from which the unknowns, Q (P ,n )and

Q2(P,n),p = 1,2,3,4 r, can be solved in succ

ession starting from time step 1. The 2 R equations

can be written in the following matrix notation:

'A* [B] = [C] ...(5.8)

The elements of the matrices, [A], [B], [c], are

as given below:



[A]

+6(l,l,l,l,B1(n),l)}>

6(1,1,2,1,1) .. 6(l.l,r,l,l) .. 6(1.1,R,1,1), 5(1,1,1,2,1), 6(1,1,2,2,1) ... 6(l,l,r,2,l) 6(1,1,R,2,1)

6(2,1,1,1,1), ' ^(2,11) ,. 6(2,l,r,l,l) .. 6(2,1,R.1,1), 6(2,1,1,2,1), 6(2,1,2,2,1) .. 6(2,l,r,2,l) .. 6(2,1,R,2,1)

+6(2,l,2,l,B1(n),l)}

6(r,l,1,1,1), 6(r,l,2,l,l) .. { r^r.n) 6(r,l,R,l,l), 6(r,l.l,2,l), 6(r,l,2,2,l) .. 6(r,l,r,2,l) .. 6(r,l,R,2,l)

+6(r,l,r,l,B1(n),l)}

6(R,1,1,1,1), 8(8,14,1,1) .. 6(R,l,r,l,l) .. {
^(R.n) 6(R,1,1,2,1), 6(R,1,2,2,1) .. 6(R,l,r,2,l) .. 6(R,2,R,2,1)

+3(R.l,R,l.B.(n),U},

6(1,2,1,1,1), 6(1,2,2,1,1) .. 6(l,2,r,l,l) .. 6(1,2,R,1,1), , 1
,(l,n) 6(1,2,2,2,1) .. 6(l,2,r,2,l) .. 6(1,2,R,2,1)

+6(1,2,1,2,B2(n),l)},
6(2,2,1,1,1), 6(2,2,2,1,1) .. 6(2,2,r,l,l) .. 6(2,2, R.1,1), 6(2,2,1,2,1), {—1

r2(2,n) 6(2,2,r,2,l) .. 6(2,2,R,2,1)

6(r,2,l,l,2), 6(r,2,2,l,l) .. £(r,2,r,l,l) .. 5(r,2,R,l,l), 6(r,2,l,2,l),
+6(2,2,2,2,B2(n),l)}

6(r,2,2,2,l) .. { r2(r,n) 6(r,2,R,2,l)

+6(r,2,r,2,B2(n),l)}

6(R,2,1,1,1), 6(R.2,2,1,1) .. 6(R,2,r,l,l) .. 6(R,2.R,1,1), 6(R,2,1,2,1), 6(R,2,2,2,1) .. 6(R,2,r,2,l) .. {»~i-
tjilM

+6(R,2,R,2,B2(n),l)}_

IB] = [Q^l.n), Q^.n) .. Q^r.n) .. Q^R.N), Q^d.n). 02(2,11) .. Q^r.n) .. Q^R.N)]'

-J



The elements of the matrix (C) are as follows : 175
R n-1

9(1.1) - -{c1(l,n)-D1+ 5+ pE E Q1(P,Y)8(l,l,P,l,n-Y+l)
P*IY=

♦ j Q1(l.Y)3(l,l,l,l,B1(Y),n-Y+l)+ n^ g Q2(P ,Y) 3(1,1, p,2,n-Y+l)
' l Y=l p = i

R n-1

C(2,l) = -{ ai(2,n)-D.+ H+ ^ ^ Q^ (P, Y) 3(2,1,p,1,n-Y+i)
P^2

n-1 , R

♦ yl=l Qi(2.Y)a(2.1,2.t.Bl(Y).iHr+I)* ^ ^ Q2(P,Y)3(2,l,p,2,n-Y+l)}
R n-1

C(r,l) = -{ Oi(r,n)-D. ♦ H+ ^ ^ Q^p.YWr.l, P, l.n-Y+1)
P^r

♦ Q1(r,Y)3(r,l,r,l,B1(Y)Jn-Y+l)+ ^ p^ Q2(P,Y)3(r,1,p,2,n-Y+1)} .
R n-1

C(R,1) = -{ ai(R,n)-D. +H+ pEx yEx Q1(P,Y)3(R,1,P,1,n-Y+1)
P^R

t Q1(R>Y)3(R,l,R,l,B1(Y),n-Y+l)+ "e^ Q2(P ,Y) 3(R, 1, P,2,n-Y+1)}
n-1 R

C(R+1,1)= -{ a2(l,n)-D. +H+ y£i pEx Q1(p,Y)3(l,2,p,l,n-Y+l)
R n-1 n_!

+ p**l Y-l Q2(P.Y)3(l,2,P,2,n-Y+l)+ I Q(1 ,Y)3 (i ,2,1 f2.B_(Y) ,n-Y+l)}

}

P,U

n-1 R

C(R+2,1)= -{ n(2,n)-D + H+ E E Q, (P, Y) 3(2,2, p, 1, n-Y+1)
2 i Y-l P=l

+ pZ=l Y-l VP'Y)9(2'2>P>2>n-Y+1) +Y-1 Q2(2,Y)3(2,2,2,2,B9(Y))n-Y+l)}
P^2 l

C(R+r,l)= -{ a2(r,n)-D. +H+ \ ^ Q} (P,Y) 3(r,2, p,1,n-Y+l)
R n-1 n-1

+ P=l Y-l Q2(P'Y)^r'2'P'2'n-Y+l) ♦ yZ Q2(r,Y)3(r,2,r,2,B.(Y),n-Y+l)}
P^r

C(2R,1) = -{ a2(R,n)-D. +H+ ^ ^ Ql(p,Y)3(R,2,P,1,n-Y+1) '
R "-1 n-1

+ p£i Y-l Q2(P'Y)a(R'2'p'2'n-^l) *yl1 Q2(R,Y)3(R,2,R,2,B.(Y),n-Y+1)}
P#t 2
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[B] = tA]" 'CI ...(5.9)
If, the aquifer is homogeneous and isotropic,

the section and depth of water in each canal do not

vary from reach to reach over a large stretch, no

other source of recharge or abstraction well exists

near the canals, seepage is occuring from very large
lengths of the canals ,and the canals are divided
into identical reaches of equal length, the seepage
rates from all the reaches of a canal during a parti
cular time step will be equal and there will be only
two unknowns at a particular time-step. The two perti
nent equations have been derived from Equations (5.4)
and (5.7) as follows:

Let the canals be divided into reaches of

equal length. Let the origin be chosen arbitrarily
at the centre of a reach. Because of symmetry about

the x axis, the reaches are numbered as shown in

Fig.(5.3). Let the rise in water table height at
any section across the canals be influenced by rech

arge from the nearest (2R-1) number of reaches of

each canal and let the effect of recharge from the

other distant reaches be negligible. Thus, the recharge
from (R +1 ) reach and beyond has negligible influ

ence on the rise in water table height at the first



First canal

Fig.5.3-Division of th

Second canal

e canals into equal reaches and their number
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reach. In accordance with these assumptions, Equation
(5.4) reduces to:

Q;(n){-1 / r"(n) -6 [ 1,1,1,1, Bl(n), 1]
R

'"226 (1,1, p , i )}
P = 2

+ Q'2(n) [ - 6(1,1,1,2,1)-2 E 6 (1,1,p, 2,1)]
P=2

n-1

Y

n-1

E E

P=2 y=1

= CJ1 (n) - D.+Il + E q.(y) 6 [1,1,1,! g/y, n_Y+1]
Y=1 ]

Z Q'(y) 6(1,1,Q,1,n-Y + 1)

n-1

+ 2 q'(y) 6 (1,1,1,2, n- y+1)
Y =1 l

R n-1

+ 2 E "" Q2 (Y) *<M,P ,2,n- Y+ D ...(5.10)
P=2 y =1

Similarly,Equation (5.7) reduces to:-

R

Q;(n) [ - 6(1,2,1,1,1) - 2 E 6 (1,2,p, 1,1)] +
P= 2

Q2 (n) {-1 / r2(nj - 6 [1,2,1,2, B2(n), 1]

R

- Z 6 (1,2,p,2,1) }
P-2

n-1

= a2(n) - D. +H + E q'(y) 6(1,2,1,1,n- Y+D
Y=1 1



R n-1

+ 2 L Z Q'.(Y )6(1,2, p,1,n-Y +1)
P =2 Y=1 '

n-1

+ 2 Q'( Y) 6[1,2,1,2,B9(Y), n-YH]
Y = 1

R n-1

+2 E E Q2(Y)6(1,2,p,2,n-Y+1) ...(5.12)
p=2 y=1

B(1,1)=Q'(n), B(2,1) = q' (n) , Hence
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-1[B] = [A]_,[C]

If the flow characteristics do not vary from section

to section across the canals, it is not necessary to

divide the canals into reaches to solve for the seepage

rates. The seepage rates could be determined without

dividing the canal into reaches in the following manner:

Let Q^n) and Q2(n) be the seepage rates per unit length

of the first and the second canal respectively. Let

the origin be chosen at the centre of the first -canal.

Let S(x,n) be the drawdown measured from a high datum

at, x. Considering reach transmissivity for unit length
of canal, the Q^n) and Q2(n) are given by:-

Q1(n)=-ri(n) fa,(n) -S (o,n)] ' ...<5.i3)"
Q2(n)=-r2(n) [a2(n) -s (D,n)] ...(5.14)

where, T^n) and r2(n) are the reach transmissivity
values per unit length of the first and the second canal

respectively and D is the distance between centre to

centre of the canals.

The drawdown S(o,n) andS(D,n) can be expressed in
terms of recharge as:



i

R n-1

+2E E Qj (Y)6(1,2, P,1,n-Y+1)
P-2 Y=1

n-1

+ E Q^(Y)6[1,2,1,2,B„(Y), n-Y +1]
Y= 1 /L

R n-1

+ 2 E E Q2 (Y)6(1,2,p,2,n-Y+1)
p=2 y= 1
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(5.11)

The two unknowns Q;(n) and Qj(nj can be solved from
Equations (5.10) and (5.11) in succession, starting
from time step 1. The equation in matrix notation is
given by [A].[B]=[C] where,

— 1 R

AM'1) =Pjn7 " <S[1,1,1,1,Bl(n),1]-2 E6(1,1,p ,1,1),
1 .p =2

Ad,2) = -6(1,1,1,2,1) - 2 E6 (1,1,p,2,1),
P=2

A(2,1) = -6(1,2,1,1,1)- 2 Efi (1,2,p,1,1),
P = 2

A(2'2) ="4(rT) -6M,2,1,2,B2(n),l]-2 E«<1 „2, p,2, 1),
* p =2

C(M) =al(n) -D.+H +"^ Of(Y> «[ 1'. 1.1,1,B,<y) .n-yfl']
R n-1

+2 E Z Cff<Y>6<1,1,p,1,n-Y+1)

n-1

+ * Q^(Y)6(1,1,i,2,n-Y+1)

R n-1

+2 E E Q,2(Y)6(1,1,p,2,n-Y+1)
p =2 y =1

C(2,1) = a2(n)-D.+H + E Qj <YH< 1,2,1,1 ,n-Y+J)
Y =1



n

S(o,n) = D. - H - E Q.(y) 5i[OfB'(Y) n-Y +1]
Y=1

n

- z Q2(Y) 62[-D,B2(Y ), n-Y +1]

n

S(D,n)= D - H - E Q (Y) 61[D,B1(y), n-Y+1 ]
1 y =1

n

" E Q2(Y) 62[0,B2(Y), n-Y+1]
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(5.15

...(5.16)

Where,the discrete kernel coefficients for rise in

water table are given by Equations (3.12) & (3.13) of chap. 3:

",[0,Bt(lI), M] mF [0, B^N), M] - F [0,B-., (N) ,M-1 ], for
M £ 2 ... (5. 17)

