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ABSTRACT

The d.c. motor is a widely used type of motor in industry.

The bulk of d.c. drives find their application in variable speed

drives. The use of thyristors has further increased the scope of

d.c. motors as it has led to the development of a variety of effi

cient techniques of speed control. One such frequently used tech

nique is chopper control which converts a constant d.c. voltage to

a pulsed type of voltage.. Considerable interest has been shown in

the last few years to upgrade the methods of analysis to predict

the performance of chopper controlled drives more accurately, and

to incorporate improvements in design based on such accurate ana

lyses. The work presented in this thesis is an effort in this

direction.

The performance of an electric drive not only depends

upon its electrical components but is also significantly affected

by its mechanical features such as elasticity of shaft, misalign

ment, backlash, etc. Extensive work is available in literature

on the performance analysis of electrical drives but without

including the effect of these mechanical factors. The development

of high performance d.c. drive systems requires a precise analysis

of such systems, in which case these factors can no longer be

ignored.

The basic aims of this work are (i) to develop better

techniques of analysis for chopper controlled drives, (ii) to

determine the effects of mechanical factors and to establish the

importance of including such factors in the analysis, and
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(iii) to suggest changes required in design in order to improve

the drive performance.

The work presented deals mainly with the analysis of

separately excited d.c. motor drives, fed by a chopper as well as

ordinary d.c. supply. The analysis includes the effects of mecha

nical factors associated with drives, such as elasticity of coup

ling and periodic variation of load torque. The effects of these

mechanical features on the performance of d.c. series motor drives

are also investigated and compared with those in separately excited

d.c. motor drives.

The work presented in this thesis is summarized below*

The performance of an electro-mechanical system consisting

of a d.c. motor fed by a constant d.c. voltage and coupled through

an elastic shaft to a load with periodic torque variation is ana

lysed (Chapter-2). A mathematical model of the system is given

and equations are solved using State Space techniques. Closed-

form solution is obtained to give the system performance under

transient as well as steady state conditions. The analysis is

illustrated by an example and inferences drawn. It is observed

that the performance is significantly affected by elasticity of

shaft, specially when the load torque is pulsating in nature.

Some suggestions are given to improve the performance.

A new technique for the analysis of chopper fed d.c. motor

drives using pulse width control is presented (Chapter-3) • The

methods of analysis of such drives given by earlier authors

involve a progressive step-by-step solution of system differen

tial equations. Closed-form solutions using such techniques are



-vi-

not available and the computation efforts are large. The proposed

analytical technique which overcomes these limitations is superior

because of the following advantages*

(i) A single set of equations is needed to describe the system

in duty as well as freewheeling intervals,

(ii) The performance in terms of current and speed at any

instant, in transient as well as steady state conditions,

can be directly obtained without using step by step methods

starting from switching-in condition. The computational

efforts are therefore, greatly reduced,

(iii) The solutions are in closed-form, and therefore provide

an insight into the transient and steady state performance

of the drive,

(iv) The solutions are more accurate, as speed over a chopper

cycle is not assumed constant.

The frequent use of chopper controlled d.c. drives makes

it imperative to investigate the effects of mechanical factors on

performance of such drives. An analysis of chopper fed d.c. motor

drives with elastic coupling and pulsating load torque is presen

ted in Chapter-1*. The equations governing the performance of

such a system are expressed in State model form. The analytical

technique of Chapter-3 is used to obtain closed-form solutions

for system performance. The effects of mechanical factors is

observed to be more severe when the motor is fed through a chopper.

The conditions leading to resonance are investigated and sugges

tions are made to avoid such situations. Results are illustrated

by an example and Inferences drawn therefrom.
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PWM control is commonly used in closed-loop d.c. drives

for obtaining the desired control of speed. The influence of

mechanical features on performance of such drives has not been

attemped so far. A system consisting of a d.c. separately excited

motor with load coupled through an elastic shaft, and fed through

a PWM supply obtained from a controller having a speed feed-back

is analysed (Chapter-5). A mathematical model of the system for

constant as well as pulsating load torque conditions is presented

and the transfer function obtained. The effects of some of the

system parameters on the dynamic stability of drive are studied

using 'parameter-plane technique'. A set of values of system

parameters to give stable operation and minimum settling time is

determined, and performance of the system obtained using numerical

techniques. The value of amplifier gain required to give minimum

settling time is observed to be affected by elasticity of shaft.

The effects of variation of system parameters on pulsations of

current and speed are studied and conditions of resonance investi

gated.

The work discussed above (Chapters 2,U-,5) deals with the

analysis of linearised systems assuming the frequency of load

torque equal to average steady state motor speed. For certain

types of driven mechanisms, this frequency is proportional to

instantaneous value of motor speed and leads to non-linear system

equations. Such non-linearity is accounted for in the analysis

(Chapter-6) and the system performance is determined using numeri

cal techniques. The assumptions made in ignoring such non-

linearity are shown to be valid.
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D.C. series motors are also used in a variety of industrial

drives and, therefore, it is worthwhile to analyse the effects of

mechanical factors on performance of such drives. The influence

of elasticity of coupling and periodic variation of load torque,

on the performance of d.c. series motor drive fed by a chopper as

well as constant d.c. voltage, is investigated (Chapter-7). The

performance of this type of drive is compared with that of a simi

lar motor when excited separately in order to identify the diffe

rences in the behaviour of these two types of drives.

The important results are summarized in Chapter-8.
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NOMENCLATURE

A A^ coefficients of characteristic equation of open-loop
1' '5

d.c. drive electromechanical system

AdoCX] adjoint of matrix [X]

B combined damping coefficient of motor and load,

Nm/rad/s

B ,B damping coefficients for motor and load respectively,

Nm/rad/s

C torsional stiffness of shaft, Nm/rad

d diameter of shaft, m

E amplitude of ramp signal, V

E. threshold signal voltage, V
t 2
G modulus of rigidity of shaft material, Kg/m

I motor full load current, A

i instantaneous value of armature current, A

i transient component of i,A
2

J combined moment of inertia of motor and load, Kg m

J J moment of inertia of motor and load respectively,Kg m

K gain of amplifier
a.

K gain of controller

K electromagnetic torque constant, Nm/A
e

K motor back emf constant, V/rad/s
m

K. tachometer constant, V/rad/s
t

L armature circuit inductance, H

L field winding inductance, H

1 length of shaft, m

2
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n number of chopper voltage cycle

Q shear stress in shaft, Kg/m

R armature circuit resistance, ohm

Rf field winding resistance, ohm

T time period of chopper voltage cycle, s

T time period of load torque pulsation (= 2?r/w1), s

T electromagnetic torque developed by motor, Nm

Tf, motor full load torque, Nm

TT load torque, Nm

TT constant component of T^, Nm

TL1 pulsating component of TL, Nm

[X]T transpose of a matrix [X]

t time, s

tf freewheeling period of chopper cycle, s

t (t-nT)
n

t duty period of chopper cycle, s

V d.c. supply voltage, V

v voltage of reference signal, V

v voltage of feedback signal, V

a duty factor of chopper voltage (= tQ/T)

ai,a2,a. real parts of roots of characteristic equation, rad/s
p ,p ,Q- imaginary parts of roots of characteristic equation,

rad/s

0 .6 angular t>ositions at motor and load ends respectively,

rad

6 ,© angular speeds at motor and load ends respectively,

rad/s
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© transient component of speed Sp rad/s
0 angle defining phase of pulsating component of load

torque, rad

armature time constant (= L/R),s

mechanical time constant (= J/B), s

x « mechanical time constant (= J^/B^), s

t ^ mechanical time constant (= J0/B0) * s
Lm2 « «

angular frequency, rad/s

desired speed, rad/s

natural frequency of torsional oscillation, rad/s

average value of steady state speed, rad/s

angular frequency of load torque pulsation, rad/s

ft ,£ damping ratios

Jj1 Laplace inverse transform

Ta

Tm

oo

°>d

wn

ws

CO-.



CHAPTER- 1

INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

Improvements in manufacturing technology and growing

complexity of methods of process control, have increased the

demand for better performance and versatility of control of

electric drives. One of the most remarkable developments in the

field of electric drives is the application of solid state devices,

specially the thyristors, to the control of motors. Thyristor

control has been used to widen the scope of control and to upgrade

the performance of such drives. Necessitated by these develope-

ments, there has been parallel effort towards better and more

precise evaluation of the drive performance and to develop methods

of analysis which need less effort. Such analytical inputs have

contributed to improvements in methods of control and better

designs. The work presented in this thesis is an effort in this

direction.

Some features which govern the performance of an electric

drive are; the type of drive motor used, the form of control

system adopted, the nature of load contributed by the driven

equipment, and the mechanical factors associated with the drives.

These aspects are briefly discussed below:
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(a) Type of Drive Motors

Basically, the electric drives can be classified as a.c.

and d.c. electric drives depending upon the type of electric

motor employed to run the electromechanical (E M) system.Although

the majority of industrial drives use a.c. motors as main driving

motor, the d.c. motors find application in many areas because of

certain inherent characteristics like flexibility for speed

control, overload capability and nature of speed torque character

istics. The use of thyristors for their control has further

increased the scope of d.c. motors in modern electric drives.

(b) Control System*

In a great variety of industrial applications of d.c.

motors, a major consideration is its speed control, which can be

obtained either by controlling the field flux or the average

voltage across the armature. The field flux control method is

normally used where speeds above the base speed are required, and

variation over a small range is needed. Armature voltage control

is adopted for obtaining speeds below the base speed and Is capable

of giving speeds down to very low values. A variation in voltage

applied to armature can be accomplished either by changing the

supply voltage impressed across the armature terminals or by adding

an external resistance in series with the armature. The rheostatic

control is not preferred as it gives rise to excessive power loss

in armature circuit.
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The use of thyristors for armature voltage control of d.c.

motors has replaced the conventional methods of such controls,

like the Ward-Leonard system and the use of thyratrons and mercury

arc rectifiers. This is because the use of thyristors affords

considerable advantage in comparison with the other systems in

terms of economy, efficiency, speed of response, reversing and

braking facilities and their compatibility for closed loop systems

of control.

A variable d.c. voltage can be obtained by using a thyristor

either from a.c. supply using converter control or from d.c. supply

using chopper control. In converter control, the variation in

output voltage is obtained by controlling the firing angle delay,

whereas in chopper control this is affected by controlling the

on/off time ratio of the output pulse. In both these methods of

control, the armature current has a higher ripple content than

that obtained with d.c. generator in the conventional Ward-

Leonard system. Major problems with phase controlled converter

are that they generate large amount of harmonics and reduce power

factor, particularly at low speeds. The use of an uncontrolled

rectifier followed by a d.c. chopper permits improved power

factor and waveforms on the a.c. side, and the use of a relatively

high chopper frequency permits reduced harmonics and losses in

motor. Moreover, with a suitable choice of chopper circuit, speed

of the motor can be controlled in a much wider range than is

possible with phase control.
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The chopper output voltage can be controlled either by

'Pulse Width Control' (Time Ratio Control) or by 'Current Limit

Control'. In pulse-width control, the on/off time ratio of

chopper is controlled. In the current limit control, the current

is controlled between specified upper and lower limits. Therefore,

the current will never be zero and there is no possibility of

discontinuous conduction. The drive characteristics obtained by

time ratio control are suitable for steady state operation in

many applications including traction. In time ratio control

(TRC), the output voltage can be varied in two different ways*

either by constant frequency TRC, or by variable frequency TRC.

In general, the constant frequency TRC method is preferable

because it permits a choice of frequency suitable to the commu

tation circuit and the load, and also to get a complete range of

variation of output voltage. Moreover, in a constant frequency

scheme, harmonics of only definite frequencies will occur which

may be filtered out..

(c) Nature of Load

From the consideration of their load torque, the driven

mechanisms can be broadly classified under three catagories [13]

described below:

Class A: This includes the mechanisms whose torque does not vary

with speed. These may be such units as conveyers, crane hoists,

shapers, etc.

Class B* These are the mechanisms whose torques vary with speed.

Examples of such loads are centrifugal compressors, fans, induced

draught fans and ship propellers. Under this class are also
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included loads whose torque is a function of path travelled by

the mechanism. These include piston pumps, crank presses, mecha

nisms with crank drives, metal cutting shears, etc.

Class Cs These are the mechanisms whose load torque varies in a

random manner, mainly because of the inconsistent properties of

materials being processed. Typical machines of this class are

rock crushers, clay mills, ball grinding mills, etc.

The variation of load torque in many applications, parti

cularly those which come under class B, is cyclic in nature.

Another cause for a cyclic variation in load torque is the presence

of some of the mechanical factors discussed below.

(d) Mechanical Factors Associated With Drives'

The performance of an electric drive depends not only on

the electrical components of the drive and the nature of load

torque, but also on certain mechanical features. The mechanical

factors which affect the drive performance include the effects of

non-rigidity of shaft, backlash, misalignment, bending of shaft,

etc. These factors may produce the following significant effects

[10] in the characteristics of the electromechanical systems:

(i) Torsional Vibrations*

These are very lightly damped, relatively high frequency

oscillations in speed, position, or torque, occurring because of

the non-rigidity of shaft and couplings interacting with the

inertia of rotating parts of system.
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(ii) Cyclic rotational disturbances*

These may be caused by bent shafts, seams in felts or

wires, or by eccentric mechanical misalignment or unbalanced rolls.

Their principal effect is to impose a periodic load change on the

drive.

(iii) Back-lash:

This is caused by loose tolerances in gear meshes, chain

drives, and some types of couplings, resulting in play in the

mechanical drive train.

It has been observed that these mechanical factors signi

ficantly affect the drive performance. The effects of these

factors become all the more complex when more than one of these

factors are prominent in the system in which case they may tend

to amplify each other.

1.2 SCOPE OF WORK PRESENTED

A complete representation of an electromechanical drive

system is shown in Fig.1.1 [3]. The system has been shown to be

composed of four sub-systems, interconnected by different inter

face variables. The factors, occurring in the different sub

systems, which influence the system performance are also shown.

An important aspect related to system analysis is the non-lineari

ties arising in the various elements of the system. These non-

linearities are shown in Fig. 1.1 against the sub-systems in which

they arise.
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For a precise determination of performance of such a

system, the analysis should take into account all the factors

which affect the drive performance, as also the non-linearities.

Such an analysis will need a model of the system which will be

far too complicated to be of much practical significance.

In this thesis, the analysis and various aspects of the

performance evaluation of a d.c. motor driven electromechanical

system, fed by a chopper as well as ordinary d.c. supply, are

presented. Out of the various mechanical factors affecting system

performance, only two more important factors, viz., the elasticity

of the shaft coupling the motor to the load, and the periodic

variation of load torque have been accounted for. Elasticity is

an inherent feature of any mechanical coupling, and periodic

variation in load torque may be a characteristic feature in many

applications. These variations in load torque may be present due

to mechanical factors like bent shafts, misalignment, eccentric

or unbalanced rolls as also due to the nature of the driven

me chani sm.

Out of the non-linearities, those arising in the supply

system, because of the device characteristics (eg. chopper) have

been accounted for. The remaining non-linearities have not been

considered in the present analysis, in order to ensure that the

model of the system can be managed. Non-linearities of system

equations have either been accounted for, or it has been shown

that it is valid to ignore them.
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The aim of this study is to give an analysis of a d.c.

drive electromechanical system and to study the effects of some

of the more important mechanical factors associated with drives.

This will lead to a more accurate predetermination of performance,

and will provide essential information for proper system design.

The work presented covers the following aspects*

(a) Analysis of a separately excited d.c. motor drive fed by

a constant d.c. voltage taking into account the effects

of elasticity of coupling and periodic variation of load

torque [Chapter-2].

(b) Development of a new technique for the analysis of

chopper fed d.c. motor drives which is superior to

existing techniques in that it is more accurate, needs

lesser computation efforts and gives closed-form solutions

for system variables determining its performance

[Chapter-3l.

(c) Analysis of a chopper fed d.c. separately excited motor

drive with an elastic coupling and pulsating load torque

using the analytical technique of Chapter-3 [Chapter-1*-]

(d) Analysis of a closed loop pulsewidth modulated separately

excited d.c. motor drive having an elastic coupling, for

a constant as well as periodically varying load torques,

and design of system parameters for a stable operation

and minimum settling time [Chapper-5l»

(e) Non-linear analysis of separately excited d.c. motor

drive including some system non-linearities [Chapter-6].
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(f) Analysis of d.c. series motor driven electromechanical

system, fed by a chopper as well as a constant d.c» voltage,

taking into account the effects of elasticity of coupling

and periodic variation of load torque [Chapter-7].

1.3 LITERATURE REVIEW

The objective of the present work is to investigate the

effects of some of the mechanical factors on the performance of

d.c. motor drives fed by a chopper as well as a constant d.c.

voltage supply. While some work dealing with the effects of

mechanical factors on the performance of d.c. drives fed by a

constant d.c. voltage has been reported in literature, no work

seems to have been done on the analysis of chopper controlled d.c.

drives taking into account these mechanical considerations.

The published work related to the area of this disser

tation can be catagorised as below*

(i) Work dealing with the analysis of chopper controlled d.c.

drives but without considering the mechanical factors,

(ii) Work dealing with the effects of mechanical factors on

the performance of d.c. drives fed by a constant d.c.

voltage.

The following review summarises the published work under

the above two categories*

1.3.1 Work Dealing With Analysis of Chopper Controlled D;C. Drives

In respect of chopper controlled d.c. drives, the publish

ed literature consists of various methods of analysis for obtain

ing the performance of such drives and some suggestions for



-11-

improving the performance. The effect of any of the mechanical

factors which may influence the drive performance has not been

taken into account by any author.

(a) Work dealing with analysis of chopper fed d.c. separately
excited motor drives includes the following aspects-

Van Eck [60] has discussed the superiority of separately

excited d.c. motors over d.c. series motors and cited a number of

traction applications where separately excited motors are being

used. The characteristics of separately excited d.c. motors fed

either by a dc-dc converter or by ac-dc converter have been

reported.

The current in armature circuit of chopper fed d.c. motors,

specially for low values of load torque and armature inductance,

may become discontinuous. A method for ensuring the continuity

of armature current has been presented by Zabar and Alexandrovitz

[65], in which the chopper turn off time is kept constant and

average load voltage is regulated by varying the chopper time

period.

In practical drives, the supply voltage and the load

torque may have small variations. Taking these variations into

account, Nitta et. al. O3] have determined the dynamic response

of a d.c. drive driven by a pulsating power supply and derived

its transfer function. The analysis is extended by Matsui and

Miyari [37] and a critical condition under which the electrical

time constant can be neglected, is obtained. Moreover, the

analysis covers both, the continuous conduction as well as dis

continuous modes of conduction.
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Chopper fed d.c. drives suffer from a high value of ripple

contents in armature current. Verma et.al. [61] have presented

two analytical techniques for predicting the performance of such

drives, and have obtained a relationship of pulse width with

current ripple factor as well as variations in speed.

Various methods have been suggested by different authors

to solve the differential equations describing the performance of

chopper fed d.c. drives. One approach to solve these differential

equations is using computer simulation techniques. Williams [62]

has used state model technique to simulate the system on a digital

computer. The simulation enables the prediction of performance

in transient as well as steady state for any load conditions.This

enables system characteristics and stability to be judged and

modified theoretically. Damley and Dubey [18] have also presented

a digital computer programme, employing numerical techniques, for

the analysis of chopper fed d.c. motor drives* The method does

not need prior knowledge of mode of operation of chopper circuit

and the derivation of the relevant equations. The method is also

applicable to d.c. series motor drives.

The second approach to obtain the performance of chopper

fed d.c. drives involves separate sets of equations applicable to

different modes of chopper operation. Closed-form solutions for

each set of equations are obtained and the performance is deter

mined using these solutions by recursive step-by-step techniques.

To facilitate the simplification of the analysis, different assump

tions and approximations have been suggested. However, rigorous

closed-form solutions of system performance variables are not
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available. Based on this approach, different methods of analysis

[23,25,26,^] have been proposed.

Perimelalagan and Rajgopalan [W have analysed the perfor

mance for the case of continuous conduction of armature current by

four different methods. These methods are based on one of the

following assumptions-* negligible commutation interval, negligible

ripple in armature current, constant current during commutation

and direct solution of governing differential equations. A method

has been suggested to calculate additional losses due to pulsa

tions in motor current.

A comparative study of the two commonly used chopper

control techniques, viz., time ratio control (TRC) and current

limit control (CLC), has been presented by Dubey and Shephered[23].

The performance equations using these control techniques are given

for continuous as well as discontinuous conduction of armature

current. The analysis is based on the assumptions that the

chopper output wave is a perfect square wave and the speed during

a chopper cycle remains unchanged. Comparing the different tech

niques of chopper control, the authors suggest that TRC technique

with variable on time and constant chopper frequency is superior.

For transient analysis of d.c. drives using TRC technique,

the above authors have proposed three different methods [26],

which are based on different assumptions. While the first two

methods are applicable to the case of continuous conduction only,

the third method considers the possibility of discontinuous conduc

tion as well. These methods are approximate but need lesser

computation time compared to other methods. The use of filters
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nas been proposed [22] so as to limit the range of discontinuous

conduction. The same authors have also suggested three different

methods [25] for transient analysis using CLC technique. The

first method is exact and is taken as reference to compare the

other two methods. The second method assumes the speed over a

chopper cycle to be constant, while the third considers linear

variation of current in a chopper cycle. The last method can be

used to derive the transfer function and needs lesser computation

time with an accuracy comparable to the other two methods.

Apart from the above two approaches of analysis of chopper

fed d.c. drives, a third approach has also been reported by Singh

and Kohli [52], which is based on the methods of Fourier analysis

of the chopper output voltage wave. They have used this approach

to analyse the performance under continuous mode of operation.

The limitation of analysis is that the expressions for performance

variables are interdependent. This limitation of the analysis

has been overcome in their subsequent paper [51 ] which deals with

the case of discontinuous conduction as well and in addition

gives independent expressions for variables giving system perfor

mance. The analysis shows that the commutation interval signifi

cantly affects the drive performance.

Barton [1] has investigated an important feature of

chopper controlled drives which was not considered by earlier

workers. He studied the static transfer characteristics of a

chopper feeding an active load and pointed out a marked difference

in behaviour in the form of a very substantial reduction in incre

mental gain when transition from continuous to discontinuous
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conduction takes place. This phenomenon results in sluggish res

ponse of feed back systems employing choppers as power amplifiers.

(b) Work dealing with analysis of chopper fed d.c. series motor
drives includes the following aspects*

The analysis of chopper fed d.c. series motor drives is

relatively more complicated due to the non-linearity of the magne

tisation characteristic of motor. For such drives, the problem

of calculation of motor induced voltage constant is not simple as

it depends on the value of armature current which itself varies

with time in transient as well as steady state conditions. This

problem has been tackled by various researches and methods based

on different approximations are suggested [17,20,27,28].

Franklin [28] has given a mathematical model of chopper

fed d.c. series motor and its performance is predicted in terms

of average and instantaneous values of torque and speed. The non-

linearity of magnetic circuit is considered by a suitable approxi

mation.

Dubey and Shepherd [27] have proposed a method of analysis

of chopper fed d.c. series motor drives based on the assumption

that the motor induced voltage constant is a function of the

average value of armature current rather than its instantaneous

value. Based on the same assumptions, in another paper, Dubey[2H-]

has given two analytical methods which can take into account the

effect of commutation interval. In the first method, the current

during commutation interval is assumed constant, while in the

second, the ripples in armature current are neglected. The effect

of commutation interval is also considered in the analysis
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presented by Ranade and Dubey [H6]. The methods presented in

references [27,2m-] are approximate but need less computation time.

A numerical technique for representing the non-linear magnetisa

tion characteristics of series motor has also been suggested [17],

but the analysis using this technique requires large computation

time.

For the transient analysis of chopper fed d.c. series

motor, different methods have been suggested using time ratio

control [20] as well as current limit control [21]. Some of

these methods can be used for deriving the transfer function of

motor for small signal perturbations about a steady state operat

ing point. Using the block diagram approach, Bhadra [2] has

analysed the transient performance of such drives for small

sudden variations in load torque and the on-period of the thyris-

tor. The linearized perturbation equations are solved to calcu

late the instantaneous values of performance variables.

The papers discussed above deal mainly with the analyti

cal techniques applicable for determining the performance of open

loop chopper controlled d.c. drives. There are a few more papers

dealing with chopper control but for closed loop d.c. drive

systems using the pulse-width modulation. These are discussed

belows

Jacob Tal [5m-] has suggested the use of switching ampli

fiers for d.c. servo systems in order to reduce the high power

dissipation inherent with linear amplifiers. One method of

operating the switching amplifiers with constant frequency and

variable on time, called PWM has been discussed. A general
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scheme of voltage regulator feed back control using PWM control

is given by Maisel [36]. The regulator uses a ramp signal to

modulate a d.c. signal into a square wave pulse signal. The duty

factor of the modulated pulse is a function of error signal. A

departure of output from the desired value changes the pulse duty

factor and hence the average value of input maintaining the output

at desired level. Taft et.al. [53l have described two methods,

the dither method and the limit cycle method, for obtaining pulse

width modulated signals. It has been pointed out that the induc

tance added in series with armature to reduce the current ripples,

adversely affects the transient response of the motor. The advan

tages of closing a current loop around the amplifier, which

include the improvement in stability at high value of gains and

short circuit protection, are discussed.

The analysis given by Burger [6] deals with the basic

characteristics of a PWM d.c. converter. These include operational

characteristics like efficiency, ripple, regulation, settling

time and physical characteristics like weight, size, cost and

reliability. The system is simulated on an analog computer to

study its small signal stability. Unnikrishnan [58,591 has

suggested a method for maintaining the average voltage of a dc-dc

converter. This is achieved by introducing a gain in feed back

path. The stability of the system is also studied.

1.3.2 Work Dealing With Effects of Mechanical Factors

The work available in literature dealing with the effects

of mechanical factors pertains only to drives fed by constant d.c.

voltage. No attempt so far has been made to analyse the effects
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of mechanical factors on the performance of d.c. motor drives fed

through a chopper controlled supply. The work reported on the

mechanical considerations of d.c. drive EM systems is summarised

belows

A comprehensive description of various mechanical factors

affecting the performance of electric drives is given by Carter[10].

The factors discussed include elasticity of shaft, backlash,

misalignment, bending of shaft, unbalance of rolls, etc. The

effect of these factors is mainly to produce torsional oscillations

in the system and to impose cyclic rotational disturbance in the

form of either impact loads or periodic changes in load torques.

