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SYNOPSIS.

The object of this investigation was to stu
ultimate strength of single-bay prestressed portal fr:
the moment redistribution beyond the elastic limit. Tﬂg
controversial opinions about the extént of redistribution
moments in statically indeterminate structures at tﬁeir
ultimate failure. For example, Guyon is of the opinion. that
the distribution of moments in staticélly indeterminate
structures, say portal frames, under service loads will not
be the one deduced from the elastic thecries. Some redistri-
bution, Guyon says, is bomnd to take place and cracking2
will be delayed beyond the point indiceted by the elastic
theory. In contrast to this, Professor R. H. Evans and
J. 8. Raftery found from theif_tesf on a three dimensional
prestressed concrete frame that the failure occurred without
the frame Xkat *hx ﬁaiinxn mxxuxxuﬁ becoming a mechaniém by
'forming'a sufficient number of plastic hinges i.e., wikhout
the full redistribution of moments. F. 3. Horice and H.E.
Lewis,-by performing a number of tests on prestressed
concrete continuous beams and portal frames, came to the
conclusion that there was full redistribution of bending
moment at failure. But the degree of moment redistribution,
or adaptation, obtained by them demands special examination

on account of the contrary evidence produced by Macchi.



An attempt has been made to find the discrepaacy
between the actual and the calculated ultimate loads and the
degree of redistribution of bending moments, or adaptation,
that takes placé. The relation between the curvature and

the moment of resistance is also studied.
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b = breadth of bean
d1 = ef. ective derth g
nd = denth do neutral axis
rnd = denth to centre ol compression
R = cube strength in L1bs, S '
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W = welgnted perceuntage
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Tou = Total ultimate Force in the steel

K = a coefficient dependin; on the shape of the stress diagram

di1dq = lever arm ‘
€ = Strain in the concrete K
£'=Strain in the steel

£, = initial strein in the concrgte after prestressing.

éﬁo = initial strsin in the concrete after prestressing

2 = radius of curvature

fg = actual stress in the steel
= tension factor 1a
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wltinate moment of resistance
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= loigte of the portal between the centre lines of legs

neight of the portal frame
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ratio of stiffness of leg to stiffness 4 tra..som.



CHAPTER I
INTRODUCTION.

1.1 Advantages of continuity:

Continuity in prestressed concrete offers the same
advantages as in non-prestressed structures, namely that the
moments may be more.evenly distributed between the.ceﬁtre
portion and the ends of the members than is possibl'e in simply
supported beams or in structures which contain a number of

hinges to reduce the degree of.indeterminacy. The cross-

section of the members may therefore be reduced.

A further advantage Rhies in the use that can be made
of pre-casting for the production of high-quality conc rete under
factory conditions. Individual members may be formed from an
assembly of pre-cast blbcks, connected only by the prestressirg
'cables‘and the logical development of this technique is the
assembly, by means of prestress, of complete members into

continuous beams or frames.

1.2 Problems in the prestressing of
indeterminate structures.

(a) Prestressing an indeterminate structure introduces

redundant reactions and therefore secondary moments.

(b) Cables correctly placed to give the pXastexrs
prestress, having regard to the secondary moments, are not
necessarily in a position which gives a high ultimate moment,
as in simply supported beams. DMoreover the calculation of the
. failure load is complicated by the redistribution of moments

in the structure.
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(¢) The loss of prestress in tensioning due to' :
friction is appreciable in long cables with considerable
curvature. This largely offsets the possibility of a saving

in the cost of end anghorages, by the use of long cables.

1.3 Possgible practical solutions.

(a) Stressing in the determinate condition, and

then rendering the structure indeterminate.

(b) Stressing, and ddjusting the redundant reactions
by use of jacks or other means to elinunate the secondary forces,

3

or to éontrol them to any desired wvalue.

(c) Stréssing in a way that does not affect the

reactions.

(d) Stressing in the most convenient way and

calculating the secondary moments.

1.4 Plastic Theory and ultimate load.

(a) Existing ultimate strength theories only apply
for statically determinate structures where the moments etc.,
are known statically, and cannot be used as such for the
analysis of redundant structures where a moment deformation
relation is needed for all stages of moment at the sections
upto their ultimate strength. Some work has been published
previously by Professor A. L. Baker' in order to estimate the
strength of reinforced and prestressed concrete redundant

structures. This work is based on lines similar to the
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plastic theory involving the use of plastic hinges as applied
to mild steel redundent structures. Mild steel, being a highly
ductile material, the necessary rotation required at the plastic
hinges is always available without the strains exceeding the
wltimate limit. Concrete is a material having much smal}er
ultimate strain and it crumbles if over strained. 'Therefore,
the necessity arises in the case of reinforced and prestressed
concrete redundant structures, when applying the concept o%
plastic hinges to such structures, that the hinge rotation
required for the assumed moment redistribution is available
without putting strain in the concrete which is more than the
wltimate that if can earry. This means that some variation
from the methods applicable to steel structures becomes
necessary. So a method of analysis and calculation of ultimate
strength of prestressed concrete redundant structures were given.
It is based on the modification of the elastic theory results
due tb the formation of plastic hinges. Actual test results
are given in verification of the theoretical deductions and
it will be seen that the proposed theory estimates the ultimate
strength of the structure fairly closely to the actual strength.
The ultimate strength calculated on the basis of the elastic theory

as is the practice nowadays, is as low as 46 per cent of the

actual strength.

(b) It is well known that most building materials like
gsteel and concrete are not fully elastic tight upto their ultimate

strength and plastic deformations accompany the elastic strains.
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Stéel is elastic upto a stress of about 60 per cent of i%s
ultimate strength, after which if shows excessive plastic deforma-i
tions known as yield of steel. Concrete shows some plastic
deformations right from the beginning, but after a certain
stage of loading, these piastic deformations increase.abnormally.
The methbds of analysing structures and predicting their behaviour

under load, after taking into account of these plastic deforma-

tions, is called Plastic Theory. The prevalent methods of

structural analysis are based on Blastic Theory which assumes
that the material is perfectly elastic at all stresses. It is
thus ejident that the analysis based on elastic theory is only
an idealised one, and the results may be different from those
obtained in practice. The importance of taking account of the
plasti; strains was realised as early as 1892 when A.E;H. Love,
the famous elastician, wrote in his classic work ®A Treatise

on the Mathematical Theory of Elasticity", "Yhere exists no
édequate mathematical theory of set or of after strain, or

in fact of any of the phenomena exhibited by materials strained
beyond their elastic limits, yet it is imperatively necessary
that effects which can not be calculated exactly should be
taken into account in construction, and it is in this sense
that the elastic theory is at this time behind the Engineering
Practice:" It is only in recent years that some attention is
being paid to this aspect of the problem, Glanville? had shown
in 1936 that the rlastic deformations of concrete and steel
have considerable influence on the behaviour of continuous beams =Zrd

and frames of reinforced concrete,
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If the stresses created in a structure are within the
elastic range of the material, then the relationship between the
load on the structure and the stresses is linear in most cases.
However, as stated earlier, steel and concrete both show plastic
deformations after a certain stage of loading and then the loa@é
gstress relationship can not be linear, i.e., the iﬁcreaéé of sfeess
is not in the same proportion as the increase of load. Hence if
we fix certain factors of safety on the stresses and calcuiat?
the working load on the structure, based on thése reduced
stresses which are within the elastic range of the material,
then by multiplying the working load wita the factor of safety,
we do not get the collapse load. The actual collapse load may
be less(as in'columns) or more ﬁ@nggiixpxxxkaaﬁxmaxxhnxiﬁsx
(as in continuous beams than the one obtained above. In order to
determine.the real factor of safety of a structure, its cellapse
load should be found and then the working load may be kept a
fraction of this collapse load. The ratio of the collapse load
to the working load is called "Load Factor" énd is different
from the factor of safety applied to stresses. The plastic
theory aims to find the collapse load of a structure rather

than the working load as is the practice now,

C. METHOD OF CALCULATING COLLABSE.LOAD

A structure, in general, is subjected to (i) direct
forces (ii) bending moments (iii) shear forces and (iv) torsion

at any section under the action of a given system of loads.
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These actions may be present individually or in combination with

: b6

each other. Before the collapse load of a structure can be found,
it is essential to know (i) the relationship between the external
loads on the structure and the bending moment, etc. caused at

any of its sections, (ii) the ultimate strength of a segtion under
the action of the particular type of force e.g., direct fhrust,
bending moment, etc, suppose the ultimate moment of resistance

of the section is Mr, and the relatioh between the cﬁllapsé load
W and the maximum bending moment M caused in the structure is,

M = KW, then the collapse load W = -

() Analysis of moments, thrusts, etc.

In the case of statically determinate structures, the
" relationship between momeﬁts and load etc., is easily found by
statics and does not depend upon the properties of the material
of which the structure is made. This relationship remains the
same at all loads till the collapse of the structure. Hence,
in such structures, the collapse load can be calculated as
described above, once the ultimate strength of the individual
gections is known. The ultimate strength of a section can be

calculated by any of the existing theories. 2, 3, 4, 5, 6, 7, 8.

For statically indeterminate s tructures, the relationshi;
between load and moments dependS'upon the properties of the
material and the relative dimensions of the structure. The
analysis of moments, thrusts, etc. in redundant structures is
done with the help of elastic theory and needs calculation of

angular and direct deformations of the wvarious members of the

structure. In this calculation, it is assumed that the material
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is perfectly elastic at all sections of the structure and that
the angular deformation of any section of the structure is
proportional to the bending moment acting there. With the

help of these calculations, a certain distribution of bending

*
.

moments, etc. is obtained in the structure under a given system

of loading.

This distribution of moments will not be affected
by the magnitude of the external load so long as the load is
of the same pattern and the material is elastic. It means
that the relation between the moment at any section and the load on

the structure is linear.

Hoyeve?, inlthe case of reinforced or prestressed
concrete sectioﬁ; the relation between bending moment and
angular deformation -is not linear right upto the ultimate
moment of reéist;nce of the section. PFig. 1 shows a typical
curve giving a relation between moment and angular deformation |
of a unit length of a prestressed concrete member. Upto a
moment M', the curve OA is almost a straight line showing that
the behaviour is elastic. Beyond M', the angular rotation
increases very rapidly till the section collapses on reaching
its ultimate moment of resistance Mr. the value of ¢, i-e. the
maximum angular rotation, which a unit length of a prestressed
concrete member is capable of undergoing before crushing of
concrete, depends upon the depth of the section, the percentage

reinforcement and the ultimate compressive strain of corcrete.
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is perfectly elastic ét all sections of the structure and that
the angular deformation of any section of the structure is
proportional to the‘bending moment acting there. With the
help of these calcuiaxions, a certain distribution of bending

moments, etc. is obtained in the structure under a given systen

of loading,

This distribution of moments will not be affected
by the magnitude of the external load so long as the load is
of the same pattern and the material is elastic. It means
that the relation between the moment at any section and the load on
the structure is linear.

Howevep, in:the case of reinforced or prestressed
concrete sec%ioﬁ; the relation between bending moment and
angular defoimation=is'not linear right upto the ultimate
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reinforcement and the ultimate compressive strain of corcrete.
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the angular deformation of any section of the structure is

proportional to the bending moment acting there. With the

help of these calculations, a certain distribution of bending

moments, etc. is obtained in the structure under a given systeq

of loading.

This distribution of moments will not be affected
by the magnitude of the external load so long as the load is
of the same pattern and the material is elastic. It means
that the relation between the moment at any section and the load on

the structure is linear.

However, in the case of reinforced or prestressed
concrete sec%ion, the relation between bending moment and
angular deformationsiS'not linear right upto the ultimate
moment of reéist;nce of the section. Fig. 1 shows a typical
curve giving 2 relation between moment and angular deformation
of a unit length of a irestressed concrete member. Upto a
moment M', the curve OA is almost a straight line showing that
the behaviour is elastic. Beyond M', the angular rotation
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reinforcement and the ultimate compressive strain of comcrete.
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It is assumed here, as in all the usual formulae, that the

failure of a prestressed concrete section is always accompanied by
the steel reaching its ultimate tensile strength, Fsu. The ratio
of the moment M' upto which the curve is a straight line, to the
ultimate moment of resistance Mr depends upon the qualiyy of

steel and its percentage in the section. Another ériticél poin%

on the curve is D beyond which a slight increase in bending moment
results in a.large angular deformation of the sectioﬁ. Thé section

at this stage of bending, is said to have formed into a plastit

hinge,

The d¢stribution of moments, etc., in prestressed
concrete redundant structures will, therefore, be given by the
elastic theory fairly correctly till the maximum moment in the
structure is less than M', There may be minor deviations due
to creep of concrete or its cracking. But even when the load
on the structure is increased beyond this stage, there will
only be small zones of the structure where the moments will
exceed M' and the rest of the structure will s till be in the
elastic stage, for which the elastic theory is applicable. Let

one of these zones be of length {3}

Fig. 2 shows the length of the member on which
the moment exceeds M' in a length S. Curve (1) shows the
distribution of bending moment on this length and curve (2)
gives the corresponding angular deformations ¢ at various

points as obtained from Fig. 1. The dotted curve (3) gives

::9
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the angular deformation for the same moments on the
assumption that the material was perfectly elastic. This
curve can be drawn with the help of the straight line OB in
Fig. 1. The vertical ordinates between curves (2) and (3)
give the egtra angular deformation per unit length of-t@e
member due to plasticity of the materials. The tobal plastic
deformation in a small length ds will be the ordinate
multiplied b&%this‘length i.e., equal to the shaded'area
in Fig. 3; Hence, total plastic deformation in the lengths
will be the area between the curves (2) and (3) in figure 3.
This is célled the-rotation of the plastic hinge and the length
S of the menber in which these plastic deformations occur is

called the "length of the plastic hinge".

In the anslysis based on elastic theory, only
elastic deformations were considered. The existence of these
plastic deformations is bound to alter the distribution of
moments in thé structure. This is called the "redistribution
of moments" beyond the elastic limit in the structure. Thus,
when a structure is about to collapse, the distribution of
monents is different from that given by the elastic theory.
The calcula?ion for the actual moment distribution at failure,
will involVé the knowledge of rotation of the plastic hinge.
This rotation cannot be calculated accurately unless the
distribution of moments is known. Hence the problem becomes
one of trial é.g. a probable distribution of moments is

assumed and then the rotation of the plastic hinge calculated.

LN ] 10
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It can now be checked whether the assumed moment distribution

was correct.

Since the plastic hinge* is not located at a section ade:
alone, i.e., on an infinitesimally small length, but‘;s
distributed ever a certain length which has reached the
plastic stage, the rotation of hinge is the sum of the elements
of curvature, in other words if § is the rotation which is requirel
at a kmge hinge to permit full adaptation, § is the sum of thé
curvatures i%% of the elements d A of the plastic zone
on both sides of the theoretical hinge (o€ 6 = f 5:—[—% 48 )
the integral being extended to the plastic zone). Since
along this plastic zone the moment varies from the elastic limit
to the ultimate moment, it is seen that the basis for the
justification of redistribution (or the study of the rate of
redistribution) is the relationship between the moment and the
curvature, wﬁich may be written %ﬁ% = M. 7

If this relationship is khown, the maximum possible
rotation of the hinge may be determined for a given assumed

distribution and the assumption will be justified if this

maximum is not exceeded.

*#It has already been stated (at the F.I.P, Congresses) that
this designation is merely an abbreviation, and that the
plastic hinge is in fact a certain length of the struc-

ture of which the section is the centre.
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In theory a knowledge of this relationship allows

the behaviour of the structure from the end of the elastic
phase right up to failure to be followed, Professor Levi and
his assistants have obtained some interesting results in this

direction.

1.5 Calculation of the ultimate moment of
resistance of a section.

Simple formulae have been given for the ultimate
moment, and these are certainly sufficient for the simple
cases of a statically determinate beam with a small percentage
of stesl, this percentage being based on the area of surrounding
concreté‘(i.e., to bd1). The question is if they are still
sufficient for the higher percentages which often occur in a
staticzlly indeterminate structure, due to the reversal of

bending moments wien the cable is very close to a flange.

Purther, the real parszmeter is not the percentage
RS but the ratio of the strengths _ﬂifﬁt , which 1is called
X-§ | b AR
the weighted percentage denoted by & .

The‘usual formulae assume that the steel reaches its
ultimate tensile strength when the section fails, and thus the
direct force is Fsu. A certain shape of the concrete stress
diggram is also assumed. Hence the resultant compression
is kbndr, where k is a coefficient depending on the shape of

the stress diagram; the centre of compression is at a distance

r and 4 from the extreme flangye, r being a constant alsc dependent

LN 12
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on the shape of the stress dizgram. The lever arm is equal to

dq - rnd, and the resisting moment Mr is equal to Fsu (dq-¥nd).

From considerations of equilibrium, we have

P

. _ JE—- 1
Fsu = kbndr or nd = %br ‘
P
r s
Hence Mr;z Fsu d1(1 - % §EIR>

If the constant coefficient % is denoted by == and:

the weighted percentage %%ER by ¥ , the formula becomes®
, 1

Mr = Fsu d,(1- aw )

various values have been given for the coefficient « .,

when R is the cube strength, most authors give = = #.

The value of - was discussed at the first congress

of the Federation Internationale de la Precontrainte held in

*

London in 1953, Walley gives & = 0,74 ( o« = 0.59 when R

is the prism strength, assumed to be 0.8 R cube).

Morice suggests <A = 0.8, and that for Post-tensioned

members a reduction coefficient should be applied to F to

su?
allow for the imperfact bond.

¥The formulae only apply where the bond is perfect;
“They also assume that b is constent over the depth nd.

.13



Nt 4

Theoretica
Lawn
o

08 0
il

b 4
FIGURE 4




: 133 s 13

As can be seen, opinions vary appreciately.

To attempt a comparision between these formulae and
the results of tests on statically determinate beams (which
ensure a knawlédge of Mr, is very difficult, due in pgrticular
to the lack of uniformity_of the standards cohcern%pg the
strength of concrete in different countries. The value of the
concrete strength varies in mﬁxxnxing meaning according to- the
‘test procedure; cube, prism, cylinder, size of sample, the
interposition of material between the concrete and the platens
of the testing machine, the method of curing the samples before

testing, etc.