6^0,B^N), 1] = F [0, BJ(N), 1] - B1(N)/(8T) ... (5.18)

62[-D,B2(N),M]= F[-D,B2(N), M] - F[-D,B2(N),M-1], for M>2
... (5.19)

62[-D,B2(N),1] = F [-D,B2(N), 1] --^ /(-D)2 ... (5.20)

61 [D^^N) ,M] = F[D,B.,(N),M] - F[ D, B^N), M-1 ] , for M£ 2
... (5.21 )

6^ D, B.,(N),1] =F [ D.B^NJJ] -^r/(D2) ... (5.22)

62[0,B2(N), M] = F [0,B2(N), M] - F [0, B2(N), M-1],for M£ 2
...(5.23)

6[0,B (N),1], = F[0,B (N),1] - B,(N)/ (8T) ...(5.24)

Incorporating Equation (5.15) in Equation (5.13) and

Equation (5.16) in Equation (5.14) the following equations

are obtained:



Q^n) -iynUoynJ-D. +h+ e q (y ,6 (0, B, (Y),n-Y +1 )•
Y =1 i
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n

+Y=1Q2(Y) «2[-DfB2(Y), n-Y+1]]...(525 )

n

n

E

Y =1

Q2(n) =-r2(n){a2(n)-D.+H + E Q (Y )6 [d, B 'Y) ,n-Y+1)
Y =1 1

n

+Z Q2(Y)62tO,B2(Y), n-Y+1]} ...(5.26)

Splitting the temporal summation into two parts and rearr

anging, the above equations reduce to:

Q,*.'M-1 /r,,n) -«1[0.».(«), 1]>- Q(•„,« [-D.B,(n>,1>]

n-1

-al(n)- D.+H + E q (Y)« [0,Bl(Y ), n-Y+1) ]

n-1

+yl, Q2(Y) 62t-D'B2(Y), n-:Y+1] ...(5.27)

Q2(n){ -1/r2(n) _62[0, B2(n),1]} -Q, <n) 6,1(0,8, (n), 1J

n-1

E

Y=1

-a2(n) - Di + h + z Q1(Y)«;i[D,B1(Y)fn-Y+1]
Y =1 '- '

±, Q2(Y) 52[0'B2(Y)' n"Y+ 1] ...(5.28)
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Equations (5.27) and (5.28)

matrix form:

[A].[B] = [c]

in which,

can be written in the following

[B] =
Q^n)

LQ2(n)

The elements of matrices [A, and [c] „ - ^^
A(1'l} ="1/ri <n) - 6l [0,Bl(n), 1]
A(1,2) = - &2[.DtB2{n) f 1j

A(2,1) =- 6i fDf_ Bl(n), 1]

A(2,2) = -l/r2(n) - 62 [0,B2(n), 1]

C(1,1) = a1(n) -Di+S +«" Q1(Y)61[0,B1(Y),n-Y+1]
v— 1

n-1

+ E Q2(Y) 62 [_d, B2(Y), n-Y+1]

1

C(2,1) = g (n) -D.+H + E
* 1 ^ Q1(Y)6i[D,B1(Y), n-Y+1]

n-1

+yZ=1 Q2(Y) <S2[0'B2(Y)' n~Y+1]

ng
0,<n) and Q2(n) can be solved in succession starti
from time step 1using the following equation,

Q^n)

Q2(n)
,-1= [ A] * [ C ]

.(5.29
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5.3 Results and Discussions

Numerical results quantifying the time variant

seepage losses from two parallel canals and the

consequent rise in water table have been presented for

the following cases :

(a) Two parallel canals running continuously with

constant depth of water in them; the canals may

have different widths and their beds may be at

different levels.

(b) Two identical parallel canals having their beds

at the same level; one of the canals running

continuously with constant depth of water and

the other running intermittently with nominal

depth of water during its closure period.

(c) Two identical parallel canals having their 'beds

at the same level; one of the canals running

continuously with constant depth of water and

the other running intermittently, being

completely dry during the closure period.

The results for seepage losses and water table

rise have been obtained for assumed canal dimensions,

aquifer parameters, K, H, and cp , and initial potential

difference between the canals and the aquifer. The

discrete kernels for water table rise have been

generated using the Equations (5.17) through (5.24) for

the assumed values of canal dimensions, spacing between

the canals, and the aquifer parameters. Since both the
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canals run continuously with constant depth of water,

and the widths of the canals at water surface do not

change with time for case (a), the discrete kernels for

case (a) have been generated for constant canal

widths. The reach transmissivity constant for each

canal, which does not change with time for case (a),

has been evaluated using Herbert's formula

[Equation (2.41)]. Typical reach transmissivity values

for various canal dimensions are given in Table ( 5.1).

In order to analyse the sensitivity of the

solution to the size and number of time- steps, the

seepage losses from a single canal and the consequent

water table rise at selected observation points have

been calculated with different time - step sizes, and

are presented in Tables (5.2) and (5.3). The

computations have been made for B = 60m, H = 3m,H = 9m,

H = 1000m, T = 1000m2/day, and cp = 0.1. It can be

observed from Table (5.2) that with any time-step size

the error in the solution decreases with time. It is

also seen that the rate of seepage loss from unit

length of the canal at the end of one day is

5.567898m3/day,which has been calculated with time-step

size of one day. The rates of seepage loss from unit

length of the canal, calculated with time-step size of

1/10 and l/100th of a day are 5.565095 m'/day and
5.564659m3/day respectively. A comparison of the above
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Table (5.1) - Reach transmissivity for trapezoidal canals
of different cross sections with 1:1 side
slopes, evaluated for aquifer parameters
K=l m/day, T=1000m2/day_, and initial saturated
thickness of aquifer, H=1000 m.

Width of canal Depth of Height of bed Reich
at the water water in of canal above transmissivity
surface the canal the initial for unit

water table length of canal

(m> O) (m) (m2/day)

60

60

60

30

30

30

15

15

15

0.9731

0.9725

0.9719

0.8092

0.8087

0.8083

0.6978

0.6975

0.6972

(er* narij UmvKrsiiy or gooma



Table (5.2) Seepage loss, Q (n), Calculated with
different time -^tep sizes for B% 60m
aid m' 5"? m' H=100° m' T-lOOO^/dayand cp = 0.1

Time Seepage 1<dss Qi(n), calcu
step size:

lated with time -

(day) 1 day l/10th of a day l/100th of a day

1 5.567898 5.565095 5.564659

2 5-. 447787 5.444447 5.443994

.3 5.358006 5.354448 5.353994

4 5.283993 5.280330 5.279878

5 5.220059 5.216343 5.215897

6 5.163275 5.159538 5.159097

7 5.111897 5.108155 5.107720

8 5.064792 5.061055 5.060625

9 5.021166 5.017442 5.017017

10 4.980447 4.976741 4.976322

187
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Table 5.3 - Water table rise, S (x,t)/H, calculated with different
time-step sizes for T =1000 m^/day, (p = 0.1, I = oSom
B1= 60 m, E1 = 3 m, and H = 9m.

Water table rise evaluated with time-step size:

Time 1 day l/10th of a dav 1/mnth1/10 of a day l/100th of a day

day x/H =0.0 x/H=0.05 x/H=0.0 x/H=0.05 x/H=0.0 x/H=0.05

1 0.274727 0.196578 0.277609 0.199182 0.278057 0.199548

2 0.398233 0.316240 0.401667 0.319460 0.402133 0.319869

3 0.490551 0.407444 0.494210 0.410931 0.494677 0.411354

4 0.566656 0.483234 0.570423 0.486859 0.570887 0.487286

5 0.632398 0.548995 0.636217 0.552694 0.636676 0.553121

6 0.690787 0.607567 0.694629 0.611305 0.695083 0.611731

7 0.743616 0.660665 0.747464 0.664422 0.747911 0.664845

8 0.792053 0.709419 0.795895 0.713181 0.796337 0.713600

9 0.836912 0.754620 0.840741 0.758378 0.841178 0.758793

10 0.878782 0.796849 0.882593 0.800596 0.883024 0.801008
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-results shows that there is no significant difterence ln
the seepage losses which have been computed with time -
step size of 1/10™ and 1/10Qth of , ^ . ^

there is appreciable difference between seepage iosses
Which have been calculated with time -step size of 1
day and 1/10thol ,day. Therefore> lf ft ^ ^^ ^
predict the seepage rate at the end of one day, the time
-step size of l/l0th of , day u sufficlent tQ ^.^

the seepage loss with sufficient accuracy. Thus, a
minimum number of 10 time-steps should be used to
arrive at the seepage loss at a particular time.

The effect of time -step size on the accuracy of
prediction of water table rise is shown i„
Table (5.3). It could be seen from the table that for
computing the water table rise, aminimum of 10 time -
steps should also be used. it can be seen that water
table rise is more sensitive than the seepage loss to
time discretisation.

The seepage losses have been determined in
succession, starting from time-step 1, using Eolations
(5.27) and (5.28). The results have been presented in
non-dimensional form nP n™ wiorm. The non-dimensional groups which
have been formed are given below:

(i) Seepage losses per unit
length of the first canal
and the second canal
respectively Q1(t)/(K„1), , (t)/(KH ,

(tt) Time factor Kt/(2 fB)
(iii) Water table rise S(x,t)/H
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(lv) Width of canals at water surface B /H, B /H

(v) Depth of water in the canals H /H, H /H

(vi) Distance of observation
point from centre of
left canal x/H

(vii) Centre to centre distance
between the canals d/H

(viii) Depth to water levels in
the canals from a high datum a /f,a /H

(ix) Initial water table
position measured from
the high datum H/H

(x) Depth of canal beds from the
high datum D /H D /H

bl' ' b2/H
The variations of seepage losses with time from

two parallel canals, evaluated for B /H=B /H = 0.03,

VH = Vff = °-003' D/H = °'18> .and for initial water
table positions, H/H = 0.005, 0.007, and 0.009, are

presented in Fig. (5.4). Seepage losses from parallel

canals, which have larger widths, are presented in Fig.

(5.5) for B^H = B2/H = 0.06. Seepage losses from

canals for a closer spacing of D/H =0.08 are presented

in Figs. (5.6) and (5.7). The seepage loss from each

canal, at time t = 0, is given by the product of the

corresponding reach transmissivity and the initial

potential difference. Therefore, as shown in the above

mentioned figures, the seepage loss is finite in the

beginning and is equal to the product of corresponding

reach transmissivity and initial potential difference.

The seepage decreases as time elapses, the rate of
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decrease being dependent on: the width of the canal, the

initial potential difference,and the spacing between the

canals. Since the two parallel canals considered above

are identical, their seepage losses will be equal.

The seepage loss from a single canal, that would

occur if the other canal is located at infinity (D»»),

has also been shown in the figures. The difference

between seepage loss from a canal of the parallel canal

system and the seepage loss from the same canal, if the

other canal does not exist, quantifies the interference

of the latter on the former in a parallel canal system.

The reduction in non-dimensional seepage loss from

a canal due to interference of a similar parallel canal

located at a known distance has also been shown in the

Figs.(5.4) through (5.7). It could be seen from the

figures, that in the beginning of seepage the

interference is zero, i.e., the reduction in seepage in

each canal due to the interference of the other is zero.

Subsequently, as time elapses, the interference

increases with time and attains a maximum value.

The variations in reduction of seepage with time

due to interference for different values of initial

potential difference, are also depicted in Figs. (5.4)

through (5.7). It could be seen from the figures that

the interference between the parallel canals, at any

time, increases with increase in the initial potential
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difference. At non-dimensional time factor,

Kt/(2 cp H) = 0.50; for B /H = B2/H = 0.03, D/H = 0.18,

and (H - a.)/H = 0.004, the reduction in seepage due to

interference is 0.180. If the initial potential

difference, (H - a1>/H = 0.008, the corresponding

reduction due to interference is 0.360. It could be

seen that the interference is linearly proportional to

the initial potential difference. At non-dimentional

time factor 0.5, the reductions in seepage losses due

to interference are 0.360, 0.270, and 0.180 for

(H - a1)/H = 0.008, 0.006, and 0.004 respectively.