The system instability at resonance is discussed and possible

methods of stabilisation suggested. Although complete analysis of

the drive is not given, yet the paper gives a general overview of

the problems arising due to such effects.

Bishop and Mayer [3] have emphasized the need of accurate

modelling of the total system including the system non-linearities

and component interactions. The drive system has been divided

into four functional system components. The interface variables

which connect these components and the dynamic interactions have

been shown [Fig. 1.1], Drive system disturbance sources such as

pulsating torques, imbalances and switching transients of the

drive motor, impacts and cyclic effects of the load and mechanical

inaccuracies are discussed. Various types of drive system non-

linearities such as, non-linear electrical dynamics, saturation

effects, gear backlash, non-linear coupling, etc. are identified.

The paper gives a good description of the problem and the sources
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of complexity are defined. The effect of model fidelity on the

predicted dynamic torques in different drive systems are discussed.

In another paper Mayer [391 has discussed the various sources of

excitation of torsional oscillations for cement industry drives.

The importance of torsional mechanical system with the electric

drive system and its control have been emphasized.

Out of the various mechanical factors mentioned above,

only one such factor, the elasticity of coupling, seems to have

attracted the attention of researchers, because of its greater

effect on performance. The work reported, mainly in Russian,

deals with the analysis of d.c. motor drives coupled to load

through an elastic shaft [7-9,30-32,39,^+5,57]. The transient

analysis of such a system with constant load torque and neglecting

the damping, has been presented by Tsekhovitch [57]- The system

equations are solved using classical methods to find the ampli

tudes of oscillations of the motor torque and that of the shaft

elastic torque. The ratio of these amplitudes, termed as degree

of influence, is obtained to plot the dimensionless amplitude-

frequency characteristics (AFC) of the system.

The interaction of the two mechanical factors, the elasti

city of shaft and periodic variation of load torque, produces

resonance in the system. Kaminskaya [30] has studied the vibra

tions of an EM system under resonance condition. The mechanism

is represented by a two mass system connected through a single

elastic coupling. System aperiodic stability is also determined.

Kluchev [32] has analysed the performance of a d.c. motor drive

supplied through a controller and having an elastic coupling.
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The AFC of the system is obtained for normal operation as well as

for resonance condition. Depending upon the AFC, the elastic

coupling has been catagorised as weak, effective or rigid. The

interaction of mechanical oscillations with armature current for

weak and rigid couplings is observed to be negligible, whereas

this interaction is significant for effective couplings. This

sets a limit for a proper value of elasticity of coupling. For

an electric drive system with an elastic coupling, Burgin [9] has

analysed the effects of variation of drive parameters on the AFC

of the system. This helps in selection of proper values of system

parameters. For a small change in the frequency of harmonic load

torque disturbance, the corresponding change in electric torque

is obtained and the effect of resonance on AFC studied.

The non-linear analysis of a d.c. drive EM system with

elastic coupling has also been presented by Burgin [73. The non-

linearity considered in the system is due to the backlash in the

transmission system. The stability of such a system is studied

using Lyapunov method. In another paper [8], the same author has

given the transient analysis of a linearised double mass EM system

with an elastic coupling using a d.c. series motor. Kluchev

et.al. [31] have analysed a closed-loop d.c. drive EM system,

having linear and non-linear electrical and mechanical couplings.

The effects of backlash in the coupling and gear teeth have also

been considered. The system is linearized and modelled on a

computer to analyse its performance. The performance studies

include, working out criteria for neglecting the influence of

coupling, dynamic properties and stability of non-linear EM
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system, and the conditions for minimum amplitude at resonance for

forced vibrations. These studies enable a suitable design of

electrical and mechanical parameters of the system.

The work discussed above deals with the effects of mecha

nical factors on performance of d.c. drive EM systems fed by a

constant voltage. For a d.c. drive fed by a thyristor bridge

converter with elastic coupling, Polyakov et.al. [h-5] have identi

fied the conditions leading to resonance. It is pointed out that

any alignment between the resonance frequencies of AFC of the

system and the frequency spectrum of thyristor control voltage

should be avoided in order to avoid resonance.



CHAPTER-2

ANALYSIS OF OPEN-LOOP D.C. MOTOR DRIVE WITH ELASTIC COUPLING
AND PULSATING LOAD TORQUE

2. 1 INTRODUCTION

An electric drive invariably contains a mechanical link

in the form of the shaft coupling the motor to the load. In

practical systems, this link is always elastic, and not rigid as
is generally assumed for simplifying the analysis. For precise
determination of performance, specially under dynamic conditions,

the elasticity of shaft must be taken into account. In a large

number of practical applications, due to the inherent nature of

the driven mechanism, the load torque is not constant but is

pulsating in nature. Examples of such loads are compressors,

crank-piston mechanisms, machine tools, etc. [55,631. Factors
such as eccentric or unbalanced rolls, bent shafts or mechanical

misalignment [10] may also introduce periodic variations in load

torque.

The problem of torsional oscillations in the d.c. motor

drives caused by the elasticity of shaft, has been analysed in the

past [30,32,39,4-5,57]. The work available includes the transient
analysis and the study of amplitude-frequency characteristics of

a d.c. drive with elastic coupling and constant load torque neg

lecting the effect of damping [57l. The amplitudes of oscillation

of the motor torque and that of the elastic torque in the shaft,

are compared [9,32,57] to assess the extent of influence of
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elasticity of shaft. The amplitudes of these torques at resonance

are also studied [9,31 ]. However, a complete analysis of a d.c.

drive, fed by a constant d.c. voltage source, with an elastic

coupling and pulsating load torque, which gives a closed form solu

tion of system performance variables for transient as well as

steady state conditions is not available. The effects of variation

of drive parameters on the performance has also not been studied.

2.2 WORK PRESENTED

In this chapter, analysis of a d.c. separately excited motor

with a pulsating load torque and taking into account the elasticity

of coupling and damping, is presented. The effects of system para

meters, like moment of inertia, elasticity of shaft, damping and the

frequency of load torque pulsation, on the drive performance are

studied. Conditions leading to resonance are investigated. Some

suggestions are given to improve the design of the system.

The system analysed consists of a d.c. separately excited

motor supplied with a constant d.c. voltage and connected to the

load through an elastic shaft as shown in Fig. 2.1. The system is

represented by a two rotor system and the moments of inertia and

damping for the motor and the load are considered separately as

shown in Fig. 2.2(a). This type of system is referred to as fTwo

rotor, s;mi-definite, two decree of freedom system' [ln-,56]. The

load torque is considered to consist of a non-varying component

T-r superposed by a sinusoidally varying component Tj« as shown In

Fig. 2.2(b). A mathematical model of the system is given and

the equations are expressed in State model form. The system

equations are solved to obtain closed-form solutions for armature
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current and motor speed under transient as well as steady state

conditions.

2.3 PERFORMANCE EQUATIONS

The system shown in Fig.2.1 can be described by the

following equations '•

dt m 1

Te =j1 V Bi &i +c(e1-e2) (2.2)

'TL =J2 V B2 '62 + C(e2"ei) (2*3)
where T • K i

e e

The motor field current in the above equations has been

assumed to be constant. A periodically varying load torque TL,

can be considered to be consisting of a constant component and a

number of sinusoidally varying components, and can in general be

expressed as*

TL = TL + TL sin (o^t - 0) + TL2 sin (a^t - 0') + .
(2.M

For the sake of simplicity, in the analysis that follows, only the

constant component and the first alternating component are taken

into account. However, the method of analysis is general and can

take into account any number of harmonic components, and is there--

fore applicable for any type of periodic load torque. The load

torque as shown in Fig.2.2(b) can, therefore, be represented as*

TL = TLo+ TL1 sin <V ' 0) ' (2'5)
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The frequency of the load torque for.certain applications

depends upon the angular speed of the shaft. This leads to non

linear system equations. However, the pulsations in speed being

very small compared to the average value (as will be observed

from the results of this analysis) can be neglected, and the

frequency of pulsating component of load torque to can be justi

fiably assumed to be proportional to the average value of shaft

speed. This makes the system equations linear and simplifies the

analysis without causing an appreciable error in the results

(A non-linear analysis of the system taking to. equal to shaft

speed &2 is presented in Chapter-6). Thus <a* can be written as
to. - ken , where o> is the average steady state speed and k is a

constant which depends on the type of mechanical load coupled to

motor shaft. In this analysis, the value of k is taken as unity,

implying that the load torque completes one cycle in one revolu

tion of the machine shaft. Systems for other values of k can be

analysed in a similar fashion.

2.h. SYSTEM CHARACTERISTIC-E RATION

Eqns. (2.1-2.5) can be expressed in the State-model

form as*

x = Ax + Du (2.6)

where

* In state equation (2.6) symbol D is used,in place of usually
used symbol B, as B denotes damping in this text.
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0 1 0 0 0

G/J1 -B/J1 c/j1 0 VJi

0 0 0 1 0

c/J2 0 -c/j2 -B2/J2 0

0 -K A
m

. 0 0 -1A£

0

0 0 0

0

-1/J.

-,T
1/L

0

forcing function vector u =
V

TT

and, state variable vector x = [©1 ©^ ©2 ©2 i]

Taking Laplace transform of eqn.(2.6)s

X(s) = [sI-A]"1 DU(s) + [sI-A]"1 x(0)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

where I is a unit matrix of the same order as matrix A. The

motor is assumed to start from quiescent state, i.e. the initial

values of state variables are zero,

x(0) = [0 0 0 0 0]'

For steady state performance, the results so obtained will be

independent of initial values x(0). For transient studies other

than those beginning with quiescent initial conditions, appro

priate initial conditions may be used and results obtained in a

similar fashion.
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(2.12)

From eqn.(2.11), X(s) can be written as*

X(s) =I [0..]DU(s)

where [0^3 = Adj [si-A]

and A is the determinant of [si-A] matrix.

The characteristic equation of the system, A

written as*

k* s5 +A2s^ +A3s3 +\s2 +A5s =0

= 0,can be

(2.13)

The characteristic equation (2.13) for the drive with an elastic

shaft is of order five. However, if the elasticity of shaft is

not taken into account, the order of the characteristic equation

reduces to two. The coefficients of the characteristic equation

(2.13) ares

A1 = VlJ2

A2 = -a(B1J2+ B2J1} + J1J2
A3 =BlJ2 ♦ B^ +TaB1B2 +Cra(J1 *J^ +W2/R
Al+ =B^2 ♦ B2KeKm/R ♦ Cxa(B1 +B,,)+ C(J^ Jg)

A5 = C(Bl ♦ B2 * KeKm/R)

In the case of separately excited d.c. motors, the arma

ture circuit inductance is generally low and the roots of the

characteristic equation (2.13) can be represented as*

s* = 0 , s2 = -a, , s3 = -a2 , s^ = -a^l JB3

where a* * a2 and cc3 are real positive values and determine the
rate of decay of transient component of system response. However,

(2.1^)
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for large values of armature inductance, roots s2 and s-. may

become complex. The imaginary part 8^ of the complex roots s^ 5

gives the damped natural frequency of oscillation of the system

[1^3. The values of a^ and B3 depend upon the values of undamped

natural frequency of torsional oscillation cnn and the damping

ratio a s*.

1/2

a3 =*wn and ^3 =wn(1 "^2) (2.15)

where £ is damping ratio. The value of a>n is related to elasti

city of shaft and moment of inertia of the system as*

,1/2wn=[C(^+^)] (2.16)

Thus A can be represented as?

(2.17)

2.5 DETERMINATION OF SYSTEM RESPONSE

The closed form solutions for performance variables i.e.

armature current and motor angular speed, can be determined by

taking the inverse Laplace transform of eqn. (2.12). Thus

0

0

"e^t)'

e^t)

e2(t)

e2(t)

i(t)

-r11

011(s)...051(s)"

012(s)...052(s)

013(s)...053(s)

0^(5). ..0^(3)

j_0l5(s)...055(s)j

1 fTLo,TLlV0s ^ssin0)
V s (s2+«f) j

3L.
sL

(2.18)
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2.5.1 Solution For Armature Current

From eqn. (2.18), armature current i(t) can be written as*

i(t) =oC" T
0i+5( s) TT4(tDi cos 0-s sin 0)fxLo, XL1"»1

(s2 + of)
•}+ 055 sL (2.19)

From eqn. (2.19), the expression for armature current can

be obtained as*

i(t) = i,+ i2+ 1* exp(-a1t) + i^ exp(-«gt) + i^ expC-a^t) (2.20)

LLo
where i. = K I ♦ K<

1 " 1V28 L 1V17 J

i2 = K^ ^ sin Cfl^t - 4>2)

*3 *K18 5f +K22 I1 +K29 3t

S"K19 7f +K23 I1 +K30 E
i- = K

LI

21
jjft sin (p t - V - K26 £• sin (^t - 0?)

♦ K32 I sin (B3t - 06)
[Expressions for different symbols are given in

appendix A-i ]

2.5.1.1 Steady State Armature Current

The solution for steady state armature current, ig(t),

can be written from eqn. (2. 20) as*

is(t) = i, ♦ I, (2.21)
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2. 5. 2 Solution For Motor Speed

From eqn. (2.18), motor speed ©«(t) can written as*

-1

e/t) =1 I
$\±2(s) TLo TL1(W1 cos 0-s sin 0) ^052V

(s + 03,;J2 *s
(2.22)

From eqn. (2.22), the solution for speed can be obtained

as!

6 (t) = n +n +n~ exp(-a,t)+ n^ exp(-a2t)+ n^ exp(-«3t) (2.23)

_ V V rr _Lowhere, n* - K* 2 fj - K. j^

T

n ="K10 j sin S* " V

"3
_ v Lo v L1 . F V
" "K2J2 " K6 J2 K13 L

T T 1 V

"M- ="K3 if " K7 J^ +K1^+ L
T Tn^ =-K? j^ sin C^t- 0. ) - K., y^ sin (^t- 02)

+K16I sin (i33t-!2f3)
[Expressions for the various symbols used above are

given in appendix A-1]

2. 5. 2.1 Steady State Speed

The solution for steady state speed, G4g(t), can be

written from eqn. (2. 23) as*

G1s(t) - a,+ 1*2 (2.2*0
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2.6 NATURE OF ARMATURE CURRENT AND MOTOR SPEED

2. 6.1 Steady State Performance

The armature current and motor speed in steady state consist

of two components [eqns. (2.21 , 2.2*+)]. One is a non-varying

component (i, , n.) while the other is a pulsating component

(ip , np) varying sinusoidally at the frequency of the pulsating

component of the load torque, to, .

2.6.1.1 Frequency of Load Torque Pulsation for Maximum and
Minimum Pulsations of Current and Speed

The steady state pulsating components of current and speed

(ip and n?) depend upon the values of Mp and Np [appendix A-1 ].

The frequency of load torque pulsation for maximum and minimum

values of ip and n2 can be obtained from the condition given

below*

d CO,

M0 2 N0 2
(_2) + (_i)
a>, to.

= 0

This leads to the following conclusions*

(i) The amplitude of the pulsating component of current or

speed is maximum when the frequency of load torque is

equal to g-. This frequency may be termed as resonance

frequency 'to ' and its value depends upon the natural

frequency co and damping ratio £ [eqn. (2.15)]. For

practical electric drive systems damping ratio is very

small and p~ is nearly equal to to . The peak value of

current and speed under resonance condition depends upon

the damping ratio.
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(ii) The minimum value of these components occurs at a frequen

cy of load torque which is equal to l/<v/2 times the value

of resonance frequency. This frequency may be termed as

critical frequency 'coc'.

2.6.2 Transient State Performance

In addition to the two components of steady state condi

tion, the armature current and speed each have three components

exponentially decaying with time (i^ji^ji^ and n3,n^,n^ respec

tively)[eqns. (2.20 , 2.23)]. The components ±c and n^ of current

and speed respectively are sinusoidal components of frequency B^

and exponentially decaying amplitudes. For an undamped system

(<*o = 0,Bo = co ), these components persist and vary sinusoidally

for indefinite time. In the case of a rigid shaft, these compo

nents are absent.

2.7 TYPICAL PERFORMANCE STUDIES

To illustrate the analysis presented in sections 2.3-2.6 ,

the performance of a d.c. drive system with the following specifi

cations is analysed*

Motor"

Separately excited d.c. motors

Supply voltage, V = 200 V

Armature circuit resistance, R = h ohm

Armature circuit inductance, L = 0.06 H

Full load current, Ifl = 6.3 A (1 pu)

Rated speed = 1000 rpm (1 pu)
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2
Moment of inertia of rotating parts, J« = 0.05 Kg m"

Damping coefficient, B = 0.008 Nm/rad/s

Electromagnetic torque constant, Ke = 1.86 Nm/A

Motor back emf constant, Km = 1.86 V/rad/s

Mechanical System*

Torsional stiffness of shaft, C = 6750 Nm/rad

Moment of inertia of load, J2 = 0.05 Kg m

Damping coefficient of load, B = 0.008 Nm/rad/s

Constant component of load torque, TL = 0.75 full load torque

Pulsating component of load torque, Xt. = 0,25 full load torque

Shaft length, 1 = 1 m

Shaft diameter, d = 0.03 m

Modulus of rigidity of shaft material, G= 0.85 x 1010 Kg/m2
Phase angle of load torque, 0=0

The performance as computed using this analysis is

depicted in Figs. 2.h~2* 13 . For a load torque varying as shown

in Fig.2.3-, the variations in armature current and motor speed

under steady state condition are shown in Figs. 2.V and 2.5'

respectively. It is observed that both the armature current and

motor speed have a pulsating component superposed on a nonvarying

component. The frequency of these pulsating components is same

as the frequency of pulsation of the load torque.

It may be inferred that if the load torque is periodic in

nature, such that it can be resolved into a constant component

and a number of sinusoidally varying harmonic components, then the

armature current and speed will also have a similar nature under

steady state conditions.
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The amplitudes of pulsations of armature current and

motor speed depend on the moment of inertia and the amplitude of

pulsating component of load torque. As the moment of inertia is

increased, the amplitude of current and speed pulsations reduces

[Figs. 2.1+ ,.2.5 1. The pulsations of steady state current and

speed become very large when the frequency of load torque pulsa

tion becomes equal to the natural frequency of oscillation of

system as shown in Figs. 2.6 , 2.7 , 2.8 ,2.9 . The ampli

tudes of armature current and speed at resonance also depend on

the damping and moment of inertia of the system as shown in

Figs. 2.10 and 2.11 . The instantaneous values of armature

current and motor speed in transient condition are shown in

Figs. 2.12 and 2.13 respectively.

2.8 EFFECTS OF SYSTEM PARAMETERS ON PERFORMANCE

The effects of operating conditions like nature of load

torque and some of the design parameters like elasticity of shaft,

moment of inertia and damping, on the performance of the drive

are discussed below;

2.8.1 Effect of Nature of Load Torque

(a) Steady State Performance:

With a pulsating load torque, the armature current and

speed also pulsate at a frequency equal to that of the pulsating

component of load torque. The amplitude of pulsations of current

and speed is proportional to the amplitude of pulsating component

of load torque. These pulsating components of current and speed
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may have phase lags with the pulsating component of load torque

as shown in Figs. 2.3 , 2A and 2.5 .

The effect of variation of frequency of pulsating compo

nent of load torque on pulsations of current and speed is shown

in Figs. 2.6 and 2.7 respectively. It is observed that as

the frequency of load torque pulsations is increased, the ampli

tudes of pulsating components of current and speed decrease and

become a minimum at a particular value, say w [Table 2.l1. When

the frequency of load torque pulsations becomes equal to natural

frequency of torsional oscillation of system co , the amplitudes

of pulsation of current and speed attain large values. This

phenomenon is termed as 'resonance*. A comparison of the pulsa

tions of current and speed under normal operating conditions and

the resonance condition is shown in Figs. 2.8 and 2.9 respec

tively.

TABLE 2.1 s Effect Of Frequency Of Pulsation Of Load Torque*

S.No.
CD1

rad/sec

amplitude of pulsating, component

current "/ speed */

1 1.0 25.063 3.2^0

2 10.0 \7*777 2.133

3 50.0 3.809 0.621

h 100.0 1.269 0.305

5 366.7 (<oc) 0.222 0.156

6 510.0 1.U-76 1.U-80

7 520.162 (con) 93.921 95-626

8 530.0 1.3>+9 1.385

9 560.0 0.397 0.535
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(b) Transient State Performance'

The frequency of the pulsating component of load torque

does not seem to affect the three transient components of current

and speed.

2.8.2 Effect of Elasticity of Shaft

(a) Steady State Performance?

The steady state armature current and speed are not

significantly affected by the value of torsional stiffness of

the shaft. Stiffness determines only the natural frequency of

the system and hence the frequency at which resonance will occur.

(b) Transient State Performance'

The armature current and speed have exponentially decaying

component (ir , n,~), which vary sinusoidally at frequency p,.

In the case of a rigid shaft this component will not be present.

Assumption of a rigid shaft thus results in ignoring this compo

nent of armature current and speed.

An increase in the value of torsional stiffness increases

the natural frequency of the system and decreases the amplitude

of this component of current and speed.

2.8.3 Effect of Moment of Inertia:

(a) Steady State Performance?

For the same value of load torque and damping, an increase

in moment of inertia decreases the amplitudes of pulsation in

current and speed. However, moment of inertia has no effect on
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average values of current and speed as shown in Figs. 2.*4-,2.5

and Table 2.2. Under resonance condition, an increase in moment

of inertia decreases the peak value of pulsations in speed. The

effect of moment of inertia on peak value of current in resonance

condition is not much appreciable as this value mainly depends on

damping of the system [Figs. 2.10,2.11 and Table 2.3].

TABLE 2.2 i Effect Of Moment Of Iraortia And Damping On Steady
State Performance

S.N.
damping
Nm/rad/s

moment

of
inertia

Kg m2

average value amplitude of pulsation

current

pu

speed

pu

current speed

0.05 1A28 0.325

1 0.008 0.10

0.20

0.900 0.910 0.730

0.381

0.16*4-

0.088

0.05 1.H76 O.33O

2 0.016 0.10

C.20

1.026 0.89*4- 0.7*4-6

0.397

0.167

O.O89

0.05 1.571 0.3*4-2

3 0.032 0.10

0.20

1.26*4- 0.863 0.79*4-

0.M3

0.173

0.091
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TABLE 2.3 : Effect Of Moment Of Inertia And Damping On
Performance Under Resonance Condition

S.N.
!moment of damping

inertia Nm/rad/s
.2

Kg m'

amplitude of pulsation

current
'/*

speed
*/.

re sonance

frequency
rad/s

0.008 95.238 95.632

1 0.05 0.016 61.0*4-7 62.395 520.162

0.032 36.000 36.809

0.008 90.016 66.798

2 0.10 0.016 65.857 *f8.l75 367.80*f

0.032 *4-2.857 3L350

0.008 77.952 M.303

3 0.20 0.016 63.365 33.579 260.068

O.O32 he,111 2*4->37

TABLE 2.*4- '* Current And Speed Pulsations For Loads Of
Large Damping And Inertia

B2/B1 J2/J1

1

average
current

pu

current
pulsation

y.

average
speed

pu

speed
pulsation

y.

1 0.900 1.1+28 0.910 0.325

10 10 1.*432 0.153 0.8*4-1 0.067

10 1 1.*4-32 1.028 0.8*4-1 0.379



z

UJ

a

CE

O

UJ
cc

<
2
a.

<

44

CURVES
DAMPING

Bl=B2
M. INERTIA

JlrJ2,
U^U)!!

(Nm/rad/s.) kg - m' rad/s

1 0008 0-05 520- 1G

2 0016 0-05 520- 16

3 0-032 005 520- 16

U 0-032 0-10 367- 8

0-5 T,
TIME (s ) *-

FIG. 2.10-EFFECT OF DAMPING AND MOMENT OF

INERTIA ON STEADY STATE ARMATURE
2.0r- CURRENT AT RESONANCE

TIME I s )

FIG- 2.11_EFFECT OF DAMPING AND MOMENT OF
INERTIA ON STEADY STATE SPEED

AT RESONANCE



-*+5-

(b) Transient State Performance:

A large value of moment of inertia reduces the value of

natural frequency of oscillation and increases the amplitude of

sinusoidally decaying components (i^ , n^) of current and

speed. A large value of moment of inertia also increases slightly

the peak value of armature current and the system requires more

time tc reach the steady state condition as shown in Figs. 2.12

and 2.13-

2.8.** Effect of Damping

An increase in the value of damping does not affect much

the amplitudes of steady state pulsations of current and speed.

However, it increases the average value of current and decreases

the average value of speed [Table 2.2] as shown in Figs. 2.*4-,2.5 .

Under resonance condition, an increase in damping decreases

appreciably the peak values of current and speed [Table 2.3] as

shown in Fig. 2.10 and 2.11.

For loads like compressors or ship propellers, damping

coefficients and moment of inertia of load are much larger than

those of the motor {3 » J* and B2 » B1). In such systems the

pulsation in current and speed are significantly reduced. The

major contribution to this reduction is due to the increased

moment of inertia. An increase in damping only reduces the

pulsation in current but increases the pulsation in speed.

Table 2.*4- shows comparative figures for different combinations

of moment of inertia and damping.
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2.8.5 Effect of Armature Reaction

In the analysis presented, linearity of magnetic circuit

is assumed, and brushes are in the geometrical neutral axis.

With these assumptions, the total flux per pole remains unchanged

when the field is distorted by armature reaction. However, if

saturation is present, the net flux per pole will reduce. This

can be accounted for by decreasing the value of motor back emf

constant. For the example considered, a 5 percent reduction in

K (which corresponds to 5 percent reduction in flux per pole

due to armature reaction) decreases the pulsation in current and

speed by 0.269 and 0.03 percent respectively. This shows that

the armature reaction effect on pulsations in current and speed

is not significant.

2.9 CONCLUSIONS

In this chapter, the performance analysis of a d.c.

electric drive with a pulsating load torque and elastic mechani

cal link between motor and the load has been presented. Closed-

form expressions for armature current and motor speed, for

transient and steady state conditions have been obtained. The

analysis reveals that the drive performance is significantly

affected by the pulsations in the load torque particularly when

the shaft is not rigid. Under steady state condition the current

and speed have pulsating components of frequency €iqual to the

frequency 0 f the pulsating component of '.Load torque. The ampli-

tude of the se components descreases with:
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(i) decrease in amplitude of pulsating component of load

torque,

(ii) increase in value of moment of inertia.