If the above mentioned formulae hold good, then a

plot of the results on a diagram relating :\":: and W should
 F2u

= AW ), from which

(\_N'\’

give a straight line FRT™

an average value of o\ could be deduced. The results are
plotted in Fig. 4. It may be said that, in spite of considerable |
scatter, the relationship Wy = Fgud (\-3®) geens to give

reasonable agreement for low percentages.

By "reasonable agreement" is meant that, although

there is an appreciable variation in oA (i.ein the slope
of the straight line joining the point W =o o :\:s.\x to the
\

point under consideration), the approximation in the value of the
moment is not so bad, due to the low value of the corrective
‘term AW when & is small. The error is generally no

greater than 10%, and could not be expected to be smaller.

14
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The situation is different at higher percentage
of steel, For high percentages, it is certainly impossible
for the steel to reach its ultimate tensile strength. In
certain cases, when the cable is in the compressive zone (which
may happen intstatically indeterminate structures,.oné to a
reversal of moments), not only will the steel not r;ach its
ultimate tensile strength, but it will lose part of its

initial tension. Therefore formulae covering the whole

range of percentages should be established.

It seeuws reasonable to adopt the assumption that
plane sections remain plane. The validity of this assumption
appears to be justified by tests made by Billet and Appleton9d

on twenty-four statically determinate beans.

Figure 5 explains the assumption; let & be the strain
in the concrete, @fthe strain in the steel, let EO and Eg be
the initiél strains after prestressing. ( 6; is the stra;n
correSpondiﬁ¢ to the initial tension in the cable after relaxation.)
Under the effect of the ultimate moment Mr, the strain in the
section will vary from &-6&, teo 6'-6; . Let fs be the
actual stress in the steel. <Then using the same coefficients X andas

as defined above

Xbwa&R = Rgf, (1)
& -6

wd - ¢

. = 2

A, 5’5@"'5"6; ( )

Since there is a definite relationship between ' and fs
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(the stress-strain diagram) these two equations allow the two
anknowns f£s and nd to be determined, assuming & and Bo to be

known.

It is assumed that Eo is small in comparison with
& (which is generally the case) and have taken .

.

obviously other values could be taken if thought to be better.

When fs and nd are known, Mr is found from the

equation

«\,( = “‘slqh Q&\'—N(‘“a) (3)
Knowing also. the radius of curvature r, \
L& (4)
h nd

Tests with three kinds of steel have been made for
a large racge of values of ® upto 0.85, the characteristics

of both concrete and steel being known. Figure b shows the

results plotted in terms of X and W as above,
4\ P
compared with the theoretical formula given by equation (3).
The theoretical law corresponding to steel I is shown on this
figure, and it is seen that the experimental points corresponding

to this steel are in good agreewnent with the theoretical curve.

The agreement is equally good for the other steels.

eo 16
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Below is given a practical way of solving equations
(1) and (2), and hence finding Mr and 1; ,

Let the ratio %3— (the "tension factor", referred
to the ultimate tension taken as unity) be denoted by X . Then the
stress-strain diagram for any given steel may be rqpresénted |
by the equation &' =F( X ). Let X, be the value of )
corresponding to the initial tension. Since As Sa. = X&)-/

b, R
equations (1) and (2) may be written as follows:

wd . 2R : cla)
K

a,

N PRy - FD v €8] 2E-8 ()

\

Taking %(11 and A  as coordinates, equation (2a) expresses
a relationship between A and ‘“_;%- which we may call A= f %”—{
\ !

This curve may be plotted as shown in Figure 7 . This is
easily done if the stress - strain diagram &'z FCN) s
known (if is assumed that 6: is given). We may call this

curve the characteristic curve for the steel.

The point ( '&a.‘e:. y A ) lies on this curve, from
\
equation (1a) the point also lies on the straight line through
the origin given by md |3 :Q or fan p = B .
gin g Vg [a=$ fan p =
Thus, if, to a suitable scale, we mark the scale W

(a uniform scale) on the horizontal S& the line B is

J
obtained by joining o to the point représenting @ on this

scale.

o 17
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Thus, if we construct this graph, the solution
of equations (1) and (2) is obtained for a given value of
® by marking this value on the scale S and joining if
to the origin. The intersection of this straight line and

the characteristic curve has the coordinztes A and nd ang

o .
hence Mr and % . Special scales for the lever arm
ody (el and for ~ (L [L =& nd
(——a——-\—» =\ \(..3::. ) -Y(Y/d‘ /d[ )

facilitate the calculations.

A graph of this kind is shown in figure 8 for
the initial tension ), =04 and for four different steels
(I, II, III, IV) corresponding to the types of steel usually
employed in ?re?F_Bfitain, France, U.5.A., and Italy respect-
jively. It will be seen that the results (and hence the values of
the ultimatermogenté) depend on the shape of the stress -
strain diagram (corresponding to the different characteristic

curves) and that a knowledge of this diagram is indispensable

when interpreting test results,

The graph shown in Figure 8 corresponds to the

assumptions : k=e-8y,Ysott, & =&, = Tex\o"> It

is assumed that the concrete strength is measured on cubes cast xux

without smoothing.

Guyon has constructed a similar graph for 2o~ 0%

The differences in the values of Kr are very small (same 3%)

..18
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Figﬁre 9 shows the stress - strain diagrams

in terms of A for the four mkerix steels I to IV.

Special case where the external loads
introduce a direct force.

In cases where external loads introduce a direct
force imto a member, fof example a thrust H, the problem is to

determine the depth nd to the neutral axis and the value of A"

From figure '°, equation (1) becomes
Wbhea AR :'H*\$Q$ (1b)
and equation (2) remains, =& . é-6&, (2)

. E ~&E,+&-E&,

. ]

the weighted percentage e fsu

If we denote by &
— bd, )
and by &  the quantity M equation (1b) may be
bd,R
written. _
3 LA ® NN (e

a, e TR
The representative point ( ?&é LA ) is to ve

found now. This point is on the charac;eristic curve, since
equation (2) is the same as before. The point is also on the
straight line represented by equation (IC). It is therefore
at the intersection of the characteristic curve and the line

given by equation (IC). The scale of the graph shown in

Figure i has been chosen so that this line can be
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traced easily. The scale for W has been marked on the line
&, ; to the same scale, the distance between the line Sk and

the horizontal exis is K (since ¥en[fdz -‘3- ). Further the

scale for A and T_E'i have been made the same.
!

On the scale S , the point Ror W , and N ok W+w'
are marked (see figure!! ). B and B' are joined to the
origin. These two lines ‘OB and OB' intersect the hérizon:i:al.
A=1 at B, and ]311 ~ Tjtough B,1., a line is drawn parallel )
to 0B. It intersects the characteristic curve at the point A4,
which is the point required since ‘}\_‘Ell = _‘:“__;L J the line WA

|
represents the equation (IC).

The coordinates of the point A are ’.‘.‘;.. and A,
!

and the problem is easily solved.



CHAPTER 2.
REVIEW OF LITERATURE 2.0 -

2-1 GENERAL

Considerable amount of work has been done to study the
moment distribution in statically indeterminate prestressed struc-
tures beyond the elastic phase. Below:is given a review of the ‘

work done by various investigators. .

2.2 GUYON'S WORK

(a) Tests on beams:

Monsieur Guyon conducted some tests on beams in October,

1952. The beams were 5 x 10 in. in cross-section, and each consistec
of two spans of 13 £ft. 1 in. Each beam was prestressed by one cable
consisting of 12 wires of 0.196 in., diameter. The concrete strength
(tested on 5% in. cubes smoothed before test) was 7,000 lb/inz.
This was considéred as equivalent to 0.8 x 7000 = 5,600 lb/in2 due
to the smoothing. The ultimate strength of the cable was
F u = 80,5000 1lb. ﬁild{steel was added in beams A

8 217
(two bars of 0,196 in. diameter, Fy = 2000 1b, 1 in. from the top

B and C

and bottom flanges respectively)., Two equal loads W were applied,
one at the centre of each span. Let Mr be the ultimate moment in
the span, M1r the ultimate moment over the intermediate support,

and W the dead load.

If redistribution is complete, we should have at failure

My 1 12
Mr + 5 = Wrz + W 8

where wr is the ulfimate load.

0ol



s 2 3 2'1

The'experimental data and observstions are given below.
The measured effective depth at mid-span and over the supports are
denoted by'd1and<h1 respectively, The values of Mr and M'r have
boén galculated from figure 8,

2
W = 1,090 1b.1t,

If Mr and M'r are expressed in 16 Pt. x 107, we should have

M1
Wr..A—-(Mr-f—-é— - 1.09)

In the table below are given the calculated ultimate 1oad,
the observed ultimate load, and the ultimate load assuming no

redistribution.

TABLE 'T!

Beans ?1n) 1

a1  Mr Mlr ¥ W

(in) (1b,£t) ' (1b. ft Calculated Observed_  Error (assuming ng
x10°  x10%) (1bx10%) (1b x 10° (%) redistribu-

. , tion)

| (1b x 107)
A 1.38 8.8 2.28 46.6 7.46 7.70 -3 4.1
A 1.5 8.85 3.59 47.8 8.00 8,36 -4 4,1
B 603 3027 31.20 1205 11005 11090 "'8 1100
¢ 2,96 8,09 10,80 42,7 9.45 11.00 ~14 9.4

* No added mild steel.

Note: All the differences are negative (i.e. the =% calculated
loads are smaller than the observed loads). The concrete

strength was probably overestimated (i.e. coefficient of
reduction smaller than 0.8).
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Monsieur Guyon witnessed a test on a three span continuous

beam carried out in London in November, 1952. The following data are

reproduced from the notes made at the time.

The beam consisted of three spans of 10 £t. each, plus
two cantilevers of 3 ft, 10 in. <The depth at the x;ﬁd span was
1 ft. 7% in. and above the supports 2 ft. The breadih b'was 6% in,
The beam was prestressed by two cables each consisting of 12 wires
of 0.196 in. diameter. lThe total ultimate force for the two cables
was 168,000 1bs. Three mild steel bars of 3% in. diameter were.
provided over a lehgth of 4 £t. 9 in. over the two intermediate
supports, 1 in. from the top flange, stirrups of 4 in. diameter bar

were arranged at a pitch of 9 in, -
The concrete cube strength was 5,600 1b/in?,

Loads were applied at the third points in each span,
plus one load on each cantilever 1 £t 3% in. from the extreme

supports.

It is seen from the test that the ultimate load would be
20% less than the full redistribution load.

b, TEST ON FRAME:

Monsieur Guyon has tested a frame identical to that
tested by Lebelle, with the same prestressing force in the
horizontal truss but arranged differently, the tendon had a double

curvature in one truss, and was centred in the other.

.od



¢t 4 2}3

The main difference between this test and Lebelle's test
is that in this case the load was applied asymmetrically, at
mid-span of one truss only. Due to the arrangement of the wires in t
' the members, the theoretical ultimated load is greater than that for
Lebelle's tests.

- 'rThé ultimate moments were 13,300 lb.ft. for the posts,
1,300 1b.ft. for section A (see figure 12), 24,600 1b.ft for M

(positive) and B (negative), and + 15,900 1b.ft. for D, N and E.

Assuming complete redistribution, the theoretical ultimate

loads are 18,600 x 10° 1b. for DNE and 23,000 x 103 for AMB.

The observed ultimate loads were respectively 18,100 x 107
and 22,500 x 103 1b. It is difficult to compare these results with
}

the assumﬁ@ion of no redistribution sirmce failure would have occurred

immediately at the point A,

2.3 LABELLE's TESTS ON FRAMES:

‘Lebelle testéd a double frame of the dimensions shown in
Fig. 13, All the members were 8 x 5 in. in cross~section. The
horizontal members were prestressed by four wires of 0.276 in.
diameter, the wires be ing central in one of the members and eccentric
in the other. The posts were of reinforced concrete., As the full
details have already been published(1o), only the data concerning

failure are given below.

The ultimate moments were 13,200 1b. ft for the outside
posts and 15,050 1b. ft. for the upper truss (with thé central

prestréssing). If we denote the net span of this truss by 1, the
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theoretical ultimate load Wr is given by Wr% = 15,050 + 1502% ; 13200

which gives Wr = 18,000 1b. The observed ultimate loads were 17,700
1b (with the central prestressing) and 17,000 1b (with the ecentric

prestressing).

According to the elastic theory, the ultimate load would
have been 15,100 1b. The observed loads are therefore 2% and 6%
smaller than the load assuming complete redistribution, and 17% and 1:

12% grezter than the elastic ultimate load.

2.4 LIN'S TESTS

Tests have been carried out by Lin at the Magnel Laboratory,
on four continuous beams, each having two spans of 24.6 ft, the beanms
were 8 x 16 in. in cross-section, prestressed by a curved concordant |
cable consisting of 32 wires of 0.196 in. dismeter. The concrete
strength measured on 8 in. cubes (cured) was'8,280 1b/in2, The
ultimate strength of the cable was 25,000 lbs.

Two of the beams had additional untensioned steel (two
bars of 0.55 in. diameter at a distance of 1 in. from the extreme fiki

fib¥§ at mid-span and above the support, in the tensile zones).

Loads were applied symmetrically 8.6 ft. from the

central support (see figure 14). The reactions were measured.

The results have already been published." The following

ultimate moments are calculated.
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Beam A (without additional mild steel)
Ultimate moment in the span (loaded section): 145,000 1b.f%t,
vltimate moment above the support ¢ 176,000 1b.ft.

Phe theoretical ultimate load assuming complete

redistribution (Wr) is given by

2
16 x 8.6 1 _
Wr X —5ue + Wg = 145,000 + 176, 000 X 24 6

2
or 5.57 Wr + W 1% = 259,000
8

2
since W % = 8,700 1b.£t., we have Wr = 45,300 1b,

The observed value of W was 39,200 1b., (a difference of -13%)

The ultimate moments may be calculatéd from the
measurements of the reactions., These were 162,000 1b.ft. over
the support instead of 176,000 1lb.ft. (difference 8%) and 115,000
1b.ft. under the load instead of 145,000 1lhft. (difference 21%).

. | ,
Beam B (with additional mild steel).
Wltimate moment in the span (loaded section) : 164,000 1b.ft.
Ultinate moment above the support: 197,000 1b.ft.

The theoretical ultimate load Wr is therefore 50,500 lb.
The observed value of W was 46,000 1b faddiktizmaz (a difference
of -9%)

The measured moments were as follows:
under the load : 13%6,000 1b.ft. instead of 164,000 1lb. ft.

(difference 17%)
above the support: 193,000 1b. ft. instead of 197,000 1b.ft.
(difference 2%)
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If there had been no redistribution, the loads would have

been 35,800 1b. for beam A and 40,300 1b. for beam B.

observed load
No redistribution load

The ratio is therefore 1.09 in the one

case and 1.14 in the other.

2.5 TESTS BY LEVI AND MACCHI.

Tests carried out by Levi and Macchi are described in
a paper by Macchi presented at the second congress of the Federa-

tion Infernationale de la precontrainte12 held in Amoterdam.

Tests were made on three continuous three span beaums,
4 x 10 in. in section, in two of the beams (C, and C,). The spans
were 6.55 ft. 13.1 ft. and 6.55 ft., one beam (63) had spans of 9.8

ft. 13.1 £t. and 9.85 ft.

A prestress was applied by one cable consisting of 8 wires

of 0.196 in. diameter, the ultimate force Fsu = 64,500 1b.

Untensioned steel wires of 0.196 in. diameter were

provided at each corner(withiin. cover)

The cable was at the upper edge of the middle third in
the side spans. In the central span the cable was curved, the
arrangement of the cable over the intermediate supports was
symmetrical with the arrangement at mid-span, hence the ultimate
moments are the same for both sections. If Mr is their common
value, then the theory of full redistribution would lead to

an ultimate load Wr such that

Wr l @Z”
7TV —=— =2MNr

4 i
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Macchi measured Mr for two of these beams, by testing
them to distruction in the statically determinate condition
(as a cantilever) after the test. For the third beam, the ultimate
moment was evaluated by comparison with an identical beam CR, which
was tested upto failure under statically determinate conditions.

The strength of the concrete was not the same for ‘neams'c,3 and CR.

The concrete cube strengths were as follows:

¢, and C, & 5,600 1b/in?

1
.2
03 : 7,400 1b/in
12
In the above equation, W 8 = 1,000 1bv.ft,

The theoretical values of Wr are given by this equation, ﬁsing the

respective values of Mr, A comparison between theory and expériment

is given below:

§

TABLE 2.
Wr Observed
Mr Calculated observed obsexrved
Beam 3 ! o b toad
(1b. £t. x 109)§(1b. x 107) § (1b x 109) y Calculated|§s reaiste
| }. Y . jribution
) | g;g;d.
c, 20.6 12.76 11.1 0.87 1.13
c, 27 | 16.8 1447 0.87 1.14
Cs 30.4 18.9 14.9 0.78 1.08

As has been said above, ‘M. Guyon believes that the
value of Mr has been ober-estimated for beam 03, as was stated
in his general report at Amsterdam; the coefficient 0.78 should
in his opinion be raised to something liké 0.84. 1In any case,

there is a lack of redistribution,
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2.6 £ESTS OF MORICE AND LEWIS

Tests by Morice and Lewis are described in an unpublished

report(13)

Tests were made on 28 continuous beams, each of two spans
of 7 £t 6 in., the beam section being 4 x 6 in., Two concentrated
loads W werc applied symmetrically at the mid-spans.: The tests
were made in order to check that linear transformations of the
cableé (i.e., transformations of the tendon profile without
altering the end mEl anchorages or the intrinsic shape of the
tendon in each span) would not affect the ultimate load. This
ig an intrinsic property of full redistribution, as will appear

from what has been gaid earlier in this paper.

The tests did in fact show that this assumption was
approximately correct. The series of beams with different
profiles, one of them concordant and the others transformed up
or down, failed under loads differing from the average by not

more than 5%. The full details are given in the report.
‘ :

With reference to these tests, it seems appropriate
to draw attention to the necessity of staﬁdardising the test
procedure followed in determining the strength of concrete. The
meaning of the strength of concrete varies from one country %
another, and sometimes within the same country. In the graph shzwmxi
shown in figure 8, the conciete strength is that measured on the

cubes gs_cast . When the cubes are mmoothed, the strength is

multiplied by 1.25.
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2.6 EESTS OF MORICE AND LEWIS
Tests by Morice and Lewis are described in an unpublished

L(13)

repor

Tests were made on 28 continuous beams, each of two spans
of 7 £t 6 in., the beam section being 4 x 6 in. Two concentrated
loads W were applied symmeirically at the mid-spens.: The tests
were made in order to check that linear transformations of the
cableé (i.e., transformations of the tendon profile without'
altering the end umk anchoiages or the intrinsic shape of the
tendon in each span) would not affect the ultimate load. This
is an intrinsic property of full redistribution, as will appear

from what has been gaid earlier in this paper.

