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SYNOPSIS. 

The object of this investigation was to stL 

ultimate strength of single-bay prestressed portal frC 

the moment redistribution beyond the elastic limit. The 

controversial opinions about the extent of redistribution 

moments in statically indeterminate structures at their 

ultimate failure. For example, Guyon is of the opinion that 

the distribution of moments in statically indeterminate 

structures, say portal frames, under service loads will not 

be the one deduced from the elastic theories. Some redistri-

bution, Guyon says, is bound to take place and cracking2  

will be delayed beyond the point indicated by the elastic 

theory. In contrast to this, professor R. H. Evans and 

J. S. Raftery found from their test on a three dimensional 

prestressed concrete frame that the failure occurred without 

the frame kit K 2xiinxN z$zxxxm& becoming a mechanism by 

forming a sufficient number of plastic hinges i.e., without 

the full redistribution of moments. P. B. T:iorice and H.B. 

Lewis, by performing a number of tests on prestressed 

concrete continuous beams and portal frames, came to the 

conclusion that there was full redistribution of bending 

moment at failure. But the degree of moment redistribution, 

or adaptation, obtained by them demands special examination 

on account of the contrary evidence produced by Macchi. 



An attempt has been made to find the discrepancy 

between the actual and the calculated ultimate loads and the 

degree of redistribution of bending; moments, or adaptation, 

that takes place. The relation between the curvature and 

the moment of resistance is also studied.  
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b = breadth of beam 

dI = ef--'ective de2th  

nd = de7)th to neutral axis 

rnd = depth to centre of compression 
S 

R = cube strength in lbs.  

;Ls = Area of ;Lih tons .'.i e steel 

fu = ultimate stress in steel 

_ ,,ei hted pe: ceiitage 

= sfu 

Fsiu..0 = 'iotal ultimate Forcein the steel 

S~ = a coefficient dependin,; on the shape of the stress d is ram 

oki d. = lever arm  

= ltrain in the concrete 

=Strain in the steel 

go = initial strain in the concrete after prestreusin ,. 

&r' o = initial strain in the concrete after prestressa.n 

a = rac ius of curvature 
fs = actual stress in the steel 

= tei:sion factor 4 
;Ir = ultimate moment of resistance 
1 = 1:~~ ail of the portal between the centre lines of legs 

= height of: the portal frame 
= ratio of stiffness of ler,, to stiffness cf tra,~som. 



CHAPTER I 

INTRODUCTION. 

1.1 Advantages of continuity: 

Continuity in prestressed concrete offers the same 

advantages as in non-prestressed structures, namely that the 

moments may be more. evenly distributed between the, centre 

portion and the ends of the members than is possible in simply 

supported beams or in structures which contain a number of 

hinges to reduce the degree of indeterminacy. The cross- 

section 

 

 of the members may therefore be reduced. 

A further advantage lies in the use that can be made 

of pre-casting for the production of high-quality concrete under 

factory conditions. Individual members may be formed from an 

assembly of pre-cast blocks, connected only by the prestressing 

cables and the logical development of this technique is the 

assembly, by means of prestress, of complete members into 

continuous beams or frames. 

1.2  Problems in the prestressing of 
indeterminate structures. 

• (a) Prestressing an indeterminate structure introduces 

redundant reactions and therefore secondary moments. 

(b) Cables correctly placed to give the 	sitars 

prestress, having regard to the secondary moments, are not 

necessarily in a position which gives a high ultimate moment, 

as in simply supported beams. Moreover the calculation of the 

failure load is complicated by the redistribution of moments 

in the structure. 
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(c) The loss of prestress in tensioning due to 

friction is appreciable in long cables with considerable 

curvature. This largely offsets the possibility of a saving 

in the cost of end anphoragep, by the use of long cables. 

1.3 Possible practical solutions. 	• 

(a) Stressing in the determinate condition, and 

then rendering the structure indeterminate. 

(b) Stressing, and adjusting the redundant reactions 

by use of jacks or other means to elinunate the secondary forces, 

or to control them to any desired value. 

(c) Stressing in a way that does not affect the 

reactions. 

(d) Stressing in the most convenient way and 

calculating the secondary moments. 

1.4 Plastic Theory and ultimate load. 

(a) Existing ultimate strength theories only apply 

for statically determinate structures where the moments etc., 

are known statically, and cannot be used as such for the 

analysis of redundant structures where a moment deformation 

relation is needed for all stages of moment at the sections 

upto their ultimate strength. Some work has been published 

previously by Professor A. L. Baker' in order to estimate the 

strength of reinforced and prestressed concrete redundant 

structures. This work is based on lines similar to the 
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plastic theory involving the use of plastic hinges as applied 

to mild steel redundant structures. Mild steel, being a highly 

ductile material, the necessary rotation required at the plastic 

hinges is always available without the strains exceeding the 

ultimate limit. Concrete is a material having much smaller 

ultimate strain and it crumbles if over strained. -Therefore, 

the necessity arises in the case of reinforced and prestressed 

concrete redundant structures, when applying the concept of 

plastic hinges to such structures, that the hinge rotation 

required for the assumed moment redistribution is available 

without putting strain in the concrete which is more than the 

ultimate that it can carry. This means that some variation 

from the methods applicable to steel structures becomes 

necessary. So a method of analysis and calculation of ultimate 

strength of prestressed concrete redundant structures were given. 

It is based on the modification of the elastic theory results 

due to the formation of plastic hinges. Actual test results 

are given in verification of the theoretical deductions and 

it will be seen that the proposed theory estimates the ultimate 

strength of the structure fairly closely to the actual strength. 

The ultimate strength calculated on the basis of the elastic theory 

as is the practice nowadays, is as low as 46 per cent of the 

actual strength. 

(b) It is well known that most building materials like 

steel and concrete are not fully elastic tight upto their ultimate 

strength and plastic deformations accompany the elastic strains. 
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Steel is elastic upto a stress of about 60 per cent of its 

ultimate strength, after which if shows excessive plastic deforma-i 

tions known as yield of steel. Concrete shows some plastic 

deformations right from the beginning, but after a certain 

stage of loading, these plastic deformations increase abnormally. 

The methods of analysing structures and predicting their behaviour 

under load, after taking into account of these plast.ic deforma-

tions, is called Plastic Theory. The prevalent methods of 

structural analysis are based on Elastic Theory which assumes 

that the material is perfectly elastic at all stresses. It is 

thus evident that the analysis based on elastic theory is only 

an idealised one, and the results may be different from those 

obtained in practice. The importance of taking account of the 

plastic strains was realised as early as 1892 when A.E.H. Love, 

the famous elastician, wrote in his classic work *A Treatise 

on the Mathematical Theory of Elasticity,,, "here exists no 

adequate mathematical theory of set or of after strain, or 

in fact of any of the phenomena exhibited by materials strained 

beyond their elastic limits, yet it is imperatively necessary 

that effects which can not be calculated exactly should be 

taken into account in construction, and it is in this sense 

that the elastic theory is at this time behind the Engineering 

Practice." It is only in recent years that some attention is 

being paid to this aspect of the problem. Glanville2  had shown 

in 1936 that the plastic deformations of concrete and steel 

have considerable influence on the behaviour of continuous beams axo 

and frames of reinforced concrete. 
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If the stresses created in a structure are within the 

elastic range of the material, then the relationship between the 

load on the structure and the stresses is linear in most cases. 

However, as stated earlier., steel and concrete both show plastic 

deformations after a certain stage of loading and then the load4 

stress relationship can not be linear, i.e., the increase of steess 

is not in the same proportion as the increase of load. Hence if 

we fix certain factors of safety on the stresses and calculate 

the working load on the structure, based on those reduced 

stresses which are within the elastic range of the material, 

then by multiplying the working load witi3 the factor of safety, 

we do not get the collapse load. The actual collapse load may 

be less (as in columns) or more  

(as in continuous beams than the one obtained above. In order to 

determine-v the real factor of safety of a structure, its callapse 

load should be found and then the working load may be kept a 

fraction of this collapse load. The ratio of the collapse load 

to the work_irg load is called "Load Factor" and is different 

from the factor of safety applied to stresses. The plastic 

theory aims to find the collapse load of a structure rather 

than the working load as is the practice now. 

C. METHOD OF CALCULATING COLLADSEJaOAD 

A structure, in general, is subjected to (i) direct 

forces (ii) bending moments (iii) shear forces and (iv) torsion 

at any section under the action of a given system of loads. 

..6 
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These actions may be present individually or in combination with 

each other. Before the collapse load of a structure can be found, 

it is essential to know (i) the relationship between the external 

loads on the structure and the bending moment, etc. caused at 

any of its sections, (ii) the ultimate strength of a section under 

the action of the particular type of force e.g., direct thrust, 

bending moment, etc. suppose the ultimate moment of resistance 

of the section is Mr, and the relation between the collapse load 

W and the maximum bending moment M caused in the structure is," 

M = KW, then the collapse load W -- Mr  K 

(d) Analysis of moments, thrusts, etc. 

In the case of statically determinate structures, the 

relationship between moments and load etc., is easily found by 

statics and does not depend upon the properties. of the material 

,of which the structure is made. This relationship remains the. 

same at all loads till the collapse of the structure. Hence, 

in such structures, the collapse load can be calculated as 

described above, once the ultimate strength of the individual 

sections is known. The ultimate strength of a section can be 

calculated by any of the existing theories. 2, 3, 4, 5, 6, 7, 8. 

For statically indeterminate structures, the relationshi; 

between load and moments depends upon the properties of the 

material and the relative dimensions of the structure. The 

analysis of moments, thrusts, etc. in redundant structures is 

done with the help of elastic theory and needs calculation of 

angular and direct deformations of the various members of the 

structure. In this calculation, it is assumed that the material 
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is perfectly elastic at all sections of the structure and that 

the angular deformation of any section of the structure is 

proportional to the bending moment acting there. With the 

help of these calculations, a certain distribution of bending 

moments, etc. is obtained in the structure under a given system, 
• . 

of loading. 

This distribution of moments will not be affected 

by the magnitude of the external load so long as the load is 

of the same pattern and the material is elastic. It means 

that the relation between the moment at any section and the load on 

the structure is linear. 

However, in the case of reinforced or prestressed 

concrete section, the relation between bending moment and 

angular deformation isnot linear right upto the ultimate 

moment of resistance of the section. Fig. 1 shows a typical 

curve giving a relation between moment and angular deformation 

of a unit length of a prestressed concrete member. tJpto a 

moment M', the curve OA is almost a straight line showing that 

the behaviour is elastic. Beyond M', the angular rotation 

increases very rapidly till the section collapses on reaching 

its ultimate moment of resistance 1'r, the value of ~~  the 

maximum angular rotation, which a unit length of a prestressed 

concrete member is capable of undergoing before crushing of 

concrete, depends upon the depth of the section, the percentage. 

reinforcement and the ultimate compressive strain of concrete. 
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It is assumed here, as in all the usual formulae, that the 

failure of a prestressed concrete section is always accompanied by I 

the steel reaching its ultimate tensile strength, Fsu. The ratio 

of the moment M' upto which the curve is a straight line, to the 

ultimate moment of resistance Mr depends upon the quality of 

steel and its percentage in the section. Another critical point 

on the curve is D beyond which a slight increase in bending moment 

results in a large angular deformation of the section. The section 

at this stage of bending, is said to have formed into a plastic 

hinge. 

The distribution of moments, etc., in prestressed 

concrete redundant structures will, therefore, be given by the 

elastic theory fairly correctly till the maximum moment in the 

structure is less than ITT'. There may be minor deviations due 

to creep of concrete or its cracking. But even when the load 

on the structure is increased beyond this stage, there will 

only be small zones of the structure where the moments will 

exceed M' and the rest of the structure will s till be in the 

elatic stage, for which the elastic theory is applicable. Let 

one of these zones be of length OSO 

Fig. 2 shows the length of the member on which 

the moment exceeds M' in a length S. Curve (1) shows the 

distribution of bending moment on this length and curve (2) 

gives the corresponding angular deformations 0 at various 

points as obtained from Fig. 1. The dotted curve (3) gives 

••9 
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the angular deformation 	for the same moments on the 

assumption that the material was perfectly elastic. This 

curve can be drawn with the help of the straight line OB in 

Fig. 1. The vertical ordinates between curves (2) and (3) 

give the extra angular deformation per unit length of-the 

member due to plasticity of the materials. The total plastic 

deformation in a small length de will be the ordinate 

multiplied by. this length i.e., equal to the shaded area 

in Fig. 3. Hence, total plastic deformation in the lengths 

will be the area between the curves (2) and (3) in figure 3. 

This is called the - rotation of the plastic hinge and the length 

S of the member in which these plattic deformations occur is 
' 	r 

called the "length of the plattic hinge". 

In the analysis based on elastic theory, only 
4 

elastic deformations were considered. The existence of these 

plastic deformations is bound to alter the distribution of 

moments in the structure. This is called the "redistribution 

of moments" beyond the elastic limit in the structure. Thus, 

when a structure is about to collapse, the distribution of 

moments is di:Cferent from that given by the elastic theory. 

The calculation for the actual moment distribution at failure, 

will involve the knowledge of rotation of the plastic hinge. 

This rotation cannot be calculated accurately unless the 

distribution of moments is known. Hence the problem becomes 

one of trial e.g. a probable distribution of moments is 

assumed and then the rotation of the plastic hinge calculated. 

.. 10 
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It can now be checked whether the assumed moment distribution 

was correct. 

Since the plastic hinge*  is not located at a section ae 

alone, i.e., on an infinitesimally small length, but is 

distributed ever a certain length which has reached the  

plastic state, the rotation of hinge is the sum of the elements 

of curvature, in other words if 6 is the rotation which is require 

at a kxg hinge to permit full adaptation, 6 is the sum of the 

curvatures $ of the elements oLA of the plastic zone 

on both sides of the theoretical hinge ( 	J ds ds 

the integral being extended to the plastic zone). Since 

along this plastic zone the moment varies from the elastic limit 

to the ultimate moment, it is seen that the basis for the 

justification of redistribution (or the study of the rate of 

redistribution) is the relationship between the moment and the 

curvature, which may be written a = M. 

If this relationship is known, the maximum possible 

rotation of the hinge may be determined for a given assumed 

distribution and the assumption will be justified if this 

maximum is not exceeded. 

*It has already been stated (at the F.I.P. Congresses) that 
this designation is merely an abbreviation, and that the 
plastic hinge is in fact a certain length of the struc-
ture of which the section is the centre. 
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In theory a knowledge of this relationship allows 

the behaviour of the structure from the end of the elastic 

phase right up to failure to be followed. Professor Levi and 

his assistants have obtained some interesting results in this 

direction. 

1.5 Calculation of the ultimate moment of 
resistance of a section. 

Simple formulae have been given for the ultimate 

moment, and these are certainly sufficient for the simple 

cases of a statically determinate beam with a small percentage 

of steel, this percentage being based on the area of surrounding 

concrete (i.e., to bd1 ). The question is if they are still 

sufficient for the higher percentages which often occur in a 

statically indeterminate structure, due to the reversal of 

bending moments when the cable is very close to a flange. 

Further, the real parameter is not the percentage 

but the ratio of the strengths Ag u , which is called 
bd~ 	 bd~~R 

the weighted percentage denoted by u~ 

The usual formulae assume that the steel reaches its 

ultimate tensile strength when the section fails, and thus the 

direct force is Fsu. A certain shape of the concrete stress 

diagram is also assumed. Hence the resultant compression 

is kbndr, where k is a coefficient depending on the shape of 

the stress diagram; the centre of compression is at a distance 

r and d from the extreme flange, r being a constant also dependent 

.. 12 
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on the shape of the stress diagram. The lever arm is equal to 

d1 - rnd, and the resisting moment Mr is equal to Psu (d1-nd). 

Prom considerations of equilibrium, we have 

F 
'Fsu = kbndr or nd = kbr 

F 
Hence 	Mr = Fsu d1(1 - r 	) 

If the constant coefficient 1 is denoted by d and 

the weighted percentage bd R by W , the formula becomes'  
1 

Mr = Fsu d1 (1- d 	) 

various values have been given for the coefficient 

when R is the cube strength, most authors give 	& 	_ 

The value of a• was discussed at the first congress 

of the Federation Internationale de la Precontrainte held in 

London in 1953. Walley gives d = 0.74 ( o( = 0.59 when R 

is the prism strength, assumed to be 0.8 R cube). 

Morice suggests mot. = 0.8, and that for Post-tensioned 

members a reduction coefficient should be applied to Fsu, to 

allow for the imperfact bond. 

*The formulae only apply where the bond is perfect; 
They also assume that b is constant over the depth nd. 

..13 
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As can be seen, opinions vary appreciably. 

To attempt a comparision between these formulae and 

the results of tests on statically determinate beams (which 

ensure a knowledge of Mr, is very difficult, due in particular 

to the lack of uniformity of the standards concerning the 
• 

strength of concrete in different countries. The value of the 

concrete strength varies in mmammrzg meaning according to•the 

'test procedure; cube, prism, cylinder, size of sample, the 

interposition of material between the concrete and the platens 

of the testing machine, the method of curing the samples before 

testing, etc. 

If the above mentioned formulae hold good, then a 

plot of the results on a diagram relating My and w should 
' Fsu_ 

give a straight line ( ► — ~~  = 	)~ from which d` FgV,  

an average value of ot, could be deduced. The results are 

plotted in Fig. 4. It may be said that, in spite of considerable 

scatter, the relationship 	 (t- i~') seems to give 

reasonable agreement for low percentages. 

By "reasonable agreement" is meant that, although 

there is an appreciable variation in o< 	(i.ein the slope 

of the straight line joining the point W = O °~`d mY 	to the 

point under consideration), the approximation in the value of the 

moment is not so bad, due to the low value of the corrective 

'term d W 	when w is small. The error is generally no 

greater than 10f, and could not be expected to be smaller. 

••14 
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The situation is different at higher percentage 

of steel, For high percentages, it is certainly impossible 

for the steel to reach its ultimate tensile strength. In 

certain cases, when the cable is in the compressive zone (which 

may happen in, statically indeterminate structures, one to a 

reversal of moments), not only will the steel not reach its 

ultimate tensile strength, but it will lose part of its 

initial tension. Therefore formulae covering the whole  

range of percentages should be established. 

It seems reasonable to adopt the assumption that 

plane sections remain plane. The validity of this assumption 

appears to be justified by tests made by Billet and Appleton9 

on twenty-four statically determinate beams. 

Figure 5 explains the assumption; let be the strain 

in the concrete, the strain in the steel, let 60 and go be 

the initial strains after prestressing. (  is the strain 

co~rrespondin, to the initial tension in the cable after relaxation.) 

Under the effect of the ultimate moment Mr, the strain in the 

section will vary from E - 	- el o 	. Let fs be the 

actual stress -in the steel. '.hen using the same coefficients K and 

as defined above 

Ic 6-w• a R = A g ; A 	 (1) 

(2) 

Since there is a definite relationship. between 61 and fs 
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(the stress-strain diagram) these two equations allow the two 

unknowns fs and nd to be determined, assuming & and o  to be 

known. 

It is assumed that 6o is small in comparison with 

(which is generally the case) and have taken 	'. 

obviously other values could be taken if thought to be better. 