(iii) increase in frequency of load torque pulsation.

The following suggestions are made to improve the perfor

mance of such drives?

(a) The load torque should be analysed and it must be ensured

that the natural frequency of the system does not match

with the frequency of any of the components of the load

torque. Otherwise, there is a possibility of resonance,

resulting in very high instantaneous current and speed.

If the natural frequency of the system happens to be near

the frequency of any of the components of the load torque,

the natural frequency of the system must be changed by

changing the stiffness of the shaft (changing the ratio

of diameter/length) or the moment of inertia.

(b) It is shown that the amplitudes of steady state pulsations

of armature current and speed are minimum when the fre

quency of load torque pulsation is equal to 1/n/2 times

the resonance frequency. This provides a criterion for

design of the system for minimum pulsations in current and

speed . As such, in order to minimize these pulsations ,

it is suggested that for a given value of frequency of

load torque pulsation to., a combination of values of

moment of inertia and torsional stiffness of the system

may be selected such that the natural frequency of

oscillation © is v/2 time en. .
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(c) The amplitudes of steady state pulsations of current and

speed can be reduced by increasing the value of load

moment of inertia. However, the choice of increase in

moment of inertia is restricted due to mechanical design

considerations. Damping does not affect much the steady

state pulsations in current and speed.

(d) The amplitudes of steady state pulsations of current and

speed under resonance conditions can be reduced by

increasing the damping of the system. However, this will

increase the average value of current and decrease the

average speed.

(e) The amplitude of alternating components (i^ , n^) of

current and speed in transient condition can be reduced

by increasing the value of torsional stiffness of the

shaft.



CHAPTER-3

A NEW ANALYTICAL TECHNIQUE FOR PERFORMANCE DETERMINATION
OP CHOPPER CONTROLLED D.C. MOTOR DRIVES

3.1 INTRODUCTION

A commonly used type of thyristor control of d.c. motors

is the 'chopper control* which converts a constant d.c. voltage to
apulsed type voltage. Chopper control offers many advantages over
the other competitive method of d.c. motor control known as 'phase
control'. These advantages include improved power factor and wave
forms on a.c. side, and reduced harmonics and associated losses
due to the use of relatively high values of chopper frequency.

Also, with such acontrol, the speed of motor can be controlled
over much wider range than is possible with phase control. Due
to these features, chopper control finds application for the
control of d.c. motors in avariety of industrial drives. As a
consequence, there have been parallel advances in developing
better analytical techniques to predict the performance of such

drives.

Extensive work dealing with the methods of analysis of

chopper controlled d.c. motor drives using time ratio control is
available. The chopper alternately operates in two different
modes,known as the conducting (duty) mode and the freewheeling
mode corresponding to 'on' and 'off' periods respectively, of the
chopper cycle. In the existing methods [23,25,26,¥*] of analysis,
two separate sets of differential equations applicable to duty and

/777#£
.
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freewheeling modes of operation respectively are required. Each

set of equations comprises the voltage-current equation for arma

ture circuit and the dynamic equation of motion. If the commu

tation interval of the chopper is also taken into account, an

additional third set of equations is needed.

To determine the system performance, the above sets of

equations are solved. The approach followed so far has been to

solve the above sets of equations either by using a numerical

technique or by step-by-step methods.

To obtain the steady state solution using a numerical

technique [18], the solutions can be started from any point in

time with known or assumed initial conditions. The calculations

are repeated till near steady state conditions are obtained.

Theoretically the steady state will occur after infinite time. As

such the calculations have to be repeated for a large interval of

time. Such methods of analysis suffer from two inherent draw

backs. Firstly, the computation time required is large, specially

when the solutions with a high accuracy are required. Secondly,

such methods do not yield closed-form solutions.

The second approach followed for the analysis of such

systems is to solve the above sets of differential equations using

step-by-step method. This type of analysis involves obtaining a

closed-form solution of these equations for duty period of first

chopper cycle using the known initial conditions (which are gene

rally all zeros for switching-in from rest). The values of per

formance variables at the end of the first duty period are calcu

lated using this closed-form solution and are used as the initial
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conditions for freewheeling interval of first chopper cycle. The

equations for the free-wheeling mode are then analytically solved.

For both these analytical solutions (for conducting mode, and the

free-wheeling mode) the speed over a chopper cycle is assumed

constant [23,251. This process is repeated for the subsequent

cycles with only initial conditions changed till the steady state

or the desired time interval is reached [25,26]. This necessi

tates steprby-step solutions of two sets of differential

equations', one for duty mode and the other for freewheeling mode

of operation with the initial conditions changing at each stage.

This approach has three main disadvantages. Firstly, the analysis

has to be started right from the first chopper cycle, and hence

computer time needed is large. Secondly, a general closed-form

solution is not obtainable. Lastly, the analysis is less accurate

as it assumes the speed over a chopper cycle as constant.

A chopper fed d.c. drive with a rigid shaft is a system of

second order. However for a precise analysis, the elasticity of

coupling should be taken into account in which case the order of

the system increases to five. Handling the analysis of such

complex systems (analysis in Chapter-*!-) and solving the two sets

of equations,one for duty and the other for freewheeling modes, by

existing techniques is highly involved and needs exceptionally

large computational efforts. There is, therefore, a pressing need

for a new technique which is more rccurate, needs lesser computa

tion time and can be used for more complex systems.
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3.2 WORK PRESENTED

In this chapter, a new analytical technique for analysis

of a chopper fed separately excited d.c. motor using 'time ratio

control' at constant chopper frequency is presented. The system

is modelled in such a manner that only one set of equations is

applicable to both duty as well as freewheeling modes of chopper

operation. Closed-form solutions for armature current and

motor speed are obtained for transient as well as steady state

conditions corresponding to any set of operating conditions. The

solutions at any point in time, under transient as well as steady

state conditions, can be directly obtained without starting from

the switching-in instant. The computational efforts and time

needed are, therefore, extremely small as compared to other

methods.

The proposed technique is applied to the analysis of

chopper fed d.c. motor drive with elastic coupling and pulsating

load torque discussed in Chapter-*^.

The system analysed consists of a chopper fed separately

excited d.c. motor delivering a constant load torque as shown in

Fig.3.1. A thyristor chopper CH converts a constant d.c. voltage

V to a pulsed voltage v(t) as shown in Fig.3.2. A freewheeling

diode FWD in parallel with the armature is provided which allows

the flow of current in armature during freewheeling interval.

3.3 SALIENT FEATURES OF THE PROPOSED TECHNIQUE

The proposed technique of analysis overcomes the draw

backs of existing methods. In this method, the chopper output
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voltage is expressed as a sum of series of step voltages, and

Laplace transform of this type of voltage is obtained. A single

set of equations consisting of the voltage-current equation for

armature and the dynamic equation of motion is thus applicable to

duty as well as freewheeling modes of chopper operation. The

equations are expressed in State model form. In order to obtain

the closed-form solutions for system variables in time domain,

the inverse Laplace transform of the solution in s domain is

required. For obtaining the inverse Laplace transform of a

particular form of function occurring in this analysis, a theorem

has been developed. The philosophy of expressing the chopper

output voltage as a sum of series of step voltages and the proce

dure for obtaining the response in duty as well as freewheeling

intervals of a chopper cycle, say nth cycle, is explained below:

Fig. 3.3 shows the component unit step voltages with time

phase difference, applied alternatingly in positive and negative

directions at the end of freewheeling and duty intervals respec

tively. These step voltages added together at different intervals

of time are shown in Fig. 3.*+. This shows that a sum of step vol

tages applied with proper time phase difference is equivalent

to the waveform obtained from the output of the chopper. The

response in duty and freewheeling intervals of nth chopper cycle

can be determined in the following manner*

(a) duty intervals

The voltage applied and the corresponding limits of time

interval for different chopper cycles is given below$
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chopper
cycle

time

interval

step voltage
applied

1 o < t < tQ U(t) .

2 T < t < (T+tQ) U(t)-U(t-t0)+U(t-T)

3 2T < t < (2T+t ) U(t)-U(t-tQ)+U(t-T)

n

-U(t-t -T)+U(t-2T)

(n-DT <t< (nTTT+t0) U(t)-U(t-t0)+U(t-T)-U(t-tQ-T)
+U(t-2T) .

+U(t-n::TT)

+U(t-2T) ...... -U(t-t0-n-2T)

The response in duty interval of nth chopper cycle is

that due to the sum of step voltages given above which can be

written as'*

n n-1
E U(t-r-1T) - S U(t-t -r-1T)

r=1 r=1

(b) freewheeling intervals

The voltage applied and the corresponding limits of time

interval for different chopper cycle is given below:

chopper
cycle

1

2

3

n

time
interval

t <t<T

(T+t )<t<2TQ _ —

(2T+tQ)<t<3T

(n-1T+t0)<t<nT

step voltage
applied

U(t)-U(t-tQ)
U(t)-U(t-t0)+U(t-T)-U(t-t0-T)
U(t)-U(t-t0)+U(t-T)-U(t-t0-T)+U(t-2T)
-U(t-tQ-2T)

U(t)-U(t-t0)+U(t-T)-U(t-t0-T)+U(t-2T)
-U(t-t0-2T).. . ... .+U(t-HHT)-U(t-t0-rHT)
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The response in freewheeling interval of nth chopper

cycle is that due to the sum of step voltages given above which

can be written as*

n • n
S U(t-r-1T)- E U(t-t -r-1T)

r=1 r=1 °

3.3.1 Assumptions

Following assumptions are made in the analysis*

(a) armature inductance is sufficiently large to allow a conti-

nuous flow of current in armature circuit,i.e. the chopper

operates in duty and freewheeling modes only and there is

no zero current interval of operation,

(b) chopper output voltage is a perfect square wave, i.e. the

commutation interval is neglected,

(c) field current remains unchanged during motor operation,

(d) resistance and inductance of motor armature are constant.

3A PERFORMANCE EQUATIONS

The system shown in Fig.3.1 can be described by the

following equations'•

v(t) =L||+Ri +Km6 (3-D

= J 6 + B G + TT (3.2)T
e LL

where Tg = Ke i

In above equations, v(t) is the chopper output voltage,

and i and 8 are the instantaneous values of armature current and

motor angular speed, respectively. The above equations are
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applicable to both duty as well as freewheeling modes of chopper

operation. These equations are to be solved in order to determine

the system performance in terms of armature current and motor

speed.

3.5 SYSTEM CHARACTERISTIC EQUATION

Equations (3.1) and (3.2) can be expressed in State model

form ass

x = Ax + Du 0.3)

where

~"1/L 0
a m

A = D =

e m

forcing function vector u

and, state variable vector x -

0 -1/J

v(t)

TT

1

e

Taking Laplace transform of eqn.(3«3)!

i-1 -1X(s) = [sI-A]"1 DU(s) + Csl-A] ' x(0)

(3»

(3.5)

where I is a unit matrix of the same order as that of matrix A.

For the system starting from quiescent state,

x(0) =
0

0

Taking the Laplace transform of the chopper output

voltage v(t) and that of the constant forcing function TL,
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U(s ) is given by;
- exp(-st)

X(s) =

U(s) =
sl1 - exp

From eqn,(3.5),X(s) can be written as*

I(s)

1_

8(s)

V, L 1-exp(-8t) S&
^L(s+~)M- expC-sT) * sJL

sJLM- exp(-sT) j sJ Ta

(3.6)

where A is the determinant of [si-A] matrix.
The characteristic equation of the system, A = 0, is

given by

(3.7)
K K + BR

;2+ (l + l)s + ^JU-
Ta Tm

JL

It is observed that the characteristic equation (3-7) is
a quadratic in s, the two roots of which may be expressed as*

Sj) = -Oj and s2 a2

where a^ and a2 are real positive values. Thus A can be written

as*

A = (s + a-,) (s + a2) (3.8)

The root s of the characteristic e•quation may also be complex for

certain combination of values of electrical and mechanical para-

meters. However, the procedure of analy sis presented remains the

same.
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3.6 DETERMINATION OF SYSTEM RESPONSE

The closed-form solutions for system variables i.e.

armature current i(t) and motor angular speed e(t) can be obtained

by taking inverse Laplace transform of eqni3-6) as*

i(t)

x(t)= <^ |(s+a1 )(s+a2)
8(t)

_1

1-exp(-st ) K TT

7lCs+ —H1.exp(-ST5 J sJL

VK l-exp(-st) TL(c,JL>
"iJLM-exp(-sT) J sJ^5 t'

(3.9)

For obtaining the performance variables i(t) and 9(t),

in duty and freewheeling intervals, the inverse Laplace transform

of terms containing {1 -exp(-st0)}/{l -exp(-sT)} in eqn.(3-9) is
required. The inverse Laplace transform of such a function can

not be obtained by usual available methods. For this purpose the

following theorem is proposed. The proof of this theorem is given

in appendix A-2.1.

THEOREM

If 0(s) is the Laplace transform of 0(t), then for:

(i) duty intervals (n-1)T < t< {(n-1)T+t0}s

(ii) freewheeling intervals {(n-1)T+ tQ} < t < nT:

,r 1-exp(-st )~"l n

X-1[^^{l-eKp(-ST)li -« ]C3.Cf(t-7T D- !?(t-t0-r-1 T) 11)
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3.6.1 Expression For Armature Current

The armature current i(t) for duty and freewheeling

intervals can be obtained [appendix A-2.2] as*

(a) Armature current in duty intervals

From eqnsJ(3.9) and (3.10), armature current in duty interval

for nth chopper cycle,i, (t),can be obtained ass
n

K Ti (t) =7ST1{K1+K2 exp(-a1t)+K3 exp(-a2t)}
d

n

+ y
Rt.

r exp(nTa1)-1
_V K5 exP(-ait){exp(Tai)-1]

,exp(n-1 Ta^-1
7~—f—rl-Kc. expC-t-t^a, Jexp(.Ta2;

exp(n^T Ta )-1

exp(nTa?)-1 %fexp(n-1 Ta^-1
♦ Kg exp(-a2t){ (Ta y.1}-K5exp(-t-t0a1)lexp(Tai) , 1 i

exptn-i -^V"' "I (i %0\- K6 exp(-t-t0a2){exp(Ta2) . 1 -IJ W.1»

(b) Armature current in freewheeling interval'.

From eqns. (3.9) and( 3.ID, armature current in freewheeling

interval for nth chopper cycle,i- (t),can be obtained ass
n

If T

i, (t) =yp(V K2 exP(-ctlt)+ K3 exP(-a2t)^f
n

V

R^a

p exp(nTa.)-1K5exp(-a1t){-e:xp(Tai)_1Kl-exp(a1t0)}

exp(nTa0)-1 „ , .J"] /~ «.*%
♦ K6 exp(-a2t){eKp(IJ.,}U - exp(a2t0)}J (3.13)
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3.6.1.1 Steady State Armature Current

The constant terms plus the terms containing (t-nT) in

eqns. (3.1 2) and (3.13) constitute the steady state armature current

which is independent of number of chopper cycle n (or time t),

since as t becomes very large, n also becomes very large and the

difference (t-nT) remains finite and independent of n. The steady

state values of armature current are obtained as belows

(a) Steady State Armature Current in duty intervals

From eqn. (3.1 2), steady state armature current in duty

interval ids(t) can be written as?

K TT r 1-exp(-a, T-t )
W^ =IT1 K1 +R^LV K5 eXp("a1 t-nT){ exp(aiT) -1I

1-exp(-a2 T-tQ)-
K6 exp(-a2t-nT){ exp( T) _ \ \ (3.1^)

(b) Steady State Armature Current in freewheeling intervals

From eqn. (3.1 3),steady state armature current in free

wheeling interval ifs(t) can be written as*

K TT r 1-exp(cut )

a '

1- exp(a0t^) n+K, exp(-a2 t-nT){exp(agT)^,}j (3.1 5)

The expressions for steady state current given in

eqns. (3.1 *4-) and (3.1 5), contain the terms t and n which are not

known for steady state conditions. To obtain the variation of

current with time for steady state, instead of substituting
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t, the term (t-nT) is treated as a single variable and the response

is calculated by varying value of (t-nT). The same procedure is

followed for obtaining the steady state speed response. The

limit between which the value of (t-nT) varies for duty and free

wheeling intervals (explained in section *f. 5.2.1) is given as*

duty interval * -T < (t-nT) < C-T+t0)

freewheeling intervals (-T+t0) < (t-nT) < 0

3.6.2 Expression For Motor Speed

The motor angular speed 8(t) for duty and freewheeling

intervals can be obtained [appendix A-2.31 as*

(a) Speed in duty interval?

From eqns. (3.9) and (3.10), angular speed in duty interval

for nth chopper cycle,8. (t),can be obtained ass
n

T

©d (t) =-y^V K8 exP(-a1 c)+ K9 exp(-a2t)}
n

VK p exp(nTal)-1
+Jlf LK1+ K2 exp(-a1t){exp(Tai)_1]

exp(nTap)-1 exp(r>T TQl )-1
♦ K3 exp(-a2t){exp(T f. ^-^exp^t-t^X exp(Tai) I1i

-K exp(-t-t0a2){- (T )_,} (3.16)

(b) Speed in freewheeling intervals

From eqns. (3.9) and(3.11)? angular speed in freewheeling

interval for nth chopper cycle, ©f (t), can be obtained as*
n
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TL,©f (t) = - j^{K7 + Kg expt-c^t) + K9 exp(-a2 t)}

VK r exp(nTa.)-1
+Jlffe^P^^^Uxpda^-lH^^P^I^

exp(nTa0)-1 -j+K3 exp(-a2t){exp(TaJ. 1}{l-exp(a2t0)}J (3.17)

3.6.2.1 Steady State Motor Speed

From eqns. (3.16) and(3.17), the steady state angular speed

for duty and freewheeling intervali can be obtained (as discussed

in section 3.6.1.1) as belows

(a) Steady state speed in duty intervals

From eqn. (3.16),steady state speed in duty interval for

nth chopper cycle,©dg(t) 5can be written as*

TT VK r~ l-expt-a.lM, )
^ds(t) =" jS +JirLK1 +K2 eXp('a1 t-nT){exp(a1T) - 1 ?

1-exp(-a_TM; ) -1^K3exp(-a2trHT){ gg^nft .°,}J (3.18)

(b) Steady state speed in freewheeling interval*

From eqn. (3.1/0,steady state speed in freewheeling interval

for nth chopper cycle,©- (t),can be written as*

TT VK r 1-exp(a.t )
Sfs(t) =- T K7 +Jlf[K2 eXP<-al ^WaiTJ-y

1-exp(a0tri) -iK exp(-a2t^f)[ ( J°y]j (3.19)
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3.7 TYPICAL PERFORMANCE STUDIES

The proposed analytical technique is illustrated by

obtaining the performance of a chopper fed separately excited d.c.

motor drive system with the following datas

Motor data*

supply voltage, V = 200 V

full load current, If-j_ - 6.3 A d pu)

rated speed = 1000 rpm (1 pu)

armature resistance, R = *4 ohr

armature inductance, L = 0.06 H

motor constant, K (or K ) = 1.86

coefficient of damping, B = 0.0162 N-m/rad/s
2

moment of inertia, J = 0.1 Kg m

load torque, TL = 0.5 full load torque

Chopper datas

frequency = 200 Hz

duty factor, a = 0.6

duty interval, t = 0.0015 s

freewheeling interval, tf = 0.0010 s

The performance of drive computed using the proposed

technique is discussed below.

3.7.1 Transient State Performance

For a motor switched-in from rest against a constant

load torque, the variation of armature current for the first few

cycles of chopper voltage immediately after switching-in is
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shown in Fig. 3.5(a). The envelope of the armature current during

acceleration process under the condition of switching-in is as

shown in Fig. 3.5(b). It may be seen that the range of variation

of current per cycle, during the acceleration process remains

nearly constant. The mid-line of this envelope gives the average

armature current during acceleration process.

The acceleration characteristics of motor i.e. variation

of average speed per chopper cycle against time is plotted as

shown in Fig. 3» 6.

3.7.2 Steady State Performance

Under steady state conditions, the armature current

varies between two fixed values (O.W32 and 0.7^9 pu) determined

by operating conditions. This variation is shown in Fig. 3.7.

The variation of current within an on-period or off-period follows

exponential law, but appear linear in Figs. 3-5(a),3.7 because

chopper frequency is large.

Under steady state condition, the speed fluctuates

between a minimum and a maximum value (0.53956 and 0.53962 pu)

depending upon the operating conditions as shown in Fig. 3-8.

During duty interval the speed decreases till it attains a

minimum value, and then it increases. The reverse holds for

freewheeling interval.

3.8 CONCLUSIONS

In this chapter, a new analytical technique for the

analysis of chopper fed d.c. motors, using tine ratio control

with constant chopper frequency, is presented. The system
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equations are expressed in State model form, and solved analyti

cally to obtain closed-form solutions for armature current and

motor speed, for transient as well as steady state conditions.

The analysis presented is illustrated by an example.

The proposed analytical technique is superior to existing

methods of analysis in following respects*

(a) The system equations [eqns. (3-1,3.2)] can describe the

system in duty as well as freewheeling modes of chopper

operation. Separate equations for the two modes are not

required.

(b) The steady state performance for any operating conditions,

i.e. load torque, duty factor, can be directly obtained

using the solutions presented in eqns. (3- !**•»3-1 5,3.18,

3.19). Unlike the existing methods, the solution does

not have to be started from the instant of switching and

continued till steady state conditions are obtained. The

computational efforts are ,therefore, greatly reduced.

(c) The transient state solutions are also directly obtained

using eqns. (3.12,3.13,3.16,3.17). For studying transients

at any point in time, the solution for that interval of

time is directly obtained, and one does not have to reach

this interval starting from the instant of switching.

Unlike the existing methods, this technique is not a

numerical technique and hence computation time needed is

greatly reduced.
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(d) The solutions are in closed-form, and therefore provide

an insight into the transient and steady state perfor

mance of the drive.

(e) The solutions are more accurate, as speed over a chopper

cycle need not be assumed constant.



CHAPTER-^

PERFORMANCE OF CHOPPER CONTROLLED D.C. MOTOR DRIVE AS AFFECTED
BY ELASTICITY OF COUPLING AND PERIODIC VARIATION OF LOAD TORQUE

h. 1 INTRODUCTION

For a d.c. drive fed by a constant voltage d.c. source,

the analysis given in Chapter-2 reveals that the mechanical

factors, like elasticity of coupling and periodic variation of

load torque, significantly affect the drive performance. Majority

of d.c. drives in present day industry find their use in variable

speed applications. In such cases, the drives may be fed through

either a chopper or a phase controlled convertor. Chopper control

offers many advantages (discussed in Chapter-3) and is, therefore,

being increasingly used for controlling the speed of d.c. drives.

The frequent use of chopper controlled d.c. drives makes

it imperative to precisely analyse the performance of such drives

and to investigate as to how a drive with an elastic coupling and

periodically varying load torque, behaves when operated from a

chopper voltage supply, and how these mechanical factors influence

the performance. The work available in literature deals mainly

with the analysis of chopper fed d.c. drives with constant load

torque without considering the effect of elasticity of shaft. The

analysis of effects of mechanical factors on the performance of

chopper fed d.c. drives has not been attempted so far.
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1+.2 WORK PRESENTED

In this chapter, analysis of chopper fed d.c. motor drive

with a periodic load torque is presented. The effect of elasti

city of the shaft connecting the motor to load is included in the

analysis. Closed-form solutions for system performance in terms

of motor armature current, angular positions and speed are obtai

ned for transient as well as steady state conditions. The nature

of variation of motor current and speed, and twist in the shaft

are studied for the cases of constant as well as periodically

varying load torques. The situations leading to system resonance

are investigated. The possibilities of mechanical failure of

shaft, due to excessive shear stress and fatigue, are predicted.

The effects of variation of chopper duty factor and chopper

frequency on the drive performance are discussed. Results are

illustrated by an example and useful inferences are drawn. Sugges

tions are given to improve the design as well as performance of

the drive.

The system analysed, as shown in Fig.U-. 1, represents a

separately excited d.c. motor coupled to the load through an

elastic shaft. The moment of inertia as well as damping of motor

and load are considered independently, while the shaft inertia

is neglected. This type of electromechanical system is referred

to as 'Two rotor, semi-definite, two degree of freedom' system

[section 2.2]. The input to the motor is through a chopper which

converts a constant d.c. source voltage into a pulsed voltage.

The chopper output voltage is shown in Fig.4.2. A free-wheeling

diode in parallel with armature allows the flow of current during
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pulse-off (freewheeling) periods of chopper voltage. A choke is

connected in series with armature to reduce the ripples in arma

ture current. The 'Time Ratio Control' technique, with constant

chopper frequency is employed to control the average voltage

applied to armature, which in turn controls the motor speed.

Any periodic load torque can be considered to be composed

of a uniform component and several sinusoidally varying alter

nating components. For the sake of simplicity of the analysis,

the torque is considered to be composed of a non-varying compo

nent and only one sinusoidally varying component, neglecting other

harmonic components [Fig. 2. 2(b) ]. However, the method of analysis

holds in the presence of more than one alternating components as

well.

A mathematical model of the system is given. The motor

torque developed drives the system inertia, friction, load torque

and the elastic torque. The system equations are expressed in

State model form. The technique of analysis of chopper controlled

d.c. drives developed in Chapter-3 is used to determine, the per

formance, as this technique is superior and offers many advantages

over other existing techniques (discussed in section 3»8).

The analysis is based on the same assumptions as stated

in section 3« 3« 1 •

H-.3 PERFORMANCE EQUATIONS

The equations governing the system performance can be

written as belows

v(t) = L ft + R i + K Q, (H-.1)
dt ml
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Te =J1 51 +B1 V C(G1 " V
-tl = J292H-B2e2+ c(e2-6l)

Te = Ke ±

TL = TLo + TL1 sin(w1t " ^

(4.2)

(4.3)

(4.4)

(4.5)

Equations (4. 2)-(4. 5) are same as eqns* (2. 2)-(2. 5), and

are rewritten here to maintain the continuity in the text. These

equations can be expressed in State model form as*

x = Ax+ Du (4.6)

where [A] and [D] are given by eqns. (2.7) and (2.8) respectively,

and the

'v(t)

TT
forcing function vector U

• 1and state variable vector x = [©1 ©-, ©2 G2 lJ

4.3.1 System Characteristic Equation

From eqn. (4.6) '

X(s) = [sI-A]-1 DU(s) ♦ [sI-A]"1 x(0) (4.7)

For the system starting from quiescent state, all variables have

a value zero at t= 0,

(0) = [0 0 0 0 0]'x

From eqn. (4.7), X( s) can be written as*

X(s) =\ Cf13l DU(s)

where [f±.] = Adj[sl-A]

(4.8)
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The system characteristic equation is given as*

|sI-A| =A1 s5 +A2 sh +A3 s3 +\ s2 +A^ s =0 (4.9)

This is same as obtained for drive with constant voltage input

Ceqn.(2.13)]. The coefficients^- A^,depend upon values of electri
cal and mechanical parameters of the system as given in eqn.(2.14).