The tests did in fact show that this assumption was
approximately correct. The series of beams with different
profiles, one of them concordant and the others transformed up
or down, failed under loads differing from the average by not

more than 5%. The full details are given in the report.
. .

With reference to these tests, it seems appropriate
to draw attention to the necessity of standardising the test
procedure followed in determining the strength of concrete. The
meaning of the strength of concrete varies from one country ®
another, and sometimes within the same country. In the graph shkzwrxi
shown in figure 8, the concrete strength is that measured on the

cubes as cast . When the cubes are pmoothed, the strength is

multiplied by 1.25.
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In the tests reported by Morice and Lewis, the sérengtn
bf concrete was measured on 4 in. cubes, cast in accurately machined
moulds, the effect of this perfect finish of the moulds may be
considered as equivalent to smoothing. Further, the cubes were
cured in water and tested wet, which, compared with our tests, is

another difference which will increase the strength.

In order to compare the results with our graph,
therefore, the cube strengths reported by Morice and Lewis mus’t

be multiplied by some factor C, and the weighted percentage

Fau
b\

which should be marked on the scalew of figure 8 should be w=

where R!' = CR.

When the strength is measured on smoothed cubes, the

value of C should be taken as 0.8. It seems that in this case

Id

the value to be taken is T ¢ ©°r 0.625. In other words if the

Fau

simple formula Mr = d1 FSU. (1 - ) is used (Wlth W = T;ﬁ-)’
\

then =* becomes 5%%%? = 0.8 instead of 0.5. This factor of 0.8 is

the one suggested by Morice and Lewis and appears to be justified.
If, instead of this formula, the graph of figure 8 is used, we

must mark on the scale © g value equal to 1.6 times the

30
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is perfactly satisfactory, and as the tests give the statistical

value + With this corrected value of = sy the agreement

result (from 28 beams) the assumptions made by Morice and Lewis

are justified,

In their tests, the reactions were measured, the
moments actually reached in the critical sections may, therefore,
be calculated. These are plotted in terms of w' (SRera W= ve®) in

figure 15, The test results agree satisfactorily with the
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In addition, statically determinate control beams,
possessing the same characteristics, were tested. The results
are marked as points C on the figure 15. It will be seen that
their uitimate moments are of the same order of magnifude as
those of the statically indeterminate beams. It should also be:
pointed out that these orders of magnitude agree with results

obtained by Baker'®) ang vy Prentis®).

It may be concluded from the tests carried out by

Morice and Kewis that in the ease of these 28 beams, redistribution

was practically compiete.

2.7 IEST OF THE FESTIVAL OF BRITAIN FOOTBRIDGE.

Results of the test of the Pestival Footbridge'!4~16)
do not indicate full redistribution but, having studiéd them
very carefully, we think that they do not contradict the theories
of redistribution. The differences are due to the absence of
bond between the cables and the concrete, the bad quality of the
grouting was noted after the structure had been tested to
destruction, in fact, the grouting was quite ineffective.

This should not be taken as criticism of the construction,
the hurry which was necessary is a sufficient explanation of theé
difficulties, the aim here is to examine objectively the

reasons why failure occurred sooner than had been expected.

It can be said that, under the conditions of the test,
i.e., with the actual ultimate moments (reduced due to the lack of

bond), the redistribution was as near complete as it could

have been.
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2.8 SUMMARY OF EXPERIMENTAL DATA:

TABLE 3
. Observed Load i Observed Lead
Tests {Beanl 53T Reqistribution Load 'No Redistribution Load
4 Two-span ?eams A1 1.03 1.88
(Guyon : :
S A2 1.04 2.04
B 1.08 | 1.07
- C ‘ 1.16 1.16
Three-span beam 1,04 1.25
Lebelle 0.98 ' 1.17
Frames 0.94 ’ | 1.12
Guyon 0.97 o
0,97
2 Continuous beams A 0.87 ' 1.09
(LIN)
B - 0,91 L _ 1.14
5 Three-span beams C, 0.87 1.13
(Macchi)
02 0.87 1.14
C 0.78 (0.84) 1,08 (1.16
28 Two-span beams 0.95 - 1.05 1.0%3 - 1.51

(Morice and Lewis) (3.16 for test 11)

Festival Footbridge 0.97*

*laking into account lack of bond (0,82 referred to the maximum load
.which could have been supported with good bond.



Under normal conditions (absence of bond being coéLgdered
as an bhbnormal condition) the following conclusions may be drawn

from the above experimental data.

1. The increase of strength due to redistribution of
the moments depends upon the discordance. In Guyon's tests B & C,
there was no increase due to lack of discordance. On the.otherhénd
when the ultimate moment of one of the plastic hinges is very small
in comparison with the ultimate moments at other hinges (which
often occurs due to the reversal of moments, e.g. positive momeﬁts
over supports, or negative moments at mid span over certain
structures, the increase may be considerable (e.g. Guyon's tests
, and Morice's test 11).

A, amd A

1 2

2. The assultiption of full redistribution allows the ulti-
mate load to be estimated to within at worst 15%, and generally
more accurately. It might be said that this accuracy is sufficient,
and of the same order as that of the nltimate moments themselves,
further, that the Aesigner does not require any greater accuracy,
sinée he never knows the true strength of his materials, parti-

cularly the concrete,

{The assumption of full redistribution cannot be other
than}an approximation, the accuracy of which depends on definite
conditions of compatibility of the strains, or more precisely of
the rotations of the ends of the spans on both sides of a given
support, or, which is still equivalent, of the rotations at the

successive plastic hinges.
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The assumption merely means that small variations in

the reactions give rise to large variations in these rotations,
which allows the solution to be adjusted with very small modi-

fications to the conditions of compatibility to be fulfilled.
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CHAPTELR

THEORY 4ND DUSIGN OF PORTAL FRakud

3.1 SUMMARY

Continuous prestressed concrete beams are, in general
more difficult to design than simply supported beams. The
fundamental difference between the two is that in the latter
the line of pressure (i.e. the line along which the prestressing
force acts) coincides with the mean line (the centroid axis) of
the cables, while in the former this is not necessariiy the’casp.
This is due to the fact that, if a cable is placed arbitrarily °
in a statically indeterminate beam, the tensioning of the cable
causes the beam to deflect, and this deflection creates statically
indeterminste reactions which distort the line of pressure SO that,

in general, it no longer concides with the cable.

~
-

It will be shown that the most important factor is
not the cable profile, but the shape of the line of pressure.
The problem thefefore consists in determining a cable profile

corresponding to a given line of pressure.

However, an arbitrary line of pressure is not necessarily
a possible one. For a given line of pressure to be possible, it
mqst fulfil the condition that the tensicning of a cable placed
along it causes no statically indeterminate reactions. Such a

line of pressure is cailed "stable."

Ohe pwgsible position of the cable for obtaining a
stable line of pressure is along the line itself and such a cable

is called "Concordant". It can be shown that thig is not the

only possible cable profile which will give this particular line
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of pressure; by translating the cable i.e., by adding linear

functions to its coordinates with respect to the neutral axis of the
beam, we can, it is possible in theory to deduce from a concordant
cable an infinite number of cable profiles, each of which will

give the stable line of pressure from which they originzte. A
particular cable profile determined in this way may often be an
improvement on the concordant cable, reducing the friction between
the curved cable and the concrete or making it easier to accommodate

the jacks and anchorages.

It is shown that the stable line of pressure must be
entirely within a limiting zone (there béing no such zone for
each span or member of the structure) which is determined by the
shape of the numbers and by the external loads which they have

to support.

The general problem therefore consists in determiﬁing a
stable line of pressure lying entirely within the limiting zone.
In certain cases, it may be necessary to allow the line of
prdssure to be outside the limiting zone in some parts of the
beam, thus causing tensile stresses in the concrete at those
parts greater than the permissible stresses. In this case,
complementary mild steel reinforcement is introduced in the

regions of hizh tensile stresses.

There are t wo methods of'égg;g%g the general problem.
In both methods, if there are =~ statically indeterminate
reactions, there will be ™ unknowns. In the first method,
the ™ unknowns which are determined are the points through

which the stable line of pressure must pass in order that the
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statically indeterminate reactions due to the prestressing shall
be zero. In the second method, the unknowns are conditions

concerning the area included between the stable line of pressure

and the neutral axis.

It can be shown that although the problem is usually:
rather complicated, it can always be replaced by a corresponding
problem involving an imaginary load q(x) acting an each span.. The
line of pmessure is then considered as being the fenicular polygon
of this load and of the compressive force due to the prestressiﬁg
force T (to which may be added a compressive force N due to
external loads). This imaginary load is the second derivative
of the prestressing moment Fy and is therefore equivalent to the
transverse load created by the tension in the‘curved cable.
Conversely the ordinate y in each span or element is the second
integral of the imaginary load q(x). This secénd integral includes
two constants representing the ordinates y at the ends of each
span; Ike@dex® these depend on the continuity conditions at those
ends i.e., on the partial or complete restraints assumed at those

ends,

In the case of the hinged portal, the only statically
indeterminate reaction is the horizontal thrust. The problem
therefore consists in determining a line of pressure lying
entirely within the limiting zone and of such a shape that
no horizontal thrust is created when the cable is tensioned,
The problem is complicated by the fact that in portal frames,

the magnitude of the compressive force depends not only on the

prestress but also upon thef reactions due to vertical loads.
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Thus, in the legs, the prestressing force is irc reased (algebrically)

by the vectical reactions and in the transom increased by the

horizontal thrust,

3.2 Concordant cable. Stable line of Pressure.

The cable is said to be'concordant' when the line of

pressure caused by the tensioning of this cable coincides with it.

Such,a line of pressure is said to be 'stable' in order to

emphasize the fact that tensioning the cable does not displace the

L !
assumed line of pressure.

A line can only be chosen as the line of pressure if its

-
~

eccentricitiq§ at thg:supports correspond to the momenté created
at the supports: by tﬁg prestress exercised by a cable coinciding
with this li£é:iin gther words, only if it is stable.
This can:also be expregsed in another form:
1. A line may only be chosen as the line of pressure, if
for a cable coinciding with this line, the statically indeterminate

support reactions caused by the tensioning of the cable are nil.

and also in this form:

2. A stable line of pressure is the feunicular curve of a
certain imaginary load function q(x) and of the reactions

exercised by'the supports of the continuous beam under this

system of loading, i.e., the bending moment diagram created

in the beam by the loading q(x), taking into account the constrants

and drawn to a scale depending on the magnitude F of the prestressing

force. This line is a solution of the problem if, when drawn
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to a proper scale, it remains entirely within the predetermined

limiting zone.

If necessary, end moments, caused by eccentric anghorages,
may be added to the system of loads q(x), this is equivalent to
adding to the real constrants partial or complete constrants at .

the two ends of the bvean.

Once the line of pressure has been found, all the

possible cables can be obtained by linear transfor:ations.

The above two principles are obviously equivalent, the

& a3
L 4d

of pressure, and conversely, ¥y is the second integral of the

load g is equal to , where y is the ordinate of the line

expression %é . The arbitrayy integration constants are only

two in number because the ordinate of the line of pressure at a
support has a single value which is the same for the span to the
left and for the span to the right of that support. End moments

can be introduced by choesing adequate values for these two

arbitrary constants.

The methods of solution waich (are given lower down),
are based on these two prirciples. They consist in determining
either the line of pressure or the ima;inary loading of which

the line of pressure is a fgunicular cux‘ve(\B ).

3.4 The invariance of elastic design stresses under linear
tendon transformations. '

17

It was first shown by Guyon ' that the working load

conditions are invariant under a linear transformation.
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A study of the use of continuity in prestressed concrete
frames leads to the conclusion that it is not necessarily advantege-
ous and often may be uneconomical as far as the elastic condition is
concerned, since prestressed désign is principally based upon

moment varialions and not upon absolute moment values,

However, considerable advantageous will almost always
follow from continuiting when attention is turned to the ultimate
load carrying capacity of the whole frame, particularly if the
moment curva.ure relationship contains a platean at the maximum’
moment, since this will enable the critical sections of the
structure to hold their maximum moments simultaneously, irrespective

of the order in which they were first developed. Except in the |
case in which all the critical sections have a constant ratio of
maximum moment of resistance to working moment, the failure
condition for the whole frume will have a load factor greater than

that of the weakest critical section.

Consider the ultimate moment conditions of a span of
a beam or frame having two alternative tendon profiles, one of
which is a linear transformation of the other (figures ¥y and 28).
The free bending moment on the sﬁan is™ ang My M,, Mz are the
ultimate moments at the three critical sections (figuretd ).
It can easily be seen that My, My and Mz are linear functions

of the corresponding effective depths dy, dyp and ds.

The uvltimate moment equation for the span is

M= Q=RYM, +Wq + f\ms

(1)
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which can ble written

™ = B CRdr T+ RAg + T e DRIy + )
m o= Q-

= ._a§ Q-pYd, +dr +pdyt v awn

L
f\s""q“ Y
A Wb

o~
O LS )
Ser

M\—-\\s‘q“ ared B = —

under a linear transformation of the tendon profile, the critical
effective depths will be changed to the following(figure € ),

J" = &\*' Sl
d.; = d-s* g's
d-*z_' = da- =P8, - 83

It is seen that expression (2) is invariant under such a
transformation and thercfore the ultimate load remeing the same

for both tendon profilds.

3.5 Hinged Portal Frame;

The line of pressure, for the prestress only, consists
in this case of three separate lines: One for each bgg and

one for the transom.

The prestressing force is umually different for the
legs and for the transom; if the loading and the frame itself
are unsymmetrical, the prestressing force may even have

different values for the two legs.
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The problem is again pased in the same general manner;
Given Lhe llmltlnd zone within which the line of pressure must be
(more exactly, ngen the three limiting zones, one per member,
within Whlch the three lines of pressure must be), the line of
pressure (i;e., the three branches of this line) cannot be
drawn arb}ty?rily. FPor a line of pressure to be possible, the
staticaliy iﬁdeterminate reactions caused by the tensioning of

cable placed along this line (i.e, of the three cables placed

along the three lines of pressure) must be nil.

Having found such a line, we may apply to the cable
profiles linear transformations of a certain type without

altering the line of pressure.

We shall assume that the portal frame is symmetrical.
We shall call ¥ the magnitude of the prestressing force in the

gransom and F' and F'' the magnitude of the prestressing force in

the left and the right leg respectively.
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We shall call 'g' the height of the legs, measured from
the centre line of the hinge to the neutral axis of the transom,
and 1 the span of the transom. We shall alsd assume that the legs
and the transom have constant rectangular cross-sections of equal

width 'b' and of a depth 'h' for the transom and 'k' for the legs.

The results waich we shall obtain below can easily be
extended to other cases (unsymmetrical portal frames, non-
rectangular cross~sections, different widths b and b' for the

transom and the legs).

For the sake of simplicity, we shall call the three

separate lines of pressure (i.e. for the left leg, for the transom
and f or the right leg) the line of pressure of thé freme, and
similarly we shall call the three separate cables, the cable of

the frame.

The only statically indeterminsate reaction in this
case is the horizontal thrust. The problem therefore consists in
determining a cable profile lying entirely within the limiting zone
and of such a shape that the tensiuning of the cable causes no

horizontal thrust,

Let 'I' be the moment of inertia of the transom sznd 'J!
that of the legs. Let 'y' be the distance of a point on the
centroid axis of the cable to the neutral axis of the transom or
of the legs, as the case may be; ¥y will be positive or negative

according to whether the point in question lies outside or inside
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the rectangle ABCD formed by the meutral axes of the members and

which .e shall cuzll for short the neutral line of the frame.

Finally, let Z be the ordinate of a point on the neutral line

of the frame.

The limitingvzone is determined by the same géneral
considerations as previously, i.e., by the conditiosn that theé
line of pressure uust remain within the limit core for all
possible loadi.g cases. The case of the portal frame differs’
however in one particular frou that of the continuous veam.
in the latter case the compressive force had a constaht
ma.nitude throughout the beam, equal to the prestressing force,
whereas in the case of portal frames, the magnitude of the
compressive force depends not only on the prestress but also on
the reactions due to the external loads. Thus, in the legs, the
prestressing force F' is increased by the vertical reactiohs,
added algebrically in the'transom the prestressing force F_is

increased by the horizontal thrust.

If M is the moment and N the normal force in a point
of a member due to any given loading, ¥ the prestressing forfe
and e its eccentricity, theleccentricity of the line of pressure
of this point will be given by

M« F€
e * -
F AN

The line of pressure must remain within the limit core.
Calling My, Nq and Mp, Np the values of M and N corresponding to

the smallest and to the greatest value of the expression W+ e
F+WN

regpectively, this condition is translated by
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Let point E be the centre of pressure for prestress
only and let W owd o ‘be its ordinates with respect to the
line €¢'  and € ¢ respectively; c'e' and e ard as previously

the lower (inner) and the upper (outer) limit core' boundary lines.

we have

and the above inequalities become, after transformation:

K
wy * Mg

T
b
-—-“
oxndh ‘57_< —~ W utlL I
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It follows that if we measure the ordinates M ey
&
and M- “’-\’C from the lines ¢'e' and ce¢ respectively,

<
positive valucs being meusured downwards and the negative values

being meusured upwards (Note the negative gign in the previous
expressions), the centre of pressure must remain within the gzone

unshaded in figure .

This rule is similar to that given previously for

siltple bending, the moments [y amd M2 now being replaced by

My + Ny ‘-\é (moment with respect to the lower edge of the -
limit core) and N, - N-,_‘% (moment with respect to the

upper edge of the limit core) respectively.

The magnitude of the horizontal thrust @ is usually
small compared to that of the prestressing force F in the transom.
Its effect may therefore be neglected in a first approximation

and the limiting zone determined in the same manner as before.

