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ABSTRACT

Water wells generally tap more than one aquifer.

The mathematical solutions developed so far for determining
drawdown and individual aquifer's contribution during
the unsteady state flow to a multiaquifer well are intr

actable. Therefore, only a few numerical results are

available so far for a multiaquifer well system. In the

present study using discrete kernel approach, complete

analytic solutions have been developed for the following
problems of unsteady flow to a multiaquifer well :

a) Unsteady flow to a well tapping two confined
aquifers separated by an aquiclude ;

b) Unsteady flow to a well tapping more than two
aquifers which are separated by aquicludes ;

c) Unsteady flow to a well tapping two aquifers
separated by an aquitard.

For a well tapping two aquifers the studies have

been extended when the top aquifer is unconfined and has

delayed yield characteristics. The two aquifers may either
be separated by an aquiclude or aquitard.

Discrete kernel coefficients for drawdown in an

unconfined aquifer have been evaluated using Boulton's

solution. An efficient method has been found to compute
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the discrete kernel coefficients for any value of tj,
[t, =(0 +0y)/0 fwhere the storage coefficients 0and
0y correspond to early and later part of time drawdown
curve of an unconfined aquifer].

With the method of analysis developed in the

thesis, it is easy to find the discharge contributions
of each of the aquifers when amultiaquifer well is pumped.
When the well is tapping atwo aquifer system separated
by an aquitard, the discharge contributions by each of
the aquifers and the exchange of flow taking place bet
ween the two aquifers through the intervening aquitard
have been evaluated. The variations of each aquifer's
contribution to well discharge with time have been prese-
, . form

nted in non dimensional/for various values of aquifer
parameters. The following conclusions have been drawn
from the present study.

In amultiaquifer well when pumping is started,
the aquifer with lowest hydraulic diffusivity contributes
maximum to the discharge. However, as the pumping con
tinues its contribution decreases with time. At nearly
steady state condition i.e. after a prolonged constant
pumping, contributions by each of the aquifers are pro
portional to their respective transmissivity values.

When the aquifers tapped have equal hydraulic
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diffusivity values, their contributions to well discharge

are independent of time and are proportional to their

respective transmissivity values. It is true for both

the cases of the aquifers separated by aquiclude or

aquitard. In such a case when the two aquifers are sepa

rated by aquitard no exchange of flow takes place through

the aquitard irrespective of the magnitude of the leakage

factor and the drawdown at any section in both the aquifers

are same.

by
When the two aquifers are separated/an aquitard

and the well taps both the aquifers ,the leakage factor may

be defined as L = *f C where T is the mean value of the

transmissivities. The mean transmissivities may either

be harmonic, geometric or arithmetic mean value of the

transmissivities of the two aquifers tapped.

In case of two aquifers separated by aquitard, the

V near steady state conditions are attained comparatively

at shorter time for lower values of leakage factor.
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NOTATIONS

The following notations have been used in this

thesis (except in chapter 2 which deals with review of

literature, where original notations have been used)

Notation Description

B.

c,

Kl

L

M

Thickness of the aquitard

Hydraulic resistance of aquitard

Time step

Hydraulic conductivity of the
aquitard

Leakage factor (»T C)

Total number of aquifers

n] Time steps

CL Constant well discharge

Qx(n)
Q2(n)

Discharge contributions by
individual aquifers at nth

time step

Dimension

t

-1
It

iV1

1V1

Qr(i#j,n)Recharge taking place through the
area of influence of node (i,i) at l3^1
nth time step

QR(n) Total recharge taking place from one l3t~1
aquifer to the other

iv



Notation Description Dimension

r Distance of observation well from 1
the pumped well

rw Radius of well 1

s Drawdown at distance r from the 1
pumping well at time t after the
onset of pumping

T Transmissivity r^t*"1

T Harmonic mean transmissivity l2t""1

t,t time -j-

^X Grid size 1

x,y Cartesian coordinates i i

JQ( ) Bessel function of first kind and
zero order

J±( ) Bessel function of first kind and
first order

a Reciprocal of Boulton's delay index t""1

p Hydraulic diffusivity (T/0) l2^1

0 Volume of water intantaneously
released from aquifer storage per
unit drawdown per unit horizontal
area (storage coefficient)

0 Total volume of delayed yield from
storage per -unit drawdovm per unit
horizontal area which is commonly
referred as specific yield

d(n) Discrete kernel coefficient l/(l3/t)
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CHAPTER 1

INTRODUCTION

Ground water constitutes more than one fifth of

the world's fresh water resources. It plays an important

role in the development of a region. The occurrence,

movement and development of ground water has primarily

been studied because of its importance as a resource.

Although the origin of ground water had been understood

centuries ago, the understanding of the behaviour of water

bearing formations (aquifers) when pumped is relatively

of recent times. Dupuit (1863) is the first scientist

to analyse steady state flow of ground water to a well.

Flow towards wells and galleries was analysed by A. Thiem

(1870). G. Thiem (1906) developed a field method for

determining permeability of aquifer using a pumping well

and the resultant drawdowns in observation wells. De Glee

(1930) studied the steady state flow towards a well in

leaky confined aquifer replenished by an overlying for

mation.

A need was felt by ground water hydrologists

for solving the hydraulics of well under unsteady state

conditions. A bench mark study was conducted by Theis

(1935) who gave the solution for unsteady flow to a

/



well in confined aquifer. Hantush and Jacob (1955) in

corporating De Glee's concept of recharge to the pumped

aquifer from another aquifer through intervening semiper

meable layer (aquitard), analysed the unsteady flow to a

well in a leaky confined aquifer. The other important

study in the field of well hydraulics is that of Boulton

(1963) who gave a mathematical solution for evaluation

of drawdown due to pumping of an unconfined aquifer having

delayed yield characteristics.

Under field conditions the aquifer geometry rarely

conforms to the concept of one aquifer system. In a

borehole it is common to identify number of aquifers.

Often the aquifer pumped is part of a complex aquifer

system. A multiple aquifer system generally consists of a

series of aquifers separated from each other by confining

layers. The confining layers may have negligible permea

bility (aquiclude) or low permeability (aquitard). When

the aquifers are separated by aquicludes interaction bet

ween the aquifers is only through the well screens.

However, when the aquifers are separated by aquitards,

interaction between the aquifers takes place through the

aquitard besides through the well screens.

Generally to get dependable yield^wells are con

structed tapping more than one aquifer. In ground water

exploration it is possible to evaluate hydro geological

n/
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parameters of individual aquifers. With the known values

of hydrogeological parameters, Sokol (1963) derived a

simple steady state equation relating water level fluctu

ation in a non pumping multiaquifer well to head change in

anyone aquifer penetrated by the well. Papadopulos (1966),

Khader and Veerankutty (1975) have studied unsteady flow

to a well tapping two aquifers, the aquifers separated by

an aquiclude.

Ground water hydrology is a quantitative c;ience

and mathematics is its important dialect. Mathematical

tools have enabled analysis of many complex ground water

flow problems. Discrete kernel approach is comparatively

new within its ambit. Using discrete kernel approach

intricate stream-aquifer-well interaction problems have

been analysed extensively by Morel-Seytoux (1975=}. The

discrete kernels are the properties of a linear system.

The discrete kernels for drawdown are the response of an

aquifer due to unit pulse excitation. Using the discrete

kernel approach unsteady flow to a well in multiple

aquifer system has been studied and the results are pre-

sented in the thesis. The scheme of presentation of the

thesis is as follows :

Chapter 2 deals with the review of literature



pertaining to flow to a multiaquifer well and application

of discrete kernel approach to ground water flow problems.

In chapter 3 an efficient method has been described to

generate discrete kernels for drawdown in an unconfined

aquifer having delayed yield. Unsteady flow to a well

tapping two confined aquifers separated by an aquiclude

has been analysed for a continuous, constant pumping rate

and the analysis is presented in chapter 4. Chapter 5

deals with solution of unsteady flow to a well tapping

multiple (more than 2) aquifers separated by aquicludes.

In chapter 6 the case of pumping of a well tapping two

aquifers separated by an aquitard has been studied for

unsteady condition. The general conclusions are brought

out in chapter 7.

J



CHAPTER 2

REVIEW OF LITERATURE

INTRODUCTION

The study of aquifers when pumped is an important

aspect of ground water hydrology. Many research workers

have contributed to this study. In this chapter litera

ture review has been done pertaining to flow to a well

with emphasis on multiple aquifer well interaction and

application of discrete kernel to ground water flow prob

lems.

WELL TAPPING A SINGLE AQUIFER

Studies prior to the work of Theis (1935) were

dealing with the steady state flow towards a well. A

need was felt for analysis of unsteady flow towards a well

and a solution was given by Theis (1935) which is based

on the solution given by Carslaw and Jaeger (1959) for

an analogous problem of conduction of heat in solids.

The solution is given as

s = 4Vr / f~~ <** ...(2.1)
u x

Where

s = drawdown at a distance r from the pumping well

at time t after the onset of pumping,



r = distance of observation well from the pumped well,

0 • storage coefficient,

T m transmissivity,

t • time and

Q at pumping rate.

Eq.(2.1) is known as non equilibrium formula for

unsteady flow to a well.

The assumptions made in the analysis are :

a) the aquifer is infinite, homogeneous, isotropic

and of uniform thickness over the area of in

fluence of pumping ,

b) pumping is continued at a constant rate ,

c) prior to pumping the water level is nearly horizon

tal over the area influenced by pumping ,

d) the well fully penetrates the aquifer and receives

water from the entire thickness of the aquifer

by horizontal flow ,

e) the well is of infinitesiffial diair.cter , and

f) the aquifer is confined and release of water from

storage is instantaneous.

The non- equilibrium formula has extensively been

r2
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applied to the analysis of test pumping data (Todd 1959 ,

Walton 1970, Kruseman and De Ridder 1970). However when

analysing the time drawdown data of unconfined aquifers

composed of stratified sediments, it is observed that the

time drawdown curve deviates from Theis type curve. A

plausible explanation for the behaviour of unconfined

aquifers has been given by Boulton (1954). Boulton

introduced the concept of delayed yield which envisages

the effect of gravity drainage on time drawdown curve of an

unconfined aquifer. The gravity drainage of water through

stratified sediments is not instantaneous (as presumed

in Theis solution).

The differential equation whioh governs an axially

symmetric radial unsteady ground water flow in unconfined

aquifer with delayed yield is (Boulton, 1954)

O CO
«/d s 1 ds\ * ds m /» ds ~a(t- c ) , .
T^7H + r" 37' • * dt + ai*y J dc e dc ...(2.2)

or J o

The solution of Eq,(2.2) for constant pumping rate j
i

given by Boulton (1963) is

s=4if {" IC1 "̂ (Cosh ,2 +̂ l^£)Sinh ^)]Je(^)dx
...(2.3)

Where

0
T) m 1 +|p ;
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0 sa total volume of delayed yield from storage per

unit drawdovm per unit horizontal area which is

commonly referred as specific yield,

0 = volume of water instantaneously released from

storage per unit drawdown per unit horizontal

area which is the effective early time storage

coefficient,

*- = Boulton's delay index,

D . YT/(c0y) ,

n - attt,(l+x2)
»*1 2 '

,, _ at In (1+x J-4rix
rz m ' 2 *

JQ( ) = Bessel function of first kind,zero order,
T, s, r ,t have already been defined, \

f

The Boulton's solution of the Eq. (2;2) is '

based on the assumptions outlined in Theis solution.

Besides those, the drawdown in the aquifer is small

in comparison to the saturated thickness of the aquifer,

V/ELL TAPPING A SINGLE AQUIFER IN A MULTIPLE AQUIFER SYSTEM

The solutions given by Theis (1935) and Boulton

(1963) deal with pumping of a single aquifer. De Glee

(1930) was the first scientist to visualise the
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contribution of adjacent aquifer to the discharge well

through leakage. He studied the steady state flow towards

a well in leaky confined aquifer replenished by an over

lying formation. The analysis is based on the assumptions

that a) flow is vertical in the aquitard and horizontal

in the aquifer, b) there is no drawdown in the bed source,

and c) the leakage through the confining aquitard takes

place in proportion to the drawdown in piezometric levelj

besides the assumptions made in Theis (1935) analysis.

De Glee (1930) obtained the following solution for

the steady state condition :

Where

S = steady state (maximum) drawdown in the piezometer

at distance r from the pumped well,

L = YTC = leakage factor,

C = B-./K-, = hydraulic resistance of aquitard,

B., sr thickness of the aquitard,

K-. = hydraulic conductivity of the aquitard, and

K ( )= modified Bessel function of second king and zero

order.

Other notations have been defined earlier.

Jacob (1946) used the same assumptions as that

of De Glee (1930) to develop a partial differential

equation for unsteady flow in a leaky aquifer.
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The equation for a-ially symmetric and radial flow in

polar coordinate notations is given as follows :

2
o s 1 ds s 0 ds
dr2 + r or " L2 = T dt ' ...(2.5)

The equation is derived assuming no release from

the aquitard storage.

Solution to the Eq.(2.5) as given by Hantush

and Jacob(l955) is 2
- (y + 2-5)

S - J&Fi y dY ...(2.6)

Eq,(2.6) is generally written as

Where,W(u, J) stands for the integral in Eq.(2.6)
and is known as well function for leaky confined aquifer

with fully penetrating well without water released from

aquitard storage and no bed source drawdown.

Tabulated values of W(u, g) for the practical
ranges of u and j- have been given by Hantush (1956).

Based on these values, type curves have been prepared

by Walton (1960) which are widely used in the analysis

of the pumping test data of leaky aquifers.