When fs and nd are known, Mr is found from the 

equation 

Knowing also: the radius of curvature r,  

(4) 

Tests with three kinds of steel have been made for 

a large ra g e of values of w upto 0.85, the characteristics 

of both concrete and steel being known. Figure A shows the 
results plotted in terms of 	and w 	as above, 

compared with the theoretical formula given by equation (3). 

The theoretical law corresponding to steel I is shown on this 

figure, and it is seen that the experimental points corresponding 

to this steel are in good agreei'ent with the theoretical curve. 

The agreement is equally good for the other steels. 

. . 16 
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Below is given a practical way of solving equations 

(1) and (2), and hence finding Mr and r , 

Let the ratio fu (the "tension factor", referred 

to the ultimate tension taken as unity) be denoted by 	Then the 

stress-strain diagram for any given steel may be represented 

by the equation ' =F( A ). Let A0 be the value of A 

corresponding to the initial tension. Since  
bd t R 

equations (1) and (2) may be written as follows: 

 • 	(La) 
K 

d 	- F CN6) + - 6o ] 	- 	(..) 

Taking ng d1 and }. 	as coordinates, equation (2a) expresses 

a relationship between )~ and 	which we may call '. J' d 
This curve may be plotted as shown in Figure y 	This is 

easily done if the stress - strain diagram 61 = F CA) is 

known (if is assumed that &a is given). We may call this 

curve the characteristic curve for the steel. 

The point ( 	) > 	) lies on this curve, from 

equation (1a) the point also lies on the straight line through 

the origin given by' 	_ ~? or tan [ = -? 
dI 	k 	 PC 

Thus, if, to a suitable scale, we mark the scale c,) 
(a uniform scale) on the horizontal 5? 	the line /3 is 

obtained by joining o to the point reprdsenting W on this 

scale. 

..17 
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Thus, if we construct this graph, the solution 

of equations (1) and (2) is obtained for a given value of 

w by marking this value on the scale 	and joining it 

to the origin. The intersection of this straight line and 

the characteristic curve has the coordinates A and 	and 

hence Mr and r . Special scales for the lever army 

( 	 ) and for L (-/fr 	) 

facilitate the calculations. 

A graph of this kind is shown in figure 8 for 

the initial tension >,p = o•6 and for four different steels 

(I, II, III, IV) corresponding to the types of steel usually 

employed in Great Britain, France, U.S.A., and Italy respect- 

ively. 	
~  ~r 

 It will be seen that the results (and hence the values of 
{ 

the ultimate moments) depend on the shape of the stress - 

strain diagram (corresponding to the different characteristic 

curves) and that a knowledge of this diagram is indispensable 

when interpreting test results. 

The graph shown in Figure 8 	corresponds to the 

assumptions : K - o •'st, 	Y = o' c, 4 - ~o - 	3' 6 " ' °"3 	 it 

is assumed that the concrete strength is measured on cubes cast wi. 

without smoothing. 

Guyon has constructed a similar graph for 	°' 

The differences in the values of fir are very small (same 3%) 

. . 1 8 
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Figure 9 shows the stress - strain diagrams 

in terms of A.. for the four ants steels I to IV. 

Special case where the external loads 
introduce a direct force. 

In cases where external loads introduce a direct 

force into a member, fof example a thrust H, the problem is to 

determine the depth nd to the neutral axis and the value of \. 

From figure ° 	equation (1) becomes 

( 1  b ) 

and equation (2) remains, "tea  = 	- o 	(2) 
Ci 

If we denote by 	the weighted percentage Asu 

and by ' 	the quantity H equation (1b) may be 
6d,R 

written. 

The representative point (K'd ) ) is to be d, 
found now. This point is on the characteristic curve, since 

equation (2), is the same as before. The point is also on the 

straight line reprdsented by equation (IC). It is therefore 

at the intersection of the characteris tic curve and the line 
given by equation (IC). The scale of the graph shown in 

Figure ir 	has been chosen so that this line can be 



r~ 

I~ 



traced easily. The scale for S has been marked on the line 

; to the same scale, the distance between the line a and 

the horizontal axis is k (since 	= K 	). Further the 

scale for A and 	have been made the sane. 
d, 

On the scale 	the point 3 w , and f~' o..M- W fw' 

are marked (see figure 11 ) . B and B' are joined to the 

origin. These two lines OB and CB' intersect the horizontal. 

X = t at B1 and BI I — Stough B1 1 . , a line is drawn parallel 

to OB. It intersects the characteristic curve at the point A, 
i which is the point required since ___ 	W'. 	the line I3; R 

represents the equation (IC). 

The coordinates of the point A are 	and A 

and the problem is easily solved. 
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2-1 GENERAL 

Considerable amount of work has been done to study the 

moment distribution in statically indeterminate prestressed struc-

tures beyond the elastic phase. Below is given a revie.w of the 

work done by various investigators. 

2.2  GUYON' S WORK 

(a) Tests on beams: 

Monsieur Guyon conducted some tests on beams in October, 

1952. The beams were 5 x 10 in. in cross-section, and each consiste( 

of two spans of 13 ft. 1 in. Each beam was prestressed by one cable 

consisting of 12 wires of 0.196 in. diameter. The concrete strength 

(tested on 5j- in. cubes smoothed before test) was 7,000 lb/in2. 

This was considdred as equivalent to 0.8 x 7000 = 5,600 lb/in2  due 

to the smoothing. The ultimate strength of the cable was 

Fsu  = 80,5000 lb. Mild steel was added in beams A2, B and C 

(two bars of 0.196 in. diameter, Fy = 2000 lb, 1 in. from the top 

and bottom flanges respectively). Two equal loads W were applied, 

one at the centre of each span. let Mr  be the ultimate moment in 

the span, Mf r the ultimate moment over the intermediate support, 

and W the dead load. 

If redistribution is complete, we should have at failure 

Mr+ M2r =Wr4 +W82  

where wr is the ultimate load. 

..2 
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The experimental data and observstions are given below. 

The measured effective depth at mid-span and over the supports are 

denoted by d l and d11 respectively. The values of Mr and Mf r have 
boon o.culated from figure 8. 

= 1,090 lb.ft. 
If Mr and Mfr are expressed in 16 Ft. x 103, we should have 

1 Wr = 1-- (Mr + M2r -1.09) 

In the table below are given the calculated ultimate •load, 

the observed ultimate load, and the ultimate load assuming no 

redistribution. 

TABLE III 

d  d1 1  Mr  M1r  W  W 
Beams 

(1n)  (lb.ft) " (lb.ft Calculated Observed  Error (assuming nc 

() x 103  x 103) (lb x 103) (lb x 103  (~)  redistribu- 
tion.) 
(lb x10 ) 

Al  1.38 8.8 2.28  46.6  7.46  7.70  -3  4.1 

A2 1.5 8.85 3.59 47.8 8.00 8.36 -4 4.1 

B 6.3 3.27 31.20 12.5 11.05 11.90 -8 11.0 

C 2.96 8.09 10.80 42.7 9.45 11.00 -14 9.4 

* No added mild steel. 

Note: All the differences are negative (i.e. the zt calculated 
loads are smaller than, the observed loads). The concrete 
strength was probably overestimated (i.e. coefficient of 
reduction smaller than 0.8). 
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Monsieur Guyon witnessed a test on a three span continuous 

beam carried out in London in November, 1952. The following data are 

reproduced from the notes made at the time. 

The beam consisted of three spans of 10 ft. each, plus 

two cantilevers of 3 ft. 10 in. he depth at the mid span was 

1 ft. 71 in. and above the supports 2 ft. The breadth b was 64 in. 

The beam was prestressed by two cables each consisting of 12 wires 

of 0.196 in. diameter. The total ultimate force for the two cables 

was 168,000 lbs. Three mild steel bars of 34 in. diameter were. 

provided over a length of 4 ft. 9 in. over the two intermediate 

supports, 1 in. from the top flange, stirrups of - in. diameter bar 

were arranged at a pitch of 9 in. 

The concrete cube strength was 5,600 lb/in2. 

Loads were applied at the third points in each span, 

plus one load on each cantilever 1 ft 34 in. from the extreme 

supports. 

It is seen from the test that the ultimate load would be 

20% less than the full redistribution load. 

b. TEST ON FE: 

Monsieur Guyon has tested a frame identical to that 

tested by Lebelle, with the same prestressing force in the 

horizontal truss but arranged differently, the tendon had a double 

curvature in one truss, and was centred in the other. 

..4 
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The main difference between this test and Lebelle's test 

is that in this case the load was applied asymmetrically, at 

mid-span of one truss only. Due to the arrangement of the wires in t 

the members, the theoretical ultimated load is greater than that for 

Lebelle's tests. 

The ultimate moments were 13,300 lb.ft. for the posts, 

1,300 lb.ft. for section A (see figure 12), 24,600 lb.ft for M 

(positive) and B (negative), and + 15,900 lb.ft. for D, N and E. 

Assuming complete redistribution, the theoretical ultimate 

loads are 18,600 x 103  lb. for DNE and 23,000 x 103  for ANB. 

The observed ultimate loads were respectively 18,100 x 103  

and 22,500 x 103  lb. It is difficult to compare these results wit1 

the assumption of no redistribution sine failure would have occurred 

immediately at the point A. 

2.3 LABELLE' s TESTS ON PANES: 

lebelle tested a double frame of the dimensions shown in 

Fig. 13. All the members were 8 x 5 in. in cross-section. The 

horizontal members were prestressed by four wires of 0.276 in. 

diameter, the wires being central in one of the members and eccentric 

in the other. The posts were of reinforced concrete. As the full 

details have already been published(10), only the data concerning 

failure are given below. 

The ultimate moments were 13,200 lb. ft for the outside 

posts and 15,050 lb. ft. for the upper truss (with the central 

prestressing). If we denote the net span of this truss by 1, the 



theoretical ultimate load Wr is given by Wr4 = 15,050 + 1 0 2 13200  
which gives Wr = 18,000 lb. The observed ultimate loads were 17,700 

lb (with the central prestressing) and 17,000 lb (with the ecentric 

prestressing). 

According to the elastic theory, the ultimate load would 

have been 15,100 lb. The observed loads are therefore 2% and 6% 

smaller than the load assuming complete redistribution, and 17% and 1,. 

12% greater than the elastic ultimate load. 

2.4 uIN'S TESTS 

Tests have been carried out by Lin at the Magnel Laboratory, 

on four continuous beams, each having two spans of 24.6 ft, the beams 

were 8 x 16 in. in cross-section, prestressed by a curved concordant 

cable consisting of 32 wires of 0.196 in. diameter. The concrete 

strength measured on 8 in. cubes (cured) was 8,280 lb/in2. The 

ultimate strength of the cable was 25,000 lbs. 

Two of the beams had additional untensioned steel (two 

bare of 0.55 in. diameter at a distance of 1 in. from the extreme 

fib "'at mid-span and above the support, in the tensile zones). 

Loads were applied symmetrically 8.6 ft. from the 

central support (see figure 14). The reactions were measured. 

The results have already been published." The following 

ultimate moments are calculated. 



Beam A (without additional mild steel) 

Ultimate moment in the span (loaded section): 145,000 lb.ft. 

ultimate moment above the support 
	: 176,000 lb.ft. 

The theoretical ultimate load assuming complete 

redistribution (Wr) is given by 

2 
Wr x 16 x  8.6  + W 1  = 145,000 + 176 000 x 16 24.6 	8 	' 	24.6 

or 5.57 Wr + W 12  = 259,000  
8 

2 
since W 8 = 8,700 lb.ft., we have Wr = 45,300 lb. 

The observed value of W was 39,200 lb. (a difference of -13%) 

The ultimate moments may be calculatdd from the 

measurements of the reactions. These were 162,000 lb.ft. over 

the support instead of 176,000 lb.ft. (difference 8%) and 115,000 

lb.ft. under the load instead of 145,000 lhft. (difference 21%). 

Beam B (with additional mild steel). 

Ultimate moment in the span (loaded section) : 164,000 lb.ft. 

Ultimate moment above the support: 
	197,000 lb.ft. 

The theoretical ultimate load Wr is therefore 50,500 lb. 

The observed value of W was 46,000 lb j 	imii (a difference 

of -9%) 

The measured moments were as follows: 

under the load : 136,000 lb.ft. instead of 164,000 lb. ft. 

(difference 17%) 

above the support: 193,000 lb. ft. instead of 197,000 lb.ft. 

(difference 2%) 



If there had been no redistribution, the loads would have 

been 35,800 lb. for beam A and 40,300 lb. for beam B. 

The ratio observed load 	is therefore 1.09 in the one 
No redistribution load 

case and 1.14 in the other. 

2.5 TESTS BY LEVI AND MACCSI. 

Tests carried out by Levi and Macchi are described in 

a paper by Macchi presented at the second congress of the Federa-

tion Internationa..e de la precontrainte12  held in Amoterdam. 

Tests were made on three continuous three span beams, 

4 x 10 in. in section, in two of the beams (C1  and C2). The spans 

were 6.55 ft. 13.1 	ft. and 6.55 ft., one beam (C3) had spans of .9.8`. 

ft. 	13.1 	ft. and 9.85 ft. 

A prestress was applied by one cable consisting of 8 wire. 

of 0.196 in. diameter, the ultimate force Fsu  = 64,500 lb. 

Untensioned steel wires of 0.196 in. diameter were 

provided at each corner(withlin. cover) 

The cable was at the upper edge of the middle third in 

the side spans. In the central span the cable was curved, the 

arrangement of the cable over the intermediate supports was 

symmetrical with the arrangement at mid-span, hence the ultimate 

moments are the same for both sections. If Mr is their common 

value, then the theory of full redistribution would lead to 

an ultimate load Wr such that 

Wry+W 	=2Mr 
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Macchi mean Mr for two of these beams, by testing 

them to distruction in the statically determinate condition 

(as a cantilever) after the test. For the third beam, the ultimate 

moment was evaluated by comparison with an identical beam CR, which 

was tested upto failure under statically determinate conditions. 

The strength of the concrete was not the same for beams 0.3  and CR. 

The concrete cube strengths were as follows: 

C1  and 02 : 5,600 lb/in2  

03  : 7,400 lb/in2  

2 
In the above equation, W a = 1,000 lb.ft. 

r 

The theoretical values of Wr are given by this equation, using the 

respective values of Mr. A comparison between theory and experiment 

is given below: 

TABLE 2. 

Mr Calculated Wr  observed observed 	Obloaded Beam (lb. ft. x 10
3 

 ) (lb. x iO3) (lb x 10
3 

 ) Calculated 	odiste 
... ribution 

log. d. 

C1  20.6 12.76 11.1 0.87 	1.13 

02  27 16.8 14.7 0.87 	1.14 

30.4 18.9 14.9 0.78 	1.08 03  

As has been said above, M. Guyon believes that the 

value of Mr has been over-estimated for beam C3, as was stated 

in his general report at Amsterdam; the coefficient 0.78 should 

in his opinion be raised to something like 0.84. In any case, 

there is a lack of redistribution. 
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2.6 ESTS OP MORICE AND LEWIS. 

Tests by Morice and Lewis are described in an unpublished 

report(13)  

Tests were made on 28 continuous beams, each of two spans 

of 7 ft 6 in., the beam section being 4 x 6 in. Two concentrated 

loads W were app.ied symmetrically at the mid-spans. • The tests 

were made in order to check that linear transformations of the 

cables (i.e., transformations of the tendon profile without 

altering the end ak anchorages or the intrinsic shape of the 

tendon in each span) would not affect the ultimate load. This 

is an intrinsic property of full redistribution, as will appear 

from what has been said earlier in this paper. 

The tests did in fact show that this assumptionwas 

approximately correct. The series of beams with different 

profiles, one of them concordant and the others transformed up 

or down, failed under loads differing from the average by not 

more than 5%. The full details are given in the report. 

With reference to these tests, it seems appropriate 

to draw attention to the necessity of standardising the test 

procedure followed in determining the strength of concrete. The 

meaning of the strength of concrete varies from one country to 

another, and sometimes within the same country. In the graph 	 xi 

shown in figure 8, the concrete strength is that measured on the 

cubes as cast . When the cubes are smoothed, the strength is 

multiplied by 1.25. 
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In the tests reported by Morice and Lewis, the strength 

of concrete was measured on 4 in. cubes, cast in accurately machined 

moulds, the effect of this perfect finish of the moulds may be 

considered as equivalent to smoothing. Further, the cubes were 

cured in water and tested wet, which, compared with our tests, is 

another difference which will increase the strength. 

In order to compare the results with our graph, 

therefore, the cube strengths reported by Morice and Lewis must 

be multiplied by some factor C, and the weighted percentage 

 Fu which should be marked on the scale iA of figure 8 should be W=' 

where R' = CR. 

When the strength is measured on smoothed cubes, the 

value of C should be taken as 0.8. It seems that in this case 

the value to be taken is 6 or 0.625. In other words if the 

simple formula Mr = d1 Fsu (1 -C W) is used (with IS = 	) bd,Q ' 
then 	becomes 0.625 = 0.8 instead of 0.5. This factor of 0.8 is 

the one suggested by Morice and Lewis and appears to be justified. 

If, instead of this formula, the graph of figure 8 is used, we 

must mark on the scale W a value equal to 1 .6 times 1h e 
value g`~ 	, With this corrected value of 7 , the agreement 

is perfactly satisfactory, and as the tests give the statistical 

result (from 28 beams) the assumptions made by Morice and Lewis 

are justified. 

In their tests, the reactions were measured, the 

moments actually reached in the critical sections may, therefore, 

be calculated. These are plotted in terms of w' C' 	" = ~• 6 W in 

figure 15. The test results agree satisfactorily with the 



"theoretical" law relevant to the steel used. 
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In addition, statically determinate control beams, 

possessing the same characteristics, were tested. The results 

are marked as points C on the figure 15. It will be seen that 

their ultimate moments are of the same order of magnitude as 

those of the statically indeterminate beams. It should also be 

pointed out that these orders of magnitude agree with results 

obtained by Baker(6)  and by Frentis(8). 

It may be concluded from the tests carried out by 

Morice and Lewis that in the ease of these 28 beams, redistribution 

was practically complete. 

2.7  TEST OF THE FESTIVAL OF BRITAIN FOOTBRIDGE. 

Results of the test of the Festival Footbridge(14-16) 

do not indicate full redistribution but, having studied them 

very carefully, we think that they do not contradict the theories 

of redistribution. The differences are due to the absence of 

bond between the cables and the concrete, the bad quality of the 

grouting was noted after the structure had been tested to 

destruction, in fact, the grouting was quite ineffective. 

This should not be taken as 	criticism of the construction, 

the hurry which was necessary is a sufficient explanation of thd, 

difficulties, the aim here is to examine objectively the 

reasons why failure occurred sooner than had been expected. 

It can be said that, under the conditions of the test, 

i.e., with the actual ultimate moments (reduced due to the lack of 

bond), the redistribution was as near complete as it could 

have been. 
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TABLE 3 

Tests 	Beamt 	Observed Load 	0 	Observed Laad 
Full Redistribution Load No Redistribution Load 

4 Two-span beams Al 	 1.03 
(Guyon) 

A2 	 1.04 

B 	 1.08 

C 	 1.16 

1.88 

2.04 

1.07 

1'.16 

Three-span beam 	 1.04 	 1.25 

Lebelle 	 0.98 	 1.17 

Frames 	 0.94 	' 	1.12 

Guyon 	 0.97 

0.97 

2 Continuous beams A 	 0.87 	 1.09 
(LIN) 

B 	 0.91 	 1.14 

3 Three-span beams C1 	 0.87 	 1.13 
(Macchi) 

02 	0.87 	 1.14 

03 	0.78 (0.84) 	1.08 (1.16 

28 Two-span beams 	 0.95 - 1.05 	1.03 -- 1.51 
(Morice and Lewis) (3.16 for test 11) 

Festival Footbridge 	 0.97*  

*Taking into account lack of bond (0.82 referred to the maximum load 
,which could have been supported with good bond. 