In the frame legs, on the contrary, the magnitude of
the comprdssion, due to the exfternal loads and reactions is always
lar:,e compared to that of the prestressing force ' and I''!
and must therefore always be taken into consideration for the

determination of the limitias zone.
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Calling Mo the bending moment at each point due %o

prestressing only, and not takin, into consideration the member

shortening due to axial thrust, the condition that the thrust

caused by the prestress must be nil can be written:

J‘ moz dA
. =0
I

the integration extending over the whole contour XRER ACBD,
The moment M _ is equal to Py in the transom and to F'Yy
cosd BN Y in the left and the right legs respectively. The

transom is horizontal and therefore Z = g = Const.

The integration may be written

J -
i} - F”

F LI
£ f\zdz'* }_8_ f:’&" M f
3 °

[

z4&z =o
wy

Galling shiffness of a member the ratio of its
moment of inertia to its length, the stiffness of the transom
is é? and that of each leg is . The ratio of leg
stiffness to #iransom stiffness is:

_ 34
=

The one extreme value of this ratio, ? = 0, corresponds
t0 a simply supported transom, the other, ? infinite, corresponds
to a transom fully fixed at both ends. Introducing thnis ratio into

equation (1) we may write it im the form:

]
x2) F-'fpVZafl -rF'"[ vzdz "‘F/ag"g’ /‘JG[Z =0
o o

o
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The two integrals for the legs, although they have the
same form, may not huve the same value if the function defining y 1is

not the same for both.

For the sake of simplicity we shall assume thaf the
prestressing conditions are identical for the two legs i.e., that
' = F'' and that the function y is the same. Thehcase 9£'4
unsymnetrical prestress presents no special difficugties (%nd{'-

we shall see one below).

If the prestressing conditions are identical in both

legs, equation (2) may be writtenf in the form:

@ 2F ﬂ'z"’ez*” f?”""’

0

=o, e,?):.o.-hm(_3) beoesecary F/golZ"O

of /
54
This can be satisfied either by f YLz =0 " waich
means that the prestressing cable is nldced in the frame lgg in
such a manner it does not teud to displace point C out of plumb
with respect to 4; a particular case is that of axial prestressing
or by F' = o, e, noprestre.sing. Tnis solution is usumlly
inadequate because the legs can not withstand without prestressing

the effects of the subsequently applied external loads, unless it

is made in ordinary reinforced concrete.

V4
If P is infinite, equation (3) becomesf 3dz =0 an

o
expression which we have already met for a beam fixed at both ends.
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The cablesin the legs are often straight and pass
thromgh the centre lines of the hinges. Assunding that both legs
are prestressed identically and callin. W  the eccentricity of th
leg cubles at the level of the horizontal straight line ¢% (the

neutral axis of the transom), we have in the legs:

j:u%—
J § 2  ug*
_( uz - «d
M&j“z"‘z'df"‘g’“dz 3

Houation (3) may bhen be writu n;

@) —’;F'-“ZS *F’a fydz =0

o~ ()

7 fM'~'=°

In this case the general problem is pesed

as follows:

The cross sections of the legs and the
transoms and magnitudes F' and T of the reguired
prestresving forces are determined by the analysis
of stresses due to the external loads. Bhis determines

the three limitin; zones.

Equation (4) furnishes a relationship between

w and [ 44X,

If the limiting zones of the legs are reduced to a
point at the top (i.e. at the neutral axis of the transom), as

is the case when the legs are dimensioued strictly, the
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the eccentricity u is known " a prion".

%

The probzem is then reduced to finding a curve lying
entirely within the limitin_, zone of the transom and with a shape

4
such that the expression j JAx

[

Y
[i4x = -3 F P

4

If the legs are over dimensioned, we have a certain
latitude in the choice of u provided that equation (4)

remaing satisfied.

However, the condition that the cables in the legs
should be straight and should pass through the centre lines
of the hinges, is by no means compulsory; the general equation(3)
im always applicable. Thus in some cases where it is difiicult
or impossible to satisfy equation (4) corresponding to straight
leg cables passing through the centre lines of the hinges, it way

be advantageous to choose some other shape for these cables,
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the eccentricity u is known " a prion .

3

The probkem is then reduced to finding a curve lying
entirely within the limitin, zone of the transom and with a shape

l
such that the expression j Jix

/]

4 Fl oy ul

/3&z =-—%"f 7

4

If the legs are over dimensioned, we have a certain
latitude in the choice of u provided that equation (4)

remains satisfied.

However, the condition that the cables in the legs
should be straight and should pass through the centre lines
of the hinges, is by no means compulsory; the general equation(3)
is always applicable. Thus in some cases where it is difficult
or impossible to satisfy equation (4) corresponding to straight
leg cables passing through the centre lines of the hinges, it way

be advantageous t0 choose some other shape for these cables,
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the eccentricity u is known " a prioa".

£y

The probkem is then reduced to finding a curve lying
entirely within the limitin_ zone of the transoun and with a shape
4
such that the expression j gLx
o

Flyul

/gg&z = —%" F 7

If the legs are over dimensioned, we have a certain
latitude in the choice of u provided that equation (4)

remains satisfied.

However, the condition that the cables in the legs
should be straight and should pass through the centre lines
of the hinges, is by no means compulsory; the general eguation(3)
is always applicable. Thus in some cases where it is difiicult
or impossible to satisfy equation (4) corresponding to straight
leg cables passing through the centre lines of the hinges, it way

be advantageous to choose some other shape for these cables,
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provided that they remain within the limiting zones of the legs.

€

In effect, the meaning of the general equation (3) and
of its particular form {4) is that the prestressing of the legs
deforms the legs in such a manner that the leg ends A and B,
which, were they free to slide on their bearings would have moved
under the influence of the transom deformation to A' and B'

respectively, are brought back to their original positions A & B.

Therefore, if the lines of pre.sure which &t is
possible to place within the limiting zone of tlie transom result in
deformations which of is impossible to compensate by the action of
straight leg cables passing through the centre lines of the hihgés,

we must endeavour to give the leg cable a more effective shape.

A straight cable parallel to the neutral axis of

the leg, i.e. with a constant ecentricity V, provokes a

deformation:
d et
J. fz2dz = va
2
4
A parabolic cable passing through the centre line of the

hinge and having a vertical tangent at the top with an ecentricity

W (say of the parabola), provokes a deformabion:

8
ija‘Z = ?-_“’_.8.L
0 /12
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Comparing these values with that for the straight cable
passing through the centre line of the hinge and having the saue
ecentricity at the top so that u =V = W, we see that the parallel
straight cable and the parabolic cable are 1+ and 14 times more

respectively.

Possible profile of cables obtained from a stable line of
Dreswurc. on tne assumption that the two frame legs are
prestressed identically by straight cables vassing through
the centre lines of the hinges.

On this assumption the stable line of pressure, which
must be entirely within the limiting zone must satisf& the conditior
expressed by equation (4).

é F' aé

sz:-%"p”"i
g
Let us assume that some other cable profile gives the
same line of pressure as that defined by this equation. This
cable profile will still obviously consist of two straigBt lines,
one in each leyg and passing through the centre lines of the
réspective hinges, and of a curve, in the transom, which must

*
be parallel to the stable curve defined by the equation.

In effect, the second profile is not stable, since it
results in a line of pressure different from itself, it causes

therefore a thrust @ which causes in the transom a constant

*Piie general rule requires that the two curves must have the
same curvature. The "parallelism" is due to symmetry.
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bending moment Q@ which displaces the line of pressure by

the azmount ..3%?-

Let us assume, therefore, that the transom cable has been
obtained by translating the original stable line of pressure by
an amount a and let us how try to determine the amount by which
we have to rotate the leg cables {(about the centre lines of the
hingés) in order to obtain a thrust @ equal to E2  hich will
make the line of pressure in the transom coincide with the
original stable line of pressure. Let us call V the supplementary
eccentricity of the leg cables at the tcp (i.e. at the neutral
axis of the transom); the total eccentricity of the leg cable

at the top is thus increased from U to U + V,

This new state differs from the original by the
presence of bending moments Flvz in the legs and I a in the
transom due to the supplementary eccentricityes. Since the
thrust in the original state was not, the thrust @ in the

new state is due to these supplementary bending moments only

and therefore equal t{os
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The value V is the measure of t‘r;e rotation we set out

to determine. «ith this value of V, the thrust @ = %’-’- will being
the line of pressure in the legs back to its original position
because this thrust will cause at the top of the leg a bending

moment - F a equal to - F'V and the resultin. total moment at the

. ) . ; . . *
leg will be F'(UxV) -F'V _—¢.e. | #he same as originally.

In the transom the line of pressure remains the same because

the curvature of ti,e cable has nat atdaw-n



94

The bending moment increments at the corners of the
frame beiny Fa for the trunsom and MV for the legs, we can
obtain from a given concordant cable and on the above assumptions
(identical straight leg cables passing through the centre lines
of the hinges) all the possible corresponding cable profiles by
giving the transom cable any arbitrary translation and at the same
time giving the leg cables a corresponding rotation, this rotation
being calculezted in such a manner that the increments of the
bending moments due to the tensioning of these three cables
should be equal for the transom and for the legs respectively
because this common moment increment is then caucelled by the

resulting statically indeterminate thrust.

This was in fact evident "a prior{ because it is the
statically indeterminate thrust which brings the unstable line
of pressure back to its original stable shape; this thrust causes
at the frame angle the same bending moments in the transom and

in the le;s.

This rule is equivalent to that established for
continuous beams., In a continuous beam, we are free to alter
the ordinate of the cable over a support witn respect to the
ordinate of the concordant cable because in a continuous beam with
a uniform cable, the bendin, moment over a support can only have
one single value which is the same immediately to the left and
immediately to the right of the support. A translation of the
cable over a support alters therefore the moments imuediately to the

left and immediately to the right of the support by the same amount

and as we have seen, the statically indeterminate support reactions
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caused by such a translation be¢ing the bending moment back to its

original value cocresponding to the concordunt cable. In a portd
frame, the beuding moment at the angle has two values (equal), one
for the leg, the other for the transom. The simultaneous trans-
lations of the two lines of pressure at that point must be so
correlated to each other that they cause the same apparent moment
increment in the leg and in the transom, these being equivalent

to two spans of a continuous beam lying on either side of a support.

In the case of portal frames, the possinilities offeged
by such profile tranformations present somewhat less practical
interest than they do. in the case of cdntinuous beams because
they cannot be used to reduce the duration of the cables, the
transom and leg cables being distinct, these are no angular points

or breaks of profile which could be eliminated.

However, cablg profile transffrmations may some times be
used to alvantage to displace the leg cable into a position where
it can be more easily tensioned and anchored. In particular, it
is often advantageous to have straight vertical leg cables placed
along the neutral axis of the leg; this can be achieved by

adeguately translating the transom cable.

A safety check must of course always be carried out

according to the principles set out on page 9!3

Correction for transom shortening

Under the influence of the prestressing force ¥, the
transom CD shortens.
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If point D could slide freely, the leg BD would take the
position B'D' and in order to bring point B' back to B, we would
have to exercise a certain thrust a acting in the sense shown by the
arrows. Points A and B being held in position, the effect of
transom shortening is to reduce the prestressing force from
F to F-~a and to increase the bending moments developed by
prestres.ing by the amount @g in the transom and @z in the
legs. These total or effective forces and moments are the
ones ﬁhich must satisfy the previously established equations

(2), (3) and (4).

Let us make the assumption for which we established
equation (4), i.e., straight leg cables passing through the
centre lines of the hinges; The effects of transom shortening can

be analysed as follows.~

1. In order to obtain an effective compression F in the
transom, we must apply a pre-stressing force F, AF. To the

transom shortening due to F1, corresponds a thrust.

E
(5) Q FQ x 'ﬁ_"‘
and we must have Fl. —Q, = F
This gives F, -Q x o =F

oo (- _p—'>:F
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Let us calculate Q
effective

For a prestressing force F in the transom, the

compression in the transom is ¢ -@ causing a suortening of the

transom,
F-a

ES

Al = [

caused by this shortening

On the other hand, the thrust @

is given by
Aé;.@.j?—iﬁ‘},
- £ Ir . -

The integration being taken'over the whole contour ACDRB,

We thus have the equation,

3 %‘-ﬁ _;:_Q.
QLT =« 3 )= ¢

which can also be written
+ X - F-<
tT s TS

Introducing the radius of gyration r of the

transom (in order to reduce sand I to a single parameter),

we obtain:
A \ + -3:‘—')3 - Y = £
Qé‘ = v 37 = <
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Introducing this value into equation (5), we see that

the required prestressing force is not F, but

F
\é) F! =' Q
T
=
- M £
%
5“-(_1-«--3—?) + X F
Y -+
L A o
6’“C‘+'_{P)+‘("
k.

2. ' The thrust @, corresponding to Fy will bring B' back
to B, but if will also modify the lines of pressure: it rotates
the lines of pressure in the legs outwards and raises the line

of pressure in the transom. The amount of rotation, at the top

of ley, is d,' = ?&:%; and the amount of translation in the
=
transom is 4 = ¥
e

We wish the final or effective line of pressure

to be entirely within the limiting zone.
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To achieve this we shall rotate trnis limiting zone for
(F') (for the lezs) inwards into the position ( /' ) by an amount
displacing the top of this zone by the distance 4/ . W%We shall
slso have to transform the limiting zone for (F) (for the transom

as follows).

The ordinates of the zone (F) with respect to the neutral
axis of the transom will be reduced in the ratio ;} , Whnich gives
the limiting zone (f), and this limiting zone (f) will be lowered

a
by the distance 4, = -‘-'-;— .
{

The line of pressure. corresponding to the prestressing
forces F1 and F - and making no correction for the transom
shortening should be entirely within these transformed limiting
zones (F” Josed ( £ Y. Then .he real line of pressure, taking
account of the thrust a caused by the shortening of the transom,

will lke within the original limiting zones determined from the

external loads.

In effect, let us consider a cable lying within the
transformed limiting zone ( H‘ ) and ( Fy ) and wiich would be
concordant if no allowance lmd to be made for transom contraction.
Let us tension this cable, the tension being equal to F1 in the
transom and F' in the legs. The iransom contraction creeskes a
thrust @ . +‘his thrusit does not alter the value F' of the
compression in the legs Lut causes the line of pressure in the
legs to rotate (about the centre line of the hinge) outwards by

a
an amount &= Fﬁ ot the top. In the transom, on the
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contrary the compression is reduced from F1 to I' and at the same
time the bending moments increase by @,®% . Had the fzzxpreszivm

compression remained equal to F the line of pressure, the line of

1
pressure would have reésgén byh %é% and consequently into the
limiting zone (f). At the same time, however, the compression
is reduced from F1 to I'. Yhe ordinates of the line of pressure
corresponding to the effective pressure I can be obtained from
those corresponding to F1 by multiplying them by the ratio {% .
Thus the line of pressure finally comes into the original

limiting zone (%).

These considerations can be summarized in the following
rule: Tor the legs we take a cable tensioned to ( F' ) obtained
by rotating the zone (F') outwards by a distance equal to f%%
at the top of the leg. For the transom we take a beam tensioned
to F1, wiiich is given as a function of F by equation (6), and

1¥ing within a limiting zone obtained by reducing the zone (F) in

the ratio F_  and then lowering it by a distance &, = 23

Fi £
the ordinates y of the lines of pressure lying within
the transformed limiting zone ( R') and () will be determined in
such a manner that the tensioning'of the cables causes no thrust
other than the thrust a due to transom shortening, these ordinales m
must then satisfy the following equation equivilent to equation (4)

¢
(7) [Mx s-TrxE P
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It should be mentioned that the increase of prestress
required by formula (6) is usually slight. The limit values of

S
P, are F, = P for [ =o ("Seft Povtal) osed Fy = F(l"’%,_) for p

1 1
infinite ("Hard" portal); the radius of gyration (r) of the
transom is usually small in comparison to the height 'g' of the

legs.

Assuming the transom to be of rectangular cross—section
with a depth 'h', the height of leg 'g' of the portal frame mus@
necessarily be greater than LY .and therefore g;— will necessarily

‘ rA

be greater than E: . The radius of gyration 'r' of a rectangular
4

L.
section being given by X+ = %l ) the amplifying factor
\.kll; will always be very much smaller.dRova | + - -

3

As can be seen from qumation. ¢7) , an increase of the
transom prestress from F to F1 reguires a corresponding increase of

The total increase of the prestress in the

: #*
the ley prestress F'.
waole of the portal frame, made necessary by the shatening of the
transom, is therefore only slight. %This is no longer the case, if tr

the frame legs are fixed.

As has already been mentioned, all the above arguments
which have been limited to the case of both portal legs being
prestressed identically by shraight cables passing through the

centre lines of the hinges, can easily be generalised.

*Only if it is required to keep to the same value of U and
to a given shape of the line of pressure.
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CHAPTER 4.

LATE.TALS AND TEST SPECTAELS

4.1 MATE.LALS

All the portals were-cast with concrete consisting of
round gravel 3/4" maximum size, Bhadripur sand which were made
available at the I.stitute and A.C.C; brand normal Portland
Cement conforming to I.S. 269 of 1951. The properties of
materials and fineness modﬁliifof the ag_regates are given

in Appendix IITI, -

4.2 THE kLIX

The concrete mix was 1:2:4 by weight, with 2 weter
cement ratio of:O.éS. The mix proportion and the watef-cément
ratio were designed to give a 28 - day cube strength of 4;000

p.S.1.

4,3 REINFOACENNT

A nomingl reinfofcement of 4 Nos. 3/8" dia. n.S3.
longitudinal bars were used. The'egds of the rods were hooked
1/4" dia. i.3. rods ties were used at 9" c/c in the le»s, 1/4"
diz two-lewged stirrups at 6" c/c Were used in tne transom. The
gtirrups and the ties were welded to the main longitudinzl
reinforcement bars. The welding ofwthe stirrup and the ties to 1
the main rods ensured that the spacing was not disturbed at the

time of concreting.

(Contd. )
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4.4 TEST SPECINENS

Three two-hinged Portal frames: Two for a central
load of 3.8T and one for a third paint loadin, of 2.8T have been
designed on elastic theoryléoﬁéidera%ions and have been tested
to failure. The frames tested have a span of 9 FT. between leg
centre~lines and a height éf 4.5 FT; frow the ceutre of hinge to
the centre line of the transém. Tﬁ;'portals have been cast mono.
ithically thereby establishing continuity between the lezs and T
the transom, each having a cross-section of 10" x 10". The
Gifford-udall system of présfresaiﬁéfwas:adOpted for the portals
designéd for a cen.ral load of 3.8T, there being ten 0.2 in.
high tensile steel wires in the transom and six of 0.2 in. in
each of the legs. The Fagnet-Blaton system of prestressing was
adopted for the portal designed for a third point loading of 2.8
there beins eight C.2 in. high tensile steel wires in the transo
and eight of 0.2 in high ténsile steel wires in each of thé legs.

