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ABSTRACT

The d.c. motor is a widely used type of motor in industry.
The bulk of d.c. drives find their application in variable speed
drives. The use of thyristors has further increased the scope of
d.c. motors as it has led to the development of a variety of effi-
cient techniques of speed control. One such freguently used tech-
nique is chopper control which converts a constant d.c. voltage to
a pulsed type of voltage. Considerable interest has been shown in
the last few years to upgrade the methods of analysis to predict
the performance of chopper controlled drives more accurately, and
to incorporate improvements in design based on such accurate ana-
lyses. The work presented in this thesis is an effort in this
direction.

The performance of an electric drive not only depends
upon its electrical components but is also significantly affected
by its mechanical features such as elasticity of shaft, misalign-
ment, backlash, etc. Extensive work is available in literature
on the performance analysis of electrical drives but without
including the effect of these mechanical factors. The development
of high performance d.c. drive systems requires a precise analysis
of such systems, in which case these factors can no longer be
ignored.

The basic aims of this work are (i) to develop better
techniques of analysis for chopper controlled drives, (ii) to
determine the effects of mechanical factors and to establish the

importance of including such factors in the analysis, and
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(1ii) to suggest changes required in design in order to improve
the drive performance.

The work presented deals mainly with the analysis of
separately excited d.c. motor drives, fed by a chopper as well as
ordinary d.c. supply. The analysis includes the effects of mecha-
nical factors associated with drives, such as elasticity of coup-
ling and periodic variation of load torque. The effects of these
mechanical features on the performance of d.c. series motor drives
are also investigated and compared with those in separately excited
d.c. motor drives.

The work presented in this thésis is summarized below?

The performance of an electro-mechanical system consisting
of a d.c. motor fed by a constant d.c. voltage and coupled through
an elastic shaft to a load with periodic torque variation is ana-
lysed (Chapter-2). A mathematical model of the system is given
and equations are solved using State Space techniques. Closed-
form solution is obtained to give the system performance under
transient as well as steady state conditions. The analysis is
illustrated by an example and inferences drawn. It is observed
that the performance is significantly affected by elasticlity of
shaft, specially when the load torque is pulsating in nature.

Some suggestions are given to improve the performance.

A new technique for the analysis of chopper fed d.c. motor
drives using pulse width control is presented (Chapter-3). The
methods of analysis of such drives given by earlier authors
involve a progressive step-by-step solution of system differen-

tial equations. Closed-form solutions using such techniques are
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not available and the computation efforts are large. The proposed
analytical technique which overcomes these limitations is superior
because of the following advantagess
(1) A single set of equations 1s needed to describe the system
in duty as well as freewheeling intervals.

(i1) The performance in terms of current and speed at any
instant, in transient as well as steady state conditions,
can be directly obtained without using step by step methods
starting from switching-in condition. The computational
efforts are therefore, greatly reduced,

(iii) The solutions are in closed-form, and therefore provide
an insight into the transient and steady state performance
of the drive.

(iv) The solutions are more accurate, as speed over a chopper

cycle is not assumed constant.

The frequent use of chopper controlled d.c. drives makes
it imperative to investigate the effects of mechanical factors on
per formance of such drives. An analysis of chopper fed d.c. motor
drives with elastic coupling and pulsating load torque is presen-
ted in Chapter-4%. The equations governing the performance of
such a system are expressed in State model form. The analytical
technigue of Chapter-3 is used to obtain closed-form solutions
for system performance. The effects of mechanical factors is
observed to be more severe when the motor is fed through a chopper.
The conditions leading to resonance are investigated and sugges-
tions are made to avoid such situations. Results are illustrated

by an example and inferences drawn therefrom.
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PWM control is commonly used in closed~loop d.c. drives
for obtaining the desired control of speed. The influence of
mechanical features on performance of such drives has not been
attemped so far. A system consisting of a d.c. separately excited
motor with load coupled through an elastic shaft, and fed through
a PWM supply obtained from a controller having a speed feed-back
is analysed (Chapter-5). A mathematical model of the system for
constant as well as pulsating load torque conditions is presented
and the transfer function obtained. The effects of some of the
system parameters on the dynamic stability of drive are studied
using 'parameter-plane technique'. A set of values of system
parameters to give stable operation and minimum settling time is
determined, and performance of the system obtained using numerical
techniques. The value of amplifier gain required to give minimum
settling time is observed to be affected by elasticity of shaft.
The effects of variation of system parameters on pulsations of
current and speed are studied and conditions of resonance investi-
gated,

The work discussed above (Chapters 2,4,5) deals with the
analysis of linearised systems assuming the frequenéy of load
torque equal to average steady state motor speed. For certain
types of driven mechanisms, this frequency is proportional to
instantaneous value of motor speed and leads to non-linear system
equations. Such non-linearity is accounted for in the analysis
(Chapter-6) and the system performance is determined using numeri-
cal techniques. The assumptions made in ignoring such non-

linearity are shown to be valid.
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D.C. series motors are also used in a variety of industrial
drives and, therefore, it 1s worthwhile to analyse the effects of
mechanical factors on performance of such drives. The influence
of elasticity of coupling and periodic variation of load torque,
on the performance of d.c. series motor drive fed by a chopper as
well as constant d.c. voltage, is investigated (Chapter-7). The
performance of this type of drive is compared with that of a simi-
lar motor When excited separately in order to identify the diffe-
rences in the behaviour of these two types of drives.

The important results are summarized in Chapter-8.
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NOMENCLATURE

coefficients of characteristic equation of open-loop
d.c. drive electromechanical system

adjoint of matrix [X]

combined damping coefficient of motor and load,
Nm/rad/s

damping coefficients for motor and load respectively,
Nm/rad/s

torsional stiffness of shaft, Nm/rad

diameter of shaft, m

amplitude of ramp signal, V

threshold signal voltage, V

modulus of rigidity of shaft material, Kg/m°

motor full load current, A

instantaneous value of armature current, A

transient component of i,A

combined moment of inertia of motor and load, Kg m®

moment of inertia of motor and load respectively,Kg m2
gain of amplifier

gain of controller

electromagnetic torque constant, Nm/A

motor back emf constant, V/rad/s

tachometer constant, V/rad/s

armature circuit inductance, H

field winding inductance, H

length of shaft, m
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number of chopper voltage cycle
shear stress in shaft, Kg/m?
armature circuit resistance, ohm
field winding resistance, ohm

time period of chopper voltage cycle, s

time period of load torque pulsation (= 2m/w,), s

electromagnetic torque developed by motor, Nm
motor full load torque, MNm

load torque, Nm

constant component of T,, Nm

pulsating component of T, Nm
transpose of a matrix [X]

time, s

freewheeling period of chopper cycle, s
(t~nT)

duty period of chopper cycle, s

d.c. supply voltage, V

voltage of reference signal, V

voltage of feedback signal, V

duty factor of chopper voltage (= tO/T)
real parts of roots of characteristic
imaginary parts of roots of characteristic

rad/s

angular positions at motor and load ends respectively,

rad

angular speeds at motor and load ends respectively,

rad/s

equation, rad/s

equation,
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é1t transient component of speed é1, rad/s

g angle defining phase of pulsating component of load
torque, rad

Ty armature time constant (= L/R),s

T mechanical time constant (= J/B), s

Tt mechanical time constant (= J1/B1), s

Tno mechanical time constant (= J2/B2), s

0 angular frequency, rad/s

Wy desired speed, rad/s

®, natural frequency of torsional oscillation, rad/s

®g average value of steady state speed, rad/s

o angular frequency of load torque pulsation, rad/s

51,52 damping ratios

Laplace inverse transform



CHAPTER-1
INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

Improvements in manufacturing technology and grovwing
complexity of methods of process control, have increased the
demand for better performance and versatility of control of
electric drives. One of the most remarkable developments in the
field of electric drives is the application of solid state devices,
specially the thyristors, to the control of motors. Thyristor
control has been used to widen the scope of control and to upgrade
the performance of such drives. Necessitated by these develope-
ments, there has been parallel effort towards better and more
precisé evaluation of the drive performance and to develop methods
of analysis which need less effort. Such analytical inputs have
contributed to improvements in methods of control and better
designs. The work presented in this thesis is an effort in this
direction.

Some features which govern the performance of an electric
drive are; the type of drive motor used, the form of control
system adopted, the nature of load contributed by the driven
equipment, and the mechanical factors associated with the drives.

These aspects are briefly discussed belows



(&) Type of Drive Motor:

Bagsically, the electric drives can be classified as a.c.
and d.c. electric drives depending upon the type of electric
motor employed to run the electromechanical (B M) system.Although
the majority of industrial drives use a.c. motors as main driving
motor, the d.c. motors find application in many areas because of
certain inherent characteristics like flexibility for speed
control, overload capability and nature of speed torque character-
istics. The use of thyristors for their control has further

increased the scope of d.c. motors in modern electric drives.
(b) Control Systems

In a great variety of industrial applications of d.c.
motors, a major consideration is its speed control, which can be
obtained either by controlling the field flux or the average
voltage across the armature. The field flux control method is
normally used where speeds above the base speed are required, and
variation over a small range is needed. Armature voltage control
is adopted for obtaining speeds below the base speed and is capable
of giving speeds down to very low values. A variation in voltage
applied to armeture can be accomplished either by changing the
supply voltage impressed across the armature terminals or by adding
an external resistance in series with the armature. The rheostatic
control is not preferred as it gives rise to excessive power loss

in armature circuit.



.-3..

The use of thyristors for armature voltage control of d.c.
motors has replaced the conventional methods of such controls,
like the Ward-Leonard system and the use of thyratrons and mercury
arc rectifiers. This is because the use of thyristors affords
considerable advantage in comparison with the other systems in
terms of economy, efficiency, speed of response, reversing and
braking facilities and their compatibility for closed loop systems
of control.

A variable d.c. voltage can be obtained by using a thyristor
either from a.c. supply using converter control or from d.c. supply
using chopper control. In converter control, the variation in
output voltage is obtained by controlling the firing angle delay,
whereas in chopper control this is affected by controlling the
on/off time ratio of the output pulse. In both these methods of
control, the armature current has a higher ripple content than
that obtained with d.c. generator in the conventional Ward-
Leonard system. Major problems with phase controlled converter
are that they generate large amount of harmonics and reduce power
factor, particularly at low speeds. The use of an uncontrolled
rectifier followed by a d.c. chopper permits improved power
factor and waveforms on the a.c. side, and the use of a relatively
high chopper frequency permits reduced harmonics and losses in
motor. Moreover, with a suitable choice of chopper circult, speed
of the motor can be controlled in a much wider range than is

possible with phase control.
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The chopper output voltage can be controlled either by
'Pulse Width Control' (Time Ratio Control) or by 'Current Limit
Control'. In pulse-width control, the on/off time ratio of
chopper is controlled. In the current limit control, the current
is controlled between specified upper and lower limits. Therefore,
the current will never be zero and there is no possibility of
discontinuous conduction. The drive characteristics obtained by
time ratio control are suitable for steady state operation in
many applications including traction. In time ratio control
(TRC), the output voltage can be varied in two different ways?
either by constant frequency TRC, or by variable frequency TRC.
In general, the constant frequency TRC method is preferable
because it permits a choice of frequency suitable to the commu-
tation circuit and the load, and also to get a complete range of
variation of output voltage. Moreover, in a constant frequency
scheme, harmonics of only definite frequencies will occur which

may be filtered out.

(¢) Nature of Load

From the consideration of their load torque, the driven
mechani sms can be broadly classified under three catagories [13]
described belows
Class A¢ This includes the mechanisms whose torque does not vary
with speed. These may be such units as conveyers, crane hoists,
shapers, etc.

Class B* These are the mechanisms whose torques vary with speed.
Examples of such loads are centrifugal compressors, fans, induced

draught fans and ship propellers. Under this class are also
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included loads whose torque is a function of path travelled by
the mechanism. These include piston pumps, crank presses, mecha-
nisms Wwith crank drives, metal cutting shears, etc.
Class Cs These are the mechanisms whose load torque varies in a
random mamer, mainly because of the inconsistent properties of
materials being processed. Typical machines of this class are
rock crushers, clay mills, ball grinding mills, etc.

The variation of load torque in many applications, parti-
cularly those which come under class B, is cyclic in nature.
Another cause for a cyclic variation in load torque is the presence

of some of the mechanical factors discussed below.
(d) Mechanical Factors Associated With Drives:

The performance of an electric drive depends not only on
the electrical components of the drive and the nature of load
torque, but also on certaln mechanical features. The mechanical
factors which affect the drive performance include the effects of
non-rigidity of shaft, backlash, misalignment, bending of shaft,
etc. These factors may produce the following significant effects

[10] in the characteristics of the electromechanical systems:
(1) Torsional Vibrations:

These are very lightly damped, relatively high frequency
oscillations in speed, position, or torque, occurring because of
the non-rigidity of shaft and couplings interacting with the

inertia of rotating parts of system.
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(11) Cyelic rotational disturbances:

These may be caused by bent shafts, seams in felts or
wires, or by eccentric mechanical misalignment or unbalanced rolls.
Their principal effect is to impose a periodic load change on the

drive.
(iii) Back-lash:

This is caused by loose tolerances in gear meshes, chain
drives, and some types of couplings, resulting in play in the
mechanical drive train.

It has been observed that these mechanical factors signi-
ficantly affect the drive performance. The effects of these
factors become all the more complex when more than one of these
factors are prominent in the system in which case they may tend

to amplify each other.

1.2 SCOPE OF WORK PRESENTED

A complete representation of an electromechanical drive
system is shown in Fig.1.1 [3]. The system has been shown to be
composed of four sub-systems, interconnected by different inter-
face variables. The factors, occurring in the different sub-
systems, which influence the system performance are also shown.

An important aspect related to system analysis is the non-lineari-
ties arising in the various elements of the system. These non-
linearities are shown in Fig.1.1 against the sub-systems in which

they arise.
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For a precise determination of performance of such a
system, the analysis should take into account all the factors
which affect the drive performance, as also the non-linearities.
Such an analysis will need a model of the system which will be
far too complicated to be of much practical significance.

In this thesis, the analysis and various aspects of the
performance evaluation of a d.c. motor driven electromechanical
system, fed by a chopper as well as ordinary d.c. supply, are
presented. Out of the various mechanical factors affecting system
performance, only two more important factors, viz.,the elasticity
of the shaft coupling the motor to the load, and the periodic
variation of load torgue have been accountéd for. Elasticity is
an inherent feature of any mechanical coupling, and periodic
variation in load torque may be a characteristic feature in many
applications. These variations in load torque may be present due
to mechanical factors like bent shafts, misalignment, eccentric
or unbalanced rolls as also due to the nature of the driven
me chani sm.

Out of the non-linearities, those arising in the supply
system, because of the device characteristics (eg. chopper) have
been accounted for. The remaining non-linearities have not been
considered in the present analysis, in order to ensure that the
model of the system can be managed. Non-linearities of system
equations have either been accounted for, or it has been shown

that it is valid to ignore them.
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The aim of this study is to give an analysis of a d.c.

drive electromechanical system and to study the effects of some

of the more important mechanical factors associated with drives.

This will lead to a more accurate predetermination of performance,

and will provide essential information for proper system design.

(a)

(b)

(e)

(d)

(e)

The Wwork presented covers the following aspectss:

Analysis of a separately excited d.c. motor drive fed by
a constant d.c. voltage taking into account the effects
of elasticity of coupling and periodic variation of load
torque [Chapter-2].

Development of a new technique for the analysis of
chopper fed d.c. motor drives which is superior to
existing techniques in that it is more accurate, needs
lesser computation efforts and gives closed-form solutions
for system variables determining its performance
[Chapter-3].

Analysis of a chopper fed d.c. separately excited motor
drive with an elastic coupling and pulsating load torque
using the analytical technique of Chapter-3 [Chapter-i]
Analysis of a closed loop pulsewidth modulated separately
excited d.c. motor drive having an elastic coupling, for
a constant as well as periodically varying load torques,
and design of system parameters for a stable operation
and minimum settling time [Chapper-5].

Non-linear analysis of separately excited d.c. motor

drive including some system non-linearities [Chapter—6].
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(f) Analysis of d.c. series motor driven electromechantcal
system, fed by a chopper as well as a constant d.cs voltage,
taking into account the effects of elasticity of coupling

and periodic variation of load torque [Chapter-7].

1.3 LITERATURE REVIEW

The objective of the present work is to investigate the
effects of some of the mechanical factors on the performance of
d. c. motor drives fed by a chopper as well as a constant d.Cs
voltage supply. While some work dealing with the effects of
mechanical factors on the performance of d.c. drives fed by a
constant d.c. voltage has been reported in literature, no work
seems to have been done on the analysis of chopper controlled d.c.
drives taking into account these mechanical considerations.

The published work related to the area of this disser-
tation can be catagorised as below:

(1) Work dealing with the analysis of chopper controlled d.c.
drives but without considering the mechanical factors.
(11) Work dealing with the effects of mechanical factors on

the performance of d.c. drives fed by a constant d.c.

voltage.

The following review summarises the published work under

the above two categoriesst

1.3.1 Work Dealing With Analysis of Chopper Controlled IiC. Drives

In respect of chopper controlled d.c, drives, the publish-
ed literature consists of various methods of analysis for obtain-

ing the performance of such drives and‘some suggestions for
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improving the performance. The effect of any of the mechanical

factors which may influence the drive performance has not been

taken into account by any author.

(a) Work dealing with analysis of chopper fed d.c. separately
excited motor drives includes the following aspects?

Van Bck [60] has discussed the superiority of separately
excited d.c. motors over d.c. series motors and cited a number of
traction applications where separately excited motors are being
used. The characteristics of separately excited d.c. motors fed
either by a dec-dc converter or by ac-dc converter have been
reported.

The current in armature circuit of chopper fed d.c. motors,
specially for low values of load torque and armature inductance,
may become discontinuous. A method for ensuring the continulty
of armature current has been presented by Zabar and Alexandrovitz
[65], in which the chopper turn off time is kept constant and
average load voltage is regulated by varying the chopper time
period.

In practical drives, the supply voltage and the load
torque may have small variations. Taking these variations into
account, Nitta et. al. [43] have determined the dynamic response
of a d.c. drive driven by a pulsating power supply and derived
its transfer function. The analysis is extended by Matsui and
Miyari [37] and a critical condition under which the electrical
time constant can be neglected, is obtained. Moreover, the
analysis covers both, the continuous conduction as well as dis-

continuous modes of conduction.
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Chopper fed d.c. drives suffer from a high value of ripple
contents in armature current. Verma et.al. [61] have presented
two analytical techniques for predicting the performance of such
drives, and have obtained a relationshlp of pulse width with
current ripple factor as well as variations in speed.

Tarious methods have been suggested by different authors
to solve the differential equations describing the performance of
chopper fed d.c. drives. One approach to solve these differential
equations is using computer simulation techniques. Williams [62]
has used state model technique to simulate the system on a digital
computer. The simulation enables the prediction of performance
in transient as well as steady state for any load conditions.This
enables system characteristics and stability to be judged and
modified theoretically. Damley and Dubey [18] have also presented
a digital computer programme, employing numerical techniques, for
the analysis of chopper fed d.c. motor drives. The method does
not need prior knowledge of mode of operation of chopper clrcuit
and the derivation of the relevant equations. The method is also
applicable to d.c. series motor drives.

The second approach to obtain the performance of chopper
fed d.c. drives involves separate sets of equations applicable to
di fferent modes of chopper operation. Closed-form solutions for
each set of equations are obtained and the performance is deter-
mined using these solutions by recursive step-by-step techniques.
To facilitate the simplification of the analysis, different assump-
tions and approximations have been suggested. However, rigorous

closed-form solutions of system performance variables are not
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available. Based on this approach, different methods of analysis
[23,25,26,44+] have been proposed.

Perimelalagan and Rajgopalan [W44+] have analysed the perfor-
mance for the case of continuous conduction of armature current by
four different methods. These methods are based on one of the
following assumptions: negligible commutation interval, negligible
ripple in armature current, constant current during commutation
and direct solution of governing differential equations. A method
has been suggested to calculate additional losses due to pulsa-
tions in motor current.

A comparative study of the two commonly used chopper
control techniques, viz., time ratio control (TRC) and current
limit conitrol (CLG), has been presented by Dubey and Shephered[ 23],
The performance equations using these control techniques are glven
for continuous as well as discontinuous conduction of armature
current. The analysis is based on the assumptions that the
chopper output wave is a perfect square wave and the speed during
a chopper cycle remains unchanged. Comparing the different tech-
niques of chopper control, the authors suggest that TRC technlque
with variable on time and constant chopper frequency is superior.

For transient analysis of d.c. drives using TRC technique,
the above authors have proposed three different methods [26],
which are based on different assumptions. While the first two
methods are applicable to the case of continuous conduction only,
the third method considers the possibility of di scontinuous conduc-
tion as well. These methods are approximate but need lesser

computation time compared to other methods. The use of filters
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has been proposed [22] so as to limit the range of discontinuous
conduction. The same authors have also suggested three different
methods [25] for transient analysis using CLC technique. The
first method is exact and is taken as reference to compare the
other two methods. The second method assumes the speed over a
chopper cycle to be constant, while the third considers linear
variation of current in a chopper cycle. The last method can be
used to derive the transfer function and needs lesser computation
time with an accuracy comparable to the other two methods.

Apart from the above two approaches of analysis of chopper
fed d.c. drives, a third approach has also been reported by Singh
and Kohli [52], which is based on the methods of Fourier analysis
of the chopper output voltage wave. They have used thils approach
to analyse the performance under continuous mode of operation.

The limitation of analysis is that the expressions for performaﬁce
variables are interdependent. This limitation of the analysis
has been overcome in their subsequent paper [51] which deals with
the case of discontimuous conduction as well and in addition
gives independent expressions for variables giving system perfor-
mance. The analysis shows that the commutation interval signifi-
céntly affects the drive performance.

Barton [1] has investigated an important feature of
chopper controlled drives which was not considered by earlier
workers. He studied the static transfer characteristics of a
chopper feeding an active load and pointed out a marked difference
in behaviour in the form of a very substantial reduction in incre-

mental gain when transition from continuous to discontinuous
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conduction takes place. This phenomenon results in sluggish res-

ponse of feed back systems employing choppers as power amplifiers.

(b) Work dealing with analysis of chopper fed d.c. series motor
drives includes the following aspects*

The analysis of chopper fed d.c. series motor drives is
relatively more complicated due to the non-linearity of the magne-
tisation characteristic of motor. TFor such drives, the problem
of calculation of motor induced voltage constant is not simple as
it depends on the value of armature current which itself varies
with time in transient ag well as steady state conditions. This
problem has been tackled by various researches and methods based
on different approximations are suggested [17,20,27,28].

Franklin [28] has given a mathematical model of chopper
fed d.c. series motor and its performance is predicted in terms
of average and instantaneous values of torque and speed. The non-
linearity of magnetic circuit is considered by a suitable approxi-
mation.

Dubey and Shepherd [27] have proposed a method of analysis
of chopper fed d.c. series motor drives based on the assumption
that the motor induced voltage constant is a function of the
average value of armature current rather than its instantaneous
value. Based on the same assumptions, in another paper, Dubey[24]
has given two analytical methods which can take into account the
effect of commutation infcerval° In the first method, the current
during commutation interval is assumed constant, while in the
second, the ripples’in armature current are neglected. The effect

of commutation interval is also considered in the analysis
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presented by Ranade and Dubey [W6]. The methods presented in
references [27,24] are approximate but need less computétion time.
A numerical technique for representing the non-linear magneti sa-
tion characteristics of series motor has also been suggested [171],
but the analysis using this technique requires large computation
time.

For the transient analysis of chopper fed d.c. series
motor, different methods have been suggested using time ratio
control [20] as well as current limit control [21]. Some of
these methods can be used for deriving the transfer function of
motor for small signal perturbations about a steady state operat-
ing point. Using the block diagram approach, Bhadra [2] has
analysed the transient performance of such drives for small
sudden variations in load torque and the on-period of the thyris-
tor. The linearized perturbation equations are solved to calcu-
late the instantaneous values of performance variables.

The papers discussed above deal mainly with the analyti-
cal techniques applicable for determining the performance of open
loop chopper controlled d.c. drives. There are a few more papers
dealing with chopper control but for closed loop d.c. drive
systems using the pulse-width modulation. These are discussed
belows

Jacob Tal [54] has suggested the use of switching ampli-
fiers for d.c. servo systems in order to reduce the high pover
dissipation inherent with linear amplifiers. One method of
operating the switching amplifiers with constant frequency and

variable on time, called PWM has been discussed. A general
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scheme of voltage regulator feed back control using PWM control

is given by Maisel [36]. The regulator uses a ramp signal to
modulate a d.c. signal into a square wave pulse signal. The duty
factor of the modulated pulse is a function of error signal. A
departure of output from the desired value changes the pulse duty
factor and hence the average value of input maintaining the output
at desired level. Taft et.al. [53] have described two methods,
the dither method and the limit cycle method, for obtaining pulse
width modulated signals. It has been pointed out that the induc-
tance added in series with armature to reduce the current ripples,
adversely affects the transient response of the motor. The advan~
tages of closing a current loop around the amplifier, which
jnclude the improvement in stability at high value of gains and
short circuit protection, are discussed.

The analysis given by Burger [6] deals with the basic
characteristics of a PWM d.c. converter. These include operational
characteristics like efficiency, ripple, regulation, settling
time and physical characteristics like weight, size, cost and
reliability. The system 1s simulated on an analog computer to
study its small signal stability. Unnikrishnan [58,59] has
suggested a method for maintaining the average voltage of a dec-de
converter. This is achieved by introducing a gain in feed back

path. The stability of the system is also studied.