The characteristic equation has one root at origin and two pairs

of complex conjugate roots with real parts as a1 and a2 and imagi

nary parts as p1 and B2 respectively. Thus Acan be written as*

A= s(s + a1 +3 P{)(s +.ct2 1 3 M

The value of p, is a function of circuit inductance and
moment of inertia of the system. For low values of inductance,

p. may even be zero. The value of B2 depends upon the torsional
stiffness of the shaft, moment of inertia, and damping of the

system. p1 and p2 are termed as the damped natural frequencies
of oscillation of the system. The undamped natural frequencies

03n1 and ton2 are given as*

The values of a-, , a2 and ^ , B2 depend upon damping ratio and

are"

a1 = ?1 "nl ' a2 = %2 Dn2

Pl =(1-l2)l/2o3n1 , P2= Cl-lf)1'2*^
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4.4 DETERMINATION OF SYSTEM R£$ PONSB

The solution in time av ain for state variables which

describe the system response, can be obtained by taking Laplace

inverse transform of eqn. (4.8) as*

e^t)

e2(t)

©2(t) +* A

f11 (s)... f rt ( s)

f12(s)...f^2(s)

f1^(s). ..f^(s)

fll+(s)...f^.(s)
, TT TTi(o3. cos 0-s sin 0)1 f Lo+ LI 1 i
J2l s ( 2 + 2\Cs +03^;

(4.10)

i(t) |£l5(s)...f^(s)
V 1-exp(-st )

sL M-exp(-sT) >

1-exp(-st )
where •VC's 7—-mT"~] is tne Laplace transform of chopper output

S-Lj l— expv— si/

voltage shown in Fig. 4.2 .

From eqn. (4.10) J

-1

i(t)=X

-1

Vt)=oC

-1

eP(t)=X

f45(s> TLo TLlS cos 0's sin 0), f55(s)y 1-exp(-st0)'
AJ. ^"T"+ (2 " "S *+ A sL M-exp(-sT) *(s +03^;

exp

... (4.11)

-fM(s) TLq TL1(031 cos 0-s sin 0) tf?1 (s)Vf 1-exp(-st0)
A J (s +03^)

M-exp(-sT) >

... (4.12)

%3(s)c TLo TL>!1 cos 0-s sin g? f53(s)V 1-^
r^~1~^"+ ( 2+ 2) * AsL M-exp(-sT)

l-exp(-st )

A

... (4.13)

where values of f^ (s).... fr<(s) are given in appendix A-3.1.

The system response can be obtained by solving eqns.

(4.1l)-(4.13) which involves determination of Laplace inverse
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transforms of the three terms containing TLo , TL1 , and V. The

Laplace inverse of the first two terms involving TLo and TL1 is

simple and can be obtained by usual methods. However, the Laplace

inverse of terms containing [{l-exp(-st0)}/{l-exp(-sT)} ] cannot
be obtained by usual methods and for this purpose the following

theorem derived in appendix A-2.1 is used*

(a) For duty intervals

-1

j:
1-exp(-st )

f(s)^1-exp(-sT) 5 E fCt-r^lT)- S f(t-t -r^lT) (4.14)
r=1 r=1

(b) For freewheeling intervals

-1

X
1-exp(-st )

f(s)tl-exp(-sTn
n

= Z [f(t-r-1T)-f(t-t -r-1T)] (4.15)
r=1

In the above, the value of t for nth chopper cycle lies in

the range*

duty intervals (n-1)T <t< {(n-1)T + tQ]
freewheeling intervals {(n-1)T + tQ} < t < nT

A sample procedure of determining the current response id (t) and

i (t) from eqn. (4.11) is given in appendix A-3.2. The express-
n

ions for ©-, (t) and ©2(t) can be obtained in a similar fashion
from eqns. (4.12) and (4.13) respectively.
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h.5 SOLUTION FOR ARMATURE CURRENT

4.5.1 General Solution

(a) Duty interval^

The armature current in duty interval of nth chopper

cycle, i, (t),can be obtained by solving eqn. (4.11) and using the
n

theorem of eqn. (4.14). Thus

V* *J, [X+ V S*2] +*V ^
where

ids =VK* exp(-% tn)[{exp(am T)sin(Bm tn1-^)-sin(pn t^)}
m

- exp(-amtf){exp(am T)sln(pm t^- 0™)-sln(^ t^)}]/(L Dm)
lt =VK" eXp(-am t)[{sin(pm t-0p-exp(am T)sin(pm t,-^)}

- exp(am t0){sin(pffl t2-»»)-exp(«B T)sin(pm tj-^Jl/tt Dj
it =exp(-am t)[TLo K» sin(Pm t-<HTLl <2 sin(Pm t-<+2)]/J2

m+2

ids3 =VK5A+ TLo 4/J2
^ =TL1 K15 •taKt" ^2
The expressions of different constants used in above equations

are gi/en in appendix A-3.1 and some symbols are defined ass

tn = t-nT , tn1 = t-nT+T , tng = t-nT+T-t0 , t^ - t-nT+2T-t0

*rf» = t-nT-t0 , tf - T-t0 , t, = t+T , t2 = t-t0 , t3 = t+T-t0

D1 = 1 + exp(a1T){exp(a1T) - 2 cos p-, T]

D2 = 1 + exp(a2T){exp(a2T) - 2 cos B2T}



-82-

(b) Freewheeling intervals

The armature current in freewheeling interval for nth

chopper cycle, if (t),can be obtained by solving eqn. (4.11) and
n

using the theorem of eqn.(4.15) as belows

i. (t) = Z ["i- + i. + i, ~| + if + if_
fn m=l[ fsm Sa V2J fs3 1S4

(4.17)

where

ifsm =VK2 eXP("% V««»<S T)sln(^m *ttT ^-^K V ^
- exp(am to){exp(am T)sin(Bm t^- ^)-Sln(pm t*- J^)}]/(L Dffl)

if33 =TLo K5/J2 • ifsl+ =H*^

4.5.2 Steady State Armature Current

The steady state armature current in duty and freewheeling

intervals can be obtained from eqns.(4.16) and (4.17) by taking

only those terms which do not decay with time. It is to be noted

that the terms containing t also give steady state response,

since as t becomes very large, n also becomes very large and the

difference t remains finite and independent of n.

It is further noted that the terms tn1, tn2, t - and tQ^

depend on (t-n T) and therefore, the terms in the expression of

current (as well as speed) containing t . ... t^ are also inde

pendent of n and give steady state response. The steady state

current in duty and freewheeling intervals can be written as«
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(a) Duty intervals

From eqn.(4.16), the steady state armature current in

duty interval of nth chopper cycle, id (t), is given bys

* (t) = i + i + i + i (4.18)
ds ds1 ds2 ds3 o-s^.

(b) Freewheeling intervals

From eqn.(4.17), the steady state armature current in

freewheeling interval of nth chopper cycle, ifg(t), is given bys

l (t) = i + i„ ♦ ix. + i^ (4.19)1fs^t; lfs1 fs2 xfs3 fs^

4.5.2.1 Value of (t-nT) in Steady State

Although, two variables t (time) and n (number of chopper

cycle) appear in the expressions of steady state current given by

equations (4.18) and (4-.19), it is not necessary to substitute t

and n as separate variable-. For this purpose the term (t-nT)

can be viewed as another variable, tn- The solution for steady

state current (as well as speed) can, therefore, be obtained

even if the values of t and n after which steady state is achieved

are not known (as is generally the case). As such, the compu

tations do not have to be performed starting from switching-in

instant. The other time variables tn1, tn2, t^ and t^ are

functions of t .

Fig. 4.3 shows the range over which the time variables tn,

t ******t k vary in different chopper cycles. The point in time

at which these time variables attain zero values are also marked.

For nth chopper cycle, the range of these time variables vary as
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belows

time variable variation in
duty interval

*n -I < t < C-T+tQ)

*tf 0 * *n1 * *o

^2 -*o * ** i °
t 0
n3

(T-tQ)< tn3 < T

tn4 (-T-tQ)< tnlf < -T

variation in free
wheeling interval

C-Tn0> < tn < o

0 <tn2<(T-t0)

For obtaining the steady state response, in duty as well

as freewheeling intervals, any one time variable amongst

t , t ......t », can be selected and varied between the range
n' n1' ' nH-

given above. The values of remaining time variables can be

substituted in terms of the selected time variable. For example,

for obtaining the steady state current response in duty interval

from eqn.(4.18), the time interval tfi may be selected and varied

from -T to (-T+t ). Similarly the steady state current in free

wheeling interval can be obtained from eqn.(4.19) varying the

value of t from (-T+t ) to zero. The values of other time

intervals appearing in eqns. (4.18) and (4.19) can be substituted

in terns of t as belows

*n1 = *n + T ' *n2 = *n + T " *o

*B3 = *n + 2T " *o ' ** = »n " *o

The steady state response, thus can be obtained following

the procedure discussed above.
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4.6 SOLUTION FOR ANGULAR POSITION G (t)

(a) Duty intervals

From eqns. (4.12) and (4.14), angular position in duty

interval for nth chopper cycle,G d (t),is obtained as*
n

•id(t) = e, re^s+ en+ en
n m=1 L m m r

+ ©«* + **a + en- (4.20)Ids^ Ids^ 1t*

where

-5+m MMt_t. +. uf«v.f. TU-i«rc 4- _ of5+me,ds =VK|™ exp(-aB tn)[{exp(an T)sin(Pm tn, - «£*->
m

- sin(Bm tn- 0^m)}-exp(-am tf){exp(am T)sin(Bm t^- 0fm)5+00 c_„ +- -Nf^.,— /-_ m\**4*,fa +• _ 0(5+m}

5+m>
2 '

5+m „<-_„ «.\rf _*«/.* +_ r/5+iru__/ T^^fD 4- _of5+m\

- I'lp.v'Pl^V

6 = VK?+m exp(-am t)[{sin(p t- ef>+m)-exp(am T>sin(pm t,-«|™)]
m

5+mv / »\.4-/« 4- _ r*5+m<- exp(am t0){sin(Bm t2- 0fm)-exp(affi T)sin(Bm tj- fl£"m)}]/

(L V

61t =~exP(-% t)[TLo K?+m ^in^m *- ^5+m)+TL1K^m sin(Bm t
m+2

- er?+m)]/J2

eids3 =VK5/L- (TL0K5+ TL1 K5)/J2

eidS)+ =TLi ki° sin^it - ^r^

91t = "TLo K5 t/J2 + [V K5^ " (n"1)tf^/L



-87-

(b) Freewheeling intervals

From eqns. (4.12) ani (4.15), angular position in free

wheeling interval for nth chopper cycle,©. f (t),is given bys
n

where

91fs_ = VK2 exP(~am V^'^m T)sin(^m *n1 ' *2 >

^ sin(Bm tn- 0fm)}- exp(am t0){sin(pm t^- ^m)exp(am T)

eifs3 ="(TLoK5+TL1K5)/J2

eifs^ =91ds^

G1t6 ="TLo K| t/J2 +VK65 nt0/L

4.7 SOLUTION FOR ANGULAR I0SITI0N ©pCt)

(a) Duty interval?

From eqns.(4.13) and (4.14), angular position in duty

interval for nth chopper cycle, G2d (t),is obtained ass
n

W» '- J, [e^ra +X,+ X+2] +6^3 +e^+ N
(4.22)

where

92ds„ " V< ex"(-am yH-P'S T)sln(^ *n1 " K™>
- sin(Pm tn- efm)}-exp(-% tf){exp(aB Dslh(pm t^- 6f£™)
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G =VK^+m exp(-am t)[{sin(p t- ^+m)-exp(am T)sin(Bm t*
m

- ^+m)}-exp(am t0){sin(Bm tg- ^+m)-exp(am T)sin(Bm t^
- <+m)}]/(L Do)

-7+m ,_/» 4. rf7+m^

G =-exp(-% t)[TLo K>+m sin(Bm t- <*fm)
m+2

+ TL1 K2vm sin(pn t-Gf2"m)]/J2

02ds3 =VK62/L - (TLo K5 +TL1 K6)/J2
e2dSl+ ="TL1 4° sinS *" <4°)/J2
G2t =-TLo k| t/J2 +VK^{t - (n-Dtf}/L

5

(b) Freewheeling intervals

From eqns. (4.13) and (4.15), angular position in free

wheeling interval for nth chopper cycle, G?f (t),is given bys
n

G9f (t)= I f© + G + G "I + G + G + 0 (4.23)
2fn m=1 L Sm m 2tra+2 J 2fs3 2fS4 2t6

where

9 =V̂ exp(-am tn)[{exp(am T)sin(pm t^ - <™)
m

" 3in(.6mtnlt-^m)}]/(LDm)

62fs3 " -(TL0 4 +TL1 K6)/J2 • 62fSlt =82dsiv

62t6 " "TLo 4 t/J2 +VK6 n^^
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lf.8 SOLUTION FOR MOTOR SPEED 9. (t)

^+.8.1 General Solution

(a) Duty intervals

Differentiating eqn.(4.20) w.r.to t, angular speed in

duty interval for nth chopper cycle, G., d (t),is obtained asS
n

n m=1 L m m m+2J 3 *

where

e,ds =VK^ exp(-am tn)[{exp(a0 T)sin(pm tQl - l^)-tnty, tn- ^)}
- exP("am tf){exp(am T)sin(Bm t^- 0f

Gu =VK* exp(-amt)[{sin(Bm t- 0^)-exp(am T)sin(Bm t* - V™)}
m

- exp(am t0){sin(Bm t^)- exp(am T)sin(Bm t^lML Dffl)

9 = -exp(-a t)[TLo k£ sin(Bm t-(^)
um+2

+IL1 K^2sin(pmt-0^2)]/J2
51ds3 =vK65A - Tt0 k3/j2

61d^ ="T11 K1° "l Sln(<°1 *• "l° +"/2)

(b) Freewheeling intervals

Differentiating eqn. (4. 21) with respect to t, angular

speed in freewheeling interval for nth chopper cycle,G. f (t),is
n

obtained ass

G.,(t)= i rLt9 +g +e "| +e1fs +®ifS, (I+-2^
1fn m=1 1 1fsm 1tffl 11:m+2j lls3 S4
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where

« *VIff exp(-am tn)[{e,p(am T)sin(pm *n1 - «$>-.in<Pm V*")}
m

- exp(am t0){exp(am T)sin<Pm t^- C^-sin^t^)}]/ tt D„)

«1fs3 =-TL0K|/J2 ' «1fsw =eidSlt

4.8.2 Steady State Motor Speed

(a) Duty intervals

From eqn.(4. 24), steady state component of speed in duty

interval for nth chopper cycle,©-, dg(t),is given bys

A /.\ _ A +o +© + ©. , (4.26)G1dsCt) 61dSl 91ds2 B1ds3 W1dSlf

(b) Freewheeling intervals

From eqn.(4.25) steady state component of speed in free

wheeling interval for nth chopper cycle,©1 fg(t),is given by$

o i-t-l = ft + G + G +G. „ (4.27)61fsU; 81fs1 W1fs2 y1fs3 Ifs^.

4.9 NATURE OF ARMATURE CURRENT AND MOTOR SPEED

The steady state armature current in duty (as also in

freewheeling interval) consists of four components [eqns. (4.1 8),

(4.19)] which are as belows

(i) iJ , I. (also i„ , i~ )s These components of current,
ds-j ' ds2 is., is2

having frequencies p1 and p2 respectively are exponentially
varying sinusoidal components whose amplitude depends

upon the input voltage and duty factor.
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The pattern of variation of these sinusoidal components

in duty as well as freewheeling intervals repeats itself

in each chopper cycle, and therefore, has a frequency of

repetition equal to the chopper frequency,

(ii) i. (also 1- )s This is a non-varying component, which
ClS-j 1 St

depends upon the magnitudes of input voltage and uniform

component of load torque TLq.

(iii) i. (also i- )" This represents a sinusoidally varying
ds^ fs^.

alternating component of current varying at the frequency

of load torque pulsations co1 . Its magnitude depends

upon TL1.

The steady state speed during duty and freewheeling inter

vals [eqns. (4.26,4.27)] also has four components (©ids ?eids i

0,^ and 6., ) similar to those of current discussed above.1ds3 1ds^.

The resultant armature current anc' speed is the sum of

the above four components and comprise of a uniform component

superposed by the sinusoidally varying components. The frequency

of one of these components is cx>* while that of the other is same

as that of the chopper [Figs.4.4,4. 5], These oscillations are,

hereafter, referred to as low frequency and high frequency oscil

lations respectively.

1+.10 TYPICAL PERFORMANCE STUDIES

The performance of a typical system is computed using the

method given in section 4. 5-4.8, and the results are used to

draw inferences regarding the performance features of such drives.
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The drive represented by Fig.4.1, with the following data

is analyseds

System Data?

Motor and the Mechanical Systems

armature inductance including choke = 0.16 H

other data are same as given in section 2.7.

Chopper*

frequency • 200 Hz

duty factor =0.6

The dependence of performance on various factors is

graphically depicted in Figs. 4.6-4.18 . In these studies the

load torque is taken to comprise of a sinusoidally varying compo

nent TL1 superposed on a non-varying component TLo as shown in

Fig.4.8. The frequency of load torque pulsation to., is taken

equal to the average value of steady state speed ojg (as discussed

in section 2.3). The value of oos is equal to G1dg (as given in

section 4.8). This value of load torque frequency implies that

the load torque completes one cycle in one revolution of the

machine shaft.

4.1 1 STEADY STATE PERFORMANCE

The steady state performance under normal operating condi

tions is shown in Figs.4.6-4.1 2. Under certain specific condi

tions, the system experiences resonance characterized by large

pulsations in current and speed [Figs.4.1 3-4.16]. The switching-

in transients of armature current and drive angular speed are
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shown in Figs.4.17,4.18. The results and inferences therefrom

are discussed in the ensuii.j paragraphs.

Figs.4.6 and 4.7 show the instantaneous variations of

steady state armature current and speed for two chopper cycles on

an expanded scale. For the case of constant load torque, the

pattern of variation of speed, current and twist in steady state

condition repeats for each chopper cycle as shown in Fig.4.6. It

is observed that the instantaneous armature current rises in duty

interval, while it decays in freewheeling interval. These varia

tions are exponential but appear bo be linear in the diagram due

to the fact that the value of chopper frequency is quite high.

The speed first falls and then rises during t. duty interval and

vice-versa for freewheeling interval.

For a pulsating load torque, the values of armature

current, speed and twist in the shaft for subsequent chopper cycles

under steady state are different as shown in Fig.4.7. This is

due to the fact that magnitude of load torque in the subsequent

chopper cycles does not remain same. The load torque in Fig.4.7

varies sinusoidally but this variation appears linear as it is

drawn for a very short interval of time. For a pulsating load

torque the current rises in duty interval and decays in free

wheeling interval as for the case of constant load torque. Similar

ly the speed decreases for part of duty interval and then rises

for remaining part of duty interval and vice-versa for free

wheeling period,
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The magnitudes of variation of current and speed change

in each successive chopper ^ycle and the waole pattern repeats

after a lapse of time equal to the time period of load torque

pulsation (2^/^). In other words, one set of values of current

and speed repeat after n' chopper cycles, where n' is the ratio

of chopper frequency to load torque frequency. This is due to the

fact that the load torque variation completes one cycle after n

chopper cycles. The variation of armature current for one cycle

of load torque pulsation is shown in Fig.4.9.

For a load torque as in Fig.4.8, the variations of average

values of armature current and speed (average over a cycle of

chopper) are shown in Figs. 4.10,4.11 . It 13 observed that if

the load torque is pulsating in nature, the armature current and

speed averaged over a chopper cycle also pulsate at a frequency

which is same as that of the frequency of load torque pulsation.

However, they have a phase difference with respect to the load

torque. The amplitude of those pulsations should be minimized in

order to improve the performance. This can be achieved by increa

sing the system moment of inertia as discussed in section 2.8.3 .

It can, therefore, be inferred that if the load torque is periodic

in nature such that it can be resolved into a constant component,

and a number of alternating components, then the armature current

and speed averaged over a chopper cycle will have a similar

nature.
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1+.11.1 Effect of Chopper Duty Factor and Frequency

The effects of change of chopper duty factor and frequency

on the performance have been studied and following observations

made i

(a) As expected, an increase in the value of chopper duty

factor increases the average values of armature current

and speed as shown in Figs. W.10,W. 11 .

(b) The amplitudes of pulsation in armature current and speed

decrease appreciably with the increase in chopper duty

factor as shown in Figs. W. 10,W. 11 .

(c) The amplitudes of pulsation of shaft twist as well as its

average value are not much affected by change in chopper

duty factor [FigA.12].

(d) The average values of armature current and speed as well

as their amplitudes of pulsation are not affected by

change in chopper "requency.

TABLE W.I s Effect of Chopper Duty Factor on Steady State
Per formance

S.

No.

duty
factor

current twist

averagejpul sationaverage
'/

speed

X
pulsationaverage value

rad

pulsation
%value

pu

value

pu

,-21 0.6 0.8W2 2.2W 0.507 1.15 1W.07 x 10" 1W.9

2 0.8 0.867 1.20 0.708 0.60 1W.28 x 10"2 15.1

The values of 01 , cc2 , P-, , f>2 * <»n» , <»n2 (in rad/sec) and
damping ratios g1 , ^ are as belows
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a. = 12.57 , p1 = 7.87 , a>n1 = 1W.83 , I, = O.8W7

a2 =0.089 , p2 =519.8 , %2 =519.8 , l2 - 0.173 x10-3
The value of load torque pulsation frequency=o>s= 53.1 rad/sec.

W.I 2 PERFORMANCE UNDER RESONANCE CONDITION

The system, under certain specific operating conditions,

exhibit peculiar performance as large peaks in armature current

and speed are observed. Such a situation arises when the frequency

of, at least, one of the two forcing functions of the system

(applied voltage and the load torque) approaches the natural fre

quency of oscillation con2- This phenomenon may be referred to as
'resonance'. The system performance under resonance condition has

been studied and various curves are plotted to illustrate this

situation.

The variation of armature current and speed at three

different frequencies of 1<* Itorque (viz.. eog ,ojn1 ,u>n2) have
been plotted for two different chopper frequencies (200 Hz and ©n2)
as shown in Figs. W.I3-W.16 . As the value of »n1 , for practical

systems, is very small [Table W.1 ], the performance at chopper

frequency equal to co * has not been studied. The variation of

armature current and speed for above three frequencies of load

torque are plotted for three subsequent chopper cycles keeping the

value of chopper cycle fixed at 200 Hz as shown in Figs. W.13,W.1W .

It is observed that if the load torque frequency approaches (x>n2*

large pulsations in armature current and speed are noticeable.

These pulsations are comparatively small for c = oug and 0^= <an* *

Thus if the load torque frequency is equal to the natural frequency
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of oscillation ton2 , the system experiences resonance.

Figs. W.15,W.16 sh-w a plot of the variations of armature

current and speed, for a different chopper frequency (equal to co J

for above three frequencies of load torque. It is observed

that large pulsations in current and speed are obtained for all

these three values of frequency of load torque pulsation. This

clearly shows that the resonance occurs when either the frequency

of load torque pulsations or that of chopper becomes equal to co ?.
The following inferences can, therefore, be drawn*

(i) The armature current and speed show very large pulsations,
and large peak values when either the chopper frequency,

or the load torque frequency; or both, approach the natu

ral frequency of oscillation con2. For practical d.c.

drive system with an elastic shaft, under normal operating

conditions, these oscillations, which are known as torsio

nal oscillations and are due to non rigidity of shaft, are

of high frequency and low amplitude. As such these oscil

lations are not noticeable. However, these oscillations

attain large amplitudes at resonance resulting in abnormal

ly large values of current and speed. It must be noted

that resonance phenomenon is caused by a combination of

factors. These factors are*

(a) an elastic mechanical link

(b) periodic forcing functions and

(c) the frequency of at least one of the forcing

functions approaches the natural frequency of the

system co .
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The value of con2, specially for low values of moment

of inertia and high values of tors- onal stiffness, may be

quite high and may be close to the normal operating fre

quency range of choppers. As such there is a strong

possibility of resonance, even in systems with choppers

operating in their usually normal frequency ranges.

(ii) Resonance can be avoided by suitably choosing the values

of torsional stiffness (which itself depends upon length

and diameter of shaft) and system moment of inertia such

that the value of con2 is far away from the range of fre

quency at which the chopper is to be operated.

(iii) Care has also to be taken that co 0 do^s not match the
n2

frequency of load torque pulsations co, . As the frequency

of load torque is a system requirement, and not always

the designer's choice, once again the only way to avoid

resonance is a suitable selection of system parameters to

avoid such values of m 0«
n2

(iv) The value of ^ depends mainly on the moment of inertia

and armature circuit inductance. For practical systems

$* is observed to be low and may even vanish for low

values of inductance. It is observed that for the case

under consideratio:., the value of 3. is much greater than

a2 and f^ is much lesser than p2 [Table W.1 ]. A high value

of a1 is measure of large damping ratio f\. and, possibly,

because of this reason resonance is not observed at

« = mn1 •
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W.13 TRANSIENT STATE PERFORMANCE

The armature currenc, during transient period, consists

of four time decaying components it1 , it2 , it-, and i^ ; in

addition to those which appear under steady state, as given by

eqn.(W. 16). These components depend upon the input voltage and

the load torque. The angular speed also has similar components

[eqn.(W. 2W)].

The nature of switching-in transients of armature current,

for the initial few chopper cycles, is shown in Fig.W. 17(a). It

is observed that the current rises rapidly and decays slowly

during the duty and freewheeling intervals respectively. These

variations are exponential in nature. The variation of armature

current, averaged over a chopper cycle, is shown in Fig.W.17(b).