Subsequently Hantush (I960) presented a modified
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approach to obtain the solution of unsteady flow to a well in

a leaky confinedaquifer taking effect of aquitard storage

into consideration and supposing no drawdown in the bed

source. However to suppose no drawdown in the bed source

may not be valid as there may be signigicant decline in

the piezometric surface of the unpumped aquifer in case

of prolonged pumping. Taking bed source drawdown into

consideration, steady flow to a well has been analysed

by Spiegel (1962) and Polubarinova-Kochina (1962). For

the same case, the unsteady state flow has been investi

gated by Hantush (1967). Neuman and V/itherspoon (1969a,

1969b) have analysed flow to a well tapping an aquifer

in a two aquifer-aquitard system. The analysis takes

into consideration the bed source drawdown and the water

releasedfrom aquitard storage.

A comprehensive review of flow to a well in leaky

artesiqn aquifer has been made by Walton (1979).

Numerical methods have also been used for the

analysis of flow to a well in a multiple aquifer system .

The well taps only one of the aquifers. Using backward

difference implicit method, Mucha and Kaergaard (1982)

have proposed a numerical model for aquifer test in

multi layered aquifer-aquitard system.
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WELL TAPPING MORE THAN ONE AQUIFER

Sokol (1963) has derived a simple steady state

equation relating water level fluctuation in a nonpumping

well tapping multiple aquifer to a change of head in any

one of the aquifers penetrated by the well. Sokol found

that the ratios of the water level fluctuation in the well

to the head change is equal to the ratio of the transmi-

sivity of the aquifer in which the head change occurs to

the sum of the transmissivities of all the aquifers pene

trated by the well.

Papadopulos (1966) has obtained solution for the

nonsteady flow to multiaquifer well open to two confined

aquifers of infinite areal extent. Papadopulos found

that exact solution to the problem are intractable for

numerical calculations. Asymptotic solutions amenable

to computation and which yield results accurate enough

for practical application have been developed by him.

The solutions for t uO are

H, - Hg
Hl- hl = ~l~nr AC</fe2. fV& ) ...(2.7)

~5(H _ R )
H2- h2 = f ft*- A C£/62, af/e) ...(2.8)

2Qx(t ) = 2tiT1(H1 - H2) G (T/^)/(l + d) ...(2.9)
Q2(t ) = - Q1(t) ...(2.10)

These solutions are for the boundary value



13

problem where the aquifers remain unpumped for a period

t0 during which flow occurs from one aquifer to the other

through the well screen 'owing to the difference in

initial heads in upper and lower aquifers.

For t > t
o

H HH_hl =^S A(c/62f s/e) +̂ ^QTT). M?Mt*)

- rr+~57 ( lnc/2) A<^y^f */& )] ...(2.11)
d(H,- H9) 9

H2- h2 = - -ftf*- A(r/£2,af/£. )

+4^1-flVbT M«2//4r* )
+ (y|5j ( In a2) A(C*/e2, aj>/£ )] ...(2.12)

2kT (H - H ) G ( r /£ 2)Ql(t) . -A.^^

" +2Tl-?37 f2e"1/4Z " H^ Una2)G( r7e2)]
...(2.13)

Q2(t) = Q- Qx(t) ' ...(2.14)
Where

G(x) = f /"e"Xu2[ | ♦ tan"1 ^] udu
hl,h2 = nead-s a"t anY distance r and time t

T1,T2 = "transmissivities of upper and lower aquifers,

01,02 = storage coefficients of upper and lower aquifers,

H1,H2 = initial heads in upper and lower aquifers,
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Q-^(t) ,Q2(t) =discharges from upper and lower aquifers

at time (t),

J0,YQ = zero order Bessel functions of first and second.

kind respectively,

t _ time since the well is completed,

t _ time at which pumping started,

r 8 radial distance to any point from the axis

of the well ,

r , - radius of the well ,
w *

PitV2 = hydraulic diffusivities of upper and lower,

aquifers (i> • T/0),

d - VT2 ,

e „ Jd/U+d)J ,

S = r/rw •
Z = iVr2,

1 ' w»

X = ,{t~t )/r2 , .
1^ o ' w '

Q = constant discharge from the well ,

, t o i- e~xu Jo(u) Yo{u'^ " Y (u)J (u.y)A(x,y)=l-|/ ~§ . ° S, , 9 * 9 >>
71 o u J2(u) + Y2(u)

CO _u

W(x) = / ™— du, an exponential integral.

Problem tackled by Papadopulos has also been

solved by Khader and Veerankutty (1975), The problem

has been solved by using Schapery's (1962) approximate



15

method of inversion of Laplace transform. The expressions

derived by Khader and Veerankutty for drawdown around

a well penetrating two confined aquifers (separated by

aquiclude) with identical initial heads for constant

pumping rate and the discharge contributions by individual
aquifers are :

Tl —Q £* KQ(\2u). B(T,j>a,F)

27IT1[B(T,asFw) + (T^T^K^Su")]1

Q-B(T,C>FV) »K0(j>V2U)
32 " 27t2[B(T ,«7fw) +(T~/T2) K/2U)] .-.(2.16)

VT2 Q KQ(v^")
Ql *• B(T,«,Pw) +-(T^) K$*) ...(2.17)

Q B(T,a,F J
q (t) = '»' (2 18)
2 B(T,a,Fw) +(Tl/T2) Ko «2u) *^

V/here

s.^ = drawdovm in first aquifer at any distance r

from the centre of the well, time t and height

z measured from the bottom of the first aquifer

S2 = drawdown in the second aquifer at any distance

r from the centre of the well at time t,

H1,H2 = initial heads in first and second aquifers

respectively, measured from the bottom of the

first aquifer,
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It^I^ = hydraulic conductivities of the first and second

aquifers respectively,

0 = specific yield of unconfined aquifer,

T1 = K^ E. transmissivity of unconfined aquifer,

T2 m IC, b2 transmissivity of second aquifer,

b2 m thickness of the second aquifer,

02 = storage coefficient of the second aquifer,

))• = T2/02hydraulic diffusivity of second aquifer,
rw m effective radius of the well,

hw • water level in the well measured from bottom

of unconfined aquifer at any time t,

Qx(t))

a>(t)f
discharge contributions of first and second

aquifers respectively at any time t,

Q a constant rate of pumping,

R/Tff ^ _ r°° Jo^aQ)rCosh 9 + T9 Sinn Q- Cosh (F9)-..n
2 °

r r

4i)t > a - H
1

2Knt
1 or

T = *%• *~ r '
y w

n

F = k. F _ .J£
Hl ' ""* % '

KQ( ) = Modified Bessel function of second kind and

zero order.

Numerical results have been given by the authors

for some values of aquifer parameters.
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V

Instead of predicting the hydrologic behaviour

of a system in response to a particular set of numerical

values of excitation, Maddock (1972) has suggested for

finding out a functional relationship between the ex- '<

citation and response. Using linear system theory and

Green's function,Maddock has obtained the expression

for drawdown at a point due to pumping of number of wells.

The expression given by Mqddock is ;

M n

s(k,n) = it d[k,j,(n-i+l)]q(j,i) ...(2.19)
tJ—•"-J--L — JL

Where

s(k,n) is the drawdown at kth well at nth time

periodj M is the total number of wells; q(j,i) is the

discharge from the jth well in ith time period; the co

efficients d(k,j,i) are known as algebraic technological
functions.

The above expression has been derived with the

assumption that the aquifer had no previous development!.e.,
s(x,y,0) = 0.

The same approach has also been developed by

Morel-Seytoux (1975*) for ground water problems

with and without stream interaction. He designated
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the coefficients as discrete kernels.

For a homogeneous isotropic aquifer of infinite

areal extent the pumping kernel is given by (Carslaw and
Jaeger 1959)

k(r,t) - «" JKKlr,t; - 4^T' ...(2.20)
Where

k(r,t) is the drawdown at time t at a distance r

from the pumping well when unit impulse quantity is with

drawn at time t = 0. 8 = T/0 (T and 0 have already been
defined in this chapter).

Using the above relation the discrete kernel co

efficients can be written as (Morel-Seytoux 1975^ :

A/„1 1 r1 e *gfeS7
°u; " 4¥f I * (n-c) dt

1 2 2
= 4^f tEl (^ ~Ei Up(n-lJ^ ...(2.21)

Where

00 ,-yE (x) = / £- dy ;
x y

r = distance of the observation well (response point)
from the pumping well (excitation point).

Morel-Seytoux (1975^ has highlighted the advan

tages of the discrete kernel approach, some of which are
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as follows :

With the use of the discrete kernel approach it

is possible to solve problems of optimal management

through the efficient techniques of mathematical program

ming rather than through the use of successive trial

and error required in simulation. The Mathematical Pro

gramming problem is considerably reduced in size compared

to a formulation that incorporates the finite difference

equations of the hydrologic model.

Morel-Seytoux (1975a, 1975b), Morel-Seytoux and

Daly (1975) have developed efficient and accurate stream-

aquifer interaction models by using discrete pumping

kernel and discrete reach kernel. The discrete reach

kernel for drawdown at the centre of a reach due to unit

withdrawl has been derived by Morel-Seytoux et al (1975)

and is given by

6r» = / jjfc erf[ —-ft ]Vtj J> -jdc ...(2.22)
o w 4fp(m-c7 4Yp(m-c)

V/here a and b are respectively length and width of the

reach and erf( ) is the error function.

Morel-Seytoux and Daly (1975) have given a com

plete description of discrete kernel generator including

truncation error propogation, accuracy and run cost
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while analysing stream aquifer interaction problem. The

aquifer response i.e. return flow to a given reach for

a given week has been expressed as an explicit function

of the pumping rate.

Using the discrete kernel coefficients Hei~dari

(1982) has studied ground water management model to find

the optimal pumpage policies, subject to physical and

institutional constraints.

Basu (1980) has applied discrete kernel approach

to study the unsteady flow to a leaky confined aquifer

with bed source drawdown. The study concluded that the

aquitard resistance governs the total quantity of recharge

from source bed and its temporal and spatial distribution.

The assumption that the drawdown in the bed source does

not change with respect to time is valid only for high

aquitard resistance.

Patel and Mishra (1983) have analysed unsteady

flow to a large diameter well using discrete kernel

approach. They have found the approach to be simple, less

time consuming in comparison with that of the solution

given by Papadopulos and Cooper (1967).
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CONCLUSIONS

From the literature review it may be concluded

that only few results have been given in case of a well
tapping two aquifers. No solution is available for un

steady flow to a well tapping more than two aquifers.

Also solution is not available when the well taps two
aquifers which are separated by an aquitard. The integral
transform method applied so far to arrive at the solution
of unsteady flow to multiaquifer well are intractable.

Thus, there is need to develop simple but accurate mathe
matical procedure to analyse unsteady flow to multi
aquifer well.
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CHAPTER 3

DISCRETE KERNEL FOR AN UNCONFINED

AQUIFER WITH DELAYED YIELD

INTRODUCTION

Generation of discrete kernels for drawdown in

a confined aquifer has been described by Morel-Seytoux

(19751). The discrete kernels can be regarded as the pro

perties of a linear system. The discrete kernels for

drawdown are response (i.e. drawdowns in piezometric

surface at a point in the aquifer) of an aquifer initially

at rest condition due to an unit pulse excitation (with-

drawl of unit quantity of water in the 1st unit time

period and no pumping afterwords). Using Boulton's

solution for unsteady flow to a well in an unconfined

aquifer having delayed yield characteristics, generation

of discrete kernels for drawdown in an unconfined aquifer

with delayed yield has been described in this chapter. .

GENERATION OF DISCRETE KERNEL

The equation governing an axially-symmetric

radial flow in an unconfined aquifer having delayed yield

characteristics has been described in Chapter 2 [Eq.(2.2)j.

The solution given at Eq.(2.3) has been obtained by
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Boulton with the assumption (besides other usual assum

ptions) that the drawdown is very small in comparison

to the thickness of the aquifer. Eq.(2.2) being linear,

method of superposition and proportionality are applicable.

If Q = 1.0 and pumping continues indefinitely ,Eq.(2.3)

gives the response of a linear system due to unit step

excitation. Designating K(m) as the unit step kernel

(response due to an unit step excitation), which is the

drawdown at the end of time step m due to continuous

pumping at unit quantity per unit time period, the discrete

kernel coefficients d(m) can be expressed as

d(m) m K(m) - K(m-l) ...(3.1)

Substituting m for t in Eq.(2.3) and replacing Cosh \x^
Po -M-o t-to "V-o

and Sinh \i2 by (e + e ^)/2 and (e - e z)/2 respecti

vely and rearranging, the unit step kernel is written as

*<») - ^ F i- [i - l (e""^-^ i ♦ ffisaiirxil,
o *-V"2.

+ e (l - -jnfj——*•))} J0(^-g) <ix ...(3.2)

The integral appearing in Eq.(3.2) is an improper

integral as one of the limits of integration is infinite.

For finite values of tj the numerical integration of the

improper integral takes considerable computer time to

obtain results of reasonable accuracy. The following is
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an efficient method for evaluation of K(m) for any value

of r). For given values of aquifer parameters it is found
that the limit of the term

[i _i (e-(^2> (1 +sagu^ +e-<^>(1_ ss^l^
in Eq.(3.2) tends to 1 as the dummy variable x increases.

Let beyond x=x-L this term has a value equal to

1-6, v/here '£ is as small as .000001.

Eq.(3,2) can be written as
X

o ^V-<2
, TL'TZ y- amri(l-x )U1 T / r Xx(i >^2^-^))3 J0(-^)

+4^r /" (1 -€0 I rx

«{ U -«J x Jo<ilH <* ...(3.3)

"= ^ + h. ...(3.4)

For evaluation of the proper integral I.,numeri
cal integration is carried out assuming dx = .001. This

value of dx has been adopted after studying the effect
of dx on the accuracy of the results.