1.3.2 Work Dealing With Effects of Mechanical Factors

The work available in literature dealing with the effects
of mechanical factors pertains only to drives fed by constant PR

voltage. No attempt so far has been made to analyse the effects
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of mechanical factors on the performance of d.c. motor drives fed
through a chopper controlled supply. The work reported on the
mechanical considerations of d.c. drive EM systems is summarised
belows

A comprehensive description of various mechanical factors
affecting the performance of electric drives is given by Carter[10].
The factors discussed include elagticity of shaft, backlash,
misalignment, bending of shaft, unbalance of rolls, etc. The
effect of these factors is mainly to produce torsional oscillations
in the system-and to impose cyclic rotational disturbance in the
form of either impact loads or periodic changes in load torques.
The system instability at resonance is discussed and possible
methods of stabilisation suggested. Although complete analysis of
the drive is not given, yet the paper gives a general overview of
the problems arising due to such effects.

Bishop and Mayer [3] have emphasized the need of accurate
modelling of the total system including the system non-linearities
and component interactions. The drive system has been divided
into four functional system components. The interface variables
which connect these components and the dynamic interactions have
been shown [Fig.1.1]. Drive system disturbance sources such as
pulsating torques, imbalances and switching transients of the
drive motor, impacts and cyclic effects of the load and mechanical
inaccuracies are discussed. Various types of drive system non-
linearities such as, non-linear electrical dynamics, saturation
effects, gear backlash, non-linear coupling, etc. are identified.

The paper gives a good description of the problem and the sources



-1G

of complexity are defined. The effect of model fidelity on the
predicted dynamic torques in different drive systems are discussed.
In another paper Mayer [39] has dilscussed the various sources of
excitation of torsional oscillations for cement industry drives.
The importance of torsional mechanical system with the electric
drive system.and its control have been emphasized.

Out of the various mechanical factors mentioned above,
only one such factor, the elasticity of coupling, seems to have
attracted the attention of researchers, because of its greater
effect on performance. The Work reported, mainly in Russian,
deals with the analysis of d.c. motor drives coupled to load
through an elastic shaft [7-9,30-32,39,45,57]. The transient
analysis of such a system with constant load torque and neglecting
the damping, has been presented by Tsekhovitch [57]. The system
equations are solved using clagsical methods to find the ampli-
tudes of oscillations of the motor torque and that of the shaft
elastic torque. The ratio of these amplitudes, termed as degree
of influence, is obtained to plot the dimensionless amplitude-
frequency characteristics (AFC) of the system.

The interaction of the two mechanical factors, the elasti-
city of shaft and periodic variation of load torque, produces
resonance in the system. Kaminskaya [30] has studied the vibra-
tions of an EM system under resonance condition. The mechanism
is represented by a two mass system connected through a single
elastic coupling. System aperiodic stability is also determined.
Kluchev [32] has analysed the performance of a d.c. motor drive

supplied through a controller and having an elastic coupling.
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The AFC of the system is obtained for normal operation as well as
for resonance condition. Depending upon the AFC, the elastic
coupling has been catagorised as weak, effective or rigid. The
interaction of mechanical oscillations with armature current for
weak and rigid couplings is observed to be negligible, whereas
this interaction is significant for effective couplings. Thils
sets a limit for a proper value of elasticity of coupling. For
an electric drive system with an elastic coupling, Burgin [9] has
analysed the effects of variation of drive parameters on the AFC
of the system. This helps in selection of proper values of system
parameters. For a small change in the frequency of harmonic load
torque disturbance, the corresponding change in electric torque
is obtained and the effect of resonance on AFC studied.

The non-linear analysis of a d.c. drive EM system with
elastic coupling has also been presented by Burgin [7]. The non-
linearity considered in the system is due to the backlash in the
transmission system. The stability of such a system is studied
- using Lyapunov method. In another paper [8], the same author has
given the transient analysis of a linearised double mass EM system
with an elastic coupling using a d.c. series motor. Kluchev
et.al. [31] have analysed a closed-loop d.c. drive EM system,
having linear and non-linear electrical and mechanical couplings.
The effects of backlash in the coupling and gear teeth have also
been considered. The system is linearized and modelled on a
computer to analyse its performance. The performance studies
include, working out criteria for neglecting &he influence of

coupling, dynamic properties and stability of non-linear EM
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system, and the conditions for minimum amplitude at resonance for
forced vibrations. These studies enable a suitable design of
electrical and mechanical parameters of the system.

The work discussed above deals with the effects of mecha-
nical factors on performance of d.c. drive EM systems fed by a
constant voltage. For a d.c. drive fed by a thyristor bridge
converter with elastic coupling, Polyakov et.al. [45] have identi-
fied the conditions leading to resonance. It is pointed out that
any alignment between the resonance frequencies of AFC of the
system and the frequency spectrum of thyristor control voltage

should be avoided in order to avoid resonance.



CHAPTER-2

ANALYSIS OF OPEN-LOOP D.C, MOTOR DRIVE WITH ELASTIC COUPLING
AND PULSATING LOAD TORQUE

2,1 INTRODUCTION

An electric drive invariably contains a mechanical link
in the form of the shaft coupling the motor to the load. In
practical systems, this link is always elastic, and not rigid as
ig generally assumed for simplifying the analysis. TFor precise
determination of performence, speclally under dynamic conditions,
the elasticity of shaft must be taken into account. In a large
number of practical applications, due to the inherent nature of
the driven mechanism, the load torque is not constant but is
pulsating in nature. Examples of such loads are cOmpressors,
crank-piston mechanisms, machine tools, etc. [55,63]. Factors
such as eccentric or unbalanced rolls, bent shafts or mechanical
misaligmment [10] may also introduce periodic variations in load
torque.

The problem of torsional oscillations in the d.c. motor
drives caused by the elasticity of shaft, has been analysed in the
past [30,32,39,45,57]. The work available includes the transient
analysis and the study of amplitude-frequency characteristics of
o d.c. drive with elastic coupling and constant load torque neg-
lecting the effect of damping [57]. The amplitudes of oscillation
of the motor torque and that of the elastic torque in the shaft,

are compared [9,32,57] to assess the extent of influence of
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elasticity of shaft. The amplitudes of these torques at resonance
are also studied [9,31]. However, a complete analysis of a d.c.
drive, fed by a constant d.c. voltage source, Wwith an elastic
coupling and pulsating load torque, which gives a closed form solu-
tion of system performance variables for transient as well as
steady state conditions is not available. The effects of variation

of drive parameters on the performance has also not been studied.

2.2 WORK PREGSENTED

In this chapter, analysis of a d.c. separately excited motor
with a pulsating load torque and taking into account the elasticity
of coupling and damping, is presented. The effects of system para-
meters, like moment of inertia, elasticity of shaft, damping and the
frequency of load torque pulsation, on the drive performance are
studied. Conditions leading to resonance are investigated. Some
suggestions are given to improve the design of the system.

The system analysed consists of a d.c. separately excited
motor supplied with a constant d.c. voltage and connected to the
load through an elastic shaft as shown in Fig. 2.1. The system is
represented by a two rotor system and the moments of_inertia and
damping for the motor and the load are considered separately as
shown in Fig. 2.2(a). This type of system is referred to as '"Two
rotor, ¢ mi-definite, two dezree of freedom system' [14,56]. The
load torque is considered to consist of a non-varying component
TLo superposed by a sinusoidally varying component TL1 as shown in
Fig. 2.2(b). A mathematical model of the system is given and
the equations are expressed in State model form. The system

equations are solved to obtain closed-form solutions for armature
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current and motor speed under transient as well as steady state

conditions.

2,3 PERFORMANCE EQUATIONS

The system shown in Fig.2.1 can be described by the

following equationss?

r=L 8 +ri+xK 8, (2.1)
T, =T, 8+ B, &, + c(6, - 8)) (2.2)
-T; = J, 8+ B, é2 + c(e,-9,) (24 3)
where Te = Kei

The motor field current in the above equations has been
assumed to be constant. A periodically varying load torque Ty,
can be considered to be consisting of a constant component and a
rmumber of sinusoidally varying components, and can in general be

eXpressed as?

T, = T B

" s i )
L sin Q»1t - @) + T, sin (2m1t B ¥ eses

(2.%)
For the sake of simplicity, in the analysis that follows, only the

Lo L1

constant component and the first alternating component are taken
into aerount. However, the method of analysis is general and can
take into account any mimber of harmonic components, and is there<«
fore applicable for any type of periodic load torque. The load

torque as shown in Fig.2.2(b) can, therefore, be represented as?

Ty, = Ty * TIpq sin (0, - ?) (2.9)
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The frequency of the load torque for certain applications
depends upon the angular speed of the shaft. This leads to non-
linear system equations. However, the pulsations in speed being
very small compared to the average value (as will be observed
from the results of this analysis) can be neglected, and the

frequency of pulsating component of load torque w, can be justi-

1
fiably assumed to be proportional to the average value of shaft
speed. This makes the system equations linear and simplifies the
analysis without causing an appreciable error in the results

(A non-linear analysis of the system taking ®, equal to shaft
speed é2 is presented in Chapter-6). Thus wq can be written as
my = ku%, where W, is the average steady state speed and k is a
constant which depends on the type of mechanical load coupled to
motor shaft. In this analysis, the value of k is taken as unity,
implying that the load torque completes one cycle in one revolu-

tion of the machine shaft. Systems for other values of k can be

analysed in a gimilar fashion.

2.4, SYSTEM CHARACTERISTIC-EQATION

Bans. (2.1-2.5) can be expressed in the State-model
form as*

x = Ax + Du (2.6)

where

* In state equation (2.6) symbol D is used,in place of usually
used symbol B, as B denotes damping in this text.



0 1 0 0 0
-C/J1 -B,|/J'1 C/'J1 0 Ke/J1
A= 0 0 0 1 0 (2.7
C/J2 0 -C/7, —B2/32 0
0 -K_/L 0 0 -1/t
= s
0 0 0 0 1/L
D = Y (2.8)
L, B 0 0 -1/, 0
v
forcing function vector u = (2.9)
Ty,
° L T
and, state variable vector x = [6, €, 6, ¢, il (2.10)
Taking Laplace transform of egn.(2.6):
X(s) = [sI-A1"" DU(s) + [sI-A1"" x(0) €2401)

where I is a unit matrix of the same order as matrix A. The
motor is assumed to start from quiescent state, i.e. the initial
values of state variables are zero,

ey =6 @@ © o o1t

For steady state performance, the results so obtained will be
independent of initial values x(0). TFor transient studies other
than those beginning with quiescent initial conditions, appro-

priate initial conditions may be used and results obtained in a

similar fashion.
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From eqn.(2.11), X(s) can be written ass®

=
X(s) = 3 Wij]DU(s) {2.12)
where [gij] = Adj [sI-A)
and A is the determinant of [sI-A] matrix.

The characteristic equation of the system, A = O,can be

writter ast

A

155 + A2su + A3s3 + Ahs2 o ASS =0 | (2.13)

The characteristic equation (2.13) for the drive with an elastic
shaft is of order five. However, if the elasticity of shaft is

not taken into account, ﬁhe order of the characteristic equation
reduces to two. The coefficients of the characteristic equation

(2.13) are:

By * Tal 192 ]

A, = Ta_(B1J2 * BQJ.l) * 7,3,

by = B d, Bl t T BB, * C (T * J2) * KeKmJQ/R (2.1%)
b, = BB, * BEK /R + 0 14(By t BT C(T4+ I,)

A = C(By + B, * KeKm/R)

In the case of separately excited d.c. motors, the arma-
ture circuit inductance is generally low and the roots of the

characteristic equation (2.13) can be represented as?

h P Bl ay 7 oy By % 7Pp sy Fosg L ils
where a, 4 a, and ay are real positive values and determine the

rate of decay of transient component of system response. However,
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for large values of armature inductance, roots S5 and s3 may
become complex. The imaginary part 83 of the complex roots a+,5
gives the damped natural frequency of oscillation of the system
[14]. The values of ay and By depend upon the values of undamped
natural frequency of torsional oscillation Wy and the damping

ratio ast

1/2
ay=ta, and Py =o(i- £2)

(218

where & is damping ratio. The value of w, is related to elasti-

city of shaft and moment of inertia of the system as*

o, = [0(31;-+ 3"-;)]1/2 (2.16)

Thus A can be represented as?

A = s(s+a1)(s+a2)(s+a3-j53)(s+a3+jﬁ3) (2.17)

2.5 DETERMINATION OF SYSTEM RESPONSE

The closed form solutions for performance variables i.e.
armature current and motor angular speed, can be determined by

taking the inverse Laplace transform of eqn.(2.12). Thus

[0, ()] "0, ()en By (Y] 0
8, (1) B 5(8)e e s Ben(s) 0
o
o 1
0 (8) = F| #y5()en Bs3(s) 0 o [(e®
. ‘ TLO+TL1((D1 cos @-s sin @)
@Q(t) ¢1)+(S)--o¢51+(8) —J—g{ = (52+ (0;2)
1(t) | 8,59 Bs() | | o
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2.5.1 Solution For Armature Current

From eqn.(2.18), armature current i(t) can be written as?

-1 Phe(s) T T. . (w, cos @-g sin @)
i) = _1_[_ o Bl V1 1% it

{ }+ @ 3?] (2.19)
B (22 + od) 55 SL

From eqn.(2.19), the expression for armature current can

be obtained as?

o= ARk PR ¥ 13 exp(-oyt) + 1y exp(-a2t) + 15 exp(-a3t) (2.20)

=3

e ' Lo
where i, = K28 t > K17 J2
s SO e e A
2 iRty 2
T T
3 = I --L’-Q L + Y-
Sl | i Ul i -
X b
b Lo Ll . v
by T Fr9 T, Fhey 7, Ko T
T T
- Lo . e i s 72 T =
s = Koy T sin (,t g) + Ky T sin (53t ?s)

o T
* Ky, sin (B3t - 2)

[Expressions for different symbols are given in
appendix A-1]
2.5.1.1 ©Steady State Armature Current

The solution for steady state armature current, is(t),

can be written from eqn.(2.20) as:

is(t) =iy Tl (2.2)
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2.5.2 %olution For Motor Speed

From egn. (2.18), motor speed é1(t) can written as®*

o =o<:-1 1l #,,(s) {TLO+ Tp4 (@, cos @-s sin ﬁ)}+ P "
1
From eqn.(2.22), the solution for speed can be obtained
ass
01(t) = n,* n,tong exp(-a1t)+ ny, exp(-a,t)* ng exp(—a3t) (2.23)
'y
where, n, = K12 % - K4 ELQ
2
L1
T dr
Lo L1 v
= K, =2 K, =+ K., T
By - g5 67, T2=E
T i
4 Lo L1 A
e e BN Pt 1T 5
2 2
T o
- Lo .o b 7. [ i
ng = -Kg -4 sin (B3t— ?,) - Ky 3, sin (B3t ?,5)

o
[Expressions for the various symbols used above are
given in appendix A-1]

2.5.2.1 Steady State Speed

The solution for steady state speed, é1s(t), can be

written from egn.(2.23) as:

é1s(t) = n, + 1, (2. 24%)
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2.6 NATURE OF ARMATURE CURRENT AND MOTOR SPEED
2.6.1 Steady State Performance

The armature current and motor speed in steady state consist
of two components [egns. (2.21 , 2.24)]. One is a non-varying
component (i, , n,) while the other is a pulsating component
(12 y n2) varying sinusoidally at the frequency of the pulsating
component of the load torque, wy-.

2.6.1.1 Frequency of Load Torque Pulsation for Maximum and
Minimum Pulsations of Current and Speed

The steady state pulsating components of current and speed
(12 and n2) depend upon the values of M, and N, [appendix &-11].
The frequency of load torque pulsation for maximum and minimum

values of 12 and n, can be obtained from the condition given

belows

This leads to the following conclusionss

(i) The amplitude of the pulsating component of current or
speed is maximum when the frequency of load torque is
equal to 53. This frequency may be termed as resonance
frequency 'wr' and its value depends upon the natural
frequency o, and damping ratio ¢ [egn. (2.15)]. TFor
practical electric drive systems damping ratio is very
small and §3 is nearly equal to w,. The peak value of

current and speed under resonance condition depends upon

the damping ratio.
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(ii) The minimum value of these components occurs at a frequen-
ey of load torque which is equal to 1/ +/2 times the value
of resonance frequency. This frequency may be termed as

critical frequency 'wc'.

2.6.2 Transient State Performance

In addition to the two components of steady state condi-
tion, the armature current and speed each have three components
exponentially decaying with time (i3,iu,i5 and nyy My, N5 Trespec-
tively)leqns. (2,20 , 2.23)]. The components 15 and ng of current
and speed respectively are simusoidal components of frequency 53
and exponentially decaying amplitudes. For an undamped system
(a3 = 0,53 = o), these components persist and vary sinusoidally
for indefinite time. In the case of a rigid shaft, these compo-

nents are absent.

2.7 TYPICAL PERFORMANCE STUDIES

To illustrate the analysis presented in sections 2.3-2.6 ,
the performance of a d.c. drive system with the following specifi-

cations is analysed:

Motor:?

Separately excited d.c. motor:

Supply voltage, V = 200 V

4% ohm

1!

Armature circuit resistance, R
Armature circuit inductance, L = 0,06 H
Full load current, I, = 6.3 A (1 pu)
Rated speed = 1000 rpm (1 pu)
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Moment of inertia of rotating parts, J, = 0.05 Kg m?

Damping coefficient, B, = 0.008 MNm/rad/s

1
Electromagnetic torque constant, Ke = 1.86 Nm/A

Motor back emf constant, Km = 1,86 V/rad/s

Mechanical System:?

Torsional stiffness of shaft, C = 6750 Nm/rad
Moment of inertia of load, J, = 0.05 Kg m?

Damping coefficient of load, B, = 0.008 Nm/rad/s

2
Constant component of load torque, T; = 0.75 full load torque
Pulsating component of load torque, TL1 = 0,25 full load torque
Shaft length, 1 = 1 m

Shaft diameter, d = 0.03 m

Modulus of rigidity of shaft material, G = 0.85 x 10'% Kg/m®

Phase angle of load torque, # = O

The performance as computed using this analysis is
depicted in Figs. 2.4-2.13 . For a load torque varying as shown
in Fig.2.3., the variations in armature current and motor speed
under steady state condition are shown in Figs. 2.4 and 2.5°
respectively. It is observed that both the armature current and
motor speed have a pulsating component superposed on a nonvarylng
component. The frequency of these pulsating components is same
as the frequency of pulsation of the load torque.

It may be inferred that if the load torque is periodic in
nature, such that it can be resolved into a constant component
and a number of sinusoidally varying harmonic components, then the
armature current and speed will also have a similar nature under

steady state conditions.
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The amplitudes of pulsations of armature current and
motor speed depend on the moment of inertia and the amplitude of
pulsating component of load torque. As the moment of inertia is
increased, the amplitude of current and speed pulsations reduces
[Figs. 2.% ,.2.5 ]. The pulsations of steady state current and
speed become very large when the frequency of load torque pulsa-
tion becomes equal to the natural frequency of oscillation of
system as shown in Pigs. 2,6, 2.7 , 2.8 ,2.9 . The ampli-
tudes of armature current and speed at resonance also depend on
the damping and moment of inertia of the system as shown in
Figs. 2.10 and 2.11 . The instantaneous values of armature
current and motor speed in transient condition are shown in

Figs. 2.12 and 2.13 respectively.

2.8 EFFECTS OF SYSTEM PARAMETERS ON PERFORMANCE

The effects of operating conditions like nature of load
torque and some of the design parameters like elasticity of shaft,
moment of inertia and damping, on the performance of the drive

are discussed below:

2.8.1 EBEffect of Nature of Load Torque
(a) Steady State Performance:

With a pulsating load torque, the armature current and
speed also pulsate at a frequency equal to that of the pulsating
component of load torque. The amplitude of pulsations of current
and speed is proportional to the amplitude of pulsating component

of load torque. These pulsating components of current and speed
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may have phase lags with the pulsating component of load torque
as shown in Figs. 2.3 , 2% and 2.5 .

The effect of variation of frequency of pulsating compo-
nent of load torque on pulsations of current and speed is shown
in Figs. 2.6 and 2.7 respectively. It is observed that as
the frequency of load torque pulsations is increased, the ampli-
tudes of pulsating components of current and speed decrease and
become a minimim at a particular value, say o, (Table 2.11. When
the frequency of load torque pulsations becomes equal to natural
frequency of torsional oscillation of system W, 9 the amplitudes
of pulsation of current and speed attain large values. This
phenomenon is termed as ‘resonance’. A comparison of the pulsa-
tions of current and speed under normal operating conditions and
the resonance condition is shown in Figs. 2.8 and 2.9 respec-
tively.

TABLE 2,1 ¢ BEffect Of Frequency Of Pulsation Of Load Torque?

04 amplitude of pulsating. component

i rad/sec current 4 speed 7/
1 1.0 25.063 3.240

2 10.0 17.777 2.133

3 5Q.0 3.809 0.621

4 100.0 1.269 0.305

5 366.7 (w,) 0,222 0.156

6 510.0 1.476 1.480

7 520.162 (w,) 93.921 95.626

8 530.0 1,349 1.385

S 560.0 0.397 0.535
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(b) Transient State Performance:

The frequency of the pulsating component of load torque
does not seem to affect the three transient components of current

and speed.

2,8.2 Effect of Elasticity of Shaft
(a) steady State Performance:

The steady state armature current and speed are not
significantly affected by the value of torsional stiffness of
the shaft. Stiffness determines only the natural frequency of

the system and hence the frequency at which resonance will occur.

(b) Transient State Performance:

The armature current and speed have exponentially decaying
component (15 L ns), which vary sinusoidally at frequency Bs.
In the case of a rigid shaft this component will not be present.
Assumption of a rigid shaft thus results in ignoring this compo-
nent of armature current and speed.

An increase in the value of torsional stiffness increases
the natural frequency of the system and decreases the amplitude

of this component of current and speed.
2.8.3 Effect of Moment of Inertia:

(a) Steady State Performance:

For the same value of load torque and damping, an increase
in moment of inertia decreases the amplitudes of pulsation in

current and speed, However, moment of inertia has no effect on
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average values of current and speed as shown in Figs. 2.4,2.5
and Table 2.2. Under regonance condition,an increase 1in moment
of inertia decreases the peak value of pulsations in speed. The
effect of moment of inertia on peak value of current in resonance
condition is not much appreciable as this value mainly depends on

damping of the system [Figs. 2.10,2,11 -and Table 251,

TABLE 2.2 3 Effeet Of Moment Of Inertia And Damping On Steady
State Performance

S.N damping | moment average value amplitude of pulsation

Nm/rad/s ingitia current | speed current speed
I Kg m2 pu pu 7 /A

0.05 1.428 0.325
1 0,008 0.10 0.900 0.910 0.730 0. 16%
0.20 0.381 0.088
0.05 1.476 0.330
2 0.016 0.10 1.026  0.894 0.746 L
0.20 0.397 0.089
0.05 1« 594 0.342
3 0.032 0.10 1.26% 0.863 0.79% 0,173

0. 20 0.1413 0.091
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TABLE 2.3 2 Effect Of Moment Of Inertia And Damping On
Performance Under Resonance Condition

3.N moment of | damping | amplitude of pulsation } re sonance

inertia | Nm/rad/s , ; . frequency
current speed
Kg m2 % o/. rad/s
0,008 95. 238 99.632
1 0.05 0.016 61,047 62.395 520,162
0,032 36, 000 36.809
0,008 90.016 66.798
| 0.10 0.016 65. 857 48,175 367.80%
0.032 4o, 857 31.350
0.008 77.952 41.303
3 0.20 0.016 63.365 33.579 260,068
0.032 46,111 ok, 437

TABLE 2.4 : Current And Speed Pulsations For Loads Of
Large Damping And Inertia

B /B, J_/T., average current  average speed
2 ) 2’1  current pulsation speed pulsation
pu 7 pu /s
1 1 0.900 1.428 0,910 0.325
10 10 1.432 9:15% 0,81 0.067

10 1 1.432 1.028 0. 841 0.379
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(p) Transient State Performance:

A large value of moment of inertia reduces the value of
natural frequency of oscillation and increases the amplitude of
sinusoidally decaying components (15 . n5) of current and
speed. A large value of moment of inertia also increases slightly
the peak value of armature current and the system requires more
time to reach the steady state condition as shown in Figs. 2.12

nd 2413

2.8.4% Bffect of Damping

An increase in the value of damping does not affect much
the amplitudes of steady state pulsations of current and speed.
However, it increasés the average value of current and decreases
the average value of speed [Table 2.2] as shown in Figs. 2, 245 »
Under resonance condition, an increase in damping decreases
appreciably the peak values of current and speed [Table 2.31] as
shown in Fig. 2.10 and 2.11.

For loads like compressors or ship propellers, damping
coefficients and moment of inertia of load are much larger than
those of the motor (J2 >> J, and B, >> B1). In such systems the
pulsation in current and speed are significantly reduced. The
major contribution to this reduction is due to the increased
moment of inertia. An increase in_damping only reduces the
pulsation in current but increases the pulsation in speed.

Table 2.4 shows comparative figures for different combinations

of moment of inertia and damping.
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2.8.5 Effect of Armature Reaction

In the analysis presented, linearity of magnetic clrcuit
is assumed, and brushes are in the geometrical neutral axis.
With these assumptions, the total flux per pole remains unchanged
when the field is distorted by armature reaction. However, if
saturation is present, the net flux per pole will reduce. This
can be accounted for by decreasing the value of motor back emf
constant. For the example considered, a 5 percent reduction in
Km (which corresponds to 5 percent reduction in flux per pole
due to armature reaction) decreases the pulsation in current and
speed by 0.269 and 0.03 percent respectively. This shows that
the armature reaction effect on pulsations in current and speed

is not significant.

2.9 CONCLUSIONS

In this chapter, the performance analysis of a d.c.
electric drive with a pulsating load torque and elastic mechani-
cal link between motor and the load has been presented. Closed-
form expressions for armature current and motor speed, for
transient and steady state conditions have been obtained. The
analysis reveals that the drive performance is significantly
affected by the pulsations in the load torque particularly when
the shaft is not rigid. Under steady state condition the current
and speed have pulsating components of frequency equal to the
frequency of the pulsating component of load torque. The ampli-

tude of these components decreases with:
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decrease in amplitude of pulsating component of load
torque.
increase in value of moment of inertia.

incresse in frequency of load torque pulsation.