As expected, the average current rises for first few chopper

cycles and attains a peak value, which depends on the system

parameters. Thereafter, it decays slowly till steady state is

reached, when the average current becomes constant.

The rating of the main SCR of the chopper is determined

by its peak instantaneous current, and the maximum average current

passing through it. This maximum average current can be obtained

from a plot of the current taken from supply in a chopper cycle

[Fig.h 17(a)], the cycle in this case beirg chosen near the peak

of the current variation shown in Fig.W. 17(b).

The variation of average angular speed (average over a

chopper cycle) is shown in Fig.W.18. In the analysis presented,

as the motor is switched-in with considerable load on the shaft,

the characteristic shows negative speed (dotted curve) for the
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initial few chopper cycles. The motor actually starts as soon as

the motor developed torque jvercomes the load torque. Thereafter

the motor accelerates and finally the speed becomes constant as

steady state is attained.

W.1W MECHANICAL CONSIDERATIONS

The non-rigidity of shaft produces angular twist, (9* - ©2).

The va^ue of twist determines the shear stress in the shaft in

accordance with the relation:

Q= G(e1 - ©2)d/2l

The mechanical failure of the shaft may occur in the

following ways*

(i) Failure of shaft due to excessive shear stress produced

by large values of average twist under normal operating

conditions. It may also fail due to the large values of

instantaneous twist under resonance condition. The

failure in the latter case is termed as dynamic failure.

(ii) Shaft may experience 'fatigue' due to the variations in

the values of twist. The failure due to fatigue depends

upon the magnitude and frequency of alternating components

of twist.

For the case under consideration, Figs. W.6,W07 show the

variations of twist during a chopper cycle for a uniform load

torque and pulsating load torque respectively. The variations of

average values of twist (average over a chopper cycle) at steady

state are shown in Fig.W,, 12. Since the value of twist depends

on angular positions ©« and 0p, the twist also varies with time
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and has two alternating components, one at load torque frequency

and the other at chopper fi ^quency [eqns.(V-20 - W.23)].These compo

nents of twist may cause failure of shaft in manners described

above.

For the case under study, shear stress under normal ope-
0 W

rating condition is 20.6 Kg/cnr (twist = 16.16 x 10"^" rad) while

under resonance condition its value is 8172 Kg/cm (twist = O.6W1

rad). The shear stress unaer this condition is much higher than

the ultimate stress which is 3700-W500 Kg/cm2 (Indian Standards

Codes 1 570-1961 for C-1W steel). As such the shaft may fail under

resonance condition.

W.15 CONCLUSIONS

The performance of a chopper controlled separately excited

d.c. motor driving a mechanical load with a periodically varying

load torque and elastic mechanical link is obtained using a non-

iterative technique of analysis. Closed-form solutions for arma

ture current and speed are obtained which give a good insight

into the transient as well as steady state performance. Such

analyses are useful for proper design of system elements. Study

of a typical performance, as obtained by the above analysis leads

to the following inferences?

(a) The steady-state armature current and speed contain alter

nating components superposed on a non-varying component.

The frequencies of these components depend upon (i) the

frequency of the alternating components of the load

torque (ii) the chopper frequency, and (iii) Q* and p2
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which depend upon system parameters like armature resis

tance and inductanc ;, moment of inertia, damping and

torsional stiffness of shaft.

The amplitude of these alternating components depends

upon, amongst other parameters, the amplitude of the pul

sating component of the load torque and.the chopper duty

factor. The pulsations of current and speed of frequency a>.

can be reduced by increasing the moment of inertia of the

rotating parts of the system.

(b) The system experiences torsional oscillations of frequency

co ? which depends upon torsional stiffness and moment of

inertia of the system. The amplitude of these oscilla

tions under normal system conditions is small.

(c) The system experiences resonance characterized by large

pulsations in current and speed when the frequency of any

of the components of load torque, or that of chopper, or

both approach the natural frequency of torsional oscilla

tions of the system. Under such conditions the amplitudes

of pulsation of current and speed as also their instan

taneous values may become abnormally large. It is obser

ved that even at the usual values of chopper frequencies,

resonance may be experienced. Under resonance condition,

the twist in the shaft will be quite large and the mecha

nical failure of shaft may occur due to excessive shear

stress.
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While designing a system, the load torque must be analysed

to ensure that natural freq .ency of the system does not match any

of the component frequencies. Resonance can be avoided by proper

ly choosing the value of torsional stiffness and system moment of

inertia.



CHAPTER-5

ANALYSIS AND DESIGN OF PULSEWIDTH-MODULATED CLOSED-

LOOP D. C. MOTOR DRIVE WITH ELASTIC COUPLING

5.1 INTRODUCTION

In a variety of industrial applications using a d.c.

motor drive, a desirable performance feature is to obtain a regu

lated speed of drive during its operation. Automatic regulating

schemes with closed-loop d.c. motor drives are being frequently

employed for obtaining the desired control of speed. Such schemes

comprise of a d.c. motor, a controller with a comparator, and a

feedback system. By introducing a feedback path from the output

to the controller, any deviations in output from the desired level

can be included in the decision making process by the controller.

The controller may be as simple as a linear amplifier or as

complicated as a full size computer. The use of a linear ampli

fier in closed-loop drives is not preferred as it involves exces

sive dissipation of power and results in an inefficient operation.

In order to avoid the power dissipation in the linear

amplifiers, they have been replaced by the 'Switching Amplifiers1.

Such amplifiers can be operated in a switched mode where the

thyristors are turned on and off like a switch. When the ampli

fier is turned on, voltage across its thyristor is negligible;

and when it is turned off, this voltage is large, but the current

is zero. In either case, the resulting power dissipation in the

amplifier is small. Amplifiers operated in this mode are called
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switching amplifiers. The switching can be performed in various

ways. One simple method is to switch the amplifier at a constant

frequency and vary the 'on' or 'off' periods of thyristor accord

ing to need. Such amplifiers are called 'Pulsewidth-Modulated

Amplifiers'.

The method of pulsewidth-modulation (PWM) controls the

average value of the amplitude of the modulated pulse wave signal

by changing the width of the pulse. This method is essentially

similar to the time ratio control (TRC) method of chopper control

discussed for open loop drives in Chapters 3 and W. For a given

amplitude of the pulse given to the motor input, the width of the

pulse is a function of the desired value of motor speed. In case

of open loop drives, the pulsewidth is kept constant at a value

determined by the desired speed of motor operation.

For closed loop d.c. drives, the method of pulsewidth

modulation provides a pulsed input to the uotor and controls the

average voltage across the armature co maintain its speed at the

desired level. This is achieved by a suitable control of the

pulsewidth (or duty factor) with regard to the desired change in

drive speed. As soon as the motor speed deviates from the set

speed, the controller suitably changes the pulsewidth of the modu

lated ;ave to maintain the speed at the sot level. Thus, unlike

open loop drives, the pulsewidth in the case of closed loop drives

is not constant but changes continuously with regard to the change
in speed from the desired level.

The application of PWM technique for controlling the speed

of closed loop d.c. drives has attracted the attention of
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researchers in recent past. Maisel [36] has given the model of

such a control scheme. Jacob Tal [5W] has proposed the use of

switching amplifiers for d.c. servo systems in order to reduce

the power dissipation and has analysed the operation of PWM

amplifiers for different modes of operation. Taft et al. [53]

have analysed the operation of a d.c. position control system

using PWM techniques and have discussed the advantages of employ

ing a current loop around the amplifier. Unnikrishnan [58,59]

has given a technique for maintaining constant average value of

the output of a dc-dc chopper controlled converter and has studied

the stability of such a system.

The work available in literature deals with the analysis

of PWM controlled d.c. drives assuming the mechanical coupling

between motor and the load to be perfectly rigid. In all practi

cal systems, this link is always elastic. The degree of elasti

city denends upon the size *nd material of the shaft. The load

torque, in many applications, may not be constant but may have a

periodic variation. This nature of load torque may be a charac

teristic of the driven mechanism or a consequence of some mecha

nical factors of drive system [section 1.1*1. The influence of

elasticity of shaft and periodic variation of load torque, on the

perfon- ince of an open loop d.c. drive fed by a PWM power supply

has been presented in Chapter-W. However no work appears to be

available in literature wherein the effect of elasticity of shaft

on the performance of a closed loop d.c. motor drive fed by a

PWM power supply is investigated.
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5.2 WORK PRESENTED

In this chapter, the analysis and design considerations

of a closed-loop d.c. drive employing a separately excited d.c.

motor coupled to the load through an elastic coupling and fed by

a PWM power supply are presented. A mathematical model of the

system is given and the transfer function is obtained. The

influe~ce of system parameters, like amplifier gain, torsional

stiffness of shaft and armature time constant, on the stability

of the system is studied using the D-partition technique. The

effect of value of amplifier gain on speed and current pulsations,

and steady state error in speed are discussed. The dependence of

the value of amplifier gain required to give minimum settling

time, on torsional stiffness is investigated. Conditions leading

to abnormal operation like resonance are identified. The analysis

includes the cases of constant load torque as well as a periodi

cally varying load torque.

The system analysed, as shown in Fig. 5* 1, consists of

three basic components* (i) the comparator (ii) the controller

and (iii) the motor coupled to load. These are discussed below?

(i) The Comparator

The comparator has two input signals, one is the reference

signal v which is proportional to the desired drive speed co,

and the other is a feedback signal vQ obtained as tachogenerator

output proportional to the actual speed of motor ©.. The compara

tor compares these two signals and the difference, which is the

error signal (v - v ), is obtained as its output.
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(ii) The Controller

The error signal obtained from comparator is the input to

the controller. Here the error signal is amplified through an

amplifier of gain K and a ramp signal of amplitude E is added
a a

to it, as shown in Fig. 5.2(a). The combined signal is compared

with a threshold level E, and the resultant signal activitates

the thyristor through a digital control processor to give a

pulsed output. Thus the controller modulates a d.c. power source

voltage V to give a pulsed output voltage as shown in Fig. 5.2(b),

the duty factor of which is a function of error signal given to

its input. Any departure of speed from the required level changes

the error signal which controls the duty factor a and hence the

average voltage (aV) applied to motor. Thus, the desired speed

level is maintained.

The duty factor a(t) which is a function of error signal

can be expressed as*

•p IT

a(t) =1-p.*-&(vr- vo) (5.D

(iii) The Motor and the Load

The drive system analysed consists of a separately excited

d.c. mc':or with an elastic 3haft connecting the motor to the load.

The analysis takes into account a periodic variation of load

torque which consists of a constant component T* superposed by a

pulsating component T^ as shown in Fig. 2. 2(b). The frequency of

pulsating component of load torque co1 is taken equal to the set

speed (expressed in rad/s) implying that one cycle of load torque
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is completed in one revolution of motor shaft. Other frequencies

of load torque pulsations in multiples of motor shaft speed can

also be easily accounted for in a similar manner.

For the analysis of the above system, a mathematical

model is given. In this model the moments of inertia of the motor

and the load as also the damping factors are considered separately.

A block diagram of the system is obtained and its transfer func

tion derived. The 'D-composition technique1 has been used to

obtain regions in parameter plane which give sets of values of

system parameters (torsional stiffness, amplifier gain and arma

ture time constant) for stable operation. In many drive appli

cations, a desirable performance feature may be to bring back

the drive speed to its required level as fast as possible, after

a transient disturbance or change. The measure of the recovery

time is known as 'settling time'. The analysis includes the

consideration of settling Lime and the valoe of amplifier gain

that gives minimum settling time is determined. This value of

amplifier gain is observed to be significantly dependent upon

the degree of elasticity of shaft. The system equations are

expressed in state model form and solved using numerical techni

que to obtain the response, of a system so designed, in transient

as wel- as steady state conditions. The analysis is illustrated

by an example and some inferences have been drawn.

5.3 PERFORMANCE EQUATIONS AND TRANSFER FUNCTION

The equations governing the performance of system shown

in Fig. 5.1 can be written as*
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Vo(t) =L|i+ Ri +Km By (5.2)

Ke i =j1 5^ b1 e, ♦ c(9fe2) (5.3)

"TL = J2 V B2 ®2 + C( W (5A)

TL = TLo + TL1 sin St-gf) (5-V

V • vn = V a(t)/K (5.6)
1 w O

•

where v = K. 0.
o t 1

The eqns. (5.2)-(5.5) are same as eqns. (2.1)-(2.W).

Taking the Laplace transform of above equations and solving,

Ks)/[V a(s) - Km ^(s)] = 1/R(1+ s t&) (5*7)

G^s)/^ I(s)/C + 62(s)]= 1/[1 + 5^(1+ STm1)/C] (5.8)

©2(s)/[C O^s) - TL(s)]= 1/C[l + s B2(1+ s Tm2)/c] (5.9)

V0(s) = Kt ^(s) (5.10)

V_(s) - V (s) = V a(s)/K„ (5.11)

Using equations (5*7 - 5.11), the block diagram of the

system can be obtained as shown in Fig. 5.3. The open loop

transfer function G(s) can be obtained as*

e.(s) (a^s2+aKS+a.)K K
G(s) =̂ nr =—3 3 2 <M0r A, s +A2s-3+A3s4+\s+A^

The closed loop transfer function is

.2iG(B) (a3s^a^s+a5)Ke K(
A1 s1'+A2s3+A3s2+\s+A^+K(a3s2+a1+s+a^)T+kI g(s) " w~ ~ T~. .__, o. ' T 0.13)
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From eqn. (5*13), the characteristic equation of the

closed loop system can be obtained as*

A, s + A2 s3 + A, s2 + A^. s + A^ +K(a s2 + a, s"+ a*) =0
(5.1W)

where

A1 - Ta B1 B2 Tm1 Tm2

A2 = B1 B2 **1 ^m2 + *• B1 B2(^m1 + ^

S - Ta B1 B2 + B1 B2(-m1 * ^ + CTa(B1 ^1 + B2 **23

+ Ke Km B2 -m2/R

AW = B1 B2+ °'.<VV + C(B1 Tm1 **i>*o23

+KeKmB2/R

A5 = G(B1 + B2 + Ke VR)

a3 = B2 Tm2/R > aW = B2/R » a5 = C/R • Tm1 = J1/B1 »

-m2 = J2/B2 • K = KeKcKt • Kc = Ka V/£a

5.W THE D-COMPOSITION TECHNIQUE

The effect of variation of system parameters on dynamic

stability of system can be studied using the D-composition

technique [W0,50]. The procedure is briefly explained below:

5.W. 1 Linear Case

If a and B are chosen as the parameters of interest

appearing linearly in the characteristic equation whose effect

on dynamic stability of system is to be studied, eqn. (5.1W) can

be expressed in terms of a and B as*
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a f^s) + B f2(s) + f3(s) =0 (5.15)

where f.,(s), f2(s) and r"3(s) are polynomials in swith constant
coefficients. Substituting s = jto in eqn. (5.15), and equating

the real and imaginary parts on the left hand side to zero, two

equations are obtained as*

a fj1(«) ♦ Bf21 (co) + f31 (co) =0
, ^ ./ ^-16)a f12(co) + B f22(co) + f32(co) =0

where f^ (co),... , f32(co) are polynomials into with constant
coefficients.

Solving eqns.(5.16), the values of a and B in terms of to

can be obtained as*

a = [f32(co) f2l(to) - f3l (co) f22(co)]/A1

and B= [fl2(to) f^ (to) - ^ 1(co) f32(co) ]/A1

where A1 = f11 (co) f22(to) - f* 2(co) f 21 (to)

The values of a and B are functions of co as shown in

eqn. (5.17). Varying the value of co from zero to infinity, a

pair of values of a and B can be obtained for each value of to.

These values of a and B, varying co from zero to infinity, can be

plotted in (a-B) plane. A number of points thus plotted can be

joined by a smooth curve. A boundary obtained from such a curve

is known as the D-partition boundary. Usually eqns. (5.16) cease

to be linearly independent for to = 0 and co = °° . Hence the

D-partition boundary as plotted above, is supplemented by

'Special Lines1 whose equations are obtained by substituting

(5.17)
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to = 0 and to = oo j.n eqn. (5-15). The D-partition boundary and the

special lines are hatched to determine the values of a and B

which give most stable operation of the system. The hatching

rule, as suggested by Neimark [Wo], is followed in the work

presented in this chapter. The hatching procedure is as belows

For positive values of t\. , the left hand side of the

D-partition boundary is hatched; and when A. is negative, the

right hand side of the boundary is hatched. To cover the entire

region of s plane, the D-partition boundary should actually be

plotted for values of co varying from minus infinity to plus

infinity. To take this into account, the D-partition boundary

is plotted varying co from zero to infinity and hatched twice on

the same side. The special lines are hatched in a manner such

that, near the point of intersection of the special line and the

D-partition curve, the hatched side of the special line faces

the hatched side of the D-partition curve. Further on,the

hatching of the special line remains unchanged.

Determination of the most stable region in (a- B) planes

The D-partition curve and the special lines divide the

entire (a- B) plane into a number of regions. To determine the

most stable region; the number of roots of the system character

istics equation located on the left hand side of s plane,for

each region in a- p plane,is determined in the following manner?

The number of roots on the left hand side of s plane

corresponding to any one of the regions of (a- p) plane is

assumed an arbitrary number, say n. Now, on moving from a
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hatched to an unhatched side of the D-partition boundary in

(a- B) plane, one root is lost on the left hand side of s plane.

Similarly for the boundary hatched twice, two roots are lost on

the left hand side of s plane on moving from a hatched to an

unhatched side. Following this procedure, the number of roots

present on the left hand side of s plane for each region of

(a- p) plane is determined. The region having maximum number of

roots is marked as the most stable region. However, this method

determines the relative stability and the most stable region

obtained indicates the probable region of stability of the system.

As such the selected values of a and B, obtained from the most

stable region, are substituted in the system characteristics

equation and the system stability is verified by known methods

of determining the stability.

5.W. 2 Non-Linear Case

In some cases, the parameters of interest, a and B may

not occur linearly in the characteristic equation. In such cases,

eqn. (5.15) may modify to?

a f-,(s) + B f2(s) + f3(s) + a B f^s) =0

The D-partition boundary, for this case, can also be

obtained following the above procedure. In this case two

D-partition boundaries, instead of one boundary as for linear

case, will be obtained. The two boundaries are properly hatched

and the most stable region is determined in a way similar to

that for the linear case.
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5*5 TYPICAL CASE STUDY

The specifications of the system studied, as an example,

are?

inductance of armature including choke = 0.16 H

threshold signal voltage,E_ = 2.0?
SI

amplitude of ramp signal,E. = 5.0 V

The values of other system parameters are same as given in

section 2.7. The data for numerical technique [11] used to

obtain system response in time domain are as belows

initial step size =0.1

-W
maximum absolute allowable single step error = 10

_7
minimum absolute allowable single step error =10

maximum allowable step size = 0.1

— 6
minimum allowable step size = 10"

reduction factor for step size =0.5

starting values of dependent variables = zero

starting value of time = zero s

printing time interval = 0.005 s

5.6 EFFECT OF VARIATION OF SYSTEM PARAMETERS ON DYNAMIC
STABILITY

The D-partition technique can be uned for studying the

effect of variation of system parameters, taken only two at a

time. In the present case there are three important parameters

of interest; C, -r and K. The study aims at determining suitable

values of gain K and armature time constant t0 for a known value
RE

of torsional stiffness C. Therefore, the dynamic stability of
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the system specified in section 5- 5 has been studied for varia

tions in these parameters in the following two combinations'

(i) t , K varied ; C kept constant.

(ii) C , K varied ; % kept constant.

5.6.1 Variation of Armature time constant t_ and gain K
a.

In this case the parameters of interest a,j3 selected for

excursion are armature time constant and gain K. Eqn. (5.11*) can

be written as*

ra(K1 s1* +K2 s3 +K3 s2 +\ s) +K(a3 s2 +a^ s +a?)
+ (Ki] s3 ♦ K^ s2 * K6 s + Aj =0 (5.18)

where

K,

K1 " B1 B2 Tm1 Tm2

K2 = B1 B2(^m1 * **2>
K3 = B, B2 ♦ CCB, rm1 ♦ B2 Tffl2)

K^ = C(B1 + B2)

K5 = B1 B2(-m1 + -m2) + Ke Km B2 Tm2/R
K6 = B1 B2 + CCB, xm1 * B2 Tm2) ♦ Ke Km B/R

Substituting s = jco in eqn. (5* 18) and solving for Ta and

^a = (P1 Q2- P2 V/A1

and K = (*\. Sp - Q2 S^/A,
p

where P. = a^ - a^ to , Pp = a^ co

Q, = A^ - K^ to , Q2 = K6 co - K<, coJ
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S, =K, (ah - K3 to2 , S2 =K^ co - K2 co
and A, = S<, Pg - S2 P-,

The D-partition boundary in the (xa - K) plane is shown

in Fig.5.W(a). Following the hatching rules discussed in section
5.W, the region of stability is determined. The entire Cxa - K)
plane is divided into regions marked Rr...Rg and the number within
parentiesis denotes the relative number of roots present in left
half of s-plane. The most stable regions are R, and R3 which
correspond to the maximum number of roots (n). As the region R3
pertains to negative values of armature time constant, it is not
a feasible region. The most stable region, therefore, is region
R . This reveals that any combination of positive values of time

1

constant t and gain Kwill lead to stable operation. From the
a

consideration of desirability of continuous mode of conduction, a

large value of tq can be selected. However, a large value of
inductance makes the systen response slugrish. As such, a suitable
value of t should be chosen which gives a continuous conduction

3.

of armature current without making the system response much slug
gish. For the case under study, a value of armature time constant
equal to 0.0W s is selected.

5.6.2 Variation of Torsional Stiffness C and gain K

In this case the parameters of interest a and B are the

torsional stiffness C and gain K. Eqn. (5.1 W) can be written as*

C(K? s2+ Kg s+ K9) ♦ K(a3 s2+ a^ s) ♦ CK(K10) +^ s\ A2 s3
+Kn s2+K12 s) =0 C5.W



SP. LINE ( UJ -*" CD , Zq-0 )

FIG. 5.4(a)- D-PARTITION BOUNDARY WITH RESPECT
TO ARMATURE TIME CONSTANT AND GAIN

R2(n-1)

R3(n-2 )

CURVE A:D _ PARTITION BOUNDAR Y ( PL ANE C-K)
u B: D_ PARTITION BOUNDAR Y( PL ANE C-k')

( MOST STABLE REGION )

C,C

B( A POSITIVE

3S2,

f^ SP- L'NE(^s0,C«0)<^r- A(A NEGATIVE )
—40 **>

FIG.5-4(b)_D-PARTITION BOUNDARIES WITH RESPECT
TO TORSIONAL STIFFNESS AND GAIN



-128-

where K? = X&(B* Tffl1 ♦ B2 ^

Kg =,a(B, - B2) + Bl Tffi1 * B2 Tm2

K9 = B, + B2 + Ke Km/R

K10 = 1/R

K11 = -a B1 B2 + B1 B2(-m1 + ^ + Ke Km B2 ^/R

K12 = B1 B2 + Ke Km B2/R

It may be noted that the parameters of interest, in this

case, do not occur linearly in the characteristic equation (5.19).

Substituting s = jco and solving, two independent sets of values

of C and K are obtained [50] as*

C ={-e + (e2 - Wad)}/2a , K = (D1 - 0,0)/(D2 +H1 C)
G» ={-e - (e2 - Wad)}/2a , K* = (D, - G '̂JAD^ H '̂)
where H. = ILQ

G1 = K9 - K? co2 , G2 =Kg co

a, =A1 co^ - Kn co2 , D2 =K1 2co - A2 co3
a = G2 H^ , b = H1 a^ co

d =-(D2 a3 to2 +D, ah co) , e=H, Dp - Gp a3 »2 - Q, ^ m
A1 = -a C + b K + G1 &1+ to + G2 a? co2

A2 =-a C + b K* + G1 ah co + Gp &3 co2

Plotting each set of values of C and K, i.e. C- K and

C - K , two D-partition boundaries are obtained as shown in

Fig. 5.W(b). In this case also the entire rebion of C-K plane
is divided into different regions R,....^ and the most stable
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region is R1 containing a maximum of (n) roots in the left half

of s plane. It is again observed that any set of positive values

of stiffness C and gain K can be selected to give a stable opera

tion.

5.6.3 Determination of Amplifier Gain For Minimum Settling Time

From the stable region R-, of Fig. 5.W(b), a number of

values of gain K can be selected for a given value of torsional

stiffness C. Out of all these values of K, a particular value

which gives minimum settling time and hence the fastest transient

response may be determined. This value of K has been determined

as explained belows

Substituting s = -<* JL 3«a in characteristic equation

(5.19), a set of different pairs of D-partition boundaries can be

obtained for different and increasing positive values of cr. In

each case, the most stable region can be determined as before.

Larger the value of cr, narrower is the most stable region and

there exists a maximum value of 0* beyond which this region dis

appears. This critical value of cr may be represented as cr . The

D-partition boundaries for cr = c can be plotted and most stable

region marked. A value of gain K corresponding to a given value

of torsional stiffness C selected from this region will give a

minimum settling time. It can, therefore, be inferred that the

value of gain K is directly influenced by torsional stiffness C,

if the system is designed for a minimum settling time.

For the case under study, value of aQ is obtained as

6.3. For this value of a, the D-partition boundaries are plotted

as shown in Fig. 5.5 and the most stable region is R. containing
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a maximum number of (n) roots in the left half of s plane. The

value of gain K selected from this region :.s 2160 corresponding

to a given value of C equal to 6750. The corresponding value of

amplifier gain K^ can be calculated as*
el

Ka " KKaAa Kt V

For the case under study, the value of amplifier gain K is

obtained as 76. As the D-partition technique indicates only the

probable region of stability, the system stability (for K = 76)
a

has been verified by using Routh criterion.

5*7 SYSTEM PERFORMANCE

The response of the system thus designed, in time domain,

can be obtained by expressing eqns. (5.1- 5.6) in state model

forms

x = A x + D u (5.20)

where [A] and [D] are given by eqns. (2.7) and (2.8),

u =

*Va(t)
TT

Tand x = [61 G1 G2 ©2 i]

The duty factor a(t) can be expressed as*

Et Ka Kta(t) =,.^+ V^'d" V

Eqn. (5.20) is solved using numerical technique [11] to

obtain the system response discussed belows
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5.7.1 Transient State Performance

For the system under study, with C, Ta and K chosen as
a a

parameters of interest and their values determined in order to

give a stable operation with minimum settling time, the switching-

in transients in motor speed and armature current are as shown in

Figs. 5.6 and 5*7 respectively. It is observed that the motor

initially accelerates to a speed slightly higher than the set

speed and thereafter attains a speed which is very nearly equal

to set speed. The difference between the actual speed and set

speed is the steady state error. For a short interval of time,

in the transient condition, when the motor accelerates to a speed

higher than the set speed, the error between the set speed and

the actual speed becomes negative and for this duration the duty

factor a(t) remains zero and no voltage is applied to motor.