Thus, the ratio of the reduction in seepage due to

interference and the corresponding initial

potential difference is constant and equal to 0.045. At

non-dimensional time factor 0.30, the reductions in

seepage due to interference, corresponding to the above

initial potential differences, are 0.320, 0.240, and

0. 160 respectively and the ratio of reduction in seepage

due to interference and corresponding initial potential

difference is 0.04. The reduction in seepage from any

canal due to interference of the Other is linearly

proportional to the initial potential difference.

At any particular time the reduction in seepage

due to interference would be more for canals of larger

width. It could be seen from Fig. (5.4) that for

B1/H = B2/H = 0.03, D/H = 0.18, and H/H = 0.009, at
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non-dimensional time = 0.5, the reduction in seepage

loss from either canal due to interference is 0.36;

whereas, for B^E - B2/H=0.06, as seen from Fig.(5.5),

the corresponding reduction is 0.45.

The reduction in seepage loss due to interference

at large times, for various distances between the two

identical canals, has been shown in Figs.[5.8(a)] and

[5.8(b)], in a semilog plot, for B /H =0.06 and 0.03

respectively. It is seen from the figures that the

reduction in seepage due to interference reaches a

maximum value at very large time and then decreases. The

reason for the decline in interference at large time is

as follows :-

The seepage from a canal decreases as the

difference in the potentials at the canal and in the

aquifer under the canal decreases. In a parallel canal

system the potential difference under a canal decreases

with time partly due to its own seepage and partly

due to seepage from the other canal. Ultimately, the

seepage loss from a canal at large time would tend to

zero whether it runs alone or it runs alongwith the

other canal. Since the seepage loss tends to zero in

either case, the reduction in seepage loss due to

interference will also tend to zero. Because the

interference ultimately tends to zero, it would decline

after reaching a maximum value.
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The decrease in the interference is monotonic at

large time. It could be seen from the Fig.[5.8(a)] that

for the parallel canals with B±/ H" = B2 /ri = 0.06,

D/H=0.18, and H/H= 0.009, during the non-dimensional

time interval 2.0 to 3.0, the reduction in interference

is 0.030. The reductions in interference during the time

intervals 3.0 to 4.0 and 4.0 to 5.0 are 0.026 and 0.023

respectively.

It is seen from the Figs. [5.8(a)] and [5.8(b)]

that the occurrence of maximum interference is delayed

for larger spacing between the canals. For B /H" = B /H" =
1 2

0.06, H/H = 0.009, and D/H = 0.08, the maximum

interference occurs at non-dimensional time, Kt/(2«H),

= 0.80. If the spacing between the canals is 0.18, the

maximum interference occurs at Kt/(2cpH) = 0.90. The

maximum value of interference declines with increase in

spacing between the canals. It could be seen from Fig.

[5.8(a)] that for B^H = B2/H = 0.06 and D/ET =0.08, the

maximum interference is 0.480 whereas for D/H = 0.48,

the maximum value of interference is 0.430.

It is seen from Figs. [5.8(a)] and [5.8(b)] that

beyond a time factor of 10.0, for equal parallel canals

with B1/H = B2/ H = 0.06 or 0.03, the interference is

approximately the same whether the canals are spaced at

D/H = 0.08 or 0.96.

The variations of seepage losses with time for

unequal parallel canals have been evaluated for
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different initial potential difference for B,/H =0.06,

B2/H = 0.03, E±/E = H2/H = 0.003, and D/H = 0.18. The

results for (H-ai)/H = 0.004 and 0.008 are shown in

Figs.(5.9) and (5.10) respectively. It could be seen

that at non-dimensional time = 0.5, for initial non-

dimensional potential difference, (H- CT) /H , =0.004,

the non-dimensional seepage losses are 0.615 and 0.516

from the larger and the smaller canal respectively. For

an initial non-dimensional potential difference of 0.008

the corresponding seepage losses are 1.229 for the

larger canal and 1.032 for the smaller canal. The

seepage losses from the canals at any time are, thus,

proportional to the initial potential difference,

(H- a),that initiates the flow. The solution to the

seepage problem of parallel canals is based on a

solution of linearised Boussinesq's equation and method

of superposition. This implies that the parallel'canal

system is a linear system. If the seepage losses and

their reductions due to interference are determined for

a unit initial potential difference, the seepage losses

and their reductions due to interference for the actual

value of initial potential difference could be obtained

by multiplying the flow characteristics pertaining to

unit initial potential difference with the actual

potential difference, provided the flow conditions do

not change with the change in the initial potential

difference.
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Reductions in seepage due to interference of

unequal parallel canals are presented in Table ( 5.4 )

for H/H=0.009, D/H=0.08,H1/H=H2/H=0.003, and a;L/H= a2 ft
= 0.001. It could be seen from the table that for

B1/H=0.06 of the first canal, corresponding to B /H=0.06,

0.03, and 0.015 of the second canal, the reductions in

seepage from the first canal due to interference of the

second canal are 0.473, 0.411, and 0.367 respectively at

non-dimensional time=0.5. Thus, if the width of the

interfering canal decreases, its interference on the

other canal of larger width decreases; although the

decrease is not proportional to the decrease in the

width of the interfering canal.It could be seen from the

table that for B /H = 0.06 and B /h = 0.015, at non-

dimensional time 0.5, the reduction in seepage from the

canal with smaller width due to interference of the

larger canal is 0.403, whereas,the reduction in seepage

from the larger canal due to interference of the smaller

canal is 0.367. Hence, interference of the larger canal

on the smaller canal is more as compared to that of the

smaller canal on the larger one.

The temporal variation of reduction in seepage due

to interference for two unequal parallel canals, which

run continuously for a long duration, has been

presented in a semilog plot in Fig. (5.11) for

different values of D/H; for B /f = 0.06, B /£ = 0.03,
•*• y

H1/ H = H2/ H - 0.003, and H / H = 0.009. It could be



Table (5.4) - Interference of unequal parallel canals
predicted for D/H = 0.08, H/H = 0.009,
(Jj/H - a2/H = 0.001,H1/H=H2/H = 0.003

B. Kt Ql(t) Qi(t)
[-

Qi(t) Q2(t) Q2(t)

H (29H) (KHi) (KHjl) D=oo (KHl ) D=» (Klfe )
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D/H-0.08

/ .'-OS /[Q2(t)/(KH2)[D_{e-Q2(t)/(KH2)l
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Kt/(2())H)

Fig.5-11-Reductions in seepage due to interf

10.0 60.0

erence of two unequal continuously running
parallel canals jpaced _at various distances, evaluated for Bi/H =006
B2/H-a03,H1/H-H2/H-0.003,O1/H-O5/H-0.001 and H/H-0.009
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seen from the figure that, at any time, the reduction

in seepage from each canal due to interference is more

for smaller spacing between the canals, as observed in

the case of equal parallel canals. The results show

that the reductions in seepage due to interference for

each of the two canals are approximately equal during

the earlier occurrence of seepage. The time,over which

the interference of the two unequal canals is

approximately equal,is longer for larger spacing of the

canals. The reductions in seepage due to interference

for both the canals would approach different maximum

values at different times for a given spacing between

the canals. After reaching a maximum value, the

interference reduces with time.The occurrence of maximum

reduction in seepage due to interference takes place at

earlier time for the larger canal. For example, for D/H

• 0.24, the maximum reducion in seepage for the first

canal, which is larger,occurs at Kt/(2 cp H)=l. 1, whereas,

for the smaller canal the time of occurence of maximum

reduction in seepage due to interference is 1.3. It is

also seen that the effect of larger canal on the smaller

canal is more than the effect of smaller canal on

the larger one.For example, the maximum non-dimensional

reduction in seepage from the larger canal, due to

interference of the smaller canal,is 0.403 for D/H =0.24,

whereas, the maximum reduction in seepage from the

smaller canal , due to interference of the larger canal,
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is 0.432. It could also be seen from the figure that

beyond a non-dimensional time = 10.0, for D/H upto 0.96,

the interference is independent of the spacing between

the canals.

The interference of parallel canals whose beds are

at different levels has been presented in Table (5.5).

The canals have equal width and equal depth of water in

them. Seepage losses from each of the canals and their

interference have been evaluated for B./H = B9/H = 0.06,

V H=H2/ H=0.003, H/H- 0.007, DM /I- 0.004,
D /H - 0.08 and 0.18, and Dfe2 /H = 0.004, 0.005, and
0.006. The difference in Dbl /H and Db2 /I is the
difference in the bed levels of the canals in non-

dimensional form. It could be seen from the table that

if the canal beds are at the same level, for D/I= 0.18,

the non-dimensional seepage loss from each canal is

1.029 at non-dimensional time - 0.3. If the difference

in the bed levels is 0.001 H, and the second canal is at

a lower level, the corresponding seepage loss from the

first canal is 1.094 and from the second canal is 0.793.

The seepage loss from the second canal in the latter

case has reduced from 1.029 to 0.793 because of

reduction in the initial potential difference between

the second canal and the aquifer. On the contrary, the.

seepage loss from the first canal has increased from

1.029 to 1.094, on account of decrease in the
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Hon- Qi(t)/<KHj)
dimensional for:

evaluated Q2(t)/(KH2) evaluated

D/H
time

Kt/(2 cp H)
[difference
levels)/IT] e
0.0 0.001

in bed

qual to:

0.002

for:

[(diff
levels
0.0

erence in bed

)/H] equal to:
0.001 0.002

0.18 0.050 1.514 1.540 1.565 1.514 1.236 0.958
0.18 0.100 1.344 1.383 1.422 1.344 1.080 0.817

0.18 0.150 1.232 1.280 1.329 1.232 0.978 0.725

0.18 0.200 1.156 1.204 1.259 1.156 0.902 0.656
0.18 0.250 1.083 1.144 1.205 1.083 0.842 0.601

0.18 0.300 1.029 1.094 1.159 1.029 0.793 0.556
0.18 0.350 0.984 - 1.052 1.121 0.984 0.751 0.518

0.18 0.400 0.944 1.016 1.088 0.944 0.715 0.485

0.18 0.450 0.909 0.984 1.059 0.909 0.683 0.457

0.18 0.500 0.878 0.956 1.033 0.878 0.655 0.431

0.08 0.050 1.469 1.504 1.540 1.469 1.189 0.910
0.08 0.100 1.306 1.354 1.403 1.306 1.040 0.774
0.08 0.150 1.199 1.257 1.314 1.199 0.942 0.685
0.08 0.200 1.121 1.184 1.248 1.121 0.870 0.619

0.08 0.250 1.058 1.127 1.196 1.058 0.813 0.567
0.08 0.300 .1.007 1.080 1.153 1.007 0.766 0.525
0.08 0.350 0.963 1.040 1.117 0.963 0.726 0.488

0.08 0.400 0.925 1.005 1.085 0.925 0.691 0.457
0.08 0.450 0.892 0.975 1.058 0.892 0.661 0.429

0.08 0.500 0.863 0.948 1.033 0.863 0.634 0.405
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interference of the second canal on the first canal.

With the increase in the difference in bed levels, the

interference of the second canal on the first canal

would decrease and the seepage from the second canal

would tend to zero. If the difference in bed levels of

the canals is 0.002 H, the non-dimensional seepage loss

from the first and the second canal would be 1.159 and

0.556 respectively at non-dimensional time 0.30;",

Inteference of unequal of parellel canals, whose

beds are at different levels, has been presented in

Table (5.6) for B /H = 0.06 and B /H = 0.03. Similar

trend, i.e., increase in seepage loss from the first

canal, whose bed is at a higher elevation, and reduction

in seepage loss from the second canal with increase in

the bed difference of the canals, is also noticed if

the second canal has smaller dimension than that of the

first canal.