The following suggestions are made to improve the perfor-

mance of such drives:

(a)

(b)

The load torque should be analysed and it must be ensured
that the natural frequency of the system does not match
with the frequency of any of the components of the load
torque. Otherwise, there is a possibility of resonance,
resulting in very high instantaneous current and speed.

If the natural frequency of the system happens to be near
the frequency of any of the components of the load torque,
the natural frequency of the system must be changed by
changing the stiffness of the shaft (changing the ratio
of diameter/length) or the moment of inertia.

It is shown that the amplitudes of steady state pulsations
of armature current and speed are minimum when the fre-
quency of load torque pulsation is equal to 1/ 2 times
the resonance frequency. This provides a criterion for
design of the system for minimum pulsations in current and
speed . As such, in order to minimize these pulsations,
it is suggested that for a given value of frequency of
load torque pulsation @, & combination of values of
moment of inertia and torsional stiffness of the system
may be selected such that the natural frequency of

oscillationmn is /2 time Wy -



(e)

(d)

(e)
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The amplitudes of steady state pulsations of current and
speed can be reduced by increasing the value of load
moment of inertia. However, the choice of increase in
moment of inertia is restricted due to mechanical design
considerations. Damping does not affect much the steady
state pulsations in current and speed.

The amplitudes of steady state pulsations of current and
speed under resonance conditions can be reduced by
increasing the damping of the system. However, this will
increase the average value of current and decrease the
average speed.

The amplitude of alternating components (15 - nS) of
current and speed in transient condition can be reduced
by increasing the value of torsional stiffness of the

shaft.



CHAPTER-3

A NEW ANALYTICAL TRCHNIQUE FOR PERFORMANCE DETERMINATION
0® CHOPPER CONTROLLED D.C. MOTOR DRIVES

3.1 . INTRODUCTION

A commonly used type of thyristor control of d.c. motors
is the 'chopper control' which converts a constant d.c. voltage to
a pulsed type voltage. Chopper control offers many advantages over
the other competitive method of d.c. motor control known as 'phase
control'. These advantages include jmproved power factor and wave
forms on a.c. side, and reduced harmonics and associated losses
due to the use of relatively high values of chopper frequency.
Also, with such a control, the speed of motor can be controlled
over much wider range than is possible with phase control. Due
to these features, chopper control finds application for the
control of d.c. motors in a variety of industrial drives. As a
consequence, there have been parallel advances in developing
better analytical techniques to predict the performance of such
drives.

Extensive work dealing with the methods of analysis of
chopper controlled d.c. motor drives using time ratio control is
available. The chopper alternately operates in two different
modes, known as the conducting (duty) mode and the freewheeling
mode corresponding to ‘on' and 'off' periods respectively,of the
chopper cycle. In the existing methods [23,25,26,4%] of analysis,

two separate sets of differential equations applicable to duty and

[7778%
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freewheeling modes of operation respectively are required. Each
set of equations comprises the voltage-current equation for arma-
ture circuit and the dynamic equation of motion. If the commu-
tation interval of the chopper 1s also taken into account, an
additional third set of equations is needed.

To determine the system performance, the above sets of
equations are solved. The approach followed so far has been to
solve the above sets of equations either by using a numerical
technique or by step-by-step methods.

To obtailn the steady state solution using a numerical
technique [18], the solutions can be started from any point in
time with known or assumed initial conditions. The calculations
are repeated till near steady state conditions are obtained.
Theoretically the steady state will occur after infinite time. As
such the calculations have to be repeated for a large interval of
time. Such methods of analysis suffer from two inherent draw-
backs. Firstly, the computation time required is large, specially
when the solutions with a high accuracy are required. Secondly,
such methods do not yield closed-form solutions.

The second approach followed for the analysis of such
systems is to solve the above sets of differential equations using
step-by-step method. This type of analysis involves obtaining a
closed-form solution of these equations for duty period of first
chopper cycle using the known initial conditions (which are gene-
rally all zeros for switching-in from rest). The values of per-
formance variables at the end of the first duty period are calcu-

lated using this closed-form solution and are used as the initial
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conditions for freewheeling interval of first chopper cycle. The
equations for the free-wheeling mode are then analytically solved.
For both these analytical solutions (for conducting mode, and the
free-wheeling mode) the speed over a chopper cycle is assumed
constant [23,25]. This process is repeated for the subsequent
cycles with only initial conditions changed till the steady state
or the desired time interval is reached [25,26]. This necessi-
tates stepsby-step solutions of two sets of differential
equationsy one for duty mode and the other for freewheeling mode
of operation with the initial conditions changing at each stage.
This approach has three main disadvantages. Firstly, the analysis
has to be started right from the first chopper cycle, and hence
computer time needed is large. Secondly, a general closed-form
solution is not obtainable. Lastly, the analysis is less accurate
as it assumes the speed over a chopper cycle as constant.

A chopper fed d.c. drive with a rigid shaft is a system of
second order. However for a preclse analysis, the elasticity of
coupling should be taken into account in which case the order of
the system increases to five. Handling the analysls of such
complex systems (analysis in Chapter-4) and solving the two sets
of equations,one for duty and the cther for freewheeling modes, by
existing techniques is highly involved and needs exceptionally
large computational efforts. There is, therefore, a pressing need
for a new technique which is more cccurate, needs lesser computa-

tion time and can be used for more complex systems.
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3.2 WORK PRESENTED

In this chapter, a new analytical technique for analysis
cf a chopper fed separately excited d.c. motor using 'time ratio
control' at constant chopper frequency is presented. The system
is modelled in such a manner that only one set of equations is
applicable to both duty as well as freewheeling modes of chopper
operation. Closed-form solutions for armature current and
metor speed are obtained for transient as well as steady state
conditions corresponding to any set of operating conditions. The
solutions at any point in time, under transient as well as steady
state conditions, can be directly obtained without starting from
the switching-in instant. The computational efforts and time
needed are, therefore, extremely small as compared to other
methods.

The proposed technique is applied to the analysis of
chopper fed d.c. motor drive with elastic coupling and pulsating
load torque discussed in Chapter-li.

The system analysed consists of a chopper fed separately
excited d.c., motor delivering a constant load torque as shown in
Fig.3.1. A thyristor chopper CH converts a constant d.c. voltage
V to a pulsed voltage v(t) as shown in Fig.3.2. A freevheeling
dicde FWD in parallel with the armature is provided which allows

the flow of current in armature during freewheeling interval.

3.3 SALIENT FEATURES OF THE PROPOSED TECHNIQUE

The propesed technique of analysis overcomes the draw-

backs of existing methods. In this method, the chopper output
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voltage is expressed as a sum of series of step voltages, and
Laplace transform of this type of voltage is obtained. A single
set of equations consisting of the voltage-current equation for
armature and the dynamic equation of motion is thus applicable to
duty as well as freewheeling modes of chopper operation. The
equations are expressed in State model form. In order to obtain
the closed-form solutions for system variables in time domaln,
the inverse Laplace transform of the solution in s domain is
required. For obtaining the inverse Laplace transform of a
particular form of function occurring in this analysis, a theorem
has been developed. The philosophy of expressing the chopper
output voltage as a sum of series of step voltages and the proce-
dure for obtaining the response in duty as well as freewheeling
intervals of a chopper cycle, say nth cycle, is explained below:
Fig. 3.3 shows the component unit step voltages with time
phase difference, applied alternatingly in positive and negative
directions at the end of freewheeling and duty intervals respec-
tively. These step voltages added together at different intervals
of time are shown in Fig. 3.%. This shows that a sum of step vol-
tages applied with proper time phase difference 1s equivalent
to the waveform obtained from the output of the chopper. The
response in duty and freewheeling intervals of nth chopper cycle

can be determined in the following manner:?

(a) "duty intervals

The voltage applied and the corresponding limits of time

interval for different chopper cycles 1s given belows
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time step voltage
interval applied
0ttt U(t)
g ML ST U(t)—U(t—to)+U(t—T)

o L A 4 (2T+to) U(t)—U(t—tO)+U(t—T)

(n-31)T £ & <

—U(t-tO—T)+U(t-2T)

(EITT+tO) U(t)—U(t-to)+U(t-T)—U(t—tO—T)
SITER=DY 4 o ¢ awrs —U(t-to-E?ET)

+U(t-n-1T)

The response in duty interval of nth chopper cycle 1is

that due to the sum of step voltages given above which can be

written ass

n
s U(t-7r-1T) -
r=1

(p) freewheeling intervals

'k R
)X U(t-to-r—1T)
P

The voltage applied and the corresponding limits of time

interval for different chopper cycle is given belows:

chopper
cycle

1

coeo e w N

=

time
interval

t <t<LT
~tL

(T+to)gt52T

(2T+t )<tL3T

(n-1T+t _)<t<nT

step voltage
applied

U(t)-U(t-t )
U(t)-U(t—to)+U(t-T)—U(t-to—T)
U(t)-U(t—to)+U(t—T)-U(t—to—T)+U(t—2T)
-U(t-t_-2T)

U(t)-U(t—to)+U(t—T)-U(t-to—T)+U(t—2T)
—U(t—to-2T). ...... +U(t-E?TT)-U(t—tOJHET)
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The response in freewheeling interval of nth chopper
cycle is that due to the sum of step voltages given above which
can be written ass

n . n
s U(t=-r=-1T)- %

U(t—to-r-1T)
r=1 r=1

3.3.1 Assumptions

Following assumptions are made in the analysis*

(a) armature inductance is sufficlently large to allow a conti-
nuous flow of current in armature circuit,i.e. the chopper
operates in duty and freewheeling modes only and there is
no zero current interval of operation,

(b) chopper output voltage is a perfect square wave, i.e. the
commutation interval is neglected,

(¢) field current remains unchanged during motor operation,

(d) resistance and inductance of motor armature are constant.

3.4 PERFORMANCE EQUATIONS

The system shown in Fig.3.1 can be described by the

following equations:?

A . .
v(t) = L ot il B 6 (3.1)
B, E J e +B6+ Iy (3.2)
where Te = Ke il

In above equetions, v(t) is the chopper output voltage,
and i and é are the instantaneous values of armature current and

motor angular speed, respectively. The above equations are
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applicable to both duty as well as freewheeling modes of chopper
operation. These equations are to be solved in order to determine
the system performance in terms of armature current and motor

speed.

3.5 SYSTEM CHARACTERISIIC EQUATION

Equations (3.1) and (3.2) can be expressed in State model

form as:
x = Ax + Du (3.3)
where
--‘l/'q-,a —Km/L 1/L 0
A = 3 D= (31)"')
Ke/J —1/rm 0 -1/3
v(t)
forcing function vector u =
i
i
and, state variable vector x = "
e
Taking Laplace transform of edqn.(3.3):
X(s) = [sI-41"" DU(s) + [sI-A]"" x(0) (3.5)

where I is a unit matrix of the same order as that of matrix A.

For the system starting from quiescent state,

0
x(0) = li ]
0

Taking the Laplace transform of the chopper output

voltage v(t) and that of the constant forcing function Ty,
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U(s) is given by:

—V ] - exp(-—sto)-T

5{1 ~ exp(-sT)
U(s) =
L
L. S i

From eqn.(3.5),X(s) can be written as?

e > 1-exp(-st ) KT ]
v 1 m L
1(s) ARGl e e R AT
- ¥ % (3.6)
' VK 1- exp(-st ) TL
L—6(5)—_ LSJE{1- exp(- sT) = (S+-—;) i

where A is the determinant of [sI-A] matrix.
The characteristic equation of the system, A =0, 1s
given by
2+ (L + Lyg KeKmJ;,BR =g (3.7)

’Ea Tm

It is observed that the characteristic equation {3.7) 414

a quadratic in s, the two roots of which may be expressed as?

Sy = —a1 and

where a4 and a, are real positive values. Thus A can be written
ass

= (s + a)(s * ay) (3.8)

The Toots of the characteristic equation may also be complex for
certain combination of values of electrical and mechanical para-
meters. However, the procedure of analysis presented remains the

same.
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3.6 DRTERMINATION OF SYSTEM RE.SPONSE

The closed-form solutions for system variables i.e.

armature current i(t) and motor angular speed 8(t) can be obtained

by taking inverse Laplace transform of egnd3.6) ass?

1(t)
x(t)=

&%)

'

=

1
Oﬁ'ﬁfs+a1)(s+a2)

N

1-exp(-st, )

TL‘W

-

1
SL(s+ ;;){

-exp (- sT) . sJL

VK 1-exp(- sty )

L—_Tj1—eXp( sT) i

T
L(s+ *")
g

(3.9)

For obtaining the performance variables i(t) and o(t),

in duty and freewheeling intervals, the inverse Laplace transform

of terms containing {1—exp(—sto)}/{1-eXp(-sT)} in eqn.3.9) is

required.

not be obtained by usual available methods.

following theorem is proposed.

in appendix A-2.1.

THEO REM

If #(s) is the Laplace transform of #(%),

The inverse Laplace transform of such a function can

For this purpose the

The proof of this theorem is given

(1) duty intervals (n-1)T £ t £ { (n-1)T+t )

. 1-exp (- st ) n [
{0 }]= £ o671 m-

r=1

(11) freewheeling interval: {(n-1)T+ t_ } < t £ nI?

‘Lf1[?(s){

-exp (- sT)

1-exp(—sto)

T-exp(-sT)

n-1

=1

then fors

Z Q(t-to—r-1 T)

(3.10)

. adks _—
= Z —T - T - e - [ - [
r:1[?(t r-1 T)- &t t-T-1 T):] (3.11)
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3.6.1 BExpression For Armature Current

The armature current i(t) for duty and freewheeling

intervals can be obtained [appendix A-2.2] as:
(a) Armature current in duty interval:?

From eqns{3.9 and (3.10) ,armature current in duty interval

for nth chopper cycle,i, (t),can be obtained as*
9 d 9

6
KmTL
idn(t) = —5—L—{K1+ K2 eX‘p(-O..lt)'*' K3 exp(—agt)}
. exp (nTa, )-1
" + -
RTa[K)‘*' KS eXp( a1t){eXp(Ta1)—1

exp (n-1 Tay) -1

exp(nTa ) -1
A a2 }"Ks eXp(-t-—toa1 ){e

* K¢ exp(-a2t){

exp(Taz)-1 xp(Taq) = 1

{3480

Lol exp (n=T Ta2)-1
5 eXp('t'toaz){eXp(Tag) a1 ]

(p) Armature current in freewheeling interval:

From eqns. (3.9) and(3.11) ,armature current in freewheeling

interval for nth chopper cycle,ls (t),can be obtained as:®
n

o v
ifn(t) = E%TL{K1+ K, exp(-at) + K3 exp(—a2t)}
v | exp (nTa, ) -1
R TaE{S eXp(‘(Ll t>{9Xp(T(11) z 1}{1 = eXp(cx1 to)}

exp(nTa,)-1
* K, eXp(-a2t){exp(Ta2)- it - eXp(azto)i] (3.13)
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3.6.1.1 Steady State Armature Current

The constant terms plus the terms containing (t-nT) in
eqns. (3.12) and (3.13 constitute the steady state armature current

which is independent of number of chopper cycle n (or time t),

since as t becomes very large, n also becomes very large and the
di fference (t-nT) remains finite and independent of n. The steady

state velues of armature current are obtained as belows
(a) Bteady State Armature Current in duty interval:

From eqn.(3.12),steady state armature current in duty

interval ids(t) can be written as?

KT : 1-exp(-a, T=t )
s 0 1 0
138 =5~ K* g TaL¥4+ K exp(-a, t-nT) { exp(a; 1) = 1

1-exp(—a T-t tg)
3]

+ K6 eXp(“’(I2 t—nT){ eXpTa T) Y (301)“’)

(b) Steady State Armature Current in freewheeling intervals

From egn. (3.13),steady state armature current in free-

wheeling interval ifs(t) can be written ast

K T 1~exp(a tg )
= L v 1
1fs(t) m Kyt g = K exp(-a, t—nT){eXp(a )= 1
1- oxp(a t )
T exp(-a2 t_nT){eXp(a T) - ‘Iﬂ (3.15)

The expressions for steady state current given in
eqns. (3.1W and (3.15),contain the terms t and n which are not
known for steady state conditions. To obtain the variation of

current with time for steady state, instead of substituting
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t, the term (t-nT) is treated as a single variable and the response
is calculated by varying value of (t-nT). The same procedure is
followed for obtaining the steady state speed response. The

1imit betwWween which the value of (t-nT) varies for duty and free-

wheeling intervals (explained in section 4.5.2.1) is given ast
duty interval 2 =T < (t£-nT) < (-T+to)

— —

freewheeling interval: (—T+to) < (t-nT) £ O

3.6.2 Expression For Motor Speed

The motor angular speed é(t) for duty and freewheeling

intervals can be obtained [appendix A-2.3] as:
(a) Speed in duty interval:

From egns. (3.9 and (3.10), angular speed in duty interval

for nth chopper cycle,éd (t) ,can be obtained as?
n

T
. L i
an(t) = - jr{K7+ Kg exp(-ay )+ Ky exp(-a2t)}
VK exp(nTa, )-1
e 1
+ 317-[%1+ K2 eXp('a1t){exp(Ta1)— 7

exp(nTag)-1 e p0Tpln=t Ty, )=
}-K_exp(-tt

+ K eXp(—azt){eXp(Ta2)_ 1 > &HX exp(Ta1) -1

3

(3.16)

exp(n-1 Ta2)—1i]

K exp(—t—toag) —eXp(Tag) =

3

(b) Speed in freewheeling intervals

From eqns.(3J9)and(3.11),angular speed in freewheeling

interval for nth chopper cycle,éf (t), can be obtained as?
n
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P
. L
gfn(t) = - -5—{1{7 * Kg expl-a,t) + Ky exp(-a, t)}

exp (nTa, )1
exp(Tay ) - 1

VKe[
+ =2 K, exp(-a,t)f }{1-exp(ay t )3

exp(nTaz)-1
* Ky exp(- 0 (Gorr o) (1-explagty)] (3.17)

3.6.2.1 Steady State Motor Speed

From eqns. (3.16) and(3.17), the steady state angular speed
for duty and freewheeling intervals can be obtained (as discussed

in section 3.6.1.1) as below:
(a) Steady state speed in duty interval:

From eqn. (3.16),steady state speed in duty interval for

nth chopper cycle,éds(t)9can be written ass

- % VK, - 'l—eXp(—a,lmo)’
Gds(t) = - 3—K7 * K1 * X, exp(-a1 t'nT){exp(a1T) S W
1—exp(—aéﬁ§i)

(b) Steady state speed in freewheeling intervalt?

From eqn.(}.Tﬁ,steady state speed in freewheeling interval

for nth chopper cycle,éfs(t),can be written ass$

TL VK

2 ~ < 1-exp(a,t )
Gfs(t) = v el ¥ ﬁ—[Kz exp(-a, t-nT){

i o }
explay T) - 1

1—exp(a2to)
1}] (3.19)

£ K3 exp(-a2 t-nT){eXp(a2T)-
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3.7 TYPICAL PERFORMANCE STUDIES

The proposed analytical technique is illustrated by
obtaining the performance of a chopper fed separately excited d.c.

motor drive system with the following datas

Motor data:
supply voltage, V = 200 V
full load current, I, = 6.3 & (1 pu)
rated speed = 1000 rpm (1 pu)

4 ohr

armature resistance, R

armature inductance, L = 0.06 H

motor constant, K, (or K ) = 1.86

coefficient of damping, B = 0.0162 N-m/rad/s
2

moment of inertia, J = 0.1 Kgm

load torque, Ty = 0.5 full load torque

Chopper datas
frequency = 200 Hz
duty factor, a = 0.6
duty interval, t = 0.0015 s
freewheeling interval, t, = 0.0010 s
The performance of drive computed using the proposed

techniqus is discussed below,

3.7.1 Transient State Performance

For a motor switched-in from rest against a constant
load torque, the variation of armature current for the first few

cycles of chopper voltage immediately after switching-in is
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shown in Fig. 3.5(a). The envelope of the armature current during
acceleration process under the condition of switching-in is as
shown in Fig. 3.5(b). It may be seen that the range of variation
of current per cycle, during the acceleration process remains
nearly constant. The mid-line of this envelope gives the average
armature current during acceleration process.

The acceleration characteristics of motor i.e. variation
of average speed per chopper cycle against time is plotted as

shown in Fig. 3.6.

3,7.2 Steady State Performance

Under steady state conditions, the armature current
varies between two fixed values (0.432 and 0.749 pu) determined
by operating conditions. This variation is shown in Figs 347
The variation of current within an on-period or off-period follows
exponential law, but appear linear in Figs. 3.5(a),3.7 because
chopper frequency is large.

Under steady state condition, the speed fluctuates
betWween a minimum and a maximum value (0.53956 and 0.53962 pu)
depending upon the operating conditions as shown in Fig. 3.8.
During duty interval the speed decreases till it attains a
minimum value, and then it increases. The reverse holds for

freewheeling interval.

3.8 CONCLUSIONS

In this chapter, a new analytical technique for the
analysis of chopper fed d.c. motors, using time ratio control

with constant chopper frequency, is presented. The system
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equations are expressed in State model form, and solved analyti-

cally to obtain closed-form solutions for armature current and

motor speed, for transient as well as steady state conditions.

The analysis presented is illustrated by an example.

The proposed analytical technique is superior to existing

methods of analysis in following respectsst

(a)

(b)

(e)

The system equations [eqns. (3.1,3.2)] can describe the
system in duty as well as freewheeling modes of chopper
operation. Separate equations for the two modes are not
required.

The steady state performance for any operating conditions,
i.e. load torque, duty factor, can be directly obtained
using the solutions presented in edns.(3.1%,3.15,3.18,
3.19). Unlike the existing methods, the solution does

not have to be started from the instant of switching and
contimied till steady state conditions are obtained. The
computational efforts are,therefore, greatly reduced.

The transient state solutions are also directly obtained
using eqns.(3.12,3.13,3.16,3.17). For studying transients
at any point in time, the solution for that interval of
time is directly obtained, and one does not have to reach
this interval starting from the instant of switching.
Unlike the existing methods, this technique is not a
numerical technique and hence computation time needed is

greatly reduced.
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(d) The solutions are in closed-form, and therefore provide
an insight into the transient and steady state perfor-
mance of the drive.

ve) The solutions are more accurate, as speed over a chopper

cycle need not be assumed constant.



CHAPTER-4

PERFORMANCE OF CHOPPER CONTROLLED D,C. MOTOR DRIVE AS AFFECTED
BY ELASTICITY OF COUPLING AND PERIODIC VARIATION OF LOAD TORQUE

4,1 INTRODUCTION

For a d.c. drive fed by a constant voltage d.c. source,
the analysis given in Chapter-2 reveals that the mechanical
factors, like elasticity of coupling and periodic variation of
load torque, significantly affect the drive performance. Majority
of d.c. drives in present day industry find their use in variable
speed applications. In such cases, the drives may be fed through
either a chopper or a phase controlled convertor. Chopper control
offers many advantages (discussed in Chapter-3) and 1s, therefore,
being increasingly used for controlling the speed of d.c. drives.

The frequent use of chopper controlled d.c. drives makes
it imperative to precisely analyse the performance of such drives
and to investigate as to how a drive with an elastic coupling and
periodically varying load torque, behaves when operated from a
chopper voltage supply, and how these mechanical factors influence
the performance. The work available in literature deals mainly
with the analysis of chopper fed d.c. drives with constant load
torque Without considering the effect of elasticity of shaft. The
analysis of effects of mechanical factors on the performance of

chopper fed d.c. drives has not been attempted so far.



4,2 WORK PRESENTED

In this chapter, analysis of chopper fed d.c. motor drive
with a periodic load torque is presented. The effect of elasti-
city of the shaft connecting the motor to load is included in the
analysis. Closed-form solutions for system performance in terms
of motor armature current, angular positions and speed are obtai-
ned for transient as well as steady state conditions. The nature
of variation of motor current and speed, and twist in the shaft
are studied for the cases of constant as well as periodically
varying load torques. The situations leading to system resonance
are investigated. The possibilities of mechanical failure of
shaft, due to excessive shear stress and fatigue, are predicted.
The effects of variation of chopper duty factor and chopper
frequency on the drive performance are discussed. Results are
illustrated by an example and useful inferences are drawn. Sugges-
tions are given to improve the design as well as performance of
the drive.
| The system analysed, as shown in Fig.4.1, represents a
separately excited d.c. motor coupled to the load through an
elastic shaft. The moment of inertia as well as damping of motor
and load are considered independently, while the shaft inertie
is neglected. This type of electromechanical system is referred
to as 'Two rotor, semi-definite, two degree of freedom' system
[ section 2.2]. The input to the motor is through a chopper which
converts a constant d.c. source voltage into a pulsed voltage.
The chopper output voltage is shown in Fig.4.2. A free-wheeling

diode in parallel with armature allows the flow of current during
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pulse-off (freewheeling) periods of chopper voltage. A choke ig
connected in series with armature to reduce the ripples in arma-
ture current. The 'Time Ratio Control' technique, with constant
chopper frequency is employed to control the average voltage
applied to armature, which in turn controls the motor speed.

Any periodic load torque can be considered to be composed
of a uniform component and several simisoidally varying alter-
nating components. For the sake of simplicity of the analysis,
the torque is considered to be composed of a non-varying compo-
nent and only one sinuscidally varying component, neglecting other
harmonic components [Fig.2.2(b)]. However, the method of analysis
holds in the presence of more than one alternating components as
well.

A mathematical model of the system is given. The motor
torque developed drives the system inertia, friction, load torque
and the elastic torque. The system equations are expressed in
State model form. The technique of analysis of chopper controlled
d.c. drives developed in Chapter-3 is used to determine. the per-
formance, as this technique is superior and offers many advantages
over other existing techniques (discussed in section 3.8).

The analysis is based on the same assumptions as stated

Im geetlion 3.3.1.