The integration

Z2 = / x Jo("^fr") dx

Let

x uoV-t^-; ax is carried out as follows :
xl

r
—-^ X
YD
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Then

2

J2 = f y Jo(y) dy ...(3.5)
yD

Depending upon the numerical values of £g x..the
following approximations can be used for evaluation of

the improper integral I2#
TO

For ^ x1 < 2 (Abramowitz and Stegun 1970, pp.481)
rx.

r Jo(y) rxi °° (-l)p(T-i)2prx, y— dy "-0.5772156 - log (j4) -I __2yP
i r P=1 2p(p ! )

...(3.6)
The series appearing in Eq.(3.6) is a rapidly

converging one.

rx

For 5 < ^jp- < °° (Abramowitz and Stegun 1970,pp.^32)
oo J (y)

rx, y
l •

rxn rxn rx., rxJ.A-, x^n x\x.-, rx.

rx, 0 rx^ ...IJ.7;

v yD ^ yD;

V/here J#i ) and J1( ) are Bessel functions of first
kind of zero and first order respectively.;

rx. rxn -2p rx.

6"(^*) =Plo ("1)P aP {^f'% ^ ;
and

/x, 9 rx. -2p rx,gl(-^) . Z (-l)P b (^) + <_J) .
p=0



rx

-7
< 2 x 10

The values of a and b are as follows

0 1.0 1.0

1 0.159992815 0.319985629
2 0.101619385 0.304858155
3 0.130811585 0.523246341
4 0.207404022 1.037020112
5 0.283300508 1.699803050
6 0.279029488 1.953206413
7 0.178915710 1.431325684
8 0.066228328 0.596054956
9 0.010702234 0.107022336

26

rx

For 2 < -~k < 5,

oo

the integral / - jQ(Zfr-) dx is evaluated in the following
manner : *

X

/I',<$•>* -/"l <.($** +/"|,<£.„, ...(3.8)
Evaluation of
x.

^ x ^vlT^ is done numerically and
oo

i xV^ <** is done using Eq.(3.7)
x„

because value of x0 is such that •
£. yD "•

^
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RESULTS AND DISCUSSION

Let,

TERM » {1 - i(e~(^2)(i +SSiaLl^dl)
* 2ji2 '

+ e X 2 (1 - Smil-* l)il

The value of TERM at different values of x are

presented in Table (3.1) for aquifer parameters :

T«350 m2/day, 0=.003, 0y =.1, «=13.8/day.
Ac soon Iron the tabic, beyond :: = C.$5>% TERM = 3 -£

and £ < 0.000001. Hence when x > 0.999 the value of

TERM can be taken as l.xx for the above set of aquifer
parameters is therefore equal to 0.999.

Discrete kernel coefficients are generated +or
the following sets of aquifer parameters

2T * 0y « t,
m /day l/day

350.0 0.001 .03 20.0 31.0

700.0 0.001 0.03 20.0 31.0

Discrete kernel coefficients are generated when

excitation and observation points are different. The

generated discrete kernel coefficients are presented

in Figs. 3.1 and 3.2. In Table (3.2) discrete kernel
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coefficients for drawdown in unconfined aquifers With

out and with delayed yield characteristics having the

following parameters:! = 700,0 m2/day, 0=0.031; and
T'. 700.0 m2/day, 0=0.001, 0y =.03, a=20.0/day
respectively have been presented for the purpose of com
parison.

The procedure described here can also be extended

to evaluate the discrete kernel coefficients when the

excitation and response points are same. Fig. 3.3 shows

a square grid from which unit quantity of water is with

drawn during the first unit time period (and pumping

stopped). In order to find the response at the centre

of the grid due to the pulse excitation the grid is

divided into 36 equal units as shown. It is envisaged
that 36 wells are operating one at a time at the centre

of each unit. Using method of superposition the drawdown

at the centre of grid when all the 36 wells are operating
simultaneously is obtained. Sum of the drawdowns is

divided by 36 to arrive at the response due to unit

withdrawl from the grid. The discrete kernel coefficient

generated is designated as d^a). The drr(m) values
have been plotted in Fig. 3.4.

Using the present procedure the well function

V/(uay» $h [¥(uay» £) is the well function of an
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unconfined aquifer having delayed yield characteristics]^
has been evaluated for t) = 10.0, g = 2.0 for different
values of u& and uy (u& =̂ , Uy =£@L) and the same
has been plotted in Fig.3.5. Also ,the results obtained

by Boulton (1964) for these aquifer paramters have been

plotted in the same figure.

In order to compare the well function for finite

and infinite values of nrthe results obtained by Boulton

(1963) for a large value of tj (t) > 100) have also been

presented in Fig.3.5. It may be seen that the type curve

for tj > 100 deviates appreciably from the curve for v)=10.0.

CONCLUSIONS

a) An efficient method to evaluate type curves for

drawdown in an unconfined aquifer with delayed

yield for finite value of tj has been described.

inThe discrete kernel coefficientsfor drawdown

an unconfined aquifer with delayed yield have

been obtained.
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Table 3.1 Values of 'TERM' for different values of x

x

-1
.9900001x10

.1990000

.2990000

.3989998

.4939996

.5989998

.6990000

.7990002

.8990004

.9990006

.1099001x10

.1199001x10

.1299001x10

.1399001x10

.1499002x10

.1599002x10

.1699002x10

TERM

.1267259

.4213664

.7086827

.8882457

.9671634

.9925374

.9986624

.9998028

.9999737

.9999961

.9999992

.9999997

.9999999

.9999999

.9999999

1.0000000

1.0000000
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Table 3,2 Discrete kernel coefficients for drawdown

in an unconfined aquifer

Time
in

days

1

2

3

4

5

6

7

8

9

10

11

12

o (with delayed
p yield)nrrt/fo'tJdjHJ)

r « 300m r. ft oQOin

.2711xl0'4 .8445xl0"6

*3763xl0"4 ,5498xl0~5

,3023xl0"4 ,9030xl0"5

.2434xl0~4 .1022xl0~4

.2021xl0"4 ,1029xl0"4

.1722xl0~4 ,9925xl0~5

.1500xl0~4 .9415X10-"5

.1326xl0~4 .8861X10""5

.1139X10""4 .8335xl0~5

.1077xl0~4 .7843xl0"5

,9841xl0~5 .7385X10"5

,9062xl0~5 .6973xl0~5

^ro (witn out delayed
y yield) -Ynj^jeh^

' '+r » JOOm r a 600ar~

,25l0xl0~4 .4372xl0~6

.3879xl0~4 .5177xl0"5

,3064xl0"4 ,9120xl0~5

>2451xl0~4 ,1036xl0"4

.2029X10"4 ,1040xl0"4

.1728X10"*4 .lOOlxlO"4

.1502xl0~4 .9472xl0~5

,1329xl0~4 ,8910xl0~5

,1191xl0"4 .8370xl0~5

.1078xl0"4 .7870xl0"5

.9853X10"5 .7409X10"5

.9070X10""5 .6992xl0""5

*T=700.0 m2/day, 0=0.001, 0y= .03, a=20.0/day
*;T = 700.0 m2/day, 0 = .031.
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Discrete kernel coefficients for drawdown in an unconfined
aquifer having delayed yield ; excitation and response points
are different.
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Fig. 3-2 Discrete kernel coefficients for drawdown in an unconfined

aquifer haying delayed yield; excitation and responce points

are different.
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.6 •12 • 18 .24 • 30 •36

•5 •II • 17 .23 • 29 •35

•4 •10 • 16 .22 .28 •34

,

• 3 • 9 • 15 • 21 • 27 • 33

• 2 • 8 • 14 • 20 • 26 • 32

• 1 • 7 •13 • 19 • 25 •31

L- - •- >
<5 a *

-Jt-L

Fig. 3-3 Division of a grid into 36 units for evaluation of
response when the excitation and observation points
are same.
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$ = -001 , -001

CJ>y= -03 9 -03
0C= 20-0, 20-0 (/day)
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Time(days)
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Discrete kernel coefficients for drawdown in an unconfined
aquifer having delayed yield j excitation and response points
are same-
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Values obtained by

• Present study

x Boulton , for finite value of r\
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W('Uay 7—) = Well function for unconfined aquifer with delayed yield
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l/ua

Fig. 3-5 Type curve for an unconfined aquifer with delayed yield for JL_ - 2-0

and i|" 10-0.
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CHAPTER 4

UNSTEADY FLOW TO A WELL TAPPING TWO

AQUIFERS SEPARATED BY AN AQUICLUDE

INTRODUCTION

Water wells are generally constructed tapping

more than one aquifer in order to have dependable

yield. It may also be worthwhile to evaluate the

necessity or otherwise of tapping deeper aquifers of

low transmissivity. Analysis of unsteady flow to a

well tapping tv/o aquifers separated by an aquiclude has

been carried out by Papadopulos (1966) and Khader and

Veerankutty (1975) who have used integral transform

technique, In this chapter unsteady flow to a well

tapping tv/o aquifers separated by an aquiclude has been

carried out using a discrete kernel approach.

S

STATEMENT OF THE PROBLEM

A schematic cross section of a well tapping

two confined aquifers is shown in Fig.(4.1). The

aquifers are separated by an aquiclude. Therefore no

exchange of flow takes place between the two aquifers

through the intervening layer. Each of the aquiiers

is homoneneous, isotropic, infinite in areal extent

and is of uniform thickness. Drawdown in the piezo

metric surfacesare caused by discharge from the
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*. <*- IF~ If. T. ~ *~

NON PUMPING PIEZOMETRIC SURFACES

r
-SB TT

T t r r r-

AQUICLUDE

Fig. 4-1 Schematic section of awell tapping two confined aquifers
separated by an aquiclude.
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aquifers. It is required to find the contributions<o±

each of the aquifers to pumping and drawdown in the

piezometric surfaces of each aquifer in response to

a uniform rate of pumping.

ANALYSIS

The following assumptionshave been made in the

analysis :

(a) Both the aquifers are initially at rest condi

tion prior to pumping.

(b) The well discharges at a constant rate.

(c) At any time the drawdowns in both the aquifers

at the well face are same but vary with time.

(d) The time parameter is discrete. Within each

time step, the abstraction rates of water

derived from each of the aquifers are separate

constants.

(e) The radius of the well is small and hence the

well storage is neglected.

The differential equation which describes the

axially -synmetric; ~ad-'al, unsteady flow in each aquifer

is given by

d s. n ds. 0. ds.

I 2 + r dr T. dt s m'
c r i

J
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Where

s.

r

t

h -

Ti

drawdown in piezometric surface in the ith

aquifer,

radial distance,

time,

storage coefficient, and

transmissivity of the ith aquifer.

Had the aquifers been tapped separately, for

the initial condition s.(r,o) = 0, and boundary condi

tion s.(~,t) = 0, solution to differential Eq.(4.1)

when unit impulse quantity of water is withdrawn from the

aquifer *i! is (Carslaw and Jaeger, 1959)
r2

, 4TTt T.
s±(r,t) r

4tcT. "i "

Defining an unit impulse kernel
r

^(t)
4p,t

47rTit

K '
(4.2)

(4.3)

drawdown for variable withdrawal from the aquifer i

can be written in the form

s±(r,t) = / Q±(c) k(t-c) dc (4.4)

where Q^c) is variable discharge rate from the aquifer

i at time c. Dividing the time span into discrete

time steps and assuming that the aquifer discharge

y
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is constant within each timestep but varies from time

step to time step, the drawdown at the end of time step

n can be written as (Morel-Seytoux, 1975^

n

s.(r,n) = E d (n-y+1) Q,(y) ...(4.5)

where the discrete kernel coefficient d .(m) is
r, i

defined as

1

dr i ^ ~ I ki (m~c) dc
r'-L o 1

1 2 2
ar [ Ei(fe) - ^L<anrfen>3 •••(4-6)~ 4-n^ L "lMp^m' ±Jlv4pi(m

in which E-^x) is an exponential integral (Abramowitz
and Stfigutt 1970) defined as

«• -u

E1(x) = J -*— du .
x

The discrete kernel coefficient d .(m) is the

th
drawdown at the end of m time step at distance r

from the pumping well in response to withdrawl of unit

quantity of water from the storage of i aquifer during

the 1st time period. A unit time step may be 0.1 day,

1 day or 1 week etc. The transmissivity T. to be used

to evaluate the discrete kernel coefficients has the

dimension of length per unit time period.

When the two aquifers are tapped by a single

well and the well is pumped, there is contribution

J
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from each aquifer to the pumping through the respective

well screen. Let Q,(n) and Cu(n) be the contributions

from aquifer 1 and 2 respectively at time step n. Since

pumping rate is constant therefore,

Q1(n) + Q2(n) = Qp ...(4.7)

The drawdown at the well .face at "the end of

time step n in aquifer 1 is given by

n

slw(n) = E Q1(Y) drwl(n-Y+l) ...(4.8)
Y=l

where

d

2 „2
r r

1 ftp I W \ n ( W
rwl^m; ~ 4tiT1 ^lM^m • -l-^Tmll, ' •••l««VJ

Similarly the drawdown at the well face at the

end of time stc-p n £** aquifer 2 is given by

n

s2w(n) = E Q2(y) arw2(n-Y+D ...(4.10)

where

~2 2

drw2<m> = 4iT7 C^<«Si) " El(40¥=iT^ ...(4.11)
J2

Since

slw^ = s2w^n^' therefore,

k/
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Rearranging,

Qi^W^-V^W^
...(4.13)

Eqs.(4.7) and (4.13) can be written in the following

matrix form

P i

W^.-W1!

\(n) ' °p
*

Q2(n)

L

n-1

E

Y=l
-

^^)a^(«-T+i)-iaL(Y)dnilCiMr+i)
n-1

1

Y=

...(4.14)

Hence

Q,(n)

Qo(n)

^T£-

, 1

W^'-W1*

%

n-1

Y
s.Q2(Y)drw2Cn-Y+1)- ^Qi(Y)W*-Y+l)
=1 v=l

...(4.15)

Thus Q1(n) and Q2(n) can be solved in succession
starting from time step 1.

In particular for time step 1

Q-jUJ , 1
-1 r

Q

...(4.16.)

0,(1) W^'-W1) 0
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Once Q..(n) and Q2(n) values are solved, the

drawdown at any distance r in aquifer 1 and 2 can be

found using Eq.(4.5).