Under normal conditions (absence of bond being cori2ered 

as an hbnormal condition) the following conclusions may be drawn 

from the above experimental data. 

1. The increase of strength due to redistribution of 

the moments depends upon the discordance. In Guyon's tests B & C, 

there was no increase due to lack of discordance. On the otherhand 

when the ultimate moment of one of the plastic hinges is very small 

in comparison with the ultimate moments at other hinges (which 

often occurs due to the reversal of moments, e.g. positive moments 

over supports, or negative moments at mid span over certain 

structures, the increase may be considerable (e.g. Guyon's tests 

Al  amd A2, and Morice's test 11). 

2. The assut ption of full redistribution allows the ulti-

mate load to be estimated to within at worst 15%, and generally 

more accurately. It might be said that this accuracy is sufficient, 

and of the same order as that of the ultimate moments themselves, 

further, that the designer does not require any greater accuracy, 

since he never knows the true strength of his materials, parti-

cularly the concrete. 

The assumption of full redistribution cannot be other 

than an approximation, the accuracy of which depends on definite 

conditions of compatibility of the strains, or more precisely of 

the rotations of the ends of the spans on both sides of a given 

support, or, which is still equivalent, of the rotations at the 

successive plastic hinges. 
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The assumption merely means that small variations in 

the reactions give rise to large variations in these rotations, 

which allows the solution to be adjusted with very small modi-

fications to the conditions of compatibility to be fulfilled. 



CHAPTER 3. 	 4 

THEORY AND D. SIGN OF PO;..TAL PRr; B LS 

3.1 SU!41 4 RY 

Continuous prestressed concrete beams are, in general 

more difficult to design than simply supported beams. The 

fundamental difference between the two is that in the latter 

the line of pressure (i.e. the line along which the prestressing 

force acts) coincides with the mean line (the centroid axis) of 

the cables, while in the former this is not necessarily the case. 

This is due to the fact that, if a cable is placed arbitrarily 

in a statically indeterminate beam, the tensioning of the cable 

causes the beam to deflect, and this deflection creates statically 

indeterminate reactions which distort the line of pressure so that, 

in general, it no longer concides with the cable. 

It will be shown that the most important factor is 

not the cable profile, but the shape of the line of pressure. 

The problem therefore consists in determining a cable profile 

corresponding to a given line of pressure. 

However, an arbitrary line of pressure is not necessarily 

a possible one. For a given line of pressure to be possible, it 

must fulfil the condition that the tensioning of a cable placed 

along it causes no statically indeterminate reactions. Such a 

line of pressure is caviled "stable." 

O a.e possible position of the cable for obtaining a 

stable line of pressure is along the line itself and such a cable 

is called "Concordant". It can be shown that this is not the 

only possible cable profile which will give this particular line 
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of pressure; by translating the cable i.e., by adding linear 

functions to its coordinates with respect to the neutral axis of the 

beam, we can, it is possible in theory to deduce from a concordant 

cable an infinite number of cable profiles, each of which will 

give the stable line of pressure from which they originate. A 

particular cable profile determined in this way may often be an 

improvement on the concordant cable, reducing the friction between 

the curved cable and the concrete or making it easier to accommodate 

the jacks and anchorages.  

It is shown that the stable line of pressure must be 

entirely within a limiting zone (there being no such zone for 

each span or member of the structure) which is determined by the 

shape of the numbers and by the external loads which they have 

to support. 

The general problem therefore consists in determining a 

stable line of pressure lying entirely within the limiting zone. 

In certain cases, it may be necessary to allow the line of 

prdssure to be outside the limiting; zone in some parts of the 

beam, thus causing tensile stresses in the concrete at those 

parts greater than the permissible stresses. In this case, 

complementary mild steel reinforcement is introduced in the 

regions of high tensile stresses. 

soty. 
There are two methods of s wig the general problem. 

In both methods, if there are 	statically indeterminate 

reactions, there will be ' unknowns. In the first method, 

the 	unknowns which are determined are the points through 

which the stable line of pressure must pass in order that the 



statically indeterminate reactions due to the prestressing, shall 

be zero. In the second method, the unknowns are conditions 

concerning the area included between the stable line of pressure 

and the neutral axis. 

it can be shown that although the problem is usually 

rather complicated, it can always be replaced by a corresponding 

problem involving an imaginary load q(x) acting on each span.. The 

line of pimssure is then considered as being the fenicular polygon 

of this load and of the compressive force due to the prestressing 

force F (to which may be added a compressive force N due to 

external loads). This imainary load is the second derivative 

of the prestressing moment Fy and is therefore equivalent to the 

transverse load created by the tension in the curved cable. 

Conversely the ordinate y in each span or element is the second 

integral of the imaginary load q(x). This second integral includes 

two constants representing the ordinates y at the ends of each• 

span; ikxik these depend on the continuity conditions at those 

ends i.e., on the partial or complete restraints assumed at those 

ends. 

In the case of the hinged portal, the only statically 

indeterminate reaction is the horizontal thrust. The problem 

therefore consists in determining, a line of pres.3ure lying 

entirely within the limiting zone and of such a shape that 

no horizontal thrust is created when the cable is tensioned. 

The problem is complicated by the fact that in portal frames, 

the magnitude of the compressive force depends not only on the 

prestress but also upon they reactions due to vertical loads.. 
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Thus, in the legs, the prestressing force is increased (algebrically) 

by the ve.~tical reactions and in the transom increased by the 

horizontal thrust. 

3.2 Concordant cable. Stable line of Pressure. 

The cable is said to be'concordant' when the line of 

pressure caused by the tensioning of this cable coincides with it. 

Such,a line of pressure is said to be 'stable' in order to 

emphasize the fact that tensioning the cable does not displace the 
i  

assumed line of pressure. 

A line can only be chosen as the line of pressure if its 

eccentricities at the, supports correspond to the moments created 

at the supports,by the prestress exercised by a cable coinciding 

with this line, in other words, only if it is stable. 

This can also be expressed in another form: 

1. A line may only be chosen as the line of pressure, if 

for a cable coinciding with this line, the statically indeterminate 

support reactions caused by the tensioning of the cable afe nil. 

and also in this form: 

2. A stable line of pressure is the feunicular curve of a 

certain imaginary load function q(x) and of the reactions 

exercised by the supports of the continuous beam under this 

system of loading, i.e., the bending moment diagram created 

in the beam by the loading q(x), taking into account the constrants 

and drawn to a scale depending on the magnitude P of the prestressing 

force. This line is a solution of the problem if, when drawn 
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to a proper scale, it remains entirely within the predetermined 

limiting zone. 

If necessary, end moments, caused by eccentric anghorages, 

may be added to the system of loads q(x), this is equivalent to 

adding to the real constrants partial or complete constraints at 

the two ends of the beam. 

Once the line of pressure has been found, all the 

possible cables can be obtained by linear transfor:.a tions. 

The above two principles are obviously equivalent, the 

load q is equal to F d̀  	, where y is the ordinate of the line 

of pressure, and conversely, y is the second integral of the 

expression F . The arbitrayy integration constants are only 

two in number because the ordinate of the line of pressure at a 

support has a single value which is the same for the span to the 

left and for the span to the right of that support. End moments 

can be introduced by choosing adequate values for these two 

arbitrary constants. 

The methods of solution which (are given lower down), 

are based on these two principles. They consist in determining 

either the line of pressure or the imaginary loading of which 

the line of pressure is a funicular curve(18  ) . 

3.4 The invariance of elastic desi;n stresses under linear 
tendon transformations. 

It was first shown by Guyon17  that the working load 

conditions are invariant under a linear transformation. 
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A study of the use of continuity in prestressed concrete 

frames leads to the conclusion that it is not necessarily advantage-

ous and often may be uneconomical as far as the elastic condition is 

concerned, since prestressed d&sign is principally based upon 

moment variations and not upon absolute moment values. 

However, considerable advantageous will almost always 

follow from con.tinuiting when attention is turned to the ultimate 

load carrying capacity of the whole frame, particularly if the 

moment curva,ure relationship contains a platean at the maximum' 

moment, since this will enable the critical sections of the 

structure to hold their maximum moments simultaneously, irrespective 

of the order in which they were first developed. Except in the 

case in which all the critical sections have a constant ratio of 

maximum moment of resistance to working moment, the failure 

condition for the whole frame will have a load factor greater than 

that of the weakest critical. section. 

Consider the ultimate moment conditions of a span of 

a beam or frame having two alternative tendon profiles, one of 

which is a linear transformation of the other (figures 1 and !fig). 

The free bending moment on the span is 't and. M1 M2, M3  are the 

ultimate moments at the three critical sections (figure lb ). 
It can easily be seen that M1 , N2  and M3 are linear functions 

of the corresponding- effective depths d1, d2 and d3. 

The ultimate moment equation for the span is 
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which can be written 

c• e• 

under a linear transformation of the tendon profile, the critical 

effective depths will be changed to the following(figure t ). 

cJ = a-% -  3 

It is seen that expression (2) is invariant under such a 

transformation and therefore the ultimate load remains the same 	s' 

for both tendon profiles. 

3.5 Hinged Portal Frame; 

The line of pressure, for the prestress only, consists 

in this case of three separate lines: One for each bgg and 

one for the transom. 

The prestressing force is usually different for the 

legs and for the transom; if the loading and the frame itself 

are unsymmetrical, the prestressing force may even have 

different values for the two legs. 
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The problem is again pased in the same general manner; 

Given the liriiting zone within which the line of pressure must be 

(more exactly, given the three limiting zones, one per member, 

within which the three lines of pressure must be), the line of 
4 

pressure (i.e., the three branches of this line) cannot be 

drawn arbitrarily. 	For a line of pressure to be possible, the 

statically indeterminate reactions caused by the tensioning of 

cable placed along this line (i.e. of the three cables placed 

along the three lines of pressure) must be nil. 

Having found such a line, we may apply to the cable 

profiles linear transformations of a certain type without 

altering the line of pressure. 

Lie shall assume that the portal frame is symmetrical. 

e shall call li the magnitude of the prestressing force in the 

transom and F' and F'' the magnitude of the prestressing force in 

the left and the right leg respectively. 



Je shall call 'g' the height of the le-s, measured from 

the centre line of the hinge to the neutral axis of the transom, 

and 1 the span of the transom. We shall also assume that the legs 

and the transom have constant rectangular cross-sections of equal 

width 'b' and of a depth 'h' for the transom and 'k for the legs. 

The results w1iich we shall obtain below can easily be 

extended to other cases (unsymmetrical portal frain s, non- 

rectangular cross-sections, different widths b and b' for the 

transom and the legs). 

For the sake of simplicity, we shall call the three 

separate lines of pressure (i.e. for the left leg, for the transom 

and f or the right leg) the line of pressure of the frame, and 

similarly we shall call the three separate cables, the cable of 

the frame. 

The only statically indeterminate reaction in this 

case is the horizontal thrust. The problem therefore consists in 

determining a cable profile lying entirely within the limiting zone 

and of such a shape that the tensioning of the cable causes no 

horizontal thrust. 

Let 'I' be the moment of inertia of the transom and 'J' 

that of the legs. Let 'y' be the distance of a point on the 

centroid axis of the cable to the neutral axis of the transom or 

of the legs, as the case may be; y will be positive or negative 

according to whether the point in question lies outside or inside 
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the rectangle ABCD formed by the meutral axes of the members and 

which ,.e shall call for short the neutral line of the frame. 

Finally, let Z be the ordinate of a point on the neutral line 

of the frame. 

The limiting zone is determined by the same general 

considerations as previously, i.e., by the conditio that the 

line of pressure must remain within the limit core for all 

possible loadi:.g cases. The case of the portal frame differs 

however in one particular from that of the continuous ueam. 

in the latter case the compressive force had a constant 

ma"nitude throughout the beam, equal to the prestressing force, 

whereas in the case of portal frames, the magnitude of the 

compressive force depends not only on the prestress but also on 

the reactions due to the external loads. 	Thus, in the legs, the 

prestressing force 1" is increased by the vertical reactions, 

added algebrically in the transom the prestressing force F is 

increased by the horizontal thrust. 

If TI is the moment and N the normal force in a point 

of a member due to any given loading, i'l the prestressing forte 

and e its eccentricity, the eccentricity of the line of pressure 

of this point will be given by 

~tFE' 
Ft~ 

The line of pressure must remain within the limit core. 

Calling M1 , N1 and nit, N2 the values of Ii and N corresponding to 

the smallest and to the greatest value of the expression M{ Fe 

respectivbly, this condition is translated by 



Let point E be the centre of pressure for prestress 

only and let 	h' be its ordinates with respect to the 

line ~!c' and C C respectively; c e' and c e are as previously 

the lower (inner) and the upper (outer) limit core'̀boundary lilies. 

we have 

and als o 

and the above inequalities become, after transformation: 
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It follows that if we measure the ordinates  

and 	from the lines c'c' and cc respectively,, 

positive values bein measured downwards and the negative values 

being treasured upwards (Note; the negative sign in the previous 

expressions) ; the centre of pressure must remain within the zone 

unshaded in figure 	. 

This rule is similar to that given previously for 

simple bending, the moments iv'il ad P~i2 now being replaced by 

(moment with respect to the lower edge of the 

limit core) and 	c~.- ~v z 	 (moment with respect to the 

upper edge of the limit core) respectively. 

The magnitude of the horizontal thrust q is usually 

small compared to that of the prestressing force F in the transom. 

Its effect may therefore be neglected in a .first approximation 

and the limiting zone deterrained in the same manner as before. 

In the frame legs, on the contrary, the magnitude of 

the comprdssion, due to the external loads and reactions is always 

lar<,e compared to that of the prestressing force P' and P'' 

and must therefore always be taken into consideration for the 

determination of the limitin; zone. 



Calling +Io the bending moment at each point due to 

prestressing only, and not takin-, into consideration the member 

shortenin due to axial thrust, the condition that the thrust 

caused by the prestress must be nil can be written: 

the integration extending over the whole contour tB2k ACBV. 

The moment Mo is equal to Fy in the transom and to F''~ 

in the left and the right legs respectively. The 

transom is horizontal and therefore Z = g = Const. 

The integration may be written 
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Calling sfffness of a member the ratio of its 

moment of inertia to its length, the stiffness of the transom 

is 	and that of each leg is 3 

stiffness to transom stiffness is: 

. The ratio of leg 

 

The one extreme value of this ratio, P = 0, corresponds 

to a simply supported transom, the other, f infinite, corresponds 

to a transom fully fixed at both ends. Introducing this ratio into 

equation (1) we may write it in the form: 

%~ F' 	Z I z -r F' f /zdz
.J 

 -r- F r P r 	 x = a 
L  

0 	 O 	 A 



The two integrals for the legs, although they have the 

same form, may not have the same value if the function d&finin y ia- 

not the same for both. 

For the sake of simplicity we shall assume that the 

prestressing conditions are identical for the two legs i.e., that 

F' = F'' and that the function y is the same. 	The case of 

unsymmetrical prestress presents no special difficuties (and'. -. 

we shall see one below) . 

If the prestressin, conditions are identical in both 

legs, equation (2) may be written; in the form: 

Z e 
~3~ 	2 F1 X7-4-Z + F P a ,J 	cox =o 

o 8 

° ~' °`~ ort C 3) o~ear~ F 	O d z= o 
o of 

8 
This can be satisfied either by f y I z = o 	which 

means that the prestressing cable is placed in the frame 1gg in 

such a manner it does not teiid to displace point C out of plumb 

with respect, to k; a particular case is th it of axial prestressing 

or by F' = o Q-. 	noprestre,..,sing. This solution is usually 

inadequate because the legs can not withstand without prestressing 

the effects of the sui~s.equently applied external loads, unless it 

is made in ordinary reinforced concrete. 

2 
If P is infinite, equation (3) becomes f 2Ix = o, an 

0 
expression which we have already met for a beam fixed at both ends. 
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The cables in the legs are often straight  and pass 

through the centre lines of the hinges. Assui1ing that both legs 

are prestressed identically and calline u  the eccentricity of th, 

leg cables at the level of the horizontal straight line c % (the 

neutral axis of the transom), we have in the legs: 

cc JSZ&Z 	d a 

0 

Equation (3) may then be writ „ n: 

( ) 	F'. Ug t Ff L f Iz o 
3 	 e of 

z FF .~ F fdz  = o 
a<( ) "rte 

In this case the general problem is posed 

as follows: 

The cross sections of the i.es and the 

transoms and magnitudes ' and F of the required 

prestres~3ing forces are determined by the analysis 

of stresses due to the external loads. This determines 

the three limitin zones. 

Equation (4) furnishes a relationship between 

u and 

If the limiting; zones of the legs are reduced to a 

point at the top (i.e. at the neutral axis of the transom) , as 

is the case when the legs are dimensioned strictly, the 



the eccentricity u is known " a priori". 

49 

U 

The prob~.~m is then reduced to finding a curve lying 

enti-rely within the limiting_, zone of the transom and with a shape 
I 

such that the expression J a d z 

r F Q 
J dx - 3F

0 

If the legs are over dimensioned, we have a certain 

latitude in the choice of u provided that equation (4) 

remains satisfied. 

However, the condition that the cables in the legs 

should be straight and should pass through the centre lines 

of the hirig s, is by no means compulsory; the general equation(3) 

is always applicable. Thus in some cases where it is difficult 

or impossible to satisfy equation (4) corresponding to straight 

leg cables passing through the centre lines of the hinges, it way 

be advantageous to choose some other shape for these cables, 
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the eccentricity u is known " a priori". 

The problbm is then reduced to finding a curve lying 

entirely within the limitin„ zone of the transom and with a shape 
e 

such that the expression ] Y6e 
0 

J ~1dz 
- _2;-) 

0 

If the legs are over dimensioned, we have a certain 

latitude in the choice of u provided that equation (4) 

remains satisfied. 

However, the condition that the cables in the legs 

should be straight and should pass through the centre lines 

of the hinges, is by no means compulsory; the general equation(3) 

is always applicable. Thus in some cases where it is difficult 

or impossible to satisfy equation (4) corresponding to straight 

leg cables passing through the centre lines of the hinges, it way 

be advantageous to choose some other shape for these cables, 



the eccentricity u is kno nn " a priori". 

49 

0 

The probibm is then reduced to finding a curve lying 

entirely within the limitin, zone of the transom and with a shape 
10 

such that the expression l 4Z 

o 	 - 

F'' X  

J x =  

If the legs are over dimensioned, we have a certain 

latitude in the choice of u provided that equation (4) 

remains satisfied. 

However, the condition that the cables in the legs 

should be straight and should pass through the centre lines 

of the hing s, is by no means compulsory; the general equation(3) 

is always applicable. Thus in some cases where it is difficult 

or impossible to satisfy equation (4) corresponding to straight 

leg cables passing through the centre lines of the hinges, it i1ay 

be advantageous to choose some other shape for these cables, 
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provided that they remain within the limiting zones of the legs. 