4,3 PERFORMANCE EQUATIONS

The equations governing the system performance can be

written as belows:

v(t)=L%%+Ri+Kmé1 (%.1)



R 51 +B, 8, + cley = 8,) (4. 2)

-1, =3, 8, * B, é2 + C(8, - 8,) (4+.3)

where T, =K, 1 (4. b)
and T = T * I sin(o,t - &) (%.5)

Equations (4.2)-(%.5) are same as eqns.(2.2)-(2.5), and
are rewritten here to maintain the continuity in the text. These

equations can be expressed in State model form as?
x = Ax+ Du (4.6)

where [A] and [D] are given by egns.(2.7) and (2.8) respectively,

and the

v(t)
forcing function vector U =

I,
! : o
and state variable vector x = [91 91 92 92 i)
4.3.1 System Characteristic Equation
From eqn.(4.6)*
X(s) = [sI--A]_1 DU(g) + [sI-A]"‘I x(0) (%.7)

For the system starting from quiescent state, all variables have

a value zero at t=0,

W0 =[0 o o o ol

From eqn.(%.7), X(s) can be written as*

H

X(s) = x [£;,] DU(s) (1. 8)

where [fij] Adj[sI-4]
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The system characteristic equation is given as?

N
5 S

laT-a] = & &7 + A e

3
1 ¥ A3 g TR

This is same as obtained for drive with constant voltage input
[eqn{2.13). The coefficients, A - Ag,depend upon values of electri-
cal and mechanical parameters of the system as given in eqn. (2.14).
The characteristic equation has one root at origin and two pairs
of complex conjugate.roots with real parts as a and a, and imagi-

nary parts as B, and §, respectively. Thus A can be written as:

A=s(s+ay+3B)(s*ast] Bo)

The value of B, is a function of circuit inductance and
moment of inertia of the system. For low values of inductance,
By may even be zero. The value of 52 depends upon the torsional
stiffness of the shaft, moment of inertia, and damping of the
system. §, and f, are termed as the damped natural frequencies
of oscillation of the system. The undamped natural frequencies

and i s
WP nd are given ast

2

(ag * 52)1/2

oy = a2+ D12

nl

The values of ay , a, and By , By depend upon damping ratio and

ares
ap T & opy 5 a0y = Eywp,
L 2,1/2 4 2,1/2
By = (- ED) m o By = U= E) T ep,
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4.4+ DETERMINATION OF SYSTEM RES PONSE

The solution in time a. 2in for state variables which
describe the system response, can be obtained by taking Laplace

inverse transform of eqn.(4.8) ass

91(1:) fH(S)"'fS‘l(S) 0 i

91(t) f12(s)...f52(s) 0

6,(t) <4 f13(s)...f53(s) 0 -

. =J; = A {TLo TL1Qn1cos @g-s sin @) 0y
edf SR

6,(¢) N CIPPPE PREY 7, oD .10)

1-exp(- sty )
4 .4
—il.(t) & E15(S)-.-f55(3)_ L SL {1 eXpTST) } N

1-exp(- st )
where Ef{1-eXp( sT) } is the Laplace transform of chopper output

voltage shown in Fig. 4.2 .

From eqn. (4.10)3

b 451'?f45(s){T Tpylw, cos @-s sin ﬁ)}+f55(§7 1-eXp(-sto)._
oy,
s 8T, s 0 mf) A sL ‘1-exp(-sT)
aaw Krts 11)
-1 =y (8) Tp, Tp,lw, cos #-s sin 7) f51(s)V 1-exp(-st i)
91(t)a£« -_A T, { s | o m1) 7N st 11 exp (- sT) i)
(4+.12)
1 [=fy3(s) T Tp.(ey cos @-s sin @ £53(s)V 1-exp(-st,)
62(1:):"{v [:A J 5 { s ot (a® + mo) ¢ A sL L1 exp (- sT) }
& S (D1

con (H13)
where values of f41(s)....f55(s) are given in appendix #-3.1.
The system response can be obtained by solving edns.

(%.11)-(%.13) which involves determination of Laplace inverse
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transforms of the three terms containing Ty, , Trq o and V. The
Laplace inverse of the first two terms involving Ty, and Ty 4 is

simple and can be obtained by usual methods. However, the Laplace
inverse of terms containing [{1—exp(—sto)}/{1—exp(-sT)}] cannot
be obtained by usual methods and for this purpose the following

theorem derived in appendix A-2.1 is useds

(a) For duty intervals

ng1 1-exp(-st ) g A i e i
| AN} & pereermy gy i r§1f(t-r-1T)-r§1 £t -r-1T) (. 14)

(b) For freewheeling intervals

-1 1—exp(—sto) n i -
POl } |= r§1[f(t-r—1T)-f(t-to-r-1T)] (4.15)
In the above, the value of t for nth chopper cycle lies in
the range?
duty intervals (¥ g & S Ay to}

freewheeling interval: {(n-1)T + t } < t < nT

A sample procedure of determining the current response id (t) and
n

(t) from eqn.(4.11) is given in appendix #-3.2. The express-
n

ions for 91(t) and Gz(t) can be obtained in a similar fashion

*p

from eqns.(4.12) and (4.13) respectively.
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4,5 SOLUTION FOR ARMATURE CURRENT
L,5.1 General Solution
(a) Duty interval:

The armature current in duty interval of nth chopper

cycley iy (t), can be obtained by solving eqn.(4+.11) and using the
n
theorem of eqn.(%.1%). Thus

2
1. 8y = -3 3 s o s ol (4.,16)
dn ] [ dsm tm tm+2] d53 dsLF

where

144 v Kg exp(-anltn)[{exp(am T)sin(Bm tn1—¢2)-sin(5m tnjgg)}

exp(-a_ to){expla, Tsinlp t 5= o0 -sin(B t,o-#5)}] /(L D)

Y v Kg exp(-a t)[{sin(ﬁm t—ﬁg)-exp(am T)sin(B, t1-¢g)}

m
- explay to){sin(p, t,-09)-explay Dsin(py, t3-05)31/(L D)
e exp(-y £)[Tp, K7 sin(py v-0)+Ty kT2 sin(p, t-07" )1/,
. g 2 1
lds3 S KS/L w TLO KS/J2

; = i 7
lag, = Try K{ sinleyt- #)/0,

The expressions of different constants used in above equations

are given in appendix A-3.7 and some symbols are defined as?

t_ = tenT , by ® tenTHT , Gpp = tenMRI-fy , tny = tenTR2I-t,
B = I g ke By 5 B F T ey B SRR,
fig =+ exp(a1T){eXp(a1T) - 2 cos BT}

o
0

5 1+ eXp(a2T){eXp(a2T) - 2 cos §2T}
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(b) Freewheeling intervals

The armature current in freewheeling interval for nth
chopper cycle, i, (t),can be obtained by solving eqn.(%.11) and

using the theorem of egn.(4.15) as below:

2
lfn(t) = m§1[:lfsm + ltm % ltm+2j] 4 1fs3 * J.fs)+ (4.17)
where
i, =7 K® exp(-a_ t ) [{expa. Dsin(p_t_,- D) -sin(p_t_- #7)}
fsm 2 il m m nl 2 m n 2
- exp(am to){exp(am T)sin(Bm o gg)—sin(ﬁm b ¢g)}]/(L Dm)
5 — 1 . p—r
lfs3 = Tpo K5p s “re, A,

L,5.2 8Steady State Armature Current

The steady state armature current in duty and freewheeling
intervals can be obtained from eqns.(%.16) and (4.17) by taking
only those terms which do not decay with time. It is to be noted
that the terms containing tn also give steady state response,
since as t becomes very large, n also becomes very large and the
difference tn remains finite and independent of n.

It is further noted that the terms t ,, tn2’ tn3 and ton
depend on (t-n T) and therefore, the terms in the expression of
current (as well as speed) containing tn1 ol th are also inde-
pendent of n and give steady state response. The steady state

current in duty and freewheeling intervals can be written as?
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(a) Duty interval:

From eqn. (4.16), the steady state armature current in

duty interval of nth chopper cycle, ids(t), is given bys$

ids(t) L T I L P % (%.18)

S4 5o 53 dsu

(b) Freewheeling intervals

From eqn. (%.17), ti.e steady state armature current in

freewheeling interval of nth chopper cycle, ifs(t)’ is given bys*

ifs(t) e TR T ps i (4.19)

Sy S5 53 fsu
4.5.2.1 Value of (t-nT) in Steady State

Although, two variables t (time) and n (mmber of chopper
cycle) appear in the expressions of steady state current given by
equations (4.18) and (%.19), it is not necessary to substitute t
and n as separate variable-. For this purpose the term (t-nT)
can be viewed as another variable, t . The solution for steady
state current (as well as speed) can, therefore, be obtained
even if the values of t and n after which steady state is achieved
are not known (as is generally the case). As such, the compu-
tations do not have to be performed starting from switching-in
instar. The other time —rariables t 4, % o tn3 and t are
functions of tn.

Fig.4.3 shows the range over which the time variables t_,

v tnh vary in different chopper cycles. The point in time

n1,0.l,

at which these time variables attain zero values are also marked.

For nth chopper cycle, the range of these time variables vary as
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belows
time variable variation in variation in free-
duty interval wheeling interval

t, ~Hgh £ (~T+E ) (~2¢g ) €6, £ 0
1 0.8 3, = to t, & tn15 -
.5 -t, £ £, €0 0 < tn2g(T-to)
3 (T-t )< th3 £ T T ' £ tn3g(2T-to)
t oy (s 8 by S =T ~T £ Gk =t

For obtaining the steady state response, in duty as well
as freewheeling intervals, any one time variable amongst

t % tnu can be selected and varied between the range

nt‘,...,

given above. The values of remaining time variables can be

n’

substituted in terms of the selected time variable. For example,
for obtaining the steady state current response in duty interval
from egn. (4+.18), the time interval t, may be selected and varied
from -T to (—T+to). Similarly the steady state current in free-
wheeling interval can be obtained from eqgn.(%.19) varying the
value of tn from (—T+to) to zero. The values of other time
intervals appearing in egns.(%.18) and (%.19) can be substituted

in teras of tn asg below:

AR MR RAE -

1]
d—
n)
+
=
|
t
o

ne

H
t
1
cf

+ -
5 % FiENehL L Ty vy

n3
The steady state response, thus can be obtained following

the procedure discussed above.
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4,6 SOLUTION FOR ANGULAR POSITION e1 (t)
(a) Duty intervals

From egns. (%.12) and (4.14%), angular position in duty

interval for nth chopper cycle,®, (t),is obtained as:
n

p) |
8,, (¢) = = [ o + 08, *6 + 9 + 8 + @ (4. 20)
1d, e [ Mgl Ty, 1tm+2] 1dsy” “ldsy, 1tg
where
e =V K™ exp(-a_ t Y {exp(a. T)sin(g_ t_,- go+m)
1ds 2 P n AP P Tn1 2
e sin(Bm ty= ¢g+m)}-exp(—am tf){exp(am T)sin(Bm th3- ¢g+m)
- sinlp. T - (Zg"'m)}]/(L D)
O, =V K2 exp(-a_ t)[{sin(p, t- 03 ™-expla, Tsin(p, t4-05"™}
by exp(am to){sin(ﬁm ty- ¢g+m)-exp(am T)sin(Bm t3- ¢g+m)}]/
(L D)
_ > . 7 .
e1tm+2_ ~exp(-a  t)[Tr, h?+m sin(p t- ¢?+m)+TL1K1+m sin(p ¢
- o™ /1,
o 7 L 5
e1ds3 =V Kg/L = (Tpq Ko * Tm K2)/3,
2 0 10
6, as, Trq K& sinkw, t - @) /3,
= 6
e1ts = T, K% /7, + [V Kt - (n-1)t}1/L
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(b) Freewheeling intervals
From eqns. (4+.12) ani (4,15), angular position in free-

wheeling interval for nth chopper cycle,6, . (t),is given bys
n

2
) (E)= T + 9, +6 + 0 + 0 + 0 (4. 21)
1fn 1]: ‘Ifsm 1t 1tm+2:| 1fs3 1fsbr 'It6

. m
where
e1fsm =y Kg+m exp(-a_ t ) {expla, T)sin(B, t- ¢g+m)
- sin(p_ t - 03] - explay, t,){sin(By byp 93 Mexplay 1)
- sin(p_ t,- ¥3"™}1/(L D)
e1fs3 s 45 Kg + Tp Kg)/Jz

e‘Ifsh_ = e1dsu

= 3 6
e1t6 = -TLO K5 ‘t:/J'2 bl K5 n tO/L

L.,7 SOLUTION FOR ANGULAR IOSITION 92(t)
(a) Duty intervals

From egns. (4.13) and (%.14%), angular position in duty

interval for nth chopper cycle,@zd (t),is obtained as?
n

e (th-& % [9 + 0 + 0 + 0 + 0 + @
2dn it [ 24 sm 2t“1 2tm +2] 2ds 3 2d sy, 2t5

(4. 22)
where

e

ods_ v K£+m exp(—am'tn)[{exp(am T)sin(Bm g ¢E+m)

sin(gm t,- ¢£+m)}-exp(—am_tf){exp(am T)sih(Bm tn3' E+m)

sin(B t_,- 09 ™3}1/(L D)



2t

2tm+2

2ds

eQdS)_'_

e
2t5

"
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v Kufm exp(-a_£)[{sin(f_ t- ¢E+m)—eXp(am

5+m

¢E+m)}—exp(am to){sin(ﬁm t,- 01 )-expla,

@E+m)}]/(L D)

~exp(-a_ £)[Tg, K?’m sin(p t- Qfg+m)

2 7+m
By Ky sim(f. t-857) 1A,

2 - 0
v K6/L - (TLO &5 * Ir, K6)/32

19 10
Ty K, s:Ln(w1 t - ¢2 )/’J2

) 1
~Tro K5 t/3, * V Kglt - (n-1)t .} /L

(b) Freewheeling intervals

T)sin(p, t

T)sin(B ty

From egns. (4.13) and (%.15), angular position in free-

wheeling interval for nth chopper cycle,®,, (t),is given by
n

2
) {ed= T8 +6,., +86 + 9 + 0 +
2f %= |: 80R, @by, 2tm+2] 2fs3 2fs, 2t

where

e
2fsm

2fs

2t6

I

9 0
-(Tpo K5 * Tpy K)/J, 5 @

v Ku+m exp(-am tn)[{exp(am T)sin(@m tor -

) (W, 23)

=

sin(p, t, - gg+m)}—exp<am t ) {stn(p t, - E*m)exp(am )

sin(g, t,- #2"™31/(L D)

1

8
T K5 t/J2 + 7T K6 n tO/L

ors, - Oods,
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4.8 SOLUTION FOR MOTOR SPEED é1(t)

4,8.1 General Solution

(a) Duty intervals
Differentiating eqn.(%.20) w.r.to t, angular speed in

duty interval for nth chopper cycle,é1d (t),is obtained as?
n

2 Q L] L ]
.. =s E [ +6,, +6 58 + O A N
" m=1 [ sy Tty H3m+2:l o Bl s
where
; | . . g
e1dsm = Kg exp(-a_ t )[{explay T)sin(p, € q- g?)-51n(5m £, - g3)}

- exp(-am tf){eXp(am T)sin(Bm tn3_ Q%)

- sin(g t - a§>}]/<L D)

O
H

o v Kg exp(—anlt)[{sin(ﬁm t=- dg)—exp(am T)sin(f  t4- Gg)}

- expla to){sin(Bm t2-®§)— exp (o, T)sin(p t3-9€)}]/(L D)

TS —exp(-a_ ) [Ty, K, sin(p, t-0})
s SR m+ 2
+.LL,| KL‘. Sln(ﬁm t-g)_‘_ )]/J2
8 =v K8/ - . K2/3
‘Ids3 5 Lo e g
& o 10 - 10
e‘ld-SL‘_ ce -TL“ K“ (D‘l Sln((D1 t - (Zf,' * 7T/2)

(b) Freewheeling intervals

Differentiating eqn. (%.21) with respect to t, angular
speed in freewheeling interval for nth chopper cycle,e1f (t),is
n

obtained ase

b (= 2 Fd + § (%, 25)
‘Ifn ‘1[1fsm
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where

O
'}

1fs v Kg exp(-am tn)[{exp(am T)sin(Bm t dg)—sin(ﬁm tn—gg)}

explay t){expla, Tsin(py t - 9-sin(pyt,,-F311/ (L D)

© rs

L] S é

= - 3
T Ee¥a + Sipy T Puag,

i

4.8.2 Steady State Motor Speed
(a) Duty interval:

From egn.(. 24), steady state component of speed in duty

interval for nth chopper cycle,é1ds(t),is given by?

e1ds(t) = é1d (%, 26)

+ + +
51 91ds2 e1ds3 “1as,

(p) Freewheeling intervals

From eqn. (Y¥.25) steady state component of speed in free-

wheeling interval for nth chopper cycle,é1fs(t),is given bys

- 91f52 ¥ e1fs3 * Oirs, (4.27)

©1ps(t) = e1fs1

4,9 NATURE OF ARMATURE CURRENT AND MOTOR SPEED

The steady state armature current in duty (as also in
freewheeling interval) consists of four components [eqns. (4+.18),
(4%.19) ] which are as belows

.‘ Y 3 . ° o y )
(1) lds1 > b N (also lfs1 y 1f52) These components of current,

having frequencies 51 and 32 respectively are exponentially

ds

varying sinusoidal components whose amplitude depends

upon the input voltage and duty factor.
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The pattern of variation of these sinusoidal components
in duty as well as freewheeling intervals repeats itself
in each chopper cycle, and therefore, has a frequency of
repetition equal to the chopper frequency.

(31) 1., (alse ip )s This is a non-varying component, which

3 *3

depends upon the magnitudes of input voltage and uniform

ds

component of load torque TLo'

(ii1) 14a (also ifsu)g This represents a sinusoidally varying

alternating component of current varying at the frequency
of load torque pulsations wq. Its magnitude depends
upon Ty 4.

The steady state speed during duty and freewheeling inter-

vals [eqns. (4.26,%,27)] also has four components (8 ,0 ,
9 1ds1 1d52

and ©
3

6 ) similar to those of current discussed above.
1ds 1dSu

The resultant arma .ure current anc speed is the sum of
the above four components and comprise of a uniform component
superposed by the sinusoidally varying components. The frequency
of one of these components is w, while that of the other is same
as that of the chopper [Figs.W.4,4.5]. These oscillations are,
hereafter, referred to as low frequency and high frequency oscil-

lations respectively.
4.10 TYPICAL PERFORMANCE STUDIES

The performance of a typical system is computed using the
method given in section 4.5-4.8, and the results are used to

draw inferences regarding the performance features of such drives.
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The drive represented by Fig.4.1, with the following data
is analyseds
System Datas
Motor cnd the Mechanical Syvstems*

armature inductance including choke = 0.16 H

other data are same as given in section 2.7.
Chopper*

200 Hz

frequency

duty factor 0.6

The dependence of performance on various factors is
graphically depicted in Figs. 4.6-4.18 . In these studies the
load torque is taken to comprise of a sinusoidally varying compo-

nent TL1 superposed on a non-varying component TLO as shown in

Fig.%.8. The frequency of load torque pulsation w, 1s taken
equal to the average value of steady state speed w (as discussed

in section 2.3). The value of o, 1s equal to é1ds (as given in

3

section 4.8). This value of load torque frequency implies that
the load torque completes one cycle in one revolution of the

machine shaft.

4%.11 STEADY STATE PERFORMANCE

The steady state performance under normal operating condi-
tions is shown in Figs.4.6-4.12. Under certain specific condi-
tions, the system experiences resonance characterized by large
pulsations in current and speed [ Figs.W%.13-4.16]. The switching-

in transients of armaturc current and drive angular speed are
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shown in Figs.%.17,%.18. The results and inferences therefrom
are discussed in the ensuii ; paragraphs.

Figs.4.6 and 4.7 shovw the instantaneous variations of
steady state armature current and speed for two chopper cycles en
an expanded scale. For the case of constant load torque, the
pattern of variation of speed, current and twist in steady state
condition repeats for each chopper cycle as shown in Fig.W.6. It
is observed that the instantaneous armature current rises in duty
interval, while it decays in freewheeling interval. These varla-
tions are exponential but appear to be linear in the diagram due
to the fact that the value of chopper frequency is quite high.

The speed first falls and then rises during ¢ duty interval and
vice-versa for freewheeling interval.

For a pulsating load torque, the values of armature
current, speed and twist in the shaft for subsequent chopper cycles
under steady state are different as shown in Fig.4.7. This is
due to the fact that magnitude of load torque in the subsequent
chopper cycles does not remain same. The load torque in Fig.4.7
varies sinusoidally but this variation appears linear as it is
drawn for a very short interval of time. For a pulsating load
torque the current rises in duty interval and decays 1in free-
wheeling interval as for the case of constant load torque. Similar-
1y the speed decreases for part of duty interval and then rises
for remaining part of duty interval and vice-versa for free-

wheeling period.
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The magnitudes of variation of current and speed change
in each successive chopper 3ycle and the wnole pattern repeats
after a lapse of time equal to the time period of load torque
pulsation (27/w,). In other words, one set of values of current
and speed repeat after n' chopper cycles, Where n' is the ratio
of chopper frequency to load torque frequency. This is due to the
fact that the load torque variation completes one cycle after n'
chopper cycles. The variation of armature current for one cycle
of load torque pulsation is shown in Fig.4t.9.

For a load torque as in Fig.4%.8, the variations of average
values of armature current and speed (average over a cycle of
chopper) are shown in Figs. 4.10,4.11 . It Is observed that if
the load torque is pulsating in nature, the armature current and
speed averaged over a chopper cycle also pulsate at a frequency
which is same as that of the frequency of load torque pulsation.
However, they have a phase difference with respect to the load
torque. The amplitude of these pulsations should be minimized in
order to improve the performance. This can be achieved by increa-
sing the system moment of inertia as discussed in section 2.8.3 .
It can, therefore, be inferred that if the load torque is periodic
in nature such that it can be resolved into a constant component,
and a number of alternatine components, then the armature current
and speed averaged over a chopper cycle will have a similar

nature,



CURRENT (pu)

ARMATURE

LOAD TORQUE (pu) —

)

e |

(
o
w0

RE

ARMATURE

NT (p

=

o

o

= |

——

97

Y - AVERAGE TORQUE
RIS oo o ot e e g e e e SRR R e R
25—
l | I [
0 0:-025 0.05¢ 0-075% 0100 0.125
TIME (&) —

FIG. 4.8 _ VARIATION OF LOAD TORQUE

/\VAV \’\/ ’V ~\/;-\/\ /\/\/\/\ /M /v \\ /\/\/ /x /\f\/ A

S
(]

CUR

o ) B
oy @

B = S |

o

(—‘\\

D050 00750 0-10C 0.12°%
TEME ‘[:50)) s

o
o
=]
%]
o

FIG. 4.9 _VARIATION OF STEADY STATE ARMATURE
CURRENT

_— CURVE a:: DUTY FACTDR = 0.8
i R CURVE b BUTY FACTOR = o8
J —— — = UNIFORM COMFONENT OF CURVE a
,[ —— UNIFORM COMPONENT OF CURVE &
| |
0 0.025 0.050 0.075 0.100 04125
TIME (5) —=

FI1G.4.10 _ VARIATION OF STEADY STATE ARMATURE CURRENT

AVERAGED OVER A CHOPPER CYCLE FOR DIFFERENT
DUTY FACTORS



98

SPEED (pu) —a

“‘+’
| ~ it l |
0 0.02% 0.0580 0.075% 0100 0125
TIME(g) —»

FIG.4.11 _ VARIATION OF STEADY STATE SPEED AVERAGED
OVER A CHOPPER CYCLE FOR DIFFERENT DUTY

CURVE o :DUTY. FACTOR =10.8
———t . CURVE b2 'DUTY FACTOR = 0.6
T ————— UNIFORM CCMPONENT OF CURVE g
3
ver 8- ——-—— UNIFORM COMPONENMT OF CURVE b
x
<
o
e
e
i_.:'_:
=
—

| | | |
] 0.025 0050 0.0758 0100 D-12¢
TIMES 1 g ) -

FIG.4.12 _ VARIATION OF STEADY STATE TWIST

AVERAGED OVER A CHOPPER CYCLE EQR
DIFFERENT DUTY FACTORS



_99_

4.11.1 Effect of Chopper Duty Factor and Frequency

The effects of change of chopper duty factor and frequency
on the performance have been studied and following observations
mades

(a) As expected, an increase in the value of chopper duty
factor increases the average values of armature current
and speed as shown in Figs. 4.10,%.11

(b) The amplitudes of pulsation in armature current and speed
decrease appreciably with the increase in chopper duty
factor as shown in Figs. 4. 10,%.11 .

(¢) The amplitudes of pulsation of shaft twist as well as its
average value are not much affected by change in chopper
duty factor [Fig.Wk.12].

(d) The average values of armature current and speed as well
as their amplitudes of pulsation are not affected by

change in chopper I‘requency.

TABLE 4.1 ¢ Effect of Chopper Duty Factor on Steady State

Per formance
S. | duty current | speed twist
No./factor layeragdpul satioraveragedpul sationaverage value pulsation
value i value V4 rad y
pu ] pu )

2

§+ Oh 0.842 2,24 087 3.15 1%.07 = 0 14,9

B gl o8EF Aom 0.708  0.60 14,08 x 1072 15.1

The velues of aq 4 ay 5 P (in rad/sec) and

P1 9 52 s Op1 9 Opo

demping ratios &4 , @2 are as below?



=100

a1 1205? 9 S‘l 7.87 5 (Dn1 = 1“’.83 9 E1 = 0.8""7

I
1
1

a, = 0.089 , By = 519.8 , w p = 519.8 , £, = 0.173 x 1073

The value of load torque pulsation frequency=oas= 53,1 rad/sec.