RS

The transom wires were anchored on the end face and leg wires.

anciored on the underside of the feet and on the top surface of

the transom. ~
1\‘.‘ ‘
The tests were conducted on the prototypes. The
frame supnorts were formed from 14 in. dia round bars of
hardened steel passing frowm front to back of the feet. A knife-
edge was machined on these bars for‘; length of 2" from the ends.
They wore positiéned in thg moulds so that the centre-lines of

the knife-edges were in the same direction as the resuctant thrus

due to the vertical one horizontal reactions. Fach end of esch

knife-ed_ e was supported in a V=groove machined in the head of




gy
SE0N

a9 1" dia bolt. The bolts were fixed in structural steel chanucl
(6" x 3") assemblies which were themselves welded to the base
plate . Thus each knife—edge'was adjustable for
both vertical and horizontal movement to suit small variations
between frames. A close-up of one suppnort asseubly is shown in

Flate 9 .

In order to prevent the feet moving together while the
transom was prestressed, a steel strult was wedged between the

feet. o

Once the frame was raised into its test position in the
seatings and a small loading had been applied, the lLiorizontal Xxkrx:
thrust is developed and measured by means of the tie connecting
the two legs. This tie consists of two brackets connected by
means of a 5/8 in. dia. rod, two U-bolts and a spring balance.

This is shown in Plate @ .

The interference between the le;, wires and the
transom wires at the frame angle was avoided by passing the
transom wires'through a pipe-fork as shown in Plate 2
Similarly the interierence between the leg wires and the round
bar was avoided by using a similar pipe-fork as éhown in
Plate ! . The ducts, both in the transom and the legs, were
formed by embedding corrugated metal sheath tuves to the
required profile in the concrete. <The coriugated metal sheath

o

tubes were held in the required position by suspendin,, them in the

steel moulds by means of wires. ..ecesvary ho » steel had been
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provided in the end-blocks to take care of cracking stresses.
The required splay for prestressing the wires was provided by
means of funnels p;ovided{?% the ends of the pipe-Torks. The
slope for the arms of the:pipe-forks was so provided that there
was no friction caused while the wires were prestressed. Care
was ta. en to see that no concrete or cement mortar entered the
duct by putiing placter of paris around all the joints and

puttin, cotion wastes in the funnels.

The section of tiie stee. mould is as shown in
Figure 3o ., It consisted of a base plate 1/4" thick and the
side platés (also 1/4" thick) strengthened by welding 2nx2"x1 /4"
angles along their ed_es. The side plates were fixed to the basc
piate by means of 3/8" dia. bolts. IThe top edges of the side-
plates were tied to_etner 53 a flgt to withstand the effect of

vibration., im holes were were drilied in the c¢nd-plates and

sideeplates of tie nould for pavsing the high tensile wircs. 2 in,

dia. holes were drilled ir the basexplote to caryry the supportisn_

round ba s. ‘he whole assembled mould was placed on 4" x 4" x 16"
Vo

wooden pieces 8o that the bolts can be inserted or removed

at ease. Lhey also facilitate the liftin, of the por-al.

4,6 FLILLC U CAGES

The reinforcement ca.es were ac.ually centred in
the formwork by put.in_ 1" cubes in between the case onud the
base niaie. ILicidental y, they <nsurec tne exact cover on

all sides.
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4.7 CASTING

The materials were mixed in batches of about 3.5 Cft.
for five minutes in the petrol driven knicker broxer mixer. “he
concrete was placed in the mould in small quantities and thoroughly
vibrated with the electricaily driven vibrators. Theee 4" Control
cubes, three numbers 6" x 12" cylinders and three numbers 4"x4"x16"
beams were cast for each pertal with vibrator identical to those
of the portal. “hile casting, care was taken to see that the
sheath was not disturbed from the required profile. The bearing
plates were cemented to the portal frume at one at each end of the

!

transom and are at each end of the leg.

4.8 CURING LD STCRAGE

The portals, cubes, cylinders and control beams were
- ’
o TR |
stripped from t.e molilds 24 hours after casting and were stored
on ground with damp gunny bags, kept damp all the time. After

28 days of water curing prestressed snd grouted and then wexs

they were stored away till the day of‘testing.

4,9 DRAITRLSSING (AN, GRCUTLIG

The fir§ﬁ’two portals were prestressed with the
Gifford-udall system~énd the third portal was prestressed with the
Coon

Hagnet-Blaton system,, Reliance was placed on the extension of the w
wir.s than on 'the pregsure dial pauge readings as the pressure

/ . ! : ér
gauges were not giving consistent readings. Any stpp occuring

from the anchoring of wires was allowed for.
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After prestressing was over, the ducts were cleaned
with water'pumpedvunéer pressure. Incidentally tnis also showed tl
that the ducts were not clog:ed. Then cement-sand gfout in the
ratio 2:1~with a water-cerent ratio 0.67 was injected under
sufficient pressure into the duct through the grout hole till it
freely camé out through the other end, Zhen the hole was

closed. “he _srout was allowed to set and then the portal was

ready for testing.



CHAPTER 5.

5.1 IESTIHG ACHTINE

b

The portals were tested on a 500 ton Losenhausenwerk
Universal Testing iiachine., It permits besides of the gimple

compression test on cubes etc., the execution of compression and
R

“ /‘f J— ) . 0

\dblumns and the execution of bending tes

S .

tests on beams, portals etc.

collapsing tests on longer

The transverse head with.the upper pressure plate can
be adjusted to a required helght between zero and the maximum
~distance of pressure nlates i.e. about 157

.\ ]

The machine columns afe-equipped as threaded spindles f
for this purpose, on which the trdu sverse head can be shifted by
means of nuts moved by means of electric motor by warm gear. The

adjustment is done by a switch on the pump case.

'
The bending device consists of the bending tfble of

length 12 ft., and the bending supports which are slidably

arranged on the bending table and.the bending stamp. <he bending

o

stamp is fastened on the u&her ‘pressure plate by means of fish

plates attiched to it and the'supplied screws. vhe bending table

moves on thé 5 meter ratio. Ipitially the bending table is

moved out of the .wuchine columns and the test specifien is put

on it. Jhen the bending tuble alon: with the specimen is pushed

into the machine columns.



The load is spplied by hydraulic pressure of oil
with thelaid of an‘electric'motor by operating a valve. The load
can be aﬁplied at any desired rate by adjusting the valve, and
decompressing and‘feleasing valves are also provided to take off
the losd waen necesssry. <Jhe load applied is measured from the
dial gaﬁge.

For the JStress - strain observations on concrete
cylinderéiand for testing the cubes, the 200 ton amsler compre-
ssion testing machine was used. The strain observations were .ade

by means of the Lamb's Roller Extensométer.

The control beams were tested in the 50 ton Avery
vniversal Testing l.achine. They all work on the same principle of

hydraulic pressure.

5.2 REACTIQN ME.SURTKS ZOULIM.TS:

The vertical reaction under eacti leg is measured

by mesns of a 10 ton hydraulic capsulie.
r

The horizontal reaction is measured by nmeans of a
sprinsg balance inserted in the horizontal tie. A turn-buckle is
also inserted in the tie to keep the centre lines of the legs aism

always 9 ft. apart. The whole arran_cment is shown clearly

in the plate.

The hydraulic capsule is placed on a 16" x 16" x 1/4"
plate resting on 8 .os. rollers (each 1" dia and 16" long and the

surface is finished smooth) free to roll on the bending table.
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The base plate of the hinge rests on the top plate of the

hydrzulic capsule.

5.3 10 TON PROVING RIuG

Tn order 16 measure the applied load accurately, z 10
ton proving ring was inserted between the upper pressure plate of
the testing wachine and the.centre of +the transom. The calibration

chart supplied by the manufaciurer enables the load to be determi-
ned from the reading in the dial ‘dauge -attached to the proving

M
i '

ring along the vertical diameter.

5.4 STRAIN NMELSURILG IOUIPLIGNIS

4s the electric resistance: strain gauges of suitableé
-
gauge length were uot avalldble Demecws demountable mechanical
\‘ \)‘, ‘\\\f
strain gauges having 8" gauge length was used to measure the
, v

P

: ' :
strains in the concrete. The brass studs were fixed to the

concrete surface with a special ‘type of glue at the reguired gauge

leugth. . This was done by wakins use of the gzuge bar possessing t
o

- centre purches - at a distance apart equal to the length of

measurenent - with difierent conical points. The correctness
of the Denmec's strain gauge is assesced by means of comparing the
gavge-len;th with that of tne invar test bar.

oo
[

5.5 DEALLCTION 1L SURING 5 UL RS

%)

The deflection ueasureuents were made by using

Baty's deflectbmeters with stands having a masnetic base.
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ih
The deflectometers were atdached to a stand as shown in the plateg.
411 the dial gau es were fixed outside the portal so that they were

not dawaged when the portdl was tested 1O failure.

5.6 PREPARATION OF TEST SPECIMEI

The portals were cleaned with a brush and were given
two coats of white-washing. The centre lines of the transom and ti.
legs were cleurly drawn., The strain measuring studs were fixzed at
8" an rt to teke iio the Lteoin (ouge pelito. Strains were measured

both ot the centre of the transom and at the frame-angles.

5.7 TESTING PROCEDURE:

ihe first step in testing was to ensure that the load
was apﬁlied centrally and pérpendicularly to the transom axis for
thé portals I and LI. For the portal ILL, the load was applied
perpendicularly at the third points.- Thié was_alsafensured by
measuring the vertical reactions in the hydraulic ér ssure
capsules., Since the portal is symmetrical and the lozad is also
symmetrical aboul the central axis oi ke portad, the reactions are
to be equal. 7The diagonal length of the portal was also measured
now and then to ensure that theere was no sideswa,. An initiél
load of 1 ton was applied and tie strains, deflections and the reac-~
tions were nuted. Lefore .easurin_ the horizontul thrust, care was
always taken to see that the distence between the centre lines of
the legs was alwéys 9 ft. For this purpose, two disl sauges were

fized at the hin_c points and tiheir readinss were constantly noted.



r .,)
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L A c .
The load was apglied at a constant rate in increments of 1 ton.

The readings were taken at 1 ton interval. +he load was kept

constant for 2 minutes while the readings were taken.

The load at the first crack was noted and the por

o

was loaded to failure., All %ﬁé‘cracks were cleerly marked

with japan black.
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SHAPLAR 6.

CB34R JaTICTS & CallUL.ICr3 73
PORTAL 1I.
Loading!Proving sHdorizontal | Hydrau-)Lydrau-{Deflec~!
Tons ,Ring 1401 7Thiust. ,dic lic tion at, Remorks
, 10 Tons. ,  1lbs. , capsule, capsule, tne \
, 100 Div. ' v 7y v Vo, centre ,
,L.C 0.0001", ,Tons. ,Tons , (Iw3) ,
0 0 . 112,50 0.4 0.4 0
1.0 28.0 . 485,02 0.9 0.9 0.005
2.0 58.0 292,08 1.4 1.4 0.011
3.0 88,2 . 1322,717 1.9 1.9 0.015
4.0 117.0 7 1763.70 2.4 2.4 0.019 [Crack at centre
: Jof Transo:.
{ formed.
5.0 145.8 ' 2425.08 2.9 2.9 0.022 gcﬁgcksegg both
[ ) ¥orm§3.
6.0 176.0°  2976/24 3.4 3.4 0.025

| : S {Cracks appeared
7.0 213 3527439 %.9 %.9 0.029 {on legs. Dial
| {Gauses remoted,

SR
l

B gCTacks advan-
- ced hoth at
8.0 243 4078.55 b4 44 ~ lcentre and
Jknages,
F 4 - A
9.0 270 4739.93 4.9 4.9 Cracks widening

{Central crock

O L B Y jrouaind tne

{crack advanced.

1.8 5.5 ' 806491 6.3 6.3 | Inseried 300

12,5 57,5  6172:94  6.65  6.65 Portal fuiled
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PORTAL II
Loading|Proving "Horizontal'llydraG-{llydrau-' Deflec-(
Tons ,Ring 1399 ' Thrust 'lic- ,lic -+ ' tion at,
, (50 Tons) ! Lbs. 'capsule,capsule' the \ Remarks,
, 100 Div, ! V4, Vo - ' centre |
,L.C 0.0001™ 'Tons  yons. - ' (IN3) ,
0 0 112,50 0.4 40,40 0
1.0 4,9 485,02 0.9 ‘ 0.9. 0.005
2.0 9.8 222,08 1.4° * 1.4 0.011
3.0 14.7 1322.77 1.9 > 1.9-%  0.015
. . l;_tll \\
4.0 19.6 1763.70 2.4 - 2.4 0,019 |T¥hrst crack
{formed at
{centre,
i -
s {Cracked starte
.0 24,6 2425.0 . . . AcK "
5 4 425.08 2.9 2.9 0.022 {at left knee
6.0 29.5 2976.24 3.4 3.9 0.025
7.0 34,4 3527.329 3.9 3.9 0.029
[ i
8,0 39.3 4078.55 4.4 44 0,033
9.0 44,2 4739.93 4.9 4.9 3 0.042 [Left lez
o . { cracked fully
9.75 47.5 5070.63 5,07
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PORTALS I & IT

-
S

Loading ! RS _ Compressive'Radius of
Tons _Ben%}ng-moment Depth of nnptral'Strain in Curvature.
at Mid-Transom Axis from the the Con
M (£4.1bs). top fibre, nd 70 “ORCT
CIESY '
0
1.0 6,89 x 107 7.0 0.582  0.083 x 10~4
2.0 9.65 x 1@i‘ ; 5.2 1.067  0.206 x 10~4
3,0 13,2 x 103 4.9 2,619 0,534 x 10~%
4.0 16.25 x 107 4.0 3.395  0.849 x 104
5.0 18,32 x 107 3.5 5.335  1.52 x 10~4
6.0 20.88 x 103 2.9 7.954  2.74 x 10~4
9.0 24.01 x 103 2,136 16.248 7.5 x 10-4
. ! r |
O i//"*\\-

'3 ll__:j
b .o ]

—ad
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PORTAL TIT,

Loading!Proving

tHorizontul {Hydravu~|Hydrau~- !Deflec- !
Tons ,ring 1399 , Thrust ,lic  , lic gfg— ytion at , Rem.rks.
, (50 tqns) . {1vs)  capsuler V, S , the :
108 00601, Vi vtoms)  OSTIES
e . t v(Tous) ¢ NLERS
12 ! ! ! 1 t
0 0 112,5 0.4 0.5  0x8245  Rx@24%
1.0 4.9 418,87 0.9 0.9 0.0245
2.0 9.8 837.76 1.4 1.4 0.046
3.0 14.9 1256.63% 1.9 1.9 0.062
4.0 19.6° . 1675.51 2.4 2.4 0.076
5.0 24,8  2094.39  2.97 2.9  0.086
6.0 27.6 2%314.85 3.?5 3.2 0.097
7.0 34,4 2976.24 3.9 5.9  0.112
#x0 39x3 . BIEEXIR  Axk  Axk  Gxkom
S {Crack started
8.0 39.3 3395.12 4.4 4.4 0.128 {at both the
: {knees.
%
_ gCrack at the 1t
voa bottom fibre
|section
10.0 ’ 4808 4078055 ‘504‘\‘ 504 0'160
11.0 53,7 4585.61 5.9 5.9  0.187
Crushing of
concrete
16,0 76.5 8.4 8.4 {started on

6007.59

{ri ht knee at
{157
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I(a) Calculates lozd = 3.8T

A Cable consisting of 10 wires of 0.2" dia. is used.

sSu
= 0.3 x 249,984

Ultimate strength of the cable F 10 x 0.03 x 249,984

(SR

= T4,995.2 1bs.

Let a load W be applied at the centre of the span.

Let Mr be the ultimate moment in the mid transom
ind M'y the ultimate moment over the knee. Wy, the

ultimate load and W self-weight for foot run of the
\\\
tfansom. K

d1, the measured effective deyth at mid-transom = 5,209"

d{ , the measured effcctive depth at knee = 5,059"
_ Fsu
(a) W = b = 10"
bd1R T
. d1 = 5,209"
- 74,995, 2
10 x 5'209‘X 4,550 R = The concrete strength
tested on 1" cubes.

_ 4% 74,995.2
52.09 x 4550

14,995.2
23'7009.5



ng = | , . }4 —
d ' i s ‘fu

' . .. fs = 0.9 fu
nd = 0.41 x 5.209 = 2.136 in.

= 0.9 x 249,984

", Mr = Asfs(d, - ¥nd) | = 224,985.6 1lbs/
sq.in.

xxﬁﬁxxxi@
= 10 x 0.03 x 224, 985 6 (5.209 - 0.44 % 2.136)

l
(RS

67495.68 x 4. 269 |

Il

288,139 in.lbs = 24011.58 ft.lbs. = 24.011 x 107 ft.1lbs.
T
Theoretical :-r = 24011.58ft//1bsy

obscrved wr = 30404.57 ft.1bs.

(b) M'r

_ Psu ! -

= balRr o

_ _14995.2

~ 10 x 5.059 x 4550

__T4995.2

50.59 x 4550
= _74995.2 = 0.324"
23,0184.5
Ll £
= = 0.37 B ..
d4 A i 0.92
nd = 0.37 x 5.059 - .. fs = 0.92 fu
- 1.872 in. . = 0.92 x 249,984

= 229,985.28 ibs.
. 't = Asfs (d] - ynd)

= 10 x 0.03 x 229,985.28(5,059 - 0.44 x 1.872)



it

68995.584 x 4.235
= 292,196.3 in 1bs.

It

24,349.7 £5.35 0,
|

1l
N
-P)
i
&
O
-~
™
o

« « Theoretical w'r = 24,%49.7 ft.1lbvs.
observed h'r = 22,817.84 f4.1bs.