In effect, the meaning of the general equation (3) and 

of its particular form (4) is that the prestressing of the legs 

deforms the lees in such a manner that the leg ends A and B, 

which, were they free to slide on their bearings would have moved 

under the influence of the transom deformation to A' and B' 

respectively, are brought back to their original positions A & B. 

Therefore, if the lines of pre.,sure which it is 

possible to place within the limiting zone of the transom result in 

deformations which of is impossible to compensate by the action of 

straight leg cables passing through the centre lines of the hinges, 

we must endeavour to give the leg cable a more effective shape. 

A straight cable parallel to the neutral axis of 

the lei, i.e. with a constant ecentricity V, provokes a 

deformation: 

of
8 lzdz= z'  

A parabolic cable passing through the centre line of the 

hinge and having a vertical tangent at the top with an ecentricity 

W (say of the parabola), provokes a deforinat,ion: 
8 

J?'zIz  

O 	 ~2' 
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Comparing these values with that for the straight cable 

passing through the centre line of the hinge and having the same 

ecentricity at the top so that u = V = W, we see that the parallel 

straight cable and the parabolic cable are 1* and 1- times more 

respectively. 

Possible profile of cables obtained from a stable line of 
fires: urL . on the assumption that the two frame lep s are 
prestressed identically by straight cables passing.through 
the centre lines of the hinges . 

On this assumption the stable line of, pressure, which 

must be entirely within the limiting zone must satisfy the condition. 

expressed by equation -(4)• 

J !Ix- 	Ff 

0 

Let us assume that some other cable profile gives the 

same line of pressure as that defined by this equation. This 

cable profile will still obviously consist of two strait lines, 

one in each le; and passing through the centre lines of the 

respective hinges, and of a curve, in the transom, which must 

be parallel to the stable curve defined by the qquation. 

In effect, the second profile is not stable, since it 

results in a line of pressure different from itself, it causes 

therefore a thrust 4 which causes in the transom a constant 

*PIe general rule requires that the two curves must have the 
same curvature. The "parallelism" is due to symmetry. 



bending moment Q 	which displaces the line of pressure by 

the an ount -- 

Let us assume, therefore, that the transom cable has been 

obtained by translating the original stable line of presbure by 

an amount a and let us how try to determine the amount by which 

we have to rotate the leg cables (about the centre lines of the 

hingds) in order to obtain a thruut QL equal to 	which will 
9 

make the line of pressure in the transom coincide with the 

original stable line of pressure. Let us call V the supplementary 

eccentricity of the leg cables at the tcp (i.e. at the neutral 

axis of the transom); the total eccentricity of the leg cable 

at the top is thus increased from U to U + V. 	- 

This new state differs from the original by the 

presence of bending moments   y  z  in the legs and P a in the 

transom due to the supplementary eccentricities. Since the 

thrust in the original state was not, the thrust q in the 

new state is due to these supplementary bending moments only 

and therefore equal to: 
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The value V is the measure of the rotation we set out 

to determine. 	ith this value of V, the thrust 0. = 	will bring 

the line of pressure in the legs back to its original position 

because this thrust will cause at the top of the leg a bending 

moment - F a equal to - P'V and the resultin- total moment at the 

lee, will be F' 	* V) - F' V , C • e • . the same as originally. 

In the transom the line of presure remains the same because 
the curvature of the cabs  
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The bending moment increments at the corners of the 

frame being; 1?a for the transom and "V for the legs, we can 

obtain from a given concordant cable and on the above assumptions 

(identical straight leg cables passing through the centre lines 

of the hinges) all the possible corresponding cable profiles by 

giving the transom cable any arbitrary translation and at the same 

time giving the leg cables a corresponding rotation, this rotation 

being calculated in such a mariner that the increments of the 

bending moments due to the tensionin, of these three cables 

should be equal for the transom and for the legs respectively 

because this common moment increment is then cancelled by the 

resulting statically indeterminate thrust. 

This was in fact evident "a priori" because it is the 

statically indeterminate thrust which brings the unstable line 

of pressure back to its original stable shape; this thrust causes 

at the frame angle the same bending moments in the transom and 

in the legs . 

This rule is equivalent to that established for 

continuous beams. In a continuous beam, we are free to alter 

the ordinate of the cable over a support wits, respect to the 

ordinate of the concordant cable because in a continuous beam with 

a uniform cable, the bendin moment over a support can only have 

one single value which is the same immediately to the left and 

immediately to the right of the support. A translation of the 

cable over a support alters therefore the moments im,Lediately to the 

left and immediately to the right of the support by the same amount 

and as we have seen, the statically indeterminate support reactions 
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caused by such a translation being the bending moment back to its 

original value correspondii)g to the concordant cable. In a portal 

frame, the be:~ding moment at the angle has two values (equal), one 

for the leg, the -other for the transom. The simultaneous trans-

lations of the two lines of pressure at that point must be so 

correlated to each other that they cause the same apparent moment 

increment in the le- and in the transom, these being equivalent 

to two spans of a continuous beam lying; on either side of a support. 

In the case of portal frames, the possinilities offered 

by such profile tranformations present somewhat less practical 

interest than they do-in the case of continuous beams because 

they cannot be used to. reduce the duration of the cables, the 

transom and leg cables being distinct, these are no angular points 

or breaks of profile which could be eliminated. 

However, cable profile transfdrmations may some times be 

used to advantage to displace the leg cable into a position where 

it can be more easily tensioned and anchored. In particular, it 

is often advantaeous to have straight vertical leg cables placed 

along; the neutral axis of the leg; this can be achieved by 

adequately translating the transom cable. 

A safety check must of course always be carried out 

according to the principles set out on page 9!8 

Correction for transom shortening; 

Under the influence of the prestressing force F, the 
transom CD shortens. 
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If point D could slide freely, the leg BD would take the 

position B'D' and in order to bring point B' back to B, we would 

have to exercise a certain thrust a acting in the sense shown by the 

arrows. Points A and B being held in position, the effect of 

transom shortening is to reduce the prestressing force from 

F to F-a and to increase the bending moments developed by 

prestre.- ,Ang by the amount qg in the transom and 0.z in the 

legs. These total or effective forces and moments are the 

ones which must satisfy the previously established equations 

(2), (3) and (4). 

Let us make the assumption for which we established 

equation (4), i.e., straight leg cables passing through the 

centre lines of the hinges.- The effects of transom shortening can 

be analysed as follows. 

1. 	in order to obtain an effective compression F in the 

transom, we must apply a pre-stressing force F,. To the 

transom shortening due to F1 , corresponds a thrust. 

(5) 	%' 

and we must have F, - GZ 1 = F 

This gives 	F, _ Q, ~' = F 
• F 

=F 



Let us calculate Q. 

For a prestressing force F in the transom, the effective 

compression in the transom is F - c~ 	causing a shortening of the 

transom. 

AI = Qx F Q 
,E S 

On the other hand, the thrust tz caused by this shortening 

is given by 

The integration being taken over the whole contour ACDB. 

We thus have the equation. 

which can also be written 
Q 12L- C1t u- . - F-Q = 	3P .J  

Introducing the radius of gyration r of the 

transom (in order to reduce sand I to a single parameter), 

we obtain: 
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Introducing this value into equation (5), we see that 

the required prestressing force is not F, but 

F 

F 

1 F 

2. 	The thrust Q, corresponding to 101 will bring B' back 

to B, but it will also modify the lines of pressure: it rotates 

the lines of pressure in the legs outwards and raises the line 

of pressure in the transom. The amount of rotation, at the top 

of lei;, is ~t j l = ak % 	and the amount of translation in the 
FA 

transom is Q   

We wish the final or effective line of pressure 

to be entirely within the limiting zone. 
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To achieve this we shall rotate txAs limiting zone for 

(F') (for the legs) inwards into the position ( F
r
~ ) by an amount 

displacing the top of this zone by the distance di r . We shall 

also have to transform the limiting zone for (F) (for the transom 

as follows). 

The ordinates of the zone (F) with respect to the neutral 

axis of the transom will be reduced in the ratio F'  , wb.ich gives 

the limiting zone (f) , and this limiting zone (f) will be lowered 

by the distance di = F, 
The line of pressure. corresponding to the prestressing 

forces P1 and F  and making no correction for the transom 

shortening should be entirely within these tran:3formed limiting 

zones ( Fr 1 )o4( Fr 	). Then he real line of presUure, taking 

account of the thrust a caused by the shortening of the transom, 

will Lie within the original limiting zones determined from the 

external loads. 

In effect, let us consider a cable lying within the 

tran.~formed limiting zone ( FI' ) and ( F, ) and wiici1 would be 

concordant if no allowance ra, d to be made for transom contraction. 

Let us tension this cable, the tension being, equal to F1 in the 

ti-ar!.som and F' in the legs. 1he transom contraction creates a 

thrust Ct . 	his thrust does not alter the value F' of the 

compression in the legs gut causes the line of pressure in the 

legs to rotate (about the centre line of the hinge) outwards by 

an amount c x 	a-- the top. In the transom, on the F 



contrary the compression is reduced from F1  to F and at the same 

time the bending; moments increase by v x % . Had the 	xmxzgxe 

compression remained equal to F1 , the line of pressure, the line of 

pressure would have ristn by 	and consequently into the 
` 	FI 

limiting zone (f). At the same time, however, the compression 

is reduced from FI  to F. 12he ordinates of the line of pressure 

corresponding to the effective pressure F can be obtained from 

those corresponding to FI  by multiplying them by the ratio 
F1  

Thus the line of pressure finally comes into the original 

limiting zone (2). 

These- considerations can be summarized in the following 

rule: 	For the legs 	e take a cable tensioned to ( F 1  ) obtained 

by rotating the zone (F') outwards by a distance equal to 	4  % 
F 1  

at the top of the leg. 	For the transom we take a beam tensioned 
to F1 , which is given as a function of F by equation (6), and 

ling within a limiting zone obtained by reducing the zone (F) in 
the ratio F and then lowering it by a distance  F,  F,  

The ordinates y of the lines of pressure lying within 

the transformed limiting zone ( 	) and (F,) will be determined in 

such a manner that the tensioning of the cables causes no thrust 

other than the thrust a due to transom shortening, these ordinates m 

must then satisfy the following equation equivalent to equation (4) 

0 
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It should be mentioned that the increase of prestress 

required by formula (6) 	is usually slight. The limit values of 

F1 are F1 = F for ,=a ( 11 Pc 	J) 	A Ft= F(i+ ,.~ for 

infinite ("Hard" portal); the radius of gyration (r) of the 

transom is usually small in comparison to the height 'g' of the 

legs. 

Assuming the transom to be of rectangular cross-section 

with a depth 'h', the height of leg 'g' of the portal frame must 

necessarily be greater than h 	and therefore 	will necessarily 
Z 

be grLater than 	. The radius of gyration 'r' of a rectangular 

section being given by YI- _ T ) 	the amplifying factor 

will always be very much smaller.  

As can be seen from e)l.gtation (i) , an increase of the 

transom prestress from i to F1 requires a corresponding, increase of 

the lei; prestress F'. 	`ih total increase of the prestress in the 

whole of the portal frame, made necessary by the shortening of the 

transo.m., is therefore only slight. This is no longer the case, if tY 

the frame legs are fixed. 

As has already been mentioned, all the above arguments 

which have been limited to the case of both portal legs being 

prestressed identically by straight cables passing through the 

centre lines of the hinges, can easily be generalised. 

*Only if it is required to keep to the same value of U and 
to a given shape of the line of pressure. 
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CHAPTER 4. 

1,;,TE_•,IALS Ai D TEST PECL ES 

4.1 i~1AT2.L.LS 	 ' 
All the portals were cast with concrete consisting of 

round gravel 3/4" maximum size, Bh .dripur sand which were made 

available at the 1.,.~stitute and A.C.C. brand normal Portland 

Cement conforming to I.S. 269 of 1951. The properties of 

materials and fineness modulit of the ag,re ;ates are given 

in Appendix III. 

4.2 THE 1,1Ih 

The concrete mix was 1 : 2: 4 by weight, with a water 

cement ratio of 0.55. The mix proportion and the water-c6--ent 

ratio were designed to give a 28 - day cube strength of 4,000 

4.3 RElI PO .CLi,l! i T 

A nominal reinfor"cement of 4 Nos. 3/8" dia. 1..u, 

longitudinal bars were used. The ends of the rods were hooked 

1/4" dia. j, .S. rods ties were used at 9" c/c in the lets, 1/4" 

dia two-legged stirrups at 6" c/c -were used in the transom. The 

stirrups and the ties were welded to the main long,itudinsl 

reinforcement bars. The welding of the stirrup and the ties to I 

the main rods ensured that the spacin; was not disturbed at the 

time of concreting. 

(Contd..) 
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4.4  TEST SPECIMENS 

Three two-hinged.Portal frames: Two for a central 

load of 3.8T and one for a third point loading  of 2.8T have oetn 

designed on elastic theory considerations and have been tested 

to failure. The frames tested have a span of 9 FT. between leg 

centre-lines and a height of 4.5 PT. from the centre of hinge to 

the centre line of the transom. The portals have been cast mono: 

ithically thereby establishing; continuity betwefn the lets and t] 

the transom, each having a .cross-section of 1041  x 10". The 

Gifford-udall system of pre; tresein j was adopted for the portals 

designed for a central load of 3.8T, there being ten 0.2 in. 

high tensile steel wires i.n the transom and six of 0.2 in. in 

each of the leis. 	he iaagnet-Blaton system of prestreoeint was 

adopted for the portal designed for a third point loading of 2.8'. 

there being eight 0.2 in. high tensile steel wires in the transor 

and eight of 0.2 in high tensile steel wires in each of the. legs. 
T  

The transom wires wore ::anchored on the end face and leg wires. 

anci.ored on the underside of the feet and on the top surface of 

the transom. 

The tests were conducted on the prototypes. The 

frame supports were formed from 1j in. dia round bars of 

hardened steel passing from front to back of the feet. A knife-

edge was machined on these bars for a length of 2" from the ends. 

They wore positioned in the moulds so that the centre-lines of 

the knife-edges were in the same direction as the resu._Ltant thrus 

due to the vertical one horizontal reactions. Each end of each 

knife-ed,,e was supported in a V-groove machined in the  heRA rf 
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a 1" dia bolt. The bolts were fixed in structural steel chars of 

(6" x 3") assemblies which were themselves welded to the base 

plate 	Thus each knife-edge was adjustable for 

both vertical and horizontal movement to suit small variations 

between frames. 1'. close-up of one support assei bly is shown in 

Plate 9 

In order to prevent the feet moving; together while the 

transom was prestressed, a steel strut was wedged between the 

feet. 

Once the frame was raised into its test position in the 

seat tngs and a small loauine, had been applied, the horizontal ±k 

thrust is developed and measured by means of the tie connectin, 

the two legs. This tie consists of two brackets connected by 

means of a 5/8 in. dia. rod, two U-bolts and a spring balance. 

This is shown in Plate g 

The interference between the lei, wires and the 

transom wires at the frame anle was avoided by passing, the 

transom wires through a pipe-fork as shown in Plate 2. 

Similarly the interference betveen the leg wires and the round 

bar was avoided by using a similar pipe-fork as shown in 

Plate 	! . 	The ducts, both in the transom and the legs, were 

formed by embedding corrugated metal sheath tuxes to the 

required profile in the concrete. she corrugated ruetal sheath 

tubes were held in the required position by suspendin ,̀ them in the 

steel moulds by means of wires. _:eces,,ary ho p steel had been 



I w 

'cy R 

@J ° 
J4I Cg R 

.vi 
ti 

ri 

rah  II 
W 1p 

I- W 

ILL C~} • Ill Q .. 
IL 

O 

V 
LA 

I- 

t 

o 

R 

T - 

I . J 



t 

provided in the end-blocks to take care of cr ,ckin stresses. 

The required splay for prestre3sin,; the wires was provided by 

means of funnels pLoviced tat the ends of the pipe-forks. The 

slope for the arms of the pipe-forks was so provided that there 

was no friction caused while the wires were prestressed. Care 

was ta. en to see that no concrete or cement mortar entered the 

duct by putting plaster of Paris around all the joints and 

puttin , cot'on wastes in the funnels. 

4.5 OU D3  

The section of the stee,L mould is as shown in 

Figure 	3o . It consisted of a be plate 1/4" thick and the 

side plats (.zlso 1/4" thick j strcny~,thened by we l din,; 2"x2"x1/4" 

an :Les orlon; their ed,.,es. The side plates were fixed to the baso 

plate by means of 3/8" dia. bolts. 'the top ed"es of the side-

plates were tied toether b;, a flat to withstand the effect of 

vibration., in holes were were drilled in the end-plates and 

sideeplates of the mould for paLsin the high tensile wirs. 2 in. 

dia. holes were chilled in the base:pla.te to carry the supporti ~- 

round ba s. she whole assembled mould was placed on 4" x 4" x 16" 

wooden pieces so that the bolt's can be inserted or removed 

at ease. .'hey also facilitate the liftin. of the poi6al. 

5 

4.6 i ~iL~s..v ~1J.~t C1.1yXIES 

The reinforcement cak es were ac ,ually centred in 

the ft,rmwork by put in 1" cue ;; in between the case and the 

base p. a. L.e. L_cidental y, they cnsurec, tiie exact c.~ver on 

all sides. 
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4.7 CAS 

The materials were mixed in batches of about j.5 Oft. 

for five minutes in the ?etrol driven knicker broker mixer. The 

concrete was placed in the mould in small_ quantities and thoroughly 

vibrated with the electrically driven vibrators. Three 4" Control 

cubes, three numbers 6" x 12" cylinders and. three numbers 4"x4I'x16" 

beams were cast for each portal with vibrator identical to those 

of the portal.  ;Fhile casting, care was taken to see that the 

sheath was riot disturbed from the required profile. The bearing 

plates were cemented to the portal fr. me at one at each end of the 

transom and are at each end of the leg. 

4.8 CURIi k D TCRAGE 

The portals, cubes, cylinders and control beams were 

stripped from t-.-e. mo ilds 24 hours after catin, and were stored 

on ground with damp gunny bags, kept damp all the time. After 

28 days of water curing prestressed and grouted and then w.exx 

they were stored away till the day of test_Ln . 

4.9 	 NG , (Alt, GRGU 'I G 

The 	two portals were prestressed with the 

Gifford--udall system and the third portal was prestressed with the 

ixa net-Blcton system., Reliance was placed on the extension of the w 

wir,.s than on the pressure dial auge readings as the pressure 

gauges were not giving con~is ten.t readings. Any step occurin; 

from the anchoring of wires was allowed for. 
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Fig• 3o(A) A r'tag tSandlwieh p(akr with wedges (for 0.2... In. wirrs) 
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After ,prestressing was ovex, the ducts were cleaned 

with water pumped under pressure. Incidentally this a.1so showed t] 

that the ducts were not clog 'ed. Then cement-sand grout in the 

ratio 2:1 with a water-cep en1 ratio 0.67 was injected under 

sufficient pressure into the duct through the grout hole till it 

freely came out throe h the other end. `then the hole was 

closed. 	he grout was allo -.,red to set and then the portal was 

ready for testing. 



CHAPTER 5. 

5. 1 TES T I ;G i,iLChIhE 

The portal. were tested on a 500 ton Losenhausenwerk 

Universal Testing l~a.chine. It permits besides of the simple 

compression test on cubese;tc. , the execution of compression and  
collapsing tests on longercolutnns and the execution of bending tes 

tests on beams, portals etc. 