4,12 PRRFORMANCE UNDER RESONANCE CONDITION

The system, under certain specific operating conditions,
exhibit peculiar performan-e as large peaks in armature current
and speed are observed. Such a situation arises when the frequency
of, at least, one of the two forcing functions of the system
(applied voltage and the load torque) approaches the natural fre-
guency of oscillation Wy o This phenomenon may be referred to as
'resonance’'. The system performence under resonance condition has
been studied and various curves are plotted to illustrate this
situation.

The variation of armature current and speed at three
differert frequencies of loc 1 torque (viz.. o  , g w, ) have
been plotted for two different chopper frequencies (200 Hz and wn2)
as shown in Figs. 4.13-4%.16 . As the value of w,q, for practical
systems, is very small [Table %.1], the performance at chopper
frequency equal to W1 has not been studied. The variation of
armature current and speed for above three frequencies of load
torque are plotted for three subsequent chopper cycles keeping the
value of chopper cycle fixed at 200 Hz as shown in Figs. 4. 13,414 .
It is observed that if the load torque frequency approaches Wy 59
large pulsations in armature current and speed are noticeable.
These pulsations are comparatively cmall for ¢,= o, and o=

1 S
Thus if the load torque frequency is equal to the natural frequency

o
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of oscillation Wpo the system experiences resonance.

Figs. 4.15,%.16 shw a plot of the variations of armature
current and speed, for a different chopper frequency (equal to mn2)
for above three frequencies of load torque. It is observed
that large pulsations in current and speed are obtained for all
these three values of frequency of load torque pulsation. This
clearly shows that the resonance occurs when either the frequency
of load torque pulsations or that of chopper becomes equal to Wy e

The following inferences can, therefore, be drawn?

(1) The armature current and speed show very large pulsations,
and large peak values when either the chopper frequency,
or the load torque frequency; or bothk, approacn the natu-

ral frequency of oscillation For practical d.c.

e’
drive system with an elastic shaft, under normal operating
conditions, these oscillations, which are known as torsio-
nal oscillations and are due to non rigidity of shaft, are
of high frequency and low amplitude. As such these osgecil-
lations are not noticeable. However, these oscillations
attain large amplitudes at resonance resulting in abnormal-
ly large values of current and speed. It must be noted
that resonance phenomenon is caused by a combination of
factors. These factors are:

(a) an elastic mechanical link

(b) periodic forcing functions and

(¢) the frequency of at least one of the forecing

functions approaches the natural frequency of the

system W
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(11i)

(iv)
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The value of T specially for low values of moment
of inertia and high values of tors.onal stiffness, may be
quite high and may be close to the normal operating fre-
quency range of choppers. As such there is a strong
possibility of resonance, even in systems with choppers
operating in their usually normal frequeﬁcy ranges.
Resonance can be avoided by suitably choosing the values
of torsional stiffness (which itself depends upon length
and diameter of shaft) and system moment of inertia such
that the value of w5 is far away from the range of fre-
quency at which the chopper is to be operated.

Care hag also to be taken that ®, 5 doss not match the
frequency of load torque pulsations Wy * As the frequency
of load torque is a gystem requirement, and not always
the designer's choice, once again the only way to avoid
resonance 1s a suitable selection of system parameters to

avoid such values of<mn2.

The value of 51 depends mainly on the moment of inertia
and armature circuit inductance. For practical systems

Py 1s observed to be low and may even vanish for low
values of inductance. It is observed that for the case
under ccnsideratio:., the value of 1y 1s much greater than
a, @d B, is much lesser than 52 [Table W.1]. A high value
of 0y is measure of large damping ratio &, and, possibly,
because of thig reason resonance is not observed at

w1= Op1
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4%.13 TRANSIENT STATE PERFORMANCE

The armature currenc, during transient period, consists
of four time decaying components 11 9 1o s it3 and i), ; in
addition to those which appear under steady state, as given by
eqn. (4,16). These components depend upon the input voltage and
the load torque. The angular speed also has similar components
[eqn.&. 24) 1,

The nature of switching-in transients of armature current,
for the initial few chopper cycles, is shown in Fig.4%.17(a). It
1s observed that the current rises rapidly and decays slowly
during the duty and freewheeling intervals respectively. These
variations are exponential in nature. The variation of armature
current, averaged over a chopper cycle, is shown in Fig.4.17(b).
As expected, the average current rises for first few chopper
cycles and attains a peak value, which depends on the system
parameters. Thereafter, it decays slowly till steady state is
reached, When the average current becomes constant.

The rating of the main SCR of the chopper is determined
by its peak instantaneous current, and the maximum average current
passing through it. This maximum average current can be obtained
from a plot of the current taken from supply in a chopper cycle
[Fig.4.17(a)], the cycle in this case beirg chosen near the peak
of the current variation shown in Fig.4.17(b).

The variation of average angular speed (average over a
chopper cycle) is shown in Fig.4.18. 1In the analysis presented,
a&s the motor is switched-in with considerable load on the shaft.

7

the characteristic shows negative speed (dotted curve) for the
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initial few chopper cycles. The motor actually starts as soon as
the motor developed torque >vercomes the lonad torque. Thereafter
the motor accelerates and finally the speed becomes constant as

steady state is attained.

4,14 MECHANICAL CONSIDERATIONS

The non-rigidity of shaft produces angular tWist,(91 - 92).
The va.ue of twist determi.es the shear stress in the shaft in
accordance with the relation:

Q = G(e, - 92)d/21

The mechanical failure of the shaft may occur in the
following wayss
(i) TFailure of shaft due to excessive shear stress produced

by large values of average twist under normal operating
conditions. It may also fail due to the large values of
instantaneous twist under resonance condition. The
failure in the lattcr case is termed as dynamic failure.

(ii) Shaft may experience 'fatigue' due to the variations in
the values of twiet., The failure due to fatigue depends
upon the magnitude and frequency of alternating components

of twist.

For the case unde: consideration, Figs. 4.6,4%.7 show the
variations of twist during a chopper cycle for a uniform load
torque and pulsating load torque respectively. The variations of
average values of twist (average over a chopper cycle) at steady
state are shown in Fig.%.12. Since the value of twist depends

on angular positions 6, and 92, the twist also varies with time
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and has two alternating components, one at load torque frequency
and the other at chopper f1:quency [egqns{.20 - %.23))These compo-
nents of twist may cause failure of shaft in manners described
above.

For the case under study, shear stress under normal ope-

3 rad) while

rating condition is 20.6 Kg/cm2 (twist = 16.16 x 10
under resonance condition its value is 8172 Kg/cm2 (twist = 0.6
rad). The shear stress unaer this condition is much higher than
the ultimate stress which is 3700-%500 Kg/cm2 (Indian Standards

Codez1570-1961 for C-14 steel). As such the shaft may fail under

resonance condition.

4,15 CONCLUSIONS

The performance of a chopper controlled separately excited
d.c. motor driving a mecﬁanical load with a periodically varying
load torque and elastic mechanical link is obtained using a non-
iterative technique of anaiysis. Closed-form solutions for arma-
ture current and speed are obtained which give a good insight
into the transient as well as steady state performance. Such
analyses are useful for proper design of system elements. Study
of a typical performance, as obtained by the above analysis leads
to the following inferencess:
(a) The steady-state armature current and speed contain alter-
nating components superposed on a non-varying component.
The frequencies of these components depend upon (i) the
frequency of the alternating components of the load

torque (ii) the chopper frequency, and (iii) 8, and B,
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(e)
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which depend upon system parameters like armature resis-
tance and inductanc :, moment of inertia, damping and
torsional stiffness of shaft.

The amplitude of these alternating components depends
upon, amongst other parameters, the amplitude of bhe-pul-
sating component of the load torque and.the chopper duty
factor. The pulsations of current and speed of frequency w4
can be reduced by increasing the moment of Iinertia of the
rotating parts of the system.

The system experiences torsional oscillations of frequency
®p 5 which depends upon torsional stiffness and moment of
inertia of the system. The amplitude of these oscilla-
tions under normal system conditions is small.

The system experiences resonance characterized by large
pulsations in current and speed when the frequency of any
of the components of load torque, or that of chopper, or
both approach the natural frequency of torsional oscilla-
tions of the system. Under such conditions the amplitudes
of pulsation of current and speed as also their instan-
taneous values may become abnormally large. It 1s obser-
ved that even at the usual values of chopper frequencies,
resonance may be experienced. Under resonance condition,
the twWwist in the shaft will be quite large and the mecha-
nical failure of shaft may occur due to excessive shear

stress.
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While designing a system, the load torque must be analysed
to ensure that natural freq .ency of the system does not match any
of the component frequencies. Resonance can be avoided by proper-
1y choosing the value of tcrsional stiffness and system moment of

inertia.
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ANALYSIS AND DESIGN OF PULSEWIDTH-MODULATED CLOSED-
LOOP D,C. MOTOR DRIVE WITH ELASTIC COUPLING

5.1 INTRODUCTION

In a variety of industrial applications using a d.c.
motor drive, a desirable performance feature is to obtain a regu-
lated speed of drive during its operation. Automatic regulating
schemes with closed~loop d.c. motor drives are being frequently
employed for obtaining the desired control of speed. Such schemes
comprise of a d.c. motor, a controller with a comparator, and a
feedback system. By introducing a feedback path from the output
to the controller, any deviations in output from the desired level
can be included in the decision making process by the controller.
The controller may be as s.mple as a lineer amplifier or as
complicated as a full size computer. The use of a linear ampli-
fier in closed-loop drives is not preferred as it involves exces-
sive dissipation of power and results in an inefficient operation.

In order to avoid the power dissipation in the linear
amplifiers, they have been replaced by the 'sSwitching Amplifiers’.
Such aaplifiers can be ope.ated in a switched mode where the
thyristors are turned on and off like a switch., When the ampli-
fier 1is turned on, voltage across its thyristor is negligible;
and when it is turned off, this voltage is large, but the current
is zero. 1In elther case, the resulting power dissipation in the

amplifier is small. Amplifiers operated in this mode are called



-112-

switching amplifiers. The switching can be performed in various
Wways. One simple method is to switch the amplifier at a constant
frequency and vary the 'on' or 'off' periods of thyristor accord-
ing to need. Such amplifiers are called 'Pulsewidth-Modulated
Amplifiers’.

The method of pulsewidth-modulation (PWM) controls the
average value of the amplitude of the modulated pulse wave signal
by changing the width of the pulse. This method is essentially
similar to the time ratio control (TRC) method of chopper control
discussed for open loop drives in Chapters 3 and 4, For a given
amplitude of the pulse given to the motor input, the width of the
pulse is a function of the desired value of motor speed. In case
of open loop drives, the pulsewidth is kept constant at a value
determined by the desired speed of motor operation.

For closed loop d.c. drives, the method of pulsewidth
modulation provides a pulse? input to the ivotor and controls the
average voltage across the armature to maintain its speed at the
desired level. This is achieved by a suitable control of the
pulsewidth (or duty factor) with regard to the desired change in
drive speed. As soon as the motor speed deviates from the set
speed, the controller suitably changes the pulsewidth of the modu-~
lated rave to maintain the speed at the sct level. Thus, unlike
open loop drives, the pulsewidth in the case of closed loop drives
is not constant but changes contimiously with regard to the change
in speed from the desired level.

The application of PWM technique for controlli=~ the speed

e -

of closed loop d.c. drives has attracted the attention of
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researchers in recent past. Maisel [36] has given the model of
such a control scheme. Jacob Tal [5%] has proposed the use of
switching amplifiers for d.c. servo systems in order to reduce
the power dissipation and has analysed the operation of PWM
amplifiers for different modes of operation. Taft et al. [53]
have analysed the operation of a d.c. position control system
using PWM techniques and have discussed the advantages of employ-
ing a current loop around the amplifier. Unnikrishnan [58,59]
has given a technique for maintaining constant average value of
the output of a de-dc chopper controlled converter and has studied
the stability of such a system.

The work available in literature deals with the analysis
of PWM controlled d.c. drives assuming the mechanical coupling
between motor and the load to be perfectly rigid. In all practi-
cal systems, this link is always elastic. The degree of elasti-
city devends upon the size 2nd material of the shaft. The load
torque, in many applications, may not be constant but may have a
neriodic variation. This nature of load torque may be a charac-
teristic of the driven mechanism or a consequence of some mecha-
nical factors of drive system [seetion 1.1). The influence of
elasticity of shaft and periodic variation of load torque, on the
perforr mnce of an open loor d.c. drive fed by a PWM power supply
has been presented in Chapter-4%. However no work appears to be
available in literature wherein the effect of elasticity of shaft
on the performance of a closed loop d.c. motor drive fed by a

PWM power supply is investigated.
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5.2 WORK PRESENTED

In this chapter, the analysis and design considerations
of a closed-loop d.c. drive employing a separately excited d.c.
motor coupled to the load through an elastic coupling and fed by
a PWM power supply are presented. A mathematical model of the
system is given and the transfer function is obtained. The
influe-ce of system parameters, like amplifier gain, torsional
stiffness of shaft and armature time constant, on the stability
of the gystem is studied using the D-partition technique. The
effect of value of amplifier gain on speed and current pulsations,
and steady state error in speed are discussed. The devendence cf
the value of amplifier gain required to give minimum settling
time, on torsional stiffness is investigated. Conditions leading
to abnormal operation like resonance are identified. The analysis
includes the cases of constant load torque as well as a periodi-
cally varying load torque.

The system analysed, as shown in Fig.5.1, consists of
three basic components: (i) the comparator (ii) the controller
and (iii) the motor coupled to load. These are discussed belows

(1) The Comparator

The comparator has two input signals, one is the reference
signal vy which is proportional to the desired drive speed Wy
and the other is a feedback signal Vi obtained as tachogenerator
output proportional to the actual speed of motor é1. The compara-
tor compares these two signals and the difference, which is the

error signal (v - v ), is obtained as its output.
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(ii) The Controller

The error signal obtained from comparator is the input to
the controller. Here the error signal is amplified through an
amplifier of gain Ka and a ramp signal of amplitude Ea is added
to it, as shown in Fig. 5.2(a). The combined signal is compared
with a threshold level Et and the resultant signal activitates
the thyr—istor through a digital control processor to give a
pulsed output. Thus the controller modulates a d.c. power source
voltage V to give a pulsed output voltage as shown in Fig. 5.2(b),
the duty factor of which is a function of error signal given to
its input. Any departure of speed from the required level changes
the error signal which controls the duty factor o and hence the
average voltage (V) applied to motor. Thus, the desired speed
level is maintained.

The duty factor o(t) which is a function of error signal

can be r~xpressed as?

K

E
o t a
alt) =1 - g2+ g2, - v) (5.1)

(iii) The Motor and the Load

The drive system analysed consists of a separately excited
d.c. mc Sor with an elastic shaft connectin- the motor to the load.
The analysis takes into account a periodic variation of load
torque which consists of a constant component TLO superposed by a
pulsating component Ty, as shown in Fig.2.2(b). The frequency of
pulsating component of load torque wy 1s teken equal *~ the set

speed (expressed in rad/s) implying that one cycle of load torque
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is completed in one revolution of motor shaft. Other frequencies
of load torque pulsations in multiples of motor shaft speed can
also be easily accounted for in a similar manner.

For the analysis of the above system, a mathematical
model is given. In this model the moments of inertia of the motor
and the load as also the damping factors are considered separately.
A block diagram of the system is obtained and its transfer func-
tion derived. The 'D-composition technique' has been used to
obtain regions in parameter plane which give sets of values of
system parameters (torsional stiffness, amplifier gain and arma-
ture time constant) for stable operation. In many drive appli-
cations, a desirable performance feature may be to bring back
.the drive speed to its required level as fast as possible, after
a transient disturbance or change. The measure of the recovery
time is known as 'settling time'. The analysis includes the
consideration of gsettling i{‘me and the valie of amplifier gain
that gives minimum settling time is determined. This value of
amplifier gain is observed to be significantly dependent upon
the degree of elasticity of shaft. The system equations are
expressed in state model form and solved using numerical techni-
gque to obtain the response, of a system so designed, in transient
as Wel. as steady state coirditions. The enalysis is illustrated

by an example and some inferences have been drawn.

5.3 PERFORMANCE EQUATIONS AND TRANSFER FUNCTION

The equations governing the performance of system shown

in Fig.5.1 can be written ass
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vcc(t)=L%+Ri+Kmé1
k4 =7, B+ 8 6, + cle, - @,)
%, =7, 8+ B, é2 + C(6,- 0,)
Ty, = *hpy 83N (m1t— ?)
¥ ey =Y a(t)/KC
¥s = Kt é1

(5.2
(5.3)
(5.4)
(5.5)

(5.6)

The eqns. (5.2)-(5.5) are same as eqns. (2.1)-(2.4%).

Taking the Laplace transform of above equations and solving,

system can be obtained as shown in Fig. 5.3.

I(s) TV gls) - K, é1(s)] = 1/R(1+ s L

61(s)/LK, I(s)/C + 6,(s)]= 1/[1+ B3, (1+ s ¢ _,)/C]

92(5)/[C 91(5) - TL(s)]= t/C[1+ & B2(1+ S Tmz)/C]
Vo(s) = K, 91(5)

Vr(S) - Vo(s) =V a(s)/Kc

(5a7)
(5.8)
(5.9)
(5.10)
(513

Using equations (5.7 - 5.11), the block diagram of the

transfer function G(s) can be obtained as:

. 2
4 91(5) b (a3s +a4s+a5)Ke K,

G(s) = s

VI‘(S) L 3 - +

A.‘ S +A25 +A3S A)+S A5r
The closed loop transfer function is
2
G(s) lays~ray sta )k, X,

1+K, G(s) ~ L

A1s +A233+A3s2+Aus+A5+K(a332+a43+35)

The open loop

{5.:12)

(5.13)
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From eqn. (5.13), the characteristic equation of the

closed loop system can be obtained as?

A, Py A, o Ay s+ a5t hs * K(a, g + 8, 57+ ag) = 0

(5.14)
where
A = 7a By Byt T
Ay = By By oy v T T By B2(Tm1 R Tm2)
A3 =%g B By ¥ 5y BQ(Tm1 3, Tm2) e Ta(B1 Tm * B Tm2)
* Ky Ky By vpo/R
by =By By, + C 1 (B*B,) + C(By 7, + By Tp0)
it i 3 B2/R
hs = c(B1 P B ¥ E K/
83 = Bywpo/Ry &y, = BB, 85 = /Ry oy = 34 /By
Tyo =TofBs o, K=K K K , X, =K V48,

5.4 THE D-COMPOSITION TECHNIQUE

The effect of variation of system parameters on dynamic
stability of system can be studied using the D-composition

technique [40,50]. The procedure is briefly explained below:
5.4.1 Linear Case

If « and B are chosen as the parameters of interest
appearing linearly in the characteristic equation whose effect
on dynamic stability of system is to be studied, eqn. (5.1%) can

be expressed in terms of a« and B as®



-121=
a I;{s) + p ot ls) + f3(s) =0 (5:15)

where f,(s), f,(s) and f3(s) are polynomials in s with constant
coefficients. Substituting s = jow 1in eqn. (5.15), and equating
the real and imaginary parts on the left hand side to zero, two

equations are obtained as?

@ 7@ + B £0) + £33 (@) = 0 1

: (5.16)
2]

where f11(m),...,f32(w) are polynomials in o With constant

a f12(w) =B f22(m) + f32(m)

coefficients.
Solving eqns.(5.16), the values of o and B in terms of w

can be obtained as?

a = [f32(w) £ (w) - f31 (w) f22(m) ]/A1 1

> Lhear)
and p = [£) () £33 @) = £; () £3,() 1/, (

R

where A, = f11(w) £ (w) - f12(w) f21(w)

2e

The values of a and 8 are functions of w as shown in
eqn. (5.17). Varying the value of o from zero to infinity, a
pair of values of a and B can be obtained for each value of w.
These values of o and B, varying w from zero to infinity, can be
plotted in (a-B) plane. A number of points thus plotted can be
joined by a smooth curve, A boundary obtained from sﬁch a curve
is known as the D-partition boundary. Usually eans. (5.16) cease
to be linearly independent for w = 0 and w = . Hence the
D-partition boundary as plotted above, is supplemented by

'Special Lines' Whose equations are obtained by substituting
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w =0 and ® =% in eqgn.(5.15). The D-partition boundary and the
special lines are hatched to determine the values of a and B
which give most stable operation of the system. The hatching
rule, as suggested by Neimark [40], is followed in the work
presented in this chapter. The hatching procedure is as belows:

For positive values of Ay, the left hand side of the
D-partition boundary is hatcheds and when A1 is negative, the
right hand side of the boundary is hatched. To cover the entire
region of s plane, the D-partition boundary should actually be
plotted for values of w varying from minus infinity to plus
infinity. To take this into account, the D-partition boundary
is plotted varying w from zero to infinity and hatched twice on
the same side. The special lines are hatched in a manner such
that, near the point of intersection of the special line and the
D-partition curve, the hatched side of the special line faces
the hatched side of the D-partition curve. Further on,the

hatching of the special line remains unchanged.

Determination of the most stable region in (a- B) plane:

The D-partition curve and the special lines divide the
entire (a- B) plane into a number of regions. To determine the
most stable region; the number of roots of the system character-
istics equation located on the left hand side of s plane,for
each region in a- f§ plane,is determined in the following manner:?

The number of roots on the left hand side of s plane
corresponding to any one of the regions of (a- B) plane is

assumed an arbitrary number, say n. Now, on moving from a
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hatched to an unhatched side of the D-partition boundary in

(a- B) plane, one root is lost on the left hand side of s plane.
Similarly for the boundary hatched twice, two roots are lost on
the left hand side of s plane on moving from a hatched to an
unhatched side. Following this procedure, the number of roots
present on the left hand side of s plane for each region of

(a=- B) plane is determined. The region having maximum number of
roots is marked as the most stable region. However, this method
determines the relative stability and the most stable region
obtained indicates the probable region of stability of the system.
As such the selected values of o and B, obtained from the most
stable region, are substituted in the system characteristics
equation and the system stability is verified by known methods

of determining the stability.

5.%,2 Non-Linear Case

In some cases, the parameters of interest, « and § may
not occur linearly in the characteristic equation. In such cases,

eqn. (5.15) may modify to:

a £,(s) +p £,(s) + f3(s) + & fled = O

The D-partition boundary, for this case, can also be
obtained following the above procedure. In this case two
D-partition boundaries, instead of one boundary as for linear
case, Will be obtained. The two boundaries are properly hatched
and the most stable region is determined in a way similar to

that for the linear case.
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5.5 TYPICAL CASE STUDY

The specifications of the system studied, as an example,
ares
inductance of armature including choke = 0.16 H

threshold signal voltage,Ea = 2.0V

amplitude of ramp signal,Et e ¥

The values of other system narameters are same as given in
section 2.7. The data for mumerical technique [11] used to

obtain system response in time domain are as belows

initial step size = 0.1

10"*

il

maximum absolute allowable single ster error

1077

minimum absolute allowable single step error
maximum allowable step'size = 0.1

minimum allowable step size = Zl.O'-6
reduction factor for step size = 0.5

starting values of dependent variables = zero

starting value of time = zero s

printing time interval = 0.005 s

5.6 EFFECT OF VARIATION OF SYSTEM PARAMETERS ON DYNAMIC
STABILITY

The D-partition technique can be u~ed for studying the
effect of variation of system parameters, taken only two at a
time. In the present case there are three important parameters
of interest; C, . and K. The study aims at determining sultable

values of gain K and armature time constant oy LOE 8 known value

of torsional stiffness C. Therefore, the dynamic stablility of
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the system specified in section 5.5 has been studied for varia-
tions in these parameters in the following two combinationst®

(1) =_, K varied 3 C kept constant.

a?

(i1) € , K varied j; 7_ kept constant.

5.6.1 Variation of Armature time constant T, and gain K

In this case the parameters of interest «,B selected for
excursion are armature time constant and gain K. Egn.(5.1%) can

be written ass

T4 (K, s)+ * K, §> + K3 2 + E, a) ¥ K(a3 % + &y, s+ as)
+ (K 3+ Kg s+ Ky s+ &) =0 (5.18)
where

Ky = By By Ty T

Ky = By Bylogy * 7))

Ky = By By + C(By moyy * By mpp)

K, = @By ¥ B

Ry B By B2(Tm1 " Tm2) * Ky Ky By myo/R

Kg = By By * C(By wpy * By ) * K, Ky By/R

Substituting s = jo in eqn.(5.18) and solving for 7, and
K’

Ty = (Py Q= Py @)/

and K = (Q.‘ S2 - Q2 81)//31

where P, = Ry w2 ’ P,z o

it 2 LS
% Fhy ~Eg ™ o B " Fgmeily o
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L 2

B e = < 3
S, Ky, o K3 w . S, Ky, o = Ky

and A1 = S1 P2 - S2 P1

The D-partition boundary in the (r, - K) plane is shown
in Fig.5.4(a). TFollowing the hatching rules discussed in section
5.4, the region of stability is determined. The entire (Ta - K)
plane is divided into regions marked R1----Rg and the number within
parentiesis denotes the re'ative number of roots present in left
half of s-plane. The most stable regions are Ry and R3 which
correspond to the maximum number of roots (n). As the region R3
pertains to negative values of armature time constant, it is not
a feasible region. The most stable region, therefore, is region

R This reveals that any combination of positive values of time

1°
constant T, and gain K will lead to stable operation. From the
consideration of desirability of continuous mode of conduction, a
large value of ¢, can be selected. However, a large value of
inductance makes the systen response slugrish. As such, 2 suitabl
value of T, should be chosen which gives a continuous conduction
of armature current without making the system response much slug-

gish. For the case under study, a value of armature time constant

equal to 0.04 s is selected.

5.6.,2 Variation of Torsicnal Stiffness C and gain K

In this case the parameters of interest a and B are the

torcional stiffness C and gain K. Ean.(5.14) can be written as?