Once the seepage losses at different times are

obtained, the rise in water table can be computed by

making use of Equations (5.15) or (5.16), after

evaluating the discrete kernel coefficients for. water

table rise at desired x-coordinates. The rise in water

table due to seepage from two equal parallel canals have

been evaluated at different locations across the canals

for B1/H = B2/H = 0.06, H, /H = H/H = 0.003, initial

potential difference, (H -a.)/!, = 0.008, and D/H= 0.18.

The results are shown in Fig. (5712). It could be



211

Table (5.6) - Seepage loss from unequal parallel canals whose
beds_ are at different levels, _ evaluated for
B1/H = 0.06, B2/H =_0.03, Hj/fl = H2/H = 0.003,
a /H = 0.001, and H/H = 0.007.

D/H

Non-

dimensional

time

Kt/(2 9H)

Q1(t)/(KH1) evaluated
for:

[(difference in bed
levels)/H] equal to

0.0 0.001 0.002

Q2(t)/(KH2) eval
for:

[(difference in
levels)/H] equal

0.0 0.001

uated

bed

to:

0.002

0.18 0.050 1.537 1.558 1.580 1.289 1.052 0.815,

0.18 0.100 1.375 1.409 1.442 1.153 0.928 0.702

0.18 0.150 1.268 1.310 1.351 1.064 0.845 0.627

0.18 0.200 1.189 1.236 1.283 0.997 0.784 0.570

0.18 0.250 1.124 1.176 1.229 0.944 0.734 0.525

0.18 0.300 1.071 1.128 1.184 0.899 0.693 0.487

0.18 0.350 1.026 1.086 1.145 0.861 0.658 0.455

0.18 0.400 0.987 1.050 1.112 0.829 0.628 0.428

0.18 0.450 0.953 1.018 1.083 0.800 0.602 0.403

0.18 0.500 0.922 0.990 1.057 0.774 0.578 0.381

0.08 0.050 1.499 1.528 1.558 1.249 1.011 0.773

0.08 0.100 1.343 1.384 1.426 1.120 0.891 0.664

0.08 0.150 1.241 1.290 1.339 1.034 0.813 0.591

0.08 0.200 1.164 1.219 1.274 0.970 0.754 0.537

0.08 0.250 1.103 1.162 1.222 0.919 0.707 0.494

0.08 0.300 1.052 1.115 1.179 0.877 0.667 0.458

0.08 0.350 1.009 1.075 1.142 0.841 0.634 0.428

0.08 0.400 0.971 1.041 1.110 0.810 0.605 0.401

0.08 0.450 0.938 1.010 1.082 0.782 0.580 0.378

0.08 0.500 0.909 0.983 1.057 0.757 0.557 0.357

0 .08

0 08

0 08

0 08
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seen from the figure that in the beginning of seepage,

at non-dimensional time 0.005, well defined water mounds

are formed under the centre of each canal. As the time

passes, the ridges get dissipated and the points of

maximum rise move towards each other,indicating a higher

fraction of seepage flow from each canal going towards

the outer sides of the canals. The points of maximum

rise of water table, however, do not go beyond a

distance of half the respective width of the canals at

the water surface. For example,the point of maximum rise

of water table under the left canal is located at

x/H = 0.00827, 0.02421 , 0.02890, and 0.02986 at the end

of non-dimensional time 0.005, 0.05, 0.25, and 0.5

respectively as shown in Fig.(5.12). The evolution of

water table for equal parallel canals, which are spaced

at a closer distance with D/H = 0.08, has been shown in

Fig.(5.13). Comparison of the results shown in Figs.

(5.12) and (5.13) indicates that the rise of water

table is faster for closer spacing of canals. It could

be seen from the Fig. (5.12) , that for D/H = 0.18, at

non-dimensional' time = 0.5, the maximum non-dimensional

rise of water table is 4.408 x 10~3. For D/H = 0.08,
the corresponding maximum non-dimensional rise of water

table is 4.475 x 10~3 as shown in Fig. (5.13). The
water table in the zone between the canals tends to

become flat and a stagnant zone is formed between the
canals with passage of time.
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The water table rise at different locations due

to seepage from two unequal parallel canals, whose beds

are at the same level, has been predicted for B /H =

0.06, B2 /H=0.03, H^H = H2/H = 0.003, ax/ H =a2/H =
0.001, H/H= 0.009, and D/H= 0.18 .The water table

positions across the canals at various times are shown

in Fig.(5.14). It could be seen from the figure that

distinct water mounds are formed under each canal in the

beginning of seepage. The maximum height of the mound

under the larger canal is more than that of the mound

under the smaller canal.As the time elapses, the water

mounds dissipate ; the dissipation of the mound under

the bigger canal occurring at a faster rate. The water

table between the canals becomes a flat plane, slightly

dipping towards the right at large time, and a stagnant

zone is formed similar to that formed for equal parallel

canals. For large values of H/H, when the seepage loss

is not controlled by water table position, it was seen

in Fig.(3.23) of Chapter 3 that a stagnant zone had not

developed upto Kt/(2fff) = 0.5 in the case of unequal

parallel canals with dimensions same as that mentioned

above.

It could be seen from Fig. (5.14) that at the end

of non-dimensional time 0.5, the maximum non-dimensional

rise of water table under the larger canal
—3is 4.223 x 10 . If the canals would have been of equal

dimension with B^H = 0.06, the maximum non-dimensional
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1.8r

100 150 200 250

Non dimensional distance from centre of left canal fx/HxIO3]
300 350

Fig.5.U (a)-Water tabl

cr1/H = cr2/H =0.001 and H/H =0.009 .03,H1/H-H2/H-0.003I
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-150

Non dimensional distance from centre of left canal [x/Hx103]

Fig.5.U (b)-Water table evolution due to seepage from two continuously running unequal
parallel canals predicted for O/H-0.18, Bi/H-0.06,B2/H»0.03,H1/H =H2/H^0003,
cr1/H= cr2/H = 0.001 and H/H = 0.009
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rise under each of the parallel canals at this time

would have been 4.408 x 10-3. The difference in the

maximum non-dimensional water table rises for the two

cases is 0.185 x 10~3 though the width of the right
canal in the two cases differ significantly.

The water table rise due to seepage from two

parallel canals, whose beds are at different levels, has

been evaluated for B^H =B2/H= 0.06, H^H-ByI-0.003,
CTl/H = 0.001, a2/H = 0.003, H/H = 0.007, and D/H = 0.18.

The water table positions at different times are shown

in Fig.(5.15). It could be seen from the figure that, in

the beginning of seepage, distinct water mounds are

formed below the bed of each canal similar to that for

equal and unequal parallel canals. As the time passes,

the water mound under the right canal, whose bed is at a

lower level than that of the left canal, gets dissipated

more rapidly than the mound under the left canal. It

could be seen that, at the end of non-dimensional

time = 0.5, the water mound under the right canal has

almost disappeared. The zone between the canals is also

not stagnant. The right canal being at a lower level,

the potential difference between the right canal and the

aquifer is less in comparison to the difference in

potential between the left canal and the aquifer.

Consequently, the seepage loss from the right canal is

less than that from the left canal. Also, the seepage

from the right canal is further reduced due to
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interference of the left canal. As the seepage loss from

the right canal is greatly reduced, the subsequent water

table evolution is governed by the left canal.

Therefore, there is no formation of a stagnant zone in

this case. This phenomenon is more prominent if the

canals are more closely spaced as seen from the water

table evolutions presented in Fig. (5.16) for D/H =0.08.

A typical calculation of seepage loss from two

identical canals has also been made by using Equations

(5.10) and (5.11). The derivation of Equations (5.10)

and (5.11), which compute the seepage loss from two

parallel canals, is based on discretisation of the

effective length of the canals into various identical

reaches and also discretisation of the time parameter.

The effective length of the canals contributing towards

seepage at any point has been assumed to be 495 m on

either side of the point. This 990 m length of the canal

has been divided into 99 equal reaches. The results

obtained using equation (5.10) and (5.11) and those

obtained using Equations (5.17) through (5.24) are

presented in Table ( 5.7 ) for comparison. The results

indicate that, in the beginning, the seepage loss from

unit length of canal calculated by the above two

approaches are nearly equal. As time elapses, the

seepage loss from unit length of canal, if infinite

length of canal strip is considered in the analysis, is

less than the seepage loss from unit length of canal if
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Table (5.7) - Non dimensional seepage loss for unit length
for two identical parallel canals _evaluated
for Bi/H = B2/H_= 0.06, Hi/H = Ho/H = 0.003,
D/H = 0.18, H/H = 0.007, T = 1000 m2/day,
cp = 0.1 and K = 1 m/day.

Non-dimensional Seepage loss computed by Seepage loss
time assuming the number of ' computed by taking

canal reaches the entire canal
contributing towards into consideration
seepage = 99; length of
canal reach being 10 m.

Kt/(2cpH) Q1(t)/(KLrH1) Q1(t)/(KLrH1)

0.005 1.836

0.010 1.774

0.015 1.725

0.020 1.685

0.025 1.652

0.050 1.545

0.075 1.480

0.100 1.436

0.125 1.402

0.150 1.376

0.175 1.354

0.200 1.336

0.225 1.320

0.250 1.306

1.842

1.779

1.729

1.686

1.649

1.514

1.418'

1.344

1.283

1.232

1.188

1.149

1.114

1.083
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a•finite number of reaches are assumed to contribute

towards seepage. The results given in the Table (5.7 )

indicate that after a non-dimensional time 0.025, the

seepage loss from unit length, if a finite length of

canal is considered, is more than that when the canal is

taken as an infinite strip.

Having presented the interference of parallel

canals which run continuously, the results for the

seepage loss from parallel canals, one of which runs

intermittently [case (b)], and the resulting water table

evolutions are presented in the following paragraphs.

Let the first canal run continuously with a

constant depth of water and let the width at the water

surface be Bj. Let the second canal have awidth B2 at
the water surface during the full supply periods and a

width B21 at the water surface during the lean supply or

closure periods. B^ will be approximately equal "to the
bottom width of the second canal since a nominal depth
of water is maintained in the canal during its closure

periods. Let the second canal run continuously for M

units of time-steps and let it be closed for an equal

time period and let the cycle of supply be repeated.

Such a running schedule is pertinent if the second

canal conveys water during half of the year and is

closed for the second half. For such running schedule,
the Equation (5.29) simplifies to the following
expression :
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•For time step, n £ M,

1
-1

Qj (n)

Q2 (n)

and for M<n£2M

Q2 (n)

Q2 (n)

jT- - «j (0,B1,1), - 62(-D,B2,l)

1- ^(D.Bj.l), -62(0,B2,1)

n-1

{c^ - D. + H + Z Q1 (Y) 61(0,B1,n-Y+1)
Y-l

n-1

+ Z Q2 (Y) 62(-D,B2,n-Y+1)}
Y"l

n-1

{a2 - Di + H + Z Q1 (y) 51(D,B1,n- Y+l)
Y-l

n-1

+ Z Q2.(Y) 52(0,B2,n-y+1^ }
Y-l

...(5.30)

-1

— - Bl (0,Blfl), - «S2(-D,B21,1)

61(D,B1,1)
n-1

T}~ «2«°'B21'1> .