During part of this period, the current tends to go in the nega

tive direction (shown dotted) but remains at zero value as it can

not flow In reverse direction due to the inherent characteristics

of thyristor switch employed for modulation. Both the speed and

the current fluctuate during the transient period. The amplitudes

of fluctuation gradually decrease as steady state conditions are

approached.

5.7.2 Steady State Performance

(i) Constant Load Torques

The steady state variations of motor speed and armature

current for the system designed with a constant, load torque are

shown in Figs. 5.8 and 5.9 respectively. It is observed that the
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armature speed and current pulsate under the steady state condi

tion. The amplitudes of these pulsations are very small. For

the case under study, with K& = 76, the pulsations in speed and

current are 0.000W8 '/ and 0.055 */. respectively [Table 5.1 ]. The

steady state error in speed is also negligibly small (0.001 */. for

the case considered). The settling time to give 0.2 V. regulation

of speed is 0.575 sec.

(ii) Pulsating Load Torques

With a pulsating load torque, as shown in Fig. 5.10,the

pulsations in speed and current for one cycle of load torque are

shown In Figs. 5.11 and 5.12. It is observed that the speed and

current pulsate at a frequency equal to the frequency of load

torque pulsation to1 . The amplitudes of these pulsations for

K& = 76 are 0.013 */. and 26.81 '/. for speed and current respective

ly [Table 5.2]. It is noted that the amplitudes of these pulsa

tions for pulsating load torque are also small but large compared

with those for constant load torque.

TABLE 5.1 i Effect of Amplifier Gain on System
Performance For Constant Load Torque.

S.N. gain pulsations steady state settling time
K
a speed current

./ speed /.
error in sec

1 5.0 0.1663W 2.508 0.013W *

2 10.0 0.02596 0.7W6 0.0077 1.135

3 25.0 0.00865 0.375 0.0029 0.865

W 50.0 0.00051 0.079 0.0012 0.695

5 76.0 0.000W8 0.055 0.0010 0.575

6 100.0 0.00033 0.032 0.0008 0.6W0
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TABLE 5.2 I Effect of Amplifier Gain on System Performance
For Pulsating Load Torque

S.N.
gain

Ka
system eigenvalues

rad/s
puis at ions settling

speed */ current '/.
• time,sec

1 0.1
-12.561 + j

- O.O98 + o

15.W75

519.99^
0.932 3.921 *

2 0.5
- 12. 528 + j

- 0.131 + 3

30.771

520.678
1.005 13.603 *

3 1.0
-12.W87 t 3

- 0.173 ± 3

W2.730

521.538
1.279 3^.175 *

W 1.52
-12.WWW + j

- 0.216 + j

52.286

522.W37
1-371 W7.WWW •y

5 5.0
-12.1W6 + j

- 0.513 ± 3

92.997

528.566
0.382 39.222 *

6 10.0
-11.702 + j

- 0.958 + 3

1 29.060

537.705
0.162 29.762 *

7 25.0
-10.306 ♦ j

- 2.353 + 3

- 8.110 + j

193.259

567.18W

2W9.562

O.OWW 27.666 *

8 50.0 0.021 27.016 0.7W5
- W.51^ t 3 620.931

- 6.325 ±3 281. 31 6
9 76.0 O.O13 26.809 0.635

- 6.33^ 1 3 679.013

- 5.132 + j 299. 28W
10 100.0 0.010 26.603 0.680

- 7*527 ± j 732.0W6
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5.7.3 Effects of Amplifier Gain on System Performance

(a) Effect of Gain K& on Pulsations in Speed and Current
(i) Constant load torque?

For the case of constant load torque (Ty. = 0), the

variation in pulsations of speed and current for different values

of amplifier gain is shown in Fig.5.13, It is observed that an

increase in the value of gain K& decreases the amplitudes of

pulsations of speed and current. The effect of variation of

amplifier gain on settling time and steady state error in speed

is shown in Fig. 5.1W. It is observed that an increase in ampli

fier gain decreases the steady state error [Table 5* 11. However

an optimum value of gain may be selected which gives minimum

settling time and an acceptable level of pulsations in speed and

current.

(ii) Pulsating Load Torque?

With a pulsating load torque,the pulsations of speed and

current for different values of amplifier gain are shown in

Figs. 5.15 and 5.16 [Table 5.2]. It is observed that up to a

particular value of gain at which resonance occurs, an increase

in the value of gain increases the pulsations in speed and current

[Fig. 5.151. An increase of gain beyond this value reduces the

pulsations in speed as well as current [Fig. 5.16]. Unlike the

case of constant load torque, for a pulsating load torque the

pulsations in current are much larger compared to those for speed,
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It is observed that using the value of gain (KQ = 76)
CI

corresponding to minimum settling time, the pulsations in speed

for a closed loop system are considerably lower (0.013 "/. -

Table 5-2) as compared to the pulsations occurring in an open

loop system 0.1 5 */ - Table W. 1). However, the pulsations in

current for a closed loop system are much larger (26.8 */ -

Table 5.2) as compared to the value obtained for open loop system

(2.2W V. - Table W. 1). Thus using a closed loop system, the speed

regulation improves compared to that with an open loop system.

But this is achieved only at the cost of larger pulsations in

current.

(b) Effect of Gain K on Frequency of Resonance
a

The system analysed is of fourth order and its character

istic equation gives two pairs of complex conjugate roots. Each

pair of roots represents a sinusoidal variation of system varia

bles, the frequencies of variation being given by the imaginary

parts of the roots. These two frequencies say p1 and Bp depend,

among other system parameters, on the value of the amplifier gain

Ka. The variation in the values of B. and B? for different values

of amplifier gain K is shown in Fig. 5.17 [Table 5.2]. When the
cl

value of at least one of these two frequencies B. or B? becomes

equal to the frequency of load torque pulsation to.. , a consider

able increase in the amplitude of pulsations of speed and current

is obtained. This phenomenon may be termed as resonance. The

frequency at which resonance occurs, depends on the value of B.

or B2 while these value themselves depend among other system

parameters,on the value of amplifier gain K . Thus indirectly
a.
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the resonance frequency depends on the value of amplifier gain.

For the system considered, the valtie of B. becomes equal

to the frequency of load torque pulsation co. at a particular

value of gain K = 1.52 as shown in Fig. 5.15. For this value of

K •, resonance occurs as the amplitudes of pulsations in speed and

current are large compared to those obtained for other values of

K . As such the value of gain K which leads to resonance must

be identified and this value should be avoided while designing

the system, as large pulsations in speed and current are not

desirable for a better performance of the system.

(c) Effect of Gain K on Settling Time

The system characteristic equation has two pairs of comp

lex conjugate roots with negative real parts. This indicates

that the transient parts of each of the system variables consist

of two sinusoidally decaying components. The frequency of these

components is determined by the imaginary oarts of the complex

roots. The negative real parts of the roots are a measure of

decay rate of the system variables and hence determine the sett

ling time of the oscillation of these variables. For a practical

system, the real parts of the two roots are different. The varia

tion of real parts of the roots with amplifier gain is shown in

Fig. 5.18. It is observed that the root with a higher value of

imaginary part has a lower value of real part and vice-versa as

shown in Figs. 5-17 and 5.18 [Table 5.2]. As such the settling

time of the two sinusoidally decaying components are different.

The component with a high frequency of oscillation has a lower

value of settling time and vice-versa. However, the overall
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settling time of the system will depend on the settling time of

the sinusoidal component which is of higher frequency and has a

slower rate of decay. In order to obtain minimum overall sett

ling time, it is necessary that both the sinusoidal components

decay at the same rate.

An increase in the value of gain K increases the value

of real part of the root of lesser value and decreases that of

other [Fig. 5* 18]. As the value of K is increased, there occurs
a

a critical value of K for which the real parts of both the roots

become equal. For this value of K , both the sinusoidal compo

nents of system variables decay at the same rate. This critical

value of gain K gives minimum settling time. Any further increa-

se in the value of gain beyond this critical value, will not

decrease the settling time. For the system under study, the

critical value of gain is obtained as K = 76. For this value of

K the real parts of the two pairs of roots are equal as shown in

Fig. 5.18 [Table 5.2]. For very low values of gain K , the

settling time to give the desired accuracy of speed regulation is

very large and this is indicated by an * mark in Tables 5*\ *5* 2 .

5.7.W Effect of Frequency of Load Torque Pulsation o>.

The steady state pulsations in speed and current (for

K = 76) are determined for three different values of frequency
a

of load torque pulsation viz.; co^ = p* , w« = p2 and a^ = oo ,

where B« and Bp are the frequencies of system oscillation

(which are equal to imaginary parts of roots) and oo is the

natural frequency of torsional oscillation or the system given by
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con = [CCJ^* J2)/J1J2] . The pulsations in speed and current for
these three values of <a* are shown in Tablv. 5»3« A study of these

values reveals that the resonance occurs for all the above three

values of oo,, but the resonance for the case oo. = co is most
i in

severe. Therefore,it is suggested that a combination of system

parameters C, J^ and J- should be selected in such a way that the

above conditions of resonance are avoided.

TABLE 5.3 ' Effect of Variation of Frequency of
Load Torque on Speed and Current
Pulsations

S.No.
O0.|

rad/s
gain

pulsations

speed '/ current '/

1 Pi 76 0.260 38.269

2 h 76 0.156 18.286

3 mn 76 9.600 WO.600

$* = 218.316, B2 - 679.013, con = 519.823

5.8 CONCLUSIONS

The analysis and design of a closed-loop d.c. motor drive

fed from a PWM supply is presented. The effects of elasticity of

coupling and periodic nature of load torque have been considered.

The interaction of the torsional stiffness of shaft, amplifier

gain and armature time constant on the system stability and

settling time are studied. Using the procedure given, a system

can be designed to give satisfactory performance with regard to

steady state error, variations in speed and ^nrrent aud settling

time. The analysis reveals the following*
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(a) An increase in amplifier gain up to a certain critical

value decreases the settling time- Any increase in gain

beyond this critical value increases the settling time.

The value of amplifier gain,required to give the minimum

settling time, is affected by the value of torsional

stiffness. An increase in the value of torsional stiff

ness, increases the value of gain to give the minimum

settling time.

(b) For a constant load torque, an increase in amplifier gain

decreases the pulsations in speed and current, as also the

steady state error in speed.

To summarize, from the consideration of current and

speed pulsations, a high value of gain K is desirable.

However, in systems where the settling time has to be

kept low, the system gain should be kept equal to critical

gain. For systems in which a fast transient response is

not a primary consideration, a value of gain higher than

the critical value may be selected in order to minimise

the pulsations in speed and current.

(c) With a pulsating load torque, the speed and current pul

sate at a frequency equal to frequency of load torque

pulsation. The amplitudes of these pulsations are large

compared with those for constant load torque. A high

value of amplifier gain decreases the pulsations in

speed and current.

(d) For some specific values of amplifier gain and frequency

of load torque pulsation oo. , the system experiences
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resonance characterized by comparatively large pulsations

in speed and current.

For a fixed value of oo., the resonance occurs when

the value of amplifier gain is such that atleast one

frequency of oscillation p. or P2 (imaginary parts of

roots of characteristic equation) becomes equal to oo.

[Fig. 5.15]. The value of amplifier gain which leads to

resonance will depend on the value of co.. Thus for a

given value of 00., the value of amplifier gain should

be selected such that the resonance is avoided.

(e) Some systems may require a particular value of gain K
cl

for the consideration of minimum settling time. For this

fixed value of K , resonance occurs when 00. becomes equal

to either B^ or 82<> Resonance also occurs when co* becomes

equal to the natural frequency of torsional oscillation

of system oon. The resonance for the condition oo1 = 00 is

observed to be more severe than that for other two cases

when toy - pA or p2 [Table 5.3]. It is suggested that

above three values of 00. should be avoided in order to

avoid resonance.

In many cases, the value of co« is a system requirement,

and not the designers' chor'ce. The amplifier gain K may also be

fixed to give a minimum settling time. In such cases where oo1

and K& are both fixed, resonance may be avoided by changing the

value of p1 , B2 and oon which are also functions of torsional

stiffness and moment of inertia of the system. Thus a suitable

combination of values of torsional stiffness and moment of inertia

may be selected to avoid resonance.



CHAPTER-6

NON-LINEAR ANALYSIS OF D.C. MOTOR DRIVE WITH ELASTIC COUPLING AND

PULSATING LOAD TORQUE

6.1 INTRODUCTION

In the analysis of a separately excited d.c. motor, fed

from a constant d.c. voltage with an elastic coupling and pulsating

load torque presented in Chapter-2, the frequency of load torque

pulsations was assumed as constant and equal (or proportional) to

the average steady state motor speed. This assumption led to

linear system equations, simplified the analysis and closed-form

solutions for system variables could be obtained.

In a variety of industrial applications, the load torque

is a function of path travelled by the driven mechanisms.Examples

of such applications include the piston pumps, crank press, mecha

nisms with crank drives, metal cutting shears, etc. The load

torque for some of such type of loads have a periodic variation,

the time period depending upon the speed of rotation. The fre

quency of load torque pulsations is, therefore, a function of

motor speed to which the load is coupled. As such the assumption

of a fixed frequency of load torque pulsations may lead to some

error in the results of the analysis. Therefore, it is worthwhile

to investigate the effect of variation of frequency of load

torque with speed on the performance of the system. This will

also verify the validity of above assumption made in tho analysis

given in Chapter-2.
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6.2 WORK PRESENTED

In this chapter, the analysis of a separately excited

d.c. motor fed from a constant d.c. voltage with an elastic coup

ling and pulsating load torque is presented to determine the

effect of speed dependent variations in frequency of load torque

pulsations. For two different cases, the system performance is

determined in terms of armature current and motor speed for

transient as well as steady state conditions. In the first case,

the frequency of load torque pulsations is considered as a func

tion of motor speed. This leads to non-linear system equations

which are solved using a numerical technique [11 ] to give the

system performance in time domain. In the second case, the

system performance is determined using the same numerical tech

nique but assuming the frequency of load torque as constant and

equal to average steady state motor speed. This assumption leads

to linear system equations. The performance of system for the

two cases, in transient and steady state conditions, is compared

to determine the effect of frequency of load torque variation

with speed.

The system analysed, shown in Fig. 2.1, comprises of a

separately excited d.c. motor coupled to a periodically varying

load through an elastic shaft. The moments of inertia and damp

ing for motor and the load are considered separately [Fig.2.2(a)].

A mathematical model for the system in non-linear as well as

linear case is given. The equations are expressed in State model

form and solved using a numerical technique. For the non-linear

case, the frequency of load torque co1 is expressed as a function
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of speed 0? and can be written as*

oo<l = k ©2

For linear case, co. is assumed proportional to average value of

steady state speed n^ [_eqn.(2. 23)] and can be expressed as*

; where k is an integer.oo1 = k n.

The valae of k depends upon the type of driven mechanism. For

example,k = 1, implies that the load torque completes one cycle

in one rotation of motor shaft, and so on.

6.3 PERFORMANCE EQUATIONS

The equations governing system performance for the non

linear and the linear cases can be written as*

(i) NON-LINEAR CASE*

The equations describing the system a^e*

V sLi+Ei+Xe.
dt m

Te = j1 §,+ b1 9y+ c(ere2)

-TL =J2 V B2 VC(e2-V

where T = K i
e e

and TJ is a non-linear function of time given by*

TL = TLo + TL1 sin Ck «2 t - CO

(6.1)

(6.2)

Equations (6.1), (6. 2) can be expressed in State model

form as*

x = Ax + Du' (6.3)
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where [A] and [D] are as given in eqns.(2.7) and (2.8),

_T
state variable vector x = [9. 9. 9 9 i] ?

and forcing function vector u =
V

(ii) LINEAR CASE?

Tue equations describing the system are*

V =Li+R1 +KmS
-\

Te = J1 9^+ B1 9.+ 0(0.,-O^

•TL =J2V B2 G2+ <W2-°0

where T = K i
e e

and TL is a linear function of time given by*

TL = TLo + TL1 sin (k °1 * " «

(6.W)

(6.5)

Equations (6.W),(6. 5) can be expressed in State model

form as*

x = Ax + Du (6.6)

where [A],[D] and [x] are same as for the non-linear case,

and forcing function vector u =
V

T-,

Equations (6.3) and (6.6) are solved using a numerical

technique to determine the system performance for non-linear and

linear cases respectively.
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6.W SYSTEM PERFORMANCE

The system performance using the values of system para

meters given in section 2.7 , for non-linear as well as linear

cases is determined in transient as well as steady state condi

tions. The value of k in eqns. (6. 2) and (6.5) is taken as 1.

The performance determined is depicted by Figs. 6.1 - 6.9 .

6.W. 1 Transient State Performance

The switching-in transients in armature current for non

linear and linear cases are shown in Fig.6.1. In both the cases,

the armature current initially rises rapidly and attains a peak

value. Thereafter, it decays slowly till it becomes constant

when steady state is reached. The acceleration characteristics

of motor speed during transient period for non-linear and linear

cases are shown in Fig. 6.2. It is clear from Figs. 6.1 and 6.2

that the nature of variation of current aid speed for the linear

and non-linear cases is identical.

The error in the values of armature current and motor

speed caused due to the assumption leading to linear case are

expressed as Ai and An respectively, and are calculated as

below taking the values for non-linear case as reference*

Ai = (value of current for non-linear case) - (value of current

for linear case)

An= (value of speed for non-linear case) - (value of speed for

linear case)

For transient condition, the variation of error Ai ana An is

shown in Figs. 6.3 and 6.W . A study of this reveals the
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following*

(a) the variation of errors Ai and An with time is alternating

in nature. The instantaneous values of error may be posi

tive or negative depending upon whether the current or

speed for the non-linear case is more or less than that

for linear case.

(b) the magnitude of errors Ai and An during transient condi

tion is low, which further decreases with time and attains

still lower values as steady state is reached. The values

of maximum and minimum errors in armature current for

transient condition are 0.0571 and -0.0269 pu , while for

steady state these values are 0.0206 and 0.0079 pu. Simi

larly the values of maximum and minimum error in motor

speed for transient condition are -0.0101 and 0.00W8 pu,

while for steady state, these values are -O.OO3W and

-0.0003 pu [Table 6, ' 3.

TABLE 6.1 * Comparison of Error in Transient and Steady State
Conditions.

performance
variable

armature current

motor speed

transient condition 4steady state condition
maximum • minimum

error pu error pu

0.0571 -0.0269

-0.0101 0.00W8

maximum minimum

error pu } error pu

0.0206 0.0079

-O.OO3W -0.0003
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TABLE 6.2 * Comparison of Steady State Performance for Non-Linear
and Linear Case ~.

analysis
armature current in a cycle motor speed in a cycle

maximum

value
pu

minimum

value

pu

non-linear 0.9W55 O.9153

linear 0.9182 0.8895

amplitude of
pulsation

pu

maximum

value

pu

minimum

value

pu

0.0151 0.9113 0.9019

0.01W3 0.91*49 O.9050

amplitude of
pulsation

pu

0.00W7

O.OOW9

6.W.2 Steady State Performance

For a pulsating load torque as shown in Fig.6.5* the

steady state variations in armature current and motor speed

determined for the non-linear case are shown in Figs.6.6 and 6.7

respectively. These variations for the linear case are shown in

Figs. 6.8 and 6.9 respectively.lt is observed that for a pulsating

load torque, the armature current and sped for the non-linear

case pulsate at the frequency of pulsating component of load

torque [Figs. 6.6,6.7], as also for the linear case [Figs. 6.8,6.9].

A study of these variations reveals that there is no appreciable

change in the values of amplitude of pulsations in current and

speed for the non-linear case as compared to the corresponding

values for the linear case. The values oi amplitudes of pulsa

tions in current and speed for the non-linear case are 0.0151

and 0.00W7 pu respectively, while these values for the linear

case are 0.01W3 and O.OOW9 pu respectively [Table 6.2].
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6.5 CONCLUSIONS

In this chapter, the performance of a separately excited

d.c. motor fed from a constant d.c. voltage with an elastic

coupling and pulsating load torque is determined from a rigorous

(non-linear) and a simplified (linear) model. In the non-linear

case, the frequency of load torque pulsations cm is taken equal

to the instantaneous value of motor speed, while for the linear

case to. is assumed as constant and equal to the average steady

state motor speed. The analysis presented reveals that the

results obtained in the two representations are essentially

identical with minor variations observed in the values of arma

ture current and motor speed. The error caused, due to the

assumption, in the values of armature current and motor speed

under transient condition is very low. For steady state, the

error is still lower. It can, therefore, be concluded that the

assumption of frequency of load torque puJ nations being propor

tional to average steady state motor speed made in the analysis

of linear case [Chapter-2] is valid. Moreover, this assumption

simplifies the analysis as the system equations in this case are

linear and enable to obtain a closed-form solution for system

variables determining its performance.



CHAPTER-7

EFFECTS OF ELASTICITY OF COUPLING AND PERIODIG VARIATION

OF LOAD TORQUE ON PERFORMANCE OF D.C. SERIES MOTOR DRIVE

7.1 INTRODUCTION

The analyses dealing with the effects of two important

mechanical factors, elasticity of coupling and periodic variation

of load torque, on the performance of separately excited d.c.

motor open-loop drives fed by a constant d.c. voltage and chopper

controlled supply have been presented in Chapters 2 and W respec

tively. D.C. series motors are also used in a variety of indus

trial drives and in traction, mainly due to better inherent

torque-speed characteristics, but hardly any work dealing with

the effects of these mechanical factors on the performance of d.c.

series motor drives has been reported in literature. It is,

therefore, worthwhile to investigate the effects of above mecha

nical factors on the performance of d.c. series motor drives. A

comparison of the effects of mechanical factors on the performance

of series and separately excited motors may provide a criterion

for the selection of a suitable type of motor for a given appli

cation,

7.2 WORK PRESENTED

In this chapter, the analysis of an open-loop d.c. series

motor drive with an elastic coupling is presented for (i) a motor

fed by a constant d.c. voltage, and (ii) a motor fed by a chopper
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controlled supply. The drive performance is determined for cons

tant load torque as well as for pulsating load torque. The system

equations for series motor drives are invariably non-linear due to

the non-linearity of the magnetisation characteristic of the motor.

Closed-form solutions of such system equations are, therefore, not

possible.

In order to investigate the difference in behaviour of

drives using series motor and separately excited motor, the per

formance of two drives with elastic coupling, having similar

motors, but in one case the field winding connected to give series

excitation, and in the other case the same field winding separate

ly excited, is determined. The system equations expressed in

State model form are solved using a numerical technique [11]. For

a typical set of drive system data, the performance in terms of

armature current, motor speed and twist in the shaft for the two

drives is determined in transient as well as steady state condi

tions. The effects of elasticity of coupling and periodic varia

tion of load torque on the performance of the two drives are

investigated and compared.

The systems analysed with d.c. series motor fed by a cons

tant d.c. voltage and by a chopper controlled supply are shown in

Figs.7*1 and 7.2 respectively. The electromechanical system is

represented as a two rotor system and the moments of inertia and

damping for the motor and the load are considered separately

[Fig.2.2(a)]. The periodic variation of load torque is assumed

to comprise of a sinusoidally varying component superposed on a

uniform component [Fig. 2. 2(b) ]. The frequency of load torque
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variations, o>1, is assumed equal to the average steady state

speed of motor.

For the drive system with chopper control [Fig,7. 2], the

'time ratio control' method with constant chopper frequency is

employed to control the drive speed. A freewheeling diode FD is

connected in parallel with armature to allow flow of current in

the armature circuit during the freewheeling interval of chopper.

Separate sets of equations applicable to duty and freewheeling

intervals of chopper operation are written. The commutation

interval is neglected. These equations are expressed in State

model form and solved by step-by-step method using a numerical

technique [11], starting from switching-in instant. The values

of performance variables at the end of first duty interval are

used as initial values for first freewheeling interval, and so on.

The non-linear magnetisation characteristic of series

motor is linearised by 'piece-wise linearisation method' as shown

in Fig.7.3-

7.3 PERFORMANCE EQUATIONS OF D.C. MOTOR DRIVE WITH CONSTANT
VOLTAGE SUPPLY

(a) D.C. Series Motor Drive

The system shown in Fig.7.1 with a pulsating load

torque can be described by the following equations*

V=(L +Lf) || +(R +Rf)i +Km(±)91 (7.D

Ke(i)i =Jy 9. + B1 9. * CCe,- ©2) (7.2)

- tl =j2 ©2 + b2 o2 ♦ c(e2- Qy) (7.3)
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where

TL = TLo+ TL1 sin M" 0) (7.W)

and K (i) , K (i) are motor back e.m.f. constant and torque cons
ul ' e

tant respectively, which are functions of armature current.

Equations (7.1)-(7.W) can be expressed in State model form as*

where

A' =

D' =

0

C.

Ji

0

c_
J,

0

0

x = [©1

and u =

V

T,

x = A'x + D'u

1

B.

m

(L+Lf)

0

0 0

©. e,

c_
T,

c_
T.

o

i_
j,

9.

0

0

1

J2

5ii£
J1

o

(R+Rf)
-TT^Tj

1 _-I
(L+Lf)

0

i]

(7*5)

(7.6)

(7*7)

(7.8)

(7.9)

(b) D.C. Separately Excited Motor Drive

The d.c. drive system [Fig.7.1] with a pulsating load

torque, when the motor field winding is separately excited as showi
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in Fig. 2.1 , can be described by eqns. (2. l)-(2. 5) . These
equations can be expressed in State model form as*

x=Ax+Du (7.10)

where A,D,u and x are given by eqns. (2.7)-(2.10).
With a constant load torque, the system performance

equations given in sections 7.3(a) and 7.3(b) still hold, but in
this c-se TL1 is substituted equal to zero, i.e. TL =TLq.