C(K7 52+ Kg s+ K9) + K(a3 s ay, a) * CK(K1O) + (A, sbr+A2 o

+ Ky g% + Ky 5 s) =0 (5.19)
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* B and

where K, =q.(B; 7.4 2 Tmo

Kg = Ta(B1 * BZ) e

1 Tml v,

= =+ ;=
K B 32 Ke Km/R

9 1
Kyq = 178

Sy Sy By Bt By Boleny toany) v KL K By w8
K;, = By B, + K, K_B,/R

It may be noted that the parameters of interest, in this
case, do not occur linearly in the characteristic equation (5.19).
Substituting s = jo and solving, two independent sets of values

of C and K are obtained [50] ags

C ={-e+ (e?- “ad)}/2a , Kk = (D, - G,C)/(D, *+ H,C)
¢' = {-e - (e - Wad)}/2a , K'= (D, - 6,C") /(D * H,C")
where H1 = K10
o= e - gt B E o
S T Sirtl, B8y
2 4 2 & 3
Dy =Moo -Kyol,D, =K, 0-40
& = G2 Hy y b= H g o
d = —(D2 a3 m +* D1 ay, w) g @ = H1 D2 - G2 a3 m- - G1 ay,

My =-aC +DbK +0 ayo* 6, a, 02

Bp=-a C'*bK'+ G a0+ Gy ay o
Plotting each set of values of C and Ky i.e. C-K and
C'- X', two D-partition boundaries are obtained as shown in

Fig. 5.4(b). 1In this case also the entire region of C-K plane

1s divided into different regions R1""R6 and the most stable
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region is R, containing a meximum of (n) roots in the left half
of s plane. It is again observed that any set of positive values
of stiffness C and gain K can be selected to give a stable opera-

tion.

5.6.3 Determination of Amplifier Gain Fcr Minimum Settling Time

From the stable region Ry of Fig. 5.4(b), a number of
values of gain K can be selected for a given value of torsional
stiffness C. Out of all these values of K, a particular value
which gives minimum settling time and hence the fastest transient
response may be determined. This value of K has been determined
as explained belows

Substituting s = -0 * jw 1n characteristic equation
(5.19), a set of different pairs of D-partition boundaries can be
obtained for different and increasing positive values of 0. In
each case, the most stable region can be determined as before.
Larger the value of o, narrower is the most stable region and
there exists a maximum value of ¢ beyond which this region dis-
appears. This critical value of ¢ may be represented as oo+ The
D-partition boundaries for o = ¢, can be plotted and most stable
region marked. A value of gain K corresponding to a given value
of torsional stiffness C selected from this region will give a
minimum settling time. It can, therefore, be inferred that the
value of gain K is directly influenced by torsional stiffness C,
if the system is designed for a minimum settling time.

For the case under study, value of 0, 1s obtained as
6.3. TFor this value of o, the D-partition boundaries are plotted

as shown in Fig.5.5 and the most stable region is R1 containing
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a maximum number of (n) roots in the left half of s plane. The
value of gain K selected frum this region s 2160 corresponding
to a given value of C equal to 6750. The corresponding value of

amplifier gain Ka can be calculated as$

Ka . Ea/Ke Kt %
For the case under study, the value of amplifier gain Ka s
obtained as 76. As the D-partition technigue indicates only the
probable region of stability, the system stability (for Ka = 76)
has been verified by using Routh :riterion.
5.7 SYSTEM PERFORMANCE

The response of the system thus designed, in time domain,
can be obtained by expressing eqns. (5.1 - 5.6) in state model

forms:

x=Ax+Du (5.20)

vhere [A] and [D] are given by eqns. (2.7) and (2.8),

Va(t) . : b &
T = T, snd X = [91 o, 92 92 14

The duty factor a(t) can be expressed as:

=

ST
i = el -

all) B T —-gliie Sy, ~ 8. )

Ea fa d 1

Eqn. (5.20) is solved using numerical technique [11] to

obtain the system response discussed below:
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5.7.1 Transient State Performance

For the system under study, with C, r_ and K, chosen as

a
parameters of interest and their values determined in order to
give a stable operation with minimum settling time, the switching-
in transients in motor speed and armature current are as shown in
Figs. 5.6 and 5.7 respectively. It is observed that the motor
initially accelerates to a speed slightly higher than the set

speed and thereafter attains a speed which is very nearly equal
to set speed. The difference between the actual speed and set
speed 1s the steady state error. For a short interval of time,

in the transient condition, when the motor accelerates to a speed
higher than the set speed, the error between the set speed and

the actual speed becomes negative and for this duration the duty
factor a(t) remains zero and no voltage is applied to motor.

During part of this period, the current tends to go in the nega-
tive direction (shown dotted) but remains ¢t zero value as it can
not flow in reverse direction due to the inherent characteristics
of thyristor switch employed for modulation. Both the speed and
the current fluctuate during the transient period. The amplitudes
of fluctuation gradually decrease as steady state conditions are

approached,
5.7.2 Steady State Performance

(i) Constant Load Torques

The steady state variations of motor speed and armature
current for the system designed with a constant load “crque are

shown in Figs. 5.8 and 5.9 respectively. It is observed that the
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armature speed and current pulsate under the steady state condi-
tion. The amplitudes of these pulsations are very small., For

the case under study, with K, = 76, the pulsations in speed and
current are 0.00048 % and 0.055 % respectively [Table 5.1]. The
steady state error in speed is also negligibly small (0.001 % for
the case considered). The settling time to give 0.2 7. regulation

of speed is 0.575 sec.
(1i) Pulsating Load Torques

With a pulsating load torque, as shown in Fig. 5.10,the
pulsations in speed and current for one cycle of load torque are
shown in Figs. 5.11 and 5.12. It is observed that the speed and
current pulsate at a frequency equal to the frequency of load
torque pulsation wy. The amplitudes of these pulsations for
K, = 76 are 0.013 % and 26.81 % for speed and current respective-
ly [Table 5.2]. It is noted that the amplitudes of these pulsa-
tions for pulsating load torque are also small but large compared

with those for constant load torque.

TABLE 5.1 ¢ Effect of Amplifier Gain on System
Performance For Constant Load Torque

3. N. gzin pulsations :gsggyiitate settligg time
a sp;ed cuq;ent speed ¥,

1 5.0 0.1663% g 0.013k «

2 10.0 0.02596 0.746 0.0077 1135
3 25.0 0.00865  0.375 0.0029 0.865
L 50.0 0.00051 0.079 0.0012 0.695
5 76.0 0.00048 0.05% 0.0010 0. 595
6 100.0  0.00033 0.032 0.0008 0. 640
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TABLE 5,2 ¢ Effect of Amplifier Gain on System Performance
For Pulsating Load Torque
5. N gain system eigenvalues pulsations sgttling
Ka rad/s speed X current % thug, 280
=12.561 * 3 15.%75
1 0.1 0.932 3.921 “
- 0.098 + j 519.994
=43, 58 + 3 30771
2 05 1.005 13.603 -
o 00131 tj 520.678
-12.487 + 3 42.730
3 1.0 1.279 34,175 "
= 0.%73 = 31. 521,538
—12.44% + 5 52,286
4 1.52 1.371 47, Ll »
- G216 2 § SeR.N3T
-12.1%6 * §  92.997
> 5.0 0.382  39.222 -
- 0.513 + j 528.566
11,702 + j 129,060
6 10.0 0.162 29.762 3
- QP58 5 537,705
-10,306 + 3 193.259
7 25:0 0. 04kt 27. 666 *
- 2.353 + § 567.184
- 8,110 + § 249,562
8 50.0 ¢.02% 27.016 0.745
- 4549 + J 620.931
- 6.325 + 3 281.316
9 76.0 0.013 26.809 0.635
- 6.334% + 3 679.013
- 5.132 + j 299.284%
10 100.0 0.010 26.603 0.680
= 7.3 2§ T304
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5.7+.3 Effects of Amplifier Gain on System Performance

(a) Effect of Gain K on Pulsations in Speed and Current

(i) Constant load torque:
For the case of constant load torque (T;, = 0), the

variation in pulsations of speed and current for different values
of amplifier gain is shown in Fig.5.13. It is observed that an
increase in the value of gain K, decreases the amplitudes of
pulsations of speed and current. The effect of variation of
amplifier gain on settling time and steady state error in speed
is shown in Fig. 5.14%.It is observed that an increase in ampli-
fier gain decreases the steady state error [Table 5.1]. However
an optimum value of gain may be selected which gives minimum
settling time and an acceptable level of pulsations in speed and

current.
(ii) Pulsating Load Torque:

With a pulsating load torque,the pulsations of speed and
current for different values of amplifier gain are shown in
Figs. 5.15 and 5.16 [Table 5.2). It is observed that up to a
particular value of gain at which resonance occurs, an increase
in the value of gain increases the pulsations in speed and current’
[Fig.5.15]. An increase of gain beyond this value reduces the
pulsations in speed as well as current [Fig. 5.16]. Unlike the
case of constant load torque, for a pulsating load torque the

pulsations in current are much larger compared to those for speed.,
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It is observed that using the value of gain (Ka = 76)
corresponding to minimum settling time, the pulsations in speed
for a closed loop system are considerably lower (0.013 % -

Table 5.2) as compared to the pulsations occurring in an open
loop system (1.15 % - Table 4.1). However, the pulsations in
current for a closed loop system are much larger (26.8 % -

Table 5.2) as compared to the value obtained for open loop system
(2.24% % - Table %.1). Thus using a closed loop system,the speed
regulation improves compared to that with an open loop system.
But this is achieved only at the cost of larger pulsations in

current,
(b) Bffect of Gain Ka on Frequency of Resonance

The system analysed is of fourth order and its character-
istic equation gives two pairs of complex conjugate roots. FEach
pair of roots represents a sinusoidal variation of system varia-
bles, the frequencies of veariation being given by the imaginary
parts of the roots. These two frequencies say @, and f, depend,
among other system parameters, on the value of the amplifier gain
Ka' The variation in the values of @1 and 32 for different values
of amplifier gain K, is shown in Fig. 5.17 [ Table 5.2]. When the
value of at least one of these two frequencies g, or ﬁg becomes
equal to the frequency of load torque pulsation Wy, 2 consider-
able increase in the amplitude of pulsations of speed and current
is obtained. This phenomenon may be termed as resonance. The
frequency at which resonance occurs, depends on the value of B
or 52 while these value themselves depend am~ng other system

parameters,on the value of amplifier gain K,. Thus indirectly
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the resonance frequency depends on the value of amplifier gain.

For the system considered, the valie of B1 becomes equal
to the frequency of load torque pulsationm1 at a particular
value of gain K = 1. 52 as shown in Fig. 5,15. Wor thisg value of
Ka, resonance occurs as the amplitudes of pulsations in speed and
current are large compared to those obtained for other values of
Ka’ As such the value of gain Ka which leads to resonance must
be identified and this value should be avoided while designing
the system, as large pulsations in speed and current are not

desirable for a better performance of the system.
(¢) Effect of Gain K_ on Settling Time

The system characteristic equation has two pairs of comp-
lex conjugate roots with negative real parts. This indicates
that the transient parts of each of the system variables consist
of two sinmusoidally decaying components. The frequency of these
components is determined by the imaginary n»arts of the complex
roots. The negative real parts of the roots are a measure of
decay rate of the system variables and hence determine the sett-
ling time of the oscillation of these variables. For a practical
system, the real parts of the two roots are different. The varia-
tion of real parts of the roots Wwith amplifier gain is shown in
Fig. 5.18. It is observed that the root with a higher value of
imaginary part has a lower value of real part and vice-versa as
shown in Figs. 5.17 and 5.18 [Tatle 5.2]. As such the settling
time of the two sinusoidally decaying components are different.
The component with a high frequency of oscil’ ~tion has a lower

value of settling time and vice-versa. However, the overall
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settling time of the system will depend on the settling time of
the sinusoidal component which is of higher frequency and has a
slower rate of decay. In order to obtain minimum overall sett-
ling time, it is necessary that both the sinusoidal components
decay at the same rate.

An increase in the value of gain Ka increases the value
of real part of the root of lesser value and decreases that bf
other [Fig. 5.18]. As the value of K, is increased, there occurs
a critical value of K, for which the real parts of both the roots
become equal. TFor this value of Ka’ both the sinusoidal compo-
nents of system variables decay at the same rate. This critical
value of gain Ka gives minimum settling time. Any further increa-
se in the value of gain beyond this critical value, will not
decrease the settling time. For the system under study, the
critical value of gain is obtained as Ka = 76. For this value of
Ka the real parts of the two pairs of roots are equal as shown in

Fig. 5.18 [Table 5.2]. For very low values of gain K_, the

a’
settling time to give the desired accuracy of speed regulation is

very large and this is indicated by an * mark in Tables 5.1,5.2 .

5.7.4 Effect of Frequency of Load Torque Pulsation w,

The steady state pulsations in speed and current (for

Ka = 76) are determined for three different values of frequency

of load torque pulsation viz. oy = By , 0 = B, and oy = o, ,
where B4 and B, are the frequencies of system oscillation
(vhich are equal to imaginary parts of roots) and o, is the

natural frequency of torsional oscillation or the system given by
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C M [C(J1+ J2)/J1J2]1/2. The pulsations in speed and current for
these three values of wy are shown in Tabl. 5.3. A study of these
values reveals that the resonance occurs for all the above three

values of w but the resonance for the case W, = mn'is most

1°
severe. Therefore,it is suggested that a combination of system
parameters C, J, and J2 should be selected in such a way that the
above conditions of resonance are avoided.

TABLE 5.3 ¢ Effect of Variation of Frequency of
Load Torque on Speed and Current

Pulsations
w; . pulsations
8. No. PRl gain speed 7%  current %
1 B 76 0. 260 38.269
5 52 76 0.156 18,286
3 o, 76 9.600 40. 600

By = 218.316, B, = 679.013, o, = 519.823

L]

5.8 CONCLUSIONS

The analysis and design of a closed-loop d.c. motor drive
fed from a PWM supply is presented. The effects of elasticity of
coupling and periodic nature of load torque have been considered.
The inceraction of the torsional stiffnesc of shaft, amplifier
galn and armature time constant on the system stability and
settling time are studied. Using the procedure given, a gystem
can be designed to give satisfactory performance with regard to
steady state error, variations in speed and ~rrent aud settling

time. The analysis reveals the followings
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(e)

(d)
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An increase in amplifier gain up to a certain critical
value decreases the settling time. Any increase in gain
beyond this critical value increases the settling time.
The value of amplifier gain,required to give the minimum
settling time, is affected by the value of torsional
stiffness. An increase in the value of torsional stiff-
ness, increases the value of gain to give the minimum
settling time.

For a constant load torque, an increase in amplifier gain
decreases the pulsations in speed and current, as also the
steady state error in speed.

To summarize, from the considerat on of current and
speed pulsations, a high value of gain Ka is desirable.
However, in systems where the settling time has to be
kept low, the system gain should be kept equal to critical
gain. For systems in which a fast transient response is
not a primary consideration, a value of gain higher than
the critical value may be selected in order to minimise
the pulsations in speed and current.

With a pulsating load torque, the speed and current pul-
sate at a frequency equal to frequency of load torque
pulsation. The amnlitudes of these pulsations are large
compared with those for constant load torque. A high
value of amplifier gain decreases the pulsations in
speed and current.

For some specific values of amplifier gain and frequency

of load torque pulsation¢n1, the system experiences
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resonance characterized by comparatively large pulsations
in speed and current.

For a fixed value of o the resonance occurs wWhen

19
the value of amplifier gain is such that atleast one
frequency of oscillation §, or By (imaginary parts of
roots of characteristic equation) becomes equal to w4
[Fig. 5.15). The value of amplifier gain which leads to
resonance Will depend on the value of Wy - Thus for a
given value of w,, the value of amplifier gain should
be selected such that the resonance is avoided.

(e) Some systems may require a particular value of gain Ka
for the consideration of minimum settling time. For this
fixed value of Ka’ resonance occurs when Wy becomes equal

to either or B Resonance also occurs when o, becomes
1 1

|2°
equal to the natural frequency of torsional oscillation
of system.mnf The resonance for the condition.w1 = o, ig
observed to be more severe than that for other two cases
when wy = ﬁ1 or 52 [Table 5.3]. It is suggested that
above three values of 0, should be avoided in order to

avold resonance.

In many cases, the value of wy 1s 2 system requirement,
and not the designers' cho’ce. The amplifier gain Ka may also be
fixed to give a minimum settling time. In such cases where w4
and Ka are both fixed, resonance may be avoided by changing the
value of B,, 62 and w, Which are also functions of torsional
stiffness and moment of inertia of the system. Thus a suitable
combination of values of torsional stiffness and moment of inertia

may be selected to avoid resonance.



CHAPTER-6

NON-LINEAR ANALYSIS OF D.C. MOTOR DRIVE WITH ELASTIC COUPLING AND
PULSATING LOAD TORQURE

6.1 INTRODUCTION

In the analysis of a separately excited d.c. motor, fed
from a constant d.c. voltage with an elastic coupling and pulsating
load torque presented in Chapter-2, the frequency of load torque
pulsations was assumed as constant and equal (or proportional) to
the average steady state motor speed. This assumption led to
linear system equations, simplified the analysis and closed-form
solutions for system variables could be obtained.

In a variety of industrial applications, the load torque
is a function of path travelled by the driven mechanisms.Examples
of such applications include the piston pum s, crark press, mecha-
nisms with crank drives, metal cutting shears, etc. The load
torque for some of such type of loads have a periodic variation,
the time period depending upon the speed of rotation. The fre~
quency of load torque pulsations is, therefore, a function of
motor speed to which the load is coupled. As such the assumption
of a fixed frequency of load torque pulsativns may lead to some
error in the results of the analysis. Therefore, it is worthwhile
to investigate the effect of variation of frequency of load
torque with speed on the performance of the system. This will
also verify the validity of above assumption mads in tho analysis

given in Chapter-2.
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6.2 WORK PRESENTED

In this chapter, the analysis of a separately excited
d.c. motor fed from a constant d.c. voltage with an elastic coup-
ling and pulsating load torque is presented to determine the
effect of speed dependent variations in frequency of load torque
pulsations. For two different cases, the system performance is
determ’ned in terms of armature current and motor speed for
transient as well as steady state conditions. In the first case,
the frequency of load torque pulsations is considered as a func-
tion of motor speed. This leads to non-linear system equations
which are solved using a mumerical technique [11] to egive the
system performance in time domain. In the second case, the
system performance is determined using the same numerical tech-
nique but assuming the frequency of load torque as constant and
equal to average steady state motor speed. This assumption leads
to linear system equations. The performance of system for the
tWwo cases, in transient and steady state conditions, is compared
to determine the effect of frequency of load torque variation
with speed.

The system analysed, shown in Fig.2.1, comprises of a
separately excited d.c. motor coupled to a periodically varying
load through an elastic shaft. The moments of inertia and damp-
ing for motor and the load are considered separately [ Fig.2.2(a)].
A mathematical model for the system in non-linear as well as
linear case is given. The equationsare expressed in State model
form and solved using a mumerical technique. Tor the non-linear

case, the frequency of load torque w4 is expressed as a function
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of speed é and can be written as?

Z

W, =k 92

For linear case, W, is assumed proportional to average value of

steady state speed n, Leqn.(2.23)] and can be expressed as¢
wy = k n, 7y Where k is an integer.
The value of k depends uporn the type of driven mechanism. For

example,k = 1, implies that the load torque completes one cycle .

in one rotation of motor shaft, and so on.

6.3 PERFORMANCE EQUATIONS

The equations governing system performance for the non-

linear and the linear cases can be written as:
(i) NON-LINEAR CASE3$

The equations describing the system a-«e?

i o
L g 83 : :
YV = 3% R A Km 91
T, =Jy €+ B, o, ¢+ 0(91-92) > (61)
-7t = B .+ o
T, = J, 857 B, 6,% C(6,-6,)
where Te = Ke g
and Ti is a non-linear function of time given by:
i . °
Tf = Ty, * Tpq sin (k 8, t- Z) (6,2)

Equations (6.1), (6.2) can be expressed in State model

form ass

x = Ax + Du' (6.3)
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where [A] and [D] are as given in eqns.(2.7) and (2.8),

: . T
state variable vector x = [91 fa) 8 e 1}

Vv
and forecing function vector u' = [T s]
L

(ii) LINRAR CASE:
Tue equations describ.ng the system ares

v =1 & + 4+ K_ 9

dt 1

=
i

Iy 6+ B, 0,+ 0(91-92) 3 (6.4)

X - B o + e
Ty, J2 92 32 92 c(92 91)

where T6 = Ke n |

and TL is a linear function of time given bys

T, = T

L Yo Ty i (k n, t - @) (6+5)

Equations (6.4),(6.5) can be expressed in State model

form ass

x = Ax + Du (6.6)

where [A],[D] and [x] are same as for the non-linear case,
V'
and forecing function vector u = T
L

Equations (6.3) and (6.6) are solved using a numerical
technique to determine the system performance for non-linear and

linear cases respectively.
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6.4+ SYSTEM PERFORMANCE

The system performance using the values of system para-
meters gilven in section 2.7 , for non-linear as Well as linear
cases ls determined in transient as well s steady state condi-
tions. The value of k in eqns.(6.2) and (6.5) is taken asg 1.

The performance determined is depicted by Figs. 6.1 - 6.9 .

6.4.1 Transient State Performance

The switching-in transients in armature current for non-
linear and linear cases are shown in Fig.6.1. In both the cases,
the armature current initially rises rapidly and attains a peak
value. Thereafter, it decays slowly till it becomes constant
when steady state 1s reached. The acceleration characteristics
of motor speed during transient period for non-linear and linear
cases are shown in Fig.6.2. It is clear from Figs. 6.1 and 6.2
that the nature of variation of current a:d speed for the linear
and non-linear cases is identical.

The error in the values of armature current and motor
speed caused due to the assumption leading to linear case are
eXpressed as A1 and An respectively, and are calculated as

below taking the values for non-linear case as references:

Ai = (value of current for non-linear case) - (value of current
for linear case)

An = (value of speed for non-linear case) - (value of speed for
linear case)

For transient condition, the variation of errsr Ai and An is

shown in Figs. 6.3 and 6.% . A study of this reveals the
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followings

(a) the variation of errors Ai and Anwith time is alternating
in nature. The instantaneous values of error may be posi-
tive or negative depending upon whether the current or
speed for the non-linear case is more or less than that
for linear case.

(b) the magnitude of errors Ai and An during transient condi-
tion is low, which further decreases with time and attains
still lower values as steady state is reached. The values
of maximum and minimum errors in armature current for
transient condition are 0.0571 and -0.0269 pu , while for
steady state these values are 0.0206 and 0.0079 pu. Simi-
larly the values of maximum and minimum error in motor
speed for transient condition are -0.0101 and 0.0048 pu,
while for steady state, these values are -0.0034 and
~0.0003 pu [Table 6.11].

TABLE 6.1 : Comparison of Error in Transient and Steady State
Conditions.

Esteady state condition

performance transient condition

man ] |
R {  maximum t minimum | meximum ¢ minimum
| error pu | error pu error pu | error pu
armatu—e current 0.0571 -0.0269 0.0206 0.0079

notor speed -0.0101 0,0048 -0, 003k -0.0003
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TABLE 6.2 ¢ Comparison of Steady State Performance for Non-Linear
and Linear Case n.

armature current in a cycle

motor speed in a cycle

analysis
maximum minimum |cmplitude of |maximum |minimum |amplitude of
value | value | pulsation value | value | pulsation
pu pu pu pu pu pu
non-linear 0.9455 0.9153 0.0151 0.9113 0.9019 0, 0047
linear 0.9182 0.8895 0.0143 0.914%) 0.9050 0.0049

6.4.2 Steady State Performance

For a pulsating load torque as shown in Fig.6.5, the

steady state variations in armature current and motor speed

determined for the non-linear case are shown in Figs.6.6 and 6.7

respectively.

These variations for the linear case are shown in

Figs. 6.8 and 6.9 respectively.It is observed that for a pulsating

load torque, the armature (urrent and speel for the non-linear

case pulsate at the frequency of pulsating component of load

torque [Figs. 6.6,6.71, as also for the linear case [Figs. 6.8,6.9)

A study of these variations reveals that there is no appreciable

change in the values of amplitude of pulsations in current and

speed for the non-linear case as compared to the corresponding

values for the linear case.

The values oi amplitudes of pulsa-

tions in current and speed for the non-linear case are 0.0151

and 0.0047 pu respectively, while these values for the linear

case are 0.0143 and 0.0049 pu respectively [Table 6.2].
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6.5 CONCLUSIONS

In this chapter, the performance of a separately excited
d.c. motor fed from a constant d.c. voltage with an elastic
coupling and pulsating load torque is determined from a rigorous
(non-linear) and a simplified (linear) model. In the non-linear
case, the frequency of load torque pulsations 01 is taken equal
to the instantaneous value of motor speed, while for the linear
case o, is assumed as constant and equal to the average steady
state motor speed. The analysis presented reveals that the
results obtained in the two representaticns are essentially
identical with minocr variations observed in the values of arma-
ture current and motor speed. The error caused, due to the
assumption, in the values of armature current and motor speed
under transient condition is very low. For steady state, the
error is still lower. It can, therefore, be concluded that the
assumption of frequency of load torque pulsations being propor-
tional to average steady state motor speed made in the analysis
of linear case [ Chapter-2] is valid. Moreover, this assumption
simplifies the analysis as the system equations in this case are
linear and enable to obtain a closed-form solution for system

variables determining its performance.



CHAPTER-

BFFECTS OF ELASTICITY OF COUPLING AND PERIODIC VARIATION
OF LOAD TORQUE ON PERFORMANCE OF D,C, SERIES MOTOR DRIVE

7.1 INTRODUCTION

The analyses dealing with the effects of two important
mechanical factors, elasticity of coupling and periodic variation
of load torque, on the performance of separately excited d.c.
motor open-loop drives fed by a constant d.c. voltage and chopper
controlled supply have been presented in Chapters 2 and 4 respec-
tively. D.C. series motors are also used in a variety of indus-
trial drives and in traction, mainly due to better inherent
torque-speed characteristics, but hardly any work dealing with
the effeets of these mechanical factors on the performance of d.c.
series motor drives has been reported in literature. It is,
therefore, worthwhile to investigate the effects of above mecha-
nical factors on the performance of d.c. series motor drives. A
comparison of the effects of mechanical factors on the performance
of series and separately excited motors may provide a criterion

for the selection of a suitable type of motor for a given appli-

cation,

7.2 WORK PRESENTED

In this chapter, the analysis of an open-loop d.c. series
motor drive with an elastic coupling is presented for (i) a motor

fed by a constant d.c. voltage, and (ii1) a motor fed by a chopper
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controlled supply. The drive performance is determined for cons-
tant load torque as Well as for pulsating load torque. The system
equationg for series motor drives are invariably non-linear due to
the non-linearity of the magnetisation characteristic of the motor.
Closed—form solutions of such system equations are, therefore, not
possible.