The transverse head with the upper pressure plate can 

be adjusted to a required height between zero and the maximum 

distance of pressure plates i.e. about 15' 

The machine columns are •equipped as threaded spindles f 

for this purpose, on which , the transverse head can be shifted by 

means of nuts moved by mean of electric motor by warm gear. The 

adjustment is done by a switch on the pump case. 
3 

The bending device consists of the bending tAble of 

length 12 ft., and the bending supports which are slidably 

arranged on the bending tab4e and the bending; stamp. 1he bondinv 

stamp is fattened on the u der -pressure plate by means of fish 

plates att-,ched to it and the supplied screws. the bending table 

moves on the 5 meter ratio... Initially the bending table is 

moved out of the :aachine columns ad the test speci&en is put 

on it. when the bending table along with `the specimen is pushed 

Llto the machine columns. 



The load is applied by hydraulic pressure of oil 

with the aid of an electric motor by operating a valve. The load 

can be applied at any desired rate by adjusting the valve, and 

decompressing and.releasing valves are also provided to take off 

the load when necesssry. The load applied is measured from the 

dial gauge. 

For the atress - strain observations on concrete 

cylinders-.and for testinu, the cubes, the 200 ton amsler compre-

scion testing; machine was used. The strain observations were ..jade 

by means of the Lamb's Roller Extensometer. 

The control beams were tested in the 50 ton Avery 

Universal l est iiing Lachine. They all work on the same principle of 

hydraulic pressure. 

5.2 I'i 2MLIOIS IUh 	;. iiu -,0U_C N-,,Z T 

The vertical reaction under each le 6 is measured 

by means of a 10 ton hydraulic capsu: e . 

The horizontal reaction is measured by means of a 

sprin6 balance inserted in the horizontal tie. A turn-buckle is 

also inserted in the tie to keep the centre lines of the leis a1z 

always 9 ' ft.  apart . The whole arran~cment is shon clearly 

in the plate. 

The hydraulic capsule is placed on a 16" x 16" x 1/4" 

plate resting; on 8 loos. rollers (each 1" dia and 16" long and the 

surface is finished smooth) free to roll on the bending table. 
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The base plate of the hine rests on the top plate of the 

hydraulic capsule. 

5.3 10 TON PROVING R L"G 

In order to measure the applied load accurately, a 10 

ton proving ring was inserted between the upper pressure plate of 

the testing iachine and the -centre of the transom. The calibration 

chart supplied by the manufacturer enables the load to be determi- 

ned from the reading in the 	ail; attached to the proving 

ring along the vertical diameter., 

5.4 /~ STRAIN :E ftrR:LhG 	JI'~'~~?~IV`4~ 

As the electric resistance'; train gauges of suitable 

gauge length were not availabld' 'Demec s' demountable mechanical 

strain gauges having 8" gauge length was used to measure the 
r 

strains in the concrete. The brass studs were fixed to the 

concrete surface with a special type of glue at the required gauge 

length. . This was done by ...akin,; use of the gauge bar possessing tw( 

centre punches - at a distance apart equal to the length of 

measurement - with different conical points. The correctness 

of the Demec's strain gauge is asses.:ed by Leans of comparing the 

gauge-length with that of the invar test bar. 

r• 

5.5 DEi.iJ C1'1"On L_~ LRLw F a  

The deflection ueasurelxients were made by using 

Baty's defiectbmeter with stands having a magnetic base. 
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The deflectometer,3 were at4.ached to a stand as shown in the plate$. 

=_11 the 

 

A. 	gacs were fixed outside the portal so that they were 

not daiiaged when the port,]. was tested to failure. 

5.6 PREPARATION CAF TEST SPECIT{IE lS 

'P;1~ P to s were cleaned with a brash and were given 

two coats of white-washing. The centre lines of the transom and t;. 

legs were clearly drawn. The strain measuring studs were fixed at 

8" 	,rt to ;; ko .i;L he :: irz _n 	"Le 	strains were measured 

both at the centre of the trEuisom and at the frame--angles. 

5.7 T .STING PROCEWR.E: 

The first step in testing, was to ensure that the load 

was applied centrally and perpendicularly to the transom axis for 

the portals I and II. For the portal_ III, the load was applied 

perpendicularly at the third points. - `i'his was _also:ensuredi by 

measuring the vertical reactions in the hydraulic pressure 

capsules. Since the portal is symmetrical and the loud is also 

symmetrical about the central axis of fie portal, the reactions are 

to be ecqual. The dia ,onal length of the ocirtal was also measured 

now and then to ensure that there was no sideswa~. An initial 

load of 1 ton was applied and the strains, deflections and the reac-

tions were nc tod. Lefore . easuring the horizontal thrust, care was 

always taken to see that the distance between the centre lines of 

the leggy; was always 9 ft. For this purpose, t t;o dial gauges were 

fixed at the hinge points and their readings were constantly noted. 
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The load was ap~'lied at a cori tart rate in increments of 1 ton. 

The readings were taken at 1 ton interval. 	he load was kept 

constant for 2 minutes while the readings were taken. 

The load at the first crack was n tcd and the portal 

was loaded to failure. All• `t4S cracks were clearly marked 

with japan black. 
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PORT., I. 

Loading; Proving 1,Horizontal; Hydrau-, Fydrau-; Deflec-; , 
Tons ,Ring 1401 ; Thrust. , lic , lic , tion at, 	Remrks 

,10 Tons. , 	lbs. ,capsule, capsule, the 
,100 Div. , 	V1 , 	V2 ,centre 
, L. C 0.0001" ,Tons. ,Tons , 

0 0 11250 0.4 0.4 0 

1.0 28.0. 485.02 0.9 0.9 0.005 

2.0 58.0 292.08 1.4 1.4 0.011 

3.0 88.2. 1-322.77 1.9 1.9 0.015 

4.0 117.0' 1763.70 2.4 2.4 0.019  Crack at ceratrt 
O of Transoi 
O formed. 

5.0 145.8 2425.08 • 2.9 2.9 at both 
he  ees 0.022 jCr,,ks

orm e. 
6.0 176.0 '' 

1 	~  
2976°.24 3.4 3.4 0.025 

D Cracks appearec 
7.0 213 3527.'39 3.9 3.9 0.029 	on lei s, Dial 

Gaup es re o red, 

Cracks advan- 

8.0 243 4078.55 4.4 4.4 
ced both at 
cenUre and 

lkndes. 

9.0 270 4739.93 4.9 4.9 Cracks widenin- 

y) Central crack 
10.0 291 07O63 5.4 5.4 ~ reue,.ine d the 

same a.~ld knee 
crack advanced. 

11.8 51.5 $064:91 6.3 6.3 Inserted 50T 
~ proving; ri.n' . 

12.5 57.5 6172:94 6.65 6.65 Portal failed 
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PORTAL II 

Loadin I Proving 	'Horizontal I Iiydrau-; IIydrau-' Deflec-- 
Tons , Rin" 1399 	' Thrust 'lb 	' , lic - - 	' tion at 

, (50 Tons) 	' Lbs, ' capsiile,, capsule' the 	, 	Remarks. 
Div.  t ,100 '  V1 V2  -  ' , centre 

,L.0 0.0001 "1 ' ions, f ons. 	- 	' (Ii) 

0 0 112.50 0.4 -1 	0.4 0 

1.0 4.9 485.02 0.9 0.9. 0.005 

2.0 9.8 222.08 1.4 - 1.4 0.011 

3.0 14.7 1322.77 1.9 , ~ 	1.9 0.015 

4.0 19.6 1763.70 2.4 2.4 0.019 	Prst crack 
formed at 
centre. 

5.0 	24.6 	2425.08 	2.9 	2.9 	0.022 O Cr~:~cked starter 
at left knee 

6.0 29.5 2976.24 3.4 3.4 0.025 

7.0 34.4 3527.39 3.9 3.9 0.029 

8.0 39.3 4078.55 4.4 4.4 0.033 

9.0 44.2 4739.93 4.9 4.9 : 0.042  Left lei 
r ~ cracked fully 

9.75 47.5 5070.63 5.28 H 5.27 







3.0 13.2- x 103  

4.0 16.25 x 103  

5.0 

 

18.32x 103  

6..0 20.88 x 103 

9.0 24.01* x 103 

PORTALS I & II 

Loading ' Bending moment Depth of nBUtral Compressive'Radius of Tons 	at Mid—Transom Axis from the 	$train in Curvature. 
N (f t.lbs) . 	top fibre, 	the Conc- nd 	rete. 

0 
1.0 	6.89 x 103 	7.0 	0.582 	0.083 x 10-4  

2.0 	9.65 x 103  5.2 1.067 0.206 x 10-4  

4.9 2.619 0.534 x 10-4  

4.0 3.395 0.849 x 10-4  

3.5 5.335 1.52 x 10-4 

2.9 7.954 2.74 x 10-4  

2.136 16.248 7.5 x 10--4 

9 
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PORTAL III. 

Loadix 	 Proving; ; Horizonta7,1; Hydrau-; Hydrau- ; Deflec- 
Tons , ring 1399 , 	Thrust , lic 	, lic C9_ , tion at , 	Rem~:,rks. 

,(O tons) , 	(;lbs) , capsule, V2 s~ -̀' ,the 
100 Div. , V1  1Mons) 

,centre 
,L.0 0•000l' t (TC113) 	I (INS) , 

0 0 112.5 0.4 0. Y24 

1.0 4.9 418.87 0.9 0.9 0.0245 

2.0 9.8 837.76 1.4 1.4 0.046 

3.0 14.7 1256.63 1.9 1.9 0.062 

4.0 19.6"  . 1675.51 2.4 2.4 0.076 

5.0 24.6 2094.39 2.9 2.9 2.9 0.086 

6.0 27.6 2314.85 3.2 3.2 0.091, 

7.0 34.4 2976.24 3.9 .3.9 0.11'2 

Crack started 
8.0 39.3 3395.12 4.4 4.4 0.128 at both the 

knees. 

Crack at the I 
9.0 44.2 3747.86 4.9~ 4.9 0.146 bottom fibre 

of the centrel 
section 

10.0 48.8 4078.55 5.4, , 5.4 0.160 

11.0 53.7 4585.61 5.9 5.9 e.187 

13.0 63.5 5379.27 6.9 6.9 0.265 

of 

1
CrushinL 
concrete 

16.0. 76.5 6007.59 8.4 8.4 started on 
Oright knee at 
15T 
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1 6 PORTAL III 
GRAPH SHOWING RELATIONSHIP BETWEEN LOAD AND 
DEFLECTION AT MID •TRANSOM 

9 

N z 
0 
I- 

0  

0 

O 	 O,i 	 0-2 	 0.3 

DEFLECTION AT MID-TRANSOM (INS,) 

FIGURE-,.35 
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I(a) Calculatea load = 3.8T 

A Cable consisting of 10 wires of 0.2" dia, is used. 

Ultimate strength of the cable rSU = 10 x 0.03 x 249,984 

= 0.3 x 249,984 

= 74,995.2 lbs. 

Let a load W be applied at the centre of the span. 

i 	1 

kl`Y 	 I rf ~y 

~ 

Let Mr be the ultimate mome -it in the .Mid transom 

1'~.nd Tai -y the ultimate moment over . the knee. w v,, the 

ultimate load and w self weight for foot run of the 

transom. 	- 

d1 , the measured effective deth at mid-transom = 5.209" 

dj , the measured effective depth at knee 	= 5.059" 

F _ 
(a) W = su 

bdlR 

74,995.2 
10 x 5.209 x 4,550 

-t 74,995.2 
52.09 x 4550 

= 74,9 5.2 
237009.5  

b = 10" 

d1 = 5.209" 

R = The concrete strength 
tested on .,." cubes. 



nd = 0.41 
d1 

nd = 0.41 x 5.209 = 2.136 in. 

- 0.9 
.fu 

.. fs = 0.9 fu 

= 0.9 x 249,984 

= 224,985.6 lbs/ 
sq . in. 

xx±Qxxxt 

= 10 x 0.03 x 224,985.6 (5.209 - 0.44 x2.136) 
= 67495.68 x 4.269 

= 288,139 in.lbs = 24011.58 it.lbs. = 24.011 x 103 ft.lbs. 

Theoretical --r = 24011 .58 eft."1bs,.-

obscrved A•1r = 30404.57 ft.lbs. 

(b) Tai' r 
Psu 	_  
bdlR  

74995.2 
10 x 5.059 x 4550 

74995.2 

50.59 x 4550 

74995..2 	= 0.324' 
23, 0184.5 

nd 
 = 0.37  a= - = 0.92 

nd = 0.37 x 5.059  ... fs = 0.92 fu 

= 1.872 in. = 0.9~ x 249,984 

= 229,985.28 Jibs. 

•. Irr = Asfs (di - Ynd) 

= 10 x 0.03 x 229,985.28(5;.059 - 0.44 x 1.872) 

.' . I-ir = Asfs(d~ - Ynd) 
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= 68995.584 x 4.235 

= 29 2,196.3 in lbs. = 249 349-7- .t . ? , . 
1 J i 

= 24.3497 x 1u3 ft.lbs. 

.' . Theoretical i•L'r = 24, 349.7 ft.lbs. 

observed i,'r = 22,817.84 ft.lbs. 

(c) Calculation of the ult ima to Io -_d. Assuming; redistribuion 
is com2lete . 

t + laQz 	=1,1r+i'r 
4 

24011.58 + 24349.7 =48361.28  f t.lbs. 
4 	g 

~c Wu x Q 	= 48361 .28 - 1012.5 = 47, 348.78 

f y 	' 
. ' . 	W u = 9 x 47348.78 

= 21,043.88 !Is. 

.. 9.5 tons. 

II. TialRD POINT LCA. I G- 

A cable consisting g8 wires of 0.2" dia. is used. 

as* u1 ' UNJY JTY 
ROOMKi fi. 



Ultimate sty eL,Lth of the ca le, 2 xxxRxxx±$~ 
Fsu = 8 x 0.03 x 249,984 

= 8 x 7499.52 

= 59,996.16 lbs. 
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M' y my 

Let Mr. be the ultimate moment at tie third point of the 

transom and I'I'r the. ultimate moent over the knee. 

riu, the ultimate load., andu., self-weight er foot run of 

the transom. J 

dl, the measured effective at third-point of the 

ta,ansom = 5.289 in. 

d' 1 , the •easu.i ed effective depth at knee = 5.001 in. 

(a) 
W  Psu 	

b = 10" bd1 R _ 

= 59,996...16 
10 x 5-.289 x 4,242 

= 59,996.16 
52.89 x 4,242 

= 59,996.16 _ 0.266 
224359.38 

nd 

 

= 0.31 
d1 

d1 = 5.289 

R = The concrete strerth 
tested on 4" cubes 

•.. :Cs -0.94xfu 



,, nd = 0.31 x 5.299 = 1.639 in. 
 = 0.94 x 249,984 

= 234,984.96 lbs/sq.in. 

Mr = As fs (d$\- ynd) 

= 8x 0.03 x 234,984.96 (5.289 - 0.44 x 1.639) 

56,396.39.x 4.568 = 257,618.71 in.lbs. = 21,468.22 ft.lbs. 

TNEote~~co.1 vtl~~nale, 	 "t 	 21, 4&.Zi fl-•Ibs. 
O Se'cved 	 Q' 	o' ReS1%,rQ~..rt 	 = (4 o t z.• 76 fF lbs. 

Psu (b) 1~i'r 	= bd1R 

_ , 9996.16 
10 x 5.001 x 4,242 

59,996.16 
212142.42 = 0.282 

nd = 0.33i d' r 	'~ 
f,~ : a 93 x 7u 

= 0.93 x 249,984 
.'. nd =-0.33 Q1 

_ p.33  x 5.001 

=1.65 

= 232,485.12 lbs/sq.in. 

. IM'r - As s ,(dl - ynd) 

=°8 x 0.63 - x 232,485.12 (5.001 - 0.44 x 1,65) 

= 55,796.43 x 4.275 

= 238,529.74 in.lbs = 19,877.31 ft.ibs. 

Theoretical ultimate moment of resist nce = 19,877.31 ft.lb.s 

0bse:~ved ultiiu .te moment of resistance 	= 20, 635.24 ft.lbs. 



	

,~ +  QZ 	= Mr + Mir 
3 

	

3Wu 	+ 100 _x99 x 9 _ 21,468.22 + 19, 877.31 = 41,345.53 

,. 3Wu + 900 = 41345.53 

.'. 3Wu = 40,445.53 

' , Wu = 13, 481 .84 1!os = 6T 
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el 'Depth to  r ' Disp ' R 
ne' Tendon' 	Load I - 'neutral ' ' ' ' roP o- ' 	E  

,pro- ' - 'axis at 'N2e Ii2r 'ttion ICI 
,file. ' e Failure 

r 
y  i xjy A 

=r 'Mid - ' Iiid- 	' r or Y/  R 
' t r n-, Knee' tram- 	,n e e ` + , som  'som 	(In.)  
(In) ' 	In ' ' 

2 3 4 
17 18 	19 20 ' 	21 22 ' 23 

5.2 7 0.59 2.136 	1.872 1.62 0.99 1 .64 Trans- Central 
formed. lo.wdin 

0.59 2.136 	1.872 1.62 0.99 1.64 ** 

5,2 5 0.48 1.639 	1.65 . 1 1.08 1.08 *** Third 
point 
loading. 



CHAPTER - 7 
~IidI1S12 C' ~i S 1TS 

T,BI 

me Tendon 	Load 
~ r, 	ff 	e atldveraOe~Crack-'Calculated Jti-;flti-'I:can 'Ultinate'Theore-'Ulti-'ateel 
Measured e~iec- 	 I 	 I 	I• 	I 	I 	I a 

'Depth to 	'I, e'i~I r'Disp I• 	1 , 	,-4— , ' R 

,pro-  'tive depth of 
pest 	, cube  ,ink 	mate moment of 	mate  ulti- lo:.d 	tical T 

(days) stren- , load 	resistance 	lo,,,d 	mate 	I1ean ul- ulti- , 	 , 
mate 	per- 

'load  cet- 
neutral 	T; e 	I, r 	ropo- 
axis at 	2 	2 	ttion 

E 
M ,file, 	' I tendon I' 	I' 	I 	I 	I , 	,gth 	, (Tons) mid- 	vnee , (ions) load 	timate 	mate I 	I Theo-tape I 	I 	,a 	I 	a frlilure 	. a 	y , 

--I 	Y 
a ', 	, 	_ 	, 

'Mid-  ltnec , 
tran-  (In) 

	

2 	' transom ' 	(Lb/ft) 	 'Tons 'load, 	'load, 

	

,lb~in 	, 	transom, 'reti-' 	,id- 	I 
't 

' 1 i 	I 	I 	/, ~.I ~lid- 	 or Y ~C R 
I 
som 

'(lb/ft )' 
  I  I  '  1 I 	I 	I , 	 ions 

 I  I  I  I 

I  I  I  I  1  1 cal 	trail- I ,,;.ee trap- Knee 
I  I  I 

K 
I 

'(In) I  I I U,L,  'sold Isom, (In,) 
S 

' 	I (Ili) 	I 	I 	I I 

2 	3 4 	5 6 	7 	8 	9 	10 	11 	12 	13 	'14 '15 	1 	17 18 	19 	20'21 	22 '23 

Trans- 	Central 5.209 	5, 059 120 	1, 530 	P=4 	24011, 58 24349,7 	11, 8 	1,1 	9,5 1.24 	0.57 0,59 2,136 	1,872 1.62 0.99 	1,64 
d I .pane, lo.ai~1~ 

5.209 5,059 45 1,452 

II Third 	5.289 5.331 37 4,242 
point 

loading, 

40,77 
P = 424311 ,58 24349'7 	9'75 

9, = 4 21468,22 1987741 91=8 P1=8 
P2=4 

 

12:0 _ 2 3 
2 

0,905 	9.5 	1,03 0,57 0,59 2,136 1.72 1.62 0,99 1.64 	** 

1 	91=6 	1,33 0,45 0.48 1,639 1,65 	1 	1,08 1.08 

r  
2
=6 

Motes: a) Suffix 1 af ii: e to ', _e to id uecticn in t_-:nsom 
and 2 to the knee uecticn, 

b) Inverse ratio t,.Jen ,:!hore neces,, .ry to jive 
disproportion arc er hnn unity. 