(aj - D. * H + Z Q2 (y) 6^0, B n-Y+1)
Y-l

M

+ Z Q2 (y) 62(-D,B n-Y+1)
Y-l

n-1

+ Z Q2 (y) 62(-D,B21,n-Y+1)}
T=M+1

_ n-1 /

{a2 - D± + H + Z Q: (Y) 6^ (D,B]L,n-Y+l)
Y-l

M

+ Z Q2 (y) 62 (0,B2,n-Y+1)
Y-l

n-1

+ Z Q2 (Y) 62(0,B21,n-Y+1)}
Y=M+1

...(5.31)
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In which

and,

0.5 (D. - a )T1 = irK/log [ V i °1}
Bl (Dbl ~ O^i/T - 1)

].. (5.32)

0.5 (D. - a )r2 - tf/iott- Li_^2>
B2 + 2<Db2 - V</T" ^

r2 - .K/iog [ ^L^i_L^)___
B21+ 2<Db2 --aiK/r. 1)

••• (5.34)

T2 is the reach transmissivity of second canal during

closure when there is a nominal depth of water in the

canal.D. is the depth to impervious bed measured from an

assumed high datum as shown in Fig. (5.1). flT_

the depths to water surfaces measured from the same

datum for the first and second canal respectively „. is

the depth to water surface in the second canal from the

high datum during the closure. D^.D^ are the depths to
beds of the canals from high datum. The expressions .of

reach transmissivity given by Equations (5.32) and

(5.33) have been obtained assuming the slopes of the
canal banks to be 1:1.

In a similar manner, equations valid for other
cycles could be written.

Numerical results for case (b) have been obtained

assuming M = 18 and KM/(2 (p H) =0.09. If the second

parallel canal has been introduced to supplement water

for irrigation for summer crops, in that case, the
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second parallel canal is likely to run for six months

and would remain closed for almost the same length of

time. Therefore, while obtaining numerical results, the
durations of running and closure of second canal have

been taken as equal. Assuming a unit time-step size of
10 days, the total number of time-steps for which the
canal would run at a stretch would be 18. If unit time-

step size^lO days, hydraulic conductivity =lm/io days,
9-0.1, H=1000m, and M=18, then, KM/(29H) =0.09.

Seepage losses from two parallel canals, one of
which runs intermittently, have been evaluated for ?1/I
- B2/H=0.03, B21/H =0.024, and D/H=0.18.The non-
dimensional depth of water in the left canal, H/I, is
0.003. During periods of full supply, the non-
dimensional depth of water in the right canal, lyl, is
0.003. During the periods of closure, adimensionless
depth of l.OxlO"6 has been assumed to prevail. Numerical
results have been obtained for two initial water table
positions defined by H/H = 0.005 and 0.009. The
variation of seepage losses with time from each canal,
corresponding to H/H = 0.005, are presented in

Fig.(5.17).The seepage losses from the canals had they
run continuously, and the seepage loss from the left

canal for D/H- ., are also presented in Fig.(5.17) for
comparison.To start with, seepage loss from each canal
of the parallel canal system decreases with time. The
instant the right canal is closed, the variation in
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seepage loss from the left canal deviates from its

jj decreasing trend. It is seen that for H/H = 0.005, on

closure of the right canal, the seepage loss from the

left canal increases until the right canal runs again

with full supply. The increase in seepage loss from the

left canal is attributed to the decrease in the

interference of the right canal consequent to its

closure. Similar trend is observed during the second

cycle of running. For H/H =0.009, it is seen from Fig.

(5.18),that during the first cycle on closure of the

second canal, the variation of seepage loss though

deviates from its decreasing trend but the seepage loss

continues to decrease at a reduced rate. However, during

the second cycle,on closure of the second canal, seepage

loss from the first canal increases until the second

canal runs again with full supply. Thus, if the water

table position is at a very shallow depth,the decreasing

A trend in seepage loss from the left canal is reversed

and the seepage loss from the left canal starts

increasing on closure of the right canal. if the water

table is somewhat at large depth, on closure of the

right canal the decreasing trend in seepage loss from

the left canal though deviates, the seepage loss
continues to decrease at reduced rate.

The following observations could be made from Figs.
(5.17) and (5.18) in respect of seepage loss from the

left canal when the right canal runs intermittently:
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(i) The seepage loss from the left canal, had both

the canals run continuously, forms the lower

bound.

(ii) The seepage loss from the left canal, had the

right canal been at infinity, forms the upper

bound.

(iii) The seepage loss from the left canal, when the

right canal runs intermittently, fluctuates

between these two bounds during the first few

cycles of running for which the results have

been presented in these figures.

The variations of seepage loss with time from the

right canal, which runs intermittently, are

discontinuous at the closure and the reopening time. It

is seen that for H/H = 0.005, during the first closure

of the right canal, at non-dimensional time 0.095 and

0.18, the non-dimensional seepage losses from the right

canal are 0.018 and 0.022 respectively. However, during

the closure in the second cycle, the right canal

receives water and acts as a drain. At non-dimensional

time 0.275, the non-dimensional flow to the right canal

is 0.099 and at time 0.36, before "the canal runs again

with full supply, the flow to the canal is 0.061. The

assumption that there exists a nominal depth of water in

the right canal during its closure is appropriate for

the situation in which the right canal would act as a

drain during periods of its closure. If the water table
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is at a shallow depth, the right canal would act as a

drain during its closure.

The decrease in seepage loss from the left canal,

due to interference of the right canal which runs

intermittently, has been shown in Figs. [5.19 (a)] and

[5.19 (b)] for B1/H=B2/H =0.03, B21/H = 0.024, D/H-0.18,

Hj/.H =H2(1)/H = 0.003, ai/H =0.001, and H/H =0.007. It

can be seen from Fig. [5.19 (a)] that the reduction in

seepage due to interference increases from cycle to

cycle, reaches a maximum value and then decreases as

observed in the case of continuously running canals. The

interference is maximum at Kt/(2cpH) = 0.81 and- the

value of maximum interference is 0.214. With closure of

the right canal, its interference decreases. The

residual interference at the time the right canal runs

again after the closure, increases from cycle to cycle-

reaches a maximum value, and then decreases. The

residual interference is maximum at Kt/(2<pH) =0.72 and

the maximum value of residual interference is 0.158.

The interference that would prevail at large time

has been presented in Fig. [5.19 (b)]. The trend

indicates that if the right canal runs intermittently

for an indefinite period, the interference would

fluctuate about zero. It was found from Fig. (5.8) that

if the right canal runs continuously, its interference

at large time tends to zero. However, as seen from Fig.

[5.19 (b)], if the right canal runs intermittently its
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interference fluctuates between positive and negative

values at large time. Negative interference means that

the right canal is inducing seepage from the left canal.

At large time, the water table would come up to the

water surface in the canals. During the closure of the

right canal if the water level is brought to the bed

level to impose the boundary condition, the right canal

would act as a drain and would induce seepage from the

left canal.

The seepage losses from two parallel canals for

case (c) is next consideredfin which the left canal runs

continuously with a constant depth of water, H./S-0.003,

and the right canal runs intermittently, such that

during the running periods H^H =H2/H=0.003, and during

closure the right canal is dry. The results have been

obtained using the Equations (5.30) and (5.31) and

imposing the condition Q2 (n) = 0 during the closure

periods. The assumption of Q2(n)=0 during the closure of

right canal is appropriate for that situation in which

the water table would remain below the bed of the right

canal.The results for seepage losses for B /H=B /H=0.03,

D/H =0.18, and H/H = 0.009 are shown in Fig. (5.20). It

could be seen from the figure that at Kt/(2cpH) = 0,

Q2(t)/KH2=2.1. The rate of seepage loss decreases with

time and becomes zero abruptly at non-dimensional time

=0.09 +e , where c is a very small quantity, due to the
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boundary condition that has been imposed. During the

second cycle of running, the seepage loss from the right

canal does not start from the value 2.1; instead it

starts from a value of 1.600 and then decreases. The

starting value of seepage loss in the second cycle is

less than that of the first cycle due to the fact that

the initial potential difference has already been

reduced on account of the running of the canals.

A comparison of the reductions in seepage from the

left canal due to interference of the right canal, which

may run in three different manners as prescribed in

cases (a), (b), and (c), has been made in Table (5.8).

The results presented in the table have been computed

for H/H = 0.007, D/H = 0.18, B^H = 0.03, H /I = 0.003,
B2/H =0.03, and H2/H = 0.003 during the period the right

canal runs with full supply [case (a)], B /H = 0.024
£ X

and H2/H = 1.0 x 10" 'during the period the right'canal

runs with nominal depth [case (b)]. if both the canals

run continuously the reductions in seepage from the

left canal due to interference are 0.1488, 0.2328, and

0.2644 at the end of non-dimensional time 0.09, 0.27

and 0.45 respectively. If the right canal runs with a

nominal depth of water during the closure, the

corresponding reductions in seepage from the left canal

due to interference are 0.1488, 0.1968, and 0.2115

respectively. If the seepage loss from the right canal

is assumed to be zero during its closure, the



Table (5.8) - Interference of an intermittently or continuously running canal on
seepage loss from a continuously_runnin£ parallel canal, evaluated
for D/H = 0 18, H/H = 0.007, Bj/H =_B2/H = 0.03, Hi/H = 0.003,
H2/H - 0.003 during running and H2/H = 1 x 10"6 during closure.

Time Seepage
factor loss

from

a single
canal for

D = °°

Et

cp H

Qx(t)

KH,

Seepage loss Interfe- Seepage loss Interfe-
from each of rence of from each rence of
the canal right canal when
when they run canal on the right
continuously the left canal runs

canal inter

mittently

Qx(t)

KH.

Q2(t>
KH„

Qx(t)

KH.

right
canal on

the left

canal

QgCt)

KH2(1)

0.005 1.5513 1.5431 1.5431 0.0082 1.5431 1.5431 0.0082

0.090 1.3506 1.2018 1.2018 0.1488 '1.2018 1.2081 0.1488

0.095 1.3442 1.1912 1.1912 0.1530 1.1954 0.4081 0.1488

0.180 1.2586 1.0556 1.0556 0.2030 1.1370 0.3682 0.1216

0.185 1.2545 1.0494 1.0494 0.2051 1.1292 1.1471 0.1253

0.270 1.1946 0.9618 0.9618 0.2328 0.9978 0.9996 0.1968

0.275 1.1916 0.9575 0.9575 0.2341 0.9966 0.2146 0.1950

0.360 1.1448 0.8931 0.8931 0.2517 0.9974 0.2320 0.1474

0.365 1.1423 0.8898 0.8898 0.2525 0.9920 1.0107 0.1503

0.450 1.1036 0.8392 0.8392 0.2644 0.8921 0.8944 0.2115

Seepage loss Interfe-
from each rence of
canal when

the right
canal runs

inter

mittently
with Q2(t)=0
Qx(t) Q2(t)

the right
canal on

the left

canal

KH1 KH2(1)

1.5431 1.5431 0.0082

1.2018 1.2018 0.1488

1.1976 0.0 0.1466

1.1813 0.0 0.0773

1.1726 1.2004 0.0819

1.0175 1.0202 0.1771

1.0169 0.0 0.1747

1.0383 0.0 0.1065

1.0322 1.0577 0.1101

0.9139 0.9171 0.1897
to

CO

ao
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corresponding reductions in seepage are 0.1488, 0.1771,

and 0.1897. The non-dimensional times 0.09, 0.27, and

0.45 refer to the end of running of the right canal in

the first, second, and the third cycle respectively.

Reduction in seepage from the left canal due to

interference of the right canal is highest for case (a)

and lowest for case (c).

The water table evolutions due to seepage from two

parallel canals, one of which runs intermittently [case

(b)], have been predicted for B /H = 0.03, H1/H - 0.003,

B2/H =0.03, and H2/H =0.003 during running of the right

canal; B2/H =0.024 and H2/H =1x 10~6 during closure of
the right canal, and H/H =0.005. The evolution of water

table shown in Fig. (5.21) has been predicted for D/H =

0.08. The water table evolution presented in Fig.

(5.22) is for D/H = 0.18. The right canal remains

closed during non-dimensional time periods 0.09 to 0.18

and 0.27 to 0.36. The following observations could be

made from Figs. (5.21) and (5.22):

(i) There is only one water table mound at non-

dimensional time 0.18 and 0.36 under the left

canal which runs continuously, and the mound

under the right canal has disappeared,

(ii) For D/H = 0.08, the maximum height of the mound

under the left canal at the end of non-

dimensional time 0.18 is less than that of the

mound at non-dimensional time 0.09.
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(iii) For D/iT=0.08 and 0.18, the maximum height of

the mound under the left canal at the end of

non-dimensional time 0.36 is less than that of

the mound at non-dimensional time 0.27.