1

(c) Calculation of the ultimdte To d. Assuming redistribu.ion
‘ is complete.

wal 0l ey
4 g 3
jf ;q "
Ny ¥ '
{ii.+ [ XIX? = 24011.58 + 24349.7 = 48361.28 ft.1lbs.
o Wy xé? | = 48361.28 - 1012.5 = 47,348.78

]

. 4 [y
T. Wus g x 47348.78 N

= 21,0.43.88 s,

.Y 9.5 tons.

II., THIxD POINT LCACTILG

A sable consistingﬂ8 wires of 0,2" dia., is used.

. A\?\ Gq.
GBWRAL LIBRARY UNIVERSITY OF ROSIMEE,
ROORKEE,



Ultimate st.enoth of the ca le, dmmx=xBxxxiR
- . Psu = 8 x 0.03 x 248,984

8 x T499.52

59,996.16 1bs.

My @’y

Let Mr. be the ultimate moment at tue third point of the

transom and M'r the ultimate mon.ent over the knee.

Wu, the ultimate load, andwd, self-weight .er foot run of
y »

the transon. .

’ )

d1, the measured effective at third-point of the

tiansom = 5,289 in.

3

a'1 , the ﬁeasured cffective depth at knee = 5.001 in.

' e 5_ ____FSU. . t
(a) w —bd1R. b=10'
= 52,936}16
10 x 5,289 x 4,242 R = The concrete strernygth
tested on 4" cubes
= EQ:QQ6'16
52.89 x 4,242
= 59,996.16
200359.38 = 0-266
nd );i?-=<w9b

a = 0.3%1  1 ]

* o

« fs = 0.94 x fu



.. nd =0.3%31 x 5.289 = 1.639 in.

b ;)
b3
C e

= 0.94 x 249,984—
234,984.96 1bs/sq.in.

/

|

.°. Mr ='As f£s /(a$)- ynd)

. 1
TuEoveyical Ultimate, Mowewmt- of RELisTaRC R
chsexvad UlWMiwdtre WMeovwe 2 e\ of ReslsTawmcg

S ,
=8 x 0.03 x 234,984.96 (5.289 - 0.44 x 1.639)

£ 56,396.%9 x 4.568 = 257,618.71 in.lbs. = 21,468.22 ft.1bs.

= 21,468 22 'Ff--ll’s.
= 1], 012 7¢ fF b3,

) Fsu
(b) M'r bd1R
= 59,996.16
10 x 5.0C1 x 4,242
:: 5{3,20}6.16 _
Sio14s.42 = 0-282
f A s o
: : £ =073
ad o5y, o, * T
a e . :i
1 . . K _F&: 0‘93 x-ﬁu .
30 = 0093 X 249,984
.. nd ='O!33 a1
C oo = 232,485.12 1bs/sq.in.

=AO.33 x 5.001

= ;1:0 65

‘. M'r = Asfs (41 - ¥nd)

[

‘8 x 0.0% x 232,485.12 (5.001 - 0.44 x 1,65)

i

= 55,796.4% x 4.275

= 238,529.74 in.lbs = 19,877.31 ft.1bs.

Theoretical ultimate moment of resist nce = 19,87731 £t.1b.s

Observed ultimete roment of resistance = 20,635,224 £t,1lbs.
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. _
‘C’.‘.*.g-e‘e—g- = Mr + Mir
3 9

pia + L0 X99 x93 _ 21,468.22 + 19,877.31 = 41,345.53

. BWa 4 900 = 41%45.53

n.o 31#"1 = 4’0,4‘45'53

. Wu = 13,481.84 1lbs = 6T

-



el 'Depth %o ' N e

ne!Tendon' Load ‘lieasp~- "neutral 'f1e rb+£ :BlSp : R
. 1 DTO- ' 'tiveph— 'axis at 1M28 .Mzr ,tgpo— . %
,file. ' ! e 'failure g o 8 Ry :
' ' ' Mid—t- : '1id- ! ¢ ' ¥ ' O""'Ké}‘{::' é
, ' "tramn- Knee' tran- inee ' ' v * K
) 1 'Som N ' 'Som ’ (In.) ) ] t S

1 : : (In)h ! (Il‘l) ' 1 1 ' 1
> T3 4 1718 19 20 ''21 22 '23

Trans— Cenﬁrai 5.2C§7 0.59 2.136 1.872 1.62 0.99 1.64 *

formed. lo=ding

1 i 5.2(57 0.59 20136 1-872 1.62 0099 1.64 * %

" Third 5. 08”0 O-48 1.639 1.65 1 1.08 1.08  *¥%

point
loading.
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o memw‘MtW%'m m@m%ﬁ,Meﬂwmm h@ mate per- 'neutral 'r# ropo- ' B
+ 10 | | PO (deys),stren- load 'resistince  locd 'mate 'Wean wl-'lbi- 'load 'eet-  lamisat  "f 9 tition '
e, | ,175—39E%9%5-7-, gt (Qons)'mid- ' Tnee (Toms)'load 'timete 'meter 'Theo-'tate  'fullure |42 LT
b .;l - EIQS c b/, hvamson' (Ibfft),  'Doms 'load. 'lead, 'reti Fid- T X Yor T/ R
o i e A R Vil ! Tons 'cal ' tron- Knee'tran- hoe ' 0! 'K
[ | '?% ! ' ' | ! | ' o T lson oo (In)' '+ g
, ' R 1 ' | f f ) I [ f ! - '(Ia) [ B [
| f

2 T R T A A (O A | A S LR [ S B R I NP T PR

Trang- Central 5,209 5.059 120 4,50 P4 24011.58 24349ﬁ7' 11.8 95 LA 057059 2% 1.8721.620.99 1,64 #
forned, Lo.din; “ .

h 10,71
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05 05 10 051059 20% 1412 162000 1.6

!
"ol 5 5000 3T 42 R=4 U217 B R Pf6 133 0.4 C.48 1,639 1,65 1 1,08 1,08
point 2 P2=4 C
Loading, | . PRI %ﬁ

© Tobest ) Suflix 1 epplizs to e Loud socbion in trenson
and 2 fo $he imee gectien,

b) Inverse raiio b-len where neces.ury o Jive

disproportion Jrevser shon wnity,
¢

¥ Railure in'id-transon cnd rijht knee
# - Railure in aid-transon end left ley

bk Tailure in uiddle third of tronson
and richt lmee,



 CHAPIER 8.

CONCLUSIONT ArD DISCUISI(:..

The conclusions arrived at from the foregoing

analysis ares-

1). The moment-curvature re’ationshin s found in a’l
the three portal tests followed the curve '®' labelled in the

adjoinin_ fisgure. The inifial shape of the moment-curvature

3

. N o *
relation is n@t‘gart;cularly sisnificant in determining the
degree of momenﬁ“rediStributiQn in statically indeterminate

« s, L . . R .
vrestressed stxuctures. ’ lore important is the form of the relintio:

after the pesk moment has beecn rezched. The adjoinin_ figure

‘shows twyo idealised fofms of the mcment-c .rveture reletion. In

that labelled "&", ' the toment folls off repidly with increasii
.curvature afte%:éegching its peak velue,. it indeed represents a
brittle béhaiioui..'In such a case, there could be no moment
fédistribution'as it no lon_er retains its ultimate moment of
résistanéehtoééﬁable t e other critical seétions to attuin their
ultimate ﬁcments, In tie cose of the relati n labelled "b" that

is what is exwctly ob}uined in-thie nresent tests, curv:iure XHEXEKi
increases : { a constunt ultimaté]moment representing aplastic «ate-
rial in whiéh mement redistribuvion will occur. The 1enutﬁ of tle
uoment jlatean will determine the axdunt of redistribution

wnich is poscible. In ull the cases, thne observed uwltiwate lowd

was sreater tha.. the theoretical ultiuate loads.

2). All the portalsth¢ve fajted by foruing two nlzstic

hinges one w.der the lo.d, tle otiuev at one of the two knees

.
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3ince there is only one redundancy, two hinges are required to form
a mechanism, The mode of failure wes first by cracking and then
the crushing of the concrete at the critical sections. Incidentall,

this confirms the hypothesis that a system of I recundancies will

1)th

fail, by zn increase in load, when the (¥ + hin.e appears.

So all the portals are completely adapted. .Jithout cracking,

complete redistribution is not possible.

‘L
N

. 3). The vltimate load will be invariant under a
. / . . a . . .
linear transformation which provides an artificial redistribution
of strength. Such, transformations can be arranged so that each

of the critical sections has un ultisaté moment in a constant
L .
ratio to its elastic moment so that there will be no moment

redistribution hecessary to achieve the same ultimate strength.

4). /I machi's tests on continuous beams, it appears
ik '

that at failure, the support moments had reached only the following

proportions of their ultimnte values: 75% for C, and 02, 57% for C

Macchi attributes this lack of redistribution to what he terms

ok

the "d18pr0p6rtidﬁ" between the ultimate moments of the critical
sections when they are related to the elestic .ements to which the 1
load gives rise .at these sections, This disproportion cen be
represented by a parameter which is the ratio between two other
ratios, namely the ratio between elastic moments at critical
sections, and the ratio between ultim=te moments of resistence at
the same sections. Iiacchi calls this parameter d, t us

Iv{1 e

d =



o)

‘-\}

where the suffixes 1 and 2 refer to the critical sections and

e and ¥ respectively stand for elastic and rupture.

Thus a 4 value of unity implies that the ratio of
elastic noments Idx is equul to the ratio of rupture moments and
therefore no redistribution of bending moments is necessary to .
produce failure of both critical sections. Un the otiaer hand,
the greater the value of d, the (reater is the redistribution of
bending moment reguired to produée failure of both critical
sections. (It isuﬁbvious that d is never less than unity,
since it is quite legitimate‘to invert each ratio before
multiplication). |

'.The d values for Macchi's tests are 1.67 for both

01 and 02‘ 3 3

the lar er end spans, and this regults in o larger elastic

and 2,0 for C The larser value for C, is due %o
moment ratio between mid-span and supports., fThe ““N/“h¥ value
is of course the same (unity) for all theee specimens. The ratio,
r, of maximum load sustained to the calculated load, assuming
that the full strensth of all memkrak critical sections is

developed,“is 0.870 for C,, 0.876 for C

1? 2
ratio, & r is termed by liacchi the "efficiency" of the system.

and 0.783 for C3' This

On the basis of these results, liacchi tentatively Jroncses thaet
there may exist a unique relationship between d and # for this
type of beam and loading arran_ement such that the efficiency
of the system is inversely proportion to d, its disproportion.
Certainly for beams,C1 and 02, which have the came d voalue, the
r values are orectically identicul, while for 03, with ité

larger d value, r is substantisllv less.



That some relationshin should exist appears at first
sizht to be higﬁly probable since, if elastic "ultimate"
analysis demonstrates that one critical section is subjected
to a bending moment apnroaching its ultimate moment of resistance
while the other c¢ritical section is subjected to « mcuent which
is only a small fraction of its ultimate resistance, one natufally
doubts the caprcity of the hignly stressed section to rotate
sufficiently, without less of strensth, to permit the development

of full strength at the other section. of the 23 members

(12 beams znd 11 fremés) tested by liorice, only in four instences,

one beam.and three frames, was the failing lozd less than the locd

. -
ai-

calculated on.the'basis of full redistribution of bending moment.
of greater significance, of course, was the visual evidence in
each case of crushing of the concrete both in the span :nd the
¥nee while the neximum load was held. iorice and Lewis found
that there was no indication of a reduction of éfficiency with
increased disppoportion. The acid test for complete redistribution
of moments is not whetier tue maximum sustained load is

consisteat with the calculated ultimete moments of resistunce of
the criticul sections, but rether the visual evidence of complete
simultaneéus ruvpture of these sections under that lbud. From a
congsideration of norusl structurel proportionin., it is evident
that hi_i disproportion ralios ..re unlikely to occur, except

vhen they are primarily Jue to hi_h ultimcote moment of resistwnce
ratios. In Lorice expeviments, it was found that weaker sections,
e.£., the centre support section of beam 4, have very hi h

percentages of steel in relation to the width of the concrete

EY
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section and the denth of the steel. Sections such as these,
bein_ the weaker of the two criticul-sections, must be capable

of suffering guite larie rotations to enable full redistribution
of moment to take place. This at first sight seems to be incon-
sistent with the behaviour ofinormally heavily reinforced sections
wnich we know will not suffer éuch large rotations before failure
as seétions of the same dimensions witn a wuch smaller nercenta_e
of steel. The reason for thnis apggrent inconsistency is that a
section may be given a high.percentaQG of ste 1 in two guite
dissimilar weys. The effective denth of the stevl may be kept
constant and the qguantity of stegl increased or the quantity

of steel uay be kept constant and the effective depth to the
steel way be diminished. In the former casé, the rotation

capacity of the section will be decrezsed, but in the latter case

te= =

5 b

it may well be increased. Tﬁé-smallgrkthe depth of the neutral
axis, the _reater is the ultimate rotation. 3o lex_er rotation

is always assoclated vith the nhigjher sfeel nercenta.e. This
result is consistent with frilure occurrin_ 2t a lower steel stress

for nijher steel nercentaes.

O0f the frzme tests, it can be said that they exhibited
full moment redistribution for elastic moment ratios of 1he same

order of ma_nitude as is found in lacchi's beams C, and C,.

In the present state of knowled e, it is ndét adwisible, however,

to attemnt a comparison between the fr mes and the teams.

5. HNo failure of end block, either at the truasou end or

at the le, end took place even ut the ultiuate collasse.

=t
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6. In the third point loazdin_ of thé third portel
frame, it was found that the strains under the loads were more
than the strain =t tue centre section, kkrmugh though the moment
was constant in the middle third of tue trunsom. This was due 1o

the "Karman effect", In findin_ the curvitures, the struin at tue

centre wes taken infto calculation.

7. Guyon found plu.tic phenoumena occurcing before ece—ol-
cracking in tests on continuous beams. any section with a normal
scatter - has a certain strensth ag«inst cracking, or more
exactly two strengths, one positive and the otlier negative.
adaptation amounts to a tendency‘of the structure to use its
strensth pos ibilities to thgwfull due to a redistribution of the
moments under the effect of unif plastic rotacions® which are
produced in those zones where the vendin, mouent reaches its

ultimate value. P

!

Por other materizls the term "plastic»hinse" is

often used. ZFrofessor ragnel says, guite rijutly, that this
expréssion is incorrect siance in prestressed concrete it is a euesii
question of cracking; one cinnot speak of hinges unless the

moment remains constant while the deforr.etion increases. In the
case of cracking, the moment is not constent, but it only increases
slightly as a function of the unit rofation (or inversely, the

curvature increases at a greater rate 25 a fuuction of the moment).

*¥By unit rotation is meant the rotation per unit len_th, i.e.,
the ratio of the rotation d to the length ds. The unit
rotation is thuc equal to tee curvature



Nevertheless, it is not a major inconvenience to use fhe worll

"hinge", if one knows what is meant by it.

In fact, a hinge is not o section but a zone of a
certain len_th, at the centre of w.ich a seption reaches its
limiting moment; the magnitude of the tosal possible rotation
of the hinge is equzl to the sum of the plastic rotations (i.e.
the difference betwean the actual rotaotion and that which it
would have had elastically) over the length of this zone. This
ma; nitude is limited, the limit beings a function of the possible

curvature and of tne len_ th of the zone.

'8, Discordance is a second condition of adaptation.
The same strength can/ be reached with a discofdant system and
with a concordant system, where we call discordant a system where
the stresses in the hin_e sections are different and concordant a s
system where they are the sawe. Returning to an example quoted by
Professor, hasnel, for the cage of failure it is true, dbut it
applies equally to cracking - if one considers a beam with two equal
spans which is XXpRE¥XIrX supposed to be subjected to a central nrees
pr.stress and in which are either two egual loads one at the
nmiddle =gaEm of each span, or a sin_le load at the middle of one
span, the value of the load causing cruckin: will be the same,
in the case of complete adaptation, whether there are the two
loads or one. DBut on testing it was fouund that tie cracking
lo.d P is bigger in the case of two loads than in the case of
a sin_le load, <“he reason for this is the first system is
adaptable and that the sscond is not, because of two great a

discordunce.



9, Bennett, before testin; continuous beuns, m.de
gtrain and deflexion measuremwents on simply supported teams,
deduced a moment - curvature equation and worked out lo:d-moment
curves. The mmoant of moment redistribution thus predicted was

much less than that found experimentally.

He believes this to be due to two wain causes. The
first is that the strain or deflexion meusurements upon which the
moment - curvzoure relation is based wre nade over an apvreciable
len;th, ren ing from 0.20 to 1.0 m, and it is assumed that over
this length the curvature is uniform. Dut this will not be true
if, as seeus nrobuble, the deforisziion of o . re-stressed beam after
crucking is brou ht about chiefly by very severe curvature in the

vicinity of tuae cracks.

Another error of the same type is the calculation of

steel stress im a crucked section of pre-stressed or reinforced

/v;

kS

concrete, using strain measurements made over a relautively lar.e

i . 4
<auge len_th.

The second difficulty, wuich Lr. Guyon hus mentioned, is 1
that at failure the curvature is increasin_ extremely rznidly with
respect to the moment. .accordin_, to him, the moment - curvature

*elation should be carefully used because of the abcve tvwo facts.

Ags far as the present tests on frimes .re concermedf, the

riter finds complete redist.ibution of moments.

It is not out of nlace i.ere to uention the use of

edistribution factor sug_ested by Bennett as a guide to desi_ners



. ' n "

J
where complete redistribution of moments does not
invariably occur. The redistribution factor is a slight modi-
fication of 3gr. Macchi's "r". It would be defined by the
e uation:
r = Wult - el
jpl - Vel
where Wult = Actual ultinate load
wel = Ultimate lozd asswaing that the structure
behaves elastically.
Wyl = Ultiwate load assw.ing full vlastic redistributidn.

A redistribution fauctor O would then denote elastic
behaviour, and 1.0, completé redistribttion. The designer could
work to a suitavle intermediate value, which could be xzxk
established from tests. according to hiw, 0.5 would be

a safe figure.

WKW RO H RN



" CHAPTEX 9.

SCOPE FOR FURTHSR GRK.

The assumption of full redistribution cannot be
other than an approximation, the accuracy of which depends on
definite conditions)compatibilify of the strains at the succes. ive
plastic hin_es. It is necessary to check that, in the final
phase, compatibility is effectively ensured ow can be easily

adjusted. Some more work has to be done in this direction.