7.W PERFORMANCE EQUATIONS OF D.C. MOTOR DRIVE WITH CHOPPER
CONTROLLED SUPPLY

(a) D.C. Series Motor Drive

For the chopper fed d.c. motor drive shown in Fig.7.2

with apulsating load torque, equations (7.D-(7.W) are applicable
for duty interval of chopper operation, whereas for freewheeling
interval, the same set of equations hold substituting V equal to

zero.

(b) D.C. Separately Excited Motor Drive

For the chopper fed d.c. drive system [Fig.7.2] with a

pulsating load torque, when the motor field winding is separately

excited as shown in Fig.W.1, equations (2.D-(2.5) are applicable

for dv;y interval of chopper operation. mhe same set of equations

hold for freewheeling interval substituting V equal to zero.

With a constant load torque, the system performance

equations given in sections 7.W(a) and 7.W(b) are applicable, but

in this case TL1 is substituted equal to zero, i.e. TL = TLQ.
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7*5 TYPICAL PERFORMANCE STUDIES

The performance of a d.c. motor, with a constant voltage

input as well as with a chopper controlled supply, is computed

using the system parameters and operating data given below. As

explained earlier, to facilitate comparison, the same motor is

used for series excitation and separate excitation. The para

meters chosen are those which correspond to a d.c. series motor.

If such a machine is connected as a separately excited motor

with a constant field current (which gives rated speed at rated

supply voltage), the performance as evaluated in this analysis is

not affected. The parameters of the field winding connected in

series (Rf and L ) are, however, crucial in ueTsermining the perfor

mance. These values, if they do not correspond to the values of

a series motor and instead correspond to a shunt motor, will give

results which will have no practical significance.

Motor f'atas

voltage of d.c. supply, V = 220 V (l pu)

full load current, Ifl = 12.8 A (1 pu)

raced speed = 1W50 rpm (1 pu)

armature resistance, R = 2,1 ohm

armature inductance, L = 0.06 H

fijld resistance, R- - 0.5 ohm

field inductance, Lf = 0.0387 H

motor torque or back emf constant

for separately excited motor, K or Kffi = 1.27
2

moment of intertia, J. = 0.05 Kg m

damping coefficient, B« = 0.005 Nm/rad/s
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Mechanical system datas

toisional stiffness of jhaft, C = 6750 Nm/rad
2

moment of inertia of load, J2 = 0.05 Kg m
damping coefficient for load, B2 = 0.005 Nm/rad/s

constant component of load torque, TLo = 0.75 Pu

pulsating component of load torque, TL<|= 0.25 pu

phase difference of pulsating component of load torque, 0=0

frequency of load torque pulsation, o^ = average steady state
motor speed rad/s

Magnetisation characteristics*

For the analysis of series motor drive, the magnetisation

characteristics is non-linear. This characteristic is linearised

[Fig.7.3] and expressed as below*

K (i) = 0.1885 i , 0 < i < 3=5

K (i) = 0.0933 i + 0.331*- , 3.5 < i < 8.0

K (i) = O.O3W3 i + 0.806 , 8.0 < i < iW.O

K (i) = 1.2862 , i > 1^.0
e

Chopper data?

chopper frequency = 200 Hz

chopper duty factor =0.6

7.5.1 Transient State Performance

(a) Transient Performance of D.C. Series Motor Drive With
Constant Voltage Supply

For the case under study, the variations in armature

current, motor speed and twist in the shaft in transient conditio^.

for a constant load torque are plotted as shown in Figs.7.W-7*6,



168

MOTOR WITH SERIES EXCITATION

MOTOR WITH SEPARATE EXCITATION

0.7

FIG-7.4_ SWITCHING-IN TRANSIENT ARMATURE CURRENT

OF D-C-MOTOR FED BY CONSTANT D-C VOLTAGE
WITH CONSTANT LOAD TORQUE

Q-

- MOTOR WITH bERIES EXCITATION

- MOTOR WITH SEPARATE EXCITATION

0-3

TIME ( s )

0-6 C5 06 0-7

FIG.7. 5_SWITCHING-IN TRAN SIENT S P E E D RESPONSE OF
D-C- MOTOR FED BY CONSTANT D-C. VOLTAGE
WITH CONSTANT LOAD TORQUE



1-4

FIG.7. 6 _ VARIATION OF TWIST IN TRANSIENT CONDITION FOR D C MOTOR FED
BY CONSTANT D-C. VOLTAGE WITH CONSTANT LOAD TORQUE

en



-170-

It is observed that the armature current in transient

condition initially rises and attains a peak value, and thereafter

decays till it attains a constant value as the steady state is

reached [Fig.7.W]. The acceleration characteristic of the series

motor is plotted as shown in Fig.7. 5. The variation of twist in

the shaft in transient condition is shown in Fig.7.6. The resul

tant twist in the shaft comprises of two components. The first

component increases till it reaches a peak value and then decreases

gradually till it becomes constant as steady state is reached. The

second component varies sinusoidally at a frequency equal to the

damped natural frequency of torsional oscillations of the system.

This component is present only in transient condition and decays

with time. Thus in steady state only the first component is

present. It is observed that in the transient condition, the twist

attains a peak value at the same instant at which the armature

current attains its peak value.

(b) Transient Performance of D.C. Series Motor Drive With
Chopper Controlled Supply

For the example considered, the transient responses of

armature current and speed for chopper fed d.c. series motor with

constant load torque are shown in Figs.7.7-7.9.

It is observed that the armature current, in transient

condition, rises in duty interval and decays in freewheeling

interval of a chopper cycle [Fig.7.7]. These variations are expo

nential in nature but appear to be linear due to small values of

duty and freewheeling intervals of the chopper. The magnitude

of variation of current in successive chopper cycles goes on
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changing till steady state is reached when the current varies

between a fixed maximum and minimum limits. The envelope of

variation of maximum and minimum values of current in a chopper

cycle is shown in Fig.7.8(a). The mid-point of the envelope

indicates the average current in a chopper cycle. The nature of

variation of current, averaged over a chopper cycle, is identical

to that of variation with constant voltage input [Figs.7.W and

7.8(a)]. As expected, the magnitude of current with chopper

input is lower due to the reason that average voltage input with

chopper is lower compared to that with constant voltage input.

The transient response of motor speed is also plotted as shown in

Fig.7.9« The values of speed with chopper input are lower com

pared to the case of constant voltage input [Figs.7.5 and 7.9].

7.5.2 Steady State Performance

(a) Steady State Performance of D.C. Series Motor Drive
With Constant Voltage Supply

For the case under study, the steady state variations of

armature current and motor speed of d.c. series motor with a

pulsating load torque are shown in Figs.7.11 and 7.12 respec- ;.

tively. It is observed that if the load torque is pulsating in

nature [Fig.7.10], the armature current and speed also pulsate

at a frequency equal to the frequency of load torque pulsations

[Pigs.7.11 ,7.1 2]. The amplitude of these pulsations depends

upon the amplitude of pulsating component of load torque T,<| , and

other electrical and mechanical parameters of the system.
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(b) Steady State Performance of D.C. Series Motor Drive
With Chopper Controlled Supply

The variation of steady state armature current of d.c.

series motor with a constant load torque over a chopper cycle is

shown in Fig.7.13- It is observed that the current rises in duty

interval and decays in freewheeling interval of a chopper cycle.

These variations are exponential but appear to be linear due to

high vElue of frequency of chopper operation. The armature current

in a chopper cycle varies between a fixed range of maximum and

minimum values.

With a pulsating load torque, the armature current rises

in duty interval and decays in freewheeling interval as for the

case of constant load torque. As the load torque varies with time,

the range of variation of current in successive chopper cycles also

varies and the whole pattern repeats after an interval of time when

the load torque completes its one cycle of pulsation (as discussed

in section ^.11, Figs.1*.7,*+. 10). The armature current and speed

averaged over a chopper cycle also pulsate at a frequency equal to

the frequency of load torque pulsations. The nature of these

variations is similar to those for motor with constant voltage

input shown in Figs.7.11 ,7.1 2, however, the quantitative values

are different.

7.6 COMPARISON OF PERFORMANCE OF A D.C. MOTOR DRIVE WITH
SERIES AND SEPARATE EXCITATIONS

The performance of a d.c. motor with series excitation is

discussed in section 7*5* For the sake of comparison,in order to

identify any differences in behaviour, the performance of the
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same drive but with separate excitation is also determined. The

performance of the drive fc the following two cases is compared

as belows

Case As D.C. motor with series excitation

Case B* D.C. motor with separate excitation.

7.6.1 Transient State Performance

(a? Performance With Constant Voltage Supply

The variation of armature current, motor speed and twist

in the shaft of a d.c. motor for the above two cases is shown in

Figs.7.H-7.6. The nature of these variations for the two cases

are similar. It is observed that the peak value of current for

case A is lower than that for case B. It is due to a higher value

of inductance of armature circuit in case A. The motor in case A

attains a peak current of 5.125 pu in O.O83 s while these values

for case B are 6.367 pu in 0.062 s. Thus the transient response

of motor in case A is sluggish as compared to the case B. The

motor in case A attains 95 '/ of rated speed in 0.^+99 s compared

to O.315 s for case B. The magnitude of peak value of twist in

transient condition for case A is observed to be lower than that

for case B. The peak value of twist for motor in case A is

8.12 x 10~^ rad. compared to 9.90 x 10*"^ rad. for motor in case B.

'(b) Performance With Chopper Controlled Supply

With a chopper input, the variation of armature current in

transient condition for cases A and Bis shown in Fig. 7.7. It is

observed that the nature of this variation for the two cases is

similar, however, the numerical values are different. The
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armature current, averaged over a chopper cycle, for the two cases

is shown in Figs.7.8(a),(b), The value of peak current averaged

over a chopper cycle and the time at which this value is attained

are 3.168 pu and O.O83 s for case A and 3.902 pu and 0.062 s for

case B. This is also due to a higher value of inductance in arma

ture circuit in case A. The acceleration characteristic of the

motor for the two cases is shown in Fig.7.9. In this case also,

similar to the case of drive with constant voltage input [Fig.7.5],

the response of motor for case A is sluggish compared to that for

case B.

7.6.2 Steady State Performance

(a) Performance With Constant Voltage Supply

The steady state variations in armature current and speed

of the d.c. motor with pulsating load torque for the two cases is

shown in Figs.7.11 and 7.12. It is observed that the nature of

these variations for the two cases is similar. The amplitude of

pulsations of current for case A is lower compared to that for

case B, while no appreciable change in pulsations of speed is

noticed for the two cases. The amplitude of pulsations in current

for oases A and B are 0.0021 pu and 0.00U-1 pu respectively, while

the pulsations in speed for these cases are O.OO33 pu and 0.0031 pu

respectively.

With a constant load torque, the steady state values of

twist for cases A and B are 2.18 x 10"^ rad. and 2.17 X 10"^ rad.

respectively. This shows that there is no appreciable change in

the values of twist for the two cases.
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(b) Performance With Chopper Controlled Supply

The steady state variations of armature current for d.c.

motor with chopper controlled supply and constant load torque for

the two cases is shown in Fig.7.13. The nature of variation of

current for the two cases is observed to be similar. The range

of variation of current for case A is smaller compared to that for

case B. This is as expected due to a higher value of inductance

in armature circuit for case A. The range of variation of current

is between 1.0*4-5 and 0.837 pu for Case A and between 1.078 and

0.735 pu for case B.

With a pulsating load torque, the armature current and

speed averaged over a chopper cycle for case B also pulsate similar

to that in case A. The uniform component of current and speed for

case A are 0.9*+8 and 0.5*4-1 pu respectively, while for case B,

these values are 0.906 and 0.558 pu respectively.

7*7 CONCLUSIONS

The analysis of a d.c. series motor drive with elastic

coupling and fed by a constant d. c. voltage as well as chopper

controlled supply is presented for constant and pulsating load

torque conditions. The performance of the drive in transient as

well an steady state conditions is determined. The performance

of the same motor but with separate excitation is also determined.

A comparison of the performance of the motor for the two modes of

excitations is given. It is observed that, in general, the per

formance of a d.c. motor with series excitation is qualitatively

similar in nature to that of the motor with separate excitation.

Some differences in the quantitative aspect of the performance



-180-

characteristics are, however, clearly noticeable.

On the basis of the results of the analysis presented,

the following conclusions are drawns

(a) The instantaneous values of twist in transient condition

are lower for motor with series excitation compared to that

for motor with separate excitation [Fig.7.6]. The twist in

transient condition attains a peak value at the same ins-

cant when the current reaches its peak. However, no appre

ciable change in the values of twist in steady state is

noted for the motor with two cases of excitation.

(b) For a periodically varying load torque, the armature current

and motor speed in steady state pulsate at a frequency equal

to the frequency of load torque pulsations. The amplitude

of pulsation of current for motor with series excitation

is lower compared to that of motor with separate excitation

[Fig.7.11]. The amplitude of pulsation of speed for the

two cases are not much different [Fig.7.12]. The effect

of pulsation of load torque on transient performance is

not significant.

(c) The instantaneous values of current, in transient condition,

for a chopper fed d.c. motor with series excitation are

lower compared to those with separate excitation [Figs.7.7,

7.8]. Under steady state also, the range of variation of

current for motor with series excitation is lower than

that for motor with separate excitation [Fig.7.13].

(d) The transient performance of a d.c. motor with series

excitation is sluggish compared to that of motor with

separate excitation.



CHAPTER-8

CONCLUSIONS

This thesis presents the analysis of d.c. drives-fed by

d.c. chopper supply as well as constant d.c. supply-with elastic

mechanical link connecting the motor to the load having periodic

variations in load torque. The interaction of mechanical factors,

chopper supply and drive parameters, and the design factors are

investigated. The importance of including mechanical factors in

the analysis has been brought out. Based on the results of the

investigations, the following conclusions are drawn*

8.1 CONCLUSIONS

The analysis of d.c. drive electro-mechanical system

presented in Chapter-2 can be used to determine the effects of

mechanical factors, viz., elasticity of shaft and periodic varia

tion of load torque, on the performance of d.c. motor drives fed

by a constant d.c. supply. The analysis reveals that if the load

torque is pulsating in nature, the armature current and motor

speed also pulsate at a frequency equal to the frequency of load

torque pulsations. A decrease in the amplitude of pulsating

component of load torque and an increase in its frequency, reduce

the pulsations in current and speed. These pulsations are mini

mum when frequency of load torque pulsations is equal to l/*/2

times the natural frequency of torsional oscillations of system.

The pulsations attain large values as system goes under resonance



-182-

when the frequency of load torque pulsations is equal to natural

frequency of torsional oscillations of system. The pulsations of

current and speed can in general be reduced by increasing the

moment of inertia of the system. Under condition of resonance,

these pulsations can be reduced by increasing the damping of the

system. However, this increases the average value of current and

decreases the average value of speed. For proper design of the

system, it is therefore suggested that the load torque should be

analysed and it must be ensured that natural frequency of oscil

lation of system is not equal to the frequency of any of the

harmonic components of load torque. Further, in order to minimise

the pulsations in current and speed, the values of torsional

stiffness of shaft and the moment of inertia of the system should

be so chosen that the natural frequency of oscillation of the

system is 72 times the frequency of load torque pulsations. Such

a value of moment of inertia may not be the best from the point

of view of the transient response of the system.

The methods available for analysis of chopper controlled

d.c. drives are cumbersome, less accurate, need large computation

time and do not provide closed-form solutions for system perfor

mance variables. To overcome the limitations of existing methods,

a new technique for analyses of such drives is presented in

Chapter-3. The proposed technique is simple and can be used to

obtain closed-form solutions for system performance variables.

The transient performance at any point in time can be obtained

without starting the solutions from the instant of switching.

The steady state performance can also be directly obtained and the
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solutions do not have to be started from knovn initial conditions

and continued till steady rtate conditions are reached. These

features make the technique presented more efficient as the compu

tational efforts are greatly reduced. Moreover, the technique is

more accurate as motor speed over a chopper cycle need not be

assumed constant.

The analysis presented in Chapter-*4-, is useful for deter

mining the performance of chopper controlled d.c. drives with

elastic coupling and pulsating load torque and to investigate as

to how the performance is affected by these mechanical factors.

Study of a typical performance as obtained by this analysis,

reveals that the steady state armature current and motor speed

contain alternating components superposed on a non-varying compo

nent. These components are of frequencies which are equal to the

chopper frequency, the frequency of load torque pulsations and the

natural frequencies of oscillations of system. It is observed that

such systems experience resonance when the frequency of any of

the components of load torque, or that of the chopper, or both

approach the natural frequency of torsional oscillations of the

system. Under such a condition, current and speed attain large

peak values and the twist in the shaft may be so high that mecha

nical failure of shaft may occur due to excessive shear stress.

It is suggested that the system should be designed in such a way

that any alignment between the value of frequency of torsional

oscillations of system and the spectrum of frequencies of chopper

and load torque pulsations be avoided in order to avoid resonance.

This can be achieved by suitably modifying the value of frequency
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of torsional oscillations of system which depends upon the values

of elasticity of shaft and moment of inertia of system.

Pulse-width modulation control is commonly employed in

closed-loop regulating schemes for obtaining a desired control of

speed of the drives. An analysis is presented in Chapter-5, and

the influence of elasticity of shaft and periodic variations of

load torque on performance of closed-loop d.c. motor drives fed

by a PWM power supply is investigated. The analysis is used to

determine the values of system parameters in order to obtain

stable operation of system with minimum settling time. Study of

performance of a typical system, based on this analysis, reveals

that for a given value of elasticity of shaft, an increase in the

value of amplifier gain upto a certain critical value decreases

the settling time. An increase in gain beyond this value increa

ses the settling time. The value of amplifier gain which gives

minimum settling time is shown to be affected by value of elasti

city of shaft. For a periodic variation in load torque, similar

to the case of open loop drives, the current and speed also pul

sate at a frequency equal to the frequency of load torque pulsa

tions. A high value of amplifier gain, decreases the pulsations

in speed and current as also the steady state error in speed. It

is observed that using a closed-loop system, the speed regulation

improves but this is achieved only at the cost of larger pulsa

tions in current. The system with a closed-loop drive, similar

to that for open-loop drives, experiences resonance when the

frequency of pulsations of load torque matches the natural fre

quency of oscillations of system. In this case also, resonance
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can be avoided by a proper selection of values of elasticity of

shaft and moment of inertia of the system.

In the analysis presented in Chapters 2,*4- and 5* the

frequency of load torque pulsations is assumed equal to average

value of steady state speed (neglecting pulsating component of

speed). The frequency of load torque pulsations in certain types

of driven mechanisms, is a function of shaft speed. To take this

factor into account, a non-linear analysis of d.c. drives with

elastic coupling and taking the frequency of load torque pulsa

tions equal to instantaneous value of shaft speed, is presented

(Chapter-6). The results of this analysis show that the assump

tion of frequency of load torque pulsations equal to the average

value of steady state speed is valid as the error caused due to

this assumption is negligibly small.

The effects of elasticity of coupling and periodic.varia

tions of load torque on the performance of d.c. series motor drives,

fed by a chopper as well as a constant d.c. voltage supply, are

investigated in the analysis presented in Chapter-7. The perfor

mance of a similar drive but using a separately excited motor is

also determined and compared with that of a series motor drive

in order to study any differences in behaviour of drives using

the two types of motors. It is observed that, in general, the

performance of a d.c. motor with series excitation is qualita

tively similar in nature to that of the motor with separate exci

tation. However, some differences in quantitative aspects of the

performance have been noticed.
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It is expected that the above work will be useful for a

better design and more precise evaluation of performance of d.c.

drives and will open certain new areas of researth in the field

of electric drives.

8.2 SUGGESTIONS FOR FURTHER WORK

The work presented covers various aspects of analysis of

d.c. motor drives taking into account the effects of mechanical

factors associated with drives. However, there are still some

problems on which further work is suggested.

(i) Backlash is an important mechanical factor caused by loose

tolerances in gear meshes, chain drives and couplings [10]

The effect of backlash may be to disconnect a major part

of the inertia from the drive system resulting in large

variations in developed torque and current. It Is,

therefore, important that a detailed study of effects of

backlash on the performance of chopper controlled d.c.

drives be made and necessary changes in design to improve

the performance in presence of this mechanical feature be

suggested,

(ii) Phase controlled d.c. drives are also commonly used in a

number of industrial applications. It may be interesting

to investigate the effects of mechanical factors on the

performance of phase controlled d.c. motor drives,

(iii) In certain cases, though rather rarely, the chopper may

operate in discontinuous mode of conduction. The techni

que of analysis of Chapter-3, when extended to such cases
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becomes involved loosing its main advantages. A corres

ponding method of analysis for the case of discontinuous

conduction, if developed, will be useful.



APPENDICES

APPENDIX S A-1

EXPRESSIONS OF SYMBOLS?

Expressions of different symbols used in the analysis of a
separately excited d.c. motor drive with elastic coupling and
pulsating load torque, discussed in Chapter-2, are as below:

«rW2(s) =a1 s2 +a2 s , fi^(s) =a3 s
Cf52(s) =h1 s3 ♦ b2 s2^ b3 s
055(s) • s^ +b^ s3 +b^ s2 +b6 s
where

&1 =C/J1 , a2 =C/J1 Ta , a3 =CKm/L J*

h =Ke/J1 »b2 =B2 Ke/J1 J2 >*3 =Ke °/J1 ^
\ • B1 /J1 *B2/j2
b5 =C/J1 +C/J2 +B1 B2/l1 J2
b6 = C(B1 + B2)/Jy J2

C1 =ay a2(a2 ♦ P3)
2 2iC2 =- at<o2 - a1){(a3 - a,) + P3J
2 2">C^ =- a2(a1 - a2){(a3 - a2) ♦ P3)

C^ = co1 cos 0 + a1 sin 0

C^ =oo1 cos 0 + a2 sin 0
C6 =(a2 - a,) (a? +m2)Ka3 - a*)2 +p2}
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= C«1 - a2)(a2 ♦ (02){(a3 - a2)2 +l?2}C7 =

P, = a2 - a, a3

P = a2 co-, cos 0 + a1 o31 sin 0

P. = a1 p? sin 0 + (a2 - a* o^Xo^ cos 0 + a3 sin 0)

b1 (a3 - P3) - h2 a3 + b3

SlAco* cos 0 ♦ a3 sin 0)

a, (oy cos 0

b6 - „3<«! -1\ - \. o3 ♦ V" ^ " 2"a'

a2 w1 sin 0 - a1 va* cos 0

a-, §Amy cos 0 +a3 sin 0) - £3 sin 0(a2 - a1 03)

b2 p3 - 2a3 §3 ^ , Q5 =- a3 £3 sin 0

a_ (0-1 sin 0

p3(a^ - P2 - \ a3 +b^) - a3 ^(\ - 2a3)
' 2,32{a3(a1 +a2 - 2c^) - (a, - a3)(a2 - 0:3) *p|)
=- *f a3 rofCc^ a2 - cof) - 2toftc^ *a2)(a3 +P3 - co-,)

*4- a^ ^{(a-, - a3)(a2 - 03) - P3}

$2(a* +a2 - 2a3)(a2 " P3 +©f>
2p3[a3{(a1 - a3)(a2 - CI3) - pf] +P^ +a2 - 203)]

p5 =

P7 =

H, =

- 2

N. =

N, • 2o>1 (a? +P3 " co2) (a-, a2 - to2) - *+ cof 03(0, ♦ a2)
P3{(ai - a3)(a2 - 03) - r^Ka2 - P3 +»?)

- *4- ao ^(a., + a2 - 2 a3)

N, = - 2
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= a2/C1 , K2 = (a2 - a1 a.,)/C2 , K3 = (&2 - a1 a£/V^

= (P., M1 - Q1 H,)/(M2 + N2)

= (P1 N, ♦ Q1 M1)/(M2 + N2)
• 2(K2r+K2.)^2 >K6= (&2_ ^ ai)Cl+/C6

• (a„ - a, aJC^/Cr

= (b
1 u2 "2 "2

(\ ^ - Qi+ VAMf + Np

^ ^ + %. ^^/(M2 + N2)

'2 "1 a2)C5/°7
(P2 M2 - Q2 N2)/(M2 + N2)

(P2 N2 + Q2 M2)/(M2 + N2)

(P3 M3 - Q3 N3)/(M2 * N2)

(P3 N3 + q3 M3)/(M3 + N3>

2(K82r +K82i)l/2

2(K92r +K92i)l/2 ' K12 =VC1
(by a* - b2 a^ + b-)/C,>

- b^ a0 + tO/C
3" 3

2 ^ w2,
K

K

I5r

151

K
16

K
18

K
20 r

K
20i

K
21

K
22

= 2(K + Kf*,)

= a. V

1/2
15r *l5l' ' K17 ~ a3/C1

a3/C2 ' K19 = a3/C3
a M1/(M2 + N2)

a ^/(M2 + N2)

2<4>r +KLi)1/2
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aT C^/Crn

(P? M3 - Q^ N3)AM2 + N2)
(P? N3 + Q^ M3)AM2 + N2)
(P6 M2 - Q6 N2)/(M2 + N2)

(P6N2+ Q6M2)/(M2+ N2)

2(K2*.r +K2^i)l/2:2i

•2"2(K25r +K25i)l/2
- h$/0y

= (b^ - b^ a1 + b^ a-, - ap/C,

= (b^ - b,- a2 + b^ a2 - a2)/C-

= {?„ M, - 0^ N1)/(M2 + N2)

= (P? H, ♦ Qy M1)AM2 + N2)
2(4 + K2 >l/2

lr + K3H}
tan" ' (V/K*,i)
tan" CK9r/K9i)
tan" (K1 5rA1 5±)
tan" (K20rA20i)

tan" (K2*4-r/K2*fi)

tan" (K31rA31i)

tan" ^^r^^

tan" ("K25r/K25i)
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APPENDIX * A-2

A-2.1 PROOF OF THEOREM:

The proof of theorem used for determining the Laplace

inverse transform of functions containing terms

{l-exp(-s t0)}/{l-exp(-s T)] in Chapter-3 is as below*

y 1-exp(-stQ)
£ [Cf(s)^1-exp(-sT) ^
=oC"1 0(s)[{l-exp(-sto)}{l+ exp(-sT) + exp(-2sT) + ....}]

=<L~1 0(s)[{1+ exp(-sT)+ exp(-2sT) + }

- [exp(-st0) + exp(-s t^+T) + exp(-s t^+~2T)}]

= [0(t)U(T) + 0(t-T)U(t-T) + ....]