(iv) The height of the mound under the left canal

declines during closure of the right canal as

the seepage loss from the right canal is very

little during its closure, or the right canal

acts as a drain. For the same reason the mound

disappears under the right canal.

The water table evolutions for the same canal

system are shown in Figs.(5.23) and (5.24) for H/H

=0.009. As the water table is at a comparatively deeper

position, the seepage loss from, the right canal during

its closure is considerable and the right canal does not

act as a drain. Hence, as seen from Fig. (5.23), the

water table mound below the left canal progressively

rises with time upto non-dimensional time 0.36. Similar

trend could be observed from Fig. (5.24) when the

.canals are located at larger spacing with D/H = 0.18.

Thus, the water table mound will go on rising with time

below the left canal till the seepage loss from the

right canal is insignificant or the canal acts as a

drain.

The water table rise for case (c), in which the

right canal runs intermittently such that Q (n)=0 during

its closure, has been evaluated for B /H=B /H=0.03,
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H1/H • 0.003, H2(t)/H during running of the right canal

- 0.003, and H/H = 0.009. Results for D/H = 0.08 and

0.18 have been presented in Figs. (5.25) and (5.26)

respectively. It can be seen from Fig. (5.25) that

the maximum height of water table mound below the left

canal at non-dimensional time 0.18 is less than that of

the mound at non-dirnensional time 0.09. This is because

the seepage loss from the right canal during its

closure is zero. It can be seen from Fig. (5.26) that

similar trend occurs only at a later time as the spacing

between the canals is comparatively more.

5.4 Conclusions

Based on the results presented in this chapter, the

following conclusions are drawn:

1. The unsteady seepage losses from the canals and the

reduction in seepage due to interference are

linearly proportional to the initial potential

difference that initiates the flow.

2. In case of two continuously running parallel

canals, the reduction in seepage from one canal,

due to interference of the other, is zero in the

beginning of seepage. The interference increases

as the time passes and attains a maximum value and
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then decreases. The decrease is monotonic at large
time.

The maximum reductions in seepage due to

interference decreases with increase in the

spacing between the canals. Also, the occurrence of

maximum interference is delayed for canals having

larger spacing.

4. The interference of a bigger canal on smaller

canal is more than that of the smaller canal on

the bigger one.

5. If two canals of equal dimensions are at different

bed levels, the interference of the canal at lower

elevation is less than that of the canal at higher

elevation.

6. If one of the parallel canals runs continuously,

and the other intermittently with equal

durations of closure and running, it is found

that, the reduction in seepage from the

continuously running canal due to interference of

the intermittently running canal starts from

zero, increases from cycle to cycle, reaches a

maximum value, and then decreases. If the

intermittently running canal is operated

indefinitely, it is found that its interference on

the other would fluctuate about a zero mean value.
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7.- If one of the parallel canals runs intermittently,

after some cycles of operation, the intermittently

running canal would act as a drain during its

closure period.

8. For the parallel canals of equal dimensions,

distinct water mounds of equal height are formed

under the canals. In the beginning of seepage, the

ridges lie under the centre of the canals. With

lapse of time, as seepage continues, the points of

maximum water table height move towards each

other; but they do not cross the width of the

respective recharging strips. With passage of

time, the zone in between the canals becomes a

stagnant zone.

9. If the canals are located at different levels, the

water table mound under the canal,which is at lower

elevation, disappears with passage of time'due to

rapid reduction of seepage from the canal at lower

elevation. Therefore, one ridge is established

ultimately under the canal which is at higher
elevation.

10. If two unequal parallel canals have their beds

at the same level, the width of one canal is

twice that of the other, and they run
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continuously, the water table in between the

canals takes the shape of a flat plane at

large time dipping towards the canal of smaller
strength.
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CHAPTER 6 251

INTERFERENCE OF SEEPAGE FROM TWO PARALLEL CANALS ONE
OF WHICH HAS HYDRAULIC CONNECTION WITH THE AQUIFER

6.0 Introduction

The evolution of water table due to recharge from

parallel canals, when water table is located at large

depth, has been analysed in Chapter 3. In such a

situation the canals are not hydraulically connected

ith the aquifer and, therefore, the seepage losses from

the parallel canals are invariant and independent of

location of the water table below the bed of canals.

A two canal - aquifer interaction problem, when water

table is located at shallow depth, such that, the

canals are hydraulically connected with the aquifer,

has been analysed in Chapter 5. In the field, a

situation may arise in which a canal is constructed

at a high elevation on a ridge as a contour canal to

supply water for irrigation in the local command area

or to a power house. There may also be a canal in

the valley at lower elevation, running parallel to

the ridge canal, and supplying water for irrigation

in the valley. A study of interference of seepage

from a parallel canal system has been made in this

w
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chapter in which, one canal situated in the

valley is hydraulically connected with the aquifer

and the other canal, on the high ridge, has no

hydraulic connection with the aquifer.

6.1 Statement of the problem

Two parallel canals have been constructed in a

homogeneous and isotropic porous medium of finite depth,

and infinite lateral extent. The dimensions of the

canals are as shown in fig. (6.1). One of the canals is

situated on a high ridge and the other is at a much

lower elevation. On account of large difference in the

elevations of bed level of the ridge canal and the water

table underneath, the ridge canal is hydraulically

unconnected with the aquifer. Therefore, the seepage

occurs at constant rate from the ridge canal. The bed

of the lower canal is near to the ground water table and

is hydraulically connected to the aquifer. Its seepage

rate is controlled by the potential difference between

the canal and the aquifer below the bed of the canal.

The permeability of the aquifer material is K. The

initial saturated thickness of the aquifer is H and the

storage coefficient is cp . D. is the depth to

impervious base measured from the high datum. The

initial potential difference between the valley canal

and the aquifer is H. It is required to determine the



254

seepage from the lower canal Qr,^ +uxuwer canal and the temporal and

spatial variation of water table rise.

6.2 Analysis

The following assumptions have been made in the
analysis:

(i) The time in which the seeping water from the
ridge canal reaches the water table has been
neglected.

(ii) The hydraulic properties of the aquifer remain
constant with respect to time and space.

(iii) The flow due to seepage from ridge canal is
vertically downwards until it reaches the water
table.

(iv) The Dupuit's assumptions are valid.

(v) The time span is discretised by uniform time-step.
Within each time-step the seepage from the lower

canal is constant,but it Varies from step to step.
The seepage from unit length of the hydraulically

connected canal ,during time-step n is given by

Qr C») -~ Tr [V(n) - Sr (o,n)] ...(6.1)

Where' ar (n> and Sr (o,n) are the depth to water
surface in the canal and the depth to water table below
the canal bed respectively measured from the same high



Fig.6.1-Schematic section of two parallel canal;
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datum during time- step n, and r is the reach

transmissivity for unit length of the canal reach.

The depth to water table below the lower canal bed,

Sr (o,n), consists of two parts, S (o,n) and S (o,n),
• y

where, S1(o,n) is the rise on account of seepage from

the ridge canal and S2 (o,n) is the rise due to its own

seepage.

The rise of water table under the lower canal due

to seepage from the ridge canal at the end of time-step

n1 is given by,1 n I

S^o^) = F(-D,B1, Hx,n)- K/(-D) 2(B1+2H1) /(2T)...(6. 2)

where, D is the distance between centre to centre of the

two canals.

The rise in water table due to seepage from the

lower canal which is hydraulically connected with the

aquifer is given by:

n

S2(o,n) = i Qr(Y)6 (o,B n -Y+l) ...(6.3)
Y=l

The discrete kernel coefficients 6(o,B ,M) are given by

Equations (4.11) to (4.13). Spliting the temporal

summation, appearing in equation (6.3), into two parts,

n-1

S2(o,n) = Z Qr(T)6(o,B n-Y+1)
Y=l

+ Qr(n) 6(o,B2,l) ...(6.4)
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The depth to water table from the high datum below the

centre of lower canal at the end of time-step n is given

by,

Sr(o,n) = D.- H - S1(o,n) - S2(o,n) ...(6.5)

Incorporating Sr(o,n) in Equation (6.1),

Qr(n) - -rr [ ar(n)-D.+ H+S^o, n)+S2(o,n) ] ...(6.6)

Substituting S1(o,n) and S2(o,n) from Equations (6.2)

and (6.4) respectively in Equation (6.6), and

rearranging,

Qr(n) «[-£-+ 6(o,B 1)r1 .[D -H-F(-D,B. ,H,n)

+ K/(-D)2(B1+2H1)/(2T)

n-1

- E Qr(7) 6(o,B2,n- Y+l)-ar(n)] ...(6.7)
Y=l

The seepage rate during any time-step n can be found in

succession starting from time - step 1, by using

Equation (6.7).

In particular, for the time-step 1, the seepage rate is

given by:

0 (n) =Di-I-F(~D'B1 'Hi'1)+0.5K/(-D)2(B1+2H1)/T-ar(l)
1 i/rr+6 (o,B2,l) "

...(6.8)
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After solving for Qr (y), y =l,2,...n, the water table

rise at any distance x from the centre of the

hydraulically connected canal,at the end of time-step n,

can be predicted using the formula:

S(x,n) = F[-(D-x), B1, H1>n]-K /[(D-x)2](B1+2H1)/(2T)

+ I Qr(y) 6(x,B2,n -y +1), ...(6.9)

for |x-D| £(B1+2H1)/2

= F[-(D-x),B1, Hrn]

[(x-D)2+0.25(B +2H1)2]K
• 2~i— ~ ...(6.10)

for |x-D|> (B +2H )/2

The discrete kernel coefficients are given by Equations

(4.11),(4.12) and (4.13).The function F[-(D-x),B , H ,n]

can be evaluated using the relationship given at

Equation (3.a).

6.3 Results and discussions

The valley canal being hydraulically connected

with the aquifer, its seepage loss would vary with time.

The seepage loss from the valley canal is governed by:

(i) The initial potential difference between the

canal and the aquifer under the canal.
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(ii) The spacing between the valley canal and the

ridge canal .

(iii) Dimensions of the canals,

(iv) Hydraulic conductivity.

(v) Initial saturated thickness of the aquifer.

Out of the above factors, the influence of spacing

between the canals and widths of the canals on seepage

loss has been analysed. The variations of dimensionless

seepage, Q2 (t) /KH2, from the valley canal with non-

dimensional time have been presented in Figs. (6.2)

through (6.5),with H/H=0.006, for four sets of canal

widths and for various spacings between them.The results

presented in Fig.(6.2) are for B±/E =B2/H=0.03. It could

be seen from the figure that for D/H = 0.08, the seepage

from the valley canal reduces to zero at non-dimensional

time, Kt/(2cpH), =6.1 x 10"2 . Thereafter, it receives

water from the aquifer. The time to reversal of flow

increases as the spacing between the canals increases.

For example, for D/H = 0.96, the canal receives water

after Kt/(2 cp H) =3.55 x 10"1 .

The temporal variations of Q2 (t)/(KH2), for D/H =»

have also been presented in Figs. (6.2) through (6.5).