In order to investigate the difference in behaviour of
drives using seriles motor and separately excited motor, the per-
formance of two drives with elastic coupling, having similar
motors, but in one case the field winding connected to give series
excitation, and in the other case the same field winding separate-
ly excited, is determined. The system equations eXpressed in
State model form are solved using a numerical technique [11]. For
a typical set of drive system data, the}performance in terms of
armature current, motor speed and twist in the shaft for the two
drives is determined in transient as well as steady state condi-
tions. The effects of elasticity of coupling and periodic varia-
tion of load torque on the performance of the two drives are
investigated and compared.

The systems analysed with d.c. series motor fed by a cons-
tant d.c. voltage and by a chopper controlled supply are shown in
Figs.7.1 and 7.2 respectively. The electromechanical system is
represented as a two rotor system and the moments of inertia and
damping for the motor and the load are considered separately
[Fig.2.2(a)]. The pericdic variation of load torque is assumed
to comprise of a simisoidally varying component superposed on a

uniform component [Fig.2.2(b)]. The frequency of load torque
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variations, W19 is assumed equal to the average steady state
speed of motor.

For the drive system with chopper control [Fig.7.2], the
'+ime ratio control' method with constant chopper frequency is
employed to control the drive speed. A freewheeling diode FD 1is
connected in parallel with armature to allow flow of current in
the armature circuit during the freewheeling interval of chopper.
Separate sets of equations applicable to duty and freewheeling
intervals of chopper operation are written. The commutation
interval is neglected. These equations are expressed in State
model form and solved by step-by-step method using a numerical
technique [11], starting from switching-in instant. The values
of performance variables at the end of first duty interval are
used as initial values for first freewheeling interval, and so on.

The non-linear magnetisation characteristic of series
motor is linearised by 'piece-wise linearisation method' as shown
v WL 7a 3.

7.3 PRRFORMANCE EQUATIONS OF D,C, MOTOR DRIVE WITH CONSTANT
VOLTAGE SUPPLY

(a) D.C. Series Motor Drive

The system shown in Fig.7.1 - with a pulsating load

torque can be described by the following equationss

L ai . b
Vo= {d Lf) % (R + Rf)l + Km(l)e1 (71
Kéﬁi=J1G1+B1%-FN%—OQ (7+.2)

I

- Ty ol * Ty Wy b c(eg- ;) (7.3)
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where

T, =3

L + T, sin (w,t - @) (7.4)

Lo

and K (1), K (1) are motor back e.m.f. constant and torque cons-
tant respectively, which are functions of armature current.

Equations (7.1)-(7.%) can be expressed in State model form as?

¥ = A'x + D'u 745
where
Pre 1) 1 0 0 0 i
c _-]1 c ; Ke(l)
T, T, T, 3,
5-Y = 0 0 0 ] 0 (7.6)
- ., i L 5
I P Jo
K (i) (RHR L)
@ -T@Ey ¥ N L+Lf
L f Py
- ! T
0 0 0 0 T,
D' - (7‘7)
1
0 0 0 -= 0
3 o ,
x = [ 0 0 o 117 (7.8)
1 1 2 2 .
i
and u = (7.9)
Ty,

(b) D.C. Separately Excited Motor Drive

The d.c. drive system [Fig.7.1] with a pulsating load

torque, When the motor field winding is geparately excited as show
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in Fig.2.1 , can be described by eqns. (2.1)-(2.5). These

equations can be expressed 'n State model form as*
x = Ax + Du (7.10)

where A,D,u and x are given by eqns. (2.7)-(2.10).
With a constant load torque, the system performance
equations given in sections 7.3 () and 7.3(b) still hold, but in

this ¢~se TL1 is substituted equal to zero, i.e. TL = TLo'

7,4 PERFORMANCE EQUATIONS OF D.C. MOTOR DRIVE WITH CHOPPER
CONTROLLED SUPPLY

(a) D.C. Series Motor Drive

For the chopper fed d.c. motor drive shown in Fig.7.2
with a pulsating load torque, equations (7.1)-(7.4) are applicable
for duty interval of chopper operation, whereas for freewheeling
interval, the same set of equations hold substituting V equal to

Zero.

(b) D.C. Separately Excited Motor Drive

For the chopper fed d.c. drive system [Fig.7.2] with a
pulsating load torque, When the motor field winding is separately
excited as shown in Fig.%.1, equations (2.1)-(2.5) are applicable
for diusy interval of chopp:r operation. The same set of equations
hold for freewheeling interval substituting V equal to zero.

With a constant load torque, the system performance
equations given in sections 7.a) and 7.%(b) are applicable, but

in this case T4 1s substituted equal to zero, i.e. T- = T;-
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7.5 TYPICAL PERFORMANCE STUDIES

The performance of a d.c. motor, wth a constant voltage
input as well as with a chopper controlled supply, is computed
using the system parameters and operating data given below. As
explained earlier, to facilitate comparison, the same motor is
used for series excitation and separate excitation. The para-
meters chosen are those which correspond to a d.c. series motor.
If such a machine is connected as a separately excited motor
with a constant field current (which gives rated speed at rated
supply voltage), the performance as evaluated in this analysis is
not affected. The parameters of the field winding connected in

series (R, and Lf) are, however, crucial in uetermining the perfor

4
mance. These values, if they do not correspond to the values of

a series motor and instead correspond to a shunt motor, will give

results which will have no practical significance.

Motor catas
voltage of d.c. supply, V = 220 V (1 pu)

full load current £ 158 A (1 pw)

! Ifl
rated speed = 1450 rpm (1 pw
armature resistance, R = 2,1 ohm

armature inductance, L = 0.06 H

£i.1d resistance, R, = 0.5 ohm

field inductance, L. = 0.0387 H

motor torque or back emf constant
for separately excited motor, K  or K = 1.27
moment of intertia, J, = 0.05 Kg m®

damping coefficient, B, = 0.005 Nm/rad/s
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Mechanical system data?

to1sional stiffness of shaft, C = 6750 Nm/rad
moment of inertia of load, J, = 0.05 Kg m?
damping coefficient for load, B, = 0.005 Nm/rad/s

constant component of load torque, TLo 2 .75 pa

pulsating component of load torque, Ty, 0..85 pa

phase difference of pulsating component of load torque, g=20
frequency of load torque pulsation, w, = average steady state

motor speed rad/s

Magnetisation characteristicss

For the analysis of series motor drive, the masnetisaticn
characteristics is non~linear. This characteristic is linearised

[Fig.7.3] and expressed as belows:

K (1) = 0.1885 1 : 0% 1% 35
K (1) = 0.0933 i + 0334 35 K 1880
K (1) =0,0343 1 + 0.806 , 8.0 < 1 < 1.0
K (1) = 1.2862 ’ i> 14,0

Chopper datat
chopper frequency = 200 Hz

chopper duty factor = 0.6

7.5.1 Transient State Performance

(a) Transient Performance of D.C. Series Motor Drive With
Constant Voltage Supply

For the case under study, the variations in armature
current, motor speed and twist in the shaft in transient conditio.

for a constant load torque are plotted as shown in Figs.7.4-7.6.
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It is observed that the armature current in transient
condition initially rises and attains a pesk value, and thereafter
decays till it attains a constant value as the steady state is
reached [Fig.7.%]. The acceleration characteristic of the serles
motor is plotted as shown in Fig.7.5. The variation of twist in
the shaft in transient condition is shown in Fig.7.6. The resul-
tant twist in the shaft comprises of two components. The first
component increases till it reaches a peak value and then decreases
gradually till it becomes constant as steady state is reached. The
second component varies sinusoidally at a frequency equal to the
damped natural frequency of torsional oscillations of the system.
This component is present only in transient condition and decays
with time. Thus in steady state only the first component is
present. It is observed that in the transient condition, the twist
attains a peak value at the same instant at which the armature
current attains its peak value.

{(b) Transient Performance of D.C. Series Motor Drive With
Chopper Controlled Supply

For the example considered, the transient responses of
armature current and speed for chopper fed d.c. series motor with
constant load torque are shown in Figs.7.7-7.9.

It is observed that the armature current, in transient
condition, rises in duty interval and decays in freewheeling
interval of a chopper cycle [Fig.7.7]. These variations are expo-
nential in nature but appear to be linear due to small values of
duty and freewheeling intervals of the chopper. The magnitude

of variation of current in successive chopper cycles goes on
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changing till steady state is reached when the current varies
between a fixed maximum and minimum limits. The envelope of
variation of maximum and minimum values of current in a chopper
cycle is shown in Fig.7.8(a). The mid-point of the envelope
indicates the average current in a chopper cycle. The nature of
variation of current, averaged over a chopper cycle, is identical
to that of variation with constant voltage input [Figs.7.% and
7.8(a)]. As expected, the magnitude of current with chopper
input is lowWwer due to the reason that average voltage input with
chopper is lower compared to that with constant voltage input.
The transient response of motor speed is also plotted as shown in
Fig.7.9. The values of speed with chopper input are lower com-

pared to the case of constant voltage input [Figs.7.5 and 7.91].

7.5.2 Steady State Performance

(a) Steady State Performance of D.C. Series Motor Drive
With Constant Voltage Supply

For the case under study, the steady state variations of
armature current and motor speed of d.c. series motor with a
pulsating load torque are shown in Flge.7.11 and V.12 respec .
tively. It is observed that if the load torque is pulsating in
nature [Fig.7.10], the armature current and speed also pulsate
at a frequency equal to the frequency of load torque pulsations
[Figs.7.11,7.12]. The amplitude of these pulsations depends
upon the amplitude of pulsating component of load torque TL1’ and

other electrical and mechanical parameters of the system.
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(b) Steady State Performance of D.C. Series Motor Drive
With Chopper Controlled Supply

The variation of steady state armature current of d.c.
series motor with a constant load torque over a chopper cycle is
shown in Fig.7.13. It is observed that the current rises in duty
interval and decays in freewheeling interval of a chopper cycle.
These variations are exponential but appear to be linear due to
high veélue of frequency of :hopper operation. The armature current
in a chopper cycle varies between a fixed range of maximum and
minimum values.

With a pulsating load torque, the armature current rises
in duty interval and decays in freewheeling interval 2- for the
case of constant load torque. As the load torque varies with time,
the range of variation of current in successive chopper cycles also
varies and the whole pattern repeats after an interval of time when
the load torque completes its one cycle of pulsation (as discussed
in section .11, Figs.4.7,%.10). The armature current and speed
averaged over a chopper cycle also pulsate at a frequency equal to
the frequency of load torque pulsations. The nature of these
variations is similar to those for motor with constant voltage
input shown in Figs.7.11,7.12, however, the quantitative values
are different.

7.6 COMPARISON OF PERFORMANCE OF A D,C. MOTOR DRIVE WITH
SERIES AND SEPARATE EXCITATIONS

The performance of a d.c. motor with series excitation is
discussed in section 7.5. For the sake of comparison,in order to

identify any differences in behaviour, the performance of the
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same drive but with separate excitation is also determined. The
performance of the drive fo- the following two cases is compared
as belows

Case A3 D.C. motor with series excitation

Case B+ D.C. motor with separate excitation.

7.6.1 Transient State Performance
(a] Performance With Constant Voltage Supply

The variation of armature current, motor speed and twist
in the shaft of a d.c. motor for the above two cases is shown in
Figs.7.47.6. The nature of these variations for the two cases
are similar., It is observed that the peak value of current for
case A is lower than that for case B. It is due to a higher value
of inductance of armature circuit in case A. The motor in case A
attains a peak current of 5.125 pu in 0.083 s while these values
for case B are 6.367 pu in 0.062 s. Thus the transient response
of motor in Case A is sluggish as compared to the case B. The
motor in case A attains 95 % of rated speed in 0.499 s compared
to 0.315 s for case B, The magnitude of peak value of twist in
transient condition for case A is observed to be lower than that
for case B. The peak value of twist for motor in case A is

8.12 x 10~3 rad. compared to 9.90 x 10”3 rad. for motor in case B.

(b) Performance With Chopper Controlled Supply

With a chopper input, the variation of armature current in
transient condition for cases A and B is shown in Fig.7.7. It is
observed that the nature of this variation for the two cases is

similar, however, the numerical values are different. The
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armature current, averaged over a chopper cycle, for the two cases
is shown in Figs.7.8(a),(b). The value of peak current averaged
over a chopper cycle and the time at which this value is attained
are 3.168 pu and 0.083 s for case A and 3.902 pu and 0.062 s for
case B. This is also due to a higher value of inductance in arma-
ture circuit in case A. The acceleration characteristic of the
motor for the twWwo cases is shown in Fig.7.9. In this case also,
similar to the case of drive with constant voltage input [Fig.7.5],
the response of motor for case A is sluggish compared to that for

cagse B.

7.6.2 Steady State Performance
(a) Performance With Constant Voltage Supply

The steady state variations in armature current and speed
of the d.c. motor with pulsating load torque for the two cases is
shown in Figs.7.11 and 7.12. It is observed that the nature of

.these variations for the two cases is similar. The amplitude of
pulsations of current for case A is lower compared to that for

case B, while no appreciable change in pulsations of speed is
noticed for the two cases. The amplitude of pulsations in current
for cases A and B are 0.0021 pu and 0.00%1 pu respectively, while
the pul sations in speed for these cases are 0.0033 pu and 0.0031 pu
respectively.

With a constant load torque, the steady state values of
twist for Cases A and B are 2.18 x 1072 rad. and 2.17 x 1073 rad.
respectively. This shows that there is no appreciable change in

the values of twist for the two cases.
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(b) Performance With Chopper Controlled Supply

The steady state variations of armature current for d.c.
motor with chopper controlled supply and constant load torque for
the two cases is shown in Fig.7.13. The nature of variation of
current for the two cases is observed to be similar. The range
of variation of current for Case & is smaller compared to that for
Case B. This is as expected due to a higher value of inductance
in armature circuit for Case A. The range of variation of current
is between 1.045 and 0.837 pu for Case A and between 1.078 and
0.735 pu for case B.

With a pulsating load torque, the armature current and
speed averaged over a chopper cycle for case B also pulsate similar
to that in cagse A. The uniform component of current and speed for
case A are 0.948 and 0.541 pu respectively, while for case B,

these values are 0.906 and 0.558 pu respectively.

7.7 CONCLUSIONS

The analysis of & d.c. series motor drive with elastic
coupling and fed by a constant d.c. voltage as well as chopper
conﬁrolled supply is presented for constant and pulsating load
torque conditions. The performance of the drive in transient as
well a« steady state conditions is determined. The performance
of the same motor but with separate excitation is also determined.
A comparison of the performance of the motor for the two modes of
excitations is given. It is observed that, in general, the per-
formance of a d.c. motor with series excitation is qualitatively
similar in nature to that of the motor with separate excitation.

Some differences in the quantitative aspect of the performence
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Characteristics are, however, clearly noticeable.

On the basis of the results of the analysis presented,

the following conclusions are drawns

(a)

(b)

(c)

(d)

The instantaneous values of twist in transient condition
are lower for motor with series excitation compared to that
for motor with separate excitation [Fig.7.6]. The twist in
transient condition attains a peak value at the same ins-
cant when the current reaches its peak. However, no appre-
ciable change in the values of twist in steady state is

noted for the motor with two cases of execitation.

For a periodically varying load torque, the armature current
and motor speed in steady state pulsate at a frequency equal
to the frequency of load torque pulsations. The amplitude
of pulsation of current for motor with series excitation

is lower compared to that of motor with separate execitation
[Fig.7.11]). The amplitude of pulsation of speed for the

two cases are not much different [Fig.7.12]. The effect

of pulsation of load torque on transient performance is

not significant.

The instantaneous values of current, in transient condition,
for a chopper fed d.c. motor with series excitation are
lower compared to those with separate excitation [Figs.7.7,
7.8]. Under steady state also, the range of variation of
current for motor with series excitation is lower than

that for motor with separate excitation [Fig.7.13].

The transient performance of a d.c. motor with series
excitation is sluggish compared to that of motor with

separate excitation.



CHAPTER-8
CONCLUSIONS

This thesls presents the analysis of d.c. drives-fed by
d.c. chopper supply as well ag constant d.c. supply-with elastic
mechanical link connecting the motor to the load having periodic
variations in load torque. The interaction of mechanical factors,
chopper supply and drive parameters, and the design factors are
investigated. The importance of including mechanical factors in
the analysis has been brought out. Based on the results of the

investigations, the following conclusions are drawn$

8.1 CONCLUSIONS

The analysis of d.c. drive electro-mechanical system
presented in Chapter-2 can be used to determine the effects of
mechanical factors, viz., elasticity of shaft and periodic varia-
tion of load torque, on the performance of d.c. motor drives fed
by a constant d.c. supply. The analysis reveals that if the load
torque is pulsating in nature, the armature current and motor
speed also pulsate at a frequency equal to the frequency of load
torque pulsations. A decrease in the amplitude of pulsating
component of load torque and an increase in its frequency, reduce
the pulsations in current and speed. These pulsations are mini-
mum when frequency of load torque pulsations is equal to AR
times the natural frequency of torsional oscillations of system.

The pulsations attain large values as system goes under resonance
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when the frequency of load torque pulsationsis equal to natural
frequency of torsional oscillations of system. The pulsations of
current and speed can in general be reduced by increasing the
moment of inertia of the system. Under condition of resonance,
these pulsations can be reduced by increasing the damping of the
system. However, this increases the average value of current and
decreases the average value of speed. For proper design of the
system, it is therefore suggested that the load torque should be
analysed and it must be ensured that natural frequency of oscil-
lation of system is not equal to the frequency of any of the
harmonic components of load torque. Further, in order to minimise
the pulsations in current and speed, the values of torsional
stiffness of shaft and the moment of inertia of the system should
be so chosen that the natural frequency of oscillation of the
system is /2 times the frequency of load torque pulsations. Such
a value of moment of inertia may not be the best from the point
of view of the transient response of the system.

The methods available for analysis of chopper controlled
d.c. drives are cumbersome, less accurate, need large computation
time and do not provide closed-form solutions for system perfor-
mance variables. To overcome the limitations of existing methods,
a new *echnique for analys’s of such drives is presented in
Chapter-3. The proposed technique is simple and can be used to
obtain closed-form solutions for system performance variables.
The transient performance at any point in time can be obtained
without starting the solutions from the instant of switching.

The steady state performance can also be directly obtained and the
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solutions do not have to be started from known initial conditions
and continued till steady ctate conditions are reached. These
features make the technique presented more efficient as the compu-
tational efforts are greatly reduced. Moreover, the technique is
more accurate as motor speed over a chopper cycle need not be
assumed constant.

The analysis presented in Chapter-%, is useful for deter-
mining the performance of chopper controlled d.c. drives with
elastic coupling and pulsating load torque and to investigate as
to how the performance is affected by these mechanical factors.
Study of a typical performance as obtained by this analysis,
reveals that the steady state armature current and motor speed
contain alternating components superposed on a non-varying compo-
nent. These components are of frequencies Which are equal to the
chopper frequency, the frequency of load torque pulsationsand the
natural frequencies of oscillatiomsof system. It is observed that
such systems experience resonance when the frequency of any of
the components of load torque, or that of the chopper, or both
approach the natural frequency of torsional oscillations of the
system. Under such a condition, current and speed attain large
peak values and the twist in the shaft may be so high that mecha-
nical failure of shaft may occur due to excessive shear stress.

It is suggested that the system should be designed in such a wWay
that any alignment between the value of frequency of torsional
oscillations of system and the spectrum of frequencies of chopper
and load torque pulsations be avoided in order to avold resonance.

This can be achieved by suitably modifying the value of frequency
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of torsional oscillatiors of system which depends upon the values
of elasticity of shaft and moment of inertia of system.

Pul se-width modulation control is commonly employed in
closed-loop regulating schemes for obtaining a desired control of
speed of the drives. An analysis is presented in Chapter-5, and
the influence of elasticity of shaft and periodic variations of
load torque on performance of closed-loop d.c. motor drives fed
by a PWM power supply is investigated. The analysis is used to
determine the values of system parameters in order to obtain
stable Operaﬁion of system with minimum settling time. Study of
performance of a typical system, based on this analysis, reveals
that for a given value of elasticity of shaft, an increase in the
value of amplifier gain upto a certain critical value decreases
the settling time. An increase in gain beyond this value increa-
ses the settling time. The value of amplifier gaih which glves
minimum settling time is shown to be affected by value of elasti-
city of shaft. TFor a periodic variation in load torque, similar
to the case of open loop drives, the current and speed also pul-
. sate at a frequency equal to the frequency of load torque pulsa-
tions. A high value of amplifier gain, decreases the pulsations
in speed and current as also the steady state error in speed. It
igs observed that using a closed-loop system, the speed regulation
improves but this is achieved only at the cost of larger pulsa-
tions in current. The system with a closed-loop drive, similar
to that for open-loop drives, experiences resonance When the
frequency of pulsationsof load torque matches the natural fre-

quency of oscillationsof system. In this case also, resonance
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can be avoided by a proper selection of values of elasticity of
shaft and moment of inertia of the system.

In the analysis presented in Chapters 2,4 and 5, the
frequency of load torque pulsations 1s assumed equal to average
value of steady state speed (neglecting pulsating component of
speed). The frequency of load torque pulsations in certain types
of driven mechanisms, is a function of shaft speed. To take this
factor into account, a non-linear analysis of d.c. drives with
elastic coupling and taking the frequency of load torque pulsa-
tions equel to instantaneous value of shaft speed, is presented
(Chapter-6). The results of this analysis show that the assump-
tion of frequency of load torque pulsationsequal to the average
value of steady state speed is valid as the error caused due to
this assumption is negligibly small.

The effects of elasticity of coupling and pericdic. varia-
tionsof load torque on the performance of d.c. series motor drives,
fed by a chopper as well as a constant d.c. voltage supply, are
investigated in the analysis presented in Chapter-7. The perfor-
mance of a similar drive but using a separately excited motor is
also determined and compared with that of a series motor drive
in order to study any differences in behaviour of drives using
the two types of motors. It is observed that, in general, the
performance of a d.c. motor with series excitation is qualite-~
tively similar in nature to that of the motor with separate exci-
tation., However, some differences in quantitative aspects of the

performance have been noticed.
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It is expected that the above work will be useful for a

better design and more precise evaluation of performance of d.c.

drives and will open certain new areas of researeh in the field

of electric drives.

8.2 BSUGGESTIONS FOR FURTHER WORK

The work presented covers various aspects of analysis of

d.c. motor drives taking into account the effects of mechanical

factors associated with drives. However, there are still some

problems on Which further work is suggested.

13 B
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Backlash is an important mechanical factor caused by loose
tolerances in gear meshes, chain drives and couplings [10].
The effect of backlash may be to disconnect a major part
of the inertia from the drive system resulting in large
variations in developed torque and current. It 1is,
therefore, important that a detailed study of effects of
backlash on the performance of chopper controlled d.c.
drives be made and necessary changes in design to improve
the performence in presence of this mechanical feature be
suggested.

Phase controlled d.c. drives are also commonly used in a
number of industrial applications. It may be interesting
to investigate the effects of mechanical factors on the
performance of phase controlled d.c. motor drives.

In certain cases, though rather rarely, the chopper may
operate in discontinuous mode of conduction. The techni-

que of analysis of Chapter-3, when extended to such cases
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becomes involved loosing its main advantages. A corres-
ponding method of enalysis for the case of discontinuous

conduction, if developed, will be useful.



APPENDICES

APPENDIX & A-1

EXPRESSIONS OF SYMBOLS:

Expressions of different symbols used in the analysis of a

separately excited d. c. motor drive with elastic coupling and

pulsating load torque, discussed in Chapter-2, are as below?

where

"

i

a, s gHS(S) = a3 s
b, 3 + b, 2 + by S
sLP * bh 33 ¥ b5 32 i b6 g

C/Ty 5 8, = C/Jy 7y 9 83 F C Km//L J,

Ke/J1 s by = B, Ke/J1 Jp 9 Py = K, €My I,
B1/J1 § Bz/Jz

Cﬂ&-*CNé'+B1Bg/31J2

c(By * B2)/U1 I,

oy a2(a§ ” Bg)

- a1(c12 o= a1){(a3 = a1)2 * B%}

- a2(<11 - a2){(a3 - a2)2 * Qg}

wy €OS ¢ + aq sin 7}

Wy COS g + ay sin ¢

(a

iy aﬂ(a? iz (1)12){013 - a1)2 ¥ ﬁg}
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(a1 - az)(ag % m%){(a3 - a2)2 * B%}
a, - 8y aj
a, oy COS g + a, w? sin @
ay Bg sin @ + (a2 - a a3)(m1 cos @ + ay sin 9)
b1 (a§ - Bg) - b2 a3 2a b3
8.3((1)1 cos @ + ag sin @)
a3 wq COS ")
2 2 2
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84 33
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APPENDIX s A-2

A-2.1 PROOF OF THEOREM:

The proof of theorem used for determining the Laplace
inverse transform of functions containing terms

f1-exp(-s to)}/{1-eXp(-s T)} in Chapter-3 is as below*

exp (- st )
L I:(Z(S){‘l eXp(-sT) }]

=o(,1 G(s)[{1-exp(-sto)}{‘l+ exp(-sT) + exp(-2sT) + ....}]

= 471 B[ {1+ exp(-sT) + exp(-2sT) + ....}

{exp(—sto) * wapl-ip % T T+ exp(-s t * 201 ]

[E{Y9{T) + FCe-TYu(e=1) *+ .vss ]

[#(t-t JU(t-t ) + ¢(t-to-T)U(t-to-I) SN ]

(i) For Duty Interval

1-exp(-st )
-1
& O gy )]

[d(t) + S(£-T) + .... + F(t-n-1 T)]
- [F(t-t) + Fle-t -T) + .... + ¢(t-to-5:§ ]

n - n-1 -
= D=t B) = 2 a(t-to-r-1 ) (h.2.1)
r=1 r=1

(ii) For Freewheeling interval

-exp (~st -
410 e 23] = (906 + BC6) + ... + GCE-ET )]
- [#(t-t ) + @(e-t -T) *+ .... * F(t-t_-n-1 1) ]

= §1fa<t-;:7 1) - g(t-t -TT D] (A.2.2)
I':
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A-2.2 EXPRESSION FOR ARMATURE CURRENTS?