The moment-curvature relationships have to be studied

e Ty .
in still greater detail to get precise knowled. e of the plastic

hinses. Accurate instruments cre needed for experimentally

finding the plastic hinge rotations.

+

.~

This study of ultimate strength should be extended
to multi-storey and multi-bay frames alongs the lines sugesested
by Guyon. The wltinate sirength of vrecast (legs and transom
separately) presfressed beam portals should be studied in

] 1

contrast, to mon@}fhically cast pxrshrsmdxpm prestressed portals.

To the best of our knowledpe, no systematic experi-
mental work has be n ca.ried out on shear failure. It apnears that

the elastic theory leads to a slightly excessive factor of safety

[

as shown by t e tests made by Lebelle on ordinarcy reinforced
concrete beans. This important question shouid s%ill be pursuéd.

It is necessary to find if there is eny interaciion between moment

and shear at the sections of failure.



92
The behavicur of similar oortals under differmmt forums

of loading is another topic of research requiring early attention

It is likely thut the rhoto-elastic studies on the
scale models of the frames nay throw some more light on this

actual behaviour under differmmt t,pnes ol loading,

As sug_ested by Levi, ot tue P.I.P. Consress in
. .(‘\ : o 3 4 . Fa 30 Ty o L
Amstedam, the com_.lete behaviour from creckin. richt upto
I
failure shouald be investigated. It is <l1so to be seen
if plastic »nienomenz occur befouie crackings

The following require still more attention:

(a) It has been suggested that before cracking
that there is =z plastic redistribution of tre tensile zone
similar to that of t..e compressive gone at failure, but
some of the éxperimental evidence contradicts this® ahd
indicates that the tensile stress is almost linear upto

the point at which cracking: dccurs.

(v) The effect of crack spacing on the radius

of curvature.

*Bvans, R. H. ZExtensibility of Concrete and Modulus
of rupture of Concrete, Stract Engr, 24, 6%36-658(1946).
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Let the c/c disvance of the For

—
—

Jidth of the Portal'frane

i

Total load

Total load per foot run of tiue

2
Maxm. B.ii, = 1209E2% 14,1
Maximuwn Bundin_ noment = %L =§

S

tul fr.mes = 12'=-0"

gr_Q"

150 1b/F4°

H

transom 150 x 12

I

x 9 =2.5P £t, 1b.

or P = A X 1808 x 9 x9 = 8100 1bs.
g 7/ 0 Lbs
= 3,62 tons.
= 3,8 tons,
WLROALNTITY DISTRIBUTLY LOAD
Section of transom = 10" x 10"
Section of legs - 10" x 10"
» (2B _ 4.5 _
k=550 7 =39 =1
q = 100 1=9 h = 4.5
MB = - B2
iy = - 100 x 9x9
4x4
. MB
HA = HD = - = = -
" 100 x 9 x 9 . 1
4 x 4 4.5

112.5 1bs



[

CONCENTRATED LOAD

P=3.8T 1=9'-0" h = 4,5

MB = L = - EI-]

MP = 2% + MB

1B JX3.8X9 _ 551 £, tops.

il
{

8 x ¢4
’ 1Y ey B 1y, Y o — l!@ — 021 . P .
Horizontul Thrust = - R < T = 0.715 tons.

- PL , PL 3 . 5
PP o= 4 MB = 2R L =2
WP = 4 33 L =55 P



APPENDIX 'T¢

Span 1=9-0"
09
Height g = 4'-6" 74
Depth of members h, Transom = 10"
Legs = 10"
Width of members Transom b = 10"
Legs b = 10"

Loads: Self load of 100 1lbs/ft plus a concentrated load p = 3.87T

placed at the centre of the transom.

The permissible limit stresses are
Compression Ry = 1000 p.s.i.

Tension Rty = 0
The stiffness ratio legs/transom is:

J1 10 13
£ =(0) x&

1. Reactions due to external load.
The numerical computations are given on page 3.

The results are as follows:

(a) Self-weight of the transom : $00 1lbs/T%.

Vertical reaction = -1—992—"—3 = 450 1bs.
Horizontal Thrust = 112,5 1lbs.

(b) Concentrated ldad : P = 3.87

Vertical reaction = 1.9T

Horizontal Thrust = 0.715 T = 1600 1bs.
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TARE

0 o g 0.2 jr().}l JQ 0.6l

g il % 0.l %0.71 %0.81 30.91 ﬁ 1

Seltweightlftlis) - 065 - WA #1555 ¢ WAB 4 BT+ 0000 4 HRTS ¢ D« 1555 - 1T - 6

Concentrated Load -0 - 260 4 918 #4000 40000 41080 FO00 R M0+ o8 - H0 - T
(£5,1bs.)

Tofal Homent due to - T106,Q5 - 210L75 « 10355 + 41AD  + G46RT5  HAT005 #4575+ AL+ 106355 - Z00TH - TI06.%5
self-weight and con-

centrated load

(5, 1s.)







7200 72Q0 (Q =1600 b5

-2560 -2560 .
4173 506-25 PD = t12.5 :n—mv

~14175 fig17s 50

e S

- wov .M m

+119 80

SCALE:-1": 8000 Ibsg

BENDING MOMENT DIAGRAMS FOR SELF WEIGHT AND
CONCENTRATED LGCAD RESPECTIVELY IN TRANSOM.

FIG. 40

A
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‘2. TR ANS O M. .

The Bending moments in the transom are given in the

table overleaf.

Fig. (al) shows the bending moment diagrams corres-

ponding to the two possible loading cases.

The greatest variation of stress occurs at the point
x = 0.5 1. The smallest moment in this section occurs for the
case of self-weight oniy and is equal to + 490.05 ft.lbs., the
corresponding horizontal thrust being 112.5 1lbs., the corres-~

ponding horizontal thrust being 1712.5 1bs.
The cross-~section characteristics are:
b =10", h = 10", 8 = 100 Sq.in.

Z, Section modulus = 10 x ;O x 10 _ 166.7 in3

The variation of stresses is:

-(. — > — 2
1712.5 = 112.5 . (12 005 = 0.00) x 12 _ 15 4 g62.6

100

878.6 1lbs/sq.in.
< 1000

«'. The section is sufficient.

Let F be the magnitude of the prestressing force
throughout the transom and e \(rs eccentricity at the ;i;§$
X = 05 1., In order to have the least amoint of steel (the
minimun;value of F), the centre of thrust should travel from
edgé?gé'gze 1limit core when the bending momcnt varies from

(f) are extreme galue to the other, the edges of the limit
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hore at % = 1 = 1,67 in. above and below the neutral

6
axis respectively.

The forces and moments in the section are:

Prestress plus self-weight only: compression = F + 112.,5 lbs.

Moment = Fe + 490.05 ft.l1lbs.

Prestress plus concentrated loads: compression = F + 1712.5 1bs
+ Self-weight
Moment = Fe + 12,470.05 ft.1bs.

The above conditions can therefore be written:

N Fe + 490.05 _ _ 1.67
F + 112.5 - 12

+ Fe + 12470,05 _ + 1.67
P+ 1712.5 1lbs. 12

The geometrical meaéﬁring of these relationships

is shown in Fig. 43,

Sqlving the above equations,

P = 42,170 1bs. and e = - 0.151 £t = 1.812"

'As has been explained in the general principles, the

boundary lines of the limiting zones are obtained by drawing the

diagrams n ' b
My + ey z and Mp - Q7
F F

from the upper and lower core edge lines respectively.
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The values of M, and M, and Q¢ and Q) are the smallest and the

greatest bending moments and the corresponding horizontal thrusts

respectively.

CORRECTION FOR THE TRANSOM SHORTENING:- The thrust caused by the

shortening of the transom is approximately equal to-

Q="F 32

g2(1 + 3%)

2 10 x 10

We have 12 = X — = 0.058 f£t2

144 12

£=2

- 0,058
Q = 42,170 % 5555012 1)

3

= 90.5 lbs.

Note:

The above formula is approximate. The value of the
thrust correction being very small compared with F, the approximatio
is sufficiently exact.. Had the correction been considerable, it

would have been necessary to use the exact formula given

previously.

The action of the thrust correction is shown on figure 44.
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'Throughout-the transom, the bending moments are increased by
90.5 X 4.5 = 407.25 £t. lbs. whilst at the same time the compre-

ssion is decreased by 90.5 lbs.

The values My, MZ' Qs Q used in the expressions

b b
Mo+ (Qg) g M- Q)
7 7

for determining the boundary

lines of the limiting zone, are values taking the correction into

account. The limiting zone for the transom is shown in figurelﬁi.

B . LA < 0.14 1.
3 LEGS

The most dangerous,section'is not the theoretical point
of intersection of the neutral axes of the transom and of the leg,
but the section of the leg which is at the level of the transom
soffit, For the sake of simplicity, the %ramzsmxs calculations

are carried out for the theoretical Antersection point only.

(a) Right leg, taking account of transom shortening

155 © 4 Corrections : M = 407.25 ft.lbs. Q =-90.5 lbs.

Self-weight only M=« 506,25 + 407,25 = -~ 99 ft.lbs.

N = + 450 lbvs.

il

Self-weight plus concentrated loads:
M = «7706.25 + 407.25 = - 7299 ft.lbs,
N =+ 4256 + 450 = 4706 1lbs.

]



TABLE

0 01y 02 0L 0.4 g 0,51 g 061 0,71

4l % 0l IﬁL 1

Seldvedoht leoment - 6D - ULTS B+ WD B+ B0 4 55 4
(1t,1bs). ,

Horizontel Thrust
= 12,9 1bs,

P55 - WD - 062

Total Homent due to
Self-weight and con- , ‘
centrsted Load(ft.bs) - TI06.25 = 200075 +1063,55 + 4425+ 485,75 HAT05  + 9465.T5 + 474,25
Rorizental Thrugt
= 1712,5 1hs,

F103,55 - 20175 - 706,29

I1, Gorrection for transon shortening § 90,5 Lbg; Increase of Noment in transon = + 407,25 b, Lbs,

0 w0 0 0. 0,51 00l 0,11

(| A llu

Homent due o
Self-velzlt(fh, is)
Horizontel Thrugt

- 99,00 + 25,50 + F80 + TLE 4+ 8TR00 4 810+ 8TRI0 ¢+ THLE0
= 20 s, -

t

Total moment due o »
Self-welght and con- - 729,00 - 229450 + 145080 + 515050  + 9873.00  +1&1T.50  + 987300 + 5151.%
centrated Load(ft.1bs) .

HIB0R - 29050 - T80

Horigontd Thruet = 4620 0 The

I, i !

1Smallest nonent, 8 = 22 108, -6-"-2-1fJ; % -6-=22x1-1‘-62-7- =4 5,00 f.1bs, D= 42170

[

6o 09 1

0 011 02 0.1 0l 0,51 0,61 01

-
=
L= N § =l

- 0,002 +0,0003 +0.017 40079 +0.0208 #0003 +0,008 +0,0179
£

FO01 40,0063 - 0,0023

b 1o

i 67
. hg greatest monent, a2 1622 1by 7 A it a2 = 1622x 25,1 F= 42,170 1bs,

0 6l 0 0.7 L 0.91 0,601 0.1

6l 04 1

5 - 0 - 00T 0+ MT 4029+ 03 +0.28 4 T

0,090 - 0,097 - 0,178



SECTION PROPERTIES:

b= 10" = 0.83 £t , h = 0.83 £, S = 100 sq.in = 0.69 sq.f¢.

Section modulus = 166.7 in3
Stresses due to external load only:

Self-weight only:

Outer edge : n = 108 - %%3%7l§ = 4,5 - T.13 = =2,63 1lbg/sq.

]

Inner edge : n! = 422 B X12 _ 45 745,

Full load:

06 299 x 12

' - 4706 , 7299 x 12_
at the outer edge v, =350 * 166.7 = 47.06 - 525,.4

! \ :
at the inner’edge nl, = 4706 | 7299 x 12

°© "~ 100

=+572.46

By realising a prestress such that it gives:

at the outer edge ng = + 478,34

at the inner edge n1o ==11.63

We obtain the following total stresses:

166.7 = 47006 + 525.4

1

outer edge: Self weight only n = + 475.71, full load n, =o

Inner edge: Self weight only n1 =0 , full load n10

These stresses are permissible.

Magnitude of prestress F'' = 100 (478'342~ 11.63)

100 x 233.355
239335.5 1bs,

i

+ 560,83
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. . Do -t
Eccentricity of prestress el R -0 - -0
ny + 0l

H

_10 _ 478.34 + 11.63
=% *U78.34 - 11.63

=+ 1,75 in. -

Limiting Zone for the leg: We draw from the two vertical

core edge lines, the boundary edge lines determirmsl by the

ordinates

, b B
h G 6 and'ty =2 " ;Nz ;

respectively.

. The moments M, and M, are proportional to the absassal
z(Vertical). The boundary lines are therefore straight lines

~ intersecting at the top of the leg in the point determined by
b
the eccentricity e11 =+ 1.75 in. and passing through the points

N,h ¥
9, = +g and ¥, =g

for Z = M1 = M2=o

Y =+ \;%%-_:::;- = +o0 032 in.
L — 1067 X 4706 - .
T @1 = % 72%,335.5 = - 0.337 in.

(b) Left lez, taking into gccount'the transom shortening

Same as for right leg due to symmetry.
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4. Determination of the concordant cable profile for 1‘) é

the transom.

Straight cables passing through the centre lines of the

hinges are taken, Then
P = 23,335.5 1bs. u! = 1,75 in.  F'u' = 40,837.2 in 1bs -
Pl = 23,335.5 1bs, u'' = 1.75 in. P''u'' = 40,837.2 in. 1lbs.

In the transom F = 42,170 lbs.

Equation (4) becomes

2 40837.2
-3 x 108 x 22,170 x 2

= -34.86 sq.in,

i

aad Oo 24‘2 Sq.fto

A curve lying entirely within the limiting zdne and
enclosing between itself and the meutral axis of the transom an

area -34.86 sq.in must be found out.

This curve can be determined by trial and error.
However, the gene ral method can be applied which consists in the
determination of an imaginary load function q(x) which would give
for a compression of 42,170 1lbv and assuming partial restraints
at the two ends of the transom, a funicular curve lying entdrely
wit.dn the neutral zone and making with the neutral axis

an area equal t0 =~ 34.86 sq.in.”

* The negative sign means that the area is below the neutral

axis. The imaginary loads therefore act upwards.






INAR
At
In the present case, the curve is determined by trial-
and error method imposing the condition that if should have at the
ends of the transom an ordinate equal to + % ='0.14 £t and the
area be tween itself and the neutral axis of the transom an area

— - e—

of -34.86 sq.in.

The adgquacy of this line of pressure is checked by
sketching it on the drawing of the limiting zone and by verifying

sq.in.
that it determines with the neutral axis an area equal to 34.86

5. Iransformation of the cable profile,

As has already been mentioned, the transom cable may
be moved up or down provided at thé same time the leg cables are
rotated about the centre lines of the hinges by such =zmm an amount
that the apparent variations of the bending moment at the frame
angle caused by these cable movements should be the saﬁe for the

transoms and for the legs.

This positively can be made use of to give leg cables an

appréximately vertical position.

This means that the prestressing moment in the transom has

to be reduced by the amount.

F'u' = 40837.2 in.lbs = 3403.1 £t.1bs.
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In other words the transoms cable has to be lowered

3403,1 _ 3403.1 _
by a = #4p2et = $50G = -0.081 11,

= =0.972 in.

The final prestressing is shown in fig. 4¢€ : ———

Various losses due to prestressing are taken as 15%
Ultimate strength of the high tensile wire = 249,984 1lbs/sq.in.
Working stress of the high tensile wire = 0.65 x 2,49,984
= 161,952 1bs/sq.in.

' . A PeSe ]
Stress in steel after 15% loss would be 0.85 x 161,952 = 137,500

42,170
137,500

.« Steel area required for transom

= 0,306 sq.in.

Adopt 10 wifgﬁ_of dia. 5 mm (0.2") each giving an area of 0.314 sq.ir

Steel required per lég = %%#zggéi
H

= 0,17 sq.in,

Adopt 6 wires of 0.2" dia each.

~

Design of shear reinformement.

Maximum shear force at the support & 450 + 4256 = 4706 1bs.

Shear Force taken by the cables in the transom = 42,170 Sin «

42,170 x Sin 44°

= 42,170 x 0.69

]

29,090 1bs.
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The maximum shear force at the support is taken care of
by the vertical component of the force in‘the prestressing cables,
Yet a nominal reinforcement of 1/4" dia. stirrups at 6" C/C
is used in the transom. Ties of 1/4" dia. at 9" C/C are used jleee
the legs. Dia of the longitudinal bars is 3/8". The diagraw of
the portal frame alon; with the prestressing wires and the

reinforcement cage is shown clearly in the drawing.

Weight of the portul = 0,805 Tons,
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Let the c/c distunce of the portal fremes = 12' ~ O"

.idth of the portal frame % 9' - O"

Totel load = 150 1bs/ft°
Total load per foot run of the transom = 150 x 12 ——
= 1800 1lbs/ft.run.
2
o, B, = 800X 9T pp gy,
Maxiwum Bendin, moment = E%— = Egé_ﬁ = 3P
L3P = 1800 x89 x 9
180C x 9 x 2 e AnE o ‘
or P = 8 x % = 225 x 27 lbs.
= 2.8 tous
P = 2.8T P = 2,87
Let the section be 10" x 10"
Coefficients : K = 5 x &
2 .
MB = lc = - —%—-— HMax I = -‘%—2- +NB lx = 9—?—‘-'— + 1B
MB .
Vi =7V = &l = H o e  ——— i = N4 X
D =gl HA = HD — My =L
i _ 2PL . . 1B
B = Me = 3 VA = VD HA = HD = =
MP = %1— + B hx =Px+MB Ny =£ uB
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UnIFORITY DISTRIBUTED SuLi' LOCAD

Section of transom = 10" x 10"

Section of legs = 10" x 10"

I

>

K =
(

5

_h _ 4.5 _
) =1 = 1/2

&y

1

N=2K+3=2x+%+3%=4¢

g 100x9x9
T 4 x 4
Mo - gp - o HE 100 x 9 x 9

|
I
£
>
.

i

112.5 1lbs.