Failure in i'Iid-transom and ri,ht knee 

Failure in aid-trldisom and left le f, 

Pa.ilur, in middle third of transom 
and right knee, 
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CHAPTER 8. 

(1OS:CL'v Za 	.D DI: 1.USi/ . 

The co clusions arrived at from the fore oin, 

analysis are:- 

1). The moment-curvature rejationshi} as found in a:' l 

the three portal tests followed the curve 'b' labelled in the 

adjoining figure. The initial shape of the moment-curvature 

relation is not n articularly si ;nificant in determining the_ 

decree o f moment redi;stribution in st~-1 ticnlly indeterminate 

-Drestressed st uuctu.resr ' I-iore important is the forma of the re t in: 

after the perak mol.pent has been reached. The .djoinin,_ figure 

shows two idealised fo ins of the m,"Anent-c :rvture relation. In 

that labelled ' a",--the homent falls off ra~)idly with incre,'1sii~; 

curvature after ` ea-chink its peak value, . it indeed - represents a 

brittle beh<t.viour. . In such a case, there could be no moment 

redistribution as it no loner retains its ultimate moment of 

resistance to 'ier!able t •e-- other cri tic~a,1 sections to attain their 

ultimate rjcmernts. In the case of the relati Rn labelled }°b" that 

is what is ex ,-ctly ob ain ed in-the present tests, curvature 	mrR 

increases 	a constant ul tizaate .moment represent in ; apla.stic c:te - 

rial in which mcrnent rec1istribution will occur. The leljth of t;ke 

moment )lateail will determine the a_::ount of re:,.istribution 

which is loos;_ ible. In all the cases, the observed ultitLate to _.d 

was ;;re .ter than_ the theoretic o1 ultil:ia to loads. 

2) . All the portals h.:.ve failed by for:ai,n. two pl_.stic 

hirr,_,es one u ,.der the lo,-.d, the otheuu,u at one of the tyro knees. 
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Since there is only one redundancy, two hinges are required to form 

a mechanism. The mode of failure was first by cracking and then 

the crushing of the concrete at the critical sections. Inciden_t4l1,; 

this confirms the hypothesis- that a system of II _-edundancies will 

fail, by an increase in load, when the (IT + 1)th hinge appears. 

3o all the portals are completely adapted. ,,ithout crackin", 

complete redistribution is not possible. 

3) . The ultinLate load will be invariant under a 

linear transformation which provides an artificial redistribution 

of strentth. Such.transformations can be arranged so that each 

of the critical sections has an ultimate moment in a constant 
~.r 

ratio to its elastic moment so that there- will be no moment 

redistribution necessary to achieve the same ultimate strength. 

f4).r iamachiIs tests on continuous beads, it appears 

that at failure, The support moments had reached only the following 

proportions of their ultim=a.te values: 75% for O. and C2, 57% for 03. 

Nacch.i attributes this lack of re~:1.istribution to what he terms 

the "disproportion" between the ultimate moments of the critical 

sections when they are related to the elastic 1.iements to which -the 1 

load ,gives rise at these sections. This disproportion can be 

represented by a parameter which is the ratio between two other 

ratios, namely the ratio between elastic moments at critical 

sections, and the ratio be-tweeti ultimate moments of resistance at 

the same sections. ilacchi calls this parameter d, t us 

	

d = 
M
1e 	112r 

	

T ~2e 	I'i1 r 



where the suffixes 1 and 2 refer to the critical sections and 
e and t respectively stand for elastic and rupture. 

Thus a d value of unity implies that the ratio of 

ela,3tic noments,±As is equal to the ratio of rupture moments and 

therefore no redistribution of bendin- moments is necessary to 

produce failure of both critical sections. On the other hand, 

the greater the value of d, the greater is the redistribution of 

bending moment required to produce failure of both critical 

sections. (It isbvious that d is never less than unity, 

since it is quite leUitimate to invert each ratio before 

multiplication). 

:he d values for Nacchi's tests are 1.67 for both 

C1 and 02 and 2.0 for 03. she lar-er value for 03 is due to 

the lar;.;er• end spans, acid this result,, in a lamer elastic 

moment ratio between mid-span and supports. The ~^zY(M~-~ value 

is of course the same (unity) for all three specimens. The ratio, 

r, of maximum load sustained to the calculated load, assuming 

that the full streath of all EExtx1 critical sections is 

developed, is 0.870 for C1 , 0.876 for 02 and 0.783 for C3. This 

ratio, * r is termed by hacchi the "efficiency" of the system. 

On the basis of these results, hacchi tentatively -,roA r_ses that 

there may exist a unique relationship between d and t for this 

type of beam and loadin;; arrsnyement such that the efficiency 

of the system is inversely 2roportion to d, its disproportion. 

Certainly for beams, C, and C2, which have the came d v, j-lue, the 
r v_lues are y)rttctically identical, while for C3, with its 
larger d value, r is substantially less_ 
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That some relationship should exist appears at first 

si ht to be hihly probable since, if elastic "ultimate" 

analysis demonstrates that one critical section is subjected 

to a bending moment approaching; its ultimate moment of resistance 

while the -other critical section is subjected to a m.-tent •which 

is only a small fraction of its ultimate resistance, one naturally 

doubts the cap ,.city of the highly stressed section to rotate 

sufficiently, without less of strength, to permit the development 

of full .strength ,t the other section. of the 23 members 

(12 beams . id 11 frexids) tested by T1lorice, only in four instp.nces, 

one berm ,,csnd three frames, was the failing load less than the load 

calculated on the basis of full redistribution of bending moment. 

of greater. significance, of course, was the visual evidence in 

each case of crushing of the concrete both in the span ,.nd the 

knee while the maximum load was held. 1.1orice and Lewis found 

that there was no indication of a reduction of efficiency with 

increased dispvoportion. The acid test for complete redistribution 

of moments is not whether the maximum sustained load is 

consistent with the calculi ted ultimate moments of resistance of 

the critical sections, but rather the visual evidence of complete 

simultaneous rupture of these sections under that load. From a 

consideration of nora-j.l structural proportioning, it is evident 

that high disproportion ra'ios .,re unlikely to occur, except 

when they are prim.irily due to hi.h ultimate moment of resist 3.nce 

ratios. In horice ex;pe.°irments, it was foand that weaker sections, 

e.g., the centre support section of bear, 4, have very hiJi 

percentages of steel in relation to the width of the conc..ete 



section and the depth of the steel. Sections such as these, 

bein..- the weaker of the two critic:-;.l - sections, must be capable 

of suffering ouite lane rot tion_s to enable full redistribution 

of moment to take place. This at first siht seems to be incon-

sistent with the behaviour of, normally heavily reinforced sections 

which we know will not suffer such large rotations before feilure 

as sections of the same dinien~ions with a i,~ach smaller percenta_e 

of steel. The reason for this apporent inconsi.,tency is that a 

section r-,ay be liven a hi4;h r)ercentae of ste 1 in to quite 

dissimilar ways. The effective depth of the steal may be kept 

constant and the quantity of steel increased or the quantity 

of steel :..gay be kept constant and the effective depth to the 

steel may be diminished. In the foril!er case, the rotation 

capacity of the section will -be decre .sed, but in the latter case 

it may well be increased. The smaller'the depth of the neutral 

axis, the re.--ter is the ultim to rotation. ao l,'r er rotation 

is always associated with the hi~her steel percenta e. 	This 

result is consistent with f._ilui'e occurrin,; at a lower steel stress 

for hher steel.. -?ercentaes. 

Of the frame tests, it can be said that they exhibited 

full moment redistribution for elastic moment ratios of the same 

order of maritude as is found in 1'lacchi' s beans C 	and C 2. 

In the present state of knowled e, iL is not adMisible, however, 

to attempt a comparison between the fr 'mes and the beams. 

5. No failure of end block, either at the tr:uasot.r end or 

at the le 	took place even at the u.ltiaate collapse. 



6. In the third point loadin;~ of the third portal 

frame, it was found that the strains under the loads were more 

than the strain ut the centre section, Jkrougk thoLLEh the moment 

was constant in the middle third of the transom. 'T'his was due to 

the "Karman effect". In findin the cury .cures, the strain at the 

centre was taken into calcul.tion. 

7. Guyon found pl .tic phenomena occurrin before c-

cracking in tests on continuous beams. Any sec-,ion with a normal 

scatter -- has a. certain strength a ,-inst cr-i.ckin~, or more 

exactly two strengths, one positive nd the other n.e .tive. 

Adaptation amounts to a tendency of the structure to use its 

stren th pos ibilities to the-ifull due to a redistribution of the 

moments under the effect of fruit pla,Utic rota.cioas* which are 

produced in those zones where the bending, moment reaches its 

ultimate value. 

r or other materials the term "plastic hiii e" is 

often used. Professor ha6nel says, quite rid .tly, that this 

exprdssion is incorrect since -.n prestressed concrete it is a cj 1 

question of cracking; one cannot speak of hines unless the 

moment remains constant while the defor.~ia. Lion increases. In the 

case of cracking, the moment is not constent, but it only increases 

slightly as a function of the unit rotation (or invez,sely, the 

curvature increases at a greater rate as a function of the moment). 

*By unit rotation is meant the rotation per unit length, 	i.e., 
. the ratio of the rotation d to the length ds. The unit 
rotation is thus equal to the curvature 	. 



Nevertheless, it is not a major inconvenience to use the word 

"hinge", if one knows what is meant by it. 

In fact, a hin-;e is not a , jection but a zone of a 

certain leny,th, at the centre of which a section reaches its 

limiting; moment; the magnitude   e ~~ of ~~~e ~o~.1 ~ 	possible rotation 

of the hinge is equal to the sum of the plastic rotations (i.e. 

the difference between the actual rotation and that which it 

would have had elastically) over the lea th of this zone. This 

maLnitude is limited, the limit being a function of the oos-ible 

curvature and of the len~ tit of the zone. 

8. Discordance is a second condition of adaptation. 

The same strength can/ be reached with a discordant system and 

with a concordant system, where we call discordant a system where 

the stresses in the hine sections are different and concordant a s; 

system where they are the sa,.~.e. Returning to an example quoted by 

Professor, L a n& , for the case of failure it is true, but it 

applies equally to cracking - if one considers a beats with two equa-- 

spans which is 	1ipnrtm supposed to be subjected to a central 

pr stress and in which are either two equal loads one at the 

middle 	s of each span, or a single load at the middle of one 

s pan, the value of the load causing cracking' will be the same, 

in the case of complete adaptation, whether there are the two 

loads or one. But on testing it was found that tu~e cracking 

lo..d P is bi 	 r in the case of two loads than in the case of 

a single 'Load. 	he reason for this is the first s;ratem is 

adaptable and that the cond is not, because of to great a 

discordance_ 



9. Bennett, before testing continuous beams, r,i-de 

strain and deflexion measurei.uents on simply supported beams, 

deduced a moment - curvature equation and worked out load-moment 

curves. The amount of moment redistribtion thus predicted was 

much less than that found experiment illy. 

He believes this to be due to two i ain causes. The 

first is that the strain or deflexion measurements upon which the 

moment - curva-l-ure relation is based are i.:ade over an appreciable 

length, rani Y; from 0.20 to I .0 m, and it is assumed that over 

this length the curvature is uniform. But this will not be true 

if as see,as prob .b:b.Lo, the defora- Rion of a -re-;tresaed beam after 

craackiii, - is trouu~ht about chiefly by very severe curvature in the 

vicinity of the cracks. 

Another error of the same type is the calculation of 

steel stress is a cracked section of lire-stressed or reinforced 

concrete, usin;, strain measurements ruade over a relatively lare 

'au e length. 

The second difficult,,, ; iiich :.r. Guyon has mentioned, is tl 

that at failure the curvature is increasin_ extremely rapidly with 

^esppect to the moment. 	ccordin,, to him, the moment - curvature 

"elation should be carefully used becaase of the ab(ve trio ft-'cts. 

As far as the .prey nt tests on fr,, mes -re concerned i, the 

Triter finds complete redis t_ibution of moments. 

It is rut out of place i.ere to uention the use of 

edistributi 	factor su ,,ested by Bennett as a ,aide to designers 



where complete redistribution of moments does not 

invariably occur. The redistribution factor is a slit modi-

fication of 3r.  Macchi' s "r". It would be defined by the 

e uation: 

_ Walt - Jel 
r- ',1- Tel Pl  

where Ju1t = Actual ultii.ate load 

:4 el = Ultimate load assui. ire' that the structure 
behaves elastically. 

Wpl = Ultimate load assuiing full plastic redi stributidn. 

A redistribution factor 0 would then denote elastic 

behaviour, and 1.0, complete red:istribti.tion. The des.:iLner could 

work to a suitable intermediate value, which could be xx$h 

established from tes Ls. 	ccordin- to hi~rL, 0.5 would be 

a safe f:iure. 
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CHAPTER 9. 

SCOPE FOR P T1r...~"`R ;GRK. 

The assumption of full redistribution cannot be 

other than an approxiivation, the accuracy of which depends on 

definite conditions, compatibility of the strains at the succes. ive 

plastic hin„es. It is necessary to check that, in the final 

phase, compatibility is effectively ensured oir can be easily 

adjusted. Some more work has to be done in this direction. 

The moment-curvature relationships have to be studied 

in still greater detail to get precise kno,vled--e of the plastic 

hin-es. Accurate instruments re needed for experimentally 

finding the plastic hint e rotations. 

This study of ultimate strength should be extended 

to multi-storey and multi-bay frames along; the lines sug vested 

by G-uyon. 	The ultimate rength of precast (legs and transom 

separately) prestressed beam portals should be studied in 

contrast, to mondithically cast 	prestressed portals. 

. To the best of our knowlede, no sy6tematic experi-

mental work has be n carried out on shear failure. It apooears that 

the elastic theory • leads to a slightly excessive factor of safety 

as shown by t  e tests made by Leb!tlle on ordinacy reinforced 

concrete beai.is. This important question should still be pursued. 

It is necessary to find if there is any intcre.cvion between mcment 

and shear at the sections of failure. 
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The behaviour of similar yoortals under differ t forms 

of to ~dint is another topic of research requiring early attention 

It is likely that the photo-elajtic studies on the 

scale models of the frames may throw. some more light on this 

actual behaviour under differa~.t toes of ,loa.dini. 

As sub ~ ested by Levi, r>t; tue F.I.Q. Con;ress in 

Armst'ad3,m, the corn,lete behaviour from cr~.ckir ; right u to 
r. 

failure should be invosti&ated. 	It is t.L o to be seen 

if plastic phenomena occur before crackin 

The following require still more attention: 

(a) It has been suggested that before cracking 

that there is a plastic redistribution of the tensile zone 

similar to that of t.:e compressive zone at failure, but 

some of the experimental evidence contradicts this* and 

indicates that the tensile stress is almost linear upto 

the point at which crackin.iOccurs. 

(b) The effect of crack spacing on the radius 

of curvature. 

*Evans, R. H. Extensibility of Concrete and iviodulus 
of rupture of Concrete, Stra.ct Engr, 24, 636-658(1946). 
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Let the c/c disuance of the Portal frJflcs = 

didth of the Portal friLe 	= 9'-0" 

Total load 	 = 150 lb/ft 2 

Total load per foot run of the transom = 150 x 12 

- 1800 lbs./ft ran. 

Maxm. B.M.= 1800 x 92 ft.lb 8 

Maximum Bndin nwment = 4D = x 9 = 2.5 P ft. 	1b. 

1 ~ 	x 9x9 or P = 	x = V 8100 lbs.  

= 3,62 tons. 

= 3.8 tons. 

U 4IFO.: L.TTY D1ST2.IBUT-D LOAD 

Section of transom = 10" x 10" 

Section of 1e ;s -- 10" x 10" 

I=C~J1'l~ 'g0 - 

q = 100 	1=9 
 

h = 4.5 

X18=_ q 	=-100x, 
4x4 

HA=hD=-~` 	_- 100x9 x 9 x 1 
4x4 	4.5 

= 112.5 lbs 



x 

CO OEi' R? T'ED LOAD 

P = 3.8 T 	1 = 9'-0" 	h = 4.5 

N=4 

r~iB 	- 8N 

MP=P4 +MB 

r,~B=- 3x3.8x g 
8 x 4 	= 3.21 ft. tons. 

fior± onta1 Thiit _ 	- IiB __ 	.21 
h  4.5 

- 	PL = --3 PL 
32 

= 0.715 tons, 

ZT - PL + NB = 	- --- FL = 3 	5 PL 32  32 



APPENDIX 'I' 

Span 
	

1 = 

Height 
	

g = 41-6" 
Depth of members 
	

h, Tranwm = 10" 

Legs 	= 10" 

Width of members 
	

Transom b = 10" 

Legs 	b = 10" 

Loads: Self load of 100 lbs/ft plus a concentrated load p = 3.8T 

placed at the centre of the transom. 

The permissible limit stresses are 

Compression 	Rb = 1000 p.s.i. 

Tension 	Rib = 0 

The stiffness ratio legs/transom is: 

1.  Reactions due to external load. 

The numerical computations are given on page 3. 

The results are as follows: 

(a) Self-weight of the transom : $00 lbs/ft. 

Vertical reaction 	_ 100 x 	_ 450 lbs. 2 

Horizontal Thrust 	= 112.5 lbs. 

(b) Concentrated load : 	= 3.8T 

Vertical reaction = 1.9T 

Horizontal Thrust = 0.715 T = 1600 lbs. 
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TABLE 

U 	0,11 	021 j 0,31 	( 0,41 	) x,51 ( 0,61 ( 0.71 	j 0,81 	0,91 	1 

Self- ight(ft,1b,,,) 	- 506,25 - 141,75 + 125.55 + 344,25 + 465,75 + 490.05 	+ 465.75 + 344,25 + 125455 - 141,75 - 506,25 

Concentrated load 	- 7200 	- 2560 	+ 918 	+ 4400 	+ 9000 	+11980 	+ 9000 	+ 4400 	+ 918 	- 2560 	- 7200 
(ft,lbs,) 

Total %foment due to 	- 7706,25 - 2701,79 1.1043,55 	+ 4744.25 	+ 9465,75 	+12470,05 	+ 9465.75 	+ 4744.25 	+ 1043,55 - 2701,75 	- 7706,25 
self-~ieibht and con-
centrated load 
(ft, lbs.) 
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2. TRANSOM. 