The expression for armature current of a chopper control-
led d.c. motor, in duty and freewheeling intervals is obtained as?

From eqgn. (3.9):

: 1-exp(~st ) .2
. (=1 1 d - o h L
1(t) _(L {(s+a1)(s+a2)[sL(s 3 Tm){1—exp(-sT) Ly sJ L :l}

A K K K
- % ¢ 2 )
- LBt (2 * gy} *

s (§+a1) (§+a2
K K K 1-exp(-st )
Vk 5 6 g 0
TS * Torap) * Tovray) ) mexplsD) }] i

where

K,| = 1/(11(12 5 K2 = —1/0:1 ((12-(11)

1}

K3 1/a2(a2- a1) s Ky = 1/rma1a2
K5 = (f{:ma1-‘|)/'1,'ma1(a2- a“) 4 K6 £ {1 Tma2)/ ’Ema2(a2 -a1)
(i) Duiy Interval:

From eqns. (A.2.1) and (A.2.3),

d < Km TL .
1dn(t) =~ {K1 i eXp(_a1t) + K3 exp(_azt)}
v - 1t “-— —_—
gl % {K4+ K expf (t-1-1 T)(—a1)}+ Kg exp{ (t-r-1 T)(-a2)}}
Tal-r=1
-1

- = {g,* Ky exp{ (t-t_-7-1 T) (~a)}+ K¢ exp{(t-to-?:T T)(-az)}{J
r=1

IS ¢
L
= ———?L {K1+ K2 eXp(-a1t)+ K3 eXp(—G.Qt)}

[' exp(nTa,)-1 exp(nTaQ)-1

4 .
R 5 K_,++K5 exp(-a1t)zexp(Ta1)_ 1}+K6 eXP(“agt){exp(Taz)- 1}
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exp(n-1 Ta1)-‘l

exp(n=1 Taz)-‘l

_K5 exp(—t—to a‘l){exp(Ta1) = 1 }-K6 exp (- “—toa2){exp(Ta2) =

(i1) Freewheeling Intervals

From egns. (A. 2.2) and (A.2.3),

A
2
1fn(t) = =T {K1+ K, exp(-aq t) * Ky eXp(—azt)}

n = ——
+ RV’E [r§1{Ku+ Ky expf{ (t-7-1 T)(-a1)}+ K¢ exp{ (t-r-1 T)(-a2)}}

- § {K,* Kg exp{ (-t -7=1 ) (~a) 3+ K expf (t-t_-v-1 T)(—ag)}{]

T=
K T
= m L{K + K, exp(-ay t)+ Ky exp(-a, £)}

V eXp(nTa )-1
KS exp (- a1t){eXp(T T 73 {1-exp(a, t,)}

exp(nTa,)-1 -4
* K¢ exP(’azt){eXp(T 7 15{1 exp(a, to)}—'

A-2.3 EXPRESSION FOR MOTOR SPEED

The expression for motor speed of a chopper controlled
d.c. motor, in duty and freewheeling intervals is obtained as?
From eqn. (3.9)3

1 -exp(- st, ). T
a(t) —0{, {(s+a )(s+a2) l—_-sJL 1-exp (- sT) }- (S+ —):]}

=T K € K
e N s 8 ot | 2
—a(v |: J { s G+a1) s+a2)} JL { Zs+a15
K4 1-exp(-st )
= (s+a ~ )}{1 eXp(-—sT) }:l (4. 2.%%)

where, 7-’- 1/% 5910 2; K8 (1 a2 ‘I)/T P (a2-a1)
K9= (1 -'[;aa2) /Taa2(62-0.1)

]
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(i) Duty Intervals
From eqns. (A&.2.1) and (A.2.4),

i n
edn(t) = - 3£{K7 *+ Kg exp-ay t) + Kg eXp(-aQtD}

3 —— Lo
+ TT? r‘:21{K1 By exp{ (t-T-1 T)(—a1)}+K3 exp{ (t-T-1 T)(—ag)}}

n-1
- = {K,*K

exp{ (t-t_-7-T T)(-a1)}+K3 eXp{(t-to-EiT T)(-a2)}{]
r=1

2

it
- EL{K7+ K8 exp(—a1 ) ke K9 exp(—a2 t)}

VK, exp(nTa,)-1_ exp (nTa,)-1
+ —==| K, *K, exp(-q, t){eXp(Ta1)— 1}+ K3 eXp(-a2 t){eXp(Taz)— 7

JL e

exp(n-T Tay)-1 exp(n-1 Taz)-1

- K, eXp(-E?E5a1){exp(Ta1) e it o exp(—t—toa1){exp(Taé) =1

(ii) Freewheeling Interval:
From eqns. (4. 2.2) and (A.2.4%),
&

éfn(t) = - 3£{K7 * Kg exp(-aq t) * Ky exp(..a, t)}
VKe n T
* T r§1{K1+K2 exp{ (t-r-1 T)(-a1)}+K3 exp{ (t-r-1 T)(-a2)}}
n i e
- 21{K1+K2 exp{ (t-t -r-1 T)(—a1)}+K3 exp{ (t-t -r-1 T)(-a2)}}j
r=
TLc,

= J_\‘{? + K8 exp(-a1 - K9 eXp(—a2 t)}

VK, exp (nTa, )-1
= j.—L- K2 eXp(-—a1 t){eXp(Ta:‘)— 1}{1—exp(a1 to)}

exp(nTa,)-1
. K3 eXp(—a2 t){eXp(Tazg- 1}{1—exp(a2 to){]

]
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APPENDIX ¢ A-3

A-3.1 EXPRESSIONS OF SYMBOLS

Expressions of different symbols used in the analysis of a
chopper fed d.c. motor drive with elastic coupling and pulsating

load torque, discussed in Chapter-%, are as below:
fi(s) = ays + a, f51(s\- = b‘|s2 * bys ¢ by
fu3(s) = 53 * a352 * a5 ag

f53(S) b3 ’ f)_*_S(S) = "'365

f55(S) = s)+ + bus3 . b552 + s

where

ay =Gy , 8, = C/Tymy, 83 = 1/r, * B/,

3
By /Ty, * KeKm/LJ1+ C/T, ag = C/t 3y 5 3g = CK /L3,

o
i
1

by =K /T, , by = KB,/Iy3,, by = CK/Tye

2 2

b, = 13.|/J1 + B2/J2 E b5 " C/J1 + C/J2 i B,IB2/J.|J2

bg = C(B*B/3;T, , 4y = o2 BB L = BE RS
M= oy plapaq) - 282 (apay)? + 83 - B7

M, = Yayp2la-ap) - 263 (ay-a)® + BF - B3}

My = o 2o ray)? + B2 - BY - wpf(af-piro}) (apay)
M, = %, p (ama) 2 * B - BE} - Wpalad-p5re) (ay-a)
Mg = '“‘”%0‘1(‘12'“12) v LP‘“120‘2<d1”‘*’12)

—L"B‘|2[(a2-a1)(a12—§'312) - a1{(a2-ou;)2 + Bg = B?}]

=
(0)
i

M, = %3l (ay-ap) (@3BD) - apllag-a)® + 87 - B3})
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tray 620 o gy ) (@543 512) a1{(a2—a1)2+ﬁg- B5)
251[@1-1-(11-{31 ){ (@ -aq) -‘3 }+L+m1 B1 (a ~aq) ]

tra f2L Caq-a ) (@F*a5S 52) - f oy -0 ) B3 B} ]

22 (wiradpP {(ay-a) 2+p2-p 2 lrapalag-ay) ]
—2<n‘[(d1-m1)(d - ) - 4 of aya,)

2 ayBy{apa)® * B3 - 82} + 4 Plapm %)

2 apollag-ap)® * B - 32} * i plag-ay)

~2p, (a2-po+ 02){(aray) ®* 32- 3} - Bay 83 (a -0y
~2p,(a2-p5+ 0 { (ag-a)) 2042-52} - Ba,p3(ag-a,)
Badayap- 2 o (34~ @f) (dp- %)
8a1§$(a2_a1)—[2(51(a?—ef){(az_a1)2+ 32- p5}]
B, B3lay-a)-[28 (o562 L ag-a2) )2+p2-p3} ]

20, By [P+ 0F-pP){(amay) 2rp2-p R Hiray B (agmay) ]
w3l (arap) (0 of-B7) - o4 {lagay) 2+p2-p5} ]

2 B L 05+ a3- 5D {(ay-0) - R a pilog-ar)]
W3 (aqap) 05+ a5 - ol (ay-a)) )2+ p2- 5511

L*-o%[a“(dz - (012) o a2(d1 - (012)]

8¢ P,|2 = B g Pi?’ = ag(wy cos g+ a, sin )]
a6(<n1 cos & * 0y sin @) , P? = ag oy cos @
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7/
=, * Bydy o Ty " Bp " %02

(a2—a1a1)(w1 cos @ * qq sin @) * a1ﬁ$ sin @

: 1 e
(a2_a1a2)(oo1 cos # * a, sin g) + a,p5 sin g

2
a,op sin g * 2,0 cos @

g - gy * ol 8= * 3t
e - Byp ® el - $D-3 * Suat]
by - by * b, (a2 = B

by - boap * By lap 83)

6

P8y cos @ + oy sin @) ¥ Q§ py sin ¥

P/ (p, cos @ * a, sin @) * Q. B, sin @
. e 2 & T

®, ©OS (Z(a5 - a3a$) * w? sin @(ay, - m%)

= 2 _ a2 - St

2 2
ag - &,05 6§ a3(02 & 32) + 3asfs - a%
T
by » P = Py
0, &=0

. £
sgigy edndy o= ayEh o M T Syrg

a,l!g,‘(m1 cos @ + o, sin ? - 8, sin g(a, - ay0q)



O
—
(=
i
»
S
Q
o
w0
=
|
W
no
£
w
=
3
LS}

Gy 2o By 8P o By

Q7 = Db, B,~ 2b, a, B

2 . 2y

S = Plo, cos @+ a, sin @) - F3 y sin 9
& u3 (D1 cOs (11 8 3 F1

Q = @ (, cos @ *+ a, sin @) - P/ B, sin &

2 ) 2 q T2

Q120 = w12 cos #(a, - (1)12) - o, sin Qf(a5 - 25 a)12)
"‘3’3“%31'5%'2&3“151*%‘31

7 = 2 3
% =303 p,- P3- 22839202 " A P2

G =0, &=
) 2
o =2[(Pgl) + (Q};)]

(M )2 + (N)?
p P

1/2

P .3 -
'} {Pm Mp Qﬁ NP

gP = - tan"
o (M )2 + (N)?
p b

where for different m's, values of p vary ast
O T U {y 2yenng Il
m=23p= 1,2,6,7,89,10
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m= 3} p 6,7
m=4 p= 6,7
O, ey TORLRL (B 1/2
K3/K2 Ky, /Ky = Kp/K, = [4,] ,
y F el 1/2
/K Ku/K = K, /K] = [d2]

2 _ B,
= a /4y dy , K5 = bg/dy 4y 5 K3 a,/d; d

= {a, 4 4, - 2 8y(ay &4 ¥ oy a,)3}/(a, c'.2)2

= a, cos @/wy 44 4y ngb /4y 4,

2

i

ac/dy Ay o KL = &, 4y Oy - 2 85(8 a3 * dp 0}/ 4)°

2

5

e

2

K2

5

k. = 2
kL = {b, 4y dp - 2 b3lag &y ¥ oy a,)}/(ay d,)
k8

%

K = a. cos $/o, 4y d K. = by/dy d

Ke i, T P T TR s

2

%6

2 2
= -2 by(44 a3 * 4 a)/(dy d,)

g, = -ten (By/ay) 5 ¥, = —tan” ' (B, /a,)
1 = 1 - 5 B8 o

(g} - 6 = (@, - £y = (& - ) = ¢,
B adly s nallic oty ot ”

(92 - 0 = (g - 8 = (@, - ) =4,
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A-3.2 EXPRESSION FOR ARMATUHRE CURRENT

The expression for armature current of a chopper fed d.c.
motor with elastic coupling and pulsating load torque is obtained
as belows

From egn. (4.11), i(t) is given ass
i{t) = 11(t) + iz(t) + 13(1:) (A.3:1)

wWhere

Te - =ratynis)
; S 17 L v It

1,(8) = =Ld .
2 " g = A2+ m12)

Ty (=] r-f)+5(s)(<n1 cos @ - s gin Qf)]

-1[ fee(s) 1-exp(-st )
L .Y F ;% helad A
13(t) o £ Ii As {1—exp(-sT()) {I

A-3,2.

—

Solution for :'L1 {£) s

Bye, s
i | _.LQ. [ 6
11(t‘) T . I:s(s+a1-j By) Ustaq+] By)lsta,~J B,)s+at] 8?]

=1
= -JJ- 5& [K%‘*‘K:: exp(-a,t) sin (B.lt-Q': )+K12 exp(—a2t) sin (th-ﬂf):,

)
A-3,2.2 %lution for ig(t)=

g ol Trq = aglw, cos ¥ - s sin @)
1,(8) = 7_2 o | CoramiBpleray* 3B,) (ava =3 Xstas+ Jf ) s=Joo T Us+jwy )

T
?2 E{% exp (-qq t) sin(g, t- @)+ K)rexp(-a2t) an(ggt-¢b+Kf sin(w, t-(sz)]

(A 3.3
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A-3.2.3 Solution for 13(t)
¢ (t)z Y_ - (53 + b)+ S‘_i + b5 g T b6) {1 eXp( st )}
3 1 r‘L s(s+a1-jB1) (s+a1+j[31ﬂs +a2-j[3 2)(s+a2+35 2) 1-exp(-sT)
K2 K2. < K3 + K3 }
(s+a "'JENI (S+a1+331) (S+a2-JB2) @+a2+'] BQ)
1-exp(-st)
{1 exp(-sT) %} G

The value of i3(t) for duty and freewheeling intervals can be

obtained from eqn.(A.3.4) using theorems given in egns.(#.14) and

(4.15) respectively as below:

(a) Solution of i3(t) in duty interval:

Expression for i3(t) in duty interval of nth chopper

cyele,izg (t) ,can be obtained from eqn. (A.3.%) using egn. (4.14) ast
n .

fi
3dn
where

PP
3dn

and

i'éd (t)

(t) =

L = e {8 (A.3.5)

3d

V[:
L
r

K; exp{-(a1+j31)(t-§:7 T)}+K3 eXp{—(a2,j32)(t-;:T il
3

3d

{K
1

[ =)

, + Ky exp{-(ay-38y) (b=7-1 T}

exp{-(a 3 ) (t-T-T T)}:l (A.3.6)

v n-1
_.ﬂ[ = {K,+K, exp{-(a;-j @) (b=t -T-1 T}

r=1 2

K, exp{-(ay+jp;) (t-t -T-T D)}+K exp{-(a,-ip)(t-t,-r-11)}

K

w * D #

exp{-(a2+j _32)(t—to-ﬁ' T)}:I (&:3:7)
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(i) Solution for 1 (t)‘

From eqn.(A.3.6), substituting K, = K, * ] K,; and

£ =K, =) Kog (t) can be written as:?

2 or ) 13d

S7EY : , exp{ (ay-3 B4)nT-1
13dn(t) = il} Ky+ (K, *3 Kpy) exp{-(ay=J B4 )t}{exp{ a3 BT 1

- . exp{(a1+j BﬂnT}—‘l
+(K2I‘_J KQi) exp{—(a1+3 B1)t}{exp{(a1+j 51)T§'~1

eXp{ (a -,] 82)nT}—‘|‘
+(K +3 K3 ) exp{- (a2:] Bz)t}{exp{(a ..J [32)T§-1

exp (a2+j .BZ)nT}-1 ]

+ (K3, K33) exp{-(a+J BQ)t}{eXp{(a2+j 5T}~ 1

or

(t) = -L_ n K, + Lg ) Kgr[exp{-a1 (t-nT}{exp(aq D cos py (t-nT+T)

134 n 1

-cos By (t-nD}+ expl-ay t){cos pq t- explay D cos By (x+12)3 ]

-2 Kgi[ex;;{-o[1 (t-nD}{exp(a; D sin g, (t-nT+T) - sin B, (t=nTN
+exp(-aq t){sin Byt - explay D sin p, (t+T)}]]

> 1%2 2 K‘3r[eXp{"a2(t—nT)} {exp(ag'T) cos 52(t—nT+T)- sl Bg(t-nT)}

+ exp(-q, t){cos p,t - expla, T) cos Bz(t+T)}]
-2 K3i[eXp{-a2<t-nT)} {exp(a, T) sin B,(t-nT+T)- sin B,(t-nT)}
*+ exp(-a, t){sin By b= exp(a, t) sin ;32(1:+T)}E]
where D, = 1 + exp(a; T){exp(a;T) - 2 cos By T}

W By s TF exp(c;n2 T){eXp(agT) - 2 cos §, 7}
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Hence

v K‘I

15q ® =¥ ol [exp{-a, (t-n D}{expla, T sin(py (t-nT+D)-0)

- sin(gy (t-nT) - 0(12)} + exp(- oy t){sin(p, t-(2112) - explaq T)

v K2

sin(g, (t+ i Qf12)ﬂ+ T D2‘:GXP{-a2(t—nT)}{exp(a?T)
- _
sin(p,(t-nT+T)- (Zg) - sin(g,(t-nT) - (Zg)}* exp(-a, t){sin(BEt—Qfg)
- expla,D sin(py(t+ T) - ag){} (A.3.8)

o _ 471
where K& =K, , X, = 2[(K,)

2 D fi2
3 " 2 I 2.l /2

& -1
¢, = tan (K2r/K2i)

Q
o
I

-1
5 = tan (K3r/K3i)
(ii) solution for i3dn(t)f

From eqn.(A.3.7), the expression for igd (t) can be obtained

0
as?

154 (6 = I 1)Ky + (et § Kyy) exp{-(a=3) (6-50)}

exp{ (ay- 3 B4) (n-1)T}-1
i (a1—j 531)T} =y 1+ (K2r-j K2i) eXp{-(a1 + 351)(1:- to)}.

exp{ (aq+j B)(n-1)T}-1
expi(aﬁ'j 51)T§ -1

(K3r+ jK3i)o

. : exp{ (a5~ 3B,) (n-1)T}-1
exp{- (a,- 362)(t-t0)}{exp{(a2_ 7T = 7
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: - exp{ (a ,+] l82)(n—‘|)T}-’|
*(Ky -3 Kqp) expl=Cagrd )bt e 7 § )] - 1 |

or 154 (8) = LK+ i%;[% Ky Lexp{-ay (t-nT)} exp{-aq (T-t)}
n

{exp(a; T) cos By (t-nT+2 T-t )- cos §y (t-nT+T-t )3

+exp(-as t) explay t){cos By (t-t,) - explay T) cos By (t+1-t )} ]

-2 K2i[exp{-a1 (t-nD} exp{-aq (T-t_)}{explay I) sin By (t-nT+2T-t )
-sin B, (t-nT+T-t )}+*exp(-a; t) explaq t){sin By (t-t,)-

exp(aqy D sin B, (t‘*‘T—to)}j:

v "
+ -I-@ 2 K3I_[eXp{—a2(t-nT)} exp{—ag(l—to)}{exp(agT) cos BQ(t—nT

+ 2T-t_) - cos P,(t-nT+T-t )} + exp(-a,t) expla, t ){cos B,(t=t,)
- exp(a,T) cos 52(t*T-to)}]- 2 K3i[e>cp{-a2(t—nT)} exp{-a2<T—to)}
{exp(a,T) sin B, (t-nT+2 It }- gln @g(t—nTﬂ?—to)}*' exp(-a,t)
exp(azto){sin fube% )~ exp {a,T) sin 5‘2(t+T-to)}]:|
" v o VK
or 13dn(t)= T(n-1)K5+ -]=_‘-D—1—_exp{-a1 (t-nD} exp{-aq (-t )}
(exp(ay D sin(p, (b=nT+2 T-t )-0b)-sin(p, (t-nT+I-t ) - @)
+exp(-ay t) explaq t){sin(p, (t—to)-of;)—eXp (aq T) sin(p, (t+T-to)—(Zf12)}]

-2
V I\ .
+ __LD:_J-eXp{-ag(t—nT)} exp{-a,(T-t )} {expla,D sin(p,(t-nT+2T-t )

- 09)- sin(p,(t-nT+1-5)-05) }+exp(-a,t) expla,ty){sin(s (-t )-05)

- expla,D sin(p,(t+1-t )~ 0D} | (4.3.9)
From eqn. (A.3.5),
i3dn(t) = (A.3.8)-(4.3.9)
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Total current in duty interval:

Hence, total current in duty interval of nth chopper

cycle,iy (£),is given by*
n

idn(t) o e T i3dn(t)
= (4.3.2) * (4.3.3) + (A.3.8) - (A.3.9) (4.3.10)
From eqn. (A.3.10), the expression of idn(t) can be
written as
2
idn(t) - 31 [idsm + itm * itm+2] + ids3 + idsLP (A.3.11)

The expressions for different terms used in eqn. (A.3.11)

are given in egqn. (4.16)
(b) Solution of 13(t) in freewheeling interval:

Expression for 13(t) in freewheeling interval of nth
chopper cycle,i3f (t) ,can be obtained from eqn. (A.3.%) using
n
egn. (4. 15) asg?

; (¢) = (t) v e ) (4.3,%2)
f 44 3t

(t)

o ibal o (F
where l3fn(t) -4

3d,

and -

(t) = Lz {K, K, exp{- (aq=ify) (b=t -r-T )}
r=1

+z\; exp{- oy +3 ;) (t-5,-T=1 £)}+Ky exp{-(a;m1B,) (t-t -T-1D}

; expf{ - (a2+JB ) (t-t —r-1T){] (Ae3+13)
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(i) Solution for igf (£):
n

The expression for igf (t) can be obtained solving
n
eqn. (4.3.8) as belows:

T Tln K+ o %5 Kop) exp{-(aq=3 By) (8-t,)]

oxp{a1~j 31)nT}—1

exp{ (ar- 36701} — )+ (K, -3 Kpy) expf-(aq+] By) (t-1,)]

exp{ (aq+J B1)nT} -1
eXp{ ((11‘!‘,] ﬁ'])T

}+(K *j K3i) exp{—(ag-j @2)(t-to)}

exp{ (a -3 B InT-1
eXp{(ai—a BT - —3* (Kgmd Kg5) exp{-(aytd B,) (t-t)}

exp{ (a2+j 552) nT}-1
eXp{(a2+j BQ)T }-1:]

or

v v
(t) n K+ 5

igfn = - 2 X, [exn{-—a1 (t-nD)} eXp(a.lt )

1
{exp(ayT) cos 8, (t-nT+T-t_)-cos By (t=nT-t )}

+ exp(-aqt) explaqt,){cos By (t-t )= explay 1) cos By (t+T-£)}]
-2 K2i[exp{-a1 (t-nT)} exp(ay to){eXp(a1T) sin By (t-nT+T-t )
-sin B, (t-nT-to)}+exp(-a1t) eXp(a1to){sin B (t—to)

-exp(aqT) sin g, (t¥T-t )} ]‘!
+ LD 1; K, [exp{- ~a,(t-nD}expla,ty {expla,T) cos B,(t-nT+I-t )

-cos Bz(t—nT—to)}*' eXp(—a2t) eXp(a2to){COS Bg(t-—to)
-exp(a,T) cos Bg(t+T—t6)}]-2 K3i[exp{—a2(t—nT)}exp(azti)

. - LT e o oL fo i
{exp(a,T) sin B,(t-nT+T t )-sin B, (t-nT-% )
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+ exp(-a2t) exp(a2 to){sin 52(t-t0)- exp(azT) sin @2(t*T-t0)}i]

Hence,

1
Do \ K

(t) = f n K¢ * 15, D1 exp{-c1(t -nT) explaqty Y{exp(ay T

51n(ﬁ1(t-nT*T t,)- 7 5= sin(g, (t-nT-t )= 7 )}
+exp(-ay t) exp (aqt ){ sin(g, (t- ty )- g ) exp(a1lﬁsln(8 (t+T-t )-¢ )i]

2
K -
+ E-ﬁilfxp{—a2(t—nT) exp (ot ) {exp (a,T) sin(ga(t_nT+T_to)_q§)

- sin(BQ(t—nT—to)-gg)}+ exp(-a,t) exp(azto){sin(52(t—to)-¢g)

- exp(a,T) sin(§2<t+T-to)—g§){] (4.3.14)

Hence from eqn. (A.3.12),
iap (¢) = (A.3.18)-(A.3.1W)

n
Total current in freewheeling intervals

Therefore, total c.rrent in freewleeling interval of nth

chopper cycle,i. (t),is given bys*
n
!

tn

23 i i3fn(t)

i

(A.3.2) + (A.3.3) + (4.3.8) - (A.3.14) Che3u¥5)
Simplifying eqn.(&.3.15), the expression for i, (t) can be

n
writte.. ass

2
1. Ut =K B A A + 4 .9, (1.3, 38)
fn At [ fs b tm+2:} fs3 fsu

The expressions for different terms used in eqn. (A.3.16)

are given in eqn. (4+.17).
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