CONCERTRATED LOAD3

P =2.8T; 1 =9'-0"; h=4.5"

N =4
MB = i = - %%Q o2 X32é84x 9
Horizontal Yirust = %_%E _ %?%
MB £ .0 = - %g% - _% P,

Mp = L PL 1 PL

3""+I'EB="‘§——*PL='6“—

o,

= -4,2 £t.tons.

= 0.93 tons.
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Span - 9 ] -O"

Heizht = 4'-6"

Depth of Members ¢ h, Transom =

Legs =

Width of members : Transom b

Leys b

LOADS: Self load of 100 1bs/ft. plus two

P1 and P2

ﬁ}n&&

placed at 3 ft. foom the centre

10"

10"

10!!

'1 on

concentrated loads

lies of the support

The loads P1 and P2 may assume the following values.

Loading case P1 = 2.8T P2 = 2.8T
The permissible limit stresses are
Compression Rb = 1200 p.s.i.
Tension R; = 0
The stiffness ratio legs/transom is:
sy 10,3 9
T3 - o *im o= 2

1. Reactions due to external loads:

The numericul computations are given enm page l12.

The results are as follows:
(a) Self-weight of the transoms :

Vertical reaction :

Horigontal thrust :

100 1bs/ft.

100 x 9

112.5 lbs.‘
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T
(b) Concentrated Loads : (P1 = P2 = 2.87)
Vertical reaction = 2.8T = 6272 1lbs,.
Horizontal Thrust = 0.93T = 2083%.2 lbs.

2. TRANSOM:
The beinding moments in the transom are given in the

table overleaf.

Pig. ¢ shows the bending moment diagrauws ccrresponding
to the two possible loading-cases. These have been calculated

from the table as follows:

The greatest variution of stresses occurs at the point X
= 0,5 1., The smallest moment in this section occurs for the case
of sglf-weight only and is equal to + 490.05 ft.1lbs., the
corresyunding horizontal thrust is equal to 112.5 lbs. The
greatdst moment is equal to + 9718.85 ft.1lbs., the corres.onding

horizontal thrust being 2195.7 lbs.
The cross=scction characteristics are:

b=10", h=10", S = 100 sq.in.

10 x 10 x 10

Z, Section modulus = 3 = 166.7 in3

The variation of stresses is:

2195.7 - 112.5 (9718.85 - 490,05) x 12
100 ' 166.7

2083 + 666
687 lbs/sq.in.

n

£ 1000
.'. The section is sufficient.
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As has been explained in the general principles, the

boundary lines of the limiting zones are obtained by drawing the

diagrams
W
F anc F

from the upper and lower core edge lines respectively.
The values M1 amd M, and @ \a~d @, are the smallest and the greatest
bending moments and the corresponding horizontal thrusts respecti-

vely.

CORRECTICN FOR THL TRai S0M SHORTENING: - The thrust caused by

the shortening of the transom is approximately equal to

(I
.
Q= F — L
3-C 1+ 37
we have
\r'z.. - \w_x-‘—-
-l L 2
_ 8.33 _ e
P=2
‘ ' _ 0.058
Je obtain a = 31900 20.25 (1 + 1/3)
_ 319 x 5.8
= 20.25 x 4/3
19 x 5.8
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Note:-
The above formula is approxim=te., The value of the thrust
correction being very small compared with F, the approximation is
sufficiently exact. Had the correction bteen considerable, we Rzue

would have had to use the exact formula given previocusly.

The action of the thrust correction is shown in figure
Throughout the tra:som the bending moments wre increased by
68.5 x 4.5 = 308.25 ft. 1lbs. whilest al the same time the

compression is decreased by 68.5 1bs.
The values M1, MZ’ ey & ised in the expressions

C N ‘
w & CY) e “"'-‘Q'l-('ﬁ ) for determining the boundary lines of
+ v

the limiting zone, are vuolues tszking this correction into account.

The limiting zone for the fransom is chcwn in fig. 57 .

- L.67 _ :
= =55 = 0.14 1%,

eplf=n

3. LEGS

The most dangerous section is not the theoretical voint of
intersection of the neutral axes of the transom and of the leg,
but the section of the leg which is at the level of the transom
soffit. JFor the sake of simplicity, the calculations are

carried out for the theoretical intersection point only.
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' Selfeieiaht{25.00s),
Horizontal Throgt « 500,05 - WLTS 1555 ¢ WLD o+ 55 4+ 490,05 4 45T 4 LB+ 15555 ¢ LTS+ 506,05
' = 1125 s, x
Horizontal Torugt . R .
= 2100.7 Lts,
3, Total Fonent due to '
Sell-ieleht & oon- - 991LQ5 - BRI + 20TL35 + 780005+ 966455  +9TIBG 4969455 4 TOIGD  + AT - HIRTD - 04
centrated Loads '
24 1543
\L0WLOS ),
11, Corvection for Urenson shorfening: 4 - 08,5 1bs; Increase of :loment in $ranson = 4 508,25 24,16,
0 0.1 0.2 0,51 0l 0,5 0,61 0,71 0.81 01 1
f, Self-veicht{ft, Lbs) |
Horizontal Thrust - 19800 + 16650 + 43580 ¢+ 652,50+ MO0 + TR0+ THAO0 + G250+ 4580+ 166,50 - 196,00
= 44 1hs, . \
7, Total Homent due to
Self-welsht & con- '
centraged Loads, Co | .
(£1,10s), < 0606,00 « 305,50 + 362,60 +8178,90  #0002.80  #0027.00  HO00281 +81T8.90  + 232,60 - 535,50 - 9606,00
Horizontel Thrust ' ‘ ‘ v
= 2,2 1bs, Y
L L4] 4]
I Smallestmoment b= 44lbs 12 ft,q 6uﬁ4x =4 60,42 881b, 7 =%1,900 Lba
: 0 A ) S S T Nl ,0.81 !
M“W - 0006 +0.000 #0037 #0006 +0.06 40052+ 0,00 +0,0206 +0037 0,005 - 0,006
3
ft,
IV M2 greatest Momenta?:2127.2;1b§\ %:%1 ’ %-21272}{1 A7 == 206,00 9. Ms, = 31,900k,
0 0L 0.2 0.7 0,4 0.5 0,81 0.71 0,81 0.9 |
Hz-g A ‘
»—F—-2—6 <085 -0M13 #0005  +0.47 40304 +0.505 PO+ 0,47 #0065 03 - 0.8
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(a) RIGHT 183, TAKING ACCOUNT OF TRA.SOM SHORTHIL G.

Corrections: M = 308.25 ft. 1lbs, a =- 68.5 1bs.

Self-weight only : I = -506.,25 + 308.25 = -198.00 £t.1bs.

=
i

+ 450 lbs.

Self-weight plus concentrated loads:

M =-9914.25 + 308,25 = -9606,00 ft.1lbs.

N = 6272 1bs. + 450 1lbs. = 6722 1bs.

SECLION PROPE«TIZS:

Bxexiyyt
b =10" = 0.83 ft. h = 0,83 ft; 8 =100 sq.in = 0.69 sq.ft.
Section modulus = 166.7 in-
Stresses due to external load only:

Self-weight only:

450 198 x 12 4.5 - 14.3 = - 9.8 1lbs/sq.in,
100 166.7

Outer-ed _e: n =

imxxi&nﬁgx:xuézgz%%ggz ﬁz%g§g§§%%§

Inner ed.,e: n' = %g% + 1%%3%712 = 4,5 + 14,3 = 18.8

Full Load:

at the outer edge n_ = 8722 606 x 12

o 77100 = THge.7 = 67.22- 695

= - 625,78 1lbs./sq.1in.

il

]
at the inner edue n) = é%%% ¥ ggg%g%_%g 67.22 + 693 = + T60. 22
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* By realising a prestress such that if _ives:

outer
at the immex/ed:;e n, = 625,18 1lbs/sq.in,

~18.8 1bs/sq.in.

ft

at the inner edze n!

we obtain the followin, total stresses:
Outer-eds e self-weisht only n = 615,98 lbs/sq.in.
full lozd n, = 0

Inner ed_e self-weizht only n' =0

it

full load n! = 741.42 1bs/sq.in,

These stresses are permissible,

Magnitude of prestress F'' = 100 x ¢ 625'72 = 18.8)
= 100 x 303.49
= 30,3549 1bs.
Eccentricitggg of prestress e'! = % % B = éé
no + .(10

10, 625.78 + 18.8
3 625,78 - 18.8

1.77 in.

Limitin. zone for the le.: we draw from the two vertical core

edse lines, thc boun ary lines determined by the ordinutes
h
25 )

by + (% B ) M, - (X
= T . respectively.

7
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The moments M, and M, are proportional to the abscissae
Z(vertical). The boundary lines ure thercfore straignht lines

intersecting at +the lop of the leg in the point determined by the

EEENXXIELRY EhE R amdxlx = -xgiﬁr farx% =xNy =xM, =x@
o¥L £ & % .
eccentricity e'' = 1,77 in. and passing through the points.
N1h N2h
m1=+ and§2=-ﬁ'-,- fOI‘Z:F‘k,]:I"az:O
6F!
_ 1.67 x 450 _ -
_ 1.67 x 6722 . |
and '.’.'92 = 30, 349 =® 0,37 in. .

!

(b) Left lex, teking into account transom shortening
same as for the Rig.t leg.

4, Determination of the concordant cable orofile for the transou.

Straight cables passing through the centre lines of the
hin;es are taken., Then, F' = 30,349 1lbs; u' = 1.77 in. F'u'=53500

in.lbs.

MY o= 30,349 lbs. u'' = 1.77 in. F''u'' = 53,500 in. lbs.

In the transom & = 31,900 lbs.

¢

0

As  pf=1
53800 = -bo 5 Sg-um
e LT KIOTR —— .S?
[ 1d= =5 2900 X2
1/



> ]

19

£ re

"

<

A curve lying entirely within the limitin, zone and
enclosing between itself and the neutral axis of the trausom an

area -60.5 sq.in, must be found out.

‘This curve can be determined by trial and error. However,
the general method can be applied which consists in the determi-"
nation of an imaginary load function gq(x) which would pive for
a coupressicn of 31,900 1lbs and assuming partial restraints at
the two ends of the transom, a furnicular curve lying within the

neutral axis an area equal to - 60.5 sg.in*

In the present casc, the curve is determined by trial |
and error method imposing the condition that it should have at
the ends of the trunsom an ordinate equal to + % = 0,14 £{. and
the area between itself and the neutral axis of the transom an

area of - 605 sq.in,

The adequacy of this line of pressyre is checked by
sketching it on the drawing of the limiting zone and by verifying
that it determines with the neutcal axis an area equal to 60.5

sq.in,

*The negative sign mecns that the «~rea is below the neutral

axis., The imaginary loads thereiore act upwards.
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5. TRaNSFORuATIOL OF THE CABLE PROFILE:

As has already been mentioned, the tra.som cable ..ay be
moved up or down provided at the same time the leg cables are

rotated about the centre lines of the hinges by such an amount

3]

that the apparent variations of the wuvendiny moment at the fra.

o

angle caused by these cable movements should be the same for the-

transom and for the legs.

This possibility is made use of fo give tue le, cables an

approximately verticasl position.

This means that the prestressin.: moment in the transom has
P o

to be reduced by the amount.
F'u' = 53,500 in.lbs. = 4,458.3 ft.1bs.
In othér words, the transom cable has to be lowered by

&’45805 - £ he — .
31,900 - 0.139 ft. = 1.668 in.

a =

The final prestressing is shown ia Fig. 63

Ultimate strength of the high tensile wire

.0.65 x 249,984

161,952 lhs/sq.in.

Stress in steel after 15% loss would be=0.85 x 161,952

.'. Steel area required per transom = %%%?%OO = 0.232 quin.

Adopt 8 wires of 0.2” dia. giving 0,24 sq.in;

Steel area required per leg = %%#2%%0 = 0.22 sq.in.
: )

Adopt 8 wires of 0.2" dia. gsiving 0.24 sg.in.
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DESIGN OF SHLaR REINFORC:MNLNT

Maximum shear Force at the support = 450 lbs + 2.8Il
= 6,722 1lbs.
= 31900 Sin

Shear Force taken by t.e cables

%1900 x fx6R Sin. 38°

31900 x 0,62
= 19,878 lbs.

The maximum shear force at the support is taken core
of by the vertical component of the force in the prestressing czbles,
Yet a nominal reinforsement of 1/3" stirrups at 6" c¢/c¢/ is
used in the transom. This of 1/4" bars at 9" c/c are used

in the legs. The diameter of the longitudinal bars is 3/8".

The diagrem of the portal frame along with the prestres-
ing wires and the reinforcement cage is shown clearly in the

draving.

Weight of the portal = 0,805 Tons.
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APPENDIX III.

t‘w

DESIGN OF TH'., CONCRETL MIX.

Minimum Compressive Strength = 1000 p.s.i.
Workability : Medium

Control : Very good

Average crushing strength = 10807§

40
= 3860 x 100

75

= 4,000 p.s.i.

Note: Cube Strength should be 3 times working sirength.

Water - Cement ratio s 0.55

Slump required ¢ 3 in.

Aggregates available:

Coarse aggregate: 3/4" round gravel.

Weight of coarse aggregate : 110 1lbs. per Cft,

Bulking percentage ¢ 2.56

Fine Aggre_ates. % Passing 100 gieve 1.69
" 52 " 5.49
" 25 " 37.46
" 14 " 81.29
" 7 " 97.85

" 3/8 " 100.00
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Weight of Fine Agiregate 100 lbs. per Cft.

Bulking Percentage 14.3

Determination of the weight of cement per 100 Cu.ft. of Concrete

of concfete
Weight of cement per | _ Total quantity of water per 100 Cft./
100 Cu.ft. of Concrete.{ ~ Uater-cement ratio

= 2080 le .

Absolute vojumes of water, cement and mixed aggre,ates.

Absolute Volume of water = %%i% = 18.4

e . 2080 B
Absolute Volume of cement = 515 x 63.4 = 10.6

Absolute volume of water { :
and cement j = 18.4+10.6 =29 Cft,

Therefore absolute volumel
of mixed ag regutes §

i

100 - 29 = 71 Cft.

F.M. of fine and coarse aggre,ates and proportions of fine

and coarse aggregates,

FJw. of coarse ag,regates = FC



SIRVE
3/8"
3/4"
3/16"

14
25
52
100

660
FC = 100 = 6.6

M, of fine agyregates =

100
52
25
14

P =208 _ 5 7

PASSING

40%
100%

o
=

O
R

PASSING

1.69
5.49
37.46
81.29
97.85
100.00

RETATLIED

60%
0%
100%
100%
1007%
100%
100%

100%

660%

RETATKED

98. 31
94.51
62.54
18.71
2.15

0.00

276.22

N
Do
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Average F.M. of mixed aggregates = 5.05
F -F

c

wm
P -
c f

b oandy
I
-

[ g

% of fine aggregate x 100

6.6 - 5005
6.60 - 2076

x 100

2 1.55 ,
3,04 © 100

= 407

5 of Coarse aggregate = 60.0%

Absolute volumes and weights of fine and course ag retages:
Absolutg volime of fine aggrepate = 71.0 x 0.4 = 28.4

Absolute volume of coarse aggregate = 71.0 x 0.6 = 42,6

', Weight of fine aggregate |

per 100 Cu,ft. of coucrete § ~ 28.4 x 2,65 x 62.4

4696 2 lus .

i

Weight of coarse agure ute i
per 100 Cu.ft. of concrete. §

42,6 x 2.55 x 62.4

i

= 6778. 5 le .

.. Nominal hix,

nal hix = €280 , 4696.2 |, 6778.5
Nominal niX = 3080 * 2080  ° 2080

=11 2,25 1 3,26
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APPENDIX 'VI!

RESULT OF TEINSILE TBST CN HIGH Tiuw3Iuk STVEL VIRE O0.2" DIa..

Diameter of Rod = 0.2" (Average of 8 readings)

Erea of cross section = 0.03 sqg.in.

Machine used: Avery 50 Ton Universal Testing l.achine.
Extensometer : Lindlej's No. 1

Gauge length : 2 In.

Value of each division on dial : 56:%66” = 0.5 x 16~4 in.
Load(Tons Dia%iifading gStress(TOnS/in2)fSt.ain X 10-4
1 2 3 4
0.0 0 0.0 0.00
0.1 1 3.3 2,75
052 21 6.6 - 5.26
0.5 52 9.9 8.00
0.4 43 | 3.0 10.75
0.5 53 16.5 13,25
0.6 62 23,1 18.50
0.7 74 26.4 20.75
0.8 83 29.7 | 2%.50
09 94 33.0 26.00
1o 104 36.3 28.75
e o 59.6 31,00
e tat 42.9 38.06
" 172 46.2 36. 25
te4 145 49.5 38. 25
' 153 52.8 41.50
1.6 166 56.1 44,00



APPaXDIX 'VI' CONLD,

2 3 ! 4
1.7 176 59.4 46.75
1.8 187 62.7 48.50
1.9 194 66.0 51,00
2.0 204 69.3 53.00
2.1 212 72.6 55. 50
2.2 222 75.9 58. 25
2.3 233 79.2 60.50
2.4 242 82.5 63.00
2.5 252 85.8 65.00
2.6 260 89.1 67.25
2.7 269 92.4 69.00
2.8 276 95.7 71.75
2.9 287 99.0 74.25
3.0 297 102,3
3.% 106.6
3.2 112.0

Ultimate strength of the wire = 112T.8.I.

The extensometer was removed at a load of 3,0 tons

Working stress = 161,952 1b.sq.in.

E =30 x 10

A

4

q A
e

A
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NOTATICY

b = breadth of beam

d

nd

= effective depth

i

= depth to neutral axis

rnd = depth to centre of coumpregsion

R = cube stren;th in ibs.
Ay = Area of high tensile steel,
fu = ultimete stress %n steel
7 = Weighted percentage . .
_ 4
= Asfu, N
bd{R -

Tsu = Total ultimete Force in the steel .
K = a coefficient depending on the hsape of the stress

diagram

d1dq = lever arn

E = Strain in the concrete

5'
&o
@t
r

fs
A

r

Mr

=

O

= 3train in the steel
= initial strain in the concrete after prestressirn:
= initial strain in the concrete after prestressin_
radius of curvature
= actual stress in the steel
= tension factor ;ié__
“ - 13
= ultimzete moment of resistance
length of the portal hetween the centre lines of legs
height of tne portal fra.e
ratio of stifiness ¢f leg to stiffness of trensom
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