The Bending moments in the transom are given in the 

table overleaf. 

Fig. (41) shows the bending moment diagrams corres-

ponding to the two possible loading cases. 

The greatest variation of stress occurs at the point 

x = 0.5 1. The smallest moment in this section occurs for the 

case of self-weight only and is equal to + 490.05 ft.lbs., the 

corresponding horizontal thrust being 112.5 lbs., the corres-

ponding horizontal thrust being 1712.5 lbs. 

The cross-section characteristics are: 

b = 10", h = 10", S = 100 Sq. in. 

Z, Section modulus = 10 x 160 x 10  = 166.7 in3 

The variation of stresses is: 

1712.5
100 	 166.7 

+ (12470.0 	490.05)  x 12 _ 16 + 862.6 7 
= 878.6 lbs/sq.in. 

e_ 1000 

.'. The section is sufficient. 

Let F be the magnitude of the prestressing force 

throughout the transom and e etseccentricity at the 	't 

x = 0.5 1. In order to have the least amotnt of steel (the 

minimum value of F), the centre of thrust should travel from 
to wise 

edgê   of the limit core when the bending mom :nt varies from 

(f) are extreme galue to the other, the edges of the limit 
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core at = 10 = 1.67 in. above and below the neutral 	I 
6 

axis respectively. 

The forces and moments in the section are: 

Prestress plus self-weight only: compression = F + 112.5 lbs. 

Moment = Fe + 490.05 ft.lbs. 

Prestress plus concentrated loads: compression = F + 1712.5 lbs 

+ Self-weight 

Moment = Fe + 12,470.05 ft.lbs. 

The above conditions can therefore be written: 

Fe + 490.05 	 1.67 _ _ 
+ F+112.5 	12 

Fe + 12470.05 _ 1.61 
+ F+ 1712.5 lbs. "+ 12 

The geometrical measuring of these relationships 

is shown in Fig. 43. 

Solving the above equations, 

F = 42,170 lbs. and e = - 0.151 ft = 1.812" 

As has been explained in the general principles, the 

boundary lines of the limiting zones are obtained by drawing the 

diagrams 
Ni + e1 	and M2 - ~Z6 

F 	 F 

from the upper and lower core edge lines respectively. 
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The values of M1 and M2 and Q1 and Q2 are the smallest and the 

greatest bending moments and the corresponding horizontal thrusts 

respectively. 

CORRECTION FOR THE TRANSOM SHORTENING:- The thrust caused by the 

shortening of the transom is approximately equal to 

Q=1:' r2 

g2(1 + 

We have r =2 	10 x 10 x —~ 
144 	

= 0.058 ft2 12 

f=2 

	

= 42,170 x 	0.0 58
20.25(1 20.251 +1 )- 

3 
= 90.5 lbs. 

Note: 

The above formula is approximate. The value of the 

thrust correction being very small compared with F, the approximatio 

is sufficiently exact.. Had the correction been considerable, it 

would have been necessary to use the exact formula given 

previously. 

The action of the thrust correction is shown on figure 44. 
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'Throughout the transom, the bending moments are increased by 

90.5 x 4.5 = 407.25 ft. lbs. whilst at the same time the compre-

ssion is decreased by 90.5 lbs. 

The values Ni' M2, Q1,  Q2 used in the expressions 

Ii M1  + (41 6 	and  M2 	Q2  6 	for determining the boundary 
V 

lines of the limiting zone, are values taking the correction into 

account. The limiting zone for the transom is shown in figure .. 

= 112 	= 0.14. ft. 

3LEGS  

The most dangerous section is not the theoretical point 

of intersection of the neutral axes of the transom and of the leg, 

but the section of the leg which is at the level of the transom 

soffit. For the sake of simplicity, the ±x omxx calculations 

are carried out for the theoretical intersection point only. 

(a)  Right leg, taking account of transom shortening 

Ildf 	Corrections : M = 407.25 ft.lbs. 	Q =-90.5 lbs. 

Self-weight only : M = - 506.25 + 407.25 = - 99 ft.lbs. 

N = + 450 lbs. 

Self-weight plus concentrated loads: 

M = -7706.25 + 407.25 = - 7299 ft.lbs. 

N = + 4256 + 450 = 4706 lbs. 



TABLE 

Self-wei ht Moment 	- 506,25 - 141,75 + 125,55 	+ 344.25 	+ 465,75 	+ 490,05 	+ 465,75 	+ 344.25 	+ 125,55 - 141.75 	- 506,25 
(ft.lbs). 

Horisontil Thrust 
=112, 5 lbs. 

Total oment due to 
Self-wei8ht and con- 
centrated load(ft,lbs) - 7706,25 - 2701.75 + 1043,55 	+ 4744,25 	+ 9465,75 	+12470,05 	+ 9465.75 	+ 4744.25 	+ 1043.53 - 2701,73 	- 7706,25 
Horizontal Thrust 

=1712, 5 lbs. 

II, Correction for transom shortening q1 = 90,51bs; Increase of Moment in transom = + 407,25 !,lbs, 

	

0.11 	0,21 	0.31 	0.41 	3.51 	0,61 	0.71 	0.81 	0.91 	1 

1,1oment due to 
Self-wei~ht(ft,lbs) 
Self- eiwh Tft.1b 	- 	99.00 + 265,50 + 532,80 	+ 751,50 	+ 873,00 	+ 897.30 	+ 873,00 	+ .751, 50 	+ 532,80 + 265.50 	- • 99.00 

= 22 lbs, 

Total moment due to 
Self-weight and con- 	-7299.00 -2294.50 + 1450,80 	+ 5151,50 	+ 9873,00 	+12877,30 	+ 9873,00 	+ 5151,50 	+ 1450,80 - 2294,50 	- 7299,00 
centrated load(ft,lbs) 	 `. 
RATi MPntd _.mHnnr+r - 1H~~ (1 I hn 

III,1191 Smallest moment, Q1 :22 lbs,; 6 	1267 f t ; 41 6 : 22 x 1127 = + 3,06 ft,lbs, 	H : 42,170 

0 	0,11 	0.21 	0,31 	0,41 	0,51 	0.61 	0,71 	0.81 	0.91 	1 

h1 +416 - 0.0023 	+ 0,0063 	+ 0,0127 	+ 0,0179 	+ 0.0208 	+ 0,0213 	+ 0,0208 	+ 0,0179 	+ 0.0127 	+ 0,0063 	- 0,0023 

ft. 

IV, Pit greatest moment, p2 :1622 lb; 6 = 1 ~ 27 ft; 2 6 : 1622 x 1127 = - 225.7 	F :42,170 lbs, 

0 	0,11 	0.21 	0.31 	0,41 	0,51 	0.61 	0.71 	0,81 	0,91 	1 
h 

2-- 	2.6 	0,178 	- 0,0597 + ,0291 	+ 	.117 	+ 0,229 	+ 	0,3 	+.fl,229 	+ .117 	+ 0,0291 	- 0,0597 	- 0,178 
(ft.) 



SECTION PROPERTIES: 1j~C 

b = 10" = 0.83 ft , h = 0.83 ft, S = 100 sq.in = 0.69 

Section modulus = 166.7 in3 

Stresses due to external load only: 

Self-weight only: 

Outer edge : n = 	- 19 x712 = 4.5 - 7.13 = -2.63 	lbs/sq. in.  100 

Inner edge : n1 = 1 	+ 166.72 = 4.5 + 7.13 = 11.63 

Pull load: 

at the outer edge n = 100 	16 4706 + 16 
6.7 z 12- 47.06 - 525.4 o  

=-478.34 

	

i 	x706 , 	7299 x 12 at the inner'edge n o = 100 + 166.7 = 47.06 + 525.4 

=+572.46 

By realising a prestress such that it gives: 

at the outer edge no = + 478.34 

at the inner edge n10 =-11.63 

We obtain the following total stresses: 

outer edge: Self weight only n = + 475.71, full load no = o 

Inner edge: Self weight only n1 = 0 , full load n10 = + 560.83 

These stresses are permissible. 

Magnitude of prestress P11 = 100 (478.34 - 11.63) 
2 

= 100 x 233.355 

= 23, 335.5 lbs. 
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• - 0  
Eccentricity of prestress e = 

11 h 6 x n
o n1 

no + n1 0 

10 	478.34 + 11.63 
6 X 478.34 - 11.63 

+ 1.75 in. 

Limiting Zone for theleg: We draw from the two vertical 

core edge lines, the boundary edge lire s determined by the 

ordinates 

andl2 = M2 - (N2 6) 

	

= 	F 	 F 

respectively. 

The moments M1 and M2 are proportional to the absassal 

Z(Vertical). The boundary lines are therefore straight lines 

intersecting at the top of the leg in the point determined by 

the eccentricity e11 = + 1.75 in. and passing through the points 

	

Nh 	Nh 
=+6 and '12 = 6F 

for Z _ M1 = M2 = a 

~  _  1.67 x 4706 	_ _ 0.337 in. 23, 335.5 
(b) Left lean, taking into account the transom shortening 

Same as for right leg due to symmetry. 
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4. 
	

t cable profile for  

Straight cables passing through the centre lines of the 

hinges are taken. Then 

F1  = 23,335.5 lbs. ul  = 1.75 in. 	F'u' = 40,837.2 in lbs 

F11  = 23, 335.5 lbs, u" = 1.75 in. "u'' = 40,837.2 in. lbs. 

In the transom P = 42,170 lbs. 

Equation (4) becomes 2x108x 087.2 3 	42,170 x 2 

-34.86 sq.in. 

= - 0.242 sq.ft. 

A curve lying entirely within the limiting ztne and 

enclosing between itself and the meutral axis of the transom an 

area -34.86 sq.in must be found out. 

This curve can be determined by trial and error. 

However, the gene ral method can be applied which consists in the 

determination of an imaginary load function q(x) which would give 

for a compression of 42,170 lb and assuming partial restraints 

at the two ends of the transom, a funicular curve lying entirely 

wit.n the neutral zone and making with the neutral axis 

an area equal 	to - 34.86 sq.in.*  

* The negative sign means that the area is below the neutral 

axis. The imaginary loads therefore act upwards. 
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In the present case, the curve is determined by trial• 

and error method imposing the condition that it should have at the 

ends of the transom an ordinate equal to + 6 =0,14 ft and the 

area be tween itself and the neutral axis of the transom an area 

of -34.86 sq. in. 

The adgquacy of this line of pressure is checked by 

sketching it on the drawing of the limiting zone and by verifying 
sq. in. 

that it determines with the neutral axis an area equal to 34.86 

5.  Transformation of the cable profile. 

As has already been mentioned, the transom cable may 

be moved up or down provided at the same time the leg cables are 

rotated about the centre lines of the hinges by such z an amount 

that the apparent variations of the bending moment at the frame 

angle caused by these cable movements should be the same for the 

transoms and for the legs. 

This positively can be made use of to give leg cables an 

approximately vertical position. 

This means that the prestressing moment in the transom has 

to be reduced by the amount. 

F'u' = 40837.2 in.lbs = 3403.1 ft.lbs. 



In other words the transoms cable has to be lowered 

by a = 	= 42,170 .1  -0.081 ft.  '  

= -0.972 in. 

The final prestressing is shown in fig. 40 

Various losses due to prestressing are taken as 15% 

Ultimate strength of the high tensile wire = 249,984 lbs/sq.in. 

Working stress of the high tensile wire = 0.65 x 2,49,984 

= 161,952 lbs/sq.in. 

P. s. 
Stress in steel after 15% loss would be 0.85 x 161,952 = 137,500: 

.' . Steel area required for transom = 4'170  137,500 

= 0.306 sq.in. 

Adopt 10 wires of dia. 5 mm (0.2') each giving an area of 0.314  sq.ir 

Steel squired per ldg = 2,335.5  
137,500 

= 0.17 sq.in. 

Adopt 6 wires of 0.2' dia each. 

Design of shear reinforcement. 

Maximum shear force at the support $ 450 + 4256 = 4706 lbs. 

Shear Force taken by the cables in the transom = 42,170 Sin ' 

= 42,170 x Sin 440  

= 42,170 x 0.69 

= 29,090 lbs. 
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The maximum shear force at the support is taken care of 

by the vertical component of the force in the prestressing cables. 

Yet a nominal reinforcement of 1/4" dia. stirrups at 6" C/C 

is used in the transom. ' ies of 1/4 dia.. at 9" C/C are used  ,y.. 

the legs. Dia of the longitudinal bars is 3/8". The diagran of 

the portal frame alon,; :•rith the prestressing wires and the 

reinforcement cage is shown clearly in the drawing. 

Weight of the portal = 0.805 Tons. 
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Let the c/c dist .nce of the portal fr~.rnes = 12' - 0" 

.idth of the portal frame +- 9' - 0" 

Total load 	= 150 lbs/f t 2 

Total load per foot run of the transom = 150 x 12  

= 1800 lbs/ft. run. 

TiayJn. B.= . 	_ 1800 x 92 ft. lb. 8 

Iiaxtwurn Bending, moment - 	= P 9 = 3 P 3 	3 

1800 Y 9x 9 
8 

or P = 1808 x  x  = 225 x 27 lbs. 

2.8 tons 

P=2.8T 	P=2.8T 

Let the section be 10" x 10" 
h Coefficients : K = J2 

MB = 1c = - 4- 	- Max 14 = 8 + MB Mx : X' + I~B 
VA = VD =dl 	HA=IUD _- 	My = h 1.TB 

= Mc = 3pL VA = VD HA = HD = hB 

MP = 	+ i.iB 	= Px + MB 	My = 
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Ui~IFOR;iIT'Y DISTRIBUTED S: LF IJO D 

Section of transom = 10" x 10" 

Section of le8s = 10" x 10" 

- K _ 	= 1/2 ~~ 	J~~ =1 -9.0 

N = 2K ± 3 = 2 x + 3 = 4 

q = 100 ; 1 = 9; h=4.5 

q12 100x9x9 i,B- 4i~ __ 	4x4 

100x9x9 	1 IAA = rI:!) = - 'h 	..Y _ 4x4 	x 4.5 

= 112.5 lbs. 

CONCFi;TRLTLD L0.,DS 

P = 2.8T; 1 = g'-0"; h=4,5' 

N=4 

MB =IiC=_ 2PL =- 2x 2.Bx9 3N 	3X 4 	= -4. 2 ft. tons. 
l4 Horizontal - rast = H- = 4.5 = 0.93 tons. 

FIB 1; C =
_- = 	PL 2PL 	1 3x4 - -6 

MP=3L +MB= -6PL=6L 

4 
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Span 	= 9'-0'1  

Height 	= 4'-6" 

Depth of hembers : h, Transom = 10" 

Legs 	= 10" 

Width of members : 	Transom b = 10" 

Legs 	b = 10" 

LOADS: Self load of 100 lbs/ft. plus two concentrated loads 

P1  and P2  placed at 3 ft. fvmm the centre li'ies of the support 
pin ns 

The loads P1  and P2  may assume the following values. 

Loading case : P1  = 2.8T 
	

P2 =2.8T  

The permissible limit stresses are 

Compression 	Rb  = 1200 p.s.i. 

Tension 	4 = 0 

The stiffness ratio legs/transom is: 

_ 4 .)3 x1 = 2. 

1. Reactions due to external loads: 

The numeric; 1. computations are given an page i,2 . 

The results are as follows: 

(a) self-weight of the transoms : 100 lbs/ft. 
Vertical reaction 	: 100 x91 = 450 lbs. 2 

Horizontal thrust 	: 112.5 lbs. 



SHEAR FORCE DIAGRAM 

SENDING MOMENT DIAGRAM' 

FIG. 54 

SCALE - I~:1.8'=dl 
"s 28-°2 
H: i,5" 

SCALE:- I'. Hd 10(2 
r- 1.5 X 113X 2.8 

7.4AIT 



9OIb 90 lb 90 lb 90 lb 90 lb 90 lb 90 lb IFO lb 90 lb 90 lb 

b 

9 

A \\ \ 

Al F- i i•8 ft..a< 

I'e 180 lb-d2 
H l.5" 

ALE OF B.M. DIAGRAM.- 

t"=Hod (2 

1.5X1•8X[80 

=486ft.Ib 



TABLE 

	

0 1' 0,11 	0.21 	0,31 	0.41 	0.51 	h 0,61 ' '0,71 h 0,81 	0.91 i 1 

1. 	i t-weight 	- 506.25 - 141,75 + 125.55 	+ 344,25 	+ 465.75 	+ 490.05 	+ 465,95 	+ 344.25 	+ 125,55 - 141.75 	- 506,25 (ft,lbs,) 

2, Concentrated loads 	- 9408 	- 3472 	+ 1948,8 	+ 7526,4 	+ 9228,8 	+ 9228,8 	+ 922,8 	+ 7526,4 	+ 1948,8 - 	34,72 _9408 (ft. lbs), 

3, Total Tloment due to 

	

Self-weight and con- - 9914.25 - 3613,75 + 2074,35 	+ 7810,65 	+ 9694,55 	+ 9718,85 	+ 9694.55 	+ 7870,65 	+ 2074,35 - 3613,75 	- 9914,25 centrated load 
(ft, lbs), 
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(b) Concentrated Loads : (P1  = P2  = 2.8T) 

Vertical reaction = 2.8T  = 6272 lbs. 

Horizontal Thrust = 0.93T  = 2083.2 lbs. 

2. I'RkNSOM: 

The beinding moments in the transom are given in the 

table overleaf. 

Pig.6 b shows the bending moment diagraitis corresponding 

to the two possible loading-cases. These have been calculated 

from the table as follows: 

The greatest variation of stresses occurs at the point X 

= 0.5 1. The smallest moment in this section occurs for the case 

of s&lf-weight only and is equal to + 490.05 ft.lbs., the 

corresnding horizontal thrust is equal to 112.5 lbs. The 

greatdst moment is equal to + 9718.85 ft.lbs., the corres:onding 

horizontal thrust being 2195.7 lbs. 

The cross-suction characteristics are: 

b=10", h=10", S = 100 sq. in. 

Z, Section modulus = 10 x  160 x 10 = 166.7 in3 

The variation of stresses is: 

2195.7 -.112.5 	(9718.85 - 490.05) x 12 _ 2083 + 666 
100 	 166.7 

= 687 lbs/sq.in. 

1000 

.. The section is sufficient. 



-0.006 	 -0.O6 
-0.263 c  
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(+0.367) +0.247 	40.247 +0.367) 

+0•304 + 	0304 
ORDINATES  W.R.T— C'C' 

1, THE SCALE OF ABSCISSAE IS DIFFERENT FROM THAT OF ORDINATES 

1, TRANSITION CURVE OVER THE WIDTH OF THE LEG 

LIMITING ZONE FOR THE TRANSOM 

FIG. 57 

Li 



As has been explained in the general principles, the 

boundary lines of the limiting zones are obtained by drawing; the 

diagrams 

M1 
F 	and F 

from the upper and lower core edge lines respectively. 

The values 1~i1 and M2 and4,a.-Aazare the smallest and the greatest 

bending moments and the corresponding horizontal thrusts respecti-

vely. 

0OR1ECTI0N FOR 1 B TRAi.SOM SIIORIENU G : - The thrust caused by 

the shortening of the transom is approximately equal to 

Y Z" 
Q = F 

we have 
Yz 
	

loxlo 

= 8.33 =0.058ft.2 
 144 

We obtain 

P - 2 

Q = 31900 0.0 58 
20.25 1 + 1/3) 

319 x 5.8 
20.25 x 4/3 

- 3i9 x 5.8 
27 	= 68.5 lbs. 