At any given time, the difference in the variation of

Q2 (t)/(KH2) corresponding to any specific distance

between the ridge and the valley canal,from that of the
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variation for D/TT =«,,is the interference of the ridge

canal on the valley canal. The reduction in non-

dimensional seepage due to interference has been

indicated in the Figures. It is seen from Fig. (6.2)

that the interference increases with lapse of time. For

B1/H =B2 /H =0.03 and D /H =0.24, at Kt/(2cpH)=2 x 10"2,

the reduction in non-dimensional seepage due to

interference is equal to 0.2857 whereas, at Kt/(2ml") =

2 x 10" the corresponding reduction in non-dimensional

seepage due to interference is 1.9985. At any given

time, the interference is less for larger spacing

between the canals. For example, for D/H = 0.24, at

Kt/(2cpH) = 1 x 10" , the reduction in non-dimensional

seepage loss due to interference is 1.2742. For

D/H=0.96,the corresponding reduction is 0.1566.

The variation of Q (t)/(KH ) with Kt/(2<p H) for

B1/H = 0.03 and B2/H = 0.06 is shown in Fig.(6.3) for

different values of D/H. A comparison of the results

shown in Figs.(6.2) and (6.3) indicates that for any

given spacings the reversal of flow takes place in both

the cases nearly at the same non-dimensional time,

though the width of valley canal in one case is twice

that of the valley canal in the other case. For example,

as seen from Fig.(6.2), for B2/H = 0.03, B-/H =0.03,

and D/H - 0.48, the reversal of flow takes place in the
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non-dimensional time interval from 1.80 x 10"1 to

1.85 x10"1. It could be seen from Fig.(6.3) that for
B2/H =0.06 and B^H =0.03, for the above spacing, the
reversal of flow takes place in the non-dimensional time
interval from 1.75 x 10"1 to 1.80 x 10"1.

The influence of a ridge canal of larger width on

seepage losses from valley canal has been presented in

Figs.(6.4) and (6.5). It could be seen from Fig.(6.4)
that for B2 ft =0.03, Bj /H =0.06, and D/H =0.48, the
reversal of flow takes place in the non-dimensional time

interval between 1.0 x 10"1 to 1.05 x 10"1. For B /H -
0.06, Bl /H = 0.06 and D/H = 0.48, the reversal of flow

also takes place between the same non-dimensional time

interval.Thus, the reversal of flow is not significantly
governed by the dimension of the canal which is

hydraulically connected with the aquifer.lt is also seen

that for same width of the valley canal,if the width of

the ridge canal is more, the reversal of flow occurs at
earlier time.

A typical set of water table positions have been

presented in Fig. (6.6) for B^H =B2/H =0.03, Hj/I =H2/H
=0.003,H/H=0.006,and D/H-0.24 at various non-dimensional,
time. The part of the phreatic line near the valley
canal, shown by dotted lines, can not be predicted with

sufficient accuracy by the present methodology as the
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flow in this region does not obey the Dupuit-Forchheimer

assumptions. The water table evolution upto Et/(2»H) =
-25 x 10 corresponds to a period in which the valley

canal looses water. The water table position presented

for Kt/(2cpH) = 1 x 10"1 corresponds to the time just

prior to the occurrence of reversal of flow.

6.4 Conclusions

From the study of interference of ridge and valley

canal, which run continuously, the following conclusions

have been drawn:

1. The interference of a continuously running ridge

canal increases with time for any given spacing

between the canals.

2. The interference of a ridge canal at any time

decreases if the spacing between the canals

increases.

3. When the water table is at shallow depth, the

reversal of flow in the valley canal is

controlled by the dimension of the ridge canal and

its distance from the valley canal.
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EFFECT OF DRAINAGE CHANNEL ON EVOLUTION OF WATER

TABLE DUE TO RECHARGE FROM TWO PARALLEL CANALS

7.0 Introduction

The irrigation canals are constructed in a basin

where a natural drainage system generally exists. A

part of the recharge due to seepage from the canals will

be taken away from the basin through the natural

drainage system. The evolution of water table due to

seepage from canals, which are hydraulically connected

or hydraulically unconnected with the aquifer, have

been dealt with seperately in previous chapters in which

the existence of drainage system was not considered. If

a drainage channel exists in the vicinity of the canals,

the water table will come up near the bed level of the

drainage channel in course of time due to seepage from

the canals. The drainage channel activates only when

the water table reaches its bed. The return flow to the

drainage channel will be governed by the difference in

potentials at the periphery of the drainage channel and

in the aquifer below its bed. The time of activation of

drain and return flow to it are governed by:

i) the dimensions of the parallel canals,

ii) the spacing between the canals,
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iii) distance of the drain from the centre of the

nearest canal,

iv) hydraulic conductivity,storage coefficient,and

v) initial saturated thickness of the aquifer.

In this chapter, the evolution of water table in the

presence of a drain running parallel to a canal system,

and the performance of the parallel drain have been

studied.The study has been made for parallel canals

which are hydraulically unconnected with the aquifer.

Such a situation may arise in case of ridge canals. The

rate at which the water will be drained by the drainage

channel is controlled by width of drain, depth of water

in it, and its bed slope. In the present study, the

width of the drain has been taken into consideration.

The depth of water in the drain, after it receives

water, has been assumed to be nominal and its variation

has not been considered in the present analysis. The

boundary condition that has been imposed is that the

drain after receiving water acts as a constant head

boundary.

7.1 Statement of the Problem

Two parallel canals have been constructed on high

ridges in a homogeneous and isotropic porous medium of

infinite areal extent. There exists a drainage channel
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in. the vicinity of the canals. The dimensions and

locations of the canals and the drainage channel are as

shown in Fig. (7.1). On account of large difference in

the elevation of bed level of the ridge canals and the

water table underneath, the ridge canals are not

hydraulically connected with the aquifer. Therefore,
the seepage occurs at constant rate from the ridge
canals. The drainage channel situated at a lower level

gets activated when the piezometric surface rises above

its bed level. Thereafter, it gets hydraulically
conneccted to the aquifer. The rate of return flow to

the drainage channel is controlled by the potential

difference between the channel and the aquifer below

the bed of the channel. The permeability of the

aquifer is K. The initial saturated thickness of the

aquifer is ff and the storage coefficient is Cp . It is
required to determine the time at which seepage from the

ridge canals enters the drainage channel, • the temporal
and spatial variation of water table rise and the rate
of return flow.

7.2 Analysis

The assumptions made to carry out the analysis are
as follows:

i) The hydraulic properties of the aquifer remain

constant with respect to time and space.



Fig.7.1-Schematic section of two parallel ridge canals and a drainage channel
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ii) The flow due to seepage from ridge canals is

vertically downwards until it reaches the water

table,

iii) Dupuit's assumptions are valid,

iv) The time span is discretised by uniform time-

step. Within each time-step the return flow to

the drainage channel is constant, but it varies

from step to step.

Let the return flow entering to the drainage

channel from unit length during timerstep n be Q (n).

According to the linear relationship the return flow is

given by:

Qr (a) = rr [ ar(n) - Sr (o,n)] ...(7.1)

where a (n) is the drawdown to the water level in the

drainage channel measured from a high datum during n

time- step and S (o,n) is the drawdown in the aquifer

under the channel measured from the same datum during

n time-step. The reach transmissivity coefficient, r ,

for the drainage channel is given by the Herbert's

formula. r is the reach transmissivity for unit length

of the drainage channel.

Let the longitudinal bed slope of the drainage

channel be so steep that water in the drainage channel

is disposed of quickly and a small depth of water is

maintained in the channel. Under such situation, a (n)
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can be assumed to be equal to the depth to channel bed

from the high datum (D,).

The depth to water table below the channel bed,

Sr(o,n), comprises two parts, S1(o,n) and S (o,n), where

S1(o,n) is the rise on account of seepage from ridge

canals and S2 (o,n) is the decrease in height due to

irrigation return flow.

The component of the water table rise at any time

due to seepage from the ridge canals can be obtained

using Equation (3.7). The component of water table rise

under the drainage channel due to seepage from the ridge

canals at the end of time-step 'n' is given by:

S1(o,n) =F(-D1,B1,H1,n) -K /J-D^ 2(B;L+2H1 )/2T

+F(-D2,B2,H2,n) -K /T-D2)2(B2+2H2)/2T ...(7.2)

where D1 and D2 are the distances from the centre of the

ridge canals to the centre of the drainage channel, D

being equal to ^ + D). The first two terms on right

side of Equation (7.2) represent water table rise due to

the first ridge canal and the last two terms represent

the rise due to the second ridge canal.

Let water enter the drainage channel for the first

time at the end of time-step, m.
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Therefore,

D. - Db= H+F(-D1,B1,H1,m)-K/(--D1)2(B1+2H1)/2T

+F(-D2,B2,H2,m)-K/r-D2)2(B2+2H2)/2T ..(7.3)

The time-step, m, during which water enters the drainage

channel,can be known by an iteration from this equation.

The lowering in water table at the centre of the

drainage channel, at the end of nth unit time- step,

S2 (r,n), due to return flow which have entered the

channel upto nth time-step, is given by

n

S2(o,n) = i Qr(Y) 3(o,B n-Y+l) ...(7.4)
Y=m+1

in which,

B3 = width of the drainage channel.

The discrete kernel coefficients 6 (o,B ,M) are

defined by Equations (4.11), (4.12) and (4.13).

Splitting the temporal summation appearing in Equation

(7.4) into two parts,

n-1

S2 (o,n) = £ Qr (y>. 3(o,B n -Y+l)
Y=m+1

+ Qr (n) a(o,B3,l) ...(7.5)

Referring to Fig. (7.1), the expression for depth to

water table from the high datum at the centre of the

drainage channel can be written as:

Sr(o,n) = D. - H - S2 (o,n) + S2 (o,n) ...(7.6)
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Substituting for Sr(o,n) in Equation (7.1),

Qr(n) = Tr [crr(n) - D.+ H + S1(o,n) -S2(o, n)] ...(7.7)

Substituting s± (o,n) and S2(o,n) from Equations (7.2)

and (7.5)respectively in Equation (7.7) and rearranging,

Qr (n) = [-jr- +6(o,B3,l)]"1 .[ar(n)-Di+H+F(-D1,B1,H1,n)

- K /T-D1)2(B1 + 2H1)/2T + F(-D2,B2,H2,n)

- K/1-D2_y (B2 + 2H2)/2T

n-1

- Z Qr(y) «S(o,B n -Y+l)] ...(7.8)
Y=m+1

for [ n ^ (m+1)]

In particular for the (m+l)th time-step the return flow

rate is given by:

Q„(m+1)= [ar(m+l) - D± +E + F(-D- ,'B ,E±,m+l) .
r

- Q.5KVT(-1D1)Z (B1 +2H2)/T + F(-D2, B2 ,H2,m+l)

V ~ 0.5K/T-D2KB2+2H2)/T][ -j-+6(o, Bg,1) ]_1

...(7.9)

7.3 Results and Discussions

Results have been presented for a drainage channel

which is located to the left of the first canal. The

time at which the drain gets activated, the rate at



275

which the return flow enters the drainage channel, and

loci of the water table at different time have been

presented. The non-dimensional times, Kt/(2 cp H), at

which water first enters into the drainage channel,have

been predicted for B^H = B2/H = 0.03 and 0.06, H/H =

H2/H = 0.003, B3/H = 0.02, for various values of D /H

and D/H, and are shown in Table (7.1). It is seen that

with larger spacings between the parallel canals, the

time at which the drainage channel activates is delayed.