RESULTS AND DISCUSSION

The discrete kernel values are generated for

known values of transmissivities, storage coefficients

and radius of the well. The radius of the well has

been assumed to be 0.1 m. Using the discrete kernel

coefficients Q-, (n) and Q-ptn) are found in succession

starting from time step 1. The variation of Q-,(n)/Q

with non dimensional factor u, = 46wn is graphically

shown in Figs.4.2 through 4.7 for ratios of 1-,/ln =

0.125,0.5,1,2,10,100 and 0-^02 = 1,5,10,25,100,250,

500,2500. The curves have been presented for the non-

dimensional factor u^ in the range of 10"°to 3 x 10 ,

However,to study the contribution of individual aquifer

to discharge at short times after pumping, results

are presented only for T^/Tg = 10,l,.l and 0^02=100.

The contribution of each of the aquifers is

controlled by its hydraulic diffusivity value i.e.,

T
P = •%• . As observed from the figures,Q-,(n) decreases

with increasing time if P1<P2* Conversely, the con

tribution of the aquifer with higher value of hydraulic

diffusivity increases with time.
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As seen from the Figs. 4.4,4.6,4.7 when P-,=p2

the contributions from individual aquifers are in

dependent of time. The same fact can also be proved

in the following manner :

Using Eqs.(4.7) and (4.13)

q(n) = _1 _ [q -g 1, .£Q1(Y)drwl(n-Y+l)
i rwlvx; p °rw2u;Y=l

+^^ y=1 ^(Y)d^£n""Y+1)] •••(4-17)
and

Q2(n) = Qp - OjU)

For time step 1

OjU)
1

% ~
1 + «_(D

...(4.18)

...(4.19)

Substituting the values of d ,(1) and d -(1)

by Eq.(4.6)

giU) T, .
Q~ = T~^ ...(4.20)

Therefore,

V1) T2 , <
Q - T-j+T" ...(4.21)
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Similarly for the time step 2

Ma) i ,. MD W2> MD W2\
%

1+O"
...(4.22)

Substituting the expression for discrete

kernels E*.(4»22) simplifies to

Q1(2) T1
Q = f^+T^ . ...(4.23)

Q-jU)
Hence q™~~~ is independent of time when p,=p„.

However the contributions of the aquifers to well

discharge are proportional to their respective trans

missivity values.

Using Thiem (1906) equation it can be proved

that when a well taps two aquifers and/located at

the centre of a circular island under steady state

condition

2^ (he-hw) -^ Q^log & ...(4.24)
w

and

R

'w

where

2itT2 (he-hw) = O^log^- ...(4.25)

h is the elevation of piezometric surface at
e
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island boundary and h is the elevation of piezometric

surface at well face, R = radius of island, r = radius
w

at well face.

Therefore under steady state condition the

contributions by individual aquifers are in proportion

to their respective transmissivity values.

It is seen from Figs. 4.2 to 4.7 that as the

non dimensional factor u^ decreases i.e. when time in

creases the limit of Q-,(n)/Q2(n) tends to Tn/T2 •

0 r2, Q1(n)
As seen from Fig.4.8,at 4^-— = 10, x* ^ 1.

T) 1 P
Thus during the begining of pumping all the water is

A-

withdrawn from the aquifer having the lower hydraulic

diffusivity.

In order to compare the results obtained by

discrete kernel approach with the results given by

Khader and Veerankutty (1975) variation of Q.,(n)/Q
2

with log[(T1+T2)n/(01+ 02)rwJ has been plotted in Fig.4.9.

As seen from the figure the results obtained by both

the approaches match only for large time [ie log[(T-.+T2)n/
2

(0.J+02) r ]>5], The deviation of the results given

by Khader and Veerankutty (1975) from the results

obtained by discrete kernel approach may be due to the

numerical integration of an improper integral involving
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Bessel functions of first and modified second kind,zero

order in Khader and Veerankutty*s approach. Needless

to say that the discrete kernel approach is simple and

less time consuming in comparison to Integral trans

form method.

With the method of analysis developed it is

easy to compute drawdowns at any point in both the aqui

fers. The drawdowns computed at the well face are given

in Table 4.1. It is to be noted that the drawdowns

at the well face in both the aquifers are the same.

In order to show the versatility and simplicity

of discrete kernel approach, discrete kernels for draw

down are generated for an unconfined aquifer with delayed

yield characteristic. Using these discrete kernel

coefficients, Q-, (n)/Q have been obtained for T-,/T2=0.5,

1,10j 0^/02=1,10,100; r\ = 4 and a = 20/day and are

presented in Figs.4.10 through 4.12.

CONCLUSIONS

(a) The contributionsto well discharge by each of

the aquifers is controlled by its hydraulic diffu

sivity value. Q,(n), i.e. contribution by first

aquifer decreases with increasing time if

TP-,<P?(p sb •*-) . Conversely, the contribution of
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the aquifer with higher value of hydraulic

diffusivity increases with time.

(b) When the hydraulic diffusivity values of both

the aquifers are equal (p-,=p^), contributions

by each of the aquifers are independent of

time, and proportional to the respective trans-

miss ivity values.

(c) At early stage of pumping i.e. for high values
r2 m

p w ^i
01 '41\n ' ma0or contribution is by the aquifer

whose diffusivity is lower.

(d) At large values of time i.e. at near steady state

conditions the contribution by each aquifer is

in proportion to its transmissivity value i.e.

the limit of Q1(n)/Q2(n) tends to T,/T2 as n

increases.

(e) In case of pumping a well tapping two aquifers

piezometers may be placed in each of the aquifers

and drawdowns observed. Using the recorded

drawdowns in each aquifer, transmissivity and

storage coefficient of each of the aquifers may

be computed using the present analysis by mini

mising the error (i.e. sum of the square of

difference between observed and calculated draw

downs ).



Table 4.1 Drawdown at the well face for T^T^O.5,

0^02=100, rw=0*l m, Q=1000 m3/day.

Time in days

1

6

11

16

21

2.6

31

36

41

46

51

Drawdown in metres

1.444217

1.582555

1.629235

1.658066

1.678980

1.695399

1.708918

1.720408

1.730399

1.739238

1.747163

Y7Q37&

50
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CHAPTER 5

UNSTEADY FLOW TO A WELL TAPPING MULTIPLE (MORE

THAN TWO) AQUIFERS SEPARATED BY AQUICLUDES

INTRODUCTION

The application of discrete kernel theory is

not limited to two aquifers system only. Unsteady flow

to a well tapping several aquifers which are separated

by aquicludes can also be analysed with ease by the

discrete kernel method.

STATEMENT OF THE PROBLEM

Fig. 5.1 shows a schematic cross section of a

well tapping several confined aquifers which are sepa

rated by aquicludes. Each of the aquifers is homo

geneous, isotropic, infinite in areal extent and initially

at rest condition. Water is being pumped at a cons

tant rate. It is required to find the contribution cf

each individual aquifer to pumping.

ANALYSIS

The differential equations which govern the

radial axis-symmetric flow in the aquifers are given

by

•gr +TW - t- *r •••»•«
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Fig.5-1 Schematic section of a well tapping multiple aquifers

separated by aquicludes-
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i = 1,2, M

Where

M = total number of aquifers tapped by the well ;

s, = drawdown at distance r from the well at time t

in the i aquifer$ T, and 0. are the transmissivities

and storage coefficientsof the i aquifer.

Solutions to the equations are to be found for

the initial conditions

s.(r,0) = 0, i = 1,2,.,..,M and for the boundary condition
M ds,
£ 2nr T. *=*

i=l w i dr
r=r • pumping rate ;

w

Si^rw,t^ " s2^rw,t^= *"* ~ sM^rw*'fc'

th
Let Q.(n) be the contribution by the i aquifer

th
during the n unit time period and let water be pumped

from the well at a rate equal to Q . The sum of con-

tributions by each of the aquifers should be equal to

the pumping rate. Hence,

Q1(n) + QgU) + + QM(n) . Qp ...(5.2)

th
If Q.(y)are the contributionsby the i

th
aquifer, drawdown at the well face in the i aquifer

at the end of time step n is given by

n

si(rw»n) = E Qi(y) drwi(n"Y+D ...(5.3)
Y=l



in which the discrete kernel coefficient ^rwi(m) is

difined as:

2 2
r r^

1 r«-/ J*

65

drwi(m) = 2RR7 [Ei(4^"") "Ei(4pjm-i)^
Since the drawdown at the well face in all the

aquifers are equal, therefore,

I Q1(Y) drwl(n~Y+1) B|]_Q2(y) drw2(n^+l)
• \*i.M drwi(n"Y+1) = =\%Sl)drwSn-t+1)
y=l Y=l

...(5.4)

The above set of equations can be written as

Ql<n> W1} +\ Q1(Y) drwl(n-Y+l)

Y=l

Ql(n) drwl(l) +̂ Q1(Y) drwl(n~Y+l)
= Q3(n) Wl} +\ Q3(y) drw3^n-Y+1) I

and

n-I

Y
Ql^ WX) +yl± Q1(y) <Wn-"Y+l)

= Vn) W1) +\ °M(y) drwM(n"Y+1) ...(5.5)
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In matrix notation the M equations can be

written as

1 » 1 1 1

,0 ,0

drwl(1)> °

W1'' °

W1*' °

,-K^aM

• • ? -*-

.», 0

.., o

.., o

,.,-d .(1)

i\m
Q2(n)

• Q3(n)

Q4(n)

Qp
n-1 n-1
-E Qn(Y)arwl(n-Y+l) + 2 Q2(Y)drw2(n-Y+l)
Y=l Y=l

-s\(Y)awl(n-Y+l) +^ACvJd^Cn-t+D
Y=l x Y=l

n-1 n-1
-£ Q1(Y)aT>wl(n-Y+l) + ^ QF(Y)drwr(n-Y-l>

j y=1 Y=l

In particular, fox time step 1

1 ,1 ,1

arwl(D, o .-W1*' o,...f o

, i,. ., i

, 0,. ., 0

..(5.6)

W1*' ° , o

kd)" %
Q2(D 0

Q3(D 0

• Q4(i> -

0

k(l) 0• °" "-^wmU)

...(5.7)
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Hence,

-1

OjU) 1 1 ,1 • , • • • *>, 1

Q2(n) W1'- -4^(1). 0 * • 4., o

Q3(n) •W1'- o --s^1'. • • • » °

» • . , . • • # o

« • . . « .» 0

Ot(n) W(1)' 0 ,0 '-drwl(n)' '., 0

i

•

|
« • • * • • i J •

Vn)J W1*' 0 ,0 • • * »~drwM^

Q
P

n-1 n-1

-S Ql(Y)dna(n-Y+l) + £ Q2(Y)drw2(n-Y+D

Y—-L Y—_i_

n-1

-1
n-1

-ZA^)drwl(n-Y+1) + * S*WWn-*+1>
Y=J- Y=l

u

Thus

...(5.8)

Ql^n^,Q2^n^' »Qr.i(n) can be solved in succe
ssion starting from time step 1.
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RESULTS AND DISCUSSION

Results have been obtained for a case when the

well taps three confined aquifers separated by aquicludes.

For assumed values of T1,T2,T3 and 01,02,03 discrete

kernel coefficients are generated for r = 0.1 m. Using
W

these discrete kernel coefficients CL(n), Q2(n) and

Q_(n) have been solved in succession starting from time

step 1.

In Figs.(5.2) through (5.5),the variations of

Q1(n)/Q and Q2(n)/Q with time are presented for

various ratios of transmissivity and storage coefficient

values.

In Figs.(5.2) and (5.3), the graphs for fi^/fi^l

correspond to the case where all the aquifers have

equal hydraulic diffusivity values. As seen from these

two curves the variations of Q1(n) and Q^Cn), and nance Q3(n)are

independent of time when the aquifers have equal diffu

sivity values. Also when the aquifers have equal

diffusivities their contributions during pumping are

proportional to their respective transmissivity values.

If T1=T2=T3 and 0-m 02 = 03 then individual aquifer

should contribute one third of the discharge (Q ) of the

11. The same can be observed in Figs.(5.2) and (5.3).we
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In Figs. 5.6 and 5.7 the variation of Q, (n)/Q
0 r2 p

and Q0(n)/Q with --—~-M have been plotted for2 P 4Txn
T-, : T2 : T3 = 1 : 2 : 4 and p. : 02 : 03 = 1 : 2 : 4.

This case also corresponds to a situation where the

aquifers have equal hydraulic diffusivity values. As

seen from the figures, Q-,(n) :GU(n) :Q3(n) = 1:2:4.

In table 5.1 the drawdowns at r = 10 m,(Q.»100w /day)

in first, second and third aquifer having equal hydrau

lic diffusivity values,have been tabulated. As seen

from the table^when the aquifers have equal hydraulic

diffusivity values^, drawdowns at any section in all the

aquifers are same.

The aquifer whose hydraulic diffusivity is lowest

its contribution to discharge is the highest in the

beginningof pumping and as time increases its contribu

tion decreases. However, at large time the aquifer con

tributions are proportional to their respective trans

missivity values.

CONCLUSIONS

(a) When all the aquifers tapped ha-^e equal diffu

sivity values, their contributions are propor

tional to the respective transmissivity values.

(b) That aquifer whose hydraulic diffusivity is
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lowest contributes more than other aquifers

during the beginning of pumping. When the time

is very large i.e. at nearly steady state condi

tion,the contributions are proportional to trans

missivity values only.

(c) Using the methodology developed contributions

of individual aquifers to pumping when the well

is tapping several aquifers separated by aqui

cludes can also be evaluated.
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Table 5.1 Drawdowns in aquifers having equal hydraulic diffusivities.