- [0(t-to)U(t-tQ) ♦ 0(t-tQ-T)U(t-to-T) + ]

(i) For Duty Interval

, . 1-exp(-st )
cC Ws){1-exp(-sT° n
= [0(t) + 0(t-T) + + 0(t-nTT T)]

- [0(t-tQ) + 0(t-tQ-T) + + 0(t-to-n^2 T)]

= E 0't-r^T T) - S 0(t-t -T^T T) (A. 2.1)
r=1 r=1 °

(ii) For Freewheeling interval

£*WsH]le^(l%y 13 =Wt) *0(t-T) +....+ 0(t-n^T T)]
- [0(t-tQ) + 0(t-tQ-T) + + 0(t-to-n::T T)]

= S [0(t-r^T T) - 0(t-t -?T T)] (A. 2.2)
r=1
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A-2. 2 EXPRESSION FOR ARMATURE CURRENT?

The expression for armature current of a chopper control

led d.c. motor, in duty and freewheeling intervals is obtained as:

From eqn.(3»9):

rir „ 1-exp(-st ) K TT -i

^ ]_ JL ls (s+a1) (s+a2);

Ll s (s+a-,) (s+a2) Jl1-exp(-sT) *J

where

EL, = l/a<,a2 , K2 = -1/cc, (ctg-a^)

K~ = l/a2(a2- a-j ) , K^_ = ^^mo-yO-2

K5= (Tmccr1)/Tma1(a2-a1) »K6 = (1 " Tma2)/ Tma2(a2 "a1}

(i) Duty Interval*

From eqns. (A. 2.1) and (A. 2.3),

id (t) = JfiTi{Ky + iv2 expCc^ t) + K3 exp(.a2t)}
n

+g^f 2{\+ K^ exp{(t-r^T DC-a,)}* ^6 exp{(t-FT T)(-a2)}}
3. I*— I

- ^ {K^+K. exp{(t-to-FT T)(-ai)}+K6 exp{ (t-tQ-r^l" T)(-a2)}}J
r=1

K T

=-fL"il{K1+ K2 exp(-ait)+ K3 exp(-a2t)}
f- exp(nTai)-1 exp(nTaJ-1

+rVLV*? eXp('ai t){exp(Tai)- 1}+K6 exp(-a2t){eXp(Ta^_ f] •
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exp(n=T Ta.)-1 fexp(r£T IgJ-1"!-K5 exp(-t-t0 ay){exv(T^) . * }-K6 exp(- ^ajl^^ , ( JJ

(ii) Freewheeling Intervals

From eqns. (A. 2. 2) and (A. 2.3) ,

1 (t) =-5Pr^K1* K2 exPUa1 t} + K3 exP(~a2t)}
n

+JL-T S{K^+ K- exp{(t-~ DC-a^,)} +Kfi exp{(t-r^T T)(-a2)}}
Ta '-r=1

- S l\+X* exp{(t-t0-r^T T)(-ai)}+I% exp{ (t-t0-r^T T)(-a2)}}j
r=1r

K

= -Jx—lK^ K2 exp(-ai t)+ K3 exp(-a2 t)}
T exp(nTa1)-1^jj^exp(-a1t){S5Tj-JTrr}{l-exp(a1 tQ)}

*

exp(nTap)-1 -
+ K6 exp(-a2t){ (Ta^.1i{l-exp(a2 tQ)}_

A-2. 3 EXPRESSION FOR MOTOR SPEED

The expression for motor speed of a chopper controlled

d.c. motor, in duty and freewheeling intervals is obtained as*

From eqn, (3*9)*

f-u i rvs» f1"eXP("sto\ tl, 1 nT
e(t) =i ^T74^Ts7a7L^^{i"^pT^ ^(s+ VJ*

=o^ L~{ s+ ri^7T+ t^p jLU +riTa7T
K-i 1-exp(-st ) -i

+..._—Jl-4| ^ -°-] (A.2.*4-)(s-t-a2)n1-exp(-sT) U
where, K„= l/^a^a^ * Kg= (tr^ag-l) Arac^ (d2-a^),

Kq= (1 -raa2) /Taa2(d2-a1)
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(i) Duty Intervals

From eqns. (A. 2.1) and (A. 2.*4-),

T
Qd (t) = - y1^ ♦ Kg exp(_ttl t) + K9 exp(-a2t)}

n

£ [Ky + K2 exp{(t-r^T T)(-ai)}+K exp{(t-r^T T)(-a2)}}
*-r=1

JL
^r=

-nE {K1+K2 exp{(t-tQ-r-1 T)(-ai)}+K3 exp{ (t-tQ-r-1 T)(-a2)}}J
r=1

T
= - y1{K7+ Kg exp(-ai t) +^ exp(-a2 t)}

VK r exp(nTai)-1 exp(nTa2)-1
*Jlf LK1+K2 eXp("a1 t){exp(Tai)-1^ K3 eXp("a2 tyl*Ep(Ta2T- V

exp(nTT Tai)-1 fexp(HIT Tq^-1^
- K2 exp(-t-t0a1){eXp(Tai) . 1 }-K3 expt-t-t^ UeXp<Ta2> - 1 tl

(ii) Freewheeling Interval*

From eqns. (A. 2. 2) and (A. 2.*0 ,

T9 (t) - - j^{K7 + Kg exp(-j1 t) + K9 exP(..a2 t)}
n

+-^r s {K1+K2 exp{(t_r3T T)(-ai)}+K3 exp{(t-r3T T)(-a2)}}

- Z{K +K exp{(t-t0-rTT T)(_ai)}+K exp{ (t-tQ-~l" T)(-a2)}}J
r=1r

T
~'K7 + Kg exp(-ai t) + K9 exp(-a2 t)}

VK p exp(nTai)-1
JirLK2 eXp("a1 ^UxpCT^)- lHl-exp(ai tQ)}

exp(nTap)-1 "1+ K3 exp(-a2 t){exp(T f_ 1}{l-exp(a2 tQ)}J



-196-

APPENDIX ! A-3

A-3.1 EXPRESSIONS OF SYMBOLS

Expressions of different symbols used in the analysis of a

chopper fed d.c. motor drive with elastic coupling and pulsating

load torque, discussed in Chapter-*4-, are as below:

fMU> !S*1«*,*2 ;• f51(s> =blS2+b2s - b3
f^Cs) =s3 +a3s2 +a^s +^
f53(s) = b3 , f^Cs) =-a6s

f55(a) = sh +b^s3 ♦ b5s2+ b6s

where

a, = C/J1 , a2 - C/J^ , a3 = l/T& ♦ H,/J,

ah =VJ1Ta+ KeKmAJ1+ C/J1 »&5 =°/TaJ1 ' *6 =CVt*l
b, = I.*, , b2 = KeB2/J^2 , b3 = CKe/Jr 2

b^ = B1/J1 ♦ B2/J2 , b5 • CAy ♦ C/J2 ♦ B^^Jg

b6 =C(B1*B2)/J1J2 , d1 =a2 ♦ P2 , d2 =a2 +P2
M, =l+a^^a^) - 2S32{(a2-a1)2 +p| - pfl
M2 =*4-a2P^(a1-a2) - 2p|(a1-a2)2 +pf - p|}
M3 =^pfKa^)2 +p2 - pf] - *4-p12(a2-pfWl2)(a2-a1)
\ =S>^(ai"a2)2 +^ ' $ " ^(«Ht^i2)Cai-aa)
M^ =-*4-w2a1(d2-c^2) - *4-cu2a2(d1-a31)
M6 =-*4-p2[(a2-a1)(a2-p2) - a1{(a2-a1)2 +P2 - pf} 3
M? =-*fp2[(ai-a2)(a2-p2) - a2{(ai-a2)2 ♦ p? - p2} 3
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Mg =S^(a2-a1)(cW?+a?^2)-ai[(a2"ai) +h'^
- 2p2[S2+a2-l32){ (a2-a, >**p|-P?}+S P?<«ST«1 )]

^ =*Va2p|[(a1-a2)(co2+a2-^)-a2{(a1-a2)2^l2-^ll
- 2^[S2.a2-p2){(a1-a2)2-h2"?2^l+a2^(a1-a2)]

10 =-2cD2C(d1- c»2)(d2- a>2) - ^a.2 a,a23
a w n2 + B2 _ .2] + 1+ B3(ap- «t)a^Ua^-c^ J + P2 Pi5 •1 2 I

^ =-2f2(a2-p22- ^Ka,^)2*',2-*!?- 8a2pl(a,-a2)
N5 =8(^aia2- 2(01(d1-(»l2)(d2-w1)
N6 =8a1?,3(a2-al)-[2P1(a2-p2H(a2-a,)2- ?|- pf} ]

-8a2P2(a,-a2)-[2?2(a|-p22'm-2>2+Pl2-P2]3
. 2a, »,[<■?♦ a2-pf)Ua2-a,)2^i-P,2}+S pfC^-a,)]

P2CS2- a2- P|>m-a2>2+*f"|^«^l(o1-a2n
♦ ^2[(a,-a2)(»2+ a2-?2,)" «2t<«,-2>2+ "l" °l ]

M

lly = 2

Nr

N,
8

N9 2a2

N10 =^[a1(d2-co12) +*2i*i -•?>]
pj - a6 , P2 - a6 , P? =a6(Ml cos 0*a, sin 0)
P* =a,(cD1 cos 0♦ a2 sin 0) , P? =a6 ^ cos 0



-198-

,7 =p6 = a2 - a, a, , Pi • a2 " a1 a2

(a2-a,a1)(co1 cos 0+a, sin 0) +a, pf
>9 =(a2.aia2)S cos0-a2sin0) +a1E22sin0
pj° =&1co2 sin 0 ♦ a2m, cos 0

b6- b5ttl +v°?- p?)_a?+ 3aiPi2
- b6- b5a2+ Va2" ^2)"4+ 3a2^2

2 2\= b, - b2a1 + b1(a1 - P,)

,8 _ 2 sin 0

,1 =
2

,2 _

2 D2-
P2 =b3 " b2a2 +Va2 " ^2)

=?%* cos 0+a, sin 0) * Q^ P1 sin 0
3VUM

| =P^ cos 0*a2 sin 0) ♦ Q? P2 sin 0
2

,10

\

Q

Qi

=^ cos 0(a5 - a3^2) ♦ co2 sin 0(a^ - .,)

=a5- a^ - a3(a2- ,92) *3a, P? - a?
• a5 - a^a2 ♦ a^a2 - &+l*#\ ' 4

• *3 ' ^ =b3
= 0 , Q2 = 0

=.agP, sin 0 , Q^ =-a6P2 sin 0
i6 my sin 0, ^ =a1 p1 , Q? =a1 p2

=ft^fo, cos AT ♦ 8l sin 0) - p1 sin 0(a2 - &1 ^)
5

Q

a
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Q

Q

Q

Q

9 = 0 + an cin 0) - §P sin 'tta/g -= a1 $2(a>y cos 0 + a2

a1 co2 cos 0 - a2 co1 sin 0

3 a2 Pt - P? - 2 a, P1 ^ + b5 P1

a?Po- 4" 2*2*2^ +t>5 *2

1

10

1

1

2

2
= 3

<£ *-d2 Pi - 2 *i a1 Pi

7 -
Q b2 p2 - 2 b1 a2 P2

^Ca, cos 0+a, sin 0) - P63 P1 sin 0
| =<£(«, cos 0*a2 sin 0) - P? P2 sin 0
32

Q

,10 _

,6 _
Ql

.6

02 cos 0(a^ - co2) - ^ sin 0(a? - ^ «2)

3a2 P1 " P? - 2 a3 a-, Pt +a^ p1

3 a2 P2 - R3 - 2 a3 a2 p2 + a^ p2

7 = o= o , %

m
= 2

(pm)2+ [g)
(Mp)2+ (Np)

2 1/2

~pP Mp - N.

j?P = - tan-1

m

m P

-(y2 +(V
where for different m's, values of p vary as-

m = 1 *, P = 1,2,... ,10

m = 2 -, p = 1,2,6,7,8,9,10

al a2)

^



m = 3*, P = 6,7

m = *+; p = 6,7
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1/2
K

K2A72-K2/K7=</K? =[d2]l/2

4 - %My d, , K2 =V*1 d2 ' K5 =̂ ^ ^

5̂
={^ d, d2 - 2a2(a3 d, +a2 d^Ad, ^)

K^ =a2 cos 0/cn-, d-, dg , k| =b3/d1 d2
7= [bjjd, d2- 2b3(a3 d, * a2d2)}/(d1 d2)

4 =a5/dl d2 , k| *^•*, d2 - 2a5(d1 a3 - d, a^}/^ d,)
K° - a. cos 0/co1 ay <*2 , ^ =^/d, d2

K

K2 =.2 ^(^ a3 +d2 a2)Ad1 d2)

01 =-tan'^/a,) , 02 ="*•*" (h/a2)

«4 - 4> - (< " *?> =(< " *?> =̂1
(02 - 07?) =<< " *?) =<< - «/?) • <*2
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A-3.2 EXPRESSION FOR ARMATURE CURRENT

The expression for armature current of a chopper fed d.c.

motor with elastic coupling and pulsating load torque is obtained

as below:

From eqn. (*4-. 11), i(t) is given as*

i(t) = i^t) + i2(t) + i3(t)

where

i2(t)

i3(t)

Tj. r1r ~fW$(g>
Vt; YL+* L As J

J2

"-fi+5(s)(to1 cos 0'- s sin 0)
A(s2+ co2)

J r"1 £55£s) l-exp(-st )"
As M-exp(-sT) *

A-3. 2.1 Solution for i, (t)*
1

(A. 3.1)

TT -1

x1(t) : "T^ cL sCs+a^j p^Cs+a^j p^Cs+a^-j P2)s+a2+j p2)

T -1
= -la I 4+k] exp(>ait) sin (p11-0^ )+K2 exp(-a2t) sin (p2t-02)

(A. 3. 2)

A-3. 2. 2 Solution for i2(t)

^ - % X1
a--(aj, cos 0 - s sin 0)

(s+a1-ipy(.s+al+Jpp (s*a2-jp2Xs+a2+ jp2Hs-;ja).1 Ks+jto.,)

LI K3exp(-a,t)sin(B1t-03)+KlI1"exp(-a2t) sin(p2t-0^)+K15 sin(m11-0^)~|
(A.3.3)
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A-3.2.3 Solution for i-.(t)

-V -if (s3 +\ sj +b5 s +b6) 1-exp(-st0)~
S^" Lri... s(s+a1-jP1)(s+a1^P1)(s+a-jp2)(s+a2+jp2) M-exp(-sT) *_

~ LcL
-1 K K. K3 K-

1 o P j J "J

^T+ (s+a1-3p1)+ (s+a1+3p1)+ (s+a2-3p2)+ (s+a2+3p2^
1-exp(-st)~

l1-exp(-sT) *

The value of L(t) for duty and freewheeling intervals can be

obtained from eqn. (A. 3.*0 using theorems given in eqns. (*4-. 1*4-) and

(*4-. 15) respectively as below;

(a) Solution of i-.(t) in duty intervals

Expression for i->(t) in duty interval of nth chopper

cycle,i3d (t) ,can be obtained from eqn. (A.3.*0 using eqn. (*4-. 1*4-) as:
n

^d(t) • 4d(t)
J n J n

where

3dn LLr=1

i'<d (t)
J n

(A.3.5)

and

+ K2 exp

+ K- exp

n-1

+ K2 exp

+ K^ exp

K1 + K2 exp{-(a1-JP1)(t-r-1 T]

-(a1+jpi)(t-FT T)}+K3 exp{-(a2_Op2)(t-r^T T)}

-(a2+jp2)(t-H"T)}] (A.3.6)

K1+K2 exp{-(a1-JP1)(t-to-r-1 T]

-(a1+JP1)(t-to-r^T T)}+K3exp{-(a2-DP2)(t"to'?ITT^
-(a2+0P2)(t-to-F:l" T)}J (A.3.7)
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(i) Solution for ±lA (t)*
3d

n

:2

From eqn. (A. 3.6), substituting K2 = K2p + j K2i and

K" = K0 - j K„ . ii, (t) can be written as*
c2r

*3*(t) =IJ n

k2i "3d
"n

wexp{(q1-j gtjng-1.
nK1 +(K2r+;5 K2i} exP^(«l"J P^^UxpK^-j P^TJ- 1j

exp{ (c^+J p^nT]-^
+(K2r-j K2.) exp{-(a1+j Pi HHexpi(a1+j p, >*j- 1i

exp{(a2-j P2)nT]-1
+(K3r+3 V *»C-(a2-J P2)tHexP[ (a^ P2>TJ- 1*

exp{ (a2+j p2)nT]-1 '̂
+(K3r"J K3i} exP^"(a2+;5 ^2)tHexp{(a2+J P2>T1" lJ
or

i ' (t) =l nKl +I^-[2K2r[exp{-a1(t-nT)]{exp(a1T) cos p1 (t-nT+T)

-cos p1 (t-nT)]+ exp(-ai t){cos p1 t- exp(ai fl cos p1 (t+T)]]

-2 K^CexpC-a! (t-nT)]{exp(ai T) sin p1 (t-nT+T) - sin p1 (t-nT)]

+exp(-ai t){sin p1 t - exptcc, T) sin p1 (t+T)]]

V

LD,
2 K. [exp{-a9(t-nT)] {exp(apT) cos p?(t-nT+T)- cos p2(t-nT)}

3r

+ exp(-a2 t){cos pgt - exp(a2 T) cos p2(t+T)}]

- 2K3i[exp{-a2(t-nT)] {exp(a2 T) sin p2(t-nT+T)- sin p2(t-nT)}
+ exp(-a2 t){sin pg t- exp(a2 t) sin p2(t+T)}]|

where D1 = 1 + exp(ai T){exp(ttl T) - 2 cos p1 T]

and D2 = 1 + exp(a2 T){exp(a2T) - 2 cos p2 T]
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Hence

1

i^d (t) =l nK2 +L-^jexpl-^ (t-n T)]{exp(ai T) sin(p1 (t-nT+T)-^)
- sin(p1(t-nT)- GT1)} + exp(-a1 t){sin(p1 t-012) - exp(a-, T)

sin(p1 (t+T)- Qf2)]J TT17,
exp{-a0(t-nT)]{exp(apT)

sin (pp(t-nT+T)- 02) - sin(p2(t-nT)- (/2)]+ exp(-a2 t){sin(p2t-CT2)

exp(a2T) sin(p2(t+ T) - 02)] (A. 3.8)

where K^ =\ , K12 = 2[(K2p)2 ♦ (K^)*]

K2 =2[(K3r)2 ? (K31)2]1/2

2-i1/2

(/12 = tan"1 CKgp/K^)

(/2 = tan"1 (K3r/K3i)

(ii) Solution for ll, (t)«

as;

i

From eqn.(A.3.7), the expression for i", (t) can be obtained
3 n

" (t) =^(n-DK^ (K +J K2i) exp{-(a1-0p1)(t-to)].

exp{(ai-j pi)(n-1)T}-1 f , • 0^expKal-jp^Tl-l-^ (K2r"^2i> exp{-(a, +0Pl) (t - tQ)] .
e3q,{(a1^3Pl)C'w1)T}-1

Uxpl(ai +j p,)TJ - 1 5 (St °K3i)o
exp{ (a2-jppKn-1)T]-1

exp{-(a2- jp2)(t-t0)]{exp^(a2_ jp2)Tj _1 i
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exp{ (gp+j Pp)(n-1)T]-1^
+(K3r-0 K3.) e3cp{-(a2+3P2)(t-t0)}{ expl (a^ P2^j - 1 U

or l*d (t) =I^-1>K1 +LD-f2 K2r[exp{-ai (t-nT)] exp{-ai (T-tQ)]
[exp(aiT) cos p1 (t-nT+2 T-tQ)- cos p1 (t-nT+T-tQ))

+exp(-ai t) exp (a-, t0){cos p1 (t-tQ)- exp(ai T) cos p1 (t+T-tQ)}]
-2 K2i[exp{-ai (t-nT)] exp{-ai (T-t0)]{exp(a1 T) sin p1 (t-nT+2T-tQ)
-sin p1 (t-nT+T-tQ)}+exp(-a-, t) exp(ai tQ){sin p1 (t-tQ)-

exp(ai T) sin p1 (t+T-tQ)]]_

+jj-k K [exp{-a2(t-nT)] exp{-a2(T-t0)Hexp(a2T) cos p?(t-nT

+ 2T-t ) - cos p2(t-nT+T-tQ)]+ exp(-a2t) exp(a2 tQ){cos P2(t~t0^
- exp(a2T) cos p2(t+T-tQ)] ]- 2K3.[exp{-a2(t-nT)] exp{-a2(T-t0)]
[exp(a2T) sin p2(t-nT+2 T-tQ) - sin p2(t-nT+T-tQ)]+ exp(-a2t)

exp(a2t0){sin P2(t-tQ)- exP:a2T) sin P2(t+T-tQ)] ]_

or i^d (t)=J(n-1)K2+ ^jexp{-ai (t-nT)] exp{-ai (T-t0)}
{exp(ai T) sin(p1 (t-nT+2 T-to)-02)-sin(B1 (t-nT+T-tQ) - *],)}
+exp(-a1 t) exp(ai tQ){sin(p1 (t-t^V^-exp^ T) sin(p1 (t+T-t0)V2)}_

-2,..+I^2Jexp{-a2(t-nT)] exp{-a2(T-t0)] [exp(a2T) sin(p2(t-nT+2T-t0)
- 02)-sin(p2(t-nT+T-to)-02)]+exp(-a2t) exp(a2t0){ sin(p2(t-to)-02)

- exp(a2T) sin(p2(t+T-to)- 02)]] (A.3-9)
From eqn. (A. 3. 5) *

i3d (t) = (A.3.8)-(A.3.9)
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Total current in duty interval*.

Hence, total curreni; in duty interval of nth chopper

cycle ,id (t),is given by*
n

id (t) = i1 + i2 ♦ i3d (t)
n n

= (A.3.2) + (A.3.3) + (A.3.8) - (A.3.9) (A.3.10)

From eqn. (A.3.10), the expression of id (t) can be
n

written as

i, (t) = E, pds +h +H J] +ldfc +^s,m=1 L m m m+2J 3 M"n

(A.3.11)

The expressions for different terms ujed in eqn. (A.3.11)

are given in eqn. (*4-. 16)

(b) Solution of i_.(t) in freewheeling interval J

Expression for i-.(t) in freewheeling interval of nth

chopper cycle,ilf, (t),can be obtained from eqn. (A. 3.*4-) using
3f,

eqn, (*4-. 15) as*
n

l-f (t) = i' (t) - i" (t)
JIn 3 n J n

where i4f (t) = i\& (t)
-* n 5 n

and

3f
(t) =

v

n

S [K1+K2 exp{-(a1-jP1)(t-t0-r-1T)]
r=1

(A.3.12)

+K* exp{-(a1+jp1)(t-t0-r-1t)]+K3 exp{-(a2-3 P2) (t-tQ-r-1 T)}

+K* exp{-(a2+jp2)(t-t0-FTT)] (A.3.13)
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(i) Solution for 1?- (t)'
31

n

The expression for 1% (t) can be obtained solving

eqn.(A.3.8) as below?
n

i« (t) =l[n K^(K2r+o K21) exp{-(ar3 B1)(t-tQ)]

expfa<~d 3.i)nT]-1

exp{(a1+D Pi)nT}-1 ..WC^H-I^V3 V -PH«2"3 P2)(t-t0)}
exp{(aP-j po)nT]-1 %, .*

taxpt(ap-3PP)Ti-l)+(K3r-3 V "^"^ *2> <*-*<>»
fexp{(a?+j p2)nT]-1^
UxplCap+3 PP)T FPj

or

i», (t) -{bvi£3fn - • -nr.
2 K [exp{-a1 (t-nT)] «cp(0lt )

[exp(aiT) cos 61 (t-nT+T-tQ)-cos 61 (t-nT-tQ)]

+ exp(-ait) exp(ait0){cos B1 (t-tQ)- exp(ai T) cos p^t+T-t^)]]

-2 K2l[exp{-ai (t-nT)] exp(ai to){exp(ai T) sm p1 (t-nT+T-tQ)

-sin p1 (t-nT-t0)}+exp(-ait) exp(ai tQ){ sin p1 (t-tQ)

-exp(aiT) sin p1 (t+T-tQ)]]_

2K3r[exp{-a2(t-nT)]exp(a2t0){exp(a2T) cos p2(t-nT+T-tQ)

-cos p2(t-nT-tQ)}+ exp(-a2t) exp(a2to){ cos p2(t-tQ)

-exp(a2T) cos p2(t+T-tQ)} ]-2 K31[exp{-ap(t-nT)]exp(a2t_)

{exp(a2T) sin p2(t-nT+T-tc)-sin p2(t-nT-t0)j

V
LD

2
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+exp(-a2t) exp(a2 tQ){sin p2(t-tQ)- exp(a2T) sin p2(t+T-tQ)} ]J
Hence,

V K' r
Vi^ (t) = I n K exp{-a1 (t-nT) exp(ai tQ){exp(a1

3fn— L-"5 L^L

sin(p1 (t-nT+T-to)-012)- Bin(§1 (t-nT-t0)- *!,)}
+exp(-ai t) exp(a1to){sin(p1 (t-tQ)- 012)-exp(ai T)sin(p1 (t+T-tQ)-012)]_

T)

L D,
;|exp{-ap(t-nT) exp(a2t0){exp(a2T) sin(p2(t-nT+T-tQ)-02)

p

- sin(p2(t-nT-to)-02)]+ exp(-a2t) exp(a2to){sin(p2(t-to)-0y
(aoT) sin(Bo(t+T-t)-02)]- exp^a2-

Hence from eqn. (A. 3.1 2),

l-f (t) = (A.3.18)-(A.3.1*4-)
J n

(A.3.1+)

Total current in freewheeling intervals

Therefore, total c- rrent in freewheeling interval of nth

chopper cycle,if (t),is given by$
n

(t) s i-i + i2 + i3f (t)
l nn

= (A.3.2) + (A. 3.3) + (A.3.8) - (A.3.10) (A. 3.15)

Simplifying eqn. (A.3.1 5) , the expression for if (t) can be
n

writte.i as*

i- (t) = S
fn m=1

i„ + i* + i+
f s t_ t.

tom m m+2
+ ifS. + 1tBi, (A. 3.16)

The expressions for different terms used in eqn. (A.3.16)

are given in eqn. (*4-.17).
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