Note;— 

The above formula is approximate. The value of the thrust 

correction being very small compared with F, the approximation is 

sufficiently exact. Ha,d the correction been considerable, we kxxx 

n1 C~ 	• would have had to use the exact formula given prev~~ousl y. 

The action of the thrust correction is shown in figure 

Throughout the transom the bending moments re increased by 

68.5 x 4.5 = 308.25 ft. lbs. whiles t at the same time the 

compression is decreaso:d by 68.5 lbs. 

The values ilia , I~I2 , CL1 , 42 msed in the expressions 

C 
for determining the boundary lines of 

F 	 F 
the limiting, zone, ar -- values t.,skin, this correction into account. 

The limitin;; zone for the transom is -.hcwn in fig. r7 . 

6 1127 =0.14 ft. 

3. LEGS 

The most dangerous section is not the theoretical point of 

intersection of the neutral axes of the transom and of the leg, 

but the section of the leg which is at the level of the transom 

soffit. ior the sake of simplicity, the calculations are 

carried out for the theoretical intersection point only. 



TABLE 

0 	0.11 	; 	0.21 
	

0.31 	; 	0,41 
	

3.51 	r 	0, 61 	K 	0.71 	Y 0.81 	; 	0.91 	r 	1 

Self-weight(ft,lbs), 
Horizontal Thrist 	- 506,25 -141,75 + 125,55 	+ 344,25 	+ 465.75 	+ 490,05 	+ 465,75 	+ 344,25 	+ 125,55 + 141,75 	+ 506,25 

=112.5 lbs. 

Horizontal T::rust 	 • 
= 2195,7 lbs, 

3, Total P±o Ent due to 
Self-weight & con- 	- 9914.25 - 3613,79 + 2074.39 	+ 7870,63 	+ 9694.55 	+ 9718,85 	+ 9694,55 	+ 7870,65 	+ 2074.35 - 3613.75 	- 9914,25 
centrated loads 

I 	inl 

II, Correction for Oransomi shortening; ~ : 68,51bs; Increase of orient in transom = + 308,25 ft,l',s, 

0 	0.11 	0.21 	0,31 	0,41 	0,51 	0.61 	0.71 	0,81 	0.91 	1 

1, Self-wei,ht(ft,lbs) 
Horizontal Thrust 	- 198,00 + 166,50 + 433,80 	+ 652,50 	+ 174,00 	+ 798,30 	+ 774.00 	+ 652,50 	+ 433,80 + 166,50 	- 198,00 

:44 lbs. 

3, Total 1ioment due to 
Self-weight & con- 
centrated loads, 	 - 

	

(ft,lbs), 	- 9606,00 - 3305,50 + 2382,60 	+ 8178,90 	+10002,80 	+10027.10 	+10002.81 	+ 8178,90 	+ 2382.60 - 3305,50 	- 9606,00 

Horizontal Thrust 
= 2127,2 lbs. 

III iIli Smallest moment 	:44 lbs, 
	=1,67 	

1 
ft; 4 	= 4 x 112 12 7 = + 6.12 ft,ib, 	P = 31,9001bs, 

1 	1 	6  

	

,51 	3.61 	0.71 	0.81  

111 	 ~1 6 	- 0,006 	+ 0,0054 	+ 0,0137 	+ 0,0206 	+ 0,0244 	+ 0,0252 	+ 0,0244 	+ 0.0206 	+ 0,0137 	+ 0.0054 	-0,006 

ft. 

IV M2 greatest Moment 	= 2127.21b; 6 - 1127 ft 2 6 = 2127.2 x 1 ',2 _ - 296,02 ft.lbs, 	1' = 31,900ilbs. 

0 	0.11 	0.21 	0.31 	0.41 	0.71 	0.61 	0.71 	0.8l 	0.9; 	1 

112 - ~26 - 0,283 	- 0,113: 	+ 3,3655 	+ 3.247 	+ 0,304 	+ 3,305 	+ 0.304 	+ 0.47 	+ 0.0655 	- 0.113 	-0.283 



., 

(a) RIGHT i1E ., TAKIi G t CCOUIN OF TRx..S0N SSHORTL~J1'.'G.• 

Corrections: M = 308.25 ft. lbs,  a = - 68.5 lbs. 

Self-weight only : 	= -506.25 + 308.25 = -198.00 ft.lbs. 

N = + 450 lbs. 

Self-weight plus concentrated loads: 

M =-9914.25 + 308.25 = -9606.00 ft.lbs. 

N = 6272 lbs. + 450 lbs. = 6722 lbs. 

SECTION FROPE 1I S: 

x xit 
b = 10" = 0.83 ft. h = 0.83 ft; S = 100 sq, in = 0.69 sq.ft. 

Section modulus = 166.7 in3 

Stresses due to external load only: 

Self-weight only: 

Outer-ede: n = 450 	198 x 12 
- 100 166.7 

4.5 - 14.3 = - 9.8 lbs/sq . in. 

1xxxxKxdgx:Xn~z9zJz *z 

Innered.e: n' =0+1166712= 4.5 + 14.3 = 18.8 

• Full Load: 

at the outer edge no 
= 

100 
 22 - 9606

166.7 12 _ 67.22 - 693 

= - 625.78 lbs./sq.in. 

	

622 	9606 x 12 at the inner ed4~e n' = 
0  100  166.7  = 67.22 + 693 = + 760.22 
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12t 
• By realisifl a prestress such that if ;fives: 

outer 
at the zLed;e no = 62.8 lbs/sq.in. 

at the inner edge n' = -18.8 lbs/sq.in. 

we obtain the following, total stresses: 

Outer--edbe self-wei, ht only n = 615.98 lbs/sq. in. 

full loud no = 0 

Inner ed"e self--weight only n' 	= 0 

full load no = 741.42 lbs/sq.in, 

These stresses ai•e permissible. 

Nanitude of prestress F'' = 100 x 	625.7 
2 

= 100 x 303.49 

= 30,349 lbs. 

n - n' 
0 . 0 Eccentricities,; of prestress e'' = 6 x n 
0  0 

10  625.78 + 18.8 
6 	X 625.78. 18.8 

= 1.77 in. 

Limitin zone for the le.: 	we draw frora the two vertical core 

edge lines, the boon ary lines determined by the ordinates 

Ii11 +(N  h) . ~i2 -( H2 6 '~1 = 	and ' 2 	r 	respectively. 



• The moments lit and N2 are proportional to the abscissae 

Z(vertical). The boundary lines are therefore straight lines 

intersectin at the top of the lei in the point determined by the 

Rr.zntxiExty E.ftxY. _A 	axAxTxX=  	_ forxZ s xMfxxxM'2 ixa 

eccentricity e'' = 1.77 in. and passing through the points. 

N h 	 N h 
1 = + 1 	and ~`2 _. - 6P, 	for Z = Ni1 = TA2 -- 0 

6F' 

1 .67 x 450 = + 0.0248 in. 
 30,349 

and `~ _ _ 1.67 x 6722 	0.37 in.  2 	30,349 

t b) Left leg, takin;y-, into account transom shortening 
same as for the Rig A.t le_. 

4. Determination of the concordant cable rofi.le for the tran.soii. 

Straight cables passing through the centre lines of the 

hinges are taken. Then, F' = 0,349 ibs; u' = 1.77 in. a'u'=53500 

in.lbs. 

= 30,349 lbs. u'' = 1.77 in. F'' u'' = 53,500 In. lbs. 

In the transom _i' = 31,900 lbs. 

Q 	 53 500 
Equation (4) becomes  

0 

As /-1 



A curve lying entirely within the limitinL zone and 

enclosing between itself and the neutral axis of the transom an 

area -60.5 sq.in. must be found out. 

This curve can be determined by trial and error. However, 

the general method can be applied which consists in the determi-

nation of an imaginary load function q(x) which would dive for 

a coiapressicn of 31,900 lbs and assumin partial restraints at 

the two ends of the transom, a furnicular curve lying within the 

neutral axis an area equal to - 60.5 sq.in* 

In the present case, the curve is determined by trial. 

and error method imposing; the condition that it should have at 

the ends of the transom an ordinate equal to + = 0.14 ft. and 

the area between itself and the neut:i°al axis of the transom an 

area of - 605 sq.in. 

The adgquacy of this line of press'.re is checked by 

sketching it on the drawing of the limitin ; zone and by verifying 

that it determines with the neut.cal axis an area equal to 60.5 

sq.in. 

*The negative sign means that the .rea is below the neutral 

axis. 	he imaginary loads there.Iore act upwards. 
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. 5. TRANSPORii TIO.i+ OF THE CABLE i ROFILE. 

As has already been mentioned, the tra~.som cable .,ay be 

moved up or down provided at the same time the leg cables are 

rotated about the centre lines of the hinges by such an amount 

that the apparent variations of the uendin3 moment at the f r e 

angle caused by these cable movements should be the Same for the 

transom and for the legs. 

This possibility is made use of o Live the le cables an 

approximately vertical position. 

This means that the prestre.3sin ; moment in the transom has 

to be reduced by the amount. 

y'u' = 53,500 in.lbs. = 4,458.3 ft.lbs. 

In other words, the transom cable has to be lowered by 

a = 31,900    = 0.139 ft. = 1.668 in. 

The final prestressing is shown is  

Ultimate strength of the high tensile wire =-0.65 x 249,984 

= 161,952 lhs/sq.in. 

Stress in steel after 15% loss would be=0.85 x 161,952 

= 137,500 lbs/s;.; . in. 
3190 .. Steel area required per transom = 137,500 = 0.232 9e in. 

Adopt 8 wires of 0.2" dig.. giving 0.24 sq.in. 

Steel area required per leg = 137,500 = 0.22 sq.in. 

Adopt 8 wires of 0.2" dia. giving 0.24 sq.in. 
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DESIGN OF SIIL.LC Rr,Ih 'G tC: i--L1iT 

Maximum shear Force at the support = 450 lbs + 2.8T 

= 6,722 lbs. 

Shear Force taken by t.le cables 	= 31900 Sin 

= 31900 x &x 2 Sin. 38° 

= 31900 x 0.62 

= 19,778 lbs. 

The maximum shear force at the support is taken core 

of by the vertical component of the force in the prestressing csble:~, 

Yet a nominal reinforweinent of 1/4" 	stirrups at 6" c/c/ is 

used in the transom. This of 1/4" 	bars at 9" c/c are used 

in the legs. The diameter of the longitudinal bars is 3/8". 

The diagram of the portal frame along with the prestres— 

ins; wires and the reinforcement ca6e is shown clearly in the 

drawing. 

Weight of the portal = 0.805 Tons. 



APPENDIX III. 

DESIGN OF TH C0 C RLTL B'MIX  . 

Minimum Compressive Strength = 1000 p.s.i. 

Workability 	: 	Medium 

Control 	 Very good 

Average crushing strength = 1000  x 3  
0.75 

40 
;5880x 100 

75 	= 4,000 p.s.i. 

Note: Cube 3treng th should be 3 times working strength. 

Water - Cement ratio 	: 0.55 

Slump required 	: 3 in. 

Aggregates available: 

Coarse aggregate: 3/4" round gravel. 

Weight of coarse aggregate : 110 lbs. per Oft. 

Bulking pe.•centage : 2.56 

Fine Azggrebate . 	% Passing 100 sieve 	1.69 

	

52 " 	5.49 
'► 	25 " 	37.46 

	

14 " 	81.29 

	

 7 " 	97.85 

	

3/8 " 	100.00 



9 
Weight of Fine Ag rebate 

 
100 lbs. per Cft. 

Bulking Percent age 
 14.3  

Determination of the weight of cement per 100 Cu.ft. of Concrete 

of concfete 
Weight of cement per  Total quantity of water oer 100 Cft.L 
100 Cu.ft. of Concrete. 0 - 	:rater-cement ratio 

1149 
0.55 

= 2080 lbs. 

Absolute volumes of water, cement and mixed aggre,ates. 

Absolute Volume of water = 64 = 18.4 

Absolute Volume of cement = 2480 	= 10.6 - 3.15x62.4 

Absolute volume of water  
- 18.4 + 10.6 = 29 Cft. and cement 

Therefore absolute volumed = 100 - 29 = 71 Cft. 
of mixed ag ,regates 

F.M. of fine and coarse aggrei;ates and proportions of fine 

and coarse aggregates. 

F.M. of coarse X16 ,reeate s = PC 



STEVE PASST1lG RETAT1; ;D 

3/8" 40% 60% 

3/4" 100% 0% 

3/16" 0% 100% 

7 0% 100% 

14 vO1 4vv1 

25 0% 100% 

52 0% 100% 

100 0% 100 

66'O% 

PC =  660  = 6.6 

F.N. of fine ag reaates = 

SIEVE PAS SING- RETAIL ED 

100 1.69 98.31 

52  5.49 94.51 

25 37.46 62.54 

14 81.29 18.71 

7 97.85 2.15 

3/8 100.00 0.00 

276.22 
P 	^ 	= 2.76 100 



Average F.M. of mixed a Creeates = 5.05 
F -P 

of fine aggregate = 	x 100  
c_ f 

_6.6-5.05 x 100 
` 6.60 - 2.76 

1000 

= 40'' 

;% of Coarse aggregate = 60.0% 

Absolute volumes and weights of fine and course ag retages: 

Absolute vol„me of fine a greLate = 71.0 x 0.4 = 28.4 

Absolute volume of coarse aggregate = 71.0 x 0.6 = 42.6 

. Weight of fine aggregate 	= 28.4 x 2.65 x 62.4 per 100 Cu.ft. of concrete 

= 4696.2 lbs. 

Weight of coarse ag reate  = 42.6 x 2.55 x 62.4 
per 100 Cu.ft. of concrete. 

= 6778.5 lbs. 

•' , ominal Ix 
Nominal i~ix = 

- 
280 	6 6.2 • 677 .5 
2080 2080  2080 

= 1 : 2.25 : 3.26 



l PDiiDLC TI' I' 

C'UBu C9ua i ;G N'i 	Ji a U CCC'T 

DDIxII3 C G3I ID3 S 
(IZy4"x4"x4") 

Date of q Date of 	Age 	„eight 	Load at Failure Avera 	Fda 	portal 
i0' casting testing (days). lb. 	Cu, 	Tons' 	Tons, 	,s,i. 	No, 

1, 	28, 3, 59r 28.9.59 	120 	5 	8 34 

2 	" " 	
a 	~' 32.5 32,5 	4,553 	I 

3 	H U 	1 	• 	~1 31 

4, 19,8,99 4,10,99 	45 31 

5, U II 	ii 	U 
32.5 31.8 	4,452 	II 

7, 	1,9,59 8,10,59 	37 31 

8. 	H ~~ 	~~ 	" 30 33,3 	4,242 	III 

9 	t U 	H 	U 30 



APP3i3OIL 

CYLIi~) 	C J L.G S'L; .,G.' 3 OP 00 0 LH' 
DETAILS 0 	Ia (SIru 6" ,C 121 ?) 

Date of 	atoi1 Age 	1Ieidht 	load at Failure Averag e 	Pcu 	Portal 
& 0 ' 	casti 	testing (days), 	lb. 	oz, 	fans 	ions` 	,u,i, 	i+o, 

1, 28,5,59 28,9,59 120 	29 	 46,5 

2, I? 	~~ 	'~ 	~~ 	 47 	47 	3720  

3, U 	U 	U 	1 	 47,5 

4. 	19,8.59 	4,10, 59 	45 	 47,5 

5, 	~1 	U 	II 	U 	46 	46,8 	3640 	II 

6 	U 	U 	 47 

7, 1, 9, 59 	8.10, 59 	37 	
U 	 47,5 

8, 41,5 	47.7 	3780 	III 

9
1 	Ii 	U 	II 	

48 

, 



APPi DIX 'VI' 

RESULT OF TTSIL TEST CI' HIGH T-.,'3Ii,E STEEL STIR. 0.2" DIA.. 

Diameter of Rod = 0.2" (Average of 8 readings) 

Area of cross section = 0.03 sq. i;a. 

liachine used: Avery 50 Ton Universal Testing; i•achine. 

Extensometer : Lindley i s No. 1 

Gauge lenth : 2 In. 
1 	1' 	 _4  

Value of each division on dial : 20,000 = 0.5 x 10 in. 

T,oad(Tons Dial Reading Stress(Tons/in2)0St.ain x 10-4 
Div. 

1 	 2 	 3 	 4 

0.0 0 0.0 0.00 
0.1 11 3.3 2.75 

0;2 21 6.6 5.26 

0.3 32 9.9 8.00 

0.4 43 13.2 10.75 
0.5 53 16.5 13.25 
0.6 62 23.1 18.50 

0.7 74 26.4 20.75 
0.8 83 29.7 23.50 

0.9 94 33.0 26.00 
1.0 104 36.3 28.75 
1.1 115 39.6 31.00 
1.2 124 42.9 35,00 

1.3 132 46.2 36.25 
1.4 145 49.5 38.25 

1 .5 153 52.8 41.50 
1.6 166 56.1 44.00 



APP TDIX ' VI' CO'1' D. '' 

1 	0 	2 	 3 	0 	4 

1.7 176 59.4 46.75 

1.8 187 62.7 48.50 

1.9 194 66.0 51.00 

2.0 204 69.3 53.00 

2.1 212 72.6 55.50 

2.2 X22 75.9 58.25 

2.3 233 79.2 60.50 

2.4 242 82.5 63.o 

2.5 252 85.8 65.00 

2.6 260 89.1 67.25 

2.7. 269 92.4 69.00 

2.8 276 95.7 71.75 

2.9 287 99.0 74.25 

3.0 297 102.3 

3.4 106.6 

3.2 112.0 

Ultimate strength of the wire = 112T.S.I. 

The extensometer was removed at a load of 3.0 tons 

Working stress = 161,952 lb.sq.in. 

E = 30 x 106  D.s.i. 
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1TO ZTICiT  

b = breadth of beam 

d'  = effective depth 

nd = depth to neutral axis 

rnd = depth to centre of compression 

R = cube strenLth in lbs. 

As  = area of. hi h tensile steel. 

fu  = ultime.te stress in steel 

= Weighted Dercentage 

= Asfu  
bdiR 

Psu = Total ultimate Force in the steel 

K = a coefficient depending on the hsape of the stress 
dia rain 

i dq = lever arin 

= Strain in the concrete 

= Strain in the steel. 

60 = initial strain in the concrete after prestressing 

&' o  = initial strain in the concrete after prestressin 

r = radius of curvature 
fs = actual stress in the steel 

= tension factor  
iir = ultimate moment of resistance 
1 = length of the port8l between the centre lines of legs 

height of " he portal fraa  _e 
ratio of stiffness of le ; to stiffness of transom 



50 	 100 	 I50 	 200 	 260 

DIVISIONS ON -OOOI" DIAL GAUGE. 	 K. C, PRODUC[IONSJ  LONDON 5W 



30 

7! 

JI 
20 

i::- 	~ 	.a 

w.. 	, 

0 SO 100 	r 	(50 	 Z00 
DIVISIONS ON .OocI' DIAL GAUGE, 	 KC PRDDUC110.Ms, _lo oo$ .W 


	A1164.pdf
	Title
	Synopsis
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Appendix
	Bibliography