Time

in

days

T Aquifer 1

»i- K =.55? =P°00
1 m /day

,*, Aquifer 2
2 1^-0»2= c =.M - 72°°00
2 m^/day

T Aquifer 3

Drawdown in metre Drawdown in metre Drawdown in metre

1 0.1195370 0.1195370 0.1195370

2 0.1307910 0.1307910 0.1307910

3 0.1373749 0.1373749 0.1373749

4 0.1420465 0.142L465 0.1420465

5 0.1456701 0.1456701 0.1456701

6 0.1486309 0.1486309 0.1486309

7 0.1511342 0.1511342 0.1511342

8 0.1533027 0.1533027 0.1533027

9 0.1552154 0.. 1552154 0.1552154

10 0.1569265 0.1569265 0.1569265

11 0.1584743 0.1584743 0.1584743

12 0.1598873 0.1598873 0.1598873

<3
H
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Fig.5-4 Contribution of top aquifer to discharge at various
time steps due to pumping of a well tapping three
confined aquifers separated by aquicludes.
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CHAPTER 6

UNSTEADY FLOW TO A WELL TAPPING TWO

AQUIFERS SEPARATED BY AN AQUITARD

INTRODUCTION

Interactions of multiple aquifers, v/here a

single well taps only one of the aquifers have been

studied by several investigators (De Glee 1930; Hantush

1956, I960, 1964; Hantush and Jacob 1955; and Neuman

and Witherspoon 1969a, 1969b etc.). Situation where a

single well taps several aquifers which are separated

by aquitard is not uncommon. In this chapter the contri

bution by individual aquifer to well discharge through

the respective screen and the exchange of flow between

the aquifers through the intervening aquitard have been

quantitatively determined in response to a constant

rate of pumping of a well tapping two aquifers. The

analysis has been done using hydrologic decomposition

technique and discrete pumping kernel coefficients.

STATEMENT OF THE PROBLEM

Fig.6.1 shows schematic cross section of a well

tapping two aquifers. The well completely penetrates

the top and the bottom aquifers. The two aquifers are
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Fig. 6-1 Schematic section of a well tapping two confined aquifers
separated by an aquitard-
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separated by an incompressible aquitard of uniform

thickness B1« The aquifers and the aquitard are

homogeneous, isotropic and infinite in areal extent.

The aquifers are initially at rest condition. It is

required to find the contribution of each aquifer to

well discharge through the screen, the exchange of flow

between the aquifers through the aquitard and the draw

dovm in the piezometric surface in response to a uniform

rate of pumping.

ANALYSIS

The following assumptions have been made in the

analysis :

i) The diameter of the well is very small and

accordingly the well storage has been neglected.

ii) The aquitard is assumed to be incompressible so

that no water is released from the aquitard

storage.

iii) The flow is assumed to be in vertical direction

• in aquitard and radial in the aquifers.

The Boussinesq equation which governs the two

dimensional unsteady flow in an isotropic aquifer is
given by
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Whor©

s = drawdown (measured positive downv/ard from a horizontal

datum located at the level of initial piezometric

surface),

0 = storage coefficient (drainable or effective porosity),

T = transmissivity of aquifer,

x,y=horizontal cartesian co-ordinate,

t = time,

Q = instantaneous abstraction or recharge through a well

(+ve for abstraction and -ve for recharge), and

d a Dirac Delta function singular at well point at time "c

For a homogeneous aquifer of infinite areal

extent and with no previous development the solution for

drawdown at a distance r from the well due to pumping

at a rate of Q (c), is given by (Carslaw and Jaeger,

1959) 2
r

t Q(c) e" 40tt-c) T
s(r, t) mJ 4%fr (i-c)' ** mT (6'2}

Eqs. (6.1) and (6.2) are applicable for both

the aquifers shown in Fig.6.1.

The composite two aquifers system has been
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divided into three independent subsystems with appro

priate boundary conditions as shown in Fig.6.2. While

decomposing the complex system to three subsystems the

following assumptions have been made :

i) Beyond a sufficient distance from the well point

the difference in drawdowns of piezometric

surfaces is negligible. Therefore the exchange

of flow between the two aquifers through the

aquitard at large distance is negligible and

assumed to be zero. The distance beyond which

aquifers' interaction is negligible can only be

ascertained after obtaining some trial numerical

results.

ii) Two identical uniform square grid net works, one

for each of the aquifers are established symmetri

cally around the pumping well. The size of each

grid is AX.AX. The grid nodes are represented in

a two dimensional coordinate system (p,q). The

well position is defined by p=i and q=j . A

particular node is identified by p=i, q=j. An

area of magnitude (AX)2 around any node i,j is
regarded as the area of influence for the node i,j.

The exchange of flow between the aquifers per

unit time per unit area through the aquitard
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at node i,j at time t, is directly propotional

to the difference in the piezometric surfaces

at node i,j at time t and inversely propotional

to the thickness of the aquitard; the constant

of propotionality being the vertical hydraulic

conductivity of the aquitard.

iii) Formulation of the problem has been done with

the assumption that recharge takes place from

aquifer 1 to aquifer 2. Therefore, in case the

calculated recharge from aquifer 1 at any node

has a -ve sign, it is to be regarded that recharge

is taking place from aquifer 2 to aquifer 1.

IA formulating time drawdown equation for a node

i,0 in aquifer 1, it is assumed that the discharge is

talcing place uniformly from the zone of influence of node

i,j and at all other nodes the discharge is affected

through fictitious discharge wells, one operating at

each nodal point. Similarly for aquifer 2, it is assumed

that the recharge is uniformly distributed over the

area of influence of node i,j and at all other nodes

the recharge is taking place by fictitious recharge

wells, one operating at each of the nodal points. The

drawdown in piezometric surface at time t in aquifer 1

depends on the discharges taking place from all nodes
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of aquifer 1 upto time t besides on its own contribu

tion to discharge of the well through the screen up

to time t. Similarly the drawdovm in piezometric surface

in aquifer 2 at time t, depends on all the recharges

taking place at all nodes of aquifer 2 and on its own

contribution to discharge of the well through the

screen up to time t.

Boussinesq equation being linear, the drawdown

at' a point due to excitation at number of wells is equal

to sum of the drawdowns due to excitation at each indi

vidual well. Making use of Eq.(6.2) and the principle

of superposition,drawdown in aquifer 1 at node i,o at

time t can be written as

((i-io)2+(3-30)2) <AX)2
s(j «t) -[/ ^(0).6" . 4Pltt"e1"'J,W UQ 4*5^ dc]

_ JLii-p)2±(.0-£Liil (AX)2
J I tQr (P,q,c) *(&-*)

P»q t i,j 2 2

* 2 2 Q (i,j, c) e
+[4 J f J '/_ // $ dc dx dy]

_ (x +y )
AX AX ^'(t-c-)
2 2 Qr(i,j, c) e

OOO 47tT1(AX)2(t-c)
(6.3)
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Where.

s-,(i,j,t) = drawdown in piezometric surface in aquifer

1 at node i,j at time t,

Q,(c) = discharge per unit time from aquifer 1

through well screen at time c ,

QpCPjCifC) = recharge per unit time from aquifer 1 to

aquifer 2 at node p,q at time c ,

Qr(i» CJ> c) = recharge per unit time from aquifer 1 to

aquifer 2 at node if j at time c ,

T-j^ = transmissivity of aquifer 1,

P-% = storage coefficient of aquifer 1,

AX = grid size,

t, = time measured from onset of pumping,

x,y = dummy variables,

I ss maximum value of p, and

J = maximum value of q.

In Eq.(6.3) the expression on right hand side

within 1st square bracket represents part of drawdown

due to discharges of aquifer 1 through well screen.

The expression within the 2nd square bracket represents

part of drawdown due to discharge taking place from

aquifer 1 to aquifer 2 through the intervening aquitard

at all nodes but at node i, j. The expression within
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third square bracket represents part of the drawdown

due to uniform discharge taking place from aquifer 1,

from the area of influence of node i,j through the inter

vening aquitard. To obtain the component of drawdown

due to discharge through the area of influence of node

i,j the origin of x,y co-ordinate axes is chosen at

QrU,d,c )
the center of the grid. •»• • ;•• --*• dx dy is the discharge

(AX)2
per unit time taking place from an elemental area of

dx.dy at time c .

Similarly drawdovm in aquifer 2 at node i,j at

time t is given by

((i-i0)2+(j-J0)2)(AX)2
t Q0(c) e ' "4p2Tt^cT

*2s2(i,d,t) = [ / 4^ ffc-o) ' dc ]

Where

2n^a2
• . dc]

L J 4wT0(t-o)
Jit Q(p,q, c ) e 4h

q=l p=l o

p,q £ i,d

AX AXt~2 lyy.c) e *W*-<*
-[4 JSS r- n—-——~~~~—- dx.dy.dc ]

ooo 4uT2(4X) (t-c)
♦

(6.4)

2 2.

S2(i,d,t) = drawdown in piezometric surface in aquifer

2 at node i,-j at time t,
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GU(c ) a discharge per unit time from aquifer 2

through well screen at time c,

T^ = transmissivity of aquifer 2,

02 = storage coefficient of aquifer 2 and

P2 = V02.

In Eq.(6.4) the expression on right hand side

within 1st square bracket represents drawdown due to

aquifer's discharge through well screen. The expression

within 2nd square bracket represents rise in piezometric

surface due to recharge from aquifer 1 taking place at

all nodal points but for recharge at node i,j. The

expression within 3rd square bracket represents rise in •

piezometric surface due to uniform recharge taking place

through the area of influence of node i,o.

As it is assumed that the flow is radial in both

the aquifers, the equipotential lines are therefore ver

tical in both the aquifers. In other words respective

hydrostatic conditions prevail in vertical directions

at a section in both the aquifers. Due to difference

in hydraulic headg,across the aquitard, flow takes place

from point of higher head to point of lower head through

the aquitard. Applying Darcy's law the quantity of

flow passing through the area of influence of node i,j

at time t can be expressed as
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Ki 9Qr(i,j,t) = g± [s2(i,J,t)-S:L(i,d,t)] UX) (6.5)

Where

K-, = coefficient of permeability of the aquitard

in vertical direction, and

B_ = thickness of the aquitard.

Substituting the expression for s-,(i,j,t) and

s2(i,j,t) given by Eqs.(6.3) and (6.4) respectively in

Eq.(6.5)
((i-i0)2+(j-jo)2)QiX)2

o "" 4p0Ttrc"T"'KXUX)2 t (^(c) e K2
Qrd,o,t) = B;L - C{ 4itT2CT-Fl __™do

J I t Qr(p,q> c ) e 4|32(t-c
"q=lpflo Z^W^
V,&lf3

AX AX

_4 f* 7 / Qr(i'J> c) e
000 (AX)24tiT2 (t-c)

-qi-io)2+(j-3o)2)(AX)2
t O, ( c ) e 4^-Ct^cT

0 —JGZrri 4Tr.T-,(t-

:-c7
- ((i-p)2+(.i-q)2)^X)2

r' E f* Qr(p'q'c) e ' dc
"q=lP=lo ^It-c; '

p»q £ i,d
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t 2 2

AX AX 4pJTE=c)
t 2 2 Q (if5,c ) e

- 4 / / / ^ w • dx.dy.dc (6.6)
ooo (AX) 4-rcT-Jt-c)

Eq.(6.6) is a linear integral equation involving

the unknowns Q,(t), GU(t), Q (p,q,t). Dividing the

time span into discrete time steps and assuming that

within each time step, the recharge rate from aquifer 1

Ml and the aquifers' contributions through well soreens are

separately constant but vary from time step to time step,

Eq.(6.6) can be written as

Max)2 n
Qr(i»j»n) m—§— [ E (^(y) &2U,3j V 0o; n-Y+1)

n J I

- E E E QT,(p,q,y) d9(i,j; p,qj n-y+l)
Y=lq=lp=l

P,9^i,0

n

- 2 Q (i,j,Y) d9(i,jj i,j; n-y+l)

n

- E Q1(Y) d1(i,jj i0,d0J n-Y+1)

n J I

- E E E Q (p,q,Y) d.(i,^j p,qj n-Y+D
Y=lq=lp=l X
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n

- E Q (i,j,Y) dn(i,J5 i-tD't n-Y+1) ] (6.7)
Y=l r

Q (i,j,n) = recharge rate through the area of influence

of node i,j during the nth unit time period;
2 2

S2(i,0J i0,doJ m) = 1 [El(2j|-j) -E1(T^r^rT)]

= discrete pumping kernel for draw

dovm in aquifer 2 ;

R2 = [(i-i0)2+(d-j0)2] (AX)2 ;

d2(i,j; i,o; m) =/ —i-^ [erf (, g-gL-^dQ ;
o 02(AX)^ Af^Cm^J

R2 R2d2(i,o; P,q; m) =T^- [E^^) -^(^j^j)] ;
P»9 ^ 1,3

R2 = ((i-p)2+(j-q)2) (AX)2 ;

Q2(y) = discharge from aquifer 2 through the well screen

during the Y"th unit time period,

Q-,(y) = discharge from aquifer 1 through the well screen

during the Y"th unit time period,
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R \ « / RdjU.Jj io,o0; m) = ^^^(4^mT>"ElUp1?m>i)?-'
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= discrete pumping kernel for draw

down in aquifer 1 j

R2 R2da(i^j p,q; m) =^ [e^^)- %c^fcrr)i ?