For example, with B^H - B2/H = 0.03 and D^H = 0.3 the

non-dimensional time for activation of drain is 0.028

when spacing between the ridge canals, D/H, is 0.08. For

D/H = 2.0, the corresponding time is 0.042. It is also

seen from the table that if the distance of the drain

from the first canal, i.e., D]L/H, is increased, the drain

activates at a later time, other dimensions remaining

same. For example, if D/H = 0.5 and D^H = 0.3, the

drain activates at non-dimensional time = 0.0395

whereas, it activates at non-dimensional time = 0.0875,

if D1/H = 0.6. It could also be seen from the table

that for larger width of parallel canals, a drain would

activate at earlier time, other dimensions remaining

same. For example, for B1/H = B2/H - 0.03, D/H = 0.3

and D/H = 0.5, the drain activates at non-dimensional

time= 0.0395 whereas, if Bx /E = B2 /H = 0.06, the
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Table (7.1) Non-dimensional time at which the water enters
the drainage channel;evaluated for D±/E =1.1
cr(n)/H =0.098 and B3/H = 0.02; the drain lies
to the left of the first canal

Width of Depth of Spacing
the canals water in between

the canals the

canals

B^H^/H H1/H,H2/H D/H

0.030 0.003

0.06 0.003

0.08

0.18

0.50

1.00

2.00

0.08

0.18

0.50

1.00

2.00

0.08

0.18

0.50

1.00

2.00

0.08

0.18

0.50

1.00

2.00

Distance of

the drain

to first

canal

D1/H

0.30

0.60

0.30

0.60

Non-dimensional

time at which

the drain

activates

Kt/(2 cpl)

0.0280

0.0320

0.0395

0.0415

0.0420

0.0675

0.0735

0.0875

0.0955

0.0965

0.0190

0.0215

0.0250

0.0255

0.0256

0.0490

0.0535

0.0620

0.0650

0.0651



V

277

corresponding time is 0.025.

The results of return flow to the drainage channel

with time after the drain gets activated, are presented

in Fig.(7.2) for B,/H = B2/I = 0.03, H1/H = H2/H =0.003,

B3/H = 0.02, and D-/H = 0.3 and 0.6, for various values

of D/H. Similar results for canal of larger width with

B^yl = B2/H = 0.06 are presented in Fig. (7.3). It is

seen from the figures that water enters the drain at an

increasing rate. For example, for B1/H = B2/H = 0.03,

D^ /H = 0.3 and D/H = 0.5, the non- dimensional flow

[Qr (n)/(KH1 )] entering to the drainage channel per

unit length is 1.2553 at non -dimensional time =0.1395.

The flow rate to the drainage channel at non-

dimensional time ='0.3995 is 3.5337. The predicted

return flow to the drainage channel presented in the

figures are valid only if the depth of water in the

drainage channel is very nominal as has been assumed.

Typical results of evolution of water table with

time, due to seepage from parallel ridge canals, in the

presence of drainage channel, are depicted in Fig. (7.4)

for B1/H = B2/H - 0.06, Hj/H = H2/H =0.003, D/H = 0.18,

and D1/H = 0.3. The water enters the drainage channel

at the end of non-dimensional time = 0.:0215. The water

table evolutions shown in the figure are after the

drainage channel has been activated. It could be seen
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that at non-dimensional time = 0.050, the water table

rise, s(x,t)/H,under the first canal, which is nearer to

the drain,is 0.01798.Had there been no drainage channel

nearby, the non-dimensional water table rise under this

canal would have been 0.01803. [Table 7.2]. Thus, due

to the presence of the drainage channel, the water table

evolution under the canal has not been influenced

appreciably upto non-dimensional time = 0.050. The

results of water table rise at various times below the

centre of the first canal, with and without the presence

of drainage channel, are shown in Table (7.2). It could

be seen that at non-dimensional time = 0.2, the water

table rise below the centre of the first canal is

0.03924 when the drainage channel exists nearby. The

water table rise without the drain would have been

0.04110.

7.4 Conclusions

The following conclusions have been drawn from the

study presented above:

i) A drain activates at earlier time, for canals,

having larger width, other parameters remaining the

same,

ii) If the spacing between the parallel ridge canals is

increased, the time for activation of drain is
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Table 7.2 - Rise of water table below the centre of first

canal with and without drainage channel^ nearby,
evaluated for Bi/H = B2/H = 0.06, B3 /H = 0.02,
Hl/H = H2/H = 0.003, D/H = 0.18, Di/H = 0.30,
a(n)/H = 0.098, and D./H = 1.1

Non-dimensional

time

Kt/(2 cp H)

0 .005

0 .010

0 .015

0 .020

0 .025

0 .030

0 .035

0 .040

0 .045

0 050

0 100

0. 150

0. 200

0. 250

0. 300

0. 350

0. 400

0. 450

Water table rise [S(x,t)/H]
below the centre of first canal

In the absence of

drainage channel

0.00368

0.00609

0.00812

0.00990

0.01151

0.01299

0.01436

0.01565

0.01687

0.01803

0.02751

0.03481

0.04110

0.04661

0.05160

0.05619

0.06047

0.06449

In the presence of
drainage channel

0.00368

0.00609

0.00812

0.00990

0.01151

0.01299

0.01436

0.01564

0.01684

0.01798

0.02707

0.03379

0.03924

0.04387

0.04791

0.05151

0.05476

0.05772
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delayed,

iii) A drain activates at earlier time if its distance

from the parallel canals is decreased,

iv) With the presence of the drainage channel, the

maximum water table height under the left canal

is marginally affected upto certain initial

period.
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GENERAL CONCLUSIONS

In the present study, the interference of seepage

from two parallel canals has been analysed both for deep
as well as for shallow water table position below the

bed of canals. The study of interference of canals for

deep water table position, in which case the canals are

not hydraulically connected with the aquifer, has been

carried out using the Glover's basic solution of the one

dimensional Boussinesq's equation for. a line source and

method of superposition. When water table is

located at shallow depth below the bed of a canal,
and the canal is hydraulically connected with the

aquifer, the time variant seepage loss may be

linearly or non-linearly dependent on the potential,

difference between the canal and the aquifer. A

solution has been obtained to find seepage from a

canal in which the seepage loss is non-linearly
dependent on the potential difference between the canal

and the aquifer, and the results have been compared with

the solution which is based on linear relationship.
Making use of a linear relation-ship between seepage
loss and the potential difference, an analysis has been

carried out using the reach transmissivity constant and
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discrete kernel coefficients to evaluate the time

variant" seepage, the water table rise at different time

after the onset of recharge, and the interference of two

parallel canals. Further, an anlysis of interference of

seepage from two parallel canals, one of which is

situated on a high ridge and the other in a valley has

been carried out assuming the ridge canal to be

hydraulically unconnected and the valley canal to be

hydraulically connected with the aquifer. A study of

return flow to a drainage channel due to seepage from

two parallel canals, which are not' hydraulically

connected with the aquifer, has also been carried out.

The following general conclusions have been drawn

from the above studies:

1. From the study of seepage from a canal,when the

water table is at large depth below the canal bed,

it is found that if the canal runs continuously

for a long time, the absolute value of water table

gradient at any point outside the recharging strip

attains a limiting value equal to 0.5(B/E+2H/E) in

which, B is width of canal at water surface, H is

the maximum depth of water, and E is the saturated

thickness of the aquifer. At any point within the

recharging strip, the limiting value of the

gradient attained after a long time is x/E, where
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x is the distance of the observation point from

the centre of the canal. The saturated thickness

of aquifer can be predicted by observing the

limiting value of the gradient of water table in

the vicinity of the canal.

2. If a canal, which is not hydraulically connected

with the aquifer, runs intermittently, the water

table below the canal declines immediately after

the canal is closed. In the region beyond the

recharging strip,the aquifer exhibits a delayed

response to the closure of the canal. There is,

however, no reversal of flow any where on account

of intermittent running of the canal, and, at any

time the height of water table is maximum at the

centre of the canal and it decreases as the

distance from the centre of the canal increases.

3. If two identical parallel canals, which are not

hydraulically connected with the aquifer, run

continuously,in the beginning of recharge, the two

water table ridges are located at the centres of

the recharging strips. However, as time elapses,

the points of maximum rise move towards each other

but they do not move beyond the respective

recharging strip. if the identical parallel

canals run continuously, with lapse of time a
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stagnant zone gets created between the canals, and

the region between the two parallel canals takes

the shape of a plateau.

For unequal parallel canals it is seen that, some

time after the onset of recharge, there is only

one point of maximum rise under the canal of

larger strength where the slope of water table is

zero; the ridge under the canal of smaller

strength vanishes.

5. The non-linear relation proposed by Rushton and

Redshaw for the stream - aquifer interaction, when

water table is at shallow depth, is the only

relationship known so far. The parameters

appearing in the non-linear relationship proposed

by Rushton and Redshaw can be evaluated making use

of the condition proposed by Muskat, that the

seepage from a canal attains its maximum 'value

when potential difference between the canal' and

the aquifer is more than 1.5(B+2H), where, B is

the width of the canal at water surface and H is

the maximum depth of water in the canal.

Discrete kernel approach can provide a numerically

tractable solution for predicting time variant

seepage which is non-linearly dependent on the

potential difference between the canal and the

aquifer.
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7. The Herbert's formula of reach transmissivity is

found to be appropriate to be used in a canal

aquifer interaction problem. However, this formula

is applicable if the wetted perimeter of the canal

is less than 1.5 times the thickness of the

aquifer below the canal bed.

8. For very shallow water table position below the

bed of canal (upto a depth of 5m below the bed of

canal), the linear relationship between the

seepage from the canal and the potential

difference between the canal and the aquifer can

be used for predicting seepage losses.

9. Non-linearity between seepage loss and potential

difference gets pronounced with increase in width

of the canal or with increase in the initial

potential difference that initiates flow.

10. From the study of interference of parallel canals,

\y which is based on a linear relationship between

the seepage loss and the potential difference

between the canals and the aquifer for shallow

water table position, it is found that:

(i) The unsteady seepage losses from the canals and

the reduction in seepage due to interference are

linearly proportional to the initial potential

difference that initiates the flow.
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(ii) In case of two continuously running parallel

canals, the reduction in seepage from one canal

due to interference of the other is zero in the

beginning of seepage. The interference increases

as the time passes and attains a maximum value and

then decreases. The decrease is monotonic at

large time.

(iii) The maximum reduction in seepage due to

interference decreases with increase in the

spacing between the canals. Also, the occurrence

of maximum interference is delayed for canals

having larger spacing.

(iv) The interference of a bigger canal on smaller

canal is more than that of the smaller canal on

the bigger one.

(v) If two canals of equal dimensions are at different

bed levels, the interference of the canal at' lower

elevation is less than that of the canal at higher

elevation.

(vi) If one of the parallel canals runs continuously,

and the other intermittently with equal durations

of closure and running, it is found that the

reduction in seepage from the continuously running

canal, due to interference of the intermittently

running canal, starts from zero, increases from
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cycle to cycle , reaches a maximum value, and then

decreases. If the intermittently running canal is

operated indefinitely, it is found that its

interference on the other would fluctuate about a

zero mean value.

(vii) If one of the parallel canals runs intermittently,

after some cycles of operation the intermittently

running canal would act as a drain during its

closure period.

(viii)For the parallel canals of equal dimensions,

distinct water mounds of equal height are formed

under the canals. In the beginning of seepage,

the ridges lie under the centre of the canals.

With lapse of time, as seepage continues, the

points of maximum water table height move towards

each other; but they do not cross the width of the

respective recharging strips. With passage of

time, the zone between the canals becomes a

stagnant zone.

11. From the study of interference of ridge and valley

canals, which run continuously, it is found that:

(i) The interference of a ridge canal on seepage loss

from a valley canal, which is hydraulically

connected with the aquifer, increases with time

for any spacing between the canals.
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(ii) With increase in the spacing between the canals

the interference is delayed,

(iii) The reversal of flow to a valley canal is mainly

controlled by the dimension of the ridge canal and

its distance from the valley canal.

12. From the study of effect of a drainage channel on

the evolution of water table due to seepage from

two parallel canals situated on high ridge it

has been found that:

(i) A drain activates at earlier time for canals

having larger width, other parameters remaining

the same,

(ii) If the spacing between the parallel ridge canals

is increased, the time for activation of drain is

delayed,

(iii) A drain activates at earlier time if its distance

from the parallel canals is decreased.
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