^(i^J i,0,' m) =/ * » [Erf ( /** )12dC ;
1 o 01(AXr 4VP{rrn-T7

oo —U

E-,(X) = f "—- du = an exponential integral and
.A

2 X -u2erf (X) = — / e"* du = error function.
V"tc o

Eq.(6.7) can be expanded and written in the

following form ;

Bl
irSd2 QrU^'n)- Q2(n) d2(i'JJ W 1)

J I

+ E E QY,(p,q,n) d2(i,j; p,q; 1)
q=lp=l r Z
p,q ^ 1,3
+ Qr(i,d,n) d2(i,j; i,j; 1)

+ Q1(n) d]_(i,j; iQ,3o; D

J I

+ E E Q (p,q,n) d,(i,j; p,q; 1)
q=lp=l r 1
p,qA, j
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+ Qr(i,j,n) d-^1,0; i,-j; 1)

n-1

= [ Z 0-2^ d2^±fD* ^'"V n""Y+1^
Y=l

n-1 J I

- E E E Qr,(p,q,Y) d2(ito; p,q; n-Y+D
Y=lq=lp=l

p»q**i»d
n-1

- E Q (i,j,Y) d2(i,jj 1,3', n-Y+1)
Y=l

n-1

- E Q1(y) d1(i,jj iQ, j0; n-Y+1)

n-1 J I

- E E E CL(p,q,Y) Mi,d* P»q» n-Y+D
Y=lq=lp=l

n-1

- E Q (i,j,Y) d,(i,i; 1,3', n-Y+D] (6.8)
Y=l r -1

Similar I x J number of equations can be written,

One for each of the nodal points. The total number of

unknowns during any unit time period are the quantities

of recharge at I x J nodal points and the aquifers'

discharges through their respective well screens. The

recharges at the nodal points and the aquifers' dis

charges through well screens are known for all previous

time steps. Thus there are I x J + 2 number of un

knowns during any unit time period. Two more equations
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can be written considering the facts that at any time

the pumping rate is equal to sum of the rate of dis

charge by the aquifers through the respective well

screen, and the drawdown in piezometric surfaces in

both the aquifers at the well point are equal. Thus

Q1(n) + 0>(h) = Qp , (6.9)

Let r is the radius of the well. Drawdown in the
w

piezometric surface in aquifer 1 at the well face at

the end of nth unit time can be expressed as :

s1(rw,n) = I Q (Y) 5 (n-Y+1)
Y=l

n J I

+ E E E Q (p,q,y) Mi .j : P,q, n-Y+D
Y=lq=lp=l

n

+ Z-,Qr(io"VY) dl(io^o» W n'Y+D (6.10)
Y=l

i r 2 r2
where dn (m) = •rjr»f&, (Ty^r)-E, (xg /W-ty)]lws ' 4tcT-ll lMp^m' lv4pl(m-l)/J

Similarly drawdown in the piezometric surface in aquifer

2 at the end of nth unit time can be expressed as :

n

S2(rw'n) = Z Q2(y) d2w(n~Y+D
Y=l

n J I

- E E E Q (p,q,Y) M^-n'^o* P»q» n-Y+l)
Y=lqs=lp=l r Z ° °

p,q^±0,j0
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" Z VWY) d2(io^o* W n-*+1) (6-n)
Y=l

Where

Since,

sl(rw'n) • s2<rw'n)

Therefore,

« °l(Y) dlw{n-Y+D

n J I

+ Z Z Z Qr(p,q,Y) di(i0'Jo» ^'q' n-Y+D
Y=lq=lp=l

P,q^i0,j0
n

+ Z Qr(io'Jo^) W^o* W n-y+1)
Y=l

n

- z q2(y) a2w (n-Y+D

n J I

- Z Z S Qr(p,q,Y) bo^a'da* p>q' n~Y+D
Y=lq=lp=l

p,q^i0,d0

- Z, Qr(io'Jo>Y) d2<W V^o* n"Y+1) (6*12)
Y=l

Expanding and rearranging Eq. (6.12) is simplified to

2 2
r_. r.



Vn) diw^

J I
+ E E Q. (p,q,n) d (i ,3 ; pfq; l)

q=lp=l

P,q^i0,j0

+ Mi«f^#n) d1(±0f30> i0^ojl)rv o7U0'

Q2(n) d2w(l)

J I

+ E E Q (p,q,n) d2(i ,3 : p,qj l)
q=lp=l r ^00

P,q^-O,o0

+ Qr(i0,j0,n) d2(io,ooj io,Jo; 1)

n-1

E Q1(Y) dlw(n-Y+D
Y=

n-1 J I

- E E E Q (p,q,Y) ^.(i ,3 ; p,q; nTY+D
Y=lq=lp=l ±00

p,q^0,j0

n-1

- Ei Qr(io'Jo'Y) dl<W W n~Y+l)
Y=l

n-1

+ E G^Cy) d2 (n-Y+D
Y=l

n-1 J I

- E E E Q (p,q,Y) do^±n^n' P'q> n-Y+D
Y=lq=lp=l ° °

P,q£^,3,
n-1

o7Uo

- E CL(i ,3-Y) do(in»J^J Kt^i n-Y+D
Y=l

"r^o' Jo» r' u2Vio'Jo» ^o,do
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(6.13)
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Solving the (I x J) +2 set of algebraic linear

equations i.e. Eqs.(6.8),(6.9) and (6.13) in succession

starting from time step 1, the recharges at ( I x J )

nodal points and the aquifers' contributionsQ-,(n) and

Q2(n) during time step n can be solved.

RESULTS AMD DISCUSSION

An uniform square grid net work having 49 nodes

as shown in Fig.6.4 has been adopted. The nodes are num

bered as shown in the figure. Let the discrete kernel

be designated as d,(o,efn) where i stands for the ith

aquifer, o is the observation point, e is the excitation

point and n is time step. A unit pulse excitation has

been given at node 1. At all the nodes lying along and

below the diagonal the responses have been recorded for

n number of time steps for assumed values of aquifer

parameters. Making use of these values the discrete

kernels di(0,e,n),o = 1,49 and e = 1,49 have been obtained

for different values of n. This could be done as the

aquifer is assumed to be homogeneous and isotropic. This

procedure of generating the discrete kernel coefficients

which takes minimum computer time has been adopted from

Basu (1980).

The well being located at the centre of the square
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grid netv/ork i.e. node 25, there are nine sets of identi

cal nodes. The quantities of recharge at any time step

from these identical nodes in a set are equal. The iden

tical values recognised are as follows :

Q.

Q

Q.

Q

Q

Q.

Q

Q.

CL

CL

Q.

Q

Q.

= Q

= Q.

Q

= Q.

= Q

Q

CL

l,n)

2,n)

42, n)

3,n)

35,n)

14, n)

9,n)

10,n)

34,n)

11,n)

17,n)

18, n)

= Q

= Q

Q

= Q

7,n)

6,h)

44,n)

5,n)

45, n

22,n

13,n

12, n

= Q.

Q

= Q_

= Q

= Q

Q

= Q

= Q

= Q.

Q.

30,n

23,n

19,n = Q

24,n = Q

43,n) = Qr(49,n) }

8,n) = Qr(l4,n) = Qp(36,n)

48,n) ;

15,n) = Qr(21,n) = Qr(29,n)

47,n) ;

28,n) = CL(46,n) ;

37,n) = CL(41tn) ;

16,n) = Qr(20,n) « Qr(30,n).

40,n) ;

27,n) =

31,n) =

26,n) a

Qr(39,n) ^

Qr(33,n) ;

Qr(32,n) .

Thus it is only necessary to solve the recharge

at nodes 1,8,15,22,9,16,23,17,24,25 besides Q,(n) and

Q2(n) at any time step. The equations can be written

in the following matrix form :



[A] .

V l,n)

Qr<,8,n)

V ,15,n)

Q 1
r

;22,n)

Q 1
r

:9,n)

Q 1
r

[16,n)

Q
r

[23,n)

Qr ;i7,n)

Q
r

:24,n)

Q (
r

[25,n)

Ql([n)

Q2( n) J
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[B]

V/here [A] is a 12x12 matrix and [B] is a 12x1

matrix. The elements.of the matrix [A] and [Ej are given

in Appendix-I. Only by inverting the matrix [A] once

and knowing the column matrix [B] at different time steps

the recharge values at the above mentioned ten nodes and

CL(n) and GU(n) can be solved in succession starting

from time step 1.

In order to determine the grid size for obtaining

reasonably accurate results different values of grid

size (-Ax) have been tried, starting from 100 m to 700 m.

Table 6.1 gives the values of Q,(n) for different values
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of AX at different time steps for two values of leakage

factor. If the grid size is increased indiscreminately

the recharge and the drawdowns are being averaged over a

larger area. Therefore a grid size of 300 m has been

adopted, more accurate results can be obtained by incre

asing the grid points depending upon the capacity of the

computer available or a variable grid size i.e. finer

grid near the v/ell point and coarser grid at farther region

from the well point may be adopted.

In Fig.6.6 through 6.11 variations of Q,(n)/Q
0 r2 1 p

with the nondimensional factor un (vu = v^-^) have been
1 1 tn

presented for different values of leakage factor. The

leakage factor L is defined here as L = if C where

C = B-j/K1? B1 being the thickness of the aquitard ; K.,

its vertical permeability and T is the harmonic mean
2T, x T9

transmissivity of the aquifers given by -•-•---„— .
lx+ I2,

However the geometric mean or the arithmatic mean values

of the transmissivities of the two aquifers could also

be used to define the leakage factor.

For an aquiclude the leakage factor L tends to

infinite. The variation of Q (n)/Q with 0r2/4T-)n for
L = infinite has also been plotted in irig 6.6 for the

purpose of comparison . This result has been obtained

from Fig.4.3 of chapter 4 v/hich deals with the situation
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when the aquifers are separated by aquiclude. As seen

from the figure, for ui upto to the value of 5xl0~9 i.e.

during the early part of pumping an aquitard having leak

age factor L = 15275 m nearly behaves like an aquiclude.

It may be noted here that the results obtained by tv/o

approaches, one presented in this chapter and the other

in chapter 4 compare well.

It is observed from Figs. 6.6 through 6.11 that

the aquifer v/hose hydraulic diffusivity is lower its con

tribution to well discharge through the screen decreases

as pumping continues. Conversely,the aquifer whose

hydraulic diffusivity is higher its contribution increa

ses with pumping.

If pumping continues at a constant rate for an

indefinite period, the limit Q],(n)/Q2(n) tends to Tj/T,,

This has been proved in chapter 4 using Thiem (1906)

equation. This fact is also being observed in the figures.

For given ratios of T^Tg and P-JP^ as the leakage

factor decreases the near steady state condition approa

ches comparatively at shorter time. In Fig.6.7 for

T1/T2 = D 0x/02 =• 10 and L = 591o m ; Q-L(n)/Q = 0.524
2 inat 01rw/4T1n = 3xlCf . V/here as, when the leakage

factor L = 19 m the value of Q (n)/Q = 0.5 at
2 o

W4Tln = 2x10" . Thus, for the lower value of leakage
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factor the near steady state condition has been attained

earlier.

In Fig.6.8 the results have been presented for

the variation of Q, (n)/Q with u., . The results presented
1 ' p 1

are for T-./rf=- 10, 0-,/02 = 10. These results correspond

to a case when the tapped aquifers have equal hydraulic

diffusivity values. As seen from the figure, when the

aquifers have equal hydraulic diffusivities the contri

butions to well discharge by the individual aquifer tlirough

their respective well screen are independent of time

and are proportional to their transmissivity values,

Q1(n)/Q is equal to 0.909 for T^Tg = 10 irrespective of

the value of leakage factor. In such cases no exchange

of flow takes place through the intervening aquitard and

drawdown in the piezometric surface at a particular sec

tion in both the aquifers are same at all the times during

pumping. In Table 6.2 the drawdowns in aquifer 1 and 2

at r s 300 m,600 for the situation when the aquifers have

equal hydraulic diffusivity values are presented.

Table 6.3 gives the recharge rates under two

different hydrogeological settings. In the first case

aquifer parameters have the following values :



T1 = 700.0 m/day,

T2 =1400.0 m2/day,
K, = 9.333m/day,

In the second case the parameters have the follow

ing values.

T1 =350.0 m2/day, 01= .01
T2 = 700.0 m2/day, 0 = .03
1^ = 4.666m/day, E,= 1.0 m

h= .02

02= .06

Bl= 1.0 m
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3
- iu n

i

AX * 300.0 m, and L = 10 m.

For both the cases Q = 10 m/day, r = 0.1 m,

For such coincidance in the values of aquifer

parameters the recharge rates are identical. It may be

noted that the corresponding hydraulic diffusivities

of the aquifers are equal (i.e. Tj/0, of case I equals to

T1/01 of case II, T2/02 of case I equals to T2/02 of
case II) besides their leakage factor values. (both have

leakage factor values=10 m)

Figs.6,12 through 6.16 shows the variation of

QR(n)/Qp with Ul for ratios of T^Tg = 0.5,1,10 and
0^/02 • 10,100 for different values of leakage factors.

QR(n) is the total recharge from an area of 4.41xl06sq.m.
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As seen from the figures,with higher values of

leakage factor the recharge from the above area stableses

when u-j^ < 10" . However for lower values of leakage

factors the recharge from this area increases starting

from zero to certain value and then decreases.

as seen

For leakage factor L = 1871 m/in Figs.6.7, 6.13, the

first aquifer contributes 52.5/ of pumping through screens,

besides contributing 6.5/ of pumping as recharge to the

second aquifer.

Results have also been presented for a tv/o aquifer

system separated by an aquitard, the top aquifer being

unconfined with delayed yield characteristics.

CONCLUSIONS

a) V/hen a well taps two aquifers separated by an

aquitard the leakage factor is to be defined as

L = ]TC where T is the mean transmissivity

value. The mean transmissivity may either be

a geometric mean or a harmonic mean or an arith

matic mean.

In different two aquifer aquitard systems

if the corresponding hydraulic diffusivity values

are equal (i.e. P1,p2 of one set are equal p-.,p?
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of the other) and their leakage factors are same,

then the recharge values are also same.

b) If the aquifers have equal diffusivity values,

the contributions by each of the aquifers through

the v/ell screens during pumping at a constant

rate are independent of time and proportional to

the respective transmissivity values. In such a

case there is no exchange of flow through the

intervening aquitard irrespective of the magni

tude of leakage factor and the drawdowns at any

section in both the aquifers are same.

c) Aquifer whose hydraulic diffusivity is lower its

contribution to well discharge through the screen

decreases as pumping continues. Conversely, the

aquifer whose hydraulic diffusivity is higher its

contribution increases as the pumping continues.

If the pumping continues at a constant rate

V for an indefinite period, the limit Q1(n)/Q2(n)

tends to ^1/l2' As the leakage factor decreases

the nearly steady state condition approaches com

paratively at a shorter time.
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Table 6.1 Values of Q][(l) and 0,(12) for different

values of AX and Q = 10 m/day.

106

AX

(m) (u,=
Q1(D Q1(12)

7.142857 x 10"-9} (u, • 5.952331 x

»... ,«.'.. • , .. «... . ,. ...».»-» . ..»-—.-»«.,»,„

L = 1528 111

3.651314 3.601253

3.612369 3.536864

3.585746 3.482829

3.570740 3.444594

3.563343 3.419170

3.560817 3.339265

-10'
10

100

200

300

400

500

700

100

200

300

400

500

700

L = 4030 m

3.677292

3.672243

3.667842

3.664573

6.662323

3.660089

3.635408

3.625681

3.613519

3.600727

3.588389

3.567113
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Table 6.2 Drawdown in aquifer 1 and 2 having equal

hydraulic diffusivity values for Q « 10 m/day.

Time
m

days

1

2

3

4

5

6

7

8

9

10

11

12

AQUIFER 1

,-2
Drawdown in mxlO

~r '= 300 nT" *'r"= oOO m

0.29890

0.36890

0.41025

0.43971

0.46260

0.48134

0.49719

0.51093

0.52306

0.53391

0.54373

0.55269

0.16521

0.23051

0.27026

0.29890

0.32131

0.33972

0.35533

0.36890

0.38089

0.39163

0.40136

0.41025

AQUIFER 2

s-2
Drawdown in mxlO

r =s 300 m ~r = 6000 m

0.29890

0.36890

0.41025

0.43971

0.4626

0.48134

0.49719

0.51093

0.52306

0.53391

0.54373

0.55269

0.16521

0.23051

0.27026

0.29390

0.32131

0.33972

C.35533

0.36890

o.38089

0.39163

0.40136

0.41025

Hydrogeological parameters of aquifer l and 2

are as follows

\ = 700 m/day, 0X= .001, 3- :7xl05 m2/day

T2 = 70 m2/day, 02= .0001,p2 =7xl05 m2/day.
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Table 6.3 Recharge [QR(n)] v/hen the corresponding

aquifers of tv/o different hydrogeological

settings have equal hydraulic diffussivity

values and the aquitards have equal leakage

factors.

Time in

days
Recharge [QR(n)] in Recharge [QQ(n)].in

*R
Case I

(m /day)

R1

Case II

(m /day)

1 -0.7221490 -0.7227677

2 -0.8933202 -0.8933399

3 -0.8281627 -0.8281772

4 -0.7970765 -0.7970880

5 -0.7793128 •-0.7793370

6 -0.7646697 -0.7446786

7 -0.7501670 -0.7501877

8 -0.7353342 -0.7353396

9 -0.7202554 -0.7202582

10 -0.7052081 -0.7052290

11 -0.6904655 -0.6904707

12 -0.6761129 -0.6761399

The recharges are negative i.e. recharge is

taking place from second aquifer to first aquifer.
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rig. 6-6 Contribution of top aquifer to discharge at various time steps
due to pumping of a well tapping two confined aquifers separated

by an aquitard.
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Fig. 6-7 Contribution of top aquifer to discharge at various time steps
due to pumping of a well tapping two confined aquifers separated by
an aquitard.
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Fig.6-9 Contribution of top aquifer to discharge at various time steps due to

pumping of a well tapping two confined aquifers separated by an aquitard.
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pumping of a well tapping two confined aquifers separated byan aquitard.
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Fig. 6-11 Contribution of top aquifer to discharge at various time steps due to

pumping of a wen tapping two confined aquifers separated by an aquitard.
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Fig-6-13 Variation of recharge with time due to pumping of a well tapping

two confined aquifers separated by an aquitard.
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Fig-6-14 Variation of recharge with time due to pumping of a well
tapping two confined aquifers separated by an aquitard.
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Fig.6-15 Variation of recharge with time due to pumping of a well tapping

two confined aquifers separated by an aquitard-
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Fig.616 Variation of recharge with time due to pumping of a well
tapping two confined aquifers separated by an aquitard.
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separated by an aquitard
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Fig.6-20 Contribution of top aquifer to discharge at various time steps
due to pumping of a well tapping an unconfined and a confined
aquifer separated by an aquitard.
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Fig 6-22 Contribution of top aquifer to discharge at various time steps
due to pumping of a well tapping an unconfined and a confined
aquifer separated by an aquitard.
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Fig. 6-23 Variation of recharge with time due to pumping of a well
tapping an unconfined and a confined aquifer separated

by an aquitard.
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4T,n

Fig.6-24 Variation of recharge with time due to pumping of a well
tapping an unconfined and a confined aquifer separated
by an aquitard.
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Fig. 6-25 Variation of recharge with time due to pumping of a well

tapping an unconfined and a confined aquifer separated by
an aquitard.
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Fig. 6-28 Variation of recharge with time due to pumping of a well
tapping an unconfined and a confined aquifer separated

by an aquitard.
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CHAPTER 7

GENERAL CONCLUSIONS

In the present study, unsteady flow to a multi

aquifer well when pumped at a constant rate has been

analysed by discrete kernel approach. The discrete

kernel approach is found to be quite versatile in solv

ing multiple aquifer well interaction problems. Results

for drawdowns and contributions of each of the aquifers

to well discharge have been presented pertaining to

unsteady flow to a well for the following cases :

When the well taps

a) two confined aquifers separated by an aquiclude,

b) multiple (more than two) aquifers separated by

aquicludes,

c) two confined aquifers separated by an aquitard.

Discrete kernel coefficients for drawdown in an

unconfined aquifer with delayed yield characteristics

have been evaluated using Boulton's solution. An effi

cient method has been described to evaluate discrete

kernel coefficient for drawdown for any value of

t 0 + 0y,TJ (TJ = jj—-X).
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The studies have been extended when the top

aquifer is unconfined and has delayed yield character

istics in a tv/o aquifer well systems. The aquifers may

be separated by an aquiclude or aquitard.

Based on the study the follov/ing conclusions are derived :

1. When the aquifers have equal hydraulic diffusivity

values, the contribution by each of the aquifers

under continuous constant pumping is independent

of time. In such a case the contribution by

each aquifer is proportional to its transmissivity

value. This is true whether the aquifers are

separated by an aquiclude or aquitard,

2. V/hen the aquifers are separated by an aquitard,

and both the aquifers have equal hydraulic diffu

sivities, the exchange of flow between the aquifers

through: the intervening aquitard under continuous

constant pumping is zero irrespective of the

magnitude of the leakage factor. The drawdown

in both the aquifers at any section are sane.

3. When the two aquifers are separated by an aqui-

• tard the leakage factor may be defined as L=l[fC,

where T is the mean value of the transmissivities
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of the aquifers tapped. The mean value may

either be a geometric or a harmonic or an arith

matic mean. In different tv/o aquifer aquitard

set up if the corresponding hydraulic diffusivity

values are equal (i.e., j3, , p2 °^ onG case equal

p.,, p0 of the other) and their leakage factors

are also equal the recharge rates are identical.

4. In a two aquifer system separated by tli aquiclude,

the aquifer v/hose hydraulic diffusivity is lower,

its contribution to well discharge is higher in

the beginning of pumping. As pumping continues

its contribution to well discharge decreases.

Conversely ,the contribution of the aquifer having

higher value of hydraulic diffusivity increases

with time.

5. If pumping continues for a long time leading to

a nearly steady state condition, the contribu

tion by each of the aquifers is in proportion to

its transmissivity value. This is true whether

the aquifers are separated by an aquiclude or

an aquitard. However when the aquifers are

separated by an aquitard, the nearly steady state

condition is attained comparatively at a shorter

time.
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6. In case of multiple aquifers (more than two)

separated by aquicludes, when the aquifers tapped

have equal diffusivity values, their contribu

tions are proportional to the respective trans

missivity values. The aquifer whose hydraulic

diffusivity is lov/est, contributes more than other

aquifers during thebeginning of pumping. V/hen

the time is very large i.ev at nearly steady state

condition; the contributions of the•-aquifers are

proportional to their respective transmissivity

values.
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APPENDIX-I

ELEMENTS OF MATRIX [A] AND [B]

A(l,l) = 0(1,1,1) + D(l,7,l) + D(l,43,l) + D(l,49,l)

, Bl

A(l,2) = D(l,2,l) + D(l,6,l) + D(l,8,l) + D(l,14,l)

+ D(l,36,l) + D(l,42,l) + D(l,44,l) + D(l,48,l),

A(l,3) = D(l,3,l) + D(l,5,l) + D(l,15,l) + D(l,2l,l)

+ D(l,29,l) + D(l,35,l) + D(l,45,l) + D(l,47,l),

A(l,4) = D(l,4,l) + D(l,22,l) + D(l,28,l) + 0(1,46,1),

A(l,5) = D(l,9,l) + D(l,13,l) + D(l,37,l) + D(l,41,l),

A(l,6) = D(l,10,l) + D(l,12,l) + D(l,16,l) + D(l,20,l)

+ D(l,30,l) + D(l,34,l) + D(l,38,l) + D(l,40,l),

A(l,7) = D(l,ll,l) + D(l,23,l) + D(l,27,l) + D(l,39,l),

A(l,8) = D(l,17,l) + D(l,19,l) + D(l,31,l) + D(l,33,l),

A(l,9) = D(l,18,l) + D(l,24,l) + D(l,26,l) + D(l,32,l),

A(l,10)= D(l,25,l),

A(l,ll)= d-^1,25,1),

A(l,12)= - d0(l,25,l),
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A(2,l) = D(8,l,l) + D(8,7,l) + D(8,43,l) + D(8,49,l),

A(2,2) = D(8,2,l) + D(8,6,l) + D(8,8,l) + D(8,14,l)

+ D(8,36,l) + D(8,42,l) + D(8,44,l) + D(8,48,l)
B-

+ X_ ,
^(AX)'

A(2,3) = D(8,3,l) + D(8,5,l) + D(8,15,l) + D(8,21,l)

+ D(8,29,l) + D(8,35,l) + D(8,45,l) + D(8,47,l),

A(2,4) = D(8,4,l) + D(8,22,l) + D(8,28,l) + D(8,46,l),

A(2,5) = D(8,9,l) + D(8,13,l) + D(8,37,l) + D(8,41,l),

A(2,6) = D(8,10,l) + D(8,12,l) + D(8,16,l) + D(8,20,l)

+ D(8,30,l) + D(8,34,l) + D(8,38,l> + B(8,40,l),

A(2,7) = D(8,ll,l) + D(8,23,l) + D(8,27,l) + 0(8,39,1),

A(2,8) • D(8,17,l) + D(8,19,l) + D(8,31,l) + D(8,33,l),

A(2,9) = D(8,18,l) + D(8,24,l) + D(8,26,l) + D(8,32,l),

A(2,10)= D(8,25,l),

A(2,ll)= d1(8,25,l),

A(2,12)= -d2(8,25,l),

A(3,l) = D(15,1,1) + D(15,7,l) + D(l5,43.l) + D(l5,49,l),
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A(3,2) = D(15,2,1) + D(15,6,1) + D(l5,8,l) + D(l5,14,l)

+ 0(15,36,1) + 0(15,42,1) + D(l5,44,l) + D(l5,48,l),

A(3,3) = D(15,3,1) + D(15,5,l) + D(l5,15,l) + D(l5,21,l)

+ D(15,29,1) + D(15,35,l) + D(l5,45,l) + D(l5,47,l)

♦ -X ,
K-^Atf2

A(3,4) = D(15,4,1) + D(15,22,1) + D(l5,28,l) + 0(15,46,1),

A(3,5) = D(15,9,l) + D(15,13,1) + D(15,37,1) + D(l5,41,l),

A(3,6) = D(15,10,1) + D(15,12,1) + D(15,16,1) + D(15,20,l)

+ D(15,30,l) + D(15,34,1) + D(15,38,l)

+ D(15,40,1),

A(3,7) = 0(15,11,1) + D(15,23,1) + D(l5,27,l) + D(l5,39,l),

A(3,8) = D(15,17,1) + D(15,19,l) + D(l5,31,l) + D(l5,33,l),

A(3,9) = D(15,18,1) + D(15,24,1) + D(l5,26,l) + D(l5,32,l),

A(3,10)= D(15,25,1),

A(3,ll)= d1(l5,25,l),

A(3,12)= -d2(15,25,l),

A(4,l) = D(22,l,l) + D(22,7,l) + D(22,43,l) + D(22,49,l),
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A(4,2) = D(22,2,l) + D(22,6,l) + D(22,8,l) + D (22,14,1),

+ D(22,36,l) + D(22,42,l) + 0(22,44,1)

+ 0(22,48,1),

A(4,3) = D(22,3,l) + D(22,5,l) + D(22,15,l) + D(22,21,l)

+ D(22,29,l) + D(22,35,l) + D(22,45,l)

+ 0(22,47,1),

A(4,4) = D(22,4,l) + 0(22,22,1) + D(22,28,l) + D(22,46,l)

2 »K^AX)
A(4,5) = D(22,9,l) + D(22,13,l) + D(22,37,l) + D(22,41,l),

A(4,6) = D(22,10,l) + D(22,12,l) + 0(22,16,1) + 0(22.20,1)

+ D(22,30,l) + D(22,34,l) + D(22,38,l)

+ 0(22,40,1),

A(4,7) a D(22,ll,l) + D(22,23,l) + D(22,27,l) + D(22,39,l),

A(4,8) = 0(22,17,1) + D(22,19,l) + D(22,31,l) + 0(22,33,1),

A(4,9) = D(22,18,l) + D(22,24,l) + D(22,26,l) + 0(22,32,1),

A(4,10)= D(22,25,1),

A(4,ll)= 6-^22,25,1),

A(4,12)-. ^d2(22,25,l),

A(5,l) = D(9,l,l) + D(9,7,l) + D(9,43,l) f D(9,4Q,l),
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A(5,2) = D(9,2,l) + D(9,6,l) + D(9,8,l) + 0(9,14,1)

+ D(9,36,l) + D(9,42,l) + 0(9,44,1) + D(9,48,l),

A(5,3) = D(9,3,l) + D(9,5,l) + D(9,15,l) + D(9,21,l)

+ D(9,29,l) + D(9,35,l) + 0(9,45,1) + 0(9,47,1),

A(5,4) = D(9,4,l) + D(9,22,l) + D(9,28,l) + D(9,46,l),

A(5,5) = D(9,9,l) + D(9,13,1) + D(9,37,l) + D(9,41,l) +

A(5,6)

B,

K,(AX)

D(9,10,l) + D(9,12,l) + D(9,16,l) + D(9,20,l)

+ D(9,30,l) + D(9,34,l) + D(9,38,l) 4- D(9,40,l),

A(5,7) = D(9,ll,l) + D(9,23,l) + D(9,27,l) + D(9,39,l),

A(5,8) = D(9,17,l) + D(9,19,l) + D(9,31,l) + D(9,33,l),

A(5,9) = D(9,18,l) + D(9,24,l) + D(9,26,l) + D(9,32,l),

A(5,10)= D(9,25,l),

A(5,ll)= d1(9,25,l),

A(5,12)= -d2(9,25,l),

A(6,l) = D(16,1,1) + D(16,7,1) + D(16,43,l) + D(16,49,1),

A(6,2) = D(16,2,1) + D(16,6,l) + D(l6,8,l) + D(16,14,l)

+ D(16,36,1) + D(16,42,l) + D(16,44,1)

+ D(16,48,1),

5 '
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A(6,3) = D(16,3,l) + D(16,5,1) + D(16,15,l) + D(16,21,l)

+ 0(16,29,1) + 0(16,35,1) + 0(16,45,1)

+ 0(16,47,1),

A(6,4) = 0(16,4,1) + D(16,22,l) + D(16,28,1) + D(16,46,l),

A(6,5) = D(16,9,1) + D(16,13,1) + D(16,37,1) + D(16,41,l),

A(6,6) = D(16,10,1) + D(16,12,l) + 0(16,16,1) + D(l6,20,l)

+ D(16,30,1) + D(16,34,1) + D(16,38,1)

+ D(16,40,1) +
K-j_(AX) 2 »

A(6,7) = D(16,ll,l) + D(16,23,l) + 0(15,27,1) + D(16,39,l),

A(6,8) = 0(16,17,1) + 0(16,19,1) + 0(16,31,1) + D(16,33,1),

A(6,9) = D(16,18,l) + D(16,24,l) + D(l6,26,l) + 0(16,32,1),

A(6,10)= D(16,25,l),

A(6,ll)= d1(16,25,l),

A(6,12)= -d2(l6,25,l),

A(7,l) = 0(23,1,1) + D(23,7,l) + D(23,43,l) + D(23,49,l),

A(7,2) . 0(23,2,1) + D(23,6,l) + D(23,8,l) + 0(23,14,1)

+ D(23,36,l) + D(23,42,l) + 0(23,44,1)

+ 0(23,48,1),
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A(7,3) = D(23,3,l) + D(23,5,l) + D(23,15,l) + D(23,21,l)

+ D(23,29,l) + 0(23,35,1) + 0(23,45,1)

+ D(23,47,l), ' -

A(7,4) = D(23,4,l) + D(23,22,l) + D(23,28,l) + D(23,46,l),

A(7,5) = D(23,9,l) + D(23,13,l) + D(23,37,l) + 0(23,41,1),

A(7,6) = D(23,10,l) + D(23,12,l) + D(23,16,l)

+ D(23,20,l) + D(23,30,l) + D(23,34,l)

+ D(23,38,l) + D(23,40,l),

A(7,7) = D(23,ll,l) + D(23,23,l) + D(23,27,l) + D(23,39,l)

A(7,8) = 0(23,17,1) + D(23,19,l) + D(23,31,l) + D(23,33,l),

A(7,9) = D(23,18,l) + D(23,24,l) + D(23,26,l) + D(23,32,l),

A(7,10)= D(23,25,1),

A(7,ll)= d1(23,25,l),

A(7,12)= -d2(23,25,l), .

A(8,l) = D(17,l,l) + D(17,7,1) + D(17,43,1) + D(l7,49,l),

A(8,2) = D(17,2,l) + D(17,6,l) + D(17,8,l)

+ 0(17,14,1) + D(17,36,l) + 0(17,42,1)

+ D(17,44,1) + D(17,48,l),
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A(8,3) = D(17,3,1) + D(17,5,1) + D(l7,15,l) + D(17,21,1)

+ D(17,29,l) + D(17,35,1) + D(l7,45,l)

+ D(17,47,l),

A(8,4) = D(17,4,1) + D(17,22,1) + D(17,28,l) + D(l7,46,l),

A(8,5) = D(17,9,l) + D(17,13,l) + D(17,37,l) + D(17,41,1),

A(8,6) • 0(17,10,1) + D(17,12,l) + D(l7,16,l)

+ D(17,20,l) + D(17,30,l) + D(l7,34,l)

+ D(17,38,1) + D(17,40,l),

A(8,7) = D(17,ll,l) + D(17,23,1) + D(17,27,l) + D(17,39,D,

A(8,8) = D(l7,L7,l) + D(17,19,l) + D(17,31,l) + D(17,33,l)

+ 9 f
K^AX)

A(8,9) = D(17,18,1) + D(17,24,1) + D(17,26,l) + D(17,32,1),

A(8,10)= D(17,25,l),

A(8,ll)= 5,(17,25,1),

A(8,12)= -52(17,25,1),

A(9,l) = D(24,l,l) + 0(24,7,1) + D(24,43,l) + D(24,49,l),

A(9,2) = D(24,2,l) + 0(24,6,1) + D(24,8,l) + 0(24,14,1)

+ D(24,36,l) + D(24,42,l) + 0(24,44,1)

+ D(24,48,l),
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A(9,3) = 0(24,3,1) + 0(24,5,1) + 0(24,15,1) + D(24,21,l)

+ 0(24,29,1) + D(24,35,l) + D(24,45,l)

+ 0(24,47,1),

A(9,4) = 0(24,4,1) + D(24,22,l) + D(24,28,l) + D(24,46,l),

A(9,5) = D(24,9,l) + D(24,13,l) + 0(24,37,1) + D(24,41,l),

A(9,6) = D(24,10,l) + 0(24,12,1) + D(24,l6,l)

+ D(24,20,l) + D(24,30,l) + D(24,34,l)

4- D(24,38,l) + D(24,40,1),

A(9,7) = 0(24,11,1) + 0(24,43,1) + D(24,27,l) + 0(24,39,1),

A(9,8) = 0(24,17,1) + D(24,19,l) + D(24,31,l) + 0(24,33,1),

A(9,9) = D(24,18,l) + D(24,24,l) + D(24,26,l)
Bl4- D(24,32,1) + —-=—„ ,

K^XT

A(9,10)= D(24,25,l),

A(9,ll)= d1(24,25,l),

A(9,12)= -d2(24,25,l),

A(10,l)= D(25,l,l) + D(25,7,l) + D(25,43,l)

+ D(25,49,l),

A(10,2)= D(25,2,l) + D(25,6,l) + D(25,8,l) + D(25,14,l)

+ D(25,36,l) + D(25,42,l) + D(25,44,l)

+ D(25,48,1),
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A(10,3)= D(25,3,l) + D(25,5,l) + D(25,15,l) + D(25,21,l)

+ 0(25,29,1) + D(25,35,l) + D(25,45,l)

+ D(25,47,l),

A(10,4)= 0(25,4,1) + 0(25,22,1) + D(25,28,l) + D(25,46,l),

A(10,5)= D(25,9,l) + 0(25,13,1) + D(25,37,l) + 0(25,41,1),

A(10,6)= D(25,10,l) + D(25,12,l) + D(25,16,l)

+ D(25,20,l) + D(25,30,l) + 0(25,34,1)

+ D(25,38,l) + D(25,40,l),

A(10,7)= D(25,ll,l) + D(25,23,l) + D(25,27,l) 4- D(25,39,l),

A(10,8)= D(25,17,l) + D(25,19,l) 4- 0(25,31,1) + D(25,33,l),

•(10,9)- D(25,18,l) + 0(25,24,1) 4- 0(25,26,1) 4- 0(25,32,1),

A(10,10)=D(25,25,1) + —-L— 0 ,
kx(Ax)2

A(lO,ll)=dlw(l),

A(l0,12)=-d2w(l),

•(11,1)- D(25,l,l) 4- D(25,7,l) 4- D(25,43,l) + D(25,49,l),

A(ll,2)= D(25,2,l) + D(25,6,l) + D(25,8,l) + 0(25,14,1)
4- D(25,36,l) + D{25,42,1) + 0(25,44,1)

+ D(25,48,l),
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A(ll,3) = D(25,3,l) + D(25,5,l) + D(25,15,l) + D(25,21,l)

+ D(25,29,l) + D(25,35,l) + 0(25,45,1)

4- D(25,47,l),

A(ll,4) = 0(25,4,1) 4 0(25,22,1) 4- D(25,28,l) + D(25,46,l),

A(ll,5) - D(25,9,l) + 0(25,13,1) 4- 0(25,37,1) + 0(25,41,1),

•(11,6) = D(25,10,l) + D(25,12,l) + D(25,16,l)

4- D(25,20,l) + D(25,30,l) 4- D(25,34,l)

4- D(25,38,l) + D(25,40,l),

•(11,7) = D(25,ll,l) + D(25,23,l) 4- D(25,27,l) 4- D(25,39,l),

•(11,8) = 0(25,17,1) 4 D(25,19,1) + D(25,31,l) 4- D(25,33,l),

A(ll,9) - D(25,18,l) + 0(25,24,1) 4- D(25,26,l) + D(25,32,l),

•(11,10)- D(25,25,l),

•(11,11)- dlw(l),

•(11,12)- -62w(l),

•(12,1) a A(12,2) = A(12,3) = A(l2,4) * A(12,5) = A(l2,6)

= A(12,7) = •(12,8) = A(12,9) = A(12,10)= 0,

•(12,11)- 1, and

•(12,12)- 1.
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In above expressions ,

D(o,e,n) = d-,(o,e,n) + d2(o,e,n).

Where o is the observation point, e is excitation point

and n is time step.

For n = 1

B(l) = 0 - B(2) - B(3) = B(4) = B(5) - B(6) - B(7) a B(8)

= B(9) = B(10) - B(ll),

B(12) - Op -

For n > 2

n-1

B(l) = E Q2(Y) d2(l, 25, n-Y+1)
Y=l

49 n-1

- E E Q (g,Y) [^2(1, g, n-Y+1) + 61(l,g,n-Y+1)]
g=lY=l

n-1

- E Q.(Y) Ml, 25, n-Y+1),
Y=l

n-1

B(2) = E Q2(Y) 62(8, 25, n-y+1)
Y=l

n-l
- E CL(y) dn(8, 25, n-Y+D
Y=l X X
49 n-1

- E E CL,(g,Y) [do(8, g, n-Y+D + 6. (8,g,n-Y+D 3,
g=lY=l r X
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n-1

B(3) a E Q2(y) 62(15,25,n-Y+D
Y=l

n-1

- E Q-,(y) 6-,(l5,25,n-Y+D
Y-l

49 n-1

- E E Q (g,y) [62(15,g,n-Y+1) + 61(15,g,n»Y+l)],
g=ly=l

B(4)
n-1

E Q2(y) d2(22, 25, n-Y+1)
Y=l

n-1

- E Q,(y) ^(22, 25, n-Y+D
Y-l 1 -1
49 n-1

- E E CL,(g,y) [d9(22rg,n-.y+l) + ^-(22,grn^Y+l)],
g=lY=l

n-1

B(5) a E Q2(Y) 62(9, 25, n-Y+D
Y-l

n-1

- E GL(y) d,(9, 25, n-Y+1)
Y-l
49 n-1

- E E QT,(g,Y) [d9(9, g, n-Y+1) + 6,(9, g, n-y+1)],
g=ly-l

n-1

B(6) = E Q2(y) 62(16, 25, n-y+1)
y-l

n-1

- E Q,(y) 6.(16, 25, n-y+1)
Y=l

49 n-1
- E E Qr(g,y) [d2(16, g, n-y+1) + 6.(16, g, n-y+1)],

S-ly-1 r * L
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n-1

B(7) = E Q2(y) d2(23, 25, n-y+l)
y-l

n-1

- E CL(y) 6 (23, 25, n-y+l)
Y-l l 1
49 n-1

- E E Q (g,y) [62(23,g,n-y+1) + 6. (23, g,n-Y+D],
g=ly=l r z 1

n-1

B(8) = E Q2(y) d9(17, 25, n-y+l)
Y-l

n-1

- E Q.(Y) 6 (17, 25, n-y+l)
y=l x L
49 n-1

- 2 E Q (g,y) [62(17, g, n-y+1) + 6 (17, g, n-y+1)]
g=ly=l -1

n-1

B(9) - E Q9(y) 69(24, 25, n-y+l)
y-l * z
n-1

- E Q. (y) 6.(24, 25, n-y+1)
Y=lY

49 n-1

- E E Q (g,y) [69(24, g, n-y+1) + d,(24, g, n-y+l)]
g=ly=l x x

n-1

B(10)= E Q2(y) 6rw2 (n-y+l)

\L °1(Y) drwl (n^D
49 n-1

- E E Q (g,y) [62(25,g,n-y+l) + d. (25»S>n-Y+D]
g=ly=l * -1

B(ll)= B(10),

B(12)= Qp.
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